Analiza wyników badań ultrasonograficznych i echokardiograficznych z drugiego i trzeciego trymestru ciąży u płodów z prawidłowym kariotypem i poszerzoną przeziernością karku

Ultrasound and echocardiographic findings obtained in the second and third trimesters of gestation in fetuses with normal karyotype and increased nuchal translucency

Hanna Moczulska, Katarzyna Janiak, Maciej Słodki, Maria Respondek-Liberska

Zakład Diagnostyki i Profilaktyki Wad Wrodzonych, Instytut Centrum Zdrowia Matki Polki, Łódź, Polska

Adres do korespondencji: Dr n. med. Hanna Moczulska, Zakład Diagnostyki i Profilaktyki Wad Wrodzonych, Instytut Centrum Zdrowia Matki Polki, ul. Rzgowska 281/289, 93-338 Łódź, e-mail: hanna.moczulska@op.pl, tel.: 42 271 11 35

Słowa kluczowe
poszerzenie przezierności karku, prawidłowy kariotyp płodu, echokardiografia płodowa, diagnostyka prenatalna, wrodzona wada serca

Streszczenie
Wstęp: Liczne opracowania dowiodły, że poszerzona przezierność karku wiąże się ze zwiększonym ryzykiem aberracji chromosomowych, ale znacznie mniej analiz odnosi się do dalszych losów płodów z prawidłowym kariotypem. Celem pracy było zbadanie ryzyka występowania wad serca i innych wad rozwojowych u płodów z poszerzoną przeziernością karku i prawidłowym wynikiem standardowego badania cytogenetycznego.

Metody: Przeanalizowano retrospektywnie 5183 badania przeprowadzone u 3376 pacjentek, które zgłosiły się do Zakładu Diagnostyki i Profilaktyki Wad Wrodzonych Instytutu Centrum Zdrowia Matki Polki w Łodzi w okresie od stycznia 2008 do marca 2011 roku w celu wykonania ultrasonograficznych i echokardiograficznych badań prenatalnych. Przeanalizowano wyniki badań wykonanych w drugim i trzecim trymestrze ciąży u płodów z poszerzoną przeziernością karku ≥3 mm w pierwszym trymestrze ciąży oraz prawidłowym kariotypem. Wyniki: Pięćdziesiąt siedem pacjentek (1,7% analizowanej grupy) spełniło kryteria włączenia do badania. U 31 ciężarnych (54%) stwierdzono wady strukturalne lub anomalie u płodu. Wadę serca rozpoznaną u 17 płodów (29,8%). Obserwowano różne wady serca: tetralogię Fallota, ubytek w przegrodzie międzykomorowej, wspólny kanał przedsiomkowo-komorowy, przełożenie wielkich naczyń, zespół hipoplasji lewego serca. Wnioski: U ponad połowy płodów z poszerzoną przeziernością karku (NT≥3 mm) i prawidłowym kariotypem w dalszym przebiegu ciąży ujawniały się wady rozwojowe różnych narządów, w tym najczęściej wady serca – izolowane lub towarzyszące innym anomaliami.
Key words
increased nuchal translucency, normal fetal karyotype, prenatal echocardiography, prenatal diagnostics, congenital cardiac defect

Abstract

Introduction: Numerous papers have proven that an increased nuchal translucency is connected with a raised risk of chromosomal aberrations, but few analyses are related to the further state of fetuses with a normal karyotype. The aim of the study was to estimate the risk of cardiac defects and other developmental disorders in fetuses with increased nuchal translucency and normal findings of a standard cytogenetic examination. Methods: The authors carried out a retrospective analysis of 5183 examinations of 3376 patients who reported to the Department of Diagnosis and Prophylaxis of Congenital Malformations in the Polish Mother’s Memorial Hospital in Łódź in the period from January 2008 to March 2011 for prenatal ultrasound and echocardiographic examinations. The authors analyzed the results of the examinations performed in the second and third trimesters of gestation in fetuses with an increased nuchal translucency of ≥3 mm in the first trimester and with a normal karyotype. Results: Fifty-seven patients (1.7% of the examined group) fulfilled the criteria necessary to be included in the study. In 31 pregnant women (54%) structural defects or anomalies of the fetus were found. Cardiac anomalies were detected in 17 fetuses (29.8%). The authors detected various types of cardiac defects such as tetralogy of Fallot, ventricular septal defect, atrophicventricular septal defect, transposition of the great arteries and hypoplastic left heart syndrome. Conclusions: In more than half of the fetuses with an increased nuchal translucency (NT≥3 mm) and a normal karyotype, developmental defects of various organs appeared in the further course of pregnancy: mainly heart defects that were either isolated, or accompanied other anomalies.

Wstęp

Przeziernność karku (nuchal translucency, NT) jest przemijającym obrazkiem tkanki podskórnej w okolicy karku płodu i występuje w pierwszym trymestrze ciąży(3). Przeziernność karku ocenia się pomiędzy początkiem 11. a końcem 13. tygodnia ciąży (długość ciemiieniowo-siedzeniowa – crown-rump length, CRL – 45–84 mm). Po 14. tygodniu ciąży ewentualny obrzęk okolicy karku płodu nazywany poszerzeniem faldu karku. Termin przezierność karku jest używany niezależnie od tego, czy stwierdzamy przegrody, czy nie i czy jest ograniczony tylko do okolicy karkowej, czy też rozciąga się na całe ciało płodu(1,2).

Przeziernność karku (występująca u każdego płodu) wzrasta wraz z wiekiem ciążyowym i długością ciemiieniowo-siedzeniową, a także jej oceny, celem właściwej interpretacji, należy posługiwać się siatkami centylowymi(3).

U prawidłowo rozwijających się płodów po 14. tygodniu ciąży płyn zgromadzony w przezierności karku ulega wchłonięciu. U niektórych płodów może pozostać pod postacią poszerzenia faldu karku, wodniaka karku lub obrzęku uogólnionego(4).

Poszerzona przeziernność karku wiąże się ze zwiększonym ryzykiem aberracji chromosomowych, dlatego każdej ciężarnej po wykryciu poszerzenia NT proponuje się wykonanie amniopunkcji. Nieprawidłowy kariotyp występuje u około 1/3 płodów z poszerzoną przeziernością karku(5) – najczęściej rozpoznaje się zespół Downa, Edwardsa, Pataua czy zespół Turner(1-3).

W opinii niektórych autorów u płodów z poszerzonym NT i prawidłowym kariotypem istnieje podwyższone ryzyko ujawnienia się, w kolejnych tygodniach ciąży, różnych nietypowości, takich jak obecność wad izolowanych, mnogich czy zespołów genetycznych, jednak według

Introduction

A nuchal translucency (NT) is a transient edema of the subcutaneous tissue in the area of the fetal nucha and occurs in the first trimester of gestation(3). It is evaluated between the beginning of the 11th and the end of the 13th weeks of pregnancy (crown-rump length, CRL – 45–84 mm). After the 14th week of gestation, an edema of the nuchal region is called a thickening of the nuchal fold. The term nuchal translucency is used irrespective of whether or not septations are present and whether the edema is limited solely to the nuchal region or extends along the entire body of the fetus(1-2).

The nuchal translucency (which occurs in every fetus) increases with gestational age and crown-rump length and in order to obtain an adequate interpretation, it should be assessed with the use of a growth chart(3).

In normal fetuses, the fluid accumulated in the nuchal translucency undergoes absorption after the 14th week of pregnancy. In some fetuses, however, it may persist as a thickening of the nuchal fold, nuchal cystic hygroma or generalized edema(4).

An increased nuchal translucency is related to a raised risk of chromosomal aberrations. Therefore, amniocentesis is recommended to each pregnant woman after the detection of an increased NT. An abnormal karyotype is observed in 1/3 of the fetuses with an increased nuchal translucency(5) – the most commonly diagnosed syndromes being Down, Edwards, Patau or Turner(1-3).

According to some authors, the risk that in subsequent weeks of gestation, fetuses with an increased NT and a normal karyotype will develop various anomalies, such as isolated and multiple defects or genetic syndromes, is elevated. However, according to other studies, the...
Ultrasound and echocardiographic findings obtained in the second and third trimesters of gestation in fetuses with normal karyotype and increased nuchal translucency

in the period from January 2008 to March 2011.

The established criteria for the enrolment of patients to the study were as follows:

1. single pregnancy;
2. nuchal translucency ≥3 mm;
3. normal fetal karyotype (evaluated on the basis of invasive prenatal tests).

In most cases, ultrasound scanning with the analysis of the NT in the first trimester was performed in a different center. Only documented US examinations from the first trimester (photographs or digital documentation), after being verified by physicians with the Fetal Medicine Foundation Certificate, were used in further analysis.

In the Department of Diagnosis and Prophylaxis of Congenital Malformations in the Polish Mother’s Memorial Hospital in Łódź, at least one US+ECHO examination was performed in each pregnant patient above the 20th week of gestation. The examinations were performed by means of the following US scanners: GE Voluson 730 Expert and ATL HDI 5000. The patients’ personal details were encoded and included in the calculation chart preserving the physician-patient privilege of confidentiality. Fetal anomalies were diagnosed in a single scan, but also analyzed during check-up examinations.

The statistical analysis was performed by means of R program, version 2.13.1 (The R Foundation for Statistical Computing, www.r-project.org). The assumed statistical significance level was p<0.05.

Results

Fifty-seven patients (1.7% of the examined group) fulfilled the necessary criteria and were included in the study. In 31 patients (54%), structural defects or anomalies of the fetus were found. The median for the nuchal translucency in this group was 4.6 mm, with the mean value of 4.72 mm (range between 3.0 and 9.4 mm). The types of detected anomalies (both cardiac and extracardiac) in the examined group are presented in table 1.

in the second and third trimesters of gestation in fetuses with normal karyotype and increased nuchal translucency

in the period from January 2008 to March 2011.

The established criteria for the enrolment of patients to the study were as follows:

1. single pregnancy;
2. nuchal translucency ≥3 mm;
3. normal fetal karyotype (evaluated on the basis of invasive prenatal tests).

In most cases, ultrasound scanning with the analysis of the NT in the first trimester was performed in a different center. Only documented US examinations from the first trimester (photographs or digital documentation), after being verified by physicians with the Fetal Medicine Foundation Certificate, were used in further analysis.

In the Department of Diagnosis and Prophylaxis of Congenital Malformations in the Polish Mother’s Memorial Hospital in Łódź, at least one US+ECHO examination was performed in each pregnant patient above the 20th week of gestation. The examinations were performed by means of the following US scanners: GE Voluson 730 Expert and ATL HDI 5000. The patients’ personal details were encoded and included in the calculation chart preserving the physician-patient privilege of confidentiality. Fetal anomalies were diagnosed in a single scan, but also analyzed during check-up examinations.

The statistical analysis was performed by means of R program, version 2.13.1 (The R Foundation for Statistical Computing, www.r-project.org). The assumed statistical significance level was p<0.05.

Results

Fifty-seven patients (1.7% of the examined group) fulfilled the necessary criteria and were included in the study. In 31 patients (54%), structural defects or anomalies of the fetus were found. The median for the nuchal translucency in this group was 4.6 mm, with the mean value of 4.72 mm (range between 3.0 and 9.4 mm). The types of detected anomalies (both cardiac and extracardiac) in the examined group are presented in table 1.

In the period from January 2008 to March 2011.

The established criteria for the enrolment of patients to the study were as follows:

1. single pregnancy;
2. nuchal translucency ≥3 mm;
3. normal fetal karyotype (evaluated on the basis of invasive prenatal tests).

In most cases, ultrasound scanning with the analysis of the NT in the first trimester was performed in a different center. Only documented US examinations from the first trimester (photographs or digital documentation), after being verified by physicians with the Fetal Medicine Foundation Certificate, were used in further analysis.

In the Department of Diagnosis and Prophylaxis of Congenital Malformations in the Polish Mother’s Memorial Hospital in Łódź, at least one US+ECHO examination was performed in each pregnant patient above the 20th week of gestation. The examinations were performed by means of the following US scanners: GE Voluson 730 Expert and ATL HDI 5000. The patients’ personal details were encoded and included in the calculation chart preserving the physician-patient privilege of confidentiality. Fetal anomalies were diagnosed in a single scan, but also analyzed during check-up examinations.

The statistical analysis was performed by means of R program, version 2.13.1 (The R Foundation for Statistical Computing, www.r-project.org). The assumed statistical significance level was p<0.05.
Lp. No.	Rok badania Year of examination	hbd	NT [mm]	Diagnoza kariologiczna Cardiologic diagnosis	Wady i anomalie pozasercowe Extracardiac defects and anomalies
1	2009	13	3,6	Prawidłowa budowa anatomiczna serca Normal heart anatomy	Obustronne poszerzenie miedniczek nerkowych Bilateral pyelectasis
2	2009	13	4,7	Prawidłowa budowa anatomiczna serca + hipertrofia mięśni sercowego Normal heart anatomy + cardiac hypertrophy	Nieimmunologiczny obrzęk płodu, wodoodporność, wodnik karku Non-immune hydrops fetalis, ascites, pleural effusion, nuchal cystic hygroma
3	2009	11	5,4	Tetralogia Fallota Tetralogy of Fallot	Hipoplasja grasicy, stopa końska-szpotawa Thymic hypoplasia, congenital talipes equinovarus
4	2009	12	3,7	Pojedyncza komora serca z równoległym odejściem dużych naczyń Single ventricle with parallel origin of the great vessels	
5	2009	12	3	Atrezja zastawki płucnej, ubytek w przegrodzie międzykomorowej Pulmonary atresia, ventricular septal defect	
6	2009	13	5	Stenoza płucna, skorygowane przełożenie wielkich naczyń tętniczych, ubytek w przegrodzie międzykomorowej, blok serca III Pulmonary stenosis, corrected transposition of the great arteries, ventricular septal defect, complete heart block	
7	2009	12	7	Ubytek w przegrodzie międzykomorowej Ventricular septal defect	Skolioza, bezwodzie, wodnik karku Scoliosis, anhydramnios, nuchal cystic hygroma
8	2009	13	3,2	Hipoplasja prawej komory serca, podwójne, równoległe odejście naczyń znad lewej komor serca, ubytek w przegrodzie międzykomorowej Hypoplasia of the right ventricle, double, parallel origin of the vessels from the left ventricle, ventricular septal defect	Pojedyncza tętnica pępowinowa Single umbilical artery
9	2009	13	6,6	Niedomykalność zastawki płucnej Pulmonary valve regurgitation	Zdwojenie przewodu pokarmowego Gastrointestinal tract duplication
10	2009	12	9,4	Zespół hipoplasji lewego serca Hypoplasic left heart syndrome	Jednostronne poszerzenie miedniczki nerkowej, wodnik jądra Unilateral pyelectasis, hydrocele testis
11	2009	13	3,6	Prawidłowa budowa anatomiczna serca Normal heart anatomy	Torbiele splotów naczyńkowych Choroid plexus cysts
12	2010	12	3,1	Przełożenie wielkich naczyń tętniczych, ubytek w przegrodzie międzykomorowej, hipertrofia mięśni sercowego Transposition of the great arteries, ventricular septal defect, cardiac hypertrophy	
13	2010	12	4,6	Prawidłowa budowa anatomiczna serca Normal heart anatomy	Przepuklina przeponowa, wielowodzie Diaphragmatic hernia, polyhydramnios

Tab. 1. Rodzaje stwierdzonych nieprawidłowości u 31 płodów z poszerzoną przeciernością karkową (median dla NT 4,6 mm) i prawidłowym kariotypem

Tab. 1. Types of detected anomalies in 31 fetuses with increased nuchal translucency (median for NT 4.6 mm) and normal karyotype
Lp. No.	Rok badania Year of examination	hbd Weeks of gestation	NT [mm]	Diagnoza kariologiczna Cardiologic diagnosis	Wady i anomalie pozasercowe Extracardiac defects and anomalies
14	2010	11	4,6	Prawidłowa budowa anatomiczna serca + hipertrofia mięśnia sercowego, kardiomegalia	Jednostronne poszerzenie miedniczki nerkowej, wodonerće
				Normal heart anatomy + cardiac hypertrophy, cardiomegaly	Unilateral pyelectasis, hydronephrosis
15	2010	12	4,5	Prawidłowa budowa anatomiczna serca	
				Normal heart anatomy	
16	2010	12	4,8	Wspólny kanał przedsonkowo-komorowy	
				Atrioventricular septal defect	
17	2010	12	4	Izomeryzm lewostronny, całkowity nieprawidłowy spływ żył płucnych, wspólny kanał przedsonkowo-komorowy, kardiomegalia,блок serca III	Skrócenie kości długich, wielowodzie, obrzęk tkanki podskórnej, wodobrzusze
				Left isomerism, totally anomalous pulmonary venous drainage, atrioventricular septal defect, cardiomegaly, complete heart block	Shortened long bones, polyhydramnios, subcutaneous edema, ascites
18	2010	13	3,8	Prawidłowa budowa anatomiczna serca + wysięk osierdziowy, hipertrofia mięśnia sercowego	Nieimmunologiczny obrzęk płodu, wysięk oplucnowy, hipoplasja płuc, wielowodzie
				Normal heart anatomy + pericardial effusion, cardiac hypertrophy	Non-immune hydrops fetalis, ascites, pleural effusion, pulmonary hypoplasia, polyhydramnios
19	2010	13	7	Prawidłowa budowa anatomiczna serca + nie domykalność zastawki trójdzielnej	Hipotelorzym, hipoplasja mózdłu, anomalia małżowiny usznej, atreza przepływu z przetoką tchawico-przełykową, wielowodzie
				Normal heart anatomy + tricuspid regurgitation	Hypotelorism, cerebellar hypoplasia, auricle anomaly, esophageal atresia with tracheoesophageal fistula, polyhydramnios
20	2010	11	4,6	Podaortalny ubytek w przegrodzie międzykomorowej z dekstopozycją aorty, kardiomegalia	Obustronne poszerzenie miedniczek nerkowych
				Subaortic ventricular septal defect with an overriding aorta, cardiomegaly	Bilateral pyelectasis
21	2010	11	5	Prawidłowa budowa anatomiczna serca + nie domykalność zastawki trójdzielnej	
				Normal heart anatomy + tricuspid regurgitation	
22	2010	13	3,2	Prawidłowa budowa anatomiczna serca	
				Normal heart anatomy	
23	2010	12	5,5	Izomeryzm lewostronny, wspólny kanał przedsonkowo-komorowy, koarktacja aorty „łagodna”, bradykardia zatokowa	
				Left isomerism, atrioventricular septal defect, “mild” coarctation of the aorta, sinus bradycardia	
24	2010	12	8,7	Prawidłowa budowa anatomiczna serca + hipertrofia mięśnia sercowego	
				Normal heart anatomy + cardiac hypertrophy	

Tab. 1. Rodzaje stwierdzonych nieprawidłości u 31 płodów z poszerzoną przeziernością karkową (mediana dla NT 4,6 mm) i prawidłowym kariotypem

Tab. 1. Types of detected anomalies in 31 fetuses with increased nuchal translucency (median for NT 4.6 mm) and normal karyotype
Tab. 1. Rodzaje stwierdzonych nieprawidłowości u 31 płodów z poszerzoną przeziernością karkową (mediana dla NT 4,6 mm) i normalnym karyotypem

Lp. No.	Rok badania	hbd	NT [mm]	Diagnoza kariologiczna	Wady i anomalie pozasercowe
25	2010	12	5,1	Atrezja zastawki mitralnej, ubytek w przegrodzie międzykomorowej	Atrezja zastawki mitralnej, ubytek w przegrodzie międzykomorowej
26	2011	12	3,6	Ektoopia serca, wspólny kanał przedsiękomorowy, podwójne odejście naczyń z nad prawą komorą serca	Wielowodzie Polyhydramnios
27	2011	12	3,5	Atrezja zastawki trójczelnej, pojedyncza komora serca, atrezja zastawki płucnej, równoległe odejście dużych naczyń, kolaterale aortalno-plucne, prawostronny łuk aorty, dodatkowa żyła główna górna lewa	Wielowodzie Polyhydramnios
28	2011	12	3,3	Prawidłowa budowa anatomiczna serca	Prawidłowa budowa anatomiczna serca
29	2008	11	5,4	Tetralogia Fallota	Tetralogy of Fallot
30	2008	14	3,3	Prawidłowa budowa anatomiczna serca	Wytrzewienie Gastrochisis
31	2008	12	3,6	Zespół hipoplazji lewego serca, hipoplazja łuku aorty/przerwany łuk aorty	Zespół hipoplazji lewego serca, hipoplazja łuku aorty/przerwany łuk aorty

Tab. 1. Types of detected anomalies in 31 fetuses with increased nuchal translucency (median for NT 4.6 mm) and normal karyotype

U 40 płodów stwierdzono prawidłową budowę serca (bez zmian czynnościowych lub ze zmianami czynnościowymi), a u 17 płodów wadę serca, co stanowiło 29,8% badanej grupy. Mediana dla pomiaru przezierności karkowej u płodów z wadą serca wynosiła 4,6 mm, średnia 4,7 mm (zakres 3,0–9,4 mm). W 7 płodów przy prawidłowej budowie anatomicznej serca ujawniono zmiany czynnościowe: hipertrofię mięśnia sercowego (n=4), niedomykalność zastawki trójdzielnej (n=2), niedomykalność zastawki tętnicy płucnej (n=1). Dodatkowo u jednego płodu z hipertrofią mięśnia sercowego obserwowano kardiomagielę, u kolejnego wysiak osierdziowy. Opisane zmiany czynnościowe są zmianami przejściowo obserwowanymi prenatalnie, w odróżnieniu od najczęściej utrwalonej hipertrofii, która występuje w kardiologii pediatrycznej lub kardiologii dorosłych.

Wady pozasercowe (zarówno u płodów z wadą serca, jak i z prawidłową budową serca) rozpoznano u 20 płodów (35%). In the case of 40 fetuses, a normal cardiac structure was observed (with or without functional changes) and 17 fetuses (29.8% of the examined group) presented cardiac defects. The median for the nuchal translucency measurement in the group with cardiac defects constituted 4.6 mm, with the mean value of 4.7 mm (range between 3.0 and 9.4 mm). In 7 fetuses with normal anatomic structure, the following functional changes were found: cardiac hypertrophy (n=4), tricuspid insufficiency (n=2) and pulmonary valve insufficiency (n=1). Additionally, one of the fetuses with cardiac hypertrophy was diagnosed with cardiomegaly and another, with pericardial effusion. The discussed functional changes are transient in fetuses, in contrast with the persistent hypertrophy that often occurs in pediatric or adult cardiology.

Extracardiac anomalies (both in fetuses with cardiac defects and with normal cardiac anatomy) were found in 20 fetuses (35%).
Omówienie

Prze prowadzona analiza wykazała, że u ponad połowy (54%) płodów z poszerzeniem NT w pierwszym trzylecie i prawidłowym kariotypem uwidoczniło – w badaniu ultrasonograficzno-echokardiograficznym przeprowadzonym kilka tygodni później – wadę strukturalną i/lub anomalie czynnościowe u płodu. W podobnej analizie przeprowadzonej w populacji hiszpańskiej obejmującej 171 płodów z prawidłowym kariotypem i poszerzonym NT niekorzystny przebieg ciąży stwierdzono u 37% płodów. Wady strukturalne ujawniono u 21,6% badanych płodów, najczęściej były to wady serca (u 13,5%)\(^8\).

W badanej populacji strukturalną wadę serca rozpoznano u 17 płodów (29,8%), mediana dla NT w tej grupie wynosiła 4,6 mm. Większość wad serca stanowiły wady złożone, składające się z wielu anomalii. Prenatalne badanie echokardiograficzne w części dotyczącej budowy serca obejmuje ocenę przedsięmiarów, zastawek przedsięmiarowo-komorowych, komór serca płodu, połączeń komorowo-tętniczych, położenia luku aorty, śródpierścia płodu, spływu żyl płucnych i systemowych; odrębnie oceniane są wskaźniki dotyczące oceny wydolności układu krążenia i zmian czynnościowych\(^9-11\). W analizowanym materiale w większości obserwowano ciąży, złożone wady serca.

W dotychczasowych doniesieniach częstość występowania strukturalnej wady serca u płodów z poszerzonym NT i prawidłowym kariotypem oceniano jedynie na około 4,9–7%\(^12,13\). Były to jednak dane z populacji ogólnej. Specyfika naszego ośrodka polega na tym, że jest

Omówienie

Prze prowadzona analiza wykazała, że u ponad połowy (54%) płodów z poszerzeniem NT w pierwszym trzylecie i prawidłowym kariotypem uwidoczniło – w badaniu ultrasonograficzno-echokardiograficznym przeprowadzonym kilka tygodni później – wadę strukturalną i/lub anomalie czynnościowe u płodu. W podobnej analizie przeprowadzonej w populacji hiszpańskiej obejmującej 171 płodów z prawidłowym kariotypem i poszerzonym NT niekorzystny przebieg ciąży stwierdzono u 37% płodów. Wady strukturalne ujawniono u 21,6% badanych płodów, najczęściej były to wady serca (u 13,5%)\(^8\).

W badanej populacji strukturalną wadę serca rozpoznano u 17 płodów (29,8%), mediana dla NT w tej grupie wynosiła 4,6 mm. Większość wad serca stanowiły wady złożone, składające się z wielu anomalii. Prenatalne badanie echokardiograficzne w części dotyczącej budowy serca obejmuje ocenę przedsięmiarów, zastawek przedsięmiarowo-komorowych, komór serca płodu, połączeń komorowo-tętniczych, położenia luku aorty, śródpierścia płodu, spływu żył płucnych i systemowych; odrębnie oceniane są wskaźniki dotyczące oceny wydolności układu krążenia i zmian czynnościowych\(^9-11\). W analizowanym materiale w większości obserwowano ciąży, złożone wady serca.

W dotychczasowych doniesieniach częstość występowania strukturalnej wady serca u płodów z poszerzonym NT i prawidłowym kariotypem oceniano jedynie na około 4,9–7%\(^12,13\). Były to jednak dane z populacji ogólnej. Specyfika naszego ośrodka polega na tym, że jest

Omówienie

Prze prowadzona analiza wykazała, że u ponad połowy (54%) płodów z poszerzeniem NT w pierwszym trzylecie i prawidłowym kariotypem uwidoczniło – w badaniu ultrasonograficzno-echokardiograficznym przeprowadzonym kilka tygodni później – wadę strukturalną i/lub anomalie czynnościowe u płodu. W podobnej analizie przeprowadzonej w populacji hiszpańskiej obejmującej 171 płodów z prawidłowym kariotypem i poszerzonym NT niekorzystny przebieg ciąży stwierdzono u 37% płodów. Wady strukturalne ujawniono u 21,6% badanych płodów, najczęściej były to wady serca (u 13,5%)\(^8\).

W badanej populacji strukturalną wadę serca rozpoznano u 17 płodów (29,8%), mediana dla NT w tej grupie wynosiła 4,6 mm. Większość wad serca stanowiły wady złożone, składające się z wielu anomalii. Prenatalne badanie echokardiograficzne w części dotyczącej budowy serca obejmuje ocenę przedsięmiarów, zastawek przedsięmiarowo-komorowych, komór serca płodu, połączeń komorowo-tętniczych, położenia luku aorty, śródpierścia płodu, spływu żył płucnych i systemowych; odrębnie oceniane są wskaźniki dotyczące oceny wydolności układu krążenia i zmian czynnościowych\(^9-11\). W analizowanym materiale w większości obserwowano ciąży, złożone wady serca.

W dotychczasowych doniesieniach częstość występowania strukturalnej wady serca u płodów z poszerzonym NT i prawidłowym kariotypem oceniano jedynie na około 4,9–7%\(^12,13\). Były to jednak dane z populacji ogólnej. Specyfika naszego ośrodka polega na tym, że jest

Omówienie

Prze prowadzona analiza wykazała, że u ponad połowy (54%) płodów z poszerzeniem NT w pierwszym trzylecie i prawidłowym kariotypem uwidoczniło – w badaniu ultrasonograficzno-echokardiograficznym przeprowadzonym kilka tygodni później – wadę strukturalną i/lub anomalie czynnościowe u płodu. W podobnej analizie przeprowadzonej w populacji hiszpańskiej obejmującej 171 płodów z prawidłowym kariotypem i poszerzonym NT niekorzystny przebieg ciąży stwierdzono u 37% płodów. Wady strukturalne ujawniono u 21,6% badanych płodów, najczęściej były to wady serca (u 13,5%)\(^8\).

W badanej populacji strukturalną wadę serca rozpoznano u 17 płodów (29,8%), mediana dla NT w tej grupie wynosiła 4,6 mm. Większość wad serca stanowiły wady złożone, składające się z wielu anomalii. Prenatalne badanie echokardiograficzne w części dotyczącej budowy serca obejmuje ocenę przedsięmiarów, zastawek przedsięmiarowo-komorowych, komór serca płodu, połączeń komorowo-tętniczych, położenia luku aorty, śródpierścia płodu, spływu żył płucnych i systemowych; odrębnie oceniane są wskaźniki dotyczące oceny wydolności układu krążenia i zmian czynnościowych\(^9-11\). W analizowanym materiale w większości obserwowano ciąży, złożone wady serca.

W dotychczasowych doniesieniach częstość występowania strukturalnej wady serca u płodów z poszerzonym NT i prawidłowym kariotypem oceniano jedynie na około 4,9–7%\(^12,13\). Były to jednak dane z populacji ogólnej. Specyfika naszego ośrodka polega na tym, że jest

Omówienie

Prze prowadzona analiza wykazała, że u ponad połowy (54%) płodów z poszerzeniem NT w pierwszym trzylecie i prawidłowym kariotypem uwidoczniło – w badaniu ultrasonograficzno-echokardiograficznym przeprowadzonym kilka tygodni później – wadę strukturalną i/lub anomalie czynnościowe u płodu. W podobnej analizie przeprowadzonej w populacji hiszpańskiej obejmującej 171 płodów z prawidłowym kariotypem i poszerzonym NT niekorzystny przebieg ciąży stwierdzono u 37% płodów. Wady strukturalne ujawniono u 21,6% badanych płodów, najczęściej były to wady serca (u 13,5%)\(^8\).

W badanej populacji strukturalną wadę serca rozpoznano u 17 płodów (29,8%), mediana dla NT w tej grupie wynosiła 4,6 mm. Większość wad serca stanowiły wady złożone, składające się z wielu anomalii. Prenatalne badanie echokardiograficzne w części dotyczącej budowy serca obejmuje ocenę przedsięmiarów, zastawek przedsięmiarowo-komorowych, komór serca płodu, połączeń komorowo-tętniczych, położenia luku aorty, śródpierścia płodu, spływu żył płucnych i systemowych; odrębnie oceniane są wskaźniki dotyczące oceny wydolności układu krążenia i zmian czynnościowych\(^9-11\). W analizowanym materiale w większości obserwowano ciąży, złożone wady serca.

W dotychczasowych doniesieniach częstość występowania strukturalnej wady serca u płodów z poszerzonym NT i prawidłowym kariotypem oceniano jedynie na około 4,9–7%\(^12,13\). Były to jednak dane z populacji ogólnej. Specyfika naszego ośrodka polega na tym, że jest
to kardiologiczny ośrodek referencyjny (niewykonujący badań przesiewowych), bardzo dobrze skupiający różnego rodzaju patologie, co decyduje o naszym dużym doświadczeniu, znacznie większym niż ośrodków wykonujących badania przesiewowe.

Z analiz wyników badań echokardiograficznych płodów z prawidłowym kariotypem w dwóch ośrodkach referencyjnych (o podobnej do naszego strukturze) w Wielkiej Brytanii wynika, że poszerzenie NT występowało prawie u połowy płodów z wrodzoną wadą serca (47%), a zatem wyniki te były zblizone do naszych.(14).

Dotychczasowe obserwacje wskazują, że ryzyko wystąpienia wady serca u płodu wzrasta wraz z szerokością NT(12). W przypadku NT równego lub mniejszego niż 3,5 mm częściej występuje wady przegrodowe (czyli wspólny kanał przedsiłkowo-komorowy) lub ubytki przegrody międzykomorowej.(12). Z punktu widzenia kardiologii prenatalnej nie ma u płodu ubytku przegrody międzyprzedsiłkowej typu ostium secundum (zachowanie przepływu na tym poziomie warunkuje prawidłowy rozwój płodu). Z kolei gdy NT przekracza 3,5 mm, nie obserwuje się zależności pomiędzy rodzajem stwierdzanych wad serca a wartością NT.(12). W przeprowadzonym badaniu nie stwierdzono jednej dominującej wady serca u płodów z poszerzeniem NT i prawidłowym kariotypem.

Nasze dane wskazują, że u płodów z poszerzeniem NT ryzyko występowania wady serca jest dużo większe, niezależnie od karyotypu płodu. Z tego względu u każdego płodu z poszerzeniem NT należy wykonać badanie echokardiograficzne w ośrodku referencyjnym. Obecnie pierwsze badanie serca u płodu można przeprowadzić w pierwszym trymestrze ciąży.(15–18). Czułość i specyficzność takiego badania zależą od doświadczenia ośrodka wykonującego, a także od badanej populacji.(19). Czułość i specyficzność badania echokardiograficznego w pierwszym trymestrze ciąży, obliczone na podstawie analizy wyników dziesięciu badań, wynosi odpowiednio 85% i 99%.(20). Należy jednak podkreślić rolę badania echokardiograficznego w 20. tygodniu ciąży. Badanie wykonane w tym okresie ciąży charakteryzuje się nawet 95% czułością.(21). Niektóre wady serca mogą ujawnić się dopiero w drugim, a nawet trzecim trymestrze ciąży, dlatego badanie echokardiograficzne przeprowadzone w pierwszym trymestrze nie może zastąpić badania wykonanego w 18.–20. tygodniu ciąży.

W przeprowadzonym badaniu wady pozarszowe stwierdzono u 20 płodów (35%). Opisywano wcześniej liczne wady pozarszowe, które wykazują związek z poszerzeniem NT: body stalk anomaly, przepuklina przeponowa, przepuklina poppowina, olbrzymi płęczki moczowe, wady układu szkieletowego, obręcz płodu oraz liczne zespoły wad genetycznych(2,6,7,22–25). W analizowanej grupie przepuklina przeponowa wystąpiła tylko u jednego płodu. U pojedynczego płodu stwierdzono atreję przełyku z przetoką tchawiczo-przełykową, wielowodzkiem, anomalią małżowniny usznej, hipoplastją

examining the cardiac structure, prenatal echocardiography encompasses the assessment of the atria, atrioventricular valves, fetal ventricles, ventriculoarterial connections, location of the aortic arch, fetal mediastinum and pulmonary and systemic venous drainage. The indicators of circulatory system sufficiency and functional changes are assessed separately(19–21). In the analyzed material, the majority of cardiac defects were severe and complex.

Previous studies estimate the incidence of structural cardiac defects in fetuses with an increased NT and a normal karyotype to be approximately 4.9–7%(12,13). However, these results concern the general population. It needs to be added that our center is a cardiologic reference center where screening tests are not performed and this constitutes its specific character. It focuses on various pathologies and therefore, has greater experience, much greater than the centers which perform screening tests.

The analysis of echocardiographic examinations of fetuses with a normal karyotype, which was performed in two reference centers in Great Britain (with the structure similar to our center), gave similar results to the ones quoted in this paper. The analysis followed that an increased NT occurred in nearly a half of the fetuses with a congenital heart defect (47%)(14).

The observations made so far indicate that the risk of a cardiac defect in a fetus increases together with the thickness of the NT(12). In the case of a NT that is equal or lower than 3.5 mm, septal defects occur more frequently (such as atrioventricular septal defect or ventricular septal defect)(12). From the point of view of prenatal cardiology, the ostium secundum type of atrial septal defect does not occur in fetuses: maintaining the correct flow at this level determines the appropriate fetal development. However, when the NT exceeds 3.5 mm, the connection between the type of detected cardiac defects and the NT value is no longer observed(12). The study discussed herein does not show a single dominant cardiac defect in fetuses with an increased NT and a normal karyotype.

According to our data, the fetuses with an increased NT are burdened with much greater risk of developing cardiac defects irrespective of their karyotypes. Therefore, echocardiographic examination performed in a reference center should be conducted in each fetus with an increased NT. At present, the first cardiac examination in a fetus may be performed in the first trimester of gestation(15–18). The sensitivity and specificity of such an examination depend on the experience of the center which performs the test as well as on the examined population(19). The sensitivity and specificity of echocardiographic examination in the first trimester were calculated on the basis of ten studies (which encompass 1243 examinations altogether) and constitute 85% and 99% respectively(20). However, the role of echocardiography in the 20th week of pregnancy should also be emphasized. The examination conducted in this period of gestation is characterized by a high sensitivity value of up to 95%(21). What is more, some cardiac defects may reveal themselves in the second or even the third trimester of
móżdżku i hipoteloryzmem oraz wadą serca pod postacią ubytku w przegrodkie międzykomorowej. U pojedynczych płodów w naszej serii przypadków wystąpiły wytrzymiwie- nie, wodonerche, hipoplazja płuc. U 4 płodów stwierdzono poszerzone miedniczki nerwowe (definiowane jako wymiar przednio-tylny miedniczki nerwowej równy 5–10 mm). U 2 płodów wystąpił obrzęk nieimmunologiczny z wysię-kiem do jam opłucnowej i otrzewnowej.

U wszystkich płodów objętych analizą występował prawi-łdowy kariotyp, co nie wyklucza wielu zespołów genetycz-nych, którym może towarzyszyć poszerzenie NT. U nie-których płodów z badanej grupy występowaly wady serca i wady pozasercowe, które mogły sugerować obecność zespołu DiGeorge’a u płodu. Do takich wad zaliczamy wady stożka nacznio-wego (tetralogia Fallota, wspólny pień tętnicy, przełożeńie wielkich pni tętniczych, odejście obu tętnic z prawej komory, tetralogia Fallota z atrezą zastawki tętnicznej płucnej czy przerwanie luku aorty). Z wad pozasercowo- wych należy wymienić hipoplazję grąscy, rozszczep wargi/ podniebienia, wady nerek, kończyn, cewy nerwowej.

W przeprowadzonej analizie punkt odciecia wymiaru NT przejęto jako wymiar ≥3 mm. NT wzrasta wraz ze wzro-stem wymiaru CRL. Dziewięćdziesiąty piąty percentyl na początku 11. tygodnia wynosi 2,2 mm, pod koniec 13. tygodnia 2,8 mm. Dziewięćdziesiąty dziewięćdziesiąty percentyl nie zmienia się znacznio z wymiarem CRL i wynosi 5,3 mm(3). W pracy Orvos i wsp. przyjęty punkt odciecia dla NT≥3 mm pozwolił na rozpoznanie ponad połowy wad serca u płodów(27). również w doniesieniu Nicoleides’a i wsp. punkt odciecia przejęto jako wymiar NT≥3 mm(3).

Podsumowując, poszerzenie NT u płodów z prawidłowym kariotypem może wynikać z obecności wad towarzyszą-cych, głównie wad serca.

Ciekawa mogłaby być analiza statystyczna porównują-jąca sze- rokość przezierności karku w poszczególnych podgrupach wad rozwojowych. Jednakże ze względu na małą liczbę przypadków w podgrupach analiza statystyczna da je mało wiarygodne wyniki, dlatego nie zostały one przedstawione.

Niewątpliwie wartość wartościowe mogłyby być również porównanie częstotliwości występowania wad rozwojowych z czę- stością ich występowania w grupie płodów z prawidłową przeziernością karku i prawidłowym kariotypem – niestety, w większości przypadków nie ma wskazań klinicznych do wykonania inwazjonalnych badań cytogenetycznych u płodów z prawidłową wartością NT.

Wnioski

Plody z poszerzoną przeziernością karku (NT≥3 mm) i prawidłowym kariotypem powinny być zaliczone do grupy ciąży wysokiego ryzyka, w których należy dążyć do przeprowadzenia analiz statystycznych w poszczególnych podgrupach wad rozwojowych, w tym wad serca pod postacią ubytku w przegrodkie międzykomorowej, wodonerche, hipoplazja płuc, wad pozasercowych. U 4 plodów z badanej grupy występowały wady serca, a w 2 płodów - obrzęk nieimmunologiczny.

Podsumowując, poszerzenie NT u płodów z prawidłowym kariotypem może wynikać z obecności wad towarzyszących, głównie wad serca.

Ciekawa mogłaby być analiza statystyczna porównują-jąca szerokość przezierności karku w poszczególnych podgrupach wad rozwojowych. Jednakże ze względu na małą liczbę przypadków w podgrupach analiza statystyczna da je mało wiarygodne wyniki, dlatego nie zostały one przedstawione.

Niewątpliwie wartość wartościowe mogłyby być również porównanie częstotliwości występowania wad rozwojowych z częstotliwością ich występowania w grupie płodów z prawidłową przeziernością karku i prawidłowym kariotypem – niestety, w większości przypadków nie ma wskazań klinicznych do wykonania inwazjonalnych badań cytogenetycznych u płodów z prawidłową wartością NT.

In the conducted analysis, extracardiac defects were observed in 20 fetuses (35%). Above, numerous extracardiac anomalies were mentioned that are connected with an increased NT such as: body stalk anomaly, diaphragmatic hernia, umbilical hernia, megacystis, skeletal system defects, hydrops fetalis as well as numerous syndromes of congenital defects(2,6,7,22–25).

In the analyzed group, diaphragmatic hernia occurred in only one case. One fetus presented with esophageal atresia with tracheoesophageal fistula, polyhydramnios, auricle anomaly, cerebellar hypoplasia and hypotelorism as well as a cardiac anomaly namely, ventricular septal defect. In single fetuses, gastrochisis, hydropspherosis and pulmonary hypoplasia were observed incidentally. Moreover, 4 fetuses demonstrated increased renal pelves (defined as an antero-posterior dimension of the renal pelvis equal to 5–10 mm). Finally, in 2 fetuses, non-immune edema with the pleural and peritoneal effusion was observed.

All analyzed fetuses had a normal karyotype, which, however, does not exclude genetic syndromes that may be accompanied by an increased NT. Some fetuses from the analyzed group presented cardiac and extracardiac abnor-malities which might have been suggestive of DiGeorge syndrome. Such anomalies include conotruncal heart mal-formations: tetralogy of Fallot, persistent truncus arteriosus, transposition of the great arteries, double outlet right ventricle, tetralogy of Fallot with pulmonary atresia or interrupted aortic arch. The extracardiac defects encompassed: thymic hypoplasia, cleft lip/palate as well as defects of the kidneys, extremities and neural tube.

In the conducted analysis the cut-off point of the NT value was ≥3 mm. The NT increases together with the CRL. The 95th percentile at the beginning of the 11th week constitutes 2.2 mm and at the end of the 13th week – 2.8 mm. The 99th percentile does not undergo significant changes with the CRL and constitutes 3.5 mm(1). In the study of Orvos et al., the assumed cut-off point for NT≥3 mm allowed more than half of fetal cardiac defects to be diagnosed(27). The cut-off point used by Nicolaides et al. also constituted NT≥3 mm(1).

To conclude, an increased NT in fetuses with a normal karyotype may result from the presence of accompanying defects, mainly involving the heart.

A statistical analysis comparing the values of the nuchal translucency in particular subgroups of developmental defects would be an interesting study. Nevertheless, due to a small number of subjects in the subgroups, the statistical analysis would not provide reliable results. Therefore, such an analysis was not performed.

A comparison of the incidence of developmental defects with the frequency of their occurrence in fetuses with a normal nuchal translucency and a normal karyotype
would undoubtedly constitute another valuable study. Unfortunately, in the majority of cases, there are no clinical indications for invasive cytogenetic examinations in fetuses with a correct NT.

Conclusions

The fetuses with an increased nuchal translucency (NT ≥ 3 mm) and a normal karyotype should be included in the high-risk pregnancy group, where it is necessary to perform detailed echocardiographic examinations in subsequent weeks of gestation in order to confirm a correct cardiac structure or detect its defect.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.