Critical Repetition Rates for Perceptual Segregation of Time-Varying Auditory, Visual and Vibrotactile Stimulation

Carlos Jurado1,*, Marcelo Larrea1,**, David Rosero1, Juan Vizuete1,*** and Torsten Marquardt2,****

1 Escuela de Ingeniería en Sonido y Acústica, Universidad de Las Américas, Avenue Granados and Colimes, EC170125, Ecuador
2 UCL Ear Institute, University College London, 332 Grays Inn Road, London, WC1X 8EE, UK

Received 14 April 2021; accepted 21 July 2021

Abstract

What sound quality has led to exclude infrasound from sound in the conventional hearing range? We examined whether temporal segregation of pressure pulses is a distinctive property and evaluated this perceptual limit via an adaptive psychophysical procedure for pure tones and carriers of different envelopes. Further, to examine across-domain similarity and individual covariation of this limit, here called the critical segregation rate (CSR), it was also measured for various periodic visual and vibrotactile stimuli. Results showed that sequential auditory or vibrotactile stimuli separated by at least ~80–90 ms (~11–12-Hz repetition rates), will be perceived as perceptually segregated from one another. While this limit did not statistically differ between these two modalities, it was significantly lower than the ~150 ms necessary to perceptually segregate successive visual stimuli. For the three sensory modalities, stimulus periodicity was the main factor determining the CSR, which apparently reflects neural recovery times of the different sensory systems. Among all experimental conditions, significant within- and across-modality individual CSR correlations were observed, despite the visual CSR (mean: 6.8 Hz) being significantly lower than that of both other modalities. The auditory CSR was found to be significantly lower than the frequency above which sinusoids start to elicit a tonal quality (19 Hz; recently published for the same subjects). Returning to our initial question, the latter suggests that the cessation of tonal quality — not the segregation of pressure fluctuations — is the perceptual quality that has led to exclude infrasound (sound with frequencies < 20 Hz) from the conventional hearing range.

* ORCID: 0000-0003-2799-8977
** ORCID: 0000-0002-7026-6926
*** ORCID: 0000-0001-6571-992X
**** To whom correspondence should be addressed. E-mail: t.marquardt@ucl.ac.uk
Keywords
Temporal processing, temporal segregation, perception, sensory modality, auditory, visual, vibrotactile, infrasound

1. Introduction

Although humans are able to hear sounds with frequencies well down to a few Hertz, the frequency range of hearing is often — misleadingly — reported to span 20 Hz–20 kHz (for a review, see Møller & Pedersen, 2004). Sounds with frequencies < 20 Hz have even been given their own term, *infrasound*, to distinguish them from those in the higher ‘audible’ or ‘audio’ range. Although *infrasound* has become a useful label, it is not quite clear what perceptual sound quality or combination of them has led to exclude it from the conventional hearing range. On the one hand, it has been reported that for repetition rates below about 20 Hz, the sensation of pitch ceases (Guttman & Pruzansky, 1962; Warren & Bashford, 1981). On the other hand, reports have also described infrasound as having a ‘discontinuous’ perceptual quality (Jurado et al., 2020; Møller & Pedersen, 2004).

This notion of perceptual segregation at low repetition rates is shared among different sensory modalities. For example, if motion picture frames are presented too slowly, the illusion of continuity/flow is broken. With the initial aim of identifying whether perceptual discontinuity is a key quality that sets infrasound apart from the conventional hearing range, we determined the upper cutoff frequency of this perceptual quality for a group of subjects using pure tones, and compared it to that for amplitude-modulated auditory stimuli. In addition, we determined this frequency limit also for various visual and vibrotactile stimuli, to examine its crossmodal similarity as well as across-domain individual correlations.

In common for the abovementioned sensory systems, as the frequency of a periodic stimulus is decreased, its perceived quality changes from (a) *continuous* to that of (b) *flicker/flutter*, and at very low rates (c) separate repeating pulses (i.e., single periods) can be clearly distinguished from one another and even be counted; i.e., they will be perceived as segregated events (see Fig. 1). Much work (see below) has been done on vision, auditory and to some extent somatosensory perception to describe the transition between (a) and (b), a limit that has been called the critical flicker-fusion frequency (CFF) in vision and which demarks the upper limit of roughness/flutter perception in audition and somatosensation. In contrast, relatively little focus has been given to the transition between (b) and (c), a demarcation which will be referred to in this work as the critical segregation rate (CSR). It is defined as the repetition rate below which the pulses constituting a periodic stimulus can be segregated as separate perceptual events. In other words, below the CSR, each stimulus period will lead to a sensory event perceived as clearly separated from the previous and the next one. Above this limit, even though a *flicker/flutter/roughness* quality will be perceived, periodic pulses will...
appear to be merged into one long stimulus. Surprisingly, although such a limit for temporal-event segregation might reflect key temporal-processing properties of perception, to the authors’ knowledge no study has evaluated the CSR systematically and in more than one sensory modality.

In the auditory domain, amplitude-modulated sounds that fluctuate at frequencies between about 15 to 300 Hz are perceived to have a roughness quality (e.g. see Fastl & Zwicker, 2007, Chapter 11). While this quality disappears above ~300 Hz, for modulation frequencies reportedly below 12–20 Hz, the perceptual quality changes to that of fluctuation strength, i.e., the sound envelope can be tracked (Daniel, 2008; Fastl & Zwicker, 2007, Chapter 10). Although this sensation has a maximum at around 4 Hz (which is in remarkable match with the typical syllable rate of speech produced at a normal pace), this perceptual quality has been broadly attributed to modulations below 20 Hz (Fastl, 1983). We are, however, not aware of a specific study that measured the modulation frequency at which the percept of fluctuation strength transitions into a percept of roughness. At least for pure tones of very low frequency, it has been reported informally that below about 10 Hz, sound cycles can be perceived as ‘distinct pressure pulses’ and even be counted (Jurado et al., 2020; Møller & Pedersen, 2004). This agrees with early results by Lechelt (1975), who showed that a series of short sound clicks presented at low repetition rates (their highest rate was 8 Hz) can be counted with accuracy.

Also in somatosensory perception, varying the repetition rate of vibrotactile stimuli can lead to different perceptual qualities. Above modulation frequencies of ~100 Hz, vibrotactile stimuli are perceived as smooth while between about 10 to 50–80 Hz these adopt a flutter quality (Hwang & Choi, 2010; Park & Choi, 2011; Tan, 1996; Tan et al., 1999). For modulation frequencies ≤ 10 Hz, Park and Choi
(2011) found that amplitude-modulated vibrotactile stimulation (150-Hz carrier) produced instead a marked ‘pulse-like sensation’, which became less discernible above 10 Hz. We are, however, unaware of more systematic somatosensory studies of the CSR.

In vision, the CFF has been commonly used to evaluate the temporal resolution of the visual system and it is thought to reflect limitations in the encoding of time-varying luminance levels (Eisen-Enosh et al., 2017; Lakshminarayanan, 2012). While the CFF has been found to depend on several parameters (such as stimulus luminance, visual angle, light adaptation and age), typical reported values range ~30–50 Hz (Lakshminarayanan, 2012). In other words, if the peaks of a modulated light are separated by less than 20 ms, it will be indistinguishable from an unmodulated light. Although intensity modulations below 50 Hz can lead to the perception of flicker, successive modulation periods are not necessarily distinguished from one another as clearly separate/segregated visual events (Fig. 1). We are, however, unaware of systematic studies of the transition frequency to this perceptual quality for visual stimuli. At least for modulation frequencies below ~8 Hz, it has been found that single fluctuations in light intensity can be followed and numerosity studies have shown that fluctuation periods (i.e., single light flashes) can be counted (Lechelt, 1975; Philippi et al., 2008; albeit with a tendency to underestimate their number unless the repetition rate is lower than ~3 Hz). Other tasks that at least partly depend on the visual system’s temporal resolution, such as synchrony and binding judgements for visual pulse trains, have found a temporal limit of 5–9 Hz (Fujisaki & Nishida, 2010; see their result for within-attribute conditions).

In this work we evaluated the CSR, i.e., the transition frequency from the perception of segregated events to that of roughness/flicker/flutter, via an adaptive psychophysical procedure by asking subjects directly (and after each stimulus presentation) as to whether its series of periodic pulses were perceived as segregated or not. Periodic auditory, vibrotactile and visual stimuli were applied on a common subject group (n = 10). This allowed direct comparison of the CSR among the three sensory modalities, as well as to evaluate individual correlations across modalities.

2. Material and Methods

2.1. General Experiment Outline

Applying different types of periodic stimuli, temporal resolution was measured in human subjects for three sensory modalities: auditory, vibrotactile and visual. The target psychophysical parameter was the CSR. To track this limit, in the procedure described below the stimulus repetition rate was varied. This corresponded either to the frequency of sinusoidal waves, fundamental frequency of
square waves, the modulation frequency of sinusoidally amplitude-modulated (SAM) carriers, or the repetition rate of sinusoidal bursts. Figure 2 illustrates the stimuli used for each modality. For all conditions, the upper repetition rate of the stimulus was limited to 40 Hz, excepting the CFF measurements where it was increased to 65 Hz. All stimuli were 3000-ms long and are detailed below for each sensory modality.

The psychophysical tests were split into two sessions on different days: a training and a data-collection session. Each lasted ~2½ to 3 h, including breaks after every ~10 min of measurements and longer breaks between modalities. The data-collection session took place no more than three days after the training session. Measurements started with the visual tests, as instructions were more easily understood for this modality. They continued with the auditory tests (for practical reasons, as both of these tests were run in the audiometric cabin; see apparatus), and ended with the vibrotactile tests. Within a given sensory modality, the order of stimuli was randomized. Experiments were approved by the ethical committee of Universidad de Las Américas (approval code 2020-0626).

Figure 2. Waveforms of the different stimuli used in each modality: (a) Auditory-sinusoidal (b) Auditory-SAM (c) Sequence of auditory tone-pips (d) Vibrotactile-sinusoidal (e) Vibrotactile-square (f) Visual-sinusoidal modulation. For ease in visualization, the fine structure of the pulse-width modulation applied in the Arduino microcontroller has been omitted. (g) Visual-square modulation. Abbreviations shown in the panels are the same as those used in Fig. 3. For illustration purposes, all amplitudes were normalized and all stimuli have a 10-Hz repetition rate (two cycles are shown). SAM, sinusoidally amplitude-modulated.
2.2. Procedure

An adaptive one-up one-down, one-interval two-alternative-forced choice (1i-2-AFC) procedure was used, which started after the subject pressed any of the two pushbuttons on a response box. The procedure started with the highest frequency of 40 Hz, based on pilot tests that showed that this frequency was well above the CSRs of all modalities. Subjects were instructed to evaluate if periodic pulses forming the stimulus were perceived as segregated or not. If not, they pressed the left button (which led to a frequency decrease), while if pulses were perceived as segregated, they pressed the right button (which led to a frequency increase). In this manner, they crossed their CSR in both directions. This was done with decreasing step sizes (see below) as the run progressed. As general guidance, subjects were instructed to “think if they would be able to count” the periodic stimulus pulses. However, they were not instructed to count them (see Note 1). In a training session, subjects familiarized themselves with the different stimulus qualities in the range of repetition rates used.

A 6-Hz step size was used at the beginning, which decreased to 3 Hz after two reversals. After two more reversals, the step size was reduced to 1 Hz and remained there. After eight reversals with the latter step size were completed, the procedure stopped. The CSR for a given run was obtained from averaging the last six reversal frequencies. At least two runs per condition were measured. If their result differed by more than Δ (Hz), an additional run was performed. The CSR of the corresponding condition was obtained from averaging the CSRs from the two or three runs. The value of Δ was determined in the following manner: First, the absolute differences between first- and second-run CSR estimates were obtained from all available data up to that point in the experiment. (For the first subjects, differences were based on pilot data.) To identify outliers in the distribution of differences (denoting low reproducibility), the value of Δ corresponded to the third quartile (Q3) plus 1.5 interquartile ranges (Tukey, 1977). This estimate was updated as the experiment progressed and defined per sensory modality. By the end of the experiment, Δ was 2.4, 2.5, and 2.1 Hz for the auditory, vibrotactile and visual tests, respectively.

The procedure was implemented in MATLAB (The MathWorks, Inc., Natick, MA, USA), where responses as well as in-situ calibration levels were monitored (see below).

2.3. Critical Segregation Rate for Periodic Auditory Stimuli

The auditory CSR was measured for pure tones, SAM tones, and sequences of tone-pips. Peak amplitudes of all sound stimuli were equivalent to the peak amplitude of a 65-phon pure tone (according to Møller and Pedersen, 2004, for frequencies < 20 Hz and according to ISO-226, 2003, otherwise). In total, five sound-stimuli conditions were tested per subject, in random order.
2.3.1. **Stimuli**

Pure tones. Their 3000-ms duration included 200-ms cosine-squared ramps at start and end. To maintain the desired loudness level during measurements, the pure-tone levels were updated each time their frequency was varied (according to Møller & Pedersen, 2004, below 20 Hz, and according to ISO-226, 2003, otherwise).

SAM tones. These had a 100% modulation depth and carrier frequencies of 125 Hz and 1000 Hz were used.

Tone-pip trains. Each tone pip was a 24-ms Hanning-windowed sinusoid of either 125 Hz or 1000 Hz.

The auditory stimuli are illustrated in the leftmost column of Fig. 2.

2.3.2. **Apparatus**

Digital signals were created in MATLAB, and sent to a Fireface-802 audio interface (RME Audio AG, Haimhausen, Germany) for D/A conversion (24-bit, 48 kHz sampling frequency). The higher frequency stimuli (SAM tones and tone-pip trains) were generated by one of the two miniature transducers of an ER10C measurement system (Etymotics Research Inc., Elk Grove Village, IL, USA) that was connected directly to a line output of the audio interface. The pure tones (≤40 Hz) were produced by a DA270-8 10-inch aluminium-cone subwoofer (Dayton Audio, Springboro, OH, USA), driven directly by a headphone output of the audio interface. The speaker cone was enclosed tightly by an acrylic cover to enhance its low-frequency response (see e.g. a similar setup by Kühler et al., 2015). A narrow silicone tube (0.8 m in length, ~0.7 mm inner diameter) was inserted in a small opening of this cover and at the other end went through a piercing of the ER10C earplug (Etymotic 14A, B or C depending on ear-canal size), tightly fitted in the subject’s right ear. Experiments took place in an audiometric cabin, placed inside a double-walled sound-isolated room of the Acoustics Laboratory at Universidad de Las Américas.

2.3.3. **Calibration**

First, the transfer function of the ER10C microphone and receiver, as well as that of the sound source for the pure tones, were measured. This was done using a GRAS (Holte, Denmark) 46AZ ½-inch microphone set, connected to the audio interface. A 1.3 cm³ calibration cavity was used for this purpose and white noise (20 s) was used as measurement signal. The latter was split into fifty 400-ms long buffers, later averaged to improve the SNR. Responses were defined on an absolute sound pressure level (SPL) scale from recording a reference sound-calibrator signal [CESVA (Barcelona, Spain) CB006; 1000 Hz at 94 dB SPL].

Second, during the tests, *in-situ* responses of all sound sources were measured in the subject's ear at the beginning and subsequently after every other measurement (run) with the ER10C microphone. This allowed to compensate for
differences in sound pressure gain between the calibration cavity and the ear (and thus considered the SPL changes produced by different ear-canal volumes or possible earplug leaks). More details of these procedures are given in Jurado et al. (2017).

2.4. Critical Segregation Rate for Periodic Vibrotactile Stimuli

In this part of the experiment, subjects sat in a comfortable armchair (outside the cabin used for the auditory and visual tests) and had their right-hand index finger placed above a subwoofer's aluminium membrane (Prestige-L26RFX, 10-inch; SEAS, Oslo, Norway; driven directly by a headphone output of the Fireface-802 audio device), that was mounted in a 0.35-m² cabinet and placed ~30 cm below their shoulder. The two-pushbutton response box was fixed at a comfortable position so that they used their left hand to give their responses.

In order to maintain contact with the membrane, a double-sided tape was fixed to the speaker membrane (the only point of contact with the subject), at the position where the subject placed their index finger. To focus only on vibrotactile cues from the speaker displacement while avoiding auditory cues, the subject listened to white noise via headphones while the test was running. To prevent visual distraction, the subject’s eyes were covered by a sleeping mask. To indicate that a run had finished, a series of seven vibrotactile square-wave pulses at a rate of 1 Hz were applied following their last response in a run.

Two stimulus types were used: (a) sinusoids and (b) square waves (Note 2) (Fig. 2d, e). The membrane displacement was approximately frequency-independent in the relevant range of the procedure (3–40 Hz), presenting for both stimulus types an average peak value of ~0.4 ±0.05 (SD) mm (measured with a type 352c34 accelerometer connected to a NTI-XL2 vibrometer (NTi Audio, Tigard, OR, USA); the accelerometer was fixed with wax at the position where the finger was placed).

2.5. Critical Segregation Rate for Periodic Visual Stimuli

Visual CSRs were measured in a binocular condition. A green light-emitting diode (LED; through-hole, diffuse, 5-mm size, wavelength: 565 nm, 4 mcd), controlled with an Arduino UNO (Arduino, Somerville, MA, USA) microcontroller was used. Subjects sat facing the LED, inside the audiometric cabin. The LED’s height was adjusted with a holder to be in front of the glabella (~0° angle), with a distance between LED and glabella of ~0.5 m. At this distance, the 5-mm LED has a visual angle of ~0.6°. Responses were delivered using two pushbuttons in a response box. In the experiment, light intensity was varied at a frequency according to the procedure described above. Two types of light intensity modulation were used (a) sinusoidal and (b) square-wave. In (a), the pulse-width modulation feature of Arduino (analogWrite function, which uses an 8-bit resolution and a 490-Hz update frequency) was used to approximate a sinusoidal waveform. The light started (and ended) at a modulation minimum and a 100% modulation depth
was used (Fig. 2f). In (b), intensity modulation was achieved by turning the LED’s voltage (using the *digitalWrite* function of Arduino) *on* during half of the cycle and *off* during the other half (Fig. 2g). The Arduino microcontroller was controlled by MATLAB, which also was used to record the subject’s responses. Timing accuracy of the electrical signal was verified with an oscilloscope. Gamma calibration of the LED was not performed.

Although pilot tests by two subjects with room lights switched on did not reveal an effect of lighting conditions, the task was deemed easier with the room lights off. Thus, the lights of the audiometric cabin and external laboratory room were turned off and there was only minor background illumination produced by the control-PC screen (outside the cabin and facing in the opposite direction).

Control tests were performed to assess possible effects of the stimulus’ luminous intensity on the visual CSR. Besides the original 4-mcd LED, same-size and colour LEDs of 1000 mcd and 16,000 mcd were used. These tests were performed in a single (and separate) session on a subset of five participants.

An additional control test was performed on four subjects, where the CSR as well as the CFF were measured on the same day for two conditions: (1) with the LED at the original distance (~0.5 m, visual angle ~0.6°) and (2) with a distance between LED and glabella of ~0.25 (m), which produced a visual angle about twice the original. For the CFF measurement, in a 1i-2-AFC task subjects now had to decide whether the stimulus was perceived as continuous/smooth or if flicker was perceived. In case of the former stimulus quality, they pressed the left button (resulting in a frequency decrease), while they pressed the right button (resulting in a frequency increase) if flicker was perceived. Other aspects of the method were the same as described in section 2.2. The control measurements were made with the square-wave modulation only.

2.6. Subjects

Ten subjects, one female and nine males, aged 25 to 43 years (mean: 34 years) participated in the experiments. Subjects had normal tympanometry (ear-canal pressure between −20 and +20 daPA) and normal audiometric thresholds (<15 dB hearing level in the range 125–4000 Hz) according to a clinical pure-tone audiometry (British Society of Audiology, 2018). Their hearing threshold for a 3000-ms long 20-Hz pure tone was measured with a two-interval 2-AFC adaptive procedure, to ensure normal sensitivity to low-frequency tones. All thresholds were ≤16-dB hearing level with respect to that of ISO-226 (2003). Subjects reported neither a history of hearing or visual disorders, nor tactile dysfunction.

3. Results

An overview of all data is shown in Fig. 3. The error bars on the average markers (black) show for each condition the SD of the last six reversals (used to determine
the CSR), averaged across all runs and subjects. They show that the range in which subjects varied the stimulus frequency around the CSR in the procedure was small compared to the inter-subject variability in CSR. Individual markers are the same across all result figures to facilitate observation of individual differences and individual CSR correlations (described below).

An overall similarity between the auditory and vibrotactile CSRs is evident, with mean values per condition spanning only ~10‒13 Hz. Visual CSRs were instead noticeably lower, being on average well below 8 Hz (Fig. 3, right). A one-way ANOVA, run on all CSR data with modality (auditory, vibrotactile, or visual) as factor, showed a highly significant effect of modality ($F_{2,87} = 17.7, p = 3.5 \times 10^{-7}$).

While no significant difference between the auditory and vibrotactile CSRs (with means of 12.0 and 10.8 Hz, respectively) was found from post-hoc multiple comparisons (Hochberg & Tamhane, 1987), the same analysis indicated CSRs were significantly lower for vision (mean: 6.8 Hz) than for the two other modalities.

The similarity among auditory CSRs for the various stimulus conditions (minimum average CSR: 10.5 Hz for 125-Hz SAM; maximum average CSR: 13.3 Hz for 1000-Hz pip train) occurred in spite of their marked differences in spectral content. Still, according to a two-way ANOVA performed on the modulated stimuli, with stimulus envelope (sinusoidal or burst) and carrier frequency (125 or 1000 Hz) as factors, the effect of stimulus envelope was significant ($F_{1,36} = 5.4, p = 0.026$). Subsequent post-hoc comparisons indicated that the pip trains presented significantly higher CSRs than the SAM tones. On the other hand, the effect of

Figure 3. Critical segregation rates for each sensory modality and stimulus condition. Large symbols show mean values, with ± 1-SD error bars. Note that the error bars on the average markers correspond to the uncertainty range of the procedure, obtained from averaging the SDs of the last six turnpoint frequencies across all runs and subjects for each stimulus condition. SAM, sinusoidally amplitude-modulated.
carrier frequency was not significant \((F_{1,36} = 0.11, p = 0.75)\). No significant difference was found between the CSRs of both SAM tones and the pure tones, according to a one-way ANOVA with stimulus condition as factor (125-Hz SAM, 1000-Hz SAM, or pure tone; \(F_{2,27} = 0.23, p = 0.80\)).

Mean vibrotactile CSRs were 11.3 (3.9) Hz and 10.3 c (3.2) Hz (across-subject SDs in parentheses) for the sinusoidal and square waveforms, respectively. According to a one-way ANOVA, they were statistically indistinguishable \((F_{1,18} = 0.40, p = 0.54)\). As to the visual CSRs, these had mean values of 6.5 (2.5) Hz and 7.1 (2.6) Hz, for sinusoidal and square-wave modulation, respectively. They did not differ significantly according to a one-way ANOVA \((F_{1,18} = 0.34, p = 0.57)\).

The control tests on the visual CSR, shown in Fig. 4 for subsets of subjects, reveal independence on stimulus luminous intensity and stimulus visual angle (Figs. 4a and b, respectively). The CSRs were on average 6.3, 6.3 and 6.5 Hz, for

![Figure 4](image)

Figure 4. (a) The critical segregation rate (CSR) independence on LED’s luminous intensity as well as (b) its independence on visual angle (V.1 and V.2: visual angles of ~0.6° and ~1.2°, respectively) are shown for subsets of subjects \((n = 5\) and 4, respectively). (c) The critical flicker-fusion frequency (CFF) was also measured for the two visual-angle conditions, on the same subject group as in (b). Mean values (large symbols) ± 1 (across-subject) SD are also shown.
4, 1000, and 16,000 mcd, respectively, and the mean CSR remained practically unchanged for both visual angles (6.3 Hz).

Regarding the CFFs, it should first be mentioned that subjects had no difficulty distinguishing between this and the CSR task, determined using the same procedure (i.e., they understood the percepts of flicker and segregated pulses). Besides their overall values being higher than those of CSR, the CFFs (Fig. 4c) showed their known increase with enlarging of visual angle (means of 39.9 and 46.3 Hz for V.1 and V.2, respectively; this was significant according to a paired t-test: $T = -10.1$, $p = 0.002$). Note the apparent correlation across individual data within the CSR and CFF measures (see vertical order of connected individual data within panels), but not across them [compare e.g. vertical order of individual markers across panels (a) and (c)].

Another sound quality that changes towards infrasonic frequencies is the perception of tonal quality or pitch (Møller & Pedersen, 2004). Recently we measured the lower-limit of pitch (LLP) for pure tones in our laboratory (Jurado et al., in press). The method was similar but the task was instead to identify whether sound presented a ‘tonal/humming’ quality. As the same subject group (Note 3) and stimuli were used, it was of interest to compare the LLP with the CSR of pure tones. As shown in Fig. 5, LLPs (mean: 19.0 Hz) were generally well above CSRs (mean: 11.6 Hz), and the difference was highly significant ($F_{1,18} = 23.3, p = 1.35 \times 10^{-4}$).

Figure 5. Comparison between critical segregation rate (CSR) and lower-limit of pitch (LLP) obtained for 10 subjects using pure tones. (LPP data taken from Jurado et al., in press.) Large symbols show mean data, with ± 1 (across-subject) SD error bars.
Throughout all CSR results, notable individual correlations are evident within and across modalities, and even in the additional control tests. For example in Fig. 3, the subject marked with blue crosses had generally high CSRs throughout the three sensory modalities, while the subject marked with red downward triangles had consistently some of the lowest. These systematic positive correlations are illustrated in Fig. 6, as well as their significance level. As shown, all CSRs — irrespective of sensory domain — presented high correlation coefficients (on average $R = 0.83$; minimum: 0.66, maximum: 0.97), and all were significant. To assess evidence towards the hypothesis of positive correlation (H$_1$) versus no correlation between CSRs (H$_0$), the Bayes Factor (BF$_{10}$) was obtained (and indicated in each box of Fig. 6). As seen, there is overall substantial evidence supporting positive correlations, with BF$_{10}$ often >10 or 30 (strong and very strong evidence, according to Jeffreys, 1961) and even >100 (extreme),

Figure 6. Correlations in critical segregation rate (CSR) across all stimulus conditions (see colour-map). Correlations with the auditory–lower-limit of pitch (LLP) data for the same subjects are also shown. (LLP data taken from Jurado et al., in press.) Significance levels (see legend) of the correlations are given with asterisks in each box, as well as the Bayes Factor (BF$_{10}$). For the CSR pairs, BF$_{10}$ evaluated the hypothesis of no correlation (H$_0$) against the alternative hypothesis of a positive correlation (H$_1$), while for the LLP, the alternative hypothesis was a negative correlation. SAM, sinusoidally amplitude-modulated.
with only a few moderate cases (BF_{10} in the range 3–10). Notably, the visual CSRs were significantly correlated with those of the auditory and vibrotactile modalities, in spite of being significantly lower. The LLP provides a notable contrast, generally presenting slightly negative values of R. Here, evidence of negative correlation (H_1) was compared against that of no correlation (H_0). As shown in Fig. 6 (see values in boxes), BF_{10} was for all these cases < 3, indicating that this can be considered an anecdotal trend in the data, even between LLPs and auditory CSRs that shared the same sensory modality.

4. Discussion

Critical segregation rates for different types of auditory, vibrotactile and visual periodic stimuli were measured in this study by directly tracking (with an adaptive procedure) the maximum repetition rate at which periodic pulses forming the stimuli were still perceived as clearly separate from one another. It must first be mentioned that, regardless of the condition and sensory modality tested, subjects had no difficulty tracking this subjective stimulus quality as evidenced by the small average SDs of the last six turning-point frequencies (error bars in Fig. 3). These SDs were relatively similar across modalities and had a maximum value of only 1.3 Hz. Also, the reproducibility was high, as seen by rather small differences between the two measurements per condition for each subject, that resulted in an outlier criterion of less than 2.6 Hz for all three modalities (see section 2.2).

In their now classic review paper on low-frequency hearing, Møller and Pedersen (2004) described the following changes in perceived sound quality for tones as their frequency is lowered: “If the frequency is gradually lowered from 20 Hz, the tonal sensation disappears, the sound becomes discontinuous in character and it changes into a sensation of pressure at the eardrums. At even lower frequencies it turns into a sensation of discontinuous, separate puffs, and it is possible to follow and count the single cycles of the tone.” The observed difference between our pure-tone auditory CSR and available LLP data allows to disentangle the loss of pitch/tonal quality and sound discontinuity/segregation as separate perceptual qualities, each occurring at their own well-differentiated frequency limit. The significantly lower CSR than LLP, the latter just below 20 Hz, suggests that the loss of tonal quality is the main factor that has led to exclude infrasound from the conventional hearing range, commonly defined to start from 20 Hz. The two separate perceptual limits likely reflect different demands on the auditory system. On the one hand, for effective object/speaker recognition it must extract the fundamental frequency of sound sources (LLP). On the other hand, for speech comprehension it must also be able to follow very slow and mostly non-periodic — but information-bearing — amplitude fluctuations, such as those produced by vocal tract changes (CSR; see further discussion below regarding the auditory CSR).
Results also showed that the ability to temporally resolve sequential pressure pulses is not unique to infrasound stimulation: CSRs were also measurable in SAM carriers and tone-pip trains (both with spectral content >100 Hz). While for the former, CSRs were about the same as for infrasound (perhaps as ‘duty cycles’ are expected to be similar in the auditory nerve for both stimulus types); for the latter these were slightly (~ 2 Hz) but systematically higher. This likely reflects the fact that the shorter duty cycle in the pip train stimuli gives comparatively more time for loudness to decay; the temporal integration of loudness has been modelled as an automatic-gain control system (see e.g., Glasberg & Moore, 2002; Moore, 2014), with attack and release/decay response properties.

The CSR does not appear to be a modality-independent perceptual limit, as at least it differs between vision and the other two modalities. The CSRs observed for vision are much lower than variations produced by modification of the stimulus conditions within the modalities (e.g., envelope types and luminance; all producing weak or absent effects). Distortions in luminance modulation due to the nonlinear relationship between voltage and LED luminance (i.e., harmonics) are unlikely the reason here, as these are only expected to deform the shape of the luminance modulation function but are not expected to increase the number of minima within a stimulus period beyond one, like in the case of the square-wave modulation. The lower visual CSRs are also unlikely due to fatigue because the visual task was the first in the series of tests and regular breaks were taken across the whole measurement session. Learning effects were avoided by a preceding session dedicated to train the subjects in all modalities. The literature has indeed shown evidence for similarities in temporal perception between the auditory and somatosensory systems and for their better temporal resolution than the visual system (Occelli et al., 2011; Philippi et al., 2008; Welch & Warren, 1980). As mentioned in the introduction, also the upper limits for roughness/flutter perception are higher for both the auditory and somatosensory systems than that for flicker perception in the visual system. As to the lower end of pulse-repetition frequencies, also studies of numerosity performance have found greater similarity between auditory and vibrotactile stimulation, both being more accurate than performance with visual stimuli (Lechelt, 1975; Philippi et al., 2008). Also, reaction times to single pulses (respectively a beep and a flash) have been found to be faster for the auditory than for the visual system (Shelton & Kumar, 2010). Further, temporal resolution of synchrony–asynchrony perception is better for audiotactile stimulation than either audiovisual or visuotactile stimulation (Fujisaki & Nishida, 2009). It has been suggested that this occurs because performance is constrained by the system with the worse temporal resolution, i.e., vision (Fujisaki & Nishida, 2009; Occelli et al., 2011). Further support for close relations in processing between the auditory and somatosensory systems comes from the electrophysiological study by Schürmann et al. (2006). They found that vibrotactile stimulation (fingertip tactile pulses) activates the...
auditory cortex. This is in line with the corresponding similarity in CSR found here and with informal observations by the authors during the vibrotactile tests: the meta-conscious perception of the vibrotactile stimuli was deemed similar to that of sound perception, even though airborne sound cues from the speaker were masked/absent.

As to our average auditory CSR of 12.0 Hz, it is roughly in line with the upper limit of fluctuation strength, reported by Fastl and Zwicker (2007, chapter 10). The latter psychoacoustic quality has a bandpass shape centred around 4 Hz, and was first broadly associated to modulations below about 20 Hz (Fastl, 1983). However, more recent reports have placed its upper limit (above which roughness starts to be perceived) at 12 Hz for SAM sounds (Daniel, 2008), and our results confirm this value.

Auditory sensitivity to amplitude modulations is often characterized by the temporal-modulation transfer function (TMF), which has a bandpass filter characteristic with an upper corner frequency at about ~10–16 Hz (Dau et al., 1997; Chi et al., 1999). Dau et al. (1997) reported that above ~10 Hz, modulation depth needs to increase at 3 dB/octave to reach perceptual modulation threshold. Also, spectro-temporal modulations of speech present most power below about 12 Hz (Elliott & Theunissen, 2009; Varnet et al., 2017), that if removed, significantly deteriorate comprehension (Elliott & Theunissen, 2009). It might be that these cutoff frequencies (well in line with our mean auditory CSR) reflect minimum neural processing times for the representation of loudness. According to Thwaites et al. (2015; see their Fig. 4), the encoding of the instantaneous loudness (as defined by Glasberg & Moore, 2002) in the auditory cortex takes place within ~80–100 ms of stimulus onset.

Regarding our average vibrotactile CSR of 10.8 Hz, it is fairly in line with results by Park and Choi (2011), who instead of pure tones or square waves, used an amplitude-modulated 150-Hz carrier stimulus and identified relevant characteristics elicited at different modulation frequencies. They found a maximum in ‘pulsating sensation’ between 5 and 10 Hz, above which a flutter sensation took place. Notably, the periodicity of our vibrotactile CSR (~93 ms) is roughly in line with recovery times (of ~75–100 ms relative to stimulus onset; derived from EEG measurements) that have been measured in the somatosensory cortex using median-nerve (hand) electrical stimulation by short pulses (Avanzini et al., 2018; see their Fig. 4B).

Also the periodicity of 147 ms, corresponding to our mean visual CSR (6.8 Hz), is well in line with the ~150-ms processing times for natural image recognition, observed in the electrophysiological study of Thorpe et al. (1996). It is also in close agreement with minimum neural processing times of ~150 ms for motion and colour perception, observed electrophysiologically by Amano et al. (2006). Visual evoked potentials in response to periodic stimuli presented at rates above 8–10 Hz (100–125 ms period) are known to overlap (Noricia et al., 2015). These time
scales might be at least partly explained by cone recovery times of at least 120 ms that have been measured using *in-vivo* human electroretinograms (e.g., see Fig. 2 in van Hateren & Lamb, 2006). One might expect that sequential periodic pulses of any modality will be perceived as segregated if the neural response of each preceding pulse has sufficiently decayed.

Regarding the significant within- and across-domain (CSR) correlations observed in the present study, these are in line with recent findings (e.g., in vision: Samaha and Postle, 2017; across domains: Beck et al., 2019; Rouault et al., 2018). When the target criterion was changed, as was the case in the auditory LLP task and the visual CFF task, no significant correlations with the respective CSRs were found, even though they shared the same sensory modality. As pointed out in the abovementioned studies, such task-specific and crossmodal correlations might stem from individual metacognitive factors. Associated ‘response biases’ are more prone to affect our one-interval AFC paradigm compared to less subjective, two-interval AFC methods, commonly used in, e.g., flicker detection. However, a two-interval comparison was not found to be readily applicable for estimating the subjective impression of perceptual segregation in all three modalities. Still, the broad agreement between our mean CFF (measured with a one-interval method) with literature CFF data (as reviewed by Lakshminarayanan, 2012; and data obtained with a similar AFC method but with two intervals by Eisen-Enosh et al., 2017), suggests that our average results were not systematically impacted by individual response bias. Although response biases likely contributed to the spread of individual data and correlations in Fig. 6, they did not preclude the observation of significant group-CSR differences across domains (i.e., the lower CSR for vision), reflecting underlying modality differences in perception.

5. Summary and Conclusion

Sequential auditory or vibrotactile stimuli separated by at least ~80‒90 ms (~11‒12-Hz repetition rates) will be perceived as segregated from one another, a significantly lower time interval than the ~150 ms (~6.5 Hz) necessary to perceptually segregate sequential visual stimuli. These CSR periodicities are likely a consequence of cortical recovery times in these sensory systems.

Returning to our initial question, the significantly lower CSR than LLP observed for pure tones suggests that the cessation of pitch — not the ability to perceptually segregate pressure fluctuations — is the sound quality that has led to exclude infrasound (< 20 Hz) from the conventional hearing range.

Acknowledgements

We would like to thank all test volunteers for their time and effort.
Notes

1 Although numerosity performance may be considered a more objective method than the one used here, to the knowledge of the authors, it has not been demonstrated that perceptual segregation of stimulus pulses is directly related to the ability to count them. As we aimed to evaluate the former, we chose a more subjective approach, deemed more directly associated with a perceptual quality of the stimulus.

2 While here the voltage waveform delivered to the transducer was a square-wave, the displacement of the subwoofer membrane did probably not exactly follow a square-wave shape. Nevertheless, this stimulus type had subjectively a more ‘pulse-like’ quality.

3 For the two additional subjects used in this study, the LLP was also measured.

References

Amano, K., Goda, N., Nishida, S., Ejima, Y., Takeda, T., & Ohtani, Y. (2006). Estimation of the timing of human visual perception from magnetoencephalography. J. Neurosci., 26, 3981–3991. https://doi.org/10.1523/JNEUROSCI.4343-05.2006.

Avanzini, P., Pelliccia, V., Lo Russo, G., Orban, G. A., & Rizzolatti, G. (2018). Multiple time courses of somatosensory responses in human cortex. NeuroImage, 169, 212–226. https://doi.org/10.1016/j.neuroimage.2017.12.037.

Beck, B., Peña-Vivas, V., Fleming, S., & Haggard, P. (2019). Metacognition across sensory modalities: Vision, warmth, and nociceptive pain. Cognition, 186, 32–41. https://doi.org/10.1016/j.cognition.2019.01.018.

British Society of Audiology (2018). Recommended Procedure: Pure-tone air-conduction and bone conduction threshold audiometry with and without masking. Seafield, UK: British Society of Audiology.

Chi, T., Gao, Y., Guyton, M. C., Ru, P., & Shamma, S. (1999). Spectro-temporal modulation transfer functions and speech intelligibility. J. Acoust. Soc. Am., 106, 2719–2732. https://doi.org/10.1121/1.428100.

Daniel, P. (2008). Psychoacoustical roughness. In D. Havelock, S. Kuwano, & M. Vorländer (Eds), Handbook of signal processing in acoustics (pp. 263–274). New York, NY, USA: Springer. https://doi.org/10.1007/978-0-387-30441-0_19.

Dau, T., Kollmeier, B., & Kohlrausch, A. (1997). Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J. Acoust. Soc. Am., 102, 2906–2919. https://doi.org/10.1121/1.420345.

Eisen-Enosh, A., Farah, N., Burgansky-Eliash, Z., Polat, U., & Mandel, Y. (2017). Evaluation of critical Flicker-Fusion Frequency measurement methods for the investigation of visual temporal resolution. Sci. Rep., 7, 2–10. https://doi.org/10.1038/s41598-017-15034-z.

Elliott, T. M., & Theunissen, F. E. (2009). The modulation transfer function for speech intelligibility. PLoS Comput. Biol., 5, e1000302. https://doi.org/10.1371/journal.pcbi.1000302.

Fastl, H. (1983). Fluctuation Strength of Modulated Tones and Broadband Noise. In R. Klinke & R. Hartmann (Eds), HEARING — Physiological Bases and Psychophysics (pp. 282–288). Berlin, Germany: Springer-Verlag.https://doi.org/10.1007/978-3-642-69257-4_41.
Fastl, H., & Zwicker, E. (2007). *Psychoacoustics – Facts and Models* (3rd ed.). Berlin, Germany: Springer-Verlag.

Fujisaki, W., & Nishida, S. (2009). Audio-tactile superiority over visuo-tactile and audio-visual combinations in the temporal resolution of synchrony perception. *Exp. Brain Res.*, 198, 245–259. https://doi.org/10.1007/s00221-009-1870-x.

Fujisaki, W., & Nishida, S. (2010). A common perceptual temporal limit of binding synchronous inputs across different sensory attributes and modalities. *Proc. R. Soc. B Biol. Sci.*, 277, 2281–2290. https://doi.org/10.1098/rspb.2010.0243.

Glasberg, B. R., & Moore, B. C. J. (2002). A model of loudness applicable to time-varying sounds. *J. Audio Eng. Soc.*, 50, 331–342.

Guttman, N., & Pruzansky, S. (1962). Lower limits of pitch and musical pitch. *J. Speech Hear. Res.*, 5, 207–214. https://doi.org/10.1044/jshr.0503.207.

Hochberg, Y., & Tamhane, A. C. (1987). *Multiple comparison procedures*. Hoboken, NJ, USA: John Wiley & Sons.

Hwang, I., & Choi, S. (2010). Perceptual space and adjective rating of sinusoidal vibrations perceived via mobile device. In *2010 IEEE Haptics Symposium*, HAPTICS 2010, Waltham, MA, USA, pp. 1–8. https://doi.org/10.1109/HAPTIC.2010.5444692.

ISO 226 (2003). *Acoustics – normal equal-loudness-level contours*. Geneva, Switzerland: International Organization for Standardization.

Jeffreys, H. (1961). *Theory of probability* (3rd ed.). New York, NY, USA: Oxford University Press.

Jurado, C., Gallegos, P., Gordillo, D., & Moore, B. C. J. (2017). The detailed shapes of equal-loudness-level contours at low frequencies. *J. Acoust. Soc. Am.*, 142(6), 3821. https://doi.org/10.1121/1.5018428.

Jurado, C., Larrea, M., Patel, H., & Marquardt, T. (2020). Dependency of threshold and loudness on sound duration at low and infrasonic frequencies. *J. Acoust. Soc. Am.*, 148, 1030. https://doi.org/10.1121/10.0001760.

Jurado, C., Larrea, M., & Moore, B. C. J. (in press). The lower limit of pitch perception for sinusoids and low-frequency complex sounds. *Arch. Acoust.*

Kühler, R., Fedtke, T., & Hensel, J. (2015). Infrasonic and low-frequency insert earphone hearing threshold. *J. Acoust. Soc. Am.*, 137, EL347–EL353. https://doi.org/10.1121/1.4916795.

Lakshminarayanan, V. (2012). Flicker sensitivity. In J. Chen, W. Cranton & Mark Fihn (Eds), *Handbook of visual display technology* (pp. 101–108). Berlin, Germany: Springer-Verlag. https://doi.org/10.1007/978-3-540-79567-4_7.

Lechelt, E. C. (1975). Temporal numerosity discrimination: intermodal comparisons revisited. *Br. J. Psychol.*, 66, 101–108. https://doi.org/10.1111/j.2044-8295.1975.tb01444.x.

Møller, H., & Pedersen, C. S. (2004). Hearing at low and infrasonic frequencies. *Noise Health*, 6, 37–57.

Moore, B. C. J. (2014). Development and current status of the “Cambridge” loudness models. *Trends Hear.*, 18, 1–29. https://doi.org/10.1177/2331216514550620.

Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereau, B. R., & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. *J. Vis.*, 15, 4. https://doi.org/10.1167/15.6.4.

Occelli, V., Spence, C., & Zampini, M. (2011). Audiotactile interactions in temporal perception. *Psychon. Bull. Rev.*, 18, 429–454. https://doi.org/10.3758/s13423-011-0070-4.

Park, G., & Choi, S. (2011). Perceptual space of amplitude-modulated vibrotactile stimuli. 2011 IEEE World Haptics Conference, WHC 2011, Istanbul, Turkey, pp. 59–64. https://doi.org/10.1109/WHC.2011.5945462.
Philippi, T. G., van Erp, J. B. F., & Werkhoven, P. J. (2008). Multisensory temporal numerosity judgment. *Brain Res.*, 1242, 116–125. https://doi.org/10.1016/j.brainres.2008.05.056.

Rouault, M., McWilliams, A., Allen, M. G., & Fleming, S. M. (2018). Human metacognition across domains: insights from individual differences and neuroimaging. *Personality Neurosci.*, 1, E17. https://doi.org/10.1017/pen.2018.16.

Samaha, J., & Postle, B. R. (2017). Correlated individual differences suggest a common mechanism underlying metacognition in visual perception and visual short-term memory. *Proc. R. Soc. B Biol. Sci.*, 284, 20172035. https://doi.org/10.1098/rspb.2017.2035.

Schürmann, M., Caetano, G., Hlushchuk, Y., Jousmäki, V., & Hari, R. (2006). Touch activates human auditory cortex. *NeuroImage*, 30, 1325–1331. https://doi.org/10.1016/j.neuroimage.2005.11.020.

Shelton, J., & Kumar, G. P. (2010). Comparison between Auditory and Visual Simple Reaction Times. *Neurosci. Med.*, 1, 30–32. https://doi.org/10.4236/nm.2010.11004.

Tan, H. Z. (1996). *Information transmission with a multi-finger tactual display*, PhD thesis. Princeton, MA, USA: Massachusetts Institute of Technology.

Tan, H. Z., Durlach, N. I., Reed, C. M., & Rabinowitz, W. M. (1999). Information transmission with a multifinger tactual display. *Percept. Psychophys.*, 61, 993–1008. https://doi.org/10.3758/BF03207608.

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. *Nature*, 381, 520–522. https://doi.org/10.1038/381520a0.

Tukey, J. W. (1977). *Exploratory data analysis* (1st ed.). Boston, MA, USA: Addison-Wesley.

Thwaites, A., Nimmo-Smith, I., Fonteneau, E., Patterson, R. D., Butterly, P., & Marslen-Wilson, W. D. (2015). Tracking cortical entrainment in neural activity: auditory processes in human temporal cortex. *Front. Comput. Neurosci.*, 9, 5. https://doi.org/10.3389/fncom.2015.00005.

van Hateren, J. H., & Lamb, T. D. (2006). The photocurrent response of human cones in fast and monophasic. *BMC Neurosci.*, 7, 34. https://doi.org/10.1186/1471-2202-7-34.

Varnet, L., Ortiz-Barajas, M. C., Erra, R. G., Gervain, J., & Lorenzi, C. (2017). A cross-linguistic study of speech modulation spectra. *J. Acoust. Soc. Am.*, 142, 1976–1989. https://doi.org/10.1121/1.5006179.

Warren, R. M., & Bashford, J. A. (1981). Perception of acoustic iterance: Pitch and infrapitch. *Percept. Psychophys.*, 29, 395–402. https://doi.org/10.3758/BF03207350.

Welch, R. B., & Warren, D. H. (1980). Immediate perceptual response to intersensory discrepancy. *Psychol. Bull.*, 88, 638–667. https://doi.org/10.1037/0033-2909.88.3.638.