NUMBER OF POINTS OF FUNCTION FIELDS OVER
FINITE FIELDS

BRUNO KAHN

INTRODUCTION

Let k be a field; if \sim is an adequate equivalence relation on algebraic
cycles, we denote by $\text{Mot}_\sim(k)$ or simply Mot_\sim the category of motives
modulo \sim with rational coefficients, and by $\text{Mot}^\text{eff}_\sim$ its full subcategory
consisting of effective motives $[15]^1$. We use the convention that the
functor $X \mapsto h(X)$ from smooth projective k-varieties to $\text{Mot}^\text{eff}_\sim$ is
covariant. We shall in fact only consider the two extreme cases: rational
equivalence (rat) and numerical equivalence (num).

Using the point of view of birational motives (developed jointly with
Sujatha [9]), we give a proof almost without cohomology (see proof
of Lemma 2) of a recent result of Esnault on the existence of ratio-
nal points for smooth projective varieties with “trivial” Chow group
of zero-cycles over a finite field [4]. We also prove that the number
of rational points modulo q is a stable birational invariant of smooth
projective varieties over \mathbb{F}_q: the idea of considering effective motives
and their divisibility by the Lefschetz motive was anticipated by Serre
[16]. This answers a question of Kollár; the 3-dimensional case had
been dealt with by Lachaud and Perret earlier [13]. However, as was
pointed out by Chambert-Loir, this birational invariance in fact follows
from much earlier work of Ekedahl [3], who does not use any form of
resolution of singularities!

1. Birational motives

Definition 1. The category Mot_\sim° is the Karoubian envelope (or idem-
potent completion) of the quotient of $\text{Mot}^\text{eff}_\sim$ by the ideal J consisting of
morphisms factoring through an object of the form $M \otimes L$, where L is
the Lefschetz motive. This is a tensor additive category. If $M \in \text{Mot}^\text{eff}_\sim$,
we denote by \bar{M} its image in Mot_\sim°.

1With notation as in [15], an object of Mot_\sim is effective if it is isomorphic to an
triple (X, p, n) with $n \leq 0$; one may then find such a triple with $n = 0$.
Lemma 1 ([9, Lemmas 5.3 and 5.4]). Let X, Y be two smooth projective irreducible k-varieties. Then, in $\text{Mot}^0_{\text{rat}}$, we have

$$\text{Hom}(\tilde{h}(X), \tilde{h}(Y)) = CH_0(Y_{k(X)}) \otimes \mathbb{Q}.$$

(Let us briefly recall the proof: for X, Y smooth projective, let $I(X, Y)$ be the subgroup of $CH^\dim Y(X \times Y) \otimes \mathbb{Q}$ formed of those correspondences which vanish on $U \times Y$ for some dense open subset U of X. Then I is an ideal in the category of rational Chow correspondences: the proof [9, Lemma 5.3] is a slight generalisation of the argument in [5, Ex. 16.1.11]. It is even monoidal, and extends to a monoidal ideal I in $\text{Mot}^0_{\text{eff}}$, which obviously contains J. Using de Jong’s theorem [7, Th. 4.1] and Chow’s moving lemma, one sees that $I \otimes \mathbb{Q} = J \otimes \mathbb{Q}$ [9, Lemma 5.4]. In characteristic 0, one may remove the coefficients \mathbb{Q} by using Hironaka’s resolution of singularities.)

Example 1. Let X be smooth and projective over k. Then $\tilde{h}(X) \simeq 1$ in $\text{Mot}^0_{\text{rat}}$ if and only if $CH_0(X_{k(X)}) \otimes \mathbb{Q} \simeq \mathbb{Q}$ (write $\tilde{h}(X) \simeq 1 \oplus \tilde{h}(X) \geq 1$ in $\text{Mot}^0_{\text{eff}}$).

Remark 1. If K is the function field of a smooth projective variety X, we may define a motive $\tilde{h}(K) \in \text{Mot}^0_{\text{rat}}$ as follows. If Y is another smooth projective model of K, then [the closure of] the graph of a birational isomorphism from X to Y defines an isomorphism $\tilde{h}(X) \sim \tilde{h}(Y)$. If there is a third model Z, then the system of these isomorphisms is transitive, so defining $\tilde{h}(K)$ as the direct limit of the $\tilde{h}(X)$ for this type of isomorphisms makes sense and is (canonically) isomorphic to any of the $\tilde{h}(X)$. This construction is functorial for inclusions of fields. If char $k = 0$, it is even functorial for k-places by [9, Lemma 5.6], although we won’t use this. (Extending it to arbitrary function fields in characteristic p would demand more work.)

Note that if $K \subseteq L$, then $\tilde{h}(K)$ is a direct summand of $\tilde{h}(L)$: to see this, consider smooth projective models X, Y of K and L. Let $f : U \to X$ be a corresponding dominant morphism, where U is an open subset of Y. By Noether’s normalisation theorem, we may find an affine open subset $V \subset U$ such that the restriction of f to V factors through $X \times \mathbb{P}^n$, where $n = \dim Y - \dim X$. Since $\tilde{h}(X \times \mathbb{P}^n) \sim \tilde{h}(X)$, we are reduced to the case where L/K is finite, and then it follows from a transfer argument. In particular, $\tilde{h}(X) \simeq 1$ if X is unirational, as expected in [16]. The converse is not true: an Enriques surface X verifies $\tilde{h}(X) \simeq 1$ by [2] (see example 1), but is not rational, hence not unirational over a field of characteristic 0 because $\text{Pic}(X)$ contains a $\mathbb{Z}/2$ summand (this counterexample was explained by Jean-Louis Colliot-Thélène).
For \(\sim = \text{num} \), the category \(\text{Mot}^\circ \sim \) is abelian semi-simple [8]. From [1, Prop. 2.1.7], we therefore get:

Proposition 1. a) The projection functor \(\pi : \text{Mot}^\text{eff}_\text{num} \to \text{Mot}^\circ \text{num} \) is essentially surjective (i.e. taking the karoubian envelope is irrelevant in the definition of \(\text{Mot}^\circ \text{num} \)).
b) \(\pi \) has a section \(i \) which is also a left and right adjoint.
c) The category \(\text{Mot}^\text{eff}_\text{num} \) is the coproduct of \(\text{Mot}^\text{eff}_\text{num} \otimes L \) and \(i(\text{Mot}^\circ \text{num}) \), i.e. any object of \(\text{Mot}^\text{eff}_\text{num} \) can be uniquely written as a direct sum of objects of these two subcategories.
d) The sequence
\[
0 \to K_0(\text{Mot}^\text{eff}_\text{num}) \to L \to K_0(\text{Mot}^\circ \text{num}) \to 0
\]
is split exact. \(\square \)

(In d), the injectivity on the left corresponds to the fact that the functor \(- \otimes L \) is fully faithful.)

Remark 2. a) In \(\text{Mot}^\circ \text{num} \), we can extend the end of Remark 1 as follows: let \(K, L \) two function fields of smooth projective varieties such that \(K \hookrightarrow L(t_1, \ldots, t_m) \) and \(L \hookrightarrow K(t_1, \ldots, t_n) \) for some \(m, n \). Then \(\bar{h}(K) \simeq \bar{h}(L) \). To get such a result in \(\text{Mot}^\circ \text{rat} \), one would need to have enough information on the algebra \(\text{End}(\bar{h}(K)) \).

b) Proposition 1 b) shows via Remark 1 that to any function field \(K/k \) one may canonically associate an effective numerical motive \(h(K) \in \text{Mot}^\circ \text{num} \), which is a direct summand of \(h(X) \) for any smooth projective model \(X \) of \(K \) (if any).

The following conjecture was suggested by Luca Barbieri-Viale:

Conjecture 1 (cf. [17, Conj. 0.0.11]). For any field \(k \), the projection functor \(\text{Mot}^\text{eff}_\text{rat} \to \text{Mot}^\circ \text{rat} \) has a right adjoint.

2. Number of rational points modulo \(q \)

From now on, \(k = F_q \) is a field with \(q \) elements. Then, for all \(n \geq 1 \), the assignment
\[
X \mapsto |X(F_q^n)| = \deg(\Delta_X \cdot F_X^n)
\]
for a smooth projective variety \(X \), where \(\Delta_X \) is the class of the diagonal and \(F_X \) is the Frobenius endomorphism viewed as a correspondence, extends to a ring homomorphism
\[
\#_n : K_0(\text{Mot}^\text{eff}_\text{num}) \to \mathbb{Q}
\]
by the rule \(\#_n(X, p) = \deg(p \cdot F_X^n) \) if \(p = p^2 \in \text{End}(h(X)) \), cf. [12, p. 80].

Lemma 2. The homomorphisms \(\#_n \) take their values in \(\mathbb{Z} \).
Proof. It is enough to prove this for \(n = 1 \). More conceptually, we have \(\deg(t \cdot F_X) = \text{Tr}(p \circ F_X) \) in the rigid tensor category \(\text{Mot}_{\text{rat}} \). We may compute this trace after applying a Weil cohomology \(H \), e.g. \(l \)-adic cohomology. (We then have to consider \(H(X) \) as a \(\mathbb{Z}/2 \)-graded vector space and compute a super-trace.) Let \(H(X) = V \oplus W \), with \(V = \text{Ker}(H(p) - 1) \) and \(W = \text{Ker}(H(p)) \). Since \(F_X \) is a central correspondence, it commutes with \(p \), hence \(H(F_X) \) respects \(V \) and \(W \) and
\[
\text{Tr}(p F_X) = \text{Tr}(H(p F_X)) = \text{Tr}(H((p F_X)|_V) + \text{Tr}(H((p F_X)|_W)
= \text{Tr}(H(F_X)|_V).
\]

Since the minimum polynomial of \(H(F_X) \) kills \(H((F_X)|_V) \), the eigenvalues of the latter are algebraic integers. Hence \(\text{Tr}(p F_X) \) is an algebraic integer and therefore is in \(\mathbb{Z} \).

\[\Box \]

Theorem 1. The homomorphism (1) induces a ring homomorphism
\[\#_n : K_0(\text{Mot}^0_{\text{num}}) \to \mathbb{Z}/q^n. \]

This follows from Lemma 2 and Proposition 1 d) (note that \(\#_n(L) = q^n \)).

\[\Box \]

Corollary 1 (Esnault [4]). Let \(X \) be a smooth projective variety over \(\mathbb{F}_q \) such that \(CH_0(X_{\mathbb{F}_q(X)}) \otimes \mathbb{Q} = \mathbb{Q} \). Then \(|X(\mathbb{F}_q)| \equiv 1 \pmod{q} \).

Proof. By Example 1, one has \(\bar{h}(X) \simeq 1 \) in \(\text{Mot}^0_{\text{rat}} \), hence a fortiori in \(\text{Mot}^0_{\text{num}} \). \[\Box \]

Corollary 2 (cf. [3, Th. 4], [13]). The number of rational points modulo \(q \) is a stable birational invariant of smooth projective \(\mathbb{F}_q \)-varieties.

Indeed, two stably birationally isomorphic varieties have isomorphic motives in \(\text{Mot}^0_{\text{rat}} \). \[\Box \]

Remarks 3. a) Using Remark 2 a) we could strengthen Corollary 2 as follows: for two smooth projective varieties \(X, Y \), \(|X(\mathbb{F}_q)| \equiv |Y(\mathbb{F}_q)| \pmod{q} \) provided there exist \(m, n \) and dominant rational maps \(X \times \mathbb{P}^m \to Y, Y \times \mathbb{P}^n \to X \). However, this also follows from [3].

b) Using Remark 2 b) we may canonically associate to any function field \(K/\mathbb{F}_q \) a series of integers \((a_n)_{n \geq 1} \) such that, for all \(n, \#_n(h(K)) = a_n \pmod{q^n} \) (see Remark 1 for the definition of \(h(K) \)). Naturally \(a_n \) is not necessarily positive in general. More conceptually, we may associate to \(K \) its zeta function, defined as the zeta function of the motive \(i(h(K)) \).

c) Killing \(L^c \) instead of \(L \) would yield congruences modulo \(q^c \) rather than modulo \(q \), cf. [4, §3]; compare also [18]. But one would lose the fact that function fields have motives as in the previous remarks.

d) Unfortunately the proof of Lemma 2 uses cohomology, hence the proof of Theorem 1 is not completely cohomology-free.
3. A conjectural converse

Note that the functions \(\#_n \) of (1) extend to ring homomorphisms \(K_0(\text{Mot}_{\text{num}}) \to \mathbb{Z}[1/q] \), still denoted by \(\#_n \).

Theorem 2. Assume that the Tate conjecture holds. Let \(M \in K_0(\text{Mot}_{\text{num}}) \) be such that \(\#_n(M) \in \mathbb{Z} \) for all \(n \geq 1 \). Then \(M \in K_0(\text{Mot}_{\text{eff}}) \). Conversely, if this implication holds for any \(M \in K_0(\text{Mot}_{\text{num}}) \), then the Tate conjecture holds.

Proof. Write \(M = \sum m_i[S_i] \), where \(m_i \in \mathbb{Z} \setminus \{0\} \) and the \(S_i \) are simple pairwise non-isomorphic motives. For each \(i \), let \(w_i \) be a Weil number of \(S_i \), that is, a root of the minimum polynomial of \(F_{S_i} \), and \(K_i = \mathbb{Q}(w_i) \). Then \(\#_n(M) = \sum m_i Tr_{K_i/\mathbb{Q}}(w_i^n) \). It follows from the assumption and from [11, Lemma 2.8] that \(w_i \) is an algebraic integer for all \(i \). (To apply loc. cit., compute in a Galois extension of \(\mathbb{Q} \) containing all \(K_i \) and observe that the Tate conjecture implies that no \(w_i \) is equal to a conjugate of \(w_j \) for \(i \neq j \) [14, proof of Prop. 2.6].)

By Honda’s theorem, for each \(i \) there is an abelian variety \(A_i \) over \(\mathbb{F}_q \) and a simple direct summand \(T_i \) of \(h(A_i) \) whose Weil numbers are the Galois orbit of \(w_i \) (ibid.). Reapplying Tate’s conjecture, we get that \(S_i \simeq T_i \), hence \(S_i \) is effective for all \(i \).

To prove the converse, let \(M \in \text{Mot}_{\text{num}} \) be simple and such that \(F_M = 1 \). Then \(\#_n(M) = 1 \) for all \(n \). Therefore \(M \) is effective. Writing \(M \) as \((X, p) \) for some smooth projective variety \(X \), we have that \(M \) is a direct summand of \(h^0(X) \) for weight reasons. It follows easily that \(M \simeq 1 \). By [6, Th. 2.7], this implies the Tate conjecture.

Remark 4. Unfortunately we have to apply the Tate conjecture to \(S_i \otimes T_i^* \) in the proof, hence cannot provide a hypothesis only involving \(M \).

Corollary 3. The ring homomorphism

\[
(\overline{\#}_n)_{n \geq 1} : K_0(\text{Mot}_{\text{num}}) \to \prod_{n=1}^{\infty} \mathbb{Z}/q^n
\]

is injective if and only if the Tate conjecture is true. \(\square \)

Acknowledgements. Part of this work was done during a stay at the Newton Institute of Mathematical Sciences in September-October 2002; I thank it for its hospitality. I am grateful to Dan Abramovich, Yves André, Antoine Chambert-Loir, Jean-Louis Colliot-Thélène and Gilles Lachaud for helpful remarks. Especially Colliot-Thélène and Chambert-Loir pointed out the work of Lachaud and Perret [13], Chambert-Loir pointed out the work of Ekedahl [3] and Lachaud kindly communicated the letters of Serre [16]. André pointed out that Lemma 2 needed a proof, helped with it and let me discover a mistake in the
very first version of this paper. Finally, the idea of this article was of course sparked by Hélène Esnault’s prior article [4].

References

[1] Y. André, B. Kahn Nilpotence, radicaux et structures monoïdales (with an appendix of Peter O’Sullivan), to appear in Rend. Sem. Math. Univ. Padova.
[2] S. Bloch, A. Kas, D. Lieberman Zero cycles on surfaces with $p_g = 0$, Compositio Math. 33 (1976), 135–145.
[3] T. Ekedahl Sur le groupe fondamental d’une variété unirationnelle, C. R. Acad. Sci. Paris 297 (1983), 627–629.
[4] H. Esnault Varieties over a finite field with trivial Chow group of zero-cycles have a rational point, to appear in Invent. Math.
[5] W. Fulton Intersection theory, Springer, 1984.
[6] T. Geisser Tate’s conjecture, algebraic cycles and rational K-theory in characteristic p, K-theory 13 (1998), 109–122.
[7] A.J. de Jong Smoothness, semi-stability and alterations, Publ. Math. IHÉS 83 (1996), 51–93.
[8] U. Jannsen Motives, numerical equivalence and semi-simplicity, Invent. Math. 107 (1992), 447–452.
[9] B. Kahn, R. Sujatha Birational motives, I, preprint, 2002.
[10] J. Kollár Rational curves on algebraic varieties, Erg. der Math. u. ihrer Grenzgebiete 32 (1996), Springer, 1996.
[11] S. Kleiman Algebraic cycles and the Weil conjectures, in Dix exposés sur la cohomologie des schémas, North-Holland, Amsterdam; Masson, Paris, 1968, 359–386.
[12] S. Kleiman Motives, Algebraic geometry, Oslo 1970, Proc. Fifth Nordic Summer School in Math., Wolters-Noordhoff, Groningen, 1972, 53–82.
[13] G. Lachaud, M. Perret, Un invariant birationnel des variétés de dimension 3 sur un corps fini, J. Algebraic Geom. 9 (2000), 451–458.
[14] J.S. Milne Motives over finite fields, Motives (Seattle, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 401–459.
[15] A. Scholl Classical motives, Motives (Seattle, 1991), Proc. Sympos. Pure Math., 55, Part 1, Amer. Math. Soc., Providence, RI, 1994, 163–187.
[16] J. P. Serre Letters to Marc Perret and Gilles Lachaud, Oct. 26 and 31, 2000.
[17] V. Voevodsky Letter to A. Beilinson, Dec. 6, 1992.
[18] V. Voevodsky Open problems in the motivic stable homotopy theory, I, preprint, 2000.