TORSION GROWTH OVER CUBIC FIELDS
OF RATIONAL ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

ENRIQUE GONZÁLEZ-JIMÉNEZ

Abstract. This article is a contribution to the project of classifying the torsion growth of elliptic curve upon base-change. In this article we treat the case of elliptic curve defined over the rationals with complex multiplication. For this particular case, we give a description of the possible torsion growth over cubic fields and a completely explicit description of this growth in terms of some invariants attached to a given elliptic curve.

1. Introduction

The arithmetic of elliptic curves is one of the most fascinating areas in Number Theory or Algebraic Geometry. Let \(E \) be an elliptic curve defined over a number field \(K \), then the Mordell-Weil Theorem asserts that the set of \(K \)-rational points on \(E \), denoted by \(E(K) \), forms a finitely generated abelian group. The subgroup of points of finite order, denoted by \(E(K)_{\text{tors}} \), is called the torsion subgroup and it is well known that is isomorphic to \(\mathbb{C}_n \times \mathbb{C}_m \) for some positive integers \(n, m \), where \(\mathbb{C}_n = \mathbb{Z}/n\mathbb{Z} \) denotes the cyclic group of order \(n \). The study of torsion subgroups is had been treated for several active people last years. Thanks to Merel [19], it is known that given a positive integer \(d \), the set \(\Phi(d) \) of possible groups (up to isomorphism) that can appear as the torsion subgroup \(E(K)_{\text{tors}} \), where \(K \) runs through all number fields \(K \) of degree \(d \) and \(E \) runs through all elliptic curves over \(K \), is finite. Only the cases \(d = 1 \) and \(d = 2 \) are known (by [18]; and [16, 17] respectively).

This paper focuses on a particular approach concerning torsion growth: we are interested in studying how does the torsion subgroup of an elliptic curve defined over \(\mathbb{Q} \) change when we consider the elliptic curve over a number field of degree \(d \). Note that if \(E \) is an elliptic curve defined over \(\mathbb{Q} \) and \(K \) a number field such that the torsion of \(E \) grows from \(\mathbb{Q} \) to \(K \), then of course the torsion of \(E \) also grows from \(\mathbb{Q} \) to any extension of \(K \). We say that the torsion growth over \(K \) is primitive if \(E(K')_{\text{tors}} \nsubseteq E(K)_{\text{tors}} \) for any subfield \(K' \subsetneq K \).

We introduce some useful definition for the sequel:

- Let \(\Phi_\mathbb{Q}(d) \) be the set of possible groups (up to isomorphisms) that can appear as the torsion subgroup over a number field of degree \(d \), of an elliptic curve defined over \(\mathbb{Q} \).
- Fixed \(G \in \Phi(1) \), let \(\Phi_\mathbb{Q}(d, G) \) be the subset of \(\Phi_\mathbb{Q}(d) \) such that \(E \) runs through all elliptic curves over \(\mathbb{Q} \) such that \(E(\mathbb{Q})_{\text{tors}} \cong G \).
- Let \(E \) be an elliptic curve defined over \(\mathbb{Q} \) and \(d \) a positive integer. We denote by \(\mathcal{H}_\mathbb{Q}(d, E) \) the multiset of groups \(H \) such that there exist \(K/\mathbb{Q} \), an extension of degree dividing \(d \), with \(H \cong E(K)_{\text{tors}} \neq E(\mathbb{Q})_{\text{tors}} \) and the torsion growth in \(K \) is primitive. Note that we are
allowing the possibility of two (or more) of the torsion subgroups H being isomorphic if the corresponding number fields K are not isomorphic. We let $\mathcal{H}_Q(d)$ denote the set of $\mathcal{H}_Q(d,E)$ as E runs over all elliptic curves defined over \mathbb{Q}. Finally, for any $G \in \Phi(1)$ we define $\mathcal{H}_Q(d,G)$ as the set of multisets $\mathcal{H}_Q(d,E)$ where E runs over all the elliptic curve defined over \mathbb{Q} such that $E(\mathbb{Q})_{\text{tors}} \cong G$. Denote by $h_Q(d)$ the maximum of the cardinality of S when $S \in \mathcal{H}_Q(d)$, then $h_Q(d)$ gives the maximum number of field extension of degrees dividing d where there is primitive torsion growth.

The sets $\Phi_Q(d)$, $\Phi_Q(d,G)$ and $\mathcal{H}_Q(d,G)$, for any $G \in \Phi(1)$, have been completely classified for $d = 2, 3, 5, 7$ and for any positive integer d whose prime divisors are greater than 7 (cf. [21, 14, 15, 13, 7, 12]). The set $\Phi_Q(4)$ is known [2, 12]. The other sets have been treated for $d = 4$ in [11] and $d = 6$ in [4]. We denote by $\Phi_{\text{CM}}(d)$, $\Phi_{\text{CM}}(d,G)$, $\mathcal{H}_{\text{CM}}(d,G)$, which are defined as the analogues above sets but restricting to elliptic curves with complex multiplication (CM).

The set $\Phi_{\text{CM}}(1)$ was determined by Olson [22]:

$$\Phi_{\text{CM}}(1) = \{C_1, C_2, C_3, C_4, C_6, C_2 \times C_2\}.$$

The quadratic cases by Müller et al [20] and the cubic case by several authors headed by Zimmer [6, 23]:

$$\Phi_{\text{CM}}(3) = \Phi_{\text{CM}}(1) \cup \{C_9, C_{14}\}.$$

Recently, Clark et al. [3] have computed the sets $\Phi_{\text{CM}}(d)$, for $4 \leq d \leq 12$.

Restricting to elliptic curve with complex multiplication defined over \mathbb{Q} we obtain the following results:

Theorem 1. $\Phi_{\text{CM}}(3) = \Phi_{\text{CM}}(3)$.

Theorem 2. Let be $G \in \Phi_{\text{CM}}(1)$. Then

- If $G \in \{C_4, C_6, C_2 \times C_2\}$ then $\Phi_{\text{CM}}(3,G) = \{G\}$. In particular, $\mathcal{H}_{\text{CM}}(3,G) = \emptyset$.
- If $G \in \{C_1, C_2, C_3\}$ then the sets $\Phi_{\text{CM}}(3,G)$ and $\mathcal{H}_{\text{CM}}(3,G)$ are the following:

G	$\Phi_{\text{CM}}(3,G) \setminus \{G\}$	$\mathcal{H}_{\text{CM}}(3,G)$
C_1	$\{C_2, C_3, C_6\}$	C_2
		C_6
		C_2, C_3
C_2	$\{C_6, C_{14}\}$	C_6
		C_{14}
C_3	$\{C_6, C_9\}$	C_6
		C_6, C_9

In particular, $h_{\text{CM}}(3) = 2$.

Our aim in this paper is to go further. More precisely, one we have given a description of the possible torsion growth over cubic fields we are going to give a completely explicit description of this
growth in terms of some invariants attached to a given elliptic curve. The case of quadratic growth is solved in [9]. In an ongoing paper [10] we will solve the problem for number fields of low degree.

Theorem 3. Table 4 gives an explicit description of torsion growth over cubic fields of any elliptic curve defined over \mathbb{Q} with CM depending only in its corresponding CM-invariants (see §2.4 for the definition).

Notation: Given an elliptic curve $E : y^2 = x^3 + Ax + B$, $A, B \in K$, and a number field K, we denote by $j(E)$ its j-invariant, by $\Delta(E)$ the discriminant of that short Weierstrass model, and by $E(K)_{\text{tors}}$ the torsion subgroup of the Mordell-Weil group of E over K. For a positive integer n, we denote by $C_n = \mathbb{Z}/n\mathbb{Z}$ the cyclic group of order n.

2. Proof of the Theorems

2.1. Preliminaries

Let E be an elliptic curve and n a positive integer. Denote by $E[n]$ the set of points on E of order dividing n. The x-coordinates of the points on $E[n]$ correspond to the roots of the n-division polynomial $\Psi_n(x)$ of E (cf. [25, §3.2]). By abuse of notation, in this paper we use $\Psi_n(x)$ to denote the primitive n-division polynomial of E, that is, the classical n-division polynomial factors by the m-division polynomials of E for proper factors m of n. Then $\Psi_n(x)$ is characterized by the property that its roots are the x-coordinates of the points of exact order n of E. In particular if E is defined over \mathbb{Q}, E has not points of order n and one is interested to compute if there are points of order n over a cubic field, then a necessary condition is that $\Psi_n(x)$ has an irreducible factor of degree 3.

Let $E : y^2 = x^3 + Ax + B$ be an an elliptic curve defined over \mathbb{Q} and $\Psi_n(x)$ its n-division polynomial. To determine if there exist an square free integer d such that the d-quadratic twist of E has a point of order n defined over some number field K it is enough to check if one the roots of $\Psi_n(x)$, say α, belongs to K and $\alpha^3 + A\alpha + B = d\beta^2$ for $\beta \in K$.

At the Appendix appears the necessary information related to elliptic curves defined over \mathbb{Q} with CM that it will be used to proof Theorem 1, 2, and 3.

2.2. Proof of Theorem 1

There are examples in Table 4 for all the cases in $\Phi^{\text{CM}}(3)$, therefore all those torsion subgroups appear in $\Phi^{\text{CM}}_Q(3)$. This proves Theorem 1.

2.3. Proof of Theorem 2

It has been characterized the set $\Phi_{Q(3,G)}$ for any $G \in \Phi(1)$ (see Theorem 1.2 in [13]). In particular we have $\Phi_{Q}(3,G) \subseteq \Phi_{Q}(3,G) \cap \Phi^{\text{CM}}_Q(3)$ for any $G \in \Phi^{\text{CM}}(1)$. Actually, except for $G = C_1$, the above relation is an equality since there are examples of any case in Table 1. For trivial torsion we have $\Phi_{Q}(3,C_1) \cap \Phi^{\text{CM}}_Q(3) = \{C_1, C_2, C_3, C_4, C_6, C_2 \times C_2\}$. In Table 4 we have examples of elliptic curves E with trivial torsion that over cubic fields it grows to $C_2, C_3, \text{and } C_6$. Then it remains to discard the cases C_4 and $C_2 \times C_2$. In the Table 2 we check that if E is an elliptic curve defined over \mathbb{Q} with CM then $cm \in \{27, 11, 19, 43, 67, 163\}$ or $cm = 3$ with $E : y^2 = x^3 + k$ with $k \neq r^2, r^3, -432$. We split the proof depending in the cases above.

- $cm \in \{27, 11, 19, 43, 67, 163\}$: Note that for these curves the corresponding j-invariants are neither 0 nor 1728. Then we have just quadratic twists, in particular it is only necessary to study the n-division polynomials for E_{cm}. In the following cases the n-division polynomial $\Psi_n(x)$ refers to the elliptic curve E_{cm}. We have that the field of definition of the full 2-torsion, $Q(E[2])$, is the splitting field of $\Psi_2(x) = f_m(x)$. We have that those polynomials are irreducible and the cubic fields that they define are not a Galois extension. This proves
Table 1. Explicit description of torsion growth over cubic fields of elliptic curves defined over \(\mathbb{Q} \) with complex multiplication

\(\text{cm} \)	\(k \) such that \(E = E_{\text{cm}}^k \)	\(G \simeq E(\mathbb{Q})_{\text{tors}} \)	\(\mathcal{H}_E(3) \)	\text{cubics } \mathbb{Q}(\alpha)
3	16	\(C_6 \)	\(C_6, C_9 \)	\(\sqrt[3]{2}, \alpha^3 - 3\alpha - 1 = 0 \)
	\(-432 \)	\(C_3 \)	\(C_6 \)	\(\frac{3}{\sqrt[3]{2}} \)
	\(r^2 \ (r \neq \pm 1, \pm 4) \)	\(C_2 \)	\(C_6 \)	\(\sqrt[3]{2} \)
	\(-27 \)	\(C_6 \)	\(\sqrt[3]{2} \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
	\(r^3 \ (r \neq 1, -3) \)	\(C_2 \)	\(C_6 \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
	\(-108 \)	\(C_1 \)	\(C_2, C_3 \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
	\(-3r^2 \ (r \neq \pm 6) \)	\(C_2 \)	\(C_6 \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
	\(\neq r^2, r^3, -3r^2 \)	\(C_2 \)	\(C_6 \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
4	1	\(C_6 \)	\(C_6, C_9 \)	\(\sqrt[3]{2}, \alpha^3 - 3\alpha - 1 = 0 \)
	\(-3 \)	\(C_2 \)	\(C_6 \)	\(\frac{3}{\sqrt[3]{2}} \)
	\(\neq 1, -3 \)	\(C_3 \)	\(C_6, C_9 \)	\(\sqrt[3]{2}, \alpha^3 - 3\alpha - 1 = 0 \)
	\(-3 \)	\(C_1 \)	\(C_2, C_3 \)	\(\sqrt[3]{2}, \sqrt[3]{3} \)
	\(\neq 1, -3 \)	\(C_2 \)	\(C_6 \)	\(\sqrt[3]{3}r^2, \sqrt[3]{12}r^2 \)
16	4	\(C_4 \)	\(- \)	\(- \)
	\(-r^2 \)	\(C_2 \times C_2 \)	\(- \)	\(- \)
	\(\neq 4, -r^2 \)	\(C_4 \)	\(- \)	\(- \)
	\(1, 2 \)	\(C_2 \)	\(- \)	\(- \)
	\(\neq 1, 2 \)	\(C_2 \)	\(- \)	\(- \)
7	\(-7 \)	\(C_2 \)	\(C_{14} \)	\(\alpha^3 + \alpha^2 - 2\alpha - 1 = 0 \)
	\(\neq -7 \)	\(C_2 \)	\(C_{14} \)	\(\alpha^3 + \alpha^2 - 2\alpha - 1 = 0 \)
28	\(7 \)	\(C_2 \)	\(C_{14} \)	\(\alpha^3 + \alpha^2 - 2\alpha - 1 = 0 \)
	\(\neq 7 \)	\(C_2 \)	\(C_{14} \)	\(\alpha^3 + \alpha^2 - 2\alpha - 1 = 0 \)
8	\(- \)	\(C_2 \)	\(- \)	\(- \)
11	\(- \)	\(C_1 \)	\(C_2 \)	\(\alpha^3 - \alpha^2 + \alpha + 1 = 0 \)
19	\(- \)	\(C_1 \)	\(C_2 \)	\(\alpha^3 - \alpha^2 + 3\alpha - 1 = 0 \)
43	\(- \)	\(C_1 \)	\(C_2 \)	\(\alpha^3 - \alpha^2 - \alpha + 3 = 0 \)
67	\(- \)	\(C_1 \)	\(C_2 \)	\(\alpha^3 - \alpha^2 - 3\alpha + 5 = 0 \)
163	\(- \)	\(C_1 \)	\(C_2 \)	\(\alpha^3 - 8\alpha - 10 = 0 \)
that torsion $C_2 \times C_2$ is not possible over a cubic field for those cases. In the other hand $\Psi_4(x)$ is irreducible of degree 6 then there are not points of order 4 over cubic field for any of the treated cases.

- $E : y^2 = x^3 + k$ with $k \neq r^2, r^3, -432$: Here $\Psi_2(x) = x^3 + k$ is irreducible since $k \neq r^3$, and the cubic field that it defines never is a Galois extension for any k. Now $\Psi_4(x) = 2(x^6 + 20kx^3 - 8k^2)$, and $z = -(10 \pm 6\sqrt{3})k$ is a root of $\Psi_4(\sqrt[3]{x})$. But $z = x^3$ never occurs for x in a cubic field. We have proved that there are neither points of order 4 nor full 2-torsion over cubic fields.

This finishes the first part of the proof of Theorem 2. The second part is a direct consequence of the classification obtained above. We have examples at Table 1 for any set in $H_{Q}(3, G)$ such that all its elements belong to $\Phi_{Q}^{CM}(3, G)$. This completes the proof of Theorem 2.

2.4. Proof of Theorem 3. We are going to prove Table 11. Let E be an elliptic curve defined over Q with CM. We have an explicit description at Table 2 of $E(Q)_{\text{tors}}$ in terms of its CM-invariants. Now thanks to the classification of $\Phi_{Q}^{CM}(3, G)$ for any $G \in \Phi_{Q}^{CM}(1)$ we know the possible torsion growth over cubic fields. In this case we only need to compute the n-division polynomials for $n \in \{2, 3, 7, 9\}$ and check if they have (irreducible) factors of degree 3.

First note that the torsion growth over a cubic field can only be cyclic by Theorem 2. Moreover, if the torsion over Q has odd order, then the 2-division polynomial $\Psi_2(x)$ is irreducible of order 3. Let α be a root of $\Psi_2(x)$ and define $K = Q(\alpha)$. Then over K the torsion is cyclic of even order.

We split the proof depending if the twists are quadratic or not. That is, depending if $cm \notin \{3, 4\}$ or not. Suppose $cm \notin \{3, 4\}$ and let $\Psi_n(x)$ denotes the n-division polynomial of E_{cm}.

- $cm \in \{11, 19, 43, 67, 163\}$. The torsion over Q is trivial, therefore the torsion can grow to C_2, C_3 or C_6. We have that all the irreducible factor of $\Psi_2(x)$ are of even order, then no points of order 3 over cubic fields. Only torsion growth to C_2 over the cubic field $Q(\alpha)$, where $\Psi_2(\alpha) = 0$.

- $cm = 8$. We have $E^k_{8}(Q)_{\text{tors}} \simeq C_2$ and $\Phi_{Q}^{CM}(3, C_2) = \{C_2, C_6, C_{14}\}$. Therefore we only need to check if $\Psi_3(x)$ and $\Psi_7(x)$ have irreducible factors of degree 3. Again all the factors are of even degree. Then no torsion growth over cubic fields.

- $cm \in \{7, 28\}$. Again $E^k_{cm}(Q)_{\text{tors}} \simeq C_2$. In both cases $\Psi_3(x)$ is irreducible (of degree 4), then no points of order 3 over cubic fields; and $\Psi_7(x)$ has only a degree 3 factor. In particular, these factors define cubic fields $Q(\beta)$ that are isomorphic to $Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$.

- For $cm = 7$: $\beta = 36\alpha - 9$ and $f_7(\beta) = -7(2^23\alpha^2)^2$. That is, only for $k = -7$ we have points of order 7 over a cubic field.

- For $cm = 28$: $\beta = 4\alpha^2 - 4\alpha + 13$ and $f_{28}(\beta) = 7(4(-3\alpha^2 + 3\alpha + 1))^2$. In this case only for $k = 7$.

- $cm = 16$: For $k = 1, 2$ we have not torsion growth over a cubic field since for those values $E^k_{16}(Q)_{\text{tors}} \simeq C_4$. Now suppose $k \neq 1, 2$. Then $E^k_{16}(Q)_{\text{tors}} \simeq C_2$. We have that there is not torsion growth over cubics since $\Psi_3(x)$ and $\Psi_7(x)$ are irreducible of degrees 4 and 24 respectively.

- $cm = 27$: Let $k = 1$, then $E^1_{27}(Q)_{\text{tors}} \simeq C_3$ and $\Phi_{Q}^{CM}(3, C_3) = \{C_3, C_6, C_9\}$. We have that the torsion growth to C_6 and C_9 over $Q(\sqrt{2})$ and $Q(\alpha)$, where $\alpha^3 - 3\alpha - 1 = 0$, respectively. Now suppose $k \neq 1$ then $E^k_{27}(Q)_{\text{tors}} \simeq C_1$. There is a degree 3 irreducible factor of $\Psi_3(x)$ such that if α is a root of this factor, then $\alpha = -4(2\sqrt{3} + 3\sqrt{3} + 1)$. Since $f_7(\alpha) = -3(4\sqrt{3} + 6\sqrt{3} + 9)^2$ we have that there are points of order 3 over a cubic field if and only if $k = -3$ and the cubic field is $Q(\sqrt{3})$. In

In
the other hand, the torsion growth to C_2 over $\mathbb{Q}(\sqrt[3]{2})$ for any k.

- $\text{cm} = 12$: For $k = 1$ we have not torsion growth over a cubic field since $E_{12}^1(\mathbb{Q})_{\text{tors}} \simeq C_6$. Let $k \neq 1$, then $E_{12}^k(\mathbb{Q})_{\text{tors}} \simeq C_2$. There are not torsion growth over a cubic field to C_{14} since all the irreducible factor of $\Psi_7(x)$ are of degree divisible by 6. Now the 3-division polynomial $\Psi_3(x)$ satisfies $\Psi_3(\alpha) = 0$ where $\alpha = -2\sqrt[3]{4} - 2\sqrt[3]{2} - 1$. In this case we have $f_{12}(\alpha) = -3(2(\sqrt[3]{4} + \sqrt[3]{3} + 1))^2$. That is, there are points of order 3 over a cubic field K if and only if $k = -3$ and $K = \mathbb{Q}(\sqrt[3]{2})$.

Finally the non-quadratic twists:

- $\text{cm} = 4$. For $k = 4$ and $k = -r^2$ the torsion subgroup over \mathbb{Q} is isomorphic to C_4 and $C_2 \times C_2$ respectively. Therefore for those values there are not torsion growth over cubic fields. Suppose $k \neq 4, -r^2$, then $E_k^k(\mathbb{Q})_{\text{tors}} \simeq C_2$. Then the torsion can grow over a cubic field to C_6 or C_{14}. Let $\Psi_3(x)$ and $\Psi_7(x)$ the 3- and 7-division polynomial, respectively, of E_4^k.

\[\Psi_3(x) = k^2 f_3(x^2/k), \text{ where } f_3(x) = 3x^2 + 6x - 1 \text{ is irreducible.}\]

\[\Psi_7(x) = k^{12} f_7(x^2/k), \text{ where } f_7(x) = 7x^{12} + 308x^{11} - 2954x^{10} - 19852x^9 - 35231x^8 - 82264x^7 - 111916x^6 - 42168x^5 + 15673x^4 + 14756x^3 + 1302x^2 + 196x - 1 \text{ is irreducible.}\]

Then there can not be points of order 3 or 7 over cubic fields. We have proved that for the family of curves with $\text{cm} = 4$ there is not torsion growth over cubic fields.

- $\text{cm} = 3$. In this case the elliptic curve is called Mordell curve and has the model $E_3^k : y^2 = x^3 + k$ for $k \in \mathbb{Q}^*/(\mathbb{Q}^*)^0$. Note that this case has been studied by Dey and Roy [3], although they used different techniques. We split the proof depending on the torsion over \mathbb{Q}:

\[E_3^k(\mathbb{Q})_{\text{tors}} \simeq C_6, \text{ then } k = 1 \text{ and there are not torsion growth over cubic fields.}\]

\[E_3^k(\mathbb{Q})_{\text{tors}} \simeq C_3, \text{ then } k = -432 \text{ or } k = r^2 \neq 1. \text{ Here the torsion grows to } C_6 \text{ over } \mathbb{Q}(\sqrt[3]{k}), \text{ since the 2-division polynomial is } x^3 + k \text{ and } k \text{ is not a cube in } \mathbb{Q}. \text{ The other possible torsion growth over a cubic is } C_9. \text{ First let } k = -432, \text{ then } g(x) = x^3 + 36x^2 - 1728 \text{ is the unique degree 3 irreducible factor of the 9-division polynomial of } E_3^{-432}. \text{ Let } \alpha \text{ be a root of } g(x), \text{ then } \alpha^3 - 432 \text{ is not an square in } \mathbb{Q}(\alpha). \text{ Then there is not torsion growth over } \mathbb{Q}(\alpha). \text{ Now suppose } k = r^2 \neq 1 \text{ and } P_3 = (0, r) \text{ a point of order } 3 \text{ over } \mathbb{Q}. \text{ Then } P_3 = (\beta, r\gamma) \in \mathbb{Q}(\alpha, \beta) \text{ satisfies } 3P_3 = P_3, \text{ where } \alpha^3 - 3\alpha - 1 = 0, \gamma = 2\alpha^2 - 4\alpha - 1, \text{ and } \beta^3 - r^2\gamma^2 + r^2 = 0. \text{ Therefore, in principle, the field of definition of } P_3 \text{ is of degree } 9. \text{ We are going to check in which conditions this field is of degree } 3. \text{ Equivalently, when there is torsion growth to } C_9 \text{ over a cubic field. We need that } \beta \in \mathbb{Q}(\alpha). \text{ Note that } \beta^3 = r^2(\gamma^2 - 1) = 4(\alpha^2 - \alpha - 1)^2 r^2. \text{ In other words, the equation } z^3 = 4r^2 \text{ has solutions over } \mathbb{Q}(\alpha). \text{ But this only happens if and only if } r = 4s^3, s \in \mathbb{Q}; \text{ and } k = 16 \text{ is the unique possibility since } k \text{ must belong to } \mathbb{Q}^*/(\mathbb{Q}^*)^6.\]

\[E_3^k(\mathbb{Q})_{\text{tors}} \simeq C_2, \text{ then } k = 3^r \neq 1. \text{ In this case } E_3^k \text{ is the r-quadratic twist of } E_3. \text{ Let } \Psi_m(x) \text{ be the n-division polynomial of } E_3. \text{ In this case the torsion can grow over a cubic field to } C_6 \text{ or } C_{14}. \text{ The last case is not possible since all the irreducible factor of } \Psi_7(x) \text{ are of degree divisible by } 6. \text{ In the other hand } \Psi_3(x) = 3x(x^3 + 4) \text{ and } f_3(\sqrt[3]{4}) = -3. \text{ Then, there are points of order } 3 \text{ over a cubic field } K \text{ if and only if } r = -3 \text{ (i.e. } k = -27) \text{ and } K = \mathbb{Q}(\sqrt[3]{2}).\]

\[E_3^k(\mathbb{Q})_{\text{tors}} \simeq C_1, \text{ then } k \neq r^2, r^3, -432. \text{ We have } \Phi_{3}^{CM}(3, C_1) = \{C_1, C_2, C_3, C_6\}. \text{ We are going to study the n-division polynomial, } \Psi_n(x), \text{ of } E_3^k:\]

- $\Psi_2(x) = x^3 + k$ is irreducible, then there is a point of order 2 over $\mathbb{Q}(\sqrt[3]{k})$.

Note that if $x = 0$ then the equation $y^2 = k$ has solution over a cubic field if and only if k is an square over \mathbb{Q}. But we have assumed that $k \neq r^2$.

Let $\alpha \neq 0$ be another root of $\Psi_3(x) = 0$. Then $y^2 = \alpha^3 + k = \alpha^3 + 4k - 3k = -3k$ has solution over a cubic field if and only if $k = -3s^2$ for some $r \in \mathbb{Q}$. In particular the cubic field is $\mathbb{Q}(\sqrt[3]{12s^2})$.

Finally we study the torsion growth over a cubic field K to C_6. Necessary $k = -3s^2$ and the cubic fields of definition of the points of order 2 and 3 must be equal to K. From the equality $\mathbb{Q}(\sqrt[3]{3s^2}) = \mathbb{Q}(\sqrt[3]{12s^2})$ we obtain $K = \mathbb{Q}(\sqrt[3]{4})$. In the other hand, $\sqrt[3]{3s^2} \in K$ if and only if $s = 6t^3$; but necessarily $t = \pm 1$ since $k \in \mathbb{Q}^*/(\mathbb{Q}^*)^6$. Then we finish that the torsion growth over a cubic field K to C_6 if and only if $k = -108$ and $K = \mathbb{Q}(\sqrt[3]{2})$.

Remark: All the computation have been done using Magma [1] and the source code is available in the online supplement [3].

Appendix. Elliptic curve over \mathbb{Q} with CM.

The necessary information related to elliptic curves with CM to be used in this paper appear in this Appendix. Let E be an elliptic curve defined over \mathbb{Q} with CM by an order $R = \mathbb{Z} + \mathfrak{f}O_K$ of conductor \mathfrak{f} in a quadratic imaginary field $K = \mathbb{Q}(\sqrt{-D})$, where O_K is the ring of integer of K. Then R is one of the thirteen orders that correspond to the first and second column of Table 2. Each order correspond to a \mathbb{Q}-isomorphic class of elliptic curves defined over \mathbb{Q} with CM. The corresponding j-invariant appears at the third column. Fourth column, \mathfrak{cm}, denotes the absolute value of the discriminant of the CM quadratic order R. Note that the integer \mathfrak{cm} gives the \mathbb{Q}-isomorphic class of E. Fifth column gives a pair of integers $[A_{\mathfrak{cm}}, B_{\mathfrak{cm}}]$ such that if we denote by $f_{\mathfrak{cm}}(x) = x^3 + A_{\mathfrak{cm}}x + B_{\mathfrak{cm}}$ then $E_{\mathfrak{cm}} : y^2 = f_{\mathfrak{cm}}(x)$ is an elliptic curve with $j(E_{\mathfrak{cm}})$ equal to the j-invariant j at the same row. That is, $E_{\mathfrak{cm}}$ is a representative for each class. Now by the theory of twists of elliptic curves (cf. [24, X §5]) applied to elliptic curve defined over \mathbb{Q} with CM we have:

- If $\mathfrak{cm} \in \{12, 27, 16, 7, 28, 11, 19, 43, 67, 163\}$ (i.e. $j(E) \neq 0, 1728$) then E is \mathbb{Q}-isomorphic to the k-quadratic twist of $E_{\mathfrak{cm}}$ for some squarefree integer k. That is, E has a short Weierstrass model of the form $E_{\mathfrak{cm}}^k : y^2 = x^3 + k^2A_{\mathfrak{cm}}x + k^3B_{\mathfrak{cm}}$.
- If $\mathfrak{cm} = 3$ (i.e. $j(E) = 0$) then E has a short Weierstrass model of the form $E_3^k : y^2 = x^3 + k$, where k is an integer such that $k \in \mathbb{Q}^*/(\mathbb{Q}^*)^6$.
- If $\mathfrak{cm} = 4$ (i.e. $j(E) = 1728$) then E has a short Weierstrass model of the form $E_4^k : y^2 = x^3 + kx$, where k is an integer such that $k \in \mathbb{Q}^*/(\mathbb{Q}^*)^4$.

Note that k and \mathfrak{cm} are uniquely determined by E. We call them the CM-invariants of the elliptic curve E.

Finally, given an elliptic curve E defined over \mathbb{Q} with CM, at the last two columns of Table 2 we give a characterization of its torsion subgroup (over \mathbb{Q}) depending on its CM-invariants (\mathfrak{cm}, k) (see Table 3 at [9 §2]).
Table 2. Elliptic curves defined over \mathbb{Q} with CM. Torsion over \mathbb{Q}.

$-D$	j	cm	$[A_{\text{cm}}, B_{\text{cm}}]$	k	$E_{\text{cm}}(\mathbb{Q})_{\text{tors}}$
-3	1	0	3	$[0,1]$	C_1
	2	$2^4 \cdot 3^3 \cdot 5^3$	12	$[-15, 22]$	C_0
	3	$-2^{15} \cdot 3 \cdot 5^3$	27	$[-150, 1048]$	C_1
-4	1	$2^6 \cdot 3^3 = 1728$	4	$[1,0]$	C_4
	2	$2^3 \cdot 3^3 \cdot 11^3$	16	$[-11, 14]$	$C_1 \times C_2$
-7	1	$-3^3 \cdot 5^3$	7	$[-2835, -71442]$	C_2
	2	$3^3 \cdot 5^3 \cdot 7^3$	28	$[-595, 15586]$	C_2
-8	1	$2^6 \cdot 5^3$	8	$[-4320, 96768]$	C_2
	11	-2^{15}	11	$[-9504, 265904]$	C_1
	19	$-2^{15} \cdot 3^3$	19	$[508, 5776]$	C_1
	43	$-2^{18} \cdot 3^3 \cdot 5^3$	43	$[-13760, 621264]$	C_1
	67	$2^{15} \cdot 3^3 \cdot 5^3 \cdot 11^3$	67	$[-1179020, 155880]8$	C_1
-163	1	$-2^{18} \cdot 3^3 \cdot 5^3 \cdot 23^3 \cdot 29^3$	163	$[-34790720, 78984748304]$	C_1

References

[1] W. Bosma, J. Cannon, C. Fieker, and A. Steel (eds.), Handbook of Magma functions, Edition 2.23. [http://magma.maths.usyd.edu.au/magma], 2019.

[2] M. Chou, *Torsion of rational elliptic curves over quartic Galois number fields*. J. Number Theory **160** (2016), 603–628.

[3] P. L. Clark, P. Corn, A. Rice, and J. Stankewicz, *Computation on elliptic curves with complex multiplication*. LMS J. Comput. Math. **17** (2014), 509–535.

[4] H. B. Daniels, and E. González-Jiménez, *On the torsion of rational elliptic curves over sextic fields*. To appear in Math. Comp.

[5] P. K. Dey, and B. Roy, *Torsion groups of Mordell curves over cubic and sextic fields*. Preprint (2019).

[6] G. Fung, H. Ströher, H. Williams, H. Zimmer. *Torsion groups of elliptic curves with integral j-invariant over cubic fields*. J. Number Theory **36** (1990) 12–45.

[7] E. González-Jiménez, *Complete classification of the torsion structures of rational elliptic curves over quintic number fields*. J. Algebra **478** (2017), 484–505.
[8] E. González-Jiménez. Magma scripts and electronic transcript of computations for the paper “Torsion growth of rational elliptic curves with complex multiplication over cubic fields”. http://matematicas.uam.es/~enrique.gonzalez.jimenez

[9] E. González-Jiménez. Explicit description of the growth of the torsion subgroup of rational elliptic curves with complex multiplication over quadratic fields. Submitted.

[10] E. González-Jiménez. Torsion of rational elliptic curves with complex multiplication over number fields of low degree. In preparation.

[11] E. González-Jiménez, and Á. Lozano-Robledo. On the torsion of rational elliptic curves over quartic fields. Math. Comp. 87 (2018), 1457–1478.

[12] E. González-Jiménez, and F. Najman. Growth of torsion groups of elliptic curves upon base change. To appear in Math. Comp.

[13] E. González-Jiménez, F. Najman, and J.M. Tornero. Torsion of rational elliptic curves over cubic fields. Rocky Mountain J. Math. 46 (2016), no. 6, 1899–1917.

[14] E. González-Jiménez, and J.M. Tornero. Torsion of rational elliptic curves over quadratic fields. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 108 (2014), 923–934.

[15] E. González-Jiménez, and J.M. Tornero. Torsion of rational elliptic curves over quadratic fields II. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 110 (2016), 121–143.

[16] S. Kamienny. Torsion points on elliptic curves and q-coefficients of modular forms. Invent. Math. 109 (1992), 221–229.

[17] M. A. Kenku, and F. Momose. Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125–149.

[18] B. Mazur. Rational isogenies of prime degree. Invent. Math. 44 (1978), 129–162.

[19] L. Merel. Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437–449.

[20] H. Müller, H. Ströher, and H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over quadratic fields. J. Reine Angew. Math. 397 (1989), 100–161.

[21] F. Najman. Torsion of elliptic curves over cubic fields and sporadic points on $X_1(n)$. Math. Res. Lett. 23 (2016), 245–272.

[22] L. Olson. Points of finite order on elliptic curves with complex multiplication. Manuscripta Math. 14 (1974), 195–205.

[23] A. Petho, T. Weis, H. Zimmer. Torsion groups of elliptic curves with integral j-invariant over general cubic number fields. Int. J. Algebra Comput. 7 (1997) 353–413.

[24] J-H. Silverman. The arithmetic of elliptic curves. Graduate Texts in Mathematics, 106. 2nd edition. Springer-Verlag, New York, 2009.

[25] L. C. Washington. Elliptic Curves: Number Theory and Cryptography, Second Edition, Chapman & Hall, Boca Raton, 2008.

Departamento de Matemáticas, Universidad Autónoma de Madrid, Madrid, Spain

E-mail address: enrique.gonzalez.jimenez@uam.es

URL: http://matematicas.uam.es/~enrique.gonzalez.jimenez