Extended Gaussian ensemble or q-statistics in hadronic production processes?

T.Osada1,a, O.V.Utyuzh2,b, G.Wilk2c, and Z.Włodarczyk3d

1 Dept.of Physics, General Education Center, Musashi Institute of Technology, Tamazutumi 1-28-1, Setagaya-ku, Tokyo 158-8557, Japan
2 The Andrzej Soltan Institute for Nuclear Studies, Hoża 69, 00681 Warsaw, Poland
3 Institute of Physics, Świętokrzyska Academy, Świętokrzyska 15; 25-406 Kielce, Poland

Received: date / Revised version: date

Abstract. The extended Gaussian ensemble introduced recently as a generalization of the canonical ensemble, which allows to treat energy fluctuations present in the system, is used to analyze the inelasticity distributions in high energy multiparticle production processes.

PACS. 13.85.-t Hadron-induced high- and super-high-energy interactions – 24.60.-k Statistical theory and fluctuations – 12.40.Ee Statistical (extensive and non-extensive) models

1 Introduction

The high energy multiparticle production processes are very important source of information on the dynamics of hadronization process, in which some amount of the initially available energy is subsequently transformed into a number of secondaries of different types. Such processes can be described only via phenomenological models, which are stressing their different dynamical aspects, like specific energy flows [1] or their apparent thermal-like character [2]. Actually most of the characteristic features of hadronization can be described in universal manner by means of Information Theory (IT) approach, both in its extensive [3] or nonextensive [4,5,6] versions. The main difference between them is that whereas former is using only energy-momentum conservation constraint, the later accounts also for some intrinsic fluctuations present in the hadronization process, either in the form of fluctuations of temperature [7] or in the form of fluctuations of the number of produced secondaries [1]. Recently the extended gaussian ensemble (EGE) approach has been proposed to account for some fluctuations in statistical mechanics and it was presented also in the IT formulation [10]. The question, which we would like to address here, is whether EGE can find application in deducing some new information from hadronic production processes.

2 Extended Gaussian ensemble from IT

Following [3,4,5,6] we are interested in applying IT to deduce the most probable and least biased energy distributions of particles produced in hadronization process in which mass M transforms into given number N of secondaries of mass μ and mean transverse mass $\mu_T = \sqrt{\mu^2 + \langle p_T^2 \rangle}$ each, distributed in the longitudinal phase space described by rapidity variable, y (such that energy of particle is $E = \mu_T \cosh y$). We are therefore interested in (normalized) rapidity distribution $p(y) = (1/N) \cdot dN/dy$, $\int dyp(y) = 1$, which according to IT [3] is obtained by maximizing Shannon entropy

$$S = -\int dyp(y) \ln p(y),$$

under condition of reproducing known a priori mean value of energy of produced secondaries (K denotes the so called inelasticity of reaction to be discussed later),

$$\langle E(y) \rangle = \int_{-Y_m}^{Y_m} dy [\mu_T \cdot \cosh y] \cdot p(y) = U = \frac{K}{N} \cdot M. \quad (2)$$

Whereas in [1] one uses Tsallis entropy instead Shannon ones and defines constraints [2] in slightly different way, the EGE approach [10] simply adds one more constraint to (2) in the form of a priori known fluctuations of mean energy of given secondary given by its variance W,

$$\langle [E(y) - U]^2 \rangle = \int_{-Y_m}^{Y_m} dy [\mu_T \cdot \cosh y - U]^2 \cdot p(y) = W. \quad (3)$$

a e-mail: osada@ph.ns.musashi-tech.ac.jp
b e-mail: utyz@fuw.edu.pl
c e-mail: wilk@fuw.edu.pl
d e-mail: wlod@pu.kielce.pl

Accounting for the fact that multiplicity distribution of observed secondaries are not Poissonian [8].
In this case \[p(y) = \frac{1}{Z} \cdot \exp \left[-\beta \cdot \mu_T \cosh y - \gamma \cdot (U - \mu_T \cosh y) \right], \]
where \(Z \) is normalization constant and \(\beta = \beta(U, W, N, \mu_T) \), \(\gamma = \gamma(U, W, N, \mu_T) \) are two Lagrange multipliers for the constraints (2) and (3), respectively. In the case of no dynamical fluctuations, i.e., \(\gamma = 0 \), one recovers situation already known from EGE (with some \(W_0 = 1/\beta^2 \) with respect to which one should estimate effect of dynamical correlations)\(^2\). Rewriting eq. (4) as

\[p(y) = \frac{1}{Z} \cdot \exp \left[-\beta^* \cdot \mu_T \cosh y \right] \cdot \beta^* = \beta - \gamma \cdot [2U - E(y)], \]

one obtains expression formally resembling the usual Boltzmann-Gibbs formula, but this time with energy-dependent inverse "temperature" \(\beta^* \) (which is thus no longer intensive variable). Actually such possibility was already discussed in the context of reservoir with finite heat capacity. It was argued there that if

\[\frac{d}{dE} \left[\frac{1}{\beta(E)} \right] = q - 1, \]

where \(q \) is some constant, then the corresponding distribution (where \(E(y) = \mu_T \cosh y \)) takes form of the so called Tsallis distribution\(^3\).

\[p_q(y) = \frac{1}{Z_q(M, N)} \cdot \left[1 - (1 - q)\beta_q(M, N) \cdot E(y) \right]^{1/q}, \]

with \(q \) given by (7)\(^3\). In our case where \(\beta = \beta^* \) one gets formally energy dependent Tsallis nonextensivity \(q \) parameter

\[q = 1 - \frac{\gamma}{[(\beta - 2\mu)/U + \gamma E]^2}. \]

For \(\gamma > 0 \) it becomes smaller than unity and exceeds unity for \(\gamma < 0 \). It coincides with result of only if \(|\gamma(E - 2U)/\beta| \ll 1 \) in which case \(q = 1 - \gamma/\beta^2 \).

3 Inelasticity distributions \(\chi(K) \) in EGE

We have tried to apply EGE distribution as defined by eq. (4) to analyze the same multiparticle data as in\(^4\) only to discover that these data do not require EGE, the best fit is obtained with \(\gamma = 0 \) or slightly negative (in which case the respective \(q \) from \(\gamma \) exceeds unity, as has been found in\(^4\)). The reason for this is obvious when inspecting Fig. 1 which confronts rapidity distributions

\(^2\) In the center of mass frame \(y \in (-Y_m, Y_m) \) where \(Y_m = \ln \left[M' \left(1 + \sqrt{1 - 4\mu^2}/M'^2 \right) / (2\mu_T) \right] \) and where \(M' = M - (N - 2)\mu_T \).

\(^3\) Care must be taken when considering signs because in\(^4\) one considers dependence of \(\beta \) on the energy of the reservoir, \(E_R \), and here we have energy of particle \(E = E_{\text{total}} - E_R \). Therefore our \(q - 1 \) corresponds to \(1 - q \) there.

![Fig. 1.](image-url)
of the Tsallis type [7] with those obtained from EGE [8] obtained for hadronization of some fixed mass M into different number of secondaries. Results obtained using EGE show completely different behavior from Tsallis statistics approach clearly demonstrating that direct fluctuations in energy used in EGE (and characterized here by parameter k_W such that $W = k_W^2 W_0$ where W_0 are the intrinsic statistical fluctuations present in the system when $\gamma = 0$) are not equivalent to fluctuations described by parameter q of Tsallis’ statistics [4]. This can be understood in the following way. In standard description of hadronization processes by means of IT in the Shannon form we always have some (mean) number of secondaries produced $\langle N \rangle$ with (mean) energy $\langle E \rangle$ each. Allowing for fluctuations of $\langle N \rangle$ results in EGE using in upper panel of Fig. 1.

In this case the mean energy per particle fluctuates from event to event. Keeping now $\langle N \rangle$ fixed but introducing distribution of energy per particle (i.e., describing energy per particle by its mean and deviation from the mean) results in EGE [9]. Evidently single particle distributions in hadronization processes follow first or second scenario, not EGE.

On the other hand EGE turns out to be very useful when applied to other characteristic of multiparticle production, namely to inelasticity distribution, $\chi(K)$, (i.e., distribution of the fraction of the available energy, which is transformed into observed secondaries). In [8] it was deduced from data for the first time for two energies: 200 and 900 GeV, cf. Fig. 2 (by analysing rapidity distributions of secondaries in fixed multiplicity bins). Its shape has been then fitted by gaussian and lorentzian curves but no explanation was offered for their possible origin and there was no argument at that time in favor of any of them. EGE provides arguments that most probably $\chi(K)$ should be of gaussian shape. To show this let us again follow [10] and let us suppose that the whole energy available for a given multiparticle production reaction, $E = \sqrt{s}$, is divided into two parts: one part equal to $E_1 = K \cdot \sqrt{s}$ is going into system producing observed secondaries whereas the rest of it, $E_2 = E - E_1$, is not used for this purpose and, in a sense, acts as a kind of “heath bath” (or environment) for the first one. Both systems, the one producing particles with energy E_1 and the environment with energy E_2 can be in many possible states. Therefore

$$p_1(E_1) = \frac{\Omega_1(E_1) \Omega_2(E_2)}{\Omega_{1+2}(E)},$$

$$p_1(E_1) = \frac{1}{\Omega_{1+2}(E)} \cdot \exp \left[S_1(E_1) + S_2(E_2) \right].$$

Expanding now entropy around $E_1 = U$, keeping only linear and quadratic terms and assuming that $\beta = \frac{1}{T}$ and $\gamma = -\left[\frac{\partial \ln \Omega}{\partial E_1} \right]_{E_1 = U}$ are the same for both parts of the system (generalization is straightforward) one immediately obtains gaussian-like form for energy E_1 distribution,

$$p_1(E_1) = \frac{1}{Z_G} \exp \left[-\gamma (E_1 - U)^2 \right],$$

where Ω denote the corresponding number of states. Defining entropy in the usual way as

$$S_i(E_i) = \ln \Omega_i(E_i), \quad i = 1, 2$$

one gets

Expanding $\Omega_1(E_1)$ for small β and neglecting γ, one obtains

$$\Omega_1(E_1) = \sqrt{\frac{2\pi \gamma}{\beta}} \exp \left[-\frac{(E_1 - U)^2}{2\gamma \beta} \right].$$

Fig. 2. Inelasticity distributions $\chi(K)$ (normalized to unity) obtained in [4] from analysis of multiparticle production data for $\sqrt{s} = 200$ GeV and $\sqrt{s} = 900$ GeV fitted by gaussian, $\chi(K) \approx \exp \left[-(K - \langle K \rangle)^2/(2\sigma^2) \right]$ (full lines), and lorentzian, $\chi(K) \approx \sigma/\pi (K - \langle K \rangle)^2 + \sigma^2 \}$ (dash-dotted lines) formulas, respectively. The values of parameters ($< K >; \sigma$) for gaussian case are (0.52; 0.24) and (0.38; 0.20) for 200 GeV and 900 GeV, respectively; for lorentzian case they are, respectively, (0.52; 0.25) and (0.39; 0.17) (see [4] for more details).

Notice that decreasing fluctuations in energy in comparison with q-statistics in hadronic production processes? 3

Notice that for $k_W < 1$ one gets $\gamma > 0$ (actually $\gamma \to +\infty$ for $k_W \to 0$) whereas for $k_W > 1$ one obtains $\gamma < 0$ leading to equivalent q calculated according to eq. [8] exceeding unity but otherwise being incompatible with nonextensivity parameter used in upper panel of Fig. 1. [10]

Notice that decreasing fluctuations in energy in comparison to standard ones, i.e., assuming in Fig. [11] (lower panel) $k_W < 1$ results in tendency of particles to condensate in a single energy state with energy equal to $E_{\text{total}}/N_{\text{total}}$. It means that EGE interpolates in fact between the microcanonical and canonical distributions [12].

Notice, however, that now C_V and q are different from those in [7] as they refer to both longitudinal and transverse degrees
We would like to conclude with the following remarks:

- EGE works only for the whole system, not for a single particle. This is going to be emitted according to its own distribution, in particular Boltzmann-Gibbs or Tsallis, notwithstanding what the energy E_1 is and how it is distributed. For a moment we cannot offer any convincing explanation why it is so.
- EGE is not the same (i.e., it does not describes the same kind of fluctuations) as q-statistics. It means that even if for some limiting cases both distribution can be similar this is just an artifact.
- On the other hand EGE tells us that for the system under consideration $T = T(E)$ and E_1 fluctuates. This means that for particles emitted from this system one should rather use Tsallis distributions reserving Boltzmann-Gibbs ones only to the case of $T = $ const.

Let us close with remark that the lorentzian curve shown also in Fig. 2 (and fitting data at least as well as the gaussian one) could be explained as a kind of a nonextensive extension of EGE by noticing that in q-statistical approach one gets gaussian distribution for $q = 1$ and lorentzian distribution for $q = 2$. We shall not pursue this further here.

Acknowledgments: GW is grateful to the organizers of the NEXT2005 for their hospitality. Partial support of the Polish State Committee for Scientific Research (KBN) (grant 621/E-78/SPUB/CERN/P-03/DZ4/99(GW)) is acknowledged.

References

1. F. O. Durães, F. S. Navarra and G. Wilk, Braz. J. Phys. 35, 3 (2005).
2. Cf., for example, F. Becattini, Nucl. Phys. A 702, 336 (2002); F. Becattini and G. Passaleva, Eur. Phys. J. C 23, 551 (2002); W. Broniowski and W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001) and Acta Phys. Polon. B 35, 779 (2004) and references therein.
3. G. Wilk and Z. Włodarczyk, Phys. Rev. D 43, 794 (1991).
4. F. S. Navarra, O. V. Utyuzh, G. Wilk and Z. Włodarczyk, Phys. Rev. D 67, 114002 (2003).
5. F. S. Navarra, O. V. Utyuzh, G. Wilk and Z. Włodarczyk, Physica A 340, 467 (2004).
6. F. S. Navarra, O. V. Utyuzh, G. Wilk and Z. Włodarczyk, Physica A 344, 568 (2004) and Nukleonika 49 (Supplement 2), s19 (2004), see also O. V. Utyuzh, G. Wilk and Z. Włodarczyk, Multiparticle production processes from the Information Theory point of view, [hep-ph/0503048] to be published in Acta Phys. Hung. (HIP) (2005).
7. G. Wilk and Z. Włodarczyk, Phys. Rev. Lett. 84, 2770 (2000); Chaos, Solitons and Fractals 13/3, (2001) 581; Physica A 305, 227 (2002). Cf. also: C. Beck and E. G. D. Cohen, Physica A 322, 267 (2003) and T. S. Biró and A. Jakovác, Phys. Rev. Lett. 94, 132302 (2005).
8. A. Giovannini and L. Van Hove, Z. Phys. C 30, 381 (1986); see also: P. Carruthers and C. S. Shih, Int. J. Mod. Phys. A 2, 1447 (1986).
9. C. Tsallis, Physica A 340, 1 (2004) and Physica A 344, 718 (2004) and references therein.
10. R. S. Johal, A. Planes and E. Vives, Phys. Rev. E 68 (2003) 056113.
11. M. F. Almeida, Physica A 300, 424 (2001).
12. M. S. S. Challa and J. H. Hetherington, Phys. Rev. Lett. 60, 77 (1988).