Isolation and characterization of the plant immune-priming compounds Imprimatin B3 and -B4, potentiators of disease resistance in Arabidopsis thaliana

Yoshiteru Noutoshi,1,† Masateru Okazaki1,†,‡ and Ken Shirasu2

1Research Core for Interdisciplinary Sciences (RCIS); Okayama University; Kita-ku, Okayama, Japan; 2RIKEN Plant Science Center; Tsurumi, Yokohama, Japan

†These authors contributed equally to this paper.
‡Current Address: RIKEN Advanced Science Institute; Wako, Saitama, Japan

Keywords: plant activator, salicylic acid, disease resistance, plant immunity, chemical biology

Plant activators are chemical crop protectants that fortify the immune system in plants. Unlike pesticides that target pathogens, plant activators provide durable effects against a broad spectrum of diseases, which have not been overcome by pathogenic microbes. Plant activators are not only useful agrochemicals, but can also help to elucidate the details of the plant immune system. Using an established high-throughput screening procedure, we previously identified 5 compounds, designated as Imprimatins, which prime plant immune response. These compounds increased disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants by inhibiting 2 salicylic acid (SA) glucosyltransferases (SAGTs), resulting in accumulation of the phytohormone SA. Here, we report the isolation of 2 additional Imprimatins, B3 and B4, which are structurally similar to Imprimatin B1 and B2. Because these compounds did not have strong inhibitory effects on SAGTs in vitro, they may exert their function after metabolic conversion in vivo.

Plant activators are compounds that protect plants from pathogens by activating their immune system. In contrast to commonly used pesticides that directly target pathogens, plant activators are not pathogen specific; thus, pathogens have not developed resistance to these agents, and these activators have been proved to be durable in the field. A commonly used plant activator, benzo-thiadiazole (BTH), is a synthetic analog of salicylic acid (SA), a phytohormone essential for resistance against biotrophic pathogens. Probenazole is another plant activator that has been used for more than 30 y to protect paddy-field rice in East Asia from blast fungus and bacterial leaf blight. Probenazole does not have the SA analog activity, but is known to increase disease resistance in plants.

Although many bioactive compounds that prime plant immunity have been found thus far, only few practical plant activators have been developed. In order to explore a wide variety of molecules with the aim of obtaining more effective compounds that are applicable over a broad range of crops, several high-throughput chemical screening procedures have been developed. These approaches use Arabidopsis seedlings in combination with a promoter reporter system for defense genes as markers of activity. However, the compounds that constitutively activate defense responses are often associated with arrested growth and reduction in yield. To avoid this dilemma, new screening approaches need to be developed.

We have previously established a novel screening system for chemicals that prime immunity, but that do not induce hypersensitive cell death, using a model plant-microbe interaction system that involves Arabidopsis suspension-cultured cells and a bacterial pathogen, Pseudomonas syringae pv tomato DC3000 avrRpm1 (Pst-avrRpm1). After screening a commercial library of 10,000 structurally diversified small organic molecules, we isolated 5 plant immune-priming compounds. These immune-inducing compounds were classified into groups A and B, according to their molecular structure, and were designated Imprimatin A1, A2, A3, B1, and B2 (Fig. 1A). We demonstrated that these compounds could inhibit both a known and a previously unknown SA glucosyltransferase (SAGT) in vitro in a SA-competitive manner, and enhance disease resistance in Arabidopsis plants to both virulent and avirulent strains of Pst by increasing SA accumulation during pathogen infection.

Here, we identified another plant immune-priming compound and further obtained a bioactive molecule from derivative analysis of commercially available compounds (Fig. 1A).
These were designated as Imprimatin B3 and B4, respectively, because they shared a similar structure as Imprimatin B1 and B2. Imprimatin B3 and B4 upregulated \textit{Pst-avrRpm1}-induced cell death in Arabidopsis suspension-cultured cells in a concentration-dependent manner, as did SA and tiadinil (Fig. 1B). These compounds also enhanced the disease resistance of Arabidopsis seedlings against both avirulent and virulent \textit{Pst} strains when hydroponically grown seedlings were inoculated with \textit{Pst-avrRpm1}.
treated with 100 μM of Imprimatin compound by the root- drenching method for 3 d before inoculation (Fig. 1C). Unlike previously identified Imprimatin A and B compounds, which target SAGTs in Arabidopsis, Imprimatin B3 and B4 had a very weak inhibitory effect on SAGT activity in vitro compared with other Imprimatin compounds (Table 1). The IC50 values of Imprimatin B3 and B4 for SAGT inhibition are apparently higher than their respective concentrations for cell death potentiation as revealed in Figure 1B. Considering the molecular similarity among Imprimatin B compounds and their ability to prime immune responses in Arabidopsis, Imprimatin B3 and B4 may be converted to more effective molecules for SAGT inhibition inside the plants, through an as-yet unknown metabolic pathway(s).

We also evaluated the effect of the Imprimatin compounds on plant growth (Fig. 1D). Arabidopsis seeds were germinated and grown in liquid MS media containing Imprimatins at a concentration of 50 or 100 μM. In contrast to tiadinil, which markedly inhibited seedling growth, Imprimatin A2 and group-B Imprimatin compounds showed only moderate growth inhibitory effects, in a concentration-dependent manner, similar to that observed with SA. Imprimatin A1 and A3 did not affect growth at the concentration range effective for immune priming. These results suggest that further exploration of derivatives of these Imprimatin compounds may lead to isolation of appropriate compounds as practical plant activators, which target SA metabolism to enhance disease resistance.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank Nihon Nohyaku Co. Ltd. for kindly providing tiadinil. This work was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI, no. 19039034 to K.S. and Y.N., 24228008 to K.S, 22780036 to Y.N.), and by the Special Coordination Fund for Promoting Sciences and Technology of MEXT, and grants from The Sumitomo Foundation, The Kurata Memorial Hitachi Science and Technology Foundation, and the Ryobi Teien Memory Foundation to Y.N.

Table 1. IC50 values of Imprimatin B3 and B4 for SAGTs in Arabidopsis

	Imprimatin UGT74F1		Imprimatin UGT76B1
B3	155.3 ± 12.6	B4	163.4 ± 32.0
B4	84.8 ± 11.7		136.7 ± 22.0

Inhibitory effects of Imprimatins on UGT74F1 and UGT76B1 were determined from 4 experiments. Data are expressed as mean (SD).

References
1. Görlach J, Volrath S, Knaufl-Beiter G, Hengy G, Beckhove U, Kogel KH, et al. Benzoimidazoles, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 1996; 8:629-43; PMID:8624439.
2. Lawton KA, Friedrich I, Hunt M, Weymann K, Delaney T, Kessmann H, et al. Benzoimidazoles induce disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J 1996; 16:71-82; PMID:8758979; http://dx.doi.org/10.1046/j.1365-313X.1996.10000107.x.
3. Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 2009; 47:177-206; PMID:19040653; http://dx.doi.org/10.1146/annurev.phyto.050908.135202.
4. Watanabe T, Igazashi H, Matsumoto K, Seki S, Maie S, Sekizawa Y. The Characteristics of Probenazole (Oxymetamide) for the Control of Rice Blast. J Pestic Sci 1977; 2:291-6; http://dx.doi.org/10.1584/jpestics.2.291.
5. Yoshioka K, Nakashita H, Klessig DF, Yamaguchi I. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J 2001; 25:249-57; PMID:11169191; http://dx.doi.org/10.1046/j.1365-313X.2001.00952.x.
6. Nakashita H, Yoshioka K, Yusa M, Nitta T, Atai Y, Yoshida S, et al. Probenazole induces systemic acquired resistance in tobacco through salicylic acid accumulation. Physiol Mol Plant Pathol 2002; 61:197-203; http://dx.doi.org/10.1006/pmpp.2002.0426.
7. Schreiber K, Desveaux D. Message in a Bottle: Chemical Biology of Induced Disease Resistance in Plants. Plant Pathol J 2008; 24:245-68; http://dx.doi.org/10.5423/PPJ.2008.24.3.245.
8. Oostendorp M, Kunz W, Dietrich B, Staab T. Induced disease resistance in plants by chemicals. Eur J Plant Pathol 2001; 107:19-29; http://dx.doi.org/10.1023/A:1008760518772.
9. Serrano M, Robarez S, Torres M, Kombik E, Somsich IE, Robinson M, et al. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J Biol Chem 2007; 282:6803-11; PMID:17166839; http://dx.doi.org/10.1074/jbc.M608792200.
10. Knobh C, Salus MS, Girk T, Eulgem T. The synthetic elicitor 3,5-dichloroanthranilic acid induces NPR1-dependent and NPR1-independent mechanisms of disease resistance in Arabidopsis. Plant Physiol 2009; 150:333-47; PMID:19304930; http://dx.doi.org/10.1104/pp.108.133678.
11. Shirano Y, Kachroo P, Shah J, Klessig DF. A gain-of-function mutation in an Arabidopsis Toll Interleukin1 receptor-nucleotide binding site-leucine-rich repeat type B gene triggers defense responses and results in enhanced disease resistance. Plant Cell 2002; 14:3149-62; PMID:12468733; http://dx.doi.org/10.1105/tpc.005348.
12. Zhang Y, Gorinchtein S, Dong X, Li X. A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 2003; 15:2636-46; PMID:14576290; http://dx.doi.org/10.1105/tpc.015842.
13. Nozue M, Ito T, Seki M, Nakashita H, Yoshida S, Maroy S, et al. A single amino acid insertion in the WRKY domain of the Arabidopsis TIR-NBS-LRR-WRKY-type disease resistance protein SLH1 (sensitive to low humidity 1) causes activation of defense responses and hypersensitive cell death. Plant J 2005; 43:873-88; PMID:16146526; http://dx.doi.org/10.1111/j.1365-313X.2005.02500.x.
14. Yang DL, Yao J, Mei CS, Tong XH, Zeng LJ, Li Q, et al. Plant hormone jasmonate prioritizes defense growth over by interfering with gibberellin signaling cascade. Proc Natl Acad Sci U S A 2012; 109:E1192-200; PMID:22529386; http://dx.doi.org/10.1073/pnas.1201616109.
15. Noutoshi Y, Okazaki M, Kida T, Nishina Y, Morishita Y, Ogawa T, et al. Novel plant immune-priming compounds identified via high-throughput chemi- cal screening target salicylic-acid glucosyltransferases. Plant Cell 2012; PMID:22960999; http://dx.doi.org/10.1105/tpc.110.1098343.
16. Menges M, Murray JA. Synchronous Arabidopsis sus- pension cultures for analysis of cell-cycle gene activity. Plant J 2002; 30:203-12; PMID:12000456; http://dx.doi.org/10.1046/j.1365-313X.2002.01274.x.
17. Mao R, Jones A, Nubse TS, Studholme DJ, Peck SC, Shirasu K. Multidimensional protein identification technique (MudP IT) analysis of ubiquitinated proteins in plants. Mol Cell Proteomics 2007; 6:601-20; PMID:17122625; http://dx.doi.org/10.1074/jmcp.M600408-MCP208.
18. Mackey D, Holt BF 3rd, Wie A, Dang JL. RIN4 interacts with Pseudomonas syringae type III effect- tor molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 2002; 108:743-54; PMID:11954329; http://dx.doi.org/10.1016/S0092-8674(02)00066-1.