EXPONENTIAL CONVERGENCE TO EQUILIBRIUM IN SUPERCRITICAL
KINETICALLY CONSTRAINED MODELS AT HIGH TEMPERATURE

LAURE MARÉCHÉ

Abstract: Kinetically constrained models (KCMs) were introduced by physicists to model the liquid-glass transition. They are interacting particle systems on \mathbb{Z}^d in which each element of \mathbb{Z}^d can be in state 0 or 1 and tries to update its state to 0 at rate q and to 1 at rate $1-q$, provided that a constraint is satisfied. In this article, we prove the first non-perturbative result of convergence to equilibrium for KCMs with general constraints: for any KCM in the class termed “supercritical” in dimension 1 and 2, when the initial configuration has product $\text{Bernoulli}(1-q')$ law with $q' \neq q$, the dynamics converges to equilibrium with exponential speed when q is close enough to 1, which corresponds to the high temperature regime.

2010 Mathematics Subject Classification: 60K35.

Key words: Interacting particle systems; Glauber dynamics; kinetically constrained models; bootstrap percolation; convergence to equilibrium.

1. Introduction

Kinetically constrained models (KCMs) are interacting particle systems on \mathbb{Z}^d, in which each element (or site) of \mathbb{Z}^d can be in state 0 or 1. Each site tries to update its state to 0 at rate q and to 1 at rate $1-q$, with $q \in [0,1]$ fixed, but an update is accepted if and only if a constraint is satisfied. This constraint is defined via an update family $\mathcal{U} = \{X_1, \ldots, X_m\}$, where $m \in \mathbb{N}^*$ and the X_i, called update rules, are finite nonempty subsets of $\mathbb{Z}^d \setminus \{0\}$: the constraint is satisfied at a site x if and only if there exists $X \in \mathcal{U}$ such that all the sites in $x + X$ have state zero. Since the constraint at a site does not depend on the state of the site, it can be easily checked that the product Bernoulli$(1-q)$ measure, ν_q, satisfies the detailed balance with respect to the dynamics, hence is reversible and invariant. ν_q is the equilibrium measure of the dynamics.

KCMs were introduced in the physics literature by Fredrickson and Andersen [11] to model the liquid-glass transition, an important open problem in condensed matter physics (see [22, 13]). In addition to this physical interest, KCMs are also mathematically challenging, because the presence of the constraints make them very different from classical Glauber dynamics and prevents the use of most of the usual tools.

One of the most important features of KCMs is the existence of blocked configurations. These blocked configurations imply that the equilibrium measure ν_q is not the only invariant measure, which complicates a lot the study of the out-of equilibrium behavior of KCMs; even the basic question of their convergence to ν_q remains open in most cases.

Because of the blocked configurations, one cannot expect such a convergence to equilibrium for all initial laws. Initial measures particularly relevant for physicists are the $\nu_{q'}$ with $q' \neq q$ (see [17]). Indeed, q is a measure of the temperature of the system: the closer q is to 0, the lower the temperature is. Therefore, starting the dynamics with a configuration of law $\nu_{q'}$ means starting with a temperature

I acknowledge the support of the ERC Starting Grant 680275 MALIG.
different from the equilibrium temperature. In this case, KCMs are expected to converge to equilibrium with exponential speed as soon as no site is blocked for the dynamics in a configuration of law ν_q or $\nu_{q'}$. However, there have been few results in this direction so far (see [7, 3, 8, 21, 18]), and they have been restricted to particular update families or initial laws.

Furthermore, general update families have attracted a lot of attention in recent years. Indeed, there recently was a breakthrough in the study of a monotone deterministic counterpart of KCMs called bootstrap percolation. Bootstrap percolation is a discrete-time dynamics in which each site of \mathbb{Z}^d can be infected or not; infected sites are the bootstrap percolation equivalent of sites at zero. To define it, we fix an update family U and choose a set A_0 of initially infected sites; then for any $t \in \mathbb{N}^*$, the set of sites that are infected at time t is

$$A_t = A_{t-1} \cup \{x \in \mathbb{Z}^d \mid \exists X \in U, x + X \subset A_{t-1}\},$$

which means that the sites that were infected at time $t - 1$ remain infected at time t and a site x that was not infected at time $t - 1$ becomes infected at time t if and only if there exists $X \in U$ such that all sites of $x + X$ are infected at time $t - 1$. Until recently, bootstrap percolation had only been considered with particular update families, but the study of general update families was opened by Bollobás, Smith and Uzzell in [3]. Along with Balister, Bollobás, Przykucki and Smith [1], they proved that general update families satisfy the following universality result: in dimension 2, they can be sorted into three classes, supercritical, critical and subcritical (see definition [2], which display different behaviors (their result for the critical class was later refined by Bollobás, Duminil-Copin, Morris and Smith in [5]).

These works opened the study of KCMs with general update families. In [20, 19, 14, 15], Hartarsky, Martinelli, Morris, Toninelli and the author showed that the grouping of two-dimensional update families into supercritical, critical and subcritical is still relevant for KCMs, and established an even more precise classification. However, these results deal only with equilibrium dynamics. Until now, nothing had been shown on out-of-equilibrium KCMs with general update families, apart from a perturbative result in dimension 1 [7].

In this article, we prove that for all supercritical update families, for any initial law $\nu_{q'}$, $q' \in]0, 1]$, when q is close enough to 1, the dynamics of the KCM converges to equilibrium with exponential speed. This result holds in dimension 2 and also in dimension 1 for a good definition of one-dimensional supercritical update families. It is the first non-perturbative result of convergence to equilibrium holding for a whole class of update families.

This result may help to gain a better understanding of the out-of-equilibrium behavior of supercritical KCMs. In particular, such results of convergence to equilibrium were key in proving “shape theorems” for specific one-dimensional constraints in [2, 12, 4].

2. Notations and result

Let $d \in \mathbb{N}^*$. We denote by $\| \cdot \|_\infty$ the ℓ^∞-norm on \mathbb{Z}^d. For any set S, $|S|$ will denote the cardinal of S.

For any configuration $\eta \in \{0, 1\}^{\mathbb{Z}^d}$, for any $x \in \mathbb{Z}^d$, we denote $\eta(x)$ the value of η at x. Moreover, for any $S \subset \mathbb{Z}^d$, we denote η_S the restriction of η to S, and 0_S (or just 0 when S is clear from the context) the configuration on $\{0, 1\}^S$ that contains only zeroes.

We set an update family $U = \{X_1, \ldots, X_m\}$ with $m \in \mathbb{N}^*$ and the X_i finite nonempty subsets of $\mathbb{Z}^d \setminus \{0\}$. To describe the classification of update families, we need the concept of stable directions.
Definition 1. For $u \in S^{d-1}$, we denote $\mathbb{H}_u = \{ x \in \mathbb{R}^d | \langle x, u \rangle < 0 \}$ the half-space with boundary orthogonal to u. We say that u is a stable direction for the update family \mathcal{U} if there does not exist $X \in \mathcal{U}$ such that $X \subset \mathbb{H}_u$; otherwise u is unstable. We denote by \mathcal{S} the set of stable directions.

Definition 2. A d-dimensional update family \mathcal{U} is

- supercritical if there exists an open hemisphere $C \subset S^{d-1}$ that contains no stable direction;
- critical if every open hemisphere $C \subset S^{d-1}$ contains a stable direction, but there exists a hemisphere $C \subset S^d$ such that $\text{int}(C \cap S) = \emptyset$;
- subcritical if $\text{int}(C \cap S) \neq \emptyset$ for every hemisphere $C \subset S^{d-1}$.

Our result will be valid for supercritical update families.

Theorem 3. If $d = 1$ or 2, for any supercritical update family \mathcal{U}, for any $q' \in [0,1]$, there exists $q_0 = q_0(\mathcal{U}, q') \in [0,1]$ such that for any $q \in [q_0, 1]$, for any local function $f : \{0,1\}^{Z^d} \rightarrow \mathbb{R}$, there exist two constants $c = c(\mathcal{U}, q') > 0$ and $C = C(\mathcal{U}, q', f) > 0$ such that for any $t \in [0, +\infty[$,

$$\left| \mathbb{E}_{\nu_q}(f(\eta_t)) - \nu_q(f) \right| \leq Ce^{-ct}.$$
The remainder of this article is devoted to the proof of theorem 3. The argument is based on the proof given in [21] for the particular case of the Fredrickson-Andersen one-spin facilitated model, but brings in novel ideas in order to accommodate the much greater complexity of general supercritical models. From now on, we fix $d = 1$ or 2 and \mathcal{U} a supercritical update family in dimension d. We begin in section 3 by using the notion of dual paths to reduce the proof of theorem 3 to the simpler proof of proposition 7. Then in section 4 we use the concept of codings to simplify it further, reducing it to the proof of proposition 11. In section 5 we introduce an auxiliary oriented percolation process, that we use in section 6 to prove proposition 11 hence theorem 3.

3. Dual paths

In this section, we use the concept of dual paths to reduce the proof of theorem 3 to the easier proof of proposition 7. Let $q, q' \in [0, 1]$. We notice that the Harris graphical construction allows us to couple a process $(\eta_t)_{t \in [0, +\infty[}$ with initial law ν_q' and a process $(\tilde{\eta}_t)_{t \in [0, +\infty[}$ with initial law ν_q by using the same clock rings but different initial configurations (independent of the clock rings and of each other). We denote the joint law by $P_{q,q'}$. We notice that since ν_q is an invariant measure for the dynamics, $\tilde{\eta}_t$ has law ν_q for all $t \in [0, +\infty[$. To prove theorem 3 it is actually enough to show

Proposition 5. For any $q' \in [0,1]$, there exists $q_0 = q_0(\mathcal{U},q') \in [0,1]$ such that for any $q \in [q_0,1]$, there exist two constants $c_1 = c_1(\mathcal{U},q') > 0$ and $C_1 = C_1(\mathcal{U},q') > 0$ such that for any $x \in \mathbb{Z}^d$ and $t \in [0, +\infty[$, $P_{q',q}(\eta_t(x) \neq \tilde{\eta}_t(x)) \leq C_1 e^{-c_1 t}$.

Indeed, if $f : \{0,1\}^{\mathbb{Z}^d} \rightarrow \mathbb{R}$ is a local function depending of a finite set of sites S,

$$
\left| E_{\nu_q'} (f(\eta_t)) - E_{\nu_q} (f(\eta_t)) \right| = \left| E_{\nu_q'} (f(\eta_t)) - E_{\nu_q'} (f(\tilde{\eta_t})) \right| \leq 2\left\| f\right\|_{\infty} P_{q',q}(\eta_t(s) \neq \tilde{\eta}_t(s)) \leq 2\left\| f\right\|_{\infty} \sum_{x \in S} P_{q',q}(\eta_t(x) \neq \tilde{\eta}_t(x)).
$$

Therefore we will work on proving proposition 5.

In order to do that, we need to introduce dual paths. We define the range ρ of \mathcal{U} by

$$
\rho = \max \{ \| x \|_\infty \mid x \in X, X \in \mathcal{U} \}.
$$

For any $x \in \mathbb{Z}^d$, $t > 0$ and $0 \leq t' \leq t$, a dual path of length t' starting at (x,t) (see figure 1) is a right-continuous path $(\Gamma(s))_{0 \leq s \leq \rho}$ that starts at site x at time t, goes backwards, is allowed to jump only when there is a clock ring, and only to a site within ℓ^∞-distance ρ. To write it rigorously, the path satisfies $\Gamma(0) = x$ and there exists a sequence of times $0 = s_0 < s_1 < \cdots < s_n = t'$ satisfying the following properties: for all $0 \leq k \leq n - 1$ and all $s \in [s_k, s_{k+1}]$, $\Gamma(s) = \Gamma(s_k)$, $\Gamma(s_n) = \Gamma(s_{n-1})$ and for all $0 \leq k < n - 1$, $t - s_{k+1} \in \mathcal{P}_{\Gamma(s_k)}^0 \cup \mathcal{P}_{\Gamma(s_k)}^1$ and $\| \Gamma(s_{k+1}) - \Gamma(s_k) \|_\infty \leq \rho$.

We denote $\mathcal{D}(x,t,t')$ the (random) set of all dual paths of length t' starting from (x,t). A dual path $\Gamma \in \mathcal{D}(x,t,t')$ is called an activated path if it “encounters a point at which both processes are at 0”, i.e. if there exists $s \in [0,t']$ such that $\eta_{t-s}(\Gamma(s)) = \tilde{\eta}_{t-s}(\Gamma(s)) = 0$. The set of all activated paths in $\mathcal{D}(x,t,t')$ is called $\mathcal{A}(x,t,t')$. We have the

Lemma 6. For any $x \in \mathbb{Z}^d$ and $t > 0$, if $\eta_t(x) \neq \tilde{\eta}_t(x)$, then for all $0 \leq t' \leq t$, $\mathcal{A}(x,t,t') \neq \mathcal{D}(x,t,t')$.

Sketch of proof. The proof is the same as for lemma 1 of [21], apart from the fact that if the path is at y, it does not necessarily jump to a neighbor of y, but to an element of $y + X$, $X \in \mathcal{U}$. The idea of the proof is to start a dual path at (x,t), where the two processes disagree, and, staying at x, to go backwards in time until the processes agree at x. At this time, there was an update at x in one
process but not in the other, hence an update rule $x + X$ that was full of zeroes in one process but not in the other, thus a site at distance at most ρ of x at which the two processes disagree. We jump to this site and continue to go backwards. This construction yields a dual path along which the two processes disagree, hence they can not both be at zero, so the path is not activated.

Lemma 6 implies that to prove proposition 5 hence theorem 3, it is enough to prove

Proposition 7. For any $q' \in [0,1]$, there exists $q_0 = q_0(U, q') \in [0,1]$ such that for any $q \in [q_0, 1]$, there exist two constants $c_2 = c_2(U, q') > 0$ and $C_2 = C_2(U, q') > 0$ such that for any $x \in \mathbb{Z}^d$, $t \in [0, +\infty[$, there exists $0 \leq t' \leq t$ such that $P_{q', q}(A(x, t, t') \neq D(x, t, t')) \leq C_2e^{-c_2t}$.

The remainder of the article will be devoted to the proof of proposition 7.

4. Codings

This section is devoted to the reduction of the proof of proposition 7 (hence of theorem 3) to the simpler proof of proposition 11 via the use of codings. The idea is the following: in order to prove proposition 7 it is enough to show that along each dual path, the two processes are at zero at one of the discrete times $0, 2K, 3K$, etc. hence we only need to consider the positions of the path at these times, which will make up the coding of the path. Let $K \geq 2$ and $t \geq K$. A coding is a sequence $(y_k)_{k \in \{0, \ldots, \lfloor tK \rfloor\}}$ of sites in \mathbb{Z}^d. Moreover, for $x \in \mathbb{Z}^d$ and $\Gamma \in D(x, t, \frac{t}{K})$, the coding $\bar{\Gamma}$ of Γ is the sequence $\{\Gamma(kK)\}_{k \in \{0, \ldots, \lfloor tK \rfloor\}}$. If $\gamma = (y_k)_{k \in \{0, \ldots, \lfloor tK \rfloor\}}$ is a coding, we define the event $G(\gamma) = \{\exists k \in \{0, \ldots, \lfloor tK \rfloor\}, \eta_d - kK(y_k) = \tilde{\eta}_d - kK(y_k) = 0\}$. If $G(\Gamma)$ is satisfied, Γ is an activated path.

Therefore, to prove proposition 7 hence theorem 3, it is enough to prove

Proposition 8. For any $q' \in [0,1]$, there exists $q_0 = q_0(U, q') \in [0,1]$ such that for any $q \in [q_0, 1]$, there exist two constants $c_3 = c_3(U, q') > 0$ and $C_3 = C_3(U, q') > 0$ and a constant $K = K(U, q') \geq 2$ such that for any $x \in \mathbb{Z}^d$ and $t \geq 2K^2$, $P_{q', q}(\exists \Gamma \in D(x, t, \frac{t}{K}), G(\Gamma)) \leq C_3e^{-c_3t}$.

Proposition 8 holds only for t greater than a constant, but this is enough, since we only have to enlarge C_3 to obtain a bound valid for all t.
In order to prove proposition8 we will define a set $C_K^N(x,t)$ of “reasonable codings” and prove that the probability that there exists a dual path whose coding is not in $C_K^N(x,t)$ decays exponentially in t (lemma9). Then we will count the number of codings in $C_K^N(x,t)$ (lemma10). Therefore it will be enough to give a bound on $P_{q',q}(G(\gamma)^c)$ for any $\gamma \in C_K^N(x,t)$ to prove proposition8 hence theorem3. Such a bound is stated in proposition11 and will be proven in section 6.

For any constant $N > 0$, for any $K \geq 2$, $x \in \mathbb{Z}^d$ and $t \geq K$, the set $C_K^N(x,t)$ of “reasonable codings” is defined as the set of $(y_j)_{j \in \{0,\ldots,\lfloor \frac{t}{K} \rfloor\}}$ where $(y_j)_{j \in \{0,\ldots,\lfloor \frac{t}{K} \rfloor\}}$ is a sequence of sites satisfying $y_0 = x,$ $I \leq \frac{Nt}{K}$ and $\|y_{i+1} - y_i\|_\infty \leq \rho$ for all $i \in \{0,\ldots,|I| - 1\}$ and where $j_1,\ldots,j_{\lfloor \frac{t}{K} \rfloor} \in \mathbb{N}$ satisfy $j_1 + \cdots + j_{\lfloor \frac{t}{K} \rfloor} \leq |I|$. We can now state lemmas9 and10 as well as proposition11. These statements together prove proposition8.

Lemma 9. For any $q' \in [0,1]$, there exists $N = N(U) > 0$ such that for any $K \geq 2$, $q \in [0,1]$, there exists a constant $\tilde{c} = \tilde{c}(U,K) > 0$ such that for all $x \in \mathbb{Z}^d$ and $t \geq K$, $P_{q,q'}(\exists \Gamma \in \mathcal{D}(x,t,\frac{t}{K}),\Gamma \notin C_K^N(x,t)) \leq e^{-\tilde{c}t}$.8

In the following, N will always be the N given by lemma9.

Lemma 10. There exist constants $\lambda > 0$ and $\beta = \beta(U) > 0$ such that for any $K \geq 2$, $x \in \mathbb{Z}^d$ and $t > 2K^2$, $|C_K^N(x,t)| \leq \lambda \beta(K)^{(d+1)\frac{t}{K^2}}$.

Proposition 11. For any $q' \in [0,1]$, there exists a constant $K_0 = K_0(U) \geq 2$ such that for any $K \geq K_0$, there exists $q_K \in [0,1]$ such that for any $q \in [q_K,1]$, there exist two constants $c_4 = c_4(U,q') > 0$ and $C_4 = C_4(U,K) > 0$ such that for any $x \in \mathbb{Z}^d$, $t \geq K$ and $\gamma \in C_K^N(x,t)$, $P_{q,q'}(G(\gamma)^c) \leq C_4 e^{-c_4 t}$.9

We are now going to prove lemmas9 and10. After that, it will suffice to prove proposition11 to prove theorem3.

Sketch of proof of lemma9 This can be proven with the argument of the lemma 5 of \cite{21}; the idea is that if there exists $\Gamma \in \mathcal{D}(x,t,\frac{t}{K})$ with $\Gamma \notin C_K^N(x,t)$, there are so many clock rings that the probability becomes very small. Indeed, let us say Γ visits the sites $y_0 = x,y_1,\ldots,y_{|I|}$ in the time interval $[0,K]$, then the sites $y_{j_1},\ldots,y_{j_1+j_2}$ in the time interval $[K,2K]$, etc. until the sites $y_{j_1+\cdots+j_{\lfloor \frac{t}{K} \rfloor}},\ldots,y_{j_1+\cdots+j_{\lfloor \frac{t}{K} \rfloor}+1}$ in the time interval $[\lfloor \frac{t}{K} \rfloor K,(\lfloor \frac{t}{K} \rfloor + 1)K]$. Then the coding of Γ is $\tilde{\Gamma} = (y_{j_1+\cdots+j_k})_{k \in \{0,\ldots,\lfloor \frac{t}{K} \rfloor\}}$, hence $\tilde{\Gamma} \notin C_K^N(x,t)$ implies $j_1 + \cdots + j_{\lfloor \frac{t}{K} \rfloor + 1} > \frac{Nt}{K}$. It yields that $\tilde{\Gamma}$ visits more than $\frac{Nt}{K}$ sites in a time interval $\frac{t}{K}$, and there must be successive clock rings at these sites. The proof of lemma 5 of \cite{21} yields that we can choose N large enough depending on ρ, hence on U, such that the probability of this event is at most $e^{-\tilde{c}t}$ with $\tilde{c} = \tilde{c}(U,N,K) = \tilde{c}(U,K) > 0$. \hfill \Box

To prove lemma10 we need the following classical combinatorial result, which will also be used in the proof of lemma11.

Lemma 12. For any $I,J \in \mathbb{N}$, $|\{I\} + \{I+1\} + \cdots + \{I+J\}| = \binom{I+J+1}{I+1}$. Moreover, for any $I,J \in \mathbb{N}, |\{(j_1,\ldots,j_I) \in \mathbb{N}^I \mid j_1 + \cdots + j_I = J\}| = \binom{I+J-1}{J-1}$.9

The proof of the first part of lemma12 can be found just before the section 2 of \cite{10} and the proof of the second part in section 1.2 of \cite{23} (weak compositions).

Proof of lemma11 Let $K \geq 2$, $x \in \mathbb{Z}^d$ and $t \geq 2K^2$. By definition, elements of $C_K^N(x,t)$ have the form $(y_{j_1+\cdots+j_k})_{k \in \{0,\ldots,\lfloor \frac{t}{K} \rfloor\}}$ with $(y_k)_{k \in \{0,\ldots,t\}}$ satisfying $y_0 = x$, $|I| \leq \frac{Nt}{K}$ and $\|y_{i+1} - y_i\|_\infty \leq \rho$ for all
\(i \in \{0, \ldots, I - 1\}\), and with \(j_1, \ldots, j_1|_{\frac{t}{K^2}}| \in \mathbb{N}\) satisfying \(j_1 + \cdots + j_{1|_{\frac{t}{K^2}}} \leq I\). Therefore, to count the number of elements of \(C_K^N(x, t)\), it is enough to count the number of possible \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\) and the number of possible \((y_{j_1 + \cdots + j_k})_{k \in \{0, \ldots, \frac{t}{K^2}\}}\) given \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\).

We begin by counting the number of possible \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\). We have \(j_1 + \cdots + j_{1|_{\frac{t}{K^2}}} \leq \frac{N}{K}\). Moreover, by the second part of lemma 12 for any integer \(0 \leq J \leq \frac{N}{K}\), the number of possible sequences of integers \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\) such that \(j_1 + \cdots + j_{\frac{t}{K^2}} = J\) is at most \((\frac{2K^2}{N})^{\frac{t}{K^2}}\), hence the number of possible \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\) is at most \(\sum_{J=0}^{\frac{N}{K}} (\frac{2K^2}{N})^{\frac{t}{K^2}}\) by the first part of lemma 12. Furthermore \((\frac{1}{K} + \frac{N}{K^2})\left(\frac{|\frac{t}{K^2}|}{|\frac{t}{K^2}|}\right) \leq \lambda \left(\frac{e(\frac{1}{K} + \frac{N}{K^2})}{|\frac{t}{K^2}|}\right) \leq \lambda \left(e + e \frac{N}{K^2}\right)^{\frac{1}{K^2}}\) by the Stirling formula, where \(\lambda > 0\) is a constant. In addition, since \(t \geq 2K^2, \left|\frac{t}{K^2}\right| \geq \frac{2K^2}{K^2}\), hence the number of possible \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\) is at most \(\lambda \left(e + e \frac{N}{K^2}\right)^{\frac{1}{K^2}} = \lambda (e + 2eK) \frac{2K^2}{N^2} \leq \lambda (3eK) \frac{2K^2}{N^2}\) as \(K \geq 2\) and \(N\) is large.

We now fix a sequence \((j_k)_{k \in \{1, \ldots, \frac{t}{K^2}\}}\) and count the possible \((y_{j_1 + \cdots + j_k})_{k \in \{0, \ldots, \frac{t}{K^2}\}}\). We know that \(y_0 = x\). Moreover, for all \(i \in \{0, \ldots, j_1 + \cdots + j_{|\frac{t}{K^2} - 1|}\}\), \(|y_{i+1} - y_i|_\infty \leq \rho\), hence for each \(k \in \{0, \ldots, \frac{t}{K^2} - 1\}\), we have \(||y_{j_1 + \cdots + j_k} - y_{j_1 + \cdots + j_k}|_\infty \leq \rho j_{k+1}\), so there are at most \((2\rho j_{k+1} + 1)^d\) choices for \(y_{j_1 + \cdots + j_k} \) given \(y_{j_1 + \cdots + j_k}\). Therefore the number of choices for \((y_{j_1 + \cdots + j_k})_{k \in \{0, \ldots, \frac{t}{K^2}\}}\) is at most \(\prod_{k=1}^{\lfloor\frac{t}{K^2}\rfloor} (2\rho j_k + 1)^d\). Moreover, for any \(n \in \mathbb{N}^*\) and any positive \(x_1, \ldots, x_n\), we have \(x_1 \cdots x_n \leq \left(\frac{x_1 + \cdots + x_n}{n}\right)^n\), therefore the number of choices is bounded by \(\left(\frac{\sum_{k=1}^{\lfloor\frac{t}{K^2}\rfloor} (2\rho j_k + 1)}{\lfloor\frac{t}{K^2}\rfloor}\right)^{\lfloor\frac{t}{K^2}\rfloor} \leq \left(\frac{2\rho \sum_{k=1}^{\lfloor\frac{t}{K^2}\rfloor} j_k + \lfloor\frac{t}{K^2}\rfloor}{\lfloor\frac{t}{K^2}\rfloor}\right)^{\lfloor\frac{t}{K^2}\rfloor}\).

5. AN AUXILIARY PROCESS

In order to prove proposition 11 we need to find a mechanism for the zeroes to spread in the KCM process; this mechanism uses novel ideas to deal with the complexity of general supercritical models. We begin in section 5.1 by using the bootstrap percolation results of [6] to find a mechanism allowing the zeroes to spread locally (proposition 13). Then we use it in section 5.2 to define an auxiliary oriented percolation process which guarantees that if certain conditions are met, the KCM process is at zero at a given time (proposition 14). Finally, in section 5.3 we prove some properties of this auxiliary process that we will use in section 6.

5.1. Local spread of zeroes. This is the place where we need the supercriticality of \(\mathcal{U}\). Indeed, since \(\mathcal{U}\) is supercritical, the results of [6] yield the following proposition (see figure [2]):

Proposition 13 ([6]). For \(d = 1\) or \(2\), there exists \(u \in S^{d-1}\), a rectangle \(R\) of the following form:
We now consider the case $d = 1$. Since \mathcal{U} is supercritical there exists u an unstable direction. Without loss of generality we can say that $u = 1$, therefore there exists an update rule X contained in $-\mathbb{N}^*$. This yields the mechanism illustrated by figure 3(a): if $R = \{0, \ldots, \ell\}$ is sufficiently large and full of zeroes, $(\ell + 1) + X$ is full of zeroes, hence if the site $\ell + 1$ receives a 0-clock ring, this clock ring puts it at zero. Then $(\ell + 2) + X$ is full of zeroes, thus if $\ell + 2$ receives a 0-clock ring, this clock ring puts it at zero. In the same way, if the sites $\ell + 3, \ldots, 2\ell + 1$ receive successive 0-clock rings, these clock rings will put them successively at zero, therefore $\{(\ell + 1, \ldots, 2\ell + 1) = (\ell + 1) + R \}$ will be at zero. This yields the result with $a_1 = \ell + 1$ and $(x_i)_{1 \leq i \leq m} = \ell + 1, \ell + 2, \ldots, 2\ell + 1$.

We now consider the case $d = 2$. Since \mathcal{U} is supercritical, there exists a semicircle in S^1 that contains no stable direction; we call u its middle. The results of section 5 of [A] (see in particular figure 5 and lemma 5.5 therein) prove that there exists a set of sites, called a *droplet*, such that in the bootstrap percolation dynamics, if we start with all the sites of the droplet infected, other sites in the direction u can be infected, creating a bigger infected droplet with the same shape (see figure 3(b)). We can enlarge this droplet into a rectangle $R = [0, a_1u] + [0, a_2]u^\perp$ as in figure 3(c); furthermore u can be

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.jpg}
\caption{Illustration of proposition [13] The * represent the sites x_1, \ldots, x_m. If we start with the sites of R at zero and there are successive 0-clock rings at x_1, \ldots, x_m while there is no 1-clock ring in $R \cup \{x_1, \ldots, x_m\}$, these clock rings will put x_1, \ldots, x_m at zero, hence the sites of $a_1u + R$ will be put at zero.}
\end{figure}
chosen rational\footnote{Indeed, theorem 1.10 of [6] states that the set of stable directions is a finite union of closed intervals with rational endpoints, hence the semicircle containing no stable direction can be chosen with rational endpoints.}, hence we may enlarge R enough so that $a_1 u \in \mathbb{Z}^2$. Now, since R contains the original droplet, if R is infected the infection can grow from the droplet into a droplet big enough to contain $a_1 u + R$ while staying in $R \cup (a_1 u + R) \cup (2a_1 u + R)$ (see figure\ref{fig:prop13}(c)). We call x_1, \ldots, x_m the sites that are successively infected during this growth (sites infected at the same time are ordered arbitrarily).

Since x_1 is the first site infected by the bootstrap percolation dynamics starting with the sites of R infected, there exists an update rule X such that $x_1 + X \subset R$, therefore if the KCM dynamics starts with all the sites of R at zero and there is a 0-clock ring at x_1, this clock ring sets x_1 to zero. Then, if there is a 0-clock ring at x_2, it will set x_2 to zero for the same reason, and successive 0-clock rings at x_3, \ldots, x_m will set them successively to 0, which puts $a_1 u + R$ at zero.

\[\begin{align*}
(\ell + 1) + X &\quad \rightarrow \quad (\ell + 1) \\
(\ell + 2) + X &\quad \rightarrow \quad (\ell + 2) \\
\ell &\quad \rightarrow \quad \ell \\
(\ell + 1) + R &\quad \rightarrow \quad (2\ell + 1) \\
0 &\quad \rightarrow \quad 0
\end{align*} \]

\textbf{Figure 3.} The proof of proposition\ref{prop:prop13} (a) The mechanism for $d = 1$; the \bullet represent zeroes and the \circ represent ones. (b) The shape delimited by the solid line is the droplet of \cite{R}; if it is infected in the bootstrap percolation dynamics, the infection can grow to the shape delimited by the dashed line. (c) R contains the original droplet (dashed line), hence if R is infected, the infection can propagate to a bigger droplet (in gray) that contains $a_1 u + R$ and is contained in $R \cup (a_1 u + R) \cup (2a_1 u + R)$.

5.2. Definition of the auxiliary process. Let $K > 0$, $q \in [0, 1]$ and $t \geq K$. For any $y \in \mathbb{Z}^d$ and $k \in \{0, \ldots, \lfloor \frac{K}{n} \rfloor \}$, we will define an oriented percolation process $\zeta_{y,k}$ on \mathbb{Z}, from time zero to time $n^{y,k} = \lfloor \frac{K}{n} \rfloor - k$ (see [3] for an introduction to oriented percolation). For $n \in \{1, \ldots, n^{y,k} \}$ and $r \in \mathbb{Z}$ with $r + n$ even, the bonds $(r - 1, n - 1) \rightarrow (r, n)$ and $(r + 1, n - 1) \rightarrow (r, n)$ can be open or closed. We set $\zeta_{y,k}^0(r) = 1_{\{r=0\}}$, and for any $n \in \{1, \ldots, n^{y,k} \}$, $r \in \mathbb{Z}$ with $r + n$ even, $\zeta_{y,k}^n(r) = 1$ if and only if $\zeta_{n-1}^{y,k}(r - 1) = 1$ and the bond $(r - 1, n - 1) \rightarrow (r, n)$ is open or $\zeta_{n-1}^{y,k}(r + 1) = 1$ and the bond $(r + 1, n - 1) \rightarrow (r, n)$ is open. For any $n \in \{1, \ldots, n^{y,k} \}$, $r \in \mathbb{Z}$ with $r + n$ odd, we set $\zeta_{y,k}^n(r) = 0$.

The state of the bonds is defined as follows. For any $n \in \{1, \ldots, n^{y,k} \}$, $r \in \mathbb{Z}$ with $r + n$ even:
• $(r - 1, n - 1) \to (r, n)$ is open if and only if

$$\left\{ \forall x \in y + \frac{r - n}{2}a_1u + R, \left[t - (k + n)K, t - (k + n - 1)K \right] \cap P_x^1 = \emptyset \right\},$$

i.e. there is no 1-clock ring in $y + \frac{r - n}{2}a_1u + R$ during the time interval $\left[t - (k + n)K, t - (k + n - 1)K \right]$;

• $(r + 1, n - 1) \to (r, n)$ is open if and only if

$$\left\{ \exists t - (k + n)K < t_1 < \cdots < t_m \leq t - (k + n - 1)K, \forall i \in \{1, \ldots, m\}, t_i \in \mathcal{P}_y^0 \left(y + \frac{r - n}{2}a_1u + x_i \right) \right\} \cap \left\{ \forall x \in y + \frac{r - n}{2}a_1u + (R \cup \{x_1, \ldots, x_m\} \cup t - (k + n)K, t - (k + n - 1)K \right\} \cap P_x^1 = \emptyset \right\},$$

i.e. there are successive 0-clock rings in the equivalent of x_1, \ldots, x_m for $y + \frac{r - n}{2}a_1u + R$ during the time interval $\left[t - (k + n)K, t - (k + n - 1)K \right]$, and no 1-clock ring at these sites or in $y + \frac{r - n}{2}a_1u + R$ in this time interval.

We notice that if all the sites of $y + \frac{r - n}{2}a_1u + R$ are at zero at time $t - (k + n)K$ and $(r - 1, n - 1) \to (r, n)$ is open, the sites of $y + \frac{r - n}{2}a_1u + R$ are still at zero at time $t - (k + n - 1)K$. Moreover, by proposition 13 if the sites of $y + \frac{r - n}{2}a_1u + R$ are at zero at time $t - (k + n)K$ and $(r + 1, n - 1) \to (r, n)$ is open, the sites of $a_1u + (y + \frac{r - n}{2}a_1u + R) = y + \frac{r + 1 - (n - 1)}{2}a_1u + R$ are at zero at time $t - (k + n - 1)K$. This allows us to deduce (see figure 4 for an illustration of the mechanism):

Proposition 15. If there exists $r_0 \in \mathbb{Z}$ such that $\zeta^{y,k}_{v_0}(r_0) = 1$ and the sites of $y + \frac{r - n}{2}a_1u + R$ are at zero at time $t - \left\lfloor \frac{t}{K} \right\rfloor K$, then the sites of $y + R$ are at zero at time $t - kK$.

5.3. Properties of the auxiliary process. In this subsection we state the two oriented percolation properties of $\zeta^{y,k}$, propositions 17 and 18 that we will use in section 6 to prove proposition 11. In order to do that, we need a bound on the probability that a bond is closed; this will be lemma 16. It is there that we need q bigger than a $q_0 > 0$; this is necessary so that the probability that there is no 1-clock ring at the sites we consider is large. For any $K > 0$, we set $q_K = 1 + \frac{1}{3K|R|} \ln(1 - e^{-K})$. We can then state

Lemma 16. There exists a constant $K_y = K_y(\mathcal{U}) > 0$ such that for $K \geq K_y$, $q \in [q_K, 1]$, $t \geq K$, $y \in \mathbb{Z}^d$ and $k \in \{0, \ldots, \left\lfloor \frac{t}{K} \right\rfloor \}$, the probability that any given bond is closed for the process $\zeta^{y,k}$ is smaller than e^{-K}.

Proof. Let $K > 0$, $q \in [q_K, 1]$, $t \geq K$, $y \in \mathbb{Z}^d$ and $k \in \{0, \ldots, \left\lfloor \frac{t}{K} \right\rfloor \}$. Let $n \in \{1, \ldots, n^{y,k}\}$, $r \in \mathbb{Z}$ with $r + n$ even. We notice that if the bond $(r - 1, n - 1) \to (r, n)$ is closed, the bond $(r + 1, n - 1) \to (r, n)$ is also closed, hence it is enough to bound the probability that $(r + 1, n - 1) \to (r, n)$ is closed. Denoting $E_1 = \{ \forall x \in y + \frac{r - n}{2}a_1u + R \cup \{x_1, \ldots, x_m\}, t - (k + n)K, t - (k + n - 1)K \} \cap P_x^1 = \emptyset \}$ and $E_2 = \{ \exists t - (k + n)K < t_1 < \cdots < t_m \leq t - (k + n - 1)K, \forall i \in \{1, \ldots, m\}, t_i \in \mathcal{P}_y^0 \left(y + \frac{r - n}{2}a_1u + x_i \right) \}$, we need to bound the probabilities of E_1^c and E_2^c. We begin with E_1^c. The events $t - (k + n)K, t - (k + n - 1)K \} \cap P_x^1 = \emptyset$ are independent and have probability $e^{-\left(1 - q\right)K}$ each; moreover, x_1, \ldots, x_m belong to $(a_1u + R) \cup (2a_1u + R)$, so $|R \cup \{x_1, \ldots, x_m\}| \leq 3|R|$; we deduce the probability of E_1 is

$$e^{-\left| R \cup \{x_1, \ldots, x_m\} \right| (1 - q)K} \geq e^{-3|R|(1 - q)K} \geq e^{-3|R|(1 - q_K)K} \geq e\left(1 - \frac{1}{3K|R|} \ln(1 - e^{-K})\right) \geq e\left(1 - \frac{1}{3K|R|} \ln(1 - e^{-K})\right) \geq 1 - e^{-K}.$$
thus the probability of E_1^r is at most e^{-K}. Moreover, the probability of E_2^n is the probability that a Poisson point process of parameter q has strictly less than m elements in an interval of length K, hence it is $\sum_{i=0}^{m-1} e^{-qK}\left(\frac{qK}{2}\right)^i$. When K is large enough, $q \in [1/2, 1]$, hence this probability is smaller than $e^{-\frac{1}{2}K}\sum_{i=0}^{m-1} \frac{q^i}{i!}$, which is smaller than $e^{-\frac{K}{2}}$ when K is large enough depending on m, hence on U. Consequently, when K is large enough depending on U, the probability that $(r+1, n-1) \rightarrow (r, n)$ is closed is smaller than $e^{-K} + e^{-\frac{K}{2}}$, which is smaller than $e^{-\frac{K}{2}}$.

Thanks to lemma 16, it is possible to prove two oriented percolation properties of $\zeta^{y,k}$. Firstly, for any $K > 0$, $q \in [q_K, 1]$, $t \geq K$, $y \in \mathbb{Z}^d$ and $k \in \{0, \ldots, \lfloor \frac{q}{t} \rfloor \}$, we define $\tau^{y,k} = \inf\{n \in \{0, \ldots, n^{y,k}\} \mid \forall r \in \mathbb{Z}, \zeta_{n}^{y,k}(r) = 0\}$ the time of death of the process $\zeta^{y,k}$ (if the set is empty, $\tau^{y,k}$ is infinite). Since $\zeta_{0}^{y,k}(r) = 1_{\{r=0\}}$, which is not identically zero, $\tau^{y,k} \geq 1$. Then we have

\[
\begin{align*}
E_1^r & := \left\{ \sum_{i=0}^{m-1} e^{-qK}\left(\frac{qK}{2}\right)^i \right\} \\
E_2^n & := \left\{ \sum_{i=0}^{m-1} \frac{q^i}{i!} \right\}
\end{align*}
\]
Proposition 17. For any \(q' \in [0, 1] \), there exists a constant \(K_{c} = K_{c}(\mathcal{U}) > 0 \) such that for any \(K \geq K_{c} \), \(q \in [q_{K}, 1], t \geq K, y \in \mathbb{Z}^{d}, k \in \{0, \ldots, \lfloor \frac{t}{K} \rfloor \} \), \(n \in \{0, \ldots, n_{y,k}^{q}\} \), \(\mathbb{P}_{q',q}(n \leq \tau_{y,k}^{q'} < +\infty) \leq 2.3^{2n}e^{-\frac{4n}{K}}. \)

Sketch of proof. The proposition can be proven by a classical contour method like the one presented in section 10 of [9]. The idea is that if \(n \leq \tau_{y,k}^{q'} < +\infty \) we can draw a “contour of closed bonds” around the connected component of ones in \(\zeta_{y,k}^{q'} \), and this contour will have length \(\Omega(n) \). Furthermore, it can be seen that bonds separated by at least 5 bonds from each other are independent, because they depend on clock rings in disjoint space-time intervals. Therefore if we keep one bond out of 6, we extract \(\Omega(n) \) independent closed bonds from the contour, each of them having probability \(e^{-\frac{4}{K}} \) from lemma 16 when \(K \geq K_{c} \), hence the bound. □

\(\zeta_{y,k}^{q'} \) also satisfies a second property. For any \(K > 0, q \in [q_{K}, 1], t \geq K, y \in \mathbb{Z}^{d} \) and \(k \in \{0, \ldots, \lfloor \frac{t}{K} \rfloor \} \), we denote \(\chi_{y,k}^{q} = \{ r \in \{-\lfloor \frac{n_{y,k}^{q}}{K} \}, \ldots, \lfloor \frac{n_{y,k}^{q}}{K} \} | \zeta_{y,k}^{q}(r) = 1 \} \). Then we have

Proposition 18. For any \(q' \in [0, 1], \alpha \in [0,1] \), there exists a constant \(K_{\alpha} = K_{\alpha}(\mathcal{U}, \alpha) > 0 \) such that for any \(K \geq K_{\alpha} \), \(q \in [q_{K}, 1], t \geq K, y \in \mathbb{Z}^{d} \) and \(k \in \{0, \ldots, \lfloor \frac{t}{K} \rfloor \} \), \(\mathbb{P}_{q',q}(\tau_{y,k}^{q'} = +\infty, |\chi_{y,k}^{q}| \leq \frac{K}{2}n_{y,k}^{q} \leq C_{0}e^{-c_{n_{y,k}^{q}}} \).

Sketch of proof. This proposition comes from classical results in oriented percolation. Firstly, if the process survives until time \(n_{y,k}^{q} \), it has a big “range”, which means that if we define \(r_{y,k}^{q} = \sup\{r \in \mathbb{Z} \mid \zeta_{y,k}^{q}(r) = 1 \} \) and \(\ell_{y,k}^{q} = \inf\{r \in \mathbb{Z} \mid \zeta_{y,k}^{q}(r) = 1 \} \), \(r_{y,k}^{q} \) and \(\ell_{y,k}^{q} \) are so large \(\{-\lfloor \frac{n_{y,k}^{q}}{K} \}, \ldots, \lfloor \frac{n_{y,k}^{q}}{K} \} \subset \{\ell_{y,k}^{q}, \ldots, r_{y,k}^{q}\} \); this can be proven with the contour argument in section 11 of [9]. Moreover, the argument that proves (1) in [9] also proves that in \(\{\ell_{y,k}^{q}, \ldots, r_{y,k}^{q}\} \), \(\zeta_{y,k}^{q} \) coincides with the oriented percolation process that has the same bonds, but which starts with all sites at 1 instead of just the origin. Finally, the end of section 5 of [10] contains a contour argument for the latter process which allows to prove that it has a lot of ones; we can use this argument with the same adaptations we used for the contours of proposition 17. □

6. Proof of proposition 11

In this section we use the auxiliary process defined in section 5 to give a proof of proposition 11. In order to do that, we need some definitions. For any \(q' \in [0, 1], K \geq 2, q \in [q_{K}, 1], x \in \mathbb{Z}^{d}, t \geq K \) and \(\gamma = (y_{k})_{k \in \{0, \ldots, \lfloor \frac{t}{K} \rfloor \}} \subset C_{K}(x,t), \) we define \(k(\gamma) = \inf\{k \in \{0, \ldots, \lfloor \frac{t}{K} \rfloor \} \mid \tau_{y_{k}}^{q} = +\infty \} \) if such a \(k \) exists; in this case we also denote \(y(\gamma) = y_{k(\gamma)} \) (in the following, when we write \(k(\gamma) \) or \(y(\gamma) \) without more precision, we always assume that they exist). For any \(r \in \chi_{y(\gamma),k(\gamma)}^{q} \) we define the events

\[
W_{y(\gamma),k(\gamma)}^{q}(r) = \left\{ \left(\eta_{t-\lfloor \frac{t}{K} \rfloor}^{q,K} | \chi_{y(\gamma),k(\gamma),t}^{q} \right)_{a_{1}u+R} = 0 \right\}, \quad W_{y(\gamma),k(\gamma)}^{q'}(r) = \left\{ \left(\eta_{t-\lfloor \frac{t}{K} \rfloor}^{q',K} | \chi_{y(\gamma),k(\gamma),t}^{q'} \right)_{a_{1}u+R} = 0 \right\}.
\]

By proposition 13 if \(\exists r \in \chi_{y(\gamma),k(\gamma)}^{q}, W_{y(\gamma),k(\gamma)}^{q}(r) \cap \exists r \in \chi_{y(\gamma),k(\gamma)}^{q'}, W_{y(\gamma),k(\gamma)}^{q'}(r) \), then the sites of \(y(\gamma) + R \) are at zero at time \(t - k(\gamma)K \) in both processes \(\eta_{t} \in [0, +\infty[\) and \(\tilde{\eta}_{t} \in [0, +\infty[\), in particular \(y(\gamma) \) is at...
zero at time $t - k(\gamma) K$ in both processes, therefore $G(\gamma)$ is satisfied. Consequently,

$$P_{q',q}(G(\gamma)^c) \leq P_{q',q}(k(\gamma) \text{ does not exist}) + P_{q',q}\left(k(\gamma) \text{ exists}, |\mathcal{X}^{\gamma}(\cdot, k(\gamma))| \leq \frac{t}{6K}\right) + \mathbb{P}_{q',q}\left(|\mathcal{X}^{\gamma}(\cdot, k(\gamma))| > \frac{t}{6K}\right) \cap \{\forall r \in \mathcal{X}^{\gamma}(\cdot, k(\gamma)), W^{\gamma,r}(r)^c\} + \mathbb{P}_{q',q}\left(|\mathcal{X}^{\gamma}(\cdot, k(\gamma))| > \frac{t}{6K}\right) \cap \{\forall r \in \mathcal{X}^{\gamma}(\cdot, k(\gamma)), W^{\gamma,r}(r)^c\}.$$

Therefore we only have to prove the following lemmas 19, 20 and 21 to prove proposition 11 thus ending the proof of theorem 13.

Lemma 19. For any $q' \in [0,1]$, there exists a constant $K_1 = K_1(\mathcal{U}) \geq 2$ such that for any $K \geq K_1$, $q \in [q_K, 1]$, there exist constants $\tilde{c}_1 > 0$ and $\tilde{C}_1 = \tilde{C}_1(K) > 0$ such that for any $x \in \mathbb{Z}^d$, $t \geq K$, $\gamma \in C_K^N(x,t)$, we have $P_{q',q}(k(\gamma) \text{ does not exist}) \leq \tilde{C}_1 e^{-\tilde{c}_1 t}$.

Lemma 20. For any $q' \in [0,1]$, there exists a constant $K_2 = K_2(\mathcal{U}) \geq 2$ such that for any $K \geq K_2$, $q \in [q_K, 1]$, there exist constants $\tilde{c}_2 > 0$ and $\tilde{C}_2 = \tilde{C}_2(\mathcal{U}, K) > 0$ such that for any $x \in \mathbb{Z}^d$, $t \geq K$, $\gamma \in C_K^N(x,t)$, $P_{q',q}(k(\gamma) \text{ exists}, |\mathcal{X}^{\gamma}(\cdot, k(\gamma))| \leq \frac{t}{6K}) \leq \tilde{C}_2 e^{-\tilde{c}_2 t}$.

Lemma 21. For any $q' \in [0,1]$, $K \geq 2$, $q \in [q_K, 1]$, there exists a constant $\tilde{c}_3 = \tilde{c}_3(\mathcal{U}, q') > 0$ such that for any $x \in \mathbb{Z}^d$, $t \geq K$, $\gamma \in C_K^N(x,t)$, we get $P_{q',q}(\{ |\mathcal{X}^{\gamma}(\cdot, k(\gamma))| > \frac{t}{6K}\} \cap \{\forall r \in \mathcal{X}^{\gamma}(\cdot, k(\gamma)), W^{\gamma,r}(r)^c\}) \leq e^{-\tilde{c}_3 t}$ and $P_{q',q}(\{ |\mathcal{X}^{\gamma}(\cdot, k(\gamma))| > \frac{t}{6K}\} \cap \{\forall r \in \mathcal{X}^{\gamma}(\cdot, k(\gamma)), W^{\gamma,r}(r)^c\}) \leq e^{-\tilde{c}_3 t}$.

Proof of lemma 19. We set $K_1 = \max(K_c, 48(\ln 36 + 1))$, which depends only on \mathcal{U}. Let $q' \in [0,1]$, $K \geq K_1$, $q \in [q_K, 1]$, $x \in \mathbb{Z}^d$, $t \geq K$ and $\gamma = \gamma(y)k \in [q_K, 1] \in C_K^N(x,t)$. If $k(\gamma)$ does not exist, $\tau^{y_k,k}$ is finite for $k \in \{0,\ldots, \lfloor \frac{1}{\sqrt{K}} \rfloor \}$, therefore if we call $k_1 = 0$ and $k_i = \sum_{j=1}^{i-1} \tau^{y_k,k_j}$ for $i \geq 2$, τ^{y_k,k_i} is finite as long as $k_i \leq \lfloor \frac{1}{\sqrt{K}} \rfloor$. We will use proposition 17 to bound the probability that this happens. We call $L = \max\{i \geq 1 | k_i \leq \lfloor \frac{1}{\sqrt{K}} \rfloor \}$; we then have $\sum_{i=1}^{L} \tau^{y_k,k_i} \in \left[\lfloor \frac{1}{\sqrt{K}} \rfloor \right]$, hence if n_L is the integer satisfying $n_L = \lfloor \frac{1}{\sqrt{K}} \rfloor - \sum_{i=1}^{L-1} \tau^{y_k,k_i}$, we have $n_L \leq \tau^{y_k,k_L} < +\infty$. Furthermore, if n_1, \ldots, n_{L-1} are integers satisfying $n_i = \tau^{y_k,k_i}$ for $i \in \{1, \ldots, L-1\}$, we get $n_1 + \cdots + n_{L-1} = \lfloor \frac{1}{\sqrt{K}} \rfloor$, $k_i = \sum_{j=1}^{i-1} n_j$ for all $i \in \{1, \ldots, L\}$ (we denote $\sum_{j=1}^{i} n_j = N_i$). In addition, since $\tau^{y_k,k} \geq 1$ for any $k \in \{0,\ldots, \lfloor \frac{1}{\sqrt{K}} \rfloor \}$, $L \leq \lfloor \frac{1}{\sqrt{K}} \rfloor + 1$. We deduce

$$P_{q',q}(k(\gamma) \text{ does not exist}) \leq \sum_{M=\lfloor \frac{1}{\sqrt{K}} \rfloor+1}^{\infty} P_{q',q}(L = M, \forall 1 \leq i \leq M-1, \tau^{y_{N_i,N_i}} = n_i, n_M \leq \tau^{y_{NM,NM}} < +\infty).$$

Moreover, the events $\{\tau^{y_{N_i,N_i}} = n_i\}, i \in \{1, \ldots, M-1\}$ and $\{n_M \leq \tau^{y_{NM,NM}} < +\infty\}$ depend only on clock rings in the time intervals $[t - (N_i + n_i) K, t - N_i K] = [t - N_i+1 K, t - N_i K], i \in \{1, \ldots, M-1\}$ and $[t - (N_M + n_M) K, t - N_M K]$, which are disjoint, thus the events are independent, hence

$$P_{q',q}(L = M, \forall 1 \leq i \leq M-1, \tau^{y_{N_i,N_i}} = n_i, n_M \leq \tau^{y_{NM,NM}} < +\infty) \leq \prod_{i=1}^{M-1} P_{q',q}(\tau^{y_{N_i,N_i}} = n_i) P_{q',q}(n_M \leq \tau^{y_{NM,NM}} < +\infty) \leq \prod_{i=1}^{M} P_{q',q}(n_i \leq \tau^{y_{N_i,N_i}} < +\infty).$$
\[
\leq \prod_{i=1}^{M} 2\lambda^{n_i} e^{-\frac{K n_i}{2\lambda^2}} = 2^{M} 3^{2} \sum_{i=1}^{M} n_i e^{-\frac{K}{2\lambda^2}} \sum_{i=1}^{M} n_i = 2^{M} 3^{2} e^{-\frac{K}{2\lambda^2}} \]
by proposition \([17]\) and since \(n_1 + \cdots + n_M = \left\lfloor \frac{t}{K} \right\rfloor\). Consequently,

\[
P_{q',q}(k(\gamma) \text{ does not exist}) \leq \sum_{M \leq \left\lfloor \frac{t}{K} \right\rfloor + 1} 2^{M} 3^{2} e^{-\frac{K}{2\lambda^2}} \]
In addition, lemma \([12]\) yields that for any \(M \in \{1, \ldots, \left\lfloor \frac{t}{K} \right\rfloor + 1\}\), we have \(|\{(n_1, \ldots, n_M) \in \mathbb{N}^M \mid n_1 + \cdots + n_M = \left\lfloor \frac{t}{K} \right\rfloor\}| \geq \left(\frac{M+1}{M-1}\right)^{-1} = \left(\frac{M+1}{M-1}\right)^{-1}\), and by the Stirling formula there exists a constant \(\lambda > 0\) such that

\[
\left(\frac{M + \left\lfloor \frac{t}{K} \right\rfloor - 1}{\left\lfloor \frac{t}{K} \right\rfloor}\right)^{-1} \leq \frac{M + \left\lfloor \frac{t}{K} \right\rfloor - 1}{\left\lfloor \frac{t}{K} \right\rfloor} \leq \lambda \left(\frac{M + \left\lfloor \frac{t}{K} \right\rfloor - 1}{\left\lfloor \frac{t}{K} \right\rfloor}\right)^{-1} \leq \lambda \left(\frac{M + \left\lfloor \frac{t}{K} \right\rfloor}{\left\lfloor \frac{t}{K} \right\rfloor}\right)^{-1}
\]
since \(M \leq \left\lfloor \frac{t}{K} \right\rfloor + 1\). We deduce \(|\{(n_1, \ldots, n_M) \in \mathbb{N}^M \mid n_1 + \cdots + n_M = \left\lfloor \frac{t}{K} \right\rfloor\}| \leq \lambda(2e)^{\left\lfloor \frac{t}{K} \right\rfloor}\). Therefore

\[
P_{q',q}(k(\gamma) \text{ does not exist}) \leq \sum_{M=1}^{\left\lfloor \frac{t}{K} \right\rfloor + 1} \lambda(2e)^{\left\lfloor \frac{t}{K} \right\rfloor} 2^{M} 3^{2} e^{-\frac{K}{2\lambda^2}} \leq \lambda(2e)^{\left\lfloor \frac{t}{K} \right\rfloor} 2^{\left\lfloor \frac{t}{K} \right\rfloor + 2} 3^{2} e^{-\frac{K}{2\lambda^2}} = 4\lambda \left(36e e^{-\frac{K}{2\lambda^2}}\right)^{\left\lfloor \frac{t}{K} \right\rfloor}.
\]
In addition, since \(K \geq 48(\ln 36 + 1)\), \(36e e^{-\frac{K}{3}} \leq 36e e^{-\ln 36 - 1} = 1\), so \(36e e^{-\frac{K}{3}} \leq e^{-\frac{K}{3}}\), hence

\[
P_{q',q}(k(\gamma) \text{ does not exist}) \leq 4\lambda e^{-\frac{K}{2\lambda^2}} \leq 4\lambda e^{-\frac{K}{2\lambda^2}(\frac{t}{K} - 1)} = 4\lambda e^{\frac{K}{2\lambda^2} \left(\frac{t}{K} - 1\right)} = \frac{K}{6\lambda},
\]
which is the lemma.

\newpage

\textbf{Proof of lemma \([27]\).} This proof is an application of proposition \([18]\). We set \(K_2 = \max(4, K_g(1/2))\), which depends only on \(U\). Let \(q' \in [0, 1]\), \(K \geq K_2\), \(q \in [q_K, 1]\) and \(x \in \mathbb{Z}^d\). It is enough to prove the lemma for \(t \geq \max(K, 3\lambda K_2^2)\); indeed, if the lemma holds for \(t \geq \max(K, 3\lambda K_2^2)\), one has only to enlarge \(\hat{C}_2\) to prove it for \(t \geq K\). Therefore we set \(t \geq \max(K, 3\lambda K_2^2)\) and \(\gamma = (y_k)_{k \in \{0, \ldots, \left\lfloor \frac{t}{K} \right\rfloor\}} \in \mathcal{C}_K^N(x, t)\). If \(k(\gamma)\) exists but \(|\mathcal{X}^y(\gamma), k(\gamma)| \leq \frac{t}{6\lambda}\), we have \(\tau_{y(\gamma), k(\gamma)} = +\infty\) and \(|\mathcal{X}^{y(\gamma), k(\gamma)}| \leq \frac{1}{2\lambda}\), hence

\[
P_{q',q}(k(\gamma) \text{ exists}, |\mathcal{X}^{y(\gamma), k(\gamma)}| \leq \frac{t}{6\lambda}) \leq \sum_{k=0}^{\left\lfloor \frac{t}{6\lambda} \right\rfloor} P_{q',q}(\tau_{y_k,k} = +\infty, |\mathcal{X}^{y_k,k}| \leq \frac{t}{6\lambda}).
\]
We are going to bound the term on the right. For any \(k \in \{0, \ldots, \left\lfloor \frac{t}{6\lambda} \right\rfloor\}\), we have \(n_{y_k,k} = \left\lfloor \frac{t}{6\lambda} \right\rfloor - k \geq \left\lfloor \frac{t}{6\lambda} \right\rfloor - \left\lfloor \frac{t}{K} \right\rfloor \geq \frac{1}{K} - \frac{1}{2\lambda} \geq \frac{1}{2\lambda} \), and since \(t \geq 3\lambda K_2^2\), \((K - 3)t \geq 3K^2\) thus \(\frac{1}{3K} - \frac{1}{2\lambda} \geq 1\), so \(n_{y_k,k} \geq \frac{2}{3\lambda} t\), hence if we choose \(\alpha = \frac{2}{3\lambda}\) we have \(\frac{2}{3\lambda} n_{y_k,k} \geq \frac{1}{6\lambda}\). Therefore by proposition \([18]\)

\[
P_{q',q}(\tau_{y_k,k} = +\infty, |\mathcal{X}^{y_k,k}| \leq \frac{t}{6\lambda}) \leq C_g e^{-c_y n_{y_k,k}} \leq C_g e^{-c_y \frac{2}{3\lambda} t} \leq C_g e^{-c_y \frac{2}{3\lambda} \frac{t}{6\lambda} t} \leq C_g e^{-c_y \frac{2}{3\lambda} \frac{t}{6\lambda} \frac{t}{6\lambda}}.
\]
since $n^{q_t,k} \geq \frac{2}{\gamma K}$. Consequently
\[
P_{q',q} \left(k(\gamma) \text{ exists, } |\mathcal{X}^{q_t,k(\gamma)}| \leq \frac{t}{6K} \right) \leq \left(1 + \frac{t}{K^2} \right) C_g e^{-\frac{2t}{\gamma K}} \leq \left(1 + \frac{t}{K} \right) C_g e^{-\frac{2t}{\gamma K}},
\]
which yields lemma [20].

Proof of lemma [27]. Let $q' \in [0, 1]$, $K \geq 2$, $q \in [q_t, 1]$, $x \in \mathbb{Z}^d$, $t \geq K$ and $\gamma \in C_{K}^N(x,t)$. The argument is elementary: we notice that there is a positive probability that a rectangle is full of zeroes in the initial configurations of the two processes since they have laws ν_q' and ν_q, as well as a positive probability that there is no 1-clock ring in the rectangle in the time interval $[0, t - K \lceil \frac{t}{K} \rceil]$. Therefore there is a positive probability that a rectangle is full of zeroes in both processes at time $t - K \lceil \frac{t}{K} \rceil$, so if there are $\frac{t}{6K}$ elements in $\mathcal{X}^{q_t,k(\gamma)}$, the probability that none of the corresponding rectangles is full of zeroes in both processes at time $t - K \lceil \frac{t}{K} \rceil$ is of order $e^{-\frac{2t}{\gamma K}}$.

We notice that $\mathcal{X}^{q_t,k(\gamma)}$ depends only on clock rings in the time interval $[t - K \lceil \frac{t}{K} \rceil, t]$, hence if \mathcal{F} is the σ-algebra generated by the clock rings in $[t - K \lceil \frac{t}{K} \rceil, t]$, for $\tilde{\eta} = \eta$ or $\tilde{\eta}$, we have
\[
P_{q',q} \left(\exists r \in \mathcal{X}^{q_t,k(\gamma)}, W^{\gamma, \tilde{\eta}}(r) \in \mathcal{F} \right)
= \mathbb{E}_{q',q} \left(\mathbb{I}_{\{ |\mathcal{X}^{q_t,k(\gamma)}| > \frac{t}{6K} \}} \mathbb{P}_{q',q} (\forall r \in \mathcal{X}^{q_t,k(\gamma)}, W^{\gamma, \tilde{\eta}}(r) \in \mathcal{F}) \right).
\]
Moreover,
\[
P_{q',q} (\forall r \in \mathcal{X}^{q_t,k(\gamma)}, W^{\gamma, \tilde{\eta}}(r) \in \mathcal{F})
= \mathbb{P}_{q',q} \left(\forall r \in \mathcal{X}^{q_t,k(\gamma)}, \exists x' \in y(\gamma) + \frac{r - n^{q_t,k(\gamma)}}{2} a_1 u + R, \tilde{\eta}_0(x') \neq 0 \mid \mathcal{F} \right)
= \prod_{r \in \mathcal{X}^{q_t,k(\gamma)}} \mathbb{P}_{q',q} \left(\exists x' \in y(\gamma) + \frac{r - n^{q_t,k(\gamma)}}{2} a_1 u + R, \tilde{\eta}_0(x') \neq 0 \mid \mathcal{F} \right)
\]
since the events $\{ \exists x' \in y(\gamma) + \frac{r - n^{q_t,k(\gamma)}}{2} a_1 u + R, \tilde{\eta}_0(x') \neq 0 \mid \mathcal{F} \}$ depend only on the state of $\tilde{\eta}_0$ and on the clock rings of the time interval $[t - K \lceil \frac{t}{K} \rceil, t]$ at the sites of $y(\gamma) + \frac{r - n^{q_t,k(\gamma)}}{2} a_1 u + R$, so they are mutually independent and independent of \mathcal{F}. Therefore the invariance by translation yields
\[
P_{q',q} (\forall r \in \mathcal{X}^{q_t,k(\gamma)}, W^{\gamma, \tilde{\eta}}(r) \in \mathcal{F}) \leq \mathbb{P}_{q',q} \left(\exists x' \in R, \tilde{\eta}_0(x') \neq 0 \mid \mathcal{F} \right)
= \left(1 - \mathbb{P}_{q',q} \left(\forall x' \in R, \tilde{\eta}_0(x') = 0, \mathcal{P}_{x'}^{1} \cap \left[0, t - \left\lceil \frac{t}{K} \right\rceil K \right] = \emptyset \right) \right)^{|\mathcal{X}^{q_t,k(\gamma)}|}
= \left(1 - \mathbb{P}_{q',q} (\tilde{\eta}_0(0) = 0) \mathbb{P}_{q',q} \left(\mathcal{P}_{0}^{1} \cap \left[0, t - \left\lceil \frac{t}{K} \right\rceil K \right] = \emptyset \right) \right)^{|\mathcal{X}^{q_t,k(\gamma)}|}.
\]
Furthermore, since $t - \left\lfloor \frac{t}{K} \right\rfloor K \leq K$ and $q \geq q_K = 1 + \frac{1}{3K|K|} \ln(1 - e^{-K})$,
\[
P_{q',q'} \left(P_0 \cap \left\{ 0, t - \left\lfloor \frac{t}{K} \right\rfloor K \right\} = 0 \right) = e^{-(1-q)(t-\left\lfloor \frac{t}{K} \right\rfloor K)} \geq e^{\frac{1}{3K|K|} \ln(1 - e^{-K})K} = (1 - e^{-K})^{\frac{1}{3K|K|}} \geq \left(\frac{1}{2} \right)^{\frac{1}{3K|K|}},
\]
since $K \geq 2$. This implies
\[
P_{q',q'}(\forall r \in X^{y(\gamma), k(\gamma)}, W^{y, \hat{\gamma}}(r)^c \mathbb{1}\{\mathcal{F}\}) \leq \left(1 - P_{q',q'}(\hat{\eta}_0(0) = 0)^{\left\lfloor \frac{1}{2} \right\rfloor} \right)^{\left| X^{y(\gamma), k(\gamma)} \right|}.
\]
In addition, if $\hat{\eta} = \eta$, $P_{q',q'}(\hat{\eta}_0(0) = 0) = q'$, so $1 - P_{q',q'}(\eta_0(0) = 0)^{\left| R_1 \right|} = 1 - (q')^{\left| R_1 \right|} 2^{-\frac{1}{2}}$, and if $\hat{\eta} = \tilde{\eta}$, $1 - P_{q',q'}(\tilde{\eta}_0(0) = 0)^{\left| R_1 \right|} 2^{-\frac{1}{2}}$. Moreover, since $K \geq 2$, $q \geq q_K = 1 + \frac{1}{3K|K|} \ln(1 - e^{-K}) \geq 1 + \frac{1}{6|K|} \ln(1 - e^{-2}) \geq \frac{1}{2}$, hence $1 - P_{q',q'}(\hat{\eta}_0(0) = 0)^{\left| R_1 \right|} 2^{-\frac{1}{2}} \leq 1 - 2^{-\left| R_1 \right| - \frac{1}{2}}$. This implies that if \tilde{c}_3' is the minimum of $-\ln(1 - (q')^{\left| R_1 \right|} 2^{-\frac{1}{2}})$ and $-\ln(1 - 2^{-\left| R_1 \right| - \frac{1}{2}})$ (which depends only on \mathcal{U} and q'), for $\tilde{\eta} = \eta$ or $\tilde{\eta}$ we have $P_{q',q'}(\forall r \in X^{y(\gamma), k(\gamma)}, W^{y, \hat{\gamma}}(r)^c \mathbb{1}\{\mathcal{F}\}) \leq e^{-\tilde{c}_3' \left| X^{y(\gamma), k(\gamma)} \right|}$. Consequently, (I) yields
\[
P_{q',q'} \left(\left\{ |X^{y(\gamma), k(\gamma)}| > \frac{t}{6K} \right\} \cap \{ \forall r \in X^{y(\gamma), k(\gamma)}, W^{y, \hat{\gamma}}(r)^c \mathbb{1}\{\mathcal{F}\} \} \right) \leq \mathbb{E}_{q',q'} \left(\mathbb{1}_{\left\{ |X^{y(\gamma), k(\gamma)}| > \frac{t}{6K} \right\}} e^{-\tilde{c}_3' \left| X^{y(\gamma), k(\gamma)} \right|} \right) \leq e^{-\tilde{c}_3' \frac{t}{6K}},
\]
which is the lemma.

\[\square\]

Acknowledgements

I would like to thank my PhD advisor Cristina Toninelli; I also would like to thank Ivailo Hartarsky for his careful reading of this paper and for his suggestions, as well as for pointing me to some references.

References

[1] Paul Balister, Béla Bollobás, Michal Przykucki, and Paul Smith. Subcritical \mathcal{U}-bootstrap percolation models have non-trivial phase transitions. *Transactions of the American Mathematical Society*, 386:7385–7411, January 2016.

[2] Oriane Blondel. Front progression in the East model. *Stochastic processes and their applications*, 123(9):3430–3465, September 2013.

[3] Oriane Blondel, Nicoletta Cancrini, Fabio Martinelli, Cyril Roberto, and Cristina Toninelli. Fredrickson-Andersen one spin facilitated model out of equilibrium. *Markov processes and related fields*, 19(3):383–406, 2013.

[4] Oriane Blondel, Aurélie Deshayes, and Cristina Toninelli. Front evolution of the Fredrickson-Andersen one spin facilitated model. *Electronic journal of probability*, 24:32, January 2019.

[5] Béla Bollobás, Hugo Duminil-Copin, Robert Morris, and Paul Smith. Universality of two-dimensional critical cellular automata. *Proceedings of the London Mathematical Society*, to appear.

[6] Béla Bollobás, Paul Smith, and Andrew Uzzell. Monotone cellular automata in a random environment. *Combinatorics, probability and computing*, 24(4):687–722, July 2015.

[7] Nicoletta Cancrini, Fabio Martinelli, Roberto H. Schonmann, and Cristina Toninelli. Facilitated oriented spin models: some non equilibrium results. *Journal of statistical physics*, 138(6):1109–1123, 2010.

[8] Paul Chleboun, Alessandra Faggionato, and Fabio Martinelli. Mixing time and local exponential ergodicity of the East-like process in \mathbb{Z}^d. *Annales de la faculté des sciences de Toulouse*, 24(4):717–743, 2015.

[9] Richard Durrett. Oriented percolation in two dimensions. *Annals of probability*, 12(4):999–1040, 1984.

[10] Richard Durrett and Roberto H. Schonmann. Large deviations for the contact process and two dimensional percolation. *Probability theory and related fields*, 77(4):583–603, December 1988.

[11] Glenn H. Fredrickson and Hans C. Andersen. Kinetic Ising model of the glass transition. *Physical review letters*, 53:1244, September 1984.
[12] Shirshendu Ganguly, Eyal Lubetzky, and Fabio Martinelli. Cutoff for the East process. *Communications in mathematical physics*, 335(3):1287–1322, 2015.

[13] Juan P. Garrahan, Peter Sollich, and Cristina Toninelli. Kinetically constrained models. In *Dynamical heterogeneities in glasses, colloids, and granular media*. Oxford University Press, 2011.

[14] Ivailo Hartarsky, Laure Marêché, and Cristina Toninelli. Universality for critical kinetically constrained models: infinite number of stable directions. *arXiv:1904.09145*, 2019.

[15] Ivailo Hartarsky, Fabio Martinelli, and Cristina Toninelli. Universality for critical kinetically constrained models: finite number of stable directions. *In preparation*, 2019.

[16] Charles H. Jones. Generalized hockey stick identities and N-dimensional blockwalking. *Fibonacci quarterly*, 34(3):280–288, 1996.

[17] Sébastien Léonard, Peter Mayer, Peter Sollich, Ludovic Berthier, and Juan P. Garrahan. Non-equilibrium dynamics of spin facilitated glass models. *Journal of statistical mechanics: theory and experiment*, page 07017, July 2007.

[18] Laure Marêché. Exponential convergence to equilibrium for the d-dimensional East model. *arXiv:1905.10715*, 2019.

[19] Laure Marêché, Fabio Martinelli, and Cristina Toninelli. Exact asymptotics for Duarte and supercritical rooted kinetically constrained models. *Annals of probability*, to appear.

[20] Fabio Martinelli, Robert Morris, and Cristina Toninelli. Universality results for kinetically constrained spin models in two dimensions. *Communications in mathematical physics*, 369(2):761–809, July 2019.

[21] Thomas Mountford and Glauco Valle. Exponential convergence for the Fredrickson-Andersen one spin facilitated model. *Journal of theoretical probability*, 32(1):282–302, 2019.

[22] Felix Ritort and Peter Sollich. Glassy dynamics of kinetically constrained models. *Advances in physics*, 52(4):219–342, 2003.

[23] Richard P. Stanley. *Enumerative combinatorics: volume 1*. Cambridge University Press, 2nd edition, 2011.

[24] Jan M. Swart. A course in interacting particle systems. *arXiv:1703.10007v1*, 2017.

Laure Marêché, LPSM UMR 8001, Université Paris Diderot, Sorbonne Paris Cité, CNRS, 75013 Paris, France

E-mail address: mareche@lpsm.paris