Allopurinol and Nitric Oxide Activity in the Cerebral Circulation of Those With Diabetes

A randomized trial

JESSE DAWSON, MRCP1
TERRY QUINN, MRCP1
CRAIG HARROW, MRCP1
KENNEDY R. LEES, MD, FRCP1

CHRISTOPHER J. WEIR, PHD2
STEPHEN J. CLELAND, PHD, FRCP3
MATTHEW R. WALTERS, MD, FRCP1

OBJECTIVE — Type 2 diabetes increases risk of stroke, perhaps because of impaired cerebrovascular basal nitric oxide (NO) activity. We investigated whether this activity is improved by a 2-week course of the xanthine oxidase inhibitor allopurinol.

RESEARCH DESIGN AND METHODS — We performed a randomized, double-blind, placebo-controlled crossover study. We measured the response to infusion of N G-monomethyl-L-arginine (L-NMMA) in males with type 2 diabetes before and after allopurinol or placebo. The primary end point was the change in internal carotid artery flow following L-NMMA infusion, expressed as the area under the flow-per-time curve.

RESULTS — We enrolled 14 participants. Allopurinol improved responses to L-NMMA when compared with responses associated with placebo (P = 0.032; median reduction in internal carotid artery flow following L-NMMA of 3,144 ml [95% CI 375–7,143]).

CONCLUSIONS — Xanthine oxidase inhibition with allopurinol appears to improve cerebral NO bioavailability, as evidenced by a greater response to infusion of L-NMMA.

Diabetes Care 32:135–137, 2009

Type 2 diabetes conveys an increased risk of stroke (1,2), perhaps because of impaired cerebrovascular basal nitric oxide (NO) bioavailability—a hypothesis suggested by impaired response to infusion of the endothelial NO synthase inhibitor N G-monomethyl-L-arginine (L-NMMA) (3). We performed a randomized, double-blind, placebo-controlled crossover study to test whether this response is improved following a course of the xanthine oxidase inhibitor allopurinol.

RESEARCH DESIGN AND METHODS — The study was approved by the West Medical research ethics. Male patients aged >40 years with type 2 diabetes of duration <5 years and A1C <9.0% were studied. Those with severe extracranial internal carotid artery (ICA) stenosis, known as coronary arterial disease, and those receiving insulin were excluded. All gave written informed consent and underwent exercise tolerance testing (ETT) to exclude subclinical coronary arterial disease.

Baseline assessment of ICA flow and middle cerebral artery mean flow velocity was performed. Peripheral (radial) pulse-wave analysis (PWA) and (carotid-radial) pulse-wave velocity (PWV) were measured. Blood was drawn for measurement of routine parameters and vascular endothelial growth factor, soluble intercellular adhesion molecules, E-selectin, and C-reactive protein levels. Thereafter, a 45-ml infusion of 0.8 µmol·kg⁻¹·min⁻¹ clinical-grade L-NMMA (Clinalfa/Bachem, Weil-am-Rhein, Germany) dissolved in normal saline was given intravenously over 15 min. ICA, middle cerebral artery, PWA, and PWV parameters were repeated upon cessation of infusion and 10, 20, and 30 min thereafter.

Participants were then randomized to either 300 mg allopurinol or a matching placebo, each taken orally once daily for 2 weeks. Following this, all assessments were repeated. A 2-week washout period then ensued, after which repeat assessment, a 2-week dose of the other agent (placebo or allopurinol), and the final assessment occurred.

The primary end point was change in ICA flow induced by the L-NMMA infusion and expressed as area under the flow-per-time curve (AUC) measured from the start of infusion to 20 min after its completion (3,4). A negative AUC signifies the expected reduction in ICA flow following L-NMMA infusion. Based on our previous pilot data (3), a sample of 20 patients would enable detection of a clinically significant improvement in L-NMMA responsiveness following allopurinol (to ~75% of that seen in nondiabetic individuals) with 90% power (α = 5%). Secondary end points were change in augmentation index (measured during PWA), PWV, and blood markers.

Standard crossover study analysis techniques were employed, and differences between the study periods were compared using paired nonparametric tests (Wilcoxon’s signed-rank test). A positive difference between study periods represents improvement in favor of allopurinol. A mixed-effects model was generated to adjust for any effect of treatment ordering.

RESULTS — Fourteen patients were recruited. Ten completed the protocol; one had a positive ETT, two failed to at-
tend after the ETT and the first visit, and one was unable to receive L-NMMA during his last study visit. The study was terminated early as a result of the national lack of availability of L-NMMA. No adverse events occurred.

Of those recruited, mean ± SD age was 53.1 ± 10.8 years, 85.7% (n = 12) had coexisting hypertension, 78.6% (n = 11) were receiving oral hypoglycemic agents, 78.6% were receiving ACE inhibitor or angiotensin receptor blocker therapy, 64.3% were receiving antplatelet therapy, and 92.3% were on lipid-lowering therapy. Mean AIC was 6.6 ± 0.94%.

The baseline response to L-NMMA infusion was impaired. ICA flow fell by a median of 11.9% (95% CI 5.2 to 18.6; P = 0.038). Allopurinol treatment significantly improved the increase in ICA flow (Table 1). ICA flow augmentation was improved by allopurinol (5), but we employed different techniques and did not design our study to detect differences in these parameters. Interestingly, at the baseline visit, we failed to replicate the increase in the augmentation index or PWV following L-NMMA seen previously in healthy volunteers (6), and it may be that this response is also impaired in those with diabetes.

The potential beneficial effects of allopurinol on the vasculature are two-fold: it reduces xanthine oxidase-mediated O$_2^-$ production (7) and reduces serum uric acid (8). Previous studies have shown a beneficial effect of xanthine oxidase inhibition on measures of forearm or coronary endothelial function (9), but this is the first human study to show improvement in cerebrovascular function.

We followed a rigorous protocol, and improvements in peripheral vascular responses to L-NMMA have been shown following treatment with other cardiovascular-protective agents (10,11). However, we studied fewer patients than intended because of the lack of ongoing availability of L-NMMA, which reduces our statistical power, but the consistency of effect we saw is reassuring. Our dosing period was short, and we cannot exclude the possibility that the changes we saw may subsequently be reversed by other sources of O$_2^-$. Also, we have only examined the effect on endothelial NO synthase activity, and other forms of NO and O$_2^-$ production may be important.

In summary, our data show that xanthine oxidase inhibition with allopurinol improves cerebral NO activity, which may benefit cerebrovascular health. We encourage further investigation of its use for stroke prevention.

Acknowledgments
This study was funded by a grant from the Chief Scientists Office Scotland (CBZ/4/277). J.D., K.R.L., C.J.W., and M.R.W. hold an academic research grant from Scotland (CBZ/4/277).

References
1. Kannel WB, McGee DL: Diabetes and Cardiovascular-Disease: the Framingham study. JAMA 241:2035–2038, 1979
2. Megherbi SE, Milan C, Minier D, Couvreur G, Ossey GV, Tilling K, Di Carlo A, Inizitari D, Wolle CDA, Moreau T, Giroud M. Association between diabetes and stroke subtype on survival and functional outcome 3 months after stroke: data from the European BIOMED Stroke Project.
3. Nazir FS, Alem M, Small M, Connell JM, Lees KR, Walters MR, Cleland SJ: Blunted response to systemic nitric oxide synthase inhibition in the cerebral circulation of patients with Type 2 diabetes. *Diabet Med* 23:398–402, 2006

4. White RP, Deane C, Vallance P, Markus HS: Nitric oxide synthase inhibition in humans reduces cerebral blood flow but not the hyperemic response to hypercapnia. *Stroke* 29:467–472, 1998

5. Butler R, Morris AD, Belch JJ, Hill A, Struthers AD: Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. *Hypertension* 35:746–751, 2000

6. Wilkinson IB, MacCallum H, Cockcroft JR, Webb DJ: Inhibition of basal nitric oxide synthesis increases aortic augmentation index and pulse wave velocity in vivo. *Br J Clin Pharmacol* 53:189–192, 2002

7. Berry C, Hamilton CA, Brosnan MJ, Magill FG, Berg GA, McMurray JJ, Dominiczak AF: Investigation into the sources of superoxide in human blood vessels: angiotensin II increases superoxide production in human internal mammary arteries. *Circulation* 101:2206–2212, 2000

8. Dawson J, Walters M: Uric acid and xanthine oxidase: future therapeutic targets in the prevention of cardiovascular disease? *Br J Clin Pharmacol* 62:633–644, 2006

9. Dawson J, Quinn T, Walters M: Uric acid reduction: a new paradigm in the management of cardiovascular risk? *Curr Med Chem* 14:1879–1886, 2007

10. O’Driscoll G, Green D, Maiorana A, Stanton K, Colreavy F, Taylor R: Improvement in endothelial function by angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. *J Am Coll Cardiol* 33:1506–1511, 1999

11. John S, Schneider MP, Delles C, Jacobi J, Schmieder RE: Lipid-independent effects of statins on endothelial function and bioavailability of nitric oxide in hypercholesterolemic patients. *Am Heart J* 149:473, 2005