EXACT CONVERSES TO A REVERSE AM—GM INEQUALITY, WITH APPLICATIONS TO SUMS OF INDEPENDENT RANDOM VARIABLES AND (SUPER)MARTINGALES

IOSIF PINELIS

Abstract. For every given real value of the ratio \(\mu := AX/GX > 1 \) of the arithmetic and geometric means of a positive random variable \(X \) and every real \(v > 0 \), exact upper bounds on the right- and left-tail probabilities \(P(X/GX \geq v) \) and \(P(X/GX \leq v) \) are obtained, in terms of \(\mu \) and \(v \). In particular, these bounds imply that \(X/GX \to 1 \) in probability as \(AX/GX \downarrow 1 \). Such a result may be viewed as a converse to a reverse Jensen inequality for the strictly concave function \(f = \ln \), whereas the well-known Cantelli and Chebyshev inequalities may be viewed as converses to a reverse Jensen inequality for the strictly concave quadratic function \(f(x) \equiv -x^2 \). As applications of the mentioned new results, improvements of the Markov, Bernstein–Chernoff, sub-Gaussian, and Bennett–Hoeffding probability inequalities are given.

Mathematics subject classification (2010): 26D15, 60E15.

Keywords and phrases: Arithmetic mean, geometric mean, random variables, inequalities, exact bounds, Jensen inequality, reverse Jensen inequality, converse to a reverse Jensen inequality, duality, Markov inequality, Bernstein–Chernoff inequality, Bennett–Hoeffding inequality.

REFERENCES

[1] G. BENNETT, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc., 57 (297): 33–45, 1962.
[2] S. M. BUCKLEY, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc., 340 (1): 253–272, 1993.
[3] I. BUDIMIR, S. S. DRAGOMIR, AND J. PEČARIĆ, Further reverse results for Jensen’s discrete inequality and applications in information theory, JIPAM. J. Inequal. Pure Appl. Math., 2 (1): Article 5, 14, 2001.
[4] R. M. CORLESS, G. H. GONNET, D. E. HARE, D. J. JEFFREY, AND D. E. KNUTH, On the Lambert W function, Adv. Comput. Math., 5 (4): 329–359, 1996.
[5] C. C. HEYDE, On large deviation problems for sums of random variables which are not attracted to the normal law, Ann. Math. Statist., 38: 1575–1578, 1967.
[6] W. HOEFFDING, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc., 58: 13–30, 1963.
[7] J. H. B. KEMPERMAN, On the role of duality in the theory of moments, In Semi-infinite programming and applications (Austin, Tex., 1981), volume 215 of Lecture Notes in Econom. and Math. Systems, pages 63–92. Springer, Berlin, 1983.
[8] I. PINELIS, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab., 22 (4): 1679–1706, 1994.
[9] I. PINELIS, Optimal tail comparison based on comparison of moments, In High dimensional probability (Oberwolfach, 1996), volume 43 of Progr. Probab., pages 297–314, Birkhäuser, Basel, 1998.
[10] I. PINELIS, Exact upper and lower bounds on the difference between the arithmetic and geometric means, Bull. Aust. Math. Soc., 92 (1): 149–158, 2015.
[11] I. F. PINELIS, A problem on large deviations in a space of trajectories, Theory Probab. Appl., 26 (1): 69–84, 1981.
[12] I. F. PINELIS AND S. A. UTEV, *Sharp exponential estimates for sums of independent random variables*, Theory Probab. Appl., 34 (2): 340–346, 1989.