A genetic linkage map of black raspberry (*Rubus occidentalis*) and the mapping of *Ag*₄ conferring resistance to the aphid *Amphorophora agathonica*

Jill M. Bushakra¹ · Douglas W. Bryant² · Michael Dossett³ · Kelly J. Vining⁴ · Robert VanBuren² · Barbara S. Gilmore¹,⁵ · Jungmin Lee⁶ · Todd C. Mockler²,⁴ · Chad E. Finn⁷ · Nahla V. Bassil¹

Received: 13 January 2015 / Accepted: 18 May 2015 / Published online: 3 June 2015 © The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract

Key message We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance.

Abstract Black raspberry (*Rubus occidentalis* L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid *Amphorophora agathonica* Hottes, which is a vector for the *Raspberry mosaic virus* complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3–4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F₁ population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other *Rubus* species, and enhancing the black raspberry genome assembly.

Introduction

Genetic linkage map construction of rosaceous crops has been used to understand genetics and as a precursor to enabling molecular breeding for about 20 years. The earliest maps made during the 1990s were constructed mainly by using isozymes, random amplification of polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP), and morphological markers (Chaparro et al. 1994;
Foolad et al. 1995; Hemmat et al. 1994; Rajapakse et al. 1995; Stockinger et al. 1996; Viruel et al. 1995). Advancements in DNA technology in the 2000s led to the rapid development of simple sequence repeat (SSR) markers for de novo map construction (Castro et al. 2013; Celton et al. 2009; Dirlewanger et al. 2004; Fernández-Fernández et al. 2008; Gisbert et al. 2009; Graham et al. 2004; Hibrand-Saint Oyant et al. 2008; Olmstead et al. 2008) as well as their incorporation into existing maps (Aranzana et al. 2003; Dirlewanger et al. 2006; Etienne et al. 2002; Liebhard et al. 2003; Paterson et al. 2013; Pierantoni et al. 2004; Silfverberg-Dilworth et al. 2006; Stafne et al. 2005; Vilanova et al. 2008; Woodhead et al. 2008, 2010). Additional technological advances in high-throughput detection of single-nucleotide polymorphic (SNP) loci using arrays, or genotyping by sequencing (GBS), and the associated improvement of data analysis have made SNP markers increasingly useful for genetic map construction. Recently, linkage maps for several members of the Rosaceae have been constructed using SNP array technology (Anta-Campo et al. 2012; Clark et al. 2014; Frett et al. 2014; Klagges et al. 2013; Montanari et al. 2013; Pirona et al. 2013; Yang et al. 2013).

The genus Rubus L. (Rosaceae, Rosoideae) has an estimated 750 species distributed world-wide (Alice and Campbell 1999; Thompson 1995). Of these, three are of particular commercial importance, red raspberry (R. idaeus L., subgenus Idaeobatus Focke), blackberry (Rubus sp., subgenus Rubus L.), and black raspberry (subgenus Idaeobatus). Genetic linkage maps have been constructed for tetraploid blackberry (Castro et al. 2013), diploid red raspberry (Sargent et al. 2007; Ward et al. 2013; Woodhead et al. 2010), and an interspecific cross between diploid red raspberry and diploid black raspberry (Bushakra et al. 2012). While blackberry and red raspberry are highly heterozygous, black raspberry, particularly R. occidentalis, is highly homozygous (Dossett et al. 2012b). Genetic improvement of blackberry and red raspberry through breeding has been a continual process for decades. For example, from 1994 to 2014, the American Pomological Society’s Fruit and Nut Variety Registers List 38–47 (Clark and Finn 1999, 2002, 2006; Clark et al. 2008, 2012; Daubeney 1997a, b, 1999, 2000, 2002, 2004, 2006, 2008; Finn and Clark 2000, 2004, 2014; Finn et al. 2010; Moore and Kempler 2010, 2012, 2014) records the release of 75 blackberry and hybrid berry and 189 red raspberry cultivars and only three black raspberry cultivars (‘Pequot’, ‘Niwort’, and ‘Explorer’). In addition, ‘Earlysweet’, a selection derived from a purported cross between R. occidentalis and the western black raspberry, R. leucodermis Dougl. ex Torr. & Gray, was released in 1998 (Galletta et al. 1998). Black raspberry figures prominently in the pedigrees of many of the red raspberry cultivars released between 1994 and 2014. Difficulties in improving black raspberry through breeding were first reported by Slate (1933) while attempting to improve purple raspberries. Crossing with other species was proposed as a way to increase genetic diversity in cultivated black raspberry (Drain 1956; Hellman et al. 1982; Slate and Klein 1952), but has met with limited success. Low genetic diversity was proposed by Orecky (1975) as the main reason for lack of development of improved cultivars.

More recent interest in improving black raspberry has been driven by research and commercial interest into its bioactive compounds and their influence on human health, specifically modulation of cancer cell proliferation, inflammation, cellular death, oxidation, etc. (Stoner et al. 2007). Since the 1940s, Oregon has been the primary commercial production region of black raspberry in North America. In 2014, 1650 acres were harvested that earned growers a utilized production value of over US$16.8 million (Anonymous 2015). One hindrance to expanding production is susceptibility of the predominant cultivar Munger to the Raspberry mosaic virus complex vectored by the North American large raspberry aphid, Amorphophora agathonica Hottes (Dossett and Finn 2010). Infection causes a rapid decline of plantings, often with field replacement necessary after only three or four growing seasons (Halgren et al. 2007). In contrast, under perennial production in open fields for processed fruit, plantings of current cultivars of red raspberry are typically kept in the field for 7–8 growing seasons, and plantings of blackberry cultivars can last many decades (C.E. Finn, personal communication). Selection for cultivars with resistance to A. agathonica could significantly increase the longevity of the plants, reduce insecticide use, and therefore improve profitability for the grower and quality of the environment.

A low level of genetic diversity in cultivated black raspberry has been found using molecular tools. Weber (2003), using RAPD markers in 16 black raspberry cultivars, determined a level of similarity of 81%. Two wild accessions and five elite genotypes accounted for more than 50% of the similarity, while the remaining 11 cultivars shared 92% similarity compared to 70% similarity among red raspberry cultivars found by Graham et al. (1994). In 2005, Lewers and Weber used SSR markers from red raspberry and strawberry to evaluate an F₂ population of a red raspberry × black raspberry cross and found that the homozygosity of the black raspberry clone used was 80% and only 40% in the red raspberry clone used. However, wild populations of black raspberry show greater genetic diversity. For example, Nybom and Schaal (1990) sampled black raspberry plants along a roadside in Missouri that were then analyzed by RFLP. They found 17 informative fragments that identified 15 genotypes in the 22 samples collected. Dossett et al. (2012b) used SSR markers to examine...
the genetic diversity among cultivars and wild germplasm. They found that the diversity at 21 loci was much higher among wild germplasm than in the elite cultivars, and that six elite cultivars were identical at these 21 loci.

Genetic diversity in wild black raspberry germplasm as detected by molecular tools (Dossett et al. 2012b; Nybom and Schaal 1990) and through breeding experiments (Dossett et al. 2008) is currently untapped. To address this, Dossett and Finn (2010) canvassed the native range of *R. occidentalis* collecting seed, which was subsequently germinated and evaluated for multiple traits including aphid resistance. From this study, three of 132 wild populations were determined to segregate for resistance to *A. agathonica*. Two populations, ORUS 3817 collected from Maine, and ORUS 3778 collected from Ontario, Canada, were subsequently used to develop populations for genetic mapping and phenotypic analysis. F1 progeny of susceptible cultivars Munger and Jewel crossed with individuals from ORUS 3778 and ORUS 3817 were all resistant to aphids under greenhouse conditions suggesting that the alleles for resistance are dominant and that ORUS 3778 (*Ag4*) and ORUS 3817 (*Ag3*) are homozygous for their respective alleles. Dossett and Finn (2010) originally identified one of the susceptible cultivars used in the crosses as ‘Black Hawk’, however, subsequent fingerprinting work found it to be ‘Jewel’ (Dossett et al. 2012a).

In this paper, we report the analysis of population ORUS 4305, an F1 black raspberry population, raised as one of several populations to investigate genetic sources of resistance to the aphid *A. agathonica* with the intent of mapping the aphid resistance allele *Ag4*. To quickly and efficiently generate markers for mapping we have employed GBS following the protocol established by Elshire et al. (2011) with modifications for *Rubus* (Ward et al. 2013), and anchored the map with SSR markers from a variety of sources. We have placed the phenotypic character of aphid resistance on this linkage map which covers the seven *Rubus* linkage groups (RLG) as defined by Bushakra et al. (2012).

Methods

Plant material

A full-sib (F1) family of 115 individuals was developed from the controlled cross of ORUS 3021-2 (female, susceptible to aphids, postulated genotype *ag4ag4*) × ORUS 4153-1 (male, resistant to aphids, postulated genotype *Ag4Ag4*, Fig. 1). The source of this resistance is from ORUS 3778-1, an accession from wild seed collected in Ontario, Canada (Dossett and Finn 2010). Progeny from this cross were screened for aphid resistance as small seedlings in the greenhouse as described by Dossett and Finn (2010) and followed the expected 1:1 segregation ratio (56 resistant, 59 susceptible, \(\chi^2 = 0.08, P = 0.78 \)).

DNA extraction

Leaf samples were collected, bagged, kept cool, and transported to the laboratory. Leaf tissue aliquots of 30–50 mg were placed in a cluster tube (Corning Life Sciences, Tewksbury, MA, USA) containing a 4-mm stainless steel bead (McGuire Bearing Company, Salem, OR, USA). The samples were frozen in liquid nitrogen and stored at −80 °C until extraction. Frozen tissue was homogenized using the Retsch® MM301 Mixer Mill, (Retsch Inc., Hann, Germany) at a frequency of 30 cycles/s using three 30 s bursts. The E-Z 96® Plant DNA extraction kit (Omega Bio-Tek, Norcross, GA, USA) was used as previously described (Gilmore et al. 2011).

DNA quantification and quality

Genomic DNA was quantified using Quant-iT™ Pico-green® dsDNA Assay kit (Invitrogen, Eugene, OR, USA) following manufacturer’s instructions modified to 100 μl and compared against a λ standard DNA dilution series with a *Victor*V 1420 Multilabel Counter (PerkinElmer, Downers Grove, IL, USA), followed by visualization on 1% agarose gel in 1× TBE (Tris/Borate/EDTA) stained
with ethidium bromide. Samples were stored at −20 °C prior to use.

Marker sources

SSR primer pairs were selected from multiple sources (Table 1). Markers derived from GBS were coded as S with a number indicating the scaffold followed by an underscore and a number indicating the physical SNP position on the scaffold (i.e., S75_381030) (Bryant et al. 2014). Markers developed from the sequencing of paired-end short reads were coded with Ro (R. occidentalis) or Ri (R. idaeus) followed immediately by a number (i.e., Ro11481, Ri13528) (Dossett et al. in press). All other markers are from published sources as indicated in Table 1. Ag4_AphidR is a phenotypic marker for aphid resistance.

An additional 26 SSR and two high-resolution melting (HRM) markers that mapped in multiple populations were identified from the literature (Bushakra et al. 2012; Castillo et al. 2010; Castro et al. 2013; Fernández-Fernández et al. 2013; Graham et al. 2004; Sargent et al. 2007) with the intention of anchoring and orienting the linkage groups to published maps (Table 2).

DNA amplification of SSR markers

DNA amplification was performed on a PTC-225 gradient thermalycler (Bio-Rad, Hercules, CA, USA), a Dyad Peltier thermalycler (Bio-Rad, Hercules, CA, USA), an Eppendorf Mastercycler (Eppendorf, Hamburg, Germany), or a Nexus (Eppendorf, Hamburg, Germany). A fluorescent labeling polymerase chain reaction (PCR) protocol (Schuelke 2000) was used for most SSR primer pairs. The forward (F) primer of each pair was extended on the 5′-end with an M13-TGTAAAACGACGGCCAGTAGC sequence tag to which a universal M13-tagged fluorescent dye label (WellRed D2, D3, D4; Integrated DNA Technologies, Inc., Coralville, IA, USA) was annealed. The touch-down PCR protocol began with an initial denaturation for 3 min at 94 °C followed by 10 cycles of 94 °C for 40 s, 65 °C (decreasing 1 °C every cycle) for 45 s, 72 °C for 45 s; 20 cycles of 94 °C for 40 s, 52 °C for 45 s, 72 °C for 45 s; 10 cycles of 94 °C for 40 s, 53 °C for 45 s, 72 °C for 45 s; followed by a final extension of 72 °C for 30 min. Reactions were performed in a final volume of 10 μl consisting of 6 ng DNA, 1× LightScanner Master Mix, 1 μM each forward and reverse primer. Each well was topped with one drop of mineral oil. The PCR amplification protocol was 94 °C for 30 s, followed by 30 s at the appropriate annealing temperature (57 or 58 °C) and extension at 72 °C for 30 s for 40 cycles. Following a final melting step at 95 °C for 30 s, the samples were cooled to 4 °C until HRM analysis. Amplicon melting occurred on the LightScanner where samples were heated to 98 °C over a period of 8 min with default settings. Analysis was performed using the LightScanner® Instrument & Analysis Software small amplicon genotyping module.

GBS library construction and sequencing

GBS libraries were constructed following Ward et al. (2013) and Elshire et al. (2011). Briefly, 100 ng of genomic DNA per sample were digested with 4 U of ApeKI (New England Biolabs, Ipswich, MA, USA) and then ligated with T4 ligase to 1.8 ng of combined common and unique barcode adapters (Elshire et al. 2011). Annealed and quantitated unique barcode and common adapters were provided by the Buckler Lab for Maize Genetics and Diversity, Cornell University (Ithaca, NY, USA) and Clemson University (Clemson, SC, USA) (Supplementary Table 1).

The GBS libraries were submitted to the Oregon State University Center for Genome Research and Biocomputing...
Table 1 Transferable locus primer sequences used to construct the genetic linkage maps for black raspberry F1 population ORUS 4305

Locus	RLG	3021-2 allele sizes	4153-1 allele sizes	Repeat motif	Forward primer sequence	Reverse primer sequence	Source
ERubLR_SQ07-3_C07_HRM_RLG7	7	NA	NA	NA	GGATCAAGGAGTGAGATGG	CCGTGTTGGTTATGTTG	Bushakra et al. (2012)
Ri_1B16_HRM_RLG7	7	NA	NA	NA	CTTGGGACAGCTTATGCTTTT	AAGAAGAGGGTGGGTTTCA	
Ru_EE284382_HRM_RLG5	5	NA	NA	NA	AGGGAGTGAGGAGAAC	AGGTGAGGAGGAGATGAT	
Ro_CBEa0001L24_SSR	2	275, 277	277, 279	(CCA)₆-(TA)₃	M13-TAAAGAGAAGGAGTTTGGG	GACGTCCTACATTGGGAAGAA	
Ro_CBEa0002P01b_SSR	1	226, 228	228	(TC)₆-(CT)₅	M13-CCTCTCTCTCTCTGGTTTGGG	GCGCTGACACCTAAATGTA	
Ro_CBEa0003K17_SSR	1	307	307, 309	(TC)₆	M13-CCAGGAAAGAAACCTAAGGCG	CTTACCGCTCTTGCTTCAC	
Ro_CBEa0004G23_SSR	4	509	507, 509	(AG)₈	M13-GGCGGCTGAGATTTGTTG	GTCCTCCTGCTTCTGAGC	
Ro_CBEa0009J505_SSR	4	292	292, 294	(CA)₆-(GA)₃	M13-CCACGTCACACCTACAC	TTGCGTCCTGCTACTACAC	
RhM003_SSR_RLG3	3	227, 236	236, 238	(TG)₁₀	M13-CCATCTCAATTCAGTTTCA	AGCGAATCGGTTCTACAGC	
RiM017_SSR	4	212, 214	212 (TG)₉	M13-GAAACAGGTGGAAAGAACTG	CATGTTGACCTAATGTTTGG		
Rh_MEa0006bG05_SSR	6	294, 303	294	(AAG)₈	M13-GAACGACACAGCAAGACTT	GTTCAGGCAAGTCAATGCA	
Rub1C6_SSR	6	244, 260	262, 268	(CT)₁₅	D4-TCTGCTCCTGCATTCTAAGAG	GTTTCAGTAAGCAATGGGAAAGG	
Ro_CBEa0010N20_SSR	4	114, 118	118	(GA)₁₂	M13-GGGGGCTTACATCATCATT	TTCGAGTAAGCTTACCTG	
Ro_CBEa0011M11_SSR	5	243, 245	241, 243	(AG)₁₄	M13-GGCGATACGACACATAAAGG	TCCATTTCCAAAACACATG	
Ri10139_SSR	7	295	295, 314	(TC)₈	M13-GTCTCGGCAAAATATCAAACAA	CAGCAGAAACAGAGAAGAAG	
Ri11086_SSR	2	268, 300	268, 302	(TA)₉	M13-3AATTCTGATGTTGCGGAC	ACAACAGGAAACAGAGAAG	
Ri11795_SSR	3	299, 313	299, 313	(GA)₉	M13-ATCAGACCCATTCTGCTTGGT	GAGGACAGGAGGAAATGAT	
Ri12319_SSR	3	304	292, 304	(TCA)₉	M13-GAGTCTGATACAGACTGAGCCTT	AAGGTGAAAAAGGGAGAAC	
Ri13528_SSR	7	460, 463	463	(TC)₉	M13-CTCTGCTCAACCCATACAG	GGCATTTGGAGATTCTTG	
Ri14075_SSR	2	351, 355	357, 359	(TC)₈	M13-ACAATTTGACCTAGTCATG	CAGACCCATATAATCGT	
Ri16959_SSR	7	283, 286	286	(TC)₆	M13-AAAATGTTGAATGACGGCAG	GGGAAACTGAGAACAGGAAG	
Ri18886_SSR	1	308, 317	314, 317	(ATG)₁₀	M13-CCCAAAAGGAGAAGATTGAC	CGGCTTCTAACAGCGAGTA	
Ri20047_SSR	5	376, 393	376, 405	(CT)₉	M13-CCTGTTTCATATATTTCACCTC	GAGGACAGGCTTGGAGAT	
Ri20466_SSR	2	369	369, 374	(GA)₁₀	M13-GTGGTTTCTGGGGAAAACAGAAG	CGGCTTTCAGTCTCAAG	
Ri3758_SSR	2	392, 406	400, 406	(AT)₁₀	M13-GTGGTTTCTGGGGAAAACAGAAG	CGGCTTTCAGTCTCAAG	
Ri5037_SSR	2	336, 339	359, 359	(GA)₁₀	M13-CAGACGAAACTCCCAACTATA	TCTTGGAAATTTGGGATTTGG	
Ro10488_SSR	2	119	121, 131	(TC)₆-(AC)₄	M13-AGGTGTCATGATGACGAAT	GCTGTAGATTTGGGACTGAA	
Ro1079_SSR	4	223, 225	223	(TA)₉	M13-AAAATGAGACTAGCATCGAC	GGCGAGAATTTGAGGGTTT	
Ro11481_SSR	6	156	156, 158	(AG)₁₀-(TA)₆-(AT)₅	M13-AAGATAAAGGGAAGATGTTGG	CTGTTTCCAGCAAACTACCT	
Ro12112_SSR	6	157, 167	140	(TC)₆	M13-TACTCCAAAACCTCAGATTTG	GTCCGAGACAAATAGGAAAT	
Ro14925_SSR	7	117	114, 117	(TG)₁₀	M13-AGCGGATGGAAGAGTTTTAGT	AACCTTCCTCCGCTTCCAG	
Ro15590_SSR	6	179, 211	201, 205	(GA)₁₀	M13-GAGACGAAAGCCTGTTAGAATA	GTTGCCTGCTGATGTTTAT	
Ro16697_SSR	4	152, 160	160	(AT)₁₀-(TA)₆	M13-CCAGGTCAGTGGACTCGAGATA	ATTTGGAAGAATACGGGAA	
Ro1682_SSR	3	119, 125	121	(AT)₉	M13-AGGAGCGATGTTAGTACGAT	TAGAGGAGAAACGAGGAGTA	

Dossett and Finn (2010)
Table 1 continued

Locus	RLG 3021-2 allele sizes	4153-1 allele sizes	Repeat motif	Forward primer sequence	Reverse primer sequence	Source
Ro17045_SSR	3 164	164, 167	(TGA)$_3$	M13-TCCAACATGGTGACAGTTTC	ACTTTTGCACTGCTTCACTTG	
Ro17803_SSR	2 139, 147	139, 141	(TA)$_{10}$	M13-GGCGCATGATTTAAAAGGAA	GTTCAAGATGGCAGTTGAAACCA	
Ro18036_SSR	1 104, 119	119	(CCT)$_3$	M13-CCTTTGAGGACGAAACATTAC	CTGTTGGATTCAGACGAAGATGA	
Ro19042_SSR	6 201	196, 201	(GA)$_3$	M13-GGTTATTTCCAAGCCCATAT	TGCTTTTCAAGAGTTCACTCT	
Ro20267_SSR	4 159	153, 159	(TGA)$_3$	M13-GAAACAGCTTGTGATGTTTC	GTTTGATTTCTAGGAAGTTGC	
Ro2173_SSR	4 199, 240	203, 221	(TTA)$_3$	M13-TATTGGGGATTTAGAGAGCTA	GGGTTGATTTCAGTTGACACCA	
Ro2432_SSR	5 114, 116	114	(TC)$_3$	M13-GCTTTAGTAATTTAGGCTG	CTTCTCAAGACAGCGGAT	
Ro2579_SSR	4 181	179, 181	(CA)$_{10}$	M13-TTTTATATGCTTGTCACCCAC	ATTTAGAATAGGGGCACTC	
Ro2827_SSR	5 133, 141	137, 141	(CT)$_3$	M13-GGCCTTGTTTTCTCTAGCT	AGAGGGCAAGAGAGCTTAC	
Ro3003_SSR	5 145, 199	145, 152	(GA)$_3$	M13-AGGTGTGATCATGCTTCAAT	CTTCCATAGCAACTCTATCCC	
Ro3017_SSR	3 159, 173	161	(GA)$_3$	M13-CAACCGCTTTATGAAAGTGTG	GCACAGATGACCAACTCAACA	
Ro3237_SSR	1 131, 135	133, 135	(TA)$_3$	M13-AACCCAAAGCCTTGTCTTTGT	ATTTGGGCTGTTTCTATGAGAT	
Ro3981_SSR	6 115, 117	115	(TG)$_3$	M13-GATCTCTGATCTCCGCTATAT	AAATGTCTTTCTAGTATGAGAT	
Ro4104_SSR	7 181, 185	181, 183	(TA)$_3$	M13-AAAAGCTTCTCCTAATTTTGAGC	ATGATTAGACGCAGTGACATCA	
Ro4261_SSR	4 204, 219	204, 219	(TTC)$_3$	M13-ATATAGCAGGAGACACTCACC	TCTCATTGACAGGTGGATTAC	
Ro4345_SSR	5 108, 114	114	(TC)$_3$	M13-TTACAGCAATTTAGAGGAGC	AAGAAATAGGGGAAGGGGAGG	
Ro4532_SSR	6 210, 213	210, 213	(TGT)$_3$	M13-AGTGTACATTTAGGAGATG	TCTGATGATCATCATTACACC	
Ro5263_SSR	6 201, 203	201	(GA)$_3$	M13-AACCTTTGCTGTTTGAATCT	TTTTGTTGGAACCTTTCCTCC	
Ro5378_SSR	4 207	191, 207	(TA)$_3$	M13-TCTTCCACATGTCCACTGGT	TCAGTGATTTTGCCAGAGAT	
Ro6594_SSR	1 171, 177	171	(TTC)$_3$	M13-TGTGAGAAGAGAGATGTGTA	GTTGAATGACTGCTCCAGCAG	
Ro7020_SSR	3 168, 177	177	(GA)$_3$	M13-CTGCAAGAACCCTCTAATCC	TGGTTCTTCACAAATCTTTAG	
Ro8167_SSR	6 94, 96	96	(TC)$_3$	M13-CAATTGCACATACCCCTACT	GAGGAGATGCAAAACCGAAGAG	
Ro8486_SSR	2 172, 178	172	(CT)$_3$	M13-TGGCGTCTGATGTCTTACAT	AAGGTAAGAATAGGGGAGTGT	
Ro9206_SSR	5 135, 139	126, 137	(AT)$_3$	M13-ACAGTTCTCACAAGGATCGGA	CGAGATGTTACAGTACTCGGGA	
Ro9324_SSR	1 156, 164	164, 201	(AG)$_3$	M13-CCTACCTTCAAGGCCATTTTG	GCAATCAGACATAAAAAGGTC	
Ro942_SSR	1 155, 161	161, 181	(GA)$_3$	M13-AATCGTGTGTGCTGCAATTTC	CAAATGCACACACCTATCAGG	
Rubus110a_SSR_RLG4	4 187, 207	203, 205	(TC)$_3$	M13-AAAAAACAGTAAATGGGAGAAGG	GTGTCAGTTTGGAGGAGAACA Graham et al. (2004)	
Rubus116a_SSR_RLG4	4 222, 224	218, 224	(CT)$_3$	M13-CCAACCCAAAACCTCTCAAC	GTTGTTGACATGCCTTCTTTAT	
Rubus126b_SSR_RLG2	2 171	157, 171	(CT)$_3$	M13-CCTGCAATTTCTGATTTCTG	TCAGTTTTTCTTCCACCGTGA	
Rubus156a_SSR_RLG6	6 170, 172	164, 172	(AT)$_3$(GT)$_3$	M13-TGTTGATCCTGGTGCTTTC	GGGTTGTTGCGACTTCTAGT	
Rubus223a_SSR	6 158, 162	158	(AT)$_3$(T)$_3$(AT)$_3$	M13-TCTTTGCGTGTTAGATTTCTAT	TTAAGGCGTCTGAGTATAAGG	
Rubus26a_SSR	4 139, 141	137, 143	(CT)$_3$	M13-ACACCGCTCTAAGGTTATC	GATTTCTGGAAGAGTGAAGAA	
Rubus270a_SSR_RLG3	3 182, 184	184, 186	(GA)$_3$	D3-GCATCAGCATGTTACCTC	CCAACCTCCATGACACATCAC	
Rubus275a_SSR_RLG5	5 139, 165	165	(AG)$_3$	M13-CACAACAGTCCGAGAATGA	ATTTCTCACAAATGCAACC	
core facilities (Corvallis, OR, USA) for quantitation using a Qubit® fluorometer (Invitrogen, Carlsbad, CA, USA). The size distribution of the library was confirmed by checking 1000 pg of DNA with the Bioanalyzer 2100 HS-DNA chip (Agilent Technologies, Santa Clara, CA, USA). Libraries were diluted to 10 nM based on Qubit® readings and quantitative PCR (qPCR) was used to quantify the diluted libraries. For each pooled library, 15.5 pM were loaded for single-end Illumina® sequencing of 101 cycles with the HiSeq™ 2000 (Illumina, Inc.) and analyzed using the Version 3 cluster generation and sequencing kits (Illumina, Inc.).

The libraries were sequenced in three lanes at three different times. The first sequencing lane included 95 samples (91 progeny, and two replicated samples per parent). The second sequencing run included 88 samples (26 black raspberry including parents, grandparents, standards and progeny, and 62 unrelated strawberry samples). The third sequencing run included 64 samples (ORUS 3021-2 repeated 4 times, ORUS 4153-1 repeated 5 times and 55 progeny). Over all three runs, the parents ORUS 3021-2 and ORUS 4153-1 were sequenced at least twice in each lane. Forty-four progeny were sequenced more than once due to low initial quality and numbers of reads per individual.

GBS SNP calling

Version 3.0 of the TASSEL GBS discovery software pipeline (Li et al. 2009) was used to call SNP loci using a repeat-masked version of the genome sequence. Three GBS runs representing 112 individuals as described above were analyzed simultaneously. Data were initially subjected to sequence and nucleotide read quality control using Trimmomatic (Bolger et al. 2014) (http://www.usadellab.org/cms/?page=trimmomatic) and were then analyzed with TASSEL.

Genetic linkage map construction

All loci were converted into segregation codes for JoinMap® v. 4.1 (Van Ooijen 2006). Loci were then organized into parental sets and subjected to the maximum likelihood (ML) mapping algorithm. Independence Likelihood of Odds (LOD) threshold of 5 was used for establishing the linkage groups (LG). All other settings were default. Five progeny (ORUS 4305-38, 39, 41, 59, and 65) were excluded based on incongruous SNP data occurring from 30 (ORUS 4305-39) to 90 (ORUS 4305-65) times. GBS data were not available for ORUS 4305-7, 19, 45, 54, 58, 75, 95, 97, 103, and 110 due to poor DNA quality. The consensus map of seven linkage groups was generated by combining the parental linkage maps of ORUS 3021-2 and
ORUS 4153-1 using the regression algorithm of the mapping software JoinMap v. 4.1. Linkage map visualization was accomplished with MapChart 2.2 (Voorrips 2002).

The quality of genotype calls and of each map were evaluated with a graphical genotyping approach in Microsoft Excel (Redmond, WA, USA) as previously described (Bassil et al. 2015; Young and Tanksley 1989).

Results

Transferable markers

In total, 552 SSR markers from new and published sources were evaluated for the amplification of polymorphic PCR products in the parents and one progeny. Of these, 118 failed to amplify, 235 were homozygous in both parents or gave ambiguous results, 138 were heterozygous in both parents, 29 were heterozygous in ORUS 3021-2, and 32 were heterozygous in ORUS 4153-1 (Table 2).

A total of 30 primer pairs (SSR and HRM) for 28 anchor loci were assessed for the production of a polymorphic PCR product in the parents and six progeny of population ORUS 4305. Twelve of these loci were successfully mapped (Table 2).

Eighty HRM primer pairs (Bushakra et al. 2012) were evaluated for the amplification of polymorphic PCR products on the parents and 14 progeny. Of these 80 HRM primer pairs, 57 were monomorphic, 12 were unclear or had poor amplification, and 11 were evaluated in the full population. Three of these HRM markers were mapped successfully, two in ORUS 3021-2 and one in ORUS 4153-1 (Table 2). Out of 660 transferable markers evaluated, a total of 72 (11 %) were successfully mapped. BLAST analysis (Altschul et al. 1990) of the forward and reverse primer and nucleotide sequences (when available), allowed scaffold assignment of most mapped transferable markers (Supplementary Table 2).

GBS SNP markers

The first sequencing run of 95 samples generated 596 K sequence clusters/mm² (optimal density is 750–850 K clusters/mm²; MyIllumina Support Bulletin); the second and third sequencing runs were within the optimum range at 825 and 752 K clusters/mm², respectively. These cluster densities provided raw reads ranging from approximately 165 million to 310 million. Over the three sequencing runs, 112 progeny and the two parents were sequenced to generate an average number of reads per individual of 3,105,333, with 20,317,182 (5.8 %) of reads unaligned. Default TASSEL filtering parameters using the parent information identified 57,238 SNP positions. Further filtering of the SNP data to remove those loci with more than 10 % missing data resulted in a data set of 7911 SNP loci, of which 3472 were monomorphic or ambiguous, 921 were heterozygous in both parents, 318 were heterozygous in ORUS 3021-2, and 326 were heterozygous in ORUS 4153-1 (Table 2).

A total of 100 progeny were used to construct the seven linkage groups for the parental linkage maps, the

Table 2 Summary of loci mapped in F1 population ORUS 4305
Genotyping by sequencing (GBS)
Total number of GBS SNP identified over three sequencing
runs
Number of monomorphic or ambiguous loci
Number of loci heterozygous in both parents
Number of loci heterozygous in ORUS 3021-2
Number of loci heterozygous in ORUS 4153-1
Total scaffolds represented
Scaffolds mapping to multiple RLG
Total number of GBS SNP mapped
Simple sequence repeat (SSR)
Total number of loci screened
Number of monomorphic or ambiguous loci
Number of loci that failed
Number of loci that are heterozygous in both parents
Number of loci heterozygous in ORUS 3021-2
Number of loci heterozygous in ORUS 4153-1
Number of loci mapped
High-resolution melting (HRM)
Total number of loci screened
Number of monomorphic or ambiguous loci
Number of loci that failed
Number of loci heterozygous in ORUS 3021-2
Number of loci heterozygous in ORUS 4153-1
Number of loci mapped
Anchor loci (26 SSR + 2 HRM)
Not mapped
Mapped

Genotyping by sequencing (GBS) single nucleotide polymorphic (SNP) loci were generated by DNA digestion and subsequent high-throughput sequencing. Data were analyzed for mapping using the TASSEL computer software provided through the Buckler Lab for Maize Genetics and Diversity. Simple sequence repeat (SSR) and high-resolution melting (HRM) loci were derived from a number of sources.

ORUS 4153-1 using the regression algorithm of the mapping software JoinMap v. 4.1. Linkage map visualization was accomplished with MapChart 2.2 (Voorrips 2002).

The quality of genotype calls and of each map were evaluated with a graphical genotyping approach in Microsoft Excel (Redmond, WA, USA) as previously described (Bassil et al. 2015; Young and Tanksley 1989).
Theor Appl Genet (2015) 128:1631–1646

characteristics of which are summarized in Table 3. To construct the linkage map for ORUS 3021-2, five GBS-generated SNP markers were removed for skewed segregation ratios, four were removed for creating double recombination events within a distance of 10 cM or less, and one was removed due to unsuccessful linkage phase determination. For ORUS 3021-2 (Supplementary Fig. 1) the resulting 274 markers comprising the seven LGs spanned 779.4 centi-Morgans (cM) with an average distance of 2.9 cM between markers. RLG7 had the greatest number of markers (56), and was also the longest (134.5 cM) with an average distance of 2.4 cM between markers. RLG2 was the shortest at 84.1 cM, with an average distance of 2.8 cM between the 30 markers, and two gaps of 11.4 and 11.9 cM. The largest gap for the map of ORUS 3021-2 was 22.2 cM on RLG6. Of the 222 GBS SNP markers used for map construction, 200 (90 %) segregated as expected, either 1:1 or 1:2:1; two loci (1 %) varied from expected at a significance level of 0.01, 11 loci (5 %) varied from expected at a significance level of 0.05, and nine loci (4 %) varied from expected at a significance level of 0.1. To construct the linkage map for ORUS 4153-1, 18 GBS-generated SNP markers were removed for skewed segregation ratios, 14 were removed for creating double recombination events within a distance of 10 cM or less, and one SSR marker was removed due to unsuccessful linkage phase determination. For ORUS 4153-1 (Supplementary Fig. 2) the resulting 292 markers comprising the seven LGs spanned 892.1 cM with an average distance of 3.2 cM between markers. RLG7 had the greatest number of markers (64) and was also the longest (151.4 cM) with an average distance of 2.4 cM between markers, and three gaps greater than 10 cM, the largest of which was 12.2 cM; RLG2 was the shortest at 101.7 cM with 23 markers, an average distance of 4.4 cM between markers, and three gaps greater than 10 cM, the largest of which was 14.8 cM. The largest gap for the map of ORUS 4153-1 was 14.8 cM at the end of RLG1. Of the 249 GBS SNP markers used for map construction, 230 (92 %) segregated as expected, either 1:1 or 1:2:1; a single locus (0.4 %) varied from expected at a significance level of 0.01, nine loci (4 %) varied from expected at a significance level of 0.05, and nine loci (4 %) varied from expected at a significance level of 0.1.

Transferable markers for the parental maps ranged from a low of three markers on ORUS 3021-2 RLG7 and 4153-1 RLG6 to a high of 12 on ORUS 4153-1 RLG4. A total of 72 transferable markers were mapped in this population. BLAST analysis of the transferable markers against the draft genome assembly allowed scaffold assignment for 65 of 72 markers (90 %) so that 356 scaffolds were represented. The phenotypic marker for aphid resistance, Ag4_AphidR, was located on RLG6 of the aphid-resistant parent ORUS 4153-1 and maps to the same location as S99_32802 (Fig. 2).

The seven consensus RLGs (Table 3; Fig. 3) assembled from merging the parental maps consisted of 438 markers spanning 546.4 cM with an average distance between markers of 1.3 cM. Consensus RLG6 was the longest (90.2 cM) with an average distance between the 69 markers of 1.3 cM, and one gap of 10.4 cM. Consensus RLG7 had the most markers (77) that spanned 81.0 cM with an average distance of 1.1 cM between markers. RLG2 was the shortest at 70.8 cM with an average distance between the 59 markers of 1.2 cM. The 12 anchor markers identified from the literature (Table 1; Supplementary Figs. 1, 2, markers in italics) allowed the positive identification of consensus RLG 2-7, with the last, RLG1, identified by default.

Thirteen of the 356 represented scaffolds (3.6 %) map to more than one linkage group (Table 4); 33 of the loci are SNPs and five are SSRs. Four scaffolds (S10, S26, S134, and S142) are represented by SNP loci on more than two linkage groups. Four scaffolds (S14, S71, S78, and S279) are represented by at least one SNP and a single SSR locus on more than one linkage group.

Discussion

We present the first linkage map constructed from a pure black raspberry cross. The first attempt at genetic linkage mapping using SSR markers on an F2 generation of a black raspberry × red raspberry cross identified high homozygosity as well as severe segregation distortion and did not result in a linkage map (Lewers and Weber 2005). The linkage map constructed using non-anonymous DNA sequences for black raspberry selection 96395S1 comprises 29 markers spaced on average at intervals of 10 cM over six LG spanning 306 cM (Bushakra et al. 2012). The first published red raspberry map of ‘Glen Moy’ × ‘Latham’ consisted of 273 markers derived from amplified fragment length polymorphic and genomic-SSR markers and spanned 789 cM over nine LG (Graham et al. 2004). Over the next 6 years as more markers were developed and added, the improved ‘Glen Moy’ × ‘Latham’ map reported by Woodhead et al. (2010) consisted of 228 markers over seven LG spanning 840.3 cM with transferable markers present on each LG. Paterson et al. (2013) subsequently added gene-based markers to the linkage map constructed by Woodhead et al. (2010) by mining Rubus transcriptome and EST databases for candidate genes in the fruit volatiles pathway. The efficiency of marker generation used here is a vast improvement over previous marker development techniques in Rubus. The saturated consensus linkage map presented here spans
Theor Appl Genet (2015) 128:1631–1646

546.2 cM and is composed of 374 GBS-generated SNP markers and 68 transferable markers with an average of 1.3 cM between markers. The transferable markers are distributed among the LG and can be used for alignment to other Rubus maps. The scaffold assignment allows for

Table 3	Summary of genetic linkage maps for female parent ORUS 3021-2, male parent ORUS 4153-1, and the consensus map for F1 population ORUS 4305													
ORUS 3021-2 (female parent)	ORUS 4153-1 (male parent)	Consensus Map												
Locus number	Number of transferable loci	Average distance between loci in cM	Locus number	Number of transferable loci	Average distance between loci in cM	Locus number	Number of transferable loci	Average distance between loci in cM						
RLG1	29	8	99.5	3.4	2	23	6	101.7	4.4	3				
RLG2	30	8	84.1	2.8	2	40	7	115.9	2.9	1				
RLG3	44	5	113.6	2.6	1	33	4	102.9	3.1	1				
RLG4	38	8	115.3	3.0	1	43	12	143.0	3.3	1				
RLG5	45	10	134.0	3.0	1	43	4	127.8	3.0	2				
RLG6	32	10	98.4	3.1	1	46	3	149.4	3.2	3				
RLG7	56	3	134.5	2.4	0	64	6	151.4	2.4	3				
Total	**274**	**52**	**779.4**	**2.9**		**292**	**42**	**892.1**	**3.2**		**438**	**70**	**546.4**	**1.3**

Each Rubus linkage group (RLG) details the number of loci mapped, the number of loci that are transferable (either simple sequence repeat or high-resolution melting), the length of the linkage group in centiMorgans (cM), the average distance between each locus in cM, and the number of gaps larger than 10 cM

Fig. 2. Rubus linkage group (RLG) 6 for black raspberry mapping population parent ORUS 4153-1. The morphological locus for Ag4 aphid resistance against the North American large raspberry aphid is shown in blue bold font. The linkage map is constructed of single-nucleotide polymorphic (SNP) loci generated by sequencing (GBS) (prefaced with S) and simple sequence repeat (SSR) loci from various Rubus sources (prefaced with Ro, Ri, Rh, Ru, Rub, and SQ). Transferable loci are indicated in bold font; anchor loci for comparisons with other Rubus linkage maps are indicated in bold italic font (color figure online)
Consensus_RLG1

Consensus_RLG2

Consensus_RLG3

Consensus_RLG4

Fig. 3 Consensus linkage map for population ORUS 4305. Each of the linkage groups consists of single-nucleotide polymorphic (SNP) loci generated by genotyping by sequencing (GBS) (prefaced with S) and simple sequence repeat (SSR) loci from various Rubus sources (prefaced with Ro, Ri, Rh, Ru, Rub, and SQ). Transferable loci are indicated in bold font; anchor loci for comparisons with other Rubus linkage maps are indicated in bold italic font. The morphological locus for A_g aphid resistance against the North American large raspberry aphid is shown in blue bold font (color figure online).

Lu et al. (2013) performed GBS in tetraploid switchgrass (Panicum virgatum) and were able to map 88,217 SNP loci; Truong et al. (2012) used GBS to generate SNP in Arabidopsis thaliana and lettuce (Lactuca sativa) and were able to map 1200 and 1113 SNP loci, respectively; Russell et al. (2014) mapped 790 SNP loci in blackcurrant (Ribes nigrum). This is the first use of GBS on black raspberry, a future fine mapping, QTL analysis, and improved black raspberry genome assembly.

The reduced-representation sequencing accomplished with GBS has generally been used in crop plants with high levels of heterozygosity. For example, Poland et al. (2012) were able to map 20,000 and 34,000 GBS-generated SNP loci in wheat and barley reference linkage maps, respectively;
Fig. 3 continued
trait loci (QTL) having to do with resistance to aphids and fungal-like (Graham et al. 2011) pathogens in red raspberry and we hope to use our linkage map to better understand the underlying reasons for these associations.

Conclusions

We present here the first genetic linkage map of black raspberry comprised of GBS-generated SNP and transferable markers. The presence of SSR and HRM markers selected from the literature, along with the other transferable markers allowed us to positively identify all RLG as well-populated map, it, along with the low mapping success rate of transferable markers, illustrates the low level of heterozygosity found in black raspberry. In contrast, the linkage maps constructed of GBS-derived SNP and SSR markers for red raspberry parents ‘Heritage’ and ‘Tulameen’ comprise 4521 markers spaced on average at intervals of 0.1 cM over seven LG spanning 462.7 cM and 2391 markers spaced on average at intervals of 0.1 cM spanning 376.6 cM, respectively (Ward et al. 2013). While digestion by a more frequent restriction enzyme cutter for GBS may be a way to increase the number of SNP loci identified, this does not guarantee mapping success as segregation within the population is essential for linkage mapping.

Up to 97% of the mapped scaffolds were placed on a single linkage group indicating high quality assembly of the draft genome. The 13 scaffolds that map to multiple LGs will need to be investigated further to assess whether these inconsistencies represent errors in the genome assembly; however, initial observations could indicate regions of high chromosome homology or possible regions of genome duplication especially between RLG3 and RLG7.

Table 4 Summary of the genomic scaffolds with loci on more than one *Rubus* linkage group (RLG)

Scaffold	RLG	Parent	SNP, SSR
S10	1, 2, 4	4153-1	3, 0
S14	1, 2	3021-2	2, 0
S14	2, 6	4153-1	1, 1
S21	3, 7	3021-2	2, 0
S26	3, 5, 7	3021-2	3, 0
S71	1, 2	3021-2	1, 1
S78	5, 6	3021-2	1, 1
S115	3, 7	3021-2	2, 0
S134	2, 5	3021-2	2, 0
S134	1, 2, 5	4153-1	3, 0
S142	1, 3	3021-2	2, 0
S142	3, 7	4153-1	2, 0
S161	7	3021-2	1, 0
S161	4	4153-1	1, 0
S279	3, 7	4153-1	1, 1
S380	3	3021-2	1, 0
S380	6	4153-1	1, 0
S472	1, 7	3021-2	2, 0

Each entry details the linkage group and the parental map on which the loci are found and the type of locus, either single-nucleotide polymorphic (SNP) or simple sequence repeat (SSR).
calling and other bioinformatic analyses, BLAST analyses, and linkage mapping. BSG assisted in developing and performed the initial marker screening. JL PI on NIFA SCRI grant (project main funding) and contributed to manuscript writing. TCM PI on NIFA SCRI grant (project main funding) and contributed computational resources and bioinformatics analysis. CEF PI on NIFA SCRI grant (project main funding) and contributed to manuscript writing. Primary advisor for the phenotyping portion of the NIFA SCRI grant. NVB PI on NIFA SCRI grant (project main funding), helped analyze short-read sequencing results, develop and test molecular markers, and contributed to manuscript writing. Primary advisor for the genomes portion of the NIFA SCRI grant.

Acknowledgments The authors thank Dr. Jana Lee (USDA-ARS HCRU, Corvallis, OR, USA) for her help with rearing aphids, Dr. Eric van de Weg (University of Wageningen, The Netherlands) for his assistance with graphical genotyping and consultation, The Barley Lab at Oregon State University for access to JoinMap, Drs. Kim Lewers (USDA-ARS BARC, Beltsville, MD, USA) and Christopher Saski (Clemson University, Clemson, SC, USA) for access to unpublished SSR marker data, and Drs. Kim Lewers, James Olimstead (University of Florida, Gainesville, FL, USA) and two anonymous reviewers for their helpful suggestions. The authors thank the Washington Red Raspberry Commission, the Oregon Raspberry and Blackberry Commission, the North American Raspberry and Blackberry Growers Association, the USDA-ARS, and the Northwest Center for Small Fruit Research for providing matching funds or other support. This work was funded by the USDA-National Institute of Food and Agriculture (NIFA) Specialty Crop Research Initiative (SCRI) USDA-ARS CRIS 2072-21000-044-00D, 2072-21000-047-00D and 2072-21220-002-00D. Mention of trade names or commercial products in this publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alice LA, Campbell CS (1999) Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot 86:81–97

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

Anonymous (2015) National Statistics for Raspberries. National Agricultural Statistics Service. www.nass.usda.gov. Accessed 27 May 2015

Antanaviciute L, Fernández-Fernández F, Jansen J, Banchi E, Evans K, Viola R, Velasco R, Dunwell J, Troggio M, Sargent D (2012) Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array. BMC Genomics 13:203

Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder C, Testolin R, Abbott A, King G, Iezzoni A, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

Bassil NV, Davis TM, Zhang H, Ficklin S, Mittmann M, Webster L, Mahoney L, Wood D, Alperin ES, Rosyara UR, Koehorst-van Putten H, Montfort A, Amaya I, Denoyes B, Sargent DJ, Bianco L, van Dijk T, Pirani A, Iezzoni A, Main D, Peace C, Yang Y, Whitaker V, Verma S, Bellon L, Brew F, Herrera R, van de Weg E (2015) Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa. BMC Genomics 16:30

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

Brownstein M, Cartpen T, Smith J (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20(1004–1006):1008–1010

Bryant D, Bushakra JM, Dossett M, Vining K, Filichkin S, Weiland J, Lee J, Lee, Finn CE, Bassil N, Mockler T (2014) Building the genomic infrastructure in black raspberry. HortScience 49:S233

Bushakra JM, Stephens MJ, Atmadjaja AN, Lewers KS, Symvons VV, Udall JA, Chagné D, Buck EJ, Gardiner SE (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327

Castillo NRF, Reed BM, Graham J, Fernández-Fernández F, Bassil NV (2010) Microsatellite markers for raspberry and blackberry. J Am Soc Hortic Sci 135:271–278

Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primate-fruited and thornless traits of tetraploid blackberry. Theor Appl Genet 126:2521–2532

Celton J-M, Tustin DS, Chagné D, Gardiner SE (2009) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genomes 5:93–107

Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

Clark JR, Finn CE (1999) Blackberry and hybrid berries. In: Okie WR (ed) Register of new fruit and nut varieties, list 39. HortScience 34:183–184

Clark JR, Finn CE (2002) Blackberry and hybrid berry. In: Okie WR (ed) Register of new fruit and nut varieties, list 41. HortScience 37:251–252

Clark JR, Finn CE (2006) Blackberry and hybrid berry. In: Clark JR, Finn CE (eds) Register of new fruit and nut cultivars, list 43. HortScience 41:1104–1106

Clark JR, McCall C, Finn CE (2008) Blackberry. In: Finn CE, Clark JR (eds) Register of new fruit and nut cultivars, list 44. HortScience 43:1323–1324

Clark JR, Sleezer SM, Finn CE (2012) Blackberry. In: Finn CE, Clark JR (eds) Register of new fruit and nut cultivars, list 46. HortScience 47:539

Clark MD, Schmitz CA, Rosyara UR, Lubj JJ, Braden JM (2014) A consensus ‘Honeycrisp’ apple (Malus × domestica) genetic linkage map from three full-sib progeny populations. Tree Genet Genomes 10:627–639

Dauben HA (1997a) Blackberry and hybrid berries. In: Okie WR (ed) Register of new fruit and nut varieties, list 38. HortScience 32:785–786
virus transmission and resistance breakdown in red raspberry.

Agric For Entomol 11:61–71

Montanari S, Saeed M, Knibel M, Kim Y, Troggio M, Malnay M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS ONE 8:e77022

Moore PP, Klempler C (2010) Raspberry. In: Clark JR, Finn CE (eds) Register of new fruit and nut cultivars, list 45. HortScience 45:747–748

Moore PP, Klempler C (2012) Raspberry. In: Finn CE, Clark JR (eds) Register of new fruit and nut cultivars, list 46. HortScience 47:555–556

Moore PP, Klempler C (2014) Raspberry. In: Gasic K, Preece JE (eds) Register of new fruit and nut varieties, list 47. HortScience 49:415–416

Nybom H, Schaal BA (1990) DNA “fingerprints” reveal genotypic distributions in natural populations of blackberries and raspberries (Rubus, Rosaceae). Am J Bot 77:883–888

Olmstead J, Sebolt A, Cabrera A, Sooriyapathirana S, Hammar S, Iriarte G, Wang D, Chen C, van der Knaap E, Iezzoni A (2008) Construction of an intra-specific sweet cherry (Prunus avium L.) genetic linkage map and synteny analysis with the Prunus reference map. Tree Genet Genomes 4:897–910

Ourecky DK (1975) Brambles. In: Janick J, Moore JN (eds) Advances in fruit breeding. Purdue University Press, West Lafayette, pp 98–129

Paterson A, Kassim A, McCallum S, Woodhead M, Smith K, Zait D, Graham J (2013) Environmental and seasonal influences on red raspberry flavonol volatiles and identification of quantitative trait loci (QTL) and candidate genes. Theor Appl Genet 126:33–48

Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

Russell J, Hackett C, Hedley P, Liu H, Milne L, Bayer M, Marshall D, Jorgensen L, Gordon S, Brennan R (2014) The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breed 33:835–849

Sargent D, Fernández-Fernández F, Rys A, Knight V, Simpson D, Tobutt K (2007) Mapping of A1 conferring resistance to the aphid Amphorophora idaei and dv (dwarving habit) in red raspberry (Rubus idaeus L.) using AFLP and microsatellite markers. BMC Plant Biol 7:15

Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

Silfverberg-Dilworth E, Matasci CL, van de Weg WE, Van Kaawan MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

Slate GL (1933) The best parents in purple raspberry breeding. Proc Am Soc Hortic Sci 30:108–112

Slate GL, Klein LG (1952) Black raspberry breeding. Proc Am Soc Hortic Sci 59:266–268

Stafne ET, Clark JR, Weber CA, Graham J, Lewers KS (2005) Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J Am Soc Hortic Sci 130:722–728

Stockinger EJ, Mulinix CA, Long CM, Brettin TS, Lezsoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J Hered 87:214–218

Stoner GD, Wang L-S, Zikri N, Chen T, Hecht SS, Huang C, Sardo C, Lechner JF (2007) Cancer prevention with freeze-dried berries and berry components. Semin Cancer Biol 17:403–410

Thompson MM (1995) Chromosome numbers of Rubus species at the National Clonal Germplasm Repository. HortScience 30:1447–1452

Truong HT, Ramos AM, Yalcin F, de Ruiuter M, van der Poel HJA, Huvenaars KHI, Rogers RJ, van Enckevort LJJG, Janssen A, van Orsouw NJ, van Eijk MFT (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7:e37565

Van Ooijen JW (2006) JoinMap® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

Vilanova S, Sargent D, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67

Viruel MA, Messegue R, De Vicente MC, Garcia-Mas J, Puigdome nech P, Vargas F, Arús P (1995) A linkage map with RFLP and isozyme markers for almond. Theor Appl Genet 91:964–971

Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

Ward J, Bhangoo J, Fernández-Fernández F, Moore P, Swanson J, Viola R, Velasco R, Bassil N, Weber C, Sargent D (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

Weber CA (2003) Genetic diversity in black raspberry detected by RAPD markers. HortScience 38:269–272

Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

Woodhead M, McCallum S, Smith K, Cardle L, Mazzitelli L, Graham J (2008) Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol Breed 22:555–563

Woodhead M, Weir A, Smith K, McCallum S, MacKenzie K, Graham J (2010) Functional markers for red raspberry. J Am Soc Hortic Sci 135:418–427

Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genomes 9:573–586

Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77:95–101