Ethnobotanical study in a rural settlement in Amazon: contribution of local knowledge to public health policies

Estudo etnobotânico em um Assentamento rural na Amazônia: contribuição de saberes locais às políticas públicas de saúde

Estudo etnobotânico em um asentamiento rural de la Amazonía: contribución del conocimiento local a las políticas de salud pública

Received: 12/30/2021 | Reviewed: 01/04/2022 | Accept: 01/13/2022 | Published: 01/15/2022

Paula Maria Correa de Oliveira-Melo
ORCID: https://orcid.org/0000-0003-0354-8584
Museu Paraense Emílio Goeldi, Brazil
E-mail: paulacorrea92@hotmail.com

Pedro Glécio Costa Lima
ORCID: https://orcid.org/0000-0002-7469-5533
Museu Paraense Emílio Goeldi, Brazil
E-mail: gleciolima@gmail.com

Joseane Carvalho Costa
ORCID: https://orcid.org/0000-0002-1913-6579
Universidade Federal do Sul e Sudeste do Pará, Brazil
E-mail: joseane03@gmail.com

Márlia Regina Coelho-Ferreira
ORCID: https://orcid.org/0000-0001-7861-3120
Instituto Nacional da Mata Atlântica, Brazil
E-mail: marliacf@hotmail.com

Abstract

Medicinal plants continue to be appropriate and preferred alternatives for primary health care among rural Amazon populations, although their incorporation into conventional health services has been slow and challenging. Besides that, few Amazon plants have been considered in current public health policies. We sought here to better understand the role of medicinal plants in the therapeutic practices of residents of the Paulo Fonteles Land Settlement at Mosqueiro, a district within Belém (Pará State, Brazil) and identify species of potential value for government health services. Ethnobotanical data was obtained through semi-structured interviews with 61 residents. Results were analyzed using indices of use-report (U) and by consulting official documents of the Brazilian Ministry of Health (MS). The settlers use at least 61 exotic plants and 67 natives to Brazil; of the latter species, 21 were endemic to the Amazon region. The medicinal plants cited by the settlers were used for treating 76 symptoms and/or illnesses, especially related to digestive, respiratory, dermatological, and women's health problems; Anacardium occidentale, Alternanthera brasiliana, and Dalbergia monetaria had the highest URs. Forty plants are cited in MS documents. This research incentive more studies with Amazonian species and shows a list of 11 species for inclusion in health services offered to local populations.

Keywords: Basic healthcare services; Rural settlements; Ethnobotany.

Resumo

As plantas medicinais continuam sendo uma alternativa apropriada e preferencial entre as populações rurais amazônicas na assistência primária à saúde, contudo a sua incorporação aos serviços convencionais tem sido um desafio. Nesta pesquisa buscou-se entender o papel das plantas medicinais nas práticas terapêuticas dos moradores do Assentamento Paulo Fonteles, Mosqueiro, distrito de Belém (Pará), preocupando-se em identificar espécies potenciais a serem valorizadas nos serviços oficiais de saúde. Os dados etnobotânicos foram obtidos junto a 61 moradores por meio de entrevistas semiestruturadas. Os resultados foram analisados utilizando o índice use-reports e consultas a documentos oficiais do Ministério da Saúde. Os assentados, utilizam pelo menos 61 plantas exóticas, 67 nativas do Brasil, 21 destas restritas à Amazônia. Estas plantas combatem 76 sintomas e/ou doenças, sobretudo problemas digestivos, respiratórios, dermatológicos e feminino para os quais Anacardium occidentale, Alternanthera brasiliana e Dalbergia monetaria apresentaram maior UR, respectivamente. Dentre as espécies citadas, 40 constam em documentos do MS. Esta pesquisa incentiva mais estudos com espécies amazônicas e apresenta uma lista de 11 espécies para inclusão nos serviços de saúde oferecidos às populações locais.

Palavras-chave: Serviços básicos de saúde; Assentamentos rurais; Etnobotânica.
Resumen
Las plantas medicinales siguen siendo una alternativa adecuada y preferida entre las poblaciones rurales amazónicas en la atención primaria de salud, sin embargo su incorporación a los servicios convencionales ha sido un desafío. Esta investigación buscó comprender el papel de las plantas medicinales en las prácticas terapéuticas de los habitantes del Asentamiento Paulo Fonteles, Mosqueiro, distrito de Belém (Pará), enfocándose en identificar especies potenciales a ser valoradas en los servicios oficiales de salud. Se obtuvieron datos etnobotánicos de 61 residentes mediante entrevistas semiestructuradas. Los resultados se analizaron mediante el índice “use-reports (UR)” y consultas a documentos oficiales del Ministerio de Salud. Los pobladores utilizan al menos 61 plantas exóticas, 67 nativas de Brasil, 21 de las cuales están restringidas a la Amazonía. Estas plantas combaten 76 síntomas y/o enfermedades, en especial los problemas digestivos, respiratorios, dermatológicos y femeninos para los cuales Anacardium occidentale, Alternanthera brasiliana y Dalbergia moneta presentaron mayor UR, respectivamente. Entre las especies mencionadas, 40 se enumeran en documentos de MS. Esta investigación fomenta más estudios con especies amazónicas y presenta una lista de 11 especies para su inclusión en los servicios de salud que se ofrecen a las poblaciones locales.

Palabras clave: Servicios básicos de salud; Asentamientos rurales; Etnobotánica.

1. Introduction
Medicinal plants continue widely used in developing countries to provide basic health assistance (Melro, et al., 2020; Heringer, et al., 2021). In Brazil, cultural, environmental, and economic factors contribute to use of these resources as the first choice of treatment. This country not only hosts the most diverse flora in the world with more than 55,000 species of plants but also has significant socio-cultural diversity (MMA, 2021). In addition, the plant-derived remedies can complement conventional pharmaceutical drugs, or cover gaps in more modern pharmaceutical treatments (World Health Organization (WHO), 2013).

The World Health Organization (WHO) has recommended the recognition about the use of these resources in the health field (WHO, 2013). In Brazil, these recommendations had an impact on the creation of the National Policies on Integrative and Complementary Practices (PNPIC) and Medicinal Plants and Herbal Medicines (PNPMF). Both aimed mainly to include the traditional therapeutic practices in the Unified Health System (SUS) and the guarantee of both safe and effective access to medicinal plants and herbal medicines (Brasil, 2016). Furthermore, these policies were essential to promote an extensive review and standardization of the administrative protocols and use of phytotherapeutics protocols and use of phytotherapeutics (Anvisa, 2008; 2010; 2014; 2016; 2021; MS 2010) to allow and encourage their use as complementary pharmaceutical products in the SUS system (Almeida, et al., 2014). Independent of those national policies, many municipalities in Brazil have developed local initiatives for the use of medicinal plants and phytotherapeutics in public healthcare since the 1990s (Antonio, et al., 2013; Ogava, et al., 2003; Silva, et al., 2006)

Almeida et al. (2014) examined the representivity of traditional phyto-pharmacopeias in official documents in order to propose the inclusion medicinal plants as alternatives within the SUS healthcare system, in conformity with national policies. That study stressed the importance of considering regional and cultural traditional knowledge, as well as the regional Brazilian floras, to improve the role of PNPMF. In respect to the Brazilian Amazon, which contains the second most diverse flora in that country (Forzza, et al., 2020), it is important to note that in spite of its huge variety of native species with therapeutic potential (Bieski, et al., 2015; Coelho-Ferreira, 2009; Rodrigues, 2006) few of those plants have been studied to determine their safety and effectiveness. This fact may partially explain the inexpressive numbers of plants from that region recorded in official documents such as the National List of Plants of Interest to SUS - Renisus (Carvalho, et al., 2018). However, the the goals of the PNPMF and the Strategy for Traditional Medicine 2014 – 2023 were designed to incentivize research into the native species of each Brazilian biome (WHO, 2013; Anvisa, 2016).

Among many social groups in the Amazon region are agricultural families in rural land settlement areas, which, together with traditional Amerindian communities, considered by the PNPMF to be indispensable actors in the structuring of
productive chains of medicinal and psychotherapeutic plants (Brasil, 2016). One of the principal characteristics of rural settlements in the Amazon region has been their role in maintaining the Legal Reserve Forests required by Brazilian legislation (Cunha & Bortolotto, 2011). They also have potential for developing agro-extractivism projects that would lend value to Amazonian medicinal plants and foster the diversification of the economic activities of those rural groups (De Almeida, et al., 2013). Within that context, the present ethnobotanical study undertaken in the Paulo Fonteles Settlement Lands (APF), located in the Mosqueiro district (Belém, Pará State), sought to elucidate the roles of medicinal plants in local therapeutic practices and identify species of potential value to official health services.

2. Methodology

This research was based in a fieldwork ethnobotany using qualitative and quantitative approaches (Albuquerque, 2019). The date was obtained in the Paulo Fonteles settlement (PFS), located in the Brazilian Amazon in the Mosqueiro district, metropolitan region of Belém do Pará, in northern Brazil (01º04’ - 01º14’S, 48º19’ - 48º29’W). The PFS is situated in an estuary environment with marine influences, at approximately 15 m above sea level. The climate there is equatorial, with a mean annual temperature of 25.9 ºC, a mean relative humidity of 84%, and a mean annual rainfall of 2800 mm. The vegetation in the area is characterized by a few remnant trees of economic value, secondary forests (“capoeiras”) in various stages of development, and pasture lands (INCRA, 2020). The settlement is located near an environmental protection area with great floristic diversity of upland and floodplain forest landscapes and mangrove swamps.

Established in 2006, the PFS occupies an area of 930 ha divided into 60 lots, with 50 families, all members of the Landless Workers’ Movement - MST, totaling approximately 100 people whose principal economic activities are centered around subsistence agriculture. There is no basic sanitation infrastructure.

In order to generate representative data covering the entire community, at least one member of each resident family (18 years or older) was invited to participate. The overall sample was composed of 61 informants, of which 22 were men and 39 women, ranging in age from 18 to 80, and thus corresponding to approximately 50% of the total number of residents. Fifteen of those collaborators had been living in the area even before the creation of the PFS, 23 have been living in the area for ten years since the settlement was officially established, and 21 arrived in the PFS up to eight years ago. As for the origins of the collaborators, 15 are native to the Mosqueiro district, 33 are from other municipalities in Pará State, and 13 arrived from other Brazilian states.

Fieldwork was undertaken between January and November/2015, using both a semi-structured interview and a free listing technique to obtain sociodemographic and ethnobotanical data (Albuquerque, et al., 2014). The informants were also asked to describe their therapeutic indications, methods of preparation and the plant part used.

At least one voucher for each plant cited in the interviews was collected, with the exception of 12 plants not encountered during guided tours or “walking in the woods” arranged with informants (Albuquerque, et al., 2014). The samples were identified by comparisons with collections at the MG herbarium at the Paraense Emílio Goeldi Museum and the help of technicians and taxonomists at that institution. The fertile specimens were deposited in that herbarium, with sterile material and fertile duplicate specimens being deposited in the Marlene Freitas da Silva herbarium (MFS) of the State University of Pará. The botanical classification system adopted was that of the Angiosperm Phylogeny Group - APG IV 2016 (Chase, et al., 2016). We searched the species names and phytogeographical origins of the species using the Brazilian Flora Species 2020 List (JBRJ, 2017) and Mobot database, respectively.

We classified the symptoms and illnesses mentioned in the interview following the the International Classification of Primary Care (ICPC) (Miller, et al., 2009) . Illness categories were analyzed by quantifying use-reports (URs), as described by (Trotter & Logan 1986).
In order to identify the medicinal species used in the settlement that also appear in official registries, we consulted the Monographs on Selected Medicinal Plants (WHO, 1999; 2002; 2007; 2009); the Farmacopeia Brasileira (Silva, 1929; BRASIL, 1959; 1977; 1996; 2019); specific guidelines on phytotherapics by the Brazilian drug administration authority (Anvisa, 2008, 2010, 2014), the national list of plants of interest to SUS (MS, 2010), and the Herbal Medicine Compendium 1st and 2nd Ed (Anvisa, 2018; 2021) and Herbal Medicine Memento (Anvisa, 2016), both published by the Farmacopeia Brasileira.

Each interviewee gave his/her written consent to cooperate with the present study, which was approved by the Research Ethics Committee (CEP) of the Federal University of Pará (UFPA/ICS nº 2.911.438) and is registered with the National System of Genetic Heritage Management and Associated Traditional Knowledge (SisGen nº AE259B4), as required by the Biodiversity Law (13,133/2015).

3. Results

Ethnomedicinal flora

A total of 126 plants were mentioned by the interviewees, of which 117 were identified to the species level, and nine to the genus level; the taxa were distributed among 110 genera and 54 families (Table 1). The families Asteraceae, Fabaceae, and Lamiaceae stood out in terms of their large numbers of species. Those plants are mainly cultivated in backyards (71%), or collected in forest areas (24%), fields (4%), or gardens (4%). Most species were trees (53) and herbs (45), followed by shrubs (13) and lianas (12). The settler families use numerous native Brazilian (N = 64) and introduced (N = 61) species. Among the native species, 22 occur only in the Amazon biome, and are plants of significant relevance to the local pharmacopeia.

All vegetative parts were cited, with leaves (43%) being most widely used for preparing natural remedies. The 628 preparation recipes cited could be grouped into nine classes, especially extraction (teas) or maceration in water, followed by consumption in their fresh form as juice, syrup, alcoholic macerations, or application as a plaster or ointment.

Table 1. Medicinal plants used in the settlement Paulo Fonteles, Mosqueiro District, Belém, Pará. * = Medicinal use absent from official documents; 1: Monographs of medicinal plants selected by WHO; 2: Brazilian Pharmacopoeia editions; 3: Herbal medicine list for simplified registration; 4: Renisus; 5: RDC 10/2010; 6: Herbal Medicine Compendium; 7: RDC26/2014; 8: Herbal Medicine Memento. Or: origin; NB: native from Brazil; NA; occur only in the Amazon biome; EX: exotic (origin).

Family/ scientific name/Voucher number	Vernacular name	UR	Or.	Ethnomedicinal use	Official documents
Acanthaceae					
Justicia pectoralis Jacq.	Corrente	3	NB	Flu	3,4,5
Justicia secunda Vahl./221285	Sulfato-ferroso	1	NA	Gastritis	
Adoxaceae					
Sambucus nigra L./MFS006176	Sabugueiro	6	EX(eur)	Chickenpox*, measles*, asthma*	1,2,3,4,5,6
Amaranthaceae		43			
Alternanthera brasiliana (L.) Kuntze/221286	Ampelicilina, meracelina	20	NB	Chickenpox, hemorrhage; headache, catarh, wounds, vaginal cleansing	
Dysphania ambrosioides (L.) Mosyakin & Clemants/221805	Mastruz	23	EX(Am)	Tuberculosis, anemia, worms, gastritis, bone fractures, cough with catarh, pulmonary problems, wounds	4
Amaryllidaceae					
Allium sativum L.	Alho	5	EX(EUA)	Bellyache*, flu, menstrual cramps*	2,3,4,5,6,8
Anacardiaceae		41			
Genus	Common Name	Species	Location	Preparation	Uses
-------------------------------	----------------------	---------	----------	-------------	---
Anacardium giganteum	Cajuí				Gasritis, wounds, diabetes, women’s genitourinary inflammation, 4,5
Anacardium occidentale	Caju			EXₐₑ₂	Diarrhea, bellyache, wounds
Mangifera indica	Mangueira			EXₐₑ₂	Diarrhea, catarrh
Schinus sp.	Aroeira				Wounds
Annonaceae					
Annona mucosa Jacq.	Biribirzeiro			NB	Lice bugs
Annona muricata	Graviolera			EXₐₑ₂	Hypertension, inflammation of the thyroid
Annona squamosa L.	Ata			EXₐₑ₂	Diarrhea
Apiaceae					
Foeniculum vulgare Mill.	Erva-doce			EXₐₑ₂	Infant colic
Petroselinum crispum	Cheiro-verde			EXₐₑ₂	Worms (pin worms)
Apocynaceae					
Aspidosperma excelsum	Carapanã, carapanaúba			NA	Gasritis
Himatanthus articulatus	Sucuúba			NB	Diarrhea, worms, gastritis, luxation, R: lung problems, women’s genitourinary inflammation impotence
Parahancornia fasciculata	Amapá			NA	Tuberculosis, hemorrhaging, malaria, anemia, worms, gastritis, stomach ulcer, flu, bronchitis, lung problems, wounds
Arecaceae					
Cocos nucifera L.	Coco			EXₐₑ₂	Head ache, catarrh
Euterpe oleracea Martin	Açai-teiro				
** Asteraceae**					
Acnella oleracea (L.) R.K. Jansen /221308	Jambu			EXₐₑ₂	Anemia
Artemisia vulgaris L./MFS006147	Losna			EX	Menstrual cramps
Ayapana triplinervis (M. Vahl)	Japana-branca			NA	Cough with catarrh
Centratherum punctatum	Macela			NB	Bellyache, headache
Cichorium endivia L.	Chicória			EXₐₑ₂	Worms (giardia),
Gymnanthemum amygdalinum (Delile) Sch.Bip. ex Walp./221306	Boldo			EX	Stomachache, bellyache, indigestion, liver problems
Lactuca sativa L.	Alfice			3	Stomachache, anxietytic, kidney stones
Mikania sp. /MFS006167	Sucuriju				Inflammation, stomachache
Pectis brevipedunculata (Gardner) Sch.Bip./221314	Capim-marinho			NB	Fever
Solidago chilensis Meyen/221296	Arnica, marcela			NB	Wounds*
Bignoniaceae					
Fridericia chica (Bonpl.)	Pariri			NB	Fever, inflammation, anemia
Handroanthus impetiginosus (Mart. ex DC.) Mattos / MFS006083	Ipê-roxo				Women’s genitourinary inflammation
Handroanthus sp. / MFS006086	Ipê-amarelo				Women’s genitourinary inflammation
Mansoa alliacea (Lam.)	Cipó-d’alho			NA	Fever, bellyache, worms, heart problems, flu
Newbouldia laevis (P. Beauv.) Seem./ MFS006089	Akokô			EXₐₑ₂	To improve the mental habillity
Bixaceae					
Bixa orellana L./221310	Urucum			NB	Inflammation, intestinal cleansing, flu with catarrh, wounds, wart
Brassicaceae					
Brassica oleracea L.	Couve			EX	Stomach diseases
Family	Genus	Species Code	Common Name	Language	Use(s)
-----------------	------------------------------	--------------	-------------	----------	--
Bromeliaceae	Ananas comosus (L.) Merril		Abacaxizeiro	NB	Inflammation, cough, bronchitis, kidney stones
Caricaceae	Carica papaya L.	/221321	Mamão	EX(Am)	Worms
Connaraceae	Connarus perrottetii var.angustifolius Radlk.	/MFS006095	Barbatimão	NA	Intestinal infections, gastritis, menstrual cramps, vaginal cleansing, women’s genitourinary inflammation
Costaceae	Costus spicatus (Jacq.) Sw.	/MFS006152	Canarana	EX(Am)	kidney stones, urine pain
Crassulaceae	Kalanchoe pinnata (Lam.) Pers./MFS006091	29	Pirarucu	EX(Am)	Tuberculosis, inflammation, flu with catarrh, asthma, erysipelas, boil, wounds, ringworm, chilblains
Cucurbitaceae	Cucumis anguria L.	/221327	Maxixe	NB	High cholesterol
	Cucurbita moschata Duchesne/221282		Abóbora	EX	High cholesterol
	Momordica charantia L.	/221281	Melão-de-são-caetano	EX(Aa, Af)	Itching 1,4,5,6
Dilleniaceae	Davilla sp. / MFS006154		Cipó-de-fogo	-	Malaise, weakness , joint pains
	Dillenia indica L. /MFS006182		Pataca	EX(Aa)	joint pains
Euphorbiaceae	Euphorbia tirucalli L.	/MFS006161	Pau-pelado	EX(Af)	Wounds, pityriasis, wart, ringworm, skin cancer
	Euphorbia tithymaloides L.	/221287	Coramina	NB	Hypertension, arrhythmia, heart problems
	Jatropha curcas L.	/221301	Pião-branco	EX(Am)	Wounds
	Jatropha gossypifolia L.	/221302	Pião-roxo	NB	Earache, wounds mouth, herpes, leishmaniasis, bellyache
	Manihot esculenta Crantz/221327		Mandioca	NB	Diabetes
Fabaceae	Bauhinia sp.	/MFS006164	Feijão-andu	EX(Af)	Stroke
	Cajanus cajan L.	/MFS006170		61	
	Dalbergia monetaria L.f./MFS006170		Verônica	NA	Inflammation, anemia, gastritis, úlc er, bellyache, diarrhea, bone s pain, back pain, urinary infections, wounds, women’s genitourinary inflammation, postpartum inflammation sore throat
	Diploptoris purpurea (Rich.)	/MFS006181	Sucupira	NA	Inflammation, contusion, joint pains, flu
	Hymenaea courbaril L.	/MFS006094	Jatobá	NB	Inflammation, hemorrhage, Cough, flu, prostate cancer
	Libidibia ferrea (Mart. exTul.) L.P.Queiroz/221292		Jucá	NB	Inflammation, bellyache, diarrhea, stroke, rheumatism, cough, wounds, women’s genitourinary inflammation
	Schnella splendens (Kunth) Benth. /MFS006094	24	Escada-de-jaboti	NA	Diarrhea, bellyache, women’s genitourinary inflammation
	Tachigali glauca Tul./MFS006149		Taxi	NA	kidney problems,
	Vouacapoua americana Aubl./MFS006171		Acapu	NA	Inflammation, tumour in the uterus
Family	Species	Author	Usage	Disease/Infection	
----------------------	--	--------	--	--	
Humiriaceae	*Endopleura uchi* (Huber)		Uxi 2	Inflammation, tumour in the uterus	
Hypericaceae	*Vismia guianensis* (Aubl.)	Choisy/ MFS006172	5	NB	Pitizriasis, diabetes
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Hypericaceae	*Vismia guianensis* (Aubl.)	Choisy/ MFS006172	5	NB	Pitizriasis, diabetes
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleansin, hemorrhoida	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Iridaceae	*Eleutherine bulbosa* (Mill.) Urb./221309		Marupazinho 23	Diarrhea, vomiting, bellyache, intestine cleaners, hemorrhoidal	
Lamiaceae	*Hyiptis sp.* /MFS006177		Sambacaitá 2	Wounds	
Plant Family	Scientific Name	Common Name	Uses		
--------------------	--	------------------------------	--		
Myrtaceae	*Musa paradisiaca* L. / 221276	Bananeira	Flu, asthma, snake bite, burn		
Eucalyptus sp.					
Myrtaceae	*Eucalyptus* sp.				
Myrtaceae	*Myrtus communis* (Rich.) DC. / 221304	Murta-cabeluda			
Psidium guajava L.	221300	Goiaba	Diarrhea, bellyache		
Syzygium aromaticum (L.) Merr. & L.M. Perry / 221317	Ameixeira	2 EX (As)	Diarrhea diabetes		
Oleaceae					
Oleaceae	*Psychoptum olacoides* Benth.	Marapuama	Weakness, rheumatism, impotence		
Oxalidaceae	*Averrhoa carambola* L. / 221311	Carambola	Diabetes		
Passifloraceae	*Passiflora edulis* Sims / 221277	Maracujá	Anxiolytic		
Pedaliaceae	*Sesamum orientale* L. / 221326	Gergilim-preto	Stroke		
Phyllanthaceae	*Phyllanthus niruri* L. / 221324	Quebra-pedra	Kidney problems		
Phytolaccaceae	*Petiveria alliacea* L. / 221297	Mucuracaá, caatinga da mulata	Earache, headache		
Piperaceae	*Piper callosus* Ruiz & Pav. / 221295	Elixip-paregérico			
Piperaceae	*Piper hispidum* Sw. / 221294	Pimenta-longa			
Poaceae	*Saccharum officinarum* L.	Cana	Anemia		
Poaceae	*Cymbopogon citratus* (DC.) SiPFS / F006162	Capim-santo	Fever, vomiting, anxiolytic,		
Poaceae	*Cymbopogon nardus* (L.) Rendle / 221803	Citronela			
Polygalaceae	*Caamembeca spectabilis* (DC.) J.F.B. Pastore / 221278	Caamembeca	Worms, diarrhea, tumor in uterus		
Polygalaceae	*Portulaca pilosa* L. / 221318	Amor-crescido	Inflammation, headache, control		
Portulaceae	*Talinum paniculatum* (Jacq.) Gaertn. / 221280	Cariri	Blood pressure, sore throat		
Rutaceae	*Citrus aurantiifolia* Swingle	Limão-galego			

Research, Society and Development, v. 11, n. 1, e56911125258, 2022
(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i1.25258
ICPC categories and Informant Consensus Factor

The species mentioned were indicated for 76 health problems (symptoms and illnesses), distributed among 15 of the 17 ICPC categories (Table 2). Eight categories had UR ≥ 30, with the largest numbers of citations for digestive, respiratory and skin problems, and general symptoms. In this study, the values Informant Consensus Factor (IFC) obtained for plants used in treatment of local infirmities ranged from 0.2 to 0.8. The categories of diseases that presented the highest ICF were digestive (0.8), skin, circulatory (0.73 each) and urology (0.69) diseases. The category with the lowest ICF was the endocrine, metabolic and nutritional, which include diabetes and thyroid problems, recorded in this Settlement.
Table 2. Use reports for the 15 categories of medicinal use and the most reported medicinal plants used in the treatment of each category, as indicated in the settlement Paulo Fonteles, Mosqueiro District, Belém, Pará. Nt = number of species used for a given category; % UR_{tot}: percentage of total use-reports.

Classification of Diseases ICD – 11	Nt	Nur	(% UR_{tot})	Most cited plant in the category
Certain infectious or parasitic diseases	41	154	23.6	Anacardium occidentale L.
Respiratory	31	97	14.8	Gossypium arboreum L.
Skin	22	85	13	Alternanthera brasiliana (L.) Kuntze
Genitourinary	21	72	11	Dalbergia monetaria L.f
Digestive	24	65	9.9	Plectranthus ornatus Codd
Symptoms, signs or clinical findings, not elsewhere classified	17	50	7.6	Cymbopogon citratus (DC.)
Circulatory system	15	38	5.8	Euphorbia tithymaloides L.
Diseases of the blood or blood-forming organs	14	24	10	Dalbergia monetaria L.f
Diseases of the musculoskeletal system or connective tissue	11	19	2.9	Carapa guianensis Aubl
Injury, poisoning or certain other consequences of external causes	10	17	2.6	Alternanthera brasiliana (L.) Kuntze
Neoplasms	6	11	1.6	Aloe vera (L.)
Endocrine, nutritional or metabolic diseases	7	8	1.2	Anacardium giganteum W.Hancock ex Engl.
Pregnancy, childbirth or the puerperium	4	6	0.9	Hymenaea courbaril L.
Diseases of the ear or mastoid process	3	5	0.7	Petiveria alliacea L.
Certain conditions originating in the perinatal period	2	3	0.4	Parahancornia fasciculata (Poir.) Benoist

Source: Authors.

Eight categories had RU ≥ 30, with the largest numbers of citations for digestive, respiratory and skin problems, and general symptoms. Of those eight categories, five native Amazon plant species stood out as indicated treatments. *Anacardium occidentale* (cashew) was the species most cited (RU = 22) in the “digestive” category, with its bark and leaves being used principally to treat infectious diarrhea. *Alternanthera brasiliana* (L.) Kuntze, locally known as "penicillin" or "ampicillin", was primarily used to treat skin problems due to its anti-inflammatory and wound-healing properties.

Dalbergia monetaria L. ("verônica") was found to be the most versatile species, being indicated in eight illness categories, especially for infirmities of the “female genital and breast systems” and inflammations of the uterus (or “woman’s inflammations”) involving excessive or irregular bleeding and vaginal secretions, according to the definitions of the informants. *Phyllanthus niruri* L. ("quebra-pedra") stood out among species indicated for urological problems, with kidney stones being the principal illness mentioned. *Euphorbia tithymaloides* L. ("coramina") received the greatest number of indications among illnesses and symptoms of the circulatory system, being commonly mentioned for treating high blood pressure, arrhythmia, and chest/heart pain.

Potential species for the formal health system

Of the cited species, 40 were recorded in at least one of the official documents consulted (Table 1). Cross referencing use-information about plants recorded in the present study with plants mentioned in official documents revealed that *Sambucus nigra*, *Citrus aurantium*, and *Curcuma longa* were the only species divergent in terms of their reported indications in the two contexts. In this plant list, there are 11 Brazilian species, that naturally occurring in the Amazon (Table 3). Two of these are endemic Amazonian species: *Psychotetulum olacoides* Benth. was mentioned in the of the Brazilian pharmacopoeia 1st and 2nd Ed. *Carapa guianensis* Aubl. *C. guianensis*, listed in Renisus is the subject of one of the nine monographs published by the Brazilian Health Ministry with pre-clinical and clinical studies that confirm its anti-inflammatory activity.
Table 3. List of native species occurring in the Amazon present in official documents and with their traditional uses historically registered.

Family / scientific name / VN	Vernacular name	Ethnomedicinal use	Official documents	Amazon traditional use (1990-2020)
Justicia pectoralis Jacq.	Corrente	Flu	3,4,5	Grenand, et al., 1987; Rodrigues, 2006; Bieski, et al., 2015
Anacardium occidentale L.	Caju	Diarrhea, bellyache, wounds	4	Elisabetsky & Shalney, 1994; Rodrigues, 2006; Bieski, et al., 2015
Fridericia chica (Bonpl.) L.G.Lohmann	Pariri	Fever, inflammation, anemia	4	Berg, 1984; Rodrigues, 2006; Bieski, et al., 2015
Jatropha goossypifolia L.	Pião roxo	Earache, wounds mouth, herpes, leishmaniasis	4	Berg, 1984; Rodrigues, 2006; Coelho-Ferreira, 2009
Carapa guianensis Aubl.	Andiroba	Inflammation, contusion, bone pain, dismitidura, catarrh, sore throat, wounds	4	Berg, 1984; Rodrigues 2006; Coelho-Ferreira, 2009
Psychopetalum olacoides Benth.	Marapuama	weakness, rheumatism, impotence	2	Grenand, et al., 1987; Shanley & Luz, 2003; Lima, et al., 2016 Coelho-Ferreira, 2009; Bieski, et al., 2015
Passiflora edulis Sims	Maracujá	anxiolytic	2,3,4,5,6	Coelho-Ferreira, 2009; Coelho-Ferreira, 2009
Phyllanthus niruri L./221324	Quebra-pedra	kidney problems	2,4,5,6	Grenand, et al., 1987; Coelho-Ferreira, 2009; Bieski, et al., 2015 Grenand, et al., 1987; Rodrigues, 2006; Bieski, et al., 2015
Portulaca pilosa L./221318	Amor cresido	Inflammation, headache, control blood pressure, sore throat	4	Grenand, et al., 1987; Coelho-Ferreira, 2009; Bieski, et al., 2015
Lippia alba (Mill.) N.E.Br. ex P. Wilson/221298	Erva-cidreira	Fever, headache, anxiolytic	5,6	Pascual, et al. 2001; Coelho-Ferreira, 2009; Bieski, et al., 2015 Austin & Bourne, 1992; Coelho-Ferreira, 2009; Bieski, et al., 2015
Stachytarpheta cayennensis (Rich.)	Rinxão	Urine pain	2	Grenand, et al., 1987; Rodrigues, 2006; Bieski, et al., 2015

Source: Authors.

4. Discussion

In this study, the informants constitute a heterogeneous group of people from different regions of the country, but who share agricultural activities throughout their lives, having medicinal plants as a priority resource in basic health care (Oliveira Melo, et al., 2021). The species collection registered here comprises plants of great importance in primary health care, whose uses have been widespread in the Amazon, where they are recurrent cultivation in backyards, bought in fairs and markets region, and planted in agro-forest systems (Santos, et al., 2018). The expressive number of exotic plants cited is due in large part to their consumption in local diets and the necessity of the local inhabitants to be self-sustaining in terms of food resources, while at the same time taking advantage of many of those plants for their medicinal value. Exotic species are probably sought after to fill in gaps not satisfied by native species, which reflects their versatility (Alencar, et al., 2010) – an important characteristic for rural populations that can quite often find themselves in situations of social vulnerability and dependent on plants within their reach (Cunha & Bortalotto, 2011). The Amazonian species cited in the present work demonstrates the importance of maintaining forest fragments in the metropolitan region of Belém (the state capital), which, among other functions, act as sources for a great number of native plants utilized for the primary health needs of small rural communities (Amaral, et al., 2012). Those species have been incorporated over many generations to treat common diseases among local populations (Berg, 2010). In addition, 82% of native species recorded in this study were found in backyards. The cultivation and management of these plants is important for the conservation of plant biodiversity, as they consist in a germplasm bank that can be useful to reduce the exploitation of primary vegetation and to facilitate the access to these areas when needed (Albuquerque, et al., 2008)

The infirmities included within the outstanding categories in the present survey reflect physical factors that affect the community, such as precarious sanitary conditions, the hot and humid regional climate, smoke from burning vegetation, and the hard manual labor of farming. In 2016, diarrhea was the main cause of hospitalizations in the health system in the
The review of plant antimicrobial and antifungal activities, besides other biological activities. Phyllanthus niruri L. "quebrapiedra" stood out among species indicated for urological problems, with kidney stones being the principal illness mentioned. This species use is known throughout the world (Lee, et al., 2016). It is cited in RENISUS (MS, 2010), and its use is recommended in both the RDC 10/2010 (Anvisa, 2010) and the Herbal Medicine Compendium (Anvisa, 2011; 2021). Preclinical and clinical studies have demonstrated its anti-uric activity (Boim, et al., 2010) as well as other pharmacological properties (Lee, et al., 2016).

Other species, on the other hand, although widely used locally, should be the target of further pharmacological and toxicological studies. As the amazon plant Dalbergia monetaria that stands out in this research for consensual and versatile use. The studies about the properties of the D. monetaria are incipient. The ethyl acetate fraction from their bark and leaves demonstrated antibacterial activity against human pathogenic bacteria, especially Staphylococcus aureus and Pseudomonas (Moura, et al., 2020). Those authors suggested that the traditional medicinal use of D. monetaria might be related to the antibacterial activity of proanthocyanidins produced by the species.

Alternanthera brasiliana (L.) Kuntze, locally known as "ampicilin", was primarily used to treat skin problems due to its anti-inflammatory and wound-healing properties. This plant use has been have a long use historic in the Amazon region (Bieski, et al., 2015; Moraes, et al., 2020). The therapeutic potential of that plant has been demonstrated in numerous in vitro and in vivo studies confirming its significant wound-healing (Barua, et al. 2009), antimicrobial (Biavatti, et al., 2003), antinociceptive (Macedo, et al., 1999), anti-inflammatory, and analgesic properties (Fomagio, et al., 2012).

Euphorbia tithymaloides received the greatest number of indications among illnesses and symptoms of the circulatory system. Its effectiveness is related to the presence of cardiac glycosides (compounds active against cardiac insufficiency), and it is increasingly recommended for anti-tumor treatments (Fürst, et al., 2017). These plant demonstrates several biological activities that include anti-diabetic, analgesic, stomachic, hemostatic, anti-microbial, antifungal, anti-inflammatory, abortifacient, antivenom, anti-helminth and antibiotic (Srivastava, et al., 2019), although its mechanism(s) of action have not yet been fully investigated. The species is listed as toxic (Anvisa, 2014), possibly due to the presence of euphorbol and diterpene sterols, considered carciogenic substances (Kumar, et al., 2015).

The list of 40 species recorded in this study and official documents exposes two aspects. The first of which refers to the agreement on the indication of use of these plants in both contexts. These plants have widespread uses worldwide, perhaps stimulated by globalization, which according to Leonti e Casu (2013) has favored the exchange between local and global pharmacopeias through international trade interests, print media, television and World Wide Web. The occurrence of plants of globalized use in this pharmacopeia plays a strategic role in primary health care, since the knowledge associated with them is widely validated in different official documents.

The second aspect refers to the use of species registered in official documents is still incipient among populations that use plants for their primary health care necessities, especially those native plants. Among the list of 40 species, only 11 are
native with occurrence natural in the Amazon. Almeida et al. (2014) and Pires, et al. (2020) reported results similar to those reported here in the cities of northeastern and north Brazil, respectively. Pires et al. (2020) also point out that SUS documents do not reflect the reality of ethnobotanical studies conducted in the Amazon since these documents do not include native species of great importance to the population in a significant way. That situation also may be associated with the lower number of Amazon species have been subject of chemical, biological, or even ecological investigations – important steps in the identification of endemic Amazonian plants with medicinal potential. Carvalho et al. (2018) stressed the necessity of research advances focusing on Amazonian plants that would allow their use and economic development in sustainable manners, considering their multiple functions within their natural environment.

The set of 11 amazon species have notable cultural value, a long history of traditional use, whose therapeutic value has confirmed in several chemical and biological studies. *Justicia pectoralis* Jacq., for example, was mentioned locally to treat colds and flu, indications reported for the use of this plant both in the RDC/2010 and in the Herbal Medicine Compendium 1st and 2nd Ed (Brasil, 2011; 2020). This species also are listed in Renisus (MS, 2010), and has been the subject of studies that show its biological activity in the treatment of respiratory system diseases (Leal, et al., 2017) *Lippia alba* (Mill.) N.E.Br. ex P. Wilson and *P. niruri* are either species that appear in several of the consulted documents. The other plants in Table 3 appear only in Renisus and ethnobotanical studies point to their historical traditional uses.

The plants-use represent popularized therapeutic alternatives of easy access to communities in vulnerable socio-economic conditions, since can be easily cultivated in backyards, farm plots and secondary forests or founded in fairs and markets region (Santos, et al., 2018). These species should be better publicized to gain adhesion among SUS patients and health professionals, since that they are apt for use in basic care as offered by SUS – especially in municipalities in the Amazon region, according to the requisites of traditional use.

The inclusion of medicinal plants as alternative remedies in local SUS health stations could reduce public costs, facilitate access to them, and integrate popular culture with scientific knowledge to strengthen basic health treatments and reorient them towards the “front door” of the SUS system (Brasil, 2006). Previous experiences with the incorporation of those practices into the SUS network in Brazil revealed that, in spite of infrastructure difficulties and low investments in support of phytotherapies, medicinal plants represent low-cost and efficient alternatives widely appreciated by the populations being served (Antonio, et al., 2013; Ogava, et al., 2003; Silva, et al., 2006).

5. Conclusion

This study emphasizes the importance of medicinal plants in the primary health care of rural farmers in the Amazon. They used species that occur naturally in the Amazon to heal the main health problems. These plants have been the subject of researches that confirms their therapeutic potential. Among the six species, highlighted, Alternanthera brasiliana and Dalbergia monetaria are not present in any document from the Ministry of Health. Hereby, we also draw attention to the requirement of more research with Amazonian plants, to ensure their inclusion in lists of species of interest to the SUS, since these documents do not present a representative number of species from this region. Finally, we highlight a list of 10 amazon species that must be available in the local health system, given their presence in official documents and traditional use in the country.

Therefore, this study encourages the development of more bioprospection research of Amazonian plants, whose traditional uses have been used for thousands of years by local populations. More knowledge of the therapeutic properties of these species is essential for its valorization within the scope of public health policies.
Acknowledgments

The authors thank the residents of the Paulo Fontes Settlement Land who agreed to participate in the present research and share their knowledge of medicinal plants – thus contributing to the elaboration and implementation of the study; the National Council for Scientific and Technological Development (CNPq) for the Masters research grant awarded within the Postgraduate Program in Biological Sciences - Tropical Botany at the Federal Rural University of Amazonia and Museu Paraense Emílio Goeldi (UFRA/MPEG); the Vice-Presidency of Environment, Attention and Health Promotion, of Fundação Oswaldo Cruz (VPAAPS-Fiocruz) who supported this work through the Experiences, Technologies and Innovation in Health Network Project – RetisFito; and the Programa de Capacitação Institucional (MPEG) for the grant awarded to the first author.

References

Albuquerque, U. P., Thiago, A. E., De, A., Araú, S., Ae, J., Alves, M., Ae, R., Teixeira, V., Ae, N., Farias, R., De Lucena, P., Jú, A. E., Ae, M. M., Leal, N., Ae, A., De, E., & Araújo, L. (2008). How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil. https://doi.org/10.1590/s1515-008-9463-8.

Albuquerque, U. P., Ramos, M. A., Lucena, R. F. P., & Alencar, N. L. (2014) Methods and techniques used to collect ethnobiological data. In: Albuquerque UP, Cunha SVF, Lucena RFP, Alves RRN (eds) Methods and techniques in ethnomedicine and ethnoecology, vol 1. Springer protocols. Springer, New York, pp 15–38. https://doi.org/10.1007/978-1-4614-8636-7

Albuquerque, U. P. (2019). Methods and techniques in ethnomedicine and ethnoecology.

Alencar, N. L., de Sousa Araújo, T. A., de Amorim, E. L. C., & de Albuquerque, U. P. (2010). The inclusion and selection of medicinal plants in traditional pharmacopoeias-evidence in support of the diversification hypothesis. Economic Botany, 64(1), 68–79. https://doi.org/10.1007/s12231-009-9104-5

Almeida, M. Z., Léda, P. H. O., da Silva, M. Q. O. R., Pinto, A., Lisboa, M., Guedes, M. L. M. L., & Peixoto, A. L. (2014). Species with medicinal and mystical-religious uses in São Francisco do Conde, Bahia, Brazil: a contribution to the selection of species for introduction into the local Unified Health System. Revista Brasileira de Farmacognosia, 24(2), 171–184. https://doi.org/10.1016/j.rjp.2014.04.006

Amaral, D. D., Vieira, I. C. G., Salomão, R. P., Almeida, S. S., & Jardim, M. A. G. (2012). The status of conservation of urban forests in eastern Amazonia. Brazilian Journal of Biology, 72(2), 257–265. https://doi.org/10.1590/S1519-69842012000200005

Antonio, G. D., Tesser, C. D., & Moretti-Pires, R. O. (2013). Contribuições das plantas medicinais para o cuidado e a promoção da saúde na atenção primária. Interface - Comunicação, Saúde, Educação, 17(46), 615–633. https://doi.org/10.1590/S1514-3283201305000014

Arailjio, T. S. L., Costa, D. S., Sousa, N. A., Souza, L. K. M., De Araújo, S., Oliveira, A. P., Sousa, F. B. M., Silva, D. A., Barbosa, A. L. R., Leite, J. R. S. A., & Medeiros, J. V. R. (2015). Antidiarrheal activity of cashew gum, a complex heteropolysaccharide extracted from exudate of Anacardium occidentale L. in rodents. Journal of Ethnopharmacology, 174, 299–307. https://doi.org/10.1016/j.jep.2015.08.020

Austin, D. F., & Bourne, G. R. (1992). Notes on Guyana’s medicinal ethnobotany. Economic Botany, 46(3), 293–298. https://doi.org/10.1007/BF02866627

Barua, C., Sarma, D., & Barua, A. G. (2009). Wound healing activity of methanolic extract of leaves of Alternanthera brasiliana Kuntz using in vivo and in vitro model. Wound healing activity of methanolic extract of leaves of Alternanthera brasiliana Kuntz using in vivo and in vitro model. December.

Berg, M. E.V. (1984) Ver-o-Peso: The Ethnobotany of an Amazonian Market. Advances in Economic Botany 1, 140–49. http://www.jsotor.org/ptl/43931373.

Biavati, M., Bellaver, M., Volpato, L., Costa, C., & Bellaver, C. (2003). Preliminary studies of alternative feed additives for broilers: Alternanthera brasiliana extract, propolis extract and inseed oil. Brazilian Journal of Poultry Science, 5(2), 147–151. https://doi.org/10.1590/S1516-635X2003000200009

Bieski, J. G. C., Leonti, M., Arman, J. T., Ferrier, J., Rapinski, M., Violante, I. M. P., Balogun, S. O., Pereira, J. F. C. A., Figueiredo, R. D. C. F., Lopes, C. R. A. S., Da Silva, D. R., Pacini, A., Albuquerque, U. P., & De Oliveira Martins, D. T. (2015). Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. Journal of Ethnopharmacology, 173, 383–423; https://doi.org/10.1016/j.jep.2015.07.025

Boim, M. A., Heilberg, I. P., & Schor, N. (2010). Phyllanthus niruri as a promising alternative treatment for nephrolithiasis. International Braz j Urol, 36(6), 657–664. https://doi.org/10.1590/S1677-55382010000600002

Carvalho, A. C. B., Lana, T. N., Perfeito, J. P. S., & Silva, D. (2018). The Brazilian market of herbal medicinal products and the impacts of the new legislation on traditional medicines. Journal of Ethnopharmacology, 212, 29–35. https://doi.org/10.1016/j.jep.2017.09.040

Chase, M. W., Christenhusz, M. J. M., Fay, M. F., Byng, J. W., Judd, W. S., Solits, D. E., Mabberley, D. J., Seknikov, A. N., Solits, P. S., Stevens, P. F., Briggs, B., Brockington, S., Chautemps, A., Clark, J. C., Conran, J., Haston, E., Möller, M., Moore, M., Olmstead, R., & Weber, A. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385

Coelho-Ferreira, M. (2009). Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará State (Brazil). Journal of Ethnopharmacology, 126(1), 159–175. https://doi.org/10.1016/j.jep.2009.07.016

Cunha, S. A., & Bortolotto, I. M. (2011). Etnobotânica de Plantas Medicinais no Assentamento Monjolinho, município de Anastácio, Mato Grosso do Sul,
WHO. (1999) Monographs on selected medicinal plants, 1. World Health Organization.

WHO. (2007). Monographs on selected medicinal plants, 3. World Health Organization.

WHO. (2009) Monographs on selected medicinal plants, 4. World Health Organization.

WHO. (2013) WHO traditional medicine strategy: 2014-2023. World Health Organization.

WHO. (2006) Traditional Medicine Strategy 2002-2005. World Health Organization, WHO Policy Perspectives on Medicine. http://whqlibdoc.who.int/hq/2002/who_edm_trm_2002.1.pdf.

WHO. (2002) Monographs on selected medicinal plants, 2. World Health Organization.