A non-existence result for a generalization of the equations of the conformal method in general relativity

Mattias Dahl1, Romain Gicquaud2 and Emmanuel Humbert2

1 Institutionen för Matematik, Kungliga Tekniska Högskolan, SE-100 44 Stockholm, Sweden
2 Laboratoire de Mathématiques et de Physique Théorique, UFR Sciences et Technologie, Université François Rabelais, Parc de Grandmont, F-37200 Tours, France

E-mail: dahl@math.kth.se, romain.gicquaud@lmpt.univ-tours.fr and emmanuel.humbert@lmpt.univ-tours.fr

Received 31 October 2012, in final form 5 February 2013
Published 5 March 2013
Online at stacks.iop.org/CQG/30/075004

Abstract
The constraint equations of general relativity can in many cases be solved by the conformal method. We show that a slight modification of the equations of the conformal method admits no solution for a broad range of parameters. This suggests that the question of existence or non-existence of solutions to the original equations is more subtle than could perhaps be expected.

PACS numbers: 02.40.Ky, 02.40.Ma, 04.20.Ex, 04.20.Jb

1. Introduction

Initial data for the Cauchy problem in general relativity consists of a Riemannian manifold (M, \tilde{g}) and a symmetric 2-tensor \tilde{K} on M satisfying the following equations:

\begin{align}
R^{\tilde{g}} - |\tilde{K}|_{\tilde{g}}^2 + (\text{tr}^{\tilde{g}}K)^2 &= 0, \\
\text{div}^{\tilde{g}} \tilde{K} - d \text{tr}^{\til{g}} \tilde{K} &= 0.
\end{align}

Here \tilde{g} represents the metric induced by the space-time metric on the Cauchy surface M, \tilde{K} is its second fundamental form, and $R^{\tilde{g}}$ is the scalar curvature of the metric \tilde{g}. The constraint equations (1) follow from the vacuum Einstein equation for the space-time metric.

The construction and classification of solutions of the system (1) is an important issue. Background and many results for this system are summarized in the excellent review article [2]. One of the most important methods to construct solutions to this system is the conformal method. Its main idea is to choose part of the initial data as given and then solve for the rest of the data.

For the given data of an n-dimensional Riemannian manifold (M, g), $n \geq 3$, a function τ on M and a symmetric traceless divergence-free 2-tensor σ on M, one seek for a positive function φ and a 1-form W on M such that

$$
\tilde{g} = \varphi^{n-2} g, \quad \tilde{K} = \frac{\tau}{n} \tilde{g} + \varphi^{-2} (\sigma + LW).
$$
solve the constraint equations (1). Here we have set $N := \frac{2n}{n^2}$. Further, L denotes the conformal Killing operator acting on 1-forms. In coordinates

$$(LW)_{ij} = \nabla_i W_j + \nabla_j W_i - \frac{2}{n} \nabla_k W_{kj},$$

where ∇ is the Levi–Civita connection associated to the metric g. Note that τ corresponds to the mean curvature of M embedded in the space-time solving Einstein’s equations.

The constraint equations are satisfied if ϕ and W solve the system

$$\frac{4(n - 1)}{n - 2} \Delta \phi + R \phi = -\frac{n - 1}{n} \tau^2 \phi^{n - 1} + |\sigma + LW|^2 \phi^{-n - 1}, \quad (2a)$$

$$-\frac{1}{2} L^* LW = \frac{n - 1}{n} \phi^n \delta \tau, \quad (2b)$$

where Δ is the non-negative Laplacian and L^* is the formal L^2-adjoint of L. As with all other metric-dependent objects used from here on they are defined using the metric g. The first equation is known as the Lichnerowicz equation while the second is called the vector equation.

Of special importance is the case where τ is constant, so that the corresponding Cauchy surface has constant mean curvature in the surrounding space-time. Making this assumption renders the system much simpler to solve. Indeed, equation (2b) becomes $L^* LW = 0$. Therefore, W can be chosen to be an arbitrary conformal Killing vector field and it remains only to solve the Lichnerowicz equation (2a).

Hence, much work has been devoted to the study of the cases when τ is constant or when $\delta \tau$ small. We refer the reader to [2] and references therein for more details. However, as proven in [1] and [3] such a Cauchy surface of constant mean curvature does not exist for all space-times.

Recent new results were obtained for the case of arbitrary τ by Holst, Nagy and Tsogtgerel in [6, 7], by Maxwell in [9], by the authors in [4] and by the second author with Sakovich in [5]. In [10], Maxwell studied a simplified model problem to get insight into the solvability of the system (2).

Non-existence results for the system (2) are very rare, see for example [8, theorem 2] and [4, theorem 1.7] where $\sigma \equiv 0$ is assumed. The purpose of this short note is to provide an example of a system very similar to the original system (2) which does not admit any solutions as soon as a certain parameter is larger than a fairly explicit constant. We will prove the following theorem.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension $3 \leq n \leq 5$ with $g \in C^2$ having scalar curvature $R \leq 0$, $R \not\equiv 0$. Let τ be a positive L^∞ function and $\sigma \in L^N$ a symmetric traceless divergence-free 2-tensor on M. Assume that ξ is a Lipschitz 1-form which does not vanish anywhere on M. Then there is a constant a_0 such that there does not exist any solution to the system

$$\frac{4(n - 1)}{n - 2} \Delta \phi + R \phi = -\frac{n - 1}{n} \tau^2 \phi^{n - 1} + |\sigma + LW|^2 \phi^{-n - 1}, \quad (3a)$$

$$-\frac{1}{2} L^* LW = a \phi^N \xi, \quad (3b)$$

when $a > a_0$.

2
The constant a_0 depends on a Sobolev constant, a constant appearing in a Schauder estimate, $\max|\xi|, \min|\xi|, \|L\xi\|_{L^2}, \|L\xi\|_{L^\infty}, \min\tau, \|R\|_{L^2}, \|\sigma\|_{L^2}$ and on $\|\varphi\|_{L^2}$, where $\varphi_0 > 0$ is the solution of the prescribed scalar curvature equation

$$\frac{4(n-1)}{n-2} \Delta \varphi + R \varphi = -\frac{n-1}{n} \tau^2 \varphi^{N-1}.$$

By the assumption on scalar curvature the metric g has a negative Yamabe constant which guarantees the existence of the function φ_0.

Note that the only difference between the modified system (3) and the original system (2) is that $\frac{n-1}{n} \Delta \tau$ in (2b) is replaced by $a\xi$. The assumption that ξ never vanishes imposes that the compact manifold M has vanishing Euler characteristic. Note also that for any function τ the 1-form $d\tau$ has zeros.

The idea underlying the theorem is the following. All known methods to produce solutions to the conformal constraint equations (1b) for any σ rely on a smallness assumption of $d\tau$, see for example [4] or [2] and references therein. On the other hand, existence results for the limit equation (see [4, proposition 1.6]) are obtained by making $d\tau$ large. As a consequence, it is natural to look for non-existence results for the conformal constraint equations (1b) for large $d\tau$. For technical reasons we did not succeed in finding such a result. This is the reason why we were led to introduce a vector field ξ with large (pointwise) norm.

This theorem shows that if a general existence result (that is without additional assumption on τ and σ) for the system (2) exists, then its proof must use the fact that $d\tau$ (appearing in (2b)) is the differential of τ and not an arbitrary 1-form. Even more, this seems to indicate that such a general statement could be false.

Note that the non-existence results in [10, theorems 4 and 7] both require that τ changes the sign, whereas our result is valid only for positive τ.

The theorem stated here is certainly not in the most general form possible; our goal is simply to find an example of a non-existence result for the generalized system (3).

2. Proof of theorem 1.1

Assume that (φ, W) solves the system (3). We define

$$\gamma := \int_M |\sigma + LW|^2 \, d\mu$$

and rescale equations (3a)–(3b) by setting

$$\tilde{\varphi} := \frac{1}{\gamma^{\frac{1}{2}}} \varphi, \quad \tilde{W} := \frac{1}{\gamma^{\frac{1}{2}}} W, \quad \tilde{\sigma} := \frac{1}{\gamma^{\frac{1}{2}}} \sigma.$$

The equations then become

$$\frac{1}{\gamma^{\frac{1}{2}}} \left(\frac{4(n-1)}{n-2} \Delta \tilde{\varphi} + R \tilde{\varphi} \right) = -\frac{n-1}{n} \tau^2 \tilde{\varphi}^{N-1} + |\tilde{\sigma} + \tilde{W}|^2 \tilde{\varphi}^{N-1}, \quad (4a)$$

$$-\frac{1}{2} L^* L \tilde{W} = a \tilde{\varphi}^{N-1}. \quad (4b)$$

The proof of theorem 1.1 is decomposed in a sequence of claims.

Claim 2.1. There exists a constant $c_1 > 0$ such that

$$\gamma \geq c_1 a^2.$$
Proof. We remark that $\varphi \geq \varphi_-$, see for example [4, lemma 2.2]. Taking the scalar product of (3b) with ξ and integrating we obtain the central equality of the following estimate:

$$\frac{1}{2} \left(\int_M |L \xi|^2 \, d\mu \right)^{\frac{1}{2}} \left(\int_M |LW + \sigma|^2 \, d\mu \right)^{\frac{1}{2}} \geq - \frac{1}{2} \int_M (L \xi, LW + \sigma) \, d\mu$$

$$= - \frac{1}{2} \int_M (L \xi, LW) \, d\mu$$

$$= a \int_M \varphi^N |\xi|^2 \, d\mu$$

$$\geq a (\inf_{M} |\xi|^2) \int_M \varphi^N \, d\mu$$

$$\geq a (\inf_{M} |\xi|^2) \int_M \varphi^N \, d\mu,$$

from which we conclude

$$\gamma \frac{1}{2} \geq 2 \left(\inf_{M} |\xi|^2 \right) \int_M \varphi^N \, d\mu \left(\int_M |L \xi|^2 \, d\mu \right)^{-\frac{1}{2}} a.$$

The claim thus holds with

$$c_1 : = 4 \left(\inf_{M} |\xi|^2 \right) \left(\int_M \varphi^N \, d\mu \right)^2 \int_M |L \xi|^2 \, d\mu$$

which is positive by the assumption that ξ does not vanish. \hfill \Box

Claim 2.2. There exists a constant c_2 such that

$$\int_M \bar{\phi}^N \, d\mu \leq \frac{c_2}{a^{N+1}}.$$

Proof. We take the scalar product of (4b) with ξ and integrate over M to find

$$\int_M |L \tilde{W} + \tilde{\sigma}|^2 \tilde{\phi}^{-N} \, d\mu \geq \frac{1}{2} ||L \xi||_{L^\infty} \int_M |L \tilde{W} + \tilde{\sigma}| \, d\mu$$

$$\geq - \frac{1}{2} \int_M (L \xi, L \tilde{W} + \tilde{\sigma}) \, d\mu$$

$$= - \frac{1}{2} \int_M (L \xi, L \tilde{W}) \, d\mu$$

$$= a \int_M \bar{\phi}^N |\xi|^2 \, d\mu$$

$$\geq a (\inf_{M} |\xi|^2) \int_M \bar{\phi}^N \, d\mu$$

or

$$\int_M |L \tilde{W} + \tilde{\sigma}|^2 \tilde{\phi}^{-N} \, d\mu \leq \left(\int_M |L \tilde{W} + \tilde{\sigma}| \tilde{\phi}^{-N-1} \, d\mu \right)^{\frac{1}{2}} \left(\int_M |L \tilde{W} + \tilde{\sigma}|^2 \, d\mu \right)^{\frac{1}{2}} \left(\int_M \bar{\phi}^N \, d\mu \right)^{\frac{1}{2}}.$$

From the Hölder inequality we obtain

$$\int_M |L \tilde{W} + \tilde{\sigma}|^2 \tilde{\phi}^{-N} \, d\mu \leq \left(\int_M |L \tilde{W} + \tilde{\sigma}| \tilde{\phi}^{-N-1} \, d\mu \right)^{\frac{1}{\alpha}} \left(\int_M |L \tilde{W} + \tilde{\sigma}|^2 \, d\mu \right)^{\frac{1}{\alpha^{N-1}}} \left(\int_M \bar{\phi}^N \, d\mu \right)^{\frac{1}{\alpha^{N-1}}}.$$

4
Together with the previous estimate we have found that
\[
\left(\int_M \tilde{\varphi}^N d\mu \right)^\frac{1}{\gamma} \leq \frac{1}{2\alpha} \frac{\|L_\xi\|_{L^\infty}}{(\inf M |\xi|^2)} \left(\int_M |L \tilde{W} + \tilde{\sigma}|^2 \tilde{\varphi}^{N-1} d\mu \right)^\frac{N}{N+1},
\]
where we again used the assumption that \(\xi\) is non-zero everywhere. To estimate the right-hand side we integrate equation (4a),
\[
\frac{1}{\gamma} \int_M R \tilde{\varphi}^N d\mu + \frac{n-1}{n} \int_M \tau^2 \tilde{\varphi}^{N-1} d\mu = \int_M |\tilde{\sigma} + L \tilde{W}|^2 \tilde{\varphi}^{N-1} d\mu.
\]
Since \(R \leq 0\) we see that
\[
\int_M |\tilde{\sigma} + L \tilde{W}|^2 \tilde{\varphi}^{N-1} d\mu \leq \frac{n-1}{n} \int_M \tau^2 \tilde{\varphi}^{N-1} d\mu \leq \left(\int_M \tau^{2N} d\mu \right)^\frac{1}{2} \left(\int_M \tilde{\varphi}^N d\mu \right)^\frac{n-1}{n}.
\]
Inserting this estimate into (5) we obtain
\[
\left(\int_M \tilde{\varphi}^N d\mu \right)^\frac{1}{\gamma} \leq \frac{1}{2\alpha} \frac{(n-1)}{n} \frac{\|L_\xi\|_{L^\infty}}{(\inf M |\xi|^2)} \left(\int_M \tau^{2N} d\mu \right)^\frac{1}{2} \left(\int_M \tilde{\varphi}^N d\mu \right)^\frac{n-1}{n},
\]
or
\[
\int_M \tilde{\varphi}^N d\mu \leq \frac{1}{(2\alpha)^{N+1}} \left(\frac{n}{n-1} \right)^\frac{\gamma}{2} \left(\frac{\|L_\xi\|_{L^\infty}}{(\inf M |\xi|^2)} \right)^{N+1} \left(\int_M \tau^{2N} d\mu \right)^\frac{1}{2},
\]
which proves the claim with
\[
c_2 := \frac{1}{2^{N+1}} \left(\frac{n}{n-1} \right)^\frac{\gamma}{2} \left(\frac{\|L_\xi\|_{L^\infty}}{(\inf M |\xi|^2)} \right)^{N+1} \left(\int_M \tau^{2N} d\mu \right)^\frac{1}{2}.
\]
\(\Box\)

As a corollary, plugging claim 2.2 into (6), we obtain claim 2.3.

Claim 2.3. There exists a constant \(c_3\) such that
\[
\int_M |\tilde{\sigma} + L \tilde{W}|^2 \tilde{\varphi}^{N-1} d\mu \leq \frac{c_3}{a^{N+1/(N-1)}}.
\]

Next we prove claim 2.4.

Claim 2.4. If \(a\) is large enough there exists a constant \(c_4\) such that
\[
\int_M \tilde{\varphi}^{2N} d\mu \leq c_4.
\]

Proof. We multiply (4a) by \(\tilde{\varphi}^{N+1}\) and integrate over \(M\),
\[
\frac{1}{\gamma} \int_M \left(\frac{4(n-1)}{n-2} \frac{N+1}{2} \tilde{\varphi}^{2N+1} \right) d\mu = \frac{1}{\gamma} \int_M \left(\frac{4(n-1)}{n-2} \frac{N+1}{2} \tilde{\varphi}^{2N+1} + R \tilde{\varphi}^{N+2} \right) d\mu
\]
\[
= -\frac{n-1}{n} \int_M \tau^2 \tilde{\varphi}^{2N} d\mu + \int_M |\tilde{\sigma} + L \tilde{W}|^2 d\mu
\]
\[
= -\frac{n-1}{n} \int_M \tau^2 \tilde{\varphi}^{2N} d\mu + 1,
\]

5
from which we conclude that
\[
\frac{1}{\gamma^2} \int_R \varphi^{n+2} \ d\mu + \frac{n-1}{n} (\inf_M \tau)^2 \int_M \varphi^{2N} \ d\mu \leq 1.
\]

Using Young’s inequality we infer
\[
\left| \int_R \varphi^{n+2} \ d\mu \right| \leq \frac{N+2}{2N} \int_M \varphi^{2N} \ d\mu + \frac{N-2}{2N} \int_M \|R\|_{\Sigma}^{2N} \ d\mu
\]
\[
= \frac{n-1}{n} \int_M \varphi^{2N} \ d\mu + \frac{1}{n} \int_M \|R\|_{\Sigma}^{2N} \ d\mu,
\]
so
\[
\frac{n-1}{n} \left((\inf_M \tau)^2 - \frac{1}{\gamma^2} \right) \int_M \varphi^{2N} \ d\mu \leq 1 + \frac{1}{n\gamma^2} \int_M \|R\|_{\Sigma}^{2N} \ d\mu.
\]
Since \(\tau \) is positive it follows from claim 2.1 that \(\gamma^{-\frac{1}{2}} \leq \frac{1}{2} (\inf_M \tau)^2 \) for large enough \(a \). Thus the claim is true with
\[
c_4 := \frac{2M}{n-1} \left(1 + \frac{2}{n} (\inf_M \tau)^2 \right) \int_M \|R\|_{\Sigma}^{2N} \ d\mu.
\]

Claim 2.5. If \(a \) is large enough, there exists a constant \(c_5 \) such that
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^N \ d\mu \leq c_5 a^N.
\]

Proof. Without loss of generality, we can assume that \(\tilde{W} \) is orthogonal to conformal Killing vector fields. From standard elliptic regularity there exists a constant \(C_1 > 0 \) such that
\[
\|\tilde{W}\|_{w^{2,2}} \leq C_1 \| -\frac{1}{2} L^* L\tilde{W} \|_{L^2}.
\]
By the Sobolev injection theorem, there exists a constant \(C_2 \) such that
\[
\|L\tilde{W}\|_{L^N} \leq C_2 \|\tilde{W}\|_{w^{2,2}}.
\]
Combining the previous two estimates we obtain
\[
\|L\tilde{W}\|_{L^N}^2 \leq \left(C_1 C_2 \right)^2 \int_M \left| -\frac{1}{2} L^* L\tilde{W} \right|^2 \ d\mu
\]
\[
= (C_1 C_2)^2 a^2 \int_M \varphi^{2N} |\xi|^2 \ d\mu
\]
\[
\leq C (\sup_M |\xi|)^2 c_4 a^2,
\]
where we also used claim 2.6 and set \(C = (C_1 C_2)^2 \). Hence,
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^N \ d\mu = \|\tilde{\sigma} + L\tilde{W}\|_{L^N}^N
\]
\[
\leq (\|\tilde{\sigma}\|_{L^N} + \|L\tilde{W}\|_{L^N})^N
\]
\[
\leq 2^N (\|\tilde{\sigma}\|_{L^N}^N + \|L\tilde{W}\|_{L^N}^N)
\]
\[
\leq 2^N (\|\tilde{\sigma}\|_{L^N}^N + C_2^N (\sup_M |\xi|)^N c_4 a^N).
\]
Note that claim 2.1 tells us that \(\|\tilde{\sigma}\|_{L^N} \leq \frac{1}{(\sup_M |\xi|)^N} \|\sigma\|_{L^N} \). This implies that claim 2.5 holds with
\[
c_5 := 2^{N+1} C_2^N (\sup_M |\xi|)^N c_4 a^N.
\]

□
Claim 2.6. There exists a constant c_6 such that
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N-2} \, d\mu \leq \frac{c_6}{a^{(N+1)\frac{N}{2}-2}}.
\]

Proof. From Hölder’s inequality with claims 2.2 and 2.5 we obtain
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N-2} \, d\mu \leq \left(\int_M |\tilde{\sigma} + L\tilde{W}|^N \, d\mu \right)^{\frac{2}{N}} \left(\int_M \tilde{\phi}^N \, d\mu \right)^{\frac{N-2}{N}} \leq c_6 \frac{a^2}{a^{(N+1)\frac{N}{2}}} ,
\]
which proves the claim.

Claim 2.7. There exists a constant c_7 such that
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N+2} \, d\mu \leq \frac{c_7}{a^{\frac{N-2N-1}{2}}}.
\]

Proof. Using Hölder’s inequality and claim 2.3 we find
\[
\int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N+2} \, d\mu \leq \left(\int_M |\tilde{\sigma} + L\tilde{W}|^2 \, d\mu \right)^{\frac{1}{2}} \left(\int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N} \, d\mu \right)^{\frac{1}{2}} \leq c_7 a^{\frac{N-2N-1}{2}} ,
\]
which is the statement of the claim.

We are now ready to prove theorem 1.1. For this we use the Hölder inequality with claims 2.6 and 2.7 to obtain
\[
1 = \left(\int_M |\tilde{\sigma} + L\tilde{W}|^2 \, d\mu \right)^{\frac{2}{N}} \leq \int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N-2} \, d\mu \int_M |\tilde{\sigma} + L\tilde{W}|^2 \tilde{\phi}^{-N+2} \, d\mu \leq c_6 c_7 a^{-(N+1)\frac{N}{2}+2-\frac{(N-2)(N-1)}{2}} \leq c_6 c_7 a^{d-2N} . \tag{7}
\]

The exponent of a is negative if and only if $3 \leq n \leq 5$. Hence if a is large enough the inequality (7) gives a contradiction.

Acknowledgments

EH was partially supported by ANR-10-BLAN 0105. We want to thank the referees for carefully reading the paper, and giving insightful hints on how to improve it.

References

[1] Bartnik R 1988 Remarks on cosmological spacetimes and constant mean curvature surfaces Commun. Math. Phys. 117 615–24
[2] Bartnik R and Isenberg J 2004 The constraint equations The Einstein Equations and the Large Scale Behavior of Gravitational Fields (Basel: Birkhäuser) pp 1–38
[3] Chruściel P T, Isenberg J and Pollack D 2005 Initial data engineering Commun. Math. Phys. 257 29–42
Dahl M, Gicquaud R and Humbert E 2012 A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method *Duke Math. J.* 161 2669–97

Gicquaud R and Sakovich A 2012 A large class of non constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold *Commun. Math. Phys.* 310 705–63

Holst M J, Nagy G and Tsogtgerel G 2008 Far-from-constant mean curvature solutions of Einstein’s constraint equations with positive Yamabe metrics *Phys. Rev. Lett.* 100 161101

Holst M J, Nagy G and Tsogtgerel G 2009 Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions *Commun. Math. Phys.* 288 547–613

Isenberg J and O Murchadha N 2004 Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations *Class. Quantum Grav.* 21 S233–41

Maxwell D 2009 A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature *Math. Res. Lett.* 16 627–45

Maxwell D 2011 A model problem for conformal parameterizations of the Einstein constraint equations *Commun. Math. Phys.* 302 697–736