§1. Introduction and statements

In what follows a tensor category is understood to be an ACU \otimes-category in the sense of Saavedra Rivano [5, Ch. I, 2.4.1]. We denote the unit object by $\mathbb{1}$, the commutativity constraint by ψ, and the tensor structure by \otimes. There is also an associativity constraint that we omit and all these constraints are subject to natural compatibility conditions (loc. cit. I, 2.4). Recall (Deligne [2, 2.1.2]) that an object X of a tensor category is said to be dualizable if there is an object X^\vee and morphisms $\delta_X : \mathbb{1} \to X \otimes X^\vee$ and $\text{ev}_X : X^\vee \otimes X \to \mathbb{1}$ such that the diagrams

\[
\begin{array}{ccc}
\mathbb{1} \otimes X & \xrightarrow{\delta_X \otimes \text{id}_X} & X \otimes X^\vee \otimes X \\
\psi_{1, X} & & \text{id}_X \otimes \text{ev}_X \\
& \xleftarrow{X \otimes \mathbb{1}} X \otimes\mathbb{1}
\end{array} \quad \quad \begin{array}{ccc}
X^\vee \otimes X \otimes X^\vee & \xleftarrow{\text{id}_X \otimes \delta_X} & X^\vee \otimes \mathbb{1} \\
\text{ev}_X \otimes \text{id}_X & & \psi_{X^\vee, X} \\
& \xrightarrow{X \otimes \mathbb{1}} \mathbb{1} \otimes X^\vee
\end{array}
\]

are commutative. For example for the tensor category of modules over a commutative ring, dualizability is (e.g. loc. cit. 2.6) the same as being finitely generated and projective. With an appropriate interpretation, the morphism ev_X gives the trace. More concretely, let X be a dualizable object and $f : X \to X$ an endomorphism. The trace of f, here denoted by $\text{tr}(f ; X)$, is defined to be the composite

\[
\mathbb{1} \xrightarrow{\delta_X} X \otimes X^\vee \xrightarrow{f \otimes \text{id}_X} X \otimes X^\vee \xrightarrow{\text{id}_X \otimes \text{ev}_X} X \otimes X \xrightarrow{\psi_{X^\vee, X}} X^\vee \otimes \mathbb{1}.
\]

This is an element of $\text{End}(\mathbb{1})$. The resulting map $\text{tr} : \text{End}(X) \to \text{End}(\mathbb{1})$ is linear. Moreover, when defined, the trace $\text{tr}(f \otimes g ; X \otimes Y)$ is the product of $\text{tr}(f ; X)$ and $\text{tr}(g ; Y)$. For the proofs of these and other properties see any of the references cited above.

We clarify some terminologies. A tensor category as above is (Mac Lane [3]) also called an (additive) symmetric monoidal category. A symmetric monoidal category in which each functor $Z \mapsto Z \otimes X$ has a right adjoint is (Eilenberg-Kelly [1]) said to be closed. Recall the following result.

Theorem 1.1 (May [4, 0.1]).— For any distinguished triangle $\Delta : X \to Z \to Y \to X[1]$ of dualizable objects in a closed symmetric monoidal category with a compatible triangulation we have

\[
\text{tr}(\text{id}; Z) = \text{tr}(\text{id}; X) + \text{tr}(\text{id}; Y).
\]

Date: 2010.

2010 *Mathematics Subject Classification*. Primary 18E30 - Secondary 20C99.

Key words and phrases. additivity of trace, tensor triangulated category.
In what follows we let D be a k-linear Karoubian (i.e. pseudo-abelian) rigid tensor triangulated category where $k = \bar{k}$ is an algebraically closed field of characteristic zero. Note that linearity means ([5, Ch. I, 0.1.2]) that $\text{End}(D)$ is a k-algebra. Here the term rigid tensor triangulated means a closed symmetric monoidal category with a compatible triangulation in the sense of [4] and in which every object is dualizable.

An endomorphism $f = (f_X, f_Z, f_Y)$ of a distinguished triangle Δ in D is a commutative diagram

$$
\begin{array}{cccc}
X & \longrightarrow & Z & \longrightarrow Y & \longrightarrow X[1] \\
\downarrow f_X & & \downarrow f_Z & & \downarrow f_Y & & \downarrow f_{X[1]} \\
X & \longrightarrow & Z & \longrightarrow Y & \longrightarrow X[1]
\end{array}
$$

with both rows being the given triangle Δ. For example $\text{id} = (\text{id}_X, \text{id}_Z, \text{id}_Y)$ is an endomorphism of Δ. The compositions of endomorphisms of triangles are defined in an obvious manner and is associative. We prove the following result.

Proposition 1.2. Let f be an endomorphism of a distinguished triangle $X \rightarrow Z \rightarrow Y \rightarrow X[1]$ in D with $f^n = \text{id}$ for an integer $n > 0$. Then

$$
\text{tr}(f_Z; Z) = \text{tr}(f_X; X) + \text{tr}(f_Y; Y).
$$

§2. Proof

Let D and k be as above. We prove a more general result than 1.2. Let G be a group. A G-object in D is a pair (X, ρ) consisting of an object X of D and a k-algebra homomorphism $\rho : kG \rightarrow \text{End}_D(X)$ where kG is the group algebra of G. We may denote $\rho(a)$ by a_X or simply a. Let Y be another G-object. An G-morphism or G-equivariant morphism from X to Y is a morphism $f : X \rightarrow Y$ with $a_Y f = f a_X$ for all $a \in kG$. If X is an G-object define the central function

$$
\chi_X : G \rightarrow \text{End}_D(\mathbb{1}), \quad g \mapsto \text{tr}(g; X).
$$

We say that the distinguished triangle Δ is G-equivariant, if X, Y, and Z are equipped with actions $\rho_X : G \rightarrow \text{Aut}_D(Z)$ (similarly for X and Y) and such that all morphisms (including the differential) are G-equivariant.

Theorem 2.1. If G is torsion and $X \rightarrow Z \rightarrow Y \rightarrow X[1]$ is G-equivariant, then as functions $G \rightarrow \text{End}_D(\mathbb{1})$ we have

$$
\chi_Z = \chi_X + \chi_Y.
$$

Proof. We may assume that G is finite. Let $\text{Irr} kG$ be the set of isomorphism classes of irreducible $k-$representations of G. In D we have a natural G-equivariant isomorphism

$$
X \simeq \prod_{V \in \text{Irr} kG} V \otimes_k S_V(X)
$$

where $S_V(X) = \text{Hom}_{kG}(V, X)$ are certain objects and on which G acts trivially. To see this, consider the contravariant functor $D \rightarrow (k-\text{mod})$ given by

$$\text{Obj}(D) \ni Y \mapsto \text{Hom}_{kG}(V, \text{Hom}_D(Y, X)).$$
This is representable. Indeed if in the above definition we replace V by any finitely generated free kG-module M and consider the corresponding functor, we see immediately that the functor is representable by an object $S_M(X) = \text{a finite direct sum of } X$. The general case follows from this and the fact that V is a finitely generated projective kG-module and hence the kernel (i.e. image) of a projector π on a free kG-module M. Since D is Karoubian, we can define $S_V(X) = \text{coker}(\pi^*)$ where $\pi^*: S_M(X) \to S_M(X)$ is induced by π. This is easily seen to represent $S_V(X)$. Once we have these objects, the decomposition of X follows from the corresponding one for kG. It follows that the sequence
\[
S_V(X) \to S_V(Z) \to S_V(Y) \to S_V(X[1])
\]
being a direct summand of the original distinguished triangle is distinguished in D. Finally we note that by the above decomposition and k-linearity of trace we have
\[
\text{tr}(g,X) = \sum \chi_V(g) \text{tr}(\text{id}; S_V(X))
\]
where $\chi_V: G \to k$ is the usual character of V. Similarly for Z and Y. The result follows from this and 1.1. \hfill \square

Proof of 1.2. Apply the result 2.1 with $G = \mathbb{Z}/n\mathbb{Z}$ and the action $m \mapsto f_Z^m$ (resp. $m \mapsto f_X^m$, $m \mapsto f_Y^m$) on Z (resp. X, Y). \hfill \square

§3. Remark

We conclude this short note by indicating a corollary of the proof of 2.1. We let \mathfrak{A} a Karoubian tensor category with $k \subseteq \text{End}_\mathfrak{A}(1)$ where k is an algebraic closure of \mathbb{Q}. Define $\mathbb{Z}_\mathfrak{A}$ to be the subring (=subgroup) of $\text{End}_\mathfrak{A}(1)$ generated by all $\text{tr}(\text{id}; X)$ with X being dualizable in \mathfrak{A}.

Corollary 3.1. Let $f: X \to X$ be an endomorphism of a dualizable object in \mathfrak{A} with $f^n = \text{id}$ for an integer $n > 0$. Then $\text{tr}(f; X) \in \text{End}_\mathfrak{A}(1)$ is integral over $\mathbb{Z}_\mathfrak{A}$.

Proof. Similar to the proof of 1.2 consider X with an action of $G = \mathbb{Z}/n\mathbb{Z}$. Note that in the category \mathfrak{A} the decomposition (2) and the formula (3) hold with exactly the same proof. Since the element $\chi_V(g) \in k$ is integral over \mathbb{Z}, the result follows from (3). \hfill \square

References

[1] S. Eilenberg and G. M. Kelly, *Closed categories*, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), 1966, pp. 421–562.
[2] P. Deligne, *Catégories tannakiennes*, The Grothendieck Festschrift, Vol. II, 1990, pp. 111–195.
[3] S. Mac Lane, *Natural associativity and commutativity*, Rice Univ. Studies 49 (1963), no. 4, 28–46.
[4] J. P. May, *The additivity of traces in triangulated categories*, Adv. Math. 163 (2001), no. 1, 34–73.
[5] N. Saavedra Rivano, *Catégories Tannakiennes*, Lecture Notes in Mathematics, Vol. 265, Springer-Verlag, Berlin, 1972.