Potential biases in the detection of planetary systems with large transit timing variations

E. García-Melendo1,2★ and M. López-Morales2,3★†

1 Fundació Privada Observatori Esteve Duran, 08553 Seva, Spain
2 Institut de Ciències de L’Espai, Campus UAB, Fac. Ciències, Torre C5 p2, 08193 Bellaterra, Barcelona, Spain
3 Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW, Washington, DC 20015, USA

ABSTRACT

The transit timing variations (TTVs) technique provides a powerful tool to detect additional planets in transiting exoplanetary systems. In this Letter, we show how transiting planets with significant TTVs can be systematically missed, or catalogued as false positives, by current transit search algorithms, unless they are in multitransit systems. If the period of the TTVs, P_{TTV}, is longer than the time baseline of the observations and its amplitude, A_{TTV}, is larger than the timing precision limit of the data, transiting planet candidates are still detected, but with incorrect ephemerides. Therefore, they will be discarded during follow-up. When P_{TTV} is shorter than the time baseline of the observations and A_{TTV} is sufficiently large, constant period search algorithms find an average period for the system, which results in altered transit durations and depths in the folded light curves. Those candidates can get subsequently discarded as eclipsing binaries, grazing eclipses or blends. Also, for large enough A_{TTV} values, the transits can get fully occulted by the photometric dispersion of the light curves. These detection biases could explain the observed statistical differences between the frequency of multiple systems among planets detected via other techniques and those detected via transits. We suggest that new transit search algorithms allowing for non-constant period planets should be implemented.

Key words: methods: analytical – methods: observational – techniques: photometric – planets and satellites: detection.

1 INTRODUCTION

In a transiting exoplanetary system, the presence of other planets can be inferred by the effect of their gravitational pull on the transiting planet. That effect can be detected as periodic transit timing variations (TTVs), with amplitudes potentially as large as several tens of minutes (e.g. Miralda-Escudé 2002; Agol et al. 2005; Holman Murray 2005; Heyl & Gladman 2007; Veras & Ford 2010).

These theoretical predictions have been confirmed by two recent results from the Kepler satellite mission (Borucki et al. 2004). In the first of those results, the system Kepler-9, composed of two transiting Saturn-size planets, presents TTVs with average amplitudes of 4 and 39 min per orbit (Holman et al. 2010). The other reported system, Kepler-11, composed of five 2.3–13.5 M_{\oplus} transiting planets within 0.25 au from the star, and a sixth more massive planet in an outer orbit, shows TTVs amplitudes of up to 30 min (Lissauer et al. 2011). Steffen et al. (2010) have also published five Kepler systems with more than one transiting object, although those have not been confirmed as planets.

It is surprising that TTVs have been first detected in multiple transit planet systems, i.e. systems where several planets are coplanar within a few degrees, since those are geometrically less likely than non-coplanar multiple planet systems where only one planet transits. However, no definitive detection of single-transiting planet TTVs has been reported. Some authors have reported hints of possible TTVs for WASP-3b (Maciejewski et al. 2010), WASP-10b (Maciejewski et al. 2011), WASP-5b (Fukui et al. 2011) and most recently HAT-P-13b (Nascimbeni et al. 2011; Pál et al. 2011), but none of those claims has yet been confirmed. Ford et al. (2011) also recently reported over 60 TTVs candidate systems in the Kepler mission data.

The apparent scarcity of single-transit multiplanet systems was also noted by Fabrycky (2009), who showed how one-third of the non-transiting planets discovered via the radial velocity technique, and with orbital periods similar to the transiting planets known at the time, had companions versus no detected companions for any of the transiting planets. Two single-transit planetary systems with a second companion have been detected since then, CoRoT-7b (Léger
2 TRANSIT SEARCH SURVEYS AND ALGORITHMS

Since the discovery of the first transiting planet HD 209458b a decade ago (Charbonneau et al. 2000; Henry et al. 2000), several surveys have successfully detected many other transiting systems. All those surveys combined, i.e. the ground-based projects OGLE (Udalski et al. 1992), HAT (Bakos et al. 2002), TrES (Alonso et al. 2004; Dunham et al. 2004), XO (McCullough et al. 2005), SuperWASP (Pollacco et al. 2006) and the recent space missions CoRoT (Auvergne et al. 2009) and Kepler (Borucki et al. 2004), have already discovered over 100 transiting planets. In addition, the Kepler mission has recently announced 1235 transit candidates (Borucki et al. 2011b), of which 90 per cent are expected to be true exoplanets (Morton & Johnson 2011).

Transit planet candidates in each of those surveys are identified via custom-made search algorithms adapted to the specific characteristics of each survey (i.e. noise systematics, sampling rate, etc.). All the algorithms follow common approaches, which either look at the unfolded light curves in search for transit-like signals or fold the light curves over trial periods until a transit-like signal is found. Because of the typically sparse sampling of single orbit light curves, the second approach is the one ground-based surveys generally use. All the above ground-based surveys use the box-fitting least-squares (BLS) algorithm (Kovács, Zucker & Mazeh 2002) or some modified version of it. The BLS algorithm consists in folding the light curves over a series of periods, and then fitting the folded curves with narrow box-shaped functions of different depths and widths until finding the best least-squares fit. OGLE, TrES and HAT use this approach. XO uses a modified form of the BLS algorithm which includes an adaptive mesh search routine to increase the speed at which optimal periods are identified (McCullough et al. 2005). SuperWASP also uses a modified form of BLS which selects the strongest peaks of the BLS periodogram via Newton–Raphson refinement (Protopapas, Jimenez & Alcock 2005). They also refine the box-shape function approach by (1) estimating the planetary radius using the physical properties of the star and analytical approximations between the transit depth and the stellar and planetary radii, and (2) inspecting the folded light curves for photometric ellipsoidal variations characteristic of stellar binaries (Collier Cameron et al. 2006).

The CoRoT transit search algorithms have been developed by different participating teams and applied independently to the data. The algorithms, described in detail in Moutou et al. (2005), Régulo et al. (2007), Carpano & Fridlund (2008) and Renner et al. (2008), follow approaches such as correlations with sliding transit templates, box-shaped signal searches, wavelet transformations or BLS. Some of the transit search routines in these algorithms work with folded data, while others use the unfolded light curves. However, all the algorithms, except for the ones by Renner et al. (2008) and Régulo et al. (2007), limit their analysis to strictly periodic signals. The Renner et al. (2008) algorithm includes some tolerance for period variations by allowing period error margins of 0.1 d. The Régulo et al. (2007) algorithm, based on wavelet transformations, can detect period variations of about 2 per cent, depending on the precision of the data (Régulo, private communication). Both algorithms use unfolded light curves.

Finally, Kepler uses a custom-made transiting planet search (TPS) pipeline, which starts by applying a wavelet-based, adaptive matched filter to minimize the light curve noise, followed by a transit waveform (i.e. box-shape-like function) to search for individual transit events in the unfolded data. Those events are then folded over a wide range of periods until the period that best matches the full set of events is found (see Jenkins 2002; Jenkins et al. 2010a,b; Borucki et al. 2011a). TPS, which is optimized to detect Earth-size planets, folds the transit candidate events at strict periodicities, not allowing for very large TTVs. However, because of the continued monitoring of targets, the pipeline does flag systems with significant TTVs (e.g. Kepler-9, Kepler-11).

3 MODEL SIMULATIONS

We have conducted model simulations to assess the effectiveness of current transit search algorithms for the case of transiting planets with significant TTVs. Our model system consists of a Jupiter-size planet orbiting a Sun-like star, with an orbital period $P_p = 3.6235$ d and impact parameter $b = 0$. The model transit, generated using JKTEBOP (Southworth, Maxted & Smalley 2004a; Southworth et al. 2004b), and a linear limb darkening of 0.61, has a depth of 1.3 per cent, easily detectable by both ground and space surveys. Note that we use as example case a model with parameters typical of known transiting hot Jupiters for the purpose of illustrating the potential TTV detection biases. The effect is still the same for planets with smaller radius or larger transit impact parameter, except for the fact that transit detection limits will depend more strongly on the noise levels of the data (i.e. shallower transits get diluted into the noise at increasingly lower values of Δ_{TTV}; see Section 4).

Using that model, we simulate a series of transits adopting as variable parameters the length of the observing blocks, the observing cadence, the photometric dispersion of the light curves, σ_{ph}, and the amplitude and period of the TTVs, A_{TTV} and P_{TTV}. In our simulations, A_{TTV} is defined as a fraction of the orbital period of the planet or, equivalently, as a fraction of the orbital phase. For the TTVs, we assume a simple periodic model of the form

$$T_{\text{mid}} = T_0 + n P_p + A_{\text{TTV}} P_p \sin \left(\frac{2\pi}{P_{\text{TTV}}} n P_p \right),$$

where P_{TTV} is given in days, n is the number of elapsed orbits with respect to an arbitrary initial transit epoch, T_0, and T_{mid} is the mid-transit time of each transit.

For the simulations, we adopt values of A_{TTV} between 0.0025 and 0.02, and values of P_{TTV} between 25 and 360 d. In addition, to resemble as close to real observing conditions as possible, we perform the simulations with parameters typical of both ground-based and space-borne surveys. In the case of ground-based surveys, we simulate two scenarios. The first one adopts an observing block length of about 3 months (90 d), a photometric dispersion $\sigma_{ph} = 8 \times 10^{-3}$, and an observing cadence of 8 min, which approximate the average values of those parameters for the ground-based surveys listed in Section 2, over one observing season (year). In the second scenario, we generate three observing blocks of 90 d each over a 3-year period to simulate long-term ground-based observations spanning over more than one observing season. In the simulations,
we also include the effect of day–night cycles and a 70 per cent probability of clear nights to estimate the total number of observable transits. To simulate the conditions of a space-borne survey, we adopt parameters similar to the Kepler mission, i.e. a photometric dispersion $\sigma_{ph} = 10^{-4}$, a 30 min cadence and two different observing block lengths: one of 90 d, to compare with similar ground-based data, and another one with continuous observations of over 3 years, which is the nominal lifetime of the mission (Borucki et al. 2004).

Each synthetic light curve is then folded over a wide range of trial periods, in a manner similar to the BLS algorithms, until the best period is found. That best period is designated as the one that minimizes the transit duration in the folded light curves or, equivalently, the period that minimizes the transit’s photometric dispersion. To interpret our results, we use the raw space-borne model data, and the ground-based model data averaged over 0.002 phase bins.

4 SIMULATION RESULTS

The outcome of the simulations is illustrated in Figs 1 and 2. Fig. 1 shows the results for the 90-d observing blocks, both for the ground-based and Kepler survey cases. Fig. 2 shows the results for the 3-year observing blocks (three seasons for ground-based surveys and continuous observations for Kepler). In all cases, a BLS-type algorithm should detect transit-like dips for $A_{TTV} \lesssim 0.02$. However, the characteristics of the curves change with the values of A_{TTV} and P_{obs}, i.e. the length of the observing blocks.

Fig. 1 reveals two distinct cases. When $P_{TTV} < P_{obs}$ (left-hand column in the figure), the full amplitude of the TTV is observed and any best-fitting algorithm should fold the data about the correct orbital period of the planet, P_p. However, the folded transits widen and get shallower as A_{TTV} increases. While the effect of these TTVs...
will be discernible in Kepler-like data, those transiting planet candidates will be most likely labelled as false positives given the lower light curve data quality of a typical ground-based survey (signals that wide and shallow will be mistaken for grazing binary eclipses). Further tests show that for $A_{TTV} \gg 0.02$, the transits get completely diluted in typical ground-based data. When $P_{TTV} > P_{obs}$ (right-hand column in the figure), the algorithms find a perfect transit shape, but with the data folded over an erroneous period:

$$P_{\phi} = P_p \left(1 + 2\pi A_{TTV} \frac{P_p}{P_{TTV}} \right),$$

which results from equation (1) when $2\pi \frac{P_p}{P_{TTV}} \ll 1$. This period offset also affects the T_0 zero epoch value, and therefore the resulting transit ephemerides equation will be incorrect. Any follow-up observation will therefore miss the transit event, and the candidate will be discarded as a spurious detection.

For intermediate cases, where $P_{TTV} \sim P_{obs}$ (middle column in the figure), a best-fitting folded light curve simultaneously yields a wrong ephemeris and shape-deformed minima, which may again elude correct detection.

Fig. 2 illustrates a situation similar to the left-hand column of Fig. 1 (i.e. $P_{TTV} < P_{obs}$), but for the 3-year observing blocks. This figure shows more clearly how the depth and width of the transits get altered as a function of A_{TTV}. In the case of $A_{TTV} = 0.01$, for example, the folded ground-based light curve resembles a ‘V’ shape, typical of binary star false positives.

5 DISCUSSION

Terquem & Papaloizou (2007) and Lo Curto et al. (2010) have suggested that the absence of multiple planet systems (and therefore TTVs) among transiting planets discovered by surveys (in the majority of their hot Jupiters discovered from the ground until Kepler was launched) could be due to migration mechanisms. Massive short-period planets would have moved inwards, disturbing the orbits of all other planets in their way. However, the recent detection with Kepler of over 130 candidate systems showing some evidence of TTVs challenges those hypotheses (Ford et al. 2011). Fig. 3 represents the frequency of TTV candidates reported by Ford et al. (2011) in two separate histograms: one for planets with $R_p < 6R_\oplus$, i.e. Neptune-size and smaller planets, and the other for planets with $6R_\oplus < R_p < 15R_\oplus$, i.e. gas giants. Given the photometric precision and observing cycle limitations, gas giants with orbital periods of 6 d or less are the planets most likely to be detected from the ground.

The bottom diagram in the figure shows five TTV candidates that match those criteria. Assuming all of the Ford et al. (2011) candidates truly are planets with TTVs, and comparing those numbers with the total number of hot Jupiter candidates with $P < 6$ d in the current Kepler mission’s candidate list (\sim65 planets), one out of each 15 transiting hot Jupiters should show TTVs. Based on this estimate and given the number of hot Jupiter transiting planets currently confirmed, about seven systems with significant TTVs should have already been discovered from the ground. Doing a similar estimation with the number of multiple planet systems found to date via the radial velocity technique (source http://exoplanet.eu), we find that 14 have planets with orbital periods $P < 6$ d and $M \sin i > 0.5M_J$. Of those, two are Jupiter-mass planets (assuming $M \sin i > 0.5M_J$), which gives a fraction of close-in massive planets in multiple systems of about 1/7, although not all will present significant TTVs. Assuming also that a fraction of the Ford et al. (2011) TTV candidates will be false detections, we conclude that the true number of hot Jupiters showing TTVs falls somewhere below 1/5, and those systems are most likely being missed by current planet search algorithms.

Our simulations reveal two effects that may explain why transiting planets with significant TTVs elude detection. One is finding the wrong transit ephemeris when $P_{TTV} > P_{obs}$. This effect does not preclude those systems from being labelled as transit candidates, but if a dubious candidate around, for instance, a relatively dim star is detected by a small telescope with $\sigma_{ph} \gtrsim 0.01$, and cannot be confirmed by observing it at a higher photometric precision because the ephemerides are incorrect, then the candidate will be discarded before spectroscopic confirmation follow-up.

The other effect, i.e. wider, shallower and ‘V’-shaped transits, may explain why planets with $P_{TTV} < P_{obs}$ and significantly large A_{TTV} are lost. Fig. 4 shows how, for our simulated 1R_{jup} planet, the depth and length of the transit change in the folded light curve when A_{TTV} varies from 0.0025 to 0.02. The almost vertical line in the figure indicates, for comparison, how the transit length and depth of a real planet would vary when its radius increased from 1 to 2R_{jup}. Clearly, a modified BLS algorithm, or visual inspection, will find the depth and length of the candidate to be incompatible with the expected parameters of a real planet, and the system will be rejected as a grazing eclipsing binary. In the case of very low...
light curve scatter and continuous space-borne observations, like Kepler’s, TTVs will be more difficult to miss, as Figs 1 and 2 show. However, faint targets will encounter the same problems as ground-based observations. Algorithms like the ones developed by Régulo et al. (2007) and Renner et al. (2008) should have been able to detect TTVs in the CoRot data, but the limited monitoring per field (∼150 d; Auvergne et al. 2009) and strong data systematics may have prevented such detections.

We conclude that, if our hypotheses are correct, the implementation of new transit search algorithms optimized for the detection of TTVs, and their application to existing ground-based transit-search databases, should lead to the detection of new single-transit systems with significant TTVs.

ACKNOWLEDGMENTS

We thank I. Ribas for useful discussions during the development of this work. We also thank J. Jenkins, D. Latham, C. Régulo and S. Renner for helpful clarifications about transit search algorithms of different surveys.

REFERENCES

Agol E. et al., 2005, MNRAS, 359, 567
Alonso R. et al., 2004, ApJ, 613, L153
Auvergne M. et al., 2009, A&A, 506, 411
Bakos G. Á. et al., 2002, PASP, 114, 974
Bakos G. et al., 2009, in Pont F., Sasselov D., Holman M., eds, Proc. IAU Symp. 253, Transiting Planets. Cambridge Univ. Press, Cambridge, p. 354
Borucki W. et al., 2004, in Favata F., Aigrain S., Wilson A., eds, ESA SP-538, Stellar Structure and Habitable Planet Finding. ESA Publications Division, Noordwijk, p. 177
Borucki W. J. et al., 2011a, ApJ, 728, 117
Borucki W. J. et al., 2011b, ApJ, 736, 19
Carpano S., Fridlund M., 2008, A&A, 485, 607
Charbonneau D. et al., 2000, ApJ, 529, L45
Collier Cameron A. et al., 2006, MNRAS, 373, 799
Dunham E. W. et al., 2004, PASP, 116, 1072
Fabrycky D. C., 2009, in Pont F., Sasselov D., Holman M. J., eds, Proc. IAU Symp. 253, Transiting Planets. Cambridge Univ. Press, Cambridge, p. 173
Ford E. B. et al., 2011, preprint (arXiv:1102.0544)
Fukui A. et al., 2011, PASJ, 63, 287
Henry G. W. et al., 2000, ApJ, 529, L41
Heyl J. S., Gladman B. J., 2007, MNRAS, 377, 1511
Holman M. J., Murray N. W., 2005, Sci, 307, 1288
Holman M. J. et al., 2010, Sci, 330, 51
Jenkins J. M., 2002, ApJ, 575, 493
Jenkins J. M. et al., 2010a, ApJ, 713, L87
Jenkins J. M. et al., 2010b, in Radziwill N. M., Bridger A., eds, Proc. SPIE Conf. Ser. Vol. 7740, Software and Cyberinfrastructure for Astronomy. SPIE, Bellingham, p. 774400D
Kovács G., Zucker S., Mazeh T., 2002, A&A, 391, 369
Léger A. et al., 2009, A&A, 506, 287
Lissauer J. J. et al., 2011, Nat, 470, 53
Lo Curto G. et al., 2010, A&A, 512, A48
McCullough P. R. et al., 2005, PASP, 117, 783
Maciejewski G. et al., 2010, MNRAS, 407, 2625
Maciejewski G. et al., 2011, MNRAS, 411, 1204
Miralda Escudé J., 2002, ApJ, 564, 1019
Morton T. D., Johnson J. A., 2011, preprint (arXiv:1101.5630)
Moutou C. et al., 2005, A&A, 437, 355
Nascimbeni V. et al., 2011, A&A, 532, A24
Pál A. et al., 2011, MNRAS, 413, L43
Pollacco D. L. et al., 2006, PASP, 118, 1407
Protopapas P., Jimenez R., Alcock C., 2005, MNRAS, 362, 460
Queloz D. et al., 2009, A&A, 506, 303
Régulo C. et al., 2007, A&A, 467, 1345
Renner S. et al., 2008, A&A, 492, 617
Southworth J., Maxted P. F. L., Smalley B., 2004a, MNRAS, 351, 1277
Southworth J. et al., 2004b, MNRAS, 355, 986
Stefen J. H. et al., 2010, ApJ, 725, 1226
Terquem C., Papaloizou J. C. B., 2007, ApJ, 654, 1110
Udalski A. et al., 1992, Acta Astron., 42, 253
Veras D., Ford E. B., 2010, ApJ, 715, 803

This paper has been typeset from a TeX/LaTeX file prepared by the author.