Galactans are important components of many plant cell walls. Besides, they are the major polysaccharides in extracellular matrices from different seaweeds, and other marine organisms, which have an acidic character due to the presence of sulfate groups in their structures. In particular, most of the red seaweeds biosynthesize sulfated galactans with very special linear backbones, constituted by alternating (1→3)-β-D-galactopyranose units (A-unit) and (1→4)-α-galactopyranose residues (B-unit). In the industrially significant seaweeds as source of hydrocolloids, B-units belong either to the D-series and they produce carrageenans (as in the order Gigartinales), or to the L-series, and they are sources of agarose and/or structurally related polymers (i.e., Gelidiales, Gracilariales). In both cases, the latter units appear as cyclized 3,6-anhydro-α-galactose in certain amounts, which can be increased by alkaline cyclization of α-galactose 6-sulfate units. Besides, it has been clearly shown that some red algae produce different amounts of both galactan structures, known as D/L-hybrids. It is not yet clear if they comprise both diasteromeric types of units in the same molecule, or if they are mixtures of carrageenans and agarans that are very difficult to separate. It has been reported that the biosynthesis of these galactans, showing that the nucleotide transport for D-galactopyranose units is UDP-D-Gal, while for L-galactose, it is GDP-L-Gal, so, there is a different pathway in the biosynthesis of agarans. However, at least in those seaweeds that produce carrageenans as major galactans, but also agarans, both synthetic pathways should coexist. Another interesting characteristic of these galactans is the important variation in the sulfation patterns, which modulate their physical behavior in aqueous solutions. Although the most common carrageenans are of the κ/λ- and λ-types (with A-units sulfated at the 4- and 2-positions, respectively) and usually in agarans, when sulfated, is at the 6-position, many other sulfate arrangements have been reported, greatly influencing the functional properties of the corresponding galactans. Other substituents...
can modify their structures, as methyl ethers, pyruvic acid ketals, acetates, and single stubs of xylose or other monosaccharides. It has been shown that structural heterogeneity at some extent is essential for the proper functional performance of red algal galactans.

Keywords: sulfated galactans, red seaweeds, carrageenans, agarose, agaran, polysaccharide structure, rheological properties

INTRODUCTION

Many different polysaccharides are found in seaweeds, but they are only a small proportion of the possible theoretical structures. In the course of evolution, these polysaccharides adapted to the environments where the seaweeds are found. Some of them are reserve polysaccharides, degraded to provide energy requirements, and others are constituents of cell walls, but many have functions which at present are not at all well understood (Percival, 1979).

Red algae possess considerably unique morphological and physiological features such as photosynthetic antennae with phycobiliproteins, unstacked thylakoids, floridean starch as cytosolic carbon storage (Woelkerling, 1990; Ho, 2020), cell wall with unique sulfated galactans in addition to cellulose (or other fibrillar polymers) and hemicellulose-like polysaccharides (Popper et al., 2011; Ho, 2020).

Galactans are important components of many plant cell walls. Two types of β-D-galactans are widely distributed in plant cell walls. 4-Linked β-D-galactan chains are important substituents of the backbone of rhamnogalacturonan I (RGI), one of the major polysaccharides in pectins (Caffal and Mohnen, 2009). They are known as Type I galactans, and they may have non reducing terminal arabinose units or short 5-linked arabinofuranose chains linked to C-3 of some of the galactose units, plus minor amounts of other monosaccharides. Type II galactans are a diverse group of short 3- and 6-linked β-D-galactan chains connected to each other by 3,6-linked residues, some of them also contain short arabino-oligosaccharide chains. They are major constituents of arabinogalactan proteins (AGPs), proteoglycans molecules located in Golgi-derived vesicles, the plasma membrane, and the cell wall (Ma et al., 2018). In some cases, they are found in pectins as part of the complex RGI structure (Caffal and Mohnen, 2009). Besides, galactans are the major polysaccharides in extracellular matrixes from different algae, marine invertebrates, and other organisms; these galactans have an acidic character due to the presence of sulfate groups esterifying some of the hydroxyl groups of their monosaccharide components (Pomin, 2009). In particular, most of the red seaweeds biosynthesize sulfated galactans with a backbone that has no equivalent in terrestrial plants, constituted by alternating 3-linked β-D-galactopyranosyl units (A-unit) and 4-linked α-galactopyranosyl residues (B-unit). In the industrially significant seaweeds as source of hydrocolloids, B-units belong either to the D-series and they produce carrageenans (as in Gigartinales), or to the L-series, and they are sources of agarose and/or structurally related polymers (i.e., Gelidiales, Gracilariales). In both cases, the latter units appear as cyclized 3,6-anhydro-α-galactose in a certain amount (Figure 1). Although the chemistry of sulfated galactans from these red seaweeds is fairly well studied, their biosynthesis is still under investigation (Usov, 2011).

The currently accepted model of biosynthesis is thought to occur in three sequential steps involving three main classes of enzymes (Rees, 1961a; Rees, 1961b; Hemmingson et al., 1996; Genicot-Joncour et al., 2009). During the first step, galactosyltransferases catalyze chain elongation via the transfer of activated galactose residues. Secondly, galactose residues are

![FIGURE 1](image_url) | Alternating diastereomeric backbones of sulfated galactans from red seaweeds, named according to the currently accepted nomenclature of Knutsen et al., 1994. (A) Carrageenan backbones, (B) Agaran backbones. The cyclized agaran backbone (G-LA) corresponds to the idealized structure of agarose. The numbering system is shown in red.
sulfated by sulfotransferase enzymes. Finally, galactose 6-
sulfurylases or sulfohydrolases produce cyclization of galactose 6-
sulfate moieties to 3,6-anhydro derivatives.

Initial biosynthesis steps would occur from: i) Fructose 6-
phosphate derived from Calvin cycle, or ii). An existing
carbohydrate pool of floridean starch and floridoside. Floridean
starch is the main reserve polysaccharide of red macroalgae,
which is degraded during respiration to form UDP-D-glucose via
UDP-D-glucose pyrophosphorylase (Iluisma and Ragan, 1999;
Goulard et al., 2001). The enzyme UDP-galactose 4-epimerase,
subsequently interconverts UDP-D-glucose to UDP-D-galactose
(Frey, 1996). Various studies in terrestrial plants and algae
support its involvement in cell wall polysaccharides synthesis
as supplier of UDP-D-galactose (Joersbo et al., 1999; Seifert et al.,
2002; Barber et al., 2005; Rösti et al., 2007). In red algae UDP-D-
galactose was shown to be the most abundant nucleotide sugar
(Maney and Burns, 1991; Goulard et al., 1999).

A coordinated activity of at least two galactosyl transferases is
suggested to form the alternating 3-linked β- and 4-linked α-
linkages, making up the polymer backbone of carrageenans. Even
though these reactions have been shown to take place in the
Golgi apparatus, none of these enzymes have been isolated
(Genicot-Joncour et al., 2009; Ficko-Blean et al., 2015).

For agarans, UDP-D-galactose and GDP-β-galactose are
required, being the galactose enantiomers derived from D-
mannose and D-glucose, respectively, which are supplied by
different biosynthetic pathways.

Production of GDP-β-galactose is catalyzed by the enzyme
GDP-mannose 3’,5’-epimerase (GME, EC 5.1.3.18). GME catalyzes
two steps of epimerization reactions at 3- and 5-positions of GDP-D-
mannose giving the nucleotide sugar GDP-D-galactose (Wheeler et al.,
1998; Major et al., 2005). The biosynthesis of UDP-D-galactose would happen
as described previously.

Sulfated galactan heterogeneity depends largely on
sulfotransferases. Sulfation occurs at different positions of the
galactan backbone that are specific for a certain algal group, and
each position requires specific sulfotransferases. This step is
suggested to occur in the Golgi apparatus (Genicot-Joncour
et al., 2009; Ficko-Blean et al., 2015).

In the final step in galactan biosynthesis, the sulfated
carrageenan is believed to be transported to the cell wall where
the cyclization of the α-galactose 6-sulfate units to 3,6-
anhydrogalactose, catalyzed by a galactose-6-sulfurylase, takes
place. This remains the only step in algal carrageenan
biosynthesis that has been biochemically demonstrated to date
(Wong and Craigie, 1978; Genicot-Joncour et al., 2009; Ficko-
Blean et al., 2015). A similar cyclization step was reported for
agarans (Lee et al., 2017). This ring closure, which involves
change of the 4C conformation of the former units to 4C of the
latter units, leads to helix formation of galactans in aqueous
environments (Tuviene et al., 2008).

Agar was reported to accumulate in the cell walls, embedded
in a structure of fibers of crystallized cellulose, constituting the
amorphous matrix of the cell wall. An intermediate form of low
molecular weight sulfated agar is secreted by the Golgi apparatus

and it is deposited in the cell wall, where it enzymatically
polymerizes and desulfates, giving mostly into agarose
rendering the agar industrially produced as gelling agent
(Armisen and Gálata, 2009).

There are many red seaweeds which biosynthesize both
carrageenan and agar types of galactans. It is not clear yet
whether carrageenan and agar disaccharide repeating units
are in the same molecule, or they constitute separate molecules
which form aggregates that until now are very difficult to
break. Many studies about them appeared for decades, but it
was during the nineties that it became evident that many of
the most common and industrially relevant seaweed species
carrageenophytes and agarophytes produce small to
considerable quantities of galactans of the other group,
containing their diastereometric repeating units. This is an
interesting finding, from the biological point of view, because it
would indicate that carrageenophytes, as well as agarophytes
have the enzyme machinery to biosynthesize both types of
galactans. This issue has been reviewed before, and it will not
be considered with further detail (Stortz and Cerezo, 2000;
Takano et al., 2003; Ciancia and Cerezo, 2010; Usov, 2011).

The majority of structural studies on polysaccharides has
been carried out on extracts or mixtures obtained from certain
red seaweed. In many cases, the chemical structures are only the
average of all the molecules present which is often a family of
polydisperses heteropolymers, all built up on the same general
plan, but differing in their

structural characteristics. Modifications in the structure of
these macromolecules would enable the seaweed to fulfill
different functions.

The aims of this review are to correlate the chemical
structures of the galactan backbones and their substitution
patterns with the phylogenetic relationship of the different red
algal groups and their functional properties.

CARRAGEENANS

Carrageenans from the most important carrageenophytes have
been thoroughly studied. These galactans have structures based
on a linear chain of alternating 3-linked β-D-galactopyranosyl
residues (A-units) and 4-linked α-D-galactopyranosyl residues
(B-units), the latter unit is often found mostly cyclized, giving the
3,6-anhydro-derivative (Figure 1A).

Variation of carrageenan structures is mainly due to their
sulfation pattern and/or the presence of 3,6-anhydrogalactose
units. Carrageenans from the most important carrageenophytes
are rarely pyruvylated or methoxylated, and they have low degree
of branching, if any. Nevertheless, other carrageenophytes show
complex substitution patterns.

Classification of carrageenans takes into account the sulfation
pattern of the A-unit (Stortz and Cerezo, 2000). The κ-family
comprises 4′-sulfated polysaccharides, while the λ-family includes those with sulfate at the 2′-position. Less important are the β-family, in which the A-unit is not sulfated, and the ω-family with sulfation at the 6′-position of this unit (Figure 2).

In relation to the B-units, in carrageenans of the κ-family, the cyclized units predominate, giving rise to κ- or t-carrageenans, with disaccharidic repeating units G4S-DA and G4S-DA2S, respectively, according to the accepted shorthand terminology system developed by Knutsen et al. (1994) (Figure 2A). Some seaweeds of the family Solieriaceae biosynthesize major quantities of carrageenans with clear predominance of one of these structures. For example, Kappaphycus alvarezi produces mainly κ-carrageenans (Anderson et al., 1973; Estevez et al., 2004), while Eucheuma denticulatum, E. perplexum, and E. kraftianum produce major amounts of τ-carrageenans (Anderson et al., 1973; Bellion et al., 1983; Santos, 1989), as well as Solieria filiformis and Agardhiella subulata (Murano et al., 1997). Another seaweed, Hypnea musciformis (Cystocloniaceae), is also known to produce large amounts of κ-carrageenan (Greer et al., 1984; Cosenza et al., 2014). It has been shown that differences in carrageenans between generic phases (gametophytes and tetrasporophytes) in most families of the order Gigartinales, as Solieriaceae, Cystocloniaceae, Furcellariaceae are negligible (Doty and Santos, 1978; Usov, 2011).

However, seaweeds from the Gigartinaeae and Phyllophoraceae give different carrageenan structures in both macroscopic life stages.
de Velde, 2008), with predominance of the former in seaweeds of Gigartinaeae, like *Chondrus crispus* and *Gigartina skottsbergii* (Matulewicz et al., 1989; Ciancia et al., 1993a; Falshaw et al., 2001; Guibet et al., 2008), while in the Phyllophoraceae, like those of the genus *Gymnogongrus* (Estvez et al., 2008; Perez Recalde et al., 2016), *Stenogramma interruptum* (Cáceres et al., 2000), and *Alnathiptis flabelliformis* (Kravchenko et al., 2016), major quantities of the latter structure are found. However, recently, a κ/τ-carrageenan obtained from *Mastocarpus pacificus* (Phyllophoraceae) showed predominance of κ-structure (Kravchenko et al., 2020). These carrageenan κ/τ-hybrids are commercially known as κ-2 (Falshaw et al., 2001).

In addition, water extracts of all these seaweeds have variable amounts of the biological precursors of κ- and τ-carrageenans, which are usually known as μ- and ν-carrageenans, respectively (Figure 2A), and they can be transformed in the former by treatment with alkaline solutions (Bellion et al., 1983; Matulewicz et al., 1989; Ciancia et al., 1993b; Stortz and Cerezo, 1993; Cáceres et al., 2000; Jouanneau et al., 2010). Hence, when these seaweeds are extracted with alkali or submitted to alkaline pretreatments, precursor units are not found in considerable amounts (Azevedo et al., 2013).

Besides, the diploid macroscopic phase (tetrasporophytes) of seaweeds from the Gigartinaeae and Phyllophoraceae biosynthesizes carrageenans of the λ-family (Figure 2), which mostly occur as non-cyclized structures, mainly λ-carrageenan, G2S-D2S,6S (McCandless et al., 1973; McCandless et al., 1982; Matulewicz et al., 1989; Stortz and Cerezo, 1993; Falshaw and Furneaux, 1994; Stortz et al., 1994; Falshaw and Furneaux, 1995; Falshaw and Furneaux, 1998; Falshaw and Furneaux, 2009). From *Iridaea undulosa* (Stortz et al., 1994) and *Rhodoglossum gigartinoides* (as *Gigartina lanceata*) (Falshaw and Furneaux, 1998) almost “pure” λ-carrageenans were obtained. However, those from tetrasporophytes of other species of the Gigartinaeae, as *G. grandifida*, *G. divaricata*, and *Chondracanthus teedei* were more complex, as they comprised important amounts of ξ-carrageenan (G2S-D2S) and π-carrageenan (GP,2S-D2S) (Figures 2B and 3A) (Falshaw and Furneaux, 2009; Pereira and van de Velde, 2011). Pyruvate was detected in the λ-carrageenans from these species (Falshaw and Furneaux, 1995; Falshaw and Furneaux, 1998; Falshaw and Furneaux, 2009), as GP,2S in considerable amounts (6%–13%). In addition, some of these carrageenans showed important amounts of G2S,6S (16%–22%) and D2S (21%–26%) (Falshaw and Furneaux, 1998; Falshaw and Furneaux, 2009). At first, detection of G2S,6S units indicates that these carrageenans should not be classified in one of the defined carrageenan families. Nevertheless, taking into account the absence of cyclized B-units, as well as the high degree of sulfation at the 2-position of the B-units (D2S + D2S,6S), and that they are produced by tetrasporophytes of species from some Gigartinaeae, we consider that they could be included provisionally in the λ-carrageenan group. In fact, these carrageenans also include major quantities of the typical λ-carrageenan structural units. It is important to note that these species with complex structures have also morphological differences with other Gigartinaeae, which biosynthesize λ-carrageenans as the only significant galactan structure (Falshaw and Furneaux, 2009).

Sulfohydrolases which act at the polymer level producing 3,6-anhydro-6-galactose with the stoichiometric release of sulfate have been identified in both diploid and haploid macroscopic individuals from *Chondrus crispus* (Gigartinaeae). However, λ-carrageenan is not susceptible to their action and, it is thought to inhibit their activity (Wong and Craigie, 1978; Ficko-Blean et al., 2015). The fact that the alkaline cyclization is notably slower for λ-carrageenan, than for ν-carrageenan, suggested that, at least in these conditions, the sulfation position on the A-unit is determinant for the cyclization reaction of the B-unit (Ciancia et al., 1993b).

However, cyclized λ-carrageenans, known as θ-carrageenans (G2S-DA2S) (Figure 2B), are major constituents of seaweeds of the genus *Callophyllum* (Kallymeniaceae) (Falshaw et al., 2005; Rodriguez et al., 2005). The 6-galactose-6-sulfonylase responsible for the conversion of λ-carrageenan to θ-carrageenan has not yet been characterized (Ficko-Blean et al., 2015).

β-Carrageenan (G-DA) (Figure 2C) is produced in important quantities by *Furcellaria lumbricalis* (Furcellariaceae), *Tichocarpus crinitus* (Tichocarpacese), and *Betaphycus gelatinus* (as *Eucheuma*...
galactopyranose and small amounts of counterparts, and to the different red seaweeds, this pyruvylated structure, which belongs et al., 1997; Falshaw et al., 2003). Although found in several of the repeating disaccharide 4-linked 3-O(1-carboxyethylidene) carrabiose 2-sulfate (GP-DA2S) and minor amounts of the α-carrageenan repeating unit (G-DA2S) (Figure 2C) (Chiovitti et al., 1997; Falshaw et al., 2003). Although found in several different red seaweeds, this pyruvylated structure, which belongs to the β-family, was not named with a Greek letter yet (Figure 3B). Pyruvate was also detected in minor amounts in the carrageenan from Stenogramma interrumptum and Coccotylus truncatus (Phyllophoraceae) (Miller, 1998; Cáceres et al., 2000; Tuvikene et al., 2009).

Chiovitti et al. (1998a) reported for the carrageenan from Sarconema filiforme (Solieriaeae) disaccharide repeating units of the t- and α-types, some of the latter being substituted with pyruvate. In three Erythroclonium species (Areschougialaeae), the carrageenans showed a substitution pattern of the repeating disaccharide units G4S-DA2S, G-DA2S, the 6´-O-methylated counterparts, and GP-DA2S. Significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues were also detected (Chiovitti et al., 1998b). Highly 6´-O-methylated t-carrageenans (G4S,6M-DA2S) containing 3-O-methylgalactose and pyruvate were isolated from two species of the genus Rhabdonia (Areschougialaeae) (Chiovitti et al., 1996). It is important to note, that in the case of carrageenans from R. coccinea, the degree of 6´-O-methylation was particularly high (31 mol % of G6M). Later, the same group determined the structure of carrageenans from Clavicionium ovatum (Acrotylaceae, Gigantiales), which were nearly idealized 6´-O-methylated t-carrageenans (Chiovitti et al., 2004). All these red seaweed families that are phyleogenetically close and far from the most important carrageenophytes (Verbruggen et al., 2010; Guiry and Guiry, 2020) biosynthesize carrageenan with very complex substitution patterns, which include structures of the β- and κ-families.

Carrageenan devoid of 3,6-anhydrogalactose and sulfate (G-D) has not been found in Nature (Usov, 2011). Carrageenans of the ω-family (G6S-DA) (Figure 2D) are not widely distributed. They were isolated in important quantities from Phyllophora nervosa (Phyllophoraceae). This result is noteworthy, as seaweeds of this genus usually produce κ/t-carrageenans as major sulfated galactans (Usov and Shashkov, 1985). Molland et al. (1986, 1987, 1988) isolated a homogeneous carrageenan with this structure from Rissoella verruculosa (Rissoelaeae). This carrageenan was obtained by alkaline treatment and further fractionation with a 0.3 M KCl solution where it remained soluble. The authors tried several strategies in order to find the theoretical precursor of ω-carrageenan (Molland et al., 1987), called ψ-carrageenan (G6S-D6S) (Figure 2D), but they did not succeed. Hence, they proposed that in this case, the biosynthetic pathway in which sulfated carrageenans derive from the nonsulfated, β-carrageenan could occur. One approach to the biosynthesis of these polymers is the observation that a carrageenan structure is often bound to its precursor within the same molecule, forming chains of what is usually called a partially cyclized carrageenan. So, the evidence to propose this was the fact that they were not able to separate the ω- and β-carrageenan structures, but they found β/κ-carrageenan hybrids. As far as we know, ω-carrageenans were not detected in significant quantities in other carrageenophytes.

The carrageenan from Phaeolocarpus peperocarpus (Phaeolocarpaceae) comprised major quantities of G4S,6S-DA (Liao et al., 1996). This galactan cannot be included in any of the carrageenophytes. Further work could derive in the definition of a new carrageenan family. Figure 4 shows the major carrageenan structures produced by the different taxonomic families of the Gigantiales, based on the red algal tree of life reported by Verbruggen et al. (2010).

AGARANS

Agarans are sulfated galactans constituted by alternating 3-linked β-D-galactose units and 4-linked α-L-galactose units (Figure 1B). The 4-linked units can be partially or wholly converted to 3,6-anhydro forms by enzymatic elimination of sulfate from the 6-position. According to the initial substitution pattern, this conversion may afford the neutral polysaccharide carrageenan could occur. One approach to the biosynthesis of these polymers is the observation that a carrageenan structure is often bound to its precursor within the same molecule, forming chains of what is usually called a partially cyclized carrageenan. So, the evidence to propose this was the fact that they were not able to separate the ω- and β-carrageenan structures, but they found β/κ-carrageenan hybrids. As far as we know, ω-carrageenans were not detected in significant quantities in other carrageenophytes.

The carrageenan from Phaeolocarpus peperocarpus (Phaeolocarpaceae) comprised major quantities of G4S,6S-DA (Liao et al., 1996). This galactan cannot be included in any of the carrageenophytes. Further work could derive in the definition of a new carrageenan family. Figure 4 shows the major carrageenan structures produced by the different taxonomic families of the Gigantiales, based on the red algal tree of life reported by Verbruggen et al. (2010).

Agarans are sulfated galactans constituted by alternating 3-linked β-D-galactose units and 4-linked α-L-galactose units (Figure 1B). The 4-linked units can be partially or wholly converted to 3,6-anhydro forms by enzymatic elimination of sulfate from the 6-position. According to the initial substitution pattern, this conversion may afford the neutral polysaccharide agarose (Figure 1B) or agarose derivatives. Agarose is the major component of the products industrially obtained mainly from seaweeds of the orders Gelidiales, Gracilariales, and Ahnfeltiales (Arminse and Galatas, 2009), and known as “agar” or “agar-agar”.

Due to the complexity and diversity of their substitution pattern (Muran, 1995; Usov, 2011), it has not been possible to classify agarans into ideal “repeating units”. In fact this backbone is usually masked by different substituents:

- The 3-linked and 4-linked units can carry sulfate groups, methoxyl groups, and/or β-D-xylopyranosyl side chains at different positions.
- The 3-linked units can carry 4-O-methyl-α-L-galactopyranosyl groups at the 6´-position.
- The 3-linked units can carry pyruvate cyclic ketals at the 4´- and 6´-positions.

Actually, only the term agarose has a strict chemical sense, whereas other polysaccharides of the group are usually termed according to the algal species from which they were isolated (Damonte et al., 2004). The basic structure of the agaran backbone sulfated at the 6-position of the B-unit, G-L6S,
according to the nomenclature of Knutsen et al. (1994), is known as porphyran because it is biosynthesized by seaweeds of the genus *Porphyra* (Bangiaceae) in important amounts (Morrice et al., 1983). This structure can be converted in agarose by enzymatic or chemical cyclization of $L\delta S$ to give LA, in a similar way as that indicated for carrageenans.

A classification taking into account the sulfation pattern of the A-units is possible, leading to the following agaran groups.

a) G Group Comprises Agarans in Which the A-Unit Is Not Sulfated

It is based on a polysaccharide with $G-L$ and $G-LA$ backbones. Taking into account the diversity of the substitution patterns in agarans, the following backbones are also included in this group: $G-L6S$, $G6M-L6S$, $G6M-LA$, $G6M-LA2M$, $G-LA2M$, $GP-LA$, single stubs of 4-O-methyl-L-galactose linked to the 6′-position of $G\ [(G6(L4M))]$ of agarose or porphyran repeating units.

The $G-LA$ repeating unit of agarose, is present in the orders Gelidiales (*Pterocladiella capillacea*, *Pterocladiaceae*; *Gelidium rex*, *Gelidiaceae*), Anhfeltiales (*Anhfeltia plicata* and *A. tobuchiensis*, *Anhfeltiaceae*), and Gracilariales (*Gracilaria longissima* (as *Gracilaria verrucosa*), *G. cervicornis*, *G. blodgettii*, *Crassiphycus crassissimus* (as *Gracilaria crassissima*), *G. gracilis*, *Crassiphycus birdiae* (as *Gracilaria birdiae*), *Gracilaria hommersandii*, *Gracilariaceae*) in major quantities (Matsumoto and Urzua, 1990; Errea and Matulewicz, 1994; Murano, 1995; Errea and Matulewicz, 1996; Freile-Pelegrin and Murano, 2005; Truus et al., 2006; Rodriguez et al., 2009; Souza et al., 2012; Rodriguez Sánchez et al., 2019; Zhang et al., 2019; Martínez-Sanz et al., 2020).

The $G-L6S$ repeating unit was found in the agarans (porphans) from *Porphyra capensis* and *Porphyra haitanensis* (now *Pyropia haitanensis*) (Zhang et al., 2004; Zhang et al., 2005). From the room temperature water extract from *Pyropia columbina* (as *Porphyra columbina*), a fraction rich in $G6M-L6S$ (54%) was isolated; the remaining material corresponded to partially 6′-O-methylated agarose [$G\ (6M)-LA$]. The alkali treated derivative gave agarose and its 6′-O-methylated derivative in molar ratio 3:7 (Noseda et al., 2000). The $G6M-LA$ and $G6M-LA2M$ repeating units were detected in *Gracilaria arcuata* (Tako et al., 1999). Falshaw et al. (1998) studied the agars from nine species of the genus *Curdiea* (*Gracilariaceae*), and detected highly methylated agaroses, some of these species biosynthesized $G-LA2M$ as major repeating unit, while in others $G6M-LA$ or $G6M-LA2M$ predominated. The $G-L2M6S$ repeating unit was reported in an agaran from fresh water *Bostrychia moritziana* (Youngs et al., 1998). The repeating unit containing pyruvate $GP-LA$ was found in the agarans of *Hydropuntia edulis* (as *Gracilaria edulis*) (Falshaw et al., 1999), as well as in some other *Gracilaria* species (Murano, 1995). *G6 (L4M)* was detected in the agarans of *Gracilariospis longissima* (as *Gracilaria verrucosa*) (Karamanos et al., 1989) and *Gracilaria tikvahiae* (Craigie and Jurgens, 1989).

Water soluble agarans obtained after removal of agarose from *Gracilariospis lemameiformis* (as *Gracilaria lemameiformis*) and *Gelidium annans* showed considerable amounts of $G-L6S$ (16.2 and 15%, respectively). In addition, for *G. lemameiformis*, no
methylated derivatives were found and only small amounts of G6S and G4S were detected, while for G. amansii, these galactose derivatives were present in minor quantities, but also minor amounts of GP and LA2M were detected (Wang et al., 2016).

The G-L diad, the basic repeating unit of an agaran, was found in native Geogriella confluence (Ceramiales, Callithamniaceae), in which G-L3S was also detected in important amounts. The structure got further complicated by partial methylation at the 6´-position of G and at the 2-position of LA units; other structures were present in minor amounts (Kolender and Matulewicz, 2002) [Figure 5A(1)].

The agaran-like backbones (G-L) from red seaweeds of the Corallinaceae (Corallinaceae), known as corallins, should be included in this group. They showed essentially a very similar substitution pattern between each other: the G residue bore single stubs of β-D-xylolose or methoxyl groups at the 6´-position, and methoxyl groups and sulfate occupied the 2- or 3-position of the B-unit (Cases et al., 1992; Cases et al., 1994; Takano et al., 1996; Usov et al., 1997; Navarro and Stortz, 2008; Navarro et al., 2011). However, besides these common features, G6(LAM) units were found in Corallina officinalis (Cases et al., 1994); the presence of LA, LA2M, and LA2S replacing the L residues, together with single stubs of 2,3-di-O-methyl- and 3-O-methyl-D-galactose, and 3-O-methyl-L-galactose were detected in Jania rubens (Navarro and Stortz, 2008). Lithothamnion heterocladium (Corallinaceae, Lithothamniaceae) biosynthesizes an agaran-like polysaccharide with the general characteristics described before for the Corallinaceae. However, substantial amounts of single stubs of 2,3-di-O-methyl-D-galactose and 4-linked α-L-galactose units glycosylated at the 6- or 3-positions also appeared (Navarro et al., 2011) [Figure 5A(2)].

b) G2S Group Comprises Agarans in Which the A-Unit Is Sulfated at the 2´-Position

It is based on polysaccharides with G2S-L6S and G2S-LA backbones. This agaran group is found in major amounts on algae of the Rhodomelaceae (Ceramiales). These diads were found in agarans from Laurencia species, as L. nipponica (Usov and Elashvili, 1991), L. obtusa and Laurencia gracilis (as L. filiformis) (Canelón et al., 2014) [Figures 5B(1) and (2)], L. dendroidea (Ferreira et al., 2019), and others; and also in the related species Acanthophora spicifera (Duarte et al., 2004), Chondria macrocarpa (Ferreira and Stevenson, 1990), and Palisada flagellifera (Ferreira et al., 2012). In some of these species, the repeating unit GP2S-LA was also detected in considerable quantities (L. gracilis (as L. filiformis), A. spicifera, C. macrocarpa, and P. flagellifera). Each of the agarans of these species showed particular substitution patterns in the B-units: In L. nipponica, P. flagellifera, C. macrocarpa, L. obtusa, and L. dendroidea, the presence of β-D-xyllose at the 3-position precluding cyclization of the L6S, was found. In the agarans of L. nipponica, P. flagellifera, and L. gracilis (as L. filiformis), LA2M was found, but in the latter case, LA2S and LA2X were also detected.

c) G4S Group Comprises Agarans in Which the A-Unit Is Sulfated at the 4´-Position

Sulfation at the 4´-position is seldom observed in galactans of the agaran type, contrary to what is found in carrageenans. Major amounts of agarans of this group were obtained from Bastrycia montagnei (Rhodomelaceae, Ceramiales), comprising major amounts of G4S, G6S, and G6M. The B-units were mainly LA2M, LA and L2S (Duarte et al., 2002) [Figure 5C]. Another seaweed of the same family, Odonthalia corymbifera, contained a substituted agarose with major quantities of G6M,4S-LA (Usov, 2011).

Repeating units corresponding to this group were also detected in Hydropuntia euchemumatoides (as Gracilaria euchemematoides) (G4S-LA2M) and Gracilaria pseudoverrucosa (G4S-LA) (Lahaye et al., 1989).

In Griffithsia antarctica (Wrangeliaceae, Ceramiales) (Miller, 2003a) and in Gracilariopsis hommersandii (Gracilariaeae, Gracilariaceae) (Rodríguez Sánchez et al., 2019) major amounts of G4S-LA and G4S-L6S, and lesser quantities of G4S-L3S were found. The agaran from Haraldiophyllum crispatum (as Myriogramme denticulata) and Hymenena palma f. marginata (Delessleriaceae, Ceramiales) consisted mainly of one diad, G4S-L2S,3S (Miller, 2001; Miller, 2005).

d) G6S Group Comprises Agaran in Which the A-Unit Is Sulfated at the 6´-Position

The presence of repeating units G6S-LA and G6S-L6S was reported in the agarans from Veretebra fucoides (as Polysiphonia nigrescens) (Prado et al., 2008) (Figure 5D), P. morrowii (Usov et al., 1983; Usov and Ivanova, 1987), Melanothamnus strictissimus (as Polysiphonia strictissima), P. abscessoides (Miller and Furneaux, 1997), P. attineria (Miller, 2003a) (Rhodomelaceae, Ceramiales). Sulfation at the 6´-position was also detected in important levels in Pterosiphonia pennata (now known as Xiphosiphonia pennata) (Miller, 2003a), Laphurella hookerina and L. caespitosa (Miller, 2002), Streblocladia glomerulata (Miller and Furneaux, 1997), and Cladophyllum oblongifolia (Miller and Blunt, 2000), the five species belonging to Rhodomelaceae, Ceramiales. In a galactan fraction obtained recently from Polysiphonia senticulosa by anion exchange chromatography, eluting with 2.0 M NaCl, in addition to the characteristic 6´-sulfation pattern, GP and LA2X units were detected in important quantities (Zhao et al., 2017).

In addition, G6S-LA was the only structure in a fraction from the cold water extract from Gloiopeltis furcata (Endocladiaceae, Gigartinaceae) obtained in 20% yield regarding the dry seaweed (Hu et al., 2012), and it was also found in major amounts in this and other Gloiopeltis species (G. complanata and G. tenax), with minor amounts of G6M-LA, G6S-LA2M, G6S-L6S, and G-LA. These agarans are usually called funoranos (Tuvikene et al., 2015a).

The polysaccharides of the Corallinales described in (a) also bear a certain degree of sulfation at the 6´-position. Thus, these
agarans belong to the G and G6 groups, being an example of G/ G6S hybrids, analogously to what is observed in β/κ- carrageenan from Rissoella species (Mollion et al., 1986; Mollon et al., 1987).

Agarans from Hymenena palmata, H. variolosa, and Acrosorium decumbens (Ceramiales, Delesseraceae) were reported to be highly sulfated. They contained G2S,4S,6S-L2S,3S and even totally sulfated repeating disaccharides (Miller, 2005). Highly sulfated agaroses containing pyruvate were isolated from two species of Sarcodia, S. montagneana and Sarcodia grandifolia (as S. flabellata) (the order Plocamiales) (Miller, 2003b). However, these assignments were made based on

FIGURE 5 Proposed major disaccharidic repeating units of highly substituted agarans. (A) G group: 1) Agaran from Georgiella confluens (Kolender and Matulewicz, 2002), 2) Agaran (corallinan) from Lithothamnion heterocladum (Navarro et al., 2011); (B) G2S group: Agarans from: 1) Laurencia obtusa and 2) L. filiformis (Canelón et al., 2014); (C) G4S group: Agaran from Bostrichya montagnei (Duarte et al., 2002); (D) G6S group: Agarans from Polysiphonia nigrescens (Prado et al., 2008).
methylation analysis and IR and 13C NMR spectroscopy, and should be confirmed. As the author mentions undermethylation could be misinterpreted as high substitution; determination of the sulfate content was not carried out.

In these sections, the major galactans produced by each of the mentioned seaweeds were considered. Most of these red algae comprise variable quantities of other polysaccharides, biosynthesized in small amounts that are believed to modulate the properties of their amorphous cell wall matrices.

STRUCTURE AND FUNCTIONALITY OF RED SEAWEED GALACTANS

The gelling or viscousifying nature of seaweed galactans is essential for the vital functions of red algae. Fine organization of the polysaccharide chains to form microscopic gel networks makes these polymeric assemblies effective as molecular sieves and gives seaweed the required flexibility to withstand marine conditions. High water-binding capacity of the gel matrices helps seaweed to maintain its hydrated state during periodic dry periods, which is especially important for the algae inhabiting intertidal zones.

Due to the large structural variations, wide range of rheological properties can be obtained on the basis of the galactans deriving from red seaweeds. This makes these polysaccharides useful in various applications to provide the required texture for food and non-food systems. Although the galactans belonging to agar and carrageenan families are closely related, the functional properties of these polysaccharides are notably different.

Carrageenan Type Polysaccharides

All carrageenans are soluble in water at room temperature when converted into their Li$^+$- or Na$^+$-forms, whereas the presence of K$^+$-, Ca$^{2+}$-, or Mg$^{2+}$-ions impairs the solubility, especially for κ-type carrageenans, making them soluble only at elevated temperatures. The solubility of λ-carrageenan is the least affected by the cationic composition and the galactan remains soluble in cold water.

In favorable cationic environments, κ-carrageenan shows the highest gelling ability among carrageenans, yielding slightly opaque, rigid gels with poor freeze-thaw stabilities, whereas γ-carrageenan affords weak, elastic gels which are more stable towards freezing and thawing cycles. λ-carrageenan forms solutions with very high viscosities. The non-gelling behavior has also been noted for α-carrageenan extracted from *Catenella nipae* which has reported to show the ability to form viscous solutions (Zablockis and Santos, 1986). Similar rheological properties have been observed for θ-carrageenan prepared by alkaline modification of λ-carrageenan originating from the tetrarosephyllic form of *Gigartina skottsbergii* (Doyle et al., 2010).

Sulfation at the 2-position of β-D-galactopyranose residues generally impairs the gel-forming ability of algal galactans by preventing the chains to form helices (Morris et al., 1978). Studies on some oversulfated carrageenan samples prepared by chemical modification processes have revealed an ability to form a weak gel for a specific carrageenan type bearing three sulfate ester groups per disaccharide repeating unit (*G4S,6S-DA2S*), whereas the tetra-sulfated derivative (*G2S,4S,6S-DA2S*) containing an additional sulfate ester group at the 2-position of β-D-galactopyranose moiety did not form a gel under any circumstances (Thành et al., 2001). Poor gelling ability has been found to be inherent for ζ-carrageenan from *Rissoella verruculosa* (Mollion et al., 1986). Weak gelling ability have been reported for β-carrageenan samples (~150 g/cm2 at 1%) obtained from *Betaphycus gelatinus, B. speciosus* (as *Eucheuma gelatinum, E. speciosum*) and *Endocladia muricata* (Renn et al., 1993; Thành et al., 2002).

The 3,6-anhydrogalactose is essential for the formation of a gel network and its content usually correlates well with the gelling ability of the galactan. The presence of precursor units (e.g., µ-, ν-, and λ-carrageenans) not bearing cyclized B-units, commonly leads to decrease in gel strength values. The gel melting and coil-to-helix transition temperatures are influenced by the presence of precursor units in lesser extents (van de Velde et al., 2003).

Agar Type Polysaccharides

Agarose completely dissolves in water at 97–100°C. 1.5% solutions of commercial agaroses commonly gel between 32–43°C and the formed opalescent gels typically melt above 85°C. The thermal hysteresis between gelation and melting is very high, almost always exceeding 45°C and can even reach above 70°C. Melting temperature of agarose gels as well as the gel strength values are highly dependent on the molecular weight, while gelling temperatures are less affected (Watase and Nishinari, 1983).

The setting and melting temperature of agar gels are notably influenced by the methoxylation degree of the polysaccharide. The natural methoxylation at the 6´-position of β-D-galactopyranose residues is particularly responsible for elevated gelling temperature, while the methoxy groups at the 2´-position, often arising from chemical methylation process, tend to lower the gel setting temperature (Miller et al., 1994; Arminse and Galatas, 2009). Although the melting temperature of agarose gels can be raised by methoxylation, significant increase takes place only by double methoxylation pattern, i.e. by co-occurrence of methoxy groups at the 6´-position of β-D-galactopyranose and at the 2´-position of 3,6-anhydro-α-L-galactopyranose residues (Falshaw et al., 1998). Notable examples are agars extracted from *Carpidium obesa* and *C. coriacea*, both having more than 90% of their 6´-position of G and 2-position of LA units methoxylated. These samples were reported to melt at 120–121°C and 112–113°C, respectively, at 1% concentration (Falshaw et al., 1998). Melting points around 100°C have been observed for 1% agars from *Graecilariar arcuata* v. Snackeyi with 80–90% methoxylatio at both 6´-position of G and 2-position of LA residues (Falshaw et al., 1999).

Agarose is among the most potent gelling substances known. The storage modulus (G’) of quality agars at 1.5% can remain around 50,000 Pa, which is notably higher than for κ-carrageenan gel systems containing K$^+$- and Ca$^{2+}$-ions (~20,000 Pa). Nevertheless, it has been recently shown that at some specific
counter-ion compositions κ-carrageenan can form stronger gels than is commonly observed for agaroses—the G’ of 1.5% κ-carrageenan gel system containing equal amounts of Rb⁺- and Sr²⁺-ions and no free salts was found to be 81,000 Pa, whereas the combination of K⁺- and Sr²⁺-ions yielded the gel with G’ = 48,000 Pa at 15°C (Robal et al., 2017).

Gel strength of electrophoresis grade agaroses commonly remains in the range of 1,000–3,000 g/cm² for 1.5% and between 600–1,600 g/cm² for 1.0% polysaccharide concentration. Association of agarose helices is favored by the 3,6-anhydrogalactose residues (Sousa et al., 2013) and any modification in a α-L-galactopyranose moiety preventing the occurrence or formation of this 3,6-anhydro derivative has a detrimental effect on the gelling ability. Rheological properties of agars can be thus often notably enhanced by cyclization reaction in alkaline medium (Noseda et al., 2000; Freile-Pelegri and Murano, 2005) or by the action of sulfohydrolases (Shukla et al., 2011). Gel strengths of native agars commonly remain many times lower than the pure agarose fractions obtained after alkaline treatment process. Agaroses with very high gelling ability (2200 g/cm² at 1.0%) have been obtained from Gracilaria dura, whereas native agars from this species form significantly weaker gels (< 300 g/cm²) (Meena et al., 2007).

Methoxylation at the 6’-position of G and the 2-position of LA units does not notably impair the gelling ability of agarose and gel strength values as high as 1560 g/cm² (at 1%) have been observed for highly methoxylated preparations (Falshaw et al., 1998). However, the agarose with abundant G6M have shown to yield less turbid gels with slightly higher G values than the low methoxy content agarose with very similar molecular weight characteristic (Brenner et al., 2019). Sulfation of agarose molecules, irrespective of the substitution pattern, always leads to impaired gelling ability. It has been shown that the sulfate group at the 2’-position of β-D-galactopyranose residue destabilizes double-helical conformation as hydroxyl group in this location forms internal hydrogen bond within the double helix (Rees, 1969; Montaño et al., 1999). Also pyruvate and branched building blocks containing xylose or 4-O-methyl-α-L-galactopyranose residues diminish gel-forming ability. The frequent structural modifications with full 6-sulfation of α- or β-galactopyranose residues, do not show gelling properties under low co-solute conditions. Porphyran occurring in Porphyra and Pyropia species has been reported to exhibit pseudoplastic properties with flow behavior index decreasing with increasing concentration (Koo et al., 2007). For chemically modified agars (e.g. carboxymethylated, acetylated samples), gel setting, gelling temperatures and gel strength values decrease with increasing substitution degree of the galactan (Cao et al., 2014; Xia et al., 2014).

Essentially pure funoran (G6S-LA) fraction from Gloiopeltis species is fully soluble in cold water (Tuvikene et al., 2015a), but does not form a gel under low ionic strength conditions. At high cation concentration, aggregation of the polysaccharide chains and subsequent gelation takes place due to shielding of the sulfate groups. For funorans, Ba²⁺-ions have the highest gel promoting ability, yielding 1.5% gels with G’ >25,000 Pa in 0.12 mM BaCl₂ solution (Tuvikene et al., 2015b). Such Ba²⁺-containing gels show turbid and opalescent characteristics, very similar to those of agarose, whereas the other alkaline earth and alkali metal ions lead to funoran gels with high transparency. The gel formation of such systems is slow enough to allow quick introduction of the salts promoting gelation, thus making it possible to completely avoid the heating steps during the preparation of such galactan gels.

Hybrid Galactans

The conformational irregularities introduced by μ- or ν-carrageenan repeating units impede the helix formation and affect the gelling process of κ- and τ-carrageenans (Vilén et al., 2010). It has been shown that τ-carrageenan preparations completely lose their gelling ability at ν-carrageenan amounts exceeding 20 mol% (van de Velde et al., 2002). However, small levels of structural irregularities are required for proper gel formation ability of the galactans. Findings on τ-ν-carrageenan hybrids have confirmed that the gelling ability of the preparations containing 3% of ν-repeating units was notably higher than for the essentially pure τ-carrageenan samples (van de Velde et al., 2002).

Pure κ- and τ-carrageenans show different rheological properties compared to κ-τ-carrageenan hybrids. Higher level of τ-repeating units leads to enhanced gelling ability (van de Velde, 2008). Nevertheless, the functional properties of κ-τ-carrageenan hybrids have been reported to remain fairly consistent when the molar ratio of κ-to τ-repeating units remains in the range of 1.2–4.0 (Bixler et al., 2001).

Rheological properties of hybrid carrageenans are also influenced by the mode of distribution of different structure types along the polysaccharide chains (van de Velde et al., 2001; Villanueva et al., 2004; Souza et al., 2011). Furcellaran, which is a κ-β-carrageenan hybrid with about 50 mol% of the κ-repeating units desulfated, behaves similarly to κ-carrageenan, although smaller amount of counter-ions is required to achieve optimal gel strength for this polysaccharide (Bird et al., 1991). Its conformational transition temperatures are, however, a bit higher and the gel strength values slightly lower than commonly observed for κ-carrageenan (Zhang et al., 1991; Robal et al., 2017). Functional similarity between furcellaran and κ-carrageenan arises from the random distribution of κ- and β-repeating units along the galactan chains. This ensures a regular distribution of charges and permits good gelling properties. The κ/β-carrageenan hybrids with more block-wise distribution of the repeating units show lower gelling ability (Correc et al., 2012).

Studies on the artificial mixtures of agarose and κ-carrageenan have revealed that the gelation of such blends takes place through the formation of a molecular interpenetrating gel network with no evidence of simple phase separation (Amici et al., 2002).

Factors Affecting the Gel Properties

The Effect of Counter-Ions and Co-Solutes

All carrageenans, except pure β-carrageenan, need a certain amount of cationic counter-ions (commonly Na⁺-, K⁺-, Ca²⁺-,
Mg$^{2+}$-ions to balance the negative charge of the sulfate ester groups of the polysaccharide. If the level of galactan-bound cations is not enough, degradation of the polysaccharide takes place through removal of sulfate groups, acidification and autohydrolysis processes (Robal et al., 2017).

Specific counter-ions in certain amounts are required to maintain the functional properties of carrageenans. Cationic species which favor the gelling or viscosifying properties of specific galactan types (especially K$^+$- and Ca$^{2+}$-ions) generally show higher affinities towards the galactan matrices and are often found in larger quantities also in seaweed biomass (Tuikvene et al., 2008; Tuikvene et al., 2009). Gelation of κ-carrageenan is promoted by K$^+$-, Rb$^+$- and Cs$^+$-ions, whereas Mg$^{2+}$-, Ca$^{2+}$-, and Sr$^{2+}$-ions enhance the formation of t-carrageenan gels. λ-carrageenan forms a gel-like system in the presence of Fe$^{3+}$-ions (Running et al., 2012). The η-carrageenan systems in which the negative charges of sulfate ester groups are balanced only by the gel promoting monovalent cations, are characterized by poor gelling abilities (Chen et al., 2002; Nickerson et al., 2004).

For the maximum gelling ability, the co-presence of mono- (K$^+$, Rb$^+$ or Cs$^+$) and divalent (Mg$^{2+}$, Ca$^{2+}$, Sr$^{2+}$ or Ba$^{2+}$) ions is needed. By combining the ratio of K$^+$- and Ca$^{2+}$-ions in κ-carrageenan preparations, 1% gels with G varying between 70-43000 Pa have been obtained (Hermansson et al., 1991). The effect of Ca$^{2+}$-ions is based on the formation of intra or intermolecular cross-bridges between the sulfate ester groups in carrageenan chains (Nickerson et al., 2004).

The addition of CaCl$_2$ increases the gelling and gel melting temperatures and also the thermal hysteresis of κ-carrageenan (Liu and Li, 2016). The stiffness of the gels commonly increases with increasing KCl, whereas the gels prepared in KCl solutions are commonly more transparent than these gelled in the presence of CaCl$_2$ (Nguyen et al., 2014). Li$^+$- and Na$^+$-ions enhance solubility and impair gelling ability of carrageenans. The rheological properties of κ-carrageenan gels can be thus controlled by varying the ratio of K$^+$- and Na$^+$-ions in the system (Mangiome et al., 2005). It has been shown that 1% κ-carrageenan gels containing both 20 mM KCl and 200 mM NaCl exhibit heterogeneous structure and smaller mesh size than is typical for κ-carrageenan systems (Lorén et al., 2009). The aggregation of κ- and t-carrageenan helices is prevented by some anionic substances, especially by I$^-$ and SCN$^-$ ions, which notably impair the gelling ability of such polysaccharides (Zhang et al., 1991; Takemasa and Nishinari, 2004).

The gelating ability of agarose is somewhat affected by the presence of anions. NaCl has a weak stabilizing effect, whereas NaBr, NaNO$_3$, NaSCN and Na$_2$SO$_4$ destabilize the agarose gel and facilitate syneresis (Piculell and Nilsson, 1989; Singh et al., 2009). Gelling ability of agars bearing sulfate groups is enhanced in the presence of some cationic species. Agars with 36% of LA and 4.5% of sulfate (as G4S) extracted from Gracilaria edulis showed enhanced gelling ability, from 190 g/cm2 to 350–400 g/cm2 (at 1.5%) by the addition of Na$^+$-, K$^+$- or Ca$^{2+}$-ions (Villanueva and Montaño, 1999). Addition of high levels of low-molecular sugars (glucose, sucrose) into agarose systems leads to reduced crosslinking in the polysaccharide network (Deszczynski et al., 2003). It has been also noted that the influence of molecular weight on gel properties is reduced with the addition of sucrose (Normand et al., 2003). Freezing of agar gels leads to significant syneresis after thawing and the process has been thus employed in a traditional agar manufacturing process. Freeze-thaw stability of the gels can be improved with the addition of sucrose or by rapid freezing through pressure-shift technique, which has proven to be more effective in preserving the quality of the frozen agar gels compared to the conventional freezing at -20°C or even at -80°C (Fuchigami et al., 2006).

The Effect of Other Factors

The presence of 3,6-anhydrogalactopyranose residues in agars and carrageenans leads to increased flexibility of the galactan chains and allows larger contraction of the random coil structure (Therkelsen, 1993). Helical conformation of κ-carrageenan is stiffer than for t-carrageenan, which is suggested to be the underlying feature yielding brittle κ-carrageenan and elastic t-carrageenan gel networks (Schefer et al., 2015). During the gel forming process of algal galactans, the initial aggregation involves longer polysaccharide chains whereas shorter chains form aggregates on further cooling (Dai and Matsukawa, 2012; Zhao et al., 2013). In the case of κ-carrageenan, the structure of the aggregates has been shown not to depend on the molecular weight, but the level of aggregation was found to decrease with lowering of the length of the polymer chains (Meunier et al., 2001).

Properties of the galactan gels are notably influenced by the cooling rate during the gelling process, higher gelling abilities are obtained at slow cooling whereas the enthalpies are not much affected by the speed of cooling (Moritaka et al., 2007). The storage modulus of 1% κ-carrageenan has been found to be 3 times higher for the gel obtained by cooling at 0.5°C/min compared to this formed at 1.5°C/min (Hermansson et al., 1991). The thermal history greatly influences the junction zone formation. It has been shown that at slow cooling, large junction zones form in κ-carrageenan systems, whereas many small junction zones appear at fast gelling rates (Iijima et al., 2007). For the agar gel systems, it has been evidenced that at slow cooling the extent of aggregation of double helices is larger than for agar gels obtained by rapid quenching of the solution. It has been shown that the agar gels formed by rapid cooling to 5°C melted at 12–13°C lower temperatures compared to those prepared by cooling at 1°C/min (Mohammed et al., 1998). Furthermore, the formation of network structures shifts towards higher temperatures with increasing agarose concentrations (Mohammed et al., 1998).

CONCLUDING REMARKS

Sulfated galactans are produced in important yields by many different red marine macroalgae. These galactans are divided in two groups, carrageenans and agarans, which have diastereomeric structures (Figure 1). Although both groups have many important common structural features, they have different...
determinant structure-rheological properties relationships. Industrial hydrocolloids from the agaran group are neutral polysaccharides (agarose), while industrially significant galactans of the carrageenan group regarding their rheological properties (κ-, λ-, β/κ-carrageenans, and λ-carrageenan in a lesser extent) are sulfated. This fact determined that sulfated polysaccharides of the carrageenan group were thoroughly studied, while in the case of agarophytes, most investigations tried to get rid of them. Hence, the knowledge about structural details of sulfated galactans from agarophytes is not as wide as that of carrageenans. In addition, structures of sulfated agarans are more complex in some cases.

There is a very well established classification of carrageenans in families named with Greek letters according to the sulfation pattern on the A-units (Figure 2). Although a similar classification for agarans would not be so useful due to the relative importance of the different groups (the majority of the agarans belong to the G group), defining different agaran groups according to the sulfation at the A-unit clearly shows that most of the agarophytes rich in agarose or its precursor, porphyran, belong to certain orders (Gelidiales, Gracilariales, Ahnfeltiales, and Bangiales), while most of the groups containing sulfate esters in the A-unit belong to the Ceramiales. In this review, seaweeds comprising D/L-hybrid galactans were not treated in depth, because it is not yet clear if they comprise both diasteromeric types of units in the same molecule, or if they are mixtures of carrageenans and agarans that are very difficult to separate by the currently available methodologies, which include ion exchange and gel permeation chromatography and those comprising precipitation of the polysaccharides with quaternary ammonium salts as the most employed techniques. In the case of carrageenophytes, differential precipitation of carrageenans of the κ-family with potassium chloride of increasing concentrations, rendered water soluble fractions enriched in D/L-hybrid galactans (Ciancia and Cerezo, 2010; Usov, 2011). A lot of work is still needed in this field. Both possibilities could happen, and it would be of great taxonomic and also practical importance to know the real structures of these galactans in relation to the algal groups from which they are obtained.

Most of the agarophytes of the G group biosynthesize major amounts of agarose, which is not sulfated, but it can have variable amounts of methoxyl groups and other substituents. These agarophytes also produce variable amounts of the precursor units of agarose, G-1,6S, which is found in different quantities depending of the seaweed and of the extraction conditions. There is also a group of agarans (corallins) that cannot be cyclized because they lack sulfate at the 6- position, but can have variable quantities of sulfate at the 6’-position, which are extracted from the Corallinales.

While carrageenans are produced in major quantities only by algae from the Gigartinales, agarans are biosynthesized by red seaweeds from different orders, namely, Gelidiales, Gracilariales, Ahnfeltiales, Bangiales, Ceramiales, Corallinales, and others only studied in a few cases. An important exception to this asseveration was found for galactans from the family Endocladiaceae (Gigartinales), which were shown unequivocally to comprise in the case of Endocladina muricata β/κ-carrageenans by 13C NMR spectroscopy and optical rotation (Renn et al., 1993), but major amounts of agarans, called funorans, in the case of Gloiopeltis species (Hu et al., 2012; Tuvikene et al., 2015a). However, D/L-hybrids were reported previously for some Gloiopeltis species (Takano et al., 1998), although predominance of agarans was proved. Also for Endocladia muricata, besides β/κ-carrageenans, 6% agarobiose was detected (Whyte et al., 1985).

Seaweeds from the order Ceramiales produce major amounts of agarans with complex structures that comprise an important degree of sulfation on the A-unit. The sulfation pattern of these algae is very variable and greatly depends of the taxonomic family. The general substitution pattern of these agarans is further complicated by the presence of variable amounts of other substituents. However, their complexity is also dependent of the algal group. For example, agarans from Polysiphonia species are not so complex, compared with those of Laurencia species, and other related algae, both genera belong to the Rhodophytaeae, so in this case it is possible to find chemtoxonomic relationships below the taxonomic family level. Besides, some species of the Gracilariales have also shown particular sulfation patterns on the A-unit, although most of them belong to the G group. All these agarans are usually not industrially relevant by their rheological properties, but some have remarkable biological activities.

In some of these galactans, the acidic nature is given not only by the presence of sulfate groups, but also by the presence of 3-linked 4,6-O-(1-carboxyethylidene)-β-D-galactose residues as A-units. Interestingly, there are two different very well defined groups of carrageenans having pyruvic acid ketals (Figure 3). One of them is the group of galactans from tetrasporophytes of some Gigartinales, which comprise important amounts of π-carrageenans, a non-cyclized carrageenan, sulfated at the 2 and 2-positions. The other group obtained from seaweeds of the Placentophoraceae Areschougaleae, Acrotylaceae, and Solieriaaceae, has pyruvic acid ketals in a cyclized carrageenan structure, only sulfated at the 2-position. Both polymers should be very different regarding their conformation in water solutions. In agarans, pyruvic acid ketals were also found in certain algal groups, as some species of Gracilaria (Gracilaraceae, Gracilariales) and Laurencia (Rhodophytaeae, Ceramiales).

While biosynthesis pathways for carrageenans and agarans have been proposed, experimental knowledge on algal biosynthetic enzymes remains still very limited. Moreover, the biological significance of the structural variability of these cell wall sulfated galactans is not understood at all. The challenge is not only to understand their biosynthesis, but also related metabolic pathways in relation to their evolution, and in adaptation to different environments. These studies could help to modulate their functional properties in culture.

AUTHOR CONTRIBUTIONS

MC and MM analyzed and discussed the sulfated galactan structures. RT analyzed and discussed the functional properties of sulfated galactans. MC and MM programmed the review
FUNDING

Financial support was provided by the Estonian Research Council grant PUT1406 and by the Tallinn University ASTRA project “TU TEE—Tallinn University as a promoter of intelligent lifestyle” financed by the European Union European Regional Development Fund 2014-2020.01.16-0033. MC and MM receive financial support from the National Research Council of Argentina (CONICET) (PIP 11220130100762CO 2014-2016, PIP 112-2015 01-00510, PU-E 2016 22920160100068CO) and the University of Buenos Aires (UBACYT 2018-2021, 20020170100347BA, 20020170100292BA).

ACKNOWLEDGMENTS

MM and MC are Research Members of the National Research Council of Argentina (CONICET).

REFERENCES

Amici, E., Clark, A. H., Normand, V., and Johnson, N. B. (2002). Interpenetrating network formation in agarose–κ-carrageenan gel composites. Biomacromolecules 3, 466–474. doi: 10.1021/bm010157z
Anderson, N. S., Dolan, T. C. S., and Rees, D. A. (1973). Carrageenans. Part VII. Polysaccharides from Eucheuma spinosum and Eucheuma cottonii. The conformation of κ-carrageenan. J. Chem. Soc Perkin Trans. 1, 2173–2176. doi: 10.1039/P19730002173
Arminsen, R., and Gálatas, F. (2009). “Agar,” in Handbook of Hydrocolloids, 2nd Edition. Eds. G. O. Phillips and P. A. Williams (Cambridge, UK: Woodward Publishing Ltd), pp 82–pp107.
Azevedo, G., Hilliou, L., Bernardo, G., Sousa-Pinto, I., Adams, R. W., Nilsson, M., et al. (2013). Tailoring kappa iota/omega-carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocolloids 31, 94–102. doi: 10.1016/j.foodhyd.2012.10.010
Barabanova, A. O., Tischenko, I. P., Glazunov, V. P., Yakovleva, I. M., Solovyeva, A. Z. e v e d o, G., Hilliou, L., Bernardo, G., Sousa-Pinto, I., Adams, R. W., Nilsson, M., et al. (2013). Tailoring kappa iota/omega-carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocolloids 31, 94–102. doi: 10.1016/j.foodhyd.2012.10.010
Barabanova, A. O., Tischenko, I. P., Glazunov, V. P., Yakovleva, I. M., Solovyeva, A. Z. e v e d o, G., Hilliou, L., Bernardo, G., Sousa-Pinto, I., Adams, R. W., Nilsson, M., et al. (2013). Tailoring kappa iota/omega-carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocolloids 31, 94–102. doi: 10.1016/j.foodhyd.2012.10.010
Barabanova, A. O., Tischenko, I. P., Glazunov, V. P., Yakovleva, I. M., Solovyeva, A. Z. e v e d o, G., Hilliou, L., Bernardo, G., Sousa-Pinto, I., Adams, R. W., Nilsson, M., et al. (2013). Tailoring kappa iota/omega-carrageenan from Mastocarpus stellatus with desired gel quality through pre-extraction alkali treatment. Food Hydrocolloids 31, 94–102. doi: 10.1016/j.foodhyd.2012.10.010

Ciao, M., Liu, X., Luan, J., and Zhang, X. (2014). Characterization of physicochemical properties of carboxymethyl agar. Carbohydr. Polym. 111, 449–455. doi: 10.1016/j.carbpol.2014.04.036
Cases, M. R., Stortz, C. A., and Cerezo, A. S. (1992). Methylated sulphated xyloglactans from the red seaweed Corallina officinalis. Phytochemistry 31, 3897–3900. doi: 10.1016/S0031-9422(00)75946-9
Cases, M. R., Stortz, C. A., and Cerezo, A. S. (1994). Structure of the corallinsans, sulphated xyloglactans from Corallina officinalis. Int. J. Biol. Macromol. 16, 93–97. doi: 10.1016/S0141-8130(94)90002-3
Chen, Y., Liao, M.-L., and Dunstan, D. E. (2002). The rheology of K′-κ-carrageenan as a weak gel. Carbohydr. Polym. 50, 109–116. doi: 10.1016/S0144-8617(02)00009-7
Chiavotti, A., Ciancia, M., Noseda, M. D., Matulewicz, M. C., and Cerezo, A. S. (1993b). Alkali-methylated sulphated xyloglactans from the red alga T. F., Zarubina, N. V., et al. (2010). Chemical composition of polysaccharides of the red alga T. F. c i a n c i a, M., a n d C e r e z o, A. S. (2010). Cell wall polysaccharides from Australian red algae of the family Soloriaceae (Gigartinales, Rhodophyta): Highly methylated carrageenans from the genus Rhodochorton. Bot. Mar. 39, 47–59. doi: 10.1515/botmar.1996.39.1-6.147
Chiavotti, A., Bacic, A., Craik, D. J., Munro, S. L. A., Kraft, G. T., and Liao, M.-L. (1996). Cell-wall polysaccharides from Australian red algae of the family Soloriaceae (Gigartinales, Rhodophyta): novel, highly pyruvated carrageenans from the genus Callipogon. Carbohydr. Res. 299, 229–243. doi: 10.1016/S0008-6215(97)00017-7
Chiavotti, A., Bacic, A., Craik, D. J., Kraft, G. T., Liao, M.-L., Falshaw, R., et al. (1998a). A pyruvated carrageenan from Australian specimens of the red alga Sarcosomina filiforme. Carbohydr. Polym. 310, 77–83. doi: 10.1016/S0008-6215(98)00170-0
Chiavotti, A., Bacic, A., Craik, D. J., Munro, S. L. A., Kraft, G. T., and Liao, M.-L. (1996b). Carrageenans with complex substitution patterns from red algae of genus the Erythrocronium. Carbohydr. Res. 305, 243–252. doi: 10.1016/S0008-6215(97)00000-1
Chiavotti, A., Bacic, A., Craik, D. J., Kraft, G. T., and Liao, M.-L. (2004). A nearly idealized 6-O-methylated t-carrageenan from the Australian red alga Clavilonium ovatum (Acrotylaceae, Gigartinales). Carbohydr. Res. 339, 1459–1466. doi: 10.1016/j.carres.2004.03.019
Ciancia, M., and Cerezo, A. S. (2010). “D/L-hybrid galactans from red seaweeds: Do they really exist? Eds. Ryosuchi Ito and Youta Matsu,” in Handbook of Carbohydrate Polymers: Development, Properties and Applications, vol. 10. (New York, USA: Nova Science Publishers, Inc), 355–391.
Ciancia, M., Matulewicz, M. C., Finch, P., and Cerezo, A. S. (1993a). Determination of the structures of cysteicarage carrageenans from Gigartina skottsbergii by methylation analysis and NMR spectroscopy. Carbohydr. Res. 238, 241–248. doi: 10.1016/S0144-8617(93)87016-L
Ciancia, M., Noseda, M. D., Matulewicz, M. C., and Cerezo, A. S. (1993b). Alkali-modification of carrageenans: Mechanism and kinetics in the kappa/ iota-, mu- and lambda-series. Carbohydr. Polym. 20, 95–98. doi: 10.1016/0144-8617(93)90083-G
Correc, G., Barabanova, A., Tuvikene, R., Trus, K., Yermak, I., and Helbert, W. (2012). Comparison of the structures of hybrid κ/β-carrageenans extracted from Fucophora lumbricalis and Tichocarpus crinitus. Carbohydr. Polym. 88, 31–36. doi: 10.1016/j.carbpol.2011.11.052
Cosenza, V. A., Navarro, D. A., Fissore, E. N., Rojas, A. M., and Stortz, C. A. (2014). Chemical and rheological characterization of the carrageenan from Hypnea muscosifirma (Wulfen) Lamouroux. Carbohydr. Polym. 102, 780–789. doi: 10.1016/j.carbpol.2013.10.090
Estevez, J. M., Ciancia, M., and Cerezo, A. S. (2008). The system of sulfated Duarte, M. E. R., Noseda, M. D., Cardoso, M. A., Tulio, S., and Cerezo, A. S. Falshaw, R., and Furneaux, R. H. (1995). Carrageenans from the tetrasporic stages of Bostrychia montagnei. Eur. J. Phycol. 30, 107–115. doi: 10.1021/bm701109r
Falshaw, R., Furneaux, R. H. (1995). Carrageenans from the tetrasporic stages of Gigartina clavifera and Gigartina alveata (Gigartinae, Rhodophyta). Carbohydr. Res. 287, 101–115. doi: 10.1016/0008-6215(95)80004-9
Falshaw, R., Furneaux, R. H., Pickering, T. D., and Stevenson, D. E. (1999). Agar from three Fijian Gracilaria species. Bot. Mar. 42, 51–59. doi: 10.1515/BOT.1999.008
Falshaw, R., Bidler, H. J., and Johndro, K. (2001). Structure and performance of commercial kappa-2 carrageenans extracts I. Struct. Analysis Food Hydrocol. 15, 441–452. doi: 10.1016/S0266-035X(01)00066-2
Falshaw, R., Furneaux, R. H., and Wong, H. (2003). Analysis of pyruvylated β-carrageenan by 2D NMR spectroscopy and reductive partial hydrolysis. Carbohydr. Res. 338, 1403–1414. doi: 10.1016/S0008-6215(03)00171-X
Falshaw, R., Furneaux, R. H., and Stevenson, D. E. (2005). Structural analysis of carrageenans from the red alga, Calliblepharis jubata. Biopolymers. 340, 1149–1158. doi: 10.1016/j.careq.2005.01.019
Ferreira, L. G., Noseda, M. D., Gonçalves, A. G., Ducatti, D. R. B., Fuji, M. T., and Duarte, M. E. R. (2012). Chemical structure of the complex pyruvylated and sulfated agar from the red seaweed Palisada flagellifera (Ceramiales, Rhodophyta). Carbohydr. Res. 347, 83–94. doi: 10.1016/j.carres.2011.10.007
Ferreira, L. G., da Silva, A. C. R., Noseda, M. D., Fuly, A. L., de Carvalho, M. M., Fuji, M. T., et al. (2019). Chemical structure and snake antivenom properties of sulfated agars obtained from Laurencia dendroidea (Ceramiales, Rhodophyta). Carbohydr. Polym. 218, 136–144. doi: 10.1016/j.carbpol.2019.04.066
Ficko-Bleau, E., Herve, C., and Gurvan, M. (2015). Sweet and sour sugars from the sea: the biosynthesis and remodeling of sulfated cell wall polysaccharides from marine macroalgae. Perspect. Phys. 2, 51–64. doi: 10.1127/pip/2015/0028
Freire-Pelegrin, Y., and Murano, E. (2005). Agars from three species of Gracilaria (Rhodophyta) from Yucatan Peninsula. Bios. Technol. 96, 295–302. doi: 10.1016/j.biotech.2004.04.010
Frey, P. A. (1996). The Leloir pathway: a mechanistic imperative for three enzymes to change the stereochemical configuration of a single carbon in galactose. FASEB J. 10, 461–470. doi: 10.1096/fasebj.10.4.8674354
Fuchiagi, M., Teramoto, A., and Jibu, Y. (2006). Texture and structure of pressure-shift-frozen agar gel with high visco-elasticity. Food Hydrocol. 20, 160–169. doi: 10.1016/j.foodhyd.2005.01.008
Furneaux, R. H., and Stevenson, T. T. (1990). The xylogalactan sulfate from Chondrus crispus (Ceramiales, Rhodophyta). Hydrobiologia 204-205, 615–620.
doi: 10.1007/BF00082296
Genicot-Joncour, S., Poinas, A., Richard, O., Potin, P., Rudolph, B., Klaoreg, B., et al. (2009). The cyclization of the 3,6-anhydro-galactose ring of iota-carrageenan is catalyzed by two α-galactose-2,6-sulfurylases in the red alga Chondrus crispus. Plant Physiol. 151, 1609–1616. doi: 10.1104/pp.109.144329
Gould, F., Diouris, M., Deslandes, E., and Floch, J. (1999). Nucleotides, nucleoside sugars and UDP-d-glucose-4-epimerase activity in the iota-carrageenophytes Solieria chordalis and Calliblepharis jubata (Rhodophyceae). Eur. J. Phycol. 34, 21–25. doi: 10.1080/096762699.1001736042
Gould, F., Le Corre, G., Diouris, M., Deslandes, E., and Floch, J. (2001). NDP-sugars, floridoside and floridean starch levels in relation to activities of UDP-d-glucose pyrophosphorylase and UDP-d-glucose-4-epimerase in Solieria chordalis (Rhodophyceae) under experimental conditions. Physiol. Res. 49, 43–50. doi: 10.1086/144018-2001.00219.x
Greer, C. W., and Yaphe, W. (1984). Analysis of carrageenans using carrageenases. Biomacromolecules 1158. doi: 10.1016/j.carbpol.2012.04.026
Greer, C. W., Shomer, I., Goldstein, M. E., and Yaphe, W. (1984). Analysis of carrageenan from Hypnea musciformis using carrageenases, infrared and 13C-nuclear magnetic resonance spectroscopy. Bot. Mar. 27, 473–478. doi: 10.1515/botm.1984.27.10.473
Greer, C. W., Shomer, I., Goldstein, M. E., and Yaphe, W. (1984). Analysis of carrageenan from Hypnea musciformis by using 13C-nuclear magnetic resonance spectroscopy. Carbohydr. Res. 129, 189–196. doi: 10.1016/0008-6215(84)85311-2
Guibet, M., Bouleguer, P., Mazoyer, J., Kervarec, N., Antonopoulos, A., Lafosse, M., et al. (2008). Composition and distribution of carbohyd rose moieties in hybrid κ- and κ-τ-carrageenans using carboxymethyl cellulose. Biomacromolecules 9, 408–415. doi: 10.1021/bm701109r
Guiry, D. M., and Guiry, G. M. (2020). AlgaeBase. World-wide electronic publication (Galway: National University of Ireland). Available at: http://www.algaebase.org, searched on 16 April 2020.
Hemmingsson, J. A., Furneaux, R. H., and Murray-Brown, V. H. (1996). Biosynthesis of agar polysaccharides in Gracilaria chilensis Bird, McLachlan et Oliveira. Carbohydr. Res. 287, 101–115. doi: 10.1016/0008-6215(96)90057-2
Hermansson, A. M., Eriksson, E., and Jordansson, E. (1991). Effects of potassium, sodium and calcium on the microstructure and rheological behaviour of kappa-carrageenan gels. Carbohydr. Polym. 16, 297–320. doi: 10.1016/0144-8617(91)90115-5
Ho, C.-L. (2020). Comparative genomics reveals differences in algal gelation biosynthesis and related pathways in early and late diverging red algae. Genomics 112, 1536–1544. doi: 10.1016/j.ygeno.2019.08.002
Hu, Y., Yu, G., Zhao, X., Wang, Y., Sun, X., Jiao, G., et al. (2012). Structural characterization of natural ideal 6-O-sulfated agarose from red alga Glosioptis furcata. Carbohydr. Polym. 89, 883–889. doi: 10.1016/j.carbpol.2012.04.026

Frontiers in Plant Science | www.frontiersin.org 15 September 2020 | Volume 11 | Article 559986
Sulfated Galactans From Red Seaweeds

Manley, S., and Burns, D. J. (1991). Formation of nucleoside diphosphate monosaccharides (NDP-sugars) by the agarophyte Pterocladiopsis capitulacea (Rhodophyceae). J. Physiol. 27, 702–709. doi: 10.1113/jphysiol.1991.sp01702.x

Mazzocchi-Sanz, M., Ström, A., Lopez-Sánchez, P., Knutsen, S. H., Ballance, S., Zobel, H. K., et al. (2020). Advanced structural characterization of agar-based hydrogels: Rheological and small angle light scattering studies. Carbohydr. Polym. 236, 115655. doi: 10.1016/j.carbpol.2019.115655

Matsuhiro, B., and Urzua, C. C. (1990). Agars from Gelidium res (Gelidiaceae). Hydrobiologia 204/205, 545–549. doi: 10.1007/BF00402824

Matulewicz, M. C., and Ragan, M. A. (1999). Characterization of the UDP-D-glucose galactosyltransferase from the agarose-producing brown alga, Dictyota dichotoma. Carbohydr. Res. 337, 57–68. doi: 10.1016/S0008-6215(99)00283-X

Matsuhiro, B., and Urzua, C. C. (1990). Agars from Gelidium res (Gelidiaceae). Hydrobiologia 204/205, 545–549. doi: 10.1007/BF00402824

Miller, I. J. (1998). The structure of a pyruvic acid-containing agar extracted from the red alga Nocodazus pacificus. Carbohydr. Polym. 41, 305–318. doi: 10.1016/S0168-9452(97)00119-7

Miller, I. J., and Furneaux, R. H. (1997). The structural determination of the agarose polysaccharides from the Gelidiaceae of New Zealand. Carbohydr. Res. 285, 181–191. doi: 10.1016/S0008-6215(96)00198-0

Miller, I. J., and Furneaux, R. H. (1994). Chemical methylation of agarose hydroxyl groups. Carbohydr. Polym. 26, 127–135. doi: 10.1016/0143-7009(94)90049-8

Miller, I. J. (1998). The chemical structure of a pyruvated carrageenan extracted from Chondrus crispus. Carbohydr. Polym. 37, 269–284. doi: 10.1016/S0143-7009(97)00119-7

Miller, I. J. (2005). Evaluation of the structures of polysaccharides from three taxa of the Phyllophoraceae. Biochem. Systemat. Ecol. 33, 47–60. doi: 10.1016/j.biosececol.2004.06.005

Miller, I. J. (2005). Evaluation of the structures of polysaccharides from three taxa in the genus Hymenaea and from Acorus autumnalis (Rhodophyta, Delesseriaceae). Bot. Mar. 48, 148–156. doi: 10.1515/bot.2005.016

Mohammed, Z. H., Hember, M. W. N., Richardson, R. K., and Morris, E. R. (1998). Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr. Polym. 36, 15–26. doi: 10.1016/S0144-8617(97)00011-3

Mollon, J., Mostert, I., and Christiaen, D. (1986). Isolation of a new type of carrageenan from the red algal genus Eucheuma. Carbohydr. Polym. 7, 229–240. doi: 10.1016/0143-7009(86)80035-8

Mollon, J., Morvan, H., Bellanger, F., and Moreau, S. (1988). 13C NMR study of the heterogeneity of the carrageenan from Eucheuma denticulatum. Carbohydr. Res. 177, 195–202. doi: 10.1016/0008-6215(88)80039-X
Montaño, N., Villanueva, R., and Romero, J. (1999). Chemical characteristics and gelling properties of agar from two Philippine Gracilaria spp. (Gracilariales, Rhodophyta). J. Appl. Phycol. 11, 27–34. doi: 10.1023/a:1008842286069

Moritaka, H., Takahashi, M., and Kubota, K. (2007). Effects of cooling rate and sodium chloride on polysaccharide gelation. Food Sci. Technol. Res. 13, 345–350. doi: 10.3136/fstr.13.345

Morrice, L., McLean, M. W., Long, W. F., and Williamson, F. B. (1983). Porphyran primary structure. An investigation using β-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. Eur. J. Biochem. 133, 671–684. doi: 10.1111/j.1432-1033.1983.tb07516.x

Morris, E. R., Rees, D. A., Welsh, E. J., Dunfield, P. F., and Whittington, S. G. (1978). Relation between primary structure and chain flexibility of random coil polysaccharides: calculation and experiment for a range of model carrageenans. J. Chem. Soc. Perkin Trans. 2, 793–800. doi: 10.1039/p29780000793

Murano, M., Toffanin, R., Cecere, E., Rizzo, R., and Knutsen, S. H. (1997). Investigation of the carrageenans extracted from Solieria filiformis and Agardhiella subulata from Mar Piccolo, Taranto. Mar. Chem. 58, 319–325. doi: 10.1016/S0304-4203(97)00058-3

Murano, E. (1995). Chemical structure and quality of agars from Gracilaria. J. Appl. Phycol. 7, 245–254. doi: 10.1023/B:BF00039999

Navarro, D. A., and Storz, C. A. (2008). The system of xyloglactans from the red seaweed fania rubens (Corallinaceae, Rhodophyta). Carbohydr. Res. 343, 2613–2622. doi: 10.1016/j.carres.2008.06.015

Navarro, D. A., Ricci, A. M., Rodriguez, M. C., and Storz, C. A. (2011). Xyloglactans from Lithothamnion heterocladium, a crustose member of the Corallinales (Rhodophyta). Carbohydr. Polym. 84, 944–951. doi: 10.1016/j.carbpol.2010.12.048

Nguyen, B. T., Nicolai, T., Benyahia, L., and Chassenieux, C. (2014). Synergistic effects of mixed salt on the gelation of κ-carrageenan. Carbohydr. Polym. 112, 10–15. doi: 10.1016/j.carbpol.2014.05.048

Nickerson, M. T., Paulson, A. T., and Hallett, F. R. (2004). Dilute solution properties of κ-carrageenan polysaccharides: effect of potassium and calcium ions on chain conformation. Carbohydr. Polym. 58, 25–33. doi: 10.1016/j.carbpol.2004.06.017

Normand, V., Aymard, P., Lootens, D. L., Amici, E., Plucknett, K., and Frith, W. J. (2003). Effect of sucrose on agarose gel mechanical behaviour. Carbohydr. Polym. 54, 83–95. doi: 10.1016/s0144-8617(03)00153-x

Noseda, M. D., Viana, A. G., Duarte, M. E. R., and Cerezo, A. S. (2000). Alkaliphilic modification of carrageenans. Part IV: Porphyra fronds Model Compounds. Carbohydr. Polym. 42, 301–305. doi: 10.1016/s0952-6634(99)00176-9

Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: Their biosynthesis in plant cells. Biochem. J. 184, 2, 103–117. doi: 10.1042/ij0016-1706%252905121

Pereira, L., and van de Velde, F. (2011). Portuguese carrageenophytes: Carrageenan composition and geographic distribution of eight species (Gigartinales, Rhodophyta). Carbohydr. Polym. 84, 614–623. doi: 10.1016/j.carbpol.2010.12.036

Pérez Recalde, M., Canelon, D. J., Compagnone, R. S., Matulewicz, M. C., Cerezo, A. S., and Manica, M. (2016). Carrageenan and agar structures from the red seaweed Gymnogongrus tenuis. Carbohydr. Polym. 136, 1370–1378. doi: 10.1016/j.carbpol.2015.10.007

Piculell, L., and Nilsson, S. (1989). Anion-specific salt effects in aqueous agarose systems. 1. Effects on the coil-helix transition and gelation of agarose. J. Phys. Chem. 93, 5596–5601. doi: 10.1021/j100351a053

Pomin, V. H. (2009). Overview about the structure–function relationship of marine homopolysaccharides with regular chemical structures. Biopolymers 91, 601–609. doi: 10.1002/bip.21200

Popper, Z. A., Michel, G., Hervé, C., Domozycz, D. S., Willats, W. G., Tuohy, M. G., et al. (2011). Evolution and diversity of plant cell walls: From algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590. doi: 10.1146/annurev-plant-062110-103809

Prado, H. J., Ciancia, M., and Matulewicz, M. C. (2008). Agarans from the red seaweed Porphyra nigrescens (Rhodophyceae, Ceramiales). Carbohydr. Res. 343, 711–718. doi: 10.1016/j.carres.2007.12.024

Rees, D. A. (1961a). Enzymic desulphation of porphyran. Biochem. J. 80, 449–453. doi: 10.1042/bj0800449
Zhang, Y., Fu, X., Duan, D., Xu, J., and Gao, X. (2019). Preparation and characterization of agar, agarose, and agaropectin from the red alga *Ahnfeltia plicata*. *J. Oceanol. Limnol.* 37, 815–824. doi: 10.1007/s00343-019-8129-6

Zhao, Q., Brenner, T., and Matsukawa, S. (2013). Molecular mobility and microscopic structure changes in κ-carrageenan solutions studied by gradient NMR. *Carbohydr. Polym.* 95, 458–464. doi: 10.1016/j.carbpol.2013.02.049

Zhao, X., Jiao, G., Yang, Y., Li, M., Li, Q., Wang, X., et al. (2017). Structure and immunomodulatory activity of a sulfated agarose with pyruvate and xylose substitutes from *Polysiphonia senticulosa* Harvey. *Carbohydr. Polym.* 176, 29–37. doi: 10.1016/j.carbpol.2017.08.065

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ciancia, Matulewicz and Tuvikene. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.