Supplementary Material

1,3,4-Thiadiazol-2-ylphenyl-1,2,4,5-tetrazines: efficient synthesis via Pinner reaction and their luminescent properties

Anna Maj,a Agnieszka Kudelko,a and Marcin Świątkowskib

aThe Silesian University of Technology, Department of Chemical Organic Technology and Petrochemistry,
Krzywoustego 4, PL-44100 Gliwice, Poland
bLodz University of Technology, Institute of General and Ecological Chemistry, Zeromskiego 116, PL-90924 Lodz, Poland
E-mail: Agnieszka.Kudelko@polsl.pl

Table of Contents

1. 1H and 13C NMR Spectra of synthesized compounds 6a-d \hspace{1cm} S2
2. 1H and 13C NMR Spectra of synthesized compounds 8a-j \hspace{1cm} S6
3. UV-Vis spectra 8a-j \hspace{1cm} S16
4. 3D fluorescence spectra 8a-j \hspace{1cm} S17
5. 2D fluorescence spectra 8a-j \hspace{1cm} S21
6. The scatter plots representing relationships between absorption-emission properties \hspace{1cm} S22
1H and 13C NMR Spectra of synthesized compounds 6a-d

Figure S1: 1H NMR 4-(5-Phenyl-1,3,4-thiadiazol-2-yl)benzonitrile (6a)

Figure S2: 13C NMR 4-(5-Phenyl-1,3,4-thiadiazol-2-yl)benzonitrile (6a)
Figure S3: 1H NMR 4-(5-(4-Methoxyphenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6b)

![1H NMR spectrum](s3.png)

Figure S4: 13C NMR 4-(5-(4-Methoxyphenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6b)

![13C NMR spectrum](s4.png)
Figure S5: 1H NMR 4-(5-(4-(tert-Butyl)phenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6c)

Figure S6: 13C NMR 4-(5-(4-(tert-Butyl)phenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6c)
Figure S7: 1H NMR 4-(5-(4-Nitrophenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6d)

Figure S8: 13C NMR 4-(5-(4-Nitrophenyl)-1,3,4-thiadiazol-2-yl)benzonitrile (6d)
1H and 13C NMR Spectra of synthesized compounds 8a-j

Figure S9: 1H NMR 3,6-Bis(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8a)

Figure S10: 13C NMR 3,6-Bis(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8a)
Figure S11: 1H NMR 3,6-Bis(4-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8b)

![Figure S11: 1H NMR 3,6-Bis(4-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8b)](image1)

Figure S12: 13C NMR 3,6-Bis(4-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8b)

![Figure S12: 13C NMR 3,6-Bis(4-(5-(4-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8b)](image2)
Figure S13: 1H NMR 3,6-Bis(4-(5-(tert-butyl)phenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8c)

Figure S14: 13C NMR 3,6-Bis(4-(5-(tert-butyl)phenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8c)
Figure S15: 1H NMR 3,6-Bis(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8d)

Figure S16: 13C NMR 3,6-Bis(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazine (8d)
Figure S17: 1H NMR 2-(4-Methoxyphenyl)-5-(4-(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8e)

Figure S18: 13C NMR 2-(4-Methoxyphenyl)-5-(4-(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8e)
Figure S19: 1H NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8f)

Figure S20: 13C NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8f)
Figure S21: 1H NMR 2-(4-Nitrophenyl)-5-(4-(6-(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8g)

![NMR spectrum of 8g](image)

Figure S22: 13C NMR 2-(4-Nitrophenyl)-5-(4-(6-(4-(5-phenyl-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8g)

![NMR spectrum of 8g](image)
Figure S23: ^1H NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-(5-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8h)

Figure S24: ^{13}C NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-(5-methoxyphenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8h)
Figure S25: 1H NMR 2-(4-Methoxyphenyl)-5-(4-(6-(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8i)

Figure S26: 13C NMR 2-(4-Methoxyphenyl)-5-(4-(6-(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8i)
Figure S27: 1H NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8j)

Figure S28: 13C NMR 2-(4-(tert-Butyl)phenyl)-5-(4-(6-(4-(5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)phenyl)-1,2,4,5-tetrazin-3-yl)phenyl)-1,3,4-thiadiazole (8j)
UV-Vis spectra

Figure S29: UV-Vis spectra of 8a-j
3D fluorescence spectra

Figure S30: 3D fluorescence spectra of compounds 8a-j. The color scale represents a flux of emitted photons. The number above color scales indicates the maximum relative value of emission intensity represented by color scale (and indicated in a respective figure). The unit of measurement in each spectrum represents the same number of emitted photons per second, i.e. fluorescence intensity values in all spectra can be directly compared.
2D fluorescence spectra

Figure S31: 2D fluorescence spectra (extracted from 3D fluorescence spectra) presenting the global emission maximum for each compound. The unit of measurement in each spectrum represents the same number of emitted photons per second, i.e. fluorescence intensity values in all spectra can be directly compared.
The scatter plots presenting relationships between absorption-emission properties.

Figure S32: Quantum yields of studied compounds as a function of fluorescence intensity at global maximum

Figure S33: Quantum yields of studied compounds in relation to absorption wavelength at global maximum of fluorescence.
Figure S34: Positions of global maxima for studied compounds.

References

(1) Barros T.G., Williamson J.S., Antunes O.A.C., Muri E.M.F.; *Letters in Drug Design & Discovery*, 2009, 6, 186-192
(2) Fischer L.J., Ecanow B.; *Journal of Pharmaceutical Sciences*, 1962, 51, 287-288
(3) Tsuchihashi G., Miyajima S., Otsu T., Simamura O.; *Tetrahedron Letters*, 1965, 21, 1039-1048
(4) Kędzia A., Kudelko A., Świątkowski M., Kruszyński R.; *Dyes and Pigments*, 2020, 183, 108715