ABSTRACT

Aims: To assess the epidemiology of UTIs affecting inpatients and outpatients and the antibiotic resistance levels, expressed as multiple antibiotic resistance (MAR) indices from the isolated species at a tertiary-care hospital in Hungary, during a 10-year study period.

Study Design: Retrospective microbiological study.

Place and Duration of Study: 1st of January 2008 - 31st of December 2017 at the University of Szeged, which is affiliated with the Albert Szent-Györgyi Clinical Center, a primary- and tertiary-care teaching hospital in the Southern Great Plain of Hungary.

Methodology: Antimicrobial susceptibility testing (AST) was performed using disk diffusion method and when appropriate, E-tests on Mueller–Hinton agar (MHA) plates. The multiple antibiotic resistance (MAR) index of the isolates was determined.

Results: During the 10-year study period, the Institute of Clinical Microbiology received 21,150 urine samples from outpatient clinics and 19,325 samples from inpatient departments that turned
1. INTRODUCTION

Urinary tract infections (UTIs) are some of the most common infections in human healthcare, both in community (10–30% of infections in primary healthcare) and nosocomial settings (30–40%) [1,2]. UTIs are often associated with recurrence, complications and sequelae, leading to a decrease in the quality of life for the affected patients [3]. UTIs are most frequently caused by members of the Enterobacteriaceae family (or more recently, the Enterobacterales order): typical pathogens include uropathogenic Escherichia coli and Klebsiella spp., however, the Proteus-Providencia-Morganella species (the Proteae tribe), Citrobacter-Enterobacter-Serratia species (so-called CES pathogens) have now emerged as increasingly relevant Gram-negative pathogens [4-7]. Some reports suggest that 80% of UTIs are caused by various serotypes of E. coli (there are more than 1650 different serotypes of E. coli, if O, H and K antigens are considered). E. coli and Proteus spp. possess fimbria, allowing for attachment to epithelial cells; the resulting production of IL-6 and IL-8 causes epithelial cell desquamation. On the other hand, Klebsiella spp. produce extracellular polysaccharides, and have a role in stone formation, due to their urease production. Among the Gram-positive bacteria, Staphylococcus aureus from urine may induce bacteremia or infection of the kidney, Enterococcus spp. may cause uncomplicated cystitis in women, while S. saprophyticus may cause asymptomatic UTI in young females [1-9]. The therapy of UTIs is an increasingly complex challenge for clinicians, due to the increasing levels of antibiotic resistance [8,9]. The emergence of multidrug resistance (MDR) and extensive drug resistance (XDR) in urinary pathogens, together with pre-existing, genetically encoded resistance mechanisms means that these pathogens may be resistant to a broad range of antibiotics [10,11].

Since the beginning of the 21st century, many surveillance reports have been published regarding the resistance trends of Gram-negative bacteria [12]. Nevertheless, the epidemiology and antibiotic susceptibility-patterns of urinary tract pathogens vary greatly by region, and, therefore, the assessment of local data is essential to evaluate trends over time and to reflect on the national situation compared to international data. In addition, the knowledge of the relevant antibiotic susceptibility patterns of the major bacterial pathogens for UTIs is critically important for the optimal choice for antibiotic therapy. With this in mind, the aim of this study was to assess the epidemiology of UTIs affecting inpatients and outpatients and the antibiotic resistance levels, expressed as multiple antibiotic resistance (MAR) indices from the isolated species at the Albert Szent-Györgyi Clinical Center (Szeged, Hungary) retrospectively, during a 10-year study period.

2. MATERIALS AND METHODS

2.1 Study Design, Data Collection

The present retrospective study was carried out using microbiological data collected from the 1st of January 2008 and 31st of December 2017 at the University of Szeged, which is affiliated with the Albert Szent-Györgyi Clinical Center, a primary- and tertiary-care teaching hospital in the Southern Great Plain of Hungary. The Clinical Center has a bed capacity of 1820 beds and annually serves more than 400,000 patients in the region, according to the data of the Hungarian National Health Insurance Fund (NEAK), including GP-level care, all the way to specialized medical interventions [13]. Electronic search in the records of the MedBakter laboratory information system (LIS) for positive urine samples was conducted by the author.
Samples with clinically significant colony counts for the abovementioned bacteria \(10^9\) < colony forming units [CFU]/mL; however, this was subject to interpretation, based on the information provided on the request forms for microbiological analysis and relevant international guidelines, e.g., presence of underlying conditions in the genitourinary tract) were included in the data analysis. Only the first isolate per patient was included in the study, however, isolates with different antibiotic-susceptibility patterns were considered as different individual isolates [14].

2.2 Identification of Isolates

10 µL of each un-centrifuged urine sample was cultured on UriSelect chromogenic agar plates (Bio-Rad, Berkeley, CA, USA) with a calibrated loop, according to the manufacturer’s instructions and incubated at 37°C for 24–48 h, aerobically. If the relevant pathogens presented in significant colony count, the plates were passed on for further processing. Between 2008–2012, presumptive phenotypic (biochemical reaction-based) methods and VITEK 2 ID (bioMérieux, Marcy-l’Étoile, France) were used for bacterial identification, while after 2013, this was complemented by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; Bruker Daltonik GmbH. Gr., Bremen, Germany) [5-7]. The methodology of sample preparation for MALDI-TOF MS measurements was described elsewhere [15]. Mass spectrometry was performed by the Microflex MALDI Biotyper (Bruker Daltonics, Bremen, Germany) in positive linear mode across the m/z range of 2 to 20 kDa; for each spectrum, 240 laser shots at 60 Hz in groups of 40 shots per sampling area were collected. The MALDI Biotyper RTC 3.1 software (Bruker Daltonics) and the MALDI Biotyper Library 3.1 were used for spectrum analysis.

2.3 Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing (AST) was performed using disk diffusion method and when appropriate, E-tests (Lioflichem, Abruzzo, Italy) on Mueller–Hinton agar (MHA) plates. For the verification of questionable results, VITEK 2 AST (bioMérieux, Marcy-l’Étoile, France) was also used. The interpretation of the results was based on EUCAST breakpoints. *Staphylococcus aureus* ATCC 29213, *Enterococcus faecalis* ATCC 29212, *Proteus mirabilis* ATCC 35659, *Escherichia coli* ATCC 25922, *Klebsiella pneumoniae* ATCC 700603 and *Pseudomonas aeruginosa* ATCC 27853 were used as quality control strains. The following antibiotics were tested: norfloxacin, ciprofloxacin, levofloxacin, ampicillin, amoxicillin/clavulanic acid, ceftriaxone, cefepime, meropenem, doxycycline, gentamicin, tobramycin, amikacin, fosfomycin, sulfamethoxazole/trimethoprim and nitrofurantoin, which is a total of 15 antibiotics (excluding cases where intrinsic non-susceptibility was present; namely in *Citrobacter-Enterobacter-Serratia* \([n=12\] antibiotics) and *Morganella-Proteus-Providence* \([n=10\] antibiotics) [5-7]. During data analysis, intermediate-susceptible results were grouped with and reported as resistant. The multiple antibiotic resistance (MAR) index of the isolates was determined using the formula: MAR Index = Number of antibiotics isolate is resistant to/Number of antibiotics tested, as described previously [16]. The MAR index may range between 0.0-1.0.

2.4 Statistical Analysis

Descriptive statistical analysis (including means or medians with ranges and percentages to characterize data) was performed using Microsoft Excel 2013 (Redmond, WA, USA, Microsoft Corp.).

3. RESULTS AND DISCUSSION

During the 10-year study period, the Institute of Clinical Microbiology received 21,150 urine samples from outpatient clinics and 19,325 samples from inpatient departments that turned out to be positive for a significant urinary pathogen. The distribution of *Enterobacteriaceae* isolates among inpatient and outpatient samples is presented in Table 1. Out of the positive urine samples, *E. coli* represented the overwhelming majority of all positive urine samples \(56.75 ± 4.86\%\) \([\text{range: } 46.83–65.98\%]\, \text{lowest in } 2008, \text{highest in } 2010]\) for outpatients, while \(42.29 ± 2.94\%\) \([\text{range: } 37.19–45.73\%]\, \text{lowest in } 2015, \text{highest in } 2010]\) for inpatients), followed by *Klebsiella* spp., members of the *Proteae* tribe and *Citrobacter-Enterobacter-Serratia* species.

The MAR indices of the different Gram-negative uropathogens are presented in Tables 2-4. In all three groups, the resistance levels in inpatient isolates were higher than in the outpatient isolates (average MAR indices: 0.347 vs. 0.410, 0.267 vs. 0.435 and 0.318 vs. 0.473 for the
Table 1. Species-distribution of urinary pathogens in the *Enterobacteriaceae* family in a tertiary-care hospital in Hungary (2008-2017)

Species	Outpatients (average±SD; %)	Inpatients (average±SD; %)	Outpatients (range; %), highest and lowest years	Inpatients (range; %), highest and lowest years
E. coli	56.7 ± 4.8	42.2 ± 2.9	46.8-65.98 (2008; 2010)	37.2-45.7 (2012; 2011)
K. pneumoniae	8.9 ± 2.3	13.4 ± 2.2	2.9-10.4 (2012; 2011)	9.5-15.3 (2008; 2011)
K. oxytoca	1.4 ± 0.3	1.16 ± 0.2	0.7-1.8 (2008; 2011)	0.7-1.8 (2008; 2011)
CES group	5.0 ± 0.9	7.2 ± 1.7	3.6-6.3 (2010; 2017)	3.5-9.6 (2009; 2015)
(Citrobacter-Enterobacter-Serratia)				
Proteae group	2.6 ± 0.1	3.0 ± 0.4	1.9-3.2 (2012; 2017)	2.5-3.8 (2015; 2013)
(Morganella-Proteus-Providencia)				
E. coli/Klebsiella, CES and Proteae group, respectively), additionally, the highest frequency of isolates in the relevant MAR indices were also corresponding to higher MAR-index values (MAR indices: 0.335 vs. 0.536, 0.249 vs. 0.498 and 0.300 vs. 0.400 for the E. coli/Klebsiella, CES and Proteae group, respectively).

The increasing levels of antimicrobial drug resistance in urinary tract infection correspond to both local and international changes in treatment guidelines. MDR Gram-negatives leads to poor prognoses and an increased complication rate, mortality rate, especially in nosocomial settings [17]. The abovementioned urinary pathogens were most frequently resistant to the fluoroquinolones, sulfamethoxazole/trimethoprim and ampicillin therefore; the empiric use of these agents should be discouraged [18]. The therapy of Proteae and CES infections is especially challenging due to the various intrinsic resistance mechanisms these pathogens possess [19,20]. In addition, some last-resort drugs used in clinically relevant infections with Gram-negative pathogens, like tigecycline and colistin are not useful in the therapy of Proteae-associated

Table 2. Multiple antibiotic resistance (MAR) index of E. coli and Klebsiella spp. isolated from urinary tract infections in a tertiary-care hospital in Hungary (2008-2017)

MAR index (a/b)*	Outpatient isolates frequency (%)	Inpatient isolates frequency (%)
0.000	12.1	4.3
0.067	0.2	0.8
0.133	0.3	1.4
0.201	13.4	7.6
0.268	5.3	9.4
0.335	26.9	14.6
0.402	14.3	16.8
0.469	8.8	10.2
0.536	6.4	24.1
0.603	5.2	6.0
0.670	3.6	1.0
0.737	2.0	0.8
0.804	1.0	1.8
0.871	0.5	1.2
0.938	0.0	0.0
1.000	0.0	0.0

*Number of antibiotics tested: n=15
Boldface: the highest ratio of representative strains; Underlined: highest MAR level in the group

Table 3. Multiple antibiotic resistance (MAR) index of CES pathogens (Citrobacter-Enterobacter-Serratia) isolated from urinary tract infections in a tertiary-care hospital in Hungary (2008-2017)

MAR index (a/b)*	Outpatient isolates frequency (%)	Inpatient isolates frequency (%)
0.000	16.3	4.2
0.083	4.6	6.6
0.166	4.2	10.3
0.249	38.9	9.4
0.332	14.9	10.1
0.415	3.5	17.8
0.498	10.1	26.4
0.581	6.0	14.1
0.664	1.0	8.8
0.747	0.3	1.0
0.830	0.2	0.3
0.913	0.0	0.0
1.000	0.0	0.0

*Number of antibiotics tested: n=12
Boldface: the highest ratio of representative strains; Underlined: highest MAR level in the group
pathologies and some beta-lactam antibiotics and colistin are not useful against Serratia spp. Intrinsic non-susceptibility to several drug groups severely limits the number of therapeutic alternatives, especially for outpatient care. Nitrofurantoin and fosfomycin (if susceptibility is confirmed) represents a safe and viable option for the treatment of these infections [9].

4. CONCLUSION

This study presents a current epidemiological snapshot and resistance levels of Enterobacteriaceae associated with of urinary tract infections (UTIs) in Hungary over a long period (2008-2017). To the best of the authors knowledge, this is the first study in Hungary, reporting on the resistance levels of these pathogens using the MAR index. As the therapeutic options are becoming increasingly limited in the current antibiotic resistance climate, more effort should be put into the prudent use of antibiotics and the development of novel antimicrobial agents.

CONSENT

It is not applicable.

ETHICAL APPROVAL

The study was deemed exempt from ethics review by the Institutional Review Board, and informed consent was not required as data anonymity was maintained.

ACKNOWLEDGEMENTS

M.G. was supported by the National Youth Excellence Scholarship [Grant Number NTP-NTFÖ-18-C-0225] and the ESCMID Mentorship and Observership Programme.

COMPETING INTERESTS

Author has declared that no competing interests exist.

REFERENCES

1. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol 2015;13:269–284.
2. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Ra R, Schaeffer AJ. et al. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the infectious diseases society of America and the European Society for microbiology and infectious diseases. Clin. Infect Dis. 2011;52:e103–e120.
3. Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE, Rice JC, Saint S, Schaeffer AJ, Tambayh PA, Tenke P et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International clinical practice guidelines from the infectious diseases society of America. Clin. Infect Dis. 2010;50:625–663.
4. Adeolu M, Alnajar S, Naushad S, Gupta R. Genome-based phylogeny and taxonomy of the “Enterobacteriales”:
proposal for *Enterobacterales* ord. nov. divided into the families *Enterobacteriaceae*, *Erwinia* fam. nov., *Pectobacteriaceae* fam. nov., *Yersiniaceae* fam. nov., *Hafniaceae* fam. nov., *Morganellaceae* fam. nov., and *Budviciaceae* fam. nov. Int. J. Syst Evol Microbiol. 2016;66:5575–5599.

5. Gajdács M, Urbán E. Resistance trends and epidemiology of *Citrobacter-Enterobacter-Serratia* in urinary tract infections of inpatients and outpatients (RECESUTI): A 10-year survey. Medicina (Kaunas). 2019;55:285.

6. Gajdács M, Urbán E. Comparative epidemiology and resistance trends of proteae in urinary tract infections of inpatients and outpatients: A 10-year retrospective study. Antibiotics. 2019;8:91.

7. Gajdács M, Ábrók M, Lázár A, Burián K. Comparative epidemiology and resistance trends of common urinary pathogens in a tertiary-care hospital: A 10-Year surveillance study. Medicina (Kaunas). 2019;55:356.

8. Abbo LM, Hooton TM. Antimicrobial stewardship and urinary tract infections. Antibiotics. 2014;3:174–192.

9. Gajdács M, Ábrók M, Lázár A, Burián K. Susceptibility patterns of extended-spectrum beta-lactamase-producing (ESBL) urinary pathogens: Single-center experience. Gyógyszerészet. 2019;63(7):405-411.

10. Gajdács M. The concept of an ideal antibiotic: Implications for drug design. Molecules. 2019;24:892.

11. Leclercq R, Cantón R, Brown DFJ, Giske CG, Heisig P, MacGowan AP, Mouton JW, Nordmann P, Rodloff AC, Rossolini GM, et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin. Microbiol Infect. 2013;19:141–160.

12. Sader HS, Farrell DJ, Flamm RK, Jones RN. Antimicrobial susceptibility of gram-negative organisms isolated from patients hospitalised with pneumonia in US and European hospitals: Results from the SENTRY Antimicrobial Surveillance Program, 2009–2012. Int. J. Antimicrob Agents. 2014;43:328–334.

13. National Health Insurance Fund of Hungary. Hospital bed count and patient turnover report. National Health Insurance Fund of Hungary: Budapest, Hungary; 2017.

14. Gajdács M, Urbán E. Epidemiological trends and resistance associated with *stenotrophomonas maltophilia* bacteremia: A 10-year retrospective cohort study in a tertiary-care hospital in Hungary. Diseases. 2019;7:41.

15. Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: Rubik’s cube of clinical microbiology? Antibiotics. 2017;6:25.

16. Ngwai YB, Gyar SD, Pennap GRI, Makut MD, Ishaleku D, Corosi SM, Nkene IH, Uzoamaka N. Anti-biogram of non-sorbitol fermenting *Escherichia coli* isolated from environmental sources in Keffi, Nigeria. NSUK Journal of Science and Technology. 2014;4(1&2):152-163.

17. Cullen IM, Manecksha RP, McCullagh E, Ahmad S, O’Kelly F, Flynn R, McDermott TED, Murphy P, Grainger R, Fennell JP, et al. An 11-year analysis of the prevalent uropathogens and the changing pattern of *Escherichia coli* antibiotic resistance in 38,530 community urinary tract infections, Dublin 1999–2009. Ir. J. Med. Sci. 2013;182:81–89.

18. Gajdács M. Intravenous or oral antibiotic therapy; Sophie’s choice? Gen. Int. Med. Clin. Innov. 2019;4:1-2.

19. Stefaniuk E, Suchocka U, Bosacka K, Hryniewicz W. Etiology and antibiotic susceptibility of bacterial pathogens responsible for community-acquired urinary tract infections in Poland. Eur. J. Clin. Microbiol. Infect Dis. 2016;35:1–7.

20. Braunstein H, Tomasulo M. Identification of proteus morganii and distinction from other Proteus species. Am. J. Clin. Pathol. 1978;70:905–908.