Effects of Nitrogen Supplementation Status on CO₂ Biofixation and Biofuel Production of the Promising Microalga *Chlorella* sp. ABC-001

Jun Muk Cho¹, You-Kwan Oh², Won-Kun Park³*, and Yong Keun Chang¹,4*

¹Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
²School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
³Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Republic of Korea
⁴Advanced Biomass R&D Center, Daejeon 34141, Republic of Korea

Introduction

Fixation of carbon dioxide has become one of the most crucial technologies required by modern society and biological fixation by photosynthesis is the ideal form to reduce carbon dioxide over the long term [1]. Moreover, the only biological process that can effectively remove CO₂ is through the cultivation of microalgae, as the use of first- and second-generation biomass suffers from critical drawbacks [2]. These tiny organisms exhibit higher photosynthetic efficiency, growth and lipid productivities compared to terrestrial plants that have been exploited for biofuels [3]. As microalgae utilize carbon dioxide for growth, the production of biofuels using algae will help reduce the accumulation of carbon dioxide in the atmosphere. Microalgae biomass is the most promising feedstock for biofuel that can help maintain a sustainable society.

Under optimized conditions, microalgae can accumulate significant amounts of lipids and carbohydrates, which can be converted to fuels. Lipids from microalgae are considered to be an excellent feedstock for biodiesel and have been discussed in several studies [4-6]. Biodiesel from microalgae is compatible with current diesel engines and thus can be implemented right away [7]. However, the economic feasibility of biodiesel has not been established yet and further efforts to improve the costs and productivity of generating these environmentally friendly fuels are necessary [4, 8].

There have been various efforts to broaden the application of microalgal biomass for the production of biofuels. Previous studies have discussed the application of microalgal biomass as combustion fuel in power plants [9, 10]. These studies suggest that biomass with high lipid is favorable as it has higher heating value and results in high energy yield. Besides lipids, carbohydrates also constitute a significant proportion of microalgae and can be
employed to produce bioethanol by fermentation [11]. Furthermore, both lipid and carbohydrate can be converted to biofuels if carbohydrates are utilized after oil extraction [12]. Microalgal biomass as a whole or in part can also be used as an organic source in anaerobic digestion for biogas production [13]. In this case, high C:N ratio is preferred, which is commonly shown in biomass with high lipid and carbohydrate contents. As described, there are various methods to utilize microalgal biomass for the production of biofuels. However, high content of lipid and carbohydrates is important as they allow maximum utilization of biomass, which can lead to improved economic feasibility. Thus, it is crucial to utilize microalgae that have the potential to achieve such compositions of biomass.

The simplest and most effective method to achieve high lipid content in microalgal cells has been to cause nitrogen starvation by limiting the nitrogen input into the cultivation medium [14]. This led to increased lipid composition but decreased biomass production [15]. Hence, both nitrogen-replete and -deplete conditions were employed in two-stage cultivation systems to achieve maximum lipid productivity by separating the growth and lipid accumulating phases [16, 17]. However, changing the nitrogen availability of the medium on a large scale is critical to the cost of mass production. Therefore, nitrogen starvation in cells should be naturally induced by causing nitrogen depletion in the medium by cellular consumption. This would impact biomass productivity, which in turn affects lipid productivity and CO2 biofixation rate as a consequence. The trade-off between high biomass productivity and CO2 biofixation rate versus high lipid content has highlighted the importance of understanding the extent of effects caused by varying the nitrogen supply to cells.

This study focuses on the supply of nitrogen and its effects on the cell composition, lipid and carbohydrate productivity as well as the CO2 biofixation rate of Chlorella sp. ABC-001. The microalga Chlorella sp. ABC-001 is a newly isolated strain with advantageous characteristics for CO2 fixation and biofuel production. During cultivation, it showed various performance levels of growth, lipid and carbohydrate accumulation under different amounts of nitrogen supplementation. This controllable variation was used to discuss effective cultivation methods for application in biofuel production and CO2 biofixation.

Materials and Methods

Microalgae Strain and Cultivation Conditions

The microalgal strain used in this study was the green alga Chlorella sp. ABC-001, which was isolated from a stream near a power plant in Gangwon Province, South Korea. Modified N-8 medium was used to grow the cells and contained the following compounds in g/l: 0.74 KH2PO4, 0.2598 Na2HPO4, 0.05 MgSO4·7H2O, 0.0175 CaCl2·2H2O, 0.0115 FeNaEDTA·3H2O, 0.0032 ZnSO4·7H2O, 0.013 MnCl2·4H2O, 0.0183 CuSO4·5H2O, and 0.007 Al2(SO4)3·18H2O. In addition, potassium nitrate was added to create initial nitrate concentrations of 2.5, 5, 10 and 15 mM. Cells were cultivated in bubble-column photobioreactors (PBRs) with a working volume of 500 ml, which contained the following compounds but decreased biomass production [15]. Hence, both nitrogen-replete and -deplete conditions were employed in two-stage cultivation systems to achieve maximum lipid productivity by separating the growth and lipid accumulating phases [16, 17]. However, changing the nitrogen availability of the medium on a large scale is critical to the cost of mass production. Therefore, nitrogen starvation in cells should be naturally induced by causing nitrogen depletion in the medium by cellular consumption. This would impact biomass productivity, which in turn affects lipid productivity and CO2 biofixation rate as a consequence. The trade-off between high biomass productivity and CO2 biofixation rate versus high lipid content has highlighted the importance of understanding the extent of effects caused by varying the nitrogen supply to cells.

This study focuses on the supply of nitrogen and its effects on the cell composition, lipid and carbohydrate productivity as well as the CO2 biofixation rate of Chlorella sp. ABC-001. The microalga Chlorella sp. ABC-001 is a newly isolated strain with advantageous characteristics for CO2 fixation and biofuel production. During cultivation, it showed various performance levels of growth, lipid and carbohydrate accumulation under different amounts of nitrogen supplementation. This controllable variation was used to discuss effective cultivation methods for application in biofuel production and CO2 biofixation.

Measurement of Cell Growth and Nitrate Concentrations

Cell growth was measured in terms of dry cell weight (DCW) which was monitored daily. To calculate the DCW, 3-5 ml of culture samples were filtered using pre-dried and weighed GF/C filters (Whatman, UK) and washed several times with deionized water. The filtered biomass was dried overnight in a 70°C oven and weighed. The difference in the weights of the filters was used to calculate the DCW.

For measurement of nitrate concentrations, 5-10 ml of cultures were centrifuged and the supernatant was filtered using 0.2 μm filters (Minisart NML, Germany). The filtered supernatant was diluted accordingly using deionized water and analyzed using ion chromatography (883 Basic IC Plus, Metrohm, Switzerland) with an anion column (Metrosep A Supp 5, Switzerland). An eluent solution with a composition of 3.2 mM Na2CO3 and 1 mM of NaHCO3, was fed into the column at a flow rate of 0.7 ml/min.

Elemental Analysis of Biomass

Biomass was harvested by centrifugation on day 7 and 14 and washed twice with distilled water to remove any residual nutrients from the medium. Then, the cells were lyophilized using a freeze-dryer for 3 days and analyzed using an elemental analyzer (FLASH 2000 Series, Thermo Scientific, USA) to determine the compositions of C and N in the biomass. Each sample was analyzed twice and the average value was used to represent the data value for each sample.

Biomass Productivity and CO2 Biofixation Rate

Biomass productivity, Pb (g/l/d), was calculated using the following equation:

$$P_b = \frac{X_t - X_0}{t_1 - t_0}$$

(1)

X_t: biomass (g/l) at time t_1, X_0: initial biomass at time t_0 (t = 0).

The carbon dioxide biofixation rate (g/l/d) can be calculated with the following equation:

$$\text{Carbon dioxide biofixation rate} = \frac{P_b}{C_{\text{max}}}$$

where C_{max} is the maximum carbon dioxide content of the biomass.
Effect of N-Status on Biofuel Production and CO\(_2\) Biofixation

Analysis of Lipid and Carbohydrate

Biomass was harvested on day 5, 7, 10 and 14 for analysis of total lipid and carbohydrate contents. Harvested biomass was washed with distilled water and lyophilized for 3 days. The dried biomass was finely ground into powder and stored at −70°C in a deep freezer until analysis was carried out. The determination of total lipid content was done with a modified Folch’s method. In detail, 50 mg of the dried biomass was added with 10 ml of chloroform/methanol mixture into a Pyrex glass tube and sonicated for 4 h in a bath sonicator. After the addition of 2.5 ml of distilled water, the sample was mixed vigorously and centrifuged for phase separation. The lower organic phase which consisted of chloroform and extracted lipid, was transferred to a fresh glass tube after passing through 0.2 μm organic solvent filters (Minisart RC, Germany). Then, 5 ml of the filtered solvent was transferred into a pre-weighed tube and sparged with a steady flow of nitrogen gas until all of the chloroform was evaporated. Finally, the dried lipid was weighed and the lipid content was calculated according to the following equation:

\[
\text{Total lipid content (%)} = \frac{(W_d - W_e) \times V_C}{W_L \times V_L} \times 100(\%)
\]

where:
- \(W_e\): the weight of empty tubes,
- \(W_l\): the weight of tubes with extracted lipid,
- \(V_c\): volume of chloroform,
- \(V_l\): volume of chloroform and lipid transferred to tubes,
- \(W_s\): the weight of biomass sample.

The total carbohydrate content was determined using the phenol-sulphuric acid method. Approximately 3-5 mg of dried biomass powder was weighed and mixed vigorously in 10 ml distilled water after which 1 mL was transferred to fresh glass tubes. Subsequently, 1 ml of phenol solution (5% wt.) and 5 ml of concentrated sulphuric acid was added and left in the dark to react for 30 min. The solution was mixed well by inverting the tubes several times and the absorbance at 470 nm was measured using a UV/Vis spectrophotometer (Shimadzu, Japan). Five standards were also prepared using glucose solution and a standard curve was produced as the following equation:

\[
y = 0.162x (R^2 = 0.991)
\]

where:
- \(y\): carbohydrate concentration (g/l),
- \(x\): absorbance at 470 nm.

The carbohydrate content was derived by dividing the calculated carbohydrate concentration by the biomass concentration in the sample.

Results and Discussion

Cultivation of Chlorella sp. ABC-001 Under Various Nitrate Concentrations

The high CO\(_2\) tolerant Chlorella sp. ABC-001 cells were cultivated for 14 days to study the changes in biomass production and CO\(_2\) biofixation as well as cell composition with various nitrate conditions. The growth of Chlorella sp. ABC-001 cells in terms of DCW is shown in Fig. 1A. The initial concentrations of nitrate in the medium were varied between 2.5 to 15 mM and the effects on biomass generation were observed. The maximum final biomass concentration of 4.77 g/l was achieved under 15 mM of nitrate whereas the lowest final biomass concentration of 2.75 g/l was obtained with 2.5 mM after 14 days. Over the course of the cultivation period, continuous growth was achieved under all experimental conditions. However, the increase in DCW between various nitrate concentrations started to differ from day 2 and the final DCW was increased when the initial nitrate concentration was higher. Nitrogen starvation leads to decreased synthesis of chlorophyll and negatively affects the photosynthetic system in microalgae [18]. The optimal conditions for growth are generally considered with the C:N:P ratio of cells but in this case, carbon was continuously supplied in the form of CO\(_2\), and thus the N:P ratio remained constant.

\[
R_{\text{CO}_2} = C_{\text{carbon}} \times P_b \times \left(\frac{M_{\text{CO}_2}}{M_c} \right)
\]

where:
- \(C_{\text{carbon}}\): carbon content of biomass,
- \(P_b\): biomass productivity (g/l/d),
- \(M_c\) and \(M_{\text{CO}_2}\): molecular weights of carbon and CO\(_2\), respectively.

Fig. 1. Growth profile of Chlorella sp. ABC-001 cells grown under 2.5 to 15 mM nitrate concentrations. (A) Cell growth and (B) nitrate consumption.
ratio was the determining factor. The phosphorus concentration in the medium was 7.31 mM, which showed the N:P ratio to be between 0.34-2.05. This was much lower than the general values for N:P ratio between 5-50 [19] and thus, it could be said that phosphorus in the medium was abundant for cell growth considering the concentration of nitrogen in the medium. Therefore, nitrogen was the only limiting nutrient and consequently determined the growth of cells. As expected, increasing the availability of nitrogen from 2.5 to 15 mM resulted in higher biomass accumulation (2.75 to 4.77 g/l on day 14).

The consumption of nitrate over time was also observed daily by measuring the remaining nitrate in the supernatant (Fig. 1B). All of the added nitrates were consumed by the cells at the end of the cultivation period except for the addition of 15 mM nitrate, where the final residual nitrate concentration was 11.3 mg/l. However, even in this case, the nitrate concentration approached zero and it appears that all nitrogen would be assimilated into the cells if more time was given. Depletion of nitrate in the medium for 2.5, 5 and 10 mM occurred on day 2, 3 and 6 of cultivation, respectively. Considering that cells grew well under the various nitrate concentrations, this result suggests that other conditions such as light, temperature, carbon dioxide supply were sufficient for this species and the sole effect of nitrogen limitation should be studied in detail. The initial rate of consumption was similar (14-20 mg/l/d) in all cases and with increasing initial nitrate concentrations the time of depletion increased as well. To maximize the production of biomass, it is shown here that increasing nitrate concentration is very effective. For all cases, nitrate was consumed well by the cells and was the sole key factor that determined the final biomass yield as other conditions were fulfilled. These results corresponded with the previous study in which the authors showed that fed-batch feeding of nitrate resulted in an increased growth rate which led to a 56% increase in carbon dioxide fixation rate [20].

Elemental Composition of Chlorella sp. ABC-001 and CO₂ Biofixation

In the past, the primary interest in microalgae was to utilize the biomass for producing biodiesel from cellular lipids. However, with low oil prices and increasing concerns over global warming, the focus has shifted to the biological fixation of CO₂. As the fixation of CO₂ by algal cells is dependent on their carbon content and biomass productivities, the elemental composition of carbon was determined for various nitrate concentrations. Elemental analysis of cells grown for 7 and 14 days was carried out to determine the internal carbon and nitrogen content (Table 1). The carbon content of Chlorella sp. ABC-001 was inversely proportional to the initial concentration of nitrate in the medium and carbon content increased as nitrate in the medium became depleted. Only the lowest nitrate concentration (2.5 mM) conveyed more than 50% at day 7, but on day 14, all of the nitrate-depleted conditions (2.5, 5, and 10 mM) showed more than 50% carbon content (57.6%, 54.5%, and 51.9%, respectively) with continuous increase in carbon content over time. This can be explained by the fact that when cells are faced with nitrogen-limited condition, they uptake carbon and store it in the form of lipid and carbohydrate [6]. Hence, cells with high carbon content are likely to contain a high proportion of lipid which is confirmed in the following section. In addition, the nitrogen content of cells decreased with the initial concentration of nitrate and time as available nitrogen was depleted. Due to the fact that the only source of nitrogen is the nitrate in the medium and thus, it could be said that phosphorus in the medium was abundant for cell growth considering the N:P ratio to be between 0.34-2.05. This was much lower than the general values for N:P ratio between 5-50 [19] and thus, it could be said that phosphorus in the medium was abundant for cell growth considering the concentration of nitrogen in the medium. Therefore, nitrogen was the only limiting nutrient and consequently determined the growth of cells. As expected, increasing the availability of nitrogen from 2.5 to 15 mM resulted in higher biomass accumulation (2.75 to 4.77 g/l on day 14).

The consumption of nitrate over time was also observed daily by measuring the remaining nitrate in the supernatant (Fig. 1B). All of the added nitrates were consumed by the cells at the end of the cultivation period except for the addition of 15 mM nitrate, where the final residual nitrate concentration was 11.3 mg/l. However, even in this case, the nitrate concentration approached zero and it appears that all nitrogen would be assimilated into the cells if more time was given. Depletion of nitrate in the medium for 2.5, 5 and 10 mM occurred on day 2, 3 and 6 of cultivation, respectively. Considering that cells grew well under the various nitrate concentrations, this result suggests that other conditions such as light, temperature, carbon dioxide supply were sufficient for this species and the sole effect of nitrogen limitation should be studied in detail. The initial rate of consumption was similar (14-20 mg/l/d) in all cases and with increasing initial nitrate concentrations the time of depletion increased as well. To maximize the production of biomass, it is shown here that increasing nitrate concentration is very effective. For all cases, nitrate was consumed well by the cells and was the sole key factor that determined the final biomass yield as other conditions were fulfilled. These results corresponded with the previous study in which the authors showed that fed-batch feeding of nitrate resulted in an increased growth rate which led to a 56% increase in carbon dioxide fixation rate [20].

Table 1. Elemental composition of Chlorella sp. ABC-001 grown under various nitrate concentrations.

Nitrate conc. (mM)	Day 7	Day 14	Day 7	Day 14
2.5	54.1 ± 0.1	57.6 ± 0.5	2.05 ± 0.1	1.85 ± 0.1
5	49.5 ± 0.1	54.5 ± 0.4	2.62 ± 0.1	2.34 ± 0.1
10	45.8 ± 0.5	51.9 ± 0.2	4.32 ± 0.1	3.37 ± 0.1
15	44.1 ± 0.1	49.6 ± 0.2	4.97 ± 0.1	4.30 ± 0.1

Table 2. Average biomass productivity and CO₂ biofixation rate of Chlorella sp. ABC-001 grown under various nitrate concentrations.

Nitrate conc. (mM)	Day 7	Day 14	Day 7	Day 14
2.5	0.256 ± 0.004	0.196 ± 0.002	0.309 ± 0.009	0.415 ± 0.009
5	0.341 ± 0.014	0.237 ± 0.001	0.619 ± 0.024	0.473 ± 0.003
10	0.398 ± 0.008	0.306 ± 0.008	0.670 ± 0.007	0.584 ± 0.014
15	0.422 ± 0.008	0.341 ± 0.009	0.683 ± 0.012	0.619 ± 0.015

J. Microbiol. Biotechnol.
Nitrogen was depleted. On day 14 with 2.5 mM of initial nitrate addition, the sum of MGDG and DGDG was only on day 7 with 15 mM nitrate. However, with a low concentration of nitrate, they seemed to decrease over time as concentrations in the biomass grown with greater nitrate concentration. At higher concentrations of nitrate, the maximum lipid contents (21.7-35.6%) achieved were significantly less than cells grown with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

However, from a productivity perspective, limiting the nitrogen will lead to reduced biomass production and negatively affect the lipid productivity. Hence, to optimize the overall productivity of lipid, the lipid content as well as biomass productivity should be considered at the same time. As shown in Fig. 2B, lipid productivities tended to increase as lipid content increased after nitrogen depletion. However, over time, lipid productivities decreased as did biomass productivities and lipid content. The highest lipid productivity of 0.110 g/l/d was observed with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

Lipid from microalgae can be used as feedstock for biofuel and the availability of nitrogen plays a crucial role in lipid accumulation in microalgae [6]. Hence, the effects of nitrate concentration on lipid production by Chlorella sp. ABC-001 cells were examined. Fig. 2A shows that the lipid content varies significantly between nitrate concentrations but mostly follows a general trend in which nitrogen-limited conditions are essential for high lipid biomass. At higher concentrations of nitrate, the maximum lipid contents (21.7-35.6%) achieved were significantly less than cells grown with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

However, from a productivity perspective, limiting the nitrogen will lead to reduced biomass production and negatively affect the lipid productivity. Hence, to optimize the overall productivity of lipid, the lipid content as well as biomass productivity should be considered at the same time. As shown in Fig. 2B, lipid productivities tended to increase as lipid content increased after nitrogen depletion. However, over time, lipid productivities decreased as did biomass productivities and lipid content. The highest lipid productivity of 0.110 g/l/d was observed with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

However, from a productivity perspective, limiting the nitrogen will lead to reduced biomass production and negatively affect the lipid productivity. Hence, to optimize the overall productivity of lipid, the lipid content as well as biomass productivity should be considered at the same time. As shown in Fig. 2B, lipid productivities tended to increase as lipid content increased after nitrogen depletion. However, over time, lipid productivities decreased as did biomass productivities and lipid content. The highest lipid productivity of 0.110 g/l/d was observed with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

However, from a productivity perspective, limiting the nitrogen will lead to reduced biomass production and negatively affect the lipid productivity. Hence, to optimize the overall productivity of lipid, the lipid content as well as biomass productivity should be considered at the same time. As shown in Fig. 2B, lipid productivities tended to increase as lipid content increased after nitrogen depletion. However, over time, lipid productivities decreased as did biomass productivities and lipid content. The highest lipid productivity of 0.110 g/l/d was observed with 2.5 mM nitrate (47.4%). Cells also require a period of time after depletion of nitrogen to alter their compositions to become lipid oriented as they utilize internal nitrogen pools after depletion of nitrogen in their surrounding environment [21]. Therefore, to achieve high lipid content, depletion of nitrogen in the medium as well as sufficient exposure time for lipid accumulation are both required. Prolonged exposure to nitrogen-depleted environments led to increasing lipid compositions except on day 14 when decreases were observed in cases of lower initial nitrate additions (2.5, 5 mM). This may be due to cell deterioration caused by prolonged stress experienced by cells in a nitrogen-depleted condition [18]. When nitrogen is depleted, it has been shown that cells stop dividing and accumulate lipid or carbohydrate, which leads to increased cell sizes [22].

Fig. 2. Total (A) lipid content and (B) lipid productivity on day 7, 10 and 14 of Chlorella sp. ABC-001 grown under 2.5 to 15 mM nitrate concentrations.
0.15% of the total biomass, which was the lowest value observed. Therefore, the availability of nitrogen affected the concentration of both storage and membrane lipids but in an opposite manner. These results are consistent with previous findings [30, 31] suggesting that the glycolipids are converted into TAGs when cells are nitrogen deprived.

Carbohydrate Content and Productivity

While lipids are considered to be the major component of biofuel feedstock in microalgal cells, carbohydrates also constitute a significant proportion of cells [32]. These carbohydrates can be used for the production of bioethanol, biohydrogen via fermentation or biochar via thermochemical conversion [12, 33]. *Chlorella* sp. ABC-001 cells also exhibit high content and productivity of carbohydrates and the changes under various nitrate concentrations were studied. Carbohydrate content showed the opposite trend from lipid content as the composition of carbohydrate decreased with lower nitrogen conditions (Fig. 4A). The changes in carbohydrate content were not as dramatic as with lipid in most cases exhibiting total carbohydrate content between 30-40% of cell composition. The highest carbohydrate content (41.5%) was observed under 15 mM on day 7 and gradually decreased as cells were exposed to lower concentrations of nitrate. Thus, 2.5 mM of nitrate showed the lowest carbohydrate content of 26.5% on day 14. In addition, the carbohydrate content showed a decrease over time.
under low nitrate concentrations, specifically 2.5 mM. These phenomena may be attributed to the changes in cell metabolism to facilitate the increased accumulation of lipids [34]. As both biomass productivity and carbohydrate content were higher with greater nitrate supply, the total carbohydrate productivity was proportional to the amount of nitrate added (Fig. 4B). The highest carbohydrate productivity of 0.175 g/l/d was shown with 15 mM nitrate on day 7. This value is much greater than 0.091 g/l/d observed with Neochloris oleoabundans HK-129 [17] or 0.038 g/l/d with Chlorella fusca LEB111 [35]. However, productivity tended to show a steady decline over time under all cases as biomass productivity decreased. Hence, the lowest carbohydrate productivity was found with 2.5 mM nitrate on day 14. Furthermore, the lowest carbohydrate productivity observed with 15 mM nitrate (0.128 g/l/d) was still higher than the highest carbohydrate productivities with 2.5 and 5 mM nitrate (0.076 g/l/d and 0.125 g/l/d, respectively) on day 7. This proved that increasing nitrogen supply has a significant effect on the production of carbohydrate with *Chlorella* sp. ABC-001.

Potential Applications of Microalgae: Carbon Biofixation and Biofuel Feedstock

Cellular composition of microalgae can be divided into lipids, carbohydrates and proteins, and each component has various uses. Nonetheless, for biofuel purposes, the compositions of both lipids and carbohydrates are considered. Lipids have mainly been used as a source for biodiesel. TAG, the main form of storage carbon, is extracted and trans-esterified into fatty acid methyl esters that can be used as diesel fuel directly. Carbohydrates could be used as a renewable source for bioethanol production or biogas by fermentation. To obtain biomass suitable as feedstock for biofuel, high content of lipid and carbohydrate is preferred and thus inducing nitrogen depletion early can initiate accumulation of the target compounds within cells. Biomass with both high lipid and carbohydrate content yields high energy return and maximizes the utilization of generated biomass, leading to reduced waste of biomass and improved economic feasibility as well. The *Chlorella* sp. ABC-001 biomass examined in this study exhibited significant compositions of lipid and carbohydrate, and thus potential application for biofuels was discussed with the sum of the two compounds. While each substance can be converted to different forms of biofuels such as biodiesel or bioethanol, some studies suggest utilizing the entire biomass by thermal conversion [36] or as combustion fuel [9]. In this case, to effectively utilize microalgal biomass as combustion fuel, it is important for cells to have high lipid and carbohydrate content to achieve high heating values.

Table 3. Biomass productivity, CO₂ biofixation rate, lipid and carbohydrate contents of various microalgae species.

Species	Biomass productivity (g/l/d)	CO₂ biofixation rate (g/l/d)	Lipid content (%)	Carbohydrate content (%)	Sum of lipid and carbohydrate (%)	Reference
Chlorococcum sp.	0.380	0.770	20.2	19.7	39.9	[39]
Scenedesmus vacuolatus	0.490	0.880	28.0	20.3	48.3	[39]
Scenedesmus obliquus CNW-N	0.293	0.550	38.9	n/a	n/a	[40]
Dunaliella tertiolecta	0.300	n/a	30.0	48.9	78.9	[41]
Botryococcus braunii SAG-30.81	0.207	0.497	33.0	2.4	35.4	[42]
Chlorella vulgaris LEB-104	0.129	0.252	10.0	16.7	26.7	[42]
Chlorella pyrenoidosa	0.144	0.260	24.3	n/a	n/a	[43]
Chlorella sp. MRA-1	0.344	0.660	34.2	n/a	n/a	[24]
Chlorella sp. ESP-31	0.250	n/a	22.5	30.0-40.0	n/a	[23]
Chlorella sp. ABC-001	0.422	0.683	16.1	41.5	57.6	This study
Chlorella sp. ABC-001	0.256	0.509	47.4	32.2	79.6	This study

Fig. 5. Sum of lipid and carbohydrate composition of cells grown under 2.5 to 15 mM nitrate concentrations.
Furthermore, if the biomass grown using flue gas is used as combustion fuel for power plants, it could potentially reduce the carbon footprint of the largest source of carbon dioxide emissions. Many studies have successfully achieved high content of lipid or carbohydrate by controlling the supply of nutrients but few have shown results where both lipid and carbohydrate constitute the major proportion of cells [3]. The sum of lipid and carbohydrate contents for Chlorella sp. ABC-001 was maintained above 60% in most cases with a maximum of 80% in cells grown with 2.5 mM nitrate for 10 days. Results showed that the sums decreased with increasing nitrate concentration due to low lipid content in the biomass cultivated with abundant nitrogen. The lowest sums were all observed with 15 mM nitrate where the lipid content was the lowest. Therefore, limiting the nitrogen concentration can be considered as a crucial factor when cultivating microalgae for biofuels.

These results were compared to previous studies that employed various strains of microalgae (Table 3). The two sets of results of Chlorella sp. ABC-001 attained in this study were representative of maximum CO2 biofixation rate (15 mM nitrate) and the maximum sum of lipid and carbohydrate content (2.5 mM nitrate). Many studies have focused on maximizing either lipid or carbohydrate for biofuel feedstock but not many have discussed the overall potential of microalgal biomass in terms of both lipid and carbohydrate. The results of this study showed that Chlorella sp. ABC-001 accumulated significant contents of both lipid and carbohydrate under 2.5 mM nitrate condition and the sum of these two cellular compounds was considerably higher than most other strains. Only Dunaliella tertiolecta showed a comparable sum of 78.9%, but was mainly carbohydrate oriented.

In addition to the composition of cells, the biomass productivity and CO2 biofixation rate should also be considered to improve the feasibility of microalgal biofuel production. The Chlorella sp. ABC-001 cells cultivated in this study showed the highest biomass productivity and CO2 biofixation rate among other strains except for Scenedesmus vaculatus. However, despite considerable biomass generation, S. vaculatus showed low lipid (28.0%) and carbohydrate content (20.28%), which decreased its applicability for biofuel production. As there is an obvious trade-off between high lipid content and biomass production, a suitable nitrogen concentration should be selected according to the target objective and microalgal strain. Thus, in this study, in a process where the removal of CO2 is the main focus, sufficient nitrate is preferred as it results in greater biomass production (65% increase) and CO2 fixation (34% increase) as shown by the values in Table 3, but the generation of lipid feedstock could be largely decreased (44% less). In this case, carbohydrates, which are enhanced under high nitrogen concentrations, may be chosen as the main target product. Based on the values for Chlorella sp. ABC-001 in Table 3, this would result in up to 112% more carbohydrate (0.0824 to 0.175 g/l/d) and 19% more combined lipid and carbohydrate productivity (0.204 to 0.243 g/l/d). Consequently, CO2 biofixation and simultaneous production of carbohydrate- and lipid-based fuels would be a much better option than solely focusing on lipid-based biofuel as the major product. In addition, with the current low fuel prices, prioritizing CO2 fixation performance may become more beneficial than the production of biofuels [37, 38].

As there are various methods to utilize the different biochemicals produced with microalgae, it is first and foremost important to understand how to maximize the production of target compounds under various environmental conditions. Subsequently, the feasibility of microalgal cultivation should be discussed on an industrial scale within the context of both biofuel generation and CO2 removal as they would benefit both the environmental conditions. Subsequently, the feasibility of microalgal cultivation should be discussed on an industrial scale within the context of both biofuel generation and CO2 removal as they would benefit both the environmental conditions.

Acknowledgments

This work was supported by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Science and ICT (ABC-2010-0029728).

Conflict of Interest

The authors have no financial conflicts of interest to declare.

References

1. Cuellar-Bermudez SP, Garcia-Perez JS, Rittmann BE, Parra-Saldívar R. 2015. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98: 53-65.
2. Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306.
3. Subramanian S, Barry AN, Pieris S, Sayre RT. 2013. Comparative energetics and kinetics of autotrophic lipid and starch metabolism in chlorophytic microalgae: Implications for biomass and biofuel production. Biotechnol. Biofuels. 6: 150.
4. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 14: 217-232.
5. Griffiths MJ, Harrison STL. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Physiol. 21: 493-507.
6. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, et al. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J. 54: 621-639.
7. Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD, Dye DJ, et al. 2013. Biodiesel from microalgae, yeast, and bacteria: Engine performance and exhaust emissions. Energy Fuels 27: 220-228.
8. Rashid N, Selvaratnam T, Park WK. 2020. Resource recovery from waste streams using microalgae: Opportunities and Threats, pp. 337-351. In Youssef A, Microalgal Cultivation for Biofuels Production. CRC Press. London.
9. Giorgetti A, Binotti M, Macchi E. 2016. Microalgae coirling in coal power plants: Innovative system layout and energy analysis. Renew. Energy 95: 449-464.
10. Choi HJ, Lee JS, Choi JW, Shin YS, Sung YJ, Hong ME, et al. 2019. Performance and potential appraisal of various microalgae as direct combustion fuel. Bioresour. Technol. 273: 341-349.
24. Zheng Y, Yuan C, Liu J, Hu G, Li F. 2014. Lipid production by a CO2-tolerant green microalga. *Bioresour. Technol.* 120: 256-264.

25. Baffes J, Kose MA, Ohnsorge F, Stocker M. 2015. The great plunge in oil prices: Causes, consequences, and policy responses. *Energy Policy* 82: 102-112.

26. Li X, Wang M, Liao X, Chen H, Dai Y, Chen B. 2015. Two stages of N-deficient cultivation enhance the lipid content of microalgae *Scenedesmus* sp. J. Am. Oil Chem. Soc. 92: 503-512.

27. Sun X, Cao Y, Xu H, Liu Y, Sun J, Qiao D, et al. 2014. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of *Neochloris olesabundans* HK-129 by a two-stage process. *Bioresour. Technol.* 155: 204-212.

28. Berges JA, Charlebois DO, Mauzerall DC, Falkowski PG. 1996. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in microalgae. *Plant Physiol.* 110: 689-696.

29. Geider RJ, La Roche J. 2002. Redfield revisited: Variability of C:N:P in microalgae and its biochemical basis. *Eur. J. Phycol.* 37: 1-17.

30. Yap BHJ, Crawford SA, Dagastine RR, Scales PJ, Martin GJO. 2016. Nitrogen deprivation of microalgae: effect on cell size, cell wall thickness, cell strength, and resistance to mechanical disruption. *J. Ind. Microbiol. Biotechnol.* 43: 1671-1680.

31. Peccia J, Haznedaroglu B, Gutiérrez J, Zimmerman JB. 2013. Nitrogen supply is an important driver of sustainable microalgae biofuel production. *Biotechnol. Biofuels* 6: 1-17.

32. Wang G, Wang T. 2012. Characterization of lipid components in two microalgae for biofuel application. *Appl. Microbiol. Biotechnol.* 96: 631-645.

33. Markou G, Angelidaki I, Georgakakis D. 2012. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. *Appl. Microbiol. Biotechnol.* 92: 120-127.

34. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalgae *Scenedesmus* sp. *Bioresour. Technol.* 120: 120-127.

35. Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL. 2010. Enhanced lipid production of *Chlorella pyrenoidosa* by simultaneous use of solid and liquid acids. *Bioresour. Technol.* 101: 6797-6804.

36. Markou G, Angelidaki I, Georgakakis D. 2012. Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. *Appl. Microbiol. Biotechnol.* 92: 120-127.

37. Zhu S, Huang W, Xu J, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalgae *Scenedesmus pyrenoidosa*. *Bioresour. Technol.* 152: 292-298.

38. Moraes L, Santos LO, Costa JAV. 2020. Bioprocess strategies for enhancing biomolecules productivity in microalgae *Chlorella vulgaris* and *Chlorella fusca* Hanseniaspora sp. *Biotechnol. Biofuels* 13: e2909.

39. García-Cubero R, Moreno-Fernández J, García-González M. 2017. Modelling growth and CO2 fixation by microalgae *Chlorella vulgaris*. *J. Taiwan Inst. Chem. Eng.* 40: 13-20.

40. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, et al. 2009. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. *Bioresour. Technol.* 102: 160-112.

41. Rizwan M, Mujtaba G, Lee K. 2017. Effects of iron sources on the growth and lipid/carbohydrate production of marine microalgae *Nannochloropsis oceanica*. *Bioresour. Technol.* 24: 186-193.

42. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR. 2010. Potential carbon dioxide fixation efficiency of photosystems I and II in microalgae. *Bioresour. Technol.* 101: 105-110.

43. Tang D, Han W, Li P, Xiao R, Zhong J. 2011. CO2 biofixation and fatty acid composition of *Scenedesmus obliquus* and *Chlorella pyrenoidosa* in response to different CO2 levels. *Bioresour. Technol.* 102: 3071-3076.