Observing the Berry phase in diffusive conductors:

Necessary conditions for adiabaticity

Daniel Loss

Department of Physics and Astronomy, University of Basel,
Klingelbergstrasse 82, 4056 Basel, Switzerland

Herbert Schoeller

Institut für Theoretische Festkörperphysik, Universität Karlsruhe,
Engesserstrasse 7, Postfach 6980, 7500 Karlsruhe, Germany

Paul M. Goldbart

Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801-3080, USA

(March 24, 2022)

Abstract

In a recent preprint [cond-mat/9803170], van Langen, Knops, Paasschens, and Beenakker attempt to re-analyze the proposal of Loss, Schoeller and Goldbart (LSG) [Phys. Rev. B 48, 15218 (1993)] concerning Berry phase effects in the magnetoconductance of diffusive systems. Van Langen et al. claim that the adiabatic approximation for the Cooperon previously derived by LSG is not valid in the adiabatic regime identified by LSG. It is shown that the claim of van Langen et al. is not correct, and that, on the contrary, the magnetoconductance does exhibit the Berry phase effect within the LSG
regime of adiabaticity. The conclusion reached by van Langen et al. is based on a misinterpretation of field-induced dephasing effects, which can mask the Berry phase (and any other phase coherent phenomena) for certain parameter values.

I. INTRODUCTION

The Berry phase \([1]\) remains a fascinating subject with many consequences in a variety of physical systems \([2]\). Some time ago we proposed \([3–7]\) a number of scenarios in condensed matter settings where the Berry phase manifests itself in the phase-coherent quantum dynamics of a particle carrying a spin and moving through orientationally inhomogeneous magnetic fields \(B(\mathbf{x})\). Such manifestations of the Berry phase can occur, e.g., in semiconductors or metals in the form of persistent currents \([3–6]\) or oscillations of the magnetoconductance or universal conductance fluctuations \([1,7]\). As recognized early on \([4]\), all these effects share the common feature that the orbital motion of the particle is modified by the Berry phase in very much the same way as it is in well-known phase-coherent phenomena based on the Aharonov-Bohm effect.

The first experimental evidence for such a Berry phase effect has been recently found in semiconductors \([8]\), in which a local effective magnetic field is produced via the Rashba effect.

However, whereas Aharonov-Bohm effects occur regardless of the strength \(B\) of the field, Berry phase effects appear only in the adiabatic limit, i.e., for sufficiently large magnetic fields. This limit requires that—roughly speaking—the typical orbital frequency of the particle carrying the spin through the field is much smaller than the precession frequency of the spin around the local field direction. In this limit, the spin will remain in its instantaneous eigenstate, i.e., will continuously align itself along the local field direction \(B(\mathbf{x})\) as it moves through the magnetic field texture. If, in addition, the particle trajectory is closed, the spin will acquire a Berry phase, which is purely geometric in character. As spin and orbital
motion couple via the inhomogeneity of the field, the Berry phase can ultimately enter the orbital part of the effective Hamiltonian in the same way that the Aharonov-Bohm phase does.

There seems to be general agreement that once the adiabatic limit is reached the results found previously \[3–7\] are correct. The central question then is: What is the proper criterion for the adiabatic regime? Again, there is no issue of contention in ballistic rings, e.g., for which adiabaticity is reached when \(\omega_B t_o \gg 1\), where \(\omega_B\) is the Bohr frequency (to be defined below), and \(t_o\) is the typical time it takes the particle to go around the ring once. This situation occurs, e.g., in clean semiconductors.

But what about diffusive systems, such as normal metal rings? It is this question that we have previously addressed in great detail \[7\] and that has been recently reconsidered by van Langen et al. \[9\], who claim to reach a rather pessimistic conclusion about the observability of the Berry phase effect—in stark contrast to our findings \[7\]. It is the purpose of the present paper to show that the claim of van Langen et al. \[9\] is not correct. To this end, we first state the problem of adiabaticity in this section again and then provide in the following sections a general discussion on the issue of dephasing induced by inhomogeneous magnetic fields. This discussion is then followed by explicit examples that unambiguously demonstrate the observability of Berry phase effects in diffusive systems of immediate experimental interest.

Now, in the context of weak localization physics we have advanced detailed physical and technical arguments \[7\] that adiabaticity is reached more easily in diffusive than in ballistic systems (all other parameters being equal). The physical explanation for this is simple: In diffusive motion around, say, a ring, the particle spends on the average much more time in a given region of field direction than it would do in purely ballistic motion. Thus, there is more time for the spin to execute precessions around a given field direction, and thus the spin will have a higher probability of aligning itself along the local field direction than it would in purely ballistic motion. Translating this picture into more concrete terms for an electron diffusing around a \(d\)-dimensional ring of circumference \(L\) with static random disorder, adiabaticity is reached if the Zeeman energy, \(\hbar \omega_B = g \mu_B B / 2\), exceeds the Thouless
energy, $E_{\text{Th}} = \hbar D/L^2$. Here g is the electron g-factor, μ_B is the Bohr magneton, $D = v_F^2\tau/d$ is the diffusion constant with v_F being Fermi velocity, $\tau = l/v_F$ is the elastic mean free time, and l is the elastic mean free path. More generally, we can also allow for the case in which the field reorients f times as the particle goes around once the ring. Whereas the case of $f = 1$ is physically realizable [5], it seems very difficult to implement cases with $f > 1$ experimentally. Still, as the conclusions reached by van Langen et al. [9] are crucially based on the case $f = 5$, we shall include this possibility, and the criterion for adiabaticity as found in Ref. [7] then reads

$$\omega_B \tau \gg \frac{f l^2}{d L^2} \sqrt{1 - |N|}.$$

(1)

Here, the texture–dependent vector N is some average of the direction of the magnetic field [3]. The factor $\sqrt{1 - |N|}$ accounts for non-uniformity in the direction of the magnetic field, and encodes the fact that the adiabatic approximation becomes exact, regardless of ω_B, in the limit of a homogeneous field, for which $|N| = 1$. In the following discussion, however, we shall—for the sake of simplicity—omit this factor, noting that its inclusion would render the criterion even less stringent [11]. As in metals one typically has τ of the order of 10^{-14} s, $g = 2$ and $l = 10^{-8}$ m, we should have, for a ring of circumference $L = 10^{-6}$ m, magnetic fields at least of the order of $100 - 1000$ Gauss to be within the adiabatic regime. Note that without the diffusive factor, $(l/L)^2 = 10^{-4}$, the required fields would be too large to be attainable experimentally (i.e., on the order of $100 - 1000$ T).

The regime of adiabaticity defined in Eq. (1) follows from a detailed derivation of the Cooperon and Diffuson propagator based on weak localization techniques and an adiabatic approximation scheme [7]. This adiabatic approximation is performed in the path integral representation for the Cooperon (Diffuson). As emphasized in an analogous discussion of the imaginary-time propagator in the context of persistent currents [3], the adiabatic approximation can contain additional angle-dependent terms that are different from the Berry phase, and these terms can mask the Berry phase in certain physical observables. (For an explicit example of such a case, see Sec. VI F of Ref. [3].) The origin of this additional term can
be traced back to quantum fluctuations of the particle trajectory, which induce non-smooth variations of the magnetic field (and thereby violate the “smooth variation” assumption that underlies the adiabatic approximation) \([5]\). An alternative way to express this point is to say that in certain cases the Berry phase can be masked by dephasing effects—in very much the same way that the Aharonov-Bohm phase can become unobservable if dephasing influences become too large. Such dephasing effects are difficult to calculate for a general texture, but can sometimes be obtained in special cases for which an exact solution is available (see Ref. \([5]\) and below). As suggested in Ref. \([5]\), it is possible to extend the exact solution for a propagator containing a single spin-1/2 particle \([5]\) to the one containing two spin-1/2 particles. Indeed, by following this suggestion van Langen et al. \([5]\) re-calculate the magnetoconductance for a cylindrically symmetrical texture, and claim to find deviations from our adiabatic solution \([5]\). (As we shall show, these deviations are only apparent.) Van Langen et al. conclude from this observation that the exact solution does not contain the Berry phase effect, and thus that the regime of adiabaticity, given in Eq. \([1]\), is invalid. Instead, adopting a suggestion made first by Stern \([10]\), van Langen et al. \([9]\) claim that it is necessary for the much more stringent condition,\[\omega_B \tau \gg 1 \text{ ,} \]

(2)

to be satisfied in diffusive systems before adiabaticity is reached, and thus before the Berry phase effect can become observable in the magnetoconductance. It is specifically this claim that is incorrect. On the contrary, we will show that precisely our adiabaticity criterion, Eq. \([1]\), is appropriate for diffusive systems, and that the observability or non-observability of the Berry phase crucially depends on the choice of physical parameters [in the adiabatic regime given by Eq. \([1]\)]. Indeed, van Langen et al. \([10]\) concentrate on the rather unphysical choice that the field winds five times around the ring (i.e., \(f = 5\)), and as dephasing effects grow strongly with \(f\) (as \(f^2\); see below), it comes as little surprise that Berry phase oscillations are not discernible in this extreme case. However, upon choosing \(f = 1\)—the physically most relevant case—not only do Berry phase effects show up in the exact solution,
but also they agree well with our previously-obtained adiabatic predictions.

Van Langen et al. have studied the issue of adiabaticity also in terms of Boltzmann equations. Due to the coupling of the magnetic field to the orbital motion of the charged electron these Boltzmann equations are valid in the diffusive regime defined by $\omega_c \tau \ll 1$, where ω_c is the cyclotron frequency. As ω_c and ω_B are typically of the same order of magnitude in metals, the regime $\omega_B \tau \gg 1$ studied by van Langen et al. lies outside the physical regime to which their Boltzmann equations can legitimately be applied. Still, even if we adopt their academic point of view and ignore such orbital effects (i.e. set the electron charge to zero), the regime $\omega_B \tau \gg 1$ is problematic for an additional reason. If $\omega_B \tau \gg 1$, the Zeeman rate ω_B is large compared to the elastic collision rate $1/\tau$. In this case we expect the Zeeman interaction to have a strong dephasing influence on the orbital motion (for inhomogeneous fields), especially when $f \gg 1$, and the system lies outside the semiclassical regime in the sense of weak localization theory (see, e.g., Secs. 4 and 10 of Ref. and below). This issue has not been discussed by van Langen et al. in the context of their Boltzmann equations.

Finally, none of the effects discussed by van Langen et al. in terms of their Boltzmann equation have been shown explicitly to be related to the Berry phase. Without such information at hand it is not possible to tell whether the effects they find are of dynamical (non-phase-coherent) or geometrical (Berry phase) origin, as both of them can occur in an adiabatic approximation to the quantum dynamics. As we are interested in the Berry phase effect associated with phase-coherence and occurring in physical observables, we shall not comment any further on the Boltzmann equation approach of van Langen et al., and instead shall concentrate on the magnetoconductance expressed in terms of the Cooperon propagator.

Still, we do wish to point out that although we do not agree with the final conclusions reached by van Langen et al., we have found their work stimulating, inasmuch as it has motivated us to clarify the issue of dephasing which, in turn, has allowed us to establish more concrete predictions about the range of observability of the Berry phase in the mag-
netoconductance of diffusive metallic systems.

II. BERRY PHASE AND MAGNETOCONDUCTANCE

A. Exact Solution and Adiabatic Approximation

We consider a quasi-one-dimensional ring of circumference L, embedded in a magnetic field texture given by $B = B n = B (\sin \eta \cos \frac{2\pi f x}{L}, \sin \eta \sin \frac{2\pi f x}{L}, \cos \eta)$, where x is the location on the ring, η is the tilt angle of the magnetic field, and $f (= 1, 2, 3, \ldots)$ is the winding of the magnetic field along the propagation direction. The magnitude B and, in particular, the tilt angle η are assumed to be constant. It is this special case that can be solved exactly (as pointed out in Ref. [7]) along the same lines as discussed in Ref. [5] for a single-spin propagator. Van Langen et al. [9] were the first to write down this solution explicitly for a two-spin propagator.

The magnetoconductance resulting from weak localization corrections and in the presence of the field texture B has been derived in Ref. [7] and reads,

$$\delta g = -\frac{e^2}{\pi \hbar (2\pi)^2} \sum_{\alpha, \beta = \pm 1} \langle x, \alpha, \beta | \frac{1}{\gamma - \hbar} | x, \beta, \alpha \rangle$$

where the effective (non-hermitian) Hamiltonian h is given by

$$h = \frac{L^2}{(2\pi)^2} \frac{\partial^2}{\partial x^2} + i \kappa \mathbf{n} \cdot (\sigma_1 - \sigma_2),$$

where σ_i (with $i = 1, 2$) are spin-$1/2$ Pauli matrices, and where

$$\kappa = \frac{\omega_B}{D} \frac{L^2}{(2\pi)^2} = \omega_B \tau d \frac{L^2}{(2\pi l)^2}$$

is the dimensionless adiabaticity parameter [see Eq. (1)]. The factor $\gamma = (L/2\pi L_\phi)^2$ is a damping constant expressed in terms of the dephasing length L_ϕ (which is specified in more detail below). Note that γ is introduced here in a phenomenological way with the particular *ad hoc* choice that it be a c-number and diagonal in spin space.
We now evaluate δg explicitly, but instead of using the exact eigenstates, as was done by van Langen et al. [9], we use an alternative approach in terms of unitary gauge transformations, which has the virtue of making the emergence of the Berry phase immediately transparent. For this purpose we define unitary transformations U and V of the form

$$U = V e^{i\pi f x (\sigma_1 + \sigma_2) / L_x}, \quad V = e^{i \eta (\sigma_1 + \sigma_2) / 2} ,$$

with the property that

$$n \cdot (\sigma_1 - \sigma_2) = U^\dagger (\sigma_1 - \sigma_2) U. \quad (7)$$

By noting that $U(-i \partial / \partial x) U^\dagger = -i \partial / \partial x - i U \partial U^\dagger / \partial x$, we find

$$U h U^\dagger = -\left(-i \frac{L}{2\pi} \frac{\partial}{\partial x} - \frac{f}{2} \right) \left[(\sigma_1 + \sigma_2) \cos \eta - (\sigma_1 + \sigma_2) \sin \eta \right] + i \kappa (\sigma_1 - \sigma_2). \quad (8)$$

Next, we rewrite the matrix elements occurring in δg:

$$\langle x, \alpha, \beta \mid U^\dagger \frac{1}{\gamma - U h U^\dagger} U \mid x, \beta, \alpha \rangle = \langle x, \alpha, \beta \mid V^\dagger \frac{1}{\gamma - h_{\alpha \beta}} \Pi_{12} V \mid x, \alpha, \beta \rangle, \quad (9)$$

where $h_{\alpha \beta} = U h U^\dagger (-i \frac{L}{2\pi} \frac{\partial}{\partial x} - \frac{f}{2} \frac{\partial}{\partial x} + \frac{f}{2} (\alpha + \beta))$ and $\Pi_{12} |\alpha \beta\rangle = |\beta \alpha\rangle$. The effective Hamiltonian $h_{\alpha \beta}$ is now diagonal in the angular momentum eigenstates $\langle x | j \rangle = e^{i \frac{2\pi}{L} x j} / \sqrt{L}$, with $j = 0, \pm 1, \pm 2, \ldots$ (imposing periodic boundary conditions), and we find,

$$\delta g = -\frac{e^2}{\pi \hbar (2\pi)^2} \sum_j \text{Tr}_{12} \frac{1}{\gamma - h(j)} \Pi_{12}, \quad (10)$$

where Tr_{12} is the trace in spin space and

$$h(j) = -\left(j - \frac{f}{2} (\sigma_1 + \sigma_2) \cos \eta \right)^2 - \frac{f^2}{2} (1 + \sigma_1 \sigma_2) \sin^2 \eta$$

$$- j f (\sigma_1 + \sigma_2) \sin \eta + \frac{f^2}{4} (\sigma_1 \sigma_2 + \sigma_2 \sigma_1) \sin 2 \eta + i \kappa (\sigma_1 - \sigma_2). \quad (11)$$

Here, we have absorbed the integer $f(\alpha + \beta)/2$ into j. Note that two of the eigenvalues of $\frac{f}{2} (\sigma_1 + \sigma_2) \cos \eta$ are given by the (geometric) Berry phase $\pm \Phi^g = \pm f \cos \eta$ for an effectively integral spin $|j\rangle$. The term $\frac{f^2}{2} (1 + \sigma_1 \sigma_2) \sin^2 \eta$ provides a source of dephasing that can mask the Berry phase—and more generally the Aharonov-Bohm effect (see, Sec. [11B below).
All the other off-diagonal terms turn out to be irrelevant in the adiabatic limit (see Sec. [II E]).

To proceed, we express the above operators in the σ_z-basis $\{|1, 1\}, |1, -1\}, |-1, 1\}, |-1, -1\}$. The Hamiltonian $h(j)$ then has matrix elements

$$
\langle \alpha', \beta'| h(j) | \alpha, \beta \rangle =
$$

$$
= \begin{pmatrix}
(j - f \cos \eta)^2 + a & jf \sin \eta - b & jf \sin \eta - b \\
jf \sin \eta - b & j^2 + a - i2\kappa & a \\
jf \sin \eta - b & a & j^2 + a + i2\kappa \\
a & jf \sin \eta + b & jf \sin \eta + b \end{pmatrix} (j + f \cos \eta)^2 + a,
$$

where $a = \frac{f^2}{4} \sin^2 \eta$, and $b = \frac{f^2}{4} \sin 2\eta$. Finding the inverse of $\gamma - h(j)$ is then straightforward, and we finally obtain for the magnetoconductance

$$
\delta g = -\frac{e^2}{\pi \hbar} \frac{1}{2\pi^2} \sum_{j=-\infty}^{+\infty} \left\{ (\gamma + m^2 + f^2) (\gamma + m^2)^2 + 4\kappa^2 (\gamma + m^2 + f^2 \cos^2 \eta + \frac{f^2}{2} \sin^2 \eta) \right\}
$$

$$
\times \left\{ [\gamma + (m - f)^2][\gamma + (m + f)^2] (\gamma + m^2)^2 + 4\kappa^2 [\gamma + (m - f \cos \eta)^2][\gamma + (m + f \cos \eta)^2] + f^2 \sin^2 \eta(\gamma + m^2 + f^2 \cos^2 \eta) \right\}^{-1},
$$

where $m = j - \Phi$, i.e., we have allowed for an Aharonov-Bohm flux $\Phi = 2\phi/\phi_0$, with $\phi_0 = h/e$ being the flux quantum. The foregoing result is exact and is seen to be identical to the one obtained by van Langen et al. [3] (for their choice $d = 2$). However, our alternative derivation has led us to a form in which the Berry phase contribution is made manifest in the terms of the form $(m \pm f \cos \eta)^2$.

Next we go over to the adiabatic limit, defined here by $\kappa \gg 1/(2\pi)^2$, which, for $f = 1$, is equivalent to $\omega_B \tau \gg l^2/(L^2 d)$ [see Eq. (I)]. (Below, in Sec. [II D], we give explicit numerical values of κ for which adiabaticity is reached.) In this limit we may drop the terms independent of κ in Eq. (I3) (this is justified as terms with large j give a negligible contribution to δg). Thus, in the adiabatic limit we finally get

$$
\delta g^{Ad} = -\frac{e^2}{\pi \hbar} \frac{1}{2\pi^2} \sum_{\alpha=\pm 1} \sum_{j=-\infty}^{+\infty} \frac{[\gamma + (m + \alpha f \cos \eta)^2] + (f^2/2) \sin^2 \eta}{[\gamma + (m - \alpha f \cos \eta)^2][\gamma + (m + \alpha f \cos \eta)^2] + (\gamma + m^2 + f^2 \cos^2 \eta)f^2 \sin^2 \eta};
$$
where the sum over $\alpha = \pm 1$ has been introduced artificially for later convenience. Note that the Berry phase $\Phi^g = f \cos \eta$ couples to the momentum like the Aharonov-Bohm phase does, i.e., via $j - \Phi - \alpha \Phi^g$. We note that the remaining η-dependence can not be accounted for by this type of coupling to the momentum. We particularly emphasize that (apart from the flux appearing in $m = j - \Phi$) the adiabatic limit of the magnetoconductance δg^{Ad} is independent of the field amplitude B; thus, increasing the field further, say up to $\omega_B \tau \gg 1$ (cf. Eq. (2)), has no effect.

It is now instructive to compare Eq. (14) with the one previously derived [7] for arbitrary textures and in the adiabatic approximation scheme for the Berry phase. The latter result reads

$$
\delta g^{LSG} = -\frac{e^2}{\pi \hbar} \frac{L'_\phi}{2L} \sum_{\alpha = \pm 1} \sinh \left(\frac{L}{L'_\phi} \right) \cosh \left(\frac{L}{L'_\phi} - \cos \left(2\pi \left(\Phi + \alpha f \cos \eta \right) \right) \right)
$$

(15)

where, again, $m = j - \Phi$, and $\gamma' = (L/2\pi L'_\phi)^2$, and where we have used some identities to facilitate comparison. Note that in general $\gamma \neq \gamma'$ (see below). The virtue of δg^{LSG} is that it is valid for arbitrary field textures (with the appropriate Berry phase [7]). It is thus important to understand its relation to the special but exactly solvable case.

Now, by comparing δg^{LSG} with δg^{Ad} we see that the two expressions have the same structure with respect to the Berry phase, $\Phi^g = f \cos \eta$, but differ in additional η- and f-dependent terms. (From now on we put the Aharonov-Bohm flux Φ to zero but shall return to nonzero flux later.) Particularly important is the additional term in the denominator of δg^{Ad}, i.e., $f^4 \sin^2 \eta \cos^2 \eta$ (the physical origin of such additional terms is discussed below in Sec.II.E). It is this term that acts as a dephasing source for certain tilt angles and windings f by suppressing the “resonance peaks” that would occur at integral values of the Berry phase $\Phi^g = f \cos \eta$ (for small enough γ'). For $f > 1$ the suppression due to this term is so strong that all resonances except the ones at $\eta = 0, \pi/2, \pi$ become masked, i.e., these
resonances due to the Berry phase are no longer visible in graphs of δg^{Ad} versus η, whereas they do show up in δg^{LSG} provided one chooses γ' to be independent of the tilt angle η (and sufficiently small). It is this ad hoc choice for f and γ' that has been adopted by van Langen et al. [9]. In particular, they choose $f = 5$ and a constant $\gamma = 0.4053$. As in this case δg^{LSG} and δg^{Ad} behave differently for $\gamma = \gamma'$ (see Fig. 3 of Ref. [9]), van Langen et al. [9] conclude that δg^{Ad} is not showing adiabatic behavior and, thus, that our criterion for adiabaticity, Eq. (1), is not correct. However, this conclusion of van Langen et al. is premature. There are two main reasons for this: First, they have ignored the issue of dephasing induced by the inhomogeneity of the magnetic field, and connected to this, second, the issue of the self-consistency of the semiclassical approximation on which the derivation of the Cooperon propagator rests. We now discuss these issues in turn, and then present physical examples to illustrate the general discussion.

B. Dephasing due to Magnetic Fields

The ad hoc choice by van Langen et al. [9] of putting $\gamma = \gamma'$ and choosing them to be independent of η means that δg^{Ad} and δg^{LSG} do not describe the same physical situation. This is so for the following reason. First we note again that the dephasing parameters γ, γ' are “put in by hand” into the Cooperon to account for dephasing in a phenomenological way (this is just dictated by the complexity of the involved many-body problem and by our inability to address this issue in a more systematic way in general). In the derivation of δg^{LSG} dephasing due to the field is only taken into account a posteriori in terms of a phenomenological parameter γ', while the exact solution, Eq. (13), not only includes the Berry phase but simultaneously also those dephasing effects that are caused by the field through the Zeeman coupling. The remaining dephasing effects in δg or δg^{Ad} are then included via the phenomenological parameter γ. Obviously, γ and γ' are in general different for the same physical situation.

Next, it is a well-known fact in the context of weak-localization phenomena [12] that
dephasing in general depends on the magnetic field \(B \) penetrating the sample (as we must allow for there to be any Zeeman interaction at all). Most importantly, \(\gamma' \) not only depends, in general, on the magnitude \(B \) of the field but also on its tilt angle \(\eta \) that the field makes with the \(z \)-axis perpendicular to the ring plane. (This is already so even without Zeeman terms, see, e.g., Sec. 2 of Ref. [12]. There can be little surprise that the angle dependence becomes even more pronounced in the presence of our inhomogeneous Zeeman interaction). The various dephasing effects are accounted for phenomenologically in terms of dephasing lengths [12], \[1/L^2_\phi = 1/(L^0_\phi)^2 + 1/(L^B_\phi)^2, \] where the dephasing length \(L^0_\phi \) contains all field-independent contributions, such as the one coming from inelastic collisions of the diffusing electron with, say, phonons, \[L^{in}_\phi = \sqrt{D\tau_{in}}, \] where the dephasing time \(\tau_{in} \) is some inelastic scattering time. The magnetic length \(L^B_\phi \) contains all effects coming from the field penetrating the sample.

If now \(L^B_\phi \ll L \) for some field configurations, we no longer expect to see phase-coherence in general. As a matter of fact, in Sec. IV of Ref. [4] we have estimated the upper bound of the dephasing length (due to the inhomogeneous Zeeman interaction) in metallic films to be given by the characteristic field-reorientation length \(l_B = |\nabla(B/B)|^{-1} \). This estimate follows from the observation that quantum corrections begin to be eliminated when the largest phase-coherent paths enclose roughly one quantum of Berry flux. For the symmetric texture considered here we find \(l_B = L/(2\pi f|\sin \eta|) \). Obviously, for certain tilt-angles and for \(f \gg 1 \) this upper bound on the dephasing length quickly becomes smaller than \(L \). Translated into a dephasing parameter \(\gamma = (L/2\pi L^B_\phi)^2 \), this estimate reads

\[\gamma > f^2 \sin^2 \eta, \] (16)

i.e., we see that the dephasing becomes explicitly \(\eta \)-dependent and grows like \(f^2 \).

Thus, it is by no means surprising that the exact solution confirms this general expectation, in the sense that explicit dephasing terms are present in \(\delta g \) that are field-dependent and which can become so large, for particular field inhomogeneities, that they completely suppress the resonances in the magnetoconductance, Eq. (13), with respect to the Berry
phase [15], no matter how large ω_B is. Of course, as implied by above discussion leading to Eq. (16), such a dephasing effect must also be accounted for explicitly in δg^{LSG}, Eq. (15), by an appropriate choice for the phenomenological damping parameter γ'. In particular, in view of the estimate given in Eq. (13), it is reasonable to make the Ansatz $\gamma' = f^2 \sin^2(2\eta)$ [10]. Then, choosing the dephasing parameter of δg^{Ad} to be constant (i.e. η-independent) and much smaller than unity, say $\gamma = 10^{-2}$, we see that the qualitative discrepancy between δg^{LSG} and δg^{Ad} disappears: Both expressions show no resonances (away from $\Phi^g = 0, 1$). (We note that as γ and γ' are introduced phenomenologically anyway, there is no need to get quantitative agreement, and it suffices to find the same qualitative suppression of the resonances for $f > 1$ in both δg^{LSG} and δg^{Ad}. We shall not be making any further use of this Ansatz for γ'.)

The suppression of the Cooperon due to homogeneous fields is standard [12]; the discussion above shows that additional dephasing is induced by the field inhomogeneity. The advantage of having the exact solution for δg, Eq. (13), at hand is that we can now calculate the field-dependence of such dephasing terms explicitly; this allows us to make more precise statements than before [7] about the regime in which one can expect to observe consequences of the Berry phase (see Sec. II D below).

C. Self-consistency of the Semiclassical Approximation

The magnetoconductance correction δg is expressed in terms of the Cooperon propagator. The derivation of the Cooperon is, in turn, performed within the semiclassical limit. In particular, this means that “back-reaction effects”, i.e., non-phase-coherent dynamical effects of the field-dependent Zeeman term on the orbital motion are assumed to be negligibly small throughout. This is a fundamental assumption in weak-localization theory [14], and it was explicitly adopted in our derivation of the Cooperon and of δg^{LSG}, too. (This is emphasized, e.g., in App. A of Ref. [11].) Evidently, dephasing effects such as the ones discussed in the previous subsection are nothing but such back-reaction effects. Thus, if
dephasing becomes so large (as turns out to be the case in the adiabatic limit and for $f > 1$) that phase-coherence is completely suppressed in the orbital part, the semiclassical approximation breaks down and the self-consistency of the entire treatment is lost \[17\]. Consequently, the expressions for the magnetoconductance are no longer reliable in the case of complete dephasing, and no weight should be put on conclusions drawn under such circumstances. Obviously, semiclassical and adiabatic approximations are interconnected issues, in the sense that the semiclassical approximation might break down in the adiabatic limit and for certain field configurations. In other words, adiabaticity alone is not a sufficient criterion for the observability of Berry phase effects, in addition the system must be in the mesoscopic regime characterized by phase-coherence.

To summarize our conclusions so far, we have seen that our adiabaticity criterion, Eq. (1), is sufficient for reaching the adiabatic limit involving the Berry phase [cf. Eqs. (14) and (15)]. However, the criterion does not guarantee (and this was never claimed) that the Berry phase will be observable under all circumstances. As a matter of fact, it can happen that the phase-coherence, which is necessary for observing such quantum phase phenomena, can be destroyed by a variety of dephasing sources, in particular also by magnetic fields penetrating the sample. If dephasing becomes so strong in the adiabatic regime that quantum phase effects of the orbital motion get completely washed out, the semiclassical approximation underlying the derivation of the Cooperon breaks down and results based on it (such as δg) are no longer reliable.

It is precisely the issues discussed in the last two subsections that have not been taken into consideration by van Langen et al. \[9\]. In the light of our discussion it should now be clear that the only conclusion one can draw from the observation made by van Langen et al. (namely the non-observability of Berry phase effects for $f = 5$ within our semiclassical theory) is that field textures with $f > 1$ suppress phase-coherence very efficiently, and thus such extreme textures cannot serve as a general test case for the existence of the Berry phase and the associated adiabaticity regime—at least not within the semiclassical regime to which our results, Eqs. (13)- (15), are confined.
D. Observability of Berry Phase Effects for \(f = 1 \)

Up to now we have mainly concentrated on regimes where \(f > 1 \). Such regimes, however, are of little experimental interest (quite apart from the difficulty of how to produce them) since the Berry phase effect would be masked by the strong dephasing effect of the field. The situation, however, is entirely different for the case where the magnetic field winds only once around the ring, i.e. when \(f = 1 \) (such field textures can be produced experimentally [5]). Indeed, we shall see now that for \(f = 1 \) the dephasing is sufficiently small and the Berry phase has observable consequences within an experimentally accessible regime. We shall illustrate this with two specific examples: First we discuss resonances in the magnetoconductance due to the Berry phase (for vanishing Aharonov-Bohm flux \(\Phi \)); then we discuss phase shifts in the Aharonov-Bohm oscillations induced by the Berry phase.

We consider first the magnetoconductance as function of the Berry phase in the absence of an Aharonov-Bohm flux, i.e. \(\Phi = 0 \). We make the realistic assumption that the dephasing length independent of the tilt-angle can be made to exceed \(L \), say, \(L_\phi = 2.5L \), giving \(\gamma = 4.053 \cdot 10^{-3} \) (this value for \(\gamma \) is 100 times smaller than the one chosen in Sec. IIA). In Fig. 1, we plot the magnetoconductance \(\delta g \), Eq. (13), as function of the tilt angle \(\eta \) in the adiabatic regime, \(\kappa = 1 \), and find pronounced resonance peaks at the Berry phase values \(\Phi^g = 0,1 \) —in very good qualitative agreement with the general result \(\delta g^{\text{LSG}} \), given in Eq. (15), even if we simply choose \(\gamma' = \gamma \). For comparison, we also plot (see Fig. 1) the magnetoconductance \(\delta g \) outside the adiabatic regime, i.e., for \(\kappa = 0.01 \), where the resonances are (nearly) absent—demonstrating that adiabaticity is needed for the emergence of the Berry phase. We note that above choice for the adiabatic parameter (i.e., \(\kappa_0 = 1 \)) corresponds to \(\omega_{B_0} \tau = (2\pi)^2 l^2/(L^2d) \gg l^2/L^2d \). In particular, if we follow van Langen et al. and choose \(L/l = 500 \) (i.e., a typical ratio for a mesoscopic metal ring) we see that \(\kappa_0 = 1 \) is equivalent to \(\omega_{B_0} \tau = 1.57 \cdot 10^{-4}/d \). Note that we are orders of magnitude below the regime of Eq. (2), where \(\omega_B \tau \gg 1 \). Translated into magnetic fields, \(\kappa_0 = 1 \) corresponds to
\[B_0 = \frac{2(2\pi)^2 v_F L}{g d \mu_B L^2} = \frac{4\pi}{g \mu_B} \frac{hD}{L^2}, \]

which, for \(g = 2 \) and \(d = 3 \) \(^{18} \), gives

\[B_0 = 1.5 \times 10^{-6} \frac{v_F l}{L^2} \text{[Gs]} = 4.5 \times 10^{-6} \frac{D}{L^2} \text{[Gs]}. \] \(^{18} \)

To illustrate this with concrete numbers we assume the Fermi velocity \(v_F = 10^6 \text{ms}^{-1} \) and the ring circumference \(L = 7 \mu\text{m} \), and again \(L/l = 500 \). We then find that the field corresponding to \(\kappa = 1 \) is about 400 G. The resonance structure due to the Berry phase starts to emerge for \(\kappa \) at around 0.1, i.e., for fields of the order of 40G. Finally, we note that when the tilt angle \(\eta \) is varied, then typically there will be a concommittant change of the Aharonov-Bohm flux \(\Phi \). This flux, however, can be easily compensated by applying a field perpendicular to the ring such that \(\Phi \) again becomes an integral multiple of the flux quantum. Note that the maximal fields required for this compensation are about ten Gauss, or so, for a ring of \(L = 7 \mu\text{m} \). Thus, such fields would have a negligible effect on the inhomogeneous field required for adiabaticity, except if \(\eta \) is very close to \(\pi/2 \).

A further experimentally interesting scenario is that of the phase shift in the Aharonov-Bohm oscillation induced by the Berry phase. In particular, this effect is most pronounced for half-integral Berry phases, \(\Phi^g = \pm 1/2 \) (i.e., \(\eta = \pi/3 \) or \(2\pi/3 \)), for which we expect [see Eqs. (14) and (15)] to get a phase shift in the Aharonov-Bohm oscillation of the magnetoconductance by the flux value \(1/2 \) (i.e., by one quarter of the flux quantum \(h/e \)). Note that in this case the sign of the oscillation slope (e.g. at \(\Phi = 0 \)) gets reversed with respect to the case without Berry phase. This sign-reversal is reminiscent of similar effects induced by spin-orbit scattering \(^{12} \); it is actually not unexpected, as the Zeeman term induces an effective spin-orbit coupling due to the inhomogeneity of the magnetic field \(^{3,5} \). This phase shift is shown in Figs. 2a and 2b, which show \(\delta g \) as function of the Aharonov-Bohm flux \(\Phi \) for Berry phases \(\Phi^g = 0 \) and \(1/2 \), both in the adiabatic limit (i.e., \(\kappa = 1 \)) and with the choice \(\gamma = 0.1 \) (i.e., \(L = 2L_\phi \)). For the sake of comparison, in Fig. 2d we also show a non-adiabatic case, \(\kappa = 0.1 \), for which the phase shift is absent. The phase shift remains discernible down
to about $\kappa = 0.7$ before disappearing. The adiabatic limit is fully reached at about $\kappa = 10$, by which not only the phase shift (which is the important feature) but also the amplitude becomes identical to δg^{Ad} given in Eq. (14). The amplitude at $\kappa = 1$ increases about by 20 percent upon increasing the field to $\kappa = 10$.

To obtain realistic estimates for some physical parameters we now concentrate on a Au ring and use the material parameters recently determined by Mohanty et al. [19] (see sample Au-1 in their Table I). The relevant values are: $D = 9 \times 10^{-3} \text{m}^2\text{s}^{-1}$ and $\tau_0^0 = 3.41 \times 10^{-9} \text{s}$ (at a temperature of 11 mK), which give for the dephasing length $L_0^0 = \sqrt{D\tau_0^0} = 5.54 \mu\text{m}$. Thus, the above choice $L = 2L_0^0$ requires a ring of circumference $L = 11 \mu\text{m}$. In this case, the field corresponding to $\kappa_0 = 1$ becomes $B_0 = 335 \text{ G}$, and the limiting case, $\kappa = 0.7$, at which the phase shift emerges, corresponds to $B = 235 \text{ G}$ [20].

Precisely the same phase shift occurs in δg^{LSG}, Eq. (15), as shown in Fig. 2. To get roughly the same amplitudes as in δg we must account for the η-dependent dephasing in δg^{LSG}. To this end we choose an effective $\gamma' = \gamma = 0.1$ (for $\eta = \pi/2$) and $\gamma' = 5\gamma = 0.5$ (for $\eta = \pi/3$). This phenomenological choice is not vital for the qualitative behavior of δg^{LSG}, but it does allow us to estimate an effective dephasing length L'_ϕ, as we now explain. First we note that the (peak-to-peak) amplitude of the magnetoconductance δg for $\Phi^g = 1/2$ is considerably reduced (by about a factor of 25) with respect to that for $\Phi^g = 0$. As is clear by now, this is due to the η-dependent dephasing terms. Now, without such dephasing the Aharonov-Bohm amplitudes for $\Phi^g = 0$ and $\Phi^g = 1/2$ would be equal [see, e.g., Eq. (15) with a γ' that is η-independent]. Thus, the reduction of the Aharonov-Bohm amplitude at $\eta = \pi/3$ (relative to that at $\eta = 0$) serves as a quantitative measure of the η-dependent dephasing. Expressed in terms of an effective dephasing length, $L'_\phi = L/2\pi\sqrt{\gamma'}$, we find $L'_\phi = 2.5 \mu\text{m}$, for the particular values chosen above (i.e., $\gamma' = 0.5$, and $L = 11 \mu\text{m}$). This dephasing length should be compared with above value $L_\phi = L/2 = 5.5 \mu\text{m}$ (corresponding to $\gamma = 0.1$ and $L = 11 \mu\text{m}$).

Finally, there is also the usual (spin-independent) dephasing arising from the field B_z penetrating a ring of finite width a. On the one hand, we need a sufficiently large field so
as to reach adiabaticity, and on the other hand such a field can induce dephasing. Thus, to satisfy these conflicting requirements in an optimal way we should consider rings with a width a as small as possible. To get a rough estimate for such a width, we take for the field $B_z = B \cos \eta$ and insert this into the standard formula \[L^B_\phi = \sqrt{3}\phi_0 / 2\pi a B_z. \] We now require that this dephasing length should not become (much) smaller than L^0_ϕ, so we choose $L^B_\phi = L^0_\phi = 5.5\, \mu m$. On the other hand, the field required for adiabaticity is about $B = 200\, G$, and together with $L^B_\phi = 5.5\, \mu m$ and $\eta = \pi/3$ this corresponds to a ring width a of the order of 20 nm. Note that as the effective dephasing length is obtained via $1/(L^0_\phi)^2 + 1/(L^B_\phi)^2$, the dephasing effect due to B_z penetrating the sample increases γ by a factor of two (i.e., $\gamma = 0.2$). As is seen from Fig. 2, the cases $\gamma = 0.1$ and $\gamma = 0.2$ behave in the same way, i.e., with phase shift, but the amplitude of δg for $\eta = \pi/3$ and $\gamma = 0.2$ is now reduced by a factor of 52 compared with δg for $\eta = 0$ and $\gamma = 0.1$. (Note that for $\eta = 0$ the magnetic field for the Aharonov-Bohm oscillations can be chosen to be very small, so that L^0_ϕ dominates over L^B_ϕ and thus $\gamma = 0.1$.) Finally, we note that the field component $B_z = B \cos \eta$ gives rise to an Aharonov-Bohm phase $\Phi_z = L^2 B_z / (4\pi)$ that is, in general, not equal to $n\phi_0$ (with n integral). Therefore, this offset flux Φ_z must be accounted for in order to assign the above phase shift unambiguously to the Berry phase $\Phi^g = 1/2$. For instance, for $L = 11\, \mu m$, we need $B^0_z = 4.2\, G$ in order to generate one flux quantum $\phi_0 = h/e$ through the ring. Now consider $\eta = \pi/3$, and, say, $B = 200\, G$, i.e., $B_z = 100\, G$. To compensate the off-set Φ_z, we need to increase B_z by, say, 5 G to $B_z = 105\, G$, in which case $B_z/B^0_z = \Phi_z/\phi_0$ becomes an integer ($= 25$).

The amplitude-reduction mentioned above demands sufficient experimental resolution, which we now estimate. For the parameter values given above for an Au ring and for $\eta = \pi/3$, we find (cf. Fig. 2c) that the peak-to-peak amplitude of δg is about $5.3 \times 10^{-3} \times (e^2/\pi h)$ for an effective $\gamma = 0.2$. The relative ratio, $\delta g/g \propto \delta R/R$, thus becomes of the order of 10^{-4} for a ring resistance $R \propto 1/g$ of the order of $30\cdot (L/\mu m)$ Ohms \[19 \], and $L = 11\, \mu m$. Such sensitivity, as well as all the parameters estimated above, appear to be within present-day experimental reach. Further scenarios for the Berry phases in transport can be easily worked
out (see also Ref. [7]).

It should be obvious by now that the explicit agreement between \(\delta g\) in the adiabatic limit and \(\delta g^{\text{LSG}}\) unambiguously demonstrates (and reinforces the general points made in the previous subsections) that the adiabaticity criterion, Eq. (1), is sufficient for the existence of the Berry phase and that, moreover, there exist physical regimes where this Berry phase can be observed in magnetoconductance oscillations (and other quantities). By contrast, the far more stringent criterion Eq. (2) is certainly not necessary, and therefore sets unwarranted demands on experimental searches for Berry phase effects.

E. Physical Interpretation of the Dephasing Terms

We now briefly return to the issue of the source of dephasing in the Hamiltonian \(h(j)\) given in Eq. (12), as well as its physical interpretation. For this purpose we assume from the outset that we are in the adiabatic regime, \(\kappa \gg 1/(2\pi)^2\), and simply retain the leading contributions when finding the inverse of \(\gamma - h(j)\). This allows us to identify those terms in the Hamiltonian \(h\) that are responsible for the dephasing.

From the matrix representation (13) of \(h(j)\) it is straightforward to see that only those matrix elements are important in the adiabatic limit that are simultaneously either diagonal or off-diagonal in both spin subspaces. No other matrix elements contribute at the leading order, \(\kappa^2\), for the determinant or sub-determinants of \(\gamma - h(j)\) that are necessary to calculate the inverse. Thus we can replace \(h(j)\) by the matrix

\[
\begin{pmatrix}
(j - f \cos \eta)^2 + a & 0 & 0 & a \\
0 & j^2 + a - i2\kappa & 0 & 0 \\
0 & 0 & j^2 + a + i2\kappa & 0 \\
a & 0 & 0 & (j + f \cos \eta)^2 + a
\end{pmatrix}, \tag{19}
\]

and we see that it is only the term \(\frac{f^2}{2}(1 + \sigma_{1x}\sigma_{2x})\sin^2 \eta\) in \(h(j)\) that causes dephasing and leads to those \(\eta\)-dependent terms in \(\delta g^{\text{Ad}}\) that are absent in \(\delta g^{\text{LSG}}\) (apart from the differences in \(\gamma\) and \(\gamma'\)). Now, the first term, \(\frac{f^2}{2}\sin^2 \eta\), has already been identified in the discussion
of the exact solution (for $f = 1$) for a propagator containing only a single spin-1/2 \[5\].

In a general path-integral approach, this term has been interpreted as a consequence of quantum fluctuations: The particle trajectory fluctuates around its classical path and these fluctuations in turn lead to a fluctuating local magnetic field. Such fluctuations, however, violate the standard assumption underlying the adiabatic approximation that the field should vary smoothly as a function of its parameters (in the present case the parameter is given by the position $x(t)$ of the particle on the ring). We have pointed out previously (see Sec. VI F in Ref. \[5\]) that this term might lead to deviations from the adiabatic approximation, which is valid only for smooth variations.

The second term, $\mathcal{F}^2 \sigma_{1z} \sigma_{2x} \sin^2 \eta$, is new, and describes an effective spin-spin interaction induced by the inhomogeneity of the magnetic field (i.e., in the Cooperon, the path and its time-reversed partner are interacting with each other via their respective spins). This interaction between spin 1 and spin 2 is transmitted via the orbital motion, and in this sense involves a back-reaction of the Zeeman term on the orbital motion. However, as pointed out in Sec. II C, such back reactions that act to suppress the phase-coherence are consistently assumed to be negligible in our semiclassical treatment. Thus, in Ref. \[7\] we have performed the adiabatic approximation on the propagators for the path and for its time-reversed partner separately and independently, and all possible dephasing effects are included phenomenologically in terms of γ' at the end. This finally explains the apparent discrepancy between δg^{LSG} and δg^{Ad}. However, as shown in previous sections, this discrepancy vanishes when allowing for η-dependent dephasing terms γ' in δg^{LSG}.

III. CONCLUSION

By using the exact solution for the Cooperon we have shown that the Berry phase leads to observable effects in the magnetoconductance oscillation within the adiabatic regime defined by Eq. (1). This is in full agreement with our previous findings \[7\], and in contrast to the claim made by van Langen et al. \[9\]. We have pointed out the role of dephasing and
emphasized its angle- and winding-dependence. We have illustrated the general discussion with explicit examples which reinforce our optimistic outlook for the experimental search of the Berry phase in diffusive metallic samples.

ACKNOWLEDGMENTS

We wish to acknowledge discussions with S. van Langen and Y. Lyanda-Geller. This work was supported by the Swiss National Science Foundation (DL and HS), the Deutsche Forschungsgemeinschaft as part of SFB 195 (HS), and by the U.S. Department of Energy, Division of Materials Science, under Award No. DEFG02-96ER45439 through the University of Illinois Materials Research Laboratory (PG).
REFERENCES

[1] M. V. Berry, Proc. R. Soc. London, Ser. A: 392, 45 (1984).

[2] For a collection of relevant reprinted articles and commentary, see A. Shapere and F. Wilczek, Geometric Phases in Physics (World Scientific, Singapore, 1989).

[3] D. Loss, P. M. Goldbart and A. V. Balatsky, Phys. Rev. Lett. 65, 1655 (1990).

[4] D. Loss, P. M. Goldbart and A. V. Balatsky, 1990, in Granular Nanoelectronics, D. K. Ferry, J. R. Barker and C. Jacoboni (eds.), NATO ASI Series B: Physics 251 (Plenum, New York, 1991).

[5] D. Loss and P.M. Goldbart, Phys. Rev. B 45, 13544 (1992).

[6] D. Loss and P.M. Goldbart, Phys. Lett. A 215, 197 (1996).

[7] D. Loss, H. Schoeller, and P.M. Goldbart, Phys. Rev. B 48, 15218 (1993).

[8] A. F. Morpurgo, J. P. Heida, T. M. Klapwijk, B. J. van Wees, and G. Borghs, Phys. Rev. Lett. 80, 1050 (1998).

[9] S.A. van Langen, H.P.A. Knops, J.C.J. Paasschens, and C.W.J. Beenakker. cond-mat/9803170.

[10] A. Stern, Phys. Rev. Lett. 68, 1022 (1992).

[11] Strictly speaking, we should also allow for the possibility that higher orbital momentum states \(j \) will contribute to adiabatic behavior (on the scale given by the Thouless energy) by multiplying the right-hand side of Eq. (1) by some momentum average \(\langle j \rangle \) (see the analogous discussion in [5]). Note that \(\langle j \rangle \) can be quite complicated, as it depends in principle on all parameters occurring in the Hamiltonian describing the physical situation at hand. However, typically it turns out that only the lowest few momentum states contribute to physical quantities (provided the damping is sufficiently small); thus, we will ignore such refinements here and simply put \(\langle j \rangle = 1 \). We have checked the validity
of this approximation (i.e. $\langle j \rangle = 1$) with the exact solution for the magnetoconductance by testing out when the adiabatic limit is fully reached in the various parameter regimes, and found it to be a reasonable approximation in the present situation (and for γ not exceeding 0.5).

[12] A.G. Aronov and Yu.V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

[13] Note that the complete Berry phase is usually defined as $f(1 - \cos \eta)s$, with s the spin value and for constant tilt angle (cf. Ref. [7]). For two spin-1/2 particles the total spin s is integral. The Berry phase is then equivalent to $\pm f(n - \cos \eta)$ (with $n = 0, \pm 1, \pm 2, \ldots$) [see, e.g., Eq. (15)] and we shall simply refer to $\Phi^\varphi = f \cos \eta$ as the Berry phase. In particular, $\Phi^\varphi = 0$ and $\Phi^\varphi = 1$ are equivalent in their effect, but they belong to different field configurations.

[14] S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1986).

[15] Note that the Aharonov-Bohm resonances in δg are also suppressed by the η-dependent dephasing terms, in general, but more gradually than the Berry phase resonances, some of which disappear entirely as soon as $f > 1$. This is related to the fact that the Berry phase itself depends on η whereas the Aharonov-Bohm phase does not.

[16] The additional factor of 2 in $\sin 2\eta$ is intended to provide a phenomenological account of the smaller period with respect to the Berry phase in the Cooperon resulting from the interference of the path with its time-reversed partner. For instance, when $\eta = \pi/2$, one can easily convince oneself that the fluctuations in the individual Berry fluxes of spin 1 and spin 2 must exactly cancel each other as the trajectories that the spins describe on the unit sphere in spin space are related by time reversal symmetry. Thus, the dephasing must be reduced at $\eta = \pi/2$. While certainly plausible, this argument is only of suggestive value, as it ignores the effective interaction between the paths (see Sec. [TE]). Also, we ignore for the moment the fact that for $f > 1$ such large γ's actually violate the self-consistency of the semiclassical approximation (see Sec. [TC]).
Note that if the suppression of phase coherence is only partial, the treatment is of course still self-consistent within the semiclassical regime. This is, e.g., the case for $f = 1$ and $\eta = \pi/3$, for which the Berry phase is still visible albeit with a reduced amplitude (see Sec. [1D]).

We consider systems that are one-dimensional with respect to the dephasing length L_ϕ but three-dimensional with respect to the mean free path l.

P. Mohanty, E.M.Q. Jariwala, and R.A. Webb, Phys. Rev. Lett. 78, 3366 (1997).

We mention that the presence of magnetic impurities can help bring the adiabatic limit to lower fields. Without going into a detailed analysis, it seems plausible to assume that even for small fields (say, on the order of tens of Gauss) the magnetic moments of typical impurities will align along the local magnetic field direction (temperatures should be smaller than the Zeeman splitting energy, typically in the sub-Kelvin range) after some relaxation time (typically on the order of 10^{-6} s). These magnetic impurities will produce short-ranged local fields that couples via the exchange interaction to the electrons passing by, and thus impart information about the field inhomogeneity on to the electron spin.
FIGURES

FIG. 1. The (dimensionless) magnetoconductance $\delta g/(−e^2/\pi\hbar)$, Eq. (13), as function of the tilt angle $0 \leq \eta \leq \pi$. Figure 1a shows δg in the adiabatic limit (i.e., $\kappa = 1$); Fig. 1b shows δg outside the adiabatic limit (i.e., $\kappa = 0.01$), with a strongly reduced amplitude. The remaining parameter values are $f = 1$, $\gamma = 0.4053/100$ and $\Phi = 0$. Figure 1c shows the adiabatic result $\delta g^{LSG}/(−e^2/\pi\hbar)$, Eq. (15), as function of tilt angle $0 \leq \eta \leq \pi$, with $f = 1$, $\gamma' = 0.4053/100$ and $\Phi = 0$. Note that Figs. 1a and 1c agree very well, qualitatively, and show pronounced resonances at integral values of the Berry phase $\Phi^g = 0, 1, \ldots$.

FIG. 2. The (dimensionless) magnetoconductance $\delta g/(−e^2/\pi\hbar)$, Eq. (13), as function of Aharonov-Bohm flux $0 \leq \Phi = 2\phi/\phi_0 \leq 1$. Figure 2a shows δg at vanishing Berry phase in the adiabatic regime (i.e., $\eta = \pi/2$) and with parameter values $\kappa = 1$, $\gamma = 0.1$; Fig. 2b shows $10\delta g$ with Berry phase $1/2$ in the adiabatic regime, i.e., $\eta = \pi/3$ and $f = 1$, $\kappa = 1$, and $\gamma = 0.1$. Note the phase shift (due to the Berry phase) by the amount $\Phi = 1/2$ between Figs. 2a and 2b. Figure 2c shows the same as Fig. 2b, except that here $\gamma = 0.2$ (this accounts for the dephasing due to B_z, see text). Figure 2d shows $\delta g/(−e^2/\pi\hbar)$ as function of Aharonov-Bohm flux $\Phi = 2\phi/\phi_0$, but outside the adiabatic regime: $10 \cdot \delta g$ at Berry phase $\Phi^g = 1/2$, i.e., $\eta = \pi/3$ and $f = 1$, and $\kappa = 0.1$, and $\gamma = 0.1$. Note that there is no phase shift, which shows that the Berry phase is not yet in effect. Figures 2e and 2f show the magnetoconductance in the adiabatic limit, $\delta g^{LSG}/(−e^2/\pi\hbar)$, Eq. (15), as function of Aharonov-Bohm flux $\Phi = 2\phi/\phi_0$. Figure 2e shows δg^{LSG} with vanishing Berry phase, i.e., $\eta = \pi/2$, and $\gamma' = 0.1$; Fig. 2f shows $10 \cdot \delta g^{LSG}$ with Berry phase $1/2$, i.e., $\eta = \pi/3$ and $f = 1$, and $\gamma' = 5 \cdot 0.1$ (the increased γ' accounts for the η-dependent dephasing, see text). Again there is a phase shift by $\Phi = 1/2$ between Figs. 2e and 2f, in full agreement with the adiabatic limit of δg as shown in Figs. 2a and 2b.
Fig. 1a
Fig. 1b

\[\delta g \left[-\frac{2e^2}{h} \right] \]
Fig. 1c
Fig. 2a

\[\delta g \left[-\frac{2e^2}{h}\right] \]

\(\Phi \)

\(0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \)

\(0.3 \quad 0.35 \quad 0.4 \quad 0.45 \quad 0.5 \)

\(0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \)
Fig. 2b

10 𝛥g [−=2𝑒²/ℏ]

\(\Phi \)
Fig. 2c

$10 \delta g \left[\frac{-2e^2}{h} \right]$ vs. Φ
Fig. 2d

$10 \delta g \left[-2e^2/h \right]$ vs Φ
Fig. 2e

\[
\delta g \left[\frac{-2e^2}{\hbar} \right]
\]
Fig. 2f