Challenges and opportunities in precision irrigation decision-support systems for center pivots

Jingwen Zhang
University of Illinois at Urbana Champaign, jingwenz@illinois.edu

Kaiyu Guan
University of Illinois Urbana-Champaign, kaiyug@illinois.edu

Bin Peng
University of Illinois at Urbana Champaign, binpeng@illinois.edu

Chongya Jiang
University of Illinois at Urbana Champaign, chongya@illinois.edu

Wang Zhou
University of Illinois at Urbana Champaign, wangzhou@illinois.edu

See next page for additional authors.

Follow this and additional works at: https://digitalcommons.unl.edu/biosysengfacpub

Part of the Bioresource and Agricultural Engineering Commons, Natural Resources and Conservation Commons, and the Water Resource Management Commons

Zhang, Jingwen; Guan, Kaiyu; Peng, Bin; Jiang, Chongya; Zhou, Wang; Yang, Yi; Pan, Ming; Franz, Trenton; Heeren, Derek M.; Rudnick, Daran R.; Abimbola, Olufemi P.; Kimm, Hyunsuk; Caylor, Kelly; Good, Stephen; Khanna, Madhu; Gates, John; and Cai, Yaping, "Challenges and opportunities in precision irrigation decision-support systems for center pivots" (2021). Biological Systems Engineering: Papers and Publications. 747.
https://digitalcommons.unl.edu/biosysengfacpub/747

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Biological Systems Engineering: Papers and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Authors
Jingwen Zhang, Kaiyu Guan, Bin Peng, Chongya Jiang, Wang Zhou, Yi Yang, Ming Pan, Trenton Franz, Derek M. Heeren, Daran R. Rudnick, Olufemi P. Abimbola, Hyungsuk Kimm, Kelly Caylor, Stephen Good, Madhu Khanna, John Gates, and Yaping Cai
ENVIRONMENTAL RESEARCH LETTERS

TOPICAL REVIEW

Challenges and opportunities in precision irrigation decision-support systems for center pivots

Jingwen Zhang¹,²,³,⁷, Kaiyu Guan¹,²,³,⁷, Bin Peng¹,²,³,⁷, Chongya Jiang¹, Wang Zhou¹,²,⁷, Yi Yang¹,², Ming Pan¹, Trenton E Franz³, Derek M Heeren¹, Daran R Rudnick¹, Olufemi Abimbola¹, Hyungsuk Kimm¹,², Kelly Caylor¹, Stephen Good¹, Madhu Khanna¹, John Gates¹ and Yaping Cai¹,²

¹ Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
² College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
³ National Center for Supercomputing Applications, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
4 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, United States of America
5 School of Natural Resources, University of Nebraska–Lincoln, Lincoln, NE, United States of America
6 Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States of America
7 Bren School of Environmental Science and Management & Department of Geography, University of California–Santa Barbara, Santa Barbara, CA, United States of America
8 Department of Agricultural and Consumer Economics, University of Illinois at Urbana Champaign, Urbana, IL, United States of America
9 CropX, San Francisco, CA, United States of America
10 Co-lead first authors
* Authors to whom any correspondence should be addressed.

E-mail: jingwenz@illinois.edu and kaiyug@illinois.edu

Keywords: center pivots, precision irrigation decision-support system, process-based models, statistical/machine learning models, plant water stress

Abstract

Irrigation is critical to sustain agricultural productivity in dry or semi-dry environments, and center pivots, due to their versatility and ruggedness, are the most widely used irrigation systems. To effectively use center pivot irrigation systems, producers require tools to support their decision-making on when and how much water to irrigate. However, currently producers make these decisions primarily based on experience and/or limited information of weather. Ineffective use of irrigation systems can lead to overuse of water resources, compromise crop productivity, and directly reduce producers’ economic return as well as bring negative impacts on environmental sustainability. In this paper, we surveyed existing precision irrigation research and tools from peer-reviewed literature, land-grant university extension and industry products, and U.S. patents. We focused on four challenge areas related to precision irrigation decision-support systems: (a) data availability and scalability, (b) quantification of plant water stress, (c) model uncertainties and constraints, and (d) producers’ participation and motivation. We then identified opportunities to address the above four challenge areas: (a) increase the use of high spatial-temporal-resolution satellite fusion products and inexpensive sensor networks to scale up the adoption of precision irrigation decision-support systems; (b) use mechanistic quantification of plant water stress’ as triggers to improve irrigation decision, by explicitly considering the interaction between soil water supply, atmospheric water demand, and plant physiological regulation; (c) constrain the process-based and statistical/machine learning models at each individual field using data-model fusion methods for scalable solutions; and (d) develop easy-to-use tools with flexibility, and increase governments’ financial incentives and support. We conclude this review by laying out our vision for precision irrigation decision-support systems for center pivots that can achieve scalable, economical, reliable, and easy-to-use irrigation management for producers.
1. Introduction

Irrigation is critical to sustain agricultural production in dry or semi-dry climates and maintain the economy of these regions (Stubbs 2016, US GAO 2019). Irrigation systems include gravity, sprinkler, and micro-irrigation systems (figure 1), and among these, sprinkler irrigation systems, mainly center pivots, are used in ∼55% of the U.S. total irrigated lands (USDA 2017, US GAO 2019) (figure 1). For example, in 2015, 38% of corn and 25% of soybean production in the U.S. was produced with center pivots irrigation systems (Smidt et al 2019). Center pivot irrigation systems were invented by a farmer Frank Zybach in 1940 and patented 12 years later (Zybach 1952). In general, these systems have water that is pumped from the center of the field to overhead nozzles of different sizes located along a long pipe that rotates in a circular pattern and used to irrigate large fields. In the U.S., these irrigation systems were quickly adopted and used to irrigate row crops.

Efficient irrigation is essential to achieve sustainability of food production and regional water security (Lobell et al 2008, Griggs et al 2014, Grafton et al 2018, Li et al 2020). However, currently, producers determine the irrigation timing and amount of center pivots largely based on their personal experience and weather information. According to a survey, >75% of irrigation scheduling methods used by U.S. producers are based on rule-of-thumb procedures that include crop calendars, visual observation, and 'what the neighbors are doing' (USDA 2017). Fewer than 25% of irrigation scheduling methods are science- and technology-based. Decisions based on rule-of-thumb methods could lead to over- or under-irrigation. Over-irrigation may raise concerns related to water scarcity and environmental sustainability. For example, the extensive irrigated areas in Kansas, California, and Arkansas (figure 1) have resulted in large groundwater level declines in the High Plains, Central Valley, and Mississippi Embayment aquifers, respectively (Marston et al 2015, McGuire 2017, US GAO 2019). Over-irrigation using groundwater may further increase soil salinity and sodicity in areas with shallow groundwater tables and excessive evaporation losses, which threatens soil health of these regions (Hillel 2000, Tanji 2002). Over-irrigation can also result in leaching and run-off of nutrient-enriched water, causing contamination to ground water (Power and Schepers 1989, Exner et al 2014). Conversely, under-irrigation does not sufficiently alleviate crop water stress, which usually leads to both yield and economic loss for producers. Compared with rule-of-thumb methods, science- and technology-based irrigation scheduling methods may increase crop profits and reduce environmental impacts by minimizing crop water stress.

Precision irrigation usually requires real-time information about soil water supply and crop water demand to determine optimal irrigation timing and varying amount in space, in order to reach predefined objectives such as the maximization of crop yield, resource use efficiency, or profitability (Sadler et al 2005, Smith 2011, US GAO 2019). Our study here will focus on discussing irrigation decision making tools for the majority of irrigation systems in the U.S., i.e. 'standard center pivots', where irrigation timing and amount are uniform across a field. In recent decades, some studies have reviewed specific aspects of precision irrigation decision-support systems, such as soil-based and/or plant-based irrigation scheduling methods and applications of remote sensing data and wireless technologies (Jones 2004, Fernández and Cuevas 2010, Pardossi and Incrocci 2011, Zaks and Kucharik 2011, Ha et al 2013, Haule and Michael 2014, Kansara et al 2015, Ihuoma and Madramootoo 2017, Foster et al 2019, Lakhwani et al 2019, Parkh et al 2019, Evet et al 2020, Gu et al 2020). However, few studies have provided holistic reviews and perspective of integrating different components of precision irrigation decision-support systems. With extensive progresses made in precision irrigation in both academia and industry, there is a lack of comprehensive reviews on existing challenges and opportunities.

This paper reviews recent advances and challenges, and envisions opportunities in precision irrigation decision-support systems for standard center pivots. We surveyed precision irrigation research from peer-reviewed literature, land-grant university extension and industry products, and U.S. patents. We identified challenges in data, decision-making approaches and criteria, and products used in current precision irrigation decision-support systems in this survey. We then proposed possible opportunities to address the corresponding challenges and bridge the gap between research and practice for precision irrigation decision-support systems, which we envision should be scalable, economical, reliable, and easy-to-use for producers. Although the survey is focused on the center pivot irrigation systems in the U.S, most of our review can be generally applied to different other types of irrigation systems at the global scale.

2. Recent advances in precision irrigation decision-support systems

2.1. Methods

The survey was performed using Web of Science, Google Scholar, Google, and Google patents with the keywords: irrigation scheduling, decision-making, decision-support, precision, and management. Based on the results, >200 in peer-reviewed literature, 17 precision irrigation products from the U.S. land-grant universities in table 1, 19 commercial precision irrigation products from industries in table 2, and more than 25 irrigation scheduling related patents from the survey, we identified data, decision-making
Figure 1. (a) Spatial distribution of irrigated croplands at 30 m resolution of sprinkler, gravity, and micro-irrigation by state for the Conterminous United States (CONUS) (USDA 2017, Xie et al 2019). The size of pie charts indicates the magnitude of irrigated croplands area. (b) Spatial distribution of center pivot irrigation systems in Nebraska (http://snr.unl.edu/data/geographygis/water.aspx). (c) Example of center pivots location in Nebraska.

approaches and criteria, and products used in current precision irrigation decision-support systems in three recent decades.

2.2. Data used in precision irrigation
Data represents the basis of any precision management system. Multi-source data, including *in-situ* measurements, remotely sensing data, and gridded weather/climate/soil data (figure 2), are used for precision irrigation. *In-situ* sensors, e.g. soil/canopy temperature/weather sensors, can provide data with high accuracy but sometimes are expensive and labor-intensive to deploy those sensors. Soil sensors provide measurements of soil volumetric water content, water potential, salinity, and/or soil temperature, such as time-domain and frequency-domain reflectometer, capacitance probe, resistance probe, tensiometers, or cosmic-ray neutron sensor (Robinson et al 2003, Vaz et al 2013). The temperature sensors mainly are the infrared thermometer sensor, which can observe canopy or soil surface temperature. Weather sensors, largely deployed as weather stations, measure multiple meteorological variables, such as air temperature and humidity, solar radiation, wind speed and direction, barometric pressure, and precipitation. Producers have options to establish their own weather stations, but the cost is high and the current adoption is very low. On the other hand, public weather stations in the existing networks, such as National Oceanic and Atmospheric Administration managed by National Climate Data Center and state networks (e.g. mesonets) are usually not dense enough, often leading to tens of km or further away from a targeted irrigated field (Sassenrath et al 2013, Mun et al 2015).

Remote sensing data from satellites, airborne sensors, and unmanned aerial vehicles (UAVs) mainly characterize canopy conditions, such as vegetation indices, leaf area index (LAI), and canopy temperature (Guan et al 2016, Urban et al 2018, Kimm et al 2020b), and hydrological conditions, such as evapotranspiration (ET), rainfall, and soil moisture (Qiu et al 2016, Peng et al 2017, Guan et al 2018). Unlike *in-situ* data, satellite data provide information across space and time for large-scale applications. However, existing satellite technology has limited spatial and/or temporal resolutions for precision irrigation. For example, MODIS is in low-medium spatial (250 m–1 km) and daily temporal resolution;
Table 1. Examples of precision irrigation products from the U.S. land-grant universities.

Institution	Products	Data sources	Models	Crop type(s)	Irrigation triggering rules	Major functions
University of Nebraska–Lincoln	CornWater	Weather station	Hybrid-maize crop model	Corn	Soil moisture	Provide real-time irrigation management for the next 3 d (Han 2016, Payyala 2016)
	SoyWater	Weather station, soil sensors	SoySim crop model	Soybean	Soil moisture	Provide real-time irrigation management for the next 3 d (Gibson et al. 2019, Specht and Yang 2017)
University of Idaho	Reference evapotranspiration calculator (Ref-ET)/mapping evapotranspiration at high resolution and internalized calibration (METRIC ET)	Weather station, ET maps	Penman–Monteith	—	Soil moisture	Use daily soil water balance and ET maps for irrigation (Allen et al. 2007a, Santos et al. 2008)
Colorado State University	WISE (water irrigation scheduler for efficient application)	Weather station, soil sensors	Penman–Monteith	Alfalfa, corn, potato and sugar beets	Soil moisture	Use ET and soil moisture measurements for irrigation (Andales et al. 2014, Bartlett et al. 2015)
	Irrigation scheduling	Colorado agricultural meteorological network (CoAgMet), atmometers, soil sensors	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for irrigation, use soil moisture measurements to check occasionally (Broner 2005)
Purdue University/Michigan State University	Irris Scheduler	Weather station	Penman–Monteith	Corn, soybean, dry bean, green bean, etc.	Soil moisture	Use ET and soil water balance for irrigation (Brad and Phil 2017)
Kansas State University	KanSched	Weather station	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for irrigation (Rogers 2012)
Montana State University	Dynamic tools irrigation scheduling	AGRIMET weather network, soil sensors	Penman–Monteith	—	Soil moisture	Use ET, soil moisture measurements, and soil water balance for irrigation (Carlson 2019)
Michigan State University/University of Minnesota	Irrigation scheduling checkbook method	Michigan agricultural weather network (MAWN)	Penman–Monteith	—	Soil moisture	Use ET, crop coefficient curve, and soil moisture measurements for irrigation (Wright 2018)
Institution	Products	Data sources	Models	Crop type(s)	Irrigation triggering rules	Major functions
-------------------------------------	---	-------------------------------	-----------------------------	--	--	---
University of Missouri	Crop Water Use app	Weather station	Penman–Monteith	Corn, rice, soybean, and cotton	Soil moisture	Use ET and soil water balance for irrigation, use soil moisture measurements to check occasionally (Stevens 2014)
North Dakota State University	Web-based irrigation scheduling program on NDAWN	Weather station	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for irrigation (Scherer and Morlock 2008)
University of Wisconsin-Madison	Wisconsin irrigation scheduling program (WISP)	UW-extension Ag weather network	Penman–Monteith	Blueberry, soybean, corn, etc.	Soil moisture	Use ET and soil water balance for irrigation (Curwen and Massie 1994, Sanford and Pamaska 2015)
Texas A&M University	Dashboard for Irrigation Efficiency Management (DIEM)	Texas Tech mesonet network (weather station), soil sensors	DSSAT-CROPGRO-cotton model	Cotton, sorghum, and corn	Soil moisture	Provide irrigation scheduling based on real-time measurements and projected weather data (from historical weather records) (Bordovsky et al 2017)
University of California	iCrop (integrated crop water management model-driven decision support tool)	Gridded climate data (PRISM, NARR); weather stations (CIMIS, Kansas mesoscale network); soil data (SoilGrids from ISRIC)	DSSAT-CSM model	Corn, sorghum, cotton, tomatoes, trees, etc.	Soil moisture	Provide optimal irrigation scheduling considering in-season yield predictions (based on historical climate patterns) (Kisekka and Kim 2018)
USDA-NRCS/Oregon State University	Irrigation management-online	Weather station, farm-specific information (crop, irrigation)	Penman–Monteith	Alfalfa, peas, potato, wheat	Soil moisture	Estimate soil moisture to forecast irrigation schedules (Irmak et al 2010)
Washington State University	Irrigation Scheduler	Weather station, soil sensors	Penman–Monteith	Fruit tree	Soil moisture	Use forecasted ETo, crop coefficient curve, and soil moisture measurements for one-week irrigation (Troy et al 2012)
Industry	Products	Data sources	Models	Crop type(s)	Irrigation triggering rules	Major functions
------------------	------------------------------------	--	--------------------	--------------	----------------------------	---
Valley	AgSense	AgSense weather station, soil sensors	Penman–Monteith	—	Soil moisture	Use ET0, crop coefficient curve, and soil moisture measurements for irrigation (AgSense 2017)
	Irriger Connect	Satellite imaging (NDVI and soil humidity), soil sensors, weather station	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for a week ahead irrigation scheduling with the weather forecast (IRRIGER 2018)
	Valley® Scheduling	Weather station, soil sensors	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for a week ahead irrigation scheduling with the weather forecast (Valley 2017)
	Irrigation scheduling supervisory control and data acquisition (ISSCADA) system	Weather station, infrared thermometer (IRT) sensors, soil sensors	Penman–Monteith	Soybean	Integrated crop water stress index (iCWSI)	Use iCWSI for site-specific variable-rate irrigation, use soil moisture measurements to determine irrigation amount or fixed amount (Evett et al 2014; O'Shaughnessy et al 2018, O'Shaughnessy et al 2015)
Valley/Prospera	Autonomous crop management	Satellite imagery, soil sensors	Machine learning	—	Crop water stress index (CWSI)	Provide irrigation scheduling based on machine learning (Valley and Prospera 2019)
Lindsay	FieldNET Advisor™	Growsmart weather station	Machine learning	—	Soil moisture	Provide irrigation scheduling based on machine learning (Lindsay 2020)
John Deere	eAurora web central	Weather station	Penman–Monteith	—	ET	Use ET and soil water balance for irrigation (Deere 2018)
The Climate Corporation/Lindsay	Two-way data connectivity between Climate FieldView and FieldNET	Satellite images (vegetation maps, such as LAI), soil data, weather data	Machine learning	—	Soil moisture	Use satellite image, weather, and soil moisture to predict irrigation scheduling based on Climate FieldView platform (Climate Corporation 2017)
CropMetrics/CropX	Virtual Predictor/VO Grow	Weather station, soil sensors, aerial imagery, soil/topography maps	Penman–Monteith, crop model, machine learning	Corn, soybean, etc	Soil moisture	Use ET and soil water balance to provide one-week ahead irrigation forecast for variable rate irrigation (CropMetrics 2019)
Industry	Products	Data sources	Models	Crop type(s)	Irrigation triggering rules	Major functions
---------------------------	-----------------------------------	--	---------------------------------	--------------	---	--
Iteris	ClearAg’s EvapoSmart	Global weather analysis and forecast system	Penman–Monteith	—	Soil moisture	Use ET, crop coefficient curve, and soil moisture measurements for irrigation (iteris 2020)
	ClearAg’s IMFocus	Global weather analysis and forecast system	Land surface model	—	Soil moisture	Use land surface model to track water and energy (iteris 2020)
	LESCO® Moisture Manager	Soil sensors	—	Lawns, etc.	Soil moisture	Use root zone soil moisture for irrigation scheduling (LESCO® 2018)
Observant	Irrigation scheduling	Observant weather monitoring, soil sensors	Penman–Monteith	—	Soil moisture	Use ET, crop coefficient curve, and soil moisture measurements for irrigation (Observant 2019)
Agri-Valley Irrigation, LLC	Precision irrigation	Soil sensors	Penman–Monteith	—	Soil moisture	Use ET and soil water balance for a week ahead irrigation scheduling with the weather forecast (Agri-Valley Irrigation 2015)
GroGuru	Precision soil and irrigation monitoring system	Weather station, soil sensors for different depths (soil moisture, salinity, temperature)	Machine learning	Corn, etc.	Soil moisture	Use machine learning to predict irrigation scheduling (GroGuru 2019)
ARABLE	Arable Mark	Arable Mark all-in-one monitor (climate, plant, and soil data)	Machine learning	—	Soil moisture	Synthesize climate, plant, and soil data into water balance to produce irrigation (ARABLE 2018)
IrriWatch	IrriWatch	Remote sensing data (canopy temperature, solar radiation, crop leaf size, and photosynthesis)	Surface energy balance algorithm for land (SEBAL)	—	Soil moisture	Use remote sensing data to estimate ET and soil moisture by SEBAL for irrigation scheduling (Jaafar and Ahmad 2020)
HydroPoint	WeatherTRAK™	US weather stations (temperature, wind, solar radiation and humidity)	Not available	Turf and landscape plants	Daily ET	Estimate crop water use (ET) for irrigation scheduling (HydroPoint 2020)
Aspiring Universe	Agricultural intelligence	Remote sensing data (10-30m resolution, daily, cloud-free, gap-free ET/GPP/LAI)	Agroecosystem model	—	Daily ET, soil moisture	Use remote sensing data and process-based model to track field-scale soil moisture and ET for irrigation scheduling (Aspiring Universe 2020)
whereas, Landsat is in medium-high spatial resolution (30–60 m) but low temporal resolution (∼8 d). By contrast, airborne sensors and UAVs can provide data at higher spatial resolutions, e.g. ∼0.1 m, but require geometric and radiometric calibration, certified operators, and complex data processing, and thus they are usually cost-prohibitive. So far the most relevant remote sensing data for irrigation is ET, and there are various remote sensing-based ET models, e.g. atmosphere-land exchange inverse (ALEXI) (Anderson et al 2004), backward-averaged iterative two-source surface temperature and energy balance solution (BAITSSS) (Dhungel et al 2016), breathing earth system simulator (BESS) (Jiang and Ryu 2016), mapping evapotranspiration with internalized calibration (METRIC) (Allen et al 2007b), surface energy balance algorithm for land (SEBAL) (Bastiaanssen et al 1998), and their pros and cons have been reviewed in recent work (Zhang et al 2016, Jiang et al 2020a).

Finally, gridded weather/climate/soil data, such as NLDAS (Xia et al 2012), PUMET (Pan et al 2016), PRISIM (Daly and Taylor 2001), DayMET (Thornton et al 2018), and SSURGO (NRCS 2017), are usually used as the forcing parameters of land surface models to analyze the impact of irrigation (Devanand et al 2019, Xu et al 2019). Gridded weather/climate data can provide large-scale information, but usually have a coarse spatial resolution (>250 m) and cannot meet the field-level resolution and low latency requirements necessary for precision irrigation decision-support systems.

2.3. Decision-making approaches and criteria used in current precision irrigation decision-support systems

The major decision-making approaches for irrigation timing primarily depend on soil- and plant-based metrics (Elwin 1997, Jones 2004). Soil-based metrics determine irrigation timing based on soil moisture or soil moisture-derived metrics, such as maximum allowable depletion (MAD), which indicates the percentage of the available water capacity to which crops should be subjected. MAD is the most widely used precision irrigation decision-making method (Panda et al 2004, Lehmann et al 2013). Plant-based metrics mainly determine irrigation timing based on plant conditions, such as plant water conditions (e.g. leaf water potential) and/or canopy temperature, e.g. crop water stress index (CWSI) and integrated CWSI (iCWSI) (Jones 2004, Girona et al 2006). Leaf water potential, a direct measure of plant water status in terms of plant hydraulics, has been used by agronomists/consultants for the irrigation of high value crops, but this approach can be over-costly and unscalable for row crop (Jones 2004, Girona et al 2006). The CWSI and iCWSI provide irrigation-triggere information through the cooling effect due to...
plant transpiration, based on the normalized function of vapor pressure deficit (VPD) and temperature difference between canopy and air (Idso et al. 1981, Jackson et al. 1981, DeJonge et al. 2015, O’Shaughnessy et al. 2015).

The most widely adopted approach to determine how much water to apply is based on root-zone soil moisture. Given that soil moisture sensors are not available in most cases, the irrigation amount can be determined using soil water balance through two types of methods: the process-based models and statistical/machine learning models. Process-based models, including crop models, e.g. APSIM, AquaCrop, DSSAT, EPIC, Hybrid-Maize (Hammer et al. 2002, Steduto et al. 2009, Rosenzweig et al. 2014, Peng et al. 2020), hydrological models, e.g. SWAT (Chen et al. 2018), and land surface models, e.g. Noah-MP, CLM, JULES, PALMS (Best et al. 2011, Niu et al. 2011, Yang et al. 2011, Booker et al. 2015, Peng et al. 2018), can be used to simulate water balance and surface biophysical processes based on physical mechanisms with inputs of weather, soil, and/or satellite-based vegetation information. Statistical/machine learning models usually use empirical approaches to calculate soil water content and crop water use to determine the irrigation amount, and these empirical models require rich historical data to train and test the models to make them useful (Goldstein et al. 2018). Furthermore, daily ET reports is also widely used for irrigation scheduling based on the estimation of daily crop water use (Lascano 2000, Lascano and van Bavel 2007, USDA 2017).

3. Challenges and opportunities for precision irrigation decision-support systems

Based on current precision irrigation research, we identified four critical challenge areas and corresponding opportunities (figure 2) to improve precision irrigation decision-support systems for the center pivots in the U.S.: (a) data availability and scalability; (b) quantification of plant water stress; (c) model uncertainties and constraints; and (d) producers’ participation and motivation. With these challenges and opportunities, our proposed precision irrigation decision-support system for center pivots, which includes three components: data acquisition, modeling and analytics, and decision-making support (figure 3), should be scalable, economical, reliable, and easy-to-use for producers.

3.1. Data availability and scalability

One major challenge regarding data need for precision irrigation is the lack of field-level resolution and high-accuracy data for scaled-up applications. Here we first reviewed the challenges of different existing approaches, and then discussed the opportunities to obtain scalable and high-accuracy data that can be acquired in every field at large regions for precision irrigation.

3.1.1. Challenges

Here we identify three challenges from in-situ, satellite-based vegetation, and satellite-based ET and soil moisture data in data availability and scalability (figure 2).

3.1.1.1. In-situ data

Existing in-situ sensors in the market are generally expensive or at least not sufficiently cheap to enable wide adoption. They also typically need to be installed and removed before and after the growing season for row-crops, resulting in extra labor costs. Though in-situ sensors usually provide high-quality measurements, these measurements are from a single point and thus often have limitations in capturing spatial heterogeneity of a whole field (Geesing et al. 2004, Dong et al. 2013, Irmak et al. 2014, Rudnick et al. 2015, Vuran et al. 2018). Large public in-situ networks are available to provide long-term datasets from the National Soil Moisture Network and state mesonets, but these network stations are usually deployed in natural landscapes, away from crop fields, thus they have to rely on interpolation for precision irrigation but with significant uncertainty (Mauget and Leiker 2010).

3.1.1.2. Satellite-based vegetation data

To enable precision irrigation decision, field-level resolution and high frequency are needed for remote
sensing data. However, conventional satellite-based datasets on vegetation conditions, e.g. LAI and land surface temperature (LST), cannot fulfill high resolutions in space and time simultaneously; and some satellite-derived products have inherent limitations, such as insufficient accuracy and significant time latency (Table 3). These drawbacks limit their applications to provide real-time and field-resolution data to determine irrigation scheduling for precision irrigation.

3.1.1.3. Satellite-based ET and soil moisture data
Continuous real-time estimation of ET and soil moisture, which indicate crop water use and soil water supply for crops in irrigation decision-making tools, remains a major challenge at fine scales with high accuracy for precision irrigation. Current operational soil moisture products only have coarse resolutions and could not fulfill the field-level irrigation needs; to make them useful, they need to be downscaled to high resolutions in both space and time, which adds large uncertainties (Table 3). Specifically, current satellite-based soil moisture products based on passive microwave remote sensing are still limited to coarse resolutions (e.g. >10 kms in SMAP L3 and SMOS L3 products) and are only sensitive to shallow soil depth (<0.05 m) (Entekhabi et al. 2010, Chan et al. 2016); the above limitations make these data not useful for field-scale precision irrigation. The existing operational ET data either has coarse resolutions or not effective under cloudy days. For example, ALEX-I/DisALEXI and METRIC ET products are based on energy balance approaches, which retrieve clear-sky ET from satellite-observed LST and fill ET gaps for cloudy-sky days, and thus are considerably affected by atmospheric conditions, thus limiting its practical uses (Allen et al. 2007a, Cammalleri et al. 2013, Li et al. 2017, Anderson et al. 2018, Ma et al. 2018).

3.1.2. Opportunities
3.1.2.1. In-situ data
First, continuous development of soil moisture sensor is needed to reduce the cost while achieve the robust performance (Montzka et al. 2020). Second, more in-situ measurements from low-cost sensors can be combined to fill in the critical data gap for essential plant and environmental conditions. For example, in-situ LAI measurements, along with some other environmental variables, such as air temperature and humidity, now can be acquired from low-cost sensors; these measurements can provide significant constraints to improve ET estimations for irrigation scheduling. Economic cameras, such as PhenoCam, point-and-shoot cameras and smartphones, and spectral reflectance sensors, have been deployed to track vegetation phenology, such as LAI, and productivity (Ryu et al. 2010, 2012, Francione et al. 2014, Richardson et al. 2018, Yan et al. 2019). Furthermore, recent advances in microcomputers and microcontrollers have improved the ability to intelligently integrate low-cost sensors and provide a comprehensive solution for crop growth monitoring (Kim et al. 2019). Third, some mobile sensors may also contribute to fill the gaps of spatial and temporal sampling, such as putting the roving cosmic-ray neutron sensors on trucks to sample soil moisture at a regional scale (Franz et al. 2015, Schrön et al. 2018). Additionally, new technologies, such as 5G networks, Internet of Things (IoT), Long Range communication devices, and edge computing, can further speed up the development of wireless sensing networks (WSNs), which can possibly make it less expensive and easier to provide scalable in-situ data for precision irrigation.

3.1.2.2. Satellite-based vegetation data
For remote sensing data for vegetation conditions, improved satellite technologies/algorithms and data
Table 3. Some examples of satellite-based products of LAI, LST, ET, soil moisture, and precipitation.

Dataset variable	Product name	Platform	Spatial resolution	Temporal resolution	Latency	Reference(s)
LAI	AVH15C1	NOAA/AVHRR	0.05°	Daily	1 d	Claverie et al (2016)
	GEOV3	PROBA-V	1/360°	10 d	10 d	Camacho et al (2016)
	MCD15A3H	MODIS	500 m	8 d	5 d	Yan et al (2016)
	VNP15A2H	SNPP/VIIRS	500 m	8 d	2 weeks	Knyazikhin and
						Myneni (2017)
		MODIS	1 km	Daily	1 d	Wang et al (2015)
	MOD/MYD11A1	MODIS	1 km	Daily	4 weeks	Hulley (2017)
	ECO21LTE	ECOSTRESS	70 m	Irregular	2 d	Hook and Hulley (2019)
	Landsat	Landsat	30 m	16 d	8 d	Cook et al (2014)
	GOES-R LSTC	GOES-R	2 km	Hourly	Real time	Schmit et al (2017)
	VNP21A1	SNPP VIIRS	1 km	Daily	8 weeks	Liu et al (2015)
	Sentinel3_SL_2_LST	Sentinel-3	1 km	Daily	Real time	Sobrino et al (2016)
LST	MOD/MYD16A2	MODIS	500 m	8 d	3 weeks	Cleugh et al (2007)
	PML-V2	MODIS	500 m	8 d	Not operational	Zhang et al (2019)
	BESS	MODIS	1 km	8 d	Not operational	Jiang and Ryu (2016)
	FLUXCOM	MODIS	1 km	8 d	Not operational	Jung et al (2019)
	GLASS	MODIS	0.05°	8 d	Not operational	Yuan et al (2010)
	GLEAM v3a	MODIS	0.25°	Daily	Not operational	Martens et al (2017)
	ALEXI	GOES-R	4 km	Daily	Not available	Anderson et al (2007)
	PT-JPL	ECOSTRESS	56 m	Irregular	1 week	Fisher et al (2020)

(Continued)
Table 3. (Continued.)

Dataset variable	Product name	Platform	Spatial resolution	Temporal resolution	Latency	Reference(s)
Soil moisture	SMAP	SMAP	36 km (SMAP_L2/3_SM_P), 9 km (SMAP_L2/3_SM_P_E, SMAP_L4_SM), 3 km (SMAP_L2_SM_SP)	Daily or 3 h	1–3 d	Chan et al (2016), Entekhabi et al (2010), and Reichle et al (2017)
	SMOS	SMOS	15/25 km	Daily	6 h to 7 d	Al Bitar et al (2017)
	ASMR2 L3	ASMR2	10 km	Daily	1 d	Jeu and Owe (2014)
	SSM/I	SSM/I	25 km	Daily	1 d	Paloscia et al (2001)
	SMOPS	ASCAT, SMOS, GMI, SMAP, AMSR2, Wind-Sat	25 km	Daily	1 d	Zhan et al (2011)
Precipitation	TRMM	TRMM	0.25°	3 h	8 h	Iguchi et al (2000)
	GPM	GPM	0.1°	30 min	4 h	Huffman et al (2015)
	GOES-R	GOES-R	4 km	15 min	2 h	Loto’aniu et al (2019)
	PERSIANN	GOES-8, GOES-10, GMS-5, Metsat-6, Metsat-7, TRMM, NOAA-15, -16, -17, DMSP F13, F14, F15	0.25°	6 h	2 d	Ashouri et al (2015)
	CHIRPS V2.0	CCD	0.05°	Daily	3 weeks	Funk et al (2015)
	CMORPH V1.0	SSM/I, AMSU-B, AMSR-E, TMI	0.07°	30 min	2 h	Joyce et al (2004)
	MSWEP	CMORPH, GridSat, GSMaP, TMPA	0.25°	3 h	4 h	Beck et al (2019)
fusion methods (figures 2 and 3) can help to provide high spatial-temporal resolution products directly. Notably, satellite datasets with high resolutions in both space and time, e.g. daily, 3 m resolution Planet Labs data, are emerging and becoming available; though whether these data can be commercially viable for irrigation products is still unclear. Alternatively, satellite fusion algorithms, such as the Satellite dAta IntegRation (STAIR) fusion method (figure 4) (Luo et al 2018, 2020), have been developed to fuse various satellite data together, e.g. Landsat, MODIS, and Sentinel-2, to enable the operational and real-time generation of a 10–30 m, daily and cloud-/gap-free data product for surface reflectance, which has significantly advanced the field-scale and real-time monitoring of crop conditions (Jiang et al 2020a, Kimm et al 2020b).

3.1.2.3. Satellite-based ET and soil moisture data

High-resolution and operational ET and soil moisture products, once become available, can enable precision irrigation scheduling at the field level and low costs without in-situ sensors. Notable, the recently developed BESS-STAIR ET product, generated by a satellite-driven water-carbon-energy coupled biophysical model BESS combined with the STAIR fusion data, not only has a high spatial-temporal resolution (daily, 30 m) under all-sky conditions, but also has demonstrated a high performance in estimating field-level ET when benchmarked with 12 eddy-covariance flux sites across the U.S. Corn Belt (figure 5) (Jiang et al 2020a). It indicates that BESS-STAIR ET has potential for applications in field-level precision irrigation, and also has scalability to regional and global scales. Besides, high-resolution LST products could also be incorporated into the BESS model as constraints to improve BESS-STAIR ET’s performance in near future. Some other existing programs, such as OpenET (Hall et al 2020), also have plans to offer satellite-based ET data, but unless real-time and field-level ET data can be provided, the promise to resolve precision irrigation cannot be fulfilled.

For field-scale soil moisture, leveraging recent advances in mobile proximal sensing, high-resolution satellite remote sensing and downscaling, model-data fusion, ground sensing networks, machine learning and data mining techniques may provide promising solutions. Several proximal sensing techniques (Babaeian et al 2019), such as cosmic ray neutron sensing, can be powerful in mapping field-scale soil moisture when mounted on mobile platforms (Franz et al 2015, Schrön et al 2018). Higher resolution soil moisture estimation can also be achieved through synergic use of both active and passive microwave remote sensing (Das et al 2019) or spatial downscaling (Peng et al 2017). Field-scale soil moisture simulation can also be improved with model-data fusion. Soil moisture is highly connected with some other land surface state and flux variables, such as ET and LST. The recently developed satellite-based 30 m BESS-STAIR ET (Jiang et al 2020a), ECOSTRESS-based ET (Anderson et al 2020) and LST (Hook and Hulley 2019) can be used to constrain the hydrological models through model-data fusion methods and thus to better infer field-scale soil moisture. The soil parameters in the hydrological models, which are an important source of uncertainty in field-scale soil
moisture simulation, can also be estimated through model-data fusions methods when proper field-scale measurements are available. With emerging technologies like WSNs and IoTs (Kiani and Seyyedabbasi 2018), more ground-based soil moisture observations will become available (Quiring et al 2016), which provides an opportunity for data-driven prediction of soil moisture. State-of-the-art data mining techniques based on a network of coevolving time series (Cai et al 2015, Hairi et al 2019) can simultaneously capture the structural topology and temporal dynamics of multiple time series for the temporal and spatial patterns of soil moisture and its correlation with other variables. Meanwhile, the emerging physics-guided machine learning approaches (de Bézenac et al 2019, Reichstein et al 2019, Yang et al 2019), which can integrate hyper-resolution hydrological modeling with advanced machine learning algorithms, may also shed light on field-scale soil moisture estimation.

3.2. Quantification of plant water stress
A fundamental question about precision irrigation is 'what is plant water stress and how to quantify it?'. Answering this question requires us to fully consider the soil–plant–atmosphere continuum (SPAC). Only after this question is answered, optimal methods could be developed around the correct concepts.

3.2.1. Challenges
'Plant water stress' is a critical concept to indicate the water shortage status of plants, based on which we can create irrigation triggering rules. There are various definitions of 'plant water stress', for example, based on soil moisture and/or plant conditions, including canopy temperature and/or leaf water potential (Jones 1990, 2004, 2007, Rodríguez-Iturbe and Porporato 2005, Möller et al 2007).

3.2.1.1. Soil-based concepts
Soil-based metrics are the most widely used methods for irrigation decision-making, such as MAD (see tables 1 and 2, figures 6(d) and 8(e)). These metrics are based on the available water in the root-zone for root water uptake to indicate plant water stress. It is worth noting that these soil-based metrics largely only reflect water supply and they do not consider atmospheric water demand. Since agricultural drought in the U.S. Corn Belt is both driven by soil water deficit and atmospheric dryness characterized by high VPD (Lobell et al 2014, Zhou et al 2020, Kimm et al 2020a), it could be inappropriate to quantify plant water stress solely based on soil moisture.

3.2.1.2. Plant-based concepts
Canopy temperature and leaf water potential are often used for irrigation management (figures 6(a), (e) and 8(a), (b)). Canopy temperature reflects plant water stress indirectly through canopy energy balance, such that a reduction of ET leads to reduced evaporative cooling, and thus higher canopy temperature given the same net energy (Idso et al 1981, Jackson et al 1981, DeJonge et al 2015, O'Shaughnessy et al 2015). However, canopy temperature derived metrics, such as CWSI and iCWSI, which can be measured from proximal, airborne, or satellite thermal sensors at the canopy scale, contain non-negligible uncertainty due to the empirical calculation methods, and are also prone to weather conditions, i.e. no observations during cloudy days for satellite products. The empirical calculation methods usually use the empirical upper and lower limits of the temperature difference between canopy and air to estimate CWSI and iCWSI based on the standardized temperature difference, resulting in irreducible uncertainty and error.

Leaf water potential, a more rigorous measure of plant water stress based on plant hydraulics, can indicate plant’s internal water stress directly, but it is relatively cumbersome and labor-intensive to measure (Jones 2004, Girona et al 2006). The traditional measurements of leaf water potential via pressure chambers are reliable but require destructive leaf sampling and could be time-consuming (Boyer 1967, Ritchie and Hinckley 1975, Turner 1988), while the...
3.2.2. Opportunities

We interpret ‘plant water stress’ as a joint contribution of soil water supply (i.e. root-zone soil moisture) and atmospheric water demand (i.e. VPD), mediated by plant physiological regulations (Rigden et al. 2020, Kimm et al. 2020a) (figure 3). Both low soil moisture and high VPD can lead to plant water stress, and different plants may have different physiological responses and water use strategies (Sinclair et al. 1984, Sinclair 2005, 2012, Katul et al. 2012). Thus, plant water stress should be defined and quantified holistically based on the interplay between soil water supply, atmospheric water demand, and plant physiological regulations, i.e. SPAC concept, for irrigation scheduling. We propose three definitions based on transpiration, plant hydraulics, and stomatal conductance (figures 2 and 6).

3.2.2.1. Transpiration

We can define ‘plant water stress’ from the perspective of transpiration (figure 6(c)). As transpiration can be limited by soil water deficit and/or downregulated stomatal conductance due to atmospheric aridity, actual transpiration (Tr) is achieved as the minimum of atmospheric water demand and soil water supply (Sinclair et al. 1984, Sinclair 2012), with the former defined as transpiration when soil moisture is non-limiting with the same vegetation conditions, i.e. reference transpiration, Tr_ref, and the latter defined as root water uptake given limited soil moisture. Thus, the ratio of Tr (with plant water stress) and Tr_ref (without plant water stress) can be used to indicate plant water stress, here we define it as transpiration stress index (TSI) (figure 6(c)). However, in practice it is difficult to obtain direct measurements of Tr and Tr_ref. Though there are multiple ET partitioning approaches that can separate evaporation and Tr, such as process-based models (Stoy et al. 2019), energy balance (Kool et al. 2016), remote sensing products (Talsma et al. 2018), or geochemical signatures (Al-Oqaili et al. 2020), these methods contain relatively large uncertainties, which limits the accurate calculation of TSI in real-world applications. Alternatively, we could use the ratio of actual ET and reference ET (ET_o), i.e. evaporative stress index (ESI) (Anderson et al. 2011), as an approximation of TSI to indicate plant water stress for precision irrigation (figure 6(c)). ESI, which has been extensively used to quantify agricultural drought in long-term baseline conditions (Anderson et al. 2011, 2016), can be derived from remote sensing, e.g. ECOSTRESS ESI_PT-JPL (Fisher et al. 2020) and BESS-STAIR ET (Jiang et al. 2020a), and/or process-based models.
3.2.2.2. Leaf/stem water potential
We also can define ‘plant water stress’ using leaf/stem water potential based on plant hydraulics (figure 6(e)). Plant hydraulics is the fundamental theory that connects soil water supply and atmospheric water demand (Dixon and Joly 1895, Tyree 1997, 2003, Taiz and Zeiger 2006, Stroock et al 2014), and can realistically represent the path of water flow from the soil through the plant substrate to the atmosphere driven by the potential gradient (Anderegg 2015). When plant water stress is caused by soil water deficit and atmospheric aridity, either independently or collectively, a substantial drop in leaf/stem water potential can be observed, and consequently with a reduction in sap flow. Thus, leaf and stem water potentials can be used as metrics to quantify plant water stress (figure 6(e)). However, measurements of leaf and stem water potentials are labor-intensive and expensive to use for precision irrigation. Thus, accurately modeling plant hydraulic control and water transport in the SPAC to estimate plant hydraulic traits, e.g. leaf/stem/root water potential and hydraulic conductance, becomes the key to the quantification of plant water stress in practice. To manage the complexities of plant hydraulic models, some highly uncertain parameters can potentially be constrained using various measurements through data-model fusion approaches (referred to section 3.3), and some processes can also be simplified for crops, e.g. neglecting plant water storage (Salomón et al 2017), to enable efficient and scalable adoption of this method.

3.2.2.3. Stomatal conductance (G_s)
We can also define ‘plant water stress’ in terms of G_s (figures 6(b), 7 and 8), which reflects the physiological regulation of the uptake of atmospheric CO$_2$ for photosynthesis and water loss through transpiration (Ball et al 1987, Medlyn et al 2011). Stomatal regulations are co-regulated by water supply (soil moisture) and demand (VPD) (figure 6(b) and the co-regulation pattern in figure 7) (Lin et al 2018, Kimm et al 2020a). G_s decreases with VPD given a certain soil moisture, and increases with soil moisture given a certain VPD (figure 7). Besides, the strong relationship between CWP, CWSI, ESI, TSI, MAD and G_s indicates that different plant water stress metrics (CWP, CWSI, ESI, TSI, MAD) all reflect the information of G_s (figure 8). Thus, stomatal conductance is the most effective indicator of plant water stress based on the co-regulation from soil moisture and VPD. However, quantifying ‘plant water stress’ in terms of G_s is difficult, since we do not have a direct measure of actual G_s in practice at the canopy level—we can only do it at the leaf level. Thus, the above approach may have to rely on either process-based models or observation derived proxies, such as inverted Penman–Monteith equation and semi-empirical G_s models (Ball et al 1987, Allen et al 1998, Leinonen et al 2006, Damour et al 2010, Medlyn et al 2011, Gago et al 2016, Buckley 2017, Kimm et al 2020a). The effectiveness of the above modeling or proxy approaches remains to be investigated, but the promise lies in leveraging scalable field-level measurements (e.g. from novel satellite products, see section 3.1.2) with models through data-model fusion approaches to estimate G_s and then make irrigation decision guidance.

3.3. Model uncertainties and constraints
With the data availability and ‘plant water stress’ definitions clarified, process-based models and/or statistical/machine learning models can be used to simulate the SPAC system for irrigation scheduling. Both two types of models can involve significant uncertainties if not properly used, thus data-model fusion methods should be used to constrain models at each individual field, using field-scale measurements (figure 2).

3.3.1. Challenges
3.3.1.1. Process-based models
Uncertainties of the process-based models (referred to section 2.3) can come from model inputs, parameters, and structures. Beven and Freer (2001) and Liu and Gupta (2007) have provided some detailed discussions on these aspects. Here we only discuss our unique perspective related to two major challenges. The first challenge is that scalable precision irrigation through process-based models requires us to have accurate simulations at each individual field in large regions. Process-based models usually can be calibrated at fields with rich data. Many practitioners assume that a model that has been calibrated at one or a few locations can be applied directly to other random sites. However, this approach in general does not work. The reasons are two-folds: first, when applying a model to a new site, many site-specific input data is not available, such as management practices and soil characteristics, which can lead to large errors in the simulations. Second, there are some site-specific model parameters remaining unknown and using predefined values may lead to large uncertainties. To possibly resolve this issue, we need to calibrate the process-based models at each individual field. The challenge thus is how to get the required field-level measurements for the calibration at each individual field. Computation burden also exists when we want to constrain each individual field using the process-based models.

The second challenge is the under-represented or missed critical processes in the current models. One typical example is the linear/nonlinear response functions of G_s to soil moisture used in many current land surface models, such as in NOAH-MS model (Niu et al 2011), JULES model (Best et al 2011), and CTESSEL model (Boussetta et al 2013). These linear/nonlinear soil moisture-based water stress functions only consider soil water supply but ignore atmospheric...
Figure 7. Soil moisture and VPD’s co-regulation on G_s of maize at one site (North Platte Linear, NPL: 41.09° N; 100.78° W) in central Nebraska. (a) Scatter plots of daily soil moisture, VPD, and G_s during peak growing season (July and August) from 2001 to 2019 based on the simulation from an advanced process-based model (ecosys). (b) Contour of G_s as a function of soil moisture and VPD using equation (4) in Kimm et al (2020a). (c), (d) Two box plots show the variation of G_s with soil moisture and VPD.

Figure 8. The performance of five metrics (CWP, CWSI, ESI, TSI, and MAD) interpreting G_s of maize during peak growing season (July and August) from 2001 to 2019 at one site (NPL: 41.09° N; 100.78° W) in central Nebraska based on the simulation from an advanced process-based model (ecosys). (a) CWP: canopy water potential; (b) CWSI: crop water stress index; (c) ESI: evaporative stress index; (d) TSI: transpiration stress index; and (e) MAD: maximum allowable depletion.

Water demand, thus these models have been found to overestimate soil moisture impacts on G_s, thus overestimated loss of ET with decreasing soil moisture (Ukkola et al 2016, Lei et al 2018). Few models consider the complicated interaction between surface water and groundwater, which is critical for the conjunctive use of these two sources for optimal irrigation in regions with active surface water and groundwater interactions (Singh et al 2016). Besides, ignoring these active interactions may also lead to large uncertainties of the subsurface hydrological conditions.

3.3.1.2. Statistical/machine learning models
The first challenge is that statistical/machine learning models are usually seen as ‘black boxes’, which lack the physical mechanisms related to water cycle and irrigation (Torres et al 2011, Goumopoulos et al 2014, Navarro-Hellín et al 2016, Romero et al 2018).
It is difficult to trace the highly variable hydrological and vegetation conditions using ‘black boxes’ machine learning algorithms. Another challenge is the data scarcity for the training of statistical/machine learning models at every individual field. The statistical/machine learning models can be trained at data-rich fields, while they cannot be extrapolated to other fields due to the lack of generality (Goldstein et al 2018, Romero et al 2018).

3.3.2. Opportunities

3.3.2.1. Process-based models

Regarding the first challenge, process-based models should be constrained at each individual field by integrating the field-level measurements into data-model fusion methods for scalability. From the perspective of data, field-level measurements can be acquired by economic sensors and/or satellite remote sensing (see section 3.1.2). Advanced satellite remote sensing technologies nowadays can accurately estimate crop conditions (e.g. LAI and GPP) (Wu et al 2020, Jiang et al 2020b, Kimm et al 2020b) and hydrological conditions (e.g. ET) (Jiang et al 2020a), making field-level information available. From the perspective of model, sensitive analysis should be applied first to screen out the most sensitive model parameters. Then, the most sensitive parameters need to be constrained for each individual field using field-level measurements (Yang et al 2020). There are many data-model fusion methods that can be used to integrate data and model for model constrains at each individual field, including calibration (e.g. Bayesian inference) and/or data assimilation. Detailed applications of these methods are referred to Houska et al (2014) and Liu and Gupta (2007). Regarding the computational cost, surrogate models, based on machine learning methods, can be applied to improve the calibration efficiency (Wang et al 2014, Zhang et al 2017).

Regarding the second challenge of the under-represented or missed critical processes, we envision the following opportunities for model. Improved quantification of plant water stress following the supply-demand concept and hydraulic functions (referred to section 3.2.2) should be incorporated into the process-based models to replace the original soil moisture-based water stress functions. The interactions between surface water and groundwater should also be incorporated into the process-based models at regions where the groundwater level is shallow and consequently active interactions happen. It can not only improve the simulation of subsurface hydrological conditions for precision irrigation with possible subsurface measurements from low-cost subsurface sensors, but also can contribute to the sustainable irrigation with the conjunctive use of surface water and groundwater (Wu et al 2016).

3.3.2.2. Statistical/machine learning models

The nature of ‘black boxes’ can be potentially resolved by the emerging physics-guided statistical/machine learning models. Physics-guided statistical/machine learning models mainly incorporate some physical laws, such as water and energy balance, into original ‘black boxes’ to improve the traceability and prediction performance (de Bézenac et al 2019, Reichstein et al 2019, Yang et al 2019) (figure 3). For the limitation of data scarcity for model training, the growth of rich data from in-situ sensors and remote sensing (e.g. satellites, airborne sensors, and UAVs) can effectively enhance the training of statistical/machine learning models (see section 3.1.2). Besides, integrating process-based models with statistical/machine learning models will also help alleviate the limitation of data scarcity (Shen 2018, Shen et al 2018).

3.4. Producers’ participation and motivation

Now following the discussion of data, mechanisms, and modeling in precision irrigation, we focus on the producers’ participation and motivation that is needed to promote precision irrigation decision-support systems. According to USDA in 2017, producers’ adoption rate of precision irrigation decision-support systems was less than 25%, and their adoption decision is largely depended on whether the expected benefits outweighed the adoption costs (USDA 2017, US GAO 2019).

3.4.1. Challenges

Producers have low confidence in precision irrigation decision-support systems, and also have concerns in data privacy (Cox 1996). It is generally recognized that there are three challenges to the producers’ participation and motivation (figure 2).

3.4.1.1. Impractical and unreliable tools

Many of the existing precision irrigation tools lack the proper user interface and are difficult to use, leading to poor user experience (Mir and Quadri 2009). Furthermore, the accuracy underlying these tools are in general low, and thus producers are reluctant to use them (Cox 1996, Mir and Quadri 2009, US GAO 2019). Besides, most current precision irrigation decision-support systems assume that producers follow the recommended irrigation decisions strictly for each recommended irrigation event, and give producers no flexibility on the recommended irrigation timing (US GAO 2019).

3.4.1.2. Limited access to information

Producers in general have limited access to information on the development of new precision irrigation decision-support systems. The tools developed by land-grant university extensions are mainly applied in experimental fields for research, rather than for practical applications; while those from industries are promoted to large-scale producers, rather than those
with medium to small-sized farms. Besides, there is limited expertise to help producers to set up and maintain the precision irrigation decision-support systems (Mir and Quadri 2009, US GAO 2019).

3.4.1.3. Limited market-based incentives for water conservation
There is limited reliance on economic instruments, such as water pricing, water trading, and caps on water use, for managing water scarcity (Moore 1991, Olmstead and Stavins 2009). Additionally, sustained investments have not been made in governance and adequate institutional capacity to manage conflicts and adapt to changing conditions. The establishment of water markets could encourage water conservation, increase the value of water and induce public and private investments in irrigation efficiency (Rosegrant et al 1995, Johansson et al 2002).

3.4.2. Opportunities
Regarding the low confidence from producers on precision irrigation decision-support systems, three types of measures could be used to increase the producers’ adoption rate (figure 2).

3.4.2.1. Easy-to-use tools with flexibility
Accuracy and easy-to-use are the basic features affecting the adoption rate of precision irrigation tools (Keil et al 1995, Mir and Quadri 2009). Use of these tools can be validated using some historical extreme weather events (such as drought), and the performance can be shown to producers (figure 3). Besides, tools should be provided with easy-to-use interfaces. Additionally, dynamic decision-making in precision irrigation tools can provide some flexibility for producers. For example, multiple solutions of irrigation timing (the gray region in figure 3) can be recommended together, and producers can select the favored one or decide not to irrigate. If producers decide not to irrigate, the new and updated irrigation scheduling should be provided rapidly based on updated soil and plant conditions. The frequent interactions between producers and these tools can give producers more flexibility and improve the accuracy of irrigation scheduling.

3.4.2.2. Farm policies for promotion
The government can develop farm policies to promote precision irrigation decision-support systems. For example, the government can provide more education and training about these systems and their impact on water sustainability through extension and partnerships with private companies. Incentives can also be provided to the tool developers to encourage them to deliver technologies and/or perform as consultants to provide the support for the tool users (producers). Subsidies can also be provided for early adopters, i.e. higher risk tolerance, to encourage producers to adopt precision irrigation decision-support systems.

3.4.2.3. Market-based water institutions
Additionally, market-based water institutions, such as water markets with caps on water withdrawals and the ability to trade water across users, will provide incentives for adopting technologies that increase resource use efficiency (Garrick et al 2020). Subsidies to reduce the upfront costs of precision technologies can also promote adoption, particularly if producers have high discount rates. Enhanced resource use efficiency can however create financial incentives to increase economic return; thus, market-based solutions in favor of precision irrigation systems should be promised as a joint effort of governments, industry, and producers.

3.4.2.4. Extension to the existing center pivots
Except for the above three types of measures, producers can also add telemetry to allow remote control or automatic control of the center pivots (figure 3). Producers can receive alerts by e-mail and/or text messages about decision-making information and any potential problems online. With the above suggested opportunities, precision irrigation decision-support systems can be promoted to producers with the existing standard center pivots.

4. Concluding remarks
This systematic review focuses on precision irrigation research, identifies critical challenges and opportunities in four areas, which can be treated as the research directions of precision irrigation decision-support systems in the future, thus bridging the gap between research and practice. With more efforts in these research directions, our envisioned precision irrigation decision-support system (figure 3) can be applied universally and cost-effectively using the recent advanced technologies at each individual field in large regions.

(a) Data availability and scalability. High spatial-temporal-resolution satellite fusion products and low-cost sensor networks are emerging and should be used to scale up the adoption of precision irrigation decision-support systems.

(b) Quantification of plant water stress. Mechanistic quantification of ‘plant water stress’ is suggested as triggers to improve irrigation decision, by explicitly considering the interaction between soil water supply, atmospheric water demand, and plant physiological regulation.

(c) Model uncertainties and constraints. The process-based and statistical/machine learning models should be constrained at each individual
field using field-scale measurements and data-model fusion methods to investigate plant water relations for scalable precision irrigation.

(d) **Producers’ participation and motivation:** Easy-to-use tools should be developed with flexibility, and governments’ financial incentives and support should also be increased to improve adoption rates of new irrigation technologies.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

We acknowledge the support from USDA National Institute of Food and Agriculture Foundation Program Cyber-physical systems (2019-67021-29312), NASA Carbon Monitoring System (80NSSC18K0170), and NSF CAREER award (1847334) managed through the NSF Environmental Sustainability Program. We also acknowledge the editors and two anonymous reviewers for their constructive and helpful comments/suggestions.

ORCID iDs

- Jingwen Zhang https://orcid.org/0000-0002-3264-3014
- Kaiyu Guan https://orcid.org/0000-0002-3499-6382
- Bin Peng https://orcid.org/0000-0002-7284-3010
- Olufemi Abimbola https://orcid.org/0000-0002-6700-6015
- Madhu Khanna https://orcid.org/0000-0003-4994-4451

References

- Agri-Valley Irrigation 2015 *Your Full Service Irrigation Company* (available at: https://agri-valley.com/)
- AgSense 2017 *Irrigation: AgSense® Applications* (available at: www.agsense.com/applications/irrigation)
- Al Bitar A et al 2017 The global SMOS level 3 daily soil moisture and brightness temperature maps *Earth Syst. Sci. Data* 9 293
- Al-Oqaili F, Good S P, Peters R T, Finkenbiner C and Sarwar A 2020 Using stable water isotopes to assess the influence of irrigation structural configurations on evaporation losses in semiarid agricultural systems *Agric. For. Meteorol.* 291 108083
- Allen R G et al 1998 Crop evapotranspiration—guidelines for computing crop water requirements—FAO irrigation and drainage paper 56 (Rome: FAO) vol 300 p D05109
- Allen R G, Tasumi M, Morse A, Trezza R, Wright J L, Bastiaannsen W, Kramber W, Lorite I and Robison C W 2007a Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—applications *J. Irrig. Drain. Eng.* 133 395–406
- Allen R G, Tasumi M and Trezza R 2007b Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model *J. Irrig. Drain. Eng.* 133 380–94

Allen R 2009 *Manual: REF-ET: Reference Evapotranspiration Calculation Software for FAO and ASCE standardized Equations* (University of Idaho)

Andales A A, Bauder T A and Arabi M 2014 A mobile irrigation water management system using a collaborative GIS and weather station networks *Practical Applications of Agricultural System Models to Optimize the Use of Limited Water* (Madison, WI: American Society of Agronomy, Inc.) pp 53–84

Anderegg W R 2015 Spatial and temporal variation in plant hydraulic traits and their relevance for climate change impacts on vegetation *New Phytol.* 205 1008–14

Anderson M C et al 2020 Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales *Remote Sens. Environ.* 252 112189

Anderson M C, Hain C, Wardlow B, Pimstein A, Mecikalski J R and Kustas W P 2011 Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States *J. Clim.* 24 2025–44

Anderson M C, Norman J M, Mecikalski J R, Otkin J A and Kustas W P 2007 A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. model formulation *J. Geophys. Res.: Atmos.* 112 D10117

Anderson M C, Norman J, Mecikalski J R, Torn R D, Kustas W P and Basara J B 2004 A multiscale remote sensing model for disaggregating regional fluxes to micrometeorological scales *J. Hydrometeorol.* 5 343–63

Anderson M C, Zolin C A, Sentelhas P C, Hain C R, Semmens K, Turgul Yilmaz M, Gao E, Otkin J A and Tetrau R 2016 The evaporative stress index as an indicator of agricultural drought in Brazil: an assessment based on crop yield impacts *Remote Sens. Environ.* 174 82–99

Anderson M et al 2018 Field-scale assessment of land and water use change over the California Delta using remote sensing *Remote Sens. 10* 889

ARABLE 2018 *A Complete Water-Budgeting Solution* (available at: www.arable.com/solutions_irrigation/)

Ashouri H, Hsu K-L, Sorooshian S, Braithwaite D K, Knapp K R, Cecil I D, Nelson B R and Prat O P 2015 PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies *Bull. Am. Meteorol. Soc.* 96 69–83

Aspiring Universe 2020 Agricultural Intelligence (https://aspiringuniverse.com)

Babaeean E, Sadeghi M, Jones S B, Montzka C, Vereeken H and Tuller M 2019 Ground, proximal, and satellite remote sensing of soil moisture *Rev. Geophys.* 57 300–616

Ball J T, Woodrow I E and Berry J A 1987 A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions *Progress in Photosynthesis Research* (Berlin: Springer) pp 221–4

Barr H 1964 Heat of respiration as a possible cause of error in the estimation by psychrometric methods of water potential in plant tissue *Nature* 203 1136–7

Bartlett A C, Andales A A, Arabi M and Bauder T A 2014 A mobile irrigation scheduling tool *Comput. Electron. Agric.* 111 127–30

Bastiaannsen W G, Menenti M, Feddes R and Holtslag A A M 1998 A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation *J. Hydrol.* 212 198–212

Bassett A G, Powlson D S, Arabi M and Bauder T A 2015 A smartphone app to extend use of a cloud-based irrigation scheduling tool *Comput. Electron. Agric.* 111 127–30

Bastiaannsen W G, Menenti M, Feddes R and Holtslag A A M 1998 A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation *J. Hydrol.* 212 198–212

Beven K and Frer J 2001 Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex...
environmental systems using the GLUE methodology
J. Hydrol. 249 11–29
Booker J, Lacson R, Molling C, Zartman R E and
Acosta-Martinez V 2015 Temporal and spatial simulation of production-scale irrigated cotton systems Precis. Agric. 16 630–53
Bordovsky J et al 2017 Dashboard for Irrigation Efficiency Management (ĐIEM) (available at: https://diem.tamu.edu/ dashboard/content/static/landing/landingPage.html)
Boussetta S et al 2013 Natural land carbon dioxide exchanges in the ECMWF integrated forecasting system: implementation and offline validation J. Geophys. Res.: Atmos. 118 5923–46
Boyer J 1967 Leaf water potentials measured with a pressure chamber Plant Physiol. 42 133–7
Brad J and Phil H 2017 Iris Scheduling (available at: www.purdue. edu/agsoftware/irrigation/)
Broner I 2005 Irrigation Scheduling (available at: https://extension. colostate.edu/topic-areas/agriculture/irrigation-scheduling-4-708/)
Buckley T N 2017 Modeling stomatal conductance Plant Physiol. 174 572–82
Cahn M 2019 CropManage (available at: http://help.cropmanage. ucanr.edu/2019/04/26/introduction-to-cropmanage/)
Cai Y et al 2015 Fast mining of a network of coevolving time series Paper Presented at the Proc. 2015 SIAM Int. Conf. on Data Mining
Camacho F et al 2016 Validating GEOV3 LAI, FAPAR and vegetation cover estimates derived from PROBA-V observations at 333m over Europe Paper Presented at the EGU General Assembly Conf. Abstracts
Cammalleri C, Anderson M, Gao F, Hain C R and Kustas W P 2013 A data fusion approach for mapping daily evapotranspiration at field scale Water Resour. Res. 49 4672–86
Carlson L 2019 Automatic Soil Moisture Monitors and AgriMet: Dynamic Tools Irrigation Scheduling (available at: http://waterquality.montana.edu/farm-ranch/irrigation/ irrigation-tools-monitors-agrimet.html)
Chan S K et al 2016 Assessment of the SMAP passive soil moisture product IEEE Trans. Geosci. Remote Sens. 54 4994–5007
Chen Y, Marek G W, Marek T, Brauer D K and Srivinasan R 2018 Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data Environ. Model Softw. 99 25–38
Claverie M, Matthews J L, Vermote E F and Justice C 2016 A 30 year AVHRR LAI and FAPAR climate data record: algorithm description and validation Remote Sens. 8 263
Cleugh H A, Leuning R, Mu Q and Running S W 2007 Regional evaporation estimates from flux tower and MODIS satellite data Remote Sens. Environ. 106 285–304
Climate Corporation 2017 Climate FieldView™ (available at: https://dev.fieldview.com/)
Cook M, Schott J R, Mandel J and Raqueno N 2014 Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive Remote Sens. 6 11234–66
Cox P 1996 Some issues in the design of agricultural decision support systems Agric. Syst. 52 355–81
CropMetrics 2019 The New CropMetrics App (available at: https://cropmetrics.com/the-new-cropmetrics-app/)
Curwen D and Massie I R 1994 Irrigation Management in Wisconsin: The Wisconsin Irrigation Scheduling Program (WISP), 3600 (University of Wisconsin—Extension)
Daily C and Taylor G 2001 PRISM Precipitation Maps, Oregon State University Spatial Climate Analysis Service and State of Oregon Climate Service
Damour G et al 2010 An overview of models of stomatal conductance at the leaf level Plant Cell Environ. 33 1419–38
Das N N et al 2019 The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product Remote Sens. Environ. 233 111380
De Bezenac E, Pajot A and Gallinari P 2019 Deep learning for physical processes: incorporating prior scientific knowledge J. Stat. Mech: Theory Exp. 2019 124009
Deere J 2018 ‘Aurora Web-based Central’ (available at: www. deere.com/en/)
De jonge K C, Taghvaeian S, Trout T J and Comas L H 2015 Comparison of canopy temperature-based water stress indices for maize Agric. Water Manage. 156 51–62
Devanand M, Jannink M, Ashfaq M, Bark B and Ghosh S 2019 Choice of irrigation water management practice affects indian summer monsoon rainfall and its extremes Geophys. Res. Lett. 46 9126–35
Dhungel R, Allen R G, Trezza R and Robison C W 2016 Evapotranspiration between satellite overpasses: methodology and case study in agricultural dominant semi-arid areas Meteorol. Appl. 23 714–30
Dixon H H and Joly J 1895 XII. On the ascent of sap Phil. Trans. R. Soc. B 186 563–76
Dong X, Vuran M C and Irmak S 2013 Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems Ad Hoc Netw. 11 1975–87
Elwin A 1997 Irrigation Guide: National Engineering Handbook (Washington, DC: Natural Resources Conservation Service, United States Department of Agriculture) pp 652
Entekhabi D et al 2010 The soil moisture active passive (SMAP) mission Proc. IEEE 98 704–16
Evett S R, O’Shaughnessy S A, Andrade M A, Kustas W P, Anderson M C, Schomberg H H and Thompson A 2020 Precision agriculture and irrigation: current U.S. perspectives Trans. ASABE 63 57–67
Evett S R, O’Shaughnessy S A and Peters R T 2014. Irrigation scheduling and supervisory control and data acquisition system for moving and static irrigation systems Google Patents
Exner M E, Hirsh A J and Spalding R F 2014 Nebraska’s groundwater legacy: nitrate contamination beneath irrigated cropland Water Resour. Res. 50 4474–89
Fernández J and Cuevas M 2010 Irrigation scheduling from stem diameter variations: a review Agric. For. Meteorol. 150 135–51
Fisher J B et al 2020 ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station Water Resour. Res. 56 e2019WR026058
Foster T, Gonçalves I Z, Campos I, Neale C M U and Brozovi´c J 2010 The soil moisture active passive (SMAP) mission Proc. IEEE 98 704–16
Francione C, Pagani V, Foi M, Cappelli G and Confalonieri R 2014 Comparison of leaf area index estimates by ceptometer and PocketLAI smart app in canopies with different structures Field Crops Res. 155 38–41
Franz T E, Wang T, Avery W, Finkenbiner C and Brocca L 2020 Combined analysis of soil moisture measurements from roving and fixed cosmic ray neutron probes for multiscale real-time monitoring Geophys. Res. Lett. 42 3395–3396
Funk C et al 2015 The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes Sci. Data 2 1–21
Gago J, De Menezes Daloso D, Figueroa C M, Flexas J, Fernie A R and Nikolidakis Z 2016 Relationships of leaf net photosynthesis, stomatal conductance, and mesophyll conductance to primary metabolism: a multispecies meta-analysis approach Plant Physiol. 171 265–79
Garrick D, Jensen M, T. Gilson G, Brozovic N, O’Donnell E, Matthews N, Miralles-Wilhelm E, Wight C and Young W 2020 Scalable solutions to freshwater scarcity: advancing changes of theory to incentivise sustainable water use Water Secur. 9 100555
Geesing D, Bachmaier M and Schmidhalter U 2004 Field calibration of a capacitance soil water probe in heterogeneous fields Soil Res. 42 289–99
HydroPoint 2020 Smart irrigation, perfect landscape (available at: www.hydropoint.com/products-and-services/weathertrak-et-pro3/)

Idso S, Jackson R, Pinter J P, Reginato R J and Hatfield J L 1981 Normalizing the stress-degree-day parameter for environmental variability Agric. Meteorol. 24 45–55

Iguchi T, Kozu T, Meneghini R, Awaka J and Okamoto K 2000 Rain-profiling algorithm for the TRMM precipitation radar J. Appl. Meteorol. 39 2038–52

Ihuoma S O and Madramootoo C A 2017 Recent advances in crop water stress detection Comput. Electron. Agric. 141 26–34

Imrik S et al 2014 Principles and operational characteristics of Watermark granular matrix sensor to measure soil water status and its practical applications for irrigation management in various soil textures

Imrik S, Rees J M, Zoubek G L, Van Dewalle B S, Rathje W R, DeBuhr R, Leininger D, Siekman D, Schneider J W and Christiansen A F 2010 Nebraska agricultural water management demonstration network (NAWMDN): integrating research and extension/outreach Appl. Eng. Agric. 26 599–613

IRRIGER 2018 IRRIGER CONNECT (available at: www.irriger.com/en-US#irriger Website)

itiserv 2020 Irrigation Decision Support API (available at: https://docs.clearag.com/)

Jiafar H H and Ahmad F A 2020 Time series trends of LandSat-based ET using automated calibration in METRIC and SEBAL; the Bekaa Valley, Lebanon Remote Sens. Environ. 238 111034

Jackson R D, Idso S, Reginato R and Pinter P J 1981 Canopy temperature as a crop water stress indicator Water Resour. Res. 17 1133–8

Jeu R D and Owe M 2014 AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 10 km x 10 km descending V001 (Global, 180°W-180°E)

Jiang C et al 2020b A daily, 250 m, and real-time gross primary productivity product (2000–present) covering the Contiguous United States Earth Syst. Sci. Data Discuss. 2020 1–28

Jiang C, Guan K, Pan M, Ryu Y, Peng B and Wang S 2020a BESS-STAIR: a framework to estimate daily, 30 m, and all-weather crop evapotranspiration using multi-source satellite data for the US CNRM Belt Hydrol. Earth Syst. Sci. 24 1251–73

Jiang C and Ryu Y 2016 Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from breathing earth system simulator (BESS) Remote Sens. Environ. 186 528–47

Johansson R C et al 2002 Pricing irrigation water: a review of theory and practice Water Policy 4 173–99

Johnson H G 1990 Plant water relations and implications for irrigation scheduling

Jones H G 2004 Irrigation scheduling: advantages and pitfalls of plant-based methods J. Exp. Bot. 55 2427–36

Jones H G 2007 Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance J. Exp. Bot. 58 119–30

Joyce R J, Janowiak J E, Arkin P A and Xie P 2004 CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution J. Hydrometeorol. 5 487–303

Jung M, Koirala S, Weber U, Ichii K, Gans F, Camps-Valls G, Papale D, Schwalm C, Tramontana G and Reichstein M 2019 The FLUXCOM ensemble of global land-atmosphere energy fluxes Sci. Data 6 74

Kansara K et al 2013 Sensor based automated irrigation system with IOT: a technical review Int. J. Comput. Sci. Inf. Technol. 4 5331–3

Katul G G, Oren R, Manzoni S, Higgins C and Parlange M B 2012 Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system Rev. Geophys. 50 RG3002

Keil M, Beranek P M and Konsynski B R 1995 Usefulness and ease of use: field study evidence regarding task considerations Decis. Support Syst. 13 75–91

Gibson K E, Gibson J P and Grassini P 2019 Benchmarking irrigation water use in producer fields in the US central Great Plains Environ. Res. Lett. 14 054009

Girona J, Mata M, Del Campo J, Arbonés A, Bartra E and Marsal J 2006 The use of midday leaf water potential for scheduling deficit irrigation in vineyards Irrigation Sci. 24 115–27

Goldstein A, Fink L, Meltin A, Bodahana S, Lutenberg O and Ravod G 2018 Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge Precis. Agric. 19 421–44

Gournopoulos C, O’Flynn B and Kameas A 2014 Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support Comput. Electron. Agric. 105 20–33

Grafton R Q et al 2018 The paradox of irrigation efficiency Science 361 748–50

Griggs D, Smith M S, Rockstrom J, O’Hmann M C, Gaffney O, Glaser G, Kanie N, Noble I, Steffen W and Shiyamandas P 2014 An integrated framework for sustainable development goals Ecol. Soc. 19 49

GeoGuru 2019 GeoGuru Products Irrigation Monitoring & Management (available at: www.geoguru.com/products/)

Gu Z, Qi Z, Burghate R, Zhan S, Jiao X and Xu J 2020 Irrigation scheduling approaches and applications: a review J. Irrig. Drain. Eng. 146 04020007

Guan K et al 2018 Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length Environ. Res. Lett. 13 025013

Guan K, Berry J A, Zhang Y, Joiner J, Guanter L, Badgley G and Lobell D B 2016 Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence Glob. Change Biol. 22 716–26

Ha W, Gowda P H and Howell T A 2013 A review of downsampling methods for remote sensing-based irrigation management: part I Irrig. Sci. 31 831–50

Hairi F, Tong H and Ying L 2019 NetDyn: mining networked coevolving time series with missing values Paper Presented at the 2019 IEEE Int. Conf. on Big Data (Big Data)

Hall M et al 2020 Filling the biggest data gap in water management (available at: http://openedata.org/)

Hammer G, Kropff M, Sinclair T and Porter J R 2002 Future contributions of crop modelling—from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement Eur. J. Agron. 18 15–31

Han J C, 2016. Development of cornsorway, a web-based irrigation app PhD Thesis University of Nebraska

Haule J and Michael K 2014 Deployment of wireless sensor networks (WSN) in automated irrigation management and scheduling systems: a review Paper Presented at the Proc. 2nd Pan African Int. Conf. on Science, Computing and Telecommunications (PACT 2014)

Hillel D 2000 Salinity Management for Sustainable Irrigation: Integrating Science, Environment, and Economics (Washington, DC: The World Bank) (https://doi.org/10.1596/0-8213-4773-X)

Hooke S and Hulley G 2019 ECOSTRESS Land Surface Temperature and Emissivity Daily L2 Global 70 m v001

Houska T, Multsch S, Kraft P, Frede H-G and Breuer L 2014 Monte Carlo-based calibration and uncertainty analysis of a coupled plant growth and hydrological model Biogeosciences 11 2069

Huffman G J et al 2015 NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 4 p 26

Hulley G 2017 MYD21A1D MODIS/Aqua Land Surface Temperature/3-Band Emissivity Daily L3 Global 1km SIN Grid Day V006

Hydropoint 2020 Smart irrigation, perfect landscape (available at: www.hydropoint.com/products-and-services/weathertrak-et-pro3/)

Irmak S, Rees J M, Zoubek G L, Van Dewalle B S, Rathje W R, DeBuhr R, Leininger D, Siekman D, Schneider J W and Christiansen A F 2010 Nebraska agricultural water management demonstration network (NAWMDN): integrating research and extension/outreach Appl. Eng. Agric. 26 599–613

Irrigation Decision Support API (available at: https://docs.clearag.com/)

JAAF and Ahmad F A 2020 Time series trends of LandSat-based ET using automated calibration in METRIC and SEBAL; the Bekaa Valley, Lebanon Remote Sens. Environ. 238 111034

 ITER 2020 Irrigation Decision Support API (available at: https://docs.clearag.com/)

Joyce R J, Janowiak J E, Arkin P A and Xie P 2004 CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution J. Hydrometeorol. 5 487–303

Jung M, Koirala S, Weber U, Ichii K, Gans F, Camps-Valls G, Papale D, Schwalm C, Tramontana G and Reichstein M 2019 The FLUXCOM ensemble of global land-atmosphere energy fluxes Sci. Data 6 74

Keil M, Beranek P M and Konsynski B R 1995 Usefulness and ease of use: field study evidence regarding task considerations Decis. Support Syst. 13 75–91
Kiani F and Seyyedabassi A 2018 Wireless sensor network and internet of things in precision agriculture Int. J. Adv. Comput. Sci. Appl. 9 99–103
Kim J, Ryu Y, Jiang C and Huang Y 2019 Continuous observation of vegetation canopy dynamics using an integrated low-cost, near-surface remote sensing system Agric. For. Meteorol. 264 164–77
Kimm H et al 2020 Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs Cubesat and STAIR fusion data Remote Sens. Environ. 239 111615
Kimm H, Kim G, Gentsi P, Wu J, Bernacchi C J, Sultan B N, Griffin T J and Lin C 2020a Redefining droughts for the U.S. Corn Belt: the dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of maize and soybean Agric. For. Meteorol. 287 107930
Kisecka I and Kim J S 2018 Optimizing irrigation scheduling with limited water using the iCrop decision support tool Paper presented at the Irrigation Show (Long Beach, California)
Knyazikhin Y and Myneni R 2017 VIIRS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) user guide (Boston University)
Kool D, Kustas W, Ben-Gal A, Lazarovitch N, Heitman J L, Sauer T J and Agam N 2016 Energy and evaporapotranspiration partitioning in a desert vineyard Agric. For. Meteorol. 218 277–87
Lakhwani K et al 2019 Development of IoT for Smart Agriculture a Fieldnet Advisor
Leinonen I, Grant O, Tagliavia C, Chaves M M and Jones H G 2013 Explicit and recursive approaches to modelling stomatal conductance Meteorol. Atmos. Phys. 118 1–17
Lehmann N, Finger R, Klein T, Calanca P and Walter A 2013 Estimating crop water use (Gateway East: Springer) pp 373–99
Leoni M, Alchanatis V, Cohen Y, Meron M, Tsipiris J, Naor A, Ostrovsky V, Sprintsin M and Cohen S 2007 Use of thermal and visible imagery for estimating crop water status of irrigated grapevine J. Exp. Bot. 58 827–38
Montzka C et al 2020 Soil moisture product validation good practices protocol version 1.0 Good Practices for Satellite Derived Land Product Validation p 123
Moore M R 1991 The Bureau of Reclamation’s new mandate for drought and groundwater use surplus prediction in the high plains aquifer, predevelopment to 2015 and beyond Water Resour. Res. 27 3209–32
Olmstead S M and Stavins R N 2009 Comparing price and nonprice policies for water demand management Water Resour. Res. 45 W01032
O’Shaughnessy S et al 2015 Dynamic prescription maps for site-specific variable rate irrigation of cotton Agric. Water Manage. 139 123–38
Paloscia S, Macelloni G, Santi E and Koike T 2001 A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SMMR-II Environ. Res. Lett. 16 (2021) 053003
SSM/I satellites IEEE Trans. Geosci. Remote Sens. 39 1655–61
Pan M, Cai X, Chaney N W, Entekhabi D and Wood E F 2016 An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations Geophys. Res. Lett. 43 9662–8
Panda R, Behera S and Kashyap P 2004 Effective management of irrigation water for maize under stressed conditions Agric. Water Manage. 66 191–203
Pardossi A and Incrocci L 2011 Traditional and new approaches to irrigation scheduling in vegetable crops HortTechnology 21 309–13
Pathak H S, Brown P and Best T 2019 A systematic literature review of the factors affecting the precision agriculture adoption process Precis. Agric. 20 1292–316
Payyala D 2016 Optimization of Irrigation Decision in Cornsowyer (University of Nebraska)
}

Peng B et al 2020 Towards a multicrop scale modelling framework for climate change adaptation assessment Nat. Plants 6 338–48
Peng B, Guan K, Chen M, Lawrence D M, Pokhrel Y, Suyker A, Arkebauer T and Lu Y 2018 Improving maize growth processes in the community land model: implementation and evaluation Agric. For. Meteorol. 258 64–89
Peng J, Loew A, Merlin O and Verhoest N E C 2017 A review of spatial downscaling of satellite remotely sensed soil moisture Rev. Geophys 55 341–66
Pérez E M M et al 2011 Use of psychrometers in field measurements of plant material: accuracy and handling difficulties Spanish J. Agric. Res. 9 313–28
Power J and Schepers J 1989 Nitrate contamination of groundwater in North America Agric. Ecosystem. Environ. 26 165–87
Qiu J, Gao Q, Wang S and Su Z 2016 Comparison of temporal trends from multiple soil moisture data sets and precipitation: the implication of irrigation on regional soil moisture trend Int. J. Appl. Earth Obs. Geoinf. 48 17–27
Quiring S M, Ford T W, Wang J K, Khong A, Harris E, Qiu J, Gao Q, Wang S and Su Z 2016 An estimation using multispectral imagery from an UAV platform and machine learning algorithms for irrigation scheduling management Comput. Electron. Agric. 147 109–17
Rosegrant M W, Schleyer R G and Yadav S N 1995 Water policy for efficient agricultural diversification: market-based approaches Food Policy 20 203–23
Rosenzweig C et al 2014 Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison Proc. Natl Acad. Sci. 111 3268–73
Rudnick D R, Djaman K and Irmsch S 2015 Performance analysis of capacitance and electrical resistance-type soil moisture sensors in a silt loam soil Trans. ASABE 58 649–65
Ryu Y, Baldocchi D D, Verfaillie J, Ma S, Falk M, Ruiz-Mercado I, Hn H and Sonnentag O 2010 Testing the performance of a novel spectral reflectance sensor, built with light emitting diodes (LEDs), to monitor ecosystem metabolism, structure and function Agric. For. Meteorol. 150 1397–406
Ryu Y, Verfaillie J, Macfarlane C, Kobayashi H, Sonnentag O, Vargas R, Ma S and Baldocchi D D 2012 Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras Remote Sens. Environ. 126 116–25
Sadler E et al 2005 Opportunities for conservation with precision irrigation J. Soil Water Cons. 60 371–8
Salomon R L, Limousin M, Oucrival J M, Rodríguez-Iturbe I and Steppe K 2017 Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulic sch ills in the Mediterranean oak Quercus ilex Plant Cell Environment 40 1379–91
Sanford S and Panuska J 2015 Irrigation management in Wisconsin Univ. Wisconsin Coop. Ext. Publ. A3600–01
Sanford S, Cotrite I J, Tasumi M, Allen R G and Fereres E 2008 Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level Irrig. Sci. 26 277–88
Sassenrath G F et al 2013 Testing gridded NWS 1-day observed precipitation analysis in a daily irrigation scheduler Agric. Sci. 4 621–7
Scherrer T F and Morlcock D J 2008 A site-specific web-based irrigation scheduling program Paper presented at the 2008 Providence (Rhode Island, 29 June–2 July, 2008, St. Joseph, MI) (available at: http://edibrary.asabe.org/abstract. asp?aid=24736&t=e5)
Kim T J, Griffith P, Gunshor M M, Daniels J M, Goodman S J and Lehar W J 2017 A closer look at the ABI on the GOES-R series Bull. Am. Meteorol. Soc. 98 681–98
Schroen M et al 2018 Cosmic-ray neutron rover surveys of field soil moisture and the influence of roads Water Resour. Res. 54 6441–59
Shen C 2018 A transdisciplinary review of deep learning research and its relevance for water resources scientists Water Resour. Res. 54 8558–93
Shen C et al 2018 HESS Opinions: incubating deep-learning-powered hydrologic science advances as a community Hydro. Earth Syst. Sci. 22 5639–56
Sinclair T R 2005 Theoretical analysis of soil and plant traits influencing daily plant water flux on drying soils Agron. J. 97 681–98
Sinclair T R 2012 Is transpiration efficiency a viable plant trait in breeding for crop improvement? Funct. Plant Biol. 39 359–65
Sinclair T R, Tanner C and Bennett J 1984 Water-use efficiency in crop production Bioscience 34 36–40
Singh A, Panda S N, Saxena C K, Verma C L, Uzokwe V N E, Krause P and Gupta S K 2016 Optimization modeling for conjunctive use planning of surface water and groundwater for irrigated agriculture Irrig. Drain. Eng. 142 04015060
Smidt S, Kendall A D and Hyndman D W 2019 Increased dependence on irrigated crop production across the CONUS (1945–2015) Water 11 1458
Smith R 2011 Review of precision irrigation technologies and their application (University of Southern Queensland)
Sobrino J et al 2016 Synergistic use of MERIS and AATSR as a proxy for estimating land surface temperature
from Sentinel-3 data Remote Sens. Environ. 179 149–61
Specht J and Yang H 2017 Using SoyWater to Schedule Irrigation and Monitor Soybean Stages to Guide Decision-Making (available at: https://cropwatch.unl.edu/2017/using-soywater-schedule-irrigation-and-monitor-soybean-stages-guide-decision-making)
Steduto P, Huia T C, Raes D and Fereres E 2009 AquaCrop—the FAO crop model to simulate yield response to water: concepts and underlying principles Agron J. 101 426–37
Stevens G 2014 Crop Water Use App (available at: http://ag3.agebb.missouri.edu/horizonpoint/cropwater/)
Stoy P C et al 2019 Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities Biogeosciences Discuss. 16 5747–75
Stroock A D, Pagay Y V, Zweniecki M A and Michele Holbrook N 2014 The physicochemical hydrodynamics of vascular plants Annu. Rev. Fluid Mech. 46 615–42
Stubbs M 2016 Irrigation in US agriculture: on-farm technologies and best management practices (Washington, DC: Congressional Research Service)
Taiz L and Zeiger E 2006 Plant Physiology (Sunderland, MA: Sinauer Associates Inc.)
Talma C J, Good S P, Jimenez C, Martens B, Fisher J B, Miralles D G, McCabe M F and Purdy A J 2018 Partitioning of evapotranspiration in remote sensing-based models Agric. For. Meteorol. 260 131–43
Tanji K K 2002 Salinity in the soil environment Salinity: Environment-plants-molecules (Berlin: Springer) pp 21–51
Thornton M et al 2018. Daymet: monthly climate summaries on a 1 km grid for north america, version 3 (Oak Ridge, TN: ORNL DAAC)
Torres A F, Walker W R and McKeen M 2011 Forecasting daily potential evapotranspiration using machine learning and limited climatic data Agric. Water Manage. 98 553–62
Troy P, Gerttit H and Sean H 2012 Simplified irrigation scheduling on a smart phone or web browser
Turner N C 1988 Measurement of plant water status by the pressure chamber technique Irrig. Sci. 9 289–308
Tyree M T 1997 The cohesion-tension theory of sap ascent: current controversies J. Exp. Bot. 48 1753–65
Tyree M T 2003 Plant hydraulics: the ascent of water Nature 423 923–29
Ukolda A, De Kauwe M, Pitman A, Best M J, Abramowitz G, Tyree M T 2003 Plant hydraulics: the ascent of water Nature 423 923–29
V zak M C, Jones S, Meding M and Tuller M 2013 Evaluation of standard calibration functions for eight electromagnetic soil moisture sensors Vadose Zone J. 12 1–16
Vuran M C et al 2018 Internet of underground things: sensing and communications on the field for precision agriculture Paper presented at the 2018 IEEE 4th World Forum on Internet of Things (WF-IoT)
Walder A K et al 2000 ASCs standardized reference evapotranspiration equation Watershed Management and Operations Management 2000 (Reston, VA: American Society of Civil Engineers) pp 1–11
Wan Z, Hook S and Hulley G 2015 MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006, 2015, distributed by NASA EOSDIS Land Processes DAAC
Wang C, Duan Q, Gong W, Ye A, Di Z and Mao C 2014 An evaluation of adaptive surrogate modeling based optimization with two benchmark problems Environ. Model. Softw. 60 167–79
Wright J 2018 Irrigation scheduling checkbook method (available at: https://extension.umn.edu/irrigation/irrigation-scheduling-checkbook-method)
Wu G et al 2020 Radiance-based NIRV as a proxy for GPP of corn and soybean Environ. Res. Lett. 15 034009
Wu X, Zheng Y, Wu B, Tian Y, Han F and Zheng C 2016 Optimizing conjunctive use of surface water and groundwater for irrigation to address human-nature water conflicts: a surrogate modeling approach Agric. Water Manage. 163 380–92
Xia Y et al 2012 Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLADAS-2): 2. validation of model-simulated streamflow J. Geophys. Res.: Atmos. 117 D03110
Xie Y, Lark T J, Brown J F and Gibbs H K 2019 Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine ISPRS J. Photogramm. Remote Sens. 155 136–49
Xu X, Chen F, Barlage M, Gochis D, Miao S and Shen S 2019 Lessons learned from modeling irrigation from field to regional scales J. Adv. Model. Earth Syst. 11 2428–48
Yan D, Scott R, Moore D, Biederman J A and Smith W K 2019 Understanding the relationship between vegetation greenness and productivity across dryland ecosystems through the integration of PhenoCam, satellite, and eddy covariance data Remote Sens. Environ. 223 50–62
Yan K, Park T, Yan G, Liu Z, Yang B, Chen C, Nemani R, Knayziik Y and Myneni R 2016 Evaluation of MODIS LAI/FPAR product collection 6. Part 2: validation and intercomparison Remote Sens. 8 460
Yan P, Sun F, Gentine P, Liu W, Wang H, Yin J, Du M and Liu C 2019 Evaluation and machine learning improvement of global hydrological model-based flood simulations Environ. Res. Lett. 14 114027
Yan W, Guan K, Peng B, Pan M, Jiang C and Franz T E 2020 High-resolution spatially explicit land surface model calibration using field-scale satellite-based daily evapotranspiration product J. Hydrod. 125730
Yang Z L et al 2011 The community Noah land surface model with multiparameterization options (Noah-MP): 2. evaluation over global river basins J. Geophys. Res.: Atmos. 116 D12110
Yuan W et al 2010 Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data Remote Sens. Environ. 114 1416–31
Zaks D P and Kucharik C J 2011 Data and monitoring needs for a more ecological agriculture Environ. Res. Lett. 6 014017
Zhan X et al 2015 The community Noah land surface model with multiparameterization options (Noah-MP): 2. evaluation over global river basins J. Geophys. Res.: Atmos. 116 D12110
Zhang K, Kimball J S and Running S W 2016 A review of remote sensing based actual evapotranspiration estimation WIREs Water 3 634–53
Zhang Y, Kong D, Gan R, Chiew F H S, McVicar T R, Zhang Q and Yang Y 2019 Coupled estimation of 500 m and 8 day resolution global evapotranspiration and gross primary production in 2002–2017 Remote Sens. Environ. 222 165–82
Zhou W et al 2020 Connections between the hydrological cycle and crop yield in the rainfed US Corn Belt J. Hydrod. 590 125398
Zybach F L 1952 United States Patent No. US2604359A Office, U.S.P.