CASE REPORT

Breast milk pasteurisation in developed countries to reduce HIV transmission. Do the benefits outweigh the risks?

M. GILES1 & A. MIJCH2

1Department of Microbiology and Infectious Diseases, Royal Women's Hospital, Carlton VIC, Australia, and 2Victorian HIV Service, The Alfred Hospital, Prahran VIC, Australia

Abstract

Background. Transmission of HIV through breastfeeding is well documented. The World Health Organisation advise HIV-infected women in developed countries to use alternatives to breastfeeding together with highly active antiretroviral therapy and optimal management of delivery to prevent transmission of HIV to their infant.

Case report. We present the case of an HIV-infected woman electing to exclusively breastfeed for six months and applying milk pasteurisation techniques without transmission to her infant. Two paired samples of her breast milk were tested for HIV RNA prior to and after pasteurisation. The first pair of specimens reported no change in HIV RNA copy number, the second pair of specimens reported an increase in copy number.

Discussion. This technique, the evidence for HIV inactivation and the effects pasteurisation has on nutritional and immunological components of breast milk are discussed.

Conclusion. In conclusion, we believe there is currently insufficient data to recommend this technique either as a safe alternative to formula feeding in resource-rich countries or as a method for providing intact immunological components of breast milk to the infant.

Keywords: HIV, pasteurisation, breast milk, immunological, breastfeeding, Holder technique, infection

Introduction

HIV has been detected in breast milk and transmission can occur at any point during lactation, the cumulative probability of infection increasing with the duration of breastfeeding. In a meta-analysis of late postnatal transmission (defined as an infant with negative HIV-1 result at 4 weeks of age followed by a positive test result) the overall risk was 8.9 transmissions per 100 child-years of breastfeeding (95% confidence interval 7.8–10.2 transmissions/100 child years of breastfeeding) [1–3]. Factors associated with increased rates of HIV transmission include mixed feeding (breastfeeding supplemented by formula and other bottle feeding) [4] high maternal viral load, prolonged breastfeeding and breastfeeding in the presence of mastitis or breast abscesses [5,6].

In resource-rich countries breastfeeding is not recommended, but the World Health Organization suggests that breastfeeding should still be the usual advice to pregnant women in countries where infectious diseases and malnutrition are the main causes of infant deaths and infant mortality is high [7].

HIV is inactivated by heating and reports in the literature have suggested that pasteurisation in a domestic setting may be a method for enabling HIV-infected women to breastfeed [8]. We report the case of a woman attempting to apply the technique of breast milk pasteurisation in a developed country in order to enable her infant access to the benefits of breastfeeding (immunological, nutritional and psychological) and the results from testing her milk for HIV.

Case report

This case is of a 34-year-old woman who acquired her HIV in Africa in 1994 following a sexual contact. In January 1997 she commenced antiretroviral therapy comprising of zidovudine, lamivudine and indinavir. Her viral load dropped from 396,000 copies/mL to undetectable. In July 1997 she ceased indinavir when she decided to become pregnant. After ceasing indinavir her viral load again became detectable at 1400 copies/mL. She soon became pregnant and continued on zidovudine and lamivudine for the remainder of her pregnancy. Her viral load remained...
detectable throughout the pregnancy at low levels, ranging between 400 and 1000 copies/mL. In May 1998 she underwent an elective caesarean section, she did not breastfeed and her baby who received oral zidovudine syrup for six weeks, remained uninfected.

In February 1999 the patient ceased all antiretrovirals for a five-month period. Her viral load at this time peaked at greater than 750,000 copies/mL and her CD4 count dropped to 396 (28%). She recommenced therapy in July 1999 with stavudine, lamivudine and efavirenz. Her viral load became undetectable and her CD4 count rose (ranging between 777 and 1000). The patient decided again to cease all medication in October 2001.

In July 2002, she presented eight weeks pregnant. At this time she was off antiretroviral therapy, her CD4 count was 550 (19%) and her viral load 14,000 copies/mL. The patient commenced antiretrovirals at 19 weeks gestation on zidovudine, lamivudine and nevirapine. She had an uneventful pregnancy and underwent an elective caesarean section in February 2003. At this time her viral load was undetectable. Her baby received oral zidovudine syrup and despite medical advice the patient proceeded to breastfeed using pasteurised breast milk after the first week. For the first week the patient used donor milk from a friend and did not pasteurise this. After the first week she exclusively breastfed and pasteurised her milk at home. The method of pasteurisation used was the Holder technique [9]. This involved heating water in an urn to 65°C then placing a sterilized jar containing the breast milk into the urn so the water level was over the milk level. A thermometer placed in the jar monitored the temperature and aimed to keep the milk at 64°C for 30 min. The milk was then removed and provided to the infant in a bottle. This continued for six months and she did not report any mastitis or nipple problems during this time. She remained on the same antiretrovirals with her plasma viral load less than 400 copies/mL.

Two paired specimens of breast milk were analyzed pre- and post-pasteurisation for HIV viral load. The first paired specimens of breast milk were sent to the State Reference Laboratory for HIV and underwent HIV RNA quantification by NASBA. HIV RNA was detected at less than 250 copies/mL both pre- and post-pasteurisation. The second pair of specimens were tested at the same State Reference Laboratory for HIV using the Roche ULTRA PCR (polymerase chain reaction) four months later and the breast milk sample prior to pasteurisation had 60 copies/mL and the breast milk sample post-pasteurisation had 80 copies/mL. The methods and performance characteristics of these assays for quantification of HIV RNA in plasma have previously been described [10].

The patient’s son tested at six months remained uninfected with HIV.

Discussion

HIV is easily inactivated by heat. Holder pasteurisation used by human milk banks (56°C for 30 min) has resulted in the inactivation of all detectable virus by repeat culture in human milk inoculated with HIV [11]. A method called Pretoria pasteurisation has been devised in an attempt to heat the milk in a domestic environment in a way that prevents the milk becoming too hot and destroying immunological components although still reaching sufficient temperature for the inactivation of HIV [8]. This method involves heating a 1 L aluminium pot containing 450 mL of water to boiling then removing from the heat source and placing a jar containing 50–150 mL of milk into the water. By following this procedure the milk temperature remains between 56 and 62.5°C for between 10 and 15 min. It is not clear whether 15 min is sufficient to inactivate all cell-free and cell-associated HIV in breast milk.

In an attempt to answer this question the same group of researchers performed a prospective observational study to test the effectiveness of Pretoria pasteurisation to inactivate HIV in human breast milk. Milk samples from HIV-seropositive women were split into two portions: a control and a study portion. These were sampled for HIV RNA and HIV DNA PCR and immediately inoculated into lymphocyte culture for 35 days. Twenty-six samples from HIV-seropositive women were tested. Eighty percent of these had viral RNA detected prior to pasteurisation (mean milk viral load 422,000 copies/mL) but none of the pasteurised specimens showed increasing titres of viral RNA. In two of the specimens viral RNA was detectable in the pasteurised specimens but at low levels [12]. Of the HIV-positive control specimens, 18% had evidence of viral replication. In our case report, there is a relatively low level of virus detected in the milk sample prior to pasteurization, which may impact on the magnitude of effect demonstrable by pasteurisation, although it is important to note that the copy number did increase in the second specimen.

One of the main reasons why HIV-positive women in developed countries desire to breastfeed is to provide for their infant a source of milk that contains not only all their nutritional requirements but also has immunological components not found in formula feed. An important question therefore, is what does the process of heat pasteurisation do to these components?

Immunomodulating factors and antimicrobial agents found in breast milk include proteins such as lactoferrin (chelates iron), lysozyme (degrades peptidoglycans), fibronectin (acts as an opsonin),
secretory IgA (antigen binding), mucin (fragments act as opsonins), lipids (known to disrupt enveloped viruses) and cytokines such as interleukin-1β and interleukin-6 (activates T cells and enhances IgA production) [13]. Pasteurisation at 62°C for 30 min leads to a reduction in IgA, lactoferrin, lysozyme, cell number and function [14].

Holder pasteurisation has also been shown to significantly lower the concentrations of vitamin C (36%), folacin (31%) and B6 (15%) [15]. Pasteurisation also reduces enzyme activity including lipase, amylase and lactoperoxidase [16] along with serum-stimulated lipolytic and serum-independent lipolytic activity [17].

As treatment and prognosis for HIV-seropositive women in resource-rich countries improves many are contemplating having children. Many interventions have been demonstrated to reduce perinatal transmission such as antiretroviral therapy [18] elective caesarean section [19] and avoidance of breastfeeding, although much of this benefit has been studied prior to the availability of highly active antiretroviral therapy (HAART). Studies have demonstrated that women with a higher breast milk viral load and those who shed virus consistently rather than intermittently are more likely to transmit HIV to their infants [6]. It is important to note that cell-associated HIV-1 provirus in the breast milk has been reported despite low/undetectable plasma viremia [20]. There is a paucity of data on additional risk of transmission via breastfeeding in women with undetectable viral load and who undertake additional measures such as milk pasteurisation.

The only antiretrovirals known to be excreted in human breast milk are zidovudine, lamivudine and nevirapine. Many of the remaining antiretrovirals have been found in breast milk in animal studies but lack data on excretion in human breast milk [21].

As clinicians looking after these women, it is essential that we are aware of the literature describing these techniques. As our case report highlights, HIV-seropositive women may decide to access this information and apply these techniques to facilitate breastfeeding. The testing we employed demonstrated the presence of HIV post-pasteurisation. We believe it is essential to conduct further studies to assess the safety of this technique and to investigate the effect HAART may have on viral load pre- and post-pasteurisation. In such a study it would also be important to document more formally the effect this technique has on the many immunological factors present in breast milk as it is for this reason that many women are keen to breastfeed. Women infected with HIV in developed countries who desire to breastfeed and employ breast milk pasteurisation need to be informed regarding the effect this may have on inactivating HIV along with the potential adverse effects this process may have on the immunological components contained within breast milk. At this time we believe there is insufficient data to recommend this technique as a safe alternative to formula feeding in resource-rich countries.

Acknowledgments

Dr Giles gratefully acknowledges support from the Centre for Clinical Research Excellence Infectious Diseases.

References

1. Thiry L, Spencer-Goldberger S, Jonckheer T, Levy J, Van de Perre P, Henriques P, Cogniaux-LeClerc J, Clumeck N. Isolation of AIDS virus from cell-free breast milk of three healthy virus carriers. Lancet 1985;2(8460):891–892.
2. Ruff A, Coberly J, Burnley A, Boulos R, Desormeaux J, Halsey N, Farzadegan H, CDS/JHU AIDS Project Team. Prevalence of HIV in breast milk. VIII International Conference on AIDS, Amsterdam; 1992.
3. The Breastfeeding and HIV International Transmission Study Group. Late postnatal transmission of HIV-1 in breast-fed children: An individual patient data meta-analysis J Infect Dis 2004;189:2154–2166.
4. Coutsoudis A, Pillay K, Kuhn L, Coovadia HM. Influence of infant feeding patterns on early mother-to-child transmission of HIV-1 from mothers to children by 15 months of age: a prospective cohort study. South African Vitamin A Study Group. Lancet 1999;354:471–476.
5. Miotti PG, Taha TE, Kumwenda NI, Broadhead R, Mtinavalye LA, van der Hoeven L, Chiphangwi JD, Liomba G, Biggar RJ. HIV transmission through breastfeeding: a study in Malawi. JAMA 1999;282:744–749.
6. Sembra RD, Kumwenda NI, Hoover DR, Taha TE, Quinn TC, Mtinavalye L, Biggar RJ, Broadhead R, Miotti PG, Sokoll J, et al. Human immunodeficiency virus load in breast milk, mastitis and mother-to-child transmission of human immunodeficiency virus type 1. J Infect Dis 1999;180:93–98.
7. Global Programme on AIDS. Consensus statement from the WHO/UNICEF consultation on HIV transmission and breastfeeding. Weekly Epidemiology Record 1992;67:177–179.
8. Jeffery BS, Mercer KG. Pretoria pasteurisation: A potential method for the reduction of postnatal mother to child transmission of the human immunodeficiency virus. J Trop Pediatrics 2000;46:219–223.
9. Human Milk Banking Association of North America. Guidelines for establishment and operation of a donor human milk bank, Sandwich, MA: HMBANA; 1996.
10. Lin HJ, Pedneault L, Hollinger B. Intra-assay performance characteristics of five assays for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Micro 1998;36:835–839.
11. Orloff, SL, Wallingford, JC, McDougall, JS. Inactivation of human immunodeficiency virus type I in human milk: Effects of intrinsic factors in human milk and of pasteurisation. J Hum Lact 1993;9:13–17.
12. Jeffery BS, Webber L, Mkhondolo KR, Erasmus D. Determination of the effectiveness of inactivation of human immunodeficiency virus by Pretoria pasteurisation. J Trop Pediatrics 2001;47:345–349.
13. Lawrence RA. Storage of human milk and the influence of procedures on immunological components of human milk. Acta Paediatr 1999;430 Suppl: 14–18.
14. Evans TJ, Ryley HC, Neale LM, Dodge JA, Leware VM. Effect of storage and heat on antimicrobial proteins in human milk. Arch Dis Child 1978;53:239–241.

15. Van Zoeren-Grobben D, Schrijver J, Van Den Berg H, Berger HM. Human milk vitamin content after pasteurisation, storage or tube-feeding. Arch Dis Child 1987;62:161–165.

16. Ford JE, Law BA, Marshall VM, Reiter B. Influence of the heat treatment of human milk on some protective constituents. J Pediatr 1977;90:29–35.

17. Jensen RG. Determinants of milk volume and composition. In: Jensen RG, editor. Handbook of milk composition, New York: Academic Press; 1995. pp 254–264.

18. Brocklehurst P. Interventions for reducing the risk of mother-to-child transmission of HIV infection (Cochrane Review), The Cochrane Library; 2002.

19. The European Mode of Delivery Collaboration. Elective caesarean section versus vaginal delivery in prevention of vertical HIV-1 transmission: a randomized clinical trial. Lancet 1999;353:1035–1039.

20. Chantry CJ, Morrison P, Panchula J, Rivera C, Hillyer G, Zorilla C, Diaz C. Effects of lipolysis or heat treatment on HIV-1 provirus in breast milk. J Acquir Immune Defic Syndr 2000;24:325–329.

21. Safety and toxicity of individual antiretroviral agents in pregnancy. Supplement: Safety and toxicity, 23 June 2004. Available: www.aidsinfo.nih.gov/guidelines/default_db2.asp?id=66