Summary: For any $n > 1$ we determine the uniform and nonuniform lattices of the smallest covolume in the Lie group $\text{Sp}(n,1)$. We explicitly describe them in terms of the ring of Hurwitz integers in the nonuniform case with n even, respectively, of the icosian ring in the uniform case for all $n > 1$.

MSC:

- 22E40 Discrete subgroups of Lie groups
- 11E57 Classical groups
- 20G30 Linear algebraic groups over global fields and their integers
- 51M25 Length, area and volume in real or complex geometry

Keywords:

- arithmetic lattices; quaternionic hyperbolic space; minimal volume; Prasad’s volume formula

Full Text: DOI arXiv

References:

[1] Allcock, D., ‘New complex- and quaternion-hyperbolic reflection groups’, Duke Math. J.103(2) (2000), 303-333. - Zbl 0962.22007
[2] Belolipetsky, M., ‘On volumes of arithmetic quotients of $\langle \text{SO}(1,n) \rangle$’, Ann. Sc. Norm. Super. Pisa Cl. Sci.3(5) (2004), 749-770. - Zbl 1170.11037
[3] Belolipetsky, M. and Emery, V., ‘On volumes of arithmetic quotients of $\langle \text{PO}(1,n,1) \rangle$’ n odd, Proc. Lond. Math. Soc.105(3) (2012), 541-570. - Zbl 1327.22013
[4] Borel, A. and Prasad, G., ‘Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups’, Inst. Hautes Études Sci. Publ. Math.69 (1989), 119-171. - Zbl 0707.11032
[5] Conway, J. H. and Sloane, N. J. A., Sphere Packings, Lattices, and Groups, Grundlehren Math. Wiss., Vol.270 (Springer, 1999).
[6] Corlette, K., ‘Archimedean superrigidity and hyperbolic geometry’, Annals of Mathematics Second Series, 135(1)(1992), 165-182. - Zbl 0768.53025
[7] Emery, V., Du volume des quotients arithmétiques de l'espace hyperbolique, Ph.D. thesis, University of Fribourg, 2009.
[8] Emery, V., ‘Appendix to ‘On the arithmetic and geometry of binary Hamiltonian forms (by Parkkonen, J. and Paulin, F.)’, Algebra Number Theory7(1) (2013), 108-112.
[9] Emery, V., ‘Even unimodular Lorentzian lattices and hyperbolic volume’, J. Reine Angew. Math.690 (2014), 173-177. - Zbl 1296.22011
[10] Emery, V., ‘On compact hyperbolic manifolds of Euler characteristic two’, Algebr. Geom. Topol.14(2) (2014), 853-861. - Zbl 1288.22009
[11] Emery, V. and Stover, M., ‘Covolumes of nonuniform lattices in $\langle \text{PU}(1,n,1) \rangle$’, Amer. J. Math.136(1) (2014), 143-164. - Zbl 1288.22010
[12] Gehring, F. W. and Martin, G. J., ‘Minimal co-volume hyperbolic lattices, I: The spherical points of a Kleinian group’, Ann. of Math.270(2) (2009), 123-161. - Zbl 1171.30014
[13] Gromov, M. and Schoen, R., ‘Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one’, Inst. Hautes Études Sci. Publ. Math.76(1992), 165-246. - Zbl 0896.58024
[14] Hild, T., ‘The cusped hyperbolic orbifolds of minimal volume in dimensions less than ten’, J. Algebra313(1)(2007), 208-222. - Zbl 1119.52003
[15] Kim, I. and Parker, J. R., ‘Geometry of quaternionic hyperbolic manifolds’, Math. Proc. Cambridge Philos. Soc.135(2) (2003), 291-320. - Zbl 1048.32017
[16] Kirkwood, B. H. and Mcdonald, B. R., ‘The symplectic group over a ring with one in its stable range’, Pacific J. Math.92(1) (1981), 111-125. - Zbl 0466.20023
[17] Knus, M.-A., Merkurjev, A. S., Rost, M. H. and Tignol, J.-P., The Book of Involution, AMS Colloquium Publications, Vol. 44 (American Mathematical Society, 1998). - Zbl 0955.16001
[18] Lubotzky, A., ‘Lattices of minimal covolume in $\langle \text{SL}(2) \rangle$’ A nonarchimedean analogue of Siegel’s theorem $\langle \hspace{0.1cm} \text{Vol} \langle \mu \rangle \text{ge} \hspace{0.1cm} \pi \rangle$
