How do soil resources affect herbivory in tropical plants along environmental gradients? A test using contrasting congeneric species

Victor D. Pinto, Clara C. V. Badia, Glória R. Soares, Hildeberto C. de Sousa, Tatiana Cornelissen, Sérvio P. Ribeiro

Abstract Plants adapted to different habitats exhibit differences in functional traits and these characteristics are influenced by soil properties. We tested the hypothesis that soil resource availability influences the functional traits of plants, affecting therefore herbivory levels. We examined three *Byrsonima* plant species with different life forms that occurred across a distinct edaphic habitat along the Doce River Basin, South-eastern Brazil. We characterized habitats according to soil nutrient concentration and measured functional characteristics of crown architecture, leaf nutrients, sclerophyll, leaf area and leaf density. In addition, we evaluated how these variables influenced herbivory levels of congeneric plants. Our data show that species along a gradient of soil nutrients have functional characteristics influenced by habitat, which in turn affect herbivory levels. By comparing congenerics with different life forms found along a stress-gradient of continuous habitats, we describe a corresponding gradient of plant functional traits and tissue consumption by herbivorous insects.
Keywords Resource availability · Foliar nutrients · Environmental gradients · Plant functional traits

Introduction

Plants adapt to habitat characteristics by morphological and physiological adjustments to specific abiotic conditions (Harper 1977; Mark et al. 2001; Mello et al. 2020). Soil nutrients are amongst the most influential drivers of species distribution (Prentice et al. 1992; Rodrigues et al. 2018), morphological trait selection (Cunningham et al. 1999; Ordoñez et al. 2009) and belowground interaction food webs (Laliberté et al. 2017). Edaphic factors can influence plant growth (Dighton and Krumins 2014), morphology (Bona et al. 2020) and secondary chemistry (Fine et al. 2004, 2006). These morphological, physiological and/or phenological characteristics that affect growth, survival and ultimately fitness are considered functional traits (Violle et al. 2007). Plant survival and fitness are also influenced by insect herbivory, which can be an important selective pressure (Coley and Barone 1996; Allan and Crawley 2011; Jogesh et al. 2016). Leaf damage caused by insects can impact net primary production (Zvereva and Kozlov 2014), decrease pollinator attraction (Lehtilä and Strauss 1997; Moreira et al. 2019) and reduce reproductive capacity (Strauss et al. 1996; Schiestl et al. 2014; Kozlov and Zvereva 2017). In turn, the evolutionary investment on growth or defences is a main trade-off in life history traits related to plant adaptation to cope with herbivory (Herms and Mattson 1992; Poorter et al. 2010).

Plant chemical and physical defences are amongst the most studied factors influencing herbivory levels (reviewed by Carmona et al. 2011; Zvereva and Kozlov 2014), whereas other traits such as plant size, appearance and architecture have received considerably less attention in the literature (but see Castells et al. 2017; Martini et al. 2021). Variation in plant nutrient quality has been also suggested as an important cause of variation in herbivory levels (Mattson 1980; Johnson 2008). Usually, nutritious plants are those with high concentrations of macronutrients, such as nitrogen—which is essential for insect survival and reproduction (Raubenheimer and Simpson 1997; Roeder and Behmer 2014)—and are likely to occur more frequently on fertile soils (Wright et al. 2001).

Host plant structural complexity (Spawton and Wetzel 2015) and leaf nutritional quality (Maldonado-López et al., 2014) affect the quantity and quality of available food resources that in turn might directly affect herbivory levels (Campos et al. 2006; Schlinkert et al. 2015). According to the plant architecture hypothesis (Lawton 1983), plants with larger life forms (such as trees) have a more complex architecture due to the higher number of branches and leaves. Hence, they may harbour greater richness and abundance of insects with more sites for feeding and oviposition. Previous studies have reported positive effects of plant size on herbivore species richness and abundance (Ribeiro et al. 2005; Campos et al. 2006; Neves et al. 2013; Zvereva et al. 2014), or in the distribution of herbivory within plants (Ribeiro and Basset 2007; Pereira et al. 2016; Boaventura et al. 2018). In fact, global herbivory patterns have shown higher levels of insect damage on trees compared to shrubs (Kozlov et al. 2015).

Under the resource availability hypothesis—RAH (Coley et al. 1985), resource allocation for plant defence is driven by the combination of plant growth rates and habitat quality (Coley et al. 1985; Gianoli and Salgado-Luarte 2017). Plant life forms occurring in fertile soils are capable to cope with some level of herbivory, without the associated negative impacts in fitness or growth (Coley et al. 1985; Lau et al. 2008; Lynn and Fridley 2019), mainly due to low energy cost for tissue reposition, short leaf lifespan and high return rates (Zhang et al. 2016). Life forms that are adapted to poor soils, with low resource availability—like shrubs—invest in effective defences against herbivory, as each leaf produced implies in a high-energy cost (Coley et al. 1985; Santiago and Wright 2007). Plants adapted to unfertile habitats, on the other hand, may exhibit the greatest investment in chemical defences compared to those from nutrient-rich soils, due to slower growth and the strategy of avoiding damage to valuable tissues (Herms and Mattson 1992; Fine et al. 2006; Ribeiro and Brown 2006; Poorter et al. 2010). Additionally, these plants exhibit a high C/N ratio and, thus, might have more sclerophyllous leaves than related species found on richer soils (Harbone 1980; Bryant et al. 1983, Ordoñez et al. 2009). In fact, there is a strong relationship between soil nutrient availability, plant life forms and growth.
strategies (Grime 1977; Gong and Gao 2019). All these factors combined affect herbivory levels experienced by plants (Olff and Ritchie 1998) and can be investigated on congeneric species that occupy contrasting habitats.

From a tropical lowland forest towards a high altitudinal grassland, there is a continuous, but remarkable change in soil conditions (Clark et al. 1999; Fine and Kembel 2011). Tropical lowlands are warmer and have high availability of light and water, accelerating decomposition and making nutrients more readily available, providing greater heterogeneity compared to any adjacent montane ecosystems from a similar geological background. There are several examples of congeneric species that occupy these contrasting habitats, providing excellent systems to study the relationships between life forms and plant characteristics whilst controlling for phylogeny (Silvertown and Dodd 1996; Sultan 2000).

The present study investigated the effects of soil nutritional quality on functional characteristics and on herbivory levels of congeneric plants of different life forms across a gradient of edaphic conditions. These are closely related species (all belonging to the genus *Byrsonima* sp. Rich. ex Kunth—Malpighiaceae) occurring along a gradient of decreasing soil resource availability, from a semi-deciduous tropical lowland forest towards two montane physiognomies of highlands grasslands (*campo rupestre* sensu Silveira et al. 2016). We tested the hypothesis that soil nutrient availability affects the functional characteristics and herbivory levels of the different plant life forms. We predict that tree species that occupy forest habitats in soils with higher nutrient availability would exhibit complex architecture, higher nutritional quality, lower sclerophylly and higher levels of herbivory than structurally simpler shrub and sub-shrub species occurring in poorer habitats.

Materials and methods

Study sites

The study was carried out in sites located in the upper and mid Doce River Basin, in Minas Gerais State, Brazil (Fig. 1). This is an 83,400-km² basin, the third largest in the State. We sampled in three State Parks: Rio Doce (PERD), Itacolomi (PEIT) and Serra de Ouro Branco (PESOB). The PERD (19°45’S 42°38’W) represents the largest remnant of semi-deciduous Atlantic Forest of Minas Gerais with an area of approximately 36,000 ha and altitude ranging between 200–500 m. The soils in the region are mainly Ferralsols according to world reference base for soil resources (IUSS Working Group WRB). According to Köppen, the climate is Aw, which alternates between a rainy and a dry season (Alvares et al. 2014). The average annual temperature is 23 °C, yearly relative air humidity is 75%, with annual average precipitation of 1,500 mm.

The PEIT (20°22’30”S and 43°22’30”W) and PESOB (20°31’S, 43°41’W) are located in the southern portion of the Espinhaço Range in the state of Minas Gerais. The two parks have an area of approximately 7,000 ha, with an altitude varying between 800 to 1772 m a.s.l. Soils are classified as Leptsols according to World Reference Base for Soil Resources (IUSS Working Group WRB 2015). According to Köppen, the climate is Cwb, which alternates between a rainy and a dry season (Alvares et al. 2014). The average annual temperature is 18 °C, yearly relative air humidity is 79%, with annual average precipitation of 1800 mm. The PEIT predominant vegetation communities are distributed in quartzitic and ferruginous rocky fields, formations of *campo rupestre*, montane forest and natural monodominant stands of *Eremanthus erythropappus* (Asteraceae), a pioneer tree (Fujaco et al. 2010). The PESOB vegetation is characterized by *campo rupestre* in highlands and, in the lower portions of the altitudinal gradient by riparian forests and forest patches embedded inside a grassland ecosystem (Instituto Estadual de Florestas, 2015).

Considering the three areas sampled, this study was conducted along a gradient of resource availability, from a habitat of poor white sand soils (PESOB), shallow rocky outcrops (PEIT) towards deep and nutrient-richer soils (PERD).

Plant species

The *Byrsonima* is one of the most important genera of the Malpighiaceae due to its large number of species, with 135 described species restricted to tropical and subtropical regions (Anderson 1977; Davis and Anderson 2010). The genus occurs throughout the neotropical regions and in Brazil in the
phytogeographical domains of the Amazon, Cerrado, Caatinga, Atlantic Forest and Pantanal (Mamede and Francener 2015). *Byrsonima sericea* DC. is a tree species with wide distribution (Mamede and Francener 2015). In our study system, we sampled this species in the forest habitat of the PERD, specifically in ecotonal habitats between forests and natural lakes, where its crowns grow branched towards the lakes in search for light. *Byrsonima variabilis* A. Juss. is a shrub species, endemic to the Brazilian mountains highlands (Mamede and Francener 2015). This species population in the PEIT was sampled in habitats of rocky outcrop in *campo rupestre*. Their crowns have cylindrical shapes with branches not far apart and small internodes. *Byrsonima subterranea* Brade & Markgr. is a sub-shrub species that occurs in *campo rupestre* Cerrado (*latu sensu*) and Amazonian Savanna (Mamede and Francener 2015). The individuals of this species in PESOB were studied in *campo rupestre*, in sandy quartzite soil, called white sand soil. They grow with subterranean stems and only the leaves and reproductive parts are aerial, hence not forming a typical crown.

Sampling design

Each species of *Byrsonima* was considered here as a different life form. We sampled three patches of *B. sericea* (tree) in PERD, three patches of *B. variabilis* (shrub) in PEIT and three patches of *B. subterranea* (sub-shrub) in PSOB. In each patch, we sampled 15 individuals, totalling nine plant patches and 135 individuals sampled throughout the three sites. All data were collected between January and March 2016, at the end of the rainy season, enabling the evaluation of the accumulated herbivory during the last rainy season.

Soil nutrients

For soil characterization, one sample was collected at every three individual plants, totalling five samples per...
population. We chose to collect the soil at 10 cm depth due to its relationship to vegetation characteristics, as suggested by Ruggiero et al. (2002). The soil parameters analysed were pH, organic matter (OM) and total concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg) and aluminium (Al). All nutrient analyses were performed according to Defelipo and Ribeiro (1997), Embrapa (1999), and Raij et al. (2001), at the Laboratory of Plant Analysis of the Department of Soils of the Agricultural Sciences Centre of the Federal University of Viçosa, Minas Gerais.

Functional traits and herbivory

Plant architecture

Due to structural differences amongst species, we adjusted the architectural complexity measurements for the three species, allowing for direct comparisons between their different life forms. The following parameters were measured: total height (cm), trunk diameter below the first branch (cm), number of growth units and mean leaf number (see Pérez-Harguindeguy et al. 2013). Growth units were defined as the set of terminal branches of each ramification from which the leaves originated (see Bell et al. 1999).

Leaf nutrients and sclerophyll

To quantify leaf nutrient content, a set of 20 mature, fully expanded leaves of each individual were collected and oven dried to quantify total N, P, K, Ca and Mg content. Nitrogen was quantified through sulfuric digestion and the quantification of K, Ca and Mg was performed through nitro-perchloric digestion (Meneghetti 2018). Leaf sclerophyll was measured as leaf thickness (Choong et al. 1992), using a Digimess digital micrometer with an accuracy of 0.001 mm. This method is correlated with other methods of measuring sclerophyll, such as dry weight, fibre content and protein content (Choong et al. 1992; Pérez-Harguindeguy et al. 2013).

Leaf area, density and herbivory

Leaf samples were taken using a random delimited volume within each crown. For such, we used three hollow cubes, thus combining the canopy cylinder method (Ribeiro and Basset 2007) with the subplot frame model (Shaw et al. 2006) to sample leaves and quantify herbivory levels. This method was selected to avoid biased sampling, commonly documented in herbivory studies (Kozlov et al. 2015). The cube volume was defined to control differences in the size of each species and to fit the approximately area occupied by the foliage of a growth unit. In B. variabilis, three cubes of 20 cm of length, width and height were used, with a total volume of 0.06 m3. In B. sericea three cubes of 30 cm of length, width and height, with a total volume of 0.09 m3 were used for sampling. Each cube was positioned in three different branches (chosen at a distance of 5 m from the plant to avoid bias) of the crown of each individual and all leaves inside the cube were collected (Fig. 2). Due to its small size, the cube was not used in B. subterranea and all leaves of each plant were collected.

To quantify herbivory, all mature and fully expanded leaves per individual were counted and digitized. Leaf abundance per plant was registered as the total number of leaves sampled using the cube method, and average leaf area and the percentage of leaf damage by chewing insects (in cm2) were calculated on digitized leaf images using ImageJ© 1.6.0 software. Herbivory was determined in percentage as $H = (\text{leaf area lost/total leaf area}) \times 100$.

Statistical analyses

We tested whether each site differed for soil nutrients using an analyses of variance (ANOVA) for each element, considering each environment as a level of a simple fixed factor. The functional traits were explored to collinearity, and in cases when variables were positively correlated (Pearson $r > 0.70$), only the variable with the greatest biological meaning for the hypotheses tested was used. Normality was tested for the models constructed based on error distribution. Non-significant explanatory variables were eliminated from analyses to obtain an adequate minimum model (Crawley 2013).

To test the hypothesis that plant functional traits and herbivory vary along the resource availability gradient, a multiple regression analysis was performed. The functional traits and herbivory were used as response variables and soil nutrients as explanatory variables. To test whether functional traits affect herbivory levels in Byrsonima sp., an analysis of
covariance (ANCOVA) was performed with quasibinomial error distribution. Species and environment were considered as fixed factors, plant patches as nested randomized blocks and architectural parameters, leaf nutrients and sclerophylly as covariates. The average leaf area lost by each individual plant (herbivory levels) was the response variable. Statistical analyses were performed in R Environment v. 3.2.0 (R Development Core Team 2015) and ANOVA, multiple regression analysis and ANCOVA were conducted using generalized linear models (GLM).

Results

Soil nutrients

The forest was the habitat with the highest concentration of nitrogen ($F_{2,42} = 16.87, P < 0.001$), phosphorus ($F_{2,42} = 28.62, P < 0.001$), magnesium ($F_{2,42} = 7.64, P = 0.001$) and organic matter ($F_{2,42} = 11.68; P < 0.001$), followed by rocky outcrop (PEIT) and white sand soil (PSOB), respectively (Fig. 3). The white sand soil habitat diverged from the other environments due to higher concentrations of aluminium ($F_{2,42} = 3.88, P < 0.05$) (Fig. 3E). The amounts of potassium ($F_{2,42} = 0.6, P = 0.55$) and calcium ($F_{2,42} = 0.35, P = 0.7$) did not differ significantly amongst habitats.

Functional traits

The three species differed markedly in functional traits (Tab. 1). *B. sericea* is a mid-size tree, 5 m tall, its growth units were well-spaced, long and exhibited a high density of leaves (482 ± 218.5 leaves). *B. variabilis* is a 1.5-m high shrub with a round canopy, growth units short and close to each other and high leaf density (300 ± 134.9 leaves). *B. subterranea* is a low shrub (0.28 cm), with the leaves near the ground and very individualized and short growth units. In this species, the entire stem remains below ground and only a small part of the terminal branch—from which few leaves emerge (20 ± 15.9 leaves)—is exposed aboveground.

A total of 36,050 leaves distributed amongst the three *Byrsonima* species were sampled. *B. sericea* was the species with the greatest architectural complexity,
Fig. 3 Concentration of soil chemical elements along the environmental gradient.
A Nitrogen, B phosphorus, C magnesium, D organic matter and E aluminium.
The shades of grey of the boxplots represent differences between habitats
being the taller \((F_{2,132} = 512.28, P < 0.001)\), with larger trunk diameter \((F_{2,132} = 244.47, P < 0.001)\), greater number of growth units \((F_{2,132} = 69.34, P < 0.001)\) and leaf density \((F_{2,132} = 110.19, P < 0.001)\), followed by \(B. variabilis\) and \(B. subterranea\) (Table 1). Plant height, trunk diameter and growth units were highly correlated \((r_{Pearson} > 0.70)\) and we used only leaf density and number of growth units as explanatory variables influencing herbivory levels on the plants.

Leaf nitrogen content was higher in tree followed by shrub and sub-shrub, respectively \((F_{2,132} = 210.54; P < 0.001)\). Potassium content was higher in \(B. subterranea\) \((F_{2,132} = 171.07; P < 0.001)\) than in \(B. sericea\) and \(B. variabilis\), which were similar. For Calcium, the values were similar in \(B. sericea\) and \(B. subterranea\) and significantly lower in \(B. variabilis\) \((F_{2,132} = 18.96; P < 0.001)\). Magnesium concentration was highest in the leaves of \(B. sericea\), followed by \(B. subterranea\) and \(B. variabilis\) \((F_{2,132} = 115.98; P < 0.001)\). Sclerophyllly differed significantly amongst the three species \((F_{2,132} = 244.27; P < 0.001)\), with sub-shrub being the most sclerophyllous, followed by shrub and tree, respectively (Fig. 4).

Effect of resource availability on architectural complexity, morphological characteristics and herbivory

Plant height was positively related to soil nitrogen \((F_{1,43} = 74.82; P < 0.001)\) (Fig. 4A), soil phosphorus \((F_{1,42} = 45.22, P < 0.001)\), soil potassium \((F_{1,41} = 10.60; P = 0.002)\) and soil magnesium \((F_{1,40} = 7.45; P < 0.005)\). We also found a positive relationship between growth units and soil nitrogen \((F_{1,43} = 13.03; P < 0.001)\) and soil phosphorus \((F_{1,42} = 16.34, P < 0.001)\) (Fig. 4B).

Leaf density increased with increased availability of nitrogen \((F_{1,43} = 19.22; P < 0.001)\) and phosphorus \((F_{1,42} = 9.1, P < 0.01)\) in the soil. Sclerophyllly, on the other hand, was negatively affected by the amounts of nitrogen \((F_{1,43} = 42.77; P < 0.001)\) (Fig. 4C), phosphorus \((F_{1,42} = 26.39; P < 0.001)\) and magnesium \((F_{1,41} = 6.47; P = 0.01)\) in the soil. Herbivory levels increased with increased soil phosphorus \((F_{1,43} = 15.04; P < 0.001)\) (Fig. 4D) and potassium \((F_{1,42} = 8.88; P < 0.01)\).

Herbivory was higher in tree species than in the other two growth forms \((F_{2,132} = 13.62; P < 0.001)\). For the tree \(B. sericea\), average levels of herbivory were around 5\% \((5.58 \pm 3.86\%\) of foliar tissue removed), whereas levels of herbivory for shrubs and sub-shrubs were around 3\% \((B. variabilis 3.50 \pm 1.80\%\) and \(B. subterranea 2.97 \pm 2.33\%)\) (Fig. 4E). Regardless of the plant species, the percentage of leaf area lost was positively related to

Table 1 Habitat summary, functional traits and herbivory levels (mean ± SE) of three Byrsonima species

Ecoregion	Byrsonima sericea	Byrsonima variabilis	Byrsonima subterranea
Habitat	Forest	Rocky outcrop	White sand
Park	PERD	PEIT	PSOB
Growth form	Tree	Shrub	Sub shrub
Height (cm)	5.22 ± 1.25\(^a\)	1.51 ± 0.42\(^b\)	0.28 ± 0.04\(^c\)
Trunk diameter (cm)	59.81 ± 29.66\(^a\)	27.49 ± 13.45\(^b\)	8.81 ± 3.07\(^c\)
Growth unit (un)	52.2 ± 22.09\(^a\)	21.88 ± 4.48\(^b\)	6.04 ± 3.72\(^c\)
Leaf density (un)	482 ± 218.48\(^a\)	300 ± 134.92\(^b\)	20 ± 15.93\(^b\)
Nitrogen (dag/kg)	1.746 ± 0.213\(^a\)	1.352 ± 0.162\(^b\)	1.034 ± 0.097\(^c\)
Potassium (dag/kg)	0.339 ± 0.085\(^a\)	0.313 ± 0.054\(^a\)	0.647 ± 0.130\(^b\)
Calcium (dag/kg)	1.313 ± 0.372\(^a\)	0.879 ± 0.351\(^b\)	1.267 ± 0.377\(^a\)
Magnesium (dag/kg)	0.222 ± 0.047\(^a\)	0.090 ± 0.028\(^b\)	0.146 ± 0.043\(^c\)
Leaf thickness (mm)	0.266 ± 0.017\(^a\)	0.471 ± 0.033\(^b\)	0.549 ± 0.101\(^c\)
Herbivory (%)	5.58 ± 3.86\(^a\)	3.50 ± 1.80\(^b\)	2.97 ± 2.33\(^b\)

Different letters indicate statistical differences between the variables.
Fig. 4 Differences amongst growth units (A), leaf density (B), leaf nitrogen (C), sclerophylly (D) and herbivory (E) in three plant species of different life forms. The shades of grey of boxplots represent differences between habitats.
Nitrogen ($F_{1,131} = 16.58; P < 0.001$) (Fig. 5) and Potassium content ($F_{1,130} = 5.17; P < 0.02$). We also found a significant interaction between the number of growth units and species, i.e. herbivory increased significantly with the number of growth units for *B. variabilis* and *B. subterranea*, but not for *B. sericea* ($F_{1,132} = 35.94; P < 0.001$). However, there was no relationship between herbivory levels and sclerophylly ($F_{1,129} = 16.58; P < 0.001$) (Fig. 6).

Discussion

We found strong evidence that the variation of functional characteristics is influenced by soil nutrient content and that, consequently, these functional characteristics affect herbivory levels experienced by plants. In the present study, the average rates of foliar consumption by insect herbivores were generally low compared to the global patterns of herbivory, which show an average of 4.5% of leaf area lost (Kozlov et al. 2015). The tree species here studied exhibited the highest level of herbivory amongst the three species occurred in a high-productivity forest habitat and with the highest nutrient content in its leaves. The shrub and sub-shrub life forms, on the other hand, occupied oligotrophic habitats and were less consumed by herbivorous insects. These results indicate different strategies of resource use and acquisition (Wright et al. 2004). Tree species have characteristics (such as many...
growth units and high leaf nutrient content) associated with the ability to quickly capture light and nutrients (Ordoñez et al. 2009; Poorter et al. 2010; Reich 2014). On the other hand, the shrub and sub-shrub species exhibit a conservative strategy, as they have functional characteristics (like sclerophyll) linked to tissue protection (Díaz et al. 2004; Reich 2014). This continuum amongst acquisitive and conservative strategies can be mediated by soil nutrients (Hernández-Vargas et al. 2019). Our results indicate that soils with higher concentration of macronutrients and organic matter (i.e. more productive soils) positively affect plant height, growth units, leaf nutrient concentration and leaf density. In contrast, these richer soils lower the levels of plant sclerophyll. Soils with high concentrations of toxic elements—such as aluminium—on the other hand, were associated to increased sclerophyll (Feller 1995; Brady et al. 2005; Ribeiro et al. 2016). Consequently, growth units, leaf nutrient concentration and leaf density positively affected herbivory levels, whereas sclerophyll was inversely related to the amount of tissue removed by insects. Similar results were found by Lynn and Fridley (2019) suggesting an effect of soil on functional characteristics and consequently on plant herbivory.

The three studied species of Byrsonima occurred along a soil nutritional gradient, from the lowland forest—the most fertile habitat—to the campo rupestre, a comparably poorer habitat. Life form and architecture here described are probably consequences of adaptive demands linked to abiotic environmental conditions, as suggested by Grime (1977) and Crawley (1997). The number of growth units, leaf density and higher leaf nutrient concentration in tree species are typical characteristics of plants from productive environments (Wright et al. 2004). The smaller number of growth units of shrubs and sub-shrubs may be related to a trade-off in biomass investment amongst resources for growth and protection of plant tissues. Both species occurred as a shrub or sub-shrub life forms and are highly sclerophyllous, compatible with what is expected for species occurring in the campo rupestre (Ribeiro et al. 1999; Negreiros et al. 2014; Silveira et al. 2016). Therefore, the functional traits of the plants respond to the gradient of resource availability of the habitats, and consequently herbivory levels follow this gradient, supporting our hypothesis.

Our results also corroborate the Resource Availability Hypothesis (Coley et al. 1985; Lau et al. 2008) and the plant architecture hypothesis—PAH (Lawton 1983). The crown architecture (measured in our study by the number of growth units) has a strong relationship with herbivory levels (Zvereva et al. 2014; Pereira et al. 2016). Some previous studies have shown, for example, that the size of the plant positively influences the availability of niche for the survival and feeding of herbivores (Hannunen 2002; Campos et al. 2006; Randlkofer et al. 2009). In addition, our results are in line with the Plant Apparency Hypothesis, which predicts that larger plants are more likely to be found by herbivorous insects (Feeny 1976; Rhoades and Cates 1976, Smilanich et al. 2016). Our data corroborate other studies that found the positive effect of apparency and herbivory (Castagneryol et al. 2013; Strauss et al. 2013; Smilanich et al. 2016). Our results, however, indicated a positive relationship between number of growth units and herbivory only for shrubs compared to sub-shrubs. This relationship between apparency and levels of herbivory can be even more important in open environments, such as the rupestrian field, where visible plants are even more easily found by herbivorous insects.

Leaf nutrient content also influenced positively herbivory levels in Byrsonima species, as previously reported (e.g. Casotti and Bradley 1991; Meloni et al. 2012; Silva et al. 2015). Soil nutrient availability and leaf nutritional content have been related to the production of simple and low-cost tissues, which facilitates insect feeding (Coley 1983; Coley et al. 1985; Price 1991), and may clearly affect plant selection by insects (Mattson 1980). We did not find a relationship between sclerophyll and herbivory levels, contrary to other studies (e.g. Pennings and Paul 1992; Ribeiro and Basset 2007; Malishev and Sanson 2015), although sclerophyll in tree species was the lowest. However, Byrsonima shrub and sub-shrubs exhibited high sclerophyll, as commonly expected for species that occur in the campo rupestre (Negreiros et al. 2014). We attributed this result to the fact that the campo rupestre is a geologically old biome, accumulating 65 million years of species adaptation and speciation (Silveira et al. 2016), where high sclerophyll is expected to be a default trait (Ribeiro et al. 1999). It is likely that herbivorous species have had time to evolve strategies to deal with
sclerophyll in these habitats. Similar results were reported by Meloni et al. (2012), indicating that concentrations of defensive compounds in Cerrado plants did not inhibit herbivory, probably due to a very long period for adaptation. Therefore, data suggest that as herbivores have already overcome the barrier of leaf toughness, they can choose the most nutritious plants, regardless of the levels of sclerophyll. It is important to acknowledge, however, that sclerophyll in our study was measured as leaf thickness, and other leaf traits, such as leaf specific area and leaf specific mass, should also be addressed as potential drivers for the levels of herbivory in plants.

Our data have shown that species along a gradient of soil nutrients have functional characteristics influenced by habitat, ultimately affecting herbivory levels. Differences in herbivory levels amongst species of distinct life forms can be explained by functional characteristics, which are an adaptive response to habitat type. By comparing species from different life forms but within the same genus, along a stress-gradient of continuous habitats, we described a corresponding gradient of plant tissue consumption by herbivorous insects. The confounding effects between habitat resource availability and plant life forms but within the same genus, along a stress-gradient of continuous habitats, we described a corresponding gradient of plant tissue consumption by herbivorous insects. The confounding effects between habitat resource availability and plant life form were coherent with theoretical predictions. Data amongst species, however, is suggestive of evolutionary filters that may further constrain herbivores in high-altitude grasslands.

Acknowledgements We thank the Instituto Estadual de Florestas (IEF-MG) for logistic support at collection sites and Bárbara Dolabela for carefully reading and reviewing the first draft of the manuscript. Victor D. Pinto thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior for funding (Financial Code 001). Sérvio P. Ribeiro and T. Cornelissen are CNPq granted researchers (304024/2015-5 and 313007/2020-9).

Funding This research was supported by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (APQ-03035-18), and the Long-Term Ecological Research project (PELD) (15/2016 CNPq).

References

Allan E, Crawley MJ (2011) Contrasting effects of insect and molluscian herbivores on plant diversity in a long-term field experiment. Ecol Lett 14:1246–1253. https://doi.org/10.1111/j.1461-0248.2011.01694.x

Alvares CA, Stape JL, Sentelhas PC, Golçalves JLM, Sparovek G (2014) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

Anderson WR (1977) Byssorminoideae, a new subfamily of the Malpighiaceae. Leandra 7:5–18

Bell AD, Bell A, Dines TD (1999) Branch construction and bud defence status at the canopy surface of a West African rainforest. Biol J Lin Soc 66:481–499. https://doi.org/10.111/j.1095-8312.1999.tb01922.x

Boaventura MG, Pereira CC, Cornelissen T (2018) Plant architecture influences gall abundance in a tropical montane plant species. Acta Botanica Brasilica 32:670–674. https://doi.org/10.1590/0102-33062018ab0038

Bona C, Pellanda RM, Carlucci MB, Machado RGP, Ciccarelli D (2020) Functional traits reveal coastal vegetation assembly patterns in a short edaphic gradient in southern Brazil. Flora 271:151661. https://doi.org/10.1016/j.flora.2020.151661

Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

Bryant JP, Chapin FS, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368. https://doi.org/10.2307/5544308

Campos RI, Vasconcelos HL, Ribeiro SP, Neves FS, Soares JP (2006) Relationship between tree size and insect assemblages associated with Anadenanthera macrocarpa. Ecography 29:442–450. https://doi.org/10.1111/j.2006.0906-7590.04520.x

Carmona D, Lajeunesse MJ, Johnson MJT (2011) Plant traits that predict resistance to herbivores. Func Ecol 25:358–367. https://doi.org/10.1111/j.1365-2435.2010.01794.x

Castagneyro G, Giffard B, Péré C, Jactel H (2013) Plant apparency, an overlooked driver of associational resistance to insect herbivory. J Ecol 101:418–429. https://doi.org/10.1111/j.1365-2745.12055

Casotti G, Bradley JS (1991) Leaf nitrogen and its effects on the rate of herbivory on selected eucalypts in the jarrah forest. For Ecol Manage 41:167–177. https://doi.org/10.1016/0378-1127(91)90101-Z

Castells E, Morante M, Saura-Mas S, Blasco-Moreno A (2017) Plant-herbivore assemblages under natural conditions are driven by plant size, not chemical defenses. J Plant Ecol 10:1012–1021. https://doi.org/10.1007/jpée/rtw131

Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophyll: their correlations and ecological implications. New Phytol 121:597–610. https://doi.org/10.1111/j.1469-8137.1992.tb01131.x

Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:2662–2675. https://doi.org/10.1890/0012-9658

Coley PD (1983) Herbivory and defensive characteristics of tree species in a Lowland tropical forest. Ecol Monogr 55:209–234. https://doi.org/10.2307/1942495
Malinovsky Y, Cuevas-Reys P, Sánchez-Montoya G, Oyama K, Quesada M (2014) Growth, plant quality and leaf damage patterns in a dioecious tree species: is gender important? Arthropod-Plant Interc 8:241–251

Malishev M, Sanson GD (2015) Leaf mechanics and herbivory defence: how tough tissue along the leaf body deters growing insect herbivores. Austral Ecol 40:300–308. https://doi.org/10.1111/aec.12214

Mamede MCH, Francener A (2015) Byrsonima: in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. Available from URL http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB8827

Mark AF, Dickinson KJM, Allen J, Smith R, West CJ (2001) Defense: how tough tissue along the leaf body deters insect herbivores. Austral Ecol 26:423–440. https://doi.org/10.1046/j.1442-9993.2001.01127.x

Martini F, Althuthatha WT, Mammides C, Armani A, Goodale UM (2021) Plant apparency drives leaf herbivory in seedling communities across four subtropical forests. Oecologia 195:575–587. https://doi.org/10.1007/s00442-020-04804-8

Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. https://doi.org/10.1146/annurev.es.11.110180.001003

Mello FNA, Estrada-Villegas SDM, Schnitzer SA (2020) Can functional traits explain plant coexistence? A case study with tropical lianas and trees. Diversity 12:397. https://doi.org/10.3390/diversity12100397

Meneghetti AM (2018) Análise química de tecido vegetal. Manual de procedimentos de amostragem e análise química de plantas, solo e fertilizantes, 22nd edn. EDUTFPR, Curitiba, pp 191–231

Moreira X, Castagneryol B, Abdala-Roberts L, Travest A (2019) A meta-analysis of herbivore effects on plant attractiveness to pollinators. Ecology 100:1–8. https://doi.org/10.1002/ecy.2707

Negreiros D, Stradic SL, Fernandes GW, Rennó HC (2014) CSR analysis of plant functional types in highly diverse tropical grasslands of harsh environments. Plant Ecol 388:215–379. https://doi.org/10.1007/s10442-014-0302-6

Neves FS, Sperber CF, Campos RL, Ribeiro SP (2013) Contrasting effects of sampling scale on insect herbivores distribution in response to canopy structure. Rev Biol Trop 61:125–137. https://doi.org/10.15517/rtb.v61i1.10894

Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265. https://doi.org/10.1016/s1090-6983(98)01364-0

Ordonez JC, Bodegom PM, Witte JM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob Ecol Biogeogr 18:137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.x

Pennings SC, Paul V (1992) Effect of plant toughness, calcification, and chemistry on herbivory by Dolabella auricularia. Ecology 73:1606–1619. https://doi.org/10.2307/1940014

Pereira JA, Londe V, Ribeiro SP, Sousa HC (2016) Crown architecture and leaf anatomic traits influencing herbivory on Clethra scabra pers.: comparing adaptation to wetlands and drained habitats. Braz J Bot 1:1–10. https://doi.org/10.1007/s40415-016-0343-2

Pérez-Harguindeguy N et al (2013) New handbook for standardized measurement of plant functional traits worldwide. Ann Bot 61:167–234. https://doi.org/10.1071/BT12225

Poorter L, Kitajima K, Mercado P, Chubina J, Melgar I, Prins HHT (2010) Respouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology 91:2613–2627. https://doi.org/10.1890/09-0862.1

Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global Biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134. https://doi.org/10.1111/j.1365-2745.2007.01070.x

Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251. https://doi.org/10.2307/3545270

R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Raij B, Andrade JC, Cantarella H, Andrade JC (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, Campinas

Randlikofer B, Jordan F, Mittenes O, Meiners T, Obermaier E (2009) Effect of vegetation density, height, and connectivity on the oviposition pattern of the leaf beetle Galeruca tanaceti. Entomol Exp Appl 132:134–146. https://doi.org/10.1111/j.1570-7489.2009.00872.x

Raubenheimer D, Simpson SJ (1997) Integrative models of nutrient balancing: application to insects and vertebrates. Nutr Res Rev 10:151–179. https://doi.org/10.1079/NRR19970009

Reich PB (2014) The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211

Rhoaodes D, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace J, Mansell R (eds) Biochemical interactions between plants and insects. Recent advances in phytochemistry. Academic Press, New York, pp 155–204

Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophyll. Ecoscience 14:663–672. https://doi.org/10.1071/jj.2007.0906-7590.05083.x

Ribeiro SP, Brown VK (2006) Prevalence of monodominant vigorous tree populations in the tropics: herbivory pressure on species in very different habitats. J Ecol 94:932–941. https://doi.org/10.1111/j.1365-2745.2006.01133.x

Ribeiro SP, Braga AO, Silva CHL, Silva L, Fernandes GW (1999) Leaf polyphenols in Brazilian Melastomataceae: sclerophyll, habitats, and insect herbivores. Ecotropica 5:137–146

Ribeiro SP, Borges PAV, Gaspar C, Melo C, Artur RM, Serrano ARM, Amaral J, Aguiar C, Genage A, Quartau JA (2005)
Canopy insect herbivores in the Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecology 28:315–330. https://doi.org/10.1111/j.0906-7590.2005.00410.x

Ribeiro SP, Londe V, Bueno AP, Barbosa JS, Corrêa TL, Soetl T, Maia M, Pinto WD, Duela GF, Sousa HC, Kozovits AR, Naliní HA (2016) Plant defense against leaf herbivory based on metal accumulation: examples from a tropical high altitude ecosystem. Plant Species Biol 32:147–155. https://doi.org/10.1016/j.ipsb.2015.01.005

Rodrigues PMS, Schaefer CEGR, Silva JO, Ferreira WGJ, Santos RM, Neri AV (2018) The influence of soil on vegetation structure and plant diversity in different tropical savannic and forest habitats. J Plant Ecol 11:226–236. https://doi.org/10.1093/jpe/rtw135

Roeder AK, Behmer ST (2014) Lifetime consequences of food protein-carbohydrate content for an insect herbivore. Funct Ecol 28:1135–1143. https://doi.org/10.1111/1365-2435.12262

Ruggiero PGC, Batalha MA, Pivello VR, Meirelles ST (2002) Soil-vegetation relationships in cerrado (Brazilian savanna) and semi deciduous forest, Southeastern Brazil. Plant Ecol 160:1–16. https://doi.org/10.1023/A:1015819219386

Santiago LS, Wright SJ (2007) Leaf functional traits of tropical forest plants in relation to growth form. Funct Ecol 21:19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.x

Schiestl FP, Kirk H, Bigler L, Cozzolino S, Desurmont GA (2016) Comparing plants and connecting community. Ecolography 28:315–330. https://doi.org/10.1111/j.0906-7590.2005.00410.x

Silveira FAO, Negreiros D, Barbosa NPU et al (2016) Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant Soil 403:129–152. https://doi.org/10.1007/s11104-015-2637-8

Smilanić AM, Fincher RM, Dyer LA (2016) Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. New Phytol 210:1044–1057. https://doi.org/10.1111/nph.13875

Spawton KA, Wetzel WC (2015) Gall-Insect community on big sagebrush varies with plant size but not plant age. Environ Entomol 4:1095–1101. https://doi.org/10.1093/ee/nvv087

Straus SY, Conner JK, Rush SL (1996) Foliar Herbivory Affects Floral Characters and Plant Attractiveness to Pollinators: Implications for Male and Female Plant Fitness. Am Nat 147:1098–1107. https://doi.org/10.1086/285896

Straw SY, Cacho NI (2013) Nowhere to run, nowhere to hide: the importance of enemies and apparency in adaptation to harsh soil environments. Am Nat 182:1–14. https://doi.org/10.1086/670754

Straus SY, Conner JK, Rush SL (1996) Foliar herbivory affects floral characters and plant attractiveness to pollinators: implications for male and female plant fitness. Am Nat 147:1098–1197

Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–542. https://doi.org/10.1016/s1360-1385(00)01797-0

Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel H, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct Ecol 15:423–434. https://doi.org/10.1046/j.0269-8463.2001.00542.x

Wright I, Reich P, Westoby M et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827. https://doi.org/10.1038/nature02403

Zhang S, Zhang Y, Ma K (2016) The association of leaf lifespan and background insect herbivory at the interspecific level. Ecology 98:425–432. https://doi.org/10.1002/ecy.1649

Zvereva EL, Kozlov M (2014) Effects of herbivory on leaf life span in woody plants: a meta-analysis. Oikos 147:1098–1107. https://doi.org/10.1086/285896

Zvereva EL, Kozlov M (2014) High densities of leaf-insect herbivores in the Azorean Laurisilva forests: key host plant species in a highly generalist insect community. Ecolography 28:315–330. https://doi.org/10.1111/j.0906-7590.2005.00410.x

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.