How robust is a quantum gate in the presence of noise?

Aram W. Harrow1,2,* and Michael A. Nielsen2,†

1MIT Physics, 77 Massachusetts Ave., Cambridge MA 02139, USA
2School of Physical Sciences, University of Queensland, Queensland 4072, Australia

(Dated: April 1, 2022)

We define several quantitative measures of the robustness of a quantum gate against noise. Exact analytic expressions for the robustness against depolarizing noise are obtained for all unitary quantum gates, and it is found that the controlled-NOT is the most robust two-qubit quantum gate, in the sense that it is the quantum gate which can tolerate the most depolarizing noise and still generate entanglement. Our results enable us to place several analytic upper bounds on the value of the threshold for quantum computation, with the best bound in the most pessimistic error model being \(p_{th} \leq 0.5 \).

PACS numbers: 03.67.-a, 03.65.Ud, 03.67.Lx

I. INTRODUCTION

An ideal quantum computer \(|1\rangle \) is usually described as a sequence of unitary quantum gates applied to the qubits making up the computer. A typical universal set of quantum gates is the controlled-NOT gate, and single-qubit unitary operations \(|2\rangle \). A crucial element in a universal gate set is that it be capable of generating entanglement between the qubits making up the computer.

In the real world quantum gates suffer from noise \(|3\rangle \), which can inhibit the creation of entanglement. This problem led to the development of fault-tolerant methods for quantum computation (see the discussion and references in \(|1\rangle \)) based on quantum error-correcting codes \(|4\rangle \). One of the outstanding achievements of work on fault-tolerance is the threshold theorem for quantum computation \(|5, 6, 7, 8, 9, 10\rangle \). The threshold theorem states that, under reasonable physical assumptions about noise in the computer, it is possible to correct for the effects of that noise, provided the strength of the noise is below some constant threshold, \(p_{th} \). (Roughly speaking, \(p_{th} \) can be thought of as the maximal probability of error during a single quantum gate that can be corrected using the methods of fault-tolerance.) The exact value of the threshold depends on what assumptions are made about the noise in the quantum computer, and estimates of the value of the threshold therefore vary quite a bit. Typical current estimates place it in the range 10\(^{-4}\) to 10\(^{-6}\).

Motivated by the practical problem of noise, and the theory of fault-tolerant quantum computation, in this paper we consider the problem of quantifying how robust a quantum gate is to the effects of noise. More precisely, for a given gate \(U \) we attempt to quantify how much noise the gate can tolerate while preserving the ability to generate entanglement. Since, in a sense we make precise below, entanglement generation is necessary for quantum computation to be possible, even if the methods of fault-tolerant computation are used, this program allows us to determine upper bounds on the value of the threshold.

Our work is different from most other work on estimating thresholds, which usually aims to determine lower bounds. The interest in lower bounds stems from their more immediate practical interest: if we know that \(p_{th} > 10^{-6} \), for example, then that gives experimentalists a target to shoot for in pursuit of a working quantum computer. Nonetheless, as emphasized in \(|11\rangle \), from a fundamental point of view it would be extremely interesting to have exact values for the threshold, and this requires techniques for obtaining upper bounds.

Our work is based upon the results of Vidal and Tar-ra\(|12\rangle \), who investigated the robustness of entangled quantum states, that is, how much noise can be added to a quantum state before it becomes unentangled, i.e., separable. Our work also naturally extends and complements the work of Aharonov and Ben-Or \(|11\rangle \), who, to our knowledge, have done the only prior work obtaining upper bounds on the value of the threshold.

Another interesting context in which our measures of gate robustness may be placed is the program of defining “dynamic strength measures” for quantum dynamical operations \(|13\rangle \). Dynamic strength measures quantify the intrinsic power or strength of a quantum dynamical operation as a physical resource, much as an entanglement measure quantifies the entanglement in a quantum state. \(|13\rangle \) developed a framework for the analysis of dynamic strength measures, and we will see that gate robustness can be regarded as a measure of dynamic strength, and analyzed within this framework.

The structure of the paper is as follows. Sec. \(|14\rangle \) reviews background material on the Schmidt decomposition for operators. This decomposition is central to our later work on the robustness of quantum gates. Sec. \(|15\rangle \) reviews the notion of separable quantum gates, which may be defined as the class of gates that cannot generate entanglement in a quantum computer. Furthermore, this section proves that a quantum circuit containing only separable gates can be efficiently simulated on a classical
computer. Sec. \[2\] reviews Vidal and Tarrach’s work on the robustness of quantum states. This section also introduces a novel measure of the robustness of quantum states useful in our later work on gate robustness, and proves some elementary properties of the new measure. Sec. \[3\] gives our definitions and results on the robustness of quantum gates, and relates the results to the theory of fault-tolerant quantum computation. Sec. \[4\] concludes.

II. THE OPERATOR-SCHMIDT DECOMPOSITION

The operator-Schmidt decomposition is an operator analogue of the well-known Schmidt decomposition for pure quantum states \[1\]. The present treatment of the operator-Schmidt decomposition is based on the discussion in \[13,14\], with the addition of a result on the continuity of the Schmidt coefficients of a unitary operator.

We begin by introducing the Hilbert-Schmidt inner product on \(d \times d\) operators, \((Q,P) \equiv \text{tr}(Q^\dagger P)\), for any operators \(Q\) and \(P\). We define an orthonormal operator basis to be a set \(\{Q_j\}\) which satisfies the condition \((Q_j,Q_k) = \text{tr}(Q_j^\dagger Q_k) = \delta_{jk}\). For example, an orthonormal basis for the space of single-qubit operators is the set \(\{I/\sqrt{2},X/\sqrt{2},Y/\sqrt{2},Z/\sqrt{2}\}\), where \(X, Y,\) and \(Z\) are the Pauli sigma operators, and \(I\) is the identity.

The operator-Schmidt decomposition states that any operator \(Q\) acting on systems \(A\) and \(B\) may be written \[14\):

\[
Q = \sum_i q_i A_i \otimes B_i, \tag{1}
\]

where \(q_i \geq 0\), and \(A_i\) and \(B_i\) are orthonormal operator bases for \(A\) and \(B\), respectively. To prove the operator-Schmidt decomposition, expand \(Q\) in the form \(Q = \sum_{jk} M_{jk} C_j \otimes D_k\), where \(C_j\) and \(D_k\) are fixed orthonormal operator bases for \(A\) and \(B\), respectively, and \(M_{jk}\) are complex coefficients. The singular value decomposition states that the matrix \(M\) with \((j,k)\)th entry \(M_{jk}\) may be written \(M = UQV\), where \(U\) and \(V\) are unitary matrices and \(q\) is a diagonal matrix with non-negative entries. We thus obtain

\[
Q = \sum_{jkl} U_{jl} q_l V_{lk} C_j \otimes D_k, \tag{2}
\]

where \(q_l\) is the \(l\)th diagonal entry of \(q\). Defining orthonormal operator bases \(A_l \equiv \sum_j U_{jl} C_j\) and \(B_l \equiv \sum_k V_{lk} D_k\), we obtain the operator-Schmidt decomposition, Eq. (1).

To better understand the coefficients \(q_l\) in the operator-Schmidt decomposition, imagine that associated with each system, \(A\) and \(B\), there are reference systems, \(R_A\) and \(R_B\), with the same state space dimensionalities, \(d_A\) and \(d_B\), as \(A\) and \(B\). Let

\[
|\alpha\rangle \equiv \sum_j |j_{RA}J_A\rangle / \sqrt{d_A}, \tag{3}
\]

denote normalized, maximally entangled states of \(R_A A\) and \(BR_B\), respectively. Now let \(E\) be a general quantum operation \[35\]; we will shortly specialize to the case when \(E\) corresponds to the action of \(U\). We define \(\rho(E)\) to be the density operator resulting when \(E\) acts on \(|\alpha\rangle|\beta\rangle\).

Writing this out explicitly, with subscripts to make it clear which operations are acting on which systems:

\[
\rho(E) \equiv (I_{RA} \otimes E_{AB} \otimes I_{RB}) \circ (|\alpha\rangle \langle |\alpha\rangle \otimes |\beta\rangle \langle \beta|), \tag{5}
\]

where \(I_S\) denotes the identity quantum operation on a system \(S\). In the special case when \(E\) represents a unitary operation, \(U\), on \(AB\), we define \(\psi(U)\) to be the quantum state obtained when \(U\) acts on \(|\alpha\rangle|\beta\rangle\), and let \(\rho(U)\) be the corresponding density operator. Note that we will interchange notations like \(\psi(U)\) and \(|\psi(U)\rangle\), depending on which is more convenient in a particular context.

The Schmidt coefficients of \(\psi(U)\) are closely connected to the operator-Schmidt coefficients of \(U\), which we denote \(u_j\). Letting \(U = \sum_j u_j A_j \otimes B_j\) be an operator-Schmidt decomposition, we see that

\[
\psi(U) = (I_{RA} \otimes U \otimes I_{RB}) |\alpha\rangle |\beta\rangle \tag{6}
\]

\[
= \sum_j u_j (I_{RA} \otimes A_j) |\alpha\rangle (B_j \otimes I_{RB}) |\beta\rangle. \tag{7}
\]

Direct calculation shows that \(\sqrt{d_A(I_{RA} \otimes A_j)|\alpha\rangle}\) and \(\sqrt{d_B(B_j \otimes I_{RB})|\beta\rangle}\) form orthonormal bases for \(R_A A\) and \(BR_B\), respectively. Thus, we obtain the useful result that the quantum state \(\psi(U)\) has Schmidt coefficients \(u_j/\sqrt{d_A d_B}\) equal, up to the factor \(1/\sqrt{d_A d_B}\), to the Schmidt coefficients of \(U\).

The following proposition shows that the Schmidt coefficients of \(U\) are continuous functions of \(U\). In the statement of the proposition, \(\|M\| = \max_{\|\psi\|=1} \|M|\psi\|\) denotes the usual operator norm.

Proposition 1 Let \(U\) and \(V\) be operators on \(AB\), with respective Schmidt coefficients \(u_j\) and \(v_j\), ordered into decreasing order, \(u_1 \geq u_2 \geq \ldots\), and \(v_1 \geq v_2 \geq \ldots\). Then

\[
2 \left(1 - \sum_j \frac{u_j v_j}{d_AD_B} \right) \leq \|U - V\|^2 \tag{8}
\]

To understand why Eq. (8) can be interpreted as a statement about continuity requires a little thought. Note that \(\text{tr}(U^\dagger V) = \text{tr}(V^\dagger V) = d_A d_B\), and thus \(\sum_j u_j^2 = \sum_j v_j^2 = d_A d_B\). It follows that we can think of \(u_j^2/d_A d_B\) and \(v_j^2/d_A d_B\) as probability distributions. With this interpretation, the quantity \(\sum_j u_j v_j/d_A d_B\) is just the fidelity of these two probability distributions, and it follows from Eq. (8) that if \(U \approx V\) then \(u_j \approx v_j\) for all \(j\).

\textbf{Proof}: The key is to observe that the norm \(\|\cdot\|\) is stable when extended trivially to an ancilla system, i.e.,
\[\| M \| = \| M \otimes I \|. \] Using this observation we have
\[\| U - V \| = \| I_{RA} \otimes (U - V) \otimes I_{RB} \| \]
\[\geq \| (I_{RA} \otimes (U - V) \otimes I_{RB}) |\alpha\rangle|\beta\rangle \| \]
\[= \| \psi(U) - \psi(V) \|. \]

Squaring both sides of the inequality, and interchanging the roles of the two sides, we obtain:
\[\| \psi(U) \|^2 + \| \psi(V) \|^2 - 2 \text{Re}(\langle \psi(U) | \psi(V) \rangle) \leq \| U - V \|^2. \]

(12)

Since \(\| \psi(U) \|^2 = \| \psi(V) \|^2 = 1 \), this implies
\[2 (1 - |\langle \psi(U) | \psi(V) \rangle|) \leq \| U - V \|^2. \]

(13)

Since \(\psi(U) \) and \(\psi(V) \) have Schmidt coefficients \(u_j / \sqrt{d_A d_B} \) and \(v_j / \sqrt{d_A d_B} \), respectively, it follows from the results of [15, 16] that \(|\langle \psi(U) | \psi(V) \rangle| \leq \sum_j u_j v_j / \sqrt{d_A d_B} \). Combining this inequality with Eq. (13) gives the desired result. \(\square \)

III. Separable and Separability-Preserving Quantum Gates

We now formally introduce the notion of separable quantum gates, and study their basic properties, in Sec. IIIA, Sec. IIIB states and proves a theorem showing that quantum circuits built entirely out of separable quantum gates can be efficiently simulated on a classical computer. Finally, Sec. IIIC notes that the classical simulation theorem of the previous subsection can be extended to a somewhat larger class of gates, the “separability-preserving” gates, and considers some of the implications of this fact.

A. Definition and basic properties

Suppose \(\mathcal{E} \) is a quantum operation acting on a composite quantum system with two components labeled \(A \) and \(B \). \(\mathcal{E} \) is said to be separable if it can be given an operator-sum representation of the form
\[\mathcal{E}(\rho) = \sum_j (A_j \otimes B_j) \rho (A_j^\dagger \otimes B_j^\dagger) \]

(14)

Separable quantum operations were independently introduced in [17, 18], where it was speculated that trace-preserving separable quantum operations might correspond to the class of quantum operations that can be implemented on a bipartite system using local operations and classical communication. This speculation was false [19]. However, a related conjecture is true, namely, that trace-preserving separable quantum operations correspond to the class of trace-preserving quantum operations which cannot be used to generate quantum entanglement. This follows from an elegant characterization theorem of Cirac et al. [20] linking separability of a quantum operation \(\mathcal{E} \) to separability of the quantum state \(\rho(\mathcal{E}) \) introduced in Eq. (14).

Theorem 1 (Operation-separability theorem [20])

A trace-preserving quantum operation \(\mathcal{E} \) is separable if and only if \(\rho(\mathcal{E}) \) is a separable quantum state, that is, \(\rho(\mathcal{E}) \) can be written in the form
\[\rho(\mathcal{E}) = \sum_j p_j \rho_j^{RA} \otimes \rho_j^{RB}, \]

(15)

where the \(p_j \) are probabilities, \(\rho_j^{RA} \) are quantum states of system \(R_A A \), and \(\rho_j^{RB} \) are quantum states of system \(B R_B \).

When we say in the statement of the theorem that \(\rho(\mathcal{E}) \) is separable there is initially some ambiguity, due to the multiple ways the system \(R_A A B R_B \) can be decomposed into subsystems. To avoid this ambiguity, it is convenient to introduce notational conventions as follows. Let \(\sigma \) be a state of a composite system \(C D \). We say \(\sigma \) is separable with respect to the \(C : D \) cut if \(\sigma \) can be written \(\sigma = \sum_j p_j \rho_j^C \otimes \rho_j^D \) for probabilities \(p_j \), and quantum states \(\rho_j^C, \rho_j^D \) of systems \(C \) and \(D \), respectively. The advantage of this notation comes when more systems are introduced. For example, when \(\sigma \) is a state of a tripartite system, \(CDE \), it is immediately clear what we mean by separability with respect to the \(C : DE \) cut, or with respect to the \(C : D : E \) cut, or other possible cuts. Thus, in the operation-separability theorem, the assertion is that \(\mathcal{E} \) is separable if and only if \(\rho(\mathcal{E}) \) is separable with respect to the \(R_A A : B R_B \) cut.

We have stated the operation-separability theorem for the case of trace-preserving quantum operations, but a similar result also holds for non trace-preserving quantum operations \(\mathcal{E} \). The only change is that the \(p_j \) are no longer probabilities, but instead can be any set of non-negative real numbers. We have also restricted our attention to bipartite quantum operations, that is, \(\mathcal{E} \) which act on quantum systems with just two components, \(A \) and \(B \). It is not difficult to show that an analogous statement holds for \(k \)-party quantum operations \(\mathcal{E} \). We do this by endowing each party with an associated reference system with which it is initially maximally entangled, and defining \(\rho(\mathcal{E}) \) to be the result of allowing \(\mathcal{E} \) to act on this initial state. \(\mathcal{E} \) is then separable if and only if \(\rho(\mathcal{E}) \) is separable.

An interesting corollary of the operation-separability theorem is that a quantum operation is separable if and only if it is incapable of producing entangled states. Furthermore, by connecting gate separability to state separability, the operation-separability theorem allows us to apply results from the theory of state separability to prove that certain gates are separable, and thus incapable of producing entanglement.

The operation-separability theorem tells us that a trace-preserving quantum operation \(\mathcal{E} \) is separable precisely when \(\rho(\mathcal{E}) \) is separable. However, it does not follow...
that all separable states of $R_A A : BR_B$ can be written as $\rho(\mathcal{E})$ for some trace-preserving quantum operation. To understand why this is the case, observe that when \mathcal{E} is trace-preserving, $\text{tr}_{AB}(\rho(\mathcal{E}))$ must be the completely mixed state of $R_A R_B$. In general, however, it is not difficult to find separable states σ of $R_A A : BR_B$ such that $\text{tr}_{AB}(\sigma)$ is not completely mixed.

An elegant result of M., P., and R. Horodecki [21] can be used to characterize precisely which separable states can be written in the form $\rho(\mathcal{E})$ for trace-preserving, separable \mathcal{E}. Their result, which we have restated in the context of multipartite systems, is as follows:

Theorem 2 The set of density matrices, σ, of $R_A A : BR_B$, such that $\sigma = \rho(\mathcal{E})$ for some trace-preserving quantum operation \mathcal{E} is precisely the set such that $\text{tr}_{AB}(\sigma)$ is the completely mixed state of $R_A R_B$.

Combining this theorem with the operation-separability theorem we obtain the following result:

Theorem 3 The set of density matrices, σ, of $R_A A : BR_B$, such that $\sigma = \rho(\mathcal{E})$ for some trace-preserving and separable quantum operation \mathcal{E} is precisely the set such that (a) σ is separable with respect to the $R_A A : BR_B$ cut; and (b) $\text{tr}_{AB}(\sigma)$ is the completely mixed state of $R_A R_B$.

B. Separable gates and quantum computation

Having discussed the basic properties of separable quantum operations, we now turn to their utility for quantum computation. Imagine a quantum circuit is built entirely out of separable quantum gates and single-qubit gates. It is intuitively plausible that such a quantum circuit can be efficiently simulated on a classical computer, and we now prove this result. The major technical difficulty is issues involving the accuracy required in the simulation, and the associated computational overhead.

Our model of quantum computation is as follows. Let \mathcal{G} be a fixed set of one- and two-qubit quantum gates. By “quantum gate” we mean a trace-preserving quantum operation. We assume that all the two-qubit gates in \mathcal{G} are separable. We let $\{C_n\}$ be a uniform family of quantum circuits containing $p(n)$ gates, and acting on $q(n)$ qubits, where $p(n)$ and $q(n)$ are polynomials in some parameter n. The initial state of the computer is assumed to be a computational basis state, $|x\rangle$. The computation is concluded by performing a measurement in the computational basis, yielding a probability distribution $p_x(y)$ over possible measurement outcomes y. The measurement may be either on all the qubits, or on some prespecified subset. For instance, if one is solving a decision problem, it is only necessary to measure the first qubit of the computer, to get a single zero or one as output.

What does it mean to simulate this computation efficiently on a classical computer? Suppose we have a classical computer that, on input of x, produces an output y with probability distribution $\hat{p}_x(y)$. A good measure of how well this simulates the quantum computation is provided by the L_1 distance. For probability distributions $r(y)$ and $s(y)$ the L_1 distance is defined by $D(r(y), s(y)) = \sum_y |r(y) - s(y)|/2$. Thus, we require that the L_1 distance $D(p_x(y), \hat{p}_x(y)) = \sum_y |p_x(y) - \hat{p}_x(y)|/2$ satisfies

$$D(p_x(y), \hat{p}_x(y)) \leq \epsilon$$

for some parameter $\epsilon > 0$. We will show that the computational resources required to achieve this accuracy on a classical computer scale as $O(\text{poly}(p(n)/\epsilon))$, where poly$(\cdot)$ is some polynomial of fixed degree not depending on the circuit family $\{C_n\}$. Thus, high accuracies in the simulation can be achieved with modest computational cost.

As an example of the practical implications of this result, suppose $\{C_n\}$ is a uniform family of quantum circuits solving a decision problem, outputting the correct answer to an instance, x, of the decision problem with probability at least $3/4$. Our result implies that there is a classical simulation using $O(\text{poly}(p(n)))$ gates, and outputting the correct solution to the decision problem with probability $2/3$. (The probability of obtaining the correct answer may easily be boosted up beyond $3/4$ by a constant number of repetitions.)

To analyze the method described below for classical simulation, we need the notion of the trace distance, a quantum generalization of the L_1 distance. The trace distance, $D(\rho, \sigma)$, between density matrices ρ and σ is defined by

$$D(\rho, \sigma) = \text{tr}|\rho - \sigma|/2.$$

Note that we use the same notation $D(\cdot, \cdot)$ for the trace distance and the L_1 distance, with the meaning to be determined from context. The properties of the trace distance are discussed in detail in [1], and we need only a few properties here:

- The trace distance satisfies the triangle inequality, $D(\rho, \tau) \leq D(\rho, \sigma) + D(\sigma, \tau)$.
- The trace distance is doubly convex, meaning that if p_j are probabilities, and ρ_j and σ_j are corresponding density matrices, then

$$D\left(\sum_j p_j \rho_j, \sum_j p_j \sigma_j\right) \leq \sum_j p_j D(\rho_j, \sigma_j).$$

- The trace distance is contractive. That is, if \mathcal{E} is a trace-preserving quantum operation, then $D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq D(\rho, \sigma)$.
- The trace distance has the stability property $D(\rho_1 \otimes \sigma, \rho_2 \otimes \sigma) = D(\rho_1, \rho_2)$.
- Suppose E_a are POVM elements describing the statistics from an arbitrary quantum measurement.
Let \(r(y) \equiv \text{tr}(\rho E_y) \) and \(s(y) \equiv \text{tr}(\sigma E_y) \) be the corresponding probability distributions for \(\rho \) and \(\sigma \). Then the \(L_1 \) distance and the trace distance are related by the inequality
\[
D(\rho(y), s(y)) \leq D(\rho, \sigma).
\] (18)

We now describe how the classical simulation is performed, followed by an analysis to determine the accuracy of the simulation.

Variables used in the classical simulation: For each \(j = 1, \ldots, q(n) \) we let \(\vec{s}_j \) be a three-dimensional real vector. Each vector \(\vec{s}_j \) is valid, meaning that it has the following three properties: (a) Each component of \(\vec{s}_j \) is in the range \([-1,1]\); (b) Each component is specified to \(l \) bits of precision, where \(l \) is a number that will be fixed by the later analysis, in order to ensure the overall accuracy is at least \(\epsilon \); and (c) \(||\vec{s}_j|| \leq 1 \).

We use the notation \(\vec{s} \equiv (\vec{s}_1, \ldots, \vec{s}_{q(n)}) \) to denote the \(3q(n) \)-dimensional real vector containing all the \(\vec{s}_j \) as subvectors. We say that \(\vec{s} \) is valid if each \(\vec{s}_j \) is valid. It will also be convenient to introduce the notation
\[
\rho(\vec{s}) \equiv \frac{I + \vec{s}_1 \cdot \vec{\sigma}}{2} \otimes \cdots \otimes \frac{I + \vec{s}_{q(n)} \cdot \vec{\sigma}}{2}.
\] (19)

Note that \(\rho(\vec{s}) \) is a legitimate density operator of \(q(n) \) qubits, whenever \(\vec{s} \) is valid. The idea of the classical simulation is that the variables \(\vec{s} \) will be used to represent the state \(\rho(\vec{s}) \). Note that \(\rho(\vec{s}) \) is not a variable used in the classical simulation; it is simply a mathematical notation convenient in the analysis of the simulation.

Initial state of the classical variables: Suppose the initial state of the quantum computer is \(|x\rangle\), where \(x \) has binary expansion \(x_1 \ldots x_{q(n)} \). If \(x_j = 0 \) we set \(\vec{s}_j = (0,0,1) \) initially, while if \(x_j = 1 \) we set \(\vec{s}_j = (0,0,-1) \) initially.

Simulating a single-qubit gate: A single-qubit gate can be regarded as a two-qubit separable gate in which one of the qubits is acted on trivially. Thus, we need only consider the case of two-qubit separable gates.

Simulating a two-qubit separable gate: Suppose \(\mathcal{E} \) is a two-qubit separable gate, and it acts on qubits \(A \) and \(B \). We simulate this gate by using \(\vec{s} \) as input to the following stochastic gate simulation procedure, which produces a valid \(3q(n) \)-dimensional vector, \(\vec{s}' \), as output. We then set \(\vec{s} = \vec{s}' \), and repeat over, going through each gate, \(\mathcal{E}_1, \ldots, \mathcal{E}_{p(n)} \), in the computation, until a final output value of \(\vec{s} \) is produced, at which point we proceed to the simulation of the final measurement, as described below.

Gate simulation procedure:

- **Input to the procedure:** A valid vector, \(\vec{s} \).
- **Body of the procedure:** Find valid three-vectors \(\vec{s}_A' \) and \(\vec{s}_B' \), a probability distribution, \(p_j \), containing at most 16 elements, and with each \(p_j \) specified to \(l \) bits of precision, such that

\[
D\left(\mathcal{E} \left(\frac{I + \vec{s}_A \cdot \vec{\sigma}}{2} \otimes \frac{I + \vec{s}_B \cdot \vec{\sigma}}{2} \right) \right) \leq c 2^{-l},
\] (20)

for some constant \(c \) that does not depend on \(\mathcal{E}, A \) or \(B \). To see that this is possible, we make use of the fact that
\[
\mathcal{E} \left(\frac{I + \vec{s}_A \cdot \vec{\sigma}}{2} \otimes \frac{I + \vec{s}_B \cdot \vec{\sigma}}{2} \right)
\] (21)

is a separable, two-qubit state, and therefore, by Carathéodory’s theorem \[23\], can be written in the form
\[
\sum_j p_j \frac{I + \vec{t}_A \cdot \vec{\sigma}}{2} \otimes \frac{I + \vec{t}_B \cdot \vec{\sigma}}{2},
\] (22)

where the \(p_j \) are probabilities, \(\vec{t}_A, \vec{t}_B \) are real-three-vectors satisfying \(||\vec{t}_A||, ||\vec{t}_B|| \leq 1 \), and there are at most 16 terms in the sum. Choosing the \(p_j \) to be probabilities which are \(l \)-bit approximations to the \(q_j \), and the \(\vec{s}_A', \vec{s}_B' \) to be valid vectors which approximate \(\vec{t}_A, \vec{t}_B \) also to \(l \) bits, we obtain the result.

Note that while Carathéodory’s theorem ensures that such probabilities and vectors exist, finding them may be a non-trivial task. The obvious technique, a brute force search over probability distributions and valid vectors, requires \(\text{poly}(2^l) \) operations, where \(\text{poly}(\cdot) \) is some fixed polynomial function. Although we believe it likely that better techniques — perhaps even polynomial in \(l \) — are possible, for the purposes of the present simulation \(\text{poly}(2^l) \) turns out to be sufficient.

Output of the procedure: For \(k \neq A, B \) we define \(\vec{s}_k = \vec{s}_k' \). Set \(\vec{s}' \equiv (\vec{s}_1', \ldots, \vec{s}_{q(n)}') \). Note that \(\vec{s}' \) is valid, by construction. With probability \(p_j \), output \(\vec{s}' = \vec{s}' \).

Simulating the final measurement in the computational basis: Let \(S \) be the subset of qubits that is measured at the output of the quantum computation. For each \(k \in S \), let \(\vec{s}_k' \) be the third component of \(\vec{s}_k \). The measurement result for that qubit is 0 with probability \((1 + \vec{s}_k^3)/2\), and 1 with probability \((1 - \vec{s}_k^3)/2\). Note that, by definition, \(\vec{\sigma}_2(y) \) is the distribution over possible outcomes, \(y \), produced by following this procedure.

Analysis: The key to the analysis of the classical simulation is a simple equivalence between the classical simulation and certain measurements on quantum states. Suppose we define \(\vec{\sigma}^m(\vec{s}) \) to be the probability distribution on valid vectors after \(m \) steps of the simulation procedure, that is, after \(\mathcal{E}_1, \ldots, \mathcal{E}_m \) have been simulated. For \(m = 0, \ldots, p(n) \) define
\[
\vec{\sigma}^m \equiv \sum_{\vec{s}} \vec{p}^m(\vec{s}) \rho(\vec{s}).
\] (23)

It is not difficult to see that the distribution obtained by measuring \(\vec{\sigma}^m(\vec{s}) \) in the computational basis of the subset \(S \) is exactly the same as the output distribution \(\vec{\sigma}_2(y) \) produced by the classical simulation.
For $m = 0, \ldots, p(n)$ define σ^m to be the state of the actual quantum computer after m gates have been applied. Thus $\sigma^0 = |x\rangle\langle x|$, $\sigma^1 = \mathcal{E}_1(\sigma^0)$, and so on. The idea of the proof that the classical simulation works well is to bound the distance between σ^m and $\tilde{\sigma}^m$. We do this using the following lemma.

Lemma 1 Suppose a valid vector \tilde{s} is used as input to the gate simulation procedure with probability $p(\tilde{s})$, and let $p(s')$ be the corresponding output distribution on valid vectors. Define

$$\sigma = \sum_{\tilde{s}} p(\tilde{s})p(\tilde{s})$$
(24)

$$\sigma' = \sum_{s'} p(s)p(s')$$
(25)

If the gate simulation procedure simulates the gate \mathcal{E}, then we have

$$D(\mathcal{E}(\sigma), \sigma') \leq c2^{-l},$$
(26)

where c is the constant introduced earlier in the discussion of the gate simulation procedure.

Proof: Let $p(s'|\tilde{s})$ be the probability that s' is output by the gate simulation procedure, given that \tilde{s} is input. Then we have

$$\sigma' = \sum_{\tilde{s}} p(\tilde{s}) \sum_{\tilde{s}'} p(\tilde{s}') p(\tilde{s}|\tilde{s}) p(\tilde{s}').$$
(27)

Applying the double convexity of the trace distance gives

$$D(\mathcal{E}(\sigma), \sigma') \leq \sum_{\tilde{s}} p(\tilde{s}) D\left(\mathcal{E}(p(\tilde{s})), \sum_{\tilde{s}'} p(\tilde{s}') p(\tilde{s}|\tilde{s}) \right).$$
(28)

By inspection of the construction used in the gate simulation procedure, notably Eq. (20), and the stability property for trace distance, we have

$$D\left(\mathcal{E}(p(\tilde{s})), \sum_{\tilde{s}'} p(\tilde{s}') p(\tilde{s}|\tilde{s}) \right) \leq c2^{-l}.$$
(29)

Combining this observation with Eq. (28) gives

$$D(\mathcal{E}(\sigma), \sigma') \leq c2^{-l},$$
(30)

which was the desired result. \qed

Proposition 2 For $m = 0, \ldots, p(n)$, $D(\sigma^m, \tilde{\sigma}^m) \leq cm2^{-l}$.

Proof: We induct on m. For $m = 0$ the result follows from the fact that $\sigma^0 = \tilde{\sigma}^0$. Assuming the result is true for m, we now prove it for $m + 1$. By the triangle inequality

$$D(\sigma^{m+1}, \tilde{\sigma}^{m+1}) \leq D(\sigma^{m+1}, \mathcal{E}_{m+1}(\tilde{\sigma}^m)) + D(\mathcal{E}_{m+1}(\tilde{\sigma}^m), \tilde{\sigma}^{m+1}).$$
(31)

By definition $\sigma^{m+1} = \mathcal{E}_{m+1}(\sigma^m)$, so this equation may be rewritten

$$D(\sigma^{m+1}, \tilde{\sigma}^{m+1}) \leq D(\mathcal{E}_{m+1}(\sigma^m), \mathcal{E}_{m+1}(\tilde{\sigma}^m)) + D(\mathcal{E}_{m+1}(\tilde{\sigma}^m), \tilde{\sigma}^{m+1}).$$
(32)

Applying the contractivity of the trace distance to the first term, and Lemma 1 to the second term, we obtain

$$D(\sigma^{m+1}, \tilde{\sigma}^{m+1}) \leq D(\sigma^m, \tilde{\sigma}^m) + c2^{-l}.$$
(33)

Applying the inductive hypothesis to the first term gives

$$D(\sigma^{m+1}, \tilde{\sigma}^{m+1}) \leq cm2^{-l} + c2^{-l} = c(m + 1)2^{-l},$$
(34)

which completes the induction. \qed

We conclude from the proposition that $D(\sigma^m, \tilde{\sigma}^m) \leq cp(n)2^{-l}$. It follows from Eq. (18) that the simulated distribution $\tilde{p}_x(y)$ and the actual distribution $p_x(y)$ are related by the inequality

$$D(p_x(y), \tilde{p}_x(y)) \leq cp(n)2^{-l}.$$
(35)

Choosing $l = \lceil \log_2(cp(n)/\epsilon) \rceil$ we therefore have

$$D(p_x(y), \tilde{p}_x(y)) \leq \epsilon.$$
(36)

The total number of times the gate simulation procedure is performed is $p(n)$, and the number of operations performed in one iteration of the gate simulation procedure scales as poly(2^l), so the total number of operations in the classical simulation is $O(poly(p(n)/\epsilon))$, where we abuse notation by letting poly(\cdot) be a (new) polynomial function. We have proved the following theorem:

Theorem 4 Let \mathcal{G} be a fixed set of one- and two-qubit gates. Suppose all two-qubit gates in \mathcal{G} are separable. Let $\{C_n\}$ be a uniform family of quantum circuits of size $p(n)$, acting on $q(n)$ qubits, where both $p(n)$ and $q(n)$ are polynomials. The initial state of the computer is assumed to be a computational basis state, $|x\rangle$. The computation is concluded by performing a measurement in the computational basis on some prespecified subset, S, of the qubits, yielding a probability distribution $p_x(y)$ over possible measurement outcomes. Then for any $\epsilon > 0$ it is possible to sample from a distribution $\tilde{p}_x(y)$ satisfying $D(p_x(y), \tilde{p}_x(y)) < \epsilon$ using a classical algorithm taking $O(poly(p(n)/\epsilon))$ steps, where poly(\cdot) is some fixed polynomial.

Results related to Theorem 4 have been obtained in the past, but, so far as we have determined, no proof of this result has previously been published. In particular, Aharonov and Ben-Or [11] studied the role of entanglement in quantum computation, proving that many-party entanglement must be present in order for a quantum computation to be difficult to simulate classically. This conclusion was subsequently clarified and extended by Jozsa and Linden [24]. However, the conclusions of
IV. ROBUSTNESS OF QUANTUM STATES

To understand how robust quantum gates are to noise, it is useful to first review prior work on the robustness of entangled quantum states. This section describes Vidal and Tarrach’s [12] definitions and results on the robustness of quantum states, introduces a novel measure of robustness, and relates that measure to Vidal and Tarrach’s measure. The novel measure and its properties will be of especial interest in applications to gate robustness.

Let \(\rho \) be a quantum state of a bipartite system, \(AB \), and let \(\sigma \) be a state of \(AB \). Vidal and Tarrach [12] define the \textit{robustness of} \(\rho \) relative to \(\sigma \), \(R(\rho|\sigma) \), to be the smallest non-negative number \(t \) such that the state

\[
\frac{1}{1+t}\rho + \frac{t}{1+t}\sigma
\]

is separable. Equivalently, we can define \(R(\rho|\sigma) \) to be the smallest non-negative number \(t \) such that \(\rho + t\sigma \) is separable; this latter definition in terms of unnormalized quantum states will frequently be useful in later work. Note that [12] specify that \(\sigma \) be separable; however, we will find it convenient to extend the definition to non-separable \(\sigma \) also, specifying that \(R(\rho|\sigma) \equiv +\infty \) if no value of \(t \) exists such that the state in Eq. (38) is separable. At first sight one is tempted to ask why we choose this definition for the robustness, and not the related quantity

\[
\min\{p : p \geq 0, (1-p)\rho + p\sigma \text{ is separable}\}. \quad (39)
\]

This latter definition has a more obvious physical interpretation as the minimal probability with which \(\sigma \) can be mixed with \(\rho \) to obtain a separable state. It follows from the definitions that the quantity of Eq. (39) is equal to \(R(\rho|\sigma)/(1 + R(\rho|\sigma)) \). The reason we do not work with the quantity of Eq. (39), despite its apparently more compelling physical interpretation, is that the robustness defined in Eq. (38) has useful and easy-to-prove convexity properties not satisfied by Eq. (39), namely, \(R(\rho|\sigma) \) is convex in both the first and the second entry.

A special case of \(R(\rho|\sigma) \) of particular interest is the \textit{random robustness}, defined to be the robustness of \(\rho \) relative to the maximally mixed state \(1/d_A d_B \). We denote the random robustness of a state \(\rho \) by \(R_r(\rho) \equiv R(\rho||1/d_A d_B) \). Vidal and Tarrach [12] found a useful formula for the random robustness of a pure state \(\psi \) of \(AB \) in terms of a Schmidt decomposition \(\psi = \sum_j \psi_j |j\rangle |j\rangle \) with ordered Schmidt coefficients \(\psi_1 \geq \psi_2 \geq \ldots \geq 0 \):

\[
R_r(\psi) = \psi_1 \psi_2 d_A d_B. \quad (40)
\]

So far we have discussed the robustness of a state \(\rho \) relative to another fixed state \(\sigma \). We now define the \textit{robustness} of \(\rho \), \(R(\rho) \), to be the minimum relative robustness \(R(\rho|\sigma) \) over all separable \(\sigma \). Thus, the robustness of \(\rho \) is a measure of how much local noise can be mixed with \(\rho \) before it becomes separable.

C. Separability-preserving gates

It is straightforward to extend the proof of Theorem 1 in a variety of ways, without changing the conclusion that a classical simulation of the quantum circuit is possible. In particular, we can change the gates in \(G \) so they can act on any \textit{bounded number} of qudits, rather than two-qubit systems.

Furthermore, the proof relies on properties of gates in \(G \) that are weaker than separability. In particular, the gates in \(G \) need only be \textit{separability-preserving}, that is, \(\mathcal{E}(\rho) \) is separable for any separable state \(\rho \). We denote the class of separability-preserving gates by \(\text{SP} \). To see that this is a weaker property, note that \(\text{swap} \) is separability-preserving since it maps product states to product states, but \(\text{SWAP} \) is not separable, since it can generate entanglement with the aid of local ancilla systems. More generally, note that \(\mathcal{E}_{AB} \) is separable with respect to \(A : B \) if and only if \(\mathcal{E}_{AB} \otimes I_{A'B'} \) is separability-preserving with respect to \(AA' : BB' \).

Since the proof of Theorem 1 only relied on the state in Eq. (21) being separable, it still holds when the available gates are all separability-preserving. However, no simple and easy-to-use characterization of the separability-preserving gates is known, which is why we prefer, for most of the remainder of this paper, to work with the separable gates. We do make occasional later use of separability-preserving gates, so it is convenient to note here a few of their properties. Note that all separable gates are in \(\text{SP} \), and for gates operating on multiple qudits, any permutation of the qudits (for example \(\text{SWAP} \)) is in \(\text{SP} \). Furthermore, \(\text{SP} \) is convex and is closed under composition, so

\[
\text{SP} \ni \text{Hull} \{ \mathcal{E} \circ \mathcal{P} : \mathcal{E} \text{ separable and } \mathcal{P} \text{ a permutation} \}. \quad (37)
\]

However, it is unclear whether this convex hull describes all of \(\text{SP} \). For example, the operation which measures a pair of a qubits in the Bell basis and stores the answer in the computational basis (i.e. \(|00\rangle + |11\rangle \)/\(\sqrt{2} \) becomes \(|00\rangle, (|00\rangle - |11\rangle)/\sqrt{2} \) becomes \(|01\rangle \), etc...) is certainly in \(\text{SP} \) though is does not seem as though it can be expressed as a convex combination of \(\mathcal{E}_k \circ \mathcal{P}_k \) for separable \(\mathcal{E}_k \) and permutations \(\mathcal{P}_k \) [36].
We have defined three notions of robustness for quantum states, \(R(\rho|\sigma) \), \(R_e(\rho) \), and \(R(\rho) \). All three of these definitions have assumed that \(\rho \) is a state of a bipartite quantum system, \(AB \). However, robustness is easily extended to more than two parties, and it is convenient to have a notation to express the extended notion. Suppose, for example, that \(\rho \) and \(\sigma \) are states of a tripartite system \(ABC \). Then \(R^{A:BC}(\rho||\sigma) \) is defined to be the minimal value of \(t \) such that \(\rho + t\sigma \) is separable with respect to \(A:B:C \).

Of course, a many-party quantum system can be decomposed in many different ways, by grouping subsystems together. So, for example, we can define a notion of robustness, \(R^{A:BC}(\rho|\sigma) \), when system \(B \) and \(C \) are grouped together. More explicitly, \(R^{A:BC}(\rho||\sigma) \) is defined to be the minimal value of \(t \) such that \(\rho + t\sigma \) is separable with respect to \(A : B : C \).

These examples may be extended in a natural way to the random robustness and robustness, as well as to the case where more systems are present, and to more complicated groupings of subsystems. Most of our work concerns two-party robustness, and so we usually do not explicitly include superscripts in expressions like \(R^{A:B}(\rho) \).

The robustness has many useful properties, which are explored in detail in [12]. We mention just a few of the more striking properties here. The robustness is invariant under local unitary operations. Moreover, it is an entanglement monotone, that is, cannot be increased under local operations and classical communication. It is also a convex function of \(\rho \). As for the random robustness, Vidal and Tarrach [12] have obtained an elegant formula for the robustness in the special case of a pure state, \(\psi \), of a bipartite system, \(AB \),

\[
R(\psi) = \left(\sum_j \psi_j \right)^2 - 1, \tag{41}
\]

where \(\psi_j \) are the Schmidt coefficients for \(\psi \). In the course of their proof, Vidal and Tarrach explicitly construct a state, \(\sigma_\psi \), such that \(|\psi\rangle\langle \psi| + R(\psi)\sigma_\psi \) is separable. \(\sigma_\psi \) may be expressed in terms of the Schmidt decomposition \(\psi = \sum_j \psi_j |j\rangle \langle j| \) by

\[
\sigma_\psi = \frac{1}{R(\psi)} \sum_{k \neq l} \psi_k \psi_l |k\rangle \langle k| \otimes |l\rangle \langle l|. \tag{42}
\]

In the definition of robustness we mixed \(\rho \) with a separable quantum state, \(\sigma \), trying to determine what minimal level of mixing will produce separability. Another natural definition of robustness would allow \(\sigma \) to range over arbitrary density matrices, not just separable density matrices. That is, we can define \(R_g(\rho) = \min_\sigma R(\rho||\sigma) \), where the \(g \) subscript indicates that we are minimizing globally over all possible density matrices \(\sigma \).

How are \(R_g(\rho) \) and \(R(\rho) \) related? It is clear from the definitions that \(R_g(\rho) \leq R(\rho) \). We will prove that the reverse inequality is also true when \(\rho = \psi \) is a pure state, so we have

\[
R_g(\psi) = R(\psi) = \left(\sum_j \psi_j \right)^2 - 1. \tag{43}
\]

We do not know whether \(R_g(\rho) = R(\rho) \) in general. To complete the proof of Eq. (43), we show that if there exists a density operator \(\sigma \) such that

\[
\psi + t\sigma \text{ is separable, then } t \geq (\sum_j \psi_j)^2 - 1. \tag{44}
\]

(Our proof both extends and simplifies a similar proof in [12] for the robustness \(R(\rho) \).)

The proof is based on the positive partial transpose criterion of Peres [28]. Let us denote the partial transpose on systems \(A \) and \(B \) by \(T_A \) and \(T_B \), respectively. Then the positive partial transpose criterion implies that if the state of Eq. (44) is separable, then

\[
0 \leq \psi^{T_B} + t\sigma^{T_B}, \tag{45}
\]

where \(\leq \) indicates an operator inequality, that is, we are saying that the operator on the right-hand side is positive.

We now use Eq. (45) to deduce a lower bound on \(t \). To do this we introduce an operator, \(M \), defined by \(M \equiv I - \text{SWAP} \), where \(\text{SWAP} \equiv \sum_{jk} |j\rangle \langle k| \otimes |k\rangle \langle j| \) is the linear operator interchanging states of system \(A \) and system \(B \). Note that \(M \) is positive, since \(\text{SWAP}^2 = I \) implies that \(\text{SWAP} \) has eigenvalues \(\pm 1 \), and thus \(M \) is a diagonalizable operator with eigenvalues \(0 \) and \(2 \).

Since the trace of a product of two positive operators is non-negative, it follows from Eq. (45) that

\[
0 \leq \text{tr}(M\psi^{T_B}) + t\text{tr}(M\sigma^{T_B}). \tag{46}
\]

Using a little algebra and the observation that for any two operators, \(K \) and \(L \), \(\text{tr}(KL^{T_B}) = \text{tr}(K^{T_A}L) \), the previous equation may be rewritten

\[
-\text{tr}(M^{T_A}\psi) \leq t\text{tr}(M^{T_A}\sigma). \tag{47}
\]

Direct calculation shows that

\[
M^{T_A} = I - |\alpha\rangle\langle \alpha|, \tag{48}
\]

where \(|\alpha\rangle = \sum_j |j\rangle \langle j| \) is the (unnormalized) maximally entangled state. Using Eq. (48) it follows that \(\text{tr}(M^{T_A}\psi) = 1 - (\sum_j \psi_j)^2 \) and \(\text{tr}(M^{T_A}\sigma) \leq \text{tr}(\sigma) = 1 \). Substituting these results into Eq. (47) gives

\[
\left(\sum_j \psi_j \right)^2 - 1 \leq t, \tag{49}
\]

which was the desired bound.
V. ROBUSTNESS OF QUANTUM GATES

We now extend state robustness to quantum gates. Suppose E and F are trace-preserving quantum operations on a composite system AB. Then we define the robustness of E relative to F, $R(E||F)$, to be the minimum value of t such that
\[
\frac{1}{1+t} E + \frac{t}{1+t} F
\]
is separable. Equivalently, $R(E||F)$ can be defined to be the minimal value of t such that $E + tF$ is separable. Applying the operation-separability theorem we immediately find the useful formula
\[
R(E||F) = R^{R_{A:B:BR_B}}(\rho(E)||\rho(F)). \tag{51}
\]
Just as for quantum states, the notion of gate robustness extends in a natural way to systems of more than two parties, and we use notations analogous to those introduced earlier, such as $R^{R_{A:B:C}}(\rho(E)||\rho(F))$ and $R^{R_{A:B:C:D}}(\rho(E)||\rho(F))$, to describe this scenario. Note that these notations will also be extended in a natural way to the random robustness and robustness of a quantum gate, as defined below. As for quantum states, when identifying superscripts are omitted we assume that the quantum gate in question acts on a bipartite system, AB.

Motivated by several different classes of noise commonly occurring in physical systems, we now use the notion of relative gate robustness to define and study several different measures of robustness for quantum gates. First is the random robustness, which we define and study in Sec. V A. Also in this subsection, we use results on the random robustness to place bounds on the threshold for quantum computation. Two other measures of robustness are the separable robustness and the global robustness, which we define in Sec. V B and use to prove bounds on the threshold for quantum computation. Our results on these measures of robustness are less complete, and so our discussion is more limited.

A. Random robustness of quantum gates

1. Definition and basic properties

The random robustness of E, $R_r(E)$, is defined to be equal to the robustness of E relative to the completely depolarizing channel, $D(\rho) = I/d_Ad_B$ for all states ρ of system AB:
\[
R_r(E) = R(E||D). \tag{52}
\]
The random robustness is especially interesting because it measures the robustness of E against complete randomization of systems A and B. Another way of stating this is to imagine that we are applying the operation E with probability $1 - p$, and randomizing the systems A and B with probability p. Then the threshold probability at which this gate crosses the separable-inseparable threshold is:
\[
\frac{R_r(E)}{1 + R_r(E)} \tag{53}
\]
From Eq. (51) we see that the random robustness for an operation is related to the random robustness of a state by
\[
R_r(E) = R^{R_{A:B:BR_B}}(\rho(E)). \tag{54}
\]
Specializing to the case where E is a unitary quantum operation, U, we see that $R_r(U) = R^{R_{A:B:BR_B}}(\rho(U))$. However, $\rho(U)$ is a pure state. We showed earlier that $\rho(U)$ has Schmidt coefficients $u_j/\sqrt{d_A d_B}$, where u_j are the Schmidt coefficients of U. This observation, together with Eqs. (51) and (10), implies the formula
\[
R_r(U) = d_A d_B u_1 u_2, \tag{55}
\]
where we order the Schmidt coefficients of U so that $u_1 \geq u_2 \geq \ldots \geq 0$. (Note that in deriving this equation, we have replaced d_A by d_A^2, and d_B by d_B^2 in Eq. (10), since we are working with robustness for the $R_{A:A:BR_B}$ system.)

It is, perhaps, not immediately clear what the physical relevance of the random robustness is. After all, in real physical systems, the effects of noise on a quantum gate will not usually be to simply mix in some depolarization, together with the gate. Despite this, there is still a very good physical reason to be interested in the random robustness. The reason is that, as we show in more explicit detail below, the random robustness can be used to analyze the particular noise models which have been used in estimating bounds on the threshold for quantum computation. In turn, it has been argued that by analyzing and correcting for the effects of noise in those particular models, it is possible to make general statements about a wide class of physically reasonable noise models. Thus, although the physical scenario considered in the definition of the random robustness appears rather special, it will enable insight into much more general physical situations.

As an example, we may ask how robust the controlled-NOT is against the effects of depolarizing noise. The controlled-NOT has Schmidt decomposition $\sqrt{2}|0\rangle\langle 0| \otimes I/\sqrt{2} + \sqrt{2}|1\rangle\langle 1| \otimes X/\sqrt{2}$, so Eq. (55) implies that $R_r(CNOT) = 8$. Interestingly, we can also show that the controlled-NOT is the most robust two-qubit gate. To see this, note that unitarity of U implies that the Schmidt coefficients u_j satisfy $\sum_j u_j^2 = d_A d_B$, and thus $u_1^2 + u_2^2 \leq d_A d_B$. It follows from this observation and Eq. (55) that $R_r(U) \leq d_A^2 d_B^2/2$, and thus no two-qubit unitary gate can have random robustness greater than 8, which is the random robustness of the controlled-NOT. These results are worth highlighting as a proposition:

Proposition 3 For any quantum operation E, $R_r(E) \leq d_A^2 d_B^2/2$. If $d_A = d_B = 2$ then $R_r(E) \leq R_r(CNOT) = 8$.

The random robustness has many physically interesting properties. Below we list six easily-proved properties, before discussing in more depth two less easily-proved properties. Our discussion of these properties is, in part, motivated by the framework of “dynamic strength” measures introduced in [12], although the properties we discuss are interesting independent of that motivation. In [13] it was argued that these properties, especially the property of chaining, discussed below, are essential if a measure can be said to quantify the strength of a quantum dynamical operation as a physical resource. By showing that these properties are satisfied, we thus show that the random robustness is a good measure of dynamic strength.

1. **Non-negativity and locality:** $R_r(E) \geq 0$ with equality if and only if E is a separable quantum operation.

2. **Local unitary invariance:** If U_A, U_B, V_A, V_B are all local unitary quantum operations, with the system being acted on indicated by the subscript, then

$$R_r((U_A \otimes U_B) \circ E \circ (V_A \otimes V_B)) = R_r(E). \quad (56)$$

3. **Exchange symmetry:** $R_r(E) = R_r(\text{SWAP} \circ E \circ \text{SWAP})$, that is, the random robustness is not affected if we interchange the role of the systems.

4. **Time-reversal invariance:** For a unitary, U, $R_r(U) = R_r(U^\dagger)$.

5. **Convexity:** The random robustness $R_r(E)$ is convex in E.

6. **Reduction:** Suppose a trace-preserving quantum operation E acting on AB is obtained from a trace-preserving quantum operation F acting on ABC as follows:

$$E(\rho_{AB}) = \text{tr}_C[F(\rho_{AB} \otimes \sigma_C)], \quad (57)$$

for some fixed state σ_C of system C. Then the random robustness satisfies the reduction property, namely, $R_r^{A:B}(E) \leq R_r^{A:BC}(F)$.

The random robustness satisfies two other physically interesting properties that are more difficult to prove. First of all, the random robustness is continuous in E. Physically, this is self-evident: making a small change in E should not too drastically affect its robustness against the effects of noise. We now prove a quantitative form of this statement for unitary gates.

Proposition 4 (Continuity of random robustness)

Let U and V be unitary gates acting on a system A of dimension d_A, and a system B of dimension d_B. Then

$$|R_r(U) - R_r(V)| \leq d_M d_A d_B \|U - V\|^2, \quad (58)$$

where $d_M \equiv \min(d_A, d_B)$.

Proof: Let u_j and v_j be the ordered Schmidt coefficients of U and V, respectively. From Eq. (55),

$$|R_r(U) - R_r(V)| = d_A d_B |u_1 u_2 - v_1 v_2|$$

$$= d_A d_B |u_1 - v_1| |u_2 + v_2|$$

$$\leq d_A d_B |u_1 - v_1| |u_2 - v_2| + |v_1| |u_2 - v_2|$$

$$\leq d_A^2 d_B^2 (|u_1 - v_1| + |u_2 - v_2|)$$

$$\leq d_A^2 d_B^2 \sum_j |u_j - v_j|. \quad (59)$$

The second part of the proof is to observe that by the Cauchy-Schwartz inequality,

$$\sum_j |u_j - v_j| \leq d_M \sum_j (u_j^2 + v_j^2 - 2 u_j v_j)$$

$$= 2d_M d_A d_B \left(1 - \sum_j u_j v_j \right). \quad (60)$$

Applying Proposition 4, we obtain

$$\sum_j |u_j - v_j| \leq 2d_M d_A d_B \|U - V\|^2 \quad (61)$$

Combining with Eq. (59) gives the result. \qed

Another physically interesting question is to ask how the random robustness of a gate $E_1 \circ E_2$ composed of quantum gates E_1 and E_2 relates to the random robustness of the individual gates. The following proposition bounds the random robustness of the combined operation:

Proposition 5 (Chaining for random robustness)

Let E_1 be a doubly stochastic quantum operation, that is, a quantum operation which is both trace-preserving and unital (i.e. $E_1(I) = I$), and let E_2 be an arbitrary trace-preserving quantum operation. Then

$$R_r(E_1 \circ E_2) \leq R_r(E_1) + R_r(E_2) \quad (63)$$

Note that unitary operations are trace-preserving and unital, so the proposition is true when E_1 and E_2 are unitary. There is an equivalent way of phrasing Proposition 5 that is physically more intuitive. Suppose we define

$$C_r(E) \equiv \ln(1 + R_r(E)). \quad (64)$$

Then $C_r(E)$ is monotonically related to the random robustness of E, and thus can be thought of as carrying the same qualitative information about the robustness of the gate. Simple algebra shows that the conclusion of Proposition 5 may be recast in the form

$$C_r(E_1 \circ E_2) \leq C_r(E_1) + C_r(E_2). \quad (65)$$

The simplicity and clarity of this form may, perhaps, make it more useful in some circumstances.

Proof: By definition of the random robustness, the quantum operations

$$E_1 + R_r(E_1) D, \quad (66)$$

$$E_2 + R_r(E_2) D \quad (67)$$
are separable quantum operations. Furthermore, since the composition of two separable quantum operations is separable, and \(\mathcal{E}_1 \circ \mathcal{D} = \mathcal{D} \circ \mathcal{E}_2 = \mathcal{D} \circ \mathcal{D} = \mathcal{D} \) (using the unitality of \(\mathcal{E}_1 \)), we can compose the operations of Eqs. (60) and (61) to see that

\[
\mathcal{E}_1 \circ \mathcal{E}_2 + (R_r(\mathcal{E}_1) + R_r(\mathcal{E}_2) + R_r(\mathcal{E}_1)R_r(\mathcal{E}_2)) \mathcal{D}
\]

is separable, and thus

\[
R_r(\mathcal{E}_1 \circ \mathcal{E}_2) \leq R_r(\mathcal{E}_1) + R_r(\mathcal{E}_2) + R_r(\mathcal{E}_1)R_r(\mathcal{E}_2),
\]

as required.

2. Random robustness and the threshold for quantum computation

Suppose we are trying to do fault-tolerant quantum computation using single-qubit gates and some entangling two-qubit unitary gate, \(U \). \(U \) might be the controlled-NOT gate; it can also be any other entangling two-qubit gate, at least in principle, and still be capable of universal quantum computation when assisted by single-qubit gates. Suppose furthermore that the \(U \) gates are afflicted with noise of a special type, namely, immediately after a gate acts, each qubit is independently depolarized with probability \(p \). Let \(U(\rho) = U \rho U^\dagger \) denote the quantum operation corresponding to \(U \). Then the quantum operation describing this noise process is

\[
\mathcal{E}(\rho) = (1-p)^2 U(\rho) + p(1-p) (D \otimes D) \circ U(\rho)
\]

\[
+ p(1-p) (I \otimes D) \circ U(\rho) + p^2 (D \otimes D) \circ U(\rho).
\]

Note that \((D \otimes D) \circ U(\rho) = (D \otimes D)(\rho) \), so this expression can be simplified to

\[
\mathcal{E}(\rho) = (1-p)^2 U(\rho) + p(1-p) (D \otimes I) \circ U(\rho)
\]

\[
+ p(1-p) (I \otimes D) \circ U(\rho) + p^2 (D \otimes D)(\rho).
\]

This expression cannot immediately be analyzed using our expressions for the random robustness of a gate, due to the two terms in which a single qubit is depolarized. Fortunately, we can simplify the analysis by showing that these terms are always separability-preserving, that is, \((D \otimes I) \circ U \) and \((I \otimes D) \circ U \) are both in \(\text{SP} \). This holds because for any \(\rho, (D \otimes I) \circ U(\rho) = \frac{1}{d_1} \otimes \text{tr}_A U \rho U^\dagger \), which is manifestly separable, and a similar result holds for \((I \otimes D) \circ U \). Note that such gates may not be separable: for example \((D \otimes I) \circ \text{SWAP} + (I \otimes D) \circ \text{SWAP} \) is separability-preserving, but not separable.

From this observation, and Eq. (71), it follows that \(\mathcal{E} \) is in \(\text{SP} \) if \((1-p)^2 U + p^2 (D \otimes D) \) is separable. Comparing with the earlier results on random robustness, we see that this becomes true when \(p^2/(1-p)^2 = R_r(U) = 8 \). We see that \(\mathcal{E} \) will be separability-preserving when:

\[
p \geq \frac{R_r(U) - \sqrt{R_r(U)}}{R_r(U) - 1} = \frac{8 - \sqrt{8}}{7} \approx 0.74,
\]

and thus, when this condition is satisfied, the quantum computation may be efficiently simulated on a classical computer. If we assume, as is usually done, that quantum computers may not be efficiently simulated on a classical computer, then it follows that the threshold for quantum computation is guaranteed to be less than 0.74.

In their work on obtaining upper bounds for the threshold, Aharonov and Ben-Or [11] considered a similar model of quantum computation, in which each qubit is independently dephased after each quantum gate. The main difference between their model and ours is that we have used depolarizing, rather than dephasing noise. Which of these more accurately describes the noise occurring in a real physical system depends, of course, upon the physical system in question. Aharonov and Ben-Or’s obtained an upper bound of \(p_{th} < 0.97 \); of course, this cannot be directly compared to our upper bound, since the noise models are different.

B. Robustness against more general noise

1. Definitions and general results

Depolarization is only one of the many kinds of noise that can afflict a quantum gate. Other classes of noise motivate other measures of robustness for quantum gates. We now introduce two more measures of robustness, based on two particularly natural classes of noise. The first measure is the separable robustness, which measures the resilience of the gate against separable noise. The separable robustness, \(R_s(\mathcal{E}) \), is defined to be the minimum relative robustness \(R(\mathcal{E}||F) \) over all separable, trace-preserving quantum operations \(F \). The second measure is the global robustness, which measures the resilience of the gate against arbitrary noise. The global robustness, \(R_g(\mathcal{E}) \), is defined to be the minimum relative robustness \(R(\mathcal{E}||F) \) over all trace-preserving quantum operations \(F \).

\(A \text{ priori, it is apparent that } R_g(\mathcal{E}) \leq R_s(\mathcal{E}) \), but it is not clear whether or not the two quantities are equal. Furthermore, the gate robustnesses may be related to state robustness by the following inequalities:

\[
R(\rho(\mathcal{E})) \leq R_s(\mathcal{E}),
\]

\[
R(\rho(U)) \leq R_g(\rho).
\]

To see the first of these inequalities, note that \(\mathcal{E} + R_s(\mathcal{E}) F \) is separable, for some separable quantum operation \(F \). It follows that

\[
\rho(\mathcal{E} + R_s(\mathcal{E}) F) = \rho(\mathcal{E}) + R_s(\mathcal{E}) \rho(F)
\]
is a separable quantum state. Since $\rho(\mathcal{F})$ is separable, Eq. (73) follows from the definition of $R(\rho(\mathcal{E}))$. The proof of Eq. (74) follows similar lines, but also makes use of the fact, noted in Eq. (68), that $R_g(\psi) = R(\psi)$ for any pure state ψ.

Do the inequalities (73) and (74) hold with equality? We do not know the answer to this question, but suspect that the answer is, in general, “no”, in both cases. Our reasoning for this suspicion is as follows. Recall from Sec. III in particular, Theorem 3, that not all separable states can be written as $\rho(\mathcal{F})$ for some separable quantum operation \mathcal{F}. Recall also the construction, Eq. (42), used in finding the separable σ_ψ which minimizes $R(\psi \| \sigma_\psi)$. Using this construction, it is not difficult to find examples of unitary U for which the separable state $\sigma_\rho(U)$ does not correspond to any trace-preserving, separable quantum operation, as characterized in Theorem 3.

Fortunately, there is a large and interesting class of gates for which the inequalities (73) and (74) hold with equality. This class includes the controlled-NOT and SWAP gates.

Theorem 5 Let U be a bipartite unitary gate acting on systems A and B with dimensions d_A and d_B. Assume U has Schmidt decomposition

$$ U = \sum_j u_j A_j \otimes B_j, \quad (76) $$

where the A_j satisfy $A_j A_j^\dagger = I/d_A$ and the B_j satisfy $B_j^\dagger B_j = I/d_B$. That is, the A_j and B_j are all proportional to unitary operators. Then

$$ R_g(U) = R_s(U) = R(\rho(U)) = \left(\sum_j u_j^2 \right)^2 \frac{d_A d_B}{d_A + d_B} - 1. \quad (77) $$

Furthermore, the quantum operation \mathcal{F} defined by

$$ \mathcal{F}(\rho) = \sum_{k \neq l} u_k u_l \left(A_k \otimes B_l \right) \rho \left(A_k^\dagger \otimes B_l^\dagger \right) \frac{1}{\sum_{k \neq l} u_k u_l} \quad (78) $$

is an instance of the type of noise against which U is least robust. That is, \mathcal{F} is trace-preserving, and $U + R(\rho(U))\mathcal{F}$ is separable. Finally, \mathcal{F} is manifestly separable. Indeed, \mathcal{F} can be implemented by local operations and classical communication.

The application of the theorem of most interest for us is the CNOT. It is not necessarily obvious that the CNOT has a Schmidt decomposition with the properties required by the theorem; after all, we earlier wrote the Schmidt decomposition for the CNOT as $\sqrt{2} \left(|0\rangle \otimes |0\rangle \right) / \sqrt{2} + \sqrt{2} \left(|1\rangle \otimes \sqrt{X} \right) / \sqrt{2}$. And this is not of the required form. However, while the Schmidt coefficients are unique, the operators appearing in the Schmidt decomposition may not be unique, when two or more of the co-efficients are degenerate. It turns out that there is an alternative form of the Schmidt decomposition for the CNOT which is of the right form. This follows, for example, from Proposition 4 of 18, and can also be verified directly, with a little algebra. The explicit form is not particularly illuminating, so we omit it here.

Eq. (77) now tells us that $R_g(\text{CNOT}) = R_s(\text{CNOT}) = 1$. Comparing with the random robustness, $R_s(\text{CNOT}) = 8$, we see that the CNOT is substantially less robust against general noise than depolarizing noise. From Eq. (73) we deduce that the quantum operation

$$ \mathcal{F}(\rho) = \left(|0\rangle \otimes |0\rangle \right) \rho \left(|0\rangle \otimes |0\rangle \right) $$

$$ + \left(|1\rangle \otimes |1\rangle \otimes X \right) \rho \left(|1\rangle \otimes |1\rangle \otimes X \right) \quad (79) $$

is an example of a noise process such that $\text{CNOT} + \mathcal{F}$ is a separable quantum operation. Note, furthermore, that \mathcal{F} can be implemented via local operations and classical communication, by measuring the first qubit, and then conditionally applying I or X to the second qubit, depending upon whether the outcome of the measurement was zero or one. It is interesting that \mathcal{F} thus corresponds to a classical CNOT operation.

Proof: We already know that $R(\rho(\mathcal{E})) \leq R_g(\mathcal{E}) \leq R_s(\mathcal{E})$, so it suffices to prove that $R_s(\mathcal{E}) \leq R(\rho(\mathcal{E}))$. To prove this, we use the construction of Vidal and Tarrach, Eq. (42), to see that $\rho(\mathcal{E}) + R(\rho(\mathcal{E}))\sigma_\rho(\mathcal{E})$ is separable, where

$$ \sigma(\rho(U)) = \frac{1}{R(\rho(U))} \sum_{k \neq l} u_k u_l |k\rangle \langle k| \otimes |l\rangle \langle l|. \quad (80) $$

$$ |k\rangle = (I_A \otimes \rho_k) |\alpha\rangle; \quad |l\rangle = (B_l \otimes I_B) |\beta\rangle. \quad (81) $$

Using the fact that the A_k and B_l are proportional to unitary operations, a calculation shows that $tr_{AB}(\sigma(\rho(U)))$ is a completely mixed, separable state. By Theorem 3, we conclude that there exists a trace-preserving, separable quantum operation \mathcal{F} such that $\rho(\mathcal{F}) = \sigma(\rho(U))$. (Another way of seeing this is to directly verify that \mathcal{F} as defined by Eq. (80) satisfies $\rho(\mathcal{F}) = \sigma(\rho(U))$.) Thus

$$ \rho(U) + R(\rho(\mathcal{E}))\mathcal{F} = \rho \left(U + R(\rho(U))\mathcal{F} \right) \quad (82) $$

is separable, whence $U + R(\rho(U))\mathcal{F}$ is separable. It follows from the definition that $R_s(\mathcal{E}) \leq R(\rho(\mathcal{E}))$, which completes the proof. \hfill \Box

It is not difficult to verify that $R_s(\mathcal{E})$ and $R_g(\mathcal{E})$ satisfy properties similar to those satisfied by the random robustness, and thus can be regarded as measures of dynamical strength. The major difference is continuity: the lack of an explicit formula for the separable and global robustness has prevented us from obtaining quantitative continuity statements like those we obtained for the random robustness, although it is still not difficult to argue that both quantities are continuous.

2. **General robustness and the threshold for quantum computation**

As with the random robustness, we can use R_s and R_g to obtain bounds on the threshold for quantum com-
putation. The method for obtaining a bound is similar. Suppose we have a quantum computer capable of arbitrary single-qubit gates and a single two-qubit gate, U. Then there exists \mathcal{E} such that $U + R_g(U)\mathcal{E}$ is separable. Now we choose the following noise model: whenever we apply U, there is probability p that instead \mathcal{E} occurs. If $p \geq R_g(U)/(1 + R_g(U))$ then this set of operations can be efficiently simulated classically, and we therefore conclude that $p_{bh} \leq R_g(U)/(1 + R_g(U))$. Similar remarks apply for $R_g(U)$, only the noise in that case is restricted to be separable.

Note that both these noise models are more adversarial, or pessimistic, than the noise model in Sec. V A 2. and the threshold bounds are thus tighter. In particular, these models allow correlated two-qubit noise, while the earlier model assumes independent noise on the two qubits. Which model is more realistic obviously depends upon which system a gate is implemented in. However, we do expect correlated errors similar to those in the present models to play a role in many real-world two-qubit gates, due to interactions occurring during the gate.

The bounds obtained using R_s and R_g are, in general, tighter than those obtained by studying R_r, as in Sec. V A 2. However, without specific formulas for $R_s(U)$ and $R_g(U)$ it is difficult to bound thresholds on the threshold without resorting to numerical calculation. Fortunately, if the only entangling gate available is of the form described by Theorem 6 then we can calculate the optimal noise process, and the corresponding robustness $R_s(U) = R_g(U) = R(\rho(U))$. For example, for the CNOT, this gives the bound $p_{bh} \leq 1/2$ on the threshold, since $R_g(\text{CNOT}) = R_s(\text{CNOT}) = 1$.

An alternative approach to proving bounds on the threshold is provided by the following general bound on the robustness. The bound says, roughly, that if all two-qubit unitary gates are available, then without loss of generality the worst noise is depolarizing noise.

Theorem 6 For any trace-preserving quantum operation \mathcal{E}, $\max_U R(U\|\mathcal{E}) \geq \max_k R_k(U) = d_A^2 d_B^2/2$.

As a corollary of the theorem, we see that if all one- and two-qubit gates are available, but we don’t make any assumptions about the noise, the worst possible noise will be depolarizing noise, $\mathcal{D} \otimes \mathcal{D}$, and the corresponding bound on the threshold is $p_{bh} \leq 8/9$.

Proof: Completely depolarizing noise can be represented as applying a random unitary operation V_k with probability p_k, where each $V_k = V_k^A \otimes V_k^B$ is a product of local gates and $\sum_k p_k V_k \rho V_k^\dagger \propto I$ for any density operator ρ. Thus $\mathcal{D} = \sum p_k V_k$ where $V_k(\rho) = V_k \rho V_k^\dagger$.

Since R is convex in the second argument and $\mathcal{D} \circ \mathcal{E} = \mathcal{D}$ for any operation \mathcal{E}, it follows that for any unitary U,

$$R(U\|\mathcal{D}) = R(U\|\mathcal{D} \circ \mathcal{E}) = R\left(U \left| \sum_k p_k V_k \circ \mathcal{E} \right. \right) \leq \sum_k p_k R(U\|V_k \circ \mathcal{E}) = \sum_k p_k R(V_k^d U\|\mathcal{E}),$$

where the last equality follows from the fact that V_k is a product of local gates.

Let $R_0 = \max_U R(U\|\mathcal{E}) = \max_U R(V_k^d U\|\mathcal{E})$. Then Eq. (83) implies that $R(U\|\mathcal{D}) \leq \sum_k p_k R_0 = R_0$ for any U, so $\max_U R(U\|\mathcal{D}) \leq \max_U R(U\|\mathcal{E})$ for any trace-preserving operation \mathcal{E}. \square

We conclude with a result tying our techniques more closely to the physical situation. Suppose we are attempting to perform quantum computation in the laboratory using a noisy gate, \mathcal{E}, meant to approximate an ideal, unitary quantum gate, U. U is known exactly, for it is a theoretical construct, and \mathcal{E} has been experimentally determined using quantum process tomography \(^{31, 32}\). For what values of p is it possible to find a trace-preserving quantum operation, \mathcal{G}, such that $\mathcal{E} = p\mathcal{U} + (1-p)\mathcal{G}$? The answer to a generalization of this question is provided by the following theorem:

Theorem 7 Let \mathcal{E} and \mathcal{F} be trace-preserving quantum operations, and let $0 \leq p \leq 1$. Then there exists a trace-preserving quantum operation \mathcal{G} such that $\mathcal{E} = p\mathcal{F} + (1-p)\mathcal{G}$ if and only if the support of $\rho(\mathcal{F})$ is contained within the support of $\rho(\mathcal{E})$,

$$p \leq \frac{1}{\lambda_1(\rho(\mathcal{E})^{-1}\rho(\mathcal{F}))},$$

where $\lambda_1(\cdot)$ denotes the largest eigenvalue, and the inverse is a generalized inverse if $\rho(\mathcal{E})$ is not invertible.

The theorem is a straightforward consequence of the following theorem, and the Jamiołkowski \(^{33}\) isomorphism between states and operations.

Theorem 8 Let ρ and σ be density matrices, and let $0 \leq p \leq 1$. Then there exists a density matrix τ such that $\rho = p\sigma + (1-p)\tau$ if and only if the support of σ is contained within the support of ρ, and

$$p \leq \frac{1}{\lambda_1(\rho^{-1}\sigma)},$$

where $\lambda_1(\cdot)$ denotes the largest eigenvalue, and the inverse is a generalized inverse if ρ is not invertible.

Proof: Suppose $\rho = p\sigma + (1-p)\tau$. Since σ and τ are positive, it is clear that the support of both σ and τ must be contained within the support of ρ. It will be convenient to work in the vector space corresponding to the support of ρ, so ρ is invertible. Since τ is positive, we have $\rho \geq p\sigma$, as an operator inequality. Pre- and post-multiplying by $\rho^{-1/2}$ gives $I \geq p\rho^{-1/2}\sigma \rho^{-1/2}$. Comparing the largest eigenvalues of these two operators gives the desired inequality. The converse is proved by running the argument backward. \square
VI. CONCLUSION

We have defined several measures of the robustness of quantum gates against the effects of noise, and used these measures to prove that certain noisy quantum gate sets can be efficiently simulated on a classical computer, even if the methods of fault-tolerant computation are used. Our results imply an upper bound on the threshold for quantum computation, \(p_{\text{th}} \leq 0.5 \). A key component in proving these results was a proof that any quantum computation involving only separable quantum gates can be efficiently simulated on a classical computer. Furthermore, we have studied gate robustness as a measure of the strength of a quantum operation, considered as a physical resource, and shown that robustness satisfies many properties such a strength measure is expected to have.

Acknowledgments

Thanks to the quantum information theory group at the University of Queensland for valuable discussions on gate robustness and entanglement. MAN thanks Michael Hall for enlightening and enjoyable discussions which led to the proof of Theorem 14. AWH thanks the Centre for Quantum Computer Technology at the University of Queensland for its hospitality and acknowledges support from the NSA and ARDA under Army Research Office contract number DAAD19-01-1-06.

[1] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, 2000).
[2] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995), arXiv:quant-ph/9503016.
[3] R. Landauer, in Proc. of the Drexel-4 Symposium on Quantum Nonintegrability - Quantum Classical Correspondence, edited by D. H. Feng and B.-L. Hu (1995).
[4] P. W. Shor, Phys. Rev. A 52, 2493 (1995).
[5] A. Steane, Proc. Roy. Soc. Lond. A 452, 2551 (1996).
[6] D. Aharonov and M. Ben-Or, arXiv:quant-ph/9906129 (1999).
[7] D. Gottesman, Ph.D. thesis, California Institute of Technology, Pasadena, CA (1997), arXiv:quant-ph/9705052.
[8] A. Y. Kitaev, in Quantum Communication, Computing, and Measurement, edited by A. S. O. Hirota and C. M. Caves (Plenum Press, New York, 1997), pp. 181–188.
[9] E. Knill, R. Laflamme, and W. H. Zurek, Proc. Roy. Soc. A 454, 365 (1998), arXiv:quant-ph/9702058.
[10] J. Preskill, Proc. Roy. Soc. A: Math., Phys. and Eng. 454, 385 (1998).
[11] D. Aharonov and M. Ben-Or, 37th Annual Symposium on the Foundations of Computer Science (FOCS) (1996), arXiv:quant-ph/9611029.
[12] G. Vidal and R. Tarrach, Phys. Rev. A 59, 141 (1999), arXiv:9806094.
[13] M. A. Nielsen, C. M. Dawson, J. L. Dodd, A. Gilchrist, D. Mortimer, T. J. Osborne, M. J. Bremner, A. W. Harrow, and A. Hines, arXiv:quant-ph/0208077 (2002).
[14] M. A. Nielsen, Ph.D. thesis, University of New Mexico (1998), arXiv:quant-ph/0011036.
[15] H. Barnum, arXiv:quant-ph/9910072 (1999).
[16] G. Vidal, D. Jonathan, and M. A. Nielsen, Phys. Rev. A 62, 012304 (2000), arXiv:quant-ph/9910099.
[17] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. 78, 2275 (1997), arXiv:quant-ph/9702027.
[18] H. Barnum, M. A. Nielsen, and B. W. Schumacher, Phys. Rev. A 57, 4153 (1998), arXiv:quant-ph/9702049.
[19] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 59, 1070 (1999), arXiv:quant-ph/9804053.
[20] J. I. Cirac, W. Dur, B. Kraus, and M. Lewenstein, Phys. Rev. Lett. 86, 544 (2001), arXiv:quant-ph/0007057.
[21] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A 60, 1888 (1999), arXiv:quant-ph/9807091.
[22] A. C. Yao, Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science pp. 352–361 (1993).
[23] R. T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970).
[24] R. Jozsa and N. Linden, arXiv:quant-ph/0201143 (2002).
[25] S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, Phys. Rev. Lett. 83, 1054 (1999), arXiv:quant-ph/9811018.
[26] N. C. Menicucci and C. M. Caves, Phys. Rev. Lett. 88, 167901 (2002), arXiv:quant-ph/0111152.
[27] N. Linden and S. Popescu, Phys. Rev. Lett. 87, 047901 (2001), arXiv:quant-ph/9906008.
[28] A. Peres, Phys. Rev. Lett. 77, 1413 (1996), arXiv:quant-ph/9604005.
[29] J. L. Brylinski and R. Brylinski, Universal quantum gates (2002), chap. II in [34], arXiv:quant-ph/0108062.
[30] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, arXiv:quant-ph/0207072 (2002).
[31] I. L. Chuang and M. A. Nielsen, J. Mod. Opt. 44, 2455 (1997), arXiv:quant-ph/9610001.
[32] J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 78, 390 (1997).
[33] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[34] R. K. Brylinski and G. Chen, eds., Mathematics of Quantum Computation, Computational Mathematics (Chapman & Hall / CRC Press, 2002).
[35] Quantum operations are sometimes known as completely positive maps. We use the more physically oriented terminology, since it is physical applications we have in mind. Note that we use “quantum gate” and “quantum operation” interchangeably, depending on whether the context is quantum computation or more general. A review of the theory of quantum operations may be found in [3].
[36] We thank Keiji Matsumoto for pointing this out to us.