Leveraging genetic data to investigate molecular targets and drug repurposing candidates for treating alcohol use disorder and hepatotoxicity

Joshua C. Gray, PhD¹,*, Mikela Murphy, BA¹, Lorenzo Leggio, MD, PhD, MSc²
¹Department of Medical and Clinical Psychology, Uniformed Services University, 4301 Jones Bridge Rd, Bethesda, MD 20814
²Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Bethesda, MD; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI.

Abstract

Background: Novel treatments for alcohol use disorder (AUD) and alcohol-related liver disease (ALD) are greatly needed. Genetic information can improve drug discovery rates by facilitating the identification of novel biological targets and potential drugs for repurposing.

Methods: The present study utilized a recently developed Bayesian approach, Integrative Risk Gene Selector (iRIGS), to identify additional risk genes for alcohol consumption using SNPs from the largest alcohol consumption GWAS to date (N = 941,280). iRIGS incorporates several genomic features and closeness of these genes in network space to compute a posterior probability for protein coding genes near each SNP. We subsequently used the Target Central Resource Database to search for drug-protein interactions for these newly identified genes and previously identified risk genes for alcohol consumption.

Results: We identified several genes that are novel contributions to the previously published alcohol consumption GWAS. Namely, ACVR2A, which is critical for liver function and linked to anxiety and cocaine self-administration, and PRKCE, which has been linked to alcohol self-administration. Notably, only a minority of the SNPs (18.4%) were linked to genes with

*Correspondence to Joshua Charles Gray, PhD; (410) 707-1180, joshua.gray@usuhs.edu, 4301 Jones Bridge Rd, Bethesda, MD 20814.

Contributors
JCG conceptualized the study, analyzed the data, and wrote the manuscript. MM analyzed the data and generated the figures. LL revised the manuscript.

Conflict of Interest
No conflict declared.

Disclaimer: The opinions and assertions expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Uniformed Services University, the Department of Defense or the National Institutes of Health.

Publisher’s Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
confidence (≥.75), underscoring the need to apply multiple methods to assign function to loci. Finally, some previously identified risk genes for alcohol consumption code for proteins that are implicated in liver function and are targeted by drugs, some of which are candidates for managing hepatotoxicity.

Conclusions: This study demonstrates the value of incorporating regulatory information and drug-protein interaction data to highlight additional molecular targets and drug repurposing candidates for treating AUD and ALD.

Keywords
alcohol; drug repurposing; hepatotoxicity; liver disease; psychiatric genetics

1. Introduction

Improving the treatment of patients with alcohol use disorder (AUD) and alcohol-related liver disease (ALD) is of vital importance from a clinical and public health standpoint (Leggio and Lee, 2017). Only three medications have been approved by the FDA to treat AUD – the last approval took place almost 15 years ago. No medications are approved for ALD. Targeting disease mechanisms with genetic support can increase success in drug development (Nelson et al., 2015). However, translating genome-wide association studies (GWASs) of complex diseases to target discovery and medication development remains challenging (Oprea et al., 2018). AUD is exemplary of this challenge; numerous large GWASs have yielded many significant SNPs (Kranzler et al., 2019; Liu et al., 2019), yet limited drug targets for treating AUD and alcohol-related consequences, such as ALD, have been identified.

We conducted two sets of analyses to identify additional risk genes for alcohol consumption and assess target druggability. First, we applied a modified version of the Integrative Risk Gene Selector (iRIGS) (Wang et al., 2019) to 98 genome-wide significant SNPs from the largest alcohol consumption GWAS to date, which assessed drinks per week (M = 7.84) in 941,280 individuals (Liu et al., 2019). In this study, iRIGS ranked genes at each SNP by integrating evidence from distal regulatory elements-promoter links to yield potential risk genes for alcohol consumption. Second, we classified gene encoded protein druggability based on the Target Development/Druggability Level (TDL) classification system (Oprea et al., 2018) from the Target Central Resource Database (TCRD).

2. Material and methods

2.1. Integrative Risk Gene Selector (iRIGS).

For the first set of analyses, we applied a modified version of iRIGS to 98 genome-wide significant SNPs (p < 5 x 10^{-8}) associated with drinks per week from the GSCAN study (Liu et al., 2019) (rs7074871 was excluded because it had no nearby protein-coding genes). Briefly, iRIGS integrates two layers of information: 1) genomic features (i.e., distance from gene to SNP and four sets of regulatory connections derived from distal regulatory elements-promoter links from the chromosome conformation capture techniques Hi-C and capture Hi-C, and Functional Annotation of the Mammalian Genome 5 [FANTOM5] data) for genes
within a 1 megabase (Mb) flanking region of each SNP; and 2) closeness of each gene in the network (Wang et al., 2019). Our modified version of the iRIGS method did not include de novo mutation enrichment or differential expression because the datasets used for the latter were specific to schizophrenia, there are no equivalent datasets to our knowledge for alcohol consumption, and there are many non-brain tissues relevant to alcohol consumption. We defined the cutoff for potential risk genes to be a posterior probability of ≥.75, indicating the gene is 75% likely to be related to the SNP (the probabilities of all genes within ±1Mb of a given SNP add up to 100%).

2.2. Target Development/Druggability Level (TDL).

For the second set of analyses, we incorporated genes identified in the iRIGS analyses and the analyses conducted in the prior GWAS. The methods for generating these alcohol consumption genes are discussed in detail in the prior study (Liu et al., 2019). Briefly, they defined a gene as implicated if it harbored variation of LD $r^2 > .3$ with a genome-wide significant SNP or if it was located within 500kb of the SNP and was significant by the PASCAL gene-based test. This yielded 307 unique genes for our analyses. In order to identify the overlap of new and previously identified risk genes for alcohol consumption with preexisting drugs, we integrated drug-protein interaction information from the TCRD (Oprea et al., 2018). The TCRD defines TDLs according to 4 levels of confidence: T_{clin} targets have approved drug(s) with known mechanism(s) of action; T_{chem} targets have drugs or small molecules that satisfy activity thresholds; T_{bio} targets have no known drugs or small molecules that satisfy thresholds, but have Gene Ontology (GO) leaf term annotations, Online Mendelian Inheritance in Man (OMIM) phenotypes, or meet two of the three conditions: a fractional PubMed count > 5, > 3 National Center for Biotechnology Gene Reference Intro Function annotations, or > 50 commercial antibodies; T_{dark} refers to proteins that have been manually curated in UniProt, but do not meet criteria for the above categories. Finally, to explore if the findings were specific to alcohol consumption, we conducted the aforementioned iRIGS and TDL analyses for the 4 smoking phenotypes from the GSCAN study (age of initiation, cigarettes per day, cessation, and initiation).

3. Results

3.1. Integrative Risk Gene Selector (iRIGS).

18 of the 98 genes (18.4%) exhibited high posterior probability (≥75), indicating support from multiple genetic features including distance to SNP and regulatory information. 7 of these 18 genes (38.9%) were the not the closest protein coding gene to the corresponding SNP. This is consistent with prior work finding many HRGs are not the most proximal to the SNP (Wang et al., 2019). The HRGs that exhibited high posterior probability and were not the closest gene to the SNP were GALNT17 (polypeptide Nacetylgalactosaminyltransferase 17), AKAP13 (A-kinase anchoring protein 13), PPP3CA (protein phosphatase 3 catalytic subunit alpha), KLF4 (Kruppel-like factor 4), PRKCE (protein kinase C epsilon), and ZEB2 (zinc finder E-box binding homeobox 2).

Only 5 of these 18 genes (27.8%) overlapped with the 307 genes identified in the prior alcohol consumption GWAS. This indicates that 13 unique genes were identified with iRIGS.
(Table 1). The highest ranking genes for each SNP as well as all protein-coding genes considered within the 1Mb flanking region of each SNP are in the Supplementary Materials (Table S1 and Table S2, respectively).

3.2. Target Development/Druggability Level (TDL).

Of the 18 genes identified by iRIGS, PDE4B was T\textsubscript{clin}, targeted by 8 approved drugs; ACVR2A (activin receptor type-2A), PRKCE, and PPP3CA were T\textsubscript{chem} (i.e., small molecules bind to them with high potency); and the rest were T\textsubscript{bio} (Table 1). PDE4B was already identified in the alcohol consumption GWAS and thus no novel T\textsubscript{clin} genes were identified with iRIGS. However, ACVR2A, PRKCE, and PPP3CA were all unique genes (Liu et al., 2019). ACVR2A and PRKCE were also identified in the iRIGS analyses of the GSCAN smoking phenotypes (Table S3-S6).

Of the 307 protein-coding genes identified in the alcohol consumption GWAS, 17 were T\textsubscript{clin}, targeted by 104 unique drugs (65 of which target DRD2), 29 were T\textsubscript{chem}, 198 were T\textsubscript{bio}, and 63 were T\textsubscript{dark}. The 17 T\textsubscript{clin} genes and their approved drugs are depicted in Figure 1. The TDLs for all 307 genes are provided in the Supplementary Materials (Table S7). All of the T\textsubscript{clin} genes were specific to alcohol consumption with the exception of PDE4B, DRD2, CYP3A5, CYP3A43, CYP3A7, and CYP3A4; all of which were also associated with one or more GSCAN smoking phenotypes (Liu et al., 2019).

4. Discussion

This study identified several novel potential risk genes for alcohol consumption and highlights putative targets for the treatment of AUD and/or ALD. In particular, ACVR2A codes for activin receptor type-2A, which has been linked to liver function (Haridoss et al., 2017), cocaine self-administration (Gancarz et al., 2015; Wang et al., 2017), and anxiety (Ageta et al., 2008). With regard to liver function, one study using in vitro models found activin A, a ligand that binds with high affinity to activin type 2 receptors, is critical to normal liver function and suggested inhibition of activin A or its downstream signaling could be a new approach for treating liver disease (Haridoss et al., 2017). Furthermore, activin A serum levels have been found to be elevated in patients with ALD compared to patients with non-alcohol related liver disease at various stages (Voumvouraki et al., 2012). Rodent studies have identified increases in activin A and activin type-2A levels in the nucleus accumbens following withdrawal from cocaine (Gancarz et al., 2015; Wang et al., 2017). Relatedly, two studies using transgenic mice expressing a dominant-negative activin receptor type-1B (also recruited in the activin A signaling pathway (Loomans and Andl, 2014)) in forebrain neurons found reduced alterations in GABAergic inhibition, hypersensitivity to the sedating effects of alcohol (Zheng et al., 2016), and low anxiety (Zheng et al., 2009).

With regard to PRKCE, rodent studies have found a robust link of PKCe with alcohol consumption (Choi et al., 2002; Cozzoli et al., 2016; Lesscher et al., 2009). In particular, alcohol exposure causes changes to PKCe expression and localization in various brain regions that are implicated in addiction leading to increased alcohol tolerance and consumption (for a review see (Pakri Mohamed et al., 2018)). A recent study tested several
novel molecules that act as PKCe inhibitors, finding that two promising compounds that inhibited PKCe with selectivity, crossed the blood-brain barrier, prevented alcohol-stimulated GABA release in the central amygdala, and reduced alcohol consumption in wild-type but not in

\textit{Prkce}^{−/−} mice (Blasio et al., 2018). Thus, this study provides the first human genetic support for the link between \textit{PRKCE} and alcohol consumption, and the fact that iRIGS identified a distant gene linked to alcohol consumption that has been previously identified experimentally, supports the validity of iRIGS for identifying additional relevant genes.

\textit{PPP3CA} codes for calcineurin, which has been found to be a regulator of GABA\textsubscript{A} receptor synaptic retention and plasticity (Bannai et al., 2015; Eckel et al., 2015) and linked to diazepam response \textit{in vitro} (Nicholson et al., 2018) and in mice (Lorenz-Guerthin et al., 2019). Given GABA\textsubscript{A} receptors are a primary target responsible for the effects of alcohol (for a review see Roberto and Varodayan, 2017), calcineurin is likely linked with drinking via this mechanism.

This study’s analysis of the 307 genes from the prior GWAS (Liu et al., 2019) using the TDL system highlighted 17 genes that code for proteins that are targeted by at least one approved drug. Many of the drugs are promising candidates for managing liver toxicity. Fomepizole (\textit{ADHIA, ADHIB, ADHIC}) blocks alcohol dehydrogenase and is approved to treat methanol and ethylene glycol toxicity (Ng et al., 2018). Metformin (\textit{NDUFS3}) has been highlighted as a promising hepatoprotective agent including for ALD (Iranshahy et al., 2019). Likewise, beraprost and misoprostol (\textit{PTGER3}), have shown promise for managing acute liver injury and liver disease (Deng et al., 2018; Gobejishvili et al., 2015; Misawa et al., 2017). Pentoxifylline has been often used to treat severe alcoholic hepatitis and a recent clinical practice update indicates that patients with a contraindication to glucocorticoids may be treated with pentoxifylline (Mitchell et al., 2017). However, this clinical practice update also notes that recent data question its clinical utility, (Singh et al., 2015; Thursz et al., 2015) thus further research is needed. Iloprost (\textit{PTGER3}) has shown promise for managing bone marrow oedema and early stages osteonecrosis (for a review see Pountos and Giannoudis, 2018), of which excessive alcohol use is a risk factor for. Finally, PDE4 inhibitors are currently being investigated for ALD and the PDE4/PDE10 inhibitor, ibudilast, is being investigated for AUD (Ray et al., 2017; Rodriguez et al., 2019).

Numerous genes and associated drugs were also identified for the Cytochromes P450 family of enzymes, namely CYP3A4, which is implicated in the metabolism of numerous approved drugs including many antiretroviral drugs identified here (e.g., (Midde et al., 2016)). Although three small studies have examined nefazodone for AUD (Hernandez-Avila et al., 2004; Kranzler et al., 2000; Roy-Byrne, Peter P. Pages et al., 2000), interest in this medication waned given risk for severe liver toxicity in a minority of patients and an associated FDA black box warning (Edwards, 2003). Verapamil has been found to prevent cue-induced reinstatement of alcohol seeking in rats, suggesting it may be a promising compound for relapse prevention (Uhrig et al., 2017). Metyrapone has been found to prevent alcohol withdrawal associated working memory deficits and reestablish prefrontal cortex activity in withdrawn mice (Domínguez et al., 2017). In summary, the \textit{CYP3A4} findings suggest the TCRD may be a novel method for not only identifying putative treatment targets,
but also flagging potential deleterious drug-alcohol interactions. Indeed, as research with nefazodone highlights, extra caution is required when developing or prescribing certain medications for AUD, particularly in patients with ALD, given the heightened risk for liver toxicity and/or drug-alcohol interactions (Leggio and Lee, 2017).

4.1. Conclusions.

We incorporated regulatory information and drug-protein interaction data to highlight promising molecular targets and drugs for potential repurposing. Notably, iRIGS only matched a minority of the alcohol consumption SNPs (18.4%) to genes at a confidence (≥75) consistent with previous studies (Li et al., 2020; Wang et al., 2019), with some SNPs not matched with confidence despite being in well-replicated loci (e.g., ADH1B), underscoring the need to apply multiple methods to assign function to genome-wide significant loci. We focused exclusively on the SNPs from the alcohol consumption GWAS (Liu et al., 2019) in this study because it included the largest sample size and the largest number of significant loci, however, it will be important for future studies to extend these methods to GWAS of other alcohol-related phenotypes (e.g., AUD diagnosis; (Kranzler et al., 2019)) and non-European Ancestry individuals. The methods utilized within this manuscript are readily available (https://github.com/CNPsyLab/Alcohol-Genetics-iRIGS-TCRD) and applicable to other complex traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Role of Funding Source

LL is supported by the National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research and the National Institute on Drug Abuse Intramural Research Program (ZIA-AA000218, Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology; PI: Leggio).

References

Ageta H, Murayama A, Migishima R, Kida S, Tsuchida K, Yokoyama M, Inokuchi K, 2008 Activin in the Brain Modulates Anxiety-Related Behavior and Adult Neurogenesis. PLoS One 3, e1869. doi:10.1371/journal.pone.0001869

Bannai H, Niwa F, Sherwood MW, Shrivastava AN, Arizono M, Miyamoto A, Sugiyama K, Lévi S, Triller A, Mikoshiba K, 2015 Bidirectional Control of Synaptic GABAAR Clustering by Glutamate and Calcium. Cell Rep. 13, 2768–2780. doi:10.1016/J.CELREP.2015.12.002 [PubMed: 26711343]

Blasio A, Wang J, Wang D, Varodayan FP, Pomrenze MB, Miller J, Lee AM, McMahon T, Gyawali S, Wang H-Y, Roberto M, McHardy S, Pleiss MA, Messing RO, 2018 Novel Small-Molecule Inhibitors of Protein Kinase C Epsilon Reduce Ethanol Consumption in Mice. Biol. Psychiatry 84, 193–201. doi:10.1016/J.BIOPSYCH.2017.10.017 [PubMed: 29198469]

Choi D-S, Wang D, Dadgar J, Chang WS, Messing RO, 2002 Conditional rescue of protein kinase C epsilon regulates ethanol preference and hypnotic sensitivity in adult mice. J. Neurosci 22, 9905–11. doi:10.1523/JNEUROSCI.22-22-09905.2002 [PubMed: 12427847]

Cozzoli DK, Courson J, Rostock C, Campbell RR, Wroten MG, McGregor EL, Caruana AL, Miller BW, Hu J-H, Wu Zhang P, Xiao B, Worley PF, Crabbe JC, Finn DA, Szulminski KK, 2016 Protein Kinase C Epsilon Activity in the Nucleus Accumbens and Central Nucleus of the Amygdala

Drug Alcohol Depend. Author manuscript; available in PMC 2021 September 01.
Mediates Binge Alcohol Consumption. Biol. Psychiatry 79, 443–451. doi:10.1016/J.BIOPSYCH.2015.01.019 [PubMed: 25861702]

Deng J, Feng J, Liu T, Lu X, Wang W, Liu N, Lv Y, Liu Q, Guo C, Zhou Y, 2018 Beraprost sodium preconditioning prevents inflammation, apoptosis, and autophagy during hepatic ischemia-reperfusion injury in mice via the P38 and JNK pathways. Drug Des. Devel. Ther 12, 4067–4082. doi:10.2147/DDDT.S182292

Dominguez G, Belzung C, Pierard C, David V, Henkous N, Decorte L, Mons N, Beracochea D, 2017 Alcohol withdrawal induces long-lasting spatial working memory impairments: relationship with changes in corticosterone response in the prefrontal cortex. Addict. Biol. 22, 898–910. doi: 10.1111/adb.12371 [PubMed: 26860616]

Eckel R, Szule B, Walker MC, Kittler JT, 2015 Activation of calcineurin underlies altered trafficking of α2 subunit containing GABAA receptors during prolonged epileptiform activity. Neuropharmacology 88, 82–90. doi:10.1016/J.NEUROPHARM.2014.09.014 [PubMed: 25245802]

Edwards IR, 2003 Withdrawing drugs: nefazodone, the start of the latest saga. Lancet (London, England) 361, 1240. doi:10.1016/S0140-6736(03)13030-9

Gancarz AM, Wang Z-L, Schroeder GL, Damez-Werno D, Braunscheidel KM, Mueller E, Humby MS, Caccamise A, Martin JA, Dietz DM, 2015 Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat. Neurosci 18, 959–61. doi:10.1038/nn.4036 [PubMed: 26030849]

Gobejishvili L, Ghare S, Khan R, Cambon A, Barker DF, Barve S, McClain C, Hill D, 2015 Misoprostol modulates cytokine expression through a cAMP pathway: Potential therapeutic implication for liver disease. Clin. Immunol 161, 291–299. doi:10.1016/J.CLIM.2015.09.008 [PubMed: 26408955]

Haridoss S, Yovchev MI, Schweizer H, Megherbi S, Beecher M, Locker I, Oertel M, 2017 Activin A is a prominent autocrine regulator of hepatocyte growth arrest. Hepatol. Commun 1, 852–870. doi:10.1002/hep4.1106 [PubMed: 29404498]

Hernandez-Avila CA, Modesto-Lowe V, Feinn R, Kranzler HR, 2004 Nefazodone Treatment of Comorbid Alcohol Dependence and Major Depression. Alcohol. Clin. Exp. Res 28, 433–440. doi:10.1097/01.ALC.0000118313.63897.EE [PubMed: 15084901]

Iranshahy M, Rezaee R, Karimi G, 2019 Hepatoprotective activity of metformin: A new mission for an old drug? Eur. J. Pharmacol 850, 1–7. doi:10.1016/J.EJPHAR.2019.02.004 [PubMed: 30753869]

Kranzler EL, Modesto-Lowe V, Kirk J. Van, 2000 Naltrexone vs. Nefazodone for Treatment of Alcohol Dependence A Placebo-Controlled Trial. Neuropsychopharmacology 22, 493–503. doi:10.1016/S0893-133X(99)00135-9 [PubMed: 10731624]

Kranzler HR, Zhou EL, Kember RL, Vickers Smith R, Justice AC, Damrauer S, Tsao PS, Klarin D, Baras A, Reid J, Overton J, Rader DJ, Cheng Z, Tate JP, Becker WC, Concato J, Xu X, Polimanti R, Zhao EL, Gelernter J, 2019 Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat. Commun 10, 1499. doi:10.1038/s41467-019-09480-8 [PubMed: 30940813]

Leggio L, Lee MR, 2017 Treatment of Alcohol Use Disorder in Patients with Alcoholic Liver Disease. Am. J. Med. 130, 124–134. doi:10.1016/J.AJMMED.2016.10.004 [PubMed: 27984008]

Lesscher HMB, Wallace MJ, Zeng L, Wang V, Deitchman JK, McMahon T, Messing RO, Newton PM, 2009 Amygdala protein kinase C epsilon controls alcohol consumption. Genes, Brain Behav. 8, 493–499. doi:10.1111/j.1601-183X.2009.00485.x [PubMed: 19243450]

Li H-J, Qu N, Hui L, Cai X, Zhang C-Y, Zhong B-L, Zhang S-F, Chen J, Xia B, Li W, Chang EL, Xiao X, Li M, Li Y, 2020 Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl. Psychiatry 10, 98. doi:10.1038/s41398-020-0777-y [PubMed: 32184385]

Liu M, Jiang Y, Wedow R, Li Y, Breeze DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Choquet H, Docherty AR, Paul JD, Foerster JR, Frietsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga J-J, Huang H, Jang S-K, Jansen PS, Ling Y, Magi R, Matoba N, McMahon G, Mulas A, Orru V, Palviaiten T, Pandit A, Reginson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GM, Zhao W, Zhou W, Bjorndottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Gray et al. Page 7
Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SRL, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarssottir V, Stallings MC, Stančáková A, Steffansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafò MR, Saccone NL, Wilier CJ, Cornells MC, David SP, Hinds DA, Jorgenson E, Kaprio J, Stitziel NO, Steffansson K, Thorgeirsson TE, Abecasis G, Liu DJ, Vrieze S, 2019 Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet 51, 237–244. doi:10.1038/s41588-018-0307-5 [PubMed: 30643251]

Loomans H, Andl C, 2014 Intertwining of activin A and TGFβ signaling: Dual roles in cancer progression and cancer cell invasion. Cancers (Basil). 7, 70–91. doi:10.3390/cancers7010071 [PubMed: 25560921]

Lorenz-Guertin JM, Bambino MJ, Das S, Weinraub ST, Jacob TC, 2019 Diazepam Accelerates GABAAR Synaptic Exchange and Alters Intracellular Trafficking. Front. Cell. Neurosci 13, 163. doi:10.3389/fncel.2019.00163 [PubMed: 31080408]

Midde NM, Rahman MA, Rathi C, Li J, Melibohm B, Li W, Kumar S, 2016 Effect of Ethanol on the Metabolic Characteristics of HIV-1 Integrase Inhibitor Elvitegravir and Elvitegravir/Cobicistat with CYP3A: An Analysis Using a Newly Developed LC-MS/MS Method. PLoS One 11, e0149225. doi:10.1371/journal.pone.0149225 [PubMed: 26872388]

Misawa H, Ohashi W, Tomita K, Hattori K, Shimada Y, Hatton Y, 2017 Prostacyclin mimetics afford protection against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice. Toxicol. Appl. Pharmacol 334, 55–65. doi:10.1016/J.TAAP.2017.09.003 [PubMed: 28887131]

Mitchell MC, Friedman LS, McClain CJ, 2017 Medical management of severe alcoholic hepatitis: Expert review from the clinical practice updates committee of the AGA Institute. Clin. Gastroenterol. Hepatol 15, 5–12. [PubMed: 27979049]

Nelson M, Tipney H, Painter J, Shen J, 2015 The support of human genetic evidence for approved drug indications. Nature.

Ng PCY, Long BJ, Davis WT, Sessions DJ, Koyfman A, 2018 Toxic alcohol diagnosis and management: an emergency medicine review. Intern. Emerg. Med 13, 375–383. doi: 10.1007/ s11739-018-1799-9 [PubMed: 29427181]

Nicholson MW, Sweeney A, Pekle E, Alam S, Ali AB, Duchen M, Jovanovic JN, 2018 Diazepam-induced loss of inhibitory synapses mediated by PLCδ/Ca2+/calcineurin signalling downstream of GABAA receptors. Mol. Psychosom 343, 55–65. doi:10.1080/14740338.2017.10.0010-y [PubMed: 29094150]

Oprea TI, Bologa CG, Brunak S, Campbell A, Gan GN, Gaulton A, Gomez SM, Guha R, Hersey A, Holmes J, JadHAV A, Jensen LJ, Johnson GL, Karlson A, Leach AR, Ma’ayan A, Malovannaya A, Mani S, Mathias SL, McManus MT, Meehan TF, von Mering C, Muthas D, Nguyen D-T, Overington JP, Papadatos G, Qin J, Reich C, Roth BL, Schürer SC, Simeonov A, Sklar LA, Southall N, Tomita S, Tudos I, Ursu O, Vidovic D, Waller A, Westergaard D, Yang JJ, Zahránszky-Köhlami G, 2018 Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov 17, 317–332. doi:10.1038/nrd.2018.14 [PubMed: 29472638]

Pakri Mohamed RM, Mokhtar MH, Yap E, Hamim A, Abdul Wahab N, Jaffar FHF, Kumar J, 2018 Ethanol-Induced Changes in PKCε: From Cell to Behavior. Front. Neurosci 12, 44. doi:10.3389/ fnins.2018.00234 [PubMed: 29706864]

Pountos I, Giannoudis PV, 2018 The role of Iloprost on bone edema and osteonecrosis: Safety and clinical results. Expert Opin. Drug Saf 17, 225–233. doi: 10.1080/14740338.2018.1424828 [PubMed: 29315006]

Ray LA, Bujarski S, Shoptaw S, Roche DJ, Heinzerling K, Miotti K, 2017 Development of the Neuroimmune Modulator Ibudilast for the Treatment of Alcoholism: A Randomized, Placebo-Controlled, Human Laboratory Trial. Neuropsychopharmacology 42, 1776–1788. doi:10.1038/ npp.2017.10 [PubMed: 28091352]

Roberto M, Varodayan FP, 2017 Synaptic targets: Chronic alcohol actions. Neuropsychopharmacology 122, 85–99. doi:10.1016/j.neuropsychopharmacology.2017.04.013 [PubMed: 28108359]
Rodriguez WE, Wahlang B, Wang Y, Zhang J, Vadhana MV, Joshi-Barve S, Bauer P, Cannon R, Ahmadi AR, Sun Z, Cameron A, Barve S, Maldonado C, McClain C, Gobejishvili L, 2019 Phosphodiesterase 4 Inhibition as a Therapeutic Target for Alcoholic Liver Disease: From Bedside to Bench. Hepatology 70, 1958–1971. doi:10.1002/hep.30761 [PubMed: 31081957]

Roy-Byrne Peter P, Pages KP, Russo JE, Jaffe C, Blume AW, Kingsley E, Cowley DS, Ries RK, 2000 Nefazodone treatment of major depression in alcohol-dependent patients: a double-blind, placebo-controlled trial. J. Clin. Psychopharmacol 20, 129–136. [PubMed: 10770449]

Singh S, Murad MH, Chandar AK, Bongiomo CM, Singal AK, Atkinson SR, Thursz MR, Loomba R, Shah VH, 2015 Comparative Effectiveness of Pharmacological Interventions for Severe Alcoholic Hepatitis: A Systematic Review and Network Meta-analysis. Gastroenterology 149, 958–70.e12. doi:10.1053/j.gastro.2015.06.006 [PubMed: 26091937]

Thursz MR, Richardson P, Allison M, Austin A, Bowers M, Day CP, Downs N, Gleeson D, MacGilchrist A, Grant A, Hood S, Masson S, McCune A, Mellor J, O’Grady J, Patch D, Ratcliffe I, Roderick P, Stanton L, Vergis N, Wright M, Ryder S, Forrest EH, 2015 Prednisolone or Pentoxifylline for Alcoholic Hepatitis. N. Engl. J. Med 372, 1619–1628. doi:10.1056/NEJMoa1412278 [PubMed: 25901427]

Uhrig S, Vandael D, Marcantoni A, Dedic N, Bilbao A, Vogt MA, Hirth N, Broccoli L, Bernardi RE, Schonig K, Gass P, Bartsch D, Spanagel R, Deussing JM, Sommer WH, Carbone E, Hansson AC, 2017 Differential Roles for L-Type Calcium Channel Subtypes in Alcohol Dependence. Neuropsychopharmacology 42, 1058–1069. doi: 10.1038/npp.2016.266 [PubMed: 27905406]

Voumvouraki A, Notas G, Koulentaki M, Georgiadou M, Klironomos S, Kouroumalis E, 2012 Increased serum activin-A differentiates alcoholic from cirrhosis of other aetiologies. Eur. J. Clin. Invest 42, 815–822. doi:10.1111/j.1365-2362.2012.02647.x [PubMed: 22304651]

Wang Q, Chen R, Cheng F, Wei Q, Ji Y, Yang H, Zhong X, Tao R, Wen Z, Sutcliffe JS, Liu C, Cook EH, Cox NJ, Li B, 2019 A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat. Neurosci 22, 691–699. doi:10.1038/s41593-019-0382-7 [PubMed: 30988527]

Wang Z-J, Martin JA, Gancarz AM, Adank DN, Sim FJ, Dietz DM, 2017 Activin A is increased in the nucleus accumbens following a cocaine binge. Sci. Rep 7, 43658. doi:10.1038/srep43658 [PubMed: 28272550]

Zheng F, Adelsberger FL, Müller MR, Fritschi J-M, Werner S, Alzheimer C, 2009 Activin tunes GABAergic neurotransmission and modulates anxiety-like behavior. Mol. Psychiatry 14, 332–346. doi:10.1038/sj.mp.4002131 [PubMed: 18180762]

Zheng F, Puppel A, Huber SE, Link AS, Eulenburg V, van Brederode JF, Muller CP, Alzheimer C, 2016 Activin Controls Ethanol Potentiation of Inhibitory Synaptic Transmission Through GABAA Receptors and Concomitant Behavioral Sedation. Neuropsychopharmacology 41, 2024–33. doi:10.1038/npp.2015.372 [PubMed: 26717882]
Highlights

- Integrating regulatory information identified additional alcohol consumption genes
- Some of these genes have been linked to liver function and alcohol administration
- Searching drug-protein interactions can identify drug repurposing candidates
- Some drug-protein interactions showed promise for managing hepatotoxicity
- Future study is needed to further validate these promising findings
Fig 1.
Approved drugs that interact with proteins produced by the genes identified in Liu et al. (2019). Anatomical Therapeutic Chemical (ATC) Classification System codes are color coded as indicated in the key. Medications with multiple ATC codes are assigned all of the corresponding colors (e.g., miconazole). \textit{DRD2} is linked to 65 approved drugs (not depicted here as it is a well-established top psychiatric drug target (Liu et al., 2019; Oprea et al., 2018)). No unique T\textsubscript{clin} genes were identified by the iRIGS alcohol consumption analysis.
Table 1.

Genetic and target development/druggability level (TDL) information for the high-probability (≥75) high-confidence risk gene (HRGs)

SNP	HRG	Posterior probability	TDL	Nearest protein coding gene	Overlap of HRG with Liu et al. (2019)
rs62044525	CDH11	1	T\textsubscript{bio}	CDH11	N
rs62250685	CADM2	1	T\textsubscript{bio}	CADM2	Y
rs74664784	CADM2	1	T\textsubscript{bio}	CADM2	Y
rs4916723	MEF2C	0.99	T\textsubscript{bio}	MEF2C	N
rs99500000	TCF4	0.98	T\textsubscript{bio}	TCF4	Y
rs10085696	GALNT17	0.98	T\textsubscript{bio}	AUTS2	N
rs12907323	AKAP13	0.91	T\textsubscript{bio}	AGBL1	N
rs10004020	FBXW7	0.90	T\textsubscript{bio}	FBXW7	N
rs72859280	ACVR2A	0.88	T\textsubscript{chem}	ACVR2A	N
rs4699791	PPP3CA	0.87	T\textsubscript{chem}	EMCN	N
rs4842786	BTG1	0.86	T\textsubscript{bio}	BTG1	N
rs10978550	KLF4	0.85	T\textsubscript{bio}	ZNF462	N
rs11739827	TENM2	0.84	T\textsubscript{bio}	TENM2	Y
rs1004787	PRKCE	0.83	T\textsubscript{chem}	SIX3	N
rs13024996	ZEB2	0.82	T\textsubscript{bio}	ARHGAP15	N
rs13383034	PRKCE	0.81	T\textsubscript{chem}	SIX3	N
rs682011	SORL1	0.75	T\textsubscript{bio}	SORL1	N
rs12088813	PDE4B	0.75	T\textsubscript{clin}	PDE4B	Y

Note. The definitions of T\textsubscript{bio}, T\textsubscript{chem}, and T\textsubscript{clin} are provided in the Materials and methods.