SHORT TAKE

Immunochip analysis identifies association of the RAD50/IL13 region with human longevity

Friederike Flachsbart,1* David Ellinghaus,1* Liljana Gentschew,1 Femke-Anouska Heinsen,1 Amke Caliebe,2 Lena Christiansen,3 Marianne Nygaard,3,4 Kaare Christensen,3,4,5 Hélène Blanché,6 Jean-François Deleuze,5,7 Céline Derbois,7 Pilar Galan,68 Carsten Büning,9 Stephan Brand,10 Annette Peters,11,12,13 Konstantin Strauch,14,15 Martina Müller-Navssyid,16,14,16 Per Hoffmann,17,18,19 Markus M. Nöthen,17,18 Wolfgang Lieb,20 Andre Franke,1 Stefan Schreiber1,21 and Almut Nebel1

1Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
2Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
3Epidemiology, Biostatistics and Biometry, Department of Public Health, University of Southern Denmark, Odense, Denmark
4Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
5Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
6Institut Jean Dausset-Centre du Polymorphisme Humain (CEPH), Paris, France
7Centre National de Génotypage CNG-IG-CEA, Evry, France
8Université Sorbonne Paris Cité-UREN, Unité de Recherche en Épidémiologie Nutritionnelle; US57 Inserm; U1125 Inra; Cnams; Université Paris 13, CRNH Idf, Bobigny, France
9Department of Gastroenterology, Hepatology and Endocrinology, Charité, Campus Mitte, Berlin, Germany
10Department of Medicine II – Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
11Institute of Epidemiology II, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
12DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
13German Center for Diabetes Research, Neuherberg, Germany
14Institute of Genetic Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
15Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-University Munich, Munich, Germany
16Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany
17Institute of Human Genetics, University of Bonn, Bonn, Germany
18Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
19Division of Medical Genetics, University Hospital Basel and Department of Biomedicine, University of Basel, Basel, Switzerland
20Institute of Epidemiology and Popgen Biobank, Kiel University, Kiel, Germany
21Clinic for Internal Medicine I, University Hospital of Schleswig-Holstein, Kiel, Germany

Summary

Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long-lived individuals (LLI) and 8919 younger controls. First, we performed a large-scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune-associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip-wide significant signal (PImmunochip = 7.01 × 10⁻⁹) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PImmunochip < 5 × 10⁻⁵ for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta-analysis of the combined French and Danish data after adjusting for multiple testing. In a meta-analysis of all three samples, rs2706372 reached a P-value of PImmunochip = 5.42 × 10⁻⁷ (OR = 1.20; 95% CI = 1.12–1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.

Key words: 5q31.1; genetic association; human longevity; IL13; Immunochip; RAD50.

Despite more than 20 years of research into the genetic basis of human longevity, only alleles in the APOE and FOXO3 genes have repeatedly been shown to be associated with survival to very advanced ages (Schächter et al., 1994; Willcox et al., 2008; Flachsbart et al., 2009; Soerensen et al., 2010; Deelen et al., 2013). APOE and FOXO3 were initially detected in candidate-driven case–control investigations, but APOE has since then been confirmed in a number of genome-wide association studies (GWAS). In addition, a single nucleotide polymorphism (SNP) on chromosome 5q33.3 was recently identified in a GWAS meta-analysis on long-lived individuals (LLI) aged ≥ 90 years (Deelen et al., 2014). Besides the detection of APOE and the 5q33.3 locus, longevity GWAS have been relatively unsuccessful and have failed to reveal novel associations with genome-wide significance or sufficient reproducibility (Deelen et al., 2011, 2014; Nebel et al., 2011). Here, we performed a large-scale candidate gene study by targeting established immune-associated loci present on the Immunochip (Trynka et al., 2011). The Immunochip was designed to perform fine-mapping of GWAS loci of major immune-mediated diseases using data from the
1000 Genomes Project and other sequencing initiatives. The application of the array in this study is based on the hypothesis that a well-functioning immune system and efficient anti-inflammatory networks are potent longevity-assurance mechanisms (Francesco et al., 2007). We employed the Immunochip to screen 1458 German LLI and 6368 younger controls in a discovery phase (panel A in Table S1) for novel longevity loci followed by replication in 1750 LLI and 2551 younger controls from France and Denmark (panel B in Table S1).

After applying conservative and established quality filters to the German longevity sample, 142 136 autosomal SNPs were available for association analysis (see Appendix S1). We used a predefined threshold of \(P = 6.15 \times 10^{-7} \) to define statistical significance for the Immunochip-wide analysis, based on the Bonferroni correction for the number of linkage disequilibrium (LD)-independent markers on the Immunochip (see Appendix S1). The comparison of the case-control frequencies yielded an Immunochip-wide significant association signal for the SNP rs2075650 in the TOMM40/APOE region (\(P_{\text{Immunochip}} = 7.01 \times 10^{-9}, \) OR = 0.69; 95% CI = 0.60–0.78; Table 1, Figs S1 and S2a). This SNP is in moderate LD (\(r^2 = 0.52 \)) with SNP rs429358 that defines the well-established APOE e4 allele (Deelen et al., 2011), and hence, rs2075650 was not considered for replication. With regard to the FOXO3 and the Sq33.3 loci, the Immunochip is uninformative due to poor coverage (Fig. S2b,c). Eighty-four other SNPs showed \(P_{\text{Immunochip}} < 5 \times 10^{-8} \) in the discovery Immunochip analysis (Table S2). Of these, we selected 15 markers for replication, each one representing the best SNP for a specific associated region defined by the clumping procedure (see Appendix S1, Table S3). The replication analysis was performed in two longevity samples from France and Denmark (France: 1257 LLI and 1811 controls; Denmark: 493 LLI and 740 controls; panel B in Table S1). The signal at SNP rs2076372, located in a region encompassing RAD50 (radiation sensitive, Saccharomyces cerevisiae homolog) and IL13 (Interleukin 13), replicated in the French sample (\(P_{\text{Replication+Immunochip}} = 2.69 \times 10^{-3}, \) OR = 1.21; 95% CI = 1.07–1.38; \(P_{\text{Replication (France)}}, \) adj = 0.04 (corrected for 15 tests)) (Table S4). In the smaller Danish sample, the allelic effect of rs2076372 showed a similar trend (\(P_{\text{Replication (Denmark)}}, \) adj = 0.08; OR = 1.19; 95% CI = 0.98–1.45; \(P_{\text{Replication (Denmark)}}, \) adj = 1 (corrected for 15 tests)). In the combined French-Danish replication sample, meta-analysis association analysis yielded a \(P \)-value of \(4.95 \times 10^{-4} \) (OR = 1.21; 95% CI = 1.09–1.34; \(P = 0.0074 \) (corrected for 15 tests)). In a meta-analysis of the German discovery and French-Danish replication samples, rs2076372 reached a \(P \)-value of \(5.42 \times 10^{-7} \) (Table 1). Estimates of odds ratios for rs2076372 were consistent across all three studies (\(OR_{\text{Germany}} = 1.19, OR_{\text{Denmark}} = 1.19, OR_{\text{France}} = 1.21; \)) statistical metric of heterogeneity \(I^2 = 0.0 \), supporting the validity of the association finding.

Our targeted immune gene approach on a combined European sample of 3208 LLI and 8919 controls resulted in the identification of a novel association for longevity in the RAD50/IL13 region on chromosome Sq31.1. The lead SNP rs2076372 is located in the intronic region of the RAD50 gene and is in strong LD with other associated SNPs close to IL13 and ILS. The actual association signal extends even further to include additional genes (Fig. 1). At this point, this observation renders it difficult to assess which gene is actually affected by the association, although RAD50 is a plausible candidate. The protein encoded by RAD50 is highly similar to Saccharomyces cerevisiae Rad50 which is involved in repairing DNA double-strand breaks. Similarly, the human RAD50 is integrated in a functional DNA-binding complex (Kinoshita et al., 2015) that is important for recombination, repair, and genomic stability (Trujillo et al., 1998). Hence, it is conceivable that variation in RAD50 could positively influence longevity by increasing DNA stability.

Table 1

Chr	Association boundaries	A1	A2	AF	Functional annotation	Odds ratio (95% CI)
19	rs2075650	A1	A2	0.011	0.012	1.08 (0.98–1.19)
3	rs3816742	A	G	0.001	0.002	1.21 (1.11–1.31)

Key genes and candidates:
- **A1:** major allele
- **A2:** minor allele
- **AF:** allele frequency of A1 estimated from Immunochip (German population)
- **Chr:** chromosome of marker
- **dbSNP id:** single nucleotide polymorphism
- **imputed:** imputation method
- **Interpretation of \(P \)-value:** \(P \)-value ranges from 0 to 100% and is used to assess statistical significance for the association analysis. Statistical significance is typically determined using a significance level of \(P < 0.05 \).
Alternatively, it could exert its effect via the direct modulation of cytokine expression; recent evidence suggests at least two possible avenues. First, in dendritic cells RAD15 was found to activate—upon sensing viral DNA—the transcription factor NF-κB, thus leading to the production of pro-inflammatory IL-1β (Roth et al., 2014). Second, the RAD50 gene harbors at its 3’ end an evolutionarily highly conserved locus control region (LCR; Lee et al., 2003; Li et al., 2010) that regulates the expression of the neighboring cytokine genes IL-4, IL-13, and IL-5 (Fig. 1) in Th2 cells (Kelly & Locksley, 2000). Variants in the LCR were found to be associated with asthma (Li et al., 2010). Taken together, these findings indicate that the RAD50 locus may very well contribute to longevity via its role in inflammation and immunity. Nevertheless, it is still possible that the RAD50 signal is a result of its LD with other markers within the observed association boundaries. Multiple SNPs in the extended RAD50/IL13 region were previously identified as susceptibility factors for various chronic inflammatory diseases such as Crohn’s disease, psoriasis, asthma, and atopic dermatitis (Riouxf et al., 2000; Li et al., 2008, 2010; Paternoster et al., 2011). Further studies are therefore needed to identify the functional variant(s) and the underlying molecular mechanisms that predispose(s) to a long and healthy life.

Acknowledgments

The authors wish to thank all individuals for their participation.

Funding

This study was supported by the RESOLVE project (grant FP7-HEALTH-F4-2008-202047 to S.S., A.N., and F.F); the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence ’Inflammation at Interfaces’ (grant to A.N. with fellowship for L.G.); the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (SysInflame grant 01ZX1306A); the biobank popgen (the popgen 2.0 network is financed by the German Ministry for Education and Research (grant 01LY1103 to W.L.)); the German Federal Ministry for Education and Research within the context of the National Genome Research Network 2 (NGFN-2), the National Genome Research Network plus (NGFNPplus) and the Integrated Genome Research Network (IG) MooD5 (grant 01GS08144 to M.M.N., grant 01GS08147); the INTER-REGA4 program Syddanmark-Schleswig-K.E.R.N (with EU funds from the European Regional Development Fund, grant to K.C., A.N., L.C., and F.F.); the VELUX Foundation; the Danish National Research Foundation; the US National Institutes of Health—National Institute on Aging (grant number PO1 AG08761 to K.C. and L.C.); the Danish Agency for Science, Technology and Innovation (grant number 09-070081 to K.C. and L.C.).

The authors declare no competing financial interests.

Author contributions

F.F., A.N., A.F., D.E., and S.S. designed research; W.L., A.F., S.S., C.B., S.B., A.P., K.S., M.M.-N., P.H., and M.M.N. were involved in recruitment of German study subjects and assembling of phenotypic data; F.F. and A.N. organized chip genotyping of German Longitudinal Study Subjects. The authors declare no competing financial interests.

References

Deelen J, Beekman M, Uh HW, Helmer O, Kuningas M, Christiansen L, Kremer D, van der Brecken R, Suchiman HE, Lakenberg N, van den Akker EB, Passotras WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Utterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG, Slagboom PE (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10, 686–698.

Deelen J, Beekman M, Capri M, Franceschi C, Slagboom PE (2013) Identifying the genomic determinants of aging and longevity in human population studies: progress and challenges. BioEssays 35, 386–396.

Deelen J, Beekman M, Uh HW, Broer L, Ayers KL, Tan Q, Kamatani Y, Bennet AM, Tamm R, Trompet S, Guethbjartsson DF, Flachsbart F, Rose G, Viktoria A, Fischer 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, Ferreira Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Kelly BL, Locksley RM (2000) Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns. J. Immunopathol. 153, 145–153.

Li Y, Chang M, Schrödtk J, Callis-Duffin KP, Matsunami N, Cixello D, Bun I, Naito C, Lappef M, Krueger GG, Begovich AB (2008) The 5q31 variants of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 330, 2978–2985.

Li X, Howard TD, Zheng SL, Haselkorn T, Peters SP, Meyers DA, Bleecker ER (2010) Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J. Allergy Clin. Immunol. 125, 328–335 e311.

Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanche H, Junge O, Wittig M, Ellinghaus D, Frischbacht F, Wichmann HE, Meitinger T, Nikolaus S, Franke A, Krawczak M, Lathrop M, Schreiber S (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech. Ageing Dev. 132, 324–330.

Paterson L, Sandler M, Chen CM, Ramasamy A, Bonneyleke K, Duijts I, Ferreira MA, Alves AC, Thysen JP, Albrecht E, Baurecht H, Feenstra B, Sleiman PM, Hysi P, Warrington NM, Curcic J, Myhre R, Currie NA, Green-Blockhus MM, Kerkhoff J, Voigt M, Scherkenbach L, Crolla J, Monecke S, Yenane J, Wannemuehler M, Lathrop M, Schreiber S (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech. Ageing Dev. 132, 324–330.

Riou JD, Silverberg MS, Daly MJ, Steinhart AH, McLeod RS, Griffiths AM, Green T, Brettin TS, Stone V, Bull SB, Bitton A, Williams CN, Greenberg GR, Cohen Z, Landes ES, Hudson TJ, Siminovitch KA (2000) Genomewide search in Canadian families with inflammatory bowel disease reveals two novel susceptibility loci. Am. J. Hum. Genet. 66, 1863–1870.

Roth S, Rottach A, Lotz-Havia AS, Laux V, Muschawek A, Gensting SW, Muntau AC, Hofner KP, Jin L, Vanness K, Petreni JJ, Drexler I, Leonardt H, Ruland J (2014) Rad50-CARD9 interactions link cytosolic DNA sensing to IL-1beta production. Nat. Immunol. 15, 538–545.

Schächter F, Faure-Delanel L, Guenet F, Rouger H, Fropoul G, Lessueur-Ginot L, Cohen D (1994) Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6, 29–32.

Soerensen M, Dato S, Christensen K, McGue M, Stevnsner T, Bohr VA, Christiansen L (2010) Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell 9, 1010–1017.

Trujillo KM, Yuan SS, Lee EY, Sung P (1998) Nucleosome activities in a complex of genome recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273, 21447–21450.

Trynka G, Hunt KA, Bocket NA, Romanos J, Mistry V, Szpera A, Bakker SF, Bardella MT, Bhaw-Rosun L, Castillejo G, de la Concha EG, de Almeida RC, Dias KR, von Diemen CC, Dubois PC, Duker RH, Edkins S, Franke L, Fransen K, Guerre J, Heap G, Hrdlickova B, Hunt S, Plaza Izurita L, Izzo V, Joosten LA, Langford C, Mazzilli MC, Mein CA, Midan V, Mitrovic M, Mora B, Morelli M, Nutland S, Nunez C, Onengut-Gumuscu S, Pearce K, Platteel M, Polanco I, Potter S, Ribes-Koninckx C, Rricano-Ponce I, Rich SS, Rybak A, Santiago JL, Senapati S, Sood A, Szajewska H, Troncone R, Varade J, Wallace C, Wolters VM, Zacharko A, Thelma BK, Cukrowska U, Urcecy E, Bilbao JL, Mearin ML, Barisani D, Barrett JC, Plagnol V, Deloukas P, Wijmenga C, van Heel DA (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat. Genet. 43, 1193–1201.

Wilcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano Y, Kasaik KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992.

Supporting Information
Additional Supporting Information may be found online in the supporting information tab for this article.

Appendix S1 Experimental procedure.

Table S1 LLI/control panels used in the analysis.

Table S2 Immunochip association statistics in German panel (panel A in Supplementary Table 1) for 84 SNPs with RHimmunochip < 5 x 10^-4.

Table S3 Immunochip association statistics in German panel (panel A in Supplementary Table 1) for the 15 SNPs selected for replication.

Table S4 Association statistics in French and Danish samples (panel B in Supplementary Table 1) for the 15 SNPs selected for replication.

Fig. S1 Manhattan plot of Immunochip association statistics of 142 136 SNPs.

Fig. S2 Regional association plots (from Immunochip analysis; panel A in Supplementary Table 1) for the 15 SNPs selected for replication.

Fig. S3 Principal component analysis of QCed Immunochip data.

Fig. S4 Quantile-quantile (Q-Q) plot for the discovery panel (panel A in Supplementary Table 1).