Commensurate-incommensurate transition in two-coupled chains of nearly half-filled electrons

M. Tsuchiizu¹, P. Donohue², Y. Suzumura¹,³, and T. Giamarchi²,⁴

¹ Department of Physics, Nagoya University, Nagoya 464-8602, Japan
² Laboratoire de Physique des Solides, CNRS-UMR 8502, Université Paris-Sud, Bât. 510, 91405 Orsay, France
³ CREST, Japan Science and Technology Corporation (JST), Japan
⁴ Laboratoire de Physique Théorique, CNRS UMR 8549, Ecole Normale Supérieure, 24 Rue Lhomond 75005 Paris, France

Received:

Abstract. We investigate the physical properties of two coupled chains of electrons, with a nearly half-filled band, as a function of the interchain hopping t_\perp and the doping. We show that upon doping, the system undergoes a metal-insulator transition well described by a commensurate-incommensurate transition. By using bosonization and renormalization we determine the full phase diagram of the system, and the physical quantities such as the charge gap. In the commensurate phase two different regions, for which the interchain hopping is relevant and irrelevant exist, leading to a confinement-deconfinement crossover in this phase. A minimum of the charge gap is observed for values of t_\perp close to this crossover. At large t_\perp the region of the commensurate phase is enhanced, compared to a single chain. At the metal-insulator transition the Luttinger parameter takes the universal value $K^*_\rho = 1$, in agreement with previous results on special limits of this model.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems – 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Organic conductors Bechgaard salts, which consist of an array of one-dimensional chains, show various ordered states such as spin-Peierls state, spin density wave state and superconducting state at low temperatures [1]. Besides these states of broken symmetry, the normal state above the transition temperature exhibits a remarkable electronic state associated with a charge gap. This charge gap is supposed to originate from the electronic interactions and the commensurate band-filling (1/4 filling) of the compound [2]. Indeed in one dimension, commensurate systems are Mott insulators. Such an interpretation of the charge gap has received support from recent optical experiments [3] and transverse conductivity measurements [4]. In addition, since these compounds are quasi-one-dimensional systems there is a competition between the one dimensional charge gap, that tends to localize the electrons, and the interchain hopping tending to make the system three (two) dimensional. This competition could lead to a confinement-deconfinement transition responsible for the difference of behavior between the TMTTF and the TMTSF salts [2, 5]. Experimentally the confinement (deconfinement) is found in TMTTF (TMTSF) salts whose interchain hopping is smaller (larger) than the charge gap [6]. From a theoretical point of view, the transition should take place when the interchain hopping renormalized by interactions is comparable with the single chain gap [3, 4]. There is thus still considerable debate on how such a transition takes place, and what are the relevant energy scales.

Unfortunately studying an infinite number of coupled chains is extremely difficult. It is thus worth to investigate these issues on a finite number of coupled chains, i.e. on ladder systems [8]. By studying explicitly two-coupled chains with a half-filled band, it has been shown that the interchain hopping becomes irrelevant, in the sense of renormalization group, for a charge gap larger than the interchain hopping [9, 10]. It is reasonable to identify this relevance (irrelevance) of interchain hopping with the confinement (deconfinement) for an infinite number of chains since the interchain hopping is renormalized to zero in the limit of low energy for the irrelevant case. Of course there are some differences between the simplified ladder system and the infinite number of chains: (i) for the ladder the confinement-deconfinement transition is in fact a crossover as far as the ground state is concerned [11, 12]; (ii) in the ladder both the relevant and irrelevant cases lead to an insulating state due to a gap in the total charge excitation. Thus in the ladder to obtain a metallic state, as observed in the experimental (infinite number of chains) compounds, it would be necessary to explicitly dope the system and go away from the commensurate filling. This
could be a way to mimic in this simplified model the small deviation of the commensurate filling due to warping of the Fermi surface perpendicular to chain direction.\[2\]

Even if it is known that upon doping the ladder becomes metallic and the confined region is suppressed \[13\], it is yet very unclear what are the full properties of the system upon doping and what are the characteristics of such a metal-insulator transition. The purpose of the present paper is to examine these questions in the ladder system. We show that the metal-insulator transition in the ladder can be accurately described by a commensurate-incommensurate transition, and we determine its characteristics. The commensurate-incommensurate transition is well known in the classical case for one-dimensional \[14\] or quasi-one-dimensional \[14\] system. However the quantum case which corresponds to interacting electron systems, is known only for one-dimensional case \[17\] where its connections to the Mott transition have been investigated in details \[13\] \[19\] \[20\]. In the ladder, although both the half-filled commensurate system (spin ladder) and the extremely incommensurate case have been widely investigated \[21\] \[22\] \[23\] \[24\] \[25\], comparatively little has been done on the metal-insulator transition close to half-filling. The ladder system with the umklapp scattering has been examined in the chain basis, where the incommensurate phase shows no gap in the total charge fluctuation \[22\]. Studies using either a mapping on a SO(8) symmetric model \[24\] \[27\], onto a hard core boson system \[28\] or in the large interchain hopping limit \[22\] show a drastic modification of the universal properties of the metal-insulator transition compared to the single-chain case. The universal properties close to half-filling have been checked numerically by DMRG \[18\]. We use here the bosonization technique and renormalization group to study the full problem as a function of the doping and the strength of the interchain hopping. This allows us to obtain the full phase diagram and in particular the interplay between the confinement-deconfinement at commensurate filling and the metal-insulator transition upon doping the ladder.

The present paper is organized as follows. In Sec. II, formulation is given in terms of a bosonized phase Hamiltonian and renormalization group equations are derived by assuming scaling invariance for response functions. In Sec. III, the phase diagram of the commensurate state and the renormalization group equations are derived in terms of a bosonized phase Hamiltonian. In Sec. IV a summary and a discussion of the results can be found. Technical details can be found in the Appendix.

2 Formulation

2.1 System at half-filling

We consider two-coupled chains of a quarter-filled Hubbard model with a dimerization given by \[13\]\

\[
\mathcal{H} = - \sum_j \sum_{\sigma = \uparrow, \downarrow} \sum_{l = 1, 2} \left[t + (-1)^l t_d \right] \left(c_{j,\sigma,l}^\dagger c_{j+1,\sigma,l} + \text{h.c.} \right)
\]

where \(\sigma (= \uparrow, \downarrow, +, -)\) and \(l (1, 2)\) denote the spin and chain index, respectively, and \(t_d\) is the dimerization in the one-dimensional chains. After the diagonalization of the \(t_d\)-term, the kinetic term is written as

\[
\mathcal{H}_0 = \sum_{k,\sigma,l} \varepsilon_k [d_{k,\sigma,l}^\dagger d_{k,\sigma,l} - u_{k,\sigma,l}^\dagger u_{k,\sigma,l}]
\]

\[
-2t_\perp \sum_{k,\sigma} [d_{k,\sigma,1}^\dagger d_{k,\sigma,2} + \text{h.c.}]
\]

\[
-2t_\parallel \sum_{k,\sigma} [u_{k,\sigma,1}^\dagger u_{k,\sigma,2} + \text{h.c.}]
\]

By assuming scaling invariance for response functions. In the ladder system with the umklapp scattering has been examined in the chain basis, where the incommensurate phase shows no gap in the total charge fluctuation \[22\]. Studies using either a mapping on a SO(8) symmetric model \[24\] \[27\], onto a hard core boson system \[28\] or in the large interchain hopping limit \[22\] show a drastic modification of the universal properties of the metal-insulator transition compared to the single-chain case. The universal properties close to half-filling have been checked numerically by DMRG \[18\]. We use here the bosonization technique and renormalization group to study the full problem as a function of the doping and the strength of the interchain hopping. This allows us to obtain the full phase diagram and in particular the interplay between the confinement-deconfinement at commensurate filling and the metal-insulator transition upon doping the ladder.

The present paper is organized as follows. In Sec. II, formulation is given in terms of a bosonized phase Hamiltonian and renormalization group equations are derived by assuming scaling invariance for response functions. In Sec. III, the phase diagram of the commensurate state and the incommensurate state is calculated by integrating the renormalization group equations. The charge gap is also estimated and the critical properties of the transition are given. In Sec. IV a summary and a discussion of the results can be found. Technical details can be found in the Appendix.

\[
\psi_{\nu,\sigma}(x) = \frac{1}{\sqrt{2\pi\alpha}} \exp \left(i\Omega_{\nu,\sigma}(x) \right) \exp \left(i\pi\Xi_{\nu,\sigma}(x) \right),
\]

(5)
where α is of the order of the lattice constant and $\theta_{p,\sigma,\zeta} = p/(2\sqrt{2})(\theta_{p+} + p\delta_{p-} + \sigma(\theta_{\sigma+} + p\theta_{\sigma-}) + \zeta(\theta_{\zeta+} + p\theta_{\zeta-}) + \sigma\zeta(\theta_{\sigma\zeta+} + p\theta_{\sigma\zeta-}))$. The phase factor, $\pi \sum_{p,\sigma,\zeta}$ in Eq. (1), is introduced to ensure the anticommutation relation for $\psi_{p,\sigma,\zeta}$ with different p, σ and ζ.

2.2 System close to half-filling

In order to consider the system, which is slightly away from half-filling, we consider the following additional term,

$$\mathcal{H}_\mu = -\mu \sum_{j,\sigma} c_{j,\sigma}^\dagger c_{j,\sigma},$$

$$= -\mu \sqrt{2} \pi \int dx \partial_x \theta_{p+},$$

where μ is the chemical potential and $\mu = 0$ corresponds to the half-filling. We apply the transformation $\sqrt{2} \theta_{p+} \rightarrow \sqrt{2} \theta_{p+} + q_0 x$ with $q_0 = 4\mu K_p/v_p$, which leads to a misfit term $q_0 x$ in the cosine term expressing the umklapp scattering. The phase Hamiltonian is written as,

$$\mathcal{H} = \sum_{\nu=p,0,C,S} \frac{v_\nu}{4\pi^2} \int dx \left[\frac{1}{K_\nu} (\partial \theta_{\nu+})^2 + K_\nu (\partial \theta_{\nu-})^2 \right]$$

$$+ \frac{g_p}{4\pi^2} \int dx \left[\cos (\sqrt{2} \theta_{C+} - \frac{8t_{\perp}}{v_F} x) + \cos (\sqrt{2} \theta_{C-}) \right]$$

$$\times \cos (\sqrt{2} \theta_{C+} - \frac{8t_{\perp}}{v_F} x) + \cos (\sqrt{2} \theta_{C+} - \frac{8t_{\perp}}{v_F} x) + \cos (\sqrt{2} \theta_{C-})$$

$$\times \cos (\sqrt{2} \theta_{C+} - \frac{8t_{\perp}}{v_F} x) + \cos (\sqrt{2} \theta_{C-})$$

$$+ \frac{g_\sigma}{2\pi^2} \int dx \left[\cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-}) \right]$$

$$\times \cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-})$$

$$\times \cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-})$$

$$\times \cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-})$$

$$\times \cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-})$$

$$\times \cos (\sqrt{2} \theta_{\sigma+} - \frac{8t_{\perp}}{v_F} x) - \cos (\sqrt{2} \theta_{\sigma-})$$

(7)

where $v_\nu(\sigma) = v_F[1 + (-)U/\pi v_F]^{1/2}$, $v_{C(S)} = v_F$, $K_\nu(\sigma) = [1 + (-)U/\pi v_F]^{-1/2}$, $K_{C(S)} = 1$, $g_\sigma = -g_\sigma = g_\perp = Ua$ and a coupling constant for the umklapp scattering is given by $g_3 = -Ua(2t_3/t_1)/[1 + (t_3/t_1)^2]$. [22]

2.3 Renormalization group equations

By utilizing a renormalization group method, we analyze Eq. (7) where the nonlinear terms in Eq. (7) are rewritten as

$$\frac{1}{2\pi^2} \int dx \cos \sqrt{2} \theta_{p+} \cos \sqrt{2} \theta_{p+},$$

(8)

where $\theta_{p+} = \theta_{p+} + q_0 x/\sqrt{2}, \theta_{C+} = \theta_{p+} + 4v_\perp x/v_F$ and $\theta_{p+} = \theta_{p+}$ otherwise. The coupling constants are given by $g_{p+}C_\pm = \pm g_{p+}S_\pm = g_{p+}C_\pm = -g_{p+}S_\pm = g_{p+}S_\perp = (g_{p+} - g_\sigma)/2$ and $\pm g_{p+}S_\perp = -(g_{p+} - g_\sigma)/2$, where each coupling constant is treated in the renormalization group method. The renormalization group equations are derived from the response functions, which are given by $(T_\tau \exp[i\theta_{p+}(x_1, \tau_1) \exp[-i\theta_{p+}(x_2, \tau_2))]$. [23] By making use of the scaling of the cutoff $(\alpha \rightarrow \alpha' = \alpha^d)$, we obtain the equations as (Appendix A),

$$\frac{d}{dt} \mathcal{L}_\perp = \mathcal{L}_\perp - \frac{1}{8} G_{p+,C}^2 K_C F_1(8\mathcal{L}_\perp, q_0 \alpha)$$

$$- \frac{1}{8} \left(G_{\sigma+,C}^2 + G_{\sigma,C,+}^2 + G_{\sigma,C,-}^2 \right) K_C J_1(q_0 \alpha),$$

(9)

$$\frac{d}{dt} q_{0,\alpha} = q_{0,\alpha} - G_{p+,C}^2 K_C F_1(q_{0,\alpha}, 2 \mathcal{L}_\perp)$$

$$- \left(G_{p+,C,-}^2 + G_{p+,C,+}^2 \right) K_C J_1(q_{0,\alpha}),$$

(10)

$$\frac{d}{dt} K_\rho = -\frac{1}{2} K_\rho \left(G_{p+,C}^2 F_0(8\mathcal{L}_\perp, q_0 \alpha) + \left(G_{p+,C,-}^2 + G_{p+,C,+}^2 \right) J_0(q_{0,\alpha}) \right),$$

(11)

$$\frac{d}{dt} K_\sigma = -\frac{1}{2} K_\sigma \left(G_{\sigma+,C}^2 J_0(8\mathcal{L}_\perp) + G_{\sigma+,C,-}^2 + G_{\sigma,+}^2 \right) J_1(q_{0,\alpha}),$$

(12)

$$\frac{d}{dt} K_\perp = -\frac{1}{2} \sum_{p=\pm} \left(K_{\rho}^p J_0(8\mathcal{L}_\perp, \delta_{p+,p-}, \delta_{p-,p+}) \left(G_{\rho,\perp}^2 \right) + G_{\rho,\perp}^2 \right),$$

(13)

$$\frac{d}{dt} K_\delta = -\frac{1}{2} \sum_{p=\pm} \left(K_{\sigma}^p J_0(8\mathcal{L}_\perp, \delta_{p-,p+}) \right),$$

(14)

$$\frac{d}{dt} K_{\rho,\perp} = \left(2 - K_\rho - K_{\rho}^2 \right) G_{\rho,\perp}^2 + G_{\rho,\perp}^2,$$

$$- G_{\rho,\perp}^2 G_{\rho,\perp}^2 + G_{\rho,\perp}^2 G_{\rho,\perp}^2,$$

(15)

$$\frac{d}{dt} K_{\rho,\perp} = \left(2 - K_\rho - K_{\rho}^2 \right) G_{\rho,\perp}^2 + G_{\rho,\perp}^2,$$

$$- G_{\rho,\perp}^2 G_{\rho,\perp}^2 + G_{\rho,\perp}^2 G_{\rho,\perp}^2,$$

(16)

$$\frac{d}{dt} G_{\rho,\perp} = \left(2 - K_\rho - K_{\rho}^2 \right) G_{\rho,\perp}^2 + G_{\rho,\perp}^2.$$

By using a renormalization group method, we analyze Eq. (7) where the nonlinear terms in Eq. (7) are rewritten as
where \(\nu = \rho, \sigma \) and \(p = \pm \). The quantities \(F_0(x; y) \) and \(F_1(x; y) \) are defined by

\[
F_0(x; y) \equiv \frac{1}{2} [J_0(|x + y|) + J_0(|x - y|)],
\]

\[
F_1(x; y) \equiv \frac{1}{2} [J_1(|x + y|) \text{sgn}(x + y) + J_1(|x - y|) \text{sgn}(x - y)],
\]

and \(J_n \) is the \(n \)-th order Bessel function. In the above equations, the \(l \)-dependence is not written explicitly. The initial conditions are given by \(K_{\nu}(0) = K_{\nu}, G_{\nu,p',\nu'}(0) = g_{\nu,p',\nu'}, t_{\perp}(0) = t_{\perp}/W \) with \(W \equiv v_F \alpha^{-1}, \) and \(q_0(0) = q_0 \), respectively. The cutoff \(\alpha \) can be related to the lattice constant by \(\alpha = 2a/\pi \) [31], which leads to \(W \approx nt/\sqrt{2} \) for small \(t_{\perp}/t \). We take \(a = 1 \). The renormalization group equations for the velocity \(v_\nu \) are discarded and the velocity \(v_\rho \) and \(v_\sigma \) are set to \(v_F \).

In the limit of \(t_{\perp} \to 0 \) these equations reduce to those of a single chain given by

\[
\frac{d}{dl} q_0 \alpha = q_0 \alpha - 4 G_\perp^2 J_1(q_0 \alpha),
\]

\[
\frac{d}{dl} g_\rho = 2 G_\perp^2 J_0(q_0 \alpha),
\]

\[
\frac{d}{dl} g_\sigma = 2 G_\perp^2,
\]

\[
\frac{d}{dl} g_\perp = 2 G_\perp G_\perp,
\]

where \(K_{\rho} = 1 - G_\rho \) and \(K_{\sigma} = 1 - G_\sigma \). In the above equations, \(G_\rho = G_{\rho+,\rho\pm}, G_\perp = G_{\perp,\perp}, (G_{\rho} + G_\sigma) \equiv \pm 2G_{\rho+,\rho\pm} \) coming from the umklapp scattering \(g_\rho \). It is straightforward to derive Eqs. (18)-(22) from the one-dimensional (1D) Hamiltonian given by (Appendix A)

\[
\mathcal{H}_{1D} = \frac{v\rho}{4\pi} \int dx \left[\frac{1}{K_{\rho}} (\partial_x \phi_+)^2 + K_{\rho} (\partial_x \phi_-)^2 \right] + \frac{v\sigma}{4\pi} \int dx \left[\frac{1}{K_{\sigma}} (\partial_x \phi_+)^2 + K_{\sigma} (\partial_x \phi_-)^2 \right] - \frac{\mu}{\pi} \int dx \partial_x \phi_+ + \frac{g_\rho}{2\pi^2 \alpha^2} \int dx \cos 2\phi_+ + \frac{g_\perp}{2\pi^2 \alpha^2} \int dx \cos 2\phi_+, \tag{23}
\]

where \(\phi_\pm \) are the phase variables expressing the charge and spin fluctuations, respectively [33].

3 Commensurate and incommensurate states

We examine the commensurate-incommensurate transition by solving the renormalization group equations numerically. The dimerization is taken as \(t_{\perp}/t = 0.05 \) where such a choice does not change qualitatively the results as seen later. The scaling quantity \(l \) is related to energy \(\omega \) and/or temperature by \(l = \ln(W/\omega) = \ln(W/T) \).

Equation (10) shows that the quantity \(q_0(l) \) in the absence of the interaction increases as \(q_0(l) = q_0 e^l \), while the increase of \(q_0(l) \) is suppressed by the presence of \(G_{\rho+,\rho\pm} \) and \(G_{\rho+,\rho\pm} \) coming from the umklapp scattering \(g_\rho \). In Fig. 1, \(q_0(l) \) are shown with several choices of \(\mu/t \) for \(U/t = 5, t_{\perp}/t = 0.05 \) and \(t_{\perp}/t = 0.1 \).

\[\text{Fig. 1. The scaling flows of } q_0(l) \alpha \text{ with fixed } \mu/t = 0.15(1), 0.126(2), 0.125(3) \text{ and } 0.1(4) \text{ for } U/t = 5, t_{\perp}/t = 0.05 \text{ and } t_{\perp}/t = 0.1. \]

3.1 Half-filled case

It is known that a transition from the relevant interchain hopping to the irrelevant one occurs with increasing \(t_{\perp} \) at half-filling [14]. We show that such a result is also obtained for \(\mu \neq 0 \), which still leads to the commensurate state. In Fig. 2, the quantity \(t_{\perp}(l)/t \) is calculated for the commensurate state with \(\mu/t = 0.1 \). With decreas-
which express effective quantities of \(q \). The relevant state conducts the interaction and the chemical potential. These effective quantities are estimated from the crossover since both states exhibit C0S0 behavior which separates these two cases is obtained at a critical value of \(t_{\perp} = t_{\perp,c} \) (curve(c)). For a relevant interchain hopping, one can also expect a state with the spin gap dependence of \(q \) as shown with fixed \(t_{\perp} = 0 \) that for \(t_{\perp} = 0.05 \). The thin dotted line denotes \(q(=q_0) \) in the absence of the umklapp scattering. The critical value \(\mu_c \) for the commensurate-incommensurate transition is not monotonical as a function of \(t_{\perp} \) since \(\mu_c \) for \(t_{\perp} = 0 \) is larger (smaller) than that for \(t_{\perp} = 0.05 \) (0.2). The explicit \(t_{\perp} \)-dependence of \(\mu_c \) is evaluated in Fig. 4. In the inset of Fig. 3, the effective interchain hopping normalized by \(t_{\perp} \) is shown for \(t_{\perp}/t = 0.05 \) (dotted curve) and 0.2 (solid curve) where \(t_{\perp}^{\text{eff}}/t_{\perp} \) is symmetric with respect to \(\mu = 0 \). For \(t_{\perp}/t = 0.05 \), \(t_{\perp}^{\text{eff}}/t_{\perp} \) becomes zero for small \(\mu/t(\lesssim 0.11) \) and exhibits the irrelevant interchain hopping while the interchain hopping for \(t_{\perp}/t = 0.2 \) shows always relevant one. From the results of Fig. 3, we examine the boundary between the commensurate state (C1 and C11) and the incommensurate state (IC) and also the boundary between the relevant interchain hopping and irrelevant one. In Fig. 4, the phase diagram of these states is shown for \(U/t = 5 \) and \(t_{\delta}/t = 0.05 \). The solid curve denotes the boundary between the incommensurate state and the commensurate state. The incommensurate state corresponds to the metallic state. The commensurate state is the (Mott-)insulating state where the dashed curve in the commensurate state denotes the boundary between the relevant interchain hopping (“D-Mott phase”) and the irrelevant one (“Confined phase”). The critical value shown by the arrow on the \(t_{\perp} \)-axis is given by \(t_{\perp,c}^{0} \).
The critical value shown by the arrow on the μ-axis is given by $\mu^0_c/t \simeq 0.154$, at which the solid curve merges with the dashed curve. The interchain hopping is always relevant in the incommensurate phase since the umklapp scattering becomes irrelevant in the limit of low energy as seen from Eq. (4). The incommensurate phase shows no gap in the total charge fluctuation due to the relevant μ [22], while the gaps still exist for other fluctuations due to the relevant t_\perp. The incommensurate state corresponds to a “CIS0” d-wave superconductivity [22] and is called “Luther-Emery liquid” [29]. The solid curve corresponding to the critical value μ_c shows non-monotonical behavior as a function of t_\perp. With increasing t_\perp, μ_c has a minimum at $t_\perp/t \simeq 0.07$ and becomes larger than μ^0_c. The decrease of μ_c for small $t_\perp/t(<0.07)$ originates in the fact that the effect of the umklapp scattering becomes weakened for finite t_\perp due to the misfit $(8t_\perp/\nu v_F)x$ in g_u-term of Eq. (3).

For large t_\perp and small g_u (g_u is controlled by t_4 which is small here) we can explain the behavior by a qualitative analysis of the renormalization group equations. The strong interchain hopping between the two interacting chains opens a gap in all sectors except for the total charge sector. We may define a scale l_1 where the couplings in the σ, C, S sectors have reached a value of order one. This scale will depend on t_\perp and the value of the bare interaction but not on g_u. Up to t_1, g_u will renormalize by some finite multiplicative constant that will not affect the asymptotic dependence of the charge gap. However above t_1 the scaling dimension of g_u is $2-K_\rho$, instead of $2-2K_\rho$ if $t_\perp = 0$. Indeed $\cos(\sqrt{2}\theta_{S+})$ and $\cos(\sqrt{2}\theta_{C-})$ acquire a mean value (with opposite signs) so that the umklapp term reduces to:

$$g_u \sin \sqrt{2} \theta_{\rho^+} \left(\langle \cos \sqrt{2} \theta_{C-} \rangle - \langle \cos \sqrt{2} \theta_{S+} \rangle \right).$$

As a first consequence this means that the power law dependence of the gap for asymptotically small umklapp scattering is enhanced by interchain hopping from $\Delta^0_{\rho} \propto g_u^{1/(2-2K_\rho)}$ to $\Delta_\rho \propto g_u^{1/(2-K_\rho)}$. The second physical consequence is for the commensurate-incommensurate transition. In the absence of chemical potential of Eq. (4), the operator g_u in Eq. (24) would be relevant when $K_\rho^{\mu=0} < 2$. As is standard for the commensurate-incommensurate transition [24], the addition of a chemical potential of Eq. (4) leads to a universal value of the Luttinger exponent close to zero doping of $K_\rho^{\mu=0} = 1$. It is also easy to see that the charge excitations connecting two minima of the potential, Eq. (4), correspond to a charge +2. We thus recover quite generally the results that were established in the various previous limits [27,28,29,30].

Next, we estimate the magnitude of the charge gap on the plane of μ/t and t_\perp/t of Fig. 4. In a way similar to the previous calculations in the case for $\mu = 0$ [10], the charge gap Δ_ρ is calculated from the renormalization group flow where $\Delta_\rho/t = W \exp[\Delta_\rho]$ and l_Δ is defined by $K_\rho(l_\Delta) \equiv 1/2$. We set $\Delta_\rho = 0$ for $K_\rho(\infty) < 1/2$. In Fig. 5, the t_\perp-dependence of Δ_ρ is shown for $\mu/t = 0, 0.1$ and 0.14. When t_\perp increases, the charge gap with $\mu = 0$ decreases and has a minimum at $t_\perp/t = 0.154$. A similar dependence is found in the t_\perp-dependence of μ_c in Fig. 4 where the location for the minimum is the same within the numerical accuracy. The identification of the charge gap for the commensurate case $\Delta_\rho(\mu = 0)$ with μ_c can be expected for the commensurate-incommensurate transition on general grounds. Indeed the charge gap is the smallest
energy one must pay to inject an excitation which carries a charge. When the chemical potential reaches the charge gap, charged excitations are injected in the system, the system is incommensurate. The non-monotonical dependences of Δ_ρ on t_\perp indicate a crossover from the irrelevant interchain hopping to the relevant one with increasing t_\perp. For $\mu/t = 0.1$, Δ_ρ is suppressed but is still similar to that of $\mu = 0$. However the t_\perp-dependence of Δ_ρ for $\mu/t = 0.14$ is qualitatively different from others. The metallic state with $\Delta_\rho/t = 0$ appears in the interval region of $0.028 < t_\perp/t < 0.2$. This region corresponds to the incommensurate state in Fig. 4. We note that numerical integration of the renormalization group flow shows that Δ_ρ as a function of μ decreases monotonically to zero at the commensurate-incommensurate transition, in agreement with the annihilation of the gap expected for a commensurate-incommensurate transition.

Finally we examine the U and t_\perp dependences of the critical values, μ^0_c and $t^0_{\perp,c}$, which are shown by the arrows in Fig. 4. In Fig. 6 the U-dependences of μ^0_c and $t^0_{\perp,c}$ are shown by the solid curve and the dashed curve, respectively for $t_\perp/t = 0.05$. In the inset, the t_\perp-dependences of the corresponding quantities are shown by solid and dashed curves for $U/t = 5$. These U and t_\perp-dependences show that $\mu^0_c/t^0_{\perp,c} \approx 2.2$ for the present choice of parameters. Thus a rescaled phase diagram, which is independent of U and t_\perp, can be obtained from Fig. 4 by using the rescaled variables μ/μ^0_c and $t_{\perp}/t^0_{\perp,c}$. Our renormalization group procedure correctly gives a value for μ^0_c identical, within the scale of Fig. 4, with $\Delta^0_{\rho,c}$. The quantity $\Delta^0_{\rho,c}$ denotes Δ_ρ of the single chain where $\Delta^0_{\rho,c} \approx W(u_0/W)^{1/(2-2K_\rho)}$ for small u_0. We note that the boundary between a relevant t_\perp and an irrelevant t_\perp is determined more accurately by the competition between $t^0_{\perp,c}$ and $\Delta^0_{\rho,c}$, where $t^0_{\perp,c}$ denotes the effective interchain hopping energy for $t_\perp = \mu = 0$. The quantity $t^0_{\perp,c}$ is given analytically by $t^0_{\perp,c} = t_\perp(t_\perp/t\alpha_0/(1-\alpha_0))$ with $\alpha_0 = (K_\rho+K_{\rho}^{-1}+K_{\sigma}+K_{\sigma}^{-1}-4)/4$.

4 Summary and discussion

In the present paper, we investigated the properties of two coupled chains with interchain electron hopping and a filling close to half-filling. By using bosonization and a renormalization group method we obtained the full phase diagram of the system. There is a metal-insulator transition for a critical value μ_c of the chemical potential, describable by a commensurate-incommensurate phase transition on the bosonized Hamiltonian. The critical value μ_c, shown in Fig. 4, exhibits a non-monotonical dependence on the perpendicular hopping t_\perp. The minimum of μ_c occurs for values of t_\perp close to the ones for which a confinement-deconfinement crossover takes place for the commensurate case. For large t_\perp the relevance of interchain hopping reinforces the commensurate character of the system leading to an enhanced commensurability gap. The crossover line separating the regions of irrelevant and relevant interchain hopping (confinement-deconfinement line) merges with the boundary between the commensurate state and the incommensurate state at $\mu = \mu^0_c$, the critical chemical potential for a single chain ($t_\perp = 0$). We found that the phase diagram of Fig. 4 becomes almost independent of parameters such as interactions and dimerization when expressed in terms of the rescaled variables $\mu/\mu^0_c(t_\perp/t^0_{\perp,c})$. In addition, given the form for the Hamiltonian, we could show that at the limit of small doping, the Luttinger liquid parameter takes the universal value $K^*_{\sigma} = 1$, thereby confirming the results obtained on specific limits of the model.

Finally let us discuss the interchain exchange interactions in the commensurate confined phase (irrelevant interchain hopping). Even when irrelevant, the interchain hopping generates two particles and particle hole hopping. Within the present formalism, the two particle interchain hopping can be taken into account by starting from the chain. The Hamiltonian corresponding to the umklapp scattering, \mathcal{H}_u, in Eq. (6) is rewritten as

$$\mathcal{H}_u = g^{1D}_u \sum_{p,l} \int dx \psi_{p,\uparrow,l}^\dagger \psi_{p,\uparrow,l} \psi_{p,\downarrow,l}^\dagger \psi_{p,\downarrow,l}$$

$$+ J_u \sum_p \int dx \left[\psi_{p,\uparrow,1} \psi_{p,\downarrow,1} \psi_{p,\downarrow,2} \psi_{p,\uparrow,2} + h.c. \right]$$

$$+ J_{u\perp} \sum_p \int dx \left[\psi_{p,\uparrow,1} \psi_{p,\downarrow,1} \psi_{p,\uparrow,2} \psi_{p,\downarrow,2} + h.c. \right]$$

$$+ g^{2D}_u \sum_p \int dx \left[\psi_{p,\uparrow,1} \psi_{p,\downarrow,1} \psi_{p,\downarrow,2} \psi_{p,\uparrow,2} + h.c. \right].$$

(25)
where $\psi_{p,\sigma, l} = L^{-1/2} \sum_k e^{ikx} d_{k,p,\sigma, l}$ with $l = 1, 2$ denoting the chain index and $p = \pm 1$ corresponding to the right (left) moving electrons. The coupling constants are given by $g^{u}_{1D} = (g_{p+}c_{+} + g_{p-}c_{-} - g_{p+}s_{+} + g_{p-}s_{-})/4$, $J_{u\pi} = (g_{p+}c_{-} - g_{p-}c_{+} - g_{p+}s_{-} + g_{p-}s_{+})/4$, $J_{u\perp} = -(g_{p+}c_{+} - g_{p+}c_{-} + g_{p-}s_{+} + g_{p-}s_{-})/4$ and $g^{pt}_{u} = (g_{p+}c_{+} + g_{p-}c_{-} + g_{p+}s_{+} - g_{p-}s_{-})/4$, where g^{u}_{1D} and $J_{u\pi}$ ($J_{u\perp}$) denote the intrachain umklapp scattering and the interchain umklapp exchange, and g^{pt}_{u} denotes the pair tunneling between chains. Other terms in the Hamiltonian can be rewritten in a similar form. The initial values of the interchain exchange and that of pair tunneling are zero since the initial values of the umklapp scattering in the renormalization group equations are given by $g_{p+}c_{+} = g_{p+}c_{-} = -g_{p+}s_{+} = g_{p+}s_{-} = 0$. Both of these interactions are generated by the renormalization.

It would be a interesting problem to investigate, by taking the higher order terms in the renormalization group, the consequences of these terms on the full phase diagram investigated in this paper.

One of the authors (Y.S.) is thankful for the financial support from Université Paris-Sud and also for the kind hospitality during his stay at Ecole Normale Supérieure, M.T. and Y.S. thank T. Itakura for useful discussions. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture (Grant No.09640429), Japan.

A Renormalization group equations

In this section, we derive the renormalization group equation for μ.

First, we treat the system with a single chain where the phase Hamiltonian is given by

$$H_{1D} = \frac{v_p}{4\pi} \int dx \left[\frac{1}{K_p} (\partial_x \theta_+)^2 + K_p (\partial_x \theta_-)^2 \right] + \frac{g_u}{2\pi^2 \alpha^2} \int dx \cos(2 \theta_+ + q_0 x) \right), \quad (26)$$

The quantities v_p and K_p are the same as two-coupled chains, and $[\theta_+(x), \theta_- (x')] = i \pi \text{sgn}(x - x') \left[\right]$ and $q_0 = (4K_p/v_p)\mu$. Here the expectation value of the carrier density, n, can be evaluated as

$$n = \frac{2K_p}{\pi v_p} \mu + \frac{T}{\pi L} \int dx \int d\tau \langle \partial_x \theta_+ \rangle \right), \quad (27)$$

where the factor $2K_p/\pi v_p$ in the first term of r.h.s. corresponds to the presence of the absence of the umklapp scattering. The second term of Eq. (27) can be evaluated as follows,

$$\int dx \int d\tau \langle \partial_x \theta_+ \rangle = \frac{2K_p}{\pi v_p} \mu + \frac{T}{\pi L} \int dx \int d\tau \langle \partial_x \theta_+ \rangle \right) = \frac{4G_u}{\alpha^2} K_p \int dx \int d\tau x \langle \sin (2 \theta_+ + q_0 x) \rangle \right), \quad (28)$$

where $Z = \text{Tr} \exp(-\int d\tau H_{1D})$ and $G_u = g_u/(2\pi v_p)$. In Eq. (28), the new phase variable $\theta_+ = \theta_+ - 2\pi K_p x/v_p$ has been introduced and rewritten as $\theta_+ \to \theta_+$. Then Eq. (27) leads

$$n = \frac{1}{2\pi} q_0 + \frac{4}{\pi \alpha^2} G_u K_p T \int dx \int d\tau \langle \sin \left(2 \theta_+ + q_0 x \right) \rangle \right), \quad (29)$$

Here it is worthwhile noting that Eq. (28) is compared with

$$\mu = \frac{\pi v_p}{2K_p} n - \frac{2}{\pi \alpha^2} G_u T \int dx \int d\tau \langle \sin \left(2 \theta_+ + 2\pi n x \right) \rangle \right), \quad (30)$$

which is obtained by using the Legendre transformation, i.e., by calculating the value of the chemical potential at fixed carrier density n.

After a straightforward calculation of Eq. (29), one finds, up to the lowest order of G_u, $n = \frac{1}{2\pi} q_0 - \frac{2}{\pi \alpha^2} G_u^2 K_p \int dx \int d\tau \langle \frac{(\pi \alpha)}{2} \rangle 2 - 4K_p \right) J_1(q_0 r) \right). \quad (31)$$

By assuming that the quantity n is simply scaled as $n(l) = n(0)\left[\right]$ with the transform $\alpha \to n(0)\left[\right]$, the renormalization group equation for q_0 is obtained as

$$\frac{d}{dt} q_0 \alpha = q_0 \alpha - 4G_u^2 K_p J_1(q_0 \alpha). \quad (32)$$

The renormalization group equations for K_p and G_u can be obtained in a way similar to Ref. [19] as

$$\frac{d}{dt} K_p = -2G_u^2 K_p J_0(q_0 \alpha), \quad (33)$$

$$\frac{d}{dt} G_u = (2 - 2K_p) G_u \right). \quad (34)$$

By integrating this renormalization group equation, the effective quantity of q_0 can be estimated from $qa = q \exp(-l_q)$ with $q_0(l_q)\alpha = c$, where c is a numerical constant of the order of unity. One finds that the quantity q can be related to carrier density n by $n = q/(2\pi)$ from Eq. (32).

Next we consider the case of two-coupled chains. The expectation value of the carrier density, n, can be evaluated as

$$n = \frac{4K_p}{\pi v_p} \mu + \sqrt{2} \frac{T}{\pi L} \int dx \int d\tau \langle \partial_x \theta_+ \rangle \right), \quad (35)$$

where the first term of r.h.s. becomes twice as that in Eq. (27), since here we consider two chains. From a procedure similar to the single chain, Eq. (27) is replaced by

$$n = \frac{1}{2\pi} q_0 + \frac{4}{\pi \alpha^2} G_{p+, c+} K_p T \int dx \int d\tau x$$

$$\times \left\{ \sin \left(2 \theta_{c+} - 8t_{c+} \right) x \right\} \right) \right). \quad (36)$$
The coupling constants that appear in Eq. (36) are those $F\frac{\pi}{\alpha}$.

The calculation in the lowest order of perturbation yields, $y\frac{\pi}{\alpha}$.

The renormalization group equation for $F\frac{\pi}{\alpha}$.

The infinitesimal transform of the cutoff $F\frac{\pi}{\alpha}$.

where $F\frac{\pi}{\alpha}$.

The references for the other coupling constants, Eqs. (11)-(17) are also obtained in a way similar to Ref. [10].

References

1. D. Jérôme and H. J. Schulz, Adv. Phys. 31, 299 (1982).
2. T. Giamarchi, Physica B 230-232, 975 (1997).
3. M. Dressel, A. Schwartz, G. Grüner, and L. Degiorgi, Phys. Rev. Lett. 77, 398 (1996).
4. A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi and T. Giamarchi, Phys. Rev. B58, 1261 (1998).
5. J. Moser, M. Gabay, P. Auban-Senzier, D. Jérôme, K. Bechgaard and J. M. Fabre, Eur. Phys. J. B 1, 39 (1998).
6. V. Vescoli, L. Degiorgi, W. Henderson, G. Grüner, K. P. Sarkey and L. K. Montgomery, Science 281, 1181 (1998).
7. C. Bourbonnais, in Strongly Interacting Fermions and High T_c Superconductivity ed. B. Doucot and J. Zinn-Justin (Elsevier, Amsterdam, 1995), p. 307.
8. E. Dagotto and T. M. Rice, Science 271, 5249 (1996).
9. Y. Suzumura, M. Tsuchiizu and G. Grüner, Phys. Rev. B 57, 15040 (1998).
10. M. Tsuchiizu and Y. Suzumura, Phys. Rev. B59, 12326 (1999).
11. K. Le Hur, cond-mat/0006224.
12. P. Donohue, M. Tsuchiizu, T. Giamarchi and Y. Suzumura, cond-mat/0007332.
13. Y. Suzumura, M. Tsuchiizu and G. Grüner, Synth. Met. 103, 2191 (1999).
14. H. Fukuyama and H. Takayama, Electronic Properties of Inorganic Quasi-One-Dimensional Compounds Part I, ed. P. Monceau (D. Reidel Publishing Company, 1985) p. 41.
15. Y. Okwamoto, H. Takayama and H. Shiba, J. Phys. Soc. Jpn. 46, 1420 (1979).
16. T. Itakura and Y. Suzumura, J. Phys. Soc. Jpn. 68, 2395 (1999).
17. F.D.M. Haldane, P. Bak and T. Bohr, Phys. Rev. B 28, 2743 (1983).
18. H.J. Schulz, Phys. Rev. B 28, 2746 (1983).
19. T. Giamarchi, Phys. Rev. B 44, 2905 (1991).
20. M. Mori and H. Fukuyama, J. Phys. Soc. Jpn. 65, 3604 (1996).
21. M. Fabrizio, Phys. Rev. B 48, 15383 (1993).
22. D. V. Khveshchenko and T. M. Rice, Phys. Rev. B 50, 252 (1994).
23. N. Nagaosa, Solid State Commun. 94, 495 (1995).
24. L. Balents and M. P. A. Fisher, Phys. Rev. B 53, 12133 (1996).
25. H. J. Schulz, Phys. Rev. B 53, R2959 (1996).
26. H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B 58, 1794 (1998).
27. R. Konik, F. Lesage, A. W. W. Ludwig, and H. Saleur, Phys. Rev. B 61, 4983 (2000).
28. H. J. Schulz, Phys. Rev. B 59, R2471 (1999).
29. U. Ledermann, K. Le Hur and T. M. Rice, to be published in Phys. Rev. B 62, No. 23 (2000) cond-mat/0002445.
30. Th. Siller, M. Troyer, T. M. Rice and S. R. White, cond-mat/0006080.
31. M. Tsuchiizu and Y. Suzumura, Physica B 281-282, 684 (2000).
32. K. Penc and F. Mila, Phys. Rev. B 50, 11429 (1994).
33. T. Giamarchi and H. J. Schulz, J. Phys. France 49, 819 (1988).
34. Y. Suzumura, Prog. Theor. Phys. 61, 1 (1979).
35. Y. Suzumura and M. Tsuchiizu, to be published in J. Phys. Chem. Solids cond-mat/0005137.
36. M. Tsuchiizu, Y. Suzumura, T. Giamarchi, Prog. Theor. Phys. 101, 763 (1999).
37. C. Bourbonnais, Mol. Cryst. Liq. Cryst. 119, 11 (1985).
38. C. Bourbonnais and L. G. Caron, Int. J. Mod. Phys. B 5, 1033 (1991).