ESTIMATING PURITY AND ENTROPY IN STABILIZER STATE EXPERIMENTS

Harald Wunderlich1,2,3,* and Martin B. Plenio1,2,†

1Institute for Mathematical Sciences, Imperial College London, 53 Prince’s Gate, SW7 2PG London, UK
2QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW London, UK
3Fachbereich Physik, Universität Siegen, Walter-Flex Str. 3, 57068 Siegen, Germany

Many experiments in quantum information aim at creating graph states. Quantifying the purity of an experimentally achieved graph state could in principle be accomplished using full-state tomography. This method requires a number of measurement settings growing exponentially with the number of constituents involved. Thus, full-state tomography becomes experimentally infeasible even for a moderate number of qubits.

In this paper we present a method to estimate the purity of experimentally achieved graph states with simple measurements. The observables we consider are the stabilizers of the underlying graph. Then, we formulate the problem as: "What is the state with the least purity that is compatible with the measurement data?" We solve this problem analytically and compare the obtained bounds with results from full-state tomography for simulated data.

I. INTRODUCTION

Stabilizer states \cite{1} (notably including cluster states \cite{2}) represent a major class of entangled states. They form the resource for a number of applications in quantum information, such as quantum computing\cite{3}, quantum error correction\cite{4}, and quantum cryptography\cite{5}. Because of the usefulness of cluster states, a considerable effort has been devoted to their theoretical studies as well as to their experimental implementation. To date, photonic cluster states of four\cite{6} and six qubits\cite{7} have been experimentally demonstrated, and their realization with trapped ions is actively pursued\cite{8}.

The experimental progress made in the area of cluster states effects the need for sophisticated methods for the estimation of the system’s properties. A natural problem which arises is the fact that the density matrix grows exponentially with the number of qubits involved. So far, it has already been shown that fidelities and entanglement in cluster state experiments can be estimated using a number of observables linear in the number of qubits\cite{9,10}. The observables of choice are the so-called stabilizers (see e.g. Ref. \cite{11} for an introduction to the stabilizer formalism), which are given by

\begin{equation}
K_j = X_j Z_{N_j},
\end{equation}

where X denotes the usual Pauli x operator acting on qubit j, and Z_{N_j} denotes the Pauli z operator acting on neighbours of j defined by the underlying graph. Note that for a graph of n qubits, the set $\{K_1, \ldots, K_n\}$ generates an abelian group, called the stabilizer group. Graph states form the simultaneous eigenvector with eigenvalue $+1$ to these stabilizers.

In this paper we will show how to estimate the purity $tr(\rho^2)$ in cluster state experiments. We will consider the generators of the stabilizer group as the observables. Similar to the estimation of entanglement in Refs. \cite{12} (cfr. Ref. \cite{13} for a review of other entanglement estimation methods), the problem is formulated as: "What is the quantum state with the lowest purity, and which is compatible with the measurement data?" Mathematically, this question is the following quadratic optimization problem:

\begin{equation}
P_{\text{min}} = \min_\rho \left[tr(\rho^2) : tr(K_i \rho) = a_i, \rho \geq 0 \right].
\end{equation}

The paper is structured as follows: in Sec. IIA we will utilize the symmetries allowed by the observables to restrict the optimization to stabilizer diagonal states. Then, we provide an exact analytical solution to the above optimization problem in Sec. IIB The following section proceeds with a discussion of the quality of the obtained solution by comparing it with results from full-state tomography from simulated data of a noisy system. Sec. VI discusses the estimation of the von-Neumann entropy from stabilizer measurements, and provides an analytical lower bound on the entropy.

*Electronic address: h.wunderlich@physik.uni-siegen.de
\†Electronic address: m.plenio@imperial.ac.uk
II. ESTIMATING PURITIES

A. Symmetries of the stabilizers

As mentioned in the introduction, the natural observables in cluster state experiments are given by the stabilizers. Let us assume the goal of an experiment was the creation of a pure cluster state, with stabilizers $K_j, j \in \{1, \ldots, n\}$. We denote the measurement outcomes by $a_j = \text{tr}(\rho K_j)$. Note that these expectation values are invariant under rotations of the stabilizer group. By twirling over the stabilizer, one may therefore restrict to states of the form

$$\rho = \frac{1}{2^n} \sum_{i_1, \ldots, i_n = 0}^1 c_{i_1 \ldots i_n} K_1^{i_1} \cdots K_n^{i_n}. \quad (3)$$

Here, the following twirling protocol was utilized:

$$\rho' \rightarrow \rho = \frac{1}{2^n} \sum_{i_1, \ldots, i_n = 0}^1 K_1^{i_1} \cdots K_n^{i_n} \rho' K_1^{i_1} \cdots K_n^{i_n}. \quad (4)$$

The coefficients in the stabilizer decomposition of ρ are subject to the normalization constraint $c_{0 \ldots 0} = 1$ and measurement outcomes $a_j = \text{tr}(\rho K_j) = c_j$, where j denotes a bit string of zeros, but 1 in position j. Furthermore, any valid density matrix must be positive-semidefinite. The stabilizer decomposition of ρ provides a convenient way to calculate the eigenvalues of ρ. Since the stabilizers mutually commute, and the spectrum of each term in the decomposition is simply given by $\{+1, -1\}$, one finds the following expression for the eigenvalues:

$$\lambda_{j_1 \ldots j_n} = \frac{1}{2^n} \sum_{i_1, \ldots, i_n = 0}^1 (-1)^{\sum_l j_l} c_{i_1 \ldots i_n}. \quad (5)$$

B. Lowest purity compatible with measurement data

In this section we determine the lowest purity compatible with measurement data in cluster state experiments. So we calculate the exact solution to the optimization problem (2). As seen in the previous section, it is legitimate to restrict to stabilizer diagonal states of the form (3). Then, the problem boils down to solving the following positive quadratic program:

$$\text{minimize } P(c) = \frac{1}{2^n} \sum_{i_1, \ldots, i_n = 0}^1 c_{i_1 \ldots i_n}^2$$

$$\text{s.t. } c_j = a_j \quad (7)$$
$$\lambda_{j_1 \ldots j_n} \geq 0 \quad (8)$$

Clearly, this problem can be solved numerically by convex and quadratic optimization solvers such as SDTP, Sedumi, or Yalmip. However, the number of coefficients $c_{i_1 \ldots i_n}$ grows exponentially with the number of qubits. Therefore, a numerical approach becomes practically intractable even for moderate qubit numbers. We will therefore derive an analytical solution.

Without loss of generality, we restrict the measurement values a_k to be positive. Furthermore, we will only consider the case, in which the measurement outcomes of neighboring qubits fulfill $a_{k_1} + a_{k_2} \geq 1$. In other words, we restrict to the case of a non-zero fidelity with the desired stabilizer state.

Now one can easily check that the choice

$$c_{i_1 \ldots i_n} = \sum_k i_k a_k - \sum_k i_k + 1 \quad (9)$$

fulfills all the constraints in the above quadratic program. Positivity of the eigenvalues follows from the fact that ρ is diagonal in the stabilizer basis. Thus, these coefficients represent a solution, which we denote by c^* in the following, to the primal problem.
Since the primal problem is convex, we may simply check the Karush-Kuhn-Tucker (KKT) conditions for optimality of the solution\[14\]. To be explicit, the KKT conditions require

\[
\begin{align*}
\lambda_{j_1...j_n}(c^\star) &\geq 0, \\
g(c_j = c_j^\star) := c_j - a_j &= 0, \\
H_{j_1...j_n} &\geq 0, \\
\mu_{j_1...j_n} \lambda_{j_1...j_n}(c^\star) &= 0,
\end{align*}
\]

\[
\nabla_{j_1...j_n} P(c^\star) - \sum_{i_1,...,i_n=0}^{1} \mu_{i_1...i_n} \nabla_{j_1...j_n} \lambda_{i_1...i_n} + \sum_{m=1}^{n} \nu_m \nabla_{j_1...j_n} g(c_m) = 0.
\]

The first two conditions state that \(c^\star \) is primal feasible, which is already proved. The last condition guarantees the optimality of \(c^\star \). Instead of deriving the dual quadratic program, we will now prove that Lagrange multipliers \(\mu_{j_1...j_n} \) and \(\nu_m \) can always be found to the solution \(c^\star \), such that the KKT conditions are fulfilled, thus showing that \(c^\star \) is indeed optimal.

A valid solution for the Lagrange multipliers is provided in the following way: in order to satisfy \[13\] choose \(\mu_{j_1...j_n} = 0 \), if \(\lambda_{j_1...j_n}(c^\star) > 0 \).

Condition \[14\] can be rewritten as

\[
\frac{2}{2^n} c - \frac{1}{2^n} A \mu + \nu = 0,
\]

where it follows from Eq. \[5\] that \(A \) is the normalized Hadamard matrix with elements \(A_{i_1...i_n,j_1,...,j_n} = (-1)^{i_1 j_1 + \cdots + i_n j_n}, \)

\(c = (c_{j_1...j_n}), \lambda = (\lambda_{j_1...j_n}), \) and \(\nu \) is the vector containing \(\nu_m \) for \(m = 1, \ldots, n \), while all other entries \(\nu_{j_1...j_n} = 0 \).

Here the matrix \(A \) is chosen such that \(Ac = 2^n \lambda \). Because of the orthogonality relation of the Hadamard matrix, and of \(A = A^T \), it follows with \(A^T A = 2^n I \):

\[
\mu = A^T(\frac{2}{2^n} c + \nu) = 2\lambda + A\nu.
\]

If \(\lambda_{\hat{j}} > 0 \) (\(\hat{j} = (j_1, \ldots, j_n) \)), then it must hold that \(\mu_{\hat{j}} = 0 \). Especially, in any case \(\mu_{\hat{0}} = 0 \), since the largest eigenvalue of \(\rho \) is \(\lambda_{\hat{0}} \). Therefore, we have:

\[
\sum_{m \in \hat{I}} (-1)^{\hat{j} \cdot \hat{m}} \nu_m = -2\lambda_{\hat{j}}.
\]

Here, \(\hat{I} \) denotes the set of bit-strings with at most one bit unequal zero, as in the vector \(\nu \) only the first \(n \) entries are unequal zero. More formally, \(\hat{I} = \{ (0, \ldots, 0), (1, 0, \ldots, 0), \ldots, (0, \ldots, 0, 1) \} \). This system of equations has the solution

\[
\nu_{\hat{I}} = \lambda_{\hat{I}} - \lambda_{\hat{0}} , \hat{I} \neq \hat{0},
\]

\[
\nu_{\hat{0}} = -2\lambda_{\hat{0}} - \sum_{l \neq \hat{0}} \nu_{l}.
\]

It remains to show that \(\mu_{\hat{j}} \geq 0 \) for \(\lambda_{\hat{j}} = 0 \):

\[
\mu_{\hat{j}} = \sum_{m} (-1)^{\hat{j} \cdot \hat{m}} \nu_m = \nu_0 + \sum_{m \neq \hat{0}} (-1)^{\hat{j} \cdot \hat{m}} \nu_m
\]

\[
= -2\lambda_{\hat{0}} - \sum_{l \neq \hat{0}} \nu_l + \sum_{m \neq \hat{0}} (-1)^{\hat{j} \cdot \hat{m}} \nu_m
\]

\[
= -2\lambda_{\hat{0}} + \sum_{m \neq \hat{0}} ((-1)^{\hat{j} \cdot \hat{m}} - 1) \nu_m
\]

\[
= -2\lambda_{\hat{0}} + \sum_{m \neq \hat{0}} ((-1)^{\hat{j} \cdot \hat{m}} - 1)(\lambda_{\hat{m}} - \lambda_{\hat{0}})
\]

\[
= -2\lambda_{\hat{0}} + \frac{1}{2^n} \sum_{m \neq \hat{0}} ((-1)^{\hat{j} \cdot \hat{m}} - 1) \sum_{i} ((-1)^{\hat{i} \cdot \hat{m}} - 1)c_i
\]

\[
= -2\lambda_{\hat{0}} + \frac{1}{2^n} \sum_{m \neq \hat{0}} (-2\delta_{\hat{j},\hat{m}}) \sum_{i} (-2\delta_{\hat{i},\hat{m}}) c_i.
\]
Since it is clear that $\lambda_\alpha > 0$, we can restrict our attention to eigenvalues $\lambda_j = 0$ and dual variables μ_j with at least one index $j_\alpha = 1$. Therefore, we have

$$\sum_{\tilde{m} \neq 0} (-2\delta_{\tilde{1}, \tilde{m}}) \sum_i (-2\delta_{\tilde{1}, \tilde{m}}) \frac{1}{2^n} c^i \geq 4 \sum_{i,j=0}^{1} \frac{1}{2^n} c_{i_1...i_{n-1}1i_{n+1}...i_n}$$

The RHS of the last inequality can be rewritten as

$$\frac{4}{2^n} \sum_{i,j=0}^{1} c_{i_1...i_{n-1}1i_{n+1}...i_n} = 4(\lambda_\alpha - \sum_{i,j=0}^{1} \frac{1}{2^n} c_{i_1...i_{n-1}1i_{n+1}...i_n}).$$

Employing Eq. 4, the last term may be evaluated as

$$\frac{1}{2^n} \sum_{i,j=0}^{1} c_{i_1...i_{n-1}1i_{n+1}...i_n} = \frac{1}{2^n} \left(\sum_{i,j=0}^{1} c_{i_1...i_{n-1}1i_{n+1}...i_n} - \sum_{i,j=0}^{1} i_k a_k - \sum_k i_k + 1 \right) \leq \frac{\lambda_\alpha}{2}.$$ (29)

The last inequality follows from the fact that $\lambda_\alpha = \frac{1}{2} (\sum_{k=1}^{n} a_k - n + 2)$. Applying this result to Eq. 25 immediately implies $\mu_j \geq 0$, if $\lambda_j = 0$. Therefore, all KKT conditions are fulfilled, proving that the solution c^* is indeed optimal.

III. EXAMPLE: TWO QUBIT PURITY

For the purpose of illustration, let us consider the simple example of two qubits, supposedly prepared as a cluster state. Given only the outcomes of the stabilizer measurements $a_1 = tr(\rho X \otimes Z)$ and $a_2 = tr(\rho Z \otimes X)$, we seek the lowest purity compatible with these two measurements. Using the symmetries of the stabilizers, we may restrict the problem to density matrices of the form

$$\rho = \frac{1}{4}(c_{00}1 + c_{10}K_1 + c_{01}K_2 + c_{11}K_1K_2).$$

Because of $tr(\rho) = 1$, $c_{00} = 1$. Furthermore, the measurements determine $c_{10} = a_1$ and $c_{01} = a_2$. In order to find the minimal purity, the objective is now to minimize

$$P_{\min} = \frac{1}{4}(c_{00}^2 + c_{10}^2 + c_{01}^2 + c_{11}^2)$$

subject to $\lambda_{j_1j_2}(c) = \sum_{i_1,i_2=0}^{1} (-1)^{i_1j_1+i_2j_2}c_{i_1i_2} \geq 0$.

As solution to the primal problem, one chooses $c_{11} = \frac{1}{2}(a_1 + a_2 - 1)$. Then the eigenvalues of ρ are simply given by

$$\lambda_{00} = \frac{1}{2}(a_1 + a_2)$$

$$\lambda_{10} = \frac{1}{2}(1 - a_1)$$

$$\lambda_{01} = \frac{1}{2}(1 - a_2)$$

$$\lambda_{11} = 0$$

thus fulfilling the positivity constraint. To see the optimality of the solution, one can check the remaining KKT conditions.

$$\frac{1}{2} - \mu_1 - \mu_2 - \mu_3 - \mu_4 + \nu_1 = 0,$$ (36)

$$\frac{a_1}{2} - \mu_1 + \mu_2 - \mu_3 + \mu_4 + \nu_2 = 0,$$ (37)

$$\frac{a_2}{2} - \mu_1 - \mu_2 + \mu_3 + \mu_4 + \nu_3 = 0,$$ (38)

$$\frac{1}{2}(a_1 + a_2 - 1) - \mu_1 + \mu_2 + \mu_3 - \mu_4 = 0$$ (39)
TABLE I: Comparison between exact and estimated purities for noisy cluster states

No. qubits	exact purity	estimated purity	relative deviation
2	0.8269	0.8233	0.0044
3	0.7520	0.7417	0.0137
4	0.6838	0.6646	0.0281

The Lagrange multipliers \(\nu \) are determined by

\[
\nu_{10} = \lambda_{10} - \lambda_{00} = \frac{1}{2} (1 - 2a_1 - a_2),
\]

(40)

\[
\nu_{01} = \lambda_{01} - \lambda_{00} = \frac{1}{2} (1 - 2a_2 - a_1),
\]

(41)

\[
\nu_{00} = -2\lambda_{00} - \nu_{10} - \nu_{01} = \frac{1}{2} (a_1 + a_2) - 1.
\]

(42)

If the measurement outcomes fulfil \(a_1, a_2 > 0 \), which should be the case in a cluster state experiment, then \(\lambda_{00}, \lambda_{10}, \lambda_{01} > 0 \), and \(\lambda_{11} = 0 \). Therefore, \(\mu_1 = \mu_2 = \mu_3 = 0 \), to fulfill the KKT condition (13). It is now straightforward to check that the choice of these Lagrange multipliers satisfy conditions (36) through (39), thus proving optimality of the solution.

IV. QUALITY OF THE BOUNDS

In this section we will test the usefulness of the obtained bound on the purity. For this purpose, let us consider a perfect cluster state, which is subject to dephasing for a certain time, which is here assumed to be 10 ms. The system is then described by a master equation of the form

\[
\dot{\rho} = \frac{\gamma}{2} \sum_i (Z_i \rho Z_i - \rho),
\]

(43)

where \(\gamma \) is the dephasing rate, which is assumed to be \((10 \text{ ms})^{-1}\).

V. ESTIMATION WITH ERROR BARS

Needless to say, due to a finite number of measurements and experimental imperfections, the measurement outcomes \(a_i \) we considered in previous sections posses an error \(\Delta a_i \geq 0 \), which clearly affects the result of a purity estimation. In this section we briefly address the question how to take into account such errors.

Let us assume we measured the stabilizers \(K_i \) with measurement outcomes \(a_i \pm \Delta a_i = tr(\rho K_i) \). As seen in Sec. II B the optimal solution to the purity minimization problem (29) is given by a stabilizer diagonal representation of the density matrix with coefficients \(c_{i_1...i_n} = \sum_k i_k a_k - \sum_k i_k + 1 \). From this, it can be easily seen that the choice \(c_{i_1...i_n}^{(\pm)} = \sum_k i_k (a_k \pm \Delta a_k) - \sum_k i_k + 1 \) leads to upper (lower) error estimates of the minimal purity with objective values \(P_{min}^{(\pm)} = \frac{1}{2^n} \sum_{i_1,...,i_n=0}^{1} (c_{i_1...i_n}^{(\pm)})^2 \).

VI. ENTROPY ESTIMATION

Alongside the purity of a quantum state \(tr(\rho^2) \), the entropy is another quantifier for the degree of disorder of a system. Given only the measurement outcomes of the stabilizer, one can employ similar techniques as in the case of the purity to estimate the entropy.

The von Neumann entropy is given by \(S = -tr(\rho \log \rho) \). Again, let us consider the generators of the stabilizer group as our observables with measurement outcomes \(a_1 = tr(\rho K_1),...a_n = tr(\rho K_n) \). Then we may restrict to states diagonal in the stabilizer basis \(\rho = \sum c_{i_1...i_n} K_1^{i_1}...K_n^{i_n} \) with eigenvalues \(\lambda_{j_1...j_n}(\rho) = \sum_{i_1,...,i_n=0}^{1} (-1)^{\sum_k i_k j_k} c_{i_1...i_n} \).
TABLE II: Comparison between exact and estimated entropies from the least purity state for noisy cluster states

No. qubits	exact entropy	estimated entropy	relative deviation
2	0.3827	0.3803	0.0063
3	0.5740	0.5667	0.0127
4	0.7653	0.7505	0.0193

Now, we need to maximize the entropy over all states predicting the measurement outcomes a_k, $k \in 1,...,n$.

$$S_{\text{max}} = \max \{ S(\rho) : \text{tr}(\rho K_i) = a_i, \rho \geq 0 \}$$

$$= \min \{ \sum_{i_1,...,i_n=0}^1 \lambda_{i_1,...,i_n} \log \lambda_{i_1,...,i_n} : \lambda_{i_1,...,i_n} \geq 0, c_j = a_j \}$$

Clearly, the solution $c_{i_1,...,i_n} = \sum a_k - \sum a_k + 1$ satisfies the constraints, thus providing a lower bound on the entropy. Considering initially perfect cluster states subject to dephasing according to Eq. (43), one obtains the results given in the table II. Remarkably, the estimate differs only a few per cent from the exact value of the von Neumann entropy.

Even though the least purity state provides a very good lower bound on the maximal entropy, an exact derivation of the entropy is possible in the following way: given the probabilities $p_k^{(\pm)} = \frac{1 \pm a_k}{2}$, then it follows from the subadditivity of the entropy $S\{p_k\} \leq \sum_k S(p_k)$, that the maximal entropy is given by

$$S_{\text{max}} = - \sum_{i_1,...,i_n=0}^1 \lambda_{i_1,...,i_n} \log \lambda_{i_1,...,i_n},$$

with $\lambda_{i_1,...,i_n} = \prod_{k=1}^n \frac{1 + (-1)^k a_k}{2}$, and the indices a_k being a binary index.

VII. CONCLUSION

In this paper we have developed techniques to estimate purities and entropies in cluster state experiments with few measurements. We assume only that the generators of the stabilizer group are measured in an experiment. Therefore, the number of local measurements is linear in the qubit number, compared to an exponential growth in the number of measurement settings for full-state tomography. Given only these measurement outcomes, we have developed the optimal analytical solution to the minimal purity compatible with the measurement data. A comparison of this bound on the purity with the exact purity calculated from simulated data of noisy cluster states shows that, despite the little number of measurements, the bound on the purity differs only by a few per cent from the exact value. In a similar way, we obtained a lower bound on the von Neumann entropy considering only measurements of the stabilizers of a cluster state. This bound deviates only by a few percent from the exact value of the entropy, too. In addition, we employed the subadditivity of the entropy to obtain an analytical result for the exact entropy of a stabilizer state.

Acknowledgments

Harald Wunderlich thanks Miguel Navascues and Shashank Virmani for useful discussions. We acknowledge financial support from EU Integrated Project QAP with contract number 015848, the Royal Society Wolfson Merit Award Scheme and the EU STREP project HIP.

[1] D. Gottesman, The Heisenberg representation of Quantum Computers, arXiv:quant-ph/9807006
[2] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86 (2001) 910
[3] R. Raussendorf and H. J. Briegel, Quantum Inf. Comp. 6 (2002) 443
[4] D. Schlingemann and R. F. Werner, Phys. Rev. A 65 (2001) 012308
[5] W. Dür, J. Calsamiglia, and H. J. Briegel, Phys. Rev A 71 (2005) 042336
[6] P. Walther et al., Nature 434 (2005) 169
[7] C.-Y. Lu et al., Nat. Phys. 3 (2007) 91
[8] H. Wunderlich et al., Phys. Rev. A 79 (2009) 052324
[9] G. Tóth and O. Gühne, *Phys. Rev. A* **79** (2005) 022340
[10] H. Wunderlich and M. B. Plenio, Quantitative verification of fidelities and entanglement from incomplete measurement data, quant-ph/0902.2093
[11] D. Gottesman, PhD thesis, Caltech (1997)
[12] K. M. R. Audenaert and M. B. Plenio, *New J. Phys.* **8** (2006) 266
[13] O. Gühne and G. Tóth, *Phys. Rep.* **474** (2009) 1
[14] S. Boyd and L. Vandenberghe, *Convex Optimization* (Cambridge University Press, 2004)