A COMPARATIVE STUDY ON THE SAFETY AND EFFECTIVENESS OF GLUCOSAMINE-DIACEREIN AND UNIVESTIN–CHONDROITIN IN KNEE OSTEOARTHRITIC PATIENTS IN A TERTIARY CARE HOSPITAL

Dr. Mathew George, Dr. Lincy Joseph, Mrs Jeenu Joseph, Becky Maria Biju, Roshin Thomas
Pushpagiri College of Pharmacy, Perumthuruthy P.O, Thiruvalla, Kerala, India

ABSTRACT

Background: Knee Osteoarthritis is a progressive disease showing increasing trend of occurrence in a population. It has lead to great morbidity and disability. Combinations which showed anti-inflammatory property and suppression of cartilage degeneration are better options for management of knee osteoarthritis. According to medical practice, quick relief within short period of exposure to drug therapy is preferred. This study was an attempt to compare the safety and effectiveness of diacerein-glucosamine and univestin-chondroitin combinations in knee osteoarthritic patients in a tertiary care hospital. These drugs are now prescribed by Indian physicians in the current scenario.

Patients and Method: The study began only after getting the approval from Institutional Ethics Committee and obtaining Inform Consent from subjects. The study was conducted in the department of orthopedics in Pushpagiri Medical College hospital, Kerala. From 140 patients who arrived at the Orthopedics OPD Pushpagiri medical college hospital, we sorted and selected only 64 patients based on the study criteria. We divided into two groups (32 each) one receiving diacerein-glucosamine and another receiving univestin chondroitin combinations. From these groups grade 1 and 2 patients are subdivided. They were assessed by WOMAC, KOOS, VAS, 6 minute walk test, and Standard ADR questionnaires (Naranjo’s) for measuring safety and effectiveness of drug combinations. Change in the short term effectiveness for both drugs measure was assessed before the start of treatment, and after 30 days of treatment.

Conclusion: For Grade 1 patients both drugs were equally effective. But for Grade 2 Patients diacerein-glucosamine combination therapy shows more benefit than univestin-chondroitin. However, semi-synthetic drug combination showed more safety profile than synthetic drug combination in the short term treatment of knee osteoarthritis.

Keywords: univestin–chondroitin, diacerein-glucosamine, OA, WOMAC, KOOS, VAS

INTRODUCTION

OA (Osteoarthritis) may be defined as a heterogeneous group of conditions that lead to joint symptoms and signs which are associated with defective integrity of articular cartilage in addition to related changes in the underlying bone and at the joint margins. OA is usually a progressive disease of synovial joints that represents failed repair of joint damage that results from stresses that may be initiated by an abnormality in any of the synovial joint tissues including articular cartilage, subchondral bone, ligament menisci, periarticular muscles, peripheral nerves or synovium. This ultimately results in the breakdown of cartilage and bone leading to the symptoms of pain, stiffness and functional disability. Abnormal intra-articular stress and failure of repair may rise as a result of biochemical, biomechanical and genetic factors. This process may be localized to as single joint, a few joint or generalized and the factors that initiate OA likely varying depending on the joint site. (1)

MATERIALS AND METHODS

STUDY DESIGN: Prospective Observational Study

*Corresponding author: Dr. Mathew George |
STUDY SETTING: Tertiary care setting; Department of Orthopedics; Pushpagiri Medical College Hospital, Thiruvalla.

STUDY POPULATION: All patients with Kellgren-Lawrance Osteoarthritic (knee) Grade1,2 reported to Department of Orthopedics, Pushpagiri Medical College Hospital, Thiruvalla

STUDY PERIOD: 6 months

SAMPLE SIZE: As per the following equation,
\[n = \frac{\left(Z_{1-\alpha/2} + Z_{1-\beta} \right)^2 \sigma^2}{d^2} \], \ n=64

- \(Z_{1-\alpha/2} \) : value of z at significance level 5%
- \(Z_{1-\beta} \) : value of z at power 95%
- \(\sigma \) : standard deviation of population
- \(d \) : difference of the means

INCLUSION CRITERIA
- OP patients in orthopedics department.
- Both female and male patients.
- Those who give consent voluntarily to participate in the study.
- Patients receiving diacerein-glucosamine and univestin-chondroitin combinations.
- Patients sorted for grade 1, 2 osteoarthritis (knee).
- Patients between the age of 35-70. Patients with primary knee OA.
- Patients having comorbidities of hypertension or diabetes can be included.
- Patients receiving NSAIDS for one week.

EXCLUSION CRITERIA:
- Patients who are not willing to give consent.
- Patients taking steroid medications.
- Patients who were advised or had undergone knee replacement surgery.
- Patients having Pre-existing deformities of knee.
- Patients having rheumatoid arthritis, sera-negative arthritis, gouty arthritis and secondary osteoarthritis.
- Patients having previous history of fracture and trauma. Patients with renal insufficiency.
- Patients receiving anticoagulants.

BRIEF PROCEDURE OF THE STUDY
- A prospective, observational study was conducted in Department of orthopedics at Pushpagiri Medical College Hospital on the topic comparative study on the safety and effectiveness of glucosamine-diacerein and univestin – chondroitin in knee osteoarthritis patients in a tertiary care hospital.
- The entire study was carried out only after getting approval from Institutional Ethics Committee.
- The selection of patients was based upon the inclusion and exclusion criteria. All patients were provided with a brief introduction regarding the study and the confidentiality of the data. A written Informed Consent was obtained from the patient or care-giver. Patients who met inclusion criteria were first divided into two groups.
- Demographic details of the patients were collected and recorded.
- One set of patients received Glucosamine (750mg)-diacerein (50mg) and others received Univestin (250mg) Chondroitin (200mg), for a period of 1 month.
- The patients were also prescribed with NSAID for 1 week along with the medication.
- The patients were further divided into 2 groups based on the Kellgren-Lawrence grade 1, 2.
- We used the standard questionnaire including WOMAC, KOOS, VAS, 6 minute walk test, and Standard ADR questionnaires.
- Between the two groups, change in the short term efficacy measure was assessed before the start of treatment, and after 30 days of treatment.
RESULT:

In the prospective observational study 64 patients with grade 1 and 2 knee OA were selected. Among them 32 were received Univestin – chondroitin (DRUG 1) and others received Diacerein - Glucosamine (DRUG 2) combinations respectively.

I. WOMAC QUESTIONNAIRE

Table 1: Distribution of patients according to gender by WOMAC index

Gender	Frequency	Percentage
Male	12	18.8
Female	52	81.3
Total	64	100

Figure 1: Graphical representation for Distribution of patients according to Gender

Table 2: Distribution of patients according to age by WOMAC index

DRUG	No: of patients	Minimum	Maximum	Mean	Std.deviation
1	32	36	80	59.969	11.9069
2	32	36	72	53.313	11.0262

Figure 2: Graphical representation for Distribution of patients according to age by WOMAC index
Table 3: Table representing the statistical analysis of difference in pain in study subjects by WOMAC index

Patients	Mean square	F-value	Significance
Grade 1			
Before and After therapy	400	208.923	0.000
Before and after therapy against both drugs	7.653	3.950	0.056
Grade 2			
Before and After therapy	306.250	87.761	0.000
Before and after therapy against both drugs	95.063	27.242	0.000

Figure: 3(a)
There is no considerable change of effect in pain by the use of drug 1 and 2 in grade 1 patients.

Figure 3(b)

In grade 2 patients there is decrease in pain by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Figure 3: Graphical Representation for estimated marginal measure of pain using WOMAC index score.

Table 4: Table representing the statistical analysis of difference in stiffness in study subjects by WOMAC index

Patients	Mean square	F-value	Significance
Grade 1	54.391	34.648	0.000
Before and After therapy	0.016	0.010	0.921
Before and after therapy against both drugs			
Grade 2	87.891	47.428	0.000
Before and After therapy	17.016	9.180	0.005
Before and after therapy against both drugs			
There is no considerable change of effect in stiffness by the use of drug 1 and 2 in grade 1 patients.

In grade 2 patients there is decrease in stiffness by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Figure 4 (a,b): Graphical Representation for estimated marginal measure of stiffness by WOMAC index score.
Table 5: Table representing the statistical analysis of variability in daily activities of study subjects by using WOMAC index.

Patients	Mean square	F-value	Significance
Grade 1	2889.063	258.770	0.000
Before and After therapy	25.000	2.239	0.145
Before and after therapy against both drugs			
Grade 2	3306.25	128.357	0.000
Before and After therapy	576.000	22.362	0.000
Before and after therapy against both drugs			

There is no considerable change of effect in daily activities by the use of drug 1 and 2 in grade 1 patients.
In grade 2 patients there is better changes in daily activities by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Figure 5 (a,b): Graphical Representation for estimated marginal measure of daily activities by WOMAC index score.

1. **KOOS QUESTIONNAIRE**

Table 6: Table for Distribution of patients according to age by KOOS index

DRUG	GRADE	Minimum	Maximum	Mean	Std. deviation
1	Grade1	36	80	59.94	13.359
	Grade2	38	80	60.00	10.702
2	Grade1	36	66	53.81	9.446
	Grade2	37	72	52.81	12.708
Figure 6: Graphical representation for Distribution of age according to KOOS score

Table 7: Table for Distribution of patients according to gender by KOOS index

Drug	Grade	Sex	Count	Percent
Drug 1	Grade 1	Male	3	18.8
		Female	13	81.3
		Male Female	2	12.5
		Female Male	14	87.5
Drug 2	Grade 1	Male	4	25.0
		Female	12	75.0
		Male Female	1	6.3
		Female Male	15	93.8

Figure 7: Graphical Representation for Distribution of gender by KOOS index
Table 8: Table representing the statistical analysis of difference in symptoms in study subjects by KOOS index

Patients	Mean square	F-value	Significance
Grade 1			
Before and After therapy	2889.063	213.160	0.000
Before and after therapy against both drugs	18.063	11.560	0.002
Grade 2			
Before and After therapy	534.766	119.640	0.000
Before and after therapy against both drugs	107.641	24.082	0.000

In grade 1 patients there is a change of effect in symptoms by the use of drug 1 and 2 in grade 1 patients. Here the drug 2 is more effective compared to drug 1.

Figure 8(a)

Figure 8(b)
In grade 2 patients there is effective change in symptoms by the use of drug 1 and 2 in grade 1 patients. Here the drug 2 is more effective compared to drug 1.

Figure 8: Graphical Representation for estimated marginal measure of symptoms by KOOS index

Table 9: Table representing the statistical analysis of difference in stiffness in study subjects by KOOS index

Patients	Mean square	F-value	Significance
Grade 1			
Before and After therapy	54.391	34.648	0.000
Before and after therapy			
against both drugs	0.016	0.010	0.921
Grade 2			
Before and After therapy	87.891	47.428	0.000
Before and after therapy			
against both drugs	17.016	9.180	0.005

Figure 9(a)
There is no considerable change or effect in stiffness by the use of drug 1 and 2 in grade 1 patients.

In grade 2 patients there is effective change in stiffness by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Figure 9: Graphical Representation for estimated marginal measure of stiffness by KOOS index

Table 10: Table representing the statistical analysis of difference in pain in study subjects by KOOS index

Patients	Mean square	F-value	Significance
Grade 1			
Before and After therapy	826.563	255.968	.000
Before and after therapy against both drugs	7.562	2.342	.136
Grade 2			
Before and After therapy	798.063	63.182	.000
Before and after therapy against both drugs	196.000	15.517	.000
There is no considerable change or effect in pain by the use of drug 1 and 2 in grade 1 patients.
In grade 2 patients there is decrease in pain by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Table 11: Table representing the statistical analysis of variability in daily activities in study subjects by KOOS index

Patients	Mean square	F-value	Significance
Grade 1			
Before and After therapy	2889.063	258.770	0.000
Before and after therapy	25.000	2.239	0.145
Grade 2			
Before and After therapy	3306.250	128.357	0.000
Before and after therapy	576.000	22.362	0.000

Figure 11: Graphical Representation for estimated marginal measure of daily activities KOOS index

![Figure 11(a)](image)

There is no considerable change or effect in daily activities by the use of drug 1 and 2 in grade 1 patients.
In grade 2 patients there is decrease in daily activities by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

Table 12: Table representing the statistical analysis of variability in entertainment activities in study subjects by KOOS index

Patients	Before and After therapy	Before and after therapy against both drugs	Mean square	F-value	Significance
Grade 1	Before and After therapy		112.891	89.789	0.000
	Before and after therapy against both drugs		1.891	1.504	0.230
Grade 2	Before and After therapy		172.266	76.456	0.000
	Before and after therapy against both drugs		40.641	18.037	0.000

Figure 12: Graphical Representation for estimated marginal measure of entertainment activity by KOOS index
There is no considerable change of effect in entertainment by the use of drug 1 and 2 in grade 1 patients.

In grade 2 patients there is effective change in entertainment by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.
Table 13: Table representing the statistical analysis of difference in Quality Of Life in study subjects by KOOS index.

Patients	Before and After therapy	Mean square	F-value	Significance
Grade 1		199.516	204.850	0.000
	Before and after therapy against both drugs	0.766	0.786	0.382
Grade 2		297.563	111.065	0.000
	Before and after therapy against both drugs	33.063	12.341	0.001

Figure 13: Graphical Representation for estimated marginal measure for Quality Of Life using KOOS score.

Figure 13(a)

There is no considerable change or effect in the use of drug 1 and drug 2.
In grade 2 patients there is effective change in quality of life by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

3. VAS SCORE

Table 14: **Table representing the statistical analysis of difference in pain in study subjects by VAS score.**

Patients	Before and After therapy	Before and after therapy against both drugs	Mean square	F-value	Significance
Grade 1	Before and After therapy		2613.766	152.490	0.000
	Before and after therapy against both drugs	34.516	2.014	0.166	
Grade 2	Before and After therapy		3206.391	106.528	0.000
	Before and after therapy against both drugs	1048.141	34.823	0.000	

Figure 14: **Graphical Representation for estimated marginal measure of pain by VAS score**

Figure 14(a)
By the use of drug 1 and 2 in grade 1 patients there is no considerable change or effect in pain which measured by visual analogue scale.

Figure 14(b)

In grade 2 patients there is decrease in pain by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.
4.6-MINUTE WALK SCORE

Table 15: Table representing the statistical analysis of walking capability in subjects by 6-min walk score

Patients	Before and After therapy	Before and after therapy against both drugs	Mean square	F-value	Significance
Grade 1			110.513	11.560	0.345
	Before and After therapy		4683.319	213.160	0.000
Grade 2			156.563	15.947	0
	Before and After therapy		427.973	43.592	0

Figure 15: Graphical Representation for estimated marginal measure of 6-minute walking score
Figure 15(a)

By the use of drug 1 and 2 in grade 1 patients there is no considerable change or effect in six minute walk score of patients before and after therapy.
In grade 2 patients there is effective change in six minute walk of patients by the use of drug 2 compared to drug 1. Thus drug 2 is more effective in case of grade 2 patients.

5. **NARANJO’s SCALE**

Table 16: Table representing statistical analysis of Adverse Drug Reactions.

Side Effects (ADR)	Frequency	Percent
Doubtful ADR	61	95.3
Possible ADR	3	4.7
Probable ADR	0	0
Definite ADR	0	0
Total	64	100.0

Side effects	No of patients
Gastritis	1
Yellow discoloration of urine	2
From the table we can conclude that 95.3% were doubtful ADR and remaining 4.7% is possible chance of ADR. Among 64 patients 3 of them reported the side effects especially gastritis, yellow discoloration of urine and abdominal discomfort.

Side Effects

![Graphical representation of Adverse Drug Reactions](image)

SUMMARY

A prospective, observational study was conducted in Department of orthopedics at Pushpagiri Medical College Hospital to compare the safety and effectiveness of glucosamine- diacerein and univestin – chondroitin in knee osteoarthritis patients. From 140 patients who arrived at the orthopedics OPD Pushpagiri medical college hospital, we sorted and selected only 64 patients based on the study criteria. Demographic details of the patients were collected, recorded and analyzed. We used the standard questionnaire including WOMAC, KOOS, VAS, 6 minute walk test, and Standard ADR questionnaires (Naranjo’s) for measuring safety and effectiveness of drug combinations. Change in the short term effectiveness for both drugs measure was assessed before the start of treatment, and after 30 days of treatment. Collected data was organized, tabulated and analyzed using statistical method and described with the help of tables and graphs.

- The majority of patients belong to 35-80 age groups. Among the patients there is no significant relationship between drug effectiveness with respect to their age proportion. The age of population only have a relationship with occurrence of disease. Possibility of disease occurrence increase with aging.
- Female are more prone to knee osteoarthritis than males. Gender has no direct relationship with effectiveness of drugs.
- Diarrhoea, gastritis and dark yellow coloured urine are adverse drug reactions that are reported by 3 of the patients within one month of therapy using diacerein-glucosamine combination. There are no observed adverse drug reactions reported for univestin-chondroitin for short period of time.
- Both drug combinations showed reduction in WOMAC AND KOOS pain scores. Both the drugs showed anti-nociceptive property by reducing pain within short period of therapy. In grade 1 patients there is no considerable change in antinociceptive effect for both drugs. In grade 2 patients there is significant reduction in pain by use of drug 2 as compared to drug1.
- Both drug combinations showed reduction in
WOMAC AND KOOS stiffness scores. Both the drugs showed anti-inflammatory property by reducing stiffness within short period of therapy. In grade 1 patients there is no considerable change in anti-inflammatory effect for both drugs. In grade 2 patients there is significant reduction in stiffness by use of drug 2 as compared to drug 1.

- The difficulty in performing daily activities and entertainment activities decreased with use of both drugs. In grade 1, both drugs showed similar effect. However Diacerein-glucosamine combination is more beneficial for grade 2.

- The 6-min walking score increased for those taking diacerein-glucosamine than those patients taking univestin-chondroitin combination.

- The Quality of Life was found to be more improved for patients taking diacerein-glucosamine than univestin; chondroitin combinations.

- Among 64 populations, diacerein-glucosamine combination was found to be more effective in knee osteoarthritis patients of grade 1 and 2. However univestin-chondroitin was found to have more safety profile in short term therapy.

CONCLUSION

Knee Osteoarthritis is a progressive disease showing increasing trend of occurrence in a population. Females are more prone to this disease than male. This study is an attempt to compare the safety and effectiveness of diacerein-glucosamine and univestin chondroitin combinations which are prescribed by physicians in the current scenario. The current study was conducted in the department of orthopaedics in Pushpagiri medical college hospital. 64 patients having knee OA were selected for the study and they were divided into two groups (32 each) ,one receiving diacerein-glucosamine and another receiving univestin chondroitin combinations.

We can conclude that both drugs are equally effective for grade 1 and grade 2 patients. The study reveals that among these two drugs diacerein-glucosamine combination therapy shows more benefit for grade 2 patients than univestin-chondroitin. As per AAOS (17), ARA(18), NHS(19) guidelines there are no combination of medication that shows ant-inflammatory property and that suppress cartilage degeneration. In this study we found that both the combination therapies showed anti-inflammatory property and that suppress cartilage degeneration. Apart from this, there is 4.7% of possible chance of ADR for diacerein – glucosamine combination. However, there are no ADRs reported for the other combination. Hence semi-synthetic drug combination showed more safety profile than synthetic drug combination in the treatment of knee osteoarthritis. Since Univestin is a newer drug for knee OA in the current scenario, supporting studies on its combination therapy was not yet conducted. According to medical practice, quick relievenent within short period of exposure to drug therapy is preferred. Therefore further studies to reveal the short term effectiveness of univestin is needed.

REFERENCE

1. Text book of Rheumatology, 6th edition, by Hochberg, Sillman, Smolen, Weinblatt, Weisman, page no: 1509-1512,1723-1727, 1793-1797.
2. Pharmacotherapy:Apathophysiologic approach as 10th edition, by ,Robert.L.Talbert, Barbera.G. Wells , Joseph T. Dipro ,Gary.C.Yee,pg no 990-1000.
3. Osteoarthritis, diagnosis and medical/surgical management, 4th edition by, Ronald. W. Moskowitz, Marc. C. Hochberg, Joseph. A. Buckwalter, page no:8-10,27-40.
4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306456/by HJ Braun - 2012, Dec3.
5. Johannel Martel-Pelletier and J.P.Pelletier,” Effects of diacerein at the molecular level in the osteo arthritis disease process” therapeutic advances in musculo skeletal disease (SAGE), 2010, volume 2(2), page no: 95-104.
6. www.rxindia.in/pharmacy-health/bone-and-jointcare/unioortho -univestin-500mg- nutritional - supplement-arthritis-joint-unigen.
7. Wolfgang W. Bolten,Glade MJ, Raum S and Ritz BW” The safety and efficacy of an enzyme
combination in managing knee osteoarthritis pain in adults: a randomized placebo controlled trial "J of Arthritis and Rheumatism .2015 Dec.14 volume:58 , pgno:7.

8. ShanthaiBai .K., SrinivasNaik. P., Anand BabuNaik. M, Riyaz .N . M and Kushbu . D "An Observational Study Comparing The Efficacy And Tolerability Of Trypsin , Bromelain, ritiside And Zinc Combination With WithDiclofenac Sodium In Patients Suffering From Osteoarthritis Knee Attending Orthopaedic OPD”International Journal Of Current Advanced Research ,2015. Volume 4 ,Issue 12,pg545-548.

9. Bahram H. Argmandi, Ormsbee L. T, Elam .M.L., Campbell. S.C, Rahnama . N. et al."Combination of Scutellariabaiicalensis and Acacia catechu Extracts for Short Term Symptomatic Relief of Joint Discomfort Associated with Osteoarthritis of the Knee”. J Of Med Food 2014 Jun;17(6):707-13.

10. Mirunalini, Chandrashekaran and Manimekalai.K ,"Efficacy Of Chondroitin Sulfate With Glucosamine VersusDiacierien In Grade 2 And Grade 3 Knee OA Patients” Asian J Pharma Clinical Research , 2011.Volume 8,issue4.

11. Navin Gupta and Somnath Datta ,“Efficacy and safety of diacerein and diclofenac in knee osteoarthritis in Indian patients- a prospective randomized open label study” Journal of Biomedical science, 2012, volume:1,pqno.1:5.

12. Levy,Khokhlov .A.,Kopenkin .S., Bart.B, Ermolova.T, Kan temirova. R et al. A randomized multicentre double blind study on topic” Efficacy and safety of flavoconid, a novel therapeutic, compared with naproxen: a randomized multicenter controlled trial in subjects with OA of knee. “Advanced Therapeutics, 2010 Oct 27(10) ,pgno:731-42.

13. Ballari Brahmachari, Suparna Chatterjee and AlakenduGhosh.R. et al"Efficacy and safety of diacerein in early knee osteoarthritis: a Randomized placebo-controlled trial”Journal of the International League of Associations for Rheumatology,2009, Volume 28, Issue 10, pp:1193–1198.

14. KarelPavelka,Karpas.K,Vitek.P.,Sedlácková.M.eta l"Theefficacyofsafetyof diacerein in the treatment of painful osteoarthritis of the knee: a randomized, multicenter ,double blind placebo controlled study with primary end point at 2 months after the end of a 3 months treatment period”.2007, volume 56,issue 12, pg:4055-4066

15. Xavier chevalier ,Giraudaeu .B., Conrozier. T., Marliere. J., et al. “Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicentre study” The Journal of Rheumatology July. 2005, 32 (7) 1317- 1323.

16. A.F. Walker , Bundy .R, Hicks .S.M., Middleton .R.W. C. et al. “Bromelain Reduces Mild Acute Knee Pain And Improves Well-being In A Dose-dependent Fashion In An Open Study Of Otherwise Healthy Adults” Phytomedicine, 2002, Volume 9, Pg :681–686.

17. Treatment of osteoarthritis of the knee evidence-based guideline adopted by the American Academy of Orthopaedic Surgeons board of directors, 2nd edition May 18,2013

18. Marc C. Hochberg, Altman, KarineToupin, et al. “Recommendations for The Use of Non Pharmacologic Therapies in Osteoarthritic of Hand, hip And Knee” American College Of Rheumatology 2012.Volume 64 No 4.Pg:465-474.

19. National Clinical Guideline Centre’s Osteoarthritis Care and management in adults, Clinical guideline CG177 Methods, Commissioned by the National Institute for Health and Care Excellence Evidence and recommendations, February 2014 ,pgno:1-505.JorgJerosh, et al. "Effects Of Glucosamine And Chondroitin Sulfate On Cartilage Metabolism In OA: Outlook On Other Nutrient Partners Especially Omega -3 Fatty Acids". International Journal Of Rheumatology,2011.

20. W. Louthrenoo M.D, Nilganuwong. S, Aksaranugraha .S, Asavatanabodee.P , et al. "The Efficacy Safety And Carry Over Effect Of Diacerein In The Treatment Of Painful Knee Osteoarthritis ,NSAID Controlled Study”OARSI 2007,osteoarthritis And Cartilage Volume 15 No:6,pg no605-614.

21. G. Klein; W. Kulich,et al." Short-term Treatment Of Painful Osteoarthritis Of The Knee With Oral
22. G. Klein, Kullich, et al. “Efficacy And Tolerance of an Oral Enzyme Combination in Painful OA of the Hip. A Double Blind, Randomized Study Comparing Oral Enzymes With NSAID” Clinical and Experimental Rheumatology 2006(24) 25-30.

23. Gruenwald J., Ellen Petzold, Regina Busch, et al. “Effect Of Glucosamine Sulfate With Or Without Omega-3 Fatty Acids In Patients With Osteoarthritis” Advanced Therapeutics 2009 Sep; 26(9): 858-71.

24. Lawrence R. C., Felson D. T., Helmick C. G, et al. “Estimates of the prevalence of arthritis and other rheumatic conditions in the United States”. Part II. Arthritis and Rheumatism. 2008; 58(1): 26–35.

25. Singer F., Singer C., Oberleitner H, et al. “Phlogenzym versus diclofenac in the treatment of activated osteoarthritis of the knee. A double-blind prospective randomized study” International Journal of Immunotherapy. 2001; 17(2-4): 135–141.

26. Akhtar N. M., Naseer R., Farooqi A. Z., Aziz W., Nazir M “ Oral enzyme combination versus diclofenac in the treatment of osteoarthritis of the knee—a double-blind prospective randomized study” Clinical Rheumatology. 2004; 23(5): 410–415.

27. Jayachandran “Efficacy of Bromelain along with Trypsin, Rutoside Trihydrate Enzymes and Diclofenac Sodium Combination Therapy for the treatment of TMJ Osteoarthritis - A Randomised Clinical Trial” JCDR. 2017 Jun; 11(6): ZC09-ZC11.

28. Ajay Chandanwale, Deepak Langade “ARandomized, Clinical Trial to Evaluate Efficacy and Tolerance of Trypsin: Chymotrypsin as Compared to Serratiopeptidase and Trypsin: Bromelain: Rutoside in Wound Management” Advance in Therapy. 2017 Jan; 34(1): 180-198.

29. John S. Sampalis and Lidia Alfaro Brownell “A randomized, double blind, placebo and active comparator controlled pilot study of UP446, a novel dual pathway inhibitor anti-inflammatory agent of botanical origin.” Nutrition Journal 2012, 11:21.

30. Paredes Y “Study of the role of leukotriene B4 in abnormal function of human subchondral osteoblasts: effects of cyclooxygenase and/or 5-lipoxygenase inhibition” Arth Rheum. 2002, 46:1804-1812.

31. Van Loon IM “The golden root: clinical applications of Scutellariabaicalensi GEORG flavonoids as modulators of the inflammatory response” Altern Med Rev. 1997, 2:472-480.

32. Fernandes JC, Martel-Pelletier J and Pelletier JP “The role of cytokines in osteoarthritis pathophysiology” Biorheology. 2002, 39: 237-246.

33. McAlindon TE and LaValley MP “Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis” JAMA. 2000; 283: 1469–75.

34. Lewis, S., Crossman, M., Flannelly, J., Belcher, C., Doherty, M., Bayliss, M.T. “Chondroitinsulphation patterns in synovial fluid in osteoarthritis subsets” Ann Rheum Dis. 1999; 58:441–445.

35. Richy F, Bruyere O, Ethgen O, Cuchereat M, Henrotin Y, Reginster JY “structural and symptomatic efficacy of glucosamine and chondroitin in knee osteoarthritis” Arch Intern Med. 2003; 163: 1514–22.

36. Morreale, P. Manopulo, R., Galati, M., Boccanera, L., Saponatiet “Comparison of the antiinflammatory efficacy of chondroitin sulfate and diclofenac sodium in patients with knee osteoarthritis” JRheumatol. 1996; 23: 1385–1391.

37. Mazières, B., Combe, B., Phan Van, A., Tondut, J “Chondroitin sulfate in osteoarthritis of the knee: a prospective, double blind, placebo controlled multicenter clinical study” J Rheumatol. 1996; 23: 1385–1391.

38. Volpi, N “Oral bioavailability of chondroitin sulfate (Condrosulf®) and its constituents in healthy male volunteers” Osteoarthritis Cart. 2002; 10: 768–777.

39. Bucci, L “ Efficacy and tolerability of oral chondroitin sulfate as a symptomatic slow-acting drug for osteoarthritis (SYSADOA) in the treatment of knee osteoarthritis” Osteoarthritis Cart. 1998; 6: A31–A36.
40. Elena Panova and Graeme Jones, “Benefit–Risk Assessment of Diacerein in the Treatment of Osteoarthritis”, *Drug Safety*. (2013). 38, 3, (245).

41. Tomáš Trč and Jana Bohmová, “Efficacy and tolerance of enzymatic hydrolysed collagen (EHC) vs. glucosamine sulphate (GS) in the treatment of knee osteoarthritis (KOA)” *International Orthopaedics*. (2011). 35, 3, (341).