1. Introduction

The advancement in cancer detection and development of anticancer drug therapy has led to increased incidence of cutaneous adverse reactions following anticancer drug therapy. Conventional chemotherapy and targeted or immunotherapy that are thought to be well tolerated and may cause various cutaneous adverse reactions ranging from nonlife-threatening skin toxicities such as paronychia, acneiform eruption, and alopecia to life-threatening severe cutaneous adverse reactions (SCARs), such as Stevens-Johnson syndrome (SJS) and toxic epidermal necrosis (TEN) with increase morbidity and mortality while they are receiving cancer treatments, have been proposed to be a result of direct skin toxicity or drug hypersensitivity reactions (these are proposed mechanism, not definite). Differentiating SCARs from other more commonly seen reactions with a better outcome help prevent discontinuation of therapy and inappropriate use of systemic immunosuppressants for presumable allergic reactions, of which will affect the clinical outcome. In this article, we have reviewed published articles from 1950 to August 2017 for SJS/TEN associated with anticancer drugs, including chemotherapy, targeted therapy, and immunotherapy. We aimed to provide an overview of SJS/TEN associated with anticancer drugs to increase clinician recognition and accelerate future studies on the pathomechanism and managements.

However, the pathomechanism of SCARs reactions in anticancer drugs including chemotherapy, targeted therapy, and immunotherapy is poorly understood and the literatures were still limited.

SJS/TEN are a spectrum of fatal mucocutaneous adverse reactions characterized by rapidly progressing purpuric atypical target-like rashes with blisters, cutaneous sloughing, and mucosal involvement. SJS and TEN are differentiated by the degree of skin detachment: SJS involves less than 10% body surface area skin detachment, TEN more than 30%, while SJS/TEN overlap involves body surface area of 10–30% [1, 2]. Despite their rare occurrence, the overall mortality was generally high in accordance with the body surface involve, ranging from 10% for SJS to approximately
50% for TEN, and can cause irreversible sequelae to the eyes, skin, and lungs [2–5]. Hence, increased recognition and improved management are of paramount importance, especially at early stages. Furthermore, in clinical practice, the conjectural association of anticancer drugs with SCAR event may lead to alterations in therapy, affects clinical outcome, and may cause physician and patient distress. This review aimed to provide an overview of the current evidence of anticancer drug-related SCARs to assist clinicians in early recognition and management.

To synthesize current literature, relevant English literatures were identified through searches of PubMed, EMBASE, Web of Science, SCOPUS, and OVID from 1950 to August 2017 using the terms Stevens-Johnson syndrome, toxic epidermal necrolysis, cancer drug therapy, and target therapy drugs. We did not constrain our research on publication types but limited the search only in indexed, peer-reviewed journals so as to ensure quality publications. Primary case reports, case series, reports from clinical trials, or as part of postmarketing surveillance were included. Histopathologic diagnosis of SJS/TEN was not required for the inclusion criteria. Clinical course, type of anticancer drugs, and mortality were analyzed and summarized according to the respective anticancer drug classifications of chemotherapy [6–54] (Table 1), targeted therapy [55–80] (Table 2), and immunotherapy [81–87] (Table 3). Cases with multiple concomitant medications used during the same period of time and/or with questionable diagnosis were excluded.

2. Chemotherapy

Chemotherapy is the most widely used anticancer drug in oncology field. The administration of chemotherapy may lead to many cutaneous findings, ranging from allergic reactions to infectious complications caused by disrupted immunity. From the search of peer-review articles, a total of 60 reports of SJS/TEN associated with 23 chemotherapeutic anticancer drugs were identified [6–54] (Table 1). The most common drugs to cause chemotherapy-induced SJS/TEN are lenalidomide (n = 14; SJS = 12, SJS/TEN = 1, and TEN = 1), methotrexate (n = 5; SJS = 2 and TEN = 3), docetaxel (n = 4; SJS = 3 and TEN = 1), and thalidomide (n = 5; SJS = 1 and TEN = 4). Most patients were exposed to drugs either concomitantly or within 8 weeks of the anticancer agent. Although there were a few cases with exceedingly short duration of onset with questionable diagnosis [28, 31], the report descriptions and causality indicators (course of treatment, duration and timing between exposure and event, blood levels, etc.) were not consistently

Table 1: Anticancer chemotherapy-related severe cutaneous adverse drug reactions from the English literature (year: 1950–2017).

Drug class	Drug	Pharmacology	References	Total (n)	Mortality	SJS	SJS/TEN	TEN
Alkylating agents	Treosulfan	Alkysufonates	[6]	1	1	0	0	1
	Chlorambucil	Mustard gas derivatives	[7, 8]	2	0	0	0	2
	Mechlorethamine (topical)	Nitrogen mustard	[9]	1	0	1	0	0
	Temozolomide	Hydrazines and triazines	[10]	1	0	0	1	0
	Procarbazine	Hydrazines and triazines	[11–13]	3	0	0	0	3
Plant alkaloids	Paclitaxel	Taxanes	[14]	1	0	1	0	0
	Docetaxel	Taxanes	[15–19]	5	2	3	0	2
	Etoposide	Podophyllotoxins	[20]	1	0	1	0	0
Anthracyclines	Doxorubicin		[21]	1	1	0	0	1
	Methotrexate	Folic acid antagonists	[22–26]	5	2	2	0	3
	Cytarabine	Pyrimidine antagonist	[27, 28]	2	2	0	0	0
	Fludarabine	Adenosine deaminase inhibitor	[29]	1	1	1	0	0
	Gemcitabine	Pyrimidine antagonist	[30–32]	3	0	2	1	0
Antimetabolites	Ceplacetinib	Pyrimidine antagonist	[33]	1	0	1	0	0
	Cladribine	Purine antagonist	[34, 35]	2	NA	1	0	1
	6-Mercaptopurine	Purine antagonist	[36]	1	NA	0	0	0
	TS-1 (tegafur-gimeracil-oteracil potassium)		[37, 38]	2	0	1	0	1
	Pemetrexed	Multitarget antifolate	[39, 40]	2	0	0	0	2
Antitumor antibiotics	Bleomycin		[41, 42]	2	1	0	0	2
	Peplomycin		[43]	1	0	1	0	0
	Methotrexin		[44, 45]	2	0	0	0	2
Miscellaneous	Lenalidomide		[46–48]	14	2	12	1	1
	Thalidomide		[49–53]	5	1	1	0	4
	Asparaginase		[54]	1	0	0	0	1
	Total			60	13	28	3	29

NA: not available.
reported in these articles. Some articles enclose pictures that are not very suggestive of SJS/TEN but of an alternative diagnosis, including erythema multiforme, GVHD, and toxic erythema of chemotherapy. For instance, methotrexate-induced epidermal necrosis is a distinct entity that closely mimics SJS/TEN but exhibits distinct clinico-pathological features from SJS/TEN [88]. Many of the reported articles did not obtain skin biopsy for pathology examination and hence, it is difficult to draw to a definitive diagnosis of SJS/TEN. Another clinical mimic of SJS/TEN associated with chemotherapy is toxic erythema of chemotherapy. Clinical recognition and differentiation of SJS/TEN from toxic erythema are of importance because it helps prevent the inappropriate use of systemic immunosuppressants for presumed allergic reactions, precludes subsequent dosing, and affects the patient’s clinical outcome.

3. Targeted Anticancer Therapy

From the literature review, a roster of 42 reports of SJS (n = 23), SJS/TEN (n = 4), or TEN (n = 15), associated with 12 targeted anticancer drugs, were identified, including EGFR inhibitors (afatinib, cetuximab, erlotinib, gefitinib, panitumumab, and vandetanib), MKI (imatinib, regorafenib, and sorafenib), recombinant IL-2 (aldesleukin), proteasome (bortezomib), anti-CD20 (rituximab), anti-CD30 (brentuximab vedotin), and BRAF inhibitor (vemurafenib) (Table 2). The most common drugs to cause SJS/TEN reported are imatinib (n = 11), EGFR inhibitors (n = 10), and vemurafenib (n = 7). The response of cancer control is hard to analyze because it was not fully mentioned in the reports. All cases were treated with immunosuppressant, including steroid, IVIG, and there was one TEN case with promising outcome after etanercept (anti-TNF α) treatment. In these reports, nine patients underwent drug rechallenge test with recurrences, confirming the notoriety of exposed targeted anticancer drugs [67–72, 74, 80].

Drug class	Drug	Pharmacology	References	Total (n)	Mortality	SJS	SJS/TEN	TEN
EGFR inhibitor	Afatinib	Monoclonal antibody to EGFR [55, 56]	2	0	2	0	0	
	Cetuximab	Monoclonal antibody to EGFR [57–59]	4	1	1	1	2	
	Erlotinib	TKI specific to EGFR [60]	1	0	1	0	0	
	Gefitinib	TKI specific to EGFR [61, 62]	2	1	0	0	2	
	Panitumumab	Monoclonal antibody to EGFR [122]	1	0	1	0	0	
	Vandetanib	Less specific multikinase inhibitors [63]	2	0	0	1	1	
KIT and BCR-ABL inhibitors	Imatinib	KIT, BCR-ABL, PDGFR [64–72]	11	1	1	11	0	0
Antiangiogenic agents	Sorafenib	Nonselective antiangiogenesis multikinase agents [73–76]	3	0	2	0	1	
Proteasome	Bortezomib		[77]	2	1	1	0	1
CD30	Brentuximab vedotin	CD30 [78]	2	0	1	0	1	
CD20	Rituximab	Monoclonal antibody to CD20 [79]	5	2	2	2	1	
BRAF inhibitors	Vemurafenib	A/B/C-Raf and B-Raf (V600E) [80]	7	1	1	0	6	
Total				42	7	23	4	15

Table 3: Anticancer immune therapy-related adverse drug reactions from the English literature (year: 1950–2017).

Drug class	Drug	Pharmacology	References	Total (n)	Mortality	SJS	SJS/TEN	TEN
Immunomodulators	Aldesleukin	Recombinant interleukin-2 [81, 82]	2	1	0	0	2	
	Ipilimumab	CTLA-4 inhibitors [83]	1	0	1	0	0	
	Nivolumab	PD-1 inhibitors [84, 85]	2	1	0	0	2	
	Pembrolizumab	PD-1 inhibitors [86, 114, 116]	4	0	4	0	0	
	Denileukin	Recombinant interleukin-2 and diphtheria toxin [87]	1	0	0	1		
Total				9	3	5	0	5
3.1. EGFR Inhibitors. EGFR inhibitors are approved as the drug for the treatment of non-small cell lung, colorectal, breast, pancreatic, head, and neck cancers with EGFR mutations [92]. The incidence of EGFR inhibitor-induced cutaneous adverse drug reactions (cADRs) is high (36%–80%) [93], of which most were papulopustular eruptions, xerosis, paronychia, mucositis, and photosensitivity [94]. In this article, we have identified 13 cases of SJS/TEN induced by EGFR inhibitors. Though rare, SJS/TEN should be distinguished from EGFR inhibitor-related mucositis, particularly when the patient present with constitutional symptoms and widespread atypical target spots with blisters that extend beyond mucosa to the skin. Cross-reactivity between EGFR inhibitors was reported. It is hypothesized that the pathomechanism of SJS/TEN associated with EGFR inhibitors could be caused by the irreversible inhibition of EGFR, of which hinders epidermal differentiation and reepithelialization and causing extensive erosions [95].

3.2. KIT and BCR-ABL Inhibitors. Imatinib, a tyrosine kinase inhibitor, is the standard treatment in chronic myeloid leukemia and gastrointestinal stromal tumors (GIST) [96, 97]. In this article, imatinib accounts one of the most common causative targeted anticancer drug to induce SJS, with a roster of 12 cases. This must be differentiated from other more commonly seen cutaneous adverse effects of imatinib, maculopapular rashes, and facial edema [98], of which has a better prognosis and dose-dependent pharmacologic effect rather than hypersensitivity reaction [99]. For maculopapular rash/facial edema associated with imatinib, temporary discontinuation or dose reduction may be applied if the patient’s cancer is susceptible to the drug. By contrast, reintroducing the culprit drug with a dose reduction is usually not suggested [100, 101].

3.3. Multikinase Inhibitors. Multikinase inhibitors (sunitinib, sorafenib, pazopanib, and vandetanib) are small molecule inhibitors of the tyrosine kinase of the VEGF, and also differential binding capacities to other tyrosine kinases, including PDGFR, EGFR, KIT, RET, FLT-3, CSF-1R, and RAF [102]. They were approved for treatment of patients with renal cell cancer, gastrointestinal stromal tumors, and hepatocellular cancer. These drugs can cause hand-foot skin reaction, hair change, maculopapular eruptions, stomatitis, genital erosions, and bleeding [103, 104], especially in patients using sorafenib. These more common cutaneous toxicities are thought to be caused by direct VEGF inhibition, which result in vessel regression, and impact on vascular repair capacities [74]. Other research has also shown that Fas/Fasl interaction mediates keratinocyte death in sunitinib-induced HFSR [75]. Recently, one recent study identified SLC22A20 (OAT6) as an uptake carrier of sorafenib and subsequently sorafenib enters the keratinocyte through OAT6 and then inhibits mitogen-activated protein kinase MAP3K7 (TAK1) leading to cytotoxicity and keratinocyte injury [76]. Interestingly, erythema multiforme, a spectrum of delayed type hypersensitivity, induced by sorafenib was around 19–25% in Japanese population, which is much higher than the Caucasian population [105]. This could imply a possible genetic role in the pathogenesis of adverse drug reactions. The different incidence of cutaneous adverse reactions among different ethnicities need to be further investigated.

3.4. BRAF Inhibitors. Vemurafenib is a selective inhibitor of BRAF-kinase approved for the treatment of metastatic melanoma with BRAF mutation. Skin toxicity, such as photosensitivity and maculopapular eruptions, and secondary skin malignancy (keratoacanthoma and squamous cell carcinoma) were estimated to affect more than 90% of patients [106, 107]. One vemurafenib-TEN underwent a lymphocyte transformation test (LTT) assay to confirm the causality of vemurafenib and also show positive cross-reactivity for dabrafenib [108]. On the contrary, another case reported a successful switch from vemurafenib-induced cutaneous adverse reactions to dabrafenib [109]. Furthermore, cross-reactivity was also found between vemurafenib and sulfonamide antibiotics—sulfamethoxazole—based on LTT reports. These data suggested that there might be clinical cross-reactivity between BRAF inhibitors and sulfonamides. Predisposing factors to sulfonamide-related adverse cutaneous drug reactions could be implied in the pathomechanism studies of vemurafenib-associated SJS/TEN [108].

3.5. mTOR Inhibitors. Mammalian target of rapamycin (mTOR) inhibitors, such as sirolimus, everolimus, and temsirolimus, are emerging drugs, increasingly applied in oncology and in the prevention of rejection in patients receiving solid organ transplantation [110]. The most common cutaneous side effects are oral ulcers, acne-like eruptions, and morbilliform drug eruptions [111]. Oral ulcer is a very frequent (72%) adverse reaction and is often recurrent and chronic following everolimus treatment in 25% of patients. The adverse event was found to be dose dependent [112].

Severe drug eruptions of life-threatening lingual angioedema after initiation of everolimus in heart transplant recipients have also been reported in a case series. In these patients, lingual edema occurs predominantly within the first weeks after initiation of everolimus therapy and disappears without recurrences in majority patients after adequate symptomatic treatment [113]. There were otherwise no SCAR (SJS/TEN, DRESS) event being reported in the literature.

4. Immunotherapy

Immunotherapy is the latest breakthrough in anticancer drug development with immunomodulatory therapeutic antibodies, targeting inhibitory receptors expressed by T cell as CTLA-4 and PD-1. They are used to treat advance stage cancer with metastasis or unresectable tumor such as melanoma and lung cancer. In this section, older immunotherapy such as interleukin-2 was also included in Table 3. These therapeutic options are most widely used in advanced and late cancer stages. From literature reviews, we have identified one ipilimumab-SJS, two nivolumab-TEN, and four pembrolizumab-SJS. All of the patients were
advanced melanoma patients, and the onset of epidermal necrosis varies from 2.5 weeks to 3 months. In one case of pembrolizumab-associated SJS, concomitant phenytoin for epilepsy was used; hence, the exact culprit drug is hard to define. Two cases of pembrolizumab-SJS were being reported by Saw et al. [114]. Interestingly, there was a striking demarcation of epidermal detachment along the radiotherapy field aside from typical mucocutaneous findings of SJS. Such findings, although rarely, have also been reported in previous traditional culprit drugs and targeted therapy. A total of 3 cases were found with interleukin-2 immune therapy with 2 fatalities [81, 82, 87]. One of the authors suggested that IL-2 may increase patient’s susceptibility to allergy of other medication [87]. An increased expression of PD-L1 in the epidermis by immunohistochemistry (IHC) was found, and they hypothesized that the use of anti-PD-1 therapy could provoke the expression of PD-L1 of keratinocytes and permit the activated CD8+ cytotoxic T cells to target keratinocytes leading to keratinocyte apoptosis [86]. PD-1 knockout mouse often exhibits symptoms related to adverse cutaneous reactions. It has been reported in a mouse model that PD-L1 expressed on keratinocytes presenting self-antigens regulates autoreactive CD8+ T cell activity and prevents the development of cutaneous autoimmune disease [115]. Goldinger et al. had demonstrated that the gene expression analysis of TEN-like lesional skin from anti-PD-1-treated patients revealed an upregulation of major inflammatory chemokines, such as CXCL9, CXCL10, and CXCL11, of cytotoxic mediators such as PRF1 and GZMB and proapoptotic FASLG and upregulation of PD-L1 [116]. These gene expression profiles resembling SJS/TEN suggest that PD-1/PD-L1 interaction is required to preserve epidermal integrity during inflammatory skin reactions. Interestingly, there was a case with preceding nivolumab treatment followed by vemurafenib who developed TEN [117]. The authors suggest that nivolumab predispose patients to drug hypersensitivity reactions through activation of CD8+ cells [84, 85].

In spite of being uncommon, SJS/TEN are severe life-threatening cutaneous diseases that should be concerned in patients treated with anticancer drugs. The typical presentation and diagnosis often require proper drug exposure documentation, photography, and skin biopsies. Currently, there are many different classifications and models with detail and validated diagnostic criteria to assist clinical diagnosis and can help predict patients’ mortality [118, 119]. Standard reporting method is important for subsequent investigation and analysis of these rare events. In addition, diagnosis of culprit drug is often challenging, the drug notoriety scoring systems including ALDEN score, Naranjo score and in vitro test with lymphocyte transformation test (LTT) are useful tests for the diagnosis of drug hypersensitivity and cross-reactivity and helped to better understand these reactions [120, 121]. Current evidence on the pathomechanism of this complication was limited. Further research is warranted to elucidate the pathophysiology as well as help clinician coping with this notorious adverse event, advancing towards personalized medicine in oncology treatment.

Conflicts of Interest
The authors declared no conflicts of interests.

Authors’ Contributions
Chau Yee Ng and Chun-Bing Chen contributed equally to this work.

References
[1] J. C. Roujeau, “Immune mechanisms in drug allergy,” Allergology International, vol. 55, no. 1, pp. 27–33, 2006.
[2] L. E. French, J. T. Trent, and F. A. Kerdel, “Use of intravenous immunoglobulin in toxic epidermal necrolysis and Stevens-Johnson syndrome: our current understanding,” International Immunopharmacology, vol. 6, no. 4, pp. 543–549, 2006.
[3] M. Mockenhaupt and E. Schöpf, “Epidemiology of drug-induced severe skin reactions,” Seminars in Cutaneous Medicine and Surgery, vol. 15, no. 4, pp. 236–243, 1996.
[4] J. Revuz, D. Penso, J. C. Roujeau et al., “Toxic epidermal necrolysis. Clinical findings and prognosis factors in 87 patients,” Archives of Dermatology, vol. 123, no. 9, pp. 1160–1165, 1987.
[5] J. C. Roujeau, J. C. Guillaume, J. P. Fabre, D. Penso, M. L. Flechet, and J. P. Girre, “Toxic epidermal necrolysis (Lyell syndrome). Incidence and drug etiology in France, 1981–1985,” Archives of Dermatology, vol. 126, no. 1, pp. 37–42, 1990.
[6] M. E. Scheulen, R. A. Hilger, C. Oberhoff et al., “Clinical phase I dose escalation and pharmacokinetic study of high-dose chemotherapy with treosulfan and autologous peripheral blood stem cell transplantation in patients with advanced malignancies,” Clinical Cancer Research, vol. 6, no. 11, pp. 4209–4216, 2000.
[7] I. Aydogdu, C. Ozcan, M. Harputluoglu, Y. Karincagolu, O. Turhan, and A. Ozcanu, “Severe adverse skin reaction to chlorambucil in a patient with chronic lymphocytic leukemia,” Anti-Cancer Drugs, vol. 8, no. 5, pp. 468–469, 1997.
[8] F. Pietrantonio, L. Moriconi, F. Torino, A. Romano, and A. Gargovich, “Unusual reaction to chlorambucil: a case report,” Cancer Letters, vol. 54, no. 3, pp. 109–111, 1990.
[9] J. M. Newman, J. M. Rindler, W. F. Bergfeld, and J. K. Brydon, “Stevens-Johnson syndrome associated with topical nitrogen mustard therapy,” Journal of the American Academy of Dermatology, vol. 36, no. 1, pp. 112–114, 1997.
[10] N. Sarma, “Stevens-Johnson syndrome and toxic epidermal necrolysis overlap due to oral temozolomide and cranial radiotherapy,” American Journal of Clinical Dermatology, vol. 10, no. 4, pp. 264–267, 2009.
[11] R. Jones, M. Kirkup, S. Guglani, and K. Hopkins, “Toxic epidermal necrolysis after PCV combination chemotherapy for relapsed B-cell lymphoma,” Clinical Oncology, vol. 18, no. 1, p. 90, 2006.
[12] U. Garbarini and G. P. Valassi, “Report of a case of Lyell’s syndrome during a course of treatment with Natulan,” Minerva Medica, vol. 64, no. 53, pp. 2775–2778, 1973.
[13] J. Guerini and R. Michiels, “Syndrome de Lyell avecl agranuloctye et thrombopenie au cours d’une chimiotherapie antimitotique,” Rev Med Dijon, vol. 4, pp. 523–525, 1969.
[43] Y. Umebayashi, H. Enomoto, and M. Ogasawara, "Drug eruption due to peplomycin: an unusual form of Stevens-Johnson syndrome with pustules," *The Journal of Dermatology*, vol. 31, no. 10, pp. 802–805, 2004.

[44] F. E. Eyster, C. B. Wilson, and H. I. Maibach, "Mithramycin as a possible cause of toxic epidermal necrolysis (Lyell’s syndrome)," *California Medicine*, vol. 114, no. 2, pp. 42–43, 1971.

[45] D. Purpora, M. J. Ahern, and N. Silverman, "Toxic epidermal necrolysis after mithramycin," *The New England Journal of Medicine*, vol. 299, pp. 1412–1413, 1978.

[46] C. P. Castaneda, N. A. Brandenburg, R. Bwire, G. H. Burton, and J. B. Zeldis, "Erythema multiforme/Stevens-Johnson syndrome/toxic epidermal necrolysis in lenalidomide-treated patients," *Journal of Clinical Oncology*, vol. 27, no. 1, pp. 156-157, 2009.

[47] R. Wasch, T. Jakob, K. Technau, J. Finke, and M. Engelhardt, "Stevens–Johnson/toxic epidermal necrolysis overlap syndrome following lenalidomide treatment for multiple myeloma relapse after allogeneic transplantation," *Annals of Hematology*, vol. 91, no. 2, pp. 287–289, 2012.

[48] P. K. Boruah, S. Bolesta, and S. M. Shetty, "Possible lenalidomide-induced Stevens-Johnson syndrome during treatment for multiple myeloma," *Pharmacotherapy*, vol. 31, no. 9, p. 925, 2011.

[49] T. E. Clark, N. Edom, J. Larson, and L. J. Lindsey, "Thalomid® (Thalidomide) capsules: a review of the first 18 months of spontaneous postmarketing adverse event surveillance, including off-label prescribing," *Drug Safety*, vol. 24, no. 2, pp. 87–101, 2001.

[50] S. V. Rajkumar, M. A. Gertz, and T. E. Witzig, "Life-threatening toxic epidermal necrolysis with thalidomide therapy for myeloma," *The New England Journal of Medicine*, vol. 343, no. 13, pp. 972-973, 2000.

[51] S. B. Horowitz and A. L. Stirling, "Thalidomide-induced toxic epidermal necrolysis," *Pharmacotherapy*, vol. 19, no. 10, pp. 1177–1180, 1999.

[52] W. K. Eo, S. H. Kim, S. H. Cheon et al., "Toxic epidermal necrolysis following thalidomide and dexamethasone treatment for multiple myeloma: a case report," *Annals of Hematology*, vol. 89, no. 4, pp. 421–422, 2010.

[53] M. Colagrande, M. Di Ianni, G. Coletti et al., "Toxic epidermal necrolysis in a patient with primary myelofibrosis receiving thalidomide therapy," *International Journal of Hematology*, vol. 89, no. 1, pp. 76–79, 2009.

[54] A. R. Rodriguez, "L-asparaginase and toxic epidermal necrolysis," *Journal of the Medical Association of Georgia*, vol. 69, no. 5, pp. 355–357, 1980.

[55] Y. Honda, Y. Hattori, S. Katsura et al., "Stevens-Johnson syndrome-like erosive dermatitis possibly related to afatinib," *European Journal of Dermatology*, vol. 26, no. 4, pp. 413-414, 2016.

[56] J. Doesch, D. Debus, C. Meyer et al., "Afatinib-associated Stevens-Johnson syndrome in an EGFR-mutated lung cancer patient," *Lung Cancer*, vol. 95, pp. 35–38, 2016.

[57] M. Urosevic-Maiwald, T. Harr, L. E. French, and R. Dummer, "Stevens–Johnson syndrome and toxic epidermal necrolysis overlap in a patient receiving cetuximab and radiotherapy for head and neck cancer," *International Journal of Dermatology*, vol. 51, no. 7, pp. 864–867, 2012.

[58] W. L. Lin, W. C. Lin, J. Y. Yang et al., "Fatal toxic epidermal necrolysis associated with cetuximab in a patient with colon cancer," *Journal of Clinical Oncology*, vol. 26, no. 16, pp. 2779-2780, 2008.

[59] S. S. Lee and P. Y. Chu, "Toxic epidermal necrolysis caused by cetuximab plus minocycline in head and neck cancer," *American Journal of Otologyngology*, vol. 31, no. 4, pp. 288–290, 2010.

[60] E. Liqueu, S. Ali, R. Kammo et al., "Acute generalized exanthematous pustulosis induced by Erlotinib (Tarceva) with superimposed Staphylococcus aureus skin infection in a pancreatic cancer patient: a case report," *Case Reports in Oncology*, vol. 5, no. 2, pp. 253–259, 2012.

[61] D. M. Jackman, L. A. Goffredi, L. Jacobs et al., "A phase I trial of high dose gefitinib for patients with leptomeningeal metastases from non-small cell lung cancer," *Oncotarget*, vol. 6, no. 6, pp. 4527–4365, 2015.

[62] J. J. Huang, S. X. Ma, X. Hou et al., "Toxic epidermal necrolysis related to AP (pemetrexed plus cisplatin) and gefitinib combination therapy in a patient with metastatic non-small cell lung cancer," *Chinese Journal of Cancer*, vol. 34, no. 2, pp. 94–98, 2015.

[63] J. Yoon, C. W. Oh, and C. Y. Kim, "Stevens-Johnson syndrome induced by vandetanib," *Annals of Dermatology*, vol. 23, Supplement 3, pp. S343–S345, 2011.

[64] D. Vidal, L. Puig, A. Sureda, and A. Alomar, "St571-induced Stevens–Johnson syndrome," *British Journal of Haematology*, vol. 119, no. 1, pp. 274–275, 2002.

[65] G. Severino, C. Chilotti, R. De Lisa, M. Del Zompo, and R. Ardau, "Adverse reactions during imatinib and lansoprazole treatment in gastrointestinal stromal tumors," *The Annals of Pharmacotherapy*, vol. 39, no. 1, pp. 162–164, 2005.

[66] K. Pavithran and M. Thomas, "Imatinib induced Stevens-Johnson syndrome: lack of recurrence following re-challenge with a lower dose," *Indian Journal of Dermatology, Venereology and Leprology*, vol. 71, no. 4, pp. 288–289, 2005.

[67] S. A. Rule, S. G. O’Brien, and L. C. Crossman, "Managing cutaneous reactions to imatinib therapy," *Blood*, vol. 100, no. 9, pp. 3434-3435, 2002.

[68] L. T. Hsiao, H. M. Chung, J. T. Lin et al., "Stevens–Johnson syndrome after treatment with STI571: a case report," *British Journal of Haematology*, vol. 117, no. 3, pp. 620–622, 2002.

[69] H.-J. Hsieh, A. L. F. Chan, and S.-J. Lin, "Stevens-Johnson syndrome induced by combination of imatinib and allopurinol," *Chemotherapy*, vol. 55, no. 4, pp. 197–199, 2009.

[70] M. Mahapatra, P. Mishra, and R. Kumar, "Imatinib-induced Stevens–Johnson syndrome: recurrence after re-challenge with a lower dose," *Annals of Hematology*, vol. 86, no. 7, pp. 537-538, 2007.

[71] P. Jha, D. Himanshu, N. Jain, and A. K. Singh, "Imatinib-induced Stevens-Johnson syndrome," *BJM Case Reports*, vol. 2013, 2013.

[72] M. Schaich, K. Schakel, T. Illmer, G. Ehninger, and M. Bornhauser, "Severe epidermal necrolysis after treatment with imatinib and consecutive allogeneic hematopoietic stem cell transplantation," *Annals of Hematology*, vol. 82, no. 5, pp. 303–304, 2003.

[73] M. K. Choi, H. Y. Woo, J. Heo et al., "Toxic epidermal necrolysis associated with sorafenib and tosuloxacin in a patient with hepatocellular carcinoma," *Annals of Dermatology*, vol. 23, Supplement 3, pp. S404–S407, 2011.
B. Blanchet, B. Billemont, S. Barete et al., “Toxicity of sorafenib: clinical and molecular aspects,” Expert Opinion on Drug Safety, vol. 9, no. 2, pp. 275–287, 2010.

C. N. Yeh, W. H. Chung, S. C. Su et al., “Fas/Fas ligand mediates keratinocyte death in sunitinib-induced hand-foot skin reaction,” The Journal of Investigative Dermatology, vol. 134, no. 11, pp. 2768–2775, 2014.

E. I. Zimmerman, A. A. Gibson, S. Hu et al., “Multikinase inhibitors induce cutaneous toxicity through OAT6-mediated uptake and MAP3K7-driven cell death,” Cancer Research, vol. 76, no. 1, pp. 117–126, 2016.

B. Fang, Y. Song, J. Ma, and R. C. Zhao, “Severe epidermal necrolysis after bortezomib treatment for multiple myeloma,” Acta Haematologica, vol. 118, no. 2, pp. 65–67, 2007.

B. M. Tijink, J. Buter, R. de Bree et al., “A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or oesophagus,” Clinical Cancer Research, vol. 12, no. 20, pp. 6064–6072, 2006.

S. Lowndes, A. Darby, G. Mead, and A. Lister, “Stevens-Johnson syndrome after treatment with rituximab,” Annals of the New York Academy of Sciences, vol. 13, no. 12, pp. 1948–1950, 2002.

D. R. Minor, R. Rodvien, and M. Kashani-Sabet, “Successful desensitization in a case of Stevens-Johnson syndrome due to vemurafenib,” Melanoma Research, vol. 22, no. 5, pp. 410–411, 2012.

A. A. Segura Huerta, P. Tordera, A. C. Cercos, A. L. Yuste, P. Lopez-Tendero, and G. Reynes, “Toxic epidermal necrolysis associated with interleukin-2,” The Annals of Pharmacotherapy, vol. 36, no. 7-8, pp. 1171–1174, 2002.

J. S. Wiener, J. A. Tucker Jr., and P. J. Walther, “Interleukin-2-induced dermatotoxicity resembling toxic epidermal necrolysis,” Southern Medical Journal, vol. 85, no. 6, pp. 656–659, 1992.

E. Dika, G. M. Ravaiolii, and P. A. Fanti, “Cutaneous adverse effects during ipilimumab treatment for metastatic melanoma: a prospective study,” European Journal of Dermatology, vol. 27, no. 3, pp. 266–270, 2017.

K. L. Vivar, M. Deschaine, J. Messina et al., “Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy,” Journal of Cutaneous Pathology, vol. 44, no. 4, pp. 381–384, 2017.

N. Nayyar, K. Briscoe, and P. Fernandez Penas, “Toxic epidermal necrolysis–like reaction with severe satellite cell necrosis associated with nivolumab in a patient with ipilimumab refractory metastatic melanoma,” Journal of Immunotherapy, vol. 39, no. 3, pp. 149–152, 2016.

E. Liniker, A. M. Menzies, B. Y. Kong et al., “Activity and safety of radiotherapy with anti-CD-P1 drug therapy in patients with metastatic melanoma,” Oncology Immunology, vol. 5, no. 9, article e1214788, 2016.

K. Polder, C. Wang, M. Duvic et al., “Toxic epidermal necrolysis associated with denileukin diftitox (DAB418IL-2) administration in a patient with follicular large cell lymphoma,” Leukemia & Lymphoma, vol. 46, no. 12, pp. 1807–1811, 2005.

T. J. Chen, W. H. Chung, and C. B. Chen, “Methotrexate-induced epidermal necrosis: a case series of 24 patients,” Journal of the American Academy of Dermatology, vol. 77, no. 2, pp. 247–255.e2, 2017.

L. E. Levine, M. M. Medenica, A. L. Lorincz, K. Soltani, B. Raab, and A. Ma, “Distinctive acral erythema occurring during therapy for severe myelogenous leukemia,” Archives of Dermatology, vol. 121, no. 1, pp. 102–104, 1985.

J. L. Bologna, D. L. Cooper, and E. J. Glusac, “Toxic erythema of chemotherapy: a useful clinical term,” Journal of the American Academy of Dermatology, vol. 59, no. 3, pp. 524–529, 2008.

T. D. Horn, “Antineoplastic chemotherapy, sweat, and the skin,” Archives of Dermatology, vol. 133, no. 7, pp. 905-906, 1997.

P. Seshacharyulu, M. P. Ponnuusamy, D. Haridas, M. Jain, A. K. Ganti, and S. K. Batra, “Targeting the EGFR signaling pathway in cancer therapy,” Expert Opinion on Therapeutic Targets, vol. 16, no. 1, pp. 15–31, 2012.

M. E. Lacouture, M. J. Anadkat, R. J. Bensadoun et al., “Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities,” Support Care Cancer, vol. 19, no. 8, pp. 1079–1095, 2011.

J. R. Macdonald, B. Macdonald, L. E. Goltiz, P. LoRusso, and A. Sekulic, “Cutaneous adverse effects of targeted therapies: part I: inhibitors of the cellular membrane,” Journal of the American Academy of Dermatology, vol. 72, no. 2, pp. 203–218, 2015.

A. M. Wnorowski, A. de Souza, A. Chachoua, and D. E. Cohen, “The management of EGFR inhibitor adverse events: a case series and treatment paradigm,” International Journal of Dermatology, vol. 51, no. 2, pp. 223–232, 2012.

B. J. Druker, F. Guilhot, S. G. O’Brien et al., “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia,” New England Journal of Medicine, vol. 355, no. 23, pp. 2408–2417, 2006.

P. G. Casali, A. Le Cesne, A. P. Velasco et al., “Imatinib failure-free survival (IFS) in patients with localized gastrointestinal stromal tumors (GIST) treated with adjuvant imatinib (IM): the EORTC/AGITG/FSG/GEIS/ISG randomized controlled phase III trial,” Journal of Clinical Oncology, vol. 31, 2013.

L. Valevrye, S. Bastuji-Garin, J. Revuz et al., “Adverse cutaneous reactions to imatinib (STI571) in Philadelphia chromosome-positive leukemias: a prospective study of 54 patients,” Journal of the American Academy of Dermatology, vol. 48, no. 2, pp. 201–206, 2003.

M. Brouard and J. H. Saurat, “Cutaneous reactions to STI571,” The New England Journal of Medicine, vol. 345, no. 8, pp. 618-619, 2001.

K. D. White, W. H. Chung, S. I. Hung, S. Mallal, and E. J. Phillips, “Evolving models of the immunopathogenesis of T cell-mediated drug allergy: the role of host, pathogens, and drug response,” The Journal of Allergy and Clinical Immunology, vol. 136, no. 2, pp. 219–234, 2015.

T. A. Duong, L. Valevryie-Allanoire, P. Wolkenstein, and O. Chosidow, “Severe cutaneous adverse reactions to drugs,” Lancet, vol. 390, no. 10106, pp. 1996–2011, 2017.

K. J. Gotink and H. M. W. Verheul, “Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action?,” Angiogenesis, vol. 13, no. 1, pp. 1–14, 2010.

R. S. Ishak, S. A. Aad, A. Kyei, and F. S. Farhat, “Cutaneous manifestations of anti-angiogenic therapy in oncology: review with focus on VEGF inhibitors,” Critical Reviews in Oncology/Hematology, vol. 90, no. 2, pp. 152–164, 2014.
[104] B. Billemont, S. Barete, and O. Rixe, “Scrotal cutaneous side effects of sunitinib,” The New England Journal of Medicine, vol. 359, no. 9, pp. 975–976, 2008.

[105] M. Ikeda, T. Fujita, Y. Amoh, S. Mii, K. Matsumoto, and M. Iwamura, “Stevens–Johnson syndrome induced by sorafenib for metastatic renal cell carcinoma,” Urologia Internationalis, vol. 91, no. 4, pp. 482–483, 2013.

[106] M. E. Lacouture, M. Duvic, A. Hauschild et al., “Analysis of dermatologic events in vemurafenib-treated patients with melanoma,” The Oncologist, vol. 18, no. 3, pp. 314–322, 2013.

[107] M. Arenbergerova, A. Fialova, P. Arenberger et al., “-everolimus: observations from a phase III clinical trial, with hormone receptor-positive breast cancer treated with everolimus and pharmacokinetics of everolimus-induced-oral ulcers: insights into compliance issues,” European Journal of Cancer, vol. 22, no. 16, pp. 4023–4029, 2016.

[108] S. Saw, H. Y. Lee, and Q. S. Ng, “Pembrolizumab-induced Stevens–Johnson syndrome in non-melanoma patients,” European Journal of Cancer, vol. 81, pp. 237–239, 2017.

[109] N. Okiyama and S. I. Katz, “Programmed cell death 1 (PD-1) regulates the effector function of CD8 T cells via PD-L1 expressed on target keratinocytes,” Journal of Autoimmunity, vol. 53, pp. 1–9, 2014.

[110] B. Sassolas, H. K. Berthold et al., “ALDEN, an algorithm for assessment of drug causality in Stevens–Johnson syndrome and toxic epidermal necrolysis: comparison with case–control analysis,” Clinical Pharmacology & Therapeutics, vol. 88, no. 1, pp. 60–68, 2010.

[111] W. J. Pichler and J. Tilch, “The lymphocyte transformation test in the diagnosis of drug hypersensitivity,” Allergy, vol. 59, no. 8, pp. 809–820, 2004.

[112] F. Pantano, M. Silletta, A. Iovieno et al., “Stevens–Johnson syndrome associated with reduced tear production complicating the use of cetuximab and panitumumab,” International Journal of Colorectal Disease, vol. 24, no. 10, pp. 1247–1248, 2009.