In Silico Molecular Docking and Interaction Analysis of Traditional Chinese Medicines Against SARS-CoV-2 Receptor

Gang Li¹, Wei Zhou², Xiurong Zhao³, and Ying Xie⁴

Abstract
The novel coronavirus, 2019-nCoV, has led to a major pandemic in 2020 and is responsible for more than 2.9 million officially recorded deaths worldwide. As well as synthetic anti-viral drugs, there is also a need to explore natural herbal remedies. The Traditional Chinese Medicines (TCMs) system has been used for thousands of years for the prevention, diagnosis, and treatment of several chronic diseases. In this paper, we performed an in silico molecular docking and interaction analysis of TCMs against SARS-CoV-2 receptor RNA-dependent RNA polymerase (RdRp). We obtained the 5 most effective plant compounds which had a better binding affinity towards the target receptor protein. These compounds are forsythoside A, rutin, ginkgolide C, icariside II, and nolinospiroside E. The top-ranked compound, based on docking score, was nolinospiroside, a glycoside found in Ophiopogon japonicas that has antioxidant properties. Protein-ligand interaction analysis discerned that nolinospiroside formed a strong bond between ARG 349 of the protein receptor and the carboxylate group of the ligand, forming a stable complex. Hence, nolinospiroside could be deployed as a lead compound against SARS-CoV-2 infection that can be further investigated for its potential benefits in curbing the viral infection.

Keywords
2019-nCoV, coronaviruses, COVID-19, molecular docking, traditional Chinese medicines, bioactivity, nolinospiroside

Received: January 23rd, 2021; Accepted: April 14th, 2021.

The Coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), started in the city of Wuhan in China in December 2019. The virus belongs to a notorious family of coronaviruses that caused Severe Acute Respiratory Syndrome (SARS) in 2003 and Middle East Respiratory Syndrome (MERS) in 2012.¹ Published studies have reported that this virus belongs to the beta-BAT-SARS-CoV-2 group, which has some essential amino acids necessary for viral replication.¹ The common symptoms of SARS-CoV-2 infected people are fever along with cough, shortness of breath, and gradual difficulty in breathing. In severe cases, people develop pneumonia, SARS, and eventually death. The COVID-19 outbreak has spread over 200 countries and has been declared as a global health threat to life, leading to serious financial instability all around the world. Currently, there is no specific medication available to fight against COVID-19 and, therefore, several attempts are being made to treat the clinical conditions fostered by COVID-19 positive patients. Meanwhile, the research community is striving hard to find virus-specific treatments and medicaments which could effectively treat the infected patients, as well as prevent the further spread of the virus. The available antiviral medicaments and therapies in clinical use hold a very narrow spectrum of activity and therapeutic usefulness, and their toxicity varies from drug to drug.² The possible treatments against SARS-CoV-2 may normalize respiratory symptoms or inhibit viral replication. There are several promising antiviral agents, immunotherapies, and vaccines that have been discovered and are being developed to potentially combat the virus, but due to lack of sufficient effective clinical results, they cannot be used as confirmed medication.³ ⁴

¹Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Shandong Province, P.R. China
²Department of Clinical Medicine, Shandong University, Jinan, Shandong Province, P.R. China
³Department of Pulmonary Function, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
⁴Department of Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Shandong Province, P.R. China

Corresponding Author:
Ying Xie, Department of Internal Medicine, Jinan Central Hospital Affiliated to Shandong University, Shandong Province 250013, P.R. China.
Email: xieyingjn001@sina.com
Medicinal plants have long been used for the treatment of diseases including Indian Ayurveda, African herbs, and Traditional Chinese Medicines (TCMs). These plants contain several Pharmaceutical Active Ingredients (PAIs) that can be utilized to formulate modern drugs. TCM, evolved over thousands of years, uses various mind and body practices (such as acupuncture and tai chi) and herbal compounds to treat various diseases. As far as compounds from the TCM are concerned, these have been studied for several diseases, including heart diseases, stroke, mental disorders, respiratory diseases, liver diseases, and SARS-CoV-2 infections. TCMs observed to have good efficacy for the SARS outbreak in 2003 are also reported to be effective for combating COVID-19. A recent review of the effectiveness of TCM to combat COVID-19 can be found in Chen & Chen.

There are around 30 TCM herbs reported to be effective for COVID-19 treatment. However, among them, which has the best binding affinity with the SARS-CoV-2 receptors is unknown. Hence, here we performed molecular docking studies of 30 selected TCM compounds with the SARS-CoV-2 receptor protein and ranked the herbs based on docking score and free energy. Our analysis could be useful for selecting the best inhibitor for COVID-19 infections.

Materials and Methods

Drug Library Preparation
We retrieved the approved herbal extracts of Traditional Chinese Medicines (TCMs) for novel coronavirus that are being tested against the SARS-CoV-2 infection in patients. PubChem was used to retrieve their structures in .mol/.sdf file formats.

Protein Target Preparation
The optimization of RdRp was performed using Schrodinger maestro to alleviate any steric clashes present before the protein preparation step.

Molecular Docking Analysis
AutoDockVina software was employed for the docking experiments with the optimized RdRp model as the docking target. Notably, the docking space was not kept restricted to explore the complete protein receptor surface. A grid box of 110 Å × 110 Å × 118 Å was generated for the SARS-CoV-2 RdRp. The ligand was treated as flexible and only torsional degrees of freedom were explored, holding bond angles and bond lengths constant.

Protein-Ligand Interaction Analysis
The complexes obtained after docking were inspected using the Protein-Ligand Interaction Profiler to understand the type of interaction that governs this binding.

Results and Discussion

In the current work, our objective was to examine the existing drugs from traditional Chinese medicines (TCM) that could potentially and effectively interact with the SARS-CoV-2 RdRp protein and, therefore, potentially be used for antiviral treatments. We retrieved the 30 best drug extracts from the TCM which are currently being tested for efficacy against COVID-19 infected patients. Table 1 lists the 30 best drug candidates identified which can be used to fight the COVID-19 infection.

Out of these 30 compounds, the comparative binding energy of the top 25 drug compounds is depicted in Figure 1. We identified the 5 most effective drug compounds which had a better binding affinity towards the target receptor protein, namely forsythoside A, rutin, ginkgolide C, icariside II, and noinospiroside E; their details are presented in Table 2. With these results in hand, we discerned that the TCM compounds exhibited binding energies for RdRp between −5 and −9 kcal/mol. Two of the compounds displayed the lowest binding energy as compared to the others, namely, noinospiroside and rutin, and these might prove to be potential drugs employed against COVID-19 infection.

The top-ranked compound based on docking score was noinospiroside, a glycoside found in Ophiopogon japonicus that has antioxidant properties and showed binding energy of −9.1 kcal/mol with a 0.18 standard error. It was observed from the docking results that hydrogen bonds and hydrophobic interactions rule the binding. Furthermore, salt-bridge formation and pi-stacking were also observed.

After retrieving the best-docked complexes, we subjected them to a protein-ligand interaction analysis using PLIP and found that noinospiroside formed 5 hoursydrogen bonds and 5 hoursydrophobic interactions, along with one salt bridge formed between ARG 349 of the protein receptor and the carboxylate group of the ligand. The hydrogen bonds formed between ligand and protein were almost over a distance of 2.5 Å. Therefore, the stronger the hydrogen bond, the greater is the stability of the binding. Table 3 showcases the interactions formed between the protein receptor and the best 5 drug candidates.

Conclusion
The coronavirus disease (COVID-19) pandemic is an ongoing global issue whose epicenter is the city of Wuhan in China. This pandemic has caused researchers to shift its impact on human health. In this paper, we performed a molecular docking and interaction analysis. The results suggest that out of the commonly employed Traditional Chinese Medicines (TCMs), noinospiroside could be deployed as a lead compound against SARS-CoV-2 infection. The compound forms 5 hoursydrogen bonds and 5 hoursydrophobic interactions, along with one salt bridge formed between ARG 349 of the protein receptor and the carboxylate group of the ligand. The hydrogen bonds...
Table 1. Thirty Compounds Identified From TCMs Have the Potential to Fight Against Novel Coronavirus Infection.

S.No.	Traditional Chinese medicine (TCM) herb	Extract	Properties
1	Forsythiaefructus	Forsythoside A	Antipyretic detoxifying
2	Licorice	-	Qi-reinforcing
3	Mori cortex	Morace O	Antitussive antiasthmatic
4	Chrysanthemiflos	Apigenin	Pungent cool diaphoretic
5	Forskoil	Rutin	Antitussive antiasthmatic
6	Lonicerajaponicaeflos	Quercetin	Antipyretic detoxifying
7	Mori flos	Protocatechuic acid	Pungent cool diaphoretic
8	Peucedani radix	N/A	Phlegm-resolving medicine
9	Rhizomaegyrophysomosii	ß-sitosterol	Antipyretic detoxifying
10	Tamariaezaemmen	N/A	Pungent-warm-exterior releasing medicine
11	Erigeron breviscapus	Naringenin	Pungent-warm-exterior releasing medicine
12	Radizbupleuri	Triterpenoid saponins	Pungent cool diaphoretics
13	Coptidis rhizome	Berberine	Heat clearing and dampness drying medicine
14	Houttuyniae herba	N/A	Antipyretics detoxifying
15	Hoveniandulis semen	Caffeine	Antipyretic detoxifying
16	Innulae	Luteolin	Phlegm resolving medicine
17	Eriodictyae folium	Eusaphic acid	Antitussive antiasthmatic
18	Hedysarummultijugan maxim	N/A	Qi-reinforcing
19	Lepidii semen & Descurainiae semen	N/A	Antitussive antiasthmatic
20	Ardisia japonicae herba	N/A	Antitussive antiasthmatic
21	Eupharisae heliopotaiberba	Helioscopinolide A	Diuretic dampness excreting
22	Ginkgo biloba	Ginkgolide C	Antitussive antiasthmatic
23	Anemarrhes rizome	N/A	Fire purging
24	Epimediherba	Icariside II	Yang-reinforcing
25	Orphiopogon japonicas	Nolinospiroside E	Antioxidant
26	Astragalusmembranaceus	Calycosin	Anti-inflammatory & anti-cancer
27	Agastacherousa	Oleanolic aldehyde	Antioxidant properties
28	EupatoriHerba	Eupatobenzofuran	Phlegm resolving medicine
29	Radix platycodonis	Paonilactinone	Anodyne, sedative, antispasmodic, and astringent
30	Glycyrrhizauralensis	Liguitirigenin	Blood circulation resolving

Figure 1. Comparative binding energy of drug compounds.
formed between ligand and protein were almost over a distance of 2.5 Å. However, this result requires a competitive binding assay experiment for validation. Further, optimization of this compound may provide better insights into its use for the treatment of the newly emerged viral infection.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID
Ying Xie https://orcid.org/0000-0001-5879-8201

References
1. Qazi S, Sheikh K, Faheem M, Khan A, Raza K. A coadunation of biological and mathematical perspectives on the pandemic COVID-19: a review. Coronavirus. 2021;02:1. doi:10.2174/2666796702666210114110013
2. Şimşek Yavuz S, Ünal S. Antiviral treatment of COVID-19. Turk J Med Sci. 2020;50(S1-1):611-619. doi:10.3906/sag-2004-145
3. Sahu A, Qazi S, Raza K, Verma S. COVID-19: Hard road to find integrated computational drug and repurposing pipeline. In: Studies in Computational Intelligence. Springer; 2021:923. doi:10.1007/978-981-15-8534-0_15
4. Raza K, Maryam, Qazi S. An introduction to computational intelligence in COVID-19: Surveillance, prevention, prediction, and diagnosis. In: Studies in Computational Intelligence. Springer; 2021:923. doi:10.1007/978-981-15-8534-0_1
5. Isa MA, Mustapha A, Qazi S, et al. In silico molecular docking and molecular dynamic simulation of potential inhibitors of 3C-like main proteinase (3CLpro) from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) using selected African medicinal plants. Adv Tradit Med. 2020;53(7). doi:10.1007/s13596-020-00523-w
6. Yang X, He T, Han S, et al. The role of traditional Chinese medicine in the regulation of oxidative stress in treating coronary heart disease. Oxid Med Cell Longev. 2019;2019:1-13. doi:10.1155/2019/3231424

Table 2. Top 5 Herbal Compounds Retrieved After Molecular Docking.

S.No.	Ligand	ΔG	Std. Error	Binding Pocket
1.	Nolinospiroside	−9.1	0.18	P323,R457,J460,P677,S318,T319,R349,T394,F396
2.	Rutin	−8.9	0.12	Y32,K47,K780,S709,D711,K714,N781,Y129
3.	Forsythoside_A	−8.4	0.06	K780,K47,S784,N781,K714,D711,T710,S709,L142,C139,D135,A130,A706,Y129,Y32
4.	Icariside_II	−8.3	0.16	Y32,K47,Y129,N138,D135,D711,S709,K714,N781,K780,S784
5.	Ginkgolide_C	−8.1	0.06	Y129,D135,N138,S709,N781,S784,K780

Table 3. Interactions Formed Between the Best 5 Drug Candidates With the Target RdRp Receptor Protein.

S.No.	Ligand	Interactions	Representation
1.	Nolinospiroside	5 H-bonds, 5 Hydrophobic, 1 Salt-bridge	![Image](image1)
2.	Rutin	9 H-bonds, 3 Hydrophobic, 1 π-stacking, one salt-bridge	![Image](image2)
3.	Forsythoside_A	11 H-bonds, 3 Hydrophobic, 1 π-stacking, one salt bridge	![Image](image3)
4.	Icariside_II	8 H-bonds, 5 Hydrophobic, 1 π-stacking, 2 π-cation	![Image](image4)
5.	Ginkgolide_C	5 H-bonds, 3 Hydrophobic, 3 Salt-bridges	![Image](image5)
7. Zhang K-J, Zheng Q, Zhu P-C, et al. Traditional Chinese medicine for coronary heart disease: clinical evidence and possible mechanisms. *Front Pharmacol*. 2019;10:844. doi:10.3389/fphar.2019.00844

8. Gong X, Sucher NJ. Stroke therapy in traditional Chinese medicine (TCM): prospects for drug discovery and development. *Phytomedicine*. 2002;9(5):478-484. doi:10.1017/S09447110260571760

9. Yeh M-L, Chiu W-L, Wang Y-J, Lo C. An investigation of the use of traditional Chinese medicine and complementary and alternative medicine in stroke patients. *Holist Nurs Pract*. 2017;31(6):400-407. doi:10.1097/HNP.0000000000000238

10. Liu T, Ding Y, Wen A. Traditional Chinese medicine for ischemic stroke. *Lancet Neurol*. 2018;17(9):745. doi:10.1016/S1474-4422(18)30290-4

11. Han P-yu, Cao Z-zhong, Wang R-fang, Xu Z-H, Cao ZZ, Wang RF. The common mental problems after calamity and the TCM characteristic treatment of psychological intervention. *J Tradit Chin Med*. 2010;30(2):93-97. doi:10.1016/s0254-6272(10)60021-0

12. Ren J-L, Zhang A-H, Wang X-J. Traditional Chinese medicine for COVID-19 treatment. *Pharmacol Res*. 2020;155(8):104743. doi:10.1016/j.phrs.2020.104743

13. Zhang Y, Wang Z-Z, Sun H-M, Li P, Li Y-F, Chen N-H. Systematic review of traditional Chinese medicine for depression in Parkinson's disease. *Am J Chin Med*. 2014;42(5):1035-1051. doi:10.1142/S0192415X14500657

14. Liu Y, Wang S, Kan J, et al. Chinese herbal medicine interventions in neurological disorder therapeutics by regulating glutamate signaling. *Curr Neuropharmacol*. 2020;18(4):260-276. doi:10.2174/1570159X17666191101125530

15. Wu T, Yang X, Zeng X, Poole P. Traditional Chinese medicine in the treatment of acute respiratory tract infections. *Respir Med*. 2008;102(8):1093-1098. doi:10.1016/j.rmed.2008.03.015

16. Zhang X, Gu J, Cao L, et al. Network pharmacology study on the mechanism of traditional Chinese medicine for upper respiratory tract infection. *Mol Biosyst*. 2014;10(10):2517-2525. doi:10.1039/C4MB00164H

17. Xu F, Cui W, Kong Q, Tang Z, Dong J. A real-world evidence study for distribution of traditional Chinese medicine syndrome and its elements on respiratory disease. *Evid Based Complement Alternat Med*. 2018;2018:1-11. doi:10.1155/2018/8305892

18. Zhao C-qing, Zhou Y, Ping J, Xu L-ning, Xu LM. Traditional Chinese medicine for treatment of liver diseases: progress, challenges and opportunities. *J Integr Med*. 2014;12(5):401-408. doi:10.1016/S2095-4964(14)60039-X

19. Zhang I., Schuppan D, Medicine TC. TCM for fibrotic liver disease: hope and hype. *J Hepatol*. 2014;61(1):166-168.

20. Chen K, Chen H. Traditional Chinese medicine for combating COVID-19. *Front Med*. 2020;14(5):529-532. doi:10.1007/s11684-020-0802-9

21. Ang I, Lee HW, Choi JY, Zhang J, Soo Lee M. Herbal medicine and pattern identification for treating COVID-19: a rapid review of guidelines. *Integr Med Res*. 2020;9(2):100407. doi:10.1016/j.imr.2020.100407

22. Xiong X, Wang P, Su K, Cho WC, Xing Y. Chinese herbal medicine for coronavirus disease 2019: a systematic review and meta-analysis. *Pharmazie*. 2020;160:105056. doi:10.1016/j.phrs.2020.105056

23. Gao L-Q, Xu J, Chen S-D. In silico screening of potential Chinese herbal medicine against COVID-19 by targeting SARS-CoV-2 3CLpro and angiotensin converting enzyme II using molecular docking. *Clin J Integr Med*. 2020;26(7):527-532. doi:10.1007/s11655-020-3476-x

24. Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): a review and perspective. *Int J Biol Sci*. 2020;16(10):1708-1717. doi:10.7150/ijbs.45538

25. Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. *Nucleic Acids Res*. 2016;44(D1):D1202-D1213. doi:10.1093/nar/gkv951

26. Release S. Maestro. Schrödinger, LLC, New York, NY; 2017.

27. Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. *J Comput Chem*. 2009;30(16):2785-2791. doi:10.1002/jcc.21256

28. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. *Nucleic Acids Res*. 2015;43(W1):W443-W447. doi:10.1093/nar/gkv315