Retardation of Fatigue Crack Propagation under Plane Strain Condition due to a Single Overload

by

Masahiro JONO
(Department of Mechanical Engineering, Osaka University, Suita)

Tetsuro KANAYA
(Kawasaki Steel Corporation, Chiba)

Atsushi SUGETA
(Department of Mechanical Engineering, Osaka University, Suita)

and Makoto KIKUKAWA
(Fukui Institute of Technology, Fukui)

Retardation of fatigue crack propagation due to a single tensile overload and crack closure behavior were investigated on a high tensile strength steel, HT-80 and an aluminum alloy, A5083-O by using the unloading elastic compliance method.

Although the delayed retardation was observed at the specimen surface where the plane stress condition dominated, retardation of fatigue crack propagation was found to occur immediately after a peak overload at the interior of the specimen where the plane strain condition was developed. In the latter case, the crack tip blunting due to a overload, which might be the reason of the no-delayed retardation, was confirmed by fractography and also by the load-displacement hysteresis curve. Moreover it was found that the retardation behavior of fatigue cracks which initiated and propagated from the root of the blunted crack could not be explained only by the change of the macroscopically measured crack tip opening level.

キーワード：疲労き裂、遅延挙動、単一過大荷重、平面ひずみ条件、き裂開閉口挙動

1 緒 言
疲労き裂の進展挙動が荷重変動により強く影響されることはよく知られており、中でも单一過大荷重負荷によるき裂進展の遅延現象については多くの研究が見られる。遅延現象に影響する因子としては、荷重レベル、過大荷重比、試験片寸法特に板厚、材料強度、など多くのものについて調べられているが、詳細な機構は別として、遅延現象が引張りの過大荷重により形成された塑性域をき裂が進展していくことにより起こることから、これらの影響因子としては塑性域寸法が大きく関与すると考えられ、このような塑性域によるき裂進展の遅延を表したモデルもいくつか考えられている。また多くの場合、き裂進展長さの測定は試験片表面で行われており、この場合遅延現象は過大荷重荷重直後ではなく、ある程度き裂が進展した後にき裂進展長さが遅くなるという遅れ遅延現象を示すことが報告されている。しかしながら疲労き裂進展挙動中変動荷重の挙動は平面応力状態の試験片表面と平面ひずみ状態に近い試験片内部で異なることをよく知られ、遅れ遅延現象についても破面観察の結果から、試験片内部では試験片表面に比べて小さいか、あるいは最大の遅延が過大荷重荷重後に起こり遅れ遅延現象がみられないことも指摘されてい。また超音波法を用いた動的測定によっても内部
Table I. Chemical composition of materials used. (%)

Material	C	Mn	Si	P	S	Cu	Ni	Cr	Mo	V
HT 80	0.12	0.83	0.33	0.011	0.009	0.25	0.081	0.44	0.40	0.04
A5083-O	4.46	0.63	0.18	0.017	0.019	0.12				

Table II. Mechanical properties of materials used.

Material	Yield point () Proof stress (MPa)	Tensile strength (MPa)	Elongation (％)
HT 80	765	814	34 0
A5083-O	(140)	297	26 0

Fig. 1. Test specimen configuration.

Table III. Test conditions.

No.	K_0 (MPa√m)	$r=K_0/K_0$
1	21.1	1.4
2	21.1	1.6
3	21.1	1.8
4	21.1	2.0
5	21.1	2.25
6	21.1	2.5
7	9.3	2.0
8	15.5	2.0
9	31.0	2.0
10	63.2	2.0

*注1) 1.5 mm, *注2) 0.5 mm, *注3) 60° V 形サイドグループ

では遅れ延性現象がみられないと報告されている。このような延性現象の原因、機械について、前述の延性域による圧縮の残留応力のほか、適当荷重によるき裂先端の鋭化やき裂閉鎖現象が考えられている。

き裂閉鎖現象については、筆者らの研究を行ってきており、定常な緩慢じん動側重下でのき裂進展速度の推定に有用応力拡大係数範囲 $A_{K_{cr}}$ を考えることができると述べていて、有効であることを示しているほか、高-低の2段2重変動荷重下でも高残留レベルの比較的な高い領域では $A_{K_{cr}}$ の変化により延び発生が説明できることを報告した。一方単一高荷重負荷後目の延び現象については、Elber が応力比の影響とともに高荷重の効果を説明できることができる指摘して以来、定性的には延び現象がこれで説明できることが示されてきた。また松岡らはき裂閉鎖口を考慮して遅れ延び現象をも説明するモデルを提案し、最も遅れ延び現象の説明としてき裂閉鎖口現象が最も有効な因子であるとされる方のもので、個々の重荷重負荷後のき裂閉口点の実測に基づき定量的な検討はきわめて少なく、またその場合もかなり大雑把な検討に終わっているようであらかじめ調べたものではないようである。

したがって本研究では、筆者らがいままでの開発、高精度化を図ってきた除荷残留コンプライアンス法を用いて、単一高荷重負荷によるき裂進展の延び現象ならびにき裂閉鎖口を対象に実時間的に計測し、試験片表面と内部における延び発生の相違を確認するとともに、実用上重要となる平面ひずみ状態に近い試験片内部での疲労き裂進展の延び現象についてのき裂閉口挙動の関連を検討したので報告する。

2 供試材料
試験片ならびに試験方法
供試材料は高張力鋼 HT80 調質材（930℃焼入れ、650℃焼もどし）と耐食性アルミニウム合金A5083-O焼なまし材（360℃、1時間保持）、その化学成分と機械的性質を Table I, II に示す。Fig. 1 に用いたCT試験片の形状、寸法を示す。試験片には図に示すように深さ1.5 mm、先端半径0.5 mm、60°V形サイドグループを付すことにより、き裂先端の応力成分をき裂先端のほぼ全領域で試験片内部と同じ平面ひずみ条件に近づけ、またき裂閉口点の計測にき裂閉口点を引き上げ $A_{K_{cr}}$ を小さくする試験片表面の影響が

入れないようにした。試験には容量 ±100 kN の電気油圧サーボ疲労試験機を用いた。単一高荷重試験は Table III に示すように基準応力拡大係数 K_0 を21.1 MPa√mで一定とし過大荷重比 r を1.4から2.5まで変えたものとし、 $r=2$ で K_0 を9.3-63.2 MPa√mまで変えた10種類の条件で高荷重を1回負荷するK値制御完全片振り($R=0$)で行った。繰返し速度は10 Hzとして、き裂進展速度の遅い条件7～7 Hz、進展速度の遅い条件10は5 Hzで行った。またき裂長さおよびき裂閉口点は除荷残留コンプライアンス法により、試験速度を変えることなくミクロビュータを
用いて動的自動計測を行った。

なお試験片表面と内部のせん断進展挙動の比較には Fig. 1 と同一法でサイドグループを付けない CT 試験片を用い、Table III の条件 8 の試験を行った。き裂長さおよびき裂開口点は、試験片表面では移動読取り顯微鏡および表面（き裂の下方 5 mm）に貼付したひずみゲージ（ゲージ長さ 5 mm）により測定し、試験片内部を含めた挙動は除荷曲線コンプライアンス法により測定した。

3 試験片表面と内部におけるき裂進展の遅延挙動の相違

Fig. 2 および Fig. 3 にサイドグループを付けていない試験片により求めた高張力鋼 HT 80 材の単一過大荷重負荷後の試験片表面および内部のき裂進展挙動、き裂開口点の挙動を示す。Fig. 2 は過大荷重負荷時からのき裂進展長さ d と繰返し数 N の関係を示し、Fig. 3 (a) にはこれより求めたき裂進展速度 dL/dN と d の関係を示す。図中瓶丸で示した試験片表面では、き裂が約 0.3 mm 進展した後に最大遅延を生じその後き裂進展と共に速度が回復しており遅れ進延現象を示している。遅れ進延の最大遅延点は単一過大荷重による平面ひずみ状態の塑性域母材 $w_y = (1/2)\sigma_y(K_{max}/\sigma_y)^2$ ここで K_{max} は最大値、σ_y は降伏応力、の約 4 倍程度のき裂進展長さを示しており、この最大遅延を示すき裂長さは從来から報告されている塑性域母材の 1/3 ～ 1/2 程度とほぼ一致している。一方瓶丸で示す除荷曲線コンプライアンス法により試験中に連続的に測定された試験片内部を含むき裂進展挙動、表面の挙動とは異なり過大荷重負荷直後に最大遅延を生じ、その後き裂進展に伴って遅延の程度が小さくなる。試験片表面、内部の挙動とも過大荷重による平面ひずみ塑性域母材程度き裂が進展した後に一定振幅荷重下での常温での進展速度にに戻っている。Fig. 3 (b) は過大荷重負荷後のき裂開口点 K_{op} の挙動を示したものである。き裂開口点は試験片表面、内部ともに過大荷重によるき裂先端の鈍化のためか一旦低下し、その後繰返しに伴って上昇し、基準応力拡大係数に対する定常値より高くなりあるき裂進展長さで極大値を示す。き裂開口点はその後徐々に低下して平面ひずみ塑性域母材の 3 倍程度のき裂進展後の基準荷重による定常値にに戻っている。図中 w_y は平面応力状態の塑性域母材を示す。試験片表面で測定されたき裂開口点が極大値を示すき裂進展長さは、表面でのき裂進展が最大遅延を生じるき裂長さとよく対応しているが、き裂開口点の定常値に達するき裂長さはき裂進展の遅延が終了するき裂長さとは対応していない。一方試験片内部を含めた平均的なき裂開口点の挙動はき裂進展速度の遅延挙動とは対応せず、過大荷重負荷直後き裂開口点 K_{op} が低下し有効応力拡大係数範囲 ΔK_{eff} が増加するにもかかわらずき裂進展は最大の遅延を示す。さらにその後き裂進展に伴いき裂開口点が徐々に上昇し ΔK_{eff} が減少するがき裂進展の遅延の程度は小さくなる。またき裂開口点の極大値の位置や定常値に戻るき裂進展長さも必ずしも進展速度の遅延現象とは対応していないようである。そこで次節ではサイドグループ付試験片により試験片内部の挙動を計測し、平面ひずみ条件下での挙動について定量的な考察を加えることにする。

4 平面ひずみ条件下の単一過大荷重負荷後の疲労き裂進展挙動

Fig. 4 は高張力鋼 HT 80 材サイドグループ付試験片で基準応力拡大係数 K_0 を 21.1 MPa√m として過
大荷重比 \(r(=K_a/K_0)\) を6種に変化させた単一過大荷重試験の \(dA\) と \(\Delta N\) の関係を示したものである。いずれの試験においても遅れ遅延現象は認められず過大荷重負荷直後にき裂進展速度の最大の大きさを生じている。その後荷重の繰返し定数は徐々に上昇し基準応力拡大係数に対する定常値に戻っている。過大荷重負荷直後のき裂の停留期間およびき裂進展速度が定常値にに戻るまでの繰返し数，き裂進展長さは過大荷重比 \(r\) が大きいほど大きくなっている。

Fig.5〜7は過大荷重負荷後のき裂進展長さ \(dA\) とき裂進展速度 \(dA/dN\) およびき裂開口点 \(K_{op}\) の関係を示したもので，図中の \(w_p\) は単一過大荷重による平面ひずみ塑性域寸法であり，添字 \(p\) は試験条件番号に対応している。き裂開口点 \(K_{op}\) はいずれの試験条件においても過大荷重負荷後一旦低下し，その後繰返しに伴って徐々に上昇し基準応力拡大係数 \(K_0\) に対する定常値より高くなり極大値を示している。この極大値を示すき裂進展長さは試験条件によって異なり，過大荷重比 \(r\) が小さい場合や基準応力拡大係数 \(K_0\) が低い場合には単一過大荷重による平面ひずみ塑性域寸法 \(w_p\) 程度であるが， \(r\) が大きい場合や \(K_0\) が高い場合には塑性域寸法の数分の1程度となっている。上昇した開口点とその後のき裂進展とともに下降するが，一定振幅荷重下の定常値に戻るのとは逆の試験条件においても塑性域寸法 \(w_p\) の2〜4倍程度き裂が進展した後である。一方き裂進展速度はいずれの場合も過大荷重負荷直後に低下るとその後き裂進展とともに回復し，塑性域寸法 \(w_p\) 程度で一定振幅荷重下の定常的な進展速度に戻っている。

Fig.7 中の点は走査形電子顕微鏡による破面観察にて測定した試験片中央部のストライエーション間隔の平均値である。過大荷重負荷直後ではストライエーション間隔が減少している。
イエーションは観察されず、き裂が0.5 mm程度進展した後から観察されたストライエーション間隔は巨視的に測定されずき裂進展速度とほぼ一致している。一方、平野らは応力波目金合全2017年の単一過大荷重負荷後のストライエーション間隔の測定より、試験片内部でも遅れ遅延現象みられる最大遅延を示すき裂進展長さを表面でのき裂進展の最大遅延点（塑性域寸法の1/3程度）の約半分となることを報告している。これらのことからこの試験条件に当てはめて考えると、\(w_p = 3.0 \text{ mm} \) であるので、試験片内部では \(d_l = 0.5 \text{ mm} \) の点が最大遅延点に相当する。したがって、Fig.7に示したストライエーション間隔の測定ののみでは、それ以前の進展速度がわからなかったため遅れ遅延が生じているかどうかの断定はできないが、もし遅れ遅延が生じているならば \(d_l = 0.5 \text{ mm} \) 以下の範囲で \(d_l = 0.5 \text{ mm} \) で観察されたストライエーションより広い間隔のストライエーションが観察されるはずである。しかるにその領域でストライエーションが観察されないうち、ならびに除荷性コンプライアンス法の分解能が約50μmであることから考えると、少なくともここで用いた材料では、この分解能以上の距離で遅れ遅延が生じていることを考えられる。

つきにき裂進展速度の遅延現象を取り裂閉口挙動を考慮した \(\Delta K_{\text{eff}} = K_{\text{max}} - K_{\text{app}} \) により定量的に評価するために、次の無次元量 \(\lambda \) により整理を行った。

\[
\lambda = \frac{\langle dl/dn \rangle}{\langle dl/dn \rangle^*}
\]

ここで、\(\langle dl/dn \rangle \) は実測されたき裂進展速度であり、\(\langle dl/dn \rangle^* \) は実測された \(\Delta K_{\text{eff}} \) と同様に定義された場合のき裂進展速度である。

Fig.8 に \(\lambda \) を示すき裂進展長さを塑性域寸法で無次元化したものに対して示す。Fig.8(a)は基準応力拡大係数 \(K_0 \) を 21.1 MPa√m に固定して過大荷重比 \(r \) を変化させた場合の試験結果で、Fig.8(b)は \(r \) を 2 に固定して \(K_0 \) を変化させた場合の試験結果である。いずれの試験条件においても過大荷重の負荷によってき裂閉口点が低下し \(\Delta K_{\text{eff}} \) が増加するにもかかわらずき裂進展速度は遅延現象を示すので \(\lambda \) は過大荷重負荷後は \(1 \) より小さい値を示す。その後き裂進展に伴って遅延は回復し \(\lambda \) の値は上昇していく。\(K_0 \) の低い場合や \(r \) が小さい場合には \(\lambda \) は単調に上昇し、\(d_l/w_p = 1 \) 程度 \(1 \) の値に戻るが、\(K_0 \) が大きい場合や \(r \) が大きい場合には、き裂進展速度の遅延の回復の程度よりき裂閉口点の上昇の程度が大きいため \(\lambda \) の値が \(1 \) より大きくなり \(\Delta K_{\text{eff}} \) に対して加速の現象を示し、その後のき裂閉口点の低下に伴って \(\lambda \) も減少し \(d_l/w_p = 2 \sim 3 \) 程度で \(1 \) に戻っている。以上のことから、平面ひずみ条件下における単ー過大荷重負荷後の疲労き裂進展の遅延挙動は必ずしも巨視的に測定されるき裂閉口挙動のみでは説明できないことがわかる。

Fig.9 は基準応力拡大係数 \(K_0 \) が 63.2 MPa√m、過大荷重比 \(r \) が 2 の場合の過大荷重負荷点付近の破面の走査形電子顕微鏡写真である。過大荷重負荷点で大きなストレッチゾーンが形成され鈍化したき裂先端の

Fig.8. Variations of crack propagation rate ratios, \(\lambda \).
Fig. 10. Variation of load-differential displacement curves after a single tensile overload.

これから裂が再発生していることが確認される。
また、Fig. 10 は、$K_0=31$ MPa$m^{-1/2}$, $r=2$ の単一過大荷重試験の場合の過大荷重負荷前後の荷重-変位ヒステリシスの例である。荷重-変位曲線は過大荷重負荷点で大きなヒステリシス幅を示し、過大荷重負荷直後横向きの矢印で示すき裂開口点が低下し、荷重の繰返しとともに開口点が増加するが、き裂が 0.21 mm 程度進展した後からヒステリシスはゆっくりとした 2 段の折れ曲りが認められる。このうち上側の折れ曲り点はき裂先端の閉口挙動によるコンプライアンス変化に対応し、下側の折れ曲り点は過大荷重を負荷したき裂長さに対応している。このことによりコンプライアンス変化からも、疲労き裂は単一過大荷重により先端が鈍化し、その後の荷重の繰返しにより鈍化したき裂先端の下侧で折れ曲りが再発生していることが確認できる。き裂底が鈍化した場合、き裂が開口している応力範囲 ΔK_{eff} が同じでも、き裂先端の応力異常性の強さは、鈍い疲労き裂に比べて小さくなり、き裂進展が停止することも考えられ、このような鈍化き裂によるき裂の停止、再発生が Fig. 8 において見て取れる ΔK_{eff} で整理したが、過大荷重負荷後に 1 以下となる理由であると考えられる。一方鈍化底からき裂が発生した場合、き裂の開口は先ず鈍化底が開口し、さらに荷重上昇によって鈍化底から発生したさきき裂の先端が開口するが、発生したき裂の長さ a がき裂の鈍化量あるいは塑性域幅に比べて小さい範囲では、き裂先端の開口点を考えた ΔK_{eff} のみでき裂先端近傍の弾塑性挙動を代表させるには無理があり、鈍化き裂を含むもう少し広い範囲の変形挙動を考える必要があるように思われる。このことが上側の K_{op} を考えた Fig. 8 の整理で a が 1 以上となっていることの理由と思われる。なお ΔK_{eff} が大きくなり、き裂先端近傍の弾塑性挙動が新たに発生進展したき裂の閉口挙動のみで代表されるようになると、荷重-変位ヒステリシスの 2 段の折れ曲りはなくなるとともに、ΔK_{eff} により進展速度が評価できるようになり a は 1 に戻る。
なお最近平野らは、超音波法による試験片内部においても単一過大荷重によりき裂の遅れ進展が現れ、その挙動はき裂開閉口挙動でよく表されることを報告しているが、材料が異なるかどうか超音波法とコンプライアンス法とは測定の領域が異なること、ならびに開口点、き裂進展長さの測定精度の相違もあり、本報告との差異については今後検討されるべき課題と思われる。
非定常荷重で単一過大荷重と同様のき裂進展の遅れ進展現象を引き起こすものとしては、高-低 2 段変動荷重などがあるが、比較的高い K_{op} 値に対しては高-低 2 段変動荷重の場合の遅れ進展挙動はき裂開閉口挙動によってうまく説明できることが報告されている。単一過大荷重の場合と比べてこのような遅れが生じるのは、単一過大荷重の場合は過大荷重によってき裂先端が鈍化するのに対し、高-低 2 段変動荷重においては高荷重荷重時でも、それまでの連続した荷重の繰返しにより形成される塑性域内でき裂が進展していることによりき裂先端は鈍化せず鈍いき裂となり、したがって荷重減少時においてもき裂先端の形状に特別な変化がおこらないので、荷重減少時におけるき裂開口点を測定すればき裂進展速度を正確に評価できるものと考えられる。
以上のことがから、過大荷重によるき裂進展の遅れ進展観象は、き裂進展機構が変化しない場合にはき裂開閉口挙動でかなり説明できるようであるが、過大荷重でき裂先端が鈍化し、鈍化底からき裂が新たに再発生する不連続なき裂進展を伴う場合にはコンプライアンスの変化から変動的に測定したき裂先端の開口挙動のみでは説明できず、き裂進展挙動の相違を考慮したき裂進展速度の評価が必要となるものと考えられる。
Fig. 11, 12 はアルミニウム合金 A5083-O における試験条件 $K_0=9.3$ MPa$m^{-1/2}$, $r=2$ による単一過大荷重試験結果である。き裂進展速度は過大荷重負荷直後に最初の進展を示し、その後き裂の進展に伴って徐々に上昇し過大荷重による平面ひずみ塑性域粒子の 1.2 倍程度で一定な進展速度に戻っている。一方き裂開口点は過大荷重負荷により一旦低下し、その後き裂
Fig. 12. Fatigue crack propagation rate and crack closure behavior following a single tensile overload (A5083-O).

の進展に伴って上昇し塑性域下の1/8程度で極大値を示す。その後開口点は徐々に低下し塑性域下の3倍程度のき裂進展長さで基準荷重に対する定常値に戻っている。以上のことからA5083-O材についても単一過大荷重負荷後のき裂進展の進延挙動は HT 80材の場合の挙動とほぼ同じであり、巨視的に測定したとき裂先端の開口挙動のみでは説明できないことがわかる。

5 結 言
高強力鋼 HT 80, 耐食性アルミニウム合金A5083-O材を用いて単一過大荷重試験による疲労き裂進展の進延現象を調べた結果を得た。
(1) 除荷再載コンプライアンス法を用いた連続的な動的測定によると、平面応力状態の試験片表面では遅れ進延現象が生じるが、平面ひずみ状態に近い試験片内部では過大荷重負荷後直後に最大遅延を生じ遅れ進延現象は現れない。
(2) 平面ひずみ条件下のき裂進展の進延挙動はき裂先端の開口点の挙動と対応せず、過大荷重負荷後の進延現象はコンプライアンス変化から巨視的に測定したとき裂先端の開口挙動のみでは説明できない。
(3) 過大荷重負荷後の荷重-変位ヒステリシスは2段の折れ曲がりを示し、また破面観察からも疲労き裂は単一過大荷重によって鈍化しその後再発生していることが確認された。このようなき裂進展の不連続性が進延挙動がき裂先端の開口挙動のみで説明できない理由の一つと考えられ、き裂先端の鈍化を伴うような進延挙動に対してはき裂開口のみでなく、き裂進展挙動の相違をも考慮しないと正確な進延速度の評価は難しいようである。
本研究には文部省科学研究費の援助を受けた。また実験遂行に当っては大阪大学学生津川卓司、田中正一両君の助力を頂いた。ここに記して謝意を表する。
（昭和56年10月20日 日本機械学会第59回全国大会にて講演）

参考文献
1) 例えば、E. P. J. von Euw, R. W. Hertzberg and R. Roberts, ASTM STP 513, 230 (1972).
2) 例えば、R. P. Wei and T. T. Shih, Int. J. Fract., 10, 77 (1974).
3) 例えば、J. Schijve, ASTM STP 595, 78 (1976); 松岡三郎，田中統一，神津文夫，日本機械学会論文集，45，1135 (1979).
4) G. J. Petrak, Engng. Fract. Mech., 6, 725 (1974).
5) O. E. Wheeler, Trans ASME D, 94, 81 (1972).
6) J. D. Willenborg, R. M. Engle and H. A. Wood, AFFDL-TR-71-71 (1971).
7) S. Matsuoka and T. Tanaka, Engng. Fract. Mech., 8, 507 (1976).
8) 太田昭彦，増田千利，日本機械学会第54期総会講演会部門研究懇談会-1，“疲労き裂進ばを蓄積観察に関連した一，三の問題点”資料 (1977).
9) 松岡三郎，田中統一，神津文夫，日本機械学会論文集，46，397 (1980).
10) 戸尾恵郎，安藤善司，森川邦彦，材料，29，808 (1980).
11) P. J. Bernard, T. C. Lindley and C. E. Richards, ASTM STP 595, 78 (1976).
12) W. Elber, ASTM STP 486, 230 (1971).
13) 菊川 真，城野政弘，田中健一，高谷 勝，材料，25，899 (1976).
14) 菊川 真，城野政弘，近藤良之，日本機械学会論文集，47，468 (1981).
15) J. M. Baik, L. Hermann and R. J. Asaro, ASME AMD, 47, 33 (1981).
16) 菊川 真，城野政弘，近藤良之，山本隆生，山田和久，材料，29，155 (1980).
17) 菊川 真，城野政弘，田中健一，近藤良之，田辺文夫，村田洋一，材料，29，1240 (1980).
18) 平野美彦，小林英男，中村春夫，中沢 一，日本機械学会論文集，46，1040 (1980).
19) 平野一美，高木愛夫，小林英男，中沢 一，日本機械学会第31期学術講演会前編，p. 38 (1982).