Life cycle assessment (LCA) of portland composite cement (PCC) 50 kg papercraft bag at PT. Semen Padang

T Panggabean*, R Aziz¹, Y Dewilda¹

¹ Department of Environmental Engineering, Faculty of Engineering, Universitas Andalas, Limau Manis, Padang, West Sumatera 25163, Indonesia

Abstract. PT. Semen Padang produces several cement types, including PCC, with a total production of up to 6,568,354 tons in 2018. PCC production reached 54% of the total, where the size of 50 kg bag dominates the production with 93%, and the use of papercraft bags as the cement packaging is 78.39%. This research aims to analyze the environmental impacts of the production of 1 ton of PCC 50 kg paper craft bag using the LCA method. The gate-to-gate approach applies as the boundary, ranging from raw mill till packing unit. The impact assessment method uses IMPACT 2002+ to assess the environmental impact of the production. The result shows that the highest environmental impacts are global warming, non-renewable energy, and respiratory inorganics, with the value amounted to 0.10884252 Pt. The process of calcination and coal used in the kiln, packaging transport by diesel-powered trucks, and electricity use is the main contributor to the impact value. In order to improve the PCC production, it is recommended to have an alternative fuel on the kiln unit using rice husks or Miscanthus giganteus.

1. Introduction

Infrastructure development is a means to improve human welfare. Indonesia, one of many developing countries, is currently aggressively repairing old infrastructure and building new infrastructure, which desperately needs cement. The cement industry generally uses coal as fuel where the greatest energy consumption and CO₂ emissions occur in the kiln process due to the burning process of limestone and fuel in the kiln [1]. The burning of coal can emit CO₂ which harms the environment in the form of global warming, depletion of the ozone layer, and a decrease in human health [2,3].

Through the Ministry of Environment and Forestry (KLHK), the Indonesian government has a Company Performance Rating Program (PROPER) that aims to encourage companies to comply with laws and regulations and carry out environmental management activities. In line with global developments and strengthening PROPER performance, the Ministry of Environment and Forestry's PROPER secretariat has begun to apply the LCA method as a prerequisite for the assessment [4]. The LCA method's application aims to calculate and identify the use of natural resources and disposal (emissions/waste) into the environment. The identification and calculation results were evaluated for further use as a reference in environmental improvement [5].

PT. Semen Padang is the first cement industry established in Indonesia and Southeast Asia. The company has five cement processing plants (Indarung II-VI) located in West Sumatra, Padang. PT. Semen Padang Indarung Factory in 2018 produced Type I, PPC, and PCC cement [6].
Traditionally, factors that are generally considered in product design include function, quality, cost, ergonomics, and safety. At the same time, there is no special consideration of a product's environmental aspects throughout its entire life cycle. The conventional "end of pipe" system only focuses on emissions from the manufacturing process. However, adverse impacts on the environment occur in the entire product life cycle. If the entire product life cycle is not studied and analyzed, the environmental problems that occur cannot be handled optimally. Due to this, a new paradigm was born, namely sustainable consumption and production. This paradigm has been accepted as the primary goal to be achieved in society [7]. Based on research conducted by Garcia-Gusano (2014), the cement industry is advised to replace fossil fuels with alternative fuels to reduce the negative impact of coal use [8].

LCA is a transparent analysis of the environmental impact of a product, system, or service, including the acquisition of raw materials, production, use, and end of life. Identifying the potential impacts of the product or service life cycle can further reduce environmental impacts and save production costs. The LCA study framework includes defining objectives and scope, inventory analysis, impact assessment, and interpretation [9]. There are four main options for determining the system boundaries used in an LCA study based on ISO 14044 standards, including gate-to-gate, cradle-to-gate, gate-to-grave, and cradle-to-grave [10].

Consider the further evaluation of PCC's production and its impact on the environment; this study aims to assess the environmental impact of cement production by applying the LCA and seeking recommendations for improving the system to make it more environmentally friendly.

2. Methodology
This research was conducted at PT. Semen Padang Indarung V factory is located in the city of Padang, West Sumatra. Observation and data collection were carried out at locations that supported obtaining information on this research data. Data were collected from August 2019 to January 2020 and continued with report writing from February 2020 to March 2020.

2.1. Research goals and scope definition
1. Research goals
 a. Knowing the product life cycle of 1 ton of PCC at PT. Semen Padang;
 b. Analyze the inventory in the form of types and quantities of raw materials, materials, energy, products, and emissions resulting from the production of 1 ton of PCC;
 c. Analyze the environmental impacts resulting from the 1 ton PCC life cycle;
 d. Recommend improvements needed in the cement life cycle of 1 ton PCC to make the production process more environmentally sound.
2. Scope and system boundary
Inventory data collected consists of the foreground system and background system. Foreground systems are processes that can be measured directly or obtained from PT. Semen Padang (primary data), background systems are processes that cannot be measured directly and are not data from PT. Semen Padang (secondary data). The limitations of the 1 ton PCC production system and the categories of inventory data collected can be seen in figure 1 below.

2.2. Inventory analysis
Inventory analysis includes materials and raw materials, energy, and natural resources shown in inventory tables. All data inputted into the SimaPro software for impact analysis.

2.3. Impact assessment
This stage was carried out using the IMPACT 2002+ method. This method was chosen because it contains an assessment of global warming's impact, which is the highest impact on the cement industry. The impact assessment stages include impact classification, impact characteristics, normalization, and a single score.
Figure 1. The system boundary of 1 ton PCC production.

2.4. Interpretation
This stage includes comparative analysis and contribution analysis.

3. Result and discussion

3.1. Inventory analysis
Table 1 below shows the collected inventory data of 1 ton PCC production in PT. Semen Padang.

No.	Process	Parameter	Amount	Unit
1.	Raw Mill	Input: Limestone (CaCO₃)	1.03	ton
		Silicon (SiO₂)	0.15	ton
		Clay (Al₂O₃)	0.065	ton
		Copper Slag	0.016	ton
		Oil Lubricant	0.048	l
		Grease Lubricant	0.035	g
		Electricity	32.37	kWh
	Output:	Raw Mix	1.23	ton
		Particulate (SPM)	64.82	g
2.	Kiln System (Preheating-Kiln-Cooling)	Input: Raw Mix	1.23	Ton
		Oil Lubricant	0.06	L
		Fine Coal	179.2	Kg
		Electricity	38	kWh
	Output:	Clinker	0.76	Ton
		Nitrogen dioxide (NO₂)	0.62	Kg
		Sulfur dioxide (SO₂)	0.1	Kg
3.2. Impact assessment

Based on table 2 below, the process that contributes to the most dominant environmental impact is the kiln system. It is the major contributor to carcinogens' effects, non-carcinogens, respiratory inorganic, aquatic ecotoxicity, terrestrial ecotoxicity, terrestrial acid/nutri, aquatic acidification, global warming, and non-renewable energy. Meanwhile, the main contributor to the impact of respiratory organics is the packing process.

Impact category	Impact Value	Percentage (%)
Carcinogens	2.99E-05	0.027471
Non-carcinogens	0.000313627	0.288147
Respiratory inorganics	0.009561724	8.784916
Respiratory organics	9.72E-10	
Aquatic ecotoxicity	2.61E-07	
Terrestrial ecotoxicity	0.000154123	
Terrestrial acid/nutri	0.000289996	
Global warming	0.073468941	
Non-renewable energy	0.025023933	

The single score below shows that the impact category with the highest value is global warming, with an amount of 0.073468941 Pt and dominates the overall impact with a percentage of 67.50%. The impact category with the lowest score was respiratory organics with a 9.72E-10 Pt score and a percentage of 0.000001%. The total impact value from the production of 1 ton of PCC is 0.10884252 Pt.

Impact category	Unit	Impact Value	Percentage (%)
Carcinogens	Pt	2.99E-05	0.027471
Non-carcinogens	Pt	0.000313627	0.288147
Respiratory inorganics	Pt	0.009561724	8.784916
Table 4. Environmental impact characterization of 1 ton PCC production.

Impact Category	Unit	Total	Raw Mill	Kiln System	Cement Mill	Packing
Carcinogens	kg C₆H₇Cl eq	0.075779	0.022160	0.026015	0.020538	0.007065
	%	100	29.2438	27.1027	21.5302	9.3233
Non-carcinogens	kg C₆H₇Cl eq	0.794395	0.232311	0.272717	0.215302	0.074023
	%	100	29.2438	27.1027	21.5302	9.3233
Respiratory	kg PM₂,₅ eq	0.096877	0.020963	0.090196	0.020538	0.007065
inorganics	%	100	29.2438	27.1027	21.5302	9.3233
Respiratory	kg C₆H₆ eq	3.24E-06	2.69E-07	3.16E-07	2.49E-07	2.40E-06
organics	%	100	8.3081	7.6990	7.4233	
Aquatic	kg TEG water	71.1176	20.7957	24.4148	19.2748	6.6305
ecotoxicity	%	100	29.2438	27.1027	21.5302	9.3233
Terrestrial	kg TEG soil	266.9125	78.0554	91.6313	72.3405	24.8851
ecotoxicity	%	100	29.2438	27.1027	21.5302	9.3233
Terrestrial	kg SO₂ eq	3.819761	0.092509	3.611155	0.085737	0.030597
acid/nutri	%	100	2.421875	2.455528	0.794807	
Aquatic	kg SO₃ eq	0.619158	0.024875	0.563197	0.023050	0.008039
acidification	%	100	4.016975	2.245552	0.794807	
Global warming	kg CO₂ eq	727.4152	12.6927	69.8900	11.7635	4.05864
Non-renewable	MJ primary	3803.0293	0	3803.0293	3803.0293	
energy	%	100	0	100	0	

Explanation: The highest impact value

3.3. Interpretation

3.3.1. Comparative analysis

Comparative analysis was carried out to determine each process stage's comparison in each category of environmental impacts assessed in the IMPACT 2002+ method. Figure 2 shows that the kiln system impact's percentage value dominates almost all impact categories, except respiratory organics.

![Figure 2. Comparison of the environmental impact on each unit process.](image-url)
3.3.2. **Contribution analysis.** Contribution analysis is used to identify the process that has the most dominant contribution to the impact assessment results. The processes and substances that affect the value of each impact category are shown in table 5 below.

Impact category	Contributor (Process)	Value (Pt)	Contributor (Substance)	Value (Pt)
Carcinogens	Electricity	29,917921	Arsenic	2,99E-05
	Electricity	0,0003136	Ammonia	8,83E-10
	Transport, truck, diesel-powered	5,85E-12	Antimony	4,01E-06
			Arsenic	0,000300195
			Hydrogen sulfide	5,48E-09
			Mercury	9,42E-06
Non-carcinogens	Kiln system	0,008559	Ammonia	5,25E-07
	Electricity	1,00E-03	Carbon monoxide	3,75E-07
	Transport, truck, diesel-powered	2,55E-06	Nitrogen dioxide	0,007789204
			Nitrogen monoxide	1,10E-06
			Nitrogen oxides	0,000606405
			Particulates, < 10 µm	2,27E-07
			Particulates, < 2,5 µm	3,46E-07
			Sulfur dioxide	0,001163546
Respiratory inorganics	Kiln system	0,0001541	Ammonia	6,27E-13
	Electricity	2,76E-10	Methane	2,77E-10
	Transport, truck, diesel-powered	6,96E-10	VOC, volatile organic compounds, unspecified origin	6,95E-10
Respiratory organics	Electricity	2,61E-07	Ammonia	6,27E-13
	Transport, truck, diesel-powered	4,15E-15	Antimony	6,82E-08
			Arsenic	1,22E-08
			Mercury	1,80E-07
Aquatic ecotoxicity	Electricity	0,0001541	Ammonia	2,48E-10
	Transport, truck, diesel-powered	1,64E-12	Antimony	7,30E-07
			Arsenic	1,47E-05
			Mercury	0,000138671
Terrestrial ecotoxicity	Kiln system	0,0002659	Ammonia	4,98E-08
	Electricity	2,40E-05	Nitrogen dioxide	0,000258325
	Transport, truck, diesel-powered	6,58E-08	Nitrogen monoxide	3,64E-08
			Nitrogen oxides	2,01E-05
			Sulfur dioxide	1,15E-05
Terrestrial acid/nutri	Kiln system	0,069084	Carbon dioxide	0,073467032
	Electricity	0,0043837	Carbon dioxide, fossil	1,21E-06
	Transport, truck, diesel-powered	1,21E-06	Carbon monoxide	5,77E-07
			Carbon monoxide, fossil	4,83E-09
			Dinitrogen monoxide	5,43E-10
Global warming	Kiln system	0,0250239	Coal, hard	0,025023933
	Electricity	0,10884252	Coal, hard	0,10884252

The most dominant contributor to the impact of carcinogens is the use of electricity from PLN, which emits a carcinogen in the arsenic form. The effect of non-carcinogens is generated from the dominant emission of ammonia, antimony, arsenic, H₂S, and mercury caused by the use of electricity and a diesel-powered transport truck. Respiratory inorganics are generated from the emission of ammonia, CO, NO₂, NOₓ, and particulates <10 µm and <2.5 µm, which are predominantly caused by the use of fine coal as fuel in the kiln, use of electricity, and diesel-powered transport trucks. Respiratory
organics are generated from volatile organic carbon (VOC) and methane, predominantly from the use of electricity and diesel-powered transport trucks.

The dominant aquatic ecotoxicity and terrestrial ecotoxicity impacts are caused by electricity uses and the diesel-powered truck, which emits ammonia, antimony, arsenic, and mercury. The main contributors to the impact of terrestrial acid/nutrients are the use of fine coal as fuel in the kiln, electricity use, and a diesel-powered transport truck with emissions in the form of ammonia, CO, NO₂, NO₃, and SO₂. The impact value on the global warming category is generated using fine coal as fuel in the kiln, the use of electricity, and a diesel-powered transport truck with emissions in the form of ammonia, CO, CO₂, NOx, and methane. The impact of non-renewable energy using fine coal as fuel in the kiln.

Therefore, due to PCC production improvement, recommendations for improvements that can be given to fine coal as a fuel are gradually reducing its use and combining it with biomass. One of the conventional biomass that can be used as fuel is rice husk. PT Holcim Indonesia Tbk. since 2007 has carried out the use of rice husks as an alternative fuel to replace coal [11].

Apart from rice husks, another type of biomass that can be utilized is the Miscanthus giganteus (giant reed) plant that can be used as fuel to generate heat. The University of Illinois has carried out research and development on the use of this plant as biomass fuel since 2002, with an average production volume of 13.7 tonnes/acre. This plant can be developed with a short harvest period, which is four months at the first harvest, and after that, it can be harvested every two months, with a productive age of 6-8 years. This plant is easy to grow globally in various geographies, climates, and soil types. These plants can reach 8-12 ft in height [12].

The cultivation of the Miscanthus giganteus plant can help increase biomass fuel production by utilizing local resources. Another advantage of Miscanthus giganteus cultivation is that it is not a food crop, so the price will be stable because it does not compete with human food needs. Besides, the cultivation of these crops can provide new income streams for farmers and landowners. In Indonesia, this plant cultivation has been carried out by CV. Prima Indoargo Fortuna collaborates with the Faculty of Mathematics and Natural Sciences, Sebelas Maret University (UNS) [13].

4. Conclusion
This study assesses the product life cycle of 1 ton of PCC at PT. Semen Padang consists of a raw mill, kiln system (preheating-kiln-cooling), cement mill, and packing. PT. Semen Padang uses the raw material for making PCC consists of limestone, silicon, clay, copper slag, gypsum, fly ash, and additives (limestone and pozzolan). Additional materials in the production process are oil lubricant, grease lubricant, and cement bags. The energy used comes from burning fine coal and PLN electricity. The primary emissions produced are CO₂ and other emissions, namely NOx, SO₃, and particulate (SPM). Rated impact based on a single score is the product of the 1 ton of PCC is equal to 0.10884252 Pt, with the three highest categories of global warming impacts, non-renewable energy, and respiratory inorganics. Recommendations for improvement that can be given are combining coal fuel in the kiln with biomass with a combination option, namely with rice husks or Miscanthus giganteus.

Acknowledgment
All the authors would like to thank PT. Semen Padang where the study was conducted, especially for Health, Safety, and Environment (HSE) Division for their support.

References
[1] Mousavi M 2013 Life Cycle Assessment of Portland Cement and Concrete Bridge (Stockholm: Royal Institute of Technology)
[2] Song D, Yang J, Chen B, Hayat T and Alsaedi A 2015 Appl. Energy 164 916–23.
[3] Muller N E 2010 Portland Cement: An Application of Life Cycle Assessment (Brazil: Federal University of Minas Gerais)
ILCAN 2019 *Dukung Implementasi LCA pada PROPER, ILCAN Bersama KLHK Gelar Pelatihan LCA*. Obtained June, 20 2019

DISHUT JABAR 2018 *Demi Proper Hijau, Ratusan Peserta Ikuti Sisialisasi Mekanisme & Kriteria Hijau 2018*. Obtained June, 20 2019

Semen Padang 2017 *Laporan Tahunan 2017: Peningkatan Efektivitas Proses Bisnis dan Efisiensi Untuk Pertumbuhan* (Padang: PT. Semen Padang)

Kun M L and Atshusi I 2004 *Life Cycle Assessment: Best Practices of ISO 14040 Series* (South Korea: Ajou University)

Garcia-Gusano D, Herrera I, Garraín D, Lechón Y and Cabal H 2014 *Clean Technol. Environ. Policy* 17 59–73

ISO 14044: *Environmental Management – Life Cycle Assessment – Requirements and Guidelines* (Switzerland: ISO Central Secretariat)

PRé Consultant 2016 *Introduction to LCA with SimaPro* (USA: Creative Commons)

Holcim Indonesia Tbk. PT 2007 *Confidence 2007 Annual Report. PT. Holcim Indonesia Tbk* (Cilacap: PT. Holcim Indonesia)

Pyter R, Voigt T, Heaton E, Dohleman F and Long S 2006 *Growing Giant Miscanthus in Illinois*. (Illinois: University of Illinois)

FMIPA UNS 2014 *Pengembangan Tanaman Bioenergi dari Rumput Raksasa Miscanthus Giganteus*. Obtained March, 9 2020