Determinants, Persistence and Dynamics of Energy Poverty: An Empirical Assessment Using German Household Survey Data

Katharina Drescher1 & Benedikt Janzen 2

16.12.2020

1 Statistics Austria
2 KPM Center for Public Management, University of Bern
What is Energy Poverty?

- Experiencing an inadequate level of domestic energy services, but no uniform definition
- Primary indicators to capture different dimension of energy poverty by EU:
 - Arrears on utility bills
 - Low absolute energy expenditures
 - High share of energy expenditure on income
 - Inability to keep the house adequately warm
- Related to energy inefficient homes, high energy costs and low household income
Measuring Energy Poverty

Expenditure-based approach
It is based on monthly household expenditures on domestic energy services relative to household income, with a household considered energy poor if the share of income spent on energy is more than twice the national median.

Consensual approach
It is based on self-reported inability to secure a certain level of domestic energy services.
Motivation

- Just and fair energy transition
- Negative welfare effects
 - Reduction of mental and physical health
 - Reduction of children’s educational attainment
- Requirement of targeted policy measures to tackle energy poverty
Starting with Boardman (1991), there is a well-established literature body on the extent of energy poverty in the UK and Ireland.

Growing number of studies on the prevalence of energy poverty in other European countries.

Empirical findings on determinants of energy poverty are rather limited:
- Healy & Clinch (2004) find that the long-term ill and lone-parent families are among the most energy vulnerable households in Ireland.
- Heindl & Schuessler (2019) find that income, energy expenditure, employment status and housing conditions determine energy poverty in Germany.

Few studies in dynamic context:
- Phimister et al. (2015) find that there is a greater movement out of expenditure-based energy poverty relative to subjective energy poverty and income poverty in Spain.
- Chaton & Lacroix (2018) show that energy poverty in France is mostly a transitory state.
Data

- German Socio-Economic Panel (GSOEP)
- Information on socio-economic, socio-demographic characteristics and housing conditions
- 3 waves (2016-2018)
- Balanced panel
- 9,032 households
Figure 1: (a) PDF of electricity, heating and energy expenditures (b) income profiles and average monthly expenditures on domestic energy services, pooled sample 2016-2018

Note: Dashed horizontal line represents the mean value of the distribution, while the solid horizontal line represents the median value.

	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10
Average income (€)	766.28	1083.18	1366.20	1484.92	1688.54	1969.93	2135.88	2452.79	2927.97	4543.67
Electricity cost (€)	46.43	48.14	48.05	47.97	48.53	49.56	50.52	50.73	52.58	59.70
Heating cost (€)	55.59	61.58	64.47	65.25	67.22	68.51	69.07	68.78	73.31	57.87
Total energy cost (€)	113.52	116.72	114.31	113.22	116.05	119.07	119.59	119.62	127.19	147.27
Share of income spent on energy (%)	13.71	10.13	8.61	7.62	6.87	6.26	5.68	4.87	4.34	3.24
Energy Use Intensity (€/eqm)	1.44	1.31	1.20	1.15	1.15	1.13	1.04	1.01	1.02	1.03
Empirical Strategy

1. **Dynamic random effects probit model** → identifying driving factors of energy poverty dynamic panel data model

2. **Identification function & multinominal logit model** → differing between chronic and transient energy poverty
Dynamic Random Effects Probit

\[y_{it} = 1[y_{it}^* > 0] \quad (1) \]

\[y_{it}^* = \gamma y_{it-1} + x_{it}' \beta + u_i + \epsilon_{it}, \quad i = 1, ..., N; \quad t = 1, ..., T \quad (2) \]

- But: initial conditions problem
- Solution: specifying a distribution of heterogeneity conditional on the energy poverty status of a household at the beginning of our panel (Wooldridge, 2005, 2010):

\[u_i = \alpha_0 + \alpha_1 y_{i0} + \bar{x}_i' \alpha_2 + \nu_i, \quad \nu_i \sim N(0, \sigma^2), \quad (3) \]

\[y_{it}^* = \gamma y_{it-1} + x_{it}' \beta + \alpha_0 + \alpha_1 y_{i0} + \bar{x}_i' \alpha_2 + \nu_i + \epsilon_{it}, \quad (4) \]
Identification Function

\[
\psi_{\tau}(y_i; z) = \begin{cases}
2, & \text{if } d_i \geq \tau, \\
1, & \text{if } 0 < d_i < \tau, \\
0, & \text{if } d_i = 0.
\end{cases}
\]

(5)

where \(y_i \) is a energy poverty measure, \(z \) the energy poverty line, \(d_i \) the fraction of periods where \(y_i < z \) and \(\tau \) is an arbitrary duration line.

Multinominal Logit

\[
Pr(y_{ij} = \psi \mid x_i') = \frac{e^{x_i'\beta_{\psi}}}{1 + \sum_{k=1}^{2} e^{x_i'\beta_{\psi}}},
\]

\(\psi = 0, 1, 2, \)

(6)

where never poor (\(\psi = 0 \)) is the reference group.
Results

Table 1: Regression Results: Dynamic Random Effects Probit

Household Type	Expenditure-based	Consumer	Consumer 2	
	(1)	(2)	(3)	(4)
Single parent	0.030**	0.067**	0.027**	0.030**
Lower secondary degree	0.089	0.016**	0.020**	0.016**
Upper secondary degree	0.028**	0.049**	0.070**	0.070**
University degree	0.026**	0.026**	0.026**	0.026**
Other	0.008**	0.008**	0.008**	0.008**
Thermal insulation	-0.020**	-0.011**	-0.069**	-0.069**
Construction Year	Ref.	Ref.	Ref.	Ref.
Built before 1949	0.009**	0.007**	0.041	0.041
Built after 1979	-0.017**	-0.017**	-0.017**	-0.017**
Heating Type	Ref.	Ref.	Ref.	Ref.
Detached	-0.053**	-0.053**	-0.053**	-0.053**
Apartment building	-0.049**	-0.049**	-0.049**	-0.049**
Heating Type	Ref.	Ref.	Ref.	Ref.
Oil	0.026**	0.026**	0.026**	0.026**
Electricity	0.089	0.089	0.089	0.089
District heating	0.006**	0.006**	0.006**	0.006**
Other	0.066	0.066	0.066	0.066
Environmental Behaviour	Ref.	Ref.	Ref.	Ref.
Renewable energy	-0.032**	-0.032**	-0.032**	-0.032**
Climate change concern	-0.005	-0.005	-0.005	-0.005
Single parent	Yes	Yes	Yes	Yes
Labour Force Status	Yes	Yes	Yes	Yes
Household type	Yes	Yes	Yes	Yes
Income	Yes	Yes	Yes	Yes
Number of obs	11105	11105	11105	11105

Notes: **p < 0.01, *p < 0.05, (1) standard errors in parentheses.
Table 2: Distribution of energy poverty duration states

Energy poverty duration state	Share of households	Number of households	Share of households	Number of households
Never	0.809	7,309	0.958	8,649
Transient	0.144	1,305	0.038	345
Chronic	0.046	418	0.004	38
Total	1	9032	1	9032
Understanding determinants and dynamics of energy poverty is crucial for policy making.

Expenditure-based energy poverty higher than consensual energy poverty.

Facing energy poverty in one period significantly raises the probability of being energy poor in the subsequent period.

Energy poverty is mostly a transitory state.
Caveats & Next Steps

Caveats
- Short panel limits sufficient analysis of energy poverty dynamics
- No consideration of the depth of energy poverty

Next Steps
- Adding recent wave of GSOEP (year 2019) to data set
- Including population share weights
Thank you for your attention!
Boardman, B. (1991)
Fuel Poverty: From Cold Homes to Affordable Warmth
Energy Policy 12(3), 45 - 678.

Chaton, C., Lacroix, E. (2018)
Does France have a fuel poverty trap?
Energy Policy 113, 258-268

Healy, J.D., Clinch, J.P. (2004)
Quantifying the severity of fuel poverty, its relationship with poor housing and reasons for non-investment in energy-saving measures in Ireland
Energy Policy 32, 207-220.

Heindl, P., Schuessler, R. (2019)
A deprivation-based assessment of energy poverty: Conceptual problems and application to Germany
ZEW Discussion Paper 19-036.

Phimister, E., Vera-Toscano, E., Roberts, D. (2015)
The Dynamics of Energy Poverty: Evidence from Spain
Economics of Energy & Environmental Policy 4, 153-166.

Wooldridge, J.M. (2005)
Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity
Journal of applied econometrics 20(1), 39-54.

Wooldridge, J.M. (2010)
Econometric analysis of cross section and panel data
MIT press