A gauge-invariant formulation for the $SU(N)$ nonlinear σ-model in $2 + 1$ dimensions

C D Fosco1 and C P Constantinidis2

1 Department of Physics, Theoretical Physics, 1 Keble Rd, Oxford OX1 3NP, UK
2 Universidade Federal do Espírito Santo, 29060-900 Vitória—ES, Brazil

Received 4 February 2003, in final form 24 April 2003
Published 5 June 2003
Online at stacks.iop.org/JPhysA/36/6847

Abstract
We derive a local, gauge-invariant action for the $SU(N)$ nonlinear σ-model in $2 + 1$ dimensions. In this setting, the model is defined in terms of a self-interacting pseudo-vector field θ_μ, with values in the Lie algebra of the group $SU(N)$. Thanks to a non-trivially realized gauge invariance, the model has the correct number of physical degrees of freedom: only one polarization of θ_μ, like in the case of the familiar Yang–Mills theory in $2 + 1$ dimensions. Moreover, since θ_μ is a pseudo-vector, the physical content corresponds to one massless pseudo-scalar field in the Lie algebra of $SU(N)$, as in the standard representation of the model. We show that the dynamics of the physical polarization corresponds to that of the $SU(N)$ nonlinear σ-model in the standard representation, and also construct the corresponding BRST-invariant gauge-fixed action.

PACS numbers: 11.10.Kk, 11.10.Lm, 11.10.$-z$

1. Introduction

The nonlinear σ-model [1] is a very important tool for the description of the effective, low-energy dynamics of systems with a broken continuous (global) symmetry [2]. Many of its interesting and distinctive features stem from the fact that the symmetry group is realized in a nonlinear way, as this endows the theory with a rich structure of interactions. Indeed, it has an infinite number of interaction vertices, when defined in terms of field variables which are themselves group coordinates. Nonetheless, this holds true in spite of the model having a ‘universality’: its properties are completely determined when the symmetry group and the spacetime dimension are known.

Of course, the same nonlinearity is also responsible for the fact that, except for the $(1 + 1)$-dimensional case, the theory becomes non-renormalizable from the point of view of the usual loop expansion [2]. However, even in more than two spacetime dimensions, the model still has a reasonable predictive power, if properly understood as an effective theory [3]. This approach
has been successfully applied to chiral perturbation theory [4], as a convenient effective model for QCD. Note, however, that in 2 + 1 dimensions, the nonlinear \(\sigma\)-model is renormalizable if a large-\(N\) expansion is used [5], instead of the standard loopwise perturbation theory.

The non-linearity may usually be tackled by resorting to an auxiliary, 'Lagrange multiplier' field, which enforces a constraint on the (otherwise free) field variables. The typical example of this is, perhaps, the \(O(N)\) nonlinear \(\sigma\)-model, where an auxiliary field imposes a constant-modulus constraint on an \(N\)-component scalar field \(\tilde{\phi} = (\phi_1, \ldots, \phi_N)\), which is a vector field in internal space. An important by-product of this construction is that the auxiliary field is an \(O(N)\) singlet, hence, the large-\(N\) expansion is easier to formulate after one ‘integrates out’ the \(\phi\) field, leaving an action for the Lagrange multiplier.

Indeed, the procedure of ‘linearizing’ an action, by the introduction of auxiliary fields, and afterwards integrating the original fields out to obtain an effective theory for the auxiliary fields, has frequently proved to be very useful. This is particularly true when the auxiliary field has some convenient symmetry or transformation properties [6]. In particular, it allows one to obtain an effective theory where the symmetry properties are inherited from those of the Lagrange multiplier in the linearized theory.

In this paper, we introduce a gauge-invariant, non-trivially realized Abelian quantum field theory model in 2 + 1 dimensions, which is derived by the procedure of integrating out the original variables, in order to obtain an effective theory for the auxiliary field. Since our starting point shall be a representation of the nonlinear \(\sigma\)-model where the Lagrange multiplier has a local gauge symmetry, that feature will be preserved in the resulting action. The realization of the Abelian gauge symmetry is non-trivial, because the commutator of two gauge transformations is zero only on-shell, i.e., on the configurations that satisfy the equations of motion. Equivalently, the commutator between two ‘true’ gauge transformations yields a trivial, ‘equation of motion’ gauge transformation [7, 8].

The structure of this paper is as follows: in section 2 we derive the action for model, showing that it is indeed defined by a gauge-invariant action. Then we consider the realization and structure of the gauge and global symmetries in section 3, leaving for section 4 the quantum treatment of the model. Section 5 contains our conclusions.

2. The model

We shall begin by reviewing the main features of the polynomial representation for the \(SU(N)\) nonlinear \(\sigma\)-model in 2 + 1 dimensions, as presented in [9, 10]. This formulation may be defined in terms of a gauge-invariant Euclidean action \(S_{\text{inv}}\), which determines the dynamics of two fields \(L_\mu\) (vector) and \(\theta_\mu\) (pseudo-vector) in the Lie algebra of \(SU(N)\):

\[
S_{\text{inv}}[L, \theta] = \int d^3x \mathcal{L}_{\text{inv}}(L, \theta)
\]

with

\[
\mathcal{L}_{\text{inv}}(L, \theta) = \frac{1}{2} g^2 L_\mu \cdot L_\mu + ig \theta_\mu \cdot \tilde{F}_\mu(L)
\]

where \(g\) is a constant with the dimensions of a mass (it is in fact the exact analogue of \(f_\pi\) in the \((3+1)\)-dimensional case), and \(\tilde{F}_\mu(L)\) denotes the dual of the non-Abelian field strength tensor for the vector field \(L_\mu\), namely,

\[
\tilde{F}_\mu(L) = \frac{1}{2} g v_{\mu \nu} F_{\nu \lambda}(L) \\
F_{\mu \nu}(L) = \partial_\nu L_\mu - \partial_\mu L_\nu + g^{\nu \lambda} [L_\mu, L_\nu]
\]

\(L_\mu\) being an element in the Lie algebra, with the convention that \(L_\mu = -L_\mu^{\dagger}\), it can be written as

\[
L_\mu(x) = L_\mu^a(x) \lambda_a \\
\lambda_a^\dagger = -\lambda_a
\]
A gauge-invariant formulation for the $SU(N)$ nonlinear σ-model in 2 + 1 dimensions

\[\text{Tr}(\lambda_a \lambda_b) = -\delta_{ab} \]

where f_{abc} is real and completely antisymmetric. Group indices will be indistinctly written as subscripts or superscripts; no meaning should be assigned to the difference. In (2), we also used the notation: $U \cdot V \equiv U_a V_a$, and $(U \times V)_a = f_{abc} U_b V_c$ for any two elements U, V in the algebra. Also, both L and θ have the mass dimensions of $g^{1/2}$.

The ‘inv’ subscript in the action has been introduced in order to emphasize the fact that it is, indeed, invariant under the (local) gauge transformations:

\[\delta_\omega L_\mu = 0 \quad \delta_\omega \theta_\mu = D_\mu \omega \]

where the covariant derivative is compatible with the parallel transport defined by L, namely,

\[D_\mu \omega = \partial_\mu \omega + g^{1/2} [L_\mu, \omega] \]

or in components:

\[(D_\mu \omega)^a = \partial_\mu \omega^a + g \frac{1}{2} f_{abc} L^b_\mu \omega^c. \]

It must be noted that this gauge symmetry is valid off-shell, namely, it holds true regardless of whether the fields verify the equations of motion or not. Besides, equation (5) tells us that L is a gauge-invariant object, and this implies that the commutator of two gauge transformations vanishes:

\[\left[\delta_\eta, \delta_\omega \right] = 0. \]

Here δ_ω and δ_η denote the operators that perform a gauge transformation on a given functional (eventually a function) of the fields. Namely, if I is a functional of L and θ,

\[\delta_\omega I[L, \theta] = \int d^3 x \delta_\omega \theta^a_\mu(x) \frac{\delta I[L, \theta]}{\delta \theta^a_\mu(x)} \]

where $\delta_\omega \theta^a_\mu$ is defined as in (5). This of course means that the gauge group is Abelian, in spite of the non-Abelian looking transformation rule for θ.

Had we wanted to work with this representation, we should have considered fixing the gauge as the next step. Rather than doing that, we shall move on to derive an ‘effective theory’ for θ_μ, an auxiliary field which transforms as a vector field in the adjoint representation. To that end, we define the effective action $S_{\text{inv}}[\theta]$ by the following expression:

\[\int [D\theta] e^{-S_{\text{inv}}[\theta]} = \int D\theta DL e^{-S_{\text{inv}}[L, \theta]} \]

where $[D\theta]$ denotes the integration measure for θ in the effective theory (the brackets denote possible group factors). Of course, the integration over θ_μ is ill-defined, since the theory is gauge invariant. There is, however, no obstruction to the integration of the L-field, since θ_μ is, in that case, regarded as a background field. We shall, of course, have to deal with the gauge-fixing for $S_{\text{inv}}[\theta]$ afterwards.

The integral over L_μ in (10) is a Gaussian, and its evaluation yields the result:

\[S_{\text{inv}}[\theta] = \int d^3 x \mathcal{L}_{\text{inv}}(\theta) = \frac{1}{2} \tilde{f}_\mu^a C^{ab}_{\mu \nu}(\theta) \tilde{f}_\nu^b \]

where \tilde{f} is the dual of the Abelian field strength f_μ^a.

\[C^{ab}_{\mu \nu} = [M^{-1}]^{ab}_{\mu \nu} \quad M_{\mu \nu} = \delta_{\mu \nu} \delta^{ab} + ig^{-\frac{1}{2}} \epsilon_{\mu \nu \lambda} f_{\alpha \beta \gamma} \partial_\lambda. \]

We adopt the convention that a lower case f_μ refers to the dual of the Abelian field strength, while the upper case one is reserved for the dual non-Abelian one.
The fact that G is the inverse of M must be understood in the sense that the relations:

$$G_{ab}^{\mu \lambda} M_{cb}^{\lambda \nu} = \delta_{\mu \nu} \delta^{ab} \tag{13}$$

are valid. Fortunately, the explicit form of G is not required for most of our presentation. Note, however, that one may easily obtain an approximate expression for it by performing an expansion in powers of the (dimensionless) object $\theta g^{-\frac{1}{2}}$. There arises also from the Gaussian integral a factor which modifies the θ-field integration measure,

$$[D\theta] = D\theta [\det(M)]^{-\frac{1}{2}}. \tag{14}$$

A question that immediately presents itself at this point is what has happened to the gauge invariance; indeed, the gauge invariance in the polynomial representation, equation (5), involves L_{μ} in its definition, and L_{μ} is precisely the field that has been eliminated from the action.

Of course, a standard Maxwell-like gauge transformation will not do, since, although \tilde{f}_{μ} is invariant under the Abelian gauge transformations of the Maxwell theory, G, that depends on θ_{μ}, is not. Indeed, looking for example at the explicit form of the action (11), with G expanded up to terms of order $\theta^{2}g$, we see that

$$S_{\text{inv}}[\theta] = \int d^{3}x \left[\frac{1}{2} \tilde{f}_{\mu}(\theta) \cdot \tilde{f}_{\mu}(\theta) - \frac{i}{2} g^{-\frac{1}{2}} \epsilon_{\mu \nu \lambda} \theta_{\mu} \cdot \tilde{f}_{\nu}(\theta) \times \tilde{f}_{\lambda}(\theta) \right. $$

$$- \left. \frac{1}{2g} \theta_{\mu} \cdot \tilde{f}_{\nu} \theta_{\nu} - \theta_{\mu} \cdot \tilde{f}_{\nu} \theta_{\nu} + \tilde{f}_{\mu} \theta_{\nu} \cdot \tilde{f}_{\nu} \theta_{\mu} - \tilde{f}_{\nu} \theta_{\mu} \cdot \tilde{f}_{\nu} \theta_{\mu} \right]$$

where only the term in the first line is invariant under Abelian gauge transformations. In spite of this, we do expect a gauge invariance to exist for $S_{\text{inv}}[\theta]$, since we know there are two unphysical components (for each value of a) in θ_{μ}, which do appear in the free propagator. This propagator will of course be determined by the free action

$$S_{\text{inv}}^{(0)}[\theta] = \int d^{3}x \frac{1}{2} \tilde{f}_{a}^{\mu}(\theta) \tilde{f}_{a}^{\mu}(\theta) = \int d^{3}x \frac{1}{4} f_{\mu \nu}^{a}(\theta) f_{\mu \nu}^{a}(\theta) \tag{16}$$

after adding a gauge-fixing term.

It is then reasonable to assume that the gauge transformations for θ should be of the form

$$\delta_{\omega} \theta_{\mu} = \partial_{\mu} \omega + g^{-\frac{1}{2}} [L_{\mu}(\theta), \omega] \tag{17}$$

where $L_{\mu}(\theta)$ is a dependent field which plays the role of a connection, and should of course be defined in terms of θ.

A possible hint to find the explicit form of $L_{\mu}(\theta)$ comes from the fact that performing the Gaussian integration is tantamount to ‘replacing the integrated field by their values at the extreme of the exponent’. Denoting by $\hat{L}_{\mu}(\theta)$ the expression that maximizes the exponent, we see that it is given by

$$\hat{L}_{\mu}^{a} = -ig^{-1} G_{\mu \nu}^{ab}(\theta) \tilde{f}_{b}^{\nu}.$$

Thus we shall adopt the ansatz $L_{\mu}(\theta) \equiv \hat{L}_{\mu}(\theta)$, the consistency of which we will verify now: to see whether the transformation (17) is a (gauge) symmetry of the action (11) or not, we first evaluate the first variation of $S_{\text{inv}}[\theta]$ under a general, not necessarily gauge, infinitesimal variation of θ. After some elementary algebra, we obtain

$$\delta S_{\text{inv}}[\theta] = \int d^{3}x \delta \theta_{\mu} \left\{ \epsilon_{\mu \nu \lambda} \partial_{\nu} \left[G_{\mu \nu}^{ab}(\theta) \tilde{f}_{b}^{\mu}(\theta) \right] - \frac{i}{2} g^{-\frac{1}{2}} \epsilon_{\mu \nu \lambda} f_{abc} G_{\epsilon \alpha}^{bd}(\theta) \tilde{f}_{a}^{\mu} G_{\alpha \epsilon}^{ce}(\theta) \tilde{f}_{c}^{\nu} \right\} \tag{19}$$
A gauge-invariant formulation for the \(SU(N)\) nonlinear \(\sigma\)-model in 2 + 1 dimensions

where we used the symmetry property \(G^{ab}_{\nu \mu} = G^{ba}_{\mu \nu}\), and the relation

\[
\delta G^{ab}_{\mu \nu} = -ig^{-1}G_{\mu \rho}(\theta)\epsilon_{\rho \sigma} f^{cde} \delta \theta_d G^{bc}_{\sigma \nu}(\theta)
\]

both of them consequences of the fact that \(G = M^{-1}\). Recalling the definition of \(L_\mu(\theta)\), we may also write (19) as

\[
\delta S_{inv}[\theta] = ig \int d^3 x \delta \theta_\mu \tilde{F}_\mu(L(\theta))
\]

where

\[
\tilde{F}_\mu(L(\theta)) = \frac{1}{2} \epsilon_{\mu \nu \lambda} F_{\nu \lambda}(L(\theta))
\]

\[
F_{\mu \nu}(L(\theta)) = \partial_\mu L_\nu^a(\theta) - \partial_\nu L_\mu^a(\theta) + g^{ab} f^{abc} L_\mu^c(\theta) L_\nu^b(\theta).
\]

Using now the explicit form for \(\delta \theta_\mu\) that corresponds to a gauge variation, equation (17), we see that

\[
\delta S_{inv}[\theta] = -ig \int d^3 x \omega^a(x) [D_\mu \tilde{F}_\mu]^a(L) = 0
\]

as a consequence of the Bianchi identity, which is of course true regardless of \(L\) being an independent field or not. We shall henceforth omit writing the dependence of \(L\) on \(\theta\) explicitly, since \(L\) shall always be assumed to be a dependent field. A small technical point (absent in the real time formulation) is that relation (18) includes complex factors: an \(i\) multiplying \(G\), but \(G\) itself has both real and imaginary parts. This should be hardly surprising, since the action itself is not purely real, as it happens with Euclidean actions including Chern–Simons terms (and with other topological objects in different number of dimensions). Thus relation (18), to have non-trivial solutions, requires the continuation of the fields to complex values.

Of course, the gauge-invariant action in Minkowski spacetime, \(S_{inv}^M\), is real,

\[
S_{inv}^M = \int d^3 x \frac{1}{2} \tilde{f}_\mu G^{ab}_{\mu \nu}(\theta) \tilde{f}^\nu_b
\]

where \(\tilde{f}_\mu = \epsilon^{\mu \nu \lambda} \partial_\nu \theta_\lambda\) and \(G_{\mu \nu}^{ab}(\theta)\) is determined by the equations

\[
G_{\mu \nu}^{ac}(\theta) M_{\nu b}^{cb}(\theta) = \delta_\mu^a \delta_b^c \quad M_{\mu b}^{\nu a} = g^{\mu \nu} \delta_{ab} + g^{ab} \epsilon^{\mu \lambda \nu} f_{\lambda \nu}^{\mu a b} \theta_\lambda^c.
\]

Thus we have verified the consistency of the definition of the covariant derivative with the gauge invariance of the action. Note, however, that there is an important difference with the polynomial formulation, in that the gauge transformations for \(\theta\) involve \(L\), which is itself a function on \(\theta\). Thus \(L\) will, in general, change under a gauge transformation in this formulation. In particular, this implies that finite gauge transformations will be different from infinitesimal ones. This is in fact a consequence of the algebra of gauge transformations being open, as will be discussed in the next section.

Also, expression (21) tells us that the classical equations of motion deriving from \(S_{inv}[\theta]\) are

\[
F_{\mu \nu}(L) = 0
\]

i.e., the Maurer–Cartan equations for \(L\), which obviously have a gauge-invariant set of solutions.

Regarding the integration measure \([D\theta]\), it is straightforward to verify that the gauge variation of \([D\theta]\) is zero. We conclude that the action (11) is indeed gauge invariant. The gauge invariance is not of the Yang–Mills type, but rather involves as a connection a vector field \(L_\mu\) which is a composite field, defined in terms of \(\theta_\mu\) and its derivatives. As we shall see in the next section, the gauge group is indeed Abelian, but the algebra of gauge transformations is not closed off-shell.
It may seem surprising at first sight that the only ‘content’ of the classical equations of motion is that the Maurer–Cartan equations for a field are satisfied, since we still need the dynamics for the true degrees of freedom. Of course, such a dynamics is also present in this description: \(L \) is a pure gauge field, i.e., \(L_\mu = U^\dagger \partial_\mu U \) with \(U(x) \in SU(N) \), and besides (see (42) below) \(\partial_\mu \cdot L_\mu = 0 \). These two equations are equivalent to the classical equations of motion for the nonlinear \(\sigma \)-model.

3. Symmetries

The actual form of the gauge transformations, as acting on the field \(\theta_\mu \), has been obtained by the procedure of borrowing the (known) form of the corresponding transformations from the polynomial version, and afterwards replacing the field \(L_\mu \) by its value at the extreme (a function of \(\theta \)). This yields, for a transformation parametrized by the function \(\omega(x) \), the variation:

\[
\delta_\omega \theta_\mu(x) = D^L_\mu \omega(x)
\]

where

\[
D^L_\mu \omega = \partial_\mu \omega + i g \frac{2}{[L_\mu, \omega]}.
\]

In spite of the presence of a covariant derivative, the transformations do not correspond to a non-Abelian Yang–Mills theory. Indeed, it should be noted that the transformations (27) involve the covariant derivative, defined in terms of a composite field which plays the role of a connection. However, they are not strictly Abelian type either, since the transformation law for \(\theta \) does not correspond to that case.

We shall now see that what happens is that the transformations are, indeed, Abelian, but only on-shell, i.e., on the equations of motion. To be specific, consider the commutator of two gauge transformations, corresponding to the gauge functions \(\omega \) and \(\eta \). We find that the result may be written, after some algebraic manipulations, as follows:

\[
[\delta_\eta, \delta_\omega] \theta_\mu^a = \Sigma^{ab}_{\mu \nu} \delta S[\theta] \frac{\delta S[\theta]}{\delta \theta^b_{\nu}}
\]

where we introduced the object:

\[
\Sigma^{ab}_{\mu \nu} = - \frac{1}{\eta} \delta \omega (f^{ace} f^{dbb} - f^{ade} f^{dbb}) G^{cd}_{\mu \nu} (\theta).
\]

It is important to realize that \(\Sigma^{ab}_{\mu \nu} \) is antisymmetric, namely,

\[
\Sigma^{ab}_{\mu \nu} = - \Sigma^{ba}_{\nu \mu}
\]

since this means that the right-hand side of (30) is a trivial gauge transformation [8]. Indeed, for a given action \(S[\theta] \), a transformation of the kind

\[
\delta \theta^a_\mu = \Lambda^{ab}_{\mu \nu} (\theta) \frac{\delta S[\theta]}{\delta \theta^b_{\nu}}
\]

with an arbitrary antisymmetric function \(\Lambda^{ab}_{\mu \nu} = -\Lambda^{ba}_{\nu \mu} \), is a symmetry of \(S[\theta] \), regardless of the form of \(S[\theta] \). It can also be shown [8], that the commutator between a non-trivial gauge transformation and a trivial one yields a trivial gauge transformation. Thus, we see that the physically relevant gauge group is Abelian, and isomorphic to \(U(1)^{(N^2-1)} \) (for \(SU(N) \)),
A gauge-invariant formulation for the $SU(N)$ nonlinear σ-model in 2 + 1 dimensions

although realized in a non-trivial way, since the ‘trivial’ part of the gauge transformations cannot be easily eliminated within the present formulation of the model.

A related property is that the composite field L_μ, which is gauge invariant in the polynomial transformation, is now also gauge invariant but only onshell:

$$\delta_\omega L^a_\mu = -ig^{-\frac{1}{2}} G^{ab}_\mu(\theta) f^{bcd} \tilde{f}_c(L) \omega_d$$

i.e., it vanishes when $\tilde{F}_\mu(L) = 0$.

The question that immediately presents itself is what are the conditions a gauge-invariant functional must verify. This is of course important, since gauge-invariant functionals are naturally associated with physical observables. Besides, in the functional integral approach to a quantum gauge field theory, the condition a gauge-invariant functional must satisfy is an important part of the formulation.

So, assuming $I[\theta]$ to be a gauge-invariant functional of θ, it must verify the condition:

$$\delta_\omega I[\theta] = 0$$

where

$$\delta_\omega = \int d^3x \delta_\omega \theta^a_\mu(x) \frac{\delta}{\delta \theta^a_\mu(x)}.$$

However, if such a gauge-invariant functional exists, one immediately gets a consistency condition by applying two successive gauge transformations on I and subtracting them, namely:

$$\delta_{\eta}, \delta_\omega I[\theta] = 0 \Rightarrow [\delta_{\eta}, \delta_\omega] I[\theta] = 0.$$

On the other hand, we may of course evaluate the commutator of two gauge transformations; after some algebra, we find

$$[\delta_{\eta}, \delta_\omega] = \int d^3x \Sigma^{ab}_\mu(\theta) \frac{\delta S_{inv}}{\delta \theta^a_\mu(x)} \frac{\delta}{\delta \theta^b_\mu(x)}.$$

Thus, for non-trivial gauge-invariant functional I to exist, since Σ depends on the arbitrary functions η and ω, we have to impose the additional condition:

$$F_{\mu\nu}(L) = 0.$$

This is nothing new from the classical point of view, but it makes a difference for the quantum theory, where all the configurations matter, and not just the extrema of the action. This seems to lead us to the inclusion of (39) as a constraint, which is not what we want. Fortunately, there are ways out of this [8], that does not require the introduction of extra constraints (which might even reduce the number of degrees of freedom).

Regarding the global symmetries, we know that L_μ is a conserved current, associated with a global symmetry of the nonlinear σ-model. To see that L_μ is conserved in this formalism is a bit tricky. One possible way to prove that is to use the property that the composite field L_μ as given by (29) may also be written, after some algebra, as

$$L_\mu = -ig^{-1} \epsilon_{\mu\nu\lambda} D_\nu \theta_\lambda$$

where we used the property:

$$G^{ab}_\mu(\theta) = \delta^{ab}_\mu - ig^{-\frac{1}{2}} \epsilon^{abc} \epsilon_{\mu\lambda\sigma} f^{\nu\rho\sigma} \theta^a_\rho G^{cb}_\nu(\theta).$$

Then it follows that

$$\partial_\mu L_\mu = D_\mu L_\mu = -ig^{-1} \epsilon_{\mu\nu\lambda} D_\nu D_\lambda \theta_\lambda = -ig^{-\frac{1}{2}} [\tilde{F}_\mu(L), \theta_\mu]$$

which vanishes on-shell, and implies the conservation of L_μ. The conserved charge is of course given by the space integral of L_0. It is instructive to consider the particular case of a
point-like static charge of colour \(a \) and strength \(q \) located at \(x = x_0 \). This corresponds to a charge density

\[
L^a_0(x) = -iq\delta(x - x_0) \quad L_j(x) = 0.
\]

Inserting this into relation (29) yields

\[
f^a_\mu = q\delta_\mu\delta(x - x_0)
\]

i.e., it corresponds to a point-like magnetic flux on the same point. The conserved charge is then equal to the total magnetic flux (for that colour).

4. Quantum theory

We shall consider here the quantum theory corresponding to this gauge-invariant model, from the path integral approach. The natural object to consider is then of course the generating functional for \(\theta \)-field correlation functions. The ill-defined (gauge invariant) partition function shall be given by the expression:

\[
Z_{\text{inv}}[J] = \int [D\theta] \exp \left\{ -S_{\text{inv}}[\theta] + \int d^3x \ J_\mu \cdot \theta_\mu \right\}.
\]

The generating functional (45), being gauge invariant, requires the introduction of a gauge-fixing term and its companion ghost action to be well defined. However, a standard Faddeev–Popov approach to the definition of the gauge-fixed action will not do, since the resulting action is neither BRST invariant, nor does the transformation becomes nilpotent. The difficulty lies, of course, in the fact that the algebra of the gauge transformations is ‘open’, namely, it closes only when the equations of motion are satisfied. However, a modified action, which generally involves quartic ghost terms may be constructed, such that the action is invariant under an extended BRST transformation [7, 8]. By an application of such method to this case, we obtain the gauge-fixed action \(S \):

\[
S[\theta_\mu; b, \bar{c}, c] = S_{\text{inv}}[\theta] + S_{\text{gf}}[b, \theta] + S_{\text{gh}}[\bar{c}, c; \theta]
\]

where we shall adopt the covariant gauge-fixing term:

\[
S_{\text{gf}}[\theta] = \int d^3x \left(-\frac{1}{2\lambda} \bar{b}^2 + b \cdot \partial_\mu \theta_\mu \right)
\]

and the corresponding ghost action becomes

\[
S_{\text{gh}}[\bar{c}, c; \theta] = \int d^3x \left[\partial_\mu \bar{c} \cdot D_\mu^b c + \frac{1}{2g} (\partial_\mu \bar{c} \times c)^a G_{\mu a}^{\theta b}(\theta)(\partial_\nu \bar{c} \times c)^b \right].
\]

The existence of a quartic term in the ghosts makes it evident that the BRST transformations are not of the standard form. Indeed, we find that the precise form for the transformations is

\[
\delta \theta^a_\mu = \xi (D_\mu c)^a + \frac{i}{g} f^{abe} G_{\mu i}^b(\partial_\nu \bar{c} \times c)^d G_{\nu d}^c(\partial_\nu \bar{c} \times c)^d c^e
\]

\[
\delta c = 0 \quad \delta \bar{c} = i\xi b \quad \delta b = 0.
\]

They leave the action \(S \) invariant, and the transformation is besides nilpotent.

The generating functional for the gauge-fixed action is then defined as follows:

\[
\mathcal{Z}[J; j, \bar{\eta}, \eta] = \int [D\theta] Db D\bar{c} Dc \times \exp \left\{ -S[\theta; b, \bar{c}, c] + \int d^3x \ (J_\mu \cdot \theta_\mu + j \cdot b + \bar{\eta} \cdot c + \bar{c} \cdot \eta) \right\}.
\]
It should be noted that, in all the above equations, the covariant derivative is defined in terms of the dependent field L, which is a function of θ.

This may be thought of as the main result of this paper, namely, there exists a gauge-invariant description for the nonlinear σ-model in $2 + 1$ dimensions; this description is built in terms of θ, a pseudo-vector field in the algebra of the group. The gauge algebra is however open, which makes the BRST quantization less immediate than for the Yang–Mills case (although the algebra is Abelian on-shell). The resulting gauge-fixed action contains terms quartic in the ghosts, and is invariant under a global BRST symmetry. This BRST symmetry may be applied to, for example, the derivation of Ward identities that will restrict the form of the counterterms.

Regarding the quantum corrections, it should be noted that there is another (equivalent) possibility of tackling the problem of open gauge algebras, through the introduction of auxiliary field. Their function is to render the on-shell symmetry into an off-shell one, where the Faddeev–Popov trick may be applied. The upshot of this procedure here, leads one to the ‘polynomial formulation’ Lagrangian of (2), whose renormalization properties have been considered in [9].

5. Conclusions

We have shown that the $SU(N)$ nonlinear σ-model in $2 + 1$ dimensions may indeed be described by a gauge-invariant action $S_{\text{inv}}[\theta]$, for a single pseudo-vector field θ. This action has a gauge invariance which involves a composite field L (a function of θ) that plays a role similar to a connection. This, however, is so only when one considers infinitesimal gauge transformations. Finite gauge transformations, and the composition of two gauge transformations show that the gauge algebra is open. The resulting classical theory shows no difference with the standard formulation of the nonlinear σ-model, since the classical trajectories are the only important part of the action, and there the algebra closes.

For the quantum theory, however, the situation is more complicated, as the BRST quantization requires the introduction of a term which is quartic in the ghosts. However, the corresponding global BRST symmetry exists, and may indeed be used as a starting point in the construction of the quantum effective action. We also note that this open algebra formulation is also equivalent to the polynomial formulation, where the algebra is closed and Abelian. However, off-shell closing of the algebra is achieved in the latter at the price of increasing the number of (unphysical) variables: one has the fields L_μ and θ_μ. That the number of physical variables is the same in both cases can be seen as follows: as shown in [11], the canonical theory determined by (1) has two first-class constraints and six second-class constraints, so that the number of physical degrees of freedom is $6 - 2 - \frac{1}{2} \times 6 = 1$ (for each colour). In the formulation considered here there are three fields to begin with, while there is also one physical degree of freedom for each colour. This can be seen without using the canonical theory: one can, for example, invoke the ‘quartet mechanism’ of [12], which works here in the same way as in the Yang–Mills case, so that two unphysical gauge field components (longitudinal and temporal photons) are eliminated. It is important to stress that the quartet mechanism depends on the BRST and ghost algebra on the asymptotic states, which is the same as for the Yang–Mills case. Here the fields are on-shell, and the algebra of gauge transformations becomes Abelian. Although we do not dwell here with the canonical formulation, it is evident that there will be two first-class constraints: one primary, and coming from the definition of the canonical momentum conjugate to θ_0. The other is secondary, and has the form of a ‘Gauss law’ condition. Hence there is of course $1 (\approx 3 - 2)$ physical degree of freedom, as it should be.
Acknowledgments

The authors wish to thank The Abdous Salam ICTP, where this work was initiated, for the warm hospitality. CDF was supported by Fundación Antorchas, Argentina and CONICET. CPC thanks Olivier Piguet for useful discussions and a careful reading of the manuscript. CPC is supported by CNPq.

References

[1] Weinberg S 1968 Phys. Rev. 166 1568
[2] See, for example, Zinn-Justin J 2002 Quantum Field Theory and Critical Phenomena (Oxford: Clarendon) section 14
[3] Weinberg S 1980 Phys. Lett. B 91 51
[4] See, for example, Pich A 1995 Rep. Prog. Phys. 58 563 for a modern review
[5] Arefeva I V 1979 Ann. Phys., NY 117 393
[6] See, for example, Rivers R J 1988 Path Integral Methods in Quantum Field Theory (Cambridge: Cambridge University Press) ch 17
[7] For an early reference, see for example, de Wit B and van Holten J W 1978 Phys. Lett. B 79 389
[8] For a review, see for example, Henneaux M and Teitelboim C 1992 Quantization of Gauge Systems (Princeton, NJ: Princeton University Press)
[9] Fosco C D and Matsuyama T 1995 Int. J. Mod. Phys. A 10 1655
[10] Fosco C D and Matsuyama T 1995 Prog. Theor. Phys. 93 441
[11] Matsuyama T 1999 Eur. Phys. J. C 8 163
[12] Kugo T and Ojima I 1979 Prog. Theor. Phys. 61 294