The 1st International Conference on Biotechnology and Food Sciences
IOP Conf. Series: Earth and Environmental Science 679 (2021) 012023
doi:10.1088/1755-1315/679/1/012023

The effect of washing on the making of surimi and kamaboko tilapia (Oreochromis sp.)

E Saputra*, W Tjahjaningsih1, A A Abdillah1

1Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Kampus C Jalan Mulyorejo, Surabaya 60115 East Java, Indonesia

*Corresponding Author: ekasaputra@fpk.unair.ac.id

Abstract. The aims this research is to determine the effect of leaching and raw materials on frozen storage on the quality of surimi and kamaboko tilapia (Oreochromis sp.). There are three types of raw materials used, namely fillet, minced fish, and minced fish + sorbitol, with three washing treatments. The method used consisted of measuring pH, moisture content, bite test, and fold test. Then the results show that the best kamaboko for tilapia (Oreochromis sp.) is obtained from fillet raw materials compared to minced fish raw materials and minced fish + sorbitol raw materials, with a washing frequency of one time.

1. Introduction
Fish is a source of high quality food, especially because fish contain a lot of protein which is needed by the human body. However, fish is a highly perishable food. Therefore, to overcome this, it is necessary to have a method of preservation and processing that can maintain durability and not significantly reduce its nutritional value. Apart from increasing the shelf life, fish processing also aims to increase its economic value. One of the efforts to increase the economic value of fish is by diversifying the processing of fishery products in order to obtain new fishery products so as to attract public interest in consuming these products.

Surimi is a common name for mashed meat that has undergone a process of separating bones, oil and flavor [1]. These intermediate products can be made of various kinds of fish gel products including fish sausage, dumplings, fish cakes, fish burgers and fish balls. These products require strong gelling specifications. As a raw material for making surimi, fish can be used, both freshwater and marine fish. In this practicum, tilapia (Oreochromis sp.) is used which is a freshwater fish. This fish has a delicious taste, thick flesh, not soft, affordable prices and few thorns. These fish are mostly kept in ponds and floating net cages [2].

2. Material and methods
2.1. Time and place
The present research is performed in the Laboratory of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga.

2.2. Materials and equipment
The main ingredient used in this study is tilapia surimi. Other ingredients used are table salt, water, and ice cubes. The tools used in this study included knives, plastic basins, cutting boards, spoons, grinding
tools, pressing tools, boilers, stoves, sleeves, and gauze. Meanwhile, the tools used for the analysis of materials and final products are a score sheet and a pH meter.

2.3. Research methods
The stages of making surimi are raw material selection, filing by removing the skin and bones, mashing the meat, washing with ± 5°C of cold water for 15 minutes, draining water, filtering, and squeezing. Raw material selection is intended to select fish that are fresh and uniform in nature. Then performed fish meat filing by removing the skin and bones. Furthermore, the meat is crushed by grinding. The meat that has been crushed is then washed with cold water (5-10°C) by soaking and stirring for 15 minutes, which is then followed by filtering. Washing is carried out 2-3 times. Washing is useful for separating blood, enzymes, urea, water soluble protein and improving the color of surimi. To remove water, it can be done by squeezing it using a filter cloth (gauze) or calico, then squeezing it either by hand or a mechanical wringer.

2.4. Observations and measurements
2.4.1. Potential hydrogen value
pH measurement is done using digital pH meter. Prior to use, the tool pH meter rinsed with distilled water and dried with a tissue. Furthermore calibrated using buffer solutions pH 4 and pH 7 buffer dipped in and allowed a moment to steady.

2.4.2. Water content
The cleansed porcelain cup is then dried in the oven for 1 hour at 105°C, then cooled in desiccator for 30 minutes and weighed (A gram). The 2 grams of smoothed sample were weighed in a cup (B gram) and then dried in an oven at 105°C for 6 hours. Then chill with the desiccator for 20 minutes then weigh several times until the weight is fixed (C gram).

3. Result and discussion
3.1. Potential hydrogen value (pH)
The surimi pH value of red tilapia (Oreochromis sp.) At various washing frequencies is presented in Figure 1. Based on pH measurements, the average pH value of surimi is 6-7, the highest average pH value is 7.07 at washing 1 time, while the lowest pH average value is 6.54 for washing 3 times, and washing 2 times having an average pH value of 6.64. Based on the BNJ test, it was found that washing 1 time was significantly different from washing 2 times and washing 3 times. The average value of pH can be seen in Table 1.

Washing	pH value
1	7.07
2	6.64
3	6.54

The pH value affects the strength of the gel (ashi). The strength of the gel will be high if the pH of the meat is between 6-7, because myosin protein has dissolved at that pH. Outside this pH range, either in a more alkaline state (pH> 7) or in a more acidic state (pH <6) the gel strength will be low or decreased [4].

3.2. Water content
The water content of surimi complete washing effect is presented in Table 2. Based on the surimi test, water content ranges from 80.32% to 84.53%. The average value of water content surimi of tilapia can be seen in Table 2.

Table 2. The average value of water content surimi of red tilapia.

Washing	Water Content (%)
1	84.53
2	82.46
3	80.32

According to Parris [5], the increase in water content after washing is caused by trapping part of the washing water in the gap or room that has been left behind by dissolved substances. In addition, there is also some washing water that enters by osmosis into the intracellular fluid. This is due to the provision of salt, so that the water contained in the intracellles comes out by osmosis. On the other hand, salt can also expand the globules in the cell so that the incoming water is more than the water that comes out.

4. Conclusions
Based on the results of the practicum that has been done, it can be concluded that the best kamaboko tilapia (Oreochromis sp) is obtained from fillet raw materials compared to minced fish raw materials and minced fish + sorbitol raw materials, with a one-time washing frequency and a frozen storage period of 3 weeks.

5. References
[1] Karmas E and Lauber 1987 J. Food Sci. 52, 7-9.
[2] Hossain M I, Kamal M M, Shikka, and Hoque M D S 2004 J. Food Sci. 70, 114-124.
[3] Parra D F, Tadini C C, Ponce P, and Lugao A B 2004 Carbohydr. Polym. 58, 475-481.
[4] Park H J and Chinnan M S 1995 J. Food Eng. 25, 497-507.
[5] Parris N 1995 J. Agric. Food Chem. 43, 1432-1435.

6. Acknowledgement
This paper and research would not have been possible and completed without the extraordinary support from the Faculty of Fisheries and Marine of Universitas Airlangga.