Evolution and Loss of Long-Fringed Petals: A Case Study Using a Dated Phylogeny of the Snake Gourds, Trichosanthes (Cucurbitaceae)

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	de Boer, Hugo J., Hanno Schaefer, Mats Thulin, and Susanne S. Renner. 2012. Evolution and loss of long-fringed petals: A case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae). BMC Evolutionary Biology 12:108.
Published Version	doi:10.1186/1471-2148-12-108
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:11210619
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, *Trichosanthes* (Cucurbitaceae)

Hugo J de Boer¹*, Hanno Schaefer², Mats Thulin³ and Susanne S Renner⁴

Abstract

Background: The Cucurbitaceae genus *Trichosanthes* comprises 90–100 species that occur from India to Japan and southeast to Australia and Fiji. Most species have large white or pale yellow petals with conspicuously fringed margins, the fringes sometimes several cm long. Pollination is usually by hawkmoths. Previous molecular data for a small number of species suggested that a monophyletic *Trichosanthes* might include the Asian genera *Gymnopetalum* (four species, lacking long petal fringes) and *Hodgsonia* (two species with petals fringed). Here we test these groups' relationships using a species sampling of c. 60% and 4759 nucleotides of nuclear and plastid DNA. To infer the time and direction of the geographic expansion of the *Trichosanthes* clade we employ molecular clock dating and statistical biogeographic reconstruction, and we also address the gain or loss of petal fringes.

Results: *Trichosanthes* is monophyletic as long as it includes *Gymnopetalum*, which itself is polyphyletic. The closest relative of *Trichosanthes* appears to be the sponge gourds, *Luffa*, while *Hodgsonia* is more distantly related. Of six morphology-based sections in *Trichosanthes* with more than one species, three are supported by the molecular results; two new sections appear warranted. Molecular dating and biogeographic analyses suggest an Oligocene origin of *Trichosanthes* in Eurasia or East Asia, followed by diversification and spread throughout the Malesian biogeographic region and into the Australian continent.

Conclusions: Long-fringed corollas evolved independently in *Hodgsonia* and *Trichosanthes*, followed by two losses in the latter coincident with shifts to other pollinators but not with long-distance dispersal events. Together with the Caribbean *Linnaeosicyos*, the Madagascan *Ampelosicyos* and the tropical African *Telfairia*, these cucurbit lineages represent an ideal system for more detailed studies of the evolution and function of petal fringes in plant-pollinator mutualisms.

Background

Deeply divided or fringed petal lobes are known from a range of angiosperm families, including Caryophyllaceae, Celastraceae, Cucurbitaceae, Myrtaceae, Orchidaceae, Saxifragaceae, and Tropaeolaceae [1]. While the origin and function of subdivided petals vary between groups, division of perianth edges is especially common among nocturnal hawkmoth-pollinated species (such as *Trichosanthes* [2], Figure 1), where the fringes, in combination with a light petal color, may enhance visibility and thus increase pollination success [3,4]. Experiments have shown that diurnal and nocturnal hawkmoths are attracted by floral scent but also rely on visual clues to find and recognize flowers even at extremely low light intensity [5,6]. A preference for high contrasts might help them find their nectar sources, and it seems plausible that fringed petals enhance the sharp contrast between the petal margin and a dark background [4].

In Cucurbitaceae, long-fringed petals are known in five genera that occur in Madagascar, tropical Africa, the Caribbean, and East and Southeast Asia [7,8]. The largest of them is *Trichosanthes* with currently 90–100 species of mainly perennial, 3 to 30 m long climbers that are usually dioecious and have medium-sized fleshy fruits. Referring to the petal fringes, Linnaeus formed the genus name from the Greek words for 'hair' (genitive...
Trichosanthes has its center of diversity in Southeast Asia, but ranges from India throughout tropical and subtropical Asia east to Japan, and southeast to New Guinea, Australia, and Fiji [9]. One species, the snake gourd, T. cucumerina L., is a widely cultivated vegetable in tropical and subtropical regions around the globe, and another 15 species are commonly used in Asian traditional medicine [10]. While floristic treatments are available for most of its range [9,11-16], a comprehensive revision of the nearly 300 names published in Trichosanthes is lacking (but see [17] for a synopsis).

Trichosanthes belongs in the tribe Sicyoeae, a group of 12 genera and c. 270 species that is supported by morphological and molecular data [18]. Based on a limited number of Trichosanthes species sequenced, it appeared that the genus might be paraphyletic, with the genera Gymnopetalum Arn. (four species; [19]) and Hodgsonia Hook.f. & Thomson (two species; [9]) possibly nested inside it [20]. Both share with Trichosanthes the white flowers, elongated receptacle-tubes, and free filaments. Hodgsonia also has long-fringed petals (Figure 2I), but differs from Trichosanthes and Gymnopetalum in its much larger fruits (up to 25 cm across) and unusual seeds. The petal margins in Gymnopetalum are entire (Figure 2A, 2E) or in one species shortly fimbriate [9]. Geographically, Gymnopetalum and Hodgsonia largely overlap with the distribution area of Trichosanthes except for their absence from New Guinea and Australia, and from much of the northeastern range of Trichosanthes (temperate China, Taiwan, Japan) [9].

Based on mainly fruit and seed characters, the 43 species of Trichosanthes occurring in the Flora Malesiana region have been grouped into six sections, the typical sect. Trichosanthes and sections Cucumeroides (Gaertn.) Kitam., Edulis Rugayah, Foliobracteola C.Y.Cheng & Yueh, Involucraria (Ser.) Wight, and Asterasperma W.J. de Wilde & Duyfjes [21,22]. The mainland Asian species, T. truncata C.B.Clarke, is in its own section, Truncata C.Y.Cheng & C.H.Yueh [23]. The four species of Gymnopetalum have been allocated to two sections that differ in flower morphology, the typical sect. Gymnopetalum with just one species from southern India and Sri Lanka and sect. Tripodanthera (M.Roem.) Cogn. with three southeast Asian and Malesian species [24].

Here we test the monophyly and phylogenetic placement of Trichosanthes using a broad sampling of some 60% of its species, including the type species of each section name, plus representatives of Gymnopetalum, Hodgsonia, and other Sicyoeae as well as more distant outgroups. The well-resolved phylogeny, combined with field observations on flower shape and color, allows us to test whether petal fringes in Old World Sicyoeae evolved just once as would be the case if Gymnopetalum and Hodgsonia were nested inside it [20] or multiple times as would be implied by these genera having separate evolutionary histories. A combination of molecular-dating and ancestral area reconstruction permits reconstructing the biogeographical history of the Trichosanthes clade.

Results and discussion

Phylogenetic analyses and taxonomy

Phylogenies obtained under Bayesian or Maximum Likelihood (ML) optimization revealed no statistically supported incongruences, defined as nodes with Bayesian posterior probabilities (PP) >0.95 or ML bootstrap support >75. A Bayesian consensus tree is shown in Figure 2. It reveals that the genus Trichosanthes is paraphyletic because Gymnopetalum is embedded in it, while Gymnopetalum is polyphyletic because its four species do not group together. Instead, G. tubiflorum (Wight & Arn.) Cogn. groups with species from sections Trichosanthes and Cucumeroides (1.00 PP/84 ML support), while G. orientale W.J.de Wilde & Duyfjes, G. chinensis (Lour.) Merr., and G. scabrum (Lour.) W.J. de Wilde & Duyfjes are sister to section Edulis (1.00 PP/86 ML). The Trichosanthes/Gymnopetalum clade (56 species sampled; 0.99 PP/62 ML support) is sister to Luffa, a genus of seven or eight species of which we included five. This sister group relationship, however, is only weakly supported (Figure 2). The genus Hodgsonia (two species with long-fringed flowers,
Figure 2 (See legend on next page.)
one sampled here) is only distantly related to the _Trichosanthes/Gymnopetalum_ clade.

Of the seven sections previously proposed in _Trichosanthes_ (see Background), three are supported by the molecular results, namely sections _Asterosperma_ (1.00 PP/100 ML; three species, two of them sampled here), _Cucumeroides_ (1.00 PP/93 ML; seven species, five sampled), and _Edulis_ (1.00 PP/75 ML; nine species, five sampled). Three other sections with more than one species (_Involucraria, Foliolbractoea, Trichosanthes_) are not monophyletic in their current circumscriptions. To achieve a more natural classification, a revised infrageneric classification has been proposed including two new sections [17].

The biogeographic history of the _Trichosanthes_ clade

Based on a fossil-calibrated Bayesian relaxed molecular clock model, _Trichosanthes_ originated during the Oligocene (Figure 3), an estimate influenced by our prior constraint of the crown node of the _Trichosanthes/Gymnopetalum_ clade to 34 Ma. This constraint is based on _Trichosanthes_-like seeds from the Upper Eocene of Bulgaria [25] dating to c. 34 Ma and seeds from the Oligocene of West Siberia [26] dating to c. 23.8 Ma [27]. Seeds assigned to _Trichosanthes_ have also been reported from Miocene and Pliocene sites in France, Germany, Italy, and Poland [28-30], and Pliocene _Trichosanthes_-like leaves are known from France [31]. The biogeographic analysis (Figure 4) inferred an East Asian origin of the genus (region C in Figure 4), but this inference is based only on the living species, while the just-discussed fossils indicate a more northern (Eurasian) range of _Trichosanthes_ before the global climate cooling at the end of the Oligocene. Many other extinct elements of the European Oligocene, Miocene, and Pliocene floras, such as _Taxodium_, _Craigia_, _Fagus kraeuselii_, _Ilex_, and tropical Araceae, such as _Caladiosoma_, also have nearest living relatives in tropical Southeast Asia [31,32].

Collision between the Eurasian and Australian tectonic plates started in the Late Oligocene, about 25 Ma ago, and the Sahul Shelf (carrying New Guinea) and Sunda Shelf (Sumatra, Java, and Borneo) reached their present proximity only by the Late Miocene, some 10 Ma [33,34]. Mid-Miocene pollen records indicate a warm, moist climate and rainforest expansion on these newly forming islands [35], allowing groups adapted to humid forest conditions, such as the liana clade _Trichosanthes_, to spread and diversify. Such plant groups would have benefited from land bridges that during times of sea level changes repeatedly connected New Guinea and Australia on the one hand, and Indochina, Sumatra, Java, and Borneo on the other. The lowest sea levels, during the last glacial maximum (LGM), were approximately 120 m below those of today, resulting in the complete exposure of the Sunda Shelf; even sea level reduction by just 40 m already connected Indochina, Sumatra, Java, and Borneo [35,36]. No land bridges, however, ever connected the islands on the Sunda Shelf with those in “Wallacea,” that is, Sulawesi, the Moluccas, and the Lesser Sunda Islands, or the latter with New Guinea and Australia on the Sahul Shelf. In zoogeography, these two boundaries are known as Wallace’s Line and Lydekker’s line, but their significance as floristic boundaries is doubtful [37,38].

The most striking transoceanic disjunctions in _Trichosanthes_ are numbered in Figure 4. They are (i) the disjunction between the Australian species _T. subvelutina_ F.Muell. ex Cogn. and its sister clade on the Asian mainland and areas of the Sunda Shelf, dated to 23.8 (29.4-18.4) Ma; (ii) the disjunction between _T. edulis_ Rugayag, _T. dentifera_ Rugayag, _T. laeoica_ C.Y.Cheng & L.Q.Huang, _T. schlechteri_ Harms from New Guinea, and _T. odontosperma_ W.E.Cooper & A.J.Ford from Australia on the one hand, and _Gymnopetalum chinense_, widespread in Asia as far East as Flores, and _G. orientale_ in Sulawesi, the Lesser Sunda Islands, and the Moluccas on the other (this is dated to 16.7 (22.1-11.2) Ma, but the position of _G. scabrum_ relative to _G. chinense_ and _G. orientale_ remains unclear; compare Figures 2, 3, and 4); and (iii) the disjunction between _T. wawrae_ Cogn. from Thailand, peninsular Malaysia, Sumatra, and Borneo, and its sister clade _T. papuana_ F.M.Bailey/T. pentaphylla F. Muell. ex Benth, from New Guinea and Australia, which dates to 7.1 (11.2-3.3) Ma.

Trichosanthes range expansion between New Guinea and Australia occurred during the Pliocene/Pleistocene, when these two regions were repeatedly connected due to the above-mentioned sea level changes [36]. Thus, the estimated divergence time of the Australian species _T. odontosperma_ (a member of clade ii in Figure 4) from its New Guinean sister species, _T. edulis_, is 3.9 (6.4-1.6) Ma, while that of the sister species pair _T. papuana_ from...
the Aru Islands and New Guinea, and *T. pentaphylla* from Australia (clade iii in Figure 4) is 4.0 (7.1-1.4) Ma; considering their error ranges, these ages fall in the Pliocene/Pleistocene.

The geographic history of *T. pilosa* Lour. (including the synonyms *T. baviensis* Gagnep. and *T. holtzei* F.Muell. [16]), a widespread species here represented by seven samples from Queensland (Australia), Thailand, Vietnam, and Japan, cannot be inferred because the within-species relationships lack statistical support (Figure 2). Inferring the origin of the snake gourd, *T. cucumerina*, a vegetable cultivated in tropical and subtropical regions around the globe (represented by a single sample from Sri Lanka) also would require population-level sampling. Both species have fleshy red fruits and small seeds, probably dispersed by birds.

Evolution and loss of petal fringes

The phylogeny obtained here implies that long-fringed corollas evolved independently in the Asian genera *Hodgsonia* and *Trichosanthes* and were lost in three of the four species formerly placed in the genus *Gymnopetalum* (petals still bear c. 5 mm-long fringes in *G. orientale*). The two inferred losses (marked with an asterisk...
Figure 4 (See legend on next page.)
in Figure 2) coincide with shifts from nocturnal to diurnal flowering times (HS personal observation of *G. scabrum* and *G. chinense* in Cambodia, Jan. 2010, and China, Sept. 2005; N. Filipowicz, Medical University of Gdansk, personal observation of *G. tubiflorum* in India, Nov. 2010), and it therefore seems likely that there is a shift from predominantly nocturnal sphingid pollinators to diurnal bee or butterfly pollinators. The loss of fringes does not coincide with long-distance dispersal events to insular habitats (where hawkmoths might be absent), and the trigger for the pollinator shifts so far is unknown.

The adaptive function of the corolla fringes in pollinator attraction requires experimental study. An innate preference for radial patterns [39] and high contrasts might help hawkmoths find their nectar sources [5,6], and one possible explanation for the evolution of fringed petals is that they help create such a radial pattern and sharper contrasts between the petals and a dark background [4]. In a diurnal, hawkmoth-pollinated *Viola* species, more complex corolla outlines correlate with higher fruit set [40] but it remains to be tested if this is also the case in the nocturnal *Trichosanthes*-hawkmoth system. Another untested possibility is that the fringes with their highly increased surface area and exposed position might be involved in scent production [3,5,6] or produce a waving motion, in which waves are set up in the plant by pollinators (pers. comm., Feb. 2012) or produce a waving motion, and letters adjacent to taxon names correspond to the geographic origin of the sampled plant. Wallace’s Line is shown as a broken line between Borneo and Sulawesi, Lydekker’s Line is shown as a broken line between New Guinea and the Moluccas. The three numbered clades and inferred transoceanic disjunctions are discussed in the text.

Methods

Morphology

Herbarium specimens from A, BRI, CNS, E, GH, K, KUN, KYO, L, LE, M, MO, P, S, UC, UPS and US were obtained on loan or studied during herbarium visits. Determination of herbarium material was verified using identification keys [9,11-16,19,42]. All species in *Trichosanthes* have corolla fringes, and these are absent in three of the four *Gymnopetalum* species, except *G. orientale*, which can have short-fimbriate petal margins (fringes up to 5 mm length).

Sampling, DNA extraction and amplification

We included six DNA regions, namely the nuclear ribosomal ITS region (ITS1-5.8S-ITS2), the chloroplast genes *rbcL* and *matK*, the *trnL* and *trnL-trnF* intron and spacer, and *rpl20-rps12* spacer. Data for *rbcL* and the *trnL* region were taken from previous studies [7,18,20,43,44]. Only plant samples for which two or more markers were successfully sequenced were included in the analyses, and the combined dataset included one of the two species of *Hodgsonia*, all four of *Gymnopetalum*, and 52 of *Trichosanthes*, representing approximately 60% of the accepted species in the latter genus. Type species of all sections were included: *Gymnopetalum tubiflorum* (Wight & Arn.) Cogn. (G. sect. *Gymnopetalum*), *Gymnopetalum chinense* (Lour.) Merr. (G. sect. *Tripodantha*), *Trichosanthes postarii* W.J.de Wilde & Duyfjes (T. sect. *Asterosperma*), *Trichosanthes pilosa* Lour. (T. sect. *Cucumeroides*), *Trichosanthes edulis* Rugayah (T. sect. *Edulis*), *Trichosanthes kirilowii* Maxim. (T. sect. *Foliobracteola*), *Trichosanthes wallichiana* (Ser.) Wight (T. sect. *Involutaria*), *Trichosanthes villosa* Blume (T. sect. *Pseudovariifera*), *Trichosanthes cucumerina* L. (T. sect. *Trichosanthes*), *Trichosanthes truncata* C.B. Clarke (T. sect. *Truncata*), *Trichosanthes subvelutina* F. Muell. ex Cogn. (T. sect. *Villosae*). Species names and their authors, specimen voucher information, and GenBank accession numbers for all sequenced markers (including 262 new sequences) are summarized in Table 1. Total DNA was extracted using the Carlson/Yoon DNA isolation procedure [45] and a Mini-Beadbeater (BioSpec Products) to pulverize the plant material. Extracts were purified using the GE Illustra GFX™ PCR DNA and Gel Band Purification Kit following the standard protocol.

Conclusions

Molecular evidence supports the inclusion of *Gymnopetalum* into a then monophyletic *Trichosanthes* [17]. Our molecular phylogenies reveal that long-fringed petals evolved independently in *Hodgsonia* and *Trichosanthes/Gymnopetalum*, followed by two losses of corolla fringes in the latter clade, most likely associated with pollinator shifts. Molecular dating and a biogeographic analysis indicate an Oligocene initial diversification of *Trichosanthes* in mainland Asia. The lineage then diversified and spread in Malaysia (the Malesian biogeographic region) during the late Miocene and Pliocene, reaching the Australian continent several times.
Table 1 Voucher information and GenBank accession numbers

Species	No.	Voucher (Herbarium)	Origin of the sequenced material	ITS	rpl20-rps12 IS	matK	rbcL	trnL-trnF IS	trnL intron
Austrobryonia micrantha (F.Muell.) I.Telford	1	R. Telford 8173 (CANB)	Australia, New South Wales	EF487546	EF487567	EF487559	EF487552	EF487575	EF487575
Bryonia dioica Jacq.	1	S. Renner 2187 (M)	(1) Switzerland, cult. BG Zürich	(2) EU102709	(1) DQ648157	(1) DQ536641	(1) DQ536791	(1) DQ536791	(1) DQ536791
	2	A. Faure 661/76 (M)	Algeria, Lamoriciere						
Cyclanthera pedata (L.) Schrad.	1	S. Renner et al. 2767 (M)	Germany, cult. BG Mainz	HE661293	DQ648172	DQ536667	DQ535749	DQ536767	DQ536767
Ecballium elaterium (L.) A.Rich. ssp. elaterium	1	M. Chase 922 (K)	(1) UK, cult. RBG-K	(2) EU102746	(1) AY968541	(1) AY973019	(1) AY973023	(1) AY973006	(1) AY973006
Echinocystis lobata (Michx.) Torr. & A.Gray	1	S. Renner et al. 2829 (M)	Germany, cult. BG Mainz	-	DQ648174	DQ536673	DQ535809	DQ536814	DQ536814
Gymnopetalum chinense (Lour.) Merr.	1	H. Schaefer 2005/661 (M)	China, Guangdong	HE661294	EU155612	EU155606	EU155601	EU155621	EU155630
Gymnopetalum orientale W.J. de Wilde & Duyfjes	3	M. van Balgooy 7553 (L)	Indonesia, Bali	HE661301	HE661468	HE661397	-	-	-
Gymnopetalum scabrum (Lour.) W.J. de Wilde & Duyfjes	1	W. de Wilde & B. Duyfjes 22269 (L)	Thailand, Central	HE661295	DQ536556	DQ536683	DQ535754	DQ536824	DQ536824
	2	J. Maxwell 16-11-2002 (CMU)	Thailand	HE661296	HE661469	HE661398	-	-	-
Gymnopetalum scabrum (Lour.) W.J. de Wilde & Duyfjes	3	C.H. Wong, J. Helm & J. Schultze-Motel 2071 (LE)	China, Hainan	HE661297	HE661470	HE661399	-	-	-
Gymnopetalum tubiflorum (Wight & Am.) Cogn.	1	N. Filipowicz & Z. Van Henwijnen NF25a (M)	India, Kerala	HE661298	HE661471	HE661400	-	-	-
Gymnopetalum tubiflorum (Wight & Am.) Cogn.	2	A. Alston 1670 (UC)	Sri Lanka, Veragantota	HE661299	HE661472	HE661401	-	-	-
Gymnopetalum tubiflorum (Wight & Am.) Cogn.	3	G.H.K. Thwaites CP1625 (K)	Sri Lanka	HE661300	HE661473	HE661402	-	-	-
Hodgsonia heteroclitica Hook.f. & Thomson	1	P. Phonsena 4705 (L)	(1) Thailand, Nan	(1) HE661302	(1) HE661474	(1) HE661403	-	(2) EU155631 -	
	2	L. Loeffler s.n. (M)	Bangladesh						
Lagenaria sicenaria (Molina) Standl.	1	M. Merello 1331 (MO)	Ghana	HE661303	HE661475	HE661404	AY935747	AY935788	AY968570
	2	S. Renner et al. 2767 (M)	seeds from D. S. Decker-Walters & A. Wagner TCN 1130 (FTG)	(1) Germany, cult. BG Munich, seeds from India, Ahmadnagar, Maharashtra	HE661305	HE661476	DQ536695	DQ538262	DQ536835
Luffa acutangula (L.) Roxb.	2	S. Renner et al. 2767 (M)	China, cult. BG Guangzhou	HE661305	HE661476	DQ536695	DQ538262	DQ536835	DQ536835
	3	L.X. Zhou s.n.	China, cult. BG Guangzhou						

http://www.biomedcentral.com/1471-2148/12/108
Plant Name	Collector	Voucher Information	GenBank Accession Numbers						
Luffa aegyptiaca Mill.	D.Z. Zhang	15 April 2003, China, cult. BG Guangzhou	HE661306, HE661477, HE661405						
(incl. *L. cylindrica* L.)		no voucher	DQ535827, DQ536836, DQ536836						
Luffa echinata Roxb.	G. Schweinfurth	555 (M) Egypt	HE661307, HE661478, HE661406						
		no voucher	- EU436357, EU436357						
Luffa graveolens Roxb.	S. Renner & A. Kocyan	2758 (M), seeds from D. Becker-Walters 1543 (FTG 121855)	HE661308, EU436334, EU436409						
		Germany, cult. BG Munich, seeds from India, USDA PI540921	EU436385, EU436358, EU436358						
Luffa quinquefolia (Hook. & Arn.) Seemann	R. Berhaut	7308 (M) Senegal	HE661308, (1) EU436335, (2) DQ536697						
		(2) Germany, cult. BG Munich, seeds originally from Louisiana, USA	- (1) EU436359						
Marah macrocarpa (Greene) Greene	M. Olson	s.n. (MO) USA, Sonoran Desert	(1) USA, Sonoran Desert						
		1009 (RSA) USA, Sonoran Desert	(2) USA, Sonoran Desert						
Momordica charantia L.	S. Renner et al.	2775 (M) Germany	HE661309, DQ491013, DQ491019						
		Germany, cult. BG Munich	DQ535760, DQ501269, DQ501269						
Nothosorus suberosa (F.M.Bailey) I.Telford	I. Telford	12487 (NE) Australia	HE661310, DQ536575, DQ536709						
		SE Queensland	DQ535762, DQ536844, DQ536844						
Sicyos angulatus L.	M. Chase	979 (K) North America	HE661311, DQ648189, DQ36732						
Trichosanthes adhaerens	S. Lim, J. J. Postar & G. Markus	SAN 143273 (L) Malaysia, Borneo, Sabah	HE661312, HE661479, - - - - - -						
W.J. de Wilde & Dayfies									
Trichosanthes auriculata Rugayah	A. Kalat, J. Abdallah, & J. Clayton	BRUN 17016 (L) Borneo, Brunei	HE661313, HE661480, HE661407						
			- - - - - -						
Trichosanthes bavensis Gagnep.	N.M. Cuong	1248 (P) Vietnam	HE661314, HE661481, - - - - - -						
Trichosanthes beccariana Cogn. ssp. beccariana	W. de Wilde et al.	SAN 142229 (L) Malaysia, Borneo, Sabah	HE661315, HE661482, HE661408						
			- - - - - -						
Trichosanthes borneensis Cogn.	C. Argent et al.	93127 (E) Indonesia, Borneo, Kalimantan Timur	HE661316, HE661483, - - - - - -						
Trichosanthes bracteata (Lam.) Voigt	T. Haegele	20 (M) India, Kochin	HE661317, HE661484, EU155608						
			EU155602, EU155622, EU155632						
Trichosanthes celebica Cogn.	W. de Wilde & B. Dayfies	21903 (L) Indonesia, Sulawesi	HE661318, HE661485, HE661409						
			- - - - - -						
Trichosanthes cucumerina L.	H. Schaefer	2007/327 (M) Germany, cult. BG Munich	HE661319, EU155614, EU155609						
			EU155603, EU155623, EU155633						
Trichosanthes cucumerina L.	N. Lundqvist	11380 (UPS) Sri Lanka	HE661320, HE661486, HE661410						
			- - - - - -						
Trichosanthes dentifera Rugayah	J.H.L. Waterhouse	445-B (L) Papua New Guinea, Bougainville Is.	HE661321, HE661487, - - - - - -						
Trichosanthes dioica Roxb.	O. Polunin, W. Sykes & J. Williams	S925 (E) Nepal	HE661322, HE661488, HE661411						
			- - - - - -						
Trichosanthes edulis Rugayah	W. Avé	4076 (L) Indonesia, Irian Jaya	HE661323, HE661489, HE661412						
			- - - - - -						
Scientific Name	Collection Details	Location Details	GenBank Accession Numbers	Notes					
--------------------------------	-------------------------------------	--	---------------------------	-------					
Trichosanthes elmeri Merr.	E.F.J. Campbell 43 (E)	Malaysia, Borneo, Sabah	HE661324, HE661490						
Trichosanthes globosa Blume	W. de Wilde et al. SAN 144003 (L)	Malaysia, Borneo, Sabah	HE661325, HE661491, HE661413						
Trichosanthes holtzei F.Muell.	B. Gray 7482 (CNS)	Australia, N Queensland	HE661326, HE661492, HE661414						
Trichosanthes homophylla Hayata	Y.-C. Kao 499 (GH)	Taiwan	HE661327, HE661493, HE661415						
Trichosanthes hylonoma Hand.-Mazz.	Wuling Mt Exp 1646 (KUN)	China	HE661328, HE661494, HE661416						
Trichosanthes intermedia W.J. de Wilde & Duyfjes	V. Julaih et al. S 76602 (L)	Malaysia, Borneo, Sarawak	HE661329, HE661495						
Trichosanthes inthanonensis Duyfjes & Pruesapan	1. P. Phonsena, W. de Wilde & B. Duyfjes 3993 (L)	Thailand, Chiang Mai	HE661330, HE661496, HE661417						
Trichosanthes inthanonensis Duyfjes & Pruesapan	2. K. Pruesapan et al. 67 (L)	Thailand, Kanchanaburi	HE661331, HE661497, HE661418						
Trichosanthes kirrii Craib	P. Phonsena, W. de Wilde & B. Duyfjes 3999 (L)	Thailand, Nan	HE661333, HE661498						
Trichosanthes kinabaluensis Rugayah	J. Postar et al. SAN 144260 (L)	Malaysia, Borneo, Sabah	HE661334, EU155615, HE661419	EU155624, EU155634					
Trichosanthes kiniiwii Maxim. var. japonica (Miq.) Kitam.	3. H. Takahashi 20711 (GIFU)	Japan	HE661335, DQ536603, DQ536742	DQ535855, DQ536874, DQ536874					
Trichosanthes kiniiwii Maxim. var. japonica (Miq.) Kitam.	1. K. Kondo 05090401e (KYO)	Japan	HE661332, HE661499, HE661420						
Trichosanthes kiniiwii Maxim. var. japonica (Miq.) Kitam.	2. K. Deguchi, K. Uchida, K. Shin & H. Hideshima s.n. (KYO)	Japan	-	HE661500, HE661421					
Trichosanthes laceribractea Hayata	1. S. Fujii 9623 (KYO)	Japan	HE661336, HE661501, HE661422						
Trichosanthes laceribractea Hayata	2. S. Fujii 9978 (KYO)	Japan	HE661337, HE661502, HE661423						
Trichosanthes laceribractea Hayata	3. Liang Deng 7090 (KUN)	China	HE661338, HE661503						
Trichosanthes laeoica C.Y.Cheng & L.Q.Huang	1. M. Coode et al. NGF 32585 (E)	Papua New Guinea, Eastern Highlands	HE661339, HE661504						
Trichosanthes laeoica C.Y.Cheng & L.Q.Huang	2. P. Kati LAE 77807a (BRI)	Papua New Guinea	HE661340, HE661505						
Trichosanthes lepiniana (Naud.) Cogn.	1. J.D.A. Stainton 8522 (E)	Nepal	HE661341, HE661506, HE661424						
Trichosanthes lepiniana (Naud.) Cogn.	2. Shanzu Wen 85 (KUN)	China	HE661342, HE661507, HE661425						
Trichosanthes lepiniana (Naud.) Cogn.	3. H. de Boer HB49, coll. 1865 (P)	France, cult BG Paris	HE661343, HE661508						
Species	Voucher Information	Country/Region	GenBank Accessions						
-------------------------------	--	---	--------------------------						
Trichosanthes miyagii Hayata	T. Yamazaki 310 (KYO)	Japan	HE661344 HE661509 HE661426 - - -						
Trichosanthes montana Rugayah ssp. crassipes W.J. de Wilde & Duyfjes	J. Postar et al. SAN 144259 (L)	Malaysia, Borneo, Sabah	HE661346 EU155616 HE661427 - EU155625 EU155635						
Trichosanthes montana Rugayah ssp. montana	W. de Wilde et al. 22279 (L)	Indonesia, Java	HE661345 HE661510 - - -						
Trichosanthes mucronata Rugayah	W. de Wilde & B. Duyfjes SAN 139459 (L)	Malaysia, Borneo, Sabah	HE661347 HE661511 HE661428 - - -						
Trichosanthes multiflora Miq. 1	S. Tsugaru, G. Murata & T. Sawada s.n. (KYO)	Japan	HE661348 HE661512 HE661429 - - -						
Trichosanthes multiflora Miq. 2	S. Fujii 9957 (KYO)	Japan	HE661349 HE661513 HE661430 - - -						
Trichosanthes nervifolia L.	B. Jonsell 3828 (UPS)	Sri Lanka	HE661350 HE661514 HE661431 - - -						
Trichosanthes obscura Rugayah	K.M. Wang 1581 (L)	Borneo, Brunei	HE661351 HE661515 - - -						
Trichosanthes odontosperma W.E.Cooper & A.J.Ford	H. Schaefer 2007/09 (M)	Australia, Queensland	HE661352 EU037013 HE661432 - EU037011 EU037010						
Trichosanthes odontosperma W.E.Cooper & A.J.Ford	B. Gray 9147 (UPS)	Australia, Queensland	HE661353 HE661516 HE661433 - - -						
Trichosanthes odontosperma W.E.Cooper & A.J.Ford	I. Telford 11285 (CNS)	Australia, Queensland	HE661354 HE661517 HE661434 - - -						
Trichosanthes pallida Duyfjes & Pruesapan	P. Phonsena, W. de Wilde & B. Duyfjes 4658 (L)	Thailand, Phetchaburi	HE661355 HE661518 HE661435 - - -						
Trichosanthes pallida Duyfjes & Pruesapan	P. Phonsena, W. de Wilde & B. Duyfjes 3981 (L)	Thailand, Phetchaburi	HE661356 HE661519 HE661436 - - -						
Trichosanthes papuana F.M.Bailey	W. Takeuchi & O. Arna 17069 (L)	Papua New Guinea	HE661357 HE661520 HE661437 - - -						
Trichosanthes pedata Merr. & Chun	Jiangiang Li 239 (KUN)	China	HE661358 HE661521 HE661438 - - -						
Trichosanthes pendula Rugayah	J. Postar et al. 144100 (L)	Malaysia, Borneo, Sabah	HE661359 EU155617 HE661439 - EU155626 EU155636						
Trichosanthes pentaphylla F.Muell. ex Benth.	W. Cooper 2094 (CNS)	Australia, Queensland	HE661360 HE661522 HE661440 - - -						
Trichosanthes pentaphylla F.Muell. ex Benth.	W. Cooper 2061 (CNS)	Australia, Queensland	HE661361 HE661523 HE661441 - - -						
Trichosanthes phonsenae Duyfjes & Pruesapan	P. Phonsena, W. de Wilde & B. Duyfjes 4419 (L)	Thailand, Phetchaburi	HE661362 HE661524 HE661442 - - -						
Trichosanthes phonsenae Duyfjes & Pruesapan	P. Phonsena, W. de Wilde & B. Duyfjes 3980 (L)	Thailand, Phetchaburi	HE661363 HE661525 HE661443 - - -						
Species	Voucher Information	GenBank Accession Numbers							
--	---------------------	----------------------------							
Trichosanthes pilosa Lour.	H. Schaefer 2007/17 (M)	HE661364 EU155620 EU155611							
	Australia, Queensland	EU155629 EU155639							
Trichosanthes pilosa Lour.	P. Phonsena, W. de Wilde & B. Duyfjes 3913 (L)	HE661365 HE661526 HE661444							
	Thailand, Chiang Mai	-							
Trichosanthes pilosa Lour.	H. Takahashi 20755 (GIFU)	DQ536604 DQ536743 DQ538586							
	Japan	DQ536875 DQ536875							
Trichosanthes pilosa var. roseipulpa W.J. de Wilde & Duyfjes	P. Phonsena, W. de Wilde & B. Duyfjes 4694 (L, holotype)	HE661367 HE661529 HE661446							
	Thailand, Nan	-							
Trichosanthes postani W.J. de Wilde & Duyfjes	J. Postar et al. SAN 144066 (L, isotype)	HE661368 EU155618 HE661447							
	Malaysia, Borneo, Sabah	EU155627 EU155637							
Trichosanthes postani W.J. de Wilde & Duyfjes	J. Postar et al. SAN 144098 (L)	HE661369 HE661530 HE661448							
	Malaysia, Borneo, Sabah	-							
Trichosanthes pubera Blume ssp. rubriflos (Cayla) Duyfjes & Pruesapan var. fissisepala Duyfjes & Pruesapan	P. Phonsena, W. de Wilde & B. Duyfjes 4451 (L)	HE661370 HE661531 HE661449							
	Thailand, Chiang Mai	-							
Trichosanthes pubera Blume ssp. rubriflos (Cayla) Duyfjes & Pruesapan var. fissisepala Duyfjes & Pruesapan	K. Pruesapan et al. 56 (L)	HE661371 HE661532 HE661450							
	Thailand, Kanchanaburi	-							
Trichosanthes pubera Blume ssp. rubriflos (Cayla) Duyfjes & Pruesapan var. rubriflos	R. Zhang 1 (M)	HE661372 DQ536560 DQ536888							
	China, cult. South China BG, Guangzhou	DQ53819 DQ536828 -							
Trichosanthes pubera Blume ssp. rubriflos (Cayla) Duyfjes & Pruesapan var. rubriflos	P. Phonsena, W. de Wilde & B. Duyfjes 3907 (L)	HE661373 HE661533 HE661451							
	Thailand, Saraburi	-							
Trichosanthes quinquangulata A.Gray	P. Phonsena, W. de Wilde & B. Duyfjes 4416 (L)	HE661374 HE661534 HE661452							
	Thailand, Phetchaburi	-							
Trichosanthes quinquangulata A.Gray	N. Koonthudthod et al. 326 (L)	HE661375 HE661535 HE661453							
	Thailand, Phetchaburi	-							
Trichosanthes quinquefolia C.Y.Wu	K. Nanthavong et al. BT 705 (L)	HE661376 HE661536 HE661454							
	Laos, Khammouan	-							
Trichosanthes reticulinervis C.Y.Wu ex S.K.Chen	X.F. Deng 131 (IBSC)	HE661377 DQ536605 DQ536744							
	China, Guangdong	DQ538587 DQ536876 DQ536876							
Trichosanthes rosthornii Harms	Jingliang Chuan 5654 (KUN)	HE661378 HE661537 HE661455							
	China	-							
Trichosanthes rosthornii Harms	A. Henry 1626 (LE)	HE661379 HE661538 -							
	China, Hubei	-							
Trichosanthes schlechteri Harms	W. Takeuchi & D. Ama 15663 (LAE)	HE661380 EU155619 EU155610							
	Papua New Guinea	EU155605 EU155628 EU155638							
	J. Postar et al. SAN 151201 (L)	HE661381 HE661539 -							
	Malaysia, Borneo, Sabah	-							
Species and Voucher Information	GenBank Accession Numbers								
---------------------------------	---------------------------								
Trichosanthes sepilokensis	Rugayah								
C.Y.Wu	Qiuwu Wang 85620 (KUN)	China	HE661382	HE661540	-	-	-	-	
Trichosanthes smilacifolia									
F.Muell. ex Cogn.									
1 I. Telford 9778 (CANB)									
Trichosanthes subvelutina									
F.Muell. ex Cogn.									
2 F. Davies 1541 (CANB)									
Trichosanthes subvelutina									
F.Muell. ex Cogn.									
3 N. Nicholson 3110 (BRI)									
Trichosanthes tricuspidata	Lour. ssp. javanica								
Pruesapan & Duyfjes									
Trichosanthes tricuspidata									
Lour. ssp. tricuspidata									
C.B.Clarke									
1 P. Phonsena, W. de Wilde & B. Duyfjes 4414 (L)									
Trichosanthes truncata									
C.B.Clarke									
2 P. Phonsena, W. de Wilde & B. Duyfjes 4490 (L)									
Trichosanthes truncata									
C.B.Clarke									
3 P. Phonsena, W. de Wilde & B. Duyfjes 6329 (L)									
Trichosanthes villosa	Blume								
1 P. Phonsena, W. de Wilde & B. Duyfjes 4669 (L)									
Trichosanthes villosa	Blume								
2 P. Phonsena, W. de Wilde & B. Duyfjes 6331 (L)									
Trichosanthes villosa	Blume								
3 P. Phonsena, W. de Wilde & B. Duyfjes 4449 (L)									
Trichosanthes villosa	Blume								
4 P. Phonsena, W. de Wilde & B. Duyfjes 4000 (L)									
Trichosanthes villosa	Blume								
5 K. Pruesapan et al. 60 (L)									
Trichosanthes fissibracteata									
C.Y.Wu ex C.Y.Cheng & Yueh									
Trichosanthes wallichiana	(Ser.) Wight								
(Ser.) Wight									
Trichosanthes wawrae	Cogn.								
B. Gravendeel et al. 631 (L)									
Polymerase chain reaction (PCR) amplification of purified total DNA was performed in 200 μl reaction tubes with a total volume of 50 μl. Each tube contained a mixture of 5 μl reaction buffer (ABgene, 10x), 3 μl MgCl2 (25 mM), 1 μl dNTPs (10 μM), 0.25 μl Taq-polymerase (ABgene; 5U/μl), 0.25 μl BSA (Roche Diagnostics), 12.5 μl of each primer (2 μM), 14.5 μl Milli-Q water and 1 μl template DNA. The ITS region was amplified using the primer pair ITS-P17 and ITS-26 S-82R [46] with the following PCR protocol 97°C 5 min., (97°C 30 s., 55°C 1 min., 72°C 1 min.) x 35, 72°C 10 min., 4°C ∞; matK with primers matK-2.1a [47] and matK-1440R [48], 95° 5 min., (95° 30 s., 50° 1 min., 72° 1 min.) x 35, 72° 10 min., 4° ∞; and rpl20-2.1a [48] and rps12 using the primers rpl20 and rps12 [49], 95° 5 min., (95° 30 s., 53° 1 min., 72° 1 min.) x 35, 72° 10 min., 4° ∞. Sequencing was performed using the primer pair ITS-P17 and ITS-26 S-82R [46] with the following PCR protocol 97°C 5 min., (97°C 30 s., 55°C 1 min., 72°C 1 min.) x 35, 72° 10 min., 4° ∞; a primer set consisting of 5 μl PCR product, 14.5 μl reaction buffer (ABgene, 10x), 3 μl MgCl2 (1.6 M), 0.25 μl BSA (Roche Diagnostics), and gap-coded using the Simmons and Ochoterena simulated annealing approach [31%], and latter regions increased statistical support values at early-branching clades. Sequences were concatenated, and gap-coded using the Simmonds and Ochoterena simple method [53] implemented in SeqState [54].

Sequence alignment
Sequence trace files were compiled into contigs with the program Gap4 and edited using Pregap4 [50], both part of the Staden package [51]. Sequences were aligned manually in Se-Al [52]. The final matrix included rpl20-rps12 (100% of taxa), ITS (96%), matK (84%), trnL-F spacer (31%), trnL intron (28%), and rbcL (20%). The three latter regions increased statistical support values at early-branching clades. Sequences were concatenated, and gap-coded using the Simmonds and Ochoterena simple method [53] implemented in SeqState [54].

Phylogenetic analyses
Selection of best-fit models of nucleotide substitution for the nuclear and plastid data partitions relied on the Akaike Information Criterion (AIC and AICc) as implemented in JModelTest version 0.1.1 [55,56]. Likelihood calculations were carried out for 88 substitution models on an ML-optimized tree. The best-fitting model for the combined data was the general time-reversible (GTR) model, with a proportion of invariable sites (I) and rate variation among sites (G) with four rate categories. Maximum likelihood tree searches and bootstrapping of the combined data (using 1000 replicates) relied on RAxML version 7.2.6 [57] on the CIPRES cluster [58].

Bayesian tree searching used MrBayes [59] on the CIPRES cluster [58]. The combined data were analyzed using three partitions (nuclear, plastid, gap data), allowing partition models to vary by unlinking gamma shapes, transition matrices, and proportions of invariable sites. Markov chain Monte Carlo (MCMC) runs started from independent random trees, were repeated twice, and extended for 10 million generations, with trees sampled every 1000th generation. We used the default priors in MrBayes, namely a flat Dirichlet prior for the relative nucleotide frequencies and rate parameters, a discrete uniform prior for topologies, and an exponential distribution (mean 1.0) for the gamma-shape parameter and branch lengths. Convergence was assessed by checking that the standard deviations of split frequencies were <0.01; that the log probabilities of the data given the parameter values fluctuated within narrow limits; that the convergence diagnostic (the potential scale reduction factor given by MrBayes) approached one; and by examining the plot provided by MrBayes of the generation number versus the log probability of the data. Trees saved prior to convergence were discarded as burn-in (10 000 trees) and a consensus tree was constructed from the remaining trees. The data matrix and trees have been deposited in TreeBASE (www.treebase.org; study number 12339).

Divergence time estimation
Divergence times were estimated using the Bayesian relaxed clock approach implemented in BEAST version 1.6.2 [60]. Searches used a Yule tree prior, the GTR+G substitution model, and 50 million MCMC generations, sampling every 1000th generation. Six monophyletic groups were defined based on the results of our phylogenetic analyses and previously published phylogenies [18,20,44]. Tracer version 1.5 [61] was used to check that effective sampling sizes had all reached >200, suggesting convergence of the chains. TreeAnnotator, part of the BEAST package, was then used to create a maximum clade credibility tree, with the mean divergence ages shown for all nodes with >95% highest posterior density.

Calibration relied on Cucurbitaceae fossils assigned to particular nodes (labeled A--C in Figure 3), using a gamma prior distribution with the fossil age as the offset and shape and scale parameter chosen to add a 95% CI of c. 10 Ma older than the fossil. (A) The root node, that is, the most recent common ancestor of Momordica and Trichosanthes, was constrained to 55.8 Ma with a shape parameter of 1.0 and a scale of 1.0, based on seeds from the Paleocene/Eocene Felpham flora representing the oldest Cucurbitaceae and dated to c. 55.8 Ma [62]. (B) The crown node of the Trichosanthes/Gymnopetalum clad was constrained to 34 Ma with a shape parameter of 1.0 and a scale of 3.4, based on Trichosanthes seeds from the Upper Eocene of Bulgaria [25] dated to c. 34 Ma and seeds from the Oligocene of West Siberia [26] dated to c. 23.8 Ma [27]. (C) The divergence of Marah and Echinocystis was set to 16 Ma with a shape parameter of 1.0 and a scale of 3.35, based on leaves and a fruit representing Marah from the Miocene of Stewart Valley, Nevada (M. Guilliams and D. M.
Erwin, University of California, Berkeley, in preparation; the fruit comes from the Fingerrock Wash site, dated to c. 16 Ma, the leaf from the Savage Canyon Formation, dated to c. 14.5 Ma). Absolute ages were taken from the geologic time scale of Walker and Geissman [63]. We also tested lognormal and exponential prior distributions, which gave very similar age estimates (not shown).

Biogeographic analysis

Biogeographic reconstruction relied on statistical dispersal-variance analysis using S-DIVA version 2.0 [64] as implemented in RASP, which carries out parsimony inference on the chain of trees obtained from an MCMC search [65,66], in our case the 8000 post burn-in Bayesian trees resulting from the BEAST dating analysis. S-DIVA averages the frequencies of an ancestral range at a node in ancestral reconstructions over all trees, with alternative ancestral ranges at a node weighted by the frequency of the node [64]. Range information for all species was compiled from taxonomic treatments [9,11,13-16], and the coded distribution areas were: A) Australia and New Guinea, B) Wallacea, C) Insular Sunda Malesia, D) Mainland Southeast Asia, E) India and adjacent countries, F) Africa, Europe and the New World.

Authors’ contributions

HB conceived the study, carried out the molecular genetic analyses, and drafted the manuscript. HS participated in the design of the study and data analysis, and also contributed field observations. SR and MT participated in the design and coordination of the study, and SR also helped with clock calibration and writing. All authors read and approved the final manuscript.

Acknowledgments

We thank W.J. de Wilde and B. Duyfjes for leaf samples, advice on species sampling and taxonomy, and comments on preliminary results; W.E. Cooper, N. Filipovicz, C. Jeffrey, and I. Telford for leaf samples; L. Nauheimer for calibration and writing. All authors read and approved the final manuscript.

Author details

1. Department of Systematic Biology, Uppsala University, Norbyvägen 18 D, Uppsala SE-75236, Sweden. 2. Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, MA 02138, U.S.A. 3. Department of Systematic Biology, Uppsala University, Norbyvägen 18 D, Uppsala SE-75236, Sweden. 4. University of Munich (LMU), Systematic Botany and Mycology, Muenzinger Str. 67, Munich 80638, Germany.

Received: 10 February 2012 Accepted: 21 June 2012 Published: 3 July 2012

References

1. Endress PK, Matthews ML: Elaborate petals and staminodes in eudicots: diversity, function, and evolution. Org Divers Evol 2006, 6:257–293.
2. Miyake T, Yamaoka R, Yahara T: Floral scents of hawkmoth-pollinated flowers in Japan. J Plant Res 1998, 111:199–205.
3. Delpino F: Utteriori osservazioni e considerazioni sulla dicogamia nel regno vegetale. Atti Soc Ital Sci Nat 1870, 13:167–205.
4. Vogel S: Blütenbiologische typen als elemente der Sippengliederung. Jena: G. Fischer, 1954.
5. Kelber A, Balkenius A, Warrant EJ: Scotopic colour vision in nocturnal hawkmoths. Nature 2002, 419:922–925.
6. Kelber A, Balkenius A, Warrant EJ: Colour vision in diurnal and nocturnal hawkmoths. Integr Comp Biol 2003, 43:571–579.
7. Schafer H, Kocyan A, Renner SS: Linneoecios (Cucurbitaceae): a new genus for Trichosanthes amara, the Caribbean sister species of all Sicyaeae. Syt Bot 2008, 33:349–355.
8. Schafer H, Renner SS: Cucurbitaceae. In The families and genera of vascular plants. 10th edition. Berlin: Springer, 2011:112–174.
9. de Wilde WJJO, Duyfjes BE: Cucurbitaceae. Leiden: Foundation Flora Malesiana; 2010:19.
10. Perry LM, Metzger J: Medicinal plants of East and Southeast Asia: attributed properties and uses. MA: MIT press Cambridge, 1980.
11. Chakravarty HL: Monograph on Indian Cucurbitaceae (Taxonomy and Distribution). Rec Bot Surv India 1959, 27:28–56.
12. Telford JR: Cucurbitaceae. In Flora of Australia, Volume 8. Volume 8th edition. Edited by Flora of Australia Editorial Committee. Canberra: Australian Govt. Pub. Service; 1982:194–198.
13. Ohba H: Cucurbitaceae. In Flora of Japan. Washington: Smithsonian Institution; 1984.
14. Duyfjes BE, Pruesapan K: The genus Trichosanthes L. (Cucurbitaceae) in Thailand. Thai For Bull (Bot) 2004, 32:76–109.
15. Lu A-M, Huang L-Q, Chen S-K, Jeffrey C: Cucurbitaceae. In Flora of China. Vol. 19 (Cucurbitaceae through Valerianaceae, with Annonaceae and Berberidaceae). St. Louis: Missouri Botanical Gardens Press; 2011.
16. Cooper WE, de Boer HJ: A taxonomic revision of Trichosanthes L. (Cucurbitaceae) in Australia, including one new species from the Northern Territory. Austrobaileya 2011, 8:364–386.
17. de Boer HJ, Thuillin M: Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data. PhytoKeys 2012, 12:23–33.
18. Schafer H, Renner SS: Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon 2011, 60:122–138.
19. de Wilde WJJO, Duyfjes BE: Review of the Genus Gymnopetalum (Cucurbitaceae), Blumea 2006, 51:281–296.
20. Schafer H, Heibl C, Renner SS: Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous overseas dispersal events. Proc R Soc Lond B 2007, 276:843–851.
21. Rugayah M, de Wilde WJJO: Conspectus of Trichosanthes (Cucurbitaceae) in Malesia. Reinaudians 1999, 11:277–280.
22. de Wilde WJJO, Duyfjes BE: The genus Trichosanthes (Cucurbitaceae) in Sabah. Sandakania 2004, 145–32.
23. Yueh CH, Cheng CY: A preliminary study of the Chinese medicinal species of genus Trichosanthes L. Act Phytopat Sin 1974, 12:415–458.
24. Cogniaux CA: Cucurbitaceae. In Monographiae Phanerogamarum Prodromi nunc Continuato, nunc Revisio Auctoribus Alphonso et Casimir de Candolle Aliisque Botanicis Ultra Memoratis, nunc Continuato, nunc Revisio Auctoribus Alphonso et Casimir de Candolle Aliisque Botanicis Ultra Memoratis. 3rd edition. Paris, 1881:325–491.
25. Palamarev E: Die Eozanische Flora des Burgas-Bekens. Izvestiya na Botaniceskiya Institut 1973, 24:75–124.
26. Dorofeev PI: Trichosanthes in Malesia. Izd Akad Nauk SSSR; 1963.
27. Grishchenko Z, Semakov N: Paleomagnetism of boundary oligocene-miocene deposits in the Komparsski Bor tract on the Tym River (Western Siberia). Izvestiya Fiz Solid Earth 2009, 45:70–79.
28. Reid E: Recherches sur quelques grains plicoles du Pont-du-Gail (Cantall), Bull Soc Geol France 1920, 20:84–87.
29. Szafer W: Flora plicolenska z Kroscienka nad Dunajcem. Pol Akad Umiej Rospr Wydz Mat-Przyr, Dziat B, Nauxi Biol 1963, 55:1–108.
30. Mai D, Wafner H: Die Pilzflözen Floren von Thüringen, Deutsche Demokratische Republik. Quartoalpinologie 1988, 755–297.
31. Kvaček Z, Teodoridis V, Gregor H: The Plocione Leaf flora of Auenheim, Northern Alsace (France). Documenta Nat. Naturae 2008, 155:1–108.
32. Wilde V, Kvaček Z, Bogner J: Fossil leaves of the Araeeae from the European Eocene and notes on other aroid fossils. Int J Pl Sci 2005, 166:157–183.
33. Hall R: Southeast Asia’s changing palaeogeography. Blumea 2009, 54:148–161.
34. Hall R: The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and geological evolution of SE Asia. Leiden: Backhuys; 1998:99–131.
35. Morley R: Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In Biogeography and Geological Evolution of SE Asia. Leiden: Backhuys; 1998:211–234.
36. Voirs HK: Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 2000, 27:1153–1167.
37. Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PKL, Shih HT, Carvalho GR, von Rintelen T: Beyond Wallace’s line: Genetics and geology inform biogeographic insights in the Indo-Australian archipelago. Annu Rev Ecol Evol Syst 2011, 42:205–226.
38. Simpson GG: Too many lines; the limits of the Oriental and Australian zoogeographic regions. Proc Am Philos Soc 1977, 121:107–120.
39. Kelller A: Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology. Proc R Soc Lond B 2002, 269:2573–2577.
40. Herrera CM: Do flowers wave to attract pollinators? A case study with Silene maritima. J Evol Biol 2008, 21:1024–1029.
41. Warren J, James P: Pattern discrimination in a hawkmoth: innate preferences, learning performance and ecology. Proc R Soc Lond B 2002, 269:2573–2577.
42. Swensen SM, Luthi JN, Rieseberg LH: Selection on complexity of corolla outline in a hawkmoth-pollinated violet. Evol Trend Plant 2001, 25:157–169.
43. Kelber A: Too many lines; the limits of the Oriental and Australian zoogeographic regions. Proc Am Philos Soc 1977, 121:107–120.
44. Kocyan A, Zhang LB, Schaefer H, Renner SS: A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 2007, 44:553–577.
45. Yoon CS, Glave A, Shaw PD: A method for rapid small-scale preparation of fungal DNA. Mycologica 1991, 83:835–838.
46. Popp M, Ovulman B: Inferring the history of the polyplid Silene oegaeae (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol Phylogenet Evol 2001, 20:474–481.
47. Royal Botanic Gardens Kew, DNA Barcoding. http://www.kew.org/barcoding/protocols.html.
48. Fior S, Kani PC, Casazza G, Minuto L, Sala F: Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matk and nuclear ITS sequences. Ann J Bot 2006, 93:399.
49. Hamilton MB: Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 1999, 8:521–523.
50. Bonfield JK, Smith KF, Staden R: A new DNA sequence assembly program. Nucleic Acids Res 1995, 23:4992.
51. Staden R: The Staden sequence analysis package. Mol Biotechnol 1996, 5:233–241.
52. Rambaut A; Se-Al: sequence alignment editor. v 2.0. Oxford: University of Oxford; 1996.
53. Simmons MP, Ochoterenaa H: Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 2000, 49:369–381.
54. Muller K; SeqStat: primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinformatics 2005, 4:65–69.
55. Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:269–284.
56. Posada D: JModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25:1253–1255.
57. Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 2008, 57:758.
58. Miller M, Holder MT, Vos R, Midford P, Liebowitz T, Chan L, Hoover P, Warnow T: The CIPRES portals. CIPRES; 2010. Website http://www.phylo.org/subsections/portal. Accessed 06 January 2010.
59. Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754–755.
60. Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214.
61. Rambaut A, Drummond AJ: Tracer. MCMC Trace Analysis Tool. v 1.6. Oxford University; 2003.
62. Collinson ME, Boulter MC, Holmes PL: Magnoliophyta (Angiospermae). In The Fossil Record. London: Chapman and Hall; 1993:809–841.
63. Walker J, Geissman J: 2009 Geologic Time Scale. GSA Today 2009, 19:60–61.
64. Yu V, Harris AJ, He X: S-DNA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol Phylogenet Evol 2010, 56:848–850.
65. Nylander JA, Otteson U, Alström P, Sammartini L: Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal-vicariance analysis of the thrushes (Aves: Turdus). Syst Biol 2008, 57:257–257.
66. Harris AJ, Xiang QY: Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to Dispersal–Vicariance Analysis and a case using Aesculus L. (Sapindaceae) including fossils. J Syst Evol 2009, 47:349–368.