Coronavirus disease 2019 gastrointestinal and liver manifestations in adults: A review

Apichet Sirinawasatien,*† Tanyaporn Chantarojanasiri,* Sirina Ekpanyapong,*‡ Naris Tivatunsakul† and Viravarn Luvira‡

*Division of Gastroenterology, Department of Medicine, Rajavithi Hospital, College of Medicine, Rungsit University, †Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok and ‡Division of Gastroenterology, Department of Medicine, Banpong Hospital, Rachaburi, Thailand

Key words
angiotensin-converting enzyme 2 receptor, coronavirus disease 2019, diarrhea, gastrointestinal, liver, severe acute respiratory syndrome coronavirus 2.

Accepted for publication 12 October 2021.

Correspondence
Apichet Sirinawasatien, Division of Gastroenterology, Department of Internal Medicine, Rajavithi Hospital, College of Medicine, Rungsit University, Bangkok, 10400 Thailand. Email: sui_apichet@hotmail.com

Apichet Sirinawasatien and Tanyaporn Chantarojanasiri contributed equally to this work.

Declaration of conflict of interest: The authors declare that they have no competing interests.

Author contribution: Apichet Sirinawasatien and Tanyaporn Chantarojanasiri devised the project, the main conceptual ideas and manuscript revision; Sirina Ekpanyapong and Naris Tivatunsakul searched the literature and drafted the manuscript; Viravarn Luvira edited and revised the manuscript. All authors have read and approved the final manuscript.

Abstract

Coronavirus disease 2019 (COVID-19) is an important health problem that has a serious adverse impact on the global economy and healthcare systems. The virus is not only involved in the respiratory system, but also causes other systemic effects as well as several gastrointestinal and liver issues. Evidence has shown direct viral invasion into the gastrointestinal tissue and supporting vascular network, causing various manifestations such as diarrhea, nausea, gastrointestinal bleeding, and abnormal liver function tests. The degree of gastrointestinal injury, especially in terms of liver involvement, is correlated with disease severity. There is no specific treatment for gastrointestinal involvement, and the symptoms can be managed with supportive therapy. Moreover, increased liver decompensation and mortality can be found in COVID-19-infected patients with coexisting liver disease. As the virus can be identified in gastrointestinal contents, endoscopic procedures during the pandemic should be carefully selected and proper protection strategies should be encouraged to prevent viral transmission.

Introduction

In December 2019, a group of patients in Wuhan, China, developed viral pneumonia caused by a newly identified β-coronavirus.1–3 The virus was renamed, “severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),” and the disease that causes it is called coronavirus disease 2019 (COVID-19).2,4

SARS-CoV-2 is an enveloped, single-stranded, positive-sense RNA virus with a high transmission ability.5,6 From the first outbreak on 30 January 2020, in China, COVID-19 was registered as the sixth Public Health Emergency of International Concern (PHEIC) by the World Health Organization which declared COVID-19 as a pandemic on 11 March 2020.7,8 Later, SARS-CoV-2, spread all over the world, leading to more than 79.2 million cases and over 1.7 million deaths by the end of 2020.9

Gastrointestinal symptoms in COVID-19 patients are common and have been reported to correlate with disease severity.10 Moreover, the virus particles can be identified in the gastrointestinal luminal content, which suggests a relationship between the virus and the gastrointestinal tract. This review aims to provide information regarding the gastrointestinal and liver manifestations of COVID-19, as well as its management during pandemics. To achieve this, a search was made of English-language human studies listed in the PubMed database, EMBASE, and other research published between February 2020 and March 2021. The keywords gastrointestinal and liver were used alone or in combination with COVID-19. The references of the identified articles were also searched for potentially relevant studies, and systematic reviews, meta-analyses, and case reports of special techniques were included. Duplicated data or data published as abstracts in academic meetings were excluded.
Clinical course of SARS-CoV-2 infection

The mechanism by which a virus that originates in animals can spread to humans involves genetic alterations that enable it to infect and be transmitted from humans to humans. There is a similarity between SARS-CoV-2 and Bat-CoV-RaTG13 (a SARS-like betacoronavirus in bats), supposing that a bat might be an initial host and Manis pentadactyla (Chinese pangolin) as the intermediate host, while humans act as accidental hosts. Some studies have shown that pigs or pangolins might have been intermediate hosts and snakes are probably among the virus reservoirs for human infection.11,12

The incubation period for COVID-19 is generally not greater than 14 days following exposure, with a median time of 5 days.13,14 The infection is associated with five different clinical courses: Asymptomatic infection, mild to moderate cases, severe cases, critical cases, and death.15,16 Although it is highly transmissible, more than 80% of infected patients have mild disease.15,17 The remaining 20% have severe disease, and approximately 5% of patients exhibit critical illnesses such as respiratory arrest, septic shock, or multiple organ failure.13,18 SARS-CoV-2 infection has an estimated 1–3% mortality rate due to the development of acute respiratory distress syndrome (ARDS), and uncontrolled immune stimulation, the so-called “cytokine storm.” Risk factors associated with mortality include advanced age, obesity, diabetes, and hypertension.19 Other complications of COVID-19 include cardiac and cardiovascular complications, arrhythmias, acute cardiac injury, and shock. Thromboembolic complications, including pulmonary embolism and acute stroke, as well as neurologic complications, including encephalopathy, have also been reported.

Mechanism of gastrointestinal involvement

SARS-CoV-2 uses the receptor angiotensin-converting enzyme 2 (ACE2) to enter cells in the human lower respiratory tract. This receptor is also abundant in gastrointestinal epithelial cells.13,20,21 As a result, apart from nasopharyngeal swabs, SARS-CoV-2 particles can also be found in fecal samples, esophagus, stomach, duodenum, and rectum.22,23 Evidence of COVID-19 infection in the gastrointestinal tract has also been discovered by isolating viral RNA from gastrointestinal epithelial cells and by intracellular staining of viral nucleocapsid proteins in the same cell.24

The COVID-19 pathogen enters the gastrointestinal epithelial cells through binding of its spike (S) proteins to the cellular surface ACE2 receptors (Fig. 1). Following cell entry, the virus hijacks host cell organelles to produce viral RNA and proteins. Finally, the newly assembled virions are secreted from the infected cell into the intestinal lumen by exocytosis.25 An intraacellular interferon-mediated immune response triggered by SARS-CoV-2 infection and the activation of immune responses from lymphocytes and inflammatory cells, which infiltrated the lamina propria, leads to the release of cytokines such as interleukin 2, 6, 7, 10, tumor necrosis factor (TNF) \(\alpha \) and calprotectin.26 These cytokines, in turn, mediate various effects on the gastrointestinal tract,27 as shown in Figure 1.

The SARS-CoV-2 viral RNA can be detected in feces in almost half (48.1%) of the COVID-19 patients with gastrointestinal symptoms compared to approximately 9% of patients without gastrointestinal symptoms.10 The viral shedding in stool can persist up to 33–47 days after the first onset of illness, which is even

![Figure 1](https://example.com/image1)
Schematic representation of the mechanism of coronavirus disease 2019 infection on the enterocytes and its effect with various part of gastrointestinal system. The virus adheres to the intestinal mucosa via angiotensin-converting enzyme 2 receptors and produce various cytokines as well as chemoattractant proteins and inflammation proteins that cause injuries to various organ in gastrointestinal system (adapted from reference27).
longer than the clearance of the virus from the respiratory tract.5,28–30 The prolonged duration of viral shedding through fecal material suggests the importance of preventive measures against fecal contamination.

There have been numerous reported cases of diagnosed COVID-19 patients presenting with gastrointestinal manifestations, such as diarrhea, nausea, vomiting, and abdominal pain. The prevalence of GI symptoms varies greatly, ranging from 2 to 57%.31–33 In addition, many cases have been reported of abnormal liver chemistry during disease progression and higher rates of liver dysfunction have been found in patients with severe disease.34–41

Gastrointestinal manifestation

The symptoms of patients infected with SARS-CoV-2 are summarized in Figure 2.19 Several studies from different countries have reported a wide range of gastrointestinal symptoms (Table 1).2,42 Also, these patients with gastrointestinal symptoms seem to require longer periods of hospitalization.35–37,43 In contrast, the time from gastrointestinal symptoms to hospital presentation was 9 days, compared with 7.3 days for patients with respiratory symptoms.13

Gastrointestinal symptoms can be found ranged from 1.1 to 49.5% of COVID-19 patients according to different studies. The most common symptoms are diarrhea (2–49.5%), anorexia (26.8%), nausea and or vomiting (3.9–10.2%), and abdominal pain (1.1–9.2%).2,10,42,44,45 Gastrointestinal symptoms usually worsen with disease progression and are correlated with a more insidious onset of disease.2,33 There have also been reports of acute hemorrhagic colitis presenting with gastrointestinal bleeding.2,30,33,42 Interestingly, in a meta-analysis, the occurrence of gastrointestinal bleeding was found to be associated with increased mortality.36 Apart from the luminal involvement itself, endothelialitis and microthrombi with evidence of SARS-CoV-2 viral particle deposition have been reported in COVID-19 patients presenting with respiratory failure, and nonocclusive mesenteric ischemia has been found in those who underwent colectomy.37,48 These findings could be explained by the expression of ACE2 on intestinal enterocytes, which makes both the small and large intestines susceptible to SARS-CoV-2 infections.24,44,49,50

Another organ that has been attacked by SARS-CoV-2 is the pancreas.13 A recent study by Wang et al. of 52 patients with COVID-19 pneumonia revealed that 17% experienced pancreatic injury, which was defined as elevated amylase or lipase.51 Mechanisms by which pancreatic injury could occur include direct cytopathic effects of SARS-CoV-2, or indirect systemic inflammatory and immune-mediated cellular responses, leading to organ damage or secondary enzyme abnormalities. Abundant amounts of ACE2 receptors are found in pancreatic islet cells, indicating that SARS-CoV-2 may also bind to ACE2 receptors in the pancreas and cause pancreatic injury.52

Management of gastrointestinal involvements

Gastrointestinal symptoms such as nausea and vomiting can be treated with antiemetic medication; however, before initiating supportive care, further investigation is recommended to rule out infectious causes such as \textit{Clostridium difficile} infection. The use of antibiotics remains controversial and is recommended only

Figure 2 Systemic manifestations of coronavirus disease 2019 (adapted from reference19).
when a coinfection is noticed. Patients should be informed about hand hygiene and the importance of maintaining social distancing.42

Due to evidence of SARS-CoV-2 involving the gastrointestinal tract, many therapies and interventions for gastrointestinal diseases need to be adapted to reduce the spread of the virus through luminal content during the pandemic. There are several concerns and the recommended guidelines for endoscopic procedures, fecal transplantation, and management in patients with inflammatory bowel disease.

Gastrointestinal endoscopy. As gastrointestinal endoscopy is considered to be an aerosol-generating procedure,53 there have been many recommendations for gastrointestinal endoscopy during the COVID-19 pandemic. The general recommendations are as follows53,54:

1. Screening and assessment of the risk of COVID-19 infection should be performed before endoscopy with consideration given to COVID-19 screening before the procedure.
2. Elective procedures should be deferred.
3. The exposure of medical personnel should be minimized, and working schedules should be rearranged in accordance with local resources.
4. Proper use of personal protective equipment (PPE) needs to be practiced.
5. In cases of suspected or confirmed COVID-19, endoscopy should be performed in a negative pressure room.
6. An enhanced disinfection policy for endoscopy rooms and reprocessing should be implemented.
7. Stepwise resumption of elective endoscopy should be managed according to local COVID-19 controls and resources.

Fecal transplantation. The fecal microbiota transplantation process also faces several challenges during the COVID-19 pandemic. One of the most alarming problems is the possibility of COVID-19 transmission from infected donors. Although most stool banks develop protocols for donor screening before fecal microbiota transplantation, the routine protocol may be unable to detect asymptomatic carriers. As a result, aggressive donor screening is recommended for all feces, regardless of risk factors.44,55,56

Inflammatory bowel disease. Inflammatory bowel disease (IBD) is a chronic inflammatory disease that requires treatment with various immunomodulators and immunosuppressants. Moreover, many procedures may be required during treatment. In principle, the immunomodulators and immunosuppressants prescription should stop when patients test positive for SARS-CoV-2 unless there is an indication to use immunosuppressive agents (e.g. steroid, tofacitinib) for COVID-19 treatment. If a patient with IBD is infected with SARS-CoV-2, treatment modification is recommended as follows15:

1. Patients who are taking 5-aminosalicylic acid therapy should continue their treatment.
2. Patients taking budesonide therapy may continue their treatment.
3. Patients taking anti-tumor necrosis factors should stop therapy.

Table 1 Gastrointestinal findings in patients with coronavirus disease 2019

Ref.	Number of patients	Anorexia/Loss of appetite (%)	Diarrhea (%)	Nausea (%)	Vomiting (%)	Abdominal pain/discomfort (%)	GI bleeding
Wang et al.39	138	55 (39.9%)	14 (10.1%)	14 (10.1%)	5 (3.6%)	NA	
Guan et al.36	1099	NA	42 (3.8%)	55 (5%)	both for nausea and vomiting	NA	NA
Pan et al.33	103	81 (78.64%)	35 (33.98%)	NA	4 (3.88%)	2 (1.94%)	NA
Zhang et al.83	140	17/139 (12.2%)	18/139 (12.9%)	24/139 (17.3%)	7/139 (5%)	8/139 (5.8%)	NA
Lin et al.84	95 (58 with GI manifestations)	17 (17.9%)	23 (24.2%)	17 (17.9%)	4 (4.2%)	2 (2.1%)	2 (2.1%)
Cheung et al.10	59 (15 with GI manifestations)	NA	13 (22%)	NA	1 (1.7%)	7 (11.9%)	NA
Xiao et al.24	73	NA	26 (35.6%)	NA	NA	NA	NA

© 2021 The Authors. JGH Open published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Table 2 Prevalence of liver test abnormalities and mortality risk in patients with coronavirus disease 2019

Study	Country	Numbers	Pre-existing liver diseases	AST elevation	ALT elevation	Bilirubin elevation	ALP elevation
Guan et al.	China	1099	2.1%	22.2%	21.3%	10.5%	NA
Cai et al.	China	298	9.4%	8.4%	13.1%	8.1%	0.3%
Fan et al.	China	148	6.1%	21.6%	18.2%	6.1%	4.1%
Huang et al.	China	36	NA	58.1%	13.3%	12.9%	NA
Cao et al.	China	198	3%	17.4%	10.8%	2.6%	NA
Cai et al.	China	417	5%	18.2%	12.9%	23.2%	4.8%
Zhang et al.	China	115	NA	14.8%	9.6%	6.9%	5.2%
Tang et al.	China	20 662	4.2%	23.6%	19.0%	9.5%	NA
Lei et al.	China	5771	1.4%	Elevated AST was associated with the highest mortality risk			
Fu et al.	China	482	19.9%	20.3%	19.9%	4.8%	NA
Ji et al.	China	202	NAFLD 37.6%	16.8%	50%	8.4%	2.5%
Zhou et al.	China	327	NAFLD 28.4%	The prevalence of severe COVID-19 was observed in younger patients (age <60 years) with NAFLD more than 2-fold higher than those without NAFLD			
Yadav et al.	China	2115	4%	20%	19.9%	4.8%	NA
Sarin et al.	13 Asian countries	228	185 CLD patients and 43 cirrhosis (NAFLD 55%, viral 30%)	Mortality in CLD patients with COVID-19 vs cirrhosis with COVID-19 (2.7% vs 16.4%, P = 0.002)			
Kulkarni et al.	Multinational	20 874	CLD/Cirrhosis 61% NAFLD 19.5% HBV 17.8% HBV-HCC 0.5% HCV 0.7%	Pooled prevalence of CLD 3.6% (95% CI 2.5-5.1) and Pooled incidence of elevated liver chemistries in COVID-19 23.1% (95% CI 19.3-27.3) at initial presentation			
Vespa et al.	Italy	292	2%	18.7%	26.7%	10.6%	9.6%
Grasselli et al	Italy	1891	3%	18.7%	26.7%	10.6%	9.6%
Richardson et al	USA	5700	0.5%	58.4%	39.0%	Acute hepatic injury (AST or ALT >15 ULN) 2.1%	
Phipps et al.	USA	2273	5%	56-74%	24-45%	-45% mild, 21% moderate, 6.4% severe liver injury	
Hundt et al.	USA	1827	NA (Obesity 42.5%)	66.9%	41.6%	4.3%	13.5%
Lavarone et al.	Italy	50	Cirrhosis	67%	58%	- Overall 30-day mortality rate of 34%	

(Continues)
COVID-19 Gastrointestinal and Liver Manifestations

Table 2

Country	Study	Numbers	Pre-existing liver diseases	AST elevation	ALT elevation	Bilirubin elevation	ALP elevation
North America and Canada	Bajaj et al.	Patients with cirrhosis + COVID-19 (62)	Patients with cirrhosis + COVID-19 (62)	7.45	9.43	< 0.00001	0.0004
Multinational	Marjot et al.	Patients with cirrhosis + COVID-19 (75)	Patients with cirrhosis + COVID-19 (75)	11.79	13.82	< 0.00001	0.0002
SECURE-cirrhosis and COVID-Hep	Ma et al.	ALD, alcoholic liver disease, ALP, gamma-glutamyl transferase (GGT), hepatitis B virus (HBV), hepatitis C virus (HCV), nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), nonalcoholic steatohepatitis and cirrhosis (NASH-CIR), chronic hepatitis C virus (CHC), chronic liver disease (CLD), without cirrhosis and with cirrhosis	ALD, alcoholic liver disease, ALP, gamma-glutamyl transferase (GGT), hepatitis B virus (HBV), hepatitis C virus (HCV), nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), nonalcoholic steatohepatitis and cirrhosis (NASH-CIR), chronic hepatitis C virus (CHC), chronic liver disease (CLD), without cirrhosis and with cirrhosis	1.73	1.73	< 0.00001	0.0002

Liver manifestation of COVID-19

Abnormal liver function is common in patients with COVID-19. Aspartate transaminase (AST) or alanine transaminase (ALT) elevation has been reported in up to 13–58% of patients, while bilirubin elevation can be seen in 11–23% of patients, and less frequently, alkaline phosphatase (ALP) elevation in 5–10%, and gamma-glutamyl transferase (GGT) elevation in 13–54% of patients. The pattern of liver injury is mostly hepatocellular rather than cholestatic and usually mild.

Liver test abnormalities are more frequent in patients with more severe COVID-19, and their severity correlates with the outcome of COVID-19. A systematic review and meta-analysis from China (35 studies, 6686 patients with COVID-19) reported a significantly higher rate of abnormal liver function, including increased ALT (odds ratio [OR] = 1.89 [95% confidence interval—CI 1.30–2.76]; \(P = 0.0009 \)) and increased AST (OR = 3.08 [95% CI 2.14–4.42]; \(P < 0.00001 \)) in severe cases compared with nonsevere disease. Another study also demonstrated that 76.3% of patients with COVID-19 (\(n = 417 \)) had abnormal liver tests in hospital while 21.5% had “liver injury” defined as ALT and/or AST >3× the upper limit of normal (ULN) or ALP, GGT, and/or total bilirubin >2× ULN. AST is more frequently elevated than ALT and is associated with COVID-19 severity and mortality, which might reflect immune-mediated inflammation or other nonhepatic causes. The presence of abnormal liver tests and liver injury was associated with progression to severe pneumonia, and the use of lopinavir/ritonavir was also found to increase the odds of liver injury by 4-fold. In addition, low serum albumin levels on hospital admission were found to correlate with COVID-19 severity.

The possible pathogenesis of hepatic manifestation is believed to be multifactorial, including direct cytotoxic effect of the virus, which may be related to the ACE2 receptor in the liver, hyper-inflammatory cytokine and cytokine storm from immune responses, hypoxic–ischemic liver injury, drug-induced liver injury, or coexisting with underlying liver diseases (e.g. chronic viral hepatitis, nonalcoholic fatty liver disease [NAFLD], cirrhosis).

Chronic liver disease and cirrhosis with COVID-19

Current studies reported that approximately 1.4–20% of patients infected with COVID-19 also had concurrent chronic liver disease. Recent data from two international registries (COVID-Hep and SECURE-Cirrhosis) on 745 COVID-19 patients with pre-existing liver diseases (including 359 chronic liver disease [CLD] without cirrhosis and 386 cirrhosis) demonstrated various etiologies of CLD, including 43% NAFLD, 24% alcoholic liver disease (ALD), 13% hepatitis B virus (HBV), 5% hepatitis C virus (HCV), and 3% other viral infections; as a result, they should be stopped.

The above mentioned IBD medications can be restarted after patients recover from COVID-19.
12% hepatitis C virus (HCV), and 6.4% with hepatocellular carcinoma (HCC). The presence of cirrhosis in CLD should be considered a risk factor for developing severe COVID-19 and increased mortality rate (32% vs 8% when compared with no cirrhosis, \(P < 0.001 \)).\(^7\)\(^4\) COVID-19 infection has been reported to cause liver decompensation in one-fifth of cirrhotic patients and worsen the status of liver decompensation or causes liver failure, especially in patients with diabetes and obesity.\(^7\)\(^5\)\(^7\)\(^6\)

In patients with cirrhosis, mortality increased according to the Child-Pugh (CP) classification, with 19% in CP-A, 35% in CP-B, and 51% in CP-C.\(^7\)\(^4\) The main cause of death was respiratory failure (71%). Factors associated with death were age (OR = 1.02; 95% CI 1.01–1.04), CP A (OR = 1.90; 95% CI 1.03–3.52), B (OR = 4.14; 95% CI 2.4–7.65), or C (OR = 9.32; 95% CI 4.80–18.08), cirrhosis and alcohol-related liver disease (OR = 1.79; 95% CI 1.03–3.13).\(^7\)\(^4\) Moreover, emerging data have shown that NAFLD is associated with a higher risk of severe COVID-19 and prolonged viral shedding time.\(^8\) Summarized studies that report the prevalence of liver test abnormalities in patients with COVID-19, including those with CLD and cirrhosis, are described in Table 2.

In summary, COVID-19 causes a wide spectrum of gastrointestinal and liver involvement, ranging from direct invasion of the organism to the result of systemic immune processes. Gastrointestinal symptoms and liver function abnormalities are common during COVID-19 infection and may reflect disease severity. The possibility of viral transmission through gastrointestinal content should be considered, and protection against infected luminal content and aerosol-generated procedures during endoscopy should be emphasized. In addition, in patients with cirrhosis, COVID-19 infection is associated with an increased risk of liver decompensation and increased mortality.

Acknowledgment

Thanks to Kollawat Somsri for proofreading the article.

Ethics approval

The study was approved by the ethics committee of Rajavithi Hospital.

References

1. Wu F, Zhao S, Yu B et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579: 265–9.
2. Galanopoulos M, Gkeros F, Doukatas A et al. COVID-19 pandemic: pathophysiology and manifestations from the gastrointestinal tract. World J. Gastroenterol. 2020; 4579: 4579–88.
3. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020; 470: 470–3.
4. Zhu N, Zhang D, Wang W et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020; 727–33.
5. Aumpn N, Nunanan P, Vilaihong RK. Gastrointestinal manifestation as clinical predictor of severe COVID-19: a retrospective experience and literature review of COVID-19 in Association of Southeast Asian Nations (ASEAN). JGH Open. 2020; 1096: 1096–101.
6. Coronavirusidae Study Group of the International Committee on Taxonomy of V. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 536–44.
7. Baj J, Karakula-Juchnowicz H, Teresinski G et al. COVID-19: specific and non-specific clinical manifestations and symptoms: the current state of knowledge. J. Clin. Med. 2020; 9: 1753.
8. World Health Organization (WHO). 2005 Statement on the Second Meeting of the International Health Regulations Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). WHO: Geneva. Available from URL: https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). Accessed 30 Jan 2020.
9. WHO. WHO Weekly epidemiological update—29 December 2020 2020; Available from URL: https://www.who.int/publications/m/item/weekly-epidemiological-update-29-december-2020.
10. Cheung KS, Hung IFN, Chan PYY et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020; 81: 81–95.
11. Nasergandhi A, Allameh SF, Saffarpour R. All about COVID-19 in brief. New Microbes New Infect. 2020; 100678: 100678.
12. Sun P, Qie S, Liu Z, Ren J, Xi J. Clinical characteristics of 50466 patients with 2019-nCoV infection2020. medRxiv. 2020; https://doi.org/10.1101/2020.02.18.20024539.
13. Patel KP, Patel PA, Vunnam RR et al. Gastrointestinal, hepatobiliary, and pancreatic manifestations of COVID-19. J. Clin. Virol. 2020; 104386: 104386.
14. Lauer SA, Grantz KH, Bi Q et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med. 2020; 577: 577–82.
15. Magro F, Rahier JF, Abreu C et al. Inflammatory bowel disease management during the COVID-19 outbreak: the Ten Do’s and Don’ts from the ECCO-COVID Taskforce. J. Crohns Colitis. 2020; 5798: S798–806.
16. Jin Y, Yang H, Ji W et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses. 2020; 12: 372.
17. Danese S, Cecconi M, Spinelli A. Management of IBD during the COVID-19 outbreak: resetting clinical priorities. Nat. Rev. Gastroenterol. Hepatol. 2020; 253: 253–5.
18. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239–42.
19. Asselah T, Duranteel D, Pasman E, Lau G, Schinazi RF. COVID-19: discovery, diagnostics and drug development. J. Hepatol. 2021; 168: 168–84.
20. Guo YR, Cao QD, Hong Z et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res. 2020; 11: 11.
21. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J. Gastroenterol. Hepatol. 2020; 744: 744–8.
22. Lee IC, Huo TI, Huang YH. Gastrointestinal and liver manifestations in patients with COVID-19. J. Chin. Med. Assoc. 2020; 521: 521–3.
23. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020; 1444: 1444–8.
24. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 1831; 2020; 1831–1833.e3.
25 V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. *Nat. Rev. Microbiol.* 2021; **155**: 155–70.

26 Guo M, Tao W, Flavell RA, Zhu S. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. *Nat. Rev. Gastroenterol. Hepatol.* 2021; **269**: 269–83.

27 Kopel J, Perissetti A, Gajendran M, Boregowda U, Goyal H. Clinical insights into the gastrointestinal manifestations of COVID-19. *Dig. Sci.* 1932; **2020**: 1932–9.

28 Wu Y, Guo C, Tang L et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. *Lancet Gastroenterol. Hepatol.* 2020; **434**: 434–5.

29 Ling Y, Xu SB, Lin YX et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. *Clin Med J.* 2020; **133**(9): 1039–43.

30 Carvalho A, Alqusairi R, Adams A et al. SARS-CoV-2 gastrointestinal infection causing hemorrhagic colitis: implications for detection and transmission of COVID-19 disease. *Am J Gastroenterol.* 2020; **115**(6): 942–46.

31 Agarwal A, Chen A, Ravindran N, To C, Thuluvath PJ. Gastrointestinal and liver manifestations of COVID-19. *J. Clin. Exp. Hepatol.* 2020; **263**: 263–5.

32 Luo S, Zhang X, Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). *Clin. Gastroenterol. Hepatol.* 1636; 2020: 1636–7.

33 Pan L, Mu M, Yang P et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. *Am J Gastroenterol.* 2020; **115**(5): 766–73.

34 Liang W, Feng Z, Rao S et al. Diarrhoea may be underestimated: a missing link in 2019 novel coronavirus. *Gut.* 2020; **1141**: 1141–3.

35 Zhang C, Shi L, Wang F-S. Liver injury in COVID-19: management and challenges. *Lancet Gastroenterol. Hepatol.* 2020; **428**: 428–30.

36 Guan WJ, Ni ZY, Hu Y et al. Clinical characteristics of coronavirus disease 2019 in China. *N. Engl. J. Med.* 1708; 2020: 1708–20.

37 Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet.* 2020; **497**: 497–506.

38 Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. *Lancet.* 2020; **307**: 507–13.

39 Wang D, Hu B, Hu C et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. *JAMA.* 2020; **323**(11): 1061–69.

40 Shi H, Han X, Jiang N et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. *Lancet Infect. Dis.* 2020; **425**: 425–34.

41 Yang X, Yu Y, Xu J et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. *Lancet Respir. Med.* 2020; **8**(5): 475–81.

42 Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. *Aliment. Pharmacol. Ther.* 2020; **843**: 843–51.

43 Young BE, Ong SWX, Kalimuddin S et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. *JAMA.* 2020; **323**(15): 1488–94.

44 Cha MH, Reugeiro M, Sandhu DS. Gastrointestinal and hepatic manifestations of COVID-19: A comprehensive review. *World J. Gastroenterol.* 2020; **2323**: 2323–31.

45 Ungaro RC, Sullivan T, Colombel JF, Patel G. What should gastroenterologists and patients know about COVID-19? *Clin. Gastroenterol. Hepatol.* 2020; **1409**: 1409–11.

46 Zain M, Rigatelli G, Fogato L, Zuliani G, Roncon L. Higher risk of death in COVID-19 patients complicated by gastrointestinal bleeding events: a meta-analysis. *Minerva Gastroenterol.* 2021; PMID: 33793161.

47 Stahl K, Bransen JH, Hoepfer MM, David S. Direct evidence of SARS-CoV-2 in gut endothelium. *Intensive Care Med.* 2021; **2020**: 2081–2.

48 Stahl K, Bransen JH, Hoepfer MM, David S. Absence of SARS-CoV-2 RNA in COVID-19-associated intestinal endothelialitis. *Intensive Care Med.* 2021; **47**: 359–60.

49 Du M, Cai G, Chen F, Christiani DC, Zhang Z, Wang M. Multiomics evaluation of gastrointestinal and other clinical characteristics of COVID-19. *Gastroenterology.* 2020; **2298**: 2298–2301.e7.

50 Zhang H, Kang Z, Gong H et al. The digestive system is a potential route of 2019-nCoV infection: a bioinformatics analysis based on single-cell transcriptomes. *bioRxiv.* 2020; https://doi.org/10.1101/2020.01.30.927806.e1.

51 Wang F, Wang H, Fan J, Zhang Y, Wang H, Zhao Q. Pancreatic injury patterns in patients with coronavirus disease 19 pneumonia. *Gastroenterology.* 2020; **367**: 367–70.

52 Liu F, Long X, Zhang B, Zhang W, Chen X, Zhang Z. ACE2 expression in pancreas may cause pancreatic damage after SARS-CoV-2 infection. *Clin. Gastroenterol. Hepatol.* 2020; **2128**: 2128–2130.e2.

53 Kongkam P, Tiankanon K, Ratanalet S et al. The practice of endoscopy during the COVID-19 pandemic: recommendations from the Thai Association for Gastrointestinal Endoscopy (TAGE) in collaboration with the Endoscopy Nurse Society (Thailand). *Siriraj Med. J.* 2020; 383–8.

54 Chiu PWY, Ng SC, Inoue H et al. Practice of endoscopy during COVID-19 pandemic: position statements of the Asian Pacific Society for Digestive Endoscopy (APSDE-COVID statements). 2020; **991**: https://doi.org/10.1136/gutjnl-2020-321185%34.

55 Janio G, Mullish BH, Kelly CR et al. Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel. *Lancet Gastroenterol. Hepatol.* 2020; **430**: 430–2.

56 Green CA, Quraishi MN, Sabir S et al. Screening faecal microbiota transplant donors for SARS-CoV-2 by molecular testing of stool is the safest way forward. *Lancet Gastroenterol. Hepatol.* 2020; **531**: 531.

57 Cai Q, Huang D, Ou P et al. COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. *Allergy.* 1742; 2020: 1742–52.

58 Fan Z, Chen L, Li J et al. Clinical features of COVID-19-related liver functional abnormality. *Clin. Gastroenterol. Hepatol.* 2020; **1561**: 1561–6.

59 Fan Z, Chen L, Li J et al. Clinical Features of COVID-19-Related Liver Functional Abnormality. *Clin Gastroenterol Hepatol.* 2020; **1561**: 66.

60 Huang Y, Yang R, Xu Y, Gong P. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China. *medRxiv.* 2020.

61 Cao M, Zhang D, Wang Y et al. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. *medRxiv.* 2020.

62 Cai Q, Huang D, Yu H et al. COVID-19: abnormal liver function tests. *J. Hepatol.* 2020; **566**: 566–74.

63 Zhang Y, Zheng L, Liu L, Zhao M, Xiao J, Zhao Q. Liver impairment in COVID-19 patients: a retrospective analysis of 115 cases from a single centre in Wuhan city, China. *Liver Int.* 2020; **40**: 2095–103.

64 Tang C, Zhang K, Wang W et al. Clinical characteristics of 20.662 patients with COVID-19 in mainland China: a systemic review and meta-analysis. *medRxiv.* 2020; https://doi.org/10.1101/2020.04.18.20070565.

65 Fu Y, Zha R, Bai T et al. Clinical features of COVID-19-infected patients with elevated liver biochemistries: a multicenter retrospective study. *Hepatology.* 2021; **73**: 1509–20.
