Certain Metric Properties of Level Hypersurfaces

Pisheng Ding

Abstract. This note establishes several integral identities relating certain metric properties of level hypersurfaces of Morse functions.

1 Introduction

Let f be a C^2 Morse function on an open connected subset Ω of \mathbb{R}^{n+1} where $n \geq 2$. Suppose that a and b are values of f such that $f^{-1}([a, b])$ is compact. For $t \in [a, b]$, let $\nu(t)$ be the (n-dimensional) volume of the level-t set $f^{-1}(t)$. Note that, since f is a Morse function, $\nu(t)$ is well-defined even if t is a critical value and that $\nu : [a, b] \to \mathbb{R}$ is continuous. At each regular point (i.e., noncritical point) on $f^{-1}(t)$, let $N = -\nabla f / |\nabla f|$. This choice of unit normal induces a Gauss map G on the set of regular points on $f^{-1}(t)$, with $G(p) = N(p) \in S^n$.

The mean curvature H and the Gaussian curvature K are defined on the set of regular points on $f^{-1}(t)$ by the standard definitions

$$H = \frac{1}{n} \text{Tr} dG \quad \text{and} \quad K = \det dG.$$

We henceforth view H and K as functions on the set of regular points of $f^{-1}([a, b])$; i.e., $H(p)$ and $K(p)$ are the mean curvature and Gaussian curvature of $f^{-1}(f(p))$ at p.

We now state our main results, in which $d\mu$ is the Lebesgue measure on \mathbb{R}^{n+1} and ∂_i denotes the i-th partial derivative.

Theorem Assume the preceding assumptions and notation.

(a) $\nu(b) - \nu(a) = n \int_{f^{-1}([a, b])} H \, d\mu$.

(b) $\int_a^b \nu(t) \, dt = \int_{f^{-1}([a, b])} |\nabla f| \, d\mu$.

(c) $\int_{f^{-1}([a, b])} K \partial_i f \, d\mu = 0$ for each $i \in \{1, \cdots, n+1\}$.

Implicit in these results is the assertion that the functions H and $K \partial_i f$ are integrable on $f^{-1}([a, b])$. This is a consequence of f being a Morse function, as we shall demonstrate.)

2 Two Preparatory Results

In many results, we assume the following hypothesis.

Hypothesis \dagger: f is a C^2 Morse function on an open connected subset Ω of \mathbb{R}^{n+1} where $n+1 \geq 3$; a and b are values of f such that $f^{-1}([a, b])$ is compact.

Lemma 1 Assume Hypothesis \dagger. Suppose that g is a function that is continuous on the set of regular points in $f^{-1}([a, b])$ and integrable on $f^{-1}([a, b])$. Then

$$\int_{f^{-1}([a, b])} g \, d\mu = \int_a^b \left(\int_{f^{-1}(t)} \frac{g}{|\nabla f|} \, d\sigma \right) \, dt,$$
where $d\sigma$ is the (n-dimensional) volume form on $f^{-1}(t)$ and $\int_{f^{-1}(t)}(g/|\nabla f|)\,d\sigma$ is only defined for t a regular value.\

Proof. There are two cases, according as whether $[a, b]$ contains a critical value.

Case 1: $[a, b]$ is free of critical values. For each $p \in f^{-1}(a)$, let $t \mapsto F(p, t)$ be the integral curve for the field $\nabla f / |\nabla f|^2$. The map $F : f^{-1}(a) \times [a, b] \to f^{-1}(a)$ is then a diffeomorphism, providing the transformation of variables that results in the claimed formula. (In detail, take a coordinate patch U on $f^{-1}(a)$ and apply Fubini’s theorem to $U \times [a, b]$ $F|_{U \times [a, b]} : F(U \times [a, b])$.

Case 2: $[a, b]$ contains a critical value. Let S be the (finite) set of critical values in $[a, b]$. Then, $(a, b) \setminus S$ is a disjoint union of finitely many intervals $I_j := (c_j, c_{j+1})$ of regular values. As $f^{-1}([a, b]) = \bigcup_j f^{-1}(I_j) \cup f^{-1}(S \cup \{a, b\})$ and $f^{-1}(S \cup \{a, b\})$ has Lebesgue measure zero (as a subset of \mathbb{R}^{n+1}),

$$\int_{f^{-1}([a, b])} g\,d\mu = \sum_j \int_{f^{-1}(I_j)} g\,d\mu.$$

Applying Case 1 to $f^{-1}([c_j + \epsilon, c_{j+1} - \delta])$ and letting $\epsilon, \delta \to 0^+$, we have

$$\int_{f^{-1}(I_j)} g\,d\mu = \lim_{\epsilon, \delta \to 0^+} \int_{f^{-1}([c_j + \epsilon, c_{j+1} - \delta])} g\,d\mu = \lim_{\epsilon, \delta \to 0^+} \int_{c_j + \epsilon}^{c_{j+1} - \delta} \left(\int_{f^{-1}(t)} \frac{g}{|\nabla f|}\,d\sigma \right) dt = \int_{c_j}^{c_{j+1}} \left(\int_{f^{-1}(t)} \frac{g}{|\nabla f|}\,d\sigma \right) dt.$$

Summing these integrals over j proves the assertion. $lacksquare$

Recall from §1 the mean curvature H and Gaussian curvature K, both regarded as functions on the set of regular points of f. Explicit formulæ are known for H and K. To state them, let Q be the Hessian quadratic form associated with f and define the quadratic form Q^* to be the one whose standard matrix is the adjugate (or “classical adjoint”) of the standard matrix for Q: we shall regard the two quadratic forms Q and Q^* as real-valued functions of one vector variable. Then,

$$H = \frac{|\nabla f|^2 \text{Tr} Q - Q(\nabla f)}{n |\nabla f|^3} \quad \text{and} \quad K = \frac{Q^*(\nabla f)}{|\nabla f|^{n+2}}.$$

These are implicit in [3, p. 204] and made explicit in [2]. (In both of these references, $f^{-1}(t)$ is oriented by $\nabla f / |\nabla f|$, the opposite of our choice of \mathbf{N}.)

Lemma 2 For a C^2 Morse function f on an open set $\Omega \subset \mathbb{R}^{n+1}$, the functions H, $K\partial_i f$, and $K |\nabla f|$ are all integrable on any compact subset of Ω.

1 The “outer” integral $\int_0^\infty \cdots dt$ on the right may first be interpreted as an improper Riemann integral. Once the formula is proven, applying it to $|g|$ shows that the one-variable function $\varphi(t) := \int_{f^{-1}(t)} (|g|/|\nabla f|)\,d\sigma$ is absolutely integrable over $[a, b]$, since $|\varphi(t)| \leq h(t) := \int_{f^{-1}(t)} (|g|/|\nabla f|)\,d\sigma$ and $\int_a^b h(t)\,dt = \int_{f^{-1}([a, b])} |g|\,d\mu$. Hence, $\int_0^\infty \varphi(t)dt$ may also be interpreted as a Lebesgue integral.
Proof. It suffices to show that they are integrable “near” each critical point \(p \), i.e., on a closed ball \(D \) centered at \(p \) in which \(p \) is the only critical point. Without loss of generality, assume that \(p \) is the origin \(0 \in \mathbb{R}^{n+1} \). We notate a typical point in \(\mathbb{R}^{n+1} \) by writing its position vector \(r \) and we let \(r = \|r\| \). Then, for \(r \) near \(0 \),

\[
f(r) = f(0) + P(r) + o(r^2)
\]

where \(P(r) \) is the quadratic polynomial \(\frac{1}{2}Q(r) \). For each \(i \in \{1, \cdots, n+1\} \),

\[
\partial_i f = \partial_i P + r \epsilon_i,
\]

where \(\epsilon_i \to 0 \) as \(r \to 0 \), and for \(r \in D' := D \setminus \{0\} \),

\[
\partial_i P(r) = r \alpha_i(r/r)
\]

where \(\alpha_i \) is a function on \(S^n \). Hence, on \(D' \),

\[
|\nabla f(r)|^2 = r^2 \sum_{i=1}^{n+1} (\alpha_i(r/r) + \epsilon_i)^2.
\]

As \(f \) is a Morse function, \(0 \) is the only critical point of \(P \) and thus \(\sum_i \alpha_i(r)^2 > 0 \) for \(r \in S^n \). Letting

\[
m = \min_{r \in S^n} \sum_{i=1}^{n+1} \alpha_i(r)^2,
\]

we have, for sufficiently small \(r \), \(\frac{1}{2}mr^2 \leq |\nabla f(r)|^2 \leq 2mr^2 \). Hence, there are positive numbers \(C, M_1, M_2, \delta \) such that, whenever \(r \leq \delta \),

\[
|\nabla f(r)| \geq Cr
\]

as well as

\[
|\nabla f|^2 \text{Tr} Q - Q(\nabla f)(r) \leq M_1 r^2 \quad \text{and} \quad |Q^*(\nabla f)(r) \leq M_2 r^2.
\]

Therefore, for \(r \leq \delta \),

\[
|H(r)| = \frac{|\nabla f|^2 \text{Tr} Q - Q(\nabla f)(r)}{n|\nabla f(r)|^3} \leq M_1 \frac{1}{nC^3 r^3}
\]

and

\[
|K(r)\partial_i f(r)| \leq |K(r)\nabla f(r)| = \frac{|Q^*(\nabla f)(r)|}{|\nabla f|^{n+1}} \leq M_2 \frac{1}{Cn+1 r^{n-1}}.
\]

It is a standard fact that, for any \(c > 0 \), \(1/r^{n+1-c} \) is integrable on any origin-centered ball in \(\mathbb{R}^{n+1} \). Hence, \(H, K\partial_i f, \) and \(K|\nabla f| \) are all integrable on \(D \).

3 Main Results

We establish the main results of the article.

Theorem 3 Under Hypothesis \(\dagger \), \(\nu(b) - \nu(a) = n \int_{f^{-1}(a,b)} H \, d\mu \).
Proof. First recall (from [1, p. 142]) that

\[H = -\frac{1}{n} \text{div} N. \]

With \(N := -\nabla f / |\nabla f| \), \(H = \frac{1}{n} \text{div} \frac{\nabla f}{|\nabla f|} \).

In the following, let \(R = f^{-1}([a, b]) \). There are two cases according as whether \([a, b]\) contains a critical value.

Case 1: \([a, b]\) is free of critical values. Then, \(R \) is an \((n + 1)\)-manifold with boundary \(f^{-1}(a) \cup f^{-1}(b) \). Let \(n \) denote the unit outward normal (relative to \(R \)) on \(\partial R \); then \(n = -\nabla f / |\nabla f| \) on \(f^{-1}(a) \) and \(n = \nabla f / |\nabla f| \) on \(f^{-1}(b) \). Now,

\[\nu(b) - \nu(a) = \int_{\partial R} \left\langle \frac{\nabla f}{|\nabla f|}, n \right\rangle d\sigma = \int_{R} \text{div} \frac{\nabla f}{|\nabla f|} d\mu = \int_{R} nH d\mu. \]

Case 2: \([a, b]\) contains a critical value. Let \(S \) be the (finite) set of critical values in \([a, b]\). Then, \((a, b) \setminus S \) is a disjoint union of finitely many intervals \(I_j = (c_j, c_j+1) \) of regular values. As \(R = \bigcup_j f^{-1}(I_j) \cup f^{-1}(S \cup \{a, b\}) \) and \(f^{-1}(S \cup \{a, b\}) \) has Lebesgue measure zero,

\[\int_{R} H d\mu = \sum_j \int_{f^{-1}(I_j)} H d\mu. \]

It remains to note that, for each \(j \),

\[\int_{f^{-1}(I_j)} H d\mu = \lim_{\epsilon \to 0^+} \int_{f^{-1}([c_j + \epsilon, c_{j+1} - \epsilon])} H d\mu \quad \text{(by integrability of } H) \]

\[= \lim_{\epsilon \to 0^+} \frac{1}{n} \left(\nu(c_{j+1} - \epsilon) - \nu(c_j + \epsilon) \right) \quad \text{(by Case 1)} \]

\[= \frac{1}{n} (\nu(c_{j+1}) - \nu(c_j)) \quad \text{(by continuity of } \nu). \]

With the aid of Lemma [1] Theorem [3] easily yields a formula for \(\nu' \), which would take considerable effort to obtain otherwise.

Corollary 4 Assume Hypothesis †. For any regular value \(t_0 \in [a, b] \),

\[\nu'(t_0) = n \int_{f^{-1}(t_0)} \frac{H}{|\nabla f|} d\sigma. \]

Proof. For a regular value \(t_0 \in (a, b) \),

\[\nu'(t_0) = \frac{d}{dt} \bigg|_{t_0} \int_{f^{-1}([a, t])} nH d\mu \quad \text{(by Theorem [3])} \]

\[= \frac{d}{dt} \bigg|_{t_0} \int_{a}^{t} \left(\int_{f^{-1}([a, \tau])} nH d\sigma \right) d\tau \quad \text{(by Lemma [1])} \]

\[= \int_{f^{-1}(t_0)} \frac{nH}{|\nabla f|} d\sigma \quad \text{(by fundamental theorem of calculus).} \]

We show more applications of Lemma [1] with a certain choice of \(g \).
Theorem 5 Under Hypothesis †, \(\int_{f^{-1}(a,b)} (h \circ f) \cdot |\nabla f| \, d\mu = \int_a^b h(t) \nu(t) \, dt \) for any integrable function \(h \) on \([a, b]\). In particular, for any \(t_0 \in [a, b]\),

\[
\int_a^{t_0} \nu(t) \, dt = \int_{f^{-1}(a,t_0)} |\nabla f| \, d\mu,
\]
or equivalently,

\[
\nu(t_0) = \frac{d}{dt} \bigg|_{t_0} \int_{f^{-1}(a,t)} |\nabla f| \, d\mu.
\]

Proof. The first assertion follows from Lemma 1 by letting \(g = (h \circ f) \cdot |\nabla f| \).

The second assertion results from letting \(h \) be the indicator function for \([a,t_0]\).

Continuity of \(\nu \) makes applicable the fundamental theorem of calculus, yielding the last assertion. ■

Proposition 6 Assume Hypothesis †.

(a) \(\int_{f^{-1}(a,b)} K \partial_i f \, d\mu = 0 \) for \(i \in \{1, \cdots, n+1\} \).

(b) If, in addition, \(n \) is even and \([a,b]\) is free of critical values, then

\[
\int_{f^{-1}(a,b)} K |\nabla f| \, d\mu = \frac{1}{2}(b-a)\chi(f^{-1}(a))\nu(S^n),
\]

where \(\nu(S^n) \) is the \((n\text{-dimensional}) \) volume of the unit sphere \(S^n \) and \(\chi(f^{-1}(a)) \) is the Euler characteristic of \(f^{-1}(a) \).

Proof. For Part (a), let \(g \) in Lemma 1 be the vector-valued function \(K\nabla f \).

Then,

\[
\int_{f^{-1}(a,b)} K \nabla f \, d\mu = \int_a^b \left(\int_{f^{-1}(t)} K \frac{\nabla f}{|\nabla f|} \, d\sigma \right) \, dt.
\]

Now, note that

\[
\int_{f^{-1}(t)} K \frac{\nabla f}{|\nabla f|} \, d\sigma = -\int_{f^{-1}(t)} K \nabla f \, d\sigma = 0.
\]

For detail of the last equality, let \(M \) denote \(f^{-1}(t) \) and define the vector-valued \(n \)-form \(\omega \) on \(S^n \) by letting \(\omega = \text{Id}_{S^n} \, d\sigma_{S^n} \), where \(d\sigma_{S^n} \) is the volume form on \(S^n \). Then, with \(G \) being the Gauss map \(p \mapsto N(p) \), \(G^* \omega = K \nabla f \, d\sigma \) as can be verified pointwise. Hence,

\[
\int_M K \nabla f \, d\sigma = \int_M G^* \omega = \deg G \cdot \int_{S^n} \omega.
\]

But

\[
\int_{S^n} \omega = \int_{S^n} \text{Id}_{S^n} \, d\sigma_{S^n} = 0
\]

due to cancellation of antipodal contributions.

Under the hypothesis of Part (b), \(f^{-1}(t) \) is diffeomorphic to \(f^{-1}(a) \) for \(t \in [a,b] \). By Gauss-Bonnet theorem,

\[
\int_{f^{-1}(t)} K \, d\sigma = \frac{1}{2} \chi(f^{-1}(t))\nu(S^n) = \frac{1}{2} \chi(f^{-1}(a))\nu(S^n)
\]

Letting \(g = K |\nabla f| \) in Lemma 1 then proves Part (b). ■
References

[1] M. P. do Carmo, *Riemannian Geometry*, Birkhäuser, Boston, 1992.

[2] R. Goldman, Curvature formulas for implicit curves and surfaces, *Computer Aided Geometric Design* 22 (2005), pp. 632-658.

[3] M. Spivak, *A Comprehensive Introduction to Differential Geometry*, Vol. 3, 2nd ed., Publish or Perish, Houston, 1979.

Mathematics Department, Illinois State University, Normal, Illinois

pding@ilstu.edu