Cabergoline, Dopamine D2 Receptor Agonist, Prevents Neuronal Cell Death under Oxidative Stress via Reducing Excitotoxicity

Haruki Odaka1,2, Tadahiro Numakawa1,3*, Naoki Adachi1,3, Yoshiko Ooshima1, Shingo Nakajima1,3, Yusuke Katanuma1,2, Takafumi Inoue2, Hiroshi Kunugi1,3

1 Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan, 2 Department of Life Science, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan, 3 Core Research for Evolution Science and Technology Program (CREST), Japan Science and Technology Agency (JST), Tokyo, Japan

Abstract

Several lines of evidence demonstrate that oxidative stress is involved in the pathogenesis of neurodegenerative diseases, including Parkinson’s disease. Potent antioxidants may therefore be effective in the treatment of such diseases. Cabergoline, a dopamine D2 receptor agonist and antiparkinson drug, has been studied using several cell types including mesencephalic neurons, and is recognized as a potent radical scavenger. Here, we examined whether cabergoline exerts neuroprotective effects against oxidative stress through a receptor-mediated mechanism in cultured cortical neurons. We found that neuronal death induced by H2O2 exposure was inhibited by pretreatment with cabergoline, while this protective effect was eliminated in the presence of a dopamine D2 receptor inhibitor, spiperone. Activation of ERK1/2 by H2O2 was suppressed by cabergoline, and an ERK signaling pathway inhibitor, U0126, similarly protected cortical neurons from cell death. This suggested the ERK signaling pathway has a critical role in cabergoline-mediated neuroprotection. Furthermore, increased extracellular levels of glutamate induced by H2O2, which might contribute to ERK activation, were reduced by cabergoline, while inhibitors for NMDA receptor or L-type Ca2+ channel demonstrated a survival effect against H2O2. Interestingly, we found that cabergoline increased expression levels of glutamate transporters such as EAAC1. Taken together, these results suggest that cabergoline has a protective effect on cortical neurons via a receptor-mediated mechanism including repression of ERK1/2 activation and extracellular glutamate accumulation induced by H2O2.

Introduction

Cabergoline is an ergot derived-dopamine D2-like receptor agonist that has high affinity for D2, D3, and 5-HT2B receptors (Kd = 0.7, 1.5, and 1.2, respectively) [1]. Its property of having high affinity for D2 receptor is beneficial for dopamine replacement therapy of Parkinson disease (PD) [2], hyperprolactinemia [3], ovarian hyperstimulation syndrome [4], Cushing’s disease [5], and restless legs syndrome [6]. Because cabergoline has a longer elimination half-life (63 to 109 h) compared with other D2-like receptor agonists, both a long-lasting clinical effect following single-dose administration [2,7] and an improvement in the quality of life of patients with chronic diseases are expected.

Many studies have suggested that oxidative stress is involved in brain diseases such as ischemia [8], Alzheimer’s disease (AD) [9], Huntington’s disease (HD) [10], amyotrophic lateral sclerosis (ALS) [11], and PD [12]. Interestingly, neuroprotective effects of dopamine D2-like receptor agonists (including cabergoline) against oxidative stress have been reported [13]. An in vivo study of neuronal damage induced by intracerebroventricular (icv) injection of 6-OHDA, a neurotoxic compound that selectively damages dopaminergic neurons in male ICR mice, demonstrates that intraperitoneal (ip) administration of cabergoline for 7 days prevented nigrostriatal region dopaminergic neurons from cell death [14]. Cabergoline also protected SH-SY5Y neuroblastoma from cell death by oxygen-glucose deprivation even when cabergoline was administered after the induction of cell death [15]. In addition, the toxic effect of paracetamol, which causes production of reactive oxidative species (ROS), on SH-SY5Y cells was reduced by co-incubation with cabergoline [16]. Other D2 receptor agonists, bromocriptine and quinpirole, also have marked neuroprotective effects against oxidative stress caused by glutamate, superoxide anions, and Ca2+ overload, in cultured mesencephalic neurons, although the protective effect depended on the duration of preincubation with these agonists prior to such...
toxic stimulants [17]. Importantly, several reports demonstrated that inhibition of the cabergoline effect using a D2-receptor antagonist was partial or not achieved [14,16], suggesting cabergoline might mediate its protective effect through D2 receptor-dependent and -independent pathways. Previous studies demonstrated that cabergoline functions as a radical scavenger, and a direct antioxidant effect is recognized as the main action of cabergoline [14,15,18]. Although the possible contribution of receptor-mediated mechanisms such as upregulation of glutathione, an endogenous radical scavenger, have been shown [14,16], the molecular mechanisms underlying D2 receptor-mediated neuroprotection by cabergoline are poorly understood.

Although the positive influence of D2 receptor agonists on mesencephalic neurons is well studied [13,17,19], neuronal responses in other brain regions is largely unknown. Besides the mesencephalon, the D2 receptor is expressed in several brain regions, including the hippocampus, olfactory forebrain, amygdale, and cerebral cortex [20]. Therefore, cabergoline could also affect these brain regions. Indeed, we previously reported that cabergoline increases hippocampal brain-derived neurotrophic factor (BDNF, an important regulator in the synaptic plasticity) and exerts an antidepressant effect in rats [21,22], suggesting a beneficial effect of cabergoline on neuronal populations other than those in the mesencephalon. In the present study, we investigated the neuroprotective effect of cabergoline against oxidative stress caused by H2O2 in cultured cortical neurons, and found that significant neuroprotection occurred by a D2 receptor-mediated mechanism.

Materials and Methods

Primary cortical cultures

Primary cortical neurons were prepared as previously reported [23]. Postnatal 1–2 day-old Wistar rats were sacrificed by an overdose of isoflurane (Mylan, Tokyo, Japan) or diethyl ether (Wako, Osaka, Japan) inhalation and brains were quickly removed. Cerebral cortex tissues were dissected and treated with papain solution (PBS containing 9 units/ml papain and 200 units/ml DNase I) for 20 min at 37°C followed by dissociation with pipetting. After cell debris was removed by sterilizing filter (BD Falcon, CA, USA), cortical cells were diluted with culture medium (1:1 mixture of Dulbecco’s Modified Eagle’s Medium and Ham’s F-12 containing 5% fetal bovine serum (FBS), 18 units/ml penicillin, and 18 mg/ml streptomycin). The dissociated cortical cells were plated at a cell density of 5 × 10^4/cm² on 3.5 cm dishes (for western blotting), 24-well plates (for immunostaining) and 6-well plates (for MTT assay) for 3.5 cm dishes (for western blotting), 24-well plates (for MTT assay) and 6-well plates (for calcein assay) overnight. As a secondary antibody, Alexa Fluor 488 mouse IgG (1:200, Life Technologies, CA, USA) was added at 24°C for 1 hour. Immunoreactivity was assessed with an iMark Multilabel Reader (PerkinElmer Japan Co., Ltd., Kanagawa, Japan).

MTT assay

Cell survival rate was measured by MTT assay as previously reported [23]. After the indicated treatment with drugs was completed, culture medium was replaced with 200 μl fresh medium containing 40 μl MTT solution (2.5 mg/ml, diluted in PBS) and cells were incubated at 37°C for 1.5–2.5 hours. Then, 200 μl lysis buffer containing isopropyl alcohol was applied to each well and mixed by pipetting. Each sample was moved to a 96-well plate and its absorbance at 570 nm was measured using an iMark Micro plate reader (Bio-Rad Laboratories Inc., CA, USA).

Calcein-assay

To assess cell viability by another method, the calcein-assay was also performed using a Cell Counting Kit-F (Dojindo, Kumamoto, Japan) according to the manufacturer’s protocol with some modifications. Briefly, cultured cells were washed with PBS, they were exposed to 50-fold diluted Cell Counting Kit-F Solution (Calcein-AM solution) for 20 min at room temperature. After washing several times and replacement with PBS, the fluorescent intensity (485/535 nm) was measured using a 2030 ARVO X-2 Multilabel Reader (PerkinElmer Japan Co., Ltd., Kanagawa, Japan).

Immunostaining

Neuronal survival was detected by immunostaining with anti-MAP2 (Microtubule-associated protein 2) antibody. After cultured cells were washed with cold PBS, cells were fixed with 4% paraformaldehyde at 4°C for 20 min. After blocking with PBS containing 10% FBS and 0.5% Triton-X for 30 min, cells were exposed to PBS containing 10% FBS and anti-MAP2 antibody (1:500, Sigma-Aldrich) at 4°C overnight. Alexa Fluor 488 mouse IgG (1:200, Life Technologies, CA, USA) was added at 24°C for 1 hour. Immunoreactivity was assessed with an Axio Observer.Z1 fluorescence microscopy (ZEISS, Germany). To detect the apoptotic phenotype of cells, we performed nuclear staining using Hoechst 33342 (Molecular Probes, OR, USA). After fixation of cultured cells with 4% paraformaldehyde, cells were incubated with 5 μg/ml Hoechst 33342 at room temperature for 15 min. Then, cells were washed with PBS and condensed nuclei were detected.

Western Blotting

Cortical cells were washed with cold PBS and stored at −20°C until assay use. The cells were lysed with lysis buffer (1% Sodium dodecyl sulfate, 20 mM Tris-HCl (pH 7.4), 5 mM EDTA (pH 8.0), 10 mM NaF, 2 mM Na3VO4, and 1 mM phenylmethylsulfonyl fluoride). The collected lysed samples were heated at 100°C for 3 min, then sonicated and centrifuged (15,000 rpm, 30 min, 24°C). The supernatant was used for determining total.
Neuroprotection by Cabergoline

A

a. MTT assay

Concentration (µM)	0	1	10	50	100
H₂O₂	-	100	80	60	40
H₂O₂ + Caber	-	100	80	60	40

b. MAP2 staining

Concentration (µM)	0	1	10	50	100
H₂O₂	-	100	80	60	40
H₂O₂ + Caber	-	100	80	60	40

c. Calcein assay

Concentration (µM)	0	1	10	50	100
H₂O₂	-	100	80	60	40
H₂O₂ + Caber	-	100	80	60	40

B

Concentration (µM)	0.01	0.1	1	10	50
H₂O₂	-	100	80	60	40
H₂O₂ + Caber	-	100	80	60	40

C

Concentration (µM)	0	1	3	9	24 (hr)
H₂O₂	-	100	80	60	40
H₂O₂ + Caber	-	100	80	60	40

D

E

Condition	MAP2-positive cells (%)	Control
Con	-	100
H₂O₂	-	100
Caber	-	100
Caber + H₂O₂	-	100

F

G

Condition	Nuclear condensed cells (%)	Control
Con	-	100
H₂O₂	-	100
Caber	-	100
Caber + H₂O₂	-	100
protein concentration using a BCA Protein Assay Kit (Thermo Scientific, MA, USA). The same amount of protein from each sample was separated on an 8 or 10% polyacrylamide gel by electrophoresis, and transferred onto polyvinylidene difluoride (PVDF) membranes using Semi-Dry Transfer Cell (BioRad). The membrane was blocked in 5% non-fat dried milk solution for 1 hour, and incubated with primary antibody at 4°C, overnight. Subsequently, the membrane was washed with Tris-Buffered Saline (TBS) for 1 hour and incubated with secondary antibody at room temperature for 1 hour. After washing with TBS for 1 hour, immunoreactivity was visualized by ImmunStar Regens (Wako).

To obtain images of immunoreactivity, exposure to X-ray film (GE Healthcare, WI, USA) or acquisition using EZ Capture II/ST (ATTO, Tokyo, Japan) was performed. The density of each band was quantified using Lane & Spot Analyzer software (ATTO). The following antibodies were used as primary antibodies: antidopamine D2 receptor (1:500, Millipore), anti-synapsinI (1:1000, Millipore), anti-pERK (1:1000, Cell Signaling, MA, USA), anti-ERK (1:1000, Cell Signaling), anti-pJNK (1:1000, Cell Signaling), anti-JNK (1:1000, Cell Signaling), anti-pp38 (1:500, Cell Signaling), anti-p38 (1:1000, Cell Signaling), anti-NR2A (for total 1:500, for cell surface 1:200, Sigma-Aldrich), anti-NR2B (for total 1:500, for cell surface 1:200, Sigma-Aldrich), anti-GluR1 (1:500, Millipore), anti-GluR2/3 (1:500, Millipore), anti-EAA1C (1:1000, Alpha Diagnostic International, San Antonio, USA), anti-GLT-1 (1:500, Santa Cruz Biotechnology, Santa Cruz, USA), and anti-βactin (1:5000, Sigma-Aldrich) antibodies. Rabbit IgG (H&L) Secondary Antibody Peroxidase Conjugated Properties (Rockland), or Peroxidase-AffiniPure Goat Anti-Mouse IgG (Jackson Immunoresearch Labs Inc.) were used as secondary antibodies.

Cell surface labeling

Cell surface protein levels were measured using surface labeling and immunoprecipitation [23]. Cortical cells were washed with cold PBS 3 times on ice and exposed to Sulfo-NHS-LC-Biotin (Thermo Scientific) at 4°C for 30 min. Afterwards, cells were washed with cold PBS containing glycin (100 mM) 3 times and stored at -20°C before performing lysis. The cells were lysed with RIPA lysis buffer (1% Triton X100, 20 mM Tris-HCl [pH 7.4], 5 mM EDTA [pH 8.0], 10 mM NaF, 2 mM Na2VO4, and 1 mM phenylmethylsulfonyl fluoride) on ice. The homogenate was rotated at 4°C for 3 hours before centrifugation (15,000 rpm, 30 min, 4°C). After the supernatant was collected and its protein concentration was measured, equal amounts of protein were mixed with UltraLink Immobilized NeutrAvidin Protein Plus, conjugated with agarose beads (Thermo Scientific), and rotated at 4°C overnight. The supernatant was removed by centrifugation (5000 rpm, 5 min, 4°C), and bead pellets were washed with lysis buffer. Finally, proteins attached to beads were eluted by heating at 100°C for 5 min and each sample was used for SDS-PAGE.

Glutamate release measurement

Measurement of glutamate content in the culture buffer by high performance liquid chromatography (HPLC, Shimazu Co., Japan) was performed as previously reported [23]. Briefly, culture medium was removed and each well of a culture plate was washed with KRH buffer (130 mM NaCl, 5 mM KCl, 1.2 mM NaH2PO4, 1.8 mM CaCl2, 10 mM glucose, 1% BSA, and 25 mM HEPES, pH 7.4) 3 times. Then, KRH buffer was applied for 20 min and collected as the baseline release of glutamate. Additionally, KRH buffer containing 50 μM H2O2 was added for 20 min for H2O2-induced release.

RNA extracts, Reverse Transcription PCR, and Real Time PCR

Extraction of RNA was performed using mirvana miRNA Isolation Kit (Life Technologies) according to the manufacturer’s protocol. Reverse Transcription PCR was performed using equal amounts of total RNA with SuperScript VILO cDNA Synthesis Kit (Life Technologies) (25°C for 10 min, 42°C for 60 min, 95°C for 5 min, and stored at 4°C). Then, synthesized cDNA was amplified using specific primers from TaqMan Gene Expression Assays (Life Technologies). Real-time PCR was performed by incubation of PCR reaction mixtures at 50°C for 2 min, 95°C for 10 min, followed by 40 PCR cycles (95°C for 15 sec, 60°C for 1 min) in an ABI Prism 7000 (Applied Biosystems). We purchased specific primers for BDNF (Rn02531967_s1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH (4352338E)), from Applied Biosystems. Levels of BDNF mRNA were normalized to levels of GAPDH mRNA.

Statistics

All data are expressed as means ± SD. Statistical significance was estimated for single analysis by Bonferroni test or for multiple analyses by ANOVA (SPSS Japan, Tokyo, Japan). Two tailed P-values less than 0.05 were regarded as statistically significant.

Results

Neuroprotective effects of cabergoline on cultured cortical neurons

To examine the potential protective effect of cabergoline on cultured cortical neurons under oxidative stress, we initially determined the dose-dependent induction of cell death by H2O2 (1–100 μM) using three distinct methods including MT assay,
MAP2 staining, and Calcein-AM assay. As shown in Fig. 1A, a significant decrease in cell viability caused by H2O2 at a concentration of 50 μM was detected by these three methods, although further cell death was induced at 100 μM. Because the dose-dependency of H2O2 for cell death estimated by the three methods correlated with each other, we used the MTT assay for all further experiments because of its higher availability. As 50 μM H2O2 induced marked cell death compared with lower doses, this concentration was used for the following experiments. To examine whether cabergoline exerted neuroprotection against H2O2, we applied cabergoline at various concentrations (0.01–50 μM) for 24 hours before H2O2 stimulation. Pretreatment with cabergoline inhibited H2O2-induced neuronal cell death in a dose-dependent manner (Fig. 1B). In the following experiments, we used 10 μM cabergoline to investigate its neuroprotective effects. Cells were pre-incubated with cabergoline for different times (0–24 hours), with the maximum protection observed for 24 hour pretreatment (Fig. 1C). We confirmed that the application of cabergoline alone (without H2O2) had no effect on cell viability (Fig. S1). Therefore, cabergoline was added 24 hours prior to H2O2 application in this study. MAP2 staining revealed that cabergoline significantly suppressed the loss of neurons caused by H2O2 incubation (Fig. 1D, E). The detection of apoptotic nuclear condensation suggested that cabergoline prevented apoptotic cell death following H2O2 exposure (Fig. 1F, G).

Expression of D2 receptor in cortical neurons and receptor dependency of neuroprotection by cabergoline

Cabergoline acts as a potent agonist of D2, D3 and 5-HT2B receptors [1]. D2 receptor is broadly expressed in the central nervous system (CNS) including the cerebral cortex, while D3 and 5-HT2B receptors are relatively restricted and poorly expressed in the cortical region in vivo [20,24,25]. We examined the expression of D2 receptor during in vitro maturation, and confirmed its higher expression at DIV 6–11 compared with that at DIV4 (Fig. 2Aa). As a marker of synaptic maturation in our cortical cultures, an increase in levels of synapsinI was also detected (Fig. 2Ab).

Figure 2. Cabergoline exerted neuroprotective effect via D2 receptor-mediated mechanism. (A) The expression of D2 receptor and of synapsinI during in vitro maturation (DIV 4–11). a: The change in protein levels of D2 receptor. *P<0.05 vs. DIV 4 (one-way ANOVA). b: The change of synapsinI expression during in vitro maturation. The data represent mean ± SD (a: n=4, b: n=5, n indicates the number of experiments using independent cultures). ***P<0.001, **P<0.01 vs. DIV 4 (one-way ANOVA). Relative values after normalizing to that of DIV4 are shown. (B) Spiperone inhibited neuroprotection by cabergoline. Spiperone (10 μM) was applied 20 min before cabergoline (10 μM) treatment, followed by MTT assay. The data represent mean ± SD (n = 6–12). ***P<0.001 vs. - H2O2 - Caber - spiperone, **P<0.01 vs. + H2O2 - Caber - spiperone (three-way ANOVA). doi:10.1371/journal.pone.0099271.g002
Figure 3. H$_2$O$_2$ stimulated activation of MAPK death signaling. (A) Time-course of H$_2$O$_2$-induced MAPK cascades. Cortical neurons were exposed to H$_2$O$_2$ (50 μM). a: 5, 30, 60 or 180 min later, phosphorylated ERK1/2, JNK1/2 and p38 were detected by western blotting. After that, the membranes were stripped and re-blotted with anti-total ERK1/2, JNK1/2, and p38 antibodies. b: Quantification of phosphorylated ERK1/2, JNK1/2 and p38 levels. All data represent mean ± SD (n = 4). ***P < 0.001, **P < 0.01, *P < 0.05 vs. 0 min (one-way ANOVA). (B) a: U0126, an ERK signal inhibitor, suppressed H$_2$O$_2$-induced neuronal cell death in a dose-dependent manner. U0126 was added at 0.1, 1, or 10 μM. After 20 min, H$_2$O$_2$ application was performed, followed by MTT assay. The data represent mean ± SD (n = 4). ***P < 0.001, **P < 0.01 vs. + H$_2$O$_2$ - U0126 (two-way ANOVA). b: U0126 suppressed phosphorylation of ERK1/2. U0126 was added at 10 μM. After 20 min, cortical neurons were exposed to H$_2$O$_2$ (50 μM) for 1 hour. After pERK1/2 was detected by western blotting, the membranes were stripped and re-blotted with anti-total ERK1/2 antibody. (C) SB203580, a p38
In mesencephalic neurons and a neural cell line, it was reported that receptor dependency of neuroprotection by cabergoline was limited or was not confirmed [14,15,16,18]. Therefore, the effect of spiperone, a potent D2-like and 5-HT receptor antagonist, on cabergoline-dependent neuroprotection was examined. Interestingly, spiperone abolished the neuroprotective effect of cabergoline (Fig. 2B). The addition of spiperone alone had no toxic influence in the presence or absence of H2O2 (Fig. 2B, Fig. S2). These results suggest that a receptor-mediated mechanism is involved in the survival-promoting effect of cabergoline.

Involvement of ERK and p38, but not JNK, signaling in cell death caused by H2O2

It is well known that mitogen-activated protein kinase (MAPK) cascades consist of three signaling pathways, including ERK, JNK, and p38, that contribute to cell proliferation, differentiation, survival, and death. Oxidative stress activates MAPK cascades in various cell populations, although their contribution to apoptosis depends on the specificity of cell population or stress stimuli [26–28]. We measured phosphorylated ERK1/2 (pERK1/2), pJNK1/2, and pp38 levels after H2O2 application. Increased levels of inhibitor, suppressed H2O2-induced neuronal cell death. SB203580 was added at 0.1, 1, or 10 μM followed by MTT assay. The data represent mean ± SD (n=8). ***P<0.001 vs. + H2O2 - SB203580 (two-way ANOVA).

doi:10.1371/journal.pone.0099271.g003

Figure 4. Cabergoline reduced death signaling by H2O2. (A) (B) Pretreatment of cabergoline inhibited H2O2-induced activation of ERK1/2 and p38. Cabergoline was added at 10 μM. After 24 hours, cortical neurons were exposed to H2O2 (50 μM) for 1 hour (pERK1/2) or 30 min (pp38), followed by western blotting. The membranes were stripped, and re-blotted with anti-total ERK1/2 and p38 antibodies. Upper: Quantification of phosphorylated ERK1/2 or p38 levels. All data represent mean ± SD (pERK1/2: n = 7, pp38: n = 5). ***P<0.001, **P<0.01 vs. - H2O2 - Caber, †††P<0.001, ††P<0.01 vs. + H2O2 - Caber (two-way ANOVA). (C) Co-treatment of cabergoline and U0126 had no additive effect on neuroprotection. U0126 (10 μM) was added 20 min before cabergoline (10 μM) treatment, followed by MTT assay. The data represent mean ± SD (n = 9–12). ***P<0.001 vs. + H2O2 - Caber - U0126 (three-way ANOVA). (D) Co-treatment of cabergoline and SB203580 showed a significant additive effect. SB203580 (10 μM) was added 20 min before cabergoline (10 μM) treatment. The data represent mean ± SD (n = 9–12). ***P<0.001 vs. + H2O2 - Caber - SB203580 (three-way ANOVA).

doi:10.1371/journal.pone.0099271.g004
pERK1/2 were observed at 1 hour after H2O2 stimulation and persisted for 3 hours (Fig. 3A). Levels of pp38 reached a maximum level at 30 min after H2O2 addition, while pJNK was unchanged (Fig. 3A). Importantly, we found that U0126, an inhibitor of ERK signaling, decreased the induction of cell death and activation of ERK1/2 caused by H2O2 (Fig. 3B); SB203580, an inhibitor of p38 signaling, also markedly suppressed cell death induced by H2O2 (Fig. 3C). We confirmed no effect on cell viability with U0126 or SB203580 treatment in the absence of H2O2 (Fig. 3S). In contrast, SP600125 (an inhibitor of JNK signaling) had a slight protective effect against H2O2 (Fig. S4). Thus, the ERK and p38 pathways might have important roles in cell death induced by H2O2.

Cabergoline suppressed death signaling stimulated by H2O2

To reveal the molecular mechanisms underlying the neuroprotective effect of cabergoline, we assessed the possibility that cabergoline repressed H2O2-induced ERK and p38 phosphorylation. As expected, cabergoline significantly inhibited both ERK and p38 phosphorylation (Fig. 4A, B). We performed co-application of U0126 or SB203580 in the presence of cabergoline. No additional or synergistic influences were observed by the co-application of U0126 with cabergoline compared with the application of U0126 alone (Fig. 4C). However, co-treatment of cabergoline and SB203580 had an additional effect compared with treatment of cabergoline or SB203580 alone (Fig. 4D). Taken together, cabergoline might exert neuroprotective effects predominantly via the suppression of ERK signaling.

Cabergoline reduced excitatory insults induced by H2O2

To further clarify the mechanism underlying cabergoline’s neuroprotective effect, we focused on excitotoxicity mediated by the glutamate system under oxidative stress because H2O2 exposure of cortical neurons leads to an accumulation of extracellular glutamate and resultant cell death via activation of NMDA receptors (Ca2+-permeable glutamate receptor) [29,30]. It was reported that glutamate-mediated excitotoxicity requires Ca2+ influx via NMDA receptors and/or voltage-dependent Ca2+ channels [31]. As shown in Fig. 5, we observed that both AP5 (an NMDA receptor blocker) and nifedipine (an L-type Ca2+ channel blocker) reduced cell death induced by H2O2 (Fig. 5A, B). In our culture experiments, a dose-dependent toxic effect of glutamate was also confirmed (Fig. S5).

As the contribution to excitotoxicity mediated by glutamate was revealed in our system, we measured the effect of cabergoline on expression levels of glutamate receptor subunits including NR2A, NR2B, GluR1, and GluR2/3. We observed no significant change in the expression levels of these glutamate receptor subunits after cabergoline treatment for 24 hours. In addition to glutamate receptors (well known as postsynaptic proteins), the levels of synapsin (a presynaptic protein) were not changed (Fig. 6A). When cell surface expression of these glutamate receptors was determined, significant changes in the levels of NR2B, GluR1, and GluR2/3 were not observed, although NR2A expression was slightly reduced by cabergoline (Fig. 6B).

To further determine the protective effect of cabergoline against excitotoxicity, extracellular glutamate concentration was quantified. Interestingly, cabergoline treatment for 24 hours inhibited the increase of glutamate concentration caused by H2O2 (20 min) (Fig. 7A), implying that survival promotion by cabergoline may be attributable, at least in part, to the decreased levels of extracellular glutamate. It is well recognized that glutamate transporters have a critical role in the clearance of glutamate in the synaptic cleft through the uptake of extracellular glutamate. GLAST (glutamate aspartate transporter), GLT-1 (glutamate transporter 1), EAAC1 (excitatory amino acid carrier 1), EAAT4 (excitatory amino acid transporter 4), and EAAT3, have been cloned, and GLT-1 and EAAC1 were shown to have extensive expression throughout the CNS. GLAST and GLT-1 are predominantly expressed in astroglial cells, while EAAC1 is abundantly expressed in neurons [32,33]. In cultured cortical neurons, high EAAC1 and low GLT-1 expression levels have been reported [33,34]. Therefore, we measured expression levels of EAAC1 and GLT-1 after cabergoline treatment. Interestingly, cabergoline increased expression levels of both EAAC1 and GLT-1 in cortical cultures (Fig. 7B), implying that the cabergoline-induced upregulation of glutamate transporters has a role in decreasing extracellular glutamate concentration.

Discussion

In the present study, we found that cabergoline prevented the oxidative stress-induced cell death of cultured cortical neurons via a D2 receptor-mediated mechanism. Cabergoline suppressed the activation of ERK signaling, which might have a role in the neuroprotection. Moreover, we found that cabergoline significant-
Figure 6. Levels of cell surface and total expression of glutamate receptors after cabergoline treatment. (A) No change in total expression levels of glutamate receptor subunits after cabergoline treatment. Total expression levels of NR2A, NR2B, GluR1, GluR2/3 and synapsin I after cabergoline treatment (10 μM for 24 hours). Synapsin I: pre-synaptic protein. Upper: Quantification of each protein was carried out. All data represent mean ± SD (n = 8). Statistics determined by t-test. (B) Cell surface expression levels of NR2A, NR2B, GluR1 and GluR2/3. Upper: Quantification of each protein was performed by normalizing to expression of cadherin (cell surface protein). All data represent mean ± SD (NR2A: n = 9, NR2B: n = 6, GluR1, GluR2/3: n = 8). *P < 0.05 vs. - Caber (t-test).

doi:10.1371/journal.pone.0099271.g006
ly repressed extracellular glutamate accumulation triggered by oxidative stress, and increased the expression of glutamate transporters including EAAC1, which is known to be involved in the clearance of extracellular glutamate.

MAPK cascades, including ERK-, JNK-, and p38-signaling, consist of a family of protein kinases that phosphorylate specific serine and/or threonine sites in target protein substrates in response to changes in extracellular environment, and which regulate various cellular functions including cell survival and death [35,36]. JNK and p38, called stress-activated protein kinases (SAPK), are strongly activated by stress stimuli (i.e., bacterial lipopolysaccharide, inflammatory cytokines, excitotoxicity mediated by glutamate, and oxidative stress) to induce pro-apoptotic signaling [36,37]. The ERK pathway has contrary functions including both pro-survival and pro-apoptotic signaling, depending on the type of extracellular stimuli. Neurotrophic factors evoke ERK activation and promote proliferation, differentiation, neurite outgrowth and survival, while stress stimuli induce ERK activation that mediates cell death [38–43]. Here, we first examined whether cabergoline increased the expression of BDNF as we previously reported that upregulation of BDNF in hippocampal tissues by cabergoline [21]. Furthermore, BDNF has neuroprotective effects via the activation of Akt and ERK signaling [38]. However, in our present system, cabergoline treatment did not increase the expression of BDNF mRNA (Fig. S6). Therefore, to clarify the mechanism underlying neuroprotection by cabergoline, we examined whether MAPK signaling pathways promoted death signals under H2O2 exposure. As expected, oxidative stress by H2O2 significantly stimulated ERK and p38, but not JNK (Fig. 3A), and the activations of both ERK and p38 contributed to neuronal cell death (Fig. 3B). Reports concerning the effect of H2O2 on JNK in cortical cultures are mixed. One report showed that 100 μM H2O2 caused a 5-fold increase of pJNK levels [37], while another reported that 1 mM, but not 100 μM, of H2O2 activated JNK [44]. In our cortical cultures, 50 μM H2O2 was insufficient to stimulate JNK signaling. This discrepancy between studies might be due to differences in culture conditions (cell density or medium for maintenance). Interestingly, activation of both ERK and p38 was suppressed by pretreatment of cabergoline (Fig. 4A, B). When we performed co-treatment with cabergoline and U0126 to block ERK signaling, there was no additional or synergistic effect compared with the application of U0126 alone. In contrast, co-application of cabergoline and SB203580 (to inhibit p38) exhibited an additive protective effect compared with each chemical alone. Thus, cabergoline might protect cortical neurons predominantly via inhibiting stress-dependent ERK activation although p38 may also be involved in the cell death induction by oxidative stress.

It is well known that ergot-derived D2-like receptor agonists (including bromocriptine and pergolide) have a radical scavenging effect [13]. Cabergoline was shown to function as a radical scavenger and that D2 receptor antagonists have no effect on neuroprotection by cabergoline [15,18]. In our system, however, adequate pretreatment time before the addition of H2O2 (Fig. 1C) and stimulation of the D2 receptor (Fig. 2B) were necessary for the neuroprotective effect, suggesting that a D2 receptor-mediated...
mechanism, but not radical scavenging, mainly contributed to the neuroprotection. Importantly, it was shown that D2 receptor-dependent synthesis of glutathione partially contributed to a protective effect in mesencephalic neurons and cell lines [14,16]. The different dependency on receptor-mediated mechanisms may be attributed to differences in the cell-types used, cortical neurons vs mesencephalic neurons/cell line.

Unlike mesencephalic neurons that are composed of monoaminergic neurons and GABAAergic neurons, glutamatergic neurons are a major population of the cortical neurons [45]. In glutamatergic neurons, oxidative stress causes excessive extracellular glutamate accumulation that induces excitotoxicity [29,30]. Such glutamate accumulation and subsequent Ca2+ overload cause the production of ROS because of mitochondria dysfunction and/or the reduction of intracellular antioxidants [43,46], indicating a close relationship between oxidative stress and excitotoxicity. Notably, the potential involvement of oxidative stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11].

The different dependency on receptor-mediated mechanisms may be attributed to differences in the cell-types used, cortical neurons vs mesencephalic neurons/cell line.

Unlike mesencephalic neurons that are composed of monoaminergic neurons and GABAAergic neurons, glutamatergic neurons are a major population of the cortical neurons [45]. In glutamatergic neurons, oxidative stress causes excessive extracellular glutamate accumulation that induces excitotoxicity [29,30]. Such glutamate accumulation and subsequent Ca2+ overload cause the production of ROS because of mitochondria dysfunction and/or the reduction of intracellular antioxidants [43,46], indicating a close relationship between oxidative stress and excitotoxicity. Notably, the potential involvement of oxidative stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11]. Moreover, a stress and/or excitotoxicity in the pathogenesis of AD, HD, ALS, and ischemic stroke has been demonstrated [8–11].

In the present study, we demonstrated cabergoline exerted a neuroprotective effect against oxidative stress in cortical neurons not by scavenging radical species, but rather by the predominant suppression of ERK signaling. To our knowledge, this is the first study to report the upregulation of glutamate transporters and decreased excitotoxicity in cortical neurons by cabergoline. Fig. 8 shows a potential mechanism of the neuroprotective effect of cabergoline. Therefore, cabergoline might be a useful drug for the treatment of brain diseases such as AD, ischemia and PD, where oxidative stress-induced degeneration of cortical neurons is implicated. Furthermore, not only direct scavenging ROS, but also blockade of specific pathways including ERK signaling under oxidative stress might be potential targets for new drug development, although further investigation of the relationship between ERK signaling and glutamate transporters is required.

Supporting Information

Figure S1 Application of cabergoline alone does not affect cell viability. Cortical neurons were exposed to cabergoline at 10 or 50 μM for 36 hours in the absence of H2O2. MTT assay. The data represent mean ± SD (n = 5–6). Statistics determined by one-way ANOVA. (TIF)

Figure S2 Spiperone treatment does not affect cell viability in the presence or absence of H2O2. Spiperone (10 μM) was added 24 hours before H2O2 (50 μM) application. MTT assay was performed. Black bars indicate H2O2 application. The data represent mean ± SD (n = 6). Statistics determined by t-test. (TIF)

Figure S3 Influence of U0126 or SB203580 on cell viability in the absence of H2O2. No change in cell viability was observed following the addition of U0126 or SB203580. U0126 or SB203580 were added at 10 μM, respectively. After 24 hours, MTT assay was performed to estimate cell viability. The data represent mean ± SD (n = 7). Statistics determined by t-test. (TIF)

Figure S4 Effect of SP600125, a JNK inhibitor, on cell survival. SP600125 (5 μM) was added 20 min before H2O2 (50 μM) application. MTT assay was performed. SP600125 exerted a slight neuroprotection. The data represent mean ± SD (n = 6). ***P<0.001 vs. - H2O2 - SP600125, ††P<0.01 vs. + H2O2 - SP600125 (two-way ANOVA). (TIF)

Figure S5 Cell death induction by glutamate. Glutamate was added at 10, 50, or 500 μM. After 24 hours, MTT assay was performed. The data represent mean ± SD (n = 8). ***P<0.001 vs. glutamate (one-way ANOVA). (TIF)

Figure S6 Levels of BDNF mRNA after cabergoline treatment in cortical cultures. Cortical neurons were exposed to cabergoline (10 μM, for 3 or 24 hours). Quantification of BDNF mRNA was carried out with qRT-PCR. KCl (50 mM) stimulation for 3 hours was used as a positive control. The data represent mean ± SD (n = 6). ***P<0.001 vs. control (two-way ANOVA). (TIF)

References

1. Kvernom T, Hartter S, Burger E. (2006) A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther 28: 1065–1078.

2. Baas HK, Schueler P. (2001) Efficacy of cabergoline in long-term use: results of three observational studies in 1,500 patients with Parkinson’s disease. Eur Neurol 46: 18–23.
28. Wang X, Martindale JL, Liu Y, Holbrook NJ. (1998) The cellular response to oxidative stress - influences of flavonoids and of nitric oxide. Neurobiol Aging 23 (5): 861–880.

27. Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, et al. (2002) MAPK regulation of NMDA receptors in cerebellar granule cells in culture. J Neurochem 70(5): 2082–2090.

26. Cagnol S, Chambard JC. (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277(1): 2–21.

25. Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, et al. (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76 (2): 323–329.

24. Cagnol S, Chambard JC. (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277(1): 2–21.

23. Numakawa T, Kumamaru E, Adachi N, Yagasaki Y, Izumi A, et al. (2009) Pharmacological characterization of the mitogenic and proliferative functions of dopamine D2 receptor agonists. Neurochem Res 28 (7): 1035–40.

22. Jackson DM, Westlind-Danielsson A. (1994) Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol Ther 64 (2): 291–370.

21. Chiba S, Numakawa T, Ninomiya M, Yoon HS, Kumugi H. (2010) Cabergoline, a dopamine receptor agonist, has an antidepressant-like property and enhances brain-derived neurotrophic factor signaling. Psychopharmacology (Berl) 211 (3): 291–301.

20. Jackson DM, Westlind-Danielsson A. (1994) Dopamine receptor agonists: selective dopamine D2 receptor agonist. Neurochem Res 26 (1): 31–36.

19. Lombardi G, Varsaldi F, Miglio G, Papini MG, Battaglia A, et al. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. J Pharmacol Exp Ther 262 (2): 527–530.

18. Lombardi G, Varsaldi F, Miglio G, Papini MG, Battaglia A, et al. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. J Pharmacol Exp Ther 262 (2): 527–530.

17. Sawada H, Ibi M, Kihara T, Urushitani M, Akaike A, et al. (1998) Dopamine D2 receptor antagonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol 44 (1): 110–119.

16. Chau KY, Korlipara LV, Cooper JM, Schapira AH. (2009) Protection against paraquat and A53T alpha-synuclein toxicity by cabergoline is partially mediated by dopamine receptors. J Neurosci 27 (1): 44–53.

15. Miglio G, Varsaldi F, Francioli E, Battaglia A, Canziani PL, et al. (2004) Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur J Pharmacol 489 (3): 157–165.

14. Yoshioka M, Tanaka K, Fujita N, Higashi Y, et al. Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. J Pharmacol Exp Ther 262 (2): 527–530.

13. Kitamura Y, Taniguchi T, Shimohama S, Akaike A, Nomura Y. (2003) Developmental expression and activity of high affinity glutamate transporters in the central nervous system. Neuroscience 239: 157–172.

12. Hauser DN, Hastings TG. (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51: 35–42.

11. Barber SC, Shaw PJ. (2010) Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med 48 (5): 629–641.

10. Hauser DN, Hastings TG. (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51: 35–42.

9. Feng Y, Wang X. (2012) Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012 (2012): CD006009.

8. Pradeep H, Diya JB, Shashikumar S, Rajanikant GK. (2012) Oxidative stress - influences of flavonoids and of nitric oxide. Oxid Med Cell Longev 2012 (2012): CD006009.

7. Curran MP, Perry CM. (2004) Cabergoline: a review of its use in the treatment of Parkinson’s disease. Drugs 64 (10): 2125–2141.

6. Scholz H, Trenkwalder C, Kohnen R, Riemann D, Kriston L, et al. (1999) Localization of neuronal and glial glutamate transporters. Neuroreport 10 (3): 713–725.

5. Feelders RA, Hofland LJ. (2013) Medical treatment of Cushing’s disease. J Clin Endocrinol Metab 98: 425–438.

4. Kalampokas T, Creatsas G, Kalampokas E. (2013) Cabergoline as treatment of hyperprolactinemia: a systematic review and meta-analysis. Syst Rev 1: 33.

3. Wang AT, Mullan RJ, Lane MA, Hazem A, Prasad C, et al. (2012) Treatment of hyperprolactinemia: a systematic review and meta-analysis. Syst Rev 1: 33.

2. Kalampokas T, Creatsas G, Rijcken BJ, et al. (2013) Cabergoline as treatment of ovarian hyperstimulation syndrome: a review. Gynecol Endocrinol 29: 98–100.

1. Felders RA, Hofland LJ. (2013) Medical treatment of Cushing’s disease. J Clin Endocrinol Metab 98: 425–438.