AN EXTENSION OF THE LÖWNER–HEINZ INEQUALITY

MOHAMMAD SAL MOSLEHIAN AND HAMED NAJAFI

Abstract. We extend the celebrated Löwner–Heinz inequality by showing that if A, B are Hilbert space operators such that $A > B \geq 0$, then

$$A^r - B^r \geq ||A||^r - \left(||A|| - \frac{1}{||(A - B)^{-1}||} \right)^r > 0$$

for each $0 < r \leq 1$. As an application we prove that

$$\log A - \log B \geq \log ||A|| - \log \left(||A|| - \frac{1}{||(A - B)^{-1}||} \right) > 0.$$

1. Introduction

Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a complex Hilbert space and $\mathbb{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} equipped with the operator norm $\| \cdot \|$. There are three types of ordering on the real space of all self-adjoint operators as follows. Let $A, B \in \mathbb{B}(\mathcal{H})$ be self-adjoint. Then

1. $A \geq B$ if $\langle Ax, x \rangle \geq \langle Bx, x \rangle$.
2. $A \succ B$ if $\langle Ax, x \rangle > \langle Bx, x \rangle$ holds for all non-zero elements $x \in \mathcal{H}$.
3. $A > B$ if $A \geq B$ and $A - B$ is invertible.

Clearly (3) \Rightarrow (2) \Rightarrow (1) but the reverse implications are not valid in general. For instance, if A is the diagonal operator $(1, 1/2, 1/3, \cdots)$ on ℓ^2, then $A > 0$ but $A \not\succeq 0$.

Of course, in the case where H is of finite dimension, (2) and (3) are equivalent. A continuous real valued function f defined on an interval J is called operator monotone if $A \geq B$ implies that $f(A) \geq f(B)$ for all self-adjoint operators A, B with spectra in J. The Löwner–Heinz inequality says that, $f(x) = x^r$ $(0 < r \leq 1)$ is operator monotone on $[0, \infty)$. Löwner [10] proved the inequality for matrices. Heinz [8] proved it for positive operators acting on a Hilbert space of arbitrary dimension. Based on the C^*-algebra theory, Pedersen [11] gave a shorter proof of the inequality.

There exist several operator norm inequalities each of which is equivalent to the Löwner–Heinz inequality, see [7]. One of them is $\|A^r B^r\| \leq \|AB\|^r$, called the Cördes inequality in the literature, in which A and B are positive operators and $0 < r \leq 1$. A generalization of the Cördes inequality for operator monotone functions is given in

2010 Mathematics Subject Classification. Primary 47A63; Secondary 47B10, 47A30.

Key words and phrases. Löwner–Heinz inequality; positive operator; Operator monotone function.
It is shown in [1] that this norm inequality is related to the Finsler structure of the space of positive invertible elements.

Kwong [9] showed that if \(A > B \) (\(A \succ B \), resp.), then \(A^r > B^r \) (\(A^r \succ B^r \), resp.) for \(0 < r \leq 1 \). Uchiyama [12] showed that for every non-constant operator monotone function \(f \) on an interval \(J \), \(A \succ B \) implies \(f(A) \succ f(B) \) for all self-adjoint operators \(A, B \) with spectra in \(J \).

There are several extensions of the Löwner–Heinz inequality. The Furuta inequality [6], which states that if \(A \geq B \geq 0 \), then for \(r \geq 0 \),
\[
(A^{r/2} A^p A^{r/2})^{1/q} \geq (A^{r/2} B^p A^{r/2})^{1/q}
\]
holds for \(p \geq 0 \) and \(q \geq 1 \) with \((1 + r)q \geq p + r \), is known as an exquisite extension of the Löwner–Heinz inequality; see the survey article [5] and references therein.

If \(f \) is an operator monotone function on \((-1, 1)\), then \(f \) can be represented as
\[
f(t) = f(0) + f'(0) \int_{-1}^{1} \frac{t}{1 - \lambda t} d\mu(\lambda)
\]
where \(\mu \) is a positive measure on \((-1, 1)\). It is known that
\[
t^r = \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{t}{\lambda + t} \lambda^{-1} d\lambda,
\]
in which \(0 < r < 1 \), and
\[
A^r = \frac{\sin(r\pi)}{\pi} \int_{0}^{\infty} \frac{A}{\lambda + A} \lambda^{-1} d\lambda,
\]
where \(A \) is positive and \(0 < r < 1 \); see e.g. [3, Chapter V].

In this paper we extend the Löwner–Heinz inequality by showing that if \(A, B \in \mathbb{B}(\mathcal{H}) \) such that \(A > B \geq 0 \), then
\[
A^r - B^r \geq \|A\|^r - \left(\|A\| - \frac{1}{\|(A - B)^{-1}\|}\right)^r > 0
\]
for each \(0 < r \leq 1 \). As an application we prove that
\[
\log A - \log B \geq \log \|A\| - \log \left(\|A\| - \frac{1}{\|(A - B)^{-1}\|}\right) > 0.
\]

2. The results

We start our work with the following useful lemma.

Lemma 2.1. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) be invertible positive operators such that \(A - B \geq m > 0 \). Then
\[
B^{-1} - A^{-1} \geq \frac{m}{(\|A\| - m) \|A\|},
\]
Proof. Since \(f(t) = \frac{1}{t} \) is a decreasing operator monotone function on \([0, \infty)\) we have \(B^{-1} \geq (A - m)^{-1} \). On the other hand

\[
(A - m)^{-1} \geq A^{-1} + \frac{m}{||A|| - m||A||}
\]

\[
\iff (A^{-1} + \frac{m}{||A|| - m||A||})(A - m) \leq 1
\]

\[
\iff \frac{A^2}{||A|| - m||A||} - \frac{mA}{||A|| - m||A||} \leq 1
\]

\[
\iff A^2 - mA \leq (||A|| - m)||A||
\]

\[
\iff ||A^2 - mA|| \leq (||A|| - m)||A||.
\]

There exists \(\lambda_0 \in \text{sp}(A) \) such that \(||A|| = \lambda_0 \). Since \(A \geq m > 0 \), we have

\[
||A^2 - mA|| = \max\{\lambda : \lambda \in \text{sp}(A^2 - mA)\}
\]

\[
= \max\{\lambda^2 - m\lambda : \lambda \in \text{sp}(A)\}
\]

\[
= \lambda_0^2 - m\lambda_0
\]

\[
= (||A|| - m)||A||.
\]

So \(B^{-1} \geq (A - m)^{-1} \geq A^{-1} + \frac{m}{||A|| - m||A||}. \)

Now we use Lemma 2.1 to prove an analogous but different result to the main theorem of Uchiyama [12] in an easy fashion as an offshoot of our work.

Proposition 2.2. Let \(f \) be a non-constant operator monotone function on an interval \(J \) and \(A, B \) be self-adjoint operators with spectra in \(J \) such that \(A > B \). Then \(f(A) > f(B) \).

Proof. Without loss of generality we assume that \(J = (-1, 1) \). Let \(A, B \in \mathbb{B}(\mathcal{H}) \) be self-adjoint operators with spectra in \((-1, 1)\) and \(A - B \) is positive and invertible. So there exists \(m > 0 \) such that \(A - B \geq m > 0 \). Put \(f_\lambda(t) = \frac{t}{1-t\lambda} \) for each \(\lambda \) with \(|\lambda| < 1 \).

We shall show that \(f_\lambda(A) - f_\lambda(B) \) is bounded blow and so invertible. It is clear that the claim is true for \(\lambda = 0 \). If \(0 < \lambda < 1 \), then \((1 - \lambda B) - (1 - \lambda A) = \lambda(A - B) > \lambda m > 0 \) as well as \(1 - \lambda B \) and \(1 - \lambda A \) are positive invertible operators. Since

\[
\frac{t}{1-\lambda t} = \frac{-1}{\lambda} + \frac{1}{\lambda} \left(\frac{1}{1-\lambda t} \right),
\]
by Lemma 2.1, we have
\[f(\lambda(A)) - f(\lambda(B)) = \frac{1}{\lambda} \left(\frac{1}{1-\lambda A} - \frac{1}{1-\lambda B} \right) \]
\[\geq \frac{1}{\lambda} \left(\frac{\lambda m}{(||1-\lambda B|| - \lambda m) ||1-\lambda B||} \right) \quad \text{(by (2.1))} \]
\[= \frac{m}{(||1-\lambda B|| - \lambda m) ||1-\lambda B||} > 0 \]
A similar argument shows that
\[f(\lambda(A)) - f(\lambda(B)) \geq \frac{m}{(||1-\lambda A|| + \lambda m) ||1-\lambda A||} > 0 \]
for each \(-1 < \lambda < 0\). Since \(f\) is operator monotone on \((-1, 1)\), it can be represented as
\[f(t) = f(0) + f'(0) \int_{-1}^{1} f(\lambda(t)) d\mu(\lambda), \]
where \(\mu\) is a nonzero positive measure on \((-1, 1)\). Since \(f\) is nonconstant, \(f'(0) > 0\), [2, Lemma 2.3]. Hence
\[f(A) - f(B) = f'(0) \int_{-1}^{1} \left(\frac{A}{1-\lambda A} - \frac{B}{1-\lambda B} \right) d\mu(\lambda) \]
\[= f'(0) \int_{-1}^{1} (f(\lambda(A)) - f(\lambda(B))) d\mu(\lambda) \]
\[\geq f'(0) \int_{-1}^{1} m_\lambda d\mu(\lambda), \]
where
\[m_\lambda = \frac{m}{(||1-\lambda B|| - \lambda m) ||1-\lambda B||} \]
if \(0 \leq \lambda < 1\), and
\[m_\lambda = \frac{m}{(||1-\lambda A|| + \lambda m) ||1-\lambda A||} \]
if \(-1 < \lambda < 0\). Since \(\mu\) is a nonzero positive measure and \(m_\lambda > 0\), we have
\[f(A) - f(B) \geq f'(0) \int_{-1}^{1} m_\lambda d\mu(\lambda) > 0. \]
Therefore \(f(A) > f(B)\). \(\square \)

Our main result reads as follows.

\textbf{Theorem 2.3.} Let \(A, B \in \mathbb{B}(\mathcal{H})\) be positive operators such that \(A - B \geq m > 0\) and \(0 < r \leq 1\). Then
\[A^r - B^r \geq ||A||^r - (||A|| - m)^r. \]
Proof. Let $0 < r < 1$. First note that,

$$\frac{A}{\lambda + A} - \frac{B}{\lambda + B} = \lambda \left(\frac{1}{\lambda + B} - \frac{1}{\lambda + A} \right) \geq \frac{\lambda m}{(||A + \lambda|| - m)||A + \lambda||} \quad \text{by (2.1)}$$

for each $\lambda > 0$. By using (1.3) we have

$$A^r - B^r = \sin \left(\frac{r\pi}{\pi} \right) \int_0^\infty \lambda^{r - 1} \left(\frac{A}{\lambda + A} - \frac{B}{\lambda + B} \right) d\lambda \geq \frac{\sin(r\pi)}{\pi} \int_0^\infty \left(\frac{m \lambda^r}{(||A|| + \lambda - m)(||A|| + \lambda)} \right) d\lambda.$$

We need to compute

$$I = \int_0^\infty \frac{\lambda^r}{(\lambda + ||A||)(\lambda + (||A|| - m))} d\lambda$$

where $0 < r < 1$. We will need the branch cut for $z^r = \rho^r e^{ir\theta}$, in which $z = \rho e^{i\theta}$ and $0 \leq \theta \leq 2\pi$. Consider

$$\int_C \frac{z^r}{(z + ||A||)(z + (||A|| - m))} dz,$$

where the keyhole contour C consists of a large circle C_R of radius R, a small circle C_ϵ of radius ϵ and two lines just above and below the branch cuts $\theta = 0$; see Figure 1. The contribution from C_R is $O(R^{r-2})2\pi R = O(R^{r-1}) = 0$ as $R \to \infty$. Similarly the contribution from C_ϵ is zero as $\epsilon \to 0$. The contribution from just above the branch cut and from just below the branch cut is I and $-e^{2r\pi i}I$, respectively, as $\epsilon \to 0$ and $R \to \infty$. Hence, taking the limits as $\epsilon \to 0$ and $R \to \infty$,

$$(1 - e^{2r\pi i})I = \int_C \frac{z^r}{(z + ||A||)(z + (||A|| - m))} dz = -2\pi i e^{r\pi i} \left(\frac{||A||^r - (||A|| - m)^r}{||A|| - (||A|| - m)} \right)$$

by the Cauchy residue theorem. So

$$I = \frac{\pi}{m \sin(r\pi)} \left(||A||^r - (||A|| - m)^r \right).$$
Therefore

\[A^r - B^r \geq \frac{\sin(r\pi)}{\pi} \int_0^\infty \frac{m\lambda^r}{(||A|| + \lambda - m)(||A|| + \lambda)} d\lambda = ||A||^r - (||A|| - m)^r. \]

\[\square \]

Corollary 2.4. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) be positive operators such that \(A - B \geq m > 0 \). Then

\[\log A - \log B \geq \log ||A|| - \log(||A|| - m) . \]

Proof. Put \(f_n(t) = n(t^{\frac{1}{n}} - 1) \) on \([0, \infty)\). Then the sequence \(\{f_n\} \) uniformly converges to \(\log t \) on any compact subset of \((0, \infty)\). Hence

\[\log A - \log B = \lim_{n \to \infty} f_n(A) - f_n(B) \geq \lim_{n \to \infty} n(||A||^{\frac{1}{n}} - (||A|| - m)^{\frac{1}{n}}) = \log ||A|| - \log(||A|| - m). \]

\[\square \]

Corollary 2.5. Let \(A, B \in \mathbb{B}(\mathcal{H}) \) such that \(A > B \geq 0 \). Then

\[(i) A^r - B^r \geq ||A||^r - \left(||A|| - \frac{1}{||A - B||^{-1}}\right)^r \]
for all $0 < r \leq 1$

$$(ii) \log A - \log B \geq \log ||A|| - \log \left(\frac{1}{||A-B||^{-1}} \right).$$

Proof. It follows from $A > B \geq 0$ that $A - B \geq \frac{1}{||A-B||^{-1}} > 0$. Now the assertions are deduced from Theorem 2.3 and Corollary 2.4. □

Remark 2.6. The inequality in Corollary 2.5 is sharp. Indeed for positive scalars a, b, if $a > b$, then

$$a^r - b^r = a^r - \left(a - \frac{1}{(a-b)^{-1}}\right)^r$$

and

$$\log a - \log b = \log a - \log \left(a - \frac{1}{(a-b)^{-1}}\right).$$

References

1. E. Andruchow, G. Corach and D. Stojanoff, *Geometrical significance of Löwner–Heinz inequality*, Proc. Amer. Math. Soc. **128** (2000), no. 4, 1031-1037.
2. J. Bendat and S. Sherman, *Monotone and convex operator functions*, Trans. Amer. Math. Soc. **79** (1955), 58–71.
3. R. Bhatia, *Matrix Analysis*, Springer, New York, 1997.
4. J. Fujii and M. Fujii, *A norm inequality for operator monotone functions*, Math. Japon. **35** (1990), no. 2, 249-252.
5. M. Fujii, *Furuta inequality and its related topics*, Ann. Funct. Anal. **1** (2010), no. 2, 28-45.
6. T. Furuta, *A ⩾ B ⩾ 0 assures $B^r A^p B^r)^{1/q} ⩾ B^{(p+2r)/q}$ for $r ⩾ 0$, $p ⩾ 0$, $q ⩾ 1$ with $(1 + wr)q ⩾ p + 2r*, Proc. Amer. Math. Soc., **101** (1987), 85-88.
7. T. Furuta, *Norm inequalities equivalent to Lowner-Heinz theorem*, Rev. Math. Phys. **1** (1989), 135-137.
8. E. Heinz, *Beiträge zur Störungstheorie der Spektralzerlegung*, Math. Ann. **123** (1941), 415–438.
9. M.K. Kwong, *Inequalities for the powers of nonnegative Hermitian operators*, Proc. Amer. Math. Soc. **51** (1975), 401-406.
10. C. Löwner, *Über monotone Matrixfunktionen*, Math. Z. **38** (1934), 177–216.
11. G.K. Pedersen, *Some operator monotone functions*, Proc. Amer. Math. Soc. **36** (1972), 309–310.
12. M. Uchiyama, *Strong monotonicity of operator functions*, Integral Equations Operator Theory **37** (2000), no. 1, 95–105.
