“Mycobacterium massilipolynesiensis” sp. nov., a rapidly-growing mycobacterium of medical interest related to Mycobacterium phlei

M. Phelippeau, S. Asmar, D. Aboubaker Osman, M. Sassi, C. Robert, C. Michelle, D. Musso & M. Drancourt

In French Polynesia, respiratory tract clinical isolate M26, displayed unusual phenotype and contradictory phylogenetic affiliations, suggesting a hitherto unidentified rapidly-growing Mycobacterium species. The phenotype of strain M26 was further characterized and its genome sequenced. Strain M26 genome consists in a 5,732,017-bp circular chromosome with a G+C% of 67.54%, comprising 5,500 protein-coding genes and 52 RNA genes (including two copies of the 16S rRNA gene). One region coding for a putative prophage was also predicted. An intriguing characteristic of strain M26’s genome is the large number of genes encoding polyketide synthases and nonribosomal peptide synthases. Phylogenomic analysis showed that strain M26’s genome is closest to the Mycobacterium phlei genome with a 76.6% average nucleotide identity. Comparative genomics of 33 Mycobacterium genomes yielded 361 genes unique to M26 strain which functional annotation revealed 84.21% of unknown function and 3.88% encoding lipid transport and metabolism; while 48.87% of genes absent in M26 strain have unknown function, 9.5% are implicated in transcription and 19% are implicated in transport and metabolism. Strain M26’s unique phenotypic and genomic characteristics indicate it is representative of a new species named “Mycobacterium massilipolynesiensis”. Looking for mycobacteria in remote areas allows for the discovery of new Mycobacterium species.

Non-tuberculous mycobacteria (NTM) are isolated from human and environmental samples all over the world, including tropical areas and remote countries and territories. Our recent investigation of mycobacteria in French Polynesia, a remote French territory composed of 117 islands in the South Pacific, indicated that rapidly-growing mycobacteria formed the most prevalent group of NTM in human respiratory tract specimens. Among such organisms, sequencing the 16S rRNA, rpoB and hsp65 genes suggested that strain M26, isolated from sputum collected in August 2011 from an 86-year-old French Polynesian man living in Taravao (17°44’ S, 149°18’ W) was representative of a new species. Strain M26 displayed 91.47% rpoB gene sequence similarity with Mycobacterium rhodesiae CIP 106806T (GenBank: EU109302), 98.93% 16S rRNA gene sequence similarity with Mycobacterium smegmatis ATCC 19420T (GenBank: NR115233) and 95.59% hsp65 gene sequence similarity with Mycobacterium conceptionense CIP 108544T (GenBank: AY859678). Since strain M26 was regarded as a potentially undescribed species of the genus Mycobacterium, it was further characterized.

For phenotype, we observed that strain M26 exhibited yellow-orange, circular, convex, smooth colonies on Middlebrook 7H10 medium. Exposing colonies to light during incubation did not change their color. Growth occurred from 28–42°C with optimum growth at 30–37°C, where colonies are detected at 48-hour subculture. Growth was also observed on trypticase soy agar and egg-based Coletsos medium, and Middlebrook 7H9 broth.

1Aix-Marseille Université, URMITE, UMR CNRS 7278, IRD 198, Inserm 1095, Marseille, France. 2Centre d’Etudes et de Recherche de Djibouti (CERD), Institut de Recherche Médicinale (IRM), Djibouti. 3Université de Rennes 1, Laboratoire de Biochimie Pharmaceutique, InsermU835-UPRES EA 2311, Rennes, France. 4Pôle de Recherche et de Veille sur les Maladies Infectieuses Emergentes, Institut Louis Malardé, Tahiti, Polynésie Française. Correspondence and requests for materials should be addressed to M.D. (email: michel.drancourt@univ-amu.fr)
Strain M26 exhibited Gram-positive, red Ziehl-Neelsen stained cells, which were non-motile and measured 0.54 ± 0.1 μm wide and 3.32 ± 1.46 μm on an average (Fig. 1). The catalase, niacin and Tween 80 hydrolysis tests were negative at 37 °C. Culture was positive when adding nitrobenzoic acid or up to 2% salt in Middlebrook 7H10 solid medium. Strain M26 hydrolyzed the complex polysaccharides esculin and gelatin. Further enzyme activities included pyrazinamidase, alkaline phosphatase, alpha-glucosidase, beta-glucosidase, urease but it was negative for nitrate reductase, pyrolidonyl arylamidase, beta-glucuronidase, beta-galactosidase, and N-acetyl beta-glucosaminidase. This phenotypic profile was unique, and specifically M26 strain phenotypically differed from *M. smegmatis* and *M. conceptionense*, the two closest organisms based on 16S rRNA and *hsp*65 gene sequence similarity (Fig. 2). In particular, results of catalase, growth at 5% NaCl, Tween 80 hydrolysis, nitrate reductase, gelatin hydrolysis distinguish strain M26 from *M. smegmatis*. Also, the absence of scotochromogenic colonies, negative catalase activity and negative Tween hydrolysis at 37 °C all distinguished strain M26 from *M. rhodesiae*, the closest species by *rpoB* sequencing (Fig. 2). Accordingly, M26 strain exhibited a reproducible matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) profile that did not match any of the profiles entered in the Bruker database (version December, 2015). Furthermore, strain M26 was susceptible to rifabutin (minimal inhibitory concentration (MIC) < 0.015 mg/L), rifampicin (MIC, 0.06 mg/L), ethambutol (MIC, 1 mg/L), clarithromycin (MIC, 2 mg/L), azithromycin (MIC, 2 mg/L), linezolid.
(MIC, 0.5 mg/L), amikacin (MIC, 0.25 mg/L), ciprofloxacin (MIC, 0.125 mg/L), levofloxacin (MIC, 0.06 mg/L), moxifloxacin (MIC, <0.03 mg/L), sulfamethoxazole (MIC, 1 mg/L) and resistant to penicillin G (MIC, 256 mg/L), imipenem (MIC, 64 mg/L), doxycyclin (MIC, 4 mg/L) and minocyclin (MIC, 1 mg/L). This antibiotic susceptibility profile also distinguished strain M26 from *M. rhodesiae*, which is resistant to rifampicin with a MIC of 25 mg/L. Phenotypic traits therefore suggested that strain M26 was a representative strain of a previously undescribed *Mycobacterium* species.

Further, we found that the genome of strain M26 comprised one 5,732,017-bp long chromosome without plasmid and a 67.54% GC content (Fig. 3). The genome of strain M26, comprising 12 contigs assembled into nine scaffolds, was ordered using Mauve software and *Mycobacterium gilvum* genome as nearest sequenced complete genome reference. The ordered scaffolds were then assembled into one complete sequence. Analyzing the replication origin in strain M26 genome using Ori-Finder predicted two OriC regions split by the *dnaA* gene and located at scaffold00008 (508 and 368 bp) (Supplementary File 1). The 368 bp predicted OriC region showed homology sequence with *Mycobacterium rhodosiae* NBB3 and *Mycobacterium avium* 104 in DorIC database (Supplementary File 1). The genome of strain M26 encodes 5,500 protein-coding genes and 52 RNAs including two complete rRNA operons and 46 tRNA. A total of 4,086 genes (74.29%) were assigned as putative function (by COGs or by NR blast), whereas 166 genes (3.02%) were identified as ORFans. The remaining genes were annotated as hypothetical proteins (989 genes, 18%). A total of 2,876 proteins were found to be associated with mobilome. Eleven genes encode for bacteriocins and 100 proteins are associated with toxin/antitoxin system. We detected no gene encoding for proteins potentially involved in the resistome in the genome of strain M26. One protein was found to belong to the FxsA bacterial family of cytoplasmic membrane proteins. The molecular function of FxsA is unknown, but its over-expression in *Escherichia coli* has been shown to lessen the exclusion of phage T7 in those cells with an F plasmid. Analyzing the mobilome of strain M26 predicted one incomplete 23-kbp prophage region related to the *Herpesviridae* family, which lost the structural and replication protein required for a phage (Fig. 3, Fig. 4). We detected no gene for clustered regularly interspaced short palindromic repeats (CRISPR). We identified a large number of genes assigned to COG functional categories for transport and metabolism of lipids (8.9%), secondary metabolites biosynthesis, transport and catabolism (7.3%), amino acid transport and metabolism (6.3%) and energy production and conversion (6%) in the strain M26 genome.
Table 1. Number of genes associated with the 25 general COG functional categories. The % total is based on the total number of protein coding genes in the annotated genome.

Code	Value	% of total	Description
[A]	1	0.018181818	RNA processing and modification
[B]	0	0	Chromatin structure and dynamics
[C]	328	5.9636364	Energy production and conversion
[D]	27	0.49090907	Cell cycle control, mitosis and meiosis
[E]	346	6.290909	Amino acid transport and metabolism
[F]	199	3.618182	Carbohydrate transport and metabolism
[G]	77	1.4000001	Nucleotide transport and metabolism
[H]	131	2.3818183	Coenzyme transport and metabolism
[I]	487	8.854546	Lipid transport and metabolism
[J]	26	0.47272727	Intracellular trafficking and secretion
[K]	303	5.509091	Transcription
[L]	125	2.2727273	Replication, recombination and repair
[M]	133	2.418182	Cell wall/membrane biogenesis
[N]	11	0.2	Cell motility
[O]	104	1.8909091	Posttranslational modification, protein turn-over, chaperones
[P]	215	3.909091	Inorganic ion transport and metabolism
[Q]	399	7.254545	Secondary metabolites biosynthesis, transport and catabolism
[R]	647	11.763636	General function prediction only
[S]	259	4.709091	Function unknown
[T]	109	1.9818181	Signal transduction mechanisms
[U]	2091	38.018181818	Not in COGs
[V]	39	0.7090909	Defense mechanisms
[W]	0	0	Extracellular structures
[X]	0	0	Cytoskeleton
[Y]	0	0	Nuclear structure
[Z]	0	0	Unknown function

This genomic content probably reflects the high lipid content in strain M26, as is known for the genus Mycobacterium. Mycobacterial lipids play important roles in virulence and drug susceptibility. The genome of M26 also has the potential to produce secondary metabolites, with 73 genes found to be associated with polyketide synthases (PKSs) and non-ribosomal peptide synthetase (NRPSs). Some of these genes are orthologous to some Mycobacterium tuberculosis genes such as Pks 13. NRPSs encode for peptide synthetase orthologous to those of Mycobacterium tuberculosis and siderophore biosynthesis protein, similar to those of Streptomyces davawensis and Streptomyces griseus. Siderophores are implicated in the acquisition of ferric iron in most microorganisms.

Phylogenomic analysis showed that the strain M26 genome is closest to Mycobacterium phlei genome, with average nucleotide identity of 76.6% (Fig. 5). The strain M26 genome is smaller than those of M. smegmatis mc2 155 and M. rhodesiae NBB3 (6.99 Mb and 6.42 Mb, respectively). We further analyzed 32 species genomes in addition to the M26 strain genome to construct the Mycobacterium pangenome. These 33 Mycobacterium species yielded a pangenome of 181,387 genes. The core genome (the set of genes shared by all the studied species) is composed of 1,474 orthologous genes (45.29%) and the accessory genome (the set of genes present in some but not all the species) is composed of 8,406 orthologous genes and 8,963 unique genes (54.71%). M26 strain encodes 361 unique genes (0.19%). A total of 14,356 genes encoded in other Mycobacterium species, are absent in the M26 genome (7.54%). Functional annotation of M26 strain unique genes revealed that 84.2% have unknown function and 3.88% are implicated in lipid transport and metabolism; while 48.87% of genes absent in the M26 strain genome have unknown function, 9.5% are implicated in transcription and 19% are implicated in transport and metabolism. In a few patients, *M. phlei* was isolated from the respiratory tract, as was the case for strain M26. Phylogenetic analysis unambiguously confirmed that it was a representative of a previously undescribed new species in the genus Mycobacterium; the Latin name for Marseilles, France, and Polynesia, where it was isolated. It is proposed to be a novel species belonging to the Mycobacterium genus, based upon rpoB discrimination within the nontuberculous rapidly-growing mycobacteria group and its genome features. A remarkable genomic Mycobacterium massilipolynesiensis feature is the large number of genes assigned to the transport and metabolism

Table 1. Number of genes associated with the 25 general COG functional categories. The % total is based on the total number of protein coding genes in the annotated genome.
of lipids and secondary metabolite biosynthesis, transport and catabolism. Older suggestion that a new bacterial species be reported on the basis of several isolates16,17 would have prevented to draw attention of microbiologists to this new species. Alternatively, its free availability in public culture collection will allow microbiologists to report on additional isolates in order to precise the potential of \textit{M. massilipolynesiensis} as an opportunistic pathogen; on the wave of culturomics hundreds of new bacterial species with only one cultured representative18,19.

Methods

To further characterize strain M26, growth was observed after sub-culture on Middlebrook 7H10 solid agar (Becton Dickinson, Le Pont de Claix, France) at 28–42 °C for two weeks. The development of colonies was inspected daily by the naked eye. Optical microscopy was performed using a Leica DM 2500 microscope (Leica, Wetzlar, Germany) after Gram staining and Ziehl-Neelsen staining and pictures were taken using a Nikon Digital Sight DS-U1 Camera System (Nikon, Tokyo, Japan). Transmission electron microscopy (Morgani 268D; Philips, Eindhoven, The Netherlands) was used to determine the size of the microorganisms after negative staining. Carbon source utilization and enzyme activities were determined by inoculating a API® Coryne strip (bioMérieux) as indicated by the manufacturer. For Tween 80 hydrolysis, two drops of Tween 80 reagent (Sigma-Aldrich, L’Isle-d’Abeau, France) and neutral red as indicator were mixed with 1 mL of sterile distilled water into a screw-cap tube. The tube was inoculated with a loopful of the microorganism and incubated at 37 °C in the dark with the cap tight. The tube was visually inspected daily up to 10 days of incubation. Niacin production was detected using BBL™ Taxo™ TB Niacin test strips (Becton Dickinson) as described by the manufacturer. Salt tolerance of strain M26 was tested by supplementing the Middlebrook 7H10 solid medium with 0–5% NaCl. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) protein analysis was carried out as previously described20. Drug susceptibility was tested using the broth microdilution method in Middlebrook 7H9 medium (Becton Dickinson) as previously described21.

Genome sequencing and assembly.

DNA was extracted from strain M26 and cultured for seven days in one MGIT medium (Becton Dickinson) tube supplemented with 0.8 mL of Oleic Albumin Dextrose Catalase (OADC) enrichment (Becton Dickinson) at 37 °C. The inoculated broth was then centrifuged at 8,000 g for 10 min and the pellet was resuspended in 160 μL of G2 buffer (EZ1 DNA Tissue kit, Qiagen, Courtaboeuf, France), mixed with 40 μL of lysozyme at 25 mg/mL (Euromedex, Strasbourg, France). DNA was extracted using a BioRobot EZ1 Advanced XL (Qiagen). Genomic M26 DNA was sequenced on the MiSeq Technology (Illumina Inc, San Diego, CA, USA) with both paired-end and mate-pair applications. The gDNA was quantified by a Qubit assay with the high sensitivity kit (Life Technologies, Carlsbad, CA, USA) to 95.1 ng/μL and was barcoded respectively in order to be mixed with 12 other projects with the Nextera Mate Pair sample prep kit (Illumina) and with 15 others projects with the Nextera XT DNA sample prep kit (Illumina). To prepare the paired-end library, dilution

Figure 5. Aligned whole genomes phylogenomic tree based on Mauve alignment identity matrix. ANI, Average Nucleotide Identity.
was performed to require 1ng of each genome as input. The “tagmentation” step fragmented and tagged the DNA. Limited cycle PCR amplification (12 cycles) completed the tag adapters and introduced dual-index barcodes. After purification on AMPure XP beads (Beckman Coulter Inc, Fullerton, CA, USA), the libraries were normalized on

Species	Genbank accession number	No. of orthologous genes	No. of unique genes
Mycobacterium abscessus	NC_010397.1	4615	340
Mycobacterium aurum	CVQ001000001.1	5519	392
Mycobacterium avium subspecies avium	NZ_ACF01000001.1	4440	144
Mycobacterium caninumense	BCSY01000001.1	6204	591
Mycobacterium chelonae	NZ_CP010946.1	4445	329
Mycobacterium chimaera	LJHN01000001.1	5805	269
Mycobacterium chubuense	CP003053	5024	213
Mycobacterium conceptionense	LFOD010000001.1	6498	531
Mycobacterium cosmeticum	CCB010000001.1	6117	151
Mycobacterium fortuitum	NZ_CP011269.1	5800	193
Mycobacterium gilvum	NC_009338.1	5219	140
Mycobacterium haliacum	NZ_KB903840.1	4587	248
Mycobacterium indicus pranii	NC_018612.1	5117	62
Mycobacterium intracellulare	NC_016946.1	4964	65
Mycobacterium kansasii	CP006835.1	5059	556
Mycobacterium lentiflavum	CTEE01000001.1	6026	329
Mycobacterium mageritense	CCBF010000001.1	7127	549
Mycobacterium massilipolynesiensis	FAXD000000001.1	5125	361
Mycobacterium mucogenicum	CYS01000001.1	5497	495
Mycobacterium neoaurum	CP006936.2	4878	225
Mycobacterium phlei	NZ_AJFJ010000001.1	5281	316
Mycobacterium rhodesiae	NC_016604.1	5977	292
Mycobacterium senegalense	LDP010000001.1	6413	261
Mycobacterium septicum	CBMO010000001.1	6334	258
Mycobacterium simiae	CBMJ020000001.1	5162	320
Mycobacterium smegmatis	NC_008596.1	6417	260
Mycobacterium thermoresistibile	NZ_AGVE01000001.1	4381	215
Mycobacterium triplex	CCAU010000001.1	5787	203
Mycobacterium tusciae	NZ_AGJ010000001.1	6422	571
Mycobacterium vaccae	NZ_JH814683.1	5666	251
Mycobacterium vanbaalenii	NC_008726.1	5866	292
Mycobacterium xenopi	NZ_AJF010000001.1	3994	293
Mycobacterium yongonense	NC_021715.1	5020	86

Table 2. Mycobacterial genomes used in pangenomic analysis.

Figure 6. Pangenomic analysis and functional annotation of 33 *Mycobacterium* genome species. (A) Pangenome distribution (B) COGs distribution of unique genes and genes absent in M26 strain genome.
specific beads according to the Nextera XT protocol (Illumina). Normalized libraries were pooled for sequencing on the MiSeq. The pooled single strand library was loaded onto the reagent cartridge and then onto the instrument along with the flow cell. Automated cluster generation and paired end sequencing with dual index reads were performed in a single 39-hour run in 2 × 251-bp. Total information of 5.9 Gb was obtained from a 643 K/mm² cluster density with cluster passing quality control filters of 91.8% (12,365,000 clusters). Within this run, the index representation for M26 was 6.43%. The 729,975 paired-end reads were trimmed and filtered according to the read qualities. Two separated mate-pair libraries were prepared with 1.36 and 1.5 μg of genomic DNA using the Nextera mate pair Illumina guide. The genomic DNA sample was simultaneously fragmented and tagged with a mate pair junction adapter. The fragmentation profiles were validated on an Agilent 2100 BioAnalyzer (Agilent Technologies Inc, Santa Clara, CA, USA) with a DNA 7500 labchip. The size of the DNA fragments ranged from 1 to 11 kb with an optimal size at 4.58 and 5.27 kb, respectively. No size selection was performed and 503 and 600 ng respectively of tagmented fragments were circularized. The circularized DNA was mechanically sheared to small fragments with an optimal at 871 bp on the Covaris device S2 in microtubes (Covaris, Woburn, MA, USA). The libraries were quantified and visualized on a High Sensitivity Bioanalyzer LabChip (Agilent Technologies Inc). The libraries were normalized at 2 nM, pooled, denatured and diluted at 15 pM for sequencing. One M26 library was loaded in two different 2 × 251-bp runs (at 506 K/mm² cluster density with cluster passing quality control filters of 97%), the index representation was determined at 5.71%, at 852 K/mm² cluster density with cluster passing quality control filters of 94.53%, the index representation was 4.04%). The second library was loaded and the run performed at 587 K/mm² cluster density with cluster passing quality control filters of 96.3% (the index representation was 7.44%). These three runs in mate-pair strategy generated a total of 2,004,521 pass filter paired-reads for M26. Illumina libraries were trimmed using Trimmomatic22, then assembled using Spades software23,24. Contigs were combined together by SSpace25 and Opera software v1.26, helped by GapFiller V1.1027 to reduce the set. Some manual refinements using CLC Genomics v7 software (CLC bio, Aarhus, Denmark) and homemade tools made in Python improved the genome. Finally, the draft genome of strain M26 consists into nine scaffolds. The replication origin in strain M26 genome was predicted using Ori-Finder5,6 (http://tubic.tju.edu.cn/Ori-Finder/) and homology with other OriC regions was predicted using blast algorithm in Doric database7 (http://tubic.tju.edu.cn/doric/). The 16S rRNA gene sequence of strain M26 was deposited in GenBank under accession number LN909503 and its complete genome under accession number FAXD00000000.

Genome annotation. Non-coding genes and miscellaneous features were predicted using RNAmer28, ARAGORN29, Rfam30, PFAM31, and Infernal32. Coding DNA sequences (CDSs) were predicted using Prodigal33 and functional annotation was achieved using BLAST +34 and HMMER335 against the UniProtKB database36. To refine the search of mobile genetic elements in the genome of strain M26, PHAST software predicted prophage37 completed by the Actinobinophylogen Database at phageDB.org and the online plasmid search tool: https://plasmid.med.harvard.edu/PLASMD/Home.xhtml. Phylogenomic tree was constructed using an identity matrix based on Mauve program genome alignment38. Average Nucleotide Identity values were calculated between strain M26 and sequenced Mycobacterium species genomes using BLASTN and a homemade software, following the algorithm described by Goris et al.39. The genomes of 32 Mycobacterium species were downloaded from Genbank (Table 2). The ORFome of these species, in addition to M26 genome, were annotated using Prodigal33 in order to normalize ORFs predictions. The Pangenomic analyses were computed using OrthoMCL software with >60% amino acid identity in all-against-all BLASTP algorithm40.

References
1. Menzies, D. & Nahid, P. Update in tuberculosis and nontuberculous mycobacterial disease 2012. Am. J. Respir. Crit. Care Med. 188, 923–927 (2013).
2. Lillis, J. V. & Ansdel, D. Outbreak of nontuberculous mycobacterial disease in the central Pacific. Dermatol. Clin. 29, 9–13 (2011).
3. Phelppeau, M., Osman, D. A., Musso, D. & Drancourt, M. Epidemiology of nontuberculous mycobacteria in French Polynesia. J. Clin. Microbiol. 53, 3798–804 (2015).
4. Gordon, R. E. & Smith, M. M. Rapidly growing, acid fast bacteria. I. Species’ descriptions of Mycobacterium phlei Lehmann and Neumann and Mycobacterium smegmatis (Trevisan) Lehmann and Neumann. J. Bacteriol. 66, 41–8 (1953).
5. Tsukamura, M., Mizuno, S. & Tsukamura, S. Numerical analysis of rapidly, scotochromogenic mycobacteria including Mycobacterium obuense sp. nov., nov. rev., Mycobacterium rhodesiae sp. nov., nov. rev., Mycobacterium aichense sp. nov., nov. rev., Mycobacterium chubuense sp. nov., nov. rev., Mycobacterium tokaiense sp. nov., nov. rev. Int. J. Syst. Bact. 31, 263–275 (1981).
6. Gao, F. & Zhang, C. T. Ori-Finder: a web-based system for finding oriCs in unannotated bacterial genomes. BMC Bioinformatics. 9, 79 (2008).
7. Gao, F., Luo, H. & Zhang, C. T. DorIC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes. Nuc Acids Res. 41, 90–93 (2013).
8. Ritu, B. M. & Hiroshi, N. Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannodides. Proc. Natl. Acad. Sci. USA 111, 4958–4963 (2014).
9. Portevin, D. et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA 101, 314–319 (2004).
10. Aguilar, J. L., Sanchez, E. E., Carrillo, C., Alarcón, G. S. & Silicani, A. Septic arthritis due to Mycobacterium phlei, a previously unreported cause of pacemaker infection: thinking outside the box in cardiac device infections. Cardiol. J. 18, 687–690 (2011).
11. Lima, C. A. Mycobacterium phlei: an emerging pathogen causing pacemaker device infections. J. Rheumatol. 16, 1377–1378 (1989).
12. Paul, E. & Devarajan, P. Mycobacterium phlei infection of the foot: a case report. Foot Ankle Int. 15, 680–683 (1994).
13. Karmam, S. et al. Mycobacterium phlei, a previously unreported cause of pacemaker infection: thinking outside the box in cardiac device infections. Cardio. J. 18, 687–690 (2011).
14. Lima, C. A. et al. Nontuberculous mycobacteria in respiratory samples from patients with pulmonary tuberculosis in the state of Rondonia, Brazil. Mem. Inst. Oswaldo Cruz. 108, 457–462 (2013).
15. Hsiao, C. H., Lin, Y. T., Lai, C. C. & Hsieh, P. R. Clinicoepidemiologic characteristics of nontuberculous mycobacterial lung disease in Taiwan. Diagn. Microbiol. Infect. Dis. 68, 228–235 (2010).
16. Christensen, H. et al. Is characterization of a single isolate sufficient for valid publication of a new genus or species? Proposal to modify recommendation 30b of the Bacteriological Code (1990 Revision). Int. J. Syst. Evol. Microbiol. 51, 2221–2225 (2001).
17. Janda, J. M. & Abbott, S. L. Bacterial identification for publication: when is enough enough? J. Clin. Microbiol. 40, 1887–1891 (2002).
18. Lagier, J. C. et al. The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin. Microbiol. Rev. 28, 257–264 (2015).
19. Lagier, J. C. et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nature Microbiol. (2016 in press).
20. El Khéchine, A., Couderc, C., Flandrops, C., Raoult, D. & Drancourt, M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS ONE 6, e24720 (2011).
21. Brown-Elliott, B. A., Nash, K. A. & Wallace, R. J. Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin. Microbiol. Rev. 25, 545–582 (2012).
22. Lohse, M. et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res. 40 (Web Server issue), W622–627 (2012).
23. Nurk, S. et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 20, 714–737 (2013).
24. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
25. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27, 578–579 (2011).
26. Gao, S., Sung, W. K. & Nagarajan, N. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18, 1681–1691 (2011).
27. Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13, R56 (2012).
28. Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).
29. Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).
30. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).
31. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).
32. Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R. Infernal 1.0: inference of RNA alignments. Bioinformatics 25, 1335–1337 (2009).
33. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).
34. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
35. Eddy, S. R. Accelerated profile HMM searches. PLoS Comp. Biol. 7, e1002195 (2011).
36. The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res. 39, D214–D219 (2011).
37. Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: a Fast Phage Search Tool. Nucleic Acids Res. 39 (Web Server issue), W347–352 (2011).
38. Darling, A. E., Mau, B. & Perna, N. T. ProgressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5, e11147 (2010).
39. Goris, J. et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 57, 81–91 (2007).
40. Li, L., Stoeckert, J., Christian, J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–89 (2003).

Acknowledgements
This work was supported financially by the Institut Hospitalo-Universitaire Méditerranée Infection, Marseilles, France.

Author Contributions
Performed the experiments: M.P., S.A., D.A.O., C.R., C.M. Performed bioinformatics: M.S. Reviewed data: D.M., M.D.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Philippeau, M. et al. "Mycobacterium massilipolymiesiensis" sp. nov., a rapidly-growing mycobacterium of medical interest related to Mycobacterium phlei. Sci. Rep. 7, 40443; doi: 10.1038/srep40443 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017