Abstract

Background: There are no nationwide studies on mortality after coronary artery bypass grafting (CABG) among foreign-born populations that include detailed information about country of birth and information about socioeconomic position. The objective was to investigate the risk of mortality after CABG considering socioeconomic position, sex and country of birth.

Material and Methods: We included all 72,333 patients undergoing a first isolated CABG in Sweden, during 1995-2007 of whom 12.7% were foreign-born. The patients were classified according to educational level, sex, and country of birth and were followed up to December 2007. We estimated the risk of short and long term mortality after CABG in a multivariable model adjusted for age, calendar year of surgery, diabetes, educational level, and waiting time for surgery. Hazard ratios (HR) with 95% confidence intervals (CI) were calculated based on the Cox proportional hazard model.

Findings: There were 15,284 deaths during the follow-up, 10.4% of whom were foreign-born. The foreign-born patients were 3 to 4 years younger than Sweden-born patients at the time of CABG surgery. There were no significant differences in overall early or late mortality between foreign-born and Sweden-born men and women after CABG. All-cause mortality differed in between regions and was highest in foreign-born men from Eastern Africa (HR 3.80, 95% CI 1.58–9.17), China (HR 3.61, 95% CI 1.50–8.69), and in Chile (HR 2.12, 95% CI 1.01–4.47). Patients with low level of education had worse survival compared to those with longer than 12 years of education irrespective of sex and country of birth. This difference was more pronounced among foreign-born women (HR 1.50, 95% CI 1.00–2.33).

Conclusion: This national study showed higher CABG mortality in patients from lower socioeconomic position. Early and late mortality did not differ after isolated CABG in foreign-born and Sweden-born patients.

Citation: Dzayee DAM, Ivert T, Beiki O, Alfredsson L, Ljung R, et al. (2013) Short and Long Term Mortality after Coronary Artery Bypass Grafting (CABG) Is Influenced by Socioeconomic Position but Not by Migration Status in Sweden, 1995–2007. PLoS ONE 8(5): e63877. doi:10.1371/journal.pone.0063877

Editor: Kelvin Kian Loong Wong, University of Adelaide, Australia

Received February 6, 2013; Accepted April 5, 2013; Published May 22, 2013

Copyright: © 2013 Dzayee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Dshti Ali M. Dzayee's doctoral studies are partially financed by a fellowship from the Kurdistan Regional Government/Iraq and the Nanakali Group and Institute of Environmental Medicine (URL: http://ki.se/ki/jsp/polopoly.jsp?d=1666&l=en). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: Dashti.dzayee@ki.se

Introduction

Atherosclerosis is the major underlying cause responsible for adverse cardiovascular outcome including transient ischemic attack, stroke, and coronary arterial disease (CAD) [1]. It is a chronic process and with the configurations of the plaque formation and atherosclerotic stenosis can lead to final plaque rupture [2,3,4,5]. In recent years, a variety of advanced techniques in imaging modalities, including magnetic resonance imaging, trans-esophageal echocardiography, and computed tomographic angiography have been introduced in the assessment of CAD [6,7]. To treat symptoms of CAD, coronary artery bypass grafting (CABG) was introduced in late 1960s [8]. It is an effective method to relieve symptoms of angina pectoris and to improve function and survival in a relatively high proportion of patients with ischemic heart disease (IHD) [9,10,11]. In industrialized countries including Sweden, CABG has been a common procedure. However, due to the advent of percutaneous coronary interven-
tions (PCI) during the last decade, a decline in the number of CABG has been observed [12,13,14]. A few reports have explored differences in access to invasive cardiac procedures in relation to ethnic, socioeconomic and sex disparities worldwide [15,16,17,18]. Difference in survival after CABG in men and women have been reported [19,20,21,22,23], but the influence of country of birth and socioeconomic position (SEP) has not been fully investigated. We evaluated short and long-term mortality after CABG in Sweden in relation to SEP, sex and country of birth using a variety of Swedish national registers.

Materials and Methods

Ethics Statement

By Swedish law data recording to national health data registers, like the Patient Register, do not need consent from the patients, nor from the health care providers. It is mandatory to report to these registers, and the patients cannot decline registration. The quality health care registers, like the Heart Surgery Register, are voluntary and the patients need to be informed about the register, but they do not need to give written or oral consent to be recorded. However, patients can at any time decide to not allow registration in these quality health care registers. Ethical vetting is always required when using register data for research in Sweden. The ethical vetting is performed by regional ethical review boards and the risk appraisal associated with the Law on Public Disclosure and Secrecy is done by data holders. The ethical review boards can however waive the requirement to consult the data subjects directly to obtain their informed consent. According to these standards the Regional Ethical Review Board in Stockholm, Sweden, has waived the requirement to consult the data subjects directly to obtain their informed consent for this project and has evaluated and approved the project.

Study Population and Follow Up

The study cohort consisted of all 72 333 individuals who underwent a first isolated CABG from January 1995 to December 2007 in Sweden of whom 12.7% were foreign-born. A vast majority of the operations were performed with the aid of cardiopulmonary bypass but during 1998 up to 2002 about 10% of the patients were operated without extracorporeal circulation. The subjects were followed from the date of CABG until the date of death from any cause, date of emigration or end of follow up at December 31, 2007, whichever came first.

Linkage to Swedish National Registers

The data used in our study were collected by linkage of several public national registers through Swedish unique individual 10-digit personal identity number; are based on the Migration and Health Cohort [24] specifically designed to address health status among immigrants in Sweden. We used part of Migration and Health Cohort as follows:

1) The Swedish Heart Surgery Registry, Swedish Coronary Angiography and Angioplasty Registry (SCAAR) and the Register of Information and Knowledge about Swedish

Table 1. Characteristics of patient undergoing coronary artery bypass grafting in relation to time period of the operation and migration status, Sweden 1995–2007.

	1995–1998 N (%)	1999–2002 N (%)	2003–2007 N (%)
	2649 (11)	3005 (12)	3523 (14)
Foreign-born			
Sweden-born	20601 (89)	21092 (88)	21463 (86)
Age	62±9	63±9	64±9
Sex			
Male	1920 (72)	2188 (73)	2577 (73)
Female	729 (28)	817 (27)	946 (27)
Diabetes			
Yes	456 (17)	708 (23)	936 (27)
No	1897 (72)	2245 (75)	2582 (73)
Education			
Unknown	184 (6)	287 (9)	2338 (11)
0–9	1227 (46)	1249 (42)	1277 (39)
10–12	891 (34)	1103 (37)	1281 (36)
>12	347 (14)	479 (14)	578 (17)
No information	296 (11)	2973 (15)	443 (2)
Waiting time			
<24 hrs	88 (3)	497 (2)	122 (3)
1–6 days	397 (15)	588 (19)	877 (25)
7–30 days	510 (19)	744 (25)	1183 (34)
31–90 days	792 (30)	814 (27)	798 (22)
≥90 days	575 (22)	531 (18)	418 (12)
No information	287 (11)	2298 (11)	125 (4)
Number patients.	**doi:10.1371/journal.pone.0063877.t001**		
Heart Intensive Care Admissions (RIKS-HIA) [25]. More than 7000 heart surgery procedures including CABG were included yearly with demographic data, information on type of operation, certain postoperative complications and risk variables according to Euro SCORE (European System for Cardiac Operative Risk Evaluation). SCAAR and RIKS-HIA provided information of PCI and admittance to coronary care units, respectively.

2) The Register of the Total Population at Statistic Sweden containing demographic information, country of birth and data on emigration and immigration [26].

Table 2. Characteristics of patient undergoing coronary artery bypass grafting in relation to causes of death since operation and migration status, Sweden 1995–2007.

Main cause of death	IHD ¹No. (%)	Cancer ²No. (%)	CVA ³No. (%)	*Other causes ⁴No. (%)	Total ⁵No. (%)	²P value
30 Days						
Foreign-born	118 (65.19)	0	3 (1.66)	60 (33.15)	181(100)	0.73
Sweden-born	841 (62.95)	4 (0.30)	43 (3.22)	448 (33.53)	1336(100)	
1 Year						
Foreign-born	198 (54.25)	21 (5.75)	21 (5.75)	125 (34.25)	365(100)	0.85
Sweden-born	1446 (52.56)	171 (6.22)	142 (5.16)	992 (36.06)	2751(100)	
5 years						
Foreign-born	393 (42.86)	183 (19.96)	58 (6.32)	283 (30.86)	916(100)	0.01
Sweden-born	3021 (40.30)	1492(19.90)	584 (7.79)	2400 (32.01)	7497(100%)	
All period						
Foreign-born	631 (39.74)	323 (20.34)	117 (7.37)	517 (32.56)	1588(%100)	<0 001
Sweden-born	5156 (37.65)	2806 (20.49)	1136 (8.29)	4598 (33.56)	13696(%100)	

¹Number of event.
²P value refers to distribution of main cause of death between Sweden-born and Foreign-born.
*Other causes of death included infectious diseases and trauma.
doi:10.1371/journal.pone.0063877.t002

Table 3. Hazard ratio (HR) and 95% confidence interval (CI) of mortality after CABG among men in Sweden, 1995–2007.

Years of education	Foreign-born men	Sweden-born men
	Event HR* (95% CI)	Event HR* (95% CI)
Unknown	121 1.77 (1.37–2.28)	72 1.70 (1.34–2.16)
0–9	489 1.39 (1.14–1.70)	5839 1.29 (1.21–1.38)
10–12	384 1.26 (1.03–1.54)	3195 1.16 (1.08–1.24)
>12	126 1 1114 1	
Foreign-born women	44 1.20 (0.73–1.99)	46 1.65 (1.19–2.27)
0–9	301 1.53 (1.00–2.33)	2326 1.28 (1.11–1.47)
10–12	99 1.09 (0.69–1.71)	884 1.13 (0.97–1.31)
>12	24 1 220 1	

*Adjusted for age, calendar year of surgery, waiting time for operation, and diabetes mellitus.
doi:10.1371/journal.pone.0063877.t003

3) The Cause of Death Register with information on date of death and underlying contributing cause of death since 1952 [27].
4) The Swedish Population and Housing Census and the longitudinal integration database for health insurance and labor market studies (LISA) where information on highest acquired level of education was retrieved [28].

Patients Characteristics and Covariates

Information on previous medical history including diabetes mellitus was classified according to the International Classification of diseases, ICD 9 and ICD 10. Waiting time for surgery defined as the time since indication to operation was categorized into five categories (emergently within 24 hrs., 1–6 days, 7–30 days, 31–90 days, and longer than 90 days). Many variables such as smoking and body mass index, as well as left ventricular function, number of vessels diseased, severity and indication of the surgery were not possible to include because of large number of missing information.

Socioeconomic position. We used highest attained level of education as an indicator for SEP. Level of education was divided into four categories: 0–9 years (compulsory school education), 10–12 years (high school education), more than 12 years (university and highest level of education), and unknown.

Age and calendar years. Age at surgery was divided into five groups (younger than 50, 50–59, 60–69, 70–79, and 80 years and older). The year of surgery was divided into three intervals through the total study period: 1995–1998, 1999–2002, and 2003–2007.

Country of birth. We classified foreign-born individuals according to six continents, which were subdivided into 19 world regions, as defined by the United Nations Population Division: Africa (Eastern, Central, Northern, Southern and Western Africa), Asia (Eastern, South-Central, South-Eastern and Western Asia), Europe (Eastern, Northern, Southern and Western Europe), Latin America (Caribbean, Central America and South America), North America and Oceania (Australia/New Zealand, Melanesia, Micronesia/Polynesia). We reported results regarding birth country for all continents and regions. For individual countries results were reported if the number of fatal cases was five or more.
Figure 1. Hazard ratio (HR) and 95% confidence interval (CI) of mortality after CABG among Foreign-born compared to Sweden-born in Sweden, 1995–2007. Hazard ratio is adjusted for age, calendar year, waiting time for operation, diabetes mellitus, and education. doi:10.1371/journal.pone.0063877.g001

Statistical Methods

We used Cox Proportional Hazards model to estimate the relative rate of death after CABG. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using the maximum partial likelihood for the effect estimates. In the analysis of mortality according to country of birth, Swedish born were used as reference category. When analyzing education, highest attained level of education was reference. All analyses were performed separately for men and women, adjusted for age at surgery, calendar year of surgery, waiting time for surgery, diabetes mellitus, and educational level. The assumptions of Cox regression were met. We used SAS version 9.2 for all analyses. We considered a P-value of <0.05 as statistically significant and all tests were two-sided.

Results

Study Population

During the 13-year observation period (median 5.3, range 0–12.9 years), we recorded 15,284 deaths among 72,333 patients who underwent a first isolated CABG (Table 1). A total of 1,388 of the deaths (10.4%) occurred among the foreign-born patients. Although average age in both groups increased during three time intervals, foreign-born patients were 3 to 4 years younger than Sweden-born patients during the entire study period. Age more than 70 years at the time of surgery was less common among foreign-born but increased in more recent years. Female sex was more common among foreign-born patients. Diabetes mellitus was more prevalent in more recent years in both groups. Irrespective of country of birth, few patients were operated on emergently within 24 hrs. Waiting time for surgery longer than three months decreased in both groups in recent years. A somewhat higher proportion of patients with higher level of education were observed among foreign-born individuals.

Main Causes of Death after CABG by Country of Birth

The main causes of death were IHD followed by malignancy and cerebrovascular accident (CVA) during the study period (Table 2). The percentage of early and late deaths from IHD was slightly higher in foreign-born than in Sweden-born patients.

All-cause Mortality after CABG by Socioeconomic Position

Patients with low level of education had statistically significantly worse survival compared with those with longer than 12 years of education irrespective of sex and country of birth. This difference was more pronounced among foreign-born women (HR 1.53, 95% CI 1.00–2.33) (Tables 3).

All-cause Mortality after CABG by Sex

Overall, men had a worse survival than women after multivariable adjustment (HR 1.14, 95% CI 1.10–1.18) (results not shown in the table).

All-cause Mortality after CABG by Country of Birth

There were no significant differences in the risk of early or late death after the operation between foreign-born and Sweden-born men and women throughout the study period (Table 4). In foreign-born men the overall risk was 7% higher compared to Sweden-born men after adjustment for age at operation and year of surgery but no significant difference was found after multivariable adjustment. There was a slight improvement in overall survival among foreign-born compared to Sweden-born (Figure 1).

Older age at operation was associated with worse survival regardless of sex. Patient with diabetes mellitus or missing information of diabetes had worse survival and had higher risk of death than patients without diabetes mellitus with hazard ratios (men: foreign-born: HR 1.60, 95% CI 1.40–1.84; Sweden-born: HR 1.64, 95% CI 1.56–1.72) and (women: foreign-born: HR 1.53, 95% CI 1.24–1.88; Sweden-born: HR 1.84, 95% CI 1.70–1.99). Apart from those who underwent acute operation, waiting time for surgery did not correlate to mortality after CABG in our study (results not shown).

All-cause Mortality after CABG by Continent and Specific Country of Birth

Considering continent and region of birth, men born in Europe, Southern Europe, Eastern Asia and men and women born in Eastern Africa had higher risk of death after CABG compared with Sweden-born men and women (Tables 5 and 6). In contrast, men born in Asia and South-Central Asia, showed lower risk compared with Sweden-born individuals. At the country level, higher relative risks were found among men born in Denmark, Bosnia, Chile, and men and women born in China. Men born in Iran showed lower risk compared with men born in Sweden.
The highest risks were found in foreign-born men born in Eastern Africa (HR 3.80, 95% CI 1.58–9.17), China (HR 3.61, 95% CI 1.50–8.69), and in Chile (HR 2.12, 95% CI 1.01–4.47). (Tables 5 and 6).

Discussion

In this nation-wide cohort study, low socioeconomic position was independently of sex and country of birth associated with higher mortality after CABG during our entire observation period. However, neither early nor late mortality was influenced by migration status.

The large study cohort including all patients who had undergone CABG in Sweden with long and complete follow-up, the complete nationwide coverage of exposure (country of birth) and outcome (death) were unique characteristics of our study.

Limitations of the study were having insufficient number of observations for valid analyses regarding important life style factors such as smoking and body mass index, condition such as left ventricular function, number of diseased vessels, completeness of registries and mental health status.

Table 5. Hazard ratio (HR) and 95% confidence interval (CI) of mortality after CABG among men by country of birth in Sweden, 1995–2007.

Birth Region/Country	Event	HR* (95% CI)	Birth Region/Country	Event	HR* (95% CI)
Sweden-born	10 220	1(ref)	Europe	976	1.07 (1.00–1.15)
Africa	15	1.47 (0.88–2.44)	**Eastern Europe**	135	1.07 (0.90–1.27)
Eastern Africa	5	3.80 (1.58–9.17)	Middle Africa	1	N/A
Middle Africa	1	N/A		3	N/A
Northern Africa	7	1.05 (0.50–2.20)		34	1.09 (0.77–1.52)
Southern Africa	2	N/A		49	1.17 (0.88–1.55)
Western Africa	-	N/A		7	0.74 (0.35–1.57)
Asia	100	0.79 (0.64–0.97)		21	0.92 (0.60–1.42)
Eastern Asia	5	3.26 (1.35–7.85)		588	1.06 (0.97–1.15)
China	5	3.61 (1.50–8.69)		116	1.39 (1.16–1.68)
South-Central Asia	24	0.50 (0.34–0.76)		34	0.93 (0.66–1.30)
Iran	20	0.58 (0.37–0.91)		333	1.00 (0.89–1.11)
Other	4	N/A		6	1.55 (0.69–3.45)
South-Eastern Asia	4	N/A		94	1.07 (0.87–1.31)
Western Asia	67	0.94 (0.73–1.21)		5	0.80 (0.53–1.19)
Iraq	20	0.89 (0.57–1.40)		151	1.26 (1.07–1.49)
Lebanon	8	0.78 (0.38–1.56)		18	0.97 (0.51–1.86)
Syria	7	0.65 (0.31–1.37)		61	1.71 (1.31–2.23)
Turkey	24	1.09 (0.73–1.64)		14	1.10 (0.65–1.87)
Other	8	1.79 (0.89–3.60)		63	1.22 (0.95–1.57)
				10	0.73 (0.39–1.37)
Topas	3	2.12 (1.01–4.47)		102	0.98 (0.81–1.19)
Asia	12	0.89 (0.51–1.58)		1	N/A
Caribbean	1	N/A		11	0.59 (0.33–1.08)
South America	11	0.95 (0.53–1.73)		7	2.12 (1.01–4.47)
Chile	7	2.12 (1.01–4.47)		4	N/A
Other	4	N/A		16	0.85 (0.52–1.39)
Northern America	16	0.85 (0.52–1.39)		16	0.97 (0.59–1.58)
Oceania	1	N/A		1	N/A

*Adjusted for age, calendar year of surgery, waiting time for operation, diabetes mellitus, and education.

Ex-Czechoslovakia includes Czech Republic and Slovakia. Ex-Soviet Union includes Belarus, Moldova, Russian Federation and Ukraine. Ex-Yugoslavia includes Croatia, Macedonia, Serbia, Slovenia and Montenegro.

All causes of death. Countries with fewer than five event N/A not applicable with less with fewer than 5 events.

doi:10.1371/journal.pone.0063877.t005
of revascularization, indication for surgery and repeat revascularization. During 1995 up to 1998 information of diabetes was missing in more than one of ten patients. Furthermore medical management after hospital discharge was not known.

If we could adjust for unmeasured life style factors the increased relative risk for foreign-born would probably be lower, as we anticipate, among others, smoking to be more common among foreign-born men than among Swedish men [29,30]. For this study we did not classify the foreign-born as refugees, or labor immigrants. However, it has been shown that there are differences in mortality from cardiovascular disease between refugees and non-refugee immigrants [31,32].

The association we identified between low SEP and poor survival after CABG is in agreement with findings in previous studies that have found SEP to be an important risk indicator for cardiovascular diseases (CVD) in general and CABG mortality in particular [16,33,34,35,36,37,38,39]. In Sweden with good economy and well-functioning national health coverage such finding is surprising. In Sweden CABG is centralized and performed at eight University Hospitals without large variation in volume and no differences in quality between these units [40,41]. Indication for CABG is based on patient symptoms and risk factors regardless of ethnicity, SEP or gender. In the US low socioeconomic status and low CABG volume has been correlated to higher mortality [34]. However, a strong influence of SEP on access to specialized cardiac services in Canada with known universal health coverage has also been observed [16]. Unaccounted confounding by life style factors could be one explanation, however, adjustment for diabetes, which is more common among foreign-born and education, did not change the results in this study. The association of low SEP with poor clinical risk factors and CVD biomarkers [39,42] and with higher prevalence of CHD risk factors [43,44,45]

Birth Region/Country	Event	HR* (95% CI)
Sweden-born	3476	1(ref)
Africa	3	N/A
Eastern Europe	64	1.14 (0.89–1.47)
Ex-Czechoslovakia	11	1.80 (0.99–3.26)
Hungary	11	1.20 (0.66–2.16)
Poland	27	1.03 (0.70–1.51)
Romania	5	1.25 (0.52–3.01)
Asia	39	0.78 (0.56–1.10)
Eastern Asia	3	N/A
Northern Europe	271	0.98 (0.87–1.11)
Denmark	27	1.00 (0.68–1.47)
South-Central Asia	14	0.84 (0.49–1.43)
Finland	177	0.93 (0.80–1.09)
Kuwait	2	N/A
South-Eastern Asia	2	N/A
Western Asia	20	0.69 (0.44–1.10)
Syria	5	0.95 (0.39–2.31)
Bosnia	16	1.33 (0.79–2.24)
Turkey	8	0.76 (0.38–1.54)
Other	7	0.54 (0.25–1.16)
Ex-Yugoslavia	17	1.01 (0.62–1.64)
Austria	6	1.73 (0.78–3.87)
Germany	35	0.96 (0.69–1.34)
Latin America	3	N/A
Northern America	7	1.17 (0.55–2.46)
USA	5	1.11 (0.46–2.69)
Oceania	1	N/A

*Adjusted for age, calendar year of surgery, waiting time for operation, diabetes mellitus, and education.

Ex-Czechoslovakia includes Czech Republic and Slovakia. Ex-Soviet Union includes Belarus, Moldova, Russian Federation and Ukraine. Ex-Yugoslavia includes Croatia, Macedonia, Serbia, Slovenia and Montenegro.

All causes of death. Countries with fewer than five event N/A not applicable with less with fewer than 5 events.

doi:10.1371/journal.pone.0063877.t006
could partially explain the observed increased mortality after CABG surgery among patients with lowest SEP in our study.

Men showed higher risk compared to women. The findings regarding short-term mortality in other settings have been contradictory [46,47,48,49,50,51]. However, long-term all-cause mortality has been shown to be higher among men compared with women [52].

Our finding of no significant survival differences in foreign-born compared with Sweden-born men and women could partially be explained by the universal Swedish health system and that Sweden is a welfare state with relatively low health inequity [53,54]. A decision to perform CABG should be based on symptoms and extent of coronary artery pathology. However, a higher rate of adverse outcome after CABG among minorities has been shown in the United States even after adjustment of important predictors of death after CABG [55].

Conclusions

This large and complete nationwide cohort study indicates that low socioeconomic position was independently of sex and country of birth associated with higher mortality after coronary artery bypass grafting (CABG) during the entire observation period in our study. Furthermore, neither early nor late mortality is influenced by migration status.

Author Contributions

Conceived and designed the experiments: DD TI TL TM OB LA. Performed the experiments: DD OB. Analyzed the data: DD OB. Contributed reagents/materials/analysis tools: DD TI TL OB LA. Wrote the paper: DD TI TL TM OB LA. Interpretation of data: DD TI TL TM OB LA. Reviewed the manuscript critically for important intellectual content: TI LA.

References

1. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92: 637–641.
2. Davies MJ, Thomas AC (1985) Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53: 363–373.
3. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1731–1735.
4. Davies MJ (1996) Stability and instability: two faces of coronary atheroclerosis. The Paul Dudley White Lecture. Circulation 94: 2001–2003.
5. Wong KK, Thavornpratapassong P, Cheung SC, Sun Z, Tu J (2012) Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc Disord 12: 7.
6. Wong KK, Sun Z, Tu J, Worthley SL, Mazumdar J, et al. (2012) Medical image diagnostics based on computer-aided flow analysis using magnetic resonance images. Comput Med Imaging Graph 36: 327–341.
7. Wong KKL, Kelso RM, Worthley SL, Sanders P, Mazumdar J, et al. (2009) Medical imaging and processing methods for flow cardiovascular reconstruction. Journal of Mechanics in Medicine and Biology 9:1–20.
8. Konstantinov IE (1997) The first coronary artery bypass operation and forgotten pioneers. Ann Thorac Surg 64: 1522–1523.
9. van Domburg RT, Kappetein AP, Rogers AJ (2009) The clinical outcome after coronary bypass surgery: a 30-year follow-up study. Eur Heart J 30: 453–458.
10. Blackledge HM, Squire IB (2009) Improving long-term outcomes following coronary artery bypass graft or percutaneous coronary recanalisation: results from a large, population-based cohort with first intervention 1995–2004. Heart 95: 304–311.
11. Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, et al. (2009) Percutaneous coronary intervention versus coronary artery bypass grafting for severe coronary artery disease. N Engl J Med 360: 961–972.
12. Windecker S, Meyer BJ, Bonzel T, Fabian J, Heyndrickx G, et al. (1998) Interventional cardiology in Europe 1994. Working Group Coronary Circulation of the European Society of Cardiology. Eur Heart J 19: 40–54.
13. Meyer BJ, Meier B, Bonzel T, Fabian J, Heyndrickx G, et al. (1996) Interventional cardiology in Europe 1995. Working Group Coronary Circulation of the European Society of Cardiology. Eur Heart J 17: 1318–1328.
14. Epstein AJ, Polsky D, Yang F, Yang L, Groeneveld PW (2011) Coronary recanalization trends in the United States, 2001–2008. JAMA 305: 1769–1776.
15. Feder G, Crook AM, Mayer P, Baronije S, Timmis AD, et al. (2002) Ethnic differences in invasive management of coronary disease: prospective cohort study of patients undergoing angiography. BMJ 324: 511–516.
16. Alter DA, Naylor CD, Austin P, Tu JV (1999) Effects of socioeconomic status on access to invasive cardiac procedures and on mortality after acute myocardial infarction. N Engl J Med 341: 1359–1367.
17. Sheifer SE, Escarce JJ, Schulman KA (2000) Race and sex differences in the management of coronary artery disease. Am Heart J 139: 848–857.
18. Krusin NR, Petersen LA (2001) Racial differences in the use of invasive cardiovascular procedures: review of the literature and prescription for future research. Ann Intern Med 135: 352–366.
19. Hammar N, Sandberg E, Larsen FF, Ivert T (1997) Comparison of early and late mortality in men and women after isolated coronary artery bypass graft surgery in Stockholm, Sweden, 1980 to 1989. J Am Coll Cardiol 29: 659–664.
20. Johnson WD, Brenowitz JB, Kaysor KL. (1989) Factors influencing long-term (10-year to 15-year) survival after a successful coronary artery bypass operation. Am Thorac Surg 48: 19–24; discussion 24–15.
21. Loop FD, Goldberg LR, MacMillan JP, Cosgrove DM, Lyle BW, et al. (1983) Coronary artery surgery in women compared with men: analyses of risks and long-term results. J Am Coll Cardiol 1: 383–390.
22. Barbari M, Laserin F, Biley C, Mitchell A, Khaghani A, et al. (1994) Coronary artery surgery in women compared with men: analysis of coronary risk factors and in-hospital mortality in a single centre. Br Heart J 71: 408–412.
23. Brandrup-Wognsen G, Bergren H, Hartford M, Hjalmarson A, Karlsson T, et al. (1996) Female sex is associated with increased mortality and morbidity early, but not late, after coronary artery bypass grafting. Eur Heart J 17: 1429–1431.
24. Beiki O, Stegmayr B, Moradi T (2011) Country reports: Sweden. In: Razum O, Spallek J, Reeske A, Arnold M, editors. Migration-sensitive Cancer Registration in Europe. Lang 106–123.
25. (2011) SWEDEHEART. Annual report SWEDEHEART. Available from: http://www.torur.un.se/sweheart/index.php/arxivreportarr.
26. (2002) The total population register of statistics Sweden. New possibilities and better quality. Statistics Sweden: Örebro.
27. (2009) Socialstyrelsen. Cause of Death 2009. Available from: www. socialstyrelsen.se.
28. Official Statistics of Sweden. Census of the population and housing in 1970, part 13: occupation and education, Stockholm, Sweden: Statistics Sweden; 1973.
29. Tomson Y, Aberg H (1994) Risk factors for cardiovascular disease—comparison between Swedes and immigrants. Scand J Prim Health Care 12: 147–154.
30. Gadd M, Sundquist J, Johansson SE, Wandell P (2005) Do immigrants have an increased prevalence of unhealthy behaviours and risk factors for coronary heart disease? Eur J Cardiovasc Prev Rehabil 12: 335–341.
31. Hollander AC, Bruce D, Ekberg J, Burström B, Boirell C, et al. (2012) Longitudinal study of mortality among refugees in Sweden. Int J Epidemiol 41: 1153–1161.
32. Hollander AC, Bruce D, Burström B, Ekblad S (2011) Gender-related mental health differences between refugees and non-refugee immigrants—cross-sectional register-based study. BMC Public Health 11: 180.
33. Mugge LA. Revised the manuscript critically for important intellectual content: TI LA. Authorized the final version of the manuscript: DD TI RL TM OB LA. Interpretation of data: DD TI RL TM OB LA. Wrote the paper: DD TI TL TM OB LA. Revised the manuscript critically for important intellectual content: TI LA.
43. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 364: 937–952.
44. Vartiainen E, Pekkanen J, Koskinen S, Jousilahti P, Salomaa V, et al. (1998) Do changes in cardiovascular risk factors explain the increasing socioeconomic difference in mortality from ischaemic heart disease in Finland? J Epidemiol Community Health 52: 416–419.
45. Luepker RV, Rosamond WD, Murphy R, Sprafka JM, Folsom AR, et al. (1993) Socioeconomic status and coronary heart disease risk factor trends. The Minnesota Heart Survey. Circulation 88: 2172–2179.
46. Davis KB, Chaitman B, Ryan T, Bittner V, Kennedy JW (1995) Comparison of 15-year survival for men and women after initial medical or surgical treatment for coronary artery disease: a CASS registry study. Coronary Artery Surgery Study. J Am Coll Cardiol 25: 1000–1009.
47. Vaccarino V, Koch CG (2003) Long-term benefits of coronary bypass surgery: are the gains for women less than for men? J Thorac Cardiovasc Surg 126: 1707–1711.
48. Woods SE, Noble G, Smith JM, Hasselfeld K (2003) The influence of gender in patients undergoing coronary artery bypass graft surgery: an eight-year prospective hospitalized cohort study. J Am Coll Surg 196: 428–434.
49. Jacobs AK, Kelsey SF, Brooks MM, Faxon DP, Chaitman BR, et al. (1998) Better outcome for women compared with men undergoing coronary revascularization: a report from the bypass angioplasty revascularization investigation (BARI). Circulation 98: 1279–1285.
50. Alramw D, Tamariz MG, Sever JY, Christakis GT, Bhatnagar G, et al. (2000) The influence of gender on the outcome of coronary artery bypass surgery. Ann Thorac Surg 70: 800–805, discussion 806.
51. Fox AA, Nusseimier NA (2004) Coronary artery bypass graft surgery in women. J Cardiothorac Vasc Anesth 18: 344–352.
52. Ahmed WA, Tully PJ, Knight JL, Baker RA (2011) Female sex as an independent predictor of morbidity and survival after isolated coronary artery bypass grafting. Ann Thorac Surg 92: 59–67.
53. Vagro D, Lundberg O (1989) Health inequalities in Britain and Sweden. Lancet 2: 35–36.
54. Mackenbach JP, Stirbu I, Roskam AJ, Schapa MM, Menvielle G, et al. (2008) Socioeconomic inequalities in health in 22 European countries. N Engl J Med 359: 2468–2481.
55. Hartz RS, Rao AV, Plomondon ME, Grover FL, Shroyer AL (2001) Effects of race, with or without gender, on operative mortality after coronary artery bypass grafting: a study using The Society of Thoracic Surgeons National Database. Ann Thorac Surg 71: 512–520.