The Power of Strong Fourier Sampling: Quantum Algorithms for Affine Groups and Hidden Shifts

Cristopher Moore
University of New Mexico
moore@cs.unm.edu

Daniel Rockmore
Dartmouth College
rockmore@cs.dartmouth.edu

Alexander Russell
University of Connecticut
acr@cse.uconn.edu

Leonard J. Schulman
California Institute of Technology
schulman@caltech.edu

Abstract
Many quantum algorithms, including Shor's celebrated factoring and discrete log algorithms, proceed by reduction to a hidden subgroup problem, in which an unknown subgroup H of a group G must be determined from a quantum state ψ over G that is uniformly supported on a left coset of H. These hidden subgroup problems are typically solved by Fourier sampling: the quantum Fourier transform of ψ is computed and measured. When the underlying group is nonabelian, two important variants of the Fourier sampling paradigm have been identified: the weak standard method, where only representation names are measured, and the strong standard method, where full measurement (i.e., the row and column of the representation, in a suitably chosen basis, as well as its name) occurs. It has remained open whether the strong standard method is indeed stronger, that is, whether there are hidden subgroups that can be reconstructed via the strong method but not by the weak, or any other known, method.

In this article, we settle this question in the affirmative. We show that hidden subgroups H of the q-hedral groups, i.e., semidirect products $\mathbb{Z}_q \rtimes \mathbb{Z}_p$ where $q \mid (p-1)$, and in particular the affine groups A_p, can be information-theoretically reconstructed using the strong standard method. Moreover, if $|H| = p/\text{polylog}(p)$, these subgroups can be fully reconstructed with a polynomial amount of quantum and classical computation.

We compare our algorithms to two weaker methods that have been discussed in the literature—the "forgetful" abelian method, and measuring in a random basis—and show that both of these are weaker than the strong standard method with a chosen basis. Thus, at least for some families of groups, it is crucial to use the full power of representation theory and nonabelian Fourier analysis: namely, to measure the high-dimensional representations in an adapted basis that respects the group’s subgroup structure.

We apply our algorithm for the hidden subgroup problem to new families of cryptographically motivated hidden shift problems, generalizing work of van Dam, Hallgren and Ip on shifts of multiplicative characters. Finally, we close by proving a simple closure property for the class of groups over which the hidden subgroup problem can be solved efficiently.

1 The Hidden Subgroup Problem

One of the principal quantum algorithmic paradigms is the use of the abelian Fourier transform to discover a function's hidden periodicities. In the examples relevant to quantum computing, an oracle function f defined on an abelian group G has "hidden periodicity" if there is a "hidden" subgroup H of G so that f is precisely invariant under translation by H or, equivalently, f is constant on the cosets of H and takes distinct values on distinct cosets. The hidden subgroup problem is the problem of determining the subgroup H from such a function. Algorithms for these problems typically adopt the approach detailed below, called Fourier sampling [2].
Step 1. Prepare two registers, the first in a uniform superposition over the elements of a group G and the second with the value zero, yielding the state

$$\psi_1 = \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |0\rangle.$$

Step 2. Calculate (or if it is an oracle, query) the function f defined on G and XOR it with the second register. This entangles the two registers and results in the state

$$\psi_2 = \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle \otimes |f(g)\rangle.$$

Step 3. Measure the second register. This produces a uniform superposition over one of f’s level sets, i.e., the set of group elements g for which $f(g)$ takes the measured value f_0. As the level sets of f are the cosets of H, this puts the first register in a uniform distribution over superpositions on one of those cosets, namely cH where $f(c) = f_0$ for some f_0. Moreover, it disentangles the two registers, resulting in the state $\psi_3 \otimes |f_0\rangle$ where

$$\psi_3 = \frac{1}{\sqrt{|H|}} |cH\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |ch\rangle.$$

Alternately, since the value f_0 we observe has no bearing on the algorithm, we can use the formulation in which the environment, rather than the user, measures f. In that case, tracing over f yields a mixed state with density matrix

$$\frac{1}{[G:H]} \sum_f |\psi_3\rangle \langle \psi_3| = \frac{1}{|G|} \sum_c |cH\rangle \langle cH|,$$

i.e., a classical mixture consisting of one pure state ψ_3 for each coset. Kuperberg refers to this as the coherent hidden subgroup problem [18].

Step 4. Carry out the quantum Fourier transform on ψ_3 and measure the result.

For example, in Simon’s algorithm [26], the “ambient” group G over which the Fourier transform is performed is Z_2^n, f is an oracle with the promise that $f(x) = f(x+y)$ for some y, and $H = \{0,y\}$ is a subgroup of order 2. In Shor’s factoring algorithm [25] G is the group Z_n^* where n is the number we wish to factor, $f(x) = r^x \mod n$ for a random $r < n$, and H is the subgroup of Z_n^* of index order(r). (However, since $|Z_n^*|$ is unknown, Shor’s algorithm actually performs the transform over Z_q where q is polynomially bounded by n; see [25] or [10, 11].)

These are all abelian instances of the hidden subgroup problem (HSP). Interest in nonabelian versions of the HSP evolved from the relation to the elusive Graph Automorphism problem: it would be sufficient to solve efficiently the HSP over the symmetric group S_n in order to have an efficient quantum algorithm for graph automorphism (see, e.g., Jozsa [16] for a review). This was the impetus behind the development of the first nonabelian quantum Fourier transform [1] and is, in part, the reason that the nonabelian HSP has remained such an active area of research in quantum algorithms.

In general, we will say that the HSP for a family of groups G has a Fourier sampling algorithm if a procedure similar to that outlined above works. Specifically, the algorithm prepares a superposition of the form

$$\frac{1}{\sqrt{|H|}} \sum_{h \in H} |ch\rangle,$$

over a random coset cH of the hidden subgroup H, computes the (quantum) Fourier transform of this state, and measures the result. After a polynomial number of such trials, a polynomial amount of classical
computation, and, perhaps, a polynomial number of classical queries to the function \(h \) to confirm the result, the algorithm produces a set of generators for the subgroup \(H \) with high probability.

When \(G \) is abelian, measuring a state’s Fourier transform has a clear meaning: one observes the frequency \(\chi \) with probability equal to the squared magnitude of the transform at that frequency. In the case where \(G \) is a nonabelian group, however, it is necessary to select bases for each representation of \(G \) to perform full measurement. (We explain this in more detail below.) The subject of this article is the relationship between this choice of basis and the information gleaned from the measurement: are some bases more useful for computation than others?

Since we are typically interested in exponentially large groups, we will take the size of our input to be \(n = \log |G| \). Throughout, “polynomial” means polynomial in \(n \), and thus polylogarithmic in \(|G| \).

1.1 Nonabelian Hidden Subgroup Problems

Although a number of interesting results have been obtained on the nonabelian HSP, the groups for which efficient solutions are known remain woefully few. On the positive side, Roetteler and Beth [22] give an algorithm for the wreath product \(\mathbb{Z}_2^k \wr \mathbb{Z}_2 \). Ivanyos, Magniez, and Santha [15] extend this to the more general case of semidirect products \(K \ltimes \mathbb{Z}_2^k \) where \(K \) is of polynomial size, and also give an algorithm for groups whose commutator subgroup is of polynomial size. Friedl, Ivanyos, Magniez, Santha and Sen solve a problem they call Hidden Translation, and thus generalize this further to what they call “smoothly solvable” groups: these are solvable groups whose derived series is of constant length and whose abelian factors are each the direct product of an abelian group of bounded exponent and one of polynomial size [7]. (See also Section 8.)

In another vein, Ettinger and Høyer [5] show that the HSP is solvable for the dihedral groups in an information-theoretic sense; namely, a polynomial number of quantum queries to the function oracle gives enough information to reconstruct the subgroup, but the best known reconstruction algorithm takes exponential time. More generally, Ettinger, Høyer and Knill [6] show that for arbitrary groups the HSP can be solved information-theoretically with a finite number of quantum queries. However, their algorithm calls for a quantum measurement for each possible subgroup, and since there might be \(|G|^{(\log |G|)} \) of these, it requires an exponential number of quantum operations.

Our current understanding of the HSP, then, divides group families into three classes.

I. **Fully Reconstructible.** Subgroups of a family of groups \(\{G_i\} \) are **fully reconstructible** if the HSP can be solved with high probability by a quantum circuit of size polynomial in \(\log |G_i| \).

II. **Information-Theoretically Reconstructible.** Subgroups of a family of groups \(\{G_i\} \) are **information-theoretically reconstructible** if the solution to the HSP for \(G_i \) is determined information-theoretically by the fully measured result of a quantum circuit of size polynomial in \(\log |G_i| \).

III. **Quantum Information-Theoretically Reconstructible.** Subgroups of a family of groups \(\{G_i\} \) are **quantum information-theoretically reconstructible** if the solution to the HSP for \(G_i \) is determined by the quantum state resulting from a quantum circuit of polynomial size in \(\log |G_i| \), in the sense that there exists a positive operator-valued measurement (POVM) that yields the subgroup \(H \) with constant probability, but where it may or may not be possible to carry out this POVM with a quantum circuit of polynomial size.

In each case, the quantum circuit has oracle access to a function \(f : G \to S \), for some set \(S \), with the property that \(f \) is constant on each left coset of a subgroup \(H \), and distinct on distinct cosets.

In this language, then, subgroups of abelian groups are fully reconstructible, while the result of [6] shows that subgroups of arbitrary groups are quantum information-theoretically reconstructible. The other work cited above has labored to place specific families of nonabelian groups into the more algorithmically meaningful classes I and II.
1.2 Nonabelian Fourier transforms

In this section we give a brief review of nonabelian Fourier analysis, but only to the extent needed to set down notation. We refer the reader to [24] for a more complete exposition.

Fourier analysis over a finite abelian group A expresses a function $\phi : A \to \mathbb{C}$ as a linear combination of homomorphisms $\chi : A \to \mathbb{C}$. If $A = \mathbb{Z}_p$, for example, these are the familiar basis functions $\chi_t : z \mapsto \omega_p^t z$, where ω_p denotes the pth root of unity $e^{2\pi i/p}$. Any function $\phi : A \to \mathbb{C}$ can be uniquely expressed as a linear combination of these χ_t, and this change of basis is the Fourier transform.

When G is a nonabelian group, however, this same procedure cannot work: in particular, there are not enough homomorphisms of G into \mathbb{C} to span the space of all \mathbb{C}-valued functions on G. To define a sufficient basis, the representation theory of finite groups considers more general functions, namely homomorphisms from G into groups of unitary matrices.

A representation of a finite group G is a homomorphism $\rho : G \to U(d)$, where $U(d)$ denotes the group of unitary $d \times d$ matrices (with entries from \mathbb{C}); the dimension $d = d_\rho$ is referred to as the dimension of ρ. If $\rho : G \to U(d)$ is a representation, a subspace W of \mathbb{C}^d is said to be invariant if $\rho(g)(W) \subset W$ for all $g \in G$. A representation is said to be irreducible if the only invariant subspaces are the trivial subspace \mathbb{C}^d and $\{0\}$.

For a function $\phi : G \to \mathbb{C}$ and an irreducible representation ρ, $\hat{\phi}(\rho)$ denotes the Fourier transform of ϕ at ρ and is defined by

$$\hat{\phi}(\rho) = \sqrt{\frac{d_\rho}{|G|}} \sum_g \phi(g) \rho(g).$$

Note that ϕ takes values in \mathbb{C} while ρ is matrix-valued. It is a fact that a finite group has a finite number of distinct irreducible representations (up to isomorphism), and the Fourier transform of a function $\phi : G \to \mathbb{C}$ is the collection of matrices $\hat{\phi}(\rho)$, taken over all distinct irreducible representations ρ.

Fixing a group G and a subgroup H, we shall focus primarily on the functions $\varphi_c : G \to \mathbb{C}$ of form

$$\varphi_c(g) = \begin{cases} \frac{1}{\sqrt{|H|}} & \text{if } g \in cH, \\ 0 & \text{otherwise}, \end{cases}$$

corresponding to the first register of the state ψ_3 resulting from Step 3 above, which is a uniform superposition over the coset cH. The Fourier transform of such a function is then

$$\hat{\varphi_c}(\rho) = \sqrt{\frac{d_\rho}{|G||H|}} \rho(c) \cdot \sum_{h \in H} \rho(h).$$

Note, as above, that $\hat{\varphi_c}(\rho)$ is a $d_\rho \times d_\rho$ matrix.

For any subgroup H, the sum $\sum_h \rho(h)$ is precisely $|H|$ times a projection operator (see, e.g., [13]); we write

$$\sum_h \rho(h) = |H| \pi_H(\rho).$$

With this notation, we can express $\hat{\varphi_c}(\rho)$ as $\sqrt{n_\rho} \rho(c) \cdot \pi_H(\rho)$ where $n_\rho = d_\rho |H| / |G|$. For a $d \times d$ matrix M, we let $\|M\|$ denote the matrix norm given by

$$\|M\|^2 = \text{tr} (M^\dagger M) = \sum_{ij} |M_{ij}|^2,$$

where M^\dagger denotes the conjugate transpose of M. Then the probability that we observe the representation ρ is

$$\|\hat{\varphi_c}(\rho)\|^2 = \|\sqrt{n_\rho} \rho(c) \pi_H(\rho)\|^2 = n_\rho \|\pi_H(\rho)\|^2 = n_\rho \text{rk} \pi_H(\rho),$$

where $\text{rk} \pi_H(\rho)$ denotes the rank of the projection operator $\pi_H(\rho)$. See [13] for more discussion.
1.3 Weak vs. strong sampling and the choice of basis

Hallgren, Russell, and Ta-Shma [13] show that by measuring only the names of representations—the so-called weak standard method in the terminology of [9]—it is possible to reconstruct normal subgroups (and thus solve the HSP for Hamiltonian groups, all of whose subgroups are normal). More generally, this method reconstructs the normal core of a subgroup, i.e., the intersection of all its conjugates. On the other hand, they show that this is insufficient to solve Graph Automorphism, since even in an information-theoretic sense this method cannot distinguish between the trivial subgroup of S_n and subgroups of order 2 consisting of the identity and an involution.

Therefore, in order to solve the HSP for nonabelian groups, we need to measure not just the name of the representation we are in, but also the row and column. In order for this measurement to be well-defined, we need to choose a basis for $U(d_p)$ for each p. Grigni, Schulman, Vazirani and Vazirani [9] call this the strong standard method. They show that if we measure using a uniformly random basis, then trivial and non-trivial subgroups are still information-theoretically indistinguishable. However, they leave open the question of whether the strong standard method with a clever choice of basis, rather than a random one, allows us to solve the HSP in nonabelian groups, yielding an algorithm for Graph Automorphism.

Indeed, in representation theory certain bases are “preferred”, and have very special computational properties, because they give the matrices $\rho(g)$ a highly structured or sparse form. In particular, Moore, Rockmore and Russell [19] showed that so-called adapted bases yield highly efficient algorithms for the quantum Fourier transform.

1.4 Contributions of this paper

As stated above, [13] and [9] leave an important open question: namely, whether there are cases where the strong standard method, with the proper choice of basis, offers an advantage over a simple abelian transform or the weak standard method. We settle this question in the affirmative. Our results deal primarily with the q-hedral groups, i.e., semidirect products of the form $\mathbb{Z}_q \ltimes \mathbb{Z}_p$, where $q \mid (p - 1)$, and in particular the affine groups $A_p \cong \mathbb{Z}_p^* \ltimes \mathbb{Z}_p$.

We begin in Section 3 by focusing on full reconstructibility. We define the Hidden Conjugate Problem (HCP) as follows: given a group G, a non-normal subgroup H, and a function which is promised to be constant on the cosets of some conjugate bHb^{-1} of H (and distinct on distinct cosets), determine the subgroup bHb^{-1} by finding an element $c \in G$ so that $cHc^{-1} = bHb^{-1}$. We adopt the above classification (fully, information-theoretically, quantum information-theoretically) for this problem in the natural way. Then we show that given a subgroup of sufficiently small (but still exponentially large) index, hidden conjugates in A_p are fully reconstructible (Theorem 1). This almost immediately implies that, for prime $q = (p-1)/\text{polylog}(p)$, subgroups of the q-hedral groups $\mathbb{Z}_q \ltimes \mathbb{Z}_p$ are fully reconstructible (Theorem 2).

Section 4 concerns itself with information-theoretic reconstructibility. We generalize the results of Ettinger and Høyer on the dihedral group and show that hidden conjugates of any subgroup are information-theoretically reconstructible in the affine groups, and more generally the q-hedral groups for all q (Theorem 3). We then show that we can identify the order, and thus the conjugacy class, of a hidden subgroup, and this implies that all subgroups of the affine and q-hedral groups are information-theoretically reconstructible (Theorem 5).

The results of Sections 3 and 4 rely crucially on measuring the high-dimensional representations of the affine and q-hedral groups in a well-chosen basis, namely an adapted basis that respects the group’s subgroup structure. We show in Section 5 that we lose information-theoretic reconstructibility if we measure using a random basis instead. Specifically, we need an exponential number of measurements to distinguish conjugates of small subgroups of A_p. This establishes for the first time that the strong standard method is indeed stronger than measuring in a random basis: some bases provide much more information about the hidden subgroup than others.

For some nonabelian groups, the HSP can be solved with a “forgetful” approach, where we erase the group’s nonabelian structure and perform an abelian Fourier transform instead. In Section 6 we show that this is not the case for the affine groups: specifically, if we treat A_p as a direct product rather than a
semidirect one, its conjugate subgroups become indistinguishable.

As an application, in Section 7 we consider hidden shift problems. In the setting we consider, one must reconstruct a “hidden shift” $s \in \mathbb{Z}_p$ from an oracle $f_s(x) = f(x - s)$, where f is any function that is constant on the (multiplicative) cosets of a known multiplicative subgroup of \mathbb{Z}_p^*. These functions have been studied in some depth for their pseudorandom properties, and several instances have been suggested as cryptographically strong pseudorandom generators. By associating f_s with its isotropy subgroup, and using our reconstruction algorithm to find that subgroup, we give an efficient quantum algorithm for the hidden shift problem in the case where $f(x)$ is a function of x’s multiplicative order mod r for some $r = \text{polylog}(p)$. This generalizes the work of van Dam, Hallgren, and Ip [3], who give an algorithm for hidden shift problems in the case where f is precisely a multiplicative character.

Finally, in Section 8 we show that the set of groups for which the HSP can be solved in polynomial time has the following closure property: if $\mathcal{H} = \{H_n\}$ is a family of groups for which we can efficiently solve the HSP and $\mathcal{K} = \{K_n\}$ is a family of groups for which $|K_n| = \text{polylog}|H_n|$, we can also efficiently solve the HSP for the family \mathcal{G}_n, where each G_n is any extension of K_n by H_n. This subsumes the results of [13] on Hamiltonian groups, and also those of [15] on groups with commutator subgroups of polynomial size.

2 The affine and q-hedral groups

Let A_p be the affine group, consisting of ordered pairs $(a, b) \in \mathbb{Z}_p^* \times \mathbb{Z}_p$, where p is prime, under the multiplication rule $(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 + a_1 b_2)$. A_p can be viewed as the set of affine functions $f_{(a, b)} : \mathbb{Z}_p \to \mathbb{Z}_p$ given by $f_{(a, b)} : x \mapsto ax + b$ where multiplication in A_p is given by function composition. Structurally, A_p is a semidirect product $\mathbb{Z}_p^* \rtimes \mathbb{Z}_p \cong \mathbb{Z}_{p-1} \rtimes \mathbb{Z}_p$. Its subgroups are as follows:

- Let $N \cong \mathbb{Z}_p$ be the normal subgroup of size p consisting of elements of the form $(1, b)$.
- Let $H \cong \mathbb{Z}_p^* \cong \mathbb{Z}_{p-1}$ be the non-normal subgroup of size $p - 1$ consisting of the elements of the form $(a, 0)$. Its conjugates $H^b = (1, b) \cdot H \cdot (1, -b)$ consist of elements of the form $(a, (1-a)b)$. In the action on \mathbb{Z}_p, H^b is the stabilizer of b.
- More generally, if $a \in \mathbb{Z}_p^*$ has order q, let $N_q \cong \mathbb{Z}_q \ltimes \mathbb{Z}_p$ be the normal subgroup consisting of all elements of the form (a^i, b), and let H_a be the non-normal subgroup $H_a = \langle (a, 0) \rangle$ of size q. Then H_a consists of the elements of the form $(a^i, 0)$ and its conjugates $H_a^b = (1, b) \cdot H_a \cdot (1, -b)$ consist of the elements of the form $(a^i, (1-a^i)b)$.

Construction of the representations of A_p requires that we fix a generator γ of \mathbb{Z}_p^*. Define $\log : \mathbb{Z}_p^* \to \mathbb{Z}_{p-1}$ to be the isomorphism $\log \gamma^t = t$. Let ω_p denote the pth root of unity $e^{2\pi i/p}$. Then A_p has $p - 1$ one-dimensional representations σ_i, which are simply the representations of $\mathbb{Z}_p^* \cong \mathbb{Z}_{p-1}$, given by $\sigma_i((a, b)) = \omega_p^{it \pmod q}$. Moreover, it has one $(p - 1)$-dimensional representation ρ given by

$$
\rho((a, b))_{j, k} = \left\{ \begin{array}{ll}
\omega_p^{b j} & k = aj \pmod p \\
0 & \text{otherwise}
\end{array} \right., \quad 1 \leq j, k < p,
$$

where the indices i and j are elements of \mathbb{Z}_p^*. See [24, §8.2] for a more detailed discussion.

Similarly, given prime p and $q | p - 1$, we consider the q-hedral groups, namely, as the normal subgroups N_q defined above. The dihedral groups are the special case where $q = 2$.

The representations of $\mathbb{Z}_q \ltimes \mathbb{Z}_p$ include the q one-dimensional representations of \mathbb{Z}_q given by $\sigma_\ell((a^i, b)) = \omega_q^{\ell t}$ for $\ell \in \mathbb{Z}_q$, and $(p - 1)/q$ distinct q-dimensional representations ρ_ℓ given by

$$
\rho_\ell((a^u, b), s, t) = \left\{ \begin{array}{ll}
\omega_p^{ka^u b} & t = s + u \pmod q \\
0 & \text{otherwise}
\end{array} \right.,
$$

for each $0 \leq s, t < q$. Here k ranges over the elements of $\mathbb{Z}_p^*/\mathbb{Z}_q$, or, to put it differently, k takes values in \mathbb{Z}_p^* but ρ_k and $\rho_{k'}$ are equivalent if k and k' are in the same coset of $\langle a \rangle$.

The representations of the affine and q-hedral groups are related as follows. The restriction of the $(p - 1)$-dimensional representation ρ of A_p to N_q is reducible, and is isomorphic to the direct product of the ρ_k. Moreover, if we measure ρ in a Gel’fand-Tsetlin basis such as (1) which is adapted to the tower of subgroups

$$A_p > N_q > Z_p > \{1\},$$

then ρ becomes block-diagonal, with $(p - 1)/q$ blocks of size q, and these blocks are exactly the representations ρ_k of N_q. (See [19] for an introduction to adapted bases and their uses in quantum computation.) We will use this fact in Sections 4 and 5 below.

The affine and q-hedral groups are metacyclic groups, i.e., extensions of a cyclic group Z_p by a cyclic group Z_q. In [14], Høyer shows how to perform the nonabelian Fourier transform over such groups (up to an overall phase factor) with a polynomial, i.e., polylog(p), number of elementary quantum operations.

3 Full reconstructibility

In this section we show that conjugates of sufficiently large subgroups of the affine groups are fully reconstructible in polynomial time. For some values of p and q, this allows us to completely solve the Hidden Subgroup Problem for the q-hedral group $Z_q \ltimes Z_p$.

Theorem 1. Let p be prime and let $a \in Z_p^*$ have order $q = (p - 1)/\text{polylog}(p)$. Then the hidden conjugates of H_a in A_p are fully reconstructible.

Proof. Consider first the maximal non-normal subgroup $H = H_\gamma$ (where γ is a generator of Z_p^*). Carrying out steps 1 through 3 of the Fourier sampling procedure outlined in the introduction results in a state ψ_3 over the group G which is uniformly supported on a random left coset of the conjugate $H^b = bHb^{-1}$. Using the procedure of [14], we now compute the quantum Fourier transform of this state over A_p, in the basis (1). The associated projection operator is

$$\pi_{H^b}(\rho)_{j,k} = \frac{1}{p - 1} \omega_p^{bj(k-j)} ,$$

for $1 \leq j, k < p$. This is a circulant matrix of rank one. More specifically, every column is some root of unity times the vector

$$(u_b)_j = \frac{1}{p - 1} \omega_p^{bj} ,$$

$1 \leq j < p$. This is also true of $\rho(c) \cdot \pi_{H^b}(\rho)$; since $\rho(c)$ has one nonzero entry per column, left multiplying by $\rho(c)$ simply multiplies each column of $\pi_{H^b}(\rho)$ by a phase. Note that in this case

$$n_\rho = d_p|H|/|G| = (p - 1)/p = 1 - 1/p ,$$

so that upon measurement the $(p - 1)$-dimensional representation ρ is observed with overwhelming probability $1 - 1/p$.

Assuming that we observe ρ, we perform another change of basis: namely, we Fourier transform each column by left-multiplying $\rho(cH)$ by $Q_{\ell,j} = (1/\sqrt{p - 1}) \omega_{p-1}^{-\ell j}$. In terms of quantum operations, we are applying the quantum Fourier transform over Z_{p-1} to the row register, while leaving the column register unchanged. We can now infer b by measuring the frequency ℓ. Specifically, we observe a given value of ℓ with probability

$$(2) \quad P(\ell) = \left| \frac{1}{p - 1} \sum_{j=1}^{p-1} \omega_p^{bj} \omega_{p-1}^{-\ell j} \right|^2 = \frac{1}{(p - 1)^2} \sum_{j=1}^{p-1} e^{2i\theta_j} = \frac{1}{(p - 1)^2} \frac{\sin^2(p - 1)\theta}{\sin^2 \theta}$$

where

$$\theta = \left(\frac{b}{p} - \frac{\ell}{p - 1} \right) \pi.$$
Now note that for any b there is an ℓ such that $|\theta| \leq \pi/(2(p-1))$. Since

$$\left(2x/\pi\right)^2 \leq \sin^2 x \leq x^2$$

for $|x| \leq \pi/2$, this gives $P(\ell) \geq (2/\pi)^2$.

Recall that the probability that we observed the $(p-1)$-dimensional representation ρ in the first place is $n_\rho = 1 - 1/p$. Thus if we measure ρ, the column, and then ℓ and then guess that b minimizes $|\theta|$, we will be right $\Omega(1)$ of the time. This can be boosted to high probability, i.e., $1 - o(1)$, by repeating the experiment a polynomial number of times.

Consider now the more general case, when the hidden subgroup is a conjugate of the subgroup H_a where a’s order is a proper divisor of $p - 1$. Recall that a given conjugate of H_a consists of the elements of the form $(a^t, (1 - a^t)b)$. Then we have

$$\pi_{H_a^s}(\rho)_{j,k} = \frac{1}{q} \left\{ \begin{array}{ll} \omega_p^{b(j-k)} & k = a^t j \text{ for some } t \\ 0 & \text{otherwise} \end{array} \right.,$$

for $1 \leq j, k < p$. In other words, the nonzero entries are those for which j and k lie in the same coset of $\langle a \rangle \subset \mathbb{Z}_p^*$. The rank of this projection operator is thus the number of cosets, which is the index $(p-1)/q$ of $\langle a \rangle$ in \mathbb{Z}_p^*. Since n_ρ is now q/p, we again observe ρ with probability

$$n_\rho \text{rk } \pi_{H_a^s}(\rho) = (p-1)/p = 1 - 1/p .$$

Following the same procedure as before, we carry out a partial measurement on the columns of ρ, and then Fourier transform the rows. After changing the variable of summation from t to $-t$ and adding a phase shift of $e^{-i\theta(p-1)}$ inside the $|\cdot|^2$, the probability we observe a frequency ℓ, assuming we find ourselves in the kth column, is

$$P(\ell) = \left| \frac{1}{\sqrt{q(p-1)}} \sum_{t=0}^{q-1} \omega_p^{b(a^t k \mod p)} \omega_{p-1}^{-\ell(a^t k \mod p)} \right|^2$$

(3)

$$= \frac{1}{q(p-1)} \left| \sum_{t=0}^{q-1} e^{2i\theta(a^t k \mod p)} \right|^2 .$$

Now note that the terms in the sum are of the form $e^{i\phi}$ where (assuming w.l.o.g. that θ is positive)

$$\phi \in [-\theta(p-1), \theta(p-1)] .$$

If we again take ℓ so that $|\theta| \leq \pi/(2(p-1))$, then $\phi \in [-\pi/2, \pi/2]$ and all the terms in the sum have nonnegative real parts. We will obtain a lower bound on the real part of the sum by showing that a constant fraction of the terms have $\phi \in (-\pi/3, \pi/3)$, and thus have real part more than $1/2$. This is the case whenever $a^t k \in (p/6, 5p/6)$, so it is sufficient to prove the following lemma:

Lemma 1. Let a have order $q = p/\text{polylog}(p)$ in \mathbb{Z}_p^*, p a prime. Then at least $(1/3 - o(1))q$ of the elements in the coset $(a)k$ are in the interval $(p/6, 5p/6)$.

Proof. We will prove this using Gauss sums, which quantify the interplay between the characters of \mathbb{Z}_p and the characters of \mathbb{Z}_p^*. In particular, Gauss sums establish bounds on the distribution of powers of a. Specifically, if a has order q in \mathbb{Z}_p^* then for any integer $k \not\equiv 0 \mod p$ we have

$$\sum_{t=0}^{q-1} \omega_p^{a^t k} = O(p^{1/2}) = o(p) .$$

(See [17] and Appendix A.)
Now suppose s of the elements x in $\langle a \rangle k$ are in the set $(p/6, 5p/6)$, for which $\text{Re} \omega_p^s \geq -1$, and the other $q - s$ elements are in $[0, p/6] \cup [5p/6, p)$, for which $\text{Re} \omega_p^s \geq 1/2$. Thus we have
\[
\text{Re} \sum_{i=0}^{q-1} \omega_p^{a^i k} \geq (q/2) - (3s/2).
\]
If $s \leq (1/3 - \epsilon)q$ for any $\epsilon > 0$ this is $\Theta(q)$, a contradiction. \square

Now that we know that a fraction $1/3 - \epsilon$ of the terms in (3) have real part at least $1/2$ and the others have real part at least 0, we can take $\epsilon = 1/12$ (say) and write
\[
P(\ell) \geq \frac{1}{q(p - 1)} \left(\frac{q}{8} \right)^2 = \frac{1}{64 p - 1} = \frac{1}{\text{polylog}(p)}.
\]
Thus we observe the correct frequency with at least polynomially small probability; again this can be boosted to high probability by repetition. \square

Theorem 1 implies that we can completely solve the Hidden Subgroup Problem for certain q-hedral groups.

Theorem 2. Let p and q be prime with $q = (p - 1)/\text{polylog}(p)$. Then subgroups of the q-hedral group $\mathbb{Z}_q \times \mathbb{Z}_p$ are fully reconstructible.

Proof. First, note that we can fully reconstruct H if it is non-trivial and normal. We do this by reconstructing the normal core of H,
\[
C(H) = \bigcap_{\gamma \in G} \gamma H \gamma^{-1}
\]
using the techniques of [13] (the weak standard method). The q-hedral groups have the special property that no non-normal subgroup contains a non-trivial normal subgroup; then B is normal; in particular, if H is non-normal, then $C(H)$ is the trivial subgroup. Thus by reconstructing $C(H)$, we either learn $H = C(H)$ or learn that H is either trivial or non-normal. Furthermore, if H is trivial we will learn this by checking our reconstruction against the oracle f and finding that it is incorrect. Therefore, it suffices to consider the non-normal subgroups.

If q is prime, then the non-normal subgroups of $\mathbb{Z}_q \times \mathbb{Z}_p$ are all conjugate to a single subgroup $K \cong \mathbb{Z}_q$, so the hidden subgroup problem reduces to the hidden conjugate problem for K. While one can construct a proof similar to that of Theorem 1 directly for the q-hedral groups, it is convenient to embed them in A_p using the isomorphisms $N_q \cong \mathbb{Z}_q \times \mathbb{Z}_p$ and $H_a \cong K$ and appeal to Theorem 1.

Now suppose we have an oracle $f : \mathbb{Z}_q \times \mathbb{Z}_p \to S$. We extend this to an oracle f' on A_p as follows. Choose a generator $\gamma \in \mathbb{Z}_p^*$ and one of the $q - 1$ elements $a \in \mathbb{Z}_p^*$ of order q, and let
\[
f' : A_p \to S \times \langle a \rangle
\]
where
\[
f'((a, b)) = \left(f \left(\left(\left\lfloor \frac{\log a}{p - 1} \right\rfloor, b \right), a^q \right) \right)
\]
recalling that $\log \gamma^t = t$. The second component of f' serves to distinguish the cosets of N_q from each other, while the first component maps each coset of N_q to $\mathbb{Z}_q \times \mathbb{Z}_p$ with the element of \mathbb{Z}_q written additively, rather than multiplicatively. (This last step is not strictly necessary—all we could have written the elements of A_p in additive form in the first place—but it can be carried out with Shor’s algorithm for the discrete logarithm [25].) This reduces the HCP for K (and therefore the HSP) on $\mathbb{Z}_q \times \mathbb{Z}_p$ to the HCP for H_a on A_p, completing the proof. \square

As an example of Theorem 2, if q is a Sophie Germain prime, i.e., one for which $p = 2q + 1$ is also a prime, we can completely solve the HSP for $\mathbb{Z}_q \times \mathbb{Z}_p$.

9
4 Information-theoretic reconstructibility

In this section, we show that all subgroups of the affine and \(q \)-hedral groups, regardless of their size, are information-theoretically reconstructible. We start by considering the hidden conjugate problem for subgroups \(H_a = \langle (a, 0) \rangle \) in \(A_p \). Then in Theorem 5 we show that we can identify the conjugacy class of a hidden subgroup, and therefore the subgroup itself. This generalizes the results of Ettinger and Høyer [5] who show information-theoretic reconstructibility for the dihedral groups, i.e., the case \(q = 2 \).

Theorem 3. Let \(p \) be prime and let \(a \) be any element of \(\mathbb{Z}_p^* \). Then the hidden conjugates of \(H_a \) in \(A_p \) are information-theoretically reconstructible.

Proof. Suppose \(a \) has order \(q \). Recall that \(H_a \) and its conjugates \(H_a^b \) are maximal in the subgroup \(N_q \cong \mathbb{Z}_q \times \mathbb{Z}_p \). We wish to show that there is a measurement whose outcomes, given two distinct values of \(b \), have large, i.e., \(1/\text{polylog}(p) \), total variation distance. First, we perform a series of partial measurements as follows.

1. Measure the name of the representation of \(A_p \). If this is not \(\rho \) try again. Otherwise, continue;
2. Measure the name of the representation \(\rho_k \) of \(N_q \) inside \(\rho \);
3. Measure the column of \(\rho_k \); and
4. Perform a POVM with \(q \) outcomes, in each of which \(s \) is \(u \) or \(u + 1 \mod q \) for some \(u \in \mathbb{Z}_q \).

As in Theorem 1, we measure the \((p - 1) \)-dimensional representation of \(A_p \) in a chosen basis. Recall that in the adapted basis (1) the restriction of \(\rho \) to \(N_q \) is block diagonal, where the \((p - 1)/q \) blocks are the \(q \)-dimensional representations \(\rho_k \) of \(N_q \). Therefore, the projection operator \(\pi_{H_a^b}^s(\rho) \) is block-diagonal, and each of its blocks is one of the projection operators \(\pi_{H_a^b}^s(\rho_k) \). Summing \(\rho_k \) over \(H_a^b = \{(a^t, (1 - a^t)b)\} \) gives

\[
(\pi_{H_a^b}^s(\rho_k))_{s,t} = (1/q) \omega_p^{k(a^t-a^t)b}
\]

for \(0 \leq s, t < q \). This is a matrix of rank 1, where each column (even after left multiplication by \(\rho_k(c) \)) is some root of unity times the vector \((u_k)_s = (1/q) \omega_p^{ka^t b} \). Since \(n_p = q/p \), the probability that we observe a particular \(\rho_k \) is \(q/p \). Since \(\pi_{H_a^b}(\rho) \) has \((p - 1)/q \) blocks of this kind, it has rank \((p - 1)/q \), and the total probability that we observe \(\rho \) is \((p - 1)/p = 1 - 1/p \) as before.

Then these four partial measurements determine \(k \), remove the effect of the coset, and determine that \(s \) has one of two values, \(u \) or \(u + 1 \). Up to an overall phase we can write this as a two-dimensional vector

\[
\frac{1}{\sqrt{2}} \begin{pmatrix} \omega_p^{ku^b} \\ \omega_p^{ku^{u+1}b} \end{pmatrix}.
\]

We now apply the Hadamard transform

\[
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]

and measure \(s \). The probability we observe that \(s = u \) or \(u + 1 \) is then \(\cos^2 \theta \) and \(\sin^2 \theta \) respectively, where \(\theta = (ka^u(a - 1)b)p/\pi \). Now when we observe a \(q \)-dimensional representation, the \(k \) we observe is uniformly distributed over \(\mathbb{Z}_q^*/\mathbb{Z}_q \), and when we perform the POVM, the \(u \) we observe is uniformly distributed over \(\mathbb{Z}_q \). It follows that the coefficient \(m = ka^u(u - 1) \) is uniformly distributed over \(\mathbb{Z}_p^* \). For any two distinct \(b \), \(b' \), the total variation distance is then

\[
\frac{1}{2(p - 1)} \sum_{m \in \mathbb{Z}_p^*} \left(\left| \cos^2 \frac{xmb}{p} - \cos^2 \frac{xmb'}{p} \right| + \left| \sin^2 \frac{xmb}{p} - \sin^2 \frac{xmb'}{p} \right| \right).
\]
This we rewrite

\[
\frac{1}{p-1} \sum_{m \in \mathbb{Z}_p} \left| \cos\frac{2\pi mb}{p} - \cos\frac{2\pi mb'}{p} \right| = \frac{1}{2(p-1)} \sum_{m \in \mathbb{Z}_p} \left| \cos\frac{2\pi mb}{p} - \cos\frac{2\pi mb'}{p} \right| \geq \frac{1}{4(p-1)} \sum_{m \in \mathbb{Z}_p} \left(\cos\frac{2\pi mb}{p} - \cos\frac{2\pi mb'}{p} \right)^2 = \frac{p}{4(p-1)} > \frac{1}{4}.
\]

(Adding the \(m = 0\) term contributes zero to the sum in the second line. In the third line we use the facts that \(|x| \leq x^2/2\) for all \(|x| \leq 2\), the average of \(\cos^2 x\) is \(1/2\), and the two cosines have zero inner product.)

Since the total variation distance between any two distinct conjugates is bounded below by a constant, we can distinguish between the \(p\) different conjugates with only \(O(\log p) = \text{poly}(n)\) samples. Thus, hidden conjugates in \(A_p\) are information-theoretically reconstructible, completing the proof. □

By embedding the \(q\)-hedral groups in \(A_p\), as in Theorem 2, we can generalize Theorem 3 to the \(q\)-hedral groups (note that we do not require here that \(q\) is prime):

Theorem 4. Let \(p\) be prime and \(q\) a divisor of \(p - 1\). The subgroups of the \(q\)-hedral groups \(\mathbb{Z}_q \times \mathbb{Z}_p\) are information-theoretically reconstructible.

We now wish to information-theoretically reconstruct all subgroups of the affine and \(q\)-hedral groups. We can do this by first reconstructing which conjugacy class they lie in, and then applying Theorems 3 and 4.

Theorem 5. Let \(p\) be prime and \(q\) a divisor of \(p - 1\). The subgroups of the \(q\)-hedral groups \(\mathbb{Z}_q \times \mathbb{Z}_p\) are information-theoretically reconstructible. In particular, the subgroups of the affine groups \(A_p = \mathbb{Z}_p^* \times \mathbb{Z}_p\) are information-theoretically reconstructible.

Proof. As in Theorem 2, we can (fully) reconstruct the normal subgroups of \(\mathbb{Z}_q \times \mathbb{Z}_p\), so it suffices to consider non-normal subgroups \(H\). Recall that in this case, \(H\) is cyclic and \(|H|\) is equal to the order of \(a\), where \(H = \langle (a, b) \rangle\). Since there is a unique conjugacy class of subgroups of each order, it suffices to determine \(|H|\), at which point the subgroup \(H\) can be determined by Theorem 4.

Let the oracle be \(f : \mathbb{Z}_q \times \mathbb{Z}_p \to S\), and let \(p_1^{\alpha_1} \cdots p_k^{\alpha_k}\) be the prime factorization of \(q\), in which case \(k \leq \sum_i \alpha_i = O(\log q)\). For each \(i \in \{1, \ldots, k\}\) and each \(\alpha \in \{0, \ldots, \alpha_i\}\), we will determine if \(p_i^{\alpha} \mid |H|\), and taking the largest such \(\alpha\) for each \(i\) gives the prime factorization of \(|H|\).

To do this, for each \(i \in \{k\}\) and \(1 \leq \alpha \leq \alpha_i\), let \(\Upsilon_i^{\alpha} : \mathbb{Z}_q \times \mathbb{Z}_p \to \mathbb{Z}_{q/p_i^{\alpha}}\) be the homomorphism given by

\[
\Upsilon_i^{\alpha} : (a, b) \mapsto a^{p_i^\alpha}.
\]

Then let

\[
A_i^{\alpha} = \ker \Upsilon_i^{\alpha} = \{ \gamma \in \mathbb{Z}_q \times \mathbb{Z}_p \mid \gamma^{p_i^{\alpha}} = 1 \},
\]

where \(1\) denotes the identity element of \(\mathbb{Z}_q \times \mathbb{Z}_p\). \(A_i^{\alpha}\) is the subgroup of \(\mathbb{Z}_q \times \mathbb{Z}_p\) consisting of all elements whose orders are a multiple of \(p_i^{\alpha}\). Consider now the function

\[
f' : \mathbb{Z}_q \times \mathbb{Z}_p \to S \times \mathbb{Z}_{q/p_i^{\alpha}}
\]

given by

\[
f'((\gamma)) = (f(\gamma), \Upsilon_i^{\alpha}(\gamma))
\]

Observe that \(f'\) is constant (and distinct) on the left cosets of \(H \cap A_i^{\alpha}\) and, furthermore, the subgroup \(H \cap A_i^{\alpha}\) has order \(p_\alpha\) if and only if \(p_\alpha\) divides the order of \(a\). We may then determine if \(H \cap A_i^{\alpha}\) has order
\(p^a \) by assuming that it does, reconstructing \(H \) with Theorem 4 using \(f' \) as the oracle, and checking the result against the original oracle \(f \). This allows us to determine the prime factorization of \(|H| \) as desired. Therefore, all subgroups of the \(q \)-hedral groups \(\mathbb{Z}_q \ltimes \mathbb{Z}_p \) are information-theoretically reconstructible.

As in the dihedral case [5], we know of no polynomial-time algorithm which can reconstruct the most likely \(b \) from these queries. However, Kuperberg [18] gives a quantum algorithm for the HSP in the dihedral group, and more generally the hidden shift problem, that runs in subexponential \((e^{\Omega(\log^{1/2} p)}) \) time. Since we can reduce the HSP on \(\mathbb{Z}_q \ltimes \mathbb{Z}_p \) to a hidden shift problem by focusing on two cosets of \(\mathbb{Z}_p \), this algorithm applies to the \(q \)-hedral groups as well.

5 Random vs. adapted bases

In Theorems 3 and 5, we measured the high-dimensional representation \(\rho \) in a specific basis which is adapted to the subgroup structure of \(A_p \) and the \(q \)-hedral groups. In contrast, we show in this section that if we measure \(\rho \) in a random basis instead, then for all but the largest values of \(q \) we need an exponential number of measurements in order to information-theoretically distinguish conjugate subgroups from each other.

Theorem 6. Let \(p \) be prime and let \(a \in \mathbb{Z}_p^* \) have order \(q \) where \(q < p^{1-\epsilon} \) for some \(\epsilon > 0 \). Let \(P_b(v) \) be the probability that we observe a basis vector \(v \) in the Fourier basis if the hidden subgroup is \(H_{ab}^b \). If we measure \(\rho \) in a random basis, then for any two \(b, b' \), with high probability the \(L_1 \) distance between these probability distributions is exponentially small, i.e., there exists \(\beta > 0 \) such that

\[
\sum_v \left| P_b(v) - P_{b'}(v) \right| < p^{-\beta}.
\]

Thus it takes an exponentially large number of measurements to distinguish the conjugates \(H_{ab}^b \) and \(H_{ab}^{b'} \).

Proof. Since we observe the high-dimensional representation \(\rho \) with probability \(1 - 1/p \), it suffices to consider the \(L_1 \) distance summed over the \(d_\rho = p-1 \) basis vectors of \(\rho \). In fact, we will show that \(P_b(v) \) is exponentially close to the uniform distribution for all \(b \).

Write \(\pi = \rho \pi_{H_{ab}^{b}}(\rho) \). Then the probability we observe a given basis vector \(v \), conditioned on observing \(\rho \), is

\[
P_b(v) = \frac{1}{{\text{rk}} \pi} |\pi \cdot v|^2.
\]

If \(v \) is uniformly random with norm 1, the expectation of \(|\pi \cdot v|^2 \) is \((\text{rk} \pi)/d_\rho \), and so the expectation of \(P_b(v) \) is \(1/d_\rho \). We will use the following lemma to show that when \(\text{rk} \pi \) is sufficiently large, \(P_b(v) \) is tightly concentrated around this expectation.

Lemma 2. Let \(\pi \) be a projection operator of rank \(r \) in a \(d \)-dimensional space, and let \(v \) be a random \(d \)-dimensional vector of unit length. Then for all \(0 < \delta < 2 \),

\[
\Pr \left[\left| |\pi \cdot v|^2 - \frac{r}{d} \right| > \frac{\delta r}{d} \right] < 4e^{-r\delta^2/48}.
\]

Proof. We use an argument similar to [9]. We can think of a random \(d \)-dimensional complex vector \(v \) as a random \(2d \)-dimensional real vector of the same length, and we can think of this in turn as

\[
v_i = \frac{w_i}{\sum_{i=1}^{2d} w_i^2}
\]

where the \(w_i \) are independent Gaussian variables with zero mean and unit variance. By choosing a basis in which \(\pi \) projects onto the first \(r \) (complex) components of \(v \), we have

\[
|\pi \cdot v|^2 = \frac{\sum_{i=1}^{2r} w_i^2}{\sum_{i=1}^{2d} w_i^2} = \frac{r}{d} \frac{(1/2r) \sum_{i=1}^{2r} w_i^2}{(1/2d) \sum_{i=1}^{2d} w_i^2}.
\]
We now use the following Chernoff bound, which can be derived from the moment generating function. For any t, we have
\[
\Pr \left[\left| \left(\frac{1}{t} \sum_{i=1}^{t} w_i^2 \right) - 1 \right| > \epsilon \right] < 2 \left(1 + \epsilon \right)^{1/2} e^{-\epsilon^2/2}.
\]
For $|\epsilon| < 1/2$, we have $\ln(1 + \epsilon) < \epsilon - \epsilon^2/3$ and this becomes
\[
(4) \quad \Pr \left[\left| \left(\frac{1}{t} \sum_{i=1}^{t} w_i^2 \right) - 1 \right| > \epsilon \right] < 2e^{-t\epsilon^2/6}.
\]
Now, for any a, b, if $|a/b-1| > \delta$ where $\delta < 2$, then either $|a-1| > \delta/4$ or $|b-1| > \delta/4$. Taking the union bound over these events where $a = (1/2r) \sum_{i=1}^{2r} w_i^2$ and $b = (1/2d) \sum_{i=1}^{2d} w_i^2$, setting $\epsilon = \delta/4$ and $t = 2r \leq 2d$ in (4) gives the stated bound.

Setting $d = d_p$ and $r = \text{rk} \pi$, Lemma 2 and the union bound imply that, for any constant $A > \sqrt{48}$, if
\[
\delta = A \sqrt{\frac{\log d_p}{\text{rk} \pi}}
\]
then, with high probability, for all d_p basis vectors v we have
\[
\left| P_b(v) - \frac{1}{d_p} \right| < \frac{\delta}{d_p}.
\]
Summing over all v, this implies that the L_1 distance between $P_b(v)$ and the uniform distribution is at most δ. Now recall that $\text{rk} \pi = (p-1)/q$. If $q < p^{1-\epsilon}$, then $\text{rk} \pi > p^\epsilon$, and (5) gives $\delta < p^{-\beta}$ where $\beta = \epsilon/3$, say. Since $P_b(v)$ is within δ of the uniform distribution for all b, doubling the constant A and using the triangle inequality completes the proof. \qed

Several remarks are in order. First, just as for the dihedral group, we can information-theoretically distinguish conjugate subgroups if we use a random basis within each q-dimensional block. The problem is that rather than having this block-diagonal structure, a random basis cuts across these blocks, mixing different “frequencies” ρ_k and canceling out the useful information. This is precisely because it is not adapted to the subgroup structure of A_p; it doesn’t “know” that ρ decomposes into a direct sum of the ρ_k.

Second, it is worth noting that for the values of q for which we have an algorithm for full (as opposed to information-theoretic) reconstruction, namely $q = p/\text{polylog}(p)$, a random basis works as well since the L_1 distance δ becomes $1/\text{polylog}(p)$. Based on the strong evidence from representation theory that some bases are much better for computation than others, we conjecture that, for some families of groups, adapted bases allow full reconstruction while random bases do not; but this remains an open question.

Third, while we focused above on distinguishing conjugate subgroups from each other, in fact our proof shows that if $q < p^{1-\epsilon}$ a random basis is incapable of distinguishing H_a from the trivial subgroup. In contrast, Theorems 3 and 5 show that an adapted basis allows us to do this.

6 Failure of the abelian Fourier transform

In [5] the abelian Fourier transform over $\mathbb{Z}_2 \times \mathbb{Z}_p$ is used in a reconstruction algorithm for the dihedral groups. Using this sort of “forgetful” abelian Fourier analysis it is similarly information-theoretically possible to reconstruct subgroups of the q-hardt groups, when q is small enough.

However, it does not seem possible to reconstruct subgroups of A_p using the abelian Fourier transform. In particular, we show in this section that if we think of the affine group as a direct product $Z_p^* \times \mathbb{Z}_p$ rather than a semidirect product, then the conjugates of the maximal subgroup become indistinguishable. This is not surprising, since in an abelian group conjugates are identical by definition, but it helps illustrate
that nonabelian hidden subgroup problems require nonabelian approaches (most naturally, in our view, representation theory).

Let us consider the hidden conjugate problem for the maximal subgroup H, i.e., H_a where a is a generator of \mathbb{Z}^*_p. In that case, the characters of $\mathbb{Z}^*_p \times \mathbb{Z}_p$ are simply $\rho_{k, \ell}(a^t, b) = \omega_p^{kt} \omega_p^{\ell b}$. Summing these over $H_a = \{ (a^t, (1 - a^t)b) \}$ shows that we observe the character (k, ℓ) with probability

$$P(k, \ell) = \frac{1}{p(p-1)^2} \left| \sum_{t \in \mathbb{Z}_{p-1}} \omega_p^{kt} \omega_p^{\ell (1-a^t)b} \right|^2$$

$$= \frac{1}{p(p-1)^2} \left| \sum_{x \in \mathbb{Z}_p} \omega_p^{k \log_a x} \omega_p^{\ell x b} \right|^2 .$$

This is the inner product of a multiplicative character with an additive one, which is another Gauss sum. In particular, assuming $b \neq 0$, we have

$$P(0, 0) = 1/p$$
$$P(0, \ell \neq 0) = 1/(p(p-1)^2)$$
$$P(k \neq 0, 0) = 0$$
$$P(k \neq 0, \ell \neq 0) = 1/(p-1)^2$$

(see Appendix A). Since these probabilities don’t depend on b, the different conjugates H^b_a with $b \neq 0$ are indistinguishable from each other. Thus it appears essential to use the nonabelian Fourier transform and the high-dimensional representations of A_p.

7 Hidden shift problems

Using the natural action of the affine group on \mathbb{Z}_p, we can apply our algorithm for the hidden conjugate problem studied above to a natural family of hidden shift problems. Specifically, let M be a multiplicative subgroup of \mathbb{Z}_p^* of index $r > 1$, let S be some set of $r+1$ symbols, and let $f : \mathbb{Z}_p \to S$ be a function for which

$$f(x) = f(mx) \iff m \in M$$

for every $x \in \mathbb{Z}_p$. Observe that f is constant on the (multiplicative) cosets of M and takes distinct values on distinct cosets; to put it differently, $f(x)$ is an injective function of the multiplicative order of $x \mod r$. Furthermore, $f(0) \neq f(x)$ for any nonzero x. The hidden shift problem associated with f is the problem of determining an unknown element $s \in \mathbb{Z}_p$ given oracle access to the shifted function

$$f_s(x) = f(x-s) .$$

Such functions have remarkable pseudorandom properties, and have been proposed as pseudorandom generators for cryptographic purposes, where s acts as the seed to generate the sequence (e.g. [4]).

The special case when $f : \mathbb{Z}_p \to \mathbb{C}$ is a Legendre symbol, that is, a multiplicative character of \mathbb{Z}_p^* extended to all of \mathbb{Z}_p by setting $f(0) = 0$, was studied by van Dam, Hallgren, and Ip [12]. They give efficient quantum algorithms for these hidden shift problems for all characters of \mathbb{Z}_p^*. Their algorithms, however, make explicit use of the complex values taken by the character, whereas the algorithms we present here depend only on the symmetries of the underlying function f; in particular, in our case f can be an arbitrary injective function from a multiplicative character into a set S. On the other hand, their algorithms are efficient for characters of any order, while our algorithms require that r be at most polylogarithmic in p.

Returning to the general problem defined above, let $\mathcal{F}(\mathbb{Z}_p, S)$ denote the collection of S-valued functions on \mathbb{Z}_p. Note that the affine group A_p acts on the set $\mathcal{F}(\mathbb{Z}_p, S)$ by assigning $\alpha \cdot g(x) = g(\alpha^{-1}(x))$ for each $\alpha \in A_p$ and $g \in \mathcal{F}(\mathbb{Z}_p, S)$. In particular, $f_s = (1, s) \cdot f$.

14
Now note that the isotropy subgroup of f, namely the subgroup of A_p that fixes the cosets of M, is precisely $H_a = \{ (a, 0) \}$ where $a \in \mathbb{Z}_p^*$ has order $q = (p-1)/r$. As we have $f_s = (1, s) \cdot f$, the isotropy subgroup of f_s is the conjugate subgroup $H_a^s = (1, s) \cdot H_a \cdot (1, -s)$. Observe now that if we define $F_s : A_p \rightarrow (\mathbb{Z}_p)^p$ so that $F_s(\alpha)$ is the p-tuple $(\alpha f_s(0), \alpha f_s(1), \ldots, \alpha f_s(p-1))$ then

$$F_s(\alpha) = F_s(\beta) \iff \alpha^{-1} \beta \in H_a^s,$$

i.e., F_s is constant precisely on the left cosets of H_a^s. Evidently, then, the solution to the hidden conjugate problem given by the oracle F_s determines the solution to the hidden shift problem given by f_s. Unfortunately, the values of the oracle F_s are of exponential size—we cannot afford to evaluate $\alpha f_s(x)$ for all $x \in \mathbb{Z}_p$. This same symmetries expressed in Equation (6), however, can be obtained efficiently by selecting an appropriate subset $R = \{ x_1, \ldots, x_m \} \subset \mathbb{Z}_p$ and considering the oracle that samples αf_s on R: that is,

$$F_s^R(\alpha) = (\alpha f_s(x_1), \ldots, \alpha f_s(x_m)) \ .$$

Of course, we have $\alpha f_s = \beta f_s \Rightarrow F_s^R(\alpha) = F_s^R(\beta)$ regardless of R; the difficulty is finding a small set R for which $F_s^R(\alpha) = F_s^R(\beta) \Rightarrow \alpha f_s = \beta f_s$. We show below that a set of $O(\log p)$ elements selected uniformly at random from \mathbb{Z}_p has this property with high probability.

Considering that $\alpha f_s(x) = \alpha \cdot (1, s) \cdot f(x)$, it suffices to show that if $\alpha f \neq \beta f$ then

$$\Pr_x[\alpha f(x) = \beta f(x)] \leq 1/2 \ ,$$

where x is selected uniformly at random in \mathbb{Z}_p. Note that for affine functions α and β and an element $x \in \mathbb{Z}_p$ for which $\beta^{-1}(x) \neq 0$,

$$\alpha f(x) = \beta f(x) \iff \frac{\alpha^{-1}(x)}{\beta^{-1}(x)} \in M \ .$$

The function $\alpha^{-1}(x)/\beta^{-1}(x)$ is a fractional linear transform, i.e., the ratio of two linear functions; these is the discrete analog of a Möbius transformation in the complex plane. As in the complex case, the fractional linear transform $\gamma(x)/\delta(x)$ is a bijection on the projective space $\mathbb{Z}_p \cup \{ \infty \}$ unless γ and δ share a root, or, equivalently, there is a scalar $z \in \mathbb{Z}_p^*$ such that $\gamma(z) = z\delta(x)$. If $\alpha^{-1}(x)/\beta^{-1}(x)$ is injective, we can immediately conclude that

$$\Pr_x[\alpha f(x) = \beta f(x)] \leq |M|/(p-1) = 1/r \leq 1/2 \ .$$

Otherwise, $\alpha^{-1}(x)/\beta^{-1}(x) = z$ for some scalar z. Since $\alpha f \neq \beta f$, however, in this case we must have $z \in \mathbb{Z}_p^* \setminus M$. In particular, $f(zy) \neq f(y)$ for any $y \neq 0$, and so

$$\Pr_x[\alpha f(x) = \beta f(x)] = 1/p$$

since this only occurs at the unique root x of $\alpha^{-1}(x) = 0$.

In either case, then, αf and βf differ on at least half the elements of \mathbb{Z}_p whenever α and β belong to different cosets of H_a^s. It follows that if $R \subset \mathbb{Z}_p$ consists of m elements chosen independently and uniformly at random from \mathbb{Z}_p, we have

$$\Pr_R[\forall x \in R, \alpha f(x) = \beta f(x)] \leq 1/2^m$$

for any $\alpha, \beta \in A_p$ with $\alpha^{-1} \beta \notin H_a$. Taking a union bound over all pairs of left cosets of H_a,

$$\Pr_R[\exists \alpha, \beta \in A_p : \alpha^{-1} \beta \notin H_a, \forall x \in R, \alpha f(x) = \beta f(x)] \leq \left(\frac{p(p-1)}{|H_a|} \right)^2 \frac{1}{2^m} .$$

Selecting $m = 5 \log p$ ensures that this probability is less than $1/p$.

Since we showed in Section 3 that we can identify a hidden conjugate of H_a whenever H_a is of polylogarithmic index in \mathbb{Z}_p^*, and since this index is $(p-1)/q = r$, this provides an efficient solution to the hidden shift problem so long as $r = \text{polylog}(p)$.
8 Closure under extending small groups

In this section we show that for any polynomial-size group \(K \) and any \(H \) for which we can solve the HSP, we can also solve the HSP for any extension of \(K \) by \(H \), i.e., any group \(G \) with \(K \triangleleft G \) and \(G/K \cong H \). (Note that this is more general than split extensions, i.e., semidirect products \(H \ltimes K \).) This includes the case discussed in [13] of Hamiltonian groups, since all such groups are direct products (and hence extensions) by abelian groups of the quaternion group \(Q_8 \) [23]. It also includes the case discussed in [7] of groups with commutator subgroups of polynomial size, such as extra-special \(p \)-groups, since in that case \(K = G' \) and \(H \cong G/G' \) is abelian. Indeed, our proof is an easy generalization of that in [7].

Theorem 7. Let \(H \) be a group for which hidden subgroups are fully reconstructible, and \(K \) a group of polynomial size in \(\log |H| \). Then hidden subgroups in any extension of \(K \) by \(H \), i.e., any group \(G \) with \(K \triangleleft G \) and \(G/K \cong H \), are fully reconstructible.

Proof. We assume that \(G \) and \(K \) are encoded in such a way that multiplication can be carried out in classical polynomial time. We fix some transversal \(t(h) \) of the left cosets of \(K \). First, note that any subgroup \(L \subseteq G \) can be described in terms of i) its intersection \(L \cap K \), ii) its projection \(L_H = L/(L \cap K) \subseteq H \), and iii) a representative \(\eta(h) \in L \cap (t(h) \cdot K) \) for each \(h \in L_H \). Then each element of \(L_H \) is associated with some left coset of \(L \cap K \), i.e., \(L = \bigcup_{h \in L_H} \eta(h) \cdot (L \cap K) \). Moreover, if \(S \) is a set of generators for \(L \cap K \) and \(T \) is a set of generators for \(L_H \), then \(S \cup \eta(T) \) is a set of generators for \(L \).

We can reconstruct \(S \) in classical polynomial time simply by querying the function \(h \) on all of \(K \). Then \(L \cap K \) is the set of all \(k \) such that \(f(k) = f(1) \), and we construct \(S \) by adding elements of \(L \cap K \) to it one at a time until they generate all of \(L \cap K \).

To identify \(L_H \), as in [7] we define a new function \(f' \) on \(H \) consisting of the unordered collection of the values of \(f \) on the corresponding left coset of \(K \):

\[
f'(h) = \{ f(g) \mid g \in t(h) \cdot K \}.
\]

Each query to \(f' \) consists of \(|K| = \text{poly}(n) \) queries to \(f \). The level sets of \(f' \) are clearly the cosets of \(L_H \), so we reconstruct \(L_H \) by solving the HSP on \(H \). This yields a set \(T \) of generators for \(L_H \).

It remains to find a representative \(\eta(h) \) in \(L \cap (t(h) \cdot K) \) for each \(h \in T \). We simply query \(f(g) \) for all \(g \in t(h) \cdot K \), and set \(\eta(h) \) to any \(g \) such that \(f(g) = f(1) \). Since \(|T| = O(\log |H|) = \text{poly}(n) \) this can be done in polynomial time, completing the proof.

Unfortunately, we cannot iterate this construction more than a constant number of times, since doing so would require a superpolynomial number of queries to \(f \) for each query of \(f' \). If \(K \) has superpolynomial size it is not clear how to obtain \(\eta(h) \), even when \(H \) has only two elements. Indeed, this is precisely the difficulty with the dihedral group.

9 Conclusion and directions for further work

We have shown that the “strong standard method,” applied with adapted bases, solves in quantum polynomial time certain nonabelian Hidden Subgroup Problems that are not solved with any other known technique, specifically measurements in random bases or “forgetful” abelian approaches.

While we are still very far from an algorithm for HSP in the symmetric group \(S_n \) or for Graph Automorphism, a global understanding of the power of strong Fourier sampling remains an important goal. Perhaps the next class of groups to try beyond the affine and \(q \)-hedral groups are matrix groups such as \(\text{PSL}_2(p) \), whose maximal subgroups are isomorphic to \(A_p \), and which include one of the infinite families of finite simple groups.

Acknowledgements. We are grateful to Wim van Dam, Julia Kempe, Greg Kuperberg, Frederic Magniez, Martin Rötteler, and Miklos Santha for helpful conversations, and to Sally Milius and Tracy.
Conrad for their support. Support for this work was provided by the California Institute of Technology’s Institute for Quantum Information (IQI), the Mathematical Sciences Research Institute (MSRI), the Institute for Advanced Study (IAS), NSF grants ITR-0220070, ITR-0220264, CCR-0093065, EIA-0218443, QuBIC-0218563, CCR-0049092, the Charles Lee Powell Foundation, and the Bell Fund.

References

[1] Robert Beals. Quantum computation of Fourier transforms over symmetric groups. Proc. 29th Annual ACM Symposium on the Theory of Computing, pages 48–53, 1997.

[2] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory (preliminary abstract). Proc. 25th Annual ACM Symposium on the Theory of Computing, pages 11–20, 1993.

[3] Wim van Dam, Sean Hallgren, and Lawrence Ip. Quantum algorithms for some hidden shift problems. Proc. 14th ACM-SIAM Symposium on Discrete Algorithms, pages 489–498, 2003.

[4] Ivan B. Damgård. On the randomness of Legendre and Jacobi sequences. Lecture Notes in Computer Science 403:163–172, 1988.

[5] Mark Ettinger and Peter Høyer. On quantum algorithms for noncommutative hidden subgroups. Technical Report quant-ph/9807029, Quantum Physics e-Print Archive, 1998.

[6] Mark Ettinger and Peter Høyer and Emmanuel Knill. The quantum query complexity of the hidden subgroup problem is polynomial. Information Processing Letters, to appear. 1999.

[7] Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab Sen. Hidden translation and orbit coset in quantum computing. Proc. 35th ACM Symposium on Theory of Computing, 2003.

[8] William Fulton and Joe Harris. Representation Theory: A First Course. Number 129 in Graduate Texts in Mathematics. Springer-Verlag, 1991.

[9] Michelangelo Grigni, Leonard J. Schulman, Monica Vazirani, and Umesh Vazirani. Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Proc. 33rd ACM Symposium on Theory of Computing, pages 68–74, 2001.

[10] Lisa Hales and Sean Hallgren. Quantum fourier sampling simplified. Proc. 31st Annual ACM Symposium on Theory of Computing, 1999.

[11] Lisa Hales and Sean Hallgren. An improved quantum Fourier transform algorithm and applications. Proc. 41st Annual Symposium on Foundations of Computer Science, 2000.

[12] Sean Hallgren, Lawrence Ip, and Wim van Dam. Quantum algorithms for some hidden shift problems. Proc. of the ACM-SIAM Symposium on Discrete Algorithms, pages 489–498, 2003.

[13] Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup reconstruction and quantum computation using group representations. Proc. 32nd ACM Symposium on Theory of Computing, pages 627–635, 2000.

[14] Peter Høyer. Efficient quantum transforms. Technical Report quant-ph/9702028, Quantum Physics e-Print Archive, 1997.

[15] Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. Int. J. Found. Comput. Sci. 14(5): 723–740, 2003.

[16] Richard Jozsa. Quantum factoring, discrete logarithms and the hidden subgroup problem. Technical Report quant-ph/0012084, Quantum Physics e-Print Archive, 2000.
A Notes on exponential sums

The basic Gauss sum bounds the inner products of additive and multiplicative characters of \(\mathbb{F}_p \), the finite field of prime cardinality \(p \). Definitive treatments appear in [20, §5] and [17]. Considering \(\mathbb{F}_p \) as an additive group with \(p \) elements, we have \(p \) additive characters \(\chi_s : \mathbb{F}_p \to \mathbb{C} \), for \(s \in \mathbb{F}_p \), given by \(\chi_s : z \mapsto \omega_p^{sz} \), where, as above, \(\omega_p = e^{2\pi i/p} \) is a primitive \(p \)th root of unity. Likewise considering the elements of \(\mathbb{F}_p^* = \mathbb{F}_p \setminus \{0\} \) as a multiplicative group, we have \(p - 1 \) characters \(\psi_t : \mathbb{F}_p^* \to \mathbb{C} \), for \(t \in \mathbb{F}_p^* \), given by \(\psi_t : g \mapsto \omega_p^{t g} \), where \(\omega_{p-1} = e^{2\pi i/p} \) is a primitive \((p-1) \)th root of unity and \(g \) is a multiplicative generator for the (cyclic) group \(\mathbb{F}_p^* \).

With this notation the basic Gauss sum is the following:

Theorem 8. Let \(\chi_s \) be an additive character and \(\psi_t \) a multiplicative character of \(\mathbb{F}_p \). If \(s \neq 0 \) and \(t \neq 1 \) then

\[
\left| \sum_{z \in \mathbb{F}_p^*} \chi_s(z) \psi_t(z) \right| = \sqrt{p}.
\]

Otherwise

\[
\sum_{z \in \mathbb{F}_p^*} \chi_s(z) \psi_t(z) = \begin{cases} p-1 & \text{if } s = 0, t = 1, \\ -1 & \text{if } s = 0, t \neq 1, \\ 0 & \text{if } s \neq 0, t = 1. \end{cases}
\]
See [20, §5.11] for a proof.

This basic result has been spectacularly generalized. In the body of the paper we require bounds on additive characters taken over multiplicative subgroups of \(\mathbb{F}_p^* \). Such sums are discussed in detail in [17]. The specific bound we require is the following.

Theorem 9. Let \(\chi_t \) be a nontrivial additive character of \(\mathbb{F}_p \) and \(a \in \mathbb{F}_p^* \) an element of multiplicative order \(q \). Then

\[
\sum_{z=0}^{q-1} \chi_t(a^z) = \begin{cases}
O(p^{1/2}), & \text{if } q \geq p^{2/3}, \\
O(p^{1/4} q^{3/8}), & \text{if } p^{1/2} \leq q \leq p^{2/3}, \\
O(p^{1/8} q^{5/8}), & \text{if } p^{1/3} \leq q \leq p^{1/2}.
\end{cases}
\]

See [17, §2] for a proof.

Note that in the body of the paper, we use \(\mathbb{Z}_p \) to denote the additive group of integers modulo \(p \) and \(\mathbb{Z}_p^* \) to denote the multiplicative group of integers modulo \(p \).