Monoidal Rigidity for Free Wreath Products

Pierre Fima and Lorenzo Pittau

Abstract

In this note we observe that any compact quantum group monoidally equivalent, in a nice way, to a free wreath product of a compact quantum group G by the quantum automorphism group of a finite dimensional C*-algebra with a δ-form is actually isomorphic to a free wreath product of G by the quantum automorphism group of another finite dimensional C*-algebra with a δ-form.

Introduction

The theory of compact quantum groups, which includes the fundamental constructions of Drinfeld and Jimbo as a deformation of the universal enveloping algebras of classical Lie algebras, was introduced by Woronowicz in the eighties. Later, Wang introduced the quantum automorphism group $G(B,\psi)$ of a finite dimensional C*-algebra B with a state ψ and Banica studied its representation category when ψ is a δ-form.

Bichon introduced the construction of free wreath product $G \wr S^n_+$ of a compact quantum group G by the permutation quantum group S^n_+ by using an action of S^n_+ on n copies of G. In analogy with the classical case, the free wreath product allows to describe the quantum symmetry group of n copies of a finite graph in terms of the symmetry group of the graph and of S^n_+. The representation category of a free wreath product $G \wr S^n_+$, when G is Kac, was computed in [LT14] by Lemeux and Tarrago. The free wreath product $H^+(B,\psi)(G)$ of a compact quantum and a discrete group has been introduced by the second author in the case of $G = \hat{\Gamma}$, the dual of a discrete group Γ, and the representation category has been computed in [Pit16]. For a general G, the construction and the computation of the representation category has been studied in [FP15].

This note is a continuation of the general study of free wreath product initiated in [FP15]. Since we know from [FP15] the rigid C*-tensor category given by the representation theory of a free wreath product $H^+(B,\psi)(G)$, we will focus now on compact quantum groups which are monoidally equivalent to such a free wreath product. The purpose of this note is to prove the following rigidity result.

Theorem A. Let G, G_0 be compact quantum groups and (B, ψ) be a finite dimensional C*-algebra with a δ-form ψ. If G is monoidally equivalent to $H^+(B,\psi)(G_0)$ via a nice enough unitary tensor functor then there exists a finite dimensional C*-algebra D with a δ-form ψ_D on D such that G is isomorphic to $H^+(D,\psi_D)(G_0)$.

The precise meaning of nice enough will be given in Section 2 just before the statement of Theorem 2.3. When $G_0 = \{e\}$ is the trivial (quantum) group, any unitary tensor functor is nice enough. However, when $G_0 = \{e\}$, a stronger statement than the one of Theorem A is known to hold: it is proved in [Mro15] that any compact quantum group having the same fusion rules as the one of $SO(3)$ is actually isomorphic to the quantum automorphism group of some finite dimensional C*-algebra.

The paper has two sections: Section 1 is a preliminary section in which we introduce the notations of this paper and recall some useful results and Section 2 contains the proof of Theorem A (see Theorem 2.3).

1 Preliminaries

In this paper, we always assume the scalar products on Hilbert spaces to be linear in the first variable. For Hilbert spaces H, K, we denote by $L(H, K)$ the Banach space of bounded linear maps from H to K and we write $L(H) := L(H,H)$. The same symbol \otimes is used to denote the tensor product of Hilbert spaces or the minimal tensor product of C*-algebras.
Given a unital C*-algebra A and unitaries $u \in \mathcal{L}(H) \otimes A$ and $v \in \mathcal{L}(K) \otimes A$, for H, K Hilbert spaces, we define $\text{Mor}(u, v) := \{T \in \mathcal{L}(H, K) : (T \otimes 1)u = v(T \otimes 1)\}$. We also use the notation
$$u \otimes v := u_{13}v_{23} \in \mathcal{L}(H \otimes K) \otimes A,$$
where $v_{23} := \text{id}_H \otimes v$ and $u_{13} := (\sigma \otimes \text{id}_A)(\text{id}_K \otimes u)$ and $\sigma : \mathcal{L}(K) \otimes \mathcal{L}(H) \to \mathcal{L}(H) \otimes \mathcal{L}(K)$ is the flip automorphism.

For G a compact quantum group in the sense of [Wor98] we denote by $C(G)$ the maximal C*-algebra of G i.e. the enveloping C*-algebra of the $*$-algebra given by the linear span of the coefficients of the irreducible representations of G. We will also denote by ε the trivial representation of G, $\text{Irr}(G)$ the set of equivalence classes of irreducible representations of G and by $\mathcal{R}(G)$ the rigid C*-tensor category of finite dimensional unitary representations of G. We refer to the chapter 2 of the book [NT13] for all the details concerning rigid C*-tensor categories and monoidal equivalence.

Let B be a finite dimensional C*-algebra and ψ a faithful state on B. Then B is a Hilbert space with the scalar product defined by $\langle a, b \rangle := \psi(b^*a)$. Let $m_B : B \otimes B \to B$ be the multiplication on B and $\eta_B : C \to B$ be the unit. We call ψ a δ-form when $m_Bm_B^* = \text{id}_B$, where $m_B^* : B \to B \otimes B$ is the adjoint of m_B with respect to the scalar product on B defined above.

Let G_0 be a compact quantum group and for $\alpha \in \text{Irr}(G_0)$, we choose a representative u^α acting on the Hilbert space H_α. The free wreath product of G_0 by the quantum automorphism group $G_{(B, \psi)}$ of (B, ψ), denoted by $H_{(B, \psi)}^+(G_0)$, is the compact quantum group defined in [FP15] as follows. The full C*-algebra $C(H_{(B, \psi)}^+(G_0))$ of this quantum group is the universal unital C*-algebra generated by the coefficients of matrices $a(\alpha) \in \mathcal{L}(B \otimes H_\alpha) \otimes C(H_{(B, \psi)}^+(G_0))$, for $\alpha \in \text{Irr}(G_0)$, such that:

- $\alpha(\alpha)$ is unitary for all $\alpha \in \text{Irr}(G_0)$,
- $(m_B \otimes S)\Sigma_{23} \in \text{Mor}(a(\alpha) \otimes a(\beta), a(\gamma))$ for all $\alpha, \beta, \gamma \in \text{Irr}(G_0)$ and all $S \in \text{Mor}(\alpha \otimes \beta, \gamma)$,
- $\eta_B \in \text{Mor}(\varepsilon, a(\varepsilon))$.

Moreover, there exists a unique unital $*$-homomorphism $\Delta : C(H_{(B, \psi)}^+(G_0)) \to C(H_{(B, \psi)}^+(G_0)) \otimes C(H_{(B, \psi)}^+(G_0))$ for which the elements $a(\alpha)$ are representations for all $\alpha \in \text{Irr}(G_0)$. The pair $(C(H_{(B, \psi)}^+(G_0)), \Delta)$ is a compact quantum group, called the free wreath product.

When ψ is a δ-form, the representation theory of $H_{(B, \psi)}^+(G_0)$ is totally understood [FP15]. In particular, the dimension of the spaces $\text{Mor}(\varepsilon, a(\alpha_1) \otimes \ldots \otimes a(\alpha_n))$ only depends on G_0 and $\alpha_1, \ldots, \alpha_n$ and not on (B, ψ).

2 Proof of Theorem A

Suppose that G and G_0 are compact quantum groups and G is unitary monoidally equivalent to $H_{(B, \psi)}^+(G_0)$, where ψ is a δ-form. This means (see [NT13]) that there exist unitary tensor functors $F : \mathcal{R}(H_{(B, \psi)}^+(G_0)) \to \mathcal{R}(G)$, $H : \mathcal{R}(G) \to \mathcal{R}(H_{(B, \psi)}^+(G_0))$ such that FH and HF are naturally monoidally unitarily isomorphic to the identity functors, meaning that the natural isomorphisms $FH \simeq \iota$ and $HF \simeq \iota$ are both implemented by unitaries.

For $\alpha \in \text{Irr}(G_0)$, we choose a representative u^α acting on the Hilbert space H_α. Recall that the representation $a(\alpha)$ is acting on $B \otimes H_\alpha$. We define the unitary representation $v_\alpha := F(a(\alpha))$ of G acting on the finite dimensional Hilbert space K_α. For all u, v finite dimensional unitary representations of $H_{(B, \psi)}^+(G_0)$, we denote by the same symbol $F_2 \in \text{Mor}(F(u) \otimes F(v), F(u \otimes v))$ the unitary given by the definition of the unitary tensor functor F. Since the category is strict we have:
$$F_2 \circ (F_2 \otimes \text{id}) = F_2 \circ (\text{id} \otimes F_2) \in \text{Mor}(F(u) \otimes F(v), F(u \otimes v \otimes w)) \text{ for all } u, v, w. \quad (2.1)$$
Moreover, the naturally of F_2 means that, for all u, v, u', v' finite dimensional unitary representations we have:
$$F(f \otimes g) \circ F_2 = F_2 \circ (F(f) \otimes F(g)) \in \text{Mor}(F(u) \otimes F(v), F(u' \otimes v')) \text{ for all } f \in \text{Mor}(u, u'), g \in \text{Mor}(v, v'). \quad (2.2)$$

Finally, we note that, since F is unitary, we may and will assume that

$$F(\varepsilon) = \varepsilon \quad \text{and} \quad F(\text{id}) = \text{id} \text{ for all } \text{id} \in \text{Mor}(u, u). \quad (2.3)$$

Define the finite dimensional Hilbert space $D = K_x$. Since $m_B \in \text{Mor}(a(\varepsilon) \otimes a(\varepsilon), a(\varepsilon))$ and $\eta_B \in \text{Mor}(\varepsilon, a(\varepsilon))$, we may define the linear maps

$$m_D : D \otimes D \to D, \quad m_D := F(m_B)F_2 \quad \text{and} \quad \eta_D : C \to D, \quad \eta_D := F(\eta_B).$$

Proposition 2.1. (D, m_D, η_D) is a unital algebra and $m_D m_D^* = \delta \text{id}_D$.

Proof. Using Equations (2.1), (2.2), (2.3) and the associativity of m_B we get:

$$m_D \circ (m_D \circ \text{id}) = F(m_B)F_2 \circ (F(m_B)F_2 \circ \text{id}) = F(m_B) \circ F_2 \circ F(m_B) \circ \text{id} \circ (F_2 \otimes 1)$$

$$= F(m_B) \circ F(m_B \circ \text{id} \otimes F_2 \circ (F_2 \otimes 1) = F(m_B) \circ (m_B \circ \text{id}) \circ F_2 \circ (\text{id} \otimes F_2)$$

$$= F(m_B \circ \text{id} \otimes m_B) \circ F_2 \circ (\text{id} \otimes F_2) = F(m_B) \circ F(\text{id} \otimes m_B) \circ F_2 \circ (\text{id} \otimes F_2)$$

$$= F(m_B) \circ F_2 \circ (\text{id} \otimes F(m_B)) \circ (\text{id} \otimes F_2) = F(m_B)F_2 \circ (\text{id} \otimes F(m_B))F_2 = m_D \circ (m_D \circ \text{id}).$$

Hence, m_D is associative. Moreover, using Equations (2.2), (2.3) and the fact that η_B is the unit of (B, m_B), which means that $m_B(\eta_B \otimes \text{id}_B) = m_B(\text{id}_B \otimes \eta_B)$, we find:

$$m_D(\eta_D \otimes \text{id}_D) = F(m_B)F_2(F(\eta_B) \otimes \text{id}_D) = F(m_B)F_2F_2(\eta_B \otimes \text{id}_B) = F(m_B(\eta_B \otimes \text{id}_B)) = F(\text{id}_D) = \text{id}_D \text{ and,}$$

$$m_D(\text{id}_D \otimes \eta_D) = F(m_B)F_2(\text{id}_D \otimes F(\eta_B)) = F(m_B)F_2F_2(\text{id}_D \otimes \eta_B) = F(m_B(\text{id}_B \otimes \eta_B)) = F(\text{id}_D) = \text{id}_D.$$

Finally, $m_D m_D^* = F(m_B)F_2F_2 = m_D \circ (m_D \circ \text{id}) = m_D^*$.

We are now ready to turn D into a *-algebra. Define $t = m_D^* \circ \eta_D = F_2^* F(m_B^* \eta_B) \in \mathcal{L}(D, D \otimes D)$. We may and will view $t \in D \otimes D$. Define the anti-linear map $S_D : D \to D$ by $S_D(x) = (x^* \otimes \text{id})(t)$. Denote by $L_x \in \mathcal{L}(D)$ the bounded operator given by left multiplication by $x \in D$ and write $1_D := \eta_D(1) \in D$.

Proposition 2.2. S_D is an involution on the unital algebra D. Moreover, equipped with this involution and the norm defined by $\|x\|_D := \|L_x\|$ for $x \in D$, D is a unital C^*-algebra and the following holds.

1. $(L_x)^* = L_{S_D(x)}$ for all $x \in D$.
2. $\psi_D : D \to \mathbb{C}, \ x \mapsto (x, 1_D)$ is a faithful state on D satisfying $\psi_D(S_D(y)x) = \langle x, y \rangle$ for all $x, y \in D$.
3. ψ_D is a δ-form on D.

Proof. (1) Using diagrams computations one can easily check that:

$$(\text{id} \otimes m_B) \circ (m_B^* \circ \eta_B \otimes \text{id}) = m_B.$$

Applying the functor F we find $(\text{id} \otimes m_D) \circ (m_D^* \circ \eta_D \otimes \text{id}) = m_D$. Hence, for all $x, y, z \in D$, one has

$$L_{S_D(x)}(y, z) = (m_D(S_D(y) \otimes \eta_B), z) = (m_D((x^* \otimes \text{id} \circ m_B^* \circ \eta_B \otimes y), z)$$

$$= ((x^* \otimes \text{id} \circ m_D \circ \eta_B \otimes \text{id})(y), z) = (L_x^*(y), z) = (m_D^*(y), x) = (y, m_D(x \otimes z)) = (y, L_x(z)) = ((L_x)^*(y), z).$$

This concludes the proof of 1 and shows that S_D is anti-multiplicative since it implies that, for all $x, y, z \in D$, $S_D(xy) = ((L_x)^* \circ L_y)^* = (L_y)^*(L_x)^* = L_{S_D(y)}(S_D(x)) = S_D(y)S_D(x)$.

Assertion (1) also shows that S_D is involutive since it implies that $L_{S_D(x)} = L_{S_D(x)}^* = (L_x)^*$, hence, $S_D^2(x) = x$. It follows that S_D turns (D, m_D, η_D) into an involutive unital algebra. It is moreover
clear that \(|x|_D := \|L_x\|_{\mathcal{L}(D)}\), for \(x \in D\), defines a norm on \(D\) which satisfies the C*-condition since we have

\[\|S_D(x)\|_D = \|L_{S_D(x)}\| = \|L_{S_D(x)}L_x\| = \|L_x\|_D = \|x\|_D\]

for all \(x \in D\).

(2) One has \(\psi_D(S_D(y)x) = \langle S_D(y)x, 1_D \rangle = \langle L_{S_D(y)}(x), 1_D \rangle = \langle (L_y)^*x, 1_D \rangle = \langle x, L_y(1_D) \rangle = \langle x, y \rangle\). It follows directly from this relation and the non degeneracy of the scalar product on \(D\) that \(\psi_D\) is faithful. It also follows that the scalar product induced by \(\psi_D\) on \(D\) is the same as the initial scalar product on \(D\). Hence, taking the adjoint with the \(\psi_D\)-scalar product we have, from Proposition 2.1, \(m_{Dm_{D}}^D = \delta_{id_D}\). \(\square\)

We assume from now that the functor \(F\) is nice enough meaning that for any \(\alpha \in \text{Irr}(G_0)\), there exists a unitary \(V_\alpha \in \mathcal{L}(K_\alpha, K_\alpha \otimes H_\alpha)\), with \(V_\varepsilon = \text{id}_D\), and such that the following diagram is commutative for all \(\alpha, \beta, \gamma \in \text{Irr}(G_0)\) and all \(S \in \text{Mor}(\alpha \otimes \beta, \gamma)\):

\[
\begin{array}{ccc}
(K_\varepsilon \otimes H_\alpha) \otimes (K_\varepsilon \otimes H_\beta) & \xrightarrow{\text{id} \otimes \pi} & (K_\varepsilon \otimes H_\gamma) \\
\uparrow V_\alpha \otimes V_\beta & & \uparrow V_\gamma \\
K_\alpha \otimes K_\beta & \xrightarrow{F((m_\beta \otimes S)\Sigma_{23})F_2} & K_\gamma
\end{array}
\]

Observe that any unitary tensor functor is nice enough if \(G_0\) is the trivial quantum group. We are now ready to state our main result. Let us denote by \(\tilde{\alpha}(\alpha) \in \mathcal{L}(D \otimes H_\alpha) \otimes C(H_{(D,\psi_D)}(G_0))\) the canonical generators.

Theorem 2.3. There exists a unique *-isomorphism \(\pi : C(H^+_{(D,\psi_D)}(G_0)) \rightarrow C(G)\) such that

\[(\text{id} \otimes \pi)(\tilde{\alpha}(\alpha)) = (V_\alpha \otimes 1)\nu_\alpha(V_\alpha^* \otimes 1) \in \mathcal{L}(D \otimes H_\alpha) \otimes C(G)\]

for all \(\alpha \in \text{Irr}(G_0)\).

Moreover, \(\pi\) intertwines the comultiplications.

Proof. Step 1. There exists a surjective unital *-homomorphism \(\phi : C(H^+_{(D,\psi_D)}(G_0)) \rightarrow C(G)\) such that

\[(\text{id} \otimes \pi)(\tilde{\alpha}(\alpha)) = (V_\alpha \otimes 1)\nu_\alpha(V_\alpha^* \otimes 1) \in \mathcal{L}(D \otimes H_\alpha) \otimes C(G)\]

for all \(\alpha \in \text{Irr}(G_0)\).

From the universal property of the C*-algebra \(C(H^+_{(D,\psi_D)}(G_0))\) it suffices to check that the unitary representations \(u_\alpha := (V_\alpha \otimes 1)\nu_\alpha(V_\alpha^* \otimes 1)\) of \(G\) on the Hilbert space \(D \otimes H_\alpha\) satisfy the following relations:

1. \((m_\alpha \otimes S)\Sigma_{23} \in \text{Mor}(u_\alpha \otimes u_\beta, u_\gamma)\) for all \(\alpha, \beta, \gamma \in \text{Irr}(G_0)\) and all \(S \in \text{Mor}(\alpha \otimes \beta, \gamma)\),

2. \(\eta_D \in \text{Mor}(\epsilon, u_\varepsilon)\).

(1) Since \(F\) is nice enough we have, for all \(\alpha, \beta, \gamma \in \text{Irr}(G_0)\) and all \(S \in \text{Mor}(\alpha \otimes \beta, \gamma)\),

\[V_\gamma^*(m_\alpha \otimes S)\Sigma_{23}(V_\alpha \otimes V_\beta) = F((m_\beta \otimes S)\Sigma_{23})F_2 \in \text{Mor}(\nu_\alpha \otimes \nu_\beta, \nu_\gamma)\]

It follows that \(((m_\alpha \otimes S)\Sigma_{23}) \circ (u_\alpha \circ u_\beta)\) is equal to:

\[
(((m_\alpha \otimes S)\Sigma_{23}) \circ (u_\alpha \circ u_\beta) = ((m_\alpha \otimes S)\Sigma_{23})(V_\alpha \otimes V_\beta) \circ 1(u_\alpha \otimes \nu_\beta)(V_\gamma^* \otimes 1)
\]

\[= (V_\gamma \otimes 1)v_\gamma((m_\alpha \otimes S)\Sigma_{23})(V_\alpha \otimes V_\beta)(V_\alpha^* \otimes V_\beta^* \otimes 1) = u_\gamma((m_\alpha \otimes S)\Sigma_{23}).\]

(2) It is obvious since \(\eta_D \in \text{Mor}(\epsilon, u_\varepsilon)\) implies that \(\eta_D = F(\eta_B) \in \text{Mor}(\epsilon, \nu_\varepsilon)\) and \(u_\varepsilon = \nu_\varepsilon\).

Note that \(\pi\) automatically intertwines the comultiplications and \(\pi\) is surjective since \(F\) is essentially surjective.

Step 2. \(\pi\) is an isomorphism.

It suffices to check that \(\pi\) intertwines the Haar measures \(h\) on \(C(H^+_{(D,\psi_D)}(G_0))\) and \(h_G\) on \(C(G)\). Since the linear span of the coefficients of representations of the form \(\tilde{\alpha}(\alpha_1) \otimes \ldots \otimes \tilde{\alpha}(\alpha_n)\), for \(\alpha_1, \ldots, \alpha_n \in \text{Irr}(G_0)\) and \(n \geq 1\), is dense in \(C(H^+_{(D,\psi_D)}(G_0))\), it suffices to check that, for all \(n \geq 1, \alpha_1, \ldots, \alpha_n \in \text{Irr}(G_0)\) one has

\[(\text{id} \otimes h_G)(u_{\alpha_1} \otimes \ldots \otimes u_{\alpha_n}) = (\text{id} \otimes h)(\tilde{\alpha}(\alpha_1) \otimes \ldots \otimes \tilde{\alpha}(\alpha_n)),\]
which is equivalent to \(\dim(\text{Mor}(\varepsilon, u_{\alpha_1} \otimes \ldots \otimes u_{\alpha_n})) = \dim(\text{Mor}(\varepsilon, \tilde{a}(\alpha_1) \otimes \ldots \otimes \tilde{a}(\alpha_n))) \). Since \(u_\alpha \simeq v_\alpha = F(a(\alpha)) \) for all \(\alpha \in \text{Irr}(G_0) \) and \(F \) is a monoidal equivalence, the left hand side is equal to
\[
\dim(\text{Mor}(\varepsilon, v_{\alpha_1} \otimes \ldots \otimes v_{\alpha_n})) = \dim(\text{Mor}(\varepsilon, a(\alpha_1) \otimes \ldots \otimes a(\alpha_n))).
\]
Moreover since, \(\psi_D \) is a \(\delta \)-form we also know from [FP15, Theorem 3.5] an explicit formula for the number \(\dim(\text{Mor}(\varepsilon, a(\alpha_1) \otimes \ldots \otimes a(\alpha_n))) \) which only depends on \(G_0 \) and not on \((B, \psi)\) or \((D, \psi_D)\) and we have
\[
\dim(\text{Mor}(\varepsilon, a(\alpha_1) \otimes \ldots \otimes a(\alpha_n))) = \dim(\text{Mor}(\varepsilon, \tilde{a}(\alpha_1) \otimes \ldots \otimes \tilde{a}(\alpha_n))).
\]

References

[Ban99] Teodor Banica. Symmetries of a generic coaction. *Math. Ann.*, 314(4):763–780, 1999.

[Bic04] Julien Bichon. Free wreath product by the quantum permutation group. *Algebr. Represent. Theory*, 7(4):343–362, 2004.

[Dri86] V. G. Drinfel’d. Quantum groups. *Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)*, 155(Differentialnaya Geometriya, Gruppy Li i Mekh. VIII):18–49, 193, 1986.

[Dri87] V. G. Drinfel’d. Quantum groups. In *Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986)*, pages 798–820. Amer. Math. Soc., Providence, RI, 1987.

[FP15] Pierre Fima and Lorenzo Pittau. The free wreath product of a compact quantum group by a quantum automorphism group. *preprint arXiv:1507.06107*, 2015.

[Jim85] Michio Jimbo. A \(q \)-difference analogue of \(U(g) \) and the Yang-Baxter equation. *Lett. Math. Phys.*, 10(1):63–69, 1985.

[LT14] François Lemeux and Pierre Tarrago. Free wreath product quantum groups: the monoidal category, approximation properties and free probability. *preprint arXiv:1411.4124*, 2014.

[Mro15] Colin Mrozinski. Quantum automorphism groups and so(3)-deformations. *J. Pure Appl. Algebra*, 219(1):1–32, 2015.

[NT13] Sergey Neshveyev and Lars Tuset. *Compact quantum groups and their representation categories*, volume 20 of *Cours Spécialisés [Specialized Courses]*. Société Mathématique de France, Paris, 2013.

[Pit16] Lorenzo Pittau. The free wreath product of a discrete group by a quantum automorphism group. *Proc. Amer. Math. Soc.*, 144(5):1985–21, 2016.

[Wan98] Shuzhou Wang. Quantum symmetry groups of finite spaces. *Comm. Math. Phys.*, 195(1):195–211, 1998.

[Wor87] S. L. Woronowicz. Compact matrix pseudogroups. *Comm. Math. Phys.*, 111(4):613–665, 1987.

[Wor98] S. L. Woronowicz. Compact quantum groups. In *Symétries quantiques (Les Houches, 1995)*, pages 845–884. North-Holland, Amsterdam, 1998.

Pierre FIMA
Univ Paris Diderot, Sorbonne Paris Cité, IMJ-PRG, UMR 7586, F-75013, Paris, France
Sorbonne Universités, UPMC Paris 06, UMR 7586, IMJ-PRG, F-75005, Paris, France
CNRS, UMR 7586, IMJ-PRG, F-75005, Paris, France
E-mail address: pierre.fima@imj-prg.fr

Lorenzo Pittau
E-mail address: lorenzopittau@gmail.com