Abstract. We develop an ∞-categorical version of the classical theory of polynomial and analytic functors, initial algebras, and free monads. Using this machinery, we provide a new model for ∞-operads, namely ∞-operads as analytic monads. We justify this definition by proving that the ∞-category of analytic monads is equivalent to that of dendroidal Segal spaces, known to be equivalent to the other existing models for ∞-operads.

Contents

1. Introduction 2
 1.1. Overview of Results 4
 1.2. Related Work 6
 1.3. Acknowledgments 8
2. Polynomial Functors 8
 2.1. Polynomial Functors 8
 2.2. Local Right Adjoints 11
 2.3. Morphisms of Polynomial Functors 12
 2.4. The ∞-Category of Polynomial Functors 15
 2.5. Colimits of Polynomial Functors 18
 2.6. Slices over Polynomial Functors 20
3. Analytic Functors 23
 3.1. Analytic Functors and κ-Accessible Polynomial Functors 23
 3.2. Analytic Endofunctors, Symmetric Sequences, and Homotopic al Species 25
 3.3. Trees and Analytic Endofunctors 27
4. Initial Algebras and Free Monads 31
 4.1. Initial Lambek Algebras 31
 4.2. Free Monads 36
 4.3. An Explicit Description of the Free Monad 40
 4.4. Free Monads in Families 42
5. Analytic Monads and ∞-Operads 46
 5.1. Analytic Monads 46
 5.2. Free Analytic Monads in Terms of Trees 48
 5.3. Analytic Monads versus Dendroidal Segal Spaces 52
Appendix A. Lax Squares and Mates 57
 A.1. $(\infty, 2)$-Categories and Straightening for Locally Cocartesian Fibrations 58
 A.2. Gray Tensor Products and Double ∞-Categories of Squares 59
 A.3. Naturality of Mates 61
 A.4. Framed Double ∞-Categories 63
Appendix B. Monads 65
 B.1. ∞-Categories of Adjunctions and Monads 65
 B.2. Monads as Algebras 68
 B.3. Monads and Endofunctors 69
References 71
1. Introduction

Operads are a powerful formalism for encoding algebraic operations. They were first introduced in the early seventies for the purpose of describing up-to-homotopy algebraic structures on topological spaces [May72, BV73], and have since become a standard tool also in algebra, geometry, combinatorics, and mathematical physics. Operads are closely related to monads, which were introduced some 10 years earlier, implicitly with Godement’s “standard construction” of flasque resolutions [God58], and explicitly by Huber [Hub61]. The notion soon spread from algebraic geometry and homological algebra to universal algebra, logic, and computer science. The relationship between operads and monads was exploited from the very beginning of operad theory [May72], and is a major theme of the present contribution.

Classically, an operad O consists of a sequence $O(n)$ of topological spaces, where $O(n)$ is equipped with an action of the symmetric group Σ_n (this data is called a symmetric sequence), together with a unital and associative composition law. The object $O(n)$ describes the n-ary operations of the operad. Every symmetric sequence O gives rise to an endofunctor

$$F(X) = \prod_n (O(n) \times X^\times n)_{\Sigma_n};$$

endofunctors of this form are sometimes called analytic functors due to their resemblance to power series. When O is an operad, this endofunctor acquires the structure of a monad, and the algebras for the operad are canonically identified with the algebras for this monad.

For operads where the operations merely form discrete sets, one can recover the operad from the corresponding monad. However, this statement is not true for operads built from more general topological spaces. From a homotopical viewpoint, such topological operads also have certain other shortcomings, analogous to those afflicting topological categories when viewed as a model for “categories weakly enriched in spaces” (or ∞-categories). Just as these issues can be avoided by using a better-behaved model for ∞-categories, it is often convenient to work with less rigid notions of “operads weakly enriched in spaces” or ∞-operads. There are various models for ∞-operads, the approach of Lurie [Lur17] being the most well-developed at the moment.

In this work we introduce a new model for ∞-operads, in terms of monads, and show that it is equivalent to the existing models. As a consequence, we shall see that an ∞-operad can be recovered from its free algebra monad, and obtain a characterization of the monads that arise in this way. One such characterization is expressed by the following slogan:

∞-operads are monads cartesian over the symmetric monad.

Here the symmetric monad means the monad Sym associated to the terminal ∞-operad; its underlying functor is given by $\text{Sym}(X) \simeq \prod_n X^\times n_{\Sigma_n}$. If T is a monad over Sym, then evaluating the natural transformation at the point we get a space $T(*)$ over $\text{Sym}(*) \simeq \prod_n B\Sigma_n$. This is precisely the same data as a symmetric sequence: the fibre of $T(*)$ at the point of $B\Sigma_n$ gives the space of n-ary operations with its Σ_n-action. The operad structure on this symmetric sequence is encoded by the monad structure on the endofunctor.

Being cartesian over Sym means we have a map of monads whose underlying natural transformation is cartesian, i.e. its naturality squares are pullbacks. It turns out that such a natural transformation to Sym is unique if it exists, so that being cartesian over Sym is a property of a monad. We will see that this property has an inherent characterization as the monad being analytic, by which we mean that it is cartesian (i.e. its multiplication and unit transformations are cartesian) and the underlying endofunctor preserves sifted colimits and wide pullbacks (or equivalently all weakly contractible limits). We can thus reformulate our slogan still more succinctly:

∞-operads are analytic monads.
This generalizes a classical description of operads in sets: by a result of Joyal [Joy86], these are also equivalent to analytic monads.

So far we have only discussed one-object operads, but it is quite often useful to work with the more general notion of operads with many objects (commonly called coloured operads or symmetric multicategories), which generalizes categories by allowing arrows (operations) with multiple inputs instead of just one input. The term ∞-operad usually denotes the higher-categorical version of this more general notion of operad, and our slogan remains true with this interpretation, provided we consider analytic monads on slices of ∞:

∞-operads with space of objects I are analytic monads on S/I.

More precisely, in this paper we set up an ∞-category of analytic monads (on all slices of ∞ simultaneously) and prove that this is equivalent to an existing model of ∞-operads, namely the dendroidal Segal spaces of Cisinski and Moerdijk [CM13a]. This model is known to be equivalent to other models of ∞-operads, including those of Lurie [Lur17] and Barwick [Bar13], as well as to simplicial operads, thanks to results of Cisinski–Moerdijk [CM13a, CM13b], Heuts–Hinich–Moerdijk [HHM16], Barwick [Bar13], and Chu–Hausgeng–Heuts [CHH16].

In order to study analytic monads, we first develop a theory of analytic functors between slices of ∞, which can be viewed as a categorification of power series in many variables. In fact, these analytic functors turn out to be a special case of a more general notion of polynomial functors, and our starting point is to set up an ∞-categorical framework for polynomial functors. This is in contrast to the situation in ordinary categories, where analytic functors are not in general polynomial.

To make sense of this, let us explain what we in fact mean by a polynomial functor. To any map of spaces $f: I \rightarrow J$ there is associated a string of three adjoint functors $f_! \dashv f_* \dashv f^*$, where $f_!$ is given by composition with f and f^* by pullback along f. Alternatively, we may identify S/I with $\text{Fun}(I, S)$; then f^* is given by precomposition with f, and $f_!$ and f_* are respectively the left and right Kan extension functors along f. A polynomial functor is a functor that is built as a composite of functors of these three kinds.

The description of polynomial functors in terms of these fundamental adjoints can be formulated as a representability property: a polynomial functor $P: S/I \rightarrow S/J$ has a unique description as $t_{p_s} s^+_{p_s}$ for a diagram of spaces $I \overset{s^+} {\leftarrow} E \overset{p_s} {\rightarrow} B \overset{t_{p_s}} {\rightarrow} J$; moreover, P is analytic precisely when the homotopy fibres of the map p are finite discrete spaces. Many questions about polynomial functors can be handled by manipulating these representing diagrams, and our description of ∞-operads as analytic monads allows us to leverage this calculus of polynomial functors in the setting of ∞-operads. This combinatorial interpretation of ∞-operads does not have a direct analogue in the 1-categorical setting. In sets, the endofunctors corresponding to most operads are not polynomial — this is only true for the so-called Σ-free operads, i.e. those for which the actions of the symmetric groups are all free.

In this paper, for the sake of emphasizing the key ideas, we consider polynomial and analytic monads over (slices of) ∞ only, but it is an attractive feature of the polynomial formalism that it is readily adaptable to more general contexts. In particular, it would seem to be a natural setting for notions of operads with non-discrete arities, as required in certain situations beyond spaces.

\[\text{[3]The fundamental nature of these three operations is witnessed by the fact that they correspond precisely to substitution, dependent sums, and dependent products, the most basic building blocks of type theory [HoTT].} \]

\[\text{[4]The notion of “polynomial functor” we consider here should not be confused with the notion of “polynomial functor” introduced by Eilenberg and Mac Lane and subsequently used in the study of functor homology, nor with the notion occurring in Goodwillie’s calculus of functors.} \]
1.1. Overview of Results.

Polynomial Functors. To carry out our programme, we first develop the higher-categorical version of the basic theory of polynomial functors, roughly corresponding to the results of Gambino–Kock [GK13] in the case of ordinary categories. In view of the broad spectrum of applications of ordinary polynomial functors, we expect that this theory will be of independent interest, and hope that it can serve as a starting point for further developments.

Our first main result is the following classification of polynomial functors:

Theorem. The following are equivalent for a functor $F: \mathcal{S}/I \to \mathcal{S}/J$:

(i) F is a polynomial functor.

(ii) F is of the form $t^p_* s^*$ for a diagram of spaces

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{s} J.
$$

(iii) F is accessible and preserves weakly contractible limits.

(iv) F is a local right adjoint.

Here a weakly contractible limit means a limit of a diagram indexed by an ∞-category whose classifying space is contractible, and a local right adjoint functor is a functor $F: \mathcal{C} \to \mathcal{D}$ such that for every object $x \in \mathcal{C}$ the induced functor $\mathcal{C}/x \to \mathcal{D}/Fx$ is a right adjoint.

This characterization is the higher categorical version of classical theorems due to Lamarche, Taylor, Johnstone–Carboni, and Weber (as synthesized in [GK13]). Its proof takes up §2.1–§2.2.

For our purposes, the relevant morphisms between polynomial functors $\mathcal{S}/I \to \mathcal{S}/J$ are the cartesian natural transformations. We show in §2.3 that these are represented by diagrams of the form

```
I \xleftarrow{e} E' \xrightarrow{e} B' \xrightarrow{e} J.
```

The interplay between the polynomial functors and the diagrams that represent them (called polynomial diagrams) is a key aspect of the theory: some features are most easily handled in terms of functors and some more easily in terms of representing diagrams. To exploit this fully we need to describe polynomial functors with varying source and target in terms of diagrams. To define such a general ∞-category of polynomial functors we start by constructing a double ∞-category of “colax squares” in which the vertical arrows are right adjoints. This is a rather technical construction, involving the machinery of scaled simplicial sets, which we have delegated to Appendix A; the aim is to ensure coherence of all the Beck-Chevalley transformations once and for all in a uniform way. With this in place, we can define an ∞-category PolyFun of polynomial functors and cartesian transformations, and a (much simpler) ∞-category Poly of polynomial diagrams (a subcategory of the ∞-category of diagrams in \mathcal{S} of shape $\bullet \leftrightarrow \bullet \to \bullet \to \bullet$). The main result of §2.4 is then that there is an equivalence of ∞-categories

$$
\text{Poly} \xrightarrow{\sim} \text{PolyFun}
$$

over the source and target projections to $\mathcal{S} \times \mathcal{S}$.

In §2.5 we exploit this equivalence to show that the colimit of a diagram of polynomial functors and cartesian transformations is a polynomial functor, corresponding to the (pointwise) colimit of the corresponding diagrams (Proposition 2.5.4). We end the section in §2.6 by studying slices PolyFun$_P$ for P a polynomial functor; we prove that these ∞-categories are all ∞-topoi (Theorem 2.6.1). Note that PolyFun itself is not even accessible.
Analytic Functors. In §3 we study the special case of analytic functors, which we characterize by the equivalent conditions of the following theorem:

Theorem. Let $E : S \to S$ denote the polynomial functor $X \mapsto \coprod_{n=0}^{\infty} X^n \times_{S_n} B \Sigma_n$, represented by the diagram

$$\ast \leftarrow \coprod_n n \times_{S_n} B \Sigma_n \rightarrow \ast.$$

The following are equivalent for a functor $F : S/I \to S/J$:

(i) F is a polynomial functor with a morphism to E (which is unique if it exists).

(ii) F is a polynomial functor, represented by a diagram

$$I \overset{p} \leftarrow E \overset{\pi} \rightarrow B \overset{\sigma} \rightarrow J$$

where the map p has finite discrete fibres.

(iii) F preserves sifted colimits and weakly contractible limits.

We are mostly interested in endofunctors. For a functor $F : S \to S$, condition (ii) implies that F is of the form

$$X \mapsto \coprod_n (B_n \times X^n) \times_{S_n},$$

so our notion of analytic functors does indeed generalize the standard definition for endofunctors of Set. We observe that analytic endofunctors of S are equivalent to symmetric sequences, and that they can also be characterized as the left Kan extensions of homotopical species, meaning functors $i \text{Fin} \to S$ — this is an ∞-categorical version of a theorem of Joyal. More generally, analytic endofunctors of S/I are equivalent to I-coloured symmetric sequences (or symmetric I-collections), defined as functors $E(I) \times I \to S$.

The combinatorics of trees enter all approaches to operads, explicitly or otherwise. In the polynomial formalism, the interplay between trees and operads is particularly intimate, since following [Koc11] we can define trees as certain polynomial endofunctors

$$A \leftarrow N' \rightarrow N \rightarrow A,$$

where A is the set of edges, N is the set of nodes, and N' is the set of nodes with a marked incoming edge. We thus have a full subcategory Ω_{int} of trees inside the ∞-category AnEnd of analytic endofunctors. In §3.3 we use this to show that analytic endofunctors can be described in terms of trees — more precisely, we prove that the restricted Yoneda embeddings give equivalences of ∞-categories

$$\text{AnEnd} \simeq \mathcal{P}(\Omega_{\text{el}}) \simeq \mathcal{P}_{\text{Seg}}(\Omega_{\text{int}}).$$

Here Ω_{el} is the full subcategory of *elementary* trees, which are the corollas and the trivial tree (the edge without nodes), and $\mathcal{P}_{\text{Seg}}(\Omega_{\text{int}})$ is the full subcategory of presheaves on Ω_{int} that satisfy a Segal condition, which can be interpreted as a sheaf condition for the covers of trees by elementary subtrees.

Initial Algebras and Free Monads. Our comparison result relies on understanding the free monad on an analytic endofunctor. As a first step, we need to know that these free monads actually exist, which is the main result of §4. We follow the classical approach using initial Lambek algebras, which goes back to Adámek [Adâ74]; a standard reference for the classical case is Kelly [Kel80]. For a finitary endofunctor P, i.e. an endofunctor that preserves filtered colimits, we show in §4.1 that the category of Lambek algebras has an initial object, constructed inductively; we present the construction in terms of a bar-cobar adjunction for Lambek algebras, which appears to be new.

In §4.2 we use the initial algebra construction to exhibit a left adjoint to the forgetful functor $\text{alg}_P(\mathcal{C}) \to \mathcal{C}$, where $\text{alg}_P(\mathcal{C})$ is the ∞-category of Lambek algebras for P, and show that the resulting adjunction is monadic (Proposition 4.2.4). The monad induced by the adjunction is the free monad on P, i.e. characterized by a universal property (see Proposition 4.2.8). The forgetful functor from finitary monads on \mathcal{C} to finitary endofunctors thus has a left adjoint, taking an endofunctor to its...
free monad. We observe that, at least if we restrict to endofunctors that preserve sifted colimits, this adjunction is itself monadic (Corollary 4.2.15).

Then, in §4.3 we give a more explicit description of the underlying endofunctor of the free monad as the colimit of a sequence of functors, which we will later exploit to understand the free monad on an analytic endofunctor in terms of trees.

In §4.4 we extend our results to obtain a monadic left adjoint to the forgetful functor from monads that preserve sifted colimits to endofunctors of varying ∞-categories. This requires an ∞-category of monads over varying ∞-categories, which has been constructed in recent work of Zaganidis [Zag17], building on results of Riehl and Verity [RV16]; this is reviewed in Appendix B. There we also compare the resulting ∞-categories of monads to those defined by Lurie [Lur17, §4.7.3] using monoidal ∞-categories of endofunctors. Note, however, that we do not establish the expected compatibility of this equivalence with the forgetful functors to endofunctors on both sides, which we nevertheless unfortunately need to assume (see Warning B.3.1).

Analytic Monads. In §5 we apply our results on free monads in the special case of analytic monads. In §5.1 we show that the free monad on an analytic endofunctor exists and is again analytic, and the natural transformations of the monad structure are cartesian. In §5.2 we then show that the free monad on an analytic endofunctor has an explicit description in terms of trees, giving:

Theorem. The forgetful functor AnMnd → AnEnd from analytic monads to analytic endofunctors has a left adjoint, taking an analytic endofunctor to its free monad, and the resulting adjunction is monadic. If P is an analytic endofunctor given by the diagram

$$I \leftarrow E \rightarrow B \rightarrow I,$$

then the underlying endofunctor of the free monad on P is represented by

$$I \leftarrow \text{tr}'(P) \rightarrow \text{tr}(P) \rightarrow I,$$

where $\text{tr}(P)$ is the ∞-groupoid of P-trees, i.e. trees with a morphism to P in AnEnd, and $\text{tr}'(P)$ is the ∞-groupoid of P-trees with a marked leaf.

This is an ∞-categorical version of a result from [Koc11].

Comparison with ∞-Operads. We are now ready to establish the main result of the paper, namely the equivalence between analytic monads and ∞-operads.

Let Ω be the full subcategory of AnMnd on the free monads on trees; this is the polynomial description (cf. [Koc11]) of the dendroidal category of Moerdijk and Weiss [MW07].

Theorem. The restricted Yoneda functor AnMnd → $\mathcal{P}(\Omega)$ is fully faithful, and its essential image is $\mathcal{P}_\text{Seg}(\Omega)$. We thus have an equivalence of ∞-categories

$$\text{AnMnd} \simeq \mathcal{P}_\text{Seg}(\Omega).$$

Here $\mathcal{P}_\text{Seg}(\Omega)$ is the ∞-category of presheaves whose restriction to Ω_{int} lies in $\mathcal{P}_\text{Seg}(\Omega_{\text{int}})$; these are precisely the dendroidal Segal spaces.

The proof is inspired by the Nerve Theorem of Weber [Web07]. The main ingredients are the monadicity of the free monad adjunction, the interpretation of analytic endofunctors as presheaves on Ω_{fg}, and the explicit description of the free monad in terms of trees.

1.2. Related Work.

Operads. A number of categorical descriptions exist for operads in Set. While it is well known that non-symmetric operads are equivalent to monads cartesian over the free-monoid monad (and are hence automatically polynomial), it is not true that a non-symmetric operad can be recovered from its monad alone [Lei04] — the cartesian natural transformation is a structure, not a property. Leinster took this as the starting point for a theory of generalized operads, defined as monads cartesian over a fixed cartesian monad. The notion of symmetric operad is not an instance of this notion, though: they ought to be cartesian over the free-commutative-monoid monad Sym, but while the
free-algebra monad of a symmetric operad does admit a canonical monad map to Sym, neither the monads nor the map are cartesian in general.

The symmetric case can be handled with the notion of weakly cartesian natural transformation, introduced by Joyal [Joy86]; see Weber [Web04] for a systematic treatment. Joyal proved that an endofunctor is analytic if and only if it admits a weakly cartesian natural transformation to Sym, and showed that the category of analytic functors and weakly cartesian natural transformations is equivalent to that of symmetric sequences (or species). This equivalence is monoidal: composition of analytic functors corresponds to the composition product of symmetric sequences, which goes back to Kelly [Kel05]. Kelly had observed that operads are monoids in symmetric sequences, so it follows that operads are analytic monads. The characterization of operads as weakly cartesian over Sym also follows.

An alternative way of overcoming the subtleties consists in observing that while Sym is not cartesian on Set, it is cartesian as a 2-monad on Cat, as is important in Kelly’s theory of clubs [Kel74]. This was exploited by Weber [Web15b] to give a characterization of symmetric Set-operads as polynomial monads cartesian over Sym in a certain 2-categorical sense. Weber’s work was an important starting point for us.

It is a pleasant feature of the \(\infty \)-categorical setting that these various approaches are unified in clean statements, as expressed in the slogans of the introduction. These hold true already over 1-groupoids, but to get a good description of analytic functors in 1-groupoids one is forced to pass to 2-groupoids, etc., giving the usual infinite ladder — only for \(\infty \)-groupoids do we get a nice self-contained theory.

\(\infty \)-Operads. As we mentioned above, our description of \(\infty \)-operads as analytic monads can be interpreted as an \(\infty \)-categorical version of the classical description of \((\mathcal{I}\text{-coloured})\) operads as associative algebras in \((\mathcal{I}\text{-coloured})\) symmetric sequences. Another version of such a description of \(\infty \)-operads was recently obtained by the second author [Hau17b] by describing the composition product using an extension of Day convolution to double \(\infty \)-categories. This description also works for enriched \(\infty \)-operads, but currently it only gives a description of \(\infty \)-operads with a fixed space of objects, whereas here we obtain the full \(\infty \)-category of \(\infty \)-operads, with varying spaces of objects. Alternatively, the composition product can be constructed using free symmetric monoidal \(\infty \)-categories (extending to \(\infty \)-categories the construction of [Tri]); this approach is implemented in the thesis of Brantner [Bra17], though it has not yet been compared to other models for \(\infty \)-operads.

Polynomial Functors. The theory of polynomial functors has roots in topology, representation theory, combinatorics, logic and computer science. For instance, the 1-categorical version of our Theorem 2.2.3 grew out of work on Girard’s linear logic and domain theory, and some of the basic results on polynomial functors were first established in connection with semantics for generic data types and polymorphic functions [AAG03] (see [GK13] for further background and references, and [Koc12] for analytic functors in that context). Moerdijk and Palmgren [MP00] showed that initial algebras for polynomial functors are semantics for \(W \)-types in (extensional) Martin-Löf type theory, the fundamental example being the natural numbers as initial algebra for \(X \mapsto 1 + X \), cf. [Law64, Lam68]. With the homotopy interpretation of type theory [HoTT], a full-blown intentional interpretation has recently been given by Awodey–Gambino–Sojakova [AGS17] as homotopy initial algebras. (Generalized) \(\infty \)-operads are expected to serve as semantics for the so-called higher inductive types (see [LS17]). The polynomial approach to \(\infty \)-operads might play some role in fleshing out the semantics side of those ideas.

For their role in encoding both substitution and induction/recursion, polynomial functors have also become an important tool for handling the intricate combinatorial structures that arise in higher category theory. For example, polynomial monads were used to give a purely combinatorial description of opetopes [KJBM10], and Batanin and Berger [BB17] have exploited polynomial monads to give unified constructions of Quillen model structures on categories of algebras. Their paper has many references to related developments.
1.3. Acknowledgments. We wish to thank first of all Mark Weber, but also Pierre-Louis Curien, Nicola Gambino, André Joyal, Thomas Nikolaus, and Dimitri Zaganidis for helpful discussions. D.G. was partially supported by NSF grants DMS-1406529 and DMS-1714273. J.K. was partially supported by grant number MTM2016-80439-P of Spain.

2. Polynomial Functors

2.1. Polynomial Functors. If $f: I \to J$ is a map of spaces, then f induces three adjoint functors between the slice ∞-categories $S_{/I}$ and $S_{/J}$: Composition with f gives a functor $f_!: S_{/I} \to S_{/J}$ which is left adjoint to the functor $f^*: S_{/J} \to S_{/I}$ given by pullback along f. The functor f^* also has a right adjoint $f_*: S_{/I} \to S_{/J}$ since S is locally cartesian closed. If we interpret the slice ∞-categories $S_{/I}$ as functor ∞-categories $\text{Fun}(I, S)$ using the straightening equivalence, then the functor $f^*: \text{Fun}(J, S) \to \text{Fun}(I, S)$ is given by precomposition with f, and $f_!$ and f_* are given by left and right Kan extension along f.

Definition 2.1.1. A polynomial functor is a functor $S_{/I} \to S_{/J}$ of the form $t_! p_* s^*$ corresponding to a diagram of spaces

$$
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J.
$$

Remark 2.1.2. In this paper we only consider polynomial functors in the context of the ∞-category of spaces, since this is the appropriate setting for ∞-operads. It is possible to consider polynomial functors in the more general setting of an arbitrary ∞-topos (or a locally cartesian closed ∞-category, as treated in [GK17]), and we expect that most of our results can be generalized to this context. However, this would require working in the setting of internal ∞-categories, which has not yet been sufficiently developed. For example, instead of natural transformations between polynomial functors we must use the analogue of so-called strong natural transformations (cf. [GK13]), or equivalently fibred natural transformations (cf. [KK13]). In ordinary category theory, polynomial functors have also been considered [Web15a] in general categories with pullbacks, at the price of having to impose an exponentiability condition separately on the middle maps in the diagrams.

A basic fact about polynomial functors is that they compose (cf. Theorem 2.1.8 below). This result amounts to being able to rewrite any composite of upper-star, lower-star and lower-shriek functors in the normal form of the definition. This is achieved through Beck-Chevalley transformations and distributivity, which we proceed to discuss. This works essentially as in the 1-categorical case [GK13]. Our treatment follows [Web15a, §2.2].

Definition 2.1.3. A natural transformation $\phi: F \to G$ of functors $F, G: \mathcal{C} \to \mathcal{D}$ is cartesian if for every morphism $f: C \to C'$ in \mathcal{C} the commutative square

$$
\begin{array}{ccc}
FC & \xrightarrow{Ff} & FC' \\
\phi_C & \downarrow & \downarrow \phi_{C'} \\
GC & \xrightarrow{Gf} & GC'
\end{array}
$$

is cartesian.
Remark 2.1.4. If \mathcal{C} has a terminal object \ast, then by the 2-of-3 property of pullback squares a natural transformation ϕ as above is cartesian if and only if for every object $c \in \mathcal{C}$ the naturality square

\[
\begin{array}{ccc}
F_c & \to & F_* \\
\phi_c & \downarrow & \phi_* \\
G_c & \to & G_*
\end{array}
\]

is cartesian.

Lemma 2.1.5. Suppose \mathcal{C} is an ∞-category with pullbacks. For any $f : S \to T$, the counit and unit transformations $f_! f^* \to \text{id}$ and $\text{id} \to f^* f_!$ for the adjunction $f_! \dashv f^*$ are cartesian.

Proof. It suffices to check that the naturality squares for the map to the terminal object is cartesian in both cases. For the counit transformation at $q : Y \to T$ this is obvious, since the naturality square is

\[
\begin{array}{ccc}
Y \times_S T & \to & Y \\
\downarrow & & \downarrow q \\
S & \to & T.
\end{array}
\]

For $p : X \to S$ in \mathcal{C}/S, consider the diagram

\[
\begin{array}{ccc}
X & \to & S \times_T X \\
\downarrow p & & \downarrow p \\
S & \to & S \times_T S \\
\downarrow f & & \downarrow f \\
S & \to & T.
\end{array}
\]

Here the top left square is the naturality square for the unit at p. In the right column the bottom square and the composite square are cartesian, hence so is the top right square. The composite in the top row is also cartesian, whence the top left square is cartesian, as required. □

Lemma 2.1.6. For a commutative diagram of spaces

\[
\begin{array}{ccc}
A & \xrightarrow{u} & B \\
g & \downarrow & \downarrow f \\
C & \xrightarrow{v} & D
\end{array}
\]

the following are equivalent:

(i) The square is cartesian.

(ii) The Beck-Chevalley transformation

\[u g^* \to u g^* v^* v_1 \simeq u u^* f^* v_1 \to f^* v_1\]

is an equivalence.

(iii) The Beck-Chevalley transformation

\[v^* f_* \to g_* g^* v^* f_* \simeq g_* u^* f^* f_* \to g_* u^*\]

is an equivalence.
Proof. (i)\Leftrightarrow(ii): By Lemma 2.1.5 the Beck-Chevalley transformation in (ii) is cartesian. By Remark 2.1.4 it is therefore a natural equivalence if and only if the map $u g^* (\text{id}_C) \to f^* v (\text{id}_C)$ is an equivalence. Here $u g^* (\text{id}_C) \simeq u (\text{id}_A) \simeq u$ and $f^* v (\text{id}_C) \simeq f^* (v)$, and the map $u \to f^* v$ is given by the natural map from A to the pullback of v along f. Thus the square is indeed cartesian if and only if this map is an equivalence.

(ii)\Leftrightarrow(iii) follows since the two transformations are mates: (iii) is obtained from (ii) by taking right adjoints, and (ii) from (iii) by taking left adjoints. □

Proposition 2.1.7. Given maps of spaces $f: X \to Y$ and $g: E \to X$, put $r := f_* g: E' \to Y$ and $h := f^* r: E'' \to X$, to get a commutative diagram

\[
\begin{array}{ccc}
E'' & \xrightarrow{q} & E' \\
\downarrow^h & & \downarrow^r \\
E & \xrightarrow{g} & Y \\
\end{array}
\]

where ϵ is the counit for the adjunction $f^* \dashv f_*$ and q is the pullback of f along r. Then the natural transformation $\delta: r q_* \epsilon^* \to f_* g_*$, defined as the composite

\[r q_* \epsilon^* \to r q_* \epsilon^* g^* g \simeq r q_* h^* g \leftarrow r \epsilon^* f_* g_1 \to f_* g_1\]

is an equivalence.

Proof. The natural transformation δ is cartesian, since by Lemma 2.1.5 it is a composite of cartesian transformations. It therefore suffices to show that the component of δ at id_E is an equivalence. We have $r q_* \epsilon^* (\text{id}_E) \simeq r (\text{id}_{E'}) \simeq r$ (since $q_* \epsilon^*$ preserves the terminal object) and $f_* g_1 (\text{id}_E) \simeq f_* (g)$ which by definition is also r. Tracing through the maps constituting the transformation reveals that the actual map from r to r is the diagonal followed by a projection, which is the identity. □

We can now give an explicit description of the composite of polynomial functors:

Theorem 2.1.8. Suppose $P: S/I \to S/J$ and $Q: S/J \to S/K$ are polynomial functors, represented by diagrams of spaces

\[
\begin{array}{ccc}
I & \xleftarrow{s} & E \\
\downarrow^{u} & & \downarrow^{p} \\
J & \xrightarrow{t} & B \\
\end{array}
\quad
\begin{array}{ccc}
J & \xleftarrow{q} & F \\
\downarrow^{v} & & \downarrow^{q} \\
K & \xrightarrow{w} & C \\
\end{array}
\]

respectively. Consider the commutative diagram of spaces

\[
\begin{array}{ccc}
G & \xrightarrow{p''} & X \\
\downarrow^{\gamma} & & \downarrow^{q} \\
Y & \xrightarrow{\epsilon'} & D \\
\end{array}
\quad
\begin{array}{ccc}
I & \xleftarrow{s} & E \\
\downarrow^{u} & & \downarrow^{p} \\
J & \xrightarrow{t} & B \\
\end{array}
\quad
\begin{array}{ccc}
J & \xleftarrow{q} & F \\
\downarrow^{v} & & \downarrow^{q} \\
K & \xrightarrow{w} & C \\
\end{array}
\]

where ϵ is the counit map $q^* q_* \pi \to \pi$ for the adjunction $q^* \dashv q_*$, and the squares are all pullbacks. Then the composite $Q \circ P: S/I \to S/K$ is the polynomial functor represented by the diagram

\[
I \xleftarrow{s} G \xrightarrow{w} D \xrightarrow{v} K.
\]
Proof. We have natural equivalences
\[vq_*u^*t_*p_*s^* \simeq vq_*u^*\pi_*u^*p_*s^* \] (using the Beck-Chevalley equivalence \(u^*t_* \simeq \pi(u')^* \))
\[\simeq v(q, \pi)q'_*\epsilon^*u^*p_*s^* \] (using the distributivity equivalence \(q_*\pi^* \simeq (q, \pi)q'_*\epsilon^* \))
\[\simeq xq'_*p''_*\epsilon^*u^*s^* \] (using the Beck-Chevalley equivalence \(\epsilon^*u^*p_* \simeq p''_*\epsilon^*u^*s^* \))
\[\simeq xw_*r^*. \]

Corollary 2.1.9. The composite of two polynomial functors is again a polynomial functor. \(\square \)

Remark 2.1.10. This corollary also follows from the characterization of polynomial functors we will prove below in Theorem 2.2.3, but we will also need the explicit formula for the composition given by Theorem 2.1.8.

2.2. Local Right Adjoint. In this subsection we will prove an alternative characterization of polynomial functors. To state this we must first introduce some terminology:

Definition 2.2.1. A functor \(F: \mathcal{C} \to \mathcal{D} \) between \(\infty \)-categories is a local right adjoint if for every \(x \in \mathcal{C} \) the induced functor \(\mathcal{C}/x \to \mathcal{D}/Fx \) is a right adjoint.

Definition 2.2.2. The inclusion \(\mathcal{S} \hookrightarrow \text{Cat}_{\infty} \) has a left adjoint, which takes an \(\infty \)-category \(\mathcal{C} \) to the space obtained by inverting all morphisms in \(\mathcal{C} \), which we denote \(\| \mathcal{C} \| \). We say that \(\mathcal{C} \) is weakly contractible if \(\| \mathcal{C} \| \) is a contractible space.

Theorem 2.2.3. The following are equivalent for a functor \(F: \mathcal{S}/I \to \mathcal{S}/J \):

(i) \(F \) is a polynomial functor.
(ii) \(F \) is accessible and preserves weakly contractible limits.
(iii) \(F \) is a local right adjoint.

Remark 2.2.4. Theorem 2.2.3 is specific to the \(\infty \)-category \(\mathcal{S} \) (and its truncations, such as the category of sets). Even over a presheaf topos it is not true in general that a local right adjoint is always polynomial, as exemplified by the free-category monad on directed graphs [Web07]. The corresponding theorem in ordinary category theory has a long history, see [GK13]. It can be extended to general locally cartesian closed categories with a terminal object by considering local fibred right adjoints instead of just local right adjoints, cf. [KK13]. Presumably the fibred viewpoint can be upgraded to the \(\infty \)-categorical setting to get a version of Theorem 2.2.3 for presentable locally cartesian closed \(\infty \)-categories, but we will not pursue this here.

Before proving Theorem 2.2.3, we need some observations on weakly contractible limits.

Definition 2.2.5. A conical limit is a limit indexed by an \(\infty \)-category with a terminal object, i.e. an \(\infty \)-category of the form \(\mathcal{F} \) for some \(\infty \)-category \(\mathcal{I} \).

Lemma 2.2.6. Suppose \(\mathcal{C} \) has a terminal object. Then a functor \(F: \mathcal{C} \to \mathcal{D} \) preserves conical limits if and only if it preserves all weakly contractible limits.

Proof. Conical limits are in particular indexed by weakly contractible \(\infty \)-categories, so suppose \(F \) preserves conical limits and let \(\phi: \mathcal{I} \to \mathcal{C} \) be a diagram with \(\mathcal{I} \) weakly contractible. Since \(\mathcal{C} \) has a terminal object, the right Kan extension \(\phi' \) of \(\phi \) along the inclusion \(i: \mathcal{I} \hookrightarrow \mathcal{F} \) exists, and \(\phi \simeq \phi'|_\mathcal{I} \). Moreover, if \(\phi \) has a limit then so does \(\phi' \) and the limit of \(\phi \) is equivalent to that of \(\phi' \). Since \(\mathcal{F} \) is conical, \(F \) preserves the limit of \(\phi' \). But as \(\mathcal{I} \) is weakly contractible, the inclusion \(i \) is coinitial, hence the limit of \(F \circ \phi \) exists and is equivalent to the limit of \(F \circ \phi' \). In other words, \(F \) preserves the limit of \(\phi \), as required. \(\square \)

Lemma 2.2.7. For any object \(x \) in an \(\infty \)-category \(\mathcal{C} \), the forgetful functor \(P: \mathcal{C}/x \to \mathcal{C} \) preserves and reflects weakly contractible limits.

Proof. The limit of a diagram \(f: \mathcal{I} \to \mathcal{C}/x \) is the limit of the corresponding diagram \(f': \mathcal{F} \to \mathcal{C} \). If \(\mathcal{I} \) is weakly contractible, then the inclusion \(\mathcal{I} \hookrightarrow \mathcal{F} \) is coinitial, so the limit of \(f' \) is the same as the limit of \(f'|_\mathcal{I} \), which is the image of \(f \) under the forgetful functor. \(\square \)
Proposition 2.2.8. Suppose \(F : \mathcal{C} \to \mathcal{D} \) is an accessible functor between presentable \(\infty \)-categories. Then \(F \) is a local right adjoint if and only if it preserves weakly contractible limits.

Proof. For every \(x \in \mathcal{C} \), the induced functor \(F_x : \mathcal{C}/x \to \mathcal{D}/F(x) \) is accessible, so by the adjoint functor theorem it is a right adjoint if and only if it preserves limits. A limit of a diagram \(J \to \mathcal{C}/x \) is the limit in \(\mathcal{C} \) of the associated diagram \(P \to \mathcal{C} \), so the functors \(F_x \) preserve limits for all \(x \) if and only if \(F \) preserves all conical limits. By Lemma 2.2.6 this is equivalent to \(F \) preserving weakly contractible limits, since \(\mathcal{C} \) has a terminal object. □

Lemma 2.2.9. Suppose \(F : \mathcal{S}/I \to \mathcal{S}/J \) is a functor that preserves colimits (equivalently, by the adjoint functor theorem, it is a left adjoint). Then \(F \) is of the form \(\mathcal{S}/U \xleftarrow{p} \mathcal{S}/J \) for some span \(I \xleftarrow{p} U \xrightarrow{s} J \).

Proof. Using equivalences of the form \(\mathcal{S}/I \simeq \text{Fun}(I, \mathcal{S}) \) we get an equivalence

\[
\text{Fun}^c(\mathcal{S}/I, \mathcal{S}/J) \simeq \text{Fun}^c(P(I), P(J)) \simeq \text{Fun}(I, \text{Fun}(J, \mathcal{S})) \simeq \text{Fun}(I \times J, \mathcal{S}) \simeq \mathcal{S}/I \times J.
\]

Thus every colimit-preserving functor corresponds to a span, and under this equivalence the span

\[
I \xleftarrow{p} U \xrightarrow{s} J
\]

is sent to \(\mathcal{S}/p^* \).

□

Lemma 2.2.10. For any map \(f : \mathcal{S} \to \mathcal{T} \) in an \(\infty \)-category \(\mathcal{C} \), the functor \(f_* : \mathcal{C}/\mathcal{S} \to \mathcal{C}/\mathcal{T} \) preserves and reflects weakly contractible limits.

Proof. In the commutative triangle

\[
\begin{array}{ccc}
\mathcal{C}/\mathcal{S} & \xrightarrow{f_*} & \mathcal{C}/\mathcal{T} \\
& \searrow & \nearrow \\
& \mathcal{C} &
\end{array}
\]

both forgetful functors to \(\mathcal{C} \) preserve and reflect weakly contractible limits. Therefore so does \(f_* \). □

Proof of Theorem 2.2.3. The equivalence of (ii) and (iii) is a special case of Proposition 2.2.8. To see that (i) implies (ii), suppose \(F \simeq t_{p^*} s^* \). The functors \(t, p^* \) and \(s^* \) are all accessible, and \(p^* \) and \(s^* \) preserve all limits, being right adjoints; by Lemma 2.2.10 the functor \(t \) also preserves weakly contractible limits, which gives (ii). Finally we show that (iii) implies (i). Observe that \(F \) factors as

\[
\mathcal{S}/I \xrightarrow{F/I} \mathcal{S}/F(I) \xrightarrow{t} \mathcal{S}/J
\]

where \(t \) is the map \(F(I) \to J \). By assumption \(F/I \) is a right adjoint, so it follows from Lemma 2.2.9 that it is of the form \(p^* s^* \) for some span

\[
I \xleftarrow{p} U \xrightarrow{s} F(I).
\]

□

2.3. Morphisms of Polynomial Functors. For our purposes the appropriate type of morphism between polynomial functors is a cartesian natural transformation, so we make the following definition:

Definition 2.3.1. The \(\infty \)-category \(\text{PolyFun}(I, J) \) of polynomial functors is the subcategory of \(\text{Fun}(\mathcal{S}/I, \mathcal{S}/J) \) with objects the polynomial functors and morphisms the cartesian natural transformations between them.

We now wish to identify the cartesian natural transformations with certain diagrams.
Definition 2.3.2. Suppose given a commutative diagram of spaces

\[
\begin{array}{ccc}
E' & \xrightarrow{p'} & B' \\
\downarrow{s'} & & \downarrow{s} \\
\downarrow{t'} & & \downarrow{t} \\
E & \xrightarrow{p} & B.
\end{array}
\]

Let \(F' := t'_! p'_! s'^! \) and \(F := t_! p_! s^! \) denote the corresponding polynomial functors. Then we define a cartesian natural transformation \(\phi: F' \to F \) as the composite

\[
t'_! p'_! s'^! \simeq t'_! p'_! \epsilon^* s^* \simeq t'_! \beta^* p_! s^* \simeq t_! \beta^* p_! s^* \to t_! p_! s^*
\]

using the Beck-Chevalley transformation for the cartesian square and the counit for \(\beta \vdash \beta^* \). Observe that the component of \(\phi \) on the terminal object \(\text{id}_J \) is essentially \(\beta \) itself (as follows since right adjoints preserve terminal objects): \(\phi_{\text{id}_J}: F'(\text{id}_J) \to F(\text{id}_J) \) is canonically identified with \(\beta: B' \to B \) as maps over \(J \).

Our goal in this subsection is to show that in the \(\infty \)-category of spaces, this construction gives an equivalence between the space of such diagrams and the mapping space \(\text{Map}_{\text{PolyFun}(I,J)}(F', F) \). (Later, we will show that this extends to an equivalence of \(\infty \)-categories.) We first prove that every cartesian natural transformation is of this form, which follows from the following observation:

Lemma 2.3.3. Suppose \(\mathcal{C} \) is an \(\infty \)-category with a terminal object \(* \) and \(\mathcal{D} \) is an \(\infty \)-category with pullbacks. Then the functor

\[
ev_*: \text{Fun}(\mathcal{C}, \mathcal{D}) \to \mathcal{D}
\]

is a cartesian fibration, and the cartesian morphisms are precisely the cartesian natural transformations.

Proof. Observe that \(\ev_* \) has a right adjoint \(r \), taking \(d \in \mathcal{D} \) to the constant functor \(r(d): \mathcal{C} \to \mathcal{D} \) with value \(d \). Let \(\eta \) denote the unit and \(\epsilon \) the counit. We can apply the criterion of (the dual of) [Hau17a, Corollary 4.52]: \(\ev_* \) is cartesian if and only if for every functor \(F \in \text{Fun}(\mathcal{C}, \mathcal{D}) \) and every morphism \(d \to F(*) \) in \(\mathcal{D} \), in the pullback square

\[
\begin{array}{ccc}
F' & \xrightarrow{r} & F \\
\downarrow{\eta_F} & & \downarrow{\epsilon_{F'}} \\
\eta(d) & \to & r(F(*)).
\end{array}
\]

the composite

\[
F'(*) \to r(d)(*) \xrightarrow{\epsilon_d} d
\]

is an equivalence. But this is obvious since pullbacks in \(\text{Fun}(\mathcal{C}, \mathcal{D}) \) are computed objectwise, so we have a pullback square

\[
\begin{array}{ccc}
F'(*) & \xrightarrow{r} & F(*) \\
\downarrow{d} & & \downarrow{F(*)} \\
d & \to & F(*).
\end{array}
\]
Moreover, by [Hau17a, Proposition 4.51] a morphism \(\phi: F \to G \) in \(\text{Fun}(\mathcal{C}, \mathcal{D}) \) is \(\text{ev}_* \)-cartesian if and only if the commutative square

\[
\begin{array}{ccc}
F & \xrightarrow{\phi} & G \\
\downarrow{\eta_F} & & \downarrow{\eta_G} \\
\eta F(*) & \xrightarrow{\eta G(*)} & rG(*)
\end{array}
\]

is cartesian, i.e. if and only if for every \(x \in \mathcal{C} \) the square

\[
\begin{array}{ccc}
F(x) & \xrightarrow{\phi_x} & G(x) \\
\downarrow & & \downarrow \\
F(*) & \xrightarrow{\phi(*)} & G(*)
\end{array}
\]

is cartesian, which is equivalent to \(\phi \) being cartesian by Remark 2.1.4. \(\square \)

Definition 2.3.4. Let \(\text{Fun}(\mathcal{C}, \mathcal{D})^{\text{cart}} \) denote the subcategory of \(\text{Fun}(\mathcal{C}, \mathcal{D}) \) containing only the cartesian natural transformations. Then \(\text{ev}_*: \text{Fun}(\mathcal{C}, \mathcal{D})^{\text{cart}} \to \mathcal{D} \) is a right fibration.

Lemma 2.3.5. Suppose \(F: \mathcal{S}_{/I} \to \mathcal{S}_{/J} \) is a polynomial functor, represented by a diagram

\[
\begin{array}{c}
I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} J
\end{array}
\]

If \(\phi: F' \to F \) is a cartesian natural transformation, then \(F' \) is also a polynomial functor, and \(\phi \) is equivalent to the natural transformation associated to a diagram

\[
\begin{array}{ccc}
E' & \xrightarrow{v'} & B' \\
\downarrow{c} & & \downarrow{t'} \\
E & \xrightarrow{p} & B
\end{array}
\]

Proof. Let \((t': B' \to J) := F'({\text{id}}_J) \), then the map \(\phi_{dJ} \) gives a map \(\beta: B' \to B \) over \(J \). We can then define \(\epsilon \) as the pullback of \(\beta \) along \(p \) and put \(s' := s \circ \epsilon \) to get a diagram of this form. The construction of Definition 2.3.2 then gives a natural transformation \(\phi': F'' \to F \). Thus we have two cartesian natural transformations to \(F \) with the same image in \(\mathcal{S}_{/J} \) under evaluation at the terminal object. Thus by Lemma 2.3.3, \(\phi \) and \(\phi' \) are both cartesian morphisms to \(F \) with the same image in \(\mathcal{S}_{/J} \), and so they must be equivalent — in particular \(F' \simeq F'' \), which implies that \(F' \) is indeed polynomial. \(\square \)

As a consequence, we get:

Lemma 2.3.6. The projection \(\text{ev}_d: \text{PolyFun}(I, J) \to \mathcal{S}_{/J} \) is a right fibration. \(\square \)

It remains to understand the fibres of this fibration. Note that, for \(\mathcal{C} \) and \(\mathcal{D} \) \(\infty \)-categories where \(\mathcal{C} \) has a terminal object \(* \), the fibre of \(\text{ev}_*: \text{Fun}(\mathcal{C}, \mathcal{D}) \to \mathcal{D} \) at \(d \in \mathcal{D} \) is the \(\infty \)-category \(\text{Fun}_*(\mathcal{C}, \mathcal{D}_{/d}) \) of functors that preserve the terminal object. Restricting to polynomial functors from \(\mathcal{S}_{/I} \) to \(\mathcal{S}_{/J} \) (with all natural transformations allowed), the fibre at \(t: B \to J \) is \(\text{Fun}^R(\mathcal{S}_{/I}, \mathcal{S}_{/J}) \), since polynomial functors are local right adjoints by Theorem 2.2.3. This fibre can be described explicitly:
Lemma 2.3.7. There is a natural equivalence

$$(S/I \times B)^{\text{op}} \xrightarrow{\sim} \text{Fun}^R(S/I, S/B),$$

which sends a span $I \xleftarrow{s} X \xrightarrow{p} B$ to the functor $p_* s^*$, and sends a map of spans

$$
\begin{array}{ccc}
I & \xleftarrow{s} & X \\
& & \downarrow{p} \\
Y & \xrightarrow{s'} & B
\end{array}
$$

to the natural transformation

$$p'_* s'^* \to p'_* f'_* s'^* \simeq p_* s^*$$

induced by the unit of the adjunction $f^* \dashv f_*$.

Proof. This is a reformulation of Lemma 2.2.9, using the natural equivalence

$$\text{Fun}^R(S/I, S/B) \simeq \text{Fun}^L(S/B, S/I)^{\text{op}}.$$

Restricting to cartesian natural transformations, we see that the fibre of $\text{ev}_{\text{id}} : \text{PolyFun}(I, J) \to S/J$ at $B \to J$ is equivalent to the underlying space of $S/I \times B$.

2.4. The ∞-Category of Polynomial Functors. We now wish to construct an ∞-category of all polynomial functors, i.e. to put the ∞-categories $\text{PolyFun}(I, J)$ for varying I and J together into a single ∞-category PolyFun, fibred over $S \times S$ (by returning I and J). We will define this using a double ∞-category of colax squares of ∞-categories, constructed in Appendix A. We then define a functor from polynomials to polynomial functors with varying source and target, and prove that this is an equivalence.

Definition 2.4.1. In §A.2 we define a double ∞-category $\text{Sq}_{\text{colax}}^\infty(\text{Cat}_\infty^{\text{radj}})^{v=\text{radj}}$ where

- the objects are ∞-categories,
- the vertical morphisms are right adjoints,
- the horizontal morphisms are arbitrary functors,
- the squares (or 2-cells) are colax squares, i.e. diagrams in the $(\infty, 2)$-category of ∞-categories of shape

$$
\begin{array}{ccc}
\bullet & \to & \bullet \\
\downarrow & & \downarrow \\
\bullet & \to & \bullet
\end{array}
$$

We can pull $\text{Sq}_{\text{colax}}^\infty(\text{Cat}_\infty^{\text{radj}})^{v=\text{radj}, v^{\text{op}}}$ back along the functor $S^*_f : S^\text{op} \to \text{Cat}_\infty^{\text{radj}}$ taking a space I to S/I and a map $f : I \to J$ to $f^* : S/I \to S/J$, to obtain a double ∞-category where

- the objects are spaces
- the vertical morphisms are maps of spaces,
- the horizontal morphisms are arbitrary functors between slices,
- the squares (or 2-cells) are colax squares using the $(-)^*$-functors for maps of spaces.

We define the double ∞-category POLYFUN to be the sub-double ∞-category of this pullback where the horizontal morphisms are polynomial functors. Thus POLYFUN has

- spaces as objects,
- maps of spaces as vertical morphisms,
- polynomial functors as horizontal morphisms,
• diagrams of the form

\[
\begin{array}{ccc}
S/I & \overset{P}{\longrightarrow} & S/J \\
\downarrow^f & \searrow & \uparrow^{g^*} \\
S/I' & \overset{Q}{\longrightarrow} & S/J'
\end{array}
\]

as squares.

Remark 2.4.2. Taking mates in the vertical direction should give an equivalence of double ∞-categories

\[
Sq_{\text{colax}}(\hat{\text{CAT}}_\infty)^{v=\text{radj,v-op}} \simeq Sq_{\text{lax}}(\hat{\text{CAT}}_\infty)^{v=\text{ladj}}.
\]

Assuming this, our definition of POLYFUN is equivalent to the alternative, and perhaps more standard, definition where the vertical morphisms are the left adjoint functors \(f_! : S/I \to S/J\). We have chosen our convention to match with the correct convention for polynomial monads, where we really do want colax morphisms with direction reversed (which are not the same as lax morphisms of monads) — we thereby avoid unnecessarily using the above-mentioned equivalence of lax and colax squares via mates, which we do not prove here.

Proposition 2.4.3. The double ∞-category POLYFUN is framed, in the sense of Definition A.4.3.

Proof. In Proposition A.4.5 we prove that the double ∞-category \(Sq_{\text{colax}}(\hat{\text{CAT}}_\infty)^{v=\text{radj,v-op}}\) is framed. But for a vertical morphism of the form \(f^*\) the four squares of the framing live in the sub-double ∞-category POLYFUN since the unit and counit transformations for \(f_! \dashv f^*\) are cartesian. Thus POLYFUN is also framed. □

Definition 2.4.4. We write PolyFun for the ∞-category of horizontal morphisms in POLYFUN, i.e. POLYFUN[1] if we view POLYFUN as a cocartesian fibration over \(\Delta^{op}\).

Applying Proposition A.4.4, we get:

Corollary 2.4.5. The source-and-target projection PolyFun \(\to S \times S\) is both cartesian and cocartesian. □

Remark 2.4.6. For morphisms \(f : I \to I', g : J \to J'\), the cocartesian pushforward of \(F \in \text{PolyFun}(I,J)\) along \((f,g)\) is the composite \(g^*Ff^*\), while the cartesian pullback of \(G \in \text{PolyFun}(I',J')\) is \(g_!Ff_!\). Note that if \(F\) corresponds to the diagram

\[
\begin{array}{ccc}
I & \xleftarrow{E} & E' \\
\downarrow{g} & \searrow & \uparrow{f} \\
J & \xrightarrow{B} & J'
\end{array}
\]

then the pushforward \(g^*Ff^*\) corresponds to

\[
\begin{array}{ccc}
I' & \xleftarrow{E} & E' \\
\downarrow{f^*} & \searrow & \uparrow{g^*} \\
J' & \xrightarrow{B} & J'
\end{array}
\]

while the cartesian pullback is more complicated to describe diagrammatically.

Definition 2.4.7. Let \(\Pi\) denote the category \(\textbullet \leftarrow \textbullet \to \textbullet \to \textbullet \to \textbullet\), i.e. \((\Delta^1)^{op} \Pi_{\Delta^0} \Delta^1 \Pi_{\Delta^0} \Delta^1\). We define Poly to be the subcategory of Fun(\(\Pi,S\)) containing only those morphisms where the middle commuting square is cartesian. In other words, we have a natural equivalence

\[
\text{Poly} \simeq \text{Fun}((\Delta^1)^{op},S) \times_S \text{Fun}(\Delta^1,S)^\text{cart} \times_S \text{Fun}(\Delta^1,S).
\]

We now define a functor \(\Phi : \text{Poly} \to \text{PolyFun}\); we do this by defining three functors to PolyFun and then combining them using the horizontal composition in POLYFUN.

Definition 2.4.8. Let \(S_\cdot^*\) denote the functor \(S^{op} \to \text{Cat}_\infty\) taking \(I \in S\) to \(S/I\) and \(f : I \to J\) to \(f^* : S/I \to S/J\). This induces a functor

\[
\Phi_1 : \text{Fun}((\Delta^1)^{op},S) \simeq \text{Map}(\Delta^\bullet \times (\Delta^1)^{op},S) \to Sq_{\text{colax}}(\text{Cat}_\infty)^{v=\text{radj,v-op}} \to Sq_{\text{lax}}(\text{Cat}_\infty)^{v=\text{radj,v-op}},
\]

which clearly passes through PolyFun.
Combining S^*_{\perp} instead with the functor
\[\text{Sq}(\text{Cat}_{\infty})^{h=\text{ladj}} \to \text{Sq}^{\text{lax}}(\text{CAT}_{\infty})^{h=\text{radj},h=\text{op}} \]
of Proposition A.3.1, which takes mates in the horizontal direction (replacing f^* with f_*), we get a functor
\[\text{Fun}(\Delta^1, S) \to \text{Sq}^{\text{lax}}(\text{CAT}_{\infty})^{h=\text{radj}}. \]
Restricting to $\text{Fun}(\Delta^1, S)^{\text{cart}}$, this actually lands in commuting squares, giving
\[\Phi_2 : \text{Fun}(\Delta^1, S)^{\text{cart}} \to \text{Sq}(\text{CAT}_{\infty})^{h=\text{radj}}. \]
which factors through PolyFun.
Finally, combining S^*_{\perp} with the functor
\[\text{Sq}(\text{Cat}_{\infty})^{h=\text{radj}} \to \text{Sq}^{\text{colax}}(\text{CAT}_{\infty})^{h=\text{ladj},h=\text{op}}, \]
of Proposition A.3.1, which also takes mates in the horizontal direction (replacing f^* with $f_!$), we get a functor
\[\Phi_3 : \text{Fun}(\Delta^1, S) \to \text{Sq}^{\text{colax}}(\text{CAT}_{\infty})^{h=\text{ladj}}. \]
This again factors through PolyFun.

Remark 2.4.9. More explicitly, Φ_1 is given by
\[
\begin{array}{ccc}
I & \xleftarrow{a} & J \\
g & \downarrow f & \Rightarrow \\
L & \xleftarrow{b} & K
\end{array}
\quad
\begin{array}{ccc}
S_{/J} & \xrightarrow{a^*} & S_{/I} \\
g^* & \Rightarrow & f^* \\
S_{/L} & \xrightarrow{b^*} & S_{/K}
\end{array}
\]
Similarly, the functor Φ_2 is given by
\[
\begin{array}{ccc}
I & \xrightarrow{a} & J \\
f & \downarrow g & \Rightarrow \\
K & \xleftarrow{b} & L
\end{array}
\quad
\begin{array}{ccc}
S_{/J} & \xrightarrow{a^*} & S_{/I} \\
f^* & \Rightarrow & g^* \\
S_{/K} & \xrightarrow{b^*} & S_{/L}
\end{array}
\]
Finally, Φ_3 is given by
\[
\begin{array}{ccc}
I & \xrightarrow{a} & J \\
f & \downarrow g & \Rightarrow \\
K & \xleftarrow{b} & L
\end{array}
\quad
\begin{array}{ccc}
S_{/J} & \xrightarrow{a^*} & S_{/I} \\
f^* & \Rightarrow & g^* \\
S_{/K} & \xrightarrow{b^*} & S_{/L}
\end{array}
\]

Definition 2.4.10. The functors Φ_i agree appropriately under restriction to S to determine a functor
\[\text{Poly} \xrightarrow{\sim} \text{Fun}((\Delta^1)^{\text{op}}, S) \times \text{Fun}(\Delta^1, S)^{\text{cart}} \times \text{Fun}(\Delta^1, S) \to \text{PolyFun} \times \text{PolyFun} \times \text{PolyFun}. \]
Combining this with the horizontal composition in POLYFUN,
\[\text{PolyFun} \times \text{PolyFun} \times \text{PolyFun} \xleftarrow{\text{POLYFUN}_{\bullet,3}} \to \text{PolyFun}, \]
we get the required functor $\Phi : \text{Poly} \to \text{PolyFun}.$

Theorem 2.4.11. The functor $\Phi : \text{Poly} \to \text{PolyFun}$ is an equivalence.

The following lemma shows that it is enough to prove this fibrewise:

Lemma 2.4.12. The projection $\text{ev}_{0,3} : \text{Poly} \to S \times S$ is a cocartesian fibration, and $\Phi : \text{Poly} \to \text{PolyFun}$ preserves cocartesian morphisms.
Proof. For a polynomial P given by $I \xrightarrow{\phi} E \xrightarrow{p} B \xrightarrow{t} J$ and a morphism $(f: I \to I', g: J \to J')$ out of $\text{ev}_{0,3}(P)$, a cocartesian lift is given by

\[
\begin{array}{ccc}
I & \xleftarrow{r} & E \\
\downarrow{f} & & \downarrow{g} \\
I' & \xleftarrow{fs} & E \\
\end{array}
\]

the cocartesian property is readily checked. Such a diagram is sent by Φ to the colax square

\[
\begin{array}{ccc}
S_{/I} & \xrightarrow{P} & S_{/J} \\
\downarrow{f^*} & & \downarrow{g^*} \\
S_{/I'} & \xrightarrow{g_P f^*} & S_{/J'} \\
\end{array}
\]

with the natural transformation given by the unit transformation $Pf^* \to g^* g_P f^*$. But this is precisely the form of the cocartesian edges in PolyFun, as noted in Remark 2.4.6. \qed

Proposition 2.4.13. For fixed spaces I and J, the functor Φ gives an equivalence

\[
\text{Poly}(I, J) \xrightarrow{\text{PolyFun}(I, J)}
\]

when restricted to the fibre over (I, J).

Proof. Both sides are right fibrations over $S_{/J}$, so it suffices to show that we get an equivalence on fibres over every $B \to J$ in $S_{/J}$. The fibre of $\text{Poly}(I, J)$ is the ∞-groupoid of spans $I \leftarrow M \to B$, and the fibre of $\text{PolyFun}(I, J)$ is the ∞-groupoid $\text{Map}^R(S_{/I}, S_{/B})$. The functor restricts precisely to the functor in Lemma 2.3.7, shown there to be an equivalence. \qed

Proof of Theorem 2.4.11. By Lemma 2.4.12 the functor Φ is a map between cocartesian fibrations and preserves cocartesian edges. It therefore suffices to show that the induced map on fibres $\text{Poly}(I, J) \to \text{PolyFun}(I, J)$ is an equivalence, which is Proposition 2.4.13. \qed

2.5. Colimits of Polynomial Functors. In this subsection we will give two descriptions of colimits of polynomial functors: First, we will see that colimits in Poly can be computed in $\text{Fun}(\Pi, S)$, i.e. pointwise in the diagram. We will also show that colimits in $\text{PolyFun}(I, J)$ can be computed in $\text{Fun}(S_{/I}, S_{/J})$.

Proposition 2.5.1. Let \mathcal{C} be a small ∞-category and let \mathcal{X} be an ∞-topos. The forgetful functor $\text{Fun}(\mathcal{C}, \mathcal{X})^{\text{cart}} \to \text{Fun}(\mathcal{C}, \mathcal{X})$ preserves and reflects all limits and colimits.

Proof. We first consider the case of colimits. Given a diagram $\phi: J \to \text{Fun}(\mathcal{C}, \mathcal{X})^{\text{cart}}$, let $\tilde{\phi}: \mathcal{P} \to \text{Fun}(\mathcal{C}, \mathcal{X})$ be a colimit diagram extending the image of ϕ in $\text{Fun}(\mathcal{C}, \mathcal{X})$. We claim that this colimiting cocone in $\text{Fun}(\mathcal{C}, \mathcal{X})$ is also a colimiting cocone in the subcategory $\text{Fun}(\mathcal{C}, \mathcal{X})^{\text{cart}}$.

To show this we must first prove that the commutative squares

\[
\begin{array}{ccc}
\phi(i)(c) & \xrightarrow{\phi(i)(c')} & \\
\downarrow & & \downarrow \\
\tilde{\phi}(\infty)(c) & \xrightarrow{\tilde{\phi}(\infty)(c')} & \\
\end{array}
\]

are cartesian, for all maps $c \to c'$ in \mathcal{C}. Since colimits in functor ∞-categories are computed objectwise, this is true by descent for the ∞-topos \mathcal{X}, using [Lur09a, Theorem 6.1.3.9(4)].

Second, we must check that for any cocone $\phi': \mathcal{P} \to \text{Fun}(\mathcal{C}, \mathcal{X})^{\text{cart}}$, the canonical map $\tilde{\phi} \to \phi'$ in $\text{Fun}(\mathcal{C}, \mathcal{X})^{\text{cart}}$; i.e. it is a cartesian transformation. Since the
transformations $\phi(i) \to \phi'(\infty)$ are cartesian, we have pullback squares

$$\begin{CD}
\phi(i)(c) @>>> \phi(i)(c') \\
@VVV @VVV \\
\phi'(\infty)(c) @>>> \phi'(\infty)(c').
\end{CD}$$

Colimits in \mathcal{X} are universal, so this induces a pullback square of colimits

$$\begin{CD}
\bar{\phi}(\infty)(c) @>>> \bar{\phi}(\infty)(c') \\
@VVV @VVV \\
\phi'(\infty)(c) @>>> \phi'(\infty)(c').
\end{CD}$$

as required.

The proof for limits is the same, but simpler, using that limits commute and pullbacks preserve limits, which is true in any ∞-category. \hfill \square

Corollary 2.5.2. Colimits in Poly are constructed in $\text{Fun}(\Pi, S)$, and colimits in $\text{Poly}(I, J)$ are constructed in $\text{Fun}(\Delta^1, S)$ for all spaces I, J. In particular, the ∞-categories Poly and $\text{Poly}(I, J)$ are cocomplete.

Proof. By definition, the ∞-category Poly is the fibre product $\text{Fun}(\Delta^1, S) \times_S \text{Fun}(\Delta^1, S)^\text{cart} \times_S \text{Fun}(\Delta^1, S)$. The projections to S all preserve colimits (using Proposition 2.5.1 for the middle term), so by [Lur09a, Lemma 5.4.5.5] a diagram in Poly is a colimit if and only if its composition with the projections to the terms in this fibre product are colimits. Now Proposition 2.5.1 implies that colimits are computed in

$$\text{Fun}(\Delta^1, S) \times_S \text{Fun}(\Delta^1, S) \times_S \text{Fun}(\Delta^1, S) \simeq \text{Fun}(\Pi, S).$$

By the same argument, a diagram in $\text{Poly}(I, J) \simeq S/I \times_S \text{Fun}(\Delta^1, S) \times_S \text{Fun}(\Delta^1, S) \simeq \text{Fun}(S/I, S/J)$ is a colimit if and only if its images in S/I, $\text{Fun}(\Delta^1, S)$, and S/J are colimits. But colimits in these over-categories are computed in S, so a diagram in $\text{Poly}(I, J)$ is a colimit if and only if its image in $\text{Fun}(\Delta^1, S)$ is a colimit.

Since $\text{Fun}(\Pi, S)$ and $\text{Fun}(\Delta^1, S)$ are cocomplete, it follows that so are the ∞-categories Poly and $\text{Poly}(I, J)$. \hfill \square

Remark 2.5.3. Note that the corresponding result does not hold in the classical 1-categorical setting of [GK13] (such as in Set), since a 1-topos does not have descent in general. In the 1-categorical setting, only colimits of diagrams of monomorphisms can be computed pointwise, as exemplified by grafting of trees [Koc11], as will be important below (cf. Remark 3.3.4).

Proposition 2.5.4. The forgetful functor $\text{PolyFun}(I, J) \to \text{Fun}(S/I, S/J)$ preserves colimits. In particular, the colimit of a diagram of polynomial functors and cartesian transformations is again a polynomial functor.

Proof. Consider a diagram $\phi: J \to \text{PolyFun}(I, J)$, where the functor ϕ_x corresponds to the diagram

$$I \xleftarrow{\phi_x} E(x) \xrightarrow{p_x} B(x) \xrightarrow{\iota_x} J.$$

By Corollary 2.5.2 and Theorem 2.4.11 the colimit of ϕ in $\text{PolyFun}(I, J)$ corresponds to the diagram

$$I \xleftarrow{\phi} E \xrightarrow{p} B \xrightarrow{\iota} J,$$
where \(E := \text{colim}_{x \in I} E(x) \) and \(B := \text{colim}_{x \in I} B(x) \). On the other hand, since colimits in functor \(\infty \)-categories are computed pointwise, the colimit of the diagram in \(\text{Fun}(S/I, S/J) \) is the functor
\[
\phi: (K \to I) \mapsto \text{colim}_{x \in J} \phi_x(K \to I).
\]

Let us view \(\phi_x \) as a functor \(\text{Fun}(I, S) \to \text{Fun}(J, S) \); then evaluating at \(\alpha: I \to S \) and \(j \in J \) we have
\[
\phi_x(\alpha)(j) \simeq \text{colim}_{b \in B(x)_j, e \in E(x)_b} \alpha(s_e e).
\]

Let \(\mathcal{B} \to J \) be the left fibration corresponding to the functor \(B(-) \). This has a map to \(J \), and the fibre \(\mathcal{B}_j \to J \) is the left fibration for the functor \(B(-)_j \). Since iterated colimits are colimits over cocartesian fibrations, we get
\[
\phi(\alpha)(j) \simeq \text{colim}_{(b, x) \in \mathcal{B}_j} \text{lim}_{e \in E(x)_b} \alpha(s_e e).
\]

Now we observe that the functor \((b, x) \mapsto \text{lim}_{e \in E(x)_b} \alpha(s_e e) \) takes every morphism in \(\mathcal{B}_j \) to an equivalence of spaces: Since \(\mathcal{B}_j \to J \) is a left fibration it suffices to consider morphisms of the form \((b, x) \to (B(f)b, x')\) over \(f: x \to x' \) in \(J \). Then as \(\phi(f) \) is a cartesian natural transformation the map \(E(f)_b: E(x)_b \to E(x')_b \) is an equivalence and we have
\[
\text{lim}_{e \in E(x)_b} \alpha(s_e e) \simeq \text{lim}_{e \in E(x)_b} \alpha(s_{e'} E(f)e) \simeq \text{lim}_{e' \in E(x')_b} \alpha(s_{e'} e').
\]

Thus this functor from \(\mathcal{B}_j \) factors through the space obtained by inverting all morphisms in \(\mathcal{B}_j \). This space is precisely \(B_j \simeq \text{colim}_{x \in J} B(x)_j \) by [Lur09a, Corollary 3.3.4.6]. Since \(\mathcal{B} \to B_j \) is cofinal by [Lur09a, Corollary 4.1.2.6], this means we can replace the colimit over \(\mathcal{B}_j \) by a colimit over the space \(B_j \). Moreover, since we have pullbacks
\[
\begin{align*}
E(x) \xrightarrow{e_x} E \\
p_x |
\downarrow
\downarrow p \\
B(x) \xrightarrow{\beta_x} B
\end{align*}
\]

by [Lur09a, Theorem 6.1.3.9], for \(b \in B(x)_j \) we can identify \(\text{lim}_{e \in E(x)_b} \alpha(s_e e) \) with \(\text{lim}_{e \in E_b} \alpha(se) \). Thus we have produced a natural equivalence
\[
\phi(x) \simeq \text{colim}_{b \in B_j} \text{lim}_{e \in E_b} \alpha(se),
\]

where the right-hand side is the formula for the polynomial functor corresponding to the diagram
\[
I \xrightarrow{e} E \xrightarrow{p} B \xrightarrow{\beta} J,
\]
as required. \(\square \)

2.6. Slices over Polynomial Functors. In this subsection we consider slices of PolyFun, i.e. overcategories PolyFun\(_{/P}\). We will show that these \(\infty \)-categories are very well-behaved; specifically, we will prove:

Theorem 2.6.1. For any polynomial functor \(P \), the slice \(\infty \)-category PolyFun\(_{/P}\) is an \(\infty \)-topos; in particular, this \(\infty \)-category is presentable. Furthermore, the full inclusion
\[
\text{PolyFun}_{/P} \simeq \text{Poly}_{/P} \to \text{Fun}(\Pi, S)/P
\]

preserves all limits and colimits; it is thus the inverse-image part of a geometric morphism.

Remark 2.6.2. This theorem is also true in the 1-categorical case of Set, although we are not aware of a reference. This is a consequence of the observation that the maps in Poly form a class of standard étale maps in \(\mathcal{P}(\Pi) \), in the axiomatic sense of Joyal–Moerdijk [JM94]. The result now follows from their Corollary 2.3.
Lemma 2.6.3. For any morphism $p: E \to B$, the functor
\[\text{ev}_1: \text{Fun}(\Delta^1, S)_{/p}^{\text{cart}} \to S_{/B} \]
is an equivalence.

Proof. The 2-of-3 property for pullback squares implies that $\text{Fun}(\Delta^1, S)_{/p}^{\text{cart}}$ can be identified with the full subcategory of $\text{Fun}(\Delta^1, S)_{/p}$ spanned by cartesian squares. We can thus identify the map to $S_{/B}$ with a pullback of the forgetful functor from the full subcategory of $\text{Fun}(\Delta^1 \times \Delta^1, S)$ spanned by cartesian squares to the ∞-category of functors from $\Delta^1 \times \Delta^1 \setminus \{(0,0)\}$ to spaces. The latter is an equivalence, since it is the forgetful functor from squares that are right Kan extended from $\Delta^1 \times \Delta^1 \setminus \{(0,0)\}$.

The main point of the proof of the theorem is the following general lemma.

Lemma 2.6.4. For any map of spaces $p: E \to B$, the full inclusion
\[j_p: S_{/B} \cong \text{Fun}(\Delta^1, S)_{/p}^{\text{cart}} \hookrightarrow \text{Fun}(\Delta^1, S)_{/p} \]
has both a left and a right adjoint. The left adjoint of j_p takes a square
\[
\begin{array}{ccc}
X & \longrightarrow & Y \\
\downarrow^x & & \downarrow^y \\
E & \longrightarrow & B
\end{array}
\]
to $y \in S_{/B}$ and the right adjoint of j_p takes it to $p_* x \times_{p_* p^* y} y$.

Proof. The functor $\text{ev}_1: \text{Fun}(\Delta^1, S) \to S$ has as right adjoint the constant diagram functor (which is also given by right Kan extension). By [Lur09a, Proposition 5.2.5.1] this induces for $p: E \to B$ an adjunction on slice categories
\[\text{ev}_1: \text{Fun}(\Delta^1, S)_{/p} \rightleftarrows S_{/B}: g_p, \]
where the right adjoint g_p takes $y: Y \to B$ to the pullback
\[
\begin{array}{ccc}
E \times_B Y & \longrightarrow & Y \\
\downarrow & & \downarrow^y \\
E & \longrightarrow & B
\end{array}
\]
induced by the unit map. We can thus identify the right adjoint g_p with j_p, so j_p has a left adjoint with the stated description.

It follows from Proposition 2.5.1 that j_p preserves limits and colimits, so since $S_{/B}$ and $\text{Fun}(\Delta^1, S)_{/p}$ are presentable the adjoint functor theorem implies that j_p also has a right adjoint. To show the right adjoint has the claimed description, for f in $S_{/B}$ and a square α as above, we must establish the equivalence
\[\text{Map}_{/B}(f, p_* x \times_{p_* p^* y} y) \simeq \text{Map}_{\text{Fun}(\Delta^1, S)_{/p}}(j_p f, \alpha). \]
But the mapping space on the right is the pullback
\[\text{Map}_{/E}(p^* f, x) \times_{\text{Map}_{/E}(p^* f, y)} \text{Map}_{/B}(f, y) \]
which is naturally equivalent to
\[\text{Map}_{/B}(f, p_* x) \times_{\text{Map}_{/B}(f, p_* x \times_{p_* p^* y} y)} \text{Map}_{/B}(f, y) \simeq \text{Map}_{/B}(f, p_* x \times_{p_* p^* y} y) \]
as required. \qed
Proof of Theorem 2.6.1. Suppose P is represented by $I \leftarrow E \xrightarrow{B} B \xrightarrow{J} I$. By Lemma 2.6.3 we have an equivalence
$$\text{Fun}(\Delta^1, S)_{/p}^{\text{cart}} \simeq S_{/B}.$$ Using this equivalence, we have (via Theorem 2.4.11 and Definition 2.4.7):
$$\text{PolyFun}_{/P} \simeq \text{Poly}_{/P} \simeq \left(\text{Fun}(\Delta^1, S) \times \text{Fun}(\Delta^1, S)_{/p}^{\text{cart}} \times \text{Fun}(\Delta^1, S) \right)_{/(s,p,t)} \simeq \text{Fun}(\Delta^1, S)_{/s} \times \text{Fun}(\Delta^1, S)_{/p}^{\text{cart}} \times \text{Fun}(\Delta^1, S)_{/t} \simeq \text{Fun}(\Delta^1, S)_{/s} \times \text{Fun}(\Delta^1, S)_{/E} \times \text{Fun}(\Delta^1, S)_{/B} \times \text{Fun}(\Delta^1, S)_{/t}.$$

This is a double pullback of \(\infty\)-categories which are \(\infty\)-topoi, and the functors involved in the pullbacks are left exact left adjoints. Hence the result is again an \(\infty\)-topos by \cite[Lur09a, Proposition 6.3.2.2]{}. In detail, the four functors involved are
$$\text{Fun}(\Delta^1, S)_{/s} \quad \text{Fun}(\Delta^1, S)_{/E} \quad \text{Fun}(\Delta^1, S)_{/B} \quad \text{Fun}(\Delta^1, S)_{/t},$$

where \(f_1\) and \(f_4\) are slices of restriction functors along appropriate \(\Delta^0 \rightarrow \Delta^1\), hence have both adjoints by \cite[Lur09a, Proposition 5.2.5.1]{Lur09a} and its dual. (The pullbacks are pullbacks in \(\hat{\text{Cat}}_{\infty}\), or equivalently, pushouts in the \(\infty\)-category of \(\infty\)-topoi and geometric morphisms, cf. \cite[Lur09a, 6.3.1.5]{Lur09a}.)

The functor \(\text{Poly}_{/P} \rightarrow \text{Fun}(\Pi, S)_{/P}\) is given by \(\text{id} \times_{S \times S} j_{p} \times_{S \times S} \text{id}\), where \(j_{p} : S_{/B} \rightarrow \text{Fun}(\Delta^1, S)_{/p}\) is from Lemma 2.6.4. We know from Proposition 2.5.1 that this functor preserves all limits and colimits. \qed

Corollary 2.6.5. For a fixed polynomial functor P represented by $I \leftarrow E \rightarrow B \rightarrow J$, we have
$$\text{PolyFun}(I, J)_{/P} \simeq S_{/B}.$$ In particular, the \(\infty\)-category \(\text{PolyFun}(I, J)_{/P}\) is an \(\infty\)-topos. \qed

Definition 2.6.6. We define the \(\infty\)-category \(\text{PolyEnd}\) of polynomial endofunctors by the pullback square
$$\begin{array}{ccc}
\text{PolyEnd} & \longrightarrow & \text{PolyFun} \\
\downarrow & & \downarrow \\
S & \longrightarrow & S \times S.
\end{array}$$

Since PolyFun is cocomplete and the projection to $S \times S$ preserves colimits by Corollary 2.5.2, it follows from \cite[Lur09a, Lemma 5.4.5.5]{Lur09a} that PolyEnd is also cocomplete.

Proposition 2.6.7. For a fixed polynomial endofunctor P, the \(\infty\)-category \(\text{PolyEnd}_{/P}\) is an \(\infty\)-topos.

Proof. In the pullback diagram
$$\begin{array}{ccc}
\text{PolyEnd}_{/P} & \longrightarrow & \text{PolyFun}_{/P} \\
\downarrow & & \downarrow_{\text{ev}_{0,3}} \\
S_{/I} & \longrightarrow & S_{/I} \times S_{/I},
\end{array}$$
both Δ and $\text{ev}_{0,3}$ are left exact left adjoints. The former because it is pullback along the codiagonal $I \amalg I \rightarrow I$, the latter because it is the composite $\text{Poly}_{/P} \rightarrow \mathcal{P}(\Pi)_{/P} \rightarrow S_{/I} \times S_{/I}$ and here the first functor is a left exact left adjoint by Theorem 2.6.1 and the second is clear. Since the three \(\infty\)-categories are \(\infty\)-topoi, the pullback is again an \(\infty\)-topos by \cite[Proposition 6.3.2.2]{Lur09a}. \qed
3. Analytic Functors

3.1. Analytic Functors and κ-Accessible Polynomial Functors.

Definition 3.1.1. A functor $S/I \to S/J$ is **analytic** if it preserves weakly contractible limits and sifted colimits.

Warning 3.1.2. This definition of analytic would not be correct if working over the category of sets instead of the category of spaces. See Remark 3.2.11 for further discussion of this subtle issue.

From this definition it is immediate (using Theorem 2.2.3) that an analytic functor is polynomial. We write AnFun for the full subcategory of PolyFun spanned by the analytic functors, and $\text{AnFun}(I,J)$ for the corresponding subcategory of $\text{PolyFun}(I,J)$. Similarly, we define the ∞-category AnEnd of analytic endofunctors as the pullback $\text{AnEnd} \times \text{AnFun}$.

We now wish to characterize the analytic functors (and also the κ-accessible polynomial functors) in terms of their representing diagram.

Definition 3.1.3. Let \mathcal{C} be a cocomplete ∞-category, and let κ be a regular cardinal. Recall that an object x is called κ-**compact** when $\text{Map}_\mathcal{C}(x,-) : \mathcal{C} \to \mathcal{S}$ preserves κ-filtered colimits [Lur09a, 5.3.4.5], and that it is called projective when $\text{Map}_\mathcal{C}(x,-)$ preserves geometric realizations [Lur09a, 5.5.8.18].

Remark 3.1.4. By [Lur09a, Corollary 5.5.8.17] a functor $F : \mathcal{C} \to \mathcal{D}$ preserves filtered colimits and geometric realizations if and only if it preserves sifted colimits. In particular, $x \in \mathcal{C}$ is compact and projective if and only if $\text{Map}_\mathcal{C}(x,-)$ preserves sifted colimits.

Lemma 3.1.5. Let \mathcal{C} be a cocomplete ∞-category with pullbacks. Then $f : x \to y$ is a projective or κ-compact object in \mathcal{C}/y if x is a projective or κ-compact object of \mathcal{C}. If \mathcal{C} is cartesian closed, then the converse is also true.

Proof. Consider a diagram $p : I \to \mathcal{C}/y$ that has a colimit. Since this colimit is preserved by the forgetful functor to \mathcal{C}, we have a commutative diagram

\[
\begin{array}{ccc}
\text{colim Map}_{/y}(x,p) & \to & \text{Map}_{/y}(x,\text{colim } p) \\
\downarrow & & \downarrow \\
\text{colim Map}(x,p) & \to & \text{Map}(x,\text{colim } p) \\
\end{array}
\]

Here the right square is clearly cartesian, and the composite square is cartesian since colimits are universal in \mathcal{S}. Therefore the left square is also cartesian, so if the lower left horizontal morphism is an equivalence, so is the top left horizontal morphism.

If \mathcal{C} is cartesian closed, then $\text{Map}_\mathcal{C}(x,\text{colim } p) \simeq \text{Map}_{/y}(x,y \times \text{colim } p) \simeq \text{Map}_{/y}(x,\text{colim } y \times p)$, which gives the converse.

Lemma 3.1.6. Consider an adjunction $F : \mathcal{C} \rightleftarrows \mathcal{D} : G$.

(i) If G preserves κ-filtered colimits, then F preserves κ-compact objects. If equivalences in \mathcal{C} are detected by mapping out of κ-compact objects, then the converse is true.

(ii) If G preserves geometric realizations, then F preserves projective objects. If equivalences in \mathcal{C} are detected by mapping out of projective objects, then the converse is true.

(iii) If G preserves sifted colimits, then F preserves compact projective objects. If equivalences in \mathcal{C} are detected by mapping out of compact projective objects, then the converse is true.
implies that

\[\text{Map}_D(Fx,\text{colim } p) \simeq \text{Map}_{\mathcal{E}}(x,\text{colim } Gp) \simeq \text{colim } \text{Map}_{\mathcal{E}}(x,Gp) \simeq \text{colim } \text{Map}_D(Fx,p), \]

and so \(\text{Map}_D(Fx,__) \) also preserves \(\mathcal{J} \)-shaped colimits. Conversely, if equivalences are detected by mapping out of a collection of objects \(x \) such that \(\text{Map}_{\mathcal{E}}(x,__) \) preserves \(\mathcal{J} \)-shaped colimits, and their images under \(F \) has the same property, then we have equivalences

\[\text{Map}_{\mathcal{E}}(x,G(\text{colim } p)) \simeq \text{Map}_D(Fx,\text{colim } p) \simeq \text{colim } \text{Map}_D(Fx,p) \simeq \text{Map}_{\mathcal{E}}(x,\text{colim } Gp), \]

for these objects \(x \), and thus \(\text{colim } Gp \to G(\text{colim } p) \) is an equivalence. \(\square \)

Lemma 3.1.7. Consider a span of spaces \(I \xleftarrow{f} X \xrightarrow{q} \ast \). The functor \(q_*f^* \) preserves \(\kappa \)-filtered colimits if and only if \(X \) is \(\kappa \)-compact, and sifted colimits if and only if \(X \) is compact projective, i.e. is a finite set.

Proof. Since equivalences in \(\mathcal{S} \) are detected by maps out of \(\ast \), and \(\text{Map}(\ast,__) \) preserves all colimits, Lemma 3.1.6 implies that \(q_*f^* \) preserves \(\kappa \)-filtered colimits if and only if \(fq^* \) preserves \(\kappa \)-compact objects, and sifted colimits if and only if \(fq^* \) preserves compact projective objects. By Lemma 3.1.5 this is equivalent to \(q^* \) preserving \(\kappa \)-compact or compact projective objects, respectively. Once again using that these are detected in \(\mathcal{S} \), this is equivalent to \(X \times Y \) being \(\kappa \)-compact or compact projective for all \(\kappa \)-compact or compact projective \(Y \). Thus in particular (taking \(Y = \ast \)) \(X \) is \(\kappa \)-compact or compact projective, but this is enough since if \(X \) and \(Y \) are \(\kappa \)-compact or compact projective and \(p: J \to \mathcal{S} \) is a \(\kappa \)-filtered or sifted diagram, then

\[\text{Map}(X \times Y,\text{colim } p) \simeq \text{Map}(X,\text{Map}(Y,\text{colim } p)) \simeq \text{Map}(X,\text{colim } \text{Map}(Y,p)) \simeq \text{colim } \text{Map}(X \times Y,p), \]

so \(X \times Y \) is also \(\kappa \)-compact or compact projective. \(\square \)

Proposition 3.1.8. Suppose \(F: S/J \to S/J \) is a polynomial functor represented by a diagram

\[I \xleftarrow{t} E \xrightarrow{p} B \xrightarrow{J.} J. \]

(i) \(F \) is \(\kappa \)-accessible if and only if the fibres of \(p \) are \(\kappa \)-compact spaces.

(ii) \(F \) is analytic if and only if the fibres of \(p \) are finite sets.

Proof. We first prove (i): Since \(t \) preserves and reflects colimits, \(F \) is \(\kappa \)-accessible if and only if the functor \(p_*s^* \) preserves \(\kappa \)-filtered colimits. Using the equivalence \(S/B \simeq \text{Fun}(B,\mathcal{S}) \), we see that \(p_*s^* \) preserves \(\kappa \)-filtered colimits if and only if the same holds for \(b^*p_*s^* \) for every point \(b: \ast \to B \). Consider the pullback square

\[
\begin{array}{ccc}
F & \xrightarrow{q} & \{b\} \\
\downarrow i & & \downarrow b \\
E & \xrightarrow{p} & B.
\end{array}
\]

We have a Beck-Chevalley equivalence \(b^*p_*s^* \simeq q_*(sii)^* \). By Lemma 3.1.7 this preserves \(\kappa \)-filtered colimits if and only if \(F \) is \(\kappa \)-compact. The proof of (ii) is the same, using sifted colimits instead of \(\kappa \)-filtered colimits. \(\square \)

Proposition 3.1.9. Let \(\mathcal{F} \) be a bounded local class of morphisms in \(\mathcal{S} \) in the sense of [Lur09a, §6.1], with classifying family \(U_{\mathcal{F}}^* \to U_{\mathcal{F}}, \) and let \(F \) be the polynomial functor represented by \(\ast \leftarrow U_{\mathcal{F}}^* \to U_{\mathcal{F}} \to \ast \). Then the forgetful functor

\[\text{PolyFun}_{/F} \to \text{PolyFun} \]

is fully faithful, and its image is the full subcategory \(\text{PolyFun}_{\mathcal{F}} \) spanned by the polynomial functors with “middle map” in \(\mathcal{F} \).
Proof. A morphism \(P \to F \) in \(\text{PolyFun} \) is represented by a diagram

\[
\begin{array}{cccc}
I & \to & E & \to \quad \downarrow^p \quad \downarrow \quad B & \to \quad J \\
\downarrow & & & & \downarrow \quad \downarrow \quad \downarrow \\
* & \to & U_F' & \to \quad U_F & \to \quad *.
\end{array}
\]

Since \(U_F \) is the classifier for maps in the class \(\mathcal{F} \), such a morphism exists if and only if \(p \) belongs to \(\mathcal{F} \), and the morphism is unique if it exists. Thus the forgetful functor from \(\text{PolyFun}/F \) to \(\text{PolyFun} \) is fully faithful, and its image is precisely the full subcategory \(\text{PolyFun}_F \). \(\square \)

Combining this with Theorem 2.6.1, we get:

Corollary 3.1.10. Let \(\mathcal{F} \) be a bounded local class in \(S \). Then the \(\infty \)-category \(\text{PolyFun}_F \) is an \(\infty \)-topos.

Specializing to \(\kappa \)-accessible and analytic functors, this gives:

Corollary 3.1.11. Let \(\kappa \) be a regular cardinal.

(i) Let \(U_\kappa' \to U_\kappa \to U_\kappa \to * \) be the classifying morphism for maps whose fibres are \(\kappa \)-compact spaces, and let \(P_\kappa \) be the polynomial functor represented by

\[
* \to U_\kappa' \to U_\kappa \to *.
\]

Then the \(\infty \)-category \(\text{PolyFun}_\kappa \) of \(\kappa \)-accessible polynomial functors is equivalent to \(\text{PolyFun}/P_\kappa \). Moreover, \(\text{PolyFun}_\kappa \) is an \(\infty \)-topos.

(ii) Let \(\text{E} \) be the polynomial functor represented by

\[
* \to \text{iFin}_\kappa \to \text{iFin} \to *,
\]

where the middle map is the classifier for morphisms with finite discrete fibres. Then \(\text{AnFun} \) is equivalent to \(\text{PolyFun}_\kappa/E \). Moreover, the \(\infty \)-category \(\text{AnFun} \) is an \(\infty \)-topos.

Proof. By Proposition 3.1.8, the \(\kappa \)-accessible polynomial functors are those whose “middle map” belong to the bounded local class \(\mathcal{F}_\kappa \) of maps with \(\kappa \)-compact fibres. This is equivalent to \(\text{PolyFun}/P_\kappa \) by Proposition 3.1.9, and is an \(\infty \)-topos by Corollary 3.1.10. This proves (i), and (ii) follows similarly since analytic functors are characterized by having “middle map” in the bounded local class of maps with finite discrete fibres. \(\square \)

Remark 3.1.12. Note that Corollary 3.1.11 does not have an analogue in ordinary category theory, because of the lack of classifiers.

Remark 3.1.13. The whole \(\infty \)-category \(\text{PolyFun} \) (without cardinal bounds on the middle representing maps) is cocomplete by Corollary 2.5.2, but it is not accessible, since neither is \(\text{Fun}(\Delta^1, S)^{\text{cart}} \).

(In particular, \(\text{PolyFun} \) does not admit a terminal object.) In the \(\kappa \)-bounded case, the minimal generating set for \(\text{Fun}(\Delta^1, S)^{\text{cart}} \simeq S/\mathcal{U}_\kappa \) is the set of isomorphism classes of \(\kappa \)-compact spaces. Without the cardinal bound, \(\text{Fun}(\Delta^1, S)^{\text{cart}} \) is the union of all these, and a generating set would have to exhaust \(\bigcup_\kappa \mathcal{U}_\kappa \simeq \mathcal{I}S \), which is too big to form a set.

3.2. Analytic Endofunctors, Symmetric Sequences, and Homotopical Species.

In this subsection we will relate analytic endofunctors to (coloured) symmetric sequences and the homotopical analogue of Joyal’s species.

We saw in Corollary 3.1.11 that the \(\infty \)-category \(\text{AnFun} \) of analytic functors is equivalent to the slice \(\text{PolyFun}/E \). Combining this with Corollary 2.6.5, we get:

Corollary 3.2.1. We have

\[
\text{AnEnd}(*) \simeq S/\text{iFin} \simeq \text{Fun}(\text{iFin}, S) \simeq \prod_{\kappa \geq 0} \text{Fun}(B\Sigma_\kappa, S).
\]
Remark 3.2.2. In the corollary, $\prod_{n=0}^{\infty} \text{Fun}(B\Sigma_n, S)$ is the ∞-category of symmetric sequences in S. The canonical monoidal structure on $\text{AnEnd}(*)$ given by composition thus carries over to a monoidal structure on the ∞-category of symmetric sequences. Unravelling the formula for composition from Theorem 2.1.8, we see that this is an ∞-categorical version of the substitution product on symmetric sequences, introduced by Kelly [Kel05] to exhibit operads as monoids therein.

Definition 3.2.3. More generally, for a space I, we can consider I-coloured symmetric sequences (or I-collections): these are by definition presheaves on $E(I) \times I$. (We shall see a tree interpretation later on in Definition 3.3.7.)

Proposition 3.2.4. The ∞-category $\text{AnEnd}(I)$ of analytic endofunctors of S/I is equivalent to that of I-coloured symmetric sequences.

Proof. Let E_I be the cartesian pullback (in the fibration $\text{AnEnd} \to S$) of E to an endofunctor of I, i.e. the pullback along (i, i) for $i: I \to *$; by Remark 2.4.6 this is the composite $i^* E i!$. Then $\text{AnEnd}(I)$ is equivalent to $\text{PolyEnd}(I)/E_I$. By Corollary 2.6.5 this means that $\text{AnEnd}(I)$ is equivalent to $S/E_I(id_I)$. But here $E_I(id_I) \simeq i^* E i!(id_I) \simeq i^* E(I) \simeq I \times E(I)$. □

Lemma 3.2.5. We have the following explicit formula for evaluation of E on a space X:

$$E(X) = \lim_{k \in I \text{Fin}} \text{Map}(k, X) = \coprod_{k \in \mathbb{N}} X^{\times k}_{\Sigma_k}. \quad \Box$$

The relationship with E leads to a useful explicit formula for evaluation of analytic endofunctors:

Proposition 3.2.6. Suppose P is an analytic endofunctor, represented by the diagram

$$I \xleftarrow{s} E \xrightarrow{p} B \xrightarrow{t} I$$

$$* \xleftarrow{u} I \text{Fin} \xrightarrow{q} I \text{Fin} \xrightarrow{\beta} *.$$

Then for every map $f: X \to I$ there is a natural pullback square

$$Y \xrightarrow{\eta} E(X) \xrightarrow{\rho} E(f) \xrightarrow{\beta} E(I),$$

where $\beta: B \to q_* u^* I = E(I)$ corresponds to $u q^* B = E^s \to I$ under the adjunction $u q^* \dashv q_* u^*$. □

Proof. By Lemma 2.1.5 we have a cartesian natural transformation $p_* s^* \to p_* s^* \beta^* p_! \simeq p_* e^* u^* p_!$, and using Lemma 2.1.6 we have a Beck-Chevalley equivalence that identifies this with a natural transformation $\eta: p_* s^* \to \beta^* q_* u^* p_!$. Consider the diagram

$$Y \xrightarrow{\beta^* q_* u^* X \to q_* u^* X} \xrightarrow{\eta} \xrightarrow{\beta^* q_* u^* I \to q_* u^* I} B \xrightarrow{\beta} \beta^* q_* u^* I \xrightarrow{\eta} E(I).$$

Here the bottom right square and the composite square in the right column are cartesian by definition of β^*, hence the top right square is also cartesian. The top left square is cartesian since η is a cartesian natural transformation, so the composite square in the top row is cartesian. □
Corollary 3.2.7. For $P: S \to S$ an analytic endofunctor as in Proposition 3.2.6, we have

$$P(X) \simeq \prod_{n \in \mathbb{N}} B_n \times_{\Sigma_n} X^{\times n}.$$

Proof. We calculate, using Proposition 3.2.6 and Lemma 3.2.5:

$$P(X) \simeq B \times_{\mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N}} E(X) \simeq B \times_{\mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N}} \prod_{n \in \mathbb{N}} (X^{\times n})_{h\Sigma_n} \simeq \prod_{n \in \mathbb{N}} (B_n \times X^{\times n})_{h\Sigma_n}.$$

Remark 3.2.8. The formula in Corollary 3.2.7 is the origin of the terminology “analytic”: the spaces B_n are the coefficients of the “Taylor expansion” of P. Joyal [Joy86] introduced analytic functors as a categorical analogue of exponential generating functions of species, defining them as left Kan extensions of species (which are functors $\mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N} \to \mathbf{Set}$). He characterized analytic endofunctors of the category of sets as those endofunctors that preserve filtered colimits and weakly preserve wide pullbacks. In our approach we have defined analytic functors in terms of exactness properties, but can state an ∞-version of Joyal’s theorem as follows:

Definition 3.2.9. We call a functor $F: \mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N} \to S$ a homotopical species. By left Kan extension along the (non-full) inclusion $\mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N} \to \mathcal{S}$, it defines an endofunctor $F: \mathcal{S} \to \mathcal{S}$, described explicitly by the formula

$$F(X) \simeq \operatorname{colim}_{n \in \mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N} \text{ in } X} \operatorname{colim}_{n \in \mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N}} F[n] \times X^n \simeq \prod_{n \in \mathbb{N}} (F[n] \times X^n)_{h\Sigma_n}.$$

On the other hand, by unstraightening, it corresponds to a map $B \to \mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N}$, and hence to an analytic functor (via Corollary 3.2.1). This analytic endofunctor is canonically identified with $F: \mathcal{S} \to \mathcal{S}$, by Corollary 3.2.7, giving:

Proposition 3.2.10 (“Joyal’s theorem for homotopical species”). An endofunctor $P: \mathcal{S} \to \mathcal{S}$ is analytic (i.e. preserves filtered colimits and weakly contractible limits) if and only if it is the left Kan extension of a “homotopical species” (i.e. a functor $F: \mathcal{I} \mathcal{F} \mathcal{I} \mathcal{N} \to \mathcal{S}$).

Remark 3.2.11. From the viewpoint of species, analytic functors over sets are actually not the optimal notion, since it is not true in general that the exponential generating function of a species agrees with the cardinality of its associated analytic functor. This is true over spaces (and in fact already over groupoids, as first observed by Baez and Dolan [BD01] who introduced groupoid-valued species under the name stuff types). What goes wrong in the set case is the behaviour of quotients of group actions, which is also responsible for the mere weak preservation of connected limits in Joyal’s original theorem.

3.3. Trees and Analytic Endofunctors. In this subsection we will describe analytic endofunctors in terms of trees. This uses the interpretation of trees as polynomial endofunctors from [Koc11]:

Definition 3.3.1. A tree is by definition a polynomial

$$A \xleftarrow{s} M \xrightarrow{p} N \xrightarrow{t} A$$

for which:

1. The spaces A, M, and N are all finite sets.
2. The function t is injective.
3. The function s is injective, with a unique element R (the root) in the complement of its image.
4. Define a successor function $\sigma: A \to A$ as follows: First, set $\sigma(R) = R$. For $e \in s(M)$ (which is the complement of R in A), take e' in M with $s(e') = e$ and set $\sigma(e) = t(p(e'))$. Then for every e there exists some $k \in \mathbb{N}$ such that $\sigma^k(e) = R$.

Remark 3.3.2. The intuition behind this notion of “tree” is as follows: we think of A as the set of edges of the tree, N as the set of nodes (our trees do not have nodes at their leaves or root), and M as the set of pairs (v, e) where v is a node and e is an incoming edge of v. The function s is the projection $s(v, e) = e$, the function p is the projection $p(v, e) = v$, and the function t assigns to each node its unique outgoing edge.
Definition 3.3.3. The elements of a tree are its edges and nodes, and a tree can be constructed by gluing edges and nodes, as will be formalized below. Let \(\eta \) denote the tree

\[
* \leftarrow \emptyset \rightarrow \emptyset \rightarrow *
\]

consisting of an edge without nodes; it is called the trivial tree. For \(n = 0, 1, \ldots \) let \(C_n \) denote

\[
n + 1 \leftarrow n \rightarrow * \rightarrow n + 1;
\]

it is the corolla (one-node tree) with \(n \) incoming edges. We refer to the trivial tree and the corollas as elementary trees.

We define \(\Omega_{\text{el}} \) and \(\Omega_{\text{int}} \) to be the full subcategories of \(\text{AnEnd} \) spanned by the elementary trees and all the trees, respectively.

Remark 3.3.4. Since trees correspond to diagrams of sets, \(\Omega_{\text{el}} \) and \(\Omega_{\text{int}} \) are ordinary categories, and they are equivalent to those considered by Kock [Koc11] (where they are denoted \(\text{elTr} \) and \(\text{tEmb} \), respectively). It is a consequence of the tree axioms (see [Koc11, Proposition 1.1.3]) that the morphisms in \(\Omega_{\text{int}} \) are tree embeddings, meaning injective on nodes and edges. The subscript “int” stands for inert; in §5.3 we will embed \(\Omega_{\text{int}} \) into a bigger category of trees \(\Omega \), where the inert morphisms become the right class of an (active, inert) factorization system.

The category \(\Omega_{\text{int}} \) admits certain pushouts (and colimits built from them), namely ones corresponding to grafting of trees: if \(\eta \rightarrow S \) picks out the root and \(\eta \rightarrow R \) picks out a leaf, then the pushout \(S \coprod \eta \rightarrow R \) calculated in \(\text{AnEnd} \) (where it exists since colimits in \(\text{AnEnd} \) can be calculated in \(\text{Fun}(\Pi, S) \)) is again a tree \(T \), in which \(R \) and \(S \) are naturally subtrees — \(T \) is “\(S \) grafted onto \(R \)”. Hence the pushout is also a pushout in \(\Omega_{\text{int}} \). Furthermore, since the spaces involved in the colimit are just sets and since the maps are injections, the colimit can actually be calculated in Set. The details can be found in [Koc11].

For a tree \(T \in \Omega_{\text{int}} \), we write \(\text{el}(T) = \Omega_{\text{el}}/T \) for the category \(\Omega_{\text{el}} \times \Omega_{\text{int}}(\Omega_{\text{int}})/T \), and call it the category of elements of \(T \). (Seeing \(T \) as a presheaf on \(\Omega_{\text{el}} \) given by \(E \mapsto \text{Map}(\Omega_{\text{int}}(E,T)) \), this really is its category of elements.)

The grafting construction can readily be iterated to establish the following result, which is intuitively clear:

Lemma 3.3.5. Every tree \(T \) is canonically the colimit in \(\Omega_{\text{int}} \), and in \(\text{AnEnd} \), of its elementary subtrees:

\[
T \simeq \operatorname{colim}_{E \in \text{el}(P)} E.
\]

Proof. This is a reformulation of [Koc11, Corollary 1.1.24].

Lemma 3.3.6. Given an analytic endofunctor \(P \) represented by a diagram

\[
\begin{array}{c}
I \\
* \\
\end{array} \xleftarrow{s} \begin{array}{c}
E \\
\end{array} \xrightarrow{p} \begin{array}{c}
B \\
\end{array} \xrightarrow{t} \begin{array}{c}
I \\
\end{array}
\]

there are natural equivalences

\[
\text{Map}(\eta, P) \simeq I, \quad \text{Map}(C_n, P) \simeq B_n,
\]

where \(B_n \) is the fibre of \(\beta \) at an \(n \)-element set.

Proof. It is clear that a map \(\eta \rightarrow P \) is uniquely determined by the map \(* \rightarrow I \), so \(\text{Map}(\eta, P) \simeq I \).

For \(C_n \), observe that since \(n + 1 \) is the disjoint union of the images of \(* \) and \(n \), the space of maps \(C_n \rightarrow P \) is equivalent to the space of cartesian squares

\[
\begin{array}{c}
C_n \\
\end{array} \xrightarrow{u} \begin{array}{c}
* \\
\end{array} \xrightarrow{p} \begin{array}{c}
B \\
\end{array}
\]

\[
\begin{array}{c}
\end{array} \xrightarrow{r} \begin{array}{c}
E \\
\end{array}
\]

\[
\begin{array}{c}
\end{array} \xrightarrow{r} \begin{array}{c}
\end{array}
\]

\[
\begin{array}{c}
\end{array} \xrightarrow{r} \begin{array}{c}
\end{array}
\]
More formally, this space is described as the pullback
\[
\begin{array}{ccc}
\text{Map}(C_n, P) & \simeq & \text{Map}_{\text{Fun}^\text{cart}}(\Delta^1, S) \circ (u, p) \\
\downarrow & & \downarrow \beta \\
\text{iFin}_n / \text{codom} & \rightarrow & \text{iFin}.
\end{array}
\]
But \(\text{iFin}_n /\) is contractible, so the pullback is \(B_n\), as asserted.

\[\square\]

Definition 3.3.7. A coloured collection or coloured symmetric sequence is a presheaf on \(\Omega_{el}\).

Remark 3.3.8. The intuition is that the inclusion \(\{\eta\} \rightarrow \Omega_{el}\) defines a projection \(P(\Omega_{el}) \rightarrow S\), which can be interpreted as assigning to a coloured collection its space of colours, and that the value of a presheaf on the corolla \(C_n\) is the space of \(n\)-ary operations of the coloured collection. The \(n + 1\) different maps of trees \(\eta \rightarrow C_n\) then extract from an \(n\)-ary operation its \(n\) input colours and its output colour.

Definition 3.3.9. The inclusion \(i: \Omega_{el} \rightarrow \text{AnEnd}\) extends to a unique colimit-preserving functor \(i!: P(\Omega_{el}) \rightarrow \text{AnEnd}\) with right adjoint \(i^*: \text{AnEnd} \rightarrow P(\Omega_{el})\) given by the restricted Yoneda functor, i.e.
\[
P \mapsto \text{Map}_{\text{AnEnd}}(i(-), P).
\]

Proposition 3.3.10. The functor \(i^*: \text{AnEnd} \rightarrow P(\Omega_{el})\) is an equivalence.

To prove this, we shall use the following general criterion.

Lemma 3.3.11. Suppose \(\mathcal{C}\) is a cocomplete and locally small \(\infty\)-category and \(i: \mathcal{C}_0 \hookrightarrow \mathcal{C}\) is the inclusion of an essentially small full subcategory \(\mathcal{C}_0\) of \(\mathcal{C}\) such that

(i) the objects of \(\mathcal{C}_0\) are completely compact, i.e. for \(C \in \mathcal{C}_0\) the functor \(\text{Map}_\mathcal{C}(C, -)\) preserves colimits,

(ii) the functors \(\text{Map}_\mathcal{C}(C, -)\) for \(C \in \mathcal{C}_0\) are jointly conservative, i.e. if a map \(f: X \rightarrow Y\) in \(\mathcal{C}\) is such that \(f_*: \text{Map}_\mathcal{C}(C, X) \rightarrow \text{Map}_\mathcal{C}(C, Y)\) is an equivalence for all \(C \in \mathcal{C}_0\), then \(f\) is an equivalence.

Then the adjunction
\[
i^*: \mathcal{P}(\mathcal{C}_0) \rightleftarrows \mathcal{C}: i^*
\]
is an adjoint equivalence.

Proof. The functor \(i^*\) preserves colimits since the objects of \(\mathcal{C}_0\) are completely compact, and detects equivalences since they are jointly conservative. The adjunction \(i^* \dashv i^!\) is therefore monadic by [Lur17, Theorem 4.7.3.5]. Moreover, \(i^* i_*: \mathcal{P}(\mathcal{C}_0) \rightarrow \mathcal{P}(\mathcal{C}_0)\) is a colimit-preserving functor that restricts to the Yoneda embedding on \(\mathcal{C}_0\); it is therefore the identity. Thus \(i^*\) and \(i_*\) are equivalences by [Lur17, Corollary 4.7.3.16]. \(\square\)

Proof of Proposition 3.3.10. By Lemma 3.3.11 it suffices to check that the objects in \(\Omega_{el}\) jointly detect equivalences and are completely compact. A morphism
\[
\begin{array}{ccc}
I & \longrightarrow & E \longrightarrow B \longrightarrow I \\
\downarrow & & \downarrow \gamma \downarrow & \downarrow \\
I' & \longrightarrow & E' \longrightarrow B' \longrightarrow I'
\end{array}
\]
in \(\text{AnEnd}\) is an equivalence if and only if the maps \(I \rightarrow I'\) and \(B \rightarrow B'\) are equivalences. The latter map is an equivalence if and only if for every \(n\) the map on fibres \(B_n \rightarrow B'_n\) is an equivalence. It thus follows from Lemma 3.3.6 that the objects in \(\Omega_{el}\) detect equivalences. Similarly, mapping out of them preserves colimits since these are computed levelwise by Corollary 2.5.2 and pullbacks preserve colimits. \(\square\)
Having described analytic functors in terms of elementary trees, we now describe them in terms of general trees.

Definition 3.3.12. The inclusion \(u : \Omega_{el} \to \Omega_{int} \) induces a geometric morphism \(u_* : \mathcal{P}(\Omega_{el}) \to \mathcal{P}(\Omega_{int}) \), fully faithful since \(u \) is, hence identifying \(\mathcal{P}(\Omega_{el}) \) as a left exact localization of \(\mathcal{P}(\Omega_{int}) \). We denote the image by \(\mathcal{P}_{Seg}(\Omega_{int}) \) and call its objects *Segal presheaves*:

\[
\mathcal{P}(\Omega_{el}) \xrightarrow{\sim} \mathcal{P}_{Seg}(\Omega_{int}) \subset \mathcal{P}(\Omega_{int}).
\]

A presheaf \(\Phi \in \mathcal{P}(\Omega_{int}) \) is thus a Segal presheaf if it is a right Kan extension of its restriction to \(\Omega_{el} \). This right Kan extension is calculated in the standard way using limits: A presheaf \(\Phi \) is Segal when the natural map \(\Phi(T) \to \lim_{E \in \text{el}(T)} \Phi(E) \) is an equivalence. (Recall that \(\text{el}(T) = \Omega_{el}/T \) is the category of elements of \(T \).)

Definition 3.3.13. Let \(i_0 \) denote the inclusion \(\Omega_{int} \hookrightarrow \text{AnEnd} \). This extends to a unique colimit-preserving functor \(i^*_0 : \mathcal{P}(\Omega_{int}) \to \text{AnEnd} \) with right adjoint \(i^{*0} \) given by the restricted Yoneda embedding.

The commutative triangle of inclusion functors

\[
\begin{array}{ccc}
\text{AnEnd} & \xrightarrow{i} & \Omega_{el} \\
\downarrow{i_0} & & \downarrow{u} \\
\Omega_{int} & \xrightarrow{i} & \text{AnEnd}
\end{array}
\]

induces a commutative diagram of right adjoint functors

\[
\begin{array}{ccc}
\text{AnEnd} & \xrightarrow{i^*} & \mathcal{P}(\Omega_{el}) \\
\downarrow{i_0^*} & & \downarrow{u^*} \\
\mathcal{P}(\Omega_{int}) & \xrightarrow{\sim} & \mathcal{P}(\Omega_{int}).
\end{array}
\]

The functor \(u^* \) given by composition with \(u \) also has a right adjoint \(u_* \), given by right Kan extension along \(u^{op} \).

Lemma 3.3.14. The natural transformation

\[
i_0^* \to u_* u^* i_0^* \simeq u_* i^*,
\]

induced by the unit for the adjunction \(u^* \dashv u_* \), is an equivalence.

Proof. For \(P \in \text{AnEnd} \) and \(T \in \Omega_{int} \), we have

\[
(i_0^* P)(T) \simeq \text{Map}(i_0 T, P) \simeq \text{Map} \left(i_0 \left(\lim_{E \in \text{el}(T)} u E \right), P \right) \simeq \text{Map} \left(\lim_{E \in \text{el}(T)} i_0 u E, P \right) \simeq \lim_{E \in \text{el}(T)} \text{Map}(i E, P),
\]

since \(T \) is the colimit of its elementary subtrees in \(\Omega_{int} \) and this colimit is preserved by the inclusion \(i_0 \) by Lemma 3.3.5. But this gives precisely the limit formula for the right Kan extension \(u_* i^* P \). \(\square \)

Proposition 3.3.15. The functor \(i_0^* : \text{AnEnd} \to \mathcal{P}(\Omega_{int}) \) is fully faithful with image the Segal presheaves. In other words, it induces an equivalence

\[
\text{AnEnd} \xrightarrow{\sim} \mathcal{P}_{Seg}(\Omega_{int}).
\]

Proof. By Lemma 3.3.14, \(i_0^* \) factors as \(i^* \) followed by \(u_* \). But \(i^* \) is an equivalence by Proposition 3.3.10, so \(i_0^* \) is fully faithful because \(u_* \) is, and has the same image as \(u_* \), which is \(\mathcal{P}_{Seg}(\Omega_{int}) \) by definition. \(\square \)
4. Initial Algebras and Free Monads

4.1. Initial Lambek Algebras. In this subsection we prove an \(\infty\)-categorical version of the existence theorem for initial Lambek algebras. In ordinary category theory, the study of initial algebras for endofunctors goes back to Lambek [Lam68], while the existence result is due to Adámek [Adá74]. In the present account, we establish the initial-algebra theorem via a lightweight version of bar-cobar duality.

Definition 4.1.1. Let \(P: \mathcal{C} \to \mathcal{C}\) be any endofunctor. Recall that a Lambek \(P\)-algebra is a pair \((A, a)\) where \(A\) is an object of \(\mathcal{C}\) and \(a: PA \to A\) is a morphism of \(\mathcal{C}\). Dually, a Lambek \(P\)-coalgebra is a pair \((C, c)\) where \(C\) is an object and \(c: C \to PC\) is a morphism. (We shall omit the attribute ‘Lambek’ for the rest of this subsection.) Formally, the \(\infty\)-categories of \(P\)-algebras and \(P\)-coalgebras are defined as pullbacks

\[\begin{array}{c}
\text{alg}_P(\mathcal{C}) \ar[r]^-{\gamma} \ar[d]^-{(P, \text{id})} & \mathcal{C}^\Delta^1 \ar[d]^-{(ev_0, ev_1)} \\
\mathcal{C} \ar[r]_-{(P, \text{id})} & \mathcal{C} \times \mathcal{C},
\end{array}\]

\[\begin{array}{c}
\text{coalg}_P(\mathcal{C}) \ar[r]^-{\gamma} \ar[d]^-{(ext{id}, P)} & \mathcal{C}^\Delta^1 \ar[d]^-{(ev_0, ev_1)} \\
\mathcal{C} \ar[r]_-{(\text{id}, P)} & \mathcal{C} \times \mathcal{C}.
\end{array}\]

Definition 4.1.2. If \((A, a)\) is a \(P\)-algebra and \((C, c)\) is a \(P\)-coalgebra, then a \(P\)-twisting morphism is a morphism \(f: C \to A\) in \(\mathcal{C}\) together with a commutative square

\[\begin{array}{c}
PC \ar[r]^-{\gamma} \ar[d]^-{Pf} & \mathcal{C}^\Delta^1 \ar[d]^-{f} \\
PA \ar[r]_-{\gamma} \ar[u]^-{a} & \mathcal{C} \times \mathcal{C}.
\end{array}\]

We define the space \(\text{Tw}_P(C, A)\) of \(P\)-twisting morphisms from \(C\) to \(A\) as the equalizer

\[\text{Tw}_P(C, A) \to \text{Map}(C, A) \rightrightarrows \text{Map}(C, A),\]

where the two maps \(\text{Map}(C, A) \to \text{Map}(C, A)\) are the identity and \(f \mapsto a \circ Pf \circ c\). (The equation \(f \simeq a \circ Pf \circ f\) may be viewed as the analogue of the Maurer–Cartan equation in this context.)

It will be useful to note that a \(P\)-twisting morphism may also be seen as a \(\text{Tw}(P)\)-algebra in the twisted arrow \(\infty\)-category \(\text{Tw}(\mathcal{C})\), as we proceed to establish.

Definition 4.1.3. Recall that, for \(\mathcal{C}\) an \(\infty\)-category, the twisted arrow \(\infty\)-category \(\text{Tw}(\mathcal{C})\) has as objects the morphisms in \(\mathcal{C}\), and a morphism in \(\text{Tw}(\mathcal{C})\) from \(f': X' \to Y'\) to \(f: X \to Y\) is a commutative diagram

\[\begin{array}{c}
X' \ar[r]^-{f'} \ar[d]^-{X} & X \ar[d]^-{f} \\
Y' \ar[r]_-{Y} & Y.
\end{array}\]

See [Bar17] or [Lur17, §5.2.1] for a more formal definition. Note that in our convention it is the codomain component that determines the direction of the morphism. (Lurie [Lur17, §5.2.1] uses the opposite convention.)

There is a canonical left fibration

\[(\text{dom}, \text{codom}): \text{Tw}(\mathcal{C}) \to \mathcal{C}^\text{op} \times \mathcal{C},\]

corresponding to the functor \(\text{Map}(\mathcal{C}^\text{op} \times \mathcal{C}) \to \mathcal{C}^\text{op} \times \mathcal{C} \to \mathcal{S}\).
Proposition 4.1.4. The endofunctor \(P : \mathcal{C} \to \mathcal{C} \) induces an endofunctor \(\text{Tw}(P) : \text{Tw}(\mathcal{C}) \to \text{Tw}(\mathcal{C}) \) and a morphism of endofunctors

\[
\begin{array}{ccc}
\text{Tw}(\mathcal{C}) & \xrightarrow{\text{Tw}(P)} & \text{Tw}(\mathcal{C}) \\
\downarrow & & \downarrow \\
\mathcal{C}^{\text{op}} \times \mathcal{E} & \xrightarrow{P^{\text{op}} \times P} & \mathcal{E}^{\text{op}} \times \mathcal{E}.
\end{array}
\]

This induces a functor

\[
\text{alg}_{\text{Tw}(P)}(\text{Tw}(\mathcal{C})) \longrightarrow \text{alg}_{P^{\text{op}} \times P}(\mathcal{E}^{\text{op}} \times \mathcal{C}) \cong \text{alg}_{P^{\text{op}}}(\mathcal{E}^{\text{op}}) \times \text{alg}_{P}(\mathcal{C})
\]

which is a left fibration such that the fibre over \((C, A) \in \text{coalg}_{P}(\mathcal{E})^{\text{op}} \times \text{alg}_{P}(\mathcal{C})\) is the space \(\text{Tw}(P)(C, A) \) of \(P \)-twisting morphisms from \(C \) to \(A \).

Before we prove this, we make some simple observations:

Lemma 4.1.5. Consider a commutative diagram of \(\infty \)-categories

\[
\begin{array}{ccc}
\mathcal{E}' & \longrightarrow & \mathcal{E} \\
\downarrow & & \downarrow \\
\mathcal{B}' & \longrightarrow & \mathcal{B}
\end{array}
\]

where the vertical maps are cocartesian fibrations and the upper horizontal maps preserve cocartesian morphisms. Then the induced functor

\[
\mathcal{E}' \times_{\mathcal{E}} \mathcal{E}'' \longrightarrow \mathcal{B}' \times_{\mathcal{B}} \mathcal{B}''
\]

is again a cocartesian fibration, and the morphism \(\mathcal{E}' \times_{\mathcal{E}} \mathcal{E}'' \) preserves cocartesian morphisms. Moreover, if the vertical maps are actually left fibrations, then so is this new map.

Proof. Given a morphism \(f \) in \(\mathcal{B}' \times_{\mathcal{B}} \mathcal{B}'' \) it is easy to see that the morphism in \(\mathcal{E}' \times_{\mathcal{E}} \mathcal{E}'' \) corresponding to a compatible choice of cocartesian morphisms over the images of \(f \) in \(\mathcal{B}', \mathcal{E}, \) and \(\mathcal{E}'' \) is cocartesian. \(\Box \)

Lemma 4.1.6. Suppose \(\mathcal{C} \) and \(\mathcal{D} \) are \(\infty \)-categories equipped with endofunctors \(P : \mathcal{C} \to \mathcal{C} \) and \(Q : \mathcal{D} \to \mathcal{D}, \) and \(F : \mathcal{D} \to \mathcal{C} \) is a cocartesian fibration which is compatible with \(P \) and \(Q \) in the sense that there is a commutative square

\[
\begin{array}{ccc}
\mathcal{D} & \xrightarrow{Q} & \mathcal{D} \\
\downarrow{F} & & \downarrow{F} \\
\mathcal{E} & \xrightarrow{P} & \mathcal{C}
\end{array}
\]

and \(Q \) preserves \(F \)-cocartesian morphisms. Then the resulting functor \(\text{alg}_{Q}(\mathcal{D}) \to \text{alg}_{P}(\mathcal{C}) \) is a cocartesian fibration. Furthermore, if \(F \) is actually a left fibration, then \(\text{alg}_{Q}(\mathcal{D}) \to \text{alg}_{P}(\mathcal{C}) \) is itself a left fibration.

Proof. The functor \(F \) induces morphisms of cocartesian (respectively, left) fibrations

\[
\begin{array}{ccc}
\mathcal{D}^{\Delta^1} & \longrightarrow & \mathcal{D}^{P \Delta^1} \\
\downarrow & & \downarrow \\
\mathcal{C}^{\Delta^1} & \longrightarrow & \mathcal{C}^{P \Delta^1}
\end{array} \quad \text{and} \quad \begin{array}{ccc}
\mathcal{D} & \xrightarrow{(Q, \text{id})} & \mathcal{D} \\
\downarrow{(P, \text{id})} & & \downarrow{(P, \text{id})} \\
\mathcal{E} & \xrightarrow{(P, \text{id})} & \mathcal{E} \\
\end{array}
\]

(note that this second square commutes by virtue of our assumption on \(F \)). Taking pullbacks, we obtain the natural map \(\text{alg}_{Q}(\mathcal{D}) \to \text{alg}_{P}(\mathcal{C}) \) which is therefore a cocartesian (respectively, left) fibration by Lemma 4.1.5. \(\Box \)
Proof of Proposition 4.1.4. It follows from Lemma 4.1.6 applied to the left fibration $F: \text{Tw}(\mathcal{C}) \to \mathcal{C} \times \mathcal{C}$ that the induced map

$$\text{alg}_{\text{Tw}(P)}(\text{Tw}(\mathcal{C})) \to \text{coalg}_P(\mathcal{C}) \times \text{alg}_P(\mathcal{C})$$

is a left fibration. It remains to see that the fibre over $(C, A) \in \text{coalg}_P(\mathcal{C}) \times \text{alg}_P(\mathcal{C})$ is the space of P-twisting morphisms. By construction, this fibre is obtained as the pullback of fibres of the induced left fibrations. The fibre of F over the object (C, A) is the space $\text{Map}(C, A)$, and the fibre of $F_{\Delta^1}: \text{Tw}(\mathcal{C})_{\Delta^1} \to (\mathcal{C})_{\Delta^1} \times \mathcal{C}_{\Delta^1}$ is computed as $\text{Map}(C, A)_{\Delta^1} \simeq \text{Map}(C, A)$. Hence the pullback M of the fibres fits into the commutative square

$$\begin{array}{ccc}
 M & \rightarrow & \text{Map}(C, A) \\
 \downarrow & & \downarrow \text{diag.} \\
 \text{Map}(C, A)_{f \mapsto (a \circ Pf \circ c, f)} & \rightarrow & \text{Map}(C, A) \times \text{Map}(C, A).
\end{array}$$

But this M is just a pullback reformulation of the equalizer definition of $\text{Tw}_P(C, A)$.

Lemma 4.1.7. A P-coalgebra morphism $(C, c) \to (C', c')$ induces a map $\text{Tw}_P(C', A) \to \text{Tw}_P(C, A)$ by pre-composition. Similarly, a P-algebra morphism $(A', a') \to (A, a)$ induces a map $\text{Tw}_P(C, A') \to \text{Tw}_P(C, A)$ by post-composition.

Proof. This is immediate from the description of these spaces as fibres of a left fibration.

If (C, c) is a P-coalgebra, then (PC, Pc) is a P-coalgebra, and $c: (C, c) \to (PC, Pc)$ is a P-coalgebra morphism. The following is the key property of twisting morphisms:

Lemma 4.1.8. For a P-coalgebra (C, c) and a P-algebra (A, a), the map $\text{Tw}_P(PC, A) \to \text{Tw}_P(C, A)$ which sends g to $g \circ c$, is an equivalence, with inverse the map $\text{Tw}_P(C, A) \to \text{Tw}_P(PC, A)$ which sends f to $a \circ Pf$.

Proof. We first detail the inverse. If $f: C \to A$ is a twisting morphism with square

$$\begin{array}{ccc}
 PC & \leftarrow & C \\
 Pf & \downarrow & f \\
 PA & \rightarrow & A,
\end{array}$$

apply P and paste with a trivial square like this:

$$\begin{array}{ccc}
 PPC & \leftarrow & PC \\
 PPf & \downarrow & Pf \\
 PPA & \rightarrow & PA \\
 Pa & \downarrow & a \\
 PA & \rightarrow & A.
\end{array}$$

The left vertical composition is $Pa \circ PPf \simeq P(a \circ Pf)$, so the composite square exhibits $a \circ Pf$ as a twisting morphism, as required.

To see that the two constructions are inverse, we check that the respective composites are naturally equivalent to the respective identity functors. Starting with the square for $f: C \to A$, going
left and then back right gives

\[PC \xleftarrow{c} C \]
\[P \xrightarrow{Pc} PPC \]
\[PPf \xrightarrow{PPPc} PC \]
\[PPA \xrightarrow{Pa} PA \]
\[Pa \xrightarrow{a} A \]

but this is homotopic to the original square for \(f \) since \(f \) is twisting. On the other hand, starting with the square for \(g: PC \to A \), going right and then back left gives

\[PPC \xleftarrow{PC} PC \]
\[PPPC \xrightarrow{PPPc} PC \]
\[PPPf \xrightarrow{PPg} PPA \]
\[PPA \xrightarrow{Pa} PA \]
\[Pa \xrightarrow{a} A \]

which is also homotopic to the original square for \(g \) since \(g \) is twisting.

Definition 4.1.9. Assume \(\mathcal{C} \) has filtered colimits and that \(P: \mathcal{C} \to \mathcal{C} \) preserves them. Then for a \(P \)-coalgebra \(C \) we have a diagram

\[C \xrightarrow{\sim} PC \xrightarrow{Pc} P^2C \to \cdots \]

Let \(I_C := \text{colim}_{n \to \infty} P^n C \) be the colimit of this sequence. Then there is a canonical map

\[I_C \simeq \text{colim}_n P^{n+1} C \to P(\text{colim}_n P^n \mathcal{C}) \simeq PI_C. \]

Since \(P \) preserves filtered colimits, this map is an equivalence. If \(u \) denotes its inverse, the pair \((I_C, u)\) is a \(P \)-algebra. We denote this \(P \)-algebra \(\Omega C \) and refer to it as the cobar construction of \(C \).

We will now establish a universal property of the cobar construction, which in particular implies that it determines a functor \(\Omega: \text{coalg}_P(\mathcal{C}) \to \text{alg}_P(\mathcal{C}) \). Under further assumptions, we will see that it is left adjoint to a dual bar construction, which gives a \(P \)-coalgebra from a \(P \)-algebra.

Lemma 4.1.10. If \((U, u)\) is a \(P \)-coalgebra for which \(u \) is an equivalence, with inverse \(v \) giving a \(P \)-algebra \((U, v)\), then for any \(P \)-algebra \((A, a)\) we have

\[\text{Map}_{\text{alg}_P}(U, A) \simeq \text{Tw}_P(U, A). \]

Proof. Consider the diagram

The top square is a pullback by definition of \(\text{alg}_P(\mathcal{C}) \) as a pullback. The bottom map is an equivalence since \(v \) is an equivalence. Since the right fork is an equalizer, it follows (by a standard argument,
for example by expressing equalizers as pullbacks) that also the left fork is an equalizer, hence \(\text{Map}_{\text{alg}}(U, A) \cong \text{Tw}_P(U, A) \) as required.

Definition 4.1.11. Assume that \(\mathcal{C} \) has filtered colimits and that \(P : \mathcal{C} \to \mathcal{C} \) preserves them. Given a \(P \)-coalgebra \((C, c) \), the universal \(P \)-twisting morphism \((C, c) \to (\Omega C, u) \) is the canonical map

\[
C \to \colim_{n \to \infty} P^n C,
\]

which is \(P \)-twisting by virtue of the diagram

\[
\begin{array}{ccc}
PC & \xleftarrow{c} & C \\
\downarrow & & \downarrow \\
P(\Omega C) & \xrightarrow{u} & \Omega C
\end{array}
\]

(where all the morphisms are the canonical ones from the colimit diagram defining \(\Omega C \)).

Proposition 4.1.12. For a \(P \)-coalgebra \((C, c) \) and a \(P \)-algebra \((A, a) \) there is a canonical equivalence

\[
\text{Map}_{\text{alg}}(\Omega C, A) \cong \text{Tw}_P(C, A)
\]

given by precomposing with the universal \(P \)-twisting morphism.

Proof. By Lemma 4.1.10, we have

\[
\text{Map}_{\text{alg}}(\Omega C, A) \cong \text{Tw}_P(\colim_n P^n C, A),
\]

and the latter space is described as an equalizer

\[
\text{Tw}_P(\colim_n P^n C, A) \to \text{Map}_C(\colim_n P^n C, A) \Rightarrow \text{Map}_C(\colim_n P^n C, A).
\]

The mapping spaces are in turn limits. Altogether we can write down a big commutative diagram

\[
\begin{array}{ccc}
\vdots & & \vdots \\
\text{Map}(P^2 C, A) & \xrightarrow{\text{id}} & \text{Map}(P^2 C, A) \\
\downarrow & & \downarrow \\
\text{Map}(PC, A) & \xrightarrow{\text{id}} & \text{Map}(PC, A) \\
\downarrow & & \downarrow \\
\text{Map}(C, A) & \xrightarrow{\text{id}} & \text{Map}(C, A)
\end{array}
\]

(It is clear that it commutes, both for the identity maps and for the other horizontal maps.)

We calculate the limit of this diagram in two ways. First we calculate the limit of each column, yielding the parallel pair of maps

\[
\text{Map}_C(\colim_n P^n C, A) \Rightarrow \text{Map}_C(\colim_n P^n C, A),
\]

and then we take the equalizer of this to obtain \(\text{Tw}_P(\colim_n P^n C, A) \). On the other hand, we can calculate the limit by first taking the equalizer of each row. That gives in each row the space \(\text{Tw}_P(P^n C, A) \), and then we can calculate the sequential limit of this new column. Now note that all the maps in the new column are equivalences: this follows from Lemma 4.1.8. So the limit is equivalent to just the zeroth space \(\text{Tw}_P(C, A) \) as claimed. \(\square \)
Proposition 4.1.13. If \mathcal{C} is an ∞-category with filtered colimits and an initial object \emptyset, and $P: \mathcal{C} \to \mathcal{C}$ is a filtered-colimit-preserving endofunctor, then the ∞-category $\text{alg}_{P,\mathcal{C}}(\emptyset)$ has an initial object, given by $\Omega\emptyset$.

Proof. \emptyset has a unique coalgebra structure, and Proposition 4.1.12 gives, for any P-algebra A, $\text{Map}_{\text{alg}}(\Omega\emptyset, A) \simeq \text{Tw}_P(\emptyset, A)$. Since the latter space is clearly contractible, it follows that $\Omega\emptyset$ is an initial P-algebra. \qed

Remark 4.1.14. The constructions, results and proofs go through more generally when \mathcal{C} has κ-filtered colimits and $P: \mathcal{C} \to \mathcal{C}$ preserves them. The important point is that even if P does not preserve ω-filtered colimits, there is still a transition map $I \to PI$ at each colimit step, so that I is again a P-coalgebra. P can now be applied iteratively again, the next colimit can be taken, and so on, until the resulting chain is longer than κ, and P will preserve the colimit to yield an invertible structure map for the resulting P-coalgebra, and hence a P-algebra. Accepting notation such as $\text{colim}_{n \leq \kappa} P^n C$ for transfinite application of P alternated with taking colimits, all the subsequent constructions go through.

Remark 4.1.15. All the constructions, results and proofs can be dualized: assume that \mathcal{C} has cofiltered limits, and that P preserves them. Then there is a functor $B: \text{alg}_P \to \text{coalg}_P$ taking a P-algebra (A,a) to the limit of the chain $A \leftarrow PA \leftarrow P^2 A \leftarrow \cdots$. (This is called the bar construction.)

The notion of P-twisting morphism is still the same, but now the results are about applying P to A instead of C. Lemma 4.1.8 becomes the statement that the following maps are inverse homotopy equivalences:

$$\text{Tw}_P(C, PA) \longrightarrow \text{Tw}_P(C, A) \quad g \longmapsto a \circ g$$

$$Pf \circ c \longleftarrow f$$

Assuming that \mathcal{C} has cofiltered limits and P preserves them, we get

$$\text{Map}_{\text{alg}}(C, BA) \simeq \text{Tw}_P(C, A).$$

Putting together the two sides of duality, we get:

Theorem 4.1.16. If \mathcal{C} has filtered colimits and cofiltered limits, and if $P: \mathcal{C} \to \mathcal{C}$ preserves them, then Ω is left adjoint to B. Altogether

$$\text{Map}_{\text{alg}}(\Omega C, A) \simeq \text{Tw}_P(C, A) \simeq \text{Map}_{\text{coalg}}(C, BA).$$

In the case of interest here, \mathcal{C} will be presentable, and P will be analytic. In particular P then preserves filtered colimits, and also preserves cofiltered limits (since these are weakly contractible), so the theorem applies.

4.2. Free Monads.

Definition 4.2.1. Let \mathcal{C} be an ∞-category with binary coproducts, let $P: \mathcal{C} \to \mathcal{C}$ be an endofunctor, and let X be an object of \mathcal{C}. Define a new endofunctor $P_X: \mathcal{C}_{/X} \to \mathcal{C}_{/X}$ as the composite

$$\mathcal{C}_{/X} \xrightarrow{u_X} \mathcal{C} \xrightarrow{P} \mathcal{C} \xrightarrow{a_X} \mathcal{C}_{/X},$$

where u_X is the forgetful functor, with left adjoint $a_X = X \amalg (\cdot)$.

Lemma 4.2.2. In the situation of the previous definition, there is a canonical equivalence

$$\text{alg}_{P_X}(\mathcal{C}_{/X}) \simeq \text{alg}_P(\mathcal{C})_{/X}.$$
Proof. Both ∞-categories are defined as pullbacks:
\[
\begin{array}{ccc}
\text{alg}_{P \times} (C_{X_j}/) & \longrightarrow & (C_{X_j}/)^{\Delta^i} \\
\downarrow & & \downarrow \\
C_{X_j}/ & \longrightarrow & C_{X_j}/ \times C_{X_j}/.
\end{array}
\]
\[
\begin{array}{ccc}
\text{alg}_{P} (C) & \longrightarrow & C^{\Delta^1} \\
\downarrow & & \downarrow \\
C & \longrightarrow & C \times C.
\end{array}
\]
The bottom functors can be factored into three steps, respectively:
\[
\begin{array}{ccc}
C_{X_j}/ & \longrightarrow & C_{X_j}/ \times C_{X_j}/, \\
\downarrow & & \downarrow \\
C_{X_j}/ & \longrightarrow & C \times C.
\end{array}
\]
The first two steps are the same, and for the last step we have an equivalence of pullbacks
\[
(C_{X_j}/)^{\Delta^1} \quad \quad \gamma \quad \quad \gamma^{\ast} \quad \quad (C_{X_j}/)^{\Delta^1}
\]
since a_{X_j} is left adjoint to u_{X_j}. □

Lemma 4.2.3. Suppose C has colimits of shape K and $P: C \to C$ preserves them. Then $\text{alg}_{P} (C)$ has colimits of shape K and the forgetful functor $U: \text{alg}_{P} (C) \to C$ preserves and reflects them.

Proof. The ∞-category $\text{alg}_{P} (C)$ is defined as a pullback
\[
\begin{array}{ccc}
\text{alg}_{P} (C) & \longrightarrow & C^{\Delta^1} \\
\downarrow & & \downarrow \\
C & \longrightarrow & C \times C.
\end{array}
\]
Here the ∞-categories C^{Δ^1}, C, and $C \times C$ have colimits of shape K, and the functors $(\text{ev}_0, \text{ev}_1)$ and (P, id) preserve them. It therefore follows from [Lur09a, Lemma 5.4.5.5] that $\text{alg}_{P} (C)$ has colimits of shape K, and that a diagram $K^\vee \to \text{alg}_{P} (C)$ is a colimit if and only if its images in C and C^{Δ^1} are colimits. Since the functor $(\text{ev}_0, \text{ev}_1)$ preserves and reflects colimits, this is equivalent to the image under U being a colimit. □

Proposition 4.2.4. Suppose C is an ∞-category with filtered colimits and binary coproducts, and $P: C \to C$ is an endofunctor that preserves filtered colimits. Then the forgetful functor $U: \text{alg}_{P} (C) \to C$ has a left adjoint, and the resulting adjunction is monadic.

Proof. To see that U has a left adjoint, it suffices to show that for every $X \in C$ the ∞-category $\text{alg}_{P} (C)_{X_j}$ has an initial object. But $\text{alg}_{P} (C)_{X_j}$ can be identified with $\text{alg}_{P_X} (C_{X_j})$ by Lemma 4.2.2, where $P_X = a_X \circ P \circ u_X$ as in Definition 4.2.1. Moreover, the functor P_X preserves filtered colimits (indeed u_X preserves filtered colimits by the dual of Lemma 2.2.7, P preserves filtered colimits by assumption, and a_X is a left adjoint). Therefore $\text{alg}_{P_X} (C_{X_j})$ has an initial object by Proposition 4.1.13 since C_{X_j} obviously has an initial object, and has filtered colimits by the dual of Lemma 2.2.7.

To show that the resulting adjunction is monadic, we apply the Lurie–Bar–Bek monadicity theorem [Lur17, Theorem 4.7.3.5]. For this we must show that U detects equivalences, which is clear, and that $\text{alg}_{P} (C)$ has colimits of U-split simplicial diagrams, and U preserves these. Consider a U-split simplicial diagram $A_*: \Delta^{np} \to \text{alg}_{P} (C)$. By (the proof of) [Lur09a, Lemma 5.4.5.5] it is enough to show that the images of A_* in C and C^{Δ^1} have colimits, and these are preserved by the functors $(P, \text{id}): C \to C \times C$ and $(\text{ev}_0, \text{ev}_1): C^{\Delta^1} \to C \times C$. Since A_* is U-split, it follows from
(Lur17, Remark 4.7.2.3) that $U(A_\bullet)$ has a colimit $C \in \mathcal{C}$, and this is preserved by any functor, in particular by P. Thus the map $PC \simeq \operatorname{colim} PU(A_\bullet) \rightarrow \operatorname{colim} U(A_\bullet) \simeq C$ induced by the algebra structure maps in A_\bullet is a colimit in \mathcal{C}^Δ_1. Thus A_\bullet has a colimit in $\text{alg}_P(\mathcal{C})$ and U preserves it. □

Notation 4.2.5. For any ∞-category \mathcal{C} we write $\text{Mnd}(\mathcal{C})$ for the ∞-category of monads on \mathcal{C}, defined as the ∞-category $\text{Alg}(\text{End}(\mathcal{C}))$ of associative algebras in $\text{End}(\mathcal{C})$ with respect to the monoidal structure given by composition, as in [Lur17, §4.7.1]. If $T \in \text{Mnd}(\mathcal{C})$ is a monad on \mathcal{C}, we write $\text{Alg}_T(\mathcal{C})$ for the ∞-category of T-algebras in \mathcal{C} (which can be defined as the ∞-category $\text{LMod}_T(\mathcal{C})$ of left T-modules via the action of $\text{End}(\mathcal{C})$ on \mathcal{C}). Note that we write lowercase alg for Lambek algebras for an endofunctor and uppercase Alg for algebras for a monad.

Definition 4.2.6. If \mathcal{C} is an ∞-category with filtered colimits and binary coproducts, and $P \in \text{End}(\mathcal{C})$ is a filtered-colimit-preserving endofunctor on \mathcal{C}, we write $\mathcal{C} \rightleftarrows \text{alg}_P(\mathcal{C}) : P$ for the monad associated to the monadic adjunction $\mathcal{C} \rightleftarrows \text{Alg}(\text{End}(\mathcal{C}))$ of Proposition 4.2.4; this exists by [Lur17, Proposition 4.7.3.3].

With this notation, we have:

Corollary 4.2.7. There is a canonical equivalence

$$\text{alg}_P(\mathcal{C}) \simeq \text{Alg}_{\text{id}}(\mathcal{C})$$

over \mathcal{C}. □

The following result shows that P is the free monad on P:

Proposition 4.2.8. Suppose \mathcal{C} is an ∞-category with filtered colimits and binary coproducts, and $P : \mathcal{C} \rightarrow \mathcal{C}$ is an endofunctor that preserves filtered colimits. Then for every monad T on \mathcal{C} the morphism

$$\text{Map}_{\text{Mnd}(\mathcal{C})}(P, T) \rightarrow \text{Map}_{\text{End}(\mathcal{C})}(P, T)$$

induced by the natural transformation $P \rightarrow P$ is an equivalence.

The final ingredient needed for the proof of Proposition 4.2.8 is the following observation:

Proposition 4.2.9. For any endofunctor $P : \mathcal{C} \rightarrow \mathcal{C}$ and any adjunction

$$L : \mathcal{C} \rightleftarrows \mathcal{D} : R$$

there is a natural equivalence

$$\text{Map}_{/\mathcal{C}}(\mathcal{D}, \text{alg}_P(\mathcal{C})) \simeq \text{Map}_{\text{End}(\mathcal{C})}(P, RL).$$

Proof. It is enough to establish

$$\text{Map}_{/\mathcal{C}}(\mathcal{D}, \text{alg}_P(\mathcal{C})) \simeq \text{Map}_{\text{Fun}(\mathcal{D}, \mathcal{C})}(PR, R),$$

because the latter space is equivalent to $\text{Map}_{\text{End}(\mathcal{C})}(P, RL)$ by adjunction. Consider the diagram

\[\begin{array}{ccc} \mathcal{D} & \rightarrow & \mathcal{C}^\Delta_1 \\ \phi \downarrow & & \downarrow (\text{ev}_0, \text{ev}_1) \\ \text{alg}_P(\mathcal{C}) & \leftarrow & \mathcal{C} \times \mathcal{C} \\ \Psi \downarrow & & \downarrow (P_{\text{id}}, \text{id}) \\ \mathcal{C} & \rightarrow & \mathcal{C}. \end{array} \]

Since $\text{alg}_P(\mathcal{C})$ is defined as a pullback, we see that giving $\Phi \in \text{Map}_{/\mathcal{C}}(\mathcal{D}, \text{alg}_P(\mathcal{C}))$ is equivalent to giving Ψ, which amounts precisely to giving a natural transformation from PR to R, as required. □

Proof of Proposition 4.2.8. Combine the equivalences of Proposition 4.2.9, Corollary 4.2.7, and Corollary B.2.5.
Definition 4.2.10. Let \(\mathcal{C} \) be an \(\infty \)-category with filtered colimits. We write \(\text{End}^\omega(\mathcal{C}) \) for the full subcategory of \(\text{End}(\mathcal{C}) \) spanned by the endofunctors that preserve filtered colimits. These are closed under composition, and so we get an \(\infty \)-category \(\text{Mnd}^\omega(\mathcal{C}) := \text{Alg}(\text{End}^\omega(\mathcal{C})) \), the full subcategory of \(\text{Mnd}(\mathcal{C}) \) spanned by the monads that preserve filtered colimits.

Corollary 4.2.11. Suppose \(\mathcal{C} \) is an \(\infty \)-category with filtered colimits and binary coproducts. Then the forgetful functor \(\text{Mnd}^\omega(\mathcal{C}) \to \text{End}^\omega(\mathcal{C}) \) has a left adjoint.

Proof. By Proposition 4.2.8, for each \(P \in \text{End}^\omega(\mathcal{C}) \) the \(\infty \)-category \(\text{Mnd}^\omega(\mathcal{C})_P \) has an initial object, namely the free monad \(\overline{P} \) on \(P \). This implies that the forgetful functor has a left adjoint, which assigns to every endofunctor \(P \) its free monad \(\overline{P} \). \(\square \)

Our next goal is to prove that this free monad adjunction is itself monadic, at least if we impose further restrictions on the monads:

Definition 4.2.12. Suppose \(\mathcal{C} \) is an \(\infty \)-category with sifted colimits. We write \(\text{End}^\sigma(\mathcal{C}) \) for the full subcategory of \(\text{End}(\mathcal{C}) \) spanned by the endofunctors that preserve sifted colimits, and let \(\text{Mnd}^\sigma(\mathcal{C}) \) denote the full subcategory of \(\text{Mnd}(\mathcal{C}) \) of monads whose underlying endofunctors preserve sifted colimits.

Lemma 4.2.13. Suppose \(\mathcal{C} \) is an \(\infty \)-category with sifted colimits and binary coproducts. If \(P : \mathcal{C} \to \mathcal{C} \) preserves sifted colimits, then the underlying endofunctor of the free monad \(\overline{P} \) on \(P \) also preserves sifted colimits.

Proof. It suffices to show that the forgetful functor \(U : \text{alg}_P(\mathcal{C}) \to \mathcal{C} \) preserves sifted colimits, but this is a special case of Lemma 4.2.3. \(\square \)

Thus if \(\mathcal{C} \) is an \(\infty \)-category with sifted colimits and binary coproducts, then the free monad functor restricts to give an adjunction

\[
F : \text{End}^\sigma(\mathcal{C}) \rightleftarrows \text{Mnd}^\sigma(\mathcal{C}) : U.
\]

Proposition 4.2.14. Suppose \(\mathcal{C} \) is an \(\infty \)-category with sifted colimits. Then \(\text{Mnd}^\sigma(\mathcal{C}) \) has sifted colimits, and these are preserved by \(U \).

Proof. \(\text{Mnd}^\sigma(\mathcal{C}) \) is the \(\infty \)-category of associative algebras in the monoidal \(\infty \)-category \(\text{End}^\sigma(\mathcal{C}) \), where the tensor product, i.e. composition, commutes with sifted colimits in each variable (since we are considering endofunctors that preserve these colimits). The result is therefore a special case of [Lur17, Proposition 3.2.3.1]. \(\square \)

Corollary 4.2.15. Suppose \(\mathcal{C} \) is an \(\infty \)-category with sifted colimits and binary coproducts. Then the adjunction

\[
F : \text{End}^\sigma(\mathcal{C}) \rightleftarrows \text{Mnd}^\sigma(\mathcal{C}) : U.
\]

is monadic.

Proof. We already know from Proposition 4.2.14 that \(\text{Mnd}^\sigma(\mathcal{C}) \) has all sifted colimits and that \(U \) preserves these. It therefore suffices by [Lur17, Theorem 4.7.3.5] to show that \(U \) detects equivalences, which follows from [Lur17, Lemma 3.2.2.6]. \(\square \)

We end this subsection by noting that, under rather restrictive hypotheses on \(\mathcal{C} \), this implies that \(\text{Mnd}(\mathcal{C}) \) is presentable:

Definition 4.2.16. Let us say that an \(\infty \)-category \(\mathcal{C} \) is **sifted-presentable** if it is of the form \(\mathcal{P}_\Sigma(\mathcal{C}_0) \) for some small \(\infty \)-category \(\mathcal{C}_0 \) with coproducts, using the notation of [Lur09a, §5.5.8].

Remark 4.2.17. The only reason for introducing this notion is that it implies that \(\text{End}^\sigma(\mathcal{C}) \) is presentable. We believe this should be true for any presentable \(\infty \)-category \(\mathcal{C} \), but we will not attempt to prove this as it is not needed for our purposes.
Corollary 4.2.18. Suppose \(\mathcal{C} \) is a sifted-presentable \(\infty \)-category. Then \(\text{Mnd}^\sigma(\mathcal{C}) \) is a presentable \(\infty \)-category.

Proof. Since \(\mathcal{C} \) is sifted-presentable, the \(\infty \)-category \(\text{End}^\sigma(\mathcal{C}) \) is equivalent to \(\text{Fun}(\mathcal{C}_0, \mathcal{C}) \) where \(\mathcal{C}_0 \) is a small \(\infty \)-category, and so this \(\infty \)-category is presentable. Moreover, the \(\infty \)-category \(\text{Mnd}^\sigma(\mathcal{C}) \) has sifted colimits by Proposition 4.2.14 and these are preserved by the forgetful functor to \(\text{End}^\sigma(\mathcal{C}) \). Applying [GH15, Lemma A.5.8, Proposition A.5.9] to the adjunction
\[
F : \text{End}^\sigma(\mathcal{C}) \rightleftarrows \text{Mnd}^\sigma(\mathcal{C}) : U,
\]
which is monadic by Corollary 4.2.15, it follows that \(\text{Mnd}^\sigma(\mathcal{C}) \) is presentable. \(\square \)

4.3. An Explicit Description of the Free Monad. We will now give a more explicit description of the free monad \(\overline{P} \) as the colimit of a sequence of functors.

Definition 4.3.1. For \(\mathcal{C} \) an \(\infty \)-category with filtered colimits and binary coproducts, and \(P : \mathcal{C} \to \mathcal{C} \) an endofunctor that preserves filtered colimits, we will recursively define endofunctors \(P_n \) and natural transformations
\[
P_0 \xrightarrow{f_1} P_1 \xrightarrow{f_2} P_2 \xrightarrow{f_3} \cdots
\]
where \(P_0 := \text{id}_C \), and recursively \(P_{n+1} := \text{id}_C \circ (P \circ P_n) \). For the natural transformations, \(f_1 \) is the coproduct inclusion, and \(f_{n+1} := \text{id}_C \circ P(f_n) \).

Proposition 4.3.2. With notation as above, we have a natural equivalence
\[
\colim_{n \to \infty} P_n \simeq \overline{P}.
\]

Lemma 4.3.3. Let \(F : \mathcal{C} \to \text{alg}_P(\mathcal{C}) \) be the left adjoint to the forgetful functor \(U : \text{alg}_P(\mathcal{C}) \to \mathcal{C} \). The composite of \(F \) with the forgetful functor \(\text{alg}_P(\mathcal{C}) \to \mathcal{C}^{\Delta^1} \) corresponds to a natural transformation \(\phi : P\overline{P} \to \overline{P} \). The induced transformation
\[
\text{id}_C \circ (P \overline{P}) \xrightarrow{\eta \Pi f_0} \overline{P},
\]
where \(\eta \) is the unit for the adjunction \(F \dashv U \), is an equivalence.

Proof. Evaluating at \(X \in \mathcal{C} \) the map \(X \Pi P\overline{P}(X) \to \overline{P}(X) \) is the structure map \(P_X \overline{P}X \to \overline{P}X \) exhibiting \(\overline{P}X \) as the initial \(P_X \)-algebra, which we know is an equivalence. \(\square \)

Proof of Proposition 4.3.2. To define a natural transformation \(\colim_{n \to \infty} P_n \to \overline{P} \) we recursively define natural transformations \(\pi_n : P_n \to
\overline{P} \) and equivalences \(\pi_n \circ f_n \simeq \pi_{n-1} \).

We start by setting \(\pi_0 := \eta : \text{id}_C \to \overline{P} \), and then given \(\pi_n \) we define \(\pi_{n+1} \) as the composite
\[
P_{n+1} = \text{id} \Pi P_n \xrightarrow{\text{id} \Pi f_n} \text{id} \Pi \overline{P} \xrightarrow{\eta \Pi f_0} \overline{P}.
\]

We then have a commutative diagram
\[
\begin{array}{ccc}
\text{id} & \xrightarrow{\eta} & \text{id} \Pi \overline{P} \\
\text{id} \Pi P & \xrightarrow{\text{id} \Pi f_0} & \text{id} \Pi \overline{P}
\end{array}
\]
which gives an equivalence \(\pi_1 \circ f_1 \simeq \pi_0 \). For \(n > 0 \), the composite \(\pi_{n+1} \circ f_{n+1} \) is equivalent to the composite
\[
\begin{array}{ccc}
\text{id} \Pi P P_{n-1} & \xrightarrow{\text{id} \Pi f_{n-1}} & \text{id} \Pi P_n \xrightarrow{\text{id} \Pi \pi_n} \text{id} \Pi \overline{P}
\end{array}
\]
We can rewrite this as
\[
\begin{array}{ccc}
\text{id} \Pi P P_{n-1} & \xrightarrow{\eta \Pi f_0 \pi_n} \text{id} \Pi \overline{P}.
\end{array}
\]
which is equivalent to \(\eta \Pi f_0 \pi_{n-1} \) — this is the same as \(\pi_n \) by definition, giving the required equivalence \(\pi_{n+1} \circ f_{n+1} \simeq \pi_n \).

It remains to show that the induced map \(\colim_{n \to \infty} P_n X \to \overline{P}X \) is an equivalence for all \(X \in \mathcal{C} \). By definition, \(\overline{P}(X) \) is the underlying object in \(\mathcal{C} \) of the initial \(P_X \)-algebra (notation as in
Definition 4.2.1), in turn described in Proposition 4.1.13 as the colimit of $P_X^n(id_X)$ as $n \to \infty$. But on underlying objects we clearly have $P_nX \simeq P_X^n(id)$, and under this identification, the transition maps $f_n: P_{n-1}X \to P_nX$ are the iterated P_X-coalgae structure maps $e_n: P_X^{n-1}(id) \to P_X^n(id)$, as in Definition 4.1.9. Hence $\mathcal{P} \simeq \lim_{n \to \infty} P_n$ as required.

Lemma 4.3.4. For (A,a) a P-algebra, the underlying map of the counit, $U\epsilon_A: UFUA \to UA$ is naturally identified with the colimit of the sequence of maps $e_n: P_nA \to A$, defined recursively with $e_0: A \to A$ the identity, and e_{n+1} defined as the composite

$$P_{n+1}A = A \amalg PPnA \xrightarrow{id\Pi(P_{n}A)} A \amalg PA \xrightarrow{idA} A$$

(where idA means id on the first summand and a on the second summand).

Proof. We know that FUA is the underlying object in $alg_{\mathcal{P}}(C)$ of $\lim_{n \to \infty} P_X^n(id_A)$, the initial P_X-algebra. Since (A,a) is a P-algebra, the morphism id_A becomes naturally a P_X-algebra, hence there is a unique homomorphism of P_X-algebras $\lim_{n \to \infty} P_X^n(id_A) \to id_A$. The image under the forgetful functor $alg_P(C) \to alg_{\mathcal{P}}(C)$ is the counit ϵ_A. By Proposition 4.1.12, this corresponds to the unique P_X-twisting morphism $id_A \to id_A$. By the (proof of) Lemma 4.4.1, the counit $\epsilon_A: \lim_{n \to \infty} P_X^n(id_A) \to id_A$ is induced by the sequence of twisting morphisms

$$e_n: P_X^n(id_A) \to id_A,$$

where $e_0: id_A \to id_A$ is the identity map, and recursively e_{n+1} is defined as the composite

$$(A \amalg P)^{n+1}(id_A) \simeq (A \amalg P)(A \amalg P)^n(id_A) \xrightarrow{(id\Pi P)(e_n)} (A \amalg P)(A) \xrightarrow{idA} A.$$

The forgetful functor $U: alg_P(C) \to C$ preserves filtered colimits by Lemma 4.2.3, so under the identifications $P_nA \simeq P_X^n(id_A)$, valid in C, this is precisely the sequence of maps of the statement. □

Construction 4.3.5. We define natural transformations, for $m,n \geq 0$

$$\mu_{m,n}: P_n \circ P_m \to P_{m+n}$$

recursively as follows. For the base case $n = 0$ (all $m \geq 0$) we take $\mu_{m,0}: id \circ P_m \to P_m$ to be the identity natural transformation. Assuming $\mu_{m,n}: P_n \circ P_m \to P_{m+n}$ defined, define $\mu_{m,n+1}$ to be the composite

$$P_{m+1} \circ P_m \simeq P_m \amalg (P \circ P_m \circ P_m) \xrightarrow{id\Pi(P_{m,n})} P_m \amalg P \circ P_m \to P_m \amalg P_{m+n+1} \to P_{m+n+1}.$$ Here the second arrow is the sum inclusion $P \circ P_{m+n} \to id \amalg (P \circ P_{m+n}) \simeq P_{m+n+1}$ and the third adds the natural transformation $P_m \to P_{m+n+1}$ which is a composite of f_k in the defining chain.

Lemma 4.3.6. The natural transformations $\mu_{m,n}$ are compatible with the transition maps f_k in both variables. More precisely, we have commutative diagrams for all $m,n \geq 0$

$$\begin{array}{ccc}
P_n \circ P_m & \xrightarrow{\mu_{m,n}} & P_{m+n} \\
\downarrow{f_{m+1}} & & \downarrow{f_{m+1+n}} \\
P_{n+1} \circ P_m & \xrightarrow{\mu_{m,n+1}} & P_{m+n+1}.
\end{array}$$

Proof. For both statements, the proof is by induction on n, the $n = 0$ cases being trivial. Assuming we have the square (1), we also have

$$\begin{array}{ccc}
P_{n+1} \circ P_m & \xrightarrow{P_{n+1} \amalg PP_m} & P_{n+1} \amalg P_{m+n+1} \\
\downarrow{f_{m+2}} & & \downarrow{f_{m+2+n+1}} \\
P_{n+2} \circ P_m & \xrightarrow{P_{n+2} \amalg PP_{m+1}P_m} & P_{n+2} \amalg P_{m+n+2}.
\end{array}$$

Indeed, square (3) commutes by induction (the right summand is P applied to the square (1) of the induction hypothesis) and the two following squares obviously commute. The horizontal composites are precisely $\mu_{m,n+1}$ and $\mu_{m,n+2}$.
Assuming that square (2) commutes, we also have

\[
P_{n+1} \circ P_m \cong P_m \amalg P(P_n P_m) \xrightarrow{id \amalg P(\mu_{m,n})} P_m \amalg PP_{m+n} \xrightarrow{P_m \amalg P_{m+n+1}} P_{m+n+1}
\]

Indeed, the square (4) commutes by induction (the right summand is \(P \) applied to the square (2) of the induction hypothesis) and the two following squares obviously commute. The horizontal composites are precisely \(\mu_{m,n+1} \) and \(\mu_{m+1,n+1} \).

Lemma 4.3.7. The colimit of the sequence of natural transformations

\[
\mu_{m,n} : P_n \circ P_m \to P_{m+n}
\]

for \(m \to \infty \) is naturally identified with the maps

\[
e_n : P_n \to \overline{P}
\]

of Lemma 4.3.4.

Proof. Induction on \(n \). The case \(n = 0 \) is clear, as both maps are the identity. Suppose \(\colim_{m \to \infty} \mu_{m,n} \cong e_n \). Write down \(\mu_{m,n+1} \) according to the recursive definition:

\[
P_{n+1} P_m \cong P_m \amalg (PP_n P_m) \xrightarrow{id \amalg P(\mu_{m,n})} P_m \amalg PP_{m+n} \to P_m \amalg P_{m+n+1} \to P_{m+n+1}.
\]

Take colimit as \(m \to \infty \) to find

\[
P_{n+1} P \cong \overline{P} \amalg (PP_n P) \xrightarrow{id \amalg P(e_n)} \overline{P} \amalg P \to \overline{P} \amalg \overline{P} \to \overline{P},
\]

by induction, using that all the functors commute with filtered colimits. This is precisely the recursive description of \(e_{n+1} \), given in 4.3.4.

Proposition 4.3.8. The multiplication \(\mu : \overline{P} \circ \overline{P} \to \overline{P} \) is the colimit, for \(n \to \infty \), of the natural transformations \(\mu_n : P_n \circ P_n \to P_{2n} \) of Construction 4.3.5. The unit \(\eta : id_\mathcal{C} \to \overline{P} \) is the colimit of the sequence of natural transformations \(\eta_n : id_\mathcal{C} \to P_n \).

Proof. Thanks to the compatibilities with the transition maps of Lemma 4.3.6, we can compute the colimit first by holding \(n \) fixed. Lemma 4.3.7 tells us that for each \(n \) fixed, the \(m \to \infty \) colimit is the map \(e_n : P_n \overline{P} \to \overline{P} \), and Lemma 4.3.4 then tells us that the \(n \to \infty \) colimit of those is the monad multiplication.

4.4. Free Monads in Families

In this section we will extend our results on free monads to the setting of monads and endofunctors on varying base \(\infty \)-categories. In §B, we review work of Zaganidis [Zag17] that leads to a commutative triangle

\[
\begin{array}{ccc}
\text{Mnd}^{\text{colax}} & \xrightarrow{\text{id}} & \text{End}^{\text{colax}} \\
\searrow & & \nearrow \\
& \text{Cat}_\infty,
\end{array}
\]

where \(\text{Mnd}^{\text{colax}} \) is an \(\infty \)-category of monads and colax morphisms, \(\text{End}^{\text{colax}} \) is an \(\infty \)-category of endofunctors and colax morphisms, and the functors to \(\text{Cat}_\infty \) send monads and endofunctors to the \(\infty \)-category they are defined on. Assuming that the horizontal functor is given fibrewise by the forgetful functor \(\text{Alg}(\text{End}(\mathcal{C}))^{op} \to \text{End}(\mathcal{C})^{op} \) (see Warning B.3.1) we then show in Corollary B.3.4...
that if we restrict to the subcategory \(\text{Cat}_\text{radj}_\infty \) where the morphisms are right adjoint functors, we get a commutative diagram

\[
\begin{array}{ccc}
\text{Mnd}^{\text{colax, radj}} & \rightarrow & \text{End}^{\text{colax, radj}} \\
\downarrow & & \downarrow \\
\text{Cat}_\text{radj}_\infty & \rightarrow & & \\
\end{array}
\]

where the two downward functors are cocartesian fibrations, the horizontal functor preserves cocartesian morphisms, and the right-hand functor is also a cartesian fibration. We need to introduce notation for a restricted version of these \(\infty \)-categories:

Definition 4.4.1. Let \(\hat{\text{Cat}}^\sigma_{\text{radj}}_\infty \) be the \(\infty \)-category of sifted-presentable \(\infty \)-categories (in the sense of Definition 4.2.16 — but see Remark 4.2.17), with morphisms the functors that are right adjoints and preserve sifted colimits. Then we define \(\hat{\text{End}}^{\text{colax, radj}}_\sigma_\infty \) to be the full subcategory of the pullback \(\hat{\text{End}}^{\text{colax}} \rightarrow \hat{\text{Cat}}_\infty \) to \(\hat{\text{Cat}}^\sigma_{\text{radj}}_\infty \) spanned by the endofunctors that preserve sifted colimits; we also define \(\hat{\text{Mnd}}^{\text{colax, radj}}_\sigma_\infty \) similarly.

Proposition 4.4.2. There is a commuting diagram

\[
\begin{array}{ccc}
\hat{\text{Mnd}}^{\text{colax, radj}}_\sigma_\infty & \rightarrow & \hat{\text{End}}^{\text{colax, radj}}_\sigma_\infty \\
\downarrow & & \downarrow \\
\text{Cat}_\sigma_\text{radj}_\infty & \rightarrow & & \\
\end{array}
\]

where the two downward functors are cocartesian fibrations and the horizontal functor preserves cocartesian morphisms. Moreover, both the downward functors are also cartesian fibrations.

Proof. It is immediate from Corollary B.3.4 that the downward functors are cocartesian fibrations and the horizontal functor preserves cocartesian morphisms: from the description of the cocartesian morphisms there it follows that these full subcategories contain the cocartesian morphisms whose sources lie in the subcategories. Similarly, the right-hand functor is a cartesian fibration.

It remains to prove that the functor \(\hat{\text{Mnd}}^{\text{colax, radj}}_\sigma_\infty \rightarrow \hat{\text{Cat}}_\text{radj}_\infty \) is a cartesian fibration. Since we know it is a coCartesian fibration, this is equivalent to showing that the functor \(\phi^\text{op}_\sigma : \text{Mnd}^\sigma(\mathcal{C}) \rightarrow \text{Mnd}^\sigma(\mathcal{D}) \) corresponding to the cocartesian pushforward along a map \(\phi : \mathcal{C} \rightarrow \mathcal{D} \) has a left adjoint. Since the forgetful functor \(\text{Mnd}^{\text{colax, radj}}_\sigma_\infty \rightarrow \text{End}^{\text{colax, radj}}_\sigma_\infty \) preserves cocartesian morphisms we have a commutative square

\[
\begin{array}{ccc}
\text{Mnd}^\sigma(\mathcal{C}) & \rightarrow & \text{Mnd}^\sigma(\mathcal{D}) \\
\downarrow & & \downarrow \\
\text{End}^\sigma(\mathcal{C}) & \rightarrow & \text{End}^\sigma(\mathcal{D}).
\end{array}
\]

Here we know that \(\text{Mnd}^\sigma(\mathcal{C}) \) and \(\text{Mnd}^\sigma(\mathcal{D}) \) are presentable \(\infty \)-categories by Corollary 4.2.18. By the adjoint functor theorem it therefore suffices to show that the functor \(\phi^\text{op}_\sigma \) is accessible and preserves limits. But the forgetful functor \(\text{Mnd}^\sigma(\mathcal{D}) \rightarrow \text{End}^\sigma(\mathcal{D}) \) is a monadic right adjoint by Corollary 4.2.15 and preserves sifted colimits by Proposition 4.2.14. Thus limits and sifted colimits are computed in \(\text{End}^\sigma(\mathcal{D}) \), so it suffices to show that the composite \(\text{Mnd}^\sigma(\mathcal{C}) \rightarrow \text{End}^\sigma(\mathcal{D}) \) preserves limits and is accessible. The same observations apply to the forgetful functor \(\text{Mnd}^\sigma(\mathcal{C}) \rightarrow \text{End}^\sigma(\mathcal{C}) \), so in the end it is enough to prove that \(\phi^\text{op}_\sigma : \text{End}^\sigma(\mathcal{C}) \rightarrow \text{End}^\sigma(\mathcal{D}) \) preserves limits and is accessible, or equivalently that this is a right adjoint. But this follows from the projection \(\text{End}^{\text{colax, radj}}_\sigma_\infty \rightarrow \hat{\text{Cat}}_\text{radj}_\infty \) being a
cartesian and cocartesian fibration (or from the explicit description of the cocartesian morphisms).

Proposition 4.4.3. The forgetful functor \(\hat{\text{Mnd}}^\sigma_{\text{radj}} \rightarrow \hat{\text{End}}^\sigma_{\text{radj}} \) has a right adjoint that commutes with the projections to \(\hat{\text{Cat}}^\sigma_{\text{radj}} \), which takes an endofunctor to its free monad.

Proof. By (the dual of) \([Lur17, \text{Proposition 7.3.2.6}]\) it suffices to show that the functor on fibres over each \(C \in \hat{\text{Cat}}^\sigma_{\text{radj}} \) has a right adjoint. But this functor can be identified with the forgetful functor \(\text{Mnd}^\sigma(C)^{\text{op}} \rightarrow \text{End}^\sigma(C)^{\text{op}} \), so this follows from Corollary 4.2.11. \(\square \)

Remark 4.4.4. To show that this adjunction exists it is not necessary to restrict to \(\hat{\text{Cat}}^\sigma_{\text{radj}} \) and endofunctors that preserve sifted colimits. The same proof, using Corollary 4.2.11, would work equally well if we restricted to \(\omega \)-categories with filtered colimits and binary coproducts, and endofunctors that preserve filtered colimits.

We now wish to prove that this free monad adjunction is in fact monadic (which we saw fibrewise in Corollary 4.2.15):

Theorem 4.4.5. The forgetful functor \(\hat{\text{Mnd}}^\sigma_{\text{radj}} \rightarrow \hat{\text{End}}^\sigma_{\text{radj}} \) has a right adjoint that commutes with the projections to \(\hat{\text{Cat}}^\sigma_{\text{radj}} \), and the resulting adjunction is comonadic.

To prove this we will use the following general observation:

Proposition 4.4.6. Suppose we have a diagram

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{U} & \mathcal{D} \\
\downarrow{p} & & \downarrow{q} \\
\mathcal{B} & \xleftarrow{F} & \mathcal{D}
\end{array}
\]

where

1. \(p \) and \(q \) are cocartesian fibrations,
2. for \(b \in \mathcal{B} \) the \(\infty \)-category \(\mathcal{C}_b \) has geometric realizations,
3. for \(f : b \rightarrow b' \) in \(\mathcal{B} \), the cocartesian pushforward functor \(f_! : \mathcal{C}_b \rightarrow \mathcal{C}_{b'} \) preserves geometric realizations,
4. \(U \) has a left adjoint \(F : \mathcal{D} \rightarrow \mathcal{C} \) such that \(pF \simeq q \),
5. the adjunction \(F \dashv U \) restricts in each fibre to an adjunction \(F_b \dashv U_b \),
6. \(U_b : \mathcal{C}_b \rightarrow \mathcal{D}_b \) preserves geometric realizations,
7. \(U_b \) detects equivalences for every \(b \in \mathcal{B} \).

Then the adjunction \(F \dashv U \) is monadic.

Remark 4.4.7. It follows from these assumptions that each adjunction \(F_b \dashv U_b \) is monadic.

Remark 4.4.8. Our proof of this result follows the argument used to prove monadicity for enriched categories in \([Wol74]\).

Lemma 4.4.9. Let \(\mathcal{C} \) be an \(\infty \)-category with all small colimits, and suppose \(F : (\Delta^{\text{op}})^{\leq n} \times (\Delta^{\text{op}})^{\leq m} \rightarrow \mathcal{C} \) is a diagram such that for every \([n] \in \Delta \) the diagrams \(F|_{([n]) \times (\Delta^{\text{op}})^{\leq m}} \) and \(F|_{([n]) \times (\Delta^{\text{op}})^{\leq m}} \) are colimit diagrams. Then the following are equivalent:

1. the restriction \(F|_{\Delta^{\text{op}} \times \{\leq n\}} \) is a colimit diagram,
2. the restriction \(F|_{\Delta^{\text{op}} \times \{\leq m\}} \) is a colimit diagram,
3. the commutative square

\[
\begin{array}{ccc}
F([0],[n]) & \xrightarrow{F([0],[0])} & F(\infty,[0]) \\
\downarrow & & \downarrow \\
F([0],[\infty]) & \xrightarrow{F([0],[\infty])} & F(\infty,\infty)
\end{array}
\]
is a pushout,
(iv) F is the left Kan extension of its restriction to $\Delta^{op} \times \Delta^{op}$.

Proof. Functoriality of left Kan extensions and some easy cofinality arguments. □

Proof of Proposition 4.4.6. By [Lur17, Theorem 4.7.3.5] it remains to show that \mathcal{C} has colimits of U-split simplicial diagrams, these colimits are preserved by U, and U detects equivalences.

Let us first check that U detects equivalences. Suppose therefore that $f: c \to c'$ is a morphism in \mathcal{C} such that Uf is an equivalence in \mathcal{D}. Then $g := qUf \simeq pf$ is an equivalence in \mathcal{B}. We can factor f as $\phi \circ \phi' \to c'$ where ϕ is a p-cocartesian morphism over g and f' is a morphism in the fibre $\mathcal{C}_{p(c')}$. But then ϕ is an equivalence since it is cocartesian over the equivalence g, and f' is an equivalence since by assumption (7) U detects equivalences fibrewise over \mathcal{B}.

Using assumptions (1), (2), and (3) we see by [Lur09a, Corollary 4.3.1.11] that p-colimits of simplicial diagrams exist in \mathcal{C}. Moreover, by [Lur09a, Proposition 4.3.1.5] a p-colimit diagram whose underlying diagram in \mathcal{B} is a colimit diagram in \mathcal{C}. Thus \mathcal{C} has colimits for simplicial diagrams whose underlying diagrams in \mathcal{B} have colimits — in particular, this holds for U-split simplicial diagrams, since by definition their underlying diagrams in \mathcal{B} can be extended to split simplicial diagrams, which are colimit diagrams by [Lur09a, Lemma 6.1.3.16].

Moreover, since Δ^{op} is weakly contractible, it follows from [Lur09a, Proposition 4.3.1.10] that if $\phi: \Delta^{op} \to \mathcal{C}$ is a diagram in \mathcal{C}, for some b, then its colimit in \mathcal{C}_b is also a colimit in \mathcal{C}.

Suppose then that $\phi: \Delta^{op} \to \mathcal{C}$ is a U-split diagram. Using the monad $T := UF$ we can extend this to a diagram $\Phi: \Delta^{op} \times (\Delta^{op})^p \to \mathcal{C}$, where $\Phi|_{\Delta^{op} \times \{\infty\}} \simeq \phi$ and $\Phi|_{\Delta^{op} \times \{n\}} \simeq FT^nU\phi$. The underlying diagram in \mathcal{B} of each row $\Phi|_{\Delta^{op} \times \{n\}}$ is split, hence the rows all have colimits in \mathcal{C}. Let $\Phi|_{\Delta^{op} \times \{n\}}$ denote the left Kan extension of Φ. Observe that the column $\Phi|_{\{n\} \times (\Delta^{op})^p}$ is a free resolution of $\phi([n])$ in the fibre \mathcal{C}_b. It is therefore a colimit diagram in \mathcal{C}_b, and hence in \mathcal{C}. Thus by Lemma 4.4.9 the last column $\Phi|_{\{\infty\} \times (\Delta^{op})^p}$ is also a colimit diagram.

Now consider $U\Phi$. The rows $\{U\Phi|_{\{\infty\} \times (\Delta^{op})^p}\}$ can all be extended to split simplicial diagrams, and are therefore colimits in \mathcal{D}. The columns $\{U\Phi|_{\{n\} \times (\Delta^{op})^p}\}$ can similarly be extended to split simplicial diagrams (in a single fibre) so they are also colimit diagrams. Finally, the underlying diagram in \mathcal{B} is constant, so the last column $\{U\Phi|_{\{\infty\} \times (\Delta^{op})^p}\}$ lies in a single fibre; it is therefore a colimit in \mathcal{D} since U preserves geometric realizations in each fibre. Applying Lemma 4.4.9 again we conclude that the last row $\{U\Phi|_{\{\infty\} \times (\Delta^{op})^p}\}$ is also a colimit, i.e. the colimit of ϕ is preserved by U. □

Proof of Theorem 4.4.5. We will apply Proposition 4.4.6 to the commutative triangle

$$
\begin{array}{ccc}
\text{Mind}_{\sigma, \text{radj}}^{\text{colax}, \sigma, \text{radj}, \text{op}} & \xrightarrow{U} & \text{End}_{\sigma, \text{radj}}^{\text{colax}, \sigma, \text{radj}, \text{op}} \\
\downarrow p & & \downarrow q \\
\mathcal{C}_{\sigma, \text{radj}, \text{op}} & \xleftarrow{q} & \text{Cat}_{\infty}.
\end{array}
$$

From our previous results the required conditions are satisfied here:

1. p and q are cocartesian fibrations by Proposition 4.4.2.
2. The cocartesian pushforward functors are left adjoints, since p and q are also cartesian fibrations, and so preserve all colimits.
3. U has a left adjoint F such that $pF \simeq q$ by Proposition 4.4.3.
4. This adjunction restricts to an adjunction in each fibre by construction.
5. The fibrewise right adjoints preserve sifted colimits by Proposition 4.2.14.
6. The fibrewise right adjoints detect equivalences since they are monadic by Corollary 4.2.15.

□
5. Analytic Monads and \(\infty\)-Operads

5.1. Analytic Monads. An analytic monad is a monad on \(\mathcal{S}/I\) whose underlying endofunctor is analytic, and whose unit and multiplication transformations are cartesian. In other words, it is an associative algebra in \(\text{AnEnd}(I)\) under composition. We write \(\text{AnMnd}(I)\) for the \(\infty\)-category of analytic monads on \(\mathcal{S}/I\), defined as the subcategory of \(\text{Mnd}(\mathcal{S}/I)\) with analytic monads as objects and the morphisms of monads whose underlying maps in \(\text{End}(\mathcal{S}/I)\) are cartesian transformations as morphisms. Similarly, we define an \(\infty\)-category \(\text{AnMnd}\) over \(\mathcal{S}\) of analytic monads over varying base spaces as a subcategory of the pullback of \(\hat{\text{Mnd}}\) colax, \(\text{op}\) \rightarrow \(\hat{\text{Cat}}\) \(\text{op}\) \(\infty\) along \(\mathcal{S}^*\) \(\rightarrow\) \(\hat{\text{Cat}}\) \(\text{op}\) \(\infty\). We then get a commutative diagram

\[
\begin{array}{ccc}
\text{AnMnd} & \longrightarrow & \text{AnEnd} \\
\downarrow & & \downarrow \\
\mathcal{S} & \rightarrow & \hat{\text{Cat}} \text{op} \infty
\end{array}
\]

We will now use our results on free monads to show that the forgetful functor \(\text{AnMnd} \rightarrow \text{AnEnd}\) has a left adjoint, and the resulting adjunction is monadic.

To prove this, we will first show that the free monad on an analytic endofunctor is analytic:

Proposition 5.1.1. The free monad \(\overline{P}\) on an analytic endofunctor \(P\) is again an analytic endofunctor, and its structure maps \(\mu: \overline{P} \circ \overline{P} \rightarrow \overline{P}\) and \(\eta: \text{id} \rightarrow \overline{P}\) are cartesian natural transformations.

Proof. We have \(\overline{P} \simeq \text{colim}_nP_n\). By Proposition 2.5.4, the colimit of any diagram of polynomial functors and cartesian transformations is again a polynomial functor (corresponding to the colimit of the associated polynomials). Since analytic endofunctors are a slice of

Lemma 5.1.2. Each endofunctor \(P_n\) is analytic, and the transition maps \(f_{n+1}: P_n \rightarrow P_{n+1}\) are cartesian.

Proof. The case \(n = 0\) is clear since \(P_0 \simeq \text{id}\) is certainly analytic, and \(f_1: \text{id} \rightarrow \text{id} \circ P\) is cartesian since for any map \(s: X \rightarrow Y\) over \(I\), the square

\[
\begin{array}{ccc}
X & \longrightarrow & X \circ P X \\
\downarrow & & \downarrow \\
Y & \longrightarrow & Y \circ P Y
\end{array}
\]

is cartesian, as coproducts of cartesian squares are cartesian in an \(\infty\)-topos. If \(P_n\) is analytic, then \(P_{n+1} \simeq \text{id} \circ (P \circ P_n)\) is analytic, as composites and colimits of analytic functors are analytic, and if \(f_n\) is cartesian, then \(f_{n+1} \simeq \text{id} \circ P(f_n)\) is cartesian: the squares

\[
\begin{array}{ccc}
X \circ P(P_{n-1}X) & \longrightarrow & X \circ P(P_nX) \\
\downarrow & & \downarrow \\
Y \circ P(P_{n-1}Y) & \longrightarrow & Y \circ P(P_nY)
\end{array}
\]

are cartesian since \(P\) preserves pullbacks, and coproducts of cartesian squares are cartesian in an \(\infty\)-topos. This implies the required result by induction. \(\square\)

Proof of Proposition 5.1.1. We have \(\overline{P} \simeq \text{colim}_nP_n\). By Proposition 2.5.4, the colimit of any diagram of polynomial functors and cartesian transformations is again a polynomial functor (corresponding to the colimit of the associated polynomials). Since analytic endofunctors are a slice of
polynomial endofunctors by Corollary 3.1.11 (or since we know from Lemma 4.2.13 that \overline{P} preserves sifted colimits), the endofunctor \overline{P} is therefore analytic.

According to Proposition 4.3.8, the multiplication $\mu: \overline{P} \circ \overline{P} \to \overline{P}$ is the colimit of the natural transformations $\mu_h: P_h \circ P_h \to P_{2h}$ of Construction 4.3.5. Tracing through the definitions, these are constructed from sum inclusions (which are cartesian since in slices \mathcal{S}/I sums are disjoint), applying P (which preserves cartesianness since it is itself cartesian), and sums of cartesian natural transformations, which are again cartesian (since \mathcal{S}/I is locally cartesian closed). So all the natural transformations $\mu_h: P_h \circ P_h \to P_{2h}$ are cartesian. Finally, a filtered colimit of cartesian natural transformations is again cartesian by Proposition 2.5.1, so $\mu \simeq \text{colim}_h \mu_h$ is also cartesian. As to the unit η: id $\to \overline{P}$, by Proposition 4.3.8 it is the filtered colimit of the natural transformations η_h: id $\to P_h$, each being just a sum inclusion and hence cartesian. Thus η is again cartesian.

Lemma 5.1.3. If $u: R' \to R$ is a cartesian natural transformation between polynomial endofunctors on \mathcal{S}/I, then the induced natural transformation $\overline{u}: \overline{R'} \to \overline{R}$ of free monads is again cartesian.

Proof. The natural transformation \overline{u} is the colimit of the sequence of natural transformations $u_h : R'_h \to R_h$ with $u_0 := \text{id}_R$ and $u_{h+1} : R'_{h+1} \to R_{h+1}$ defined as the composite

$$\text{id} \Pi (R' \circ R'_h) \xrightarrow{\text{id} \Pi R'(u_h)} \text{id} \Pi (R' \circ R_h) \xrightarrow{\text{id} \Pi \text{id}} \text{id} \Pi (R \circ R_h).$$

Each u_h is a cartesian natural transformation. Indeed, $u_0 \simeq \text{id}$ clearly is, and if u_h is then so is u_{h+1} since R' preserves pullbacks and u is cartesian. Finally, since $\overline{\cdot}$ is the filtered colimit of cartesian natural transformations, it is again cartesian (since pullbacks distribute over filtered colimits).

Lemma 5.1.4.

(i) If P is an analytic endofunctor, then the unit map $P \to \overline{P}$ is cartesian.

(ii) If (T, μ, η) is an analytic monad, then the counit map $\overline{T} \to T$ is cartesian.

Proof. The unit map $P \to \overline{P}$ is the sum inclusion $P \to \text{id} \Pi P = P_1$ followed by the colimit map $P_1 \to \overline{P}$. Sum inclusions are cartesian by disjointness of sums, and the colimit map is cartesian by Proposition 2.5.1, since all the transition maps are cartesian by Lemma 5.1.2.

The counit map is the map of monads corresponding to the forgetful functor $\phi: \text{Alg}_T(\mathcal{S}/I) \to \text{Alg}_T(\mathcal{S}/I)$. If we denote these two monadic adjunctions by

$$F : \mathcal{C} \xrightarrow{\simeq} \text{Alg}_T(\mathcal{S}/I) : U \quad f : \mathcal{C} \xrightarrow{\simeq} \text{Alg}_T(\mathcal{S}/I) : u,$$

then this natural transformation $\overline{T} \simeq uf \to UF \simeq T$ is given as the composite

$$uf \to ufUF \simeq ufuf \phi F \to u\phi F \simeq UF,$$

where the first map comes from the unit for $F \dashv U$ and the second map from the counit for $f \dashv u$. Unwinding our description of the counit $ufu \to u$ from Lemma 4.3.4, we see that this is the colimit of a sequence of natural transformations $\varepsilon_h : T_h \to T$ defined recursively as follows: $\varepsilon_0 : T_0 = \text{id} \to T$ is the unit of the monad, cartesian by assumption. Assuming we have a cartesian natural transformation $\varepsilon_h : T_h \to T$, the next map $\varepsilon_{h+1} : \text{id} \Pi (T \circ T_h) \to T$ is defined as the sum of the unit $\text{id} \to T$ and the composite

$$T \circ T_h \xrightarrow{T\varepsilon_h} T \circ T \xrightarrow{\mu} T.$$

But ε_h is cartesian by induction, and T preserves cartesian maps since it is analytic, and μ is cartesian by assumption. The colimit of all the ε_h is the natural transformation $\overline{T} \to T$, which is then cartesian by descent (Proposition 2.5.1 again).

Corollary 5.1.5. The forgetful functor $\text{AnMnd}(I) \to \text{AnEnd}(I)$ has a left adjoint, taking an analytic endofunctor to its free monad, and the resulting adjunction is monadic.
Proof. By Corollary 4.2.15 we have a monadic adjunction

\[F : \text{End}^\sigma(S/I) \rightleftarrows \text{Mnd}^\sigma(S/I) : U. \]

From Proposition 5.1.1 and Lemma 5.1.3 we know that the composite

\[\text{AnEnd}(I) \to \text{End}^\sigma(S/I) \xrightarrow{\mathcal{F}} \text{Mnd}^\sigma(S/I) \]

lands in the subcategory AnMnd(I). Moreover, by Lemma 5.1.4 the unit and counit transformations for \(F \dashv U \) restrict to natural transformation valued in \(\text{AnEnd}(I) \) and \(\text{AnMnd}(I) \). Since these restrictions still satisfy the adjunction identities, the adjunction restricts to an adjunction between \(\text{AnEnd}(I) \) and \(\text{AnMnd}(I) \). Identifying \(\text{AnMnd}(I) \) with \(\text{Alg}(\text{AnEnd}(I)) \), we see by the same proofs as for Proposition 4.2.14 and Corollary 4.2.15 that \(\text{AnMnd}(I) \to \text{AnEnd}(I) \) is a monadic right adjoint. □

Now, by the exact same argument as in the proof of Theorem 4.4.5, we get:

Corollary 5.1.6. The forgetful functor \(\text{AnMnd} \to \text{AnEnd} \) has a left adjoint, compatible with the projections to \(S \), and the resulting adjunction is monadic.

5.2. Free Analytic Monads in Terms of Trees

In this section we will obtain an explicit description of the free monad on an analytic endofunctor in terms of trees, thus extending the description of free analytic monads from [Koc11] to the \(\infty \)-categorical setting.

Definition 5.2.1. We shall need various groupoids derived from \(\Omega_{\text{Int}} \). First of all let

\[tr := \iota \Omega_{\text{Int}} \]

denote the groupoid of all trees, and let \(\text{cor} \subseteq tr \) denote the subgroupoid of corollas (which is equivalent to \(\coprod_{n \geq 0} B \Sigma_n \)).

Definition 5.2.2. If \(T \) is a tree

\[A \xleftarrow{\iota} M \xrightarrow{\rho} N \xrightarrow{\lambda} A, \]

then the **leaves** of \(T \) are the elements of \(A \) that are not in the image of \(t \). Morphisms of trees do not necessarily preserve leaves, but isomorphisms do, yielding a functor leaves: \(tr \to i \text{Fin} \).

Definition 5.2.3. Suppose \(P \) is an analytic endofunctor represented by the diagram

\[I \leftarrow E \xrightarrow{\rho} B \to I. \]

Define spaces \(tr', tr(P) \) and \(tr'(P) \) by pullback as follows:

\[\begin{array}{ccccccc}
 \text{tr}'(P) & \xrightarrow{\rho} & \text{tr}(P) & \xrightarrow{\rho} & \text{AnEnd}_P & \xrightarrow{\rho} & \text{AnEnd} \\
 \downarrow & & \downarrow & & \downarrow & & \\
 \text{tr}' & \xrightarrow{\rho} & \text{tr} & \xrightarrow{\rho} & \text{AnEnd} & \xrightarrow{\rho} & i \text{Fin}. \\
 \downarrow & & \downarrow & & \downarrow & & \\
 i \text{Fin}_*, & \xrightarrow{\rho} & i \text{Fin}. & & & & \\
\end{array} \]

The objects of \(tr(P) \) are **P-trees**, defined as diagrams

\[A \xrightarrow{\rho} M \xrightarrow{\rho} N \xrightarrow{\rho} A \]

\[I \xrightarrow{\rho} E \xrightarrow{\rho} B \xrightarrow{\rho} I, \]
where the first row is a tree. The objects of \(\text{tr}'(P) \) are \(P \)-trees with a marked leaf, which amount to diagrams

\[
\begin{array}{cccc}
* & \rightarrow & \emptyset & \rightarrow & \emptyset & \rightarrow & * \\
\downarrow & & \downarrow & & \downarrow & & \\
A & \rightarrow & M & \rightarrow & N & \rightarrow & A \\
\downarrow & & \downarrow & & \downarrow & & \\
I & \rightarrow & E & \rightarrow & B & \rightarrow & I.
\end{array}
\]

Here the upper right square being a pullback expresses that the edge is a leaf (cf. [Koc11]). (Note that while \(\text{tr} \) and \(\text{tr}' \) are 1-truncated (i.e. ordinary groupoids), \(\text{tr}(P) \) and \(\text{tr}'(P) \) are not in general so. For example, \(\text{tr}(P) \) contains the space \(B \) (cf. 3.3.6).) The map \(\text{tr}(P) \rightarrow \text{tr} \) corresponds to the functor \(\text{Map}(\cdot, P) : \text{tr} \rightarrow \mathcal{S} \), and we have the explicit formula

\[
\text{tr}(P) \simeq \text{colim}_{T \in \text{tr}} \text{Map}_{\text{AnEnd}}(T, P) \simeq \coprod_{T \in \text{tr}} \text{Map}_{\text{AnEnd}}(T, P)_{\text{hAut}(T)},
\]

where we are implicitly identifying the groupoid \(\text{tr} \) with its opposite.

The vertical composite \(\text{tr}(P) \rightarrow \text{tr} \rightarrow \text{leaves} \rightarrow \ell \text{Fin} \) factors also through ”\(P \)-coloured finite sets”, which could be denoted \(\eta \text{Fin}(P) \) or \(\text{E}(I) \):

\[
\text{tr}(P) \rightarrow \text{E}(I) \rightarrow \ell \text{Fin}.
\]

There is a canonical map \(\rho : \text{tr}(P) \rightarrow I \) which to a \(P \)-tree assigns the colour of its root edge. Formally, for each tree \(T \) consider the inclusion of the root edge \(\eta \rightarrow T \). The associated maps \(\text{Map}(T, P) \rightarrow \text{Map}(\eta, P) \simeq I \) assemble into \(\text{tr}(P) \rightarrow \text{E}(I) \rightarrow \ell \text{Fin} \). Similarly, there is a canonical map \(\lambda : \text{tr}'(P) \rightarrow I \) which returns the the colour of the marked leaf. Formally, this is the composite \(\text{tr}'(P) \rightarrow \text{colim}_{T \in \text{tr}} \text{Map}(T, P) \rightarrow \text{Map}(\eta, P) \simeq I \), where this time \(\eta \rightarrow T \) picks out the marked leaf.

Theorem 5.2.4. If \(P \) is an analytic endofunctor, then \(\overline{P} \), the (underlying endofunctor of the) free monad on \(P \), is represented by the polynomial

\[
I \xleftarrow{\lambda} \text{tr}'(P) \rightarrow \text{tr}(P) \xrightarrow{\rho} I.
\]

Remark 5.2.5. See [Koc11] for the analogous result in the case of sets, and [Koc17] for the groupoid case.

To prove this, we use the description of \(\overline{P} \) given in Definition 4.3.1 and Proposition 4.3.2, as the colimit of the sequence of functors defined by \(P_0 \simeq \text{id} \) and \(P_{h+1} \simeq \text{id} \coprod (P \circ P_h) \), which we shall describe in terms of trees of bounded height. For this we need some notation.

Definition 5.2.6. For \(A \leftarrow M \rightarrow N \rightarrow A \) a tree, the height of \(e \in A \) is the minimal \(k \in \mathbb{N} \) such that \(\sigma^k(e) \) is the root edge. Here \(\sigma \) is the ‘successor’ function (or walk-to-the-root function) from the definition of tree (3.3.1). The height of the tree \(T \) is the maximal height of its edges. Hence the trivial tree has height 0 and any corolla has height 1.

Let \(\text{tr}_{\leq h} \) denote the subgroupoid of \(\text{tr} \) containing only the trees of height \(\leq h \). For \(P \) an analytic endofunctor, and for each \(h \in \mathbb{N} \), define groupoids \(\text{tr}'_{\leq h}, \text{tr}_{\leq h}(P) \) and \(\text{tr}'_{\leq h}(P) \) by pullbacks

\[
\begin{array}{cccc}
\text{tr}'_{\leq h}(P) & \rightarrow^{p_h} & \text{tr}_{\leq h}(P) & \rightarrow^{\text{AnEnd}/P} \\
\downarrow & & \downarrow & & \\
\text{tr}'_{\leq h} & \rightarrow & \text{tr}_{\leq h} & \rightarrow & \text{AnEnd} \\
\downarrow & & \downarrow & & \\
\ell \text{Fin} & \rightarrow & \ell \text{Fin}.
\end{array}
\]
We have\[\text{tr}_{\leq h}(P) := \text{colim}_{T \in \text{tr}_{\leq h}} \text{Map}_{\text{AnEnd}}(T, P). \]

Let \(\text{tr}_{\leq h} \) denote the subgroupoid containing the trees of height \(\leq h \) that have a root node (i.e. we exclude \(\eta \)). We have a forgetful functor \(\text{bot} : \text{tr}_{\leq h} \to \text{tr}_{\leq 1} \simeq \text{cor} \simeq \iota \text{Fin} \) that takes a tree to its root corolla.

Lemma 5.2.7. For each fixed \(k \in \iota \text{Fin} \), we have a pullback square

\[
\begin{array}{ccc}
\text{tr}_{\leq h} \times k & \longrightarrow & \text{tr}_{\leq h+1} \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
* & \longrightarrow & \iota \text{Fin}
\end{array}
\]

Proof. The map \(\text{tr}_{\leq h} \times k \to \text{tr}_{\leq h+1} \) takes a \(k \)-tuple of height-\(h \) trees and grafts them onto the corolla \(k \). It is clear that the fibre of this map is the set of automorphisms of \(k \), just as the fibre of \(k : * \to \iota \text{Fin} \). \(\Box \)

Let \(P \) be an analytic endofunctor. Recall from Definition 4.3.1 the sequence of endofunctors \(P_h \) defined by \(P_0 := \text{id} \), and \(P_{h+1} := \text{id} \sqcup (P \circ P_h) \). By Lemma 5.1.2, each \(P_h \) is analytic.

Proposition 5.2.8. If \(P \) is represented by the polynomial

\[I \leftarrow E \to B \to I, \]

then \(P_h \) is represented by the polynomial

\[I \leftarrow s_h \quad \text{tr}_{\leq h}'(P) \quad p_h \to \text{tr}_{\leq h}(P) \quad t_h \to I. \]

Here \(s_h \) assigns to a leaf-marked tree the colour of the marked leaf, and \(t_h \) assigns the colour of the root edge.

The proof requires a couple of auxiliary results, exploiting that the analytic functor \(P \) lives over \(E \). With notation as in Proposition 3.2.6, we have the diagram

\[
\begin{array}{ccc}
I & \leftarrow & E \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
* & \longrightarrow & \text{fin}_+, \quad \text{fin}_+ \longrightarrow \text{fin}_-, \quad \text{fin}_- \longrightarrow \ast.
\end{array}
\]

Lemma 5.2.9. With notation as above, there is a natural pullback square

\[
\begin{array}{ccc}
\text{tr}_{\leq h+1}(P) & \longrightarrow & \text{E}(\text{tr}_{\leq h}(P)) \\
\downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \quad \quad \downarrow \\
\text{cor}(P) \simeq B & \longrightarrow & \text{E}(t_h) \\
\end{array}
\]

where \(\bar{s} : B \to q_* u^* I = \text{E}(I) \) corresponds to \(u q^* B = E \bar{s} \to I \) under the adjunction \(u q^* \dashv q_* u^* \).

Unravelling the definitions, this says that giving a \(P \)-tree with a bottom node and of height \(\leq h + 1 \) is the same thing as giving the bottom node (a \(P \)-corolla) and a \(P \)-forest of trees of height \(\leq h \) whose root edges match the leaves of the bottom node.

Proof. Expanded in colimits, the asserted square reads as follows.

\[
\begin{array}{ccc}
\text{colim}_{T \in \text{tr}_{\leq h+1}} \text{Map}(T, P) & \longrightarrow & \text{colim}_{k \in \text{fin}_+} \text{tr}_{\leq h}(P)^{\times k} \\
\downarrow \quad \quad \downarrow \\
\text{colim}_{k \in \text{fin}_+} \text{Map}(C_k, P) & \longrightarrow & \text{colim}_{k \in \text{fin}_+} \text{Map}(\eta, P)^{\times k}.
\end{array}
\]
By Lemma 5.2.7, we can rewrite \(\operatorname{colim}_{T \in \mathbf{tr} \leq h+1} \operatorname{Map}(T, P) \) as an iterated colimit

\[
\operatorname{colim}_{k \in \mathbf{Fin}} \operatorname{colim}_{(T_i) \in (\mathbf{tr} \leq h)^k} \operatorname{Map}(T, P).
\]

Since we have natural pushouts \(T \simeq C_k \prod_{i=1}^k T_i \), this is equivalent to

\[
\operatorname{colim}_{k \in \mathbf{Fin}} \operatorname{colim}_{(T_i) \in (\mathbf{tr} \leq h)^k} \operatorname{Map}(C_k, P) \times \prod_{i=1}^k \operatorname{Map}(T_i, P).
\]

Since colimits in \(\mathbf{S} \) are universal and products commute with colimits, we can rewrite this as

\[
\left(\operatorname{colim}_{k \in \mathbf{Fin}} \operatorname{Map}(C_k, P) \times \prod_{i=1}^k \operatorname{Map}(\eta, P) \right) \times \operatorname{colim}_{(T_i) \in (\mathbf{tr} \leq h)^k} \operatorname{Map}(T_i, P).
\]

But colimits over \(\infty \)-groupoids commute with weakly contractible limits, so this is equivalent to

\[
\left(\operatorname{colim}_{k \in \mathbf{Fin}} \operatorname{Map}(C_k, P) \times \operatorname{colim}_{k \in \mathbf{Fin}} \operatorname{Map}(\eta, P)^k \right) \operatorname{colim}_{(T_i) \in (\mathbf{tr} \leq h)^k} \operatorname{Map}(T_i, P).
\]

Corollary 5.2.10. \(P \) evaluated on the map \(t_h : \mathbf{tr} \leq h(P) \to I \) yields \(t_{h+1} : \mathbf{tr} \leq h+1(P) \to I \).

Proof. Proposition 3.2.6 describes \(p_* s^*(t_h) \) as the vertical left map in the pullback

\[
\begin{array}{ccc}
Y & \xrightarrow{\tau} & \mathbf{E}(\mathbf{tr} \leq h(P)) \\
\downarrow & & \downarrow \\
\mathbf{cor}(P) & \xrightarrow{s} & \mathbf{E}(I),
\end{array}
\]

and Lemma 5.2.9 identifies this map as \(\mathbf{tr} \leq h+1(P) \to B \). Applying finally \(t_i \) is to compose with \(t \), yielding \(t_{h+1} \) as required. \(\square \)

Proof of Proposition 5.2.8. This goes by induction on \(h \). First of all, \(P_0 := \text{id} \) is represented by \(I \xleftarrow{t_i} I \to I \), but \(I \) is also the space of \(P \)-trees of height \(\leq 0 \). This establishes the base of the induction. Assuming we have already established that \(P_h \) is represented by trees of height \(\leq h \), we need to identify the composite \(P \circ P_h \), using the explicit description given in Theorem 2.1.8. We have already computed the space in the upper right corner (denoted \(D \) in the big diagram in 2.1.8): by Corollary 5.2.10, it is the space \(\mathbf{tr} \leq h+1(P) \) of trees of height \(\leq h+1 \) and with a bottom node. To compute the space in the upper left corner (denoted \(G \) in the big diagram in 2.1.8), we need first to pull back along \(p : E \to B \): this gives the same space of trees but with a marked incoming edge of the bottom node. This space comes with a canonical projection to \(\mathbf{tr} \leq h(P) \) given by returning the tree sitting over that marked edge. Finally, we need to pull back along \(p_h \), which amounts to marking a leaf of that marked subtree. Together the two pullbacks amount to marking any leaf, giving thus the space \(\mathbf{tr} \leq h+1(P) \). Finally, the formula for \(P_{h+1} \) adds in the trivial tree by means of the summand id. This compensates precisely for the requirement of having a bottom node. \(\square \)

Proof of Theorem 5.2.4. We know from Proposition 4.3.2 that the free monad \(\mathcal{T} \) is the colimit of the sequence \(P_h \), where \(P_h \) is represented by

\[
I \xleftarrow{t_i} \mathbf{tr} \leq h(P) \to \mathbf{tr} \leq h(P) \to I
\]

by Proposition 5.2.8. It then follows from Proposition 2.5.4, Theorem 2.4.11, and Corollary 2.5.2 that the colimit \(\mathcal{T} \) is the polynomial functor corresponding to the pointwise colimit of these diagrams, which is clearly

\[
I \xleftarrow{t_i} \mathbf{tr}(P) \to \mathbf{tr}(P) \to I
\]

as asserted. \(\square \)
Remark 5.2.11. The monad structure on \mathcal{T} is also pleasantly described in terms of trees. The space of operations of $\mathcal{T} \circ \mathcal{T}$ is $\mathcal{T}(tr(P))$, the space of P-trees whose leaves are decorated by P-trees in a compatible way. More precisely, the objects of $\mathcal{T}(tr(P))$ are tuples
$$(R, \text{leaves}(R) \xrightarrow{f} tr(P))$$
where R is a P-tree and f assigns to each leaf of R a P-tree whose root edge has the same colour. The monad multiplication $\mathcal{T} \circ \mathcal{T} \to \mathcal{T}$ now simply takes this configuration and glues those trees onto the leaves of R. Clearly this construction is just the colimit of the same construction with trees of height m and n, which is the tree interpretation of the natural transformations $P_n \circ P_m \to P_{m+n}$ from 4.3.5.

Cartesianness of μ can also be established along these lines: the arity of an operation (R, f) as above is the disjoint union of all the leaves of all the upper trees. Clearly this is the same as the set of all leaves of the resulting total tree.

Proposition 5.2.12. Let P be an analytic endofunctor on S_{ij}, and \mathcal{T} the free monad on P. Under the equivalence $i^* : \text{AnEnd} \to \mathcal{T}(\Omega_{\text{el}})$ of Proposition 3.3.10, the underlying endofunctor of \mathcal{T} is identified with the presheaf $C_n \mapsto \text{colim}_{T \in n\text{-tr}} \text{Map}(T, P)$.

(and $\eta \mapsto \iota$). Here $n\text{-tr}$ is the homotopy fibre over n of the map $tr \to \iota\text{Fin}$ that sends a tree to its set of leaves.

Proof. The equivalence i^* sends \mathcal{T} to the presheaf $C_n \mapsto \text{Map}(C_n, \mathcal{T})$. But we know from Theorem 5.2.4 that \mathcal{T} is represented by $I \leftarrow \text{tr}'(P) \to tr(P) \to I$. Now by 3.3.6, we have $\text{Map}(C_n, \mathcal{T}) \simeq n\text{-tr}(P)$, the latter defined as the left composite pullback

$$
\begin{array}{ccc}
n\text{-tr}(P) & \xrightarrow{r} & tr(P) \\
\downarrow & & \downarrow \\
n\text{-tr} & \xrightarrow{r} & tr \\
\downarrow & & \downarrow \\
* & \xrightarrow{n} & \iota\text{Fin}
\end{array}
$$

From the top composite pullback, we get (in analogy with 5.2.3) $n\text{-tr}(P) \simeq \text{colim}_{T \in n\text{-tr}} \text{Map}(T, P)$, as claimed. In summary:

$$i^*\mathcal{T}(C_n) \simeq \text{Map}(C_n, \mathcal{T}) \simeq n\text{-tr}(P) \simeq \text{colim}_{T \in n\text{-tr}} \text{Map}(T, P).$$

\[\square\]

5.3. Analytic Monads versus Dendroidal Segal Spaces. In this subsection we will prove the main result of the paper, that analytic monads are equivalent to ∞-operads. First, we need to recall the model of ∞-operads we will use for the comparison, namely the dendroidal Segal spaces of Cisinski and Moerdijk [CM13a].

Definition 5.3.1. The dendroidal category Ω is the full subcategory of AnMnd spanned by the image of Ω_{int}, i.e. the free monads on the trees.

Remark 5.3.2. Since trees themselves are polynomials in Set, and since the free monad on a set polynomial is again a set polynomial, the definition given here agrees with that of [Koc11], in turn just a polynomial reformulation of the original definition of [MW07]. Recall that Ω has as morphisms the monad maps between free monads on the trees, and that Ω has an active–inert factorization system (also called the generic–free factorization system [BMW12]): The inert maps are the tree inclusions, defined formally as the morphisms of polynomial functors between trees, forming the category Ω_{int} studied so far. The active maps are given by node refinements, characterized also as the monad maps that preserve leaves and root. To specify an active map out of a corolla with set
of leaves L amounts to giving a tree with L as set of leaves. The only active map out of the trivial tree η is the identity. A general active map $T \rightarrow T'$ is specified by giving an active map out of each node corolla, and then gluing together the resulting trees along roots and leaves, according to the same recipe that gave T as the colimit of its elementary trees.

Definition 5.3.3. A presheaf F on Ω is called a *Segal presheaf* if its restriction j^*F along the inclusion $j : \Omega_{\text{int}} \rightarrow \Omega$ is a Segal presheaf on Ω_{int}, as in 3.3.12. We define the ∞-category $\mathcal{P}_{\text{Seg}}(\Omega)$ of Segal presheaves to be the pullback

$$
\begin{array}{ccc}
\mathcal{P}_{\text{Seg}}(\Omega) & \longrightarrow & \mathcal{P}(\Omega) \\
\downarrow & & \downarrow j^* \\
\mathcal{P}_{\text{Seg}}(\Omega_{\text{int}}) & \longrightarrow & \mathcal{P}(\Omega_{\text{int}}).
\end{array}
$$

Theorem 5.3.4. The restricted Yoneda embedding $N : \text{AnMnd} \rightarrow \mathcal{P}(\Omega)$ is fully faithful, and its essential image is $\mathcal{P}_{\text{Seg}}(\Omega)$. We thus have an equivalence of ∞-categories

$$\text{AnMnd} \simeq \mathcal{P}_{\text{Seg}}(\Omega).$$

The proof will be based on the following general observation, which is an ∞-categorical version of a result of Berger, Melliès and Weber [BMW12]; they use it to give a proof of the “nerve theorem” for monads (originally due to Weber [Web07]).

Proposition 5.3.5. Suppose given a commutative square of ∞-categories

$$
\begin{array}{ccc}
\mathcal{E}_1 & \xrightarrow{\phi} & \mathcal{E}_2 \\
U_1 \downarrow & & \downarrow U_2 \\
\mathcal{B}_1 & \xrightarrow{\phi} & \mathcal{B}_2
\end{array}
$$

such that

1. the functor U_i has a left adjoint F_i for $i = 1, 2$,
2. the adjunction $F_i \dashv U_i$ is monadic for $i = 1, 2$,
3. the functor ϕ is fully faithful,
4. the mate transformation $F_2\phi \rightarrow \phi F_1$ is a natural equivalence,

Then the functor $\bar{\phi}$ is also fully faithful, and its essential image consists of those $A \in \mathcal{E}_2$ such that U_2A is in the image of ϕ. (In other words, the commutative square above is cartesian.)

Proof. We first prove that $\bar{\phi}$ is fully faithful, i.e. that for all $A, B \in \mathcal{E}_1$ the map

$$\text{Map}_{\mathcal{E}_1}(A, B) \rightarrow \text{Map}_{\mathcal{E}_2}(\bar{\phi}A, \bar{\phi}B)$$

is an equivalence.

First suppose A is free, i.e. of the form F_iX for some $X \in \mathcal{B}_1$. Then we have natural equivalences

$$\text{Map}_{\mathcal{E}_1}(F_iX, B) \simeq \text{Map}_{\mathcal{B}_1}(X, U_1B) \simeq \text{Map}_{\mathcal{B}_2}(\phi X, \phi U_1B) \simeq \text{Map}_{\mathcal{B}_2}(\phi X, U_2\bar{\phi}B) \simeq \text{Map}_{\mathcal{E}_2}(F_2\phi X, \bar{\phi}B) \simeq \text{Map}_{\mathcal{E}_2}(\bar{\phi}F_1X, \bar{\phi}B).$$

For a general A, we can choose a U_1-split simplicial free resolution A_*. Since each A_i is free, we have natural equivalences

$$\text{Map}_{\mathcal{E}_1}(A, B) \simeq \lim \text{Map}_{\mathcal{E}_1}(A_*, B) \simeq \lim \text{Map}_{\mathcal{E}_2}(\bar{\phi}A_*, \bar{\phi}B).$$

Since A_* is U_1-split and $U_2\bar{\phi} \simeq \phi U_1$, the simplicial diagram $\bar{\phi}A_*$ is U_2-split. Since $F_2 \dashv U_2$ is monadic, this implies that the colimit $|\bar{\phi}A_*|$ exists and is preserved by U_2. There is a canonical map $|\bar{\phi}A_*| \rightarrow \bar{\phi}(A)$ and to see that it is an equivalence it suffices to show that it is one after applying U_2.

But since the diagram $U_1 A \to A$ is split, so is $\phi U_1 A \simeq U_2 \tilde{\phi} A$ and therefore its colimit is $\phi U_1 A \simeq U_2 \tilde{\phi} A$, as required. We thus have a natural equivalence

$$\text{Map}_{\varepsilon_2}(A, B) \simeq \lim_{\varepsilon_2} \text{Map}_{\varepsilon_2}(\tilde{\phi} A, \tilde{\phi} B) \simeq \text{Map}_{\varepsilon_2}(\tilde{\phi} A, \tilde{\phi} B) \simeq \text{Map}_{\varepsilon_2}(\phi A, \phi B).$$

This shows that $\tilde{\phi}$ is fully faithful; it remains to prove that if $A \in \varepsilon_2$ satisfies $U_2 A \simeq \phi X$ for some $X \in \mathcal{B}_2$, then A is in the image of $\tilde{\phi}$. We can view A as the geometric realization of its canonical free resolution $A_* := F_2(U_2 F_2)^* U_2 A$. We have $U_2 F_2 \phi \simeq U_2 \tilde{\phi} F_1 \simeq \phi U_1 F_1$, so $F_2(U_2 F_2)^* U_2 A \simeq \phi F_1(U_1 F_1)^* X$. Since $\tilde{\phi}$ is fully faithful, the diagram A_* factors through ε_1, i.e. we have a simplicial diagram $A_* \in \varepsilon_1$ such that $\phi A_* \simeq A_*$. The diagram A_* is also U_2-split, and since $U_2 A \simeq \phi X$ the extension of $U_2 A_*$ to a split simplicial diagram factors through ε_1 as ϕ is fully faithful. Thus A_* is U_1-split. Since the adjunction $F_1 \dashv U_1$ is monadic, this implies that $A_* \in \varepsilon_1$ has a colimit A' in ε_1, and this colimit is preserved by U_1. There is then a canonical map $A \to \phi A'$, and this is an equivalence since U_2 detects equivalences. This proves that A is in the essential image of $\tilde{\phi}$, as required. □

We are going to apply Proposition 5.3.5 to the commutative diagram

$$\begin{array}{ccc}
\text{AnMnd} & \xrightarrow{\mathcal{N}} & \mathcal{P}(\Omega) \\
\downarrow U & & \downarrow j^* \\
\text{AnEnd} & \xrightarrow{\mathcal{N}_{\text{int}}} & \mathcal{P}(\Omega_{\text{int}}).
\end{array}$$

The vertical functors have left adjoints F and $j_!$, respectively. A key step (which will be Proposition 5.3.15 below) is to show that the mate commutes

$$\begin{array}{ccc}
\text{AnMnd} & \xrightarrow{\mathcal{N}} & \mathcal{P}(\Omega) \\
F & \uparrow j_! & \uparrow j^* \\
\text{AnEnd} & \xrightarrow{\mathcal{N}_{\text{int}}} & \mathcal{P}(\Omega_{\text{int}}).
\end{array}$$

To establish this, we will need:

- a simplified formula for $j^* j_!$ in terms of active maps (Lemma 5.3.9 below),
- some results regarding compatibility of Segal presheaves with active maps and colimits of subtrees (Corollary 5.3.11 and Lemma 5.3.13),
- the formula for the free monad on an analytic endofunctor in terms of trees, already established in Proposition 5.2.12, which allows for reduction to the case of elementary trees (Lemma 5.3.14).

Lemma 5.3.6. Let $\beta : T \to T'$ be an active map.

1. There is an induced functor $\beta_! : \Omega_{\text{el}/T} \to \Omega_{\text{int}/T'}$ which takes an elementary tree $E \to T$ to the inert part of the active-inert factorization of the composite $E \to T \to T'$, as in

$$\begin{array}{ccc}
T' & \xrightarrow{\beta} & T' \\
\uparrow j & \uparrow \beta & \uparrow j' \\
E & \xrightarrow{\alpha} & \beta E.
\end{array}$$

2. There is an induced colimit decomposition of T' into subtrees $\beta_!(E) \subset T'$:

$$T' \simeq \colim_{E \in \text{el}(T)} \beta_!(E).$$

Proof. (1) is clear. For (2), note that active maps preserve leaves and root. The colimit $T \simeq \colim_{E \in \text{el}(T)} E$ is an iterated grafting, i.e. an iterated pushout over trivial trees, each included into one tree as the root and into another tree as a leaf. Since the only active map out of η is the identity, the colimit asserted in (2) is again an iterated pushout over trivial trees, and since for each $E \in \text{el}(T)$ the active map $E \to \beta_! E$ preserves leaves and root, the colimit asserted in (2) is again an
iterated grafting. Finally, since all the trees βE are subtrees of T', and are disjoint on nodes, the colimit defines a subtree of T'. Since each node in T' appears in precisely one of these subtrees, the colimit must actually be all of T'. (In fact, the whole map β is the colimit of the maps $E \to T')$, cf. [Koc11, 1.3.4 and 1.3.16].

Definition 5.3.7. Let $\text{Fun}^{\text{act}}(\Delta^1, \Omega) \subset \text{Fun}(\Delta^1, \Omega)$ denote the full subcategory of the arrow category of Ω spanned by the active maps. Thanks to the active–inert factorization system in Ω, the domain projection $\text{Fun}^{\text{act}}(\Delta^1, \Omega) \to \Omega$ is a cartesian fibration: the cartesian arrows are the squares with codomain arrow inert (see [GCKT15, Lemma 1.3]). The associated right fibration we pull back to Ω_{int} and straighten to get a presheaf $\text{Act}: (\Omega_{\text{int}})^{\text{op}} \to S$. Thus $\text{Act}(T)$ is the ∞-groupoid of active maps $T \to T'$ in Ω (actually just a 1-groupoid); for example, $\text{Act}(C_n)$ is the groupoid n-tr of trees with n leaves. Note also that $\text{Act}(\eta) \simeq \ast$, the only active map out of η being the identity.

Lemma 5.3.8. The presheaf $\text{Act}: (\Omega_{\text{int}})^{\text{op}} \to S$ satisfies the Segal condition. More precisely, for any tree T, we have

$$\text{Act}(T) \simeq \lim_{E \in \text{el}(T)} \text{Act}(E) \simeq \prod_{C \in \text{cor}(T)} \text{Act}(C).$$

Proof. The second equivalence follows from $\text{Act}(\eta) \simeq \ast$. The map $\text{Act}(T) \to \prod_{C \in \text{cor}(T)} \text{Act}(C)$ sends an active map $\beta: T \to T'$ to the collection of active maps $\alpha: C \to S'$ as in Lemma 5.3.6(1). A map in the other direction is given by gluing together all the subtrees S' according to the same recipe as the corollas C glue together to give T, as in Lemma 5.3.6(2). This constitutes a bijection at the level of isomorphism classes by [Koc11, 1.3.16]. Since the spaces involved are just 1-groupoids it thus remains to check that the automorphism groups match up. But an automorphism of an active map $\beta: T \to T'$ is the same as an automorphism of T' that fixes the edges from T, and this amounts to giving for each $C \in \text{cor} T$ an automorphism of the corresponding tree S' that fixes all leaves, which in turn is precisely to give an automorphism of the active map $\alpha: C \to S'$. So $\text{Aut}(\beta) \simeq \prod \text{Aut}(\alpha)$ as required. \qed

Lemma 5.3.9. The active-inert factorization system on Ω induces an equivalence

$$(j^*j_!\Phi)(T) \simeq \colim_{T' \in \text{Act}(T)} \Phi(T').$$

for each Segal presheaf Φ and each tree T.

Proof. Since $j: \Omega_{\text{int}} \to \Omega$ is the identity on objects, $(j^*j_!\Phi)(T) \simeq (j_!\Phi)(jT) \simeq (j_!\Phi)(T)$. By the usual formula for the left Kan extension, we have that

$$(j_!\Phi)(T) \simeq \colim_{T' \in ((\Omega_{\text{int}})_{T/})^{\text{op}}} \Phi(T'),$$

so it suffices to show that the functor $\text{Act}(T)^{\text{op}} \to ((\Omega_{\text{int}})_{T/})$ is cofinal. Invoking [Lur09a, 4.1.3.1], it suffices to show that for all $f: T \to T' \in ((\Omega_{\text{int}})_{T/})$, the pullback

$$\text{Act}(T) \times_{(\Omega_{\text{int}})_{T/}} ((\Omega_{\text{int}})_{T/})$$

is a weakly contractible ∞-category. But this is precisely the ∞-category of active-inert factorizations of $f: T \to T'$, which is contractible by [Lur09a, Proposition 5.2.8.17]. \qed

Proposition 5.3.10. Let $\Phi: \Omega_{\text{int}}^{\text{op}} \to S$ be a Segal presheaf. Let $T \simeq S \amalg R$ be the tree obtained by grafting a tree S onto a leaf of another tree R. Then the canonical map

$$\Phi(T) \to \Phi(S) \times_{\Phi(\eta)} \Phi(R)$$

is an equivalence.

Proof. Since Φ is Segal, we have $\Phi(T) \simeq \lim_{E \in \text{el}(T)} \Phi(E)$. On the other hand, we have $\text{el}(T) \simeq \text{el}(S) \amalg \text{el}(R)$. It follows that the limit can be computed in steps:

$$\lim_{E \in \text{el}(T)} \Phi(E) \simeq \lim_{E \in \text{el}(S)} \Phi(E) \times_{\Phi(\eta)} \lim_{E \in \text{el}(R)} \Phi(E) \simeq \Phi(S) \times_{\Phi(\eta)} \Phi(R).$$
Corollary 5.3.11. If $\Phi: \Omega^{\text{op}} \to S$ is a Segal presheaf, and if $T \simeq \colim R$ is a colimit of certain subtrees grafted to each other, then the canonical map

$$\Phi(T) \to \lim_j \Phi(R)$$

is an equivalence.

Proof. This follows by iterated application of Proposition 5.3.10. □

Corollary 5.3.12. For $\Phi: \Omega^{\text{op}} \to S$ a Segal presheaf and $\beta: T \to T'$ an active map, the canonical map

$$\Phi(T') \to \lim_{E \in \text{el}(T)} \Phi(\beta(E))$$

is an equivalence.

Proof. By Lemma 5.3.6(2) we have $T' \simeq \colim_{E \in \text{el}(T)} \beta(E)$, and the result follows from Corollary 5.3.11. □

Lemma 5.3.13. For $\Phi: \Omega^{\text{op}} \to S$ a Segal presheaf and T a tree, there is a natural equivalence

$$\colim_{T \to T' \in \text{Act}(T)} \Phi(T') \xrightarrow{\sim} \lim_{E \in \text{el}(T)} \colim_{E \to S' \in \text{Act}(E)} \Phi(S').$$

Proof. Given an active map $\beta: T \to T'$ and an elementary subtree $f: E \to T$, we can active-inert factor the composite as in Lemma 5.3.6:

$$T \xrightarrow{\beta} T' \xrightarrow{f} E \xrightarrow{\alpha} \beta E.$$

We now have the map

$$\Phi(T') \xrightarrow{f^*} \Phi(\beta E) \to \colim_{E \to S' \in \text{Act}(E)} \Phi(S'),$$

and letting β and f vary, we get altogether the map of the statement. By construction we have a commutative square of ∞-groupoids

$$\begin{array}{ccc}
\colim_{T \to T' \in \text{Act}(T)} \Phi(T') & \xrightarrow{\sim} & \lim_{E \in \text{el}(T)} \colim_{E \to S' \in \text{Act}(E)} \Phi(S') \\
\downarrow & & \downarrow \\
\text{Act}(T) & \xrightarrow{\sim} & \lim_{E \in \text{el}(T)} \text{Act}(E).
\end{array}$$

Since the bottom horizontal map is an equivalence by Lemma 5.3.8, to conclude that the top horizontal map is an equivalence, it suffices to show that, for any given basepoint $\beta: T \to T'$ in $\text{Act}(T)$, the map on fibres

$$\Phi(T') \to \lim_{E \in \text{el}(T)} \Phi(S')$$

is an equivalence. But this is Corollary 5.3.12, since $S' \simeq \beta(E)$. □

Lemma 5.3.14. For P an analytic endofunctor, the natural transformation

$$j^*j_* N_{\text{int}} P \to N_{\text{int}} UFP$$

is an equivalence on elementary trees.
Proof. The statement is easily seen to be true for the trivial tree η. Consider now a corolla C. On the left side we compute (using the colimit formula for $j!$ of Lemma 5.3.9)

$$\left(j^*j_*N_{int}P\right)(C) \simeq \colim_{C \to T' \in \text{Act}(C)} N_{int}(T') \simeq \colim_{C \to T' \in \text{Act}(C)} \text{Map}(T', P).$$

On the right we compute (using the colimit formula for the free-monad monad of Proposition 5.2.12)

$$\left(N_{int}UFP\right) \simeq \text{Map}(C, UFP) \simeq (UFP)(C) \simeq \colim_{C \to T' \in \text{Act}(C)} P(T') \simeq \colim_{C \to T' \in \text{Act}(C)} \text{Map}(T', P). \quad \square$$

Proposition 5.3.15. The mate square

$$\begin{array}{ccc}
\text{AnMnd} & \xrightarrow{N} & \mathcal{P}(\Omega) \\
\downarrow j & & \downarrow j \\
\text{AnEnd} & \xrightarrow{N_{int}} & \mathcal{P}(\Omega_{int})
\end{array}$$

commutes. In other words, the natural transformation $j! \circ N_{int} \to N \circ F$ is an equivalence.

Proof. Since j^* is conservative, it is enough to check that $j^*j_*N_{int} \to j^*NF \simeq N_{int}UF$ is an equivalence. Let P be an analytic endofunctor, and put $\Phi := N_{int}P$ and $\overline{P} := UFP$. For T a tree, we have:

$$j^*j_! \Phi(T) \simeq \colim_{T \to T' \in \text{Act}(T)} \Phi(T') \quad \text{by Lemma 5.3.9}$$

$$\simeq \lim_{E \in \text{el}(T)} \colim_{E \to S' \in \text{Act}(E)} \Phi(S') \quad \text{by Lemma 5.3.13}$$

$$\simeq \lim_{E \in \text{el}(T)} j^*j_! \Phi(E) \quad \text{by Lemma 5.3.9}$$

$$\simeq \lim_{E \in \text{el}(T)} N_{int} \overline{P}(E) \quad \text{by Lemma 5.3.14}$$

$$\simeq N_{int} \overline{P}(T) \quad \text{since } N_{int} \text{ of anything is Segal as required.} \quad \square$$

Proof of Theorem 5.3.4. Proposition 5.3.15 tells us that the square of left adjoints commutes. Since the adjunction $F \dashv U$ is monadic by Corollary 5.1.6 and N_{int} is fully faithful (by Proposition 3.3.15), we are in position to apply Proposition 5.3.5, which now tells us that the square of right adjoints is a pullback. In particular, the nerve functor $N: \text{AnMnd} \to \mathcal{P}(\Omega)$ is fully faithful. Furthermore, N factors through $\mathcal{P}_{\text{Seg}}(\Omega)$, since this was defined as a pullback (5.3.3), as in this diagram:

$$\begin{array}{ccc}
\text{AnMnd} & \xrightarrow{N} & \mathcal{P}_{\text{Seg}}(\Omega) \\
\downarrow U & & \downarrow j^* \\
\text{AnEnd} & \xrightarrow{N_{int}} & \mathcal{P}_{\text{Seg}}(\Omega_{int}) \\
& & \downarrow j^*
\end{array}$$

Since the composite square is a pullback, and the right square is a pullback, also the left square is a pullback, whence the result. \square

Appendix A. Lax Squares and Mates

In this appendix we prove some results needed in §2.4 concerning mates of transformations between left and right adjoint functors of ∞-categories. Unfortunately, this requires some results from the as-yet poorly developed theory of $(\infty, 2)$-categories; specifically we will use the models via scaled simplicial sets and marked simplicial categories, as developed in [Lur09b], because of Lurie’s results on straightening for locally cocartesian fibrations. We expect that everything we say here is
well-known to the experts. In particular, the procedure of taking mates for functors of \(\infty\)-categories is already considered in [LZ14] and [Bar17] in the case where the mate is invertible, and in general (indeed, in the context of an arbitrary \((\infty,2)\)-category) in the book [GR17], albeit without full proofs.

A.1. \((\infty,2)\)-Categories and Straightening for Locally Cocartesian Fibrations. In this section we briefly recall some definitions and results from [Lur09b].

Definition A.1.1. A scaled simplicial set is a pair \((X, S)\) with \(X\) a simplicial set and \(S \subseteq X\) a set of 2-simplices that contains the degenerate ones. Let \(\text{Set}^\infty_\Delta\) denote the category of scaled simplicial sets, with the morphisms being maps of simplicial sets that preserve the scalings. Let \(\text{Cat}^+\) denote the category of marked simplicial categories, i.e. categories enriched in marked simplicial sets. We write \(\mathcal{N}^\infty : \text{Cat}^+ \to \text{Set}^\infty_\Delta\) for the scaled nerve, which takes a marked simplicial category \(\mathcal{C}\) to the coherent nerve \(\mathcal{N}C\) of its underlying simplicial category, equipped with the set of 2-simplices \(\Delta^2 \to \mathcal{N}C\) corresponding to functors of simplicial categories \(F : \mathcal{E}(\Delta^2) \to \mathcal{C}\) such that the edge \(\Delta^1 = \mathcal{E}(\Delta^2)(0, 2) \to \mathcal{C}(F(0), F(2))\) is marked. The functor \(\mathcal{N}^\infty\) has a left adjoint \(\mathcal{E}^\infty\).

Theorem A.1.2 ([Lur09b, Theorem 4.2.7]). There is a model structure on \(\text{Set}^\infty_\Delta\) where the cofibrations are the monomorphisms and the weak equivalences are the maps \(f\) such that \(\mathcal{E}^\infty(f)\) is a Dwyer–Kan equivalence of marked simplicial categories. Moreover, the adjunction \(\mathcal{E}^\infty \dashv \mathcal{N}^\infty\) is a Quillen equivalence.

Definition A.1.3. We write \(\text{CAT}^\infty\) for the scaled simplicial set \(\mathcal{N}^\infty(\text{Set}^+\Delta)\), where the category \(\text{Set}^+\Delta\) of fibrant marked simplicial sets is regarded as enriched in itself via its internal Hom. This is a model for the \((\infty,2)\)-category of \(\infty\)-categories.

Proposition A.1.4. If \(\mathcal{C}\) is a marked simplicial category, then the marked simplicial category \(\text{Fun}(\mathcal{C}, \text{Set}^+\Delta)\) of fibrant-cofibrant objects in the projective model structure on \(\text{Fun}(\mathcal{C}, \text{Set}^+\Delta)\) is weakly equivalent to \(\text{FUN}(\mathcal{N}^\infty\mathcal{C}, \text{CAT}^\infty)\), where \(\text{FUN}\) denotes the internal Hom in scaled simplicial sets. In other words, the projective model structure on \(\text{Fun}(\mathcal{C}, \text{Set}^+\Delta)\) describes the \((\infty,2)\)-category of functors from \(\mathcal{C}\) to \(\text{CAT}^\infty\).

Proof. This follows from [Lur09a, Proposition A.3.4.13] since \(\text{Set}^+\Delta\) is an excellent model category by [Lur09a, Example A.3.2.22].

Definition A.1.5. If \((X, S)\) is a scaled simplicial set and \(p : E \to X\) is a locally cocartesian fibration, then we say that \(p\) is cocartesian over \(S\) if for every \(\sigma : \Delta^2 \to X\) in \(S\), the base change \(\sigma^*E \to \Delta^2\) is a cocartesian fibration.

Theorem A.1.6 (Lurie). Let \((X, S)\) be a scaled simplicial set. Then there is a left proper combinatorial marked simplicial model structure on the category \((\text{Set}^+\Delta)_{/X, S}\) such that the cofibrations are the monomorphisms, and an object \((E, T)\) of \(\text{Set}^+\Delta_{/X, S}\) is fibrant if and only if

- the underlying map of simplicial sets \(p : E \to X\) is a locally cocartesian fibration that is cocartesian over \(S\),
- \(T\) is the set of locally \(p\)-cocartesian edges,

We write \((\text{Set}^+\Delta)_{(X, S)}\) for \((\text{Set}^+\Delta)_{/X, S}\) equipped with this model structure.

Proof. This is a special case of [Lur09b, Theorem 3.2.6], applied to the categorical pattern \((X, X_1, S, \emptyset)\).

Theorem A.1.7 ([Lur09b, Theorem 3.8.1]). If \((X, S)\) is a scaled simplicial set, then there is a marked simplicial Quillen equivalence

\[
\text{St}^\infty_{(X, S)} : (\text{Set}^+\Delta)_{(X, S)} \rightleftarrows \text{Fun}(\mathcal{E}^\infty(X, S), \text{Set}^+\Delta) : \text{Un}^\infty_{(X, S)},
\]

where \(\text{Fun}(\mathcal{E}^\infty(X, S), \text{Set}^+\Delta)\) is equipped with the projective model structure.

Combining this with Proposition A.1.4, we get:
Corollary A.1.8. For \((X, S)\) a scaled simplicial set, there is a natural equivalence of \((\infty, 2)\)-categories

\[
\text{FUN}((X, S), \text{CAT}_\infty) \simeq N^\circ(\text{Set}^{\Delta}_\infty)^{\varphi}(X, S).
\]

Remark A.1.9. The categories \((\text{Set}^{\Delta}_\infty)^{\varphi}(X, S)\) are only pseudonatural in \((X, S)\), but this can be dealt with in the same way as in the proof of the analogous statement for the usual unstraightening equivalence in \([\text{GHN}17], \text{Corollary A.32}\).

A.2. Gray Tensor Products and Double \(\infty\)-Categories of Squares. We will make use of the lax and colax Gray tensor products of scaled simplicial sets, which can be defined as follows:

Definition A.2.1. If \(\bar{X} = (X, S)\) and \(\bar{Y} = (Y, T)\) are scaled simplicial sets, we define \((\bar{X} \times \bar{Y})^{\text{lax}}\) to be the scaled simplicial set with underlying simplicial set \(X \times Y\), with the scaled simplices being:

- \((\sigma, s^0_1 y)\) for \(\sigma \in S, y \in Y_0\),
- \((s^0_0 x, \tau)\) for \(x \in X_0, \tau \in T\),
- \((b, c) \xrightarrow{(\text{id}_b, g)} (b, c')\)
- \((f, g) \xrightarrow{(f, \text{id}_c)} (b', c')\) for \(g \in Y_1, f \in X_1\).

Similarly, we define \((\bar{X} \times \bar{Y})^{\text{colax}}\) to be \(X \times Y\) with the following scaled simplices:

- \((\sigma, s^0_1 y)\) for \(\sigma \in S, y \in Y_0\),
- \((s^0_0 x, \tau)\) for \(x \in X_0, \tau \in T\),
- \((b, c) \xrightarrow{(f, \text{id}_c)} (b', c)\)
- \((f, g) \xrightarrow{(\text{id}_b, g)} (b', c')\) for \(g \in Y_1, f \in X_1\).

For simplicial sets \(X\) and \(Y\) we will abbreviate \((X \times Y)^{\text{lax}}\) to just \((X \times Y)^{\text{lax}}\), and similarly \((X \times Y)^{\text{colax}} := (X \times Y)^{\text{colax}}\).

Remark A.2.2. Note that for scaled simplicial sets \(\bar{X}\) and \(\bar{Y}\) we have

\[(\bar{X} \times \bar{Y})^{\text{lax}} \simeq (\bar{Y} \times \bar{X})^{\text{colax}}.\]

Remark A.2.3. Recall that the lax Gray tensor product \(\boxtimes\) of (strict) 2-categories is defined so that functors \(C \boxtimes D \to E\) correspond to functors from \(C\) into the 2-category of lax functors from \(D\) to \(E\). In \([\text{Ver08}]\), Verity defines a lax Gray tensor product of complicial sets, and the scaled simplicial set \((\bar{X} \times \bar{Y})^{\text{lax}}\) is the analogous construction for scaled simplicial sets.

Remark A.2.4. Specializing Corollary A.1.8 to the case of Gray tensor products, we see that there is an equivalence between maps of scaled simplicial sets \((\mathcal{B} \times \mathcal{C})^{\text{lax}} \to \text{CAT}_\infty\) and locally cocartesian fibrations \(\mathcal{E} \to \mathcal{B} \times \mathcal{C}\) such that

- for \(b \in \mathcal{B}\), the restriction \(\mathcal{E}_b \to \mathcal{C}\) is a cocartesian fibration,
- for \(c \in \mathcal{C}\), the restriction \(\mathcal{E}_c \to \mathcal{B}\) is a cocartesian fibration,
- for \(f: b \to b'\) in \(\mathcal{B}\), \(g: c \to c'\) in \(\mathcal{C}\), \(x \in \mathcal{E}\) over \((b, c), x \to (\text{id}_b, g): x\) a locally cocartesian morphism over \((\text{id}_b, g)\), and \((\text{id}_b, g): x \to (f, \text{id}_c): (\text{id}_b, g): x\) a locally cocartesian morphism over \((f, \text{id}_c)\), the composite \(x \to (f, \text{id}_c): (\text{id}_b, g): x\) is locally cocartesian over \((f, g)\).

Remark A.2.5. It is easy to see that in this situation the composite \(\mathcal{E} \to \mathcal{C}\) is cocartesian, and hence that there is an equivalence between maps \((\mathcal{B} \times \mathcal{C})^{\text{lax}} \to \text{CAT}_\infty\) and functors \(\mathcal{E} \to \text{Cat}_\infty/\mathcal{B}\) such that the value at each \(c \in \mathcal{C}\) is a cocartesian fibration, but the morphisms between them need not preserve cocartesian morphisms. In particular, a lax natural transformation, defined as a functor
$F: \left(\mathcal{B} \times \Delta^1\right)_{\text{lax}} \to \text{CAT}_\infty$, corresponds to a commutative diagram

$$
\begin{array}{c}
\mathcal{E}_0 \\
p_0 \downarrow \hspace{1cm} \downarrow f \\
\mathcal{E}_1 \\
p_1 \downarrow \hspace{1cm} \downarrow \mathcal{B}
\end{array}
$$

where p_i is the cocartesian fibration corresponding to $F|_{\mathcal{B} \times \{i\}}$ and f is not required to preserve cocartesian morphisms.

We will need the following result about the lax Gray tensor product due to Y. Harpaz:

Theorem A.2.6 (Harpaz [to appear]). The lax Gray tensor product

$\left(- \times -\right)_{\text{lax}}: \text{Set}_\Delta \times \text{Set}_\Delta \to \text{Set}_\Delta$

is a left Quillen bifunctor.

Using this result, we can define double ∞-categories (in the form of double Segal spaces) of lax and colax squares:

Definition A.2.7. If \mathcal{C} is an $(\infty, 2)$-category, in the form of a fibrant scaled simplicial set, we define bisimplicial spaces of lax, colax, and commuting squares by

$$
\text{Sq}^{\text{lax}}(\mathcal{C}) := \text{Map}(\left(\Delta^* \times \Delta^*\right)_{\text{lax}}, \mathcal{C}),
$$

$$
\text{Sq}^{\text{colax}}(\mathcal{C}) := \text{Map}(\left(\Delta^* \times \Delta^*\right)_{\text{colax}}, \mathcal{C}),
$$

$$
\text{Sq}(\mathcal{C}) := \text{Map}(\left(\Delta^* \times \Delta^*\right)^\flat, \mathcal{C}).
$$

Note that $\text{Sq}(\mathcal{K})$ only depends on the underlying ∞-category of \mathcal{K}.

Remark A.2.8. $\mathcal{C}^{\text{sc}}(\left(\Delta^n \times \Delta^m\right)_{\text{lax}})$ is the 2-category depicted as

```
· · · · ·
|   |   |
|---|---|
|   |   |
```

with n rows and m columns, and with the Northeast-going 2-cells invertible.

Corollary A.2.9. For any $(\infty, 2)$-category \mathcal{K}, the bisimplicial spaces $\text{Sq}^{\text{lax}}(\mathcal{K})$, $\text{Sq}^{\text{colax}}(\mathcal{K})$, and $\text{Sq}(\mathcal{K})$ are double Segal spaces.

Proof. Theorem A.2.6 implies that the lax Gray tensor product preserves colimits and weak equivalences in each variable; applying this to the spine inclusion of Δ^n we get the Segal condition for $\text{Sq}^{\text{lax}}(\mathcal{C})$. Using Remark A.2.2 the same argument applies for $\text{Sq}^{\text{colax}}(\mathcal{C})$. Finally, the case of $\text{Sq}(\mathcal{K})$ is clear since $(-)^\flat$ is a left Quillen functor from the Joyal model structure to scaled simplicial sets, and the Joyal model structure is cartesian. \qed

Notation A.2.10. If \mathcal{K} is a double Segal space, we regard the elements of $\mathcal{K}_{0,1}$ as *vertical* morphisms and those of $\mathcal{K}_{1,0}$ as *horizontal* morphisms. We thus write $\mathcal{K}^{\text{h-op}}$ for the double Segal space obtained by reversing direction in the first coordinate, and $\mathcal{K}^{\text{v-op}}$ for that obtained by reversing direction in the second coordinate. We also write \mathcal{K}^{rev} for the double Segal space obtained by reversing the order of the coordinates.
Remark A.2.11. By Remark A.2.2 we have a natural equivalence
\[\text{Sq}^\text{lax}(\mathcal{K})^\text{rev} \simeq \text{Sq}^\text{colax}(\mathcal{K}). \]
There is also obviously an equivalence \(\text{Sq}(\mathcal{K})^\text{rev} \simeq \text{Sq}(\mathcal{K}). \)

Definition A.2.12. Let \(\text{Sq}^\text{lax}(\text{CAT}_\infty)^{v=\text{ladj}} \) denote the sub-double \(\infty \)-category of \(\text{Sq}^\text{lax}(\text{CAT}_\infty) \) containing only the squares where the vertical maps are left adjoints. (We will apply similar notations with right adjoints and horizontal morphisms, also for other types of squares, without further comment.)

A.3. Naturality of Mates. Given a diagram of ordinary categories
\[
\begin{array}{ccc}
C & \xrightarrow{R} & D \\
\downarrow{\gamma} & \nearrow{\alpha} & \downarrow{\delta} \\
C' & \xrightarrow{R'} & D',
\end{array}
\]
where \(\alpha \) is a natural transformation \(\delta R \to R' \gamma \), and the functors \(R \) and \(R' \) have left adjoints \(L \) and \(L' \), respectively, then the mate of \(\alpha \) is the natural transformation
\[
L' \delta \to L' \delta RL \to L' R' \gamma L \to \gamma L,
\]
which we can depict as
\[
\begin{array}{cc}
\begin{array}{c} C \\ \gamma \end{array} & \xleftarrow{L} & \begin{array}{c} D \\ \delta \end{array} \\
\begin{array}{c} C' \\ \gamma \end{array} & \xleftarrow{L'} & \begin{array}{c} D' \\ \delta \end{array}
\end{array}
\quad \text{or} \quad
\begin{array}{cc}
\begin{array}{c} D \\ \delta \end{array} & \xrightarrow{L} & \begin{array}{c} C \\ \gamma \end{array} \\
\begin{array}{c} D' \\ \delta \end{array} & \xrightarrow{L'} & \begin{array}{c} C' \\ \gamma \end{array}
\end{array}
\]
Passing from categories to \(\infty \)-categories we can of course define a mate transformation in the same way. However, we need to know that this process is natural. The most general form of this statement would be that for any \((\infty, 2) \)-category \(\mathcal{K} \), taking mates gives a natural equivalence of double \(\infty \)-categories
\[
\text{Sq}^\text{lax}(\mathcal{K})^{v=\text{ladj}} \xrightarrow{\sim} \text{Sq}^\text{colax}(\mathcal{K})^{v=\text{radj}, v\text{-op}}.
\]
We will not establish such an equivalence here; instead, we will establish the following weaker statement, where we only consider \(\text{CAT}_\infty \) and the squares in the source are required to commute:

Proposition A.3.1. There are morphisms of double \(\infty \)-categories
\[
\begin{align*}
\text{Sq}(\text{Cat}_\infty)^{h=\text{ladj}} & \to \text{Sq}^\text{lax}(\text{CAT}_\infty)^{h=\text{ladj}, h\text{-op}}, \\
\text{Sq}(\text{Cat}_\infty)^{h=\text{radj}} & \to \text{Sq}^\text{colax}(\text{CAT}_\infty)^{h=\text{ladj}, h\text{-op}},
\end{align*}
\]
given by taking mates in the horizontal direction.

Remark A.3.2. Using the equivalence of Remark A.2.11, we can also interpret these as maps
\[
\begin{align*}
\text{Sq}(\text{Cat}_\infty)^{v=\text{ladj}} & \to \text{Sq}^\text{colax}(\text{CAT}_\infty)^{v=\text{radj}, v\text{-op}}, \\
\text{Sq}(\text{Cat}_\infty)^{v=\text{radj}} & \to \text{Sq}^\text{lax}(\text{CAT}_\infty)^{v=\text{ladj}, v\text{-op}},
\end{align*}
\]
given by taking mates in the vertical direction.

We will prove this using straightening for locally cocartesian fibrations; the key technical input is the following dual version of [Lur09a, Proposition 2.4.2.11]:

Proposition A.3.3. Suppose given a commutative triangle
\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{r} & \mathcal{D} \\
\downarrow{p} & & \downarrow{q} \\
\mathcal{E}' & \xrightarrow{r'} & \mathcal{D}'
\end{array}
\]
where
A.3.1 is immediate from the following two corollaries of this statement:

Corollary A.3.4. To a functor $F: \mathcal{B} \times \mathcal{C} \rightarrow \text{Cat}_\infty$ such that $F(f, id_c)$ is a right adjoint for all morphisms f in \mathcal{B} and $c \in \mathcal{C}$, there is naturally associated a functor $F': (\mathcal{B}^{\text{op}} \times \mathcal{C}^{\text{op}})^{\text{lax}} \rightarrow \text{CAT}_\infty$ such that

- $F'(f, id_c)$ is the left adjoint of $F(f, id_c)$,
- $F'(id_b, g) \simeq F(id_b, g)$,
- For $f: b \rightarrow b'$, $g: c \rightarrow c'$, the natural transformation
 \[\alpha_{f,g}: F'(f, g) \simeq F'(id_b, g) F'(id_{b'}, g) \rightarrow F'(id_b, g) F'(g, id_c) \]

in the lax square that is the image under F of

\[
\begin{array}{ccc}
(b, c) & \xrightarrow{(id_b, g)} & (b', c) \\
(f, id_c) & \downarrow & (f, id_{c'}) \\
(b, c') & \xrightarrow{(id_{b'}, g)} & (b', c')
\end{array}
\]

is the mate of the equivalence $F(f, id_{c'}) F(id_b, g) \simeq F(id_{b'}, g) F(f, id_c)$.

If, moreover, the natural transformation $\alpha_{f,g}$ is an equivalence for all f, g then F' is a functor $\mathcal{B}^{\text{op}} \times \mathcal{C}^{\text{op}} \rightarrow \text{Cat}_\infty$.

Proof. Let $p: \mathcal{E} \rightarrow \mathcal{B}^{\text{op}} \times \mathcal{C}^{\text{op}}$ be the cartesian fibration corresponding to F. We then have a commutative diagram

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{p} & \mathcal{B}^{\text{op}} \times \mathcal{C}^{\text{op}} \\
\downarrow & & \downarrow \\
\mathcal{C}^{\text{op}} & \xrightarrow{q} & \mathcal{B}^{\text{op}} \times \mathcal{C}
\end{array}
\]

where both maps to \mathcal{C}^{op} are cartesian fibrations, and p preserves cartesian morphisms. We can therefore pass to the corresponding cocartesian fibrations, obtaining a diagram

\[
\begin{array}{ccc}
\mathcal{E}' & \xrightarrow{q} & \mathcal{B}^{\text{op}} \times \mathcal{C} \\
\downarrow & & \downarrow \\
\mathcal{E} & \xrightarrow{p} & \mathcal{B}^{\text{op}} \times \mathcal{C}^{\text{op}}
\end{array}
\]

where the two maps to \mathcal{C} are cocartesian fibrations, and q preserves cocartesian morphisms. On fibres over $c \in \mathcal{C}$ the map q is given by the cartesian fibration $\mathcal{E}'_c \simeq \mathcal{E}_c \rightarrow \mathcal{B}^{\text{op}}$ for the functor $F(-, c)$. This is also a cocartesian fibration, since the functor $F(f, id_c)$ by assumption is a right adjoint for all f. Thus the hypotheses of Proposition A.3.3 are satisfied, and hence q is a locally cocartesian fibration. Moreover, over a morphism $(f, g): (b', c) \rightarrow (b, c')$ in $\mathcal{B}^{\text{op}} \times \mathcal{C}$ the locally cocartesian morphisms are given by the functor $F(b', c) \xrightarrow{F(id_{b'}, g)} F(b', c') \xrightarrow{F(f, id_{c'})} F(b, c')$. Thus, the locally cocartesian morphisms over (f, g) are the composites of those over $(id_{b'}, g)$ followed by those over $(f, id_{c'})$, which
means that \(q \) is cocartesian over the scaled 2-simplices in \((\mathbb{B}^{\text{op}} \times \mathbb{C})^{\text{colax}}\). Applying Corollary A.1.8 this means that \(q \) corresponds to a functor of \((\infty, 2)\)-categories \((\mathbb{B}^{\text{op}} \times \mathbb{C})^{\text{colax}} \to \text{CAT}_\infty\), as required. □

Corollary A.3.5. To a functor \(F : \mathbb{B} \times \mathbb{C} \to \text{Cat}_\infty \) such that \(F(f, \text{id}_c) \) is a left adjoint for all morphisms \(f \) in \(\mathbb{B} \) and \(c \in \mathbb{C} \), there is naturally associated a functor \(F' : (\mathbb{B}^{\text{op}} \times \mathbb{C})^{\text{colax}} \to \text{CAT}_\infty \) such that

- \(F'(f, \text{id}_c) \) is the right adjoint of \(F(f, \text{id}_c) \),
- \(F'(\text{id}_b, g) \simeq F(\text{id}_b, g) \),
- For \(f : b \to b', g : c \to c' \), the natural transformation

 \[
 \beta_{f, g} : F'(f, g) \simeq F'(\text{id}_b, g) \circ F'(f, \text{id}_c) \circ F'(\text{id}_{b'}, g)
 \]

 is the mate of the equivalence \(F(f, \text{id}_c)F(\text{id}_b, g) \simeq F(\text{id}_{b'}, g)F(f, \text{id}_c) \).

If, moreover, the natural transformation \(\beta_{f, g} \) is an equivalence for all \(f, g \) then \(F' \) is a functor \(\mathbb{B}^{\text{op}} \times \mathbb{C} \to \text{Cat}_\infty \).

Proof. Let \(p : \mathcal{E} \to \mathbb{B} \times \mathbb{C} \) be the cartesian fibration for \(F \). We then have a commutative triangle

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{p} & \mathbb{B} \times \mathbb{C} \\
& \searrow & \downarrow \\
& \mathbb{B} &
\end{array}
\]

Here both maps to \(\mathbb{B} \) are cartesian fibrations, since the maps \(F(f, \text{id}_c) \) are all right adjoints, and \(p \) preserves the cartesian morphisms. We can therefore pass to the corresponding cocartesian fibrations, obtaining a diagram

\[
\begin{array}{ccc}
\mathcal{E}' & \xrightarrow{q} & \mathbb{B}^{\text{op}} \times \mathbb{C} \\
& \searrow & \downarrow \\
& \mathbb{B}^{\text{op}} &
\end{array}
\]

where the two maps to \(\mathbb{B}^{\text{op}} \) are cocartesian fibrations, and \(q \) preserves cocartesian morphisms. On fibres over \(b \in \mathbb{B}^{\text{op}} \) the map \(q \) is given by the cocartesian fibration \(\mathcal{E}'_b \simeq \mathcal{E}_b \to \mathcal{E} \) for the functor \(F(b, -) \). Thus the hypotheses of Proposition A.3.3 are satisfied, and hence \(q \) is a locally cocartesian fibration. Moreover, over a morphism \((f, g) : (b', c) \to (b, c') \) in \(\mathbb{B}^{\text{op}} \times \mathbb{C} \) the locally cocartesian fibrations over \(f \) are the composites of those over \(f \) followed by those over \(\text{id}_c \), which means that \(q \) is cocartesian over the scaled 2-simplices in \((\mathbb{B}^{\text{op}} \times \mathbb{C})^{\text{colax}}\). Applying Corollary A.1.8 this means that \(q \) corresponds to a functor of \((\infty, 2)\)-categories \((\mathbb{B}^{\text{op}} \times \mathbb{C})^{\text{colax}} \to \text{CAT}_\infty\), as required. □

A.4. Framed Double \(\infty \)-Categories

We will need to know that the source-and-target projection for the double \(\infty \)-category \(\text{Sq}^{\text{colax}}(\text{CAT}_\infty)^{v=\text{rad}} \) is a cartesian and cocartesian fibration. In order to show this, we will now prove an \(\infty \)-categorical version of a result of Shulman [Shu08] on double categories. To state this we first introduce some terminology:

Definition A.4.1 (Shulman [Shu08]). A double category is **framed** if for every vertical edge \(f : a \to b \), there exist horizontal edges \(f_i : a \to b \) and \(f^* : b \to a \) together with four squares (2-cells)

\[
\begin{array}{ccc}
a & \xrightarrow{f} & b \\
\downarrow & & \downarrow \\
b & \xrightarrow{f^*} & a \\
\end{array}
\]

\[
\begin{array}{ccc}
a & \xleftarrow{f^*} & b \\
\downarrow & & \downarrow \\
b & \xleftarrow{f} & a \\
\end{array}
\]
such that the following four equations hold:

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {b};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {b};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e); \\
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {b};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {b};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e); \\
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {b};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {b};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e); \\
\end{tikzpicture}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {b};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {b};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e); \\
\end{tikzpicture}
\end{array}
\end{align*}
\]

where on the right-hand side we have the horizontal and vertical identity squares for \(f\), \(f^*\), and \(f_i\).

Remark A.4.2. In [Shu08], this structure is called a framed bicategory rather than a framed double category.

Definition A.4.3. We say a double \(\infty\)-category is framed if its homotopy double category is framed.

We have the following \(\infty\)-categorical version of [Shu08, Thm.4.1]:

Proposition A.4.4. Let \(X\) be a double \(\infty\)-category, viewed as a functor \(\Delta^{op} \to \text{Cat}_{\infty}\) satisfying the Segal condition

\[X_n \sim \to X_1 \times X_0 \times X_0 ... \times X_0 \times X_1.\]

Put \(\pi := (d_1, d_0): X_1 \to X_0 \times X_0 \times X_0 \times X_1\).

Then the following are equivalent:

1. The double \(\infty\)-category \(X\) is framed.
2. The functor \(\pi\) is a cocartesian fibration.
3. The functor \(\pi\) is a cartesian fibration.

Proof. The proof that (2) and (3) imply (1) is exactly as in the case of ordinary double categories, since cartesian (or cocartesian) fibrations induce Grothendieck (op)fibrations on the level of homotopy categories, and condition (1) is a statement about the homotopy double category. The more interesting direction (which is the one we are going to need) is that (1) implies (3). So assume given (for each vertical edge) the four squares, and assume given homotopy equivalences representing the four equations. Given an object in \(X_1\), that is, a horizontal edge \(M: b \to d\), and an arrow downstairs in \(X_0 \times X_0\) with codomain \((b, d)\), that is altogether a configuration

\[
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {c};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {c};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e);
\draw[->] (c) to (d);
\draw[->] (c) to node [above] {f} (e);
\end{tikzpicture}
\end{array}
\end{align*}
\]

we claim that

\[
\begin{array}{c}
\begin{tikzpicture}[baseline=0.5cm]
\node (a) at (0,0) {a};
\node (b) at (1.5,0) {c};
\node (c) at (0,-1) {a};
\node (d) at (1.5,-1) {c};
\node (e) at (0.75,-0.5) {f};
\node (f) at (1.25,-0.5) {g};
\draw[->] (a) to (b);
\draw[->] (a) to node [above] {f} (e);
\draw[->] (c) to (d);
\draw[->] (c) to node [above] {f} (e);
\end{tikzpicture}
\end{array}
\end{align*}
\]

is a cartesian lift. Given vertical edges \(x\) and \(y\), and a horizontal edge \(N: x \to y\), the claim is that the natural map

\[
\text{Map}_{X_1}(N, g^*f)_v \to \text{Map}_{X_1}(N, M)_{(fu, gv)}
\]
given by pasting the square α to the bottom edge is a homotopy equivalence. But we can construct a homotopy inverse by sending a square

$$
\begin{array}{c}
x \\
\downarrow^{af} \\
b \\
\downarrow^{bM} \\
d
\end{array}
\quad \quad
\begin{array}{c}
y \\
\downarrow^{cg} \\
c
\end{array}
$$

to the pasting

$$
\begin{array}{c}
x \\
\downarrow^{a} \\
a \\
\downarrow^{f} \\
\downarrow^{g} \\
a \\
\downarrow^{g} \\
a \\
\downarrow^{f} \\
b \\
\downarrow^{bM} \\
d \\
\downarrow^{g} \\
c \\
\end{array}
$$

These two assignments are homotopy inverses: explicit homotopies are easily constructed from the homotopy equivalences stipulated in (1).

The proof that (1) implies (2) is similar. For reference, we note that the cocartesian lifts (of (f,g) to N) can be taken to be of the form

$$
\begin{array}{c}
a \\
\downarrow^{f} \\
\downarrow^{g} \\
b \\
\end{array}
\quad
\begin{array}{c}
c \\
\downarrow^{g} \\
c \\
\end{array}
\quad
\begin{array}{c}
c \\
\downarrow^{g} \\
c \\
\end{array}
\quad
\begin{array}{c}
c \\
\downarrow^{g} \\
c \\
\end{array}
$$

where the second square is the counit ϵ_Y, the third square is the unit η_X, and the two other squares are trivial. The four equations required are two trivial ones, and the triangle laws for adjunctions.

Proposition A.4.5. The double ∞-categories $\text{Sq}_1^{\text{lax}}(\text{CAT}_\infty)^{\psi=\text{ladj}}$ and $\text{Sq}_1^{\text{lax}}(\text{CAT}_\infty)^{\psi=\text{radj}}$ are framed.

Proof. We give the proof for $\text{Sq}_1^{\text{lax}}(\text{CAT}_\infty)^{\psi=\text{ladj}}$, the other case is essentially the same. For each vertical edge, that is a left adjoint functor $\ell: X \to Y$, with right adjoint $r: Y \to X$, we have the lax squares

$$
\begin{array}{c}
X \\
\downarrow^{\ell} \\
Y \\
\end{array}
\quad
\begin{array}{c}
Y \\
\downarrow^{r} \\
X \\
\downarrow^{\ell} \\
X \\
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow^{\ell} \\
X \\
\end{array}
\quad
\begin{array}{c}
X \\
\downarrow^{\ell} \\
X \\
\end{array}
$$

where the second square is the counit ϵ_Y, the third square is the unit η_X, and the two other squares are trivial. The four equations required are two trivial ones, and the triangle laws for adjunctions.

Combining Proposition A.4.5 with Proposition A.4.4, we get:

Corollary A.4.6. The source-and-target projections

$$
\text{Sq}_1^{\text{lax}}(\text{CAT}_\infty)^{\psi=\text{ladj}} \to (\text{Cat}_\infty^{\text{ladj}})^{\times 2}, \quad \text{Sq}_1^{\text{lax}}(\text{CAT}_\infty)^{\psi=\text{radj}} \to (\text{Cat}_\infty^{\text{radj}})^{\times 2},
$$

are cartesian and cocartesian fibrations.

Appendix B. Monads

B.1. ∞-Categories of Adjunctions and Monads. In this paper we will need to make use of an ∞-category of monads with varying base ∞-category. We will define this using the results of the recent thesis of Zaganidis [Zag17]. This builds on work of Riehl and Verity [RV16], which we summarize first:

Let adj denote the “walking adjunction” 2-category, i.e. the free 2-category containing an adjunction. Riehl and Verity give a combinatorial description of this 2-category; we will not recall this here, but for notational convenience we will name the lower-dimensional parts of the category: it has
two objects, − and +, and morphisms are generated by \(l : - \to + \) (the left adjoint) and \(r : + \to - \) (the right adjoint). Let \(\text{mnd} \) denote the full subcategory of \(\text{adj} \) on the object −; this is the “walking monad 2-category”.

Theorem B.1.1 (Riehl–Verity).

(i) Let \(\text{Map}([1], \text{CAT}_\infty)^{\text{ladj}} \) and \(\text{Map}([1], \text{CAT}_\infty)^{\text{radj}} \) denote the subspaces of \(\text{Map}([1], \text{CAT}_\infty) \) with components given by left and right adjoint functors, respectively. Then the maps

\[
\text{Map}(\text{adj}, \text{CAT}_\infty) \to \text{Map}([1], \text{CAT}_\infty)^{\text{ladj}}, \quad \text{Map}(\text{adj}, \text{CAT}_\infty) \to \text{Map}([1], \text{CAT}_\infty)^{\text{radj}}
\]

given by evaluation at the morphisms \(l \) and \(r \), respectively, are both equivalences.

(ii) Let \(\text{Map}(\text{adj}, \text{CAT}_\infty)^{\text{mnd}} \) be the subspace of \(\text{Map}(\text{adj}, \text{CAT}_\infty) \) on the monadic adjunctions. Then the map

\[
\text{Map}(\text{adj}, \text{CAT}_\infty)^{\text{mnd}} \to \text{Map}(\text{mnd}, \text{CAT}_\infty),
\]

induced by composition with the inclusion \(\text{mnd} \hookrightarrow \text{adj} \), is an equivalence.

Remark B.1.2. Both this theorem and its generalizations work not just for \(\text{CAT}_\infty \) but for a more general class of \((\infty, 2)\)-categories that includes all “\(\infty \)-cosmoi” in the sense of Riehl–Verity; we will restrict ourselves to the case of \(\text{CAT}_\infty \) as that is the only case we need in this paper.

Before we discuss Zaganidis’s extension of this result to morphisms of adjunctions and monads, it will be helpful to review how these work for ordinary categories (see e.g. [Str72, Pum70] for more details). There are two natural choices of morphisms between monads: if \(T \) is a monad on \(C \) and \(S \) is a monad on \(D \) then

- a lax morphism (or monad opfunctor) \(T \to S \) consists of a functor \(F : C \to D \) and a natural transformation \(FT \to SF \) — in other words, a lax square

\[
\begin{array}{ccc}
C & \xrightarrow{T} & C \\
\downarrow{F} & \swarrow{\square} & \downarrow{F} \\
D & \xleftarrow{S} & D,
\end{array}
\]

compatible with multiplication and units in that the diagrams

\[
\begin{array}{ccc}
F & \xrightarrow{FT} & FT \\
\downarrow{SF} & & \downarrow{\text{TT} \to \text{FT}} \\
\end{array}
\quad
\begin{array}{ccc}
\text{FTT} & \to & FT \\
\downarrow{\text{SFT}} & & \downarrow{\text{SSF} \to \text{SF}} \\
\text{STT} & \to & \text{SSF} \\
\end{array}
\]

commute.

- a colax morphism (or monad functor) \(T \to S \) consists of a functor \(F : C \to D \) and a natural transformation \(SF \to FT \) — in other words, a colax square

\[
\begin{array}{ccc}
C & \xrightarrow{T} & C \\
\downarrow{F} & \swarrow{\square} & \downarrow{F} \\
D & \xleftarrow{S} & D,
\end{array}
\]

compatible with multiplication and units in that the diagrams

\[
\begin{array}{ccc}
F & \xrightarrow{SF} & SF \\
\downarrow{FT} & & \downarrow{\text{SSF} \to \text{SF}} \\
\end{array}
\quad
\begin{array}{ccc}
\text{SSF} & \to & SF \\
\downarrow{\text{SFT}} & & \downarrow{\text{FTT} \to \text{FT}} \\
\text{FTT} & \to & \text{FT} \\
\end{array}
\]
commute.

Similarly, one can define lax and colax morphisms between adjunctions, in such a way that:

- a lax (resp. colax) morphism of monads corresponds to a lax (resp. colax) morphism of adjunctions,
- a lax morphism \((L \dashv R) \to (L' \dashv R')\) corresponds to a commutative square of left adjoints, i.e.
 \[
 \begin{array}{ccc}
 \bullet & \xrightarrow{L} & \bullet \\
 \downarrow & & \downarrow \\
 \bullet & \xrightarrow{L'} & \bullet
 \end{array}
 \]
- a colax morphism \((L \dashv R) \to (L' \dashv R')\) corresponds to a commutative square of right adjoints, i.e.
 \[
 \begin{array}{ccc}
 \bullet & \xleftarrow{R} & \bullet \\
 \downarrow & & \downarrow \\
 \bullet & \xleftarrow{R'} & \bullet
 \end{array}
 \]

This works in any 2-category \(K\), giving categories \(\text{Mnd}(K)^{\text{lax}}\) and \(\text{Mnd}(K)^{\text{colax}}\) of monads, and \(\text{Adj}(K)^{\text{lax}}\) and \(\text{Adj}(K)^{\text{colax}}\) of adjunctions, such that

- there are fully faithful functors
 \[
 \text{Mnd}(K)^{\text{colax}} \hookrightarrow \text{Adj}(K)^{\text{colax}} \hookrightarrow \text{Fun}([1], K),
 \]
 with images spanned by the monadic adjunctions and the right adjoint functors,
- there are fully faithful functors
 \[
 \text{Mnd}(K)^{\text{lax}} \hookrightarrow \text{Adj}(K)^{\text{lax}} \hookrightarrow \text{Fun}([1], K),
 \]
 with images spanned by the Kleisli adjunctions and the left adjoint functors.

Zaganidis [Zag17] defines a cosimplicial 2-category \(\text{Adj}^{\bullet}\) (there denoted \(\text{Adj}^{[n]}\)), where \(\text{Adj}^{\bullet}\) is the free 2-category with \(n\) composable colax morphisms of adjunctions. He then defines the monadic analogue \(\text{Mnd}^{\bullet}\) as a full subcategory, and proves the following.

Theorem B.1.3 (Zaganidis).

(i) Let \(\text{Map}([n] \times [1], \text{CAT}_\infty)^{\text{radj}}\) denote the subspace of \(\text{Map}([n] \times [1], \text{CAT}_\infty)\) with components corresponding to maps that are pointwise given by right adjoint functors. Then the map

\[
\text{Map}(\text{Adj}^{\bullet}_{\text{colax}}, \text{CAT}_\infty) \to \text{Map}([n] \times [1], \text{CAT}_\infty)^{\text{radj}},
\]

given by restriction to the right adjoint morphisms, is an equivalence.

(ii) Let \(\text{Map}(\text{Adj}^{\bullet}_{\text{colax}}, \text{CAT}_\infty)^{\text{mnd}}\) be the subspace of \(\text{Map}(\text{Adj}^{\bullet}_{\text{colax}}, \text{CAT}_\infty)\) on colax morphisms between monadic adjunctions. Then the map

\[
\text{Map}(\text{Adj}^{\bullet}_{\text{colax}}, \text{CAT}_\infty)^{\text{mnd}} \to \text{Map}(\text{Mnd}^{\bullet}_{\text{colax}}, \text{CAT}_\infty),
\]

induced by composition with the inclusion \(\text{Mnd}^{\bullet}_{\text{colax}} \hookrightarrow \text{Adj}^{\bullet}_{\text{colax}},\) is an equivalence.

Proof. (i) is a special case of [Zag17, Corollary 5.12], while (ii) summarizes the results of [Zag17, §§5.3–5.4]. \(\square\)

Definition B.1.4. We write \(\text{Fun}([1], \text{CAT}_\infty)\) for the \(\infty\)-category given by the complete Segal space \(\text{Map}_{\text{Cat}(\infty, 2)}([1] \times [1], \text{CAT}_\infty)\), and let \(\text{Fun}([1], \text{CAT}_\infty)^{\text{radj}}\) and \(\text{Fun}([1], \text{CAT}_\infty)^{\text{mnd}}\) denote the full subcategories on the right adjoints and monadic right adjoints, respectively. We also define \(\text{Adj}^{\text{colax}}\) to be the simplicial space \(\text{Map}(\text{Adj}^{\bullet}_{\text{colax}}, \text{CAT}_\infty)\) and write \(\text{Adj}^{\text{colax}, \text{mnd}}\) for the simplicial subspace on the monadic adjunctions. Finally, we let \(\text{Mnd}^{\text{colax}}\) be the simplicial space \(\text{Map}(\text{Mnd}^{\bullet}_{\text{colax}}, \text{CAT}_\infty).\)
Corollary B.1.5. The maps of simplicial spaces
\[\text{Mnd}^{\text{colax}} \leftarrow \text{Adj}^{\text{colax}} \rightarrow \text{Fun}([1], \text{CAT}_\infty) \]
restrict to equivalences
\[\text{Adj}^{\text{colax}} \xrightarrow{\sim} \text{Fun}([1], \text{CAT}_\infty)^{\text{radj}}, \]
\[\text{Mnd}^{\text{colax}} \xrightarrow{\sim} \text{Adj}^{\text{colax,mnd}} \rightarrow \text{Fun}([1], \text{CAT}_\infty)^{\text{mndradj}}. \]
In particular, both \(\text{Adj}^{\text{colax}} \) and \(\text{Mnd}^{\text{colax}} \) are complete Segal spaces (since both are equivalent to full subcategories of \(\text{Fun}([1], \text{CAT}_\infty) \)).

B.2. Monads as Algebras. We will also need to make use of an alternative perspective on monads, namely as associative algebras in the monoidal \(\infty \)-categories of endofunctors under composition. This approach to monads is due to Lurie [Lur17, §4.7]. Our goal here is to compare the resulting \(\infty \)-category \(\text{Mnd}(\mathcal{C}) := \text{Alg}(\text{End}(\mathcal{C})) \) of monads on a fixed \(\infty \)-category \(\mathcal{C} \) to the corresponding \(\infty \)-category \(\text{Mnd}^{\text{colax}}_{\mathcal{C}} \), the fibre over \(\mathcal{C} \) of the \(\infty \)-category \(\text{Mnd}^{\text{colax}} \) of the previous section. We will do this in a rather indirect way, however: by Corollary B.1.5 there is a fully faithful functor \(\text{Mnd}^{\text{colax}}_{\mathcal{C}} \to \text{Cat}_{\infty/\mathcal{C}} \) with image the full subcategory of monadic adjunctions. On the other hand, there is a functor \(\text{Mnd}(\mathcal{C})^{\text{op}} \to \text{Cat}_{\infty/\mathcal{C}} \) taking a monad \(T \) to the forgetful functor \(\text{Alg}_T(\mathcal{C}) \to \mathcal{C} \), where the \(\infty \)-category \(\text{Alg}_T(\mathcal{C}) \) of \(T \)-algebras in \(\mathcal{C} \) can be defined as the \(\infty \)-category of left modules for \(T \) via the action of \(\text{End}(\mathcal{C}) \) on \(\mathcal{C} \) (see [Lur17, Remark 4.7.3.8]). Here we will prove that this is also fully faithful with image the monadic adjunctions, which implies that we get an equivalence
\[\text{Mnd}(\mathcal{C})^{\text{op}} \to \text{Mnd}^{\text{colax}}_{\mathcal{C}}, \]
natural in \(\mathcal{C} \).

Proposition B.2.1. Let \(\mathcal{D} \) be an \(\infty \)-category. There is a commutative triangle
\[
\begin{tikzcd}
\text{LMod}_T(\text{Fun}(\mathcal{D}, \mathcal{C})) \ar[r] \ar[dr] & \text{Fun}(\mathcal{D}, \text{Alg}_T(\mathcal{C})) \ar[dl] \\
& \text{Fun}(\mathcal{D}, \mathcal{C}),
\end{tikzcd}
\]
natural in \(T \in \text{Alg}(\text{End}(\mathcal{C})) \). Moreover, the horizontal morphism here is an equivalence.

Proof. The evaluation functor \(\mathcal{D} \times \text{Fun}(\mathcal{D}, \mathcal{C}) \to \mathcal{C} \) is compatible with the action of \(\text{End}(\mathcal{C}) \) on both sides, and so induces a functor
\[\text{LMod}_T(\mathcal{D} \times \text{Fun}(\mathcal{D}, \mathcal{C})) \to \text{Alg}_T(\mathcal{C}). \]
On the left-hand side \(\text{End}(\mathcal{C}) \) only acts on \(\text{Fun}(\mathcal{D}, \mathcal{C}) \), and so we have an equivalence
\[\text{LMod}_T(\mathcal{D} \times \text{Fun}(\mathcal{D}, \mathcal{C})) \xrightarrow{\sim} \mathcal{D} \times \text{LMod}_T(\text{Fun}(\mathcal{D}, \mathcal{C})). \]
We thus obtain a functor \(\mathcal{D} \times \text{LMod}_T(\text{Fun}(\mathcal{D}, \mathcal{C})) \to \text{Alg}_T(\mathcal{C}) \) over \(\mathcal{C} \), which corresponds by adjunction to a commutative triangle as claimed. To see that the horizontal map is an equivalence, we observe that both functors to \(\text{Fun}(\mathcal{D}, \mathcal{C}) \) are monadic right adjoints, and both monads are given by composition with \(T \). It follows by [Lur17, Corollary 4.7.3.16] that the horizontal functor is indeed an equivalence.

Definition B.2.2. Let \(\text{Cat}^{\text{radj}}_{\infty/\mathcal{C}} \) denote the full subcategory of \(\text{Cat}_{\infty/\mathcal{C}} \) spanned by the right adjoints.

Recall from [Lur17, §4.7.3] that for a functor \(G : \mathcal{D} \to \mathcal{C} \), an endomorphism monad for \(G \) is a terminal object in the \(\infty \)-category \(\text{LMod}(\text{Fun}(\mathcal{D}, \mathcal{C}))_G \) of monads \(T \) on \(\mathcal{C} \) together with a \(T \)-action on \(G \). This corresponds to the unique associative algebra structure on a terminal object in the \(\infty \)-category \(\text{End}(\mathcal{C})/G \) of pairs \((P \in \text{End}(\mathcal{C}), P \circ G \to G) \). By [Lur17, Proposition 4.7.3.3] any right adjoint functor has an endomorphism monad.

Corollary B.2.3. The functor \(\alpha : \text{Mnd}(\mathcal{C})^{\text{op}} \to \text{Cat}^{\text{radj}}_{\infty/\mathcal{C}} \) has a left adjoint, which takes a right adjoint to its endomorphism monad.
Proof. To see that α has a left adjoint, it suffices to check that for every right adjoint $R : \mathcal{D} \to \mathcal{C}$ the ∞-category
\[
(\text{Mnd}(\mathcal{C}))^{\text{op}}_{R/} := \text{Mnd}(\mathcal{C})^{\text{op}} \times_{\text{Cat}_{\infty/\mathcal{C}}^{\text{radj}}} (\text{Cat}_{\infty/\mathcal{C}}^{\text{radj}})_{R/}
\]
has an initial object. This ∞-category consists of pairs $(T \in \text{Mnd}(\mathcal{C}), R \to \text{Alg}_T(\mathcal{C}))$. By Proposition B.2.1 this ∞-category can be identified with the opposite of the ∞-category $\text{LMod}(\text{Fun}(\mathcal{D}, \mathcal{C}))_R$ of left module structures on R. Since R is a right adjoint, it has an endomorphism monad, which is by definition a terminal object here. □

Corollary B.2.4. For $T \in \text{Mnd}(\mathcal{C})$, the endomorphism monad of $U_T : \text{Alg}_T(\mathcal{C}) \to \mathcal{C}$ is T.

Proof. By Proposition B.2.1 the identity functor of $\text{Alg}_T(\mathcal{C})$ corresponds to a left T-action on U_T. If F_T is the left adjoint to U_T, by [Lur17, Proposition 4.7.3.3] to see that this T-action exhibits T as the endomorphism monad of U_T it suffices to observe that the composite
\[
T \to T \circ U_T \circ F_T \to U_T \circ F_T,
\]
where the first map comes from the adjunction unit and the second from the T-action, is an equivalence. □

Corollary B.2.5. The functor $\alpha : \text{Mnd}(\mathcal{C})^{\text{op}} \to \text{Cat}_{\infty/\mathcal{C}}^{\text{radj}}$ is fully faithful, with image the monadic right adjoints.

Proof. By definition, the monadic right adjoints are precisely the functors in the image of α. Since α has a left adjoint λ by Corollary B.2.3, to see that α is fully faithful it suffices to show that the counit map $\lambda \alpha(T) \to T$ in $\text{Mnd}(\mathcal{C})^{\text{op}}$ is an equivalence, which follows from Corollary B.2.3. □

Corollary B.2.6. There are equivalences
\[
\text{Mnd}(\mathcal{C})^{\text{op}} \simeq \text{Cat}_{\infty/\mathcal{C}}^{\text{mndradj}} \simeq \text{Mnd}_\mathcal{C}^{\text{colax}}.
\]

Proof. Combine Corollary B.2.5 with Corollary B.1.5. □

B.3. Monads and Endofunctors. From the definition of $\text{mnd}_\mathcal{C}^{\text{colax}}$ it is not hard to see that there are natural maps $(\Delta^1 \times \Delta^n)_{\text{colax}} \to \text{mnd}_\mathcal{C}^{\text{colax}}$ taking a colax morphism of monads to its underlying colax square. Composing with these maps induces a commutative square of ∞-categories
\[
\begin{array}{ccc}
\text{Mnd}_{\mathcal{C}}^{\text{colax}} & \longrightarrow & \text{Sq}_{\text{colax}}(\text{CAT}_{\infty})_1 \\
\downarrow & & \downarrow \\
\text{Cat}_{\infty} & \longrightarrow & \text{Cat}_{\infty} \times \text{Cat}_{\infty}
\end{array}
\]
where the right vertical map is the source-target projection in $\text{Sq}_{\text{colax}}(\text{CAT}_{\infty})$ (note $\text{Sq}_{\text{colax}}(\text{CAT}_{\infty})_0 \simeq \text{Cat}_{\infty}$), the bottom horizontal map is the diagonal, and the left vertical map takes a monad to its underlying ∞-category. Let us define the ∞-category $\text{End}_{\mathcal{C}}^{\text{colax}}$ by the pullback
\[
\begin{array}{ccc}
\text{End}_{\mathcal{C}}^{\text{colax}} & \longrightarrow & \text{Sq}_{\text{colax}}(\text{CAT}_{\infty})_1 \\
\downarrow & & \downarrow \\
\text{Cat}_{\infty} & \longrightarrow & \text{Cat}_{\infty} \times \text{Cat}_{\infty},
\end{array}
\]
then we get a commutative triangle
\[
\begin{array}{ccc}
\text{Mnd}_{\mathcal{C}}^{\text{colax}} & \longrightarrow & \text{End}_{\mathcal{C}}^{\text{colax}} \\
\downarrow & & \downarrow \\
\text{Cat}_{\infty} & \longrightarrow & \text{Cat}_{\infty}.
\end{array}
\]
Note that the fibre of $\text{End}_{\mathcal{C}}^{\text{colax}} \to \text{Cat}_{\infty}$ at $\mathcal{C} \in \text{Cat}_{\infty}$ is the ∞-category $\text{End}(\mathcal{C})^{\text{op}}$.

\[\infty\text{-OPERADS AS ANALYTIC MONADS}\]
Warning B.3.1. Here, and elsewhere in the paper, we will assume that fibrewise the functor $\text{Mnd}^{\text{colax}} \to \text{End}^{\text{colax}}$ is given by the forgetful functor $\text{Alg}(\text{End}(\mathcal{C})) \to \text{End}(\mathcal{C})$, i.e. that we have natural commutative diagrams

$$
\begin{array}{ccc}
\text{Mnd}(\mathcal{C})^{\text{op}} & \xrightarrow{\sim} & \text{Mnd}^{\text{colax}} \\
\downarrow & & \downarrow \\
\text{End}(\mathcal{C})^{\text{op}} & \xrightarrow{\sim} & \text{End}^{\text{colax}}.
\end{array}
$$

It does not seem possible to prove this using the equivalence $\text{Mnd}(\mathcal{C})^{\text{op}} \simeq \text{Mnd}^{\text{colax}}$ we established above, as this passes through the ∞-category $\text{Cat}^{\text{monadic right adjoints}}_{\infty/\mathcal{C}}$ of monadic right adjoints, which does not have a natural map to endofunctors. Thus we would need to establish a direct comparison between the two ∞-categories of monads, which we will not attempt to do in this paper.

Assuming this, in this section we will prove the following:

Proposition B.3.2.

(i) The projection $\text{End}^{\text{colax}} \to \text{Cat}_{\infty}$ has locally cocartesian morphisms and locally cartesian morphisms over functors that are right adjoints.

(ii) The projection $\text{Mnd}^{\text{colax}} \to \text{Cat}_{\infty}$ has locally cocartesian morphisms over functors that are right adjoints.

(iii) The forgetful functor $\text{Mnd}^{\text{colax}} \to \text{End}^{\text{colax}}$ preserves these locally cocartesian morphisms.

Proof. We first prove (i). Suppose (\mathcal{C}, P) and (\mathcal{D}, Q) are objects of End^{lax} and $R: \mathcal{C} \to \mathcal{D}$ is a morphism with a left adjoint $L: \mathcal{D} \to \mathcal{C}$. Then

$$
\text{Map}_{\text{End}^{\text{colax}}}(\mathcal{C}, P, \mathcal{D}, Q) \cong \text{Map}_{\text{Fun}(\mathcal{D}, \mathcal{C})}(QR, RP).
$$

From the adjunction identities it is immediate that this space is equivalent to $\text{Map}_{\text{End}(\mathcal{C})}(Q, RPL)$, so the natural transformation $RPLR \to RP$ coming from the counit $LR \to \text{id}$ gives a locally cocartesian morphism over R from P to RPL. Similarly, the space is equivalent to $\text{Map}_{\text{End}(\mathcal{C})}(LQR, P)$, and the natural transformation $QR \to RLQR$ coming from the unit $\text{id} \to RL$ gives a locally cartesian morphism.

To prove (ii), we first observe that the functor $\text{ev}_1: \text{Fun}([1], \text{CAT}_{\infty}) \to \text{Cat}_{\infty}$ is a cocartesian fibration, with cocartesian morphisms given by composition. If the underlying morphism in Cat_{∞} is a right adjoint, then these cocartesian morphisms lie in the full subcategory $\text{Fun}([1], \text{CAT}_{\infty})^{\text{radj}}$, since right adjoints are closed under composition. Thus $\text{ev}_1: \text{Fun}([1], \text{CAT}_{\infty})^{\text{radj}} \to \text{Cat}_{\infty}$ has cocartesian morphisms over the morphisms in Cat_{∞} that are right adjoints. Given a right adjoint $R: \mathcal{C} \to \mathcal{C}'$ with left adjoint L and a monadic right adjoint $F: \mathcal{C} \to \mathcal{D}$ with left adjoint U, we see from Corollary B.2.5 that there is an equivalence

$$
\text{Map}_{/\mathcal{C}'}(\text{Alg}_T(\mathcal{C'}), \text{Alg}_S(\mathcal{C'})) \cong \text{Map}_{/\mathcal{D}}(\mathcal{C}, \text{Alg}_S(\mathcal{C}')).
$$

where T is the monad for the composite right adjoint $RUFL$ (with underlying functor $RUFL$). Thus $\mathcal{D} \to \text{Alg}_T(\mathcal{C'})$ is a locally cocartesian morphism over R. Thus $\text{Fun}([1], \text{CAT}_{\infty})^{\text{monadic right adjoints}} \to \text{Cat}_{\infty}$ has locally cocartesian morphisms over the morphisms in Cat_{∞} that are right adjoints. This gives (ii) using the equivalence $\text{Fun}([1], \text{CAT}_{\infty})^{\text{monadic right adjoints}} \simeq \text{Mnd}^{\text{colax}}$ of Corollary B.1.5.

(iii) is now clear from the description of the locally cocartesian morphisms in the two cases. \(\square\)

Definition B.3.3. Let $\text{Cat}^{\text{adj}_{\infty}}$ denote the subcategory of Cat_{∞} containing only the morphisms that are right adjoints. Then we define $\text{Mnd}^{\text{colax}, \text{adj}_{\infty}}$ and $\text{End}^{\text{colax}, \text{adj}_{\infty}}$ by pulling back $\text{Mnd}^{\text{colax}}$ and $\text{End}^{\text{colax}}$ along the inclusion $\text{Cat}^{\text{adj}_{\infty}} \to \text{Cat}_{\infty}$.

70 DAVID GEPNER, RUNE HAUGSENG, AND JOACHIM KOCK
Corollary B.3.4. There is a commuting diagram

\[
\begin{array}{ccc}
\text{Mnd}^\text{colax,radj} & \xrightarrow{\text{End}^\text{colax,radj}} & \text{Cat}_{\infty}^\text{radj} \\
\downarrow & & \downarrow \\
\downarrow & & \downarrow \\
\end{array}
\]

where the two downward functors are cocartesian fibrations, and the horizontal functor preserves cocartesian morphisms. Moreover, the right-hand functor is also a cartesian fibration.

Proof. It is clear that the two downward functors are locally cocartesian fibrations, and that the horizontal functor preserves locally cocartesian morphisms. It then suffices by [Lur09a, Proposition 2.4.2.8] to show that the locally cocartesian morphisms are closed under composition in both cases. But this is clear from our description of these morphisms. Similarly, the right-hand functor is a cartesian fibration. □

REFERENCES

[AAG03] Michael Abbott, Thorsten Altenkirch, and Neil Ghani, Categories of containers, Foundations of software science and computation structures, 2003, pp. 23–38.

[Ad74] Jiří Adámek, Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Carolin. 15 (1974), 589–602.

[AGS17] Steve Awodey, Nicola Gambino, and Kristina Sojakova, Homotopy-initial algebras in type theory, J. ACM 63 (2017), no. 6, Art. 51, 45pp.

[BD01] John C. Baez and James Dolan, From finite sets to Feynman diagrams, Mathematics unlimited—2001 and beyond, 2001, pp. 29–50.

[Bar13] Clark Barwick, From operator categories to topological operads (2013), available at arXiv:1302.5756.

[Bar17] Spectral Mackey functors and equivariant algebraic K-theory (I), Adv. Math. 304 (2017), 646–727, available at arXiv:1404.0108.

[BB17] Michael A. Batanin and Clemens Berger, Homotopy theory for algebras over polynomial monads, Theory Appl. Categ. 32 (2017), 148–253.

[BMW12] Clemens Berger, Paul-André Melliès, and Mark Weber, Monads with arities and their associated theories, J. Pure Appl. Algebra 216 (2012), 2029–2048.

[BC13] J. Michael Boardman and Rainer M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Vol. 347, Springer-Verlag, Berlin-New York, 1973.

[Bra17] Lukas Brantner, The Lubin–Tate theory of spectral Lie algebras (2017). Available from http://www.math.harvard.edu/~brantner/.

[CHH16] Hongyi Chu, Rune Haugseng, and Gijs Heuts, Two models for the homotopy theory of ∞-operads (2016), available at arXiv:1506.03826.

[CM13a] Denis-Charles Cisinski and Leke Moerdijk, Dendroidal Segal spaces and ∞-operads, J. Topol. 6 (2013), 675–704.

[CM13b] Dendroidal sets and simplicial operads, J. Topol. 6 (2013), 705–756, available at arXiv:1109.1004.

[GR17] Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic geometry. Vol. I. Correspondences and duality, Mathematical Surveys and Monographs, vol. 221, American Mathematical Society, Providence, RI, 2017. Available at http://www.math.harvard.edu/~gaitsgde/GL.

[GCKT15] Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks, Decomposition spaces, incidence algebras and Möbius inversion III: the decomposition space of Möbius intervals, to appear in Adv. Math. (2015), available at 1512.07580.

[GK13] Nicola Gambino and Joachim Kock, Polynomial functors and polynomial monads, Math. Proc. Cambridge Phil. Soc. 154 (2013), 153–192.

[GH15] David Gepner and Rune Haugseng, Enriched ∞-categories via non-symmetric ∞-operads, Adv. Math. 279 (2015), 575–716, available at arXiv:1312.3178.

[GN17] Enriched ∞-categories via non-symmetric ∞-operads, Adv. Math. 279 (2015), 575–716, available at arXiv:1312.3178.

[GH17] David Gepner, Rune Haugseng, and Thomas Nikolaus, Lax colimits and free fibrations in ∞-categories, Doc. Math. 22 (2017), 1225–1266, available at arXiv:1501.02161.

[GK17] David Gepner and Joachim Kock, Univalence in locally cartesian closed ∞-categories, Forum Math. 29 (2017), 617–652.

[God58] Roger Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.

[Hau17a] Rune Haugseng, The higher Morita category of En-algebras, Geom. Topol. 21 (2017), 1631–1730, available at arXiv:1412.8459.

[Hau17b] ∞-operads via Day convolution (2017), available at arXiv:1708.09632.
Purdue University, West Lafayette, USA
E-mail address: dgepner@math.purdue.edu
URL: http://www.math.purdue.edu/~dgepner/

University of Copenhagen, Copenhagen, Denmark
E-mail address: haugseng@math.ku.dk
URL: http://sites.google.com/site/runehaugseng/

Universitat Autònoma de Barcelona, Bellaterra, Spain
E-mail address: kock@mat.uab.cat
URL: http://mat.uab.cat/~kock/