Baby Skyrmions on the two-sphere

Itay Hen† and Marek Karliner†

Raymond and Beverly Sackler School of Physics and Astronomy Tel-Aviv University, Tel-Aviv 69978, Israel

(Dated: February 2, 2008)

We find the static multi-soliton solutions of the baby Skyrme model on the two-sphere for topological charges $1 \leq B \leq 14$. Numerical full-field results show that the charge-one Skyrmion is spherical, the charge-two Skyrmion is toroidal, and Skyrmions with higher charge all have point symmetries which are subgroups of $O(3)$. We find that a rational map ansatz yields very good approximations to the full-field solutions. We point out a strong connection between the discrete symmetries of our solutions and those of corresponding solutions of the 3D Skyrme model.

PACS numbers: 12.39.Dc; 11.27.+d; 03.50.-z
Keywords: Rational maps; Baby Skyrmion; Skyrmion

I. INTRODUCTION

The Skyrme model \cite{1} is a non-linear theory of pions in (3+1) dimensions with topological soliton solutions called Skyrmions. The existence of stable solutions in this model is a consequence of the nontrivial topology of the configuration space \mathcal{M} of the physical space into the field space at a given time. $\mathcal{M} : S^3 \rightarrow SU(2) \cong S^3$, where the physical space \mathbb{R}^3 is compactified to S^3 by requiring the spatial infinity to be equivalent in each direction. The topology which stems from this one-point compactification allows the classification of maps into equivalence classes, each of which has a unique conserved quantity called the topological charge.

Although Skyrmions were originally introduced to describe baryons in three spatial dimensions \cite{1}, they have been shown to exist for a very wide class of geometries \cite{2}, and are now playing an increasing role in other areas of physics as well.

Apart from the original 3D model which exhibits very structured solitonic solutions (for a review see \cite{3}), other Skyrme models defined on curved domains, such as two- and three-spheres can also be found in the literature \cite{9,10,11,12}. Studies of other Skyrme models defined on curved domains, such as two- and three-spheres can also be found in the literature \cite{9,10,11,12}; although most of these models are used as a simplification or as ‘toy’ models of the full 3D model, they also have physical significance on their own, having several potential applications in condensed-matter physics as often revealing useful mathematical features.

In the present paper we consider a baby Skyrme model on the two-sphere. This type of model has been studied in \cite{3,10}, where only rotationally-symmetric configurations have been considered. We compute the full-field minimal energy solutions of the model up to charge 14 and show that they exhibit complex multi-Skyrmion solutions closely related to the Skyrmion solutions of the 3D model with the same topological charge. To obtain the minimum energy configurations, we apply two completely different methods. One is a full-field relaxation method, with which exact numerical solutions of the model are obtained. The other approach is a rational map approximation scheme, which as we show yields very good approximate solutions. We discuss these methods in detail in section III.

In an exact analogy to the 3D Skyrme model, our results show that the charge-one Skyrmion has a spherical energy distribution, the charge-two Skyrmion is toroidal, and Skyrmions with higher charge all have point symmetries which are subgroups of $O(3)$. The symmetries of these solutions are the same as those of the 3D Skyrmions. As we shall see, this is not a coincidence.

II. THE BABY SKYRME MODEL ON THE TWO-SPHERE

The model in question is a baby Skyrme model in which both the domain and target are two-spheres. It consists of a triplet of real scalar fields $\phi = (\phi_1, \phi_2, \phi_3)$ subject to the constraint $\phi \cdot \phi = 1$. The Lagrangian density is simply

$$\mathcal{L} = \frac{1}{2} \partial_\mu \phi \cdot \partial^\mu \phi + \frac{\kappa^2}{2} \left[(\partial_\mu \phi \cdot \partial^\mu \phi)^2 - (\partial_\mu \phi \cdot \partial^\mu \phi)(\partial^\mu \phi \cdot \partial^\mu \phi) - \frac{1}{2} \right],$$

with metric $ds^2 = dt^2 - d\theta^2 - \sin^2 \theta d\varphi^2$, where θ is the polar angle in $[0, \pi]$ and φ is the azimuthal angle in $[0, 2\pi]$. The Lagrangian of this model is invariant under rotations in both domain and the target spaces, possessing an $O(3)_{\text{domain}} \times O(3)_{\text{target}}$ symmetry. The first term in the Lagrangian is the kinetic term and the second term, of the fourth order in derivatives, is the 2D analogue of the Skyrme term \cite{4}. While in flat two dimensional space a third potential term is necessary to ensure the
existence of stable solutions, in the present model it is not. Furthermore, stable solutions exist even with the Skyrme term missing. This is the well known $O(3)$ (or \mathbb{CP}^1) sigma model [13].

The field ϕ in this model is an $S^2 \to S^2$ mapping. The relevant homotopy group of this model is $\pi_2(S^2) = \mathbb{Z}$, which implies that each field configuration is characterized by an integer topological charge B, the topological degree of the map ϕ, which in spherical coordinates is given by

$$B = \frac{1}{4\pi} \int d\Omega \frac{\phi \cdot (\partial_\theta \phi \times \partial_\varphi \phi)}{\sin \theta},$$

(2)

where $d\Omega = \sin \theta d\theta d\varphi$.

Static solutions within each topological sector are obtained by minimizing the energy functional

$$E = \frac{1}{2} \int d\Omega \left((\partial_\theta \phi)^2 + \frac{1}{\sin^2 \theta} (\partial_\varphi \phi)^2 \right) + \frac{\kappa^2}{2} \int d\Omega \left(\frac{(\partial_\theta \phi \times \partial_\varphi \phi)^2}{\sin \theta} \right).$$

(3)

Before proceeding, it is worth noting here that setting $\kappa = 0$ in Eq. (3) yields the energy functional of the $O(3)$ sigma model. The latter has analytic minimal energy solutions within every topological sector, given by

$$\phi = (\sin \theta \cos B \varphi, \sin \theta \sin B \varphi, \cos \theta),$$

(4)

where $f(\theta) = \cos^{-1} \left(1 - 2(1 + (\lambda \tan \theta/2)^2 B^{-1}) \right)$ with λ being some positive number [13]. These solutions are not unique, as other solutions with the same energy may be obtained by rotating (4) either in the target or in the domain spaces. The energy distributions of these solutions in each sector are rotationally symmetric, with total energy $E_B = 4\pi B^2$.

We have found that analytic solutions also exist for the energy functional (3) with the Skyrme term only. They too have the rotationally symmetric form (4) with $f(\theta) = \theta$ and total energy $E_B = 4\pi B^2$. They can be shown to be global minima by the following Cauchy-Schwartz inequality:

$$\left(\frac{1}{4\pi} \int d\Omega \frac{\phi \cdot (\partial_\theta \phi \times \partial_\varphi \phi)}{\sin \theta} \right)^2 \leq \left(\frac{1}{4\pi} \int d\Omega \phi^2 \right) \cdot \left(\frac{1}{4\pi} \int d\Omega \frac{(\partial_\theta \phi \times \partial_\varphi \phi)^2}{\sin \theta} \right).$$

(5)

The LHS is simply B^2 and the first term in parenthesis on the RHS integrates to 1. Noting that the second term in the RHS is the Skyrme energy (without the $\kappa^2/2$ factor), the inequality reads $E \geq 4\pi B^2$, with equality for the rotationally-symmetric solutions.

III. STATIC SOLUTIONS

In general, if both the kinetic and Skyrme terms are present, static solutions of the model cannot be obtained analytically. The Euler-Lagrange equations derived from the energy functional (3) are non-linear PDE’s, so the minimal energy configurations can only be obtained with the aid of numerical techniques. This is with the exception of the $B = 1$ Skyrmion which has an analytic “hedgehog” solution

$$\phi_{[B=1]} = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta),$$

(6)

with total energy $E = 1 + \frac{\kappa^2}{2}$.

For Skyrmions with higher charge, we find the minimal energy configurations by utilizing a full-field relaxation method, described in more detail below. In parallel, we also apply the rational map approximation method, originally developed for the 3D Skyrme model and directly compare the results with the relaxation method. This method is also discussed below.

A. Full-field relaxation method

For the relaxation method, the domain S^2 is discretized to a spherical grid – 100 grid points for θ and 100 points for φ. The relaxation process begins by initializing the field triplet ϕ to a rotationally-symmetric configuration

$$\phi_{\text{initial}} = (\sin \theta \cos B \varphi, \sin \theta \sin B \varphi, \cos \theta),$$

(7)

where B is the topological charge of the Skyrmion in question. The energy of the baby Skyrmion is then minimized by repeating the following steps: a point (θ_m, φ_n) on the grid is chosen at random, along with one of the three components of the field $\phi(\theta_m, \varphi_n)$. The chosen component is then shifted by a value $\delta \phi$ chosen uniformly from the segment $[-\Delta \phi, \Delta \phi]$ where $\Delta \phi = 0.1$ initially. The field triplet is then normalized and the change in energy is calculated. If the energy decreases, the modification of the field is accepted and otherwise it is discarded. The procedure is repeated while the value of $\Delta \phi$ is gradually decreased throughout the procedure. This is done until no further decrease in energy is observed.

One undesired feature of this minimization scheme is that it can get stuck at a local minimum. This problem can be resolved by using the “simulated annealing” algorithm [14, 15], which in fact has been successfully implemented before, in obtaining the minimal energy configurations of static two and three dimensional Skyrmions [16]. The algorithm comprises of repeated applications of a Metropolis algorithm with a gradually decreasing temperature, based on the fact that when a physical system is slowly cooled down, reaching thermal equilibrium at each temperature, it will end up in its ground state. This algorithm, however, is much more expensive in terms of computer time. We therefore employ it only in part, just as a check on our results, which correspond to a Metropolis algorithm of zero temperature.
As a further verification, we set up the minimization scheme using different initial configurations and grids of different sizes (80 × 80 and 200 × 200) for several κ and B values. This was done to make sure that the final configurations are independent of the discretization and cooling scheme. Accuracy was also verified by checking conservation of the topological charge B throughout the minimization process, yielding $\left| \frac{B_{\text{observed}}}{B} - 1 \right| < 10^{-6}$.

B. The rational map ansatz

Computing the minimum energy configurations using the full non-linear energy functional is a procedure which is both time-consuming and resource-hungry. To circumvent these problems, the rational map ansatz scheme has been devised. First introduced in [17], this scheme has been used in obtaining approximate solutions to the 3D Skyrme model using rational maps between Riemann spheres. Although this representation is not exact, it drastically reduces the number of degrees of freedom in the problem, allowing computations to take place in a relatively short amount of time. The results in the case of 3D Skyrme model are known to be quite accurate.

Application of the approximation, begins with expressing points on the base sphere by the Riemann sphere coordinate $z = \tan \frac{\theta}{2}e^{i\phi}$. The complex-valued function $R(z)$ is a rational map of degree B between Riemann spheres

$$R(z) = \frac{p(z)}{q(z)},$$

where $p(z)$ and $q(z)$ are polynomials in z, such that $\max\{\deg(p), \deg(q)\} = B$, and p and q have no common factors. Given such a rational map, the ansatz for the field triplet is

$$\phi = \frac{R + \bar{R}}{1 + |R|^2}, \frac{R - \bar{R}}{1 + |R|^2}, \frac{1 - |R|^2}{1 + |R|^2}. \quad (9)$$

It can be shown that rational maps of degree B correspond to field configurations with charge B [17]. Substitution of the ansatz (9) into the energy functional (3) results in the simple expression

$$\frac{1}{4\pi} E = B + \frac{\kappa^2}{2} I,$$

with

$$I = \frac{1}{4\pi} \int \left(\frac{1 + |z|^2}{1 + |R|^2} \left| \frac{dR}{dz} \right| \right)^4 \frac{2i}{(1 + |z|^2)^2} dz \frac{d\bar{z}}{(1 + |z|^2)^2}. \quad (10)$$

Minimizing the energy (10) only requires finding the rational map which minimizes the functional I. As we discuss in the next section, the expression for I given in Eq. (11) is encountered in the application of the rational map in the context of 3D Skyrmions, where the procedure of minimizing I over all rational maps of the various degrees has been used [17, 18, 19].

Here we redo the calculations, using a relaxation method. To obtain the rational map of degree B that minimizes I, we start off with a rational map of degree B, with the real and imaginary parts of the coefficients of $p(z)$ and $q(z)$ assigned random values from the segment $[-1, 1]$. As in the full-field relaxation method discussed above, solutions are obtained by relaxing the map until a minimum of I is reached.

IV. RELATION TO THE 3D SKYRME MODEL

In the 3D Skyrme model, the rational map ansatz can be thought of as taken in two steps. First, the radial coordinate is separated from the angular coordinates by taking the SU(2) Skyrme field $U(r, \theta, \phi)$ to be of the form

$$U(r, \theta, \phi) = \exp(iff(r) \phi(\theta, \phi) \cdot \sigma), \quad (12)$$

where $\sigma = (\sigma_1, \sigma_2, \sigma_3)$ are Pauli matrices, $f(r)$ is the radial profile function subject to the boundary conditions $f(0) = \pi$ and $f(\infty) = 0$, and $\phi(\theta, \phi) : S^2 \mapsto S^2$ is a normalized vector which carries the angular dependence of the field. In terms of the ansatz (12), the energy of the Skyrme field is

$$E = \int 4\pi f^2 r^2 dr + \int 2(f^2 + 1) \sin^2 f dr \int \left(\frac{1}{\sin^2 \theta} (\partial_{\theta} \phi)^2 + \frac{1}{\sin^2 \theta} (\partial_{\phi} \phi)^2 \right) d\Omega + \int \frac{\sin^4 f}{r^2} dr \int \frac{(\partial_{\theta} \phi \times \partial_{\phi} \phi)^2}{\sin^2 \theta} d\Omega. \quad (13)$$

Note that the energy functional (13) is actually the energy functional of our model (3) once the radial coordinate is integrated out. Thus, our 2D model can be thought of as a 3D Skyrme model with a ‘frozen’ radial coordinate.

The essence of the rational map approximation is the assumption that $\phi(\theta, \phi)$ takes the rational map form (9),
which in turn leads to a simple expression for the energy

\[E = 4\pi \int \left(r^2 f'^2 + 2B(f'^2 + 1)\sin^2 f + \mathcal{I}\sin^4 f \right) \, dr , \]

where \(\mathcal{I} \) is given in Eq. (11). As in our case, minimizing the energy functional requires (as a first step, followed by finding the profile function \(f(r) \)) minimizing \(\mathcal{I} \) over all maps of degree \(B \).

Since the symmetries of the 3D Skyrmions are determined solely by the angular dependence of the Skyrme field, it should not be too surprising that the solutions of the model discussed here share the symmetries of the corresponding solutions of the 3D Skyrme model.

V. RESULTS

The two approaches discussed in section III have been applied separately to obtain the static solutions for charges \(2 \leq B \leq 14 \) (the charge-one solution has an analytic representation, as discussed in section III). This was done for several \(\kappa \) values within the range \(0.01 \leq \kappa^2 \leq 0.2 \), although solutions with different \(\kappa \)'s are qualitatively similar.

As discussed in the previous section, the configurations obtained from the full-field relaxation method were found to have the same symmetries as corresponding multi-Skyrmions of the 3D model with the same charge. The \(B = 2 \) solution turned out to be axially symmetric, whereas higher-charge solutions were all found to have point symmetries which are subgroups of \(O(3) \). For \(B = 3 \) and \(B = 12 \), the Skyrmions have a tetrahedral symmetry. The \(B = 4 \) and \(B = 13 \) Skyrmions have a cubic symmetry, and the \(B = 7 \) is dodecahedral. The other Skyrmon solutions have dihedral symmetries. For \(B = 5 \) and \(B = 14 \) a \(D_{2d} \) symmetry, for \(B = 6,9 \) and 10 a \(D_{4d} \) symmetry, for \(B = 8 \) a \(D_{6d} \) symmetry and for \(B = 11 \) a \(D_{3d} \) symmetry. The energy distributions of the obtained solutions for \(\kappa^2 = 0.05 \) are shown in FIG. 1.

While for solutions with \(B < 8 \) the energy density (and also the charge density) is distributed in distinct peaks, for solutions with higher charge it is spread in a much more complicated manner.

The total energies of the solutions (divided by \(4\pi B \)) are listed in Table I along with the symmetries of the solutions (again with \(\kappa^2 = 0.05 \)).

Application of the rational map ansatz yielded results with only slightly higher energies, only about 0.3% to 3% above the full-field results. The calculated values of \(\mathcal{I} \) were found to agree with those obtained in [18] in the context of 3D Skyrmions. For \(9 \leq B \leq 14 \), the rational map approximation yielded slightly less symmetric solutions than the full-field ones. Considering the relatively small number of degrees of freedom, this method all-in-all yields very good approximations. The total energies of the solutions obtained with the rational map approximation is also listed in Table I.

VI. SUMMARY AND CONCLUSION

We have studied the baby Skyrme model on the two-sphere, obtaining the minimal energy configurations for all charges up to \(B = 14 \), using both the full-field relaxation method and the rational map approximation scheme. For each charge we have identified the symmetry and measured the energy of the minimal energy Skyrmion. The solutions turned out to yield very structured configurations, exhibiting the same symmetries as the corresponding solutions of the 3D Skyrme model.

We have explained the reason for these similarities between the symmetries of the two models and in the process we have exhibited a strong connection between them. The model discussed in this paper may be thought of as the 3D Skyrme model with a ‘frozen’ radial coordinate. In that sense, our computations may serve as an additional corroboration of results obtained for the 3D Skyrmions.

In addition, we have shown that the rational map ansatz provides a very good approximate description to the true solutions, also for high topological charges. The energies of the solutions computed in the rational maps approximation are only slightly higher than the full-field solutions, and their symmetries, in most cases, are the same. This suggests that rational maps may be used to construct good approximations to multi-Skyrmion solutions in this model in a rather simple way.

We believe that this work may provide a useful tool in the study of 3D Skyrmions, as it shares great similarities with the 3D model, especially in terms of multi-Skyrmion symmetries. The fact that the model discussed here is two-dimensional makes it simpler to study and perform computations with, when compared with the 3D Skyrme model.

Charge	Total energy Full-field	Total energy Rational maps in %	Difference	Symmetry of the solution
\(B \)				
2	1.071 1.073	0.177	Toroidal	
3	1.105 1.113	0.750	Tetrahedral	
4	1.125 1.129	0.359	Cubic	
5	1.168 1.179	0.958	\(D_{2d} \)	
6	1.194 1.211	1.426	\(D_{4d} \)	
7	1.209 1.217	0.649	Icosahedral	
8	1.250 1.268	1.406	\(D_{6d} \)	
9	1.281 1.304	1.771	\(D_{3d} \)	
10	1.306 1.332	1.991	\(D_{4d} \)	
11	1.337 1.366	2.224	\(D_{5d} \)	
12	1.360 1.388	2.072	Tetrahedral	
13	1.386 1.415	2.137	Cubic	
14	1.421 1.459	2.712	\(D_{2} \)	
FIG. 1: The energy distributions of the multi-Skyrmion solutions for charges $2 \leq B \leq 14$ ($\kappa^2 = 0.05$).
Acknowledgments

We thank Wojtek Zakrzewski for useful discussions. This work was supported in part by a grant from the Israel Science Foundation administered by the Israel Academy of Sciences and Humanities.

[1] T. H. R. Skyrme, Proc. Roy. Soc. A260, 127 (1961); Nucl. Phys. 31 556 (1962).
[2] N. S. Manton, Commun. Math. Phys. 111, 469 (1987).
[3] N. S. Manton and P. M. Sutcliffe, Topological Solitons, (Cambridge University Press, Cambridge, 2004), Chap. 9.
[4] B. M. A. G. Piette, B. J. Schoers and W. J. Zakrzewski, Z. Phys. C 65, 165 (1995).
[5] B. M. A. G. Piette, B. J. Schoers and W. J. Zakrzewski, Nucl. Phys. B 439, 205 (1995).
[6] R. A. Leese, M. Peyrard and W. J. Zakrzewski, Nonlinearity 3, 773 (1990).
[7] B. M. A. G. Piette and W. J. Zakrzewski, Chaos Solitons and Fractals 5, 2495 (1995).
[8] P. M. Sutcliffe, Nonlinearity 4, 1109 (1991).
[9] M. de Innocentis and R. S. Ward, Nonlinearity 14, 663 (2001).
[10] N. N. Scoccola and D. R. Bes, JHEP 09, 012 (1998).
[11] A. Wirzba and H. Bang, Nucl. Phys. A 515, 571 (1990).
[12] S. KruSch, Nonlinearity 13, 2163 (2000).
[13] A. A. Belavin and A. M. Polyakov, JETP Lett. 22, 245 (1975).
[14] S. Kirkpatrick, C. D. Gellat and M. P. Vecchi, Science 220, 671 (1983).
[15] S. Geman and D. Geman, IEEE Trans. Pattern Anal. Mach. Intell. 26, 721 (1984).
[16] M. Hale, O. Schwindt and T. Weidig, Phys. Rev. E 62, 4333 (2000).
[17] C. J. Houghton, N. S. Manton and P. M. Sutcliffe, Nucl. Phys. B 510, 507 (1998).
[18] R. A. Battye and P. M. Sutcliffe, Rev. Math. Phys. 14, 29 (2002).
[19] N. S. Manton and B. M. A. G. Piette, eprint arXiv:hep-th/0008110 (2000).