Experimental tests of quantum mechanics – Pauli exclusion principle violation (the VIP experiment) and future perspective

C Curceanu (Petrascu)1,2, S Bartalucci1, S Bertolucci3,
M Bragadireanu1,2, M Cargnelli4, S Di Matteo5, J-P Egger6,
C Guanaldo1, M Iliescu1, T Išiwatari4, M Laubenstein7, J Marton 4,
E Milotti8, D Pietreanu1, T Ponta1,2, A Rizzo1, A Romero Vidal1,
A Scordo1, D L Sirghi1,2, F Sirghi1,2, L Sperandio1,
O Vazquez Doce1, E Widmann4 and J Zmeskal4

1 INFN, Laboratori Nazionali di Frascati, CP 13, Via E. Fermi 40, I-00044, Frascati (Roma), Italy
2 "Horia Hulubei" National Institute of Physics and Nuclear Engineering, Str. Atomistilor no. 407, P.O. Box MG-6, Bucharest - Magurele, Romania
3 CERN, CH-1211, Geneva 23, Switzerland
4 The Stefan Meyer Institute for Subatomic Physics, Boltzmanngasse 3, A-1090 Vienna, Austria
5 Institut de Physique UMR CNRS-UR1 6251, Université de Rennes1, F-35042 Rennes, France
6 Institut de Physique, Université de Neuchâtel, 1 rue A.-L. Breguet, CH-2000 Neuchâtel, Switzerland
7 Laboratori Nazionali del Gran Sasso, S.S. 17/bis, I-67010 Assergi (AQ), Italy
8 Dipartimento di Fisica, Università di Trieste and INFN– Sezione di Trieste, Via Valerio, 2, I-34127 Trieste, Italy

E-mail: catalina.curceanu@lnf.infn.it

Abstract. The Pauli exclusion principle (PEP), consequence of the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, as many other fundamental principles it spurs a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the violation parameter \(q \) translates into a probability of violating PEP. The VIP (VIolation of the Pauli exclusion principle) experiment established a new limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the \(q \)-parameter from quon theory and as probability of PEP violation, we briefly discuss them and present future plans to go beyond the actual limit by upgrading the experimental setup. We also shortly mention the possibility of using a similar experimental technique to search for eventual X-rays, generated in the spontaneous collapse models in quantum mechanics.
1. Introduction
The Pauli Exclusion Principle (PEP), which plays a fundamental role in our understanding of many physical and chemical phenomena, is intimately connected to the basic axioms of quantum field theory [1]. Although the principle has been spectacularly confirmed by the number and accuracy of its predictions, its foundation lies deep in the structure of quantum theory and has defied all attempts to produce a simple proof, as for example stressed by Feynman [2]. Pauli himself in his Nobel lecture declared: “...Already in my original paper I stressed the circumstance that I was unable to give a logical reason for the exclusion principle or to deduce it from more general assumptions.....The impression that the shadow of some incompleteness (falls) here on the bright light of success of the new quantum mechanics seems to me unavoidable”. Given its basic standing in quantum theory, it seems appropriate to carry out precise tests of the PEP validity and, indeed, mainly in the last 20 years, several experiments have been performed to search for possible small violations [3, 4, 5, 6, 7, 8]. Often, these experiments were born as by-products of experiments with a different objective (e.g., dark matter searches, proton decay, etc.), and most of the recent limits on the validity of PEP have been obtained for nuclei or nucleons.

In 1988 Ramberg and Snow [9] performed a dedicated experiment, searching for anomalous X-ray transitions, that would point to a small violation of PEP in a copper conductor. The result of the experiment was a probability $\frac{2}{\beta^2} < 1.7 \times 10^{-26}$ that the PEP is violated by electrons. The VIP Collaboration set up a much improved version of the Ramberg and Snow experiment, with a higher sensitivity apparatus [11]. Our final aim is to improve the PEP violation limit for electrons by about 3 orders of magnitude by using high resolution Charge-Coupled Devices (CCDs) as soft X-rays detectors [12, 13, 14, 15, 16], and decreasing the effect of background by a careful choice of the materials and sheltering the apparatus in the LNGS underground laboratory of the Italian Institute for Nuclear Physics (INFN).

In the next sections we describe the experimental setup, the results of a first measurement performed in the Frascati National Laboratories (LNF) of INFN, along with a preliminary result obtained by VIP running at the underground Gran Sasso National Laboratory (LNGS) of INFN. We then briefly discuss the results and present future plans to go beyond the existing limit by using fast Silicon Drift Detectors (SDD) and a veto system, which opens, as well, new possibilities for more refined checks on PEP violation.

We will then conclude the paper by presenting some ideas to use a related experimental technique to perform measurements on effects predicted by spontaneous collapse models.

2. The VIP experiment
VIP is a dedicated experiment for the measurement of the probability of the Pauli Exclusion Principle violation for electrons. The experiment uses the same method of the Ramberg and Snow experiment, but with a much better soft X-ray detector and a low-background experimental area - the INFN Gran Sasso underground laboratory. The detector is an array of Charge-Coupled Devices (CCDs), characterized by the excellent background rejection capability, based on pattern recognition and good energy resolution (320 eV FWHM at 8 keV in the present measurement).

2.1. The VIP experiment
The experimental method, originally described in Ref. [9], consists in the introduction of “fresh” electrons into a copper strip, by circulating a current, and in the search for the X-rays resulting from the PEP forbidden radiative transitions that occur if one of these electrons is captured by a copper atom and cascades down to the 1S state which is already filled by two electrons. In particular we are looking for the $2P \rightarrow 1S$ (K_α transition). The energy of this non-Paulian transition would differ from the normal K_α transition energy by about 300 eV (7.729 keV instead of 8.040 keV) [17], providing an unambiguous signal of PEP violation. The measurement
2.2. The VIP setup

The VIP setup consists of a copper cylinder, 45 mm radius, 50 μm thickness, and 88 mm height (see fig. 1), surrounded by 16 equally spaced "type 55" CCDs made by EEV [18]. The CCDs are at a distance of 23 mm from the copper cylinder, and paired one above the other. The setup is enclosed in a vacuum chamber, and the CCDs are cooled to about 168 K by a cryogenic system. The current flows in the thin cylinder made of ultrapure (99.995%) copper foil from the bottom of the vacuum chamber. The CCDs surround the cylinder and are supported by cooling fingers which protrude from the cooling heads in the upper part of the chamber. The readout electronics is just behind the cooling fingers; the signals are sent to amplifiers on top of the chamber and the amplified signals are read out by ADC boards in the data acquisition computer. More details on CCD-55 performance, as well on the analysis method used to reject background events, can be found in reference [19, 20]. An overall schematic view of the setup is shown in fig. 2.

VIP improves very significantly on the Ramberg and Snow measurement, thanks to the following features:

- use of CCD detectors instead of gaseous detectors, having much better energy resolution (4-5 times better) and higher stability;
- experimental setup located in the clean, low-background, environment of the underground LNGS Laboratory;
- collection of much higher statistics (longer DAQ periods, thanks to the stability of CCDs)

We make full use of these features to obtain an improvement of several orders of magnitude on previous limits.
3. The VIP experimental results

3.1. Results obtained at LNF-INFN

The VIP setup took data in the low-background LNGS underground laboratory of INFN. Before installation in the Gran Sasso laboratory, it was prepared and tested at the LNF-INFN laboratory, where measurements were performed in the period 21 November - 13 December 2005. Two types of measurements were performed:

- 14510 minutes (about 10 days) of measurements with a 40 A current circulating in the copper target;
- 14510 minutes of measurements without current.

CCDs were read-out every 10 minutes. The resulting energy calibrated X-ray spectra are shown in figure 3.

These spectra include data from 14 CCD’s out of 16, because of noise problems in the remaining 2. Both spectra, apart from the continuous background component, display clear Cu K$_\alpha$ and K$_\beta$ lines due to X-ray fluorescence caused by the cosmic ray background and natural radioactivity. No other lines are present and this reflects the careful choice of the materials used in the setup, as for example the high purity copper and high purity aluminium, the last one with K-complex transition energies below 2 keV. The subtracted spectrum is shown in Figure 4 a) (whole energy scale) and b) (a zoom on the region of interest). Notice that the subtracted spectrum fluctuates around zero within the statistical error, and is structureless. This not only yields an upper bound for a violation of the Pauli Exclusion Principle for electrons, but also confirms the correctness of the energy calibration procedure and points to the absence of systematic effects.

To extract the experimental limit on the probability that PEP is violated for electrons, $\beta^2/2$, from our data, we used the same arguments of Ramberg and Snow: see references [9] and [21] for details of the analysis. The obtained value is:

$$\frac{\beta^2}{2} < 4.5 \times 10^{-28}$$ \hspace{1cm} (1)
Figure 3. Energy spectra with the VIP setup at LNF-INFN: (a) with current (I = 40 A); (b) without current (I = 0).

Figure 4. Subtracted energy spectra in the Frascati measurement, current-on minus current-off, giving the limit on PEP violation for electrons: a) whole energy range; b) expanded view in the region of interest (7.564 - 7.894 keV). No evidence for a peak in the region of interest is found.

Thus with this first measurement in an unshielded enviroment, we have improved the limit obtained by Ramberg and Snow by a factor ~ 40.

3.2. Experimental results from LNGS
The experiment was installed at LNGS-INFN in Spring 2006 and took data till Spring 2010, alternating period with current on (signal) to periods with current off (background).

We have already established a new preliminary limit on PEP violation by electrons from the data taken at LNGS [22]:

$$\frac{\beta^2}{2} < 4.7 \times 10^{-29}$$

(2)
We are presently working on an improved version of the setup.

4. Discussion of the results

After the introduction of the straightforward quantum model of Ignatiev and Kuzmin in 1987 [10], Govorkov [23] showed that the model could not work in the wider framework of quantum field theory, because it led to many-particle states with negative norm. The situation changed with the introduction of quon theory [24], which turned out to be a consistent theory of small violations of PEP. The basic idea of quon theory is that (anti)commutators, are replaced by weighted sums

\[\frac{1-q}{2} [a_i, a_j^+] + \frac{1+q}{2} [a_i, a_j^-] = a_i a_j^+ - qa_j^+ a_i = \delta_{i,j} \]

where \(q = -1 \) \((q = 1)\) gives back the usual fermion (boson) commutators. The statistical mixture in equation (3) also shows that the PEP violation probability is just \((1 + q)/2\) and thus our best experimental bound on \(q \) is

\[\frac{1+q}{2} < 4.7 \times 10^{-29} \]

A consistent interpretation of the VIP results can thus be based on quon theory; however here we note that is not easy to devise tests of PEP, because of many conceptual difficulties (see, e.g. [25]), and VIP (and shares some problems of its own with its precursor, the Ramberg and Snow experiment). The main problem lies in the definition of “fresh” electrons: in fact it is unclear how an electron originally injected by the current source into the copper strip can be set apart from the other electrons already present in the strip. One possibility is that some of these “new” electrons have a “wrong wavefunction” in the sense suggested by Rahal and Campa [26]. Yet another possibility is that some localization effect really allows at least a partial identification of electrons: this localization was intuitively rather obvious in the experiment of Goldhaber and Scharff-Goldhaber [27], originally devised to test the identity of \(\beta \)-rays and electrons, later reinterpreted by Reines and Sobel as a test of PEP [28]. In that experiment electrons were injected by a radioactive source, rather than a power supply, and thus the “fresh” electrons were simply those electrons impinging on the target from the radioactive source. This concept of novelty is related to electron localizability outside the target, and if an analogous process could be pinpointed for the power supply – which is required to achieve a large statistics, much larger than it is possible with a laboratory radioactive source – then this conceptual problem of VIP (and of the Ramberg and Snow experiment) would fade away. The required localization might be provided by some form of quantum decoherence: Yu and Eberly [29] have shown that in an idealized situation quantum coherence dies off in a finite time just because of quantum noise. Similarly we can conjecture that entanglement of the electron wavefunction in the copper strip could be limited in space and this could let us set apart “old” and “fresh” electrons.

At the moment these are just speculations, we do not yet have a final answer to these conceptual problems, however we do strongly feel that the test is meaningful and we are now planning an improved version.

5. Future perspectives: VIP upgrade and measurement of X rays from the collapse of wave function models

The present VIP setup uses CCD detectors which are excellent X-ray detectors (good energy resolution, background rejection based on pixel-size) but they are integrating detectors (no timing capability). We plan to switch to a new type of detectors for precision X-rays measurements, the triggerable Silicon Drift Detectors (SSD) which have a fast readout time (\(\approx 1 \mu s \)) and large collection area (100 mm\(^2\)). These detectors were successfully used in the SIDDHARTA experiment [30] for measurements of the kaonic atoms transitions at the DAΦNE
accelerator of LNF-INFN; using a proper trigger system a background rejection factor of the order of 10^{-4} was achieved in SIDDARTHA.

With these new detectors it might then be possible to further reduce the background by using an external veto-system which would eliminate a large part allow to eliminate big part of the background produced by charged particles coming from the outside the setup. A schematic layout of the new setup is shown in fig. 5.

Presently, experimental tests are under way to define the new experimental setup, which will be more compact than the present VIP setup and, as such, more manageable.

Apart of the measurements of X rays related to the violation of PEP, we are presently considering the possibility to perform in the future measurements of X rays (having us such excellent X-ray detectors, as the CCDs and SDDs) generated as spontaneous radiation predicted by (some) collapse models. The collapse models are deal with the "measurement problem" in quantum mechanics by introducing a new physical dynamics that naturally collapses the state vector.

In the nonrelativistic collapse model developed by Ghirardi, Rimini, Weber [31] and Pearle [32] (see also ref. [33] for a review), namely the continuous spontaneous localization (CSL) model, the state vector undergoes a nonunitary evolution in which particles interact with a fluctuating scalar field. This interaction has not only the effect of collapsing the state vector towards the particle number density eigenstates in position space, but it increases the expectation value of particle’s energy as well. This means, for a free charged particle (as the electron) electromagnetic radiation. This type of phenomenon is predicted by the CSL and is totally absent in the standard quantum mechanics.

Moreover, as shown in the [34], the measurement of X rays spontaneously emitted in the collapse models is the most sensitive method to the parameters of the collapse, see table 1 and [34] for related explanations.

In the paper [35] a pioneering work on this spontaneous emission of radiation was performed - the author analysed X-ray data measured in an underground experiment and interpreted them
Table 1. Upper bounds on the parameter λ from [34]

Laboratory experiments	Distance (decades) from the enhanced CSL value	Cosmological data	Distance (decades) from the enhanced CSL value
Fullerene diffraction experiments	3-4	Dissociation of cosmic hydrogen	9
Decay of supercurrents (SQUIDS)	6	Heating of Intergalactic medium (IGM)	0
Spontaneous X-ray emission from Ge	-2	Heating of protons in the universe	4
Proton decay	10	Heating of Interstellar dust grains	7

as a limit for the combination of the CSL parameter λ/a^2. It was shown that the highest sensitivity is at few keV X-rays, exactly in the range where our detectors are ideal. We plan to perform a feasibility study for a dedicated experiment to measure X rays coming from the spontaneous collapse models.

Acknowledgments
The VIP Collaboration wishes to thank all the LNGS laboratory staff for the precious help and assistance during all phases of preparation, installation and data taking. The support from the HadronPhysics FP6 (506078), HadronPhysics2 FP7 (227431) and MIUR PRIN2008 2008LH2X28-004 projects is acknowledged.

References
[1] Lüders G and Zumino B 1958 Phys. Rev. 110 1450
[2] Feynman R P, Leighton R B and Sands M 1963 The Feynman Lectures on Physics, Addison-Wesley, Reading, MA
[3] Bernabei R et al. 1997 Phys. Lett. B 408 439
[4] Borexino Collaboration, Back H O 2005 et al. Eur. Phys. J. C37 421
[5] Hilborn R C and Yuca C L 1996 Phys. Rev. Lett. 76 2844
[6] Nemo Collaboration 2000 Nucl. Phys. B (Proc. Suppl.) 87 510
[7] Noité E et al. 1991 J. Phys. G: Nucl. Part. Phys. 17 S355
[8] Tsipenyuk Y, Barabash A, Kornoukhov V and Chapyzhnikov B, 1998 Radiat. Phys. Chem. 51 507
[9] Ramberg E and Snow G A 1990 Phys. Lett. B 238 438
[10] Ignatiev A Yu and Kuzmin V A 1987 Yad. Fiz. 46 786; Sov. J. Nucl. Phys. 47 6; see also the recent review paper Ignatiev A Yu 2006 Rad. Phys. Chem. 75 2090
[11] The VIP proposal, LNF-LNGS Proposal, september, 2004, http://www.lnf.infn.it/esperimenti/vip.
[12] Culhane J L 1990 Nucl. Instrum. Methods A 310 1
[13] Egger J P, Chatellard D and Jeannet E 1993 Particle World 3 139
[14] Fiorucci G et al. 1990 Nucl. Instrum. Methods A 292 141
[15] Varidel D et al. 1990 Nucl. Instrum. Methods A 292 147
[16] Kraft R P et al. 1995 Nucl. Instrum. Methods A 372 372
[17] Di Matteo S, Sperandio L, 2006 VIP Note, IR-04, 26 April 2006; The energy shift has been computed by P. Indelicato, private communication
[18] CCD-55 from EEV (English Electric Valve), Waterhouse Lane, Chelmsford, Essex CM1 2QU, UK.
[19] Ishiwatari T et al. 2004 Phys. Lett. B 593 48; Beer G et al. 2005 Phys. Rev. Lett. 94 212302
[20] Ishiwatari T et al. 2006 Nucl. Instrum. Methods Phys. Res. A 556 509
[21] Bartalucci S et al. (VIP Collaboration) 2006 Phys. Lett. B 641 18
[22] Sperandio L, 2008 Ph D thesis "New experimental limit on the Pauli Exclusion Principle violation by electrons from the VIP experiment" at University "Tor Vergata", Roma, 5 March 2008

[23] Govorkov A B 1989 Phys. Lett. A 137 7

[24] Greenberg O W 1990 Phys. Rev. Lett. 64 705

[25] Amado R D and Primakoff H 1980 Phys. Rev. C 64 1338

[26] Rahal V and Campa A 1988 Phys. Rev. A 38 3728

[27] Goldhaber M and Scharff-Goldhaber G 1948 Phys. Rev. 73 1472

[28] Reines F and Sobel H W 1974 Phys. Rev. Lett. 32

[29] Ting Yu and Eberly J H 2009 Science 323 598

[30] Curceanu C et al. 2007 Eur Phys J A31 537-539; Bazzi M et al. 2009 Phys. Lett. B681 310

[31] Ghirardi G C, Rimini A and Weber T 1986 Phys. Rev. D34 470; ibid. 1987 3287: Found. Phys. 18 (1988) 1

[32] Pearle P 1989 Phys. Rev. A39 2277; Ghirardi G C, Pearle P and Rimini A 1990 Phys. Rev. A42 78

[33] Bassi A 2007 Journal of Physics 67 012013

[34] Adler S L and Bassi A 275 Science 325 275

[35] Fu Q 1997 Phys. Rev. A56 1806.