Newly Identified Star Clusters in M33. II.
Radial HST/ACS Fields

Izaskun San Roman and Ata Sarajedini

Department of Astronomy, University of Florida, 211 Bryant Space Science Center,
Gainesville, FL 32611-2055

izaskun@astro.ufl.edu, ata@astro.ufl.edu

Donald R. Garnett

801 W. Wheatridge Drive, Tucson AZ 85704
drgarnett@msn.com

Jon A. Holtzman

New Mexico State University, Las Cruces, NM

holtz@nmsu.edu

ABSTRACT

We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged, using the Advanced Camera For Surveys Wide Field Channel onboard the Hubble Space Telescope. The integrated V-band magnitudes of these clusters range from $M_V \sim -9$ to as faint as $M_V \sim -4$, extending the depth of the existing M33 cluster catalogs by ~ 1 mag. Comparisons of theoretical isochrones to the color-magnitude diagrams using the Padova models yield ages for 148 of these star clusters. The ages range from $\log (t) \sim 7.0$ to $\log (t) \sim 9.0$. Our color-magnitude diagrams are not sensitive to clusters older than ~ 1 Gyr. We find that the variation of the clusters’ integrated colors and absolute magnitudes with age is consistent with the predictions of simple stellar population models. These same models suggest that the masses of the clusters in our sample range from 5×10^3 to $5 \times 10^4 M_\odot$.

Subject headings: galaxies: individual (M33) – galaxies: spiral – galaxies: star clusters – galaxies: stellar content
1. Introduction

Star clusters provide a unique and powerful probe useful for studying the star formation histories of galaxies. In particular, the ages, metallicities and kinematics of star clusters bear the imprint of the galaxy formation process. These correlations underscore the importance of compiling complete catalogs of clusters in nearby galaxies. At a distance of 870 kpc (distance modulus=24.69; Galleti et al. (2004)), M33 is the only nearby late-type spiral galaxy and it provides a notable connection between the cluster populations of earlier-type spirals and the numerous, nearby later-type dwarf galaxies.

There have been a number of M33 cluster catalogs published since the pioneering work of Hiltner (1960). The reader is referred to the work of Sarajedini & Mancone (2007) (hereafter referred to as SM), which merged all of the modern catalogs compiled before 2007, for a summary of the properties of all of these catalogs. Even the results of Park & Lee (2007), which appeared after the publication of SM have been incorporated into the web-based version of the SM catalog. This catalog contains 479 candidates of which 264 are confirmed clusters based on HST and high resolution ground-based imaging. The most recent work in this field is that of Zloczewski et al. (2008) (hereafter ZKH), which presents a catalog of 4780 extended sources in a 1 square degree region around M33 including 3554 new candidate stellar clusters. For the purpose of the present paper, it is important to take special note of the two cluster catalogs by Chandar et al. (1999, hereafter CBF99; 2001, hereafter CBF01, or collectively as CBF) and the one by Sarajedini et al (2006) because we will adopt similar reduction and analysis techniques as these previous studies.

In general, ground-based imaging cannot clearly distinguish a star cluster from another type of extended source (e.g. nebula, galaxy), but Hubble Space Telescope (HST) imaging with the Wide-Field Planetary Camera 2 (WFPC2) or the Advanced Camera for Surveys (ACS) provides the spatial resolution necessary to provide an unequivocal determination. It is for this reason that we have undertaken the present study. In addition, and just as importantly, the HST observations allow us to construct color-magnitude diagrams (CMDs) of the star clusters, which can be used to estimate ages and investigate any correlations that might exist between cluster ages and integrated photometric properties as well as allowing us to determine star cluster masses. Section 2 describes the observations and data reduction, and §3 discusses the identification and integrated magnitudes of the clusters. §4 includes a

1 Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.

2 http://www.astro.ufl.edu/~ata/cgi-bin/m33cluster_catalog/index.cgi
statistical analysis of the most recent previous survey of M33 clusters by Zloczewski et al. (2008). The analysis of the CMDs is presented in §5 while an analysis of the star cluster properties is in §6. Lastly, §7 presents our conclusions.

2. Observations and Data Reduction

The observations for the present study were obtained with the Advanced Camera for Surveys Wide Field Channel (ACS/WFC) onboard the Hubble Space Telescope (HST). With a pixel scale of 0.049″ pixel\(^{-1}\) and a field of view of 3.3’ x 3.3’, ACS/WFC is able to resolve individual stars at the distance of M33. Twelve HST/ACS fields from the GO-10190 program (PI: D. Garnett) have been analyzed. Four primary fields were obtained along the major axis of M33. Eight coordinated parallel fields were also secured along both sides of the primary-field axis. Figure 1 shows the locations of these fields. We have three filters for the primary observations (F475W, F606W, F814W) and two filters for the parallel images (F606W, F814W). Table 1 presents a summary of the observations.

All of the images were calibrated through the standard pipeline-process and downloaded from the HST archive. The ‘FLT’ images (Table 1), which were used for the point source photometry, were first multiplied by the geometric correction image to correct for the fact that each ACS pixel subtends a different angle on the sky. Then, the data quality files were applied by setting the values of bad pixels to a large negative number so that the photometry software will ignore them. The photometry was performed using the DAOPHOT/ALLSTAR and ALLFRAME routines (Stetson 1994) following the same procedure as that used by Sarajedini et al. (2000). A detailed description of how the point spread functions (PSFs) were constructed has been presented in Sarajedini et al. (2006). The corresponding frames in the F606W and F814W filters were matched to obtain mean instrumental magnitudes of common stars which were then matched to form colors. The photometry has been corrected for the charge transfer efficiency (CTE) problem that ACS suffers using the prescription of Riess & Mack (2004). In addition, the theoretical transformation of Sirianni et al. (2005) was used in order to convert the magnitudes to the ground-based Johnson-Cousins system.

The pipeline-processed drizzled (‘DRZ’) images were used for the integrated cluster photometry and were similarly obtained from the HST archive. In fields where multiple drizzled images were produced by the pipeline, we derived positional offsets between these frames using the imshift and imcombine tasks in IRAF to allow us to produce one master image per filter per field. The drizzling process removes the sky background and corrects the counts to an exposure time of one second. As a result, to make the calculation of photometric errors more straightforward, each DRZ image was multiplied by the exposure time and the
background sky value was added back before performing photometry on these frames. The resultant images were then used in the derivation of the integrated cluster photometry.

3. Cluster Identification and Photometry

Star clusters are easily resolved on the HST/ACS images so the selection of objects has been done by visual inspection of each image. This is the technique employed in several previous papers where HST imaging was used (CBF, Sarajedini et al. 2006). Figure 2 shows sample images of some of the 161 clusters identified in this study. The cluster positions have been determined by convolving each image with an elliptical gaussian of σ=10 pixels. This kernel size was chosen so that the convolution process would yield a smooth cluster profile that is conducive to the next step, which is the application of the IRAF imexamime task. This routine was applied to the smoothed cluster profiles to determine the cluster centers. The optimum pixel coordinate positions were transformed to right ascension and declination using the World Coordinate System in the image headers. Based on the work of SM, which compared the positional accuracy of several catalogs with those determined using the Local Group Survey images of Massey et al. (2006), we estimate an internal precision of approximately ±0.1 arcsec and an absolute accuracy of about ±0.4 arcsec for these quoted cluster positions.

The integrated magnitudes and colors of each cluster have been calculated using the aperture photometry routines in DAOPHOT (Stetson 1987). To be consistent with the previous work of Sarajedini et al. (2006), we have adopted an aperture radius of 2.2” for the magnitude measurements and 1.5” for the colors. Note that CBF used the same aperture size for their magnitudes but a variable aperture ranging from 1.0” to 2.2” within which to measure cluster colors. Like in the CBF study, the background sky is always determined in an annulus with an inner radius of 3.5” and an outer radius of 5.0”. Once again, these magnitudes have been corrected for CTE based on Riess & Mack (2004) and calibrated to the ground-based system using the synthetic transformations of Sirianni et al. (2005).

Table 2 details the position of each cluster as well as its V magnitude, B–V color, V–I color, reddening, age, mass and also, if applicable, the alternative identification in Sarajedini & Mancone (2007). We could not determine the integrated magnitudes for two of the clusters because of their location near the edge of the field. The formal random errors on the magnitudes and colors are all less than 0.01 mag because of the high signal-to-noise ratio of these clusters. Cluster candidates number 139 and 59 in the catalog of Sarajedini & Mancone (2007) have been rejected as clusters in this study based on visual inspection.
3.1. Comparison with Previous Photometry

Comparing our results with the CBF study, we find a mean difference of \(\langle \Delta V(\text{Us-CBF}) \rangle = 0.09 \pm 0.06\) and \(\langle \Delta(V-I) \rangle = 0.07 \pm 0.03\) while comparing with Ma et al. (2001; 2002a; 2002b), we arrive at a difference of \(\langle \Delta V(\text{Us-Ma}) \rangle = 0.04 \pm 0.05\), where the uncertainties are standard errors of the mean. As we shall see below, these photometric differences are not unexpected for integrated photometry of extended objects such as star clusters (see also Table 2 of Sarajedini & Mancone 2007). Fig. 3 shows the offset in magnitude and color in both cases. The integrated B magnitudes are not plotted due to a lack of significant numbers of clusters with which to compare.

In order to examine these results in more detail, we analyzed the magnitude and color offsets as a function of field and position. Not surprisingly, the mean difference is larger in fields and positions near the center of the galaxy as a result of the higher degree of crowding. Analysis of the distance distribution of our sample reveals that 50% of the CBF clusters with measured V magnitudes are inside a distance of 1.7 kpc from the center of M33. The mean magnitude difference for the clusters inside this region is \(\langle \Delta V(\text{Us-CBF}) \rangle = 0.17 \pm 0.07\) while for those outside this region, the difference is \(\langle \Delta V(\text{Us-CBF}) \rangle = 0.02 \pm 0.09\). Examining different distance ranges, moving progressively outward to include more CBF clusters, we find the same tendency where clusters in the inner (more crowded) regions display a larger mean magnitude difference as compared with the outer (less crowded) regions.

It is important to note that we also performed additional tests of the photometry to investigate the effects of spatial resolution and errors in cluster centering. The CBF photometry comes mostly from the Wide Field (WF) CCDs that are part of the WFPC2 onboard HST. The spatial resolution of the WF CCDs is roughly 4 times coarser as compared with ACS/WFC. We performed photometry of a subset of our clusters using ACS/WFC images that were resampled to replicate the resolution of the WF CCDs. We found no significant difference between these results and the magnitudes as measured on the original ACS/WFC frames. Additionally, we analyzed the sensitivity of our photometry to the adopted cluster center by using the values from the Sarajedini & Mancone (2007) catalog, which are measured from ground-based images taken from the Local Group Survey using the MOSAIC instrument as well as from the work of CBF. Again, we find no significant difference in the magnitudes and colors of the clusters we have measured.

A further check of our photometry is provided by the realization that, as shown in Fig. 1, several of our fields exhibit significant overlap. There are 10 clusters that have multiple measurements of their magnitudes and colors: one common cluster between d2 and f4, five between f1 and f2 and four between d3 and f7. Comparing the photometry of these common clusters, we obtain an offset in V magnitude of \(\Delta V = 0.042 \pm 0.026\) and an offset in color of
\[\Delta(V-I) = 0.060 \pm 0.012. \]

At first glance, this level of disagreement between measurements of the same clusters in different fields seems to be a potential cause for concern. However, an examination of a similar situation encountered by CBF99 and CBF01 reveals that their studies show offsets of the same order. In particular, as pointed out by SM, there are 3 clusters in common between CBF99 and CBF01, and these objects appear on two different WFPC2 fields. The mean difference in the V mags of these clusters is \(\Delta V(\text{CBF99-CBF01}) = 0.106 \pm 0.048 \).

3.2. Comparison with Previous Catalogs

As noted in §1, the SM catalog is the pre-eminent compilation containing all of the existing information for M33 star clusters up to 2007. Of the 161 clusters identified in the present work, 46 have been previously cataloged in Sarajedini & Mancone (2007). Fig. 4 shows the integrated magnitude CMD for all of the genuine clusters in the SM catalog. We see that the clusters span a magnitude range of \(16 < V < 20 \), which corresponds to \(-9 < M_V < -5 \), using our adopted distance modulus of \((m-M)_0 = 24.69 \) (Galleti et al. 2004). Fig. 4 also illustrates the locations of the clusters identified in the present study. This new sample extends to \(M_V \sim -4 \), which is \(\sim 1 \) mag fainter than the least luminous clusters in the SM catalog, closer to the faintest clusters in the Large Magellanic Cloud (Sarajedini & Mancone 2007).

We can also compare our cluster catalog with the most recent catalog produced by Zloczewski et al. (2008) (hereafter ZKH); they present a photometric survey for stellar clusters in M33 based on deep ground-based images obtained with the MegaCam instrument on the Canada-France-Hawaii telescope, and their classifications are based on visual inspection of the images. Their catalog contains 4780 extended sources in a region approximately \(1 \times 1 \) degree. Among these, there are 3554 new candidate stellar clusters of which 122 are relatively bright, likely globular clusters.

Sixty of the 3554 objects are present in our HST/ACS fields. The ZKH catalog suggests that 51 of these are new candidate stellar clusters; however our study shows that only 21 objects resolve into stars and therefore appear to be clusters. Some of the other objects that ZKH consider to be extended turn out to be close groupings of two or three stars. Others appear to be background galaxies or diffuse nebulae. Table 3 provides a cross-identification of the 21 common objects that are genuine clusters. If we extrapolate the ratio of true clusters to total cluster candidates in the ZKH catalog, this suggests that only around 40 \% of the 3554 proposed candidates from ZKH will be actual stellar clusters. Nonetheless, even
if there are \sim1400 stellar clusters in M33, it would have the highest number of known star clusters per unit luminosity of any spiral galaxy in the Local Group.

4. Color-Magnitude Diagrams

Intrinsic properties such as age, metallicity and reddening govern the integrated magnitudes and colors of clusters. Using the PSF-photometry of each star in each field we are able to examine these parameters by constructing CMDs of each cluster. Figs. 5-11 show radial CMDs and the best fit isochrone for the region around each cluster for seven clusters in our list as an example of the procedure we followed and the range of ages found. The top-left to the bottom-right in the left panel correspond to stars within 1” of the cluster center, between 1” and 2”, 2” and 3” and finally between 3” and 4”. The solid lines represent theoretical isochrones from Girardi et al. (2000) for ages of 10^8, 10^9 and 10^{10} yrs with a metallicity of $Z=0.004$. This metal abundance has been chosen as a representative mean of the disk abundance gradient based on the work of Kim et al. (2002) (see also Sarajedini et al. 2006). However, we point out that for ages younger than \sim1 Gyr, there is very little sensitivity of the isochrone-derived age on the assumed metal abundance. The isochrones have been shifted by a distance modulus of $(m-M)_0=24.69$ (Galleti et al. 2004) and a line-of-sight reddening value of $E(V-I)=0.06$ (Sarajedini et al. 2000). Then, we overplot the isochrones in the observed CMDs looking for the best fit to the main sequence turnoff (MSTO) region. Based on Cardelli et al. (1989), we adopt the following relation between the extinction and the reddening: $A_V = 1.3 \cdot E(V-I)$.

The left panel illustrates the gradual decrease in cluster stars at increasing distance from the cluster center. Consequently, CMDs within 1” of the cluster center display a significant fraction of stars belonging to the cluster revealing features to estimate ages, while the lower panels have been used to monitor non-cluster stars. Right panel in each figure shows the best fit isochrone for stars within 1” of the cluster center. In this way, the ages of 148 star clusters have been estimated from a comparison of the main-sequence turnoff photometry with theoretical isochrones. In some cases, an additional reddening adjustment was needed in order to align the main sequence of the isochrones with the data. In several instances, the main sequence and the turnoff are not satisfactorily defined to permit a comparison with isochrones. We estimate a precision in the isochrone-fitting ages of ±0.05 dex based on neighboring isochrones (in age) that could also potentially fit the data. In the case of clusters 12, 15, 18 and 111, the isochrone fit is not as well established and the precision of the age reaches 0.1 dex. The precision of the reddenings is approximately ±0.05mag. The ages and reddenings obtained during this process are listed in Table 2.
5. Analysis

The reddening-corrected colors of the clusters should correlate with their ages and metallicities. The upper panel of Fig. 12 shows the variation of integrated cluster V−I color with the estimated isochrone age. These have been reddening corrected using the reddening listed in Table 2. The lines are the expected relations according to simple stellar populations [Girardi et al. (2002)] with Z=0.004 (solid line), Z=0.001 (dotted line) and Z=0.019 (dashed line). As expected, this plot reveals a positive correlation between cluster age and V−I color in much the same manner as the models predict.

Our data allow us to compare the luminosities of the clusters with their ages in order to derive the cluster masses. The bottom panel of Fig. 12 shows the integrated absolute magnitudes as a function of the estimated isochrone ages. These have been corrected using an extinction based on the reddening listed in Table 2. The dashed lines are the expected relations for simple stellar populations with Z=0.004 taken from [Girardi et al. (2002)] for masses of 10^3, 10^4, 10^5 and 10^6 M⊙ and assuming a Salpeter initial mass function (IMF). This diagram indicates that the clusters in our sample are consistent with the theoretical predictions of simple stellar population fading models. Additionally, the majority of the clusters have masses between 5 × 10^3 and 5 × 10^4 M⊙. These estimated masses would not change significantly if we were to assume other power-law IMFs in constructing the fading lines [Tantalo 2005] although we should consider them as upper limits in other cases like exponential IMFs [Chabrier 2001] binary-corrected IMFs [Kroupa 1998]. It should be noted that the dearth of clusters older than ~10^9 years is attributable to the fact that our CMDs are generally not deep enough to detect the main sequence turnoffs of clusters older than this limit.

6. Summary

This paper presents HST/ACS integrated photometry of 161 star clusters in M33 as well as individual stellar photometry in twelve fields. Forty six clusters of the sample have been previously cataloged by [Sarajedini & Mancone 2007]. Color-magnitude diagrams of each cluster have been constructed in order to determine ages via isochrone fitting. Simple stellar population models reproduce the behavior of the cluster ages with dereddened V–I color as well as with absolute magnitude. We have incorporated these new clusters into the existing catalog of M33 clusters established by [Sarajedini & Mancone 2007] increasing by more than 40% the set of confirmed star clusters in this galaxy.
We thank an anonymous referee for comments that greatly improved this paper. We are grateful for support from NASA through grant GO-10190 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA under contract NAS5-26555.

REFERENCES

Barmby, P., Huchra, J. P., Brodie, J. P., Forbes, D. A., Schroder, L. L., & Grillmair, C. J. 2000, AJ, 119, 727

Bica, E. L. D., Schmitt, H. R., Dutra, C. M., & Oliveira, H. L. 1999, AJ, 117, 238

Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245

Chabrier, G. 2001, ApJ, 554, 1274

Chandar, R., Bianchi, L., & Ford, H. C. 1999, ApJS, 122, 431

—. 2001, A&A, 366, 498

Gail, M. H. & Green, S. B. 1976, Journal of the American Statistical Association, 71, 757

Galleti, S., Bellazzini, M., & Ferraro, F. R. 2004, A&A, 423, 925

Girardi, L., Bertelli, G., Bressan, A., Chiosi, C., Groenewegen, M. A. T., Marigo, P., Salasnich, B., & Weiss, A. 2002, A&A, 391, 195

Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, VizieR Online Data Catalog, 414, 10371

Kim, M., Kim, E., Lee, M. G., Sarajedini, A., & Geisler, D. 2002, AJ, 123, 244

Kroupa, P. 1998, in Astronomical Society of the Pacific Conference Series, Vol. 134, Brown Dwarfs and Extrasolar Planets, ed. R. Rebolo, E. L. Martin, & M. R. Zapatero Osorio, 483

Ma, J., Zhou, X., & Chen, J. 2004a, A&A, 413, 563

—. 2004b, ChJAAp, 4, 125

Ma, J., Zhou, X., Chen, J., Wu, H., Jiang, Z., Xue, S., & Zhu, J. 2002a, AJ, 123, 3141
Ma, J., Zhou, X., Chen, J., Wu, H., Kong, X., Jiang, Z., Zhu, J., & Xue, S. 2002b, AcA, 52, 453
Ma, J., Zhou, X., Chen, J.-S., Wu, H., Jiang, Z.-J., Xue, S.-J., & Zhu, J. 2002c, ChJAAp, 2, 197
Ma, J., Zhou, X., Kong, X., Wu, H., Chen, J., Jiang, Z., Zhu, J., & Xue, S. 2001, AJ, 122, 1796
Park, W.-K. & Lee, M. G. 2007, AJ, 134, 2168
Riess, A. & Mack, J. 2004, (Baltimore:STScI), http://www.stsci.edu/hst/acs/documents/isrs/isr0406.pdf
Sarajedini, A., Barker, M. K., Geisler, D., Harding, P., & Schommer, R. 2006, AJ, 132, 1361
Sarajedini, A., Geisler, D., Schommer, R., & Harding, P. 2000, AJ, 120, 2437
Sarajedini, A. & Mancone, C. L. 2007, AJ, 134, 447
Sirianni, M., Jee, M. J., Benítez, N., Blakeslee, J. P., Martel, A. R., Meurer, G., Clampin, M., De Marchi, G., Ford, H. C., Gilliland, R., Hartig, G. F., Illingworth, G. D., Mack, J., & McCann, W. J. 2005, PASP, 117, 1049
Stetson, P. B. 1987, PASP, 99, 191
—. 1994, PASP, 106, 250
Tantalo, R. 2005, in Astrophysics and Space Science Library, Vol. 327, The Initial Mass Function 50 Years Later, ed. E. Corbelli, F. Palla, & H. Zinnecker, 235
Zlozczewski, K., Kaluzny, J., & Hartman, J. 2008, ArXiv e-prints, 805
Table 1. Observation Summary

Field	R.A. (J2000.0)	Decl. (J2000.0)	Filter	Exp. Time (s)
D1	01 33 49.89	+30 35 48.12	F606W	2 × 2480, 1 × 1300, 1 × 120
			F814W	2 × 2480, 1 × 1522, 1 × 142
			F475W	3 × 700
D2	01 33 39.69	+30 28 59.98	F606W	8 × 2480, 1 × 1300, 1 × 120
			F814W	10 × 2480, 1 × 1500, 1 × 120
			F475W	3 × 700
D3	01 33 20.49	+30 22 14.99	F606W	8 × 2480, 1 × 1300, 1 × 120
			F814W	10 × 2480, 1 × 1500, 1 × 120
			F475W	3 × 700
D4	01 33 07.89	+30 15 06.98	F606W	8 × 2480, 1 × 1300, 1 × 120
			F814W	10 × 2480, 1 × 1500, 1 × 120
			F475W	3 × 700
F1	01 33 40.32	+30 38 39.89	F606W	1 × 2160
			F814W	1 × 2160
F2	01 33 27.52	+30 39 15.42	F606W	1 × 2400
			F814W	1 × 2500
F3	01 34 00.23	+30 32 56.43	F606W	1 × 2400
			F814W	1 × 2500
F4	01 33 26.04	+30 30 37.64	F606W	1 × 2160
			F814W	1 × 2160
F5	01 34 11.78	+30 27 21.94	F606W	1 × 2160
			F814W	1 × 2160
F6	01 33 05.39	+30 27 11.88	F606W	1 × 2400
			F814W	1 × 2500
F7	01 33 13.43	+30 23 29.64	F606W	1 × 2160
			F814W	1 × 2160
F8	01 33 32.92	+30 17 32.37	F606W	1 × 2400
			F814W	1 × 2400
Table 2. Cluster Properties

ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Agea	Massb	Notes	Alter. Id
1	1 32 59.38	30 26 54.12	19.960	0.909	·	0.10	8.90	6.0	·	·
2	1 32 59.95	30 27 19.57	19.736	1.750	·	0.10	8.55	4.0	·	·
3	1 33 0.37	30 26 47.25	19.530	0.744	·	0.10	8.40	4.0	Small	31
4	1 33 1.50	30 27 47.84	19.896	0.457	·	0.06	8.20	2.0	Small	·
5	1 33 2.39	30 26 55.71	19.768	0.472	·	0.10	8.30	2.5	·	·
6	1 33 2.98	30 26 34.56	19.499	1.031	·	0.10	8.70	6.5	·	·
7	1 33 3.29	30 16 2.26	20.348	0.816	0.403	0.10	8.75	3.0	·	·
8	1 33 4.35	30 27 13.24	19.798	0.689	·	0.10	8.45	3.0	Small	·
9	1 33 5.62	30 14 23.44	19.361	0.789	0.501	0.10	8.50	5.0	·	·
10	1 33 5.87	30 28 49.46	19.198	0.493	·	0.10	8.25	4.0	·	·
11	1 33 8.11	30 27 59.77	18.941	0.859	·	0.10	8.65	10.0	·	40
12	1 33 8.93	30 16 51.53	20.771	0.876	0.637	0.10	8.85	2.5	·	·
13	1 33 9.27	30 26 6.78	19.460	0.588	·	0.10	8.40	4.0	·	·
14	1 33 9.77	30 22 35.46	17.806	0.718	·	0.06	8.15	10.0	·	·
15	1 33 10.33	30 23 4.26	17.530	-0.066	·	0.06	7.60	7.5	Small	·
16	1 33 10.38	30 15 45.93	20.352	1.159	1.043	0.15	8.70	3.0	Small	·
17	1 33 12.14	30 22 36.97	19.818	1.181	·	0.06	8.70	4.5	·	·
18	1 33 12.95	30 23 7.14	18.984	0.004	·	0.06	7.70	2.5	Small	·
19	1 33 13.93	30 27 59.99	19.171	0.791	·	·	·	·	·	·
20	1 33 13.96	30 14 31.85	20.218	0.944	0.702	0.15	9.00	5.5	·	·
21	1 33 14.04	30 15 16.47	20.075	0.770	0.511	0.20	8.65	4.0	Small	·
22	1 33 14.33	30 28 22.42	18.252	1.117	·	0.06	8.80	25.0	·	49
23	1 33 14.71	30 23 19.05	19.328	0.908	·	0.15	8.80	9.0	·	·
24	1 33 15.22	30 21 14.07	19.355	0.148	-0.092	0.06	8.20	3.0	·	·
25	1 33 16.10	30 20 56.55	18.245	0.566	0.244	0.10	8.30	10.0	·	53
26	1 33 19.09	30 30 10.68	18.917	0.833	·	0.06	8.50	7.5	·	·
27	1 33 19.16	30 23 22.62	18.470	0.886	·	0.06	9.00	25.0	·	57
28	1 33 19.91	30 30 20.22	19.359	1.180	·	0.15	8.80	9.0	·	·
ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Agea	Massb	Notes	Alter. Id d
----	------------	-------------	-------	-------	-------	--------	-------------------	----------------	--------	-------------------
29	1 33 21.09	30 37 55.77	18.943	0.804	·	0.10	8.55	8.5	·	61
30	1 33 21.31	30 20 31.88	18.184	0.429	0.236	0.06	8.20	8.5	·	·
31	1 33 21.34	30 31 0.89	19.351	1.091	·	0.15	8.80	9.0	·	·
32	1 33 21.35	30 31 31.31	18.906	0.871	·	·	·	·	·	62
33	1 33 21.38	30 31 12.56	18.585	0.551	·	0.06	8.20	6.0	·	·
34	1 33 21.57	30 31 50.96	18.636	1.276	·	·	·	·	·	63
35	1 33 21.59	30 37 48.69	19.027	0.675	0.236	0.06	8.20	6.5	·	·
36	1 33 22.09	30 40 26.20	18.339	0.382	·	·	·	·	·	Small
37	1 33 22.14	30 38 28.06	18.999	0.932	·	0.06	8.50	7.0	Small	·
38	1 33 22.37	30 30 14.12	17.426	0.484	·	0.06	8.00	15.0	·	69
39	1 33 22.67	30 38 0.06	19.235	1.049	·	0.06	9.20	20.0	Small	·
40	1 33 22.76	30 38 19.87	19.050	1.050	·	0.10	8.35	5.5	Small	·
41	1 33 23.10	30 32 22.69	18.946	0.909	·	0.15	8.35	6.5	·	71
42	1 33 23.83	30 40 26.26	19.004	0.753	·	0.06	8.50	7.0	Small	74
43	1 33 23.84	30 39 36.58	18.882	0.636	0.15	0.830	6.0	·	·	·
44	1 33 24.61	30 37 49.88	18.605	0.784	·	0.10	8.45	9.5	·	·
45	1 33 25.16	30 32 18.06	20.064	1.031	0.10	8.70	4.0	·	·	·
46	1 33 25.33	30 23 38.97	20.091	0.744	0.446	0.10	8.45	2.5	·	Small
47	1 33 25.73	30 18 1.12	19.719	0.157	0.06	8.25	2.5	·	·	·
48	1 33 25.76	30 31 19.80	19.610	0.927	·	0.10	8.60	5.0	·	·
49	1 33 26.50	30 30 1.71	19.448	0.909	·	0.10	8.45	4.5	Small	·
50	1 33 26.52	30 37 55.19	19.530	0.612	·	0.06	8.45	4.0	Small	·
51	1 33 26.63	30 31 30.09	18.114	0.546	·	0.10	8.15	9.0	·	·
52	1 33 27.43	30 30 3.38	18.574	0.900	0.15	8.50	12.0	·	·	·
53	1 33 27.86	30 38 49.00	18.004	0.773	0.06	·	·	·	·	·
54	1 33 29.26	30 29 13.67	18.918	0.681	·	0.06	8.25	5.0	Small	·
55	1 33 29.47	30 30 1.88	17.932	0.544	·	0.10	8.00	9.5	·	98
56	1 33 29.55	30 29 34.38	19.206	0.796	·	0.06	8.25	3.5	·	·

Table 2—Continued
Table 2—Continued

ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Age	Mass	Notes	Alter. Id
57	133 29.87	30 31 16.14	18.944	0.529	...	0.06	8.35	5.5	Small	...
58	133 30.18	30 29 33.65	19.514	0.798	...	0.06	8.25	3.0
59	133 30.34	30 37 43.37	18.834	0.771	...	0.10	8.40	7.0
60	133 30.83	30 29 14.10	18.218	0.668	...	0.10	7.65	4.5	Small	...
61	133 31.31	30 40 20.54	17.966	0.844	...	0.20	8.45	20.0	...	110
62	133 31.44	30 28 42.00	18.398	0.896	0.119	0.20	8.10	7.0
63	133 32.09	30 40 32.02	18.494	0.344	...	0.10	7.80	4.5	...	114
64	133 32.18	30 30 17.21	18.158	0.459	...	0.06	8.15	8.0
65	133 32.35	30 38 24.70	18.376	0.828	...	0.20	8.30	10.0	...	117
66	133 32.51	30 39 24.66	18.835	1.028	...	0.10	8.45	8.0	...	118
67	133 32.75	30 31 44.91	19.395	1.221	...	0.15	8.65	7.0	Small	120
68	133 32.87	30 39 31.82	18.940	0.626	...	0.10	8.40	6.5
69	133 32.88	30 15 46.76	19.893	0.287	...	0.10	8.15	2.0
70	133 33.37	30 29 45.73	19.027	0.938	-0.107	0.06	7.85	3.0	Small	...
71	133 33.63	30 28 9.53	18.167	0.326	-0.047	0.10	8.10	8.0
72	133 33.64	30 40 3.15	18.279	0.747	...	0.10	8.35	10.0	...	124
73	133 33.88	30 39 54.12	18.524	0.665	...	0.06	8.10	5.5	Small	...
74	133 35.54	30 38 36.90	17.190	0.261	132
75	133 35.86	30 27 44.54	19.428	0.622	0.307	0.06	8.40	4.0
76	133 36.24	30 27 56.79	19.212	0.960	0.472	0.10	8.60	7.0
77	133 36.38	30 15 32.61	20.602	0.904	...	0.10	8.70	2.5
78	133 36.66	30 27 8.04	18.468	0.970	0.278	0.15	8.45	12.0	...	136
79	133 37.33	30 38 38.67	18.805	0.815	...	0.10	8.20	5.0	Small	...
80	133 37.51	30 28 4.58	17.685	0.809	0.250	0.10	8.25	15.0	...	141
81	133 37.90	30 38 2.42	17.465	1.251	...	0.10	8.60	35.0	...	143
82	133 37.94	30 18 51.74	19.889	0.646	...	0.10	8.65	4.0
83	133 38.29	30 17 35.99	19.927	1.482	...	0.06	8.50	3.0
84	133 39.08	30 38 25.21	17.501	1.322	...	0.06	7.70	9.0
Table 2—Continued

ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Age\(^a\)	Mass\(^b\)	Notes	Alter. Id
85	133 39.47	30 28.729	19.405	1.361	0.761	0.10	8.90	9.5	Small	
86	133 39.63	30 31.916	16.575	0.331	-0.162	0.06	7.90	30.0		152
87	133 39.84	30 38.2643	16.013	0.879		0.06	7.25	20.0		154
88	133 40.12	30 37.4582	18.035	0.793		0.10	8.10	9.0		
89	133 41.13	30 29.5376	18.961	0.854	0.458	0.15	8.35	6.0		159
90	133 41.43	30 31.1339		0.247	-0.136	0.10	7.85			
91	133 41.49	30 30.2411	18.975	0.621	0.130	0.06	8.15	4.0	Small	162
92	133 41.53	30 28.924	19.005	0.277	-0.046	0.06	8.25	4.5		163
93	133 41.69	30 34.5749	19.446	0.636	-0.267	0.10	8.05	2.5	Small	
94	133 41.77	30 29.3249	18.146	0.600	0.161	0.10	8.05	8.0		
95	133 41.98	30 38.2055	18.342	0.933		0.15	8.35	10.0		
96	133 42.62	30 34.5893	19.579	1.350	0.324	0.06	8.85	7.0		
97	133 42.62	30 38.2211	18.350	0.747		0.10	8.05	7.0	Small	
98	133 42.89	30 27.4646	19.226	1.155	0.334	0.10	8.60	7.0	Small	
99	133 42.90	30 38.3091	18.313	0.889						
100	133 43.47	30 28.820	18.996	1.104	0.600	0.06	8.25	4.5	Small	
101	133 43.53	30 27.5828	18.118	0.693	-0.086	0.10	8.15	9.0		
102	133 43.93	30 36.1309	19.049	1.029	-0.127	0.06	8.45	6.0		
103	133 44.00	30 30.7079	18.164	0.669	0.169	0.10	8.20	9.0		174
104	133 44.15	30 35.2544	19.062	0.928	-0.032	0.20	8.30	5.5		
105	133 44.35	30 38.536	18.194	0.376		0.06	8.20	8.5		
106	133 44.42	30 37.5296	17.314	0.681		0.15	8.10	20.0		176
107	133 44.49	30 37.690	19.723	0.909	-0.102	0.06	8.50	3.5		
108	133 44.49	30 36.4350	19.463	1.298	-0.033	0.10	8.20	3.0	Small	
109	133 44.52	30 39.1962	18.349	1.053		0.15	8.30	10.0		
110	133 44.56	30 37.3416	18.613	0.817		0.15	8.15	6.0		
111	133 44.64	30 36.3565	18.303	0.558	-0.799	0.06	7.50e	3.0	Small	
112	133 44.84	30 34.3887	18.808	0.564	-0.333	0.06	7.70	2.5	Small	
Table 2—Continued

ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Age	Mass	Notes	Alter. Id
113	1 33 45.96	30 36 49.35	18.561	0.562	-0.397	0.10	8.20	6.5	⋯	⋯
114	1 33 46.18	30 35 27.75	18.323	0.764	-0.287	0.06	7.85	5.5	Small	⋯
115	1 33 46.75	30 35 59.00	19.829	1.218	-0.057	0.15	8.35	3.0	Small	⋯
116	1 33 47.35	30 39 59.41	18.405	0.967	⋯	0.10	8.45	12.0	⋯	⋯
117	1 33 47.44	30 39 3.71	17.975	0.740	⋯	0.06	8.05	9.0	⋯	⋯
118	1 33 48.05	30 39 29.01	18.151	1.196	⋯	⋯	⋯	⋯	⋯	⋯
119	1 33 48.55	30 37 5.08	18.547	1.121	-0.318	0.25	8.00	6.5	⋯	⋯
120	1 33 48.58	30 35 23.25	19.093	0.901	-0.156	0.15	8.50	7.0	⋯	⋯
121	1 33 49.53	30 28 42.42	19.198	0.630	0.312	0.20	8.55	7.5	⋯	⋯
122	1 33 49.58	30 34 25.55	18.361	0.960	-0.213	0.20	8.15	8.0	⋯	191
123	1 33 49.87	30 36 34.28	18.022	0.949	-0.346	0.06	8.00	8.5	⋯	⋯
124	1 33 50.15	30 34 18.67	19.098	0.922	-0.026	0.20	8.45	7.0	⋯	192
125	1 33 50.98	30 35 24.43	19.688	1.042	-0.026	⋯	⋯	⋯	Small	⋯
126	1 33 51.20	30 34 12.97	18.479	0.747	-0.234	0.10	8.10	6.0	⋯	201
127	1 33 51.78	30 34 18.44	19.630	0.959	0.023	⋯	⋯	⋯	⋯	Small
128	1 33 52.34	30 35 0.56	18.937	0.743	-0.186	0.20	8.10	4.5	⋯	207
129	1 33 52.35	30 34 20.92	18.967	0.866	-0.124	0.20	8.35	6.5	⋯	208
130	1 33 53.30	30 33 2.89	18.938	1.007	⋯	0.15	8.40	7.0	⋯	212
131	1 33 54.16	30 36 6.73	19.437	0.849	-0.083	0.20	8.30	4.0	⋯	⋯
132	1 33 54.39	30 32 23.90	18.611	0.997	⋯	0.15	8.60	14.0	⋯	⋯
133	1 33 54.59	30 34 48.08	19.167	1.237	-0.153	0.20	8.40	6.0	⋯	217
134	1 33 54.66	30 32 15.71	17.644	0.392	⋯	0.06	8.05	12.0	⋯	220
135	1 33 54.91	30 32 14.46	18.454	0.596	⋯	0.10	8.30	8.5	⋯	221
136	1 33 55.64	30 33 44.62	18.553	0.934	⋯	0.10	8.35	8.5	Small	⋯
137	1 33 56.42	30 36 10.42	18.702	1.012	-0.167	0.20	8.10	5.5	⋯	231
138	1 33 57.08	30 34 15.09	18.286	0.375	⋯	0.06	7.85	5.5	Small	⋯
139	1 33 57.75	30 33 25.67	17.033	0.406	⋯	0.10	7.90	20.0	⋯	243
140	1 33 57.80	30 35 31.57	18.221	1.072	0.072	0.15	8.45	15.0	⋯	241
Table 2—Continued

ID	RA (J2000)	Dec (J2000)	V	(V-I)	(B-V)	E(V-I)	Log Age	Mass	Notes	Alter. Id
141	1 33 57.84	30 32 21.86	18.749	1.940	·	0.15	8.60	12.0	·	·
142	1 33 58.87	30 33 29.30	18.948	0.640	·	0.10	8.35	6.0	Small	·
143	1 33 59.19	30 33 45.56	18.126	0.483	·	0.15	8.25	12.0	Small	·
144	1 33 59.53	30 36 24.30	18.555	0.581	-0.304	0.10	8.10	5.5	·	·
145	1 33 59.70	30 32 0.31	19.271	1.333	·	·	·	Small	·	·
146	1 33 59.88	30 33 54.27	16.273	0.960	·	0.06	7.50	20.0	·	260
147	1 34 1.63	30 32 25.60	18.493	0.948	·	0.10	8.50	12.0	·	271
148	1 34 1.74	30 34 6.17	18.995	1.020	·	0.12	8.90	15.0	Small	·
149	1 34 2.25	30 32 37.75	18.659	1.187	·	·	·	·	·	·
150	1 34 3.25	30 27 56.15	17.842	0.500	·	0.06	8.10	10.0	·	·
151	1 34 3.44	30 33 41.47	18.943	0.511	·	0.10	8.30	5.5	·	·
152	1 34 4.60	30 27 21.66	19.722	0.814	·	0.06	8.80	6.0	·	·
153	1 34 6.68	30 28 4.43	19.187	0.674	·	0.06	8.20	3.5	·	·
154	1 34 6.85	30 32 0.08	18.314	0.798	·	0.10	8.55	15.0	·	306
155	1 34 7.96	30 31 18.36	·	·	·	·	·	·	·	Edge
156	1 34 9.64	30 25 5.03	19.626	0.335	·	0.06	8.50	4.0	·	·
157	1 34 12.88	30 28 46.31	18.037	0.619	·	0.10	7.80	6.5	·	·
158	1 34 13.48	30 28 44.11	19.721	0.873	·	0.10	8.75	5.5	·	·
159	1 34 13.93	30 27 59.02	18.342	1.767	·	0.06	7.95*	6.0	·	346
160	1 34 17.72	30 27 8.99	20.037	0.657	·	0.15	8.40	2.5	·	·
161	1 34 18.62	30 27 19.31	19.729	0.945	·	0.10	8.85	6.5	·	·

Note. — Units of RA are hours, minutes, and seconds, and units of Dec are degrees, arcminutes, and arcseconds.

*a*Units of age are in years.

*b*Units of mass are $\times 10^3 \text{M}_\odot$
c Error in Log Age of ± 0.1.

d Identification Number in Sarajedini \& Mancone (2007)
Table 3. Cross identification with Zloczewski et al. (2008)

ID(ZKH)	ID(us)	R.A. (J2000.0)	Decl. (J2000.0)	Notes	Type
25-1-009	1	32 59.38	30 26 54.12	...	0
25-1-008	2	32 59.95	30 27 19.57	...	0
25-1-003	5	33 02.39	30 26 55.71	...	0
25-1-001	6	33 02.98	30 26 34.56	...	0
34-2-001	7	33 03.29	30 16 02.26	...	1
33-4-018	9	33 05.62	30 14 23.44	...	1
33-5-022	12	33 08.93	30 16 51.53	...	0
33-6-016	14	33 09.77	30 22 35.46	...	1
33-5-019	16	33 10.38	30 15 45.93	...	0
33-6-014	17	33 12.14	30 22 36.97	...	1
33-6-010	18	33 12.95	30 23 07.14	Small	0
33-5-014	20	33 13.96	30 14 31.85	...	0
33-5-013	21	33 14.04	30 15 16.47	Small	0
33-6-009	23	33 14.71	30 23 19.05	...	1
33-6-008	24	33 15.22	30 21 14.07	...	0
33-6-006	25	33 16.10	30 20 56.55	...	2
33-3-021	27	33 19.16	30 23 22.62	...	1
33-3-020	30	33 21.31	30 20 31.88	...	0
33-2-010	47	33 25.73	30 18 01.12	...	0
33-2-003	69	33 32.88	30 15 46.76	...	0
32-5-024	77	33 36.38	30 15 32.61	...	0

Note. — Units of RA are hours, minutes, and seconds, and units of Dec are degrees, arcminutes, and arcseconds.

*Proposed classification in ZKH: -1 galaxy, 0 unclassified, 1 likely stellar cluster and 2 an already known high confidence cluster included in Sarajedini & Mancone (2007)
Fig. 1.— Location of our observed ACS/WFC fields overplotted on an image of M33. North is up and east is to the left. White squares are primary fields and black squares are parallel fields.
Fig. 2.— Representative sample of star clusters present in our fields in the F606W filter. Each image is shown with the same gray-scale intensity and 5” arsec on a side, with north up and east to the left.
Fig. 3.— Comparison of the integrated cluster photometry from the present study with that of CBF and Ma et al. (2001; 2002a; 2002b).
Fig. 4.— Color-magnitude diagram of the genuine M33 clusters from the SM catalog (open circles) as compared with those from the present study (filled circles). The distribution of the two types of points is largely similar except that the present catalog contains more faint star clusters than that of SM. The faintest clusters here have $M_V \sim -4.0$ rivaling the faintest globular clusters in the Milky Way and populous clusters in the LMC.
Fig. 5.— *Left*: CMD for the region around cluster 7. The top left panel shows the stars within 1" of the cluster center, the top right panel includes the stars between 1" and 2", while the stars between 2" and 3" and 3" and 4" are displayed in the bottom right panel and the bottom left, respectively. The solid lines correspond to isochrones from Girardi et al. (2000) for ages of 10^8, 10^9 and 10^{10} yr and a metallicity of $Z=0.004$. *Right*: The best fit isochrone for stars within 1" of the cluster center.
Fig. 6.— Same as Fig. 5 but for cluster 9.

Fig. 7.— Same as Fig. 5 but for cluster 24.
Fig. 8.— Same as Fig. 5 but for clusters 20.

Fig. 9.— Same as Fig. 5 but for cluster 30.
Fig. 10.— Same as Fig. 5 but for cluster 38.

Fig. 11.— Same as Fig. 5 but for cluster 63.
Fig. 12.— The top panel shows the variation of the clusters’ integrated \((V-I)_0\) colors with age. The correction for reddening has been effected using the reddening values obtained in the isochrones fitting process. The lines represent the expected relations for a simple stellar population from Girardi et al. (2002) with \(Z=0.004\) (solid line), \(Z=0.001\) (dotted line) and \(Z=0.019\) (dashed line). The lower panel shows the extinction corrected absolute magnitude as a function of cluster age. The dashed lines are the expected relations for a simple stellar population from Girardi et al. (2002) with \(Z=0.004\) and masses of \(10^3, 10^4, 10^5\) and \(10^6M_\odot\).