Cryo-EM structures of a LptDE transporter in complex with Pro-macrobodies offer insight into lipopolysaccharide translocation

Mathieu Botte1,8, Dongchun Ni2,8, Stephan Schenck1,6,8, Iwan Zimmermann3,7, Mohamed Chami2, Nicolas Bocquet1, Pascal Egloff3,7, Denis Bucher1, Matilde Trabuco1, Robert K. Y. Cheng1, Janine D. Brunner4,5, Markus A. Seeger3, Henning Stahlberg2 & Michael Hennig1

Lipopolysaccharides are major constituents of the extracellular leaflet in the bacterial outer membrane and form an effective physical barrier for environmental threats and for antibiotics in Gram-negative bacteria. The last step of LPS insertion via the Lpt pathway is mediated by the LptD/E protein complex. Detailed insights into the architecture of LptDE transporter complexes have been derived from X-ray crystallography. However, no structure of a laterally open LptD transporter, a transient state that occurs during LPS release, is available to date. Here, we report a cryo-EM structure of a partially opened LptDE transporter in complex with rigid chaperones derived from nanobodies, at 3.4 Å resolution. In addition, a subset of particles allows to model a structure of a laterally fully opened LptDE complex. Our work offers insights into the mechanism of LPS insertion, provides a structural framework for the development of antibiotics targeting LptD and describes a highly rigid chaperone scaffold to enable structural biology of challenging protein targets.
Multi-drug-resistant bacteria present a growing concern for human health\(^\text{1}\). Among these, Gram-negative bacteria are especially problematic, because they are well shielded from their environment by an outer membrane (OM) that establishes a tight barrier for several antibiotics due to the high density of lipopolysaccharides (LPS) in the outer leaflet of the membrane\(^\text{2}\). LPS are thus an essential component of the bacterial resistance. LPS is synthesized in the cytosol and transported across the periplasmic space to the outer leaflet via the Lpt pathway, consisting of the proteins LptA, B, C, D, E, F, and G, which form a trans-envelope complex to bridge the inner and outer membranes\(^\text{3–6}\). Hence, disrupting the assembly of the outer membrane by inhibiting the Lpt pathway is an attractive strategy for novel antibiotic therapeutics\(^\text{7–9}\). The membrane-integral LptDE complex in the OM executes the last step of LPS transport\(^\text{9}\) and is among other OM-protein constituents a promising antibacterial target also due to its surface-exposed localization\(^\text{10,11}\). The structures of LptDE from multiple species were determined by X-ray crystallography and provided detailed insight into the general architecture and the LPS path\(^\text{12–14}\). The lateral opening of the LptD β-barrel\(^\text{15}\), which enables the exit of LPS into the outer leaflet, has been conclusively inferred from simulations and mutagenesis studies\(^\text{16,17}\), yet awaits structural evidence. From a pharmaceutical perspective, open conformations of barrel architectures are of high interest because of the propensity of β-hairpin mimetics (currently the most promising class of antibiotics to interfere with OM-assembly proteins\(^\text{10,11,18}\)) to target to terminal β-strands by β-augmentation\(^\text{19}\). Thus, more insight into the conformational space of LptD is in demand not only for an understanding of LPS transport in general but also for structure-based drug design. Here, we present cryo-EM structures of the LptDE transporter of the pathogen *Neisseria gonorrhoeae* (NgLptDE) with partially and fully opened lateral gates. Importantly, we could obtain these structures by complexation with nanobody-based chaperones. Departing from the structure of the previously described macrobodies\(^\text{20}\), chaperones that are built of a nanobody (Nb), and a C-terminally fused maltose-binding protein (MBP), we increased the rigidity of the original linker between the two moieties substantially to design an improved scaffold, named Pro-Macrobodies (PMbs), with excellent properties for particle classification and particle enlargement in cryo-EM.

Results

Design of pro-macrobodies and complexation with NgLptDE for cryo-EM. To structurally characterize LptDE of *N. gonorrhoeae* and open the possibility of finding new conformations of these transporters, we used single-particle cryo-electron microscopy (cryo-EM) as this method provides an opportunity to capture the conformational breadth of protein samples\(^\text{21–22}\). After extensive optimization, we obtained a high-resolution structure of NgLptDE at 3.4 Å in complex with enlarged variable domains of heavy-chain antibodies (VHHs)—PMb\(_{21}\) and PMb\(_{51}\) (Fig. 1a, b; Supplementary Figs. 1a–d, 4a–c). Our initial attempts to obtain a structure of uncomplexed NgLptDE by cryo-EM were limited to a resolution of 4.6 Å (Supplementary Figs. 1e–f). Consequently, molecular details such as side chains for confident tracing of the sequence during de novo building and the identification of potential ligands could not be visualized. During the course of our study, we have generated sybodies (Sbs), which are synthetic nanobodies (Nbs) or VHHs\(^\text{24}\) against NgLptDE (Supplementary Fig. 7a–c). Sbs are generated by ribosome display from libraries encoding for synthetic nanobodies having variation of the complementarity-determining region (CDR) loops. Sbs can be selected in regimes that are impossible to put into practice in an animal body, such as toxic conditions (citation 24 again?). In addition, this approach has also the advantage to be faster than the traditional immunization method. We thought to transform the obtained Sbs to macrobodies (Mbs) by fusion of MBP to the C-terminus, as recently described for the crystallization of an ion channel\(^\text{20}\) to use them as fiducial markers for improved particle classification. Since a chaperone for cryo-EM requires rigidity, the flexibility of PMb\(_{31101}\) (extracted from the PDB entry 6HD8) (Fig. 2a) was initially assessed by molecular-dynamics (MD) analysis. A bending motion of the MBP moiety was observed relative to the Nb of ~50° in multiple directions as well as torsional movements (Fig. 2a, d) due to high rotational freedom of the linker residues Val122 and Lys123 of PMb\(_{31101}\) (Supplementary Fig. 2c). Despite their promising shape and size, Mbs are thus of limited use for particle enlargement in cryo-EM. In silico design of more rigid linkers was attempted. In particular, substitutions of Val122 and Lys123 by two consecutive prolines was found to lead to a stable chaperone where motions are dampened as proline has the lowest rotational freedom of all amino acids. The mutated MBP was computationally predicted to adopt a new conformation, where the MBP moiety is turned by ~170 degrees (Supplementary Fig. 2b) according to the trans-configuration between Pro122 and Pro132 (Fig. 2c, Supplementary Fig. 2e). The modified Mb, termed Pro-Macrobody (PMb), showed strongly reduced flexibility in MD simulations (Fig. 2a,d; Supplementary Fig. 2c) and retained the positive properties of Mbs such as their simple design and their elongated structure. We then transformed Sbs against NgLptDE into PMbs (Supplementary Fig. 2a) and crystallized PMb\(_{21}\). The X-ray structure of PMb\(_{21}\) at a resolution of 2 Å confirmed the predicted structure and showed the lowest B-factors around its linker region that forms a short poly-Pro helix-II stretch (Fig. 2b, c; Supplementary Fig. 2d, e; Supplementary Table 2). The C-terminal end of the Sb moiety and the N-terminal region of MBP feature rigid β-sheets that are only bridged by the intrinsically stiff di-proline linker without additional interactions that would stabilize interdomain motions (Supplementary Fig. 2e). The specific binding moiety could thus be exchanged without a change in the properties of the connection. Further, the PMbs retained their binding kinetics compared with the original Sbs using grating-coupled interferometry (GCI), a biophysical characterization method similar to surface-plasmon resonance (Supplementary Fig. 7c). Next, using only monomeric NgLptDE (Supplementary Fig. 3a, b; see below), we identified a complex of NgLptDE with PMb\(_{21}\) and PMb\(_{51}\) (Supplementary Fig. 3c–e), two of the strongest binders from our analysis, using size-exclusion chromatography (SEC) (Supplementary Fig. 7a, c). We subjected this quaternary complex to cryo-EM and obtained a map of high quality (Fig. 1b, Supplementary Table 1, Supplementary Fig. 1c, d) that significantly improved over the uncomplexed NgLptDE (Supplementary Fig. 1g, h). The rigidity of the PMbs is apparent from 2D-class averages (Fig. 2e) where the N- and C-terminal lobes of MBP are clearly recognizable. The respective identities of PMb\(_{21}\) and PMb\(_{51}\) could be assigned by 2D-class averages of a NgLptDE–PMb\(_{21}\) complex (Fig. 2e). PMb\(_{21}\) and PMb\(_{51}\) appear very similar in 2D-class averages in support of the universality and rigidity of the MBP scaffold. When we subjected an NgLptDE complex with MB\(_{21}\) and MB\(_{51}\) (with the original Val–Lys linker) to cryo-EM, it was apparent from 2D-class averages that these chaperones are more flexible, and thus, the MBP moiety is much less defined (Fig. 2e).

The cryo-EM structure of NgLptDE reveals a partially open LptD barrel. The cryo-EM structure of the complex showed the same overall LptDE architecture observed also in X-ray structures.
from LptDE of other Gram-negative bacteria12-14 (Figs. 1a, 3a), but revealed also significant differences. Whereas NgLptE in our structure is nearly identical to LptE structures from other bacteria, our structure of NgLptD shows important deviations. The lateral and luminal gates in the cryo-EM structure of NgLptDE are more open compared with LptDE of \textit{Klebsiella pneumoniae} (KpLptDE) and even more so compared with the X-ray structure of \textit{Shigella flexneri} LptDE (SfLptDE)12-14 (Fig. 4a–c). Only three hydrogen bonds were observed between \(\beta\)-sheets \(\beta1\) and \(\beta26\), which increases the separation of the two gating strands at their periplasmic end in NgLptDE by 3 Å compared with SfLptDE and KpLtDE, with at least six and five hydrogen bonds between those

Fig. 1 Cryo-EM structure of the NgLptDE-PMb\textsubscript{21}/PMb\textsubscript{51} complex. a Side view of the NgLptDE-PMb\textsubscript{21}/PMb\textsubscript{51} complex. b Cryo-EM map of the NgLptDE-PMb\textsubscript{21}/PMb\textsubscript{51} complex at 3.4 Å. Colors encode domains as in (a).

Fig. 2 Generation and properties of pro-macrobodies. a Conformational flexibility between the Nb- and MBP moieties connected by a Val-Lys linker (top) and Pro-Pro linker (bottom). Mb\textsubscript{51H01} from PDB entry 6HD8 was subjected to a 500 ns all-atom MD simulation. Frames are colored by elapsed simulation time (middle panel) and aligned on the Nb moiety to display the relative movements of MBP. The simulation was repeated with PMb\textsubscript{21} using the X-ray structure shown in (b). c Enlarged view (boxed in (b)) of the linker in the PMb\textsubscript{21} crystal structure with the map contoured at (d) Plot of the normalized probability versus the interdomain angle between the Nb and MBP in Mbs (Val-Lys linker) and PMbs (Pro-Pro linker), as derived from MD simulations. The PMbs (black asterisks, solid line) show a defined distribution peaking at 170 ± 5°, whereas the original linker of macrobodies shows a wide distribution spanning almost 50° (blue circles, dashed line). e 2D-class averages of NgLptDE uncomplexed (left), complexed with Mbs 21 and 51 (left middle), complexed with PMbs 21 and 51 (middle right), and complexed with PMb21 (right). The MBP moiety is indicated with yellow asterisks. Source data are provided as a Source Data file.
strands, respectively (Fig. 4a–c). Luminal turn 1 preceding β1 adopts a conformation in NgLptDE that does not obstruct the luminal gate. Those residues of luminal turn 2 that are resolved in the cryo-EM map indicate an open conformation of this turn. This results in a direct connection between the hydrophobic groove of the N-terminal domain and the lumen of the β-barrel, which can be described as an opened luminal gate (Fig. 3a, b). The luminal gate has a diameter of approximately 10 Å as determined by the smallest distance between Leu250–Asp251 and Asp768–Leu769, which, combined with an opened lateral gate, could allow passage of the LPS core and O-antigen from the periplasmic space to the lumen of the barrel. Overall, the NgLptDE structure shows a wider diameter of the barrel lumen, reflecting a more open conformation of the luminal gate. With the distance between β1 and β26 being increased by 3 Å at the periplasmic side compare with SfLptD or KpLptD, this

Fig. 3 The luminal gate in structures of NgLptDE and SfLptDE. a The luminal turns (yellow) of NgLptDE (left) are separated by more than 3 Å, leading to a continuous groove between the LptD barrel and the hydrophobic groove of the N-terminal domain. In SfLptDE (PDB-ID 4Q35) (right), the luminal turns obstruct the luminal gate. b Enlarged view of the luminal gates of NgLptDE (left) and SfLptDE (right). The first (β1) and last (β26) strands of the LptD barrels are shown in blue and red, respectively.

Fig. 4 Hydrogen bonds between the β-strands 1 and 26 in structures of the LptD barrel. a SfLptDE, (b) KpLptDE (PDB-ID SIV9), (c) NgLptDE (partially open), and (d) NgLptDE (open lateral gate). Distances between the terminal strands are indicated and small insets show a view from extracellular. β-strand 1 and β26 are shown in light blue and orange, respectively, and the conserved proline residues of β-strands 1 and 2 in pink.
conformation represents a specific and until now unobserved stage of LPS transport.

Disulfide bridges in NgLptDE and PMb-binding sites. The N-terminus in our LptD structure is not disulfide-bonded to the periplasmic turn between β24 and β25 as in StLptDE and KpLptDE, albeit a corresponding cysteine is present. The N-terminal 63 residues (not including the signal sequence) are therefore likely flexible and not visible in the cryo-EM map. The N-terminal domain is fixed by a disulfide bridge to the barrel, but differently from known full-length structures of KpLptDE and StLptDE (Supplementary Fig. 5c). The conserved two consecutive cysteines at the turn between β24 and β25 are shifted by one position and separated by a glycine in contrast to most LptD proteins (Supplementary Fig. 5c). Folding of LptD proteins involves several steps of disulfide bond reorganization of which ultimately one disulfide-bond is essential to connect the N-terminal jellyroll domain to the barrel.** Despite these differences, the orientation of the N-terminal domain was the same as in KpLptDE, whereas that of StLptD is rotated by approximately 20° (Fig. 3a).

PMb21 binds partly to the barrel rim and to extracellular loops 5, 11, 12, and 13 that all have been described as dispensable for LptD function.** (Supplementary Fig. 5a). PMb21 binds to the terminal β-strand of the jellyroll domain mainly via CDR3 that is forming a β-hairpin-like structure (β-strand augmentation) (Supplementary Fig. 5b). In the cell, this terminal strand of the jellyroll domain is deeply buried in the membrane, such that PMb21 or its parent Sb51 could not interfere with LPS transport by partial blockade of the exit path. Both Sb21 and Sb51 did not increase the susceptibility of N. gonorrhoeae toward vancomycin (Supplementary Fig. 7e). Further, neither of the Sbs bound to the surface of E. coli SF100 cells expressing NgLptDE (Supplementary Fig. 7f), which at least for Sb51 is not surprising due to the membrane localization of the epitope. Notably, paratopes like the CDR3 of PMb51 could also serve as template for the development of peptide antibiotics.**

Additional density observed in NgLptD. The 25 C-terminal residues of the LptD-barrel domain and luminal turn 2 were not visible in our initial cryo-EM map ("Overall" NgLptDE–PMb21–PMb51, Supplementary Table 1). In order to gain more insight into the function of the luminal gate in LPS transport, the cryo-EM data were reanalyzed focusing the reiteration processing within a tight mask encompassing the N-terminal domain as well as the β1–β26 region of NgLptD only. The resulting cryo-EM map at 3.43 Å resolution allowed to trace the complete chain of the C-terminal region of LptD (Supplementary Fig. 6a–d). The C-terminal stretch following β26 extends deeply into the lumen of the β-barrel toward the restriction separating the two lobes of the barrel and in proximity to LptE. Interestingly, the C-terminal residues from Asn798 to Pro801 bind into the groove of the N-terminal jellyroll domain. Several salt bridges and hydrogen bonds stabilize the interaction (Supplementary Fig. 6d). Further work will be needed to determine if the observed position of the C-terminus could have a regulatory role similar to what has been suggested for the N-terminus.** In contrast to the crystal structures of StLptD and KpLptD, no helical region is observed in luminal turn 2.

A fully opened LptD barrel from a subset of particles. Image processing assigned about one-fifth of the particles on the cryo-EM grid to a structure with an open barrel that did not fit the conformation of the main particle population. In order to exclude that this subpopulation could possibly result from the interaction with PMbs, we carefully analyzed two additional datasets obtained for NgLptDE and NgLptDE–PMb21. Interestingly, and even though high-resolution structures were not reachable, we observed in 2D classifications the same open and closed conformations (Supplementary Fig. 8). Both datasets for NgLptDE alone or in the presence of PMb21 (binding on the extracellular side of the barrel, away from the gate) present a mixture of open- and closed-conformation particles, thus ruling out the possibility of a structural artifact generated by the PMbs. Therefore, we used this subset of particles to compute a cryo-EM map of Ng-lptDE–PMb21–PMb51 with an open lateral gate at 4.72 Å resolution using a very tight mask (Figs. 4d, 5a–c). This map shows a full opening of the β-barrel devoid of H-bonds between β1 and β26, and a separation of ~10 Å between the extracellular ends and ~15 Å between the periplasmic ends of these strands. The diameter of the open barrel was not significantly different to the one in the partly open conformation. Only the six N-terminal and four C-terminal strands were shifted by more than 1.5 Å (Fig. 5b). This separation leads to a very large continuous solvent-accessible channel from the extracellular space through the barrel to the periplasm that could easily accommodate transiting LPS molecules (Fig. 5a). Docking of LPS into this experimental structure indicated that the saccharide portion of LPS likely enters the barrel and passes through it to the extracellular face, while lipid A would be inserted into the outer membrane (Fig. 5c, d). These data provide structural evidence for previously suggested events that lead to strand separation and are compatible with the idea of hydrocarbon-bond weakening between strands β1 and β26 through conserved prolines in β1 and β26. Further, the delineated path of the lipid from LPS-cross-linking experiments is in accordance with the structure. Consequently, we propose that the structure of a laterally fully opened LptD barrel could serve as a geometrical guideline for the design of macrocyclic antibiotics.

A NgLptDE dimer mimics the principle of the Lpt trans-envelope complex. The analysis of the cryo-EM data revealed that a fraction of molecules is in a dimeric state with its interface at the periplasmic end of the N-terminal LptD jelly-roll domain (Supplementary Fig. 9a–d). The dimerization was already observed in SEC analysis and turned out to be rather stable (Supplementary Fig. 3a, b). In the crystal lattices of KpLptDE and StLptDE, molecular contacts via the N-terminal domain of LptD were observed as well. However, in our cryo-EM structure, the dimer was displaying a pseudo-2-fold symmetry and generated a continuous groove between the two beta-jelly-roll domains. This further corroborates the oligomerization of jelly-roll domains of the Lpt-pathway members LptD, LptA, and LptC as a construction principle of the continuous hydrophobic slide across the periplasm. Presumably due to mobility in the N-terminal domain, applying a C2 symmetry for dimeric particles did not result in higher resolution (Supplementary Table 1).

Discussion LPS transport requires a transient lateral opening of the LptD β-barrel to allow the synchronized translocation of the hydrophobic and hydrophilic portions of the large LPS molecules through the outer membrane.** For instance, cross-linking β-strands 1 and 26 through disulfide bridges abolished the function of LptD, providing clear indications that these strands separate at least transiently for LPS release. The strands 1 and 26 do furthermore show less hydrogen bonds compared with other barrel structures, which support that these two strands are destined to temporarily separate. From mutagenesis studies and MD simulations, it was proposed that the two conserved prolines Pro230 and Pro245 in
Yersinia pestis LptD (corresponding to Pro261 and Pro275 in NgLptD, respectively) (Fig. 4) play a crucial role in opening by attenuating the H-bonding between $\beta1$ and $\beta26$ to enable separation. Despite these clear indications, a lateral opening of the barrel was not fully evident from MD simulations, or if so, only in extreme regimes. Direct structural evidence for such a lateral opening was thus far lacking. Using cryo-EM, we could find such a laterally opened structure that contributes to the completion of a full picture of LPS translocation. However, membrane proteins are susceptible to detergents used for solubilization to varying extent and this could alter their conformation. Thus, we can not rule out that barrel opening is potentiated or triggered by other LptD transporters that stand in contrast to this idea. Due to the low resolution, we could achieve that for the open conformation.

Closed β-strand architectures such as barrels offer naturally rather shallow binding sites, to modulate their function. The most promising antibiotics to target these proteins are currently β-hairpin mimetics (constrained macrocyclic peptides such as Pol 7080/Murepavadin) that would bind to terminal beta-strands in open-barrel intermediates or to components of the Lpt trans-envelope complex. Interestingly, thanatin, a naturally occurring antibiotically active peptide, targets to such β-strands of LptA, C, and D. Non-hydrogen-bonded terminal β-strands, which eventually appear temporarily at the seam of laterally open barrels or at the termini of LptA/C in the Lpt pathway, can thus be understood as an Achilles’ heel of these architectures due to their propensity to bind peptides or mimetics thereof. On LptD, known β-hairpin peptides target the N-terminus of the jelly-roll domain as shown recently. Taken together, the LptD structures of open-barrel conformations could be particularly well-suited to serve as template for the design of new antibiotics. The cleft between $\beta1$ and $\beta26$ leaves sufficient space to accommodate a peptidomimetic that could bind through hydrogen bonds to the N-terminal domain of LptD. The precise regulation of barrel-opening thus requires further investigation, also with respect to the role of LptE and the N-terminal domain of LptD. In addition, future cryo-EM studies on LptDE transporters from other species and in different detergent-solubilized environment will help to resolve if barrel-opening is of different likelihood, depending on the species, generally a spontaneous event, or if it is promoted by LPS molecules or other factors.

![Fig. 5 Comparison of the closed and open lateral gate of NgLptD.](image)

Fig. 5 Comparison of the closed and open lateral gate of NgLptD. (a) Cryo-EM density of the NgLptD structures with closed (top) and open lateral gate (bottom) (maps displayed to the comparable contour level) with the respective model shown in cyan and red for the partly and fully open NgLptDE, respectively. (b) Superimposed models of NgLptD in partly (cyan) and fully open conformations (red). The boxes show the hydrogen-bond networks at the N-terminal domain promotes strand separation (i.e., increases the open probability). The precise regulation of barrel-opening thus requires further investigation, also with respect to the role of LptE and the N-terminal domain of LptD. In addition, future cryo-EM studies on LptDE transporters from other species and in different detergent-solubilized environment will help to resolve if barrel-opening is of different likelihood, depending on the species, generally a spontaneous event, or if it is promoted by LPS molecules or other factors.
Methods

Pro-Membrane Bodies (PMbs) were an essential tool to elucidate the structure of the drug target NgLptD by cryo-EM to high resolution. The complexation with the PMbs had positive impact on several parameters of the structural analysis by cryo-EM. A better structure can be obtained when the PMbs are added, and the laterally open conformation of NgLptD.

Small membrane proteins still impose a significant challenge for structural analysis by cryo-EM and even more so β-barrel proteins because of the lower contrast provided in comparison with α-helical architectures. In these cases, binders that serve as fiducial markers can greatly improve resolution, especially for structure-based drug design to further advance. To date, these chaperones are largely Fab fragments, but PMbs described here, represent an attractive alternative for cryo-EM.

Pro-Membrane Bodies (PMbs) were an essential tool to elucidate the structure of the drug target NgLptD by cryo-EM to high resolution. The complexation with the PMbs had positive impact on several parameters of the structural analysis by cryo-EM. A better structure can be obtained when the PMbs are added, and the laterally open conformation of NgLptD. PMbs are different from the recently described megabodies, as they could thus be that LptD-protein termini are involved in the structure of the NgLptD complex.

N. gonorrhoeae (Zopf) Trevican (ATCC 700825) LptD (1–803)–His10 and LptE (1–159)–AVI mex was produced using E. coli SF100 cells and purified as described above, and an in vitro biotinylation step was added after the SEC step. Briefly, LptD protein was concentrated to 10 μM concentration and mixed with 40 μg of BirA E. coli enzyme, 5 mM ATP, 10 mM MgAc, and 15 μM biotin. The mixture was incubated for 16 h at 4 °C and a second SEC step was performed to desalt the sample and remove the BirA enzyme. Concentrated library was further purified by SEC on a Superdex 200 Increase column, equilibrated to 150 mM NaCl, 20 mM Tris–HCl, pH 8.0, and 0.005% LMNG. Fracctions corresponding to the monomeric peak were pooled, concentrated, and flash-frozen in liquid nitrogen for subsequent use.

Sybbody generation. Sybodies were generated as described previously with no notable difference. NgLptD could not be produced in large amounts, which did not allow to use a large excess of nonbiotinylated NgLptD for off-rate selection. Therefore, we pooled all the supbroth present after the first round of phage display and used them as competitors during the second round of phage display to perform an off-rate selection. To this end, the pDX_init plasmid outputs (of the concave, loop, and convex library) of the first round of phage display were purified by miniprep (Qiagen). FX cloning was performed to transfer the sybody pool from the pDX_init to the pssB_init expression plasmid using 2 µg of pDx_init pool and 1 µl of pB_init. The cloning reaction was subsequently transformed into electro-competent E. coli MC1061 cells (>10^{10} cfu). The sybody pools were expressed as described for single sybodies using the pssB_init construct. After expression of the pools in 600 ml cultures of TB medium, the sybodies were extracted from the cells by periplasmic extraction, purified by IMAC and dialyzed overnight against Tris Buffered Saline (TBS). Precipitation was removed by centrifugation at 20,000 × g for 15 min. The pools were used at a concentration of approximately 100 μM to perform an off-rate selection for 2 min in the second round of phage display.

Fluorescent labeling of sybodies. To perform site-specific labeling of the sybodies, a dye located between Sapl-restriction site and myc tag on the pssB_init backbone was mutated to cysteine via Quick change mutagenesis, thereby adding the following amino acids to the C-terminus of the sybodies: GRACEKQSLIE EDLNSAVDHHHHHH. The sybodies were expressed and purified as previously described, except that 1 mM DTT was added to all buffers used for purification. Subsequently, DTT was removed and the sybodies were refolded to degassed PBS using a PD10 desalting column and immediately mixing the sybodies with Alexa Fluor 647 C5 maleimide (ThermoFisher Scientific) at a molar ratio of 1:3.6. The labeling reaction was carried out for 1 h at 4 °C. Excess label was removed by desalting the labeled sybody with a PD10 column.

Cellular-binding assay. For cellular-binding assays, overnight cultures of E. coli SF100 cells with and without overexpression of NgLptD were used. The number of cells was normalized by adjusting 1 ml of culture to an OD600 of 3. The cells were centrifuged once, resuspended three times with 500 μl 0.5% LMNG–BSA (PBS–BSA), and subsequently blocked for 20 min in the same buffer. After an additional wash with 500 μl of PBS–BSA, the cells were incubated for 20 min in 100 μl of PBS–BSA containing 1 μM of the Alexa Fluor 647-labeled sybodies. After three washes with 500 μl of PBS, cells were resuspended in 100 μl of PBS and transferred to a microtiter plate with nontransparent wells. Fluorescence was measured in a plate reader with excitation of 651 nm and emission of 671 nm.

Antibiotic-susceptibility assay. N. gonorrhoeae (Zopf) Trevican (ATCC 700825) was streaked from a glycerol stock on blood agar and incubated for 24 h at 37 °C with 5% CO2 atmosphere. Colonies were scraped off the agar and resuspended in Fastidious broth at a density of McFarland 0.5. The cells were further diluted 1:100 in Fastidious broth. In 96-well plates, dilution series of vancomycin with and without sybodies in Fastidious broth were prepared and mixed with the diluted culture. The plates were incubated without shaking at 37 °C with 5% CO2 atmosphere for 24 h. About 100 μl of a 0.4 mg/ml resazurin stock solution in PBS was gently agitated. The resazurin was subsequently washed by gravity flow with 10 column volumes (CV) of wash buffer A (200 mM NaCl, 20 mM Tris–HCl pH 8.0, 20 mM imidazole, 1% LDAO), 10 CV of Tris–HCl pH 8.0, 40 mM imidazole, and 0.5% LDAO), 10 CV of Wash buffer B (150 mM NaCl, 20 mM Tris–HCl, pH 8.0, 40 mM imidazole, and 0.2% LDAO), and 10 CV of Wash buffer D (150 mM NaCl, 20 mM Tris–HCl, pH 8.0, 40 mM imidazole, 0.1% lauryl maltose neopentyl glucol (LMNG)). Elution was performed with 5 CV of Elution buffer (150 mM NaCl, 20 mM Tris–HCl, pH 8.0, 0.01% LMNG). Eluted material was desalted against 150 mM NaCl, 20 mM Tris–HCl, pH 8.0, and 0.005% LMNG using disposable PD-10 desalting columns (GE Healthcare) and was concentrated in 100 kDa centrifugal concentrators (Millipore). Concentrated library was further purified by SEC on a Superdex 200 Increase column, equilibrated to 150 mM NaCl, 20 mM Tris–HCl, pH 8.0, and 0.005% LMNG. Fractions corresponding to the monomeric peak were pooled, concentrated, and flash-frozen in liquid nitrogen for subsequent use.

In vitro biotinylation. We observe for NgLptDE the C-terminus of LptD to include also hydrophilic, charged, and rather large residues, as it could thus be that LptD-protein termini are involved in the regulation of LPS transport.
added to the cells and incubated for one hour at 37 °C with 5% CO₂ atmosphere. Fluorescence was measured at 571 nm excitation and 585 nm emission.

Pro-Macrobodger generation. Pro-Macrobodies (PMbs) were produced in E. coli as described earlier for the original macrobodies36, Briefly, two PCR-amplified fragments were produced and cloned side-by-side into the expression vector pBXNPH3M (Addgene #110099)37-39 using FX cloning40. N-terminally of the resulting PMb plasmid, the plasmid expresses a perB leader sequence followed by a deca-His tag, and an MBP, and a 3C-protease site. The second proline of the linker is encoded in the sybodies and MBP, respectively, and released by digestion with the type IIS restriction enzyme SapI (NEB). The second proline of the linker is encoded in the sybodies and MBP, respectively, and released by digestion with the type IIS leader sequence followed by a deca-His tag, an MBP, and a 3C-protease site. The concentration of sybodies, bulk (RI) effects could be observed, but this effect did not influence data analysis. PMb21 showed a slightly decreased affinity (3 to 4-fold) compared with the respective sybody 21. This loss can be explained by a faster K_{off} of the PMb21.

Sample preparation and cryo-EM data acquisition. Quantifoil (1/2) 200-mesh copper grids were glow-discharged for 20 sec prior to sample freezing. About 3 µl of NGlpLDE–PMb51–PMb21 complex at a concentration of 1 mg/ml were placed on the grid, blotted for 3.0 s, and flash-frozen in a mixture of liquid propane and liquid ethane cooled with liquid nitrogen using a Vitrobot Mark IV (FEI) operated at 4 °C and under 100% humidity.

EM data-collection statistics in this study are reported in Supplementary Table 1. Data were recorded on a FEI Titan Krios transmission-electron microscope, operated at 300 kV and equipped with a Quantum-LS energy filter (slit width 20 eV, Gatan Inc.) containing a K2 Summit direct electron detector. Data were automatically collected using the software SerialEM41. Dose-fractionated movies (0.1- to 0.8-s exposure time) were recorded in electron-counting mode, with 0.8 electrons per square angstrom (e²/Å²) over 45 frames, or 50 e²/Å² over 35 frames for, respectively, the NGlpLDE (apo) or the NGlpLDE–PMb51–PMb21 samples. A defocus range of −0.8 to −2.8 μm was used and the physical pixel size was 0.64 Å/pixel for the NGlpLDE and 0.8 Å/pixel for the NGlpLDE–PMb51–PMb21 maps. Raw micrographs were online-analyzed and preprocessed using FOCUS42, which included gain normalization, motion correction, and calculation of dose-weighted averages with MotionCor243, as well as estimation of micrograph defocus with CTFFIND4.44

Image processing. The following processing workflows were used for the samples in the study. The aligned movies were imported into CryoSPARC V245. A set of alignment parameters was calculated with a calculated defocus range of 2.6 to 3.0 μm. The boxes were selected from which averages with poor CTF-estimation statistics were discarded. Automated particle picking in CryoSPARC V2 resulted in 815,057 particle locations for the NGlpLDE–PMb51–PMb21 sample. After several rounds of 2D classification, 490,743 particles were selected and subjected to 3D classification using the multi-class ab initio refinement process (5 classes, 0.4 similarity) and heterogeneous refinement. The best-resolved class consisting of 184,206 particles was finally selected for nonuniform refinement. The overall resolution of the resulted map was estimated at 3.4 Å based on the Fourier shell correlation (FSC) at 0.143 cutoff46. To visualize the LpDE-ND1-imerization interface, another round of 3D heterogeneous refinement was performed and a subset consisting of 80,140 particles was selected. Those particle coordinates used re-extraction of particle images with an increased box size. Particles were recentered by 2D classification in order to process the dimeric LpDE complex. Ab initio reconstruction and nonuniform refinement on this set of particles resulted in a Dmax38 NGlpLDE–PMb51–PMb21 map with an overall resolution of 5.2 Å. As for the opened state, a multiclass ab initio refinement process and heterogeneous refinement was performed for the NGlpLDE–PMb51–PMb21 sample. Of the five 3D classes, one class consisting of 93,151 particles was further refined by computationally removing the density corresponding to the detergent micelle with the particle-subtraction tool within CryoSPARC V2, followed by 3D local refinement. The resulting map had an estimated overall resolution of 4.7 Å as judged by FSC at 0.143 cutoff. Analysis of the apo NGlpLDE was performed similarly to the NGlpLDE–PMb51–PMb21. Briefly, a set of aligned averages with a calculated defocus range of −0.6 to −3.0 μm was selected, from which with average poor CTF-estimation statistics were discarded. Automated particle picking in CryoSPARC V2 resulted in 1,395,392 particle locations for the NGlpLDE–PMb51–PMb21 sample. After several rounds of 2D classification, 196,182 particles were selected and subjected to 3D classification using the multiclass ab initio refinement process (3 classes, 0.1 similarity) and heterogeneous refinement for the 2 best classes. The best-resolved class consisting of 119,115 particles was finally subjected to 3D nonuniform refinement. The overall resolution of the resulted map was estimated at 4.6 Å based on the Fourier shell correlation (FSC) at 0.143 cutoff.

Model building and refinement. An initial LpDE model was generated using SWISS-MODEL47, using as templates the KlplpD structure (PDB-ID 51IV) and the EcLpE structure (PDB-ID 4HRB). The template for building the PMb51–PMb51 complex was obtained from a structure solved with a (Val122 and Lys123) VL linker (PDB-ID 6HD8), as well as the same set of coordinates, but modeled with an engineered

SEC analysis/purification of LpDE-PMb complexes. To identify ternary and quaternary complexes of NGlpLDE with various PMbs against NGlpLDE, monomeric NGlpLDE was dialyzed from 10 mM Tris pH7.5 and 0.1% DDM, 300 mM NaCl, and 10% glycerol. The N-terminal MBP with the deca-His tag was removed by cleavage with 3 C protease overnight during dialysis against 150 mM KCl, 10 mM Hepes–NaOH, 20 mM imidazole, pH 7.6, and 10% glycerol. After removal of the His-tagged MBP by Re-IMAC, the unbound material was concentrated in 50 kDa centrifugal concentrator (Millipore) and subjected to SEC on a Superdex 200 Increase 15/100 column (column length 60 cm) in 20 mM Tris, pH 8.0 at 0.6 to 1.0 ml/min. The overall resolution of the resulted map was estimated at 4.6 Å based on the Fourier shell correlation (FSC) at 0.143 cutoff.

Molecular-dynamics simulations. Possible linkers connecting the VHH to MBP were assessed by all-atom MD simulations. After 300 ns of equilibration, conformational space was explored by conducting 500 ns MD trajectories initiated from a structure solved with a (Val122 and Lys123) VL linker (PDB-ID 6HD8), as well as the same set of coordinates, but modeled with an engineered
Crystallization and structure determination of PMb21

4. Freinkman, E., Chng, S. S. & Kahne, D. The complex that inserts authors upon reasonable request. Source data are provided with this paper.

5. Narita, S. & Tokuda, H. Biochemical characterization of an ABC transporter Bank under accession code PDB-7OMM. The X-ray structure of PMb21 was deposited during MD trajectories. This angle was defined as the angle between the geometrical centers of residue 1–120 (Nb), residue 122–123 (linker), and residue 124–486 (MBP). All MD simulations were conducted in explicit water, at room temperature (300 K, or 26.85 °C), and with Desmond standard parameterization and the OPLS-xe field.

Figure preparation

4. Figures were prepared using the programs Chimera X (http://www.cgl.ucsf.edu/chimera/54), Chimera (http://www.cgl.ucsf.edu/chimera/59), PyMOL (http://www.pymol.org) and Schrödinger (www.schrodinger.com).

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

4. The EM map for the high-resolution NgIptD–PMb21/PMb51 complex was deposited in the Electron Microscopy Data Bank under accession code EMD-12990. Atomic coordinates for NgIptD from the cryo-EM study were deposited in the Protein Data Bank under accession code PDB-7OMT. The X-ray structure of PMb21 was deposited with accession codes PDB-7OMT. All other data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nat. Methods* 14, 290–296 (2017).

Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Res.* 46, W296–W303 (2018).

Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. *J. Comput. Chem.* 25, 1605–1612 (2004).

Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 66, 486–501 (2010).

Zhu, K. et al. Docking covalent inhibitors: a parameter free approach to pose prediction and scoring. *J. Chem. Inf. Model.* 54, 1932–1940 (2014).

Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. *Acta Crystallogr. Sect. D Struct. Biol.* 75, 861–877 (2019).

Bowers, K. J. et al. In *Proceedings of the 2006 ACM/IEEE Conference on Supercomputing* (ACM/IEEE, 2006).

Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. *J. Chem. Theory Comput.* 12, 281–296 (2016).

Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. *Protein Sci.* 30, 70–82 (2021).

Acknowledgements

This work was supported by the Innosuisse grant 25864.1 PFLS-LS to leadXpro AG and M.A.S., M.H., and M.B. would like to thank Professor Yihua Huang (National Laboratory of Biomacromolecules, National Center of Protein Science-Beijing, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China) for kindly providing expression bacterial strain and expression vector but most importantly for scientific discussion.

Author contributions

M.B. and S.S. purified NgLptDE and NgLptDE-PMb complexes; M.B. and D.N. prepared samples for cryo-EM and collected data with M.C.; M.B., D.N., and H.S. analyzed cryo-EM data and built the models; M.H. and M.A.S. wrote the grant for sybody generation. I.Z., P.E., and M.A.S. generated sybodies and performed and analyzed microbiological assays; N.B. analyzed binding kinetics of NgLptDE-PMb and sybody complexes; S.S., I.Z., P.E., and M.A.S. generated sybodies and performed and analyzed microbiological assays; M.T. and R.K.Y.C. solved the X-ray structure of PMb21 and built the model; S.S., I.Z., P.E., and M.A.S. designed PMbs, performed MD simulations, and purified PMbs; M.B., S.S., M.A.S., J.D.B., H.S., and M.H. wrote the paper with input from all other authors.

Competing interests

LeadXpro AG, as patent applicant, has filed a patent on the commercial use of Pro-Macrobodies (application number: EP20157617.0) which has been accepted and for which S.S. and D.B. are listed as inventors. This patent covers the discovery and the process to generate Pro-Macrobodies as described in this paper. M.B., N.B., D.B., M.T., R.K.Y.C., and M.H. are current employees of leadXpro AG. All other authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-29459-2.

Correspondence and requests for materials should be addressed to Michael Hennig.

Peer review information *Nature Communications* thanks Russell Bishop and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2022