A LEPTONIC–HADRONIC MODEL FOR THE AFTERGLOW OF GAMMA-RAY BURST 090510

SOEBUR RAZZAQUE

Space Science Division, Code 7653, U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375, USA; srazzaque@ssd5.nrl.navy.mil

Received 2010 April 27; accepted 2010 October 5; published 2010 November 3

ABSTRACT

We model multiwavelength afterglow data from the short gamma-ray burst (GRB) 090510 using a combined leptonic–hadronic model of synchrotron radiation from an adiabatic blast wave. High-energy, \(\gtrsim 100 \) MeV, emission in our model is dominated by proton-synchrotron radiation, while electron-synchrotron radiation dominates in the X-ray and ultraviolet wavelengths. The collimation-corrected GRB energy, depending on the jet-break time, in this model could be as low as \(3 \times 10^{51} \) erg but two orders of magnitude larger than the absolute \(\gamma \)-ray energy. We also calculated the opacities for electron–positron pair production by \(\gamma \)-rays and found that TeV \(\gamma \)-rays from proton-synchrotron radiation can escape the blast wave at early time, and their detection can provide evidence of a hadronic emission component dominating at high energies.

Key words: gamma-ray burst: individual (GRB 090510) – relativistic processes – shock waves

Online-only material: color figures

1 INTRODUCTION

Gamma-ray burst (GRB) science has entered a new era with launch of the Fermi Gamma-ray Space Telescope. The main instrument, the Large Area Telescope (LAT), is more sensitive than any previous instrument in the 20 MeV–300 GeV range (Atwood et al. 2009), whereas the Fermi Gamma-ray Burst Monitor (GBM) observes the whole unocculted sky in the 8 keV–40 MeV range (Meegan et al. 2009). With the advent of the Burst Alert Telescope (BAT), X-Ray Telescope (XRT), and UV-Optical Telescope (UVOT) on board the Swift satellite (Gehrels et al. 2004), it is now possible to obtain simultaneous multiwavelength data in the optical to multi-GeV \(\gamma \)-ray energy range from GRBs.

GRB 090510 is the first GRB to provide data from simultaneous observations by Fermi (Abdo et al. 2010) and Swift (Hoversten et al. 2009) as well as by a couple of other satellites. At a redshift \(z = 0.903 \pm 0.003 \) (Rau et al. 2009), the isotropic-equivalent \(\gamma \)-ray energy release from this short GRB \((T_{90} \gtrsim 2 \) s) is \(E_{\gamma,iso} = (1.08 \pm 0.06) \times 10^{53} \) erg with a fluence of \((5.03 \pm 0.25) \times 10^{-5} \) erg cm\(^{-2}\) in the 10 keV–30 GeV range (Abdo et al. 2010). Fermi-LAT detected long-lived emission up to \(\sim 200 \) s after trigger \((T_0 = 00:23:00 \) UT, 2009 May 10) in the \(\gtrsim 100 \) MeV range. While such high-energy emission, that is temporally extended beyond the keV–MeV emission, was first detected in GRB 940217 by the Compton Gamma-Ray Observatory (Hurley et al. 1994), this feature is common to most GRBs detected with Fermi-LAT. Swift XRT and UVOT collected data from GRB 090510 between \(\sim T_0 + 97 \) s and \(T_0 + 1.9 \) ks before an Earth Occultation (EO), and again after \(T_0 + 5.1 \) ks (Hoversten et al. 2009). Swift BAT collected most data within \(T_{90} = 0.3 \pm 0.1 \) s (15–350 keV), and sparsely between \(T_0 + 0.4 \) s and \(\sim T_0 + 100 \) s (Hoversten et al. 2009).

Smooth temporal evolution of the flux, \(F \propto t^{-\alpha} \), of the long-lived emission in Fermi-LAT \((\alpha_\gamma = 1.38 \pm 0.07) \), and Swift XRT \((\alpha_{\gamma,1} = 0.74 \pm 0.03 \) before EO) and UVOT \((\alpha_{\gamma,1} = -0.50^{+0.03}_{-0.11} \) before EO) observations strongly suggests an afterglow origin (De Pasquale et al. 2010). Synchrotron radiation by shock-accelerated electrons in a decelerating GRB blast wave (Mészáros & Rees 1997; Sari et al. 1998) have successfully explained much of the broadband afterglow data at radio, optical, and X-ray frequencies in the pre-Fermi era. However, fitting combined Fermi and Swift data from GRB 090510 with simple \(e \)-synchrotron model results in unusual parameter values, and most importantly it is difficult to reconcile the \(F_\nu \propto t^{-\alpha} v^{-\beta} \) temporal relations (De Pasquale et al. 2010). More complex scenarios have been proposed to model GRB 090510 data such as a radiative fireball in an \(e^\pm \) pair dominated environment (Ghirlanda et al. 2010; Ghisellini et al. 2010), an adiabatic fireball in a low-density medium and small magnetic field (Kumar & Barniol Duran 2009a, 2009b; Gao et al. 2009), and a two-component jet (Corsi et al. 2010).

Here, we present a combined leptonic- and hadronic-afterglow model to fit multiwavelength data from GRB 090510. Inclusion of ion acceleration and radiation in the GRB blast wave is a natural and simple extension of the \(e \)-synchrotron blast wave model and has been discussed by a number of authors (Böttcher & Dermer 1998; Totani 1998; Zhang & Mészáros 2001; Wang et al. 2009; Razzaque et al. 2010). We show that LAT emission in the \(\gtrsim 100 \) MeV range is dominated by synchrotron radiation from protons accelerated in the external forward shock of a decelerating blast wave. (Note that Razzaque et al. 2010 considered proton-synchrotron radiation from a coasting blast wave.) The XRT and UVOT light curves can be reasonably reproduced by synchrotron radiation from electrons accelerated in the same external forward shock. We present the \(e \)- and \(\gamma \)-synchrotron afterglow model in Section 2, compare this model with GRB 090510 afterglow data in Section 3, and discuss our results in Section 4.

2 SYNCHROTRON AFTERGLOW MODEL

With a coasting bulk Lorentz factor of \(\Gamma_0 = 10^3 \Gamma_3 \) and an isotropic-equivalent kinetic energy \(E_{k,iso} = 10^{55} E_{55} \) erg, the deceleration timescale for an adiabatic blast wave in a medium of uniform density \(n \) cm\(^{-3}\) is (Blandford & McKee 1976; Sari et al. 1998)

\[
t_{\text{dec}} \approx 1.9(1+z)(E_{55}/n)^{1/3} \Gamma_3^{-8/3} \text{ s.}
\]

Later the bulk Lorentz factor evolves as

\[
\Gamma \approx 763(1+z)^{3/8}(E_{55}/n)^{1/8} t_4^{-3/8},
\]

1 National Research Council Research Associate.
where \(t(> t_{\text{dec}}) \) is measured in seconds. At the deceleration time \(t = t_{\text{dec}} \), \(\Gamma \approx \Gamma_0 / t^{3/4} \). The radius of the blast wave, \(R = 4t^2c t \), is given by

\[
R \approx 1.4 \times 10^{17}(1 + z)^{-1/4}(E_{55}t_4/n)^{1/4} \, \text{cm}. \tag{3}
\]

The jet-break time at which \(\Gamma \approx \theta_0^{-1} \) (Sari et al. 1999), where \(\theta_0 = 0.1\theta_{-1} \) is the jet opening angle, is given by

\[
t_{\text{br}} \approx 10^9(1 + z)(E_{55}/n)^{1/3}\theta_{-1}^{8/3} \, \text{s}. \tag{4}
\]

The fractions of energy injected in a forward shock (Blandford & McKee 1976) that channel into electrons\(^2\) and into ions can be calculated from their shock-accelerated spectra. We assume an electron injection spectrum\(^3\) \(n'_e(\gamma'_e) \propto \gamma'_e^{-k} \) for \(\gamma'_m, e \ll \gamma'_e \ll \gamma_{\text{sat}, e} \). Here, \(\gamma'_m, e = \eta_e(n_p/m_p)\Gamma(t) \) and \(\gamma_{\text{sat}, e} \) are the minimum and saturation Lorentz factors, respectively, for the electrons. In the case of ions, we assume an injection spectrum \(n'_A(\gamma'_A) \propto \gamma'_A^{-k} \) for \(\Gamma(t) \ll \gamma'_A \ll \gamma_{\text{sat}, A} \) and \(n'_A(\gamma'_A) \propto \gamma'_A^{-k} \) for \(\gamma_{\text{m}, A} \ll \gamma'_A \ll \gamma_{\text{sat}, A} \). Here, \(\gamma_{\text{m}, A} = \eta_A\Gamma(t) \) is a break in the spectrum and \(\gamma_{\text{sat}, A} \) is the saturation ion Lorentz factor. The fraction of shock energy carried by the electrons is

\[
e_e \approx \xi_e\eta_e k - 1 - (\gamma'_{m, e}/\gamma'_{\text{sat}, e})k^{-2}/k \neq 2. \tag{5}
\]

and that by the ions is

\[
e_A \approx \xi_A\eta_A k - 1 - (\gamma'_{A}/\gamma'_{\text{sat}, A})k^{-2}/k \neq 2. \tag{6}
\]

Here, \(\xi_e \) and \(\xi_A \) are the number fractions of electrons and ions that are accelerated by the shock, respectively, with an equal pre-shock number density \(n \equiv n_e = n_A \).

A fraction \(\epsilon_B \) of the shock energy is assumed to generate magnetic field, and the magnetic field behind the forward shock is given by Sari et al. (1998)

\[
B' \approx 297(1 + z)^{3/8}e_B^{1/2}(E_{55}h_3)^{1/8}t_4^{-3/8} \, \text{G}. \tag{7}
\]

In the regime of our interest \(e_B \gg \epsilon_e \), the Compton parameter \(Y = [-1 + \sqrt{1 + 4\epsilon_e/e_B}] / 2 \to 0 \) and the energy loss by the electrons is dominated by synchrotron radiation (Sari & Esin 2001).

The saturation Lorentz factor for electrons is calculated by equating the acceleration time to the synchrotron cooling time in the \(B' \) field (Equation (7)) as

\[
\gamma'_{\text{sat}, e} \approx 6.8 \times 10^{6}t_4^{3/16}/(1 + z)^{1/2}e_B^{1/4}(E_{55}h_3)^{1/16}. \tag{8}
\]

Here, \(\epsilon_e^{-1} \) is the acceleration efficiency for electrons. The cooling Lorentz factor, found by equating the synchrotron cooling time to the dynamic time \(t_{\text{dyn}} = t\Gamma/(1 + z) \), is given by

\[
\gamma'_{e,c} \approx 11.5(1 + z)^{-1/8}e_B^{-1}(E_{55}h_3)^{-1/8}t_4^{1/8}. \tag{9}
\]

\(^2\) Referring to both electrons and positrons.

\(^3\) Comoving frame variables are denoted with primes.
changes to the slow-cooling regime later. The maximum ion-synchrotron flux is

$$F_{\nu, A}^{\text{max}} \approx \frac{k_1 - 1}{k_2 - 1} \frac{\xi_z Z^2 m_e}{A^2 m_p} \frac{\nu_{\text{e}}}{\nu_{\text{p}}} F_{\nu, e}^{\text{max}}, \quad (17)$$

for $k_1 \neq 1$ and $k_2 > 2$.

3. MODELING GRB 090510 AFTERGLOW DATA

Figure 1 shows light curves at different energies from the combined leptonic–hadronic model of a decelerating adiabatic blast wave in constant density medium. With an initial $T_0 \gtrsim 2400$, the blast wave decelerates at $\lesssim 0.3 \text{ s}$ (Equation (1)) for the parameters used here: $E_{55} \approx 2$, $n \approx 3 \text{ cm}^{-3}$.

We model LAT emission in the $\approx 100 \text{ MeV} - 4 \text{ GeV}$ range in Figure 1 from p-synchrotron radiation ($A = 1$) for which $v_{\text{m, p}} < v_\nu < v_{\text{c, p}}$. In order to reproduce the flux decay index $\alpha_\nu \approx 1.38 \pm 0.07$ in this range for a slow-cooling spectrum, one requires $k_2 = (4/3)\alpha_\nu + 1 = 2.84 \pm 0.09$. The corresponding spectral index is $\beta_\nu = (k_2 - 1)/2 = (2/3)\alpha_\nu = 0.92 \pm 0.05$.

For $v_\nu < v_{\text{m, p}} < v_{\text{c, p}}$, the p-synchrotron flux scales as $F_\nu \propto t^{-1/2} \nu^{1/3}$. A constraint on $h\nu_{\text{m, p}} \lesssim 100 \text{ MeV}$ as early as $\approx T_0 + 0.4 \text{ s}$ requires that $\eta_p \lesssim 5 \times 10^3$ (Equation (15)) with $\epsilon_B \approx 0.3$. These requirements together with the flux level $10^{-13} \text{ph}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ at $T \approx T_0 + 0.4 \text{ s}$ can be consistent with the t^2 rise before the blast wave enters the self-similar regime (Sari 1997). The p-synchrotron flux in the optical to X-ray is much below the XRT and UVOT data.

We reproduce the XRT light curve, averaged over $0.3 - 10 \text{ keV}$ range, with decay index $\alpha = 0.74 \pm 0.03$ before the EO at $T \approx T_0 + 1.43 \text{ ks}$ as from e-synchrotron radiation. The required electron index is $k = (4/3)\alpha + 2/3 = 1.65 \pm 0.04$ for $v_\nu > v_{\text{m, e}} > v_{\text{c, e}}$ in the fast-cooling case, which is valid for a time $T \lesssim T_0 + 2 \times 10^8 \text{ s}$ (Equation (13)). Note that the spectral index, $\beta_{X, 1} = k/2 = (2\alpha_{X, 1} + 1)/3 = 0.83 \pm 0.02$, is close to that of β_ν from p-synchrotron radiation. In order to produce $h\nu_{\text{m, e}} \lesssim 1 \text{ keV}$ at the beginning of XRT observation at $T \approx T_0 + 100 \text{ s}$, we require $\eta_\nu \lesssim 20 (m_e/m_p)$ (Equation (12)).

Together with parameter $\xi_z \approx 5 \times 10^{-4}$ required to produce the XRT flux level, we calculate the fraction of jet energy in electrons to be $\epsilon_\nu \approx 10^{-3}$ (Equation (5)) with $\phi_1 = 1$.

Electron-synchrotron flux in the UVOT range is in the frequency range $\nu_m, e < \nu_\nu < \nu_{\text{c, e}}$ and scales as $F_\nu \propto t^{-1/2} \nu^{1/3}$. Although the observed flux fitted with $\alpha_{\nu, 1} = -0.50_{-0.13}^{+0.11}$ (De Pasquale et al. 2010) is different, we note that the expected value of $\alpha = 1/4$ is consistent with UVOT data in the range $T - T_0 \approx 600 \text{ s}$-$1.43 \text{ ks}$ interval, and with the upper limit at $T \approx T_0 + 90 \text{ s}$.

It is clear that the observed X-ray and UVOT flux decay indices $\alpha_{X, 2} = 2.18 \pm 0.1$ and $\alpha_{\nu, 2} = 1.13_{-0.10}^{+0.11}$, respectively, after the EO at $T \gtrsim T_0 + 5.1 \text{ ks}$ (De Pasquale et al. 2010) are softer than the e-synchrotron emission. If the jet break takes place in between $T - T_0 \approx 1.4 \text{ ks}$-$5.1 \text{ ks}$, then the expected decay index for $v_\nu > v_{\text{m, e}} > v_{\text{c, e}}$ is $\alpha \approx 1/4$ which is intermediate between $\alpha_{\nu, 2}$ and $\alpha_{X, 2}$ since $k = 1.65$. Because of the idealized nature of the afterglow model and evolution of the blast wave during and after the jet break (e.g., Sari 1999), the observed flux steepening after the EO could still be due to a jet break. For $1.4 \text{ ks} \lesssim t \lesssim T_0 + 5.1 \text{ ks}$, the jet opening angle is $0.16 \lesssim \theta_{\perp} \lesssim 0.26$ (Equation (4)). If the jet break takes place at $T \gtrsim T_0 + 100 \text{ ks}$, then $\theta_{\perp} \gtrsim 0.8$.

As shown in Figure 1, the BAT flux is quite noisy and cannot be reproduced by either e- or p-synchrotron emission. A similar conclusion was drawn by De Pasquale et al. (2010) based solely on e-synchrotron afterglow model. Sporadic emission in the BAT range could be due to central engine activity, working intermittently at a much reduced emission level than the initial outburst.

During the early deceleration phase, the soft photon density in the GRB blast wave may be large enough to induce $\gamma \gamma \rightarrow e^+ e^-$ pair production and photohadronic ($p\gamma$) interactions by protons, and subsequent cascade formation. The target photon density can be calculated as $n_{\gamma, e}(\epsilon_{\gamma}) = 2\gamma^2(1 + \sigma)F_\gamma/(R^2 \epsilon_{\gamma} \Gamma_{\gamma})$ from the synchrotron flux, where $\epsilon_{\gamma} \equiv h\nu_{\gamma} = h\nu(1 + \gamma)/\Gamma_{\gamma}$.

We calculate the $\gamma \gamma$ pair production and $p\gamma$ pion production opacities from their respective cooling timescales and the dynamic timescale for the decelerating blast wave model of GRB 090510. The opacities for the γ-rays with saturation energies, both from the e- and p-synchrotron emission, and for the protons with saturation energies are shown in Figure 2. The top panel shows the time dependence (from right to left) of the opacities at the saturation energy reached at that time. The bottom panel shows the opacities versus the saturation energies reached within the same time interval. Thus, the whole time interval of the top panel is squeezed to fit into each of the curves in the bottom panel.

The saturation energies for the e-synchrotron γ-rays scale with time as $h\nu_{\text{sat, e}} \approx 115 \phi^{-1}_{\text{p}} t^{-3/4} \text{ GeV}$ (Equation (12)) for the same model parameters used in Figure 1. For the p-synchrotron, the saturation γ-ray energy is $h\nu_{\text{sat, p}} \approx 4.29 \phi^{-2} t^{-1/4} \text{ TeV}$ (Equation (16)) for $T - T_0 \lesssim t_{\text{p}} \approx 3.7 \times 10^{13} \phi^{-3}_{\text{p}}$ (Equation (11)). Thus, the γ-ray saturation energies decrease with time while the opacities increase due to a flux increase of the target photons. However, the opacities are small to initiate a substantial $e^+ e^-$ pair cascade and accompanying radiation. The same is true for photopion cascade (see, however, Asano et al.)
2009), although a small fraction of protons above \(E_p \gtrsim 300 \) \(\text{EeV} \) \((\phi_p = 1) \) can escape as cosmic rays by converting to neutrons. It is interesting to note that the saturation proton energy decreases with time as \(E_{\text{sat}, p} \approx 741 \phi_p^{-1} t_s^{-1/8} \) \(\text{EeV} \) because of a decreasing bulk Lorentz factor \(\Gamma \approx 923 t_s^{-3/8} \) (Equation (2)), even though the saturation Lorentz factor increases with time as \(\gamma_{\text{sat}, p} \propto t_s^{1/4} \) (Equation (10)).

4. DISCUSSION AND CONCLUSIONS

We have fitted the LAT and XRT light curves from \(p- \) and \(e-\)synchrotron emissions, respectively, before the EO from an adiabatic blast wave in a constant density medium (Figure 1). The photon index for \(\gtrsim 100 \) \(\text{MeV} \) emission \((\beta_p = 1) \) can escape as cosmic rays by converting to neutrons. It is interesting to note that the saturation proton energy decreases with time as \(E_{\text{sat}, p} \approx 741 \phi_p^{-1} t_s^{-1/8} \) \(\text{EeV} \) because of a decreasing bulk Lorentz factor \(\Gamma \approx 923 t_s^{-3/8} \) (Equation (2)), even though the saturation Lorentz factor increases with time as \(\gamma_{\text{sat}, p} \propto t_s^{1/4} \) (Equation (10)).

REFERENCES

Abdo, A. A., et al. 2010, ApJ, 716, 1178
Asano, K., Guiriec, S., & Mészáros, P. 2009, ApJ, 705, L191
Atwood, W. B., et al. 2009, ApJ, 697, 1071
Blandford, R. D., & McKee, C. F. 1976, Phys. Fluids, 19, 1130
Böttcher, M., & Dermer, C. D. 1998, ApJ, 499, L131
Cenko, S. B., et al. 2010, ApJ, submitted, arXiv:1004.2900
Chevalier, R. A., & Li, Z.-Y. 2000, ApJ, 536, 195
Corsi, A., Guetta, D., & Piro, L. 2010, ApJ, 720, 1008
De Pasquale, M., et al. 2010, ApJ, 709, L146
Dermer, C. D., Chiang, J., & Mitman, K. E. 2000, ApJ, 537, 785
Dermer, C. D., & Mitman, K. E. 1999, ApJ, 513, L5
Eichler, D., & Jontof-Hutter, D. 2005, ApJ, 635, 1182
Finke, J. D., Razzaque, S., & Dermer, C. D. 2010, ApJ, 712, 238
Freedman, D. L., & Waxman, E. 2001, ApJ, 547, 922
Gao, W.-H., Mao, J., Xu, D., & Fan, Y.-Z. 2009, ApJ, 706, L33
Gehrels, N., et al. 2004, ApJ, 611, 1005
Ghirlanda, G., Ghisellini, G., & Nava, L. 2010, A&A, 510, L7
Ghisellini, G., Ghirlanda, G., Nava, L., & Celotti, A. 2010, MNRA, 403, 926
Gratton, J., & Sari, R. 2002, ApJ, 568, 820
Hovesten, E. A., Krimm, H. A., Grupe, D., Kuin, N. P. M., Barthelmy, S. D., Burrows, D. N., Roming, P., & Gehrels, N. 2009, GCN Report, 218, 1
Hurley, K., et al. 1994, Nature, 372, 652
Kumar, P., & Barniol Duran, R. 2009a, MNRA, 400, L75
Kumar, P., & Barniol Duran, R. 2009b, MNRA, in press, arXiv:0910.5726
Meegan, C., et al. 2009, ApJ, 702, 79
Mészáros, P., & Rees, M. J. 1997, ApJ, 476, 232
Nakar, E. 2007, Phys. Rep., 442, 166
Panaitescu, A., & Kumar, P. 2000, ApJ, 543, 66
Rau, A., McBreen, S., & Kuehrer, T. 2009, GRB Coordinates Network, 9353, 1
Razzaque, S., Dermer, C. D., & Finke, J. D. 2009, ApJ, 697, 483
Razzaque, S., Dermer, C. D., & Finke, J. D. 2010, Open Astron. J., 3, 150
Razzaque, S., & Mészáros, P. 2006, ApJ, 650, 998
Sari, R. 1997, ApJ, 489, L37
Sari, R., & Esin, A. A. 2001, ApJ, 548, 787
Sari, R., Piran, T., & Halpern, J. P. 1999, ApJ, 519, L17
Sari, R., Piran, T., & Narayan, R. 1998, ApJ, 497, L17
Toma, K., Wu, X.-F., & Meszaros, P. 2010, arXiv:1002.2634
Totani, T. 1998, ApJ, 502, L13
Wang, X.-Y., Li, Z., Dai, Z.-G., & Mészáros, P. 2009, ApJ, 698, L98
Zhang, B., & Mészáros, P. 2001, ApJ, 559, 110