Effect of Farming Condition on Postnatal Growth and Development of Lymphoid Organs and Tissues in Deshi Chicken (Gallus domesticus) of Bangladesh

Md. Shahriar Hasan Sohel¹, Abdullah Al Faruq¹, Mohammad Shahjala², Mohammad Lutfur Rahman¹

ABSTRACT
Total 40 non-descriptive deshi chickens were reared in scavenging and intensive farming system (20 for each) from day 1 to 180. Gross examinations of different lymphoid organs and tissues were performed at D₃₀, D₆₀, D₉₀ and D₁₈₀ for both types of chickens. Tissue samples were stained with H and E stain and AmScope image measurement software was used for histomorphometry. Gross and histomorphometrical parameters of thymus, spleen and cecal tonsils gradually increased significantly (P<0.05) with the advancement of ages from D₃₀ to D₁₈₀ in both scavenging Deshi chickens (SDC) and captive Deshi chickens (CDC). Gross and histomorphometrical parameters of bursa increased up to D₉₀ and thereafter decreased indicating the involution of bursa by D₁₈₀. The gross and histomorphometrical parameters of bursa, thymus, spleen and cecal tonsils were significantly (P<0.05) higher in all age groups of CDC (except D₃₀ chicks) as compared with SDC, owing to the different patterns of rearing system.

Key words: Bursa, Cecal tonsil, Deshi chicken, Postnatal, Spleen, Thymus.

INTRODUCTION
Deshi or native chicken is a major local chicken breed in Bangladesh. This breed is being reared in Bangladesh for a long period of time and it has contributed about 19.75 and 25.06 per cent of total meat and egg production, respectively (Dutta et al., 2013). Most of the farmers, particularly village women reared these chickens. For this reason, these chickens are usually regarded as a “Walking Bank or Bank Coin” for the rural poor families. These chickens are frequently reared in free range farming system where they scavenge for feeds during the day time and are confined at night. They usually take kitchen waste, seeds, grains, garden leftover, insects, green grasses and all other human refusal that would otherwise go to waste. Attaining approximately 1.0 kg at 6 months of age in free range farming system (Rahman et al., 2003; Islam et al., 2012), their body weight also increases if being reared in intensive farming system (Ershad, 2005). The lymphoid organs of chicken, viz. bursa and thymus and tissues, viz. spleen and cecal tonsils, plays significant roles in the prevention of disease occurrence (Khalli et al., 2002; Tizard, 2013). Studies on the lymphoid organs of chicken have revealed that the growth and development of lymphoid organs and morphology and functions of tissues are related with the growth of chickens (Ciriaco et al., 2003). In turn, the growth rates of chickens are related with their rearing systems (Ershad, 2005).

Many scientists have studied the postnatal growth and development of lymphoid organs in different high yielding birds like Broiler chicken (Nagy and Olah, 2010; Khenenou et al., 2012; Khan et al., 2014), White Leghorn chicken (Betti et al., 1991; Del Moral et al., 1998; Kozuka et al., 2010), Aseel chicken (Haseeb et al., 2014), CARI

¹Department of Anatomy and Histology, Chittagong Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chittagong-4225, Bangladesh.
²Department of Microbiology and Veterinary Public Health, Chittagong Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chittagong-4225, Bangladesh.

Corresponding Author: Md. Shahriar Hasan Sohel, Department of Anatomy and Histology, Chittagong Veterinary and Animal Sciences University, Zakir Hossain Road, Khulshi, Chittagong-4225, Bangladesh. s.h.sohel08@gmail.com

How to cite this article: M.S.H. Sohel, A.A. Faruq, M.S. Jalal and M.L. Rahman, Effect of Farming Condition on Postnatal Growth and Development of Lymphoid Organs and Tissues in Deshi Chicken (Gallus domesticus) of Bangladesh Agricultural Science Digest.

Submitted: 16-05-2019 Accepted: 02-08-2019 Published

Shyama and Vanaraja chickens (Jain et al., 2010), Guinea fowl (Onyeanusi et al., 1994) and Geese (Guinéz and Aslan, 1999). A few number of research were conducted on gross and histomorphology of the postnatal lymphoid organs of deshi chickens in Bangladesh (Khalli et al., 2002), with the results being compared to broiler chickens as well as other high yielding chickens. The reports on postnatal growth and development of lymphoid organs of deshi chickens reared in intensive farming system are scanty. Some authors have also reported that due to scavenging nature, the postnatal lymphoid organs of deshi chickens contain more immunocompetent cells than that of high yielding chickens (Khan et al., 2007; Islam et al., 2012). Therefore, from economic, nutritional and immunological point of view, this
study was conducted to explore the effect of farming conditions on the postnatal growth and development of lymphoid organs and tissues in deshi chickens of Bangladesh.

MATERIALS AND METHODS

Rearing of chicken

A total of 40 day-old non-descriptive deshi chicks were collected and categorized into two groups of 20 each. Subsequently, the chicks were reared in both scavenging (traditional or free range system) and intensive farming system up to 180 days in Chittagong district (sub-division) of Bangladesh according to Banerjee (1978).

Collection of lymphoid organs and tissues

The chickens were routinely collected at D1 (day-1), D30, D90 and D180 and then sacrificed by ‘halal’ method. After separation of lymphoid organs and tissues (bursa of Fabricius, thymus, spleen and cecal tonsil), samples were washed with normal saline solution.

Morphometry

Color and shape of lymphoid organs and tissues were recorded after collection. Weights of individual lymphoid organs and tissues were measured in grams (g) by using a sensitive electronic balance (Mettler Toledo B154, ± 0.001 g, China). The height of bursa of Fabricius; length of thymus, spleen and cecal tonsils and the width of bursa of Fabricius, spleen and cecal tonsils were measured in centimeter (cm) using slide calipers (0-150 digital caliper, Shinko Denshi Co. Ltd, Japan) and calibrated scales.

Tissue processing

For histological study, sections of the tissue samples were fixed in 10% neutral buffered formalin for a period of 72 hours followed by processing and staining with H and E stain according to Gridley (1957).

Histomorphometry

For obtaining histomorphometric data, five photomicrographs were taken from each age group of lymphoid organs and tissues of both SDC and CDC by using a photomicroscope (AmScope Trinocular Compound Microscope, Model T490 B-MT). AmScope image measuring software (x86, 3.7.3036 version) was used for measuring the actual length, height and width of respected lymphoid organs and tissues and was expressed in micrometer (µm).

Data analysis

The recorded data in excel sheet (Microsoft Excel-2007) were transferred to statistical software, STATA-13 (STATA Corp., Texas, USA) and unpaired sample t-test was done to compare means of different variables between two chicken groups (SDC and CDC). A p-value of equal to or less than 0.05 (P≤0.05) was considered as significant for this test and results were expressed as Mean ± SD.

RESULTS AND DISCUSSION

Morphometry

Bursa of Fabricius:

In the present study, the mean weight, height and width of bursa in both SDC and CDC gradually increased from D1 to D90 and the highest mean values of those parameters (2.04 ± 0.11 g, 1.48 ± 0.08 cm and 1.04 ± 0.11 cm, respectively) were found at 90 days old CDC (Fig 1). The respective values for highest weight, height and width of bursa were 3.0 g, 3.0 cm and 2.0 cm, in 120-150 days-old Hybrid chicken (Getty, 1975), 1.95 g, 0.6 cm and 0.31cm, in 70-80 days-old Broiler chicken (Khenenou et al., 2012) and 3.8 g, 5.0 cm and 0.7 cm, in 180 days-old Duck (Sultana et al., 2012). It was also found that the mean weight, height and width of this organ were significantly (P≤0.05) higher in all ages of CDC except day-old (D1) chicks as compared with SDC (Fig 1). This higher weight, height and width of bursa in CDC may be due to their higher growth rate in the intensive farming system as compared with SDC in the free range scavenging system. Jain et al. (2010) pointed out that the size and shape of bursa depend on the species, breed and even farming conditions.
Fig 2: The present graph is showing the number of thymic lobe, weight and length of thymus in different ages of scavenging deshi chicken (SDC) and captive deshi chicken (CDC). The growth of the thymus is found higher at D_{180} in both SDC and CDC; N=40 (n=5) and each bar represent Mean ± SD.

Fig 3: The present graph is showing the weight, length and width of spleen in different ages of SDC) and CDC. The growth of the spleen is found higher at D_{180} in both SDC and CDC; N=40 (n=5) and each bar represent Mean ± SD.

Fig 4: This graph is showing the weight, length and width of cecal tonsil in different ages of SDC and CDC. The growth of the cecal tonsil is found higher at D_{180} in both SDC and CDC; N=40 (n=5) and each bar represent Mean ± SD.

conditions of the birds. In D_{1} chicks, the parameters of bursa of both CDC and SDC were analogous owing to their relatively equal body weights in both the farming conditions. The mean weight, height and width of bursa decreased at D_{180} in both SDC and CDC, indicating the involution of this organ by that age. Involution of bursa started by D_{140} in Broiler chicken (Khenenou et al., 2012), >150 days in White Leghorn chicken and >180 days in Duck (Getty, 1975). Hence, in the present study, the size and involution of bursa in both SDC and CDC varied according to the species and breed.

Thymus

Data in Fig 2 showed that the morphometric parameters of thymus viz. number of lobes, weight and length increased significantly (P<0.05) with advancement of age from D_{1} to D_{180} in both SDC and CDC. These results partially differed
from the reports of Getty (1975) who observed that the number of lobes, weight and length of thymus in White Leghorn chickens increased up to D_{120}. This dissimilarity may be due to the breed difference. In both SDC and CDC, the number of lobes in thymus varied according to age, with no difference in the same age. Average mean number of thymic lobes on each side of neck was 4.40 to 6.40 in both SDC and CDC, which partially agreed with previous reports of 3-8 on each side of neck in Domestic fowl (Hodges, 1974; King and McLelland, 1984), 6-7 in Guinea fowl (Onyeanusi et al., 1994) and 5-9 in Geese (Gulmez and Aslan, 1999). This partial discrepancy may be due to the variation in species. Contrarily, the mean weight and length of thymus were significantly (P<0.05) higher in all age groups except day-old chicks of CDC as compared with SDC. This inconsistency with the advancement of age may be attributed to their rearing environment. Comparatively similar weight and length of thymus was found at D_{1} chicks in both SDC and CDC as their body weights were relatively equal in both scavenging and intensive farming conditions.
Spleen and Cecal Tonsil

The mean weight, length and width of spleen (Fig 3) and cecal tonsil (Fig 4) in both SDC and CDC also increased from D₁ to D₁₈₀ in accordance with the reports of Getty (1975), who described that the weight, length and width of spleen and cecal tonsil in White Leghorn chicken also increased with the advancement of age. In the present study, the mean weight, length and width of spleen and cecal tonsil were significantly (P<0.05) higher in all age groups (except D₁ chicks) in CDC as compared with SDC. The CDC was reared in intensive farming condition where ad-libitum feed and water were supplied thus, their growth rates were higher than SDC. For this reason the mean weight, length and width of spleen and cecal tonsil were higher in CDC than that of SDC. Ciriaco et al. (2003) reported that the mean weight, length and width of lymphoid organs of Hybrid chickens depend on the farming condition as well as their weight gain. In day-old (D₁) chicks of both SDC and CDC, the mean weight, length and width of spleen and cecal tonsils were relatively similar as their relatively equal body weights in both scavenging and intensive farming conditions. On the other hand, maximum mean values of weight, length and width of spleen (3.06 ± 0.18 g, 2.26 ± 0.16 cm and 1.62 ± 0.08 cm, respectively) were found at 180 days-old CDC. Previously reported respective highest mean weight, length and width were 3.0-4.5 g, 2.0-3.0 cm and 1.0-2.0 cm, in 120-150 days-old Hybrid chicken (Getty, 1975), 1.974 ± 0.04 g, 18.93 ± 0.39 mm and 13.45 ± 0.34 mm, in 28 days-old Broiler chicken in Bangladesh (Khan et al., 2014) and 0.18 g, 0.94 cm and 0.68 cm, in 90-120 days-old indigenous Duckling in Bangladesh (Sultana et al., 2012). This dissimilarity may be due to the difference in species, breed and age as reported by Jain et al. (2010) who noticed that the color, weight, length and width of lymphoid organs of Hybrid chicken depended on the breed, age, sex and rearing environment.

Histomorphometry

Bursa of Fabricius:

The comparative histomorphometrical data of bursa of Fabricius are shown in Table 1. The number of mucosal folds in the present study varied from 6-12 (Fig 5), whereas the number of mucosal folds was 12 in Domestic fowl (King and McLelland, 1984), 12-14 in Helmeted Guinea fowl (Onyeanusi et al., 1993), 11-13 in Geese (Gulmez and Aslan, 1999), 8-16 in both CARI Shyama and Vanaraja breeds of poultry (Jain et al., 2010) and 11-13 in Hybrid chicken (Betti et al., 1991). The mucosal folds of the bursa was covered by pseudostratified columnar epithelium except at the apex where it was covered by simple columnar epithelium (Fig 5). Some authors have reported that the surfaces of mucosal folds were covered by pseudostratified columnar epithelium.
Table 1: Histomorphometrical observations of bursa of fabricius.

Age group (Day)	Parameter	Chickens group (Mean ± SD)	P-value	
		SDC	CDC	
D₁	HE	29.00 ± 5.47	30.00 ± 3.54	0.74
	NMF	7.00 ± 0.71	6.80 ± 0.84	0.69
	NFPMF	14.00 ± 3.16	14.20 ± 2.86	0.91
	HMF	468.00 ± 105.21	471.60 ± 103.49	0.95
D₁₀	HE	43.40 ± 5.94	51.50 ± 3.71	0.03*
	NMF	7.80 ± 1.30	8.80 ± 1.30	0.02*
	NFPMF	26.80 ± 7.01	30.20 ± 6.14	0.03*
	HMF	481.00 ± 144.59	879.80 ± 152.04	0.01*
D₁₀₀	HE	57.4 ± 5.59	68.60 ± 4.93	0.01*
	NMF	10.80 ± 1.30	12.00 ± 1.58	0.002*
	NFPMF	26.80 ± 7.01	30.20 ± 6.14	0.03*
	HMF	560.80 ± 102.53	608.40 ± 103.97	0.02*

Here, N= 40 (n= 5 for each age group); HE= Height of epithelium; NMF= Number of mucosal fold; NFPMF= Number of follicles per mucosal fold; HMF= Height of mucosal fold; *Significant when P≤0.05.

Table 2: Histomorphometrical observations of thymus, spleen and cecal tonsil.

Lymphoid organ	Parameter	Age group (Day)	Chickens group (Mean ± SD)	P-value		
			SDC	CDC		
Thymus	LTL (µm)	D₁	265.40 ± 45.75	269.00 ± 39.93	0.89	
		D₁₀	547.60 ± 90.56	583.20 ± 102.31	0.05*	
		D₁₀₀	881.00 ± 153.22	913.40 ± 144.00	0.04*	
		D₁₀₀	985.80 ± 28.19	1001.20 ± 28.96	0.01*	
		WTL (µm)	D₁	152.00 ± 22.89	152.80 ± 22.19	0.95
		D₁₀	285.60 ± 63.05	328.80 ± 58.78	0.02*	
		D₁₀₀	510.80 ± 174.78	539.20 ± 188.69	0.05*	
		D₁₀₀	566.60 ± 86.39	608.80 ± 85.40	0.015*	
Spleen	LWP (µm)	D₁	69.20 ± 6.26	69.60 ± 7.40	0.92	
		D₁₀	209.00 ± 39.99	229.40 ± 47.04	0.04*	
		D₁₀₀	279.80 ± 69.02	310.60 ± 82.42	0.05*	
		WWP (µm)	D₁	32.40 ± 5.22	32.60 ± 5.89	0.95
		D₁₀	81.00 ± 10.75	88.20 ± 11.61	0.02*	
		D₁₀₀	140.60 ± 28.51	151.20 ± 31.36	0.05*	
		D₁₀₀	167.20 ± 19.09	190.40 ± 10.53	0.05*	
Cecal tonsil	LLN (µm)	D₁	26.60 ± 4.04	27.20 ± 3.89	0.81	
		D₁₀	53.40 ± 7.57	61.80 ± 8.26	0.01*	
		D₁₀₀	129.40 ± 22.09	142.80 ± 24.65	0.03*	
		WLN (µm)	D₁	164.20 ± 16.02	180.20 ± 13.44	0.01*
		D₁₀	16.72 ± 5.18	19.40 ± 5.03	1.00	
		D₁₀₀	38.60 ± 6.58	49.40 ± 8.14	0.05*	
		D₁₀₀	92.40 ± 16.46	103.80 ± 19.58	0.03*	
		D₁₀₀	107.20 ± 15.55	120.40 ± 18.51	0.05*	

Here, N= 40 (n= 5 for each age group); LTL= Length of thymic lobe; WTL= Width of thymic lobe; LWP= Length of white pulp; WWP= Width of white pulp; LLN= Length of lymph nodule; WLN= Width of lymph nodule; *Significant when P≤0.05.
Effect of Farming Condition on Postnatal Growth and Development of Lymphoid Organs and Tissues

(Hodges, 1974; Onyeanusi et al., 1994) but the others have reported, they were covered by both simple columnar and pseudostratified columnar epithelium (Jain et al., 2010). Jain et al. (2010) found that the respective highest mean value for height of epithelium in CARI Shyama and Vanaraja breeds of poultry were 54.24 ± 1.76 µm, 42.56 ± 2.40 µm; with the height of mucosal folds being 2200 ± 40.60 µm, 2280 ± 45.00 µm, and the number of follicles per fold being 25.14 ± 0.05, 18.98 ± 2.34. These observations indicated that the number of mucosal folds, number of follicles per fold, height of mucosal folds and covering epithelium of bursa varied within breed and species. In this study, the height of epithelium, number of mucosal folds, number of follicles per mucosal folds and height of mucosal folds increased with advancement of age from D1 to D100 in both SDC and CDC but decreased by D100 in both SDC and CDC (Fig 5). These histomorphometrical results indicated involution of bursa by D100 in both SDC and CDC. In contrast, all those histomorphometrical parameters of bursa were higher in all age groups in CDC as compared with SDC. The possible causes of these higher results in CDC may be due to their higher growth rate in intensive farming system as compared with SDC in free range scavenging system with expected involvement of other factors also. Kannan et al. (2012) found that the histological structure of lymphoid organs in Hybrid chicken depended on the breed, age, sex and their rearing environment. In day-old (D1) chicks of both SDC and CDC groups, the mean values of all histomorphometrical parameters of bursa were relatively similar owing to their relatively equal body weights in both scavenging and intensive farming conditions.

Thymus, Spleen and Cecal tonsil:

Data in Table 2 showed that the mean length and width of thymic lobules (Fig 6), white pulps of spleen (Fig 7) and lymphatic nodules of cecal tonsil (Fig 8) in both SDC and CDC increased with the advancement of age from D1 to D100. Similar findings were also noticed in Broiler chicken by Akter et al. (2006) and Khan et al. (2014) and in Aseel chicken by Haseeb et al. (2014). On the other hand, the mean length and width of lobules of thymus, white pulps of spleen and lymphatic nodules of cecal tonsils were higher in all age groups in CDC as compared with SDC. The body weights of CDC were higher being reared in intensive farming conditions with ad-libitum feed and water. In contrast, the SDC being reared in free range scavenging system and feeding on kitchen waste, seeds and grains, insects, green grasses had a comparatively slower body weight gain than CDC. So, the parameters of these lymphoid organs, viz. length and width of lobules of thymus, white pulps of spleen and lymphatic nodules of cecal tonsils exhibited corresponding higher values in all age groups in CDC. As per the earlier reports, histological structure of lymphoid organs and tissues in Hybrid chicken varied according to the breed, age, sex and rearing environment (Jain et al., 2010; Kannan et al., 2012).

CONCLUSION

The higher gross and histomorphometrical parameters of lymphoid organs and tissues in CDC over that of SDC in the present study may be attributed to their different pattern of rearing system. It indicated that the level of immunity might be better in CDC over that of SDC associated with an advancement of age. Moreover, as indicated by the improved growth rate of deshi chickens in the present study, captive or intensive system is recommended over the scavenging system of rearing.

ACKNOWLEDGEMENT

The authors are grateful to National Science Technology (NST) and Committee for Advanced Studies and Research (CASR), CVASU, Bangladesh for sanctioning research grants to complete this work.

REFERENCES

Akter, S., Khan, M., Jahan, M., Karim, M., Islam, M. (2006). Histomorphological study of the lymphoid tissues of broiler chickens. Bangl. J. Vet. Med. 4 (2): 87-92.
Banerjee, G.C. (1978). A textbook of animal husbandry. New Delhi, India: Oxford and IBH Publishing.
Betti, F., Worsmann, T., De Faria, F., Sesso, A. (1991). Development of the cloacal bursa in the domestic fowl. II. A quantitative and fine structural analysis of the follicular cortex and medulla. J. Submicrosc. Cytol. Pathol. 23 (4): 613-628.
Ciriaco, E., Pinera, P.P., Diaz Esnal, B., Laura, R. (2003). Age related changes in the avian primary lymphoid organs (thymus and bursa of Fabricius). Microsc. Res. Tech. 62 (6): 482-487.
Del Moral, M.G., Fonfria, J., Varas, A., Jimenez, E., Moreno, J., Zapata, A. (1998). Appearance and development of lymphoid cells in the chicken (Gallus gallus domesticus) caecal tonsil. Anat. Rec. 250(2): 182-189.
Dutta, R.K., Islam, M.S., Kabir, M.A. (2013). Production performance of indigenous chicken (Gallus domesticus L.) in some selected areas of Rajshahi, Bangladesh. American J. Experi. Agric. 3(2): 308-323.
Ershad, S. (2005). Performance of hybrid layers and native hens under farmers’ management in a selected area of Bangladesh. Int. J. Poult. Sci. 4(4): 228-232.
Getty, R. (1975). Sisson and Grossman’s The anatomy of the domestic animals. Vol. 2, 5th ed. W.B. Saunders Company, London.
Gridley, M.F. (1957). Manual of histologic and special staining technics. McGraw Hill Book Company, Inc., New York.
Gulmez, N., Aslan, S. (1999). Histological and histometrical investigations on bursa of Fabricius and Thymus of Native Geese. Turk. J. Vet. Anim. Sci. 23(2): 163-172.
Haseeb, A., Shah, M.G., Gandhi, J.A., Lochi, G.M., Khan, M., Faisal, M. (2014). Histo-morphological Study on Thymus of Aseel chicken. J. Agric. Food. Tech. 4(2): 1-5.
Hodges, R.D. (1974). The histology of the fowl. Academic Press, New York.
Islam, M.N., Khan, M.Z.I., Jahan, M., Fujinaga, R., Yanai, A., Kokubu, K., Shinoda, K. (2012). Histomorphological study
on prenatal development of the lymphoid organs of native chickens of Bangladesh. Pak. Vet. J. 32(32): 175-178.

Jain, P., Ingole, S., Dang, U. (2010). Gross and histological studies on bursa of Fabricius of CARI Shyama and Varanara breeds of poultry. Haryana Vet. 49(1): 51-53.

Kannan, T., Geetha, R., Ushakumary, S., Raj, G., Vairamuthu, S. (2012). Light microscopic studies on spleen of chicken (Gallus domesticus). Haryana Vet. 51(1): 114-115.

Khalil, M., Islam, Z., Khalil, M., Islam, R. (2002). Effects of age in the structure of the bursa of Fabricius of deshi chicken of Bangladesh. Mymensingh Med. J. 11(2): 91.

Khan, M.Z.I., Masum, M., Khan, M.Z.I., Aziz, A.R., Nasrin, M., Siddique, M.N.H. (2014). Histomorphology of the lymphoid tissues of broiler chickens in Kelantan, Malaysia (Histomorfolologi Tisu Limfa Ayam Pedaging di Kelantan, Malaysia). Sains Malays. 43(8): 1175-1179.

Khenenou, T., Melizi, M., Benzaoui, H. (2012). Morpho-histological study of the Bursa of Fabricius of broiler chickens during post-hatching age. In, Proceedings of World Academy of Science, Engineering and Technology.

King, A.S., McLelland. J. (1984). Birds, their structure and function. 2nd ed. Bailliere Tindall, 1 St. Annes Road, UK.

Kozuka, Y., Nasu, T., Murakami, T., Yasuda, M. (2010). Comparative studies on the secondary lymphoid tissue areas in the chicken bursa of Fabricius and calf ileal Peyer’s patch. Vet. Immunol. Immunopathol. 133 (2): 190-197.

Nagy, N., Olah, I. (2010). Experimental evidence for the ectodermal origin of the epithelial anlage of the chicken bursa of Fabricius. Development. 137(18): 3019-3023.

Onyeanusi, B., Onyeanusi, J., Emma, A., Ezeokoli, C. (1994). The thymus of the guinea fowl from the eighteenth day of incubation until maturity. Anat. Histol. Embryol. 23 (4): 320-329.

Rahman, M., Islam, M., Asaduzzaman, M., Khan, M. (2003). Lymphoid tissues in the digestive tract of Deshi Chicken (Gallus domesticus) in Bangladesh. Pak. J. Biol. Sci. 6 (13): 1145-1150.

Sultana, N., Khan, M., Wares, M., Masum, M. (2012). Histomorphological study of the major lymphoid tissues in indigenous ducklings of Bangladesh. Bangl. J. Vet. Med. 9(1): 53-58.

Tizard, I. R. (2013). Veterinary Immunology. E-Book. 9th ed. Elsevier Health Sciences.