Good rotations

M. Hénon and J-M. Petit
C.N.R.S., Observatoire de la Côte d’Azur,
B.P. 4229, 06304 Nice Cedex 4, France
henon@obs-nice.fr and petit@obs-nice.fr

Submitted to: Journal of Computational Physics
May 13, 1998

Subject classification: 65G05: roundoff errors; 70F15: celestial mechanics
Key words: Roundoff errors, numerical integrations, rotations
Running head: Good rotations

Send proofs to:

J-M. Petit
Observatoire de la Côte d’Azur
B.P. 4229, 06304 Nice Cedex 4, France
Fax: +33 4 92 00 30 33
E-mail: petit@obs-nice.fr
Abstract

Numerical integrations in celestial mechanics often involve the repeated computation of a rotation with a constant angle. A direct evaluation of these rotations yields a linear drift of the distance to the origin. This is due to roundoff in the representation of the sine s and cosine c of the angle θ. In a computer, one generally gets $c^2 + s^2 \neq 1$, resulting in a mapping that is slightly contracting or expanding. In the present paper we present a method to find pairs of representable real numbers s and c such that $c^2 + s^2$ is as close to 1 as possible. We show that this results in a drastic decrease of the systematic error, making it negligible compared to the random error of other operations. We also verify that this approach gives good results in a realistic celestial mechanics integration.
1 Introduction

In some numerical computations, a rotation around a fixed axis by a constant angle θ must be repeatedly applied. This occurs for instance in some long-term integrations in celestial mechanics where one must alternate between a fixed reference frame for integrating a Keplerian motion and a rotating frame to account for some rotating perturbing potential. A linear drift of the square distance to the axis is then generally observed, with the following properties:

- The rate of drift, defined as the relative change of the square distance to the axis per rotation, is of the order of the roundoff error. For instance, if the computations are made in single precision, the relative change is of the order of 10^{-7}.

- For a given value of θ, the rate of drift is independent of the initial conditions.

- The sign and the amplitude of the rate of drift seem to vary in quasi-random fashion with θ.

These properties suggest a simple explanation for the drift. Let us call Z the rotation axis and (X, Y) the plane perpendicular to the Z-axis. Then Z is invariant in the rotation which is simply computed by

$$\begin{pmatrix} X' \\ Y' \end{pmatrix} = \begin{pmatrix} c & -s \\ s & c \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

(1)

where ideally we should have

$$c = \cos \theta, \quad s = \sin \theta.$$

(2)

Actually, the values of c and s are rounded by the computer, and therefore $c^2 + s^2$ is not exactly 1. As a consequence, the mapping is slightly contracting or expanding, in a systematic way since the same rounded values c and s are used for every iteration.

To illustrate, consider a computation in single precision, with roundoff errors of the order of 2^{-24} (see below Sect.2). We assume for simplicity that each step of the computation involves one rotation. Then after t steps, the cumulative error resulting from the systematic roundoff errors on c and s is $\epsilon_0 \approx 2^{-24}t$. This is shown by the dotted line in Fig. 1.

Other roundoff errors occur in the multiplications and additions involved in (1), and in other parts of the computation which have to be done at each step. However, these other errors are generally quasi-random, since different values of X, Y, and other variables are involved at each step. A reasonable conjecture is then that the cumulative effect has the nature of a random walk, and that the
Figure 1: Roundoff errors as a function of the number of steps, in single precision. Dotted line: $\epsilon_0 = \text{error due to the roundoff of } \cos\theta \text{ and } \sin\theta$, for an arbitrarily chosen θ. Dashed line: $\epsilon_1 = \text{error due to other roundoffs.}$ Full line: $\epsilon_2 = \text{errors due to the roundoff of } \cos\theta \text{ and } \sin\theta$, for a “good rotation” (Eq. (14)). Dash-dot line: $\epsilon_3 = \text{same for Eq. (15) with } k = 32$.
error after t steps is of the order of $\epsilon_1 \approx 2^{-24}\sqrt{t}$. This is represented by the dashed line in Fig. 1.

It can be seen that ϵ_0 dominates. It is the cause of the observed linear drift.

This drift can be a problem for long-term integrations. In the case of Fig. 1, for instance, it results in a complete breakdown of the computation after only $2^{24} \approx 10^7$ steps. It is therefore desirable to remove this drift or at least to decrease its rate.

If there is some latitude in the choice of θ (for example if it is determined by the choice of an integration step), then a natural idea is to select a value for which the roundoff error is very small. This is the topic of the present paper.

M. Hénon is responsible for the mathematical basis; J.-M. Petit, for the numerical simulations.

2 Roundoff

A real number is usually approximated on a computer by a *representable number* of the form

$$\sigma \times m \times 2^e$$ \hspace{1cm} (3)

where $\sigma = \pm 1$ is the sign, m is the mantissa and e is the exponent.

In most cases, the number is *normalized*: the exponent is chosen in such a way that $1/2 \leq m < 1$, i.e. the binary representation of m has the form $0.1\ldots$. The 1 in the first position is then dropped and the next $p-1$ binary digits are stored. Thus, m is of the form

$$m = \frac{1}{2} + \frac{\nu}{2^p}$$ \hspace{1cm} (4)

where ν is the stored integer, which lies in the range

$$0 \leq \nu < 2^{p-1}. \hspace{1cm} (5)$$

Most computers today adhere to the IEEE754 standard [1, 5] and use $p = 24$ for single precision, $p = 53$ for double precision.

We consider now the binary representation c of $\cos \theta$. If $|\cos \theta| = 1$, it is exactly represented ($e = 1$, $\nu = 0$). If $1/2 \leq |c| < 1$, the exponent is $e = 0$, and the representable values are

$$|c| = 1/2 + \frac{\nu}{2^p}$$ \hspace{1cm} (6)

where ν can take all values in the range (5). If $1/4 \leq |c| < 1/2$, the exponent is $e = -1$, and the representable values are

$$|c| = 1/4 + \frac{\nu}{2^{p+1}}.$$ \hspace{1cm} (7)
To simplify the study, we consider only the subset of even values of ν, i.e. the values of c which are multiples of 2^{-p}. Similarly, for $1/8 \leq |c| < 1/4$, we consider only the representable values with ν multiple of 4, and so on. In other words, in general we consider only the representable values of the form

$$c = x2^{-p}$$

where x is an integer satisfying

$$0 \leq |x| \leq 2^p.$$

Conversely, any such x corresponds to a value representable on the computer. What we have done here is simply to extract from the cumbersome variable-size lattice of representable points a subset of fixed size. In so doing, we eliminate some solutions of our problem; but, as will be seen, the number of remaining solutions is still large and should be sufficient for most applications.

The same considerations apply to $\sin \theta$, for which we consider only the representable values of the form

$$s = y2^{-p}$$

where y is an integer satisfying

$$0 \leq |y| \leq 2^p.$$

3 Some diophantine equations

In this section we derive the equations satisfied by x and y for reasonable amplitudes of the roundoff error.

1. We try first to find values of θ for which there is no roundoff error, i.e. such that $\cos \theta$ and $\sin \theta$ are representable (in the restricted sense defined in the previous Section). We are thus led to seek the solutions of the diophantine equation

$$x^2 + y^2 = 2^{2p},$$

where p is given, and x and y are unknown integers.

Unfortunately, we have 7

Theorem 1 The only solutions of (12) are $(x = \pm 2^p, y = 0)$ and $(x = 0, y = \pm 2^p)$.

We prove this recursively. If $p = 0$, the theorem is obviously true: $x^2 + y^2 = 1$, so $x^2 = 1$ and $y^2 = 0$, or conversely. Assume that the theorem has been proved for $p - 1$, with $p > 0$, and consider the value p. The right-hand side is even, and x and y are both even or both odd. If they are both odd, we have $x^2 \mod 4 = 1,$
$y^2 \mod 4 = 1$, while $2^{2p} \mod 4 = 0$: this is impossible. If x and y are both even, there is a solution $x' = x/2$, $y' = y/2$, for $p' = p - 1$. According to the theorem, this solution must be of the form $(x' = \pm 2^{p-1}, y' = 0)$ or $(x' = 0, y' = \pm 2^{p-1})$; from which the theorem follows.

These 4 solutions correspond to $\theta = 0, \pi/2, \pi, 3\pi/2$, and are generally of no practical interest.

2. The next best thing which we can try is to achieve an error 1. So we consider the diophantine equation

$$x^2 + y^2 = 2^{2p} - 1.$$ \hspace{1cm} (13)

As above, p is given, and x and y are unknown integers.

But there is

Theorem 2 Eq. (13) has no solutions for $p > 0$.

Proof: $x^2 \mod 4 = 0$ or 1, $y^2 \mod 4 = 0$ or 1, while $2^{2p} - 1 \mod 4 = 3$: impossible.

3. So we look now for solutions of

$$x^2 + y^2 = 2^{2p} + 1.$$ \hspace{1cm} (14)

Fortunately, this equation always has solutions, and sometimes many of them (see Table III).

The roundoff error on $c^2 + s^2$ is now of the order of $2^{-2p} = 2^{-48}$ only. The cumulative effect is $\epsilon_2 \approx 2^{-48}t$. This is represented by the full line in Fig. I. The situation is now inverted: the systematic error is negligible compared to the other errors for any realistic number of iterations. In fact both errors become of order unity after $t = 2^{48} \approx 3 \times 10^{14}$ steps.

4. More solutions can be obtained (in order to have more choice for the value of θ), at the price of a larger roundoff error. We look then for solutions of

$$x^2 + y^2 = 2^{2p} + k.$$ \hspace{1cm} (15)

This is acceptable if k is not too large an integer. The systematic error after t steps becomes $\epsilon_3 \approx 2^{-48}kt$. If we take for instance $k = 32$ (see Sect. [I]), then the error, represented by the dash-dot line in Fig. I is still quite acceptable; it becomes dominant only after $t = 2^{38} \approx 3 \times 10^{11}$ steps.

We give now concrete recipes for the two cases of practical interest: single and double precision.
4 Single precision

Because of elementary symmetries, it is clearly sufficient to consider the range $0 \leq \theta \leq \pi/4$.

We use the IEEE754 standard value, $p = 24$. Eq. (14) has then only 4 solutions in the range $0 \leq \theta \leq \pi/4$. Clearly this is insufficient for practical needs. So we enlarge our search and look for solutions of (15), with $|k| \leq k_{\text{max}}$. For instance for $k_{\text{max}} = 32$, there are 54 solutions in the range $0 \leq \theta \leq \pi/4$. These solutions are listed in Table I, sorted by increasing θ.

This table is easily computed by scanning possible values of y, which are in the range $0 \leq y \leq \left\lfloor \sqrt{(2^{2p} + k_{\text{max}})/2} \right\rfloor = 11863283$; this takes a few seconds on a workstation. (A minor technical problem is that the terms in (15) are too large for the standard integer format. This is solved by representing these terms as double precision numbers.)

It can be seen that the values of θ cover reasonably well the whole interval $0 \leq \theta \leq \pi/4$. If more solutions are desired, at the expense of accepting larger roundoff errors, a larger table can easily be built. For instance if $k_{\text{max}} = 1000$, the number of solutions increases to 869.

A caveat is in order here: the value of θ should never be directly used in the computation program. The values of θ listed in Table I are not exact but rounded; they are given here only for illustration. Additional unwanted roundoff would occur in computing c and s from θ, and the property (15) would be destroyed in many cases.

Instead, the values of c and s should receive independent names in the program, and should be computed directly from the exact values of x and y listed in Table I, using (8) and (10). This computation should be done carefully, in such a way that no roundoff occurs. In Fortran, this can be done for instance with the instructions

```
REAL*4 C, S
C = 14842141. / 2. ** 24
S = 7822137. / 2. ** 24
```

5 Double precision

For the IEEE754 standard value for double precision, $p = 53$, Eq. (14) has only 8 solutions in the range $0 \leq \theta \leq \pi/4$; so we must again turn to Eq. (15).

Here it is not practical to tabulate solutions of (15) by scanning over y, as the range of possible values of y is of the order of 10^{16}. Instead we will use some classical results of the theory of numbers, which allow a systematic generation of the solutions. We review these results first.
x	y	θ	k
16777216	0	0.00000006	1
16777216	2	0.00000012	4
16777216	3	0.00000018	9
16777216	4	0.00000024	16
16777216	5	0.00000030	25
16777214	8192	0.00048828	4
16776704	131071	0.00781252	1
16761016	737102	0.04394885	4
16760654	745288	0.0443725	4
16756796	827505	0.04934316	-15
16651675	2048584	0.12241060	25
16566995	2647575	0.15847021	-16
16564945	2660371	0.15924263	4
16532686	2853992	0.17094249	4
16423326	3427731	0.20575745	-19
16389584	3585598	0.21537485	4
16332540	3837071	0.23074935	-15
16039629	4919886	0.29762250	-19
15975413	5124564	0.31048069	9
15751592	5776013	0.35146882	-23
15554306	6287968	0.3841725	4
15519136	6374276	0.3897260	16
15486659	6452780	0.3974242	25
15398469	6660074	0.40821469	21
15359229	6750486	0.41409362	-19
15263026	6965272	0.42812149	4

x	y	θ	k
15259624	6972722	0.42860965	4
15045797	7422868	0.45831476	-23
14938544	7636418	0.47255862	4
14842141	7822137	0.48503090	-6
14803424	7895164	0.48995756	16
14798175	7904998	0.49062199	-27
14733952	8024066	0.49868557	4
14604001	8258216	0.51464749	1
14582860	8295491	0.51720172	25
14362958	8670664	0.54312270	4
14188593	8953145	0.56290949	18
14067585	9142102	0.57628385	-27
13855696	9460162	0.59906386	4
13851074	9466928	0.59955226	4
13849473	9469270	0.59972135	-27
13775055	9577204	0.60753567	-15
13684899	9705592	0.61688653	9
13421774	10066328	0.64350099	4
13421771	10066332	0.64350129	9
13416856	10072882	0.64398939	4
13322259	10197666	0.65332277	-19
13012020	10590671	0.68316796	-15
12988527	10619470	0.68538322	-27
12927484	10693696	0.69111140	16
12058257	11665051	0.76882501	-6

Table I: Solutions of (13) for $p = 24$, $|k| \leq 32$.
5.1 Solutions of \(x^2 + y^2 = S \): general properties

Our problem is a particular case of a more general problem: find the solutions of the diophantine equation

\[
x^2 + y^2 = S. \tag{16}
\]

\(S \) is a given positive integer (we disregard the trivial case \(S = 0 \)). This is a classical problem with a long history \([3, \text{Chap. VI}]\).

It will be convenient here to revert to a consideration of the whole \((x, y)\) plane. We call solution a pair of integers \(x\) and \(y\) satisfying (16). It will also be convenient to consider the \((x, y)\) plane as the complex plane and to introduce the complex number

\[z = x + iy = \sqrt{S}e^{i\theta}. \tag{17} \]

(16) can then be written

\[z\bar{z} = S. \tag{18} \]

Note that, for a given \(S \), a solution can be specified simply by the value of \(\theta \).

We call \(r(S) \) the number of solutions of (16). From any given solution one can deduce 3 other solutions (for the same \(S \)) by rotations of \(\pi/2, \pi, 3\pi/2 \). In complex notation: from any solution \(z \) we deduce 3 other solutions \(iz, i^2z, i^3z \). These 4 solutions are always distinct. We will call this a quadruplet of solutions.

Therefore the number of solutions is a multiple of 4, and we write \(r(S) = 4h(S) \), where \(h(S) \) is the number of quadruplets. For instance: \(h(1) = 1, h(2) = 1, h(3) = 0, h(4) = 1, h(5) = 2, \ldots \)

The total number of solutions up to a maximum,

\[
\sum_{S=1}^{S_{\text{max}}} r(S), \tag{19}
\]

is the number of points with integer coordinates inside or on the circle of radius \(\sqrt{S_{\text{max}}} \); it is therefore of the order of \(\pi S_{\text{max}} \) \([12]\), and the total number of quadruplets is \(\sum h(S) \sim \pi S_{\text{max}}/4 \). From this we deduce that the average number of quadruplets for a given \(S \) is \(\langle h(S) \rangle = \pi/4 \). In practice, the solutions are unevenly distributed. For most values of \(S \), there are no solutions. The number of values \(S \leq S_{\text{max}} \) for which \(h(S) > 0 \) is of the order of \(\lfloor 2^{S_{\text{max}}} \rfloor \).

\[
0.76422 \frac{S_{\text{max}}}{\sqrt{\log S_{\text{max}}}}. \tag{20}
\]

The probability that \(h(S) > 0 \) for a given \(S \) is obtained by differentiating that expression:

\[
0.76422 \left(\frac{1}{\sqrt{\log S}} - \frac{1}{2(\log S)^{3/2}} \right). \tag{21}
\]

For values of interest here, \(S \approx 2^{100} \approx 10^{30} \), this probability is about 0.09.
For any quadruplet generated by a solution z, there is a \textit{conjugate quadruplet} of solutions generated by the conjugate value \bar{z}. As is easily seen, there are 3 cases:

- z lies on one axis, i.e. $y = 0$ or $x = 0$; $\theta \mod \pi/2 = 0$. In that case the quadruplet is identical with its conjugate; thus z generates only 4 distinct solutions. They correspond to $\theta = 0, \pi/2, \pi, 3\pi/2$. S is a square in that case.

- z lies on a diagonal, i.e. $|x| = |y|$; $\theta \mod \pi/2 = \pi/4$. In that case again the quadruplet is identical with its conjugate, and z generates only 4 distinct solutions. They correspond to $\theta = \pi/4, 3\pi/4, 5\pi/4, 7\pi/4$. S is a twice a square in that case.

- z lies neither on one axis nor on a diagonal: $\theta \mod \pi/4 \neq 0$. In that case the quadruplet and its conjugate are distinct, and z generates 8 distinct solutions. There is one of them in each of the 8 intervals $j\pi/4 < \theta < (j + 1)\pi/4$, $j = 0, 1, \ldots, 7$.

5.2 Solutions for a given S

The number of solutions for a given value of S can be determined as follows [4, p. 242]. First we decompose S into prime factors. We distinguish 3 kinds of prime factors:

- the factor 2,
- factors f_j equal to 1 (mod 4),
- factors g_j equal to 3 (mod 4),

and we write the decomposition of S as

$$ S = 2^\alpha \times \prod_j f_j^{\beta_j} \times \prod_j g_j^{\gamma_j}. $$

We have then the following

Theorem 3 If there exists an odd γ_j, then $h(S) = 0$. If all γ_j are even, then

$$ h(S) = \prod_j (\beta_j + 1). $$

Note that in the second case, $h(S)$ is the number of divisors of $\prod_j f_j^{\beta_j}$, i.e. the number of divisors of S made up of f_j factors only.

We determine now the solutions themselves.
1. We consider first the simple case where only one factor f_j is present, and its exponent is $\beta_j = 1$; there are no factors 2 or g_j. S is then a prime number equal to 1 (mod 4). According to the above theorem, in that case $h(S) = 2$ [1, pp. 219 and 241]: there are two quadruplets of solutions.

The solutions do not lie either on an axis or on the first diagonal (S is not a square, nor twice a square). It follows that the two quadruplets are mutually conjugate.

We call $z_j = x_j + iy_j$ the solution with $0 < \theta < \pi/4$ ($0 < y < x$). An algorithm exists to compute that solution for any f_j [6]. The solutions for the first few factors f_j are given in Table II. The two quadruplets are generated by z_j and \overline{z}_j.

j	f_j	x_j	y_j
1	5	2	1
2	13	3	2
3	17	4	1
4	29	5	2
5	37	6	1
6	41	5	4
7	53	7	2
8	61	6	5
9	73	8	3

Table II: Solutions in the case $S = f_j$.

2. We consider next the case where only a factor f_j is present, but with an arbitrary exponent β_j. All quadruplets are then given by

$$z = z_{j}^{\lambda_{j}} \overline{z}_{j}^{\beta_{j}-\lambda_{j}}$$

(24)

where λ_{j} can take the values 0, 1, \ldots, β_{j}, and z_{j} is read from Table II. This produces the required number of quadruplets $h(S) = \beta_{j} + 1$.

Example: $S = 625 = 5^4$. Then $z_1 = 2 + i$, and the solutions for z are: $z_1^4 = -7 - 24i$, $z_1 \overline{z}_1^3 = 15 - 20i$, $z_1^2 \overline{z}_1^2 = 25$, $z_1^3 \overline{z}_1 = 15 + 20i$, $z_1^4 = -7 + 24i$.

3. We consider now the case with more than one f_j, but still no factors 2 or g_j. All quadruplets are then given by

$$z = \prod_{j} z_{j}^{\lambda_{j}} \overline{z}_{j}^{\beta_{j}-\lambda_{j}}$$

(25)

where λ_{j} can take the values 0, 1, \ldots, β_{j}. This produces a number of quadruplets $h(S) = \prod_{j} (\beta_{j} + 1)$, which is the required number.
Example: $S = 1025 = 5^2 \times 41$. There is: $f_1 = 5$, $\beta_1 = 2$, $z_1 = 2 + i$, $f_2 = 41$, $\beta_2 = 1$, $z_2 = 5 + 4i$. (24) gives

$$
\begin{bmatrix}
\bar{z}_1^2 & z_1 \bar{z}_1 & \bar{z}_2 & z_2
\end{bmatrix}
\begin{bmatrix}
\bar{z}_1^2 & z_2 \\
z_1 \bar{z}_1 & \bar{z}_1 & \bar{z}_2 & z_2
\end{bmatrix}
=
\begin{bmatrix}
3 - 4i & 5 \\
5 & 3 + 4i
\end{bmatrix}
\begin{bmatrix}
5 - 4i \\
5 + 4i
\end{bmatrix}
$$

(26)

where one factor should be chosen in each column. This gives the 6 solutions $-1 - 32i, 31 - 8i, 25 - 20i, 25 + 20i, 31 + 8i, -1 + 32i$, corresponding to 6 distinct quadruplets. The quadruplets are conjugate two by two; so there are only 3 fundamentally different solutions. In the interval $0 < \theta < \pi/4$, these solutions are, in terms of x and y: $(32, 1), (31, 8), (25, 20)$.

4. Finally, we consider the completely general case where the exponents α and β_j in (22) are arbitrary, and the γ_j are even but otherwise arbitrary. All quadruplets are then given by

$$
z = (1 + i)^\alpha \prod_j g_j^{\gamma_j/2} \prod_j z_j^{\lambda_j} \bar{z}_j^{\beta_j - \lambda_j}
$$

(27)

5.3 Solutions for $S = 2^{2n} + 1$

In the double precision case, comparatively large values of $|k|$ can be accepted in (13); even with $|k| = 10^6$, for instance, the roundoff error at each step will be of the order of 10^{-26} only. Thus, many more solutions can be generated than is needed for applications. We can therefore restrict our attention to some subset of solutions. We will consider values of k of the form $k = 2^{2q}$, with $q \geq 0$. Consider a solution (x, y) of (13). Then $x' = x/2^q$, $y' = y/2^q$ verify

$$
x'^2 + y'^2 = 2^{2n} + 1
$$

(28)

with $n = p - q$. Thus, our choice of values of k is equivalent to considering values of S of the form $S(n) = 2^{2n} + 1$, with $n \leq p$.

These values have some nice properties. In particular,

- All prime factors of $S(n)$ are equal to 1 (mod 4). This is shown as follows: a prime factor d of $2^{2n} + 1$ must be odd. Since 2^{2n} is a square, -1 is a quadratic residue (mod d). It follows that $(d - 1)/2$ is even.

- A prime factor of $S(n)$ is also a prime factor of $S(3n)$, $S(5n)$, ... This is obvious from the identity $a^{2j+1} + b^{2j+1} = (a + b)(a^{2j} - a^{2j-1}b + a^{2j-2}b^2 - \ldots + b^{2j})$, taking $a = 2^{2n}$, $b = 1$ and $j = 1, 2, \ldots$

As a result, the equation $x^2 + y^2 = S(n) = 2^{2n} + 1$ tends to have many solutions. Table XIII gives the number of quadruplets $h(S)$ for $n = 1$ to 60. This number
Table III: Number of quadruplets.

n	h(S)	n	h(S)	n	h(S)	n	h(S)
1	2	16	4	31	32	46	4
2	2	17	16	32	4	47	16
3	4	18	16	33	64	48	8
4	2	19	16	34	12	49	64
5	6	20	4	35	96	50	64
6	4	21	64	36	32	51	512
7	8	22	8	37	32	52	4
8	2	23	32	38	16	53	16
9	16	24	8	39	768	54	64
10	4	25	64	40	8	55	96
11	8	26	8	41	32	56	32
12	8	27	64	42	32	57	256
13	16	28	8	43	32	58	8
14	4	29	8	44	16	59	128
15	48	30	16	45	1536	60	64

was computed by factoring S into prime numbers (with the help of Maple) and using Eq. (23).

For machines with $p = 53$, a particularly good value is $n = 51$, for which there are 9 prime factors:

$$2^{102} + 1 = 1326700741 \times 26317 \times 13669 \times 3061 \times 953 \times 409 \times 137 \times 13 \times 5.$$ \hspace{1cm} (29)

Thus the total number of quadruplets is $2^9 = 512$. They are given by the equation

$$x + iy = \left(\begin{array}{c}
2 - i \\
2 + i \\
3 - 2i \\
3 + 2i \\
11 - 4i \\
11 + 4i \\
20 - 3i \\
20 + 3i \\
28 - 13i \\
28 + 13i \\
55 - 6i \\
55 + 6i \\
113 - 30i \\
113 + 30i \\
154 - 51i \\
154 + 51i \\
30346 - 20145i \\
30346 + 20145i
\end{array} \right)$$ \hspace{1cm} (30)

where one factor should be chosen inside each set of parentheses.

The angle θ is correspondingly given by

$$\theta = \left(\begin{array}{c}
-\theta_1 \\
+\theta_1 \\
-\theta_2 \\
+\theta_2 \\
\vdots \\
-\theta_9 \\
+\theta_9
\end{array} \right)$$ \hspace{1cm} (31)

with $\theta_1 = \arctan 1/2$, $\theta_2 = \arctan 2/3$, \ldots Approximate values of the θ_j are listed in Table IV. Here again, we point out that these values are given only to allow an estimate of θ for a given combination; they should never be used in the program.
Instead, the exact values of x and y should be computed from (30) for the chosen combination, and then used to compute c and s as explained in Sect. 4.

The total number of solutions is 2048, out of which 256 lie in the interval $0 < \theta < \pi/4$. The values of θ cover the circle quite well: the maximal difference between two successive values is about 0.027.

Another good value is $n = 45$; there is

$$2^{90} + 1 = 29247661 \times 54001 \times 1321 \times 181 \times 109 \times 61 \times 41 \times 37 \times 13 \times 5^2$$

and the total number of quadruplets is $2^9 \times 3 = 1536$. This value of n should be appropriate in particular for machines with $p = 48$, like some CRAYs (C90/YMP). The quadruplets are given by the equation

\[
x + iy = \begin{pmatrix}
3 - 4i \\
5 \\
3 + 4i
\end{pmatrix}
\begin{pmatrix}
3 - 2i \\
6 - i \\
5 + 4i
\end{pmatrix}
\begin{pmatrix}
6 - 5i \\
6 + 5i
\end{pmatrix}
\begin{pmatrix}
10 - 3i \\
10 + 9i \\
36 + 5i
\end{pmatrix}
\begin{pmatrix}
10 - 9i \\
10 + 9i \\
36 + 5i
\end{pmatrix}
\begin{pmatrix}
199 - 120i \\
199 + 120i \\
5331 - 910i
\end{pmatrix}
\begin{pmatrix}
5331 + 910i
\end{pmatrix}.
\]

The angle θ is correspondingly given by

\[
\theta = \begin{pmatrix}
-2\theta_1 \\
0 \\
+2\theta_1
\end{pmatrix} + \begin{pmatrix}
-\theta_2 \\
+\theta_2
\end{pmatrix} + \ldots + \begin{pmatrix}
-\theta_{10} \\
+\theta_{10}
\end{pmatrix}
\]

with $\theta_1 = \arctan 1/2$, $\theta_2 = \arctan 2/3$, \ldots Approximate values of the θ_j are listed in Table V.

The total number of solutions is 6144, out of which 768 lie in the interval $0 < \theta < \pi/4$. The values of θ cover the circle quite well: the maximal difference between two successive values is about 0.005.
Note that some computers, like the VAXs, use a double precision representation with $p = 56$. However, the values of $h(S)$ for n from 52 to 56 are rather small and the values of θ cover the circle rather sparsely.

Incidentally, the mathematical approach used in the present section could also be used in the case of single precision (Sect. [4]). But in that case a simple scanning method is more convenient.

6 Numerical simulations

We now present numerical verifications of these results. All rotations will be performed using the traditional mapping (1). We point out, however, that there exist other numerical implementations of rotations with good behaviour over a large number of iterations [9].

6.1 Simple rotation

All computations will be made in double precision on a Silicon Graphics Power Indigo 2 computer running a MIPS R8000 processor which conforms to the IEEE754 standard for number representation. We first study the effect of a large number of iterations of the mapping (1). We compare random angles, some special angles found by chance to behave well, and the “good” angles found in the previous section.

The quality of the computation is determined by the conservation of the radius $R = \sqrt{X^2 + Y^2}$. Let $R_0 = \sqrt{X_0^2 + Y_0^2}$ be the radius of the initial point (X_0, Y_0). As we iterate the mapping, we record the absolute value of the relative error $|R^2/R_0^2 - 1|$. For each rotation angle θ, the relative error is averaged over 20

j	θ_j
1	0.46364761
2	0.58800260
3	0.16514868
4	0.67474094
5	0.69473828
6	0.29145679
7	0.73281511
8	0.13800602
9	0.54263352
10	0.16907011

Table V: Values of θ_j for $n = 45$.

17
initial conditions chosen at random. The value obtained is representative of what really happens for all initial conditions, since the standard deviation remains very small.

In a first series of runs, we scanned the range $0 < \theta < \pi/2$ with values of the form $\theta = j/512$, $j = 1$ to 802. These values being representable, we can reproduce the exact same value of θ on any computer. Any other value of θ stored in the computer would give an error in c and s of the same order of magnitude. However it would not be easy to know the exact value of θ and reproduce the results on different computers. Typical results are shown in Fig. 2a, solid line s. We observe a linear drift of the square radius as expected. However, some particular angles give somewhat better results (Fig. 2a, dashed lines). For these angles, the roundoff error on $c^2 + s^2$ happens to be small and for up to 10^4 iterations, the random errors due to other parts of the computation are dominant. Eventually, the linear drift emerges. The particularly good angles presented here correspond to $j = 126, 248, 357, 423, \text{ and } 700$.

In a second series of tests, we used values of the form $\theta = j\pi/2000$, $j = 1$ to 999. For most values of j, the results are similar to those of the previous case (Fig. 2b upper curves). However, we found 3 values of θ ($j = 40, 250, \text{ and } 450$) with a peculiar behaviour, as shown in Fig. 2b (lower curves). For 10^2 to 10^3 iterations, the square radius drifts linearly, and then it seems to lock on a particular value.

Inspection of the numerical results shows that a periodic cycle of the mapping is reached. This is made possible by the low-order commensurability of θ with 2π. Indeed $\theta = 2\pi/100, 2\pi/16, \text{ and } 9 \times 2\pi/80$ respectively and the observed periods are 100, 16, and 80.

Finally we tested the “good” values of θ defined by the solutions of Eq. (28), with $n = 45$ and 51 (see Table VI). These solutions are integers $\leq 2^n$. Hence, they are representable as double precision float numbers on machines with 53 bit mantissa. Similarly 2^{45} and 2^{51} are representable, being powers of 2. So assigning the solutions of Eq. (28) to variables and dividing them by 2^{45} or 2^{51} give the desired representable number. We next iterate the mapping. In both cases, the random drift due to the other parts of the computation dominates over the linear drift for longer than the 10^8 iterations performed here, and the overall error remains very small (Fig. 2c for $n = 45$ and Fig. 2d for $n = 51$).

6.2 Integration in a rotating frame

We came to consider this problem through the numerical study of the long term dynamics of Dactyl, Ida’s satellite [8, 9]. This required the use of a symplectic integrator in a rotating frame, thus involving a rotation. So we want to check the effect of combining the rotation with the iteration of the symplectic integrator of order 2 (SI2).

The implementation of SI2 we use is the generalized leap-frog described by
Figure 2: Relative square radius errors (absolute value) as a function of the number of steps. (a): $\theta = j/512$, (b): $\theta = j\pi/2000$, (c): solutions of equation (28) with $n = 45$, (d): solutions of equation (28) with $n = 51$.
Yoshida [13]. We write the Hamiltonian in the form
\[H = H_1(L, G, H) + H_2(X, Y, Z). \]
(35)

Here, \(H_1 \) is the Hamiltonian of the two-body problem in a rotating frame, with a primary which has the same mass as the primary of the actual problem:
\[H_1 = -\frac{\mu^2}{2L^2} - \omega H, \]
(36)

\(L, G, \) and \(H \) being the Delaunay variables, \(\omega \) the rotation speed of the rotating frame, and \(\mu \) the product of the gravitational constant and the reduced mass of the two bodies. \(H_2 \) represents the perturbation potential, namely the difference between the real potential and the point mass potential:
\[H_2 = U_{\text{pert}}(X, Y, Z) = U(X, Y, Z) + \frac{\mu}{R}. \]
(37)

To integrate from time \(t \) to time \(t + \tau \), we integrate \(H_2 \) for \(\tau/2 \), then \(H_1 \) for \(\tau \) and finally \(H_2 \) for \(\tau/2 \) again.

The rotation occurs in the integration of \(H_1 \) because of the term \(-\omega H\). Using the \(f \) and \(g \) Gauss functions [2], one can integrate the keplerian Hamiltonian in a fixed frame, \(-\mu^2/2L^2\), over any time interval \(\tau \), directly in cartesian coordinates. We must then rotate the position and velocity vectors by an angle \(\omega \tau \) around the rotation axis.

Symplectic integrators are known to behave correctly on the long run, i.e. they do not exhibit linear drifts in energy. But on a short time scale, they may have quite large oscillating errors. The amplitude of the oscillations are many orders of magnitude larger than the linear drift over a period. We average the energy error over a large number of iterations to see the secular error rise above the oscillating error.

In Fig. 3, we present the evolution of the absolute value of the relative energy error for two different sets of angles. For each set, we either choose the time step and derive the rotation angle from the rotation speed, or we take a “good” angle of the same order of magnitude for \(n = 45 \) or \(n = 51 \). Fig. 3a shows the error over \(10^8 \) iterations for an angle \(\theta = 0.0753 \) (solid line), \(\theta \simeq 0.07511325 \) (dashed line), and \(\theta \simeq 0.07194054 \) (dotted line) (see table VII, top lines). The energy error was averaged over \(5 \times 10^5 \) iterations for each data point. For Fig. 3b, we integrated for only \(10^7 \) iterations but with an angle about 10 times smaller: \(\theta = 0.00753 \) (solid line), \(\theta \simeq 0.00772303 \) (dashed line), and \(\theta \simeq 0.00781249 \) (dotted line) (see table VII, bottom lines). For this figure, the energy error was averaged over only \(10^5 \) iterations.

Clearly the use of solutions of Eq. (28) gives very good results. We do not see any linear drift in energy. However, this technique can be used only if we are free to choose the integration time step, as in the case of SI2. For example,
Table VI: Values of x and y, and corresponding θ, used in the numerical tests of the rotation.

$n = 45$	x	y	θ
35004143579815	3556679846300	0.10125988	
34476730568729	7021046116972	0.20089880	
33597753939071	10446576929072	0.30145465	
30876883071208	1686850912031	0.50001828	
26872087044097	22711912671104	0.70169266	

$n = 51$	x	y	θ
2240341265158844	226877536436263	0.10092511	
2201219968984456	474587240722913	0.21235141	
2150106539295032	66906232227809	0.30167850	
1963938109574759	1101612228814132	0.51118844	
1721715036961844	1451309661103513	0.70038350	

Table VII: Values of n, x and y, and corresponding θ, used in the numerical tests of the symplectic integrator.

n	x	y	θ
45	35085163629799	2640328077268	0.07511325
51	224597529666688	161856006306841	0.07194054
45	35183322803560	271727410975	0.00772303
51	2251731094732799	17591984718848	0.00781249
Figure 3: Relative energy errors (absolute value) as a function of the number of steps. (a): “normal” angle $\theta = 0.0753$ (solid line) and “good” angles of approximately the same amplitude for $n = 45$ (dashed line) and $n = 51$ (dotted line). (b): same as (a), but for an normal angle of 0.00753, and corresponding good angles.
symplectic integrators of order 4 (SI4) or 6 as described in [13] require the use of different time steps in a very precisely given relation: integrating over τ with SI4 corresponds to using SI2 with time step $\tau / (2 - 2^{1/3})$, then $-2^{1/3}\tau / (2 - 2^{1/3})$, and finally $\tau / (2 - 2^{1/3})$ again. This cannot be achieved with solutions of Eq. (28). For such cases, a completely different implementation of the rotation can be used, which yields good results [4].

7 Acknowledgements

We thank F. Mignard, A. Noullez and M. Blank for discussions and comments.

References

[1] ANSI/IEEE, IEEE standard for binary floating-point arithmetic, Std. 754–1985 (IEEE, New York, 1985).
[2] J.M.A. Danby, *Fundamentals of Celestial Mechanics* (Willmann-Bell, Richmond, 1988).
[3] Leonard Eugene Dickson, *History of the Theory of Numbers. Volume II: Diophantine Analysis* (Chelsea Publishing Company, New York, 1920).
[4] G. H. Hardy and E. M. Wright, *An Introduction to the Theory of Numbers*, fifth edition (Clarendon Press, Oxford, 1979).
[5] W. Kahan, Lecture notes on the status of IEEE Standard 754 for binary floating-point arithmetic (1996).
http://http.cs.berkeley.edu/~wkahan/ieee754status/ieee754.ps
[6] Donald E. Knuth, *The Art of Computer Programming, Volume 2: Seminumerical Algorithms*, second edition (Addison-Wesley, Reading, Massachusetts, 1981), p. 544, Answers to Exercises, Section 3.3.4, No. 11.
[7] Alan W. Paeth, Circles of integral radius on integer lattices, in *Graphic Gems*, edited by Andrew S. Glassner (Academic Press, 1990), pp. 57–60.
[8] Jean-Marc Petit, Daniel D. Durda, Richard Greenberg, Terry A. Hurford, and Paul E. Geissler, The long-term dynamics of Dactyl’s orbit, *Icarus* 130, 177–197 (1997).
[9] Jean-Marc Petit, Symplectic Integrators: Rotations and roundoff errors, *Celest. Mech. & Dyn. Astron.* in press (1998).
[10] Thomas Quinn and Scott Tremaine, Roundoff error in long-term planetary orbit integrations, *Astron. J.* 99, 1016–1023 (1990).
[11] H. E. Rose, *A Course in Number Theory* (Clarendon Press, Oxford, 1988), p. 53, Theorem 1.3.

[12] P. Shiu, Counting sums of two squares: the Meissel-Lehmer method, *Math. Comp.* **47**, 351–360 (1986).

[13] H. Yoshida, Construction of higher order symplectic integrators, *Phys. Lett. A.* **150**, 262–268 (1990).