Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
High-Dose Corticosteroid Use and Risk of Hip Osteonecrosis: Meta-Analysis and Systematic Literature Review

Michael A. Mont, M.D. a, Robert Pivec, M.D. a, Samik Banerjee, M.D. a, Kimona Issa, M.D. a, Randa K. Elmallah, M.D. a, Lynne C. Jones, Ph.D. b

a Center for Joint Preservation and Replacement, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, Maryland
b Department of Orthopaedic Surgery, The Johns Hopkins University Medical Institutions, Baltimore, Maryland

A R T I C L E I N F O
Article history:
Received 2 February 2015
Accepted 16 March 2015

Keywords:
corticosteroid
osteonecrosis
meta-analysis
hip
risk factors

A B S T R A C T

The effect of varying corticosteroid regimens on hip osteonecrosis incidence remains unclear. We performed a meta-analysis and systematic literature review to determine osteonecrosis occurrences in patients taking corticosteroids at varying mean and cumulative doses and treatment durations, and whether medical diagnoses affected osteonecrosis incidence. Fifty-seven studies (23,561 patients) were reviewed. Regression analysis determined significance between corticosteroid usage and osteonecrosis incidence. Osteonecrosis incidence was 6.7% with corticosteroid treatment of >2 g [prednisone-equivalent]. Systemic lupus erythematosus patients had positive correlations between dose and osteonecrosis incidence. Each 10 mg/d increase was associated with a 3.6% increase in osteonecrosis rate, and >20 mg/d resulted in a higher osteonecrosis incidence. Clinicians must be wary of osteonecrosis in patients on high corticosteroid regimens, particularly in systemic lupus erythematosus.

Osteonecrosis can lead to destructive arthropathies affecting the hip, knee, shoulder, and other joints, and it occurs most commonly in the first four decades of life [1–3]. This disease represents 2% to 10% of total hip arthroplasties performed in the United States and Europe, but may be as high as 50% to 60% in Korea and Japan [1,4–6]. The etiology of atraumatic osteonecrosis remains multifactorial, and no consensus exists on common pathophysiologic mechanisms. Vascular impairment, abnormal cellular reparative processes, and genetic point mutations have been implicated [7–10]. Risk factors include direct causes such as trauma, radiation exposures, hematologic diseases (sickle cell), and dysbarism (Caisson disease), as well as numerous indirect associated factors, such as rheumatologic or metabolic diseases, corticosteroids, alcohol, and/or smoking [1–3,7].

Heimann and Freiberger [11] were among the earliest to report cases of osteonecrosis in patients treated with high corticosteroid doses. Multiple studies since then have implicated prolonged, high-dose corticosteroid use as an independent factor associated with osteonecrosis, and it has been reported that doses greater than 2 g within three-months present a risk for developing osteonecrosis [3,12]. However, there are marked heterogeneities in patient demographics and epidemiologic variabilities between studies. Furthermore, few reports have examined differences in osteonecrosis incidences as functions across different medical diagnoses.

A systematic literature review and a meta-analysis were conducted to investigate the association of high-dose corticosteroid therapy with osteonecrosis incidences. Primary research questions were: (1) what were the overall osteonecrosis incidences in patients taking high-dose corticosteroids; (2) does the underlying disease for which corticosteroids are used affect osteonecrosis incidences; (3) whether mean doses, cumulative doses, or treatment durations were associated with incidences; and (4) whether pulsed therapies affected incidences.

Methods

Publications in peer-reviewed literature were identified by searching medical databases: Medline (1966-to-present); EMBASE.
(1947–to-present); SCOPUS (1966–to-present); and Web-of-Science (1945–to-present). Boolean search queries included following search keys: (osteonecrosis[title] OR avascular necrosis[title] OR bone necrosis[title] OR aseptic necrosis[title]) AND (corticosteroid[title] OR steroid[title] OR prednisone[title] OR prednisolone[title] OR methylprednisolone [title] OR cortisone[title] OR hydrocortisone[title] OR dexamethasone[title] OR betamethasone[title]).

Data were independently extracted and recorded by two authors (RP and SB) into spreadsheets (Excel; Microsoft Corporation, Redmond, Washington). For inconsistencies in numerical values, a third author (KI) reviewed manuscripts and corrected potential errors. Each study was evaluated sequentially. Two authors reviewed manuscripts and if inconsistencies were identified, these were clarified before the next manuscript was reviewed. Inconsistencies recognized were typographical in nature (incorrect number accidentally inputted) and had minimal impacts on reporting quality.

Extracted data included study level-of-evidences, patient demographic, medical diagnoses, corticosteroid types, time-to-diagnoses, mean corticosteroid doses, maximal daily doses, cumulative doses, and treatment durations. Studies that reported differing corticosteroid agents and doses were normalized to relative potencies in prednisone-equivalent doses in milligrams [13]. For analyses of osteonecrosis incidences between high- and low-dose corticosteroids, a 10,000 mg prednisone-equivalents cut-off was utilized because several studies reported doses at or below this level, or substantially above this level (e.g. > 15 g). Thus, this level represented cut-offs in published literature. A third investigator (KI) independently reviewed data accuracy and inter-reviewer consistencies to aid in standardization of pooled data.

The literature search yielded 372 articles between 1960 and 2011, of which twenty-one were review articles. Following assessment of abstracts, 319 in vitro studies on histological changes associated with corticosteroids or non-clinical data (e.g. review articles) were excluded, leaving fifty-three studies for review. Reference list examinations identified four additional reports, for a total of fifty-seven studies that were included in the systematic review. There were two level-I, seven level-II studies, and forty eight level-III studies (see Appendix 1) [10,12,14–68].

We evaluated the association of certain disease entities for which systemic corticosteroids were used with the development of osteonecrosis. Specifically, we assessed the association in patients with cardiac, liver, or renal transplants; myeloproliferative diseases (multiple myeloma, acute lymphoblastic leukemia); systemic lupus erythematosus (SLE); or severe acute respiratory syndrome (SARS). No studies assessed corticosteroid effects in other potentially at-risk populations, such as alcohol-users or smokers.

For the meta-analysis, our review resulted in the exclusion of 50 studies due to incomplete outcome reporting, such as inadequate information on mean daily corticosteroid intake, cumulative doses, and duration of treatment, which prevented estimation of odds ratios (i.e. odds that an outcome occurs, given a particular exposure, compared to odds of the outcome occurring in absence of the exposure). Seven studies remained for the meta-analysis [19,20,23,34,52,55,57,69], and these consisted of 1 high-level prospective cohort study, as well as 5 case–control studies (Level III) and 1 case series (Level IV), from which odds ratios could be deduced (Fig. 1). Studies not included in the meta-analysis were used for multivariate analyses to answer secondary questions. The seven studies included 1515 patients undergoing treatment with corticosteroids for SLE (n = 140), renal transplantation (n = 774), or bone marrow transplantation (n = 601; see Table 1 for further details). The mean age of patients in these studies was thirty-three years (range, 15 to 60 years). Studies were performed in the United States (n = 4), the United Kingdom (n = 1), Canada (n = 1), and Denmark (n = 1).

Validity assessment of RCTs was conducted independently by two authors (RP and SB) utilizing the Detsky scale cutoff score of 75% [70,71]. Extracted data were pooled from studies meeting inclusion criteria to calculate treatment effects (odds ratio and 95% confidence intervals) and weights utilizing statistical software (Comprehensive Meta-Analysis v2; Biostat, Englewood, New Jersey) to calculate effects of corticosteroid treatments and doses on incidences. Linear regressions and correlation statistics determined osteonecrosis incidences relative to corticosteroid doses (mean, cumulative, and duration; refer to Appendix for breakdown of included studies for each diagnosis category). Regression analysis was performed to find the quantitative relationship and its significance between the variables, corticosteroid daily dose, cumulative dose, and duration of treatment, and the incidence of osteonecrosis as a dependent variable. Due to the lack of complete dosage data in several studies, we were only able to assess this in SLE and renal transplant patients. The reported R- and R-square results were un-adjusted and reported only for simple linear regressions, rather than for multiple linear regressions to avoid distortion by strong associations between average doses, cumulative doses, and durations. A random effects model was used in the meta-analysis, with publication bias assessed using Orwin’s fail-safe N and Duval and Tweedies trim and fill statistics. Furthermore, heterogeneity was assessed using Cochrane’s Q and I² statistics. Statistical analyses were performed utilizing SSPS 17.0 statistical software (IBM, Armonk, New York). Significance was defined as P values ≤ 0.05 (Appendix 2 Statistics).

Sources of Funding

There were no external sources of funding for this meta-analysis and systematic literature review.

Results

Incidence of Osteonecrosis

The systematic review demonstrated overall osteonecrosis incidence of 6.7% (range, 0.3% to 52%) in patients taking high-dose corticosteroids. Two level I studies proved a significant positive correlation between cumulative dose and the incidence of osteonecrosis, whereas, five level II studies failed to show it.

Disease and Incidence of Osteonecrosis

Osteonecrosis incidence for SARS was 21.8%, SLE 15.7%, renal transplant 14.7%, and BMT 6.6% (Fig. 2). Across all diagnoses, we observed positive associations between mean corticosteroid doses and osteonecrosis (Fig. 3). This was irrespective of underlying disease, as analysis of variance of osteonecrosis incidence between patients with different medical diagnoses (SLE, severe acute respiratory syndrome, bone marrow transplantation, renal transplantation) demonstrated no differences between diagnostic categories (P = 0.16). The regression analysis demonstrated a significant positive correlation in SLE patients (r = 0.81; R² = 0.67; P < 0.05), however, this was not significant in renal transplant recipients (r = 0.32; R² = 0.09; P > 0.05). It was also noted that renal transplant recipients and SLE patients were more likely to develop osteonecrosis if they were younger than 35 years compared to those who were older (22 versus 13%; P = 0.04, and 33 versus 7%; P = 0.02, respectively).

Mean Dose, Cumulative Dose, Duration of Treatment and Osteonecrosis Incidence

Meta-analysis of osteonecrosis in patients treated with greater than 20 mg per day demonstrated significantly higher odds than less than 20 mg per day corticosteroid users (OR 9.1; 95% confidence interval, 4.6 to 19.8) (Fig. 4A). For patients treated with high cumulative corticosteroid doses (greater than 10 g), the odds ratio for developing osteonecrosis was 2.4 (95% CI 0.8 to 6.4), and lower dosing regimens were associated with a lower osteonecrosis incidence (OR 0.4; 95% confidence interval 0.25 to 0.54) (Fig. 4B). Additionally, we observed that...
10 mg per day dose increases resulted in a 3.6% increase in the rate of osteonecrosis. Due to the lack of data and control groups, the meta-analysis could not be performed comparing other dosing regimens or treatment duration effects on osteonecrosis risks.

Cumulative doses and treatment durations had negative associations with incidence for both SLE and renal transplant patients. In SLE patients, cumulative dose and the duration of treatment showed negative trends ($r = -0.85$, $R^2 = 0.65$ and $r = -0.53$, $R^2 = 0.29$, respectively) with the incidence of osteonecrosis, but these were not significant ($P > 0.05$) and may not represent a true trend. In renal transplant recipients, there was no evidence of a significant correlation between cumulative doses and incidence of osteonecrosis ($r = 0.31$; $R^2 = 0.42$; $P > 0.05$).

Pulsed Corticosteroid Therapy and Incidence of Osteonecrosis

Mean osteonecrosis incidence was 33% in twenty studies evaluating the effects of pulsed corticosteroids based on data from the systematic review.

Discussion

Our aim was to evaluate the available literature and to assess the association between corticosteroids and hip osteonecrosis, utilizing statistical methodologies. In particular, we assessed the effect of dosing regimens and treatment durations, as well as the role of different disease entities. This study builds upon individual reports that have demonstrated independent risk factors for osteonecrosis, which were not observed in earlier studies [2,20,66,72]. Our results showed that osteonecrosis incidences were affected by treatment with corticosteroids, corticosteroid doses, and patient age. Specifically, patients treated with high-dose corticosteroids may be up to ten times as likely to develop osteonecrosis, and cumulative doses greater than 10 g may increase the likelihood of developing osteonecrosis by two-fold, compared to cumulative doses less than 10 g. In addition, it was observed in the regression analysis that the correlation between corticosteroid dose and osteonecrosis incidence was most evident in SLE patients. However, no differences between diagnoses were noted using the analysis of variance, and further study is needed before a stronger conclusion can be drawn.

Multiple studies have demonstrated that corticosteroids are independent risk factors for osteonecrosis. Shibatani et al, in a study of 150 patients, noted a significant association between the total dose of corticosteroids and osteonecrosis incidence in patients during the first two months following renal transplantation (OR = 4, $P = 0.02$) [60]. Nakamura et al reported a 10.3 odds ratio of developing osteonecrosis in SLE patients, which compared similarly with the results of the present study (OR = 9.1) [73]. We also observed strong correlations ($R^2 > 0.8$) between mean daily corticosteroid doses, cumulative doses, and treatment durations and osteonecrosis incidences. However, no single factor
predicted variability in osteonecrosis incidences, which pointed to possible synergistic effects between all three factors.

The underlying diagnoses may potentially affect the risk for developing osteonecrosis. However, it is unclear which plays the dominant role, the underlying disease or the effects of corticosteroids, which may have stronger negative synergistic effects for some disorders compared to others. A prospective magnetic resonance imaging (MRI) study by Shigemura et al demonstrated that SLE patients had significantly higher risk (RR 2.1) of osteonecrosis than non-SLE patients [37 versus 21%; \(P = 0.001 \)] [66]. However, they excluded organ transplant recipients due to higher mortality rates, and relied primarily on other systemic inflammatory diseases (e.g. inflammatory bowel diseases, vasculitides, dermatologic autoimmune diseases) as comparison groups. Furthermore, Leiberman et al reported low incidences [3\%] of osteonecrosis diagnosed with MRI at a mean of 31 months post-liver transplantation [47]. Presently, the true effect of underlying disease on osteonecrosis incidence remains to be determined, and additional prospective studies are needed.

In addition to differences in diagnosis, it is important to highlight the effects of demographic factors and race on the development of osteonecrosis. Although it is difficult to specify osteonecrosis rates in a whole population, some studies have evaluated osteonecrosis in Asian populations and have shown higher disease incidence, particularly in those who have corticosteroid-dependent conditions. For example, Yamaguchi et al demonstrated a rising trend in the incidence of nontraumatic ON in Japanese patients, particularly in those who have corticosteroid-dependent conditions. For example, Yamaguchi et al demonstrated a rising trend in the incidence of nontraumatic ON in Japanese patients, particularly in those who have corticosteroid-dependent conditions. For example, Yamaguchi et al demonstrated a rising trend in the incidence of nontraumatic ON in Japanese patients, particularly in those who have corticosteroid-dependent conditions.

The underlying diagnoses may potentially affect the risk for developing osteonecrosis. However, it is unclear which plays the dominant role, the underlying disease or the effects of corticosteroids, which may have stronger negative synergistic effects for some disorders compared to others. A prospective magnetic resonance imaging (MRI) study by Shigemura et al demonstrated that SLE patients had significantly higher risk (RR 2.1) of osteonecrosis than non-SLE patients [37 versus 21%; \(P = 0.001 \)] [66]. However, they excluded organ transplant recipients due to higher mortality rates, and relied primarily on other systemic inflammatory diseases (e.g. inflammatory bowel diseases, vasculitides, dermatologic autoimmune diseases) as comparison groups. Furthermore, Leiberman et al reported low incidences [3\%] of osteonecrosis diagnosed with MRI at a mean of 31 months post-liver transplantation [47]. Presently, the true effect of underlying disease on osteonecrosis incidence remains to be determined, and additional prospective studies are needed.

In addition to differences in diagnosis, it is important to highlight the effects of demographic factors and race on the development of osteonecrosis. Although it is difficult to specify osteonecrosis rates in a whole population, some studies have evaluated osteonecrosis in Asian populations and have shown higher disease incidence, particularly in those who have corticosteroid-dependent conditions. For example, Yamaguchi et al demonstrated a rising trend in the incidence of nontraumatic ON in Japanese patients, particularly in those who have corticosteroid-dependent conditions. For example, Yamaguchi et al demonstrated a rising trend in the incidence of nontraumatic ON in Japanese patients, particularly in those who have corticosteroid-dependent conditions.

Table 1
Description of the Studies of Osteonecrosis Incidence in Patients Treated with Oral or Intravenous Corticosteroids Included in the Meta-Analysis.

Author (Year)	Level of Evidence	Study Design	Diagnosis	Incidence ON Steroid vs. Control (%)	Mean Age In Years (Range)	Affected Sites (%)	Mean Daily Steroid Dose mg/day	Mean Cumulative Steroid Dose (Duration of Treatment)	Duration (Months)	Mean Time to Onset (In Months Range)
Jagasia et al (2010)	III Case control	BMT	ON: 37 (N/A), no ON: 48 (N/A)	Hip (54%), knee (36%)	N/A	1.6 mg/kg/d vs. 1.4 mg/kg/d	N/A	7043 mg (range, 2332 to 12,755) vs. 1800 mg (range, 0 to 7895) IN + AVN/—AVN: 23.1/15 g	NA	N/A
McAvoy et al (2010)	III Case control	BMT	ON: 28 (4 to 60), no ON: 28 (4 to 60)	Hip (N/A)	N/A	N/A	N/A	N/A	16 (2 to 80)	NA
Gladman et al (2001)	III Case control	SLE	ON: 27 ± 1.2, no ON: 27 ± 1.2	Hip (62%), knee (38%), shoulder (9%)	N/A	High dose: 34 mg/day, Low dose: 17 mg/day vs. (same daily doses for controls)	N/A	N/A	26 (N/A) vs. 21 (N/A)	NA
Lausten et al (1998)	III Case control	Renal Transplant	ON: 42/3786 (2%) vs. 147/42/374 (3%), vs. 46/50 (2%)	Hip (N/A)	N/A	Maximum daily dose in AVN/—AVN: 44.4/28.1 mg	N/A	N/A	26 (N/A) vs. 21 (N/A)	NA
Fink et al (1998)	III Case control	BMT	ON: 87/1029 (5%) vs. 87	Hip (N/A)	N/A	N/A	N/A	26 ± 2	N/A	N/A
Morris et al (1982)	I Prospective cohort	Renal Transplant	ON: 8/39 (21%), Low dose: 2/101 (3%)	Hip (78%), knee (28%), talus (11%), elbow (17%)	N/A	Low dose: 17 mg/day, then tapered for 5 days, then tapered	N/A	N/A	13,500 ± 5830 mg, (6 months)	NA
Harrington et al (1971)	IV Case series	Renal Transplant	ON: 24 (15 to 48)	Hip (78%), knee (28%), talus (11%), elbow (17%)	N/A	High dose: 100 mg PSL for 5 days, then 50 mg for 5 days, then tapered 5 mg every 5 days to 20 mg, then tapered 1 mg every 2 weeks to a maintenance dose of 10 mg/day, Low dose: 30 mg PSL for 60 days (with additional 1 g IV MPSL on days 6, 7, and 8 after transplantation), then 25 mg daily for 2 weeks, then 20 mg/day, then tapered 1 mg every 2 weeks to a maintenance dose of 10 mg/day	N/A	N/A	13,500 ± 5830 mg, (6 months)	NA

Mg = milligrams.
Multiple studies have also reported on the association between cumulative corticosteroid doses and osteonecrosis. For example, previous reports suggest that patients receiving greater than 2 g of cumulative corticosteroid doses are at a higher risk for developing osteonecrosis [1,3]. However, it is unclear whether this represents a ceiling above which patients develop osteonecrosis at the same rates irrespective of total doses, or a floor, above which risk for osteonecrosis increases with higher cumulative doses. Additionally, Nakamura et al evaluated 201 patients with SLE over 13 years and observed that osteonecrosis risk was associated with increasing cumulative corticosteroid doses, with 15% of patients requiring increased corticosteroid doses developing the disease [39]. Shibatani and colleagues evaluated renal transplant recipients who underwent multiple rejection cycles, and they demonstrated associations between osteonecrosis and cumulative corticosteroid doses (OR 4.2; \(P = 0.008 \)), but not with rejection episode numbers, which allude to the likelihood that higher cumulative doses, rather than systemic effects of host-versus-graft disease, may be implicated in osteonecrosis pathogenesis [60]. However, accurate differentiation between effects of mean daily corticosteroid doses and cumulative doses on the osteonecrosis risk is difficult, since patients with the highest cumulative doses often receive higher mean daily doses and/or are treated for longer durations.

Treatment durations have also been implicated as independent risk factors for developing osteonecrosis. Nakamura et al evaluated 201 patients (537 joints) with SLE who were treated with prednisone doses of greater than 40 mg per day [39]. Of the 537 joints, 238 (44%) developed osteonecrosis. They concluded that progression of osteonecrosis was associated with higher doses of corticosteroid treatment for longer durations.

The association between pulsed corticosteroid therapy and osteonecrosis has been reported to be variable. Oinuma et al, studying 72 patients with SLE, found no differences in osteonecrosis incidences in patients treated with pulsed methylprednisolone therapy in combination with minimum daily corticosteroid doses of 40 mg/day [38]. Of the 32 patients who developed ON, 17 were treated with pulsed corticosteroids while of the 40 patients who did not develop osteonecrosis, 18 were treated with pulsed corticosteroids. However, this study did not specify pulsed corticosteroid dosages. However, in a study by Ce et al, 60 multiple sclerosis patients, who did not have any risk factors for osteonecrosis, were treated with pulsed corticosteroids and were compared to a matched group of patients who did not receive corticosteroids [72]. Cumulative pulsed corticosteroid doses received by the treatment group was greater than 10 g, and they only received pulsed-corticosteroids and were not treated with any maintenance doses between pulses. It was observed that treatment patients had significantly higher incidences of femoral head osteonecrosis as diagnosed on MRI (15.5%; \(P < 0.05 \)) compared to the non-corticosteroid group (0%). Similar results were observed in a study of 498 renal transplant patients, which demonstrated a significantly greater incidence of osteonecrosis in those receiving pulsed therapies (11%) compared to patients receiving non-pulsed therapy (3%; \(P < 0.01 \)) [55].

There were several limitations of this study. The lack of prospective randomized–controlled trials may have contributed to both study-design and reporting bias in individual reports, which may have skewed the observed outcomes. Although double-blinded, prospective randomized–controlled trials are gold standards for evidence-based medicine, in certain situations, such as renal transplantation or SLE, where the first-line therapy is corticosteroids, it would have been unethical to design studies denying treatment. Thus, we relied primarily on case–control studies. There was also a lack of consistency in osteonecrosis diagnostic methods. Studies published after 1990 utilized MRI, while earlier studies relied on patient symptoms, radiographic findings, biopsies, and bone scanning, which due to low diagnostic sensitivity [78] may have underestimated the true osteonecrosis incidence. In addition, lower quality studies on medical diagnoses other than renal transplantation or SLE prevented multivariate analysis due to insufficient degrees
of freedom in the statistical analyses. This was evident in studies on bone marrow transplant recipients, cardiac transplants, and SARS. However, we were able to analyze two common patient groups [SLE and renal transplantation]. Furthermore, almost all studies reported using high cumulative corticosteroid doses. This study did not consider incidental corticosteroid doses, such as the use of dose-packs or corticosteroids in minimal doses that are typically not associated with osteonecrosis. We have focused on patients who received minimum cumulative doses of 2 g or 30 mg daily doses for less than 2 months. Thus, these results may not be indicative of patients given low cumulative doses (<2 g) of corticosteroids for medical conditions that were not directly associated with osteonecrosis.

These meta-analysis and assessment of the available literature demonstrated that high-dose corticosteroid treatments may increase risk for developing osteonecrosis up to ten-fold. Patients treated with daily doses >40 mg were at higher risk, with 3.6% increase in incidences for every 10 mg increase in doses. Effects of cumulative corticosteroid doses and treatment durations are less clear, but are likely to have synergistic relationships with daily doses and underlying diagnoses. Pulsed-therapy has effects on increasing osteonecrosis risk. As molecular and genetic bases for this disease evolves, further knowledge of risk factors for osteonecrosis with prospective MRI-based studies will assist medical practitioners in educating patients. Presently, we would advise erring on the side of caution and using the lowest possible corticosteroid doses, while still maintaining clinical efficacy and minimizing risks.

References
1. Mont MA, Hungerford DS. Non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg Am 1995;77(3):459.
2. Jones LC, Hungerford DS. Osteonecrosis: etiology, diagnosis, and treatment. Curr Opin Rheumatol 2004;16(4):443.
3. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. J Bone Joint Surg Am 2006;88(5):1117.
4. Kang JS, Park S, Song JS, et al. Prevalence of osteonecrosis of the femoral head: a nationwide epidemiologic analysis in Korea. J Arthroplasty 2009;24(3):648.
5. Fukushima W, Fujioka M, Kubo T, et al. Nationwide epidemiologic survey of idiopathic osteonecrosis of the femoral head. J Bone Joint Surg Am 2004;86(1):1178.
6. Johnson AJ, Mont MA, Tsao AK, et al. Treatment of femoral head osteonecrosis in the United States: 16-year analysis of the Nationwide Inpatient Sample. Clin Orthop Relat Res 2014;472(2):617.
7. Jones LC. Hungerford DS. The pathogenesis of osteonecrosis. Instr Course Lect 2007; 56:179.
8. Powell C, Chang C, Gershwin ME. Current concepts on the pathogenesis and natural history of steroid-induced osteonecrosis. Clin Rev Allergy Immunol 2011;41(1):102.
9. Chang JK, Ho MY, Teh CH, et al. Osteogenic gene expression decreases in stromal cells of patients with osteonecrosis. Clin Orthop Relat Res 2006;453:286.
10. Hong JM, Kim TH, Kim HJ, et al. Genetic association of angiogenesis- and hypoxia-related gene polymorphisms with osteonecrosis of the femoral head. Exp Mol Med 2010;42(5):737.
11. Heimann WC, Freiberger RH. Avascular necrosis of the femoral and humeral heads after high-dose corticosteroid therapy. N Engl J Med 1960;263:672.
12. Zizic TM, Marcoux C, Hungerford DS, et al. Corticosteroid therapy associated with ischemic necrosis of bone in systemic lupus erythematosus. Am J Med 1985;79(5):596.
13. Meikle AW, Tyler RH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med 1977;63(2):200.
14. Mattano Jr LA, Sather HN, Trigg ME, et al. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18(18):3262.
15. Vaidya S, Salka S, Sirohi B, et al. Avascular necrosis of bone—a complication of aggressive therapy for acute lymphoblastic leukemia. Acta Oncol 1998;37(2):175.
16. Enrici RM, Anselmo AP, Donato V, et al. Avascular osteonecrosis in patients treated for Hodgkin's disease. Eur J Haematol 1998;61(3):204.
17. Freeman HJ, Owen D, Millan M. Granulomatous osteonecrosis in Crohn's disease. Can J Gastroenterol 2000;14(11):951.
18. Klingenstein G, Levy RN, Kornbluth A, et al. Inflammatory bowel disease related osteonecrosis: report of a large series with a review of the literature. Aliment Pharmacol Ther 2005;21(3):243.
19. Fink JC, Leisenring WM, Sullivan KM, et al. Avascular necrosis following bone marrow transplantation: a case–control study. Bone 1998;22(1):67.
20. McAvoy S, Baker KS, Mulrooney D, et al. Corticosteroid dose as a risk factor for avascular necrosis of the bone after hematopoietic cell transplantation. Blood Marrow Transplant 2010;16(9):1231.
21. Atkinson K, Cohen M, Biggs J. Avascular necrosis of the femoral head secondary to corticosteroid therapy for graft-versus-host disease after marrow transplantation: effective therapy with hip arthroplasty. Bone Marrow Transplant 1987;2(4):421.
22. Enright H, Haake R, Weisdorf D. Avascular necrosis of bone: a common serious complication of allogeneic bone marrow transplantation. Am J Med 1990;89(6):733.
23. Jegasia S, Misfeldt A, Griffin M, et al. Age and total-body irradiation in addition to corticosteroid dose are important risk factors for avascular necrosis of the bone. Biol Blood Marrow Transplant 1998;4(5):97.
24. Socie G, Cahn JY, Girod J, et al. Avascular necrosis of bone following bone marrow transplantation: clinical findings, incidence and risk factors. Br J Haematol 1994;89(3):624.
25. Torii Y, Hasegawa Y, Kubo T, et al. Osteonecrosis of the femoral head after allogeneic bone marrow transplantation. J Bone Joint Surg Br 1990;72(3):237.
26. Meikle AW, Tyler RH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med 1977;63(2):200.
27. Wiesmann A, Pereira P, Bohm P, et al. Avascular necrosis of bone following allogeneic bone marrow transplantation. Am J Hematol 1998;61(3):204.
28. Griffith JF, Antonio GE, Kumta SM, et al. Osteonecrosis of hip and knee in patients with severe acute respiratory syndrome treated with steroids. Radiology 2005;235(1):108.
29. Chan MH, Chan PK, Griffith JF, et al. Steroid-induced osteonecrosis in severe acute respiratory syndrome: a retrospective analysis of biochemical markers of bone metabolism and corticosteroid therapy. Pathology 2006;38(3):229.
30. Li YM, Wang SX, Gao HS, et al. Factors of avascular necrosis of femoral head and osteoporosis in SARS patients’ convalescence. Zhonghua Yi Xue Za Zhi 2004;84(16):1348.
31. Ables M, Urman JD, Rothfield NF. Aseptic necrosis of bone in systemic lupus erythematosus. Relationship to corticosteroid therapy. Arch Intern Med 1978;138(5):750.
32. Dimant J, Ginzel EM, Diamond HS, et al. Computer analysis of factors influencing the appearance of avascular necrosis in patients with SLE. J Rheumatol 1978;5(2):136.
33. Dubois EL. Current therapy of systemic lupus erythematosus. A comparative evaluation of corticosteroids and their side-effects with emphasis on fifty patients treated with desamethasone. JAMA 1960;173:163-163.
34. Gladman DD, Urowitz MB, Chaudhry-Ahluwalia V, et al. Predictive factors for symptomatic osteonecrosis in patients with systemic lupus erythematosus. J Rheumatol 2001;28(4):1761.
35. Massardo L, Jacobelli S, Leissner M, et al. Avascular osteonecrosis in patients with SLE: relation to corticosteroid therapy and anticardiolipin antibodies. Lupus 1994;3(1):37.
36. Mont MA, Glueck CJ, Pacheco IH, et al. Risk factors for osteonecrosis in systemic lupus erythematosus. J Rheumatol 1997;24(4):654.
37. Nakamura J, Harada Y, Nawata Y, et al. Osteonecrosis in patients with systemic lupus erythematosus develops very early after starting high dose corticosteroid treatment. Ann Rheum Dis 2001;60(12):1145.
38. Nakamura J, Harada Y, Oinuma K, et al. Spontaneous repair of asymptomatic osteonecrosis associated with corticosteroid therapy in systemic lupus erythematosus: 10-year minimum follow-up with MRI. Lupus 2010;19(11):1307.
39. Ono K, Tojihama T, Komazawa T. Risk factors of avascular necrosis of the femoral head in patients with systemic lupus erythematosus under high-dose corticosteroid therapy. Clin Orthop Relat Res 1992;277:89.
40. Rascu A, Manger K, Kraetsch HG, et al. Osteonecrosis in systemic lupus erythematosus, steroid-induced or a lupus-dependent manifestation? Lupus 1996;5(4):323.
41. Smith FE, Sweet DE, Brunner CM, et al. Avascular necrosis in SLE. An apparent predilection for young patients. Ann Rheum Dis 1976;35(3):227.
42. Weiner ES, Abeles M. Aseptic necrosis and glucocorticosteroids in systemic lupus erythematosus: a reevaluation. J Rheumatol 1989;16(5):604.
43. Ueta-areewongsa P, Chaiamnuay S, Narongroeknawin P, et al. Factors associated with osteonecrosis in Thai lupus patients: a case control study. J Clin Rheumatol 2009;15(7):345.
44. Werner ES, Ables M. Aseptic necrosis and glucocorticosteroids in systemic lupus erythematosus: a reevaluation. J Rheumatol 1989;16(5):694.
45. Zonana-Nacach A, Barr MG, Magder LS, et al. Damage in systemic lupus erythematosus and its association with corticosteroids. Arthritis Rheum 1981;43(8):2000.
46. Lieberman JR, Roth KM, Elsissy P, et al. Symptomatic osteonecrosis of the hip and knee after cardiac transplantation. J Arthroplasty 2008;23(1):90.
47. Lieberman JR, Scaduto AA, Wellmeyer E. Symptomatic osteonecrosis of the hip after orthotopic liver transplantation. J Arthroplasty 2000;15(6):767.
48. Bradford G, Benjamin J, Thompson J, et al. Avascular necrosis of bone after cardiac transplantation. Prevalence and relationship to administration and dosage of steroids. J Bone Joint Surg Am 1994;76(9):1385.
49. De Graaf P, Van Hooff JP, Boekhout M, et al. Hyperparathyroidism and avascular necrosis of bone after kidney transplantation. Transplantation 1994;58(5):1316.
50. Elmsfred E. Avascular bone necrosis in the renal transplant patient: a discriminant analysis of 144 cases. Clin Orthop Relat Res 1981;158:149.
51. Haagensen J, Saarinen O, Laasonen L, et al. Steroid treatment and aseptic necrosis of the femoral head in renal transplant recipients. Transplant Proc 1984;16(5):1316.
52. Harrington KD, Murray WR, Kouznts SL, et al. Avascular necrosis of bone after renal transplantation. J Bone Joint Surg Am 1971;53(2):203.
53. Hedhi H, Cherif M, Zoughi K, et al. Avascular osteonecrosis after renal transplantation. Transplant Proc 2007;39(4):1036.
54. Ibels LS, Alfrey AC, Huffer WE, et al. Aseptic necrosis of bone following renal transplantation: experience in 194 transplant recipients and review of the literature. Medicine (Baltimore) 1978;57(1):25.
55. Lausten GS, Jensen JS, Olggaard K. Necrosis of the femoral head after renal transplantation. Acta Orthop Scand 1988;59(6):650.
56. Metselaar HJ, van Steenberge EJ, Bijnen AB, et al. Incidence of osteonecrosis after renal transplantation. Acta Orthop Scand 1985;56(5):413.
57. Morris PJ, Chan L, French ME, et al. Low dose oral prednisolone in renal transplantation. Lancet 1982;1(8271):525.
58. Patton PK, Pfaff WW. Aseptic bone necrosis after renal transplantation. Surgery 1988;103(1):163.
59. Perides AM, Simpson W, Stainsby D, et al. Avascular necrosis of bone following renal transplantation. Q J Med 1975;44(175):459.
60. Shigemura T, Nakamura J, Kishida S, et al. Incidence of osteonecrosis associated with corticosteroid therapy among different underlying diseases: prospective MRI study. Rheumatology 2011;50(11):2023.
61. Felson DT, Anderson J. Across-study evaluation of association between steroid dose and budesonide and avascular necrosis of bone. Lancet 1987;1(8538):902.
62. Hong N, Du XR. Avascular necrosis of bone in severe acute respiratory syndrome. Clin Radiol 2004;59(7):602.
63. Misfeldt A. Avascular Necrosis (AVN) after allogeneic hematopoetic stem cell transplantation (allo-HSCT): implications for pre-emptive therapy in high risk populations. Endocr Rev 2010;31(3):361.
64. Derksy AS, Naylor CD, O’Reourke K, et al. Incorporating variations in the quality of individual randomized trials into meta-analysis. J Clin Epidemiol 1992;45(3):255.
65. Bhandari M, Richards RR, Sprague S, et al. The quality of reporting of randomized tri- als in the Journal of Bone and Joint Surgery from 1988 through 2000. J Bone Joint Surg Am 2002;84-A(3):388.
66. Ce P, Giedziooglu M, Gelaf F, et al. Avascular necrosis of the bones: an overlooked complication of pulse steroid treatment of multiple sclerosis. Eur J Neurol 2006;13(8):857.
67. Nakamura J, Saisu T, Yamashita K, et al. Age at time of corticosteroid administration is a risk factor for osteonecrosis in pediatric patients with systemic lupus erythematosus: a prospective magnetic resonance imaging study. Arthritis Rheum 2010;62(2):609.
68. Yamaguchi R, Yamamoto T, Motomura G, et al. Incidence of nontraumatic osteonecrosis of the femoral head in the Japanese population. Arthritis Rheum 2011;63(10):3169.
69. Petri M. Musculoskeletal complications of systemic lupus erythematosus in the Hopkins Lupus Cohort: an update. Arthritis Care Res 1995;8(3):137.
70. Gagala J, Buraczynska M, Mazurkiewicz T, et al. Very early development of steroid-associated osteonecrosis in patients with systemic lupus erythematosus: a prospective study by MRI. Lupus 2005;14(5):385.
71. Mont MA, Ulrich SD, Seyler TM, et al. Bone scanning of limited value for diagnosis of symptomatic oligofocal and multifocal osteonecrosis. J Rheumatol 2008;35(8):1629.
Appendix 1. Studies of Osteonecrosis Incidence in Patients Treated with Oral or Intravenous Corticosteroids

Author (Year)	Level of Evidence	Diagnosis	Incidence ON Steroid vs. Control (%)	Mean Age (Years)	Affected Sites (%)	Mean Daily Steroid Dose (mg/day)	Mean Cumulative Steroid Dose (mg)	Duration (Months)	Mean Time to Onset (Months)
Mattano et al (2000)	III	ALL	111/1409 (9.3%)	ON: 33 (16 to 45)	knee (33%); hip (28%); ankle (15%); shoulder (10%); elbow (8%); wrist (3%)	Induction: 60 mg/sqm PO PDS for 28 days with taper; Intensification: 10 mg/sqm DX for 21 days with taper; Maintenance: 40 mg/sqm PO PDS for 5 days every 28 days	Groups A & B: (Males) Total 8850 mg/sqm, (Females) Total 6250 mg/sqm; Group C: (Males) Total 8090 mg/sqm, (Females) Total 5409 mg/sqm	N/A	N/A
Vaidya et al (1998)	III	ALL	5/850 (0.6%)	ON: 25 (14 to 41)	hip (100%)	Induction: 40 mg/sqm PDSL for 29 days, Maintenance: 3 monthly pulses of PDSL (unspecified)	N/A (2900 mg/sqm to 4000 mg/sqm)	N/A (24 to 30)	29 (9 to 46)
Enrici et al (1998)	III	Hodgkin’s disease	9/784 (1%)	ON: 31 (23 to 42), overall: 31 (4 to 81)	hip (94%); shoulder (6%)	N/A	4116 mg (2725 to 5250)	N/A	35 (23 to 97)
Freeman et al (2000)	II	IBD/Crohn’s disease	4/877 (0.5%)	N/A (19 to 36)	hip (100%), shoulder (50%); hip (91%), knee (40%), shoulder (22%)	21 mg (12 to 35.5)	N/A	N/A	N/A
Klingenstein et al (2005)	III	IBD/Crohn’s disease	23/(N/A)	22 (N/A)	N/A	N/A	15,403 mg (8000 to 59,000)	N/A (36 to 504)	168 (36 to 504)
Talamo et al (2005)	I	Multiple myeloma	49/553 (9%)	ON: 52 (34 to 72), overall: 58 (25 to 77)	hip (100%); shoulder (8%)	N/A	median 7000 mg (5000 to 18,000)	N/A	N/A
Fink et al (1998)	III	BMT	87/1939 (5%) vs. 87	ON: 27 ± 1.2, no ON: 27 ± 1.2	hip (62%), knee (38%), shoulder (9%)	N/A	N/A	N/A	26 ± 2
McAvoy et al (2010)	III	BMT	74/3786 (2%) vs. 147	ON: 28 (4 to 60), no ON: 28 (4 to 60)	hip (54%), knee (36%)	N/A	7043 mg (2352 to 12,755) vs. 1800 mg (0 to 7895)	N/A	16 (2 to 80)
Atkinson et al (1987)	III	BMT	5/50 (10%)		hip	N/A	14 mg/kg	N/A	18 (8.3 to 24)
Enright et al (1990)	III	BMT	28/902 (3%)	ON: 26 (1.5 to 47)	hip (64%); knee (29%); shoulder (21%); elbow (7%)	All patients: (1 month) 0.82 mg/kg/d PDS, (2 months) 2.2 mg/kg/d, (>2 months) N/A	19,800 mg (9000 to 70,000)	N/A	N/A
Jagasia et al (2010)	III	BMT	50 vs. 156	ON: 37 (N/A), no ON: 48 (N/A)	N/A	1.6 mg/kg/d vs. 1.4 mg/kg/d	N/A	24 (10 to 40) vs. 13 (1 to 21)	7 (4 to 13)
Socie et al (1994)	III	BMT	27/727 (3.7%)	ON: 25 (5 to 43)	hip (69%), knee (11%), shoulder (11%)	N/A	14,300 mg (2500 to 50,500); 200 mg/kg (60 to 840)	N/A	13 (4 to 58)

(continued on next page)
Author (Year)	Level of Evidence	Diagnosis	Incidence ON Steroid vs. Control (%)	Mean Age (Years)	Affected Sites (%)	Mean Daily Steroid Dose (mg/day)*	Mean Cumulative Steroid Dose (mg)*	Duration (Months)	Mean Time to Onset (Months)
Socie et al (1997)	III BMT	77/4388 (4%)	ON: 25 (5 to 43), other	N/A	hip (87%), knee (13%), shoulder (9%), other	N/A	N/A	15 (N/A)	median 22 (2 to 132)
Torii et al (2001)	III BMT	19/100 (19%)	ON: 27 (16 to 51), overall: 33 (16 to 51)	N/A	hip (100%)	N/A	ON: 10,300 mg (981 to 20,900); no ON: 4020 mg (128 to 20,600)	N/A	22 (8 to 45)
Wiesmann et al (1998)	III BMT	17/272 (6%)	ON: 33 (16 to 45)	N/A	hip (89%); knee (4%); shoulder (6%)	N/A	189 mg/kg for single-site disease, 313 mg/kg for multifocal disease (range 13–555 mg/kg)	N/A	13 (3 to 29)
Griffith et al (2005)	III SARS	12/254 (5%)	overall: 32 (21 to 55), ON: 31 (30 to 48), overall: 33 (17 to 89)	N/A	(71%)	143 (81.5 to 187.25) mg/d PDS	2380 mg (1145 to 4150)	17 (15 to 21)	N/A
Hong et al (2004)	III SARS	28/67 (42%)	overall: 32 (21 to 55), ON: 31 (30 to 48), overall: 33 (17 to 89)	N/A	hip (57%), knee (71%)	N/A	(80 to 800) MPSL then unspecified PDS taper	N/A	10
Chan et al (2006)	III SARS	7/71 (10%)	ON: 31 (30 to 48), overall: 33 (17 to 89)	N/A	N/A	N/A	N/A	N/A	N/A
Li et al (2004)	III SARS	12/40 (30%)	N/A	N/A	N/A	6186 ± 3700 mg MPSL	0.8 (0.5 to 1)	N/A	N/A
Abeles et al (1978)	III SLE	17/365 (4.7%)	ON: 30 (19 to 55), no ON: 27 (N/A)	N/A	hip (N/A), knee (N/A)	N/A	ON: 31,985 mg (14,800 to 63,012), no ON: 31,799 mg (2700 to 71,495)	52 (12 to 108) vs. 96 (48 to 180)	53 (6 to 108)
Dimant et al (1978)	III SLE	22/234 (9%)	overall: 31 (N/A)	N/A	N/A	N/A	N/A	N/A	N/A
Dubois et al (1960)	III SLE	11/400 (2.8%)	overall: 31 (N/A)	N/A	hip (89%); knee (11%)	N/A	Maximum daily dose in + AVN/− AVN: 44.4/28.1 mg	N/A	N/A
Gladman et al (2001)	III SLE	95/744 (13%)	ON: 27 (10 to 54), no ON: 28 (12 to 57)	N/A	hip (N/A)	N/A	IN + AVN/− AVN: 23.1/15 g	N/A	N/A
Massardo et al (1992)	III SLE	17/190 (9%)	N/A						
Migliarese et al (1994)	II SLE	7/69 (10%)	N/A						
Mok et al (2000)	III SLE	38/320 (12%) vs. 143	ON: 27 (10 to 54), no ON: 28 (12 to 57)	N/A	hip (95%); knee (13%); humerus (3%); carpals (3%)	15.6 ± 2.0 vs. 9.3 ± 0.5 mg PDSL	17,700 ± 2800 mg vs. 14,100 ± 1200 mg	50 ± 11.3 vs. 52 ± 4.4	50 (4 to 198)
Mont et al (1997)	III SLE	31/103 (30%)	N/A	N/A	N/A	Mean maximal prednisone dose was 60 vs. 37 mg for SLE patients + AVN vs. − AVN	N/A	N/A	N/A
Nakamura et al (2010)	II SLE	169 (18 pediatric, 25 adolescent, 126 adult)	N/A	N/A	hip (N/A); knee (N/A)	N/A	N/A	N/A	N/A
Oinuma et al (2001)	II SLE	32/72 (44%)	overall: 35 (13 to 66)	N/A	knee (84%), hip (72%)	N/A	ON: 58.2 ± 10.1 mg, no ON: 58.6 ± 16.6 mg	N/A	N/A

1512.e2

M.A. Mont et al. / The Journal of Arthroplasty 30 (2015) 1506–1512.e5
Study	Disease	N	ON: %	ON: mg/day PDSL	ON: mg	N/A	12 mg	Median 12 mg	
Ono et al (1992)	SLE	9/62	15%	42	4000	3.2	21	21 (N/A)	
Rascu et al (1996)	SLE	7/86	9%	21.3	38,614	N/A			
Smith et al (1976)	SLE	20/100	20%	15.1 ± 0.9	17,210	53	42.8		
Uea-arareewong et al (2009)	SLE	20/55	20%	45.1 ± 7.11	13,830	18,200	9900		
Weiner et al (1989)	SLE	25/100	25%	11.9 ± 0.8	21	23	60		
Zizic et al (1985)	SLE	20/44	40%	10.82 ± 4.3	15,990	17,200	27,900		
Smith et al (1976)	SLE	7/99	7%	21	23	23	42		
Lieberman et al (2000)	Cardiac Transplant	6/204	3%	35.9	21.3	38,614	N/A		
Lieberman et al (2000)	Liver Transplant	4/203	2%	24	15	15	30		
De Graaf et al (1982)	Renal Transplant	52/170	30%	19.2 ± 0.5	6800	18,600	27,900		
Elmsted et al (1981)	Renal Transplant	19/125	15%	14.7 ± 0.2	2670	5370	11,200		
Haajanen et al (1984)	Renal Transplant	29/546	5%	15.8 ± 1.3	8000	18,000	27,900		
Harrington et al (1984)	Renal Transplant	15/326	46%	15.9 ± 0.0	30.3	15	20		
Ibel et al (2007)	Renal Transplant	40/194	21%	36	45	35	54		
Author (Year)	Level of Evidence	Diagnosis	Incidence ON vs. Control (%)	Mean Age (Years)	Affected Sites (%)	Mean Daily Steroid Dose (mg/day)*	Mean Cumulative Steroid Dose (mg)*	Duration (Months)	Mean Time to Onset (Months)
--------------	------------------	-----------	-------------------------------	------------------	-------------------	-----------------------------------	-----------------------------------	------------------	---------------------------
(1978)	Transplant	(7 to 64)	(35%); tibia (N/A); talus (N/A); shoulder (N/A); humerus (N/A); radius (N/A); ulna (N/A)	9000 ± 7500 mg at 90 days	126				
Lausten et al (1998)	III Renal Transplant	High dose: 42/374 (11%); Low dose: 4/124 (3%); vs. 46	High dose: 34 mg/day, Low dose: 17 mg/day vs. (same daily doses for controls) PDS	High dose: 12,540 mg, Low dose: 6481 mg, Controls: 11,200 mg	N/A vs. 21 (N/A)				
Metselaar et al (1985)	III Renal Transplant	61/248 (24%)	hip (100%)	30 mg/day	N/A				
Morris et al (1982)	I Renal Transplant	High dose: 8/39 (21%); Low dose: 1/33 (3%)	High dose: 40 ± 10, Low dose: 39 ± 11	High dose: 100 mg PSL for 5 days, then tapered 5 mg every 5 days to 20 mg, then tapered 1 mg every 2 weeks to a maintenance dose of 10 mg/day.	High Dose: (3 months) 13,500 ± 5830 mg, (6 months) 17,040 ± 5765 mg; Low Dose: (3 months) 13,178 ± 3905 mg, (6 months) 15,450 ± 5110 mg	N/A			
Patton et al (1988)	III Renal Transplant	Renal Transplant 52/444 (16%)	N/A	N/A					
Pierides et al (1975)	III Renal Transplant	11/78 (14%) vs. 11 (age & surgery matched)	knee (55%); hip (55%); talus (18%); shoulder (18%); elbow (18%); scaphoid (9%); metacarpal (9%)	(estimated) ON: 65 mg/kg (20 to 110) at 3 months, 200 mg/kg (80 to 240) at 12 months PDS; control group 1: (significant difference only at 3 months, 65 mg/kg vs. 45 mg/kg); control group 2: (no significant difference)	N/A				
Potter et al (1978)	III Renal Transplant	Renal Transplant 11/100 (11%) vs. 11	All patients: 27.5 mg/d (0 to 60) at diagnosis, 10.5 mg/d (0 to 30) at final followup	ON: 3400 mg/sqm at 3 months, 11,900 mg/sqm at 24 months; no ON: 3500 mg/sqm at 3 months, 14,100 mg/sqm at 24 months	N/A				
Shihabani et al (2008)	III Renal Transplant	Renal Transplant 37/150 (24%)	Hip	All patients: 500 mg MPSL during surgery; PSL taper from 50 mg down to 7.5 mg in 7 day increments; maintenance dose 10 mg/d	Middle tertile steroid use at 2 weeks: 550–650 mg, 4 weeks: 895–1130 mg, 6 weeks: 1165–1488 mg, 8 weeks: 1400–1795 mg	N/A			
Tang et al (2000)	III Renal Transplant	Renal Transplant 16/397 (4.2%) vs. 31	Hip (100%)	16.2 mg ± 2.8 vs. 14.4 mg ± 1.3	N/A				
Tervonen et al (1992)	II Renal Transplant	Renal Transplant 6/100 (6%)	Hip	40,900 mg vs. 32,100 mg	114 (N/A) vs. 97.2 (N/A)				

N/A: not available, ACTH: adrenocorticotropic hormone, CS: cortisone, HCS: hydrocortisone, PDS: prednisone, PDSL: prednisolone, MPSL: methylprednisolone, DXM: dexamethasone, ON: osteonecrosis, ALL: acute lymphoblastic leukemia, BMT: bone marrow transplant, CVD: collagen vascular disease, IBD: inflammatory bowel disease, SARS: severe acute respiratory syndrome, SLE: systemic lupus erythematosus, IV: intravenous, PO: per os (by mouth)
* All doses are reported as published; doses without accompanying abbreviation are in milligrams of prednisone (PDS), all other corticosteroid agents utilized are noted with corresponding corticosteroid abbreviation.
Random effects model was used in the meta-analysis due to variations in studies with respect to age, diagnoses, and comorbidities as it was assumed that it was unlikely that single effect sizes would be consistent across all studies. Orwin’s fail-safe N and Duval and Tweedie’s trim and fill statistics were used to investigate publication bias. The adjusted odds-ratio for developing osteonecrosis with corticosteroid use was 6.4 (95% CI, 3.3 to 12.3). Using the criteria for trivial odds (i.e. not clinically important) ratio as 1.1 and mean odds ratio of 1.0 in missing studies, we found that 89 additional studies were necessary to reduce odds ratio to 1.1. Similarly, adjusted odds-ratios for developing osteonecrosis with high corticosteroid doses compared to low-dose corticosteroids were 2.4 (95% CI, 0.8 to 6.4). An additional 42 studies with mean odds ratio of 1.0 would be necessary to reduce odds-ratios of developing osteonecrosis with high-dose corticosteroids to under 1.1 suggesting that there exists nominal publication bias.

Heterogeneity was investigated by conducting subgroup analyses and the extent evaluated using Cochrane Q and I² statistics with higher values suggestive of greater heterogeneity. There were substantial heterogeneities among 4 studies evaluating effects of low- and high-dose corticosteroids in osteonecrosis development (Cochrane Q = 7.8; I² = 61.4%; P = 0.05). Substantially less heterogeneities were found in subgroup analyses involving 3 reports on renal transplant recipients (Cochrane Q = 2.3, I² = 12.2%; P = 0.32). Marked homogeneity was found between 4 reports evaluating corticosteroid effects on osteonecrosis development (Cochrane Q = 2.1; I² = 0%; P = 0.32). In addition, substantial homogeneity was found in the subgroup of 3 reports investigating effects of corticosteroids on osteonecrosis incidences in hematopoietic stem cell transplant recipients (Cochrane Q = 1.8; I² = 0%; P = 0.4).