Leading quantum correction to energy of ‘short’ spiky strings

Matteo Beccaria¹, CarloAlberto Ratti¹ and Arkady A Tseytlin²,³

¹ Dipartimento di Fisica, Universita’ del Salento & INFN, Via Arnesano, 73100 Lecce, Italy
² The Blackett Laboratory, Imperial College, London SW7 2AZ, UK

E-mail: matteo.beccaria@le.infn.it, carloalberto.ratti@le.infn.it and tseytlin@imperial.ac.uk

Received 11 February 2012
Published 30 March 2012
Online at stacks.iop.org/JPhysA/45/155401

Abstract

We consider semiclassical quantization of spiky strings spinning in the AdS_3 part of $AdS_5 \times S^5$ using an integrability-based (algebraic curve) method. In the ‘short-string’ (small-spin) limit the expansion of string energy starts with its flat-space expression. We compute the leading quantum string correction to ‘short’ spiky string energy and find the explicit form of the corresponding one-loop coefficient a_{01}. It turns out to be rational and expressed in terms of the harmonic sums as functions of the number n of spikes. In the special case of $n = 2$ when the spiky string reduces to the single-folded spinning string, the coefficient a_{01} takes the value $(-1/4)$ found in Gromov et al (2011 J. High Energy Phys. JHEP08(2011)046). We also consider a similar computation for the m-folded string and more general spiky string with an extra ‘winding’ number, finding similar expressions for a_{01}. These results may be useful for a description of energies of higher excited states in the quantum $AdS_5 \times S^5$ string spectrum, generalizing earlier discussions of the string counterparts of the Konishi operator.

PACS numbers: 11.25.Tq, 11.25.−w, 11.15.Kc

1. Introduction and summary

The simplest example of the AdS/CFT duality [1] states the equivalence between the spectrum of the planar $\mathcal{N} = 4$ supersymmetric gauge theory and the spectrum of free closed quantum superstring propagating in $AdS_5 \times S^5$. The gauge-theory spectrum can be described in two equivalent ways: either as a list of possible energies of states on $\mathbb{R} \times S^3$ (as functions of various quantum numbers and ‘t Hooft coupling λ) or as a list of anomalous dimensions of conformal primary operators on $\mathbb{R}^{1,3}$ (determined by the diagonalization of an anomalous dimension matrix for single-trace gauge-invariant operators). Similarly, the string spectrum is given by the AdS_5 energies E of string states on a cylinder $\mathbb{R} \times S^1$ (in, e.g., a light-cone gauge approach)
or can be found from the marginality condition for the corresponding string vertex operators on a plane $\mathbb{R}^{1,1}$ (by diagonalizing the 2D anomalous dimension matrix).

The states can be labeled by the conserved charges C, i.e. by the five spins $(S_{1,2}, J_{1,2,3})$ corresponding to the bosonic subgroup $SO(2,4) \times SO(6)$ of the $\text{PSU}(2,2|4)$ symmetry group as well as by higher hidden charges. The AdS/CFT correspondence then implies that

$$E_{\text{gauge}}(\lambda, C) = E_{\text{string}}(\sqrt{\lambda}, C),$$

(1.1)

where $E_{\text{gauge}}(\lambda, C)$ is the AdS$_5 \times S^5$ string tension.

In the strong-coupling ($\lambda \gg 1$) expansion, one expects that massive quantum string states should probe a near-flat region of AdS$_5 \times S^5$ and thus should have $E \sim \sqrt{\lambda}$ [2]. More generally, considerations based on solving the 2D marginality condition [3] perturbatively in $\sqrt{\lambda} \ll 1$ for fixed charges suggest [4] that (up to a possible shift of E by a constant)

$$E^2 = 2N\sqrt{\lambda} + b_0 + \frac{b_1}{\sqrt{\lambda}} + \frac{b_2}{(\sqrt{\lambda})^2} + \cdots,$$

(1.2)

where N is the flat-space level number. As was argued in [4–6], one can attempt to find quantum string energies by starting with the semiclassical strings with fixed parameters $C = \frac{\lambda}{2\pi}$ and then take the ‘short’ string limit $C \to 0$. Indeed, for quantum strings with fixed charges C, the limit $\sqrt{\lambda} \gg 1$ implies $C = \frac{\lambda}{\sqrt{\lambda}} \to 0$. Assuming the commutativity of the limits that suggests a possibility of computing the subleading terms in the above expansion by using the semiclassical string theory methods. The semiclassical string expansion gives

$$E = \sqrt{\lambda}E_0(C) + E_1(C) + \frac{1}{\sqrt{\lambda}}E_2(C) + \cdots.$$

(1.3)

Replacing C by $\frac{\lambda}{\sqrt{\lambda}}$ and re-expanding in large λ for fixed C, one should find that E takes the form consistent with (1.2):

$$E = 4\sqrt{\lambda} \left(k_1 + \frac{k_2}{\sqrt{\lambda}} + \frac{k_3}{(\sqrt{\lambda})^2} + \cdots \right).$$

(1.4)

This ‘semiclassical’ approach was successfully applied to the case of the ‘short’ string states representing the members of the Konishi multiplet [4, 6–9], matching the results of the weak-coupling TBA approach extrapolated to strong coupling [7, 10–12].

It is of obvious interest to extend this approach to other quantum string states. The semiclassical analogue of the Konishi representative Tr$(ZD^2 Z)$ in the rank-1 $\mathfrak{sl}(2)$ sector is the ‘short’ folded spinning string [4, 6, 7]. The $\mathfrak{sl}(2)$ sector contains, beyond this twist 2 state, the operators of the following schematic form:

$$\mathcal{C} = \text{Tr}(D^{\nu_1}Z \cdots D^{\nu_r}Z),$$

(1.5)

where $S = \sum_{i=1}^{\nu} s_i$ is the total spin, J is the R-charge, and D are light-cone-projected covariant derivatives. Highest weight states of this form are expected [13–18] to be dual to various spinning string solutions, like the symmetric ‘spiky’ string in AdS$_5$ found in [19] or its generalization to AdS$_3 \times S^5$ discussed in [20].

In the weak-coupling gauge theory, the operators (1.5) correspond to eigenstates of the $\mathfrak{sl}(2)$ spin chain of length J. The large S limit is a semiclassical limit [13] with $1/S \sim \hbar$. The limit when all s_i in (1.5) are large was analyzed in detail in [17, 18, 23]. The corresponding Bethe ansatz solutions are associated with sectors characterized by a positive integer $n \leqslant J$.

4 Here we assume that the one-loop string correction does not contain ‘non-analytic’ terms which cannot appear in the vertex operator (2D anomalous dimension) approach [4]. This will be indeed so in the cases discussed below and treated in the algebraic curve approach.

5 In the Pohlmeyer-reduced description, these configurations can be viewed as multi-soliton solutions of a generalized sinh-Gordon model [21, 22].
For each \(n \), their description involves a genus \(n - 2 \) algebraic curve \(\Gamma_n \) with \(n - 2 \) moduli \(q_1, \ldots, q_n \) which are higher conserved charges of the spin chain. They are quantized according to suitable Bohr–Sommerfeld conditions making the spectrum discrete.

On the semiclassical string theory side, it is possible to show that the spiky strings are finite gap solutions also associated with a spectral curve that can be put into one-to-one correspondence with the gauge-theory curve \([17, 18]\). Besides, it is possible to determine the cut structure in a few special cases. The all-order Bethe ansatz description of the spiky string solutions was presented in \([24, 25]\).

Below we will be interested in two particular solutions. The first one is the ‘symmetric spiky string’ solution spinning in \(AdS_3 \) and having also an angular momentum \(J \) in \(S^5 \). This is a configuration with \(n \) spikes symmetrically distributed around the \(AdS_3 \) center. The second solution is the \(m \)-folded string, i.e. a closed string folded on itself \(m \) times with spin in \(AdS_3 \) and the orbital momentum in \(S^5 \) \([26, 27]\). In flat space \((dx^2 = -dt^2 + dx^2 + dy^2) \), these solutions are given by (in conformal gauge)

\[
\text{spiky:} \begin{cases}
 t = A(n - 1) \tau, & \sigma_\pm \equiv \tau \pm \sigma \\
 x = \frac{1}{2} A (\cos[(n - 1) \sigma_+]) + (n - 1) \cos \sigma_-, \\
 y = \frac{1}{2} A (\sin[(n - 1) \sigma_+]) + (n - 1) \sin \sigma_-, \\
 E = \sqrt{\frac{4(n-1)}{4a}} S, & S = \frac{n(n-1)}{4a} A^2
\end{cases}
\]

\[
\text{\(m \)-folded:} \begin{cases}
 t = n \tau, \\
 x = A \sin(m \sigma) \cos(m \tau) = \frac{1}{2} A (\sin(m \sigma_+) + \sin(m \sigma_-)), \\
 y = A \sin(m \sigma) \sin(m \tau) = \frac{1}{2} A (-\cos(m \sigma_+) + \cos(m \sigma_-)), \\
 E = \sqrt{\frac{2m}{n}} S, & S = \frac{m}{n} A^2.
\end{cases}
\]

One can compute the explicit values of the charges \(q_j \) for the corresponding two \(AdS_3 \times S^5 \) solutions as was shown in \([18]\). The result is particularly simple since most of the cuts collapse and we are left with a two-cut solution, asymmetric in the spiky string case. This fact is a major technical simplification, and it also shows that these two solutions can be viewed as direct generalizations of the single-folded spinning string (which for \(S = J = 2 \) is dual to the Konishi state in the \(\mathfrak{sl}(2) \) sector).

It is then natural to try to compute the leading quantum string corrections to the corresponding ‘short’ string energies. Instead of attempting the direct semiclassical quantization of the superstring, one may utilize the integrability by applying the algebraic curve approach developed, in particular, in \([28–30]\). This would be a direct generalization of the one-folded string computation presented in \([7]\).

This is the problem that we address in the main part of this paper. Our results may be summarized as follows. The short-string expansion of the energy of the symmetric spiky string with \(n \) spikes, spin \(S \) and angular momentum \(J \) has the form

\[
E_{\text{spiky}} = \sqrt{4 \left(1 - \frac{1}{n} \right) \sqrt{5} S} \times \left[1 + \frac{1}{\sqrt{\lambda}} \left(\frac{2n^2 - 5n + 5}{4n(n-1)} S + \frac{n}{8(n-1)} \frac{J^2}{S} + \frac{q_1^{\text{spiky}(n)}}{\text{quantum}} \right) + O \left(\frac{1}{(\sqrt{\lambda})^2} \right) \right], \quad (1.8)
\]

where the ‘classical’ terms come from the small spin expansion of the classical spiky string energy \([19]\), while \(q_1^{\text{spiky}(n)} \) encodes our result for the leading one-loop string correction. The
case of the folded string is \(n = 2 \). The corresponding expression for the square of the energy has a more transparent structure consistent with (1.2) (as explained above, here we assume that \(S, J, n \) are fixed while \(\lambda \gg 1 \))

\[
E_{\text{spiky}}^2 = 4 \left(1 - \frac{1}{n} \right) \sqrt{\lambda} \left[1 + \frac{2}{\sqrt{\lambda}} a_{01}^{\text{spiky}}(n) + \mathcal{O} \left(\frac{1}{(\sqrt{\lambda})^2} \right) \right] + J^2
\]

\[
+ 4 \left(1 - \frac{5}{2n} + \frac{5}{2n^2} \right) S^2 + \cdots
\]

The similar expansion of the energy of the \(m \)-folded string reads

\[
E_{\text{folded}} = \sqrt{2m \sqrt{\lambda} S} \left[1 + \frac{1}{\sqrt{\lambda}} \left(\frac{3}{8m} S + \frac{J^2}{4mS} + a_{01}^{\text{folded}}(m) \right) + \mathcal{O} \left(\frac{1}{(\sqrt{\lambda})^2} \right) \right],
\]

leading to

\[
E_{\text{folded}}^2 = 2m \sqrt{\lambda} S \left[1 + \frac{2}{\sqrt{\lambda}} a_{01}^{\text{folded}}(m) + \mathcal{O} \left(\frac{1}{(\sqrt{\lambda})^2} \right) \right] + J^2 + \frac{3}{2} S^2 + \cdots.
\]

The standard folded string case is \(m = 1 \), i.e.

\[
E_{\text{spiky}}(n = 2) = E_{\text{folded}}(m = 1).
\]

Our main results are the closed expressions for the one-loop contributions \(a_{01}^{\text{spiky}}(n) \) and \(a_{01}^{\text{folded}}(m) \):\(^6\)

\[
a_{01}^{\text{spiky}}(n) = -\frac{1}{8} + \frac{1}{4} q(n - 1),
\]

\[
a_{01}^{\text{folded}}(m) = q(m),
\]

where the function \(q(r) \) is given by the following combination of the harmonic sums:\(^7\)

\[
q(r) = -\frac{3}{4r} + 2H_r - H_{2r},
\]

\[
H_r \equiv \sum_{\ell=1}^r \frac{1}{\ell}, \quad H_0 = 0.
\]

In the special case of \(n = 2 \) or \(m = 1 \) corresponding to the one-folded spinning string we find, in agreement with [7]

\[
a_{01}^{\text{spiky}}(2) = a_{01}^{\text{folded}}(1) = q(1) = -\frac{1}{4}.
\]

Note that for positive integers \(m, n > 1 \), one has \(2m > 4\left(1 - \frac{1}{n}\right) \), so that the spiky string with the same spin \(S \) as the multifolded string with \(m > 1 \) has lower energy—it corresponds to a state on a lower flat-space string level. (The single-folded string has, of course, lower energy than the spiky string with \(n > 2 \).)

The matching of ‘short’ string energies and anomalous dimensions of finite-length gauge-theory operators requires a precise one-to-one mapping of the string states and the operators. This is non-trivial as remarked in [17]. Indeed, the bound \(n \leq J \) holds in the perturbative gauge

\(^6\) Note that the leading quantum correction \(a_{01} \) is thus rational. This short-string correction should be captured by the asymptotic Bethe ansatz equations (‘wrapping’ contributions should start to appear at \(\mathcal{O}(S^2) \) order, cf [31]). Analogous coefficients appearing at higher loop orders are expected to be rational combinations of \(\zeta \)-numbers with increasing transcendentality. An example is the \(\zeta_2 \) term in the \(\mathcal{O}(\lambda^{-3/4}) \) coefficient for the energy of the Konishi operator [9]. For the spiky and \(m \)-folded string, these coefficients will be generically dependent on the number of spikes and \(m \).

\(^7\) Note that the harmonic sum can be written in terms of the logarithmic derivative of the Gamma function, \(\psi(z) = \frac{d}{dz} \log \Gamma(z) \), as follows: \(H_r = \psi(r + 1) + \gamma \).
theory, but does not appear to be present on the semiclassical string theory side. Recently, the mirror TBA equations of [32] were solved numerically starting at weak coupling for several two-particle states dual to $\mathcal{N} = 4$ SYM operators from the $sl(2)$ sector with various values of the charge J and mode number n [12]. The interpolation of the results to strong coupling for low values of n does not appear to agree with the explicit values of our re-expansion (1.4). This is not totally surprising since moderate values of n at fixed J fall in the middle of the allowed range $n \leq J$, whereas on the semiclassical string theory side n is unbounded.

Nevertheless, it is of interest to try to apply (1.9) to a simple generalization of the Konishi operator ($S = J = 2$) in the $sl(2)$ sector. This is a particular highest weight state with $S = J = 3$ that can be schematically represented by an operator

$$O_3 = \text{Tr}(DZDZD) + \cdots,$$

where dots stand for different distributions of the three covariant derivatives such that O_3 is an eigenstate of the dilatation operator. The precise identification of the string state dual to this operator requires detailed analysis which is beyond the scope of this work. Assuming that it corresponds to the $n = 3$ spiky string, we then find from (1.9) the following prediction for the strong-coupling expansion of its anomalous dimension:

$$E_{\text{spiky}}(S = J = n = 3) = 2\sqrt{2} \sqrt{\lambda} \left[1 + \frac{41}{24} \frac{1}{\sqrt{\lambda}} + \mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^2}\right) \right].$$

For comparison, $E_{\text{folded}}(S = J = 3, m = 1) = \sqrt{6} \sqrt{\lambda} \left[1 + \frac{1}{4} \frac{1}{\sqrt{\lambda}} + \mathcal{O}(\frac{1}{\sqrt{\lambda}}) \right]$ is lower.

Let us also mention the limit of a large number of spikes $n \to \infty$. In the ‘long’ string case, it is possible to scale E, S, J with n keeping $\frac{E+J}{\sqrt{n}}, \frac{E-J}{\sqrt{n}}$ and $\frac{\lambda}{n}$ fixed [20]. In this limit, the spiky string approaches the boundary of AdS_5; the corresponding solution can be interpreted as describing a periodic-spoke string moving in $AdS_4 - \text{pp-wave} \times S^1$ background [33, 20]. In the ‘short’ string case we are interested in here, we may take n large, while keeping S and J fixed. We then find that while the classical contribution in (1.8) has a finite limit, the one-loop correction goes as $\log n$.

$$E \biggm|_{n \to \infty} = 2\sqrt{\lambda} S \left[1 + \frac{1}{2\sqrt{\lambda}} \left(S + \frac{f^2}{4S} + \log \frac{ne/\sqrt{\lambda}}{2} - \frac{1}{4} + \mathcal{O}\left(\frac{1}{n}\right) \right) + \mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^2}\right) \right].$$

As was mentioned previously, the symmetric spiky string and the m-folded string are special in the sense that the corresponding algebraic curve reduces to a curve with two cuts on the real axis on opposite sides of the origin. Such a solution is fully characterized by the positive mode numbers $-n_L$ and n_R associated with the left and right cuts. These mode numbers appear in the corresponding flat-space solution that generalizes both (1.6) and (1.7). The symmetric spiky string solution has $(n_L, n_R) = (1, n-1)$, while the m-folded string has $(n_L, n_R) = (m, m)$. The (n_L, n_R) solution in $AdS_4 \times S^1$ describes a generalized symmetric spiky string with a possible AdS_3 winding discussed in [18] (see also [23, section 5.1.3]). The corresponding expression for the one-loop corrected energy is the following generalization of both (1.8), (1.9) and (1.10), (1.11):

$$E_{(n_L, n_R)} = \frac{4n_L n_R}{n_L + n_R} \sqrt{\lambda} S \left[1 + \frac{1}{\sqrt{\lambda}} (a_{01}(n_L, n_R) + \cdots) + \cdots \right],$$

The value $n = 1$ is special as this is the minimal value corresponding to the ground state. This can be an explanation of the success of the matching in the case of the Konishi operator.

This may be implying that such a limit is not well defined in the strong-coupling expansion.
\[E_\text{\scriptsize(1nL-nR)}^2 = \frac{4n_L n_R}{n_L + n_R} \frac{1}{\sqrt{\lambda}} \sum S \left[1 + \frac{2}{\sqrt{\lambda}} a_{01}(n_L, n_R) + \mathcal{O}\left(\frac{1}{(\sqrt{\lambda})^4} \right) \right] + J^2 + \gamma S^2 + \cdots \] \tag{1.22}

\[a_{01}(n_L, n_R) = \frac{1}{2} [q(n_L) + q(n_R)], \] \tag{1.23}

where \(q \) was defined in (1.15). Indeed, as one can readily see (cf (1.13), (1.14), (1.17))

\[a_{01}^{\text{spiky}}(n) = a_{01}(1, n - 1), \quad a_{01}^{\text{folded}}(m) = a_{01}(m, m). \] \tag{1.24}

The ‘additive’ structure of \(a_{01} \) in (1.23) implies that to this low order of the ‘short-string’ (or ‘near-flat-space’) expansion, the contributions of the ‘left’ and ‘right’ modes simply add up, which should be a consequence of the integrability.

The structure of the rest of this paper is as follows. We shall start in section 2 with a review of the algebraic curve description of the spiky string. In section 3, we shall compute the general expression for the one-loop correction to its energy using the algebraic curve approach. In section 4, we shall consider the ‘short-string’ (small-spin) expansion of this one-loop correction finding the one-loop coefficient in (1.13). In section 5, we shall repeat the same analysis for the \(m \)-folded string leading to (1.14) and present an explanation for the close relation between the two expressions in (1.13) and in (1.14) implied by (1.23). Appendices A and C contain some technical details, and in appendix B we present for completeness the expressions for the one-loop energy of the spiky and \(m \)-folded strings in the opposite ‘long-string’ (large-spin) limit.

2. Algebraic curve description of the symmetric spiky string

As we have mentioned above, starting with the Bethe ansatz equations, the large-spin symmetric spiky string can be described by taking a thermodynamic limit, which leads to a two-cut solution. The filling fractions associated with the two cuts can be traded for the two constant mode numbers along the cuts (see, e.g., [34]). These mode numbers can be identified by analyzing the relevant string solution in flat space which is a combination of right- and left-moving excitations, i.e. \(n_L = n_R \). This suggests that in this case the two cuts should be symmetric with modes \(\pm 1 \) [34]. Following the same logic, in the spiky string case [19], one should get the two asymmetric cuts with mode numbers \(n_L = 1 \) and \(n_R = n - 1 \), where \(n \) is the number of spikes. These input data were used in the discussion of the large \(S \) spiky strings in the context of the all-loop Bethe ansatz equations [24]. The strong-coupling limit of the Bethe ansatz equations [25] is the starting point for the construction of the algebraic curve needed for the semiclassical expansion [7].

According to [25], after a suitable rescaling, these equations reduce to\(^{10}\)

\[\int dx' \rho(x') \frac{1 - \frac{1}{x'}}{(x - x')(1 - \frac{1}{x'})} = \pi n(x) \left(1 - \frac{1}{x^2} \right) = \frac{2\pi}{x} J. \] \tag{2.1}

Here the density \(\rho(x) \) describes the momentum carrying roots (there are \(S \rightarrow \infty \) of them) and is supported on a certain union of real cuts. The mode number function \(n(x) \) is a piecewise constant on the cuts. It is convenient to define

\[\tilde{\rho}(x) = \frac{x^2}{x^2 - 1} \rho(x), \quad \tilde{n}(x) = n(x) - \frac{2x}{x^2 - 1} J. \] \tag{2.2}

\(^{10}\) In the following, we use the notation \(\mathcal{E} = E/\sqrt{\lambda}, \ S = S/\sqrt{\lambda}, \ J = J/\sqrt{\lambda}. \)
Then (2.1) becomes
\[\int \frac{dx'}{x - x'} \left(1 - \frac{1}{xx'} \right) = \pi \tilde{n}(x) \left(1 - \frac{1}{x^2} \right). \] (2.3)

The zero momentum and normalization conditions are
\[\int dx \tilde{\rho}(x) = 0, \quad \int dx \tilde{\rho}(x) \left(1 - \frac{1}{x^2} \right) = 4\pi S. \] (2.4)

Finally, the energy can be expressed as
\[E - S - J = \frac{1}{2\pi} \int dx \frac{\tilde{\rho}(x)}{x^2}. \] (2.5)

2.1. Solution of the integral equation in terms of a resolvent

Let us focus on the two-cut case
\[C_1 = (d, c), \quad C_2 = (b, a), \quad d < c < -1, \quad 1 < b < a, \] (2.6)

and define the function\(^{11}\)
\[f(z) = \sqrt{z - a} \sqrt{z - b} \sqrt{z - c} \sqrt{z - d}. \] (2.7)

The resolvent \(G(z)\) is defined as
\[G(z) = \frac{1}{\pi} \int_{C_1 \cup C_2} \frac{dx'}{f(x' + i\epsilon)} \frac{\tilde{n}(x')}{x' - z}. \] (2.8)

By standard manipulations, one can show that the resolvent obeys
\[G(x \pm i0) = \pm \tilde{\rho}(x) + \tilde{n}(x), \quad x \in C_1 \cup C_2, \] (2.9)

with the explicit expression for \(\tilde{\rho}(x)\):
\[\tilde{\rho}(x) = \frac{1}{\pi} \int dx' \text{sign}(xx') \left| \frac{f(x)}{f(x')} \right| \frac{\tilde{n}(x')}{x' - x}. \] (2.10)

The main result is that \(\tilde{\rho}(x)\) satisfies (2.3) provided
\[G(0) = G_0 = G_1 = 0, \] (2.11)

where the constants \(G_0\) and \(G_1\) are extracted from
\[G(z) \xrightarrow{z=0} G(0) + H_1 z + \cdots, \] (2.12)
\[G(z) \xrightarrow{z=\infty} G_0 z + G_1 + G_2 \frac{1}{z} + \cdots. \] (2.13)

The zero momentum condition in (2.4) is then automatically satisfied and the charges in (2.4) and (2.5) are given by
\[S = -\frac{i}{4} (G_2 + H_1), \quad E - S - J = \frac{i}{2} H_1. \] (2.14)

\(^{11}\) We choose the standard cut for the square roots.
2.2. Special case of the spiky string

For the string with \(n \) symmetric spikes, we are to choose the mode number function as

\[
n(x) = \begin{cases} -1, & d < x < c < -1, \\ n - 1, & 1 < b < x < a, \end{cases}
\]

(2.15)

and then the resolvent turns out to be

\[
G(z) = -\frac{2i\pi}{\sqrt{(a-c)(b-d)}} \frac{f(z)}{(b-z)(z-c)} \left[(b-c)\Pi \left(\frac{(a-b)(z-c)}{(a-c)(z-b)}, r \right) + (z-b)\Pi \left(r, \frac{(a-c)(z-b)}{(a-b)(z-c)} \right) \right]
\]

\[
- i - 2i\mathcal{F} \left[\frac{z}{z^2 - 1} + \frac{f(z)}{2} \left(\frac{1}{f(1-\bar{z})} - \frac{1}{f(-1)+z} \right) \right],
\]

(2.16)

where \(r = \frac{(a-b)(c-d)}{(a-c)(b-d)} \). The constants appearing in the asymptotic expansion of the resolvent at \(z = 0 \) and \(z = \infty \) are collected in appendix A.

3. Semi-classical quantization of the spiky string in the algebraic curve approach

A review of the algebraic curve approach can be found, e.g., in [35] whose notation we shall follow.

3.1. Classical data

The algebraic curve is characterized by a set of quasi-momenta \(\hat{p}_i, \hat{p}_n \), \(i = 1, 2, 3, 4 \). They enter the monodromy matrix of the Lax connection for the integrable dynamics of the classical \(AdS_5 \times S^5 \) superstring that has the eigenvalues

\[
\{ e^{\hat{p}_i}, e^{\hat{p}_i}, e^{\hat{p}_n}, e^{\hat{p}_n} | e^{\hat{p}_i}, e^{\hat{p}_i}, e^{\hat{p}_n} \}. \tag{3.1}
\]

These eigenvalues are roots of the characteristic polynomial and define an eight-sheeted Riemann surface. The classical algebraic curve has macroscopic cuts connecting various pairs of sheets. Around each cut, we have

\[
p_i^+ = p_i^- = 2\pi n_{ij}, \quad x \in C_{n}^{ij}, \tag{3.2}
\]

where \(n_{ij} \) is an integer associated with a given cut. The possible combinations of sheets (a.k.a. polarizations) that are relevant for \(AdS_5 \times S^5 \) are

\[
i = \bar{1}, \bar{2}, \bar{1}, \bar{2}, \quad j = \bar{3}, \bar{4}, \bar{3}, \bar{4}. \tag{3.3}
\]

The general properties of quasi-momenta are reviewed in [35]. In our case, similar to [7], the non-trivial quasi-momentum is \(\hat{p}_2 \) with all others being determined by the cut structure, inversion relations and Virasoro constraints, precisely as in [7]. In terms of the resolvent, it can be shown that the required relation is

\[
p_2(x) = \pi \left(-i G(x) + 2\mathcal{F} \frac{x}{x^2 - 1} \right). \tag{3.4}
\]

3.2. Off-shell fluctuations

To compute the one-loop correction to string energy in the algebraic curve approach, one is to find first normal mode frequencies for fluctuations around the classical solution. One is then to quantize the associated set of effective oscillators and evaluate the energy correction by simply summing up zero-point energies, taking into account the Fermi–Bose statistics.

The key ingredients are the so-called off-shell fluctuation energies \(\Omega^{ij}(x) \), where \(i \) and \(j \) label two sheets of the algebraic curve. These are the functions of the spectral parameter \(x \)
which are actually simpler than the normal mode physical frequencies. Off-shell fluctuation energies reduce to them at special non-trivial points x_i^j associated with the ith and jth sheets that satisfy

$$p_i(x_i^j) - p_j(x_i^j) = 2\pi k.$$ \hspace{1cm} (3.5)

Here, k can be regarded as a mode number for the kth normal mode frequency with polarization (i, j), i.e. $\Omega^i_j(x_i^j)$.

Due to the symmetries of the classical solution, the 8+8 bosonic and fermionic frequencies can be written in terms of only two independent off-shell fluctuations [30]. The result in our case is

$$\Omega_3(x) \equiv \Omega_{23} (x) = \Omega_{23} (x) = \Omega_{32} (x),$$ \hspace{1cm} (3.6)

$$\Omega_4(x) \equiv \Omega_{34} (x).$$ \hspace{1cm} (3.7)

All other frequencies are given by the following expressions:

$$\Omega^{(1)}(x) = \Omega_{23} (x) = 3 - \frac{1}{x},$$

$$\Omega^{(2)}(x) = \Omega_{34} (x) = 2 - \frac{1}{x},$$

$$\Omega^{(3)}(x) = \Omega_{42} (x) = 2 + \frac{1}{x},$$

$$\Omega^{(4)}(x) = \Omega_{43} (x) = 2 + \frac{1}{x}.$$ \hspace{1cm} (3.8)

Thus, we just need to compute the two frequencies $\Omega_{3,4}(x)$ as in the folded string case. A simple calculation gives

$$\Omega_3(x) = -\frac{2}{1 + f(0)} \left(1 - \frac{f(x)}{x^2 - 1}\right),$$ \hspace{1cm} (3.9)

$$\Omega_4(x) = \frac{1}{1 + f(0)} \frac{f(1)(x+1) - f(-1)(x-1)}{x^2 - 1},$$ \hspace{1cm} (3.10)

where $f(x)$ has been defined in (2.7).

3.3. One-loop correction to the energy

The one-loop energy is given, in general, by

$$\delta E^{1\text{-loop}} = \frac{1}{2} \sum_{ij} (-1)^i \int \frac{dx}{2\pi i} \Omega^i_j G_{ij},$$ \hspace{1cm} (3.11)

where

$$G_{ij} = \partial_i \log \sin \frac{p_i - p_j}{2}.$$ \hspace{1cm} (3.12)

In our case,

$$\sum_{ij} (-1)^i \Omega^i_j G_{ij} = 4\Omega_3 G_{23} + \Omega_4 G_{23} + \Omega^{(1)} G_{13} + 2\Omega^{(2)} G_{13} - 4\Omega^{(3)} G_{23} - 4\Omega^{(4)} G_{23}.$$ \hspace{1cm} (3.13)

As in the case of the folded string [7], the one-loop correction can be written as

$$\delta E^{1\text{-loop}} = \delta E^{(1)} + \delta E^{(2)} + \delta E^{(3)},$$ \hspace{1cm} (3.14)
where

$$\delta E^{(1)} = \int_{-1}^{1} \frac{dx}{\pi} \text{Im}(p_1 - p_2) \partial_x \text{Im}(\Omega_5 - \Omega_4),$$

$$\delta E^{(2)} = \int_{-1}^{1} \frac{dx}{\pi} \text{Im} \left[\partial_4 \Omega_3 \log \frac{(1 - e^{-i\phi_2 + i\phi_3})(1 - e^{-i\phi_1 + i\phi_3})}{(1 - e^{-2i\phi_3})^2} - \partial_4 \Omega_4 \log \frac{(1 - e^{-2i\phi_3})(1 - e^{-i\phi_1 + i\phi_3})}{(1 - e^{-i\phi_1 + i\phi_3})^2} \right],$$

$$\delta E^{(3)} = \frac{2}{1 + f(0)} \int_{(d, c) \cup (b, a)} \frac{dx}{2\pi i x^2 - 1} \partial_4 \log \sin p_2.$$

In the first two integrals, we have defined

$$x = x(z) = z + \sqrt{z^2 - 1}, \quad p_2^2 = p_2^2 \left(\frac{1}{x(z)} \right).$$

The third integral is done above the cuts $(d, c) \cup (b, a)$.

4. One-loop correction to the energy of the short spiky string

The above general expressions allow one to find the one-loop correction to the spiky string energy. In particular, in the 'long-string' (large-spin) limit one recovers the results found in [24], as we summarize in appendix B. Here we shall concentrate on the opposite 'short-string' limit.

4.1. Expansion of the classical data

We define the short-string limit as

$$S = \frac{1}{2} s^2 \to 0, \quad \text{with} \quad J = \rho S \to 0, \quad \rho = \frac{J}{S} \text{ fixed}. \quad (4.1)$$

Then the endpoints of the two cuts have the following expansion:

$$a = 1 + \frac{2\sqrt{3}}{\sqrt{n(n-1)}} s + \frac{4}{n(n-1)} s^2 + \frac{n(n^3 + 4) + 20}{8\sqrt{2n(n-1)}} s^3 + O(s^4), \quad (4.2)$$

$$b = 1 + \frac{n}{8\sqrt{2n(n-1)}} s^2 + \frac{n(n\rho^2 + 12) + 20}{256\sqrt{2n(n-1)}} s^3 + O(s^4), \quad (4.3)$$

$$c = -1 + \frac{n}{8\sqrt{2n(n-1)}} s^2 + \frac{n(n\rho^2 + 8) - 28}{256\sqrt{2n(n-1)}} s^3 + O(s^4), \quad (4.4)$$

$$d = -1 - \frac{2(n-1)}{n} s + \left(\frac{4}{n} - 4 \right) s^2 + \frac{(n(n\rho^2 + 24) - 44) + 20}{8n\sqrt{2n(n-1)}} s^3 + O(s^4). \quad (4.5)$$

The classical energy is then given by

$$E_0 = \sqrt{\lambda} \left[\frac{\sqrt{2(n-1)}}{n} s + \frac{n(n\rho^2 + 4) - 10}{8n\sqrt{2(n-1)}} s^3 + O(s^4) \right],$$

which can be recognized as the classical part in (1.8).
4.2. The one-loop coefficient $a_{01}(n)$

The small s expansion of the one-loop correction starts with

$$E_{\text{1-loop}} = \sqrt{\frac{2(n-1)}{n} a_{01}^{\text{spiky}} s + \ldots}. \quad (4.7)$$

The calculation of $a_{01}(n)$ can be performed along the lines explained in [7]. The trick is to evaluate the one-loop integrals in (3.14) splitting the integration region into three parts ($\Lambda_{1,2}$ are auxiliary parameters)

$$z \in (0, 1) = (0, 1 - s\Lambda_1) \cup (1 - s\Lambda_1, 1 - s^3\Lambda_2) \cup (1 - s^3\Lambda_2, 1). \quad (4.8)$$

The integrals can be computed in each interval by a rather straightforward expansion in $s \to 0$.

Finally, the three divergent results are merged and the cutoffs $\Lambda_{1,2}$ can be sent to infinity. This procedure is known as the matched asymptotic expansion [36] (see appendix C for a simple example). The computation is rather complicated and finally leads to the following results:

$$a_{01}^{\text{spiky}}(n) = -\frac{1}{8} + \frac{1}{2}q(n - 1), \quad (4.9)$$

where

$$q(r) = -\frac{3}{4r} + 2H_r - H_{2r}, \quad H_r = \sum_{\ell=1}^{r} \frac{1}{\ell}. \quad (4.10)$$

The analytic expression (4.9) was carefully checked by a numerical evaluation of the one-loop correction extrapolated to $s \to 0$: we verified the values of a_{01}^{spiky} and its independence of $\rho = J/S$ with 10^{-8} accuracy.

5. m-folded string and relation to the spiky string case

Let us now consider the folded string case. We will not repeat all the details since they are completely similar to the spiky string case. The spinning string solution with m folds is described by a two-cut solution with mode numbers $\pm m$ [18]. The classical energy reads

$$E_0 = m\sqrt{\lambda s} \left(1 + \frac{3 + 2\rho^2}{16} s^2 + \ldots\right). \quad (5.1)$$

$$s = \sqrt{\frac{2S}{m\sqrt{\lambda}}}, \quad \rho = \frac{J}{S}. \quad (5.2)$$

The one-loop correction turns out to be linear in $s \to 0$:

$$E_{\text{1-loop}} = ma_{01}^{\text{folded}}(m)s + \ldots, \quad (5.3)$$

leading to the expression in equation (1.10). Again, the values of $a_{01}^{\text{folded}}(m)$ can be determined analytically\(^{12}\)

\[
\begin{array}{c|cccccccccccc}
 m & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
 a_{01}^{\text{folded}}(m) & -\frac{1}{2} & 13 & 29 & 2119 & 3749 & 23371 & 658381 & 2827003 & 24578473 & 508697569 & \ldots \\
\end{array}
\]

and one can find a closed formula for this sequence\(^{13}\), namely

$$a_{01}^{\text{folded}}(m) = -\frac{3}{4m} + 2H_m - H_{2m} = q(m). \quad (5.5)$$

\(^{12}\) The first entries of the list have been independently confirmed in the recent paper [37].

\(^{13}\) This requires analyzing many more values than shown in equation (5.4).
This is the same function q as the one that appeared in the spiky string case (4.9). A possible explanation of the close relation between the two one-loop coefficients is a conjectured decoupling of the left- and right-moving string modes in the short-string limit.

Indeed, from the algebraic curve point of view the m-folded string has two symmetric cuts, one with the mode number $-m$ and the other with the mode number $+m$. On the other hand, the spiky string with n spikes has two asymmetric cuts, one with the mode number -1 and the other with the mode number $n-1$. We may assume that, in the short-string limit, the contributions from the left and right cuts simply add. However, before combining them, we have to take into account the different normalizations of the cut endpoints. Indeed, the short-string expansion of the largest endpoint a of the positive cut reads

$$a_{\text{folded}} = 1 + 2s + 2s^2 + \cdots,$$

$$a_{\text{spiky}} = 1 + 2\tilde{s} + 2\tilde{s}^2 + \cdots, \quad \tilde{s} = \frac{\sqrt{2}}{\sqrt{n(n-1)}}s.$$

Taking into account the ratio \tilde{s}/s and the normalization of a_{spiky}^{01} in (4.7) this means that in the spiky string case the sum of the contribution of the cut with the mode number -1 (half of the folded string with $m = 1$) and of the cut with the mode number $n-1$ (half of a folded string with $m = n-1$) reads

$$a_{\text{spiky}}^{01}(n) = \frac{1}{2} \times a_{\text{folded}}^{01}(m = 1) + \frac{1}{2} \times a_{\text{folded}}^{01}(m = n-1).$$

This is exactly relation (4.9) found in the spiky string case.

Acknowledgments

We thank N Gromov for a collaboration during the initial stages of this work and for very useful discussions of the results. We thank D Serban and D Volin for helping us with technical details of very involved short-string analytic computations and also thank G Macorini for discussions about the numerical checks of the calculation. We are also grateful to S Giombi, M Kruczenski, R Roiban and A Tirziu for useful discussions on related issues of semiclassical one-loop string computations. The work of AAT was supported by the ERC advanced grant no. 290456.

Appendix A. Expansion of the spiky string resolvent at $z \to 0$ and $z \to \infty$

The expansion of $G(z)$ in (2.16) at $z \to 0$ and $z \to \infty$ determines the constants $G(0), G_0, G_1, G_2, H_1$. They were computed in [25]:

$$G(0) = -i + f(0) \left[\frac{2\sin}{\pi} \frac{b-c}{bc \sqrt{(a-c)(b-d)}} \Pi + \frac{i\sqrt{bc}}{c} \left(\frac{1-c}{f(1)} + \frac{1+c}{f(-1)} \right) \right].$$

$$G_0 = -i + f(0) \left[\frac{2\sin}{\pi} \frac{b-c}{bc \sqrt{(a-c)(b-d)}} \Pi + \frac{i\sqrt{bc}}{c} \left(\frac{1-c}{f(1)} + \frac{1+c}{f(-1)} \right) \right].$$

$$G_1 = -i + f(0) \left[\frac{2\sin}{\pi} \frac{b-c}{bc \sqrt{(a-c)(b-d)}} \Pi + \frac{2\sin}{\pi} \frac{c}{\sqrt{(a-c)(b-d)}} \frac{1}{f(1)} - \frac{1}{f(-1)} \right].$$
G_2 = -2iJ + \frac{2in}{\pi} \frac{b^2 - c^2}{\sqrt{(a-c)(b-d)}} \Pi + \frac{2in}{\pi} \frac{(b-c)^2(a-b)}{(a-c)\sqrt{(a-c)(b-d)}} \Pi' + \frac{2in}{\pi} \frac{c^2}{\sqrt{(a-c)(b-d)}} \mathcal{K}(r) + iJ \left(\frac{1}{f(1)} + \frac{1}{f(-1)} \right) - \frac{i}{2} (a + b + c + d), \quad (A.4)

H_1 = 2iJ + \frac{i}{2} \left(\frac{1}{b} + \frac{1}{c} - \frac{1}{a} = \frac{1}{d} \right) - \frac{2in}{\pi} \frac{(b-c)^2(a-b)}{b^3c(a-c)\sqrt{(a-c)(b-d)}} \Pi f(0) - \frac{iJ}{bc} f(0) \left(\frac{(1-c)(1-b)}{f(1)} + \frac{(1+c)(1+b)}{f(-1)} \right). \quad (A.5)

The coefficients here are defined in terms of the elliptic functions as follows:
\mathcal{K} = \mathcal{K}(r), \quad \Pi = \Pi(v, r), \quad \Pi = \Pi \left(\frac{c}{b}, v, r \right), \quad (A.6)

v = \frac{a - b}{a - c}, \quad r = \frac{(a - b)(c - d)}{(a - c)(b - d)}, \quad (A.7)

\Pi'(v, r) = \frac{\partial \Pi(v, r)}{\partial v} = \frac{1}{2(r - v)(v - 1)} \left[\mathcal{E}(r) + \frac{r - v}{v} \mathcal{K}(r) + \frac{v^2 - r}{v} \Pi(v, r) \right]. \quad (A.8)

Appendix B. Large spin limit of the spiky string and m-folded string

The large spin limit of the spiky and m-folded string can be computed in a very simple way from our expressions for the algebraic curve and adapting the calculation performed in [7] for the standard folded string with m = 1. In the notation of that paper, the one-loop correction is computed in terms of the three contributions \(\delta E^{(1)} \), \(\delta E^{(2)} \) and \(\delta E^{(3)} \) which are the symmetric cases of equations (3.15). Also, we can further split \(\delta E^{(3)} \) into an ‘anomaly’ contribution plus a remainder term, i.e. \(\delta E^{(3)} = \delta E_{an}^{(3)} + \delta E^{(3)}_m \). The leading and next-to-leading contributions come only from \(\delta E^{(1)} \) and \(\delta E_{an}^{(3)} \). The other terms are suppressed as \(O(1/\log S) \).

The long string limit \(S \to \infty \) is achieved when the cut \((b, a)\) endpoints have the asymptotic behavior \(a \to \infty \) and \(b \to 1 \) with
\[S = \frac{1}{2\pi} a, \quad J = \frac{1}{\pi} \sqrt{b^2 - 1} \log \frac{a}{b}. \quad (B.1) \]

The one-loop correction to the energy of the ‘long’ one-folded string turns out to be
\[E_{1\text{-loop}} = -\frac{3\log 2}{\pi} \log S + \frac{6\log 2}{\pi} + 1 + O\left(\frac{1}{\log S} \right), \quad \mathcal{S} = 8\pi S. \quad (B.2) \]

The derivation of this result involves fixing the ratio \(\ell = J/\log S \) and sending \(\ell \to 0 \) in the end (the only important feature is the relation between \(J \) and \(\log S \) coming from (B.1)).

In the spiky string case, the large spin limit is obtained by considering the two cuts \((d, c) \cup (b, a)\) in the limit
\[d = -ua, \quad a \to +\infty, \quad (B.3) \]
where \(u \) is a real positive constant. Conditions (2.11) on the resolvent \(G_0 = G_1 = 0 \) give important information in this limit. We start with \(G_0 \) that admits the large \(a \) expansion
\[G_0 = \frac{G_{0, -1} a + O \left(\frac{1}{a^2} \right)$. \quad (B.4) \]
The vanishing of $G_{0,-1}$ gives the basic relation between \mathcal{J} and $\log a$:

$$
\mathcal{J} \left(\frac{1}{\sqrt{(b-1)(1-c)}} + \frac{1}{\sqrt{-}(b+1)(c+1)} \right) = \frac{n}{\pi} \log \frac{16a}{b-c(a+1)}. \tag{B.5}
$$

Expanding G_1 we find instead two non-trivial terms

$$
G_1 = G_{1,1}a + G_{1,0} + \mathcal{O}\left(\frac{1}{a} \right). \tag{B.6}
$$

The vanishing of $G_{1,1}$ gives

$$
u = \cot \frac{\pi}{2n}. \tag{B.7}
$$

The vanishing of $G_{1,0}$ gives

$$
\frac{b+c+2}{\sqrt{(b+1)(c+1)}} + \frac{b+c-2}{\sqrt{(b-1)(1-c)}} = 0 \rightarrow b+c = 0, \tag{B.8}
$$

and the two cuts become symmetric in this limit. Using these results to simplify the expression for the spin, we easily obtain the following leading-order expression:

$$
S = na \sqrt{\frac{\pi}{n} + \mathcal{O}\left(\frac{1}{\log S} \right)}. \tag{B.9}
$$

If we trade a for S and use $b+c = 0$, we can write the relation between \mathcal{J} and $\log S$ in the following form (which is a required modification of (B.1)):

$$
\mathcal{J} = \frac{n}{2\pi} \sqrt{b^2 - 1} \log \left(\frac{2}{n} \sin \frac{\pi}{n} \frac{S}{n} \right). \tag{B.10}
$$

From this equation, it is a straightforward exercise to obtain the following $n > 2$ generalization of (B.2):

$$
E_{\text{spiky \ 1-loop}} = \frac{n}{2} \left[-\frac{3\log 2}{\pi} \log \left(\frac{2}{n} \sin \frac{\pi}{n} \frac{S}{n} \right) + \frac{6\log 2}{\pi} + 1 \right] + \mathcal{O}\left(\frac{1}{\log S} \right), \tag{B.11}
$$

which is in agreement with the Bethe ansatz calculation of [24]. This agreement is, of course, expected due to the general results of [29]. A completely similar treatment for the m-folded string case gives another $m > 1$ generalization of (B.2)

$$
E_{\text{folded \ 1-loop}} = m \left[-\frac{3\log 2}{\pi} \log \frac{S}{m} + \frac{6\log 2}{\pi} + 1 \right] + \mathcal{O}\left(\frac{1}{\log S} \right). \tag{B.12}
$$

Appendix C. On the asymptotic evaluation of two-scale integrals

Let us consider the integral

$$
I(s) = \int_0^1 dx f(x), \quad f(x) = \frac{1}{(x-1-s)(x-1-s^3)}. \tag{C.1}
$$

It can be computed exactly and expanded for $s \to 0$:

$$
I(s) = \frac{1}{s(x^2-1)} \log \frac{s^2}{x^2-s+1} = -2 \log \frac{s}{s} - 1 + \left(\frac{1}{2} - 2 \log s \right) s - \frac{s^2}{3} + \mathcal{O}(s^3). \tag{C.2}
$$

Let us now describe the general strategy of how to obtain this asymptotic expansion without requiring the knowledge of the exact integral. We first split the integral into three parts as

$$
I(s) = \left(\int_0^{1-s\lambda_1} + \int_1^{1-s\lambda_2} \right) \, dx f(x). \tag{C.3}
$$
This can be written as
\[
I(s) = \int_{0}^{1-s\Lambda_1} dx f(x) - s \int_{\Lambda_1}^{\tau \Lambda_2} d\tau f(1 - s\tau) - s^3 \int_{\Lambda_2}^{0} d\xi f(1 - s^3\xi).
\] (C.4)

Then we directly expand each integrand in powers of \(s\):
\[
f(s) = \frac{1}{(x - 1)^2} + \frac{s}{(x - 1)^3} + \frac{s^2}{(x - 1)^4} + O(s^3),
\] (C.5)
\[-sf(1 - s\tau) = -\frac{1}{\tau (\tau + 1)s} + \frac{s^2}{\tau (\tau + 1)} + O(s^3),
\] (C.6)
\[-s^3 f(1 - s^3\xi) = -\frac{1}{(\xi + 1)s} + \frac{s^2}{\xi + 1} + O(s^3).
\] (C.7)

Performing the integrals term by term we find
\[
\int_{0}^{1-s\Lambda_1} dx f(x) = \frac{2 - 3\Lambda_1 + 6\Lambda_1^2}{6\Lambda_1} - 1 + s - s^2 + O(s^3),
\] (C.8)
\[
-s \int_{\Lambda_1}^{\tau \Lambda_2} d\tau f(1 - s\tau) = \left(-2 \log s + \log \frac{\Lambda_1}{\Lambda_1 + 1} - \log \frac{\Lambda_2}{\Lambda_2} - \frac{1}{\Lambda_2} \right) \frac{1}{s}
\]
\[+ \left(-2 \log s + \log \frac{\Lambda_1}{\Lambda_1 + 1} - \log \Lambda_2 + \frac{1}{\Lambda_1} + \frac{1}{\Lambda_2} \right) s + O(s^3),
\] (C.9)
\[
-s^3 \int_{\Lambda_2}^{0} d\xi f(1 - s^3\xi) = \log(\Lambda_2 + 1) \frac{1}{s} + (\log(\Lambda_2 + 1) - \Lambda_2) s + O(s^3).
\] (C.10)

Summing up and sending \(\Lambda_{1,2} \to \infty\), all the divergences cancel and we recover precisely the expansion in (C.2).

References

[1] Maldacena J M 1998 The large \(N\) limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231–52 (arXiv:hep-th/9711200)

[2] Gubser S, Klebanov I R and Polyakov A M 1998 Gauge theory correlators from noncritical string theory Phys. Lett. B 428 105–14 (arXiv:hep-th/9802109)

[3] Tseytlin A A 2003 On semiclassical approximation and spinning string operators in \(AdS_5 \times S^5\) Nucl. Phys. B 664 247–75 (arXiv:hep-th/0304139)

[4] Roiban R and Tseytlin A A 2009 Quantum string strings in \(AdS_5 \times S^5\): strong-coupling corrections to dimension of Konishi operator J. High Energy Phys. JHEP11(2009)013 (arXiv:0906.4294)

[5] Tirziu A and Tseytlin A A 2008 Quantum corrections to energy of short string string in \(AdS(5)\) Phys. Rev. D 78 066002 (arXiv:0806.4758)

[6] Roiban R and Tseytlin A A 2011 Semiclassical string computation of strong-coupling corrections to dimensions of operators in Konishi multiplet Nucl. Phys. B 848 251–67 (arXiv:1102.1209)

[7] Gromov N, Serban D, Shenderovich I and Volin D 2011 Quantum folded string and integrability: from finite size effects to Konishi dimension J. High Energy Phys. JHEP08(2011)046 (arXiv:1102.1040)

[8] Beccaria M and Macorini G 2011 Quantum folded string in \(S^5\) and the Konishi multiplet at strong coupling J. High Energy Phys. JHEP10(2011)040 (arXiv:1108.3480)

[9] Gromov N and Valatka S 2011 Deeper look into short strings arXiv:1109.6305

[10] Gromov N, Kazakov V and Vieira P 2010 Exact spectrum of planar \(\mathcal{N} = 4\) supersymmetric Yang–Mills theory: Konishi dimension at any coupling Phys. Rev. Lett. 104 211601 (arXiv:0906.4240)

[11] Frolov S 2011 Konishi operator at intermediate coupling J. Phys. A: Math. Theor. 44 065401 (arXiv:1006.5032)

[12] Frolov S 2012 Scaling dimensions from the mirror TBA arXiv:1201.2317

[13] Belitsky A V, Gorsky A and Korchemsky G 2003 Gauge/string duality for QCD conformal operators Nucl. Phys. B 667 3–54 (arXiv:hep-th/0304028)

[14] Belitsky A, Gorsky A and Korchemsky G 2006 Logarithmic scaling in gauge/string correspondence Nucl. Phys. B 748 24–59 (arXiv:hep-th/0601112)
[15] Belitsky A, Korchemsky G and Pasechnik R 2009 Fine structure of anomalous dimensions in \(N = 4 \) super Yang–Mills theory \textit{Nucl. Phys.} B \textbf{809} 244–78 (arXiv:0806.3657)

[16] Kazakov V and Zarembo K 2004 Classical/quantum integrability in non-compact sector of AdS/CFT \textit{J. High Energy Phys.} JHEP\textit{10}(2004)060 (arXiv:hep-th/0410105)

[17] Dorey N 2008 A spin chain from string theory \textit{Acta Phys. Pol.} B \textbf{39} 3081–116 (arXiv:0805.4387)

[18] Dorey N and Losi M 2008 Spiky strings and spin chains arXiv:0812.1704

[19] Kruczenski M 2005 Spiky strings and single trace operators in gauge theories \textit{J. High Energy Phys.} JHEP\textit{08}(2005)014 (arXiv:hep-th/0410226)

[20] Ishizeki R, Kruczenski M, Tirziu A and Tseytlin A A 2009 Spiky strings in \(\text{AdS}_5 \times S^1 \) and their AdS-pp-wave limits \textit{Phys. Rev.} D \textbf{79} 026006 (arXiv:0812.2431)

[21] Jevicki A and Jin K 2008 Solitons and AdS string solutions \textit{Int. J. Mod. Phys.} A \textbf{23} 2289–98 (arXiv:0804.0412)

[22] Jevicki A and Jin K 2009 Moduli dynamics of \(\text{AdS}_5 \) strings \textit{J. High Energy Phys.} JHEP\textit{06}(2009)064 (arXiv:0903.3389)

[23] Losi M 2011 Spiky strings and the AdS/CFT correspondence \textit{PhD Thesis} University of Cambridge arXiv:1109.5401

[24] Freyhult L, Kruczenski M and Tirziu A 2009 Spiky strings in the SL(2) Bethe ansatz \textit{J. High Energy Phys.} JHEP\textit{07}(2009)038 (arXiv:0905.3536)

[25] Kruczenski M and Tirziu A 2010 Spiky strings in Bethe Ansatz at strong coupling \textit{Phys. Rev.} D \textbf{81} 106004 (arXiv:1002.4843)

[26] Gubser S, Klebanov I and Polyakov A M 2002 A semiclassical limit of the gauge/string correspondence \textit{Nucl. Phys.} B \textbf{636} 99–114 (arXiv:hep-th/0204051)

[27] Frolov S and Tseytlin A A 2002 Semiclassical quantization of rotating superstring in \(\text{AdS}_5 \times S^5 \) \textit{J. High Energy Phys.} JHEP\textit{06}(2002)007 (arXiv:hep-th/0204226)

[28] Gromov N and Vieira P 2008 The \(\text{AdS}_5 \times S^5 \) superstring quantum spectrum from the algebraic curve \textit{Nucl. Phys.} B \textbf{789} 175–208 (arXiv:hep-th/0703191)

[29] Gromov N and Vieira P 2008 Complete 1-loop test of AdS/CFT \textit{J. High Energy Phys.} JHEP\textit{04}(2008)046 (arXiv:0709.3487)

[30] Gromov N, Schafer-Nameki S and Vieira P 2008 Efficient precision quantization in AdS/CFT \textit{J. High Energy Phys.} JHEP\textit{12}(2008)013 (arXiv:0807.4752)

[31] Basso B 2011 An exact slope for AdS/CFT arXiv:1109.3154

[32] Arutyunov G, Frolov S and Suzuki R 2010 Exploring the mirror TBA \textit{J. High Energy Phys.} JHEP\textit{05}(2010)031 (arXiv:0911.2224)

[33] Kruczenski M and Tseytlin A A 2002 Spiky strings, light-like Wilson loops and pp-wave anomaly \textit{Phys. Rev.} D \textbf{77} 126005 (arXiv:0802.2039)

[34] Beisert N, Frolov S, Staudacher M and Tseytlin A A 2003 Precision spectroscopy of AdS/CFT \textit{J. High Energy Phys.} JHEP\textit{10}(2003)037 (arXiv:hep-th/0308117)

[35] Schafer-Nameki S 2012 Review of AdS/CFT integrability, chapter II.4: the spectral curve \textit{Lett. Math. Phys.} \textbf{99} 169–90

[36] Bender C M and Orszag S A 1984 \textit{Advanced Mathematical Methods for Scientists and Engineers} (New York: McGraw-Hill)

[37] Beccaria M and Macorini G 2012 Resummation of semiclassical short folded string arXiv:1201.0608