Explicit probability of fixation formula for mutual competitors in a stochastic population model under competitive trade-offs

Glenn Steven Young
Kennesaw State University, gyoung19@kennesaw.edu

Andrew Belmonte
The Pennsylvania State University

Follow this and additional works at: https://scholarscompass.vcu.edu/bamm

Part of the Population Biology Commons

https://scholarscompass.vcu.edu/bamm/2020/poster/9

This Event is brought to you for free and open access by the Dept. of Mathematics and Applied Mathematics at VCU Scholars Compass. It has been accepted for inclusion in Biology and Medicine Through Mathematics Conference by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Explicit probability of fixation formula for mutual competitors in a stochastic population model under competitive trade-offs

Glenn S. Young\(^1\) and Andrew Belmonte\(^2\)

\(^1\)Department of Mathematics, Kennesaw State University, Marietta, GA 30060
\(^2\)Department of Mathematics, Pennsylvania State University, University Park, PA 16802

Abstract

Competition is ubiquitous in nature, and mathematicians have a long history of studying general models for ecological competition, most notably the deterministic Lotka-Volterra competition model. However, deterministic modeling struggles to capture the effects of small fitness differences. In this talk, we consider the two-species stochastic Lotka-Volterra competition model, which allows for a more nuanced interpretation of the competitive advantage conferred by fitness differences. In particular, we study the probability that one species outcompetes the other, called the probability of fixation, by analyzing the associated backward Kolmogorov equation (BKE). By identifying and exploiting a natural slow timescale, we derive an approximation to the BKE that allows us to find a closed form expression for the probability of fixation, through which we can easily examine the effects of parameter changes. Finally, we use our result to study fitness tradeoffs within a competitive environment and show that certain tradeoff strategies are beneficial while the population exists at high frequencies, but harmful at low frequencies, and vice versa. As a specific biological example, we show that our results agree with the gut-invasion strategy of Salmonella Typhimurium.