Effects of Age and Sex on Subcortical Volumes

Yanpei Wang¹, Qinfang Xu¹,²*, Jie Luo¹, Mingming Hu¹ and Chenyi Zuo³*

¹ State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China, ² Jiangsu Provincial Key Laboratory of Special Children's Impairment and Intervention, Nanjing Normal University of Special Education, Nanjing, China, ³ College of Educational Science, Anhui Normal University, Wuhu, China

Purpose: In an increasingly aging society, it is of great importance to consider trajectories of subcortical volumes at different ages for understanding biological markers of aging. Thus, we investigated sex, age, and their interactions on subcortical volumes, including the basal ganglia (caudate, putamen, accumbens, and pallidum), thalamus, hippocampus, and amygdala.

Methods: We analyzed the adult lifespan trajectory of subcortical volumes and asymmetries in 563 healthy subjects aged from 19 to 86 using magnetic resonance imaging (MRI) data from the publicly available 7IXI data set.

Results: The sex made strong contributions to the trajectories of subcortical volumes with aging, including the right putamen, right pallidum, bilateral thalamus, hippocampus, and amygdala. The volume of the right putamen, right pallidum, and right thalamus decreased more rapidly in males than in females, and the volume of the left thalamus, bilateral hippocampus, and amygdala in males followed a quadratic model, while those in females followed a linear decline model. The asymmetries in the caudate and hippocampus showed a linear decline, and a sex and age interaction was found in the hippocampus; that is, the asymmetry in the hippocampus decreased only in the males and not in the females. Changes in the accumbens and pallidum fit quadratic trajectories, in which females increased until 39.26 years old in the accumbens asymmetry and then began to rapidly decline, and males showed a linear decline. The asymmetry in the pallidum in males and females showed a slow decreasing period until almost 45 years of age and then increased.

Conclusion: The results suggest that compared with females, males have a faster decline in the volume of the right putamen, right pallidium, and right thalamus, while aging occurred later but also faster in the left thalamus, bilateral hippocampus, and amygdala. Interestingly, we found the inflection point in the thalamus, bilateral hippocampus, and amygdala volume in the quadratic model, and after this point, the volume change accelerated with aging, which may have resulted from the stronger work pressure in the middle-aged men and the low levels of testosterone in the older adults. The interaction of age and sex on individual subcortical structures provides evidence to support the impact of sex on psychopathologies associated with degenerative brain disorders in the
INTRODUCTION

With the development of brain imaging techniques, many studies have consistently found that the volume of the adult brain shrinks with age, which has been called atrophy, and over the adult lifespan, the most pronounced age-related effects have been observed in the frontal and temporal lobes (Raz et al., 2004b, 2005; Allen et al., 2005). Atrophy in these regions has been shown to be directly linked to cognitive or age-related deficits, but the pattern of aging in each region is not the same. Small but consistent sex differences in cognitive abilities (Jones et al., 2003) have also been observed. Furthermore, since the brain volume can be more accurately measured and used to predict and diagnose age-related neurological disorders (Dubois et al., 2007; Colliot et al., 2008), it is crucially important to understand the factors that affect alterations in volume with aging. Previous studies have mainly examined general age effects on brain morphometry (Raz et al., 2004a; Fotenos et al., 2005; Walhovd et al., 2005), but the influence of sex on brain aging remains unclear. Notably, age effects on the volume of subcortical structures related to cognitive and emotional control may be important for understanding the role of aging in age-related disorders, such as Alzheimer's disease and psychiatric disorders.

The pathologic features of subcortical structures, such as basal ganglia (including the caudate, putamen, and pallidum), thalamus, and medial temporal structures (including the hippocampus and amygdala), have been related to cognitive and affective dysfunctions. However, men and women may have differential age trajectories regarding changes in subcortical structures. Total brain volume was, on average, almost 8–15% larger in men than in women (Ruigrok et al., 2014). Some studies focused on subcortical structures have examined sex differences; they also observed a larger volume in males; however, when the overall brain size was controlled for, the differences disappear (Rijpkema et al., 2012; Tang et al., 2013). Compared with females, males have larger gray matter (GM) volumes in the caudate (Filipek et al., 1994), but a subsequent study observed smaller GM volumes in males when brain size was controlled for (Luders et al., 2009). Although the sex effects of subcortical volumes were not consistent, there are many reports on the special anatomical and functional characteristics of basal ganglia in sex-specific neuromental disorders in order to support their role in sex-specific neuropsychiatric disorders (e.g., Parkinson, ADHD, and addiction) (Bourque et al., 2009; Volkow et al., 2012; Wang et al., 2018). One study also reported a sex-specific correlation between hippocampal volume and psychometric intelligence (Colom et al., 2013).

The question of whether a substantial age × sex interaction exists has received attention in the literature. Some studies have reported age × sex interactions (Murphy et al., 1996; Coffey et al., 1998; Gur et al., 1999; Xu et al., 2000; Good et al., 2001a; Pruessner et al., 2001; Raz et al., 2004b), while others have found no age × sex interactions (Greenberg et al., 2008). The age and sex interactions observed in the previous studies have not been consistent. For example, two studies found that males have more pronounced age-related brain atrophy (Coffey et al., 1998; Gur et al., 1999), and the largest age-related effects were observed in the frontal and temporal lobes (Murphy et al., 1996; Raz et al., 2004a). Another study found age and sex interactions in the putamen, and further analysis identified a larger loss of GM in men than in women with increasing age (Murphy et al., 1996). The effects of sex on overall brain volume have been described in old age (Liu et al., 2010) and across the lifespan (Xu et al., 2000; Good et al., 2001b; Takahashi et al., 2011). In addition, large effects of age on subcortical volumes have been observed (Walhovd et al., 2011; Ziegler et al., 2012). However, only a few pioneering studies have included the effects of age and sex in subcortical atrophy models. These inconsistent results might be caused by differences in sample characteristics, scan quality, statistical procedures, and especially age ranges or different methodologies.

Various age ranges have been studied across the lifespan. For example, the age range of 18–42 years may not be suited for revealing age effects, as it would not cover volume loss in the elderly (Morrison et al., 2006). Using the same approach, Goto found hippocampal decline in males aged 60 and over and in females after menopause, which suggested a longer preservation of hippocampal integrity in males (Goto et al., 2011). Some studies have also found age-related decreases in the left basal ganglia of males but not females. Takahashi et al. (2011) divided individuals in age groups (<50 years old vs. >50 years old) and investigated age-related volume trajectories across the entire brain and reported differential effects of sex in the older age group on the relative volume of the thalamus, but importantly, they could not identify variance related to continuous age ranges. More importantly, these studies did not assess the role of sex in brain aging.

In addition, different methodologies were used in the previous studies. For example, using manual segmentation of brain structures, one study reported that the hippocampus was negatively related to age in males only, while no overall sex differences were found (Pruessner et al., 2001). A study using voxel-based morphometry (VBM) examined the interaction between sex and age trajectories on whole-brain volumes; however, they did not find differences in age trajectories for the subcortical structures in males and females (Good et al., 2001a). The VBM may not be sufficiently sensitive for detecting the different sex effects on the age trajectories.

Keywords: subcortical, volume, asymmetry, sex, aging
in some subcortical volumes, partially because the smoothing kernel is too large. It is necessary to overcome inaccuracies in registration performance (Li et al., 2014). Thus, previous studies should be confirmed by using a more precise and objective subcortical segmentation method, which does not require spatial smoothing and specifically study the relations of age with brain volume. These studies should also consider sex-specific effects on brain atrophy in the subcortical regions across the entire adult lifespan; these effects are critical for cognitive and emotional adaptation to daily life, as well as for regional specificity with regard to molecular mechanisms. For example, the patterns of region-specific iron deposition in the basal ganglia under the influence of hormonal regulation may lead to regionally specific atrophy patterns.

Some studies have reported more age-related regional volume differences in men than in women (Xu et al., 2000; Good et al., 2001b; Pruessner et al., 2001; Raz et al., 2004b), while others have found no sex differences (Greenberg et al., 2008) or a heterogeneous pattern across different brain structures (Cowell et al., 2007). Although the interactions between age and sex are significant, the effect sizes were very small (Jäncke et al., 2015).

Thus, this study was designed to evaluate sex differences and age × sex interactions regarding subcortical volumes. We examined the existence of sex-related differences in age-dependent subcortical volume changes across the span of adulthood in a well-characterized sample of healthy individuals. We wanted to answer the following question: what is the influence of sex and age on subcortical volumes (caudate, putamen, pallidum, thalamus, hippocampus, amygdala, and accumbens; Figure 1). The asymmetry index is calculated as the difference between right and left thickness divided by their mean (in percent) (Wang et al., 2018): Asymmetry = (left volume - right volume)/mean (left volume, right volume) × 100%. The asymmetry index indicates the degree of left lateralization.

Statistical Analysis

All statistical analyses were conducted using SPSS 23.0 (SPSS, Chicago, IL, United States). We used linear and non-linear regressions to estimate the effects of age and sex on the subcortical volumes from the quadratic model to the linear model, including the main effects of sex, age, and the interaction of sex and age (Narvacan et al., 2017). Each subcortical volume was fitted to (i) quadratic: subcortical volume = intercept + A(sex) + B(age) + C(age²) + D(age × sex) + E(age² × sex) + residual error; or (ii) linear: subcortical volume = intercept + A(sex) + B(age) + C(age × sex) + residual error. If the age and sex interaction was not significant, each subcortical volume was re-fit with only sex and age main effects.

MATERIALS AND METHODS

Subjects

All participants from the IXI database included T1-weighted, T2-weighted, and diffusion magnetic resonance imaging (MRI) data. The IXI dataset was collected from normal, healthy subjects. We only used the T1-weighted MRI data to investigate the subcortical GM volumes. The full sample consisted of 563 participants from 19 to 86 years (mean age: 48.65 ± 16.47 years; 250 males/313 females). T1-weighted images were acquired at three sites, which obtained 150, 150, and 146 sagittal slices, with the same acquisition matrix 256 × 256 and in-plane resolution of 0.93 × 0.93 × 1.2 mm³. The detailed information is shown in Table 1 and Supplementary Table S1.

Data Preprocessing

T1-weighted images were preprocessed by “volBrain” (Manjón and Coupe, 2016), which is an advanced pipeline that provides automatic volumetric information from the brain MR images at different scales. The results provided the subcortical GM volumes (putamen, caudate, pallidum, thalamus, hippocampus, amygdala, and accumbens; Figure 1). The asymmetry index is calculated as the difference between right and left thickness divided by their mean (in percent) (Wang et al., 2018): Asymmetry = (left volume - right volume)/mean (left volume, right volume) × 100%. The asymmetry index indicates the degree of left lateralization.

TABLE 1	Sample characteristics in different age groups.				
Age group (years)	No. of subjects	No. of subjects, 1/2/3 site¹	Females (%)	Caucasian (%)	Education² mean (SD)
19-29	101	41/18/42	56 (55.45)	70 (69.31)	4.44 (1.28)
30-39	99	50/22/27	39 (39.39)	75 (75.76)	4.55 (1.09)
40-49	89	53/11/25	48 (53.93)	75 (84.27)	4.03 (1.38)
50-59	99	65/3/31	61 (61.62)	81 (81.82)	3.46 (1.50)
60-69	118	70/7/41	72 (61.02)	98 (83.05)	3.55 (1.58)
70-79	49	29/6/14	34 (69.39)	44 (89.80)	3.39 (1.57)
80-86	8	6/1/1	3 (37.50)	8 (100.00)	3.50 (2.07)
Total	563	314/68/181	313 (56.60)	451 (80.11)	3.93 (1.47)

¹Samples from different scanning sites in London: Guys Hospital Philips; Institute of Psychiatry General Electric; Hammersmith Hospital. ²Education levels: 1 = no qualifications; 2 = O-levels, GCSEs, or CSE; 3 = A-levels; 4 = further education; 5 = university or polytechnic degrees. SD, standard deviation.
effects. There are a total of four fits for each measure to choose in the model (detailed in Supplementary Tables S2–S5). The choice of the best model fit was based on two steps (Wierenga et al., 2014): First, quadratic and linear age effects were fitted on the each subcortical volume. If the quadratic age effect was not significant, we stepped down to the linear developmental model. If a measure fit a quadratic model, we would calculate the age at peak from the first derivative. Second, we investigated whether the developmental trajectories differed between genders. Statistical significance was \(p < 0.05 \), adjusting for the number of comparisons.

Bonferroni correction was used for multiple comparisons. To optimally balance between Type I and Type II error, we took the correlation between the dependent variables (volumes of the seven subcortical structures) into account by using the Simple Interactive Statistical Analysis Bonferroni tool. Using a Bonferroni correction that treats the variables as independent (proper Bonferroni: alpha/number of tests) would lead to a too stringent correction, as the dependent variables are not obtained in independent subgroups. Subcortical volumes showed a mean correlation coefficient of \(r = 0.54 \), leading to an equivalent corrected alpha of 0.015. Subcortical asymmetry showed a mean correlation coefficient of \(r = 0.11 \), and therefore a significant level of alpha = 0.013 is equivalent to a corrected \(p < 0.05 \).

RESULTS

Subcortical Volumes

The results of the regression models for each subcortical volume are shown in Figures 2, 4 and Tables 2, 4. The bilateral caudate (Figure 2A), putamen (Figure 2B), accumbens (Figure 2C), and pallidum (Figure 2D) and the right thalamus (Figure 2E) were fit with a linear model; that is, volume declined with increased age. The age \(\times \) sex interactions were found in the right putamen, right pallidum, and right thalamus. Subsequent analysis (Table 4) found that males showed a strong linear decline with age compared with females in the right putamen (Figure 4B), right pallidum (Figure 4D), and right thalamus (Figure 4E). The left thalamus, bilateral hippocampus (Figure 2F), and bilateral amygdala (Figure 2G) were best fit to curves, indicating an increase and subsequent gradual decline. In a separate analysis of sex, we found that females fit a linear decline with aging, while males fit curves in the left thalamus (Figure 4E), bilateral hippocampus (Figure 4F), and bilateral amygdala (Figure 4G). The age at the peak volume of the left thalamus (24.99 years), bilateral hippocampus (left: 36.76 years; right: 36.15 years), and bilateral amygdala (left: 26.40 years; right: 32.63 years) was at approximately 30 years of age in men.

Subcortical Asymmetries

The results of the regression models for each subcortical asymmetry are shown in Figures 3, 5 and Tables 3, 5. The caudate (Figure 3A) and hippocampus (Figure 3D) asymmetry fit a linear model, that is, a decline with aging. The age \(\times \) sex interactions were found in the hippocampus. Further analysis (Table 5) found that the hippocampus asymmetry decreased with aging in females, but not in males (Figure 5D). The accumbens (Figure 3B) and pallidum (Figure 3C) asymmetry fit a quadratic model, and the accumbens showed a significant age \(\times \) sex interaction (Figure 3B). Subsequent analysis (Table 5) showed that the accumbens fit a quadratic model in females (peak age: 39.26) and the linear model in males (Figure 5B), and the pallidum fit a quadratic model in males (peak age: 44.21) and females (peak age: 46.53) (Figure 5C).

DISCUSSION

In the present study, we studied the association between age and subcortical volume in regions that are important for cognitive and emotional adaptations to daily life across the lifespan. We explicitly examined these relationships in males and females.

Obvious contributions of age were observed in the basal ganglia structures (i.e., caudate, putamen, accumbens, and pallidum), thalamus, and medial temporal structures (hippocampus and amygdala); in detail, the basal ganglia and right thalamus show a linear decline with aging, and the left thalamus and medial temporal structures fit a quadratic model. We observed strong contributions of sex on the volume trajectories of subcortical structures with aging, including the right putamen, right pallidum, bilateral thalamus, bilateral hippocampus, and bilateral amygdala. The volume of the right putamen, right pallidum, and right thalamus declined more steeply in males than in females, and the left thalamus, bilateral hippocampus, and amygdala volumes followed a quadratic model in males, while a linear decrease model fit in females. We also analyzed the asymmetries in the subcortical structures. The caudate and hippocampus displayed a linear decrease, and the sex and age interaction was found in the hippocampus;
FIGURE 2 | The age trajectories of left (upper layer graph) and right (lower layer graph) subcortical volumes, including the (A) caudate, (B) putamen, (C) accumbens, (D) pallidum, (E) thalamus, (F) hippocampus, and (G) amygdala.

FIGURE 3 | The age trajectories of subcortical asymmetries, including the (A) caudate, (B) accumbens, (C) pallidum, and (D) hippocampus.

that is, the asymmetry decreased in the hippocampus only among females and not among males. The accumbens and pallidum fit quadratic trajectories: the accumbens asymmetry in females increased until 39.26 years old and then began to rapidly decrease; males decreased across all ages in the accumbens; and the pallidum asymmetry in males and females gradually decreased until almost 45 years and then gradually increased. The asymmetry results suggested that the caudate showed left lateralization, which continued to decrease until approaching zero; the pallidum gradually showed left lateralization, which continued to increase; the accumbens gradually showed right lateralization that continued to increase, especially in females; and the hippocampus showed right lateralization and increased with age only in males.

Within the basal ganglia, a group of nuclei (the caudate, putamen, accumbens, and pallidum) involved in cognitive,
interaction in the striatum using a similar sample. In the present
women, although this effect was not found in basal ganglia
previous reports (Goodro et al., 2012), and the brain volume
age-related atrophy of the basal ganglia was confirmed by
volume over a similar age range (Goodro et al., 2012). The
study reporting an age-related decrease in the basal ganglia
putamen and right pallidum. Our results echoed a previous
that males had a more pronounced age progression in the right
During this period, the interaction of age and sex suggested
a high density of sex steroid receptors (Taber et al., 2001).
emotional, and motor behavior (Alexander et al., 1986) all
atrophied with aging. Previous studies have found that the
basal ganglia reached a peak volume before 20 years of age,
while the youngest participant in our sample was 20. Therefore,
basal ganglia reached a peak volume before 20 years of age,
atrophied with aging. Previous studies have found that the
emotional, and motor behavior (Alexander et al., 1986) all
atrophied with aging. Previous studies have found that the
basal ganglia had already been going through a period
of atrophy. The effect of sex on the volume of subcortical
structures might play a key role, since the basal ganglia possess
a high density of sex steroid receptors (Taber et al., 2001).
During this period, the interaction of age and sex suggested
that males had a more pronounced age progression in the right
putamen and right pallidum. Our results echoed a previous
study reporting an age-related decrease in the basal ganglia
volume over a similar age range (Goodro et al., 2012). The
age-related atrophy of the basal ganglia was confirmed by
previous reports (Goodro et al., 2012), and the brain volume
was more vulnerable to shrinkage with age in men than in
women, although this effect was not found in basal ganglia
volume. For example, Li et al. (2014) found no sex and age
interaction in the striatum using a similar sample. In the present
study, we used an automatic and reliable quantitative analysis
approach to address volumetric alterations, especially in regions
with low tissue contrast (Manjón and Coupe, 2016). Compared
with females, males have been found to have worse performance
in a sustained reaction task and a visuospatial learning and
planning task, especially at older ages (Clark et al., 2006; Proust-
Lima et al., 2008). In contrast, several studies did not report
age effects, sex effects, or differential aging effects on cognitive
performance in males and females (Silver et al., 2011; Kavé
et al., 2012), which suggests that the steeper decrease in the
basal ganglia volume may be more closely associated with male
climacteric emotional/somatosensory abnormalities, including
late-life depression, anxiety, and sleep problems. However,
derstanding the direct relations among relative volumes, task
performance, and emotional and somatosensory disorders needs
further investigation.

Although MRI research cannot identify the mechanism
leading to volume reduction, when combined with advanced
software technology, these studies are able to provide
Supplementary Information for the potential mechanism of age-related volume reductions in the basal ganglia. The results

TABLE 2 | Fitting parameters for subcortical volumes versus age within each hemisphere.

Measures	HS	Best fit model	Intercept (× 10^3)	Sex (× 10^2)	Age	Age^2 (× 10^{-1})	Age × Sex	Age^2 × Sex
Caudate	L	Linear	3.74 (0.07)	3.22 (0.40)	−9.35 (1.23)	−	−	−
	R	Linear	3.38 (0.07)	3.17 (0.39)	−6.26 (1.22)	−	−	−
Putamen	L	Linear	5.66 (0.08)	4.99 (0.51)	−21.61 (1.55)	−	−	−
	R	Linear	5.25 (0.09)	7.64 (1.35)	−17.82 (1.76)	−	−5.89 (2.64)	−
Accumbens	L	Linear	0.63 (0.01)	0.34 (0.08)	−3.83 (0.24)	−	−	−
	R	Linear	0.60 (0.01)	0.47 (0.08)	−2.82 (0.23)	−	−	−
Pallidum	L	Linear	1.52 (0.03)	1.54 (0.18)	−3.86 (0.55)	−	−	−
	R	Linear	1.48 (0.03)	2.75 (0.46)	−2.58 (0.60)	−	−2.47 (0.89)	−
Thalamus	L	Quadratic	8.34 (0.31)	8.90 (0.69)	n.s.	−3.41 (1.38)	−	−
	R	Linear	7.70 (0.12)	10.96 (1.80)	−21.20 (2.36)	−	−9.82 (3.54)	−
Hippocampus	L	Quadratic	3.85 (0.17)	3.18 (0.37)	25.27 (7.28)	−3.90 (0.74)	−	−
	R	Linear	3.96 (0.16)	2.64 (0.36)	20.63 (7.10)	−3.30 (0.72)	−	−
Amygdala	L	Quadratic	1.38 (0.07)	1.50 (0.15)	n.s.	−0.91 (0.31)	−	−
	R	Quadratic	1.43 (0.07)	1.56 (0.15)	n.s.	−0.88 (0.31)	−	−

*Intercept is the extrapolated value at age zero. – = not applicable; n.s. = non-significant; HS = hemisphere; L = left; R = right. The level of significance is 0.013 after multiple comparisons correction.

TABLE 3 | Fitting parameters for asymmetries of subcortical structures versus age.

Measures	Best fit model	Intercept (× 10)	Sex	Age (× 10^{-1})	Age^2 (× 10^{-2})	Age × Sex (× 10^{-1})	Age^2 × Sex (× 10^{-2})
Caudate	Linear	1.65 (0.12)	n.s.	−0.83 (0.21)	−	−	−
Putamen	None	−	−	−	−	−	−
Accumbens	Quadratic	−2.59 (0.97)	n.s.	13.58 (4.25)	−1.73 (0.43)	−18.50 (6.27)	2.01 (0.63)
Pallidum	Quadratic	n.s.	n.s.	−6.83 (2.11)	0.75 (0.21)	−	−
Thalamus	None	−	−	−	−	−	−
Hippocampus	Linear	n.s.	n.s.	−0.53 (0.22)	−	0.85 (0.33)	−
Amygdala	None	−	−	−	−	−	−

*Intercept is the extrapolated value at age zero. – = not applicable; n.s. = non-significant. The level of significance is 0.013 after multiple comparisons correction.
TABLE 4 | Fitting parameters for subcortical volumes versus age within each hemisphere in females and males.

Measures	HS	Counterparts	Fitting parameters						
		Females	Males						
		Best fit model	Intercepta (x 10³)	Age (x 10)	Age² (x 10⁻¹)	Best fit model	Intercepta (x 10³)	Age (x 10)	Age² (x 10⁻¹)
Caudate	L	Linear 3.67 (0.08)	−0.81 (0.15)	–	Linear 4.14 (0.10)	−1.11 (0.23)	–		
	R	Linear 3.37 (0.08)	−0.59 (0.15)	–	Linear 3.73 (0.10)	−0.68 (0.20)	–		
Putamen	L	Linear 5.90 (0.10)	−2.04 (0.20)	–	Linear 6.23 (0.12)	−2.31 (0.25)	–		
	R	Linear 5.25 (0.09)	−1.78 (0.17)	–	Linear 6.06 (0.10)	−2.48 (0.20)	–		
Accumbens	L	Linear 0.63 (0.02)	−0.37 (0.03)	–	Linear 0.67 (0.02)	−0.39 (0.04)	–		
	R	Linear 0.59 (0.02)	−0.26 (0.03)	–	Linear 0.67 (0.02)	−0.31 (0.04)	–		
Pallidum	L	Linear 1.47 (0.04)	−0.28 (0.07)	–	Linear 1.74 (0.04)	−0.52 (0.08)	–		
	R	Linear 1.48 (0.03)	−0.26 (0.06)	–	Linear 1.75 (0.03)	−0.51 (0.07)	–		
Thalamus	L	Linear 8.91 (0.14)	−2.87 (0.27)	–	Quadratic 8.55 (0.47)	n.s.	−7.41 (2.08)		
	R	Linear 7.70 (0.12)	−2.12 (0.23)	–	Linear 8.79 (0.13)	−3.10 (0.27)	–		
Hippocampus	L	Linear 4.56 (0.07)	−1.04 (0.14)	–	Quadratic 3.76 (0.26)	4.73 (1.14)	−6.44 (1.15)		
	R	Linear 4.50 (0.07)	−0.84 (0.13)	–	Quadratic 3.82 (0.25)	4.39 (1.09)	−6.07 (1.10)		
Amygdala	L	Linear 1.53 (0.03)	−0.34 (0.06)	–	Quadratic 1.52 (0.10)	n.s.	−1.22 (0.45)		
	R	Linear 1.57 (0.03)	−0.31 (0.06)	–	Quadratic 1.50 (0.11)	n.s.	−1.55 (0.48)		

The intercept is the extrapolated value at age zero. – = not applicable; n.s. = non-significant. The level of significance is 0.015 after multiple comparisons correction.

FIGURE 5 | The age trajectories of subcortical asymmetries, including the (A) caudate, (B) accumbens, (C) pallidum, and (D) hippocampus in females (red color) and males (blue color).

TABLE 5 | Fitting parameters for asymmetries of subcortical structures versus age in females and males.

Measures	Counterparts	Fitting parameters					
		Best fit model	Intercepta (x 10)	Age	Age² (x 10)		
		Females	Males				
Caudate	Linear	0.94 (0.16)	−0.06 (0.03)	–	Linear 1.11 (0.14)	−0.11 (0.03)	–
Putamen	None	–	–	–	Linear n.s.	–2.22 (0.07)	–
Accumbens	Quadratic	−2.59 (1.01)	1.36 (0.44)	−0.17 (0.04)	Linear n.s.	–	0.08 (0.03)
Pallidum	Quadratic	n.s.	n.s.	0.07 (0.03)	Quadratic n.s.	n.s.	–
Thalamus	None	–	–	–	None –	–	
Hippocampus	Linear	n.s.	–0.05 (0.02)	–	None –	–	
Amygdala	None	–	–	–	None –	–	

The intercept is the extrapolated value at age zero. – = not applicable; n.s. = non-significant. The level of significance is 0.013 after multiple comparisons correction.

have certain significance for age-related striatal atrophy. The volume analysis of the striate nucleus is helpful for evaluating neurodegenerative diseases. In addition, age-related reductions are more rapid among males; this accelerated decrease with age in males may be the reason why males are more likely to have dyskinesia. Moreover, this mechanism may contribute to the
disruption of motor and cognitive function in elderly individuals, which is a symptom of age-related striatal atrophy.

In the thalamus, our results echoed previous studies (Van Der Werf et al., 2001) reporting that thalamic volume reductions correlated with age. However, the aging trajectories for males and females were different in the left and right thalamus. The left thalamic volume followed a quadratic model with age, while the right volume showed a linear decline with age. The sex and age interaction in the right thalamus showed that males had a more pronounced age regression than females, while the left thalamic volume in males increased until 25 years of age, then decreased with age; thalamic volume always decreased with age in females. Consistent with the right thalamus, after 25 years of age, the males showed a steeper reduction than females. A previous study (Raznahan et al., 2014) found that the left thalamic volume reached a peak later in males than in females, which explains why males show a quadratic trajectory. After the peak volume, both the left and right thalamus atrophied faster in males than in females. Our results were consistent with a previous study that found an age-related decrease in the volume of the thalamus over a similar age range (35–60 years) (Goodro et al., 2012), and they found that the age effect on the thalamic volume was 3% per decade for the middle-aged group and less than 1% in the older group. These results were also confirmed by another study, which reported a lower rate of thalamic volume reduction in elderly compared with middle-aged samples. One study also found that thalamic volume showed a significant correlation with age (Cherubini et al., 2009). Another study found that the structure–function connectivity between the thalamus and the orbitofrontal and frontal areas made a major contribution to age estimation, which played a key role in the process of healthy aging (Bonifazi et al., 2017). Hughes et al. (2012) suggested that age primarily affected thalamic nuclei connecting to the frontal cortex. With the Stroop test, they found that the volume of the thalamo-frontal projections was associated with executive functions. The thalamus, with its cortical, subcortical, and cerebellar connections, is a very important node in the networks that support cognitive functions known to decline in normal aging, including component processes of memory and attention (Fama and Sullivan, 2015), working memory (Charlton et al., 2010), processing speed (Van Der Werf et al., 2001), and error awareness (Peterburs et al., 2011). The sex differences in thalamic atrophy may result from sex differences in the neurotransmitter systems, as reported from animal models and clinical human data. Zubieta et al. (1999) examined age- and sex-associated variations in mu-opioid receptor binding. They observed sex × age interactions in the thalamus. Overall, women showed higher mu-opioid receptor binding values than men, although these values were reduced during postmenopause in women. Furthermore, they found that receptor binding may be related to atrophy because when there was a correction for atrophic changes, women and men did not show such differences (Zubieta et al., 1999). However, whether receptor binding influences atrophy or atrophy influences receptor binding remains unclear. To date, few papers have focused on sex differences in thalamic aging, and they did not find sex and age × sex interaction effects. We thought that the difference in sex and age in the thalamus may be a consequence of the differences in the methods and the relatively small sample size. In most studies, the VBM method was used to identify the sex differences in the subcortical nuclei. Although VBM is an excellent tool for the study of focal GM density differences, this voxel-based optimization method may not be sensitive enough to detect the sex effects on the volume of thalamus in the context of a reduced volume of subcortical structures. Further studies of the volume of the thalamus should take into account the numerous subnuclei in the structure, as the structure and function of the subnuclei are very different (Metzger et al., 2010).

The medial temporal structures included the hippocampus and amygdala among the subcortical structures. The changes in volume of the hippocampus and amygdala followed quadratic trajectories with aging. No sex and aging interaction was found; however, males and females followed different trajectories, with the former fitting the quadratic model and the latter showing a linear decline with aging, in the bilateral hippocampus and amygdala. In the hippocampus, males reached the peak volume at approximately 36 years old (left: 36.76; right: 36.15), which then began to decrease, and the atrophy speed became more rapid and was faster than that in females at approximately 70 years old. The hippocampus has been previously characterized by a non-linear pattern of estimated volume changes through adulthood. This pattern might be explained by a prolonged phase of development (Ostby et al., 2009), a longer stable period, and critically, an accelerated volume loss starting around age 50, with a more robust negative relationship above 60 years of age (Fjell and Walhovd, 2010; Fjell et al., 2010). In our results, we found that females showed atrophy earlier, but in a previous longitudinal analysis, the hippocampus showed the fastest rate of volume reduction among the subcortical structures (Fjell et al., 2013). Changes in brain volume constitute a dynamic process with a large number of potential influencing factors, which should ideally be monitored by using longitudinal methods with high density assessment. These more complex and sophisticated analytical methods, as well as generating a large amount of data, can provide a deeper understanding of particular issues (Raz and Lindenberger, 2011). Within the age range of 19 to 86 years, we found an accelerated volume loss with aging. Strikingly, this process proved to occur earlier in females, while it occurred at a later time but with a faster pace in males. This may be closely related to the differential effects of stress on affected memory functions in males and females and stress-impaired spatial memory in females but not in males (Guenzel et al., 2014). The differences may be due to sex-dependent effects of stress on memory, particularly hippocampus-dependent memory, and stress may enhance hippocampus-dependent memory in males but not in females (Andreano and Cahill, 2006). Sex differences in the impact of stress on hippocampus-dependent memory are related to different concentrations of sex hormones, which are known to affect the response to stress (Galea et al., 2014). For example, hippocampal long-term potentiation patterns vary across the estrous cycle, and estradiol enhances hippocampal long-term potentiation in males (Foy et al., 2004). We also found that the hippocampal volume in females decreased more
quickly than males after 50 years of age, which may be due to
decrease in hormone levels. These findings emphasize that
future studies need to measure or experimentally manipulate
sex hormone concentrations to assess their role in the sex-
dependent effects of acute stress on memory dependent on the
hippocampus.

In addition to the hippocampus, another important structure
among the medial temporal lobe (MTL) structures was the
amygdala. Many studies have found the role of the amygdala in
emotional memory, emotional facial expression recognition, and
emotional auditory recognition (Adolphs et al., 1994; Cahill et al.,
1996; Scott et al., 1997), which also together with hippocampus
moderate learning and memory. We found that the volume
changes in the bilateral amygdala fit quadratic models. Further
analysis found that the trajectories were different in females and
males; the former decreases with aging, while the latter follow
quadratic models and reached peaks at 26.40 and 32.63 years
of age in the left and right hemisphere, respectively. Our
results showed that females were more easily impaired, which
may be the result of female-specific biological vulnerability and
stress-related environmental factors (Kornstein et al., 2000).
Epidemiological studies have consistently demonstrated sex
differences in the prevalence of depression, e.g., two times
higher for women than men (Weissman et al., 1993). The
amygdala is usually considered to be the basic structure related
to emotional evaluation. In the study of neuromental disorders,
the amygdala is often located as the reference area. The amygdala
plays a critical role in the etiology of depression, and a recent
neuroimaging study found that individuals with depressive
disorder displayed significantly decreased GM volume in the
amygdala (Yang et al., 2017) and a meta-analysis also found
that patients with higher Hamilton Depression Rating Scale
scores were significantly more likely to present reduced GM
volumes in the right amygdala (Zhang et al., 2016). We also
found that males have a faster rate of atrophy in the amygdala
after approximately 60 years. Although an understanding of the
changes in the volume of the amygdala has not yet been clarified,
the changes in hormone levels and the ensuing sensitivity of the
brain to hormone effects are the most certain. Sex hormones
have been found to severely affect the maturation of areas
of amygdala. For instance, it has been confirmed that higher
circulating testosterone levels correlated positively with amygdala
volume (Scott et al., 1991). Testosterone concentrations in
men decrease with increasing age, and a significant proportion
of men over 60 years of age have circulating testosterone
concentrations in the range conventionally considered to be
hypogonadal (Harman et al., 2001). This is a reasonable
explanation for the rapid rate of reductions in the volume of the
amygdala in older males.

LIMITATIONS

There are several limitations in the study. The very small sample
of 80–89 (with only one subject for two sites) is really a worry;
therefore, we add sensitivity analysis excluding the oldest age
range. As mentioned above, the type and size of volume change
may depend on the age range of the study. This study was a
cross-sectional study comparing young and elderly subjects
with an average age of 48.56. Therefore, the cohort effect may
have affected the morphological characteristics. The nutritional
status, education, health, and social interactions have basically
changed within 19–86 years. At the same time, there is much
evidence that these factors affect the anatomical structure of the
brain (Pannacciulli et al., 2006; Taki et al., 2006). Therefore, we
cannot rule out that our results were affected at least to some
extent by these factors. Longitudinal research will help to control
these cohort effects. However, it is almost impossible to carry
out such a longitudinal MRI study that covers the age range of
our study. Some evidence has suggested that cross-sectional
and longitudinal samples produce similar age-related patterns
(Fjell et al., 2013). However, a lack of consensus was observed
across different longitudinal studies. For example, according to
some longitudinal studies, the basal ganglia GM is at the highest
volume in childhood (Mills et al., 2016), but according to other
studies, the peak value is in adolescence (Lenroot et al., 2007).
Therefore, the longitudinal or cross-sectional nature of the data
is another factor that introduces variability, but it is not the
only factor that explains the different results reported in the
literature. In addition, a follow-up study could be conducted with
a wider range of lifespan data that includes teenagers (below
19 years of age), and such a study is necessary to understand
the effects of age and sex on the volume of these nuclei.
In the present study, we were concerned with identifying a
starting point of the aging process; perhaps we could identify the
inflection point between maturing and aging in the wider range
of lifespan data.

CONCLUSION

In a large cross-sectional data across the adult lifespan, we
examined the influence of sex and age on the volume of
subcortical structures, and the interactions of age × sex. Through
an aging and sex analysis, the results suggested that compared
with females, males have a faster reduction in the volume of
the right putamen, right pallidum, and right thalamus,
while aging occurred later but also faster in the left thalamus,
unilateral hippocampus, and amygdala. Interestingly, we found
the inflection points based on the quadratic model for the
change in volume in the thalamus, unilateral hippocampus,
and amygdala volume, and after this time, rate of the volume change
accelerated with aging; this may have resulted from stronger
work pressures in middle-aged men and low levels of testosterone
in older adults. The finding of an age and sex interaction in
individual subcortical structure supports the effect of sex on
psychopathology associated with reduced cognitive reserve or
depression sickness, especially in degenerative encephalopathy
in the elderly. Our findings are critical to the study of the
incidence and prevalence of dementia and depression during
aging in both men and women. Future investigations into the
function and behavior of more precisely identified subcortical
structures may have an impact on the prevention and treatment
of related diseases.
DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data can be found here: http://www.brain-development.org.

AUTHOR CONTRIBUTIONS

YW analyzed the data and wrote the draft of the manuscript. CZ, QX, JL, and MH amended and proofread the draft of the manuscript. CZ and QX participated in the discussion and offered some good ideas. All authors reviewed the manuscript.

REFERENCES

Adolphs, R., Tranel, D., Damasio, H., and Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672. doi: 10.1038/372669a0

Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. doi: 10.1146/annurev.ne.09.030186.002041

Allen, J. S., Bruss, J., Brown, C. K., and Damasio, H. (2005). Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol. Aging 26, 1245–1260. doi: 10.1016/j.neurobiolaging.2005.05.023

Andreeno, J. M., and Cahill, L. (2006). Glucocorticoid release and memory consolidation in men and women. Psychol. Sci. 17, 466–470. doi: 10.1111/j.1467-9280.2006.01729.x

Bonifazi, P., Erramuzpe, A., Diez, I., Gabilondo, I., Boisgontier, M., Pauwels, L., et al. (2017). What the structural–functional connection reveals about brain aging: the key role of the fronto-striatal-thalamic circuit and the rejuvenating impact of physical activity. bioRxiv 183393, doi: 10.1101/183393

Bourque, M., Dluzen, D. E., and Di Paolo, T. (2009). Neuroprotective actions of sex steroids in Parkinson’s disease. Front. Neuroendocrinol. 30:142–157. doi: 10.1016/j.yfrne.2009.04.014

Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., et al. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl. Acad. Sci. U.S.A. 93, 8016–8021. doi: 10.1073/pnas.93.15.8016

Charlton, R. A., Barrick, T. R., Lawes, I. N., Markus, H. S., and Morris, R. G. (2009). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 48, 29–36. doi: 10.1016/j.neuroimage.2009.06.035

Clark, C. R., Paul, R. H., Williams, L. A., Arns, M., Fallahpour, K., Handmer, C., et al. (2006). Standardized assessment of cognitive functioning during development and aging using an automated touchscreen battery. Arch. Gen. Neuropsychol. 21, 449–467. doi: 10.1016/j.agnet.2006.06.005

Coffey, C. E., Luck, J. F., Saxton, J. A., Ratcliff, G., Unitas, L. J., Billig, B., et al. (1998). Sex differences in brain aging: a quantitative magnetic resonance imaging study. Arch. Neurol. 55, 169–179. doi: 10.1001/archneur.55.2.169

Colliot, O., Chetelat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., et al. (2008). Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology 248, 194–201. doi: 10.1148/radiol.2481070676

Colom, R., Stein, J. L., Rajagopalan, P., Martinez, K., Hermel, D., Wang, Y., et al. (2013). Hippocampal structure and human cognition: key role of spatial processing and evidence supporting the efficiency hypothesis in females. Intelligence 41, 129–140. doi: 10.1016/j.intell.2013.01.002

Cowell, P. E., Sluming, V. A., Wilkinson, I. D., Cezayirli, E., Romanowski, C. A., Webb, J. A., et al. (2007). Effects of sex and age on regional prefrontal brain volume in two human cohorts. Eur. J. Neurosci. 25, 307–318. doi: 10.1111/j.1460-9568.2006.05281.x

Dubois, B., Feldman, H. H., Jacova, C., Dekosky, S. T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746. doi: 10.1016/S1474-4422(07)70178-3

Fama, R., and Sullivan, E. V. (2015). Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci. Biobehav. Rev. 54, 29–37. doi: 10.1016/j.neubiorev.2015.03.008

Filippek, P. A., Richelme, C., Kennedy, D. N., and Caviness, V. S. Jr. (1994). The young adult human brain: an MRI-based morphometric analysis. Cereb. Cortex 4, 344–360. doi: 10.1093/cercor/4.4.344

Fjell, A. M., and Walhovd, K. B. (2010). Structural brain changes in aging: causes, causes and cognitive consequences. Rev. Neurosci. 21, 187–221. doi: 10.1515/REVNEURO.2010.21.3.187

Fjell, A. M., Walhovd, K. B., Westlye, L. T., Osby, Y., Tønnes, C. K., Kernigan, T. L., et al. (2010). When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. NeuroImage 50, 1376–1383. doi: 10.1016/j.neuroimage.2010.01.061

Fjell, A. M., Westlye, L. T., Grydeland, H., Amlien, I., Espeseth, T., Reinvang, I., et al. (2013). Critical ages in the life course of the adult brain: nonlinear subcortical aging. Neurobiol. Aging 34, 2239–2247. doi: 10.1016/j.neurobiolaging.2013.04.006

Fontenos, A. F., Snyder, A. Z., Girton, L. E., Morris, J. C., and Buckner, R. L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology 64, 1032–1039. doi: 10.1212/01.WNL.0000154530.72969.11

Foy, M., Baudry, M., and Thompson, R. (2004). Estrogen and hippocampal synaptic plasticity. Neuron Glia Biol. 1, 327–338. doi: 10.1017/S1740925X05000165

Galea, L. A., Leuner, B., and Slattery, D. A. (2014). Hippocampal plasticity during the peripartum period: influence of sex steroids, stress and aging. J. Neuroendocrinol. 26, 641–648. doi: 10.1111/jne.12177

Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N., Friston, K. J., and Frackowiak, R. S. (2001b). Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage 14, 685–700. doi: 10.1006/nimg.2001.0857

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., and Frackowiak, R. S. (2001a). Hippocampus volume change in healthy adults. Psychiatry Res. 203, 38–45. doi: 10.1016/j.psychres.2011.09.014

Goto, M., Abe, O., Miyati, T., Inano, S., Hayashi, N., Aoki, S., et al. (2011). Accelerated hippocampal volume reduction in post-menopausal women: an additional study with Atlas-based method. Radiol. Phys. Technol. 4, 185–188. doi: 10.1007/s12194-011-0120-7

FUNDING

This research was supported by the National Natural Science Foundation of China (No. 31662083) and the Humanities and Social Science Program of Ministry of Education in China (No. 18YJA90018).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnagi.2019.00259/full#supplementary-material
Greenberg, D. L., Messer, D. F., Payne, M. E., MacFall, J. R., Provence, J. M., Steffens, D. C., et al. (2008). Aging, gender, and the elderly adult brain: an examination of analytical strategies. *Neurobiol. Aging* 29, 290–302. doi: 10.1016/j.neurobiolaging.2006.09.016

Guenzel, F. M., Wolf, O. T., and Schwabe, L. (2014). Sex differences in stress effects on response and spatial memory formation. *Neural Plasticity* 2014, 1–9. doi: 10.1155/2014/947054

Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hugdett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. *J. Neurosci.* 19, 4065–4072. doi: 10.1523/JNEUROSCI.19-10-04065.1999

Harman, S. M., Metter, E. J., Tobin, J. D., Pearson, J., Blackman, M. R., and Baltimore Longitudinal Study of Aging, (2001). Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. *J. Clin. Endocrinol. Metab.* 86, 724–731. doi: 10.1210/jcem.86.2.7219

Hughes, E. J., Bond, J., Svrckova, P., Makropoulos, A., Ball, G., Sharp, D. J., et al. (2012). Regional changes in thalamic shape and volume with increasing age. *Neuroimage* 63, 1134–1142. doi: 10.1016/j.neuroimage.2012.07.043

Jancke, L., Mérillat, S., Liem, F., and Hanggi, J. (2015). Brain size, sex, and the aging brain. *Hum. Brain Mapp.* 36, 150–169. doi: 10.1002/hbm.22619

Jones, C. M., Braithwaite, V. A., and Healy, S. D. (2003). The evolution of sex differences in spatial ability. *Behav. Neurosci.* 117, 403–411. doi: 10.1037/0735-7044.117.3.403

Kavé, G., Shrira, A., Palgi, Y., Spalter, T., Ben-Ezra, M., and Shmotkin, D. (2012). Formal education level versus self-rated literacy as predictors of cognitive aging. *J. Gerontol. B Psychol. Sci. Soc. Sci.* 67, 697–704. doi: 10.1093/geronb/gbt031

Kornstein, S. G., Schatzberg, A. F., Thase, M. E., Yonkers, K. A., McCullough, J. P., Keitner, G. I., et al. (2000). Gender differences in chronic major and double depression. *J. Affect. Disord.* 59, 1–11. doi: 10.1016/S0165-0327(00)00128-3

Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. *Neuroimage* 36, 1065–1073. doi: 10.1016/j.neuroimage.2007.03.053

Li, W., van Tol, M. J., Li, M., Miao, W., Jiao, Y., Heine, H. J., et al. (2014). Regional specificity of sex effects on subcortical volumes across the lifespan in healthy aging. *Hum. Brain Mapp.* 35, 238–247. doi: 10.1002/hbm.22168

Liu, T., Wen, W., Zhu, W., Trollor, J., Peppermund, S., Crawford, J., et al. (2010). The effects of age and sex on cortical sulci in the elderly. *Neuroimage* 51, 19–27. doi: 10.1016/j.neuroimage.2010.02.016

Luders, E., Gaser, C., Narr, K. L., and Toga, A. W. (2009). Why sex matters: brain size independent differences in gray matter distributions between men and women. *J. Neurosci.* 29, 14265–14270. doi: 10.1523/JNEUROSCI.2261-09.2009

Manjila, J. V., and Coupe, P. (2016). volBrain: an online MRI brain volumetry system. *Front. Neurosci.* 10.3389/neuro.10.030.2016

Metzger, C. D., Eckert, U., Steiner, J., Sartorius, A., Buchmann, J. E., Studler, I., et al. (2010). High field FMRI reveals thalamocortical integration of segregated cognitive processes in the human brain. *Hum. Brain Mapp.* 33, 1246–1252. doi: 10.1002/hbm.21283

Raz, N., Rodrigo, M. N., Head, K. M., and Acker, J. D. (2004a). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. *Neurobiol. Aging* 25, 377–396. doi: 10.1016/j.neuroimage.2013.09.060

Raz, N., Rodrigo, M. N., Head, K. M., and Acker, J. D. (2004b). Longitudinal effect of the medial temporal lobe: a study of five-year change. *Neurology* 62, 433–438. doi: 10.1212/wnl.0000106466.09835.46

Raz, N., and Lindenberger, U. (2011). Only time will tell: cross-sectional studies offer no solution to the age–brain–cognition triangle: comment on Salthouse (2011). *Psychol. Bull.* 137, 790–795. doi: 10.1037/a0024503

Raz, N., Lindenberger, U., Rodrigo, M. N., Kennedy, K. M., Head, D., Williamson, A., et al. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. *Cereb. Cortex* 15, 1676–1689. doi: 10.1093/cercor/bhi044

Raznahan, A., Shaw, P. W., Lerch, J. P., Clasen, L. S., Greenstein, D., Berman, R., et al. (2014). Longitudinal four-dimensional mapping of subcortical anatomy in human development. *Proc. Natl. Acad. Sci. U.S.A.* 111, 1592–1597. doi: 10.1073/pnas.1316911111

Rijpma, M., Everaerd, D., van der Pol, C., Franke, B., Tendolkar, I., and Fernandez, G. (2012). Normal sexual dimorphism in the human basal ganglia. *Hum. Brain Mapp.* 33, 1246–1252. doi: 10.1002/hbm.21283

Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., et al. (2014). A meta-analysis of sex differences in human brain structure. *Neurosci. Biobehav. Rev.* 39, 34–50. doi: 10.1016/j.neubiorev.2013.12.004

Scott, S. A., DeKosky, S. T., and Scheff, S. W. (1991). Volumetric atrophy of the amygdala in Alzheimer's disease: quantitative serial reconstruction. *Neurology* 41, 351–356. doi: 10.1212/wnl.41.3.351

Scott, S. K., Young, A. W., Calder, A. J., Hellawell, D. J., Aggleton, J. P., and Johnsson, M. (1997). Impaired auditory recognition of fear and anger following bilateral amygdala lesions. *Neurology* 49, 1240–1247. doi: 10.1212/wnl.49.7.1240

Silver, H., Goodman, C., Gur, R. C., Gur, R. E., and Bilker, W. B. (2011). 'Executive' functions and normal aging: selective impairment in conditional exclusion compared to abstraction and inhibition. *Dement. Geriatr. Cogn. Disord.* 31, 53–62. doi: 10.1159/000322568

Taber, K. H., Murphy, D. B., Blühto-Jones, M. M., and Hurley, R. A. (2001). An update on estrogen: higher cognitive function, receptor mapping, neurotrophic effects. *J. Neuropsychiatry Clin. Neurosci.* 13, 313–317. doi: 10.1176/jnp.13.3.313

Takahashi, R., Ishii, K., Kakigi, T., and Yokoyama, K. (2011). Gender and age differences in normal adult human brain: voxel-based morphometric study. *Hum. Brain Mapp.* 32, 1050–1058. doi: 10.1002/hbm.21088

Taki, Y., Kinomura, S., Sato, K., Goto, R., Inoue, K., Okada, K., et al. (2006). Both global gray matter volume and regional gray matter volume negatively correlate with lifetime alcohol intake in non-alcohol-dependent Japanese men: a volumetric analysis and a voxel-based morphometry. *Alcohol Clin. Exp. Res.* 30, 1045–1050. doi: 10.1111/j.1530-0276.2006.00118.x

Tang, T., Jiao, Y., Wang, X., and Lu, Z. (2013). Gender versus brain size effects on subcortical gray matter volumes in the human brain. *Neurosci. Lett.* 556, 79–83. doi: 10.1016/j.neulet.2013.09.060
Van Der Werf, Y. D., Tisserand, D. J., Visser, P. J., Hofman, P. A., Vuurman, E., Uylings, H. B., et al. (2001). Thalamic volume predicts performance on tests of cognitive speed and decreases in healthy aging: a magnetic resonance imaging-based volumetric analysis. *Brain Res. Cogn. Brain Res.* 11, 377–385. doi: 10.1016/S0926-6410(01)00010-6

Volkow, N. D., Wang, G. J., Fowler, J. S., and Tomasi, D. (2012). Addiction circuitry in the human brain. *Annu. Rev. Pharmacol. Toxicol.* 52, 321–336. doi: 10.1146/annurev-pharmtox-010611-134625

Walhovd, K. B., Fjell, A. M., Reinvang, I., Lundervold, A., Dale, A. M., Eilertsen, D. E., et al. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. *Neurobiol. Aging* 26, 1261–1270. doi: 10.1016/j.neurobiolaging.2005.05.020

Walhovd, K. B., Westlye, L. T., Amlie, I., Espeseth, T., Reinvang, I., Raz, N., et al. (2011). Consistent neuroanatomical age-related volume differences across multiple samples. *Neurobiol. Aging* 32, 916–932. doi: 10.1016/j.neurobiolaging.2009.05.013

Wang, Y., Xu, Q., Li, S., Li, G., Zuo, C., Liao, S., et al. (2018). Gender differences in anomalous subcortical morphology for children with ADHD. *Neurosci. Lett.* 665, 176–181. doi: 10.1016/j.neulet.2017.12.006

Weissman, M. M., Bland, R., Joyce, P. R., Newman, S., Wells, J. E., and Wittchen, H. U. (1993). Sex differences in rates of depression: cross-national perspectives. *J. Affect. Disord.* 29, 77–84. doi: 10.1016/0165-0327(93)90025-F

Wierenga, L., Langen, M., Ambrosino, S., van Dijk, S., Oranje, B., and Durston, S. (2014). Typical development of basal ganglia, hippocampus, amygdala and cerebellum from age 7 to 24. *Neuroimage* 96, 67–72. doi: 10.1016/j.neuroimage.2014.03.072

Xu, J., Kobayashi, S., Yamaguchi, S., Iijima, K., Okada, K., and Yamashita, K. (2000). Gender effects on age-related changes in brain structure. *AJNR Am. J. Neuroradiol.* 21, 112–118. doi: 10.11501/3179834

Yang, J., Yin, Y., Svob, C., Long, J., He, X., Zhang, Y., et al. (2017). Amygdala atrophy and its functional disconnection with the cortico-striatal-pallidal-thalamic circuit in major depressive disorder in females. *PLoS One* 12:e0168239. doi: 10.1371/journal.pone.0168239

Zhang, H., Li, L., Wu, M., Chen, Z., Hu, X., Chen, Y., et al. (2016). Brain gray matter alteration in first episodes of depression: a meta-analysis of whole-brain studies. *Neurosci. Biobehav. Rev.* 60, 43–50. doi: 10.1016/j.neubiorev.2015.10.011

Ziegler, G., Dahnke, R., Jancek, L., Yotter, R. A., May, A., and Gaser, C. (2012). Brain structural trajectories over the adult lifespan. *Hum. Brain Mapp.* 33, 2377–2389. doi: 10.1002/hbm.21374

Zubieta, J. K., Dannals, R. F., and Frost, J. J. (1999). Gender and age influences on human brain mu-opioid receptor binding measured by PET. *Am. J. Psychiatry* 156, 842–848. doi: 10.1176/ajp.156.6.842

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Wang, Xu, Luo, Hu and Zuo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.