HPV – Das andere Kopf-Hals-Karzinom

HPV – A different view on Head and Neck Cancer

Autoren
Claus Wittekindt, Steffen Wagner, Shachi Jenny Sharma, Nora Würdemann, Jennifer Knuth, Henrike Reder, Jens Peter Klußmann

Institut
Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen, Universitätsklinikum Gießen und Marburg GmbH, Standort Gießen

Schlüsselwörter
Kopf-Hals-Tumor, Oropharynxkarzinom, Karzinogenese, Humanes Papillomavirus, Immuntherapie

Key words
Head and neck cancer, Oropharyngeal squamous cell carcinoma, Carcinogenesis, Human Papillomavirus, Immunotherapy

Bibliografie
DOI https://doi.org/10.1055/s-0043-121596
Laryngo-Rhino-Otol 2018; 97: S48–S81
© Georg Thieme Verlag KG Stuttgart · New York
ISSN 1615-0007

Korrespondenzadresse
Prof. Dr. med. Claus Wittekindt
Klinik für HNO-Heilkunde, Kopf-/Halschirurgie, Plastische Operationen
Universitätsklinikum Gießen und Marburg GmbH
Standort Gießen
Klinikstr. 32
D-35392 Gießen
claus.wittekindt@hno.med.uni-giessen.de

ZUSAMMENFASSUNG
Kopf-Hals-Tumore sind die sechst-häufigste Krebsart mit über 500000 jährlich gemeldeten Fällen weltweit. Die Hauptrisikofaktoren sind Tabak- und Alkoholkonsum, wobei v. a. Oropharynxkarzinome (OSCC) vermehrt eine Assoziation mit humanen Papillomaviren (HPV) aufweisen. Bei HPV-assoziierten und HPV-negativen OSCC handelt es sich bezüglich biologischer Charakteristika, Therapieansprechprognose der Patienten um 2 eigenständige Entitäten, die allerdings bisher identisch behandelt werden. Bei HPV OSCC spielen neben der Aktivität viraler Onkoproteine auch genetische (Mutationen und chromosomale Aberrationen) und epigenetische Veränderungen eine entscheidende Rolle bei der Krebsentstehung. Aufgrund des besseren Therapieansprechens wird aktuell über die Einführung einer De-Intensivierung der Therapie und über zielgerichtete Therapieoptionen für Patienten mit HPV OSCC diskutiert. Ein vielversprechendes zielgerichtetes Therapiekonzept ist bspw. die Immuntherapie. Besonders intensiv wird derzeit die Anwendung von Checkpoint-Inhibitoren (z. B. gegen PD1) erforscht. Mithilfe sogenannter Flüssigbiopsien sollen zukünftig weitere Biomarker, in Form von viraler DNA oder Tumor-Mutationen, zur Überwachung des Krankheitsverlaufes und frühzeitigen Erkennens von Therapieversagen eingesetzt werden. Zur primären Prophylaxe einer Tumorentstehung ist die HPV-Impfung von männlichen und weiblichen Jugendlichen empfehlenswert.

ABSTRACT
Head and neck cancer is the sixth most common cancer with over 500000 annually reported incident cases worldwide. Besides major risk factors tobacco and alcohol, oropharyngeal squamous cell carcinomas (OSCC) show increased association with human papillomavirus (HPV). HPV-associated and HPV-negative OSCC are 2 different entities regarding biological characteristics, therapeutic response, and patient prognosis. In HPV OSCC, viral oncoprotein activity, as well as genetic (mutations and chromosomal aberrations) and epigenetic alterations plays a key role during carcinogenesis. Based on improved treatment response, the introduction of therapy de-intensification and targeted therapy is discussed for patients with HPV OSCC. A promising targeted therapy concept is immunotherapy. The use of checkpoint inhibitors (e.g. anti-PD1) is currently investigated. By means of liquid biopsies, biomarkers such as viral DNA or tumor mutations in the will soon be available for disease monitoring, as well as detection of treatment failure. By now, primary prophylaxis of HPV OSCC can be achieved by vaccination of girls and boys.
1. Einleitung und Zusammenfassung

Das Oropharynxkarzinom (OSCC) ist der einzige Kopf-Hals-Tumor (KHT) mit deutlich steigender Inzidenz. Hierfür sind Infektionen mit onkogenen, sogenannten hochrisiko (HR) Humanen Papillomaviren (HPV) verantwortlich, die aktuell zunehmend häufiger in OSCC nachgewiesen werden. Die Übertragungswege von HPV im Oropharynx sind nach wie vor nicht bekannt. Es gibt jedoch zahlreiche Hinweise, dass die Übertragung von HR HPV durch sexuelle Kontakte erfolgt. Die Karzinogenese beim HPV-positiven OSCC (HPV OSCC) wird vorwiegend durch virale Onkoproteine getrieben. Jedoch spielen genetische Veränderungen ebenfalls eine bedeutende Rolle und häufig liegen zusätzliche Risikofaktoren der klassischen Karzinogenese (Nikotin) vor. Die genetischen Untersuchungen zeichnen bisher noch kein eindeutiges Bild HPV OSCC-spezifischer Mutationen. In Untersuchungen epigenetischer Veränderungen (DNA-Methylierung, microRNA, Tumormetabolismus, Immun-Escape, Gen-Expression) sind jeweils HPV spezifische Aberrationen identifiziert, die Ansatzpunkte für zukünftige zielgerichtete Therapien aufdecken. Patienten mit HPV OSCC sind häufig jung, relativ gesund und haben weniger lifestyle-Risiken akkumuliert; im Vergleich zu HPV-negativen OSCC ist das Gesamtüberleben dieser Patienten erheblich besser. Das bessere Gesamtüberleben und weniger zusätzliche Risikofaktoren lassen daher v. a. diese Patientengruppe als geeignet erscheinen, um von einer De-Intensivierung der Therapie oder zielgerichteten Therapieoptionen zu profitieren. Ab Januar 2017 gelten aktualisierte TNM-Regeln und Stadiengruppierungen für HPV OSCC. Als Testverfahren ist international der p16INK4a(p16)-Test vorgeschlagen. Die Testung von HPV OSCC sollten, wenn möglich mittels dualem Nachweis von HPV DNA und p16-Expression erfolgen. HPV OSCC werden dann, im Vergleich zu früher, in kleinere UICC-Stadiengruppen eingeteilt. Nach der Therapie haben Patienten mit HPV OSCC eine um ca. 30 % bessere Prognose für das Überleben nach 5 Jahren und zwar in allen Therapiemodalitäten. HPV ist also kein Prädiktor für Chirurgie oder Strahlentherapie, daher haben tumorsanierende Operationen nach wie vor einen hohen Stellenwert. Aktuell werden zahlreiche Studien mit einer weniger intensiven Therapie durchgeführt, bisher liegen jedoch zusätzlich noch keine Ergebnisse vor. Für die neuen Immuntherapien wird der Stellenwert beim HPV OSCC ebenfalls untersucht. Bemerkenswert sind chirurgische Therapieoptionen bei Fernmetastasierung, es ergeben sich auch dann häufig noch kurative Therapieansätze. Neben der Erhebung von Funktionseinschränkungen ist dies folglich für die Nachsorge unserer Patienten bedeutsam. Zukünftig wird für Patienten mit HPV OSCC mit hoher Wahrscheinlichkeit sowohl spezifische, als auch deintensivierte Therapie verfügbar sein. Für die Zuordnung zu Therapieverfahren werden aktuell Risikomodelle entwickelt und diskutiert. Möglicherweise liefert die virale Karzinogenese eine wertvolle Option für molekulare Früherkennung und Nachsorge mittels Blutproben (sogenannte Liquid Biopsy). Bis dahin
sollten wir HNO-Ärzte für die Durchführung einer HPV Impfung bei Mädchen und Jungen werben, weil dadurch wahrscheinlich fast alle Fälle von HPV OSCC vermieden werden könnten.

2. Epidemiologie

2.1 Update zur Inzidenzzunahme des Oropharynxkarzinoms

Beim KHT sind steigende Inzidenzraten für HPV-getriebene Tumoren beschrieben, welcher die Häufigkeit aller KHT in entwickelten Ländern abnimmt. Bei vergleichender Analyse kanadischer Registerdaten aus 1973–2012 und 2000–2012 wurde bspw. eine Verdoppelung für das OSCC (häufig HPV-getrieben) bei gleichzeitiger Abnahme der Inzidenzrate für das Mundhöhlenkarzinom (selten HPV-getrieben) beschrieben [1]. Aus kanadischen Registerdaten wurde gleichfalls eine Abnahme der allgemeinen Inzidenz für KHT bei gleichzeitiger Zunahme für das OSCC aktuell berichtet [2]. Dieser epidemiologische Trend wird auf der Grundlage nahezu aller publizierter Originalarbeiten auf die steigende Prävalenz onkogener HPV im OSCC zurückgeführt [3]. In Abhängigkeit von Studiendesign und Nachweisverfahren reiht die Prävalenz onkogener HPV im OSCC in aktuell publizierten Serien aus Skandinavien bis zu 85 % [4]. Es ist zumindest anzunehmen, dass die in den Originalarbeiten beschriebene Prävalenzzunahme alleine aufgrund methodischer Mängel jedoch überschätzt wird. Im deutschen Sprachraum ist von einer HPV-Prävalenz neueren Präparaten verglichen, hierdurch erklärt sich ein systematischer Fehler. Im deutschen Sprachraum ist von einer HPV-Prävalenz für das OSCC aktuell von 20–40 % auszugehen [5–7]. Für das Tonsillenkarzinom wurde jedoch bereits vor 15 Jahren in über 50 % der Fälle onkogene HPV detektiert [8], hier muss der Anteil HPV attribuierbarer OSCC wesentlich höher angenommen werden. Aus unserem eigenen untersuchten Kollektiv (Abb. 1) von Patienten mit OSCC konnte in einer vergleichenden Untersuchung an 599 Patienten ein Anstieg der HPV Prävalenz von knapp über 20 % der Patienten auf aktuell über 50 % der Patienten gezeigt werden [7]. Auch bei vergleichender Analyse der HPV Prävalenz in zervikalen Filiae beim CUP-Syndrom konnte im Gießener Patientenkollektiv eine deutliche Zunahme auf aktuell nahezu 75 % der Patienten beobachtet werden. Zusammengefasst zeigen die publizierten Arbeiten eine stetige Zunahme der Inzidenzzahlen für das OSCC und für diesen Inzidenzanstieg sind nach übereinstimmenden Berichten aus der Literatur die Inzidenzunahme HPV-getriebener Tumoren verantwortlich.

2.2 Bedeutung des HPV Nachweises außerhalb des Oropharynx

Aus gesundheitsökonomischer Sicht ist der Anteil HPV-getriebener KHT in anderen anatomischen Lokalisationen als Oropharynx ebenfalls von großem Interesse. Bspw. könnten diese Fälle auch durch konsequente HPV-Primärprophylaxe in Form einer Impfung vermieden werden. Weiterhin könnten Patienten in den Genuss einer deintensivierten Therapie kommen mit entsprechend reduzierten Nebenwirkungen, denn für HPV OSCC ist zu erwarten, dass reduzierte Therapieintensitäten in naher Zukunft etabliert sein werden. Hierzu ist erstens die Frage relevant, ob der Nachweis von HPV in Geweben außerhalb des Oropharynx eine echte HPV-getriebene Karzinogenese anzeigt oder ob es sich nur um zufällig nachgewiesene Infektionen ohne weitere Relevanz handelt. Zweitens ist die Frage relevant, ob sich der Nachweis von HPV in non-OSCC auch in einer verbesserten Prognose der Patienten zeigt.

In einer aktuellen US-amerikanischen Arbeit aus 2015 konnte außerhalb des Oropharynx eine hohe Rate HPV-positiver DNA-Testergebnisse (70.1 % Oropharynx, 32.0 % Mundhöhle und 20.9 % Larynx) gezeigt werden [9]. Betrachtet man jedoch die gesamte publizierte Literatur und Meta-Analysen zur Frage von HPV-Positivität außerhalb des Oropharynx ist das Ergebnis uneinheitlich [10–12]. Aus einem Daten-Set einer Meta-Analyse von 12263 Patienten wurden HPV attribuierbare Fraktion für die Mundhöhle (24,2 %) und Larynx (22,1 %) basiert auf DNA-Nachweis berichtet. Außerhalb des Oropharynx konnten jedoch kaum Datensätze mit dualem Testergebnis (HPV-DNA und p16-Test) ausgewertet werden [13]. Aktuell wurden eine umfangreiche spanische Untersuchung mit Ergebnissen von 3680 Patienten mit KHT nach kombinierter Testung für DNA, RNA und p16 vorgelegt. Dabei wurde eine HPV Prävalenz beim Mundhöhlenkarzinom von 4,4 % und beim Larynxkarzinom von 3,5 % ermittelt bei Positivität aller 3 Tests waren die Ergebnisse sogar noch deutlich geringer. Dadurch wurden die zuvor berichteten teilweise sehr hohen Rates HPV-getriebener KHT außerhalb des Oropharynx deutlich relativiert [14]. Ein Großteil positiver HPV Testergebnisse außerhalb des Oropharynx zeigt somit wahrscheinlich keine HPV-getriebene Karzinogenese an, sondern es handelt sich dabei um akute Infektionen oder falsch positive Testergebnisse.

Zur Relevanz des HPV-Nachweises außerhalb des Oropharynx hinsichtlich der Prognose der Patienten liegen keine prospektiven Untersuchungen vor. Wir können jedoch anhand retrospektiver Daten von Patienten, die mittels Radiotherapie (RT) oder kombinierter Radiochemotherapie (RCT) im Rahmen von klinischen Studien behandelt wurden, darauf schließen, dass ein positiver p16-Test außerhalb des Oropharynx geringe prognostische Aussagekraft besitzt. Im DAHANCA Konsortium in Dänemark wurden 1294 Patienten mit fortgeschrittenen KHT mittels RT oder RCT behandelt und in KHT außerhalb des Oropharynx konnte keine prognostische Aussagekraft hervorgebracht werden [15]. Weiterhin wurden p16 positive non-OSCC Patienten nach Behandlung im Rahmen von 3 RTOG-Stu-
dien ausgewertet. Dabei hatten im Vergleich zu p16-positiven OSCC Patienten, non-OSCC Patienten ein um 50 % erhöhtes Sterberisiko [16]. Für Patienten mit Larynxkarzinom wurden sogar schlechtere Überlebensraten publiziert, wenn der p16 Test positiv war [17]. Serologische Untersuchungen sprechen ebenfalls gegen einen Zusammenhang zwischen Erkrankungsrisiko an KHT (außer Oropharynx) und einer HR-HPV-Infektion. Odds Werte für das Risiko an OSCC zu erkranken betrugen bei der Analyse von HPV-16 spezifischen Anti-körpern 14,6 für OSCC gegenüber 3,6 (Mundhöhle) und 2,4 (Larynx) [18]. In einer neueren Untersuchung (ARCAGE-Studie) wurden 1496 KHT untersucht und HPV16 L1- und E6-Antikörper mit einer Risikoerhöhung um die Faktoren 8,6 bzw. 132,0 für die Entwicklung eines OSCC ermittelt. Demgegenüber wurden bspw. für das Larynxkarzinom marginale Werte von 1,54 und 4,18 beschrieben [19].

Zusammengefasst ist die Prävalenz HPV-getriebener Tumoren außerhalb des Oropharynx deutlich niedriger als angenommen und kann derzeit noch nicht genügend angenommen werden. Es existiert keine belastbare Evidenz dafür, dass die Prognose dieser Patienten vergleichbar mit OSCC Patienten deutlich besser ist.

2.3 Epidemiologie kanzerogener HPV-Infektionen

Weil nahezu alle Erwachsenen in Deutschland Kontakt zu onkogenen HPV in der Adoleszenz haben, ist es bedeutsam zu verstehen, warum das HPV OSCC ausgerechnet in den letzten Jahrzehnten stetig häufiger und v. a. bei männlichen Patienten auftritt. Die geraumeingewisse Ausbreitung dieser Infektion geschätzt, dass 50 % der Einwohner Deutschlands infiziert sein wird. Zu Ungunsten von Männern tragen weiterhin Daten bei, die eine höhere Anzahl von Geschlechtsorganen, ein jüngeres Alter bei der Kohabitation und zahlreichere orale sexuelle Kontakte bei Männern aufzeigten [27]. Ein weiterer Hinweis auf die Suszeptibilität von Männern für HPV-16 war der Befund, dass bei HPV OSCC Patienten die Infektionsrate der Partnerschaften höher als die der Frau war [28].

2.4 Entwicklung in Regionen mit konsequenter Primärprophylaxe

Eine Primärprophylaxe gegen kanzerogene HPV steht in Form der HPV-Vakzine zur Verfügung. Der von der Firma Sanofi Pasteur MSD hergestellte vielfach-Impfstoff Gardasil wurde im Jahr 2006 in den USA und Europa zugelassen. Ein Jahr später erfolgte die Zulassung des bivalenten Impfstoffes Cervarix. Beide Impfstoffe enthalten das rekombinante Kapsidprotein L1, jeweils der HPV-Typen 16 und 18, 6, 11, 16 und 18. Ab April 2015 ist der neunfach-Impfstoff Gar stocke seit 2016 zur Verfügung, der von der Firma Sanofi Pasteur MSD hergestellt wird. Der Impfstoff schützt vor 90 % der HPV-Typen 31, 45, 52 und 58. Vorteile sind ein erweiterter Impfschutz und ein 2-Dosen-Schema (im Abstand von 5–13 Monaten). Die HPV-Impfstoffe sind ab einem Alter von 9 Jahren zugelassen und die Impfung soll vor dem ersten Geschlechtsverkehr durchgeführt werden. Die Zulassung besteht für Mädchen und Jungen, allerdings empfiehlt die STIKO aktuell nur die Impfung von Mädchen und auch nur diese wird von den Krankenkassen erstattet.

Der HPV-Impfstoff wird aktuell in Deutschland nicht breit genutzt. Nach einer Analyse der Versichertendaten der AOK Baden-Württemberg waren von den jungen Frauen des Jahrgangs 1996 nur 37 % vollständig geimpft. Zum Vergleich liegt die Impfquote bei Mumps und Röteln laut RKI bei 92 %. Vergleichbare Daten mit Vakzinierungsraten < 40 % bei Männern wurden vom Gesundheitsministerium in 2014 publiziert [29]. Die Datenlage spricht eindeutig für eine Impfung auch von Jungen. Allerdings wurde die Zulassungsstudie naturgemäß anhand von Krebsvorläuferstufen an der Zervix durchgeführt und entsprechend beziehen sich Kosten-Nutzen-Analysen ebenfalls auf Erkrankungen der uterinen Zervix [30].

In 2015 hatten 34 % der Länder weltweit ein HPV-Immunisierungsprogramm. Von einer Vakcinierung profitierten im selben Zeitraum jedoch populationsbedingt lediglich weniger als 5 % aller Frauen (in Ländern mit hoher Inzidenz häufig kein Programm). Aus Ländern mit einer hohen Coverage sind zahlreiche Daten vorhanden, die einen Effekt auf HPV-bedingte Erkrankungen auch abseits des Zervixkarzinoms berichten. Bspw. konnte in einer Literaturübersicht aus 2015 in Ländern mit einer Immunisierungsrate von über 50 % eine Reduktion der HR-HPV-Infektionen um 68 %, sowie anogenitaler
Wittekindt C et al. HPV – Das andere Kopf-Hals-Karzinom. Laryngo-Rhino-Otol 2018; 97: S48–S81

Referat

ko eine der beiden Krebserkankungen zu entwickeln ist schwer ab-
schen Risikofaktoren assoziiert (siehe Kapitel 2). Ein getrenntes Risi-

unterschiedlich. Beide Patientengruppen sind mit weiteren spezifi-
nsese bei HPV-assoziierten und HPV-negativen KHT ist grundsätzlich
koholkonsum oder onkogenen HPV assoziiert sind. Die Karzinoge-

zinome, die im Wesentlichen mit den Risikofaktoren Tabak- und Al-

messungen wurde bereits 1996 vorgeschlagen, mit typischen geneti-
schen Veränderungen bei Dysplasien (loss of heterozygosity (LOH)
auf Chromosomen 3p, 9p und 8p) [41]. Wenig später wurde gezeigt, dass in

wichtigsten Gruppen von Risikofaktoren umfassen: Umwelteinflüs-

(2011 und 2015 neu aufgetretene Fälle juveniler RRP gesammelt und in einem Kongreßbericht publiziert. Lediglich 13 Fälle wurden gemeldet (7–2012, 3–2013, 2–2014 und 1 Fall in 2015). Keine der Mütter dieser Fälle hatte einen Impfschutz. Zwei Strategi-

en werden zur Prophylaxe der RRP bei Kindern zusätzlich diskutiert: erstens die Impfung von Neugeborenen, wenn bei der Mutter Kon-
dylobe bestanden und zweitens die Impfung von Schwangeren mit

achtgewisser HPV 6 oder 11-Infektion um ggf. durch Weitergabe

von Antikörpern das Kind vor einer Infektion zu schützen. Bei geimpf-

ten Müttern konnten vergleichbar hohe Antikörper titer in Neugebo-

renen gezeigt werden [33].

Oropharynxkarzinome treten überwiegend bei männlichen Pa-
tienten auf, bei der RRP ist das Geschlechterverhältnis annähernd

ausgeglichen. Zahlreiche weitere Erkrankungen mit hoher Last für

die Betroffenen sind durch kanzerogene und nicht-kanzerogene HPV

bedingt. Welcher Nutzen ist nun für andere Krankheiten als das Zer-
bürtige Bedeuten die Schwierigkeit bei Krebsvorstufen nur unsicher vorhergesagt werden und beim HPV OSCC wurden Krebsvorstufen bisher nicht eindeutig identifi-

ziiert (s. u.).

3.2 Feldkanzerisierung

Leukoplakien sind sichtbare Veränderungen, denen makroskopisch

unsichtbare Vorfällerläsionen vorangehen. Diese nicht erkennbaren

Läsionen erklären vermutlich die Neigung nach der Behandlung lo-
koregionale Rezidive zu entwickeln. Durch die Verbindung loko-

genischer Methoden näher definiert worden. Ein mehrstufiges Ent-

waltungsmodell aus morphologischen und genetischen Verände-

rungen wurde bereits 1996 vorgeschlagen, mit typischen geneti-
schen Veränderungen bei Dysplasien (loss of heterozygosity (LOH)
auf Chromosomen 3p, 9p und 17p) und Karzinomen (LOH auf Chro-

mosomen 11q, 4q und 8) [41]. Wenig später wurde gezeigt, dass in

wenigstens 35 % oraler und oropharyngealer Tumore genetische Ver-

änderungen in Schleimhautzellen im Umfeld von Karzinomen vor-

liegen, wobei das Epithel in diesem Bereich normal erscheint. Dies

spricht dafür, dass die Karzinogenese ein Feld von unterschiedlichen

Vorstufen betrifft, die für das bloße Auge unsichtbar über Resekti-

onsräder hinausgehen und loko-regionale Rezidive hervorrufen kön-

nen. Weiterhin wurden fokale Bereiche mit immunhistologischer

p53-Positivität im Umfeld von Karzinomen identifiziert, die „klonale

Einheiten“ kennzeichnen und aus einer gemeinsamen Vorläuferläsi-

on hervorgegangen sind [42]. Mutationen in TP53 rufen die Expression

(eines inaktiven) Tumorsuppressorproteins p53 hervor und wer-

den als eine der frühesten onkogenen Veränderungen angesehen.

Zusammen mit der Feldkanzerisierung stellt die mehrstufige Ent-

wicklung das aktuelle Modell der Karzinogenese bei HPV-negativen

KHT dar [43].

3.3 HPV

In der klassischen Vorstellung erfolgt während einer latent persistie-

renden Infektion mit onkogenen HPV die Integration der viralen DNA in
das Genom der Wirtszelle. Diese Integration erfordert eine Linea-

risierung der viralen DNA, die häufig als Bruchstelle innerhalb des E2

Leserahmens auftritt. Das virale E2 Protein kontrolliert die Aktivität

der viralen Onkoproteine E6 und E7 und der Bruch des E2 Leserah-

mens führt zu deren verstärkten Expression. Im natürlichen epider-

malen Lebenszyklus von HPV unterbinden E6 und E7 die Apoptose

und treiben den Zellzyklus voran, wodurch die epithelialen Zellen

proliferieren und die Infektion persistiert bleibt (Abb. 2). In der
Folgen werden infizierte Zellen in höhere Hautsichten geschoben, wo die Aktivität von E6 und E7 abnimmt und Hüllproteine der viralen Kapside produziert werden. Während der HPV-assoziierten Karzinogenese wird p53 durch die Aktivität von E6 für den proteolytischen Abbau markiert und folglich inaktiviert. E7 bindet an das Retinoblastomprotein (RB) wodurch der Zellzyklus angetrieben und der Transkriptionsfaktor E2F freigesetzt wird. Dieser erhöht die Transkription von Genen, die für die Zellproliferation relevant sind.

Im Unterschied zur schrittweisen Akkumulation genetischer Veränderungen bei HPV-negativen KHT erfolgen diese beiden wesentlichen Schritte lediglich durch die Aktivität viraler Onkoproteine beim HPV OSCC. Folglich sind bei HPV-assoziierten KHT Mutationen in TP53 (und dadurch bedingte Überexpression von p53) und HPV-induzierte Felder der Karzinogenese unbekannt. Dies wurde experimentell durch die Abwesenheit von viralen E6 Transkripten an Rekombinationsrändern HPV-assoziierten KHT bestätigt [44]. Im Unterschied zum Zervixkarzinom, bei dem Vorstufen durch Anfärbung durch E6AP aufgehoben und aktiviert durch p53. Andere Mutationen liegen in Introns und beeinflussen alternative Splicenser.

3.4 Genetische Veränderungen

3.4.1 Mutationen

Das am häufigsten bei soliden Tumoren von Mutationen betroffene Gen ist TP53. In einer vergleichenden Studie wurden whole-exome Analysen an 15 Typen solider Tumore durchgeführt, in 11 davon war TP53 das häufigste mutierte Gen und in den übrigen Entitäten 2-mal auf dem zweiten und 1-mal auf dem dritten Platz (hinter KRAS bzw. BRAF und N Raf) [45]. In HNSCC liegt die Mutationsrate von TP53 mit etwa 40 % der Fälle im oberen Drittel solider Tumore. Interessanterweise weist mit knapp 6 % das Zervixkarzinom die auffallend niedrigsten TP53 Mutationsraten auf, was mit der sehr hohen Rate HPV-assoziiierter Karzinome zusammenhängt [46]. Mutationen treten an vielen Positionen von TP53 auf, wobei etwa an 12 hotspots jeweils mehr als 1 % aller Mutationen auftreten. 9 dieser hotspots betreffen Aminosäuren, die direkt an der spezifischen DNA-Bindung von TP53, oder solche, die für die korrekte Faltung der DNA-Bindedomäne beteiligt sind. Andere Mutationen liegen in Introns und beeinflussen alternatives splicen/Spleißen von TP53, was Auswirkung auf Isoformen von TP53 hat.

Neben TP53 sind Mutationen in CDKN2A und RB1 (RB, Retinoblastoma-associated protein) bei HPV-negativen KHT häufig, sie fehlen jedoch beim HPV-assoziierten OSCC. RB1 kodiert RB und wie bei p53 wird die Aktivität dieses Signalwegs in HPV-assoziierten KHT durch virale Onkoproteine dysreguliert, wodurch die geringe Mutationsrate erklärt werden kann. CDKN2A (cyclin-dependent kinase Inhibitor 2 A) kodiert das Tumorsuppressorprotein p16, dessen Wirkung in HPV-assoziierten KHT durch Inaktivierung von RB downstrream aufgehoben ist. Aktivierende Mutationen der katalytischen Untereinheiten von PI3K (Phosphoinositid-3-Kinasen, insbesondere in PIK3CA, sind in mehreren Studien vornehmlich beim HPV OSCC beschrieben worden [47, 48]. Dagegen wurden inaktivierende Mutationen im PIK3CA-Inhibitor PTEN häufiger bei HPV-negativen HNSCC nachgewiesen [49]. PI3K ist ein Multiproteincomplex, der an der Regulation wichtiger Funktionen wie Zellwachstum/Zellproliferation, Zelladhäsion/Migration, Differenzierung und Überlebensbeteiligt und für HPV-negative und HPV-assoziierte HNSCC offenbar gleichsam bedeutend ist.

Weitere aktive Mutationen wurden in FGFR3 und FBXW7 beim HPV OSCC in mehreren Studien detektiert [47, 48, 50, 51]. Der membranständige Fibroblastenwachstumsfaktorrezeptor-3 (FGFR3) ist ein Aktivator des PI3K-Signalwegs und FBXW7 ist an der Inaktivierung von Cyclin E, c-Jun, c-Myc und Notch1 beteiligt. Mutationen

Abb. 2 Die molekularen Mechanismen der Karzinogene bei HPV- und Noxen-assoziierten OSCC (vereinfacht). Dysfunktion der gleichen zellulären Programme (Apoptose, Zellzyklus, Seneszenz und Immunsystem) führt in beiden Gruppen zur Karzinogenese. Multiple genetische Veränderungen, die eine Reihe von Komponenten der Signalwege betreffen können, führen bei Noxen-assoziierten OSCC zur Aktivierung von Onkoprotene und Inaktivierung von Tumorsuppressoren. Dagegen erfolgen durch die HPV-Onkoproteine E5, E6 und E7 gerichtete Eingriffe in Signalwege, wodurch die gleichen zellulären Programme fehlreguliert werden. Charakteristisch sind bei Noxen-assoziierten OSCC Mutationen in TP53 wodurch häufig inaktive p53 überexprimiert vorliegen, sowie Mutationen in den Genen von RB und p16INK4A (p16) wodurch beide Proteine reduziert nachweisbar sind. Diese Mutationen fehlen in der Regel bei HPV-assoziierten OSCC und aufgrund der Aktivität von E7 liegt p16 überexprimiert vor.
in KRAS wurden ebenso bei HPV OSCC beschrieben [47, 48], dies konnte jedoch durch eine eigene Studie nicht bestätigt werden [49]. Aktuell beobachtet es sich, dass Mutationen in HLA- und β2-Mikroglobulin-Genen, die häufiger im HPV OSCC gefunden werden [50]. Dies wurde durch immunhistochemische Untersuchungen bestätigt [52] und könnte im Hinblick auf Immuncheckpoint Therapien zukünftig relevant werden.

3.4.2 Genetische Aberrationen (copy number variation, CNV)
Aufgrund ihrer Größe, die bis hin zum Verlust ganzer Chromosomen oder deren Arme reicht, zählen chromosomale Aberrationen zu den ersten genetischen Veränderungen, die in malignen Zellen nachgewiesen wurden. Komplexe Karyotypen mit umfassenden numerischen und strukturellen Chromosomenaberrationen sind charakteristisch für KHT [53]. Entsprechend dem Modell der Feldkanzerisierung konnten in CGH Analysen distinkte chromosomale Veränderungen mit Progression einer Dysplasie bis hin zum invasiven Karzinom korreliert werden. Der Übergang von leichter zur moderaten Dysplasie war hierbei gekennzeichnet durch Zugewinne auf Chromosom 3q26-qter, 3p15, 8q11-21, und 8q24.1-qter und Verlusten auf 18q22-qter. Zugewinne auf 11q13, 14q, 17q11-22, und 20q, und Verluste von 9p waren hingegen typisch beim Übergang von moderater zur schweren Dysplasie. Invasives Wachstum wurde mit gemeinsam auftretenden Verlusten auf Chromosom 3p14-21 und 5q12-22, die lymphogene Metastasierung dagegen mit dem Verlust von 4p in Verbindung gebracht [54]. Für Letztere wurden ebenso Zugewinne auf Chromosom 10p11-12 und 11p, sowie Verluste auf 4q22-31, 9p13-24, und 14q beschrieben, die bei entsprechenden Primärtumoren nicht vorhanden waren [55]. Interessanterweise finden sich auf den genannten Bereichen Gene, die involviert sind in der Zelladhäsion, sowie Faktoren des MAP (mitogen-activated protein)-Kinasen- und PI3K (Phosphoinositid-3-Kinasen)-Signalwegs, die ebenfalls häufig von Mutationen betroffen sind.

Beim KHT häufig beschriebene Amplifikationen finden sich auf den Chromosomen 3q-, 8q- und 20q, unabhängig vom HPV-Status [47, 48, 50, 56]. Wichtige Gene in diesen Regionen sind bspw. PIK3CA, TP53, SOX2, sowie das Onkogen MYC, welches in Folge der Genamplifikation vermutlich verstärkte Aktivität besitzt. Bei Karzinomen der Zervix wurde allerdings eine 3q-Amplifikation im Zusammenhang mit der Integration des HPV-Genoms beschrieben [57]. Auch wurden Deletionen von 13q bei HPV-assoziierten und HPV-negativen HNSCC beschrieben, jedoch insgesamt seltener bei HPV-assoziierten, was auch durch whole-genome NGS (Next Generation Sequencing)-Analyse bestätigt werden konnte [50]. Der Chromosomenabschnitt 13q codiert Gene wie RB1 und CNC1 (Cyclin A), die an der Regulation des Zellzyklus beteiligt sind und in HPV OSCC offtensichtlich durch virale Onkoproteine dysreguliert werden.

Allgemein scheint eine erhöhte chromosomale Instabilität beim KHT mit einer ungünstigen Prognose einhergehen, was insbesondere auch bei HPV OSCC gezeigt werden konnte [58]. Obwohl bei HPV OSCC und HPV-negativen KHT weitgehend die gleichen, aber auf unterschiedliche Weise dysregulierte Signalwege in der Karzinogenese von Bedeutung sind, können eine Reihe spezifischer genetischer Aberrationen für beide Subgruppen genannt werden. Bspw. konnten Amplifikationen von 5p, 7p, 8p, 11q, 12q, 17q und 18p beim HPV OSCC bisher nicht verifiziert werden. Deutlich seltener finden sich hier ebenfalls Verluste von 3p, 4q, 5q, 18q und 9p. Auf Letzte rem ist bspw. p16 kodiert, was nahelegt warum die p16-Expression bei HPV-assoziierten Karzinomen als Marker funktioniert [8, 59–62].

Eine HPV-spezifische Aberration sind Verluste auf Chromosom 16q, die mit einer günstigen Prognose der Patienten einhergeht [50, 56, 63]. Interessanterweise liegt auf 16q das Tumorsuppressorgen WWOX. WWOX überspannt eine der 3 häufigsten „common chromosomal fragile sites“ (FRA16D). Aberrationen an FRA16D mit entsprechend dysregulierter WWOX Expression sind bei unterschiedlichen Tumortypen bekannt und allgemein mit einer schlechten Prognose der Patienten assoziiert [64]. Aus Daten des Krebsgenom Projektes (TCGA) konnten mittels NGS an 279 KHT eine HPV-spezifische Amplifikation auf Chromosom 20q11 (E2F1-Gen) und eine Deletion auf Chromosom 14q32.32 (TRAF3-Gen, TNF receptor-associated factor 3) identifiziert werden [50]. Eine durch Amplifikation von 20q11 hervorgerufene Überexpression könnte im Zusammenhang mit den viralen Onkoproteinen (E6 & E7, die ebenfalls E2F aktivieren) synergistische Wirkungen entfalten. TRAF3-Verlust interferiert mit dem NFκB Signalweg und spielt somit eine Rolle bei Entzündungsreaktionen, sowie der angeborenen und erworbenen Immunantwort gegen Viren [65].

3.4.3 HPV Integration
Obwohl die Linearisierung im E2 Leserahmen des HPV-Genoms als primärer Schritt im klassischen Modell der HPV-induzierten Karzinogenese angenommen wird, ist die Expression der Onkogene E6 und E7 unabhängig von der Kopienzahl oder Integration viraler DNA und in mehr als 60% von HPV OSCC wurde lediglich episomale Virus-DNA mithilfe von PCR nachgewiesen [66, 67]. Daten aktueller Sequenzanalysen zeigen, dass alle 3 möglichen Stadien des HPV-Genoms (rein epigenetisch oder integrativer Szenario) an verschiedenen häufig vorkommen und wahrscheinlich mehrere Mechanismen zur dysregulierten Expression der viralen Onkoproteine führen [68], inklusive Methylierung von E2-Bindestellen in der Regulatorregion von E6 und E7 (s. u.).

An HPV-transfizierten Keratinozyten konnte gezeigt werden, dass Integrationen stellten der viralen DNA an vielen Positionen im Genom auftreten, ebenfalls aber in oder in der Nähe wichtiger Regulatorgene der Zellproliferation [69]. An einem Fall einer malignen Transformation juveniler (HPV Typ 6 assoziierter) RRP wurde HPV-DNA Integration in das humane AKR1C3 Gen beschrieben. AKR1C3 kodiert ein Enzym (aldo-keto reductase family 1 member C3) des Androgen- und Estrogenstoffwechsels und ist beim Prostatakarzinom im Zusammenhang mit PSA Produktion beschrieben, bei HNSCC jedoch weitgehend unbekannt [70]. Die Rolle der Virus-DNA Integration bei der HPV-assoziierten Karzinogenese ist nicht abschließend geklärt. Es scheint ein Zusammenhang zwischen chromosomaler Instabilität und Tumoprobation zu bestehen. Demgegenüber wurde in derselben Studie HPV-DNA Integration mit einer besseren Prognose von Patienten mit Tonsillenkarzinomen assoziiert [58].

3.5 Epigenetische Veränderungen

3.5.1 Epigenetische Veränderungen von Nukleinsäuren
Epigenetische Veränderungen beschreiben Modifizierungen der Erbinformation, wodurch die „Genaktivität“, jedoch nicht die Sequenz der Nukleinsäure verändert wird. Die Modifikation der Nukleinsäure beeinflusst den Phänotyp und kann an Tochterzellen weitergegeben werden. Die wichtigsten Formen sind Methylierung der DNA und
Modifikation von Histonen. Methylierung von DNA ist (wie die Modifikation von Histonen) reversibel und wird genutzt, um die stabile Information der Nukleinsäuresequenz variabel zu nutzen. Durch Methylierung von Transkriptionsfaktor-Bindestellen kann die Aktivität einzelner Gene, Gruppen von Genen, oder ganzer Chromosomen gesteuert werden, z.B. bei Geschlechts spezifischer Inaktivierung des X-Chromosoms oder der genetischen Prägung (genomic imprinting) in Abhängigkeit von der elterlichen Herkunft bestimmter Allele.

Verschiedene Methylierungsmuster wurden im Zusammenhang mit Tumoren, einschließlich HPV beschrieben [71, 72]. Das wichtigste Beispiel für die epigenetischen Regulationen in Bezug auf HPV ist CDKN2A, das auf Chromosom 9p lokализiert und das Tumorsuppressorprotein p16 kodiert. p16 inhibiert den Zellzyklus und seine Expression ist oftmals beim KHT durch Methylierung des Genpromoters, Mutation oder homozygot Deletion des Gens inhibiert [50, 73]. Im Gegensatz hierzu wird in HPV OSCC eine starke Überexpression von p16 beobachtet, die als Surrogat Marker für diese Entität angesehen wird. Entgegen früheren Annahmen beruht diese Überexpression nicht auf der E7-bedingten transkriptionellen Aktivierung von p16 durch die Freisetzung von E2F. Vielmehr wurde eine direkte Aktivierung derzellulären Senesenz durch die Expression von E7 nachgewiesen. Hierdurch wird die Histon H3K27-spezifische Lysin Demethylase 6B (KDM6B) und dessen downstream Zielgen CDKN2A aktiviert [74]. In HPV-assoziierten Tumorzellen liegt Rb durch E7 inhibiert vor. Demzufolge folgt aus der Überexpression von p16 kein inhibitorischer Effekt auf Tumorzellen. Vielmehr scheint die Aktivität der Cyclin-abhängigen Kinassen 4 und 6 (CDK4/6) im Kontext der Rb-Inhibition von Tumorzellen nicht tolerierbar zu sein, wodurch eine Abhängigkeit von der Expression des CDK4/6 Inhibitorprotein p16 entsteht und dessen Überexpression für die Karzinogenese förderlich ist, im Gegensatz zu HPV-negativen Tumoren [75].

Neben p16 entsteht durch alternatives Speißen p14ARF, ein weiteres Genprodukt von CDKN2A. Die Proteinsequenz von p14ARF entsteht durch Ableisen eines alternativen Leserahmens (alternative reading frame, ARF) von CDKN2A und unterscheidet sich grundlegend von p16. p14ARF inhibiert die Ubiquitin-Ligase MDM2, wodurch p53 stabilisiert und der Zellzyklusregulator p21 exprimiert wird. p21 inhibitori gen und inhibiert Cyclin-CDK Komplexe, wodurch der Zellzyklus zwischen der G2 und der Metaphase angehalten wird. Die Regulation der p14ARF Expression erfolgt durch Modifikation von CpG Loci unterhalb der Transkriptionsstarts von p14ARF und p16, deren Methylierung in OSCC mit positivem HPV-Status und erhöhter Expression von p14ARF, aber nicht von p16 korreliert [76]. Ein Zusammenhang von zunehmendem Methylierungsgrad von CDKN2A mit ansteigendem Grad von Dysplasien wurde bei der Zervix festgestellt, wobei dies nicht die entsprechende Promotorregion betrifft [77]. Auch bei Patienten mit KHT besteht ein Zusammenhang zwischen Methylierungsmustern und dem klinischen Verlauf. Bspw. konnte der Therapieerfolg anhand der Promotormethylierung von lediglich 5 Genen (ALDH1A2, OSR2, IRX4, GRIA4, und GATA4) bei Patienten mit KHT erfolgreich vorhergesagt werden [71, 78].

Das „klassische Erklärungsmodell“ der HPV-assoziierten Karzinogenese geht von einer Integration der viralen DNA in das humane Genom aus, wodurch der E2-Leseramen unterbrochen und die Hemmung der viralen Onkoproteine E6 und E7 aufgehoben wird. Häufig liegen neben integrierter HPV-DNA jedoch weiterhin episomal HPV-Kopien und somit intaktes E2-Gen vor, und bei einem dreifachen HPV-assoziierten OSCC wird ausschließlich episomale Virus-DNA nachgewiesen. Das klassische Erklärungsmodell ist hier offensichtlich nicht ausreichend und eine Methylierung der E2-Bindestelle in der Regulationsregion für E6 und E7 im HPV-Genom wurde als weiterer, Integrations-unabhängiger Regulationsmechanismus für die Expression von E6 und E7 ausgemacht [79, 80].

3.5.2 microRNA Expression

microRNAs (miRNA) entstehen aus Haarnadel-Schleifen-ähnlichen Vorläufertranskripten von 60–70 Nukleotiden, die auf eine Länge von ca. 22 Nukleotiden gekürzt werden. Zusammen mit den Proteinen DICER1 und Argonaute (AGO) werden sie in den miRNA-induced silencing complex (miRISC) eingebaut und leiten diesen aufgrund ihrer Sequenz an korrespondierende Zielsequenzen der miRNA, die daraufhin enzymatisch gespalten werden. Dieser relativ einfache Regulationsmechanismus der Genexpression ist in Realität deutlich komplexer, da miRNAs, je nach Konservierungsgrad ihrer Sequenz, an unterschiedliche mRNAs binden können und mRNA Bindestellen für mehr als eine miRNA aufweisen können.

Trotz methodischer Fortschritte in den letzten Jahren wurden bisher nur wenige vergleichende Studien zur differentiellen Expression von miRNAs hinsichtlich des HPV-Status bei KHT durchgeführt und nur „eine Handvoll“ miRNAs werden bisher in mehr als einer Studie genannt [81]. In einer der aktuellsten Studien wurden 1719 miRNA Sequenzen bei 15 HPV-negativen und 11 HPV-assoziierten OSCC mit Hilfe von Mikroarrays untersucht. Es konnten 25 differentiell exprimierte miRNAs identifiziert werden, deren Funktionen in silico im Zusammenhang mit den PI3K- und Wnt-Signalwegen, der Regulation des Zytoskeletts und der fokalen Adhäsion herausgearbeitet wurden [82]. Unter den meistbekannten miRNAs ist Hsa-miR-363, die im Vergleich zu HPV-negativen bei HPV-assoziierten HNSCC hochreguliert vorliegt [83–85]. Zielsequenzen von Hsa-miR-363 finden sich bspw. in CDKN1A (cyclin-dependent kinase inhibitor 1), CASP3 (Caspase-3) und CD274 (programmed cell death 1 ligand 1, PD-L1) und weisen auf regulatorische Funktionen in apoptotische, Zellzyklus, Transkription und Immunologie hin. Ein weiteres Beispiel ist miRNA203, deren Expression durch das HPV Onkoprotein E7 während der zellulären Differenzierung herunterreguliert wird. Ein Zielgen von miRNA203 ist der Transkriptionsfaktor p63 und sowohl die Expression von p63, als auch dessen downstream Zielgene wie CARM-1, p21, und Bax wird durch die Inhibition von miRNA203 durch E7 erhöht [86]. Hierdurch verbleiben epitheliale Zellen proliferativ und in einem indifferentiisierten Stadium, was für den natürlichen Lebenszyklus von HPV benötigt wird. Im HPV E6/E7 induzierten Tumormodell in humanen Keratinozyten verstärkt p63 Invasivität durch Modulation des Src-FAK (focal adhesion kinase) Signalwegs, indem fokale Zellkontakte (focal adhesion) aufgelöst und die extrazelluläre Matrix (ECM) umgebaut wird [87].

Nebenzellulären miRNAs wurden miRNAs codiert im HPV-Genom entdeckt und auch experimentell bestätigt. Potenzielle Zielsequenzen dieser miRNAs finden sich im HPV-Genom, aber auch im humanen Genom [88]. Interesseranterweise wurden ebenfalls Zielsequenzen zweier weniger häufigen humanen miRNAs (mir-875 und mir-3144) in HPV-E6 Gen identifiziert. In HPV16 positiven Zellkulturen inhibieren
beide das Wachstum und induzieren Apoptose [89], was die komple- xen Regulationsmöglichkeiten durch miRNAs deutlich macht.

3.6 Dysregulation des Tumormetabolismus

Tumorhypoxie wurde als bedeutsam für das Überleben und Thera- pieansprechen von KHT beschrieben [90–92]. Es ist bekannt, dass Patienten mit einer Tumorhypoxie, aufgrund verminderten Präsen- ner, reaktiver Sauerstoffspezies (ROS), schlechter auf eine Bestrahlung ansprechen. Während der Bildung eines Tumors kommt es zur Ent- stehung eines Tumor-spezifischen Metabolismus, um die Energie- versorgung und Proliferation der Zellen zu gewährleisten. Ein spezi- fisches Merkmal dieses Metabolismus ist eine gesteigerte Umset- zung von Glukose zu Laktat, welche unter aeroben Bedingungen als „Warburg-Effekt“ erstmals im Jahre 1924 beschrieben wurde. Die Umsetzung von Glukose zu Laktat liefert jedoch nur 2 Mole ATP pro Mol Glukose, was durch eine gesteigerte Glykolyserate kompensiert wird [93–95]. Dieser angepasste Metabolismus des Tumors dient neben der Energiegewinnung dazu, wichtige Zellbausteinen (z. B. Nukleinsäuren, Aminosäuren und Lipide) bereitzustellen [96].

Hypoxie ist ein häufig in vielen soliden Tumoren vorkommendes Ereignis, welches dadurch auftritt, dass die Tumorzellen schnell pro- liferieren, eine kritische Masse überschreiten und dies zur Obstruk- tion und Kompression der Blutgefäße in der unmittelbaren Umge- bung des Tumors führt. Daraus resultiert dann schließlich eine schlechte Sauerstoffversorgung der Tumorzentren, was dazu führt, dass sich Tumorzellen in diesen hypoxischen Regionen an den Sauer- stoffmangel adaptieren und diverse Signalwege angeschaltet werden, die das Überleben der Zellen sichern sollen und den Glukosemetabo- lismus von der effizienten oxidativen Phosphorylierung auf den ineffi- zienteren glykolytischen Stoffwechselweg umstellen [97]. Eine Schließ- serrolle für die zelluläre Adaptation an hypoxische Bedingungen spielt hierbei die Gruppe der HIF(Hypoxie-induzierbarer Faktor)-Transkripti- onsaktoren, v. a. HIF-1 (HIF-1α & HIF-1β). HIF-1 aktiviert eine Reihe von Zielgenen, welche das Zellüberleben sichern, der Umstellung des Metabolismus dienen, sowie Invasion, Zellproliferation, Metastasie- rung, Erythropoese und Angiogenese vorantreiben [97–99]. Neben einer tatsächlichen Tumorhypoxie konnte interessanterweise eben- falls für HPV-Onkoproteine in Zelllinien nachgewiesen werden, dass diese HIF-1α stabilisieren (▶Abb. 3) [100–102].

Onkogene Viren sind somit in der Lage den Metabolismus des Tu- mors durch direkte und indirekte Interaktion mit zellulären Regula- toren, wie u. a. HIF-1α zu beeinflussen, um dies für die virale Repli- kation und Baustoffsynthese zu nutzen, was ebenso Karzinogenese und Progression vorantreiben. Dieser metabolische Phänotyp er- möglicht es den Tumorzellen trotz widriger Umstände, wie Sau- erstoffmangel, zu proliferieren [103]. Aufgrund dessen stellen die für die Umstellung des Metabolismus genutzten Signalwege und deren Regulatoren wie z. B. HIF-1 potentielle Ziele für eine Inhibition dar, insbesondere für solche Tumoren die stark abhängig von Glukose und aerob Gyklolyse sind.
3.7 Tumormilieu/Immun Escape-Mechanismen

Während der Entwicklung eines invasiven, HPV-assoziierten Plattenepithelkarzinoms müssen mehrere Stufen von Abwehrmechanismen überwunden werden. Die erste Stufe ist die Infektion, bei der die physikalische Barriere der Haut/Schleimhaut die wesentliche Rolle spielt. Nach der Aufnahme von viralen Partikeln müssen diese die Zelle durchqueren und in deren Zellkern gelangen. In der folgenden persistierenden Infektion übernehmen die HPV-Onkoproteine E5, E6 und E7 wichtige Funktionen, um möglichst lange von dem Immunsystem unerkannt zu bleiben und die Produktion neuer Viren in den Epithelzellen aufrecht zu erhalten. Im Mikromilieu HPV-infizierter Zellen finden sich verstärkt Zellen der angeborenen Immunantwort, wie dendritische Zellen (DC), Langerhans Zellen (LC), natürliche Killer- (NK) und natürliche Killer T-Zellen [104].

Zu einem großen Anteil heilen HPV-Infektionen von selbst ab und nur in einem kleinen Prozentsatz entwickelt sich ein Karzinom. In diesem Fall müssen weitere Veränderungen stattgefunden haben, durch die infizierte Zellen die physikalische Barriere der Basalmembran überwinden und dem kontinuierlichen Angriff des Immunsystems widerstehen können. Bspw. sind höhere Raten an HPV-Infektionen und HPV-assoziierten Karzinomen bei Personen mit unterschiedlichen NK-Zell-Fehlfunktionen bekannt [105]. Evolutionär ist diese letzte Stufe der Karzinogenese eine Sackgasse für HPV, da aufgrund der fehlenden Differenzierung der epithelialen Zellen keine Viruspartikel gebildet werden und diese auch nicht nach außen abgegeben werden könnten. HPV-assoziierte Tumore, wie auch HPV-negative Tumoren, befinden sich sozusagen im steady-state mit dem Immunsystem und wenn die Erkrankung bei den Patienten diagnostiziert wird, hat sich dieses Gleichgewicht bereits zugunsten des Tumors verschoben und durch das Immunsystem hat sich unkontrollierbares Wachstum eingestellt. Das Verständnis der Immun-Escape Mechanismen kann genutzt werden, um das Gleichgewicht wieder herzustellen, bzw. zugunsten des Immunsystems zu verschieben.

Ein physikalischer Immun Escape-Mechanismus von HPV besteht darin, dass der vollständige Lebenszyklus innerhalb der Epithelzellen abläuft und keine Viruspartikel an das Blut oder Gewebe abgegeben werden. Demzufolge sind HPV-Antigene kaum dem Immunsystem ausgesetzt und Antikörper titrieren nach einer natürlichen HPV-Infektion sind nicht hoch genug, um einen protektiven Effekt zu haben [106]. Dennoch ist eine T-Zell-Antwort offenbar für die Regression einer Infektion erforderlich, da diese bei Vorstufen von Zervixkarzinomen mit der Anwesenheit Granzyme B positiver zytotoxischer T-Zellen korreliert [107]. Die Onkoproteine E5, E6 und E7 wirken auf viele zelluläre Mechanismen, u. a. unterdrücken sie Signalwege, die für die Erkennung Virus-infizierter Zellen durch das Immunsystem erforderlich sind. Bspw. wirkt das Oberflächenprotein CXL14 als Chemokin und lockt verschiedene Zellen des Immunsystems an, wie z. B. DC, LC, NK- und T-Zellen.

E7 interagiert mit der zellulären DNA Methyltransferase DNMT1 und eine E7-abhängige Promotormethylierung und damit Repression von CXL14 konnte gezeigt werden [108]. Weiterhin moduliert E7 die Methylierung und Acetylierung von Histonen, was u. a. zur Erniedrigung der TLR9 (toll-like receptor 9) Expression und transkriptionelle Aktivität von IRF1 führt. TLR9 kann virale DNA erkennen und das angeborene Immunsystem aktivieren [109]. IRF1 Response Elemente finden sich in Promotoren von einer Reihe von Genen, wie z. B. TAP1 (Transporter associated with Antigen Processing 1), welches eine Rolle bei Antigen-Beladung von HLA-I im endoplasmatischen Retikulum spielt [110]. Weiterhin interagiert E7 mit NF-κB und unterbindet dessen Translokation in den Nukleus. Hierdurch unterbleibt bspw. eine Aktivierung von IFN-α, IL-6, und TNF-α und dadurch eine Abschwächung der Entzündungsreaktion [111].

Auch für E6 konnten entzündungshemmende Funktionen im Zusammenhang mit dem proinflammatorischen Zytokin IL-1β nachgewiesen werden. In Abhängigkeit von E6AP bewirkt E6 die Ubiquitinierung der Vorstufe von IL-1β (Pro-IL-1β), auf der deren proteas-
maler Abbau folgt [112]. Für das E5 Protein wurde eine Interaktion mit der schweren Kette von HLA-A und -B nachgewiesen, wodurch der HLA-I Komplex im Golgi Apparat und im endoplasmatischen Retikulum zurückgehalten wird [113, 114], HLA-C und HLA-E scheinen durch andere Mechanismen herunterreguliert zu werden. Der Verlust von HLA-I auf der Zelloberfläche korreliert mit einer verminderten Antwort CD8 + T-Zellen in E5 exprimierenden Zellen, führt jedoch zurAttraktion und Aktivierung von NK-Zellen, was bereits bei HPV-assoziierten OSCC beschrieben wurde und mit besserem Gesamtüberleben der Patienten korreliert (Abb. 4) [115]. Neben HLA-I wird auch die funktionelle Oberflächenlokalisierung von HLA-II, sowie CD1d durch E5 unterbunden [116, 117], was die Aktivität von T- und NK-T-Zellen beeinträchtigt. Das virale Capsidprotein L2 scheint die Reifung und Antigenpräsentation von DC und LC zu blockieren, indem es nach der Aufnahme durch DC und LC den intrazellulären Transport und Prozessierung von Viruspartikeln stört [118].

3.8 Molekulare Subtypen & Genexpression profile

Genomweite Untersuchungen der Genexpression basieren in der Regel auf einer vergleichenden Hybridisierung (Mikroarrays) oder Sequenzierung von mRNA. Sowohl die Kapazität von Mikroarrays, als auch die der Sequenzierungstechniken ist im Laufe der Zeit stetig gestiegen, was zur immer höheren Abdeckung des Genoms führt, jedoch mit Einschränkungen der Vergleichbarkeit von früheren mit heutigen Studien einhergeht.

In einer der ersten Genexpressionssstudien an KHT wurden aus 1187, auf einem cDNA Mikroarray untersuchten Tumor-assoziierten Genen, 60 differentiell exprimierte Gene identifiziert, die mit Radioresistenz bzw. dem Ansprechen auf eine Radiotherapie korrelierten [119]. Bereits 3 Jahre später wurden 60 KHT auf einem cDNA Mikroarray mit Sonden gegen 12814 humane Gene untersucht. In dieser Studie konnten 4 Subtypen anhand der Genexpression ausgemacht werden. Es zeigten sich Signaturen mit einem Schwerpunkt im EGFR-Signalweg, ein mesenchymaler Subtyp, ein Subtyp mit Expressionsmuster von normalem Epithel und ein Subtyp mit Anreicherung von Antikörpern zu Epitopen von HPV [120], jedoch blieb in allen früheren Studien der HPV-Status der Proben unbeachtet. Ähnliche Gruppen, bezeichnet als basal, mesenchymale, atypische und klassische Genexpressionstypen, wurden auch in einer weiteren Studie mit Hilfe eines Agilent 44 K Mikroarrays identifiziert und eine Anreicherung HPV-assoziiertem Proben war in der Gruppe mit atypischer Genexpression (z. B. mit erhöhter Expression von CDKN2A) zu beobachten [121]. Mit einer anderen Plattform (Illumina Expression BeadChips) wurden ebenfalls 4 Subtypen identifiziert, von denen jedoch lediglich der klassische Expressionstyp vergleichbar zur zuvor genannten Studie bestätigt wurde [122] und vermutlich in technischen Unterschieden oder Heterogenität der Proben begründet ist.

Eine klinisch relativ homogene Kohorte von 134 KHT, mit einem Anteil von 44 % HPV-Assoziation, wurde 2015 mit einem Agilent 4 × 44Kv2 Expressionsarray untersucht. Anschließend wurden die Daten mit bereits publizierten Daten zu einer Kohorte von über 900 Patienten zusammengefasst. In dieser Studie wurden 5 Subtypen identifiziert, die von 2 Gruppen HPV-assoziierten und 3 Gruppen HPV-negativer KHT gebildet werden. Jeweils eine HPV-assoziierte und HPV-negative Subgruppe zeigte einen Immune-/mesenchymalen Expressionstyp, sowie einen zuvor als „klassisch“ beschriebenen Expressionstyp [123–125]. Die verbliebene HPV-negative Gruppe zeigte ein basales Expressionsmuster mit Überrepräsentation von Hypoxie-assoziierten Genen (z. B. HIF1A, CA9, und VEGF), epithelialen Markern (P-cadherin, Cytokeratin KRT1 und KRT9) und Komponenten des Neuregulin Signalwegs. Im Gegensatz zu dieser basalen Expressionstypen zeigen die beiden HPV-assoziierten Gruppen keine Veränderungen in der Kopienzahl oder der Expression der EGFR/HER-Liganden [126].

Die Erkenntnisse aus genomweiten Expressionsanalysen konnten bisher nicht translational umgesetzt werden. Dies liegt zum einen an uneinheitlichen technischen Standards, was die Vergleichbarkeit der Ergebnisse einschränkt. Zum anderen ist die Gesamtzahl analysierter Proben noch relativ gering, um bspw. Heterogenität aufgrund von Patientencharakteristika herausrechnen zu können. Dies könnte sich durch die retrospektive Analyse von Formalin-fixierten Paraffin-eingebetteten (FFPE) Archivproben in Zukunft ändern. In einer Pilotstudie wurden 4 Tumorproben HPV-assoziiert und 2 HPV-negativer OSCC mithilfe eines NanoString gene expression Assays und Ion Torrent AmpliSeq cancer panel TNGS analysiert. Aus 230 Tumor-assoziierten Genen wurden mehrere mit positivem HPV-Status korreliert (z. B. WNT1, PDGFA und OGG1) und durch hierarchisches Einordnen wurden 6 Gruppen differenziell exprimierter Gene identifiziert [127]. Somit könnte die bisher wenig verbreitete Nutzung von FFPE-Materialien die Aussagekraft und Zuverlässigkeit von Daten aus Expressionsanalysen erhöhen.

4. Klinische Besonderheiten

4.1 Ist das HPV-assoziierte OSCC eine sexuell übertragbare Erkrankung?

Die Übertragung von HPV erfolgt vorwiegend über Hautkontakt oder kontaminierte Objekte. Danach kann es mit extrem hoher Wirtspezifität zur Infektion von Epithelzellen kommen. Durch Mikrowunden oder über sehr dünne Epithelien infiziert HPV undifferenzierte Zellen direkt überhalb der Basalmembran. Während die infizierten Zellen im Bereich der Basalmembran verweilen, ist die virale DNA-Replikation erndert. Dies liegt daran, dass die viralen Entwicklungsprozesse mit dem Differenzierungsprozess der infizierten Zellen gekoppelt sind, während diese zur epithelialen Oberfläche aufsteigen. Während die regulatorischen „Early“ Proteine (E) im frühen HPV-Zyklus produziert werden, werden die späten „Late“ Proteine L1 und L2, welche die Kapselstruktur der viralen Partikel darstellen, erst spätestens im Lebenszyklus produziert. Diese Formen zusammen mit viralen DNA infektiösen Viruspartikeln, die im Anschluss zusammen mit den obersten Epithelzellen an die Umwelt abgegeben werden.

Typischerweise entwickeln z. B. Kinder nach Schwimmbadbesuchen plantare Warzen, aufgrund einer Infektion mit den „Low Risk“ HPV-Typen 1, 2 und 4. Ein weiterer Übertragungsweg ist die perineale Transmission bei Geburt, welche mit der Entwicklung laryngealer Papillome im Säuglings-/Kleinkindalter einhergehen kann [128]. Für das HPV-assoziierte OSCC steht der sexuelle Übertragungsweg mit den „High Risk“ Papillomviren 16 und 18 im Vordergrund der Diskussion. Die stark ansteigende Inzidenz in den letzten Jahrzehnten wird vorrangig auf ein verändertes Sexualverhalten, jüngere Alter beim ersten Geschlechtsverkehr, sowie auf das vermehrte Praktizieren von Oralverkehr zurückgeführt [129]. Auch wenn die genital-geni-tale Infektion mit HPV bzgl. der Transmission vorzuherr-
schen scheint, sind jedoch auch andere Übertragungswege wie der anal-genitale, oral-genitale, manuell-genitale Kontakt, die Nutzung von Sex-Spielzeugen sowie die Autoinokulation möglich [130]. In 2 Kohorten in den USA konnte gezeigt werden, dass bei Patienten mit einem HPV OSCC die Promiskuität (vaginal, anal, oral) höher lag, im Vergleich zu Patienten mit einem HPV-negativen Tumor. Weiterhin wurde über (Oral) Sex mit häufig wechselnden Partnern, Gelegenheitspartner, sowie der seltene Gebrauch von Kondomen berichtet. Hellhäutige Patienten, Singles, sowie geschiedene Patienten gaben eine höhere Anzahl an Geschlechtspartnern an. Bzgl. des Einkommens konnte kein Unterschied in der Anzahl der Geschlechtspartner nachgewiesen werden, während Patienten mit einem höheren Bildungsniveau eine größere Anzahl an Geschlechtspartnern angaben. Nach der Durchführung einer Geschlechter-Stratifizierung konnte das veränderte Sexualverhalten prinzipiell eher bei Männern gezeigt werden [131, 132].

Für neue Lebenspartner scheint ein Risiko der Transmission zu bestehen. Jedoch lässt die Datenlage bis zu diesem Zeitpunkt keinen validierten Rückschluss zu. Da ein intermittierender bzw. fehlender Gebrauch von Präservativen mit einem erhöhten Risiko für eine orale HPV-Infektion bzw. ein HPV-assoziiertes OSCC einhergeht, schützt die Anwendung von Kondomen möglicherweise vor einer Übertragung mit onkogenen HPV [21, 129]. Für Nikotin und Alkohol konnte keine Assoziation mit HPV OSCC nachgewiesen werden. Es konnte ebenfalls keine positive Verhältnis eine höhere Anzahl an Geschlechtspartnern als Patienten bestimmt. Patienten mit über 10 Pack-Years Tabakkonsum hatten im Vergleich zu Patienten mit einem höheren Bildungsniveau, höher berufliche Stellung und höheres Bildungsniveau seine größere Anzahl an Geschlechtspartnern angegeben. Nach der Durchführung einer Geschlechter-Stratifizierung konnte das veränderte Sexualverhalten prinzipiell eher bei Männern gezeigt werden [131, 132].

Zusammenfassend wird als Grund für den Anstieg von HPV OSCC hauptsächlich eine höhere Anzahl an Geschlechtspartnern an. Bzgl. des Einkommens abhängig vom HPV Status festgestellt werden (Tab. 1). Weiterhin besteht ein höherer soziodemografischer sowie sozioökonomischer Status (höheres Bildungsniveau, höhere berufliche Stellung sowie Einkommenssituation) im Vergleich zu Patienten mit HPV-negativem OSCC [134]. Besonders in den USA sind Männer grundsätzlich häufiger betroffen (Quotient Männer/Frauen: 1,5), während der Quotient in Asien und einigen Ländern Europas lediglich bei 0,7 liegt [135]. Es wird vermutet, dass dies auf eine höhere Übertragungsrate einer HPV-Infektion beim Orogenitalsex zurückzuführen ist [130] sowie der erhöhte Nikotinabusus von Männern für eine Infektion prädisponiert [21].

Erste Symptome bei Patienten mit einem OSCC sind u. a. Halsschmerzen, Odynophagie oder Globusgefühl. Im Verlauf können Dysphagie oder zervikale Schwellungen auftreten. Häufig ist die zervikale Schwellung jedoch das erste und einzige Symptom bei HPV-OSCC, aufgrund dessen die ärztliche Vorstellung der Patienten erfolgt. Dies ist zurückzuführen auf das meist fortgeschrittene N-Stadium bei kleinem T-Stadium. Der Primarius ist bei Vorliegen einer HPV-Assoziation vorwiegend in der Tonsille bzw. dem Zungengrund lokalisiert [133, 136], während andere Lokalisationen im Oropharynx seltener betroffen sind. Während Rauchen und Alkohol die klassischen Risikofaktoren für KHT darstellen, existieren starke geografische Unterschiede bzgl. der

Tab. 1 Klinische Unterschiede beim HPV OSCC, n = 396.	non-HPV OSCC	HPV OSCC			
N	**N**	**%**	**N**	**%**	**p-Wert**
Geschlecht					
Männlich	306	238	80,7	57	19,3
Weiblich	90	70	80,5	17	19,5
Komorbidität	ECOG				
Gesund	257	187	76,0	59	24,0
1–2					
Krank	134	118	89,4	14	10,6
≥5					
Alter					
Jung (<60 Jahre)	210	162	80,6	39	19,4
Alt (≥60 Jahre)	186	146	80,7	35	19,3
Alkohol					
>2 Standardgläser	161	144	92,3	12	7,7
<2 Standardgläser	123	69	59,0	48	41,0
Nikotin					
>10 py	319	270	87,7	38	12,3
nein	60	29	50,0	29	50,0
Häufigkeit des Nikotinabusus und ein starker Rückgang konnte von 1980 bis 2012 in Nordeuropa sowie Nordamerika verzeichnet werden [137]. Während HPV-16 und Nikotinabusus noch kürzlich für unabhängige Risikofaktoren gehalten wurden [131], konnte in einer Patientenkohorte in den USA eine erhöhte Rate von HPV OSCC bei stattgebahntem Nikotinabusus aufgezeigt werden [138]. Bei Vorliegen eines HPV OSCC scheint ein Nikotinabusus einen negativen Einfluss auf das Überleben zu haben, während Alkohol nur eine untergeordnete Rolle zu spielen scheint [139, 140]. Insgesamt ist das Sterberisiko von Patienten mit HPV-assoziierten Tumoren jedoch um über 50 % reduziert gegenüber Patienten mit einem HPV-negativen OSCC. Dieses verbesserte Therapie-Outcome ist am ehesten auf die verbesserte lokoregionale Kontrolle, u. a. durch erhöhte Strahlen- sensibilität zurückzuführen (siehe Kapitel 6).

Zweitkarzinome bei Patienten mit HPV OSCC werden erheblich seltener beobachtet. Ob dies möglicherweise hauptsächlich auf fehlende Risikofaktoren, wie Nikotin- oder Alkoholabusus, zurückzuführen ist, ist ungewiss, da in neueren Studien über einen erhöhten Nikotinabusus auch in Patienten mit einem HPV-assoziierten OSCC berichtet wird. Durch die gute Prognose dieser Patienten erhöht sich die Anzahl der Patienten in der Nachsorge und es verlängert sich die Dauer der Nachsorge, wodurch therapeutisch assoziierte Langzeit schäden, wie z. B. Dysphagie, Xerostomie oder Dysgeusie besonders in den Fokus rücken. Die zukünftige Deeskalation der Therapie spielt hier eine wichtige Rolle, um die Lebensqualität dieser Patienten zu verbessern. Ebenfalls ist die Etablierung einer suffizienten tertiären Prophylaxe bei diesen Patienten mit Langzeiterleben von entscheidender Bedeutung, um Rezidive bzw. Femmetastasen auch im langen Nachsorgeintervall frühzeitig zu erkennen (s. Kapitel 7).

5. Diagnostik und Staging

Klinischer Verlauf und Biologie unterscheiden sich deutlich bei HPV-negativen und HPV-assoziierten OSCC. Bemerkenswert ist, dass ein eindeutiges und valides Verfahren zur Diagnose eines HPV-getriebenen KHT nicht existiert. In einzelnen Fällen ist auch nach Durchführung umfangreicher Laboruntersuchungen nicht eindeutig, ob ein Tumor HPV-getrieben ist oder nicht. Wahrscheinlich ist es ebenso, dass in vielen Fällen von OSCC sich die treibenden Faktoren der Karzinogenese überschneiden. Zu den etablierten Methoden gehören die immunhistochemische p16-Färbung (p16-Test), der Nachweis von HPV-spezifischen Nukleinsäuren (HPV DNA-Test) und die in-situ Hybridisierung (HPV-ISH) im Gewebeschnitt.

5.1 Testverfahren für die Diagnose HPV-assoziiertter Oropharynxkarzinome

Zur eindeutigen Bestimmung des HPV-Status in KHT ist sowohl die Anwesenheit von HPV, als auch der Nachweis onkogener Aktivität in den Gewebeproben zu fordern. Die Testergebnisse sind dann als prognostische Marker zur Patientenberatung und zukünftig auch zur Planung der Therapie anwendbar. Die Testung beider Voraussetzungen kann aus technischen und biologischen Gründen jeweils falsch-positive und falsch-negative Ergebnisse liefern. Eine Fehlinterpretation eines Tests kann folglich erhebliche Auswirkungen für den Patienten haben. Auch fehlen bislang Ergebnisse prospektiver Studien, die eine konkrete Anpassung der Therapie aufgrund des HPV-Status recht fernhalten, wenngleich laut einer aktuellen Studie aus den USA bereits mehr als die Hälfte der befragten Ärzte Behandlungsstrategien von HPV-Tests abhängig machen [141].

Die labortechnische Diagnose des HPV-Status besteht in der Regel aus einem Nachweis viraler DNA in Gewebeproben und erfolgt meist durch sensitive PCR-basierte Testverfahren oder durch die weniger sensitive ISH [142]. Die hohe Sensitivität PCR-basiert Verfahren birgt den Nachteil, dass Kontaminationen, bspw. durch parallele HPV-Infectionen, und biologisch inaktive HPV-DNA im Tumorgewebe von HPV-assoziierten Tumoren nicht unterscheidbare Signalen hervorrufen. Hingegen kann die Verteilung der Signale in der HPV-ISH einen Hinweis auf die HPV-Assoziation geben, was jedoch mit höherem Arbeitsaufwand verbunden ist und biologisch inaktive HPV-DNA ebenfalls nicht unterscheidet. Als „Goldstandard“ für die onkogene Aktivität wird der Nachweis viraler mRNA-Transkripten der Onkogene E6 und E7 mithilfe der RT-PCR angesehen. Die natürliche Instabilität von mRNA bedingt hierbei eine hohe Spezifität, da freie mRNA als Basis einer Kontamination praktisch ausgeschlossen werden kann, aber hierdurch auch eine niedrige Sensitivität. Außerdem ist die Aufarbeitung der Proben für die Gewinnung von mRNA anspruchsvoll, teilweise wird Frischgewebe benötigt und der Nachweis von mRNA Transkripten muss auch nicht zwangsweise mit einer Proteinspezi fikation viraler Onkoproteine oder deren biologischer Aktivität korrelieren. Das wesentliche Merkmal HPV-assozierter Karzinogenese ist die Virus-Onkoprotein bedingte Dysregulation des Zellzyklus über den p53-Signalweg und die Inhibition von Apoptose durch Inaktivierung von p53 (siehe Kap. 3). Auch in HPV-negativen Tumoren kommt es zur Inaktivierung von p53, jedoch in der Regel durch Mutationen in TP53, was sich immunhistologisch in Form von überexprimiertem, inaktiviertem p53 bemerkbar machen kann. In HPV-assoziierten Karzinomen fehlt p53, und das Tumorsuppressorgene p16 liegt bedingt durch die virale Onkoproteinaktivität überexprimiert vor (Abb. 5). Die Überepression von p16 in Tumorzellen ist selten, kommt jedoch in unterschiedlichen Krebsarten und bei etwa 5 % der Oropharynxkarzinome auch HPV-unabhängig vor [59]. Aufgrund einer moderaten Spezifität ist daher der alleinige p16-Test zur Be stimmung des HPV-Status nur bedingt ausreichend. In Kombination mit einem Nachweis viraler Nukleinsäure kann die Sensitivität und Spezifität signifikant erhöht werden (Abb. 6). Die Kombination aus p16-Test und HPV DNA-Test stellt daher anerkannt die praktikabelste Testkombination für die klinische Anwendung dar [142].

Die Untersuchung von Speichel wurde ebenfalls zur Feststellung einer HPV-Assoziation evaluiert. Die Methode ist einfach, preiswert und könnte für Prophylaxe, Therapiemonitoring und Nachsorge einsetzbar sein. Die ersten Arbeiten hierzu wurden bereits vor über 20 Jahren publiziert, dabei konnte eine gute Korrelation von PCR-Testergebnissen aus Speichel (oral rinses) und Tumorproben an 190 Patienten herausgearbeitet werden [143]. Eine wirklich überzeugende Spezifität und Sensitivität (zwischen 50 und 75 %) ist jedoch auch in den aktuellen Untersuchungen hierzu nicht berichtet [144]. Bei lokalen Tumorrezidiven könnte ebenfalls beispielhaft gezeigt werden, dass die Detektion von HPV-Material möglich ist [145]. Die Ergebnisse werden jedoch naturgemäß durch nicht seltene (s. o.) orale HPV Infektionen verfälscht. Der Nachweis onkogener aktiver HPV-Infektionen ist bisher ebenfalls nicht überzeugend gelungen.

HPV-spezifische Antikörper sind bei den meisten Patienten mit HPV-assoziiertem OSCC im Blut nachweisbar und dies bereits viele
Wittekindt C et al. HPV – Das andere Kopf-Hals-Karzinom. Laryngo-Rhino-Otol 2018; 97: S48–S81

In der Regel fehlt p16INK4A in HPV-negativen Plattenepithelkarzinomen des Oropharynx (links unten). p16INK4A liegt jedoch bei HPV-assoziierten OSCC (rechts unten) stark überexprimiert vor. Einzelne OSCC zeigen stellenweise eine schwache Expression von p16INK4A (oben rechts), die im Rahmen der HPV-Diagnostik jedoch nicht als positiv zu bewerten ist.

Prävalenz HPV-assoziierter OSCC (HR-HPV DNA und p16INK4A positive Proben) in Gießen 23 %. Jeweils etwa 6 % aller Fälle zeigen diskordante Ergebnisse bei HPV-DNA und p16INK4A Tests. Das Überleben dieser Patienten (blaue und gelbe Kurve) ist signifikant schlechter als das der Patienten mit HPV-assoziierten OSCC, es unterscheidet sich jedoch kaum vom Überleben der Patienten mit HPV-negativen OSCC (rote Kurve).

Die Tumorendoskopie dient hauptsächlich der schmerzfreien Histo-
logiegewinnung sowie der Einschätzung der Tumorausdehnung zuecks Bestimmung der Resektabilität des Tumors und möglicher Rekonstruktionsverfahren. Ferner soll im Rahmen einer Tumorende-
skopie das Vorliegen eines Zweitkarzinoms ausgeschlossen werden, dies gilt v. a. für Patienten mit Noxenabusus. Insgesamt wird die Durchführung der Tumorendoskopie oder Panendoskopie oder Triple Endoskopie international für alle KHT allerdings kritisch betrach-
tet. So gibt es kaum einen Konsens bezüglich Stellenwert und Tech-
nik. Sie wird aufgrund Weiterentwicklung bildgebender Verfahren, dem Risiko starrer Endoskopien und unklarer Inzidenz von Zweittumoren zunehmend negativ diskutiert [151]. Der Stellenwert der Tumorendoskopie bei HPV OSCC kann nun besonders kritisch hinhin-
erfragt werden, weil bei diesen Patienten häufig eine positive No-
exanamnese, die ein Zweitkarzinom begründen könnte, fehlt [152, 153]. Daher ist die Wertigkeit der Endoskopie mit der Frage nach einem Zweitkarzinom in diesen Fällen zurückgesetzt. In Deutschland ist die Durchführung der Tumorendoskopie mit star-
renm Instrumentarium aber nach wie vor sehr verbreitet [154]. So lange keine belastbare Evidenz existiert, kann die Endoskopie so wie bislang standardisiert durchgeführt werden, beim HPV OSCC kann jedoch ohne Bedenken auch symptomorientiert die Biopsie in Nar-
kose oder in örtlicher Betäubung durchgeführt werden.

5.3 Bildgebung
Die bildgebende Diagnostik für HPV OSCC entspricht der standardi-
sierten Bildgebung für KHT. So werden bspw. Sonografien der Hals-
weichteile zur Darstellung des regionären Tumorelements durchgeführt. Auch die Schnittbildverfahren Computertomographie (CT) und Ma-
gnetresonanztomographie (MRT) finden routinemäßig Anwendung. Diese Verfahren dienen der rein morphologischen Abbildung von KHT. Im Vergleich hierzu dient die Positronen-Emissions-Tomografie (PET) in Kombination mit der CT als ein Hybridverfahren, welches eine funk-
tionale Abbildung der Stoffwechseländerungen im erkrankten Gewebe dar-
stellt. Hierbei stellt das radioaktive Isotop 18F des Fluors das meist ver-
wendete Nuklid in der PET dar und kann mit diversen Pharmaka kom-

Jahre vor Diagnosestellung [146, 147]. Die gegen die Onkoproteine von HPV gerichteten Antikörper werden wahrscheinlich nicht wäh-
rend der Infektion sondern erst Jahre später im Zuge der malignen Transformation gebildet, dies konnte in einer Untersuchung einer Kohorte junger Männer mit HPV-Infektion gezeigt werden, die je-
weils keine Seropositivität gegenüber HPV-16 E6-Protein zeigten [148]. Der Nachweis von Antikörpern gegen HR-HPV E6 und E7 kor-
reliert gut mit der Prognose der Patienten, vergleichbar mit dem HPV-Test aus Gewebe [149]. In einer aktuellen Arbeit konnte an etwa 1000 Kontrollpatienten anhand jährlicher Blutuntersuchungen das Risiko ein HPV OSCC zu entwickeln mit über 5 % ermittelt werden (über 100-mal höher als bei negativem Test), wenn zum Testzeit-
punkt gegen E6 gerichtete Antikörper detektierbar waren [150]. Ein positiver Antikörpertest kann jedoch weder zeitlich noch räumlich einer Läsion zugeordnet werden, daher ist der diagnostische Nutzen für die Bestimmung des HPV-Status eher gering, es ergeben sich je-
doche exzellente Anwendungsmöglichkeiten für die Früherkennung. Einschränkend kann angemerkt werden, dass die Testverfahren nicht allgemein verfügbar sind.

5.2 Stellenwert der Tumorendoskopie

Die Tumorendoskopie entspricht der standardi-
sierten Bildgebung für KHT. So werden bspw. Sonografien der Hals-
weichteile zur Darstellung des regionären Tumorelements durchgeführt.
Die Kombination, die am häufigsten Anwendung erlebt, ist der metabolische Radiotracer 18F-2-Fluoro-2-Deoxy-Glukose (FDG), mögliche Alternativen sind hypoxische Radiotracer, wie z.B. 18F-Fluoromisonidazol (FMISO) oder die nachfolgende Generation 18F-Fluoroazomycin Arabinosid (FAZA) [155].

Aufgrund des distinkten Tumormetabolismus HPV-assoziiert im Vergleich HPV-negativer OSCC (Kapitel 3.6) (Abb. 7) sind Unterschiede in der funktionalen Bildgebung zu erwarten [156]. HPV-spezifische Tumorcharakteristika spiegeln sich so im 18F-FDG-PET-CT möglicherweise wider. Bspw. konnte gezeigt werden, dass HPV-assoziierte OSCC im Rahmen der epithelialen mesenchymalen Transi(tion (EMT) deutlich homogene FDG und FAZA Traceraufnahmen aufweisen [155, 157 und eigene Daten (in press)]. Konkordant hierzu zeigt sich ein signifikanter Anstieg der PET-Parameter HPV-negativer OSCC mit Zunahme der Primärtumorgröße [155]. Im Vergleich hierzu zeigen HPV OSCC ein deutlich homogeneres Bild der Traceraufnahme in den verschiedenen Tumorstadien.

Die funktionale Bildgebung findet aber nicht nur im Rahmen des Stagings Verwendung, sondern wird zunehmend auch als Therapie-monitoring aufgegriffen. Im Mittelpunkt steht hierbei die aktuell diskutierte Therapie-Deeskalation für HPV OSCC. In einer prospektiven Studie (DAHANCA 24) konnte kürzlich gezeigt werden, dass die Durchführung eines FAZA-PET/CTs im Rahmen einer primären Radiotherapie als Monitoring für ein Therapieansprechen erfolgver-

![Abb. 7 Die aktuelle Stadiengruppierung für HPV positiv und HPV negativ OSCC wurde umfangreich verändert. Links ist ein metastasiertes HPV OSCC (ipsilateral, < 6cm), somit besteht ein Tumor stadium II, nach der alten Auflage wäre der Tumor als Stadium IVa (T1, N2b) zu klassifizieren gewesen. Rechts ist ein T3N1 OSCC, HPV negativ abgebildet, somit als Tumor stadium III zu klassifizieren. Anstatt größer ist das Tumor stadium für den Patienten links nun kleiner im Vergleich zum Patienten rechts.](https://example.com/Abb_7.jpg)

sprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].

Eine neue Möglichkeit der Bildgebung stellen Radiomics-Verfahren dar, hierbei werden Bilddaten von CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden, dass ein FMISO PET entsprechend sein kann [158]. In einer weiteren Pilotstudie konnte für HPV-positive OSCC Patienten gezeigt werden, dass ein FMISO PET vor und unter Therapie die Tumorlast gut widerspiegelt. Denkbar wäre hierdurch die Strahlenreduktion bei Nachweis von Therapie-
ansprechen [159]. Zudem ist die funktionale Bildgebung unerlässlich für das Follow-up geworden. In einer prospektiv angelegten multizentrischen Studie konnte ein hoher Stellenwert des 18F-FDG PET-CTs für das Follow-up von primär radiochemotherapierten OSCC gezeigt werden. Hierbei zeigte sich, dass das 18F-FDG PET-CT als Diagnostikum zur Detektion eines regionären Residuums einem Standardarm mit posttherapeutischer salvage Neck dissection nicht unterlegen war, was in der hohen Sensitivität dieses Testverfahrens begründet ist. Ferner konnten Komplikationen und Kosten durch die Bildgebung reduziert werden [160].
pharyngeal cancer Network for Staging) in Kanada, USA, Dänemark und den Niederlanden. In dieser multizentrischen Kohortenstudie wurden 2603 Patienten mit bekanntem HPV-Status eingeschlossen. Dabei erhielten die Patienten nahezu alle primäre Radiochemotherapie (98 % der Patienten) und über 70 % der untersuchten Patienten waren HPV positiv [169]. Das Gesamtüberleben wurde für beide Gruppen nach entsprechend vorangegangener rekursiver Partitionsanalyse mit Ablenkung eines erneuerten Stagingsystems für die Gruppe der HPV-assoziierten OSCC und HPV-negative OSCC analysiert. Die Vorschläge der Autoren wurden unverändert in der 8. Auflage für die ohne Operation behandelten Patienten implementiert. Weil bei der Analyse von Patienten, die tumorsanierende Operationen erhalten, die Anwendbarkeit nicht gesichert ist, wurden für diese Patienten modifizierte Kriterien vorgeschlagen. Dabei wurden retrospektive erhobene Ergebnisse einer chirurgisch behandelten Kohorte von 220 amerikanischen Patienten betrachtet, bei denen die Anwesenheit von 5 und mehr Lymphknotenmetastasen mit einem hohen Risiko für ein Tumorrezidiv verknüpft war [170]. Alle Patienten waren p16-positiv und wurden transoral operiert, 80 % hatten ECS-positive Lymphknoten, dieser Faktor war ohne Relevanz für die Prognose.

Bislang wurde ECS als ungünstiger Prognostikator gewertet und nahm entscheidenden Einfluss auf die Therapie [171, 172]. So stellt das extranodale Wachstum eine Indikation für die adjuvante Platin-gabe bei postoperativer RT dar [173]. Der Ausschluss von ECS im neuen Staging-System für HPV OSCC basiert analog zu oben auf den Ergebnissen in anderen Publikationen. Mehrfach konnte in retrospektiven Untersuchungen gezeigt werden, dass der Faktor ECS für das Outcome bei HPV OSCC wahrscheinlich unrelevant ist [174, 175]. Hinzu kommt, dass der Faktor ECS mit einer hohen interobserver Varianz erhoben wird [176]. Durch diese Ergebnisse kann daher der Wert einer RCT im adjuvanten Setting beim ECS-positiven HPV OSCC angesetzt werden [177]. Die prospektive Überprüfung dieser Erkenntnis wäre dringend wünschenswert, weil im Tumorboard diese Frage häufig diskutiert wird. Derzeit werden prospektive Studien durchgeführt, die sich mit Therapieentscheidung, u. a. von ECS-positiven HPV-OSCC zur Vermeidung von Akut- und Spättoxizität befassen (ECOG 3311, ADEPT, PATHOS, ▶ Tab. 2). Erst dann wird sich möglicherweise zeigen, ob eine Therapiedekalation trotz Vorliegen von ECS beim HPV OSCC gerechtfertigt ist.

Der p16-Test ist im Cancer Staging Manual als Surrogatmarker für eine HPV Infektion vorgeschlagen und die Kapitelüberschrift heißt auch nicht HPV-positive OSCC, sondern p16-positive OSCC. Die Gruppe der Autoren hat sich für diese Einteilung entschieden, weil der Nachweis einer HPV-Assoziation eben auf einer Kombination von Testverfahren beruht, diese aufwändig und dann auch nicht immer eindeutig sind. Demgegenüber ist der p16-Test einfach, preiswert und weitverbreitet. In zahlreichen Studien konnte zudem die Signifikanz des p16-Testes für die Prognose von Patienten mit OSCC herausgearbeitet werden [8, 178, 179]. Die naturgemäß bestehenden Probleme des Testverfahrens (hohe Subjektivität bei der Auswertung, biologisch bedingt variable p16 Expression in zahlreichen Fällen) führen häufig zu nicht eindeutigem Testergebnis. p16 Test-negative Patienten sollen laut Vorschlag der Autoren im Cancer Staging Manual wie HPV-negative und Hypopharynxkarzinome klassifiziert werden. In unserer eigenen Patientenkollektive konnten wir die Prognose der Patienten dahingehend analysieren, dass sich ein gutes Outcome eben nur für doppelt positiv getestete Patienten zeigt (▶ Abb. 6). Daher be steht beim neuen Staging die Gefahr, dass bis zu 10 % der Patienten fälschlicherweise nach den Regeln für p16-positive OSCC klassifiziert wird. Es ist daher empfehlenswert, den HPV-Status wenn möglich durch ein bimodales Vorgehen zu sichern und zum immunhistochemischen Nachweis von p16 zusätzlich HPV-DNA oder mRNA nachzuweisen (s. o.).

5.4.1 HPV-assozierte OSCC

T-Kategorie: In p16-positiven und p16-negativen OSCC entspricht die klinische (c) T-Kategorie der pathologischen (p) T-Kategorie. Unterschiede der einzelnen Kategorien gibt es lediglich bezüglich der T4 Kategorie. HPV-negative OSCC werden in T4a und T4b unterteilt, abhängig von der Tumorausdehnung. Bei den HPV OSCC hingegen erfolgt keine weitere Unterteilung der T4 Kategorie (▶ Tab. 3).

Merke

Die Unterkategorien T4a und T4b sind beim HPV OSCC abgeschatet

N-Kategorie: Die wichtigste Erneuerung wird in Bezug auf den nodalen Status bei p16-positivem OSCC mit der 8. Auflage eingeführt. Dabei sind Unterschiede zwischen der c-Kategorie und der p-Kategorie betroffener Halslymphknoten zu beachten. Die klinische Ein teilung des nodalen Status p16-positiver OSCC (cN) ist im Vergleich zu früher nun stark vereinfacht. Ein einseitiger Befall resultiert in cN1, ein beidseitiger oder kontralateraler Befall in cN2. Die cN3 Kategorie bleibt unverändert bei Metastasen > 6 cm Ausdehnung. Die Regeln nach Operation der Halslymphknoten (pN) lassen nun nur noch die Kategorien pN1 und pN2 zu. Grenzwert ist der Befall von 4 Hals lymphknoten. Liegen 5 oder mehr Halslymphknotenmetastasen vor, so liegt ein pN2 Status vor. Weder die Größe noch das Vorliegen eines ECS werden bei der Zuordnung berücksichtigt.

Merke

Die N-Kategorie für HPV OSCC unterscheidet cN und pN

- cN1: ipsilateral → cN1 | bilateral → cN2
- ≥5 Lymphknoten → pN2

5.4.2 HPV-negative OSCC

Die T-Kategorie bleibt in der neuen Auflage für HPV negative OSCC unverändert bestehen. Für die N- Kategorie wird nun zwischen klinisch und pathologisch unterschieden und der Faktor ECS findet jetzt in Form einer Hochstufung in die jeweilig höhere Kategorie Berücksichtigung (▶ Tab. 3). ECS ist bei cN als Hautinvasion, Infiltration von Muskulatur, Nerven oder Knochen definiert und sollte auch nur dann verwendet werden. Die gleichen TNM Regeln gelten auch für die Plat tenepithelkarzinome des Hypopharynx.

Merke

Die N-Kategorie für HPV-negative OSCC unterscheidet cN und pN

- cN1: ipsilateral → cN1 | bilateral → cN2
- ≥5 Lymphknoten → pN2

ECS resultiert bei klinischem Staging zur neuen Kategorie cN3b

Bei pathologiebasiertem Staging führt der Faktor ECS jeweils zu einer Hochstufung.
Kurzbezeichnung	Primärziel der Studie	Titel der Studie
C2009	Vergleichbarer Therapieerfolg bei geringerer Toxizität	Treatment De-Intensification for Squamous Cell Carcinoma of the Oropharynx
C2010	Vergleichbarer Therapieerfolg bei geringerer Toxizität	Treatment De-Intensification for Squamous Cell Carcinoma of the Oropharynx
C2011	Vergleichbarer Therapieerfolg bei geringerer Toxizität	Treatment De-Intensification for Squamous Cell Carcinoma of the Oropharynx
C2012	Vergleichbarer Therapieerfolg bei geringerer Toxizität	Treatment De-Intensification for Squamous Cell Carcinoma of the Oropharynx
C2013	Vergleichbarer Therapieerfolg bei geringerer Toxizität	Treatment De-Intensification for Squamous Cell Carcinoma of the Oropharynx

Tab. 2 Adaptive De-Eskalation Behandlung in HPV-positive OSCC.
Tab. 2

Beginn der Studie	NCT-Code	Kurzbezeichnung	Phase	HPV-Diagnostik	Strategie für Patienten mit HPV OSCC	Primärziel der Studie	Titel der Studie	rekru-tierend	laufen	abgeschlossen
2014	NCT01891695	1	p16INK4a	Reduktion der Strahlendosis für Halslymphknoten (39,6 Gy) bei klinisch N0	Vergleichbarer Therapieerfolg bei geringerer Toxizität	A Pilot Single Arm Study of Intensity Modulated Radiation Therapy Elective Nodal Dose De-Escalation for HPV-Associated Squamous Cell Carcinoma of the Oropharynx	X			
NCT01855451	TROG12.01	3	p16INK4a	Ersetzen von Cisplatin durch Cetuximab in Radiochemotherapie	Vergleich der Lebensqualität und Toxizität	Weekly Cetuximab/RT Versus Weekly Cisplatin/RT in HPV-Associated Oropharyngeal Squamous Cell Carcinoma (HPV/Oropharynx)	X X			
2015	NCT02281955	2	HPV-DNA und/oder p16INK4a	Reduktion der Chemotherapie und der Strahlendosis (Follow-up Studie zu NCT01530997)	Vergleichbarer Therapieerfolg bei geringerer Toxizität	De-intensification of Radiation and Chemotherapy for Low-Risk HPV-related Oropharyngeal Squamous Cell Carcinoma (HPV/Oropharynx)	X X			
NCT02072148	SIRS TRIAL	2	HPV-DNA und p16INK4a	Alleinige OP bei „Low-risk“ Patienten	Vergleichbarer Therapieerfolg	The Sinai Robotic Surgery Trial in HPV Positive Oropharyngeal Squamous Cell Carcinoma (SCCA) (SIRS TRIAL)	X X			
2017	NCT02254278	2	p16INK4a	Reduktion der Strahlendosis mit oder ohne Cisplatin	Vergleichbarer Therapieerfolg bei geringerer Toxizität	A Randomized Phase II Trial for Patients With p16 Positive, Non-Smoking Associated, Locoregionally Advanced Oropharyngeal Cancer	X			
2017	NCT02215265	2+3	HPV (keine weiteren Angaben)	Reduktion der adjuvanten Therapie nach transoraler Resektion	Verbesserung der Schluckfunktion	Post-operative Adjunct Treatment for HPV-positive Tumours (PATHOS)	X			
2016	NCT02784288	2	p16INK4a	Behandlungsstratifizierung nach Pathologie der Neck Dissection	Verbesserung der Lebensqualität	Phase II Treatment Stratification Trial Using Neck Dissection-Driven Selection to Improve Quality of Life for Low Risk Patients With HPV+ Oropharyngeal Squamous Cell Cancer				
2017	NCT03210103	HPVDNA oder p16INK4a	Primäre deintensivierte Radiotherapie vs. transorale Chirurgie mit Neckdissection (±/adj. Radiotherapie)	Vergleichbarer Therapieerfolg	A Randomized Trial of Treatment De-escalation for HPV-Associated Oropharyngeal Squamous Cell Carcinoma: Radiotherapy vs. Trans-Oral Surgery (ORATOR II)					
NCT03215719	ORATOR2	2	p16INK4a	Reduktion der Strahlendosis bei Respondern während Standard Radiotherapie	Vergleichbarer Therapieerfolg	Adaptive Treatment De-escalation in Favorable Risk HPV-Positive Oropharyngeal Carcinoma	X X			

Fortsetzung
5.4.3 UICC-Stadien

Die Unterschiede der TNM-Klassifikation spiegeln sich nun auch in der UICC-Stadieneinteilung wider. Unterschieden werden gleichsam p16-positive und -negative OSCC. Die Regeln für die Einteilung in Tumorstadien hat sich für HPV-negative OSCC nicht verändert, beim p16-positiven OSCC erfolgt die UICC-Stadieneinteilung durch die klinisch oder pathologisch verifizierten TNM-Kategorien. Besonders dabei ist, dass nun fortgeschritten lymphogen metastasierte Tumoren als N1 kategorisiert werden (z. B. 4 positive Lymphknotenmetastasen mit ECS) und als Tumorstadium 1 zu klassifizieren sind (Abb. 7, Tab. 4). Nur eine Fernmetastasierung rechtfertigt das Tumorstadium 4. In einer eigenen Auswertung der neuen TNM-Regeln und UICC-Staging-Gruppen konnten wir zeigen, dass ein erhebliches UICC-Downstaging der HPV-OSCC durch die neue TNM-Auflage erreicht wird [7]. An einer Patientenkollektiv von 150 HPV OSCC Patienten zeigt sich, dass durch die neue UICC-Stadieneinteilung die Patientenzahl in den Stadien I und II deutlich erhöht und eine signifikante Verringerung der Patientenzahl in dem Stadium IV hervorgerufen wird (Abb. 8). Aktuell wurden die neuen TNM-Regeln bereits in mehreren Patientenkohorten überprüft und als wertvoll beschrieben [180], bzw. Verbesserungsvorschläge gemacht [181].

Zusammenfassend entspricht die Entwicklung des Stagingsystems für HPV OSCC dem hohen Stellenwert dieser Erkrankung und führt zu einer Verbesserung der Trennschärfe prognostischer Gruppen. Allerdings werden in Zukunft vermutlich weitere Anpassungen der aktuellen Auflage erforderlich sein. Kritisch ist, dass durch die alten p16-Testung bis zu 10 % falsch eingeschätzt werden. Außerdem sollte das Downstaging bei HPV-positiven OSCC nicht unkritisch zur Deeskalation von Therapieregimen führen. Molekulare Signaturen und Eigenschaften (Komorbidität) bzw. Gewohnheiten (Nikotinabusus) der Patienten können eine bedeutendere Rolle für die Einschätzung der Prognose spielen und werden vermutlich zukünftig auf die TNM-Klassifikation Einfluss nehmen.

6. Entscheidungshilfen für die Therapie

Aufgrund der erheblich besseren Prognose HPV-assoziierten OSCC sowohl für das rezidiv-freie Überleben als auch für das Gesamtüberleben muss gefragt werden, ob dies auch Konsequenzen für die Therapiestrategien hat. Hier gibt es grundsätzlich 2 Ansätze: Da die eingesetzten multimodalen Therapiestrategien beim HPV OSCC offensichtlich wesentlich wirksamer sind, ergibt sich die Frage, ob Teile dieser multimodaltherapie bei HPV OSCC deeskaliiert werden können und ob eine weniger intensive Therapie nicht gleich gute Chancen auf Heilung bietet. Zweitens stellt sich die Frage, ob dies für alle Patienten zutrifft, oder nur bei Subgruppen von Patienten eine solche De-Intensivierung durchgeführt werden kann, ohne den Therapieerfolg zu gefährden. Vor diesem Hintergrund ist die Etablierung verschiedener prognostischer Modelle auch aus retrospektiven Kohorten zur Abschätzung der Wertigkeit der Prädiktoren und vor dem Hintergrund verschiedener Therapiestrategien von besonderer Bedeutung (siehe Kapitel 8). Neben dem Ansatz der Deeskalation stellt sich die Frage, ob HPV ein prädiktiver Marker für eine spezifische Therapie darstellt. Anhand der retrospektiven Kohorten ergibt sich hier zunächst kein Hinweis, da die Prognose HPV-assoziiertem Tumoren sowohl nach primär radiotherapeutischer als auch nach primär chirurgischer Therapie besser ist. Problematisch ist bei dieser vergleichenden Bewertung, dass geschätzt 80 % der primär chirurgischen Patienten auch adjuvant bestrahlt wurden.

6.1 Strahlentherapie

Aufgrund von Zellkulturmodellen ergeben sich Hinweise für eine höhere Strahlennempfindlichkeit HPV-assozierter OSCC im Vergleich zu HPV negativen OSCC [182]. In eigenen Untersuchungen an Zelllinien konnte nach Strahlentherapie ein signifikant vermindertes klonogenes Überleben von HPV-positiven Tumorzelllinien gezeigt werden. Vergleichbare Resultate wurden von mehreren Arbeitsgruppen ebenfalls beschrieben [183]. Aus einer Meta-Analyse von 30 klinischen Studien ist das bessere Überleben nach alleiniger Radiotherapie bei HPV OSCC auch in der Klinik gesichert [184]. Dennoch ist der HPV-Nachweis alleine nicht prädiktiv für eine primäre radiotherapeutische Therapie. Als Hinweis dafür kann gewertet werden, dass wenn Patienten mit HPV OSCC alleine mittels Radiotherapie behandelt werden, die lokoregionäre Tumorkontrolle der p16-positiven Tumoren nach 5 Jahren nur bei 58 % und das Gesamtüberleben bei nur 62 % liegt [185]. Vergleichende Untersuchungen zu Radiochemotherapie oder zu primär chirurgischer Therapie liegen nicht vor. Die Prognose nach alleiniger Radiotherapie beim HPV-assoziierten OSCC kann insgesamt als 10–15 % schlechter abgeschätzt werden, gegenüber Patienten, die multimodal (z. B. mit Radiochemotherapie) behandelt werden [61, 139, 169].

Dies lässt den Schluss zu, dass eine Deeskalation für alle HPV-assoziierten OSCC mittels alleiner Radiotherapie wahrscheinlich nicht geeignet ist. Darüberhinaus haben Patienten mit sehr fortgeschrittenen inoperablen OSCC auch unter intensiverer, definitiver Radiochemotherapy eine schlechte Prognose von unter 40 % progresionsfreiem Überleben [186]. Möglicherweise gibt es eben Unterschiede in HPV-assoziierten OSCC, z. B. mit kleinen Primärtumoren und nur gering ausgeprägter Halslymphknoten-Metastasierung, die mittels einer alleinigen Radiotherapie adäquat therapiert werden können. Hinweise hierfür gibt es aus einer retrospektiven Studien an knapp 900 Patienten. Die Patienten wurden jedoch in erster Linie darchingehend ausgewählt, ob sie phänotypisch einen HPV-assoziierten Tumor hatten, HPV-Testergebnisse lagen nicht vor [187]. Welche zusätzlichen Prädiktoren neben HPV für eine solche gezielte Deeskalation der Therapie geeignet sind, wird derzeit in klinischen Deeskalationsstudien geprüft (Tab. 2). Neben der Problematik, dass fortgeschrittene HPV OSCC mit alleiniger RT möglicherweise nicht adäquat therapiert sind, ergibt sich für Tumore mit ausgedehnter Halsmetastasierung (nach TNM der 7. Auflage: N2c) auch eine verminderte Prognose nach zusätzlicher Radiochemotherapie mit Chemotherapie eine schlechte Prognose von unter 40 % progresionsfreiem Überleben [186]. Möglicherweise gibt es eben Unterschiede in HPV-assoziierten OSCC, z. B. mit kleinen Primärtumoren und nur gering ausgeprägter Halslymphknoten-Metastasierung, die mittels einer alleinigen Radiotherapie adäquat therapiert werden können. Hinweise hierfür gibt es aus einer retrospektiven Studien an knapp 900 Patienten. Die Patienten wurden jedoch in erster Linie dahingehend ausgewählt, ob sie phänotypisch einen HPV-assoziierten Tumor hatten, HPV-Testergebnisse lagen nicht vor [187]. Welche zusätzlichen Prädiktoren neben HPV für eine solche gezielte Deeskalation der Therapie geeignet sind, wird derzeit in klinischen Deeskalationsstudien geprüft (Tab. 2). Neben der Problematik, dass fortgeschrittene HPV OSCC mit alleiniger RT möglicherweise nicht adäquat therapiert sind, ergibt sich für Tumore mit ausgedehnter Halsmetastasierung (nach TNM der 7. Auflage: N2c) auch eine verminderte Prognose nach zusätzlicher Radiochemotherapie.

Tab. 2
6.2 Welche Rolle spielen Operationen?

Neben der Deeskalation durch alleinige Radiotherapie gibt es auch Ansätze mittels chirurgischer Verfahren in der Primärtherapie bspw. eine Deeskalation der adjuvanten Therapie herbeizuführen (▶ Tab. 2). Das Grundprinzip ist, durch eine vorgeschaltete primäre chirurgische Therapie (upfront surgery) histologisch gesicherte Prädiktoren zu erarbeiten, die eine Deeskalation der adjuvanten Therapie ermöglichen. Darüber hinaus kann in diesen Studien geprüft werden, ob Risikofaktoren, die bisher in der adjuvanten Situation zur Gabe einer simultanen Chemotherapie geführt haben, beim HPV-positiven Tumor ihre Berechtigung haben (siehe Kapitel 5.4). Den Wert einer Operation für das Überleben oder Funktion nach der Therapie eines HPV OSCC herauszuarbeiten, wird durch die Tatsache erschwert, dass geschätzt 80 % aller primär chirurgisch behandelten Patienten auf eine adjuvante Therapie angewiesen sind. Derzeit werden klinische Studien mit Chirurgie beispielhaft mit folgenden Fragen durchgeführt: Reduktion der adjuvanten RT-Dosis nach der Bestimmung von Risikofaktoren postoperativ (ECOG 3311); Weglassen der Chemo-therapie bei der postoperativen Bestrahlung (ADEPT); Vergleich von keiner adjuvanten Bestrahlung vs. adjuvanter Radiatio mit 50 Gy, 60 Gy oder 60 Gy plus Platin, abhängig von Risikofaktoren (PATHOS).

Von besonderer Bedeutung sind in diesem Zusammenhang die beiden zurzeit anlaufenden von der Deutschen Krebshilfe geförderten Studien, die prospektiv beim Oropharynxkarzinom die primär

Tab. 3 TNM Kategorien in der 7. und 8. Auflage für OSCC.

TNM 7. Auflage	TNM 8. Auflage	
p16 Negativ	**p16 Positiv**	
T	**T**	**T**
c/p T1 ≤ 2 cm	c/p T1 ≤ 2 cm	c/p T1 ≤ 2 cm
c/p T2 > 2 cm, ≤ 4 cm	c/p T2 > 2 cm, ≤ 4 cm	c/p T2 > 2 cm, ≤ 4 cm
c/p T3 > 4 cm o Ausbreitung auf linguale Epiglottis	c/p T3 > 4 cm o Ausbreitung auf linguale Epiglottis	c/p T3 > 4 cm o Ausbreitung auf linguale Epiglottis
c/p T4a Infiltration Larynx, äußere Zungenmusk., Hartgaumen, Mandibula	c/p T4a Infiltration Larynx, äußere Zungenmusk., Hartgaumen, Mandibula, Lamina med. Processus pterygoideus	c/p T4 Infiltration Larynx, äußere Zungenmusk., Lamina med./lat. Processus pterygoideus, Hartgaumen, Mandibula, M. pterygoideus lateralis, Schädelbasis, ACI, lat. Nasopharynx
c/p T4b Infiltration M. pterygoideus lateralis, Schädelbasis, ACI	c/p T4b Infiltration M. pterygoideus lateralis, Schädelbasis, ACI	
N	**c N**	**c N**
c/p N0 keine regionären Lymphknotenmetastasen	c N0 keine regionären Lymphknotenmetastasen	c N0 keine regionären Lymphknotenmetastasen
c/p N1 ipsilateral solitär ≤ 3 cm	c N1 Ipsilateral solitär ≤ 3 cm	c N1 ipsilateral solitär oder multi-pel ≤ 6 cm
c/p N2a ipsilateral solitär > 3–6 cm	c N2a Ipsilateral solitär > 3–6 cm	c N2 kontralateral or oder bilateral ≤ 6 cm
c/p N2b ipsilateral multipel ≤ 6 cm	c N2b Ipsilateral multipel ≤ 6 cm	
c/p N2c Bilateral, kontralateral ≤ 6 cm	c N2c Bilateral, kontralateral ≤ 6 cm	
c/p N3 Metastasen > 6 cm	c N3 Metastasen > 6 cm	
c N3b ECS		
p N	**p N**	**p N**
p N0 keine regionären Lymphknotenmetastasen	p N0 keine regionären Lymphknotenmetastasen	
p N1 Ipsilateral solitär ≤ 3 cm	p N1 ≤ 4 betroffene Lymphknoten	
p N2a Ipsilateral solitär, ≤ 3 mit ECS oder ≤ 6 cm ohne ECS	p N2 ≥ 5 betroffene Lymphknoten	
p N2b Ipsilateral multipel ≤ 6 cm, ohne ECS		
p N2c Bilateral, kontralateral ≤ 6 cm ohne ECS		
p N3a Metastasen > 6 cm, kein ECS		
p N3b Metastasen > 3 cm mit ECS oder kontra-/bilateral mit ECS		
chirurgische Therapie mit der primären Strahlentherapie vergleichen. Zwar werden hier nicht nur HPV-assoziierte Tumore eingeschlossen, dennoch wird der HPV-Status bestimmt und Subgruppenanalysen sind möglich. Die europaweite und in Deutschland durchgeführte EORTC Studie „Best of-1420“ hat hier die frühen Stadien des Oropharynxkarzinom mit funktionellen Endpunkten im Fokus. Dagegen vergleicht die TopROC-Studie die verschiedenen Therapiestrategien für fortgeschrittene OSCC und der Endpunkt ist das Überleben.

Die Wahl zwischen primär chirurgischer Herangehensweise gefolgt von risikoadaptierter adjuvanter Therapie oder primär nicht-chirurgischer Therapie hängt derzeit mehr von lokalen oder landesweiten Besonderheiten und Leitlinien ab. Kürzlich wurde ein Review für histopathologische Marker publiziert, hier konnten insbesondere ein fortgeschrittenes T-Stadium als Risikofaktor für ausbleibende Tumor kontrolle identifiziert werden [191]. Für Raucher ist in einer aktuellen retrospektiven Analyse beschrieben, dass die Prognose eher HPV negativen OSCC-Patienten gleicht. Für primär chirurgisch behandelte Kohorten wird es zukünftig bedeutsam sein auch in einem prospektiven Setting Risikofaktoren zu identifizieren, die für die Prognose der Patienten bedeutsam sind, denn in Deutschland werden aktuell 75% aller OSCC Patienten einer primär chirurgischen Therapie zugeführt. Beispielsweise konnten hier hämodynamisch deprimierte Metastasen gehäuft in einer etablierten Klassifikation für HPV OSCC insbesondere ein junger Lebensalter zusätzlich als Prädiktor für ein gutes Outcome identifiziert werden [193].

6.3 Chemotherapie und Antikörpertherapie

Patienten mit HPV OSCC haben ein besseres Outcome nach RCT als Patienten mit HPV negativen Tumoren, dieses wurde erstmals zeugend in der so genannten Ang-Studie gezeigt [139]. Auch im adjuvanten Setting mit RCT wurde dieser Überlebenvorteil gezeigt [194], und nach Induktionschemotherapie ist das Ansprechen ebenfalls besser [195]. Vergleichbar mit den Ausführungen oben haben wir jedoch keine Kenntnis, ob die HPV-Positivität ein Prädiktor für eine Chemotherapie-Gabe ist, also ob HPV OSCC Patienten bevorzugt mit Chemotherapie behandelt werden sollten. Für die kombinierte Behandlung mit Nimorazole und Radiotherapie konnte bspw. gezeigt werden, dass bei HPV OSCC weder Patienten mit hypoxischen noch weniger hypoxischen Tumoren einen Überlebenvorteil haben, während für HPV-negative hypoxische Tumoren ein Vorteil gezeigt werden konnte [196]. In einer weiteren klinischen Studie mit einem Target für hypoxische Tumorzellen zeigte sich in einer Subgruppenanalyse für Patienten mit HPV OSCC sogar ein schlechteres Ansprechen [197]. Aus experimentellen Daten ergeben sich Hinweise für ein besonders gutes Ansprechen HPV-positiver Zelllinien auf Chemotherapie, in einer eigenen Untersuchung konnten wir bspw. eine bessere Chemosensitivität HPV-positiver Zelllinien gegenüber einem Platinderivat in Kombination mit Bestrahlung zeigen [198].

Studien zur Deintensivierung der Chemotherapie werden beim HPV OSCC mittels Ersatz einer platinbasierten Chemotherapie durch eine Antikörpertherapie mit Cetuximab verfolgt. Aus einer Analyse von HPV OSCC Patienten aus dem Kollektiv in der so genannten Bonner-Studie wurde jedoch kein spezifischer Vorteil für Patienten mit HPV OSCC gezeigt [199] und aus einer RTOG Studie mit Hinzunahme von Cetuximab zu platinbasiertem Radiochemotherapie wurde ebenfalls kein Vorteil für Patienten mit HPV OSCC nachgewiesen [200]. Daher besteht aus klinischen Studien kein direkter Hinweis, dass HPV prädiktiv für eine Antikörper-Therapie mit Cetuximab ist. In mehreren klinischen Studien wird aktuell dennoch der Austausch

![Tab. 4 Gruppen von Tumorstadien beim Oropharynxkarzinom, 8. Auflage.](image)

p16 negativ	Stadium	Klinisch	
0	Tis	N0	M0
I	T1	N0	M0
II	T2	N0	M0
III	T3	N0	M0
T1, T2, T3	N1	M0	
IVA	T4a	N0, N1	M0
T1, T2, T3, T4a	N2	M0	
IVB	Jedes T	N3	M0
IVc	Jedes T	Jedes N	M0

p16 positiv	Stadium	Klinisch	
0	Tis	N0	M0
I	T1, T2	N0, N1	M0
II	T1, T2	N2	M0
III	T3	N0, N1, N2	M0
T1, T2, T3, T4	N3	M0	
IVB	Jedes T	Jedes N	M0
IVc	Jedes T	Jedes N	M1
von Cisplatin durch Cetuximab randomisiert überprüft. Endpunkte der Studien sind analog zum fraglichen Benefit für die Tumorkontrolle eine geringere Toxizität der Therapie. Studien zur Deintensivierung der Radiotherapie-Dosis bei definitiver kombinierter platinhaltiger Radiochemotherapie werden aktuell mit dem Ziel einer Dosisreduktion im Primärtumororbiet oder im Bereich der zervikalen Lymphabflusswege durchgeführt. Einschlusskriterien für die Deeskalationsstudien sind dabei zusätzliche günstige Risikoprofile der Patienten (Nichtraucher oder < 10 pack-years, < T3, usw.) [201]. In einer weiteren klinischen Studie (NCT02254278) wird für eine platinbasierte Radiochemotherapie oder alleinige Radiotherapie bei Patienten mit HPV OSCC randomisiert.

Bedeutsam sind retrospektive Studien zur adjuvanten Radiochemotherapie bei HPV OSCC. Die Indikationskriterien hierzu sind anerkannt, nämlich die inkomplette Exzision (R1) und das extranodale Tumorwachstum (ECS). Für HPV OSCC wurden mehrfach retrospektive Daten publiziert, aus denen relativ sicher ableitbar ist, dass die platinbasierte Radiochemotherapie in der adjuvanten Situation für Patienten mit HPV OSCC wahrscheinlich keinen bedeutsamen Zugewinn bei der Tumor kontrolle bringt. An einer Kohorte von 29 Patienten mit HPV OSCC (> 90 % der Patienten hatten keine tumorfreien Schnittrand) wurden kürzlich keine Unterschiede in der Tumor kontrolle beschrieben, unabhängig davon ob die Patienten bei der postoperativen Bestrahlung mit oder ohne Chemotherapie behandelt wurden [202]. Zur Frage der Induktion der adjuvanten RCT bei ECS positiven Lymphknotenbefall liegen Daten aus mehreren Studien vor, jeweils wird angegeben, dass die kombinierte adjuvante Therapie beim HPV OSCC keinen Gewinn bei der Tumor kontrolle bringt [174, 175, 203]. Allerdings sind die publizierten kollektiven klein, selektioniert und retrospektiv ausgewertet, sodass auf der Basis der bisher publizierten Arbeiten sicher keine Empfehlung für das Weglassen der Chemotherapie bei der postoperativen Radiatio bei Vor liegen der Risikofaktoren, bspw. bei tumorinfiltrierten Schnittrandern abgegeben werden kann.

Zur Induktionschemotherapie liegen nur begrenzt Daten zum HPV OSCC vor. In einer ECOG Phase II Studie an resektablen KHT wurden 2 Zyklen Carboplatin und Paclitaxel gefolgt von einer Radiatio mit 70 Gy gegeben. Bei 62 Patienten mit OSCC (38/61 % HPV OSCC) wurde für HPV-getriebene Tumoren ein besseres Ansprechen auf die Induktion (82 vs. 55 %; P = 0,01) und ein besseres Überleben nach 2 Jahren (95 vs. 62 %; P = 0,005) beschrieben [204].

Für HPV-positive Patienten aus der TAX 324 Studie (n = 56) konnten die Induktion (Cisplatin 100 mg/S-FU 1000 mg/ ± Docetaxel 75 mg) gefolgt von einer RCT eine bessere Tumorkontrolle ge zeigt werden, allerdings war die Rate von Fernmetastasen nicht signifikant geringer [195]. In einer Studie mit TPF-Induktion aus Deutschland gefolgt von Operation und adjuvanter Therapie war der HPV-Status jedoch nicht prädiktiv für ein gutes Ansprechen auf die Chemotherapie [205]. In prospektiven klinischen Studien wird aktuell für das HPV assoziierte OSCC überprüft, ob eine Induktion als Schalterfunktion für eine deintensivierte Radiotherapie oder Radiochemotherapie dienen kann (Quarterback, ECOG 1308). HPV-positi ve Patienten zeigten in den beiden Studien jeweils hohe Komplett remissionen (ca. 80 %) nach der Induktionschemotherapie.

6.4 Immuntherapie

Ob der HPV-Status für neue immunonkologische Therapieansätze ein prädiktiver Marker sein kann, ist noch unbekannt. Der Programmed Death Receptor 1 (PD1) ist ein Mitglied der T-Zell-Rezeptor-Familie und wird auf der Oberfläche von Immunzellen exprimiert. Der Ligand von PD1 ist der Programmed Death Receptor 1 (PD-L1), und wird häufig auf der Oberfläche von Krebszellen exprimiert. Hierdurch wird eine zytotoxische T-Zellantwort supprimiert, was eigentlich dem Schutz vor Autoimmunkrankheiten dient. Die Wirksamkeit einer pharmazeutischen Blockade dieser Interaktion wurde beim Melanom, Bronchialkarzinom, Nierenzellkarzinom und weiteren Tumorentitäten überzeugend gezeigt [206]. Für HPV OSCC konnten wir in einer eigenen Untersuchung (zur Publikation eingereicht) eine erhöhte Expression des PD-L1 Rezeptors zeigen. Analog wurde für Tonsillenkarzinome ebenfalls eine erhöhte PD-L1-Expression gezeigt [207]. Allerdings gibt es erst in jüngerer Zeit Anstrengungen die PD-L1 Immunhistologie zu standardisieren [208, 209], sodass unterschiedliche Ergebnisse hier mitunter durch unterschiedliche Methodik (Antikörper, cut-off, usw.) erklärt werden können. Nicht nur die Ergebnisse von HPV-Status und PD-L1 Expression sind uneinheitlich, insbesondere besteht aktuell Unklarheit, ob eine immunhistochemisch sichtbare PD-L1-Expression für sich alleine prädiktiv für eine gegen die PD1/PD-L1-Achse gerichtete Antikörpertherapie ist [210].

Tumorsstadien bei HPV OSCC (n = 150)	7. vs. 8. Auflage
UICC Stadium I	4 (2.7 %)
UICC Stadium II	6 (4.0 %)
UICC Stadium III	37 (24.7 %)
UICC Stadium IV	103 (68.7 %)
7. Auflage	4 (2.7 %)
8. Auflage	79 (52.7 %)

Abb. 8 Durch die neuen Stagingregeln für HPV OSCC sind Stadium IV-Tumoren selten geworden, dafür existiert nun ein erheblicher Anteil an Stadium I- und Stadium II-Tumoren.
Für HPV OSCC wurden differenzielle Immuninfiltrate in Tumoren mehrfach beschrieben. CD8 positive T-Zellinfiltrate [211], NK-Zellinfiltrate [115] und PD-1 positive T-Zellinfiltrate wurde jeweils mit verbessertem Outcome beim HPV OSCC beschrieben [212]. In einer aktuellen Untersuchung wurden mittels Immunoscores (CD8, PD-L1 und CD68) beim HPV OSCC gezeigt, dass Fälle mit dichtem CD8+ T-Zellinfiltrat im Stroma und niedrigerem PD-L1-Level im Tumor die beste Prognose hatten [213]. Derzeit ist beim HPV OSCC ungeklärt, welcher Wert eine PD-L1-Expression als Biomarker besitzt. Wahrscheinlich können zukünftig Kombinationen immunologischer Marker das Ansprechen auf eine Immuntherapie gerade beim HPV OSCC wahrscheinlicher machen. Insbesondere beim HPV OSCC keine dauerhafte Tumorkontrolle durch eine Operation gelingt. In 2 publizierten retrospektiven Serien war die mittlere Überlebensdauer beim Fernmetastasierung von etwa 4 bis 6 Monaten [220]. Die Rate kann nach Auswertung unserer Patienten und anhand der publizierten Kollektive mit einer mittleren Überlebenszeit von 6 Monaten bezeichnet werden. Insbesondere bei hämatogener Metastasierung ist eine Häufung hämatogener Metastasen beschrieben [220]. Die Rate kann nach Auswertung unserer Patienten und anhand der publizierten Kollektive mit einer mittleren Überlebenszeit von 6 Monaten bezeichnet werden. Insbesondere bei hämatogener Metastasierung ist eine Häufung hämatogener Metastasen beschrieben [220].

6.5 Optionen nach Therapieversagen

Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabhängig vom p16-Status war das Überleben im Therapiearm mit > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war der 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Interessanterweise war ein längeres Überleben signifikant mit „Salvage Surgery“ verknüpft [219]. Hinzu kommt, dass beim HPV OSCC andere Formen des Therapieversagens. Ein Therapieversagen beim OSCC ist allgemein mit einer schlechten Prognose verknüpft, die Patienten erhalten daher oft eine palliative Chemotherapie oder keine tumorspezifische Therapie. Das durchschnittliche 5-Jahresüberleben nach Versagen der Erstlinientherapie beim OSCC ist allgemein mit einer mittleren Überlebenszeit von 6 Monaten [220]. In den publizierten retrospektiven Serien konnte für HPV OSCC jedoch einheitlich erheblich bessere Überlebensraten auch beim Therapieversagen festgestellt werden. In einer großen Serie an > 1000 Patienten, die im Rahmen zweier RTOG-Studien behandelt wurden, war die 2-Jahresüberlebensrate von 52 % (n = 105 HPV OSCC) vs. 42 % (n = 76 HPV negativ). Unabh…
Prognose beim Vergleich von HPV OSCC und HPV negativen Patienten gefunden [225, 226]. In einer weiteren aktuell publizierten Serie wurde interessanterweise bei chirurgischer Therapie von Fernmetastasen eine Tumorkontrolle der Fernmetastase von 100 % (!) nach 3 Jahren (n = 18) erreicht [227]. Auch für die systemische Therapie bei HPV OSCC sind allerdings an einer sehr kleinen Kohorte langzeitüberlebende Patienten publiziert [228].

7. Nachsorge

7.1 Erfassung therapiedingter Nebenwirkungen

Die kurative Therapie beim HPV OSCC führt in der Regel zur dauerhaften Heilung des Tumorleidens. Daher kommt der Erfassung der Toxizität der Therapie eine besondere Bedeutung zu. Die Dysphagie ist ein Leitsymptom bei Tumoren des Oropharynx, weil der Tumor immer in der Nähe der anatomischen Überkreuzung von Luft- und Speiseweg entsteht. Unmittelbar nach einer Operation und während einer Strahlentherapie stehen Dysphagie und Mukositis und deren Management im Vordergrund und nach der Therapie ist die Einschränkung der Schluckfunktion das wichtigste Symptom für die Einschränkung der Lebensqualität. Einschränkungen der Schluckfunktion verlässlich zu evaluieren ist daher von besonderer Bedeutung für das Therapiemanagement beim OSCC.
Ein praktikables Instrument zur Erfassung von Einschränkungen sind Patienten- oder Arzt-bezogene Fragebögen. In einem Review-Artikel aus 2014 wurden jedoch mehr als 20 verschiedene Screenings-Instrumente mit dem Schwerpunkt auf Patientenfragebögen für Schluckstörungen beschrieben [229]. Welches Instrument ist nun am weitesten anerkannt, einfach durchführbar und liefert valide Testergebnisse für unsere Patienten? In aktuell rekrutierenden internationalen klinischen Studien wird auch in Europa häufig der MD Anderson Dysphagia Inventory (MDADI) angewendet. Die Entwicklung erfolgte mit Fokus auf Kopf-Hals-Tumoren, eine Validierung der Testergebnisse liegt für zahlreiche Landessprachen vor. Die 19 Items erfassen Emotion (6 Fragen), Funktion (5 Fragen), Körperfunktion (8 Fragen) und eine Globalfrage.

Die fiberendoskopische Schluckuntersuchung (englisch: fiberendoscopic evaluation of swallowing/FEES) ist eine Standard-Untersuchungstechnik für Patienten mit Dysphagie, hierfür wird eine indirekte Laryngoskopie flexibel transnasal durchgeführt. Larynx und Oropharynx werden in Ruhe und bei Schluckversuchen mit verschiedenen Konsistenzien beobachtet. Auswertungskriterien sind im Wesentlichen die Quantifizierung von Penetration (Eintritt von Material in den Larynx bis zur Glottis) und Aspiration (Eintritt von Material unter die Glottisebene). Zur Vereinheitlichung der Auswertung wird in Deutschland meist die Penetrations-Aspirations Skala nach Rosenbek angewendet. Die Skalenniveaus wurden mittels FEES validiert [230]. Ob die FEES der radiologischen Evaluierung von Aspiration mittels klassischem Breischluck überlegen ist, kann nicht beantwortet werden. Beide Verfahren werden im Ergebnis stark vom Probanden als auch vom Untersucher beeinflusst und sind daher naturgemäß nur eingeschränkt valide.

Bezüglich der Toxizität und der Tumortherapie wurde für HPV OSCC Patienten mehrfach berichtet, dass unter RCT die Rate der Spätkomplikationen erheblich ist. Allerdings liegen auch Literaturdaten vor, dass die Nebenwirkungen der Therapie von HPV OSCC Patienten als besonders schwerwiegend empfunden werden [231]. Insbesondere aus Lebensqualitätsuntersuchungen ist bekannt, dass Patienten mit HPV OSCC die Akutphase der Therapie mit stärkerer Beinträchtigung erleben [232]. Für die tägliche Routine in der Tumornachsorge wurde im deutschen Sprachraum die Verwendung so genannter ICF Core Sets zur standardisierten Erfassung von Nebenwirkungen der Therapie vorgeschlagen. In einer eigenen Untersuchung haben sich die Fragebogen-Set als brauchbar erwiesen, es entsteht jedoch ein erheblicher Aufwand in der Tumornachsorge [233].

7.2 Frühzeitiges Erkennen eines Therapieversagens

Mit der steigenden Inzidenz von HPV OSCC sinkt das Risiko für die Entstehung eines Zweitkarzinoms nach stattgefundenener Therapie eines OSCC [234]. Wiederauftreten eines Tumors wird meist durch den Patienten aufgrund von erhöhtem Lokalschmerz, Entwicklung eines neuen Knotens im Halsbereich oder Gewichtsverlust und Schluckbeschwerden entdeckt. Um bereits vor dem Auftreten neuer Symptomen Therapieversagen feststellen zu können, wird intensiv an Methoden zur frühzeitigen Detektion von Rezidiven und/oder Metastasen geforscht. Eine vielversprechende Methode ist die sogenannte Flüssigbiopsie („liquid biopsy“), bei der es sich um eine nicht-invasive Probenentnahme humaner Flüssigkeiten wie Blut, Urin oder Speichel handelt. Diese Proben können auf Tumormarker untersucht werden, bei denen es sich sowohl um zell-freie zirkulierende TumordNA, zirkulierende TumorzelIen, oder wie im Fall von HPV, um virale DNAn, handeln kann [Abb. 10] [235, 236].

Zirkulierende Tumorzellen (CTCs) waren der erste Tumormarker, der in Flüssigbiopsien untersucht wurde. Sie gelangen von soliden Tumoren in den Blutkreislauf, liegen allerdings nur in sehr geringen Konzentrationen vor (1 Tumorzelle in etwa 1 Million gesunder Zellen). Entsprechend muss entweder ein hohes Volumen an Blut oder extrem sensitive Methoden angewendet werden.

Zellfreie zirkulierende DNA entsteht durch Apoptose oder Nekrose gesunder und entarteter Zellen. Durch Apoptose entstehen vermehrt Fragmente einer Länge von 180 Basenpaaren oder einem Vielfachen davon, wohingegen durch Nekrose unregelmäßig längere Fragmente von über 1000 Basenpaaren entstehen [237]. Der Anteil der Tumor-DNA an der gesamten zirkulierenden zell-freien DNA kann zwischen 0,01 % und bis zu 50 % ausmachen. Es wurde bereits für unterschiedliche Entitäten gezeigt, dass bei Tumorpatienten insgesamt ein höherer Gehalt zell-freier DNA im Blut vorliegt als bei Gesunden. Interessanterweise korreliert die Konzentration mit dem Vorhandensein von Halsmetastasen und weist auf schlechteres Überleben hin [238]. Methodisch werden Flüssigbiopsien häufig mit quantitativer oder digitaler PCR, Sequenzierungsmethoden (Sanger Sequenzierung, Pyrosequenzierung, NGS, Whole Genome/Exome Sequencing, CAPP-Seq (cancer personalized profiling by deep sequencing)) oder BEAMing (beads, emulsion, amplification, and magnetic) untersucht [239]. Mit Next Generation Sequenziern können bestimmte Genabschnitte oder ganze Gene sequenziert und Veränderungen im Vergleich zu einem Referenzgenom detektiert werden. Bei der zielgerichteten Sequenzierung (targeted NGS) werden die zu untersuchenden Genabschnitte vom Anwender gewählt. Dabei werden Regionen untersucht, die bereits in der Literatur beschrieben wurden. Der Vorteil dieser Technologie liegt darin, dass eine höhere Abdeckung der Zielregion und somit eine Detektion seltener Varianten erreicht wird. Mit PCR, BEAMing und targeted NGS können somit bekannte (Punkt-)Mutationen detektiert werden, während mit Whole Genome oder Whole Exome Sequenzierung unbekannten Mutationen, chromosomale Ablagerungen und veränderte Kopenhäinzahlen, sowie virale DNA-Sequenzen und deren Integrationsstellen im humanen Genom festgestellt werden können [240]. Nachtei-

![Abb. 10](image) Schematische Darstellung des Prinzips einer nicht-invasiven Flüssigbiopsie. Dargestellt sind zirkulierende Tumorzellen (CTC) gesunde zell-freie DNA, Tumor-DNA, Tumor-DNA mit integrierter HPV-DNA sowie episomal vorliegende HPV-DNA.
le der NGS-Technologie zur Anwendung in der Routine sind die immer noch hohen Kosten, die Voraussetzung qualitativ-hochwertiger DNA sowie die Fülle generierter Daten, die analysiert und interpretiert werden müssen.

Bei viralen Infektionen kann das Blut zusätzlich auf virale DNA untersucht werden. Im Fall des Epstein-Barr Virus konnte bei Nasopharynxkarzinomen (NPC) eine erhöhte Viruslast in Tumorpatienten und ein Rückgang der Last nach Therapie nachgewiesen werden [241]. Außerdem konnte kürzlich in Gebieten mit hoher Inzidenz des NPC gezeigt werden, dass mit der Detektion von EBV-DNA im Blutplasma ein Screeningverfahren für das NPC zur Verfügung steht [242]. In dieser Studie wurden Seren von über 20000 Fällen untersucht und damit konnten frühzeitig NPC entdeckt werden, sodass sich die Prognose dieser Patienten erheblich verbesserte. Diese Untersuchungen zeigen, wie die Detektion von Virus-DNA bei Virusinduzierten Malignomen als Marker genutzt werden kann. HPV-DNA konnte in Plasma und Speichel von Kopf-Hals-Tumor Patienten detektiert werden. In derselben Studie wurde gezeigt, dass Tumor-DNA vor Diagnose eines Rezidivs detektiert wurde, jedoch nicht bei Rezidiv-freien Patienten. In 3 Patienten konnte nach Behandlung des Primärtumors und 9-15 Monate vor klinischer Diagnose des Rezidivs Tumor-DNA detektiert werden [235]. In einer eigenen Untersuchung konnten wir sowohl erfolgreiche Tumorkontrolle als auch Therapieresistenz im ersten Patienten mittels Nachweis von Tumor-DNA im Blut aufzeigen (Abb. 11). In einer Studie, die HPV-DNA im Serum von OSCC-Patienten untersuchte, konnte ein Rückgang der DNA unter Radiochemotherapie beobachtet werden. 4 Patienten entwickelten einen Rückfall (1 lokoregionäres Rezidiv, 3 Fernmetastasen). Für die 3 Patienten mit Fernmetastasen konnte zum Zeitpunkt des Rückfalls erneut HPV-DNA detektiert werden, allerdings nicht für den Patienten mit dem lokoregionären Rezidiv [243].

Neben viraler DNA können in zell-freier Tumor-DNA ebenfalls Tumor-spezifische Mutationen nachgewiesen werden. Dies ist durch die hohe Sensitivität der NGS-Technologien möglich geworden. Auf diese Art könnten zukünftig Patienten-spezifische Tumormutationsmuster angelegt und in Plasma und Speichel untersucht werden. Weiterhin wird zurzeit untersucht, ob mittels sequenzierenden von Tumorzellklonen zusätzlich erworbene Resistenzmuster ermittelt werden können, und ob damit eine Adaptierung der Therapie möglich ist. Bspw. konnten Resistenz gen GEF und EROT in beim nichtkleinzelligem Lungenkarzinom (NSCLC) im EGFR Gen identifiziert werden [244].

7.3 Konsequenzen für die Tumornachsorge

Die deutsche Krebsgesellschaft schlägt für Nachsorge-Besuche von Kopf-Hals-Tumorpatienten mit geringem Risiko eine 3-monatige Frequenz im ersten Jahr, alle 4–6 Monate im zweiten Jahr, halbjährlichen im dritten und vierten Jahr und jährlich ab dem fünften Jahr nach Beendigung der Therapie vor. Für Tumorpatienten mit hohem Risiko für einen Rückfall wird zu einem Besuch alle 6 Wochen im ersten Jahr, im zweiten Jahr alle 3 Monate und ebenfalls alle 6 Monate im dritten und vierten Jahr und jährlich im fünften Jahr geraten [www.krebsgesellschaft.de/keko-internetportal/basis-informationen-keko/krebsarten/andere-krebsarten/kopf-hals-tumoren/kopf-hals-tumoren-nachsorge-und-reh.html; Stand 01.08.2017].

Abb. 11: Korrelation zwischen der Detektion von HPV DNA im Blut unter der Therapie sowie während der Nachsorge.

Patienten mit HPV OSCC können über einen längeren Zeitraum als 5 Jahre in der Tumornachsorge verbleiben, weil Langzeitüberbleiben typisch und die Erfassung von Spättoxizität bedeutsam ist. Ein besonderer Umstand ist die Häufigkeit einer hirnmetastatischen Tumoraussaat. Sie ist nach der Therapie wegen HPV OSCC ungewöhnlich hoch und kann etwa mit 50 % abgeschätzt werden. Insbesondere deshalb und wegen der Möglichkeit für gute Tumorkontrolle auch bei Oligometastasierung kann eine engmaschige Bildgebung des Körperrandes für HPV OSCC in der Tumornachsorge empfohlen werden (Abb. 12). Möglicherweise wird in naher Zukunft die Einführung von viraler DNA in der Nachsorge bei HPV OSCC einen Stellenwert haben.

8. Was bringt die Zukunft?

Die epidemiologische Entwicklung von KHT ist nicht mit anderen Entitäten vergleichbar. KHT setzt sich aus 2 nach klinischen und biologischen Gesichtspunkten klar unterschiedlichen Subentitäten zusammen. Die Prävalenz HPV-negativer KHT geht aufgrund des Erstfolgs von anti-Raucher Kampagnen und sinkendem Tabakkonsum allgemein zurück, die der HPV-assoziierten KHT steigt jedoch stetig in vielen Ländern an. Es bleibt offen, ob der Anteil HPV-negativer KHT in Zukunft durch HPV-assoziierte Tumore ersetzt wird, oder ob gar die jetzige Gesamtinzidenz der KHT damit ansteigt. Nachvollziehbar und überprüfbar für den Anstieg der HPV-Prävalenz bei KHT, wie z. B. eine maßgebliche Veränderung des Sexualverhaltens in den vergangenen Jahrzehnten, sind unbekannt. Ebenso fehlen gezielte Maßnahmen zur Reduktion der HPV-Prävalenz bei KHT, sodass anhand der aktuellen Daten nur von einem weiteren Anstieg der HPV-Prävalenz bei KHT ausgegangen werden kann.

Der Wert einer Prophylaxe durch Impfung ist bei vielen Infektionskrankheiten anerkannt. Jüngste Studien bestätigen den beeindruckenden Erfolg einer Impfung in Australien gegen genitale HPV-Infectionen. In einem Zeitraum von etwa 10 Jahren nach der Einfüh-
Die Wirksamkeit der Impfung für HPV-assoziierten KHT darzustellen bestehen 2 grundlegende Probleme. Dies sind die extrem lange Latenzzeit bis es nach einer Infektion zur Entwicklung eines HPV-assoziierten KHT kommt und das Fehlen von KHT-Vorstufe, lange Latenzzeit bis es nach einer Infektion zur Entwicklung eines KHT kommt. Hinzu kommt, dass die Impfung vorrangig Frauen im Rahmen der Zervixkarzinomprävention durchgeführt wird, da das Zervixkarzinom häufiger bei Frauen diagno- sized wird. Neben neuartigen Therapieansätzen sind die Weiterentwicklung diagnostischer Methoden und die Definition geeigneter Tumormarker vorzunehmen, um die Sicherheit der Stratifizierung von Patienten für unterschiedliche Therapiearme zu verbessern und Therapieansätze möglichst frühzeitig erkennen zu können. Die Fortschritte in der Sequenzierungstechnik ermöglichen die Bestimmung des genetischen Hintergrunds eines Tumors. Hieraus können die betrifften Signalwerte identifiziert werden, die Zielstrukturen für molekulare Therapieansätze bilden. Es können hieraus aber auch individuelle Marker abgeleitet werden, die genutzt werden können, um z.B. im Rahmen von Liquid Biopsies während der Tumorachse den Therapieverlauf zu überwachen und Wiederauftritt anhand von Patientenkollektiven erwogen werden. Die Weiterentwicklung prognostischer Modelle und die Einbeziehung weiterer Faktoren kann in Zukunft helfen geeignete Patienten für eine Deeskalation oder spezifischere Therapien zu identifizieren.

Über 18 Jahren und es bleibt zu hoffen, dass die Impfraten langfristig ansteigen. Dennoch wird sie sporadisch auf Antrag auch von Krankenkassen übernommen. Erfreulicherweise erstatten außerdem inzwischen immer mehr Krankenkassen die Kosten der Impfung auch für Frauen über 18 Jahren und es bleibt zu hoffen, dass die Impfprävention HPV-assoziierten Kopf-Hals-Karzinoms langfristig ansteigen.

In mehreren Studien wurden Modelle entwickelt, in denen die Bedeutung von Risikofaktoren für die Prognose von KHT untersucht wurde. Zusammenfassend wird gezeigt, dass deutlich unterschiedliche Risikogruppen existieren, die aufgrund von klinischen und „lifestyle“-Faktoren bestimmen werden. Der bei weitem wichtigste Faktor scheint hierbei HPV sein, gefolgt von Tumor-spezifischen Eigenschaf- ten wie T- und N-Status, Tabak- und Alkoholkonsum sowie dem physi- schen Zustand des Patienten. Die Wichtigkeit der Faktoren in den Modellen scheint hierbei für die Behandlungsstrategie von Bedeutung zu sein, da Unterschiede in den Modellen bestehen, je nachdem ob sie anhand von Patientenkollektiven erstellt wurden, die primär chirurgisch oder strahlentherapeutisch behandelt wurden. Gleich welches Modell herangezogen wird, existieren jedoch Patienten mit niedriger und hohem Risiko. Erstere werden durch konventionelle Therapieverfahren möglicherweise übertherapiert, was mit unnötigen Einschränkungen der Lebensqualität verbunden ist. Für Letzte- re muss die Therapie verbessert werden. In mehreren aktuellen Studien wird derzeit eine Deeskalation der Therapie getestet. Die Selektion der Patienten erfolgt hierbei anhand des HPV-Status der Tumoren, es ist jedoch fraglich ob für eine mögliche Deeskalation dies der einzige Faktor von Bedeutung ist. Auch in Niedrig-Risiko Gruppen von Patienten können Unterschiede bestehen, wodurch Therapieansätze nach einer deeskalierten Behandlung resultieren kann. Für diese Fälle müssen weitere Optionen entwickelt und bereitgehalten werden. Die Weiterentwicklung prognostischer Modelle und die Ein- beziehung weiterer Faktoren kann in Zukunft helfen geeignete Pati- enten für eine Deeskalation oder spezifischere Therapien zu identifizieren.

Neue Behandlungsstrategien zeichnen sich derzeit insbesondere im Bereich der Modulation von Immuncheckpoints ab. Die Aktivie- rung des Immunsystems scheint von enormer Bedeutung für den Behandlungserfolg zu sein, da viele Studien zeigen, dass Tumor Im- munzellen beeinflussen und sich vor dem Erkennen durch das Immun- system verbergen. Eine Behandlung durch Immuntherapeutika in Kombination mit konventionellen Methoden wie Chirurgie und Bestrahlung ist vielseitig und die aktuellen Studien werden zeigen, welche Patientengruppen am meisten profitieren werden. Neben neuartigen Therapieansätzen sind die Weiterentwicklung von Immuntherapeutika in Kombination mit konventionellen Methoden wie Chirurgie und Bestrahlung ist vielseitig und die aktuellen Studien werden zeigen, welche Patientengruppen am meisten profitieren werden.
samkeit bei minimalen Nebenwirkungen und Langzeitschäden zu ermöglichen. Jedoch steht die klonale Selektion und „genetische Weiterentwicklung“ von Tumor-zellen dem gegenüber und eine bessere Kenntnis der molekularen Prozesse während der Karzinogenese, sowie klinischen Studien sind unerlässlich, um die wissenschaftliche Erkenntnis in die klinische Praxis zu bringen.

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Literatur

[1] Javadi P et al. Evolving disparities in the epidemiology of oral cavity and oropharyngeal cancers. Cancer Causes Control 2017; 28: 635–645
[2] Mifsud M et al. Canada evolving trends in head and neck cancer epidemiology: Ontario, Canada 1993–2010. Head Neck 2017; 39: 1770–1778
[3] Chaturvedi AK et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011; 29: 4294–4301
[4] Nasman A et al. Incidence of human papillomavirus (HPV) positive tonsillar carcinoma in Stockholm, Sweden: an epidemic of viral-induced carcinoma? Int J Cancer 2009; 125: 362–366
[5] Wittekindt C et al. Expression of p16 protein is associated with human papillomavirus status in tonsillar carcinomas and has implications on survival. Adv Otorhinolaryngol 2005; 62: 72–80
[6] Quabius ES et al. Geographical and anatomical influences on human papillomavirus prevalence diversity in head and neck squamous cell carcinoma in Germany. Int J Oncol 2015; 46: 414–422
[7] Wurdemann N et al. Prognostic Impact of AJCC/UICC 8th Edition new staging rules in oropharyngeal squamous cell carcinoma. Front Oncol 2017; 7: 129
[8] Klussmann JP et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol 2003; 162: 747–753
[9] Saraya M et al. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J Natl Cancer Inst 2015; 107: dv086
[10] Mehanna H et al. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer—systematic review and meta-analysis of trends by time and region. Head Neck 2013; 35: 747–755
[11] Abogunrin S et al. Prevalence of human papillomavirus in head and neck cancers in European populations: a meta-analysis. BMC Cancer 2014; 14: 968
[12] Isayeva T et al. Human papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature review. Head Neck Pathol 2012; 6: (Suppl 1): S104–S120
[13] Ndlaye C et al. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol 2014; 15: 1319–1331
[14] Castellsague X et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 Patients. J Natl Cancer Inst 2016; 108: dv403
[15] Lassen P et al. Impact of HPV-associated p16-expression on radiotherapy outcome in advanced oropharynx and non-oropharynx cancer. Radiother Oncol 2014; 113: 310–316
[16] Chung CH et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. J Clin Oncol 2014; 32: 3930–3938
[17] Scheel A et al. Classification of TP53 mutations and HPV predict survival in advanced larynx cancer. Laryngoscope 2016; 126: E292–E299
[18] Mark J et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med 2001; 344: 1125–1131
[19] Anantharaman D et al. Human papillomavirus infections and upper aerodigestive tract cancers: the ARCAGE study. J Natl Cancer Inst 2013; 105: 536–545
[20] Kreimer AR et al. Oral human papillomavirus in healthy individuals: a systematic review of the literature. Sex Transm Dis 2010; 37: 386–391
[21] Gillison ML et al. Prevalence of oral HPV infection in the United States, 2009-2010. JAMA 2012; 307: 693–703
[22] Giuliano AR et al. Incidence, prevalence, and clearance of type-specific human papillomavirus infections: The Young Women's Health Study. J Infect Dis 2002; 186: 462–469
[23] Pickard RK et al. The prevalence and incidence of oral human papillomavirus infection among young men and women, aged 18-30 years. Sex Transm Dis 2012; 39: 559–566
[24] Kreimer AR et al. Incidence and clearance of oral human papillomavirus infection in men: the HIM cohort study. Lancet 2013; 382: 877–878
[25] D'Souza G et al. Oral human papillomavirus (HPV) infection in HPV-positive patients with oropharyngeal cancer and their partners. J Clin Oncol 2014; 32: 2408–2415
[26] D'Souza G et al. Six-month natural history of oral versus cervical human papillomavirus infection. Int J Cancer 2007; 121: 143–150
[27] D'Souza G et al. Differences in oral sexual behaviors by gender, age, and race explain observed differences in prevalence of oral human papillomavirus infection. PLoS One 2014; 9: e86023
[28] Partridge JM et al. Genital human papillomavirus infection in men: incidence and risk factors in a cohort of university students. J Infect Dis 2007; 196: 1128–1136
[29] Poethko-Muller C, Buttmann-Schweiger N, Kl G.G.S.S.G. [HPV vaccination coverage in German girls: results of the KIGGS study: first follow-up (KIGGS Wave 1)]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2014; 57: 869–877
[30] Armstrong EP. Prophylaxis of cervical cancer and related cervical disease: a review of the cost-effectiveness of vaccination against oncogenic HPV types. J Manag Care Pharm 2010; 16: 217–230
[31] Drolet M et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 2015; 15: 565–580
[32] Novakovic D et al. Juvenile recurrent respiratory papillomatosis: 10-year audit and Australian prevalence estimates. Laryngoscope 2016; 126: 2827–2832
[33] Matys K et al. Mother-infant transfer of anti-human papillomavirus (HPV) antibodies following vaccination with the quadrivalent HPV (type 6/11/16/18) virus-like particle vaccine. Clin Vaccine Immunol 2012; 19: 881–885
[34] Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70
[35] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674
[36] Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med 2008; 37: 1–10
van der Waal I. Potentially malignant disorders of the oral and head and neck squamous cell carcinoma. J Oral Pathol Med 2014; 43: 137–142

Gaykalova DA et al. Novel insight into mutational landscape of head and neck squamous cell carcinomas. Nature 2015; 517: 576–582

Gaykalova DA et al. Novel insight into mutational landscape of head and neck squamous cell carcinomas. Cancer Res 2015; 75: 3630–3633

Keating P et al. Frequency of down-regulation of individual HLA-A and -B alleles in cervical carcinomas in relation to TAP-1 expression. Br J Cancer 1995; 72: 405–411

Gollin SM. Cytogenetic alterations and their molecular genetic correlates in head and neck squamous cell carcinoma: a next generation window to the biology of disease. Genes Chromosomes Cancer 2014; 53: 972–990

Noutomi Y et al. Comparative genomic hybridization reveals genetic progression of oral squamous cell carcinoma from dysplasia via two different tumourigenic pathways. J Pathol 2006; 202: 61–67–74

Wreesmann VB et al. Genetic abnormalities associated with nodal metastasis in head and neck cancer. Head Neck 2004; 26: 10–15

Klussmann JP et al. Genetic signatures of HPV-related and unrelated oropharyngeal carcinoma and their prognostic implications. Cancer Res 2009; 15: 1779–1786

Hopman AH et al. Genomic integration of oncogenic HPV and gain of the human telomerase gene TERC at 3q26 are strongly associated events in the progression of uterine cervical dysplasia to invasive cancer. J Pathol 2006; 210: 412–419

Mooren JJ et al. Chromosome stability in tonsillar squamous cell carcinoma is associated with HPV16 integration and indicates a favorable prognosis. Int J Cancer 2013; 132: 1781–1789

Prigge ES et al. p16(INK4a) /Ki-67 co-expression specifically identifies transformed cells in the head and neck region. Int J Cancer 2015; 136: 1589–1599

Mooren JJ et al. P16(INK4A) immunostaining is a strong indicator for high-risk HPV-associated oropharyngeal carcinomas and dysplasia, but is unreliable to predict low-risk HPV-infection in head and neck papillomas and laryngeal dysplasias. Int J Cancer 2014; 134: 2108–2117

Reimers N et al. Combined analysis of HPV-DNA, p16 and EGFR expression to predict prognosis in oropharyngeal cancer. Int J Cancer 2007; 120: 1731–1738

Vent J et al. p16 expression in carcinoma of unknown primary: diagnostic indicator and prognostic marker. Head Neck 2013; 35: 1521–1526

Jung AC et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int J Cancer 2010; 126: 1882–1894

Gao G, Smith DI. Very large common fragile site genes and their potential role in cancer development. Cell Mol Life Sci 2014; 71: 4601–4615

Karim R et al. Human papillomavirus (HPV) upregulates the cellular deubiquitilase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathog 2013; 9: e1003384

Olthof NC et al. Comprehensive analysis of HPV16 integration in OSCC reveals no significant impact of physical status on viral oncogene and virally disrupted human gene expression. PLoS One 2014; 9: e88718

Olthof NC et al. Viral load, gene expression and mapping of viral integration sites in HPV16-associated HNSCC cell lines. Int J Cancer 2015; 136: E207–E218

Nulton TJ et al. Analysis of The Cancer Genome Atlas sequencing data reveals novel properties of the human papillomavirus 16 genome in head and neck squamous cell carcinoma. Oncotarget 2017; 8: 17684–17699

Lace MJ et al. Human papillomavirus type 16 (HPV-16) genomes integrated in head and neck cancers and in HPV-16-immortalized human keratinocyte clones express chimeric virus-cell mRNAs similar to those found in cervical cancers. J Virol 2011; 85: 1645–1654

Karunasighe N et al. Influence of Aldo-keto reductase 1C3 in prostate cancer – a mini review. Curr Cancer Drug Targets 2017

Kostareli E et al. HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas. J Clin Invest 2013; 123: 2488–2501

Minarovits J et al. Epigenetic dysregulation in virus-associated neoplasms. Adv Exp Med Biol 2016; 879: 71–90

Reed AL et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res 1996; 56: 3630–3633

McLaughlin-Drubin ME. p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci U S A 2013; 110: 16175–16180

Munger K, Gwin TK, McLaughlin-Drubin ME. p16 in HPV-associated cancers. Oncotarget 2013; 4: 1864–1865

Schlecht NF et al. Epigenetic changes in the CDKN2A locus are associated with differential expression of P16INK4A and P14ARF in HPV-positive oropharyngeal squamous cell carcinoma. Cancer Med 2015; 4: 342–353

Wijetunga NA et al. Novel epigenetic changes in CDKN2A are associated with progression of cervical intraepithelial neoplasia. Gynecol Oncol 2016; 142: 566–573
Referat

[120] Chung CH et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 2004; 5: 489–500

[121] Walter V et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One 2013; 8: e56823

[122] Wichmann G et al. The role of HPV RNA transcription, immune response-related gene expression and disruptive TP53 mutations in diagnostic and prognostic profiling of head and neck cancer. Int J Cancer 2015; 137: 2846–2857

[123] Verhaak RG et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRα, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110

[124] Wilkerson MD et al. Smoking prevalence and cigarette consumption in 187 countries, 1980-2012. JAMA 2014; 311: 183–192

[125] Nelson HH et al. Immune response to hpv16 e6 and e7 proteins and patient outcomes in head and neck cancer. JAMA Oncol 2016

[126] Keck MK et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res 2015; 21: 870–881

[127] Saba NF et al. Mutation and transcriptional profiling of formalin-fixed paraffin embedded specimens as companion methods to immunohistochemistry for determining therapeutic targets in Oropharyngeal Squamous Cell Carcinoma (OPSCC): A Pilot of Proof of Principle. Head Neck Pathol 2015; 9: 223–235

[128] Alberico S et al. [Maternal-fetal transmission of human papillomavirus]. Minerva Ginecol 1996; 48: 199–204

[129] D’Souza G et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007; 356: 1944–1956

[130] Hernandez BY et al. Transmission of human papillomavirus in heterosexual couples. Emerg Infect Dis 2008; 14: 888–894

[131] Gillison ML et al. Kinetics of the human papillomavirus type 16 e6 and e7 proteins and patient outcomes in head and neck cancer. JAMA Oncol 2016

[132] Gillison ML et al. Human papillomavirus and survival of patients with oropharyngeal cancer. J Clin Oncol 2012; 30: 2102–2111

[133] Maniakas A et al. North-American survey on HPV-DNA and p16 testing for head and neck squamous cell carcinoma. Oral Oncol 2014; 50: 942–946

[134] Prigge ES et al. Diagnostic accuracy of p16INKn4a immunohistochemistry in oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Int J Cancer 2017; 140: 1186–1198

[135] Smith EM et al. Human papillomavirus in oral exfoliated cells and risk of head and neck cancer. J Natl Cancer Inst 2004; 96: 449–455

[136] Nordfors C et al. Human papillomavirus prevalence is high in oral samples of patients with tonsillar and base of tongue cancer. Oral Oncol 2014; 50: 491–497

[137] Chung AY et al. Presence of HPV DNA in convalescent salivary rinses is an adverse prognostic marker in head and neck squamous cell carcinoma. Oral Oncol 2008; 44: 915–919

[138] Rotnaklova E et al. HPV involvement in tonsillar cancer: prognostic significance and clinically relevant markers. Int J Cancer 2011; 129: 101–110

[139] Kreimer AR et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J Clin Oncol 2013; 31: 2708–2715

[140] Beachler DC et al. HPV16 E6 seropositivity among cancer-free men with oral, anal or genital HPV16 infection. Papillomavirus Res 2016; 2: 141–144

[141] Nelson HH et al. Immune response to hpv16 e6 and e7 proteins and patient outcomes in head and neck cancer. JAMA Oncol 2016

[142] Rotnaklova E et al. HPV involvement in tonsillar cancer: prognostic significance and clinically relevant markers. Int J Cancer 2011; 129: 101–110

[143] Kreimer AR et al. Kinetics of the human papillomavirus type 16 e6 antibody response prior to oropharyngeal cancer. J Natl Cancer Inst 2017; 109: doi: 10.1093/jnci/djx005

[144] Guaridola E et al. Is there still a role for triple endoscopy as part of staging for head and neck cancer? Curr Opin Otolaryngol Head Neck Surg 2006; 14: 85–88

[145] Martel M et al. The role of HPV on the risk of second primary neoplasia in patients with oropharyngeal carcinoma. Oral Oncol 2017; 64: 37–43

[146] Jain KS et al. Synchronous cancers in patients with head and neck cancer: risks in the era of human papillomavirus-associated oropharyngeal cancer. Cancer 2013; 119: 1832–1837

[147] Sharma SJ et al. [Current practice of tumour endoscopy in German ENT-clinics]. Laryngorhinootologie 2013; 92: 166–169

[148] Graves EE et al. Quantitative and qualitative analysis of [(18)F]FDG and [(18)F]FAZA positron emission tomography of head and neck cancers and associations with HPV status and treatment outcome. Eur J Nucl Med Mol Imaging 2016; 43: 617–625

[149] Hanns E et al. Human Papillomavirus-related tumours of the oropharynx display a lower tumour hypoxia signature. Oral Oncol 2015; 51: 848–856

[150] Schouten CS et al. Interaction of quantitative [(18)F]FDG-PET-CT imaging parameters and human papillomavirus status in oropharyngeal squamous cell carcinoma. Head Neck 2016; 38: 529–535

[151] Thorwarth D et al. Combined uptake of [(18)F]FDG and [(18)F]FMISO correlates with radiation therapy outcome in head-and-neck cancer patients. Radiother Oncol 2006; 80: 151–156

[152] Mortensen LS et al. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of the head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 2012; 105: 14–20

[153] Mehanna H et al. PET-NECK: a multicentre randomised Phase III non-inferiority trial comparing a positron emission tomography-computerised tomography-guided watch-and-wait policy with planned neck dissection in the management of locally advanced (N2/N3) nodal metastases in patients with squamous cell head and neck cancer. Health Technol Assess 2017; 21: 1–122
[161] Bogowicz M et al. Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2017

[162] Parmar C et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 2015; 5: 272

[163] Aerts HJ et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5: 4006

[164] Ou D et al. Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to Human Papillomavirus status. Oral Oncol 2017; 71: 150–155

[165] Klozar J et al. Nodal status is not a prognostic factor in patients with HPV-positive oral/oropharyngeal tumors. J Surg Oncol 2013; 107: 625–633

[166] Straetmans JM et al. Human papillomavirus reduces the prognostic value of nodal involvement in tonsillar squamous cell carcinomas. Laryngoscope 2009; 119: 1951–1957

[167] Sedaghat AR et al. Prognostic significance of human papillomavirus in oropharyngeal squamous cell carcinomas. Laryngoscope 2009; 119: 1542–1549

[168] Wittekindt C, Klussmann JP. Tumor staging and HPV-related oropharyngeal cancer. Recent Results Cancer Res 2017; 206: 123–133

[169] O'Sullivan B et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network (ICON-5): a multicentre cohort study. Lancet Oncol 2016; 17: 440–451

[170] Sinha P et al. High metastatic node number, not extracapsular spread or N-classification is a node-related prognostic factor in transorally-resected, neck-dissected p16-positive oropharynx cancer. Oral Oncol 2015; 51: 514–520

[171] Coatesworth AP, MacLennan K. Squamous cell carcinoma of the upper aerodigestive tract: the prevalence of microscopic extracapsular spread and soft tissue deposits in the clinically N0 neck. Head Neck 2002; 24: 258–261

[172] Greenberg JS et al. Extent of extracapsular spread: a critical prognosticator in oral tongue cancer. Cancer 2003; 97: 1464–1470

[173] Bernier J et al. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005; 27: 843–850

[174] Sinha P et al. Extracapsular spread and adjuvant therapy in human papillomavirus-related, p16-positive oropharyngeal carcinoma. Cancer 2012; 118: 3519–3530

[175] Maxwell JH et al. Extracapsular spread in head and neck carcinoma: impact of site and human papillomavirus status. Cancer 2013; 119: 3302–3308

[176] van den Brekel MW et al. Observer variation in the histopathologic assessment of extranodal tumor spread in lymph node metastases in the neck. Head Neck 2012; 34: 840–845

[177] Lewis JS et al. Extracapsular extension is a poor predictor of disease recurrence in surgically treated oropharyngeal squamous cell carcinoma. Mod Pathol 2011; 24: 1413–1420

[178] Wittekindt C et al. Basics of tumor development and importance of human papilloma virus (HPV) for head and neck cancer. GMS Curr Top Otorhinolaryngol Head Neck Surg 2012; 11: Doc09

[179] El-Naggar AK, Westra WH. p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 2012; 34: 459–461

[180] Malm IJ et al. Evaluation of proposed staging systems for human papillomavirus-related oropharyngeal squamous cell carcinoma. Cancer 2017; 123: 1768–1777

[181] Husain ZA et al. A comparison of prognostic ability of staging systems for human papillomavirus-related oropharyngeal squamous cell carcinoma. JAMA Oncol 2017; 3: 358–365

[182] Arent A et al. Increased radiosensitivity of HPV-positive head and neck cancer cell lines due to cell cycle dysregulation and induction of apoptosis. Strahlenther Onkol 2014; 190: 839–846

[183] Rieckmann T et al. HNSCC cell lines positive for HPV and p16 possess higher cellular radiosensitivity due to an impaired DSBR repair capacity. Radiother Oncol 2013; 107: 242–246

[184] Petrelli F, Sarti E, Barni S. Predictive value of human papillomavirus in oropharyngeal carcinoma treated with radiotherapy: An updated systematic review and meta-analysis of 30 trials. Head Neck 2014; 36: 750–759

[185] Lassen P et al. Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol 2009; 27: 1992–1998

[186] Semrau R et al. Prognostic impact of human papillomavirus status, survivin, and epidermal growth factor receptor expression on survival in patients treated with radiochemotherapy for very advanced nonresectable oropharyngeal cancer. Head Neck 2013; 35: 1339–1344

[187] Garden AS et al. Radiation therapy (with or without neck surgery) for phenotypic human papillomavirus-associated oropharyngeal cancer. Cancer 2016; 122: 1702–1707

[188] O'Sullivan B et al. Deintensification candidate subgroups in human papillomavirus-related oropharyngeal cancer according to minimal risk of distant metastasis. J Clin Oncol 2013; 31: 543–550

[189] Sinha P et al. Does elimination of planned postoperative radiation to the primary bed in p16-positive, transorally-resected oropharyngeal carcinoma associate with poorer outcomes? Oral Oncol 2016; 61: 127–134

[190] Al-Mamgani A, Verheij M, van den Brekel MWM. Elective unilateral nodal irradiation in head and neck squamous cell carcinoma: A paradigm shift. Eur J Cancer 2017; 82: 1–5

[191] Tassone P et al. Pathologic markers in surgically treated hpv-associated oropharyngeal cancer: retrospective study, systematic review, and meta-analysis. Ann Otol Rhinol Laryngol 2017; 126: 365–374

[192] Huang YH et al. Cystic nodal metastasis in patients with oropharyngeal squamous cell carcinoma receiving chemoradiotherapy: Relationship with human papillomavirus status and failure patterns. PLoS One 2017; 12: e0180779

[193] Wuerdemann N et al. Risk factors for overall survival outcome in surgically treated human papillomavirus-negative and positive patients with oropharyngeal cancer. Oncol Res Treat 2017; 40: 320–327

[194] Lohaus F et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother Oncol 2014; 113: 317–323

[195] Posner MR et al. Survival and human papillomavirus in oropharynx cancer in TAX 324: a subset analysis from an international phase III trial. Ann Oncol 2011; 22: 1071–1077

[196] Toustrup K et al. Gene expression classifier predicts for hypoxic modification of radiotherapy with nimorazole in squamous cell carcinomas of the head and neck. Radiother Oncol 2012; 102: 122–129

[197] Rischin D et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol 2010; 28: 4142–4148

[198] Ziemann F et al. Increased sensitivity of HPV-positive head and neck cancer cell lines to x-irradiation + /- Cisplatin due to decreased expression of E6 and E7 oncoproteins and enhanced apoptosis. Am J Cancer Res 2015; 5: 1017–1031
[219] Rosenthal DI et al. Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy With or Without Cetuximab. J Clin Oncol 2016; 34: 1300–1308

[220] Ang KK et al. Randomized phase III trial of concurrent accelerated radiation plus cetuximab with or without cetuximab for stage III to IV head and neck carcinoma: RTOG 0522. J Clin Oncol 2014; 32: 2940–2950

[221] Chera BS et al. Phase 2 trial of de-intensified chemoradiation therapy for favorable-risk human papillomavirus-associated oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2015; 93: 976–985

[222] Molony P et al. Impact of positive margins on outcomes of oropharyngeal squamous cell carcinoma according to p16 status. Head Neck 2017; 39: 1680–1688

[223] Kharytaniuk N et al. Association of extracapsular spread with survival according to human papillomavirus status in oropharynx squamous cell carcinoma and carcinoma of unknown primary site. JAMA Otolaryngol Head Neck Surg 2016; 142: 683–690

[224] Fakhry C et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst 2008; 100: 261–269

[225] Inhestern J et al. A two-arm multicenter phase II trial of one cycle chemoselection split-dose docetaxel, cisplatin and 5-fluorouracil (TPF) induction chemotherapy before two cycles of split TPF followed by curative surgery combined with postoperative radiotherapy in patients with locally advanced oral and oropharyngeal squamous cell cancer (TISOC-1). Ann Oncol 2017; 28: 1917–1922

[226] Topalian SL et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366: 2434–2454

[227] Hong AM et al. PD-L1 expression in tonsillar cancer is associated with human papillomavirus positivity and improved survival: implications for anti-PD-1 clinical trials. Oncotarget 2016; 7: 77010–77020

[228] Scheel AH et al. Interlaboratory-concordance of PD-L1 immunohistochemistry for non-small cell lung cancer. Histopathology 2017; doi: 10.1111/his.13375. [Epub ahead of print]

[229] Scheel AH et al. [Predictive PD-L1 immunohistochemistry for non-small cell lung cancer: Current state of the art and experiences of the first German harmonization study]. Pathologie 2016; 37: 557–567

[230] Gandini S, Masili D, Mandala M. PD-L1 expression in cancer patients receiving anti-PD-1/PD-L1 antibodies: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 100: 88–98

[231] Oguejiofor K et al. Stromal infiltration of CD8 T cells is associated with improved clinical outcome in HPV-positive oropharyngeal squamous carcinoma. Br J Cancer 2015; 113: 886–893

[232] Badoual C et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73: 128–138

[233] Oguejiofor K et al. Distinct patterns of infiltrating CD8+ T cells in HPV+ and CD68 macrophages in HPV- oropharyngeal squamous cell carcinomas are associated with better clinical outcome but PD-L1 expression is not prognostic. Oncotarget 2017; 8: 14416–14427

[234] Seiwert TY et al. Safety and clinical activity of pembrolizumab for recurrent squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17: 956–965

[235] Ferris RL et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375: 1856–1867

[236] Addeo R, Careglio M, Iuliano G. Pembrolizumab: the value of PD-L1 biomarker in head and neck cancer. Expert Opin Biol Ther 2016; 16: 1075–1078

[237] Kenter GG et al. Vaccination against HPV-16 oncoproteins for vulvar intraepithelial neoplasia. N Engl J Med 2009; 361: 1838–1847

[238] Reuschenbach M et al. A phase 1/2a study to test the safety and immunogenicity of a p16(INK4a) peptide vaccine in patients with advanced human papillomavirus-associated cancers. Cancer 2016; 122: 1425–1433

[239] Fakhry C et al. Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol 2014; 32: 3365–3373

[240] Huang SH et al. Natural course of distant metastases following radiotherapy or chemoradiotherapy in HPV-related oropharyngeal cancer. Oral Oncol 2013; 49: 79–85

[241] Trosman SJ et al. Effect of human papillomavirus on patterns of distant metastatic failure in oropharyngeal squamous cell carcinoma treated with chemoradiotherapy. JAMA Otolaryngol Head Neck Surg 2015; 141: 457–462

[242] Dave E et al. The prognostic impact of human papillomavirus status following treatment failure in oropharyngeal squamous cell carcinoma. PLoS One 2017; 12: e0181108

[243] Sinha P et al. Distant metastasis in p16-positive oropharyngeal squamous cell carcinoma: a critical analysis of patterns and outcomes. Oral Oncol 2014; 50: 45–51

[244] Duprez F et al. Distant metastases in head and neck cancer. Head Neck 2017; 39: 1733–1743

[245] Sweeney LET et al. Outcomes after surgical salvage for recurrent oropharyngeal squamous cell carcinoma. Oral Oncol 2016; 60: 118–124

[246] Patel SN et al. Salvage surgery for locally recurrent oropharyngeal cancer. Head Neck 2016; 38: (Suppl 1): E658–E664

[247] Sims JR et al. Management of recurrent and metastatic hpv-positive oropharyngeal squamous cell carcinoma after transoral robotic surgery. Otolaryngol Head Neck Surg 2017; 157: 69–76

[248] Dang RP et al. Clinical outcomes in patients with recurrent or metastatic human papilloma virus-positive head and neck cancer. Anticancer Res 2016; 36: 1703–1709

[249] Etges CL et al. Screening tools for dysphagia: a systematic review. Codas 2014; 26: 343–349

[250] Colodny N. Interjudge and intrajudge reliabilities in fiberoptic endoscopic evaluation of swallowing (fees) using the penetration-aspiration scale: a replication study. Dysphagia 2002; 17: 308–315

[251] Frakes JM et al. Determining optimal follow-up in the management of human papillomavirus-positive oropharyngeal cancer. Cancer 2016; 122: 634–641

[252] Sharma A et al. Human papillomavirus-positive oral cavity and oropharyngeal cancer patients do not have better quality-of-life trajectories. Otolaryngol Head Neck Surg 2012; 146: 739–745

[253] Slier-Jarmer M et al. Assessment of functional outcomes in head and neck cancer. Eur Arch Otorhinolaryngol 2014; 271: 2021–2044

[254] Morris LG et al. Second primary cancers after an index head and neck malignancy. Clin Oncol (R Coll Radiol) 2011; 23: 153–159

[255] Frakes JM et al. Determining optimal follow-up in the management of human papillomavirus-positive oropharyngeal cancer. Cancer 2016; 122: 634–641

[256] Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker for late-stage human malignancies. Sci Transl Med 2014; 6: 224ra24
[239] Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov 2014; 4: 650–661

[240] Amirian ES et al. Presence of viral DNA in whole-genome sequencing of brain tumor tissues from the cancer genome atlas. J Virol 2014; 88: 774

[241] Lo YM et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 1999; 59: 1188–1191

[242] Chan KCA et al. Analysis of plasma epstein-barr virus dna to screen for nasopharyngeal cancer. N Engl J Med 2017; 377: 513–522

[243] Cao H et al. Quantitation of human papillomavirus DNA in plasma of oropharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys 2012; 82: e351–e358

[244] Yun CH et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A 2008; 105: 2070–2075