Scanning electron microscopy of filiform papillae development in Korean native goats (*Capra hircus*)

Si-Joon Lee†, Gyu-Hyen Cho†, Mun-Ki Kim, Chong-Sup Kim, Chung-Kil Won*

Institute of Animal Medicine & Department of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea

(Received: September 6, 2018; Revised: November 6, 2018; Accepted: November 9, 2018)

Abstract: The aim of this study was to investigate morphological development of filiform papillae (FP) in Korean native goats by using scanning electron microscopy. Tongues were removed from goat fetuses (days 60, 90, and 120), neonates, and juveniles (days 30, 60, 90, 120, 150, and 180 after birth). During the prenatal period, primordia of FP appeared at fetal day 60 and were observed to be developed at day 90. At fetal day 120, the FP were observed like flower leaves of a double flower bud. In neonates, FP were shaped like an obliquely sectioned cylinder with secondary papillae irregularly arranged in a saw blade-like manner. In 60-day-old juvenile goats, the FP were densely distributed at the inner base of 1/3–1/2 degrees. In 90-, 120-, and 150-day-old goats, FP were compacted at the inner base of 1/2–2/3, 3/4, and 4/5 degrees, respectively. In 180-day-old goats, FP were found to be completely compacted on the inner surface with complete morphogenesis. Microridges, microplicae, and micropits were well-developed on the epithelial surface of lingual papillae from embryonic day 120 to juvenile day 180. These results indicate that FP of goats have different shapes and sizes during development both before and after birth.

Keywords: Korean native goat, development, filiform papilla, morphogenesis, tongue

Introduction

The dorsal surface of the tongue contains numerous lingual papillae with different shapes. They are named as mechanical and gustatory papillae according to their morphological characteristics [17]. Distribution and disposition of mechanical papillae have many differences depending on mastication and prehension habits of animals [6, 7, 16]. Mechanical papillae can be divided into filiform, conical, and lentiform papillae according to their shapes [5, 9] while gustatory papillae are divided into fungiform, vallate, and foliate papillae depending on their morphological features [2, 8]. Foliate papillae have not been found in ruminants [2, 4, 9] or other animals [7, 10, 14].

Using scanning electron microscopy (SEM), lingual papillae have been studied from a variety of animals, including mouse [12], rat [13], weasels [11], cat [8], dog [18, 19], sheep [9], horse [2], cow [5], and human [1, 20]. Concerning lingual papillae of goats, Kumar et al. [15] and Lee et al. [17] have studied filiform, conical, lentiform, fungiform, and vallate papillae.

Although ruminants such as Korean native goat have been studied, little is known about morphological changes in tongue of goat during development. We have reported on the morphological changes of vallate papillae, which is one of the gustatory papillae during the development of Korean native goats [3]. However, no studies have examined the morphological features of filiform papillae (FP) as representative mechanical papillae. Therefore, in this study, we investigated changes in the shape and size of FP in Korean native goat during pre- and postnatal developments to characterize the development of tongue in ruminants.

This study on the tongue development of Korean native goats could provide basic data for the study of native goats and contribute to the establishment of biological information by providing basic data for preservation of biological resources.

Materials and Methods

Experimental animals

Tongues from three fetuses (two males and one female), four neonatal males, and three males (30, 60, 90, 120, 150, and 180 days) of Korean native goat were used in each group. Tongues of fetuses examined in this study were removed from 60-, 90-, and 120-day-old fetuses of Korean native goats aged 2 to 4 years old with body weight ranging...
from 23 to 33 kg by caesarean section under general anesthe-
sia using xylazine hydrochloride (10 mg/kg, intravenously;
Bayer Korea, Korea). FP of tongues were examined for mor-
phological development. We also removed tongues of neo-
nates and juveniles at six different postnatal stages: days 30
(P30), 60 (P60), 90 (P90), 120 (P120), 150 (P150), and 180
(P180). All animal experiments were performed according to
the protocol set out in the guidelines of the Ethics Commit-
tee for Animal Experiments at Gyeongsang National Univer-
sity (Approval No. GNU-LA-10).

SEM examination of FP during development
Tongue tissues used for SEM observations were fixed with
2.5% glutaraldehyde for 4 h at room temperature. Areas
appropriate for inspection were dissected and osmicated in
1.0% osmium tetroxide at 4°C for 2 h. After washing with
phosphate buffered saline three times, these tissues were
dehydrated using a graded series of ethanol solutions. These
specimens were subjected to critical point drying. They were
then placed on spinner stubs and coated with gold to a depth
of 100 µm as SEM coating unit. These specimens were
observed under a scanning electron microscope (SEM-AL
300; Philips, the Netherlands) operated at 15 KV.

SEM measurements for the length of FP
Measurement of FP was performed for three to five differ-
ent regions by measuring the minimum and maximum diam-
ceters of papillae using SEM from neonates to 180-day-old
goats. Statistical differences were tested by analysis of vari-
ance (ANOVA) with Newman-Keuls post hoc test as appro-
priate using GraphPad Prism 5.0 (GraphPad software, USA).
Statistical significance was considered during the next 30
days when p value was less than 0.05. Data are average ± SD.

Results

Morphological characteristics of the developing FP
In prenatal developing goats, the primordia of FP appeared
in day 60 fetus (Fig. 1A) while undeveloped microplicae
were seen on the epithelial surface (Fig. 1B). The primordia
of FP were more developed in day 90 fetus (Fig. 1C). In day
120 fetus, primordia of FP shaped like flower leaves of dou-
tle flower bud while their top surfaces were concave in
shape (Fig. 1D). The FP in day 120 fetus had microplicae
developed on the epithelial surface of papillae (Fig. 1E). FP
of neonates shaped like an obliquely sectioned cylinder. Sec-
ondary papillae were irregularly arranged as saw blade-like
processes in neonates. They were placed around the margin
(Fig. 1F).

In postnatal developing goats, FP had a feature of obliquely
sectioned cylinder with irregular height and rough sow blade
shape. They had both big and long primary papillae with nar-
row and slightly lower secondary papillae in 30-day-old
goats (Fig. 2A). The number of secondary papillae was
increased up to 6 to 8 in 30-day-old goats compared to 3 to 5

at the time of birth. They gradually became bigger. A num-
ber of developed microplicae were observed on the epithe-
lial surface of 30-day-old goats (Fig. 3A).

In 60-day-old goats, many long and slender leaf-shaped
processes of primary papillae were observed on the FP (Fig.
2B). Saw blade-like secondary papillae with irregular height
did not show significant differences between 30-day-old
and 60-day-old goats. However, some of them filled 1/
3 to 1/2 in shape compared to those of 30-day-old goats.
Microplicae were long with distinct linear shape like a thread
while microridge was observed in 60-day-old goats (Fig. 3B).

In 90-day-old goats, inner spaces of FP were packed
approximately 1/2 to 2/3 and processes of papillae were
sticking out higher than those of 60-day-old goats (Fig. 2C).
Microplicae and microridges were very well-developed on
the surface of FP (Fig. 3C).

In 120- and 150-day-old goats, FP had many small peaked
papillae processes. Their bottoms were filled up to levels of
3/4 and 4/5, respectively (Fig. 2D and E). In 180-day-old

Fig. 1. Scanning electron micrographs showing prenatal filiform papillae (FP) of Korean native goats. (A) Undeveloped primor-
dia of FP appeared in 60-day-old fetus (embryonic day [E] 60).
(B) High magnification view on the surface of FP in E60. (C)
Developing primordia of FP are seen in 90-day-old fetus. (D)
FP shaped like a double flower bud in 120-day-old fetus (E120).
(E) High magnification view on the surface of FP in E120. (F)
FP have empty inside and irregularly arranged saw blade-like
processes in neonates. FUP, fungiform papillae; MP, micropli-
cae. Scale bars = 100 µm (A, B, D and F), 1 µm (B and E).
Filiform papillae development in goats

173

goats, FP had completed morphogenesis (Fig. 2F) while the surface of epithelia of FP had straight microplicae (Fig. 3D).

Length measurement of FP after birth

Height and oblique length of FP from neonates to 180-day-old goats are shown in Fig. 4. The height and oblique length of newborn papillae were 47.0 ± 3.53 and 67.0 ± 3.72 µm, respectively. Heights and oblique lengths of 30-day-old goats were 76.0 ± 8.69 and 95.0 ± 10.65 µm, respectively. In weaning period of 60-day-old goats, heights and oblique lengths were 107.0 ± 12.15 and 123.0 ± 14.18 µm, respectively. Heights and oblique lengths of 90-day-old goats were 126.0 ± 7.54 and 148.0 ± 7.13 µm, respectively. In 120-day-old goats, they were 131.0 ± 8.48 and 151.0 ± 10.57 µm, respectively. Heights and oblique lengths of 150-day-old goats were 127.0 ± 9.51 and 156.0 ± 12.45 µm, respectively. During maturing period of 180-day-old goats, they were 133.0 ± 11.52 and 158.0 ± 10.47 µm, respectively. Sizes of FP were rapidly increased in height and oblique length until 90-day-old goats. They then gradually increased in 90 to 180-day-old goats. There were no statistically significant differences in size of FP during the next 30 days.

Discussion

Ruminants have five different types of lingual papilla (filiform, conical, fungiform, vallate, and lentiform papillae) on the dorsal surface of the tongue [2, 5, 9].
tron microscopic study have measured the length of lingual papillae of the tongue of adult goats [17]. Studies for the most lingual papillae, including ruminants, have mainly reported morphological characteristics in mature animals. However, no studies have examined the morphological changes of the FP in tongue of developmental ruminants. To characterize the development of tongue in ruminants, we previously reported three-dimensional structural changes associated with the development of vallate papillae, one of the gustatory papillae in Korean native goats [3]. In addition, we investigated changes in the structure that occur during morphogenesis of FP, a mechanical papilla, in Korean native goats during prenatal and postnatal development in this study.

In rat fetuses, rudiments of fungiform papillae could be observed at embryonic day (E) 12 and the rudiment of the circumvallate papilla could be recognized at E16. However, FP are formed at P0 after the appearance of rudiments of fungiform and circumvallate papillae [13]. The primordia of fungiform papillae arranged like lattice structure have been observed in 15-day-old mouse fetuses while primordia of FP are not sprouted up [12]. Boshell et al. [1] have also reported that fungiform and vallate papillae grow faster than FP in human. In our previous study, primordia of goat’s vallate papillae were clearly observed and moat was shallowly spread in E60 fetuses [3]. In the present study, primordia of FP could be observed E60 without showing definite shape. However, primordia showed more development at E90. Moreover, primary papillae of FP were found to be well-developed in 60-day-old goats as in adults and their inner surface were completely compacted in 180-day-old goats. These results confirm that the mechanism of morphogenesis and development of FP might be different from those of gustatory papillae. However, they might have the same trend as gustatory papillae that are developed prior to mechanical papillae shown in other studies.

Concerning fine structure on the epithelia surface of lingual papillae, Iwasaki et al. [12] have reported that microridge-like structures are observed on epithelial cells at the base of FP in mouse neonates. In the present study, a number of microvilli with distinct morphologies on FP were found at E120 before birth while long and straight microvilli similar to those in adults were observed in P180. Therefore, surface structures of lingual epithelia of the FP in Korean native goats were somewhat different from those in mouse.

Concerning the size of FP, Lee et al. [17] have reported that the size of FP measured in adults of Korean native goat using SEM is 150 µm. In the present study, the height of FP in neonate was 47 µm. It was 107 µm in the weaning period of 60-day-old goats and 133 µm in the maturing period of 180-day-old goats. Therefore, sizes of FP of goats were gradually increased during development, similar to results of other study.

In conclusion, FP of goats had different shapes and sizes during development. Results of this study provide basic data for future studies on morphogenesis of lingual papillae in ruminants.

References

1. Boshell JL, Wilborn WH, Singh BB. A correlative light microscopic, transmission and scanning electron microscopic study of the dorsum of human tongue. Scan Electron Microsc 1980, 505-510.

2. Chamorro CA, de Paz P, Sandoval J, Fernandez JG. Comparative scanning electron-microscopic study of the lingual papillae in two species of domestic mammals (Equus caballus and Bos taurus). I. Gustatory papillae. Acta Anat (Basel) 1986, 125, 83-87.

3. Cho G, Kim M, Lee S, Kim C, Won C. Scanning electron microscopic study of the developing vallate papillae in the Korean native goat (Capra hircus). Dev Reprod 2016, 20, 283-288.

4. Davies RO, Kare MR, Cagan RH. Distribution of taste buds on fungiform and circumvallate papillae of bovine tongue. Anat Rec 1979, 195, 443-446.

5. de Paz Cabello P, Chamorro CA, Sandoval J, Fernandez M. Comparative scanning electron-microscopic study of the lingual papillae in two species of domestic mammals (Equus caballus and Bos taurus). II. Mechanical papillae. Acta Anat (Basel) 1988, 132, 120-123.

6. Eerdunchaolu, Takehana K, Yamamoto E, Kobayashi A, Cao G, Baiyin, Ueda H, Tangkawattana P. Characteristics of dorsal lingual papillae of the Bactrian Camel (Camelus bactrianus). Anat Histol Embryol 2001, 30, 147-151.

7. Emura S, Hayakawa D, Chen H, Shoumura S. Morphology of the lingual papillae in the tiger. Okajimas Folia Anat Jpn 2004, 81, 39-43.

8. Emura S, Okumura T, Chen H. Morphology of the lingual papillae in the fish. Okajimas Folia Anat Jpn 2014, 90, 79-83.

9. Emura S, Tamada A, Hayakawa D, Chen H, Shoumura S. Morphology of the dorsal lingual papillae in the barberry sheep, Ammotragus lervia. Okajimas Folia Anat Jpn 2000, 77, 39-45.

10. Erdogan S, Villar S, König HE, Pérez W. Papillary architecture of the lingual surface in the puma (Puma concolor). Anat Histol Embryol 2018, 47, 51-57.

11. Furubayashi R, Sato E, Ishibashi T. [Histological pattern of the tongue in the Japanese weasels. Mastelia itatsi, with special reference to the morphology and distribution of papillae, taste buds and lingual gland]. Kaibogaku Zasshi 1989, 64, 210-214. Japanese.

12. Iwasaki S, Yoshiyawa H, Kawaahara I. Study by scanning electron microscopy of the morphogenesis of three types of lingual papilla in the mouse. Acta Anat (Basel) 1996, 157, 41-52.

13. Iwasaki S, Yoshiyawa H, Kawaahara I. Study by scanning electron microscopy of the morphogenesis of three types of lingual papilla in the rat. Anat Rec 1997, 247, 528-541.

14. Krause WJ, Cuts JH. Morphological observations on papillae of the opossum tongue. Acta Anat (Basel) 1982, 113, 159-168.

15. Kumar P, Kumar S, Singh Y. Tongue papillae in goat: a scanning electron-microscopic study. Anat Histol Embryol 1998, 27, 355-357.

16. Kumar S, Bate LA. Scanning electron microscopy of the tongue papillae in the pig (Sus scrofa). Microse Res Tech 2004, 63, 253-258.
17. Lee HS, Lee I, Kang T. Immunohistochemical studies on the distribution of neuropeptides in the tongue of Korean native goat. Korean J Vet Res 1996, 36, 265-276.

18. Ojima K. Functional role and angioarchitectural arrangement of the filiform and fungiform papillae on the medial-dorsal surface of the beagle dog tongue. Ann Anat 2001, 183, 325-329.

19. Singh BB, Boshell JL, Steflik DE, McKinney RV Jr. A correlative light microscopic, scanning and transmission electron microscopic study of the dog tongue filiform papillae. Scan Electron Microsc 1980, 511-515.

20. Witt M, Reutter K. Scanning electron microscopical studies of developing gustatory papillae in humans. Chem Senses 1997, 22, 601-612.