Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees

Yiyi Yin1,2,3†, Chun Wang1,2,3†, Dandan Xiao1,2,3, Yanting Liang1,2,3 and Yanwei Wang1,2,3*

1 National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China, 2 College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China, 3 Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China

Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits—including insect, disease, and herbicide resistance—were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.

Keywords: forest trees, transgenic technology, genetically modified trees, trait improvement, application

INTRODUCTION

As important plant materials, forest trees are crucial for ecological preservation, climate regulation, building materials, road greening, and energy supply (Trumbore et al., 2015). However, breeding forest trees take a long time, and advanced-generation breeding populations are needed due to their long life span. Molecular breeding methods based on genetic transformation facilitate breeding and overcome the disadvantages of directional improvement, breeding, and the difficulty of distant hybridization and inter-specific hybridization that characterizes traditional breeding (Fang and Han, 2019). Furthermore, two or more traits can be simultaneously improved in genetically
modified (GM) trees, enabling the improvement of the adaptability and productivity of forest trees (Martínez-Gómez, 2019). Genetic transformation is complicated by the complexity and diversity of forest genomes. Compared to annual crops, transgenic research on forestry trees started late and efficient transformation systems for many tree species have not been successfully established. Thus, it is important and indispensable to understand the parameters of genetic transformation of forest trees and elucidate challenges in transgenic technology, accelerating the application of GM trees for sustainable development.

To date, transgenic investigation of trees has focused on the transformation efficiency using marker genes, the regeneration of the transgenic plant tissues into complete plants, the introduction of introducing exogenous genes into receptor genomes, and gene function and regulation mechanism (Yu et al., 2021). Genetic engineering has been successfully applied to forest trees including Populus, used as a model plant for gene function research based on the establishment of a complete genetic transformation system (Zhou Y. et al., 2020; Guo et al., 2021). To generate GM forest trees, the most widely used transgenic method involves Agrobacterium tumefaciens-mediated. Gene gun-mediated, pollen tube pathway, and protoplast transformation methods can also be used. Mobile genetic techniques, such as clustered regularly interspaced short palindromic repeats (CRISPR)-associated (CRISPR-Cas) systems, have recently been applied to forest tree breeding (Shivram et al., 2021). Transgenic technology has been used to modify insect, herbicide, abiotic stress, disease resistance, wood properties, flowering regulation, and phytoremediation (Liao and An, 2013; Ding et al., 2016; Xu and Zhai, 2021; Yu et al., 2021).

In this study, we reviewed the advantages and disadvantages of diverse genetic transformation methods and their application to forest trees for enhancing insect, disease, and abiotic-stress resistance. Also, the challenges in transgenic engineering of forest trees are presented, and potential future work is discussed. This review provides insight into the establishment and improvement of genetic transformation systems for forest tree species.

ADVANCEMENTS IN TRANSGENIC TECHNOLOGIES FOR FOREST TREES

Agrobacterium tumefaciens-Mediated Transformation

Agrobacterium tumefaciens-mediated transformation is the most commonly used method of genetic transformation of forest trees. *A. tumefaciens* could deliver DNA molecules into plant cells for integration of exogenous genes into the host genome (Chilton et al., 1977). *A. tumefaciens*-mediated genetic transformation of plants is a rare example of naturally occurring trans-kingdom DNA transfer (Lacroix and Citovsky, 2013). *A. tumefaciens*-mediated genetic transformation system has been widely applied in poplars, such as *Populus tomentosa*, *Populus alba* × *Populus glandulosa*, *Populus simoni* × *Populus nigra*, and *Cinnamomum camphora* (Table 1) (Du et al., 2008; Li et al., 2020a,b; Ma et al., 2020; Guo et al., 2021). Furthermore, it has also been successfully established in some other forest trees, such as *Betula platyphylla*, *Eucalyptus urophylla*, and *Juglans* (Wang, 2015; Li et al., 2021a; Zhong et al., 2021).

Due to its simplicity and high repetition rate, leaf disk transformation is the most widely used method for plant transformation using *A. tumefaciens*. The transformation receptor, infection and coculture time, of genetic transformation might differ among forest tree species (Table 2). However, as explants, young leaves (top 3–5 leaves of tissue culture plantlets) are amenable to genetic transformation, and the infection and coculture times depend on the secondary metabolites produced by plants. Additionally, bacterial density in the logarithmic growth phase (optical density at 600 nm = 0.6–0.8) is suitable for the genetic transformation of most forest trees. Moreover, callus induction from plant organs and infection with *A. tumefaciens* can be conducted to generate transgenic plants. The stability of callus germination can be tested by using beta-glucuronidase (GUS)-labeled vectors to infect calli of *Hevea brasiliensis* (Lardet et al., 2011). A large number of transgenic plants can be produced in a relatively short period by *A. tumefaciens*-mediated transformation, contributing to the acquisition and rapid renewal of transgenic trees.

Agrobacterium tumefaciens-mediated transformation is simple, economical, and efficient. It is also important for investigating gene function and the cultivation of transgenic plants. However, *A. tumefaciens* infection is limited to certain species and genotypes. *A. tumefaciens* residues may form crown galls, resulting in the yield reduction of transgenic plants (Guo et al., 2019). Further consideration should be given to the field applications of *A. tumefaciens*-mediated transgenic trees.

Gene Gun-Mediated Transformation

The principle of the gene gun method is to use accelerators to transfer particles coated with exogenous genes into receptor cells, tissues, or organs so that the exogenous genes can be integrated into the receptor genome and expressed (Zhang et al., 2013). This method is mainly applied to crops and some fruit trees such as wheat, corn, bean, and citrus (Ozyigit and Yucebilgili Kurtoglu, 2020). Compared to *A. tumefaciens*-mediated transformation, the gene gun method is not limited by genotype (Ozyigit and Yucebilgili Kurtoglu, 2020). The applications of gene gun-mediated transformation in forest trees are listed in Table 3; gene gun technology has considerable potential in forest tree research.

The efficiency of gene gun-mediated transformation is affected by receptor types, culture conditions, and transformation parameters (Wang B. et al., 2018). The transformation efficiency of plant cells or tissues with strong regeneration ability and strong physiological activity is high. For example, a highly efficient transformation system involving particle bombardment of the callus of date palm was reported (Mousavi et al., 2014). Gene gun transformation is also unrestricted in terms of the materials and cells to which it can be applied. The gene gun method could overcome the drawbacks of *A. tumefaciens*-mediated transformation and improve transformation efficiency. For example, the drought-related genes *JERF36*, *ZxZF*, *AREB*, and *GST* were cotransformed into *Populus euramericana*.
TABLE 1 | Transgenic plants successfully obtained by Agrobacterium tumefaciens transformation.

Tree species	Trait	Gene	Transformation receptor	References
P. tremula × *P. alba*	Wood material improvement	*CCoAOMT*	Leaf disk/stem	Meyermans et al., 2000
P. deltoides × *P. simonii*	Insect-resistant	*Bt*	Stem	Rao et al., 2000
P. deltoides × *P. simonii*	Insect-resistant	*AaT*	Leaf disk/stalk	Wu et al., 2000
P. tremula × *P. alba*	Herbicide resistance	*gsh1*	Leaf disk	Guliher et al., 2001
Juglans nigra	Antimicrobial properties	*ThEn-4*	Somatic embryo	Tang et al., 2001
Betula platyphylla	Insect-resistant	Insecticidial peptide gene of spider;	Leaf disk/stem; stalk	Zhan et al., 2001
P. tremula × *P. tremuloides*	Insect-resistant	*Cry3Aa*	Stem	Génissel et al., 2003
P. tremuloides	Wood material improvement	*PI4CL;*	Leaf disk	Li et al., 2003
P. pseudocerasus	Antimicrobial properties	*Cecropin B/Shiva A*	Stem tip	Wang et al., 2003
P. deltoides	Disease resistance	*CH58*	Leaf disk	Meng et al., 2004
P. tremuloides	Lignin	*Antisense CCoAOMT*	Seedling	Zhao et al., 2004
P. bolleana cv.	Cell wall remodeling	*PtrMAN6*	Leaf disk	Li et al., 2007
P. alba × *P. tremula* var. glandulosa	Wood material improvement	*PdGA20ox1*	Stem	Park et al., 2015
P. davidiana × *P. bolleana*	Salt tolerance	*PtrSOS2*	Leaf disk	Yang et al., 2015
P. alba × *P. tremula* var. glandulosa,	Woody biomass	*PdGA20ox1*	Leaf disk	Jeon et al., 2016
P. euramericana cv.	Drought resistance, salt and cold tolerance	*codA*	Shoots	Ke et al., 2016
P. simoni × *P. nigra*	Salt tolerance	*ERF76*	Twig	Yao et al., 2016
P. euramericana	Insect resistant, salt tolerance	*Cry1Ac, Cry3A, BADH*	Leaves	Yang et al., 2016
P. davidiana × *P. bolleana*	Insect resistant	*Cry1Ac + SCK, Cry1Ah3, Cry9Aa3*	Leaves	Ding et al., 2017
P. euramericana	Biomass production	*PtrCYP98A3*	Seedlings	Jin et al., 2017
P. simoni × *P. nigra*	Salt and pathogen resistant	*PtrWRKY70*	Leaf disk	Zhao et al., 2017
P. densiflora and *P. trichocarpa*	Woody biomass	*PtrGA20ox1/PtMYB221*	Leaf disk	Cho et al., 2019
P. deltoides × *P. euramericana*	Drought resistance/salt tolerance	*DRS1*	Leaf disk	Kourosh et al., 2018
P. alba × *P. glandulosa*	Adventitious rooting	*PagFBL1*	Shu et al., 2019	
P. euramericana cv.	Wood material improvement	*PCSER1*	Seedlings	Bruegmann et al., 2019
P. canescens	Drought resistance and salt tolerance	*PtrHIHGR*	Leaf disk	Wei et al., 2020
P. euramericana	Trichome development	*miR319a; TCP19*	Leaf disk	Fan et al., 2020
P. tomentosa	Wood quality	*PtSS3*	Leaf disk	Li et al., 2020a
P. alba × *P. glandulosa*	Root development	*PtrWUSa*	Root	Li et al., 2020b
P. alba × *P. glandulosa*	Salt tolerance	*PtrHD102*	Stem	Ma et al., 2020
P. alba × *P. glandulosa*	Low temperature stress	*BpMBF1*	Leaf disk	Wang, 2020
P. alba × *P. glandulosa*	Root growth and drought resistance	*PtrNF-YB21*	Leaf disk	Zhou Y. et al., 2020
P. simoni × *P. nigra*	Salt tolerance	*PtrHD263*	Leaf disk	Guo et al., 2021
Betula platyphylla	Abiotic Stress	*BpERF98*	Leaf disk	Li et al., 2021a

by particle bombardment to generate transgenic poplar with drought tolerance (Cui, 2012). However, gene gun-mediated transformation has low transformation efficiency, inserts multiple gene copies, and can inactivate or silence the transformed genes. Additionally, the exogenous genes are expressed unstably and easily lost on bombardment. There is
TABLE 2 | Infection time and coculture time of different trees.

Tree species	Transformation receptor	Gene	Infection time	Co-culture time	References
P. tomentosa	Tissue culture seedling	Antisense CCoAOMT	15–20 min	2–3 days	Zhao et al., 2004
Euonymus japonicus 'Cu Zhi'	Hypocotyl	GAN	40 min	3 days	Wang et al., 2008
Juglans	Somatic embryo		10–15 min	2 days	Wang, 2015
P. trichocarpa	Stem sections of 5–6-month-old trees		3–5 min	2 days	Wang, 2015
P. tremula × P. alba	Leaf embryo		10 s–30 min	2–3 days	Bruegmann et al., 2019
Eucommia ulmoides	Leaf	GUS	10 min	3 days	Liu et al., 2020
Lycium ruthenicum Murr	Hypocotyl	GUS	5 min	2 days	Wang et al., 2020
Populus leucopyrami-dalis 1, L	Leaf disk	BpMBF1	8–10 min	4 days	Wang, 2020
P. simoni × P. nigra	Leaf disk	PsnHDZ63	10 min	2–3 days	Guo et al., 2021
Pyrus betulaefolia	Seedlings	mCherry	3 h	18–45 d	Hao et al., 2021
Betula luminifera	Leaf	GUS/GFP	20 min	30 days	Liu et al., 2021
Cunninghamia lanceolata	Stem	GUS		3 days	Wei et al., 2021

TABLE 3 | Gene gun-mediated transformation in different tree species.

Tree species	Characteristics	Gene	Transformation receptor	References
P. nigra	Insect resistant	Bt	Leaf	Li et al., 2000
Citrus medica	Selection marker	GUS	Leaf disk	Zhou et al., 2005
P. euramericana cl. 'Bofeng 1'	Abiotic stress	JERF36; SacB; ZsZF; GST; AREB	Leaf disk	Cui, 2012

Table 4 | Application of pollen tube passage method in forest trees.

Plant receptors	Characteristics	Gene	References
Juglans regia L.	Fruit setting rate	Ve	Hou et al., 2004
Ammienica vulgaris Lam	Cold hardiness	AFP	Sun et al., 2005
P. tomentosa × P. bolleana; P. alba × P. Tomentosa; P. alba × P. glandulosa	Salt resistance	R. euphratica	Chen, 2008
P. tomentosa × P. bolleana; P. alba × P. Tomentosa; P. alba × P. glandulosa	Somatic embryo	GUS	Wang et al., 2008
Juglans regia L.	Fruit setting rate; herbicide resistance	Bar	Liu, 2012
Populus × Liaoningensis × N001 P. deltoids cv. ‘N001’	Character combination	P. alba DNA	Zhao, 2016

TABLE 5 | Gene gun-mediated transformation in different tree species.

Tree species	Characteristics	Gene	Transformation receptor	References
P. nigra	Insect resistant	Bt	Leaf	Li et al., 2000
Citrus medica	Selection marker	GUS	Leaf disk	Zhou et al., 2005
P. euramericana cl. 'Bofeng 1'	Abiotic stress	JERF36; SacB; ZsZF; GST; AREB	Leaf disk	Cui, 2012

Pollen Tube Pathway

The pollen tube pathway uses pollen tubes naturally formed after plant pollination to carry out genetic transformation and typically comprises three steps, namely, foreign gene injection into the pollen tube, integration into the plant genome, and selection of transgenic plants (Wang M. et al., 2018). Compared to other transformation methods, the pollen tube pathway undergoes a short period of application in transgenic plants, and there are few reports of its use in forest trees, so further research should be needed in this field. The pollen tube method was used to introduce the total DNA of *P. tomentosa*, *P. bolleana*, *P. alba*, and *P. glandulosa* by the pollen tube pathway resulted in a lower malformed fruit rate than stigma-cutting addition or microinjection (Hou et al., 2004). The method has been applied in crops, e.g., *Oryza sativa*, and *Glycine max*, but in few forest tree species (Guo and Zhou, 2018; Zhang H. et al., 2021; Table 4).

Although the pollen tube pathway is less frequently used than *Agrobacterium tumefaciens*-mediated transformation, it overcomes the genotype restriction of the latter. For example, the genetic transformation of cotton is restricted by genotype, and transgenic cotton lines can be generated by the pollen tube pathway to enhance insect and herbicide resistance (Showalter et al., 2009). This has the advantage of simplicity and is also inexpensive but has low transformation efficiency (Zhang, 2010; Cui et al., 2013; Wang M. et al., 2018). However, the method is limited by flowering time and is not applicable to gymnosperms, as it is dependent on naturally formed pollen tubes (Jian et al., 2012).

Protoplast Transformation

Genetic transformation of protoplasts refers to the transfer of exogenous genes into plants, using protoplasts as receptors to generate transgenic plants with stable expression of exogenous genes. Protoplasts, as single-cell systems, are not (or less) affected by the surrounding cells and microenvironment. Compared to protoplast transformation in annual herbaceous plants, such as *Arabidopsis thaliana*, tobacco, and *O. sativa* (Jiang et al., 2006; Sun et al., 2013; Zhao et al., 2014), the separation and regeneration of protoplasts in forest trees is difficult, although advances have been made (Table 5). For example, protoplasts were isolated from petals and leaves of *Camellia sinensis* (Liu et al., 2017; Peng et al., 2018; Ye et al., 2021); however, large-scale analysis is still under way. Intriguingly, the addition of aminophosphoric acid inhibitors degraded the cell wall, as verified in elm (Chang et al., 2018b). Additionally, green fluorescent protein (GFP) was transformed into *Elaeis guineensis* protoplast by a polyethylene glycol (PEG)-mediated method, and
a protoplast transformation system of this species was established for the first time (Masani et al., 2014).

Protoplasts can be extracted from almost all organs and tissues and show intrinsic developmental and spatial characteristics. The regenerated plants develop from single-cell systems, which are easy to purify and stable. Therefore, the introduction of exogenous genes into protoplasts has advantages compared to other exosomes. PEG-mediated transformation, shock perforation transformation, liposome-mediated transformation, and A. tumefaciens coculture transformation are commonly used to construct protoplast-based genetic transformation systems (Zhao and Chen, 2004). The PEG-mediated method is the most widely used type of protoplast transformation and can be combined with the electroshock method to improve transformation efficiency (Lenaghan and Neal Stewart, 2019). Since there is no cell wall, this method overcomes the obstacles of poor hybrid compatibility and low cell-transformation efficiency. In addition, protoplasts can be isolated from uniform cell suspension cultures, mainly from calli. A system for protoplast regeneration to whole plants has been established in A. thaliana, which showed that WUS and DRN were necessary for protoplast regeneration and greatly facilitated this process (Xu et al., 2021). Cell-wall regeneration is a key step in protoplast regeneration to whole plants (Zhang Q. et al., 2021). Early screening of molecular targets by protoplasts enabled the establishment of efficient and automatic protoplast isolation, transformation, and screening methods in crops. However, protoplast separation and regeneration in forest trees are more difficult than in annual crops and have not been well-developed, hampering the development and application of protoplast transformation in forest trees.

Instantaneous Transformation

Instantaneous genetic transformation enables the investigation of gene function and comparison of genetic constructs of recombinant genes (Canto, 2016). instantaneous transformation can be mediated by particle bombardment, PEG, plant virus vector, and A. tumefaciens. Due to the cost of particle bombardment equipment, the low success rate of protoplast culture, and scarcity of viral vectors, A. tumefaciens-mediated instantaneous transformation is typically used (Li et al., 2020c).

Leaf osmosis is the most commonly used instantaneous gene expression method in A. tumefaciens infection. For example, a method was established to reduce individual differences in the instantaneous transformation of *Camptotheca acuminata* (Wang B. et al., 2018). The transcription factor *LoNAC18* was transferred into larch by *A. tumefaciens* instantaneous transformation, demonstrating that *LoNAC18* is involved in the regulation of PEG-mediated simulated drought stress in larch (Zhang et al., 2020). Besides leaves, it could also be used in stems and roots. An instantaneous transformation system was established for vacuum osmotic infection of poplar stem segments, enabling identification of the functions of genes involved in vascular tissue differentiation and regulation of xylem development (Li et al., 2021b). Instantaneous transformation of roots has been applied in medicinal plants and soybeans, but there are few reports in forest trees (Meng et al., 2019; Xia et al., 2020; Table 6). Intriguingly, a simple and efficient A. tumefaciens-mediated instantaneous gene expression system was developed for diverse trees—including birch, poplar, and Tamarix—in which the whole plantlet, leaf, and stem are used as explants for instantaneous expression (Zheng et al., 2012). As genetic information on forest trees accumulates, the instantaneous transformation will enable the exploration of metabolic pathways and subcellular localization of forest tree genes. Therefore, considering the low transformation efficiency and non-availability of genetic transform systems, it is necessary to improve A. tumefaciens-mediated instantaneous transformation of forest trees for transgenic research.

Virus-induced gene silencing (VIGS) is a transcription suppression technique that facilitates the functional analysis of genes. VIGS has been applied in diverse plants, including herbs and fruit trees (Dommes et al., 2019) but few forest trees (Cui and Wang, 2017; Dommes et al., 2019). VIGS technology based on tobacco rattle virus (TRV) was successfully applied in *Populus euphratica, Populus canescens* (Shen et al., 2015), *H. brasiliensis* (Li et al., 2021c), and *Olea europaea* (Koudounas et al., 2020). Since VIGS can rapidly reduce the expression of target genes, it facilitates molecular function research in plants, including forest trees. Therefore, it is necessary to determine the optimal conditions for VIGS to silence target genes in forest trees, including the viral vector, ambient temperature, plant age or development stages, and inoculation method (Shi et al., 2021). Overall, VIGS enables gene function analysis of trees.

Comparison of Transformation Methods

Agrobacterium tumefaciens-mediated transformation is affected by genotype and secondary metabolites. It is difficult to establish the *A. tumefaciens*-mediated genetic transformation system in some plants, but the method is important for investigating gene function in forest trees. In dicotyledonous plants, *A. tumefaciens*-mediated transformation is the first choice due to its high transformation efficiency. The gene gun method compensates for the genotype limitation of

Table 5 Protoplast transformation in different tree species.

Tree species	Characteristics	Gene	Transformation receptor	References
Elaeis guineensis		GFP	Embryogenic cell	Masani et al., 2014
P. davidiana × *P. boleana*	Insect resistant	cry3Bb	Leaf	Xu et al., 2020
P. trichocarpa	Subcellular localization	BpFLA20	Leaf	Yu et al., 2020
Cunninghama lanceolata	Cells divide and regenerate	GFP	Secondary xylem	Wei et al., 2021
Elaeis guineensis Jacq.	Increase in conversion rate	GFP, REP	Leaf	Wang et al., 2021c

Frontiers in Plant Science | www.frontiersin.org 5 November 2021 | Volume 12 | Article 786328
A. tumefaciens-mediated transformation. Additionally, gene gun-mediated transformation is important for research on gymnosperms such as *Pinus*, but its application is limited by cost. The pollen tube pathway and protoplast transformation methods may be preferred for some forest trees. Instantaneous transformation enables the establishment of stable genetic transformation systems and expression of the genes of *Populus*, *Pinus*, and other forest trees in tobacco or other easily transformed plants. For most investigations of gene function, *A. tumefaciens*-mediated transformation is used for multiple forest trees. However, consideration should be given to other methods, particularly transformation from scratch in forest trees because *A. tumefaciens* residues can lead to crown gall development and yield reduction (Stanton, 2018).

TRAIT IMPROVEMENT OF FOREST TREES

Insect Resistance

Multiple insect-resistant genes—including *Bacillus thuringiensis* (*Bt*), protease inhibitor (*PI*), *Androctonus australis* hector insect toxin (*AaIT*), and chitinase genes—have been identified and applied in trees (Ren et al., 2021). Among them, *Bt* is the most widely used in insect resistance. Stable transfer of *Bt* into forest trees was first reported in transgenic poplar (McCown et al., 1991). Intriguingly, the simultaneous application of two *Bt* genes expanded the scope of insect resistance in transgenic forest trees (Wang et al., 2012; Dong et al., 2015). Consequently, means of enhancing forest tree resistance to insects by transforming two or more *Bt* genes warrant further research.

Overexpression of *PI* genes, including serine protease inhibitors (*SPIs*) and Kunitz trypsin inhibitor (*KTI*), resulted in insect death and prevented resistance development (Major and Constabel, 2008; Clemente et al., 2019). Bivalent resistance genes (*CryIAc* and *API*) were introduced into poplar, and the mortality rate of larvae was 60–80% (Li et al., 2007). In addition, genetic transformation with *PI* and *Bt* genes enhanced the insect resistance of transgenic plants. Transgenic poplar with *API* and dual *Bt* genes were toxic to Lepidoptera and Coleoptera and showed greater insect resistance than plants transformed with a single *Bt* gene (Wang G. et al., 2018).

The GM improvement of insect resistance has been realized in diverse forest trees, including *Populus* (Ren et al., 2021), *Eucalyptus* (Shao et al., 2002), *Picea* (Hammerbacher et al., 2014), *Ulmus* (Newhouse et al., 2007), *Pinus* (Grace et al., 2005), and *Tsuga* (Merkle et al., 2014). Transgenic forest trees were first used commercially in China (Chang et al., 2018a). Exogenous genes were expressed stably in 8- and 10-year-old transgenic poplar trees, and there was no significant developmental difference between 10-year-old transgenic and non-transgenic poplars (Ren et al., 2017). The current investigations suggested that the additive effect existed in transgenic forest trees with the same or different kinds of insect-resistant genes, which presented broad-spectrum insect resistance. The stability of exogenous insect resistance genes in transgenic forest trees was verified in 10-year-old transgenic poplars. However, the stability and effectiveness of insect resistance require validation in transgenic forest trees as perennials. Additionally, whether insects will develop tolerance warrants further investigation.

Herbicide Resistance

It is necessary to control weeds during the early stages of tree growth. Mechanical herbicides are inefficient and costly and affect the normal growth and development of forest trees. Therefore, it is preferable to cultivate herbicide-resistant tree varieties. Bialaphos resistance (*bar*) is the most widely used herbicide resistance selective marker gene; it is derived from the soil bacterium *Streptomyces hygroscopicus* and induces resistance to phosphate-based broad-spectrum herbicides, such as Liberty Basta, and Finale (Lebedev et al., 2016). *Bar* has been inserted into diverse species and hybrids of *P. alba*, *Eucalyptus*, *Picea abies*, oak, and various conifers (Brukhin et al., 2000; Confalonieri et al., 2000; Harcourt et al., 2000; Bishop-Hurley et al., 2001; Zhang et al., 2005; Álvarez et al., 2009). These investigations indicated the broad application of *bar* in herbicide-resistant transgenic trees.

In addition, glutathione S-transferase (*GST*) genes encoding specific herbicide resistance to acetylchloroaniline were introduced into poplar hybrids, enhancing herbicide resistance (Gullner et al., 2001). The poplar clones INRA 353-38 (*Populus tremula × Populus tremuloides*) and 717-1B4 (*P. tremula × P. alba*) transformed with *bar*, and the male sterility gene BARNASE showed stable herbicide resistance within 8 years (Li et al., 2008). The selection of herbicide-resistant trees provides an alternative to non-chemical weed control. In future, gene-editing technology may be used to improve the herbicide resistance of forest trees.

Disease Resistance

Disease resistance genes are mainly used in the molecular breeding of forest trees to improve plant antiviral and antibacterial defenses. Trichosanthin (*TCS*), a broad-spectrum antiviral gene, was transformed into *Paulownia* by *A. tumefaciens*-mediated method, and transgenic *Paulownia* lines with strong disease resistance were screened out (Liu et al., 2011). *HbLFG1*, a negative regulator of plant immunity, promoted...
infection by *Erysiphe quercicola* of *H. brasiliensis* (Li et al., 2021). Poplar is threatened by *Melampsora* species, which cause poplar leaf rusts. Overexpression of *A. italiana* GALACTINOL SYNTHASE3 (AtGOLS) and *Cucumber sativus* RAFFINOSE SYNTHASE (GsRS) in hybrid poplar (P. alba × Populus grandidentata) increased susceptibility to *Melampsora acacidioide* infection (La Mantia et al., 2018). Additionally, constitutive overexpression of *PtrWRKY18* and *PtrWRKY35* in poplar activated disease-related genes and increased the resistance of poplar to *Melampsora*, suggesting functional redundancy (Jiang et al., 2017). Besides, miRNA can promote plant disease resistance by participating in hormone signaling and regulating resistance (*R*) genes. In transgenic poplar, miR472a positively regulates resistance to *Colletotrichum gloeosporioides* infection by targeting NBS-LRR and negatively regulates resistance to *Cytospora chrysosperma* infection (Su et al., 2018). At present, there are many studies on miRNA and disease resistance in rice, potato, and other crops, but there are few reports in forest trees (Natarajan et al., 2018; Zhang et al., 2018). Further investigation of the roles of miRNAs in pathogen infection of trees is needed.

Studies of tree disease resistance and genetic engineering have promoted the breeding and improvement of tree varieties. Future studies should focus on the regulatory networks of tree responses to pathogens to reduce disease susceptibility.

Resistance to Abiotic Stress

Plant abiotic stresses include cold, freezing, drought, salt, nutrient deficiency, and heavy metals (Gong et al., 2020). Investigation of gene function in response to abiotic stress could improve the environments of trees and so, expand their ranges in specific ecosystems and increase species richness (Xu and Zhai, 2021). Therefore, breeding new varieties of trees with strong resistance to stress is warranted.

Tree genetic engineering research has focused on salt and drought tolerance. Overexpression of WOX11/12A and *ThNAC12* in poplar increased salt tolerance, reactive oxygen species (ROS) scavenging, and the antioxidant enzyme activity of transgenic plants (Wang et al., 2021a,b). Interference with FDL expression enhanced the drought resistance of transgenic poplar (Yu et al., 2019). The K+/Na+ homeostasis of root cells and tolerance to salt stress were improved in transgenic poplar overexpressing JERF36s (Ding et al., 2020). These studies provided insight into the mechanism of salt tolerance improvement in plants and will facilitate breeding strategies to improve salt tolerance. The introduction of *BpMBFI* into poplar significantly improved cold resistance (Wang, 2020). Instantaneous overexpression of *JrGRAS2* in walnut enhanced the tolerance to high temperature (Yang et al., 2018). Overexpression of *PstICE1* significantly enhanced the cold stress tolerance and antioxidant enzyme activity of transgenic poplars (Wang et al., 2021d). Many other adverse environmental conditions also affect plant growth. The transcriptomic profiles of poplar under stresses suggest candidate genes of breeding (Yao et al., 2018; Chen et al., 2020), enabling investigation of plant regulatory networks. The correlations among stress response regulatory signals need further investigation.

Wood Property Improvement

Wood structure and quality are critical traits for genetic improvement. Lignin content can be reduced by introducing genes that inhibit key enzymes in the lignin synthesis pathway. Downregulation of coumaroyl shikimate 3′-hydroxylase (*C3H*), cinnamate 4-hydroxylase (*C4H*), and 4-coumarate-CoA ligase gene (*4CL*) reduces the lignin content in transgenic hybrid eucalyptus (*Eucalyptus urophylla* × *Eucalyptus grandis*) (Sykes et al., 2015). Cell-specific downregulation of *4CL* decreased the lignin content of transgenic poplars (Cao et al., 2020). In transgenic poplars with suppressed *C3H* and hydroxycinnamoyl transferase (*HCT*), the fiber cell diameter, vessel molecular diameter, and cell wall thickness were smaller, leading to decreased lignin content (Zhou et al., 2018). Therefore, suppression of lignin biosynthesis-related genes in transgenic forest trees decreased the lignin content, thus improving wood properties and biomass utilization.

Overexpression of *GalactUronosylTransferase12* (*GAUT12*) in poplar increased xylan and galacturonic acid production and decreased growth (Biswal et al., 2018b). Accordingly, downregulation of *GAUT12* significantly improved saccharification efficiency and promoted the growth of transgenic poplars (Biswal et al., 2015). In addition, downregulation of *GAUT4* by RNA interference (RNAi) decreased the homogalacturonan (HG) and rhamnogalacturonan II (RG-II) contents and increased the biomass yield (Biswal et al., 2018a). Therefore, the *GAUT* gene family negatively regulates plant growth by regulating xylan biosynthesis. The suppression of *ACauliS5* expression reduced the stem cytokinin level in hybrid aspen (*P. tremula × P. tremuloides*) and reduced secondary stem growth (Milhinhos et al., 2020). In *P. tomentosa*, PtSS3 is important in sucrose metabolism and growth and participates in wood formation (Li et al., 2020a). Brassinosteroid (BR) signaling plays an important role in secondary growth and wood formation. The BR signaling pathway affects xylem development synergetic with *PdC3H17*, a positive regulator of auxin-mediated xylem formation (Tang et al., 2020). However, to overcome the influence of the environment and obtain stable traits during the growth of transgenic plants, further improvement of the technology and accumulation of genes related to wood properties is needed.

Flowering Regulation

Plants undergo the transition from infancy to reproductive maturity before flowering. Furthermore, trees experience a longer vegetative period than crops, prolonging the breeding cycle (Liao and An, 2013). However, genetic engineering can shorten infancy and alter flowering time in forest trees. FLOWERING LOCUS T (*FT*) is a floral hormone that affects plant flowering, growth, and development (Wigge, 2011). Overexpression of *FT*-induced flowering of *Eucalyptus*, and early flowering trees were found to be vigorous, showing a high branching phenotype (Klocko et al., 2016).

Transformation of poplars with HSP:*AtFT* and PsEND1:*barnase-barstar* vectors resulted in disturbed pollen development and the formation of male-sterile plants.
Additionally, LEAFY (LFY) is necessary for the induction of flower organ-recognition genes. It endows root explant cells with the fate of flowers and allows callus to form flowers and flower organs without producing leaves (Wagner et al., 2004). In sweetgum, RNAi was used to inhibit LEAFY gene expression, generating sterile transgenic plants (Qiao et al., 2007). A vector with the RNAi-LFY cassette was transferred into P. alba, which markedly altered flower morphology and led to female flower sterility (Klocko et al., 2021). However, in asexual forest trees, sterility associated with LFY expression inhibition can alleviate the gene flow of seeds and pollen, although the effects on tree shape and wood production are unclear (Klocko et al., 2021). However, the use of LFY suppressor genes could be costly, and further research is needed.

Clustered Regularly Interspaced Short Palindromic Repeats -Cas and RNA Interference Application

RNA-based approaches, including RNAi and CRISPR system, enable highly targeted modifications to enhance yield and stress resistance. These methods are typically based on A. tumefaciens-mediated genetic transformation. In RNAi, small interfering RNAs downregulate target gene expression without affecting the expression of other genes and are important for plant improvement (Rajput et al., 2021). GM agroforestry poplars obtained by RNAi exhibited reduced plantation isoprene emissions without compromising woody biomass production (Monson et al., 2020). Transgenic poplars carrying PTRARF2.1-RNAi showed severe leaf phenotypes, such as irregular shape and small size, and stimulated expression of auxin-response genes (Fu et al., 2019). In addition, RNAi allows the targeting of specific plant pathogens to control plant diseases (Kuo and Falk, 2020). By silencing CYP33C9 by RNAi in vitro, the feeding, reproduction, oviposition, hatchability, and pathogenicity of Bursaphelenchus xylophilus nematode were inhibited (Qiu et al., 2019). The effects of RNAi should be studied and applied in other tree species.

The CRISPR system for precision breeding has been applied in poplar, Eucalyptus, and other forest tree species (Müller et al., 2020; Elorriaga et al., 2021). For example, the knockout of CSE by CRISPR-Cas9 improved lignocellulosic biomass without growth retardation in GM poplar (Jang et al., 2021). Knockout of the root growth transcription factor PDNF-YB21 by CRISPR-Cas repressed the root growth and drought resistance in poplar (Zhou Y. et al., 2020). These studies aimed to improve sustainable production, induce DNA-free targeted mutations, and alter plant architecture, sex, and floral development. CRISPR-Cas technology does not introduce exogenous genes into the genomes of forest trees and so, has higher biosafety than other transgenic techniques. CRISPR-Cas is the most promising gene-editing technology developed to date (Bewg et al., 2018).

Perspectives

Genetic engineering can improve the traits of forest trees, shorten the breeding period, and enable the cultivation of new varieties with high commercial value by introducing exogenous genes (Figure 1). Genetic transformation also enables the exploration of gene function in forest trees. However, there are many difficulties and problems to overcome in forest trees. One of them is the genetic transformation of vectors with multiple foreign genes. The introduction of multiple exogenous genes concurrently could improve the traits of forest trees, but the construction of vectors carrying multiple genes is more difficult and some may not play the expected roles in transgenic trees. For example, transgenic poplar with two insect-resistance genes (Cry1Ac and Cry3A) and two salt-tolerant genes (mtlID and BADH)
did not show improved salt tolerance (Zhou X. et al., 2020). Additionally, the balance between the expression of exogenous genes and growth/development requires investigation—whether increased resistance weakens other traits in transgenic forest trees is unclear.

Due to the uncertainty over insertion sites, genetic transformation inevitably generates chimerism, for instance, in stems and young leaves. For example, in peach (Prunus persica), A. tumefaciens-mediated transformation is inefficient, with a low level of correspondence between transformed and regenerative cells, and a high rate of chimerism in the buds produced during transformation (Ricci et al., 2020). Although chimeras enhance the cultivation of some ornamental plants, the purification and stable inheritance of target types can be problematic. Conversely, the protoplast is a single-cell system that can develop into a complete plant, enabling stable inheritance of traits. Several genes enhance protoplast regeneration, in particular, callus formation, which might promote the use of protoplast-mediated gene transformation (Xu et al., 2021). A strict screening system is needed for protoplast transformation, identifying transgenic plants with improvements in the desired traits.

Genetic engineering is controversial due to the potential for harm to the environment. The long-term stability of transgenic forest trees needs to be investigated, and the environmental impact of GM trees is still debated. A 5-year field trial showed no effect of Bt transgenic 741 poplar on arthropods or soil bacterial diversity (Zuo et al., 2018). A robust biosafety framework is necessary, with precautions followed for domesticated trees. An international group of researchers in siliculture, forest tree breeding, forest biotechnology, and environmental risk assessment examined how the environmental risk assessment paradigm used for genetic engineering crop plants could be applied to the genetic engineering of trees for plantation. It is also important to differentiate between environmental risk assessment for confined field trials of genetic engineering trees and unconfined or commercial-scale release (Häggman et al., 2013).

It is important to establish a rapid and reliable transformation system for forest trees, considering their long growth cycle and low transformation efficiency. Multi-omics techniques and modern biotechnology will facilitate the molecular breeding of forest trees. Transgenic research on trees will improve transformation efficiency and enable the safety evaluation of transgenic plants for commercial application. Leveraging the genetic transformation of forest trees for ecosystem restoration, energy supply, and sustainable production is a major challenge.

AUTHOR CONTRIBUTIONS

YY and CW were involved in planning and drafting the manuscript. DX modified the manuscript. YL collated the table contents. YW conceived of the presented idea and supervised this study. All authors discussed the results and commented on the manuscript.

FUNDING

This study was supported by the National Natural Science Foundation of China (32071504 and 31670671).

REFERENCES

Álvarez, R., Álvarez, J. M., Humara, J. M., Revilla, Á., and Ordás, R. J. (2009). Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol. Lett. 31, 1477–1483. doi: 10.1007/s10529-009-0033-2

Bewg, W. P., Ci, D., and Tsai, C. (2018). Genome editing in trees: from multiple repair pathways to long-term stability. Front. Plant Sci. 9:1732. doi: 10.3389/fpls.2018.01732

Bishop-Hurley, S. L., Zakbikewicz, R. J., Grace, L., Gardner, R. C., Wagner, A., and Walter, C. (2001). Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide buster. Plant Cell Rep. 20, 235–243. doi: 10.1007/s0029900103317

Biswal, A. K., Atmodjo, M. A., Pattathil, S., Amos, R. A., Yang, X., Winkeler, K., et al. (2018b). Working towards recalcitrance mechanisms: increased xylen and homogalacturonan production by overexpression of GaLACTuronosyltransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus. Biotechnol. Biofuels 11:9. doi: 10.1186/s13068-017-1002-y

Biswal, A. K., Atmodjo, M. A., Li, M., Baxter, H. L., Yoo, C. G., Pu, Y., et al. (2018a). Sugar release and growth of biofuel crops are improved by down regulation of pectin biosynthesis. Nat. Biotechnol. 36, 249–257. doi: 10.1038/nbt.4067

Biswal, A. K., Hao, Z., Pattathil, S., Yang, X., Winkeler, K., Collins, C., et al. (2015). Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol. Biofuels 8:41. doi: 10.1186/s13068-015-0218-y

Briones, M. V., Hoenicka, H., Canas, L. A., Beltran, J. P., Hanelt, D., Sharry, S., et al. (2020). Efficient evaluation of a gene containment system for poplar through early flowering induction. Plant Cell Rep. 39, 577–587. doi: 10.1007/s00299-020-02515-1

Bruegmann, T., Wetzl, H., Hettrich, K., Smed, A., Wällfors, S., Kersten, B., et al. (2019). Knockdown of PCBR1, a gene of neolignan biosynthesis, resulted in increased poplar growth. Planta 249, 515–525. doi: 10.1007/s00425-018-3021-8

Brukhin, V., Clapham, D., Elfrstrand, M., and von Arnold, S. (2000). Basta tolerance as a selectable and screening marker for transgenic plants of Norway spruce. Plant Cell Rep. 19, 899–903. doi: 10.1007/s002990000217

Canto, T. (2016). “Transient expression systems in plants: potentialities and constraints,” in Advanced Technologies for Protein Complex Production and Characterization, Vol. 896, ed. M. Cristina Vega (Cham: Springer International Publishing), 287–301. doi: 10.1007/978-3-319-27216-6_18

Cao, S., Huang, C., Luo, L., Zheng, S., Zhong, Y., Sun, J., et al. (2020). Cell-specific suppression of 4-Coumarate-Coa ligase gene reveals differential effect of lignin on cell physiological function in Populus. Front. Plant Sci. 11:589729. doi: 10.3389/fpls.2020.589729

Chang, S., Sun, W., Xu, G., Wang, Z., Yin, M., Han, Q., et al. (2018b). Isolating method of plant protoplast and its research advances of application. Mol. Plant Breed. 16, 1271–1277.

Chang, S., Mahon, E. L., MacKay, H. A., Rottmann, W. H., Strauss, S. H., Pijut, P. M., et al. (2018a). Genetic engineering of trees: progress and new horizons. In Vitro Cell. Dev. Biol. Plant 54, 341–376. doi: 10.1007/s11627-018-9914-1

Chen, H. (2008). Introduction of Exogenous DNA of Populus euphratica into White Poplar via Pollen-Tube Pathway. Beijing: Beijing Forest University.

Chen, Y., Jiang, Y., Chen, Y., Feng, W., Liu, G., Yu, C., et al. (2020). Uncovering candidate genes responsive to salt stress in Salix matsudana (Koidz) by...
transcriptomic analysis. PLoS One 15:236129. doi: 10.1371/journal.pone.0236129

Chilton, M. D., Drummond, M. H., Merio, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P., et al. (1977). Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11, 263–271. doi: 10.1016/0092-8674(77)90043-5

Cho, J. S., Jeon, H. W., Kim, M. H., Vo, T. K., Kim, J., Park, E. J., et al. (2019). Wood forming tissue-specific bicistronic expression of PdGA20ox1 and PmMYB221 improves both the quality and quantity of woody biomass production in a hybrid poplar. Plant Biotechnol. J. 17, 1048–1057. doi: 10.1111/pbi.13036

Clemente, M., Corigliano, M., Pariani, S., Sánchez-López, E., Sander, V., and Ramos-Duarte, V. (2019). Plant serine protease inhibitors: biotechnology application in agriculture and molecular farming. Int. J. Mol. Sci. 20:1345. doi: 10.3390/ijms20061345

Coleman, H. D., Cánovas, F. M., Man, H., Kirby, E. G., and Mansfield, S. D. (2016). Mechanism Poplar pbi.12629 of transgenic poplar plants overexpressing cry3Aa herbicide resistance. Front. Plant Sci. 7, 16585. doi: 10.3389/fpls.2016.016585

Dong, Y., Du, S., Zhang, J., Yang, M., and Wang, J. (2015). Differential expression of Cinnamomum camphora LJAMP2, a gibberellin 20-oxidase 1 from tobacco leaves. J. Exp. Bot. 66, 4139–4150. doi: 10.1093/jxb/erv251

Fang, Y., and Han, T. (2019). Advances in crop rapid breeding technology. Crops 2, 1–7.

Fu, Y., Win, P., Zhang, H., Li, C., Shen, Y., He, F., et al. (2019). PtARF2.1 is involved in regulation of leaf development and lignin biosynthesis in poplar trees. Int. J. Mol. Sci. 20:4141. doi: 10.3390/ijms20174141

Génissel, A., Leplé, J., Millet, N., Augustin, S., Jouanin, L., and Pilate, G. (2003). High tolerance against Chrysomela tremulae of transgenic poplar plants expressing a synthetic cry3Aa gene from Bacillus thuringiensis ssp. tenebrionis. Mol. Breed. 11, 103–110. doi: 10.1023/A:1022453220496

Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L. R., Xu, G., et al. (2020). Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63, 635–674. doi: 10.1007/s11427-020-1683-x

Grace, L. J., Charity, J. A., Gresham, B., Kay, N., and Walter, C. (2005). Insect-resistant transgenic Pinus radiata. Plant Cell Rep. 24, 103–111. doi: 10.1007/s00299-004-0912-x

Gullner, G., Kömives, T., and Rennenberg, H. (2001). Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J. Exp. Bot. 52, 971–979. doi: 10.1093/jxb/52.358.971

Guo, M., Ye, J., Gao, D., Xu, N., and Yang, J. (2019). Agrobacterium-mediated horizontal gene transfer: mechanism, biotechnological application, potential risk and forecasting strategy. Biotechnol. Adv. 37, 259–270. doi: 10.1016/j.biotechadv.2018.12.008

Guo, Q., Jiang, J., Yao, W., Li, L., Zhao, K., Cheng, Z., et al. (2021). Genome-wide analysis of poplar HD-Zip family and over-expression of PotHDZ63 confers salt tolerance in transgenic Populus simonii × P. nigra. Plant Sci. 311:111021. doi: 10.1016/j.plantsci.2021.111021

Guo, X., and Zhou, X. (2018). Transgenic wheat was obtained by pollen tube mediated capsicum total DNA. J. Agra. Sci. 46, 36–38.

Häggman, H., Raybould, A., Borem, A., Fox, T., Handley, L., Hertzberg, M., et al. (2013). Genetically engineered trees for plantation forests: key considerations for environmental risk assessment. Plant Biotechnol. J. 11, 785–798. doi: 10.1111/pbi.12100

Hamracha, H., Paetz, C., Wright, L. P., Fischer, T. C., Bohlmann, J., Davis, A. J., et al. (2014). Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica. Plant Physiol. 164, 2107–2122. doi: 10.1104/pp.113.232389

Hao, Z., Dai, Y., Zhang, S., and Wang, P. (2021). Genetic transformation method of hairy roots mediated by Agrobacterium rhizogenes for Pyrus betulaefolia. Hubei Agric. Sci. 60, 151–154.

Harcourt, R. L., Kyozuka, J., Floyd, R. B., Bateman, K. S., Tanaka, H., Decroocq, V., et al. (2000). Insect- and herbicide-resistant transgenic eucalypts. Mol. Breeding. 6, 307–315. doi: 10.1023/A:1009676214328

Hou, L., Li, X., Cui, G., Li, J., and Qiao, Y. (2004). Application of several genetic transformation techniques in transgenic breeding of Walnut. Shandong For. Sci. Technol. 1, 8–9.

Huang, Y., Liu, H., Jia, Z., Fang, Q., and Luo, K. (2012). Combined expression of antimicrobial genes (Bbhei1 and LJAMP2) in transgenic poplar enhances resistance to fungal pathogens. Tree Physiol. 32, 1313–1320. doi: 10.1093/treephys/tpq079

Jang, H., Bae, E., Kim, M., Park, S., Choi, N., Pyo, S., et al. (2021). CRISPR-knockout of CSE gene improves saccharification efficiency by reducing lignin content in hybrid poplar. Int. J. Mol. Sci. 22:9750. doi: 10.3390/ijms22199750

Jeon, H., Cho, J., Park, E., Han, K., Choi, Y., and Ko, J. (2016). Developing xylem-preferential expression of PdGA2ox1, a gibberellin 20-oxidase 1 from Pinus densiflora, improves woody biomass production in a hybrid poplar. Plant Biotechnol. J. 14, 1161–1170. doi: 10.1111/pbi.12484

Jian, C., Li, K., and Ou, W. (2012). Research progress in pollen-petal pathway method in transgenic plants. Chin. J. Trop. Crops 33, 956–961. doi: 10.1104/pp.108.125229

Jiang, L., Ke, Q., Wang, Z., Zhao, X., Jiao, B., Li, C., et al. (2017). The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampora resistance in Populus. Tree Physiol. 37, 665–675. doi: 10.1093/treephys/tpx008

Jin, Y., Tang, R., Wang, H., Jiang, C., Bao, Y., Yang, Y., et al. (2017). Overexpression of Populus trichocarpa CYRPSA3 promotes growth and biomass production in transgenic trees. Plant Biotechnol. J. 15, 1309–1321. doi: 10.1111/pbi.12717

Ke, Q., Wang, Z., Ji, C. Y., Jeong, J. C., Lee, H. S., Li, H., et al. (2016). Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant Physiol. Biochem. 100, 75–84. doi: 10.1016/j.plaphy.2016.01.004

Kloocko, A. L., Goddard, A. L., Jacobson, J. R., Magnuson, A. C., and Strauss, S. H. (2021). RNAi suppression of LEAFY gives stable floral sterility, and reduced growth rate and leaf size, in field-Grown poplars. Plants 10:1594. doi: 10.3390/plants10081594
Kloko, A. L., Ma, C., Robertson, S., Esfandiari, E., Nilsson, O., and Strauss, S. H. (2016). FT overexpression induces precocious flowering and normal reproductive development in *Eucalyptus*. *Plant Biotechnol.* 14, 808–819. doi: 10.1111/pbi.12431

Koudounsas, K., Thomopoulou, M., Angeli, E., Tsitsian, D., Rigas, S., and Hatzipoulos, P. (2020). Virus-Induced gene silencing in olive tree (*Oleaaceae*). *Methods Mol. Biol.* 2172, 165–182. doi: 10.1007/978-1-0716-0751-0_13

Kourosh, M., Ali, M., Samaneh, S. M., Sun, W., Zhang, J., Amir, A. Z. Y., et al. (2018). Functional analysis of overexpressed *PDIRS* involved in abiotic stresses enhancements growth in transgenic poplar. *Plant Physiol. Biochem.* 126, 22–31. doi: 10.1016/j.phyto.2018.01.023

Kuo, Y., and Falk, B. W. (2020). RNA interference approaches for plant disease control. *BioTechniques* 69, 469–477. doi: 10.2144/btn.2020-0098

La Mantia, J., Linda, F., Hopp, G., Desailly, F., Oliver, G., Martin, F., et al. (2018). Overexpression of *AtGUS3* and *CaRFS* in poplar enhances ROS tolerance and represses defense response to leaf rust disease. *Tree Physiol.* 38, 457–470. doi: 10.1093/treephys/tpx100

Lacroix, B., and Citovsky, V. (2013). The roles of bacterial and host plant factors in Arabidopsis-mediated genetic transformation. *Int. J. Dev. Biol.* 57, 467–481. doi: 10.1387/ijdb.130199bl

Lardet, L., Leclercq, J., Bénistan, E., Dessailly, F., Oliver, G., Martin, F., et al. (2020). *HbLFG1*, a rubber tree Histone deacetylase gene, modifies adventitious root formation and auxin mediated growth in transgenic poplar. *Sci. Silvae Sin.* 56, 79–88.

Liu, X., Chen, S., Xu, H., Huang, H., and Tong, Z. (2021). Agrobacterium rhizogenes mediated high frequency hairy root induction system and genetic transformation in *Betula luminifera*. *J. Agric. Biol. Chem.* 29, 495–505.

Liu, Y., Jin, X., Ma, L., Cao, D., Geng, Z., and Ling, W. (2017). Isolation and purification of mesophyll prooplasts from the leaves of *Camellia sinensis*. *Plant Sci.* 3, 908–911.

Liu, Y., Su, W., Bao, Y., Wang, S., He, F., Wang, D., et al. (2020). Poplar PdPTP1 gene negatively regulates salt tolerance by affecting ion and ROS homeostasis in *Populus*. *Int. J. Mol. Sci.* 21:1065. doi: 10.3390/ijms21031065

Meng, L., Li, H., Jin, D., Cui, D., and Wang, B. (2004). Transformation of *Betula platyphylla* by particle bombardment. *Sci. Silvae Sin.* 40, 28–32.

Meng, D., Yang, Q., Dong, B., Song, Z., Niu, L., Wang, L., et al. (2019). Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. *Plant Biotechnol. J.* 17, 1804–1813. doi: 10.1111/pbi.13101

Messing, B., Huang, L., Pollet, B., De Bruyn, A., Busson, R., et al. (2000). Modifications of lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A-O-methyltransferase, an enzyme involved in lignin biosynthesis. *J. Biol. Chem.* 275, 36899–36909. doi: 10.1074/jbc.M006913200

Mihlinhos, A., Bolhölnner, B., Blazquez, M. A., Novak, O., Miguel, C. M., and Tuominen, H. (2020). ACAULIS is required for cytokinin accumulation and function during secondary growth of *Populus* trees. *Front. Plant Sci.* 11:601858. doi: 10.3389/fpls.2020.601858

Monson, R. K., Winkler, B., Rosenstiel, T. N., Block, K., Merl-Pham, J., Strauss, J. M., et al. (2008). Stabilization of auxin mediated growth and development during secondary growth of *Populus* trees. *Front. Plant Sci.* 11:601858. doi: 10.3389/fpls.2020.601858

Mouraviev, M., Moussavi, A., Habashi, A. A., and Dehshara, B. (2014). Genetic transformation of date palm (*Phoenix dactylifera* L. Cv. 'Estamaran') via particle bombardment. *Biol. Mol. Rep.* 41, 8185–8194. doi: 10.1007/s11033-014-3720-6

Müller, N. A., Kersten, B., Leite Montalvão, A. P., Mähler, N., Bernhardsson, C., Bräutigam, K., et al. (2020). A single gene underlies the dynamic evolution of
polyploid sex determination. Nat. Plants 6, 630–637. doi: 10.1038/s41477-020-00672-9

Natarajan, B., Kalsi, H. S., Godbole, P., Malankar, N., Thiagarayaselvam, A., Siddappa, S., et al. (2018). MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J. Exp. Bot. 69, 2023–2036. doi: 10.1093/jxb/ery325

Newhouse, A. E., Schrod, F., Liang, H., Maynard, C. A., and Powell, W. A. (2007). Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep. 26, 977–987. doi: 10.1007/s00299-007-0313-z

Ozyigit, I. L., and Yucebileği Kurtoglu, K. (2020). Particle bombardment technology and its applications in plants. Mol. Biol. Rep. 47, 9831–9847. doi: 10.1007/s11399-020-06001-5

Park, E., Kim, H., Choi, Y., Lee, C., Nguyen, V. P., Jeon, H., et al. (2015). Overexpression of gibberellin 20-oxidase1 from Pinus densiflora results in enhanced wood formation with gelatinous fiber development in a transgenic hybrid poplar. Tree Physiol. 35, 1264–1277. doi: 10.1093/treephys/tpv099

Peng, Z., Tong, H., Liang, G., Shi, Y., and Yuan, L. (2018). Protoplast isolation and fusion induced by PEG with leaves and roots of tea plant (Camellia sinensis L. O. Kuntze). Acta Agron. Sin. 44, 463–470. doi: 10.3724/sp.j.1066.2018.00463

Qiao, G., Luan, W., Pan, H., and Zhou, R. (2007). The LEAFY gene in RNA interference (RNAi) transgenic Liquidambar formosana mediated by Agrobacterium tumefaciens. J. Zhejiang Agric. For. Univ. 24, 140–144.

Qiu, X., Yang, L., Ye, J., Wang, W., Zhao, T., Hu, H., et al. (2019). Silencing of Natarajan, B., Kalsi, H. S., Godbole, P., Malankar, N., Thiagarayaselvam, A., Shao, Z., Chen, W., Luo, H., Ye, X., and Zhang, J. (2002). Studies on the enhancement CRISPR systems. Plant Sci. 16, 224–234.

Sun, Z., Feng, D., Liu, J., Zhao, J., Wang, Y., Zhang, L., et al. (2005). The study of effect the transformed AFP gene on development of apricot fruits. J. Shandong Agric. Univ. 36, 161–166.

Sykes, R. W., Gjersing, E. L., Foutz, K., Rottmann, W. H., Kuhn, S. A., Foster, C. E., et al. (2015). Down-regulation of p-coumaroyl quinate/shikimate 3'-hydroxylase(C3'H) and cinnaome 4-hydroxylase (C4'H) genes in the lignin biosynthetic pathway of Eucaulus urophylla × E. Grandis leads to improved sugar release. Biotechnol. Biofuels 8:128. doi: 10.1186/s13068-015-0316-x

Tang, H., Wallbraun, M., Ren, Z., Reuse, G. M., and Krczal, G. (2001). Genetic transformation of the trichoderma endochitinase gene ThEn-42 to somatic embryos of English walnut. Acta Hortic. Sin. 28, 12–18.

Tang, X., Wang, C., Liu, Y., He, G., Ma, N., Chai, G., et al. (2020). Brassinosteroid signaling converges with auxin-mediated CSH1 to regulate xylem formation in Populus. Front. Plant Sci. 11:586014. doi: 10.3389/fpls.2020.58

Thakur, A. K., Aggarwal, G., and Srivastava, D. K. (2012). Genetic modification of lignin biosynthetic pathway in Populus ciliata wall. Via Agrobacterium-mediated antisense CAD gene transfer for quality paper production. Nat. Acad. Sci. Lett. 35, 79–84. doi: 10.1007/s12054-012-0018-x

Trombore, S., Brando, P., and Hartmann, H. (2015). Forest health and global change. Science 349, 814–818. doi: 10.1126/science.aac6759

Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M. R., Kumar, P. P., et al. (2004). Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J. 39, 273–282. doi: 10.1111/j.1365-313X.2004.02127.x

Wang, B. (2020). Genetic Transformation and Cold Resistance of BpMBF1 in Populus euplocym-Dulis L. I. Shandong: Shandong Agricultural University.

Wang, B., Gu, J., Hua, C., Chang, C., and Yu, F. (2018). Establishment of Agrobacterium tumefaciens mediated transient transformation system in Camptotheca acuminata leaves. Mol. Plant Breed. 16, 5624–5630.

Wang, G., Dong, Y., Liu, X., Yao, G., Yu, X., and Yang, M. (2018). The current status and development of insect-resistant genetically engineered poplar in china. Front. Plant Sci. 9:1408. doi: 10.3389/fpls.2018.01408

Wang, G., Xia, X., Zhong, W., Fang, H., and Jiang, M. (2003). Regeneration and development of insect-resistant genetically engineered poplar in china. Front. Plant Sci. 9:1408. doi: 10.3389/fpls.2018.01408

Wang, G., Xia, X., Zhong, W., Fang, H., and Jiang, M. (2003). Regeneration and antibacterial peptide gene transformation of cherry leaves. Acta Hortic. Sin. 30, 209–211.

Wang, G., Yang, M., Huo, X., and Liu, X. (2012). Comparison of exogenous gene expression and insect resistance ability of transgenic 741 poplars with single and double Bt genes. Acta Entomol. Sin. 55, 798–803.

Wang, J., Tang, J., Cui, Y., Chen, Y., Zhao, H., and Yan, X. (2020). Establishment of Agrobacterium-mediated genetic transformation system in Lycium ruthenicum Murr. North. Hortic. 1, 104–110.

Wang, K. (2015). Preface. Agrobacterium protocols. Methods Mol. Biol. 1224, vii–viii. doi: 10.1007/978-1-4939-1658-0_2

Wang, L., Chen, W., Liu, Y., Yang, R., Yin, X., Ma, N., et al. (2014). Optimization of Agrobacterium-mediated transient gene expression system and its utilization in RNAsi based gene silencing of rose (Rosa hybridar) petals. J. Agric. Biotechnol. 22, 133–140.

Wang, M., Sun, R., Zhang, B., and Wang, Q. (2018). Pollen tube pathway-mediated cotton transformation. Methods Mol. Biol. 1902, 67–73. doi: 10.1007/978-1-4939-8952-2_6

Wang L., Wen, S., Wang, R., Wang, C., Gao, B., and Lu, M. (2021a). Growth and development of insect-resistant genetically engineered poplar in china. Front. Plant Sci. 11:2249–2260. doi: 10.3389/fpls.2021.02121

Wang, R., Yang, Z., Wang, C., Wang, Y., and Wang, L. (2021b). ThNAC12 from Tamarix hispida directly regulates ThPIII-25 to enhance salt tolerance by modulating reactive oxygen species. Plant Physiol. Biochem. 163, 27–35. doi: 10.1016/j.phyto.2021.03.042

Wang, Y., Zhang, Y., Zhang, X., Zhao, X., Zhang, Y., and et al. (2021d). Poplar PisCNCE1 enhances cold tolerance by binding to different cis-acting elements to improve reactive oxygen species-scaewing capability. Tree Physiol. doi: 10.1093/treephys/tpab084
Wang, Y., Liu, X., Zhang, Q., Zheng, Y., and Li, D. (2021c). Isolation of palm mesophyll protoplasts and establishment of transient transformation system. J. Huazhong Agric. Univ. 40, 154–159.

Wei, H., Movahedi, A., Xu, C., Sun, W., Li, L., Wang, P., et al. (2020). Overexpression of PHMGR enhances drought and salt tolerance of poplar. Ann. Bot. 125, 789–801. doi: 10.1093/aob/mca2158

Wei, W., Zhang, Q., Wu, J., Ma, X., and Gu, L. (2021). Establishment of high-efficiency callus induction and transient transformation system of Chinese fir. Mol. Plant Breed. 1–15.

Wigge, P. A. (2011). FT, a mobile developmental signal in plants. Curr. Biol. 21, R374–R378. doi: 10.1016/j.cub.2011.03.038

Wu, N., Sun, Q., Yao, B., Fan, Y., Rao, H., Hang, M., et al. (2000). Acquisition of insect-resistant transgenic A. It (Poplar). Chin. J. Biotechnol. 16, 13–17.

Xia, P., Hu, W., Liang, Y., Lu, J., and Zheng, X. (2021). A versatile transgene expression system for medicinal plants. Protoplasma 257, 1497–1505. doi: 10.1007/s00709-020-01524-x

Xu, M., Du, Q., Tian, C., Wang, Y., and Jiao, Y. (2021). Stochastic gene expression drives mesophyll protoplast regeneration. Sci. Adv. 7:eabg1846. doi: 10.1126/sciadv.abg1846

Xu, S., and Zhai, Q. (2021). Advances of genetic transformation in woody plants. J. Henan For. Sci. Technol. 41, 10–13.

Xu, S., Zhang, Y., Li, S., Chang, L., Wu, Y., and Zhang, J. (2020). Plastid-expressed Bacillus thuringiensis (Bt) cry3B6 confers high mortality to a leaf eating beetle in poplar. Plant Cell Rep. 39, 317–323. doi: 10.1007/s00299-019-02492-0

Yang, G., Gao, X., Ma, K., Li, D., Jia, C., Zhai, M., et al. (2018). The walnut transcription factor JgRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression. BMC Plant Biol. 18:367. doi: 10.1186/s12870-018-1568-y

Yang, R., Wang, A., Zhang, J., Dong, Y., Yang, M., and Wang, J. (2016). Genetic transformation and expression of transgenic lines of Populus × euramericana with insect-resistance and salt-tolerance genes. Genet. Mol. Res. 15:gmr8635. doi: 10.4238/gmr.15028635

Yang, Y., Tang, R., Jiang, C., Li, B., Kang, T., Liu, H., et al. (2015). Overexpression of the PtSOCS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol. J. 13, 962–973. doi: 10.1111/pbj.12335

Yao, W., Wang, S., Zhou, B., and Jiang, T. (2016). Transgenic poplar overexpressing the endogenous transcription factor RER76 gene improves salinity tolerance. Tree Physiol. 36, 896–908. doi: 10.1093/treephys/tpw004

Yao, W., Zhao, K., Cheng, Z., Li, X., Zhou, B., and Jiang, T. (2018). Transcripome analysis of poplar under salt stress and overexpression of transcription factor NAC57 gene confers salt tolerance in transgenic Arabidopsis. Front. Plant Sci. 9:1121. doi: 10.3389/fpls.2018.01121

Ye, J., Zhao, D., Liang, Y., Lu, J., and Zheng, X. (2021). Research progress on protoplast preparation of tea plants. J. Tea 47, 75–79.

Yi, D., Wildhagen, H., Tylewicz, S., Miskolczi, P. C., Bhalerao, R. P., and Polle, A. (2019). Abscisic acid signalling mediates biomass trade-off and allocation in poplar. New Phytol. 223, 1192–1203. doi: 10.1111/nph.15878

Yi, M., Yu, L., Li, H., Yang, J., and Wang, C. (2020). Protoplast isolation from the leaves of Populus trichocarpa and subcellular localization of BpFLA20 gene. J. Northeast For. Univ. 48, 9–14.

Yi, Y., Qin, Y., and Yu, S. (2021). Advances in genetic engineering of forests. For. Prod. Special China 87–89:90. doi: 10.13268/cnki.fbsic.2021.03.035

Zhan, Y., Liu, Z., Wang, X., Wang, Z., Yang, C., and Liu, G. (2001). Transformation of insect resistant gene into birch. J. Northeast For. Univ. 29, 4–6.

Zhang, C., Hampp, R., and Nehls, U. (2005). Investigation of horizontal gene transfer in poplar/Artemisia masurica ectomycorrhizas. Environ. Biosafety Res. 4, 235–242. doi: 10.1051/eb:2006004

Zhang, D., Das, D. B., and Rielly, C. D. (2013). Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv. 21, 571–587. doi: 10.3109/10717544.2013.864345

Zhang, H., Zhang, Y., Du, Y., and Song, Y. (2021). The effects on the soybean root system of transgenic GmxTH gene by two transgenic methods. Mol. Plant Breed. 1–10.

Zhang, L. (2010). Research of indentifying transformed hemp with pollen tube pathway method by GISH. Heilongjiang Agric. Sci. 8, 14–15.

Zhang, L., Xiong, H., Cao, Q., Zhao, J., and Zhang, H. (2020). Drought resistance of larch NAC gene by transient genetic transformation. Bull. Bot. Res. 40, 394–400.

Zhang, Q., Wei, W., Zhang, H., and Gu, L. (2021). Research progress on regeneration of cell wall from forest tree protoplasts. Mol. Plant Breed. 1–20. Available online at: http://kns.cnki.net/kcms/detail/46.1068.S.20210430.1320.006.html

Zhao, H., and Chen, F. (2004). Genetic transformation of protoplasts from somatic cells of plants. Acta Bot. Boreali Occident. Sin. 24, 1329–1341.

Zhao, H., Jiang, J., Li, K., and Liu, G. (2017). Populus siminosi × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Tree Physiol. 37, 827–844. doi: 10.1093/tree/tpx020

Zhao, H., Wei, J., Lu, J., Shi, C., Wang, H., and Song, Y. (2004). Studies on the cultivation of low lignin content of Populus tomentosum with antisense CoAOMT gene. Prog. Nat. Sci. 14, 108–112.

Zhou, S., Lu, Y., Zhang, Z., Zhao, Y., and Wang, L. (2014). Protoplast preparation and transient expression system in maize and Arabidopsis. J. Anhui Agric. Sci. 42, 3479–3482.

Zhou, X. (2016). Introducion of exogenous DNA of Populus alba into sect. Aigeiros via pollen-tube pathway. Chin. Bull. Bot. 51, 533–541.

Zhou, Y., Song, D., Sun, J., and Li, L. (2013). Populus endo-beta-mannanase PrMrMAN plays a role in coordinating cell wall remodeling with suppression of secondary wall thickening through generation of oligosaccharide signals. Plant J. 74, 473–485. doi: 10.1111/tpj.12137

Zheng, L., Liu, G., Meng, X., Li, Y., and Wang, Y. (2012). A versatile Agrobacterium-mediated transient gene expression system for herbaceous plants and trees. Biochem. Genet. 50, 761–769. doi: 10.1007/s10528-012-9518-0

Zhang, L. (2006). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.