MP and MT properties of fuzzy inference with aggregation function

Dechao Li∗ Mengying He
School of Information and Engineering, Zhejiang Ocean University, Zhoushan, 316000, China

Abstract

As the two basic fuzzy inference models, fuzzy modus ponens (FMP) and fuzzy modus tollens (FMT) have the important application in artificial intelligence. In order to solve FMP and FMT problems, Zadeh proposed a compositional rule of inference (CRI) method. This paper aims mainly to investigate the validity of A-compositional rule of inference (ACRI) method, as a generalized CRI method based on aggregation functions, from a logical view and an interpolative view, respectively. Specifically, the modus ponens (MP) and modus tollens (MT) properties of ACRI method are discussed in detail. It is shown that the aggregation functions to implement FMP and FMT problems provide more generality than the t-norms, uninorms and overlap functions as well-known the laws of T-conditionality, U-conditionality and O-conditionality, respectively. Moreover, two examples are also given to illustrate our theoretical results. Especially, Example 6.2 shows that the output B' in FMP (FMT) problem is close to $B (D^C)$ with our proposed inference method when the fuzzy input and the antecedent of fuzzy rule are near (the fuzzy input near with the negation of the seccedent in fuzzy rule).

Key words: Fuzzy implication; Aggregation function; ACRI method; MP and MT properties

1 Introduction

1.1 Motivation of this paper

Fuzzy reasoning has been successfully utilized in fuzzy control, artificial intelligence, data mining, image processing, decision-making, classification, prediction and so on \cite{1,5}. Since the exploration of fuzzy reasoning mechanism can help to improve the ability of human-like reasoning and thinking, it becomes an

∗Email: dch1831@163.com
important topic to model the fuzzy reasoning in the applied science fields such as artificial intelligence. As two basic inference models of fuzzy reasoning, FMP and FMT can draw some meaningful conclusions from some imprecise or vague premises using fuzzy inference method. In order to obtain the conclusions of FMP and FMT problems, the CRI method was proposed by Zadeh in 1973 [6]. After, the inference mechanism of CRI method was studied intensively by many researchers. And various t-norms and fuzzy implications in the CRI method were compared and investigated [7-13]. Recently, Li and Zeng also extended the CRI method to the A-compositional rule of inference (ACRI) based on aggregation function [14]. Unlike the CRI method, Pedrycz considered another inference method with the Bandler-Kohout subproduct (BKS) composition [15]. Moreover, other fuzzy reasoning inference methods such as the similarity-based approximate reasoning (SBR), triple implication principle (TIP) and quintuple implication principle (QIP) were also provided to solve the FMP and FMT problems [15-22]. It is worthy to mention that the CRI method is simpler than the other methods in computation. Therefore, it not only becomes one of the most fundamental inference methods but also has been widely utilized in practice.

It is well known that the CRI method bases on the cylindrical extension and projection of fuzzy relations [6]. And the t-norms and fuzzy implications have been employed to interpret the words “and” and “if...then...” in the CRI method, respectively. In order to meet the actual needs, some well-known fuzzy implications, which mainly include R-, (S, N)-, QL-, f-, g-, probabilistic-, probabilistic S-implications and T-power implications, were used to interpret the word “if...then...” by researchers. Generally speaking, fuzzy implications can be generated as follows: i. by the binary functions on [0, 1], such as R-, (S, N)-, QL- and probabilistic implications [23-26]; ii. by the unary functions on [0, 1], for instance, f- and g-implications [27]. Considering the aggregation functions play a vital role in fuzzy logic, there also exist some fuzzy implications generated by aggregation functions such as the residual implications derived from aggregation functions and (A, N)-implications [28,29].
However, the word “and” cannot be precisely modeled by a single t-norm under all circumstances owing to the vagueness of natural language and the imprecision of people’s thinking. Indeed, it does not accord with any t-norm now and then \[30\]. Moreover, the solution of CRI method \(B'(y)(\equiv 1) \) is unless or misleading in a singleton rule MISO (multi-input-single-output) fuzzy system when the t-norm is chosen to interpret the word “and” while the fuzzy implication \(I \) is employed to translate the fuzzy rule \[31,32\]. The solution is rooted in which \(T(a,0) \equiv 0 \) and \(I(0,b) \equiv 1 \) always hold for a t-norm \(T \) and a fuzzy implication \(I \), respectively. This triggers us to seek some suitable operators correspond to the word “and”. Indeed, the operator extended from t-norm can flexibly effectively handle the uncertainties of words which cannot be handled by t-norms \[33,34\]. Moreover, considering the associativity or commutativity of operators to model the word “and” is not necessarily required in decision making and classification problems, aggregation functions become increasingly concerned to substitute for the t-norms in the actual decision making and classification \[35,36\]. Indeed, aggregation functions, as the generalization of t-norms and t-conorms, have been applied extensively in fuzzy logic, decision making and classification problems \[14,24,29,35–42\]. Therefore, we need to model the word “and” in the CRI method by an aggregation function. And then investigate the ACRI method for FMP and FMT problems to meet the actual demand.

We know that various tautologies can be regarded as inference rules to make deductive reasoning in classical logic. Modus ponens (MP) and Modus tollens (MT) are two most commonly inference rules. As the generalization of MP and MT in classical logic, FMP and FMT are used for making uncertain reasoning. With the intuition of human being, it is well-known that the conclusion \(B' \) is close to the consequent of promise 1 when promise 2 is close to the antecedent of promise 1 in FMP problem. Especially, the conclusion is equal to the consequent of promise 1 if promise 2 is the antecedent of promise 1. Similarly, the farther are between promise 2 and the consequent of promise 1, the farther are between conclusion and the antecedent of promise 1. Especially, the conclusion is equal to
the negation of consequent of promise 1 if promise 2 is the negation of antecedent of promise 1. Therefore, we need some basic requirements for fuzzy reasoning to assess the effectiveness of inference methods for FMP and FMT problems.

1.2 Literatures review

Thereinto, Baldwin and Pilsworth represented four axioms from the logical view of fuzzy reasoning, including the classical MP property (see Section 2). On the other hand, Fukami et al. represented other four axioms from the interpolative view of fuzzy reasoning, including the classical MT property (see Section 2). Moreover, notice that the classical MP and MT properties have been studied for some fuzzy implications in the CRI method \[43–45\]. For example, Alsina and Trillas investigated the \((T, T_1)\)-condition of \((S, N)\)-implications \[46\]. Dimuro et al. studied the \(O\)-conditionality of fuzzy implications based on the overlap and grouping functions \[24\]. Li et al. considered the Modus ponens property of \(T\)-power implications \[48\]. Mas et al. discussed the \((U, N)\)-implications satisfying Modus Ponens \[40\]. Mas et al. also investigated the Modus Ponens and Modus Tollens of discrete implications \[49\]. Trillas provided the MPT-implication functions \[50\]. They are summarized in Table 1.

References	Contributions
Baldwin and Pilsworth \[43\], 1980	Measure the validity of CRI method with MT
Fukami et al. \[44\], 1980	Measure the validity of CRI method with MP and MT
Alsina and Trillas \[46\], 2003	Generalized MP for \((S, N)\)-implications
Trillas \[50\], 2004	MP and MT for the same implication
Gera \[47\], 2007	MP and MT for special fuzzy sets
Mas et al. \[49\], 2008	MP and MT for discrete fuzzy implication
Mas et al. \[40\], 2018	MP for \((U, N)\)-implications
Mas et al. \[39\], 2019	MP for uninorm
Dimuro et al. \[24\], 2019	MP for overlap and grouping functions
Li et al. \[48\], 2022	MP for \(T\)-power implication

Different from all methods above, we will employ the aggregation function to interpret the word “and” in the FMP and FMT problems. And then investigate
the validity of CRI method for well-known fuzzy implications from not only a logical view but also an interpolative view. To the best of our knowledge, there exists no works to research the MP and MT properties of ACRI method for more well-known fuzzy implications. This inspires us to investigate the validity of ACRI method with more well-known fuzzy implications from not only a logical view but also an interpolative view. Considering the ACRI method does not satisfy the axiom (A8) (see Theorem 4.2 in [14]), our motivation of this paper is mainly to study the MP and MT properties of ACRI method with well-known fuzzy implications using the axioms (A4) and (A5). The specific discussions will be shown in Sections 4 and 5. Moreover, for the convenience of reading, some explanations of acronyms and symbols are provided in Tables 2 and 3.

Table 2 List of acronyms used in this paper

Acronyms	Explanations
FMP	Fuzzy modus ponens
FMT	Fuzzy modus tollens
CRI	Compositional rule of inference
ACRI	A-compositional rule of inference
MISO	Multi-input-single-output
MP	Modus ponens
MT	Modus tollens
LNC	Law of non-contradiction
LEM	Law of excluded middle
LB	Left boundary condition
RB	Right boundary condition
NP	Left neutrality property
IP	Identity principle
EP	Exchange principle
CP(N)	Law of contraposition with a fuzzy negation N
OP	Ordering property
LIA	Law of importation with A
DAC	Dual of A-conditionality with respect to N
AC	A-conditionality
RP	Residual property

Table 3 List of symbols used in this paper
Symbols	Explanations
N_L	The smallest fuzzy negation
N_T	The greatest fuzzy negation
N_c	The standard fuzzy negation
N_I	The natural negation of a fuzzy implication I
f_φ	The φ-conjugate of f
A	Aggregation function
T	t-norm
S	t-conorm
D_T	The greatest disjunctor
D_L	The smallest disjunctor
S_{LK}	Lukasiewicz t-conorm
$M_{\lambda,f}$	Weighted quasi-arithmetic mean
I	Fuzzy implication
I_A	R-implication generated by A
$I_{A,N}$	(A,N)-implication generated by A and N
I_{A_1,A_2}	QL-operation generated by A_1 and A_2
I_f	f-implication with an f-generator
I_g	g-implication with a g-generator
IT	T-power implication
IC	Probabilistic implication
IC	Probabilistic S-implication
DC	The complement of D
NA	The natural negation of A
C	Copula
$I_{I,N}$	N-lower-contrapositivisation of I
$I_{I,N}^c$	N-upper-contrapositivisation of I
$d(D,D')$	Distance between D and D'

1.3 Contributions of this paper

Based on the argument above, we mainly examine the MP and MT properties of the ACRI method in this paper. Therefore, this paper firstly studies the properties of fuzzy implication and aggregation function in the ACRI method satisfying (A4) or (A5). And then the aggregation function is sought for well-known fuzzy implications in the ACRI method such that they satisfy (A5). Finally, we show the conditions of well-known fuzzy implications satisfying (A4) in the ACRI method and give an ACRI method involved in fuzzy implications and aggregation functions which satisfy (A4) or (A5). In short, this paper aims
to:

(1) Investigate the properties of aggregation functions and fuzzy implications which satisfy (A4) and (A5) in the ACRI method, respectively.

(2) Construct the aggregation function for well-known fuzzy implications such that the ACRI method satisfies (A5).

(3) Show the conditions for the well-known fuzzy implications satisfying (A4) with a strong negation in the ACRI method.

(4) Propose an ACRI method with fuzzy implications and aggregation functions satisfying (A4) or (A5) to make inference better in the actual application.

The composition of this paper is as follows. Some basic concepts and definitions utilized in this paper is recalled in Section 2. Section 3 investigates the properties of fuzzy implications and aggregation functions satisfying (A4) or (A5) in the ACRI method. Section 4 constructs an aggregation function for well-known fuzzy implications mainly including R-, (A,N)-, QL-, f-, g-, probabilistic-, probabilistic S-implications and T-power implications such that the ACRI method satisfies (A5), respectively. In Section 5, the conditions for the well-known fuzzy implications satisfying (A4) with a strong negation in the ACRI method are investigated. Section 6 proposes a fuzzy inference method employed the fuzzy implication satisfying (A4) or (A5) and presents two examples to illustrate our theoretical results.

2 Preliminary

2.1 Fuzzy negation, aggregation function and fuzzy implication

In this section we will recall some main concepts used in this paper.

Definition 2.1 [51] A fuzzy negation function N is a mapping $N : [0, 1] \rightarrow [0, 1]$ fulfilling

- (N1) $N(0) = 1$, $N(1) = 0$;
- (N2) $N(x) \geq N(y)$ if $x \leq y$, $\forall x, y \in [0, 1]$.

Further, a fuzzy negation N is strict if it satisfies the following properties:
(N3) N is continuous;
(N4) $N(x) > N(y)$ if $x < y$.

A fuzzy negation N is strong if it is involutive, i.e.,
(N5) $N(N(x)) = x, \forall x \in [0, 1]$.

Examples 2.2 [51]

- The following are the smallest and greatest fuzzy negations, respectively:

 \[
 N_{\perp}(x) = \begin{cases}
 1 & x = 0 \\
 0 & \text{otherwise}
 \end{cases} \quad \text{and} \quad
 N_{\top}(x) = \begin{cases}
 0 & x = 1 \\
 1 & \text{otherwise}
 \end{cases}.
 \]

- The standard fuzzy negation $N_c(x) = 1 - x$.

- The natural negation of a fuzzy implication I denoted by $N_I(x) = I(x, 0)$ (See Definition 2.11).

Let φ be an automorphism on $[0,1]$ i.e. an increasing bijection on $[0,1]$ and f be a binary function on $[0,1]$. The function $f_\varphi(x, y) = \varphi^{-1}(f(\varphi(x), \varphi(y)))$ is called as the φ-conjugate of f.

Theorem 2.3 [52] The fuzzy negation N is strong if and only if there exists an automorphism φ on $[0,1]$ such that $N = (N_c)_\varphi$.

Definition 2.4 [53] A binary aggregation function A is a mapping $A : [0,1]^2 \to [0,1]$ which meets the following conditions:

- (A1) Boundary conditions: $A(0,0) = 0$ and $A(1,1) = 1$;

- (A2) Non-decreasing in each variable.

Obviously, the φ-conjugate of aggregation function A, denoted by A_φ, is again an aggregation function.

Definition 2.5 [53] For a binary aggregation function A, e is referred as a left (right) neutral element if $A(e, x) = x$ ($A(x, e) = x$) for all $x \in [0,1]$. Further, e is called a neutral element if $A(e, x) = A(x, e) = x$.

Definition 2.6 [53] A binary aggregation function A is said to be

- i. a conjunctor if $A(1,0) = A(0,1) = 0$,
- ii. a disjunctor if $A(1,0) = A(0,1) = 1$,
- iii. a semi-copula if 1 is a neutral element,
- iv. associative if $A(x, A(y, z)) = A(A(x, y), z)$,
v. commutative if \(A(x, y) = A(y, x) \),

vi. a uninorm if it is associative, commutative and \(e \in (0, 1) \) is a neutral element,

vii. a t-norm if it is an associative and commutative semi-copula,

ix. a t-conorm if it is the \(N \)-dual of a t-norm, that is, \(S(x, y) = N^{-1}(T(N(x), N(y))) \),

where \(T \) is a t-norm and \(S \) a t-conorm.

Definition 2.7 \([54]\) The aggregation function \(A_1 \) is not greater than \(A_2 \) denoted by \(A_1 \leq A_2 \) if \(A_1(x, y) \leq A_2(x, y) \) for any \(x, y \in [0, 1] \).

Definition 2.8 \([29]\) Let \(A \) be an aggregation function.

i. \(A \) has zero divisors if there exist \(x, y \in (0, 1] \) such that \(A(x, y) = 0 \),

ii. \(A \) has one divisors if there exist \(x, y \in [0, 1) \) such that \(A(x, y) = 1 \).

Example 2.9 \([42, 53, 54]\) Some distinguished disjunctors are shown as follows:

- The greatest disjunctor, \(D^\top(x, y) = \begin{cases} 0 & x = y = 0 \\ 1 & \text{otherwise} \end{cases} \);

- The smallest disjunctor, \(D^\bot(x, y) = \begin{cases} 1 & x = 1 \text{ or } y = 1 \\ 0 & \text{otherwise} \end{cases} \);

- t-conorms, such as the Łukasiewicz t-conorm \(S_{LK}(x, y) = (x + y) \wedge 1 \);

- \(A(x, y) = f^{-1}((f(x \vee y) - f(N(x \land y))) \lor 0) \), where \(N \) is a strong negation and \(f : [0, 1] \rightarrow [0, +\infty] \) is a continuous and strictly decreasing with \(f(1) = 0 \);

- Weighted quasi-arithmetic mean (WQAM), \(M_{\lambda,f}(x, y) = f^{-1}((1-\lambda)f(x) + \lambda f(y)) \), where \(f : [0, 1] \rightarrow [-\infty, +\infty] \) is continuous strictly monotone with \(f(1) = \pm \infty \) and \(\lambda \in (0, 1) \);

- Group functions;

- \(A_{e,g}(x, y) = g^{-1}(g(x) + g(y)) \), where \(g : [0, 1] \rightarrow [-\infty, \infty] \) is a continuous strictly monotone function with \(g(e) = 0 \), \(g(1) = \pm \infty \) and \(g^{(-1)} \) its pseudo inverse of \(g \) defined as \(g^{(-1)}(x) = \begin{cases} g^{-1}(x) & x \leq g(1) \\ 1 & \text{otherwise} \end{cases} \).
Considering the non-commutativity of aggregation function, we extend the non-contradiction principle in Ref. [42] as follows.

Definition 2.10 [42] A binary aggregation function \(A \) fulfills the law of non-contradiction (LNC) with respect to a fuzzy negation \(N \) if
\[
A(N(x), x) = A(x, N(x)) = 0, \forall x \in [0, 1]. \tag{LNC}
\]

By duality, \(A \) fulfills the law of excluded middle (LEM) with \(N \) if
\[
A(N(x), x) = A(x, N(x)) = 1, \forall x \in [0, 1]. \tag{LEM}
\]

Evidently, (LNC) and (LEM) become the well-known law of non-contradiction and law of excluded middle if \(A \) is a t-norm and t-conorm, respectively. Moreover, \(A \) is a conjunctor (disjunctor) if it fulfills (LNC) ((LEM)).

Definition 2.11 [55] A function \(I : [0, 1]^2 \rightarrow [0, 1] \) is called a fuzzy implication if
\[
(I1) \text{ Non-increasing in the first variable, i.e. } I(x, z) \geq I(y, z) \text{ if } x \leq y;
\]
\[
(I2) \text{ Non-decreasing in the second variable, i.e. } I(x, y) \leq I(x, z) \text{ if } y \leq z;
\]
\[
(I3) I(0, 0) = 1;
\]
\[
(I4) I(1, 1) = 1;
\]
\[
(I5) I(1, 0) = 0.
\]

According to Definition 2.11, a fuzzy implication fulfills the following properties:
\[
(LB) \text{ Left boundary condition, } I(0, y) = 1, \forall y \in [0, 1];
\]
\[
(RB) \text{ Right boundary condition, } I(x, 1) = 1, \forall x \in [0, 1].
\]

Definition 2.12 [55] A fuzzy implication \(I : [0, 1]^2 \rightarrow [0, 1] \) satisfies for any \(x, y, z \in [0, 1] \):
\[
(NP) \text{ Left neutrality property if } I(1, y) = y;
\]
\[
(IP) \text{ Identity principle if } I(x, x) = 1;
\]
\[
(EP) \text{ Exchange principle if } I(x, I(y, z)) = I(y, I(x, z));
\]
\[
(CP(N)) \text{ Law of contraposition with a fuzzy negation } N \text{ if } I(x, y) = I(N(y), N(x));
\]
\[
(OP) \text{ Ordering property if } I(x, y) = 1 \iff x \leq y.
\]

Definition 2.13 [29] Let \(A \) be an aggregation function and \(I \) a fuzzy implica-
tion. \(I \) satisfies the law of importation with \(A \) (LIA) if
\[
I(A(x, y), z) = I(x, I(y, z)), \quad \forall x, y, z \in [0, 1].
\]
\text{(LIA)}

Obviously, (LIA) become the well-known law of importation if \(A \) is a t-norm. It is also proved that (LIA) can be used to construct a hierarchical fuzzy systems (see Ref. [56]).

\textbf{Definition 2.14} [55] Let \(I \) and \(J \) be two fuzzy implications. Defining \((I \lor J)(x, y) = \max(I(x, y), J(x, y))\), \((I \land J)(x, y) = \min(I(x, y), J(x, y))\) and \(I_\varphi(x, y) = \varphi^{-1}(I(\varphi(x), \varphi(y)))\), \(I \lor J, I \land J \) and \(I_\varphi \) are fuzzy implications, too.

\textbf{Definition 2.15} [28] An R-implication generated by the aggregation function \(A \) is a function \(I_A : [0, 1]^2 \to [0, 1] \) defined as
\[
I_A(x, y) = \sup \{ t \in [0, 1] \mid A(x, t) \leq y \}.
\]

\textbf{Definition 2.16} [29] A function \(I_{A,N} : [0, 1]^2 \to [0, 1] \) is called an \((A, N)\)-implication generated by a disjunctor \(A \) and a fuzzy negation \(N \) defined as
\[
I_{A,N}(x, y) = A(N(x), y).
\]

\(I_{A,N} \) is an \(A \)-implication if \(N \) is the standard negation. Moreover, an \((A, N)\)-implication generated by a t-conorm and a strong negation is called a strong implication (S-implication).

\textbf{Theorem 2.17} [29] \(I \) is a fuzzy implication if and only if there exists a disjunctor \(A \) such that \(I(x, y) = A(1 - x, y) \).

\textbf{Definition 2.18} [29] A QL-operation \(I_{A_1,A_2} \) generated by two aggregation functions \(A_1, A_2 \) and a fuzzy negation \(N \) is defined as
\[
I_{A_1,A_2}(x, y) = A_1(N(x), A_2(x, y)), \quad x, y \in [0, 1].
\]
Especially, it is called a QL-implication if it fulfills (I1) and (I3)-(I5).

\textbf{Definition 2.19} [27] Let a mapping \(f : [0, 1] \to [0, +\infty) \) be strict decreasing and continuous with \(f(1) = 0 \). An \(f \)-implication with an \(f \)-generator is defined by \(I_f(x, y) = f^{-1}(xf(y)) \) with the understanding \(0 \times +\infty = 0 \).

\textbf{Definition 2.20} [27] Suppose that \(g : [0, 1] \to [0, +\infty] \) is a strict increasing
and continuous mapping with \(g(0) = 0 \). A \(g \)-implication with a \(g \)-generator is defined by \(I_g(x, y) = g^{-1} \left(\frac{g(y)}{x} \right) \) with the understanding \(0 \times \infty = \infty \).

Definition 2.21 [57] A \(T \)-power implication is defined by \(I^T(x, y) = \vee \{ r \in [0, 1] \mid y^{(r)} \geq x \} \) for all \(x, y \in [0, 1] \), where \(T \) is a continuous \(t \)-norm \(T \).

Lemma 2.22 [57] Let \(I^T \) be a \(T \)-power implication. Then

i. \(I^T_M(x, y) = \begin{cases} 1 & x \leq y \\ 0 & x > y \end{cases} \);

ii. \(I^T(x, y) = \begin{cases} 1 & \frac{t(x)}{t(y)} \leq y \\ \frac{t(x)}{t(y)} & x > y \end{cases} \), where \(T \) is Archimedean with additive generator \(t \).

Definition 2.23 [26] A probabilistic implication \(I_C \) generated by a copula \(C \) is defined by \(I_C(x, y) = \begin{cases} C(x, y) & x > 0 \\ 1 & \text{otherwise} \end{cases} \) if it satisfies (I1).

Definition 2.24 [26] A probabilistic S-implication \(\tilde{I}_C \) generated by a copula \(C \) is defined as \(\tilde{I}_C(x, y) = C(x, y) - x + 1 \).

Definition 2.25 [58] Let \(D \) be a fuzzy set on the universe \(U \). We say that \(D \) is a normal fuzzy set if there exist some \(x_0 \in U \) such that \(D(x_0) = 1 \).

2.2 Fuzzy inference and axioms systems

We know that FMP and FMT problems can be expressed as follows:

Premise 1: IF \(x \) is \(D \) THEN \(y \) is \(B \)

Premise 2: \(x \) is \(D' \)

Conclusion: \(y \) is \(B' \)

Premise 1: IF \(x \) is \(D \) THEN \(y \) is \(B \)

Premise 2: \(y \) is \(B' \)

Conclusion: \(x \) is \(D' \),

where \(D \) and \(D' \) are fuzzy sets on the universe \(U \) while \(B \) and \(B' \) are fuzzy sets on the universe \(V \).

In order to calculate the conclusion \(B' \) in FMP problem, we will substitute an aggregation function \(A \) for \(T_M \), and constrain the fuzzy relation to the fuzzy implication in the CRI method in this paper. Then, the following ACRI method is considered:

\[
B'_{\text{ACRI}}(y) = \bigvee_{x \in U} A(D'(x), I(D(x), B(y))),
\]
where I is a fuzzy implication and A is an aggregation function.

There are many different axiom systems as the basic requirements for fuzzy inference methods. The following are the most well-known axiom systems:

- The axioms presented by Baldwin and Pilsworth \cite{43}.
 \begin{align*}
 (A1) & \quad B \subseteq B'; \\
 (A2) & \quad B' \subseteq B'' \text{ if } D' \subseteq D''; \\
 (A3) & \quad B' = V \text{ if } D' = D^C \text{ with } D^C \text{ being the complement of } D; \\
 (A4) & \quad B' = D^C \text{ if } D' = B^C \text{(classical modus tollens property)};
 \end{align*}

- The axioms presented by Fukami et al. \cite{44}.
 \begin{align*}
 (A5) & \quad B' = B \text{ if } D' = D \text{ (classical modus ponens property)}; \\
 (A6) & \quad B' = \text{very } B \text{ if } D' = \text{very } D; \\
 (A7) & \quad B' = \text{more or less } B \text{ if } D' = \text{more or less } D; \\
 (A8) & \quad B' = B^C \text{ if } D' = D^C.
 \end{align*}

In this paper we follow not only the logic view but also interpolative view of the ACRI method. Therefore, our first aim is to investigate the properties of aggregation functions and fuzzy implications satisfying (A4) and (A5) in the ACRI method, respectively.

3 Properties of aggregation functions and fuzzy implications satisfying (A4) or (A5)

Considering the normal fuzzy sets play an important role in the ACRI method, we always assume the fuzzy sets involved in the ACRI method are normal in the remainder of this paper. Let us firstly investigate the properties of aggregation function and fuzzy negation in the ACRI method fulfilling (A4) for a fuzzy implication. For convenience, we say that the fuzzy implication I satisfies (A4) with an aggregation function A and a fuzzy negation N if the ACRI method fulfills (A4) from now on.
Proposition 3.1 Let the fuzzy implication I satisfy (A4) with an aggregation function A and a fuzzy negation N. Then, A is a conjunctor.

Proof. Since I satisfies (A4) with A and N, we have $N(D(x)) = \bigvee_{y \in V} A(N(B(y)), I(D(x), B(y)))$ for all $x \in U$ and $y \in V$. Especially, $A(0, I(1, 1)) = A(0, 1) = 0$ holds for $x_0 \in U$ and $y_0 \in V$ such that $D(x_0) = 1$ and $B(y_0) = 1$. Similarly, we can obtain $A(1, 0) = 0$. Thus, A is a conjunctor.

Proposition 3.2 Let the fuzzy implication I fulfill (NP) and A be a conjunctor having a right neutral element 1. If I satisfies (A4) with A and a fuzzy negation N, then $N_I \leq N \leq N_A$, where $N_A(x) = \sup\{t \in [0, 1]|A(t, x) = 0\}$ is the natural negation of A.

Proof. Since I satisfies (A4) with A and N, $N(D(x)) \geq A(N(0), I(D(x), 0)) = N_I(D(x))$ holds for any $x \in U$. We can similarly obtain $0 = N(1) = A(N(B(y)), I(1, B(y))) = A(N(B(y)), B(y))$. This implies that $N \leq N_A$.

Proposition 3.3 Let the fuzzy implication I fulfill (IP) and the aggregation function A have a right neutral element 1. Then, I satisfies (A4) with A and N if and only if $A(N(B(y)), I(D(x), B(y))) \leq N(D(x))$ holds for all $x \in U$ and $y \in V$.

Proof. (\Rightarrow) Obviously.

(\Leftarrow) For any $x \in U$ and $y \in V$, we assume that $A(N(B(y)), I(D(x), B(y))) \leq N(D(x))$ holds. This implies that $\bigvee_{y \in V} A(N(B(y)), I(D(x), B(y))) \leq N(D(x))$. On the other hand, $\bigvee_{y \in V} A(N(B(y)), I(D(x), B(y))) \geq A(N(D(x)), I(D(x), D(x)))$. Since I fulfills (IP) and 1 is a right neutral element of A, we have $A(N(D(x)), I(D(x), D(x))) = A(N(D(x)), 1) = N(D(x))$. Therefore, I satisfies (A4) with A and N.

Proposition 3.4 Let the aggregation function A have a right neutral element 1. Then, the fuzzy implication I satisfies (A4) with A and N_I if and only if $A(N_I(B(y)), I(D(x), B(y))) \leq N_I(D(x))$ holds for all $x \in U$ and $y \in V$.

Proof. (\Rightarrow) Obviously.

(\Leftarrow) For any $x \in U$, we have $\bigvee_{y \in V} A(N_I(B(y)), I(D(x), B(y))) \geq A(N_I(0), I(D(x), 0)) = A(1, N_I(D(x))) = N_I(D(x))$.

Proposition 3.4 shows that the inequality $A(N_I(B(y)), I(D(x), B(y))) \leq$
$N_I(D(x))$ can replace the axiom (A4) in this case. Therefore, we say that the fuzzy implication I satisfies the dual of A-conditionality with respect to N if the above inequality holds. It is not difficult to see that $B(y)$ and $D(x)$ variate on $[0, 1]$. And N_I is a fuzzy negation (see Example 2.2). This means that they can be denoted by some variables (such as a and b) in $[0, 1]$. And then this inequality is shorten as

$$A(N(b), I(a, b)) \leq N(a), \forall a, b \in [0, 1]. \quad \text{(DAC)}$$

Proposition 3.5 Let the fuzzy implication I meet the condition $I(a, 0) = 0$ for all $a \in (0, 1]$ and $N = N_\perp$. Then, I satisfies (DAC) with N_\perp and any conjunctor A.

Proof. It is sufficient to verify that $A(N_\perp(b), I(a, b)) = 0$ holds for any $a \neq 0$. Let us consider the following two cases.

i. $b \neq 0$. This implies that $A(N_\perp(b), I(a, b)) = A(0, I(a, b)) = 0$ holds for any $a \in (0, 1]$.

ii. $b = 0$. In this case, we have $A(1, I(a, 0)) = A(1, 0) = 0$ for any $a \in (0, 1]$.

Proposition 3.6 Let N be an injective fuzzy negation and the aggregation function A have a right neutral element 1. If there exist $1 > a > b > 0$ such that $I(a, b) = 1$, then the fuzzy implication I does not satisfy (A4) with A.

Proof. Let $1 > a_0 > b_0 > 0$ and $I(a_0, b_0) = 1$. This implies that $A(N(b_0), I(a_0, b_0)) = A(N(b_0), 1) = N(b_0) > N(a_0)$ holds.

Proposition 3.7 Let the fuzzy implication I satisfy (A4) with an aggregation function A and a fuzzy negation N. If $N \neq N_\perp$ and $I(1, b) > 0$ holds for any $b > 0$, then A has zero divisors. Especially, A satisfies (LNC) if I fulfills (NP).

Proof. By (A4), we have $A(N(B(y)), I(1, B(y))) = 0$ for all $y \in V$. This implies that A has zero divisors.

Next, we study the properties of aggregation function and fuzzy implication in the ACRI method satisfying (A5). Similarly, we say that the fuzzy implication I satisfies (A5) with an aggregation function A when the ACRI method satisfying (A5) for convenience.

Proposition 3.8 Let the aggregation function A have a right neutral element
1. If the fuzzy implication I satisfies (A5) with A, then $I(1, b) \leq b$ holds for all $b \in [0, 1]$.

Proof. Since I satisfies (A5), we have $B(y) = \bigvee_{x \in U} A(D(x), I(D(x), B(y)))$ for any $y \in V$. This implies that $B(y) \geq A(1, I(1, B(y))) = I(1, B(y))$ for any $y \in V$. Since B is normal, $I(1, b) \leq b$ holds for all $b \in [0, 1]$.

Proposition 3.9 Let the fuzzy implication I fulfill (NP) and the aggregation function A have a left neutral element 1. I satisfies (A5) with A if and only if $A(D(x), I(D(x), B(y))) \leq B(y)$ holds for all $x \in U$ and $y \in V$.

Proof. (\Rightarrow) Obviously.

(\Leftarrow) Suppose that $A(D(x), I(D(x), B(y))) \leq B(y)$ holds for any $x \in U$ and $y \in V$. We immediately have $\bigvee_{x \in U} A(D(x), I(D(x), B(y))) \leq B(y)$ for any $y \in V$. On the other hand, there exists $x_0 \in U$ such that $D(x_0) = 1$. Therefore,

$$\bigvee_{x \in U} A(D(x), I(D(x), B(y))) \geq A(D(x_0), I(D(x_0), B(y))) = A(1, I(1, B(y))) = I(1, B(y)) = B(y)$$

holds for any $y \in V$.

Remark 1. i. Similar to Ref. [24,40,48,55], we say that the fuzzy implication I satisfies A-conditionality if the above inequality holds. It is easy to find that $B(y)$ and $D(x)$ variate on $[0,1]$. Thus, they can be denoted by some variables (such as a and b) in $[0,1]$. And then, this inequality is shorten as

$$A(a, I(a, b)) \leq b, \forall a, b \in [0,1].$$

(AC)

ii. Let the fuzzy implication I fulfill (IP) and the aggregation function A have a right neutral element 1. Then, I satisfies (A5) with A if they fulfill (AC).

iii. Obviously, (AC) implies (DAC) if the fuzzy implication I satisfies (CP(N)).

Further, (DAC) implies (AC) if the fuzzy implication I fulfills (CP(N)) and the fuzzy negation N is continuous. Owing to the relationship between (AC) and (DAC), the following results can be parallely obtained and similarly proved.

Proposition 3.10 If the fuzzy implication I satisfies (A5) with an aggregation function A, then A is a conjunctor.

Proposition 3.11 Let the fuzzy implication I satisfy (A5) with an aggregation function A. Then, A has zero divisors if $N_I > N_{\bot}$.

16
Proposition 3.12 Let the aggregation function A have a right neutral element 1. If there exist $1 > a > b > 0$ such that $I(a, b) = 1$, then the fuzzy implication I does not satisfy (A5) with A.

Remark 2. i. Similar results can be found in Ref. [55] if the aggregation function A becomes a t-norm (see Propositions 7.4.2 and 7.4.3).

ii. According to Propositions 3.6 and 3.12, $I(a, b) = 1$ implies $a \leq b$ if the fuzzy implication I satisfies (A4) or (A5) with A having a right neutral element 1. However, we cannot ensure that the fuzzy implication I satisfies (OP) in this case as shown in the following examples.

Example 3.13 Let I_f be an f-implication. Obviously, I_f does not fulfill (OP). Define an aggregation function A_f as $A_f(x, y) = \begin{cases} f^{-1}\left(\frac{I(f(x))}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$. Then, (I_f, A_f) satisfies (A5).

Example 3.14 Let I be an R-implication generated by a nilpotent t-norm. Obviously, I fulfills (OP). However, I does not satisfies (A5) with A and N_\top unless A is the smallest conjunctor.

Proposition 3.15 Let the fuzzy implication I fulfill (OP) and A be a commutative aggregation function. If I satisfies (LIA) with A, then I satisfies (AC) with A.

Proof. Since I satisfies (LIA) with A and I fulfills (OP), we obtain the fact that I satisfies (EP) by Lemma 3.1 in Ref. [56]. Then, we have $1 = I(I(a, b), I(a, b)) = I(a, I(I(a, b), b)) = I(A(a, I(a, b)), b)$ for all $a, b \in [0, 1]$. Therefore, $A(a, I(a, b)) \leq b$ holds for all $a, b \in [0, 1]$.

Proposition 3.16 Let I and J be two fuzzy implications fulfilling (NP) and $J \leq I$. If I satisfies (A5) with A having a left neutral element 1, then J satisfies (A5) with A, too.

Proof. By Proposition 3.8, it is sufficient to verify that J satisfies (AC) with A. Indeed, the monotonicity of A implies that $b \geq A(a, I(a, b)) \geq A(a, J(a, b))$.

Remark 3. We can similarly obtain the fact that J satisfies (DAC) with A and N if I satisfies (DAC) with A and N. However, we cannot ensure whether J satisfies (A4) with A and N when J satisfies (A4) with A and N.

17
Proposition 3.17 Let the fuzzy implication I fulfill (NP) and the aggregation function A have a left neutral element 1. We have

i. if A' is a conjunctor having a left neutral element 1 such that $A' \leq A$ and I satisfies (A4) with A and N_I, then I satisfies (A4) with A' and N_I, too;

ii. if A' is a conjunctor having a left neutral element 1 such that $A' \leq A$ and I satisfies (A5) with A and N_I, then I fulfills (A5) with A', too.

Proof. We only verify I satisfies (A4) with A' and N_I. The other case can be verified similarly. By Proposition 3.3, it is sufficient to verify that I fulfills (DAC) with A'. Indeed, $b \geq A(a, I(a, b)) \geq A'(a, I(a, b))$ holds.

Remark 4. Baczynski presented the similar results if the aggregation function A becomes a t-norm in Ref. [55] (see Proposition 7.4.3).

We know that the φ-conjugate of the fuzzy implication I still is a fuzzy implication. Thus, it is interesting to investigate the satisfaction of I_φ for (A4) and (A5) when I fulfills respectively (A4) and (A5).

Proposition 3.18 i. If the fuzzy implication I satisfies (A4) with an aggregation function A and a fuzzy negation N, then I_φ fulfills (A4) with A_φ and N_φ, where A_φ, I_φ and N_φ are the φ-conjugate of A, I and N, respectively;

ii. If the fuzzy implication I satisfies (A5) with an aggregation function A, then I_φ fulfills (A5) with A_φ.

Proof. We only verify I_φ satisfies (A5) with A_φ. The other can be verified similarly. For any $y \in V$, we have $\bigvee_{x \in U} A_\varphi(D(x), I_\varphi(D(x), B(y))) = \bigvee_{x \in U} \varphi^{-1}(A(\varphi(D(x))), \varphi(I(\varphi(D(x)), B(y)))) = \varphi^{-1}(\bigvee_{x \in U} A(\varphi(D(x)), I(\varphi(D(x)), B(y)))) = \varphi^{-1}(\varphi(B(y))) = B(y)$.

Similarly, $I \lor J$ and $I \land J$ still are two fuzzy implications if I and J are fuzzy implications. Thus, it is necessary to study the satisfaction of (A4) and (A5) for $I \lor J$ and $I \land J$ when I and J fulfill (A4) and (A5) respectively.

Proposition 3.19 Let I and J be two fuzzy implications. We have

i. If both I and J satisfy (A4) with an aggregation function A and a fuzzy negation N, then $I \lor J$ and $I \land J$ fulfill respectively (A4) with A and N, too.

ii. If both I and J satisfy (A5) with an aggregation function A, then $I \lor J$
and $I \land J$ satisfy respectively (A5) with A, too.

Proof. Obviously.

4 MP property of the ACRI method with well-known fuzzy implications

As the argument above, the aggregation functions and fuzzy implications are respectively employed to interpret the word “and” and “if...then...” in the ACRI method. Thus, this section will discuss the MP property of the ACRI method for some well-known fuzzy implications including R-, f-, T-power, (A,N)-, QL-, probabilistic- and probabilistic S-implications. That is, we will construct aggregation functions such that these well-known fuzzy implications satisfy (A5) with them, respectively. Then, we firstly have the following result.

Lemma 4.1 Let the fuzzy implication I fulfill the condition $I(1,b) < 1$ for any $b \in [0,1)$. Then, there exists an aggregation function A_I defined as $A_I(a,b) = \inf\{c \in [0,1] \mid I(a,c) \geq b\}$ such that (I, A_I) satisfies (AC).

Proof. According to Lemma 3.3 in [14], A_I is an aggregation function. Further, we have $b \geq \inf\{c \in [0,1] \mid I(a,c) \geq I(a,b)\} = A_I(a, I(a,b))$.

Corollary 4.2 Let the fuzzy implication I fulfill (NP). Then (I, A_I) satisfies (A5).

Proof. By Proposition 3.9 and Lemma 4.1, it is sufficient to verify that A_I has a left neutral element 1. Indeed, $A_I(1,b) = \inf\{c \mid I(1,c) \geq b\} = \inf\{c \mid c \geq b\} = b$ holds for any $b \in [0,1]$.

Next, we construct an aggregation function for the R-implication involved in the ACRI method such that they satisfy (A5). As the R-implication I_A generated by a left-continuous aggregation function with respect to second variable fulfills the residuation property (RP), we then have the following statement.

Theorem 4.3 Let A and A' be two conjunctors having a left neutral element 1. If A is left-continuous with respect to second variable, then the R-implication I_A satisfies (A5) with A' if and only if $A' \leq A$.

Proof. (\Leftarrow) Since 1 is a left neutral element of A, the R-implication I_A ful-
fills (NP). According to Proposition 3.9, it is sufficient to verify that \((I_A, A')\) satisfies (AC). The left-continuity of \(A\) with respect to second variable implies that \(A\) and \(I_A\) satisfy the residuation property (RP) by Lemma 3.1 in [14], i.e. \(A(a, c) \leq b \iff c \leq I_A(a, b)\) holds for any \(a, b, c \in [0, 1]\). Especially, we have \(I_A(a, b) \leq I_A(a, b) \iff A(a, I_A(a, b)) \leq b\) by (RP). This means that \(b \geq A(a, I_A(a, b)) \geq A'(a, I_A(a, b))\) holds for all \(a, b \in [0, 1]\).

(\(\Longrightarrow\)) Suppose that \(I_A\) satisfies (A5) with \(A'\). We have \(A'(a, I_A(a, b)) \leq b\) for any \(a, b \in [0, 1]\). The residuation property of \(I_A\) with \(A\) implies that \(b \leq I_A(a, A(a, b))\) for any \(a, b \in [0, 1]\). Therefore, \(A(a, b) \geq A'(a, I_A(a, A(a, b))) \geq A'(a, b)\) holds for any \(a, b \in [0, 1]\).

As it can be easily seen, it is a strict condition to require the aggregation function \(A\) being left-continuous with respect to second variable in R-implication \(I_A\). Therefore, we next focus on the the R-implication generated by a non-left-continuous aggregation function with respect to second variable. It is not difficult to see that the R-implication \(I_A\) generated by an aggregation function \(A\) having a right neutral element 1 satisfies \(I_A(a, b) = 1\) if \(a \leq b\). This means that the R-implication \(I_A\) fulfills (OP) when \(I_A\) satisfies (A5) with \(A'\) according to Proposition 3.12. In order to investigate the satisfaction of (A5) for the R-implication \(I_A\), it is sufficient to study this case where the R-implication \(I_A\) fulfills (OP) and \(A\) has a right neutral element 1. We then have the following statement.

Lemma 4.4 Let \(I_A\) be an R-implication generated by an aggregation function \(A\) having a right neutral element 1. Then, \(I_A\) satisfies (OP) if and only if \(A\) is border continuous (that is, \(A\) is continuous at the border of \([0, 1]^2\)).

Proof. This can be proved similarly to Proposition 2.5.9 in [55].

Inspired by the idea of [59], we will extend a border continuous aggregation function to a left-continuous one.

Definition 4.5 Let \(A\) be a border continuous aggregation function. A function \(A^*\) on \([0, 1]^2\) is defined as follows:

\[
A^*(x, y) = \begin{cases}
\sup\{A(u, v) | u < x, v < y\} & x, y \in (0, 1) \\
A(x, y) & \text{otherwise}
\end{cases}
\]
Corollary 4.2.

Theorem 4.6 Let I_A be an R-implication generated by an aggregation function A having a neutral element 1 and the conjunctor A' have a left neutral element 1. If I_A fulfills (OP) and (EP), then I_A satisfies (A5) with A' if and only if $A' \leq A^*$ holds, where A^* is defined as Eq.(1).

Proof. We firstly assert that $I_A = I_{A^*}$. Obviously, $I_A \leq I_{A^*}$ holds. We further have $I_A(a, b) = I_{A^*}(a, b) = 1$ if $a \leq b$. Thus, it needs to consider the case $1 > a > b > 0$. On the contrary, suppose that there exist $1 > a_0 > b_0 > 0$ such that $c = I_A(a_0, b_0) < I_{A^*}(a_0, b_0) = c'$. By intermediate value theorem, there exists c_0 such that $c < c_0 < c'$. Since A^* is a left-continuous aggregation function with respect to second variable, $c_0 \leq I_{A^*}(a_0, b_0) = c'$ implies that $A^*(a_0, c') \leq b_0$ holds. This means $b_0 \geq A^*(a_0, c') = \sup\{A(u, v)|u < a_0, v < c\} \geq \sup\{A(u, c)|u < a_0\} = A(a_0^-, c_0)$. Therefore, we have $c_0 \leq I_A(a_0^-, b_0)$. Then, $1 = I_A(c_0, I_A(a_0^-, b_0)) = I_A(a_0^-, I_A(c_0, b_0))$ holds by (OP) and (EP). Again, we obtain $a_0 \leq I_A(c_0, b_0)$ according to (OP). On the other hand, we have $1 > I_A(c_0, I_A(a_0, b_0)) = I_A(a_0, I_A(c_0, b_0))$ by (OP) and (EP). Thus, $a_0 > I_A(c_0, b_0)$ holds. This implies that $I_A(c_0, b_0) = a_0$. However, $I_A(c_0, c) = I_A(c_0, I_A(a_0, b_0)) = I_A(a_0, I_A(c_0, b_0)) = I_A(a_0, a_0) = 1$ by (OP) and (EP). Again, we can obtain $c_0 \leq c$. This is a contradiction.

For the f-, g- and T-power implications, it is easy to construct the aggregation functions according to Lemma 4.1. Therefore, we immediately have the following results by Corollary 4.2.

Theorem 4.7 Let I_f be an f-implication with an f-generator. Then, I_f satisfies (A5) with an aggregation function if and only if $A \leq A_{I_f}$, where $A_{I_f}(x, y) = \begin{cases} f^{-1}(\frac{f(y)}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ for any $x, y \in [0, 1]$.

Proof. (\Leftarrow) Since I_f fulfills (NP), I_f satisfies (A5) with A if $A \leq A_{I_f}$ by Corollary 4.2.

(\Rightarrow) $A_{I_f}(a, I_f(a, b)) = \inf\{c \in [0, 1]|I_f(a, c) \geq I_f(a, b)\} = b$ holds for any $a \in (0, 1]$ and $b \in [0, 1]$. Since (I_f, A) satisfies (A5), we have $A((a, I_f(a, b)) \leq \inf\{c \in [0, 1]|I_f(a, c) \geq I_f(a, b)\} = b$ for any $a \in (0, 1]$ and $b \in [0, 1]$. Therefore, $A_{I_f}(a, I_f(a, b)) = b$.
\[b = A_I(a, I_f(a, b)) \] for any \(a \in (0, 1] \) and \(b \in [0, 1] \). The continuity of \(I_f \) implies that \(A(a, b) \leq A_I(a, b) \) holds for any \(a \in (0, 1] \) and \(b \in [0, 1] \). Setting \(a = 0 \), we have \(A(0, b) = 0 = A_I(0, b) \). Thus, \(A \leq A_I \) holds.

Theorem 4.8 Let \(I_g \) be a \(g \)-implication with a \(g \)-generator. Then \(I_g \) fulfills (A5) with an aggregation function \(A \) if and only if \(A \leq A_I \), where \(A_I(x, y) = \begin{cases} g^{-1}(xg(y)) & x \neq 0 \\ 0 & x = 0 \end{cases} \) for any \(x, y \in [0, 1] \).

Proof. This can be proved similarly to Theorem 4.7.

Theorem 4.9 Let \(I^T \) be a \(T \)-power implication.

i. \(I^T \) satisfies (A5) with an aggregation function \(A \) if and only if \(A \) has a right neutral element 1;

ii. If \(T \) is an Archimedean t-norm with additive generator \(t \), then \(I^T \) satisfies (A5) with an aggregation function \(A \) if and only if \(A \leq A_I \), where \(A_I(x, y) = \begin{cases} t^{-1}(t(x)) & y \neq 0 \\ 0 & \text{otherwise} \end{cases} \).

Proof. This can be proved similarly to Theorem 4.7.

However, it is difficult to obtain the aggregation function \(A_I \) for (A, N)-, QL-, probabilistic and probabilistic S-implications by Lemma 4.1. So, we only consider some special (A, N)-, QL-, probabilistic and probabilistic S-implications in the last of this section. Let us firstly consider the cases when (A, N)-implication generated by the smallest disjunctor \(D \).

Proposition 4.10 Let \(I_{D \perp, N} \) be an (A, N)-implication generated by the smallest disjunctor \(D \). Then, \(I_{D \perp, N} \) does not satisfy (A5) with any conjunctor.

Proof. The (A, N)-implication generated by the smallest disjunctor \(D \) is the smallest fuzzy implication \(I_{D \perp, N}(x, y) = \begin{cases} 1 & x = 0 \text{ or } y = 1 \\ 0 & \text{otherwise} \end{cases} \). Let \(A \) be a conjunctor. For any fuzzy set \(B \) on \(V \) such that \(B(y) \neq 0 \), we have \(B(y) > \bigvee_{x \in U} A'(D(x), I_{D \perp, N}(D(x), B(y))) = \bigvee_{x \in U} A(D(x), 0) = 0 \).

Proposition 4.11 Let \(I_{D \top, N} \) be an (A, N)-implication generated by the greatest disjunctor \(D \). Then \(I_{D \top, N} \) does not satisfy (A5) with any aggregation function.
Proof. In this case, \(I_{D^\top, N}(x, y) = \begin{cases} 0 & x = 1, y = 0 \\ 1 & \text{otherwise} \end{cases} \). Let \(A \) be an aggregation function. For any \(y \in V \) such that \(B(y) \in (0, 1) \), we have \(A(1, I_{D^\top, N}(1, B(y))) = 1 > B(y) \).

Next, we study the case where \((A, N)\)-implication is generated by a continuous t-conorm with the ordinal sum structure. According to Corollary 5.12 in [54], there exist a uniquely determined index set \(\Gamma \), a set of uniquely determined open pairwise disjoint intervals \(\{ (a_\alpha, e_\alpha) \}_{\alpha \in \Gamma} \) of \([0, 1]\) and a set of uniquely determined Archimedean continuous t-conorms \((S_\alpha)_{\alpha \in \Gamma} \) such that \(S \) can be rewritten as

\[
S(x, y) = \begin{cases}
 \alpha + (e_\alpha - a_\alpha)S_\alpha \left(\frac{x-a_\alpha}{e_\alpha-a_\alpha}, \frac{y-a_\alpha}{e_\alpha-a_\alpha} \right) & x, y \in [a_\alpha, e_\alpha] \\
 x \lor y & \text{otherwise}
\end{cases}
\]

Then, we have the following statement.

Theorem 4.12 Let \(I_{S, N} \) be an \((A, N)\)-implication generated by a continuous t-conorm \(S \) with the ordinal sum structure and a continuous fuzzy negation \(N \). Then, \(I_{S, N} \) fulfills (A5) with an aggregation function \(A \) if and only if \(A \leq A_{I_{S, N}} \), where \(A_{I_{S, N}} \) is defined as

\[
A_{I_{S, N}}(x, y) = \begin{cases}
 0 & N(x) \geq y \\
 a_\alpha + (e_\alpha - a_\alpha)f_\alpha^{-1} \left(f_\alpha \left(\frac{N(x) - a_\alpha}{e_\alpha - a_\alpha} \right) - f_\alpha \left(\frac{y - a_\alpha}{e_\alpha - a_\alpha} \right) \right) & N(x) \in [a_\alpha, e_\alpha] \text{ and } N(x) < y \\
 y & \text{otherwise}
\end{cases}
\]

and \(f_\alpha \) is the continuous additive generator of Archimedean t-conorm \(S_\alpha \).

Proof. With some tedious calculations according to Lemma 4.1, we can obtain \(A_{I_{S, N}} \) as follows

\[
A_{I_{S, N}}(x, y) = \begin{cases}
 0 & N(x) \geq y \\
 a_\alpha + (e_\alpha - a_\alpha)f_\alpha^{-1} \left(f_\alpha \left(\frac{N(x) - a_\alpha}{e_\alpha - a_\alpha} \right) - f_\alpha \left(\frac{y - a_\alpha}{e_\alpha - a_\alpha} \right) \right) & N(x) \in [a_\alpha, e_\alpha] \text{ and } N(x) < y \\
 y & \text{otherwise}
\end{cases}
\]

where \(f_\alpha \) is the additive generator of continuous Archimedean t-conorm \(S_\alpha \).

\((\Leftarrow)\) Since \(I_{S, N} \) fulfills (NP), \(I_{S, N} \) satisfies (A5) with \(A \) if \(A \leq A_{I_{S, N}} \) by Corollary 4.2.

\((\Rightarrow)\) Suppose that \(I_{S, N} \) satisfies (A5) with an aggregation function \(A \). We consider the following three cases:
i. If $N(a) \geq b$. In this case, we have $A(a, b) \leq A(a, N(a)) = 0 = A_{I_{S,N}}(a, b)$.

ii. If $N(a) \in [a_{\alpha}, e_{\alpha}]$ and $N(a) < b$. This case implies that $A_{I_{S,N}}(a, I_{S,N}(a, b)) = b \geq A(a, I_{S,N}(a, b))$ holds. By the continuity of $I_{S,N}$, we have $A(a, b) \leq A_{I_{S,N}}(a, b)$.

iii. If $N(a) / \in [a_{\alpha}, e_{\alpha}]$ and $N(a) < b$. In this case, we have $I_{S,N}(a, b) = b$. Therefore, $A(a, b) = A(a, I_{S,N}(a, b)) \leq b = A_{I_{S,N}}(a, b)$.

Remark 5. We can similarly obtain the results about the (A, N)-implications generated by the dual of representable aggregation function, weighted quasi-arithmetic mean, group functions generated by continuous functions with a neutral element e, respectively. Here, the repetitious details are shown no longer.

For a QL-operation I_{A_1, A_2}, it is easy to see that I_{A_1, A_2} satisfies (I3) and (I5) when A_1 is a disjunctor and A_2 is a conjunctor. Further, let the conjunctor A_2 have a left neutral element 1. Then, we have the fact that A_1 satisfies (LEM) if I_{A_1, A_2} is a QL-implication. Therefore, we only consider the case where I_{A_1, A_2} is obtained from a disjunctor A_1 having a left neutral element 0, a conjunctor A_2 having a neutral element 1 and a fuzzy negation N in the remainder of this section.

Lemma 4.13 Let I_{A_1, A_2} be a QL-implication generated by a disjunctor A_1 without one divisor, a conjunctor A_2 and a fuzzy negation N mentioned above. Then, I_{A_1, A_2} fulfills (A5) with any conjunctor having a left neutral element 1.

Proof. Since A_1 has not one divisor, A_1 fulfills (LEM) with N if and only if $N = N_{\top}$. Therefore, I_{A_1, A_2} is an (A, N)-implication generated by A_1 and N_{\top}. We can easily verify that I_{A_1, A_2} satisfies (A5) with conjunctor A having a left neutral element 1.

Further, we have $I_{A_1, A_2}(x, y) = A_1(N(x), A_2(x, y)) \leq A_1(N(x), A_2(1, y)) = A_1(N(x), y) = I_{A_1, N}(x, y)$. This means that I_{A_1, A_2} satisfies (A5) with the same conjunctor A if $I_{A_1, N}$ fulfills (A5) with A. In a general way, we can find a disjunctor A such that $I_{A_1, A_2}(x, y) = I_{A_1, N}(x, y) = A(1 - x, y)$ according to Theorem 2.17. Thus, we have the following statement.

Theorem 4.14 Let I_{A_1, A_2} be a QL-implication. Then, there exists always an
(A, N)-implication $I_{A,N}$ such that I_{A_1,A_2} satisfies (A5) with the same conjunctor A' if and only if $I_{A,N}$ fulfills (A5) with A'.

Proof. Obviously.

Theorem 4.15 Let C be an Archimedean copula with additive generator c. Then,

i. The probabilistic implication I_C generated by C satisfies (A5) with A if and only if $A \leq A_{I_C}$, where $A_{I_C}(x, y) = \begin{cases} 0 & \text{if } x = 0 \text{ or } y = 0 \\ c^{-1}(c(xy) - c(x)) & \text{otherwise} \end{cases}$

and c is the additive generator of C;

ii. The probabilistic S-implication \bar{I}_C generated by C satisfies (A5) with A if and only if $A \leq A_{\bar{I}_C}$, where $A_{\bar{I}_C}(x, y) = \begin{cases} 0 & \text{if } x + y \leq 1 \\ c^{-1}(c(x + y - 1) - c(x)) & \text{otherwise} \end{cases}$.

Proof. The proof is similar to that of Theorem 4.12.

5 MT property of the ACRI method with well-known fuzzy implications

In this section we will investigate the MT property of the ACRI method for well-known fuzzy implications. Considering the fuzzy negation plays a vital role when the ACRI method satisfies (A5), we firstly study the case where the fuzzy negations are N_{\bot} and N_{\top}, respectively. Obviously, we have firstly the following statements.

Lemma 5.1 Let A be a conjunctor and the fuzzy implication I fulfill the condition $I(a, 0) = 0$. If $N_I = N_{\bot}$, then I satisfies (A4) with A and N_{\bot}.

Proof. By Lemma 3.5, I satisfies (DAC) with N_I and any conjunctor A. Therefore, it is sufficient to verify that the equals sign holds in (DAC). Indeed, $\bigvee_{y \in V} A(N_{\bot}(B(y)), I(D(x), B(y))) = N_I(D(x))$.

Lemma 5.2 Let the fuzzy implication I fulfill the condition $I(1, b) > 0$ for some $b \in (0, 1)$. Then, there does not exist any conjunctor such that I satisfies (A4) with the greatest fuzzy negation N_{\top}.

Proof. This proof is similar to that of Lemma 5.1.

However, it is difficult to investigate the satisfaction of (A4) in the ACRI
method with ordinary non-continuous fuzzy negation. We therefore only consider the case where \(N \) is a strong fuzzy negation in the rest of this section. As pointed out in Remark 1, the \((\text{CP}(N))\) acts as a bridge between the MP and MT properties in the ACRI method. Thus, we assume that the fuzzy implication \(I \) fulfills \((\text{NP})\) and the aggregation function \(A' \) has a left neutral element 1. And then we study the \((\text{CP}(N))\) with a strong fuzzy negation \(N \) for \((A, N)\)-, R-, QL-, \(f\)-, \(g\)-, probabilistic-, probabilistic S- and T-power implications, respectively.

Proposition 5.3 Let \(N \) be a strong fuzzy negation. Then, \((A, N)\)-implication \(I_{A,N} \) satisfies \((\text{CP}(N))\) if and only if \(A \) is commutative.

Proof. Obviously.

Lemma 5.4 Let \(A \) be a commutative and left-continuous aggregation function with respect to second variable. Then, the R-implication \(I_A \) satisfies \((\text{CP}(N))\) if and only if \(I_A(x, y) = N_I(A(x, N_I(y))) \).

Proof. (\(\Rightarrow\)) Suppose that \(I_A \) fulfills \((\text{CP}(N))\) with a strong fuzzy negation \(N \). We have \(N = N_I \) according to Corollary 1.5.7 in [55]. The left-continuity of \(A \) with respect to second variable implies that \(A \) and \(I_A \) satisfy \((\text{RP})\) by Lemma 3.1 in [14]. Therefore, we have \(A(x, y) \leq z \iff y \leq I_A(N_I(z), N_I(x)) \iff A(N_I(x), y) \leq N_I(z) \iff z \leq N_I(A(N_I(x), y)) \).

This implies that \(I_A(x, y) = \max\{z \in [0, 1] | A(x, z) \leq y\} = \max\{z \in [0, 1] | z \leq N_I(A(N_I(x), y))\} = N_I(A(N_I(x), y)) \).

(\(\Leftarrow\)) Since \(A \) is commutative and \(N_I \) is strong, we can easily verify that \(I_A(x, y) = N_I(A(x, N_I(y))) \) satisfies \((\text{CP}(N))\).

Remark 6. i. In this case, \(I_A(x, y) = A_{N_I}(N_I(x), y) \) is an \((A, N)\)-implication, where \(A_{N_I}(x, y) = N(A(N_I(x), N_I(y))) \) is the dual of \(A \) with \(N_I \).

ii. Obviously, the aggregation function \(A \) has zero divisors. And then \(A(x, y) = 0 \) holds if and only if \(x \leq N_I(y) \).

For a QL-implication \(I_{A_1, A_2} \), the following equation holds if it fulfills \((\text{CP}(N))\):

\[
A_1(N(x), A_2(x, y)) = A_1(y, A_2(N(x), N(y))).
\]

Evidently, the disjunctor \(A_1 \) satisfies \((\text{LEM})\) if the conjunctor \(A_2 \) has a right neutral element 1. However, it is still not easy to solve this equation. So, we
only consider the case when \(A_1 \) is a continuous t-conorm and \(A_2 \) is a t-norm. And the corresponding result can be found in [65].

Lemma 5.5 [55] \(I_f \) fulfills (CP(N)) with a strong fuzzy negation if and only if \(f(0) < \infty \).

Lemma 5.6 [55] \(I_g \) does not satisfy (CP(N)) with any fuzzy negation.

Lemma 5.7 [23] \(I_C \) does not satisfy (CP(N)) with any fuzzy negation.

Lemma 5.8 [23] \(\tilde{I}_C \) satisfies (CP(N)) if and only if the equation \(C(x, y) = x + y - 1 + C(1 - y, 1 - x) \) holds.

Lemma 5.9 [60] i. If \(T \) is the Minimum t-norm, then \(I^T \) satisfies (CP(N)) if and only if \(N \) is strictly decreasing;

 ii. If \(T \) is a strict t-norm with additive generator \(t \), then \(I^T \) satisfies (CP(N)) if and only if \(N \) is a strong fuzzy negation given by \(N(x) = t^{-1}(\frac{k}{t(x)}) \) for some positive constant \(k \);

 iii. If \(T \) is a non-strict Archimedean t-norm, then \(I^T \) does not satisfy (CP(N)) with any fuzzy negation.

Theorem 5.10 Let the fuzzy implication \(I \) be R-implication, \((A, N)\)-implication, QL-implication, \(f \)-implication, probabilistic S-implication and \(T \)-power implications fulfilling (CP(N)), respectively. If \(I \) satisfies (A5) with an aggregation function \(A \), then \(I \) fulfills (A4) with the same \(A \).

Proof. We only consider the case where \(I \) is an R-implication. Other cases can be similarly proved. Since \(I \) fulfills (CP(N)), we have \(\bigvee_{y \in V} A(N(B(y)), I(D(x), B(y))) = \bigvee_{y \in V} A(N(B(y)), I(N(B(y)), N(D(x)))) = N(D(x)) \). In the last equality, we use the fact that \(I \) satisfies (A5) with \(A \).

However, it is not easy that the fuzzy implications fulfill (CP(N)). Therefore, it is worthy to consider the case when the fuzzy implications do not satisfy (CP(N)). We firstly modify the fuzzy implication by the method in [61] such that it satisfies (CP(N)). Let \(I \) be a fuzzy implication and \(N \) a strong fuzzy negation. The \(N \)-lower (upper)-contrapositivisation of \(I \), denoted as \(I^l_{I,N} \) (\(I^u_{I,N} \)) is defined as

\[
I^l_{I,N}(x, y) = \begin{cases}
I(x, y) & y \geq N(x) \\
I(N(y), N(x)) & \text{otherwise}
\end{cases}, \quad I^u_{I,N}(x, y) = \begin{cases}
I(x, y) & y \leq N(x) \\
I(N(y), N(x)) & \text{otherwise}
\end{cases}.
\]
We can obtain the fact that $I_{lc}^{I,N}$ and $I_{uc}^{I,N}$ satisfy (CP(N)) (see Theorems 1 and 4 in [61]). Further, the aggregation functions $A_{I_{lc}^{I,N}}$ and $A_{I_{uc}^{I,N}}$ can be constructed respectively according to Lemma 4.1. We have immediately the following result.

Theorem 5.11 Let I be a fuzzy implication and N a strong fuzzy negation. $I_{lc}^{I,N}$ and $I_{uc}^{I,N}$ satisfy (DAC) with $A_{I_{lc}^{I,N}}$ and $A_{I_{uc}^{I,N}}$, respectively.

Proof. This proof comes from Lemma 4.1.

Obviously, $I_{lc}^{I,N}$ and $I_{uc}^{I,N}$ are not equal to I unless I fulfills (CP(N)). For these well-known fuzzy implications, we begin to investigate the satisfaction of (A4) in case where the aggregation function is a special conjunctor. As Proposition 3.7 implies that I does not satisfy (A4) with any conjunctor A without zero divisor, we thus move on the next case when A has zero divisors. Inspired by Ref. [36], we further demand that the aggregation function A meets the following conditions:

(C1) A has a left neutral element 1;

(C2) $A(x, 1) < 1$ and $\varphi(x) = A(x, 1)$ is strictly continuous increasing;

(C3) $A(x, A(y, z)) = A(y, A(x, z))$.

According to Theorem 5.1 in [36], there exists a t-norm T such that $A(x, y) = T(\varphi(x), y)$. In this case, we can easily see that A has zero divisors if T has zero divisors. Therefore, we have the following statements.

Theorem 5.12 Let A be a continuous conjunctor fulfilling (C1)-(C3). Then, the fuzzy implication I satisfies (DAC) with A and N if and only if there exists an automorphism ϕ on $[0,1]$ such that $I_{A}(a, b) \leq \varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\varphi(N(b)))) \wedge 1$ holds for any $a, b \in [0,1]$.

Proof. (\Leftarrow) Obviously.

(\Rightarrow) Suppose that I satisfies (DAC) with A and N. The continuity of A implies that $I(a, b) \leq I_{A}(N(b), N(a))$ holds for any $a, b \in [0,1]$, where I_{A} is the R-implication generated by A. Thus, $I_{A}(N(b), N(a)) = \bigvee\{ z \in [0,1] | A(N(b), z) \leq N(a) \} = \bigvee\{ z \in [0,1] | T(\varphi(N(b)), z) \leq N(a) \} = \bigvee\{ z \in [0,1] | \varphi^{-1}((\varphi(\varphi(N(b)))) + \varphi(N(b))) \leq z \} = \bigvee\{ z \in [0,1] | T(\varphi(N(b)), z) \leq N(a) \} = \bigvee\{ z \in [0,1] | T(\varphi(N(b)), z) \leq N(a) \} = \bigvee\{ z \in [0,1] | T(\varphi(N(b)), z) \leq N(a) \}$
\(\varphi(z) - 1 \vee 0 \leq N(a) = \varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\phi(N(b)))) \wedge 1 \). Therefore,
\(I(a,b) \leq \varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\phi(N(b)))) \wedge 1 \).

Especially, \(I \) satisfies (A4) with \(A \) and \(N_I \) if 1 is a left neutral element of \(A \) by Proposition 3.4. This means that \(I \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0,1]\) such that \(I(a,b) \leq \varphi^{-1}(2 - \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \wedge 1 \) holds for any \(a, b \in [0,1] \).

Theorem 5.13 Let \(I_{A,N} \) is an \((A,N)\)-implication generated by a disjunctor \(A \) with a right neutral element 0 and a strong negation \(N \). If the continuous conjunctor \(A' \) fulfills (C1)-(C3), then \(I_{A,N} \) satisfies (A4) with \(A' \) and \(N \) if and only if there exists an automorphism \(\varphi \) on \([0,1]\) such that \(A(a,b) \leq \varphi^{-1}(\varphi((N(a)) + 1 - \varphi(\phi(N(b)))) \wedge 1 \) holds for any \(a, b \in [0,1] \). Especially, \(I_{A,N} \) satisfies (A4) with \(A' \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0,1]\) such that \(A(a,b) \leq (S_{LK})_{\varphi}(a, N_{\varphi}(\phi(N(b)))) \) holds for any \(a, b \in [0,1] \), where \((S_{LK})_{\varphi}\) is the \(\varphi \)-conjugate of Lukasiewicz t-conorm \(S_{LK} \).

Proof. \((\implies)\) This can be verified directly.

\((\impliedby)\) Assume that \(I_{A,N} \) satisfies (A4) with \(A' \) and \(N \). Since \(A \) has a right neutral element 0, we have \(N_{I_{A,N}} = N \leq N_{A'} = N_{\varphi} \). Further, there exists an automorphism \(\varphi \) on \([0,1]\) such that \((\varphi(\phi(N(b))) + \varphi(A(a,b)) - 1) \vee 0 \leq \varphi(a) \). This implies that \(\varphi(A(a,b)) \leq (1 - \varphi(\phi(N(b))) + \varphi(a)) \wedge 1 \). Then, we have \(A(a,b) \leq \varphi^{-1}(1 - \varphi(\phi(N(b))) + \varphi(a)) \wedge 1 \). Therefore, \(A(a,b) \leq (S_{LK})_{\varphi}(a, N_{\varphi}(\phi(N(b)))) \) holds for any \(a, b \in [0,1] \), where \((S_{LK})_{\varphi}\) is the \(\varphi \)-conjugate of Lukasiewicz t-conorm \(S_{LK} \).

Theorem 5.14 Let \(I_T \) be an R-implication generated by a continuous t-norm \(T \). If the continuous conjunctor \(A \) fulfills (C1)-(C3), then \(I_T \) satisfies (DAC) with \(A \) and \(N \) if and only if there exist an automorphism \(\varphi \) on \([0,1]\) and some continuous additive generators \(t_\alpha \) such that the following inequality holds for any \(a, b \in [a_\alpha, e_\alpha] \):
\[
t_\alpha \left(\frac{b - a_\alpha}{e_\alpha - a_\alpha} \right) - t_\alpha \left(\frac{a - a_\alpha}{e_\alpha - a_\alpha} \right) \leq t_\alpha \left(\frac{\varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\phi(N(b)))) \wedge 1 - a_\alpha}{e_\alpha - a_\alpha} \right).
\]

Especially, \(I_T \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exist an automorphism \(\varphi \) on \([0,1]\) and some continuous additive generators \(t_\alpha \) such that the
Theorem 5.15

Let a probabilistic S- and T-implications. This means that

\[t_\alpha \left(\frac{b-a_\alpha}{e_\alpha-a_\alpha} \right) - t_\alpha \left(\frac{a-a_\alpha}{e_\alpha-a_\alpha} \right) \leq t_\alpha \left(\frac{\varphi^{-1}(2 - \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1) - a_\alpha}{e_\alpha-a_\alpha} \right). \]

Proof. \((\Longleftrightarrow)\) This can be verified directly.

\((\Longrightarrow)\) Let \(I_T\) satisfy (A4) with \(A\) and \(N\). According to Theorem 5.12, we have

\[I_T(a, b) \leq \varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\phi(N(b)))) \land 1) \]

for all \(a, b \in [0, 1]\). By Theorem 2.5.24 in [55], \(I_T\) can be rewritten as follows:

\[I_T(x, y) = \begin{cases}
1 & a_\alpha + (e_\alpha - a_\alpha)I_{T_a} \left(\frac{x-a_\alpha}{e_\alpha-a_\alpha}, \frac{y-a_\alpha}{e_\alpha-a_\alpha} \right)
\quad \text{if } x \leq y \\
y & \text{otherwise}
\end{cases} \]

where \(I_{T_a}\) is an R-implication generated by the Archimedean t-norm \(T_a\). Obviously, it is sufficient to study the case when \(a, b \in [a_\alpha, e_\alpha]\). The continuity of \(T_a\) implies that there exists a continuous additive generator \(t_\alpha\) such that \(T_a(x, y) = t_\alpha^{-1}(t_\alpha(x) + t_\alpha(y)) \land t(0))\). We therefore have

\[t_\alpha \left(\frac{b-a_\alpha}{e_\alpha-a_\alpha} \right) - t_\alpha \left(\frac{a-a_\alpha}{e_\alpha-a_\alpha} \right) \leq t_\alpha \left(\frac{\varphi^{-1}(\varphi(N(a)) + 1 - \varphi(\phi(N(b)))) \land 1) - a_\alpha}{e_\alpha-a_\alpha} \right). \]

Similarly, we have the following statements for QL-, f-, g-, probabilistic, probabilistic S- and T-power implications.

Theorem 5.15 Let \(I_{A_1, A_2}\) be a QL-implication. If the continuous conjunctor \(A\) fulfills (C1)-(C3), then \(I_{A_1, A_2}\) satisfies (DAC) with \(A\) and \(N\) if and only if there exists an automorphism \(\varphi\) on \([0,1]\) such that \(A_1(a, A_2(N(a), b)) \leq \varphi^{-1}(\varphi(a) + 1 - \varphi(\phi(N(b)))) \land 1)\) holds for any \(a, b \in [0, 1]\). Especially, \(I_{A_1, A_2}\) satisfies (A4) with \(A\) and \(N_T\) if and only if there exists an automorphism \(\varphi\) on \([0,1]\) such that

\[A_1(a, A_2(N(a), b)) \leq \varphi^{-1}(1 + \varphi(a) - \varphi(\phi(\varphi^{-1}(1 - \varphi(b)))) \land 1) \]

holds for any \(a, b \in [0, 1]\).

Proof. \((\Leftarrow\Rightarrow)\) Obviously.

\((\Rightarrow\Leftarrow)\) We assume that \(I_{A_1, A_2}\) satisfies (DAC) with \(A\) and \(N\). The continuity of \(A\) implies that \(I_{A_1, A_2}(a, b) \leq I_A(N(b), N(a))\) holds for any \(a, b \in [0, 1]\), where \(I_A\) is the R-implication generated by \(A\). By Theorem 5.12, we have

\[A_1(a, A_2(N(a), b)) \leq \varphi^{-1}(\varphi(a) + 1 - \varphi(\phi(N(b)))) \land 1) \]

Especially, \(I_{A_1, A_2}\) satisfies (A4) with \(A\) and \(N_T\) if \(1\) is a left neutral element of \(A\) by Proposition 3.4. This means that \(I_{A_1, A_2}\) satisfies (A4) with \(A\) and \(N_T\) if and
only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(A_1(a, A_2(N(a), b)) \leq \varphi^{-1}(\varphi(a) + 1 - \varphi(\varphi(N(b)))) \land 1 \) holds for any \(a, b \in [0, 1] \). Therefore, \(I_{A_1, A_2} \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(A_1(a, A_2(N(a), b)) \leq \varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1 \) holds for any \(a, b \in [0, 1] \).

Theorem 5.16 Let \(I_f \) be an \(f \)-implication. If the continuous conjunctor \(A \) fulfills (C1)-(C3), then \(I_f \) satisfies (DAC) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(a f(b) \leq f(\varphi^{-1}(\varphi(a) + 1 - \varphi(\varphi(N(b)))) \land 1) \) holds for any \(a, b \in [0, 1] \). Especially, \(I_f \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(a f(b) \leq f(\varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1) \) holds for any \(a, b \in [0, 1] \).

Proof. This proof is similar to that of Theorem 5.15.

Theorem 5.17 Let \(I_g \) be a \(g \)-implication. If the continuous conjunctor \(A \) fulfills (C1)-(C3), then \(I_g \) satisfies (DAC) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(\frac{g(b)}{a} \leq g(\varphi^{-1}(\varphi(a) + 1 - \varphi(\varphi(N(b)))) \land 1) \) holds for any \(a, b \in [0, 1] \). Especially, \(I_g \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(\frac{g(b)}{a} \leq g(\varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1) \) holds for any \(a, b \in [0, 1] \).

Proof. It can be proved similarly to Theorem 5.15.

Theorem 5.18 Let \(I_C \) be a probabilistic implication generated by the copula \(C \) and the continuous conjunctor \(A \) fulfill (C1)-(C3). \(I_C \) satisfies (DAC) with \(A \) and \(N_I \) if and only if \(C(a, b) \leq a \varphi^{-1}(\varphi(a) + 1 - \varphi(\varphi(N(b)))) \land 1) \) holds, where \(\varphi \) is an automorphism on \([0, 1]\). Especially, \(I_C \) satisfies (A4) with \(A \) and \(N_I \) if and only if \(C(a, b) \leq a \varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1) \).

Proof. It can be proved similarly to Theorem 5.15.

Theorem 5.19 Let \(\tilde{I}_C \) be a probabilistic S-implication generated by the copula \(C \). If the continuous conjunctor \(A \) fulfills (C1)-(C3), then \(\tilde{I}_C \) satisfies (DAC) with \(A \) and \(N_I \) if and only if there exists an automorphism \(\varphi \) on \([0, 1]\) such that \(C(a, b) \leq \varphi^{-1}(\varphi(a) + 1 - \varphi(\varphi(N(b)))) \land 1) + a - 1 \) holds for any \(a, b \in [0, 1] \). Especially, \((\tilde{I}_C, A) \) satisfies (A4) with \(A \) and \(N_I \) if and only if there exists an
automorphism \(\varphi \) on \([0,1]\) such that \(C(a, b) \leq \varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1 + a - 1 \) holds for any \(a, b \in [0, 1] \).

Proof. This proof is similar to that of Theorem 5.15.

Theorem 5.20 Let \(I^T \) be \(T \)-power implication.

i. \(I^{TM} \) satisfies (DAC) with \(A \) and \(N \) if and only if \(A \) has a right neutral element 1;

ii. If \(T \) is a continuous Archimedean t-norm and the continuous conjunctor \(A \) fulfills (C1)-(C3), then \(I^T \) satisfies (DAC) with \(A \) and \(N \) if and only if there exists an automorphism \(\varphi \) on \([0,1]\) such that \(t(a, b) \leq \varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1 \), where \(t \) is the additive generator of \(T \). Especially, \(I^T \) satisfies (A4) with \(A \) and \(N_T \) if and only if there exists an automorphism \(\varphi \) on \([0,1]\) such that \(\frac{t(a, b)}{t(0, 0)} \leq \varphi^{-1}(1 + \varphi(a) - \varphi(\varphi^{-1}(1 - \varphi(b)))) \land 1 \) holds for any \(a, b \in [0, 1] \).

Proof. This proof is similar to that of Theorem 5.15.

6 Fuzzy reasoning with fuzzy implication satisfying (A4) ((A5)) and examples

Let us firstly conclude our methods to discuss the satisfaction of (A4) or (A5) for fuzzy implications in this section. Further, we will propose an ACRI method employed the fuzzy implications which fulfill (A4) or (A5).

6.1 Fuzzy reasoning with fuzzy implication satisfying (A4) or (A5)

In order to investigate the the satisfaction of (A4) and (A5) for fuzzy implication, we use the following methods and processes:

(1) The following relationships are firstly revealed. That is,

i. \(I \) satisfies (DAC) \(\xrightarrow{\text{Proposition 3.3}} I \) satisfies (A4);

ii. \(I \) satisfies (AC) \(\xrightarrow{\text{Proposition 3.9}} I \) satisfies (A5).

Based on the relationship, we then discuss

(2) The satisfaction of (A5) for fuzzy implications.

i. For a given fuzzy implication \(I, A_I \) can be constructed and \((I, A_I) \) satisfies
(AC) (see Lemma 4.1);

ii. By Lemma 4.1 and Corollary 4.2, the condition for well-known fuzzy implications fulfilling (A5) can be obtained (see Theorems 4.3, 4.6-4.9, 4.12, 4.14 and 4.15).

Parallelly, we finally study

(3) The satisfaction of (A4) for fuzzy implication.

i. If I fulfills (CP(N)), then (A5) \Rightarrow (A4) (see Theorem 5.10). Therefore, it is sufficient to consider the condition for I which satisfies (CP(N)) and (A5).

ii. If I does not fulfill (CP(N)), the following two tactics are utilized:

(i) I is respectively modified as $I_{lc}^{l,N}$ and $I_{uc}^{r,N}$ which satisfy (CP(N)) (see Theorem 5.11);

(ii) Demand that the aggregation function A meets (C1)-(C3) (see Theorem 5.12). Especially, the conditions for well-known fuzzy implications satisfying (DAC) can be obtained (see Theorems 5.13-5.20).

It is well known that the fuzzy implication I is usually used to interpret the Promise 1 in FMP and FMT problems. According to the conclusion above, we thus propose the ACRI method as follows. The aggregation function A would rather be selected such that (A,I) fulfills (A5) in the ACRI method for FMP problem. This case implies that the conclusion B' in FMP problem accords with the following intuition of human being: The nearer are between promise 2 and the antecedent of promise 1, the nearer are between conclusion and the consequent of promise 1. Especially, the conclusion is equal to the consequent of promise 1 if promise 2 is the antecedent of promise 1. For instance, if the R-implication I_T generated by the left continuous t-norm T is chosen to interpret the Promise 1 in FMP problem, we should select an aggregation function A with a left neutral element 1 such that $A \leq T$ to compose the Promise 1 with Promise 2 in the ACRI method for FMP problem according to Theorem 4.3.

Similarly, we would rather choose the aggregation function A such that (A,I) fulfills (A4) in the ACRI method for FMT problem. In this case, the conclusion D' in FMT problem conforms to the following intuition of human being: The
farther are between promise 2 and the consequent of promise 1, the farther are between conclusion and the antecedent of promise 1. Especially, the conclusion is equal to the negation of consequent of promise 1 if promise 2 is the negation of antecedent of promise 1. For example, if the (A,N)-implication come from a continuous t-conorm S with the ordinal sum structure and a strong negation N is chosen to interpret the promise 1 in FMT problem, the aggregation function A should be selected such that $A \leq A_{I,A,N}$ to compose the promise 1 with promise 2 in ACRI method for FMT problem by Theorem 5.10. Especially, for a given aggregation function A in the ACRI method for FMT problem, if we know partial information of A, that is, A fulfills (C1)-(C3), then we can select a suitable fuzzy implication to interpret the promise 1 in FMT problem by Theorems 5.13-5.20.

6.2 Examples

In this subsection we will present two examples to illustrate the results obtained in the previous sections.

Example 6.1 To automatically diagnose whether the patients have illness, we need to construct a flexible classification to divide entities which denote the patients possess the attributions into three classes, patient has a diagnosis (Y), probably has (further evaluation is advisable) (M), and does not have (N). According to the knowledge of domain experts, a fuzzy medical classification is formalized by two attributes as follows:

IF attribute 1 is high AND attribute 2 is high, THEN Y,
IF attribute 1 is medium AND attribute 2 is high, THEN Y,
IF attribute 1 is low AND attribute 2 is high, THEN M,
IF attribute 1 is high AND attribute 2 is low, THEN M,
IF attribute 1 is medium AND attribute 2 is low, THEN N,
IF attribute 1 is low AND attribute 2 is low, THEN N.

Where attributes 1 and 2 denote a patient has exhibited symptoms. Here, we use the following linguistic variables for attribute 1: high, medium and low. And the attribute 2 is characterized with the following linguistic labels: high
and low. The membership functions of linguistic variables for attributes 1 and 2 are shown in Fig.1.

![Membership functions of linguistic variables for attributes 1 and 2](image)

Figure 1 The membership functions of linguistic variables for attributes 1 and 2

To obtain the conclusion from the following pattern

Premise 1: IF \(x \) is \(D \) THEN \(y \) is \(B \)

Premise 2: \(x \) is \(D' \)

\(D' \) differs from \(D \), but \(D' \) is near from \(D \)

Conclusion: \(y \) is \(B' \) with \(B' \) is not far from \(B \),

the aggregation function \(A(x, y) = (x + y - 1) \lor 0 \) is employed to interpret the word “and” while the Lukasiewicz implication \(I_{LK}(x, y) = (1 - x + y) \land 1 \) is used to interpret the fuzzy rule. By the discussion above, they fulfill (A5). For the entity \(E_1 = (11, 3) \), we use triangular fuzzifier to translate \(E_1 \) into a fuzzy input which attribute 1 is medium and attribute 2 is low. Obviously, \(E_1 \) satisfies the antecedent of the fifth fuzzy rules. With our proposed method, the conclusion should be equal to the consequent of the fifth fuzzy rules. Therefore, we have
the fact that E_1 belongs to the class “N”. Similarly, the entity $E_2 = (20, 2)$ belongs to the class “M”. And the entity $E_3 = (22, 8)$ belongs to the class “Y”. These entities belonging to the classes are shown in Figure 2.

![Figure 2 The classes of entities with attributes 1 and 2](image)

Example 6.2 Let $D_1 = high = [1, 0.1, 0, 0.05]$ be a fuzzy set on $U_1 = \{x_{11}, x_{12}, x_{13}, x_{14}\}$ denoted the sugar of apple, $D_2 = red = [0, 0.9, 0.04, 0, 0]$ a fuzzy set on $U_2 = \{x_{21}, x_{22}, x_{23}, x_{24}, x_{25}\}$ expressed the colour of apple and $B = ride = [0.3, 0.2, 0.4]$ a fuzzy on $V = \{y_1, y_2, y_3\}$ described the maturity of apple. In order to deduce the apple whether is ride, we suppose to consider the two-input-one-output fuzzy system including the following single fuzzy IF-THEN rule

\[
\text{IF } x_1 \text{ is } D_1 \text{ and } x_2 \text{ is } D_2 \text{ THEN } y \text{ is } B.
\]

Assume that the Reichenbach implication $I_{RC}(x, y) = 1 - x + xy$ is used to interpret the IF...THEN rule. Similarly, in order to achieve the scheme of fuzzy reasoning mentioned in Example 6.1, we construct the aggregation function $A_{I_{RC}}$ as $A_{I_{RC}}(x, y) = \begin{cases} 1 - \frac{1-x}{x} & x \neq 0 \text{ and } x+y \geq 1 \\ 0 & \text{otherwise} \end{cases}$ according to Lemma 4.1. By Theorem 4.3, we have the fact that I_{RC} satisfies (A5) with $A_{I_{RC}}$. Let $D_1' = [1, 0, 0, 0]$ and $D_2' = [0, 1, 0, 0]$ be the fuzzy single input. With the ACRI method involved I_{RC} and $A_{I_{RC}}$, the conclusion B' can be calculated as $B' = [0.37, 0.28, 0.46]$. We can assert that B' and B is near because the fuzzy input $D' = D'_1 \times D'_2$
is close to the antecedent of fuzzy rule $D = D_1 \times D_2$. Indeed, according to the distance measures between two fuzzy sets in [62, the distance between D and D' is defined as $d(D', D) = \left(\sum_{i=1}^{n} |D(x_i) - D'(x_i)|^p \right)^{\frac{1}{p}}$ with $p \geq 1$. Let $p = 2$. We can obtain $d(D'_1 \times D'_2, D_1 \times D_2) = 0.108$ and $d(B, B') = 0.122$. Especially, the output $B' = B$ if $D' = D'_1 \times D'_2 = D_1 \times D_2 = D$. However, if we chose the greatest disjunct D_\top to interpret the word “and” in FMP problem. It is easy to see that I_{RC} does not fulfills (A5) with D_\top. And then the conclusion B'' of FMP problem with the ACRI method involved I_{RC} and D_\top is $B'' = [1, 1, 1]$. Obviously, $d(B, B'') = 1.22 > 0.122 = d(B, B')$.

Remark 7. For convenience to show our proposed method, Example 6.2 only consider the case that the fuzzy sets defined on the discrete universes. It is not difficult to see that the conclusions are near if the fuzzy input and the antecedent of fuzzy rule are not far in the case that the fuzzy sets define on the continuous universes. Especially, that the conclusions are B (D^C) if $D' = D$ ($D' = B^C$). This means that our proposed method possesses the adaptability for any fuzzy set involved in FMP and FMT problems. Therefore, it can be utilized to make the valid uncertain reasoning in practice.

6.3 Advantages and limitations of our proposed method

From the above example, if the fuzzy implication and aggregation function satisfy (A5), it is clear that the output of FMP problem accords with the following intuition of human being: The nearer are between promise 2 and the antecedent of promise 1, the nearer are between conclusion and the consequent of promise 1. Especially, the conclusion is equal to the consequent of promise 1 if promise 2 is the antecedent of promise 1. And then the advantages of our proposed inference method can be summarized as follows.

- Satisfaction of classical modus ponens. For a fuzzy implication which is used to interpret the fuzzy rule, we can construct a corresponding aggregation function such that the output of FMP problem is $B' = B$ when the input is equal to the antecedent of fuzzy rule.
• Satisfaction of classical modus tollens. If a given fuzzy implication is used to interpret the fuzzy rule, a corresponding aggregation function can be obtained such that the output of FMT problem is $B' = D^C$ when the input is the negation of antecedent of promise 1. Especially, for a given aggregation function A which is used to interpret the word “and”, if A fulfills (C1)-(C3), then we can select a suitable fuzzy implication to interpret the Promise 1 in FMT problem, and then the the output of FMT problem is $B' = D^C$ when the input is the negation of antecedent of promise 1.

Although the classical modus ponens has been consider in some methods to solve the FMP problem [14, 18, 19, 21, 22, 45, 48], these methods cannot ensure that the classical modus tollens property holds. By contrast, our proposed method considers not only the classical modus ponens property but also the classical modus tollens property. However, our proposed method also has the following limitations.

• Deficiency of a logical foundation. Considering our proposed method based on ACRI method, it still possesses the deficiency of CRI method as pointed out by some researchers [17, 20–22, 43].

• Failed to ensure the classical modus ponens and modus tollens hold together. Unlike the methods in Ref. [47, 50], our proposed method cannot find an aggregation function such that the classical modus ponens and modus tollens hold together for the well-known fuzzy implications. Notice that Gera used a sigmoid-like function to construct fuzzy set in order to ensure the reasoning fulfills MP and MT properties together. Perhaps, this is a direction of our research in future.

With comparing the different fuzzy reasoning methods with our proposed method, we finally list together these fuzzy reasoning methods in Table 4.

Table 4 Comparison of several fuzzy reasoning methods
Expressing the word “AND” and Interpreting Fuzzy Rule

Method	Type	Interpretation	MP	MT	Logic foundation
Baldwin’s method	t-norm	Lukasiewicz Implication	No	No	Yes
Mizumoto’s method	Lukasiewicz t-norm	Lukasiewicz Implication	Yes	Yes	Yes
Turksen’s method	Matching function	Modification function	Yes	No	Yes
Wang’s method	Left-continuous t-norm	R-implication	Yes	No	Yes
Zhou’s method	Left-continuous t-norm	R-implication	Yes	No	Yes
Gera’s method	t-norm	Fuzzy implication	Yes	Yes	No
Trillas’ method	Continuous t-norm	R (S)-implications	Yes	Yes	No
Our proposed method	Aggregation functions	More fuzzy implications	Yes	Yes	No

7 Conclusions

Aggregation functions and fuzzy implications play an important role in fuzzy inference. In order to enhance the effectiveness of ACRI method, we then have studied the MP and MT properties of the ACRI method with well-known fuzzy implications using the axioms (A4) and (A5) in detail. Concretely, we have

1. Analyzed the properties of aggregation functions and fuzzy implications involved satisfying (A4) or (A5) in the ACRI method;
2. Constructed the aggregation function for well-known fuzzy implications satisfying (A5) in the ACRI method;
3. Given the conditions for well-known fuzzy implications satisfying (A4) with a strong negation in the ACRI method;
4. Shown an ACRI fuzzy inference method involved well-known fuzzy implications and aggregation functions which fulfill (A4) or (A5).

These results contribute to improve the effectiveness of the ACRI method. In the future, we will investigate the validity of the ACRI method using the axioms (A6) and (A7). Considering that some linguistic modifiers are involved in (A6) and (A7), we will extend them as follows:

\[(A6') B' = m(B) \text{ if } D' = m(D)\];
\[(A7') B' = B \text{ if } D' = m(D), \text{ where } m \text{ is a fuzzy modifier.}\]

We also will study the MP and MT properties of ACRI method for interval-valued fuzzy sets, fuzzy soft sets and so on. And will apply them in real-life
Moreover, considering there exists still some deficiencies in ACRI method as pointed out by some researchers [5, 17, 20, 22, 43], we will study the MP and MT properties for similarity-based approximate reasoning (SBR) method, triple implication principle (TIP) method and quintuple implication principle (QIP).

8 Acknowledgement

The authors would like to thank the anonymous referees and the Editor-in-Chief for their valuable comments. This work was supported by the National Natural Science Foundation of China (Grant No. 61673352).

9 Compliance with ethical standards

Conflict of interest Author declares that he has no conflict of interest.

Human and animal rights This article does not contain any studies with human participants or animals performed by the authors.

Data availability statement This article has no associated data.

References

[1] E. Hüllermeier, Fuzzy sets in machine learning and data mining, Applied Soft Computing 11(2)(2011)1493-1505.

[2] E. Kerre, M. Nachtegaele, Fuzzy Techniques in Image Processing, ser. Studies in Fuzziness and Soft Computing, New York: Springer-Verlag, 2000, vol. 52.

[3] T.Y. Ma, Z.P. Li, J.P. Liu, A.F. Alkhateeb, H. Jahanshahi, A novel self-learning fuzzy predictive control method for the cement mill: Simulation and experimental validation, Engineering Applications of Artificial Intelligence 120(2023)105868.

[4] S.K. Paul, P. Chowdhury, K. Ahsan, S.M. Ali, G. Kabir, An advanced decision-making model for evaluating manufacturing plant locations using
fuzzy inference system, Expert Systems with Applications 191(2022)116-378.

[5] L.X. Wang, A Course in Fuzzy Systems and Control, Prentice Hall PTR, Upper Saddle River, 1997.

[6] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, II, III, Information Sciences 8(1975)199-249, 301-357, 9(1975)43-80.

[7] B.D. Baets, E.E. Kerre, The generalized modus ponens and the triangular fuzzy data model, Fuzzy Sets and Systems 59(1993)305-317.

[8] B. Bouchon-Meunier, R. Mesiar, C. Marsala, M. Rifci, Compositional rule of inference as an analogical scheme, Fuzzy Sets and Systems 138(2003)53-65.

[9] D. Driankov, Inference with a single fuzzy conditional proposition, Fuzzy Sets and Systems 24(1987)51-63.

[10] S. Jenei, Continuity in zadeh’s compositional rule of inference, Fuzzy Sets and Systems 104(1999)333-339.

[11] M. Mizumoto, H.J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy Sets and Systems 8(1982)253-283.

[12] N.N. Morsi, A.A. Fahmy, On generalized modus ponens with multiple rules and a residuated implication, Fuzzy Sets and Systems 129(2002)267-274.

[13] D. Ruan, E.E. Kerre, On the extension of the compositional rule of inference, International Journal of Intelligent Systems 8(7)(2010)807-817.

[14] D.C. Li, Q.X. Zeng, Approximate reasoning with aggregation functions satisfying GMP rules, Artificial Intelligence Review 55(2022)5575-5595.

[15] W. Pedrycz, Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data, Fuzzy Sets and Systems 16(2)(1985)163-175.

[16] M.X. Luo, R.R. Zhao, B. Liu, J.J. Liang, Interval-valued fuzzy reasoning algorithms based on Schweizer-Sklar t-norms and its application, Engineering Applications of Artificial Intelligence 87(2020)103313.
[17] M. Mizumoto, Fuzzy reasoning under new compositional rules of inference, Kybernetes 12(1985)107-117.

[18] D.W. Pei, Unified full implication algorithms of fuzzy reasoning, Information Sciences 178(2)(2008)520-530.

[19] S. Raha, N.R. Pal, K.S. Ray, Similarity-based approximate reasoning: methodology and application, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 32(4)(2002)541-547.

[20] I.B. Turksen, Z. Zhong, An approximate analogical reasoning approach based on similarity measures, IEEE Trans. Syst. Man Cybern. 18(1988)1049-1056.

[21] G.J. Wang, On the logic foundation of fuzzy reasoning, Information Sciences 117(1999)47-88.

[22] B.K. Zhou, G.Q. Xu, S.J. Li, The Quintuple Implication Principle of fuzzy reasoning, Information Sciences 297(2015)202-215.

[23] M. Baczyński, P. Grzegorzewski, P. Helbin, W. Niemys, Properties of the probabilistic implications and s-implications, Information Sciences 331(2016)2-14.

[24] G.P. Dimuro, B. Bedregal, J. Fernandez, M. Sesma-Sara, J.M. Pintor, H. Bustince, The law of O-conditionality for fuzzy implications constructed from overlap and grouping functions, International Journal of Approximate Reasoning 105(2019)27-48.

[25] G.P. Dimuro, B. Bedregal, R.H.N. Santiago, On (G, N)-implications derived from grouping functions, Information Sciences 279(2014)1-17.

[26] P. Grzegorzewski, Probabilistic implications, Fuzzy Sets and Systems 226(2013)53-66.

[27] R. Yager, On some new classes of implication operators and their role in approximate reasoning, Information Sciences 167(2004)193-216.

[28] Y. Ouyang, On fuzzy implications determined by aggregation operators, Information Sciences 193(2012)153-162.
[29] A. Pradera, G. Beliakov, H. Bustince, B.D. Baets, A review of the relationships between implication, negation and aggregation functions from the point of view of material implication, Information Sciences 329(2016)357-380.

[30] H.J. Zimmermann, P. Zysno, Latent connectives in human decision making, Fuzzy Sets and Systems 4(1980)37-41.

[31] Y.M. Li, Z.K. Shi, Z.H. Li, Approximation theory of fuzzy systems based upon genuine many-valued implications: SISO cases, Fuzzy Sets and Systems, 130(2002)147-157.

[32] Y.M. Li, Z.K. Shi, Z.H. Li, Approximation theory of fuzzy systems based upon genuine many-valued implications: MIMO cases, Fuzzy Sets and Systems 130(2002)159-174.

[33] M. Hudec, E. Mináriková, R. Mesiar, A. Saranti, Classification by ordinal sums of conjunctive and disjunctive functions for explainable AI and interpretable machine learning solutions, Knowledge-Based Systems 220(2021)106916.

[34] H.W. Wu, J.M. Mendel, On choosing models for linguistic connector words for Mamdani fuzzy logic systems, IEEE Transaction on Fuzzy Systems 12(2004)29-44.

[35] H. Bustince, M. Pagola, R. Mesiar, E. Hüllermeier, F. Herrera, Grouping, overlap, and generalized bientropic functions for fuzzy modeling of pairwise comparisons, IEEE Transaction on Fuzzy Systems 20(2012)405-415.

[36] J.C. Fodor, A new look at fuzzy connectives, Fuzzy Set and Systems 57(1993)141-148.

[37] M. Deveci, I. Gokasar, A.R. Mishra, P. Rani, Z. Ye, Evaluation of climate change-resilient transportation alternatives using fuzzy Hamacher aggregation operators based group decision-making mode, Engineering Applications of Artificial Intelligence 119(2023)105824.

[38] P. Helbin, M. Baczyński, P. Grzegorzewski, W. Niemyska, Some properties of fuzzy implications based on copulas, Information Sciences 502(2019)1-17.
[39] M. Mas, M. Monserrat, D. Ruiz-Aguilera, J. Torrens, Uninorm based residual implications satisfying the Modus Ponens property with respect to a uninorm, Fuzzy Sets and Systems 359(2019)22-41.

[40] M. Mas, M. Monserrat, J. Torrens, D. Ruiz-Aguilera, RU and (U, N)-implications satisfying Modus Ponens, International Journal of Approximate Reasoning 73(2016)123-137.

[41] A. Pradera, G. Beliakov, H. Bustince, Aggregation functions and contradictory information, Fuzzy Sets and Systems 191(2012)41-61.

[42] A. Pradera, S. Massanet, D. Ruiz-Aguilera, J. Torrens, The non-contradiction principle related to natural negations of fuzzy implication functions, Fuzzy Sets and Systems 359(2019)3-21.

[43] J. Baldwin, B. Pilsworth, Axiomatic approach to implication for approximate reasoning with fuzzy logic, Fuzzy Sets and Systems 3(1980)193-219.

[44] S. Fukami, M. Mizumoto, K. Tanaka, Some considerations on fuzzy conditional inference, Fuzzy Sets and Systems 3(1980)243-273.

[45] P. Magrez, P. Smets, Fuzzy modus ponens: A new model suitable for applications in knowledge-based systems, International Journal of Intelligent Systems 4(1989)181-200.

[46] C. Alsina, E. Trillas, When (S,N)-implications are (T,T1)-conditional functions? Fuzzy Sets and Systems 134(2003)305-310.

[47] Z. Gera, Computationally efficient reasoning using approximated fuzzy intervals, Fuzzy Sets and Systems 158(2007)689-703.

[48] W.H. Li, F. Qin, A.F. Xie, Modus ponens property of T-power based implications, Fuzzy Sets and Systems 431(2022)129-142.

[49] M. Mas, M. Monserrat, J. Torrens, Modus Ponens and Modus Tollens in discrete implications, International Journal of Approximate Reasoning 49(2008)422-435.

[50] E. Trillas, C. Alsina, A. Pradera, On MPT-implication functions for fuzzy logic, Rev. R. Acad. Cienc., Ser. A Mat. 98(2004)259-271.

[51] R. Lowen, On fuzzy complements, Information Sciences 14(2)(1978)107-113.
[52] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, 1995.

[53] M. Grabisch, J.L. Marichal, R. Mesiar, E. Pap, Aggregation Functions, Cambridge University Press, New York, 2009.

[54] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers, Dordrecht, Boston, London, 2000.

[55] M. Baczyński, B. Jayaram, Fuzzy Implications, Springer, Berlin, 2008.

[56] D.C. Li, Q.N. Guo, MISO hierarchical inference engine satisfying the law of importation with aggregation functions, Artificial Intelligence Review 56(2023)10961-10986.

[57] S. Massanet, J. Recasens, J. Torrens, Fuzzy implication functions based on powers of continuous t-norms, International Journal of Approximate Reasoning 83(2017)265-279.

[58] L.A. Zadeh, Fuzzy sets, Inform Control 8(1965)338-353.

[59] B. Jayaram, M. Baczyński, R. Mesiar, R-implications and the exchange principle: The case of border continuous t-norms, Fuzzy Sets and Systems 224(2013)93-105.

[60] S. Massanet, A. Pradera, D. Ruiz-Aguilera, J. Torrens, Equivalence and characterization of probabilistic and survival implications, Fuzzy Sets and Systems 359(2019)63-79.

[61] I. Aguiló, J. Suñer, J. Torrens, New types of contrapositivisation of fuzzy implications with respect to fuzzy negations, Information Sciences 322(2015)223-236.

[62] R. Zwick, E. Carlstein, D. V. Budescu, Measurement of similarity between fuzzy concepts: A comparative analysis, Approximate Reasoning 1(1987)221-241.

[63] M. Baczyński, B. Jayaram, R. Mesiar, On special fuzzy implications, Fuzzy Sets and Systems 160(2009)2063-2085.

[64] M. Elkano, M. Galar, J. Sanz, H. Bustince, Fuzzy rule-based classification systems for multiclass problems using binary decomposition strategies:
on the influence of n-dimensional overlap functions in the fuzzy reasoning method, Information Sciences 332(2016)94-114.

[65] J.C. Fodor, T. Keresztfalvi, Nonstandard conjunctions and implications in fuzzy logic, International Journal of Approximate Reasoning 12(2)(1995)69-84.

[66] M. Mas, M. Monserrat, J. Torrens, E. Trillas, A survey on fuzzy implication functions, IEEE Transactions on Fuzzy Systems 15(6)(2008)1107-1121.

[67] S. Massanet, J. Recasens, J. Torrens, Some characterizations of T-power based implications, Fuzzy Sets and Systems 359(2019)42-62.

[68] H.J. Zimmermann, Operations in models of decision making, in Fuzzy Information Engineering, D. Dubois, H. Prade, and R. R. Yager, Eds. New York, Wiley, 1997.