RESEARCH ARTICLE

Genomic legacy of migration in endangered caribou

Maria Cavedon1*, Bridgett vonHoldt2*, Mark Hebblewhite3, Troy Hegel4a, Elizabeth Heppenheimer5, Dave Hervieux6, Stefano Mariani3c, Helen Schwantje7, Robin Steenweg8, Jessica Theoret1, Megan Watters9, Marco Musiani10a

1 Faculty of Environmental Design, University of Calgary, Calgary, Alberta, Canada, 2 Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America, 3 Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, United States of America, 4 Yukon Department of Environment, Whitehorse, Yukon, Canada, 5 Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Grande Prairie, Alberta, Canada, 6 School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, United Kingdom, 7 Wildlife and Habitat Branch, Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Government of British Columbia, Nanaimo, British Columbia, Canada, 8 Pacific Region, Canadian Wildlife Service, Environment and Climate Change Canada, Delta, British Columbia, Canada, 9 Land and Resource Specialist, Fort St. John, British Columbia, Canada, 10 Department of Biological Sciences, Faculty of Science and Veterinary Medicine (Joint Appointment), University of Calgary, Calgary, Alberta, Canada

Current address: Fish and Wildlife Stewardship Branch, Alberta Environment and Parks, Edmonton, Alberta, Canada
* maria.cavedon@ucalgary.ca (MC); mmusiani@ucalgary.ca (MM)

Abstract

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as “migrants” can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.
that could be contacted should other researchers want to request access to raw movement data for caribou. The data can be found in the Provincial and Territorial government repositories. Government of Alberta, The Fisheries and Wildlife Management Information System team, aep.fwdatamgmt@gov.ab.ca Government of British Columbia, The B.C. Conservation Data Centre team, cdcdata@gov.bc.ca Government of the Northwest Territories, The Wildlife Management Information System team, wmisteam@gov.nt.ca Government of Yukon, The Yukon Conservation Data Centre team, yukoncdc@yukon.ca.

Funding: This work was supported by a student grant administered by Alberta Conservation Association (recipient MC, 2016 Award Recipient, http://www.acabiodiversity.ca/). The project (lead by MM) was funded by NSERC, www.nserc-crsng.gc.ca (recipient MM; RGPIN-2020-05286 and CRDPJ-538213-18-2019-2020) with matching by Alberta Innovates (recipient MM), Alberta Upstream Petroleum Research Fund (recipient MM), Canadian Association of Petroleum Producers (recipient MM), Canada’s Oil Sands Innovation Alliance (recipient MM), Conoco-Phillips (recipient MM), Exxon (recipient MM), Teck Resources (recipient MM), In-kind contributions to the projects were made by the Governments of British Columbia, Alberta, Northwest Territories, and Yukon, and by Parks Canada. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Author summary

Genetic determination of migration has not previously been studied in an endangered terrestrial mammal. The use of global positioning system (GPS) transmitters permitted the detection of migratory or sedentary movements of 139 endangered caribou. The presence of both migratory and resident phenotypes in sympatry allowed for us to examine genetic differences among individuals that had experienced similar environments prior to the initiation of migration. In this study, we genotyped 139 caribou using RAD sequencing, and used these genotypes to assess population structure and investigate potential genetic associations with migration. We detected >50 SNPs associated to migration. These SNPs were found in genes with hypothesized roles in determining migration in other organisms. In addition, propensity to migrate depended upon the proportion of Northern or Southern ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies dating back to the last glaciation. We believe that our concerns for the loss of migration in caribou are transferable to other species and systems where there are documented declines, and migration is likewise associated with genes. If as we reported–migratory behavior is determined by ancestral genes, species could be further impacted, possibly by the loss of the migratory trait in some populations already at low numbers. This loss could perhaps be averted with the maintenance of critical seasonal habitats within and between seasonal ranges.

Introduction

Migration, the directional movement from one location to another and back, is observed in numerous species of vertebrates [1], including approximately 36% of marine mammals and about 1% of terrestrial mammals [2]. Migration allows animals to exploit seasonally and geographically variable resources (e.g. food, habitat, favorable climate, or breeding conditions) or avoid unfavorable conditions (e.g. predators, disease) [3–5]. Wide-ranging animals, including several migratory species, are severely threatened by the effects of habitat fragmentation (for example, through the barriers encountered on migratory routes) and habitat loss [6,7].

The bases of animal migration, and the bases of its suite of characteristics (e.g. tendency to migrate or not, timing, direction, and distance), remain largely unknown. Speculation on an innate genetic program [8,9] has been supported by species with known genetic traits that prompt the initiation of migration or minimize the cost of locomotion for efficient migration [10–12]. Migratory behavior could also be learned or dependent on physiological and nutritional conditions [13–15], or even triggered by environmental ones [12,16]. Moreover, migratory behavior could be influenced by the interaction of several of the aforementioned components [12,16,17].

Detecting and quantifying the phenotype and patterns of migration can be immensely challenging, with variation known to occur in the timing, direction, and distance of migration [3]. Application of GPS transmitters [18] to migratory species may reveal additional complexities. For example, some species may be partially migratory, where within the same population only a fraction of individuals migrate [19,20]. Despite the added complexity, the presence of both migratory and resident phenotypes in the same population also allows for the testing of genetic differences among individuals, while assuming exposure to an identical seasonal environment.

Several ungulates are partially migratory [21,22], and there is currently a lack of information regarding the potentially fundamental genetic basis producing migratory and resident individuals within these species’ partially migratory populations [22]. Genomic studies in partial migratory populations have been conducted primarily in fish, birds, and insects [12,23],
whereas in ungulates, studies have been mainly based on a handful of neutral molecular markers [24,25]. Partial migration is present in all subspecies and ecotypes (see [26] for a definition) of caribou (*Rangifer tarandus*), but in different proportions. For example, caribou living in forested areas are thought to be mainly sedentary, whereas caribou living in the tundra are considered primarily migratory [27]. Migration allows caribou to access seasonally and geographically variable resources, as well as avoid unfavorable conditions [28]. For example, during migration, Barren-ground caribou may move in large aggregations, and it is understood that this herding behavior results in dilution of predation risk per unit caribou [27].

The two behaviors (propensity to migrate and propensity for being sedentary) likely emerged during glacial eras when separate caribou lineages evolved north (Beringian–Eurasian lineage—BEL) and south (North America lineage—NAL) of the continental ice sheet, in areas dominated by tundra and forests, respectively [24,29]. However, following the last deglaciation, a post-secondary contact between the two lineages occurred, resulting in hybrid zones, such as in the Rocky Mountains. There, the probability of being migratory is higher in individuals carrying mitochondrial haplotypes of the BEL type [24], suggesting a possible genetic determination of migration, but not ruling out a cultural component, as calves grow up with their mothers and mtDNA is maternally inherited.

Caribou are wide-ranging and migratory, and many of their populations (also referred to as “herds”, as they might not be genetically or ecologically distinct) are threatened, endangered, or already extirpated [26,30]. In threatened populations of caribou, the proportion of individuals classified as “migrants” can vary dramatically, with some populations reported as being either fully migratory or fully sedentary [24], and Williams et al. [31] claimed that habitat loss is responsible of the endangerment of migratory caribou in particular. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans (compared to species were migration is not genetically determined). This impact could result in the permanent loss of the migratory trait in some populations. However, despite this concern, genetic determination of migration has not previously been studied in caribou, or in other threatened terrestrial mammals.

We studied the genetic basis of migration in endangered caribou. We examined western North American caribou belonging to three ecotypes (Boreal, Central Mountain, and Northern Mountain) within the Woodland subspecies (*R. t. caribou*). We also examined caribou belonging to the Barren-ground ecotype, which forms its own subspecies (*R. t. groenlandicus*—Fig 1). Here, we aimed at determining seasonal movement and genomic variation of single nucleotide polymorphisms (SNPs) in 139 caribou individuals (Fig 1 and Fig A in S1 Text). We also aimed at detecting associations between migratory behavior and genes known to influence migratory tendency in other organisms. Finally, we aimed at testing whether the propensity to migrate also depended upon the proportion of Northern or Southern ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies.

Results

Genetic structure: Two main caribou clusters detected

We analyzed samples from 190 female caribou, focusing on females because they are fundamental to the management of this endangered species. We identified SNPs using a RAD-seq approach. The dataset comprised 28K SNPs, after excluding linked SNPs and those not in Hardy-Weinberg equilibrium. We then used the maximum likelihood based method implemented by the program *Admixture* for partitioning genetic clusters (K) and found support for at most two populations (K = 2), including a Northern and Southern cluster (mean $Q_{\text{North}} = 0.92$, SD = 0.09; mean $Q_{\text{South}} = 0.81$; where $Q =$ proportion of ancestry) (Fig 2A and 2B, and
Sampled herds:

1 Chinchaga 9 Redrock-Prairie creek 17 Laberge
2 Calendar 10 Moberly 18 South Nahanni
3 Parker 11 Muskwa 19 Tay River
4 Prophet 12 Pink Mountain 20 Bathurst
5 Snake-Sahtaneh 13 Wolverine 21 Beverly and Ahiak
6 Maxhamish 14 Coal River 22 Bluenose East
7 Fort Nelson 15 Hart River
8 Little Smoky 16 Kluane
The Northern cluster was formed by individuals (n = 103) of the Barren-ground subspecies (R. t. groenlandicus); horizontal lines, light gray, and black represent Northern Mountain, Boreal and Central Mountain, ecotypes, respectively, within the Woodland caribou subspecies (R. t. caribou). Basemap layers available from: https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/bound-limit-eng.cfm and https://international.ipums.org/international/gis.shtml.

https://doi.org/10.1371/journal.pgen.1009974.g001

Presence of migratory behavior in each subspecies and ecotype

We studied caribou migratory behavior by analyzing telemetry locations of 139 of the 190 females sampled for genetic analysis above (Fig 4 and Table A in S1 Text). For 116 caribou for which there was sufficient location data across seasons, we determined summer and winter ranges with the adehabitHR R movement ecology package. We calculated an index of overlap (IO) between seasonal ranges (higher and lower values indicating resident and migratory behavior, respectively; Fig 5A and 5C). IO for Boreal caribou (mean = 0.29) was greater than that of Northern Mountain (mean = 0.10; pairwise Wilcoxon Rank Sum test, \(p < 0.001 \)) and Barren-ground caribou (mean = 0.07; \(p < 0.001 \)). In addition, we conducted Net Square Displacement (NSD) analyses with the R package MigrateR on the 102 animals that had at least one location data point per day for an entire year of data. Out of these, 83 caribou individuals were classified as migrants (Barren-ground subspecies, n = 44/46; Northern Mountain ecotype, n = 31/40; Boreal ecotype, n = 8/11); remaining 14 caribou were classified as residents using this statistically conservative approach (Figs 5B and 5D); and 5 caribou were classified as either migrants or residents in different years.

We calculated the distance and timing of migration for each caribou, again using the R package MigrateR. Average departure dates (when animals started to migrate in the spring) were not significantly different between caribou ecotypes (Kruskal–Wallis test, \(p = 0.16 \)) (Table A in S1 Text). The distance of migration calculated for the Barren-ground caribou (mean = 247.61 km) was significantly greater than for Boreal (mean = 10.31; pairwise Wilcoxon Rank Sum test—\(p < 0.001 \)) and Northern Mountain individuals (mean = 42.92 km; \(p < 0.001 \)). Migration distances for Northern Mountain caribou were also greater (\(p < 0.001 \)) than for Boreal caribou. During spring migration, Barren-ground caribou moved, on average, more northward than other caribou (Northern Mountain, \(p < 0.001 \); Boreal, \(p < 0.001 \)).

Caribou migratory behavior associated with genes involved in brain activity, fat and energy metabolism, body development, and hormones’ production

Using the program Gemma, we tested the association between each SNP (a dataset comprising 29K non-linked SNPs) and each of the five measurements of migratory behavior described...
Fig 2. Caribou genetic clusters in western North America. (A)/(B) and (C)/(D) show the best and second best number of clusters (K = 2 or 3, respectively) describing population structure. Further subdivisions (K > 3) were not supported by the program Admixture. Pie charts (A and C) and bar plots (B and D) indicate proportions of ancestry for each individual. Subspecies and ecotype belonging of individuals are indicated to the right of the bar plots: BG refers to the Barren-ground subspecies; NM, CM and Boreal refer to the Northern Mountain, Central Mountain and...
above: (1) index of seasonal ranges overlap, (2) NSD classification of animals as migratory or resident, as well as (3) distance, (4) departure timing, and (5) latitudinal shift of migration. As is the case for all association studies, associations can be influenced by the demographic history of individuals; therefore, in our regression models we corrected for neutral genetic structure by employing a relatedness matrix that could contribute the genomic inflation factors of 1.33, 1.88, 0.33, 0.24, and 0.37 for IO, NSD classification, and distance, timing, and latitudinal shift of migration, respectively. Genomic inflation factors >1 indicated potential for additional effects of genetic structure on the phenotype. We detected 57 SNPs significantly associated ($p < 0.05$ after Bonferroni correction) with migratory propensity in caribou (Table 1 and Table B in S1 Text). Three loci were associated with the IO, one of which had the strongest association detected (SNP in gene $UBE3D$; $p = 3.35 \times 10^{-12}$, Fig C in S1 Text); 54 additional loci were instead associated with the binary classification of animals as either sedentary or migratory. The relative contribution of phenotypic variance (PVE) explained by each of the SNPs associated with migratory behavior ranged from 1.6 to 34.4% (Table B in S1 Text). Twenty-seven SNPs were located in or potentially linked (within 2 Kb) to 21 genes (n, intron = 21 SNPs, exon = 5, promoter = 1) and their functions included brain activity, fat and energy metabolism, body development, and hormones’ production (Table 1 and Table B in S1 Text; function of genes determined using the program Ensembl BioMart).

We examined pairwise differences in minor allele frequency (MAF) between the clusters identified with the Admixture program (above) for the 57 migration-associated SNPs. Differences in MAF were found between the North and South clusters (K = 2; Kruskal–Wallis test, $p < 0.001$), between the North and Mountain clusters (K = 3; $p < 0.001$), and between the Mountain and Boreal clusters (K = 3; $p < 0.001$ –Fig D and Table C in S1 Text). A PCA (Fig E in S1 Text)

Fig 3. Principal component analysis (PCA) plots of caribou individuals in western North America. Each dot represents a caribou and colors in panels (A) and (B) represent groupings at K = 2 and K = 3, respectively, determined using the program Admixture (see Fig 2). PCA was calculated examining 28K SNP data.
Caribou migratory behavior of individuals within ecotypes depended upon ancestry

We conducted regression analyses of caribou migratory behavior, as it was evaluated with either ranges overlap or seasonal displacement methods, dependent upon the admixture proportion of ancestries (Q). Results indicated that, even when accounting for ecotype differences, sedentary behavior of individuals was influenced by that individual's proportion of assignment to the Boreal cluster (Table 2). Moreover, when accounting for ecotype differences, migratory behavior was positively associated with an individual’s proportion of assignment to the North cluster (Fig 6 and Table D in S1 Text). Specifically, overlap between summer and winter ranges (IO, an indication of sedentary behavior) was dependent upon Q of the Boreal/South cluster obtained at $K = 2$ ($\beta = -0.19; p<0.001; R^2 = 0.18$) and $K = 3$ ($\beta = 0.29; p<0.001; R^2 = 0.04$; accounting for ecotype; Table 2). Similarly, individual migration assessed with NSD depended on Q of the North cluster obtained at both $K = 2$ ($\beta = 1.81; p = 0.03; R^2 = 0.06$) and $K = 3$ ($\beta = 1.69; p = 0.04; R^2 = 0.08$; accounting for ecotype; Table D in S1 Text).

Results of linear regression analyses examining dependence of overlap between summer and winter ranges (IO, an indication of sedentary behavior) upon admixture proportion (Q) for two or three caribou clusters (K); Beta coefficient (β), Standard error, t value, p-value, and AIC are indicated, while the models in parentheses account for caribou ecotype as a random effect. Models in bold are significant; IO = ranging from 0 (migrant) to 1 (fully sedentary).

Discussion

We used an integrated approach of ecology and genomics to study the genetic basis and ancestry of migratory behavior in caribou. Here we document the seasonal movements of GPS-collared caribou and, surprisingly, detect the presence of individual migrants in all subspecies...
Fig 5. Seasonal movement patterns monitored with GPS-collars for a migratory caribou and for a sympatric resident caribou. (A) and (C) show winter and summer locations. For each caribou (A) shows a complete separation of the seasonal ranges, typical of a migratory animal, while the animal in (C) has ranges overlap and is considered sedentary. (B) and (D) show Net Square Displacement (NSD) plots for the same individuals, between a starting telemetry location and each subsequent location in a year period. (B) The displacement is best represented by a bell curve (marked with continuous line above) when the animal is migratory. (D) An animal is classified as sedentary when the best fitting line quickly reaches an asymptote. Dark grey dots represent actual telemetry locations. Solid lines represent the best fitted models, whereas other lines represent unsupported models of seasonal movement (mixed-
and ecotypes. Caribou migratory behavior was found to be associated to genes known to influence migratory propensity in other organisms. We also determined a genetic subdivision of caribou into a Northern and a Southern genetic cluster, with individuals possessing varying degrees of such ancestries. Finally, our findings indicate that the propensity to migrate depends upon the proportion of ancestry in individual caribou, therefore suggesting a genomic legacy of migration in endangered caribou.

Genes influencing migratory behavior in caribou: A package common in other migratory species?

We identified an association between individual variation of migratory behavior and genotype variation in a large terrestrial mammal: the caribou of western North America. Here we determine genetic mutations (i.e. SNPs) associated with migration detected via GPS collars in caribou, by using an integrated approach involving technologies that are best suited to describe migratory behavior. Some of the associated SNPs were intergenic, likely noncoding DNA and therefore not involved in functions related to migration (Table B in S1 Text). Alternatively, these SNPs were tagging other, unobserved SNPs that may be involved in migration. Because our RAD-seq approach only covers a minor portion of the genome, additional SNPs that were not assessed in this study may still be associated with the migration phenotype. However,

SNP position	Gene name	Regulating for	Found associated with/ in	References
intron	XPNPEP1	brain activity	behavioral hyperactivity; cognitive deficits/ mouse, horse	[32,33]
intron	PAK3		mental disability/human, mouse	[34,35]
intron	HTRA1		cognitive impairment; mood disorders/human	[36,37]
intron	KIF5C		malformations of cortical development (mental disease)/human, mouse	[38,39]
exon	DHX30		sleep disorder/ human	[40]
intron	ARNTL	brain activity	Circadian rhythmic expression/fish, mammals, insects, birds	[12,41,42]
intron	ANO1		Circadian rhythmic expression/mouse	[43,44]
intron	PARP1		Circadian rhythmic expression/human, mouse	[45,46]
intron	UBE3D	fat and energy metabolism	variation in fat deposition/sheep cattle	[47,48]
intron	ATF7		adipose differentiation/human	[49,50]
intron	TCF7		thermoregulation; variation in fat deposit/cow	[51]
intron	PSD3		diabetes; obesity/human	[52]
intron	TMEM163		diabetes; nutrient sensing/mouse, cattle, human	[53,54]
intron	MAPKAPK2		starvation; obesity; diabetes/mouse	[55–57]
exon	HMCN2		variation in stimuli response/pig	[58,59]
promoter	LPIN2	body development	bone formation; osteomalacia; inflammation of junctures/human	[60,61]
promoter	THPO		production of blood cells; body growth	[62,63]
intron	GPC6		bone growth; dwarfism/human, cow	[64,65]
intron	FAM155A		diverticulitis (variation of intestinal morphology)/human	[66]
intron	POLR3B	hormones’ production	hypogonadism/human, mouse	[67,68]
intron	C14H8orf34		milk production; age at first parturition/cow	[66,69]

Bold-face gene names are those associated to Index of Overlap. Reported loci were found directly in genes based on annotations of the bovine genome.

https://doi.org/10.1371/journal.pgen.1009974.t001
some of our associated SNPs were found in genes with known or hypothesized mechanistic roles in determining migration in other species, including circadian genes, genes involved in sleep and cognitive disorders, and genes regulating fat metabolism and hormone’s production (Table 1). Finally, propensity to migrate depended upon the proportion of Northern or Southern ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies [70] dating back to the last glaciation. Overall, our findings provide initial evidence of an ancestral genes’ package common across migratory taxa that affects the propensity to migrate.

Our study indicates that genes involved in brain activity could contribute to migration. In particular, some migration-associated mutations were found in circadian genes (ARNTL,
ANO1, and PARP1), perhaps indicating that the timing of seasonal movements might be genetically influenced. Our findings therefore support the notion that animals synchronize their movements during migration with the seasonal availability of necessary resources [9], and migratory animals may keep track of the seasons using an endogenous timer [12]. Other studies of caribou have claimed that the initiation of migration is influenced by environmental conditions [28,71]; however, these may interact with genetics, as reported in other migratory species [8,16]. Involvement of ARNTL, ANO1, and PARP1 in migratory behavior and seasonality has been reported in other species of mammals, fishes, and birds [43,72], and ARNTL in particular has been shown to play a particularly major role [12,42].

Some migration-associated mutations were found in other brain activity genes involved in sleep and cognitive disorders in mice and humans (prominently XPNPEP1 and PAK3). Numerous migratory animals, including the caribou we monitored in this study, perform long-distance migrations with only a few resting stops [9]. Therefore, migration might proceed at a pace that does not allow migratory animals much time for sleep or rest, and the mutations we detected may contribute to preserving cognitive and physical performance while migrating [73].

Other migration-associated mutations were found in genes determining obesity and diabetes in human, mice, sheep, and cattle (e.g. gene UBE3D and TCF7). This may indicate that, thanks to specific genetic mutations, migratory caribou could enhance metabolization of fat and carbohydrates to fuel energetically expensive migration. Migration is particularly energy-demanding [9], so mutations such as those we documented could be beneficial [74,75]. In particular, UBE3D and TCF7 control the metabolism of fat—a primary fuel for migratory animals [8,76].

In migratory caribou, we also documented mutations in genes involved in hormone production, suggesting their potential role in regulating the timing of migration. The POLR3B gene (associated with seasonal ranges overlap) regulates the sexual hormone GnRH, which in turn has been found to control the timing of migration in fishes and birds [77,78]. Finally, gene C14H8orf34, which was also associated with migration in this study’s caribou, is known to determine parturition timing in cattle [66]. Therefore, our findings indicate a potential role of genetics in the timing of caribou parturition, which is temporally correlated to the end of migration (Bergerud et al. [27]).

Surprising presence of migrants in all caribou subspecies and ecotypes

Using genomics, this study confirms previously reported aspects of caribou taxonomy in western North America, since the two clusters we describe tend to correspond to currently known subspecies, as determined with autosomal microsatellites [24,79]. However, we detect a boundary between the two subspecies that is farther South compared to previous work that used neutral markers, and largely corresponds to other works using genomics, but at a coarser scale [80,81]. In addition, the three sub-clusters that we detected correspond to the Barren-ground subspecies, Boreal ecotype, and Central Mountain ecotype, with a clear hybrid zone of Northern Mountain caribou characterized by assignment to all three sub-clusters. Population structure analyses that were based only on migration-associated SNPs indicated groupings that were less discrete, suggesting that at least some of the migration-associated loci may be under balancing selection and therefore less differentiated between populations, although the matter is debated in the literature [82]. Consistent with this interpretation, Cavedon et al. [80] detected signals of balancing selection in this study area’s caribou. Regardless of the discrepancies, our approach is not designed to reassess caribou taxonomy, as this should depend on the integration of multiple factors, not just genomics [83].
This study’s Barren-ground caribou exhibit long-distance migrations (one way mean = 247.61 km; range = 77.96–467.36), as expected in this species that is arguably characterized by “the longest terrestrial migrations and movements around the world” [84]. For Woodland caribou, we also detect migrations, although their distances are dramatically shorter (> tenfold). Ultimately, we identify migratory individuals across all studied caribou subspecies and ecotypes, despite the Woodland subspecies being previously described as largely sedentary (but see [85]). This study’s collaring of females only was decided by the governing bodies, as these were considered as a first monitoring priority for conservation. Females are also ideal for defining seasonal movements in caribou, as they show fidelity to areas used during a fixed calving period occurring each year. In caribou, also migrate, likely in equal proportion to females [86]. However, future studies could be conducted to look at the migration patterns and genetic influences in males in particular.

Consistent with the literature, we detected more sedentary animals and less migratory animals within the Woodland subspecies, and particularly within the Boreal ecotype [27]. Boreal individuals also had larger overlap between their summer and winter ranges, indicating a higher tendency to be sedentary. However, some migratory and sedentary animals were detected in our study within populations of the Boreal ecotype and Barren-ground subspecies, respectively. Therefore, our data indicate partial migration (sensu [19]) in populations belonging not only to Mountain caribou (where this population trait was known [24]), but also to the Barren-ground subspecies and Boreal ecotype. Overall, we detected a large proportion of migratory individuals across all subspecies and ecotypes and in populations where individuals are likely exposed to the same environment. Sympatry of migrants and residents suggests that the difference between the two behaviors could be genetically rather than environmentally caused. As an alternative explanation, other factors may also influence caribou migration, including differences in age, experience, and sex (not accounted for here as we only monitored females), among others. As a result, migration can be obligate (for example, genetically determined) or facultative within the same population even if individuals all experience the same environment [3].

Mechanisms of migration: Intrinsic genetic forces and the role of ancestry

Overall, the results of our association analyses indicate that genetic mutations could produce two opposite phenotypes in caribou: migratory or resident individuals. As explained by Cave- don et al. [80], the existence of both migratory and resident caribou in sympatry could be promoted by negative frequency-dependent selection, which is a form of balancing selection allowing the existence of multiple haplotypes and phenotypes within populations (note that the study relied on pooled samples and could not conduct individual analyses as in this study). Phenotypical “bimodality” in caribou, as described for example by Cavedon et al. [80], contrasts with other migratory species, including other cervids. For instance, elk are behaviorally plastic and exhibit wide variation in their migratory behavior across their lifetimes [87]. Consistent with bimodality, our study’s SNPs were not associated with continuous migratory patterns, within the migratory form, including distance, timing, and latitudinal shift of migration, which are under genetic control in other species (see for example [88]).

Our findings suggest the presence of intrinsic genetic drivers of migration and are consistent with recent work by Gurarie et al. 2019 [28] examining caribou migration with GPS location data. The authors observed synchrony of animal migratory movement even if individuals belonged to different populations, suggesting an intrinsic determination. This intrinsic drive can arise from a response to common cues (i.e. day length), but may also be promoted by genetic mutations, such as the ones we observed (above). However, in this study we also
document that a few caribou individuals (5/102) are migrants or residents in different years; this indicates the existence of some seasonal movement plasticity in the species. These switches in behavior could be attributed to environmental changes from year to year, to learning, promoted by some genetic traits, or a combination of all the above.

Our results also indicate that the differences between the migratory and sedentary type could be related to the long-term evolutionary history of caribou, a species that during the last glaciation evolved into two separate subspecies, north and south of the continental ice-sheet, respectively [29]. Our population structure analyses indicates a main North-South separation of caribou, and confirms the presence of two lineages [24,79]. In our study, individual propensity to migrate depended upon the proportion of assignment to the North cluster, as determined by the Admixture ancestry analysis. Correlation coefficients were significant, but their values were not substantial. Therefore, our correlations might not indicate a simple cause-to-effect relationship between ancestry and migration. It is also possible that our correlations were weakened by uncertainties, including uncertainties in Q value estimates of ancestry, as well as those in our determinations of migration.

Despite the uncertainties, all our analyses were conducted while statistically controlling for ecotype differences, therefore indicating ancestry effects detectable in caribou individuals also belonging to the same ecotype. These results are strongest (i.e. 18% of variance explained) when we used the seasonal ranges overlap as the variable representing migratory behavior. Thus, individuals with northern-type DNA and the associated “ancestral” genes could be more prone to migration than those without. Overall, an ancestral gene-to-behavior association—that was likely advantageous for tracking seasonal resources in the tundra and taiga (regions frequented by the northern subspecies during glacial times [70])—is likely retained in some individuals throughout our study area. After glaciation, caribou recolonized vast areas that were previously covered by continental ice, also including the mountainous parts of our study area [24]. Perhaps aided by northern ancestral genes, caribou are presently capable of migrating either from tundra to taiga areas in the North (as in glacial times too), or from alpine to forested areas in the mountains.

Conservation implications: Potential extirpation of migrants

As a result of habitat alteration caused by anthropogenic activities (including barriers), dramatic declines in populations of migratory ungulates and the disappearance of migratory behavior are now recognized as a global conservation challenge [89,90], with alarming new findings for threatened caribou, in particular [31].

Human-caused habitat alterations and climate change are both implicated in caribou decline [31,91] and, together with the extirpation of some populations, ecological and genetic traits could also be extirpated in the future. We document that caribou migration and associated genes are unequally distributed among subspecies, ecotypes, and populations. If, as we report, migratory behavior is genetically influenced, caribou could be further impacted, possibly by permanent loss of the migratory trait in some populations already at low numbers [26,30]. These results also suggest that the migratory trait, and the set of mutations contributing to the trait could not be easily re-established when lost in a population. Recent findings confirm that migration is imperiled in endangered caribou populations [31]. Genetic mutations, especially those that are beneficial, occur in evolutionary timeframes [92], perhaps incompatible with the fast decline of caribou. In the face of rapid declines, novel mutations, including those influencing migration, are unlikely to emerge on time. This loss could perhaps be averted with the maintenance of critical seasonal habitats (sensu [93,94]) for caribou within and between seasonal ranges—a strategy also allowing for long-range movements and migration.
We believe that our concerns for the loss of migration in caribou are transferable to other species and systems where there are documented declines, and migration is likewise associated with genes. The loss of migration can have significant ecological impacts on ecosystems, such as influencing prey densities and grazing in seasonal ranges, so understanding the mechanisms underlying migratory behavior in ungulates has become a broader conservation priority [22,89,95,96]. Our study on the drivers of migration in caribou is therefore applicable to the management and conservation of wild migratory ungulates in general, as well as their environments. In other ungulates too the proportion of genetically-enabled migrants in populations might be declining. As a consequence, fewer and fewer migrants could perform their ecological role in the future. Finally, our study reveals that caribou possess a gene package common to other migratory species. These genes were found to not only be associated with migration, but also with other ecological, morphological, and behavioral traits of adaptive value in model and non-model species. Thus, the potential loss of genetic mutations influencing migration may also result in the loss of other important traits; conversely, preserving these mutations could maintain a whole suite of traits promoting a species’ survival in the long-term.

Material and methods

Ethics statement

Research was conducted under research permits of Government of British Columbia, Alberta, Northwest Territories, and Yukon, Parks Canada, University of Calgary, and University of Montana. Approval was granted by the University of Calgary’s Life & Environmental Sciences Animal Care Committee (LESACC), ACC Study #AC16-0195.

Samples collection and molecular analyses

Blood and tissue samples from 284 female caribou (note below rationale for pick of sex) were obtained from monitoring activities across western North America from 2004–2016. Sampled caribou were from two recognized subspecies and three ecotypes: 60 individuals belonged to the Barren-ground subspecies (R. t. groenlandicus–also forming its own ecotype) and 224 individuals belonged to three ecotypes within the Woodland subspecies (R. t. caribou; Boreal, n\text{individuals} = 96; Northern Mountain, n\text{individuals} = 99; Central Mountain, n\text{individuals} = 29) (Fig 1). In this study, we examined caribou belonging to three ecotypes (Boreal, Central Mountain, and Northern Mountain) within the Woodland subspecies (R. t. caribou).

We extracted DNA from samples with the DNeasy Blood and Tissue Kit (Qiagen) following manufacturers’ protocols and identified high-quality DNA as a high molecular weight band (>1 Kb) on a 2% agarose gel with a 2-log DNA ladder. We subsequently quantified DNA using either PicoGreen or Qubit 2.0 fluorometry and standardized it to a final concentration of 5 ng/μL per sample. DNA was digested with the SbfI restriction enzyme to prepare restriction site associated DNA sequencing (RADseq) libraries, barcoding each individual sample, following Ali et al. [97]. Unique barcode tags allowed us to 96 samples into a single genomic library, without losing track of individual data. The genomic libraries were then sequenced with paired-end 2x100nt reads on an Illumina HiSeq 2500 at Princeton University’s Lewis-Sigler Institute for Integrative Genomics core facility (full details in Method A in S1 Text).

RADseq analysis and SNPs finding

Using a custom Perl script, we filtered raw sequencing reads to retain only those that contained the SbfI cut site, along with a barcode. We further demultiplexed (obtained reads for each individual) and filtered reads using the `process_radtags` and the `clone_filter` scripts within Stacks
v2.0 [98]. We retained individuals with a minimum of 500,000 reads [99] and these reads were then mapped to the reference Bos Taurus genome (UMD3.1- [100]) using Stampy v1.0.20 [101]. Our pick of the Bos Taurus genome was motivated by both its quality and established used in the literature for cervids (see for example [102]) like caribou. We then used SAMtools v1.5 to remove reads with low mapping quality (MAPQ < 60) and to obtain files, in BAM format, for each individual [103]. To discover SNPs, we used the BAM files within Stacks 2.0. We therefore ran the gstacks and populations modules, with the latter implemented twice (see details on SNPs calls in Results A in S1 Text). In the first implementation, we retrieved only loci that were genotyped in 90% of individuals and had a minor allele frequency greater than 0.05. Loci obtained with this first run were examined with VCFtools, which was used to calculate the number of SNPs and the total missingness (number of missing SNPs) per individual [104]. In the second implementation of populations, we used previous filtering options and additionally we removed individuals with >85% of missingness (i.e. individuals with very high proportion of missing SNPs) and/or with mean coverage < 3x. Ultimately, we retained 190 individuals (out of 284), which belonged to two recognized subspecies and three ecotypes (Fig 1A): 57 individuals belonged to the Barren-ground subspecies and 133 individuals belonged to three ecotypes within the Woodland subspecies (Boreal, n\textsubscript{individuals} = 34; Northern Mountain, n\textsubscript{individuals} = 76; Central Mountain, n\textsubscript{individuals} = 23) (Fig 1A). Source data for all caribou before and after filtering are provided as S1 Data. Furthermore, we ran populations to retrieve only the first SNP per locus. We therefore discovered 31,080 SNP loci, which were further filtered for linkage disequilibrium (referred to as the “29K LD SNPs set”) in Plink v1.9 (flag “—indep-pairwise 50 5 0.5”–[105]). We finally filtered the LD SNPs set to retain those SNPs in Hardy-Weinberg Equilibrium (flag “—hwe 0.001” in Plink). The expectation was that this SNP set contains putatively neutral loci useful for population genetic and demographic analyses, hereafter referred to as the “28K neutral SNP set”. For further analyses with migration, the SNP datasets were used for this study’s 139 GPS-collared caribou (see below).

Population structure analyses

To visualize the genetic structure of our individuals, we performed a principal component analysis (PCA) using SmartPCA within Eigenstrat v3.0 [106] for the 28K neutral SNP set. Next, we evaluated genetic structure using a maximum likelihood approach implemented in Admixture v1.3 with the 5-fold cross-validation flag for K varying from 1 to 22 (number of sampled caribou herds) to capture the fine population structure of caribou [107]. Assignment of individuals to specific clusters was obtained following Schweizer et al. [108].

Assessment of migratory behavior in caribou

Data collection and screening. Female caribou were radio-collared by government staff or contractors of Yukon, British Columbia, Northwest Territories, and Alberta between 2004–2016, each following their respective government’s standardized permitting, animal care, and handling procedures. Collars varied with respect to their duration on caribou (minimum = 2 months, maximum = 6 years) and were equipped with a fix interval (e.g. number of locations per day) ranging from hourly to every 7 days. We therefore filtered and standardized telemetry data for each animal to obtain a maximum number of daily locations equal to one. After screening procedures, the data set contained 75,223 locations from 139 unique individuals: 54 individuals belonged to the Barren-ground subspecies, and 85 individuals belonged to two ecotypes within the Woodland subspecies (Boreal, n\textsubscript{individuals} = 18; Northern Mountain, n\textsubscript{individuals} = 67).
Determining migration with overlap analysis of seasonal ranges. We excluded caribou individuals with <1 year of monitoring. We then calculated an index of overlap (IO) between winter and summer ranges frequented by individual caribou, with IO ranging from 0 to 1 (higher and lower values indicating resident and migratory behavior, respectively).

To calculate IO, we defined summer (1 July—15 September) and winter (1 December—30 April) seasons following [24] and we used only individuals with at least 30 locations per season (n = 116) [109]. For each animal we estimated seasonal utilization distributions (UD) using the `kernelUD` function (using reference bandwidth) within the `adehabitHR` package [110] in R version 3.5. We then derived range contour polygons from the 95% fixed-kernel isopleth. Finally, we determined the IO between summer and winter polygons for each animal following [24]:

\[
IO = \left[\frac{2 A_{12}}{A_1 + A_2} \right]
\]

Where \(A_{12}\) is the area of overlap (km\(^2\)) between the summer and winter 95% isopleths, and \(A_1\) and \(A_2\) are the areas (km\(^2\)) of the summer and winter 95% isopleths for the animal, respectively. For animals with multiple years of data, we averaged IO across years.

Individual classification as either migrant or resident. We classified each caribou as either migratory or sedentary by conducting Net Square Displacement (NSD) analyses with the R package `MigrateR` [111], which examine seasonal displacement of individuals by fitting trajectory lines (sequences of GPS points) to annual telemetry locations. The best fitting trajectory line was selected, by `MigrateR`, with the Akaike Information Criteria. To improve model fitting, we used the Relative Net Squared Displacement option (rNSD), which allows one to manually set the parameter \(\rho\). This parameter \(\rho\) defines the minimum number of days that an animal must spend in a second range in order to be considered migratory. We set \(\rho\) equal to 30 (therefore, a caribou needed to spent at least 30 days in a second range to be considered migratory) following recommendations in recent publications reporting NSD analyses applied to ungulates [112,113]. We only included caribou with at least one continuous year of data (n = 102 individuals) and when the same individual had multiple years of data, we used it in subsequent analyses only when consistently classified as either migratory or sedentary across years (n = 83 and n = 14 individuals, respectively). Individual animals may not be limited to one seasonal movement behavior throughout their lifetime. Instead, they may demonstrate more than one movement behavior by switching behaviors between years, exhibiting behavioral plasticity (though this is undocumented for caribou). In this study, plasticity in seasonal movements was detected in only a few individuals (n = 5), and these were not used for analyses that were naturally designed to pick a signal of association with genetic traits that are fixed for life (below). These five individuals had a mean of 2.8 years of data (range 2–4), and during these periods the mean number of switches per individual was 1.6 (range 1–4), which contrasted to the lack of any switches in the additional 97 caribou that we also analysed (1.7 years of data per individual, range 1–4).

Variation in migratory patterns (distance, timing, and latitudinal shift). Also with the R package `MigrateR`, we selected individuals consistently classified as migratory (see above), and obtained the parameters \(\delta\) and \(t\) representing the distance separating seasonal ranges and the start date of migration, respectively. Units of migration timing were calendar dates (e.g. 1 January 2017), which we subsequently standardized to numeric dates from a starting day (day 1 = 1 January). In this way, for example, a migration starting on calendar day April 10\(^{th}\) was converted to the numeric date 100 (i.e. 100 days after day one). Whenever the same animal had multiple years of data, we averaged numeric dates and the distance of migration across years.
In addition, for each animal, we calculated centroids of winter and summer ranges and calculated the Euclidean distances between these two points. Finally, we used the geographic coordinates of the two centroids to calculate differences in latitudes between winter and summer ranges (latitudinal shift).

Association study between SNPs and migratory behavior

We ran a univariate mixed model with the software package Gemma [114] to examine the dependence (or association) of migratory behavior upon each single SNP. Such associations were tested with each of the five measurements of migratory behavior described above: (1) index of seasonal ranges overlap, (2) NSD classification of animals as migratory or resident, and (3) distance, (4) departure timing, and (5) latitudinal shift of migration. RADseq data, with coverage equal to or lower than that obtained in this study (see above), has been shown to successfully detect trait associations [115]. Following guidelines [114], we accounted for population stratification. We therefore first used the 29K LD SNP set to calculate the relatedness matrix of caribou individuals, and then we incorporated the matrix, as a covariate, in the mixed model. We used Wald’s test to determine the significance of our analyses, where a SNP was considered associated with migratory behavior only when the Bonferroni adjusted p value was below 0.05. Ultimately, we calculated the proportion of variance in phenotype (i.e. migratory behavior) explained (PVE) by a given associated SNP as described in Shim et al. [116]:

\[
PVE = \frac{2\beta^2 \times MAF \times (1 - MAF)}{2\beta^2 \times MAF \times (1 - MAF) + (se(\beta))^2 \times 2N \times MAF \times (1 - MAF)}
\]

Where \(\beta\) is the regression coefficient obtained with Gemma analyses (above), se is the standard error of \(\beta\), MAF is the minor allele frequency, and N is the sample size. When we calculated PVE values for all SNPs associated to NSD’s classification as migratory (while in other studies only some are reported; [117]), a theoretical total variance >100% was explained; we therefore provided values for the relative contribution of phenotypic variance (PVE) explained by each of the associated SNPs, imposing a total sum of 100%.

We annotated all SNPs as genic (intron or exon), as within a promoter (i.e. we considered any gene within 2 Kb), or as intergenic using an in-house python script [118]. For genic SNPs, we inferred gene functions of those associated to migratory behavior using Ensembl BioMart [119].

Predicting migration dependent upon ancestry

We tested the probability that an individual caribou was migratory dependent upon its ancestry by conducting regression analyses. Our independent variable was the proportion of ancestry of a given individual (a Q value of its belonging to a specify cluster, one at a time) obtained with the Admixture program (above); for our dependent variable, we used either IO (seasonal ranges overlap) or NSD’s classification of migratory vs. resident behavior. For the first analysis, we used a linear regression, since IO was a continuous variable. For the second analysis, we used logistic regression with an output of either 1 or 0 (migratory or sedentary). Additionally, we tested migration depending upon Q while also statistically controlling for ecotype. For these additional analyses, we used the glmer function within the lme4 package in R, where ecotypes were used as random effects [120].

Supporting information

S1 Text. Supporting Methods, Results, Figures and Tables. Fig A. Migratory patterns of caribou sampled in western North America. Fig B. Cross Validation (CV) plot obtained with the
Admixture program. Fig C. Manhattan plots of SNPs associated to migratory behavior. Fig D. Differences in minor allele frequencies between caribou genetic clusters. Fig E. Principal component analysis (PCA) plots of caribou individuals based on migration-associated SNPs. Table A. Metrixes of migratory behavior in caribou ecotypes. Table B. SNPs associated to migratory behavior in caribou. Table C. Differentiation of minor allele frequencies (MAF) between caribou genetic clusters (K) detected with the Admixture program. Table D. Dependence of individual caribou classification as migrant upon ancestry, while statistically controlling for ecotype.

S1 Data. Attribute information for caribou samples collected in western North America.

Acknowledgments
We would like to thank Jan Adamczewski, Anita Michalak, and Dan Calistrate for their inputs, and WestGrid compute Canada for analytical support.

Author Contributions
Conceptualization: Maria Cavedon, Bridgett vonHoldt, Marco Musiani.
Data curation: Troy Hegel, Dave Hervieux, Helen Schwantje, Robin Steenweg, Megan Watters.
Formal analysis: Maria Cavedon.
Funding acquisition: Maria Cavedon, Marco Musiani.
Methodology: Maria Cavedon, Bridgett vonHoldt, Mark Hebblewhite, Elizabeth Heppenheimer, Stefano Mariani, Jessica Theoret, Marco Musiani.
Supervision: Marco Musiani.
Writing – original draft: Maria Cavedon, Marco Musiani.
Writing – review & editing: Bridgett vonHoldt, Troy Hegel, Dave Hervieux, Stefano Mariani, Helen Schwantje, Robin Steenweg, Megan Watters.

References
1. Bauer S, Hoye BJ. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. 2014; 344: 1242552. Available from: https://www.science.org/doi/10.1126/science.1242552 PMID: 24700862
2. Robinson RA, Crick HQ, Learmonth JA, Maclean IM, Thomas CD, Bairlein F, et al. Travelling through a warming world: climate change and migratory species. Endanger Species Res. 2009; 7: 87–99. Available from: https://doi.org/10.3354/esr00955
3. Dingle H. Migration: the biology of life on the move. Oxford University Press, USA; 2014.
4. Shaw AK. Drivers of animal migration and implications in changing environments. Evol Ecol. 2016; 30: 991–1007. Available from: https://doi.org/10.1007/s10682-016-9860-5
5. Altizer S, Bartel R, Han BA. Animal migration and infectious disease risk. Science. 2011; 331: 296–302. Available from: https://www.science.org/doi/abs/10.1126/science.1194694 PMID: 21252339
6. Bowlin MS, Bisson IA, Shamoan-Baranes J, Reichard JD, Sapir N, Marra PP, et al. Grand challenges in migration biology. Integr Comp Biol. 2010; 50: 261–279. Available from: https://doi.org/10.1093/icb/icq013 PMID: 21538203
7. Wilcove DS, Wikelski M. Going, going, gone: is animal migration disappearing. PLoS Biol. 2008; 6: e188. https://doi.org/10.1371/journal.pbio.0060188 PMID: 18666384
8. Berthold P. Bird migration: a general survey. Oxford University Press on Demand; 2001.

9. Dingle H, Drake VA. What is migration?. Bioscience. 2007; 57: 113–121. Available from: https://doi.org/10.1641/B570206

10. Gu Z, Pan S, Lin Z, Hu L, Dai X, Chang J, et al. Climate-driven flyway changes and memory-based long-distance migration. Nature. 2021; 591: 259–264. Available from: https://doi.org/10.1038/s41586-021-03265-0 PMID: 33658718

11. Terrill SB. Social dominance and migratory restlessness in the dark-eyed junco (Junco hyemalis). Behav Ecol Sociobiol. 1987; 21: 1–11. Available from: https://doi.org/10.1007/BF00324429

12. Merlin C, Liedvogel M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J Exp Biol. 2019; 222: jeb191890. Available from: https://doi.org/10.1242/jeb.191890 PMID: 30728238

13. Lennox RJ, Chapman JM, Souliere CM, Tudorache C, Wikelski M, Metcalfe JD, et al. Conservation physiology of animal migration. Conserv Physiol. 2016; 4: coy072. Available from: https://doi.org/10.1093/conphys/coy072 PMID: 27293751

14. Pulido F. Evolutionary genetics of partial migration—the threshold model of migration revis (lt) ed. Oikos. 2011; 120: 1776–1783. Available from: https://doi.org/10.1111/j.1600-0706.2011.09470.x

15. Verhoeven KJ, Vonholdt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. 2016; 25, 1631–1638. Available from: https://doi.org/10.1111/mec.13617 PMID: 26994410

16. Perras M, Nebel S. Satellite Telemetry and its impact on the study of animal migration. Nat Educ Knowl. 2012; 3, 4.

17. Festa-Bianchet M, Ray JC, Boutin S, Côté SD, Gunn A. Conservation of caribou (Rangifer tarandus) in Canada: an uncertain future. Can J Zool. 2011; 89: 419–434. Available from: https://doi.org/10.1111/j.1365-294X.2008.04050.x PMID: 25469172

18. Bergerud AT, Luttich SN, Camp L. Return of caribou to Ungava (Vol. 50). McGill-Queen’s Press-MQUP; 2007. https://doi.org/10.1007/s00442-007-0855-3 PMID: 17891419

19. Gurarie E, Hebblewhite M, Joly K, Kelly AP, Adamczewski J, Davidson SC, et al. Tactical departures and strategic arrivals: Divergent effects of climate and weather on caribou spring migrations. Ecosphere. 2019; 10: e02971. Available from: https://doi.org/10.1002/ecs2.2971

20. Yannic G, Pellissier L, Ortego J, Lecomte N, Couturier S, Cuyler C, et al. Genetic diversity in caribou linked to past and future climate change. Nat Clim Change. 2014; 4: 132–137. Available from: https://doi.org/10.1038/nclimate2074
30. Hebblewhite M, White C, Musiani M. Revisiting extinction in national parks: mountain caribou in Banff. Conserv Biol. 2010; 24: 341–344. Available from: https://doi.org/10.1111/j.1523-1739.2009.01343.x PMID: 19843126

31. Williams SH, Steenweg R, Hegel T, Russell M, Hervieux D, Hebblewhite M. Habitat loss on seasonal migratory range imperils an endangered ungulate. Ecological Solutions and Evidence. 2021; 2: e12039. Available from: https://doi.org/10.1002/2688-8319.12039

32. Bae YS, Yoon SH, Han JY. Deficiency of aminopeptidase P1 causes behavioral hyperactivity, cognitive deficits, and hippocampal neurodegeneration. G2B. 2018; 17: 126–138. Available from: https://doi.org/10.1101/gbb.12419 PMID: 28834604

33. McGivney BA, Han H, Corduff LR, Katz LM, Tozaki T, MacHugh DE, et al. Mutations of KIF5C cause a neurodevelopmental disorder of infantile-onset epilepsy, absent language, and distinctive malformations. Am J Med Genet. 2017; 173: 3127–3131. Available from: https://doi.org/10.1002/ajmg.a.38496 PMID: 29048727

34. Liedvogel M, Pööa-Guyon S, Rousseau V, Depienne C, Rastetter A, et al. Pak3 mutations responsible for severe intellectual disability and callosal agenesis inhibit cell migration. Neurobiol Dis. 2020; 136: 104709. Available from: https://doi.org/10.1016/j.nbd.2019.104709 PMID: 31913322

35. Lessel D, Schob C, Küry S, Reijnders MR, Harel T, Eldomery MK, et al. De novo missense mutations in DHX30 impair global translation and cause a neurodevelopmental disorder. Am J Hum Genet. 2017; 101: 716–724. Available from: https://doi.org/10.1016/j.ajhg.2017.09.014 PMID: 29100085

36. Duarte K, Heide S, Poëa-Guyon S, Rousseau V, Dehervelle N, Broix L, Tian G, Saillour Y, Boschero C, et al. Mutations in TUBG1, DYNC1H1, and KIF5C and KIF2A cause malformations of cortical development and microcephaly. Nat Genet. 2013; 45: 639–647. Available from: https://doi.org/10.1038/ng.2613 PMID: 23603762

37. Mishra A, Chauhan G, Violonneau MH, Vojinovic D, Jian X, Bis JC, et al. Association of variants in HTRA1 and NOTCH3 with MRI-defined extremes of cerebral small vessel disease in older subjects. Brain. 2019; 142: 1009–1023. Available from: https://doi.org/10.1093/brain/awz024 PMID: 30859180

38. Ruegg KC, Anderson EC, Paxton KL, Apkenas V, Lao S, Siegel RB, et al. Mapping migration in a songbird using high-resolution genetic markers. Mol Ecol. 2014; 23: 5726–5739. Available from: https://doi.org/10.1111/mec.12977 PMID: 25346105

39. Luo X, Kraus WL. On PAR with PARP: cellular stress signaling through poly (ADP-ribose) and PARP-1. Genes Dev. 2016; 26: 417–432. http://www.genesdev.org/cgi/doi/10.1101/gad.183509.111

40. Muller M, Martinez-Maza O, Jongeneel CV. A bivalent-occluding factor (BOF) that regulates DNA replication in yeast. Science. 1998; 279: 1584–1586. Available from: https://doi.org/10.1126/science.279.5353.1584

41. Rovadoski GA, Pertile SF, Alvarenga AB, Cesar AS, Pêrtille F, Pettrini J, et al. Estimates of genomic heritability and genome-wide association study for fatty acids profile in Santa Inês sheep. BMC Genom. 2018; 19: 375. Available from: https://doi.org/10.1186/s12864-018-4777-8 PMID: 29783944

42. Sermyagin AA, Gladys EA, Pelymashov KV, Kudinova AA, Dotsev AV, Denisikova TE, et al. Genome-wide association studies for milk production traits in Russian population of Holstein and black-and-white cattle. In Proceedings of the Scientific-Practical Conference “Research and Development-2016“ Springer, Cham, 2018, pp. 591–599. https://doi.org/10.1007/978-3-319-69140-0_18
49. Liu Y, Maekawa T, Yoshida K, Muratani M, Chatton B, Ishii S. The Transcription Factor ATF7 Controls Adipocyte Differentiation and Thermogenic Gene Programming. iScience. 2019; 13: 98–112. Available from: https://doi.org/10.1016/j.isci.2019.02.013 PMID: 30826729

50. Liu Y, Maekawa T, Yoshida K, Furuse T, Kaneda H, Wakana S, et al. ATF7 ablation prevents diet-induced obesity and insulin resistance. Biochem Biophys Res Commun. 2016; 478: 696–702. Available from: https://doi.org/10.1016/j.bbrc.2016.08.008 PMID: 27498002

51. Sejian V, Bhatta R, Gaughan J, Malik PK, Naqvi SMK, Lal R (Eds.) Sheep production adapting to climate change. Singapore, SG: Springer.2017

52. Gong S, Xu C, Wang L, Liu Y, Owusu D, Bailey BA, et al. Genetic association analysis of polymorphisms in PSD3 gene with obesity, type 2 diabetes, and HDL cholesterol. Diabetes Res Clin Pract. 2017; 126: 105–114. Available from: https://doi.org/10.1016/j.diabres.2017.02.006 PMID: 28237857

53. Tabassum R, Chauhan G, Dwivedi OP, Mahajan A, Jaiswal A, Kaur I, et al. Genome-wide association study for type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes. 2013; 62: 977–986. Available from: https://doi.org/10.2337/db13-0406 PMID: 23209189

54. Mahajan A, Go MJ, Zhang W, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014; 46: 234–244. Available from: https://doi.org/10.1038/ng.2897 PMID: 24509480

55. Wei Y, An Z, Zou Z, Sumpter R Jr, Su M, Zang X, et al. The stress-responsive kinases MAPKAPK2/ MAPKAPK3 activate starvation-induced autophagy through Beclin 1 phosphorylation. Elife. 2015; 4: e05289. Available from: https://doi.org/10.7554/eLife.05289 PMID: 25693418

56. Ozcan L, Xu X, Deng SX, Ghorpade DS, Thomas T, Cremers S, et al. Treatment of obese insulin-resistant mice with an allosteric MAPKAPK2/3 inhibitor lowers blood glucose and improves insulin sensitivity. Diabetes. 2015; 64: 3396–3405. Available from: https://doi.org/10.2337/db14-1945 PMID: 26068544

57. Seabury CM, Oldeschulte DL, Saatchi M, Beever JE, Decker JE, Halley YA, et al. Genome-wide association study for feed efficiency and growth traits in US beef cattle. BMC Genom. 2017; 18: 386. Available from: https://doi.org/10.1186/s12864-017-3754-y PMID: 28521758

58. Zhang Z, Xiao Q, Zhang QQ, Sun H, Chen JC, Li ZC, et al. Genomic analysis reveals genes affecting distinct phenotypes among different Chinese and western pig breeds. Sci Rep. 2018; 8: 13352. Available from: https://doi.org/10.1038/s41598-018-31802-x PMID: 30190566

59. Zhu Y, Li W, Yang B, Zhang Z, Ai H, Ren J, Huang L. Signatures of selection and interspecies introgression in the genome of Chinese domestic pigs. GBE. 2017; 9: 2592–2603. Available from: https://doi.org/10.1093/gbe/evx186 PMID: 29016799

60. Reue K, Zhang P. The lipin protein family: dual roles in lipid biosynthesis and gene expression. FEBS letters. 2018; 582: 90–96. Available from: https://doi.org/10.1016/j.febslet.2007.11.014

61. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Mági R, et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nat Genet. 2012; 44: 991–1005. Available from: https://doi.org/10.1038/ng.2385 PMID: 22885924

62. Wiestner A, Schlemper RJ, van der Maas AP, Skoda RC. An activating splice donor mutation in the thrombopoietin gene causes hereditary thrombocytopenia. Nat Genet. 2018; 18: 49–52. Available from: https://doi.org/10.1038/ng0198-49

63. Cornish N, Aungraheeta MR, FitzGibbon L. Monoallelic loss-of-function THPO variants cause heritable thrombocytopenia. Blood Adv. 2020; 4; 920–924. Available from: https://doi.org/10.1182/bloodadvances.2019001293 PMID: 32150607

64. Campos-Xavier AB, Martinet D, Bateman J, Belluccio D, Rowley L, Tan TY, et al. Mutations in the heparan-sulfate proteoglycan glypican 6 (GPC6) impair endochondral ossification and cause recessive omodysplasia. Am J Hum Genet. 2009; 84; 760–770. Available from: https://doi.org/10.1016/j.ajhg.2009.05.002 PMID: 19481194

65. Capurro M, Iizumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, et al. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol. 2017; 216: 2911–2926. Available from: https://doi.org/10.1083/jcb.201605119 PMID: 28696225

66. Mota RR, Guimarães SE, Fortes MR, Haynes B, Silva FF, Verardo LL, et al. Genome-wide association study and annotating candidate gene networks affecting age at first calving in Nellore cattle. J Anim. Breed Genet. 2017; 134: 484–492. Available from: https://doi.org/10.1111/jajb.12299 PMID: 28994157

67. Richards MR, Plummer L, Chan YM, Lippincott MF, Quinton R, Kumanov P, et al. Phenotypic spectrum of POLR3B mutations: isolated hypogonadotropic hypogonadism without neurological or dental anomalies. J Med Genet. 2017; 54: 19–25. https://doi.org/10.1136/jmedgenet-2016-104064 PMID: 27512013
68. Choquet K, Yang S, Moir RD, Forget D, Larivière R, Bouchard A, et al. Absence of neurological abnormalities in mice homozygous for the Polr3a G672E hypomyelinating leukodystrophy mutation. Mol Brain. 2017; 10: 1–3. https://doi.org/10.1186/s13041-016-0281-8 PMID: 28052764

69. De Camargo GM, Aspilcueta-Borquis RR, Fortes MR, Porto-Neto R, Cardoso DF, Santos DJ, et al. Prospecting major genes in dairy buffaloes. BMC Genom. 2015; 16: 872. Available from: https://doi.org/10.1186/s12864-015-1988-2 PMID: 26510479

70. Røed KH. Refugial origin and postglacial colonization of holarctic reindeer and caribou. Rangifer. 2005; 25: 19–30. https://doi.org/10.7557/2.25.1.334

71. Mallory CD, Williamson SN, Campbell MW, Boyce MS. Response of barren-ground caribou to advancing spring phenology. Oecologia. 2020; 192: 837–852. Available from: https://doi.org/10.1007/s00442-020-04604-0 PMID: 31982951

72. Fidler AE, Gwinner E. Comparative analysis of avian BMAL1 and CLOCK protein sequences: a search for features associated with owl nocturnal behaviour. Comp Biochem Physiol B, Biochem Mol Biol. 2003; 136: 861–874. Available from: https://doi.org/10.1016/s1096-4959(03)00276-8 PMID: 14662308

73. Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, et al. Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelli). PLoS Biol. 2004; 2: e212. Available from: https://doi.org/10.1371/journal.pbio.0020212 PMID: 15252455

74. Bishop CM, Spivey RJ, Hawkes LA, Batbayar N, Chua B, Frappell PB, et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science. 2015; 347: 250–254. Available from: https://www.science.org/doi/10.1126/science.1258732 PMID: 25593180

75. Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016; 2: e1500931. Available from: https://doi.org/10.1126/sciadv.1500931 PMID: 26844294

76. Guglielmo CG. Obese super athletes: fat-fueled migration in birds and bats. J Exp Biol. 2018; 221: jeb165753. Available from: https://doi.org/10.1242/jeb.165753 PMID: 29514885

77. Ramenofsky M. Hormones in migration and reproductive cycles of birds. In: Hormones and reproduction of vertebrates. Academic Press; 2011. pp. 205–237. Available from: https://doi.org/10.1006/rspb.2011.1191 PMID: 22031755

78. Kitano J, Ishikawa A, Lema SC. Integrated genomics approaches in evolutionary and ecological endocrinology. In: Ecological Genomics. Springer, Dordrecht; 2014 pp. 299–319. Available from: https://doi.org/10.1007/978-94-007-7347-9_15

79. Weckworth BV, Musiani M, McDevitt AD, Hebblewhite M, Mariani S. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation. Mol Ecol. 2012; 21: 3610–3624. Available from: https://doi.org/10.1111/j.1365-294X.2012.05621.x PMID: 22612518

80. Cavedon M, Gubili C, Heppenheimer E, vonHoldt B, Mariani S, Hebblewhite M, et al. Genomics, environment and balancing selection in behaviourally bimodal populations: The caribou case. Mol Ecol. 2019; 28: 1946–1963. Available from: https://doi.org/10.1111/mec.15039 PMID: 30714247

81. Taylor RS, Manseau M, Horn RL, Keobouasone S, Golding GB, Wilson PJ. The role of introgression and ecotypic parallelism in delineating intraspecific conservation units. Mol Ecol. 2020; 29: 2793–2809. Available from: https://doi.org/10.1111/mec.15522 PMID: 32567754

82. Llaurens V, Whibley A, Joron M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol Ecol. 2017; 26: 3610–3624. Available from: https://doi.org/10.1111/j.1365-294X.2012.05621.x PMID: 22612518

83. Ramenofsky M. Hormones in migration and reproductive cycles of birds. In: Hormones and reproduction of vertebrates. Academic Press; 2011. pp. 205–237. Available from: https://doi.org/10.1006/rspb.2011.1191 PMID: 22031755

84. Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016; 2: e1500931. Available from: https://doi.org/10.1126/sciadv.1500931 PMID: 26844294

85. Flack A, Fiedler W, Blas J, Pokrovsky I, Kaatz M, Mitropolsky M, et al. Costs of migratory decisions: a comparison across eight white stork populations. Sci Adv. 2016; 2: e1500931. Available from: https://doi.org/10.1126/sciadv.1500931 PMID: 26844294

86. Bergerud AT, Ferguson R, Butler HE. Spring migration and dispersion of woodland caribou at calving. Anim Behav. 1990; 39: 360–368. Available from: https://doi.org/10.1016/S0003-3472(05)80882-6

87. Cameron RD, Whitten KR. Seasonal movements and sexual segregation of caribou determined by aerial survey. J Wildl Manag. 1979; 43: 626–633. https://www.jstor.org/stable/3808740

88. Bazzi G, Cecere JG, Caprioli M, Gatti E, Gianfranceschi L, Podofillini S, et al. Clock gene polymorphism, migratory behaviour and geographic distribution: A comparative study of trans-Saharan
migratory birds. Mol Ecol. 2016; 25: 6077–6091. Available from: https://doi.org/10.1111/mec.13913 PMID: 27862517

89. Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science. 2018; 359: 466–469. Available from: https://www.science.org/doi/10.1126/science.aam9712 PMID: 29371471

90. Kauffman MJ, Cagnacci F, Chamaillé-Jammes S, Hebblewhite M, Hopcraft JG, Merkle JA, et al. Mapping out a future for ungulate migrations. Science. 2021; 372: 566–569. Available from: https://www.science.org/doi/10.1126/science.abf0998 PMID: 33958460

91. Hebblewhite M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol Conserv. 2017; 206: 102–111. Available from: https://doi.org/10.1016/j.biocon.2016.12.014

92. Anthropogenic Lande R., ecological and genetic factors in extinction and conservation. Population Ecology. 1998; 40: 259–269. Available from: https://doi.org/10.1007/BF02763457

93. Canada Environment. Recovery Strategy for the Woodland Caribou (Rangifer tarandus caribou), Boreal population, in Canada. Species at Risk Act Recovery Strategy Series. 2011; Environment Canada, Ottawa. xi + 138pp. Available from: https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/plans/rs_boreal_caribou_revised_0811_eng.pdf

94. Canada Environment (2014) Recovery Strategy for the Woodland Caribou, Southern Mountain population (Rangifer tarandus caribou) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. viii + 103 pp. Available from: https://www.registrelep-sararegistry.gc.ca/virtual_sara/files/plans/rs_woodland%20caribou_bois_s_mtn_0614_e.pdf

95. Runge CA, Martin TG, Possingham HP, Willis SG, Fuller RA. Conserving mobile species. Front Ecol Evol. 2014; 12: 395–402. Available from: https://doi.org/10.1890/130237

96. Allen AM, Singh NJ. Linking movement ecology with wildlife management and conservation. Front Ecol Evol. 2016; 3: 155. Available from: https://doi.org/10.3389/fevo.2015.00155

97. Ali OA, O’Rourke SM, Amish SJ, Meek MH, Luikart G, Jeffres C, et al. RAD capture (Rapture): flexible and efficient sequence-based genotyping. Genetics. 2016; 202: 389–400. Available from: https://doi.org/10.1534/genetics.115.183665 PMID: 26715661

98. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013; 22: 3124–3140. Available from: https://doi.org/10.1111/mec.12354 PMID: 23701397

99. Heppenheimer E, Brzeski KE, Hinton JW, Patterson BR, Rutledge LY, De Candia AL, et al. High genomic diversity and candidate genes under selection associated with range expansion in eastern coyote (Canis latrans) populations. Ecol and Evol. 2018; 8: 12641–12655. Available from: https://doi.org/10.1002/ece3.4688 PMID: 29736616

100. Elsik CG, Tellam RL, Worley KC. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009; 324: 522–528. Available from: https://doi.org/10.1126/science.1169588 PMID: 19390049

101. Lunter G, Goodson M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Bioinformatics. 2009; 25: 2078–2079. Available from: https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943

102. Powell JH, Amish SJ, Haynes GD, Luikart G, Latch EK. Candidate adaptive genes associated with lineage divergence: identifying SNPs via next-generation targeted resequencing in mule deer (Odocoileus hemionus). Mol Ecol Resour. 2016; 16: 1165–1172. Available from: https://doi.org/10.1111/mec3.12572 PMID: 27438092

103. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome Project Data Processing Subgroup. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009; 25: 2078–2079. Available from: https://doi.org/10.1093/bioinformatics/btp352 PMID: 19505943

104. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011; 27: 2156–2158. Available from: https://doi.org/10.1093/bioinformatics/bt1100 PMID: 21653522

105. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81: 559–575. Available from: https://doi.org/10.1086/519795 PMID: 17701901

106. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38: 904–909. Available from: https://doi.org/10.1038/ng1847 PMID: 16862161
107. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19: 1655–1664. Available from: http://www.genome.org/cgi/doi/10.1101/gr.094052.109 PMID: 19648217

108. Schweizer RM, Vonholdt BM, Harrigan R, Knowles JC, Musiani M, Coltman D, et al. Genetic subdivision and candidate genes under selection in North American grey wolves. Mol Ecol. 2016; 25: 380–402. Available from: https://doi.org/10.1111/mec.13364 PMID: 26333947

109. Girard I, Ouellet JP, Courtois R, Dussault C, Breton L. Effects of sampling effort based on GPS telemetry on home-range size estimations. J Wildl Manag. 2002; 66: 1290–1300. Available from: https://www.jstor.org/stable/3802962

110. Calenge C. The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Modell. 2006; 197: 516–519. Available from: https://doi.org/10.1016/j.ecolmodel.2006.03.017

111. Spitz DB, Hebblewhite M, Stephenson TR. ‘MigrateR’: extending model-driven methods for classifying and quantifying animal movement behavior. Ecography. 2017; 40: 788–799. Available from: https://doi.org/10.1016/j.ecolmodel.2006.03.017

112. Cagnacci F, Focardi S, Ghisla A, Van Moorster B, Merrill EH, GURARIE E, et al. How many routes lead to migration? Comparison of methods to assess and characterize migratory movements. J Anim Ecol. 2016; 85: 54–68. Available from: https://doi.org/10.1111/1365-2656.12449 PMID: 26412564

113. Peters W, Hebblewhite M, Mysterud A, Spitz D, Focardi S, Urbano F, et al. Migration in geographic and ecological space by a large herbivore. Ecol Monogr. 2017; 87: 297–320. Available from: https://doi.org/10.1002/ecm.1250

114. Zhou X, Stephens M. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nat Methods. 2014; 11: 407–409. Available from: https://doi.org/10.1038/nmeth.2848 PMID: 24531419

115. Gilly A, Southam L, Suveges D, Kuchenbaecker K, Moore R, Melloni GE, et al. Very low-depth whole-genome sequencing in complex trait association studies. Bioinformatics. 2019; 35: 2555–2561. Available from: https://doi.org/10.1093/bioinformatics/bty1032 PMID: 30576415

116. Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, et al. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS One. 2015; 10: e0120758. Available from: https://doi.org/10.1371/journal.pone.0120758 PMID: 25898129

117. Chhetri HB, Macaya-Sanz D, Kainer D, Biswal AK, Evans LM, Chen JG, et al. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytologist. 2019; 223: 293–309. https://doi.org/10.1111/nph.15777 PMID: 30843213

118. vonHoldt B, Heppenheimer E, Pettenko V, Cronquist P, Rutledge LY. Ancestry-specific methylation patterns in admixed offspring from an experimental coyote and gray wolf cross. J Hered. 2017; 108: 341–348. Available from: https://doi.org/10.1093/jhered/esx004 PMID: 28182294

119. Kinsella RJ, Kähäri A, Haider S, Zamora J, Proctor G, Spudich G, et al. (2011) Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database, Volume 2011, 2011, bar030. Available from: https://doi.org/10.1093/database/bar030 PMID: 21785142

120. Gillies CS, Hebblewhite M, Nielsen SE, Krawchuk MA, Aldridge CL, Frair JL, et al. Application of random effects to the study of resource selection by animals. J Anim Ecol. 2006; 75: 887–898. Available from: https://doi.org/10.1011/j.1365-2666.2006.01106.x PMID: 17009762