Optimal Experimental Design for Staggered Rollouts

Ruoxuan Xiong, Susan Athey, Mohsen Bayati, Guido Imbens

Emory University and Stanford University
Introduction
Designing experiments with staggered rollouts

- Estimating treatment effects in panel data with **staggered rollouts**
 - Units $i \in \{1, \cdots, N\}$ observed in time periods $s \in \{1, \cdots, T\}$
 - Design: Treatment assignment $Z_{is} \in \{0, 1\}$
 - Potential outcomes: $Y_{is}(z_{i,s-\ell}, \cdots, z_{is})$ may depend on the history of treatment to date, with known ℓ periods of history that matter
 - Observed outcomes: $Y_{is} = Y_{is}(Z_{i,s-\ell}, \cdots, Z_{is})$

- Staggered rollout designs commonly encountered in observational data:
 - Products/promotions released in different regions at different times
 - State regulations adopted over time

- **Question:** How should analyst **design** a staggered rollout experiment?
 - How fast should rollout occur?
 - How does rollout depend on hypothesized maximum duration of carryover effects?
 - How can historical data be used to optimize design?
 - Can an **adaptive design**, where analyst updates speed of rollout and termination based on data collected during experiment, improve performance?
Panel experiments with staggered rollouts

Formal objective: Propose experimental designs that optimize the precision of post-experiment estimates of treatment effects

Focus on environment with: Irreversible treatment adoption pattern \((Z_{is} \leq Z_{i,s+1})\)

Time	SF	1	1	1	\(\ldots\)	\(\ldots\)
BOS	0	1	1	\(\ldots\)	\(\ldots\)	
ATL	0	0	1	\(\ldots\)	\(\ldots\)	
	\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)	\(\vdots\)

0 denotes control and 1 denotes treated
Contribution: Non-adaptive experiments

Non-adaptive experiments: N and T are set, and treatment decisions are made, pre-experiment

- Assume after experiment will use GLS to estimate instantaneous and lagged treatment effects from nonstationary observed outcomes
- Analytical optimality conditions for the designs that maximize linearly combined precisions of estimated instantaneous and lagged effects
- Propose an algorithm to choose a treatment design based on the optimality conditions. The design has two features
 \(\Rightarrow\) Fraction of treated units per period takes an S-shaped curve: Treatment rollouts slowly at the beginning and end, and quickly in the middle
 - Bigger ℓ leads to more pronounced S
 \(\Rightarrow\) This rollout pattern is imposed for each stratum of units with the same observed and estimated latent covariate values
Illustration of optimal assignment
Adaptive experiments: N is fixed, but the experiment can be terminated early. Treatment decisions are updated after each period’s data is collected.

- Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm
 - adaptively terminates the experiment based on the estimated precision
 - adaptively optimizes speed of rollout using dynamic programming
 - an estimation scheme of treatment effects based on sample splitting
- Derive the asymptotic normal distribution of final treatment effect and variance estimates from PGAE
 - Optimal convergence rate and no efficiency loss of final treatment effect estimate, as compared to an oracle with access to the same design a-priori
Related literature (partial list)

- Most closely related to stepped wedge designs in clinical trials (Hussey and Hughes 2007, Hemming et al. 2015, Li, Turner, and Preisser 2018)
 ⇒ We study the design under a more general outcome specification, where cumulative effects can vary with treatment duration
- Recently proposed alternative designs for estimation of carryover effects
 - Minimax temporal experimental design (Basse, Ding, and Toulis 2019)
 - Switchback design (Bojinov, Simchi-Levi, and Zhao 2020)
 - Synthetic control design that selects units for (simultaneous) treatment, anticipating synthetic control estimation (Doudchenko et al. 2021a,b, Abadie and Zhao 2021)
 ⇒ Our design leverages variation of treatment times across units and maximizes the precision of treatment effect estimates
- Recently proposed designs in settings with interference
 - Multiple randomization designs (Bajari et al. 2021, Johari et al. 2022)
 - Equilibrium designs (Wager and Xu 2021)
 ⇒ Our experiment is run at the aggregate level and leverages the time dimension to increase power
⇒ We also consider adaptive designs; above papers pre-specify design
Two examples for staggered rollout experiments

Example 1 *(marketplace experiments)*: A ride-hailing platform plans to test the impact of a *new app feature* that improves *driver experience*

Example 2 *(public health intervention)*: A country aims to measure the effect of a *new public health intervention* (e.g., encouraging the use of masks or social distancing policies) on the *spread of an infectious disease*

Staggered rollout experiments run at the city level for multiple time periods can

- avoid bias from interference
- facilitate the estimation of cumulative effects
- better *design* can *improve* the estimation *precision* of cumulative effects
Setup
Potential outcomes and treatment effects

- **The potential outcomes** for unit i at time s can be written as
 \[Y_{is}(z_{i,s-\ell}, \cdots, z_{i,s-1}, z_{is}) \]
 for a nonnegative, known integer ℓ (ℓ: duration of treatment effects)

- Let the average instantaneous effect τ_0 and j-th period lagged effect τ_j be
 \[\tau_j := \frac{1}{N_T} \sum_{i,s} \left[Y_{is}(0, \cdots, 0, 1, \cdots, 1) - Y_{is}(0, \cdots, 0, 0, 1, \cdots, 1) \right], \]
 for all $j \in \{0, 1, \cdots, \ell\}$

- Let the average cumulative effect of treatment for j periods be
 \[\tau_0 + \cdots + \tau_{\min(\ell, j-1)} \]
 that is constant for $j > \ell$
Illustrative examples of cumulative effects

Cumulative effect of treatment for j periods with $\ell = 5$, $\tau_0, \tau_1 > 0$ and $\tau_2, \tau_3, \tau_4, \tau_5 < 0$
Cumulative effect of treatment for j periods with $\ell = 2$ and $\tau_0, \tau_1, \tau_2 < 0$
A general outcome specification for treatment effect estimation post-experiment

\[Y_{is} = \alpha_i + \beta_s + X_i^T \theta_s + \tau_0 Z_{is} + \tau_1 Z_{i,s-1} + \cdots + \tau_\ell Z_{i,s-\ell} + \underbrace{u_i^T v_s + \varepsilon_{is}}_{e_{is}} \]

- \(\alpha_i \): unknown unit fixed effect
- \(\beta_s \): unknown time fixed effect
- \(X_i \): observed covariates; \(\theta_s \): unknown time-varying coefficients
- \(u_i \): latent covariates; \(v_s \): latent coefficients
- \(\varepsilon_{is} \): iid residual with mean 0 and variance \(\sigma^2 \)
Decision making problem

Decision: Optimally choose the treatment times for each unit

Goal: Most precisely estimate average instantaneous and lagged effects

Implication: Reduce sample size requirement and lower the experimental cost!

	SF	BOS	ATL
0	1	0	0
1	1	1	0
1	1	1	0

0 denotes control and 1 denotes treated

\[
Z_{ff}?, \quad Z_{ba}?, \quad Z_{ffba}?
\]
Non-adaptive experiments
GLS estimator $\hat{\tau}_0, \cdots, \hat{\tau}_\ell$ from the specification

$$Y_{is} = \alpha_i + \beta_s + X_i^T \theta_s + \tau_0 z_{is} + \tau_1 z_{i,s-1} + \cdots + \tau_\ell z_{i,s-\ell} + e_{is},$$

- GLS is the best linear unbiased estimator (BLUE)
- Precision matrix (inverse of variance-covariance matrix) of $\hat{\tau}_0, \cdots, \hat{\tau}_\ell$, denoted by $\text{Prec}(\hat{\tau}_0, \cdots, \hat{\tau}_\ell; Z)$, is a quadratic function of $Z = [z_{is}]_{(i,s) \in [N] \times [\tau]}$, where $[N]$ stands for $\{1, 2, \cdots, N\}$
Trace(T)-optimal design: Choose $Z = [z_{is}]_{(i,s)\in[N] \times [T]}$ pre-experiment to maximize the trace of the precision matrix (Pukelsheim, 2016)

$$\max_Z \quad \text{trace}(\text{Prec}(\hat{\tau}_0, \cdots, \hat{\tau}_\ell; Z))$$

s.t. $z_{is} \leq z_{i,s+1}$

$z_{is} \in \{0, 1\}$

Other objective functions, for example, determinant(D)-optimal design and A-optimal design

- No analytical solutions in general
- Numerical solutions for D-optimal design in the paper
Optimal solution (No covariates)

\[Y_{is} = \alpha_i + \beta_s + \tau_0 z_{is} + \tau_1 z_{i,s-1} + \cdots + \tau_\ell z_{i,s-\ell} + \varepsilon_{is} \] \hspace{1cm} (1)

Theorem 1: Optimal solution (no covariates)

Under the specification (1), \(\varepsilon_{is} \overset{i.i.d.}{\sim} (0, \sigma^2) \) and \(\tau_j \) is estimated from OLS. Then any treatment design is optimal if it satisfies

\[\omega_s = \frac{1}{N} \sum_i Z_{is} = \omega_{\ell,s}^*. \]

If \(\ell = 0 \), then \(\omega_{\ell,s}^* = (2s - 1)/(2T) \).

For general \(\ell \), \(\omega_{\ell,s}^* \) has five stages, and the expression of \(\omega_{\ell,s}^* \) is provided in the paper.
Visualization of $\omega^*_{l,s}$ in optimal solution
Visualization of ω^*_l,s in optimal solution
Visualization of ω^*_t in optimal solution
Visualization of $\omega_{l,s}^*$ in optimal solution
Visualization of ω^*_s in optimal solution
Visualization of $\omega^*_{\ell,s}$ in optimal solution
Optimal solution (Adding observed and/or latent covariates)

\[Y_{is} = \alpha_i + \beta_s + X_i^\top \theta_s + \tau_0 Z_{is} + \tau_1 Z_{i,s-1} + \cdots + \tau_\ell Z_{i,s-\ell} + u_i^\top v_s + \varepsilon_{is} \] (2)

Theorem 1: Optimal solution (with covariates)

Under the specification (2), \(\varepsilon_{is} \) \((i.i.d.)\) \((0, \sigma^2)\), both \(X_i \) and \(u_i \) are demeaned, and \(\tau_j \) is estimated from infeasible GLS. Then any treatment design is optimal if it satisfies

- \(\omega_s = N^{-1} \sum_i Z_{is} = \omega^*_\ell,s \)
- \(N^{-1} \sum_i X_i Z_{is} \) is fixed for all \(s \)
- \(N^{-1} \sum_i u_i Z_{is} \) is fixed for all \(s \)
Interpretation of optimal solution (with covariates)

With X_i only: Stratification if X_i is discrete-valued

- Each stratum (group of units with the same X_i) satisfies the treated fraction conditions $\omega_{\ell,s}^*$ (possibly with rounding)

With u_i: u_i is unknown in practice

- Estimate u_i using historical data
- Partition units into strata based on \hat{u}_i

An algorithm proposed in the paper to choose a treatment design

\[
X_i = x_1 \begin{cases}
0 & 0 \\
0 & 1 \\
1 & 1
\end{cases}
\]

\[
X_i = x_2 \begin{cases}
0 & 0 \\
0 & 1 \\
1 & 1
\end{cases}
\]
Adaptive experiments
Decisions for adaptive experiments

Goal: Most precisely estimate average treatment effects with valid inference, using the least sample size

Two adaptive decisions:

- Stop the experiment early if the desired precision is achieved (i.e., max duration is T_{max}, and duration $\tilde{T} \in [T_{\text{max}}]$ is a random variable)
- Speed of treatment rollout for the next time period is determined after each period’s outcomes are collected

This talk: Focus on a simpler specification

$$Y_{is} = \alpha_i + \beta_s + \tau_0 z_{is} + \varepsilon_{is}$$
Decision 1: Experiment termination rule

Terminate the experiment if the precision exceeds a target threshold \(c \) at time \(t \) (Glynn and White 1992)

\[
\text{Prec}(\hat{\tau}_0; Z) \geq c
\]

where \(Z \in \{0, 1\}^{N \times t} \) and

\[
\text{Prec}(\hat{\tau}_0; Z) = \frac{Nt}{\sigma^2} \cdot \left(\frac{-2b_t^\top \omega_{1:t} - \omega_{1:t}^\top P_{1_t} \omega_{1:t}}{g_T(\omega, t)}\right)/t
\]

with

- \(\omega_{1:t} = [\omega_s]_{s \in [t]} \) and \(\omega_s = N^{-1} \sum_i Z_{is} \)
- \(P_{1_t} = I_t - 1_t 1_t^\top / t \) and \(b_t \) is a vector of constants
- \(\sigma^2 = \mathbb{E} [\varepsilon_{it}^2] \)

\(\Rightarrow \) Termination rule needs key unknown parameter \(\sigma^2 \)

\(\Rightarrow \) Implement termination rule in a way that allows for valid inference of \(\tau_0 \) (due to the peeking challenge in sequential testing (Johari et al. 2017))
Decision 2: Treatment assignment

\(\tilde{T} \) is unknown for adaptive experiments, therefore infeasible to optimally choose the speed of treatment rollout, pre-experiment.

\[
\omega_{0,s}^* = \frac{2s - 1}{2T}
\]
Three competing goals in adaptive experiments

Goal 1: Choosing a treatment design

- Adaptively choose the speed of rollout, as we gather more information about σ^2 during the experiment

Goal 2: Implementing the termination rule

- Estimate σ^2 to make the next challenge manageable

Goal 3: Efficient estimation and valid inference for τ_0

- Use as many observations as possible

Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm

- simultaneously achieves the three goals
- uses sample splitting and dynamic programming
Partition units into non-adaptive treatment units (NTU) and adaptive treatment units (ATU)

- **NTU**: Treatment design set pre-experiment (a small set)
 - Set as $\omega_{bm,s} = (2s - 1)/(2T_{\text{max}})$ (optimal solution for T_{max})
- **ATU**: Treatment design chosen adaptively
At time t, estimate distribution of σ^2 from NTU

- Estimate $\sigma^2 = \mathbb{E}[\varepsilon_{it}^2]$ and variance of ε_{it}^2, i.e., $\xi^2 = \mathbb{E}[(\varepsilon_{it}^2 - \sigma^2)^2]$
- **Normal approximation** of the distribution of σ^2 (based on the asymptotic normality of $\tilde{\sigma}^2$)

Update belief about \tilde{T}, denoted by $P_t(\tilde{T})$, using the estimated distribution of σ^2
At time t, optimize ω_{t+1} for ATU$_1$ and ATU$_2$ through dynamic programming (DP)

- In the DP, no intermediate cost and terminal cost is the precision at termination, i.e., $\text{Prec}(\hat{\tau}_0; Z_{:,1:\tilde{T}}) = (N \tilde{T} / \sigma^2) \cdot g_{\tau}(\omega, \tilde{T})$
- Solve ω_{t+1} from DP based on the belief about \tilde{T}
Estimate σ^2 from ATU$_1$ and $\text{Prec}(\hat{\tau}_0; Z_{:,1:t}) = (Nt/\hat{\sigma}^2) \cdot g_7(\omega, t)$

If $\text{Prec}(\hat{\tau}_0; Z_{:,1:t}) \geq c$, terminate the experiment; otherwise, keep running the experiment.
Component 3 in PGAE: Efficient estimation and valid inference

Post-experiment,

- $\hat{\tau}_{\text{all}, \tilde{T}}$: estimator of τ_0 using all N units and \tilde{T} periods of data (no efficiency loss)
- $\hat{\sigma}^2_{\text{atu}, 2, \tilde{T}}$: estimator of σ^2 using \tilde{T} periods of data of ATU$_2$
Theorem 2: Asymptotic distribution of estimators from PGAE

Suppose ε_{is} is bounded with a symmetric distribution around 0. As $N \to \infty$,

$$
\sqrt{N} \cdot \left[\frac{(\hat{T}g_{\tau}(\omega_{all,1;\tilde{\tau}}, \tilde{T})}{\sigma^2} \right]^{1/2} \cdot \left(\hat{\tau}_{all, \tilde{\tau}} - \tau_0 \right) \\
\left(\frac{(\tilde{T}p_{atu,2}/\xi^{\dagger}_{\tilde{T}})}{\hat{\sigma}_{atu,2, \tilde{\tau}} - \sigma^2} \right)^{1/2} \to N(0, I_2), \quad (3)
$$

where $\xi^{\dagger}_{\tilde{T}} = \left[\xi^2 + \sigma^4/(\tilde{T} - 1) \right]^{1/2}$ and $\xi^2 = E[(\varepsilon_{it}^2 - \sigma^2)^2]$.

- $\hat{\tau}_{all, \tilde{\tau}}$ is consistent for τ with the optimal convergence rate \sqrt{N}
 - **Intuition**: Asymptotic conditional mean of ε_{is} on estimated even moments of ε_{is} is zero (due to the symmetric distribution of ε_{is})

- $\hat{\sigma}_{atu,2, \tilde{\tau}}^2$ is consistent for σ^2
 - **Intuition**: A different sample is used to estimate $\hat{\sigma}_{atu,2, \tilde{\tau}}^2$
Asymptotic properties of PGAE

Theorem 2: Asymptotic distribution of estimators from PGAE

Suppose \(\varepsilon_{is} \) is bounded with a symmetric distribution around 0. As \(N \to \infty \),

\[
\sqrt{N} \cdot \begin{bmatrix}
(\tilde{T} g_\tau(\omega_{all,1: \tilde{t}}, \tilde{T})/\sigma^2)^{1/2} \cdot (\hat{\tau}_{all, \tilde{t}} - \tau_0) \\
(\tilde{T} p_{atu,2}/\xi^\dagger_{\tilde{T}})^{1/2} \cdot (\hat{\sigma}^2_{atu,2}, \tilde{t} - \sigma^2)
\end{bmatrix} \overset{d}{\longrightarrow} \mathcal{N}(0, I_2),
\]

(4)

where \(\xi^\dagger_{\tilde{T}} = [\xi^2 + \sigma^4/(\tilde{T} - 1)]^{1/2} \) and \(\xi^2 = \mathbb{E}[(\varepsilon^2_{it} - \sigma^2)^2] \).

- The **adaptivity** of the design, with the **termination time** depending on early values of the outcomes, **comes at no cost** in the estimation of \(\tau_0 \)
 - Compare with a series of experiments with the same distribution of termination times, the average variance of \(\hat{\tau}_{all, \tilde{t}} \) is the same
- Adaptive treatment decisions improve the estimation precision of \(\tau_0 \)
 - \(g_\tau(\omega_{all,1: \tilde{t}}, \tilde{T}) \) is increased through adaptive treatment decisions
Empirical application
Empirical application

MarketScan medical claims databases

- Inpatient and outpatient claim records from early 2007 to mid 2017
- Primary diagnosis is influenza 21,277 inpatient and 9,678,572 outpatient admissions

Study effect of interventions (e.g., face cover, social distancing, and vaccine) on flu occurrence rate

- Aggregate at the Metropolitan Statistical Area (MSA) level and month
- Focus on the flu peak season (October to April)

Other applications (medical home visits, grocery expenditure, and Lending Club loans) are in the paper
Comparison of non-adaptive designs

Benchmark designs

- Z_{ff}: 50% control and 50% treated for all time periods
- Z_{ba}: first half time periods all control, and second half all treated
- Z_{ffba}: first half time periods all control, and second half half treated

Non-adaptive staggered designs

- Z_{opt}: nonlinear staggered design with $\omega_s = \omega^*_{\ell,s}$
- $Z_{opt,linear}$: linear staggered design with $\omega_s = \omega^*_{0,s} = (2s - 1)/(2T)$
- $Z_{opt,stratified}$: nonlinear staggered design with $\omega_s = \omega^*_{\ell,s}$ and historical data used for stratification

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

Z_{ff}

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\]

Z_{ba}

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
\end{array}
\]

Z_{ffba}

staggered designs
Synthetic non-adaptive experimental data

- Assume the synthetic treatment was not applied to the original data, so observed value $= Y_{is}(0)$
- Apply a synthetic treatment using Z and obtain synthetic experimental data

$$Y_{is} = Y_{is}(0) + \tau_0 \cdot Z_{is} + \tau_1 \cdot Z_{i,s-1} + \tau_2 \cdot Z_{i,s-2}$$

Evaluation metrics

- Estimate τ_0, τ_1 and τ_2 from Y_{it}, and compare $\sum_j (\hat{\tau}_j - \tau_j)^2$ from the data generated by various Z
- Other evaluation metrics (estimation error of cumulative effects, recall and “precision”) in the paper
Results for synthetic non-adaptive experiments

- Z_{opt} requires fewer than 50% units to achieve the same estimation error as Z_{ff}, Z_{ba}, and Z_{ffba}

- $Z_{opt,stratified}$ further saves at least 20% units to achieve the same estimation error as Z_{opt} and $Z_{opt,linear}$

\Rightarrow Using our solution with historical data can substantially reduce the experimental cost
Synthetic adaptive data

Synthetic adaptive experimental data

- Run PGAE: The adaptive experiment is run for \tilde{T} periods with precision threshold c
- Apply a synthetic treatment using Z and obtain synthetic experimental data
 \[Y_{is} = Y_{is}(0) + \tau_0 \cdot Z_{is} \]

Three designs

- Z_{adaptive}: design produced by PGAE with dimension $N \times \tilde{T}$
- $Z_{\text{benchmark}}$: design with $\omega_s = (2s - 1)/(2T_{\text{max}})$ with dimension $N \times \tilde{T}$
 (optimal when $\tilde{T} = T_{\text{max}}$)
- Z_{oracle}: design with $\omega_s = (2s - 1)/(2\tilde{T})$ with dimension $N \times \tilde{T}$ (assuming \tilde{T} is known ex-ante)
Results for adaptive experiments

- Estimation error of the adaptive design always below variance threshold $1/c$

- Adaptive design Z_{adaptive} reduces errors by 20% compared to benchmark design $Z_{\text{benchmark}}$
Termination time in adaptive experiments

For $T_{\text{max}} > 7$, the experiment is always terminated quite early

\Rightarrow Desired precision threshold c achieved with less than $T_{\text{max}}/2$ duration
Conclusion
Conclusion

Non-adaptive experiments: N, T and treatment decisions are determined, pre-experiment

- Analyze the statistical properties of GLS estimator of instantaneous and lagged effects from a general outcome specification
- Provide analytical optimality conditions that maximize a linear combination of precisions of estimated treatment effects
- Propose the treatment design that has two features: (1) treatment fraction takes an S-shaped curve in time; (2) stratification

Adaptive experiments: N is fixed, and experiment duration and treatment decisions are determined during the experiment

- Propose the Precision-Guided Adaptive Experiment (PGAE) algorithm for adaptive treatment design and post-experiment inference
 - Combines ideas from dynamic programming and sample splitting
- Derive the asymptotic normal distribution of final treatment effect and variance estimates from PGAE
 - Final treatment effect estimate is efficient and achieves the optimal convergence rate
Supplementary material
D-optimal design: Optimal treated proportion ω_t at each period for a T-period treatment design and various ℓ, where $T = 10$. Different colors represent different ℓ.
T-optimal treatment design: Optimal treated proportion ω_t at each period for a T-period treatment design and various ℓ, where $T = 12$. Different colors represent different ℓ.
Expression of $\omega_{\ell,s}^*$

\[
\omega_{\ell,s}^* = \begin{cases}
0 & s \leq \lfloor \ell/2 \rfloor \\
\left(2s - (\ell + 1)\right)/(2(\mathcal{T} - \ell)) & \lceil \ell/2 \rceil < s \leq \ell \\
1 - \omega_{\ell,\mathcal{T}+1-s}^* & \ell < s \leq \mathcal{T} - \ell \\
1 - \omega_{\ell,\mathcal{T}+1-s}^* & T - \ell < s \leq T - \lfloor \ell/2 \rfloor \\
1 & T - \lfloor \ell/2 \rfloor < s
\end{cases}
\]

(5)
Expression of ω^*_s

$a^{(\ell)}$ is defined as

$$a^{(\ell)} = (1 + (M^{(\ell)})^{-1}b^{(\ell)})/2,$$

where $M^{(\ell)}$ and $b^{(\ell)}$ are defined as

$$M^{(\ell)} = \begin{bmatrix}
\lfloor \ell/2 \rfloor + 1 & \lfloor \ell/2 \rfloor + 2 \\
\vdots & \ddots & \ddots \\
\ell & 1 & 1 & \cdots & 1
\end{bmatrix}
- \frac{1}{T-\ell}
\begin{bmatrix}
l - \lfloor \ell/2 \rfloor & l - 1 - \lfloor \ell/2 \rfloor & l - 2 - \lfloor \ell/2 \rfloor & \cdots & 1 \\
l - 1 - \lfloor \ell/2 \rfloor & l - 1 - \lfloor \ell/2 \rfloor & l - 2 - \lfloor \ell/2 \rfloor & \cdots & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
1 & 1 & 1 & \cdots & 1
\end{bmatrix},$$

$$b^{(\ell)} = -\begin{bmatrix}
\lfloor \ell/2 \rfloor + 1 \\
\vdots \\
\ell - 1 \\
\ell
\end{bmatrix}
+ \frac{1}{T-\ell}
\begin{bmatrix}
(\lfloor \ell/2 \rfloor + 1)^2 \\
\vdots \\
(\ell - 1)^2 \\
(\ell)^2
\end{bmatrix}
- \frac{1}{T-\ell}
\begin{bmatrix}
\sum_{l=1}^l \lfloor \ell/2 \rfloor (\lfloor \ell/2 \rfloor + 1 - l) \\
\vdots \\
2 \lfloor \ell/2 \rfloor - 1 \\
\lfloor \ell/2 \rfloor
\end{bmatrix}.$$
Examples of $\omega_{\ell,s}$

If $\ell = 1$, then

$$\omega_{\ell,s} = (s - 1)/(T - 1)$$

If $\ell = 2$, then

$$\omega_{\ell,1} = 0, \quad \omega_{\ell,2} = 1/(2T - 5)$$

$$\omega_{\ell,s} = (2t - 3)/2(T - 2) \quad \text{for } t = 4, \cdots, T - 3,$$

$$\omega_{\ell,T-1} = 1 - 1/(2T - 5), \quad \omega_{\ell,T} = 1.$$

If $\ell = 3$, then

$$\omega_{\ell,1} = 0, \quad \omega_{2} = \frac{3}{6T^2 - 44T + 79}, \quad \omega_{3} = \frac{6(T - 4)}{6T^2 - 44T + 79},$$

$$\omega_{t} = \frac{t - 2}{T - 3} \quad \text{for } t = 4, \cdots, T - 3,$$

$$\omega_{T-2} = 1 - \frac{6(T - 4)}{6T^2 - 44T + 79}, \quad \omega_{T-1} = 1 - \frac{3}{6T^2 - 44T + 79}, \quad \omega_{T} = 1.$$
An algorithm to choose a treatment design

Algorithm 1: Choose a treatment design for each stratum g

1. **Inputs:** $|O_g|$, $[\omega^*, t]_{t \in [T]}$
2. for $t = 1, \cdots, T$ do
 3. $N_{\text{treated}, g, t} \leftarrow \lfloor |O_g| \cdot \omega^*_t \rfloor$
 4. $N_{\text{dec}, g, t} \leftarrow |O_g| \cdot \omega^*_t - N_{\text{treated}, g, t}$
 5. if $N_{\text{dec}, g, t} < 0.5$ or $N_{\text{dec}, g, t} = 0.5$ with $t < T/2$ then
 6. $N_{g, t} \leftarrow N_{\text{treated}, g, t}$
 else
 7. $N_{g, t} \leftarrow N_{\text{treated}, g, t} + 1$
 end
3. $f(\cdot) \leftarrow$ a random function that shuffles $\{1, 2, \cdots, |O_g|\}$
4. $Z_g \leftarrow [0]_{|O_g| \times T}$
5. for $i = 1, \cdots, |O_g|$ do
 6. for $t = 1, \cdots, T$ do
 7. if $f(i) \leq N_{g, t}$ then
 8. $z_{g, it} \leftarrow 1$
 else
 9. $z_{g, it} = 0$
 end
 end
3. return Z_g.
Estimators in adaptive experiments

Three estimators are used in adaptive experiments

Suppose The estimators use the data of units in a set S over t periods collected so far, where t is small, but set size $|S|$ can be large

1. within estimator for τ_0

 - Regresses \dot{Y}_{is} on \dot{z}_{is} based on the specification $\dot{Y}_{is} = \tau_0 \dot{z}_{is} + \dot{\varepsilon}_{is}$, where for any variables $\{x_{is}\}_{(i,s) \in S \times [t]}$ (e.g., Y_{is} and z_{is}), and \dot{x}_{is} denotes the within transformed x_{is}

 $$\dot{x}_{is} = x_{is} - \bar{x}_{i.} - \bar{x}_{.s} + \bar{x},$$

 in which $\bar{x}_{i.}$, $\bar{x}_{.s}$, and \bar{x} are averages of x_{is}'s over t time periods, units in S, and both of them, respectively
2. Plug-in estimator for σ^2

$$\widehat{\sigma^2}_{S,t} = \frac{1}{|S| \cdot (t - 1)} \sum_{i \in S} \sum_{s=1}^{t} (\dot{y}_{is} - \widehat{\tau}_{S,t} \cdot \dot{z}_{is})^2$$

- The factor $1/(t - 1)$ is for finite t correction
- $\widehat{\sigma^2}_{S,t}$ is consistent and asymptotically normal for any finite t

3. A new estimator for $\xi^2 = \mathbb{E}[\varepsilon_{is}^2 - \sigma^2]$}

$$\widehat{\xi^2}_{S,t} = \frac{t^2}{(t - 1)^2} \cdot \frac{1}{|S|} \cdot t \sum_{i \in S} \left(\sum_{s=1}^{t} (\dot{y}_{is} - \widehat{\tau}_{S,t} \cdot \dot{z}_{is})^2 - \widehat{\sigma^2}_{S,t} \right)^2 - \frac{3t - 2}{(t - 1)^2} \cdot \left(\widehat{\sigma^2}_{S,t} \right)^2$$

- $\widehat{\xi^2}_{S,t}$ is consistent for any finite t
Lemma: Asymptotic distribution of estimators from non-adaptive data

Suppose ε_{is} is i.i.d. for any i and s with \(E[\varepsilon_{is}] = 0, E[\varepsilon_{is}^2] = \sigma^2 \), \(E[\varepsilon_{is}^3] = 0 \), and \(E[(\varepsilon_{is}^2 - \sigma^2)^2] = \xi^2 \). \(\hat{\tau}_{ntu,t} \) and \(\hat{\sigma}^2_{ntu,t} \) are consistent. As \(|S_{ntu}| \to \infty \), for any finite \(t \), conditional on \(Z_{ntu} \), we have

\[
\sqrt{|S_{ntu}|} \left(\begin{bmatrix} \hat{\tau}_{ntu,t} \\ \hat{\sigma}^2_{ntu,t} \end{bmatrix} - \begin{bmatrix} \tau \\ \sigma^2 \end{bmatrix} \right) \xrightarrow{d} \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma^2/(t \cdot g(\omega_{ntu,1:t}, t)) & 0 \\ 0 & \xi_t^{\dagger 2}/t \end{bmatrix} \right),
\]

where \(\xi_t^{\dagger 2} = \xi^2 + 2(\sigma^2)^2/(t - 1) \).

Furthermore, \(\sqrt{|S_{ntu}|}(\hat{\xi}_t^2 - \xi^2) = O_p(1) \).

\(\Rightarrow \) This lemma is used to prove Theorem 2
Finite sample properties of Theorem 2

Finite sample properties of Theorem 2: Histograms of $\hat{\tau}_{all,ss}$ and $\hat{\sigma}^2_{atu,2,ss}$. The standard normal density function is superimposed on the histograms. $N = 500$, $\tau_0 = 1$, and $\sigma_\varepsilon = 1$.
Within estimator for τ_0

Least-squares estimator of τ_0 from the specification

$$Y_{is} = \alpha_i + \beta_s + \tau_0 z_{is} + \varepsilon_{is}$$

is equivalent to the within estimator that regresses \dot{Y}_{is} on \dot{z}_{is} based on the specification

$$\dot{Y}_{is} = \tau \dot{z}_{is} + \dot{\varepsilon}_{is},$$

where for any variables $\{x_{is}\}_{(i,s) \in S \times [t]}$ (e.g., Y_{is} and z_{is}), and \dot{x}_{is} denotes the within transformed x_{is}

$$\dot{x}_{is} = x_{is} - \bar{x}_i - \bar{x}_s + \bar{x},$$

in which \bar{x}_i, \bar{x}_s, and \bar{x} are averages of x_{is}'s over t time periods, units in S, and both of them, respectively.
Proof of Theorem 2: Key challenge

The estimation error of $\hat{\tau}_{all,t}(N)$ depends on ε_{is} (using data of N units and t periods)

$$\hat{\tau}_{all,t}(N) - \tau = \left(\sum_{i \in [N], s \leq \tilde{T}} \dot{z}_{is}^2 \right)^{-1} \sum_{i \in [N], s \leq \tilde{T}} \dot{z}_{is} \varepsilon_{is}.$$

The estimation error of the plug-in estimator for σ^2 also depends on ε_{is}

$$\hat{\sigma}^2_{S,t}(N) = \frac{1}{|S| \cdot (t - 1)} \sum_{i \in S} \sum_{s=1}^{t} (\dot{y}_{is} - \hat{\tau}_{S,t} \cdot \dot{z}_{is})^2$$

$$= \frac{1}{|S|(t - 1)} \sum_{i,s} \varepsilon_{is}^2 - \frac{t}{|S|(t - 1)} \sum_i \bar{\varepsilon}_{i,\cdot}^2 - \frac{1}{t - 1} \sum_s \bar{\varepsilon}_{\cdot, s}^2 + \frac{t}{t - 1} \bar{\varepsilon}^2$$

$$- (\hat{\tau}_{S,t}(N) - \tau)^2 \cdot \frac{1}{|S|(t - 1)} \sum_{i,s} \dot{z}_{is}^2$$

- **Key challenge:** We need to show $\hat{\tau}_{all,t}(N)$ is “well-behaved” even if we condition on $\hat{\sigma}^2_{S,t}(N)$ that is used to make adaptive treatment decisions ($S = NTU$) and experiment termination ($S = ATU_2$)
Proof of Theorem 2: Two key properties

We leverage two critical properties

- **First property**: Given that ε_{is} has a symmetric distribution,
 \[\mathbb{E}[\varepsilon_{is} | \hat{\sigma}^2_{S,t}(N)] = 0 \]
 \[\Rightarrow \text{The asymptotic mean of } \hat{\tau}_{all,\hat{\tau}}(N) - \tau_0 \text{ is zero} \]

- **Second property**: Given that $\hat{\sigma}^2_{S,t}(N)$ is consistent,
 \[\mathbb{E}[\varepsilon_{is}^2 - \sigma^2 | \hat{\sigma}^2_{S,t}(N)] = \hat{\sigma}^2_{S,t}(N) - \sigma^2 \text{ converges to zero in probability} \]
 \[\Rightarrow \text{The asymptotic variance of } \left(\hat{T}_{g,T}(\omega_{all,1;\hat{\tau}, \hat{T}})/\sigma^2 \right)^{1/2} \cdot (\hat{\tau}_{all,\hat{\tau}} - \tau_0) \text{ is 1} \text{ (with probability approaching one, the variance is sufficiently close one) } \]