An Exploratory Study of Nucleon-Nucleon Scattering Lengths in Lattice QCD

M. Fukugitaa), Y. Kuramashib), H. Minoc), M. Okawab), A. Ukawad)

aYukawa Institute, Kyoto University
Kyoto 606, Japan

bNational Laboratory for High Energy Physics (KEK)
Tsukuba, Ibaraki 305, Japan

cFaculty of Engineering, Yamanashi University
Kofu 404, Japan

dInstitute of Physics, University of Tsukuba, Tsukuba
Ibaraki 305, Japan

Abstract

An exploratory study is made of the nucleon-nucleon s-wave scattering lengths in quenched lattice QCD with the Wilson quark action. The π-N and π-π scattering lengths are also calculated for comparison. The calculations are made with heavy quarks corresponding to $m_\pi/m_\rho \approx 0.73 - 0.95$. The results show that the N-N system has an attractive force in both spin-singlet and triplet channels, with their scattering lengths significantly larger than those for the π-N and π-π cases, a trend which is qualitatively consistent with the experiment. Problems toward a more realistic calculation for light quarks are discussed.
The understanding of low energy nucleon-nucleon ($N-N$) interactions has been one of the most fundamental problems in nuclear physics. A large effort to construct elaborate meson exchange models has enabled us to describe the low energy $N-N$ phase shifts and deuteron properties quite well[1]. However, these models are essentially phenomenological in that they use mesons and baryons as the basic degrees of freedom and choose the coupling strengths among them to fit the experimental data. Deriving the low energy properties of the $N-N$ interaction directly from the dynamics of quarks and gluons is clearly a problem posed to numerical studies of lattice QCD.

An important parameter characterizing the low energy $N-N$ interaction is the s-wave scattering length. The experimental values are listed in Table 1[2] together with those for $\pi-N$ and $\pi-\pi$ cases for comparison. We observe that the $N-N$ scattering lengths are markedly larger. We also note that the negative sign for the spin triplet channel reflects the presence of the deuteron bound state as follows from Levinson’s theorem. The small values for the $\pi-N$ and $\pi-\pi$ cases are understood as a consequence of chiral symmetry for u and d quarks; current algebra and PCAC have successfully predicted the sign and magnitude[3]. Since no such constraint exists for $N-N$ scattering, its large scattering lengths are dynamical phenomena of QCD.

An elegant method for calculating scattering lengths in lattice QCD is provided by the formula[4] relating the s-wave scattering length a_0 between two hadrons h_1 and h_2 to the energy shift $\delta E = E_{h_1 h_2} - (m_{h_1} + m_{h_2})$ of the two hadron state at zero relative momentum confined in a finite spatial box of a size L^3. It is given by

$$
\delta E = -\frac{2\pi a_0}{\mu L^3} (1 + c_1 \frac{a_0}{L} + c_2 (\frac{a_0}{L})^2) + O(L^{-6})
$$

(1)

with $\mu = m_{h_1} m_{h_2} / (m_{h_1} + m_{h_2})$ and $c_1 = -2.837297, c_2 = 6.375183$. The energy shift and hadron masses m_{h_1} and m_{h_2} can be extracted from hadron four- and two-point functions calculated through numerical simulations. Previous studies have shown the practical feasibility of the application of the formula for the case of $\pi-\pi$ scattering both for $I = 2$[5] and also for the technically more difficult case of $I = 0$[6]. With the development of the
technique to calculate hadron four-point functions [3], we have attempted an exploratory study of the $N-N$ s-wave scattering lengths, which we report in this article.

A realistic calculation of the $N-N$ scattering lengths faces three basic obstacles. The large values of scattering lengths of order 10 fm to be obtained mean that lattice sizes much larger than $2 - 3$ fm, which are accessible in current numerical simulations, will be needed to suppress $O(L^{-6})$ corrections neglected in [1]. A further difficulty in the spin triplet channel is that the lowest scattering state orthogonal to the bound deuteron state has to be constructed to apply [1]. Finally statistical fluctuations in $N-N$ four-point functions grow rapidly toward large time separations and small quark masses as we shall discuss in detail below. In order to avoid these problems in our initial study, we have carried out simulations for heavy quarks with $m_\pi/m_\rho \approx 0.73 - 0.95$ in the quenched approximation. We employ the Wilson quark action and work at the inverse coupling constant $\beta = 6/g^2 = 5.7$ which corresponds to the lattice spacing $a \approx 0.14$ fm. A calculation of $\pi-N$ and $\pi-\pi$ scattering lengths at the same β is also carried out to compare them with the results for the $N-N$ case.

The parameters of runs are tabulated in Table 2. Gauge configurations are generated for the single plaquette action separated by 1000 sweeps of the pseudo-heat bath algorithm. Calculations for the $\pi-\pi$ and $\pi-N$ cases are made on a $12^3 \times 20$ lattice, while for the $N-N$ case we employ a 20^4 lattice anticipating larger scattering lengths. We extract the energy shift $\delta E = E_{h_1 h_2} - (m_{h_1} + m_{h_2})$ from the ratio of the hadron Green’s functions,

$$R(t) = \frac{<\mathcal{O}_{h_1}(t)\mathcal{O}_{h_2}(t+1)\mathcal{O}_{h_1}(0)\mathcal{O}_{h_2}(1)>}{<\mathcal{O}_{h_1}(t)\mathcal{O}_{h_1}(0)> <\mathcal{O}_{h_2}(t+1)\mathcal{O}_{h_2}(1)>} \exp(-\delta Et)$$

where the operators for h_2 are shifted by one lattice unit in the temporal direction to avoid mixing of color-Fierz transformed contributions [1].

Quark propagators for the $N-N$ case are calculated with a wall source at $t = 0$ or 1, fixing gauge configurations to the Coulomb gauge in all space-time. Projecting out spin singlet and triplet combinations of the two nucleon system is made by non-relativistically
combining the upper components of the nucleon operator \(N = (i \gamma^5 q \gamma^5 q)q \) taking account of isospin factors.

Calculation of the \(\pi-N \) and \(\pi-\pi \) four-point functions requires quark propagators connecting two arbitrary space-time sites. We handle this problem by the method proposed in our previous work[6]: quark propagators are calculated with a wall source for every time slice without gauge fixing. The nucleon source operator for the \(\pi-N \) case, however, is fixed to the Coulomb gauge to increase signal to noise ratio.

In Fig. 1 we show \(R(t) \) for the spin singlet and triplet channels in the \(N-N \) case at \(K = 0.160 \) corresponding to \(m_\pi/m_\rho = 0.85 \). A clear signal with a positive slope is observed for both channels, which means attraction \((\delta E_{NN} = E_{NN} - 2m_N < 0) \) as expected. Similar results are obtained at two other values of the hopping parameter \(K = 0.15(m_\pi/m_\rho = 0.95) \) and \(0.164(m_\pi/m_\rho = 0.73) \). We extract the energy shift \(\delta E_{NN} \) by fitting \(R(t) \) to a linear form \(R(t) = Z(1 - \delta E_{NN}t) \). The fitting range is chosen to be \(4 \leq t \leq 9 \) for \(K = 0.150 \) and \(0.160 \). For the case of \(K = 0.164 \) we used \(2 \leq t \leq 6 \) for the fit due to the poor quality of our data. The fitted values of \(\delta E_{NN} \) are quite small \((\approx 0.01) \), justifying the use of a linear function instead of an exponential.

For heavy quark the \(N-N \) interaction becomes shorter ranged since pions exchanged between the nucleons are heavy, while the size of the nucleon will not be much reduced. In a simple potential model with a linear confining potential, for example, the hadron size scales as a third power of the constituent quark mass which is a slowly varying function of the hopping parameter. We may expect then that the deuteron becomes unbound for heavy quarks. Assuming this to be the case we can extract the scattering lengths through (1) for both spin singlet and triplet channels. The results in lattice units are tabulated in Table 3.

Our results for the \(\pi-N \) and \(\pi-\pi \) four-point functions are plotted in Fig. 2 for \(K = 0.164 \). The data are also fitted with the linear form \(R(t) = Z(1 - \delta E t) \) over \(4 \leq t \leq 9 \). The resulting scattering lengths are listed in Table 3 (we could not extract the \(I = 1/2 \) \(\pi-N \) scattering length at \(K = 0.1665 \) due to large errors in our data; this point will be
discussed below). The predictions of current algebra and PCAC are given by

\[a_0(\pi\pi) = +\frac{7}{16\pi} \frac{\mu_{\pi\pi}}{f_\pi^2} \ (I = 0), \quad -\frac{1}{8\pi} \frac{\mu_{\pi\pi}}{f_\pi^2} \ (I = 2), \]

(3)

and

\[a_0(\pi N) = +\frac{1}{4\pi} \frac{\mu_{\pi N}}{f_\pi^2} \ (I = \frac{1}{2}), \quad -\frac{1}{8\pi} \frac{\mu_{\pi N}}{f_\pi^2} \ (I = \frac{3}{2}), \]

(4)

\(\mu_{\pi\pi} = m_\pi/2 \) and \(\mu_{\pi N} = m_\pi m_N/(m_\pi + m_N) \) being the reduced masses. We list in Table 3 the numerical values of these predictions for the values of \(m_\pi, m_N \) and \(f_\pi \) measured in our simulations with the tadpole-improved renormalization factor for \(f_\pi \)[7]. Our results for the scattering lengths are consistent with these values within one standard deviation. It is somewhat surprising that the agreement holds even at quite heavy quarks corresponding to \(m_\pi/m_\rho \approx 0.73 \). (For the \(\pi-\pi \) scattering lengths a similar agreement has previously been reported[5, 6].)

In Fig. 3 we plot the scattering lengths as a function of \(m_\pi/m_\rho \). It is apparent that the \(N-N \) scattering lengths are substantially larger than the \(\pi-N \) and \(\pi-\pi \) scattering lengths already for a heavy quark corresponding to \(m_\pi/m_\rho \approx 0.73 \). Also noteworthy is the trend, albeit with sizable errors, that the values for the spin triplet channel are larger than those for the singlet channel, indicating a stronger attraction in the triplet channel, which is consistent with the existence of the deuteron bound state. We find these results to be encouraging, although the scattering lengths we obtained are still much small compared to the experiment: our results correspond to \(a_0(NN) \approx 1.0 - 1.5 \text{fm} \) in physical units with \(a \approx 0.14 \text{fm} \) determined from the \(\rho \) meson mass extrapolated to the chiral limit. These small \(N-N \) scattering lengths are most likely to arise from a short interaction range for heavy pions \((m_\pi \approx 0.7 - 1.5 \text{GeV}) \) for which our simulations are made; we expect that they increase if simulations would be made with a small quark mass[8].

Let us now discuss the issues for extension of the present work toward a more realistic case of light quarks. On the theoretical side, if deuteron is a bound state only for light enough quarks as assumed here, the scattering length for the triplet channel extracted from the lowest two-nucleon energy should diverge at the value of \(K \) corresponding to
the bound state formation, beyond which we need to construct the lowest scattering state orthogonal to the deuteron to extract the scattering lengths. Observing the diverging trend would be an interesting problem in its own light.

From the viewpoint of simulations reducing statistical errors presents a major problem toward light quarks. A simple argument indicates that the error of $R(t)$ grows exponentially with t as $\delta R(t) \propto \exp((2m_N - 3m_\pi)t)$ for the $N-N$ four-point function; since the pion mass vanishes in the chiral limit while the nucleon mass stays non-zero, the slope $\alpha_{NN} = 2m_N - 3m_\pi$ becomes larger for lighter quarks. A rapid growth of error is clearly seen in Fig. 1; its t dependence is roughly consistent with the estimate. We also expect that the magnitude of errors increases for lighter quarks. Thus a progressively larger statistics is needed to obtain reliable results as the quark mass is decreased.

A similar situation holds for the $\pi-N$ case. The estimated slope $\alpha_{\pi N} = m_N - m_\pi/2$ is even larger than α_{NN} for the range $K = 0.1665 - 0.15$ where we have made our simulation (e.g., $\alpha_{\pi N} = 0.84$ and $\alpha_{NN} = 0.66$ for $K = 0.164$). This explains a faster increase of errors with t for the $\pi-N$ case (compare Fig. 1 and Fig. 2(a)). An increase of magnitude of errors is also observed as the quark mass is reduced from $K = 0.164$ to $K = 0.1665$. This is the reason why we could not obtain the $I = 1/2$ $\pi-N$ scattering length for $K = 0.1665$.

To summarize, we have explored the possibility of extracting the $N-N$ scattering lengths from numerical simulations of lattice QCD. Albeit carried out at heavy quarks, our results show that the attractive forces work in both channels of s-wave $N-N$ scattering, its scattering lengths being significantly larger compared to the $\pi-N$ and $\pi-\pi$ scattering lengths. It remains an important and realistic problem to confirm that reducing the quark mass results in an increase of scattering lengths to the values observed experimentally. Such a calculation, however, requires a much larger lattice and smaller quark masses than are possible at present, and hence has to await a development of the computing power.

Numerical calculations for the present work have been carried out on HITAC S820/80 at KEK. This work is supported in part by the Grants-in-Aid of the Ministry of Education (Nos. 03640270, 05NP0601, 05640325, 05640363).
References

[1] See, *e.g.*, T. Ericson and W. Weise, *Pions and Nuclei* (Clarendon Press, Oxford, 1988); R. Machleidt, K. Holinde and Ch. Elster, Phys. Rep. **149** (1987) 1.

[2] See, *e.g.*, G. A. Miller *et al.*, Phys. Rep. **194** (1990) 1; M. M. Nagels *et al.*, Nucl. Phys. **B147** (1979) 189.

[3] S. Weinberg, Phys. Rev. Lett. **17** (1966) 616; Y. Tomozawa, Nuovo Cimento **46A** (1966) 707.

[4] H. W. Hamber, E. Marinari, G. Parisi and C. Rebbi, Nucl. Phys. **B225**[FS9] (1983) 475; M. Lüscher, Commun. Math. Phys. **105** (1986) 153.

[5] M. Guagnelli, E. Marinari and G. Parisi, Phys. Lett. **240B** (1990) 188; S. R. Sharpe, R. Gupta and G. W. Kilcup, Nucl. Phys. **B383** (1992) 309; R. Gupta, A. Patel and S. R. Sharpe, Phys. Rev. **D48** (1993) 388.

[6] Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa and A. Ukawa, Phys. Rev. Lett. **71**, 2387 (1993).

[7] G. P. Lepage and P. B. Mackenzie, Phys. Rev. **D48**, 2250 (1993).

[8] This is different from the cases of $\pi-\pi$ and $\pi-N$; their dominant low energy force arises from the exchange of a ρ meson, whose mass, in contrast to the π meson mass, does not differ radically from the realistic value even for heavy quarks. For $N-N$ scattering an approximate degeneracy of pseudoscalar and vector meson masses for heavy quarks should lead to a substantial cancellation between the attractive pseudoscalar exchange and the repulsive vector meson exchange.
Tables

Table 1: s-wave scattering lengths in units of fm2.

System	3S_1	1S_0	3P_1	3P_0
$N-N$	$-5.432(5)$	$+20.1(4)$	$+0.245(4)$	$-0.143(6)$
$\pi-N$	$I = 1/2$	$I = 3/2$	$I = 0$	$I = 2$
$\pi-N$	$+0.37(7)$	$-0.040(17)$		

Table 2: Parameters of simulations. All runs are made at $\beta = 5.7$ in quenched QCD.

K	Lattice Size	# Conf.	
$N-N$	0.150	$20^3 \times 20$	20
0.160	$20^3 \times 20$	30	
0.164	$20^3 \times 20$	20	
$\pi-N$	0.164	$12^3 \times 20$	60
0.1665	$12^3 \times 20$	30	
$\pi-\pi$	0.164	$12^3 \times 20$	70
Table 3: Scattering lengths in lattice units at $\beta = 5.7$ in quenched QCD. Numbers in square brackets are current algebra predictions evaluated with the measured values of m_π, m_N and f_π with the tadpole-improved Z factor.

K	0.150	0.160	0.164	0.1665
m_π	1.0758(51)	0.6919(63)	0.5081(35)	0.3588(82)
m_ρ	1.1302(66)	0.8171(86)	0.7008(67)	0.588(20)
m_N	1.788(11)	1.302(13)	1.093(20)	0.951(42)
$N-N$	3S_1	+10.8(1.2)	+9.0(1.6)	+10.8(9)
	1S_0	+9.2(1.3)	+7.3(1.9)	+8.0(1.1)
$\pi-N$	$I = 1/2$	+3.04(66)		
		[+2.59]	[+2.86]	
	$I = 3/2$	-1.10(20)	-1.31(22)	[-1.29]
		[-1.43]		
$\pi-\pi$	$I = 0$	+3.02(17)		
		[+3.32]		
	$I = 2$	-0.924(40)		
		[-0.947]		

Figure Captions

Fig. 1: $R(t)$ for the nucleon four-point function for the spin singlet and triplet channels at $\beta = 5.7$ and $K = 0.160$ on a $20^3 \times 20$ lattice in quenched QCD. Solid line is the linear fit to data over $4 \leq t \leq 9$.

Fig. 2: $R(t)$ for the (a) $\pi-N$ and (b) $\pi-\pi$ four-point function at $\beta = 5.7$ and $K = 0.164$ on a $12^3 \times 20$ lattice in quenched QCD. Solid line is the linear fit to data over $4 \leq t \leq 9$.

Fig. 3: Scattering lengths in lattice units at $\beta = 5.7$ in quenched QCD as a function of m_π/m_ρ.

Fig. 1

$N-N$

$^3S_1 \ R(t) + 0.1$

$^1S_0 \ R(t) - 0.1$
Fig. 2(a)
Fig. 2(b)
Fig. 3