An Indirect Method to Estimate Total Fertility Rate on the Basis of Age Distribution of Women in Reproductive age

Brijesh P. Singh1, Sandeep Singh1 & Aalok Ranjan Chaursia2

1Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi
2MLC Foundation, Bhopal

Abstract
Total fertility rate (TFR) is the universally used indicator to measure and monitor fertility transition and population stabilization. Calculation of TFR requires data on births by age of woman. In the absence of these data, several indirect methods have been proposed to estimate TFR but their application is limited to specific period and place. This paper deduces a simple regression method for estimating TFR based on the current age distribution of women in reproductive age. The method can be used to estimate TFR at local level and for different sub-groups of the population.

Keywords: Total fertility rate; regression; moments; coefficient of variation; stability of model.

Introduction
Fertility is the primary engine of global population change (Gerland et al. 2014). Reduction in fertility is argued to be essential for sustainable development including woman education, child and maternal mortality, gender equality, and reproductive health (Abel et al. 2016). Total fertility rate (TFR) is a completed measure of fertility that is commonly used in demographic and development research. Direct estimation of TFR requires full birth history data (FBH) of women in reproductive age (15-49 years). These data are generally not available at the local level. To overcome this problem, different indirect methods of estimating TFR have been suggested. These include Brass P/F Ratio method (Brass 1975), Own Children method (Cho et al. 1986), and several regression methods (Bogue and Palmore 1964; Palmore 1978; Gunasekaran and Palmore 1984; and Rele 1967 and 1987; Pacheco and Engracia 1985; Rao 1987; Hanenberg 1983). Coale and Demeny (1967) developed a formula (TFR= P_3^2/P_2) to estimate TFR, where P_2 and P_3 are mean number of births to women aged 20-24 and 25-29 years. This method has been modified by Gupta et al. (2014). Mauldin and Ross (1991) and Jain (1997) have used CPR to predict TFR. Singh et al. (2012) modified this method by taking the combination of CPR and sterility as predictor variables. Yadava and Kumar (2002) used proportion of women having open birth interval more than five years for prediction of TFR but this predictor has an error due to recall lapse and digit preference, therefore keeping this error into mind Singh et al. (2020) used the proportion of women having birth in the last five years prior to the date of survey as the predictor variable, as in count variable the chance of such type of error is lesser than the time variable (open birth interval more than five years) as taken by Yadava and Kumar (2002). Tiwari et al. (2020) used counterparts of the predictor variable taken by Singh et al. (2020) to estimate TFR. Singh et al. (2017) have suggested that IMR does not Granger Cause TFR whereas TFR Granger Cause IMR which means TFR can be predicted on the basis of IMR but IMR cannot be predicted on the basis of TFR. However, nearly all these methods are based on variables (mean age at marriage, percent of woman ever married, etc.) that are usually not available from census or survey data so that they are typically limited to areas, time periods, and populations with sufficiently detailed data. In addition, the relationship between...
fertility and social indices can differ over time and over populations, making indirect methods error prone when applied outside the context from which the regression coefficients are derived (Tuchfeld et al. 1974, Hauer et al. 2013, Schmertmann and Hauer 2019).

Palmore (1978) has suggested a method which is a modification of a technique introduced by Bogue and Palmore in 1964. Like Rele’s method (1967), this method also postulates a linear relationship between the child woman ratio, a measure of mortality and TFR. However, unlike Rele’s method, Palmore (1978) method is derived empirically using census and vital registration data from different countries. This method requires more data than Rele’s method, but the data required are usually available from census or surveys. Moreover, instead of using the expectation of life at birth, Palmore (1978) uses IMR as the measure of mortality. It has been observed that Rele’s method tends to under-estimate fertility whereas Palmore (1978) method tends to over-estimate TFR particularly when IMR decreases rapidly. Gunasekaran and Palmore (1984) developed a regression method to estimate gross reproduction rate (GRR) and then TFR by multiplying GRR by 2.05. They used moments of the entire woman age distribution instead of the child woman ratio. Also Smith (1992) and Zhang (2006) observed TFR and the general fertility rate are directly proportional to the crude birth rate, however, Preston and Coale (1982) developed a method for calculating the TFR based on net population reproductivity.

In this paper, we develop a regression method similar to Gunasekaran and Palmore (1984). The advantage of the method being proposed here is that the data pertaining to the age distribution of currently married reproductive age women can be culled out from the records maintained by the grassroots level health and family welfare services providers. As such, the method can be used for estimating TFR even at the grassroots level which, then, can become the basis for planning for the delivery of family welfare services and monitoring fertility transition at the grassroots level. This is important as reliable demographic data for small domains are essential for meaningful local level population planning. Estimation of demographic indicators at the grassroots level is based on the civil registration data. Although, registration of births in India is compulsory under the Birth and Death Registration Act of 1969, yet registration under the civil registration system in India grossly incomplete to calculate fertility indicators including TFR. Annual estimates of TFR in India are available through the Sample Registration System (SRS) but the system provides estimates up to state level only and that too for major states. The only source of data to estimate TFR at the district level is the summary birth history (SBH) data available through decennial population census. Using these data, estimates of TFR have been calculated at the district level (Bhat, 1996; Drèze and Murthi, 2001; Satyanarayana and Kumar, 2012; Guilmoto and Rajan, 2013; Ponnapalli and Soren, 2018). These estimates, however, are available at an interval of 10 years only (Natarajan and Singh 1988; Natarajan and Puri 1988; RGI, 1997, 2011).

Development of the Model

The model proposed for estimating TFR is based on establishing an empirical relationship between TFR and the age distribution of currently married women in the reproductive age group. The age distribution of currently married reproductive age women can be characterised in terms of the first four moments of the age distribution. In the present paper, we have attempted to establish empirical relationship between TFR and coefficient of variation (CV), involving first and second moments; skewness (Sk), involving third and second moments; and kurtosis (Ku), involving fourth and second moments. Using these three indicators the following seven models depicting the relationship between TFR and the age distribution of currently married reproductive age women can be conceptualized:
In order to test the cross-validity predictive power of these models, we have used the method proposed by Herzberg (1969). The cross-validity prediction power of the model is calculated as

\[\rho_v^2 = 1 - \frac{(n^2 - 1)(n-2)(1-c^2)}{n(n-p-1)(n-p-2)} \]

Where \(n \) is the number of observations, \(p \) is the number of explanatory or independent variables in the model and \(c \) is the correlation coefficient between predicted and observed value of the dependent variable or TFR. Moreover, standard adjustment has been made in the coefficient of determination to compensate for the subjective effects of further sampling. We have also estimated shrinkage which is the reduction in the effects of sampling variation. It is well known in the regression analysis that a fitted relationship performs less well on a new data set than on the data set that is used for fitting (Everitt, 2002) so that the value of the coefficient of determination, particularly, ‘shrinks’. Shrinkage is separate from the standard adjustment made in the coefficient of determination. The shrinkage of the model is estimated by the following formula:

\[\text{Shrinkage} = | \rho_v^2 - r^2 | \]

where \(r^2 \) is the coefficient of determination. Finally, we have also calculated the stability of the model which is equal to \((1-\text{Shrinkage})\) which implies that the lower the shrinkage the more stable the model.

Source of Data

In order to examine the empirical relationship between TFR and the age distribution of currently married reproductive age women, we have used data available from the fourth round of the National Family Health Survey (NFHS) which was conducted during 2015-16. The National Family Health Survey Programme was launched by the Government of India, Ministry of Health and Family Welfare in the 1990s to generate population-based data to monitor and evaluate the family planning and reproductive and child health programmes at national and state levels.

Table 1. Statistical Moments of Age Distribution of Women in India and Major States NFHS-4

State	Mean (\(\mu'_i \))	\(\mu_2 \)	\(\mu_3 \)	\(\mu_4 \)	\(N \)
Andhra Pradesh	31.29	94.09	118.65	16643.50	10428
Bihar	28.69	94.67	350.04	18194.80	45812
Chhattisgarh	29.60	97.81	319.23	18751.73	25172
Gujarat	30.42	95.06	157.57	16898.96	22932
Haryana	29.76	90.82	285.62	16496.87	21654
Jharkhand	29.14	92.74	312.57	17286.27	29046
Karnataka	30.63	92.16	150.41	16222.52	26291
Kerala	32.16	99.20	-19.76	17910.54	11033
The NFHS has been expanded to generate district level data in the fourth round. The first four moments of the age distribution of currently married reproductive age women in India and in its different states are presented in table 1. It is evident from the table that the age distribution of currently married reproductive age women varies widely across states. Notably, there is only one state, Kerala, where the third moment of the age distribution of reproductive age women is negative in rest of the states, it is positive. On the other hand, the age curve is platykurtic in all states as well as in the country. Table 1 reveals that the statistical moments of the age distribution of women in reproductive age in India and some major states for NFHS-4 data. In southern states the mean age is higher than the northern and other states.

Table 2. Regression Models, \(r^2 \) (Coefficient of Determination), Adjusted \(r^2 \) and Standard Error

Model	Mathematical form	\(r^2 \)	Adjusted \(r^2 \)	Standard error
1	TFR =44.708\((CV^-)^2\)-3.699\((Sk^-)^2\)+7.724\((Ku^-)^3\)-3.149	0.900	0.870	0.181
2	TFR =31.885\((CV^-)^2\)+0.759\((Sk)^2\)-8.352	0.797	0.760	0.246
3	TFR =28.937\((CV^-)^2\)+2.768\((Ku)^3\)-4.247	0.854	0.817	0.215
4	TFR =2.191\((Sk^2)+2.402\((Ku)^3\)+4.181	0.653	0.590	0.322
5	TFR=38.717\((CV^-)^2\)-10.381	0.787	0.769	0.241
6	TFR =3.624\((Ku^-)^3\)+1.350	0.640	0.610	0.313
7	TFR =6.559\((Ku^-)^3\)+9.157	0.609	0.576	0.327

*p<0.05, **=p<0.01, ***=p<0.001

Coefficient of variation \((CV) = \frac{\mu_1}{\mu_2} \), Skewness \((Sk) = \frac{\mu_3}{\mu_2^{3/2}} \) and Kurtosis \((Ku) = \frac{\mu_4}{\mu_2^{2}} - 3 \)

Table 3. Correlation between Observed and Predicted Value of TFR (\(r^2 \))

Model	\(c^2 \)	RMSE	\(\rho_{c}^2 \)	Shrinkage of \(r^2 \)	Stability of \(r^2 \)
1	0.928	0.170	0.788	0.112	0.888
2	0.868	0.222	0.708	0.089	0.911
3	0.900	0.197	0.775	0.079	0.921
4	0.796	0.268	0.566	0.087	0.913
5	0.881	0.228	0.733	0.057	0.943
6	0.783	0.306	0.541	0.099	0.901
7	0.770	0.277	0.518	0.092	0.908
Results and Discussion
Table 2 shows the relationship between TFR and different indicators characterizing the age distribution of currently married reproductive age women. In all models, the regression coefficients are statistically significant but the coefficient of determination is the highest in Model 1. The standard error of \(r^2 \) is also the lowest in Model 1. On the other hand, Table 3 presents the correlation between observed and predicted values of TFR (\(c^2 \)), root mean square error (RMSE), Cross-validity prediction power \(\rho^2 \) and stability of \(r^2 \) for different

Table 4. Observed and Predicted TFR through Various Regression Models for Some Major States of India NFHS-4

States	Observ ed TFR	Estimated TFR by	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6	Model 7							
			estima te	% Diff.												
Andhra Pradesh	1.83		1.58	13.72	1.63	10.87	1.62	11.29	1.78	2.97	1.62	11.40	1.82	0.49	1.81	1.04
Bihar	3.41		3.12	8.64	2.75	19.36	2.88	15.49	2.68	21.30	2.75	19.37	2.73	20.03	2.79	18.04
Chhattisgarh	2.23		2.54	13.69	2.55	14.44	2.54	14.02	2.41	7.89	2.56	14.58	2.55	14.17	2.34	4.74
Gujarat	2.03		1.82	10.17	2.00	1.65	1.90	6.41	1.84	9.40	2.03	0.08	1.97	3.15	1.75	14.02
Haryana	2.05		2.22	-8.44	2.11	-2.88	2.25	-9.83	2.50	22.05	2.02	1.60	2.55	24.19	2.60	26.73
Jharkhand	2.55		2.68	-5.27	2.45	3.89	2.58	-1.00	2.57	-0.78	2.41	5.34	2.62	-2.68	2.66	-4.45
Karnataka	1.80		1.82	-0.85	1.77	1.65	1.81	-0.29	1.94	-7.52	1.75	2.58	1.97	-9.23	2.01	-11.54
Kerala	1.56		1.66	-6.20	1.51	3.36	1.45	7.14	1.30	16.49	1.61	-3.19	1.28	18.11	1.42	9.14
Madhya Pradesh	2.32		2.33	-0.31	2.50	-7.80	2.43	-4.62	2.29	1.29	2.51	-8.26	2.47	-6.61	2.14	7.81
Maharashtra	1.87		2.03	-8.38	2.15	-15.20	2.06	-9.99	1.91	-1.98	2.20	-17.72	2.04	-9.01	1.81	3.16
Odisha	2.05		2.00	2.57	2.18	-6.35	2.09	-1.83	2.00	2.60	2.21	-7.57	2.15	-4.75	1.88	8.46
Punjab	1.62		1.76	-8.53	1.64	-1.27	1.72	-6.30	1.94	19.59	1.61	0.91	1.93	19.13	2.07	27.98
Rajasthan	2.40		2.50	-4.06	2.52	-4.86	2.55	-6.06	2.52	-4.99	2.48	-3.53	2.65	-10.61	2.47	-2.78
Tamil Nadu	1.70		1.77	-3.89	1.65	2.95	1.65	3.10	1.64	3.41	1.69	0.57	1.64	3.53	1.75	-2.67
Telangana	1.78		1.67	6.37	1.83	-2.58	1.86	-4.27	2.16	21.27	1.75	1.83	2.26	26.74	2.14	20.16
Uttarakhnd	2.07		2.38	15.02	2.45	18.36	2.42	16.70	2.29	10.73	2.46	18.80	2.44	17.74	2.20	-6.50
Uttarakhnd	2.74		2.90	-5.82	2.92	-6.51	2.90	-5.95	2.65	3.16	2.93	-6.80	2.84	-3.50	2.53	7.58
West Bengal	1.77		1.67	5.84	1.83	-3.16	1.86	-4.86	2.16	21.96	1.75	1.28	2.26	27.46	2.14	20.84
INDIA	2.18		2.22	-1.63	2.29	-4.83	2.26	-3.63	2.20	-1.03	2.29	-4.90	2.33	-6.81	2.14	1.89

Model 1 and also the root mean square error (RMSE) is the lowest for model 1. Cross validity prediction power \(\rho^2 \) also suggests that Model 1 is the most powerful among the seven models. However, the shrinkage is the lowest in Model 5 whereas its stability is high in all the seven models. Model 1 shows highest \(r^2 \) and \(\rho^2 \) but the lowest RMSE and shrinkage of the model is high so that its stability is quite low. Ranking all the
seven models in terms of five parameters r^2, RMSE, ρ^2, shrinkage of r^2 and stability of r^2 the mean rank score has been found to be the lowest in case of Model 5 which means that Model 5 best estimates TFR among the seven models. A comparison of the observed and estimated values of TFR based on different models is given in Table 4. The predicted value of TFR is close to the observed values in case of all models. The percent difference between observed and estimated TFR is also shown in the table. For model 1, 2, 3, 4, 6 and 7, more than half of the states show over estimation in TFR and for Model 5, only 8 states show over estimation. An interesting result from the Table 4 is that all models provide under-estimated TFR for Bihar and over-estimated TFR for Uttarakhand. The possible reason may be the variability in the age distribution of currently married reproductive age women in the two states.

Validation of Model 5

We have used Model 5 to estimate TFR at district level on the basis of the data available from NFHS-4. Moreover, we have also compared TFR estimates for the districts of Uttar Pradesh obtained from Model 5 with the estimates obtained by Jayachandran and Ram (2019) using the tfr2 SATA module (Schoumaker, 2013) using the data from NFHS-4 and shown in Table 5. It is interesting that there is a good agreement in the results that in 27 districts the difference is less than 10 percent in TFRs. 19 districts have differences in TFRs between 10-20 percent and 12 districts between 20-30 percent. Rest in 11 districts, the TFR differs more than 30 percent. Maximum differences observed in Lucknow, Kanpur Nagar, Rai Bareli, Pratapgarh, Bahraich, Shrawasti and Mahoba. In the appendix estimate of TFR and its standard error (SE) for all districts of India is provided. These estimates may be helpful for programme makers for future planning of intervention programme.

Conclusion

The simple method proposed in this paper, involving first and second moments of the age distribution of currently married reproductive age women, provides fairly reliable estimate of TFR. Data pertaining to the age of currently married reproductive age women is regular collected and maintained at the grassroots level by the health care services providers. This means that the paper proposed can be used to estimate TFR at the grass roots level. This will help measuring and monitoring fertility transition at the local level, the interface with the people.

Table 5. Comparison of TFR in Uttar Pradesh

Districts	Estimated TFR Jaychandran & Ram (2019)	Estimated TFR Model 5	Absolute Percent difference
Kanpur Dehat	2.54	2.53	0.29
Chitrakoot	3.36	3.38	0.61
Bulandshahar	2.92	2.94	0.71
Etah	3.02	2.99	0.94
Saharanpur	2.72	2.69	1.13
Aligarh	2.85	2.90	1.83
Kaushambi	3.27	3.37	3.21
Basti	3.01	3.12	3.59
Kannauj	3.06	2.94	3.96
Lalitpur	2.31	2.40	4.08
Agra	2.80	2.92	4.34
Sant Ravidas	3.00	2.87	4.38
Nagar	Value1	Value2	Value3
--------------------	--------	--------	--------
Chandauli	2.75	2.89	5.11
Barabanki	2.60	2.76	6.17
Sant Kabir Nagar	3.05	3.24	6.33
Mirzapur	2.91	2.72	6.69
Hardoi	3.03	2.81	7.39
Pilibhit	2.73	2.95	8.15
Auraiya	2.60	2.38	8.28
Banda	2.67	2.89	8.39
Moradabad	2.95	3.20	8.47
Rampur	2.94	3.19	8.55
Juanpur	2.72	2.95	8.61
Ghaziabad	2.42	2.64	8.97
Siddhartha Nagar	3.41	3.08	9.59
Sonbhadra	2.83	2.55	9.88
JP Nagar	2.95	3.24	9.96
Farrukhabad	3.24	2.90	10.64
Gonda	3.31	2.96	10.71
Muzaffarnagar	3.10	2.74	11.56
Mathura	2.88	3.22	11.66
Kushinagar	3.00	3.37	12.36
Allahabad	2.46	2.78	12.85
Bijnor	2.74	3.09	12.92
Ballia	2.84	3.23	13.62
Shahjanpur	3.48	2.99	14.02
Etawah	2.51	2.87	14.46
Unnao	2.74	3.14	14.77
Ghazipur	2.80	3.22	14.96
Budaun	3.73	3.12	16.32
Mahraiganj	2.82	3.29	16.61
Firozabad	2.78	3.26	17.10
Varanasi	2.22	2.60	17.29
Meerut	2.27	2.72	19.86
Mainpuri	2.69	3.23	19.92
Balrampur	3.38	2.71	19.94
Sitapur	3.32	2.62	21.02
Gautam Buddha Nagar	2.61	2.06	21.21
Kheri	3.38	2.62	22.44
Faizabad	2.63	3.25	23.74
Mau	2.66	3.30	24.20
Deoria	2.43	3.02	24.34
Fatehpur	2.32	2.90	24.95
Sultanpur	2.74	3.42	24.97
Gorakhpur	2.38	2.98	25.04
Hamirpur	2.34	2.93	25.25
Jalaun	2.00	2.56	27.80
Ambedkar Nagar	2.36	3.07	29.99
Azamgarh	2.45	3.19	30.04
Jhansi	2.05	2.67	30.39
Baghapat	2.24	2.92	30.41
Bareilly	2.52	3.34	32.68
Pratapgarh	2.30	3.15	37.10
Rae Bareli	2.48	3.43	38.19
Kanpur Nagar	1.64	2.32	41.73
Mahoba	2.43	3.51	44.27
Bahraich	4.22	2.22	47.51
Lucknow	1.58	2.33	47.69
References

1. Abel, G. J., Barakat, B., Samir, K. C., & Lutz, W. (2016). Meeting the Sustainable Development Goals leads to lower world population growth. Proceedings of the National Academy of Sciences, 113(50), 14294-14299.

2. Bhat P. N.M., (1996). Contours of fertility decline in India: A district level study based on the1991 Census,” in K Srinivasan (ed.), Population Policy and Reproductive Health, New Delhi: Hindustan Publishing Corporation.

3. Bogue, D. J., & Palmore, J. A. (1964). Some empirical and analytic relations among demographic fertility measures, with regression models for fertility estimation. Demography, 1(1), 316-338.

4. Brass, W. (1968). Methods of analysis and estimation. The Demography of Tropical Africa. Edited by W. Brass et al., Princeton University Press, Princeton.

5. Cho, L. J., Retherford, R. D., & Choe, M. K. (1986). The own-children method of fertility estimation. Honolulu, HI: Population Institute.

6. Coale, A., & Demeny, P. (1967). Methods of estimating basic demographic measures from incomplete data, manuals on methods of estimating population, Manual 4, New York: United Nations, Department of Economics and Social Affairs.

7. Drèze, Jean and Murthi, Mamta, (2001). Fertility, Education, and Development: Evidence from India, Population and Development Review, 27(1): 33-63.

8. Everitt, B.S. (2002). Cambridge Dictionary of Statistics, 2nd Edition. OUP.

9. Gerland, P., Raftery, A. E., Sevˇcková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B. K., Chunn, J. & Lalic, N. (2014). World population stabilization unlikely this century. Science, 346(6206), 234-237.

10. Guilmoto, Christophe Z and Rajan, S. Irudaya, (2013) Fertility at the district level in India, Economic and Political Weekly, 48(23): 59-70.

11. Gunasekaran, S., & Palmore, J. A. (1984). Regression estimates of the gross reproduction rate using moments of the female age distribution. Asian and Pacific Census Forum, 10(4), 5-10.

12. Gupta, K., Singh, Brijesh P., & Singh, K. K. (2014). Estimation of total fertility rates in India using indirect techniques. Journal of National Academy of Mathematics, 28, 21-28.

13. Hanenberg, R. (1983). Estimates of the total fertility rate based on the child-woman ratio. Asian and Pacific Census Forum. 10(2), 5-11.

14. Hauer, M., Baker, J. & Brown, W. (2013). Indirect estimates of total fertility rate using child woman ratio: A comparison with the Bogue-Palmore method. PloSOne8(6), e67226.

15. Herzberg, P. A. (1969). The parameters of cross validation. Psychometrika Monograph Supplement, 16, 34(2), 1-70.

16. International Institute for Population Sciences (IIPS) and ICF, (2017). National Family Health Survey (NFHS-4), 2015-16: India. Mumbai: IIPS.

17. Jain, A. (1997). Consistency between contraceptive use and fertility in India. Demography India, 26(1),19-36.

18. Jayachandran A. A. & F. Ram (2019). Estimation of District Level TFR of Eight EAG States and Assam from NFHS-4, 2015-16. Demography India Vol. 48, No. 1, pp. 63-73.

19. Mauldin, W. P., & Ross J. A. (1991). Family planning programmes: Efforts and Results, 1982-1989. Studies in family planning, 22(6), 350-367.

20. Natarajan, K. S., & Singh, P. (1988). Fertility in India: An analysis of 1981 census data. Occasional Paper No. 13 of 1988. New Delhi: Demography Division, Office of the Registrar General, India.

21. Natarajan, K. S., & Puri, R. K. (1988). Child mortality estimates of India. Occasional Papers No.5 of 1988. New Delhi: Demography Division, Office of the Registrar General, India.
[19] Office of Registrar General, India. (2011). Annual Health Survey (AHS) in 8 EAG States and Assam—Release of AHS Bulletin: 2010-11, Press Release, Ministry of Home Affairs, New Delhi. www.censusindia.gov.in/vital_statistics/AHSBulletins/files/AHSpr.pdf.

[20] Pacheco, Antonio R., & Luisa, T. Engracia. (1985). Indirect estimates of fertility for small geographic areas in the Philippines. United Nations Economic and Social Commission for Asia and the Pacific, Bangkok. Asian Population Studies Series. No. 62 - D. New York: United Nations.

[21] Palmore, J. A. (1978). Regression estimates of changes in fertility 1955-60 to 1965-75, for most major nations and territories. Papers of the East-West Population Institute. No.58. Honolulu: East-West Center.

[22] Ponnapalli, K.M. and Soren, R.K., (2018). Indirect Estimation of Selected Measures of Fertility and Marital Fertility from Information on CWR (0-9): An Application to India/States/Districts”, Momona Ethiopian Journal of Science, 10 (1): 89 - 108.

[23] Preston, S.H. & Coale, A.J. (1982). Age structure, growth, attrition and accession: A new synthesis. Population Index, 48(2), 217-259.

[24] Rao, N. Rama, Rele, J. R., & Palmore, J. A. (1987). Regression estimates of fertility for India, 1971 and 1981. Occasional Paper No.3 of 1987. Delhi: Office of the Registrar General and Census Commissioner.

[25] Registrar General of India, 1997, District level estimates of fertility and child mortality for1991 and their interrelations with other variables, Occasional paper No 1 of 1997, New Delhi: Controller of Publications.

[26] Rele, J. R. (1967). Fertility analysis through extension of stable population concepts. Berkeley: Institute of International Studies, University of California. (Ph.D. dissertation).

[27] Rele, J. R. (1987). Fertility levels and trends in India, 1951-1981. Population and Development Review, 13(3), 513-530.

[28] Satyanarayana, K.M. and Kumar, Sanjay, (2012). District-level estimates of fertility and implied sex ratio at birth in India, Economic and Political Weekly, 47(33): 66-72.

[29] Schmertmann, C. P. & Hauer, M. E. (2019). Bayesian estimation of total fertility from a population’s age-sex structure. Statistical Modelling, 19(3), 225-247.

[30] Schoumaker, Bruno, (2013). A State module for computing fertility rates and TFRs from birth histories: tfr2, Demographic Research, 28(38): 1093-1144.

[31] Singh, Brijesh P., Dixit, S., & Singh, S. (2017). Does infant mortality regulate fertility behaviour of women in Uttar Pradesh? A causality test analysis. Demography India, 46(1), 38-47.

[32] Singh, Brijesh P., Singh, N., & Singh, S. (2020). Estimation of total fertility rate: an indirect approach using auxiliary information. Journal of the Social Sciences, 48(3), 789-798.

[33] Singh, K. K., Singh, Brijesh P., &Gupta, K. (2012). Estimation of total fertility rate and birth averted due to contraception: regression approach. International Journal of Statistics and Applications, 2(5), 47-55.

[34] Smith, D.P. (1992). Formal Demography: Springer US.

[35] Tiwari, A. K., Singh, Brijesh. P., & Patel, V. (2020). Retrospective study of investigation of possible predictors for total fertility rate in India. Journal of Scientific Research and Reports, 26(9), 111-119.

[36] Tuchfeld, B. S., Guess, L. L. & Hastings, D. W. (1974). The Bogue-Palmore technique for estimating direct fertility measures from indirect indicators as applied to Tennesseecounties, 1960 and 1970. Demography, 11(2), 195-205.

[37] Yadava, R. C., & Kumar, A. (2002). On an indirect estimation of total fertility rate from open birth interval. Demography India, 31(2), 211-222.

[38] Zhang, Q. (2006). Estimation and analysis on total fertility rate (in Chinese). Chinese Journal of Population Science, (4), 35-42.
Appendix

Table 6. Estimated TFR for all districts of India and Standard Error (SE) using Model 5

States	Districts	Estimated TFR	SE
India	**Total**	2.29	0.071
Andaman and Nicobar Islands	**Nicobars**	1.44	0.116
	North & Middle Andaman	1.77	0.079
	South Andaman	1.30	0.134
	Total	1.51	0.107
Andhra Pradesh	**Srikakulam**	1.69	0.088
	Vizianagaram	1.64	0.093
	Visakhapatnam	1.65	0.091
	East Godavari	1.58	0.099
	West Godavari	1.65	0.091
	Krishna	1.70	0.086
	Guntur	1.43	0.117
	Prakasam	1.96	0.067
	Sri Potti Srinamulu Nellore	1.94	0.068
	Y.S.R.	1.54	0.103
	Kurnool	1.54	0.104
	Anantapur	1.10	0.161
	Chittoor	1.53	0.105
	Total	1.62	0.095
Arunachal Pradesh	**Tawang**	1.78	0.079
	West Kameng	1.71	0.085
	East Kameng	2.16	0.065
	Papumpare	1.87	0.072
	Upper Subansri	1.89	0.071
	West Siang	1.64	0.092
	East Siang	1.35	0.127
	Upper Siang	1.74	0.083
	Changlang	1.76	0.081
	Tirap	1.95	0.068
	Lower Subansri	1.80	0.077
	Kurung Kumey	1.97	0.067
	Dibang Valley	1.70	0.087
	Lower Dibang Valley	1.76	0.081
	Lohit	2.28	0.071
	Anjaw	1.53	0.105
	Total	1.87	0.072
Assam	**Kokrajhar**	2.04	0.065
	Dhubri	2.10	0.064
	Goalpara	2.17	0.066
	Barpeta	2.53	0.093
	Morigaon	2.53	0.093
	Nagaon	2.43	0.083
	Sonitpur	1.93	0.068
	Lakhimpur	1.92	0.069
	Dhemaji	2.08	0.064
	Tinsukia	2.10	0.064
	Dibrugarh	1.82	0.073
	Sivasagar	1.55	0.103
	Jorhat	2.12	0.065
	Golaghat	1.91	0.070
	Karbi Anglong	1.61	0.095
	Dima Hasao	1.65	0.091
	Cachar	2.21	0.067
	Karimganj	2.32	0.073
	Hailakandi	2.65	0.107
	Bongaigaon	2.00	0.066
	Chirang	1.72	0.084
	Kamrup	1.65	0.092
	Kamrup Metropolitan	1.31	0.133
	Nalbari	2.04	0.065
	Baksa	1.49	0.110
	Darrang	2.89	0.137
	Udalguri	2.01	0.065
District	Population	Error	
-------------------	------------	-------	
Bihar			
Pashchim Champaran	2.05	0.065	
Purba Champaran	2.53	0.093	
Sheohar	3.03	0.156	
Sitamarhi	3.03	0.156	
Madhubani	2.12	0.065	
Supaul	2.54	0.094	
Arara	2.57	0.098	
Kishanganj	2.93	0.142	
Purnia	2.63	0.104	
Katihar	2.22	0.086	
Madhepura	2.19	0.066	
Saharsa	2.91	0.139	
Darbhanga	2.59	0.100	
Muzaaffarpur	3.07	0.162	
Gopalganj	2.69	0.112	
Siwan	2.58	0.099	
Satran	2.71	0.114	
Vaishali	2.41	0.081	
Samastipur	2.70	0.114	
Begusarai	3.09	0.164	
Khagarra	2.46	0.086	
Bhagalpur	2.66	0.108	
Banka	2.56	0.096	
Munger	2.89	0.137	
Lakhsarai	2.76	0.120	
Shikhpura	2.82	0.128	
Nalanda	2.66	0.109	
Patna	2.58	0.098	
Bhoopur	3.27	0.190	
Buxar	2.66	0.108	
Kaimur (Bhabua)	2.67	0.109	
Rohtas	2.96	0.147	
Aurangabad	3.00	0.153	
Gaya	3.17	0.176	
Nawada	3.22	0.182	
Jamui	2.78	0.123	
Jehanabad	2.96	0.146	
Arwal	3.06	0.160	
Total	2.74	0.118	
Chandigarh			
Chandigarh	1.80	0.077	
Total	1.80	0.077	
Chhattisgarh			
Korea (Korriya)	2.26	0.070	
Surguja	2.29	0.071	
Jashpur	1.89	0.071	
Raigarh	2.42	0.082	
Korba	2.58	0.098	
Jangipur - Champa	3.29	0.193	
Bilaspur	2.79	0.124	
Kabirdham	3.19	0.178	
Rajnandgaon	2.70	0.113	
Durg	2.48	0.088	
Raipur	2.51	0.090	
Mahasamund	2.84	0.131	
Dhamtari	2.78	0.123	
Uttar Bastar Kanker	2.55	0.095	
Bastar	2.05	0.065	
Narayanapur	2.49	0.089	
Dakshin Bastar Dantewada	2.06	0.064	
Bijapur	2.63	0.105	
Total	2.56	0.096	
Dadra and Nagar Haveli			
Dadra & Nagar Haveli	1.83	0.075	
Total	1.83	0.075	
Daman and Diu			
Daman	1.08	0.164	
Total	1.78	0.079	
Goa			
North Goa	1.36	0.126	
South Goa	1.72	0.084	
Total	1.53	0.105	
Gujarat			
Kachchh	2.21	0.067	
District	Value	Standard Deviation	
---------------	-------	--------------------	
Banaskantha	2.77	0.121	
Patan	1.94	0.068	
Mahesana	2.10	0.064	
Sabarkantha	2.46	0.086	
Gandhinagar	1.60	0.097	
Ahmadabad	1.68	0.088	
Surendranagar	2.11	0.065	
Rajkot	1.49	0.110	
Jannagar	1.61	0.096	
Porbandar	1.83	0.075	
Junagadh	1.98	0.066	
Amreli	2.04	0.065	
Bhavnagar	2.16	0.065	
Anand	1.96	0.067	
Kheda	2.21	0.067	
Panchmahal	2.06	0.065	
Dohad	2.46	0.086	
Vadodara	2.04	0.063	
Narmada	2.26	0.070	
Bharuch	1.93	0.068	
The Dangs	2.29	0.072	
Navsari	1.55	0.102	
Valsad	1.72	0.084	
Surat	1.46	0.113	
Tap	2.03	0.063	
Total	2.02	0.065	
Panchkula	1.44	0.116	
Ambala	1.88	0.071	
Yamunanagar	1.87	0.072	
Kurukshetra	1.74	0.083	
Kaithal	1.94	0.068	
Karnal	1.71	0.085	
Panipat	1.40	0.121	
Sonipat	1.92	0.069	
Jind	2.00	0.066	
Fatehabad	1.94	0.068	
Sirsa	1.81	0.077	
Hisar	2.44	0.084	
Bhawani	2.47	0.087	
Rohtak	2.08	0.084	
Jhajjar	1.55	0.103	
Mahendragarh	2.58	0.099	
Rewari	1.88	0.071	
Gurgaon	1.17	0.152	
Mewat	3.03	0.156	
Faridabad	2.37	0.077	
Palwal	2.43	0.083	
Total	2.02	0.065	
Chamba	2.06	0.065	
Kangra	0.99	0.176	
Lahul and Spti	0.65	0.225	
Kullu	1.66	0.090	
Mandi	1.14	0.155	
Hamirpur	1.57	0.100	
Ura	1.62	0.095	
Bilaspur	1.16	0.153	
Solan	1.26	0.140	
Sirmaur	1.90	0.070	
Shimla	1.21	0.146	
Kinnaur	1.52	0.106	
Total	1.46	0.114	
Kupwara	2.10	0.064	
Badgam	1.99	0.066	
Leh	0.67	0.222	
Kargil	1.91	0.069	
Punch	2.93	0.149	
Rajouri	2.38	0.078	
Kutha	2.17	0.066	
Baramula	1.96	0.067	
Bandipore	2.19	0.066	
Srinagar	1.08	0.164	
District	Mean	SD	
----------------	------	-----	
Jharkhand			
Ganderbal	1.78	0.079	
Pulwama	1.24	0.142	
Shuppiyan	1.96	0.067	
Anantnag	1.70	0.086	
Kulgam	2.47	0.087	
Doda	2.45	0.085	
Ramban	2.29	0.071	
Kshithwar	2.16	0.065	
Udhampur	2.21	0.067	
Reasi	2.38	0.078	
Jammu	1.53	0.105	
Samba	1.31	0.132	
Total	2.03	0.065	
Garhwa	2.88	0.136	
Chatra	2.20	0.067	
Kodarma	2.47	0.087	
Giridih	2.57	0.098	
Deoghar	1.74	0.083	
Godda	2.06	0.085	
Sahubganj	2.26	0.070	
Pakur	2.80	0.126	
Dhanbad	2.38	0.079	
Bokaro	2.68	0.110	
Lohardaga	2.91	0.140	
Purbi Singhbhum	1.69	0.087	
Palamu	2.55	0.096	
Latehar	2.53	0.093	
Hazaribagh	2.69	0.112	
Ramgarh	2.52	0.092	
Dumka	1.91	0.069	
Jamtara	2.41	0.081	
Ranchi	2.46	0.086	
Khunti	2.40	0.080	
Gumla	2.88	0.136	
Simdega	1.94	0.068	
Pashichhima Singhbhum	2.30	0.072	
Saraikela Kharsawan	2.42	0.082	
Total	2.42	0.082	
Karnataka			
Belgaum	1.71	0.086	
Bagalkot	2.30	0.072	
Bijapur	1.39	0.122	
Bidar	2.58	0.098	
Raichur	1.76	0.081	
Koppal	1.89	0.071	
Gidag	2.18	0.066	
Dharwad	1.67	0.080	
Uttar Kannada	1.75	0.083	
Haveri	1.68	0.088	
Bellary	1.74	0.083	
Chitradurga	1.92	0.069	
Davanagere	1.87	0.072	
Shimoga	1.44	0.115	
Udupi	1.47	0.113	
Chikmagalur	1.69	0.087	
Tumkur	1.15	0.154	
Bangalore	0.91	0.187	
Mandya	1.58	0.099	
Hassan	1.15	0.154	
Dakshina Kannada	1.49	0.109	
Kodagu	1.56	0.101	
Mysore	1.48	0.112	
Chamarajanagar	1.63	0.094	
Gulbarga	1.87	0.072	
Yadgir	2.27	0.071	
Kolar	1.90	0.070	
Chikkaballapur	1.65	0.092	
Bangalore Rural	1.75	0.082	
Ramanagaram	1.50	0.108	
Total	1.76	0.081	
Kerala			
Kasaragod	1.34	0.129	
Kannur	1.43	0.118	
District	Mean	SD	
---------------	------	-----	
Wayanad	1.78	0.078	
Kozhikode	2.03	0.065	
Malappuram	2.02	0.065	
Palakkad	1.75	0.081	
Thrissur	1.72	0.084	
Ernakulam	1.79	0.078	
Idukki	1.66	0.091	
Kottayam	1.58	0.099	
Alappuzha	1.39	0.122	
Pathanamthitta	1.02	0.173	
Kollam	0.93	0.184	
Thruvananthapuram	1.84	0.101	
Total	**1.61**	**0.096**	

District	Mean	SD
Lakshadweep	1.08	0.164

District	Mean	SD
Sheopur	2.71	0.114
Morena	2.44	0.084
Bhind	2.28	0.071
Gwalior	2.55	0.096
Data	2.31	0.073
Shivpur	2.67	0.109
Tikamgarh	2.28	0.071
Chhatarpur	2.80	0.126
Panna	3.01	0.153
Sagar	2.43	0.083
Darnoh	2.63	0.104
Satna	2.85	0.131
Rewa	3.10	0.165
Umaria	2.68	0.110
Neemuch	2.02	0.065
Mandsaur	1.84	0.074
Katlam	1.98	0.066
Ujjain	2.14	0.065
Shahapur	2.16	0.065
Dewas	2.23	0.068
Dhar	2.16	0.065
Indore	1.86	0.072
Khargone (West Nimar)	3.31	0.196
Barwani	2.92	0.142
Raigarh	2.61	0.102
Vidisha	2.36	0.077
Bhopal	2.34	0.075
Sehoore	2.59	0.100
Raisen	2.60	0.101
Betul	2.65	0.107
Harda	2.58	0.099
Hoshangabad	2.60	0.101
Katni	2.82	0.128
Jabalpur	2.22	0.068
Naraimhapur	2.00	0.066
Dondori	2.40	0.080
Mandla	2.03	0.065
Chhindwara	2.34	0.095
Seoni	2.69	0.111
Balaghat	2.31	0.073
Guna	2.75	0.119
Ashoknagar	2.60	0.101
Shahdol	2.41	0.081
Anuppur	2.73	0.117
Sirdhi	2.88	0.136
Singrauli	3.03	0.157
Jhabua	2.29	0.072
Alirapur	3.05	0.159
Khandwa (East Nimar)	2.91	0.139
Burhanpur	2.65	0.106
Total	**2.51**	**0.091**

District	Mean	SD
Nandurbar	2.16	0.086
Dhule	2.30	0.072
Jalgaon	1.96	0.067
Buldana	1.99	0.066
Akola	2.62	0.103

District	Mean	SD
Madhya Pradesh		
Lakshadweep	1.08	0.164

District	Mean	SD
Maharashtra		
Lakshadweep	1.08	0.164

Brijesh P. Singh, IJSRM Volume 09 Issue 01 January 2021 [www.ijsrm.in] M-2021-309
City	Value	Standard Deviation
Washim	1.97	0.066
Amravati	1.95	0.067
Wardha	1.73	0.083
Nagpur	1.77	0.080
Bhandara	1.99	0.066
Gondiya	1.58	0.099
Gadchiroli	2.20	0.067
Chandrapur	1.61	0.095
Yavatmal	1.88	0.071
Nanded	1.82	0.076
Hingoli	2.09	0.064
Parbhani	1.93	0.066
Jalna	2.13	0.085
Aurangabad	1.79	0.078
Nashik	2.11	0.065
Thane	2.08	0.064
Mumbai Suburban	2.02	0.065
Mumbai	2.11	0.065
Raigarh	1.73	0.084
Pune	1.53	0.105
Ahmadnagar	1.44	0.116
Bid	1.93	0.068
Latur	2.44	0.084
Osmanabad	2.08	0.064
Solapur	1.99	0.066
Satara	1.96	0.067
Rainagiri	1.73	0.083
Sindhudurg	1.70	0.086
Kolhapur	1.52	0.106
Sangli	1.55	0.103
Total	1.97	0.067

Manipur

City	Value	Standard Deviation
Senapati	2.15	0.065
Tameienglong	1.62	0.095
Churachandpur	1.99	0.066
Bishnupur	1.76	0.080
Thoubal	2.11	0.065
Imphal West	1.32	0.132
Imphal East	1.43	0.117
Ukhrul	1.99	0.066
Chandel	1.69	0.087
Total	1.75	0.081

Meghalaya

City	Value	Standard Deviation
West Garo Hills	2.41	0.081
East Garo Hills	2.65	0.107
South Garo Hills	3.18	0.177
West Khassi Hills	2.63	0.105
ribhoi	2.69	0.112
East Khassi Hills	2.14	0.065
Jaintia Hills	2.57	0.097
Total	2.58	0.098

Mizoram

City	Value	Standard Deviation
Mamit	1.68	0.089
Kolasib	1.43	0.117
Aizawl	1.89	0.071
Champhai	1.78	0.078
Serchhip	1.23	0.144
Langlei	1.58	0.099
Lawngtlai	1.94	0.068
Saiha	2.07	0.064
Total	1.70	0.087

Nagaland

City	Value	Standard Deviation
Mon	2.15	0.063
Mokokchung	1.10	0.161
Zunheboto	2.50	0.090
Wokha	1.49	0.110
Dimapur	1.81	0.076
Phek	1.99	0.066
Tuensang	1.47	0.113
Longleng	1.59	0.098
Kiphire	2.09	0.084
Kohima	1.70	0.087
Peren	1.87	0.072
Total	1.87	0.072

Delhi

City	Value	Standard Deviation
North West	1.79	0.078
Region	North	0.066
------------	-------	-------
North East	2.12	0.065
East	1.54	0.104
New Delhi	2.47	0.087
Central	1.92	0.069
West	1.67	0.089
South West	1.73	0.083
South	2.11	0.065
Total	1.93	0.068

Odisha

District	South West	East	North	Central	West	South	Total
Odisha							
Bargarh	1.98	0.066					
Jharsuguda	2.14	0.065					
Sambalpur	1.80	0.077					
Debagarh	1.32	0.107					
Sundargarh	2.40	0.080					
Kendujhar	2.10	0.064					
Mayurbhanj	2.08	0.064					
Baleshwar	2.02	0.065					
Bhadrak	1.88	0.072					
Kendrapara	1.90	0.070					
Jagatsinghapur	2.15	0.065					
Cuttack	1.40	0.121					
Jajapur	2.07	0.064					
Dhenkanal	1.79	0.078					
Anugul	2.02	0.065					
Nayagarh	1.91	0.069					
Khordha	1.88	0.071					
Puri	2.00	0.066					
Ganjam	2.32	0.073					
Gajapati	2.23	0.068					
Kendhimal	2.98	0.150					
Baudh	2.78	0.123					
Subarnapur	2.02	0.065					
Balangir	2.36	0.096					
Nuapada	2.80	0.126					
Kalahandi	2.31	0.073					
Rayagada	2.79	0.124					
Nabarangapur	2.82	0.128					
Koraput	2.65	0.107					
Malkangiri	2.17	0.066					
Total	2.21	0.067					

Puducherry

District	South West	East	North	Central	West	South	Total
Puducherry							
Yanam	1.77	0.080					
Puducherry	1.80	0.077					
Mahe	1.15	0.153					
Karaikal	1.85	0.073					
Total	1.71	0.086					

Punjab

District	South West	East	North	Central	West	South	Total
Punjab							
Gujaspur	1.45	0.112					
Kaparthala	2.22	0.068					
Jalandhar	1.51	0.108					
Hoshiarpur	1.65	0.091					
Sangrur	1.41	0.120					
Fatehgarh Sahib	1.49	0.109					
Ludhiana	1.46	0.113					
Moga	1.89	0.070					
Firozpur	1.76	0.080					
Muktsar	1.06	0.167					
Faridkot	1.53	0.105					
Bathinda	1.73	0.083					
Mansa	1.77	0.080					
Patiala	1.33	0.129					
Amritsar	1.91	0.069					
Tarn Taran	1.56	0.102					
Rupnagar	1.39	0.123					
SAS Nagar	1.05	0.168					
SBS Nagar	1.75	0.081					
Barnala	1.79	0.078					
Total	1.60	0.097					

Rajasthan

District	South West	East	North	Central	West	South	Total
Rajasthan							
Ganganagar	2.33	0.074					
Hanumangarh	1.87	0.072					
Bikaner	2.53	0.094					
Churu	2.52	0.092					
Jhanjhunjun	2.70	0.113					
District	Value 1	Value 2					
----------------	---------	---------					
Alwar	2.19	0.066					
Bharatpur	2.67	0.109					
Dhaulaipur	2.93	0.142					
Karauli	3.45	0.216					
Sawan Madhopur	2.78	0.123					
Dausa	2.96	0.147					
Jaipur	2.18	0.066					
Sikar	2.51	0.090					
Nagaur	2.95	0.146					
Jodhpur	2.38	0.078					
Jaisalmer	1.82	0.075					
Barmer	2.30	0.072					
Jalore	2.55	0.095					
Sirohi	2.29	0.071					
Pali	2.99	0.150					
Ajmer	2.35	0.076					
Tonk	2.79	0.124					
Bundi	2.61	0.102					
Bhilwara	2.49	0.089					
Rajsamand	2.46	0.086					
Dungarpur	2.66	0.108					
Banswara	2.33	0.074					
Chittaurgarh	1.69	0.087					
Kota	2.04	0.065					
Baran	2.77	0.122					
Jhalawar	2.24	0.069					
Udaipur	2.47	0.087					
Pratapgarh	2.37	0.078					
Total	**2.48**	**0.088**					

Sikkim

District	Value 1	Value 2
North District	1.89	0.071
West District	2.03	0.065
South District	1.98	0.066
East District	1.13	0.156
Total	**1.65**	**0.091**

Tamil Nadu

District	Value 1	Value 2
Thiruvallur	2.19	0.066
Chennai	1.19	0.148
Kancheepuram	1.46	0.113
Vellore	1.59	0.099
Tiruvannamalai	1.71	0.085
Viluppuram	1.66	0.090
Salem	2.50	0.090
Namakkal	1.65	0.092
Erode	2.46	0.086
The Nilgiris	1.89	0.071
Dindigul	1.68	0.088
Karur	1.56	0.101
Tiruchirappalli	1.45	0.115
Perambalur	2.07	0.064
Ariyur	1.15	0.154
Cuddalore	1.63	0.094
Nagappattinam	1.76	0.080
Thiruvarur	0.95	0.181
Thanjavur	1.90	0.070
Pudukkottai	1.17	0.152
Sivaganga	1.45	0.115
Madurai	0.99	0.176
Thani	1.57	0.100
Virudhunagar	1.51	0.108
Ramanathapuram	1.61	0.096
Thoothakkudi	1.38	0.123
Tirunelveli	1.55	0.102
Kanyakumari	1.11	0.160
Dharmapuri	2.30	0.072
Krishnagiri	2.23	0.068
Coimbatore	2.02	0.065
Tiruppur	1.79	0.078
Total	**1.69**	**0.088**

Tripura

District	Value 1	Value 2
West Tripura	1.61	0.096
South Tripura	1.95	0.067
Dhalbai	1.95	0.067
North Tripura	2.18	0.066
Uttar Pradesh		
---------------	----------------	
Total	1.86 0.072	
Saharanpur	2.69 0.112	
Muzaffarnagar	2.74 0.118	
Bijnor	3.09 0.165	
Moradabad	3.20 0.180	
Rampur	3.19 0.179	
Jyotiba Pratap Nagar	3.24 0.186	
Meerut	2.72 0.115	
Baghpat	2.92 0.141	
Ghaziabad	2.64 0.105	
Gautam Buddha Nagar	2.06 0.065	
Bulandshahr	2.94 0.144	
Aligarh	2.90 0.139	
Mahamaya Nagar	2.84 0.131	
Mathura	3.22 0.182	
Agra	2.92 0.141	
Firozabad	3.26 0.188	
Munipuri	3.23 0.183	
Budaun	3.12 0.169	
Bareilly	3.34 0.200	
Pilibhit	2.95 0.146	
Shahjanpur	2.99 0.151	
Kheri	2.62 0.103	
Sitapur	2.62 0.104	
Hardoi	2.81 0.126	
Unnao	3.14 0.172	
Lucknow	2.33 0.075	
Rae Bareli	3.43 0.212	
Farrukhabad	2.90 0.138	
Kannauj	2.94 0.144	
Etawah	2.87 0.135	
Auraiya	2.38 0.079	
Kanpur Dehat	2.83 0.091	
Kanpur Nagar	2.32 0.074	
Jalaun	2.56 0.096	
Jhansi	2.67 0.110	
Lalitpur	2.40 0.081	
Hamirpur	2.93 0.143	
Mahoba	3.29 0.192	
Banda	2.89 0.138	
Chitrakoot	3.38 0.205	
Fatehpur	2.90 0.138	
Pratapgarh	3.15 0.173	
Kaushambi	3.37 0.204	
Allahabad	2.78 0.122	
Bara Banki	2.76 0.120	
Faizabad	3.25 0.187	
Ambedkar Nagar	3.07 0.161	
Sultanpur	3.42 0.211	
Bahraich	2.22 0.067	
Shrawasti	2.27 0.071	
Ballarpur	2.71 0.114	
Gonda	2.96 0.146	
Siddharth Nagar	3.08 0.163	
Basti	3.12 0.168	
Sant Kabir Nagar	3.24 0.186	
Mahrangjan	3.51 0.223	
Gorakhpur	2.98 0.149	
Kushinagar	3.37 0.204	
Deoria	3.02 0.155	
Azamgarh	3.19 0.178	
Maui	3.30 0.194	
Ballia	3.23 0.183	
Jaunpur	2.95 0.146	
Ghaziipur	3.22 0.182	
Chandauli	2.89 0.137	
Varanasi	2.60 0.101	
Bhadohi (SRN)	2.87 0.134	
Mirzapur	2.72 0.115	
Sonhadradi	2.55 0.095	
Etah	2.99 0.151	
District	Total	SD
-------------------	-------	-----
Uttarakhand	2.93	0.142
Kanshiram Nagar	3.19	0.178
Total	2.93	0.142
West Bengal	2.46	0.085
Darjiling	2.14	0.065
Jalpaiguri	2.46	0.086
Koch Bihar	2.24	0.060
Uttar Dinajpur	3.19	0.179
Dakshin Dinajpur	2.74	0.118
Malda	2.21	0.067
Murshidabad	2.21	0.067
Birbhum	2.34	0.075
Barddhaman	2.03	0.065
Nadia	2.02	0.065
North 24 Parganas	1.67	0.090
Hugli	1.78	0.079
Bankura	2.22	0.068
Purulia	2.08	0.064
Hoora	2.13	0.065
Kolkata	1.62	0.094
South 24 Parganas	2.71	0.114
Paschim Medinipur	2.65	0.107
Purba Medinipur	1.99	0.066
Total	2.27	0.070
Telangana	1.75	0.082
Adilabad	1.96	0.067
Nizamabad	1.67	0.089
Karimnagar	1.58	0.099
Medak	1.75	0.081
Hyderabad	1.67	0.090
Rangareddy	1.46	0.113
Mahbubnagar	1.53	0.105
Nalgonda	2.16	0.065
Warangal	1.64	0.093
Khammam	2.00	0.066
Total	1.75	0.082