Hall effects on MHD Convective flow of Visco-elastic fluid through a rotating porous channel

G. RAJU* and R. SIVA PRASAD

Department of Mathematics, S.K.University, Anantapur, Andhra Pradesh, India
Email of Corresponding Author: rajumaths2010@gmail.com; rsprasad_racharla@yahoo.co.in
http://dx.doi.org/10.22147/jusps-A/280702

Acceptance Date 18th October, 2016,          Online Publication Date 2nd Dec., 2016

Abstract

In this paper, we consider hydromagnetic convective flow of an electrically conducting visco-elastic fluid through a rotating porous channel taking hall current into account. The governing equations are framed using Brinkman model. The exact solutions of the velocity and the temperature distributions are evaluated analytically using Laplace transform technique and which consist of the both steady and transient states. Thought is centered on the physical character of the solutions, and the construction of the various kinds of boundary layers outward appearance on the plates. The ultimate steady state velocity and temperature distributions are numerically discussed for various values of the flow parameters. The shear stresses and the Nusselt number are tabulated and discussed.

Key words: Convective flows, heat source, heat transfer, porous medium, rotating channels and unsteady state flows

Nomenclature

| Symbol | Description |
|--------|-------------|
| u      | dimensionless axial velocity component |
| v      | dimensionless transverse velocity component |
| \rho   | the density of the fluid, |
| \mu_e  | the magnetic permeability, |
| \nu    | the coefficient of kinematic viscosity, |
| k      | the permeability of the medium, |
| H_0    | the applied magnetic field, |
| \alpha | the normal stress modulus, |
| T      | non-dimensional time, |
| T_0    | the characteristic temperature, |

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-sa/4.0)
The dimensional heat source parameter,
acceleration due to gravity,
the coefficient of volume expansion,
the strength of the heat source
the specific heat at constant pressure
the velocity vector,
the electric field,
the current density vector,
the cyclotron frequency,
the electron collision time,
the fluid conductivity,
the electron charge and
the electron pressure.
the gradient of the temperature along \( x \) direction
the gradient of the temperature along \( y \) direction
the Heaviside's unit step function
the Hartmann number (Magnetic field parameter),
the Ekman number,
the hall paramter
the second grade fluid parameter,
the inverse Darcy Parameter,
the Prandtl number,
the Heat source Parameter,
the Pressure gradient Parameter,
the Grashof number,
the Grashof number along \( x \) direction
the Grashof number along \( y \) direction

1. Introduction

The hydromagnetic rotating flow of non-Newtonian fluids between parallel plates has important applications in magnetohydrodynamic (MHD) power generators and pumps, accelerators ... etc. The flow through porous medium is very important particularly in the fields of agricultural engineering and technology for irrigation processes, especially in petroleum industry to study petroleum extraction process and transport, also in chemical engineering and technology for filtration and purification processes. A succession of explorations made by Raptis et al.\(^1\), \(^2\), \(^3\) into the study of two-dimensional flow through porous medium past an infinite vertical wall. Many authors\(^4\)-\(^9\) discussed an oscillatory three-dimensional flow through a porous medium. The MHD flow through a duct/planar channels has also been studied by various researchers\(^10\)-\(^16\). Ganapathy\(^17\) gave an alternative solution to the previous problem. Mazumder et al.\(^18\) analyzed the Hall effects on combined free and forced convection hydromagnetic flow through a channel. Singh\(^19\) studied MHD effects on oscillatory flow between two parallel flat plates when the entire system rotates about an axis normal to the planes of the plates. Hartman and Lazarus\(^20\) studied also the MHD effects on the flow of Newtonian fluid between two infinite parallel plates. The Hall current is important and it has a marked effect on the magnitude and direction of the current density and consequently on the magnetic force. Debnath et al.\(^21\) have studied the effects of Hall
current on unsteady hydro magnetic flow past a porous plate in a rotating fluid system. Rao and Krishna\textsuperscript{22,23} studied combined effects on the non-torsionally generated unsteady hydro magnetic flow in semi-infinite expansion of an electrically conducting viscous rotating fluid. Krishna and Suneetha\textsuperscript{24 and 25} discussed the Hall current effects on unsteady flow of Newtonian fluid between two rigid non-conducting rotating plates. Recently, Hall effects on an unsteady MHD flow of a viscous incompressible electrically conducting fluid in a horizontal porous channel with variable pressure gradient in a rotating system have discussed by Sanatan Das and Rabindranath Jana\textsuperscript{26}. The industrial applications include many transport processes where the simultaneous heat and mass transfer occurs as a result of combined buoyancy effects of thermal diffusion and diffusion of chemical species. Few attempts in this direction are made by Singh\textsuperscript{27}, Narahari\textsuperscript{28}, Narahari and Nayan\textsuperscript{[29]}, Narahari and Ishak\textsuperscript{30}, Chaudhary and Jain\textsuperscript{31}, Das et al.\textsuperscript{32}, Soundalgekar et al.\textsuperscript{33}, and Muthucumaraswamy et al.\textsuperscript{34,35}. Significant concern has been originated in the study of magnetic field and the electrically conducting fluids flow, while medium is porous\textsuperscript{36}. The unsteady free convection fluid flows past porous infinite plate are investigated by Toki and Tokis\textsuperscript{37}. The chemical reaction on an electrically conducting fluid through a porous medium with slip effects have presented by Senapati et al.\textsuperscript{38}. MHD free convection flow of an incompressible viscous fluid near an oscillating plate embedded in a porous medium has been presented by Khan et al.\textsuperscript{39}. Therefore, many researchers have studied free convection flow past a vertical plate with thermal radiation\textsuperscript{40-42}. Recently, Krishna and Prakash\textsuperscript{43} discussed the hall current effects on Unsteady MHD flow in a Rotating parallel plate channel bounded by Porous bed on the Lower half. The effects of radiation and hall current on MHD free convection three dimensional flow in a vertical channel filled with a porous medium has been studied by Krishna and Basha\textsuperscript{44}. Krishna\textsuperscript{45} discussed the unsteady flow of an incompressible electrically conducting viscous fluid in a rotating porous media, with a variable pressure gradient and in the presence of hall current. In this paper, we have considered hall effects on the hydromagnetic convective flow of an electrically conducting visco-elastic fluid through a rotating porous channel using Brinkman model.

2. Formulation and solution of the problem:

We have considered the unsteady hydromagnetic convective flow of an electrically conducting visco-elastic fluid through porous medium two parallel non conducting plates under a uniform transverse magnetic field $H_0$ taking hall current into account. At initial stage, both the plates and the fluid rotate with the same angular velocity $\Omega$. At $t > 0$, the fluid obsessed by a invariable pressure gradient parallel to the plate and in addition the lower plate performs non-torsional oscillation in its individual plane. We promoted the plates are cooled or heated by a unvarying temperature gradient in same direction parallel to the plane at the plates. The physical configuration of the problem is as shown in Figure. 1.
We choose a Cartesian co-ordinate system $O(x, y, z)$ such that the plates are at $z = 0$ and $z = l$. The boundary layer equation of motion are given by

$$
\frac{\partial u}{\partial t} - 2\Omega v = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^3 u}{\partial z^3} + \frac{\alpha_1}{\rho} \frac{\partial^3 u}{\partial z^3 \partial t} + \frac{\mu J_y H_0}{k} - \frac{v}{k} u
$$

(1)

$$
\frac{\partial v}{\partial t} + 2\Omega u = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \frac{\partial^3 v}{\partial z^3} + \frac{\alpha_1}{\rho} \frac{\partial^3 v}{\partial z^3 \partial t} - \frac{\mu J_x H_0}{k} - \frac{v}{k} v
$$

(2)

The energy equation is

$$
\left( \frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right) (T - T_0) = \alpha_1 \frac{\partial^2 T}{\partial z^2} (T - T_0) + \frac{Q}{\rho c_p} (T - T_0)
$$

(3)

Since the plates extends to infinity along $x$ and $y$ directions, all the physical quantities except the pressure depend on $z$ and $t$ alone. When the potency of the magnetic field is very hefty, the generalized Ohm’s law is tailored to include the Hall current, so that

$$
J + \frac{\omega_e \tau_e}{B_0} J \times B = \sigma (E + V \times B + \frac{1}{en_e} \nabla p_e)
$$

(5)

In equation (5) the electron pressure gradient, the ion-slip and thermo-electric effects are ignored also the electric field $E=0$ under these assumptions trim downs to

$$
J_x + m J_y = \sigma B_0 v
$$

(6)

$$
J_x + m J_y = -\sigma B_0 u
$$

(7)

Where, $m = \omega_e \tau_e$ is the hall parameter.

On solving equations (6) and (2), we obtain

$$
J_x = \frac{\sigma B_0}{1 + m^2} (v + mu)
$$

(8)

$$
J_y = \frac{\sigma B_0}{1 + m^2} (mv - u)
$$

(9)

Substituting the equation (8) and (9) in the equations (1) and (2), we obtain,

$$
\frac{\partial u}{\partial t} - 2\Omega v = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^3 u}{\partial z^3} + \frac{\alpha_1}{\rho} \frac{\partial^3 u}{\partial z^3 \partial t} + \frac{\sigma \mu_e^2 H_0^2}{\rho (1 + m^2)} (mv - u) - \frac{v}{k} u
$$

(10)

$$
\frac{\partial v}{\partial t} + 2\Omega u = -\frac{1}{\rho} \frac{\partial p}{\partial y} + v \frac{\partial^3 v}{\partial z^3} + \frac{\alpha_1}{\rho} \frac{\partial^3 v}{\partial z^3 \partial t} - \frac{\sigma \mu_e^2 H_0^2}{\rho (1 + m^2)} (v + mu) - \frac{v}{k} v
$$

(11)

Combining equations (10) and (11), let $q = u + iv$ and therefore we obtain

$$
\frac{\partial q}{\partial t} + 2i \Omega q = -\frac{1}{\rho} \frac{\partial p}{\partial \xi} + v \frac{\partial^3 q}{\partial z^3} + \alpha_1 \frac{\partial^3 q}{\partial z^3 \partial t} + \frac{\sigma \mu_e^2 H_0^2}{\rho (1 - im)} q - \frac{v}{k} q
$$

(12)

Integrating (3) we get,

$$
\frac{p}{\rho} = -g z + \beta \phi \int (T - T_0) dz + \phi(\xi, \bar{\xi}) H(t)
$$

Where, $\xi = x - iy$, $\bar{\xi} = x + iy$

We use (3) in equation (12) and obtain,
\[
\frac{\partial q}{\partial z}\left(\frac{\partial^2 q}{\partial t^2} + 2i\Omega q - v \frac{\partial^2 q}{\partial z^2} - \frac{\alpha_i}{\rho} \frac{\partial q}{\partial z} + \left(\frac{\sigma_\mu H_0^2}{\rho(1-im)} + \frac{v}{k}\right)q\right) = -2\beta g \frac{\partial}{\partial z}(T - T_0)
\]  

(13)

For the completeness of equation (2.13) we assume that

\[T - T_0 = (A x + B y) H(t) + \Theta_i(z,t)\]

Where, \(\Theta_i(z,t)\) is an arbitrary function of \(z\) and \(t\), taking \(T_0 + A x + B y + \Theta_i\omega_i\) as the dimensional temperature of the lower and upper plates, respectively, for \(t > 0\), we obtain the equation.

\[
\left(\frac{\partial}{\partial t} + 2i\Omega - v \frac{\partial^2}{\partial z^2} - \frac{\alpha_i}{\rho} \frac{\partial}{\partial z} \frac{\partial^3}{\partial t^3} + \frac{\sigma_\mu H_0^2}{\rho(1-im)} + \frac{v}{k}\right)q = \beta g(A + iB)zH(t) + D
\]

(14)

Where \(D = \frac{\partial}{\partial z} (\Theta_i(z,t))H(t)\)

The initial and boundary conditions are

\[q(z,t) = ae^{i\omega_1 t} + be^{-i\omega_1 t} \text{ at } z = 0\]

(15)

\[q(z,t) = 0 \text{ at } z = l \text{ if } t \leq 0 \text{ and } \frac{\partial q}{\partial z} \]

(16)

\[q(z,t) = 0 \text{ at } z = 0 \text{ if } t \leq 0 \text{ and } \frac{\partial q}{\partial z} \]

(17)

\[\Theta(z,t) = \frac{\beta g l^3 (\Theta_1 - \Theta_0)}{v^2} = \Theta_0 \text{ at } z = l\]

(18)

Introducing the non-dimensional variables are,

\[z^* = \frac{z}{l}, q^* = \frac{q l^2}{v}, \omega^* = \frac{\omega l^2}{v}, \Theta^* = \frac{\beta g l^3 (\Theta_1 - \Theta_0)}{v^2}\]

Using the non-dimensionalization process, the unsteady governing equations reduces to (dropping asterisks),

\[
\frac{\partial^2 q}{\partial z^2} + S \frac{\partial^2 q}{\partial t^2} - \left(M^2 + 2iE^{-1} + D^{-2}\right)q - \frac{\partial q}{\partial t} = GrzH(t) + R
\]

(19)

\[
\frac{\partial^2 \Theta}{\partial z^2} - \alpha \Theta - Pr \left(\frac{\partial \Theta}{\partial t} + (Gr_u + Gr_v)H(t)\right) = 0
\]

(20)

Where,

\[M^2 = \frac{\sigma_\mu H_0^2 l^2}{\rho v}\]

is the Hartmann number (Magnetic field parameter), \(E = \frac{V}{Ql^2}\) is the Ekman number, \(S = \frac{\alpha l}{\rho l^2}\) is the visco-elastic fluid parameter, \(D^{-2} = \frac{l^2}{k}\) is the inverse Darcy Parameter, \(Pr = \frac{\mu C_p}{k_l}\) is the Prandtl number, \(\alpha = \frac{Q l^2}{k_l}\) is the Heat source Parameter, \(R = \left(- \frac{l^3}{v^3}\right)D\) is the Pressure gradient Parameter,

\[Gr = Gr_1 + iGr_2\]

is the Grashof number. The corresponding initial and boundary conditions are

\[q(z,t) = ae^{i\omega_1 t} + be^{-i\omega_1 t} \text{ at } z = 0\]

(21)
\[ q(z,t) = 0 \quad \text{at} \quad z = 1 \psi t \leq 0, \quad \psi z \]  
\[ \theta(z,t) = 0 \quad \text{at} \quad z = 0 \psi t \leq 0, \quad \psi z \]  
\[ \theta(z,t) = \frac{\beta gl^3 (\theta_2 - \theta_0)}{\nu^2} = \theta_0 \quad \text{at} \quad z = 1 \]

Taking Laplace transforms in the equations (19) and (20), we obtain
\[
(1 + sS) \frac{d^2\bar{q}}{dz^2} \left( s + \frac{M^2}{1 - im} + 2iE^{-1} + D^{-2} \right) \bar{q} = Gr z H(t) + R \frac{1}{s} \tag{25}
\]
\[
\frac{d^2\bar{\theta}}{dz^2} - (s Pr + \alpha) \bar{\theta} - Pr(G_{1u} + Gr_2 v) H(t) = 0 \tag{26}
\]

Relevant transformed boundary conditions,
\[
\bar{q}(z,s) = \frac{a}{s - io} + \frac{b}{s + io} \quad \text{at} \quad z = 0 \tag{27}
\]
\[
\bar{q}(z,s) = 0 \quad \text{at} \quad z = 1 \tag{28}
\]
\[
\bar{q}(z,s) = 0 \quad \text{at} \quad z = 0 \tag{29}
\]
\[
\bar{\theta}(z,s) = \frac{\beta gl^3 (\theta_2 - \theta_0)}{\nu^2} = \theta_0 \quad \text{at} \quad z = 1 \tag{30}
\]

We evaluated the constants involved in the transformed variables and the transformed velocity and temperature are given by
\[
\bar{q} = \left( \frac{a}{s - io} + \frac{b}{s + io} + \frac{R}{s(1 + sS)\lambda_1^2} + \frac{Grz}{(1 + sS)\lambda_1^2} \right) \cosh \lambda_1 z + \left( \begin{array}{c}
\frac{a}{s - io} + \frac{b}{s + io} + \frac{R}{s(1 + sS)\lambda_1^2} + \frac{Grz}{(1 + sS)\lambda_1^2} \\
\cosh \lambda_1 z - \frac{R}{s(1 + sS)\lambda_1^2} - \frac{Grz}{(1 + sS)\lambda_1^2} \end{array} \right) \frac{Grz}{(1 + sS)\lambda_1^2} \sinh \lambda_1^2 \tag{31}
\]
\[
\bar{\theta} = -\frac{PrGr}{\lambda_2^2z} \cosh \lambda_2 z + \left( \frac{\theta_0}{\sinh \lambda_2} + \frac{PrGr}{\lambda_2^2} \cosh \lambda_2 - \frac{PrGr}{\lambda_2^2} \frac{1}{\sinh \lambda_2} \right) \sinh \lambda_2 z + \frac{PrGr}{\lambda_2^2z} \tag{32}
\]

We are taking inverse Laplace transforms (Bromwich contour integral formula) in the equations (31) and (32). Therefore we obtained the expressions for the velocity and temperature. The dimensional shear stresses \( \tau_x \) and \( \tau_y \) are obtained at the lower and upper plates. The rate of heat transfer coefficient (Nusselt number) on the plates is also obtained.
3. Results and Discussions

We have considered hydromagnetic convective flow of an electrically conducting visco-elastic fluid through a porous medium in a rotating parallel plate channel taking hall current into account. The governing equations are framed using Brinkman model. The exact solutions of the velocity and the temperature distributions are evaluated analytically using Laplace transform technique. The analytical solution consists of the both steady and transient states. The quasi-steady parts of the velocity and temperature representing the ultimate flow have been computed numerically for different sets of governing parameters namely viz. The Hartmann parameter $M$, the inverse Darcy parameter $D^{-1}$, the Ekman number $E$, the hall parameter $m$, S visco-elastic fluid parameter, Grashof number $Gr$, the frequency of oscillation $\omega$, Prandtl number $Pr$ and Heat source parameter $\alpha$, and their profiles are plotted in Figures (1-10) for the oscillating lower plate and for plates are in rest respectively. For computational purpose we have assumed $Gr$ to be real so that the applied pressure gradient in the $y$-direction is zero and $Gr$ is positive or negative according as the plates are heated or cooled along the direction of the $x$-axis (non-zero pressure gradient $R = 10$), also Prandtl number $Pr$ is chosen to be $Pr = 0.71, a = 1, b = 1, \tau = 0.5$. Since the thermal buoyancy balances the vertical pressure gradient in the absence of any other applied force in the direction of rotation, the flow takes place in planes parallel to the boundary plates. However the flow is three dimensional and all the perturbed variables have been obtained using boundary layer type equations, which reduce to two coupled partial differential equations for a complex velocity and the real temperature. Figures (1-7) correspond to profiles for the velocity components $u$ and $v$, Figures (8-10) correspond to profiles for temperature when one of the plates (lower) is oscillating with given amplitude and other is at rest. Tables (1-2) represent the shear stresses at the stationary and oscillatory plates while table (3) signify the rate of heat transfer at both the plates.

Figure 1. The velocity profiles for $u$ and $v$ against $E$

$M = 1, m = 1, D^{-1} = 50, S = 1, \omega = \pi / 4, Gr = 2$

Figure 2. The velocity profiles for $u$ and $v$ against $M$

$E = 1, m = 1, D^{-1} = 50, S = 1, \omega = \pi / 4, Gr = 2$
From the Figures (1-7) that the velocity plots are parabolic in nature. The magnitudes of the velocity components $u$ enhance and $v$ diminish throughout the fluid region with increasing Ekman number $E$ or viscoelastic fluid parameter $S$ or Hall parameter $m$ being the parameters fixed (Fig 1, 4-5). The resultant velocity is also increases with increasing $E$, $S$ and $m$. Both the velocity components $u$ and $v$ experiences retardation with increasing the intensity of the magnetic field (Hartmann number $M$). The application of the transverse magnetic field plays the important role of a resistive type force (Lorentz force) similar to drag force (that acts in the opposite direction of the fluid motion) which tends to resist the flow thereby decreasing its velocity (Fig 2). Likewise, same nature is observed for the resultant velocity with increasing Hartmann number $M$. It is also noted from the Fig. 3 the magnitude of the velocity component $u$ diminish throughout the fluid region and the behaviour of the velocity component $v$ remains the same with increasing the inverse Darcy parameter $D^{-1}$. We observe that lower the permeability of the porous medium lesser the fluid speed in the entire fluid region. The resultant velocity is also trim downs throughout the fluid region.

**Figure 3.** The velocity profiles for $u$ and $v$ against $D^{-1}$

\[ E=1, m=1, M=1, S=1, \omega = \pi / 4, Gr = 2 \]

**Figure 4.** The velocity profiles for $u$ and $v$ against $S$

\[ E=1, m=1, D^{-1} = 50, M=1, \omega = \pi / 4, Gr = 2 \]

**Figure 5.** The velocity profiles for $u$ and $v$ against $m$

\[ E=1, M = 1, D^{-1} = 50, S = 1, \omega = \pi / 4, Gr = 2 \]
An increase in Grashof number leads to raise both the primary velocity $u$ and the secondary velocity $v$ as shown in Fig (6). This is because; increase in Grashof number Gr means more heating and less density. The resultant velocity is also boost up throughout the fluid region. From the figure (7) depicts the magnitude of the velocity component $u$ oscillates in the entire fluid region whereas the velocity component $v$ diminishes with increasing the frequency of oscillation $\omega$. The resultant velocity is also reduces throughout the fluid region $\omega$.

It is evident from the Fig (8-9), the fluid temperature increases with an increase in Hartmann number M, visco-elastic fluid parameter S, the inverse Darcy parameter $D^{-1}$, Prandtl number Pr, Hall parameter $m$ and the frequency of oscillation $\omega$. The temperature reduces with increasing Ekman number E, Heat source parameter $\alpha$ and Grashof number Gr.

The shear stresses ($\tau_x$ & $\tau_y$) and Nusselt number (Nu) are calculated computationally at the stationary
and oscillatory plates and tabulated on the tables (1-3). At the stationary plate, the magnitude of the stresses $\tau_x$ and $\tau_y$ enhances with increasing Ekman number E, hall parameter $m$ and the frequency of oscillation $\omega$. The reversal behavior is observed for increasing Grashof number Gr. The stresses $\tau_x$ reduce and $\tau_y$ increase in magnitude with increasing Hartmann number M or $D^{-1}$, whereas stresses $\tau_x$ increases and $\tau_y$ decreases with increasing visco-elastic fluid parameter S (Table 1). At the oscillatory plate, the magnitude of the stresses $\tau_x$ and $\tau_y$ enhances with increasing E, $D^{-1}$ and S. The stresses $\tau_x$ reduce and $\tau_y$ increase in magnitude with increasing M or Gr. The reversal behavior is observed for increasing $m$ or $\omega$ (Table 2).

Table 1: The Shear stress ($\tau_x$) on the stationary plate (upper plate)

| E  | M  | $D^{-1}$ | $S$ | $m$ | Gr | $\omega$ | $\tau_x$ | $\tau_y$ |
|----|----|----------|-----|-----|-----|---------|----------|----------|
| 1  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.524521  | -4.366785|
| 1.5| 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.634870  | -4.988857|
| 2  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.859665  | -5.458785|
| 1  | 3  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.422784  | -8.457963|
| 1  | 5  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.002956  | -10.58784 |
| 1  | 2  | 200      | 1   | 1   | 5   | $\omega = \pi/4$ | 2.144478  | -5.478985 |
| 1  | 2  | 300      | 1   | 1   | 5   | $\omega = \pi/4$ | 1.520415  | -7.458145 |
| 1  | 2  | 100      | 2   | 1   | 5   | $\omega = \pi/4$ | 2.555658  | -3.221632 |
| 1  | 2  | 100      | 3   | 1   | 5   | $\omega = \pi/4$ | 3.554985  | -2.741632 |
| 1  | 2  | 100      | 1   | 2   | 5   | $\omega = \pi/4$ | 4.255562  | -5.141632 |
| 1  | 2  | 100      | 1   | 1   | 10  | $\omega = \pi/4$ | 3.578985  | -1.855695 |
| 1  | 2  | 200      | 1   | 1   | 15  | $\omega = \pi/4$ | 6.665785  | -7.145012 |
| 1  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/3$ | 8.788785  | -9.558015 |

Table 2: The Shear stress ($\tau_x$ and $\tau_y$) on the oscillatory plate (Lower plate)

| E  | M  | $D^{-1}$ | $S$ | $m$ | Gr | $\omega$ | $\tau_x$ | $\tau_y$ |
|----|----|----------|-----|-----|-----|---------|----------|----------|
| 1  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.684748  | -0.082898|
| 1.5| 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.817895  | -0.095895|
| 2  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.985522  | -0.245985|
| 1  | 3  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.547985  | -0.098635|
| 1  | 5  | 100      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.366955  | -0.154256|
| 1  | 2  | 200      | 1   | 1   | 5   | $\omega = \pi/4$ | 0.945632  | -0.086852|
| 1  | 2  | 300      | 1   | 1   | 5   | $\omega = \pi/4$ | 1.255012  | -0.097452|
| 1  | 2  | 100      | 2   | 1   | 5   | $\omega = \pi/4$ | 1.547022  | -0.214632|
| 1  | 2  | 100      | 3   | 1   | 5   | $\omega = \pi/4$ | 2.544784  | -0.0874415|
| 1  | 2  | 100      | 1   | 2   | 5   | $\omega = \pi/4$ | 1.244996  | -0.068632|
| 1  | 2  | 100      | 1   | 3   | 5   | $\omega = \pi/4$ | 1.869985  | -0.024522|
| 1  | 2  | 100      | 1   | 1   | 10  | $\omega = \pi/4$ | 0.455859  | -0.145636|
| 1  | 2  | 100      | 1   | 1   | 15  | $\omega = \pi/4$ | 0.211562  | -0.524566|
| 1  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/3$ | 0.714635  | -0.065854|
| 1  | 2  | 100      | 1   | 1   | 5   | $\omega = \pi/2$ | 0.914744  | -0.032523|
The magnitudes of the rate heat transfer $Nu$ enhance with increasing Ekman number $E$, inverse Darcy parameter $D^{-1}$, hall parameter $m$, Grashof number $Gr$, the frequency of oscillation $\omega$ and Prandtl number $Pr$ at either plates. The Nusselt number increases at stationary plate and reduces at oscillatory plate with increasing second grade fluid parameter $S$, where as reversal trend observed with increasing the intensity of the magnetic field $M$ or Heat source parameter $\alpha$ (Table 3).

Table 3: The Rate of Heat transfer (Nusselt number) at stationary plate and oscillatory plate

| $E$ | $M$ | $D^{-1}$ | $S$ | $m$ | $Gr$ | $\omega$ | $\alpha$ | $Pr$ | Stationary plate | Oscillatory plate |
|-----|-----|---------|-----|-----|------|---------|---------|-----|-----------------|------------------|
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 1.588655        | 3.452658         |
| 1.5 | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 2.554522        | 5.647855         |
| 2   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 3.221987        | 6.958985         |
| 1   | 3   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 1.255465        | 4.899565         |
| 1   | 5   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 0.855141        | 6.454774         |
| 1.5 | 2   | 200     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 2.85556         | 2.457625         |
| 1   | 2   | 300     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 3.988652        | 2.011652         |
| 1   | 2   | 100     | 2   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 1.885462        | 2.855488         |
| 1   | 2   | 100     | 3   | 1   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 2.155562        | 2.255962         |
| 1   | 2   | 100     | 1   | 2   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 5.788874        | 7.899522         |
| 1   | 2   | 100     | 1   | 3   | 5    | $\omega = \pi / 4$ | 5       | 0.71 | 8.966585        | 11.25562         |
| 1   | 2   | 100     | 1   | 1   | 10   | $\omega = \pi / 4$ | 5       | 0.71 | 5.785854        | 9.855985         |
| 1   | 2   | 100     | 1   | 1   | 15   | $\omega = \pi / 4$ | 5       | 0.71 | 8.477854        | 15.444551        |
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 3$ | 5       | 0.71 | 1.988985        | 5.669825         |
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 2$ | 5       | 0.71 | 2.688905        | 8.019855         |
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 8       | 0.71 | 1.255652        | 8.744895         |
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 10      | 0.71 | 0.071747        | 13.66323         |
| 1   | 2   | 100     | 1   | 1   | 5    | $\omega = \pi / 4$ | 5       | 7    | 2.855696        | 8.255648         |

4. Conclusions

We have discussed an initial vale investigation of hydro magnetic convection flow of a viscous electrically conducting second grade fluid through a porous medium in a rotating parallel plate channel in the presence of a temperature dependent heat source. The conclusions are made as the following.

1. The resultant velocity is increases with increasing $E$, $S$, $Gr$ and $m$.
2. The resultant velocity is also reduces throughout the fluid region with increasing $M$, $D^{-1} \omega$.
3. The fluid temperature increases with an increase in $M$, $S$, $D^{-1}$, $Pr$, $m$ and $\omega$.
4. The temperature reduces with increasing $E$, $\alpha$ and $Gr$.
5. The magnitude of the both stresses enhances with increasing $E$, $m$ and $\omega$, also reduces for increasing $Gr$ at the stationary plate.
6. The magnitude of the both stresses enhances with increasing $E$, $D^{-1}$ and $S$ at the oscillatory plate. The stresses reduce in magnitude with increasing $M$, $Gr$, $m$ or $\omega$.
7. The magnitudes of the rate heat transfer ($Nu$) enhance with increasing $E$, $D^{-1}$, $m$, $Gr$, $\omega$ and $Pr$ at either plates. Nu increases at stationary plate and reduces at oscillatory plate with increasing $S$, where as reversal trend observed with increasing $M$ or $\omega$.
References

1. Raptis, A., Perdikis, C. and Tzivanidis, G., “Free Convection Flow through a Porous Medium Bounded by a Vertical Surface,” *Journal of Physics D: Applied Physics*, 14, 99-102 (1981).
2. Raptis, A., Tzivanidis, G. and Kafousias, N., “Free Convection and Mass Transfer Flow through a Porous Medium Bounded by an Infinite Vertical Limiting Surface with Constant Suction,” *Letters Heat Mass Transfer*, 8, 417-424 (1981).
3. Raptis, A., Kafousias, N. and Massalas, C., “Free Convection and Mass Transfer Flow through a Porous Medium Bounded by an Infinite Vertical Porous Plate with Constant Heat Flux,” *Zeitschrift für Angewandte Mathematik und Mechanik*, 62, 489-491 (1982).
4. Singh, K.D. and Verma, G.N., “Three-Dimensional Oscillatory Flow through a Porous Medium with Periodic Permeability,” *Zeitschrift für Angewandte Mathematik und Mechanik*, 75, 599-604 (1995).
5. Singh, K.D., Sharma, R. and Chand, K., “Three-Dimensional Fluctuating Flow and Heat Transfer through a Porous Medium with Variable Permeability,” *Zeitschrift für Angewandte Mathematik und Mechanik*, 80, 473-480 (2000).
6. Shercliff, T.A., “A Text-Book of Magneto Hydro Dynamics,” Pergamon Press, London (1965).
7. Ferraro, V.C.A. and Plumpton, C., “An Introduction to Magneto Fluid Mechanics,” Clarandon Press, Oxford (1966).
8. Crammer, K.P. and Pai, S.I., “Magneto Fluid Dynamics for Engineers and Applied Physicist,” McGraw Hill Book P. Sulochana 405 Co., New York (1973).
9. Yan, J.T. and Chang, C.C., “Magneto Hydrodynamic Couette Flow as Affected by Wall Electrical Conductance,” *Zeitschrift für Angewandte Mathematik und Physik*, 15, 400-407 (1964).
10. Chang, C.C. and Lundgren, T.S., “Duct Flow in Magneto Hydrodynamics,” *Zeitschrift für Angewandte Mathematik und Physik*, 12, 100-114 (1961).
11. Attia, H.A. and Kotb, N.A., “MHD Flow between Two Parallel Plates with Heat Transfer,” *Acta Mechanica*, 117, 215-220 (1996).
12. Singh, K.D. and Alphonsa, M., “Injection/Suction Effects on an Oscillatory Hydromagnetic Flow in a Rotating Horizontal Porous Channel,” *Indian Journal of Physics*, 82, 435-445 (2008).
13. Attia, H.A., “Time Varying Hydro Magnetic Couette Flow with Heat Transfer of a Dusty Fluid in the Presence of Uniform Suction and Injection Considering the Hall Effect,” *Turkish Journal of Engineering and Environmental Sciences*, 30, 285-297 (2006).
14. Singh, K.D. and Rakesh, S., “MHD Three-Dimensional Couette Flow with Transpiration Cooling,” *Zeitschrift für Angewandte Mathematik und Mechanik*, 81, 715-720 (2001).
15. Singh, K.D., “Influence of Moving Magnetic Field on Three-Dimensional Couette Flow,” *Zeitschrift für Angewandte Mathematik und Physik*, 53, 894-902 (2004).
16. Mazumder, B.S., “An Exact Solution of Oscillatory Couette Flow in a Rotating System,” *Journal of Applied Mechanics*, 58, 1104-1107 (1991).
17. Ganapathy, R.A., “A Note on Oscillatory Couette Flow in a Rotating System,” *Journal of Applied Mechanics*, 61, 208-209 (1994).
18. Mazumder, B. S., Gupta, A. S. and Datta, N., “Hall Effects on Combined Free and Forced Convective Hydromagnetic Flow through a Channel,” *International Journal of Engineering Science*, 14, 285-292 (1976).
19. Singh, K.D., “An Oscillatory Hydromagnetic Couette Flow in a Rotating System,” *Zeitschrift für Angewandte Mathematik und Mechanik*, 80, 429-432 (2000).
20. Hartmann, J. and Lazarus, F., “Kongeligedanskevidenskaberneselskab,” *Matematisk-Fysiske Meddelelser*, 15, 6-7 (1937).
21. Debnath, L., Ray, S.C. and Chatterjee, A.K., “Effects of Hall Current on Unsteady Hydromagnetic Flow past
a Porous Plate in a Rotating Fluid System,” Zeitschrift für Angewandte Mathematik und Mechanik, 59, 469-471 (1979).

22. PrasadaRao, D.R.V. and Krishna, D.V., “Hall Effect on Unsteady Hydromagnetic Flow,” Indian Journal of Pure and Applied Mathematics, 12, 270-276 (1981).

23. PrasadaRao, D.R.V., Krishna, D.V. and Debnath, L., “Hall Effects on Free and Forced Convective Flow in a Rotating Channel,” Acta Mechanica, 43, 49-59 (1982).

24. Veera Krishna, M. and Suneetha, S.V., “Hall Effects on Unsteady MHD Rotating Flow of an Incompressible Viscous Fluid through a Porous Medium,” Journal of Pure and Applied Physics, 21, 143-156 (2009).

25. Suneetha, S.V., Veera Krishna, M. and Siva Pradad, R., “Hall Effect on Unsteady Rotating Hydro Dynamic Flow of an Incompressible Second Grade Fluid in a Porous Half Space,” Journal of Pure and Applied Physics, 22, 143-156 (2010).

26. Das, S., Mandal, H.K. and Jana, R.N., “Hall Effect on Unsteady MHD Flow through a Porous Channel in a Rotating System with Variable Pressure Gradient,” Ph.D. Thesis, Vidya Sagar University, Midnapur, 1-23 (2013).

27. J. Singh, “Flow of elasto-viscous fluid past an accelerated porous plate,” Astrophysics and Space Science, 106 (1), 41-45 (1984).

28. M. Narahari, “Effects of thermal radiation and free convection currents on the unsteady Couette flow between two vertical parallel plates with constant heat flux at one boundary,” WSEAS Transactions on Heat and Mass Transfer, 5(1), 21-30 (2010).

29. M. Narahari and M. Y. Nayan, “Free convection flow past an impulsively started infinite vertical plate with Newtonian heating in the presence of thermal radiation and mass Diffusion,” Turkish Journal of Engineering and Environmental Sciences, 35 (3), 187-198 (2011).

30. M. Narahari and A. Ishak, “Radiation effects on free convection flow near a moving vertical plate with Newtonian heating,” Journal of Applied Sciences, 11(7), 1096-1104 (2011).

31. R. C. Chaudhary and P. Jain, “Unsteady free convection boundary-layer flow past an impulsively started vertical surface with Newtonian heating,” Romanian Journal of Physics, 51, 911 (2006).

32. U. N. Das, R. Deka, and V. M. Soundalgekar, “Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction,” Forschung im Ingenieurwesen, 60(10), 284-287 (1994).

33. V.M. Soundalgekar, N. S. Birajdar, and V. K. Darwhekar, “Mass transfer effects on the flow past an impulsively started infinite vertical plate with variable temperature or constant heat flux,” Astrophysics and Space Science, 100(1-2), 159–164 (1984).

34. R. Muthucumaraswamy, P. Ganesan, and V. M. Soundalgekar, “On flow and heat transfer of a viscous incompressible fluid past an impulsively started vertical isothermal plate,” International Journal of Thermal Sciences, 40(3), 297-302 (2001).

35. R. Muthucumaraswamy, P. Ganesan, and V. M. Soundalgekar, “Heat and mass transfer effects on flow past an impulsively started vertical plate,” Acta Mechanica, 146(1-2), 1–8 (2001).

36. S. S. Das, S. R. Biswal, U. K. Tripathy, and P. Das, “Mass transfer effects on unsteady hydromagnetic convective flow past a vertical porous plate in a porous medium with heat source,” Journal of Applied Fluid Mechanics, 4(4), 91-100 (2011).

37. C. J. Toki and J. N. Tokis, “Exact solutions for the unsteady free convection flows on a porous plate with time-dependent heating,” Zeitschrift für Angewandte Mathematik und Mechanik, 87(1), 4-13 (2007).

38. N. Senapati, R. K. Dhal, and T. K. Das, “Effects of chemical reaction on free convection MHD flow through porous medium bounded by vertical surface with slip flow region,” American Journal of Computational and Applied Mathematics, 2, 124-135 (2012).

39. I. Khan, K. Fakhar, and S. Shafie, “Magnetohydrodynamic free convection flow past an oscillating plate embedded in a porous medium,” Journal of the Physical Society of Japan, 80(10), Article ID 104401
40. A. Khan, I. Khan, F. Ali, S. Ulhaq, and S. Shafie, “Effects of wall shear stress on unsteady MHD conjugate flow in a porous medium with ramped wall temperature,” PLoS ONE, 9(3), Article ID e90280 (2014).

41. A. Hussanan, Z. Ismail, I. Khan, A. G. Hussein, and S. Shafie, “Unsteady boundary layer MHD free convection flow in a porous medium with constant mass diffusion and Newtonian heating,” The European Physical Journal Plus, 129, 46 (2014).

42. R. N. Barik, G. C. Dash, and M. Kar, “Free convection heat and mass transfer MHD flow in a vertical porous channel in the presence of chemical reaction,” Journal of Fluids, 2013, Article ID 297493, 14 pages, 2013 (2013).

43. M. Veera Krishna and J. Prakash, “Hall current effects on Unsteady MHD flow in a Rotating parallel plate channel bounded by Porous bed on the Lower half - Darcy Lapwood model,” Open Journal of Fluid Dynamics, 5, 275-294. http://dx.doi.org/10.4236/ojfd.2015.54029 (2015).

44. M. Veera Krishna and S. Chand Basha, “MHD Free Convection three dimensional flow through a porous medium between two vertical plates,” Journal of Mathematics, 12(1), 88-105. DOI: 10.9790/5728-121288105 (2016).

45. M. Veera Krishna, “Unsteady MHD Flow in a Rotating Parallel Plate Channel under the Influence of Pressure Gradient with Hall Current Effects,” Journal of Scientific Research and Reports, 10(3), 1-21. DOI: 10.9734/JSRR/2016/24123.