Does the Measurement Matter? Assessing Alternate Approaches to Measuring State School Finance Equity for California’s Local Control Funding Formula

David S. Knight
University of Washington

Jesús Mendoza
University of Texas at El Paso

Many states are still struggling to restore public education funding to pre-Great Recession levels over a decade after the initial recessionary budget cuts (Leachman & Figuera, 2019). Research shows that the highest-poverty districts were particularly hard hit during the recessionary spending cuts (Evans, Schwab, & Wagner, 2019; Knight, 2017). California legislators passed sweeping school finance reforms that increased overall funding and targeted additional resources to higher-need districts. The Local Control Funding Formula (LCFF), which went into effect in the 2013–2014 school year, is designed to increase overall funding and provide greater flexibility in local spending.

Research on California school finance suggests that the state’s system became slightly more equitable following the implementation of LCFF, although estimates of the extent to which equity increased vary across studies (e.g., Baker, Farrie, & Sciarra, 2018; Bruno, 2018; Johnson & Tanner, 2018). Part of the discrepancy in prior findings stems from the researchers’ use of different data sets, variables, and measures of equity. The extant literature does not offer a clear understanding of how alternate data sources and measures of equity may influence the lessons learned from major school finance reforms. Policymakers therefore may draw different conclusions based on analyses using different data sets or equity measures. The purpose of this study, then, is to (a) unpack how state and federal school finance data sets align and (b) understand the extent to which alternate measures of equity lead to different conclusions about school finance reforms. We also explore what state-level factors drive the differences in measures of equity. In the process, we provide a detailed analysis of school finance equity in California following the implementation of LCFF.

In the remainder of the article, we provide background on how researchers conceptualize and measure state school finance equity and then explore research on the changes in school finance equity in California under LCFF. We then describe the data and methods used for the study, present findings, and conclude with recommendations for researchers and policymakers.

Background on School Finance Equity and the LCFF

In this section, we describe theoretical conceptions and measurement of equity. We then synthesize recent research on LCFF.
Theoretical Conceptions of School Finance Equity

U.S. schools have a well-documented history of reinforcing social inequality, devaluing nondominant cultural backgrounds, and contributing to White supremacy (Ladson-Billings & Tate, 2016; Spring, 2016). In response, policymakers have passed civil rights–oriented reforms over the past 60 years. Educational scholars study equity as a way to understand how these policy reforms alter the structure of schooling in ways that may support social justice. Yet the concept of equity is contested. Drawing on the public finance literature and legal theory, Berne and Stiefel (1984) provide an equity framework in which the analyst first identifies (a) whose needs are being assessed, (b) what resources are being analyzed, (c) how much variation in resources across students is warranted, and (d) how equity is measured (see Baker & Green, 2015). We use this framework to describe the current research on school finance equity.

The first consideration is whose needs are being assessed. Many scholars center racial justice in equity research (e.g., Dowd & Bensimon, 2015), whereas much of the school finance literature emphasizes income- or wealth-based school funding gaps (Odden & Picus, 2014). Broader considerations within the school finance literature consider equity for taxpayers and educators, in addition to students (Berne & Stiefel, 1979; Levin, 2018). A second concern is what abstract or material resource is being analyzed (Grubb, 2009). Most school finance research examines how state systems allocate actual dollars to school districts, whereas a larger body of work tracks the distribution of more complex resources such as high-quality instruction or rigorous and culturally sustaining coursework (Darity, Castellino, Tyson, Cobb, & McMillen, 2001; Knight & Strunk, 2016; Oakes, 2005). The third consideration, how much variation in resources is warranted, depends on cost. Scholars use the concept of vertical equity to argue that additional resources are necessary to address differences in the cost of providing equal educational opportunity (Rodriguez, 2004). A Rawlsian (1971) perspective suggests that districts with higher student poverty concentrations or with higher costs due to the surrounding labor market or other local conditions require additional funding up to the point at which resources help facilitate equal educational opportunity. Thus, a state school finance system is more equitable when it provides more resources to high-need districts. Vertical equity implies that a system could be considered “too progressive” if the resources allocated to high-need districts exceed the cost of education for those districts.

The final consideration, how equity is measured, depends on the conception of equity. We highlight two conceptions of equity that are aligned with distinct measurement approaches. The first compares the resources allocated to the school district of a typical student classified as disadvantaged with that of a typical non-disadvantaged student. This framework aligns with the weighted average approach, which we describe below. Another perspective compares the resources in school districts at the extremes of disadvantage—districts that enroll the highest percentage of historically underserved students and those that serve the highest percentage of advantaged students. The regression-based approach lends itself to this framework because it compares resources allocated to, for example, the highest- and lowest-poverty districts. In short, two distinct conceptions of school finance equity focus on resources in districts that the typical disadvantaged student attends and resources in districts serving the very highest and lowest percentage of disadvantaged students, and these perspectives align with the weighted average and regression approach, respectively. In both cases, greater equity is associated with additional resources allocated to districts enrolling a greater proportion of historically underserved students.

Measurement of School Finance Equity

Despite the methodological advancements in school finance equity scholarship, scholars have not reached a consensus on the preferred method to assess state school finance equity.

Simple Measures of School Finance Equity. Early approaches used measures of statistical dispersion to examine whether school districts received different levels of resources per student (Berne & Stiefel, 1984). School finance systems are considered equitable if all districts receive the same level of resources. These measures of dispersion, typically applied to state and local funding or spending per student, do not differentiate variation in spending that aligns with perceived need. The McCloone Index and other school finance equity indices (e.g., the Gini, Theil, Verstegen, Knoppel, and Odden-Picus indices) all face similar limitations (Verstegen, 1996). To address these shortcomings, several national reports, such as Education Week’s Quality Counts and similar reports produced by EdBuild and Education Trust, examine the funding gaps between districts at the 10th and 90th percentiles of student poverty (rather than overall funding).

Advanced Measures of School Finance Equity. More sophisticated approaches to measuring state school finance equity examine the statistical relationships between funding levels and student demographics. Two approaches have emerged that assess the extent to which high-poverty districts receive a greater amount of state and local funding. The first, which we refer to as the regression-based approach, models per-student funding rates as a function of the percentage of low-income students in the district and a set of district control variables (Baker, Farrie, et al., 2018). This approach allows researchers to estimate the relationship between funding and student poverty among otherwise similar districts. The coefficient for student poverty is interpreted as the change in funding for a unit increase in the poverty rate, holding constant other observable
Data systems that allow U.S. Census Bureau staff to conduct comparisons of state school finance systems all use the U.S. Census Annual Survey of School System Finances, which provides the raw data for the National Center for Education Statistics (NCES) F-33 survey. Meanwhile, many state-specific analyses draw on data collected by state education agencies. As of the 2018–2019 school year, 18 states have finance systems that allow U.S. Census Bureau staff to conduct their own data extraction for those states. State department of education staff in the other states and the District of Columbia submit data to the U.S. Census Bureau using a survey template. Importantly, states have different approaches to accounting for certain expenditure and revenue flows, such as regional educational centers, charter school payments, and fringe benefits and postemployment pension costs (Card & Payne, 2002), and state and federal policymakers often prefer to use and read analyses of their own data (Picus et al., 2016). Few studies have attempted to resolve the discrepancies between state and federal databases, and no previous studies that we know of have compared state and federal school finance data sources and their underlying variables. We obtained the SAS code that U.S. Census analysts use to create the F-33 data for California. This code allows us to create an exact match between U.S. Census data and California Department of Education (CDE) data.

Finally, we note that specific data sources permit researchers to use different variables. For example, the U.S. Census makes available district-level poverty rates for children aged 5 to 17 years who reside within the district boundaries, whereas NCES data include information about the percentage of students in a school or district who receive free or reduced-price lunch (FRL). NCES data also include district enrollment rates, but many state data systems use average daily attendance (ADA) as a measure of the number of students attending school in a district. The data source and variables researchers use may affect their measures of school finance equity, but few studies have examined these issues explicitly.

School Finance Equity in California Under the LCFF

LCFF represents a substantial change to the California school finance system. The reform’s defining feature, student funding weights, helps target additional resources for English learners, low-income students, and foster care youth (Rose & Weston, 2013; M. Taylor, 2013). Several recent studies assessed changes in school finance equity in California with either the regression-based approach or the weighted average approach (Baker, Farrie, et al., 2018; Bruno, 2018), using either federal or state-specific data. Chingos and Blagg (2017) draw on federal data to rank all states by measures of school finance equity, using the weighted average approach. Although their study is not designed to evaluate LCFF, they show that funding progressivity in California in 2013–2014, the first year of LCFF, was similar to that of 1994–1995. In both school years, the average low-income student attended a school district that received approximately 1% greater state and local funding (approximately $100 in 2013–2014) than the average non-low-income student. The positive gap expands to 3% when federal funding is included (approximately $300 per student).
Drawing on CDE data, Bruno (2018) evaluates changes over time in school finance equity in California, specifically examining the influence of LCFF. He finds that during the 4 years leading up to LCFF, the average low-income student attended a district that received 6.4%, 6.2%, 5.6%, and 3.8% more total funding, respectively, than the average non-low-income student. In other words, school finance equity declined in the years leading up to LCFF and reached a low in 2012–2013. However, in the 4 years following LCFF implementation, the funding advantage increased to 4.4%, 5.2%, 6.5%, and 7.0%, respectively. In addition to using different data sets, the two studies, Chingos and Blagg (2017) and Bruno (2018), use different methods for converting district funding to a per-student measure. Chingos and Blagg (2017) use fall enrollment from NCES data, whereas Bruno (2018) uses ADA. The use of ADA overstates per-student funding rates for districts with low attendance, which may upwardly bias measures of school finance equity (Baker, 2014b; Knight & Olofson, 2018).

Only one analysis of school finance equity in California that we know of uses the regression-based approach. Baker and colleagues (Baker, Farrie, et al., 2018; Baker, Farrie, Johnson, Luhm, & Sciarra, 2017; Baker, Farrie, Luhm, & Sciarra, 2016; Baker, Sciarra, & Farrie, 2015) publish annual reports based on U.S. Census data that rank states according to school finance equity, using multiple measures, including the regression-based approach. The results for California can be compared over time across the annual reports to determine how regression-based estimates of school finance equity in California changed following the implementation of LCFF.

To simplify reporting of results, the authors present postestimation predicted values at selected poverty rates. Districts with 0% and 30% are considered low and high poverty, respectively, corresponding to roughly the 1st and 90th percentiles of student poverty, or approximately 0% and 80% of students eligible for FRL. Baker, Farrie, et al.’s (2018) results align somewhat with those found in Bruno (2018). They find that in the 4 years leading up to LCFF, high-poverty districts in California received 4.7%, 9.2%, 4.3%, and 1.0% more funding than low-poverty districts. In the 2 years following LCFF, high-poverty districts receive 1.3% and 2.5% greater funding than low-poverty districts. In short, both Bruno (2018) and Baker et al. (2018) find that school finance equity in California declined in the years leading up to LCFF and increased in the 2 years after LCFF began.

The extant literature does not provide sufficient information to adequately assess the extent to which school finance equity changed following the implementation of LCFF. Part of the gap in the knowledge base around LCFF is related to two gaps prevalent in the broader school finance literature. First, scholars have not systematically examined how alternate measures of school district funding equity compare. Our study addresses this gap by comparing results for the two most commonly used measures in the literature. Second, scholars have rarely explored how finance data and specific variables from state and federal sources align. Yet state and federal policymakers are accustomed to analyses that draw on their own data systems (Picus et al., 2016). Knowledge of how state and federal school finance data align may help clarify how different data systems operate and whether particular types of revenues or expenditures are likely to be miscategorized. Two prior studies evaluate the validity of the national school-level finance data (Aitchison, Baker, Boyle, Levin, & Manship, 2017; Shores & Ejdemyr, 2017). However, neither study describes a crosswalk for converting a state’s school finance data system to the NCES data system. To this end, our study reconciles state and federal district-level school finance data and sheds light on why underlying differences may exist in California. Finally, we note that state-specific school finance analyses, such as the current study, provide an important complement to national studies. While national studies inform broader policy reforms, state-specific school finance analyses can provide more direct evidence about whether a specific policy had its intended effect, why, and how the design of future reforms could be improved (Conaway, 2019). Next, we describe our data and methods in greater detail.

Data and Analytic Approach

Aligning State and Federal Finance Data

We created parallel data sets based on school district finance data available from the CDE and the U.S. Census. We held several phone conversations with administrators at the CDE and the U.S. Census Bureau to inform our data alignment process. As noted, we ultimately obtained the SAS code that Census staff wrote and now use to clean CDE finance data. We confirmed that this code can be used to extract CDE data to exactly match Census school finance data.

Our analyses focus on current expenditures per student and state and local funding per student. The “current expenditures” variable in the Census data includes spending on instruction, support services, and other services but excludes capital expenses. The “state and local revenues” variable includes both general fund revenues and capital outlay and debt service programs (Cormann, 2016). The CDE uses a standardized accounting code structure that tracks revenues and expenditures by their fund, resource, goal, function, and object (CDE, 2016). Using CDE data, we generate a variable for current expenditures, excluding the goal of adult education and the objects—capital outlay, interfund transfers, debt service, and payments to states and other school systems, including charter schools. We exclude these expenditures because they are not generally considered current K-12 expenditures and because they are excluded from the U.S. Census current expenditures variable. On the revenue side, we include funds for educator fringe benefits and pensions made on behalf of districts. Beginning in 2014–2015, the
CDE began reporting payments made to employees for benefits as a state revenue. These funds come from the state and are made “on behalf” of the district and therefore represent state revenue for school districts. Fortunately, the Census data track on-behalf payments at the district level back to 1994–1995. We include these payments as state revenues for all the years. To match the Census state and local revenue variables, we also include (from CDE data) general and special revenue, debt service including funding for capital projects, and food service funds and exclude transfers between funds and agency transactions. Appendix B includes the STATA code that we use to aggregate raw CDE variables to district-level estimates of state and local revenues.

We merge our district-level panel data set with the Census Small Area Income and Poverty Estimates to obtain annual student poverty rates for each school district. We use the NCES Comparable Wage Index (CWI; L. L. Taylor & Fowler, 2006) to measure geographic differences in the cost of wages, imputing forward for school years 2013–2014 to 2015–2016. The final analytic sample includes a total of 287,423 school district–year observations from 1994–1995 to 2015–2016, including 19,898 for California. Table 1 shows summary statistics for the school districts that appear in our analytic sample, which includes 847 districts and just under 6 million students for the 2015–2016 school year. School districts in California are larger and serve a higher proportion of low-income students, English learners, and students of color than all other districts nationally. California districts have a higher average cost of labor but spend about $800 less per student than all other districts nationally, on average.

Measures of School Finance Equity

As described above, we use two measures of school finance equity, the regression-based approach and the weighted average approach. The regression-based approach consists of a model predicting each district’s per-pupil state and local funding each year (\(\text{PPF}_{dt}\)), based on the percentage of students in the district with household income below the poverty line (\(\%P_{dt}\)), a set of year dummy variables for each year from 1995–1996 to 2015–2016 (\(\delta_t\)), and interactions between the year dummy variables and the percentage of students in poverty each year, which we describe in summation notion as

\[
\sum_{t=2001}^{2016} \delta_t (I_{t=\tau} + \%P_{dt} \beta_1).
\]

The model also contains a set of district characteristics, \(X_{dt}\), that prior studies find are associated with cost (e.g., Baker, Green, & Ramsey, 2018; Duncombe & Yinger, 2007), including district size, urbanicity, cost of labor, and the percentage of students enrolled in special education:

\[
\text{PPF}_{dt} = \%P_{dt} \alpha + \sum_{t=2001}^{2016} \delta_t (I_{t=\tau} + \%P_{dt} \beta_1 + X_{dt} \lambda) + \epsilon_{dt}. \tag{1}
\]

The covariates in \(X_{dt}\) allow us to compare otherwise similar districts in terms of size and other cost factors. Following Baker, Farrie, et al. (2018), we estimate the predicted funding level for districts with 0% and 30% of students in poverty, which corresponds roughly to the 1st and 90th percentiles, respectively. We weight the regression based on district enrollment, so that larger districts make a larger contribution to the estimated coefficients.

Table 1

	California	All other U.S. districts						
	Mean	SD	25th	75th	Mean	SD	25th	75th
Average district enrollment	6,847	23,863	491	7,008	3,592	14,427	475	2,991
Poverty rate	0.188	0.092	0.116	0.259	0.176	0.095	0.100	0.239
Percent free/reduced-price lunch	0.586	0.234	0.437	0.783	0.481	0.242	0.311	0.646
Percent Black/African American	0.057	0.056	0.015	0.085	0.157	0.186	0.019	0.228
Percent Latinx	0.540	0.238	0.355	0.731	0.214	0.221	0.052	0.311
Percent White	0.238	0.192	0.099	0.374	0.538	0.284	0.297	0.791
Percent English learner	0.211	0.121	0.122	0.257	0.077	0.086	0.014	0.117
Percent special education	0.117	0.019	0.105	0.132	0.127	0.045	0.103	0.154
Cost of Wage Index	1.626	0.166	1.526	1.687	1.470	0.184	1.345	1.566
Expenditures per student ($)	10,992	1,715	9,963	11,773	11,767	4,574	8,888	13,290
State and local funding per student ($)	12,432	2,130	11,241	13,337	12,606	5,053	9,309	14,241

Source. Common Core of Data, Comparable Wage Index, and U.S. Census.

Note. The sample includes districts with no missing data and with greater than 50 students, which adds up to 5,984,506 students and 874 districts for California and 41,801,902 students and 11,638 districts for all other U.S. states. All figures are weighted by district enrollment, except average district enrollment. SD = standard deviation.
Next, we compare the result of the regression-based approach with the result of the weighted average approach. The funding rate for the average low-income student in year t is calculated as

$$\frac{\sum_{d} \left(\frac{P_{P/d}}{P_{d}} \right) P_{d}}{\sum_{d} \left(\frac{P_{P/d}}{P_{d}} \right)} = \frac{1}{\sum_{d} \left(\frac{P_{P/d}}{P_{d}} \right)}$$

where $P_{P/d} / \sum_{d} P_{d}$ is the number of students in poverty in district d and year t divided by the sum of all students in poverty statewide in year t. The funding rate for the average non-low-income students is calculated similarly, except that the funding rate for each district is weighted by the proportion of all non-low-income students in each district. The funding gap based on the weighted average approach is calculated for year t using the following equation:

$$\text{Funding gap} = \frac{\sum_{d} P_{P,d} P_{d}}{\sum_{d} P_{d}} - \frac{\sum_{d} P_{P,d} \text{non-}P_{d}}{\sum_{d} \text{non-}P_{d}}$$ \hspace{1cm} (2)$$

where negative numbers imply that the average low-income student attends a district that receives less funding than the average non-low-income student’s district (regressive funding) and positive numbers imply that low-income students receive more funding than non-low-income students (progressive funding). For the weighted average measure, PPF_{dt} is adjusted for the geographic costs of wages and inflation (2016 dollars), whereas for the regression-based approach, PPF_{dt} is inflation adjusted and the cost of wages is included as a control variable.

We calculate both measures of school finance equity first using CDE data and then using the U.S. Census data. These results are identical, which is expected given the exact alignment between the two data sets. We present results for both per-student expenditures and per-student state and local funding. We also examine how the results change when we use the percentage of students participating in the FRL program, rather than U.S. Census poverty rates and ADA, instead of the fall enrollment.

Findings

Main Results

We find that the California school finance system allocated relatively more resources to high-poverty districts during the 2015–2016 school year, 3 years after the beginning of LCFF, compared with the last year prior to LCFF. The system also became more equitable relative to other states, and findings are consistent across resource types and data sources and somewhat consistent across methods for measuring equity. Results are shown in Tables 2 to 5 and Figures 1 to 5, with additional results in Appendix A.

TABLE 2

Average Resource Advantage for Higher-Poverty Districts (2016 Dollars per Student)

Year	Expenditures per Student	State and Local Funding per Student							
	Regression Based	Weighted Average	Regression Based	Weighted Average					
	Gap	δ	Gap	δ	Gap	δ	Gap	δ	
2005	1,305	381	-63	75					
2006	1,372	67	399	18	-221	-158	118	42	
2007	1,572	200	395	-4	742	963	189	71	
2008	1,780	208	452	57	1,195	454	278	89	
Recession begins	2009	1,703	-77	411	-41	724	-472	216	-62
	2010	1,697	-6	397	-14	24	-748	106	-110
	2011	1,780	83	419	22	913	937	198	92
	2012	1,299	-480	376	-43	253	-661	123	-75
	2013	1,021	-279	363	-14	131	-383	77	-45
LCFF begins	2014	1,022	1	384	21	-235	-235	115	115
	2015	1,347	325	467	83	-139	96	182	66
	2016	1,730	384	556	88	637	776	320	139

Note. Positive gaps imply that higher-poverty districts (regression-based approach) or average low-income students (weighted average approach) receive more funding than lower-poverty districts or average non-low-income students. δ refers to the difference in the gap from the prior year, where positive δ implies that funding or spending advantages grew from the prior year. Year 2005 refers to the 2004–2005 school year. LCFF = Local Control Funding Formula.
TABLE 3
Summary Statistics for States, Based on Differences in the Regression-Based and Weighted Average Standardized Estimates of State School Finance Equity in Expenditures per Student, 2015–2016

Quintile	Measures of equity	Regression approach	Weighted average	% change	Avg. difference	Avg. No. of districts	Avg. district size	Avg. expenditure per student ($)	% State poverty rate	Poverty range (across districts)	Dissimilarity index
—		0.000	0.000	[1.820]	[0.545]	255	5,921	11,887	18	0.416	0.231
Panel A: Quintiles for absolute value of difference between regression approach and weighted average approach											
First	−0.160	−0.134	−0.027	426	2,743	10,847	17	0.454	0.261	0.134	
Second	−0.097	−0.140	0.043	226	4,687	11,712	21	0.455	0.228	0.144	
Third	−0.424	−0.322	−0.102	242	6,622	12,576	16	0.383	0.261	0.144	
Fourth	0.142	−0.155	0.297	225	5,208	12,526	20	0.453	0.213	0.144	
Fifth	0.523	0.737	−0.214	174	10,025	11,671	17	0.342	0.194	0.144	

Panel B: Quintiles for difference between regression approach and weighted average approach

First	0.088	1.122	−1.034	318	5,211	12,290	19	0.427	0.276	
Second	−0.284	−0.105	−0.179	224	6,234	12,462	16	0.397	0.252	
Third	−0.086	−0.113	0.027	438	4,758	10,265	21	0.489	0.244	
Fourth	−0.169	−0.422	0.253	149	4,042	12,449	19	0.317	0.161	
Fifth	0.459	−0.370	0.829	153	9,287	12,011	18	0.317	0.161	

Note. Row 1 shows the average for each variable across all states (except Hawaii, \(n = 49 \)), where measures of equity are standardized and nonstandardized values are shown in brackets. Panel A shows quintiles based on the extent to which the two measures diverge (the two measures are closest for states in the first quintile). Panel B shows quintiles based on the extent to which the regression approach estimates a greater degree of equity than the weighted average approach (the weighted average approach overstates equity most, relative to the regression approach, for states in the first quintile). We use standardized values of each equity measure. For example, Panel A shows that among states where the two equity measures are most closely aligned (the first quintile), the regression approach estimates an equity measure 0.160 standard deviations below the mean and the weighted average approach estimates an equity measure 0.134 standard deviations below the mean, a difference of 0.027. Avg. = average.

TABLE 4
Regression Coefficients Estimating the Difference Between Measures of State School Finance Equity Based on the Regression Approach and the Weighted Average Approach, 2004–2005 to 2015–2016

| Outcome | Expenditures per Student | State and Local Revenues per Student | | | | | | | |
|---------|--------------------------|-------------------------------------|---|---|---|---|---|---|
| | Absolute Difference Between Equity Measures | Difference between equity measures | | | | | | |
| | (1) (2) (3) (4) | (5) (6) (7) (8) | | | | | | |
| Number of districts | −0.110** | −0.020 | −0.108 | 0.084 | −0.016 | 0.082** | 0.041 | 0.021 |
| (0.051) | (0.078) | (0.083) | (0.095) | | (0.043) | (0.032) | (0.061) | (0.063) |
| Average district size | 0.098 | 0.056 | 0.049 | −0.07 | 0.071 | 0.041 | −0.005 | 0.003 |
| (0.074) | (0.066) | (0.129) | (0.108) | | (0.050) | (0.040) | (0.077) | (0.058) |
| Expenditures per student | 0.051 | 0.094 | 0.054 | 0.178** | 0.124*** | 0.162*** | −0.034 | −0.005 |
| (0.056) | (0.062) | (0.084) | (0.073) | | (0.035) | (0.030) | (0.072) | (0.069) |
| State poverty rate | −0.059 | −0.068 | 0.037 | 0.045 | −0.012 | 0.046 | 0.118** | 0.113 |
| (0.048) | (0.060) | (0.069) | (0.066) | | (0.033) | (0.032) | (0.052) | (0.072) |
| Poverty range | −0.109 | 0.005 | −0.121 | −0.08 | −0.102** | −0.092*** | 0.077 | 0.013 |
| (0.067) | (0.071) | (0.112) | (0.106) | | (0.042) | (0.040) | (0.049) | (0.057) |
| Dissimilarity index | −0.129* | −0.149* | −0.264* | −0.368*** | −0.052 | −0.105** | 0.002 | 0.016 |
| (0.071) | (0.085) | (0.134) | (0.131) | | (0.059) | (0.046) | (0.080) | (0.070) |
| N | 588 | 588 | 588 | 588 | 588 | 588 | 588 | 588 |
| R² | n/a | 0.130 | n/a | 0.217 | n/a | 0.244 | n/a | 0.056 |

Note. Coefficients in the odd-numbered columns are based on separate bivariate regressions. Even-numbered columns display regression coefficients for models that include all six variables. A positive difference between equity measures implies that the regression approach suggests a greater level of equity than the weighted average approach. All variables are standardized to a mean of 0 and standard deviation of 1. Standard errors (in parentheses) are clustered at the state level. n/a = not applicable.

*\(p < .05 \) **\(p < .01 \) ***\(p < .01 \).
TABLE 5
Average Resource Advantage for Higher-Poverty Districts Based on the Regression-Based and Weighted Average Approaches (2016 Dollars per Student), Additional Specification Checks

Year	Regression-based approach	Weighted average approach		
	Fall membership	Avg. daily attendance	Fall membership	Avg. daily attendance
	Poverty rate	FRL		
2005	1,305 565	1,969 917	380 540	502 693
2006	1,372 810	2,140 1,202	399 643	537 835
2007	1,572 964	2,447 1,660	395 595	536 796
2008	1,780 900	2,961 1,695	452 621	601 811
	Poorest Poverty rate	FRL	Richest Poverty rate	FRL
	380 540	502 693	380 540	502 693

Panel A: Expenditures per student

Year	Regression-based approach	Weighted average approach		
	Fall membership	Avg. daily attendance	Fall membership	Avg. daily attendance
	Poverty rate	FRL		
2009	1,703 1,082	2,867 1,814	411 633	553 832
2010	1,697 1,551	3,762 4,711	403 638	531 793
2011	1,780 1,134	5,939 5,098	422 516	556 642
2012	1,299 402	3,396 5,131	373 449	541 512
2013	1,021 −122	1,837 −259	363 373	559 528

Panel B: State and local funding per student

Year	Regression-based approach	Weighted average approach		
	Fall membership	Avg. daily attendance	Fall membership	Avg. daily attendance
	Poverty rate	FRL		
2014	1,022 673	1,606 1,423	383 499	595 763
2015	1,347 1,202	2,174 2,544	467 654	683 970
2016	1,730 1,743	3,190 3,281	558 825	843 1,220

Note. The table shows the differences in per-student spending (Panel A) and funding (Panel B) for high- and low-poverty districts. Columns labeled “Poverty rate” show the funding gaps between districts with 30% and 0% poverty, and columns labeled “FRL” show the funding gaps between districts with 80% and 0% of students eligible for FRL. Each of these values corresponds to roughly the 1st and 99th percentiles of poverty, respectively. FRL = free/reduced-price lunch.

Absolute Changes in School Finance Equity in California

Table 2 shows estimates of resource advantages for high-poverty districts. The first two columns show spending advantages for the regression-based approach and changes in the spending advantage over the prior year (labeled δ). The next two columns display comparable results for the weighted average approach. The final four columns show the same set of results, but for state and local funding rather than expenditures. We note the beginning of the Great Recession following the 2007–2008 school year, because 2008–2009 is the first school year in which the Recession began affecting school district finances (Baker, 2014a; Knight, 2017).

The left side of Table 2 shows the results for expenditures per student. School finance equity for low-income students in California decreased after the onset of the Great Recession, especially during the 2 years prior to the beginning of LCFF. The results for the regression-based approach, in column 1, show that in 2010–2011, the highest-poverty districts spent $1,780 more than the lowest-poverty districts but spending advantage decreased by $480 and then by $279, down to...
$1,021 per student, in the subsequent 2 years. Spending advantage increased to $1,730 by 2015–2016, 3 years after the implementation of LCFF began. The next two columns show the results for the weighted average approach. As with the regression-based approach, the results for the weighted average approach show that equity decreased in the 2 years leading up to LCFF and then increased in the following 3 years. Although the changes over time in spending advantage are consistent between the two measures, the weighted average approach identifies much smaller spending advantages. This finding make sense given that the regression approach estimates funding differences between the lowest- and highest-poverty districts (0% and 30% poverty rates, respectively), whereas the weighted average approach estimates spending differences between the typical low-income student and typical non-low-income student. In the 2015–2016 school year,
for example, the average non-low-income student and average low-income student attended school in a district where the poverty rate was 17.8% and 23.2%, respectively.

The results in the left portion of Table 2 are synthesized in Figure 1, which shows estimates of expenditure per student in high- and low-poverty districts for the regression-based approach (Panel A) and the weighted average approach (Panel B). The lines indicate expenditure rates for each type of district, and the gray bars represent the spending advantage. The regression-based approach shows that the level of equity increased following the implementation of LCFF but has not returned to pre-Recession levels, whereas the weighted average approach suggests that the state has a more equitable system now than at any other time in the past two decades.

Figure 2 and the right side of Table 2 display the same results for state and local funding. The results for the regression-based approach (Panel A of Figure 2) suggest that, unlike expenditures, funding is distributed regres-sively for much of the early 2000s. This funding gap finally disappears in the years leading up to the Great Recession, but the system becomes less equitable during the Recession,
including during the 2 years leading up to LCFF. Results based on the weighted average approach (Panel B of Figure 2) tell a similar story. For both expenditure and funding, LCFF is associated with greater finance equity, but the weighted average approach provides a more favorable estimate of the extent to which equity increases after LCFF. Like most other states, the California school finance system is generally more equitable in terms of expenditures than with state and local funding.14

Relative Changes in School Finance Equity in California. How do absolute changes in school finance equity in California compare with other states, and how do relative changes vary across equity measures? Figure 3 shows California’s ranking in school finance equity relative to other states. Consistent with the absolute changes shown in Figures 1 and 2, school finance equity in California increases relative to other states leading up to the Great Recession, decreases following the beginning of the Recession, and
then increases after LCFF is implemented. This trend is consistent across equity measures and for both spending and funding. As with absolute measures of equity, the weighted average approach provides a more favorable estimate of school finance equity than the regression approach. For states in the bottom-right quadrant, the regression-based approach provides a more favorable estimate of school finance equity than the weighted average approach. For states along the dotted line, the regression and weighted average approaches provide similar estimates of school finance equity.

Differences in the two equity measures, then, may be related to characteristics that change within a state over time. Below we describe some state characteristics associated with differences in the two equity measures.

Exploring Differences in Regression and Weighted Average Equity Measures

To gain a deeper understanding of the alignment between the regression-based and weighted average approaches to assessing school finance equity, we first show how the two measures align for each state in 2015–2016. For states located along the dashed lines in Figure 4, the two measures...
are relatively aligned. For those above the dashed line, the regression approach places states at a higher ranking in terms of school finance equity than the weighted average approach. As is clear, while the weighted average approach places California in a higher ranking than the regression approach, the two measures are fairly well aligned for California compared with some other states such as Florida, New York, Maryland, and Pennsylvania. The two measures have somewhat greater alignment overall for state and local revenues than for expenditures per student (more of the states in Panel B are near the dashed line than those in Panel A).^{16}

Summary Statistics. Next, we summarize the state characteristics associated with differences between the regression-based and weighted average approaches. We construct a state-by-year data set for 49 states from 2004–2005 to 2015–2016, excluding Hawaii and Washington, D.C. (since both represent one school district). To equalize the overall variation in equity estimates between the two measures, we standardize each measure to a mean of 0 and standard deviation of 1 across states and school years. We take two approaches to comparing the regression and weighted average approaches. The absolute value of the difference shows the overall convergence of the two measures. We also examine the difference between the regression and weighted average approaches, where positive values suggest that the regression approach estimates a greater degree of equity than the weighted average approach. Panel A of Table 3 shows summary statistics of state characteristics, based on quintiles of the absolute value of the difference between the regression and weighted average approaches, measured using expenditures per student in 2015–2016. States in the first quintile—those for which the two measures most closely align—have a greater number of school districts and higher levels of income-based segregation. Conversely, states in which the two measures are poorly aligned have larger (but fewer) school districts, less segregation, a lower range of overall poverty across districts, and are generally more equitable.

Panel B provides insight into why one measure may be greater or less than the other. States in the first quintile in Panel B—those for which the weighted average approach estimates greater equity than the regression approach—are more segregated, but there is no clear pattern for the other variables. In contrast, states in which the weighted average approach estimates less equity than the regression approach (the fifth quintile) are less segregated, but they also have fewer (and larger) districts and a narrower range of average poverty across districts. Parallel results for state and local revenues are qualitatively similar and are reported in Appendix Table A1.

Regression Results. Finally, Table 4 gives the regression coefficients predicting the difference in equity measures for the regression and weighted average approaches, using the state-by-year panel described earlier (n = 588).^{18} The coefficients in the odd-numbered columns are based on bivariate regressions. For the even-numbered columns, we add all state covariates simultaneously. All variables are standardized to allow for comparisons across coefficients. Column 1 shows that a larger number of districts in a state and greater segregation are associated with closer alignment between the two measures. However, only student segregation remains significant when all the variables are included in one model (column 2). The larger magnitude and statistical significance of number of districts in the bivariate regression likely result from the greater segregation in states that tend to have larger numbers of districts. Column 4 shows that the regression approach estimates greater equity than the weighted average approach in states that have higher expenditures per student and less segregation. As with equity measures based on spending, those based on state and local revenues are more closely aligned in states with more across-district segregation (column 6). The measures are also more closely aligned in states with fewer districts, lower average spending, and a narrower range of poverty across districts. However, as shown in column 8, although these variables explain the absolute differences between the two equity measures, none are statistically significantly related to the overall difference. In summary, the two measures are more closely aligned in states with more income-based segregation across districts, but the regression approach generally estimates less equity than the weighted average approach for more segregated states.

Additional Variables and Extensions

We estimate two sets of additional models to gauge the sensitivity of our results to alternate specifications. First, we exchange the census-based poverty rate with the percentage of students eligible for FRL. As noted in recent research, the two measures are moderately correlated (.79 in California across all years; see Chingos, 2016; Domina et al., 2018; Harwell & LeBeau, 2010). To estimate resource gaps, we predict spending and funding levels for districts with 0% and 80% FRL students, corresponding to approximately the same percentiles of census poverty rates (roughly the 1st and 90th percentiles, respectively). Second, we exchange the fall membership variable with ADA, which measures the average number of students attending school each day. California uses this measure to allocate funding, and several recent analyses of LCFF also use ADA rather than fall membership.^{19}

The results for these alternate specifications are given in Table 5. The first two columns show estimated spending and funding advantages for two models that both use fall membership but differ in the measure of student poverty (column 1 is repeated from Table 2 for comparison purposes). Given
that U.S. Census poverty rates are based on surveys of households and FRL, in most cases, is based on students voluntarily returning application forms, the Census poverty rates are likely a more accurate depiction of the true poverty rate. This measure is still imperfect in part because not all students living in a district’s attendance zone attend schools in that district.

We find that in all years, the funding advantage for high-poverty districts is smaller, or the funding disadvantage is greater, when FRL is used in place of the U.S. Census poverty rate. In other words, using FRL as an indicator of poverty makes the school finance system appear less equitable. This may result from ceiling effects in the percentage of FRL students. The distribution of the percentage of FRL students across districts is approximately normal, with a mean of about 50%. In contrast, Census poverty rates have a mean of about 20%, with a long tail that stretches up to 100%. Thus, among districts with greater than 90% of FRL students, Census poverty rates generally range from 30% up to 70% or more. Greater funding allocated to the very highest-poverty districts may not be observed in models that use the percentage of FRL students. To test this pattern, we create a variable that measures the difference between a district’s standardized poverty rate and standardized percent FRL. We regress this variable on state and local funding per student and district controls and find that a higher rate of poverty relative to the percentage of FRL students is positively associated with funding, implying that districts receive greater funding with higher Census poverty rates at any given level of the percentage of FRL students. Using the percentage of FRL students to assess income-based across-district school finance equity may therefore mask some of the progressivity associated with funding allocated to the very highest-poverty districts.

Federal guidelines allow states to use “community eligibility” policies that allow schools above a certain threshold of percentage of FRL students to provide FRL to all students, effectively raising the proportion of FRL students in some schools to 100%. To test for the potential presence of community eligibility, we create histograms of the percentage of FRL students across schools in a state, using school-level data from NCES. Appendix Figure A3 shows that in many states, including California, community eligibility policies do not appear to change the shape of the distribution of the percentage of FRL students across schools. In other states, such as Mississippi and New Mexico, there is a large spike in the number of schools reporting 100% FRL students, compared with the number reporting 99%.

The next two columns in Table 5 show the same results, based on ADA. Not surprisingly, using ADA as a measure of the number of students a district serves tends to overstate the degree of equity. Because higher-poverty districts tend to have lower attendance rates, using ADA as the denominator in measures of per-student spending and funding will overstate resource levels relative to districts with higher rates of attendance. This pattern of results holds for estimates based on the weighted average approach. Importantly, several states, including California, fund districts based on ADA (Knight & Olofson, 2018). Some scholars argue that ADA is actually a better indicator of costs than enrollment because schools do not incur costs for students who are not in attendance. Baker (2014b) explains some limitations in this line of argument. Even if most students never have perfect attendance, all students attend school for some portion of the school year, so schools must choose the number of desks and make staffing decisions based on district enrollment rather than district attendance. In short, while previous analyses of state school finance use ADA, evidence suggests that fall enrollment is likely a stronger indicator of district costs. Using ADA artificially inflates estimates of school finance equity.

Discussion

Relative funding and spending for low-income students increased during the 3 years following implementation of the LCFF school finance reform.20 In general, the weighted average approach estimates a higher degree of income-based equity for California than the regression-based approach, and a larger increase in equity following the implementation of LCFF. However, the two measures are more closely aligned in California than they are in most other states, in part because California has a large number of relatively segregated districts. Below, we describe the limitations of the study and recommendations for future research and policy.

Caveats and Limitations

Our analyses provide insights into the extent to which school finance equity in California improved following the implementation of LCFF and, more broadly, how alternate data sources and methodological approaches can produce different estimates of resource equity. A few caveats are warranted. First, district-level studies of resource allocation omit analysis of within-district resource allocation. States with larger and more segregated districts, such as California, Florida, and Maryland, are more likely to have within-district resource disparities (Knight, 2019; Orfield & Frankenberg, 2014; Sosina & Weathers, 2019). Hill and Ugo (2015) identify a number of schools in California where the percentage of low-income or English learner students exceeds 90% yet the district rate is below 25%. To determine whether LCFF, or similar reforms, targets resources to high-need students, further research should analyze within-district resource allocation (e.g., Lafortune, 2019).

Second, our study does not explore the types of educational practices in which districts are investing. Although
such analyses are beyond the scope of this article, the methods used in this study could be adapted to specific types of spending categories, such as instruction, student support, and administration.

Third, we emphasize that our intent is not to estimate the causal impact of LCFF on school finance trends. Instead, our purpose is to describe how funding rates changed for different types of districts (low and high poverty) as the policy was implemented. Johnson and Turner (2018), in contrast, use a synthetic instrumental variables approach to answer two questions: (1) Did LCFF increase spending for the districts that were intended to receive additional resources? (2) What was the causal impact on student outcomes of each additional dollar of spending? We argue that both types of analyses offer important lessons for policy. Policymakers may benefit from knowing, in a general sense, how funding equity changed after the policy was implemented, overall and relative to other states. But policymakers also want to know if, net of other factors, LCFF accomplished one of its central goals of increasing state aid for historically underserved students and, if so, whether that increase in funding led to improved student outcomes.

Implications for Research and Policy

We highlight three key implications of our work. First, the two most prominent methods for measuring school finance equity lead to different conclusions in some states. Which measure is correct? The answer depends on both theoretical and practical considerations. For states with more socioeconomically (or racially) integrated school districts (e.g., Arkansas, North Carolina, and Tennessee), the regression approach estimates higher degrees of equity as long as there is at least a moderate positive relationship between district poverty (or the percentage of students of color) and funding. That is, the regression approach is more sensitive to funding differences in more integrated states and less sensitive to funding differences in more segregated states. Under the regression approach, states with more segregated districts require strongly progressive funding patterns to have high levels of finance equity. For the weighted average approach, a more integrated state would need strongly progressive funding to rank highly in school finance equity. The weighted average approach is more sensitive to funding differences in more integrated states and thus disproportionately “rewards” equitable school finance systems. The left panel of Figure 5 shows that Pennsylvania has a flat relationship between funding and poverty rate, and as a result, the state ranks poorly in the regression-based approach. However, the largest district in the state, Philadelphia (the largest circle), has slightly above-average funding and a far greater poverty rate than the state average. Allentown, Reading, and Pittsburgh are also high-poverty districts with above-average funding rates. Although the regression is weighted by enrollment, the slightly greater funding in a small number of large districts is not enough to increase the slope of the regression line. However, those larger, higher-poverty districts cause the weighted average approach to identify greater equity, placing the state 13th nationally. In general, those states farthest from the dashed lines in Figure 4 tend to have the highest or lowest levels of segregation.

North Carolina provides the opposite story. Funding in North Carolina is more progressive based on the regression approach (ranked 11th in 2015–2016); however, because districts are more socioeconomically integrated, the typical low-income student attends a district with approximately the same level of poverty as the typical non-low-income student. Therefore, the weighted average approach identifies little funding equity and ranks the state 23rd nationally. Neither measure is incorrect; they just assume a slightly different perspective on equity: The weighted average approach emphasizes the experience of the typical low-income student, and the regression approach focuses on the highest- and lowest-poverty districts in the state. Under this framework, the level of student segregation is an important predictor of how well the two measures align. In a relatively equitable school finance system, greater integration tends to amplify the level of equity based on the regression approach but reduces estimates of finance equity in the weighted average approach.

This finding has clear implications for future research on school finance equity, but there are also implications for policy. State efforts to reduce disparities in school resources across districts sometimes focus on reducing across-district student segregation rather than increasing funding in
high-poverty districts or districts serving higher percentages of students of color (Finnigan & Holme, 2015). If the state initially has an inequitable system, then desegregation efforts may cause the state’s finance system to appear even less equitable on national reports that use the regression-based approach since the slope of the regression line would become steeper and more negative as the highest- and lowest-poverty districts move toward the mean poverty rate. States engaged in school finance equity reforms may need to be mindful of how these efforts will be assessed and reported in the media. Knowing how particular equity reforms such as desegregation or targeted funding increases will be assessed in national reports will help states build and sustain support for their equity-based policies.

Second, as noted in prior literature, FRL is an imperfect measure of income. Our study adds to this conversation by clarifying some additional implications of this fact. We highlight the variation in Census poverty rates among high-FRL districts. Since high-FRL districts that also have extremely high poverty rates (e.g., above 50%) receive more funding on average nationally than otherwise similar high-FRL districts with more moderate poverty rates (e.g., between 25% and 50%), the use of FRL may understate income-based measures of school finance equity. Conversely, some state school finance formulas might treat high-FRL districts equally, even though some high-FRL districts may have greater poverty rates than other high-FRL districts. States may consider using U.S. Census poverty rates or other indicators of household income in their school finance formulas because Census poverty rates are less likely to suffer from ceiling effects. These issues may be complicated by FRL community eligibility provisions, although we show that use of community eligibility is not prominent in all states. Notably, district-level Census poverty rates can be easily linked to other databases through publicly available data, including those specifically designed for school finance analyses (e.g., Education Law Center, 2018; Urban Institute, 2018).

Last, state education agencies should consider publishing links or data crosswalks between state and federal data systems. Such a process would increase transparency around these two data sources and allow state and federal education officials to feel more comfortable reading and working with data outside their own agencies. To demonstrate how this might work, we include in our Appendix, STATA code that uses raw data downloaded from CDE and creates funding variables that align with U.S. Census data. Greater proliferation and transparency of these types of crosswalks will encourage researchers to review one another’s data-cleaning procedures and help ensure that data sources are correctly aligned.

Conclusion

For many years, scholars have debated the merits of school finance reforms that increased funding for high-poverty districts (Greenwald, Hedges, & Laine, 1996; Hanushek, 1986, 1997). Some researchers have argued that there is no clear and consistent relationship between substantial long-term increases in funding and student outcomes (e.g., Hanushek, 1997). However, based on studies using more robust data and methods than were previously available, scholars have now largely reached a consensus that school finance reforms are a powerful mechanism for increasing educational opportunity. As a result, the significance of research on school finance in general and school finance equity in particular has increased precipitously. Accurate measurement of school finance equity, with greater understanding of how particular theoretical perspectives, analytic approaches, and data sources influence results, will better inform policy efforts to improve state school finance systems.
FIGURE A1. State estimates of school finance equity, 2015–2016. (A) Density plot, expenditures per student. (B) Density plot, state and local revenues per student. (C) Scatterplot, expenditures per student. (D) Scatterplot, state and local revenues per student.

Note. States in black are those for which the regression-based approach estimates a higher degree of equity than the weighted average approach. For states above the lines of best fit in Panels C and D, the difference between the regression and weighted average approaches is above average. For visual clarity, we omit Alaska, Nevada, and Wyoming because they have extreme values (e.g., $14,140, $10,859, and $6,981, respectively, for expenditures per student, based on the regression approach); however, these states are included in all the tables and underlying analyses.
FIGURE A2. State estimates of school finance equity, standardized across states, 2015–2016. (A) Distribution, expenditures per student. (B) Distribution, state and local revenues per student. (C) Scatterplot, expenditures per student. (D) Scatterplot, state and local revenues per student.

Note. In Panels C and D, states in red are those for which the regression-based approach estimates a higher degree of equity than the weighted average approach. For states above the lines of best fit, the difference between the regression and weighted average approaches is above average. For visual clarity, we omit Alaska, Nevada, and Wyoming because they have extreme values (e.g., 4.61, −4.65, and 1.95 standard deviations, respectively, for expenditures per student, based on the regression approach); however, these states are included in all the tables and underlying analyses.
FIGURE A3. Histograms of the percentage of students classified as eligible for free or reduced-price lunch (FRL) at the school level, 2015–2016. (A) States with schools that rarely use community eligibility. (B) States with schools that frequently use community eligibility. Note. FRL = free/reduced-price lunch.
TABLE A1
Summary Statistics for States, Based on Differences in the Regression-Based and Weighted Average Standardized Estimates of State School Finance Equity in State and Local Revenues, 2015–2016

Quintile	Measures of Equity	Regression Approach	Weighted Average Approach	Avg. Difference	Avg. Number of Districts	Avg. District Size	Avg. Expenditure per Student ($)	State Poverty Rate (%)	Poverty Range (Across Districts)	Dissimilarity Index
—	0.000	0.000	0.447	255	5,921	11,887	18	0.416	0.231	
	[−$468]	[$146]								

Panel A: Quintiles for absolute value of difference between regression approach and weighted average approach

Quintile	Regression Approach	Weighted Average Approach	Avg. Difference	Avg. Number of Districts	Avg. District Size	Avg. Expenditure per Student ($)	State Poverty Rate (%)	Poverty Range (Across Districts)	Dissimilarity Index
First	−0.202	−0.208	0.005	294	2,496	11,503	17	0.415	0.235
Second	−0.044	−0.057	0.012	306	4,124	9,927	20	0.449	0.236
Third	−0.008	0.031	−0.040	285	7,477	11,337	18	0.429	0.245
Fourth	−0.266	−0.419	0.153	141	5,027	11,481	19	0.433	0.221
Fifth	0.357	0.539	−0.182	307	7,840	14,910	19	0.398	0.247

Panel B: Quintiles for difference between regression approach and weighted average approach

Quintile	Regression Approach	Weighted Average Approach	Avg. Difference	Avg. Number of Districts	Avg. District Size	Avg. Expenditure per Student ($)	State Poverty Rate (%)	Poverty Range (Across Districts)	Dissimilarity Index
First	−0.114	0.900	−1.014	239	5,722	13,447	17	0.381	0.241
Second	−0.113	0.054	−0.168	272	7,392	11,648	16	0.391	0.248
Third	−0.143	−0.159	0.016	322	2,416	11,207	18	0.431	0.246
Fourth	−0.031	−0.259	0.229	238	4,556	9,279	23	0.546	0.215
Fifth	0.389	−0.446	0.836	204	9,496	14,010	18	0.329	0.205

Note: Row 1 shows the average for each variable across all states (except Hawaii, n = 49), where measures of equity are standardized and nonstandardized values are shown in brackets. Panel A shows quintiles based on the extent to which the two measures of equity diverge (the two measures are closest for states in the first quintile). Panel B shows quintiles based on the extent to which the regression approach estimates a greater degree of equity than the weighted average approach (the weighted average approach overstates equity most, relative to the regression approach, for states in the first quintile). We used standardized values of each equity measure. For example, Panel A shows that among states where the two equity measures are most closely aligned (the first quintile), the regression approach estimates an equity measure 0.202 standard deviation below the mean and the weighted average approach estimates an equity measure 0.208 standard deviation below the mean, a difference of 0.006. Avg. = average.

TABLE A2
Correlation Matrix for Two State School Finance Equity Measures, the Difference Between Those Two Measures, and State-Level Characteristics, 2004–2005 to 2015–2016

	Regression Approach	Weighted Average Approach	Difference Between Standardized Values of Regression and Weighted Average Approaches	Absolute Value of Difference Between Standardized Values of Regression and Weighted Average Approaches
Panel A: Expenditures per student				
Equity measures				
Regression approach	1			
Weighted average approach	0.757	1		
Difference between standardized values of regression and weighted average approaches	0.349	−0.349	1	
Absolute value of difference between standardized values of regression and weighted average approaches	0.182	0.309	−0.181	1
State characteristics				
Number of districts	−0.117	−0.009	−0.155	−0.213
Average district size	−0.183	−0.232	0.071	0.190
Average expenditure per student	0.203	0.150	0.077	0.097
Average poverty rate	−0.203	−0.239	0.053	−0.113
Poverty range (across districts)	0.040	0.161	−0.173	−0.210
Dissimilarity index	−0.019	0.245	−0.378	−0.247

(continued)
TABLE A2 (CONTINUED)

	Regression Approach	Weighted Average Approach	Difference Between Standardized Values of Regression and Weighted Average Approaches	Absolute Value of Difference Between Standardized Values of Regression and Weighted Average Approaches
Panel B: State and local revenues per student				
Equity measures				
Regression approach	1			
Weighted average approach	0.862	1		
Difference between standardized	0.263	−0.263	1	
values of regression and				
weighted average approaches				
Absolute value of difference	−0.027	0.108	−0.256	1
between standardized values of				
regression and weighted average				
approaches				
State characteristics				
Number of districts	−0.039	−0.080	0.078	−0.042
Average district size	−0.039	−0.034	−0.009	0.186
Average expenditure per student	0.179	0.213	−0.064	0.323
Average poverty rate	−0.012	−0.130	0.225	−0.032
Poverty range (across districts)	−0.007	−0.084	0.147	−0.266
Dissimilarity index	0.102	0.099	0.004	−0.135

Appendix B

STATA Code

In this section, we provide the STATA code for linking California Department of Education data to U.S. Census data. We use the code below for the 2015–2016 data and use similar code for the other years.

```stata
**2016**
cd "[masked]"
import delimited "2016_CDE_raw_finance.txt", clear

* Note that this text file is a direct Access download from CDE, except that we merge the access variable label dataset with the larger dataset.

rename fiscalyear year
destring object, replace force
replace object= 979 if object==.

**** recast variables (to save space)
recast str60 dname, force
recast str2 period, force
recast str2 colcode, force
recast str60 fund_title, force
recast str60 goal_title, force
recast str80 function_title, force
recast str90 resource_title, force
recast str80 object_title, force

order year ccode dcode dname dtype period colcode account fund fund_title resource resource_title projectyear goal goal_title function function_title object object_title value k12ada schoolcode
```

21
label variable year "Fiscal Year"
label variable ccode "County Code"
label variable dcode "District Code"
label variable dname "District Name"
label variable dtype "District Type"
label variable period "Report Period Identifier"
label variable colcode "Column Code Identifier"
label variable account "SACS Account Code"
label variable fund "SACS Fund Code"
label variable fund_title "Fund Description"
label variable resource "SACS Resource Code"
label variable resource_title "Resource Description"
label variable projectyear "Project Year (for federally funded projects)"
label variable goal "SACS Goal"
label variable goal_title "Goal Description"
label variable function "SACS Function"
label variable function_title "Function Description"
label variable object "SACS Object Code"
label variable object_title "Object Description"
label variable value "Amount"
label variable k12ada "Average Daily Attendance"
label variable schoolcode "School Code"

labmask fund, val(fund_title)
labmask resource, val(resource_title)
labmask goal, val(goal_title)
labmask function, val(function_title)
labmask object, val(object_title)
drop *_title
numlabel, add

* First, we drop fiduciary and agent funds, PERS reductions, transfers, asset
depreciations, and specific districts
drop if fund==66|fund==67|fund==71|fund==73|fund==76 /* drop fiduciary and agent
funds */
drop if object==3801|object==3802 /* drop PERS Reduction */
drop if object>5700 & object<5799 /* drop interfund transfers */
drop if object==6900 /* drop Asset Depreciation */
drop if object 7212 /* drop other transfers */
drop if object>7300 & object<7399 /* drop other interfund transfers */
drop if object==9200| object==9290| object==9310| object==9320|object==9330|
object==9340| object==9420| object==9425| object==9440| //
object==9445| object==9500| object==9590| object==9610 /* drop depreciation,
transfers, or monies due from or to other funds, accts payable, or accts receivable */
drop if object>9650 /* drop deferred or reserved monies */
drop if object = “PCRA” /* drop program cost allocation -
but object isn’t a string? */
drop if value<0 /* drop negative amounts */

* Other SAS code from CDE that involves changing the ID’s of school districts
/*
 if id = '40212' Then id = '1340212'; *NOTE: Changes Imperial Valley ROP JPA ID;
 if id = '40303' Then id = '74179'; *NOTE: Changes Tulare Co Organization for Vocational Educ ID;
 if id = '62000' Then id = '1062000'; *NOTE: Changes American Union Elementary ID;
 if id = '62174' Then id = '1062174'; *NOTE: Changes West Fresno Elementary ID;
 if id = '68551' Then id = '3968551'; *NOTE: Changes Lammersville Elementary ID;
 if id = '71159' Then id = '5071159'; *NOTE: Changes La Grange Elementary ID;
 if id = '69237' Then id = '4269237'; *NOTE: Changes Los Alamos Elementary ID;
 if id = '76448' Then id = '65789'; *NOTE: (see general processing notes);
 if id = '75697' Then id = '1975697'; *NOTE: Changes The School of Arts and Enterprise ID;
 if id = '75663' Then id = '1975663'; *NOTE: Changes SBE - New West Charter Middle School ID;
 if id = '76406' Then id = '4276406'; *NOTE: Changes Santa Barbara School Districts ID;
 if id = '76554' Then id = '1076554'; *NOTE: Changes Center for Advanced Research and Technology (CART) JPA ID;
 if id = '76562' Then id = '62570'; *NOTE: Changes Hamilton Unified School District ID;
 if id = '76570' Then id = '3176570'; *NOTE: Changes SBE - Western Sierra Collegiate Academy ID;
 if id = '76604' Then id = '4976604'; *NOTE: Changes SBE - River Montessori Elementary Charter ID;
 if id = '76612' Then id = '4376620'; *NOTE: Changes North County Regional Occupational Program JPA ID;
 if id = '76737' Then id = '1976737'; *NOTE: Changes SBE - Today’s Fresh Start Charter ID;
 if id in ('70862' '70854') then id = '40246'; *Note: done to make state id match nees id;
 if id in ('62588' '63909' '66860' '67306' '67397' '67405' '69567' '71787' '67363' '71797' '72330' '75689' '76745') then delete;
 drop if goal = '0001' then delete;
 */

************************************ Revenues ************************************

** Includes general, special revenue, debt service, capital projects, and food services funds**
** Excludes transfers between funds, agency transactions, and debt **

bysort dcode: egen t06= total(value) if obj==8041|obj==8042|obj==8043|obj==8044|obj==8045|obj==8048|obj==8611|obj==8612|obj==8613|obj==8614|obj==8615|obj==8616|obj==8617|obj==8618|obj==8629|obj==8629|obj==8697
bysort dcode: egen t99= total(value) if obj==8621|obj==8622
bysort dcode: egen t02= total(value) if obj==8070
bysort dcode: egen d23= total(value) if obj==8046|obj==8047|obj==8082|obj==8625|obj==8799|obj==8961
bysort dcode: egen d11= total(value) if obj==8285|obj==8677|obj==8710|obj==8781|obj==8782|obj==8783|obj==8791|obj==8792|obj==8793|obj==8965
bysort dcode: egen a07= total(value) if obj==8671
bysort dcode: egen a08= total(value) if obj==8675
bysort dcode: egen a09= total(value) if obj==8634
bysort dcode: egen a20= total(value) if obj==8631|obj==8632|obj==8639|obj==8689
bysort dcode: egen a15= total(value) if obj==8672
bysort dcode: egen a40= total(value) if obj==8081|obj==8650
bysort dcode: egen u11= total(value) if obj==8953
bysort dcode: egen u22= total(value) if obj==8660
bysort dcode: egen u97= total(value) if obj==8673|obj==8681|obj==8699|obj==8780
bysort dcode: egen c01= total(value) if obj==8011|obj==8015|obj==8019|obj==8021|
obj==8022|obj==8029|obj==8480|obj==8012

* c05, c06, c12, and c13 require object and resource codes:
bysort dcode: egen c05= total(value) if (obj==8311 & (res==6360|res==6500|
res==6510)) | //
 (obj==8319 & (res==6360|res==6500|res==6510)) | //
 (obj==8590 & (res==3405|res==6500))
bysort dcode: egen c06= total(value) if (obj==8311 & (res==7090|res==7091|res==7260|res==7265) | //
 (obj==8319 & (res==7090|res==7091|res==7260|res==7265|res==1300)) | //
 (obj==8530 | //
 (obj==8560 & res==6300)
 (obj==8590 & (res>=7150 & res<=7210) | (res==6065|res==6070|res==6575|res==7090|
res==7091|res==7130|res==7255|res==7260|res==7265|res==737|res==735|res==7366))
bysort dcode: egen c08= total(value) if (obj==8311 & res==7140) | obj==8319 &
res==7140)

bysort dcode: egen c12= total(value) if / Commented out: (obj==8311 &
(res==7230|res==7240)) and (obj==8319& (res==7230|res==7240)) and (obj==8590 &
(res==7230|res==7235)) */
bysort dcode: egen c13= total(value) if (obj==8311 & (res==0 |res==2430|res==2900|
res==6015|res==6350|res==6390|res==7250|res==9010)) | //
 (obj==8319 & (res==0 |res==2430)| res==6015|res==6350|res==6390|
res==240|res==2430)) | //
 (obj==8425|obj==8434|obj==8435|obj==8540|obj==8550|obj==8571|obj==8572|obj==8587|
obj==8575|obj==8576) | //
 (obj==8560 & (res==0 |res==1100)) | //
 (obj==8590 & (res<6260&res>6296 & res<7270&res>7335 & //) /* c13 gets all
other obj=8590 not otherwise assigned */
res!6580&res!=6585&res!=6580&res!=6585&res!=7045&res!=7050&res!=7101&res!=7120&
res!=7156&res!=7294&res!=7325&res!=7340&res!=7345&res!=7352&res!=7353&res!=7354&
res!=3405&res!=6500 & //
res<7150&res<7210 & 6065&res!6070&res!6575&res!=7090&res!=7091&res!=7130&res!=7255&res!=7260&res!=7265&res!=737&res!=735&res!=7366&res!=6375&res!=6380&res!=7010&res!=7227&res!=7360&res!=6145&res!=6200&res!=7710

* c10 is an object code-only variable:
bysort dcode: egen c10= total(value) if obj==8520
* c11, c04, c09 require object and resource codes:

*b11
bysort dcode: egen b11= total(value) if obj==8287 & ((res>=3400&res<=3499) | (res==4050 | res=5035)) | (obj==8290 & ((res>4000&res<=4036) | res==4050 | res=5035)) | (obj==8290 & ((res>4000&res<=4036)|res==4050))

*b10
bysort dcode: egen b10= total(value) if obj==8287 & (res==4201|res==4203)) | (obj==8290 & ((res>4200&res<=4203) | (res<4200&res>=4203)))

*b10
bysort dcode: egen b10= total(value) if obj==8110

*b11
bysort dcode: egen b11= total(value) if obj==8287 & (res==4201|res==4203)) | (obj==8290 & ((res>4200&res<=4203) | (res<4200&res>=4203)))

*b11
bysort dcode: egen b11= total(value) if obj==8287 & (res==4201|res==4203)) | (obj==8290 & ((res>4200&res<=4203) | (res<4200&res>=4203)))

*b11
bysort dcode: egen b11= total(value) if obj==8287 & (res==4201|res==4203)) | (obj==8290 & ((res>4200&res<=4203) | (res<4200&res>=4203)))
* b12
bysort dcode: egen b12= total(value) if (obj==8290 & (res<=4510 & res>=4530))
* b13
bysort dcode: egen b11= total(value) if (obj==8290 & ((res==5210 | res==5245 | res==5570 | res==5575 | res==5630 | res==5635) | (res<=4710 & res>=4730)))
* c19
bysort dcode: egen c19= total(value) if (obj==8290 & res>=3500 & res<=3599)
* c25
bysort dcode: egen c19= total(value) if (obj==8290 & res>=5300 & res<=5499) | (obj==8220 | 8221)

* Exclude obj=7431, 7432, 7433, 7434, 7435, and 7600<=obj<=7629, which are all dept
(previously 763x)
* Exclude obj=7699, 8089, 8091, 8092, 8096, 8097, 8099, 8662, 8674, 8691, 8931, 8951, 8971, 8972, 8973, 8979, 9111, 9200, 9290, 9310, 9330, 9500, 9650, 9710, 9780, 9791, 9793, 9795, which are all transfers, debt, and balance sheet accounts
* Exclude 8910<=obj<=8929 and 8980<=obj<=8999, which are additional transfers and debt
* Exclude obj=8979 (see 2006 notes)

* Note included: obj=7431 | obj=7432 | obj=7433 | obj=7434 | obj=7435

* Exclude 7600<=obj<=7629, which is debt

***** Create final variables

```
gen fed_revenue_cde = c14 + c15 + c16 + c17 + c19 + b11 + c20 + c25 + c36 + b10 + b12 + b13
gen state_revenue_cde = c01 + c04 + c05 + c06 + c07 + c08 + c09 + c10 + c11 + c12 + c13 + c35 + c38 + c39
gen local_revenue_cde = t02 + t06 + t09 + t15 + t40 + t99 + d11 + d23 + a07 + a08 + a09 + a11 + a12 + a13 + a15 + a20 + a40 + u11 + u22 + u30 + u50 + u97 + c24
```

```
gen stilo_rev_cde = state_revenue_cde + local_revenue_cde
```

******Collapses data by districts******
collapse (firstnm) year ccode dname dtype kl2ada instr psup other local_revenue_cde state_revenue_cde fed_revenue_cde stilo_rev_cde, by(dcode)
save “CDE_finance_revenues_2016.dta”, replace

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This material is based upon work supported by the National Science Foundation under Grant No. 1661097 and Grant No. 1945937. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

ORCID iD
David S. Knight
https://orcid.org/0000-0002-4067-155X

Notes
1. Although not part of Berne and Stiefel’s (1984) original framework, another concern focuses on the level of analysis. Many school finance studies examine resource levels across districts, but other work analyzes more granular levels of distribution, such as gaps in resources within districts, schools, or classrooms (Berne & Stiefel, 1994; Darity et al., 2001; Oakes, 2005).

2. New Jersey, for example, has a wide variation in funding because the state allocates more funding to high-poverty districts. In contrast, Texas has less variation in funding across districts, and the state provides slightly less funding to higher-poverty districts on average. A simple measure of statistical dispersion such as the standard deviation of funding or the gap in funding between districts at the 10th and 90th percentiles of funding rate would show that Texas has a more equitable system than New Jersey, even though New Jersey’s system could be considered more “progressive” because it allocates more funding to high-poverty districts.

3. Education Week’s initial reports relied primarily on the McCloone Index to measure equity (Costrell, 2005), but later reports added additional equity measures. When comparing funding for the
highest- and lowest-poverty districts, these reports often calculated funding equity by assigning greater weight to low-income districts, thereby explicitly acknowledging that an equitable system allocates more funding to high-need districts. For example, Education Trust assigns a weight of 1.4 to students in poverty (i.e., each low-income student counts as 1.4 students), based on the assumption that the costs of meeting state education standards are 40% greater for a low-income student (Usichomisky & Williams, 2015).

4. See, for example, Knight (2019), Knight and Demathews (2017), Knight and Mendoza (2019), Knight and Strunk (2016), or Knight and Toenjes (2019).

5. The 18 states are Alabama, California, Idaho, Indiana, Kentucky, Louisiana, Massachusetts, Mississippi, Montana, Nebraska, New Hampshire, New Jersey, New York, North Carolina, Oregon, South Carolina, Tennessee, and Utah (U.S. Census Bureau, personal communication with Steven Wheeler, 2019).

6. For additional background on California school finance and changes under LCFF, we refer interested readers to Hill and Ugo (2015). Low-income students are those eligible for FRL. Eligibility is determined through several mechanisms. Applications are mailed to students’ households, and those who return the application with documentation of income below 185% of the federal poverty line (approximately $44,000 for a family of four) are eligible. Foster youth and students participating in social programs, such as the California Work Opportunity and Responsibility to Kids programs, are automatically eligible for FRL. LCFF uses an “unduplicated count” to determine the number of higher-need students in each district, so that students who fall into multiple categories are counted the same as those who fall into only one category.

7. A number of other studies have analyzed the LCFF implementation, its changes to state accountability practices, and its effects on student outcomes (Affeldt, 2015; Fuller & Tobben, 2014; Humphrey et al., 2014; Johnson & Tanner, 2018; Koppich, Humphrey, & Marsh, 2015).

8. If higher-poverty districts have lower attendance rates, then the use of ADA will overstate funding for high-poverty districts and therefore overestimate the degree of funding equity between high- and low-poverty districts.

9. Because the modeling techniques changed in some years, we use longitudinal results presented in the most recent report and on the report’s website, which cover school years 2008–2009 to 2014–2015.

10. Shores and Ejdeymr (2017) use national school-level data, collected as part of the Office of Civil Rights Data Collection (CRDC) Project, to calculate aggregate district-level expenditures on salaries, a figure also reported through the NCES F-33 school district fiscal survey (a variable coded as “Z32”). The authors compare these two estimates to determine how well the CRDC data align with the F-33 survey, because the F-33 survey is well established and has been conducted annually since 1994–1995. The authors also examine the validity of the national school-level CRDC data by comparing them with school-level expenditure data from Texas, a state with an established history of collecting such data.

11. Payments to charter schools as district expenditures are accounted for in the Census data in a variable coded “v92” but are not included in the current expenditures variable. This variable appears in CDE data under object codes 7280 and 8096 when the function code is 9000, 9100, or 9200, or under the same object codes when the function code is between 1000 and 1999, exclusive of the goal codes 4110, 4610, 4620, 4630, 8100, and 8500.

12. Imputing the CWI forward may introduce bias if higher-poverty areas experience relatively larger increases in the cost of wages. L. T. Taylor (2004, 2015) finds relatively large changes in the CWI over a long period of time but only minor changes from one year to the next. Imputing the CWI forward 3 years is therefore unlikely to introduce substantial bias in our estimates. That said, we test for potential bias by replacing the CWI covariate with labor market-by-year fixed effects. These models compare funding for districts in the same labor market in the same year, thereby removing the influence of geographic differences in the cost of wages. Models with labor market–year fixed effects produce qualitatively similar results, which are available from the authors on request.

13. Our final analytic sample includes all districts with complete data, regardless of size or revenue and expenditure levels. We note that some prior studies remove districts that ever enroll fewer than 250 students in any given year (e.g., Loeb, Grissom, & Strunk, 2007; Bruno, 2018). These districts are sometimes excluded because small districts have substantially different cost structures (Duncombe & Yinger, 2007) and because such districts likely have less central office capacity and therefore may struggle to accurately report finance data to the CDE (Bruno, 2018). For similar reasons, prior studies often exclude districts that report extreme values for spending or state and local funding in a particular year. We tested the sensitivity of our results when these exclusions are included. In alternate specification checks, we excluded districts that ever enroll fewer than 250 students and district-year observations where reported spending or funding rates are less than $4,000 per student or greater than $70,000, corresponding to roughly 0.5 and 1.5 times the 1st and 99th percentiles, respectively. Our results are qualitatively similar when based on this restricted sample and are available from the authors on request.

14. Current expenditures exclude facilities spending as these expenses are irregular and include large increases in particular years. In contrast, state and local funding variables include facilities funding because capital funding is more consistent year to year than capital spending. Most school finance studies identify less equity in funding than in spending because most states do a poor job of equalizing facilities funding (e.g., Rivera & Lopez, 2019). That California’s relative equity ranking is generally higher for state and local revenues than for expenditures (Figure 3) suggests that the state’s system for funding facilities may be more equitable than in other states (Brummer & Vincent, 2018).

15. For example, the regression-based approach suggests that California moves from 24th to 17th place from 2012–2013 to 2015–2016 in terms of spending equity (Panel A), whereas the weighted average approach suggests a move in ranking from 28th to 15th over the same period (Panel B). For equity measures based on state and local funding, both approaches rank California at 21st place in 2012–2013, but the regression approach suggests that the state moved up to 13th place by 2015–2016, whereas the weighted average approach ranks the state at 10th place in 2015–2016.

16. This likely results from the greater variation in state and local revenues across districts within states than there is for expenditures. Greater variation in resources may allow differences in the two equity measures to wash out so that they ultimately place a state in the same rank of finance equity.
17. To see why this is necessary, Appendix Figure A1 plots the distribution of estimates of school finance equity for each measure. Without standardizing, the differences between the two measures result almost entirely from a state having a larger or smaller value for the regression approach. The correlation between the variable measuring the difference between the two measures and the regression-based estimates of school finance equity is 0.989. Standardizing each measure and then taking the difference provides a more accurate depiction of how estimates of a state’s school finance equity in a given year differ depending on the measurement approach. Distributions of the standardized values and scatterplots showing how the two measures align across states are shown in Appendix Figure A2.

18. We include covariates that are likely to be related to measures of funding disparities, including the number of districts and level of segregation, overall spending and poverty rates, and the range of poverty rates across districts in the state. We include a correlation matrix for these variables in Appendix Table A2. None of the variables included in the model are correlated above 0.35. The regression and weighted average approaches are correlated at 0.76 for expenditures per student and at 0.86 for state and local revenues.

19. The choice of the fall enrollment or ADA to measure the number of students in a district is important from both a research and a policy perspective. Studies show that the use of ADA for funding purposes disadvantages high-poverty districts because those districts tend to have lower attendance rates and therefore are compensated for a lower number of students (Baker & Corcoran, 2012).

20. The changes in relative funding between the highest- and lowest-poverty districts are statistically and educationally significant. Using the regression-based approach, we find an increase in state and local funding for high-poverty districts of 38%, compared with 28% for low-poverty districts, from 2012–2013 to 2015–2016. Prior research estimating the causal effects of major school finance reforms suggests that this level of funding increase will lead to long-term benefits that accrue over the lifetime (e.g., Candelaria & Shores, 2019; Lafortune, Rothstein, & Schanzenbach, 2018). Jackson, Johnson, and Persico (2015) find that for low-income students, a 20% increase in funding for all 12 years of schooling increases the likelihood of high school graduation by 23% and increases adult earnings by 25%. Examining LCFF specifically, Johnson and Turner (2018) find that increases in state funding targeted to high-poverty districts increased test scores and graduation rates among students in the affected districts.

21. For example, in other analyses not reported here, we find that low-poverty, wealthier districts experienced large increases in local funding in the years following the implementation of LCFF and these increases mitigated the overall relative benefits for high-poverty districts. Analysis of these other factors outside the policy reform helps stakeholders understand the overall changes in school finance that took place after LCFF and may provide insights into the extent to which the lessons learned through the implementation of LCFF can be adapted and applied to other contexts.

22. One final caveat relates to the distinction between equity and adequacy (Baker, 2016; Picus, Goertz, & Odden, 2015). Comparative measures of school funding or spending rates within a given state do not consider that state’s overall spending level. One critique of the LCFF noted in several recent reports is that the finance reform does not increase the overall level of funding to an adequate level (Affeldt, 2015; Levin et al., 2018). Most analyses of state school finance do not consider baseline funding (see Baker, Farrie, et al., 2018, for an exception) or whether that baseline level of funding meets specific criteria for adequacy.

23. These include Vermont, Nevada, Delaware, Maryland, Rhode Island, Utah, and Wyoming. We note that the literature does not offer a specific minimum sample size or degrees of freedom that produces sufficient precision for ordinary least squares multiple regression (Angrist & Pischke, 2008).

24. This result is partly mechanical. In the extreme case, for a state with one high-poverty, well-funded district and one low-poverty, moderately funded district, slightly reducing the gap in poverty rates between the two districts (through, e.g., a desegregation policy) without changing the funding rates would cause measures of equity based on the regression approach to increase but would cause equity measures based on the weighted average approach to decrease.

References

Affeldt, J. T. (2015). New accountability in California through local control funding reforms: The promise and the gaps. Education Policy Analysis Archives, 23(23). Retrieved from https://epaa.asu.edu/ojs/article/view/2023/1554

Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist’s companion. Princeton, NJ: Princeton University Press.

Atchison, D., Baker, B., Boyle, A., Levin, J., & Manship, K. (2017). Exploring the quality of school-level expenditure data: Practices and lessons learned in nine states. Washington, DC: Office of Planning, Evaluation and Policy Development, U.S. Department of Education.

Baker, B. D. (2014a). Evaluating the Recession’s impact on state school finance systems. Education Policy Analysis Archives, 22(91). Retrieved from https://epaa.asu.edu/ojs/article/view/1721/1357

Baker, B. D. (2014b). Not making the grade: How financial penalties for school absences hurt districts serving low-income, chronically ill kids. Oakland, CA: Change Lab Solutions.

Baker, B. D. (2016). School finance and the distribution of equal educational opportunity in the post recession US. Journal of Social Issues, 72, 629–655.

Baker, B. D., & Corcoran, S. P. (2012). The stealth inequities of school funding: How state and local school finance systems perpetuate inequitable student spending. Washington, DC: Center for American Progress.

Baker, B. D., Farrie, D., & Sciarra, D. G. (2018). Is school funding fair? A national report card (7th ed.). Newark, NJ: Education Law Center.

Baker, B. D., Farrie, D., Johnson, M., Luhm, T., & Sciarra, D. G. (2017). Is school funding fair? A national report card (6th ed.). Newark, NJ: Education Law Center.

Baker, B. D., Farrie, D., Luhm, T., & Sciarra, D. G. (2016). Is school funding fair? A national report card (5th ed.). Newark, NJ: Education Law Center.

Baker, B. D., & Green, P. C. (2015). Conceptions of equity and adequacy in school finance. In H. F. Ladd & M. E. Goertz (Eds.), Handbook of research in education finance and policy (2nd ed., pp. 231–242). New York, NY: Routledge.
Measuring State School Finance Equity

Baker, B. D., Green, P. C., III, & Ramsey, M. J. (2018). Financing education for children with special needs. In Handbook of leadership and administration for special education (pp. 130–147). New York, NY: Routledge.

Baker, B. D., Sciarra, D. G., & Farrie, D. (2015). Is school funding fair? A national report card (4th ed.). Newark, NJ: Education Law Center.

Berne, R., & Stiefel, L. (1979). Taxpayer equity in school finance reform: The school finance and the public finance perspectives. Journal of Education Finance, 5, 36–54.

Berne, R., & Stiefel, L. (1984). The measurement of equity in school finance. Baltimore, MD: Johns Hopkins Press.

Berne, R., & Stiefel, L. (1994). Measuring equity at the school level: The finance perspective. Educational Evaluation and Policy Analysis, 16, 405–421.

Brunner, E. J., & Vincent, J. M. (2018). Financing school facilities in California: A ten-year perspective (Getting Down to Facts II Technical Report). Retrieved from https://www.gettingdowntofacts.com/sites/default/files/2018-09/GDTFII_Report_Brunner-Vincent.pdf

Bruno, P. (2018). District dollars 2: California school district finances, 2004–05 through 2016–17 (Getting Down to Facts II Technical Report). Retrieved from http://www.gettingdowntofacts.com/sites/default/files/2018-09/GDTFII_Report_Bruno.pdf

California Department of Education. (2016). California school accounting manual. Sacramento, CA: Author.

Candelaria, C. A., & Shores, K. A. (2019). Court-ordered finance reforms in the adequacy era: Heterogeneous causal effects and sensitivity. Education Finance and Policy, 14, 31–60. doi:10.1162/edfp_a_00236

Card, D., & Payne, A. A. (2002). School finance reform, the distribution of school spending, and the distribution of student test scores. Journal of Public Economics, 83, 49–82.

Chingos, M. (2016). No more free lunch for education policymakers and researchers (Evidence Speaks Reports, Vol. 1, #20). Washington, DC: Brookings Institute.

Chingos, M. M., & Blagg, K. (2017). Do poor kids get their fair share of school funding? Washington, DC: Urban Institute.

Conaway, C. (2019). Maximizing research use in the world we actually live in: Relationships, organizations, and interpretation (CALDER Policy Brief No. 14-0319-1). Washington, DC: National Center for Analysis of Longitudinal Data in Education Research.

Corman, S. Q. (2016). Documentation for the NCES Common Core of Data National Public Education Financial Survey (NPEFS), School Year 2013–14 (Fiscal Year 2014) (NCES 2016-302). Washington, DC: U.S. Department of Education, National Center for Education Statistics, Institute of Education Sciences.

Costrell, R. M. (2005). Equity v. equity: Why Education Week and the Education Trust don’t agree. Education Next, 3(3), 77–81.

Darity, W., Jr., Castellino, D., Tyson, K., Cobb, C., & McMillen, B. (2001). Increasing opportunity to learn via access to rigorous courses and programs: One strategy for closing the achievement gap for at-risk and ethnic minority students. Durham: North Carolina Department of Public Instruction.

Domina, T., Pharris-Ciurej, N., Penner, A. M., Penner, E. K., Brummet, Q., Porter, S. R., & Sanabria, T. (2018). Is free and reduced-price lunch a valid measure of educational disadvantage? Educational Researcher, 47, 539–555. doi:10.3102/0013189X18797609

Dowd, A. C., & Bensimon, E. M. (2015). Engaging the “race question”: Accountability and equity in US higher education. New York, NY: Teachers College Press.

Duncombe, W., & Yinger, J. (2007). Does school district consolidation cut costs? Education Finance and Policy, 2, 341–375.

Education Law Center. (2018). School funding data. Retrieved from http://www.edlawcenter.org/research/school-funding-data.html

Evans, W. N., Schwab, R. M., & Wagner, K. L. (2019). The Great Recession and public education. Education Finance and Policy, 14, 298–326. doi:10.1162/edfp_a_00245

Finnigan, K. S., & Holme, J. J. (2015). Regional educational equity policies: Learning from inter-district integration programs (Research Brief No. 9). Washington, DC: National Coalition on School Diversity.

Fuller, B., & Tobben, L. (2014). Local Control Funding Formula in California: How to monitor progress and learn from a grand experiment. Berkeley, CA: Chief Justice Earl Warren Institute on Law and Social Policy and Partners for Each and Every Child. Retrieved from https://files.eric.ed.gov/fulltext/ED561883.pdf

Greenwald, R., Hedges, L. V., & Laine, R. D. (1996). The effect of school resources on student achievement. Review of Educational Research, 66, 361–396.

Grubb, W. N. (2009). The money myth: School resources, outcomes and equity. New York, NY: Russell Sage Foundation.

Hanushek, E. A. (1986). The economics of schooling: Production and efficiency in public schools. Journal of Economic Literature, 24, 1141–1177.

Hanushek, E. A. (1997). Assessing the effects of school resources on student performance: An update. Educational Evaluation and Policy Analysis, 19, 141–164.

Harwell, M., & LeBeau, B. (2010). Student eligibility for a free lunch as an SES measure in education research. Educational Researcher, 39, 120–131.

Hill, L., & Ugo, I. (2015). Implementing California’s school funding formula: Will high-need students benefit? Sacramento: Public Policy Institute of California.

Humphrey, D. C., Koppich, J. E., Esch, C., Marsh, J. A., Hall, M., Campbell, A., . . . Imazeki, J. (2014). Toward a grand vision: Early implementation of California’s Local Control Funding Formula. Menlo Park, CA: J. Koppich & Associates/SRI International.

Jackson, C. K., Johnson, R. C., & Persico, C. (2015). The effects of school spending on educational and economic outcomes: Evidence from school finance reforms. Quarterly Journal of Economics, 131, 157–218.

Johnson, R. C., & Tanner, S. (2018). Money and freedom: The impact of California’s school finance reform on academic achievement and the composition of district spending (Getting Down to Facts II Technical Report). Retrieved from http://www.gettingdowntofacts.com/sites/default/files/2018-09/GDTFII_Report_Johnson.pdf
Knight, D. S. (2017). Are high-poverty school districts disproportionately impacted by state funding cuts? School finance equity following the Great Recession. *Journal of Education Finance, 43*, 169–194.

Knight, D. S. (2019). Are school districts allocating resources equitably? The Every Student Succeeds Act, teacher experience gaps, and equitable resource allocation. *Educational Policy, 33*, 615–649. doi:10.1177/0895904817719523

Knight, D. S., & DeMatthews, D. E. (2017). Assessing the educational opportunity of emergent bilingual students: Why are some state school finance systems more equitable than others? (CERPS Working Paper 2017-1). University of Texas at El Paso, El Paso.

Knight, D. S., & Mendoza, J. E. (2019). Compounded inequities: Tracking school finance equity for districts serving low-income emergent bilingual students. In D. E. DeMatthews & E. Izquierdo (Eds.), *Dual language education: Teaching and leading in two languages* (pp. 35–55). New York, NY: Springer.

Knight, D. S., & Olofson, M. (2018, July). Funding school districts based on student attendance: How use of average daily attendance harms school finance equity in Texas (Policy Brief #5). El Paso, TX: Center for Education Research and Policy Studies.

Knight, D. S., & Strunk, K. O. (2016). Who bears the costs of district funding cuts? Reducing inequality in the distribution of teacher layoffs. *Educational Researcher, 45*, 395–406.

Knight, D. S., & Toenjes, L. (2019). Do charter schools receive equitable funding? The Every Student Succeeds Act, teacher experience gaps, and equitable resource allocation. *Educational Policy, 33*, 615–649. doi:10.1177/0895904817719523

Levin, H. (2005). *Keeping track: How schools structure inequality*. New Haven, CT: Yale University Press.

Loeb, S., Grissom, J. A., & Strunk, K. O. (2007). *District dollars: Painting a picture of revenues and expenditures in California’s school districts* (Getting Down to Facts Project). Palo Alto, CA: Stanford University.

Mudrazija, S., & Blagg, K. (2019). *School district funding in Texas: Computing the effects of changes to the Foundation School Program funding formula*. Washington, DC: Urban Institute.

Oakes, J. (2005). *A theory of justice*. Cambridge, MA: Harvard University Press

Orfield, G., & Frankenberg, E. (2014). Increasingly segregated and unequal schools as courts reverse policy. *Educational Administration Quarterly, 50*, 718–734.

Picus, L. O., Goertz, M., & Odden, A. R. (2015). Intergovernmental aid formulas and case studies. In H. F. Ladd & M. E. Goetz (Eds.), *Handbook of research in education finance and policy* (2nd ed., pp. 279–296). New York, NY: Routledge

Rivera, M. D., & Lopez, S. R. (2019). Some pennies are more equal than others: Inequitable school facilities investment in San Antonio, Texas. *Education Policy Analysis Archives, 27*(16), Retrieved from https://epaa.asu.edu/ojs/article/view/4191

Rodriguez, G. M. (2004). Vertical equity in school finance and the potential for increasing school responsiveness to student and staff needs. *Peabody Journal of Education, 79*(3), 7–30.

Taylor, L. L., & Fowler, W. J., Jr. (2006). A comparable wage and traditional public schools. *A theory of justice*. Cambridge, MA: Harvard University Press

Taylor, L. L. (2004). “Adjusting for geographic variations in teacher compensation: Updating the Texas Cost-of-Education Index. A report prepared for the Texas Legislature Joint Committee on Public School Finance. Retrieved from: http://bush.tamu.edu/research/faculty/TXSchoolFinance/

Taylor, L. L. (2015). When equal is not equitable: Adjusting for geographic differences in education costs. *The Takeaway, 6*(4), 1–4.

Taylor, L. L., & Fowler, W. J., Jr. (2006). A comparable wage approach to geographic cost adjustment (Research and Development Report NCES-2006-321). Washington, DC: National Center for Education Statistics.
Measuring State School Finance Equity

Taylor, M. (2013). Updated: An overview of the Local Control Funding Formula. Sacramento, CA: Legislative Analyst’s Office.

Urban Institute. (2018). Education data portal (Beta). Retrieved from https://educationdata.urban.org/documentation/

Ushomirsky, N., & Williams, D. (2015). Funding gaps 2015: Too many states still spend less on educating students who need the most. Washington, DC: Education Trust.

Verstegen, D. A. (1996). Concepts and measures of fiscal inequality: A new approach and effects for five states. Journal of Education Finance, 22, 145–160.

Authors

DAVID S. KNIGHT is an assistant professor of education finance and policy at the University of Washington College of Education. His research focuses on school finance, educator labor markets, and cost-effectiveness analysis.

JESÚS MENDOZA is an economic analyst for the city of El Paso. He completed his master’s degree in economics from the University of Texas at El Paso. His research examines public economics and economics of education.