Renin–Angiotensin–Aldosterone System Gene Polymorphisms and Coronary Artery Disease: Detection of Gene-Gene and Gene-Environment Interactions

En-Zhi Jia, Zhen-Xia Xu*, Chang-Yan Guo, Li Li, Yan Gu, Tie-Bing Zhu, Lian-Sheng Wang, Ke-Jiang Cao, Wen-Zhu Ma and Zhi-Jian Yang

Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, *author contributed equally to this paper

Key Words
Renin–angiotensin–aldosterone System • Gene-load • Interaction • Coronary heart disease

Abstract
Objective: The objective of this study was to explore the association between coronary artery disease and genetic polymorphisms of the renin–angiotensin–aldosterone system (RAAS) pathway. In addition, we examined the interactions between demographic and lifestyle risk factors (environmental factors including age, sex, smoking status, alcohol intake) and RAAS polymorphisms on disease risk. Methods: A total of 1089 subjects who underwent coronary angiography were enrolled in this study. Eight RAAS polymorphisms were genotyped in this population: the G2350A (rs4343) polymorphism in exon 17 of the angiotensin converting enzyme (ACE) gene, 1166A→C (rs5186) and 573C/T (rs5182) in the angiotensin II type 1 receptor (AGTR1) gene, the -344C→T transversion (rs1799998) in the aldosterone synthase (CYP11B2) gene, and the G-217A (rs5049), G-6A (rs5051), M235T (rs699; T4072C), and T174M (rs4762; C3889T) polymorphisms in the angiotensinogen (AGT) gene. Subjects with coronary heart disease were defined as those with at least 50% stenosis in at least one major coronary artery, and, the severity of coronary atherosclerosis was defined by the Gensini scoring system. Results: Compared to the subjects with AA genotype, the subjects with AG + GG genotype of rs1799998 had significant lower gensini score (p=0.029). After adjusting for age, gender, cigarette smoking, and alcohol intake status, the AG genotype (OR 0.717 95%CI 0.541–0.950, p=0.021) and the AG + GG genotype (OR 0.730 95%CI 0.559–0.954, p=0.021) distributions of rs1799998 were significantly different between the cases and controls compared to the AA genotype. Subjects with three at-risk loci had increased risk of coronary artery disease compared to subjects carrying 0 or 1 risk-associated polymorphism (OR [95%CI]:1.579 [1.077–2.316], p=0.019), and the significance of the association was not reduced after adjusting for age, sex, cigarette smoking, or alcohol intake (adjusted OR [95%CI]:1.673 [1.116–2.507], p=0.013). The results of multifactor-dimensionality reduction analysis revealed an interaction effect of CYP11B2 -344C→T, age, and smoking status on the risk of coronary heart disease (training OR [95%CI]: 3.7685 [2.8463–4.9895], p<0.0001; testing OR [95%CI]: 2.7583 [1.2038–6.3203], p=0.015).
Conclusions: Subjects who carried the G allele of the rs1799998 polymorphism significantly associated with coronary heart disease and severity of coronary atherosclerosis estimated by the Gensini score in the whole population of the study. And, multiple RAAS gene polymorphisms are associated with coronary artery disease. The interaction of the CYP11B2 -344C→T polymorphism (rs1799998), age, and smoking status is also associated with enhanced risk of coronary artery disease.

Copyright © 2012 S. Karger AG, Basel

Introduction

Atherosclerotic cardiovascular disease is a major health burden in the United States and throughout the world [1, 2]. Coronary atherosclerosis is a multifactorial and polygenic disorder predisposed by genetic, environmental, and lifestyle factors [3]. Among these predisposing genetic factors, disruption of the renin–angiotensin–aldosterone system (RAAS) is clearly involved in the development of atherosclerosis and coronary artery disease [4]. Genes of the RAAS pathway are therefore promising candidate loci, but several studies on the associations between coronary heart disease and single-nucleotide polymorphisms (SNPs) within RAAS pathway genes have presented conflicting results [5-11]. The reasons for these discrepancies are unknown, but possible confounds and statistical artifacts include insufficient sample size, different population histories or genetic backgrounds, and population stratification. Furthermore, the RAAS pathway is part of a regulatory system with multiple redundancies, so variations in single alleles may only impact disease when other compensatory mechanisms fail [12, 13].

Given that atherosclerosis and coronary heart disease are multigenetic diseases, the focus should be on the combined effects of multiple susceptibility genes [14] that interact with demographic, lifestyle, and external factors (environmental or non-genetic risk factors) [15]. We hypothesized that the interactions between multiple genetic variants of the RAAS pathway and several non-genetic risk factors are associated with coronary heart disease. In the present cross-sectional study, we explored the associations between coronary heart disease and combinations of RAAS pathway genetic variants, as well as the interactions between RAAS polymorphisms and several risk factors, in 1089 consecutive subjects with coronary atherosclerosis confirmed by angiography.

Materials and Methods

Study subjects
From 2004 to 2006, 1089 consecutive subjects who underwent coronary angiography for suspected or known coronary atherosclerosis at the First Affiliated Hospital of Nanjing Medical University in China were enrolled in this study. The exclusion criteria for these subjects have been described previously [16]. In brief, subjects with spastic angina pectoris, heart failure, adrenal dysfunction, thyroid dysfunction, or infection within two weeks of the angiogram were excluded. This study was approved by the ethics committee of the First Affiliated Hospital of Nanjing Medical University and all subjects gave written informed consent.

Coronary Angiography
Coronary arteries were cannulated with 6F catheters by the Judkins technique [17]. The presence of stenosis of the coronary arteries was evaluated after direct intracoronary injection of isosorbide dinitrate (ISDN; 2.5 mg in 5 ml solution injected over 20 s). One minute after the ISDN injection, coronary angiography was performed in several projections over one minute at 30 frames/s [16]. Subjects with coronary heart disease were defined as those with at least 50% stenosis in at least one major coronary artery [18]. In addition, the severity of coronary atherosclerosis was defined by the Gensini scoring system. This is based on the hypothesis that the severity of coronary heart disease should be considered to be a consequence of the functional significance of the vascular narrowing and the extent of the area perfused by the involved vessel(s). In this scoring system, a greater reduction of the lumen diameter is assigned a higher score than a distal lesion [19].

Cigarette smoking and alcohol intake
Cigarette smoking status and alcohol intake were assessed with a standardized questionnaire. The subjects’ smoking status and alcohol intake were classified as “never smoked” or “smoking” and “never drank” or “drinking” (the positive group included both former and current smokers or drinkers). Smoking was defined as at least 1 cigarette per day within the last month before examination, and drinking was defined as consuming at least 50 g of alcohol per week (5 drinks/week).

Anthropometric measurements
Anthropometric measurements were done after patients removed their shoes and upper garments and donned an examination gown. Each measurement was carried out twice and the mean value used. Height was measured to the nearest 0.1 cm using a wall-mounted stadiometer. Weight was measured to the nearest 0.1 kg using a hospital balance beam scale. Body mass index (BMI) was calculated as weight (kg) divided by the square of height (m²). Blood pressure was measured in the right arm with the participant seated and the arm exposed.

Laboratory measurements
The 12-h fasting blood samples were drawn in the morning. Thereafter, the blood samples were centrifuged, and sera
were separated, collected and analysed. All laboratory measurements were conducted at the central clinical laboratory in the First Affiliated Hospital of Nanjing Medical University. The level of total cholesterol (CH), triglyceride (TG), fasting blood glucose (FBG), fasting high-density lipoprotein-cholesterol (HDL-c), and fasting low-density lipoprotein-cholesterol (LDL-c) were determined by enzymatic procedures on an automated autoanalyzer (AU 2700 Olympus, 1st Chemical Ltd, Tokyo, Japan).

DNA genotyping

Genomic DNA was extracted by the saturated sodium chloride method [20, 21]. Polymerase chain reactions were used to amplify DNA fragments. A total of 8 polymorphisms in 4 genes of the RAAS system were selected as candidate loci, G2350A (rs4343) in exon 17 of the angiotensin converting enzyme (ACE) gene, 1166A→C (rs5186) in the angiotensin II type 1 receptor (AGTR1) gene, 573C/T (rs5182) in the angiotensin II type 1 receptor (AGTR1) gene, -344C→T (rs1799998) in the aldosterone synthase (CYP11B2) gene, and G-217A (rs5049), G-6A (rs5051), M235T (rs699; T4072C), and T174M (rs4762; C3889T) of the angiotensinogen (AGT) gene. TaqMan-MGB Pre-Designed SNP assays purchased from Applied Biosystems (Foster City, CA) were used to genotype the candidate loci. Each PCR reaction was performed in a 5 µl volume containing 5 ng genomic DNA, 2x TaqMan® Universal PCR Master Mix and 0.083 µl 40x Assay Mix. All reactions were run in 384-well plates on an ABI PRISM 7900HT Sequence Detection system (Applied Biosystems, Foster City, CA) at the Chinese National Human Genome Center (Shanghai, China). The PCR program consisted of an initial 10 min denaturation at 95°C, followed by 20 cycles of 15 s at 92°C and 1 min at 60°C, then 30 cycles of 15 s at 89°C and 1.5 min at 60°C. Fluoresce signals were end-point read and automatically analyzed by SDS software 2.3 (ABI). Each 384-well plate had 2 samples from a known carrier as positive controls and 2 blank samples as negative controls for genotyping quality assessment. Result scoring was performed blind to CHD status.

Gene-load score

A gene-load score was calculated to evaluate the combined effect of RAAS pathway genes on the risk of coronary heart disease. The gene-load score can represent an individuals’ ‘genetic burden’ and reflects the combined effect of multiple risk alleles within one pathway [12, 22]. To compute the gene-load score for each patient, we assumed a dominant model for variant alleles where heterozygote and variant homozygote genotypes were combined into one genotype for each of the eight loci (0 = reference genotype; 1 = risk genotypes). The loci of the rs1799998 (-344C→T) polymorphism associates with lower coronary heart disease risk, so a reversed coding was applied; the risk of the genotype AA was coded as 1 and AG+GG was coded as 0. The overall RAAS gene-load score could vary from 0 to 7, reflecting the eight RAAS gene polymorphisms genotyped, each with a weight of 1. Due to the low number of subjects with more than 4 variance alleles, RAAS gene-load score categories 5, 6, and 7 were all reclassified as category 4. Similarly, category 0 was combined with category 1 due to the low number of subjects with no allelic variants. The gene-load score was analyzed using the lowest gene-load score category (one or zero) as the reference category.

Variable	Coronary heart disease (n=727)	Control (n=362)	P value
Age, y	63.07±10.63	59.57±10.06	0.000
Gender (male/female)	582/145	234/128	0.000
Smoking	54.9% (399/727)	33.1% (120/362)	0.000
Drinking	23.4% (170/727)	18.5% (67/362)	0.066
Body mass index, kg/m²	24.82±4.01	25.22±3.16	0.043
Systolic blood pressure, mmHg	130(120-145)	130(120-140)	0.299
Diastolic blood pressure, mmHg	80(70-85)	80(70-90)	0.007
Total cholesterol, mmol/L	4.08(3.52-4.69)	4.07(3.49-4.55)	0.508
Triglyceride, mmol/L	1.39(1.02-2.00)	1.43(0.98-2.04)	0.926
Fasting blood glucose, mmol/L	4.88(4.42-5.87)	4.65(4.29-5.16)	0.000
High-density lipoprotein-cholesterol, mmol/L	0.96(0.83-1.13)	1.04(0.90-1.21)	0.000
Low-density lipoprotein-cholesterol, mmol/L	2.41(1.92-2.96)	2.31(1.90-2.75)	0.041

Table 1. Demographic and biochemical characteristics of the subjects
The Statistics Package for Social Sciences (ver. 16.0; SPSS Inc., Chicago) was employed to analyze the data. Due to the normally distributed characteristics, the data of age, and body mass index were presented as mean ± SD and comparisons between case and control and among group were analyzed by the independent-sample T tests and one way ANOVA respectively. Skewed data, including levels of systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (CH), triglyceride (TG), fasting blood glucose (FBG), fasting high-density lipoprotein-cholesterol (HDL-c), fasting low-density lipoprotein-cholesterol (LDL-c), and Gensini score were expressed as median and quartile range and comparisons were analyzed using the nonparametric test. Categorical variables, including gender, cigarette smoking, and alcohol drinking, were compared between case and control by chi-squared analysis. The exact test was employed to evaluate the Hardy–Weinberg equilibrium of the polymorphisms. The associations between coronary heart disease risk and individual polymorphisms or gene-load scores were revealed by logistic regression (univariant and multivariant, with adjustment for age, gender, cigarette smoking, and alcohol intake).

The multifactor-dimensionality reduction (MDR) method [22] was employed to evaluate gene-gene interactions and interactions between RAAS genes and external risk factors.

Results

Baseline characteristics of the subjects

A total of 1089 subjects (816 males and 273 females, 61.91±10.57 years) were enrolled in the study. The clinical and biochemical characteristics of the subjects are presented in Table 1. Significant differences were found between case and control age (p=0.000), gender (p=0.000), smoking status (p=0.000), body mass index (p=0.043), diastolic blood pressure (p=0.007), fasting blood glucose (FBG) (p=0.000), fasting high-density lipoprotein-cholesterol (HDL-c) (p=0.000), and fasting low-density lipoprotein-cholesterol (LDL-c) (p=0.041), while the difference in drinking status, systolic blood pressure, total cholesterol, and triglyceride did not reach statistical significance.

Primary information of selected SNPs of the renin–angiotensin–aldosterone system genes

Primary information of the selected SNPs of the renin–angiotensin–aldosterone system pathway genes are presented in Table 2. All genotype distributions in these subjects were consistent with Hardy-Weinberg equilibrium, and none of the SNPs had minor allele frequencies (MAF) < 0.01 in either the case and control groups in this Chinese population.

Association of the renin–angiotensin–aldosterone system genes polymorphisms with clinical and biochemical parameter

The Table 3 shows the statistical results of the association of the renin–angiotensin–aldosterone system genes polymorphisms with clinical and biochemical parameter. Compared to the subjects with AA genotype, the subjects with AG + GG genotype of rs1799998 had significant lower gensini score (p=0.029). In addition, a statistically significant association between fasting blood glucose and the rs4762 polymorphism was found (AG+AA genotype vs. GG genotype, p=0.049).

Polymorphisms and coronary heart disease

The genotype frequencies of the selected SNPs are presented in Table 4. A statistically significant association between coronary heart disease and the rs1799998 polymorphism was found. After adjusting for age, gender,
Renin–Angiotensin–Aldosterone System and Coronary Artery Disease

Table 3. Association of the renin–angiotensin–aldosterone system genes polymorphisms with clinical and biochemical parameter.

Genotype	BMI	SBP	DBP	CH	TG	FBG	HDL-c	LDL-c	Gensini
rs4343									
AA	25.09±3.04	130 (120-142)	80 (70-85)	4.07 (3.45-4.66)	1.47 (1.01-2.04)	4.86 (4.40-5.66)	0.97 (0.83-1.17)	2.37 (1.92-2.86)	20 (1-57)
AG	24.85±3.05	130 (120-145)	80 (70-85)	4.09 (3.52-4.62)	1.36 (1.00-1.98)	4.74 (4.40-5.46)	1.00 (0.87-1.16)	2.38 (1.91-2.85)	24 (3-58)
GG	25.04±3.24	130 (120-140)	80 (70-85)	4.09 (3.57-4.64)	1.33 (0.92-1.95)	4.65 (4.26-5.84)	0.99 (0.86-1.14)	2.41 (1.85-3.05)	24 (4-63)
AG+GG	24.89±3.09	130 (120-142)	80 (70-85)	4.09 (3.52-4.63)	1.36 (0.99-2.01)	4.79 (4.36-5.49)	1.00 (0.87-1.16)	2.38 (1.91-2.91)	24 (3-59)

Cigarette smoking, and alcohol intake status, the AG genotype (OR 0.717 95%CI 0.541–0.950, p=0.021) and the AG + GG genotype (OR 0.730 95%CI 0.559–0.954, p=0.021) distributions of rs1799998 were significantly different between the cases and controls compared to the AA genotype. In contrast, none of the other seven SNPs

Genotypes	BMI	SBP	DBP	CH	TG	FBG	HDL-c	LDL-c	Gensini
rs5186									
AA	24.95±3.06	130 (120-142)	80 (70-85)	4.08 (3.49-4.60)	1.41 (1.00-2.02)	4.82 (4.37-5.59)	0.99 (0.85-1.16)	2.38 (1.92-2.86)	21 (2-57)
AC	25.09±3.10	130 (120-140)	80 (70-85)	4.04 (3.54-4.71)	1.38 (0.98-1.93)	4.77 (4.41-5.47)	0.98 (0.83-1.13)	2.40 (1.86-2.94)	24 (2-62)
TT	24.95±3.10	130 (120-145)	80 (70-86)	4.06 (3.54-4.60)	1.42 (1.00-2.00)	4.79 (4.33-5.22)	0.99 (0.86-1.16)	2.37 (1.93-2.83)	21 (1-56)
CT	24.90±3.09	130 (120-140)	80 (70-85)	4.07 (3.54-4.70)	1.39 (0.99-2.03)	4.80 (4.40-5.60)	0.98 (0.83-1.16)	2.39 (1.91-2.94)	24 (3-60)
CC	24.75±3.76	130 (120-140)	80 (70-85)	3.87 (3.43-4.44)	1.25 (0.89-1.85)	4.77 (4.42-5.54)	0.99 (0.85-1.17)	2.37 (1.82-2.76)	20 (3-67)
CC+CT	24.94±3.03	130 (120-142)	80 (70-85)	4.06 (3.45-4.63)	1.37 (0.99-2.01)	4.80 (4.41-5.56)	0.99 (0.84-1.16)	2.38 (1.89-2.91)	23 (3-60)
TT	24.99±3.13	130 (120-140)	80 (70-85)	4.08 (3.51-4.62)	1.42 (0.99-2.05)	4.80 (4.40-5.50)	0.98 (0.86-1.16)	2.34 (1.93-2.85)	22 (2-58)
CT	24.90±3.09	130 (120-140)	80 (70-85)	4.03 (3.46-4.67)	1.39 (1.00-1.84)	4.82 (4.42-5.78)	1.00 (0.83-1.18)	2.44 (1.89-3.00)	23 (2-62)
TT	24.46±3.46	140 (120-150)	80 (70-90)	4.14 (3.54-4.41)	1.35 (1.00-2.21)	4.69 (4.02-5.47)	0.99 (0.79-1.14)	2.57 (2.05-2.95)	13 (0-48)
CC+CT+TT	24.86±3.28	130 (120-140)	80 (70-90)	4.06 (3.49-4.66)	1.37 (1.00-1.85)	4.81 (4.31-5.66)	1.00 (0.83-1.16)	2.46 (1.90-2.99)	22 (1-62)

Cell Physiol Biochem 2012;29:443-452
were associated with the risk of coronary heart disease in single locus analysis. Therefore, gene-load score analyses were performed assuming the dominant model for each locus (the genotype with no at-risk allele versus the combination of the heterozygous and homozygous at-risk genotypes). As shown in Table 4, compared to the subjects harboring no at-risk locus or one at-risk locus, for each locus (the genotype with no at-risk allele versus the combination of the heterozygous and homozygous at-risk genotypes). As shown in Table 4, compared to the subjects harboring no at-risk locus or one at-risk locus,

Table 4. Single genotype and gene-load score distribution of the renin–angiotensin–aldosterone system genes between cases and controls. *Adjusted for age, sex, cigarette smoking and alcohol intake. $p = 0.021$; $p = 0.021$; ‡$p = 0.042$; $p = 0.013$; $p = 0.019$.

Genotype	Cases, n (%)	Controls, n (%)	Crude OR (95% CI)	Adjusted OR (95% CI)*
rs4343				
AA	286(39.9)	155(43.9)	1.00	1.00
AG	341(47.6)	153(43.3)	1.208(0.919–1.587)	1.235(0.925–1.650)
GG	90(12.6)	45(12.7)	1.084(0.721–1.630)	1.064(0.694–1.632)
AG+GG	431(59.3)	198(54.7)	1.180(0.912–1.527)	1.195(0.910–1.570)
rs5186	724	361		
AA	645(89.1)	321(88.9)	1.00	1.00
AC	79(10.9)	40(11.1)	0.983(0.657–1.471)	0.947(0.617–1.454)
rs5182	703	357		
TT	359(51.1)	193(54.1)	1.00	1.00
CT	289(41.1)	135(37.8)	1.020(0.629–1.652)	0.979(0.584–1.640)
CC	55(7.8)	29(8.1)	1.151(0.879–1.506)	1.177(0.885–1.565)
CC+CT	344(48.9)	164(45.9)	1.128(0.874–1.456)	1.142(0.871–1.496)
rs5049	719	360		
CC	501(69.7)	242(67.2)	1.00	1.00
CT	201(28.0)	105(29.2)	0.925(0.698–1.225)	0.964(0.717–1.295)
TT	17(2.4)	13(3.6)	0.632(0.302–1.322)	0.689(0.309–1.538)
CT+TT	218(30.4)	118(32.8)	0.886(0.675–1.161)	0.929(0.698–1.236)
rs5051	716	357		
TT	464(64.8)	238(66.7)	1.00	1.00
CT	229(32.0)	106(29.7)	0.907(0.452–1.823)	0.975(0.468–2.032)
CC	23(3.2)	13(3.6)	1.108(0.839–1.464)	1.168(0.870–1.568)
CT+CC	252(35.2)	119(33.3)	1.083(0.829–1.415)	1.145(0.863–1.520)
rs699				
GG	466(64.3)	244(67.4)	1.00	1.00
AG	236(32.6)	105(29.0)	0.926(0.461–1.861)	0.991(0.475–2.066)
AA	23(3.2)	13(3.6)	1.177(0.892–1.553)	1.226(0.914–1.644)
AG+AA	259(35.8)	118(32.6)	1.149(0.880–1.501)	1.200(0.904–1.592)
rs4762	717	361		
GG	582(81.2)	307(85.0)	1.00	1.00
AG	130(18.1)	52(14.4)	1.319(0.254–6.837)	2.153(0.401–11.556)
AA	5(0.7)	2(0.6)	1.319(0.929–1.871)	1.280(0.884–1.853)
AG+AA	135(18.8)	54(15.0)	1.301(0.922–1.835)	1.285(0.894–1.849)
rs1799998	720	360		
AA	394(54.7)	174(48.3)	1.00	1.00
AG	268(37.2)	154(42.8)	0.769(0.589–1.003)	0.717(0.541–0.950)
GG	58(8.1)	32(8.9)	0.800(0.502–1.277)	0.797(0.481–1.321)
AG+GG	326(45.3)	186(51.7)	0.769(0.598–0.990)	0.730(0.559–0.954)
Combined	693	348		

(rs4343, rs5186, rs5182, rs5049, rs5051, rs699, and rs4762)
the subjects carrying 3 at-risk loci had increased risks of coronary heart disease (OR, [95%CI]: 1.579 [1.077–2.316], p=0.019). This significant association was not influenced by adjusting for age, gender, cigarette smoking, and alcohol intake status (adjusted OR [95%CI]: 1.673 [1.116–2.507], p=0.013). However, the association was not reach significant level with regard to the subjects carrying 4 at-risk loci and more than 4 at-risk loci compared to the subjects harboring no at-risk locus or one at-risk locus.

Discussion

In this hospital-based study of consecutive adult Chinese subjects with angiographic evidence, we found that the -344C→T polymorphism (rs1799998) in the aldosterone synthase (CYP11B2) gene was significantly associated with the risk of coronary heart disease and severity of coronary atherosclerosis estimated by the Gensini score, even after adjusting for age, gender, smoking status, and drinking status. These results further demonstrate that the RAAS gene-load score is a robust model for multilocus effects associated with coronary heart disease where each genetic variant confers only a small change in risk. The presence of three risk genotypes in the RAAS resulted in a 1.6-fold or greater increase in the risk for coronary heart disease compared to the presence one or no risk alleles after adjusting for age, gender, smoking status, and drinking status. In addition, we evaluated the interactions between RAAS gene polymorphisms and the common coronary heart disease risk factors such as age, gender, smoking status, and drinking status. We found significant interactions between age, smoking status, and the rs1799998 SNP (-344C→T) within the aldosterone synthase (CYP11B2) gene.

A recent study found a significant association between RAAS gene-load score and coronary heart disease; patients with a gene-load score of 5 or 6 had a coronary heart disease risk 2.3 times higher than patients with scores of 0 or 1 [12]. The subjects in that study, however, were limited to familial hypercholesterolaemia associated with premature coronary heart disease as defined by clinical criteria. The subjects in the present study were not limited to familial hypercholesterolaemia.
and both cases and controls had coronary heart disease as confirmed by coronary angiography. To the best of our knowledge, this is the first study to demonstrate a significant association between RAAS gene-load score and coronary heart disease confirmed directly by angiography.

Despite the recent success of genome-wide association studies in identifying loci consistently associated with coronary artery disease, a large proportion of these loci are associated with metabolic risk factors, including elevated plasma lipids, type 2 diabetes, and elevated body mass index, and have not been linked mechanistically to the etiology of coronary artery disease. Gene-gene and gene-environment interactions might produce a meaningful improvement in quantification of the genetic determinants of coronary heart disease [23]. Recently, 1254 consecutive patients who underwent cardiac catheterization (735 with documented coronary artery disease and 519 without) between 1996 and 2003 were recruited to explore gene-gene and gene-environment interactions. The angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism T174M, the A1166C polymorphism of the angiotensin II type I receptor gene, and the M235T, G-6A, A-20C, G-152A, and G-217A polymorphisms of the angiotensinogen gene were genotyped. The results demonstrated a significant three-locus (G-217A, M235T, and I/D) gene-gene interactions by the multifactor-dimensionality reduction method and many higher-order gene-gene interactions by multilocus genotype disequilibrium tests [24]. Significant interactions between angiotensin II gene haplotypes, gender, and hypertension were detected [25]. The -344C→T polymorphism (rs1799998) in the aldosterone synthase (CYP11B2) gene was not genotyped in that study, however. In the present study, the subjects carrying 3 at-risk loci had increased risks of coronary heart disease compared to the subjects harboring no at-risk locus or one at-risk locus, however, this significant association was not existed with regard to the subjects carrying 4 at-risk loci and more than 4 at-risk loci compared to the subjects harboring no at-risk locus or one at-risk locus. The exact reason underlying the above difference was unknown, however, the sample-size of the present study is small, and it maybe explain partially the phenomenon. Therefore, a larger sample-size, prospectively epidemiological study needs to be conducted to confirm the finding from the present study in the future.

The exact molecular mechanisms underlying the interaction of rs1799998, age, and smoking status on the development of coronary heart disease remain to be unraveled. Published studies focusing on rs1799998 do suggest several potential roles of this polymorphism. Aldosterone synthase (CYP11B2) catalyses the final step of aldosterone biosynthesis in adrenal glomerulosa and is sensitive to the effects of angiotensin II. The T/C transversion at 344 base is upstream of the start codon of the CYP11B2 gene. A long-term prognosis study of acute myocardial infarction (AMI) at a young age suggested that polymorphisms in RAAS genes including CYP11B2 polymorphisms can be important in the onset of a first AMI in young patients [26]. Conversely, a prospective study of healthy UK men indicated that the aldosterone synthase genotype was unrelated to overall coronary heart disease risk. A possible interaction with smoking requires confirmation [27]. A prospective study of unrelated, healthy middle-aged Caucasian males concluded that the aldosterone synthase -344C→T polymorphism does not significantly influence the risk of myocardial infarction either directly or through interactions with other risk factors [28].

In the present study, the interaction of rs1799998, age, and smoking status was associated with the risk of coronary heart disease. A significant association between the thymidine to cytosine substitution variant (the -344C→T polymorphism (rs1799998) in the aldosterone synthase gene) and in vivo circulating aldosterone levels [29], arterial stiffness [30] and left ventricular mass and dimensions [31] may underlie the association. However, the exact pathophysiological mechanisms that contribute to this association require further study.

In the present study, the subjects carrying 3 at-risk loci had increased risks of coronary heart disease compared to the subjects harboring no at-risk locus or one at-risk locus, however, this significant association was not existed with regard to the subjects carrying 4 at-risk loci and more than 4 at-risk loci compared to the subjects harboring no at-risk locus or one at-risk locus. The exact reason underlying the above difference was unknown, however, the sample-size of the present study is small, and it maybe explain partially the phenomenon. Therefore, a larger sample-size, prospectively epidemiological study needs to be conducted to confirm the finding from the present study in the future.

Conclusions

Subjects who carried the G allele of the rs1799998 polymorphism significantly associated with coronary heart disease and Gensini score in the whole population of the study. And, the present study revealed for the first time that the renin–angiotensin–aldosterone (RAA) system gene-load score is associated with coronary heart disease. While each of the genetic variants analyzed conferred
only a small portion of risk (or no risk), any three risk polymorphisms statistically associated with coronary heart disease. Furthermore, we uncovered a significant association between the interaction of age, smoking status, and the -344C→T polymorphism (rs1799998) in the aldosterone synthase (CYP11B2) gene and the risk of coronary heart disease.

Acknowledgements

This work was supported by the National Natural Science Foundation of China, No. 30400173 and 30971257.

References

1. Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O'Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006;113:e85-151.

2. Murray CJ, Lopez AD: Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997;349:1436-1442.

3. Wu G, Huang J, Wei G, Liu L, Pang S, Yan B: LAMP-2 gene expression in peripheral leukocytes is increased in patients with coronary artery disease. Clin Cardiol 2011;34:239-243.

4. Schmieder RE, Hilgers KF, Schlaich MP, Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A, Nordestgaard BG, Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O'Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006;113:e85-151.

5. Sethi AA, Nordestgaard BG, Tybjaerg-Hansen B, Nordestgaard BG, Agerholm-Larsen B, Nordestgaard BG, Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O'Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P; American Heart Association Statistics Committee and Stroke Statistics Subcommittee: Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006;113:e85-151.

6. Ko YL, Ko YS, Wang SM, Chu PH, Teng MS, Cheng NJ, Chen WJ, Hsu TS, Kuo CT, Chiang CW, Lee YS: Angiotensinogen and angiotensin-I converting enzyme gene polymorphisms and the risk of coronary artery disease in Chinese. Hum Genet 1997;100:210-214.

7. Winkelmann BR, Russ AP, Nauck M, Klein B, Böhm BO, Maier V, Zott R, Matheis G, Wolf A, Wieland H, Gross W, Galton DJ, März W: Angiotensinogen M235T polymorphism is associated with plasma angiotensinogen and cardiovascular disease. Am Heart J 1999;137:698-705.

8. Canavy I, Henry M, Morange PE, Tirtel L, Poirier O, Ebagosti A, Bory M, Juhan-Vague I: Genetic polymorphisms and coronary artery disease in the south of France. Thromb Haemost 2000;83:212-216.

9. Jeuneaultre X, Ledru F, Battaglia S, Guillemaux MT, Courbon D, Dumont C, Darmont O, Guize L, Guermonprez JL, Diebold B, Ducimetière P: Genetic polymorphisms of the renin-angiotensin system and angiographic extent and severity of coronary artery disease: the CORGENE study. Hum Genet 1997;99:66-73.

10. van der Net JB, van Etten J, Yazdanpanah M, Dallinga-Thie GM, Kastelein JJ, Defesche JC, Koopmans RP, Steyerberg EW, Sijbrands EJ: Gene-load score of the renin-angiotensin system gene polymorphisms and coronary artery disease. Cardiovasc Diabetol 2011;10:14.

11. Gensini GG: A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 1983,51:606.

12. Nasiri H, Forouzandeh M, Rasaei MJ, Rahbarizadeh F: Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal 2005;19:229-232.

13. Lahiri DK, Bye S, Nurnberger JI Jr, Hodes ME, Crisp M: A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods 1992;25:193-205.

14. Jerrard-Dunne P, Sitzer M, Risley P, Buehler A, von Kegler S, Markus HS: Inflammatory gene load is associated with enhanced inflammation and early carotid atherosclerosis in smokers. Stroke 2004;35:2438-2443.

15. Mendoça MI, Dos Reis RP, Freitas AI, Sousa AC, Pereira A, Faria P, Gomes S, Silva B, Santos N, Serrão M, Ornelas I, Freitas S, Araújo JJ, Brehm A, Cardoso AA: Human paraoxonase gene polymorphisms and coronary artery disease risk. Rev Port Cardiol 2008;27:1539-1555.

16. Jia EZ, Yang ZJ, Yuan B, Zang XL, Wang RH, Zhu TB, Wang LS, Chen B, Ma WZ: Relationship between leukocyte count and angiographical characteristics of coronary atherosclerosis. Acta Pharmacol Sin 2005;26:1057-1062.

17. Judkins MP: Selective coronary arteriography. I. A percutaneous transfemoral technic. Radiology 1967,89:815-821.

18. Kollias A, Tsiotra PC, Iconomidou I, Maratou E, Mitroù P, Kyriazi E, Boutati E, Lekakis J, Economopoulos T, Kremastinos DT, Dimitriades G, Raptis SA: Adiponectin levels and expression of adiponectin receptors in isolated monocytes from overweight patients with coronary artery disease. Cardiovasc Diabetol 2011;10:14.

19. Gensini GG: A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol 1983,51:606.

20. Nasiri H, Forouzandeh M, Rasaee MJ, Rahbarizadeh F: Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal 2005;19:229-232.

21. Lahiri DK, Bye S, Nurnberger JI Jr, Hodes ME, Crisp M: A non-organic and non-enzymatic extraction method gives higher yields of genomic DNA from whole-blood samples than do nine other methods tested. J Biochem Biophys Methods 1992;25:193-205.
22 Jerrard-Dunne P, Sitzer M, Risley P, Buehler A, von Kegler S, Markus HS: Inflammatory gene load is associated with enhanced inflammation and early carotid atherosclerosis in smokers. Stroke 2004;35:2438-2443.

23 Hahn LW, Ritchie MD, Moore JH: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003;19:376-382.

24 Lanktree MB, Hegele RA: Gene-gene and gene-environment interactions: new insights into the prevention, detection and management of coronary artery disease. Genome Med 2009;1:28.

25 Tsai CT, Hwang JJ, Ritchie MD, Moore JH, Chiang FT, Lai LP, Wang YC, Lin JL, Chiang FT: Interaction of gender, hypertension, and the angiotensinogen gene haplotypes on the risk of coronary artery disease in a large angiographic cohort. Atherosclerosis 2009;203:249-256.

26 Franco E, Palumbo L, Crobu F, Anselmino M, Frea S, Matullo G, Piazza A, Trevi GP, Bergerone S: Renin-angiotensin-aldosterone system polymorphisms: a role or a hole in occurrence and long-term prognosis of acute myocardial infarction at young age. BMC Med Genet 2007;8:27.

27 Payne JR, Dhamrait SS, Toor IS, Cooper J, Jones A, Miller GJ, Humphries SE, Montgomery HE: The -344T>C promoter variant of the gene for aldosterone synthase (CYP11B2) is not associated with cardiovascular risk in a prospective study of UK healthy men. Atherosclerosis 2004;174:81-86.

28 Patel S, Steeds R, Channer K, Samani NJ: Analysis of promoter region polymorphism in the aldosterone synthase gene (CYP11B2) as a risk factor for myocardial infarction. Am J Hypertens 2000;13:134-139.

29 Pojoga L, Gautier S, Blanc H, Guyen TT, Poirier O, Cambien F, Benetos A: Genetic determination of plasma aldosterone levels in essential hypertension. Am J Hypertens 1998;11:856-860.

30 Kupari M, Hautanen A, Lankinen L, Koskinen P, Virolainen J, Nikkila H, White PC: Associations between human aldosterone synthase (CYP11B2) gene polymorphisms and left ventricular size, mass, and function. Circulation 1998;97:569-575.