The Kandalaksha-Kolvitsa gabbro-anorthosite complex: Nd-Sr isotope-geochronological evidence of its affinity to the East-Scandinavian Large Igneous Province

E N Steshenko1,2, P A Serov1, E L Kunakkuzin1,2, N A Ekimova1, T B Bayanova1

1Geological Institute KSC RAS, Apatity, Russia
2Apatity Branch of MSTU, Apatity, Russia

steshenko@geoksc.apatity.ru

Abstract. The article provides new Sm-Nd and Nd-Sr isotope-geochronological data on rocks of the Paleoproterozoic Kandalaksha-Kolvitsa gabbro-anorthosite complex. The isotope Sm-Nd dating on metamorphic minerals (apatite, garnet, sulfide) and rock of the Kolvitsa massif yielded the age of 1887±37 Ma (high-temperature metasomatic transformation) and 1692±71 Ma (regional fluid processing). The model Sm-Nd age of metagabbro is 3.3 Ga with a negative value of εNd=-5.5, which indicates processes of crustal contamination or primary enriched mantle reservoir of initial magmas. According to geochronological and Nd-Sr isotope data, rocks of the Kandalaksha-Kolvitsa complex seem to have a common anomalous mantle source with Paleoproterozoic layered intrusions in the Baltic Shield.

1. Geological setting
The Kandalaksha-Kolvitsa zone is the southern part of the Lapland Granulite Belt (LGB) that hosts volcanogenic sequences intercalated by anorthosite bodies. The gabbro-anorthosite magmatism of varied age (from Neoarchean to Paleoproterozoic) is widespread in the Baltic Shield in various structural settings associated with Ti-V (in the Neoarchean) and Cu-Ni-PGE (in Paleoproterozoic) deposits [1]. The Kandalaksha-Kolvitsa gabbro-anorthosite complex occurs on garnet plagioclase amphibolites of the Kandalaksha sequence and is overlapped by garnet-clinopyroxene-plagioclase crystalline schists of the Ploskaya Tundra sequence metamorphosed in conditions of granulite facies [2-3]. The complex is particularly interesting for profound isotope-geochemical research. For the first time, the U-Pb method has been applied with an artificial 205Pb tracer to date single zircon grains from metagabbro of the Kolvitsa massif at 2448±5 Ma. The new precise U-Pb age of metagabbro from the Kandalaksha massif has been estimated at 2453.5±8.4 Ma. It is interpreted as the magmatic formation time of the massif.

2. Sm-Nd data
Main rock varieties of the Kandalaksha-Kolvitsa gabbro-anorthosite complex have been studied with isotope-geochemical Sm-Nd and Rb-Sr analyses (on rock and minerals) at the Centre for Collective Use GI KSC RAS, using standard techniques [4]. The Sm-Nd dating of metagabbro from the Kolvitsa massif has yielded the age of 1985±17 Ga (Fig. 1a), which corresponds with the time of the granulite metamorphism widespread in LGB [5-7].
the range of $^{147}\text{Sm}/^{144}\text{Nd}$ values wider. In general, using sulfides as geochronometers provides positive results for a number of economically valued objects in the Baltic Shield [8].

The model Sm-Nd age of these gabbroids is close to 3.3 Ga (Table 1), which is typical of the Palaeoproterozoic ore-magmatic system in the Baltic Shield [9].

Heavy concentrate of rutile, garnet, plagioclase and clinopyroxene have been sampled from metaanorthosites of the Kandalaksha massif (sample 225/1) for Sm-Nd research. Together with the whole rock, in a Sm-Nd plot in isochron coordinates they show a dependence that complies with the age of 1886±9 Ma (Fig. 1b). The close Sm-Nd age of 1886±9 Ma has been obtained for sillimanite-orthopyroxene-garnet rocks of the Porya Guba cover of LGB. The authors of [10] interpret this age as the time of high-temperature metasomatism.

The Sm-Nd age of metamorphosed leucogabbro from the Kandalaksha massif (sample 183) has been dated on whole rock, apatite, amphibole and garnet at 1692±71 Ma (Fig. 1c). It is close to the U-Pb age of rutile and seems to mark processes of cooling or low-temperature processing of rocks in the Kandalaksha massif at the turn of 1.7 Ga. The age of 1.7 Ga is quite widespread in the Kola Peninsula and seems to be associated with the fluid processing of rocks at temperatures not higher than 450°C [11].

Test plots in coordinates $^{143}\text{Nd}/^{144}\text{Nd}$ vs. $1/[\text{Nd}]$ have been used for some samples to estimate the probability of obtaining false isochrones of mixing (Fig. 2). There is no relation between concentrations of neodymium in the rock and isotope compositions in most samples. However, garnet-plagioclase crystalline schists (sample 276) show a negative trend of $^{143}\text{Nd}/^{144}\text{Nd} – 1/[\text{Nd}]$. It may indicate an open or distorted Sm-Nd isotope system and, as a result, an influx of radiogenic neodymium into the host matrix (losses of Nd are shown by a red arrow in Fig. 2).
In general, no dependence between concentrations of Nd in the rock and the isotope composition indicates high geological value of the obtained geochronological data and corroborates the obtained results.

3. Nd-Sr systematics
The Sm-Nd and Rb-Sr studies have provided data on isotope compositions of neodymium and strontium in rocks of both massifs. The isotope compositions of neodymium (εNd) range from -0.02 in norites of the Kandalaksha massif to -5.53 in lens bodies of gneiss granites of the Kolvitsa massif (Fig. 3, Table 1).

Table 1. Results of isotope Sm-Nd and Rb-Sr analysis of the main rock varieties in the Kandalaksha-Kolvitsa gabbro-anorthosite complex

Concentration, ppm	Isotope ratios	T, Ma	ISr	Concentration, ppm	Isotope ratios	T(0), Ma	εNd(T)	Age, Ga					
Rb	Sr	εRb/86Sr	εSr/86Sr	Sm	Nd	εSm/144Nd	εNd/144Nd						
Sample 220/1, metanorite, Kandalaksha massif	16.49	259.0	0.1796	0.70744±18	2100	0.7020	0.155	0.916	0.1025	0.51116±31	2776	-0.02	
Sample 225/1, anorthosite, Kandalaksha massif	3.38	304.02	0.031367	0.70299±18	2230	0.7020	0.419	2.003	0.1265	0.51154±8	2796	-1.23	1.9
Sample 183, metagabbro, Kandalaksha massif	7.37	367.3	0.0566	0.70426±16	2453	0.7023	0.459	2.553	0.1087	0.51126±31	2728	-1.25	1.7
Sample 185, metaperidotite, Kandalaksha massif	13.73	90.6	0.4277	0.71758±17	2450	0.7024	1.407	6.49	0.1310	0.511532±7	2969	-0.95	
Sample 350 metagabbro, Kandalaksha massif													
Weakly radiogenic values of εNd = -1.0 – -1.2 dominate, which complies with characteristic values of Paleoproterozoic layered intrusions in Fennoscandia [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]. Isotope compositions of strontium ranging from 0.7013 to 0.7025 (Fig. 3, Table 1) also reflect typical values of a Paleoproterozoic igneous province [12], [13], [14], [15], [21].

Sample	%Nd	%Hf	εNd	Isr	Age (Ga)
Sample 200, metagabbro, Kolvitsa massif	24.6	1.0	-1.05856	0.0945	2.45
Sample 205, subalkaline gneiss granite, Kolvitsa massif	2.78	0.0184	-1.05856	0.0945	2.45
Sample 194/1, metagabbro, Kolvitsa massif	0.72950±19	2.01	-1.05856	0.0945	2.45
Sample 210, gneiss plagiogranite, TTG-?, Kolvitsa massif	0.72950±19	2.01	-1.05856	0.0945	2.45
Sample 276, garnet-plagioclase crystalline schist, Kolvitsa massif	0.72950±19	2.01	-1.05856	0.0945	2.45

Figure 3. Variations of εNd and Isr in rocks of Proterozoic layered intrusions in the Baltic Shield [22], [23], [24], [25]

New data suggest that the Kandalaksha-Kolvitsa gabbro-anorthosite complex is confined to the East-Scandinavian Large Igneous Province with a protracted evolution at the turn of 2.53-2.39 Ga. According to geochronological [24], [25] and isotope Nd-Sr data, rocks of the Kandalaksha-Kolvitsa complex seem to have the same anomalous mantle source with Paleoproterozoic layered intrusions in the Baltic Shield (Fig. 3). The latter include Cu-Ni-Co-Cr+PGE deposits in the Monchegorsk ore area.
[26], [27] and Pechenga [28-30], Cr ores in the Padnos massif [19], Fe-Ti-V Kolvitsa deposit [31], PGE and Cu-Ni Fedorovo-Pansky layered complex [12], [15], [21], [32] and Burakovskiy intrusion [33], Cu-Ni-Co+PGE deposits in Finland, i.e. Kemi [23, 16], Penikat [24], Akanavaara, Kontelainen [36], Tornio [37] and many other. These deposits formed at two episodes, 2.53-2.39 Ga and 2.0-1.8 Ga, that refer to the beginning of rifting [12], [13], [14], [15], [16], [17], [18], [19], [20], [21] and the late rifting stage of the Fennoscandian Shield evolution [38], [19], respectively.

Rocks of these intrusions referred to the pyroxenite-gabbronormite-anorthosite formation have similar isotope-geochemical features:

1) according to U-Pb and Sm-Nd geochronological data, the formation time span is 2530 to 2380 Ma;
2) the mantle reservoir feeding magmas that formed the massifs is rich in lithophile elements; I_{Sr} values vary from 0.702 to 0.706, $\varepsilon_{Nd}(T)$ varies from +2 to -6;
3) the model Sm-Nd ages of T_{DM} protoliths are 2.8-3.3 Ga.

The scientific research has been carried out in the framework of the State Research Contract of GI KRC RAS No. 0226-2019-0053, RFBR grant No. 18-05-70082 «Arctic’s Resources» and Presidium RAS Program No. 8.

References

[1] Mitrofanov F P et al 1993 Doklady Earth Sciences 331 (1) 1
[2] Steshenko E N et al 2015 Vestnik Komi SC UrB RAS 11 19-24
[3] Chashchin V V et al 2016 Litosfera 5 17-34
[4] Steshenko et al 2020 Minerals 10 254
[5] Bayanova T B 2004 The Age of Reference Geological Complexes of the Kola Region and Duration of Magmatism Processes (Nauka: St. Petersburg, Russia) p174
[6] Pozhilenko V I et al 2002 Geology of Ore Areas of the Murmansk Region (KSC RAS: Apatity. Russia) p 359
[7] 2005 Early Precambrian of the Baltic Shield (SPb: Nauka) p 711
[8] Serov P et al 2009 Vestnik MSTU 12 (3) 456-460
[9] Mints M V et al 2017 Proc. All-Russian conf. “The Scientific Conference and Guidebook on Scientific Excursions. Geodynamics of the Early Precambrian: common and distinguish features with the Phanerozoic.” (Petrozavodsk: KSC RAS) 179-184
[10] Lebedeva Y M et al 2010 Doklady Earth Sciences 432 99-102
[11] Kaulina T V 2010 Formation and Transformation of Zircon in Polymetamorphic Complexes (KSC RAS: Apatity) p 144.
[12] Bayanova T B et al 2009 In Palaeoproterozoic Supercontinents and Global Evolution Geol. Soc. London, Spec. Pub. 323 165-198
[13] Bayanova T B et al 2014 In Geochronology – Methods and Case Studies (INTECH) 143-193
[14] Bayanova T B et al 2019 Minerals 9(1) 59
[15] Mitrofanov F P et al 2019 In Ore Deposits: Origin, Exploration, and Exploitation (Wiley) 3-36
[16] Smolkin V F 1997 Can. J. Earth Sci. Special Publ. 34 426-443
[17] Serov P et al 2017 Geophysical Research Abstracts 19 EGU2017-7048
[18] Smolkin V F 2017 Proc. All-Russian conf. “The main problems in the study of endogenous ore deposits: new horizons” (Moscow: IGEM RAS) 461-464
[19] Serov et al 2020 Minerals 10 186
[20] Turchenko S I 2017 Geology of Ore Deposits 59 (2) 83-92
[21] Serov P A 2008 Frontiers of Age Forming PGE Mineralization Fedorovo-Pansky Layered Intrusions in Sm–Nd and Rb–Sr Isotopic Characteristics. Ph.D. Thesis (Voronezh: Voronezh State University Press) p 130
[22] Nerovich L N et al 2009 Vestnik MSTU 12 (3) 461-477
[23] Amelin Yu V and Semenov V S 1996 Contrib. Mineral. Petrol. 124 255-272
[24] Steshenko et al 2017 Doklady Earth Sciences 477(5) 595-599
[25] Steshenko et al 2018 Doklady Earth Sciences 479(2) 1-5
[26] Sharkov E V and Chistyakov A V 2014 Geology of Ore Deposits 56 147-168
[27] Yang Sh.-H. et al 2016 Miner Deposita 51 1055-1073
[28] Hanski E et al 1990 Bull. Geol. Soc. Finl 62 123-133
[29] Sharkov E V and Smolkin V F 1997 Precambrian Research 82 133-151
[30] Walker R J et al 1997 Geochim. Cosmochim. Acta 61 3145-3160
[31] Neradovsky et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 262 012050
[32] Schissel D et al 2002 Economic Geology 97 1657-1677
[33] Amelin Yu V et al 1995 Precambrian Research 75 31-46
[34] Huhma et al 1990 Contrib. Mineral. Petrol. 104 369-379
[35] Halkoaho T A A et al 1990 Miner. Petrol 42 39-55
[36] Hanski E et al 2001 Precambrian Research 109 73-102
[37] Iljina M et al 2015 In Mineral Deposits of Finland (Elsevier, Amsterdam) 133-164
[38] Melezhik V A et al 2012 In Reading the Archive of Earth’s Oxygenation (Springer, Berlin, Heidelberg) 289-385