Biological Characterization of Locally Circulating Mycoplasma gallisepticum in Poultry

Saba Farooq1,2, Aamer Ali Shah1, Naila Siddique2, Saba Rafique2, Adeela Sharif2, Muhammad Athar Abbas2 and Khalid Naeem2*

1Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad; 2National Reference Lab for Poultry Diseases, Animal Sciences Institute, National Agricultural Research Centre, Islamabad, Pakistan
*Corresponding author: naeem1955@gmail.com

ABSTRACT

Mycoplasma gallisepticum (MG) is a pathogen of concern for poultry. Present study was conducted to determine the biological characteristics of a field isolate of MG, recovered from an MG-affected flock. This isolation was made through conventional method of MG cultivation, using modified Frey’s media after confirming the isolate by polymerase chain reaction (PCR). A total of 48 birds were segregated into experimental group (32 birds) and the control group (16 birds). To appraise primary site of infection, MG broth propagated culture containing 1x10⁶ CFU/ml was inoculated intratracheally to each bird in the experimental group, whereas the control group was sham inoculated by uninoculated broth. The clinical signs and symptoms were recorded daily from day 1 to 21 post-infection (p.i.). Seroconversion monitoring was carried out, at day 5, 10, 15, 20 p.i. by Serum Plate Agglutination test (SPA) and Enzyme Linked Immunosorbent Assay (ELISA). To determine the dissemination pattern of MG, birds were sacrificed according to plan, and air sac lesions were scored after necropsy. Clinically, mild signs of respiratory discomfort were observed on day 5 p.i., which intensified on day 9 to 21 p.i. in the experimental group. PCR of tracheal swab samples was positive from day 7 to 21 p.i., and the swabs collected from lungs were positive for MG from day 9 to 21 p.i. The study concluded that, MG isolate from field showed limited dissemination pattern and is restricted to respiratory tract.

INTRODUCTION

Among various poultry pathogens responsible for respiratory tract infections, Mycoplasma gallisepticum (MG) is incriminated as an organism having the ability to persist for long duration once it has infected the host.

Infections caused by MG ranges from mild respiratory illness to chronic respiratory disease when complicated with other co-infecting pathogens (Levisohn and Kleven, 2000). Host and environmental factors play an important role in regulating pathogenesis of the disease. Exposition of invasion process of MG in non-phagocytic cells including chicken embryo fibroblast and HeLa-229 and ability to survive in intracellular spaces, provided an insight about the mechanism of evasion of host defenses, limited effect of anti-mycoplasma therapy and potential to cause systemic infection (Winner et al., 2000; Fürnkranz et al., 2013).

Respiratory tract infections caused by MG involves colonization of upper respiratory tract, which can further lead to inflammation of trachea and air sacculitis. Earlier studies reporting arthritis, salpingitis, conjunctivitis, meningoencephalopathy in chicken and turkeys suggested that the organism is not restricted to respiratory tract only. Experimental infection by pathogenic MG R strain provided evidence of systemic spread to the heart, brain, liver, spleen, and kidneys, unveiling the potential of MG to cross mucosal barrier of respiratory tract and dissemination to internal body organs (Musch et al., 2002; Vogel et al., 2008; Ramadan, 2019).

Marked differences have been observed in infectivity potential of different strains of MG. In case of experimental infections, it varies with route of inoculation, type of MG strain and number of passages of the strains used for challenge (Levisohn and Kleven, 2000).
In Pakistan, some selected studies have been reported about MG infection and its seroprevalence in layers and breeding stocks (Haque, 2010; Siddique et al., 2012; Khatoon et al., 2018; Shaiba et al., 2019; Qadir et al., 2020). Experimental co-infection of MG and Low Pathogenic Avian Influenza Virus (LPAIV) H9N2 exaggerated disease outcome (Subtain et al., 2016).

Persistent nature of the organism and potential of vertical as well as horizontal transmission render MG infections as one of the most important infections of poultry, causing significant economic losses. Even in the absence of apparent clinical infection of MG, co-infected bacterial or viral pathogens can exacerbate disease condition. Pakistani MG isolates have not been studied in terms of infectivity and predilection sites of infection. The present study was designed to assess preferred sites of colonization and infection of an MG isolate recovered from MG-vaccinated flock.

MATERIALS AND METHODS

Isolation of Mycoplasma gallisepticum: MG broth (Oxoid) and MG agar (Oxoid) were prepared with addition of Supplement G (Oxoid) as recommended by manufacturer. Processed samples were inoculated in the broth after filtration through 0.45 µm syringe filter and incubated at 37°C for 7 days. Samples were observed daily for change in colour of the broth from red to orange yellow and subsequently inoculated on agar. Inoculated MG agar plates were incubated at 37°C for 3-5 days in moisture rich environment, and observed daily under stereomicroscope (Labomed-CSM2) and further confirmed by PCR.

Experimental design: To determine the predilection sites of MG, 48 day-old chicks were reared at animal house facility of National Reference Lab of Poultry Diseases (NRLPD), National Agricultural Research Centre, Islamabad, Pakistan.

At the age of 10 days, birds were randomly divided in experimental and control groups, each having 32 and 16 birds, respectively. Experimental group was inoculated intratracheally with 0.5ml of MG culture (1x10^6 CFU/ml) using hypodermic needle. Control group was sham inoculated with sterile MG broth intratracheally. Both groups were separately placed in glove port chicken isolator chambers (Alternative Design Manufacturing).

Blood samples were withdrawn from each group randomly at day 5, 10, 15, 20 post-infection (p.i.). At day 3, 5, 7, 9, 11, 15, 19, 21 p.i., 4 experimental birds and 2 control birds were sacrificed.

Clinical and pathological examination: Experimental and control groups were subjected to daily observations for development of respiratory signs and symptoms. Trachea of each necropsied bird was examined for development of lesions as described by Machado et al., (2016). Air sacs of each sacrificed bird were examined for gross lesions and scored as described by (Much et al., 2002; Gaunson et al., 2006).

Statistical analysis: Tracheal lesion scores and air sac lesions scores were compared between the birds necropsied at different d.p.i. by using Kruskal–Wallis test. A P value ≤0.05 was considered significant.

Serology: Serum samples were subjected to SPA test and indirect ELISA. SPA test was performed using commercially available SPA test antigen (Charles River Laboratories) according to manufacturer’s instructions. ELISA was performed using commercially available MG ELISA kit (IDEXX Laboratories, USA).

Molecular detection: Swab samples collected from different organs were subjected to polymerase chain reaction (PCR). Here DNA extraction from the sample material was carried out by using FavorPrepTM Viral Nucleic Acid kit according to manufacturer’s instructions (Favorgen). PCR was performed using Dream Taq Green PCR Master Mix (2X) (Invitrogen) following the recommended protocol. PCR was carried out in a thermal-cycler (Eppendorf, Germany) using the profile described in OIE, 2018. Amplified product was visualised by gel electrophoresis, using 1% agarose gel. Briefly, 1 gm of Invitrogen Ultra-pure Agarose (16500-500) was dissolved in 100 ml of 1X TBE buffer and boiled till clear. Afterwards, 6 µl of ethidium bromide (Vivantis) was added and mixed. The mixture was poured in casting tray with comb inserted in it and allowed to solidify. Upon solidification, 10µl of amplified PCR product was loaded along with DNA step ladder (Gene ruler Thermo Scientific). The gel was run for 40 mins at 170V and viewed under UV light (Rafique, 2018).

RESULTS

M. gallisepticum recovered from the field sample was labelled as ARL-1963 and cultured in MG broth followed by its inoculation onto MG agar. Fried egg-shaped colonies of MG were observed under stereomicroscope (Fig. 1). PCR confirmation of colonies yielded amplified product of 185 bp using MG14F+ MG13R primers (Fig. 2) (OIE, 2018).

Clinical and Pathological Observations: Respiratory distress was observed in experimental group from day 6 p.i. onwards. Signs and symptoms included tracheal rales and sneezing, which intensified from day 9 till day 21 p.i. No such signs were apparent in sham inoculated group.

Tracheal lesions and air sac lesions were recorded macroscopically after necropsy. Statistical analysis revealed no significant difference among tracheal lesions recorded on day 7, 9 and 21 p.i. Similarly, no significant difference was found in tracheal lesions recorded on day 11, 15 and 19 p.i. Tracheal lesion scores recorded on day 11, 15 and 19 p.i. differed significantly from those recorded on days 7, 9 and 21 p.i. Air sac lesion scores recorded on day 11 and 15 p.i. differed significantly from the air sac lesions recorded on day 3, 5, 7, 9, 19 and 21 p.i. No birds in control group develop tracheal or air sac lesions (Table 1).

Serological Evaluation: Seroconversion was observed from day 5 p.i. by SPA test (Table 2). Number of positive samples remained low as 2 out of 5 (2/5) and 3 out of 5 (3/5) on day 10 and 15 p.i. By day 20 p.i. all samples were
positive for SPA test. For detection of IgG, ELISA was conducted. On day 10, 15, 20 p.i., 2/5, 4/5, 3/4 samples were positive showing antibody titre range of 223-1509, 114-5860, and 628-6192, respectively. No seroconversion was observed in control group either by SPA or ELISA.

Detection of Mycoplasma gallisepticum by PCR: Swabs from organs of necropsied birds were collected including trachea, lungs, liver/spleen and cloaca (Table 3). PCR was done to detect MG in swab samples collected from designated organs. Tracheal swabs were positive by PCR from day 7 to 21 p.i. On 7, 9, 19 and 21 d.p.i. 2/4 i.e. 50% of tracheal swabs were positive. On day 11 and 15 p.i., 4/4 i.e. 100% of tracheal swabs were positive for MG. Swabs collected from lungs were positive for MG on day 9 till 21 p.i. (Table 3). No swab sample collected from liver/spleen and cloaca was positive. In control group all samples were negative for MG (Table 3).

Table 1: Post inoculation observations of pathological lesions in Trachea and Lungs of Experimental and Control group

	Day 3	Day 5	Day 7	Day 9	Day 11	Day 15	Day 19	Day 21
Tracheal lesions	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)
Air sac lesions	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)
Tracheal lesions	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)
Air sac lesions	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)	0/2(0.0)

Values within a row with a different uppercase, superscripted letter are significantly different (P<0.05). *No. of positive samples/No. of tested samples.

*Mean tracheal lesion score (macroscopically scored from 0 to 4). *Mean air sac lesion score (macroscopically scored from 0 to 4).
Table 3: Post Infection detection of Mycoplasma gallisepticum from different organs of Experimental group by PCR

Organs	Day 3	Day 5	Day 7	Day 9	Day 11	Day 15	Day 19	Day 21	Total PCR positive
Trachea	0/4	0/4	2/4	2/4	4/4	4/4	2/4	2/4	16/32
Lungs	0/4	0/4	0/4	1/4	2/4	2/4	2/4	1/4	08/32
Liver/ Spleen	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	03/32
Cloaca	0/4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	03/32

Table 2: Anti-Mycoplasma gallisepticum antibody detection by SPA test and ELISA

Post infection	Day 5	Day 10	Day 15	Day 20
Experimental Group				
ELISA	0/5	2/5+ve	4/5+ve	3/4+ve
Titre Range	223-1509	114-5860	628-6192	
SPA	2/5+ve	3/5+ve	3/5+ve	4/4+ve
Control Group				
ELISA	0/5	0/5	0/5	0/4
SPA	0/5	0/5	0/5	0/4

DISCUSSION

Currently, in Pakistan *M. gallisepticum* infection has been on the rise in commercial poultry, despite the fact that number of drugs are used to control such infections along with using MG vaccines. This study was designed to evaluate pathogenesis of field isolate of MG by studying its predilection sites in commercial chickens. For this purpose, MG field isolate was recovered from MG-suspected, serologically positive breeder flock. Since MG is transmitted via horizontal as well as vertical route, assessment of locally circulating field isolate with regard to its localization to upper respiratory tract and further dissemination to other organs and persistence in any specific organ was considered for evaluation.

In present study, intratracheal route of inoculation was used to reproduce infection under controlled conditions (Levisohn et al., 1986). Development of symptoms of disease initiated on day 6 post infection (p.i.), which included slight sneezing and rales and intensified with nasal discharge and difficulty in breathing till day 21 p.i. It is earlier reported that MG infections in the field presents a wide spectrum of disease from mild till day 21 p.i. It is intensified with nasal discharge and difficulty in breathing. Appearance of symptoms of infection coincided with development of severe tracheal lesions 2 to 3 week after challenge which eventually subsided slowly (Sanei et al., 2007). Maximum severity observed in air sac lesions was from day 11 to day 19 p.i. which significantly differed from air sac lesions noted during study. As earlier reported by Majumder (2014), pathology of MG infection in chicken is based on inflammatory response in trachea, air sacs and lungs.

Persistence of MG in upper respiratory tract and dissemination of infection to internal body organs was detected by PCR through swabbing of organs after necropsy (Rauf et al., 2013; Haque et al., 2015; Spickler 2018). Tracheal swabs were positive from day 7 till 21 p.i. with 100% positivity on day 11 and 15 p.i. Swabs from lungs were positive from day 9 to 21 p.i. with 50% detection on day 11, 15 and 19 p.i. No detection by PCR was made from liver and cloacal swabs. Although moderate morbidity was observed, no mortality due to severe infection occurred during this experiment. Lack of MG detection in the cloacal swabs could be due to poor potential of this isolate to persist and/or shed after infection. MG infections in the field are complicated by some co-infecting organisms as well as due to any environmental stress. Concurrent infection of LPAIV H3N8 and H9N2 with MG have been investigated previously and provided evidence of exaggerated disease condition than infections caused by a single pathogen (Sprygin et al., 2011; Sid et al., 2016; Subtain et al., 2016; Canter, 2019). Different strains may differ in biological properties, including attachment and destruction of epithelial lining. Role of surface exposed cytadhesin GapA and CrmA in effective colonization to upper and lower respiratory system but reduced dissemination potential to other body organs is well documented (Indiková et al., 2013).

The study demonstrated upper respiratory tract as preferred site of infection of MG local isolate with moderate infection of lungs. There is high probability of MG strains circulating in Pakistan with diverse biological characteristics. Due to limitations, multiple MG isolates were not used in the study.

Conclusions: The present study provided an insight about predilection sites of MG isolate field. During the course of experiment, infection was limited to respiratory tract and no dissemination to internal organs was found. Appearance of symptoms of infection coincided with development of serological response. It is anticipated that such biological characterization of the local isolates would help in better understanding of circulating MG strains.

Authors contribution: SF and KN conceived this study. SF, SR and AS carried out bacterial culture propagation, serology and molecular detection. NS, SR and MAA helped in animal inoculation and necropsy. KN, MAA and SF took clinical and pathological observations. KN, AAS and SF interpreted the data. All the authors contributed in manuscript preparation and its final approval.
REFERENCES

Ahmad A, Rabbani M, Yaqoob T, et al., 2008. Status of IgG antibodies against Mycoplasma gallisepticum in non-vaccinated commercial poultry breeder flocks. J Anim Plant Sci 18:61-3.

Canter J, 2019. Investigating the Role of neuraminidase activity in the co-pathogenesis of Mycoplasma gallisepticum and low pathogenic avian influenza A virus. PhD thesis. University of Connecticut. https://opencommons.uconn.edu/dissertations/2287.

Feizi A, Khakpour M, Nikiran H, et al., 2013. Study on clinical signs and gross lesions of Mycoplasma gallisepticum in broiler breeder farms. Eur J Exp Biol 3:387-90.

Furmkranz U, Siebert-Gulle K, Rosengarten R, et al., 2013. Factors influencing the cell adhesion and invasion capacity of Mycoplasma gallisepticum. Acta Vet Scand 55:63. doi: 10.1186/1751-0147-55-63.

Gaunson JE, Philip CJ, Whithear KG, et al., 2006. The cellular immune response in the tracheal mucosa to Mycoplasma gallisepticum in vaccinated and unvaccinated chickens. Vaccine 24:2627-33.

Haque SE, 2010. Diagnostic and molecular epidemiological investigations of Mycoplasma gallisepticum and Mycoplasma synoviae in poultry. PhD Thesis, Department of Veterinary Microbiology, University of Agriculture, Faisalabad, Pakistan.

Haque SE, Rahman, SU, Khan MI, et al., 2015. A simplified duplex real-time PCR incorporating TaqMan minor groove binder (MGB) probes and an exogenous internal positive control for the simultaneous detection of Mycoplasma gallisepticum and Mycoplasma synoviae cultures. Vet Med 60:268-73.

Indiková I, Much P, Stipkivová L, et al., 2013. Role of the GapA and CrmA Cytadhesins of Mycoplasma gallisepticum in promoting virulence and host colonization. Infect Immun 81:1618-24.

Khatoon H, Afzal F, Tahir MF, et al., 2018. Prevalence of mycoplasmosis and antibiotic susceptibility of Mycoplasma gallisepticum in commercial chicken flocks of Rawalpindi Division, Pakistan. Pak Vet J 38:446-8.

Levisohn S and Kleven SH, 2000. Avian mycoplasmal (Mycoplasma gallisepticum. Rev Sci Tech Off Int Epiz 19:425-42.

Levisohn S, Dykstra MJ, Lin MY, et al., 1986. Comparison of in vivo and in vitro methods for pathogenicity evaluation for Mycoplasma gallisepticum in respiratory infection. Avian Pathol 15:233-46.

Machado LS, Abreu DLC, Lemos M, et al., 2016. Performance, serologic and tracheal responses of laying hens exposed to F strain of Mycoplasma gallisepticum. Arq Inst Biol 84:1-4.

Majumder S, 2014. Role of Mycoplasma gallisepticum and host airway epithelial cell interaction in inflammation. PhD Thesis. University of Connecticut.

Much P, Winner F, Stipkivová L, et al., 2002. Mycoplasma gallisepticum: influence of cell invasiveness on the outcome of experimental infection in chickens. FEMS Immunol Med Microbiol 34:181-6.

OIE, 2018. Avian Mycoplasmosis. In: manual of diagnostic tests and vaccines for terrestrial animals 2018 (OIE, Biological, Standard, Commission, eds). 2018 Ed, OIE, Paris, pp.845-59.

Qadir MF, Qurastlain and Ashok S, 2020. Current status of Mycoplasma gallisepticum in chickens and associated risk factors in Pakistan. Acta Sci Microbiol 3:120-3.

Rafique S, 2018. Seroprevalence and molecular characterization of Infectious bronchitis virus variants from poultry in Pakistan. PhD thesis (published). Deptt of Microbiology, Quaid-i-Azam University, Islamabad.

Ramadan NM, 2019. Mycoplasma Gallisepticum overview in poultry. Am J Biomed Sci Res 4:354-5.

Rauf M, Chaudhary ZI, Younus M, et al., 2013. Identification of Mycoplasma gallisepticum by Polymerase Chain Reaction and Conventional diagnostics from White Leghorn Layer flocks. J Anim Plant Sci 23:393-7.

Saeedi B, Barnes HJ, Vaillancourt JP, et al., 2007. Experimental Infection of chickens and turkeys with Mycoplasma gallisepticum reference strain S6 and North Carolina Field Isolate RAPD Type B. Avian Dis 51:106-11.

Shoaib M, Riaz A, Hassan MU, et al., 2019. Seroprevalence and associated risk factors of Mycoplasma Gallisepticum, Mycoplasma Synoviae and Salmonella Pullorum Gallinarium in poultry. Pak Vet J http://dx.doi.org/10.29261/pakvetj/2019.097.

Sid H, Hartmann S, Petersen H, et al., 2016. Mycoplasma gallisepticum modifies the pathogenesis of influenza A virus in the avian tracheal epithelium. Int J Med Micro 306:174-86.

Siddique AB, Rahman SU, Hussain I et al., 2012. Frequency distribution of opportunistic avian pathogens in respiratory distress cases of poultry. Pak Vet J 32:386-9.

Spickler AR, 2018. Avian mycoplasmal (Mycoplasma gallisepticum). Retrieved from http://www.cfsph.iastate.edu/DiseaseInfo/factsheets.php

Sprygin AV, Elskikin NP, Kolotilov AN, et al., 2011. Biological characterization of Russian Mycoplasma gallisepticum field isolates. Avian Pathol 40:213-9.

Stipkovits I and Kempf I, 1996. Mycoplasmoses in poultry. Rev Sci Tech Off Int Epiz 15:1495-525.

Subtain SM, Manzoor S, Khan FM, et al., 2016. Study on coinfection of Mycoplasma gallisepticum and low pathogenic avian influenza virus H9 in broilers. J Antivir Antiretrovir 8:095-9.

Vogl G, Plackner A, Szathmary S, et al., 2008. Mycoplasma gallisepticum Invades chicken erythrocytes during infection. Infect Immum 76:71-7.

Winner F, Rosengarten R and Citti C, 2000. In vitro cell invasion of Mycoplasma gallisepticum. Infect Immum 68:4238-44.