Propagation Speed of the Maximum of the Fundamental Solution to the Fractional Diffusion-Wave Equation

Yuri LUCHKO\(^{(a)}\), Francesco MAINARDI\(^{(b)}\) and Yuriy POVSTENKO\(^{(c)}\)

\(^{(a)}\)Department of Mathematics, Beuth Technical University of Applied Sciences, Berlin, 13353 Germany
E-mail: luchko@beuth-hochschule.de

\(^{(b)}\)Department of Physics, University of Bologna, and INFN Via Irnerio 46, I-40126 Bologna, Italy
E-mail: francesco.mainardi@unibo.it; francesco.mainardi@bo.infn.it

\(^{(c)}\)Institute of Mathematics and Computer Science, Jan Długosz University in Czestochowa, Czestochowa, 42-200 Poland
E-mail: j.povstenko@ajd.czest.pl

Abstract
In this paper, the one-dimensional time-fractional diffusion-wave equation with the fractional derivative of order \(\alpha\), \(1 < \alpha < 2\) is revisited. This equation interpolates between the diffusion and the wave equations that behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is a constant for the wave equation. For the time-fractional diffusion-wave equation, the propagation speed of a disturbance is infinite, but its fundamental solution possesses a maximum that disperses with a finite speed. In this paper, the fundamental solution of the Cauchy problem for the time-fractional diffusion-wave equation, its maximum location, maximum value, and other important characteristics are investigated in detail. To illustrate analytical formulas, results of numerical calculations and plots are presented. Numerical algorithms and programs used to produce plots are discussed.

\(^1\)This paper has been presented by F. Mainardi at the International Workshop: FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (FDA12) Hohai University, Nanjing, China, 14-17 May 2012 (http://em.hhu.edu.cn/fda12). The peer-revised version of this paper is in press in Computers and Mathematics with Applications [10.1016/j.camwa.2013.01.005], in the special issue devoted to FDA12, Guest Editors: D. Baleanu, J.A. Tenreiro Machado and W. Chen. The current document is an e-print which differs in e.g. pagination, reference numbering and other typographic details.
1 Introduction

Evolution equations related to phenomena intermediate between diffusion and wave propagation have attracted the attention of a number of researchers since the 1980’s. This kind of phenomenon is known to occur in viscoelastic media that combine the characteristics of solid-like materials that exhibit wave propagation and fluid-like materials that support diffusion processes. In particular, analysis and results presented in [Pipkin (1986)] and [Kreis and Pipkin (1986)] should be mentioned. Being unaware of an interpretation of evolution equations by means of fractional calculus, these authors still could provide an interesting example of the relevance of the intermediate phenomena for models in continuum mechanics.

Nowadays it is well recognized that evolution equations can be interpreted as differential equations of fractional order in time when some hereditary mechanisms of power-law type are present in diffusion or wave phenomena. This has been shown for example in [Chen and Holm(2003), Chen and Holm(2004), Mainardi and Tomirotti (1997)] and more recently in [Mainardi (2010) and Nasholm and Holm (2013)], where propagation of pulses in linear lossy media governed by constitutive equations of fractional order has been revisited.

For analysis of the evolution equations of the type mentioned above, methods and tools of fractional calculus, integral transforms, and higher transcendental functions have been employed in the pioneering papers [Wyss (1986), Schneider and Wyss (1989), Fujita (1990), Gorenflo and Rutman (1994), Kochubei (1989), Kochubei (1990)], and in the book [Prüss (1993)]. We also mention the papers [Mainardi (1994), Mainardi (1996a), Mainardi (1996b)] and [Mainardi and Tomirotti (1995)], where fundamental solutions of the evolution equations related to phenomena intermediate between diffusion and wave propagation have been expressed in terms of some auxiliary functions of the Wright type that sometimes are referred to as Mainardi functions, see i.e. [Podlubny (1999), Gorenflo et al. (1999), Gorenflo et al. (2000)].
These functions as well as some techniques and methods of fractional calculus, integral transforms, and higher transcendental functions will be used in our analysis.

It is well known that diffusion and wave equations behave quite differently regarding their response to a localized disturbance: whereas the diffusion equation describes a process, where a disturbance spreads infinitely fast, the propagation speed of the disturbance is constant for the wave equation. In a certain sense, the time-fractional diffusion-wave equation interpolates between these two different responses. On the one hand, the support of the solution to this equation is not compact on the real line for each $t > 0$ for a non-negative disturbance that is not identically equal to zero, i.e. its response to a localized disturbance spreads infinitely fast (see [Fujita (1990)]). On the other hand, the fundamental solution of the time-fractional diffusion-wave equation possesses a maximum that disperses with a finite speed similar to the behavior of the fundamental solution of the wave equation. The problem to describe the location of the maximum of the fundamental solution of the Cauchy problem for the one-dimensional time-fractional diffusion-wave equation of order α, $1 < \alpha < 2$ was considered for the first time in [Fujita (1990)]. Fujita proved that the fundamental solution takes its maximum at the point $x_\ast = \pm c_\alpha t^{\alpha/2}$ for each $t > 0$, where $c_\alpha > 0$ is a constant determined by α. Recently, another proof of this formula for the maximum location along with numerical results for the constant c_α for $1 < \alpha < 2$ were presented in [Povstenko (2008)].

In this paper, we provide an extension and consolidation of these results along with some new analytical formulas, numerical algorithms, and pictures. The rest of the paper is organized as follows.

In the 2nd section, problem formulation and some analytical results are given. Here we revisit the results of Fujita and Povstenko and give some new insights into the problem. Especially the role of the symmetry group of scaling transformations of the time-fractional diffusion-wave equation in the maximum propagation problem is emphasized. We derive a new formula for the maximum value of the Green function for the Cauchy problem for the time-fractional diffusion-wave equation. A new characteristic of the time-fractional diffusion-wave equation - the product of the maximum location of its fundamental solution and its maximum value - is introduced. For a fixed value of α, $1 \leq \alpha \leq 2$, this product is a constant for all $t > 0$ that depends only on α. The product is equal to zero for the diffusion equation.
and to infinity for the wave equation, whereas it is finite, positive, and laying between these extreme values for the time-fractional diffusion-wave equation that justifies the fact that the time-fractional diffusion-wave equation interpolates between the diffusion and the wave equations. The 3rd section is devoted to a presentation of the numerical algorithms used to calculate the fundamental solution and its important characteristics including the location of its maximum, its propagation speed, and the maximum value. Results of numerical calculations and plots are presented and discussed in detail.

2 Problem formulation and analytical results

This section is devoted to the problem formulation and some important analytical results. In particular, several representations of the fundamental solution of the Cauchy problem for the time-fractional diffusion-wave equation in the form of series and integrals are given. These representations are used to derive explicit formulas for the maximum location, maximum value, and the propagation speed of the maximum point. Besides, we give a new proof of the fact that a response of the time-fractional diffusion-wave equation to a localized disturbance spreads infinitely fast like in the case of the diffusion equation.

2.1 Problem formulation

In this paper, we deal with the family of evolution equations obtained from the standard diffusion equation (or the D’Alembert wave equation) by replacing the first-order (or the second-order) time derivative by a fractional derivative of order α with $1 \leq \alpha \leq 2$, namely

$$\frac{\partial^\alpha u}{\partial t^\alpha} = \frac{\partial^2 u}{\partial x^2},$$

(1)

where $x \in \mathbb{R}$, $t \in \mathbb{R}^+$ denote the space and time variables, respectively.

In (1), $u = u(x, t)$ represents the response field variable and the fractional derivative of order α, $n - 1 < \alpha < n$, $n \in \mathbb{N}$ is defined in the Caputo sense:

$$\frac{\partial^n u}{\partial t^n} = \frac{1}{\Gamma(n-\alpha)} \int_0^t (t-\tau)^{n-\alpha-1} \frac{\partial^n u(\tau)}{\partial \tau^n} \, d\tau,$$

(2)

4
where Γ denotes the Gamma function. For $\alpha = n$, $n \in \mathbb{N}$, the Caputo fractional derivative is defined as the standard derivative of order n.

In order to guarantee existence and uniqueness of a solution, we must add to \((1)\) some initial and boundary conditions. Denoting by $f(x)$, $x \in \mathbb{R}$ and $h(t)$, $t \in \mathbb{R}^+$ sufficiently well-behaved functions, the Cauchy problem for the time-fractional diffusion-wave equation with $1 \leq \alpha \leq 2$ is formulated as follows:

\[
\begin{cases}
 u(x,0) = f(x), & -\infty < x < +\infty; \\
 u(\pm \infty, t) = 0, & t > 0.
\end{cases}
\]

(3)

If $1 < \alpha \leq 2$, we must add to \((3)\) the initial value of the first time derivative of the field variable, $u_t(x,0)$, since in this case the Caputo fractional derivative is expressed in terms of the second order time derivative. To ensure continuous dependence of the solution with respect to the parameter α we agree to assume

$u_t(x,0) = 0$, for $1 < \alpha \leq 2$.

In view of our subsequent analysis we find it convenient to set $\nu := \alpha/2$, so that $1/2 \leq \nu \leq 1$ for $1 \leq \alpha \leq 2$.

For the Cauchy problem, we introduce the so-called Green function $G_c(x,t;\nu)$, which represents the respective fundamental solution, obtained when $f(x) = \delta(x)$, δ being the Dirac δ-function. As a consequence, the solution of the Cauchy problem is obtained by a space convolution according to

\[
u(x,t;\nu) = \int_{-\infty}^{+\infty} G_c(x-\xi,t;\nu) \ f(\xi) \ d\xi.
\]

It should be noted that $G_c(x,t;\nu) = G_c(|x|,t;\nu)$ since the Green function of the Cauchy problem turns out to be an even function of x. This means that we can restrict our investigation of the function G_c to non-negative values $x \geq 0$.

For the standard diffusion equation ($\nu = 1/2$) it is well known that

\[
G_c(x,t;1/2) := G_c^d(x,t) = \frac{t^{-1/2}}{2\sqrt{\pi}} e^{-x^2/(4t)}.
\]

(4)

In the limiting case $\nu = 1$ we recover the standard wave equation, for which we get

\[
G_c(x,t;1) := G_c^w(x,t) = \frac{1}{2} [\delta(x-t) + \delta(x+t)].
\]

(5)
In the case $1/2 < \nu < 1$, the Green function G_c will be determined in the next subsection by using the technique of the Laplace and the Fourier transforms. The representations of the Green function G_c are of course not new and have been discussed in [Mainardi (1994)]-[Mainardi (2011)] to mention only a few of the many papers devoted to this topic.

In this paper, we are interested in investigation of some important characteristics of the Green function G_c, including location of its maximum point, its propagation speed, and its maximum value.

2.2 Representations of the Green function

Following [Mainardi (1994)]-[Mainardi (2011)], some representations of the Green function G_c in form of integrals and series are presented and discussed in this subsection.

In [Mainardi (1994)], the Laplace and Fourier transforms technique was employed to deduce the following representation for the Green function G_c for $x > 0$ and $\frac{1}{2} < \nu < 1$:

$$2 \nu x G_c(x, t; \nu) = F_\nu(r) = \nu r M_\nu(r),$$

where

$$r = x/t^\nu > 0$$

is the similarity variable and

$$F_\nu(r) := \frac{1}{2\pi i} \int_{Ha} e^{\sigma - r \sigma^\nu} \, d\sigma, \quad M_\nu(r) := \frac{1}{2\pi i} \int_{Ha} \frac{e^{\sigma - r \sigma^\nu}}{\sigma^{1-\mu}} \, d\sigma$$

are the two auxiliary functions nowadays referred to in the literature of Fractional Calculus as the Mainardi functions, and Ha denotes the Hankel path properly defined for the representation of the reciprocal of the Gamma function.

Let us note that the similarity variable $r = x/t^\nu$ plays a very important role in our analysis of the location of a maximum point of the Green function G_c. In its turn, the form of the similarity variable can be explained by the Lie group analysis of the time-fractional diffusion-wave equation (1).

In [Buckwar and Luchko (1998)] and [Luchko and Gorenflo (1998)] (see also [Gorenflo et al. (2000)]), symmetry groups of scaling transformations for the
time- and space-fractional partial differential equations have been constructed. In particular, it has been proved in [Buckwar and Luchko (1998)] that the only invariant of the symmetry group T^λ of scaling transformations of the time-fractional diffusion-wave equation (1) has the form $\eta(x, t, u) = x/t^\nu$ that explains the form of the scaling variable.

Using the well known representation of the Wright function, which reads (in our notation) for $z \in \mathbb{C}$

$$W_{\lambda,\mu}(z) := \frac{1}{2\pi i} \int_{H_{\text{a}}} e^{\sigma} \frac{z^{-\lambda}}{\sigma^{\mu}} d\sigma = \sum_{n=0}^{\infty} \frac{z^n}{n! \Gamma(\lambda n + \mu)}, \quad (7)$$

where $\lambda > -1$ and $\mu > 0$, we recognize that the auxiliary functions are related to the Wright function according to

$$F_\nu(z) = W_{-\nu,0}(-z) = \nu z M_\nu(z), \quad M_\nu(z) = W_{-\nu,1-\nu}(-z). \quad (8)$$

The formula (8) along with (7) provides us with the series representations of the Mainardi functions and thus of the Green function G_c (for $x > 0$):

$$G_c(x, t; \nu) = \frac{1}{2\nu x} F_\nu(r) = \frac{1}{2t^\nu} M_\nu(r) = \frac{1}{2t^\nu} \sum_{n=0}^{\infty} \frac{(-x/t^\nu)^n}{n! \Gamma(-\nu n + 1 - \nu)}. \quad (9)$$

The formulas (8)-(9) can be used to give a new proof of the known fact that the support of the Green function G_c is not compact on the real line for each $t > 0$, i.e. that a response of the time-fractional diffusion-wave equation with $1/2 < \nu < 1$ to a localized disturbance spreads infinitely fast. Indeed, because the Wright function (7) is an analytical function for $\lambda > -1$ and $\mu > 0$ (see e.g. [Gorenflo et al. (1999)]) that is not identically equal to zero ($W_{\lambda,\mu}(0) = 1/\Gamma(\mu) > 0$), the set of its zeros is discrete and has no finite limit points in the complex plane and thus on the real line. This means that the support of the function $G_c(x, t; \nu) = W_{-\nu,1-\nu}(-x/t^\nu)$ is not compact on the real line for each $t > 0$. This fact was proved in [Fujita (1990)] using the representation (9) of G_c as a function depending on the similarity variable and the asymptotics of this function.

Finally we mention another integral representation of the Green function G_c that can be found e.g. in [Mainardi et al. (2001)] or [Povstenko (2008)]:

$$G_c(x, t; \nu) = \frac{1}{\pi} \int_{0}^{\infty} E_{2\nu}(-\kappa^2 t^{2\nu}) \cos(x\kappa) d\kappa, \quad (10)$$
where $E_\alpha(z)$ is the Mittag-Leffler function defined by the series

$$E_\alpha(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)}, \quad \alpha > 0.$$ \hspace{1cm} (11)

The representation (10) can be easily obtained by transforming the Cauchy problem for the equation (1) into the Laplace-Fourier domain using the known formula

$$\mathcal{L} \left\{ \frac{d^n u(t)}{dt^n}; s \right\} = s^n \mathcal{L} \{ u(t); s \} - \sum_{k=0}^{n-1} \frac{u^{(k)}(0^+)}{s^{\alpha-k}} s^{\alpha-1-k}, \quad n - 1 < \alpha \leq n,$$ \hspace{1cm} (12)

with $n \in \mathbb{N}$, for the Laplace transform of the Caputo fractional derivative. This formula together with the standard formulas for the Fourier transform of the second derivative and of the Dirac δ-function lead to the representation

$$\hat{\tilde{G}}_c(\kappa, s, \nu) = \frac{s^{2\nu-1}}{s^{2\nu} + \kappa^2}, \quad \nu = \alpha/2$$ \hspace{1cm} (13)

of the Laplace-Fourier transform $\hat{\tilde{G}}_c$ of the Green function \mathcal{G}_c. Using the well-known Laplace transform formula (see e.g. [Podlubny (1999)])

$$\mathcal{L} \{ E_\alpha(-t^\alpha); s \} = \frac{s^{\alpha-1}}{s^{\alpha} + 1}$$

and applying to the R.H.S of the formula (13) first the inverse Laplace transform and then the inverse Fourier transform we obtain the integral representation (10) if we take into consideration the fact that the Green function of the Cauchy problem is an even function of x that follows from the formula (13).

2.3 Maximum points of the Green function \mathcal{G}_c

In Fig. 1, several plots of the Green function $\mathcal{G}_c(x; \nu) := \mathcal{G}_c(x, 1; \nu)$ for different values of the parameter ν ($\nu = \alpha/2$) are presented (see the next section for description of numerical algorithms and programs used to calculate the numerical values of the Green function). It can be seen that each Green function has an only maximum and that location of the maximum point changes with the value of ν.
In Fig. 2, the Green function $G_c(x; t; \nu)$ is plotted for $\nu = 0.875$ from different perspectives. The plots show that both the location of maximum and the maximum value depend on the time $t > 0$: whereas the maximum value decreases with the time (Fig. 2, right), the x-coordinate of the maximum location becomes even larger (Fig. 2, left).

The aim of this subsection is to present some analytical formulas that describe both the location of the maximum of the Green function G_c, its value, and their interconnection, as well as the propagation speed of the maximum location.

In the paper Fujita (1990), an elegant proof of the fact that the Green function $G_c(x; t; \nu)$ of the Cauchy problem takes its maximum at the point $x_*(t, \nu) = \pm c_\nu t^\nu$ for each $t > 0$, where $c_\nu > 0$ is a constant determined by ν, $1/2 < \nu < 1$, has been presented. His reasoning was as follows: Let us consider the Green function at the point $t = 1$ and for $x \geq 0$: $G_c(x; \nu) := G_c(x, 1; \nu)$. For $1/2 < \nu < 1$ the function $G_c(x; \nu)$ is a stable pdf and the stable pdfs are all unimodal (see e.g. Chernin and Ibragimov (1961)). This means that $G_c(x; \nu)$ takes its maximum at a certain point $x_{**} = c_\nu$ with a
constant c_{ν} depending on ν. It follows from the formula (6) that

$$G_c(x;\nu) = \frac{1}{2} M_\nu(x)$$

(14) and

$$G_c(x,t;\nu) = \frac{t-\nu}{2} M_\nu(xt^{-\nu}) = t^{-\nu} G_c(xt^{-\nu};\nu).$$

(15)

Because the function $G_c(x;\nu)$ takes its maximum at the point $x_{**} = c_{\nu}$, the function $G_c(x,t;\nu)$ has to take its maximum at the point x_* that satisfies the relation $x_* t^{-\nu} = x_{**} = c_{\nu}$ due to the formula (15). Thus the maximum point of the Green function $G_c(x,t;\nu)$ is moving with the time according to the formula

$$x_*(t) = c_{\nu} t^\nu, \quad \nu = \alpha/2.$$

(16)

As we see, the main argument in Fujita’s proof is dependence of the Green function from the similarity variable $xt^{-\nu}$. This argument can be used to give an analytical proof of the relation (16) following an idea presented in [Povstenko (2008)]. It should be noted that derivation of (16) given in [Povstenko (2008)] is based on the integral representation (10) and contains some divergent integrals that should be interpreted in one or another generalized sense. To avoid this, we present here another proof of (16) based on the representation (9) of the the Green function via the Mainardi function and not on the integral representation (10).
Because the Mainardi function M_ν is an analytical function for $\nu < 1$ as a particular case of the Wright function and because of (9), there exist partial derivatives of the Green function $G_c(x, t; \nu)$ of arbitrary orders for $t > 0, x > 0$ and we can use the standard analytical method for finding its extremum points. We first fix a value $t > 0$ and look for the critical points of the Green function $G_c(x, t; \nu)$ that are determined as solutions to the equation

$$\frac{\partial}{\partial x} G_c(x, t; \nu) = \frac{t^{-2\nu}}{2} M'_\nu(x t^{-\nu}) = 0$$

or to the equation

$$M'_\nu(x t^{-\nu}) = 0.$$

We are interested in a function $x_* = x_*(t)$ that for each $t > 0$ defines a solution to the equation (18). The equation (18) can be interpreted as an implicit function that determines the function $x_* = x_*(t)$ we are looking for. The time-derivative of $x_*(t)$ can be found with a standard formula for the derivative of an implicit function:

$$\frac{dx_*}{dt} = x'_*(t) = -\frac{M'_\nu(x t^{-\nu})}{t^{-\nu} \nu M''_\nu(x t^{-\nu})} \bigg|_{x=x_*} = \nu \frac{x_*}{t}.$$

We thus obtained a simple differential equation for $x_*(t)$ with the solution $x_*(t) = Ct^\nu$, where $C = x_*(1) = c_\nu$ that is in accordance with the formula (16). It is known that for $\nu = 1/2$ (diffusion equation) $c_\nu = 0$ (the Green function takes its maximum at the point $x = 0$ for every $t \geq 0$), whereas for $\nu = 1$ (wave equation) $c_\nu = 1$. In Section 3, results of the numerical evaluation of c_ν, $1/2 < \nu < 1$ are presented and discussed.

Let us mention that the same method can be applied for any twice-differentiable function that depends on the similarity variable $x t^{-\nu}$ or another one in the form of a product of the power functions in x and t. As it is known, the Green functions for many linear partial differential equations of fractional order possess this property and can be investigated by the method presented above. In particular, we refer to the recent paper [Luchko(2012)], where the maximum location of the Green function for the fractional wave equation has been investigated. It is worth mentioning that for the fractional wave equation the constant c_ν could be determined in analytical form in terms of some elementary functions.
As mentioned in [Fujita (1990)], the maximum point of the Green function $G_c(x,t;\nu)$ propagates for $t > 0$ with a finite speed $v(t,\nu)$ that is determined by

$$v(t,\nu) := x'_\nu(t) = \nu c_\nu t^{\nu-1}. \quad (19)$$

This formula shows that for every ν, $1/2 < \nu < 1$ the propagation speed of the maximum point of the Green function G_c is a decreasing function in t that varies from $+\infty$ at time $t = 0+$ to zero as $t \to +\infty$. For $\nu = 1/2$ (diffusion) the propagation speed is equal to zero because of $c_{1/2} = 0$ whereas for $\nu = 1$ (wave propagation) it remains constant and is equal to $c_1 = 1$.

In Fig. 3, some plots of the propagation speed of the maximum point of the Green function G_c are given for different values of ν. For large values of t, the smaller the value of ν is, the smaller is the propagation speed for the same time instant. Conversely, according to the formula (19), the smaller the value of ν is, the bigger is the propagation speed for the same time instant.
when $t \to 0^+$. For example, the propagation speed for $\nu = 0.505$ becomes greater than the one for $\nu = 0.55$ for $t < 3.04E - 24$ (of course, this effect is not visible in the plot of Fig. 3).

Now we determine the maximum value of $G_c(x, t; \nu)$ in dependence of time. Let us denote the maximum value by $G^*_c(t; \nu)$ and find it by using the integral representation (10):

$$G^*_c(t; \nu) := G_c(x^*(t), t; \nu) = \frac{1}{\pi} \int_0^\infty E_{2\nu} \left(-\kappa^2 t^{2\nu} \right) \cos(c_\nu t^{\nu} \kappa) d\kappa. \tag{20}$$

The variables substitution $\tau = t^{\nu} \kappa$ reduces the integral in (20) to the form

$$G^*_c(t; \nu) = \frac{t^{-\nu}}{\pi} \int_0^\infty E_{2\nu} \left(-\tau^2 \right) \cos(c_\nu \tau) d\tau, \tag{21}$$

i.e. the maximum value $G^*_c(t; \nu)$ of the Green function can be written in the form

$$G^*_c(t; \nu) = m_\nu t^{-\nu}, \tag{22}$$

$$m_\nu = \frac{1}{\pi} \int_0^\infty E_{2\nu} \left(-\tau^2 \right) \cos(c_\nu \tau) d\tau. \tag{23}$$

Moreover, it follows from the formula (6) that

$$G^*_c(t; \nu) = G_c(x^*(t), t; \nu) = \frac{1}{2t^{\nu}} M_\nu(c_\nu), \tag{24}$$

with the Mainardi function M_ν, so that we get the relation

$$m_\nu = \frac{1}{2} M_\nu(c_\nu).$$

It is well known (see (4) and (5)) that $m_\nu = \frac{1}{2\sqrt{\pi}}$ for $\nu = 1/2$ (diffusion equation) and $m_\nu \to +\infty$ as $\nu \to 1$ (wave equation). For $1/2 < \nu < 1$, the value of m_ν can be numerically evaluated (see Section 3 for details).

It follows from the relations (16) and (22) or (24) that the product

$$G^*_c(t; \nu) \cdot x^*(t) = c_\nu m_\nu, \quad 0 < t < \infty \tag{25}$$

is a constant that depends only on ν or on the order α of the fractional derivative in the equation (1), i.e., that the maximum locations and the corresponding maximum values specify a certain hyperbola for a fixed value
Figure 4: Maximum locations and maximum values of $G_c(x, t; \nu)$ for a fixed value of ν: Plots of the parametric curve $(x^*_c(t), G^*_c(t; \nu))$, $0 < t < \infty$ for different values of ν in the lin-log scale.

of α and for $0 < t < \infty$. This fact easily follows from the scaling property of the Green function (see (24)). Let us note that the product $G^*_c(t; \nu) \cdot x^*_c(t)$ is equal to zero in the case $\nu = 1/2$ (diffusion equation) because the maximum point is always located at the point $x^*_c = 0$ and to infinity in the case $\nu = 1$ (wave equation) because the maximum value is always equal to infinity. The product values for $1/2 < \nu < 1$ are finite and lying between these extreme values that justifies the fact that the time-fractional diffusion-wave equation interpolates between the diffusion and the wave equations.

In Fig. 4, we give some plots of the parametric curve $(x^*_c(t), G^*_c(t; \nu))$ for $0 < t < \infty$ that is in fact a hyperbola for different values of ν. The vertex of the hyperbola tends to the point $(0, 0)$ when ν tends to $1/2$ (diffusion equation) and to infinity when $\nu \to 1$ (wave equation).

Another interesting and important curve is presented in Fig. 5, where the product $c_\nu m_\nu$ of the maximum location and the maximum value of the Green function $G_c(x; \nu)$ is plotted for $1/2 < \nu < 1$. As we have seen above, the constants c_ν (maximum location of $G_c(x; \nu)$) and m_ν (maximum value of $G_c(x; \nu)$) are decisive for the behaviour of the Green function $G_c(x; t; \nu)$ for all $t > 0$ because the maximum locations and values of this function can be determined via these constants for any time point $t > 0$ (see the formulas
Figure 5: Product of maximum locations and maximum values of $G_c(x,t;\nu)$ for a fixed time $t = 1$: Plot of $c_\nu m_\nu$, $1/2 < \nu < 1$ in the lin-log scale

As we can see in Fig. 5, the product $c_\nu m_\nu$ is a monotonically increasing function that takes values between 0 (diffusion equation) and $+\infty$ (wave equation). For $0.56 < \nu < 0.99$, the product varies between 0.1 and 10, i.e. it changes very slowly on this interval. For $\nu \to 1/2$ and $\nu \to 1$ the product $c_\nu m_\nu$ goes to 0 (diffusion equation) and to $+\infty$ (wave equation), respectively, very fast.

3 Numerical algorithms and results

In the previous section, some analytical results regarding the location of the maximum of the Green function G_c, its maximum value, and the propagation speed of the maximum point as well as the plots in Fig. 1 - Fig. 5 were presented. Because the analytical formulas derived in the previous section contain the constants c_ν and m_ν that we could not determine in analytical form, we used some numerical algorithms and MATLAB programs for their calculation. These algorithms along with some numerical results and plots are presented in this section.
To start with, we first discuss algorithms for numerical evaluation of the Green function G_c. Because G_c is a particular case of the Wright function (see formula (8)), one can of course use the algorithms for the numerical evaluation of the Wright function suggested in [Luchko (2008)] to evaluate the Green function G_c.

Another possibility to calculate the Green function G_c would be to employ its connection with the stable densities and then to use the existing routines for their numerical calculation (see e.g. [Liang and Chen (2013)] or [Nolan (1997)]). In fact, for $x > 0$, $t > 0$ the Green function G_c is connected with the extremal stable density $L_{1/\nu}^{1/\nu - 2}$ (see the formulas (4.4) and (4.34) in [Mainardi et al. (2001)]):

$$
G_c(x, t; \nu) = \frac{1}{2\nu} t^{-\nu} L_{1/\nu}^{1/\nu - 2} \left(\frac{x}{t^{1/\nu}} \right),
$$

(26)

where $L_\alpha^\theta(x)$ is a stable density (in the Feller parameterization) with the characteristic function given by

$$
\hat{L}_\alpha^\theta(\kappa) = \exp \left(-|\kappa|^\alpha e^{i(\text{sign } \kappa) \theta \pi/2} \right), \quad 0 < \alpha \leq 2, \ |\theta| \leq \min \{\alpha, 2 - \alpha\}.
$$

One more approach to numerical calculation of G_c that was employed to produce our plots for this paper is to use the integral representation (10). To calculate the Mittag-Leffler function E_α in (10), we applied the algorithms suggested in [Gorenflo et al. (2002)] and the MATLAB programs that implement these algorithms and are available from [Matlab File Exchange (2005)]. Because the Mittag-Leffler function has for $0 < \alpha < 2$ the asymptotics (see e.g [Podlubny (1999)])

$$
E_\alpha(-x) = \frac{1}{x \Gamma(1 - \alpha)} + O(x^{-2}), \ x \to +\infty,
$$

(27)

we can estimate the length of the finite integration interval in the improper integral (10) that allows to reach the desired accuracy ϵ. Indeed, let $A >> t^{-\nu}$ and

$$
\frac{1}{\epsilon \pi |\Gamma(1 - 2\nu)|} < A.
$$

Then the estimate

$$
|E_{2\nu}(-\kappa^2 t^{2\nu})| \leq \frac{2}{\kappa^{2\nu} |\Gamma(1 - 2\nu)|}
$$

16
holds true for $\kappa > A$ because of the asymptotic expansion (27) and we have
\[
\frac{1}{\pi} \left| \int_{A}^{\infty} E_{2\nu} \left(-\kappa^2 t^{2\nu} \right) \cos(x\kappa) \, d\kappa \right| \leq \int_{A}^{\infty} \frac{2}{\pi \kappa^2 t^{2\nu} |\Gamma(1-2\nu)|} \, d\kappa = \frac{1}{A} \frac{2t^{-2\nu}}{\pi |\Gamma(1-2\nu)|} < \epsilon.
\]
The integral
\[
\frac{1}{\pi} \int_{0}^{A} E_{2\nu} \left(-\kappa^2 t^{2\nu} \right) \cos(x\kappa) \, d\kappa
\]
with a finite value of A can then be calculated using any of the known quadrature formulas. If A satisfies the conditions mentioned above, we get the estimate
\[
\left| \frac{1}{\pi} \int_{0}^{A} E_{2\nu} \left(-\kappa^2 t^{2\nu} \right) \cos(x\kappa) \, d\kappa - G_c(x, t; \nu) \right| < \epsilon
\]
with the desired accuracy ϵ that was used for numerical evaluation of the Green function G_c. The results of the numerical evaluation of the Green function G_c for the time $t = 1$ and for different values of ν are presented in Fig. 1. In Fig. 2, 3D-plots of the Green function are given for $\nu = 0.875$, $1 \leq t \leq 2$, and $0 \leq x \leq 3$ that illustrate a typical behavior of G_c. As can be seen in Fig. 1 and as expected, $G_c(x, 1; \nu)$ has a unique maximum for each $1/2 \leq \nu \leq 1$ and the maximum location changes with ν. Surprisingly, the maximum location does not always lie between zero (maximum location for the diffusion equation, $\nu = 1/2$) and one (maximum location for the wave equation, $\nu = 1$). Below we consider this phenomenon in more detail.

As we have seen in the previous section (formula (16)), the location of the maximum point of the Green function $G_c(x, t; \nu)$ depends on the constant c_ν, i.e. on the location of its maximum for $t = 1$. It is therefore very important to calculate c_ν numerically and to visualize the dependence of c_ν on ν, $1/2 \leq \nu \leq 1$. Because we already know how to calculate the Green function $G_c(x, 1; \nu)$ and because it possesses a unique maximum point $x_* = c_\nu$, it is an easy task to find the maximum location e.g. with the MATLAB Optimization Toolbox. The results of the calculations are presented in Fig.6.

Let us note that in [Nolan (1997)] the mode location of the stable densities $f(x; \alpha, \beta)$ (in the Nolan parameterization) was numerically calculated and plotted for $0 < \alpha \leq 2$ and some fixed values of β, $-1 \leq \beta \leq 1$. In the case of the Green function G_c, the parameters of the corresponding stable density are connected to each other (see (26)), so that the results presented in Fig.6 are different from ones given in [Nolan (1997)].
Fig. 6 shows that the curve $c_{\nu} = c_{\nu}(\nu)$ has a maximum located at the point $\nu \approx 0.85$. The value of the maximum is approximately equal to 1.28. It is interesting to note that for $0.69 \leq \nu \leq 1$ the value of c_{ν} is greater than or equal to one. In Fig. 6 we also present results of numerical evaluation of the maximum value m_{ν} of the Green function $G_c(x,t;\nu)$ at the time $t = 1$ as function of $\nu, \frac{1}{2} \leq \nu < 1$. It follows from (22) that the constant m_{ν} determines the maximum value of $G_c(x,t;\nu)$ at any time $t > 0$. For numerical calculation of m_{ν}, the formula (23) was used. As expected, m_{ν} tends to infinity as ν tends to 1 that corresponds to the case of the wave equation. Another interesting feature of the curve $m_{\nu} = m_{\nu}(\nu)$ that can be seen in Fig. 6 is that m_{ν} is first monotonically decreasing and then starts to increase. The minimum location of $m_{\nu} = m_{\nu}(\nu)$ is at $\nu \approx 0.61$ and the minimum value is nearly equal to 0.25. Whereas m_{ν} changes very slowly on the interval $0 \leq \nu < 0.95$, it starts to rapidly grow in a small neighborhood of the point $\nu = 1$. It should be noted that despite of the fact that the curves $m_{\nu} = m_{\nu}(\nu)$ and $c_{\nu} = c_{\nu}(\nu)$ are not monotone and possess a minimum and a maximum, respectively, the product $c_{\nu} m_{\nu}$ is a monotone increasing function for all $\nu, \frac{1}{2} \leq \nu \leq 1$ (see Fig. 5).
Acknowledgements

The first named author is grateful to National Institute of Nuclear Physics (INFN) of Italy for financial support of his visit to the University of Bologna in December 2011. The authors appreciate constructive remarks and suggestions of the referees that helped to improve the manuscript.

References

[Buckwar and Luchko (1998)] Buckwar, E. and Luchko, Yu. (1998). Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 227, 81–97.

[Chen and Holm(2003)] Chen, W. and Holm, S. (2003). Modified Szabo’s wave equation models for lossy media obeying frequency power-law, J. Acoust. Soc. Amer. 114 (5), 2570–2574.

[Chen and Holm(2004)] Chen, W. and Holm, S. (2004). Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency, J. Acoust. Soc. Amer. 115 (4), 1424–1430.

[Chernin and Ibragimov(1961)] Chernin, K.E. and Ibragimov, I.A. (1961). On the unimodality of stable laws, Theor. Probab. Appl. 4, 417–419.

[Engler (1997)] Engler, H. (1997). Similarity solutions for a class of hyperbolic integrodifferential equations. Differential Integral Eqns 10, 815–840.

[Fujita (1990)] Fujita, Y. (1990). Integrodifferential equation which interpolates the heat equation and the wave equation, I, II. Osaka J. Math. 27, 309–321, 797–804.

[Gorenflo and Rutman (1994)] Gorenflo, R. and Rutman, R. (1994). On ultraslow and intermediate processes, in: P. Rusev, I. Dimovski, V. Kiryakova (Editors), Transform Methods and Special Functions, Sofia, Science Culture Technology, Singapore, 61-81.

[Gorenflo et al. (1999)] Gorenflo, R., Luchko, Yu., and Mainardi, F. (1999). Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, 383–414.
[Gorenflo et al. (2000)] Gorenflo, R., Luchko, Yu., and Mainardi, F. (2000). Wright functions as scale-invariant solutions of the diffusion-wave equation. *J. Comput. Appl. Math.* 118, 175–191.

[Gorenflo et al. (2002)] Gorenflo, R., Loutchko, J., and Luchko, Yu. (2002). Computation of the Mittag-Leffler function and its derivatives. *Fract. Calc. Appl. Anal.*, 5, 491-518.

[Kochubei (1989)] Kochubei, A.N. (1989). A Cauchy problem for evolution equations of fractional order. *Differential Equations* 25, 967–974. [English translation from the Russian Journal *Differentsial’nye Uravneniya*]

[Kochubei (1990)] Kochubei, A.N. (1990). Fractional order diffusion. *Differential Equations* 26, 485–492. [English translation from the Russian Journal *Differentsial’nye Uravneniya*]

[Kreis and Pipkin (1986)] Kreis, A. and Pipkin, A.C. (1986). Viscoelastic pulse propagation and stable probability distributions. *Quart. Appl. Math.* 44, 353–360.

[Liang and Chen (2013)] Liang, Y. and Chen, W. (2013). A survey on computing Levy stable distributions and a new MATLAB toolbox, *Signal Processing* 93, 242–251.

[Luchko and Gorenflo (1998)] Luchko, Yu. and Gorenflo, R. (1998). Scale-invariant solutions of a partial differential equation of fractional order. *Fract. Calc. Appl. Anal.* 1, 63–78.

[Luchko (2008)] Luchko, Yu. (2008). Algorithms for evaluation of the Wright function for the real arguments’ values. *Fract. Calc. Appl. Anal.*, 11, 57–75.

[Luchko (2012)] Luchko, Yu. (2012). Fundamental solution of the fractional wave equation, its properties, and interpretation, *Forum der Berliner mathematischen Gesellschaft* 23, 65–89. E-print arXiv:1205.1199v2[math-ph].

[Mainardi (1994)] Mainardi, F. (1994). On the initial value problem for the fractional diffusion-wave equation, in: S. Rionero and T. Ruggeri (Editors), *Waves and Stability in Continuous Media*, 246–251, World Scientific, Singapore.
[Mainardi (1996a)] Mainardi, F. (1996a). Fractional relaxation-oscillation and fractional diffusion-wave phenomena, *Chaos, Solitons & Fractals* 7, 1461–1477.

[Mainardi (1996b)] Mainardi, F. (1996b). The fundamental solutions for the fractional diffusion-wave equation, *Appl. Math. Lett.* 9, 23–28.

[Mainardi (2010)] Mainardi, F. (2010). *Fractional Calculus and Waves in Linear Viscoelasticity*. Imperial College Press, London.

[Mainardi (2011)] Mainardi, F. (2011). Fractional calculus in wave propagation problems. *Forum der Berliner Mathematischer Gesellschaft* 19, 20–52. E-print arXiv:1202.0266[math-ph].

[Mainardi and Tomirotti (1995)] Mainardi, F. and Tomirotti, M. (1995). On a special function arising in the time fractional diffusion-wave equation, in: P. Rusev, I. Dimovski, and V. Kiryakova, (Editors), *Transform Methods and Special Functions*, Science Culture Technology Publ., Singapore, 171–183.

[Mainardi and Tomirotti (1997)] Mainardi, F. and Tomirotti, M. (1997). Seismic pulse propagation with constant Q and stable probability distributions, *Annali di Geofisica* 40, 1311–1328. E-print arXiv:1008.1341[math-ph].

[Mainardi et al. (2001)] Mainardi, F., Luchko, Yu., and Pagnini, G. (2001). The fundamental solution of the space-time fractional diffusion equation, *Fract. Calc. Appl. Anal.* 4, 153–192. E-print arXiv:cond-mat/0702419.

[Näsholm and Holm (2013)] Näsholm, S.P.N. and S. Holm, S. (2013). On a fractional Zener elastic wave equation, *Fract. Calc. Appl. Anal.* 16 (1), 26–50. E-print arXiv:1212.4024[math-ph].

[Nolan (1997)] Nolan, J.P. (1997). Numerical calculation of stable densities and distribution functions, *Comm. Statist. Stochastic Models* 13, 759–774.

[Pipkin (1986)] Pipkin, A.C. (1986). *Lectures on Viscoelastic Theory*, Springer Verlag, New York.
[Podlubny (1999)] Podlubny, I. (1999). *Fractional Differential Equations*. Academic Press, San Diego.

[Povstenko (2008)] Povstenko, J. (2008). The distinguishing features of the fundamental solution to the diffusion-wave equation. *Sci. Res. Inst. Math. Comp. Sci., Czestochowa Univ. Techn.* 7(2), 63–70.

[Prüss (1993)] Prüss, J. (1993). *Evolutionary Integral Equations and Applications*, Birkhauser Verlag, Basel, 1993.

[Schneider and Wyss (1989)] Schneider, W.R. and Wyss, W. (1989). Fractional diffusion and wave equations. *J. Math. Phys.* 30, 134–144.

[Wyss (1986)] Wyss, W. (1986). The fractional diffusion equation, *J. Math. Phys.* 27, 2782–2785.

[Matlab File Exchange (2005)] Matlab File Exchange (2005). Matlab-Code that calculates the Mittag-Leffler function with desired accuracy. Available for download at www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function.