Table S1. The Oligonucleotide primers used in this study

PCR method	Primer name	Primer sequences(5'→3')	Reference
ERIC-PCR	ERIC1R	ATGTAAGCTCTGGGGATTCAC	(1)
	ERIC2	AAGTAAGTGACCTGGGAGCG	(1)
detection of ESBL genes	CTX-M-1-F	GCTGTGGTTAGGAAGTGTC	(2)
	CTX-M-1-R	CCATTGCCGAGGTAAGAG	(2)
	CTX-M-9-F	GCAGATAATACGCAGGGT	(2)
	CTX-M-9-R	CGGGGTCGGTGATGCTCT	(2)
phylogenetic classification	chuA.1b	ATGGTACCGGACGAAACAC	(3)
	chuA.2	TGCCGCCAGTACAAAAGCA	(4)
	yjaA.1b	CAAACGTAAGTGTCAGGAG	(3)
	yjaA.2b	AATGCGTTCTCTAACCTGT	(3)
	TspE4C2.1b	CACTATTGTAAGGTACC	(3)
	TspE4C2.2b	AGTTTAATCTGGCAGGTG	(3)
	AceK.f	AACGCTATTGCGCACCTTG	(3)
	ArpA1.r	TCTCCCAACTACGTACGCT	(5)
	ArpAgpE.f	GATTCCATCTTTGCTAACATAC	(6)
	ArpAgpE.r	GAAAGAAAAAGAATACCCAAA	(6)
	trpAgpC.1	AGGGGGTATGCCCCAGTTC	(6)
	trpAgpC.2	TCTGGCGCCGTCACGCCC	(6)
MLST-PCR	ST73_for	TGGTTTTACCATTTTTGTC	(8)
	ST73_rev	GGAATCGGTTGATGTCGCT	(8)
	ST131_for	GACTGCATTTTGTCGCAATA	(8)
	ST131_rev	CCGGCGGCATACATAATGAAA	(8)
	ST95_for	ACTAATACGGAAGTGGCGAAG	(8)
	ST95_rev	ATCAGGCCCATTATATCAGT	(8)
	ST69_for	ATCTGAGGGCAAAACACAT	(8)
	ST69_rev	AGAGAAAAGGCGCTTCAGAAT	(8)
	adk_F	ATTTGCTTGGCGCTCCGGG	(9)
	adk_R	CGTGCAACTCTCTCGGTAAT	(9)
	fumC_F	TCAGGACACGGTACGCTTC	(9)
	fumC_R	GACCGCAACCGAAGATTG	(9)
	gyrB_F	TCGGCGACACGAGTACGCG	(9)
gyrB_R ATCAGGCCTTCACGCACATC (9)

icd_F ATGGAAAGTCAAAGCTAGTGTGCCTGGCACA (9)
icd_R GGACGCAGCAGGATTCTGTT (9)

mdh_F1 AGCGCGTCTTGTTCATACGC (9)
mdh_R1 CAGGTTCAGAAGCTCTCTCTCTGT (9)
purA_F1 TCGGTAACGGTTGTGGTGTGCTG (9)
purA_R CATACGGTAAGGCACGGGACA (9)

recA_F CGCATTGCTTACACACCTGACCA (9)
recA_R TCGTCAAAATCTACGGGACCAGA (9)

VF determination
afa1 GCTGGGGCAGCAAAACTGATAATCTC (10)
afa2 CATCAAGGCTGTGTTGTCGTCGCCG (10)
fimH_F TGCAGAGAAGGATTGAGGCTCTTAC (11)
fimH_R GCGAGTCACCTGCCTCGGTGA (11)
sfa1 CTCGAGAGAAGGATTGAGGCTCTTAC (10)
sfa2 CCGAGAGAAGGATTGAGGCTCTTAC (10)
pap1 GACGGCTGTACTGAGCCTGCTG (10)
pap2 ATATCCTTTCTGAGGATTGCAATA (10)
papG2_F GGAGATGAGGCGGCCCTTTGAT (12)
papG2_R CCGGCCCCCAAGTAACCTCG (12)
iha_F CTGGGCAGCAAACTGATAATCTC (13)
iha_R TCCTTAAGCTCCCGCGTGA (13)
Aer1 TACCGGATTGTCATAAGTTGCAGAAGG (14)
Aer2 AATATTGCTTCTCCAGTGCTCAGAAGG (14)
AerJ_F GGCTGGACATCATGAGGCTGCTG (15)
AerJ_R CGTTCGGAACAGGGTGAGGAGG (15)
fyuA_F TGATTAAAGCGGCACGAGGAA (11)
fyuA_R CAGCGAGAGAAGGATTGAGGCTCTTAC (16)

iroN_F AAGTCAAAGGCGGTGGTGGTGGCAGG (17)
iroN_R GACGCCCAGCATAAGGCAGAGG (17)
cnf1 AAGTCAAAGGCGGTGGTGTCCTGCTG (14)
cnf2 CATTCAGAGTGCTGCTCAGCTATTATT (14)
sat_F GTTGTCTGCTGCTGCTGCTGCTG (18)
sat_R AATAGATTGCTCCAGAGG (18)
hly_F AACAGGAGACGGCAGACTGTTGGTGCTG (14)
hly_R ACCATATAAGCGGCATCCTCCAGTCA (14)
ERIC-PCR: enterobacterial repetitive intergenic consensus polymerase chain reaction, ESBL: extended-spectrum β-lactamase, VF: virulence factor, MLST: multilocus sequence typing
Isolate Number	ST	phylogenetic group	biofilm formation (LB)	biofilm formation (BHI)	possession of ESBL gene
1	ST457	F	-	-	-
2	ST569	B2	-	-	-
3	ST362	E	-	-	-
4	ST1193	B2	+	-	-
5	ST73	B2	+	-	-
6	ST131	B2	-	+	CTX M-9
7	ST95	B2	+	-	-
8	ST83	B2	-	-	-
9	ST95	B2	-	-	-
10	ST131	B2	+	-	CTX M-1
11	ST73	B2	+	-	-
12	ST357	B2	-	-	-
13	ST95	B2	+	-	-
14	ST95	B2	+	-	-
15	ST131	B2	+	+	-
16	ST95	B2	-	-	-
17	ST73	B2	-	-	-
18	ST1193	B2	-	-	CTX M-9
19	ST73	B2	-	-	-
20	ST131	B2	-	-	-
21	ST131	B2	-	-	-
22	ST73	B2	+	-	-
23	ST131	B2	-	+	-
24	ST6769	E	-	-	-
25	ST95	B2	+	+	-
26	ST131	B2	-	-	-
27	new ST	B2	+	-	-
28	ST1193	B2	-	-	-
29	ST131	B2	-	-	-
30	ST131	B2	+	+	-
31	ST95	B2	+	-	-
32	ST131	B2	-	-	CTX M-1
33	ST95	B2	+	-	-
34	ST70	B2	-	+	-
35	ST131	B2	+	+	CTX M-9
36	ST131	B2	-	+	CTX M-9
37	ST131	B2	-	-	-
38	ST131	B2	+	+	CTX M-9
	ST	Type	ESBL	CTX M	
---	-----	------	------	-------	
39	ST405	E	-	+	CTX M-1
40	ST95	B2	+	+	-
41	ST131	B2	+	+	CTX M-9
42	ST131	B2	+	+	CTX M-9
43	ST95	B2	+	+	-
44	ST69	E	-	-	-
45	ST73	B2	+	+	-
46	ST62	F	-	-	-
47	ST73	B2	-	+	-
48	ST131	B2	-	-	-
49	ST131	B2	-	+	CTX M-9

ST, sequence type, ESBL, extended-spectrum β-lactamase, BHI, brain heart infusion
Table S3: Distribution of STs, phylogenetic group, biofilm formation ability, and possession of ESBL gene of each genetically discordant *E. coli* strain

Isolate Number	ST	phylogenetic group	biofilm formation (LB)	biofilm formation (BHI)	possession of ESBL gene
50	ST357	B2	-	-	-
51	ST88	A	-	+	-
52	ST95	B2	+	+	-
53	new ST	E	-	-	-
54	ST4623	B1	-	-	-
55	ST38	E	+	-	CTX M-9
56	ST453	B1	-	-	-
57	new ST	B1	-	-	-
58	new ST	B2	-	-	-
59	ST1611	B1	-	+	-
60	ST1193	B2	-	-	-
61	ST648	F	-	-	-
62	ST538	B2	+	+	CTX M-9
63	ST117	F	-	+	-
64	ST131	B2	-	+	-
65	ST162	B1	-	-	-
66	ST95	B2	+	-	-
67	ST131	B2	-	-	-
68	ST131	B2	+	+	-
69	ST297	B1	-	-	-
70	ST95	B2	+	+	-

ST, sequence type, ESBL, extended-spectrum \(\beta\)-lactamase, BHI, brain heart infusion
Table S4: Distribution of 20 virulence factor genes and VF scores of each genetically identical *E. coli* strain

Isolate Number	afaB/C	iucD	CNF1	sfaD/E	papC	fyuA	cvaC	fimH	iutA	iheA	iha	ompT	KpsMT2	papG2	hlyA	TcpC	usp	iraN	sat	traT	VF score		
1	-	+	-	-	+	-	-	+	-	+	-	-	-	-	-	-	-	+			6		
2	-	-	-	-	-	+	-	+	-	-	+	-	-	-	-	-	-	-			5		
3	-	+	-	-	-	+	-	-	+	-	-	+	-	-	-	-	+	+			6		
4	-	+	-	-	-	+	-	-	+	-	-	+	-	-	-	-	+	-			8		
5	-	+	+	+	+	+	-	+	-	-	+	+	+	+	+	+	+	+			15		
6	-	+	-	-	-	+	-	-	+	-	-	-	+	-	-	-	+	-			8		
7	-	-	-	-	+	-	-	+	-	-	+	-	+	-	-	-	-	-			8		
8	-	-	+	+	+	+	-	+	-	-	-	+	+	+	+	+	+	+			8		
9	-	-	-	-	+	-	-	+	-	-	+	-	+	-	-	-	-	-			12		
10	-	+	+	-	-	+	-	+	-	-	+	-	+	-	-	-	-	+			12		
11	-	+	+	+	+	-	+	+	-	+	+	-	+	+	+	+	+	+			16		
12	-	-	-	-	+	-	-	+	-	-	+	-	-	-	-	-	-	+			6		
13	-	-	+	+	+	-	-	+	-	-	+	-	+	+	+	+	+	-			6		
14	-	-	-	-	+	-	-	+	-	-	+	-	-	-	-	-	-	-			11		
15	-	+	-	-	-	+	-	+	-	-	-	+	-	-	-	-	+	+			8		
16	-	-	+	+	+	-	-	-	-	-	-	+	+	-	-	-	-	+			8		
17	-	+	+	-	+	-	-	+	-	-	+	+	+	+	+	+	+	-			14		
18	-	+	+	-	-	+	-	+	-	-	+	+	+	+	+	+	+	-			8		
19	-	-	-	-	-	+	-	-	+	-	-	-	+	-	-	-	-	-			5		
20	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	+	+			9		
21	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	+	+			8		
22	-	+	+	+	+	+	-	+	-	-	+	+	+	+	+	+	+	+			16		
23	+	+	-	-	-	+	-	+	-	-	+	+	+	+	+	+	+	+			10		
24	-	+	-	-	-	-	-	+	-	-	+	-	-	-	-	-	-	-			5		
25	-	-	-	+	+	+	-	-	+	-	+	-	-	-	-	-	+	+			10		
26	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	+	-			8		
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
---	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----	----
	-	-	-	-	-	+	-	+	-	+	-	-	+	-	-	-	+	-	+	-	+	7	
28	-	+	-	-	-	+	-	+	-	+	-	-	+	-	-	-	+	-	+	-	+	8	
29	-	+	-	-	-	+	-	+	-	+	-	-	+	-	-	-	+	-	+	-	+	8	
30	-	-	-	-	-	+	-	-	-	+	-	-	-	-	-	-	+	-	-	-	+	5	
31	-	-	-	-	+	+	-	-	-	+	-	+	-	+	-	-	+	-	+	-	+	8	
32	+	+	-	-	-	+	-	+	-	+	-	-	+	-	-	-	-	-	-	+	+	10	
33	-	-	-	-	+	+	-	+	-	-	+	-	+	-	-	-	+	-	-	-	+	7	
34	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	3	
35	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	+	-	-	+	+	9	
36	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	+	-	-	+	+	+	9	
37	+	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	-	-	+	+	+	10	
38	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	-	-	+	+	+	8	
39	-	+	-	-	-	+	-	+	-	-	+	-	-	-	-	-	-	-	-	+	+	6	
40	-	-	+	+	+	+	-	+	-	-	-	+	-	-	+	-	+	+	-	+	11		
41	-	+	-	-	+	+	-	+	-	-	-	+	-	-	-	+	+	-	+	+	10		
42	-	+	-	-	-	+	-	+	-	-	-	+	-	-	-	+	+	-	+	+	9		
43	-	-	+	-	+	+	-	-	-	-	-	-	+	-	-	-	-	-	+	+	-	7	
44	-	+	-	-	-	+	+	+	-	-	+	-	-	-	-	+	-	-	+	-	9		
45	-	-	+	+	+	+	-	-	-	-	-	-	+	+	-	-	+	+	-	-	10		
46	-	+	-	-	+	+	-	+	-	-	-	-	+	-	-	-	-	-	+	+	10		
47	-	+	-	-	+	+	-	+	-	-	-	+	+	+	+	+	-	+	+	+	12		
48	-	+	-	-	-	+	+	-	-	-	-	-	+	-	-	+	-	-	+	+	9		
49	-	-	-	-	-	+	-	+	-	-	-	-	-	-	-	-	-	-	+	-	4		
Table S5: Distribution of 20 virulence factor genes and VF scores of each genetically discordant *E. coli* strain

Isolate Number	afaB/C	iucD	CNF1	sfaD/E	papC	fyuA	cvaC	fimH	iutA	iheA	ompT	KpsMT2	papG2	hlyA	TcpC	usp	iroN	sat	traT	VF score
50	-	-	-	-	+	-	+	-	+	-	-	+	-	-	-	+	-	-	+	6
51	-	+	-	-	-	+	+	+	+	-	-	-	-	-	-	-	+	-	+	8
52	-	-	-	-	+	+	-	-	-	-	-	+	+	-	-	+	-	-	+	7
53	-	-	-	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-	2
54	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	1
55	+	-	-	-	-	-	+	-	-	-	-	-	+	-	-	-	-	-	-	4
56	-	-	-	-	-	+	-	-	-	-	-	-	+	-	-	-	-	-	-	5
57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
58	-	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	1
59	+	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	1
60	+	-	-	-	-	+	+	-	+	-	-	+	-	-	-	+	-	-	+	8
61	-	+	-	-	-	-	+	+	+	-	-	+	+	-	-	-	-	-	+	8
62	-	-	-	-	-	+	-	+	-	-	-	-	-	+	-	-	-	-	-	4
63	-	+	-	-	-	-	+	+	+	-	-	-	+	-	-	-	-	-	+	7
64	+	-	-	-	-	-	+	-	+	-	-	-	-	+	-	+	+	+	+	9
65	-	+	-	-	-	+	-	+	+	-	-	-	-	-	-	-	-	-	+	7
66	-	-	-	-	+	+	-	-	-	-	-	-	+	-	-	+	-	-	+	8
67	+	-	-	-	+	+	-	+	+	-	-	-	-	+	-	+	-	-	+	10
68	+	-	-	-	+	+	-	+	+	-	-	-	-	-	-	+	+	+	+	9
69	-	-	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	-	-	1
70	-	+	-	-	+	+	-	-	-	-	-	-	+	+	-	+	+	+	-	8

VF, virulence factor
References

1. Versalovic J, Koeuth T, Lupski JR. 1991. Distribution of repetitive DNA sequences in
eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res
19:6823-31.

2. Shibata N, Kurokawa H, Doi Y, Yagi T, Yamane K, Wachino J, Suzuki S, Kimura K,
Ishikawa S, Kato H, Ozawa Y, Shibayama K, Kai K, Konda T, Arakawa Y. 2006. PCR
classification of CTX-M-type beta-lactamase genes identified in clinically isolated
gram-negative bacilli in Japan. Antimicrob Agents Chemother 50:791-5.

3. Clermont O, Christenson JK, Denamur E, Gordon DM. 2013. The Clermont Escherichia
coli phylo-typing method revisited: improvement of specificity and detection of new
phylo-groups. Environ Microbiol Rep 5:58-65.

4. Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determination of the
Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555-8.

5. Clermont O, Bonacorsi S, Bingen E. 2004. Characterization of an anonymous molecular
marker strongly linked to Escherichia coli strains causing neonatal meningitis. J Clin
Microbiol 42:1770-2.

6. Lescat M, Clermont O, Woerther PL, Glodt J, Dion S, Skurnik D, Djossou F, Dupont C,
Perroz G, Picard B, Catzfis F, Andremont A, Denamur E. 2013. Commensal
Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant
population structure. Environ Microbiol Rep 5:49-57.

7. Clermont O, Lescat M, O'Brien CL, Gordon DM, Tenaillon O, Denamur E. 2008.
Evidence for a human-specific Escherichia coli clone. Environ Microbiol 10:1000-6.

8. Doumith M, Day M, Ciesielczuk H, Hope R, Underwood A, Reynolds R, Wain J,
Livermore DM, Woodford N. 2015. Rapid identification of major Escherichia coli
sequence types causing urinary tract and bloodstream infections. J Clin Microbiol
53:160-6.

9. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden
MC, Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an
evolutionary perspective. Mol Microbiol 60:1136-51.

10. Le Bouguenec C, Archambaud M, Labigne A. 1992. Rapid and specific detection of the
pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by
polymerase chain reaction. J Clin Microbiol 30:1189-93.

11. Johnson JR, Stell AL. 2000. Extended virulence genotypes of Escherichia coli strains
from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis
181:261-72.

12. Johnson JR, Brown JJ. 1996. A novel multiply primed polymerase chain reaction assay
for identification of variant papG genes encoding the Gal(\(\alpha 1\)-4)Gal-binding PapG adhesins of Escherichia coli. J Infect Dis 173:920-6.

13. Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, Vary JC, Jr., Stell AL. 2000. Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and intN(E. coli), among Escherichia coli isolates from patients with urosepsis. Infect Immun 68:3040-7.

14. Yamamoto S, Terai A, Yuri K, Kurazono H, Takeda Y, Yoshida O. 1995. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol 12:85-90.

15. Johnson JR, Stapleton AE, Russo TA, Scheutz F, Brown JJ, Maslow JN. 1997. Characteristics and prevalence within serogroup O4 of a J96-like clonal group of uropathogenic Escherichia coli O4:H5 containing the class I and class III alleles of papG. Infect Immun 65:2153-9.

16. Schubert S, Rakin A, Karch H, Carmiel E, Heesemann J. 1998. Prevalence of the "high-pathogenicity island" of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480-5.

17. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Fakhr MK, Nolan LK. 2005. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology (Reading) 151:2097-2110.

18. Ananias M, Yano T. 2008. Serogroups and virulence genotypes of Escherichia coli isolated from patients with sepsis. Braz J Med Biol Res 41:877-83.

19. Nakano M, Yamamoto S, Terai A, Ogawa O, Makino SI, Hayashi H, Nair GB, Kurazono H. 2001. Structural and sequence diversity of the pathogenicity island of uropathogenic Escherichia coli which encodes the USP protein. FEMS Microbiol Lett 205:71-6.

20. Huang SH, Wass C, Fu Q, Prasadarao NV, Stins M, Kim KS. 1995. Escherichia coli invasion of brain microvascular endothelial cells in vitro and in vivo: molecular cloning and characterization of invasion gene ibe10. Infect Immun 63:4470-5.

21. Johnson TJ, Wannemuehler Y, Doetkott C, Johnson SJ, Rosenberger SC, Nolan LK. 2008. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J Clin Microbiol 46:3987-96.

22. Cirl C, Wieser A, Yadav M, Duerr S, Schubert S, Fischer H, Stappert D, Wantia N, Rodriguez N, Wagner H, Svanborg C, Miethke T. 2008. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399-406.