Aim: Atherosclerosis is a kind of chronic inflammatory disease. A crucial pathology change of atherosclerosis is the migration of activated VSMCs to the intima where they interact with leukocytes by expressing adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, monocyte chemoattractant protein-1 (MCP-1) expressed by VSMCs plays an important role in recruiting monocytes and macrophages. Leech (*Whitmania pigra* Whitman) is a traditional Chinese medicine to treat cardiovascular diseases including atherosclerosis, however previous research has rarely reported the molecular mechanism for its curative effect. Thus, our study focuses on the effects of leech extracts on the expression of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs.

Methods: In our present study, wound-healing assay and Boyden chamber model were applied to evaluate the anti-migration effect of LEE (Leech Enzyme Extracts) on LPS induced VSMCs. The anti-adhesion effect was assessed using Dil-labeled THP-1 and RAW264.7.

Results: LEE suppressed LPS-induced VSMCs migration and decreased the chemotaxis and adhesive capacity of THP-1 and RAW264.7 to LPS-stimulated VSMCs. LEE also attenuated the upregulation of a variety of pro-atherosclerotic factors by inhibiting the phosphorylation of p38 MAPK. LEE was also observed to prevent NF-κB p65 nuclear localization using immune-fluorescent staining.

Conclusions: In conclusion, LEE suppresses LPS-induced upregulation of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs mainly via inhibiting the p38 MAPK/NF-κB pathways, thus partly uncovered LEE’s molecular mechanisms for its therapeutic effect on atherosclerosis.

Key words: Atherosclerosis, Vascular smooth muscle cells, Vascular cell adhesion molecule-1, Intercellular cell adhesion molecule-1, Mitogen-activated protein kinase (MAPKs)

Introduction

Atherosclerosis is a chronic inflammatory disease. A crucial pathology change of atherosclerosis is the migration of activated vascular smooth muscle cells (VSMCs) to the intima where they interact with leukocytes by expressing adhesion molecules, including intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Moreover, monocyte chemoattractant protein-1 (MCP-1) expressed by VSMCs plays an important role in recruiting monocytes and macrophages. Studies on the inflammatory processes of atherosclerosis have uncovered several mechanisms that could lead to potential therapies. Many known risk factors are in close relation with the pathological process of atherosclerosis.

Inflammatory signaling alters the behavior of endothelial cells and VSMCs, which could recruits more...
inflammatory cells to promote lesion formation. VSMCs and macrophages are in direct contact, and a variety of adhesion molecules are involved in this process, including VCAM-1 and ICAM-13-6). Thus, the VSMCs are capable of retaining macrophages in the lesion of atherosclerosis.

Pro-inflammatory factors produced by VSMCs, endothelial cells, macrophages and T cells can promote the progression of atherosclerosis7). In VSMCs, some of the most important are platelet-derived growth factor (PDGF), macrophage migration inhibitory factor (MIF), inducible NOS (iNOS) and MCP-18, 9). Leech has been widely used as a traditional Chinese medicine in cardiovascular diseases10-12). Our previous studies have investigated the anti-atherosclerosis effect of LEE (leech enzyme extracts) from Whitmania pigra Whitman using ApoE−/− mice, and found the treatment of LEE could obviously attenuate the area of atherosclerosis lesion. This effect is dose dependent and mainly a result of a reduced invasion of macrophages in the artery walls13). However, it remains unclear whether LEE can affect the abilities of VSMCs in recruiting and retaining macrophages. Therefore, our present study was aimed at uncovering the effects of LEE on the expression pro-inflammatory mediators, adhesion molecules and MCP-1 in VSMCs.

Materials and Methods

Materials

Antibodies for TLR4, MCP-1, iNOS, ICAM-1, VCAM-1, p38MAPK, p-p38MAPK, JNK1/2, p-JNK1/2, β-actin were used for western blot. Trizol reagent, Revert Aid™ First Strand cDNA Synthesis Kit and Dream Taq™ PCR Master Mix were used for RT-PCR. NF-κB nuclear translocation assay kit, total nitric oxide assay kit and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), were from Beyotime Institute of Biotechnology (Shanghai, China). Positive drug simvastatin (SIM) was obtained from National Institutes for Food and Drug Control (Beijing, China). LEE was obtained from the International Biotechnology Research and Development Center of Shandong University at Weihai using our previous procedure13).

VSMCs Isolation and LEE Treatment

Male Sprague-Dawley rats were obtained from the School of Medicine at Shandong University. VSMCs were isolated from the thoracic aorta and cultured in DMEM containing 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin14). LEE was obtained from the International Biotechnology Research and Development Center of Shandong University at Weihai using a previous procedure13).

Table 1. Primer sequences for RT-PCR and their expected product size

Target	Primer sequence (5´ to 3´)	Product size (bp)
TLR-4	F: GGCA TCAT CTTC ATTG TCCT TG	
 R: AGCA TTGT CCTC CCAC TCG | 111 |
| iNOS | F: TTCA GGTA TGCG GTAT TTGG
 R: GTTG GAAG TGTA GCGT TTGC | 249 |
| TNF-α | F: CTTA TCTA CTCC CAGG TTCT CTCA A
 R: GAGA CTCC TCCC AGGT ACAT GG | 200 |
| β-actin| F: AGAC CTTC AACA CCCC AG
 R: CAGG ATTT CCCT CTCA GC | 254 |
| MCP-1 | F: ATGC AGGT CTCT GTCA GGCT
 R: GGTG CTGA AGTC CTGA GGCT | 345 |
| ICAM-1 | F: AAAG GGGG GATG AATG GT
 R: TCTG CGGG TAAT AGGT GTA | 184 |
| VCAM-1 | F: GGAG ACAC TGTC ATTA TCTC CTG
 R: TCCT TCTA TGGT GGCT TTTT TTGC | 336 |

F indicates forward primer; R indicates reverse primer.
Biology in Shanghai and cultured in DMEM medium containing 10% FBS, 100 U/mL penicillin and 100 µg/mL streptomycin. Both these cell lines are commonly used to study the biology of monocyte and macrophage\(^\text{15, 16}\).

Wound-healing Assay in vitro

The VSMCs were grown to confluence in 24-well plates. After starving in serum-free DMEM medium for 24 h, a sterile pipette tip was used to create a straight scratch through the center of each well\(^\text{17}\). Cells were incubated with or without LPS, SIM and LEE. The wounds were photographed and analyzed at 48 h after the scratch.

The VSMCs Migration Assay

A modified Boyden chamber with an 8 µm pore size was used for the VSMCs migration assay\(^\text{18}\). Briefly, 100 µl of serum-free cell suspension \((2 \times 10^4\) cells) was added to the upper surface of the chamber whose basement membrane had been embedded with Matrigel. The lower chambers were filled with DMEM (500 µl) supplemented with LPS, LPS + SIM or LPS + LEE. The chambers were incubated at 37°C to allow for cell migration. After removal of the cells on the upper surface, the cells on the lower surface were fixed with 4% paraformaldehyde. Crystal violet (0.1%) was used to stain the migration cells. Five random areas of cells per membrane were counted using a microscope.

The THP-1 and RAW264.7 Chemotaxis Assay

The lower chambers were filled with DMEM supplemented with culture supernatant of the VSMCs which had been incubated in relevant conditions according to the planned six groups mentioned up. THP-1 cells were added to the top of the chamber. After incubation for 12 h at 37°C, the upper chambers...
primers for rat TLR4, TNF-α, iNOS, MCP-1, ICAM-1, VCAM-1, and β-actin. The PCR amplification procedure was performed with denaturation at 95$^\circ$C for 30 s, annealing at T_m for 30 s and DNA extending at 72$^\circ$C for 60 s. A total of 30 amplification cycles were carried out. The PCR products were electrophoresed in 1.2% agarose gel. After staining with ethidium bromide, the total cDNA was determined by UV spectroscopy. β-Actin was utilized as a housekeeping gene as indicated. Primers for RT-PCR are listed in Table 1.

The THP-1 and RAW264.7 Adhesion Assay
The cell adhesion assay was performed as described previously19. The VSMCs were treated with LPS or LPS with SIM or LPS with LEE in 24-well plates. THP-1 or RAW264.7 monocytes (2.5 x 105 cells/mL) labeled with DiI was added to each well. After incubation for 2 h, the unbound cells were aspirated. Five fields were captured using a fluorescence microscope and the numbers of adherent cells were counted.

RT-PCR
Total RNA was isolated using Trizol reagent, and was quantified spectrophotometrically at a ratio of 260–280 nm. RT-PCR was performed by using an RT-PCR System kit according to the protocol, with primers for rat TLR4, TNF-α, iNOS, MCP-1, ICAM-1, VCAM-1, and β-actin. The PCR amplification procedure was performed with denaturation at 95$^\circ$C for 30 s, annealing at T_m for 30 s and DNA extending at 72$^\circ$C for 60 s. A total of 30 amplification cycles were carried out. The PCR products were electrophoresed in 1.2% agarose gel. After staining with ethidium bromide, the total cDNA was determined by UV spectroscopy. β-Actin was utilized as a housekeeping gene as indicated. Primers for RT-PCR are listed in Table 1.

Western Blot
The VSMCs were lysed with RIPA, and the supernatants were collected after centrifugation at 10 000 rpms for 5 min at 4$^\circ$C. Protein concentrations were measured using the BCA protein assay kit using bovine serum albumin. Samples were separated by SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) membrane. After blocking with 5% fat-free milk in TBST (20 mM Tris–HCl (pH 7.6), 150 mM NaCl, 0.1% Tween 20), the PVDF membrane was incubated with primary antibodies at 4$^\circ$C overnight. Then the PVDF membrane was washed three times in TBST before incubating with horseradish
Results

VSMCs Wound-healing Assay

There were two terms we needed to give new meanings to: Healing rate and anti-migration rate. The following two formulas could account for the implications of these two terms: Healing rate = (the initial gap width - the later gap width)/the initial gap width; anti-migration rate = (the later gap width of group X - the later gap width of group control)/the initial gap width of group X. Compared with the normal control group, the mobility of the LPS and the SIM group differed greatly. More importantly, the potential performance of LEE was equal to that of SIM (10 µM) in inhibiting VSMCs migration in the concentration of 200 µg/mL (Fig. 1A and 1C).

LEE Attenuates VSMCs Migration and Decreases the Chemotaxis of THP-1 and RAW264.7

The modified Boyden chamber was involved in these experiments. The anti-migration effect of LEE was consistent with the result of the VSMC scratch healing assay in the previous section. The migration rate of VSMCs could be reduced to below that of the
In order to study whether LEE has an influence to the chemotaxis of THP-1 or RAW264.7 to LPS-stimulated VSMCs, we proposed a parameter on the chemotaxis inhibition rate, which was a function of the cell migration rate. The calculation method for MIR (migration inhibition rate) = 1 – (the number of cell migration in X group – the number of cell migration in blank control)/(the number of cell migration in model group – the number of cell migration in blank control). LEE (200 µg/mL) could decrease the chemotaxis of THP-1 and RAW264.7 to LPS-stimulated VSMCs, and the inhibition rate of those two experiments were 60% and 80% respectively (Fig. 2).

LEE Decreases the Adhesion of THP-1 and RAW264.7 to LPS-stimulated VSMCs

The calculation method for the adhesion inhibition rate (AIR) was similar to that of MIR. The formula for AIR = 1 – (the number of cell adhesion in X group – the number of cell adhesion in blank control)/ (the number of cell adhesion in model group – the number of cell adhesion in blank control). Our data clearly showed that the number of adherent cells gradually reduced with the increase of LEE concentration. LEE (200 µg/mL) could decrease the adhesion of THP-1 and RAW264.7 to LPS-stimulated VSMCs, and the inhibition rate of those two experiments were 76% and 220% respectively (Fig. 3).

Effect of LEE on Expression of Adhesion Molecule and MCP-1 in VSMCs

LPS stimulation caused an increased secretion of inflammatory factor, adhesion molecule and MCP-1. The LEE inhibited the upregulation of TLR4, TNF-α and iNOS in VSMCs at the mRNA and protein level. However, LEE could probably specialize in reducing the expression of ICAM-1, VCAM-1 and MCP-1 compared with the inhibitory effect on inflammatory factors, particularly as even the highest concentration of LEE would not be able to reduce the generation of
Effect of MAPK and NF-κB Inhibitors

The SB203580 (p38 MAPK inhibitor), U0126 (ERK inhibitor), SP600125 (JNK inhibitor) and PDTC (the NF-κB inhibitor) inhibited the expression of proteins mentioned above in the LPS-induced VSMC. These results indicated that these signaling pathways are involved in the LPS-induced inflammation process (Fig. 7).

LEE Prevents the NF-κB Translocation to Nucleus

The activation of NF-κB contributes to inflammation status by promoting the expression of inflammation genes. To verify NF-κB p65 nuclear translocation, we analyzed VSMCs by fluorescence microscopy and the depth of the magenta color illustrated the degree of p65 translocation. Our results revealed that LPS significantly increased nuclear translocation of NF-κB p65 which could be prevented by LEE treatment (Fig. 6).

LEE Inhibits LPS-induced Phosphorylation of p38 MAPK, ERK and JNK in VSMCs

LPS-induced phosphorylation of ERK1/2, p38 MAPK and JNK1/2 in VSMCs was attenuated by LEE treatment to a different degree. Our results showed that the p38 MAPK signaling pathway was involved in LEE’s inhibition in VSMCs while the JNK is only
leech extracts on the expression of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs. The VSMCs express the cellular adhesion molecules and chemokines in atherosclerosis. Thus, effective block of these proteins may help to ameliorate the development of atherosclerosis. In this study, we revealed that LEE is capable of inhibiting LPS-induced upregulation of adhesion molecules ICAM-1, VCAM-1 and one chemokine MCP-1 in VSMCs in a concentration-dependent manner. In parallel with these results, migration and adhesion of THP-1 and RAW 264.7 to LPS-activated VSMCs was markedly decreased by LEE. To our knowledge, this is the first report on the inhibiting effect of LEE on adhesion molecules and MCP-1 expression in VSMCs.

Although NO production by the enzyme eNOS slightly involved in this process (Fig. 8).

Discussion

Atherosclerosis is a chronic inflammatory disease. Studies have revealed that endothelial cells, VSMCs and inflammatory cells are involved in atherosclerosis pathological process. The migration and proliferation of VSMCs play an important role in the process of intimal thickening, which is an important pathogenic change of atherosclerosis. Leech (*Whitmania pigra* Whitman) is a traditional Chinese medicine included in Chinese Pharmacopoeia (2010) to treat cardiovascular diseases including atherosclerosis, however previous research has rarely reported the molecular mechanism for its curative effect. Thus, our study focuses on the effects of leech extracts on the expression of inflammatory factors, adhesion molecules and MCP-1 in rat VSMCs.

The VSMCs express the cellular adhesion molecules and chemokines in atherosclerosis. Thus, effective block of these proteins may help to ameliorate the development of atherosclerosis. In this study, we revealed that LEE is capable of inhibiting LPS-induced upregulation of adhesion molecules ICAM-1, VCAM-1 and one chemokine MCP-1 in VSMCs in a concentration-dependent manner. In parallel with these results, migration and adhesion of THP-1 and RAW 264.7 to LPS-activated VSMCs was markedly decreased by LEE. To our knowledge, this is the first report on the inhibiting effect of LEE on adhesion molecules and MCP-1 expression in VSMCs.
has been found to be beneficial in preventing atherosclerosis\(^2\), high NO production will increase oxidative stress, which is a risk factor for atherosclerosis\(^2\). Thus, inhibition of iNOS and subsequent overproduction of NO could be helpful to treat atherosclerosis. Our results showed that LEE inhibited iNOS both at the mRNA and protein level in LPS-stimulated VSMCs. Additionally, NO production was suppressed by LEE, providing a novel molecular mechanism for its anti-atherosclerotic effects.

Chemokine and their receptors play an important role in the pathogenesis of atherosclerosis. Toll-like receptor 4 (TLR4) is a kind of pattern recognition receptor which can activate inflammatory signaling pathways when combined with LPS\(^{23,25}\). TLR4 is overexpressed in human atherosclerotic plaques, and

Fig. 7. Effect of inhibitors to MAPKs and NF-κB on LPS-induced proteins upregulation

VSMCs were pre-treated with SB203580 (25 µmol/L), U0126 (20 µmol/L), SP600125 (15 µmol/L) and PDTC (80 µmol/L) for 1 h before adding LEE (400 µg/mL), and then incubated with 1 µg/mL LPS for another 24 h. *\(P<0.05\) vs control, *\(P<0.05\) vs LPS, **\(P<0.01\) vs LPS. Data are from three independent experiments.
the separation and purification procedures, which are necessarily required to give more information on the specific effective constituents included in LEE. In conclusion, our results showed that LEE markedly inhibited LPS-induced overproduction of inflammatory factors, adhesion molecules and MCP-1 in VSMCs. Additionally, LEE's beneficial effects on atherosclerosis are at least partially depending on p38 MAPK/NF-κB signaling pathway.

Acknowledgments
This study does not bear any conflict. This work was supported by the National Natural Science Foundation of China (No. 81371455) and Shandong Provincial Natural Science Foundation, China (2015ZRE27131).

COI
All authors approved the final submission and declare that no potential competing interests exist.

References
1) Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 2011; 17: 1410-1422
2) Libby P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012; 32: 2045-2051
3) Mestas J, Ley K. Monocyte-Endothelial Cell Interactions in the Development of Atherosclerosis. Trends Cardio-
The Anti-atherosclerosis Effect of LEE

vasc. Med. 2008; 18: 228-232
4) Koga J, Aikawa M. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascul. Pharmacol. 2012; 57: 24-28
5) Doran AC, Meller N, McNamara CA. Role of smooth muscle cells in the initiation and early progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2008; 28: 812-819
6) Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2007; 27: 2292-2301
7) Wong BW, Meredith A, Lin D, McManus BM. The Biological Role of Inflammation in Atherosclerosis. Can. J. Cardiol. 2012; 28: 631-641
8) Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med. Indones. 2007; 39: 86-93
9) Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB. The vascular smooth muscle cell in arterial pathology: A cell that can take on multiple roles. Cardiovasc. Res. 2012; 95: 194-204
10) Chen WQ, Zhong L, Zhang L, Ji XP, Zhao YX, Zhang C, Jiang H, Wu YL, Zhang Y. Chinese medicine tongxinluo extract from medical leech improve the function of endothelial nitric oxide and atherosclerosis. Atherosclerosis. 2010; 209: 237: 208-219
11) Yin HQ, Wang B, Zhang JD, Lin HQ, Qiao Y, Wang R, Liu FY. Effect of traditional Chinese medicine Shu-Mai-Tang on attenuating TNF-α-induced myocardial fibrosis in myocardial ischemia rats. J. Ethnopharmacol. 2008; 118: 133-139
12) Zhang YH, Liu JT, Wen BY, Liu N. Mechanisms of inhibiting proliferation of vascular smooth muscle cells by serum of rats treated with Dahuang Zhechong pill. J. Ethnopharmacol. 2009; 124: 103-110
13) Yin HQ, Wang B, Zhang JD, Lin HQ, Qiao Y, Wang R, Liu FY. Effect of traditional Chinese medicine Shu-Mai-Tang on attenuating TNF-α-induced myocardial fibrosis in myocardial ischemia rats. J. Ethnopharmacol. 2008; 118: 133-139
14) Wang Y, Zhao X, Song SL, Liang H, Ji AG. An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions. Biochem. Biophys. Res. Commun. 2014; 455: 119-125
15) Wang Y, Zhao X, Wang YS, Song SL, Liang H, Ji AG. An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions. Biochem. Biophys. Res. Commun. 2014; 455: 119-125
16) Koga J, Aikawa M. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascul. Pharmacol. 2012; 57: 24-28
17) Guo J, Li L, Wu YJ, Yan Y, Xu XN, Wang SB, Yuan TY, Fang LH, Du GH. Inhibitory Effects of Brazilin on the Vascular Smooth Muscle Cell Proliferation and Migration Induced by PDGF-BB. Am. J. Chin. Med. 2013; 41: 1283-1296
18) Zhu L, Sun G, Zhang H, Zhang Y, Chen X, Jiang X, Jiang X, Krauss S, Zhang J, Xiang Y, Zhang CY. PGC-1α is a key regulator of glucose-induced proliferation and migration in vascular smooth muscle cells. PLoS One. 2009; 4: 1-7
19) Cho Y, Lee SE, Lee HC, Hur J, Lee S, Youn SW, Lee J, Lee HJ, Lee TK, Park J, Hwang SJ, Kwon YW, Cho HJ, Oh BH, Park YB, Kim HS. Adipokine resistin is a key player to modulate monocytes, endothelial cells, and smooth muscle cells, leading to progression of atherosclerosis in rabbit carotid artery. J. Am. Coll. Cardiol. 2010; 57: 99-109
20) Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012; 33: 829-837
21) Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; 237: 208-219
22) Jovanović I, Zivković M, Djurić T, Popović M, Alavantić D, Stanković A. CXCL16 in Vascular Pathology Research: from Macro Effects to microRNAs. J. Atheroscler. Thromb. 2015; 22: 1012-1024
23) Doyle SL, O’Neill LA. Toll-like receptors: From the discovery of NF-κB to new insights into transcriptional regulations in innate immunity. Biochem. Pharmacol. 2006; 72: 1102-1113
24) Den Dekker WK, Cheng C, Pasterkamp G, Duckers HJ. Toll like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis. 2010; 209: 314-320
25) Eguchi K, Manabe I. Toll-like receptor, lipotoxicity and chronic inflammation: the pathological link between obesity and cardiometabolic disease. J. Atheroscler. Thromb. 2014; 21: 629-639
26) Meng Z, Yan C, Deng Q, Gao D, Niú X. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta. Pharmacol. Sin. 2013; 34: 901-911
27) Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat. Immumol. 2011; 12: 204-212
28) Coll B, Alonso-Villaverde C, Joven J. Monocyte chemoattractant protein-1 and atherosclerosis: Is there room for an additional biomarker? Clin. Chim. Acta. 2007; 383: 21-29
29) Kleinbongard P, Heusch G, Schulz R. TNFα in atherosclerosis, myocardial ischemia/reperfusion and heart failure. Pharmacol. Ther. 2010; 127: 295-314
30) Wang Z, Castresana MR, Newman WH. NF-κB is required for TNF-α-directed smooth muscle cell migration. FEBS. Lett. 2001; 508: 360-364
31) Kyriakis JM, Avruch J. Mammalian MAPK Signal Transduction Pathways Activated by Stress and Inflammation: A 10-Year Update. Physiol. Rev. 2012; 92: 689-737
32) Peng SC, Wong DS, Tung KC, Chen YY, Chao CC, Peng CH, Chuang YJ, Tang CY. Computational modeling with forward and reverse engineering links signaling network and genomic regulatory responses: NF-kappaB signaling-induced gene expression responses in inflammation. BMC. Bioinformatics. 2010; 11: 308
33) De Winther MP, Kanter E, Kraal G, Hofker MH. Nuclear factor κB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2005; 25: 904-914
34) Madonna R, De Catori A. Relevance of new drug discovery to reduce NF-κB activation in cardiovascular disease. Vascul. Pharmacol. 2012; 57: 41-47
35) Tak PP, Firestein GS. NF-κB in defense and disease NF-κB: a key role in inflammatory diseases. J. Clin. Invest. 2001; 107: 7-11