Learning-Augmented Model-Based Planning for Visual Exploration

Yimeng Li*1, Arnab Debnath*1, Gregory J. Stein1 and Jana Košecká1

Abstract— We consider the problem of time-limited robotic exploration in previously unseen environments where exploration is limited by a predefined amount of time. We propose a novel exploration approach using learning-augmented model-based planning. We generate a set of subgoals associated with frontiers on the current map and derive a Bellman Equation for exploration with these subgoals. Visual sensing and advances in semantic mapping of indoor scenes are exploited for training a deep convolutional neural network to estimate properties associated with each frontier: the expected unobserved area beyond the frontier and the expected timesteps (discretized actions) required to explore it. The proposed model-based planner is guaranteed to explore the whole scene if time permits. We thoroughly evaluate our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D) with the Habitat simulator. We compare our approach with classical and more recent RL-based exploration methods. Our approach surpasses the greedy strategies by 2.1% and the RL-based exploration methods by 8.4% in terms of coverage.

I. INTRODUCTION

We consider a robot deployed in a previously-unseen environment and given a limited time during which it is expected to explore, move around, and become familiar with its surroundings. Task-independent exploration is critical for many downstream navigation tasks, including traveling to a point goal [1], [2], [3], looking for a target object [4], or disaster response scenarios [5]. The robot must explore intelligently to cover the maximum area under time constraints.

However, efficient exploration is incredibly challenging since good performance requires inferences about unseen space’s layout. For example, a few steps of travel inside a living room can bring a broad vision of the entire scene rather than spending a long time walking through a narrow corridor. Due to the complexities of planning under uncertainty, many existing approaches rely on learning to make predictions about unseen space and determine behavior. Recent advent of learning-based approaches proposed for robot visual exploration [1], [3], [6], [7] leverages 3D textured mapped models of indoor scenes collected from real-world environments [8], [9] to learn structural and semantic regularities informative for exploration.

Many learning-driven strategies for exploration [1], [7] are model-free and trained via deep reinforcement learning. These models typically learn policies on top of intermediate representations of indoor scenes, are data-intensive to train, and require millions of frames of training data. They often struggle in novel environments as the length of exploration grows. These approaches are either unreliable and fail to fully explore the environment in the fullness of time or have poor performance, owing to their inability to directly predict the long-horizon impact of their actions.

In frontier-based methods, the robot’s actions correspond to navigation to frontiers—each a boundary between free and unknown space—and rely on the partial map to plan and reliably navigate through space the robot has already seen. Fig. 1 (bottom) shows computed frontiers on an example occupancy map. Classical frontier-based exploration (FBE) methods [10] rely on an occupancy map, built via a laser range finder, to compute frontiers, and greedily select the next frontier-action via simple heuristics (e.g., navigation to the nearest frontier), resulting in suboptimal plans. Recent work [4] uses visual sensing and replaces simple heuristics with a learning-based module that estimates the expected area beyond each frontier from a top-down-view semantic map. Though the predictions from learning help to improve exploration, planning is still myopic, limiting performance. If such frontier-based planning strategies are to improve, the robot must have the capacity to reason into the future and understand the impact of its actions: including both (i) how...
much area exploration beyond each frontier is expected to reveal and (ii) how long it will take to explore each region of the environment.

We present Learning-Augmented Model-Based Frontier-Based Exploration (LFE) that allows for reliable long-horizon exploration. Taking inspiration from recent work by Stein et al. [11], we introduce a high-level abstraction that allows for model-based planning over the set of available frontiers and approximates a complex Partially Observable Markov Decision Process (POMDP) [12] as a much simpler Markov Decision Process (MDP) [13]. Motivated by Ramakrishnan et al. [4], we use environment semantics and visual perception to learn how to estimate the expected area that exploration beyond a frontier will reveal and how long such an exploration is expected to take. Our resulting model-based planner produces the sequence of exploratory actions that will maximize expected area coverage in the allowable time. Moreover, our approach generalizes well to large environments, while model-free RL approaches [1, 7] do not accommodate well to large-scale environments not encountered during training.

Our contribution is a frontier-based model, similar to that of Stein et al. [11] for the task of time-limited exploration, with the aim to maximize the explored area within a predefined period. We evaluate the performance of our approach on a large-scale pseudo-realistic indoor dataset (Matterport3D [8]) with the Habitat simulator [14], and achieve state-of-the-art performance (80.7%) on time-limited area coverage and compare our approach with learned greedy [4] and RL-based [6] methods.

II. RELATED WORK

Embodied Agent Navigation Embodied agent navigation [15] refers to an agent’s ability to navigate and interact with its environment in a way similar to how a human would. In recent years, there has been a surge of research in embodied navigation thanks to the availability of photo-realistic simulators [9], [16], [17], [18] for large-scale indoor environments [8], [19], [20]. The proposed tasks include PointGoal Navigation [21], [22], [23], ObjectGoal Navigation [24], [25], ImageGoal Navigation [2], [26], [27], [28] Vision-and-Language Navigation (VLN) [29], [30], and Object Rearrangement [31], [32], [33]. In this paper, we tackle the exploration task, which is the fundamental problem to all the aforementioned navigation tasks.

End-to-End Visual Exploration Recent deep reinforcement learning methods [1], [7], [25], [34] learn a policy to predict low-level actions directly from raw RGBD observations or local occupancy maps to improve navigation performance or exploration coverage. These end-to-end RL approaches usually are sample inefficient and require high computation. Instead of directly selecting short-term actions, we introduce a dynamic action set of actions to navigate to a frontier that allow us to make predictions computationally efficiently.

Intermediate Goals Other deep reinforcement learning methods [3], [6], [35], [36] use hierarchical models that have global policies that predict long-term goals and use local navigation modules to reach the long-term goal. However, such methods still choose long-term goals greedily, and these long-term goals are usually located in an unknown area which may not be reachable by the agent. Our approach is most similar to that of Stein et al. [11], in which a learning-augmented frontier-based abstraction is used for point-goal navigation. We instead derive a Bellman Equation particularly for the time-limited exploration task.

Frontier-Based Exploration Frontier-based exploration is first proposed by Yamauchi [10], where the robot simply goes to the nearest frontier. With the availability of camera sensors and semantic-informative simulators, it has become possible to estimate more complex properties of frontiers. Recently, Ramakrishnan et al. [4] used visual sensing and proposed a learning-augmented FBE model for the robot going to a target object. Their learning module is a neural network that takes the observed semantic map as input and estimates the unknown space beyond the frontier and semantic heuristics may lead to the object. Our method differs from theirs in that we use a variant of the Bellman Equation to guide frontier selection that considers travel cost besides area of the unknown space.

III. APPROACH: LEARNING-AUGMENTED MODEL-BASED FRONTIER EXPLORATION

We aim to maximize area coverage during exploration through a static, unknown environment within an allowed number of timesteps. We model exploration as a Partially Observable Markov Decision Process (POMDP) [12]. The expected reward of taking an action can be expressed via a belief-space variant of the Bellman Equation [37]:

$$Q(b_t, a_t \in \mathcal{A}(b_t)) = \sum_{b_{t+1}} P(b_{t+1}|b_t, a_t) \max_{a_{t+1}} Q(b_{t+1}, a_{t+1})$$ \hspace{1cm} (1)

where $R(b_{t+1}, b_t, a_t)$ is the expected reward (in units of area coverage) of reaching belief state b_{t+1} from b_t by taking action a_t. Our belief state b_t is represented as a three-element tuple consisting of the partially observed map m_t, the robot pose q_t and the remaining available timesteps σ_t: $b_t = \{m_t, q_t, \sigma_t\}$. In practice, computing the expected reward via Eq. (1) is computationally infeasible, since it requires taking an expectation over the distribution of all possible environments and reasoning hundreds of timesteps into the future.

A. Model-Based Planning with Subgoals

To simplify the calculation of the expected reward, we introduce an abstraction, inspired by that of Stein et al. [11], in which the robot’s actions are long-term behaviors: each associated with exploring a particular region of unseen space. Under this abstraction, each frontier, a boundary between free and unseen space, is assigned a subgoal. A high-level action $a_t \in \mathcal{A}(b_t)$ consists of first navigating through known space to the subgoal of interest—traveling a known-space distance $D_k(m_t, a_t)$—and then revealing the region beyond.
After each such action, the robot will have (i) accumulated a reward corresponding to the amount of area revealed and (ii) expended time to explore, thus decreasing σ_t by how long the exploration took. As the robot reveals more of the environment, it updates its partial map and recomputes the set of available subgoal-actions and replans.

B. Approximating Expected Reward

To select the next high-level action a_t, we must be able to evaluate it’s expected reward. In the context of exploration, the expected instantaneous reward for a particular high-level exploratory action a_t is the unexplored navigable area beyond that action’s corresponding frontier. This reward (R_A) depends on the current partial map m_t and the area that can be explored in the steps remaining ($\sigma_t - D_k$), as specified by action a_t:

$$R_A(m_t, a_t, \sigma_t - D_k) \equiv \sum_{b_{t+1}} P(b_{t+1}|b_t, a_t) R(b_{t+1}, b_t, a_t)$$

(2)

Since we neither have direct access to the belief nor the computational resources to evaluate Eq. (2) directly, we will instead estimate R_A using learning described in Sec. V.

Evaluating the recursive term in Eq. (1) remains challenging since updating the map m_t (and therefore computing b_{t+1}) remains computationally infeasible. We instead make a simplifying assumption: we do not directly update the occupancy grid during high-level planning and instead prevent the robot from exploring the same space again by keeping track of what has already been explored. As such, we define the set of future actions A_{t+1} as the current set of actions minus the one that was just chosen (since we disallow exploration of the same region more than once), so that $A_{t+1} = A_t \setminus \{a_t\}$. Therefore, the expected reward of taking action, a_t using the current map m_t, would mean getting the instantaneous reward R_A from exploring the associated frontier and then considering the A_{t+1} actions without introducing new frontiers by updating the map.

Moreover, as mentioned in Sec. III-B, during an exploratory action a_t the robot first travels a distance D_k through known space and then spends a time to explore the unknown space beyond a frontier. We use the A^* algorithm to plan the trajectory through known space and compute D_k. The expected number of steps to explore can be written as the sum of two terms: D_{in}, the expected number of steps to explore the region, and D_{out}, the expected number of steps to exit the newly-explored region. Splitting the number of steps into two parts enables easier computation of frontier Q-values, as we only need to consider D_{in} when we have only one frontier left. Similar to R_A from Eq. (2), we cannot compute D_{in} and D_{out} exactly as it is computationally expensive and so estimate them from learning. Furthermore, upon completing its exploration of a region, the robot has moved to the frontier and so its pose change from q_t to q_{a_t}.

With these, we can approximate the recursive term from Eq. (1) as follows:

$$\sum_{b_{t+1}} P(b_{t+1}|b_t, a_t) \max_{a_{t+1} \in A_t} Q(b_{t+1}, a_{t+1}) \approx \max_{a \in A_t \setminus \{a_t\}} Q\{m_t, q_{a_t}, A_t \setminus \{a_t\}, \sigma_t - D_k - D_{in} - D_{out}\}, a)$$

(3)

Thus, from Eq. (1), (2) & (3) we can rewrite expected reward:

$$Q\{m_t, q_t, A_t, \sigma_t\}, a_t) = R_A(m_t, a_t, \sigma_t - D_k) + \max_{a \in A_t \setminus \{a_t\}} Q\{m_t, q_{a_t}, A_t \setminus \{a_t\}, \sigma_t - D_k - D_{in} - D_{out}\}, a)$$

(4)

An illustration of how expected cost is computed under our model can be found in Fig. 2.
C. Hierarchical Navigational Model

Our planner is hierarchical: high-level planning involves selection among frontier subgoals, while low-level planning involves navigation to the chosen frontier. Planning with our model proceeds as follows: (i) we compute the set of frontiers and the respective action set $A(b_t)$ given the map m_t, (ii) we compute the expected reward for each exploratory action according to Eq. (4), (iii) we choose the action a^*_t that maximizes the expected reward or, if more than one action reaches the maximum reward, we choose the frontier with the most timesteps remaining. Once the frontier is selected, we (iv) compute a motion plan to travel to the centroid of the frontier associated with action a^*_t (q^*) and finally (v) select the primitive action that best moves along the computed path and update the map given the newly observed area. This process repeats at each timestep until no frontiers remain in the observed map or time is exhausted.

An overview of our approach can be found in Fig. 3.

IV. MAP AND FRONTIER COMPUTATION

Occupancy and Semantic Mapping

The occupancy map is a metric map of size $m \times m$ where each cell of the map can have three values: 0 (unknown), 1 (occupied) and 2 (free space). The semantic map is a metric map of size $m \times m$ where each cell’s value is in the range $[0, N]$. Each value from 1 to N corresponds to one of the N object categories, and 0 refers to the undetected class. Each cell is a $5cm \times 5cm$ region in the real world. Given an RGB-D view, we build the occupancy map and semantic map by projecting semantic segmentation images to a 3D point cloud using the available depth maps and the robot poses, discretizing the point cloud into a voxel grid and taking the top-down view of the voxel grid. The occupancy map depends on the height of the points projected to each cell. The semantic map depends on the majority category of the points located at the top grid of each cell.

Frontier Computation

Frontiers consist of unknown grid cells on the boundary of free space in the partial occupancy map. A frontier is a set of connected cells that follow an eight-neighbour connection. The center of the frontier is the centroid of the points belonging to that frontier. We further reduce the number of frontiers by filtering out frontiers unreachable from the robot on the current occupancy map.

Local Navigation

The local navigation module uses the Fast Marching Method [38] to plan a path to the selected frontier from the current location on the occupancy map.

It takes deterministic actions (move forward by 25cm, turn left/right by 30 degrees) to reach the center of the frontier. We update the map after each step and replan.

Computing Expected Cost

Eq. (4) is evaluated recursively. To reduce the computation complexity, we select the six frontiers with the most significant area R_A to define the set of possible actions A_t. Since we need D_{in} to reveal the whole area beyond a frontier, if we don’t have enough timesteps left ($\sigma = \sigma_t - D_k$), we only get a portion of the full reward and our reward structure looks like the following:

$$R_A(m_t, a_t, \sigma) = R_A(m_t, a_t) \cdot \begin{cases} 1 & \text{if } \sigma > D_{in} \\ \frac{\sigma}{D_{in}} & \text{else} \end{cases}$$

where $R_A(m_t, a_t)$ and D_{in} are estimated by the learning modules. To save computation, we compute D_k, D_{in} and D_{out} as geometric distances on the occupancy grid. To account for the dynamics of the agent navigating on a continuous space, we compute the ratio between geometric distance and timesteps by approximating the ratio between turning actions and moving forward steps as a constant. In all experiments, we use an empirically computed ratio of 1.7, computed from offline navigation trials in training environments.

An illustration of the entire navigation system can be found in Fig. 3.

V. LEARNING-BASED MODULES

A. Estimating Properties of Unknown Space

We estimate the values of R_A, D_{in} and D_{out} in Eq. (4) using a neural network. We generate the training values of R_A for a frontier by computing the number of unobserved navigable cells on the current map beyond each frontier. Given a partially observed map, we compute the neighboring unexplored area beyond each frontier via connected components and count the free cells within each region as R_A.

We compute the training values of D_{in} and D_{out} for a frontier on the skeleton of the occupancy map. For skeleton computation, we use the approach described in [39] that iteratively removes boundary pixels while preserving topological structure. We generate the skeleton on the free space of the ground-truth occupancy map. We compute the subgraph of the skeleton for each frontier by taking nodes located in the frontier’s neighbouring connected component. We run a Travelling Salesman Problem solver on the subgraph to get the trajectory length of visiting every node once and returning to the frontier. We divide the entire travelling cost.
into two parts: D_{in} is the travelling cost of visiting every node once and then stopping and D_{out} is the cost of travelling back to the initial node from where D_{in} finishes.

B. Training Data Generation

Since we learn the properties of the unknown space beyond each frontier, we require training data generated from a large number of environments. We first build ground-truth occupancy and semantic maps for each environment. We use an agent with a panoramic sensor running classical frontier-based exploration on these environments. As the agent explores, revealing new portions of the environment, we extract the newly updated frontiers and compute their properties R_A, D_{in} and D_{out} as described in the previous section. We also record the currently observed map m_t and extract the egocentric observations o_t corresponding to each frontier from the panorama. We collect data tuple $(m_t, o_t, R_A, D_{in}, D_{out})$ for training the learning modules.

C. Learning Module Architecture

We build two learning models given different input representations, as shown by Fig. 3. We use a UNet [40] architecture that inputs the current observed map m_t and outputs a same-sized map with three channels. Each channel of the output map represents the predictions of R_A, D_{in} and D_{out} at each location. The loss is only computed on the frontier locations as other areas have no values. During testing stage, we average the predictions at the frontier pixels to get the estimated properties. We train another ResNet18 model that takes in the egocentric observations o_t corresponding to each frontier from the panorama and outputs three values as predictions of R_A, D_{in} and D_{out}. We train these two models through supervised learning with L1-loss.

VI. EXPERIMENTS

Datasets + Simulated Environments We use the Habitat [14] simulator with the Matterport (MP3D) [8] dataset for our experiments. MP3D consists of 90 scenes that are 3D reconstructions of real-world environments, and semantic segmentations (40 semantic categories) of egocentric views are available. We split the MP3D scenes into train:val:test following the standard 61:11:18 ratio to train the perception models and evaluate the explorers. We split the 18 test scenes into small (size below 200m^2), medium (size between 200m^2 and 500m^2) and large (size over 500m^2) when reporting the results to better understand the advantages of our approach as the environment becomes larger. We evaluate different exploration approaches using the standard 1000 testing episodes generated for the Habitat PointGoal Challenge [14]. For our experiments, noise-free poses and ground-truth egocentric semantic segmentations are provided by the simulator.

Task Setup The robot observation space consists of RGB, depth and semantic segmentation images. As our approach’s performance largely depends on the FoV of the sensors, we evaluate our methods with two types of sensors: (i) a panoramic 360° FoV sensor with observations of 256×1024 resolution. (ii) an egocentric 90° FoV sensor with observations of 256×256 resolution. The action space contains four short-term actions: MOVE_FORWARD by 25cm, TURN_LEFT and TURN_RIGHT by 30° and STOP.

We evaluate the explorers with the Coverage (Cov) metric: the percentage of explored space over the entire environment within the allowed 500 steps.

Implementation Details We use the same mapping, frontier computation and local navigation implementations for all the baseline methods and our methods. For training the learning modules, we pre-compute 220,000 train/ 1,000 val data tuples. We train the model using PyTorch for six epochs and use the Adam optimizer with a learning rate of 0.001 decayed by a factor of 10 after every two epochs. Training is done with two A100 GPUs within 12 hours. A single step in a navigation episode requires 0.9s on average including mapping, Bellman Equation computation, and local navigation. The timing was performed on a server using Xeon CPU @ 2.30GHz and an A100 GPU.

A. Exploration with a Panoramic 360° FoV Sensor

We evaluate the explorers’ performance when the robot’s observation is a panorama. We compare our method with the following three baselines:

Frontier-Based Exploration (FBE-Near) [10]: A non-learned greedy algorithm. The agent always navigates to the nearest frontier.

Active Neural SLAM (ANS+FBE) [6]: A learned exploration model trained with model-free Deep RL using coverage as rewards. We use this as a comparison between model-free and model-based planning. It has a global policy module for selecting long-term goals given the currently observed occupancy map and agent-visited location history as input. We use our self-built map as input to their global policy with their trained weights to get the long-term goals and select the frontier nearest to the long-term goal for robustness consideration and navigate towards it. We follow the original paper’s setup by estimating a long-term goal.

Fig. 4. A comparison between the coverage of our LFE-UNet explorer and the PONI-Greedy baseline on the test scenes. On a large scene (top row), LFE-UNet outperforms the Greedy baseline by 17% on coverage after 500 steps. On a small scene (bottom row), LFE-UNet finishes exploring the entire environment with 73 fewer steps than the Greedy baseline.

LFE-UNet	Greedy
Coverage after 500 steps: 92%	Coverage after 500 steps: 75%
Coverage after 315 steps: 99%	Coverage after 242 steps: 99%
TABLE I

Dataset(Scenes)	Small	Medium	Large	Overall
FBE-Near [10]	92.7	74.8	61.0	76.8
ANS+FBE [6]	92.7	63.4	60.2	73.2
PONI-Greedy [4]	95.8	72.3	56.7	74.4
LFE-UNet (Ours)	97.4	75.1	70.9	80.7
LFE-View (Ours)	92.7	67.3	60.9	73.3

Ablations:

LFE-(R^a, D^o)	95.2	84.0	79.5	86.2
Greedy-(R^o)	90.1	57.3	35.1	61.7

The oracle model can explore the large scenes 18.5% more efficiently than the FBE-Near approach. This is useful in real-world applications when a robot is sent to review the environment with a previously-built map.

The performance of the greedy approach drops with the known values since the true value of the area beyond multiple frontiers may exactly match, causing numerical instability during selection. Thus the greedy heuristic oscillates between these frontiers, delaying exploration progress. We found similar oscillations with the ANS+FBE [6] approach, also trained with a greedy strategy. This oscillation problem is primarily reduced by using the learning modules because the prediction is imperfect, so two frontiers are unlikely to have the same predicted values. Our approach avoids this unstable behavior through non-myopic planning and incorporating the time to travel to nearby frontiers.

D. Learning Module Evaluation

Here we study whether semantics helps with estimating the frontier properties. We evaluate the performance of UNet by varying the input representations. We tried two types of input: one with only an occupancy map versus having both an occupancy and a semantic map. We trained another UNet model using the same training setup but only the occupancy map as input. We compute the mean absolute error (MAE) of R^a, D^in and D^out altogether over all the frontiers in the testing examples. With only the occupancy map as input, UNet achieves 156.8 MAE error while the MAE error is 140.0 with the semantic map. This matches our intuition that having semantics in the perception system helps the learning module better estimate frontier properties of the indoor scenes.

VII. CONCLUSION

We introduce a novel model-based approach for the time-limited exploration task in previously unseen environments. Our approach augments classical frontier-based exploration with predictions about unseen space using learning. Exploiting advances in visual sensing, semantic mapping and availability of large datasets of 3D models of real indoor scenes, we showed how to use a deep convolutional neural network to learn two informative properties of each frontier: (i) the navigable area in the unknown space beyond a frontier and (ii) the timestep cost of exploring this unknown region and coming back. We tried two input alternatives to the learning modules: (i) top-down-view occupancy and semantic map and (ii) egocentric depth and semantic segmentation views. Our exploration experiments show that our method is 2.1% more efficient in covering unknown areas than greedy strategies and 8.4% more than myopic RL approaches.
REFERENCES

[1] S. K. Ramakrishnan, D. Jayaraman, and K. Grauman, “An exploration of embodied visual navigation,” International Journal of Computer Vision, vol. 129, pp. 1616 – 1649, 2020.

[2] D. S. Chaplot, R. Salahuddin, A. K. Gupta, and S. Gupta, “Neural topological SLAM for visual navigation,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[3] G. Georgakis, B. Buscher, A. Arapin, K. Schmeckpeper, N. Matni, and K. Daniilidis, “Uncertainty-driven planner for exploration and navigation,” 2022 International Conference on Robotics and Automation (ICRA), pp. 11 295–11 302, 2022.

[4] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, J. Malik, and K. Grauman, “DD-PPO: Potential functions for ObjectGoal navigation with interaction-free learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[5] C. Bradley, A. Pacheco, G. J. Stein, S. Castro, H. Kress-Gazit, and N. Roy, “Learning and planning for temporally extended tasks in unknown environments,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 4830–4836.

[6] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salahuddin, “Learning to explore using active neural mapping,” in International Conference on Learning Representations, 2020.

[7] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for navigation,” in International Conference on Learning Representations, 2020.

[8] A. X. Chang, A. Dai, T. A. Funkhouser, M. Halber, M. Niefkens, M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matroid3D: Learning from RGB-D data in indoor environments,” 2017 International Conference on 3D Vision (3DV), pp. 667–676, 2017.

[9] F. Xia, R. A. Zamir, Z. He, A. Sax, J. Malik, and S. Savarese, “Gibson Env: Real-world perception for embodied agents,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9068–9079.

[10] B. Yamauchi, “A frontier-based approach for autonomous exploration,” in Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA’97: Towards New Computational Principles for Robotics and Automation. IEEE, 1997.

[11] G. J. Stein, C. Bradley, and N. Roy, “Learning over subgoals for efficient navigation of structured, unknown environments,” in Conference on Robot Learning. PMLR, 2018, pp. 213–222.

[12] L. P. Kaebbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[13] S. J. Russell, A. Kaelbling, and M. L. Littman, “Planning and acting in partially observable stochastic domains,” Artificial Intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[14] S. J. Russell, Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[15] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Kolunt, J. Malik et al., “Habitat: A platform for embodied ai research,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9339–9347.

[16] M. Dietke, D. Batra, Y. Bisk, T. Campari, A. X. Chang, D. S. Chaplot, C. Chen, C. P. D’Arpino, K. Elfassi, A. Farhadi et al., “Retrospectives on the embodied AI workshop,” arXiv preprint arXiv:2210.06849, 2022.

[17] A. Szt, A. Clegg, E. Unsersander, E. Wijmans, Y. Zhao, J. Turner, N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira, V. Kolunt, J. Malik, M. Savva, and D. Batra, “Habitat 2.0: Training home assistants to rearrange their habitat,” in Advances in Neural Information Processing Systems (NeurIPS), 2021.

[18] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Kolunt, J. Malik, D. Parikh, and D. Batra, “Habitat: A Platform for Embodied AI Research,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

[19] E. Kolve, R. Mottaghi, J. Liu, V. Koltun, J. Malik, and M. Savva, “Scene memory transformer for embodied agents in long-horizon tasks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 538–547.

[20] J. Prakash, S. Gokaslan, D. Batra, S. Lee, and O. Maksymets, “Waypoint models for instruction-guided navigation in continuous environments,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15 142–15 151, 2021.

[21] S. K. Ramakrishnan, D. S. Chaplot, H. Su, and J. Malik, “Multi-skill mobile manipulation for object rearrangement,” in Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

[22] S. K. Ramakrishnan, D. S. Chaplot, Z. Al-Halah, R. Guo, S. K. Ramakrishnan, and K. Grauman, “Learning to set waypoints for audio-visual navigation,” in International Conference on Learning Representations, 2020.

[23] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman, “Occupancy anticipation for efficient exploration and navigation,” in European Conference on Computer Vision. Springer, 2020, pp. 400–418.

[24] S. K. Ramakrishnan, Z. Al-Halah, and K. Grauman, “Learning to set waypoints for audio-visual navigation,” in International Conference on Learning Representations, 2020.

[25] J. Pineau and S. Thrun, “An integrated approach to hierarchy and abstraction for POMDPs,” Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-02-21, August 2002.

[26] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proceedings of the National Academy of Sciences, vol. 93, no. 4, pp. 1591–1595, 1996.

[27] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,” Commum. ACM, vol. 27, pp. 236–239, 1984.

[28] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in International Conference on Medical image computing and computer-assisted intervention. Springer, 2015, pp. 234–241.