Improving outcomes for patients with distal renal tubular acidosis: recent advances and challenges ahead

Toru Watanabe
Department of Pediatrics, Niigata City General Hospital, Niigata City 950-1197, Japan

Abstract: Primary distal renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) in the collecting tubule. dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis. Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets. Mutations in genes encoding three distinct transport proteins in A-ICs have been identified as causes of dRTA, including the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H+-ATPase (H+-ATPase) and the chloride–bicarbonate exchanger AE1/SLC4A1. Homozygous or compound heterozygous mutations in ATP6V1B1 and ATP6V0A4 lead to autosomal recessive (AR) dRTA. dRTA caused by SLC4A1 mutations can occur with either autosomal dominant or AR transmission. Red blood cell abnormalities have been associated with AR dRTA due to SLC4A1 mutations, including hereditary spherocytosis, Southeast Asia ovalocytosis, and others. Some patients with dRTA exhibit atypical clinical features, including transient and reversible proximal tubular dysfunction and hyperammonemia. Incomplete dRTA presents with inadequate urinary acidification, but without spontaneous metabolic acidosis and recurrent urinary stones. Heterozygous mutations in the AE1 or H+-ATPase genes have recently been reported in patients with incomplete dRTA. Early and sufficient doses of alkali treatment are needed for patients with dRTA. Normalized serum bicarbonate, urinary calcium excretion, urinary low-molecular-weight protein levels, and growth rate are good markers of adherence to and/or efficacy of treatment. The prognosis of dRTA is generally good in patients with appropriate treatment. However, recent studies showed an increased frequency of chronic kidney disease (CKD) in patients with dRTA during long-term follow-up. The precise pathogenic mechanisms of CKD in patients with dRTA are unknown.

Keywords: urinary acidification, clinical features, treatment, prognosis, gene, pathogenesis

Introduction

Primary distal (type 1) renal tubular acidosis (dRTA) is a rare genetic disorder caused by impaired distal acidification due to a failure of type A intercalated cells (A-ICs) of the collecting tubule.1 dRTA is characterized by persistent hyperchloremia, a normal plasma anion gap, and the inability to maximally lower urinary pH in the presence of systemic metabolic acidosis.2,3 Common clinical features of dRTA include vomiting, failure to thrive, polyuria, hypercalciuria, hypocitraturia, nephrocalcinosis, nephrolithiasis, growth delay, and rickets.1,2,3 The clinical variant of dRTA that presents with inadequate urinary acidification without spontaneous metabolic acidosis is termed incomplete dRTA (idRTA).2,3
Mutations in genes encoding three distinct transport proteins have been identified as causes of dRTA: the B1/ATP6V1B1 and a4/ATP6V0A4 subunits of the vacuolar-type H⁺-ATPase (H⁺-ATPase) and the chloride–bicarbonate exchanger AE1/SLC4A1. However, because a genetic cause is determined in only 70%–80% of patients with dRTA, mutations in additional genes are likely to cause dRTA.3,6

The clinical manifestations of patients with dRTA depend on the underlying gene mutations.3 For example, the majority of patients with dRTA caused by mutations in genes encoding for H⁺-ATPase develop sensorineural hearing loss (SNHL).6 Autosomal dominant (AD) dRTA with heterozygous AE1 gene mutations causes less severe clinical manifestations.7 However, a recent study showed that clinical features are not specific indicators of the underlying causal gene.5

Herein, we review the recent advances in the pathogenesis, underlying gene mutations, atypical clinical features, incomplete type, kidney stone formation, treatment, and long-term outcome of dRTA.

Mechanisms of renal acid excretion

The western diet plus endogenous metabolism generates 1 mmol/kg body weight per day of nonvolatile acids in adults.8 An additional 1–2 mmol/kg body weight per day of nonvolatile acids is produced from the formation of hydroxyapatite from growth bone in children.9 The kidneys maintain acid–base homeostasis by reabsorbing filtered HCO₃⁻, excreting acid in the form of NH₄⁺ and titratable acids, and producing new HCO₃⁻ to replenish that lost to metabolism.3 The distal nephron is responsible for the secretion of H⁺ that is then buffered by NH₃ and titratable acids, leading to urinary acidification.6,7

The distal convoluted tubules and cortical collecting ducts consist of principal cells, which reabsorb sodium via the epithelial sodium channels, acid-secreting A-ICs, and base-secreting type B intercalated cells (B-ICs). A-ICs mainly contribute to urinary acidification by generating new HCO₃⁻ and excreting NH₃ into the urine (Figure 1).3,9,10 CO₂ is hydrated by cytosolic carbonic anhydrase type II (CAII) that is present in all intercalated cells (ICs) of the collecting tubule and forms H⁺ and HCO₃⁻. A-ICs secrete H⁺ by apical H⁺-ATPase with an additional contribution from H⁺-K⁺-ATPase. A-ICs release HCO₃⁻ into the blood in exchange for Cl⁻ via the basolateral anion exchanger AE1. Cl⁻ exits the cell by the potassium chloride co-transporter (KCC4) or the chloride channel (ClC-Kb).7 B-ICs express an apical

Figure 1 Acid and ammonia secretion in type A intercalated cells in the distal nephron.

Abbreviations: AE1, anion exchanger 1; CAII, carbonic anhydrase type II; ClC-Kb, chloride channel Kb; H⁺-ATPase, vacuolar H⁺-ATPase; KCC4, potassium chloride co-transporter 4; RhBG, rhesus blood group type B glycoprotein; RhCG, rhesus blood group type C glycoprotein.
Pediatric Health, Medicine and Therapeutics 2018:9

Cl⁻–HCO₃⁻ exchanger, pendrin, and a basolateral H⁺-ATPase, responsible for net base secretion. Chronic acidosis converts B-ICs to A-ICs, which is mediated by an extracellular matrix protein hensin/DMBT1, and increases net acid secretion.¹¹,¹² Although the mechanism by which ICs sense a change in blood pH is unclear, Schwartz et al recently showed that principal cells respond to acid by producing SFD1 which regulates ICs subtype distribution.¹³

Because the capacity of the distal nephron to excrete acid as free H⁺ is limited, the distal nephron excretes the majority of acid coupled to urine buffers, ammonia (NH₃), and titratable acids (mainly HPO₄²⁻). Therefore, the net acid secretion in urine is the sum of the ammonium (NH₄⁺) charge plus the titratable acid (H₂PO₄⁻) charge minus the HCO₃⁻ charge.³ Under normal conditions, the kidneys excrete approximately one-third to one-half of the net acids as titratable acids and one-third to one-half of the net acids as ammonium. NH₃ secretion across ICs via RhCG. Collecting duct NH₃ uptake across the basolateral membrane via the basolateral Na⁺–K⁺–2Cl⁻ co-transporter and the AE1/SLC4A1.¹⁶

Vacuolar H⁺-ATPase gene (ATP6V1B1 and ATP6V0A4) mutations

H⁺-ATPases are multisubunit enzymatic proton pumps, which consist of two domains, the V₁ cytoplasmic domain (subunits A–H) and the V₀ membrane domain composed of subunits a, d, c″, c, and e.¹⁸ The V₀ domain mediates proton transfer and requires ATP hydrolysis by the V₁ domain.¹⁸,¹⁹ The B1 subunit is expressed in the kidney, inner ear, epididymis, and ciliary body of the eye. The a4 subunit is only expressed in the kidney, inner ear, and epididymis. In the kidney, the B1 subunit is expressed only in ICs of the late distal tubule, connecting segment, and collecting duct, while the a4 subunit is expressed in the proximal tubule, loop of Henle, and ICs of the late distal tubule, connecting segment, and collecting duct.²⁰ Homozygous or compound heterozygous mutations in B1 and a4 lead to autosomal recessive (AR) dRTA.

Karet et al were the first to identify homozygous mutations in ATP6V1B1 in AR dRTA patients with early SNHL.²¹ Subsequently, Smith et al detected homozygous mutations in ATP6V0A4 in AR dRTA patients without SNHL.²² However, it became later obvious that a number of patients with AR dRTA with homozygous or compound heterozygous mutations in ATP6V0A4 developed SNHL in early childhood²³ or in young adulthood.²⁴ Compound heterozygous mutations in ATP6V1B1 were also found in some patients with dRTA.²³,²⁵,²⁶

Premature termination codons, frameshift mutations, or splice-site mutations, which are predicted to disrupt the encoded protein, are found in most patients with ATP6V1B1 or ATP6V0A4 mutations, while missense mutations have been described in only a few patients.²¹–²⁴ Experimental studies using rat inner medullary collecting duct cell culture or yeast models showed that dysfunction or impaired assembly of the B1 subunit with other protein complex subunits is the most common outcome of missense mutations in ATP6V1B1.²⁵,²⁶ Su et al recreated previously reported missense mutations of the a4 subunit G820R and R807Q in yeast to examine the effects on protein expression. They found that the G820R mutation caused a loss of required phosphofructokinase-1 (PFK) binding to the a4 subunit, while the R807Q mutation resulted in a loss of pump protein.²⁹

Pathogenic mechanisms of dRTA
dRTA is caused by the failure of the kidney A-ICs to acidify the urine normally, which results from a dysfunction in any of the transporters involved in this process. Mutations in three transporter genes expressed in A-ICs have been identified as causes of dRTA, including the B1 (ATP6V1B1) and a4 (ATP6V0A4) subunits of H⁺-ATPase and the AE1/SLC4A1.¹⁶ However, because mutations in these genes are identified in only 70%–80% of patients with dRTA,⁴,⁵ dRTA is also likely to be caused by mutations in other genes.³,¹⁷ In addition to its genetic component, dRTA can also be acquired.⁷

Dovepress
Recent advances in distal renal tubular acidosis

Pathogenic mechanisms of dRTA

In contrast to most urinary solutes, the majority of urinary NH₃ is generated in the kidney.¹⁴ NH₃ is generated from glutamine in the proximal tubular cells and is secreted into the urine in the proximal tubule lumen, which is coupled with HCO₃⁻ recovery resulting from glutamine metabolism. NH₄⁺ is primarily reabsorbed by the Na⁺–K⁺–2Cl⁻ co-transporter NKCC2 in the thick ascending limb of the loop of Henle and is accumulated in the interstitium. Interstitial NH₃/NH₄⁺ is then secreted into the cortical and medullary collecting duct lumen by several mechanisms: diffusion of medullary NH₃ across the basolateral and apical membranes into the lumen; basolateral Na⁺–K⁺–2Cl⁻-ATPase that transports NH₄⁺ into the cell by substituting NH₄⁺ for K⁺ in the inner medullary collecting duct; NH₃ uptake across the basolateral membrane via the rhesus blood group glycoproteins, RhBG and RhCG; and NH₃ secretion across ICs via RhCG. Collecting duct NH₃ secretion occurs by parallel NH₃ and H⁺ transport, and apical H⁺ secretion involves both H⁺-ATPase and H⁺–K⁺-ATPase (Figure 1).⁸,¹⁴,¹⁵

In urine is the sum of the ammonium (NH₄⁺) charge plus the titratable acid (H₂PO₄⁻) charge minus the HCO₃⁻ charge.³
In mouse models, mice deficient in the B1 subunit show more alkaline urine without systemic acidosis when fed a standard diet. These mice also develop more severe metabolic acidosis after an acid load compared to normal mice, indicating a failure of normal urinary acidification.30 The B1-deficient mice do not develop hearing impairment or nephrocalcinosis. In contrast, mice lacking the a4 subunit demonstrate dRTA with severe metabolic acidosis, hypokalemia, early nephrocalcinosis, and severe hearing impairment with enlarged cochlear and endolymphatic ducts in the inner ear.31,32 In addition, these mice develop proximal renal tubular dysfunction with defective endocytic trafficking, proteinuria, and phosphaturia, which has not been reported in humans.33 This may be due to compensatory changes in the a1, a2, and a3 subunits in the proximal tubules of dRTA patients with the ATP6V0A4 mutation.17,34

Chloride–bicarbonate exchanger AE1 gene (SLC4A1) mutations

The Cl−–HCO3− exchanger AE1, encoded by SLC4A1, is expressed in the red blood cells (RBCs; eAE1, Band 3) and in the A-ICs of kidney (kAE1, Band 3). SLC4A1 mutations can cause dRTA or RBC abnormalities including hereditary spherocytosis (HS), Southeast Asia ovalocytosis (SAO), hereditary stomatocytosis, and hereditary xerocytosis.35 Most mutations cause either dRTA or RBC abnormalities, whereas only a few mutations lead to abnormalities in both.3 dRTA caused by AE1 gene mutations can occur with either an AD or AR transmission (Table 1).1,6 AE1 mutations are rare and usually have an AD transmission in Caucasians, while AR dRTA is common in Asians.17 The clinical symptoms are more severe and the age of onset is earlier in patients with AR dRTA compared to patients with AD dRTA.7 Patients with AD dRTA can present with complete dRTA or idRTA, whereas patients with AR dRTA always present with complete dRTA.16 Although RBC abnormalities have been associated with AR dRTA, hemolytic anemia is extremely rare in AD dRTA, and only one family with AD idRTA and HS due to a heterozygous splicing mutation (c.1432–1G>A, Band 3(PRIBRAM) has been reported.36

AD AE1 gene (SLC4A1) mutations

Wrong et al reported a family with AD dRTA caused by a heterozygous mutation of R589H in AE1.37 Subsequent studies described AD dRTA with AE1 gene mutations including R589H,38–40 R589C,38 R589S,39 S613F,38 R901X,39 A858D,41 A888L+889X,42 G609R,43 D905Gfs15,45 D905dup,45 and M909T.46

Experimental studies using transfected cell models showed that AE1 gene mutations caused normal or modestly reduced anion transport activity and impaired trafficking with retention in the endoplasmic reticulum (ER). Heterodimers with the wild-type AE1 polypeptide caused a dominant negative trafficking phenotype (R589H and S613F)35,47–49 or mistargeting to the apical membranes or to both the apical and basolateral membranes (G609R, R901X, and M909T).43,46,49–51

In vivo studies, mice lacking Ae1 exhibited complete dRTA with hemolytic anemia, while mice heterozygous for Ae1 showed no apparent defect.52,53 Mumtaz et al recently generated an Ae1 R607H knockin (KI) mouse, corresponding to the most common AD dRTA mutation in human AE1, R589H.54 They found that both homozygous and heterozygous R607H KI mice exhibited idRTA without RBC abnormalities.54 Mutant mice exhibited decreased levels of Ae1 in A-ICs, but preserved basolateral targeting of the mutant protein, and reduced expression of H+-ATPase due to impaired targeting to the apical membranes.5,54

AR AE1 gene (SLC4A1) mutations

Tanphaichitr et al first reported AR dRTA with a homozygous AE1 gene loss-of-function mutation, G701D, in two siblings in Thailand who had xerocytic hemolytic anemia with normal RBC AE1 activity.55 AE1 G701D interacts with an RBC AE1 chaperon, glycoporphin A (GPA), which rescues the mutant protein in RBCs. GPA is not expressed in renal ICs, which explains the normal erythroid AE1 expression in these patients.33,55 Subsequently, Yenchitsomanus et al reported a homozygous AE1 G701D mutation in five out of eight Thai families with AR dRTA with mild RBC morphological

Mutations in AD dRTA	Mutations in AR dRTA
Band 3(PRIBRAM) (c.1432–1G>A)	SAO (ΔAla400-Ala408)
R589H	V488M (Coimbra)
R589C	R602H (Songkla I)
R589S	G701D (Bangkok I)
G609R	S773P (Siriraj I)
F613F	ΔVB50
A858D	A858D
A888L+890X	F667F (Courcouronnes)
R901X (Walton)	C479W (Edmonton I)
D905Gfs15	C447X (null)
D905dup	G494S
M909T	

Note: Heterozygous Band 3(PRIBRAM) and A858D mutations cause incomplete dRTA. Abbreviations: AD, autosomal dominant; AR, autosomal recessive; dRTA, distal renal tubular acidosis; SAO, Southeast Asia ovalocytosis.
abnormalities without hemolytic anemia and suggested that AE1 G701D was a common molecular defect in Thailand.56 SAO is a common hereditary condition in South East and Melanesia. SAO is caused by the AE1 (AAla400-Ala408) mutation, which causesovalocytic erythrocytes to be resistant to invasion by the malarial parasite.57 Vasuvattakul et al reported two patients from Northeast Thailand with AR dRTA and SAO resulting from compound heterozygous AE1 G701D/SAO mutations.58 Bruce et al described AE1 gene dRTA and SAO resulting from compound heterozygous AE1 A858D/SAO mutations in this study exhibited dRTA and SAO with AD transmission. Subsequently, other mutations were identified, including R602H/SAO from South Thailand,59 Q759H/SAO from Malaysia,60 and G701/SAO from the Philippines.61 Although homozygous SAO was long thought to be lethal,62 Picard et al recently reported two patients from Northeast Thailand with AR dRTA and homozygous AE1 G701D was a common molecular defect in Thailand.56 These include *Hka2* (colonic H+-K+–ATPase),75 *Kcc4* (K+–Cl– co-transporter, Kcc4),76 genes for the H+-ATPase C, G, and d subunits,77 *Foxi1* (the Forkhead transcription factor, Foxi1),70 *Rhcg* (the ammonia transporter, Rhcg),79,80 *Slc26a7* (Cl–HCO3– exchanger, Slc26a7, co-localized with AE1),81 *Dmt1* (component of the pathway of acidosis-induced conversion of B-ICs into A-ICs, hensin),11 *Gpr4* (proton sensing G protein-coupled receptor, GPR4),82 *Nhe4* (Na+–H+ exchanger 4, NHE4),83 *Slc4a4* (Na+–HCO3– co-transporter, NBCe2),84 *Atp6ap2* (ATPase H+ transporting lysosomal accessory protein 2, atp6ap2),85 and *Ncoa7* (nuclear receptor coactivator 7, Ncoa7: an H+-ATPase interacting protein), as shown in Table 2.86 Although most of these genes have not been previously identified in human disease, Enerbäck et al identified homozygous *Foxi1* mutations in two families with AR dRTA and early-onset SNHL.87 Furthermore, a recent study found homozygous or compound heterozygous *Wdr72* (tryptophan–aspartate repeat domain 72, WDR72: a protein possibly associated with intracellular transport function, which is rescued by GPA (S667F),66 mild trafficking impairment (E522K),67 and ER retention due to impaired trafficking and misfolding (C479W).68

Other candidate genes for dRTA

Because ~20% of patients with dRTA do not have mutations in genes for H+-ATPase or AE1, additional candidate genes have been identified in mouse models of dRTA.3,6 These include *Hka2* (colonic H+-K+–ATPase),75 *Kcc4* (K+-Cl– co-transporter, Kcc4),76 genes for the H+-ATPase C, G, and d subunits,77 *Foxi1* (the Forkhead transcription factor, Foxi1),70 *Rhcg* (the ammonia transporter, Rhcg),79,80 *Slc26a7* (Cl–HCO3– exchanger, Slc26a7, co-localized with AE1),81 *Dmt1* (component of the pathway of acidosis-induced conversion of B-ICs into A-ICs, hensin),11 *Gpr4* (proton sensing G protein-coupled receptor, GPR4),82 *Nhe4* (Na+–H+ exchanger 4, NHE4),83 *Slc4a4* (Na+–HCO3– co-transporter, NBCe2),84 *Atp6ap2* (ATPase H+ transporting lysosomal accessory protein 2, atp6ap2),85 and *Ncoa7* (nuclear receptor coactivator 7, Ncoa7: an H+-ATPase interacting protein), as shown in Table 2.86 Although most of these genes have not been previously identified in human disease, Enerbäck et al identified homozygous *Foxi1* mutations in two families with AR dRTA and early-onset SNHL.87 Furthermore, a recent study found homozygous or compound heterozygous *Wdr72* (tryptophan–aspartate repeat domain 72, WDR72: a protein possibly associated with intracellular transport function, which is rescued by GPA (S667F),66 mild trafficking impairment (E522K),67 and ER retention due to impaired trafficking and misfolding (C479W).68

Gene	Protein
Hka2	Colonic H+-K+-ATPase
Kcc4	K+–Cl– co-transporter
ATP6V1C2	H+-ATPase C2
ATP6V1G2	H+-ATPase G3
Dmt1	Forkhead transcription factor, Foxi1
Rhcg	Ammonia transporter, Rhcg
Slc26A7	Cl–HCO3– exchanger, Slc26A7
Gpr4	Proton sensing G protein-coupled receptor, GPR4
Nhe4	Na+–H+ exchanger 4, NHE4
Slc4a5	Na+–HCO3– co-transporter, NBCe2
Atp6ap2	ATPase H+ transporting lysosomal accessory protein 2, Atp6ap2
Ncoa7	Nuclear receptor coactivator 7, Ncoa7
Wdr72	Tryptophan–aspartate repeat domain 72, WDR72

Note: *Mutations in these genes were recently reported in humans.
endocytic vesicle trafficking) mutations in two families with AR dRTA (Table 2).88

Causes of acquired dRTA
The main causes of acquired dRTA include medications and, most commonly, autoimmune diseases, with Sjögren syndrome being the most frequent cause. Although the precise pathogenetic mechanisms of dRTA development in Sjögren syndrome are unclear, several studies suggest that autoantibodies against carbonic anhydrase or A-ICs transporters are involved in the pathogenesis.89 Systemic lupus erythematosus, thyroiditis, and renal transplantation have been reported as other autoimmune causes of dRTA.90

Medications including amphotericin B, foscarnet, analgesic abuse, lithium, melphalan, and amiloride also cause dRTA.2,7 In the case of amphotericin B and foscarnet, the mechanisms mediating these effects involved increased membrane permeability in the collecting duct and increased mitochondrial dysfunction in renal tubular cells, respectively.90 The mechanisms associated with other drugs are not clear.

Atypical clinical features of dRTA
Some patients with dRTA exhibit atypical clinical features, which include transient and reversible proximal tubular dysfunction and hyperammonemia.

Reversible proximal tubular dysfunction in patients with dRTA
Reversible proximal tubular dysfunction has been reported in patients with dRTA. This appears to involve defects in bicarbonate reabsorption,91,92 low-molecular-weight proteinuria,93 hypouricemia with uricosuria, phosphaturia, and generalized aminoaciduria.94,95 Besouw et al recently reported that 16 of 24 patients with dRTA showed transient and partial Fanconi syndrome that resembled Dent disease or Low syndrome. Proximal tubular dysfunction was only seen in children with mutations in subunits of the H^+\text{-}ATPase and in those with unknown mutations.96

Although the exact mechanism underlying reversible proximal tubular dysfunction is unclear, it has been suggested to involve hypokalemic nephropathy,32,94 and/or dysfunction of the receptor-mediated endosomal pathway in renal proximal tubule cells.97 The chloride transporter ClC-5 (2Cl^−\text{-}H^+ exchange) is expressed in the apical endosomes of renal proximal tubules containing H^+\text{-}ATPase. ClC-5 normally acts in the endosomal pathway by coupling with H^+\text{-}ATPase. Mutations of the ClC-5 gene cause Dent disease.98 Picollo et al demonstrated that low extracellular pH or acidosis inhibits CIC-5 function by reducing the driving force for 2Cl^−\text{-}H^+ exchange.99 Therefore, inhibition of CIC-5 function due to systemic acidosis may lead to partial renal Fanconi syndrome in patients with dRTA.97

Hyperammonemia in patients with dRTA
Hyperammonemia, first described by Miller and Schwartz in dRTA, was not initially recognized as an important clinical feature of dRTA.100 Subsequently, Miura et al reported a high frequency of hyperammonemia in patients with dRTA (four of six patients with available data), suggesting that hyperammonemia is a common feature of dRTA.25 Hyperammonemia was reported in 15 patients with dRTA in a recent systematic review101 and in a case report.102 In these patients, a negative correlation was observed between blood ammonia and bicarbonate levels, and alkali therapy resulted in a rapid normalization of ammonia levels.101 Increased renal ammonia synthesis in response to acidosis, without appropriate ammonia excretion, may result in hyperammonemia in dRTA.100,101

Incomplete distal renal tubular acidosis
idRTA, first described in 1959, presents with inadequate urinary acidification without spontaneous metabolic acidosis.103 Failure to acidify urinary pH <5.3 in the NH4Cl load was considered diagnostic for idRTA.99 However, because urinary acidification capacity is a continuous trait, idRTA is not a distinct entity, and may be a variant of normal urinary acidification.99,104

Patients with idRTA commonly exhibit hypocitraturia, hypercalciuria, nephrocalcinosis, and nephrolithiasis.105,106 A wide range of idRTA prevalence has been reported in patients with recurrent urinary stones.104 Bone abnormalities also have been frequently reported in patients with idRTA, including rickets107 or growth failure108 in children and osteoporosis and osteopenia in adults.109,111 However, other studies found no association between idRTA and lower bone mass.1,65,112

Although the molecular basis for idRTA is unknown in most patients, heterozygous mutations in SLC4A1 (Band 3|^PPXIBRAM and A858D),36,41 ATP6V1B1 (F468fsX487),113 and ATP6V0A4 (S544L)114 have been reported. Furthermore, Dhayat et al reported that recurrent kidney stone formers with H^+\text{-}ATPase B1 subunit p.E161K single-nucleotide polymorphism have idRTA with an increased prevalence of calcium phosphate kidney stones.115 A recent experimental study revealed that Ncoa7 (H^+\text{-}ATPase interacting protein)-
Kidney stone formation in dRTA

The combination of hypercalciuria, hypocitraturia, and high urine pH contributes to the development of kidney stone formation and/or nephrocalcinosis in dRTA.8 Because bicarbonate is depleted from the extracellular fluid in dRTA, buffering of the retained nonvolatile acids promotes the release of calcium phosphate from bone, which increases urinary excretion of calcium and phosphate in dRTA.6,7 Moreover, metabolic acidosis decreases the function and expression of the TRPV5 calcium channel in the distal tubule, independent of parathyroid hormone and vitamin D, which also contributes to hypercalciuria in dRTA.117

Urinary citrate inhibits stone formation by complexing with calcium, inhibiting spontaneous nucleation, and preventing the growth of crystals.118 Metabolic acidosis increases citrate reabsorption in the proximal tubule via increased activity of sodium-dependent dicarboxylate transporter 1.17,117,118 A high urine pH increases the supersaturation of calcium phosphate in the tubular lumen, thereby increasing the risk of kidney stone formation.117

Treatment

The primary objectives of dRTA treatment are correction of metabolic acidosis and avoidance of disease-related complications, which include failure to thrive, growth retardation, rickets, osteoporosis, nephrolithiasis, and nephrocalcinosis.3,16,89 It is especially important to prevent nephrocalcinosis because progressive nephrocalcinosis may lead to chronic kidney disease (CKD) and end-stage renal disease in patients with dRTA.89

Alkali in the form of sodium and/or potassium bicarbonate or citrate salts should be administered to maintain a normal serum bicarbonate concentration of >20 mEq/L in infants and >22 mEq/L in children and adults.6,89 However, excessive sodium bicarbonate will increase the extracellular volume and decrease the reabsorption of proximal tubular HCO₃⁻, which increases the need for alkali.6 In addition, because the increase in sodium intake after sodium citrate or sodium bicarbonate administration can result in increased urinary calcium excretion, potassium salts may be more effective than sodium salts for treatment of dRTA with kidney stones.119,120 As citrate salts can also correct hypocitraturia and prevent nephrolithiasis, potassium citrate is usually recommended.16,89

Young children with dRTA need higher doses of alkali because of the greater rate of acid production caused by the formation of hydroxyapatite associated with bone growth.7 The amount of alkali needed usually decreases with age from as much as 5–8 mEq/kg/day in infants to 3–4 mEq/kg/day in children after the age of 6 years to 1–2 mEq/kg/day in adults.6,89,92 A recent study showed that children with mutations in ATP6V1B1 or ATP6V0A4 generally needed higher doses of alkali compared to those with SLC4A1 mutations.96 In patients with severe hypokalemia despite administration of potassium citrate, potassium supplementation may be required.96

Dietary modifications to increase urine citrate excretion may benefit dRTA patients with kidney stones and hypocitraturia. Dietary modifications include increased intake of fluid and citrus fruits, normal intake of calcium, and restricted intake of sodium, oxalate, animal proteins, and fructose.118

Normalization of serum bicarbonate level, urinary calcium excretion, urinary low-molecular-weight protein levels (β2 microglobulin or α2 microglobulin), and growth rate are good markers for adherence to and/or adequacy of treatment.6,93,96 In addition, abdominal ultrasonography should be regularly checked to detect nephrocalcinosis and nephrolithiasis.

Long-term outcome

The prognosis of dRTA is generally good in patients treated with early and sufficient doses of alkali, but alkali administration does not improve hearing impairment in patients with dRTA and SNHL.16,96 Moreover, recent studies showed an increased frequency of CKD in patients with dRTA during long-term follow-up. Besouw et al reported 9 of 24 (37.5%) children with dRTA developed CKD stage 2.96 Palazzo et al also showed 16 of 51 (31.3%) patients with dRTA developed CKD during long-term follow-up and after puberty.7 Although the precise pathogenic mechanisms of CKD in patients with dRTA are unknown, the combination of nephrocalcinosis and hypokalemia, which results in tubulointerstitial damage, or kidney damage after repeated episodes of dehydration and acute kidney injury have been suggested as potential causal factors.5,17

Disclosure

The author reports no conflicts of interest in this work.

References

1. Fry AC, Karet FE. Inherited renal acidoses. Physiology. 2007;22(3):202–211.
2. Rodríguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13(8):2160–2170.
3. Mohabbi N, Wagner CA. Pathophysiology, diagnosis and treatment of inherited distal renal tubular acidosis. J Nephrol. 2018;31(4):511–522.
27. Yang Q, Li G, Singh SK, Alexander EA, Schwartz JH. Vascular H+-ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells. *J Am Soc Nephrol*. 2006;17(7):1858–1866.

28. Fuster DG, Zhang J, Xie XS, Moe OW. The vascular-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. *Kidney Int*. 2008;73(10):1151–1158.

29. Su Y, Blake-Palmer KG, Sorrell S, et al. Human H’ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. *Am J Physiol Renal Physiol*. 2008;295(4):F950–F958.

30. Finberg KE, Wagner CA, Bailey MA, et al. The B1-subunit of the H’-ATPase is required for maximal urinary acidification. *Proc Natl Acad Sci USA*. 2005;102(38):13616–13621.

31. Norgett EE, Golder ZJ, Lorente-Cánovas B, Ingham N, Steel KP, Karet Frank FE. ATP6v0a4 knockout mouse is a model of distal renal tubular acidosis with hearing loss, with additional extrarenal phenotype. *Proc Natl Acad Sci USA*. 2012;109(34):13773–13780.

32. Lorente-Cánovas B, Ingham N, Norgett EE, Golder ZJ, Karet Frank FE, Steel KP. Mice deficient in H’-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear. *Dis Model Mech*. 2013;6(2):434–442.

33. Hennings JC, Picard N, Huenker AK, et al. A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. *EMBO Mol Med*. 2012;4(10):1057–1071.

34. Schulz N, Dave MH, Stehberger PA, Chau T, Wagner CA. Differential localization of vascular H’-ATPases containing α1, α2, α3, or α4 (ATP6V0A1-4) subunit isoforms along the nephron. *Cell Physiol Biochem*. 2007;20(1-4):109–120.

35. Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. *J Exp Biol*. 2009;212(Pt 11):1672–1683.

36. Rysava R, Tesar V, Jirsa M, Brabc J, Jarolím P. Incomplete distal renal tubular acidosis co-inherited with a mutation in the band 3 (AE1) gene. *Nephrol Dial Transplant*. 1997;12(9):1869–1873.

37. Wrong O, Unwin R, Fine LG, Cohen E, Thakker R, Tanner M. Unraveling of the molecular mechanisms of kidney stones. Report of a Meeting of Physicians and Scientists. *Lancet*. 1996;348(9041):1561–1565.

38. Bruce LJ, Cope D, Jones G, et al. Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. *J Clin Invest*. 1997;100(7):1693–1707.

39. Karet FE, Gainza FJ, Győry AZ, et al. Mutations in the chloride–bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. *Proc Natl Acad Sci USA*. 1998;95(11):6337–6342.

40. Jarolím P, Shayakul C, Prabakaran D, et al. Autosomal dominant distal renal tubular acidosis reveals a previously unrecognized role of the VI-ATPase B1 subunit in inner medullary collecting duct cells. *J Am Soc Nephrol*. 2005;16(12):3441–3449.

41. Bruce LJ, Wrong O, Toye AM, et al. Band 3 mutations, renal tubular acidosis and nephrocalcinosis. *Arch Med Res*. 2012;43(4):298–304.

42. Cheidee LD, Vieira TC, Lima PR, Saad ST, Heilberg IP. A novel mutation in the SLC4A1 gene in two unrelated Chinese families with distal renal tubular acidosis. *J Exp Biol*. 2008;211(5):1065–1070.

43. Rungroj N, Devonald MA, Cuthbert AW, et al. A novel missense mutation in AE1 causing autosomal dominant renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. *J Biol Chem*. 2004;279(14):13833–13838.

44. Zhang Z, Liu XX, He JW, et al. Identification of two novel mutations in the SLC4A1 gene in two unrelated Chinese families with distal renal tubular acidosis. *Arch Med Res*. 2012;43(4):298–304.

45. Shao L, Xi Y, Dong Q, Lang Y, Yue S, Miao Z. A novel SLC4A1 variant in an autosomal dominant renal tubular acidosis family with a severe phenotype. *Endocrine*. 2010;37(3):473–478.
46. Fry AC, Su Y, Vu C, Cuthbert AW, Trachtham H, Karet Frankl FE. Mutation conferring apical-targeting motif on AE1 exchanger causes autosomal dominant renal RTA. J Am Soc Nephrol. 2012;23(7):1238–1249.

47. Quilty JA, Li J, Reithmeier RA. Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1. Am J Physiol Renal Physiol. 2002;282(5):F810–F820.

48. Cordat E, Kitanakom S, Yenchitsomanus PT, et al. Dominant and recessive distal renal tubular acidosis mutations of kidney anion exchanger 1 induce distinct trafficking defects in MDCK cells. Traffic. 2006;7(2):117–128.

49. Toye AM, Banting G, Tanner MJ. Regions of human kidney anion exchanger 1 (kAE1) required for basolateral targeting of kAE1 in polarised kidney cells: mis-targeting explains dominant renal tubular acidosis (dRTA). J Cell Sci. 2004;117(Pt 8):1399–1410.

50. Quilty JA, Cordat E, Reithmeier RA. Impaired trafficking of human kidney anion exchanger (kAE1) caused by hetero-oligomer formation with a truncated mutant associated with distal renal tubular acidosis. Biochem J. 2002;368(Pt 3):895–903.

51. Devonald MA, Smith AN, Poon JP, Ihrke G, Karet FE. Non-polarized targeting of AE1 causes autosomal dominant renal tubular acidosis. Nat Genet. 2003;33(2):125–127.

52. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper S, Wagner CA. Distal renal tubular acidosis in mice lacking the AE1 (band 3) CI/HCO3– exchanger (slc4a1). J Am Soc Nephrol. 2007;18(5):1408–1418.

53. Akel A, Wagner CA, Kovacikova J, et al. Enhanced suicidal death of erythrocytes from gene-targeted mice lacking the CI/HCO3– exchanger AE1. Am J Physiol Cell Physiol. 2007;292(5):C1759–1767.

54. Muntzr A, Trepiccione F, Hennings JC, et al. Intercalar cell depletion and vacuolar H+–ATPase mistargeting in an Ae1 R607H knockin model. J Am Soc Nephrol. 2017;28(5):1507–1520.

55. Tanphaichitr VS, Sritippayawan S, Sumboonnanonda A, et al. Novel AE1 protein mutation in Southeast Asian ovalocytosis may be lethal. Blood. 1996;88(11):4366–4374.

56. Ribeiro ML, Alloisio N, Almeida H, et al. Severe hereditary spherocytosis and distal renal tubular acidosis associated with the total absence of band 3. Blood. 2000;96(4):1602–1604.

57. Toye AM, Williamson RC, Khanfar M, et al. Band 3 Courcournieres (Ser667Phe): a trafficking mutant differentially rescued by wild-type band 3 and glycoporphin A. Blood. 2008;111(11):5380–5389.

58. Chang YH, Shaw CF, Jian SH, Hsieh KH, Chio YuH, Lu PJ. Compound mutations in human anion exchanger 1 are associated with complete distal renal tubular acidosis and hereditary spherocytosis. Kidney Int. 2009;76(7):774–783.

59. Chu C, Woods N, Sawsadee N, et al. Band 3 Edmonton 1, a novel mutant of the anion exchanger 1 causing spherocytosis and distal renal tubular acidosis. Biochem J. 2010;426(3):379–388.

60. Sinha R, Agarwal I, Bawazir WM, Bruce LJ. Distal renal tubular acidosis with hereditary spherocytosis. Indian Pediatr. 2013;50(7):693–695.

61. Khoistseth S, Sirkkanerat A, Wongbenjarat K, et al. Distal renal tubular acidosis associated with anion exchanger 1 mutations in children in Thailand. Am J Kidney Dis. 2007;49(6):841–850.

62. Shmukler BE, Kedar PS, Warang P, et al. Hemolytic anemia and distal renal tubular acidosis in two Indian patients homozgyous for SLC4A1/AE1 mutation A858D. Am J Hematol. 2010;85(10):824–828.

63. Fawaz NA, Beshlawi IO, Al Zadjali SJ, et al. dRTA and hemolytic anemia: first detailed description of SLC4A1 A858D mutation in hemolytic anemia state. Eur J Haematol. 2012;88(4):350–355.

64. Kager L, Bruce LJ, Zeitlhofer P, et al. Band 3 null mutation, a novel homozygous SLC4A1 p.Ser773Pro variant causing severe hemolytic anemia, dyserythropoiesis and complete distal renal tubular acidosis. Pediatr Blood Cancer. 2017;64(3):e26227.

65. Devonald MA, Smith AN, Poon JP, Ihrke G, Karet FE. Non-polarized targeting of AE1 causes autosomal dominant renal tubular acidosis. Nat Genet. 2003;33(2):125–127.

66. Boettger T, Hübner CA, Maier H, Beck MB, Fenton TJ. Deafness and renal tubular acidosis associated with the total absence of the anion exchanger SLC4A1 (AE1, Band 3) gene results in incomplete distal renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature. 2002;416(6883):874–878.

67. Smith AN, Borthwick KJ, Karet FE. Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+–ATPase deficiency. Arch Dis Child. 2001;84(6):504–507.

68. Toye AM, Williamson RC, Khanfar M, et al. Band 3 Courcournieres (Ser667Phe): a trafficking mutant differentially rescued by wild-type band 3 and glycoporphin A. Blood. 2008;111(11):5380–5389.
