Fundamental constraints on particle tracking with optical tweezers

Michael A Taylor, Joachim Knittel and Warwick P Bowen
Centre for Engineered Quantum Systems, University of Queensland, St Lucia, Queensland 4072, Australia
E-mail: wbowen@physics.uq.edu.au

New Journal of Physics 15 (2013) 023018 (10pp)
Received 3 August 2012
Published 11 February 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/2/023018

Abstract. A general quantum limit to the sensitivity of particle position measurements is derived following the simple principle of the Heisenberg microscope. The value of this limit is calculated for particles in the Rayleigh and Mie scattering regimes, and with parameters which are relevant to optical tweezers experiments. The minimum power required to observe the zero-point motion of a levitating bead is also calculated, with the optimal particle diameter always smaller than the wavelength. We show that recent optical tweezers experiments are within two orders of magnitude of quantum limited sensitivity, suggesting that quantum optical resources may soon play an important role in high sensitivity tracking applications.
1. Introduction

In optical tweezers, the electric field gradient of a tightly focused laser beam is used to trap small particles [1]. In this interaction, momentum is imparted to the trapped object when it scatters photons from the incident optical field. The particle position can then be determined by measuring these scattered photons at the back-focal plane of a condenser lens, typically with a quadrant detector [2]. This simple concept allows particles to be tracked with sub-nanometer sensitivity [3] as forces ranging from subpiconewton [4, 5] to nanonewton [6] are controllably applied. Applications of this technique range over many fields, such as the study of Brownian motion [7, 8] and optomechanics [9, 10], but it has been most significant to subcellular biology. The biophysics which has been revealed through optical tweezers includes both the dynamics and magnitude of the forces applied by biological motors [5, 11, 12], the stretching and folding properties of DNA and RNA [12–14], the dynamics of virus–host coupling [15], the strain on an enzyme during catalysis [12] and the rheological properties of cellular cytoplasm [16–19].

Attaining high sensitivity is vital when exploring processes which lead to smaller and faster movements. The position sensitivity is usually limited by laser noise, electronic noise in the detector, or drifts of mirrors in the experiment. Substantial efforts have been made to minimize each of these sources of error [3, 4, 15, 20]. With sufficient improvements, the sensitivity per photon must eventually be limited by noise due to the quantization of light [21]. At this point, only two options remain to improve the sensitivity; either using more photons, which can damage biological samples [22, 23], or using photons with quantum correlations which allow the fundamental limit to be broken [24–26], as has recently been demonstrated in optical tweezers [16].

The quantum noise limit is an important consequence of quantum mechanics, and is becoming increasingly relevant in experiments. So, what is the precision at the quantum limit? And how closely are experiments approaching this? Until now, the quantum limit has only been derived numerically in the paraxial optics regime with Rayleigh scattering [27], making the calculated limit inapplicable to most experiments and difficult to understand intuitively. Here we follow the simple principles of the Heisenberg Microscope to derive a quantum sensitivity limit in optical tweezers. This technique can be straightforwardly applied to particles with arbitrary shape and size, yields analytic solutions in the Rayleigh scattering regime, and allows analysis of a wide range of optical setups. The approach is also relevant to other measurements such as microscopy with fluorescent particles [28]. Our results show that leading experiments are
already within two orders of magnitude of the quantum noise limit, which suggests that future improvements may soon need to integrate quantum resources.

2. Principle

Particles in optical tweezers are tracked by measuring their perturbing influence on the electric field as they scatter photons. The scattered light is collected with a high numerical aperture lens, providing an image of the particle. Motion of the particle displaces the image, with the displacement typically measured via a resulting power imbalance on a quadrant detector [2]. Each scattered photon carries some information about the position of the particle from which it scatters. This information is fundamentally constrained by the Heisenberg uncertainty relation, which places a limit on the localization of a photon [24] of \(\Delta q_i \geq \frac{\hbar}{\Delta p_i} \), where \(\Delta p_i \) is the photons momentum uncertainty for each axis \(i \in \{x, y, z\} \), \(z \) is the direction of optical propagation, \(x \) the axis of linear polarization and \(\hbar \) is the reduced Planck constant. Consequently, the location of the scattering event which produced the photon can be established with a minimum uncertainty of \(\Delta q_i \). This also defines the particle position uncertainty when the scattered field originates from the center of the particle, as is the case for Rayleigh scattering. In general, however, the origin of the scattered field may be offset, lying between the center of the particle and that of the optical trap. For example, if the trapped particle is larger than the trap width and displaced such that its center lies outside the trap, scattering can only originate from the part of the particle contained within the trap field. This leads to a smaller displacement in the scattering origin than that of the particle itself. Such effects increase the absolute uncertainty in the particle position, so that in this case, \(\Delta q_i \) establishes a lower bound on particle position uncertainty.

A useful constraint on momentum uncertainty \(\Delta p_i \) is that it must be within the total photon momentum \(p_{\text{ph}} = \frac{2\pi \hbar}{\lambda} \), where \(\lambda \) is the vacuum wavelength, because

\[
\Delta p_i^2 = \langle p_i^2 \rangle - \langle p_i \rangle^2 \leq \sum_{i=x,y,z} \langle p_i^2 \rangle - \langle p_i \rangle^2 = p_{\text{ph}}^2 - \sum_{i=x,y,z} \langle p_i \rangle^2. \tag{1}
\]

We introduce parameters \(f_i \) to characterize \(\Delta p_i \) along each axis, such that

\[
\Delta p_i = f_i p_{\text{ph}} \tag{2}
\]

leading to the condition \(f_x^2 + f_y^2 + f_z^2 \leq 1 \). This relation becomes an equality for a photon which is scattered with no preferred direction (\(\langle p_i \rangle = 0 \)). Using this, a position measurement is limited to an uncertainty of

\[
\Delta q_i \geq \frac{\lambda}{4\pi f_i}. \tag{3}
\]

Perhaps unsurprisingly, this condition has a similar form to the Rayleigh criterion [29], which establishes an approximate limit to the resolution of a given microscope system without regard for the exact features of the scattering process. By contrast, equation (3) provides a rigorous bound which accounts for the scattered field profile. This is crucial for establishing accurate quantum limits to the precision of particle tracking experiments, particularly in the Mie scattering regime where the scattering exhibits both complex spatial structure and resonance phenomena.

In particle tracking experiment, the position of a particle is measured with \(N_s = \kappa N_0 \) independent scattered photons, where \(N_0 \) incident photons have a scattering probability of \(\kappa \).
While the standard deviation of these position measurements will be limited to Δq_i, the particle position can be reliably established with a much smaller standard error δq_i given by

$$\delta q_i \geq \frac{\lambda}{4\pi f_i \sqrt{\kappa N_0}}. \tag{4}$$

This places a lower limit on the particle position sensitivity achievable with uncorrelated photons. To derive the value of the quantum sensitivity limit given in equation (4), we only need to calculate the scattering probability κ and the momentum parameter f. As these parameters depend on the trapping field, the particle being tracked and the refractive index of the surrounding medium, they must be evaluated for specific cases, although neither may ever reach unity. A general lower bound of $\delta q \geq \frac{\lambda}{4\pi \sqrt{N_0}}$ must always be imposed, even if the scattering properties of the particle were cleverly engineered [6] and the measurement performed perfectly; for all realistic situations, the minimum resolvable displacement is larger than this. To determine the limit for real experiments, we evaluate the quantum limit for the common case of homogeneous spheres in a Gaussian trap.

3. Rayleigh scattering

Both the scattering rate κ and momentum distribution parameter f can be calculated analytically in the Rayleigh scattering regime, in which the particle diameter $d \ll \lambda$. If an objective with numerical aperture of NA focuses an incident TEM$_{00}$ mode on the particle, the scattering rate is

$$\kappa = \frac{2}{3} \pi^5 N A^2 \left(\frac{d}{\lambda} \right)^6 \left(\frac{n_p^2 - n_m^2}{n_p^2 + 2n_m^2} \right)^2, \tag{5}$$

where n_p and n_m are respectively the refractive index of the particle and surrounding medium [30]. For Rayleigh scatterers polarized along the x-axis, the scattered photons enter the mode ψ, with amplitude given by

$$|\psi|^2 = \frac{3}{8\pi} \frac{1 - (x/r)^2}{r^2}, \tag{6}$$

where r is the radial distance [30]. Assuming the photons to be moving radially outward, this mode determines the momentum profile of the scattered light. In most experiments, any scattered photon which reaches the detector has passed through the aperture of an objective. This constrains the momentum range of the detected photons, thereby increasing the position uncertainty. The measurement then only includes the light present in the area A of this aperture. For this measurement, the parameter f is calculated to be

$$f_x^2 = \int |\psi|^2 x^2 \, dA - \left(\int |\psi|^2 x \, dA \right)^2. \tag{7}$$

The second term in equation (7) is zero for all cases considered here, as photons scattered from centered particles have no preferred transverse direction. The ultimate sensitivity limit is given when we evaluate this over a spherical shell; here this gives $f_x^2 = \frac{1}{3}$, $f_y^2 = \frac{2}{3}$ and $f_z^2 = \frac{2}{5}$. Since the sensitivity predicted from this can only be achieved with perfect imaging of all scattered photons, it also determines the measurement back-action upon the particle. For measurements subject to a limited aperture size, equation (7) can be integrated analytically,
Figure 1. Light scatters from a small particle with a defined spatial profile, shown here as Rayleigh scattering. The field which enters the objective aperture is measured to determine the particle position. The scattered photons which propagate toward the aperture ($\theta > \theta_{\text{min}}$) have a momentum distribution Δp which defines the fundamental lower bound on sensitivity with which the particle position can be determined, as plotted here as a function of the condenser NA for Rayleigh particles suspended in water, illuminated by linearly polarized light. The sensitivity limit is shown for motion both perpendicular (solid line) and parallel (dashed line) to the polarization axis. Sensitivity improves with NA, as high NA lenses collect scattered photons with a larger momentum range. Because of the anisotropic scattering profile, this improvement is greatest for motion which is perpendicular to the polarization axis. Together with the scattering rate κ, this sensitivity defines the quantum limit on displacement resolution per incident photon.

with the corresponding quantum limit plotted in figure 1. In this, the aperture size is expressed in terms of the NA for a particle suspended in water. This shows near-perfect agreement with the equivalent numerical calculations performed in [27].

4. Mie scattering

Optical tweezers experiments usually operate with particles which are too large to be accurately approximated as Rayleigh scatterers. For these particles, the scattering profile is complicated by such effects as multiple internal reflections and the interference between optical paths of different length. For spherical particles in focused optical fields, this scattering regime is described mathematically by extended Mie theory [30]. We evaluate the scattering profiles numerically with the Optical Tweezers Toolbox [31]. These profiles are integrated as described in equation (7) to find the quantum sensitivity limit for particle tracking. The quantum limit is shown in figure 2 for polystyrene beads suspended in water, measured with 1064 nm light and an NA = 1.3 objective and condenser. Examining this, we see a number of noteworthy features. For small particles, where Rayleigh scattering is valid, forward and back scatter offer an equally sensitive measurement. However, as the particle size increases, the scatter becomes preferentially forward, with less information carried by back-scattered photons. Polarization has little effect on the sensitivity for beads larger than the wavelength. Two different resonant
Figure 2. The quantum limit on position sensing polystyrene beads ($n = 1.58$) suspended in water with a 1.3 NA objective as a function of diameter. The faint and dark lines representing measurement of back-scatter and forward-scatter respectively, and dashed and solid lines representing measurements parallel and perpendicular to the plane of polarization. The axis on the right shows the best sensitivity possible for a measurement based on 1 mW of optical power. Insets: logarithmically scaled scattered field intensity profiles for bead diameters of 2.5, 4.3 and 6.2 μm, calculated in the plane of polarization. The 4.3 μm bead forward-scatters far less light than either of the other two, because resonant effects reduce the interaction of the incoming field with the bead, such that most of the light remains in the incident mode. However, the back-scatter is of a similar magnitude for all three.

Effects are evident in figure 2 for large particles. The direction of scattering is periodically modulated by an effect which is approximately given by thin-film interference. This causes a significant modulation of the sensitivity available through back-scatter measurements; however, maximizing back-scattered sensitivity may not be advantageous for high-refractive index particles, as this regime also has the weakest trapping potential [32]. In addition to this, Mie resonances suppress the particle position information encoded in the phase of the outgoing field when propagation through the particle increases the optical path length by an integer multiple of the wavelength (see figure 2 insets). This degrades the measurement sensitivity without affecting the trapping potential, as the trapping is determined purely by the optical amplitude.

5. Applications

5.1. Resolving zero-point motion

One application of this calculation is to determine the conditions required to observe the zero-point motion of a levitating sphere. When this can be measured, it is possible to generate squeezed mechanical states or cool to the ground state [9], and also provides a means to search for the non-Newtonian gravity predicted at small scales [33]. The average amplitude of zero-point motion is given by [9]

$$\Delta q_{zp} = \left(\frac{\hbar}{2m\Omega} \right)^{1/2}$$

(8)
Figure 3. This is the optical power required to observe the zero-point motion of a levitating silica bead in vacuum, for six different laser wavelengths. A refractive index of 1.46, a temperature of $T = 298$ K, and a decay rate of $\Gamma = 2\pi \times 0.1$ Hz have been used, along with $\text{NA} = 0.8$ objective and condenser. This plot can be easily extrapolated to other physical parameters because the required power scales linearly with both the decay Γ and temperature T. Although the decay rate used for this calculation is similar to that in recent experiments [10], future experiments may attain much lower decay rates, with predicted rates of order 10^{-6} Hz [9, 33].

for a mechanical frequency Ω and mass m. For most interesting applications, the measurement time must be short compared to the average time for one bath phonon to enter or leave the mechanical mode [9], which is given by $\tau = \frac{2\pi}{\Gamma n}$ for a phonon occupancy $n = \frac{k_B T}{\hbar \Omega}$ and decay rate Γ. Although feedback is often used to cool motion, it does not influence this coupling rate, as feedback can only reduce the phonon occupancy by introducing mechanical dissipation which increases Γ, keeping the product unchanged. In order to measure the movement Δq_{zpm} over a time τ, the incident power must exceed the minimum threshold which we calculate here. Conveniently, an increase in the mechanical frequency Ω reduces both the mechanical amplitude Δq_{zpm} and phonon occupancy n such that the power threshold is independent of the frequency. This means that the trapping potential need not be considered, and the derived power limit is valid even if there are additional trapping fields. The power threshold is calculated as a function of sphere radius and shown in figure 3. This shows that for a given laser, the optimal bead diameter is somewhat smaller than the wavelength. In the Rayleigh scattering regime, the required power scales as λ^7, making a short wavelength laser a practical choice. For large beads, the preferred wavelength is determined entirely by the Mie resonances. While not included in this calculation, the choice of wavelength also determines the particle absorption. This should also be accounted for in an attempt to observe zero-point motion, as absorption leads to heating which could damage the particle or add phonons to the mechanical mode. Because the zero-point motion amplitude drops with the particle mass, it is generally more difficult to observe in larger beads. To observe zero-point motion in any silica bead with a diameter larger than 6 μm would be prohibitively difficult at the assumed decay rate of 0.1 Hz, as it requires a quantum limited measurement of over 10 W of optical power.

Although the power predicted in figure 3 should make the zero-point motion observable, it will also impart back-action onto the bead motion. The back-action will be greater than the zero-point momentum, since only the forward-scattered photons are included in the measurement. If
the measurement contains any non-optimality, this will only enlarge the relative back-action. In real experiments, optical loss and the use of split detectors [27] ensure a non-optimal position measurement. This is a significant limitation, as measurement non-optimality prevents ground state cooling and minimum uncertainty squeezing [34].

5.2. Experimental sensitivity

With our calculations, we can characterize the gap between experimental results and the quantum limit. A recent experiment achieved a sensitivity of 1.7×10^{-14} mHz$^{-1/2}$ when tracking 1 µm diameter polystyrene beads in water with 700 mW of 1064 nm light, and collecting only the forward-scatter [3]. Assuming the objective and condenser have NA = 1.3, we find that $\kappa^{1/2} f_x = 0.380$, and the 3.7×10^{18} incident photons per second should limit the sensitivity to 1.1×10^{-16} mHz$^{-1/2}$, which is within a factor of 145 of the demonstrated result. In this experiment, the detected field was attenuated by 70% before the detector, and the remaining photons were measured with sensitivity within a factor of 80 of the quantum limit. In another recent experiment, silica beads in vacuum were tracked at 3.9×10^{-14} mHz$^{-1/2}$ using 120 mW of 1064 nm light, and NA = 0.68 objective and condenser [10]. For this case, $\kappa^{1/2} f_x = 0.203$ and the quantum limit is 5.2×10^{-16} mHz$^{-1/2}$, only 75 times lower than the experimental sensitivity. In this experiment, the measurement for each axis was performed on separate detectors, so each detector had fewer photons available for measurement. Although both of these experiments used non-optimal split detectors, they operate well within two orders of magnitude of the quantum limit. If further improvements to sensitivity are required, it would be useful to characterize the contributions to this gap arising from optical loss, detector non-optimality, and various noise sources. This characterization would indicate the aspects of the measurement which could be most effectively improved. Classical noise can be suppressed either by eliminating the noise or by using a stroboscopic measurement [16]; otherwise, spatial homodyne [27] or self-homodyne detection [16] can offer an optimal detection scheme, with quantum correlated light allowing still further improvement [16].

The quantum limit calculated here has important implications for future experiments requiring better sensitivity than currently available. The thermal motion of particles in water has been observed to deviate from Brownian motion on very short time-scales, due to hydrodynamic resonances [7] and ballistic motion between collisions [8]. However, there are further predicted effects which remain unobserved, such as oscillations arising from the elastic compressibility of water [8]. Direct observation of this phenomenon requires sensitivity of around 2×10^{-17} mHz$^{-1/2}$ [8], which even with a quantum limited measurement requires 19 W of 1064 nm light. This presents a problem, as the surrounding water will boil when the optical power is around 10 W [22]. The only way to surpass the quantum limit is to use correlated photons which allow more information to be extracted per photon [16, 21, 24]. High measurement efficiency is required for such quantum resources to be useful, since optical loss degrades non-classical states. A particle tracking experiment with 76% optical efficiency has achieved 2.7 dB of quantum enhancement [16]; however if the efficiency was increased to 90% and state-of-the-art squeezed light technology used [35], the sensitivity enhancement would exceed 8 dB. With this quantum enhancement, measurement of the elastic compressibility of water would require a more achievable 3 W of optical power. Based on our calculations, and the advanced state of recent experiments, we conclude that quantum resources will play an important role in the next generation of high precision tracking experiments.

New Journal of Physics 15 (2013) 023018 (http://www.njp.org/)
Acknowledgments

We thank Alexander Stilgoe and Timo Nieminen for advice about the Optical Tweezers Toolbox. This work was supported by the Australian Research Council Discovery Project contract no. DP0985078.

References

[1] Ashkin A and Dziedzic J 1987 Optical trapping and manipulation of viruses and bacteria Science 235 1517–20
[2] Gittes F and Schmidt C F 1998 Interference model for back-focal-plane displacement detection in optical tweezers Opt. Lett. 23 7–9
[3] Chavez I, Huang R, Henderson K, Florin E-L and Raizen M G 2008 Development of a fast position-sensitive laser beam detector Rev. Sci. Instrum. 79 105104
[4] Moffitt J R, Chemla Y R, Smith S B and Bustamante C 2008 Recent advances in optical tweezers Annu. Rev. Biochem. 77 205–28
[5] Finer J T, Simmons R M and Spudich J A 1994 Single myosin molecule mechanics: piconewton forces and nanometre steps Nature 368 113–9
[6] Jannasch A, Demirörs A F, van Oostrum P D J, van Blaaderen A and Schäffer E 2012 Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres Nature Photon. 6 469–73
[7] Franosch T, Grimm M, Belushkin M, Mor F M, Foffi G, Forró L and Jeney S 2011 Resonances arising from hydrodynamic memory in Brownian motion Nature 478 85–8
[8] Huang R, Chavez I, Taute K M, Lukić B, Jeney S, Raizen M G and Florin E-L 2011 Direct observation of the full transition from ballistic to diffusive Brownian motion in a liquid Nature Phys. 7 576–80
[9] Chang D E, Regal C A, Papp S B, Wilson D J, Ye J, Painter O, Kimble H J and Zoller P 2010 Cavity opto-mechanics using an optically levitated nanosphere Proc. Natl Acad. Sci. USA 107 1005–10
[10] Li T, Kheifets S and Raizen M G 2011 Millikelvin cooling of an optically trapped microsphere in vacuum Nature Phys. 7 527–30
[11] Svoboda K, Schmidt C F, Schnapp B J and Block S M 1993 Direct observation of kinesin stepping by optical trapping interferometry Nature 365 721–7
[12] Bustamante C, Chemla Y R, Forde N R and Izhaky D 2004 Mechanical processes in biochemistry Annu. Rev. Biochem. 73 705–48
[13] Bustamante C 2005 Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics Q. Rev. Biophys. 38 291–301
[14] Greenleaf W J and Block S M 2006 Single-molecule, motion-based DNA sequencing using RNA polymerase Science 313 801
[15] Kukura P, Ewers H, Müller C, Renn A, Helenius A and Sandoghdar V 2009 High-speed nanoscopic tracking of the position and orientation of a single virus Nature Methods 6 923–9
[16] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H-A and Bowen W P 2013 Biological measurement beyond the quantum limit Nature Photon. doi:10.1038/nphoton.2012.346
[17] Yamada S, Wirtz D and Kuo S C 2000 Mechanics of living cells measured by laser tracking microrheology Biophys. J. 78 1736–47
[18] Senning E N and Marcus A H 2010 Actin polymerization driven mitochondrial transport in mating S. cerevisiae Proc. Natl Acad. Sci. USA 107 721–5
[19] Tolić-Nørrelykke I M, Munteanu E-L, Thon G, Oddershede L and Berg-Sørensen K 2004 Anomalous diffusion in living yeast cells Phys. Rev. Lett. 93 078102
[20] Taylor M A, Knittel J, Hsu M T L, Bachor H-A and Bowen W P 2011 Sagnac interferometer-enhanced particle tracking in optical tweezers J. Opt. 13 044014
[21] Kolobov M I and Fabre C 2000 Quantum limits on optical resolution Phys. Rev. Lett. 85 3789–92

New Journal of Physics 15 (2013) 023018 (http://www.njp.org/)
[22] Peterman E J, Gittes F and Schmidt C F 2003 Laser-induced heating in optical traps *Biophys. J.* **84** 1308–16
[23] Neuman K C, Chadd E H, Liou G F, Bergman K and Block S M 1999 Characterization of photodamage to *Escherichia coli* in optical traps *Biophys. J.* **77** 2856–63
[24] Giovannetti V, Lloyd S and Maccone L 2004 Quantum-enhanced measurements: beating the standard quantum limit *Science* **306** 1330–6
[25] Brida G, Genovese M and Ruo Berchera I 2010 Experimental realization of sub-shot-noise quantum imaging *Nature Photon.* **4** 227–30
[26] Treps N, Grosse N, Bowen W P, Fabre C, Bachel H-A and Lam P K 2003 A quantum laser pointer *Science* **301** 940–3
[27] Tay J W, Hsu M T L and Bowen W P 2009 Quantum limited particle sensing in optical tweezers *Phys. Rev. A* **80** 063806
[28] Giannone G *et al* 2010 Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density *Biophys. J.* **99** 1303–10
[29] Ditchburn R W 1991 *Light* (New York: Dover)
[30] Huffman D R and Bohren C F 2008 *Absorption and Scattering of Light by Small Particles* (New York: Wiley)
[31] Nieminen T A, Loke V L Y, Stilgoe A B, Knöener G, Branczyk A M, Heckenberg N R and Rubinsztein-Dunlop H 2007 Optical tweezers computational toolbox *J. Opt. A: Pure Appl. Opt.* **9** S196–203
[32] Stilgoe A, Nieminen T, Knöener G, Heckenberg N and Rubinsztein-Dunlop H 2008 The effect of Mie resonances on trapping in optical tweezers *Opt. Express* **16** 15039–51
[33] Geraci A A, Papp S B and Kitching J 2010 Short-range force detection using optically cooled levitated microspheres *Phys. Rev. Lett.* **105** 101101
[34] Naik A, Buu O, LaHaye M D, Armour A D, Clerk A A, Blencowe M P and Schwab K C 2006 Cooling a nanomechanical resonator with quantum back-action *Nature* **443** 193–6
[35] Stefyszky M S *et al* 2012 Balanced homodyne detection of optical quantum states at audio-band frequencies and below *Class. Quantum Grav.* **29** 145015