Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands

Magdalena Połosak · Agata Piotrowska · Seweryn Krajewski · Aleksander Bilewicz

Received: 23 July 2012 / Published online: 13 September 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract The aim of this study was to evaluate acyclic ligands which can be applied for labeling proteins such as monoclonal antibodies and their fragments with scandium radionuclides. Recently, scandium isotopes (47Sc, 44Sc) are more available and their properties are convenient for radiotherapy or PET imaging. They can be used together as “matched pair” in theranostic approach. Because proteins denaturize at temperature above 42 °C, ligands which efficiently form complexes at room temperature, are necessary for labelling such biomolecules. For complexation of scandium radionuclides open chain ligands DTPA, HBED, BAPTA, EGTA, TTHA and deferoxamine have been chosen. We found that the ligands studied (except HBED) form strong complexes within 10 min and that the radiolabelling yield varies between 96 and 99 %. The complexes were stable in isotonic NaCl, but stability of 46Sc-TTHA, 46Sc-BAPTA and 46Sc-HBED in PBS buffer was low, due to formation by Sc$^{3+}$ stronger complexes with phosphates than with the studied ligands. From the radiolabelling studies with n.c.a. 47Sc we can conclude that the most stable complexes are formed by the 8-dentate DTPA and EGTA ligands.

Keywords Scandium radionuclides · Targeted therapy · Acyclic multidentate ligands

Introduction

Radionuclides emitting low and medium energy beta-particles and having several days half-life are attractive candidates for radioimmunotherapy. The most promising radioisotope in this category is 177Lu, which has favourable decay characteristics, as e.g. half-life of 6.71 days.

This radionuclide can be produced in nuclear reactors by n,γ reaction and is commercially available at high levels of specific activity and chemical purity.

Having large cross-section of 2090 b [1], 177Lu can be directly produced with a relatively high specific activity by neutron activation of 176Lu (2.6 % of natural abundance). Nevertheless, some amount of stable 176Lu cannot be avoided, which may cause some problems concerning receptor saturation with biomolecules labelled with stable isotope, especially when the number of receptors is limited. For this purpose an alternative production route via neutron capture, starting with enriched 176Lu targets, has been demonstrated [2–4]. In this method, the isotopically enriched 176Yb target undergoes the (n,γ) reaction to produce 177Yb, which subsequently decays by β^--emission ($T_{1/2} = 1.9$ h) to 177Lu. However, this indirect production route requires difficult radiochemical separation of 177Lu from the irradiated Yb$_2$O$_3$ target. Taking into account that ytterbium and lutetium are neighbouring trivalent lanthanides and that the Yb/Lu mass ratio in the irradiated target can be as high as several thousand, separation is a very difficult task [2, 5, 6].

The usefulness of other radionuclides, which may enhance the therapeutic effect of radiopharmaceuticals, should be also investigated. As a good alternative to application of carrier-free 177Lu Lehenberger et al. [7] proposed application of reactor produced 161Tb. The properties of this radionuclide are similar to those of 177Lu, but separation from the target is considerably easier.

Application of 47Sc, as an alternative radionuclide to 177Lu, was proposed in earlier works [8–11]. 47Sc is a low energy β^--emitter with a 3.35 days half-life, and shows a
primary γ-ray at 159 keV, which is suitable for imaging. It is important to mention that other scandium radionuclides, 43Sc and 44Sc, are also promising β−-emitters, suitable for PET technique. Therefore, therapeutic 47Sc together with diagnostic 44Sc or 43Sc can be used as “matched pair” in teranostic approach. Essential decay characteristics and production parameters for n.c.a. 47Sc, 177Lu and 161Tb are presented in Table 1.

The production method of highly active 47Sc in a nuclear reactor was described by Mausner and coworkers [8, 12]. Enriched 47TiO2 target was irradiated with high energy neutrons (En > 1 MeV) to produce 47Sc in the 47Ti(n,p)47Sc reaction. Various methods of 47Sc separation from metallic Ti and TiO2 targets, based on TBP extraction or cation and anion exchange processes, have been reported [12, 13]. Recently, to avoid the slow dissolution of the target in hot concentrated H2SO4, a new, simple and fast method based on irradiation of the Li247TiF6 or 47TiO2 target, dissolution in HF solution and ion exchange isolation of 47Sc has been investigated [11].

As shown in Table 1, the advantage of 47Sc production contrary to that of 177Lu and 161Tb, is relatively easy isolation of the radionuclide from the target, but the disadvantage is smaller cross-section of the nuclear reaction.

To date, only few reports concerning labelling studies with Sc radionuclides were published [14–17] Authors of these papers concluded, that for labelling peptides, such as octreotide, the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), is the most suitable. The stability of the DOTA complexes results from their kinetical inertness, therefore efficient labelling of DOTA-conjugates requires elevated (90 °C) temperature. Due to its rather long half-life, 47Sc can be also considered for preparation of alternative therapeutic agents with longer pharmacokinetics, such as 47Sc-labelled proteins, as e.g. monoclonal antibodies, its fragments and nanobodies. Unfortunately, because proteins denaturize at temperature above 42 °C, ligands other than DOTA, which form complexes at room temperature, are necessary for labelling such biomolecules. The acyclic chelators are not as kinetically stable as the macrocyclic chelators (DOTA, NOTA, TETA etc.), but formation of their complexes at room temperature is much faster. In this paper we report formation and stability studies on 47Sc complexes with various acyclic polydentate ligands, which exhibit faster than DOTA kinetics of complex formation.

Experimental

Materials

The analytical grade reagents were used for radiochemical investigations. Water was obtained from a Millipore water purification system. Ammonium acetate and hydrofluoric acid (40 %) were purchased from Sigma-Aldrich. All resins (Chelex® 100, Dowex® 1X8, Dowex® 50WX4) were purchased in 100–200 mesh size from Dow Chemical.

The analytical grade TiO2 was obtained from Sigma-Aldrich. Enriched 47TiO2 was supplied by Isoflex, San Francisco, USA. The isotopic composition was: 46Ti-4.0, 47Ti-65.8, 48Ti-26.8, 49Ti-1.8, 50Ti-1.6 %.

We have chosen the following acyclic ligands for the studies: 8-dentate diethylenetriaminepentaacetic acid (DTPA), 6-dentate N,N′-bis(2-hydroxybenzyl)ethylenediamine-N,N-diacetic acid (HBED), 6-dentate 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N0-tetraacetic acid (BAPTA), 8-dentate ethylene glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid (EGTA), 10-dentate triethylenetetramine-N,N0,N00,N000-hexaacetic acid (TTHA) and deferoxamine (DFO). For comparison, cyclic 8-dentate ligand, the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) has been chosen.

Radionuclides

For reasons of availability we used in preliminary experiments instead of 47Sc, the longer lived 46Sc radionuclide. The former is produced by fast neutron irradiation of the 47Ti target, while 46Sc can be produced in a simple way by

Table 1 Production parameters of n.c.a. 177Lu, 161Tb and 47Sc

Radionuclide	T1/2 (days)	Nuclear reactions	Eγ max (MeV)	Cross-section (barn) (Vertes 2011)	Cost of enriched target ($/mg)	Separation from the target
177Lu	6.647	176Yb(n,γ)177Yb → 177Lu	0.14	3	13	Very difficult
	175Yb					
161Tb	6.906	160Gd(n,γ)161Gd → 161Tb	0.15	1.5	5	Difficult
47Sc	3.341	47Ti(n,p)47Sc	0.16	10	Easy	
direct thermal neutron irradiation of natural scandium. The
46Sc radionuclide was obtained by neutron irradiation of
the Sc$_2$O$_3$ target at a neutron flux of
1.5×10^{14} n cm$^{-2}$ s$^{-1}$ for 200 h in the Maria research
reactor in Świerk (Poland). The specific activity of the
radionuclide was 3.8 GBq/mg. The target was then dis-
solved in 0.1 M HCl.

47Sc was produced by fast neutrons in the 47Ti(n,p)47Sc
type reaction on enriched (66 %) 4Ti target. The 2 mg samples
of 47TiO$_2$ target were irradiated in the fast neutron channel
of nuclear reactor in Świerk (Poland) for 143 h at fast neutron
flux (>1 MeV) of 3×10^{13} n cm$^{-2}$ s$^{-1}$, and thermal neu-
tron flux of 2.5×10^{14} n cm$^{-2}$ s$^{-1}$. The irradiated 47TiO$_2$ was
then dissolved in 1 ml of concentrated hydrofluoric acid
(2–4 h with gentle heating at 80 ºC) and the solution was
diluted to 20 ml with 1 M HF. The solution was next passed
through anion exchange bed (Dowex®/C210 diluted to 20 ml with 1 M HF). The solution was next passed
then dissolved in 0.1 M HCl.

The experimental conditions for labelling, such as metal-
to-ligand molar ratio and time of reaction were optimized
to achieve high complexation yield. The 46Sc complexes
were synthesized by mixing 164 nmol of carrier added 46Sc
in chloride form with aqueous solutions of chelators in
various molar ligand-to-metal ratios (1/1, 2/1, 5/1, 10/1). In
the case of n.c.a. 47Sc 1 MBq was used and the ligand
amount varied from 2 to 15 nmol. The complexes were
prepared at room temperature at pH = 6.0 (20 mM acetate
buffer). The radiolabelling yield was determined by thin
layer chromatography (TLC) using silica gel plates (Poly-
gram, Macherey–Nagel). The NH$_3$/H$_2$O (1/25) mixture was
used as the mobile phase. The distribution of activity on
paper strips was measured by cutting the paper into 1-cm
pieces and counting in the NaI (Tl) well counter. The 46Sc-
complexes moved with the solvent front ($R_f = 1$), while
free 46Sc remained at the starting point.

Stability of complexes

Stability of the 46,47Sc acyclic complexes in isotonic NaCl
solution and PBS buffer was assessed by adding 20 µl of
radiocomplex solution to 500 µl of 0.9 % NaCl and 0.01 M
PBS buffer. The solutions were incubated at 37 ºC and
kinetics of the Sc complex dissociation was measured by
taking aliquots of the NaCl and PBS solution at different time
points and measuring the liberated 46Sc by ITLC analysis.

Results and discussion

Radiolabelling and kinetics

As already mentioned, the cyclic polyamino-poly-
carboxylate ligands like DOTA, due to formation of
kinetically inert complexes, are excellent ligands for
binding M$^{3+}$ to biomolecules. DOTA labelled with 99Y,
177Lu, 213Bi and 68Ga is widely used in peptide radio-

As shown in Fig. 1 the kinetics of complexation at room
temperature is slow, while increase of temperature to 70 ºC

Fig. 1 Labelling yield of the DOTA ligand with 46Sc at room and

elevated temperature

dramatically increases kinetics of labelling. Therefore,
macrocyclic ligands, like DOTA, are not suitable for labelling
of thermal non-resistant molecules, like proteins. In the
present work, we examined selected acyclic polyamino-
polycarboxylate ligands, which form complexes with
scandium cations more rapidly than does DOTA. The
ligands demonstrating high affinity for 3+ metal cations
such as Fe$^{3+}$, Ga$^{3+}$ and lanthanides were selected for our
studies. Structures of the ligands are presented in Fig. 2.

Kinetics of 46Sc complexation by open chain ligands

was studied, in contrary to the DOTA, only at room
temperature (Fig. 3). Comparison of Fig. 3 with the Fig. 1
shows much faster labelling at room temperature, of the
open chain ligands than of the cyclic DOTA. In the case of
DTPA the labelling yield after 10 min reached more than
99 % of the equilibrium value, while in the case of DOTA
achievements of about 90 % value required more than
20 h. However, as shows in Fig. 3, the open chain ligand
HBED seems, not to attain within 30 h equilibrium value.

The labelling yield of acyclic ligands with 46Sc was
studied by us at different metal-to-ligand molar ratios, see
Table 2. Our studies showed that at pH = 6.0 more than
96\% \text{of } ^{46}\text{Sc} \text{was complexed with just 1:1 ligand-to-metal molar ratio.}

\textbf{In vitro stability studies}

For radionuclide therapy applications, radionuclides must remain associated with the targeting chelate-protein to avoid the toxicity released in their dissociation. As shown in Fig. 4, all synthesized \(^{46}\text{Sc}\)-complexes exhibited high stability in isotonic NaCl solution. After 120 h incubation in the NaCl solution more than 96\% of \(^{46}\text{Sc}\) remained in complexed form. In 0.1 M PBS buffer \(^{46}\text{Sc}\)-DTPA and \(^{46}\text{Sc}\)-EGTA complexes were stable over the whole course of the experiment. Stability of \(^{46}\text{Sc}\)-TTHA and \(^{46}\text{Sc}\)-BABTA in PBS solution was very low due to replacement of ligands by phosphates in the first coordination sphere. In the case of \(^{46}\text{Sc}\)-HBED slow decomposition of the complex was observed.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Sc:ligand molar ratio} & \textbf{Labelling yield (%)} \\
\textbf{(Sc = } 1.6 \times 10^{-7} \text{ M}) & \text{EGTA} & \text{TTHA} & \text{DTPA} & \text{DFO} & \text{BAPTA} \\
\hline
1:1 & 99.3 & 98.0 & 99.1 & 96.2 & 98.2 \\
1:2 & 100 & 100 & 100 & 100 & 99.0 \\
1:10 & 100 & 100 & 100 & 100 & 100 \\
\hline
\end{tabular}
\caption{Labelling of the ligands with carrier added \(^{46}\text{Sc}\)}
\end{table}

\textbf{Labelling of the ligands with n.c.a. \(^{47}\text{Sc}\)}

The obtained results on complex formation and stability of \(^{46}\text{Sc}\) complexes in PBS buffer shows that only \text{Sc-DTPA and \text{Sc-EGTA} can be used as precursors for scandium radiopharmaceuticals. Therefore, we have chosen the two ligands for further studies with n.c.a. \(^{47}\text{Sc}\). Various concentrations of the ligands were investigated in order to evaluate their usability for binding \(^{47}\text{Sc}\) to biomolecules. Radiolabelling was performed with quantities of the ligands from 2 to 15 nmol (Table 3). For comparison, results of labelling the commonly used macrocyclic ligand DOTA [8] is presented in Table 4.

From comparison of the Table 3 with the Table 4 one can conclude that both ligands, DTPA and EGTA, form complexes with n.c.a. \(^{47}\text{Sc}\), in lower amount of ligand than those formed by DOTA. Particularly in the case of EGTA, only 2 nmol of the ligand is sufficient to achieve labelling higher than 97\%. The reason is that EGTA and DTPA as a 8-dentate ligand, forms strong complexes by binding via four carboxylic oxygen atoms, two ether oxygen atoms and two nitrogen atoms (EGTA) [18] or five carboxylic and tree nitrogen (DTPA). As was reported by Thakur et al. [19], contrary to our results Am\(^{3+}\), Cm\(^{3+}\) and Eu\(^{3+}\) form stronger complexes with DTPA than EGTA. Formation of

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig2.png}
\caption{Structures of the ligands}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig3.png}
\caption{Labelling yield of DTPA and HBED ligands with \(^{46}\text{Sc}\) at room temperature}
\end{figure}
stronger complexes by Sc$^{3+}$ with EGTA than DTPA is probably related with stronger interaction of smaller and harder Sc$^{3+}$ with ether than with carboxylic oxygen atoms.

![Graphs showing stability of Sc-complexes](image)

Table 3 Labelling of the open chain ligands with n.c.a. 47Sc

Amount of ligand (nmol)	Labelling yield (%)	
	DTPA	EGTA
2	38.81	97.20
5	94.89	98.80
10	95.40	99.40
15	100.0	100.0

Table 4 Labelling of the macrocyclic ligand with n.c.a. 47Sc

Amount of DOTA (nmol)	Labelling efficiency (%)
22.5	79.4
36.0	96.2
58.5	97.3

Conclusion

In this paper formation and in vitro stability of a series of polyamino-polycarboxylate ligands labelled with 46Sc and 47Sc has been studied. We found that acyclic ligands...
(except HBED) form complexes much faster than the cyclic DOTA. The radiolabelling yield of acyclic ligands was very high and for the Sc:L molar ratio of 1:1 varied after 10 min from 96 to 99 %. The obtained complexes were stable in isotonic NaCl solution. However, stability of 46Sc-TTHA, 46Sc-BABTA and 46Sc-HBED in PBS buffer was low, due to formation by Sc$^{3+}$ stronger complexes with phosphates than with TTHA, BABTA and HBED. We have shown that when using n.c.a. 47Sc only 2 nmol of the EGTA is sufficient to obtain labelling yield greater than 97 %. Therefore, Sc-EGTA is a promising moeity for coupling 47Sc to proteins. However, biological studies on animal models are needed for evaluation the in vivo stability of radiometal-labelled chelates.

Acknowledgments The authors thank Prof. Sławomir Siekierski for helpful discussions. This work was carried out as a part of the projects of the Ministry of Science and Higher Education of Poland Nr. NR 050057 06.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1996) Table of isotopes, 8th edn. Wiley, New York
2. Lebedev NA, Novgorodov AF, Misiak R, Brockmann J, Rösch F (2000) Radiochemical separation of no-carrier-added 177Lu as produced via the 176Yb(n,γ)177Yb \rightarrow 177Lu process. Appl Radiat Isot 53:421–425
3. Hashimoto K, Matsuoka H, Uchida S (2003) Production of no-carrier added 177Lu via the 176Yb(n,γ)177Yb \rightarrow 177Lu process. J Radioanal Nucl Chem 255:575–579
4. Balasubramanian PS (1994) Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target. J Radioanal Nucl Chem 185:305
5. Horwitz EP, McAlister DR, Bond AH, Barrans RE, Williamson JM (2005) A process for the separation of 177Lu from neutron irradiated 176Yb targets. Appl Radiat Isot 63:23–36
6. Bielicwicz A, Żuchowska K, Bartoś B (2009) Separation of Yb as YbSO$_4$ from the 176Yb target for production of 177Lu via the 176Yb(n,γ)177Yb \rightarrow 177Lu process. J Radioanal Nucl Chem 280:167–169
7. Lehenberger S, Barkhausen Ch, Cohrs S, Fischer E, Grünberg J, Hohn A, Köster U, Schibili R, Türler A, Zhernovsekov K (2011) The low-energy β^- and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy. Nucl Med Biol 38:917–924
8. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radiochemical development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294
9. Köpecy P, Szeleczeny F, Molnár T, Mikecz P, Türkanyi F (1993) Excitation functions of (p,xn) reactions on natTi: monitoring of bombarding proton beams. Appl Radiat Isot 44:687–692
10. Bokhari TH, Mushtaq A, Khan IU (2009) Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem 283:389–393
11. Bartoś B, Majkowska A, Krajewski S, Bielicwicz A (2012) New separation method of no-carrier-added 47Sc from titanium targets. Radiochim Acta 100:457–463
12. Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier free 47Sc from titanium targets. J Radioanal Nucl Chem 157:335–345
13. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 49:1541–1549
14. Mausner LF, Joshi V, Kolsky KL, Meinken GE, Mease RC, Sweet MP, Srivastava SC (1995) Evaluation of chelating agents for radioimmunotherapy with scandium-47. J Nucl Med 36:104P
15. Majkowska-Pilip A, Bielicwicz A (2011) Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. J Inorg Biochem 105:313–320
16. Pruszynski M, Majkowska A, Loktionova NS, Roesch F (2012) Radiolabeling of DOTATOC with the longer-lived, generator derived positron emitter 44Sc. Appl Radiat Isot 70:974–979
17. Huclier-Markai S, Sabatie A, Ribet S, Kubitcek V, Paris M, Vidaud C, Hermann P, Cutler CS (2011) Chemical and biological evaluation of scandium(III)–polyaminopolycarboxylate complexes as potential PET agents and radiopharmaceuticals. Radiochim Acta 99:653–662
18. Inomata Y, Okamura D, Morita K, Yukawa Y, Howell FS (2003) The comparison of crystal structures of lanthanide complexes with 3,12-bis(carboxymethyl)-6,9-dioxo-3,12-diazatetradecanoic acid (H$_4$egta). J Mol Struct 659:23–34
19. Thakur P, Conca JL, Choppin GR (2011) Complexation studies of Cm(III), Am(III), and Eu(III) with linear and cyclic carboxylates and polyaminocarboxylates. J Coord Chem 64:3214–3236