Haberlea rhodopensis is a paleolithic tertiary relict species that belongs to the unique group of resurrection plants sharing remarkable tolerance to desiccation. When exposed to severe drought stress, this species shows an ability to maintain structural integrity of its deactivated photosynthetic apparatus, which easily reactivates upon rehydration. In addition to its homochlorophyllous nature, the resurrection capability of H. rhodopensis is of particular importance to the global climate change mitigation. In this study, we sequenced, assembled, and analyzed the mitochondrial (mt) genome of H. rhodopensis for the first time. The master circle has a typical circular structure of 484 138 bp in length with a 44.1% GC content in total. The mt genome of H. rhodopensis contains 59 genes in total, including 35 protein-coding, 21 tRNAs, and 3 rRNAs genes. 7 tandem repeats and 85 simple sequence repeats (SSRs) are distributed throughout the mt genome. The alignment of 20 plant mt genomes confirms the phylogenetic position of H. rhodopensis in the Lamiales order. Our comprehensive analysis of the complete mt genome of H. rhodopensis is a significant addition to the limited database of organelle genomes of resurrection species. Comparative and phylogenetic analysis provides valuable information for a better understanding of mitochondrial molecular evolution in plants.

INTRODUCTION

Over the last several years, many plant genomes have been sequenced and assembled by the next-generation sequencing (NGS) technologies. Due to their small size, conserved gene order, and content, chloroplast (cp) genomes were sequenced more frequently than mitochondrial genomes. In comparison to the cp genomes, the mt genome molecules proved to be difficult to assemble because of their variable structure (Bi et al., 2016).

Mitochondria are essential organelles in plants, often called the energy factory of the cell. They possess their own genome which is often used for comparative and evolutionary studies. A recent study highlights mt genes as significant markers for resolving relationships among genera, families, and higher rank taxa across angiosperms. It was observed that the low substitution rates of mt genes in comparison to cp genes make them very useful in the reconstruction of ancient phylogenetic relationships (Qiu et al., 2010). Phylogenetic trees represent the true relationship between conserved core genome sequences and are used to resolve taxonomic grouping among different species. Most mt genomes are extremely large and complex when compared to those of animals and fungi, which generally show a stable and conservative mode of evolution (Li et al., 2009). Land plants’ mitochondrial genomes exhibit some features, such as a significant size expansion, frequent gene loss and gene transfer to the nucleus, RNA editing, genomic rearrangement, and replacement of some tRNAs by their cp counterparts (Knoop, 2004), that highlight their evolutionary dynamics. Mitochondrial genomes vary significantly in structure, size, and gene order (Bi et al., 2016). Much of these variations occur even between members of the same family or genera (Alverson et al., 2010). These main features contrast with animal mtDNAs which are structurally conserved, relatively small in size, and have very fast nucleotide substitution rates (Ballard et al., 2004).

Previous studies revealed that the nucleotide substitution rates between animals and plants differ due to the fact that the plant and animal kingdoms diverged about 1000 million years ago and their patterns of evolution have become different. Also, researchers observed significantly different rates in nucleotide substitution rates among plants. Comparison between plant mitochondrial (mt), chloroplast (cp) and nuclear (n) DNA sequences revealed slower substitution rates in the mitochondrial DNA, which is maybe due to a lower mutation rate. In contrast to mammalian mtDNA, where mitochondrial sequences evolve 5 times faster than nDNA, mtDNA sequences in angiosperms evolve at least 5 times more slowly than nDNA (Wolfe et al., 1987).

Plant mt genomes contain various repeat sequences, such as tandem repeat sequences, simple repeat sequences, and large repeats (Alverson et al., 2010, 2011). In many studies it was observed that mt repeats contain valuable genetic information and are regarded as components in intramolecular recombination (Chang et al., 2013). Methylated sites are linked to tandem repeats in the maize mt genome (Clifton, 2004). Simple sequence repeats and 85 simple sequence repeats (SSRs) are distributed throughout the mt genome. The alignment of 20 plant mt genomes confirms the phylogenetic position of H. rhodopensis in the Lamiales order. Our comprehensive analysis of the complete mt genome of H. rhodopensis is a significant addition to the limited database of organelle genomes of resurrection species. Comparative and phylogenetic analysis provides valuable information for a better understanding of mitochondrial molecular evolution in plants.

Keywords: Haberlea rhodopensis, resurrection plants, mitochondrial genome, genome assembly

Acknowledgements of Financial Support: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 739582 (Project PlantaSYST).

Availability of data and material: Complete mtDNA of Haberlea rhodopensis is deposited in the NCBI GeneBank database under accession number MH757117.

*Joint first authors

Abbreviations: cp, chloroplast; CV, Composition Vector; mt genome, plant mitochondrial genome; SSRs, simple sequence repeats; WGS, whole-genome sequencing

Analysis of the complete mitochondrial genome sequence of the resurrection plant Haberlea rhodopensis

Vesselin Baev1,2*, Zdravka Ivanova1,2, Galina Yahubyan1,2, Valentina Toneva1,2, Elena Apostolova1,2, Georgi Minkov1,2 and Ivan Minkov1,3

1Institute of Molecular Biology and Biotechnology, Plovdiv, Bulgaria; 2Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria; 3Centre of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria

Vol. 68, No 2/2021
277–286
https://doi.org/10.18388/abp.2020_5555
 repeats play an important role in the evolution of plant mt genomes and are responsible for structural variations and size variability of plant mt genomes (Chang et al., 2013). Some genes with large repeats may have multiple copies. Recombination across large direct repeats may divide mt genomes into pairs of subgenomic molecules, whereas inverted repeats may generate isomeric circles (Handa, 2003; Clifton, 2004; Chang et al., 2013).

The gene content of the plant mt genomes is highly variable. The number of protein-coding genes in the mt genomes varies from 3 to 67, whereas the number of tRNA genes varies from 0 to 27 (Adams & Palmer, 2003). In the course of evolution, many mt genes originally found in plant mt genomes have been lost during transfer to the nucleus (Lei et al., 2013). For example, the sdh2, rps9, rps11, and rps16 genes were lost in the evolution of plant mt genomes. The protein-coding genes: rps12, sdb3, and sdb4 were lost in monocots, while rps2 was lost in dicots (Zhang et al., 2012).

RNA editing, a post-transcriptional process of changing nucleotide sequence of any RNA molecule, challenged the basic concept of molecular biology that the primary RNA sequence reflects the sequence of DNA from which it is transcribed. The changes encompass insertions and deletions of uridine residues, and a conversion of a cytidine to uridine within the RNA molecule. RNA editing affects the transcripts of protein-coding genes, non-coding transcribed regions, structural RNAs and intron sequences, and serves as a buffer for less preferred mutations in the coding sequences (Covello & Gray, 1989).

In plant organelles, RNA editing sites were found in the coding regions of mRNA, introns, and non-translated regions. The majority of post-transcriptional modifications include U-to-C, A-to-I, and the RNA-editing of C-to-U was identified in most of the angiosperms (Gray et al., 1999). The process of site editing can generate an initiation or termination codon, but in most cases it generates an internal codon with functional relevance (Handa, 2003). Mt and cp RNA editing in plants is essential for the normal functioning of their translation and respiration activity, and is beneficial for understanding gene expression.

Resurrection plants are a group of flora that thanks to unique survival mechanisms evolved over time can survive extreme water shortages for years. Because chloroplasts and mitochondria play an irreplaceable role in stress sensing and responses, studying their genomes is important. The apoplasts and mitochondria play an irreplaceable role in stress sensing and responses, studying their genomes is important. Recently, the cp genomes of the two resurrection species, Boea hygrometrica, Salvia miltiorrhiza, and H. rhodopensis were sequenced (Zhang et al., 2013), and the complete mtDNA nucleotide sequence was deposited in the NCBI GeneBank database under accession number MH757117.

Repeat structures

Mt genome tandem repeats were identified using the Tandem Repeats Finder software with default settings (Benson, 1999). Additionally, we analysed the distribution of simple sequence repeats (SSRs) with the MISA web-based server application (http://pgre.ipk-gatersleben.de/misa/), with the following settings: 10 repeats for mono-, 5 for di-, and 4 for tri-, tetra-, penta- and hexanucleotide repeat patterns (Liu et al., 2013).

Phylogenetic analysis

We performed a phylogenetic analysis with CVTrec3 and a whole-genome based phylogenetic analysis without sequence alignment using a Composition Vector (CV) approach (Qi et al., 2004; Zuo & Hao, 2015). This approach is successfully used in other studies of viruses, fungi, and plastids (Zuo & Hao, 2015), and has demonstrated its applicability in phylogenetic studies using vertebrate mitochondrial genomes.

We used the mt genome of H. rhodopensis and 19 genomes from other species (Boea hygrometrica, Salvia miltiorrhiza, Ayuga reptans, Cucumis sativus, Cucurbita pepo, Ginkgo biloba, Hypochoeris raper, Populus tremula, Vitis vinifera, Zizyphus jujuba, Zea mays, Brassica juncea, Brassica napus, Nicotiana...
habenaceae, Oryza sativa, Salix purpurea, Olea europea, Spinacia oleracea, Cannabis sativa), obtained from the NCBI Organelle Genome Resources Web site (https://www.ncbi.nlm.nih.gov/genome/organelle/), 20 homologous protein-coding genes (atp1, atp4, atp6, atp8, atp9, cob, cox1, cox2, cox3, rps3, rps4, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9) were extracted from the genomes represented above in order to generate a phylogenetic tree and estimate evolutionary relationships among the taxa.

Analysis of RNA Editing

We used the web-based software platform PREP (Predictive RNA Editor for Plants) (http://prep.unl.edu/) to identify possible RNA-editing sites in the protein-coding genes of the H. rhodopensis mt genome. PREP sites are based on the evolutionary principle that the process of site editing increases protein conservation among species (Mower, 2005). For this analysis, we used the PREP software with default settings and a cut-off value of C=0.2. To determine RNA-editing sites in the H. rhodopensis mt genome, we used a set of land plant protein-coding genes included in the PREP software. Additionally, we performed RNA editing analysis of three closely related genomes from the Lamiales order (O. europaea, S. miltiorrhiza, and B. hygrometrica), and used the results to compare the number of detected RNA sites between these genomes and mt genome of H. rhodopensis.

RESULTS AND DISCUSSION

Genome features

The complete mt genome of H. rhodopensis is a 484 138 bp long circular DNA molecule (Fig. 1). The summary of the H. rhodopensis mt genome features is presented in Table 1. Base composition (27.7% A, 22.1% C, 22.0% G, 28.2% T) is typical for previously published mt genomes from the Lamiales order.

The H. rhodopensis mt genome is comprised of 59 unique genes, including 35 protein-coding genes, 21 tRNA genes and 3 rRNA genes (Table 2). In the group of protein-coding genes, 5 encode subunits for ATP synthase (atp1, atp4, atp6, atp8, atp9), 9 – subunits of NADH dehydrogenase (nad1, nad2, nad3, nad4, nad4L, nad5, nad6, nad7, nad9), 1 – subunit of succinate dehydrogenase (sdh4), 1 – a subunit of ubiquinol cytochrome c reductase (cob), 3 – subunits of cytochrome c oxidase (cox1, cox2, cox3), 6 – small ribosomal subunits SSU (rps3, rps4, rps10, rps12, rps13, rps14), 4 – large ribosomal subunits (rpl2, rpl5, rpl10, rpl16), 1 – maturase (matR), 1 – Sec-Y independent transporter (mttB), and 4 – subunits for biogenesis of cytochrome c (coxB, coxC, coxP, coxQ). Seven protein-coding genes in the mt genome of H. rhodopensis contain introns (cox1, nad1, nad2, nad4, nad5, nad7, rps3) (Table 3). The presence of introns was not detected in the genomes for tRNA (trnS-GGA, trnS-UGA, trnS-GCU, trnM-CAU, trnY-GTA, trnL-CAU, trnL-GAC, trnD-GUC, trnG-GGC, trnM-CAU, trnF-GAA, trnF-GAU, trnW-CCA, trnK-UUU, trnM-CAU, trnNGU, trnQ-UGG, trnE-UUG, trnC-GCA). The positions, lengths and directions of protein-coding genes are presented in Table 4. According to a previous study examining the distribution of introns in 24 selected plant mt genomes from various taxa (Chlorophyta, Charophyta, Bryophyta, Pteridophyta, Gymnosperms, Monocotyledon, Dicotyledon), most genes do not contain introns in selected species (Xu et al., 2015). The percentage of intronless genes was in the range of 63.2% to 100%, and the intron number varied from 1 to 10 even between species within the same taxonomy level. In addition, we compared the intron content between H. rhodopensis and its closest representative (B. hygrometrica), also belonging to the Gesneriaceae family. The intron number is 16 and 18 in H. rhodopensis and B. hygrometrica, respectively. For example, cox2, ccmC and sdb3 are intronless in H. rhodopensis, while the corresponding orthologs contain from 1 to 2 introns in B. hygrometrica. In contrast, nad7 is intronless in B. hygrometrica, while it contains 3 introns in H. rhodopensis (Table 3). This study also provides information on the start and stop codons available in the mt genomes of the studied species and finds that the most common stop codons are TAA, TAG and TGA. Also, the presence of atypical stop codons, such as CAA (present in some species of bryophytes, pteridophytes and gymnosperm), CGA (in the vascular plants), GGT (P. Laevii), AAA and AAT (O. Sativa) is detected in selected species. The lengths of protein-coding genes in H. rhodopensis vary from 225 bp (atp9) to 1950 bp (matR). Most of the protein-coding genes start with an AUG codon, except

![Figure 1. The complete circular mitochondrial genome of H. rhodopensis.](image)

Genomic features on transcriptionally clockwise and counter clockwise strands are drawn on the inside and outside of the circle, respectively. Genes belonging to different functional groups are color-coded. GC content is depicted on the inner circle in grey colour.

Table 1. Summary of the complete H.rhodopensis mitochondrial genome

Feature	Value
Total mt genome size	484 138 bp
Number of genes	59
Number of protein-coding genes	35
tRNA genes	21
rRNA genes	3
A content	27.7%
C content	22.1%
G content	22.0%
T content	28.2%
GC content	44.1%

![Table 1. Summary of the complete H.rhodopensis mitochondrial genome](image)
for rps4 and mttB which use UUG for a start codon – a feature reported in the study of other mt genomes (Wei et al., 2016). 13 genes (atp1, atp9, ccmB, ccmC, ccmFc, ccmFn, cob, cox3, nad4, nad5, rps13, rps12 and sdh4) use UGA as a stop codon, 8 genes (rps3, rps4, nad7, matR, mttB, cox2, atp8 and atp6) use UAG, and 14 genes (atp8, cox1, nad1, nad2, nad3, nad4, nad6, nad9, rpl10, rpl16, rps2, rpl5, rps10 and rps4) use UAA.

Analysis of tandem repeats and SSRs

Tandem repeats

Tandem repeats are short lengths of DNA repeated multiple times within the genome. They play an important role in genome rearrangement and recombination (Cavalier-Smith, 2002), and are widely used in phylogenetic and comparative analyses (Nie et al., 2012). Using the Tandem Repeat Finder software, 7 tandem repeats were detected in the mt genome of H. rhodopensis (Table 5). The length of TR ranges from 18 to 24 bp. Two of the repeats were observed in a protein-coding region, while others are distributed in non-coding regions.

SSRs

SSRs, or microsatellites, are short DNA motifs that are usually repeated 5–50 times and commonly observed throughout the mt genomes (Chen et al., 2006). They are regarded as molecular markers and widely used in population genetics (Doorduin et al., 2011). Using MISA, 85 SSRs were identified in the H. rhodopensis mt genome (Table 6). 42 of them have mononucleotides, 25 – di-nucleotides, and 18 – tri-nucleotides (Table 6). Tetra-, penta- and hexa-nucleotides were not found in the specified setting. Many mononucleotide repeats are comprised of A/T.

Table 2. List of genes encoded by H. rhodopensis mitochondrial genome

Group of genes	Name of genes
Complex I (NADH dehydrogenase)	nad1 nad2 nad3 nad4L nad5
Complex II (succinate dehydrogenase)	sdh4
Complex III (ubichinol cytochrome c reductase)	cob
Complex IV (cytochrome oxidase)	cox1 cox2 cox3
ATP synthase	atp4 atp8 atp9
Ribosomal proteins (SSU)	rps3 rps4 rps10
	rps12 rps13 rps14
Ribosomal proteins (LSU)	rpl10 rpl16 rpl2
	rpl5
Maturases	matR
Other genes	ccmB ccmC ccmFn
	ccmFc
Ribosomal RNAs	rrn5 rrnS rrnL
Transfer RNAs	trnC-GCA trnD-GUC trnE-UUC
	trnF-CAA trnF-GAA(x2) trnG-GCC
	trnF-CAU trnK-UUU trnL-CAA
	trnM-CAU(x3) trnP-GUU
	trnM-UGG
	trnN-UGU
	trnQ-UUG
	trnR-GCA
	trnS-GCA
	trnS-GGA
	trnS-UGA
	trnW-CCA
	trnY-GTA

Table 3. Intron containing genes of the mt genomes of H. rhodopensis and B. hygrometrica

Gene name	H. rhodopensis	B. hygrometrica
cox1	1	1
nad1	4	1
nad2	2	4
nad4	3	3
nad5	2	4
nad7	3	
rps3	1	1
ccmFc	–	2
sdh3	–	1
Complete mitochondrial genome sequence of the Haberlea rhodopensis are composed primarily of AT/AT and the rest of SRRs have a high content of A/T. These observations confirm other studies that polyA and polyT repeats are found in the mt genomes (Kuntal et al., 2012).

Comparison with other mt genomes

Plant mt genomes are larger than animal mt genomes and they vary significantly in size, gene order, and content (Alverson et al., 2011). We selected 15 mt plant genomes to compare genome features and detect variability between them and the mt genome of H. rhodopensis (Table 7). CG content, one of significant compositional genome features, differs slightly among the selected genomes. The range is from 43.3% (B. hygrometrica) (Zhang et al., 2012) to 50.4% (Ginkgo biloba).

The size of selected mt genomes ranges from 219 Kb (Brassica juncea) to 773 KB (Vitis vinifera). The smallest number of genes (51) is observed in Vigna angularis, and the largest (163) in Nicotiana tabacum. A significant tRNA gene number variability is detected as well. This

Name	Type	Minimum	Maximum	Length	Direction	Start codon	Stop codon
atp1	CDS	135.857	137.383	1.527	reverse	ATG	ACT
atp4	CDS	446.477	447.07	594	forward	ATG	TAG
atp6	CDS	480.685	481.401	711	reverse	ATG	ATC
atp8	CDS	224.947	225.426	480	reverse	ATG	ATG
atp9	CDS	73.66	73.884				
ccmB	CDS	414.1	414.72	621	forward	ATG	TGA
ccmC	CDS	407.252	408.004	753	reverse	ATG	ACT
ccmFz	CDS	132.609	133.493	885	reverse	ATG	ACT
ccmFn	CDS	427.596	429.323	1.728	forward	ATG	TGA
cob	CDS	89.532	90.725	1.194	reverse	ATG	ACT
cox1	CDS	98.421	100.957	1.584	reverse	ATG	ATT
cox2	CDS	141.755	142.588	834	forward	ATG	TAG
cox3	CDS	221.861	222.658	799	reverse	ATG	ACT
matR	CDS	394.144	396.093	1.95	reverse	ATG	ATC
mttB	CDS	397.435	398.235	801	reverse	AAC	ATC
nad1 mixed	CDS	155.599	396.822	1.128	mixed	ATG	ATT
nad2	CDS	462.917	466.823	1.158	forward	ATG	TAA
nad3	CDS	110.119	117.813	1.647	forward	ATG	TGA
nad4	CDS	445.995	446.297	303	forward	ATG	TAA
nad5	CDS	120.585	160.66	1.59	forward	ATG	TGA
nad6	CDS	478.915	479.532	618	forward	ATG	TAA
nad7	CDS	110.119	117.813	1.647	forward	ATG	TGA
nad9	CDS	226.512	227.084	573	forward	ATG	TAA
rpl10	CDS	415.035	415.523	489	reverse	ATG	ATT
rpl16	CDS	65.037	>65471	>435	reverse	CAC	ATT
rpl2	CDS	376.782	377.768	987	reverse	ATG	ATT
rps3	CDS	95.209	95.763	555	reverse	ATG	ATT
rps5	CDS	150.291	150.62	330	reverse	ATG	ATT
rps10	CDS	325.171	325.548	378	forward	ATG	TGA
rps13	CDS	247.477	247.827	351	reverse	ATG	ACT
rps14	CDS	94.905	95.207	303	reverse	ATG	ATC
rps4	CDS	69.077	70.072	996	reverse	AAC	ATT
sdh4	CDS	221.406	221.933	528	reverse	ATG	ACT
varies from 15 in *Cannabis sativa* to 27 in *B. hygrometrica* and *Oryza sativa*. However, a relatively stable content of rRNA genes is found among the selected genomes. Most of them contain 3 rRNA genes, whereas 6 and 5 genes were observed in the genomes of *O. sativa* and *S. miltiorrhiza*, respectively (*Table 8*).

Special attention was paid to the comparison of the mt genomes of *H. rhodopensis* and *B. hygrometrica* – the other representative of the Gesneriaceae family belonging to the resurrection plants. The mt genome size of *B. hygrometrica* is 510 KB, which is slightly larger than the mt genome of *H. rhodopensis*, while the two mtDNAs have a similar base composition. Upon comparison between these two genomes, it is evident that although 7 protein-coding genes (*mttB, rpl10, rpl2, rps14, rps15, sdh4* and a trnI-CAU tRNA gene are observed in the *H. rhodopensis* mt genome, they are absent in the *B. hygrometrica* genome. 2 protein-coding genes (*rps7 and sdh3*), 4 tRNA genes (*trnR-ACG, trnT-UGU, trnH-GUG, trnW-CCA* and *trnV-GAC*) and 4 hypothetical proteins (*orf1, orf2, orf3* and *orf4*) are present in *B. hygrometrica* mt genome, but are not present in *H. rhodopensis* mt genome. Interestingly, a previous study found that succinate dehydrogenase genes were usually lost in angiosperms, and losses of *sdh4* were predominant in the monocots while no losses were detected in basal angiosperms (Adams et al., 2001). However, our comparison revealed that the *sdh3* gene exists in the mt genomes of *B. hygrometrica, N. tabacum, G. biloba, O. europaea* and *V. vinifera*, while *sdh4* exists in the genomes of *H. rhodopensis, S. miltiorrhiza* (pseudo gene), *G. biloba, S. purpurea, C. sativa, O. europaea* and *V. vinifera*. The whole set of RNA genes (*trnA, trnC, trnD, trnE, trnF, trnG, trnH, trnl, trnK, trnL, trnM, trnN, trnP, trnQ, trnR, trnS, trnT, trnV, trnW, trnY* and *trnM*) is required for the protein synthesis of mt plant genomes. However, a large number of RNA genes is either lost or deactivated during the evolution of plant mt genomes (Dietrich et al., 1996). We observed that three RNA genes (*trnV, trnT, trnR*) were lost in a large number of plant mt genomes: the *trnV* gene was lost in *B. napus, V. angularis, N. tabacum, B. jun-

Table 5. Distribution of the repeat sequences in the *H. rhodopensis* mt genome

No	Size(bp)	Location	Repeat
1	24	IGS(trnM-CAU-trnP-UGG)	TTTTGTCCAGGCCTACTTCITT (x 2.5)
2	21	IGS(trnM-CAU-trnP-UGG)	TTTTGTCCAGGCCTACTTCITT (x 3.2)
3	18	IGS(trnM-CAU-trnP-UGG)	CGATATGCTGACTGTA (x 3.3)
4	21	IGS(trnM-CAU-trnP-UGG)	TTTTGTCCAGGCCTACTTCITT (x 2)
5	21	nad5	CTTCTTCAGCTACTACCCAA (x 2)
6	18	nad5	TTTTGTCCAGCTACTTCITT (x 2)
7	21	IGS(rps12-trnM-CAU)	TTTTGTCCAGCTACTTCITT (x 2.1)

Figure 2. The phylogenetic tree was build based on 20 conserved genes of 20 represented mt genomes. The plant order of analysed genomes is depicted by different colours.
Complete mitochondrial genome sequence of the Haberlea rhodopensis

Table 6. Cumulative SSR frequency and corresponding primer pairs in H. rhodopensis.

SSR Type	Frequency
A	20
T	22
AG	4
AT	1
CG	2
GA	5
TA	6
TC	3
TG	1
AAG	1
AGA	1
ATA	3
ATG	1
CAT	1
CTT	1
GAA	1
GGA	1
TAA	1
TAT	1
TTC	2
A/T	42
AC/AT	1
AG/CT	13
AT/AT	10
CG/CCT	1
AAG/CTT	9
AAT/ATT	6
AGC/CCT	1
ATC/ATG	2

SSR Type – types of detected SSRs in H. rhodopensis genome

Frequency – frequency of identified SSR motifs

Phylogenetic analysis

We analyzed plant mitochondrial phylogeny of 20 conserved homologous mt genes (atp1, atp4, atp6, atp8, atp9, cob, cox1, cox2, cox3, rps3, rps4, nad1, nad2, nad3, nad4, nad5, nad6, nad7, nad9) from 19 representative plant mitochondrial genomes (Beea hygrometrica, Salvia miltiorrhiza, Ajuga reptans, Cucumis sativus, Carubita pepe, Ginkgo biloba, Populus tremula, Vitis vinifera, Zea mays, Brassica juncea, Brassica napus, Nicotiana tabacum, Oryza sativa, Salad purpurea, Ochra europea, Spartina oreacea, Cannabis sativa, Huyucymyns niger), belonging to 10 orders (Brassicales, Rosales, Malpighiales, Lamiales, Cucurbitales, Vitales, Solanales, Caryophyllales, Poales, and Ginkgoales) (Fig. 2). We constructed the phylogenetic tree including 20 species from 10 orders, of which 4 species belong to Lamiales (A. reptans, B. hygrometrica, O. europea and S. miltiorrhiza). The closest mt genome relative of H. rhodopensis is that of B. hygrometrica. Moreover, these two species share one of the most interesting and unique features – they can survive extreme drought. The conducted phylogenetic analysis and generated tree strongly support the closest relationship between H. rhodopensis and B. hygrometrica, as well as confirm that these two species belong to the Gesneriaceae family.

Analysis of RNA Editing

Using the PREP program, we analysed 35 protein-coding genes from the H. rhodopensis mt genome and we predicted 419 RNA editing sites inside them (Supplementary Table 1 at https://ojs.ptbioch.edu.pl/index.php/abp). We discovered that the NAD(H) complex contains 153 editing sites (36.51% of all predicted sites). 5 genes (cob, coxC, cox1, mtb1 and nad4) encoded most of the RNA editing sites (156), while 4 genes (atp1, atp3, atp9 and rpl10) encoded the fewest sites. Among the 419 editing sites, 102 (24.34%) were converted from Leucine to Proline, and 117 (27.92%) of the RNA editing sites occurred in the first position of the codon, whereas 284 (67.78%) were in the second position.

To compare the RNA editing sites between the closely related mt genomes of the Lamiales order, we additionally analysed protein-coding genes from B. hygrometrica, O. europaea, and S. miltiorrhiza mt genomes. The number of predicted RNA editing sites is 431 for S. miltiorrhiza (Supplementary Table 2 at https://ojs.ptbioch.edu.pl/index.php/abp), 459 for O. europaea (Supplementary Table 3 at https://ojs.ptbioch.edu.pl/index.php/abp), and 389 for B. hygrometrica (Supplementary Table 4 at https://ojs.ptbioch.edu.pl/index.php/abp). We observed that the number of RNA editing sites under amino acid changes in the compared mt genomes is similar to that of the H. rhodopensis mt genome (Fig. 3). This analysis revealed that the NAD(H) complex in these three genomes contains a fair amount of RNA editing sites, i.e. 175, 164, and 170 for O. europaea, S.
miltiorrhiza, and B. hygrometrica, respectively, which is similar to what was observed in the H. rhodopensis mt genome. We detected that 5 genes (ccmB, ccmC, ccmFn, mttB and nad4) in O. europaea and S. miltiorrhiza, and 4 genes (ccmB, ccmC, ccmFn and nad4) in B. hygrometrica encoded most of RNA editing sites, i.e. 160, 153 and 128, respectively. Among all RNA editing sites, we detected that 110, 96 and 99 were converted from Serine to Leucine, 104, 80 and 91 were converted from Proline to Leucine, and 68, 62, and 66 – from Serine to Phenylyalanine, for O. europaea, B. hygrometrica, and S. miltiorrhiza, respectively.

We calculated the position of the codon substitutions in these genomes and we observed that 136 (S. miltiorrhiza), 137 (O. europaea) and 115 (B. hygrometrica) sites occurred in the first position, whereas 281 (S. miltiorrhiza), 304 (O. europaea) and 261 (B. hygrometrica) occurred in the second.

In addition, we compared the RNA editing data of O. sativa (Poales) and Brassica napus (Brassicales) (Maier et al., 1996) with representatives from the Lamiales order. The most edited transcripts were ccmC with 36 editing sites in O. sativa (Notsu et al., 2002), and ccmB with 39 editing sites in Brassica napus (Handa, 2003). We compared these results to those of the Lamiales representatives analysed in our study, and found that, similar to O. sativa and B. napus, one of the most edited transcripts belongs to the cytochrome-c family.

CONCLUSIONS

The main characteristics of the H. rhodopensis Friv. mitochondrial genome, including its variable size and structure, as well as fluctuating gene order and content, are consistent with the mitochondrial genomes of most higher plants. Its sequencing and annotation that were performed here constitute an important addition to the limited body of sequenced and analyzed mt genomes from the Gesneriaceae family, especially when it comes to resurrected plants. The comparative and phylogenetic analysis presented here provides a greater understanding of mt molecular evolution in higher plants, facilitating further study of gene organization and evolution in the Lamiales genus.

Table 7. List of mitochondrial genomes used for the comparative analysis

No.	Taxon	Family	Order	GenBank Accession number
1	Cannabis sativa	Cannabaceae	Rosales	KU310670
2	Spinacia oleracea	Chenopodiaceae	Caryophyllales	KY768855
3	Brassica napus	Brassicaceae	Brassicales	JF920288
4	Nicotiana tabacum	Solanaceae	Solanales	BA000042
5	Zea perennis	Poaceae	Poales	NC_008331
6	Vitis vinifera	Vitaceae	Vitales	NC_012119
7	Oryza sativa	Poaceae	Poales	JN861112
8	Salix purpurea	Salicaceae	Malpighiales	KU198635
9	Daucus carota	Apiaceae	Scandiceae	JQ248574
10	Olea europea	Oleaceae	Lamiiales	MG372116
11	Salvia miltiorrhiza	Lamiaceae	Lamiiales	KF177345
12	Boea hygrometrica	Gesneriaceae	Lamiiales	JN107812
13	Ginkgo biloba	Ginkoaceae	Ginkoales	KM672373
14	Vigna angularis	Fabaceae	Fabales	AP012599

Figure 3. The distribution and comparison of RNA-editing sites in the protein-coding genes of H. rhodopensis mt genome and three closely related mt genome from the Lamiales order.
It is well known that higher resurrection plants maintain their energetic status during periods of dehydration and hibernation (Dinakar & Bartels, 2013; Gechev et al., 2013). It is well established that Haberlea respiration remains energetically stable during leaf drying (Kimenov & Minkov, 1975; Minkov et al., 1977). Undoubtedly, mitochondria play an important role in the process of dehydration and “resurrection” of these plants. These processes most likely differ in *H. rhodopensis* Friv. and other resurrection plants (such as *B. hygrometrica*), owing to significant differences in their respective mt genes. These “resurrection” mechanisms, therefore, may have evolved independently of the evolution of their respective mt gene arrangements. Furthermore, the emergence of this process appears to be the result of regulation, rather than specific gene composition. High levels of NADPH and other phosphorylated sugars found in Haberlea’s mitochondria during drought and recovery support this view. These sugars most likely maintain the plant’s high energy status during the periods of stress (Bardarov et al., 2018).

We can further speculate that convergent evolution in higher plants has produced “resurrection” mechanisms multiple times. Despite their advantage for individual organisms, however, many instances appear to have subsequently become vestigial due to their extremely complex, onerous maintenance, and dubious benefits for the overall population. Immortality of individual organisms, therefore, appears to involve more than their own self-interest. System complexity, energy balance, and evolutionary cost for the entire population all play an important role in shaping evolution. Clearly, immortality of the individual organisms has evolved many times before. Today, only its residual traces remain within the genomes, physiology and biochemistry of some plants. Regardless, these vestigial “resurrection” mechanisms can still be reactivated when the evolutionary pressure of colonizing new spaces outweighs other concerns.

REFERENCES

Adams KL, Rosenbluth M, Qiu YJ, Palmer JD (2001) Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. *Genetics* **158**: 1289–1300

Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: Gene loss and transfer to the nucleus. *Mol. Phylogenet. Evol.* **29**: 380–395. https://doi.org/10.1016/S1055-7903(03)00194-5

Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of citrus *lantanus* and *cucurbita pepo* (Cucurbitaceae). *Mol. Biol. Evol.* **27**: 1436–1448. https://doi.org/10.1093/molbev/msq029

Alverson AJ, Zhuo S, Rice DW, Sloan DB, Palmer JD (2011) The mitochondrial genome of the legume *vigna radiata* and the analysis of recombination across short mitochondrial repeats. *PLoS One* **6**: https://doi.org/10.1371/journal.pone.0016404

Ballard J, William O, Whitlock M (2004) The incomplete natural history of mitochondria. *Mol. Evol.* **13**: 729–744. https://doi.org/10.1046/j.1365-294X.2003.02963.x

Bardarov K, Apostolova E, Toneva V, Minkov I (2018) HILIC LC-MS metabolite profiling of Nucleotide phosphates, deoxyNucleotide phosphates and amino acids in *Haberlea rhodopensis* Friv. leaves and roots-changes during drought and rehydration. *Resurrect. Plants Hope Crop drought Toler. ReHOPE, FEBS Adv.* courses

Benson G (1999) Seminar – Tandem repeats finder: a program to analyze DNA sequences. **27**: 573–580

Bi C, Paterson AH, Wang X, Xu Y, Wu D, Qu Y, Jiang A, Ye Q, Ye N (2016) Analysis of the complete mitochondrial genome sequence of the diploid cotton *Gossypium raimondii* by comparative genomics approaches. *Biomed Res. Int.* **2016**: https://doi.org/10.1155/2016/2704598

Cavalier-Smith T (2002) Chloroplast evolution: secondary symbiosis and multiple losses chloroplasts originated from cyanobacteria only. *Curr. Biol.* **12**: 62–64. https://doi.org/10.1016/S0960-9822(01)00675-3

Chang S, Wang Y, Lu J, Gai J, Li J, Chu P, Guan R, Zhao T (2013) The mitochondrial genome of soybean reveals complex genome structures and gene evolution at intercellular and phylogenetic levels. *PLoS One* **8**: https://doi.org/10.1371/journal.pone.0066802

Chen C, Zhou P, Choi YA, Huang S, Gmitter FG (2006) Mining and characterizing microsatellites from citrus ESTs. *Theor. Appl. Genet.* **112**: 1288–1297. https://doi.org/10.1007/s00122-006-0226-1

Clifton SW (2004) Sequence and comparative analysis of the maize NB mitochondrial genome. *Plant Physiol.* **136**: 3486–3503. https://doi.org/10.1104/pp.104.046602

Table 8. Comparison of gene content among various plant mt genomes

No.	Taxon	Genes	CDS	tRNA	rRNA
1	*Cannabis sativa*	55	35	15	3
2	*Spinacia oleracea*	55	23	20	3
3	*Brassica juncea*	99	78	18	3
4	*Brassica napus*	106	79	17	3
5	*Nicotiana tabacum*	193	156	23	4
6	*Zea perennis*	59	32	17	3
7	*Vitis vinifera*	161	31	3	4
8	*Oryza sativa*	100	67	27	6
9	*Salix purpurea*	55	32	3	3
10	*Daucus carota*	122	90	25	4
11	*Olea europea*	71	41	26	3
12	*Salvia miltiorrhiza*	167	138	22	5
13	*Boea hygrometrica*	66	32	27	4
14	*Ginkgo biloba*	66	40	23	3
15	*Vigna angularis*	51	26	16	3
and other plants. Brassica napus Panč. to the poikiloxerophytic type of
highlights genes important
L. (Salicaceae) mitochondrial ge
: SNPs, microsatellites and
Liu G, Cao D, Li S, Su A, Geng J, Grover CE, Hu S, Hua J (2013)
Li L, Wang B, Liu Y, Qiu YL (2009) The complete mitochondrial ge
Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E,
Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng
286
Lei B, Li S, Liu G, Chen Z, Su A, Li P, Li Z, Hua J (2013) Evolution
Kuntal H, Sharma V, Daniell H (2012) Microsatellite analysis in or
Knoop V (2004) The mitochondrial DNA of land plants: Peculiarities
Kimenov G, Minkov I, Kimenov G, Kalucheva I (1977) Structural characteristics of
Haberlea rhodopensis Friv. and
Ramonda serbica Panč. to the poikiloxerophytic type of
plants. C.R. Acad. Bulg. Sci. 28: 829
Knoop V (2004) The mitochondrial DNA of land plants: Peculiarities
in phylogenetic perspective. Curr. Genet. 46: 123–139. https://doi.org/10.1007/s00294-004-0522-8
Kuntal H, Sharma V, Daniell H (2012) Microsatellite analysis in
organelle genomes of Chlorophyta. Bioinformation 8: 255–259. https://doi.org/10.6026/97320036008255
Lei B, Li S, Liu G, Chen Z, Su A, Li P, Li Z, Hua J (2013) Evolution
of mitochondrial gene content: Loss of genes, tRNAs and introns
between Gossypium harknessii and other plants. Plant Syst. Evol. 299: 1889–1897. https://doi.org/10.1007/s00606-013-0845-3
Li L, Wang B, Liu Y, Qiu YL (2009) The complete mitochondrial gene
ome sequence of the hornwort megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land
plant mitochondrial genomes. J. Mol. Evol. 68: 665–678. https://doi.org/10.1007/s00239-009-9240-7
Liu G, Cao D, Li S, Su A, Geng J, Grover CE, Hu S, Hua J (2013)
The complete mitochondrial genome of Gossypium hirsutum and evo-
larutionary analysis of higher plant mitochondrial genomes. PlaS One 8: 1–14. https://doi.org/10.1371/journal.pone.0060976
Lohse M, Drehsel O, Kahlau S, Bock R (2013) OrganellarGenome-
DRAW — a suite of tools for generating physical maps of plastid
and mitochondrial genomes and visualizing expression data sets.
Nucleic Acids Res. 41: 575–581. https://doi.org/10.1093/nar/gkt289
Maier R, Zelz P, Kössel H, Bonnard G, Gualberto J, Grienenberger
J (1996) RNA editing in plant mitochondria and chloroplasts. Plant
Mol Biol 32: 343–365. https://doi.org/10.1007/BF00093590
Minkov I, Kimenov G, Kalucheva I (1977) Structural characteristics of
the chloroplasts of Haberlea rhodopensis Friv. upon drying and restor-
ation. C. R. Acad. Bulg. Sci. 30: 897
Mower JP (2005) PREP-Mc: Predictive RNA editor for plant mitochon-
drial genes. BMC Bioinformatics 6: 1–15. https://doi.org/10.1186/1471-2105-6-96
Nie X, Lv S, Zhang Y, Xu X, Wang L, Biradar SS, Tan X, Wan F, Weining S (2012) Complete chloroplast genome sequence of a ma-
for invasive species, crofton weed (Agratisina advena). PlaS One 7:
Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono
M, Hirai A, Kadowaki K (2002) The complete sequence of the rice
(Oryza sativa L.) mitochondrial genome: Frequent DNA sequence
acquisition and loss during the evolution of flowering plants. Mole.
Genet. Genomics 268: 434–445. https://doi.org/10.1007/s00438-002-
0767-1
Qi J, Wang B, Hao BI (2004) Whole proteome prokaryote phyloge-
y without sequence alignment: A K-string composition approach.
J. Mol. Evol. 58: 1–11. https://doi.org/10.1007/s00239-003-2493-7
Qiu YL, Li L, Wang B, Xue JY, Hendry TA, Li RQ, Brown JW, Liu
Y, Hudson GT, Chen ZD (2010) Angiosperm phylogeny inferred
from sequences of four mitochondrial genes. J. Syst. Evol. 48: 391–
425. https://doi.org/10.1111/j.1759-6831.2010.0097x
Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan
and snoGPS web servers for the detection of tRNAs and snoR-
NAs. Nucleic Acids Res. 33: 686–689. https://doi.org/10.1093/nar/gki366
Wei S, Wang X, Bi C, Xu Y, Wu D, Ye N (2016) Assembly and analy-
sis of the complete Salix purpura L. (Salicaceae) mitochondrial
gene sequence. Springerplus 5: https://doi.org/10.1186/s40064-016-
3521-6
Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution
vary greatly among plant mitochondrial, chloroplast, and nuclear
dNAs. Proc. Natl. Acad. Sci. U. S. A. 84: 9054–9058. https://doi.
gor invasive species, crofton weed (Agratisina advena). PlaS One 7:
Xu W, Xing T, Zhao M, Yin X, Xia G, Wang M (2015) Synonymous
codon usage bias in plant mitochondrial genes is associated with
intron number and mirror species evolution. PlaS One 10: 1–21.
https://doi.org/10.1371/journal.pone.0131508
Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S, Yu J (2012) The
complete chloroplast and mitochondrial genome sequences of boca
hygrometrica: Insights into the evolution of plant organellar genom-
es. PlaS One 7: https://doi.org/10.1371/journal.pone.0038531
Zuo G, Hao B (2015) CVTrec3 Web Server for whole-genome-based
and alignment-free prokaryotic phylogeny and taxonomy. Genom-
ex, Proteomics Bioinforma. 13: 321–331. https://doi.org/10.1016/j.
gpb.2015.08.004