Quantification of leaf movement to study the circadian rhythm using the optical flow

A P Nugroho1*, S Maghfiroh1, D Fatmawati1, G P Edwantiar1, L Sutiarso1, R E Masithoh1, and T Okayasu2

1Smart Agriculture Research Group, Department of Agricultural and Biosystems Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada, Jl. Flora No. 1 Bulaksumur Yogyakarta 55281 INDONESIA
2Department of Agro-Environmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 810-0395, JAPAN

*E-mail: andrew@ugm.ac.id

Abstract. Circadian rhythm is a biological rhythm in a plant that has a 24-hour period, which affects the plant activities such as metabolism processes, physiology processes, and plant behavior. Circadian rhythm represents the biological clock that entrained by the environmental condition affected by the earth rotation. As an alternative to monitoring the circadian rhythm in the plant was the use of leaf motion as a physical indicator. The objective of this study was to present the quantitation method for leaf movement to study the circadian rhythm using the optical flow method. The leaf movement was analyzed from the captured time-lapse imaging using an Infra-red camera to capture the day-night movement of the leaf of Chili (Capsicum annum L.) from top and side view projection. As a result, the quantification method could quantify the leaf motion of Chili for both top and side view projection with the higher movement observed at top view projection. The quantified motion could show the diurnal pattern of circadian rhythm clearly and will be used for further investigation related to plant behavior in response to environmental changes.

1. Introduction

Earth rotation caused light and temperature cycles to exist in the environment [1]. Every living thing relies on the circadian clock to anticipate environmental changes [2]. The circadian clock is endogenous timekeeping systems that allow plants to generate rhythms with periods approximate 24 hours known as circadian rhythms [2]. The circadian clock affects many biological processes and plant physiology such as photosynthesis, hormone secretion, and iron homeostasis [3]. Circadian rhythms can be used to study plant behavior both in constant and dynamic conditions. There are many methods to estimate the circadian rhythm, one of them is circadian rhythm can be measured based on prompt chlorophyll fluorescence [4].

Leaf motion is one of the physical indicators that has been used to investigate the existence of circadian rhythm based on De Mairan, 1729[5,6]. Estimation of leaf motion to produce a circadian rhythm consists of 3 stages: 1) taking and collecting images at a fixed interval continuously, 2) calculating the translation distance and the direction of the angle laterally from the collected image, 3) determining the period, phase, and amplitude of numerical data series [7]. In the previous study, several systems have been developed to estimate leaf motion [8]. In related research, the leaf...
movement analysis tool was developed, PALMA (Plant leaf movement analyzer) that works in the command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least-squares fitting [8]. However, the system requires expensive hardware modules and commercial software.

One of the many methods that can be used to measure leaf motion is the optical flow method. Optical flow is an estimation method in a computer vision field that is concerned in estimating pixel-level motion from two consecutive images [10]. There are several variations of optical flow methods such as: 1) Knowledge-driven methods, 2) Data-driven methods, 3) Attention-based image analysis methods, and 4) Convolutional neural networks [9]. Knowledge-driven methods can display the relationship between the image and flow explicitly by modeling an energy function [10]. Data-driven methods can estimate weight from a large amount of data [9]. Attention-based image analysis has been widely used in many computer vision tasks, such as image classification, pose estimation, object detection, person re-identification, image super-resolution and semantic segmentation [10]. While, convolutional neural networks classically applied to classification, but recently allow for per-pixel predictions like semantic segmentation or depth estimation from single images [11].

In the previous study, the optical flow has been applied in several fields for example: for two-dimensional deformation measurement [12], virtual reality for animal navigation with a camera [13], to detect moving objects under moving camera [14], to estimate aerated spillway flows [15], etc. Several algorithms were developed to use optical flow for different or specific uses such as: Horn-Schunck algorithm, Newton-Krylov algorithm, Shi-Tomasi and Lucas Kanade algorithm which is used in this study [16, 17]. Shi-Tomasi parameter as a corner detector and Lucas Kanade algorithm which assumes that the neighboring pixels have the same motion [5, 6].

The objective of this study is to present the quantitation method for leaf motion to study the circadian rhythm using the optical flow method. The motion estimation method was based on optical flow, implementing the Lucas-Kanade technique and Shi-Tomasi corner detection to quantify the 2D lateral translation and direction angle of leaf motion. The system was applied to time-lapse images captured on Chili plant cultivation.

2. Materials and Method
This research was conducted at Smart Agriculture Research, Laboratory of Agricultural Energy and Machinery, Department of Agricultural and Biosystem Engineering, Faculty of Agricultural Technology, Universitas Gadjah Mada. The observed plants were Chili (Capsicum annum L.) carried out on August 30, 2017, until September 09, 2017.

2.1. Automatic Image Capturing System
The Chili plant is observed in a growth chamber, as shown in figure 1. The growth chamber dimension is (70 × 70 × 100) cm. The growth chamber equipped with an infrared camera and infrared LED as a night vision module. The IR camera is controlled by a Raspberry PI for the automatic and continuous image capturing based on time-lapse photography. The image capturing is done during night and day in every five minutes interval and the image captured is automatically uploaded into the Agrieye cloud system (www.agrieye.tp.ugm.ac.id). For irrigation purposes, the growth chamber also equipped with pipes to provide water irrigation from the outside without disturbing the capture image processes.
2.2. Motion Quantification

The plant motion is analyzed using an optical flow method with the Shi-Tomasi parameter as a corner detector and Lukas Kanade algorithm which assumes that the neighboring pixels have the same motion. The principle of optical flow is tracking a point from one image to another image between two consecutive images as displayed in Figure 2. The stem of leaf position at certain time t notated as S at t, and the present position at $S_{t+\delta t}$ when δt is the different time or capturing interval.

Figure 1. Figure of (a) Growth chamber, (b) Top view camera, and (c) Raspberry Pi equipped with camera

Figure 2. Schematic of leaf motion quantification
Assumed the point to track is \(I(x, y, t) \) at time \(t \) has the same intensity at \(I(x + \delta x, y + \delta y, t + \delta t) \) and the equation can be expressed as

\[
I(x, y, t) = I(x + \delta x, y + \delta x, t + \delta t). \tag{2.1}
\]

Differentiating this constraint gives the optical flow equation \(\nabla I^T \mathbf{v} = -I \), where \(\mathbf{v} = [u, v] \) is the motion vector and \(\frac{\partial}{\partial t} \) the time derivative. For the individual points, this equation cannot be solved because it has two unknown values in \(\mathbf{v} \). The Lucas-Kanade method assuming that the neighboring pixels have the same motion \([18]\) and it is possible to obtain the motion vector \(\mathbf{v} \) by stacking many equations into one system equation as (2.2) for some neighborhood of \(n \) pixels.

\[
\begin{bmatrix}
\nabla I^T(x_1) & \nabla I^T(y_1) \\
\nabla I^T(x_2) & \nabla I^T(y_2) \\
\vdots & \vdots \\
\nabla I^T(x_n) & \nabla I^T(y_n)
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= -
\begin{bmatrix}
I(x_1) \\
I(x_2) \\
\vdots \\
I(x_n)
\end{bmatrix} \tag{2.2}
\]

The contribution of surrounding pixels is weighed by a Gaussian weighting and turn the matrix above into the structure tensor in equation (2.3) and we have the relation expressed as

\[
\begin{bmatrix}
\nabla I^T(x_1) & \nabla I^T(y_1) \\
\nabla I^T(x_2) & \nabla I^T(y_2) \\
\vdots & \vdots \\
\nabla I^T(x_n) & \nabla I^T(y_n)
\end{bmatrix}
\begin{bmatrix}
u \\
v
\end{bmatrix}
= \begin{bmatrix}
I(x_1) \\
I(x_2) \\
\vdots \\
I(x_n)
\end{bmatrix} \tag{2.3}
\]

where \(A \) is the matrix of \(M \) and \(b \) is \(-[I(x_1), I(x_2), \ldots, I(x_n)]\). This equation system can be solved in a least square method and the motion vector is given by

\[
\mathbf{v} = (A^T A)^{-1} A^T b \tag{2.4}
\]

when \(A^T A \) is invertible which obtained from the finding of Shi-Tomasi tracking corner. Accordingly, the position of It and It can be identified for further investigation. The distance between both points \(|V_i| \) then calculated using the Pythagoras theorem by input of \(\delta x = x_{t+dt} - x_t \), and \(\delta y = y_{t+dt} - y_t \) and the \(|V_j| \) can be calculated as (2.5) for individual translation distance of vector 1.

\[
|V_i| = \sqrt{\delta x^2 + \delta y^2} \tag{2.5}
\]

Accordingly, number of vectors in one-time estimation has detected from 1 to \(n \) as displayed in Figure 2, can be averaged the translation distance at estimated time \(t \) as (2.6):

\[
\bar{V}[t] = \frac{1}{n_{point}} \sum_{n=1}^{n_{point}} |V_n| \tag{2.6}
\]

where \(n \) is the number of vector points, and \(t \) is the discrete-time. Time series of translation distance can be visualized to represent the rhythm. OpenCV Library 3.4.5.20 running on Python 3.7 with PyCharm 2019.2 as Integrated Development Environment was used to perform the motion quantification.
3. Results and Discussion

Figure 3 shows the time-lapse image of the Chili (Capsicum annum L.) leaf captured from top and side view projection using the developed automatic image capturing system. The interval of capturing is 30 minutes and the saved images been analyzed using the quantification method for both projections. The consecutive image for top and side projection on day and night has clearly been seen by the utilization of infrared cameras for detailed movement in the dark and light cycle continuously.

Vector visualization of translation distance for both top and side projection is displayed in figure 4. The translation from the reference point of interest represented by the arrowed line where the length and direction of the arrow representing the orientation and distance of the movement. The rapid movement can be seen clearly for both top and side view projection. During one frame of observation,
the length of the vector line then is averaged to obtain the overall movement at one time. More detail investigation of the quantitative value will be explained in time series manner for each projection.

The time series of leaf motion from the translation distance that has been averaged are displayed in figure 5. The time series displaying raw data in gray dots for top projection and side projection. The raw data are then filtered with 30 minutes moving average and plotted in solid black line for both projections. According to the visualized time-series graph, it can be seen that the observed plant, Chili, having more active motion (higher translation distance) in the dark (or night) condition, while during the day the chili plants are more passive (lower translation distance). The motion of Chili plants observed from the Top and Side projections shows different behavior patterns as can be seen in time series behavior. Based on the top projection, the highest translation is obtained during the day while based on the side projection the highest translation is obtained at night.

According to the behavior of the movement, showing up and down translation distance, and its diurnal pattern could be used to resemble the circadian rhythm for further studies. The utilization of leaf movement as a biomarker without any additional marker, such as white ball or wire as a motion tracker, could simplify the motion quantification by the use of the Optical Flow method, adopting the Shi-Tomasi corner detector and Lucas-Kanade for the motion differentiation. Further consideration would be the estimation of period, amplitude, and frequency of the circadian rhythm oscillation to reveal the plant response to the environment.

![Circadian rhythm from top and side view projections](image)

Figure 5. Circadian rhythm from top and side view projections

4. Current Conclusion and Future Works

The quantification method for leaf movement to study the circadian rhythm based on computer vision implementing the Optical Flow method has been presented to estimate the plant circadian rhythm of Chili (*Capsicum annum* L.). The quantification method could quantify the leaf motion of Chili for both top and side view projection with the higher movement observed at top view projection. The
quantified motion could show the diurnal pattern of circadian rhythm clearly and will be used for further investigation related to plant behavior in response to environmental changes.

Acknowledgement
The authors thanks to Ministry of Research, Technology and Higher Education of the Republic of Indonesia by 2017-2017 Research Grants of Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) 2019 (No. 2771/UN1/DITLIT/DIT-LIT/LT/2019), Research Grant of Rekognisi Tugas Akhir (RTA) Scheme from Universitas Gadjah Mada 2019 (No. 3414/UN1/DITLIT/DIT-LIT/LT/2019) for the financial supporting. This study also supported by Smart Agriculture Research group of Agricultural and Biosystems Engineering UGM, so the authors would like to express a lot of thanks for this support.

References
[1] Srivastava D, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P and Singh K N 2019 Role of circadian rhythm in plant system: An update from development to stress response Environ. Exp. Bot. 162 256–71
[2] Inoue K, Araki T and Endo M 2018 Seminars in Cell & Developmental Biology Oscillator networks with tissue-specific circadian clocks in plants Semin. Cell Dev. Biol. 83 78–85
[3] Nugroho A P, Okayasu T, Sakai A, Inoue E, Hirai Y, Mitsuoka M and Sutiarso L 2016 Automatic leaf motion analysis using optical flow to diagnose plant behavior in response to environmental changes Proceedings of the 8th International Symposium on Machinery and Mechatronics for Agriculture and Biosystems Engineering (ISMAB) (Niigata, Japan: The Japanese Society Of Agricultural Machinery and Food Engineers) pp 848–53
[4] Dakhiya Y, Hussien D, Fridman E, Ki M and Green R 2017 Correlations between Circadian Rhythms and Growth in Challenging Environments 1 [OPEN] 173 1724–34
[5] Okayasu T, Nugroho A P, Sakai A, Arita D, Yoshinaga T, Taniguchi R I, Horimoto M, Inoue E, Hirai Y and Mitsuoka M 2018 Affordable field environmental monitoring and plant growth measurement system for smart agriculture Proceedings of the International Conference on Sensing Technology, ICST
[6] Okayasu T, Nugroho A P, Arita D, Yoshinaga T, Hashimoto Y and Tachiguchi R 2017 Sensing and Visualization in Agriculture with Affordable Smart Devices Smart Sensors at the IoT Frontier
[7] Kim J and Nam H G Instrumentation and Software for Analysis of Arabidopsis Circadian Leaf Movement 1 22–5
[8] Onai K, Okamoto K, Nishimoto H, Morioka C, Hirano M, Kami-ike N and Ishiura M 2004 Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system Plant J.
[9] Wagner L, Schmal C, Staiger D and Danisman S 2017 The plant leaf movement analyzer (PALMA): A simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana Plant Methods
[10] Zhai M, Xiang X, Zhang R, Lv N and El A 2019 Optical flow estimation using channel attention mechanism and dilated convolutional neural networks Neurocomputing 368 124–32
[11] Ilg E, Fischer P, Philip H, Hazirbas C, Golkov V, Cremers D and Brox T FlowNet : Learning Optical Flow with Convolutional Networks
[12] Hartmann C, Wang J, Opritescu D and Volk W 2018 Implementation and evaluation of optical flow methods for two-dimensional deformation measurement in comparison to digital image correlation Opt. Lasers Eng.
[13] Vishniakou I, Plöger P G and Seelig J D 2019 Virtual reality for animal navigation with camera-based optical flow tracking J. Neurosci. Methods
[14] Zhang Y, Zheng J, Zhang C and Li B 2018 An effective motion object detection method using optical flow estimation under a moving camera ☆ 55 215–28
[15] Kramer M and Chanson H 2019 Optical flow estimations in aerated spillway flows: Filtering and discussion on sampling parameters Exp. Therm. Fluid Sci.

[16] Ruymbeek K 2020 Algorithm for the reconstruction of dynamic objects in CT-scanning using optical flow J. Comput. Appl. Math. 367 112459

[17] Nugroho, Andri Prima; Okayasu, Takashi; Taniguchi, Rin-ichiro; Inoue, Eiji; Hirai, Yasumaru; Mitsuoka, Muneshi ; and Sutiarso L 2016 Quantification of 2D Lateral Leaf Motion on Mature Plants Foliage using Optical Flow to Study the Circadian Rhythms 6–10

[18] Solem J E 2012 Programming Computer Vision with Python ed A Oram and M Hendrickson (Gravenstein Highway North, Sebastopol, CA, US: O’Reilly Media, Inc.)