Studying $K\pi$ S-wave scattering in K-matrix formalism

Long Li

Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, China

Bing-song Zou

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, China
and Institute of Theoretical Physics, Beijing 100080, China

Guang-lie Li

CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China
Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, China
and Center of Theoretical Nuclear Physics,
National Laboratory of Heavy Ion accelerator, Lanzhou 730000, China
(Dated: November 3, 2002)

Abstract

We generalize our previous work on $\pi\pi$ scattering to $K\pi$ scattering, and re-analyze the experiment data of $K\pi$ scattering below 1.6 GeV. Without any free parameter, we explain $K\pi I = 3/2$ S-wave phase shift very well by using t-channel ρ and u-channel K^* meson exchange. With the t-channel and u-channel meson exchange fixed as the background term, we fit the $K\pi I = 1/2$ S-wave data of the LASS experiment quite well by introducing one or two s-channel resonances. It is found that there is only one s-channel resonance between $K\pi$ threshold and 1.6 GeV, i.e., $K^*_0(1430)$ with a mass around 1438 \(\sim\) 1486 MeV and a width about 346 MeV, while the t-channel ρ exchange gives a pole at $(450 - 480i)$ MeV for the amplitude.

PACS numbers: 14.40.Aq, 11.80.Gw, 13.75.Lb
I. INTRODUCTION

The assignment of the scalar mesons has been a long standing problem. Recently the existence of the low-lying $\pi\pi$ scalar state σ has been well established, i.e., $f_0(400-1200)$ as listed by the Particle Data Group (PDG) [1]. Now the PDG lists five well-established isoscalar 0^{++} mesons: $f_0(400-1200)$, $f_0(980)$, $f_0(1370)$, $f_0(1500)$ and $f_0(1710)$, which are obviously too many for a standard $q\bar{q}$ nonet. Given the existence of two isovector scalars, $a_0(980)$ and $a_0(1450)$, two scalar nonets have been suggested [2, 3]: an unconventional one composed of σ, κ, $a_0(980)$ and $f_0(980)$ and the conventional $q\bar{q}$ nonet composed of $f_0(1370)$, $K^*_0(1430)$, $a_0(1450)$ and $f_0(1500)$ or $f_0(1710)$.

However, the existence of the κ is still in controversy. Evidence for this resonance has been claimed within certain models [4, 5, 6, 7], whilst other studies dispute this [8, 9]. Recently, a less model-dependent analysis of the LASS $K\pi$ scattering data between 825 MeV and 2 GeV by Cherry and Pennington [10] concludes that there is no $\kappa(900)$, but a very low mass κ well below 825 MeV cannot be ruled out.

In fact the phase shifts of $K\pi$ S-wave scattering at low energies [11, 12] look very similar to those of $\pi\pi$ S-wave scattering. In our previous study on $\pi\pi$ scattering in the K-matrix formalism [13], the negative phase shifts for the isotensor $\pi\pi$ S-wave were naturally explained by the t-channel ρ meson exchange while the broad $f_0(400-1200)$ structure in the isoscalar $\pi\pi$ S-wave was decomposed into a t-channel ρ meson exchange part dominating at the low energy end plus an additional s-channel wide resonance $f_0(1670)$. Considering the similarity between the $K\pi$ scattering and the $\pi\pi$ scattering, it is nature to extend our previous work on the $\pi\pi$ scattering to the $K\pi$ scattering. We find that the negative phase shifts of the $K\pi I = 3/2$ S-wave can be very well reproduced by the t-channel ρ and u-channel K^* meson exchange without any free parameter. With the t-channel and u-channel meson exchange fixed as the background term, the positive smoothly rising phase shifts for the $K\pi I = 1/2$ S-wave can be well fitted by introducing one or two additional s-channel resonances. It is found that there is only one s-channel resonance between $K\pi$ threshold and 1.6 GeV, i.e., $K^*_0(1430)$ with a mass around $1438 \sim 1486$ MeV and a width about 346 MeV, while the t-channel ρ exchange gives a pole at $(450 - 480i)$ MeV for the amplitude.
II. FORMALISM

For the pseudoscalar-pseudoscalar-vector coupling, we use the SU(3)-symmetric lagrangian [14]

\[\mathcal{L}_{PPV} = -\frac{1}{2} i G_V \text{Tr}([P, \partial_\mu P]V^\mu), \]

(1)

where \(G_V \) is the coupling constant, \(P \) is the 3 \(\times \) 3 matrix representation of the pseudoscalar meson octet, \(P = \lambda^a P^a, a = 1, \ldots, 8 \) and \(\lambda^a \) are the 3 \(\times \) 3 generators of SU(3). A similar definition of \(V^\mu \) is used for the vector meson octet.

In the Gell-Mann representation, the lagrangian can be expressed as

\[\mathcal{L}_{PPV} = 2 G_V \epsilon_{ijk} \pi^i \partial_\mu \pi^j \rho^k, \]

(2)

where \(\epsilon_{ijk} \) are the antisymmetric structure constants of SU(3). For example,

\[\mathcal{L}_{\pi\pi\rho} = 2 G_V \epsilon_{ijk} \pi^i \partial_\mu \pi^j \rho^k, \]

(3)

\[\mathcal{L}_{\pi K K^*} = i G_V \left\{ \left(\partial_\mu K \right) \bar{\tau} K^{*\mu} - K^{*\mu} \bar{\tau} \partial_\mu K \right\} \cdot (\bar{\tau} - \bar{KK}^{*\mu} \bar{\tau} K) \]

(4)

where \(\bar{\tau} \equiv (\pi_1, \pi_2, \pi_3) \), \(K^{*\mu} \equiv \left(\begin{array}{c} K^{*+} \\ K^{*0} \end{array} \right) \), \(K \equiv \left(\begin{array}{c} K^+ \\ K^0 \end{array} \right) \), \(K^{*\mu} \equiv \left(K^{*+\mu}, K^{*0\mu} \right) \), and \(\bar{\tau} = (\tau_1, \tau_2, \tau_3) \) are usual Pauli matrices acting on the kaon iso-spinors.

For \(K\pi \) scattering, amplitude \(T \) can be written in terms of two invariant amplitudes \(T^+ \) and \(T^- \) by [13]

\[T_{\beta\alpha} = \delta_{\beta\alpha} T^+ + \frac{1}{2} [\tau_\beta, \tau_\alpha] T^-, \]

(5)

where \(\alpha, \beta \) are the isospin indices of the pions. Using isospin projection operators gives

\[3T^+ = T^{1/2}(s, t, u) + 2T^{3/2}(s, t, u), \]

\[3T^- = T^{1/2}(s, t, u) - T^{3/2}(s, t, u). \]

(6)

where \(s, t, u \) are the usual Mandelstam variables.

The partial-wave amplitudes are obtained from the full amplitude by the standard projection formula [13, 15]

\[T_l(s) = \frac{1}{16\pi^2} \frac{1}{2} \int_{-1}^{+1} d(\cos \theta) P_l(\cos \theta) T(s, t, u) \]

\[= \frac{1}{16\pi^2} \frac{1}{4p^2} \int_{-4p^2}^0 dt P_l \left[1 + \frac{t}{2p^2} \right] T(s, t, u), \]

(7)
where $P_l(x)$ is the Legendre function and $p = \sqrt{[s - (m_\pi + m_K)^2][s - (m_\pi - m_K)^2]/(2\sqrt{s})}$.

Our normalization is such that the unitarity relation for partial-wave amplitude reads

$$\text{Im}T_l(s) = \rho_1(s)|T_l(s)|^2,$$

with $\rho_1(s) = 2\rho/\sqrt{s}$.

We start with the Born term of the $K\pi$ scattering amplitude by ρ meson and K^* meson exchange and follow the K-matrix formalism as in Refs.\[13, 16, 17\]. Fig. 1 is the Feynman diagram of the $K\pi$ scattering Born term.

FIG. 1: The Born term of $K\pi$ scattering.

A. s-channel and u-channel K^* meson exchange amplitude

The Born term for the K^* meson exchange ((a) and (c) of Fig. 1) is

$$T^{1/2}(s, t, u) = g_{\pi KK^*}^2 \left[\frac{3(t-u)}{m_{K^*}^2-s} + \frac{3(m_\pi^2-m_{K^*}^2)^2}{s(m_{K^*}^2-s)} + \frac{s-t}{m_{K^*}^2-u} - \frac{(m_\pi^2-m_{K^*}^2)^2}{m_{K^*}^2(m_{K^*}^2-u)} \right], \quad (8)$$

$$T^{3/2}(s, t, u) = -2g_{\pi KK^*}^2 \left[\frac{s-t}{m_{K^*}^2-u} - \frac{(m_\pi^2-m_{K^*}^2)^2}{m_{K^*}^2(m_{K^*}^2-u)} \right], \quad (9)$$

where $g_{\pi KK^*} = G_\rho$ is the coupling constant. Their S-wave projections are

$$K_S^{1/2}(s) = -\frac{1}{2}K_S^{3/2}(s)$$

$$= G_2 \left\{ -1 + \frac{2(s-m_\pi^2-m_{K^*}^2)+m_{K^*}^2-(m_\pi^2-m_{K^*}^2)^2/m_{K^*}^2}{4p^2} \times \ln \frac{m_{K^*}^2+s-2(m_\pi^2+m_{K^*}^2)}{m_{K^*}^2+s-2(m_\pi^2+m_{K^*}^2)-4p^2} \right\}, \quad (10)$$

where $G_2 = g_{\pi KK^*}^2/(16\pi)$. K-matrix unitarization is introduced by

$$T_S^{l=1/2}(s) = \frac{K_S^{l=1/2}(s)}{1 - i\rho_1(s)K_S^{l=1/2}(s)}, \quad (11)$$

$$T_S^{l=3/2}(s) = \frac{K_S^{l=3/2}(s)}{1 - i\rho_1(s)K_S^{l=3/2}(s)}. \quad (12)$$
Now we calculate the coupling constant G_2. Considering $I = 1/2$ P-wave amplitude

$$T^I_{P=1/2}(s) = \frac{K^I_{P=1/2}(s)}{1 - i\rho_1(s)K^I_{P=1/2}(s)},$$

(13)

where $K^I_{P=1/2}$ is the $I = 1/2$ P-wave Born amplitude

$$K^I_{P=1/2}(s) = \frac{1}{4p^2} \int_{-4p^2}^{0} dt \left\{ G_2 \left[\frac{3(t-u)}{m_{K^*}^2 - s} + \frac{3(m_{\pi}^2 - m_{K}^2)^2}{s(m_{K^*}^2 - s)} \right] + \frac{s-t}{m_{K^*}^2 - u} \left(\frac{(m_{\pi}^2 - m_{K}^2)^2}{m_{K^*}^2(m_{K^*}^2 - u)} \right) \times \left[1 + \frac{t}{2p^2} \right] \right\}. \quad (14)$$

Near the K^* pole at $s \approx m_{K^*}^2$, we have

$$K^I_{P=1/2}(s) \approx \frac{G_2 4p^2}{m_{K^*}^2 - s}, \quad (15)$$

thus,

$$T^I_{P=1/2}(s) = \frac{G_2 4p^2}{m_{K^*}^2 - s - i\rho_1(s)G_2 4p^2}. \quad (16)$$

Comparing with the standard Breit-Wigner formula, we obtain

$$M_{K^*} \Gamma_{K^*} = \rho_1(s)4p^2 G_2 |_{s=M_{K^*}}, \quad (17)$$

which leads to $G_2 = 0.21$ with the K^* mass $M_{K^*} = 891.66$ MeV and width $\Gamma_{K^*} = 50.8$ MeV from Ref. [1].

The ratio of coupling constants is $g_{\rho\pi\pi}/g_{\piKK^*} \approx 1.9$ using the $g_{\rho\pi\pi}$ value of Refs. [13, 16]: $g_{\rho\pi\pi}^2/(32\pi) = 0.364$. It agrees well with the value from SU(3) symmetry: $g_{\rho\pi\pi}/g_{\piKK^*} = 2$.

In order to explain the $K\pi$ $I = 3/2$ S-wave experimental data, a form factor is needed to take into account the off-shell behavior of the exchanged mesons. For t and u-channel exchange, we use a form factor of conventional monopole type at each vertex:

$$F(q) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2}, \quad (18)$$

where m and q are the mass and four-vector momentum of exchanged mesons, and the cutoff parameter $\Lambda = 1500$ MeV, the same value as the $\pi\pi$ scattering in Ref. [13].

After adding the form factor, $K^I_{S=1/2}(s)$ and $K^I_{S=3/2}(s)$ becomes

$$K^I_{S=1/2}(s) = \frac{1}{4p^2} \int_{-4p^2}^{0} dt \left\{ G_2 \left[\frac{3(t-u)}{m_{K^*}^2 - s} + \frac{3(m_{\pi}^2 - m_{K}^2)^2}{s(m_{K^*}^2 - s)} \right] + \left(\frac{\Lambda^2 - m_{K^*}^2}{\Lambda^2 - u} \right)^2 \left[\frac{s-t}{m_{K^*}^2 - u} - \frac{(m_{\pi}^2 - m_{K}^2)^2}{m_{K^*}^2(m_{K^*}^2 - u)} \right] \right\}.$$
\[
\frac{1}{4p^2} \int_{-4p^2}^{0} dt \left\{ -2G_2 \left(\frac{\Lambda^2 - m_{K^*}^2}{\Lambda^2 - u} \right)^2 \left[\frac{s - t}{m_{K^*}^2} - \frac{(m_\pi^2 - m_K^2)^2}{m_{K^*}^2(m_{K^*}^2 - u)} \right] \right\}
\]

\[
= -2G_2 \left\{ \frac{m_{K^*}^2 - \Lambda^2}{A - 4p^2} \times \left[1 + \frac{s}{A} - \frac{(m_\pi^2 - m_K^2)^2}{m_{K^*}^2 A} \right] \right. \\
+ \frac{s + B - (m_\pi^2 - m_K^2)^2/m_{K^*}^2}{4p^2} \ln \frac{B(A - 4p^2)}{A(B - 4p^2)} \right\},
\]

where \(A = \Lambda^2 + s - 2(m_\pi^2 + m_K^2), B = m_{K^*}^2 + s - 2(m_\pi^2 + m_K^2) \).

B. \(t \)-channel \(\rho \) meson exchange amplitude

The Born term for the \(\rho \) meson exchange (see Fig 1(b)) is

\[
T^{\text{Born}}(I = 1/2) = 2g_{\pi\pi\rho}g_{\rho KK} \frac{s - u}{m_\rho^2 - t},
\]

\[
T^{\text{Born}}(I = 3/2) = -g_{\pi\pi\rho}g_{\rho KK} \frac{s - u}{m_\rho^2 - t}.
\]

Their \(S \)-wave projections are

\[
K_{S}^{1/2}(s) = -2K_{S}^{3/2}(s)
\]

\[
= 2G_1 \left\{ -1 + \frac{2(s - m_\pi^2 - m_K^2) + m_\rho^2}{4p^2} \ln \frac{m_\rho^2(\Lambda^2 + 4p^2)}{\Lambda^2(m_\rho^2 + 4p^2)} \right\},
\]

where \(G_1 = g_{\pi\pi\rho}^2/(32\pi) = 0.364 \) \cite{13, 10}. Because we cannot obtain \(g_{\rho KK} \) from experiment, \(SU(3) \) symmetry \(g_{\pi\pi\rho} = 2g_{\rho KK} \) is used.

After introducing form factor,

\[
K_{S}^{1/2}(s) = -2K_{S}^{3/2}(s)
\]

\[
= 2G_1 \left\{ \frac{2(s - m_\pi^2 - m_K^2)}{\Lambda^2} + \frac{1}{\Lambda^2 + 4p^2} - \frac{2(s - m_\pi^2 - m_K^2) + m_\rho^2}{4p^2} \ln \frac{m_\rho^2(\Lambda^2 + 4p^2)}{\Lambda^2(m_\rho^2 + 4p^2)} \right\}.
\]
C. Amplitude of s-channel S-wave resonances

The phase shift is known to be elastic below 1300 MeV. The threshold for the $K\eta'$ channel is at 1453 MeV and the $K\eta$ channel is only weakly coupled to the $K\pi$ channel [8, 11]. Considering the $K\pi$ and $K\eta'$ channels, the explicit form is

$$T = \frac{M \Gamma_{K\pi} / \rho_1(M^2)}{M^2 - s - i [M \Gamma_{K\pi} / \rho_1(M^2) + M \Gamma_{K\eta'} / \rho_2(M^2)]}$$

(25)

where $\rho_2(s) = \sqrt{s - (m_{\eta'} + m_K)^2][s - (m_{\eta'} - m_K)^2]/s$ is the phase space factor of $K\eta'$.

When fitting the experimental data, we first try introducing one s-channel resonance and then try introducing two such resonances.

III. NUMERICAL RESULTS AND DISCUSSION

As in Refs. [13, 16], we use Dalitz-Tuan method to combine various components given in the last section to get the full partial wave amplitudes and corresponding phase shifts.

For the $K\pi I = 3/2$ S-wave scattering, the phase shift is negative with magnitude slowly increasing as the center-of-mass energy increases as shown in Fig.2. There is no s-channel quark-antiquark resonance contribution allowed for isospin $I = 3/2$. So the only contribution here is the t-channel ρ and u-channel K^* meson exchanges. With the cutoff parameter $\Lambda = 1.5$ GeV fixed as the same as in $\pi\pi$ scattering [13], we get the prediction for the $K\pi I = 3/2$ S-wave phase shift as shown by the solid line in Fig.2(b) without introducing any free parameters, which reproduces data nicely. To show the effect of off-shell form factor, the results without form factor are shown in Fig.2(a). The t-channel ρ exchange and u-channel K^* exchange give very similar contribution to the $K\pi I = 3/2$ S-wave phase shift as shown by the long-dashed line and dotted line, respectively. Here the t-channel ρ exchange gives a much larger contribution than the u-channel K^* meson exchange. The sum of these two contributions is shown by the dashed line and is obviously not enough to reproduce the experimental data. Some contribution from s-channel resonance(s) is definitely needed. By
FIG. 2: $I = 3/2$ $K\pi$ S-wave phase shift. Data are from Refs. [12] (dots) and [18] (circles). Theoretical curves are for t-channel ρ exchange (dotted line), u-channel K^* exchange (dashed line), and the sum (solid line). (a) without form factor and (b) with form factor and $\Lambda = 1.5$ GeV.

fixing the t-channel ρ exchange and the u-channel K^* exchange as background contribution, we fit the LASS data [11] first by introducing one s-channel resonance (dot-dashed line) and then by introducing two s-channel resonances (solid line). The fitted parameters for the s-channel resonance(s) and the corresponding χ^2 for two cases are listed in Table I.
FIG. 3: The $I = 1/2$ $K\pi$ S-wave phase shift and amplitude. The experimental data for $\delta_{1/2}$ and $T_{1/2}$ are from Ref. [11] (dotted), Ref. [12] (boxed) Ref. [19] (circled) Ref. [20] (diamond). The long-dashed line is for K^* meson exchange, the dotted line is for ρ meson exchange, the dashed line is the sum of K^* and ρ meson exchange, the dot-dashed line includes one s-channel resonance and the solid line includes two resonances.
TABLE I: Fitted parameters for the s-channel resonances and the corresponding χ^2 for two cases: with one resonance (first line) and with two resonances (second line). Values for mass and width are in unit of GeV.

M_1	$\Gamma_{K\pi}^{(1)}$	$\Gamma_{K\eta'}^{(1)}$	M_2	$\Gamma_{K\pi}^{(2)}$	$\Gamma_{K\eta'}^{(2)}$	χ^2
1.438	0.345	0.001	—	—	—	86/45
1.486	0.346	0.000	1.668	0.150	0.491	57/45

It is natural that the fit with two s-channel resonances gives a smaller χ^2 value. But from Fig.3 we see that both cases with one or two s-channel resonances give quite good fit to the data. For the case of two resonances, the second resonance is very broad and has a mass above the upper energy limit (1.6 GeV) of the data, and could be an effective tail of resonances above 1.6 GeV. In both cases, there is only one s-channel resonance between the $K\pi$ threshold and 1.6 GeV, corresponding to the PDG well established $K^*(1430)$ resonance. The fitted mass and width for the $K^*(1430)$ depend on whether we introduce one or two s-channel resonances, with mass around $1438 \sim 1486$ MeV and width about 346 MeV, which is very close to the value (1450, 350) MeV by Tornqvist and Roos [21] with a different formalism.

For the t-channel ρ meson exchange amplitude, we find a pole at (0.45-0.48i) GeV. This is consistent with the conclusion by Cherry and Pennington that there is no $\kappa(900)$, but a very low mass κ well below 825 MeV cannot be ruled out.

In summary, the $K\pi I = 3/2$ S-wave phase shift can be well reproduced by the t-channel ρ and u-channel K^* meson exchange while the $K\pi I = 1/2$ S-wave phase shift are dominated by the s-channel $K^*_0(1430)$ resonance and the t-channel ρ exchange with a pole at (450-480i) MeV. The $\kappa(450)$ has a similar nature as $\sigma(400)$[13, 16]: both are produced by the t-channel ρ exchange and are very broad with a width around 1 GeV.

Acknowledgments

This work was supported in part by the Major State Basic Research Development Program (G20000774), CAS Knowledge Innovation Project (KJCX2-SW-N02) and by National
11

[1] Particle Data group, D.E. Groom et al., Eur. Phys. J. C 15, 1 (2000)
[2] E. van Beveren, G. Rupp, Eur. Phys. J. C 10, 469 (1999)
[3] D. Black, et al., Phys. Rev. D 61, 074001 (2000), D. Black, et al., Phys. Rev. D 59, 074026 (1999)
[4] E. van Beveren et al., Z. Phys. C 30, 615 (1986)
[5] S. Ishida et al., Prog. Theor. Phys. 98, 621 (1997)
[6] D. Black, et al., Phys. Rev. D 58, 054012 (1998)
[7] J.A. Oller and E. Oset, Phys. Rev. D 60, 074023 (1999)
[8] N.A. Törnqvist, Z. Phys. C 68, 647 (1995)
[9] V.A. Anisovich, A.V. Sarantsev, Phys. Letter. B 413, 137 (1997)
[10] S.N. Cherry, M.R. Pennington, Nucl. Phys. A 688, 823 (2001)
[11] D. Aston et al., Nucl. Phys. B 296, 493 (1988)
[12] P. Estabrooks et al., Nucl. Phys. B 133, 490 (1978)
[13] Long Li, Bing-song Zou and Guang-lie Li, Phys. Rev. D 63, 074003 (2001)
[14] D. Lohse et al., Nucl. Phys. A 516, 513 (1990)
[15] B.R. Martin, D. Morgan and G. Shaw, Pion-Pion Interactions in Particle Physics, Academic, New york, 1974
[16] B.S. Zou and D.V. Bugg, Phys. Rev. D 50, 591 (1994)
[17] M.P. Locher, V.E. Markushin and H.Q. Zheng, Phys. Rev. D 55, 2894 (1997)
[18] C.B. Lang, Fortsch. Phys. 26, 509 (1978)
[19] A. Firestone et al., Phys. Rev. D 5, 2188 (1972)
[20] M.J. Matison et al., Phys. Rev. D 9, 1872 (1973)
[21] N. Tornqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996)