FCC ↔ BCC phase transitions in convex and concave hard particle systems

Duanduan Wan,¹ Chrisy Xiyu Du,² Greg van Anders,²,³ and Sharon C. Glotzer¹,2,4,*

¹Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
²Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
³Department of Physics, Engineering Physics, and Astronomy, Queen’s University, Kingston, Ontario, K7L 3N6, Canada
⁴Department of Materials Science and Engineering and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, USA

(Dated: February 2, 2022)

Particle shape plays an important role in the phase behavior of colloidal self-assembly. Recent progress in particle synthesis has made particles of polyhedral shapes and dimpled spherical shapes available. Here using computer simulations of hard particle models, we study face-centered cubic to body-centered cubic (FCC ↔ BCC) phase transitions in a convex 432 polyhedral shape family and a concave dimpled sphere family. Particles in both families have four-, three-, and two-fold rotational symmetries. Via free energy calculations we find the FCC ↔ BCC transitions in both families are first order. As a previous work reports the FCC ↔ BCC phase transition is first order in a convex 332 family of hard polyhedra, our work provides additional insight into the FCC ↔ BCC transition and how the convexity or concavity of particle shape affects phase transition pathways.

I. INTRODUCTION

Despite their physical significance, direct observations of solid–solid phase transitions of atomic crystals are difficult as transitions are rapid, and typically occur under extreme conditions and on small length scales. Instead systems at larger length scales, such as colloidal suspensions (e.g., Refs. [1–5]), and micron-sized aqueous droplets (e.g., Refs. [6–8]), whose dynamics are significantly slower, provide testbeds for investigating complex, collective phenomena analogous to that in atomic and molecular systems [9,10]. Among them, one interesting kind of phase transition is that driven by a change in particle shape. Both experimental (e.g., Refs. [11–21]) and numerical (e.g., Refs. [22–33]) studies have shown that particle shape plays an important role in the self-assembled phases of colloidal systems.

Recent progress in particle synthesis has made many kinds of particle shapes possible. One class of shape is the polyhedron, such as the rhombic dodecahedron [19,34,35] and cuboctahedron [18,36]. Intermediate shapes between two polyhedra, with vertex or edge truncation from the bounding shapes, are also available [18,19,34,36-38]. Another class of shape is the dimpled sphere, where “lock-and-key” colloids with a prescribed number of dimples can be synthesized [36,39-45]. These two classes of shapes differ in that polyhedral shapes are convex while dimpled spheres are concave (e.g., [36,39-45]). Despite this difference, shape-driven FCC ↔ BCC phase transitions occur in both systems when particle shape is suitably chosen [46].

Using the free energy calculation method developed in Ref. [46], here we investigate the FCC ↔ BCC phase transitions in a convex 432 polyhedral shape family [47,48] and a concave dimpled sphere family [45], treating particle shape as a thermodynamic variable [49], to determine the order of each transition. Particles in both families have four-, three-, and two-fold rotational symmetries. Together with the previous report of the 332 polyhedral shape family [46], in all three cases we find the shape induced FCC ↔ BCC transition is first order.

* E-mail: sglotzer@umich.edu
II. MODELS AND METHODS

The two families of hard particles we study here can be described using a few shape parameters. The convex polyhedron shape family with 432-symmetry \([\Delta_{432}]\) can be described by two shape parameters \((\alpha_a, \alpha_c)\), as shown in Fig. 1(a). All the shapes in \(\Delta_{432}\) are bound by four shapes: cuboctahedron \((\alpha_a, \alpha_c) = (0, 0)\), octahedron \((\alpha_a, \alpha_c) = (1, 0)\), cube \((\alpha_a, \alpha_c) = (0, 1)\) and rhombic dodecahedron \((\alpha_a, \alpha_c) = (1, 1)\). From \((\alpha_a, \alpha_c) = (1, 0)\) to \((0, 0)\), the octahedron has an increasing amount of vertex truncation until \((\alpha_a, \alpha_c) = (0, 0)\), while from \((\alpha_a, \alpha_c) = (1, 0)\) to \((1, 1)\), the octahedron has an increasing amount of edge truncation until \((\alpha_a, \alpha_c) = (1, 1)\). The same rule applies to other rows and columns in Fig. 1(a). In simulations, the volume of particles is rescaled to 1.

For the concave dimpled sphere family \([45]\), a dimpled sphere is a spherical cap bounded by the intersection of a central sphere with valence spheres. Here we choose the central and valence spheres of the same radius \(r\), with six valence spheres in the \((\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\) directions. By choosing these six directions for the valence spheres, we obtain a dimpled sphere with 432-symmetry. The dimpled amount is characterized by the distance \(l\) between the central sphere and the valence sphere. When \(l = 2r\), the central and valence spheres are just touching each other and no dimple is shown; when \(l = \sqrt{2}r\), the dimpled sphere has the maximal dimple amount, wherein the two neighboring dimples are touching each other. We thus can use a single shape parameter \(f = ((2r)^2 - l^2)/(\sqrt{2}r)^2 \in [0, 1]\) to describe it, where \(f = 0\) corresponds to no dimple amount and \(f = 1\) the maximal dimple possible (see examples in Fig. 2(a)). As above, the volume of particles is rescaled to 1.

To calculate the thermodynamic properties of FCC\(\leftrightarrow\)BCC transitions in these two systems, we adapt the method in Ref. [46]. All the simulations are done using the hard particle Monte Carlo (HPMC) module in HOOMD-blue \([50, 51]\) and data management is done using the signac toolkit \([52, 53]\). We first calculate the equation of state of the particles in \(\Delta_{432}\). To do so, we initialize systems of \(N\) particles in a cubic box with

\[Q_{4} = \frac{V}{V_{FCC}}\]

where \(V_{FCC}\) is the volume of the FCC unit cell. From the pressure measurements we extract an equation of state in terms of pressure, which is then used to calculate the free energy of the system. The free energy is then used to determine the phase diagram of the system.

![FIG. 2. (Color online) (a) Dimpled spheres with \(f = 0, 0.25, 0.5, 0.75, 1\) respectively. (b-e) Snapshots of the self-assemble structure and the corresponding bond order diagram. (b) \(f = 0.63\), an FCC structure; (c) \(f = 0.67\), a sheared BCC structure.](image)

![FIG. 3. (Color online) (a) Particles with fixed \(\alpha_a = 0.65\) and \(\alpha_c = 0, 0.5, 1\) respectively. (b) Pressures as a function of \(\alpha_c\). (c) Landau free energy curves as a function of order parameter \(Q_{4}\) for particles with a lower BCC basin.](image)

![FIG. 4. (Color online) (a) Particles used for Landau free energy calculation. (b) Landau free energy curves as a function of order parameter \(Q_{4}\) for particles with a lower BCC basin. (c) Landau free energy curves as a function of order parameter \(Q_{4}\) for particles with a lower FCC basin.](image)
III. RESULTS AND DISCUSSION

Ref. [48] studied the self-assembly behavior of particles in Δ_{32} and Fig. 1(b) shows a rough sketch of the three major phases at density 0.55. Here we are interested in the BCC\leftrightarrowFCC transition at fixed $\sigma_c = 0.05$ and varying α_c values (the dashed line in Fig. 1(b)). We plot the pressure of the equilibrated systems as a function of α_c in Fig. 3(b), with the particles first initialized in BCC and FCC structures, respectively. $\sigma = 1$ is the length unit. The color in Fig. 3(b) represents Q_4 of the final structures in the equilibrated systems, with blue for BCC and red for FCC. The color of Q_4 shows that the equilibrated systems are either BCC-like or FCC-like, without any sign of intermediate structures. Pressure curves for both BCC and FCC initialized systems have cusps (in the range about 0.25 to 0.5), which also indicates the transition is first order. Fig. 4(c), (d) show snapshots of the equilibrated systems of a BCC and FCC structure, respectively. The structures can be identified from the bond order diagram, which connects a particle with neighboring particles within the first peak of the radial distribution function. We then calculated the free energy around the value of the shape parameter $\alpha_c \approx 0.36$, where the transition takes place. From Fig. 4(b), it can be seen that at $\alpha_c = 0.32$, the system has the lowest free energy in the FCC basin ($Q_4 = 0.07$). As α_c increases, the minimal free energy of the BCC basin increases while the FCC basin ($Q_4 = 0.17$) decreases, which indicates the system begins to prefer an FCC structure. A comparison of the two basins shows that it is a first order transition. The undulations of the $\alpha_c = 0.38$ and $\alpha_c = 0.4$ curves in the 0.11 – 0.15 range are due to the existence of hexagonally close-packed (HCP) stacking faults in the FCC structure.

We next explore the FCC\leftrightarrowBCC transition of the concave dimpled spheres. Because the pressure calculation in HPMC currently does not support concave particles, we identify the phase transition boundary using bond order diagram and Q_4. When $f \lessapprox 0.63$, particles tend to self-assemble into an FCC structure; when $f \gtrapprox 0.67$, particles tend to self-assemble into a BCC structure. Fig 2(b-e) show snapshots of self-assembled structures. The free energy plots in Fig. 5(b), (c), similar to that in Fig. 4(b), (c), have two basins corresponding to the FCC and BCC structures, and show a first order transition as observed in the truncated octahedron system. The BCC basin shifts to the right of $Q_4 \approx 0.07$ and shifts further with increasing f (see the arrow in Fig. 5(c)) as the BCC structure becomes slightly sheared (Fig. 2(c)).

IV. CONCLUSIONS AND OUTLOOK

We studied examples of FCC\leftrightarrowBCC phase transitions in a convex 432 polyhedral shape family and a concave dimpled sphere family, where shapes in both families have four-, three-, and two-fold rotational symmetries. Together with the previous report on convex 332 polyhedral shape family [46], in all three cases the FCC\leftrightarrowBCC phase transitions are first order. On the other hand, the existence of intermediate BCT structures between FCC and BCC indicates that in Landau theory the BCC\leftrightarrowFCC transition could occur via a pair of continuous transitions, e.g., through the Bain pathway [60]. The Bain pathway has been observed in kinetics of colloidal crystal transformation in experiments (e.g., Ref. [61][22]. Thus our finding raises the question what factors affect the transition pathway in shape-driven transitions. More studies in this direction are encouraged. Furthermore, despite the apparent insensitivity of the overall thermodynamics of the transition.
to the particle modifications tested here, some discernible differences in the thermodynamics of the transitions were found. Whereas for the convex shapes reported here and in Ref. [46] there is strong evidence of metastable mixed FCC/HCP stacking developing after the BCC\leftrightarrowFCC transition, this was not evident in our study of concave 432-symmetric shapes. This finding indicates that choice of particle shape does afford some control over transition thermodynamics. Understanding the extent to which this is possible will be an important question for future work, given the growing number of examples of shape-shifting colloids that can now be synthesized [20–22, 63–65], the potential for the use of these colloids in developing materials, and the importance of the thermodynamics of solid–solid transitions in determining the viability of these shape-shifting colloids for driving structural reconfiguration [66].

ACKNOWLEDGMENTS

D.W. and C.X.D. contributed equally to this work. We thank Brendon Waters for some early work. GvA thanks D. Lubensky for helpful conversations. This work was partially supported by a Simons Investigator award from the Simons Foundation to S.C.G. C.X.D. acknowledges support from the University of Michigan Rackham Predoctoral Fellowship Program. Computational resources and services were supported in part by Advanced Research Computing at the University of Michigan, Ann Arbor.

[1] Norio Ise and Ikuo Sogami, Structure Formation in Solution (Springer Berlin Heidelberg, Germany, 2005).
[2] Elena V. Shevchenko, Dmitri V. Talapin, Stephen O’Brien, and Christopher B. Murray, “Polymorphism in ab13 nanoparticle superlattices: An example of semiconductor-metal metamaterials,” J. Am. Chem. Soc 127, 8741 (2005).
[3] Dmitri V. Talapin, Elena V. Shevchenko, Maryna I. Bodnarchuk, Xingchen Ye, Jun Chen, and Christopher B. Murray, “Quasicrystalline order in self-assembled binary nanoparticle superlattices,” Nature 461, 964 (2009).
[4] A. Travesset, “Topological structure prediction in binary nanoparticle superlattices,” Soft Matter 13, 134 (2017).
[5] Alex Travesset, “Soft skyrmions, spontaneous valence and selection rules in nanoparticle superlattices,” ACS Nano 11, 5375 (2017).
[6] Gabriel Villar, Alexander D. Graham, and Hagan Bayley, “A tissue-like printed material,” Science 340, 48 (2013).
[7] Duanduan Wan and Mark J. Bowick, “Planar and curved droplet networks,” Europhys. Lett. 113, 16003 (2016).
[8] T. Zhang, Duanduan Wan, J. M. Schwarz, and M. J. Bowick, “Shape-shifting droplet networks,” Phys. Rev. Lett. 116, 108301 (2016).
[9] U Gasser, “Crystallization in three- and two-dimensional colloidal suspensions,” J. Phys.: Condens. Matter 21, 203101 (2009).
[10] Vinodhan N. Manoharan, “Colloidal matter: Packing, geometry, and entropy,” Science 349, 942 (2015).
[11] Anand Yethiraj, Alan Wouterse, Benito Groh, and Alfons van Blaaderen, “Nature of an electric-field-induced colloidal martensitic transition,” Phys. Rev. Lett. 92, 058301 (2004).
[12] Hongwei Zhou, Shenghua Xu, Zhwei Sun, Xuan Du, and Lixia Liu, “Kinetics study of crystallization with the disorder-bcc-fcc phase transition of charged colloidal dispersions,” Langmuir 27, 7439–7445 (2011).
[13] Yugang Zhang, Fang Lu, Daniel van der Lelie, and Oleg Gang, “Continuous phase transition in nanocube assemblies,” Phys. Rev. Lett. 107, 135701 (2011).
[14] Weikai Qi, Yi Peng, Yilong Han, Richard K. Bowles, and Marjolein Dijkstra, “Nonclassical nucleation in a solid-solid transition of confined hard spheres,” Phys. Rev. Lett. 115, 185701 (2015).
[15] Yi Peng, Feng Wang, Ziren Wang, Ahmed M. Alsayed, Zexin Zhang, Arjun G. Yodh, and Yilong Han, “Two-step nucleation mechanism in solid–solid phase transitions,” Nat. Mater. 14, 101 (2015).
[16] Laura Rossi, Vishal Soni, Douglas J. Ashton, David J. Pine, Albert P. Philipse, Paul M. Chaikin, Marjolein Dijkstra, Stefano Sacanna, and William T. M. Irvine, “Shape-sensitive crystallization in colloidal superball fluids,” Proc. Natl. Acad. Sci. USA 112, 5286 (2015).
[17] Priti S. Mohanty, Payam Bagheri, Sofi Nöjd, Anand Yethiraj, and Peter Schurtenberger, “Multiple path-dependent routes for phase-transition kinetics in thermoresponsive and field-responsive ultrasoft colloids,” Phys. Rev. X 5, 011030 (2015).
[18] Joel Henzie, Michael Grünwald, Asaph Widmer-Cooper, Phillip L. Geissler, and Peidong Yang, “Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices,” Nat. Mater. 11, 131–137 (2012).
[19] Kaylie L. Young, Michelle L. Personick, Michael Engel, Pablo F. Damasceno, Stacey N. Barnaby, Reiner Bleher, Tao Li, Sharon C. Glotzer, Byongdu Lee, and Chad A. Mirkin, “A directional entropic force approach to assemble anisotropic nanoparticles into superlattices,” Angew. Chem., Int. Ed. 52, 13980–13984 (2013).
[20] Janne-Mieke Meijer, Antara Pal, Samia Ouhajji, Henk N.W. Lekkerkerker, Albert P. Philipse, and Andrei V. Petukhov, “Observation of solid–solid transitions in 3d crystals of colloidal superballs,” Nat. Commun. 8, 14352 (2017).
[21] Jianxiao Gong, Richmond S. Newman, Michael Engel, Man Zhao, Fenggang Bian, Sharon C. Glotzer, and Zhiyong Tang, “Shape-dependent ordering of gold nanocrystals into large-scale superlattices,” Nat. Commun. 8, 14038 (2017).
[22] Oleg Gang and Yugang Zhang, “Shaping phases by phasing shapes,” ACS Nano 5, 8459–8465 (2011).
[23] Amir Haji-Akbari, Michael Engle, Aaron S. Keys, Xiaoyu Zheng, Rolfe G. Petschek, Peter Palfy-Muhoray, and Sharon C. Glotzer, “Disordered, Quasicrystalline and Crystalline Phases of Densely Packed Tetrahedra,” Nature 462, 772–777 (2009).
[24] Daniela J. Kraft, Ran Ni, Frank Smallegenburg, Michiel Hermes, Kisun Yoon, David A. Weitz, Alfons van Blaaderen, Jan Groenewold, Marjolein Dijkstra, and Willem K. Kegel, “Surface roughness directed self-assembly of patchy particles into colloidal micelles,” Proc. Natl. Acad. Sci. USA 109, 10787–10792 (2012).
Umang Agarwal and Fernando A. Escobedo, “Mesophase behaviour of polyhedral particles,” Nat. Mater. 10, 230–235 (2011).

Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer, “Predictive self-assembly of polyhedra into complex structures,” Science 337, 453 (2012).

Ran Ni, Anjan Prasad Gantapara, Joost de Graaf, René van Roij, and Marjolein Dijkstra, “Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra,” Soft Matter 8, 8826–8834 (2012).

Matthieu Marechal, Rob J. Kortschot, Ahmet Faik Demirörs, Arnout Imhof, and Marjolein Dijkstra, “Phase behavior and structure of a new colloidal model system of bowl-shaped particles,” Nano Lett. 10, 1907–1911 (2010).

Matthieu Marechal and Marjolein Dijkstra, “Phase behavior and structure of colloidal bowl-shaped particles: Simulations,” Phys. Rev. E 82, 031405 (2010).

Anjan P. Gantapara, Joost de Graaf, René van Roij, and Marjolein Dijkstra, “Phase diagram and structural diversity of a family of truncated cubes: Degenerate close-packed structures and vacancy-rich states,” Phys. Rev. Lett. 111, 015501 (2013).

Yina Geng, Greg van Anders, Paul M. Dodd, Julia Dshumadse, and Sharon C. Glotzer, (2017), arXiv:1712.02471.

Greg van Anders, Daphne Klotsa, N. Khalid Ahmed, Michael Engel, and Sharon C. Glotzer, “Understanding shape entropy through local dense packing,” Proc. Natl. Acad. Sci. USA 111, E4812–E4821 (2014).

Greg van Anders, N. Khalid Ahmed, Ross Smith, Michael Engel, and Sharon C. Glotzer, “Entropically patchy particles: Engineering valence through shape entropy,” ACS Nano 8, 931–940 (2014).

Yan-Xin Chen, Sheng-Bei Chen, Zhi-You Zhou, Na Tian, Yan-Xia Jiang, Shi-Gang Sun, Yong Ding, and Zhong Lin Wang, “Tuning the shape and catalytic activity of Fe nanocrystals from rhombic dodecahedra and tetragonal bipyramids to cubes by electrochemistry,” J. Am. Chem. Soc. 131, 10860 (2009).

Hanumantha Rao Vutukuri, Arnout Imhof, and Alfons van Blaaderen, “Fabrication of polyhedral particles from spherical colloids and their self-assembly into rotator phases,” Angew. Chem. Int. Ed. 53, 13830 (2014).

Yi Wang, Dehui Wan, Shuifen Xie, Xiaohou Xua, Cheng Zhi Huang, and Younan Xia, “Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth,” ACS Nano, 7, 4586 (2013).

Chin-Yi Chiu, Yujing Li, Lingyan Ruan, Xingchen Ye, Christopher B. Murray, and Yu Huang, “Platinum nanocrystals selectively shaped using facet-specific peptide sequences,” Nat. Chem. 3, 393 (2011).

Yiqun Zheng, Wenying Liu, Tian Lv, Ming Luo, Hefei Hu, Ping Lu, Sang-II Choi, Chao Zhang, Jing Tao, Yimei Zhu, Zhi-Yuan Li, and Younan Xia, “Seed-mediated synthesis of gold tetrahedra in high purity and with tunable, well-controlled sizes,” Chem. Asian J. 9, 2635 (2014).

Stefano Sacanna, Mark Korpic, Kelvin Rodriguez, Laura Colon-Melendez, Seung-Hyun Kim, David J. Pine, and Gi-Ra Yi, “Shaping colloids for self-assembly,” Nat. Commun. 4, 1688 (2013).

Samantha J. Ivel, Roel P. A. Dullens, Stefano Sacanna, and Dirk G. A. L. Aarts, “Emerging structural disorder in a suspension of uniformly dimpled colloidal particles,” Soft Matter 9, 9361–9365 (2013).

G. Odriozola, F. Jimenez-Angeles, and M. Lozada-Cassou, “Entropy driven key-lock assembly,” J. Chem. Phys. 129, 111101 (2008).

Gerardo Odriozola and Marcelo Lozada-Cassou, “Statistical mechanics approach to lock-key supramolecular chemistry interactions,” Phys. Rev. Lett. 110, 105701 (2013).

Anthony Désert, Céline Hubert, Zheng Fu, Lucie Moulet, Jérôme Majimel, Philippe Barboteau, Antoine Thill, Muriel Lansalot, Elodie Bourgeat-Lami, Etienne Duget, and Serge Ravaine, “Synthesis and site-specific functionalization of tetravalent, hexavalent, and dodecavalent silica particles,” Angew. Chem. Int. Ed. 52, 11068–11072 (2013).

S. Sacanna, W. T. M. Irvine, P. M. Chaikin, and D. J. Pine, “Lock and key colloids,” Nature 464, 575–578 (2010).

N. Khalid Ahmed, Greg van Anders, Elizabeth R. Chen, and Sharon C. Glotzer, “Crossover behavior in the packing and assembly of concave building blocks,” (2015), arXiv:1501.03130.

Chrisy Xiyu Du, Greg van Anders, Richmond S. Newman, and Sharon C. Glotzer, “Shape-driven solid to solid transitions in colloids,” Proc. Natl. Acad. Sci. 114, E3892–E3899 (2017).

Elizabeth R. Chen, Daphne Klotsa, Michael Engel, Pablo F. Damasceno, and Sharon C. Glotzer, “Complexity in surfaces of densest packings for families of polyhedra,” Phys. Rev. X 4, 011024 (2014).

Daphne Klotsa, Elizabeth R. Chen, Michael Engel, and Sharon C. Glotzer, “Intermediate crystalline structures of colloids in shape space,” Soft Matter 14, 8692 (2018).

Greg van Anders, Daphne Klotsa, Andrew S. Karas, Paul M. Dodd, and Sharon C. Glotzer, “Digital Alchemy for Materials Design: Colloids and Beyond,” ACS Nano 9, 9542–9553 (2015).

Joshua A. Anderson, Chris D. Lorenz, and A. Truvesset, “General-purpose molecular dynamics simulations fully implemented on graphics processing units,” J. Comp. Phys. 227, 5342 – 5359 (2008) http://codeblue.chem.umn.edu/

J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse, and S. C. Glotzer, “Strong scaling of general-purpose molecular dynamics simulations on gpus,” Comput. Phys. Commun. 192, 97–107 (2015).

Carl S. Adorf, Paul M. Dodd, and Sharon C. Glotzer, “Simple data and workflow management with the signac framework,” Comput. Mater. Sci. 146, 220 (2018).

Carl S. Adorf and Paul M. Dodd, “csadorf/signac: v0.7.0.”

Laura Filon, Matthieu Marechal, Bas van Oorschot, Daniel Pelt, Frank Smallenburg, and Marjolein Dijkstra, “Efficient method for predicting crystal structures at finite temperature: Variable box shape simulations,” Phys. Rev. Lett. 103, 188302 (2009).

Joost de Graaf, Laura Filion, Matthieu Marechal, René van Roij, and Marjolein Dijkstra, “Crystal-structure prediction via the floppy-box monte carlo algorithm: Method and application to hard (non)convex particles,” J. Chem. Phys. 137 (2012).

Wolfgang Lechner and Christoph Dellago, “Accurate determination of crystal structures based on averaged local bond order parameters,” J. Chem. Phys. 129 (2008).

P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, “Bond-orientational order in liquids and glasses,” Physics Review B 28, 784 (1983).

Johannes Kästner, “Umbrella sampling,” WIREs Comput. Mol. Sci. 1, 932–942 (2011).

Shankar Kumar, John M Rosenberg, Djamel Bouzida, Robert H Swendsen, and Peter A Kollman, “The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method,” J. Comput. Chem. 13, 1011–1021 (1992).
[60] Edgar C. Bain and N. Y. Dunkirk, “The Nature of Martensite,” Trans. AIME 70, 25–47 (1924).

[61] Marie T. Casey, Raynaldo T. Scarlett, W. Benjamin Rogers, Ian Jenkins, Talid Sinno, and John C. Crocker, “Driving diffusionless transformations in colloidal crystals using dna handshaking,” Nat. Commun. 3, 1209 (2012).

[62] Mark C. Weidman, Detlef-M. Smilgies, and William A. Tisdale, “Kinetics of the self-assembly of nanocrystal superlattices measured by real-time in situ x-ray scattering,” Nat. Mat. 15, 775 (2016).

[63] Kyung Jin Lee, Jaewon Yoon, Sahar Rahmani, Sangyeul Hwang, Srijanani Bhaskar, Samir Mitragotri, and Joerg La hann, “Spontaneous shape reconfigurations in multicompart mental microcylinders,” Proc. Natl. Acad. Sci. USA 109, 16057–16062 (2012).

[64] Vera Meester, Ruben W. Verweij, Casper van der Wel, and Daniela J. Kraft, “Colloidal recycling: Reconfiguration of random aggregates into patchy particles,” ACS Nano 10, 4322–4329 (2016).

[65] Mena Youssef, Theodore Hueckel, Gi-Ra Yi, and Stefano Sacanna, “Shape-shifting colloids via stimulated dewetting,” Nat Commun 7, 12216 (2016).

[66] Michael J. Solomon, “Tools and functions of reconfigurable colloidal assembly,” Langmuir In Press (2018).