HIV/AIDS-related mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites

P. Kim Streatfield, Wasif A. Khan, Abbas Bhuiya, Syed M.A. Hanifi, Nurul Alam, Ourohiré Millogo, Ali Sié, Pascal Zabré, Clementine Rossier, Abdramane B. Soura, Bassirou Bonfoh, Siaka Kone, Eliezer K. Ngoran, Juerg Utzinger, Semaw F. Abera, Yohannes A. Melaku, Berhe Weldearegawi, Pierre Gomez, Momodou Jasseh, Patrick Ansah, Daniel Azongo, Felix Kondayire, Abraham Oduro, Alberta Amu, Margaret Gyapong, Odette Kwarteng, Shashi Kant, Chandrakant S. Pandav, Sanjay K. Rai, Sanjay Juvekar, Veena Muralidharan, Abdul Wahab, Siswanto Wilopo, Evasius Bauni, George Mochamah, Carolyne Ndila, Thomas N. Williams, Sammy Khagayi, Kayla F. Laserson, Amek Nyaguara, Anna M. Van Eijk, Alex Ezeh, Catherine Kyobutungi, Marylene Wamukoya, Menard Chihana, Amelia Crampin, Alison Price, Valérie Delaunay, Aldiouma Diallo, Laetitia Douillot, Cheikh Sokhna, F. Xavier Gómez-Olivé, Paul Mee, Stephen M. Tollman, Kobus Herbst, Joël Mossong, Nguyen T.K. Chuc, Samuelina S. Arthur, Osman A. Sankoh & Peter Byass

To cite this article: P. Kim Streatfield, Wasif A. Khan, Abbas Bhuiya, Syed M.A. Hanifi, Nurul Alam, Ourohiré Millogo, Ali Sié, Pascal Zabré, Clementine Rossier, Abdramane B. Soura, Bassirou Bonfoh, Siaka Kone, Eliezer K. Ngoran, Juerg Utzinger, Semaw F. Abera, Yohannes A. Melaku, Berhe Weldearegawi, Pierre Gomez, Momodou Jasseh, Patrick Ansah, Daniel Azongo, Felix Kondayire, Abraham Oduro, Alberta Amu, Margaret Gyapong, Odette Kwarteng, Shashi Kant, Chandrakant S. Pandav, Sanjay K. Rai, Sanjay Juvekar, Veena Muralidharan, Abdul Wahab, Siswanto Wilopo, Evasius Bauni, George Mochamah, Carolyne Ndila, Thomas N. Williams, Sammy Khagayi, Kayla F. Laserson, Amek Nyaguara, Anna M. Van Eijk, Alex Ezeh, Catherine Kyobutungi, Marylene Wamukoya, Menard Chihana, Amelia Crampin, Alison Price, Valérie Delaunay, Aldiouma Diallo, Laetitia Douillot, Cheikh Sokhna, F. Xavier Gómez-Olivé, Paul Mee, Stephen M. Tollman, Kobus Herbst, Joël Mossong, Nguyen T.K. Chuc, Samuelina S. Arthur, Osman A. Sankoh & Peter Byass (2014) HIV/AIDS-related mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites, Global Health Action, 7:1, 25370, DOI: 10.3402/gha.v7.25370

To link to this article: https://doi.org/10.3402/gha.v7.25370

© 2014 INDEPTH Network

Published online: 29 Oct 2014.
INDEPTH NETWORK CAUSE-SPECIFIC MORTALITY

HIV/AIDS-related mortality in Africa and Asia: evidence from INDEPTH health and demographic surveillance system sites

P. Kim Streatfield1,2,3, Wasif A. Khan2,3,4, Abbas Bhiuya5,6, Syed M.A. Haniff3,5,6, Nurul Alam3,7,8, Ourohiré Millogo3,9,10, Ali Sie3,9,10, Pascal Zabre3,9,10, Clementine Rossier3,11,12,13, Abdramane B. Soura3,11,12, Bassirou Bonfoh3,14,15, Siaka Kone3,14,15, Eliezer K. Ngoran3,14,16, Juerg Utzinger3,14,17, Semaw F. Abera3,3,18,19, Yohannes A. Melaku3,18,19, Berhe Weldearegawi3,18,19, Pierre Gomez3,20,21, Momodou Jasseh3,20,21, Patrick Ansah3,22,23, Daniel Azongo3,22,23, Felix Kondayire3,22,23, Abraham Odouro3,22,23, Albert Amu3,24,25, Margaret Gyapong3,24,25, Odette Kwarteng3,24,25, Shashi Kant3,26,27, Chandrakant S. Pandav3,26,27, Sanjay K. Rai3,26,27, Sanjay Juvekar3,26,27, Veena Muralidharan3,26,27, Abdul Wahab3,30,31, Siswant0 Wilopo3,30,31, Evasius Bauni3,32,33, George Mochamah3,32,33, Carolyne Ndila3,32,33, Thomas N. Williams3,32,33, Sammy Khagay3,35,36, kayla F. Laserson3,35,36, Amek Nyagaur3,35,36, Anna M. Van Eijk3,35,36, Alex Ezech3,37,38, Catherine Kyobutungi3,37,38, Marylene Wamukoya3,37,38, Menard Chihana3,39,40,41, Amelia Crampin3,39,40,41, Alison Price3,39,40,41, Valérie Delaunay3,42,43, Aldiouma Diallo3,42,43, Laetitia Douillo3,42,43, Cheikh Sokhna3,42,43, F. Xavier Góméz-Olive3,44,45, Paul Mee3,44,45, Stephen M. Tollman3,44,43,46, Kobus Herbst3,47,48, Joël M ossong3,47,48,49, Nguyen T.K. Chuc3,50,51, Samuelina S. Arthur3,52,53, and Peter Byass45,54

1Matlab HDSS, Bangladesh; 2International Centre for Diarrhoeal Disease Research, Bangladesh; 3INDEPTH Network, Accra, Ghana; 4Bandarban HDSS, Bangladesh; 5Chakaria HDSS, Bangladesh; 6Centre for Equity and Health Systems, International Centre for Diarrhoeal Disease Research, Bangladesh; 7AMK HDSS, Bangladesh; 8Centre for Population, Urbanisation and Climate Change, International Centre for Diarrhoeal Disease Research, Bangladesh; 9Nouna HDSS, Burkina Faso; 10Nouna Health Research Centre, Nouna, Burkina Faso; 11Ouagadougou HDSS, Burkina Faso; 12Institut Supérieur des Sciences de la Population, Université de Ouagadougou, Burkina Faso; 13Institut d’Études Démographique et du parcours de vie, Université de Genève, Geneva, Switzerland; 14Taabo HDSS, Côte d’Ivoire; 15Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire; 16Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire; 17Swiss Tropical and Public Health Institute, Basel, Switzerland; 18Kilite-Awlaelo HDSS, Ethiopia; 19Department of Public Health, College of Health Sciences, Mekelle University, Mekelle, Ethiopia; 20Farafenni HDSS, The Gambia; 21Medical Research Council, The Gambia Unit, Fajara, The Gambia; 22Navrongo HDSS, Ghana; 23Navrongo Health Research Centre, Navrongo, Ghana; 24Dodowa HDSS, Ghana; 25Dodowa Health Research Centre, Dodowa, Ghana; 26Ballabgarh HDSS, India; 27All India Institute of Medical Sciences, New Delhi, India; 28Vadu HDSS, India; 29Vadu Rural Health Program, KEM Hospital Research Centre, Pune, India; 30Purworejo HDSS, Indonesia; 31Department of Public Health, Universitas Gadjah Mada, Yogyakarta, Indonesia; 32Kilifi HDSS, Kenya; 33KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; 34Department of Medicine, Imperial College, St. Mary’s Hospital, London, United Kingdom; 35Kisumu HDSS, Kenya; 36KEMRI/CDC Research and Public Health Collaboration and KEMRI Center for Global Health Research, Kisumu, Kenya; 37Nairobi HDSS, Kenya; 38African Population and Health Research Center, Nairobi, Kenya; 39Karonga HDSS, Malawi; 40Karonga Prevention Study, Chilumba, Malawi; 41London School of Hygiene and Tropical Medicine, London, United Kingdom; 42Niakhar HDSS, Senegal; 43Institut de Recherche pour

Authors are listed arbitrarily in order of their site code, and alphabetically within each site.
Background: As the HIV/AIDS pandemic has evolved over recent decades, Africa has been the most affected region, even though a large proportion of HIV/AIDS deaths have not been documented at the individual level. Systematic application of verbal autopsy (VA) methods in defined populations provides an opportunity to assess the mortality burden of the pandemic from individual data.

Objective: To present standardised comparisons of HIV/AIDS-related mortality at sites across Africa and Asia, including closely related causes of death such as pulmonary tuberculosis (PTB) and pneumonia.

Design: Deaths related to HIV/AIDS were extracted from individual demographic and VA data from 22 INDEPTH sites across Africa and Asia. VA data were standardised to WHO 2012 standard causes of death assigned using the InterVA-4 model. Between-site comparisons of mortality rates were standardised using the INDEPTH 2013 standard population.

Results: The dataset covered a total of 10,773 deaths attributed to HIV/AIDS, observed over 12,204,043 person-years. HIV/AIDS-related mortality fractions and mortality rates varied widely across Africa and Asia, with highest burdens in eastern and southern Africa, and lowest burdens in Asia. There was evidence of rapidly declining rates at the sites with the heaviest burdens. HIV/AIDS mortality was also strongly related to PTB mortality. On a country basis, there were strong similarities between HIV/AIDS mortality rates at INDEPTH sites and those derived from modelled estimates.

Conclusions: Measuring HIV/AIDS-related mortality continues to be a challenging issue, all the more so as anti-retroviral treatment programmes alleviate mortality risks. The congruence between these results and other estimates adds plausibility to both approaches. These data, covering some of the highest mortality observed during the pandemic, will be an important baseline for understanding the future decline of HIV/AIDS.

Keywords: HIV/AIDS; tuberculosis; Africa; Asia; Mortality; INDEPTH Network; Verbal Autopsy; InterVA

Responsible Editors: Heiko Becher, University of Hamburg, Germany; Nawi Ng, Umeå University, Sweden.

*Correspondence to: Osman A. Sankoh, INDEPTH Network, PO Box KD213, Kanda, Accra Ghana, Email: osman.sankoh@indepth-network.org

This paper is part of the Special Issue: INDEPTH Network Cause-Specific Mortality. More papers from this issue can be found at http://www.globalhealthaction.net

Received: 3 July 2014; Revised: 28 August 2014; Accepted: 2 September 2014; Published: 29 October 2014
cheaper, and more consistent. Neither approach can be regarded as absolutely correct. Following a VA interview, assigning a death as due to HIV/AIDS is not entirely straightforward, because HIV-infected people may die of a variety of causes. As well as the wasting syndromes typical of AIDS deaths, other causes of death, including particularly pulmonary tuberculosis (PTB) and pneumonia, occur at higher rates and in different age groups among HIV-infected people.

In this paper, we present HIV/AIDS-specific mortality rates as determined by computer-interpreted VA from 22 INDEPTH Network Health and Demographic Surveillance Sites (HDSS) across Africa and Asia (5). These findings are complemented with the corresponding rates for PTB and pneumonia. Although these HDSSs are not designed to form a representative network, each one follows a geographically defined population longitudinally, systematically recording all death events and undertaking verbal autopsies on all deaths that occur. Our aim is to present the HIV/AIDS mortality patterns at each site, comparing these community-level findings with other estimated information on HIV/AIDS in Africa and Asia.

Methods

The overall INDEPTH dataset (6) from which these HIV/AIDS-specific analyses are drawn is described in detail elsewhere (7). The methods used are summarised in Box 1. Briefly, it documents 111,910 deaths in 12,204,043 person-years of observation across 22 sites. The Karonga site in Malawi did not contribute VAs for children.

Box 1. Summary of methodology based on the detailed description in the introductory paper (7)

Age–sex–time standardisation

To avoid effects of differences and changes in age–sex structures of populations, mortality fractions and rates have been adjusted using the INDEPTH 2013 population standard (8). A weighting factor was calculated for each site, age group, sex, and year category in relation to the standard for the corresponding age group and sex, and incorporated into the overall dataset. This is referred to in this paper as age–sex–time standardisation in the contexts where it is used.

Cause of death assignment

The InterVA-4 (version 4.02) probabilistic model was used for all the cause of death assignments in the overall dataset (9). InterVA-4 is fully compliant with the WHO 2012 Verbal Autopsy standard and generates causes of death categorised by ICD-10 groups (10). The data reported here were collected before the WHO 2012 VA standard was available, but were transformed into the WHO 2012 and InterVA-4 format to optimise cross-site standardisation in cause of death attribution. For a small proportion of deaths, VA interviews were not successfully completed; a few others contained inadequate information to arrive at a cause of death. InterVA-4 assigns causes of death (maximum 3) with associated likelihoods; thus cases for which likely causes did not total to 100% were also assig-

Citation: Glob Health Action 2014, 7: 25370 - http://dx.doi.org/10.3402/gha.v7.25370
ned a residual indeterminate component. This served as a means of encapsulating uncertainty in cause of death at the individual level within the overall dataset, as well as accounting for 100% of every death.

Overall dataset

The overall public-domain dataset (6) thus contains between one and four records for each death, with the sum of likelihoods for each individual being unity. Each record includes a specific cause of death, its likelihood and its age-sex-time weighting.

The InterVA-4 ‘high’ HIV/AIDS setting was used for sites in Kenya, Malawi, and South Africa. All other sites used the ‘low’ setting; the ‘very low’ setting was not used. The InterVA-4 guideline is that the ‘high’ setting is appropriate for an expected HIV/AIDS cause-specific mortality fraction (CSMF) higher than about 1%, though it does not result in any great dichotomisation of outputs; the clinical equivalent is a physician’s knowledge that his/her current case comes from a setting where HIV/AIDS is more or less likely, irrespective of that current case’s particular symptoms. The validity of the InterVA-4 model in assigning HIV/AIDS as a cause of death in relation to HIV sero-status has been extensively explored in conjunction with the ALPHA Network (11), and found to be over 90% specific. Sensitivity is more difficult to assess, since not all people infected with HIV evidently die of AIDS. The same validation exercise pointed to large numbers of cases of PTB and pneumonia as causes of death among the HIV-positive.

Deaths assigned to HIV/AIDS, and the closely related causes of PTB and pneumonia, were extracted from the overall data set together with data on person-time exposed by site, year, age, and sex. As each HDSS covers a total population, rather than a sample, uncertainty intervals are not shown.

For the sake of comparison with other estimates of HIV/AIDS-related mortality, unadjusted data were extracted for all sites for the period 2008–2012 (excluding data from the Farafenni, The Gambia; Purworejo, Indonesia; and FilaBavi, Vietnam sites which did not report for that period). These data were grouped into three age bands (0–14, 15–49, and 50+), and aggregated by country, to facilitate comparison with contemporaneous national point estimates for 2010.

In this context, all of these data are secondary datasets derived from primary data collected separately by each participating site. In all cases, the primary data collection was covered by site-level ethical approvals relating to on-going health and demographic surveillance in those specific locations. No individual identity or household location data were included in the secondary data and no specific ethical approvals were required for these pooled analyses.

Results

In the overall dataset, there were 10,455.4 deaths attributed to HIV/AIDS (including fractions of 11,972 individual deaths), with a further 10,563.4 deaths attributed to acute respiratory infections (including pneumonia), and 12,874.8 attributed to PTB.

The age-sex-time standardised CSMFs for HIV/AIDS at each site are shown, together with the population-based HIV/AIDS-specific mortality rate per 1,000 person-years, in Fig. 1. In West African sites, HIV/AIDS CSMF ranged from 2.10 to 8.00%, with HIV/AIDS-specific adjusted mortality rates ranging from 0.16 to 0.77 per 1,000 person-years. In eastern and southern Africa, except Ethiopia, CSMFs were 9.81–18.85%, with rates from 0.65 to 3.09 per 1,000 person-years. In Asia, CSMFs were 0.15–3.83%, with rates from 0.01 to 0.21 per 1,000 person-years.

Figure 2 shows HIV/AIDS mortality epidemic curves for the five sites where overall HIV/AIDS mortality was at least 1 per 1,000 person-years. Apart from the Agincourt, South Africa, site, for which a more or less complete epidemic curve can be seen, the other sites recorded mortality during a period of mainly declining HIV/AIDS mortality.

Table 1 gives HIV/AIDS-specific mortality rates by age group and site. During infancy, the highest HIV/AIDS-specific mortality rate was reported from the Africa Centre, South Africa (7.00 per 1,000 person-years), contrasting with a zero rate from several Asian sites. For the 1–4 age group, the Kisumu, Kenya, site recorded the highest rate (5.40 per 1,000 person-years). In the 5–14 year age group, Asian sites recorded rates from 0 to 0.07 per 1,000 person-years, compared with African sites from 0.02 to 0.40 per 1,000 person-years. In adulthood, the ranges across Asian sites for 15–49 years, 50–64 years, and 65+ years were 0–0.23, 0.02–0.66, and 0–0.09, respectively. Similarly for African sites, ranges were 0.08–3.65, 0.37–4.56, and 0–2.26, respectively.

Figure 3 shows the relationships between age-sex-time standardised HIV/AIDS mortality rates and PTB mortality rates for all 22 sites. Seven of the eight sites in Asia had an HIV/AIDS rate below 0.1 per 1,000 person-years, but PTB rates ranged from 0.11 to 0.75 per 1,000 person-years. Conversely, six of the seven sites in eastern and southern Africa had HIV/AIDS rates above 0.5 per 1,000 person-years, with PTB rates ranging from 0.52 to 4.96 per 1,000 person-years. The highest age-sex-time standardised HIV/AIDS mortality rate ratio was between Kisumu, Kenya, and AMK, Bangladesh, at 343:1.

Figure 4 shows HIV/AIDS mortality rates for 15 sites which had an overall HIV/AIDS-specific mortality rate over 0.1 per 1,000 person-years, by age group, also showing corresponding data for PTB and pneumonia. Logarithmic scales have been used to visualise both high and low levels of mortality while using the same scale for each site.
Discussion

Against the background of extensive modelling approaches that have been applied to HIV/AIDS mortality, this dataset presents results from individually documented deaths at a range of sites across Africa and Asia. The expected huge differences in HIV/AIDS mortality rates between Africa and Asia were evident from these results, and, to a lesser extent, the substantial differences that occurred within the African continent. The good news is that HIV/AIDS deaths declined in recent years in all the sites with high mortality rates (Fig. 2), as the effects of prevention and treatment programmes took effect. The interpretation of findings at individual sites depends on local characteristics (14–35). Two sites, Ouagadougou in Burkina Faso and Nairobi in Kenya, followed urban populations. Bandarban in Bangladesh is located in a militarised frontier zone close to the Myanmar border, which may be associated with higher rates of HIV/AIDS mortality compared with other sites in Bangladesh.

The validity of VA cause of death assignment for HIV/AIDS is not straightforward. In these results, the similar and marked changes over time in the high mortality sites (Fig. 2) added veracity to the InterVA-4 outputs, since the model had no information about the progress of the epidemic over time. Similarly, the extremely low levels of HIV/AIDS-related death assigned as a cause in countries such as Bangladesh and India confirmed the specificity of the methods used. A previous assessment of InterVA-4 validity versus HIV sero-status showed high specificity, but sensitivity was unmeasurable since not all HIV-positive people go on to die from HIV/AIDS (11). However, the same study also showed high mortality rate ratios for PTB and pneumonia between HIV positive and negative cases. ICD-10 classification (36) suggests that almost all HIV-related deaths should be classified under the B20-B24 rubrics, but this is easier said than done in practice, either when using VA or when certifying a death, if there is no evidence of HIV status. In view of the apparently complex relationships between HIV/AIDS deaths and PTB deaths in different settings, as evidenced in Fig. 3, it is not simply a matter of adding together HIV/AIDS and PTB deaths across all settings. However, the total of what InterVA-4 assigns as HIV/AIDS and PTB deaths may provide a better approximation of the overall burden of HIV/AIDS-related mortality for at least the 15–49 year age group in high HIV settings. The question of HIV/AIDS-related mortality associated with pregnancy has also been a matter of debate (37). Another paper in this series analyses pregnancy-related mortality in detail, including the attribution of HIV/AIDS-related deaths between indirect maternal and incidental categories (38).

The WHO 2012 VA standard (39) includes an indicator relating to previous diagnosis of HIV, although the validation study suggested that this was seriously

Table 2 shows the INDEPTH results in comparison with national estimates from the UNAIDS Spectrum model (12) and Global Burden of Disease 2010 (13). Longitudinal INDEPTH data were aggregated over 2008–2012 (for the 19 sites reporting for that period) for the purposes of comparison with the Spectrum and Global Burden of Disease 2010 (GBD 2010) estimates, together with corresponding estimates for PTB.
Table 1. HIV/AIDS-specific deaths and mortality rates per 1,000 person-years, by age group and site, from 111,910 deaths in 12,204,043 person-years of observation across 22 sites

Country: Site	Infant	1–4 years	5–14 years	15–49 years	50–64 years	65+ years
Bangladesh: Matlab						
Adjusted deaths	1.71	7.23	2.18	4.16	3.17	0.00
Rate/1,000 py	0.04	0.04	0.01	0.00	0.02	0.00
Bangladesh: Bandarban						
Adjusted deaths	1.19	0.00	1.00	7.02	3.89	0.00
Rate/1,000 py	0.06	0.00	0.07	0.23	0.66	0.00
Bangladesh: Chakaria						
Adjusted deaths	0.36	0.00	0.00	0.00	1.71	0.00
Rate/1,000 py	0.06	0.00	0.00	0.00	0.11	0.00
Bangladesh: AMK						
Adjusted deaths	0.00	1.44	0.87	0.74	1.00	0.00
Rate/1,000 py	0.00	0.03	0.01	0.00	0.02	0.00
Burkina Faso: Nouna						
Adjusted deaths	7.92	51.12	8.89	88.29	20.34	3.11
Rate/1,000 py	0.26	0.49	0.05	0.32	0.43	0.11
Burkina Faso: Ouagadougou						
Adjusted deaths	11.55	16.15	4.63	19.85	7.57	0.00
Rate/1,000 py	1.66	0.58	0.09	0.17	0.66	0.00
Côte d’Ivoire: Taabo						
Adjusted deaths	10.20	20.09	8.24	28.95	7.23	5.06
Rate/1,000 py	2.57	1.55	0.27	0.60	1.04	1.59
Ethiopia: Kilite Awlaelo						
Adjusted deaths	1.91	2.91	0.87	4.85	4.13	1.89
Rate/1,000 py	0.60	0.22	0.02	0.08	0.37	0.27
The Gambia: Farafenni						
Adjusted deaths	13.14	44.29	11.86	40.20	20.01	3.86
Rate/1,000 py	1.15	1.03	0.13	0.29	0.89	0.34
Ghana: Navrongo						
Adjusted deaths	31.16	92.71	24.70	195.22	52.08	10.61
Rate/1,000 py	1.03	0.80	0.08	0.37	0.41	0.15
Ghana: Dodowa						
Adjusted deaths	5.09	10.80	10.01	41.98	13.51	2.86
Rate/1,000 py	0.36	0.19	0.07	0.16	0.37	0.11
India: Ballabgarh						
Adjusted deaths	0.00	1.44	0.61	2.66	2.21	0.00
Rate/1,000 py	0.00	0.05	0.01	0.01	0.07	0.00
India: Vadu						
Adjusted deaths	8.42	0.00	0.00	2.25	1.23	0.00
Rate/1,000 py	1.96	0.00	0.00	0.02	0.08	0.00
Indonesia: Purworejo						
Adjusted deaths	0.00	0.00	1.34	0.00	3.35	1.98
Rate/1,000 py	0.00	0.00	0.03	0.00	0.12	0.09
Kenya: Kilifi						
Adjusted deaths	69.17	70.79	60.88	276.26	98.83	50.99
Rate/1,000 py	1.80	0.48	0.20	0.65	1.52	1.54
Kenya: Kisumu						
Adjusted deaths	297.87	780.55	128.47	1708.84	406.33	132.85
Rate/1,000 py	7.47	5.40	0.40	3.65	4.56	1.98
under-reported in VA interviews (11). The WHO 2012 standard, and therefore InterVA-4, does not yet include any details of anti-retroviral therapy (ART), although that will become a more pressing issue as experience of mortality patterns among HIV positive individuals with long exposure to ART develops. It is as yet a relatively open question as to what the major causes of death among HIV-positive people might be after possible decades of ART.

There are other major pieces of work describing HIV/AIDS mortality patterns across Africa and Asia, but
these largely relied on modelling estimates from whatever specific sources of data were available, and therefore carried large degrees of uncertainty given the sparse nature of the data from many settings. The two major sources of contemporaneous estimates for HIV/AIDS mortality come from the UNAIDS Spectrum model (12) and the GBD 2010 model (13). Although our purpose here is not to compare these two models with each other, it is worth noting that there are some major differences. For example, among the countries represented here, the estimates for Ethiopia vary three-fold.

Table 2 shows estimates of HIV/AIDS-related and PTB mortality rates for 12 countries according to Spectrum, GBD 2010, and InterVA-4, which in many cases were very similar, though with differences in places. It must be remembered that these comparisons were compromised by taking INDEPTH sites that are not designed to be nationally representative and putting their findings alongside modelled estimates that are intended to reflect national situations. In South Africa, it appeared that InterVA-4 assigned a substantial amount of HIV/AIDS mortality as PTB, which is perhaps unsurprising in that high-prevalence setting. InterVA-4 arrived at a substantially higher HIV/AIDS mortality estimate than Spectrum for Senegal, and vice-versa for India. There were also many similarities in PTB mortality rates, though differences were evident in Ghana, Kenya, and Senegal.

Similarly there were relatively few appreciable differences between GBD 2010 and InterVA-4 estimates. The differences may reflect local disparities in rates between sites and national populations, given that the relationships between symptoms and causes would not be expected to vary substantially between countries. It also has to be remembered that, although all these VAs have been processed in a standardised way using the WHO 2012 protocol, they were collected in the field in slightly different ways before 2012, and some observed differences may also reflect that. Overall, however, there was appreciable congruence in mortality rates between these various sources.

Fig. 4. Mortality rates for HIV/AIDS, pulmonary TB, and pneumonia, by site and age group at 15 INDEPTH Network sites for which the overall rate of HIV/AIDS mortality exceeded 0.1/1,000 person-years.

Conclusions

Measuring HIV/AIDS mortality continues to be a highly challenging area, particularly in Africa, where rates are high and data are often unavailable. This is the largest single systematic study that has applied common methodologies to HIV/AIDS mortality at the individual level across Africa and Asia, and it largely confirms the corresponding findings coming from modelled estimates. This mutually adds plausibility to both existing estimates and to these population-based findings. The challenges
Table 2. Within-country estimates of cause-specific (per 1,000 population) mortality rates for HIV/AIDS and TB for 2010 according to UNAIDS Spectrum and the Global Burden of Disease 2010, compared to the equivalent rates across 19 INDEPTH sites, aggregated within 10 countries, for 2008–2012 (per 1,000 person-years)

Country	HIV/AIDS mortality rates per 1,000	TB mortality rates per 1,000
	GBD 2010 Spectrum	INDEPTH 2010 Spectrum
Bangladesh	0.0092	0.0002
Burkina Faso	0.0002	0.0015
CA 016	0.002	0.0015
Ethiopia	0.001	0.0015
Ghana	0.034	0.034
India	0.034	0.034
Kenya	0.042	0.042
Malawi	0.082	0.082
Senegal	0.116	0.116
South Africa	0.149	0.149

Acknowledgements

We are grateful to all the residents of INDEPTH HDSS sites who have contributed personal information to this mortality dataset, to the field staff who undertook so many VA interviews, and the data management staff who handled the data at every participating site. INDEPTH acknowledges all the site scientists who have participated in bringing this work together, and who participated in analysis workshops in Ghana, Belgium, Thailand, and the United Kingdom. The INDEPTH Network is grateful for core funding from Sida, the Wellcome Trust, and the William & Flora Hewlett Foundation. The Umeå Centre for Global Health Research is core funded by Forte, the Swedish Research Council for Health, Working Life and Welfare (grant 2006-1512). PB’s residency at the University of the Witwatersrand Rural Knowledge Hub to analyse and draft these results was supported by the European Community Marie Curie Actions IPHTRE project (no. 295168). icddr,b is thankful to the Governments of Australia, Bangladesh, Canada, Sweden and the UK for providing core/unrestricted support. The Ouagadougou site acknowledges the Wellcome Trust for its financial support to the Ouagadougou HDSS (grant number WT081993MA). The Kilite Awlaelo HDSS is supported by the US Centers for Disease Control and Prevention (CDC) and the Ethiopian Public Health Association (EPHA), in accordance with the EPHA-CDC Cooperative Agreement No.5U22/PS022179_10 and Mekelle University, though these results do not necessarily represent the funders’ official views. The Farafenni HDSS is supported by the UK Medical Research Council. The Kilifi HDSS is supported through core support to the KEMRI-Wellcome Trust Major Overseas Programme from the Wellcome Trust. TNW is supported by a Senior Fellowship (091758) and CN through a Strategic Award (084538) from the Wellcome Trust. This paper is published with permission from the Director of KEMRI. The Kisumu site wishes to acknowledge the contribution of the late Dr. Kubaje Adazu to the development of KEMRI/CDC HDSS, which was implemented and continues to be supported through a cooperative agreement between KEMRI and CDC. The Nairobi Urban Health and Demographic Surveillance System (NUHDSS), Kenya, since its inception has received support from the Rockefeller Foundation (USA), the Wellcome Trust (UK), the William and Flora Hewlett Foundation (USA), Comic Relief (UK), the Swedish International Development Cooperation Agency (Sida) and the Bill and Melinda Gates Foundation (USA). The Agincourt site acknowledges the School of Public Health and Faculty of Health Sciences, University of the Witwatersrand, and the Medical Research Council, South Africa, for providing vital support since inception of the Agincourt HDSS. Core funding has been provided by The Wellcome Trust, UK (Grants 058893/Z/99/A; 069683/Z/02/Z; 085477/Z/08/Z) with contributions from the National Institute on Aging of the NIH, William and Flora Hewlett Foundation, and Andrew W Mellon Foundation, USA.

Conflict of interest and funding

The author has not received any funding or benefits from industry or elsewhere to conduct this study.

References

1. De Cock M, Jaffe HW, Curran JW. Reflections on 30 years of AIDS. Emerg Infect Dis 2011; 17: 1044–8.
2. Floyd S, Marston B, Baisley K, Wringe A, Herbst K, Chihana M, et al. The effect of antiretroviral therapy provision on all-cause, AIDS and non-AIDS mortality at the population level – a comparative analysis of data from four settings in Southern and East Africa. Trop Med Int Health 2012; 17: E84–E93.

3. Byass P. The imperfect world of global health estimates. PLoS Med 2010; 7: e1001006.

4. Fottrell E, Byass P. Verbal Autopsy – methods in transition. Epidemiol Rev 2010; 32: 38–55.

5. Sankoh O, Byass P. The INDEPTH Network: filling vital gaps in global epidemiology. Int J Epidemiol 2012; 41: 579–88.

6. INDEPTH Network. INDEPTH Network Cause-Specific Mortality Surveillance System. Int J Epidemiol 2012; 41: 977–88.

7. Streiffeld PK, Khan WA, Bhuiya A, Alam N, Sié A, Soura AB et al. Cause-specific mortality in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System sites. Glob Health Action 2014; 7: 25362, http://dx.doi.org/10.3402/gha.v7i25362

8. Sankoh O, Sharror D, Herbst K, Whiteside Kabudula C, Alam N, Kant S, et al. The INDEPTH standard population for low-and middle-income countries, 2013. Glob Health Action 2014; 7: 23286, http://dx.doi.org/10.3402/gha.v7i23286

9. Byass P, Chandramohan D, Clark SJ, D’Ambruoso L, Fottrell E, Byass P. Verbal Autopsy Methods in Transition. Glob Health Action 2012; 5: 19281, http://dx.doi.org/10.3402/gha.v5i0.19281

10. World Health Organization. Verbal Autopsy Standards: the 2012 WHO Verbal Autopsy Instrument. Geneva: WHO; 2012. Available from: http://www.who.int/healthinfo/statistics/WHO_VA_2012_RC1_Instrument.pdf [cited 25 February 2014].

11. Byass P, Calvert C, Miro-Nakinyi J, Lutalo T, Michael D, Crampin A, et al. InterVA-4 as a public health tool for measuring HIV/AIDS mortality: a validation study from five African countries. Glob Health Action 2013; 6: 22448, http://dx.doi.org/10.3402/gha.v6i0.22448

12. UNAIDS. Spectrum model. Available from: http://www.unaids.org/en/dataanalysis/datalools/spectrum2013/ [cited 4 March 2014].

13. Global Burden of Disease Study 2010. Global Burden of Disease Study 2010 (GBD 2010) Mortality Results 1970–2010. Seattle, United States: Institute for Health Metrics and Evaluation (IHME); 2012.

14. Razzauque A, Nahar A, Akter Khanam M, Streiffeld PK. Socio-demographic differentials of adult health indicators in Matlab, Bangladesh: self-rated health, health state, quality of life and disability level. Glob Health Action 2010; 3: 4618, http://dx.doi.org/10.3402/gha.v3i0.4618

15. INDEPTH Network. Bandarban HDSS. Available from: http://www.indepth-network.org/Profiles/Bandarban HDSS.pdf.

16. Hanifi MA, Mamun AA, Paul A, Hasan SA, Hoque S, Sharmin S, et al. Profile: the Chakaria Health and Demographic Surveillance System. Int J Epidemiol 2012; 41: 667–75.

17. Lindeboom W, Das SC, Ashraf A. Health and Demographic Surveillance Report 2009 - Abhaynagar and Mirsarai. Dhaka, Bangladesh: ICDDR,B; 2011.

18. Sié A, Louis VR, Gbangou A, Müller O, Niamba L, Stieglbauer G, et al. The Health and Demographic Surveillance System (HDSS) in Nouna, Burkina Faso, 1993–2007. Glob Health Action 2010; 3: 5284, http://dx.doi.org/10.3402/gha.v3i0.5284

19. Rossier C, Souam A, Baya B, Comparé G, Dabiré B, Dos Santos S, et al. Profile: the Ouagadougou Health and Demographic Surveillance System. Int J Epidemiol 2012; 41: 658–66.

20. Kouadio MK, Righetti AA, Abé N, Weggmüler R, Weiss MG, Ng’oran EK, et al. Local concepts of anemia-related illnesses and public health implications in the Taabo health demography surveillance system. Côte d’Ivoire. BMC Hematol 2013; 13: 5.

21. Weldegebawi B, Ashebir Y, Gebye E, Gebregziabher T, Yohannes M, Mussa S, et al. Emerging chronic non-communicable diseases in rural communities of Northern Ethiopia: evidence using population-based verbal autopsy method in Kilite Awlaelo surveillance site. Health Policy Plan 2013; 28: 891–8.

22. Oduro AR, Wak G, Azongo D, Debuur C, Wontuo P, Kondaiyie F, et al. Profile: the Navrongo Health and Demographic Surveillance System. Int J Epidemiol 2012; 41: 968–76.

23. Gyapong M, Sarpong D, Awini E, Maneye AK, Tei D, Odonkor G, et al. Profile: the Dodowa Health and Demographic Surveillance System. Int J Epidemiol 2013; 42: 1686–96.

24. Jasseh M, Webb EL, Jaffar S, Howie S, Townend J, Smith PG, et al. Reaching Millennium Development Goal 4 - the Gambia. Trop Med Int Health 2011; 16: 1314–25.

25. Ng N, Hakimi M, Santos A, Byass P, Wilopo SA, Wall S. Is self-rated health an independent index for mortality among older people in Indonesia? PLoS One 2012; 7: e35308.

26. Kant S, Misra P, Gupta S, Goswami K, Krishnan A, Nongkyrin B, et al. Profile: the Ballabgarh Health and Demographic Surveillance System (CHRSP-AIIMS). Int J Epidemiol 2013; 42: 37–644.

27. Hirve S, Juvekar S, Sambhudas S, Lele P, Blomstedt Y, Wall S, et al. Does self-rated health predict death in adults aged 50 years and above in India? Evidence from a rural population under health and demographic surveillance. Int J Epidemiol 2012; 41: 1719–27.

28. Scott JA, Bauni E, Moisi JC, Ojo A, Gatauka H, Nyundo C, et al. Profile: The Kilifi Health and Demographic Surveillance System (KHDSS). Int J Epidemiol 2012; 41: 650–7.

29. Odhiambero FO, Laserson KF, Sewe M, Hameel MJ, Feikin DR, Adazu K, et al. Profile: the KEMRI/CDC Health and Demographic Surveillance System – Western Kenya. Int J Epidemiol 2012; 41: 977–87.

30. Oti SO, Mutua M, Gongmela GS, Ngondi T, Ngeferi E, Kyobutungi C. HIV mortality in urban slums of Nairobi, Kenya 2003–2010: a period effect analysis. BMC Public Health 2013; 13: 588.

31. Crampin AC, Dube A, Mboma S, Price A, Chihana M, Jahn A, et al. Profile: the Karonga Health and Demographic Surveillance System. Int J Epidemiol 2012; 41: 676–85.

32. Deluany N, Douillot L, Diallo A, Dione D, Trape JF, Medianickov O, et al. Profile: the Niakhar Health and Demographic Surveillance System (KHDDS). Int J Epidemiol 2012; 41: 1002–11.

33. Kahn K, Collinson MA, Gómez-Olivé FX, Mokoena O, Twine R, Mee P, et al. Profile: Agincourt health and socio-demographic surveillance system. Int J Epidemiol 2012; 41: 988–1000.

34. Herbst AJ, Mafajane T, Newell ML. Verbal autopsy-based cause-specific mortality trends in rural KwaZulu-Natal, South Africa, 2000–2009. Popul Health Metr 2011; 9: 47.

35. Huong DL, Minh HV, Vos T, Janlert U, Van DD, Byass P. Burden of premature mortality in rural Vietnam from 1999–2003: analyses from a Demographic Surveillance Site. Popul Health Metr 2006; 4: 9.

36. World Health Organization. International Statistical Classification of Diseases and Related Health Problems, 10th Revision. Instruction Manual. Vol. 2. Geneva: WHO; 2011. Available from: http://apps.who.int/classifications/icd10/browse/Content/ statichtml/ICD10Volume2_en_2010.pdf [cited 4 March 2014].

37. Zaba B, Calvert C, Marston M, Isingo R, Nakinya-Miuro J, Lutalo T, et al. Effect of HIV infection on pregnancy-related mortality in sub-Saharan Africa: secondary analyses of pooled community-based data from the network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA). Lancet 2013; 381: 1763–71.
38. Streatfield PK, Alam N, Compaoré Y, Rossier C, Soura AB, Bonfoh B, et al. Pregnancy-related mortality in Africa and Asia: evidence from INDEPTH Health and Demographic Surveillance System sites. Glob Health Action 2014; 7: 25368, http://dx.doi.org/10.3402/gha.v7.25368

39. Leitao J, Chandramohan D, Byass P, Jakob L, Bundhamcharoen K, Choprapawon C, et al. Revising the WHO verbal autopsy instrument to facilitate routine cause-of-death monitoring. Glob Health Action 2013; 6: 21518, http://dx.doi.org/10.3402/gha.v6i0.21518