Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Impact of acute psychosocial stress on peripheral blood gene expression pathways in healthy men

Urs M. Nater a,b, Toni Whistler a,*, William Lonergan a, Tanja Mletzko b, Suzanne D. Vernon a,1, Christine Heim b

a Chronic Viral Diseases Branch, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control & Prevention, 1600 Clifton Rd, MS-G41, Atlanta, GA 30329, USA
b Dept. of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA

1. Introduction

The importance of psychosocial stress as a risk factor for a variety of negative health outcomes is widely recognized. Stress induces endocrine and immune system responses that help coping with the change in demand (McEwen, 1998) and stressors exert these influences by regulation of genes. Findings from previous gene expression studies in animal models show changes due to acute stress exposure cannot be readily translated to the human paradigm (Fujikawa et al., 2000; Liberzon et al., 1999). It has been suggested that peripheral blood mononuclear cell (PBMC) gene expression may provide an indicator of gene activation changes as a response to stress in humans (Segman et al., 2005), as lymphocytes have been shown to be perturbed following acute psychological stress (Aloe et al., 1994), probably mediated through endocrine and immune markers that are activated by the stressor. Only very few studies have investigated gene expression alterations due to stress in humans. Studies examining genome-wide transcriptional activity in PBMCs have been reported. One examined chronic isolation and showed it was associated with specific signaling pathways involved in immune regulation and biological stress responses (Cole et al., 2007). A more recent study associated chronic care-giving stress with alterations in glucocorticoid signal transduction as reflected by altered gene expression compared to a control group (Miller et al., 2008). Microarrays, which allow high-throughput profiling of transcriptional activity, are powerful tools that detect signatures of biological processes that underlie adaptive and maladaptive responses to a challenge of the system. Measurement of expression of multiple genes or even genome-wide transcriptional activity patterns is warranted. Previous studies have not attempted to study gene expression alterations using more than one single measurement time point. However, considering the complex chronology of biological processes that occur due to exposure to an acute stressor, repeated measurement of gene expression is crucial. In the current pilot study, we attempted to repeatedly measure gene expression patterns using a genome-wide approach allowing us to examine biological pathways changes that follow an acute psychosocial laboratory stressor in adult healthy men. As this is a “proof of concept” approach that will drive future research endeavors using a repeated measurement approach, no hypotheses about
alterations in specific pathways were formulated. Therefore, the following analyses should be regarded as explorative in nature and will hopefully inform future decisions on formulating specific hypotheses. However, we expected to find changes in processes that are relevant for the biological response to stress. In particular, psychological stress is known to activate the hypothalamic–pituitary–adrenal (HPA) axis (Charmandari et al., 2005). The HPA axis plays a fundamental role in regulating other homeostatic systems, including the sympathetic nervous system and the immune system. Cortisol exerts inhibitory effects on the secretion of pro-inflammatory cytokines, including interleukin (IL)-6, and helps return these cytokines to baseline levels after stress. Increased sympathetic responses may mediate increased immune responses especially during stress. Thus, we expected changes in gene expression profiles that were closely related to changes in these biological stress systems.

2. Methods

2.1. Participants and conditions

This study was approved by the Institutional Review Boards of Emory University School of Medicine and the Centers for Disease Control and Prevention (CDC). All subjects were recruited via newspaper advertisement. Only male participants were included in the study. Exclusionary criteria were significant medical illness, past or current presence of psychotic symptoms or bipolar disorder, current presence of psychostimulant substance abuse/dependency or eating disorders, as well as hormonal and psychotropic medication in the 4 weeks prior to study entry. Written informed consent was obtained prior to study entry and subjects were admitted as inpatients to the Emory University General Clinical Research Center. This study was conducted as part of a larger study.

2.2. Psychosocial stress procedure

A standardized and validated psychosocial stress test, the Trier Social Stress Test (TSST) (Kirschbaum et al., 1993), was performed between 15:00 h and 16:00 h. The test consists of a 10-min anticipation and preparation phase and a subsequent 10-min public speaking and mental arithmetic task in front of three individuals.

2.3. Assessments during the stress procedure

2.3.1. Psychometric measures

We measured positive and negative affect before and after TSST using the Positive and Negative Affect Scale (PANAS) (Crawford and Henry, 2004), which comprises 20 items describing emotions experienced at the present moment.

2.3.2. Biological measures

At 12:00 h, an intravenous (IV) catheter was inserted and subjects were not allowed to intake anything per oral except for water until 17:00 h. Blood was sampled in ethylene-diaminetetraacetic acid (EDTA) tubes through the IV before (~15 and 0 min), during (15 min) and after the stress exposure (30, 45, 60, 75, and 90 min) for assessment of plasma adrenocorticotropin (ACTH), cortisol, norepinephrine/epinephrine, and interleukin (IL)-6 concentrations. ACTH and cortisol concentrations were measured using commercial radioimmunoassays (ACTH: Nichols Institute, San Juan Capistrano, CA; cortisol: DiaSorin Corporation, Stillwater, MN). Inter- and intra-assay coefficients of variation were less than 6% for ACTH and less than 4% for cortisol. Catecholamines were measured by reverse-phase, ion pair high performance liquid chromatography. For norepinephrine, mean intra-assay coefficient of variation was 7.1% (300–550 pg/ml) and mean inter-assay coefficient of variation was 10.3% (300–550 pg/ml). For epinephrine, mean intra-assay coefficient of variation was 9.6% (380 pg/ml) and mean intra-assay coefficient of variation was 16.3% (60–140 pg/ml). Plasma IL-6 concentrations were measured by enzyme-linked immunosorbent assay (B&D Systems, Minneapolis, MN).

2.3.3. Gene expression profiling

Whole blood was drawn (at 0, 30, and 60 min) into an 8 ml BD Vacutainer Cell Processing Tube with sodium citrate (Becton Dickinson, NJ), and immediately processed according to manufacturer’s instructions. Total ribonucleic acid (RNA) was isolated using TRIzol/LIE reagent (Invitrogen, CA) and RNA quality and quantity was assessed using the Agilent 2100 Bioanalyzer, all RNA used had RIN > 8.5. Contaminating deoxyribonucleic acid (DNA) was removed by incubation with 1 U DNase (GeneHunter Corp., NJ) at 37 °C for 15 min. RNA was labeled and arrays processed as previously described (Ojaniemi et al., 2003; Whistler et al., 2003). Hybridization was onto a 20K array (MWG Biotech, Germany, now Ocimum Biosolutions). A median background value was calculated around each of the features and subtracted from the mean feature signal to give the net signal for the respective gene. The data was quantile normalized and log transformed. Features showing minimal variation across the set of arrays were excluded from the analysis, those whose expression differed by at least 1.5-fold from the median in at least 50% of the arrays were retained, giving 7247 genes for further analysis.

2.4. Statistical analyses

2.4.1. Gene set expression comparison (GSEC) analysis

The GSEC tool (Xu et al., 2008) in BRR-ArrayTools (v3.7; http://linus.nci.nih.gov/BRR-ArrayTools.html) analyzes pre-defined gene sets for differential expression among pre-defined classes (Pavlidis et al., 2004). Gene sets for this analysis were derived from 593 BioCarta (http://www.biocarta.com), or 181 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (http://www.genome.jp/kegg/pathway.html) and 65 experimentally verified transcription factor targets. We identified pathways whose expression was differentially regulated among the classes. By analyzing gene sets, rather than individual genes, we were able to reduce the number of tests conducted, and allow findings among biologically related genes to reinforce each other. This analysis is different than annotating a gene list using gene ontology (GO) categories. For each gene set we computed the number of genes represented on the microarray in that group, and calculated the statistical significance for each gene by a univariate analysis using a paired t-test with a random variance model (Wright and Kirby, 2003). Then, for each gene set two p-value summary statistics (the Fisher (LS) and the Kolmogorov-Smirnov (KS) statistics (Simon and Lam, 2004) and the Efron–Tishirani’s maxmean test statistic (Efron and Tishirani, 2007) were calculated. The significance level associated with the gene set is the proportion of the random samples giving as large a value of the summary statistic as in the actual genes of the specified gene set. We considered a gene set to be significantly differentially regulated if one of the tests was <0.05.

2.4.2. Transcription factor analysis

In an attempt to determine the over-representation of transcription factor binding sites (TFBS) within the set of co-expressed genes from the GSEC pathway analysis, as compared with a background set of genes, the Opossum system was used for enrichment analysis (Ho Sui et al., 2005; Huang et al., 2005). The analysis parameters looked at promoters 2000 nucleotides upstream of each gene’s transcription start site, using a conservation level of top 10 percentile of non-coding conserved regions with an absolute minimum percent identity of 70%. Two measures of statistical over-representation were measured, a Z-score and a one-tailed Fisher exact probability.

2.4.3. Peripheral markers analysis

The Friedman test was used to compare observations repeated on the same subjects.

2.5. Microarray validation

2.5.1. Quantitative real-time polymerase chain reaction (qPCR)

Validation of the microarray gene expression findings was performed using qPCR on four genes that showed different expression patterns between the three time points for all donors. The candidate genes for validation are given in Table 1.

Endogenous control genes were selected on the basis of the microarray gene expression data from all time points. Ten genes were selected that showed low coefficients of variation, and genes with different functions were chosen to avoid genes belonging to the same biological pathways that might be co-regulated. GeNorm was used to select the most stable pair-wise combination of reference genes: phosphoglycerate kinase 1 (PGK1) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Table 1). The slope of a five-step fivefold dilution standard curve (100 μg–10 pg) for each primer set was used to determine their PCR amplification efficiency (10−1/p=2omp). The template cDNA was pooled total RNA extracted from PBMC of several donors.

One microgram of DNAse digested RNA was reverse transcribed into cDNA using random hexamers and the Transcriptase Reverse Transcriptase kit (Roche Applied Sciences, Indianapolis, IN) according to the manufacturer’s instructions. Quantitative real-time PCR was performed using the LightCycler® 480 system and the Probes Master Mix kit (Roche) in 96 well plates according to the manufacturer’s instructions. Primers and probes used are outlined in Table 1. All samples including the external standards and non-template control were run in duplicate. The cycling conditions consisted of one cycle at 95 °C for 5 min followed by 45 cycles of 95 °C ‒ 15 s, 60 °C ‒ 15 s and 72 °C ‒ 45 s. The Lightcycler 480 software was used to extract crossing points. The data was normalized to GAPDH and PGK1 using the geometric means of the reference genes.

3. Results

Demographic characteristics of the participants are summarized in Table 2. Positive affect did not change before and after stress. However, negative affect increased significantly from pre- to post-stress.
Hydrolysis primer and probe sets used for the validation of gene expression data. The probes were labeled with the HEX fluorophore 5' and the non-fluorescent Black Hole Quencher 3'.

Gene symbol	Forward primer sequence (5’–3’)	Reverse primer sequence (5’–3’)	Probe sequence (5’–3’)	Amplicon length (bp)	PCR efficiencya
GAPDH	AATCTGGCAAAATAGTACGATCAG	GACCCATGACTGCTGCA	AGCATAGTCGAGGCCC	67	1.88
PGK1	GAAAGACTTGGTACGATCTCA	CAATACCCCGACAGGGATTCA	TCACGCAAGTTGAGTTG	68	1.93
PKC	TGACAACCTCCCCCTTCTTTGA	GTTACATATCCATGACGACTTCA	ACTCTGTTCCAGACAGTTG	82	1.80
CASP8	CTTGGGGTCTGCACACTT	CGGCTGCTGCTTCTGCA	CGGCTGCTGGAGGAGCG	78	1.96
ALDH3A2	GCAGGAGTTGACCAAACTTCC	TCACGCTTGGACAGGAGCTG	CGGCTGCTGAGGAGCG	120	1.88
IL6R	ATGACCTGAAACGTACCT	CAGGTCAACCTGCTGCA	CCGCTGCTGGAGGAGCG	71	1.99

a The maximum efficiency for a PCR reaction = 2.

Analysis of repeated measures of peripheral markers revealed significant differences between time points for ACTH (χ²(7) = 24.8; p < 0.001), cortisol (χ²(7) = 34.5; p < 0.001), norepinephrine (χ²(7) = 47.7; p < 0.001), and epinephrine (χ²(7) = 41.0; p < 0.001) (Fig. 1A–D). Plasma IL-6 (χ²(7) = 38.2; p < 0.001) and log₂ normalized signal intensity for IL-6 extracted from gene expression data are presented in Fig. 2.

Comparison between baseline (0 min) and stress samples (30 min) revealed a total of 49 pathways that significantly changed (p < 0.05) (Table 3). When comparing stress (30 min) and recovery samples (60 min), 36 pathways were significantly changed (Table 4). The parametric p-values and the geometric means for all genes identified in the pathways of Tables 3 and 4 can be found in Supplementary file 1. Eight pathways were identiﬁed as common to each of these analyses (bold highlight, Tables 3 and 4) involving 210 unique genes. This represents 36 and 45% of the unique genes common to these eight pathways. We are able to dissect out the gene expression changes in each of the pathways (Supplementary file 2). The Janus kinase–signal (JAK/STAT) signaling pathway is central to the stress response and looking at the expression changes between baseline and stressor (0 and 30 min) we find 42/56 genes are showing ≥2-fold increase in expression. Then 31/42 of these genes are down-regulated (≥2-fold change) during the recovery (30–60 min). A further 11 genes in this pathway, unchanged from baseline to stress, are also down-regulated during the recovery. Similar analytical dissection of the gene regulation for the remaining seven common pathways is given in Supplementary file 2.

The transcription factors that regulate the genes in the pathways that were found to be differentially expressed were examined by over-representation analysis (Tables 5 and 6).

The limited amount of RNA on several subjects allowed for validation of four genes by qPCR (Fig. 3). Overall there was very good agreement of the qPCR data with the mRNA generated microarray data, in that the trends of differential expression were maintained in both.

Table 1
Hydrolysis primer and probe sets used for the validation of gene expression data. The probes were labeled with the HEX fluorophore 5', and the non-fluorescent Black Hole Quencher 3'.

Gene symbol	Forward primer sequence (5’–3’)	Reverse primer sequence (5’–3’)	Probe sequence (5’–3’)	Amplicon length (bp)	PCR efficiencya
GAPDH	AATCTGGCAAAATAGTACGATCAG	GACCCATGACTGCTGCA	AGCATAGTCGAGGCCC	67	1.88
PGK1	GAAAGACTTGGTACGATCTCA	CAATACCCCGACAGGGATTCA	TCACGCAAGTTGAGTTG	68	1.93
PKC	TGACAACCTCCCCCTTCTTTGA	GTTACATATCCATGACGACTTCA	ACTCTGTTCCAGACAGTTG	82	1.80
CASP8	CTTGGGGTCTGCACACTT	CGGCTGCTGCTTCTGCA	CGGCTGCTGGAGGAGCG	78	1.96
ALDH3A2	GCAGGAGTTGACCAAACTTCC	TCACGCTTGGACAGGAGCTG	CGGCTGCTGAGGAGCG	120	1.88
IL6R	ATGACCTGAAACGTACCT	CAGGTCAACCTGCTGCA	CCGCTGCTGGAGGAGCG	71	1.99

a The maximum efficiency for a PCR reaction = 2.

4. Discussion

Acute stressors trigger adaptive up-regulation of natural immunity, redistribution of cells (Goebel and Mills, 2000), and preparation of the natural immune system (Miller et al., 2005). In our analysis these effects from psychosocial stress are reflected in changes in acute inflammatory response pathways (see Table 3, 33–36), and pathways regulating adhesion molecules (Table 3, 1–5). The effects of the leukocytes are more apparent in the baseline-stress analysis than the stress–recovery time period, as a greater number of pathways are associated with cell migration and adhesion in the former compared to the latter. In addition, stress response pathways associated with nuclear factor kappa B (NF-κB) appear to be associated with the stress–recovery period (Table 4, 29–32). A variety of pathways were significantly changed between baseline and stress, involving basic cell regulatory and signaling processes, many involving cell growth, differentiation and proliferation (Table 3, 17–29). Also, it was noted that ras-related C3 botulinum toxin substrate 1 (RAC1) was central to the functioning of several pathways in the baseline–stress analysis (Table 3, 1, 2 and 16). This protein is a pleiotropic regulator of many cellular processes, including the cell cycle, cell–cell adhesion, and motility (through the actin network). Thus, all these pathways are implicated in the adhesion and diapedesis of immune cells from the lymphatic system to the blood stream. A shortfall in this pilot study was that we did not monitor the cell subsets during the course of the time series, which is essential for larger scale studies, so we can account for the differences in the gene expression profiles being driven by the changes in T cell, B cell and natural killer cell populations.

Acute stressors trigger suppression of specific immunity (Segerstrom and Miller, 2004). The role of psychological stress in the regulation of lymphocyte adhesion molecules has been well examined (Mills et al., 1998; Redwine et al., 2003). These mechanisms are also reflected by changes in the pathway implicated in adhesion (Table 3, 1–5). More specifically, stress induces changes in effector T cell distribution, as can be seen by changes in the pathways involved in T helper cell mobilization (Table 3, 28 and 34–35).

Apoptosis plays an important role in the organism's response to acute stress. While lymphocytes expand and proliferate in response to acute stress, apoptosis has to be inhibited in the early phase of the stress response. In the later stages, though, apoptosis must occur to reduce the number of accumulated cells and to restore homeostasis. Our findings show that during stress gene products involved in apoptotic processes are altered upon exposition of the organism to acute stress (Table 3, 6–7, 15 and 23).

Several pathways involved in the immediate stress response were common across stress and recovery, indicating common mechanisms underlying the processes that allow the body to mount an adequate response and recover from a stressor to regain homeostasis. Two of the pathways, involved in metabolic processes (Oxidative Phosphorylation and Ascorbate metabolism, a total of 52 genes) all showed up-regulation of gene expression.
between baseline-stress, followed by down-regulation during recovery, as did the vast majority of genes in the JAK/STAT signaling pathway. The immediate physiological consequences of the stress response are evident in the analyses seen here, i.e. immune activation and energy mobilization. However, genes in the three pathways associated with the cell cycle, cell differentiation, etc., showed mixed regulation of the genes, and genes that were up- (or down-) regulated in the baseline-stress analysis were still up-regulated in the stress–recovery analysis (Supplementary file 2). Some of this reflects the biological changes occurring in the lymphocyte populations with respect to cell differentiation, activation and survival, as the proportion and numbers of circulating cells changes, as is well documented during stressors (Segerstrom and Miller, 2004; Zorrilla et al., 1995).

There are five transcription factors that are common to the genes in both GSEC pathway analyses (Tables 5 and 6). These are NF-κB, V-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cells 3, p55 (avian) (RELA), nuclear receptor subfamily 3, group C, member 1 (NR3C1 or glucocorticoid receptor), spermatogenic leucine zipper 1 (SPZ1), and E74-like factor 5 (ELF5). The first two interact with each other to form the NF-κB transcription complex. This complex is involved in cellular responses to stimuli such as

Fig. 1. Biological measures during psychosocial stress test. Plasma ACTH (A), plasma cortisol (B), plasma norepinephrine (C), and plasma epinephrine (D) changed significantly over time. Red arrows indicate when blood sample was analyzed for PBMC gene expression. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Fig. 2. Plasma IL-6 and log2 normalized signal intensity for IL-6 extracted from gene expression data. Similar profiles for the two measures add validity to the gene expression data. Red arrows indicate when blood sample was analyzed for PBMC gene expression. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
Table 3

Results of the paired class comparison analysis between baseline and stress time points using BioCarta and KEGG pathways as defined gene sets. Pathways containing more than five genes present on the array were included in the analysis. This meant that 176 BioCarta and 146 KEGG pathways were considered. A univariate analysis using paired t-tests with a random variance model was run to determine the differentially expressed genes in each gene set. Significant gene sets were then identified with summary statistics (the IS/IS permutation test and Efron–Tishirani’s maxmean test (Efron and Tishirani, 2007) using a threshold of 0.05 for at least one test. In the combined BioCarta/KEGG analysis 49 pathways passed this threshold. Pathways in highlighted in bold are common to both the baseline-stress and stress–recovery analyses. p-Values and Log ratios are presented in Appendix B.

Pathway ID	Pathway description	No. of genes	Biological function
1	uCalpain, friends	11	Adhesion
2	Agrin in post synaptic differentiation	19	Adhesion, cell migration
3	Rho cell motility signaling pathway in corneal epithelia	10	Adhesion, cell migration
4	Rho cell motility signaling pathway	13	Adhesion, cell morphology
5	Rac1 cell motility signaling pathway	11	Adhesion, cell signaling
6	Huntington’s disease	13	Apoptosis
7	Ras signaling pathway	8	Apoptosis
8	Intrinsic prothrombin activation pathway	6	Blood collection
9	Cell cycle	43	Cell cycle
10	Cell cycle: G1/S check point	9	Cell cycle
11	E2F1 destruction pathway	5	Cell cycle
12	Influence of Ras and Rho proteins on G1 to S Transition	12	Cell cycle
13	Regulation of p27 phosphorylation during cell cycle progression	7	Cell cycle progression
14	Ubiquitin mediated proteolysis	15	Cell cycle, immune response
15	Regulator of transcriptional activity by PML	15	Cell growth, apoptosis
16	Angiotensin II mediated activation of JNK Pathway via Pyk2	16	Cell migration
17	Multi-drug resistance factors	6	Cell regulation
18	Role of EGF receptor transactivation by GPCRs in cardiac hypertrophy	6	Cell regulation
19	Gap junction	35	Cell signaling
20	Signaling pathway from C-protein families	10	Cell signaling
21	Erk1/Erk2 MAPK signaling pathway	13	Cell signaling, cell growth and differentiation
22	Effects of calcineurin in keratinocyte differentiation	5	Cell signaling: Ca++
23	JAK/STAT signaling pathway	56	Cell signaling: cytokines, growth factors, stress
24	Wnt signaling pathway	48	Cell signaling: development, proliferation, mobility
25	Pelp1 modulation of estrogen receptor activity	5	Cell signaling: growth factor signaling
26	MAPK signaling pathway	114	Cell signaling: growth, inflammation, apoptosis
27	Fc epsilon receptor I signaling in mast cells	12	Cell signaling: immunity, arachadonic acid metabolism
28	Notch signaling pathway	17	Cell signaling: T-cell development
29	Segmentation clock	8	Cell signaling: WNT and Notch
30	Folate biosynthesis	14	Cofactor biosynthesis
31	Mechanism of gene regulation by peroxisome proliferators via PPARa	20	Gene regulation
32	Aspirin blocks signaling pathway involved in platelet activation	6	Hemostasis
33	Natural killer cell mediated cytotoxicity	64	Immune response: NK cell
34	Dendritic cells in regulating TH1 and TH2 development	5	Immune response: T-cell
35	T cell receptor signaling pathway	14	Immune response: T-cell
36	Role of MEF2D in T-cell apoptosis	5	Immune response: T-cell; apoptosis
37	Long-term depression	32	Learning and memory
38	Long-term potentiation	29	Learning and memory
39	Trypophan metabolism	41	Metabolism: Amino acid
40	Aminosugars metabolism	6	Metabolism: carbohydrate
41	Ascorbate and aldarate metabolism	9	Metabolism: carbohydrate
42	Oxidative phosphorylation	43	Metabolism: energy production
43	Pantothenate and CoA biosynthesis	8	Metabolism: fatty acid
44	Glycosaminoglycan degradation	10	Metabolism: glucosamine
45	Heparan sulfate biosynthesis	7	Metabolism: glucosamine
46	Glycosphingolipid biosynthesis - ganglosieres	9	Metabolism: glycolipid
47	Alkaloid biosynthesis II	16	Metabolism: secondary metabolites
48	PRC2 complex long-term gene silencing by modification of histone tails	17	Regulation gene expression
49	ADP-ribosylation factor	10	Vesicular trafficking

stress and plays a key role in regulating the immune response (Avitsur et al., 2003; Bhatara et al., 1998). In fact, it has recently been identified as a potential critical bridge between stress and cellular activation (Bierhaus et al., 2003; Rosecrans and Karin, 1998). Another common transcription factor regulating the differentially expressed genes in the common pathways was IR3C1, a transcription factor that binds to glucocorticoid response elements (GRE) and is a modulator of other transcription factors. It affects inflammatory responses, cellular proliferation and differentiation. SP21 is involved in regulating genes involved in cell growth and differentiation, while ELF5 is an ETS-domain transcription factor, which regulate a diverse range of biological functions including mammalian hematopoiesis (Sharrocks et al., 1997).

Cortisol activation of the glucocorticoid receptor (GR) exerts broad anti-inflammatory effects by inhibiting NF-kB/Rel transcription factors and other pro-inflammatory signaling pathways such as the JAK/STAT signaling pathway (Collado-Hidalgo et al., 2006; Rhen and Cidlowski, 2005). Exploring the JAK/STAT signaling pathway in the baseline-stress GSEC analysis (Supplementary file
Table 4

Results of the paired class comparison analysis between stress and recovery time points using BioCarta and KEGG pathways as defined gene sets. Pathways containing more than five genes present on the array were included in the analysis. This meant that 176 BioCarta and 146 KEGG pathways were considered. A univariate analysis using paired t-tests with a random variance model was run to determine the differentially expressed genes in each gene set. Significant gene sets were then identified with summary statistics (the LS/KS permutation test and Efron–Tishirani’s maxmean test (Efron and Tishirani, 2007) using a threshold of 0.05 for at least one test. In the combined BioCarta/KEGG analysis 49 pathways passed this threshold. Pathways in highlighted in bold are common to both the baseline-stress and stress–recovery analyses.

Table 5

Statistically over-represented TFBS in genes associated with the GSEC baseline and stress analysis as determined by Opossum. Results displayed where Z-score ≥ 5 and Fisher ≤ 0.01.

Transcription factor	TF class	Information content	Target gene hits	Background TFBS rate	Target TFBS rate	Z-score	Fisher score
MZF1_5-13	Zn-Finger, C2H2	9.4	301	0.0222	0.0245	10.6	2.71E-07
MZF1_1-4	Zn-Finger, C2H2	8.6	377	0.0464	0.0494	10.3	2.20E-04
SP1	Zn-Finger, C2H2	9.7	290	0.02	0.022	9.9	6.78E-08
TEAD1	TEA	15.7	100	0.0029	0.0037	9.9	6.78E-08
REL	REL	14.8	141	0.0039	0.0048	9.2	2.39E-05
GABPA	ETS	13.9	157	0.0049	0.0057	8.3	8.50E-05
REL	REL	10.5	227	0.0089	0.01	8.1	4.86E-07
CEBPA	bZIP	9.2	210	0.0118	0.013	7.8	5.60E-04
ELF5	ETS	8.7	353	0.0291	0.0307	6.6	4.05E-07
Sp1	BHLH-ZIP	11.9	166	0.0049	0.0056	6.6	1.13E-08
NR3C1	Nuclear Receptor	14.7	60	0.0023	0.0027	6.4	1.48E-03
ELK1	ETS	8.8	315	0.0201	0.0213	6.1	2.56E-07
HFH	bZIP	11.1	124	0.0048	0.0054	5.9	6.55E-03
Arrt-Ahr	bHLH	9.5	319	0.0179	0.0189	5.7	6.97E-05
GFI	Zn-Finger, C2H2	9.5	270	0.0169	0.0179	5.4	4.65E-05
RORA_1	Nuclear Receptor	13.2	197	0.006	0.0065	5.0	1.61E-09
NF-kB	REL	13.3	180	0.0057	0.0062	5.0	5.24E-07

a This is the specificity of the TFBS profile’s position weight matrix.
b The number of times this TFBS was detected within the conserved non-coding regions of the background or target set of genes.
c The likelihood that the number of TFBS nucleotides detected for the included target genes is significant as compared with the number of TFBS nucleotides detected for the background set. Z-score is expressed in units of magnitude of the standard deviation.
d The probability that the number of hits vs. non-hits for the included target genes could have occurred by random chance based on the hits vs. non-hits for the background set.
Statistically over-represented TFBS in genes associated with the GSEC stress and recovery analysis as determined by Opossum. Results displayed where Z-score ≥5 and Fisher

Transcription factor	TF class	IC^a	Target gene hits	Background TFBS rate^b	Target TFBS rate^b	Z-score^c	Fisher score^d
REST	Zn-Finger, C2H2	22.958	10	0.0002	0.0006	17.8	1.72E-03
NR3C1	Nuclear Receptor	14.749	49	0.0023	0.0031	9.9	2.77E-03
RELA	REL	14.757	105	0.0039	0.0047	7.1	3.93E-03
NF-kB	REL	13.345	142	0.0057	0.0065	6.2	2.39E-05
Sp1	bHLH-ZIP	11.907	127	0.0049	0.0056	5.8	9.30E-06
SRF	MA3S	17.965	17	0.0005	0.0007	5.6	4.41E-02
ETS	ETS	8.693	280	0.0291	0.0305	5.2	4.47E-05

^a This is the specificity of the TFBS profile’s position weight matrix.
^b The number of times this TFBS was detected within the conserved non-coding regions of the background or target set of genes.
^c The likelihood that the number of TFBS nucleotides detected for the included target genes is significant as compared with the number of TFBS nucleotides detected for the background set. Z-score is expressed in units of magnitude of the standard deviation.
^d The probability that the number of hits vs. non-hits for the included target genes could have occurred by random chance based on the hits vs. non-hits for the background set.

3) we see 19 genes are identified with the NF-kB/RELA TFBS combination and eight genes are up-regulated ≥2-fold between baseline and stress, while only three of these genes are down-regulated. Three of five genes with NR3C1 (GR) promoter sequences in the JAK/STAT pathway are down-regulated (Supplementary file 3). We find that the cortisol effects are evident in the gene expression patterns during the time series analysis. This indicates by using state-of-the-art methodologies we can explore the biological changes of psychological stressors.

Several limitations of the current study need to be addressed. The small sample size limits generalization to a broader population. Also, not all genes measured in the microarrays were annotated and genes that might be critical for the stress response might thus have been omitted from our analysis. Related to this issue, only a fraction of the annotated genes are summarized in a pathway. To some extent, we were able to address some of these limitations by analyzing gene sets, rather than individual genes, thus we were able to reduce the number of tests conducted, and allow findings among biologically related genes to reinforce each other. This functional class scoring is a more powerful method of identifying differentially expressed gene classes than the commonly used over-representation analysis, or annotation of gene lists based on individually analyzed genes (Simon and Lam, 2004). It indicates which gene sets contain more differentially expressed genes than would be expected by chance. Further, we were able to measure gene expression patterns at three time points (immediately before and after, as well as 30 min after an acute stressor) in our current study. It would have certainly been of great interest to have further measures beyond that time frame. Longer lasting changes in the endocrine, immune, and sympathetic nervous system could not be captured in our study. Clearly, future studies need to incorporate more measurement time points in order to be able to capture the complex biological processes that occur following an acute stressor. Also, increasing both sample size and sampling time points will allow us to more closely describe cellular events in a chronological order as they occur before, during, and after a stressor. Finally, we chose to use a within-subject measurement approach. This allowed us to examine changes of biological pathways after exposure to an acute stressor. However, further studies that will expand our current efforts will benefit from including a control condition in which no stress intervention occurred. This will allow discerning baseline and stress-related processes.

In conclusion, we were able to show even in a small sample of healthy volunteers that effects of acute psychological stress are reflected in genome-wide transcriptional activity changes in peripheral blood. Specific pathways may be changed in specific disorders in response to psychosocial stress. Our pilot study needs to be replicated and future studies will expand our current findings by including more subjects. The stress-related changes that we were able to describe are most likely adaptive responses to a
moderate stressor. It might be of great interest to use this approach in clinical samples. Identification of gene expression patterns relevant for psychiatric and somatic disorders that are related to stress has the potential to identify novel targets for the prevention and treatment of adverse outcomes of stress.

Conflicts of interest

Drs. Nater, Whistler, Vernon, and Ms. Mletzko and Mr Lonergan reported no biomedical financial interests or potential conflicts of interest. Dr. Heim reports having received funding from NIMH, CDC, NARSAD, ADAA, Eli Lilly, and Novartis.

Acknowledgments

This study was supported by a 2002 NARSAD Young Investigator Award (CH) and a PHS grant, NCRR M01-RR00039 (Emory University Hospital General Clinical Research Center). This research was supported in part by an appointment to the Research Participation Program at the Centers for Disease Control and Prevention administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and CDC (UMN). The funding sources did not have any role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.biopsycho.2009.06.009.

References

Aloe, L., Bracci-Laudiero, L., Alleva, E., Lambiase, A., Micera, A., Tirasas, P., 1994. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes. Proceedings of the National Academy of Science of the United States of America 91 (22), 10440–10444.

Avitsur, R., Padgett, D.A., Dhabhar, F.S., Stark, J.L., Kramer, K.A., Engler, H., et al., 2001. Expression of glucocorticoid resistance following social stress requires a second signal. Journal of Leukocyte Biology 74 (4), 507–513.

Bhatara, V.S., Tripathi, R.P., Sankar, R., Gupta, A., Khushu, S., 1998. Frontal lobe protein magnetic-resonance spectroscopy in Graves disease: a pilot study. Psychoneuroendocrinology 23 (6), 605–612.

Bierhaus, A., Wolf, J., Andrássy, M., Rohleder, N., Humpert, P.M., Petrov, D., et al., 2003. A mechanism converting psychosocial stress into mononuclear cell activation. Proceedings of the National Academy of Science of the United States of America 100 (4), 1920–1925.

Chamarandis, E., Tsigos, C., Chrousos, G., 2005. Endocrinology of the stress response. Annual Review of Physiology 67, 259–284.

Cole, S.W., Hawkley, L.C., Arevalo, J.M., Sung, C.Y., Rose, R.M., Cacioppo, J.T., 2007. Social regulation of gene expression in human leukocytes. Genome Biology 8 (9), R189.

Collado-Hidalgo, A., Sung, C., Cole, S., 2006. Adrennergic inhibition of innate anti-viral response: PKA blockade of Type I interferon gene transcription mediates catecholamine support for HIV-1 replication. Brain, Behavior, and Immunity 20 (6), 552–563.

Crawford, J.R., Henry, J.D., 2004. The positive and negative affect schedule (PANAS): construct validity, measurement properties and normative data in a large non-clinical sample. The British Journal of Clinical Psychology 43 (Pt 3), 245–265.

Efron, B., Tishirani, R., 2007. On testing the significance of sets of genes. Annals of Applied Statistics 1 (1), 107–129.

Fujikawa, T., Soya, H., Fukuoika, H., Alam, K.S., Yoshizato, H., McEwen, B.S., et al., 2000. A biphasic regulation of receptor mRNA expressions for growth hormone, glucocorticoid and mineralocorticoid in the rat dentate gyrus during acute stress. Brain Research 874 (2), 186–193.

Goebl, M.U., Mills, P.J., 2000. Acute psychological stress and exercise and changes in peripheral leukocyte adhesion molecule expression and density. Psychosomatic Medicine 62 (5), 664–670.

Ho Sui, S.J., Mortimer, J.R., Arevalias, D.J., Brumm, J., Walsh, C.J., Kennedy, B.P., et al., 2005. oPOSSUM: identification of over-represented transcription factor binding sites in co-expressed genes. Nucleic Acids Research 33 (10), 3154–3164.

Huang, S., Fulton, D., Arevalias, D.J., Perco, P., Ho Sui, S.J., Mortimer, J.R., et al., 2005. Identification of over-represented combinations of transcription factor binding sites in sets of co-expressed genes. Advances in Bioinformatics and Computational Biology, vol. 3. Imperial College Press, London, pp. 247–256.

Kirschbaum, C., Pirke, K.M., Hellhammer, D.H., 1993. The ‘Trier Social Stress Test’—a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology 28 (1–2), 76–81.

Liberzon, I., Lopez, J.F., Flagel, S.R., Vazquez, D.M., Young, E.A., 1999. Differential regulation of hocompalp glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. Journal of Neuroendocrinology 11 (1), 11–17.

McEwen, B.S., 1998. Protective and damaging effects of stress mediators. The New England Journal of Medicine 338 (3), 171–179.

Miller, G.E., Chen, E., Sze, J., Marin, T., Arevalo, J.M., Doll, R., Ma, R., Cole, S.W., 2008. A functional genomic fingerprint of chronic stress in humans: blunted glucocorticoid and increased NF-kappaB signaling. Biol Psychiatry 64, 266–272.

Miller, G.E., Rohleder, N., Stetler, C., Kirschbaum, C., 2005. Clinical depression and regulation of the inflammatory response during acute stress. Psychosomatic Medicine 67 (5), 679–687.

Mills, P.J., Ziegler, M.G., Rehman, J., Maisel, A.S., 1998. Catecholamines, catecholamine receptors, cell adhesion molecules, and acute stressor-related changes in cellular immunity. Advances in Pharmacology 42, 587–590.

Ojaniemi, H., Evengard, B., Lee, D.R., Unger, E.R., Vernon, S.D., 2003. Impact of RNA extraction from limited samples on microarray results. Biotechniques 33 (5), 968–973.

Pavlidis, P., Qin, J., Arango, V., Mann, J.J., Sibille, E., 2004. Using the gene ontology for microarray data mining: a comparison of methods and application to age effects in human prefrontal cortex. Neurochemical Research 29 (6), 1213–1222.

Redwine, L., Snow, S., Mills, P., Irwin, M., 2003. Acute psychological stress: effects on chemotaxis and cellular adhesion molecule expression. Psychosomatic Medicine 65 (4), 598–603.

Rhen, T., Cullfors, J., 2005. Antiinflammatory action of glucocorticoids—new mechanisms for old drugs. The New England Journal of Medicine 353 (16), 1711–1723.

Rosecrans, J.A., Karin, L.D., 1998. Effects of nicotine on the hypothalamic–pituitary–adrenal (HPA) and immune function: introduction to the Sixth Nicotine Round Table Satellite. American Society of Addiction Medicine Nicotine Dependence Meeting, November 15, 1997, Psychoneuroendocrinology 23 (2), 95–102.

Schaffer, L., Burkhardt, T., Muller-Vizentini, D., Rauh, M., Tomaske, M., Mieth, R.A., et al., 2008. Cardiac autonomic balance in small-for-gestational-age neonates. American Journal of Physiology. Heart and Circulatory Physiology 294 (2), H884–890.

Segman, S.C., Miller, G.E., 2004. Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychology Bulletin 130 (4), 601–630.

Segman, R.H., Shefi, N., Goltser-Dubner, T., Friedman, N., Kaminski, N., Shalev, A.Y., et al., 2005. Periphereral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Molecular Psychiatry 10 (5), 500–513 425.

Sharrock, A.D., Brown, A.L., Ling, Y., Yates, P.R., 1997. The ETS-domain transcription factor family. The International Journal of Biochemistry & Cell Biology 29 (12), 1371–1387.

Simon, R., Lam, A., 2004. BRB-ArrayTools User Guide, Version 3.2. Biometric Research Branch, National Cancer Institute.

Whistler, T., Unger, E.R., Nisenbaum, R., Vernon, S., McEwen, B.S., 2003. Integration of gene expression, clinical, and epidemiologic data to characterize Chronic Fatigue Syndrome. Journal of Translational Medicine 1 (1), 10.

Wright, R.A., Kirby, L.D., 2003. Cardiovascular correlates of challenge and threat appraisals: a critical examination of the biopsychosocial analysis. Personality and Social Psychology Review 7 (3), 216–233.

Xu, X., Zhao, Y., Simon, R., 2008. Gene set expression comparison kit for BRB-ArrayTools. Bioinformatics 24 (1), 137–139.

Zorrilla, E.P., DeLuise, R.J., Redei, E., 1995. High self-esteem, hardness and affective stability are associated with higher basal pituitary-adrenal hormone levels. Psychoneuroendocrinology 20 (6), 591–601.