ABSTRACT:

Introduction: Organophosphates are a class of insecticides used globally by the agricultural industry for insect control. Acute consequences of organophosphate exposures are well known, while there has been limited research on their long-term effects.
The objective of this review was to discuss the health effects of chronic organophosphate exposure in farmers.

Methods: Medline, Scopus and Web of Science were searched to find the relevant articles. Articles published only in English and until December 2018 were reviewed. The selected articles were then categorised as neurological (neurobehaviour, neurodevelopmental, neurological signs and symptoms) or non-neurological subheadings.

Results: A total of 53 articles for neurological effects and 17 articles for non-neurological effects were identified. Chronic organophosphates exposure was associated with deficits in the neurobehaviour subsets of attention and short-term memory, increased incidence of neurodegenerative diseases and effects on peripheral nerves and neurodevelopment. However, research to support non-neurological effects such as respiratory symptoms, increased cancer risk, endocrine disruption, cardiac issues, chronic fatigue and infertility was limited.

Conclusion: Chronic organophosphate exposure was found to affect four of the five areas of described neurological effects in the literature. A large proportion of the research in this area was not methodologically strong, therefore few recommendations can be conclusively made. Future research is warranted to investigate the non-neurological effects of chronic exposure to ensure the occupational risks of low-level chronic exposure are clearly communicated to farmers and farm workers.

Keywords:
agricultural, Australia, chemicals, exposure, farm workers, farmers, neurological, organophosphate.

FULL ARTICLE:

Introduction

Agrichemicals are commonly used as a defence against plant and insect pests that reduce production in agricultural industries. These pests can have a significant impact on the yield of crops, pasture and animal production. During 2012–2013, approximately $350 billion was spent on insecticides (the group of agrichemicals targeting insects) by Australian agricultural industries. Pesticide use remains high due to the risks associated with potential loss of production to the cropping industry if farmers did not use insecticides.

Organophosphates are one of the most common and effective insecticides in the agricultural industry. Due to the growing resistance of insects and parasites to other forms of pesticide, the use of organophosphate chemicals remains widespread in the agricultural industry due to their broad spectrum efficacy.

The mode of action of organophosphates is inhibition of the enzyme acetylcholinesterase. Acetylcholinesterase is essential for the regulation of the nervous system within organisms. Organophosphates lead to the eventual death of insects by irreversibly preventing nervous conduction. The human nervous system is affected by organophosphates in a similar manner.

The acute effects of organophosphates are well researched. High-level acute exposure is known to result in the inactivation of acetylcholinesterase, causing unregulated release of acetylcholine. Acute symptoms include blurred vision, lacrimation, salivation, bronchorrhea, pulmonary oedema, nausea, vomiting, diarrhoea, confusion, convulsions, loss of consciousness and respiratory distress.

However, less is known about the chronic health effects of organophosphates and whilst there have been a number of studies examining the chronic effects, few have been conducted using longitudinal studies. The detrimental effect of organophosphates to users was, however, identified as early as 1951. Zuckerman, in a report to the British Minister of Agriculture and Fisheries in that year, recorded that organophosphorus compounds aroused apprehension, and noted that repeated absorption of organophosphate may result in cumulative poisoning.

Most of the available research on organophosphates is focused on the issues of acute poisoning and exposure. However, it is important to understand the chronic health effects specifically for the farmers who have been using those agrichemicals for years without being aware of the health hazards. Therefore, the objective of this narrative review was to examine the literature focusing on chronic health effects – both neurological and non-neurological – of prolonged exposure of organophosphates.

Methods

For this narrative literature review, three databases were used to search for relevant articles focusing on the chronic health effects of prolonged exposure of organophosphates: Medline, Web of Science and Scopus. The following key words were used: ‘organophosph* AND farm* OR agri* AND chronic OR long term AND health’. Inclusion criteria applied for the search were English language and humans, with no limit for dates. The last search was conducted on 6 December 2018. Most of the articles focused on neurological consequences; however, there are some non-neurological studies. Articles were separated into neurological and non-neurological consequences of chronic exposure of organophosphates. Chronic exposure was defined as exposure to organophosphates for 6 months or more in an agricultural setting.

For the neurological effects, the search term ‘AND neuro*’ was added to existing search terms. It produced 61 articles in Medline, 166 articles in Web of Science and 51 articles in Scopus. Results of each of these searches were then manually sorted with the following exclusion criteria:

- follow-up after an acute poisoning event study
- study where there was a generic exposure to chemicals – not organophosphates specifically
- subjects who weren’t exposed to organophosphate in an agricultural setting
- exposure less than 6 months.
When the duplicates were removed and the grey literature and reference lists of the retrieved articles were reviewed, there were 50 articles in total focusing on neurological effects of organophosphate exposure (Table 1).

Neurological consequences were separated into four categories as identified by common themes in this review:

- **neurobehavioural**: of or relating to the relationship between the action of the nervous system and behaviour
- **neurodegenerative**: relating to or marked by degeneration of nervous tissue
- **neurodevelopmental**: relating to development of the nervous system
- **neurological signs and symptoms**: signs and symptoms relating to the nervous system

For the non-neurological consequences, the previous addition was replaced by 'NOT neuro*' and 89 articles were extracted from Medline, 224 from Web of Science and 51 from Scopus. After deduplication and careful filtering, there were 17 articles in total focusing on the chronic non-neurological effects of organophosphate exposure (Tables 2–7). The process of article selection for this review is depicted in Figure 1. The non-neurological category was divided into common themes: respiratory symptoms, increased cancer risk, endocrine disruption, cardiac issues, chronic fatigue and infertility.
Title	First authors	Year	Study design	Method	Health area	No. of subjects	Location	Findings	Limitations	Information
Chronic central nervous system toxicity: organophosphate pesticide intake	L. Rossetto (6)	1991	Retrospective cross-sectional	Neuropsychological testing including reaction time, motor vigilance, attention, visuospatial, and verbal memory tests.	Neurobehavioural	61	Nigeria	Paired group had lower performance than the controls in all tests.	Ability to identify contributions of pesticide exposure and confounders other than those tested.	Medline WOS
Organophosphate side-effects: chronic and acute exposure effects	R. Stephens (12)	1996	Cross-sectional	Neuropsychological battery testing: Subjective memory questionnaire. Simple reaction time, multiple reaction time, attention, vigilance, and abstract reasoning tests.	Neurobehavioural	148	UK	Definition of chronic effects of organophosphate exposure is independent of acute effects. No significant change in performance of organophosphate exposed group.	Absence of immediate negative feedback during exposure is likely to influence measures.	Medline WOS
An Investigation into neurological and neuropsychological effects of long-term agricultural use of dichloro-dichloro-fluoromethane: tall farm workers in the Western Cape, South Africa	L. London (13)	1997	Cross-sectional	Job exposure matrix; Wechsler intelligence battery tests.	Neurobehavioural	247	South Africa	No significant neurological or neuropsychological change was found.	No significant negative feedback was obtained.	Medline WOS
Neurobehavioural function of agricultural workers: exposure to organophosphate pesticide in orchard sprayers in England	R. Stephens (13)	2010	Cross-sectional	Interview, memory tests, Wechsler intelligence battery tests.	Neurobehavioural	94	UK	Stressed neurological function was evident with long-term exposure of organophosphates.	Risk factors and self-reported state showed results. Limited number of subjects, decreasing study power.	Medline WOS
Neurobehavioural performance of farm children: long-term exposure to organophosphate pesticides	D. B. Behnke (14)	2005	Cross-sectional	Neurobehavioural battery test, Wechsler intelligence battery tests, and memory tests.	Neurobehavioural	78	USA	Decrease response latency and memory in agricultural children.	Selection bias: 11 children. Selection bias: Small sample size.	Medline WOS
Organophosphate pesticide exposure and neurobehavioural function in farm children: acute and long-term exposure	J. R. Reith (15)	2006	Cross-sectional	Bavaria neuropsychological test including logic, visual, and auditory attention, verbal and nonverbal memory, reaction time, and memory tests.	Neurobehavioural	151	USA	Correlation between occupant's performance and long-term and acute exposure.	No correlation between occupant's performance and acute exposure.	Medline WOS
Neurobehavioural performance of adults and associated farm workers	D. B. Behnke (15)	2007	Cross-sectional	Bavaria neuropsychological test including logic, visual, and auditory attention, verbal and nonverbal memory, reaction time, and memory tests.	Neurobehavioural	175	USA	Significant effect was found with matched sample performance and long-term and acute exposure.	No significant effect was found with matched sample performance and long-term and acute exposure.	Medline WOS
Neurobehavioural effects of exposure to organophosphate pesticides: occupational and community exposure	N. Haidir (16)	2015	Cross-sectional	Bavaria neuropsychological test including logic, visual, and auditory attention, verbal and nonverbal memory, reaction time, and memory tests.	Neurobehavioural	54	Thailand	No significant difference between control and exposed group.	Significant difference between control and exposed group.	Medline WOS
Cognitive disorders and occupational exposure to organophosphates results from the PHOTONER study	A. Blanco, Laperre (17)	2013	Cohort	COVAX follow-up: Neuropsychological including Mini Mental, Benton Visual Retention Test, Symbol Digit Association and Trails Testing.	Neurobehavioural	814	France	Exposure was associated with lower cognitive performance. No dose-effect relationship found.	Exposure was associated with lower cognitive performance. No dose-effect relationship found.	Medline WOS
Dementia-related potential changes in chronic occupational exposure to organophosphates pesticides	T. Hachisuka (18)	2009	Cross-sectional	Event-related potential study.	Neurobehavioural	73	Sri Lanka	May delay the neurosensory process underlying early stages of neurodegenerative diseases with environmental factors, including cognitive impairment and the risk of dementia.	Technical limitations: only 2 scalp-localization recording. Electrophysiography not recorded; His method of patient selection.	WOS
Neurobehavioural changes in the brain of farm workers	W. S. Kapp (19)	2012	Cross-sectional	Electroencephalogram, sleep studies, psychiatric, blood, and DNA analyses.	Neurobehavioural	90	Iran	Significant neurophysiological and cognitive changes in farm workers.	Small sample size	WOS
Title	Authors	Year	Methodology	Findings	Implications	Notes				
--	---------	------	-------------	---	---	-------				
Electric shock effects on cognitive, neurological disorders, clinical symptoms, and oxidative stress in agricultural health education farmers exposed to organophosphate pesticides	M. Sayet [9]	2012	Cross-sectional	Lipp, perceptual, supersensitivity & psychomotor functions, memory, attention, focusing, auditory ability, tremor, stiffness, muscle weakness, and blood test of each subject	Neuropsychological 88	Ran	Small sample size WOS			
High-pesticide exposure events and certain nervous system function resilience among pesticide applicators in the Agricultural Health Study	W. Field [10]	2013	Cross-sectional	Neuropsychological tests to assess memory, motor speed, sustained attention, verbal learning, and visual scanning and processing information, (in over-exposed and non-exposed pesticide applicators)	Neuropsychological 63	USA	Participation rate was low. More participants required having HYPE, compared to not Antonym of ambition association.			
Neuropsychological effects on organophosphate pesticides: results from a 5-year follow-up of the MONSTER study	L. Bule [11]	2010	Cross-sectional	Neuropsychological quantitative analysis of cognitive, language, and motor skills, scores classified according to pesticide exposure levels, and the severity of exposure was measured using a battery of eight tests	Neuropsychological 61	France	Exposed subjects had the oral effects on specific performance. The role of the pesticide was not significant, in this study.			
Neuropsychological performance and work experience in farm workers	F. Kami [12]	2003	Cross-sectional	Collected information on farm work experience and evaluated neurobehavioral test performance using a battery of eight tests	Neuropsychological 28	USA	Exposed farmers were associated with poor performance in visually guided tasks, spatial error, and visual processing (in this study).			
Neuropsychological effects among workers occupationally exposed to organophosphate pesticides	T. Fondo [13]	2002	Cohort	Two groups those exposed versus those that were not, Questionnaires, general and neuropsychological test batteries, personality assessment and sociopsychological analysis of neuropsychological test results were completed	Neuropsychological 192	Egypt	Exposed participants performed significantly worse on all of the neurobehavioral tests (similarities, digit symbol substitution, and oddball) compared to controls. Serum acetylcholinesterase was significantly reduced in the exposed group but not significantly correlated with neurological abnormalities.			
Neuropsychological effects of long-term exposure to pesticide: results from the Farm Health Project (FHP)	L. Ildab [14]	2011	Cross-sectional	Association between neuropsychological performance and long-term exposure to pesticides.	Neuropsychological 97	France	The risk of scoring a low performance in the tests was constantly higher in exposed subjects.			
Psychomotor and psychiatric functioning in sheep farmers exposed to low levels of organophosphate pesticides	S. Mekkine [15]	2000	Cross-sectional	Detection of low-level exposure to organophosphate pesticides: neuropsychological or psychiatric impairment. Performance of cognition and mood.	Neuropsychological 127	UK	Exposed subjects performed significantly worse than controls. Cognitive defects identified cannot be attributed to mixed disorders, reflecting a history of acute exposure or genetic vulnerability. Neurological involvement may exist between low-level exposure to organophosphate and impaired neurobehavioral functioning.			
Neuropsychological and psychological performance and long-term exposure to organophosphate pesticides	L. Rodina [16]	2010	Cross-sectional	Cross-sectional survey established high-exposure Neutrotoxic effects and long-term exposure to pesticides.	Neuropsychological 40	Spain	No data on the association between long-term exposure and various psychological performance.			
Neuropsychological performance among agricultural pesticide applicators	W. Dariell [17]	1992	Prospective cohort study	Initial evaluation prior to start of a 6 months of sampling, neuropsychological testing, over a period of 1 month after	Neuropsychological 89	USA	Only significant difference was across seasonal neuropsychological testing in the subjects during the summer.			
Effect of organophosphate pesticides on children's cognitive and behavioral functioning	P. Lucardi [18]	2006	Cross-sectional	Battery of cognitive measures, Cognitive Behavioral Testing of Caffeine, Salmonella DNA.	Neuropsychological 48	USA	All children had a detectable level of organophosphate pesticide metabolites. Higher organophosphate pesticide exposure concentrations were significantly correlated with poorer performance in a battery of cognitive measures.			
Neurobehavioral effects of organophosphate pesticides on children's cognitive and behavioral functioning	J. Lapita [19]	2008	Cross-sectional	Battery of cognitive measures, Cognitive Behavioral Testing of Caffeine, DNA.	Neuropsychological 48	USA	All children had a detectable level of organophosphate pesticide metabolites. Higher organophosphate pesticide exposure concentrations were significantly correlated with poorer performance in a battery of cognitive measures.	Labeled number limited, susceptible to bias, not applicable to children. Not being able to deliver a true non-exposed group.		
Effects of organophosphate pesticide exposure on biomarkers of neurochemical and behavioral functioning

P. Lizarraga [29], 2009
Cross-sectional

Baseline of cognitive function: Wessex Card Sorting Test

Neurobehavioral 48 USA

Children had a detectable level of organophosphate metabolite in blood, but no clinical evidence of neurobehavioral dysfunction. Children with higher concentrations of organophosphate metabolites had significantly improved performance in some subjects. However, there was no significant difference in the scores of boys with lower concentrations of organophosphate metabolites.

Linked number of children. Neurochemical battery may not be applicable to children from other regions to define a true non-exposed group.

Neurobehavioral deficits and increased blood pressure in school-age children previously exposed to pesticides

R. Hare [30], 2010
Cross-sectional

Increased blood pressure, as measured in 30-second seated blood pressure readings, was significantly lower in children who had been previously exposed to organophosphate pesticides.

Neurobehavioral 84 Ecuador

Exposure-related deficits were evident in motor coordination, visual-spatial performance, and visual memory. Children with a history of organophosphate exposure had lower systolic blood pressure in the morning and decrease in heart rate.

Did not assess all functions: Speed of sample size.

Increased risk of suicide with exposure to pesticide in an intensive agricultural area

T. Parvin [31], 1995
Retrospective

Suicidal ideation in those different areas

Neuropsychological 251 El Paredon, Panamá

Higher suicide rates in geographically close regions compared to other regions and sociodemographic characteristics. Male residents had a higher suicide rate than females.

Retrospective study. Moderate study. Variables not controlled.

Neuropsychological effects of long-term exposure to organophosphate pesticides

R. Srivastav [32], 1995
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 209 UK

Significantly worse performance in farmers' group in several attention and information processing tasks. Occasional rate of suicide was significantly higher in farmers with high exposure to organophosphate pesticides.

Moderate sample size. Self-reporting bias.

Long-term use of organophosphates and neuropsychological performance

N. Talal [33], 1997
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 99 New Jersey

Significantly slower reaction time in farmers with prolonged exposure.

Selection bias. Self-reporting bias. Moderate sample size. Recalling bias.

Pesticide exposure and depressive symptoms among farm residents

L. Wallasey [34], 2002
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 761 USA

Lower reported depressive symptoms with pesticides exposure, although not significant.

Self-reporting bias. Selection bias.

A clinical neuropsychological assessment of farmers exposed to organophosphate and neonicotinoid pesticides

N. Uher [35], 2002
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 79 UK

No significant differences in exposure to organophosphate and neonicotinoid pesticides between farmers exposed to pesticides and farmers not exposed. Neuropsychological tests showed no significant differences.

Small sample size. Limited power. Reporting bias.

Mental health in Alberta grain farmers using pesticides over many years

N. Ohe [36], 2012
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 107 Alberta

Mental stress symptoms were related to duration of exposure to phencyclidine.

Self-reporting bias. Selection bias.

Cognitive and psychiatric impairments in farm workers exposed to organophosphate and neonicotinoid pesticides: a case-control study

P. Edmonds [37], 1999
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 540 USA

Use of antidepressants was significantly associated with organophosphate and neonicotinoid exposure. Use of antidepressants was not significantly associated with organophosphate exposure.

Detection bias. Misclassified exposure.

Depression and pesticide exposure among private pesticide applicators in the Agricultural Health Study

D. Berrier [38], 2008
Cross-sectional

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 17 085 USA

Pesticide poisoning was associated with depression compared to farmers without depression exposure.

Classification of exposure events. Self-reporting bias. Confounding bias.

Depression and pesticide exposure in a female offspring of licensed pesticide applicators in the Agricultural Health Study

C. Sawyer [39], 2009
Case-control

Neuropsychological tests: Reaction time, memory, attention, and executive function.

Neuropsychological 29 072 USA

Significantly associated with pesticide poisoning but not with cumulative pesticide exposure.

Case-control study. Self-reported information.
Study Title	Authors	Year	Country	Exposure Details	Outcome	Methodology	Setting	Source	Risk Estimate	Comments
Depression and psychological exposure to tetracycline in workers in a crop production area	Scoble, J.	1997	USA	Tetracycline exposure	Depression	Cross-sectional study	Agricultural area	USA	Increased risk of depression	Self-reporting bias, moderately large sample size
Cancer of the liver and cirrhosis in workers exposed to tetrachlorvinphos	Scoble, J.	1996	USA	Tetrachlorvinphos exposure	Cancer	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Neurological symptoms in workers exposed to tetrachlorvinphos	Scoble, J.	1996	USA	Tetrachlorvinphos exposure	Neurological symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
A study of psychiatric symptoms on exposure to organophosphates pesticides in the children of agricultural workers	Scoble, J.	1996	USA	Organophosphates exposure	Psychiatric symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Effects of long-term organophosphate exposure on neurological symptoms in occupationally exposed workers	Scoble, J.	1996	USA	Organophosphates exposure	Neurological symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
An epidemiological study of the relationship between exposure to organophosphates pesticides and symptoms of dermatitis in agricultural workers	Scoble, J.	1996	USA	Organophosphates exposure	Dermatitis symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Depression and psychological exposure to tetracycline in workers in a crop production area	Scoble, J.	1997	USA	Tetracycline exposure	Depression	Cross-sectional study	Agricultural area	USA	Increased risk of depression	Self-reporting bias, moderately large sample size
Cancer of the liver and cirrhosis in workers exposed to tetrachlorvinphos	Scoble, J.	1996	USA	Tetrachlorvinphos exposure	Cancer	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Neurological symptoms in workers exposed to tetrachlorvinphos	Scoble, J.	1996	USA	Tetrachlorvinphos exposure	Neurological symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
A study of psychiatric symptoms on exposure to organophosphates pesticides in the children of agricultural workers	Scoble, J.	1996	USA	Organophosphates exposure	Psychiatric symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Effects of long-term organophosphate exposure on neurological symptoms in occupationally exposed workers	Scoble, J.	1996	USA	Organophosphates exposure	Neurological symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
An epidemiological study of the relationship between exposure to organophosphates pesticides and symptoms of dermatitis in agricultural workers	Scoble, J.	1996	USA	Organophosphates exposure	Dermatitis symptoms	Cross-sectional study	Agricultural area	USA	Increased risk	Self-reporting bias, moderately large sample size
Prevalent nervous system function and organophosphate pesticide poisonings among farm workers: prevalence and clinical applications in the Agricultural Health Study
ML. Stiles [52]
2012 Cohort Neurophysiological and physical assessments
Epidemiological and occupational health studies
Neurophysiological
678 Iowa and North Carolina, USA
Significantly increased odds of symptoms and signs of polyneuropathy associated with occupational exposure to organophosphate pesticides with or even more than one neurochemical exam finding for organophosphates associated with the paraoxonase 1 (PON1) 192 Q polymorphism
Self-reporting bias Evaluation methods: cross sectional
Exposure to pesticide Medline

An uncommon symptom of polyneuropathy induced by lifetime exposure to drift-contaminating organophosphate pesticides
A. Ophir [50]
2014 Cohort Quantitative surveys about self-reported exposure Neurophysiological and occupational health studies
Neurophysiological
69 Israel
Organophosphorus pesticides use significantly correlated to polyelectrolyte digital latency in right median nerve and lower nerve amplitude in right sural nerve
Small sample size Self-reported exposure to insecticide Medline

 Delayed polyneuropathy in farm workers due to chronic exposure to organophosphate pesticide
R. Logist [14]
2014 Cohort Geographical and neurological examination
Neurophysiological and occupational health studies
Neurophysiological
290 Iraq
Ophthalmological complications 45% Significant difference in mean latency of oculomotor muscle action potential amplitude and severe reduction in sural sensory nerve action potential amplitude: peak latency and nerve conduction velocity
Accidental exposure to pesticide Moderate sample size Medline

Effect of chronic pesticide poisoning on peripheral nerve function in a rural village of a Micronesian community
R. Payah Pischaló [23]
2012 Transverse cross-sectional Blood tests with blood count and clinical tests
Electrophysiological and clinical examinations
Neurophysiological
46 USA
Pesticide exposure and levels of nerve conduction velocity, motor nerve conduction velocity
Not longitudinal study: cross sectional study design WOS

Effects of occupational exposure to organophosphate pesticides on muscle performance and neuromuscular function
B.J. Prem-John [56]
2002 Cross-sectional Comparison between two groups in relation to neurological symptoms and electromyograph findings
Neurophysiological
63 Sri Lanka
Decreased sensory conduction velocity and motor conduction velocity between subgroups of individuals with or without sensory symptoms
Small sample size Cross sectional study design WOS

Evaluation of potential adverse health effects resulting from chronic domestic exposure to the organophosphate insecticide methyl parathion
W.G. Eno [57]
2005 Cross-sectional Health screening evaluations
Neurophysiological
283 USA
Significantly increased difference between symptoms reported by the physician and symptoms reported by the patient or the physician's assessment of subacute or chronic toxicity between those in the exposed group and controls
No significant difference found in growth and development screening evaluations
Recall bias WOS

Long and short-term health effects of pesticide exposure: a cohort study from China
R. Hu [58]
2015 Cohort Two rounds of health investigations including blood tests and neurological examinations conducted by doctors before crop season
Neurophysiological
248 China
Long-term exposure found to be associated with increased frequency of neurological symptoms especially sensory symptoms
Recall bias Not a longitudinal study WOS

BioAs, Behavioral Assessment and Research System, DiP, Salky phosphate, HPEE, high pesticide exposure event, MMS, mixed mental state examination, TCP, 1, 5, 6-keto-PGF1α, WOS, Web of Science.
Table 2: Literature review of respiratory studies

Title	First author [year]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)		
Chronic exposure to chlorinated-iodinating persistent andf adversely affect respiratory health of agricultural workers in India	S. Charanakar [68]	2015	Cross-sectional	Questionnaire on respiratory symptoms and lung function tests and sputum/bronchial wash assessment	744 India	Agricultural workers had greater prevalence of upper and lower respiratory symptoms and appreciable reduction in spirometric values. Long function test was reduced to 45.3%	Delmal absorption not considered as no personal protective equipment used	Medline WOS			
Decreased lung function in 7-year-old children with previous diphosphonate exposure	R. Raman [69]	2016	Cross-sectional	CHIMICOS longitudinal birth cohort	700 USA	Diphosphonate exposure measured by urine metabolites (DAP) (n=109 at 7 years)	Lungs to follow-up and challenges in exposure assessment Long-term biomarkers	Medline WOS			
Association of chronic pesticide exposure with serum cholesterol levels and respiratory function in Costa Rica	Z. Sabato [66]	2011	Cross-sectional	Questionnaire to estimate exposure and presence of respiratory symptoms	50 Costa Rica	Serum cholesterol levels and the pulmonary function test	No difference between farmers with low cholesterol levels and low function test	Small sample size Cross-sectional study design	Medline WOS		
Pesticides and adult respiratory outcomes in the Agricultural Health Study	J. Happen [67]	2006	Cross-sectional	Looking at respiratory outcomes including wheeze, asthma, and chronic bronchitis	69,000 USA	Serum cholesterol levels and the pulmonary function test	Strong association between organophosphates and wheeze	Limited to those who enrolled in the questionnaire	Medline WOS		
Chlorpyrifos exposure and respiratory health among adult agricultural workers	C. Calleja [84]	2014	Cross-sectional	10-year study on adult agricultural workers	62 Egypt	Inconsistent results with spirometry	No baseline assessment	No baseline assessment	Small sample size No controls	Scoop WOS	
Biomarkers of pesticide exposure in children, a National Health and Nutrition Examination Survey (NHANES) 1999–2006 analysis	M. Petla [60]	2014	Cross-sectional	Used National Health and Nutrition Examination Survey (NHANES) 1999–2006 analysis	2777 USA	No association found between DAP and asthma	Cross-sectional analysis of the data self-reported residuals outliers	WOS			
Low level of exposure to pesticides leading to lung function in occupationally exposed subjects	A. Fernandez [69]	2010	Cross-sectional	Questionnaire on pesticide exposure and symptoms	114 Spain	Reduced forced expiratory volume in 1 second (FEV1) and forced expiratory flow (FEF25-75%) Long-term outcome Noel suggestive of restrictive lung disease	USE OF BIOMARKERS	WOS			
Urinary diphosphonate concentrations and lung function parameters in adolescents and adults: results from the Canadian Health Measures Survey	M. Ye [67]	2010	Cross-sectional	Lung function tests and urinary DAP was measured, smoking status and other predictors of lung function	4446 Canada	Reduced forced expiratory flow, forced expiratory volume in one second, and forced expiratory flow 25-75% with every unit of DAP metabolites found in children No associations found in adolescents	Not the entire Canadian population was included	WOS			

DAP: diphosphonate; **WOS**: Web of Science.

Table 3: Literature review of cancer studies

Title	First author [year]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)	
Association of pesticides, HCV, HBV, and helicobacter caroniore in Egypt	S. Edou [66]	2005	Case-control	Questionnaire Blood and hepatitis virus testing	238 Egypt	Exposure to organophosphates and caroniore is additive risk factors to hepatitis B infection among rural	Small sample size Limited power	Medline WOS		
Exploring cancer development in adulthood chlorinated exposure depression and genotoxic effect from chronic exposure to organophosphates pesticides among rural farm children	V. Hov [66]	2014	Cross-sectional	Identify possible associations between the depression in blood cholinesterase level and genotoxic effect among farm children	95 Malaysia	Reduced blood cholinesterase level from organophosphates pesticide exposure is significantly associated with an increase in chromosome breakage and DNA strand breaks Geometrically and pictorially suggest that farm children cells experience early DNA damage that may lead to uncontrolled cell growth and increasing their childhood	Small sample size Limited power	Medline WOS		
Lymphoma risk and occupational exposure to pesticides: results of the Elymph study	P. Cocco [70]	2013	Cross-sectional	Detailed occupational history collected in cases and controls and job titles applied for farm work	2090 Europe	Risk of lymphpoma in the study was not elevated Risk of chronic lymphocytic leukemia was elevated amongst those ever exposed to organophosphates and organic pesticides	Caution in interpreting results of this study	Medline WOS		

WOS: Web of Science.
Table 4: Endocrine study in the literature review

Title	First author [full reference]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)
Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1991–2003	W.R. Montgomery [71]	2008	Cohort	Agricultural Health Study comparing diabetes in the study against non and lifetime exposure to pesticides	33.457	USA	Self-reported diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1991–2003	Self-reported diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1991–2003	Medline, Scopus, WOS

Table 5: Cardiac study in the literature review

Title	First author [full reference]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)
Peptide and melanoide plasmid, incidence and mortality effects of pesticide exposure in a UK farm laborers’ scheme	W.R. Mills [72]	2009	Cohort	Agricultural Health Study, 1991–2004	32.624	USA	Self-reported incidence and mortality effects of pesticide exposure in a UK farm laborers’ scheme	Self-reported incidence and mortality effects of pesticide exposure in a UK farm laborers’ scheme	Medline, WOS

Table 6: Chronic fatigue study in the literature review

Title	First author [full reference]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)
Chronic fatigue and organophosphate pesticides in a retired group of farm workmates	W.R. Taylor [73]	2009	Retrospective case-control cohort	Two questionnaires	178	UK	Self-reported incidence and mortality effects of pesticide exposure in a UK farm laborers’ scheme	Self-reported incidence and mortality effects of pesticide exposure in a UK farm laborers’ scheme	Medline, WOS

Table 7: Literature review of fertility studies

Title	First author [full reference]	Year	Study design	Method	No. of subjects	Location	Findings	Limitations	Database(s)
Occupational exposure to organophosphate and carbamate pesticides affect sperms' viability and reproductive hormone levels among Venezuelan farm workers	L. Meanderi-Cortes [74]	2013	Cross-sectional	Recruited for clinical evaluation of fertility status	99	Venezuela	Self-reported occupational exposure to organophosphate and carbamate pesticides affect sperms' viability and reproductive hormone levels among Venezuelan farm workers	Self-reported occupational exposure to organophosphate and carbamate pesticides affect sperms' viability and reproductive hormone levels among Venezuelan farm workers	Medline, WOS
Changes in male hormone profile after occupational organophosphate exposure: a longitudinal study	C. Aguilar-Garibay [75]	2013	Cross-sectional	Effect of organophosphate measured by urine metabolitesc during and agricultural period with different degrees of pesticide use	136	Mexico	Self-reported occupational exposure to organophosphate and carbamate pesticides affect sperms' viability and reproductive hormone levels among Venezuelan farm workers	Self-reported occupational exposure to organophosphate and carbamate pesticides affect sperms' viability and reproductive hormone levels among Venezuelan farm workers	Medline, WOS

FSH, follicle-stimulating hormone; LH, luteinizing hormone; TSH, thyroid-stimulating hormone.
Results

Neurological changes were the most studied chronic health effects of prolonged exposure to organophosphates. The research was focused on neurobehavioural, neurodegenerative, neurodevelopment and neurological signs and symptoms. The majority of these studies were conducted in the USA and UK, with contributions from South Africa, Mexico, Spain, Thailand, Taiwan and Ecuador.

Neurobehavioural effects

The associations between chronic organophosphate use and neurobehavioural symptoms have been researched in 31 studies. Eight of these articles reported a deficit on neurobehavioural batteries (a group of tests performed together for assessment purposes) when there was previous exposure to pesticides. Deficits were found in short-term memory components, with participants scoring significantly lower on the Digit Span (forward and reverse recall of digit sequences) and Match-to-Sample tests (matching to previously demonstrated stimuli). Three studies did not find a significant effect on neurobehaviour with prolonged organophosphate exposure. One study from South Africa showed a slight effect but was explained to most likely be the result of misclassification of exposure. Another study from Iran found no neurobehavioural deficits. The third study, with children from agricultural backgrounds in Thailand, showed no neurobehavioural deficits. However, a negative effect on work performance, although not significant, was demonstrated at times.

Ten articles analysed the vulnerability to psychological conditions with chronic exposure to organophosphates, particularly referring to the general health questionnaire. Two of the 10 studies noted an association with organophosphate exposure in farmers. The remainder did not find a significant relationship. One study demonstrated a lower percentage of depressive symptoms amongst farm residents (20.6%) in Colorado, USA, compared to the general population (34%). This was more likely to be related to the healthy worker effect, as the farm population might be healthier due to their nature of work compared to the general population in that study. The relationship of organophosphate pesticide chronic exposure with suicide was also examined. One study demonstrated a lower percentage of depressive symptoms amongst farm residents (20.6%) in Colorado, USA, compared to the general population (34%). This was more likely to be related to the healthy worker effect, as the farm population might be healthier due to their nature of work compared to the general population in that study. The relationship of organophosphate pesticide chronic exposure with suicide was also examined. This study reported no significant association between organophosphate exposure and suicide.

Vulnerability to specific psychological conditions as a result of chronic exposure is not supported. Further, a 1996 Spanish study on agricultural workers reported that suicides in the farming populations were not caused by chronic exposure to organophosphate, rather it was the result of accessibility to this substance and decreased knowledge of the lethality. This result is consistent within the Australian population, with MacFarlane et al demonstrating in their study a non-significant relationship between exposure and suicide. Nine out of 10 articles reviewed were cross-sectional designs, thus stronger studies need to be conducted to support this theory.

Overall, short-term memory and attention were noted to have a significant difference for those who were chronically exposed to
organophosphate. The levels of evidence according to the National Health and Medical Research Council (NHMRC) of the 21 articles reviewed in terms of short-term memory and attention were NHMRC III-2 and IV. This was because they had a cohort or cross-sectional structure (Table 1). The number of subjects ranged from 48 to 917, which reduces the power of some of the individual studies. Compared to the other sections in this review, the section on neurobehavioural effects of organophosphates has the strongest evidentiary support. However, bias does come into effect as these do not account for educational and cultural backgrounds.

Neurodegenerative diseases

In relation to neurodegenerative diseases, three articles were identified. The two disorders described were Alzheimer’s disease and Parkinson’s disease. Two of the articles related to Alzheimer’s disease and both of them showed a positive association between chronic exposure to organophosphates and Alzheimer’s disease. Zaganas et al described a possible theory for the causal relationship: that excess synaptic acetylcholine leads to chronic excitation of the post-synaptic neurons, which causes excitotoxic damage and degeneration of the cholinergic system.

Chronic exposure of organophosphate has been linked to Parkinson’s disease. One study investigated the relationship between Parkinson’s disease and chronic exposure and found a positive relationship that was not significant (odds ratio (OR) 1.56, 95% confidence interval (CI) 0.95–2.58). The same article concluded that being acutely poisoned was a more significant indicator for likely development of Parkinson’s disease.

Short-term memory problems have previously been shown to be associated with chronic exposure to organophosphates. This may explain the increased incidence of Alzheimer’s disease in the population, as this disease initially affects short-term memory. The level of evidence of the two articles reviewed was NHMRC IV, which does not provide strength to the theory.

Overall, compared to the Alzheimer’s disease articles, the Parkinson’s disease article had a clearer design structure and higher number of subjects, making it a powerful study.

Neurodevelopmental diseases

Neurodevelopmental effects from chronic exposure to organophosphate were found in three of four articles. Three articles described an effect on neurodevelopment when exposed to organophosphates in the prenatal period. The effects were on both neurobehaviour and IQ, with one study showing a seven-point decrease in IQ at the age of 7 years when there was a prenatal chronic organophosphate exposure. Another study looked at effects of exposure in the post-natal stage and found neurodevelopment of boys in the group was significantly reduced, by two standard deviations. An article by Fortenberry et al described a relationship between prenatal exposure to organophosphates and the development of attention deficit hyperactivity disorder. The authors found no association but concluded that more research was needed in that area because the study had limited power.

Overall, chronically inhibiting the acetylcholinesterase during the prenatal period has been shown to affect nervous system development. The strength of this conclusion was mostly supported by cohort designs, with three of the four studies being of NHMRC level III-2 (Table 1).

Neurological effects

Fourteen articles described neurological symptoms related to chronic exposure of organophosphate pesticides. Seven studies looked into neurological findings from physical examinations. A study with a focus on sheep farmers exposed to organophosphates in the UK reported a significant difference (p=0.011) between the most symptomatic farmers, least symptomatic (asymptomatic) farmers and quarry workers (non-farmers) with two-point discrimination (the distance required to determine that two points are separate when pressed on the skin) highest in the symptomatic farmers. Another UK study found the intensity of the concentrate of organophosphate as the significant factor (p=0.005) involved in the development of neurological symptoms, which was independent of the duration of exposure. A study in the USA found toe proprioception (detection of toe movement with eyes closed) to be significantly different between controls and farmers exposed to organophosphate. A South African study found no association between organophosphate pesticide use and neurological deficit in relation to vibration sense or tremor.

Some articles reported results of nerve conduction studies performed to assess chronic effects of exposure. Five studies examined this in different areas of the body. Four of these studies showed significant differences in nerve conduction results between farmers and controls. These studies demonstrated the difference in distal latencies and wave amplitude of peripheral nerves.

Neurological symptoms were detailed in four studies. Each of these studies reported that people applying organophosphates were more likely to report neurological symptoms in comparison to controls. These symptoms included dizziness, sleepiness, watering eyes, altered sensation and headache. In one study, organophosphate-induced neurotoxicity was detailed, with described symptoms including insomnia, headache, anorexia and numbness.

In the abovementioned studies, chronic organophosphate exposure had some effect on the peripheral nervous system but the symptoms, signs and nerve conduction studies revealed inconsistent results. The level of evidence presented for the 14 articles reviewed were weak in their design as they were mostly cross-sectional studies (Table 1). Further investigations need to be conducted to understand a consistent pattern to chronic health effects of organophosphate pesticides.

Non-neurological effects

Studies involving farmers focusing on the non-neurological health
effects of exposure to organophosphates reported on respiratory symptoms, cancer risk, endocrine disruption, cardiac issues, chronic fatigue and infertility.

Respiratory conditions were detailed in nine articles. Six of these articles reported significant associations between respiratory conditions and organophosphate exposure. Findings included symptoms such as wheeze and a decrease in lung function. The three remaining articles reported inconsistency, indicating no correlation between prolonged exposure and asthma prevalence or spirometry changes.

Three articles in the databases evaluated cancer risk associated with chronic organophosphate use. All of them found positive associations. How et al. reported that reduced blood cholinesterase levels from exposure to organophosphate pesticides was significantly associated \(p < 0.05 \) with an increase in chromosome breakage. This has been linked to increased susceptibility of a person to develop cancer. Another article reported an increased risk of chronic lymphoid leukaemia (OR 2.7, 95%CI 1.2–6.0).

One article reviewed the effects on the endocrine system in relation to diabetes prevalence. It reported a positive association between chronic exposure to organophosphate pesticides and prevalence of diabetes (OR 1.24, 95%CI 1.02–1.52).

One article looked into the incidence of myocardial infarction with exposure of organophosphate pesticides. There was no significant evidence to show a relationship and no dose–response effect of organophosphates in relation to morbidity and fatality of myocardial infarct amongst farmers.

There was only one article relating to chronic fatigue met the criteria outlined in the methods. This article showed a high prevalence of chronic fatigue and organophosphate exposure amongst those who were exposed to organophosphates, but that finding was not strong due to the nature of the research conducted.

Lastly, fertility was investigated in this review. Two studies showed a significant effect on this system. One article demonstrated a significant decrease in the semen parameters, with decreased sperm concentration \(p = 0.002 \) and vitality \(p < 0.0001 \). Both articles highlighted an increase in follicle-stimulating hormones and luteinising hormones. Neither study investigated effects on female fertility.

Discussion

The non-neurological health concerns of long-term organophosphate exposure were limited and involved predominantly NHMRC level IV except for the cardiac and endocrine articles, which were cohort studies. Possible areas of concern are respiratory, cancer, endocrine, chronic fatigue and fertility, but further investigations need to be conducted to determine if there is a significant effect due to chronic organophosphate exposure.

Methodological critique of articles reviewed

Summaries of each article, including their limitations, are shown in Tables 1–7. Of the 70 articles reviewed, 73% of articles were designed as cross-sectional studies. This is a weak research design being a level IV NHMRC level of evidence. One study by Fortenberry et al. was a progressive study that tracked the progression of results. This is a stronger research design as it excludes the influence of associating a casual relation from retrospective studies.

For the cross-sectional studies reviewed, the majority of the articles included less than 500 subjects, which means a study has minimal power. Six studies included more than 10,000 subjects, which enabled a good representation of study participants, including both farming populations and their controls, and increased the validity of the results.

There were two documented methods, in the articles reviewed, to define organophosphate exposure: self-reporting and by geographical location/occupation. However, these methods allowed for reporting bias. Some articles also used questionnaires to report symptoms, increasing the bias of these studies.

Furthermore, studies did not consistently represent one country, causing inconsistencies with environment and regulations of pesticides. Most represented among the studies were the UK and USA, providing a consistent environment across these studies.

However, more research is required for other countries including Australia especially as they have a large farming population.

Overall, the conclusions drawn from this literature review were not well supported – the majority of the studies had weak designs, limited power and confounders.

Applicability to Australia

Organophosphates are widely used in Australian agricultural settings and production methods. Some changes to use and restrictions have occurred over the last decade through the regulatory agency the Australian Pesticide and Veterinary Medicines Authority. For example, a regulatory decision in December 2016 means a ban on the use of omethoate products in the garden at home, on food-producing plants, horticultural crops, pastures, grain legumes or cereals.

Whilst no research from Australia fitted the present review’s selection criteria, there are still lessons to be taken from this research:

- Organophosphates may result in acute poisoning but have an accumulated exposure effect on human health.
- Chronic exposure to organophosphates appears to particularly affect the neurological system in particular cases.
- Handling organophosphates requires education and appropriate protective equipment to both prevent acute poisoning and reduce the risks associated with chronic accumulated exposure effects.

Limitations

There were two documented methods, in the articles reviewed, to define organophosphate exposure: self-reporting and by geographical location/occupation. However, these methods allowed for reporting bias. Some articles also used questionnaires to report symptoms, increasing the bias of these studies.

Discussion

The non-neurological health concerns of long-term organophosphate exposure were limited and involved predominantly NHMRC level IV except for the cardiac and endocrine articles, which were cohort studies. Possible areas of concern are respiratory, cancer, endocrine, chronic fatigue and fertility, but further investigations need to be conducted to determine if there is a significant effect due to chronic organophosphate exposure.
The aforementioned findings are restricted by limitations of a standardised method of testing of organophosphate exposure and the methods of data collection. Only the agricultural population was investigated for this review. Therefore, other areas of population exposure to organophosphate such as fly spray, human head lice treatment, public health, vector control programs and other insect sprays were not included.

Conclusion

This literature review appraised relevant articles concerning the chronic health effects of organophosphate exposure between 1991 and 2016. Internationally, studies have suggested that chronic use of organophosphate affects neurobehaviour, neurodegeneration, neurodevelopment and the peripheral nervous system. Unfortunately, the methodological design of majority of the studies in this review were poor, therefore providing limited support for the results that were reported. Further research should be focused on early identification of an individual’s risk of organophosphate exposure and early detection of symptoms.

Global agricultural production continues to use organophosphate pesticides due to both increasing resistance of pests and the increased production pressures to feed and clothe growing populations. The use of organophosphates in Australia continues due to their efficiency as an insecticide in broadacre cropping, horticulture and livestock operations. Whilst restrictions for use have increased for this chemical group, organophosphates are unlikely to be discontinued in the short term. Understanding the consequences of prolonged exposure and establishing safety measures to prevent harm is critical to balance the demands of agricultural productivity with human health.

REFERENCES:

1 Australian Pesticides and Veterinary Medicines Authority. Final pesticide and veterinary medicines product sales 12-13 financial year. Kingston, ACT. Commonwealth of Australia Gazette 2014.

2 Suratman S, Edwards JW, Babina K. Organophosphate pesticides exposure among farmworkers: pathways and risk of adverse health effects. Reviews on Environmental Health 2015; 30(1): 65-79.

3 El-Zaemey S, Heyworth J, Fritschi L. Noticing pesticide spray drift from agricultural pesticide application areas and breast cancer: a case-control study. Australian and New Zealand Journal of Public Health 2013; 37(6): 547-555. https://doi.org/10.1111 /1753-6405.12111 PMid:24892153

4 Jaga K, Dharmani C. Sources of exposure to and public health implications of organophosphate pesticides. Revista Panamericana de Salud Pública 2003; 14(3): 171-185. https://doi.org/10.1590 /S1020-49892003000800004 PMid:14653904

5 English K, Jagals P, Ware RS, Wylie C, Sly PD. Unintentional insecticide poisoning by age: an analysis of Queensland Poisons Information Centre calls. Australian and New Zealand Journal of Public Health 2016; 40(5): 457-461. https://doi.org/10.1111 /1753-6405.12551 PMid:27524790

6 Cotton J, Lewandowski P, Brumby S. Cholinesterase Research Outreach Project (CROP): measuring cholinesterase activity and pesticide use in an agricultural community. BMC Public Health 2015; 15(1): 1-6. https://doi.org/10.1186/s12889-015-0276-8 PMid:26243006

7 Zuckerman S, Bartlett AH, Galley RAE, Gimingham CT, Holness A, Davies WM, et al. Minister of Agriculture and Fisheries of the Working Party on Precautionary Measures Against Toxic Chemicals Used in Agriculture. London: His Majesty’s Stationery Office, 1951.

8 Merriam-Webster. Medical terms and abbreviations. Springfield, MA: Merriam-Webster, 2017.

9 Rosenstock L, Keifer M, Daniell WE, McConnell R, Claypoole K. Chronic central nervous system effects of acute organophosphate pesticide intoxication. The Lancet 1991; 338(8761): 223-227.

10 Stephens R, Spurgeon A, Berry H. Organophosphates; the relationship between chronic and acute exposure effects. Neurotoxicology and Teratology 1996; 18(4): 449-453. https://doi.org/10.1016/0892-0362(96)00028-1

11 London L, Myers JE, Nell V, Taylor T, Thompson ML. An investigation into neurologic and neurobehavioral effects of long-term agrichemical use among deciduous fruit farm workers in the Western Cape, South Africa. Environmental Research (New York) 1997; 73(1/2): 132-145. https://doi.org/10.1006/enrs.1997.3715 PMid:9311539

12 Stephens R, Sreenivasan B. Neuropsychological effects of long-term low-level organophosphate exposure in orchard sprayers in England. Archives of Environmental Health 2004; 59(11): 556-574. https://doi.org/10.1080/00039890409603435 PMid:16599004

13 Rohlman DS, Arcury TA, Quandt SA, Lasarev M, Rothlein J, Travers R, et al. Neurobehavioral performance in preschool children from agricultural and non-agricultural communities in Oregon and North Carolina. Neurotoxicology 2005; 26: 589-598. https://doi.org/10.1016/j.neuro.2004.12.002 PMid:16112324

14 Rothlein J, Rohlman D, Lasarev M, Phillips J, Muniz J, McCauley L. Organophosphate pesticide exposure and neurobehavioral performance in agricultural and nonagricultural Hispanic workers. Environmental Health Perspectives 2006; 114(5): 691-696. https://doi.org/10.1289/ehp.8182 PMid:16675422

15 Rohlman DS, Lasarev M, Anger WK, Scherer J, Stupfel J, McCauley L. Neurobehavioral performance of adult and adolescent agricultural workers. Neurotoxicology 2007; 28: 374-380. https://doi.org/10.1016/j.neuro.2006.10.006 PMid:17141876

16 Fiedler N, Ohman Strickland P, Robson MG, Rohitrattana J, Siriwong W, Suttiwan P, et al. Neurobehavioral effects of exposure to organophosphates and pyrethroid pesticides among Thai children. Neurotoxicology 2015; 48: 90-99. https://doi.org/10.1016/j.neuro.2015.02.003 PMid:25721160
Neuropsychological effects of long-term exposure to organophosphate pesticides. Roldán-Tapia L, Parrón T, Sánchez-Santed F. 2011. https://doi.org/10.1093/aje/kws346 PMid:23535900

Dassanyake T, Gwararamman B, Weerasinge V, Dissanayake PS, Pragaash S, Dawson A, et al. Auditory event-related potential changes in chronic occupational exposure to organophosphorus pesticides. Clinical Neuropsychology 2009; 120:1693-1698. https://doi.org/10.1016/j.clinchph.2009.07.034 PMid:19683468

Bayrami M, Hashemi T, Malekiaa AA, Ashayeri H, Faraji F, Abdollahi M. Electroencephalogram, cognitive state, psychological disorders, clinical symptom, and oxidative stress in horticulture farmers exposed to organophosphate pesticides. Toxicology & Industrial Health 2012; 28(1): 90-96. https://doi.org/10.1177/0748233711407243 PMid:21632574

Starks S, Gerr F, Kamel F, Lynch C, Alavanja M, Sandler D, et al. High pesticide exposure events and central nervous system function among pesticide applicators in the Agricultural Health Study. International Archives of Occupational & Environmental Health 2012; 85(5): 505-515. https://doi.org/10.1007/s00420-011-0694-8 PMid:21927986

Baldi I, Gruber A, Rondeau V, Lebailly P, Brochard P, Fabrigoule C. Neurobehavioral effects of long-term exposure to pesticides: results from the 4-year follow-up of the PHYTONER study. Occupational & Environmental Medicine 2011; 68(2): 108-115. https://doi.org/10.1016/s0960-7770(14)60827-7

Kamel F, Rowland AS, Park LP, Anger WK, Baird DD, Gladen BC, et al. Neurobehavioral performance and work experience in Florida farmworkers. Environmental Health Perspectives 2003; 111(14): 1765-1772. https://doi.org/10.1289/ehp.6341 PMid:14594629

Farahat TM, Abdelrasoul GM, Amr MM, Shebl MM, Farahat FM, Anger WK. Neurobehavioural effects among workers occupationally exposed to organophosphorous pesticides. Occupational & Environmental Medicine 2003; 60(4): 279-286. https://doi.org/10.1136/oem.60.4.279 PMid:12660376

Baldi I, Filleul L, Mohammed-Brahim B, Fabrigoule C, Dartigues J-F, Schwall S, et al. Neuropsychologic effects of long-term exposure to pesticides: results from the French PHYTONER study. Environmental Health Perspectives 2001; 109(8): 839-844. https://doi.org/10.1289/ehp.01109839 PMid:11564621

Mackenzie Ross SJ. Neuropsychological and psychiatric functioning in sheep farmers exposed to low levels of organophosphate pesticides. London: University College London, 2011.

Roldán-Tapia L, Parrón T, Sánchez-Santed F. Neuropsychological effects of long-term exposure to organophosphate pesticides. Neurotoxicology and Teratology 2005; 27: 259-266. https://doi.org/10.1016/j.ntt.2004.12.002 PMid:15734277

Daniell W, Barnhart S, Demers P, Costa LG, Eaton DL, Miller M, et al. Neuropsychological performance among agricultural pesticide applicators. Environmental Research 1992; 59(1): 217-228. https://doi.org/10.1016/s0013-9351(05)80241-5

Lizarralde PS, O’Rourke MK, Morris RJ. The effects of organophosphate pesticide exposure on Hispanic children’s cognitive and behavioral functioning. Journal of Pediatric Psychology 2008; 33(1): 91-101. https://doi.org/10.1093/jpepsy/jsm047 PMid:17569709

Harari R, Julves J, Katsuyuki M, Barr D, Bellinger DC, Debes F, et al. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides. Environmental Health Perspectives 2010; 118(6): 890-896. https://doi.org/10.1289/ehp.0901582 PMid:20185383

Parrón T, Hernández AF, Villanueva E. Increased risk of suicide with exposure to pesticides in an intensive agricultural area. A 12-year retrospective study. Forensic Science International 1996; 79(1): 53-63. https://doi.org/10.1016/0379-0738(96)01895-6

Stephens R, Spurgeon A. Neuropsychological effects of long-term exposure to organophosphates in sheep dip. Lancet 1995; 345(8958): 1135. https://doi.org/10.1016/S0140-6736(95)90976-1

Fiedler N, Kipen H, Kelly-McNeil K, Fenske R. Long-term use of organophosphates and neuropsychological performance. American Journal of Industrial Medicine 1997; 32(5): 487-496. https://doi.org/10.1002/(SICI)1097-0274(199711)32:5<487::AID-AJIM8>3.0.CO;2-P

Stallones L, Beseler C. Original report: pesticide poisoning and depressive symptoms among farm residents. Annals of Epidemiology 2002; 12: 389-394. https://doi.org/10.1016/S1047-2797(01)00298-8

Jamal GA, Hansen S, Pilkington A, Buchanan D, Gillham RA, Abdel-Azis M, et al. A clinical neurological, neurophysiological, and neuropsychological study of sheep farmers and dippers exposed to organophosphate pesticides. Occupational & Environmental Medicine 2002; 59(7): 434-441. https://doi.org/10.1136/oem.59.7.434 PMid:12107290

Cherry N, Burstyn I, Beach J, Senthiselvan A. Mental health in Alberta grain farmers using pesticides over many years. Occupational Medicine (Oxford) 2012; 62(6): 400-406. https://doi.org/10.1093/occmed/kqs136 PMid:22915560

Davies DR, Ahmed GM, Freer T. Chronic organophosphate induced neuropsychiatric disorder (COPIND): results of two postal questionnaire surveys. Journal of Nutritional & Environmental Medicine 1999; 9(2): 123-134. https://doi.org/10.1080 /1359084996171276

Beseler CL, Stallones L, Hoppin JA, Alavanja MCR, Blair A, Keefe T, et al. Depression and pesticide exposures among private pesticide applicators enrolled in the Agricultural Health Study. Environmental Health Perspectives 2008; 116(12): 1713-1719. https://doi.org/10.1289/ehp.1091 PMid:19079725

Beseler C, Stallones L, Hoppin JA, Alavanja MCR, Blair A, Keefe T, et al. Depression and pesticide exposures in female spouses of licensed pesticide applicators in the Agricultural Health Study cohort. Journal of Occupational & Environmental Medicine 2006; 48(10): 1005-1013. https://doi.org/10.1097
39 MacFarlane E, Simpson P, Benke G, Sim MR. Suicide in Australia pesticide-exposed workers. *Occupational Environmental Medicine* 2011; 61: 259-264. https://doi.org/10.1093/occmed/kqr031 PMid:2150264

40 Cannas A, Costa B, Tacconi P, Pinna L, Fiaschi A. Dementia of Alzheimer type (DAT) in a man chronically exposed to pesticides. *Acta Neurologica* 1992; 14(3): 220-223.

41 Gomes J, Lloyd O, Revitt MD, Basha M. Morbidity among farm workers in a desert country in relation to long-term exposure to pesticides. *Scandinavian Journal of Work, Environment and Health* 1998; 24(3): 213-219. https://doi.org/10.5271/sjweh.301 PMid:970374a

42 Povey AC, McNamee R, Alhamwi H, Stocks SJ, Watkins G, Burns A, et al. Pesticide exposure and screen-positive neuropsychiatric disease in British sheep farmers. *Environmental Research* 2014; 135: 262-270. https://doi.org/10.1016/j.envres.2014.09.008 PMid:25462674

43 Bouchard MF, Chevrier J, Harley KG, Kogut K, Vedur M, Calderon N, et al. Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. *Environmental Health Perspectives* 2011; 119(8): 1189-1195. https://doi.org/10.1289/ehp.1003185 PMid:21507776

44 Suarez-Lopez JR, Himes JH, Jacobs DR, Alexander BH, Gunnar MR. Acetylcholinesterase activity and neurodevelopment in boys and girls. *Pediatrics* 2013; 132(6): e1649-e1658. https://doi.org/10.1542/peds.2013-0108 PMid:24249815

45 Fortenberry GZ, Meeker JD, Sanchez BN, Barr DB, Panuwet P, Bellinger D, et al. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: distribution, temporal variability, and relationship with child attention and hyperactivity. *International Journal of Hygiene & Environmental Health* 2014; 2-3: 405. https://doi.org/10.1016/j.ijheh.2013.07.018 PMid:24001412

46 Ames RG, Steenland K. Chronic neurologic sequelae to cholinesterase inhibition among agricultural pesticide applicators. *Archives of Environmental Health* 1995; 50(6): 440. https://doi.org/10.1080/000398969.1995.9935980 PMid:8572722

47 Beach JR, Spurgeon A, Stephens R, Heafld T, Calvert IA, Levy LS, et al. Abnormalities on neurological examination among sheep farmers exposed to organophosphorous pesticides. *Occupational & Environmental Medicine* 1996; 53(8): 520-525. https://doi.org/10.1136/oem.53.8.520 PMid:8983462

48 London L, Myers JE, Nell V, Thompson ML. Effects of long-term organophosphate exposures on neurological symptoms, vibration sense and tremor among South African farm workers. *Scandinavian Journal of Work, Environment and Health* 1998; 24(1): 18-29. https://doi.org/10.5271/sjweh.274 PMid:9562397

49 Pilkington A, Buchanan D, Jamal GA, Gillham R, Hansen S, Kidd M, et al. An epidemiological study of the relations between exposure to organophosphate pesticides and indices of chronic peripheral neuropathy and neuropsychological abnormalities in sheep farmers and dippers. *Occupational & Environmental Medicine* 2001; 58(11): 702-710. https://doi.org/10.1136/oem.58.11.702 PMid:11600725

50 Kamel F, Engel LS, Gladen BC, Hoppin JA, Alavanja MCR, Sandler DP. Neurologic symptoms in licensed private pesticide applicators in the Agricultural Health Study. *Environmental Health Perspectives* 2005; 113(7): 877-882. https://doi.org/10.1289/ehp.7645 PMid:16002376

51 Rastogi SK, Tripathi S, Ravishanker D. A study of neurologic symptoms on exposure to organophosphate pesticides in the children of agricultural workers. *Indian Journal of Occupational & Environmental Medicine* 2010; 14(2): 54-57. https://doi.org/10.4103/0019-5278.72242 PMid:21120082

52 Starks SE, Hoppin JA, Kamel F, Lynch CF, Jones MP, Alavanja MC, et al. Peripheral nervous system function and organophosphate pesticide use among licensed pesticide applicators in the Agricultural Health Study. *Environmental Health Perspectives* 2012; 120(4): 515-20. https://doi.org/10.1289/ehp.1103944 PMid:22262687

53 Ophir A, Karakis I, Richter ED, Abarbanel JM, Wormser U, Aschner M, et al. An uncommon pattern of polineuropathy induced by lifetime exposures to drift containing organophosphate pesticides. *Neurotoxicology* 2014; 45: 338-346. https://doi.org/10.1016/j.neuro.2014.08.004 PMid:25126817

54 Boostani R, Mellat A, Afsari R, Derakhshan S, Saeedi M, Rafemanesh E, et al. Delayed polineuropathy in farm sprayers due to chronic low dose pesticide exposure. *Iranian Red Crescent Medical Journal* 2014; 16(5): e5072. https://doi.org/10.5812/ircmj.5072 PMid:25031861

55 Payán-Renteria R, Garibay-Chávez G, Rangel-Ascencio R, Preciado-Martínez V, Muñoz-Islas L, Beltrán-Miranda C, et al. Effect of chronic pesticide exposure in farm workers of a Mexico community. *Archives of Environmental & Occupational Health* 2012; 67(1): 22-30. https://doi.org/10.1080/19338244.2011.564230 PMid:22315932

56 Peiris-John RJ, Ruberu DK, Wickremasinghe AR, Smit LAM, van der Hoek W. Effects of occupational exposure to organophosphate pesticides on nerve and neuromuscular function. *Journal of Occupational and Environmental Medicine* 2002; 44(4): 352-357. https://doi.org/10.1097/00043764-200204000-00016 PMid:11977422

57 Cox RD, Kolb JC, Galli RL, Carlton FR, Cook AM. Evaluation of potential adverse health effects resulting from chronic domestic exposure to the organophosphate insecticide methyl parathion. *Clinical Toxicology (Philadelphia)* 2005; 43(4): 243-253. https://doi.org/10.1081/CLT-58952

58 Hu R, Huang X, Huang J, Li Y, Zhang C, Yin Y, et al. Long- and short-term health effects of pesticide exposure: a cohort study from China. *PLoS ONE* 2015; 10(6): e0128766. https://doi.org/10.1371/journal.pone.0128766 PMid:26042669

59 Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR. Chronic exposures to cholinesterase-inhibiting pesticides adversely affect respiratory health of agricultural workers in India. *Journal of Occupational Health* 2009; 51(6): 488-497. https://doi.org/10.1539/joh.L9070 PMid:19851039
60 Raanan R, Balmes JR, Harley KG, Gunier RB, Magzamen S, Bradman A, et al. Decreased lung function in 7-year-old children with early-life organophosphate exposure. *Thorax* 2015; 30 December. https://doi.org/10.1136/thoraxjnl-2014-206622 PMid:26634937

61 Sutulok Z, Kekek Z, Dagloglu N, Hant I. Association of chronic pesticide exposure with serum cholinesterase levels and pulmonary functions. *Archives of Environmental & Occupational Health* 2011; **66**(2): 95-99. https://doi.org/10.1080/19338244.2010.506496 PMid:24484366

62 Fieten KB, Kromhout H, Heederik D, van Wendel de Joode B. Pesticide exposure and respiratory health of indigenous women in Costa Rica. *American Journal of Epidemiology* 2009; **169**(12): 1500-1506. https://doi.org/10.1093/aje/kwp060 PMid:19372212

63 Hoppin JA, Umbach DM, London SJ, Lynch CF, Alavanja MCR, Sandler DP. Pesticides and adult respiratory outcomes in the Agricultural Health Study. *Annals of the New York Academy of Sciences* 2006; **1076**: 343-354. https://doi.org/10.1196/annals.1371.044 PMid:17119214

64 Callahan CL, Al-Batanony M, Ismail AA, Abdel-Rasoul G, Hendy O, Olson JR, et al. Chlorpyrifos exposure and respiratory health among adolescent agricultural workers. *International Journal of Environmental Research and Public Health* 2014; **11**(12): 13117-13129. https://doi.org/10.3390/ijerph111213117 PMid:25522051

65 Perla ME, Rue T, Cheadle A, Krieger J, Karr CJ. Biomarkers of insecticide exposure and asthma in children: a National Health and Nutrition Examination Survey (NHANES) 1999–2008 analysis. *Archives of Environmental & Occupational Health* 2015; **70**(6): 309-322. https://doi.org/10.1080/19338244.2014.910490 PMid:25147971

66 Hernández AF, Casado I, Pena G, Gil F, Villanueva E, Pla A. Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects. *Inhalation Toxicology* 2008; **20**(9): 839-849. https://doi.org/10.1080/08958370801905524 PMid:18645724

67 Ye M, Beach J, Martin JW, Senthilselvan A. Urinary dialkyl phosphate concentrations and lung function parameters in adolescents and adults: results from the Canadian Health Measures Survey. *Environmental Health Perspectives* 2016; **124**(4): 491-497. https://doi.org/10.1289/ehp.1509745 PMid:26372667

68 Ezzat S, Abdel-Hamid M, Abdel-Latif Eissa S, Mokhtar N, Albert Labib N, El-Ghorory L, et al. Associations of pesticides, HCV, HBV, and hepatocellular carcinoma in Egypt. *International Journal of Hygiene & Environmental Health* 2005; **208**: 329-339. https://doi.org/10.1016/j.ijhesh.2005.04.003 PMid:16217918

69 How V, Hashim Z, Ismail P, Said S, Omar D, Bahri Mohd Tamrin S. Exploring cancer development in adulthood: cholinesterase depression and genotoxic effect from chronic exposure to organophosphate pesticides among rural farm children. *Journal of Agromedicine* 2014; **19**(1): 35-43. https://doi.org/10.1080/1059924X.2013.866917 PMid:24417530

70 Cocco P, Satta G, Dubois S, Pili C, Pilleri M, Zucca M, et al. Lymphoma risk and occupational exposure to pesticides: results of the Epilymph study. *Occupational & Environmental Medicine* 2013; **70**(2): 91-98. https://doi.org/10.1136/oemed-2012-100845 PMid:23117219

71 Montgomery MP, Kamel F, Saldana TM, Alavanja MC, Sandler DP. Incident diabetes and pesticide exposure among licensed pesticide applicators: Agricultural Health Study, 1993–2003. *American Journal of Epidemiology* 2008; **167**(10): 1235-46. https://doi.org/10.1093/aje/kwn028 PMid:18343878

72 Mills KT, Blair A, Freeman LE, Sandler DP, Hoppin JA. Pesticides and myocardial infarction incidence and mortality among male pesticide applicators in the Agricultural Health Study. *American Journal of Epidemiology* 2009; **170**(7): 892-900. https://doi.org/10.1093/aje/kwp214 PMid:19700503

73 Tahmaz N, Soutar A, Cherrie JW. Chronic fatigue and organophosphate pesticides in sheep farming: a retrospective study amongst people reporting to a UK Pharmacovigilance Scheme. *Annals of Occupational Hygiene* 2003; **47**(4): 261-267.

74 Miranda-Contreras L, Gómez-Pérez R, Rojas G, Cruz I, Berueta L, Salmen S, et al. Occupational exposure to OP and carbamate pesticides affect sperm chromatin integrity and reproductive hormone levels among Venezuelan farm workers. *Journal of Occupational Health* 2013; **55**: 195-203. https://doi.org/10.1539/joh.12-0144-FS PMid:23445617

75 Aguilar-Garduño C, Lacasaña M, Blanco-Muñoz J, Rodríguez-Barranco M, Hernández AF, Bassol S, et al. Changes in male hormone profile after occupational organophosphate exposure. A longitudinal study. *Toxicology* 2013; **307**: 55-65. https://doi.org/10.1016/j.tox.2012.11.001 PMid:23153546

76 National Health and Medical Research Council. *NHMRC additional levels of evidence and grades for recommendations for developers of guidelines*. 2009. Available: https://www.mja.com.au/sites/default/files/NHMRC.levels.of.evidence.2008-09.pdf (Accessed 7 July 2019).

77 Zaganas I, Kapetanaki S, Mastorodemos V, Kanavouras K, Colosio C, Wilks MF, et al. Linking pesticide exposure and dementia: what is the evidence? *Toxicology* 2013; **307**: 3-11. https://doi.org/10.1016/j.tox.2013.02.002 PMid:23416173

78 Australian Pesticides and Veterinary Medicines Authority. *Omethoate: regulatory decisions*. 2016. Available: https://apvma.gov.au/node/26316 (Accessed 4 September 2017).