THE SCATTERING MATRIX WITH RESPECT TO AN HERMITIAN MATRIX OF A GRAPH

Takashi KOMATSU
Department of Bioengineering, School of Engineering,
The University of Tokyo
Bunkyo, Tokyo, 113-8656, JAPAN
e-mail: komatsu@coi.t.u-tokyo.ac.jp

Norio KONNO
Department of Applied Mathematics, Faculty of Engineering,
Yokohama National University
Hodogaya, Yokohama 240-8501, JAPAN
e-mail: konno-norio-bt@ynu.ac.jp

Iwao SATO
Oyama National College of Technology
Oyama, Tochigi 323-0806, JAPAN
e-mail: isato@oyama-ct.ac.jp

May 7, 2021
Abstract

Recently, Gnutzmann and Smilansky [5] presented a formula for the bond scattering matrix of a graph with respect to a Hermitian matrix. We present another proof for this Gnutzmann and Smilansky’s formula by a technique used in the zeta function of a graph. Furthermore, we generalize Gnutzmann and Smilansky’s formula to a regular covering of a graph. Finally, we define an L-function of a graph, and present a determinant expression. As a corollary, we express the generalization of Gnutzmann and Smilansky’s formula to a regular covering of a graph by using its L-functions.

2000 Mathematical Subject Classification: 05C50, 15A15.
Key words and phrases: Hermitian matrix, scattering matrix, zeta function

The contact author for correspondence:
Iwao Sato
Oyama National College of Technology, Oyama, Tochigi 323-0806, JAPAN
Tel: +81-285-20-2176
Fax: +81-285-20-2880
E-mail: isato@oyama-ct.ac.jp
1 Introduction

Ihara zeta functions of graphs started from Ihara zeta functions of regular graphs by Ihara [9]. Originally, Ihara presented p-adic Selberg zeta functions of discrete groups, and showed that its reciprocal is an explicit polynomial. Serre [13] pointed out that the Ihara zeta function is the zeta function of the quotient T/Γ (a finite regular graph) of the one-dimensional Bruhat-Tits building T (an infinite regular tree) associated with $GL(2, k_p)$.

A zeta function of a regular graph G associated with a unitary representation of the fundamental group of G was developed by Sunada [10][17]. Hashimoto [8] treated multi-variable zeta functions of bipartite graphs. Bass [1] generalized Ihara’s result on the Ihara zeta function of a regular graph to an irregular graph, and showed that its reciprocal is again a polynomial. Various proofs of Bass’ Theorem were given by Stark and Terras [15], Foata and Zeilberger [3], Kotani and Sunada [10]. Sato [12] defined the second weighted zeta function of a graph by using not an infinite product but a determinant.

In this paper, we another proof for the Gnutzmann and Smilansky’s formula on the bond scattering matrix of a graph by using not an infinite product but a determinant. The spectral determinant of the Laplacian on a quantum graph is closely related to the Ihara zeta function of a graph (see [2, 4, 5, 11]). Smilansky [14] considered spectral zeta functions and trace formulas for (discrete) Laplacians on ordinary graphs, and expressed some determinant on the bond scattering matrix of a graph G by using the characteristic polynomial of its Laplacian. Recently, Gnutzmann and Smilansky [5] presented a formula for the bond scattering matrix of a graph with respect to a Hermitian matrix.

In this paper, we another proof for the Gnutzmann and Smilansky’s formula on the bond scattering matrix of a graph with respect to a Hermitian matrix. by a technique used in the zeta function of a graph, and treat some related topics. In Section 2, we review the Ihara zeta function and the bond scattering matrix of a graph G. In Section 3, we present another proof for the Gnutzmann and Smilansky’s formula by a technique used in the zeta function of a graph. In Section 4, we express a new zeta function of G on the bond scattering matrix of G with respect to a Hermitian matrix by using the Euler product. In Section 5, we generalize the Gnutzmann and Smilansky’s formula to a regular covering of G. In Section 6, we define an L-function of G, and present its determinant expression. As a corollary, we express the generalization of the Gnutzmann and Smilansky’s formula to a regular covering of G by using its L-functions.

2 The zeta functions and the bond scattering matrix of a graph

Graphs treated here are finite. Let $G = (V(G), E(G))$ be a connected graph (possibly multiple edges and loops) with the set $V(G)$ of vertices and the set $E(G)$ of unoriented edges uv joining two vertices u and v. For $uv \in E(G)$, an arc (u, v) is the oriented edge from u to v. Set $D(G) = \{(u, v), (v, u) \mid uv \in E(G)\}$. For $b = (u, v) \in D(G)$, set $u = o(b)$ and $v = t(b)$. Furthermore, let $b^{-1} = (v, u)$ be the inverse of $b = (u, v)$.

A path P of length n in G is a sequence $P = (b_1, \ldots, b_n)$ of n arcs such that $b_i \in D(G)$, $t(b_i) = o(b_{i+1})$ for $1 \leq i \leq n - 1$, where indices are treated mod n. Set $|P| = n$, $o(P) = o(b_1)$ and $t(P) = t(b_n)$. Also, P is called an $(o(P), t(P))$-path. We say that a path $P = (b_1, \ldots, b_n)$ has a backtracking or back-scatter if $b_{i+1} = t_{i-1}^-$ for some $i(1 \leq i \leq n - 1)$. A (v, w)-path is called a v-cycle (or v-closed path) if $v = w$. The inverse cycle of a cycle $C = (b_1, \ldots, b_n)$ is the cycle $C^{-1} = (b_n, \ldots, b_1)$.

We introduce an equivalence relation between cycles. Two cycles $C_1 = (e_1, \ldots, e_m)$ and $C_2 = (f_1, \ldots, f_m)$ are called equivalent if there exists k such that $f_j = e_{j+k}$ for all j. The inverse cycle of C is in general not equivalent to C. Let $[C]$ be the equivalence class which contains a cycle C. Let B^r be the cycle obtained by going r times around a cycle B. Such a cycle is called a power of B. A cycle C is reduced if both C and C^2 have
no backtracking. Furthermore, a cycle C is prime if it is not a power of a strictly smaller cycle. Note that each equivalence class of prime, reduced cycles of a graph G corresponds to a unique conjugacy class of the fundamental group $\pi_1(G)$ of G at a vertex u of G. Furthermore, an equivalence class of prime cycles of a graph G is called a primitive periodic orbit of G (see [14]).

The Ihara zeta function of a graph G is a function of a complex variable t with $|t|$ sufficiently small, defined by

$$Z(G, t) = Z_G(t) = \prod_{[p]} (1 - t^{|[p]|})^{-1},$$

where $[p]$ runs over all equivalence classes of prime, reduced cycles of G (see [9]).

Theorem 1 (Ihara; Bass) Let G be a connected graph. Then the reciprocal of the Ihara zeta function of G is given by

$$Z(G, t)^{-1} = (1 - t^2)^{-1} \det(I - tA(G) + t^2(D - I)),$$

where r and $A(G)$ are the Betti number and the adjacency matrix of G, respectively, and $D = (d_{ij})$ is the diagonal matrix with $d_{ii} = v_i = \deg u_i$ where $V(G) = \{u_1, \ldots, u_n\}$.

Let G be a connected graph and $V(G) = \{u_1, \ldots, u_n\}$. Then we consider an $n \times n$ matrix $W = (w_{ij})_{1 \leq i, j \leq n}$ with ij entry the complex variable w_{ij} if $(u_i, u_j) \in E(G)$, and $w_{ij} = 0$ otherwise. The matrix $W = W(G)$ is called the weighted matrix of G. Furthermore, let $w(u_1, u_2) = w_{12}, \ldots, w(u_n, u_1) = w_{nn} \in V(G)$ and $w(b) = w_{ij}, b = (u_i, u_j) \in E(G)$. For each path $P = (e_1, \ldots, e_r)$ of G, the norm $w(P)$ of P is defined as follows: $w(P) = w(e_1)w(e_2)\cdots w(e_r)$.

Let G be a connected graph with n vertices and m unoriented edges, and $W = W(G)$ a weighted matrix of G. Two $2m \times 2m$ matrices $B = B(G) = (B_{e,f})_{e,f \in R(G)}$ and $J_0 = J_0(G) = (J_{e,f})_{e,f \in R(G)}$ are defined as follows:

$$B_{e, f} = \begin{cases} \{w(f)\} & \text{if } t(e) = o(f), \\ \{0\} & \text{otherwise}, \end{cases} \quad J_{e, f} = \begin{cases} 1 & \text{if } f = \hat{e}, \\ 0 & \text{otherwise}. \end{cases}$$

Then the second weighted zeta function of G is defined by

$$Z_1(G, w, t) = \det(I_n - t(B - J_0))^{-1}. $$

If $w(e) = 1$ for any $e \in E(G)$, then the zeta function of G is the Ihara zeta function of G.

Theorem 2 (Sato) Let G be a connected graph, and let $W = W(G)$ be a weighted matrix of G. Then the reciprocal of the second weighted zeta function of G is given by

$$Z_1(G, w, t)^{-1} = (1 - t^2)^{m-n} \det(I_n - tW(G) + t^2(D - I_G)),$$

where $n = |V(G)|$, $m = |E(G)|$ and $D = (d_{ij})$ is the diagonal matrix with $d_{ii} = \sum_{o(b) = u_i} w(e), V(G) = \{u_1, \ldots, u_n\}$.

Next, we state the bond scattering matrix of a graph. Let G be a connected graph with n vertices and m edges, $V(G) = \{u_1, \ldots, u_n\}$ and $D(G) = \{b_1, \ldots, b_m, b_{m+1}, \ldots, b_{2m}\}$ such that $b_{m+j} = b_j^{-1} (1 \leq j \leq m)$. The Laplacian (matrix) $L = L(G)$ of G is defined by

$$L = L(G) = -A(G) + D.$$

Let λ be an eigenvalue of L and $\psi = (\psi_1, \ldots, \psi_n)$ the eigenvector corresponding to λ. For each arc $b = (u_j, u_i)$, one associates a bond wave function

$$\psi_b(x) = a_b e^{i\pi x / 4} + a_{b-1} e^{-i\pi x / 4}, \quad x = \pm 1$$

under the condition

$$\psi_b(1) = \psi_j, \psi_b(-1) = \psi_i.$$

We consider the following three conditions:
1. **uniqueness**: The value of the eigenvector at the vertex u_j, ψ_j, computed in the terms of the bond wave functions is the same for all the arcs emanating from u_j.

2. ψ is an eigenvector of L;

3. **consistency**: The linear relation between the incoming and the outgoing coefficients (1) must be satisfied simultaneously at all vertices.

By the uniqueness, we have

$$a_{b_1} e^{i\pi/4} + a_{b_1}^{-1} e^{-i\pi/4} = a_{b_2} e^{i\pi/4} + a_{b_2}^{-1} e^{-i\pi/4} = \cdots = a_{b_j} e^{i\pi/4} + a_{b_j}^{-1} e^{-i\pi/4},$$

where b_1, b_2, \ldots, b_d_j are arcs emanating from u_j, and $d_j = \text{deg } u_j$, $i = \sqrt{-1}$.

By the condition 2, we have

$$- \sum_{k=1}^{d_j} (a_{b_k} e^{-i\pi/4} + a_{b_k}^{-1} e^{i\pi/4}) = (\lambda - v_j) \sum_{k=1}^{d_j} (a_{b_k} e^{i\pi/4} + a_{b_k}^{-1} e^{-i\pi/4}).$$

Thus, for each arc b with $o(b) = u_j$,

$$a_b = \sum_{t(c)=u_j} \sigma_{b,c}^{(u_j)}(\lambda) a_c, \quad (1)$$

where

$$\sigma_{b,c}^{(u_j)}(\lambda) = i(\delta_{b^{-1},c} - \frac{2}{d_j - 1 + (1 - \lambda/d_j)}),$$

and $\delta_{b^{-1},c}$ is the Kronecker delta. The bond scattering matrix $U(\lambda) = (U_{ef})_{e,f \in D(G)}$ of G is defined by

$$U_{ef} = \begin{cases} \sigma_{e,f}^{(t(f))} & \text{if } t(f) = o(e), \\ 0 & \text{otherwise} \end{cases}$$

By the consistency, we have

$$U(\lambda) a = a,$$

where $a = t(a_{b_1}, a_{b_2}, \ldots, a_{b_{2m}})$. This holds if and only if

$$\det(I_{2m} - U(\lambda)) = 0.$$

Theorem 3 (Smilansky) Let G be a connected graph with n vertices and m edges. Then the characteristic polynomial of the bond scattering matrix of G is given by

$$\det(I_{2m} - U(\lambda)) = \frac{2^n i^n \det(\lambda I_n + A(G) - D)}{\prod_{j=1}^{d} (d_j - id_j + \lambda i)} = \prod_{[p]} (1 - a_p(\lambda)),$$

where $[p]$ runs over all primitive periodic orbits of G, and

$$a_p(\lambda) = \sigma_{b_1,b_n}^{(t(b_n))} \sigma_{b_{n-1},b_{n-1}}^{(t(b_{n-1}))} \cdots \sigma_{b_2,b_1}^{(t(b_1))}, \quad p = (b_1, b_2, \ldots, b_n)$$

Mizuno and Sato [11] presented another proof for this Smilansky’s formula by using the determinant expression of the second weighted zeta function of a graph.
3 The scattering matrix of a graph with respect to a Hermitian matrix

Let G be a connected graph with n vertices and m edges, $V(G) = \{1, \ldots, n\}$ and $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}$ such that $e_{m+j} = e_j^{-1}$ ($1 \leq j \leq m$). Furthermore, let an Hermitian matrix $H = H(G) = (H_{uv})_{u, v \in V(G)}$ be given as follows:

$$H_{uv} = \begin{cases} h_f e^{2i\gamma_f} & \text{if } f = (u, v) \in D(G), \\ 0 & \text{otherwise}, \end{cases}$$

where, for each $f \in D(G)$,

$$h_f = h_{f^{-1}} \geq 0 \text{ and } \gamma_f = -\gamma_{f^{-1}} \in [-\pi/2, \pi/2].$$

If $H_{uv} = H_f$ is real and negative, then we choose $\gamma_f = \pi/2$ if $u \geq v$ and $\gamma_f = -\pi/2$ if $u < v$. Set

$$h(u, v) = h_{uv} = h_f \text{ and } \gamma(u, v) = \gamma_{uv} = \gamma_f \text{ for } f = (u, v) \in D(G).$$

Now, let λ be an eigenvalue of H and $\psi = (\psi_1, \ldots, \psi_n)$ the eigenvector corresponding to λ. For each arc $b = (u, v)$, one associates a bond wave function

$$\psi_b(x) = \frac{e^{i\gamma_b}}{\sqrt{h_b}}(a_{b-1}e^{ix/4} + a_be^{-ix/4}), \quad x = \pm 1$$

under the condition

$$\psi_b(1) = \psi_u, \psi_b(-1) = \psi_v.$$

We consider the following three conditions:

1. uniqueness: The value of the eigenvector at the vertex u, ψ_u, computed in the terms of the bond wave functions is the same for all the arcs emanating from u.

2. ψ is an eigenvector of H;

3. consistency: The linear relation between the incoming and the outgoing coefficients (1) must be satisfied simultaneously at all vertices.

By the uniqueness 1, we have

$$\frac{e^{i\gamma_{b_1}}}{\sqrt{h_{b_1}}}(a_{b_1-1}e^{i\pi/4} + a_{b_1}e^{-i\pi/4}) = \frac{e^{i\gamma_{b_2}}}{\sqrt{h_{b_2}}}(a_{b_2-1}e^{i\pi/4} + a_{b_2}e^{-i\pi/4}) = \ldots$$

$$= \frac{e^{i\gamma_{b_d}}}{\sqrt{h_{b_d}}}(a_{b_d-1}e^{i\pi/4} + a_{b_d}e^{-i\pi/4}) = \psi_u,$$

where b_1, b_2, \ldots, b_d are arcs emanating from u, and $d = \deg u$, $i = \sqrt{-1}$.

By the condition 2, we have

$$(H_{uu} - \lambda)\psi_u + \sum_{v \in E_u} H_{uv}\psi_v = 0,$$

and so,

$$(H_{uu} - \lambda)e^{i\gamma_{b_1}}/\sqrt{h_{b_1}}(a_{b_1-1}e^{i\pi/4} + a_{b_1}e^{-i\pi/4}) = -\frac{1}{d} \sum_{k=1}^d H_{b_j} e^{i\gamma_{b_k}}/\sqrt{h_{b_k}}(a_{b_k-1}e^{i\pi/4} + a_{b_k}e^{-i\pi/4}),$$
where \(\mathcal{E}_u = \{ f \in D(G) \mid o(f) = u \} \). Thus, for each arc \(b \) with \(o(b) = u \),

\[
a_b^{-1} = ia_b - 2 \sum_{k=1}^{d} \frac{\sqrt{h_b} \sqrt{h_b_k}}{H_{uu} - \lambda - i\Gamma_u} e^{i(\gamma_{bk} + \gamma_{b^{-1}})} a_{bk},
\]

where

\[
\Gamma_u = \sum_{k=1}^{d} h_{bk}.
\]

Let \(e = b^{-1}, f = b_k \) and

\[
\sigma_{e,f}^{(u)}(\lambda) = i\delta_{e^{-1}f} - 2 \frac{\sqrt{h_e} \sqrt{h_f}}{H_{uu} - \lambda - i\Gamma_u} e^{i(\gamma_f + \gamma_e)},
\]

where \(\delta_{e^{-1}f} \) is the Kronecker delta. Then we have

\[
a_e = \sum_{o(f) = u} \sigma_{e,f}^{(u)}(\lambda) a_f
\]

for each arc \(e \) such that \(t(e) = u \). The bond scattering matrix \(U(\lambda) = (U_{ef})_{e,f \in D(G)} \) of \(G \) is defined by

\[
U_{ef} = \begin{cases}
\sigma_{e,f}^{(t(e))} & \text{if } t(e) = o(f), \\
0 & \text{otherwise}
\end{cases}
\]

By the consistency \(3 \), we have

\[
U(\lambda) a = a,
\]

where \(a = \{a_1, a_{b_2}, \ldots, a_{b_m}\} \). This holds if and only if

\[
det(I_{2m} - U(\lambda)) = 0.
\]

We present another proof of Theorem 4 by using the technique on the Ihara zeta function, which is different from a proof in [5].

Theorem 4 (Gnutzmann and Smilansky) Let \(G \) be a connected graph with \(n \) vertices \(1, \ldots, n \) and \(m \) edges. Then, for the bond scattering matrix of \(G \),

\[
det(I_{2m} - U(\lambda)) = \frac{(-1)^{n^2m} \det(\Lambda_n - H)}{\prod_{j=1}^{n} (H_{jj} - \lambda - i\Gamma_j)}.
\]

Proof. The argument is an analogue of Watanabe and Fukumizu’s method [18].

Let \(G \) be a connected graph with \(n \) vertices and \(m \) edges, \(V(G) = \{1, \ldots, n\} \) and \(D(G) = \{b_1, \ldots, b_m, b_1^{-1}, \ldots, b_m^{-1}\} \). Set \(d_j = \deg j \) and

\[
x_j = \frac{2}{H_{jj} - \lambda - i\Gamma_j}
\]

for each \(j = 1, \ldots, n \). Furthermore, for \(e \in D(G) \), let

\[
w(e) = \sqrt{h_e} e^{i\gamma_e}.
\]

Then we have

\[
\sigma_{e,f}^{(t(e))}(\lambda) = i\delta_{e^{-1}f} - x_{t(e)} w(e) w(f).
\]

Now, we consider a \(2m \times 2m \) matrix \(B = (B_{ef})_{e,f \in D(G)} \) given by

\[
B_{ef} = \begin{cases}
x_{o(f)} w(e) w(f) & \text{if } t(e) = o(f), \\
0 & \text{otherwise}
\end{cases}
\]
Let $K = (K_{i,j})_{1 \leq i \leq 2m:1 \leq j \leq n}$ be the $2m \times n$ matrix defined as follows:

$$K_{i,j} := \begin{cases} x_j w(b_i) & \text{if } o(b_i) = j, \\ 0 & \text{otherwise}. \end{cases}$$

Furthermore, we define two $2m \times n$ matrices $L = (L_{i,j})_{1 \leq i \leq 2m:1 \leq j \leq n}$ and $M = (M_{i,j})_{1 \leq i \leq 2m:1 \leq j \leq n}$ as follows:

$$L_{i,j} := \begin{cases} w(b_i) & \text{if } t(b_i) = j, \\ 0 & \text{otherwise}, \end{cases}$$

$$M_{i,j} := \begin{cases} w(b_i) & \text{if } o(b_i) = j, \\ 0 & \text{otherwise}. \end{cases}$$

Note that

$$K = M \begin{bmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{bmatrix} = MX. \quad (3)$$

Furthermore, we have

$$L^T K = B \quad (4)$$

and

$$M^T L = H. \quad (5)$$

Note that

$$H_{uv} = w(u,v)^2 \text{ if } (u,v) \in D(G).$$

But, since

$$U_{ef} = \begin{cases} -x_{t(e)} w(e) w(f) & \text{if } t(e) = o(f) \text{ and } f \neq e^{-1}, \\ i - x_{t(e)} w(e) w(f) & \text{if } f = e^{-1}, \\ 0 & \text{otherwise}, \end{cases}$$

we have

$$U(\lambda) = iJ_0 - B.$$

Furthermore, if A and B are an $r \times s$ and an $s \times r$ matrix, respectively, then we have

$$\det(I_r - AB) = \det(I_s - BA).$$

Thus,

$$\det(I_{2m} - uU(\lambda)) = \det(I_{2m} - u(iJ_0 - B))$$

$$= \det(I_{2m} - iuJ_0 + uL^T K)$$

$$= \det(I_{2m} + uL^T K(I_{2m} - iuJ_0)^{-1}) \det(I_{2m} - iuJ_0)$$

$$= \det(I_n + uL^T K(I_{2m} - iuJ_0)^{-1}L) \det(I_{2m} - iuJ_0).$$

Arrange arcs of $D(G)$ as follows: $b_1, b_1^{-1}, \ldots, b_m, b_m^{-1}$. Then we have

$$\det(I_{2m} - iuJ_0) = \det\begin{pmatrix} 1 & -iu & \cdots & 0 \\ -iu & 1 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \ddots \\ 0 & \cdots & \cdots & 1 \end{pmatrix} = (1 + u^2)^m.$$
Furthermore,

$$(I_{2m} - iuJ_0)^{-1} = \begin{bmatrix} 1 & -iu & \ldots & 0 \\ -iu & 1 & \ddots & \\ \vdots & \ddots & \ddots & \\ 0 & \ddots & \ddots & 1 \end{bmatrix}^{-1}$$

$$= \frac{1}{1 + u^2} \begin{bmatrix} 1 & iu & \ldots & 0 \\ iu & 1 & \ddots & \\ \vdots & \ddots & \ddots & \\ 0 & \ddots & \ddots & 1 \end{bmatrix}$$

$$= \frac{1}{1 + u^2} (I_{2m} + iuJ_0).$$

Therefore, it follows that

$$\det(I_{2m} - uU(\lambda)) = (1 + u^2)^m - n \det((1 + u^2)I_n + u^2 KL + iu^2 iKJ_0L).$$

But, we have

$$^t KL = X^t ML = XH.$$

Furthermore, we have

$$^t KJ_0L = X^t MJ_0L.$$

Then, for $u, v \in V(G)$, we have

$$(^t MJ_0L)_{uv}$$

$$= \delta_{uv} \sum_{c(e) = u} (^t M)_{ue}(J_0)_{ee^{-1}}(L)_{ee^{-1}v}$$

$$= \delta_{uv} \sum_{c(e) = u} w(e) \cdot 1 \cdot w(e^{-1})$$

$$= \delta_{uv} \sum_{c(e) = u} h_e e^{i\gamma_e} \sqrt{h_e} e^{-i\gamma_e}$$

$$= \delta_{uv} \sum_{c(e) = u} h_e = \delta_{uv} \Gamma_u.$$

Now, let

$$D_L = \begin{bmatrix} \Gamma_1 & 0 \\ \cdot & \cdot \\ 0 & \Gamma_n \end{bmatrix}.$$

Then

$$^t KJ_0L = XD_L.$$

Thus,

$$\det(I_{2m} - uU(\lambda)) = (1 + u^2)^m - n \det((1 + u^2)I_n + uXH + iu^2 XD_L).$$
Substituting \(u = 1 \), we obtain
\[
\det(I_{2m} - U(\lambda)) = 2^{m-n} \det(2I_n + XH + iXD) \\
= 2^{m-n} \det\left[\begin{array}{ccc} 2 & i\Gamma_u & \cdots \\ \cdots & H_{uu} - \lambda - i\Gamma_u & \cdots \\ \cdots & \cdots & H_{uv} \end{array} \right] \\
= \prod_{u=1}^{2m} (-\lambda I_n + H) \\
= \prod_{u=1}^{(-1)^n2m} \det(\lambda I_n - H).
\]
\]

\[\Box\]

4 The Euler product with respect to the scattering matrix

We present the Euler product for the determinant formula of the scattering matrix \(U(\lambda) \) of a graph.

Theorem 5 Let \(G \) be a connected graph with \(m \) edges, and \(H = H(G) = (H_{uv})_{u,v \in V(G)} \) an Hermitian matrix defined in Section 2. Then the characteristic polynomial of the bond scattering matrix of \(G \) induced from \(H \) is given by
\[
\det(I_{2m} - uU(\lambda)) = \prod_{|C|}(1 - w_C u^{|C|}),
\]
let \(c \) runs over all equivalence classes of prime cycles in \(G \), and
\[
w_C = \sigma^{(t(e_1))}_1 \sigma^{(t(e_2))}_2 \cdots \sigma^{(t(e_n))}_n, \quad C = (b_1, b_2, \ldots, b_n)
\]

Proof. Let \(D(G) = \{b_1, \cdots, b_{2m}\} \) such that \(b_{m+j} = b_j^{-1}(1 \leq j \leq m) \). Set \(U = U(\lambda) \). Since
\[
\log \det(I - uF) = \text{Tr} \log(I - uF),
\]
for a square matrix \(F \), we have
\[
\log \det(I - uU) = \text{Tr} \log(I - uU) = -\sum_{k=1}^{\infty} \frac{\text{Tr}(U^k)}{k} u^k.
\]
Here,
\[
\text{Tr}(U^k) = \sum_C w_C,
\]
where \(C \) runs over all cycles of length \(k \) in \(G \), and
\[
w_C = \sigma^{(t(e_1))}_1 \sigma^{(t(e_2))}_2 \cdots \sigma^{(t(e_k))}_k, \quad C = (b_1, b_2, \ldots, b_k)
\]
Thus,
\[
\frac{d}{du} \log \det(I_{2m} - uU) = \sum_{k=1}^{\infty} \frac{\text{Tr}(U^k)}{k} u^k = \sum_C w_C u^{|C|},
\]
where \(C \) runs over all cycles in \(G \).
Now, let \(C \) be any cycle in \(G \). Then there exists exactly one prime cycle \(D \) such that

\[C = D^l. \]

Thus, we have

\[u \frac{d}{du} \log \det(I_{2m} - uU) = - \sum_D \sum_{k=1}^{\infty} w_D^k u^{k|D|}, \]

and so,

\[\frac{d}{du} \log \det(I_{2m} - uU) = - \sum_D \sum_{k=1}^{\infty} w_D^k u^{k|D| - 1}, \]

where \(D \) runs over all prime cycles in \(G \). Therefore, it follows that

\[
\log \det(I_{2m} - uU) = - \sum_D \sum_{k=1}^{\infty} \frac{w_D^k}{k|D|} u^{k|D|} \\
= - \sum_D \sum_{k=1}^{\infty} \frac{|D|}{k|D|} w_D^k u^{k|D|} \\
= - \sum_D \sum_{k=1}^{\infty} \frac{1}{k} w_D^k u^{k|D|} \\
= \sum_D \log(1 - w_D u^{|D|}).
\]

Hence,

\[
\det(I_{2m} - uU(\lambda)) = \prod_{|C|} (1 - w_C u^{|C|}),
\]

\(\square \)

5 Scattering matrix of a regular covering of a graph

Let \(G \) be a connected graph, and let \(N(v) = \{ w \in V(G) \mid (v, w) \in D(G) \} \) denote the neighbourhood of a vertex \(v \) in \(G \). A graph \(H \) is a covering of \(G \) with projection \(\pi : H \rightarrow G \) if there is a surjection \(\pi : V(H) \rightarrow V(G) \) such that \(\pi|_{N(v')}: N(v') \rightarrow N(v) \) is a bijection for all vertices \(v \in V(G) \) and \(v' \in \pi^{-1}(v) \). When a finite group \(\Pi \) acts on a graph \(G \), the quotient graph \(G/\Pi \) is a graph whose vertices are the II-orbits on \(V(G) \), with two vertices adjacent in \(G/\Pi \) if and only if some two of their representatives are adjacent in \(G \). A covering \(\pi : H \rightarrow G \) is regular if there is a subgroup \(B \) of the automorphism group \(\text{Aut} H \) of \(H \) acting freely on \(H \) such that the quotient graph \(H/B \) is isomorphic to \(G \).

Let \(G \) be a graph and \(\Gamma \) a finite group. Then a mapping \(\alpha : D(G) \rightarrow \Gamma \) is an ordinary voltage assignment if \(\alpha(v, u) = \alpha(u, v)^{-1} \) for each \((u, v) \in D(G) \). The pair \((G, \alpha) \) is an ordinary voltage graph. The derived graph \(G^\alpha \) of the ordinary voltage graph \((G, \alpha) \) is defined as follows: \(V(G^\alpha) = V(G) \times \Gamma \) and \(((u, h), (v, k)) \in D(G^\alpha) \) if and only if \((u, v) \in D(G) \) and \(k = h \alpha(u, v) \). The natural projection \(\pi : G^\alpha \rightarrow G \) is defined by \(\pi(u, h) = u \). The graph \(G^\alpha \) is a derived graph covering of \(G \) with voltages in \(\Gamma \) or a \(\Gamma \)-covering of \(G \). Note that \(|\mathcal{E}_{(u, h)}| = |\mathcal{E}_u| \) for each \((u, h) \in V(G^\alpha) \). The natural projection \(\pi \) commutes with the right multiplication action of the \(\alpha(e), e \in D(G) \) and the left action of \(\Gamma \) on the fibers: \(g(u, h) = (u, gh), g \in \Gamma \), which is free and transitive. Thus, the \(\Gamma \)-covering \(G^\alpha \) is a \(|\Gamma| \)-fold regular covering of \(G \) with covering transformation group \(\Gamma \). Furthermore, every regular covering of a graph \(G \) is a \(\Gamma \)-covering of \(G \) for some group \(\Gamma \) (see [6]).

Let \(G \) be a connected graph, \(\Gamma \) be a finite group and \(\alpha : D(G) \rightarrow \Gamma \) be an ordinary voltage assignment. In the \(\Gamma \)-covering \(G^\alpha \), set \(v_g = (v, g) \) and \(e_g = (e, g) \), where \(v \in V(G), e \in D(G), g \in \Gamma \). For \(e = (u, v) \in D(G) \), the arc \(e \) emanates from \(u \) and terminates at \(v_{\alpha(e)} \). Note that \(e_g^{-1} = (e^{-1})_{\alpha(e)} \).
Let G be a connected graph, Γ be a finite group and $\alpha : D(G) \rightarrow \Gamma$ be an ordinary voltage assignment. Furthermore, let $H = H(G) = (H_{uv})_{u, v \in V(G)}$ be an Hermitian matrix such that

$$H_{uv} = \begin{cases} h_{f}e^{2i\gamma_{f}} & \text{if } f = (u, v) \in D(G), \\ 0 & \text{otherwise}, \end{cases}$$

where, for each $f \in D(G)$,

$$h_{f} = h_{f-1} \geq 0 \text{ and } \gamma_{f} = -\gamma_{f-1} \in [\pi/2, \pi/2].$$

We give the function $\tilde{h} : G(\alpha) \rightarrow \mathbb{R}$ and $\tilde{\gamma} : G(\alpha) \rightarrow [\pi/2, \pi/2]$ induced from h and γ, respectively, as follows:

$$\tilde{h}(u_{g}, v_{k}) = h_{uv} \text{ and } \tilde{\gamma}(u_{g}, v_{k}) = \gamma_{uv} \text{ if } (u, v) \in D(G) \text{ and } k = g\alpha(u, v).$$

Furthermore, we consider the Hermitian matrix $\hat{H} = H(G(\alpha)) = (H_{uv})_{u, v \in V(G(\alpha))}$ of G^α induced from H. At first, let

$$H_{u_{g}u_{g}} = H_{uu} \text{ for each } g \in \Gamma.$$

For $(u_{g}, v_{k}) \in D(G^\alpha)$, we have

$$H_{u_{g}v_{k}} = \tilde{h}(u_{g}, v_{k})e^{2i\tilde{\gamma}(u_{g}, v_{k})} = h_{uv}e^{2i\gamma_{uv}}.$$

Thus,

$$H_{u_{g}v_{k}} = \begin{cases} h_{uv}e^{2i\gamma_{uv}} & \text{if } (u, v) \in D(G) \text{ and } k = g\alpha(u, v), \\ H_{uu} & \text{if } u = v \text{ and } k = g, \\ 0 & \text{otherwise} \end{cases}.$$

Next, we consider the bond wave function of the regular covering G^α of G. Let $V(G) = \{v_{1}, \ldots, v_{n}\}$, $\overline{D}(G) = \{e_{1}, \ldots, e_{m}, e_{i}^{-1}, \ldots, e_{m}^{-1}\}$ and $\overline{\Gamma} = \{g_{1} = 1, g_{2}, \ldots, g_{p}\}$. Let λ be a eigenvalue of $\tilde{H} = H(G^\alpha)$, and let $\tilde{\phi} = (\tilde{\phi}_{v_{1}g_{1}}, \ldots, \tilde{\phi}_{v_{1}g_{p}}, \ldots, \tilde{\phi}_{v_{n}g_{1}}, \ldots, \tilde{\phi}_{v_{n}g_{p}})$ be the eigenvector corresponding to λ, where $\tilde{\phi}_{v_{i}g_{j}}$ corresponds to the vertex (v_{i}, g_{j}) ($1 \leq i \leq n; 1 \leq j \leq p$) of G^α. Furthermore let $b_{g} = (v_{g}, z_{g\alpha(b_{g})})$ be any arc of G^α, where $b = (v, z) \in D(G)$, $g \in \Gamma$. Then the bond wave function of G^α is

$$\phi_{b_{g}}(x) = e^{i\gamma_{b_{g}}}\sqrt{h_{b_{g}}}(a_{b_{g}}^{+}e^{i\pi/4} + a_{b_{g}}e^{-i\pi/4}), \quad x = \pm 1, \quad i = \sqrt{-1}$$

under the condition

$$\phi_{b_{g}}(1) = \phi_{v_{g}} \text{ and } \phi_{b_{g}}(-1) = \phi_{z_{g\alpha(b_{g})}}.$$

By (1), we have

$$a_{b_{g}}^{+} = \begin{cases} i\delta_{b_{g}^{-1}e_{g}} & -2\sum_{o(e_{g}) = v_{g}}H_{v_{g}v_{g}}^{-1/2}\sum_{o(e_{g}) = z_{g\alpha(b_{g})}}H_{z_{g\alpha(b_{g})}z_{g\alpha(b_{g})}}^{-1/2}e^{i(\gamma_{b_{g}} + \gamma_{v_{g}})}a_{e_{g}} \\ \sum_{o(e_{g}) = v_{g}}\sigma_{b_{g}e_{g}}^{(v_{g})}a_{e_{g}} \end{cases}$$

for each arc b_{g} with $o(b_{g}) = v_{g}$, where

$$\sigma_{b_{g}e_{g}}^{(v_{g})} = i\delta_{b_{g}^{-1}e_{g}} - 2\frac{H_{v_{g}v_{g}}}{H_{v_{g}v_{g}}^{-1/2}\sum_{o(e_{g}) = v_{g}}H_{v_{g}v_{g}}^{-1/2}\sum_{o(e_{g}) = z_{g\alpha(b_{g})}}H_{z_{g\alpha(b_{g})}z_{g\alpha(b_{g})}}^{-1/2}e^{i(\gamma_{b_{g}} + \gamma_{v_{g}})}a_{e_{g}}$$

and

$$\hat{h}_{e_{g}} = \hat{h}(e_{g}), \quad \hat{\gamma}_{e_{g}} = \hat{\gamma}(e_{g}).$$
By the definitions of \hat{h}, $\hat{\gamma}$ and $\hat{\mathbf{H}}$, we have
\[
\sigma_{b\gamma}^{(e)} = i\hat{\delta}_{b\gamma} - 2\frac{\sqrt{\hat{h}_e\hat{h}_b}}{\hat{H}_{vv} - \lambda - i\Gamma_v} e^{i(\gamma_b + \gamma_e)} = \sigma_{be}^{(v)} = \sigma_{be}^{(t(b))}.
\]
Note that $\mathcal{E}_{v,g} = \mathcal{E}_v$. Thus,
\[
a_{b\gamma}^{-1} = \sum_{\alpha(e_g) = \gamma} \sigma_{be}^{(t(b))} a_{e\gamma}.
\]
Therefore, the bond scattering matrix $\hat{\mathbf{U}}(\lambda) = (U(e_g, f_h))_{e_g, f_h \in D(G^\alpha)}$ of G^α is given by
\[
U(e_g, f_h) = \begin{cases} \sigma_{ef}^{(t(e))} & \text{if } t(f_h) = \alpha(e_g), \\ 0 & \text{otherwise}. \end{cases}
\]
But, we have
\[
x_{v,g} = \frac{2}{\hat{H}_{vv} - \lambda - i\Gamma_v} = x_v
\]
for $v_g \in V(G^\alpha)$. Furthermore, let $\hat{w} : D(G^\alpha) \rightarrow \mathbb{C}$ be given as follows:
\[
\hat{w}(e_g) = \sqrt{\hat{h}_e} e^{i\gamma_{e_g}} \text{ for each } e_g \in D(G^\alpha).
\]
Then we have
\[
\hat{w}(e_g) = \sqrt{\hat{h}_e} e^{i\gamma_{e_g}} = w(e), \quad e_g \in D(G^\alpha).
\]
For $g \in \Gamma$, let the matrix $\mathbf{H}_g = (H_{uv}^{(g)})$ be defined by
\[
H_{uv}^{(g)} = \begin{cases} h_{uv} e^{2i\gamma_{uv}} & \text{if } \alpha(u, v) = g \text{ and } (u, v) \in D(G), \\ 0 & \text{otherwise}. \end{cases}
\]
Furthermore, let $\mathbf{U}_g = (U^{(g)}(e, f))$ be given by
\[
U^{(g)}(e, f) = \begin{cases} \sigma_{ef}^{(t(e))} & \text{if } t(e) = \alpha(f) \text{ and } \alpha(e) = g, \\ 0 & \text{otherwise}, \end{cases}
\]
Let $\mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$ be the block diagonal sum of square matrices $\mathbf{M}_1, \ldots, \mathbf{M}_s$. If $\mathbf{M}_1 = \mathbf{M}_2 = \cdots = \mathbf{M}_s = \mathbf{M}$, then we write $s \circ \mathbf{M} = \mathbf{M}_1 \oplus \cdots \oplus \mathbf{M}_s$. The Kronecker product $\mathbf{A} \otimes \mathbf{B}$ of matrices \mathbf{A} and \mathbf{B} is considered as the matrix \mathbf{A} having the element a_{ij} replaced by the matrix $a_{ij} \mathbf{B}$.

Theorem 6 Let G be a connected graph with n vertices v_1, \ldots, v_n and m unoriented edges, Γ be a finite group and $\alpha : D(G) \rightarrow \Gamma$ be an ordinary voltage assignment. Set $|\Gamma| = p$. Furthermore, let $\rho_1 = 1, \rho_2, \cdots, \rho_k$ be the irreducible representations of Γ, and f_i be the degree of ρ_i for each i, where $f_1 = 1$.

If the Γ-covering G^α of G is connected, then, for the bond scattering matrix of G^α,
\[
\det(\mathbf{I}_{2mp} - \hat{\mathbf{U}}(\lambda)) = \det(\mathbf{I}_{2m} - \mathbf{U}(\lambda)) \prod_{i=2}^k \det(\mathbf{I}_{2m f_i} - \sum_{h} \rho_i(h) \otimes \mathbf{U}_h)^{f_i},
\]
\[
= \frac{2^{mp}(-1)^p \det(\lambda \mathbf{I}_n - \mathbf{H})}{\prod_{u \in V(G)} (\hat{H}_{uu} - \lambda - i\Gamma_u)} \prod_{i=2}^k \det(\lambda \mathbf{I}_{n f_i} - \sum_{h \in \Gamma} \rho_i(h) \otimes \mathbf{H}_h - \mathbf{I}_{f_i} \otimes \text{diag}(\mathbf{H}))^{f_i},
\]
where
\[
\text{diag}(\mathbf{H}) = \begin{bmatrix} H_{v_1v_1} & 0 \\ 0 & \ddots \\ 0 & H_{v_nv_n} \end{bmatrix}.
\]
Proof. Let $|\Gamma|=p$. By Theorem 4, for the bond scattering matrix of Γ^α, we have

$$\det(I_{2mp}-\hat{U}(\lambda)) = \frac{2^{mp}(-1)^{np}\det(\lambda I_{np}-H(G^\alpha))}{\prod_{u\in V(G)}(H_{uu}-\lambda-i\Gamma_u)^p}.$$

Let $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}$ such that $e_{m+j} = e_j^{-1}(1 \leq j \leq m)$ and $\Gamma = \{1 = g_1, g_2, \ldots, g_p\}$. Arrange arcs of G^α in p blocks: $(e_1, 1), (e_2, 1), \ldots, (e_{2m}, g_2), \ldots; (e_1, g_p), \ldots, (e_{2m}, g_p)$. We consider the matrix $U(\lambda)$ under this order. For $h \in \Gamma$, the matrix $P_h = (p_{ij}^{(h)})$ is defined as follows:

$$p_{ij}^{(h)} = \begin{cases} 1 & \text{if } g_i h = g_j, \\ 0 & \text{otherwise}. \end{cases}$$

Suppose that $p_{ij}^{(h)} = 1$, i.e., $g_j = g_i h$. Then $U(g_i, f_{g_i}) \neq 0$ if and only if $t(e, g_j) = o(f, g_i)$. Furthermore, $t(e, g_j) = o(f, g_i)$ if and only if $(o(f), g_j) = (t(e), g_i) = (t(e), g_i \alpha(e))$. Thus, $t(e) = o(f)$ and $\alpha(e) = g_i^{-1} g_j = g_i^{-1} g_i h = h$. Thus, we have

$$U(\lambda) = \sum_{h \in \Gamma} P_h \otimes U_h.$$

Furthermore, we have

$$\text{diag}(H(G^\alpha)) = I_p \otimes \text{diag}(H).$$

Let ρ be the right regular representation of Γ. Furthermore, let $\rho_1 = 1, \rho_2, \ldots, \rho_k$ be all inequivalent irreducible representations of Γ, and f_i the degree of ρ_i for each i, where $f_1 = 1$. Then we have $\rho(g) = P_g$ for $g \in \Gamma$. Furthermore, there exists a nonsingular matrix P such that $P^{-1} \rho(g) P = (1) \oplus f_2 \circ \rho_2(g) \oplus \cdots \oplus f_k \circ \rho_k(g)$ for each $g \in \Gamma$ (see [12]). Thus, we have

$$P^{-1} P_g P = (1) \oplus f_2 \circ \rho_2(g) \oplus \cdots \oplus f_k \circ \rho_k(g).$$

Putting $F = (P^{-1} \otimes I_{2m}) \hat{U}(\lambda)(P \otimes I_{2m})$, we have

$$F = \sum_{g \in \Gamma} \{(1) \oplus f_2 \circ \rho_2(g) \oplus \cdots \oplus f_k \circ \rho_k(g)\} \otimes U_g.$$

Note that $U(\lambda) = \sum_{g \in \Gamma} U_g$ and $1 + f_2^2 + \cdots + f_k^2 = p$. Therefore it follows that

$$\det(I_{2mp}-\hat{U}(\lambda)) = \det(I_{2m}-U(\lambda)) \prod_{i=2}^k \det(I_{2mf_i} - \sum_g \rho_i(g) \otimes U_g)^{f_i}.$$

Next, let $V(G) = \{v_1, \ldots, v_n\}$. Arrange vertices of G^α in p blocks: $(v_1, 1), (v_1, 2), \ldots, (v_1, g_p), (v_2, 1), \ldots, (v_2, g_p), \ldots; (v_n, 1), \ldots, (v_n, g_p)$. We consider the matrix $H(G^\alpha)$ under this order.

Suppose that $p_{ij}^{(h)} = 1$, i.e., $g_j = g_i h$. Then $((u, g_i), (v, g_j)) \in D(G^\alpha)$ if and only if $(u, v) \in D(G)$ and $g_j = g_i \alpha(u, v)$. If $g_j = g_i \alpha(u, v)$, then $\alpha(u, v) = g_i^{-1} g_j = g_i^{-1} g_i h = h$. Thus we have

$$H(G^\alpha) = \sum_{h \in \Gamma} P_h \otimes H_h + I_p \otimes \text{diag}(H).$$

Putting $E = (P^{-1} \otimes I_n) H(G^\alpha)(P \otimes I_n)$, we have

$$E = \sum_{h \in \Gamma} \{(1) \oplus f_2 \circ \rho_2(h) \oplus \cdots \oplus f_k \circ \rho_k(h)\} \otimes H_h + I_p \otimes \text{diag}(H).$$
Let \(\rho \) be a finite group and \(\alpha \) be a connected graph with \(n \) vertices and \(m \) unoriented edges, \(\Gamma \) be a finite group and \(\alpha : D(G) \rightarrow \Gamma \) be an ordinary voltage assignment. Furthermore, let \(H = H(G) = (H_{uv})_{u,v \in V(G)} \) be an Hermitian matrix such that

\[
H_{uv} = \begin{cases}
 h_f e^{2i\gamma_f} & \text{if } f = (u,v) \in D(G), \\
 0 & \text{otherwise},
\end{cases}
\]

where, for each \(f \in D(G) \),

\[
h_f = h_{f - 1} \geq 0 \text{ and } \gamma_f = -\gamma_{f - 1} \in [-\pi/2, \pi/2].
\]

Let \(\rho \) be a unitary representation of \(\Gamma \) and \(d \) its degree. The \(L \)-function of \(G \) associated with \(\rho \) and \(\alpha \) is defined by

\[
Z_H(G, \lambda, \rho, \alpha) = \det(I_{2md} - \sum_{h \in \Gamma} \rho(h) \bigotimes U_h)^{-1}.
\]

If \(\rho = 1 \) is the identity representation of \(\Gamma \), then

\[
Z_H(G, \lambda, 1, \alpha) = \det(I_{2m} - U)^{-1}.
\]

A determinant expression for the \(L \)-function of \(G \) associated with \(\rho \) and \(\alpha \) is given as follows. For \(1 \leq i, j \leq n \), the \((i, j)\)-block \(F_{i,j} \) of a \(dn \times dn \) matrix \(F \) is the submatrix of \(F \) consisting of \(d(i - 1) + 1, \ldots, di \) rows and \(d(j - 1) + 1, \ldots, dj \) columns.

Theorem 7 Let \(G \) be a connected graph with \(n \) vertices and \(m \) unoriented edges, \(\Gamma \) be a finite group and \(\alpha : D(G) \rightarrow \Gamma \) be an ordinary voltage assignment. If \(\rho \) is a unitary representation of \(\Gamma \) and \(d \) is the degree of \(\rho \), then the reciprocal of the \(L \)-function of \(G \) associated with \(\rho \) and \(\alpha \) is

\[
Z_H(G, \lambda, \rho, \alpha)^{-1} = \frac{2^{md}(-1)^{nd}}{\prod_{u \in V(G)}(H_{uu} - \lambda - i\Gamma_u)d} \det(\lambda I_{np} - \sum_{g \in \Gamma} \rho(g) \bigotimes H_g - I_d \bigotimes \text{diag}(H)).
\]

Proof. The argument is an analogue of Watanabe and Fukumizu’s method \cite{18}.

\[\boxed{}\]
Let $V(G) = \{v_1, \ldots, v_n\}$ and $D(G) = \{e_1, \ldots, e_m, e_{m+1}, \ldots, e_{2m}\}$ such that $e_{m+i} = e_i^{-1}(1 \leq i \leq m)$. Note that the (e, f)-block $\left(\sum_{g \in \Gamma} U_g \otimes \rho(g)\right)_{ef}$ of $\sum_{g \in \Gamma} U_g \otimes \rho(g)$ is given by

$$\left(\sum_{g \in \Gamma} U_g \otimes \rho(g)\right)_{ef} = \begin{cases} \rho(\alpha(e))\rho(\sigma)^{(e)(f)}_{ef} & \text{if } t(e) = o(f), \\ 0_d & \text{otherwise.} \end{cases}$$

For $g \in \Gamma$, two $2m \times 2m$ matrices $B_g = (B_{ef}^{(g)})_{e, f \in D(G)}$ and $J_g = (J_{ef}^{(g)})_{e, f \in D(G)}$ are defined as follows:

$$B_{ef}^{(g)} = \begin{cases} x_{o(f)}w(e)w(f) & \text{if } t(e) = o(f) \text{ and } \alpha(e) = g, \\ 0 & \text{otherwise.} \end{cases}$$

$$J_{ef}^{(g)} = \begin{cases} 1 & \text{if } f = e^{-1} \text{ and } \alpha(e) = g, \\ 0 & \text{otherwise.} \end{cases}$$

Then we have

$$U_g = iJ_g - B_g \text{ for } g \in \Gamma.$$}

Let $K = (K_{ij})_{1 \leq i \leq 2m; 1 \leq j \leq n}$ be the $2md \times nd$ matrix defined as follows:

$$K_{ij} := \begin{cases} v_{o(e_i)}w(e_i)I_d & \text{if } o(e_i) = v_j, \\ 0_d & \text{otherwise.} \end{cases}$$

Furthermore, we define two $2md \times nd$ matrices $L = (L_{ij})_{1 \leq i \leq 2m; 1 \leq j \leq n}$ and $M = (M_{ij})_{1 \leq i \leq 2m; 1 \leq j \leq n}$ as follows:

$$L_{ij} := \begin{cases} w(e_i)\rho(\alpha(e_i)) & \text{if } t(e_i) = v_j, \\ 0_d & \text{otherwise,} \end{cases}$$

$$M_{ij} := \begin{cases} w(e_i)I_d & \text{if } o(e_i) = v_j, \\ 0_d & \text{otherwise.} \end{cases}$$

Then we have

$$K = M(X \otimes I_d) = MX_d,$$

where

$$X_d = X \otimes I_d.$$}

Furthermore, we have

$$L^tK = \sum_{h \in \Gamma} B_h \otimes \rho(h) = B_p \quad (6)$$

and

$$L^tML = \sum_{g \in \Gamma} H_g \otimes \rho(g), \quad (7)$$

where

$$B_p = \sum_{g \in \Gamma} B_g \otimes \rho(g).$$

Thus,

$$\det(I_{2md} - u \sum_{g \in \Gamma} \rho(g) \otimes U_g) = \det(I_{2md} - u \sum_{g \in \Gamma} U_g \otimes \rho(g))$$

$$= \det(I_{2md} - u \sum_{g \in \Gamma} (iJ_g - B_g) \otimes \rho(g))$$

$$= \det(I_{2md} - iu \sum_{g \in \Gamma} J_g \otimes \rho(g) + u \sum_{g \in \Gamma} B_g \otimes \rho(g)).$$

Now, let

$$J_p = \sum_{g \in \Gamma} J_g \otimes \rho(g).$$

Note that

$$J_p^2 = I_{2md}.$$
Then we have
\[
\det(I_{2md} - u \sum_{g \in \Gamma} \rho(g) \otimes U_g)
\]
= \det(I_{2md} - iu J_\rho + u B_\rho)
= \det(I_{2md} + u B_\rho (I_{2md} - iu J_\rho)^{-1}) \det(I_{2md} - iu J_\rho)
= \det(I_{2md} + u L^t K (I_{2md} - iu J_\rho)^{-1}) \det(I_{2md} - iu J_\rho)
= \det(I_{nd} + u L^t K (I_{2md} - iu J_\rho)^{-1} L) \det(I_{2md} - iu J_\rho).
\]

But, we have
\[
\det(I_{2md} - iu J_\rho) = \det \left(\begin{array}{ccc}
I_d & -iu \rho(\alpha(e_1^{-1})) & 0 \\
-iu \rho(\alpha(e_1^{-1})) & I_d & \\
0 & & \ddots
\end{array} \right) = (1 + u^2)^{md}.
\]

Furthermore, we have
\[
(I_{2md} - iu J_\rho)^{-1}
\]
= \[
\left(\begin{array}{ccc}
I_d & -iu \rho(\alpha(e_1^{-1})) & 0 \\
-iu \rho(\alpha(e_1^{-1})) & I_d & \\
0 & & \ddots
\end{array} \right)^{-1}
\]
= \[
\frac{1}{1+u^2} \left(\begin{array}{ccc}
I_d & iu \rho(\alpha(e_1^{-1})) & 0 \\
iu \rho(\alpha(e_1^{-1})) & I_d & \\
0 & & \ddots
\end{array} \right)
\]
= \frac{1}{1+u^2} (I_{2md} + iu J_\rho).
\]

Thus, we have
\[
\det(I_{2md} - u \sum_{g \in \Gamma} \rho(g) \otimes U_g)
\]
= \(1 + u^2)^{md} \det(I_{nd} + u/(1 + u^2) L^t K (I_{2md} + iu J_\rho) L)
= \(1 + u^2)^{md-nd} \det((1 + u^2)I_{nd} + u L^t K + iu^2 K J_\rho L).
\]

Now, we have
\[
L^t K L = X_d L^t M L = X_d \sum_{g \in \Gamma} H_g \otimes \rho(g).
\]

Furthermore,
\[
L^t K J_\rho L = X_d L^t M J_\rho L.
\]
Then we have

\[(^tMJ \rho L)_{uv} = \delta_{uv} \sum_{\alpha(e) = u} (^tM)_{ue} (J \rho)_{ee^{-1}} (L)_{e^{-1}v} \]

and

\[= \delta_{uv} \sum_{\alpha(e) = u} w(e) J_d \rho(\alpha(e)) w(e^{-1}) \rho(\alpha(e^{-1})) \]

Furthermore, since

\[\lambda \sum_{\alpha(e) = u} h_e I_d = \delta_{uv} \Gamma_u I_d. \]

Thus,

\[^tKJ \rho L = X(D \Gamma \otimes I_d), \]

where

\[D \Gamma = \begin{bmatrix} \Gamma_{v_1} & 0 \\ \vdots & \ddots \\ 0 & \Gamma_{v_n} \end{bmatrix}. \]

Therefore, it follows that

\[\det(I_{2md} - u \sum_{g \in V} \rho(g) \otimes U_g) \]

\[= (1 + u^2)^{m-n} \det((1 + u^2)I_{nd} + u X_d \sum_{g \in V} H_g \otimes \rho(g) + i u^2 X_d(D \Gamma \otimes I_d)). \]

Substituting \(u = 1\), we obtain

\[\det(I_{2md} - \sum_{g \in V} \rho(g) \otimes U_g) \]

\[= 2^{m-n} \det(2I_{nd} + X_d \sum_{g \in V} H_g \otimes \rho(g) + i X_d(D \Gamma \otimes I_d)) \]

\[= 2^{m-n} \det(X_d) \det(2X_d^{-1} + \sum_{g \in V} H_g \otimes \rho(g) + i D \Gamma \otimes I_d). \]

Then we have

\[\det(X_d) = \det(X \otimes I_d) = (\det(X))^d = \frac{2^{nd}}{\prod_{u \in V(G)} (H_{uu} - \lambda - i \Gamma_u)^d}. \]

Furthermore, since

\[X_d^{-1} = X^{-1} \otimes I_d, \]

we have

\[(2X_d^{-1} + i D \Gamma \otimes I_d)_{uu} = (2 \frac{H_{uu} - \lambda - i \Gamma_u}{2} + i \Gamma_u) \otimes I_d \]

\[= (H_{uu} - \lambda) \otimes I_d. \]

That is,

\[2X_d^{-1} + i D \Gamma \otimes I_d = -\lambda I_{nd} + \text{diag}(H) \otimes I_d. \]

Therefore, it follows that

\[\det(I_{2md} - \sum_{g \in V} \rho(g) \otimes U_g) \]

\[= \frac{2^{nd}}{\prod_{u \in V(G)} (H_{uu} - \lambda - i \Gamma_u)^d} \det(-\lambda I_{nd} + \sum_{g \in V} H_g \otimes \rho(g) + \text{diag}(H) \otimes I_d) \]

\[= \frac{(-1)^{nd} 2^{nd}}{\prod_{u \in V(G)} (H_{uu} - \lambda - i \Gamma_u)^d} \det(\lambda I_{nd} - \sum_{g \in V} \rho(g) \otimes H_g - I_d \otimes \text{diag}(H)). \]
By Theorems 6 and 7 the following result holds.

Corollary 1 Let G be a connected graph with m edges, Γ be a finite group and $\alpha : D(G) \rightarrow \Gamma$ be an ordinary voltage assignment. Then

$$\det(I_{2mp} - \tilde{U}(\lambda)) = \prod_\rho Z_H(G, \lambda, \rho, \alpha)^{-\deg \rho},$$

where ρ runs over all inequivalent irreducible representations of Γ and $p = |\Gamma|$.

7 Example

We give an example. Let $G = K_3$ be the complete graph with three vertices 1, 2, and 3, and six arcs $e_1, e_2, e_3, e^{-1}_1, e^{-1}_2, e^{-1}_3$, where $e_1 = (v_1, v_2)$, $e_2 = (v_2, v_3)$, $e_3 = (v_3, v_1)$. Furthermore, let $H = \begin{bmatrix} a & b e^{2i\alpha} & b e^{2i\alpha} \\ b e^{-2i\alpha} & a & b e^{2i\alpha} \\ b e^{-2i\alpha} & b e^{2i\alpha} & a \end{bmatrix}$, where $a > 0$, $b > 0$ and $\alpha \in [-\frac{\pi}{2}, \frac{\pi}{2})$. Then we have

$$x_1 = x_2 = x_3 = \frac{2}{a - \lambda - 2ib}.$$

Set $x = \frac{2}{a - \lambda - 2ib}$. Considering $U(\lambda)$ under the order $e_1, e_2, e_3, e^{-1}_1, e^{-1}_2, e^{-1}_3$, we have

$$U(\lambda) = \begin{bmatrix} -xe^{2i\alpha} & -xe^{2i\alpha} & -xe^{2i\alpha} \\ -xe^{2i\alpha} & -xe^{2i\alpha} & -xe^{2i\alpha} \\ -xe^{2i\alpha} & -xe^{2i\alpha} & -xe^{2i\alpha} \\ i - xb & -xb & -xb \\ -xb & i - xb & -xb \\ -xb & -xb & i - xb \end{bmatrix}.$$

By Theorem 4, we have

$$\det(I_3 - U(\lambda)) = \frac{2^3(-1)^3}{(a - \lambda - 2ib)^3} \det(\lambda I_3 - H)$$

$$= \frac{1}{(a - \lambda - 2ib)^3} \begin{bmatrix} \lambda - a & -be^{2i\alpha} & -be^{2i\alpha} \\ -be^{-2i\alpha} & \lambda - a & -be^{2i\alpha} \\ -be^{-2i\alpha} & -be^{-2i\alpha} & \lambda - a \end{bmatrix}$$

$$= \frac{1}{(a - \lambda - 2ib)^3} \left\{ (\lambda - a)^3 - 3b^2(\lambda - a) - b^3(e^{2i\alpha} + e^{-2i\alpha}) \right\}$$

$$= \frac{1}{(a - \lambda - 2ib)^3} \left\{ (\lambda - a)^3 - 3b^2(\lambda - a) - 2b^3 \cos 2\alpha \right\}.$$

Next, let $\Gamma = Z_3 = \{1, \tau, \tau^2\} (\tau^3 = 1)$ be the cyclic group of order 3, and let $\lambda : D(K_3) \rightarrow Z_3$ be the ordinary voltage assignment such that $\alpha(e_1) = \tau$, $\alpha(e^{-1}_2) = \tau^2$ and $\alpha(e_2) = \alpha(e_3) = \alpha(e^{-1}_3) = 1$. Then the Z_3-coverng K_3^α of K_3 is the cycle graph of length 9.

The characters of Z_3 are given as follows: $\chi_i(\tau^j) = (\xi^i)^j$, $0 \leq i, j \leq 2$, where $\xi = \frac{-1 + \sqrt{3}i}{2}$. Then we have

$$H_1 = \begin{bmatrix} 0 & 0 & b e^{2i\alpha} \\ b e^{-2i\alpha} & b e^{2i\alpha} & 0 \end{bmatrix}, \quad H_\tau = \begin{bmatrix} 0 & b e^{2i\alpha} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad H_{\tau^2} = \begin{bmatrix} 0 & b e^{-2i\alpha} & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
Now, by Theorem 7,

$$\zeta_H(K_3, \lambda, \chi_1, \alpha)^{-1} = \frac{2^3(-1)^3}{(a - \lambda - 2ib)^3} \det(\lambda I_3 - \sum_{j=0}^2 \chi_1(\tau^j)H_{\tau^j} - \text{diag}(H))$$

$$= \frac{-8}{(a - \lambda - 2ib)^3} \left[\begin{array}{ccc} \lambda - a & -b\xi e^{2i\alpha} & -be^{2i\alpha} \\
-b\xi^2 e^{-2i\alpha} & \lambda - a & -be^{2i\alpha} \\
-be^{-2i\alpha} & -be^{-2i\alpha} & \lambda - a \end{array} \right]$$

$$= \frac{-8}{(a - \lambda - 2ib)^3} \{(\lambda - a)^3 - 3b^2(\lambda - a) - b^3(\xi e^{2i\alpha} + \xi e^{-2i\alpha})\}$$

Similarly, we have

$$\zeta_H(K_3, \lambda, \chi_2, \alpha)^{-1} = \frac{2^3(-1)^3}{(a - \lambda - 2ib)^3} \det(\lambda I_3 - \sum_{j=0}^2 \chi_2(\tau^j)H_{\tau^j} - \text{diag}(H))$$

$$= \frac{-8}{(a - \lambda - 2ib)^3} \left[\begin{array}{ccc} \lambda - a & -b\xi e^{2i\alpha} & -be^{2i\alpha} \\
-b\xi^2 e^{-2i\alpha} & \lambda - a & -be^{2i\alpha} \\
-be^{-2i\alpha} & -be^{-2i\alpha} & \lambda - a \end{array} \right]$$

$$= \frac{-8}{(a - \lambda - 2ib)^3} \{(\lambda - a)^3 - 3b^2(\lambda - a) - b^3(\xi e^{2i\alpha} + \xi e^{-2i\alpha})\}$$

By Corollary 1, it follows that

$$\det(I_{18} - \tilde{U}(\lambda)) = \det(I_6 - U(\lambda)) \zeta_H(K_3, \lambda, \chi_1, \alpha)^{-1} \zeta_S(K_H, \lambda, \chi_2, \alpha)^{-1}$$

$$= \frac{-512}{(a - \lambda - 2ib)^3} \{(\lambda - a)^3 - 3b^2(\lambda - a) - 2b^3 \cos 2\alpha\}$$

$$\times \{(\lambda - a)^3 - 3b^2(\lambda - a) - 2b^3 \cos (\alpha + \pi/3)\} \{(\lambda - a)^3 - 3b^2(\lambda - a) - 2b^3 \cos 2(\alpha + 2\pi/3)\}.$$

References

[1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), 717-797.

[2] A. Comtet, J. Desbois and C. Texier, Functionals of the Brownian motion, localization and metric graphs, preprint [arXiv: cond-mat/0504513v2].

[3] D. Foata and D. Zeilberger, A combinatorial proof of Bass's evaluations of the Ihara-Selberg zeta function for graphs, Trans. Amer. Math. Soc. 351 (1999), 2257-2274.

[4] J. Desbois, Spectral determinant on graphs with generalized boundary conditions, Eur. Phys. J. B 24 (2001), 261-266.

[5] S. Gnutzmann and U. Smilansky, Trace formulas for general Hermitian matrices: unitary scattering approach and periodic orbits on an associated graph, J. Phys. A: Math. Theor. 53 (2020).

[6] J. L. Gross and T. W. Tucker, Topological Graph Theory, Wiley-Interscience, New York, 1987.
[7] J. M. Harrison, U. Smilansky and B. Winn, Quantum graphs where back-scattering is prohibited, J. Phys. A:Math. Theor. 40 (2007), 14181-14193.

[8] K. Hashimoto, Zeta Functions of Finite Graphs and Representations of p-Adic Groups, in "Adv. Stud. Pure Math". Vol. 15, pp. 211-280, Academic Press, New York, 1989.

[9] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.

[10] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. U. Tokyo 7 (2000), 7-25.

[11] H. Mizuno and I. Sato, A scattering matrix of a graph, Electronical J. Combin. 15 (2008), R96 (electronic).

[12] I. Sato, A new Bartholdi zeta function of a graph, International Journal of Algebra 1 (2007), 269-281.

[13] J. -P. Serre, Trees, Springer-Verlag, New York, 1980.

[14] U. Smilansky, Quantum chaos on discrete graphs, J. Phys. A: Math. Theor. 40 (2007), F621-F630.

[15] H. M. Stark and A. A. Terras, Zeta functions of finite graphs and coverings, Adv. Math. 121 (1996), 124-165.

[16] T. Sunada, L-Functions in Geometry and Some Applications, in "Lecture Notes in Math"., Vol. 1201, pp. 266-284, Springer-Verlag, New York, 1986.

[17] T. Sunada, Fundamental Groups and Laplacians(in Japanese), Kinokuniya, Tokyo, 1988.

[18] Y. Watanabe and K. Fukumizu, Graph zeta function in the Bethe free energy and loopy belief propagation, Advances in Neural Information Processing Systems 22 (2010), 2017-2025.