Parasitic copepods (Crustacea, Hexanauplia) on fishes from the lagoon flats of Palmyra Atoll, Central Pacific

Lilia C. Soler-Jiménez1, F. Neptalí Morales-Serna2, Ma. Leopoldina Aguirre-Macedo1,3, John P. McLaughlin3, Alejandra G. Jaramillo3, Jenny C. Shaw3, Anna K. James3, Ryan F. Hechinger3,4, Armand M. Kuris3, Kevin D. Lafferty3,5, Victor M. Vidal-Martínez1,3

1 Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán C.P. 97310, México
2 CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Académica Mazatlán en Acuicultura y Manejo Ambiental, Av. Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, México
3 Department of Ecology, Evolution and Marine Biology and Marine Science Institute, University of California, Santa Barbara CA 93106, USA
4 Scripps Institution of Oceanography-Marine Biology Research Division, University of California, San Diego, La Jolla, California 92093 USA
5 Western Ecological Research Center, U.S. Geological Survey, Marine Science Institute, University of California, Santa Barbara CA 93106, USA

Corresponding author: Victor M. Vidal-Martínez (vvidal@cinvestav.mx)

Academic editor: Danielle Defaye | Received 25 October 2018 | Accepted 13 February 2019 | Published 27 March 2019

http://zoobank.org/6F31349B-BF7D-434D-8C06-4128FDD76A56

Citation: Soler-Jiménez LC, Morales-Serna FN, Aguirre-Macedo ML, McLaughlin JP, Jaramillo AG, Shaw JC, James AK, Hechinger RF, Kuris AM, Lafferty KD, Vidal-Martínez VM (2019) Parasitic copepods (Crustacea, Hexanauplia) on fishes from the lagoon flats of Palmyra Atoll, Central Pacific ZooKeys 833: 85–106. https://doi.org/10.3897/zookeys.833.30835

Abstract

We surveyed copepods parasitic on the fishes at Palmyra, a remote atoll in the Central Indo-Pacific faunal region. In total, we collected 849 individual fish, representing 44 species, from the intertidal lagoon flats at Palmyra and recovered 17 parasitic copepod species. The parasitic copepods were: \textit{Orbitacolax williamsi} on \textit{Mulloidichthys flavolineatus}; \textit{Anuretes serratus} on \textit{Acanthurus xanthopterus}; \textit{Caligus confusus} on \textit{Carangoides ferdau}, \textit{Carangoides orthogrammus}, \textit{Caranx ignobilis}, \textit{Caranx melampygus}, and \textit{Caranx papuensis}; \textit{Caligus kapuhili} on \textit{Chaetodon auriga} and \textit{Chaetodon lunula}; \textit{Caligus laticaudus} on \textit{Rhinecanthus aculeatus}, \textit{Pseudobalistes flavimarginatus}, \textit{M. flavolineatus}, \textit{Upeneus taeniopterus}, \textit{Chrysiptera glauca}, and \textit{Epinephalus merra};
Caligus mutabilis on Lutjanus fulvus and Lutjanus monostigma; Caligus randalli on C. ignobilis; Caligus sp. on L. fulvus; Caritus serratus on Chanos chanos; Lepeophtheirus lewisi on A. xanthopterus; Lepeophtheirus ulus on C. ignobilis; Dissonus similis on Arothron hispidus; Nemesis sp. on Carcharhinus melanopterus; Hatschekia longiabdominalis on A. hispidus; Hatschekia bicaudata on Chaetodon auriga and Chaetodon lunula; Kroyeria longicauda on C. melanopterus and Lernanthropus sp. on Kyphosus cinerascens. All copepod species reported here have been previously reported from the Indo-Pacific but represent new geographical records for Palmyra, demonstrating large-scale parasite dispersion strategies.

Keywords
Parasitic copepods, fish, geographical isolation, islands, Indo-Pacific, atoll

Introduction

Although there have been several surveys of copepods parasitic on Indo-Pacific fishes, including the Great Barrier Reef (Australia), New Caledonia, New Guinea, India, Taiwan and the Hawaiian Islands (Yamaguti 1963, Kabata 1966, Lewis 1968, Pillai 1968, 1985, Cressey and Boyle 1973, Cressey and Cressey 1979, Ho and Dojiri 1977, Deets and Dojiri 1990, Ogawa 1991, Ho and Lin 2004, Boxshall and Justine 2005, Tang and Kalman 2005, Palm and Bray 2014), the East Indo-Pacific has received little sampling effort. Lafferty et al. (2008) compared parasite communities, including parasitic copepods, at two coral atolls in the Line Islands chain of the central Pacific (Kiritimati Island and Palmyra Atoll). However, their analysis was limited to broad patterns of richness and abundance of morphospecies, conservatively grouped into broad taxonomic categories. Palm and Bray (2014) listed parasites from Hawaiian fishes, reporting 64 copepod species (13 families) from 298 identified fish species.

Palmyra Atoll is one of the northern Line Islands located in the Indo-Pacific (IP) marine ecoregion (Spalding et al. 2007), 1680 km SSW of Hawaii. It is presently a marine protected area and has not supported regular human settlement since World War II. Palmyra Atoll has a relatively long history with little to no exploitation (DeMartini et al. 2008, Sandin et al. 2008). All fishing has been prohibited at Palmyra since it became a US National Wildlife Refuge in 2000 (before that, its remoteness kept fishing pressure low).

As part of a larger project assembling food webs at Palmyra Atoll, we have been cataloging the parasites found in the system. This paper is a companion to two others examining different fish parasite taxa (Vidal-Martínez et al. 2012, 2017). We recovered a considerable number of parasitic copepods from 44 fish species. As such, our tabulation adds to the few published species descriptions or host records from the Central Indo-Pacific region (Cressey and Boyle 1973, 1979, Cressey 1977, Ho and Lin 2004, Palm and Bray 2014), with an emphasis on describing diversity of the copepod supracommunity (Bush et al. 1997) at this site. The goal of this study is two-
fold. First, we list the copepod species recovered, and note, for each, taxonomic issues and report their prevalence, mean intensity and host species. Second, we then discuss this diversity survey with respect to previously published records for the region.

Material and methods

We collected fish by seine, spear, and hook and line from the intertidal sand flats bordering the lagoon of Palmyra Atoll between October 2009 and July 2012. To avoid loss or mixing of parasites among fishes, immediately after capture, we placed fish in individual plastic bags with lagoon water and transported them to the laboratory facility of the Palmyra Atoll Research Consortium (PARC). We examined only freshly killed fish (and the bag water). Observations were under a stereomicroscope. Skin and fins of each host were carefully examined. The gill arches were removed and examined under a stereomicroscope. The copepods obtained were counted, preliminarily identified, fixed in 95% EtOH, labelled and stored in vials for later evaluation. Then, in the Laboratory of Aquatic Pathology of CINVESTAV-Mérida, specimens were mounted and cleared with lactophenol to identify species based on morphology using an Olympus BX-53 microscope (Olympus Corporation, Shinjuku, Tokyo, Japan). Prevalence and mean intensity concepts were applied following Bush et al. (1997). Synonyms for each host species and copepod species were obtained from FishBase (Froese and Pauly 2018) and World of Copepods (Walter and Boxshall 2018), respectively. Voucher specimens were deposited in the United States National Parasite Collection, Washington, DC (USNPC), and the Helminthological Collection of the Laboratory of Parasitology, at the Centre for Research and Advanced Studies, National Polytechnic Institute, Mérida, Yucatán, México (CHCM).

Results

Copepods of fishes from Palmyra lagoon flats

During this study, 849 individual fish from 44 species were collected. Fourteen of the 44 fish species examined were parasitized by at least one parasitic copepod species. *Caranx ignobilis* (Forsskål) was host to three copepod species, the most of any fish. *Acanthurus xanthopterus* Valenciennes, *Carcharhinus melanopterus* (Quoy & Gaimard), *Chaetodon auriga* Forsskål, *Chaetodon lunula* (Lacépède), *Lutjanus fulvus* (Forster), *Mullloidichthys flavolineatus* (Lacépède) and *Arothron hispidus* (Linnaeus) served as host for two copepod species. All other infected species hosted a single copepod species. Thirty fish species were found free of any copepod parasite (Table 1). Ten of the 17 copepod species recovered belong to the Caligidae family (Table 2).
Table 1. Fish species examined from the lagoon flats from the Palmyra Atoll. N = number of fish examined; Max = maximum length reported for that fish species in FishBase (http://www.fishbase.se); Range = total length range of the fish examined.

Host examined	Fish common name	N	Infected hosts	Max (cm)	Range (cm)
Acanthuridae	Acanthurus triostegus (Linnaeus, 1758)	50	0	27	10–18
	Acanthurus xanthopterus Valenciennes, 1835	20	2	70	20–40
Albulidae	Albula glossodonta (Forsskål, 1775)	24	0	90	37–58
Apogonidae	Cheilodipterus quinquelineatus Cuvier, 1828	5	0	13	5–6
Balistidae	Pseudobalistes flavimarginatus (Rüppell, 1829)	4	0	60	17–53
	Rhinecanthus aculeatus (Linnaeus, 1758)	18	0	30	8–24
Belonidae	Platybelone argalus (Lesueur, 1821)	2	0	50	9–36
Carangidae	Caranx ferdau (Forsskål, 1775)	5	0	75	33–38
	Caranx ignobilis (Forsskål, 1775)	4	3	170	56–79
	Carcharhinus melanopterus (Quoy & Gaimard, 1824)	5	3	200	46–219
Chaetodontidae	Chaetodon auriga (Forsskål, 1775)	13	4	23	12–19
	Chaetodon lunula (Lacepède, 1802)	14	6	20	11–16
Chanidae	Chanos chanos (Forsskål, 1775)	5	1	180	31–57
Gobiidae	Amblygobius phalaena (Valenciennes, 1837)	18	0	15	1.3–7
	Asteropteryx semipunctata Rüppell, 1830	12	0	6	2–4
	Gnatolepis anjerensis (Bleeker, 1851)	2	0	8	2–3
	Istigobius decunatus (Herre, 1927)	5	0	13	7–11
	Istigobius ornatus (Rüppell, 1830)	26	0	11	3–6
	Istigobius rigilus (Herre, 1953)	1	0	11	4
	Oplopomus oplomomus (Valenciennes, 1837)	26	0	10	2–7
	Pseudogobius proaetus Watson & Lachner, 1985	11	0	6	2–4
	Valenciennesiex guttata (Valenciennes, 1837)	14	0	14	2–9
Hemiramphidae	Hemiramphus depauperatus Lay & Bennett, 1839	20	0	40	20–34
Kiphiidae	Kiphus cinerascens (Forsskål, 1775)	2	1	50	35–38
Lutjanidae	Lutjanus fulvus (Forster, 1801)	26	5	40	7–26
	Lutjanus monostigma (Cuvier, 1828)	6	1	60	17–37
Mugilidae	Creiminogly crenilabris (Forsskål, 1775)	42	0	60	8–45
	Liza vaigiensis (Quoy & Gaimard, 1825)	54	0	63	3–32
	Valamugil engeli (Bleeker, 1858)	63	0	30	1–20
Mullidae	Mullidae				
	Mulloidichys flavolineatus (Lacepède, 1801)	52	8	43	8–37
	Upeneus taeniopterus Cuvier, 1829	5	3	33	1–30
Muraenidae	Gymnothorax pictus (Ahl, 1789)	7	0	140	41–70
Table 2. Parasitic copepods of fishes from the lagoon flats of Palmyra Atoll; N = number of fish examined. The authorities for parasites were included in the text.

Copepod species	Hosts	N	Infected hosts	Prevalence (%)	Mean intensity (± SD)
Bomolochidae					
Orbitacolax williamsi (Boddaert, 1781)	Mulloidichthys flavolineatus	52	1	1.9	1
Caligidae					
Anuretes serratus	Acanthurus xanthopterus	20	1	5	6
Caligus confusus	Carangoides forsteri	5	2	40	2 ± 0.0
Caranx ignobilis	75	12.7 ± 0.0			
Caranx papuensis	33.3	2 ± 0.0			
Caligus kapubahli	Chaetodon auriga	13	1	7.7	8
Rhinecanthus aculeatus	5.6	1			
Pseudobalistes flavimarginatus	50	21 ± 0.0			
Mulloidichthys flavolineatus	52	13.5	1.5 ± 0.0		
Upeneus taeniatus	60	2.7 ± 0.0			
Epinephalus merra	3.3	2			
Caligus laticaudus	50	1			
Caligus aff. mutabilis	Lutjanus fulvus	26	4	15.4	1.75 ± 1.5
Lutjanus monocitina	6	1	16.6	2	
Caligus randalli	Caranx ignobilis	4	1	25	1
Caligus sp.	Lutjanus fulvus	26	1	3.8	1
Caritus serratis	Channa channa	5	1	20	4
Lepeophtheirina longicauda	Acanthurus xanthopterus	20	1	5	1
Lepeophtheirina ulus	Caranx ignobilis	4	1	25	4
Dissonidae					
Dissonus similis	Arothron hispidus	15	2	13.3	2 ± 0.0
Eudactylidae					
Nemesis sp.	Caranx laticaudus	5	2	40	2 ± 0.0
Hatschekiidae					
Hatschekia longicaudalis	Arothron hispidus	15	8	53.3	100 ± 329.2
Hatschekia bistudata	Chaetodon auriga	13	3	23.1	7.3 ± 3.1
Chaetodon laticaudus	14	2	14.3	5 ± 1.4	
Kroyeriidae					
Kroyeria longicauda	Caranx laticaudus	5	2	40	16 ± 2.8
Lernanthropidae					
Lernanthropus sp.	Kyphosus cinerascens	2	1	50	2

Parasitic copepods on fishes from the lagoon flats of Palmyra Atoll, Central Pacific
Order Cyclopoida Milne Edwards, 1840
Bomolochidae Claus, 1875
Orbitacolax Shen, 1957

Orbitacolax williamsi Cressey & Cressey, 1989

Type host. *Scolopsis taenioptera* (as *S. dubiosus*) (Cuvier) (Nemipteridae).

Other host and localities. *Scolopsis taenioptera* (as *S. dubiosus*) from Okinawa, Japan (Cressey and Cressey 1989). *Coris bateauensis* (Bleeker) (Labridae) from Lizard Island, Australia (Muñoz and Cribb 2006). *Thanmaconus degeni* (Regan) (Monacanthidae) from South Australia (Hayward et al. 2011).

Current host. *Mulloidichthys flavolineatus* (Mullidae).

Site of infection. Gills.

Prevalence and mean intensity. 1.9 and 1 (n = 52).

Specimens deposited. CHCM No. 560 (voucher) (1 vial, 1 specimen ♀).

Remarks. To date, the genus *Orbitacolax* includes 10 valid species, which form two clusters (Venmathi Maran et al. 2014), the *hapalogenyos*-group with four species (*O. hapalogenyos*, *O. pteragogi*, *O. trichiuri*, and *O. unguifer*) and *analogus*-group with six species (*O. analogus*, *O. dactylopterusi*, *O. aculeatus*, *O. leptoscari*, *O. uniunquis*, and *O. williamsi*). This second group is based on the second endopodal segment of leg 2 either no inner seta or having 1 inner seta. Particularly, *O. williamsi* lacks seta on the second endopodal segment of leg 2, as seen in our specimen and the original description provided by Cressey and Cressey (1989). However, Venmathi-Maran et al. (2014) pointed out that *O. williamsi* carries 1 inner seta in that segment, but this is likely inaccurate. *Orbitacolax williamsi* has been found on western Pacific fishes from four families, suggesting that this parasite may have a low host specificity.

Order Siphonostomatoida Burmeister, 1835
Caligidae Burmeister, 1834
Anuretes Heller, 1865

Anuretes serratus Shiino, 1954

Type host. *Prionurus scalprum* (as *Xesurus scalprum*) Valenciennes (Acanthuridae).

Other host and localities. *Prionurus scalprum* (as *Xesurus scalprum*) (Acanthuridae) from Seto, Wakayama Prefecture, Japan (Shiino 1954). *Naso hexacanthus* (Bleeker) (Acanthuridae) from Oahu, Hawaii (Lewis 1964a, Palm and Bray 2014); from Japan and India (Prabha and Pillai 1986). *Prionurus microlepidotus* Lacepède (Acanthuridae) from Australia (Boxshall 2018).

Current host. *Acanthurus xanthopterus* (Acanthuridae).

Site of infection. Gills.
Prevalence and mean intensity. 5 and 6 (n = 20).

Specimens deposited. CHCM No. 561 (voucher) (1 vial, 1 specimen ♂).

Remarks. The validity of the genus Anuretes is questionable given the considerable morphological overlap with the members of Lepeophtheirus (Dojiri and Ho 2013). Currently, Anuretes includes 21 valid species (Boxshall 2018, Walter and Boxshall 2018); of which A. serratus may be distinguished by stout spines on distal exopodal segment of leg 1, and a branched spine on first exopodal segment of leg 2 (Shiino 1954, Lewis 1964a), which were clearly observed in our specimens. In addition, A. serratus lacks sternal furca. According to Dojiri and Ho (2013), a sternal furca is rarely absent in species of Anuretes.

Caligus Müller, 1785

Caligus confusus Pillai, 1961

Type host. Caranx ignobilis (as C. sansun) (Carangidae).

Other host and localities. Alepes djedaba (Forsskål) from Durban; Caranx caballus (Günther) and Caranx caninus (Günther) from Mexican Pacific and Ecuador; Caranx djedaba (Forsskål) from Durban, South Africa and Sri Lanka; Caranx hippos (Linnaeus) from Galapagos Islands and Panama; Caranx ignobilis from Taiwan, Indian and Australia; Caranx melampygus Cuvier from Eniwetok Atoll and Taiwan; Caranx sexfasciatus Quoy & Gaimard from South Africa, Taiwan, Indonesia and Australia; Caranx sp. from Celebes and New Caledonia (all Carangidae); Coryphaena hippurus Linnaeus (Coryphaenidae) from Galapagos Islands and Panama; Decapterus sp. (Carangidae) from Tonkin Gulf, Vietnam; Elagatis bipinnulata (Quoy & Gaimard) (Carangidae) from Galapagos Islands, Panama, India and Taiwan; Elagatis sp. from Celebes; Epinephelus tauvina (Forsskål) (Serranidae) from Kuwait; Rhabdosargus holubi (Steindachner) (Sparidae) from South Africa; Seriola dumerili (Risso) (Carangidae) from Taiwan; Seriola sp. (Carangidae) from Colombia (Kabata 1968, Grobler et al. 2003, Ho and Lin 2004, Yuniar et al. 2007, Kazachenko et al. 2014, Morales-Serna et al. 2014, 2015, Boxshall 2018).

Current host. Carangoides ferdau (Forsskål), Carangoides orthogrammus (Jordan & Gilbert), Caranx ignobilis, Caranx melampygus and Caranx papuensis Alleyne & MacLeay (all Carangidae).

Site of infection. Gills.

Prevalence and mean intensity. 40 and 2 (n = 5) to Carangoides ferdau, 33.3 and 6 (n = 3) to Carangoides orthogrammus, 75 and 12.7 ± 12.2 (n = 4) to Caranx ignobilis; 33.3 and 2 (n = 6) to Caranx melampygus, 40 and 4 (n = 5) to Caranx papuensis.

Specimens deposited. CHCM No. 562 (voucher) (1 vial, 1 specimen ♂) (from Caranx ignobilis), CHCM No. 563 (voucher) (1 vial, 2 specimens ♂ ♀) (from Caranx papuensis), USNM No. 1550598 (voucher) (1 vial, 1 specimen ♂) (from Caranx ignobilis).
Remarks. The genus *Caligus* contains approximately 250 species. According to Ho and Lin (2004), before the establishment of *C. confusus*, specimens of this species were confused with *Caligus productus* (as *Caligus alalongae*) Dana, 1852 and *Caligus constrictus* Heller, 1865. However, these authors pointed out nine characteristics known only for *C. confusus*. The morphology of our specimens (♂ and ♀) fits with the description of Ho and Lin (2004). Additionally, based on the examination of the present material and also that from previous surveys in the Eastern Pacific (Morales-Serna et al. 2014, 2015), we suggest that the shape of the first segment of the antenna and sternal furca may be useful in identifying *C. confusus*. Clearly, *C. confusus* has high affinity for carangid fish; nonetheless, this parasite can also be found on fish from different families. To date, it is distributed in tropical waters of the Eastern Pacific and Indo-Pacific, with no records for the Atlantic Ocean.

Caligus kapuhili Lewis, 1967

Type host. *Chaetodon miliaris* Quoy & Gaimard (Chaetodontidae).

Other host and localities. *Chaetodon miliaris* Quoy & Gaimard, *Chaetodon fremblii* Bennett from Hawaii (Lewis 1967, Palm and Bray 2014). *Chaetodon auripes* Jordan & Snyder and *Chaetodon vagabundus* Linnaeus from Taiwan (all Chaetodontidae) (Ho and Lin 2007).

Current host. *Chaetodon auriga* and *Chaetodon lunula* (Chaetodontidae).

Site of infection. Gills.

Prevalence and mean intensity. 7.7 and 8 (n = 13) to *Chaetodon auriga*; 28.6 and 2.5 ± 1.7 (n = 14) to *Chaetodon lunula*.

Specimens deposited. CHCM No. 564 (voucher) (1 vial, 1 specimen ♂) (from *C. auriga*). CHCM No. 565 (voucher) (1 vial, 1 specimen ♂) (from *C. lunula*). USNM No. 1550599 (voucher) (1 vial, 1 specimen ♂) (from *C. lunula*).

Remarks. According to Lewis (1967) and Lin and Ho (2007), *C. kapuhili* is morphologically close to *Caligus laticaudus* Shiino, 1960. However, the abdomen is 1-segmented in *C. kapuhili* and 2-segmented in *C. laticaudus*. We found specimens of *C. laticaudus* (see below), which facilitated our morphological analysis. Likewise, we identified *C. kapuhili* based on host preference, since this species has only been found on fish of the genus *Chaetodon* from the North-West Pacific.

Caligus laticaudus Shiino, 1960

Type host. *Pagrus major* (as *Pagrosomus major*) (Temminck & Schlegel) (Sparidae).

Other host and localities. *Pagrus major* (as *Pagrosomus major*) (Sparidae) from Japan (Shiino 1960). *Acanthurus olivaceus* Bloch & Schneider (Acanthuridae) from Eniwetok Atoll; *Dentex tumifrons* (Temminck & Schlegel) (Sparidae) from Korea; *Liza haematocheila* (Temminck & Schlegel) (Mugilidae) from China; *Caranx melampygus*
Parasitic copepods on fishes from the lagoon flats of Palmyra Atoll, Central Pacific

(Carangidae), Lutjanus vitta (Quoy & Gaimard), Lutjanus russellii (Bleeker) (Lutjanidae) and Parapristipoma trilineatum (Thunberg) (Haemulidae), Polydactylus plebeius (Broussonet) and Polydactylus sextarius (Bloch & Schneider) (Polynemidae) from Taiwan; Parastomateus niger (Bloch) (Carangidae) from Malaysia; Filimanus heptadactyla (Cuvier) (Polynemidae) and Rhabdosargus sarba (Forsskål) (Sparidae) from India (Ho and Lin 2004, Moon and Kim 2012). Gnathanodon speciosus (Forsskål), Caranx sexfasciatus Quoy & Gaimard (Carangidae), Heniochus acuminatus (Linnaeus) (Chaetodontidae), Kyphosus bigibbus Lacepède (Kiphosidae), Pseudolabrus guentheri Bleeker (Labridae), Pagrus auratus (Forster) (Sparidae) from Australia (Boxshall 2018).

Current host. Rhinecanthus aculeatus (Linnaeus), Pseudobalistes flavimarginatus (Rüppell) (Balistidae), Mullloidichthys flavolineatus, Upenes taenioperus Cuvier (Mulilidae), Chrysiptera glauca (Cuvier) (Pomacentridae) and Epinephalus merra Bloch (Serranidae).

Site of infection. Gills.

Prevalence and mean intensity. 5.6 and 1 (n = 18) to Rhinecanthus aculeatus; 50 and 21 ± 26.9 (n = 4) to Pseudobalistes flavimarginatus; 13.5 and 1.5 ± 0.5 (n = 52) to Mullloidichthys flavolineatus; 60 and 2.7 ± 2.1 (n = 5) to Upenes taenioperus; 3.33 and 2 (n = 3) to Chrysiptera glauca; 50 and 1 (n = 2) to Epinephalus merra.

Specimens deposited. CHCM No. 566 (voucher) (1 vial, 2 specimens ♂ ♀) (from M. flavolineatus). USNM No. 1550600 (voucher) (1 vial, 1 specimen ♂) (from M. flavolineatus).

Remarks. Ho and Lin (2004) indicated that the female of C. laticaudus may be identified by a combination of five characteristics (the corpus of the maxilliped with a large, conical protrusion in the myxal region; the terminal elements on last segment of exopod of leg 1 lack accessory processes; outermost element 1 of the four terminal elements of leg 1 exopod about one third of the length of other three elements which are subequal in length; formula of the 3-segmented exopod of leg 4 as I-0; I-0; III; and the terminal three spines on leg 4 subequal in length). Our results support the view that C. laticaudus infects fishes only from the Indo-West Pacific.

Caligus aff. mutabilis Wilson, 1905

Type host. Centropristis striata (as Centropristes striatus) (Linnaeus) (Serranidae).

Other host and localities. Centropristis striata (as Centropristes striatus) (Serranidae) from North American waters (Wilson 1905). Acanthocybium sp., Euthynnus sp., Sarda sp., Scomberomorus sp., and Thunnus sp. (all Scombridae) from Colombia; Archosargus rhomboidalis (Linnaeus) (Sparidae), Chaetodipterus faber (Broussonet) (Ephippidae), Mycteroperca microlepis (Goode & Bean), Scomberomorus brasiliensis Collette, Russo & Zavala-Camin, Scomberomorus maculatus (Mitchill) (Scombridae) and Trachinotus goodei Jordan & Evermann (Carangidae) from Brazil; Balistes sp. (Balistidae), Callanthias brachysomus (Lockington) (Sparidae), Centropomus sp. (Centropomidae), Chaetodipterus zonatus (Girard) (Ephippidae), Epinephelus labriformis (Jenyns) (Serranidae),
Hoplopagrus guentherii Gill (Lutjanidae), Katsuwonus pelamis (Linnaeus) (Scombridae), Kyphosus elegans (Peters) (Kyphosidae), Lutjanus guttatus (Steindachner), Lutjanus peru (Nichols & Murphy) (Lutjanidae), Menticirrhus undulatus (Girard) (Sciaenidae), Microlepidotus brevipinnis (Steindachner), Mugil cephalus (Linnaeus) (Mugilidae), Paralabrax clathratus (Girard), Paralabrax maculatofasciatus (Steindachner), Paralabrax nebulifer (Girard) (all Serranidae), Sarda chiliensis (Cuvier), Scomberomorus sierra Jordan & Starks (Scombridae) and Selene orstedii Lütken (Carangidae) from Mexican Pacific; S. brasiliensis from Costa Rica; Scomberomorus cavalla (Cuvier) (Scombridae) from Surinam; S. maculatus from Florida; Scomberomorus japonicus from Campeche (Gulf of Mexico); E. labriformis, Eucinostomus entomelas Zahuranec (Gerreidae), Haemulopsis axillaris (Steindachner) (Haemulidae), Paralabrax callaensis Starks (Serranidae), Chromis cyanea (Poey) and Chromis multilineata (Guichenot) (Pomacentridae) from Ecuador (Cressey and Cressey 1980, Luque and Tavares 2007, Gomes-Sanches et al. 2012, Morales-Serna et al. 2016).

Current hosts. Lutjanus fulvus and Lutjanus monostigma (Cuvier) (Lutjanidae).

Site of infection. Gills.

Prevalence and mean intensity. 15.4 and 1.75 ± 1.5 (n = 26) to *L. fulvus*; 16.6 and 2 (n = 6) to *L. monostigma*.

Specimens deposited. CHCM No. 567 (voucher) (1 vial, 1 specimen ♂) (from *L. fulvus*), CHCM No. 568 (voucher) (1 vial, 1 specimen ♂) (from *L. monostigma*). USNM No. 1550601 (voucher) (1 vial, 1 specimen ♂) (from *L. monostigma*).

Remarks. Wilson (1905) observed that the genital complex of *C. mutabilis* varies according to the age of the individuals as well as the developmental stage of the eggs. Also, this author described *C. mutabilis* as having a short, 2-segmented abdomen. Later, Cressey and Cressey (1980) redescribed this species based on material collected from scombrid fish. These authors noted an incomplete 2-segmented abdomen and at least two other differences from the type specimens; however, such differences were not considered sufficient to propose a new species. Recently, Morales-Serna et al. (2014, 2015) reported *C. mutabilis* from different host species in the Eastern Pacific, but a molecular analysis revealed relatively high intraspecific genetic divergence among the *C. mutabilis* isolates. Our specimens share the morphological characteristics described by Cressey and Cressey (1980).

Caligus randalli Lewis, 1964

Type host. Acanthurus triostegus (Linnaeus) (Acanthuridae).

Other host and localities. To our knowledge, *C. randalli* has not been recorded since its original description (Lewis 1964a). *Acanthurus triostegus* (Acanthuridae) from Hawaii (Lewis 1964a, Palm and Bray 2014).

Current host. Caranx ignobilis (Carangidae).

Site of infection. Gills.

Prevalence and mean intensity. 25 and 1 (n = 4).
Specimens deposited. CHCM No. 569 (voucher) (1 vial, 2 specimens ♂♀). USNM No. 1550602 (voucher) (1 vial, 1 specimen ♂).

Remarks. Lewis (1964a) observed that Caligus randalli is morphologically close to C. constrictus Heller, 1865. According to this author, one of the main differences between both species is the length of the urosome. The urosome of C. randalli is one and a half times the length of the urosome of C. constrictus. In the present study, we noted that C. randalli resembles Caligus aesopus Wilson, 1921. However, the urosome in C. aesopus is shorter than in C. randalli. Hayes et al. (2012) included C. aesopus and another nine species of Caligus (C. chorinemy Kroyer, 1863, C. tenax Heller, 1865, C. spinosurculus Pearse, 1951, C. germoi Pearse, 1951, C. rectus Pearse, 1952, C. confusus, C. cordyla Pillai, 1963, C. zylanica Hameed & Pillai, 1986 and C. equulae Ho & Lin, 2003) within a cluster of caligid species sharing the following characteristics in the female: bifid postantennal process; bifid posterior process on the maxillule; heavily ornamented apron of the third leg; an inner rosette of large spinules and prominent rib-like structure with a bifid apex, arising near the border with the intercoxal sclerite of leg 3; a massive and strongly incurved spine on the first exopodal segment of leg 3; and a 3-segmented exopod on leg 4 armed with I, I, III spines. Caligus randalli also shares these characteristics, and after a detailed examination. We confirmed that the morphological characteristic of our specimens fit with the description Lewis (1964a) for C. randalli. This is also supported by records of C. randalli in the Central Pacific.

Caligus sp.

Current host. Lutjanus fulvus (Lutjanidae).

Site of infection. Gills.

Prevalence and mean intensity. 3.8 and 1 (n = 26).

Specimens deposited. CHCM No. 570 (voucher) (1 vial, 1 specimen ♂).

Remarks. Caligus sp. is morphologically close to Caligus laticaudus, mainly by the shape and armature of cephalothoracic appendages and legs. However, our specimen differs from C. laticaudus in the shape and size of the urosome. Unfortunately, the single specimen of Caligus sp. in our collection is not sufficient for a more detailed taxonomic study.

Caritus Cressey, 1967

Caritus serratus Cressey, 1967

Type host. Chanos chanos (Forsskål) (Chanidae).

Other host and localities. Chanos chanos (Chanidae) from Nosy Bé, Madagascar (Cressey 1967). Reported as Caritus tolii from Tenualosa toli (as Hilsa toli) (Valenciennes) (Clupeidae) from Sassoon Docks, Bombay (Rangnekar 1984).
Current host. *Chanos chanos* (Chanidae).

Site of infection. Gills.

Prevalence and mean intensity. 20 and 4 (n = 5).

Specimens deposited. CHCM No. 571 (voucher) (1 vial, 1 specimen ♀).

Remarks. Currently, *C. serratus* is the unique valid species included in the genus *Caritus*. Morphological characteristics of our specimens agree well with the re-description provided by Dojiri and Ho (2013).

Lepeophtheirus von Nordmann, 1832

Lepeophtheirus lewisi Hewitt, 1971

Type host. *Acanthurus olivaceus* (Acanthuridae).

Other host and localities. *Acanthurus olivaceus* (Acanthuridae) from Hawaii (Hewitt 1971). *Naso hexacanthus* (Bleeker), *Acanthurus triostegus* (Acanthuridae), *Myripristis* sp., *Fistularia petimba* Lacepède (Fistulariidae) (Lewis 1964a, 1964b, Palm and Bray 2014).

Current host. *Acanthurus xanthopterus* (Acanthuridae).

Site of infection. Gills.

Prevalence and mean intensity. 5 and 1 (n = 20).

Specimens deposited. CHCM No. 572 (voucher) (1 vial, 1 specimen ♂). USNM No. 1550603 (voucher) (1 vial, 1 specimen ♀).

Remarks. *Lepeophtheirus lewisi* was originally described as *Dentigryps bifurcatus* by Lewis (1964a). However, Hewitt (1971) stated that there is not a useful character to separate *Dentigryps* Wilson, 1913 from *Lepeophtheirus* and, therefore, re-assigned species of *Dentigryps* to *Lepeophtheirus*. As the name *L. bifurcatus* was preoccupied by *L. bifurcatus* Wilson 1905, Hewitt (1971) renamed Lewis’ species as *L. lewisi*. The material of the present study corresponds to a male of *L. lewisi*. The identification of this species was difficult without female specimens; nonetheless, the morphology of our material fits the description provided by Lewis (1964a) for the male of *L. lewisi*. In addition, this copepod has been mainly found in acanthurid fish from the Central Pacific as in the present work.

Lepeophtheirus uluus Lewis, 1964

Type host. *Caranx melampygus* (Carangidae).

Other host and localities. *Caranx melampygus* (Carangidae) from Oahu, Hawaii (Lewis 1964b, Palm and Bray 2014). Reported as *Dentigryps ulua* on *Caranx ignobilis* from Heron Island, Australia (Ho and Dojiri 1977).

Current host. *Caranx ignobilis* (Carangidae).

Site of infection. Gills.

Prevalence and mean intensity. 25 and 4 (n = 4).

Specimens deposited. CHCM No. 573 (voucher) (1 vial, 2 specimens ♂♀).
Remarks. *Lepeophtheirus uluus* was originally described as *Dentigryps ulua* by Lewis (1964b) and then transferred to *Lepeophtheirus* by Hewitt (1971). The morphology of our specimens corresponds to the original description.

Dissonidae Kurtz, 1924

Dissonus Wilson, 1906

Dissonus similis Kabata, 1966

Type host. *Tetractenos hamiltoni* (Richardson) (as *Spheroides hamiltoni*) (Tetraodontidae).

Other host and localities. *Tetractenos hamiltoni* (as *Spheroides hamiltoni*) (Tetraodontidae) from Queensland, Australia (Kabata 1966). *Arothron hispidus* from Philippines; *Arothron meleagris* (Anonymous) from Guam; *Arothron nigropunctatus* (Bloch & Schneider) from Australia, Philippines and New Guinea; and *Arothron stellatus* (Anonymous) (all Tetraodontidae) from New Guinea (Tang and Kalman 2005).

Current host. *Arothron hispidus* (Tetraodontidae).

Site of infection. Gills.

Prevalence and mean intensity. 13.3 and 2 ± 0.5 (n = 15).

Specimens deposited. CHCM No. 574 (voucher) (1 vial, 1 specimen ♀). USNM No. 1550604 (voucher) (1 vial, 1 specimen ♀).

Remarks. The family Dissonidae comprises only two genera, *Innaprokofevnas* Kazatchenko, 2001 with a single species (*I. orientcolae* Kazatchenko, 2001) and *Dissonus* with 12 species (*D. excavatus* Boxshall, Lin, Ho, Ohtsuka, Venmathi Maran & Justine, 2008; *D. furcatus* Kirtisinghe, 1950; *D. glaber* Kurtz, 1950; *D. heronensis* Kabata, 1966; *D. boi* Tang & Kalman, 2005; *D. inaequalis* Boxshall, Lin, Ho, Ohtsuka, Venmathi Maran & Justine, 2008; *D. kapuri* (Ummerkutty, 1976); *D. manteri* Kabata, 1966; *D. nudiventris* Kabata, 1965; *D. ruvetti* Nuñes-Ruivo & Fourmanoir, 1956; *D. similis*; and *D. spinifer* Wilson, 1906).

According to Kabata (1966), *D. similis* is morphologically closer to *D. furcatus*. However, *D. similis* may be separated from *D. furcatus* and other congeners by the lack of a sternal furca or stylet and the presence of a genital spinulation extending over the anterior half to two thirds of ventral surface of genital complex (Tang and Kalman 2005, Boxshall et al. 2008). As indicated by Tang and Kalman (2005), *D. similis* is restricted to the tropical western Pacific and is highly host specific to tetraodontid fishes.

Eudactylinidae Wilson C.B., 1932

Nemesis sp. Risso, 1826

Current host. *Carcharhinus melanopterus* (Carcharhinidae).

Site of infection. Gills.

Prevalence and mean intensity. 40 and 2 ± 0.1 (n = 5).
Specimens deposited. CHCM No. 575 (voucher) (1 vial, 1 specimen ♀).

Remarks. Nemesis is one of 12 genera in the family Eudactylinidae and includes about nine species (Mangena et al. 2014). Nemesis species can be divided into two groups by the relative width of the cephalothorax, free thoracic segments and genital segments (Dippenaar et al. 2008). One group (consisting of most of the species) has a fourth free thoracic segment that is much narrower than the preceding three, whereas the other (consisting of N. lamna only) has all four segments of about the same width (Kabata 1979). The identification and comparison of Nemesis species belonging to the first group is difficult because of morphological variation among individuals and the inconsistencies in the literature (Hewitt 1969, Kabata 1979).

Hatschekiidae Kabata, 1979

Hatschekia Poche, 1902

Hatschekia longiabdominalis Uyeno & Nagasawa, 2013

Type host. Arothron hispidus (Tetraodontidae).

Other host and localities. Arothron hispidus (Tetraodontidae) from Japan (Uyeno and Nagasawa 2013). To date, H. longiabdominalis has not been recorded from others host and locality.

Current host. Arothron hispidus (Tetraodontidae).

Site of infection. Gills.

Prevalence and mean intensity. 53.3 and 100 ± 329.2 (n = 15).

Specimens deposited. CHCM No. 576 (voucher) (1 vial, 1 specimen ♀). USNM No. 1550605 (voucher) (1 vial, 1 specimen ♀).

Remarks. Of the nine genera included in the Hatschekiidae, the most speciose genus is Hatschekia, with approximately 140 valid species so far. According to Uyeno and Nagasawa (2013), H. longiabdominalis may be separated from other congeners by having a fusiform trunk with posterior lobes, the urosome markedly projecting beyond posterior lobes of the trunk, and unique intercoxal sclerites of legs 1 and 2, which strongly project from the middle of the anterior margin and bear four blunt processes on the posterior margin. We observed all of these characters in our specimens.

Hatschekia bicaudata Kabata, 1991

Type host. Chaetodon aureofasciatus Macleay (Chaetodontidae).

Other host and localities. Chaetodon aureofasciatus (Chaetodontidae) from Australia (Kabata 1991). Chaetodon auripes Jordan & Snyder (Chaetodontidae) from Seto, Wakayama Prefecture, Japan (Izawa 2016).

Current host. Chaetodon auriga and Chaetodon lunula (Chaetodontidae).
Site of infection. Gills.

Prevalence and mean intensity. 23.1 and 7.3 ± 3.1 (n = 13) to Chaetodon auriga; 14.3 and 5 ± 1.4 (n = 14) to Chaetodon lunula.

Specimens deposited. CHCM No. 577 (voucher) (1 vial, 1 specimen ♀) (from Chaetodon auriga). CHCM No. 578 (voucher) (1 vial, 1 specimen ♀) (from Chaetodon lunula). USNM No. 1550606 (voucher) (1 vial, 1 specimen ♀) (from Chaetodon lunula).

Remarks. Our samples corresponded to a single mature female from each host, which were not dissected for morphological analysis. Nonetheless, these parasitic copepods resemble H. bicaudata in its habitus, antenna, maxilla, and armature of legs 1 and 2, as well as in its preferred hosts, which are butterfly fishes distributed in warm waters from Australia to Japan (see Izawa 2016).

Kroyeriidae Kabata, 1979

Kroyeria van Beneden, 1853

Kroyeria longicauda Cressey, 1970

Type host. Carcharhinus limbatus (Müller & Henle) (Carcharhinidae).

Other host and localities. Carcharhinus limbatus (Carcharhinidae) from Florida. Carcharhinus brevifinna (Müller & Henle) (Carcharhinidae) from Madagascar (Deets 1994).

Current host. Carcharhinus melanopterus (Carcharhinidae).

Site of infection. Gills.

Prevalence and mean intensity. 40 and 16 ± 2.8 (n = 5).

Specimens deposited. CHCM No. 579 (voucher) (1 vial, 1 specimen ♀). USNM No. 155607 (voucher) (1 vial, 1 specimen ♀).

Remarks. The family Kroyeriidae comprises three genera, Kroeyerina Wilson, 1932 with nine species, Kroyeria with 15 species, and Prokroyeria Deets, 1987 with a single species (Walter and Boxshall 2018). Within Kroyeria, K. longicauda can be identified by the lateral tine on the deeply incised, bifid dorsal stylet, the lateral cuticular flange on the caudal rami, and the small number of unusually large endopodal denticulations of legs 1 to 4 that are unique to this species (Deets 1994).

Lernanthropidae Kabata, 1979

Lernanthropus de Blainville, 1822

Lernanthropus sp.

Current host. Kyphosus cinerascens (Forsskål) (Kyphosidae).

Site of infection. Gills.

Prevalence and mean intensity. 50 and 2 (n = 2).

Specimens deposited. CHCM No. 580 (voucher) (1 vial, 1 specimen ♀).
Remarks. The genus *Lernanthropus* includes about 120 species and it is one of the commonest genera of parasitic copepods on marine fishes. In this study, a single female of *Lernanthropus* sp. was collected. We were unable to proceed with the species identification because of the lack of specimens for dissection, which is necessary to observe appendages of the cephalothorax as well as legs 1 and 2. Even with enough material, the identification of *Lernanthropus* sp. is quite difficult because many species have not been described with sufficient detail (Koyuncu et al. 2012).

Discussion

The present study is the first detailed survey of the diversity and ecological attributes of the parasitic copepods infecting fishes at Palmyra Atoll. All records we report here are new geographical records. Most copepods (10 of 17) belonged to the family Caligidae. Of these ten caligid species, six were in the genus *Caligus* and two in the genus *Lepeophtheirus*. These finding are in agreement with the fact that *Caligus* copepods are mostly found on warm water fishes, while *Lepeophtheirus* copepod diversity is low in the tropics (Ho and Lin 2004, Suárez-Morales and Gasca 2012, Morales-Serna et al. 2016). However, as far as we know, specific evolutionary or ecological mechanisms underlying this greater diversification *Caligus* species in the tropics are not well understood. On the other hand, in experiments carried out by Bravo et al. 2010, they suggest that species of *Caligus* are more active swimmers than species of *Lepeophtheirus*, which in turns increase transmission between hosts. Clearly, such swimming ability could be contributing to dispersal of *Caligus* and host switching. Several copepods species can parasitize multiple fish species (Dojiri and Ho 2013). This is the case of *C. mutabilis* found on *Lutjanus monostigma* and *L. fulvus* in the present study however, this species has been reported in at least 13 families of marine fishes from the Atlantic and Pacific oceans (Morales-Serna et al. 2015).

Consistent with observations of the monogenean fauna of Palmyra Atoll fishes (Vidal-Martínez et al. 2017), parasitic copepod richness at Palmyra Atoll qualitatively appears low relative to other localities in the Indo-Pacific region. Most of the fish species we examined (30 of 44) were not parasitized by copepods, even with large sample sizes for some fish species (e.g. *Acanthurus triostegus*, n = 50). Several fishes that were unparasitized at Palmyra have copepod records at other sites. For example, *Acanthurus triostegus*, *Gymnothorax pictus*, *Epinephelus merra* and *Sphyraena barracuda* have been reported as hosts of at least one species of parasitic copepod in other localities of the Indo-Pacific (Boxshall and Huys 2007, Palm and Bray 2014). Because ectoparasite species richness, host size and age are positively related (Rhode 1993, Muñoz and Cribb 2005), the lack of copepods in some host species could be due to our sampling of only young (*Chanos chanos*) or small individuals (*Sphyraena barracuda*). Furthermore, the intertidal habitat sampled at Palmyra differs from the more often sampled fore-reef and reef flat habitats, making a direct comparison among studies difficult. More generally, Palmyra’s remoteness may contribute to its depauperate copepod parasite fauna. The
Line Islands are far from the Austro-Malayan-Philippine region, the presumed center of origin of Indo-West Pacific (IWP) fishes and their parasites. Because we found fewer copepod species than described from Hawaii, which is still further from the presumed center of origin, we suggest that the remote location of the Line Islands and the particularly small size of Palmyra Atoll also contribute to the depauperate nature of the parasitic copepod fauna.

Acknowledgements

We acknowledge and thank the Palmyra Atoll National Wildlife Refuge, U.S. Fish and Wildlife Service, Department of the Interior, The Nature Conservancy and, The United States Geological Survey for their support. We deeply thank The Nature Conservancy staff and US Fish and Wildlife staff who were friendly and helpful. We are particularly indebted to Franklin Viola, Amanda Meyer, Brad Kintz, Aaron Kierzek, Jan Eber, Anthony Wilson, Lynette Williams, Kathy Wilson and Clara Viva-Rodriguez. We also thank Gareth Williams and Ingrid Knapp for sharing their field knowledge. This work also benefitted from a grant from the Marisla Foundation and a U.S. National Science Foundation Grant (DEB-0224565). Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Boxshall GA (2018) The sea lice (Copepoda: Caligidae) of Moreton Bay (Queensland, Australia), with descriptions of thirteen new species. Zootaxa 4398: 1–172. https://doi.org/10.11646/zootaxa.4398.1.1
Boxshall GA, Huys R (2007) Copepoda of New Caledonia. In: Payri CE, Richer de Forges B (Eds) Compendium of Marine Species of New Caledonia, Doc. Sci. Tech. II7, seconde édition, IRD Nouméa, 259–265.
Boxshall GA, Justine J-L (2005) A new genus of parasitic copepod (Siphonostomatoida: Caligidae) from a razorback scabbardfish, Assurger anzac Alexander (Trichiuridae) off New Caledonia. Folia Parasitologica, 52: 349–358. https://doi.org/10.14411/fp.2005.048
Boxshall GA, Lin CL, Ho JS, Ohtsuka S, Venmathi Maran BA, Justine JL (2008) A revision of the family Dissonidae Kurtz, 1924 (Copepoda: Siphonostomatoida). Systematic Parasitology 70: 81–106.
Bravo S, Treasurer J, Sepulveda M (2010). Effectiveness of hydrogen peroxide in the control of Caligus rogercresseyi in Chile and implications for sea louse management. Aquaculture 303: 22–27. https://doi.org/10.1016/j.aquaculture.2010.03.007
Bush A, Lafferty K, Lotz J, Shostak A (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83: 575–583. https://doi.org/10.2307/3284227
Cressey RF (1967) *Caritus* a new genus of caligoid copepod, with a key to the genera of Caliginae. Proceedings of the United States National Museum 123(3623): 1–8. https://doi.org/10.5479/si.00963801.123-3623.1

Cressey RF (1970) Copepods parasites on sharks from the west coast of Florida. Smithsonian Contributions to Zoology 38: 1–30. https://doi.org/10.5479/si.00810282.38

Cressey RF (1977) *Boylea longispicata* g., n. sp. and other parasitic copepods from pacific fishes. Transactions of the American Microscopical Society 96(4): 467–476. https://doi.org/10.2307/3225664

Cressey RF, Boyle HB (1973) Five New Bomolochid Copepods Parasitic on Indo-Pacific Clupeid Fishes. Smithsonian Contributions Zoology 161: 1–25. https://doi.org/10.5479/si.00810282.161

Cressey RF, Boyle HB (1979) The Parasitic Copepods of Indo-West Pacific Lizardfishes (Synodontidae). Smithsonian Contributions to Zoology 296: 1–71. https://doi.org/10.5479/si.00810282.296

Cressey RF, Cressey HB (1980) Parasitic copepods of mackerel – and tuna – like fishes (Scombridae) of the world. Smithsonian Contributions to Zoology 311: 1–86. https://doi.org/10.5479/si.00810282.311.i

Cressey R, Cressey HB (1989) A new species of *Orbitacolax* (Copepoda: Bomolochidae) and redescriptions of additional two species. Canadian Journal of Zoology 67: 2902–2909. https://doi.org/10.1139/z89-411

Deets GB (1987) Phylogenetic analysis and revision of *Kroeyerina* Wilson, 1932 (Siphonostomatoida: Kroyeriidae), copepods parasitic on chondrichthyans, with descriptions of four new species and the erection of a new genus, *Prokroyeria*. Canadian Journal of Zoology 65(9): 2121–2148. https://doi.org/10.1139/z87-327

Deets GB (1994) Copepod-Chondrichthyan coevolution: a cladistics consideration. PhD Thesis, University of British Columbia, Vancouver, 448 pp.

Deets GB, Dojiri M (1990) *Dissonus pastinum* n. sp. (Siphonostomatoida: Dissonidae), a copepod parasitic on a horn shark from Japan. Beaufortia 41: 49–54.

DeMartini EE, Friedlander AM, Sandin SA, Sala E (2008) Differences in fish-assemblage structure between fished and unfished atolls in the northern Line Islands, central Pacific. Marine Ecology Progress Series 365: 199–215. https://doi.org/10.3354/meps07501

Dojiri M, Ho JS (2013) Systematics of the Caligidae copepods parasitic on marine fishes. Koninklijke Brill NV, Leiden. https://doi.org/10.1163/9789004204256

Dippenaar S, van Tonder R, Wintner S, Zungu P (2008) Spatial distribution of *Nemesis lamna* Risso 1826 (Copepoda: Siphonostomatoida: Eudactylinidae) on the gills of white sharks *Carcharodon carcharias* off KwaZulu-Natal, South Africa, African Journal of Marine Science 30(1): 143–148. https://doi.org/10.2989/AJMS.2008.30.1.14.464

Froese R, Pauly D (2018) Editors FishBase. http://www.fishbase.org [10/2018]

Gomes-Sanches E, Kerber CE, Paschoal F, Luque JL (2012) First record of *Caligus mutabilis* (Copepoda: Caligidae), in sea-farmed *Mycteroperca microlepis* (Periciformes: Serrani-
Parasitic copepods on fishes from the lagoon flats of Palmyra Atoll, Central Pacific

dae) in Brazil. Revista Brasileira de Parasitologia Veterinária 21: 330–333. https://doi.org/10.1590/S1984-29612012000300031

Grobler NJ, Van As JG, Oliver PAS (2003) Additional morphological information on two species of Caligus (Copepoda: Caligidae) parasitic on South Africa marine and estuarine fish. African Zoology 38: 139–143. https://doi.org/10.1080/15627020.2003.11657201

Hayes P, Justine JL, Boxshall GA (2012) The genus Caligus Müller, 1785 (Copepoda: Siphonostomatoida): two new species from reef associated fishes in New Caledonia, and some nomenclatural problems resolved. Zootaxa 3534: 21–39.

Hayward CJ, Svane I, Lachimpadi SK, Itoh N, Bott NJ, Nowak BF (2011) Sea lice infections of wild fishes near ranched southern bluefin tuna (Thunnus maccyoi) in South Australia. Aquaculture 320: 178–182. https://doi.org/10.1016/j.aquaculture.2010.10.039

Hewitt GC (1969) Some New Zealand parasitic Copepoda of the family Eudactylinidae. Zoology Publications from Victoria University of Wellington 49: 1–31.

Hewitt GC (1971) Species of Lepeophtheirus (Copepoda, Caligidae) recorded from the ocean sunfish (Mola mola) and their implications for the caligid genus Dentigryps. Journal of Fisheries Research Board of Canada 28: 323–334. https://doi.org/10.1139/F71-044

Ho JS, Dojiri M (1977) Parasitic copepods on the fishes of the Great Barrier Reef, Australia Part II. Caligoida: Dissonus, Lepeophtheirus and Dentigryps. Publications of the Seto Marine Biological Laboratory 24: 77–97. https://doi.org/10.5134/175956

Ho JS, Lin CL (2003) Three species of Caligus (Copepoda: Caligidae) parasitic on fishes of the northeast coast of Taiwan. Journal of the Fisheries Society of Taiwan 30(1): 55–70.

Ho JS, Lin CL (2004) Sea lice of Taiwan (Copepoda: Siphonostomatoida: Caligidae). The Sueichan Press, Keelung.

Ho JS, Lin CL (2007) Two new species of taeniacanthid copepods (Poecilostomatoida) parasitic on marine fishes of Taiwan. Systematic Parasitology 67(1): 73–80. https://doi.org/10.1007/s11230-006-9073-3

Izawa K (2016) Some new and known species of Hatschekia Poche, 1902 (Copepoda, Siphonostomatoida, Hatschekiidae) parasitic on the branchial lamellae of Japanese actinopterygian fishes belonging to perciformes, with revision of the known species of the genus. Crustaceana 89: 209–238. https://doi.org/10.1163/15685403-00003503

Kabata Z (1965) Parasitic Copepoda of fishes. Report B.A.N.Z. Antarctic Research Expedition 8(6): 1–16.

Kabata Z (1966) Copepoda parasitic on Australian fishes, V. Genus Dissonus (Dissonidae). Annals and Magazine of Natural History 13: 211–226. https://doi.org/10.1080/00222936608656047

Kabata Z (1968) Two species of Caligus from New Caledonia. Crustaceana 1: 1–10.

Kabata Z (1979) Parasitic Copepoda of British fishes. The Ray Society, London, 468 pp.

Kabata Z (1991) Copepoda parasitic on Australian fishes, XIII: family Hatschekiidae. Journal of Natural History 25: 91–121. https://doi.org/10.1080/00222939100770081

Kazachenko VN, Kovaleva NN, Ha DN, Nguyen VH, Thanh NV (2014) Redescription of three caligid species of the genus Caligus Müller, 1785 (Copepoda: Caligidae), parasites of marine fish Decapterus sp. (Perciformes: Carangidae) from Tonkin Gulf, Vietnam. Tap Chi Sinh Hoc 36: 1–11.
Koyuncu CE, Castro-Romero R, Karaytug S (2012) *Lernanthropus indefinitus* n. sp. (Copepoda, Siphonostomatoida, Lernanthropidae) parasitic on *Argyrosomus regius* (Asso, 1801) (Pisces, Sciaenidae). Crustaceana 85: 1409–1420. https://doi.org/10.1163/15685403-00003138

Lafferty KD, Shaw JC, Kuris AM (2008) Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kiritimati Island. EcoHealth 5: 338–345. https://doi.org/10.1007/s10393-008-0196-7

Lewis AG (1964a) Caligid copepods (Crustacea) of the Hawaiian Islands: Parasitic on fishes of the family Acanthuridae. Proceedings of the United States National Museum 11: 137–244. https://doi.org/10.5479/si.00963801.115-3482.137

Lewis AG (1964b) The caligid copepod genus *Dentigryps* (Crustacea: Caligoida). Proceedings of the United States National Museum 115: 347–380. https://doi.org/10.5479/si.00963801.115-3487.347

Lewis AG (1967) Copepod crustaceans parasitic on teleost fishes of the Hawaiian Islands. Proceedings of the United States National Museum 121: 1–204. https://doi.org/10.5479/si.00963801.121-3574.1

Lewis AG (1968) Copepod crustaceans parasitic on the fishes of Enewetok Atoll. Proceedings of the United States National Museum 125: 1–78. https://doi.org/10.5479/si.00963801.125-3656.1

Lin CL, Ho JS (2007) Six species of sea lice (Copepoda, Caligidae) new to Taiwan. Journal of the Fisheries Society of Taiwan 34: 41–67.

Luque JL, Tavares LER (2007) Checklist of Copepoda associated with fishes from Brazil. Zootaxa 1579: 1–39. https://doi.org/10.11646/zootaxa.1579.1.1

Mangen T, Jordaan BP, Dippenaar SM (2014) Phylogenetic relationships and genetic diversity of *Nemesis* Risso, 1826 species found on different elasmobranch host species off the KwaZulu-Natal coast, South Africa. African Journal of Marine Science 36(2): 163–173. https://doi.org/10.2989/1814232X.2014.912992

Moon SY, Kim IH (2012) Sea lice (Copepoda, Siphonostomatoida, Caligidae) new to Korea, including three new species. Journal of Species Research 1: 175–217. https://doi.org/10.12651/JSR.2012.1.2.175

Morales-Serna FN, Caña-Bozada V, Mera-Loor G, Loor-Andrade P, Fajer-Ávila EJ, Ho JS (2015) New records of sea lice (Copepoda: Caligidae) from marine fishes in Jaramijó, an area with potential for sea-cage aquaculture in Ecuador. Zootaxa 3920: 366–380. https://doi.org/10.11646/zootaxa.3920.2.8

Morales-Serna FN, Medina-Guerrero RM, Fajer-Ávila EJ (2016) Sea lice (Copepoda: Caligidae) parasitic on fishes reported from the Neotropical region. Neotropical Biodiversity 2(1): 141–150. https://doi.org/10.1080/23766808.2016.1236313

Morales-Serna FN, Pinacho-Pinacho CD, Gómez S, Pérez-Ponce de León G (2014) Diversity of sea lice (Copepoda: Caligidae) parasitic on marine fishes with commercial and aquaculture importance in Chamela Bay, Pacific coast of Mexico by using morphology and DNA barcoding, with description of a new species of *Caligus*. Parasitology International 63: 69–79. https://doi.org/10.1016/j.parint.2013.09.005
Muñoz G, Cribb TH (2005) Infracommunity structure of parasites of *Hemigymnus melapterus* (Pisces: Labridae) from Lizard Island, Australia: the importance of Habitat and parasite body size. Journal of Parasitology 91(1): 38–44. https://doi.org/10.1645/GE-3321

Muñoz G, Cribb TH (2006) Parasite communities and diet of *Coris batuensis* (Pisces: Labridae) from Lizard Island, Great Barrier Reef. Memoirs of the Queensland Museum 52: 191–198.

Ogawa K (1991) Ectoparasites of sawfish, *Pristis microdon*, caught in fresh waters of Australia and Papua New Guinea. University Museum, University of Tokyo, Nature and Culture 3: 91–101.

Palm HW, Bray RA (2014) Marine Fish Parasitology in Hawaii. Westarp and Partner Digitaldruck, Hohenwarsleben XII, Germany, 320 pp.

Pillai NK (1961) Copepods parasitic on South Indian Fishes. Part I, Caligidae. Bulletin of the Research Institute, University of Kerala (C) 8: 87–130.

Pillai NK (1963) Copepods parasitic on South Indian fishes: Family Caligidae. Journal of the Marine Biological Association of India 5(1): 68–96.

Pillai NK (1968) Additions to the copepod parasites of South Indian fishes. Parasitology 58: 9–36. https://doi.org/10.1017/S0031182000073388

Pillai NK (1985) Parasitic copepods of Marine fishes. The Fauna of India. Zoological Survey of India, Calcutta, 900.

Prabha C, Pillai NK (1986) Additions to the copepods parasitic on the marine fishes of India. 4. on twenty-six species of Caligidae. Records of the Zoological Survey of India 79: 1–139.

Rangnekar MP (1984) Parasitic copepods from marine fishes of Bombay. In: Vervoort W (Ed.) Studies on Copepoda II. Proceedings of the First International Conference on Copepoda, Amsterdam, The Netherlands, 24–28 August 1981. Crustaceana 7: 344–351.

Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, Konochick T, Malay M, Maragos JE, Obura D, Pantos O, Paulay G, Richie M, Rohwer F, Schroeder RE, Walsh S, Jackson JBC, Knowlton N, Sala E (2008) Baselines and Degradation of Coral Reefs in the Northern Line Islands. PLoS One 3(2): 1548. https://doi.org/10.1371/journal.pone.0001548

Shiino SM (1954) Copepods parasitic on Japanese fishes 3. On two new species of the genus *Anuretes*. Report of Faculty of Fisheries 1: 260–272.

Shiino SM (1960) Copepods parasitic on the fishes collected on the coast of Province Shima, Japan. Reports of the Faculty of Fisheries, Prefectural University of Mie 3(3): 471–500.

Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57: 573–583. https://doi.org/10.1641/B570707

Suárez-Morales E, Gasca RA (2012). New *Lepeophtheirus* (Copepoda: Siphonostomatoida: Caligidae) from Isla del Coco National Park, Costa Rica, Eastern Tropical Pacific. Revista de Biología Tropical 60: 235–242.

Tang D, Kalman JE (2005) A new caligiform copepod (Siphonostomatoida: Dissonidae) parasitic on *Seriola hippos* from western Australian waters, with new records and morphological
variation for *Dissonus nudiventris* and *Dissonus similis* and an updated key to the species of *Dissonus*. Journal of Parasitology 91: 427–437. https://doi.org/10.1645/GE-3370

Uyeno D, Nagasawa K (2013) The genus *Hatschekia* (Copepoda: Hatschekiidae) from pufferfishes (Tetraodontiformes: Tetraodontidae) off the Ryukyu Islands, Japan, with descriptions of four new species and a redescription of *H. pholas*. Folia Parasitologica 60: 61–74. https://doi.org/10.14411/fp.2013.008

Venmathi-Maran BA, Moon SY, Adday TK, Khamees NR, Myoung JG (2014) A new species of parasitic copepod *Nothobomolochus* and redescription of *Orbitacolax hapalogenyos* (Yamaguti & Yamasu, 1959) (Cyclopoida: Bomolochidae) off Iraq. Acta Parasitologica 59: 675–685.

Vidal-Martínez VM, Aguirre-Macedo ML, McLaughlin JP, Hechinger RF, Jaramillo AG, Shaw JC, James AK, Kuris AM, Lafferty KD. (2012) Digenean metacercariae of fishes from the lagoon flats of Palmyra Atoll, Eastern Indo-Pacific. Journal of Helminthology 5: 1–17. https://doi.org/10.1017/S0022149X11000526

Vidal-Martínez VM, Soler-Jiménez LC, Aguirre-Macedo ML, McLaughlin J, Jaramillo AG, Shaw JC, James A, Hechinger RF, Kuris AM, Lafferty KD (2017) Monogenea of fishes from the lagoon flats of Palmyra Atoll in the Central Pacific. ZooKeys 713: 1–23. https://doi.org/10.3897/zookeys.713.14732

Walter TC, Bozshall G (2018) World of Copepods database. http://www.marinespecies.org/copepoda [2018-10-02]

Wilson CB (1905) North American parasitic copepods belonging to the family Caligidae, part I: the Calignae. Proceedings of the United States National Museum 28: 479–672. https://doi.org/10.5479/si.00963801.28-1404.479

Wilson C.B (1906) Report on some parasitic Copepoda collected by Professor Herdman, at Ceylon, in 1902. In: Herdman WA (Ed.) Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar 5(34). 189–210.

Wilson CB (1913) Crustacean parasites of West Indian fishes and land crabs, with descriptions of new genera and species. Proceedings of the United States National Museum 44(1950): 189–227. https://doi.org/10.5479/si.00963801.44-1950.189

Wilson CB (1921) Report on the parasitic Copepoda collected during the survey of the Juan Fernandez Islands, 1916–1917. Natural History of the Juan Fernandez & Easter Islands 3: 69–74.

Wilson CB (1932) The copepods of the Woods Hole region, Massachusetts. Bulletin of the United States National Museum 158: 1–635. https://doi.org/10.5479/si.03629236.158.i

Yamaguti S (1963) Parasitic Copepoda and Branchiura of fishes. New York: Interscience Publishers, 1104 pp.

Yuniar AT, Palm HW, Walter T (2007) Crustacean fish parasites from Segara Anakan Lagoon, Java, Indonesia. Parasitology Research 100: 1193–1204. https://doi.org/10.1007/s00436-006-0391-9