Subsurface temperatures and thermal properties are important factors in controlling the amount of thermal energy that can be extracted or stored in the ground. Local and regional variations in the thermal conditions affect the design and efficiency of shallow geothermal installations, especially when heat pumps are applied (Rasmussen et al. 2016; Sanner 2016). Thus, knowledge about temperature, subsurface thermal properties as well as heat flow are required for estimating geothermal resources and in evaluating methodologies for heat extraction. In contrast to deep geothermal conditions (cf. Balling et al. 1992, 2002; Mathiesen et al. 2009, 2010), until the present study, the shallow subsurface thermal conditions in Denmark have not been analysed on a national scale.

The first borehole temperatures were measured around 1900 as accurate bottom hole temperatures (Bonnesen et al. 1913) while the, at the time, deepest...
In this paper, all available data on shallow subsurface thermal conditions, old and new, published as well as unpublished, have been compiled and analysed with the main purpose of providing detailed information on the temperature field, temperature gradients and thermal conductivity of the main lithologies. The study covers onshore areas to depths of about 300 m, thus including different sediments from Maastrichtian chalk over Palaeogene limestone and clay, Neogene sand and clay to Quaternary glacial sediments, as well as older sediments and rocks from the island of Bornholm. Since rock thermal properties and temperature gradients are closely related to lithology, the sampled intervals are divided into general litho-chronological groups.

Fig. 1. Location of the applied shallow subsurface thermal information: boreholes with temperature data and sites of thermal conductivity measurements. The named localities represent boreholes with temperature logs shown in Fig. 3 and Fig. 5 as well as the Batum salt diapir which presents anomalous thermal conditions. The background map shows the age distribution of the uppermost Pre-Quaternary substratum, after Håkansson & Pedersen (1992).
Geological setting and lithologies

The shallow subsurface in Denmark primarily consists of sediments spanning from Cretaceous chalk, Palaeogene limestone, marls and clays, Neogene clay and sand to Quaternary glacial and interglacial deposits. Only at the island of Bornholm, the shallow subsurface consists of crystalline rocks and sediments older than Cretaceous. The Pre-Quaternary sediments (Fig. 1) are covered by varying thicknesses of Quaternary deposits dominated by till and meltwater sediments deposited during a number of glacial periods.

Maasstrichtian chalk and Danian limestone are located close to the surface in northern Jylland and eastern Sjælland, while Palaeogene marl and clay deposits are found on central and western Sjælland, on Fyn, and in a narrow belt across Jylland, from the east coast to the western Limfjord area, see Fig. 1. Neogene, marine, deltaic and fluvial deposits of clay, silt and sand are found in central and southern Jylland. On Bornholm, the central and northern part of the island consists of Precambrian gneissic and granitic rocks, and the southern and western rim of the island of Palaeozoic sandstone, shale and limestone as well as Mesozoic sand, silt and clay.

The thickness of the Quaternary cover varies considerably from a few metres in some areas to more than 300 m in northern Jylland and in the deepest buried valleys cutting into the Pre-Quaternary base (Jørgensen & Sandersen 2006; Sandersen & Jørgensen 2017). The sediments are dominated by tills and meltwater deposits of glacial origin intercalated with different interglacial sediments. Postglacial clastic and organic sediments are locally found with considerable thickness.

The sampled succession analysed in this study is divided into main litho-chronological groups, generally following the classification applied in the national geological and hydrological database Jupiter (Hansen & Pjetursson 2011; GEUS 2017), although with somewhat fewer classes, as some units with similar mineral composition, texture and age were combined. The applied litho-chronological groups are listed in Fig. 2. They are used for the statistical analysis of thermal conductivity data as well as the temperature gradient data.

Material and methods

Temperature data

Subsurface temperatures were measured in water-filled boreholes by wireline-logging tools equipped with a thermometer. Measurements in boreholes kept undisturbed may accurately represent true formation temperatures of the surrounding lithologies. However, several factors may cause temperature disturbances. For the present study, undisturbed temperature–depth profiles in thermal equilibrium with the surrounding formations are required. Therefore, disturbances need to be detected to the extent possible. The drilling process, in particular when circulating drilling mud, disturbs the borehole temperature profile, and a certain period of rest after drilling is needed for the borehole to reach thermal equilibrium. Borehole temperatures may also be disturbed by groundwater flow. This may happen within an open well related to pressure differences between permeable levels, e.g. layers or fracture zones. Disturbances may also originate from groundwater flow in aquifers around a well. In this compilation, all temperature data were carefully analysed for any such signs of disturbing factors, to ensure inclusion of only good-quality equilibrium temperatures (see criteria below).

All available borehole temperature data acquired by Aarhus University and GEUS for research purposes, as well as external data reported to the national shallow geophysical database GERDA (Møller et al. 2009b) were evaluated, regardless of the purpose of the data acquisition.

Important datasets of particularly high quality originate from temperature logging carried out by the Department of Geoscience, Aarhus University, starting from around 1980. The measurements are from shallow as well as deep boreholes with the main purpose of obtaining high-precision temperature data for heat flow and geothermal energy studies. Early results were reported in Balling et al. (1981, 1992) and more recent results, from a deep geothermal well, in Balling & Bording (2013). The data from Aarhus University include published as well as unpublished information from 37 borehole sites, 32 shallow (100 to c. 300 m depth) and five deep boreholes. From deep boreholes, only information from the upper 300 m is used. Some boreholes were logged several times, years apart, to see whether temperature equilibrium was established and lately also to investigate possible transient effects from recent climatic change. In most shallow boreholes, temperature data were initially acquired by thermistor probes and discrete point measurements, typically at 5 m depth sampling interval. From the deeper wells, data were acquired using quartz oscillator probes and continuous dense sampling. Older, non-digital data were digitised, and all are included. The sensitivity of the applied temperature probes is better than 0.01°C and the absolute accuracy is generally better than 0.05°C. The construction and measuring principles for both types of probes are described in Balling et al. (1981, appendix A1).
| Chronostrat. (Epoch) | Applied litho-chronological groups | Lithology | Lithostatigraphical units | Lithostatigraphical references |
|---------------------|-----------------------------------|-----------|--------------------------|-----------------------------|
| Quaternary          | Gytja                              | Organic-rich | E.g. Bælthav Till, East Jutland Till, North Jælland Till, Mid Danish Till, Kattegat Till, Ristinge Klint Till, Lillebælt Till, Ashoved Till, Treldeøster Fm | Larsen et al. 1977; Jacobsen 1985; Houmark-Nielsen 1988; Larsen et al. 2009; Houmark-Nielsen 2004 |
|                     | Marine sand                        | Sand, mostly fine, silty and clayey |               |                             |
|                     | Marine clay                        | Clay, silty and sandy                  |               |                             |
|                     | Meltwater sand/gravel               | Sand, mostly medium-coarse, gravelly, silty |               |                             |
|                     | Meltwater clay                      | Clay, silty and sandy                  |               |                             |
|                     | Sand till                           | Diamict of sand, gravel and little clay |               |                             |
|                     | Clay till                           | Diamict of sand, gravel and more than 12 % clay |               |                             |
| Miocene quartz sand/gravel | Sand and gravel, mostly medium-coarse sand, quartz-rich | Marbaek Fm, Gram Fm, Ørnhøj Fm, Hodde Fm, Odderup Fm, Arnum Fm, Bastup Fm, Klintinghoved Fm, Billund Fm, Vejle Fjord Fm, Brejning Fm | Rasmussen et al. 2010 |
| Miocene mica sand | Sand, mostly fine, silty and clayey, mica-rich |                      |               |                             |
| Miocene mica silt | Silt, clayey, sandy, mica-rich |                      |               |                             |
| Miocene mica clay | Clay, silty and sandy, mica-rich |                      |               |                             |
| Oligocene clay | Clay, little silt, little mica | Branden Fm, Viborg Fm | Christensen & Lilleberg 1973; Heilmann-Clausen 1995 |
| Søvind marl | Clay, chalk-rich | Søvind Marl Fm | Heilmann-Clausen et al. 1985; Heilmann-Clausen 1995 |
| Eocene clay | Clay | Lillebælt Clay Fm, Røsnæs Clay Fm, Ølst Fm | Heilmann-Clausen et al. 1985; Heilmann-Clausen 1995 |
| Eocene diatomite | Diatomite, some clay | Fur Fm | Pedersen & Surløk 1983; Heilmann-Clausen 1995 |
| Paleogene | | | | |
| Selandian limestone | Limestone, sandy, glaconite-rich | Lellinge Greensand Fm | Heilmann-Clausen 1995 |
| Danian limestone | Limestone, bryozoan limestone, chalk | København limestone Fm, Faxe Fm, Rødvig Fm | Thomsen 1995 |
| Maastrichtian chalk | Pure chalk, marly chalk, marl | Møns Klint Fm, Mandehoved Fm | Thomsen 1995; Surløk et al. 2013 |
| Campian chalk | | | |
| U & L Cretaceous sand/sandstone | Quartz sand (clayey, glaconitic) | Bavnødde Grønsand Fm, Anager Grønsand Fm, Jydeå Fm, Robbedale Fm, Rabekke Fm | Gravesen et al. 1982 |
| U & L Cretaceous clay | Clay/claystone, iron-rich, organic-rich | | | |
| Jurassic | | | | |
| Jurassic sand/sandstone | Sand, silt and sandstone | Bagå Fm, Sorthat Fm, Hasle Fm, Rønne Fm | Michelsen et al. 2003 |
| Jurassic clay/ claystone | Clay and claystone | | | |
| Ordovician | Komstad limestone | Highly lithified micritic limestone with 5-20 % clay | Komstad limestone Fm | Buchardt & Nielsen 1985 |
| | | | | |
| Alum shale | Organic-rich shale | Læså Fm | Nielsen & Schovsbo 2007 |
| Broens Odde Member | Glaucousithite sandstone and fine-grained sandstone | | Buchardt & Nielsen 1985 |
| Balka Sandstone | Fine-to-medium grained quartzite, very little feldspar and clay matrix | Hardeberga Fm | | |
| Nexø Sandstone | Sandstone, 12-25 % feldspar, clayey | Nexø Fm | | |
| Precambrian | Crystalline rock | Granite, gneiss | Waight et al. 2012 | | |

Fig. 2. Applied litho-chronological groups and related lithostatigraphical units for which this study provides thermal data. The colour code is applied throughout this paper. References to older works are found in the cited papers.
Recently, GEUS has acquired temperature logs in 13 boreholes, 150–300 m deep, mainly located in areas previously lacking temperature information. These areas were found as part of an initial compilation of data (Møller et al. 2014). Existing boreholes with indications of undisturbed temperature conditions were selected by querying the national geological and hydrological borehole database, Jupiter (Hansen & Pjetursson 2011). New temperature data were acquired using a conventional logging tool equipped with a thermistor-type probe and with continuous dense digital sampling.

So far, more than 1200 temperature logs from about 920 boreholes have been reported to the GERDA database. These logs were acquired as part of conventional well-logging suites for a variety of purposes (exploratory wells for groundwater mapping (Møller et al. 2009a), well-field investigations, and inspection of existing wells etc.), while other data were collected as part of specific high-precision temperature logging e.g. for groundwater flow investigations (e.g. Buckley et al. 2001). As most logs in this database were recorded shortly after drilling, these data are of highly varying quality. Logs, possibly without temperature disturbances (at least at the bottom), were selected by an automatic filtering routine using four criteria: Time of logging more than four days after drilling (cf. information in Nielsen et al. 1990); average temperature less than 14°C; logged depth interval larger than 50 m; and positive temperature gradients at depths greater than 50 m. All temperature logs satisfying these criteria were then visually inspected. Careful analysis led to the approval of 166 temperatures from the deepest parts of the wells (bottom hole temperatures of presumed minimum disturbances). Furthermore, 16 inflow temperatures at specific levels in open limestone/chalk wells with significant inflow of formation water were approved, and finally also eight full temperature logs of good quality, showing undisturbed conditions, were accepted. By these criteria data from more than 1000 temperature logs were discarded, mainly due to disturbance most likely from the drilling process or due to insufficient accuracy (e.g. lack of probe calibration and testing).

Thus, in this study, selected temperature logs from 56 boreholes covering the depth range 100–300 m were used (see list in Supplementary data file 1). These boreholes are distributed across most of the country in a variety of geological settings, see Fig. 1. In addition, 207 ‘local point temperatures’ were accepted representing 180 borehole sites. These sites are less evenly distributed and show a significant clustering of sites in the north-eastern part of Sjælland (Fig. 1), where many open wells in limestone formations have been logged as part of different groundwater projects.

An example of a high-precision temperature log from a borehole at Harre in north-western Jylland (Fig. 1) is displayed in Fig. 3A. This borehole (DGU no 46.611) was drilled in 1980 to a depth of 285 m with continuous coring. The purpose was to perform a detailed analysis of the present shallow temperature and heat flow structure (Balling et al. 1981). As the penetrated layers are dominated by clay deposits, the risk of thermal disturbances from groundwater migration is believed to be minimal. Thus, this log contains the most detailed and accurate representation of thermal structure (temperature, temperature gradients, thermal conductivity and heat flow) for any shallow borehole within our study area and is therefore presented as illustration of the principal thermal features involved in our work. The continuous core was furthermore subjected to detailed lithostratigraphical and biostratigraphical studies (Nielsen 1994).

Thermal conductivity

As demonstrated by the data analysis below, thermal conductivity is the most important parameter in explaining both vertical and lateral variations in temperatures and temperature gradients.

The thermal conductivity of geological materials is controlled by mineral composition, texture, porosity and fluid content (e.g. Čermák & Rybach 1982; Brigaud & Vasseur 1989; Clauser & Huenges 1995). Furthermore, it depends on temperature and pressure (e.g. Robertson 1988; Clauser & Huenges 1995). Thermal conductivities of some main rock forming minerals, as well as of water and air, are listed in Table 1. Also included are information on density, specific heat capacity and thermal diffusivity. Combined with thermal conductivity, these parameters control transient thermal phenomena and are therefore applied in detailed numerical subsurface thermal modelling, including modelling of heat extraction and heat storage. Since quartz is a very common mineral and has a substantially higher conductivity than most other common minerals (Table 1), it is evident that the content of quartz is a major parameter controlling the overall conductivity of geological materials. In the shallow subsurface, pore spaces are normally filled with water with a low thermal conductivity or above the water table with air of very low conductivity. Thus, the porosity of the geological materials is a very important factor as well.

However, structure and texture, which are partly related to porosity and mineral content, may also affect the thermal conductivity (e.g. Davis et al. 2007). This is clearly illustrated for laminated clay deposits, which may show significant conductivity anisotropy with the highest conductivity in the direction parallel to lamination/bedding and the lowest conductivity in the perpendicular direction. Differences (anisotropy factors) of up to around two are reported (Balling et al. 2009a), well-field investigations, and inspection of existing wells etc.).
Fig. 3. Borehole at Harre, north-western Jylland (DGU no 46.611), illustrating detailed thermal information. A: temperature log (measured 2012). B: interval temperature gradients (5 m: blue; 20 m: red, running mean). C: thermal conductivity (vertical component). D: factor of conductivity anisotropy (ratio of horizontal to vertical component). E: heat flow. F: lithological log; white intervals: no core. Conductivity and heat flow shown as mean values for 5 m intervals. Borehole information and conductivity data from Balling et al. (1981). Even though the temperature log was measured 32 years after drilling, locally at 200–225 m temperatures and related temperature gradients and heat flow have not yet reached thermal equilibrium (dashed lines in A, B and D). This is known to be related to a local cavity developed in the soft diatomite during drilling and subsequently cemented along with cementing iron tubing for temperature logging. Heat from the cemented cavity has not fully dissipated.
Shallow subsurface thermal structure onshore Denmark

Thermal conductivity is also dependent on ambient temperature and pressure conditions. Conductivity increases with increasing pressure and, for most lithologies, conductivity decreases with increasing temperature (e.g. Robertson 1988; Somerton 1992; Clauser & Huenges 1995). However, for depth and temperature intervals considered in this study, effects are small, as thermal conductivities were measured at temperatures close to in situ conditions. Only for pressure, an effect was considered. An increase of conductivity by up to 5–10% is observed at relatively low pressures of 5–10 MPa, equivalent to depths of about 250–500 m (Balling et al. 1981; Clauser & Huenges 1995). This increase at relatively shallow depth is mainly due to the closing of pores and micro cracks and due to better thermal contact between the individual mineral grains. However, limited knowledge about the detailed behaviour of this low-pressure change in thermal conductivity is available. Especially for sediments with high porosity, more studies are needed. In the present data sets, laboratory conductivity was corrected, generally by +5%, to approximate in situ conditions when used for heat flow determination (Balling 1986).

Our thermal conductivity data originate from recent laboratory measurements on sediment samples, largely from well-characterised outcrops and a few boreholes (Pagola 2013; Ditlefsen & Sørensen 2014), and from a compilation of previously published measurements, mainly from core materials and some outcrops (e.g. Balling et al. 1981, 1992; Kristiansen et al. 1982). During 2011–2013, Ditlefsen & Sørensen (2014) collected a total of 59 samples representing 11 litho-chronological groups for thermal conductivity measurements at 15 localities, primarily in eastern Jylland (Fig. 1). The consolidated sediments were sampled directly in tubes to obtain undisturbed samples (diameter of 7.5 cm or 10 cm and a length of 20 cm), while loose sediments were sampled in plastic bags and vibrated into sample holders in the laboratory.

Over the years from the late 1970s to the early 1990s, the older thermal conductivity data were measured on core material from 19 boreholes covering Maastrichtian chalk, Palaeogene limestone and clay, Neogene clay and sand deposits, Quaternary marine clay as well as shallow Jurassic deposits on Bornholm (Fig. 1). Not all individual measurements, which amount to several hundred values, were available. For shallow cored boreholes, most results were presented as mean conductivity over specified depth intervals, often of 5 m (as in Fig. 3C) or 25–50 m length. Such 5 m interval mean values were digitised from graphs. Furthermore, some values from Bornholm originate from cylindrical probe in situ measurements (Kristiansen et al. 1982). This applies to 11 locations with Precambrian crystalline rocks and six locations with Palaeozoic sedimentary rocks. All measurements are listed in Supplementary data file 2.

All new, and most old data, were measured using the classic needle-probe technique, which is a transient

### Table 1. Thermal properties and density of common rock-forming minerals, air and water at standard laboratory conditions

| Material  | Thermal Conductivity W/(m·K) | Density kg/m³ | Specific heat capacity J/(kg·K) | Volumetric heat capacity MJ/(K·m³) | Thermal diffusivity 10⁻⁶ m²/s |
|-----------|-----------------------------|---------------|---------------------------------|-----------------------------------|-------------------------------|
| Quartz-a  | 7.69ₐ                        | 2647ₐ         | 740ₐ                            | 1.95₉                             | 3.92                         |
| K-feldspar | 2.45ₐ                        | 2565ₐ         | 700ₐ                            | 1.79₆                             | 1.36                         |
| Plagioclase | 1.7₈ₐ                       | 2888ₐ         | 83₇₉                            | 2.2₅₀                             | 0.7₉                         |
| Muscovite | 2.3₂ₐ                        | 28₃₂ₐ         | 7₆₀₉                            | 2.₁₆₈                             | 1.₀₇                         |
| Biotite   | 2.₀₂ₐ                        | 2₉₈₁ₐ         | 7₇₀₉                            | 2.₂₉₅                             | 0.₈₈                         |
| Glauconite | 1.₆₃ₐ                       | 2₈₄₈ₐ         |                                 |                                   |                              |
| Hornblende | 2.₈₁ₐ                       | 3₁₈₃ₐ         |                                 |                                   |                              |
| Calcite   | 3.₅₉ₐ                        | 2₇₂₁ₐ         | 8₁₅₉                            | 2.₂₁₈                             | 1.₆₂                         |
| Smectite  | 1.₈₈₉ₐ                      | 2₆₃₀₉ₐ        |                                 |                                   |                              |
| Illite    | 1.₈₅₉ₐ                      | 2₆₆₆₉ₐ        |                                 |                                   |                              |
| Kaolinite | 2.₆₄₉ₐ                      | 2₆₃₀₉ₐ        | 9₃₀₉                            | 2.₄₄₆                             | 1.₉₈                         |
| Chlorite  | 5.₁₄₉ₐ                      | 2₇₅₅₉ₐ        | 6₀₀₉                            | 1.₆₅₃                             | 3.₁₁                         |
| Halite    | 6.₅₀₉ₐ                      | 2₁₆₃₉ₐ        | 9₁₆₉                            | 1.₉₈₁                             | 3.₂₈                         |
| Water     | 0.₆ₐ                         | 1₀₀₀ₐ         | 4₁₈₆₉                           | 4.₁₈₆                             | 0.₁₆                         |
| Air       | 0.₀₂₆ₐ                       | 1.₂₂₅ₐ        |                                 | 1.₀₀₁₂₃₁                          | 2.₁₁                         |

Calculated values for volumetric heat capacity (product of specific heat capacity and density) and thermal diffusivity (ratio of thermal conductivity and volumetric heat capacity).

ₐ=Horai (1971). =Brigaud & Vasseur (1989). =Clauser & Huenges (1995). =Waples & Waples (2004).
method based on the theory of temperature propagation from a linear source (Von Herzen & Maxwell 1959; Kristiansen 1982; Bording et al. 2019). All laboratory measurements represent values for water-saturated conditions and laboratory ambient temperature (c. 20°C) and pressure (0.1 MPa = 1 bar).

To investigate the characteristic thermal conductivities for lithological units of similar mineralogical and textural composition, data were grouped according to a litho-chronological classification (Fig. 2). However, determining a characteristic mean thermal conductivity for such a group is not straightforward. Data density varies from single sample measurements to mean values of several densely spaced core measurements covering intervals between 5 m and 50 m, e.g. Fig. 3.

In order to ensure that localities with closely spaced measurements do not dominate within a litho-chronological group, the mean thermal conductivity of a group was calculated based on ‘locality’ mean thermal conductivities. If measurements within a specific litho-chronological group represent a cored depth interval of more than 50 m, each 50 m interval counts equivalent to ‘a locality’. Due to the inhomogeneous data set, a meaningful conductivity standard deviation related to mean values may not be calculated. Instead, the range of ‘site mean values’ is given (Appendix A).

Since the quartz content is one of the major factors controlling the thermal conductivity, this content was determined together with the thermal conductivity of a number of samples collected recently at outcrops. The quartz content was determined at Aarhus University by X-ray diffractometry (XRD) on pulverised samples.

Thermal diffusivity

Very little information is available on laboratory measurements of rock thermal diffusivity, the parameter controlling transient thermal phenomena. Kristiansen (1982) published a 75 m section of Oligocene clay from the Harre borehole with densely spaced needle-probe results. Measured values are within the approximate range of (0.4–0.8) × 10⁻⁶ m²/s. Here, similar to thermal conductivity (Fig. 3), thermal diffusivity shows significant thermal anisotropy with the horizontal component larger than the vertical component. When information on thermal diffusivity is needed, this parameter may typically be calculated (according to its definition), from the ratio of thermal conductivity to volumetric heat capacity (cf. Table 1).

Lithological information

Lithological information was extracted from all boreholes with undisturbed temperature logs. The main source for borehole lithological information was the Danish national geological and hydrological borehole database Jupiter, to which lithological sample descriptions are reported. Here sample materials are described and interpreted by geologists following standards outlined by Gravesen & Fredericia (1984), including interpretation of depositional environment, chronostratigraphy and, when possible, also lithostratigraphy. For a few research and deep boreholes, the lithological information was found in scientific publications and well completion reports. Sources of lithological information are listed in Supplementary data file 1 and linked to the Jupiter database where possible. Figure 3F illustrates a litho-chronological log for the geological settings in clay-rich Neogene and Palaeogene sequences of the Harre borehole.

Temperature gradient

Interval temperature gradients were calculated using a linear least-squares approach, with a gradient fitted to all temperature data from within 5 m or 20 m depth intervals. Interval gradients were determined for every 2.5 m from the continuous logs and at the sampling point for the discrete logs. In order to reduce uncertainties related to different sampling positions, the 20 m interval temperature gradients were used for the present lithological correlation analysis, despite the fact that the 5 m interval gradients depict more detailed lithological variations (e.g. Fig. 3B).

Temperature gradient – lithology relation

The 20 m interval temperature gradients were assigned to specific litho-chronological groups (Fig. 2) based on the lithological sample descriptions of the interval. A temperature gradient value was only assigned to a specific litho-chronological group if at least 90 per cent of the 20 m section is related to the lithology in question.

When calculating mean values and standard deviation of temperature gradients for each litho-chronological group, as well as when plotting histograms or bar plots, it has to be ensured that there is not an inappropriate dominance from boreholes with thick sequences of the same lithology. This was achieved by assigning a weight factor to each temperature gradient value belonging to a particular litho-chronological group. As for the thermal conductivity data, litho-chronological groups of up to 50 m thickness within a given borehole counts as ‘only one locality’ (each temperature gradient value, calculated with a 2.5 m depth interval, is weighted with the reciprocal of the number of observed temperature gradients belonging to the same litho-chronological group within a
were estimated from those of neighbouring units. As discussed above, standard deviations for mean thermal conductivities were not calculated due to the different nature of data. Here, based on measurements from outcrop samples, a uniform uncertainty estimate of 15% was applied.

Results

Temperature field

As outlined above, our temperature dataset consists of 56 detailed borehole temperature logs, and 207 local point measurements mainly from bottom-hole temperatures and ‘local water-inflow temperatures’. Furthermore, we include a series of repeated measurements from one borehole site representing the depth penetration of the annual surface temperature wave.

Over a time period of one year (March 1982 to February 1983), a series of 10 temperature–depth data (one metre step for the depth interval 1–25 m) were measured in a borehole at Jebjerg (Fig. 4). This data set clearly illustrates the depth penetration of the annual surface temperature wave. The measurements display temperature differences by about ± 5°C at a

![Fig. 4. Depth penetration of the annual surface temperature variation as measured in a borehole at Jebjerg, north-western Jylland (DGU no 46.594; see also Fig. 1). Data measured during the period of March 1982 to February 1983 by the geophysics group, Aarhus University (Knudsen 1983). Numbers indicate time of measurement: 1, primo March; 2, medio April; 3, medio May; 4, medio June; 5, primo July; 6, ultimo August; 7, primo November; 8, ultimo December; 9, medio January; 10 ultimo February.](image-url)
Fig. 5. Selected examples of detailed borehole temperature information. Measurements from 2007 to 2013. Temperature gradients are displayed as running mean values of 5 m (blue) and 20 m (red) intervals. Locations are shown in Fig. 1. See text for description.
Fig. 6. Measured borehole equilibrium temperatures for selected depths (metres below ground level).
very low, or even negative, temperature gradients in the shallowest parts. These selected boreholes also illustrate that temperatures at 200 m depth vary by several degrees.

Temperature-field data from selected constant depths between 50 and 300 m are displayed in Fig. 6 and summary statistics are given in Fig. 7 and Table 2. If densely sampled logs were not available, data were included from within depth intervals of up to ± 12.5 m from reference depth. For typical temperature gradients of 1–3°C/100 m, an up to 12.5 m depth shift may thus result in a temperature bias within the range of ± 0.13 to ± 0.38°C.

Except for the upper part of the boreholes, mean temperatures generally increase with depth as shown in Fig. 5. At 50 m depth, the mean value of 8.9 ± 0.8°C (one standard deviation) has increased only little compared to the mean annual ground temperature (see section discussions). The higher mean values at 100 and 200 m of 9.7 ± 1.1°C and 11.6 ± 2.2°C, respectively, reflect this general increase. Furthermore, we observe a marked increase in standard deviation with increasing depth, consistent with a significantly increasing temperature range with increasing depth (cf. Fig. 7). At 100 m the observed range of temperatures is 7.3–13.0°C while it is 8.7–17.1°C at 200 m. The standard deviation on mean temperature at 250 m is almost three times larger than that at 50 m (Table 2). From our maximum depth of 300 m, data from only 13 borehole sites are available, however, still presenting valuable information, both locally and by showing a significant range of temperatures (12.2–19.3°C; mean value 14.9°C).

These deeper levels clearly show significant and systematic lateral temperature variations across the country. The higher temperatures are observed in the eastern and southern part of Sjælland, on the island of Lolland and in parts of north-western and eastern Jylland, while lower temperatures are found in central Jylland and on parts of Bornholm.

Table 2. Temperature distribution with statistical information from selected depths

| Depth m | N  | Mean °C | Std. dev. °C | Median °C | Min. °C | Max. °C |
|---------|----|---------|--------------|-----------|--------|--------|
| 50      | 94 | 8.9     | 0.8          | 8.8       | 7.4    | 11.0   |
| 75      | 132| 9.2     | 0.9          | 9.3       | 6.7    | 11.6   |
| 100     | 103| 9.7     | 1.1          | 9.7       | 7.3    | 13.0   |
| 150     | 43 | 10.5    | 1.6          | 10.6      | 7.8    | 15.5   |
| 200     | 32 | 11.6    | 2.2          | 11.2      | 8.7    | 17.1   |
| 250     | 20 | 13.4    | 2.2          | 13.2      | 9.6    | 17.9   |
| 300     | 13 | 14.9    | 2.0          | 14.2      | 12.2   | 19.3   |

Depth: metres below ground level.
N: number of temperature data at the indicated depth.
The median value is not significantly different from mean value.
The range of temperatures at specific depths is indicated by the measured minimum and maximum values.
a general increase in thermal conductivity is observed for increasing quartz content, although some scatter is present. A variation of 20–30% in quartz content for samples with similar thermal conductivity is seen, with the sandy samples having the highest quartz content and the clay-rich samples the lowest quartz content. Although not measured, the sandy samples are likely to have the highest porosity (content of water of low conductivity), resulting in their reduced thermal conductivity compared to the clay-rich samples.

Lowest conductivities, with a mean value of about 0.6 W/(m·K), are observed for the organic-rich Quaternary gytja and porous Eocene diatomite. The very fine-grained Eocene and Paleocene clay deposits also have very low mean thermal conductivities, around 1.0 W/(m·K). With increasing content of silt and fine sand, the examined clay deposits show an increasing conductivity. This is seen in the slightly silty Oligocene clay with a mean conductivity of 1.15 W/(m·K), in the silty and sandy Jurassic clay, the silty Miocene Mica clay, and the silty Quaternary marine clay, all with mean values of around 1.3 W/(m·K). A higher mean value is also observed in Quaternary meltwater clay (1.6 W/(m·K)), but with a relatively large scatter on data from different locations. Furthermore, Quaternary clay till have relatively high conductivities of around 2.0 W/(m·K), which is probably because they contain fractions of sand and gravel dominated by quartz. Thus, the conductivity of shallow clay deposits may vary with up to a factor of two, which emphasises the relevance

---

**Fig. 8.** Thermal conductivities for litho-chronological groups with decreasing stratigraphic age upwards. Crosses indicate mean values and colour bars show the range of measured conductivities. Colour code as in Fig. 2.
Precambrian granites and granitic gneiss with quartz contents in the range 22–33% have a mean thermal conductivity of 3.1 W/(m·K), which is typical for those rock types (Robertson 1988; Clauser & Huenges 1995). The Ordovician Komstad limestone has a mean conductivity of 2.7 W/(m·K), which is significantly higher than that of the Danian Limestone and the Maastrichtian chalk, probably due to a low porosity compared to the younger limestone formations. Cambrian Alum shale has a mean conductivity of 1.7 W/(m·K), the lowest value found among the Palaeozoic rocks of low porosity. This is due to a low quartz content and a relatively high content of organic material.

Relation between temperature gradients and lithologies

Detailed information on temperature gradients, represented as 20 m interval mean values, are displayed in Fig. 10 and Fig. 11 as well as in Appendix B. Data originate from the 56 boreholes that provide accurate equilibrium temperature logs. In these figures, the temperature gradients are shown in relation to the litho-chronological units over which they are calculated, and they are divided into two classes according to depth, 50–100 m and >100 m. At depths shallower than 100 m, temperature gradients are generally perturbed by the depth penetration of the recent increase in mean annual surface temperature (Møller et al. 2014). Within the uppermost 50–100 m, even negative temperature gradients (decreasing temperatures with depth) are observed (Fig. 5).

For the depth interval 50–100 m, gradients between c. -2 and +5°C/100 m are observed. Below 100 m the gradients range between values close to zero and 5°C/100 m, thus, still locally, very low values are observed, but no negative gradients. For the depth interval 50–100 m, the temperature gradients show a very high degree of scatter within the litho-chronological groups, while for the deeper levels gradients to a large degree show a narrower range for each litho-chronological group, though with partly or completely overlap between groups.

For depths below 100 m the mean temperature gradient for the various litho-chronological groups overall show an inverse correlation to the mean thermal conductivity in accordance with Eq. (1). Thus, coarse-grained, quartz-rich sediments show low mean temperature gradients (c. 0.8–1.2°C/100 m), the silty clay groups and the limestone and chalk groups have intermediate gradients (c. 1.6–2.5°C/100 m) and the very fine-grained clays have high temperature gradients.

At depths shallower than 100 m, temperature gradients are generally disturbed by the depth penetration of the recent increase in mean annual surface temperature (Møller et al. 2014). Within the uppermost 50–100 m, even negative temperature gradients (decreasing temperatures with depth) are observed (Fig. 5).

For the depth interval 50–100 m, gradients between c. -2 and +5°C/100 m are observed. Below 100 m the gradients range between values close to zero and 5°C/100 m, thus, still locally, very low values are observed, but no negative gradients. For the depth interval 50–100 m, the temperature gradients show a very high degree of scatter within the litho-chronological groups, while for the deeper levels gradients to a large degree show a narrower range for each litho-chronological group, though with partly or completely overlap between groups.

For depths below 100 m the mean temperature gradient for the various litho-chronological groups overall show an inverse correlation to the mean thermal conductivity in accordance with Eq. (1). Thus, coarse-grained, quartz-rich sediments show low mean temperature gradients (c. 0.8–1.2°C/100 m), the silty clay groups and the limestone and chalk groups have intermediate gradients (c. 1.6–2.5°C/100 m) and the very fine-grained clays have high temperature gradients.
gradients (c. 3.3–4.3°C/100 m).

Heat flow

At the Harre borehole, local site values of heat flow (Fig. 3E) were determined from temperature gradients calculated over 5 m intervals and vertical thermal conductivities from the same intervals. The average heat flow from undisturbed sections of the borehole (75–200 m, 225–275 m) is 37.3 ± 3.5 mW/m². Conductivity was measured with close sampling along the cores shortly after drilling (to ensure an intact water content) and detailed resolution of conductivity anisotropy (Balling et al. 1981), thus resulting in a well-defined local-site

![Temperature gradients](image_url)

**Fig. 10.** Temperature gradients, displayed as bar plots, for two depth intervals measured in Quaternary, Neogene and Palaeogene clastic deposits. The grey bars, displayed behind the coloured bars, represent the temperature gradient distribution of all data, not divided into litho-chronological groups, within Quaternary, Neogene and Palaeogene deposits, respectively.
the Cambrian and Precambrian data from Bornholm measured around 1980. For clays (Jurassic clay, Oligocene, Eocene and Paleocene clays, Miocene mica clay, Miocene mica silt and silty Quaternary marine clay), expected to have significant thermal conductivity anisotropy, the vertical component data are applied. The mean thermal conductivity may thus be lower than the mean values displayed in Fig. 8 and Appendix A.

Since it is well known that drilling mud may take up fine sand and silt fractions from the sediments, leaving shallow heat-flow estimate.

As discussed above in relation to equation (1), the characteristic heat flow for a certain area may be obtained from the regression line in a plot of mean temperature gradients against the reciprocal of mean thermal conductivity. For our data set, with combined information on mean temperature gradients and thermal conductivity for litho-chronological groups, these parameters are plotted in Fig. 12. Only data from depths greater than 100 m are included, except for

![Graphs showing temperature gradients for different depth intervals and litho-chronological groups.](image-url)

Fig. 11. Temperature gradients for two depth intervals measured in Palaeogene and Upper Cretaceous carbonates, Lower Cretaceous and Jurassic deposits and Cambrian and Precambrian rocks. The grey bars, displayed behind the coloured bars, represent the temperature gradient distribution of all data, not divided into litho-chronological groups, within Palaeogene and Upper Cretaceous carbonates, Lower Cretaceous and Jurassic deposits and Cambrian and Precambrian rocks, respectively.
mostlly clay cuttings for description, borehole samples described as silty clay may potentially originate from sediments with a higher content of silt and fine-grained sand. Therefore, data from silty clays and silt (Quaternary marine clay, Miocene mica silt and clay) in this context are treated as outliers with too low temperature gradients and are not included as data points.

The least squares regression line in Fig. 12 yields a heat flow estimate of $37 \pm 5 \text{ mW/m}^2$ and an intercept value of $0.0 \pm 0.2^\circ\text{C/100m}$. The fact that the best-estimate relation intersects the origin, with small uncertainty limits, supports the notion of an unbiased well-defined regional estimate of shallow-depth heat flow.

**Discussion**

Through compilation and analysis of all available information on measured borehole temperatures and rock thermal conductivity measurements from depths up to about 300 m, we outline regionally representative quantitative information on the shallow subsurface thermal structure for onshore Denmark.

**Temperatures**

In order to avoid disturbed temperature measurements our analysis focuses on temperature data collected at depths more than 50 m below the surface. The largest number of temperature measurements of sufficient quality is available for the depth range 75–100 m (Table 2). With increasing depth, the number of data decreases, however highly valuable information is available also for the deeper levels of 200–300 m.

At a depth of 50 m a mean temperature of 8.9°C is found (range 7.4–11.0°C), which is close to the mean annual ground surface temperature as reported by the Danish Meteorological Institute (7.7°C weather normal of 1961–1990 (DMI 2018a) and 8.8°C decadal mean of 2001–2010 (DMI 2018b)). Regional and local variations of mean surface values of c. 1.5°C are observed (Scharling 2012). Local variations of the mean annual ground surface temperatures, at site level, have also previously been obtained from our dataset by ‘extrapolating borehole temperatures to surface intercept’ of shallow temperature logs. Variations of up to 3°C (range of values 7–10°C) were found. These differences are believed to be related to variations in surface environmental conditions such as open land, forest, city, northern and southern slopes etc. (Møller *et al.* 2014).

With increasing depth, temperature variations across the country increases markedly (Figs. 6–7). Thus, in contrast to often-held assumptions, the data clearly demonstrate the existence of significant temperature variations at relatively shallow depths. For instance, we note that the observed lowest temperatures at depths of 200 and 250 m (8.7 and 9.6°C, respectively) are at the same level as characteristic mean temperatures at depths of 50–100 m, and they are clearly lower than the highest temperatures at these depths (Fig. 7). The temperature variations as displayed in Fig. 6 are further discussed below.

**Thermal conductivities**

Some samples, in particular laminated clays, show
significant anisotropy in thermal conductivity. Conductivity parallel with lamination/bedding (normally the horizontal component of conductivity) is generally higher than perpendicular to lamination/bedding (normally the vertical component) (Balling et al. 1981; Brigaud & Vasseur 1989; Davis et al. 2007). In the Harre borehole (Fig. 3) we see significant conductivity anisotropy in most lithologies, and anisotropy factors (ratio between the horizontal and the vertical component of conductivity) up to 1.5–1.8. This is regarded as typical for clay deposits and other laminated rocks. Here, the thermal conductivity may not be characterised by just one number for all purposes and it is important that two perpendicular components are measured.

For the determination of heat flow and understanding of temperature gradient variations, information about the vertical conductivity is needed. However, for thermal modelling of heat extraction and storage in conductive systems of vertical boreholes (BTES, Hellström 2011), the horizontal conductivity is relevant as well. For modelling systems of aquifer thermal energy storage (ATES, Andersson 2007), the vertical component of conductivity of layers above and below the aquifer is also important.

Heat flow

An estimate of the shallow regional heat flow of 37 ± 5 mW/m² has been made based on information on mean temperature gradients (below 100 m depth) and mean thermal conductivities of the main litho-chronological groups (Fig. 12). The value is (coincidentally) identical with that determined for the Harre borehole (Fig. 3) using classical techniques. Such a low level of heat flow is also fully consistent with shallow heat-flow observations from a number of boreholes presented in Balling (1986) and Balling et al. (1981, 1992), see also the recent analysis in Balling (2013). Since this shallow heat flow is much lower than the mean deep background heat flow of around 70–75 mW/m² found in the Danish area (Balling 1992, 2013), an explanation is needed. The difference is interpreted as due to long-term palaeoclimatic effects mainly caused by a ‘slow subsurface penetration’ of the temperature rise associated with the termination of the last glaciation (Kukkonen & Jöeleht 2003; Balling 2013). Any numerical subsurface temperature modelling applies information on thermal boundary conditions in terms of temperatures and/or heat flow. For shallow thermal modelling, it is important that the observed low level of heat flow is applied instead of up to twice the value observed for the deep background heat flow or standard values (about 65 mW/m²) for continental heat flow.

Even though a significant scatter is seen in the relationship between local temperature gradients and local thermal conductivity (Figs 10–12), we observe a well-defined correlation between mean values of temperature gradients and mean values of reciprocal thermal conductivity for the main litho-chronological groups. Thus, variations in temperature gradients at depth greater than 100 m can be explained almost entirely by differences in thermal conductivity. At shallower depth, recent (past 100–150 years) climatic surface temperature increase (Cappelen 2012), introduces a significant transient effect resulting in reduced temperature gradients, and, at upper levels, even negative values are observed (Fig. 3, Fig. 5, Fig. 10 and Fig. 11). This transient effect penetrates to greater depths in boreholes with sandy sediments of high thermal diffusivity (Fig. 5A and 5B).

The correlation analysis shown in Fig. 12 also underlines the existence of a thermally conductive regime. Only locally, and generally at a very small scale, we observe temperature gradient perturbations caused by groundwater flow. If significant components of advective transfer of heat by groundwater migration were present, no such well-defined correlation between mean temperature gradients and mean conductivity, and consistent heat flow estimates, would be observed.

Regional and local temperature variations

With the present detailed information on thermal conductivity, temperature gradient variations and heat flow, we are able to discuss the observed local and regional temperature variations as displayed in Fig. 6.

The relatively high subsurface temperatures observed in eastern and southern Sjælland and Lolland are found in areas with carbonate rocks below a relatively thin cover of Quaternary deposits. In northern Jylland the subsurface temperatures are generally lower though similar carbonate rocks are found below the Quaternary deposits. This difference can most likely be explained by the fact that northern Jylland generally has slightly lower ground surface temperature and parts of the area are covered with greater thicknesses of Quaternary deposits, resulting in low temperature gradients.

The highest subsurface temperatures in Jylland are observed in areas with thick shallow deposits of Palaeogene clay of low thermal conductivity resulting in high temperature gradients as found in the Harre borehole (Fig. 3) and observed also at other locations with Palaeogene clays across Jylland (see Fig. 1). The lowest temperatures are often found in deep buried valleys with Quaternary deposits and in areas dominated by thick deposits of Miocene sand and silt, both characterised by relatively high thermal conductivities and low temperature gradients (Fig. 5A–C).
A distinct positive temperature anomaly is observed locally in the northernmost part of Salling, north-western Jylland. It is found in a 251 m deep borehole (DGU no. 38.412) drilled into the top part of a salt diapir (the Batum structure, see Fig. 1 and Fig. 6). The high temperatures are associated with an exceptionally high heat flow of 91 mW/m² (Balling et al. 1981). Due to the high thermal conductivity of rock salt (Table 1), heat is led into the uppermost parts of salt structures, resulting in significantly higher heat flow and higher temperature gradients above salt diapirs (cf. numerical models by Balling et al. 1981; Jensen 1990).

At Stevns in the eastern part of Sjælland, temperatures, especially in the Stevns-1 borehole (DGU no. 218.1938; Fig. 5D) and in a nearby borehole (DGU no. 217.724), are high compared with observations from boreholes in similar carbonate rocks in adjacent areas of Sjælland. Bonnesen et al. (2009) reported on a slow water flow upwards from two specific horizons in the Stevns-1 borehole. However, any slow upward water flow cannot alone explain the elevated temperatures (see Fig. 5D). Based on measured porosities of about 30% in the deeper parts of this borehole (Bonnesen et al. 2009) and a well-defined thermal conductivity-porosity relationship, determined in Balling et al. (1981, fig. 27), the thermal conductivity is estimated at c. 2.0 W/(m·K). With an observed temperature gradient of c. 3.0°/100 m, we estimate the local heat flow to be c. 60 mW/m², much higher than the characteristic shallow heat flow discussed above. To understand this anomaly, further thermal observations and analysis in this area are needed.

Summary and conclusions

By compilation and analysis of all available information on measured borehole temperatures and rock thermal conductivity measurements from depths down to 300 m, we outline regional quantitative information on the shallow subsurface thermal structure for onshore Denmark.

At 50 m depth, the mean temperature (8.9 ± 0.8°C) has increased only little compared to the mean annual ground surface temperature. The higher mean values at 100 m (9.7 ± 1.1°C) and 200 m (11.6 ± 2.2°C), as well as a less representative mean of 14.9 ± 2.0°C at 300 m, reflect the general increase of temperatures with depth. In contrast to assumptions commonly held about only small lateral shallow temperature variations at specific depths, we observe significant variability both locally and regionally. Differences generally increase with depth. For depths of 100 and 200 m, we observe lateral variations (differences between lowest and highest observed temperatures) of 6 and 8°C, respectively. The variability is related to differences in thermal conductivity of the various lithologies.

Mean values of rock thermal conductivities for main lithologies lie within a range of 0.6–6 W/(m·K) (water saturated, at laboratory conditions), with the majority of values within the interval 1–3 W/(m·K). The content of quartz (with high conductivity) and rock porosity (holding water of low conductivity) are the main controlling factors.

Mean interval temperature gradients, divided in litho-chronological groups over which they are measured, vary significantly: -2–5°C/100 m in the depth interval 50–100 m and 0–5°C/100 m for depths > 100 m. At very shallow depths, less than 50 m, and often between 50 and 75 m as well, we observe very low gradients, locally also negative values (decreasing temperatures with depth). These low values reflect the depth penetration of recent climatic surface temperature increase. For deeper levels, we observe a well-defined inverse relationship between mean temperature gradients and mean thermal conductivity for the main lithologies. Quartz-rich sandy sediments (high thermal conductivity) have low mean temperature gradients (about 0.8–1.2°C/100 m); silty clay, limestone and chalk (intermediate conductivity) have intermediate mean gradients (about 1.6–2.5°C/100 m) and very fine-grained clay (low thermal conductivity) have high mean temperature gradients (about 3.3–4.3°C/100 m).

From a correlation plot of mean temperature gradient versus the reciprocal of associated mean thermal conductivity of the litho-chronological groups, we obtain a regional shallow heat flow estimate of 37 ± 5 mW/m². This low value is in good agreement with similarly low values from local site determinations using classical methods. Heat flow in the shallow subsurface is found to be around a factor of two lower than deep background heat flow. This is believed to be due to long-term palaeoclimatic effects primarily related to the significant increase in surface temperatures at the end of the last glaciation.

From our temperature and temperature gradient analysis, and from the above well-defined (inverse) correlation between temperature gradient variations and thermal conductivity variations, we conclude that the shallow subsurface thermal regime across the Danish area is largely controlled by thermal conduction. Generally, this applies both on local borehole scale and regionally. Only locally, and in rare cases, do we observe temperature and temperature gradient perturbations due to groundwater migration and in such cases with very small amplitudes.

In addition to general geoscientific purposes, our data and findings are important for several applica-
tions, such as exploitation of shallow geothermal energy and the use of the subsurface for heat storage and cooling purposes.

Acknowledgement

The data compilation, the majority of recent thermal conductivity measurements and temperature logging of shallow boreholes was funded by EUDP project grant 64011-0003 (Geoennergy. Closed loop boreholes - knowledge, tools and best practice). Inga Sørensen, Maria Pagola and Anne Mette Nielsen are thanked for their skilful laboratory work. We also thank Per Rasmussen, Steen Røj Jacobsen and Thue S. Bording for field assistance with borehole temperature logging and data processing. Reinhard Kirsch and an anonymous reviewer are thanked for their valuable comments.

References

Andersson, O. 2007: Aquifer Thermal Energy Storage (ATES). In: Paksoy, H.O. (ed.), Thermal Energy Storage for Sustainable Energy Consumption. NATO Science Series (Mathematics, Physics and Chemistry) 234, 155–176. Springer, Dordrecht.

Balling, N. 1979: Subsurface temperatures and heat flow estimates in Denmark. In: Čermák, V. & Rybach, L. (eds), Terrestrial Heat Flow in Europe, 161–171. Springer-Verlag, Berlin.

Balling, N. 1986: Temperature of geothermal reservoirs in Denmark. Report to Commission of the European Communities, contract EG-A-1-032-DK(G), 65 pp. Geophysical Laboratory, University of Aarhus.

Balling, N. 1992: Denmark. In: Hurtig, E., Haenel, R. & Saxov, S. 1981. Geothermal measurements and subsurface temperature modelling in Denmark. Geoskrifter 16, 172 pp. Aarhus University.

Balling, N. & Bording, T.S. 2013: Temperatur, temperaturgradienter og varmeledningsveje i den geotermiske boring Sønderborg-1/1A. Scientific report, 12 pp. Department of Geoscience, Aarhus University.

Balling, N., Christiansen, J., Breiner, N., Poulsen, K.D., Rasmussen, R. & Saxov, S. 1981. Geothermal measurements and subsurface temperature modelling in Denmark. Geoskrifter 16, 172 pp. Aarhus University.

Balling, N., Nielsen, S.B., Christiansen, H.S., Christensen, L.D. & Poulsen, S. 1992: The subsurface thermal regime and temperature of geothermal reservoirs in Denmark. Synthesis report to Commission of the European Communities, Contract EN3G-0029-DK, 89 pp. Department of Geoscience, Aarhus University.

Balling, N., Hvid, J.M., Mahler, A., Møller, J.J., Mathiesen, A., Bidstrup, T. & Nielsen, L.H. 2002: Denmark. In: Hunter, S. & Haenel, R. (eds), Atlas of Geothermal Resources in Europe. Publication No. EUR 17811 of the European Commission, 27–28, plate 15–16.

Balling, N., Poulsen, S.E., Fuchs, S., Mathiesen, A., Bording, T.S., Nielsen, S.B. & Nielsen, L.H. 2016: Development of a numerical 3D geothermal model for Denmark. In: Proceedings, European Geothermal Congress, Strasbourg, France, Sept 2016, 9 pp.

Bonnesen, E.P., Bøggild, O.B. & Ravn, J.P.J. 1913: Carlsbergfondets dybdeboring i Grøndals eng ved København 1894–1907 og dens videnskabelige resultater. Communications Geologiques, 105 pp. Muséum de Minéralogie et de Geologie de l'Université de Copenhague, Copenhagen.

Bonnesen, E.P., Larsen, F., Sonnenborg, T.O., Klitten, K. & Stemmerik, L. 2009: Deep saltwater in Chalk of North-West Europe: Origin, interface characteristics and development over geological time. Hydrogeology Journal 17, 1643–1663. doi:10.1007/s10040-009-0456-9

Bording, T.S., Nielsen, S.B. & Balling, N. 2019: Determination of thermal properties of materials by Monte Carlo inversion of pulsed needle probe data. International Journal of Heat and Mass Transfer 133, 154–165. doi:10.1016/j.ijheatmasstransfer.2018.12.104

Brigaud, F. & Vasseur, G. 1989: Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophysical Journal International 98, 525–542. doi:10.1111/j.1365-246X.1989.tb02287.x

Bucharád, B. & Nielsen, A.T. 1985: Carbon and oxygen isotope composition of Cambro-Silurian limestone and anthracite from Bornholm: Evidence for deep burial diagenesis. Bulletin of the Geological Society of Denmark 33, 415–435.

Buckley, D.K., Hinsby, K. & Manzano, M. 2001: Application of geophysical borehole logging techniques to examine coastal aquifer palaeohydrogeology. Geological Society, London, Special Publication 189, 251–270. doi:10.1144/GSL.SP.2001.189.01.15

Bullard, E.C. 1939: Heat Flow in South Africa. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 173, 474–502. doi:10.1098/rspa.1939.0159

Cappelen, J. (ed.) 2012: Denmark – DMI Historical Climate Data Collection 1768–2011, Technical report 12-02, 90 pp. Danish Meteorological Institute.

Čermák, V. & Rybach, L. 1982: Thermal properties: Thermal conductivity and specific heat of minerals and rocks. In: Angeneister, G. (ed.), Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology, 305–343. Springer Verlag, Berlin, Heidelberg, New York.

Christensen, L. & Ulleberg, K. 1973: Sedimentology and micropalaontology of the middle Oligocene sequence at Sofienlund, Denmark. Bulletin of the Geological Society of Denmark 22, 283–305.

Clauser, C. & Huenges, E. 1995: Thermal conductivity of rocks

48 · Bulletin of the Geological Society of Denmark
and minerals. in: Ahrens, T.J. (ed.), Rock Physics and Phase Relations: A Handbook of Physical Constants. AGU Reference Shelf 3, 105–126. American Geophysical Union, doi:10.1029/RF03p0105

Davis, M.G., Chapman, D.S., Van Wagoner, T.M. & Armstrong, P.A. 2007: Thermal conductivity anisotropy of metasedimentary and igneous rocks. Journal of Geophysical Research 112, B05216, 7 pp. doi:10.1029/2006JB004755

Ditlefsen, C. & Sørensen, I. 2014: D6 Overfladænære jordarters termiske egenskaber. Report to Energy technological development and demonstration program (EUDP), 23 pp. Geological Survey of Denmark and Greenland, Copenhagen. http://geoenergi.org/xpd/d6_jordarters_termiske_egenskaber.pdf

Ditlefsen, C., Sørensen, I., Slott, M. & Hansen, M. 2014: Estimating thermal conductivity from lithological descriptions – A new web-based tool for planning of ground-source heating and cooling. Geological Survey of Denmark and Greenland Bulletin 31, 55–58.

DMI 2018a: Klimanormaler [WWW Document]. URL http://www.dmi.dk/vejr/arkiver/normaler-og-ekstremer/klimanormaler-dk/ (accessed 12-7-2018).

DMI 2018b: Decadal mean weather [WWW Document]. URL http://www.dmi.dk/en/vejr/arkiver/decadal-mean-weather (accessed 17-7-2018).

Fællestved, J., Boldrée, L.O., Lindstrøm, S., Kristensen, L., Mathiesen, A., Andersen, M.S., Kamla, E. & Nielsen, L.H. 2018: Stratigraphy and geothermal assessment of Mesozoic sandstone reservoirs in the Øresund Basin – exemplified by well data and seismic profiles. Bulletin of the Geological Society of Denmark 66, 123–149.

GEUS 2017: Jupiter database [WWW Document]. URL http://www.geus.dk/DK/data-maps/jupiter/Sider/default.aspx (accessed 26-9-2017).

Gravesen, P. & Fredericia, J. 1984: ZEUS-geodatabasesystem. Borearkivet. Databeskrivelse, kodesystem og sideregister. Danmarks Geologiske Undersøgelse Serie C, No 3, 259 pp.

Gravesen, P., Rolle, F. & Surlyk, F. 1982: Lithostratigraphy and sedimentary evolution of the Triassic, Jurassic and Lower Cretaceous of Bornholm, Denmark. Danmarks Geologiske Undersøgelse Serie B, No 7, 51 pp.

Hansen, M. & Pjetursson, B. 2011: Free, online Danish shallow subsurface thermal structure onshore Denmark. Geological Survey of Denmark and Greenland Bulletin 23, 53–56.

Heilmann-Clausen, C. 1995: Palæogene aflejringer over Danmarks geologi fra Kridt til i dag. Aarhus Geokompendier I, 69–114.

Heilmann-Clausen, C., Nielsen, O.B. & Gersner, F. 1985: Lithostratigraphy and depositional environments in the Upper Paleocene and Eocene of Denmark. Bulletin of the Geological Society of Denmark 33, 287–323.

Hellström, G. 2011: Borehole heat exchangers. In: Geotrainet Training Manual for Designers of Shallow Geothermal Systems, 31–52. GEOTRAINET, EFG, Brussels 2011.

Horai, K. 1971: Thermal conductivity of rock-forming minerals. Journal of Geophysical Research 76, 1278–1308. doi:10.1029/JB076i005p01278

Houmark-Nielsen, M. 1988: Pleistocene stratigraphy and glacial history of the central part of Denmark. Bulletin of the Geological Society of Denmark 36, 1–189.

Houmark-Nielsen, M. 2004: The Pleistocene of Denmark: A review of stratigraphy and glaciation history. In: Ehlers, J. & Gibbard, P.L. (eds), Quaternary Glaciations 5 – Extent and Chronology, 35–46. Developments in Quaternary Science. Elsevier, doi:10.1016/S1571-0866(04)80055-1

Håkansson, E. & Pedersen, S.A.S. 1992: Geologisk kort over den danske undergrund. Varv.

Jacobsen, E.M. 1985: En råstofgeologisk kortlægning omkring Roskilde. Dansk Geologisk Forøring, Årsskrift for 1984, 65–78.

Jensen, P.K. 1990: Analysis of the temperature field around salt diapirs. Geothermics 19, 273–283. doi:10.1016/0375-6055(90)90047-F

Jørgensen, F. & Sanderson, P.B.E. 2006: Buried and open tunnel valleys in Denmark – erosion beneath multiple ice sheets. Quaternary Science Reviews 25, 1339–1363. doi:10.1016/j.quascirev.2005.11.006

Knudsen, P. 1983: Bestemmelse af geotermiske parametre indenfor den årlige temperaturvariations virkningsområde. MSc. thesis. Department of Geoscience, Aarhus University.

Kristiansen, J.I. 1982: The transient cylindrical probe method for determination of thermal parameters and earth material. Geoskrifter 18, 154 pp. Aarhus University.

Kristiansen, J., Saxov, S., Balling, N. & Poulsen, K. 1982: In situ thermal conductivity measurements of Precambrian, Palaeozoic and Mesozoic rocks on Bornholm, Denmark. Geologiska Föreningens i Stokholm Förhandlingar 104, 49–56.

Kukkonen, I.T. & Jöeleht, A. 2003: Weichselian temperatures from geothermal heat flow data. Journal of Geophysical Research 108, paper 2163, 11 pp. doi:200310.1029/2001JB001579

Larsen, G., Jørgensen, F.H. & Prisholm, S. 1977: The stratigraphy, structure and origin of glacial deposits in the Randers area, eastern Jylland. Danmarks Geologiske Undersøgelse II. Række 111, 36 pp.

Larsen, N.K., Knudsen, K.L., Krohn, C.F., Kronborg, C., Murray, A.S. & Nielsen, O.B. 2009: Late Quaternary ice sheet, lake and sea history of southwest Scandinavia – A synthesis. Boreas 38, 732–761. doi:10.1111/j.1502-3885.2009.00101.x

Major, M., Poulsen, S.E. & Balling, N. 2018: A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs. Geothermal Energy 6 (1), 16 pp. doi:10.1186/s40517-018-0089-0

Mathiesen, A., Kristensen, K., Bidstrup, T. & Nielsen, L.H. 2009: Vurdering af det geotermiske potentiale i Danmark. Danmarks og Grønlands Geologiske Undersøgelse Rapport 2009/59, 30 pp. Copenhagen.

Mathiesen, A., Nielsen, L.H. & Bidstrup, T. 2010: Identifying potential geothermal reservoirs in Denmark. Geological Survey of Denmark and Greenland Bulletin 20, 19–22.

Michelsen, O., Nielsen, L.H., Johannessen, P.N., Andsbjerg, J. & Surlyk, F. 2003: Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. Geological
Møller, I., Søndergaard, V.H., Jørgensen, F., Auken, E. & Chris- 
møller, I., Søndergaard, V.H. & Jørgensen, F. 2009a: Geophysical 
mapping. Geological Survey of Denmark and Greenland Bulletin 17, 41–44.

Møller, I., Søndergaard, V.H., Jørgensen, F., Auken, E. & Chris-
tiansen, A.V. 2009b: Integrated management and utilization of 
hydrogeophysical data on a national scale. Near Surface 
Geophysics 7, 647–659. doi:10.1099/1873-0604.2009031

Møller, I., Balling, N., Bording, T.S., Vignoli, G. & Rasmussen, P. 
2014: D9 Temperatur og temperaturgradienter ved og under 
jordoverfladen i relation til lithologi. Report to Energy tech-
nological development and demonstration program (EUDP), 
47 pp. Geological Survey of Denmark and Greenland, Copen-
hausen. http://geoenergi.org/xpdf/d9_temperatur_og_temper-
aturgradienter.pfd.

Nielsen, A.T. & Schovsbo, N.H. 2007: Cambrian to basal Ordovi-

cian lithostratigraphy in Southern Scandinavia. Bulletin of the 
Geological Society of Denmark 53, 47–92.

Nielsen, O.B. (ed.) 1994: Lithostratigraphy and biostratigraphy 
of the Tertiary sequence from the Harre borehole, Denmark, 
168 pp. Department of Earth Sciences, Aarhus University.
Nielsen, S.B., Balling, N. & Christiansen, H.S. 1990: Forma-
tion temperatures determined from stochastic inversion of 
borehole observations. Geophysical Journal International 
101, 581–591.

Pagola, M.A. 2013: Investigation of Soil for Shallow Geothermal 
Energy Systems - Field tests and laboratory measurements 
for the determination of thermal properties for the design of 
combined abstraction of heat and storage of solar energy. MSc 
thesis, 100 pp. VIA University College, Horsens.

Pedersen, G.K. & Surlyk, F. 1983: The Fur Formation, a late Paleo-

cene ash-bearing diatomite from northern Denmark. Bulletin of the 
Geological Society of Denmark 32, 43–65.

Porsvig, M. 1986: Varmeovergangsforhold omkring jordslanger. 

Energiministeriets varmepumpforskningsprogram 33, 36 
pp.

Poulsen, S.E., Balling, N., Bording, T.S., Mathiesen, A. & Nielsen, 
S.B. 2017: Inverse geothermal modelling applied to Danish 
sedimentary basins. Geophysical Journal International 211, 
188–206. doi:10.1093/gji/ggx296

Powell, W.G., Chapman, D.S., Balling, N. & Beck, A.E. 1988: Con-
tinental heat-flow density. In: Haenel, R., Rybach, L. & Stegena, 
L. (eds), Handbook of Terrestrial Heat-Flow Density Deter-
mination, 167–222. Kluwer Academic Publishers, Dordrecht.

Rasmussen, E.S., Dybkjær, K. & Piasecki, S. 2010: Lithostratig-
raphy of the Upper Oligocene – Miocene succession of 

Denmark. Geological Survey of Denmark and Greenland Bulletin 22, 1–92.

Rasmussen, P., Höjberg, A.L. & Ditlefsen, C. 2016: 3D modelling of 
borehole heat exchangers at hydrogeological conditions 
typical of the north European lowlands, sensitivity studies 
from Denmark. Proceedings, European Geothermal Con-
gress, Strasbourg, France, 19–24 Sept 2016, 5 pp.

Robertson, E.C. 1988: Thermal Properties of Rocks. Open-File 
Report 88-441, 106 pp. US Geological Survey.

Regen, B., Ditlefsen, C., Vangkilde-Pedersen, T., Nielsen, L.H. & 
Mahler, A. 2015: Geothermal energy use, 2015 country update 
for Denmark. Proceedings, World Geothermal Congress 2015, 
Melbourne, Australia, 19–25 April 2015, 9 pp.

Sanderson, P.B.E. & Jørgensen, F. 2017: Buried tunnel valleys in 

Denmark and their impact on the geological architecture of the 
subsurface. Geological Survey of Denmark and Greenland 
Bulletin 38, 13–16.

Sanner, B. 2016: Shallow geothermal energy – history, develop-
cment, current status, and future prospects. Proceedings, 
European Geothermal Congress, Strasbourg, France, 19–24 
Sept 2016, 19 pp.

Scharling, M. 2012: Climate Grid, Denmark. Datset for use in 
research and education. Daily and monthly values 1989–2010, 
10×10 km precipitation sum, 20×20 km average temperature, 
accumulated potential evaporation (Makkink), average wind 
speed, accumulated global radiation. Technical report 12-10, 
12 pp. Danish Meteorological Institute, Copenhagen.

Somerton, W.H. 1992: Thermal properties and temperature-
related behavior of rock/fluid systems. Developments in 
Petroleum Science 37, 1st ed, 256 pp. Elsevier, Amsterdam.

Sørensen, A., Holstager, M., Schober, S., Schovsbo, 

N.H., Sheldon, E., Stemmerik, L. & Thibault, N. 2013: Upper 
Campanian–Maastrichtian holostratigraphy of the eastern 
Danish Basin. Cretaceous Research 46, 232–256. doi:10.1016/j.
cretes.2013.08.006

Thomsen, E. 1995: Kalk og kridt i den danske undergrund. 

Danmarks geologi fra Kridt til i dag. Aarhus Geokompender 
1, 31–67.

Vangkilde-Pedersen, T., Ditlefsen, C. & Höjberg, A.L. 2012: 

Shallow geothermal energy in Denmark. Geological Survey 
of Denmark and Greenland Bulletin 26, 37–40.

von Herzen, R. & Maxwell, A.E. 1959: The measurement of 
thermal conductivity of deep-sea sediments by a needle 
probe method. Journal of Geophysical Research 64, 1557–1563. 
doi:10.1029/JZ064i010p01557

Weight, T.E., Frei, D. & Storey, M. 2012: Geochronological con-
straints on granitic magmatism, deformation, cooling and 
uplift on Bornholm, Denmark. Bulletin of the Geological 
Society of Denmark 60, 23–46.

Waples, D.W. & Waples, J.S. 2004: A Review and Evaluation of Spe-
cific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. 
Part I: Minerals and Nonporous Rocks. Natural Resources 
Research 13, 97–122. doi:10.1023/B:NARR.0000032647.41046.e7

Weibel, R., Olivarius, M., Kristensen, L., Friis, H., Leth, M., 
Kjøller, C., Mathiesen, A. & Nielsen, L.H. 2017: Predicting 
permeability of low-enthalpy geothermal reservoirs: A case 
study from the Upper Triassic – Lower Jurassic Gassum For-
mation, Norwegian – Danish Basin. Geothermics 65, 135–157. 
doi:10.1016/j.geothermics.2016.09.003

York, D., Evensen, N.M., Martínez, M.L. & De Basabe Delgado, J. 
2004: Unified equations for the slope, intercept, and standard 
errors of the best straight line. American Journal of Physics 
72, 367–375. doi:10.1119/1.1632486
Appendix A. Summary statistics of thermal conductivities for litho-chronological groups in Fig. 2, also shown in Fig. 8. Individual data are available from Supplementary data file 2.

| Litho-chronological group         | Number of localities | Number of samples | Mean of mean $W/(m\cdot K)$ | Min. $W/(m\cdot K)$ | Max. $W/(m\cdot K)$ |
|----------------------------------|----------------------|-------------------|-----------------------------|---------------------|---------------------|
| Quaternary gytja                | 1                    | 3                 | 0.68                        | 0.58                | 0.86                |
| Quaternary marine sand          | 2                    | 5                 | 1.77                        | 1.48                | 1.96                |
| Quaternary marine clay          | 3                    | 4                 | 1.21                        | 1.04                | 1.42                |
| Quaternary meltwater sand       | 8                    | 13                | 2.31                        | 1.98                | 2.93                |
| Quaternary meltwater clay       | 4                    | 8                 | 1.62                        | 0.92                | 2.26                |
| Quaternary sand till            | 1                    | 2                 | 2.05                        | 1.96                | 2.14                |
| Quaternary clay till            | 10                   | 29                | 2.10                        | 1.40                | 2.70                |
| Miocene quartz sand             | 2                    | 4                 | 2.65                        | 2.35                | 3.34                |
| Miocene mica sand               | 3                    | 4                 | 1.82                        | 1.70                | 1.90                |
| Miocene mica silt               | 2                    | 9                 | 1.30                        | 1.00                | 1.48                |
| Miocene mica clay               | 5                    | 8                 | 1.29                        | 0.90                | 1.74                |
| Oligocene clay                  | 6                    | 30                | 1.15                        | 0.80                | 1.48                |
| Eocene clay                     | 4                    | 8                 | 1.03                        | 0.80                | 1.40                |
| Eocene diatomite                | 1                    | 3                 | 0.63                        | 0.61                | 0.67                |
| Paleocene clay                  | 3                    | 12                | 1.02                        | 0.78                | 1.40                |
| Danian limestone                | 3                    | 5                 | 1.51                        | 0.90                | 2.10                |
| Maastrichtian chalk             | 7                    | 41                | 1.67                        | 1.45                | 1.98                |
| Jurassic sand and sandstone     | 3                    | 7                 | 2.62                        | 2.26                | 2.84                |
| Jurassic clay                   | 1                    | 1                 | 1.34                        | 1.34                | 1.34                |
| Jurassic thin beds of sand and clay | 4              | 4                 | 1.95                        | 1.88                | 2.04                |
| Ordovician Komstad limestone    | 1                    | 7                 | 2.75                        | 2.70                | 2.82                |
| Cambrian alum shale             | 1                    | 2                 | 1.69                        | 1.67                | 1.70                |
| Cambrian Broens Odde Member     | 2                    | 4                 | 4.11                        | 3.88                | 4.29                |
| Cambrian Balka sandstone        | 1                    | 1                 | 6.12                        | 6.12                | 6.12                |
| Cambrian Nexø sandstone         | 1                    | 7                 | 4.51                        | 4.21                | 4.99                |
| Precambrian crystalline rocks   | 11                   | 39                | 3.07                        | 2.57                | 3.68                |
Appendix B. Summary statistics of the temperature gradients displayed in Fig. 10 and Fig. 11. Temperature gradients are divided in litho-chronological groups (Fig. 2) and in two depth intervals (50–100 m and >100 m depth).

| Litho-chronological group | Number of wells | Number of samples | Mean °C/(100 m) | Std. dev. °C/(100 m) | Min. °C/(100 m) | Max. °C/(100 m) |
|---------------------------|-----------------|-------------------|-----------------|-----------------------|----------------|----------------|
| **Quaternary deposits**   |                 |                   |                 |                       |                |                |
| Meltwater sand & gravel   | 10              | 76                | 0.56            | 0.80                  | -1.22          | 2.31           |
| Clay till                 | 3               | 16                | 1.91            | 0.83                  | 0.88           | 3.16           |
| Meltwater clay            | 5               | 30                | 1.05            | 1.06                  | 0.11           | 5.08           |
| Marine clay               | 2               | 18                | 1.54            | 1.08                  | 0.35           | 2.76           |
| **Quaternary deposits**   |                 |                   |                 |                       |                |                |
| Meltwater sand & gravel   | 9               | 152               | 1.19            | 0.62                  | 0.14           | 2.96           |
| Clay till                 | 0               | 0                 | -               | -                     | -              | -              |
| Meltwater clay            | 0               | 0                 | -               | -                     | -              | -              |
| Marine clay               | 1               | 4                 | 1.80            | 0.33                  | 1.33           | 2.21           |
| **Neogene deposits**      |                 |                   |                 |                       |                |                |
| Miocene quartz sand and gravel | 1           | 2                 | -0.71           | 0.49                  | -1.21          | -0.22          |
| Miocene mica sand         | 1               | 25                | 1.66            | 0.41                  | 1.13           | 2.28           |
| Miocene mica silt         | 3               | 33                | 1.80            | 0.40                  | 1.18           | 2.43           |
| Miocene mica clay         | 5               | 38                | 1.37            | 0.70                  | 0.28           | 2.60           |
| **Neogene deposits**      |                 |                   |                 |                       |                |                |
| Miocene quartz sand and gravel | 1           | 2                 | 0.86            | 0.06                  | 0.80           | 0.92           |
| Miocene mica sand         | 1               | 25                | 1.66            | 0.41                  | 1.13           | 2.28           |
| Miocene mica silt         | 3               | 33                | 1.80            | 0.40                  | 1.18           | 2.43           |
| Miocene mica clay         | 5               | 90                | 1.68            | 0.35                  | 0.54           | 2.97           |
| **Palaeogene clastic deposits** |     |                   |                 |                       |                |                |
| Oligocene clay            | 2               | 19                | 2.64            | 0.51                  | 1.77           | 3.25           |
| Oligocene thin beds of clay, silt and sand | 1           | 17                | 2.23            | 0.85                  | 0.47           | 3.22           |
| Eocene Søvind marl        | 2               | 26                | 2.84            | 0.37                  | 2.22           | 3.46           |
| Eocene clay               | 0               | 0                 | -               | -                     | -              | -              |
| Eocene thin beds of clay, silt and sand | 0           | 0                 | -               | -                     | -              | -              |
| Selandian clay            | 3               | 26                | 2.13            | 0.64                  | 1.20           | 3.14           |
| **Palaeogene clastic deposits** |     |                   |                 |                       |                |                |
| Oligocene clay            | 3               | 59                | 3.77            | 0.33                  | 3.10           | 4.41           |
| Oligocene thin beds of clay, silt and sand | 2           | 31                | 3.46            | 0.16                  | 3.15           | 3.66           |
| Eocene Søvind marl        | 1               | 3                 | 2.46            | 0.07                  | 2.36           | 2.52           |
| Eocene clay               | 1               | 31                | 4.30            | 0.24                  | 3.94           | 4.64           |
| Eocene thin beds of clay, silt and sand | 1           | 15                | 3.29            | 0.41                  | 2.12           | 3.56           |
| Selandian clay            | 5               | 24                | 3.30            | 0.49                  | 2.63           | 3.89           |
| **Pal. & u. Maastrichtian carbonate deposits** |     |                   |                 |                       |                |                |
| Selandian limestone       | 0               | 0                 | -               | -                     | -              | -              |
| Danian limestone          | 5               | 23                | 1.90            | 1.06                  | 0.47           | 3.59           |
| Maastrichtian & Campanian chalk | 8           | 121               | 2.10            | 1.08                  | 0.35           | 5.08           |
| **Pal. & u. Maastrichtian carbonate deposits** |     |                   |                 |                       |                |                |
| Selandian limestone       | 1               | 24                | 2.18            | 0.23                  | 1.78           | 2.70           |
| Danian limestone          | 5               | 83                | 2.20            | 0.38                  | 1.32           | 3.31           |
| Maastrichtian & Campanian chalk | 9           | 453               | 2.47            | 0.78                  | 0.21           | 4.38           |
| **Lower Cretaceous and Jurassic** |           |                   |                 |                       |                |                |
| Sand and sandstone        | 3               | 38                | 1.57            | 0.66                  | 0.84           | 2.76           |
| Clay and claystone        | 1               | 1                 | 1.23            | 0.00                  | 1.23           | 1.23           |
| Thin beds of clay, silt and sand | 1           | 13                | 1.09            | 0.25                  | 0.77           | 1.42           |
| **Lower Cretaceous and Jurassic** |           |                   |                 |                       |                |                |
| Sand and sandstone        | 3               | 44                | 1.26            | 0.25                  | 0.90           | 1.63           |
| Clay and claystone        | 1               | 3                 | 1.31            | 0.04                  | 1.26           | 1.34           |
| Thin beds of clay, silt and sand | 1           | 25                | 1.61            | 0.34                  | 1.22           | 2.44           |
| **Cambrian and Precambrian rocks** |           |                   |                 |                       |                |                |
| Cambrian sandstone        | 2               | 13                | 0.84            | 0.15                  | 0.72           | 1.15           |
| Crystalline rocks         | 2               | 19                | 1.17            | 0.04                  | 1.07           | 1.24           |
| **Cambrian and Precambrian rocks** |           |                   |                 |                       |                |                |
| Cambrian sandstone        | 0               | 0                 | -               | -                     | -              | -              |
| Crystalline rocks         | 0               | 0                 | -               | -                     | -              | -              |