Familial Hypocalciuric Hypercalcemia in Pregnancy: Diagnostic Pitfalls

Alicia R Jones,1,2 Matthew JL Hare,2,3 Justin Brown,4,5 Jun Yang,2,6,7 Caroline Meyer,8 Frances Milat,2,6,7 and Carolyn A Allan2,6,9

1Monash Centre for Health Research and Implementation, Monash University, Melbourne, Australia
2Department of Endocrinology, Monash Health, Melbourne, Australia
3Wellbeing and Chronic Preventable Diseases Division, Menzies School of Health Research, Darwin, Australia
4Department of Paediatrics, Monash University, Melbourne, Australia
5Department of Paediatric Endocrinology and Diabetes, Monash Health, Melbourne, Australia
6Hudson Institute of Medical Research, Clayton, Melbourne, Australia
7Department of Medicine, Monash University, Melbourne, Australia
8Department of Endocrinology, St Vincent’s Hospital, Melbourne, Australia
9Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia

ABSTRACT
Familial hypocalciuric hypercalcemia (FHH) is a group of autosomal dominant disorders caused by dysfunction of the calcium sensing receptor (CaSR) and its downstream signaling proteins, leading to generally asymptomatic hypercalcemia. During pregnancy, distinguishing FHH from primary hyperparathyroidism (PHPT) is important, as the latter is associated with adverse outcomes and can be treated surgically during pregnancy, whereas the former is benign. This case report highlights the difficulties in diagnosing FHH during pregnancy. A 32-year-old woman was found to have asymptomatic hypercalcemia at 14-weeks’ gestation. Investigations showed a corrected calcium (cCa) of 2.61 mmol/L (2.10 to 2.60), ionized Ca (iCa) of 1.40 mmol/L (1.15 to 1.28), 25OHD of 33 nmol/L (75 to 250), and PTH of 9.5 pmol/L (1.5 to 7.0). The patient was treated with 2000 IU cholecalciferol daily with normalization of 25OHD. The urine calcium / creatinine clearance ratio (CCCR) was 0.0071, and neck US did not visualize a parathyroid adenoma. Upon a retrospective review of the patient’s biochemistry from 2 years prior, hypercalcemia was found that was not investigated. The patient was monitored with serial iCa levels and obstetric US. She delivered a healthy boy at 38-weeks’ gestation. Postnatal iCa was 1.48 mmol/L and remained elevated. Her son had elevated iCa at birth of 1.46 mmol/L (1.15 to 1.33), which rose to 1.81 mmol/L by 2 weeks. He was otherwise well. Given the familial hypercalcemia, a likely diagnosis of FHH was made. Genetic testing of the son revealed a missense mutation, NM_000388.3(CASR):c.2446A > G, in exon 7 of the CaSR, consistent with FHH type 1. To our knowledge, there are only three existing reports of FHH in pregnancy. When differentiating between FHH and PHPT in pregnancy, interpretation of biochemistry requires an understanding of changes in Ca physiology, and urine CCCR may be unreliable. If the decision is made to observe, clinical symptoms, calcium levels, and fetal US should be monitored, with biochemistry and urine CCCR performed postpartum, once lactation is completed © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

KEY WORDS: DISORDERS OF CALCIUM/PHOSPHATE METABOLISM; GENETICS; PARATHYROID HORMONE

Case Summary
A 32-year-old woman was referred to our endocrine pregnancy clinic for hypercalcemia, incidentally detected on her first trimester screening, at 14-weeks’ gestation. She had no past medical history and her medications included a multivitamin and cholecalciferol 1000 IU daily. She was gravida 2, parity 1, with a healthy 2-year-old daughter. She had mild nausea and lethargy, but no polyuria, bony pain, constipation, or nephrolithiasis. Her physical examination was unremarkable, with no palpable neck masses. There was no known family history of calcium disorders.

Initial investigations showed corrected calcium (cCa) of 2.61 mmol/L (2.10 to 2.60), 25OHD of 33 nmol/L (75 to 250),
and elevated PTH of 9.5 pmol/L (1.5 to 7.0). Repeat biochemistry early in the second trimester showed ionized calcium (iCa) of 1.40 mmol/L (1.15 to 1.28), phosphate of 0.86 mmol/L (0.80 to 1.50), and magnesium of 0.73 mmol/L (0.70 to 1.0); all other electrolytes were normal (Table 1). Her 1-25-dihydroxyvitamin D level was not assessed. The 24-hour urine calcium / creatinine clearance ratio (CCCR) was 0.0071. Neck US did not visualize a parathyroid adenoma. A retrospective review of biochemistry from the first trimester of her first pregnancy 2 years prior demonstrated an elevated cCa of 2.87 mmol/L that had not been investigated.

The patient was treated with 2000 IU cholecalciferol oral daily for the remainder of the pregnancy, and a repeat 25OHD level at 17-weeks’ gestation was 60 nmol/L, with a PTH of 7.6 pmol/L. The patient was monitored with serial iCa levels during pregnancy and these remained stable (Table 1). Obstetric US at 37-weeks’ gestation showed growth restriction with an estimated fetal weight on the 15th percentile. She had an induced labor at 38- + 3-weeks’ gestation, and delivered a healthy boy. Postnatal iCa was 1.48 mmol/L, and calcium has remained elevated since then.

Her son had a birthweight of 2600 g and Apgar scores of 8 at 1 min and 9 at 5 min. His iCa at birth was elevated at 1.46 mmol/L (1.15 to 1.33); however, he was otherwise well and examined normally, so this was not treated. Repeat biochemistry of the son at 2 weeks of age found an elevated iCa of 1.81 mmol/L and cCa of 3.29 mmol/L (2.20 to 2.80), with a low PTH of 0.6 pmol/L (1.5 to 7.0). He was feeding well with normal growth. Given the magnitude of the hypercalcemia, he was admitted for i.v. hydration and changed to low calcium formula feeds. His calcium declined over subsequent days, but remained elevated; his PTH increased to 8.2 pmol/L (Table 2).

Given that both mother and son had asymptomatic hypercalcemia, a likely diagnosis of familial hypocalciuric hypercalcemia (FHH) was made. Subsequent investigations showed mild hypercalcemia (cCa 2.49 mmol/L) in the patient’s 2-year-old daughter; however, her partner and parents had normal calcium levels, and no other family members were tested. Genetic testing of the son revealed a missense mutation, NM_000388.3(CASR):c.2446A > G: p.Ile816Val, in exon 7 of the calcium sensing receptor (CaSR), consistent with FHH type 1.

Discussion

FHH is a group of autosomal dominant disorders caused by dysfunction of the CaSR and its downstream signaling proteins, characterized by chronic, nonprogressive hypercalcemia, which is generally asymptomatic. Differentiation from primary hyperparathyroidism (PHPT) is important, but can be challenging, especially during pregnancy. To our knowledge, there are only three other case reports of FHH in pregnancy, with possible pre-existing diagnosis in one case.

FHH type 1 is caused by an inactivating mutation in the gene encoding the CaSR and accounts for the majority of cases. FHH type 2 occurs as a result of an inactivating mutation in the G protein subunit alpha 11 (GNA11) gene encoding subunit α11, which mediates intracellular signaling from the CaSR. FHH type 3 is caused by mutations of the adaptor-related protein complex 2 subunit sigma 1 (AP2S1) gene, which encodes the adaptor-related protein 2 complex that facilitates endocytosis of the CaSR. The mutation in our patient’s son, NM_000388.3(CASR):c.2446A > G:p.(Ile816Val), causes a change from the amino acid isoleucine to valine at position 816 of the protein, inactivating the CaSR. This has previously been described in a family with hypocalciuric hypercalcemia.

The CaSR is expressed in the parathyroid glands and kidneys, as well as many other organs (including bone, placenta, brain, breast) and regulates PTH secretion and renal excretion of calcium. Patients with FHH have lifelong mild to moderately elevated calcium levels, normal or mildly elevated PTH levels, and reduced urine calcium excretion. It is thought to be a benign condition, with no definite association with adverse outcomes. Importantly, there is no specific treatment for FHH. Parathyroidectomy will not restore calcium levels to normal. This makes differentiation between FHH and PHPT important, as the latter is associated with osteoporosis, nephrolithiasis, and pancreatitis, and easily treatable by parathyroidectomy, preferably during the second trimester.

Subsequent confirmation of FHH type 1 in this family supported the decision to closely monitor the patient and not perform surgery during the pregnancy. Had the genetics been confirmed earlier, the son arguably may not have required rehospitalization in the neonatal period.

In pregnancy, PHPT has been associated with maternal pre-eclampsia, pancreatitis, miscarriage, and hypercalcemic crisis, as well as fetal intrauterine growth retardation, parathyroid hypoplasia, and subsequent neonatal hypercalcemia. The risk of these events may be related to the severity of hypercalcemia. Three cases of FHH in pregnancy have been previously described. Two cases had presented with hypercalcemia several years prior to pregnancy, with possible genetic confirmation prior to pregnancy in one of the cases. No adverse maternal outcomes have been reported.
were reported, although one patient underwent unnecessary neck exploration and three-gland parathyroidectomy, as FHH was diagnosed postpartum.\(^\text{16,17}\) There were also no adverse fetal outcomes; however, the offspring in these limited cases were genetically concordant with the mothers.\(^\text{14-17}\) Neonatal biochemistry in FHH will depend on the genotype. Unaffected neonates born to an affected mother will have hypercalcemia. Heterozygous neonates born to an unaffected mother may have severe hypercalcemia caused by secondary hyperparathyroidism in utero. An homozygous or compound heterozygous neonate is at risk of neonatal severe hyperparathyroidism, requiring urgent parathyroidectomy.\(^\text{18,19}\)

Distinguishing between FHH and PHPT can be difficult, as 20% of those with FHH have elevated PTH levels, and 10% to 20% of those with PHPT have normal PTH levels.\(^\text{1}\) During pregnancy, interpretation is further complicated by changes in calcium physiology. Dilutional hypoalbuminemia causes a reduction in total calcium levels, although iCa and cCa remain relatively stable. Placental lactogen and PTH-related peptide (PTHrP), released from the placenta and breast, act to stimulate 1-alpha hydroxylase activity, which increases levels of 1,25(OH)\(_2\)D3. The maternal kidneys are the primary source of 1-alpha hydroxylase, with a relatively minor contribution from placental 1-alpha hydroxylase.\(^\text{20}\) Negative feedback on the parathyroid glands from PTHrP reduces PTH levels. Both 1,25(OH)\(_2\)D\(_3\) and PTHrP act on the skeleton to increase bone turnover, and 1,25(OH)\(_2\)D\(_3\) acts on the intestines to increase the absorption of calcium, which doubles from around the 12th week of gestation.\(^\text{21}\) This increase in intestinal absorption causes an increase in 24-hour urine calcium excretion, termed absorptive hypercalcuria, although fasting levels may be normal or even low, highlighting the role of intestinal absorption.\(^\text{21}\) One study found that 24-hour urine calcium excretion was 250% to 300% higher in pregnancy when compared with postpartum excretion.\(^\text{22}\)

The CCCR, based on paired serum and 24-hour urine levels, is considered the best test to differentiate FHH from PHPT. Findings presented at the Fourth International Workshop on PHPT proposed that a CCCR <0.01 is suggestive of FHH, CCCR >0.02 makes FHH unlikely, and a CCCR of 0.01 to 0.02 is uncertain, with genetic testing indicated in such cases.\(^\text{23}\) There is considerable overlap in the CCCR between FHH and PHPT. A Danish study of 54 patients with genetically confirmed FHH and 97 patients with histologically proven PHPT, found sensitivity of 80% and specificity of 88% for diagnosing FHH, using a urine CCCR cut-off of <0.0112. Using a cut-off of <0.027 improved the sensitivity to 100%, but reduced specificity to 65%.\(^\text{24}\)

Unfortunately, the absorptive hypercalcuria of pregnancy makes interpretation of urine CCCR difficult. Of the three existing case reports of FHH in pregnancy, only two had urine CCCR reported, with values of 0.0199 and 0.019, both within the range considered uncertain in nonpregnant individuals (Table 3).\(^\text{15,16}\) Other tests used to distinguish FHH and PHPT, such as fasting urine calcium excretion (CE, urine Ca / urine creatinine × serum creatinine) and urine calcium / creatinine excretion ratio (24-hour...
Table 4. Investigations to Differentiate FHH From PHPT and Their Limitations in Pregnancy

Investigation	Limitations in pregnancy
24-hour urine CCCR	False-negative in pregnancy caused by absorptive hypercalciuria
	No pregnancy reference ranges
Fasting urine CE	Sensitivity and specificity lower than urine CCCR outside of pregnancy
	No pregnancy reference ranges
Neck ultrasound	Limited accuracy for parathyroid adenoma
	Operator-dependent
Family history	May have no known family history
Genetic testing	Familial forms of both FHH and PHPT exist
	Delay in results

FHH = Familial hypocalciuric hypercalcaemia; PHPT = primary hyperparathyroidism; CCCR = calcium / creatinine clearance ratio; CE = calcium excretion.

In practice, diagnosing FHH in pregnancy requires a high level of suspicion. In women with newly diagnosed hypercalcaemia in pregnancy, we recommend a multidisciplinary approach involving the endocrinology, obstetrics, and pediatrics departments. When differentiating between FHH and PHPT in pregnancy, the interpretation of biochemistry requires an understanding of calcium physiology in pregnancy, and physicians should be aware that the urine CCCR may be unreliable. If the decision is made to observe, clinical symptoms, calcium levels, and fetal US should be monitored closely, with biochemistry and urine CCCR performed postpartum and once lactation is completed. Confirmation of FHH with genetic testing, as in this case, provided additional reassurance in the postpartum period, and should be performed if available during the pregnancy.

Disclosures

No authors have any disclosures to declare.

Acknowledgments

Authors’ roles: Case management, data collection and interpretation: AJ, MH, JB, JY, CM, FM, CA. Drafting manuscript: AJ, MH, CM. Revising manuscript content: AJ, MH, JB, JY, CM, FM, CA. Approving final version of manuscript: AJ, MH, JB, JY, CM, FM, CA.

References

1. Hannan FM, Babinsky VN, Thakker RV. Disorders of the calcium-sensing receptor and partner proteins: insights into the molecular basis of calcium homeostasis. J Mol Endocrinol. 2016;57(3):R127–42.
2. Garcia-Castaño A, Madariaga L, Nanclares GP, Ariceta G, Gaztambide S, Castaño L. Novel mutations associated with inherited human calcium-sensing receptor disorders: a clinical genetic study. Eur J Endocrinol. 2019;180(1):59.
3. Ward BK, Magno AL, Walsh JP, Ratajczak T. The role of the calcium-sensing receptor in human disease. Clin Biochem. 2012;45(12):943–53.
4. Hannan FM, Thakker RV. Calcium-sensing receptor (CaSR) mutations and disorders of calcium, electrolyte and water metabolism. Best Pract Res Clin Endocrinol Metab. 2013;27(3):359–71.
5. Breum Jakobsen NF, Laugesen E, Rolighed L, et al. The cardiovascular system in familial hypocalciuric hypercalcaemia: a cross-sectional study on physiological effects of inactivating variants in the calcium-sensing receptor gene. Eur J Endocrinol. 2016;175(4):299–309.
6. Christensen SE, Nissen PH, Vestergaard P, et al. Skeletal consequences of familial hypocalciuric hypercalcaemia vs. primary hyperparathyroidism. Clin Endocrinol. 2009;71(6):798–807.
7. Jakobsen NF, Rolighed L, Nissen PH, Moskekilde L, Rejmark L. Muscle function and quality of life are not impaired in familial hypocalciuric hypercalcaemia: a cross-sectional study on physiological effects of inactivating variants in the calcium-sensing receptor gene (CASR). Eur J Endocrinol. 2013;169(3):349–57.
8. Wolf P, Kršák M, Winhofer Y, et al. Cardiometabolic phenotyping of patients with familial Hypocalciuric hypercalcaemia. J Clin Endocrinol Metab. 2014;99(9):E1721–6.
9. Bilezikian JP, Brandi ML, Eastell R, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab. 2014;99(10):3561–9.
10. Khan AA, Hanley DA, Rizzoli R, et al. Primary hyperparathyroidism: review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos Int. 2017;28(1):1–19.
11. Delmonico FL, Neer RM, Cosimi AB, Barnes AB, Russell PS. Hyperparathyroidism during pregnancy. Am J Surg. 1976;131(3):328–37.
12. Abood A, Vestergaard P. Pregnancy outcomes in women with primary hyperparathyroidism. Eur J Endocrinol. 2014;171(1):69–76.
13. Rigg J, Gilbertson E, Barrett HL, Britten FL, Lust K. Primary hyperparathyroidism in pregnancy: maternal foetal outcomes at a quaternary referral obstetric hospital, 2000 through 2015. J Clin Endocrinol Metab. 2019;104(3):721–9.
14. Murthy A, Murthy N, Ashawesh K, Kulambil Padinjakkara RN, Anwar A. Familial hypocalciuric hypercalcaemia and pregnancy outcome. Endocr Abst. 2009;19:16.
15. Ghaznavi SA, Saad NMA, Donovan LE. The biochemical profile of familial hypocalciuric hypercalcaemia and primary hyperparathyroidism during pregnancy and lactation: two case reports and review of the literature. Case Rep Endocrinol. 2016;2016:1–6.
16. Maltese G, Izatt L, McGowan BM, Hafeez K, Hubbard JG, Carroll PV. Making (mis) sense of asymptomatic marked hypercalcemia in pregnancy. Clin Case Rep. 2017;5(10):1587–90.
17. Walker A, Fraile JJ, Hubbard JG. “Parathyroidectomy in pregnancy”—a single centre experience with review of evidence and proposal for treatment algorithm. Gland Surg. 2014;3(3):158–64.
18. Pollak MR, Chou YH, Marx SJ, et al. Familial hypocalciuric hypercalce-
mia and neonatal severe hyperparathyroidism. Effects of mutant
gene dosage on phenotype. J Clin Invest. 1994;93(3):1108–12.

19. El-Hajj Fuleihan G, Brown EM. Familial hypocalciuric hypercalcemia
and neonatal severe hyperparathyroidism. In: Bilezikian JP, Marcus
R, Levine MA, Marcocci C, Silverberg SJ, Potts JT, eds. The Parathy-
roids. 3rd ed. London: Academic Press; 2015:365–87.

20. Kovacs CS, Kronenberg HM. Maternal-fetal calcium and bone metab-
olism during pregnancy, puerperium, and lactation. Endocr Rev.
1997;18(6):832–72.

21. Kovacs CS. Calcium and bone metabolism disorders during preg-
nancy and lactation. Endocrin Metab Clin. 2011;40(4):795–826.

22. Seely EW, Brown EM, DeMaggio DM, Weldon DK, Graves SW. A pro-
spective study of calcitropic hormones in pregnancy and post par-
tum: reciprocal changes in serum intact parathyroid hormone and
1,25-dihydroxyvitamin D. Am J Obstet Gynecol. 1997;176(1 Pt 1):214–7.

23. Eastell R, Brandi ML, Costa AG, D’Amour P, Shoebak DM, Thakker RV.
Diagnosis of asymptomatic primary hyperparathyroidism: proceed-
ings of the Fourth International Workshop. J Clin Endocrinol Metab.
2014;99(10):3570–9.

24. Christensen SE, Nissen PH, Vestergaard P, Heickendorff L, Brixen K,
Mosekilde L. Discriminative power of three indices of renal calcium
excretion for the distinction between familial hypocalciuric hypercal-
caemia and primary hyperparathyroidism: a follow-up study on
methods. Clin Endocrinol. 2008;69(5):713–20.

25. Bertocchio JP, Taflet M, Koumakis E, et al. Pro-FHH: a risk equation to
facilitate the diagnosis of parathyroid-related hypercalcemia. J Clin
Endocrinol Metab. 2018;103(7):2534–42.

26. Vitetta GM, Neri P, Chiecchio A, et al. Role of ultrasonography in the
management of patients with primary hyperparathyroidism: retro-
spective comparison with technetium-99m sestamibi scintigraphy.
J Ultrasound. 2014;17(1):1–12.