Occurrence of mutations associated with rifampicin and isoniazid resistant in *Mycobacterium tuberculosis* isolates from patients in Burkina Faso

Abstract

Genetic mutations are responsible for the high rate of resistance observed in the treatment of tuberculosis. This study aimed at determining the occurrence of mutations associated with rifampicin (RIF) and isoniazid (INH) resistance of *Mycobacterium tuberculosis* complex (MTBC) isolates. MTBC strains isolated by culture from 110 TB patients diagnosed with resistant to rifampicin (RR-TB) by Xpert MTB/RIF were studied. The isolates were obtained from the National Tuberculosis Reference Laboratory in Ouagadougou. They were identified culturally using Antigenic method (SD Bioline TB Ag MPT64), Polymerase Chain Reaction, PCR (DRplus) was used to detect the occurrence of mutations in the genes associated with resistance *katG* and *inhA* promoter for INH, and *rpoB* for RIF. Out of 103 isolates with RIF resistant, mutations were detected in 87(84.5%) of gene *rpoB* while no mutation was found in 16(15.5%) of the gene of the isolates even though the wild probes had disappeared. Single mutations were found in the codons D516V (41.7%) and H526Y (17.5%) while combined mutations (single and double) were mostly detected in the codons D516 (51.5%), H526Y (20.4%), S315L (11.7%) and H526D (10.7%) respectively. Single mutations responsible for high-level isoniazid resistance, *katG* were observed in the codon S315T while the combined *inhA* and *katG* were detected in the codon C8T and S315T, 16 (14.5%) respectively. The highest mutation occurrence was observed with *rpoB*S516, *rpoB*S26 for RIF and *katG*315 for INH associated with resistance of MTBC isolates. There is a need to improve molecular assay kit diagnosis to curb the geographic specificity of the target genes needed to detect more possible mutations.

Keywords: mycobacterium tuberculosis strains, genes, mutations, resistance

Introduction

The emergence of multidrug resistant (MDR) strains of MTBC has become one of the most critical issues for tuberculosis (TB) control programmes worldwide. It is a public health concern threatening global TB control programs. Its diagnosis has evolved in recent years following the development of new molecular techniques based on detection of mutations in MTBC genes by Polymerase Chain Reaction (PCR). 1-3

The Genotype MTBDRplus is a commercially available molecular gene Line Probe Assay developed by Hain Life Science, (Nehren, Germany). It is performed on MTBC isolates or directly from clinical specimens. It can be used to identify the MTBC and detect the genetic mutations in the *rpoB* gene related to rifampicin resistance, the *katG*, *inhA* regulatory region and *inhA* genes related to isoniazid resistance. Its targets points are the 81-bp “hot spot” region of the *rpoB* gene of RIF, codon 315 of *katG* and *inhA* promoter regions of INH. 4-7

The genetic basis of multidrug resistant MTBC isolates has been widely studied worldwide and commonly believed to be caused by point mutations in important genes like *rpoB* and *katG*. Multiple studies carried out at different time periods in the same country/geographical setting have yielded variable incidence of specific *rpoB* mutation. 8,9

In Burkina Faso, the fight against MDR-TB/rifampicin-resistant tuberculosis (RR-TB) has become a National concern. For this purpose, the technical platform of the National Reference Laboratory (NRL) for *Mycobacteria* in Ouagadougou was strengthened with Molecular tests such as Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) and Line Probe Assay (Hain Life Science GmbH, Nehren, Germany). However, other fourteen peripheral Laboratories in the Country have also been equipped with GeneXpert MTB/RIF (Cepheid, Sunnyvale, CA, USA). So, the guidelines of the National Tuberculosis Control Program recommend the use of DRplus and DRsl for all TB-patients confirmed RR-TB by Xpert test (Cepheid, Sunnyvale, CA, USA).

This study was to determine the occurrence of specific *rpoB*, *katG* and *inhA* gene promoters’ mutations in rifampicin and isoniazid resistant *M. tuberculosis* isolates from TB-patients in Burkina Faso.

Materials and methods

Study area and laboratory analysis

We studied rifampicin resistant *M. tuberculosis* strains isolated from 110 TB patients diagnosed with resistant to rifampicin (RR-TB) by Xpert MTB/RIF (Cepheid, Sunnyvale, CA, USA) at the NRL in Ouagadougou. The patients were undergoing treatment at Centres for Diagnostic Tuberculosis (CDT) between 2014 and 2016 in the 13 Health regions of Burkina Faso. During this period, suspected MDR-TB patient’s sputa were collected from the various CDTs in the Health regions of the Country and transported to the NRL in Ouagadougou. They were identified culturally using Antigenic method (SD Bioline TB Ag MPT64); thereafter, PCR (DRplus) confirmation. The patients’ medical records were review to obtain relevant data on the age, sex, category of patients, HIV status, and region of origin.

Molecular analysis by genotype MTBDR plus 2.0

One hundred and ten (110) *Mycobacteria tuberculosis* isolates were
selected for the Molecular analysis at the NRL. DNA was extracted using Genolyse® kit (Hain Life Science GmbH, Nehren, Germany). The extracted DNA was processed by the LPA using DRplus (Hain Life Science GmbH, Nehren, Germany) to detect MTBC and RIF and/or INH resistance according to the manufacturer’s instructions. PCR amplification was carried out using biotin-labeled primers. The colorimetric detection of the strips was carried out using enzymes in which DNA products were bound to the strip. Positive internal quality control and negative control were used during the tests. The rpoB, katG, and inhA gene loci each have a control band, the presence of which is mandatory for results interpretation. The presence of rpoB gene locus predicts RIF’s resistance while katG predicts high level and inhA low-level INH resistance. Absence of wild type and/or presence of mutant band mean resistance to a particular drug. The product insert was further referred for interpretation of banding patterns and trouble shooting.

Limitation of the study
We have not reported the occurrence of katG and rpoB mutations in INH and RMP resistant M. tuberculosis isolates from patients of different ethnic background from Burkina Faso. Secondly, among the isolates studied, we do not know which Beijing genotype strains are or not. These two limits did not allow us to understand the higher frequencies of certain mutations compared to the studies that studied them. Thirdly, only DRplus was used to study the occurrence of mutations.

Statistical analysis
The results obtained were entered into Statistical Program SPSS version 20.0 and the frequency of patient characteristics and mutations in the rpoB, katG and inhA genes calculated

Results

Patients’ characteristics
One hundred and ten (110) TB patients with resistant to rifampicin by Xpert test (27 females and 83 males) were included. The average age for female patients was 39.9 years (14–70 years), while the male was 36.5 years (16-86 years). Two (2) females and 6 males were tested HIV positive and 26 females and 79 males had a history of TB treatment or were undergoing TB treatment (Table 1). DRplus revealed 76 patients who were resistant to rifampicin, 83 to isoniazid. Among the females, 27 patients were resistant each to rifampicin and isoniazid while 24 were resistant to both isoniazid and rifampicin respectively. The results of Xpert test and DRplus were discordant for 7 patients. This is as presented in Table 1.

Occurrence of mutations in isoniazid and rifampicin resistance associated targets
In Table 2, out of the 103 isolates with RIF resistant, single mutations were observed in the codons D516V (41.7%), followed by H526Y (17.5%) and then S531L (5.8%). Double mutations in rpoB gene were observed in 6 of the codons D516V+S531L (5.8%), 3 of D516V+H526Y (2.9%) and 1 of D516V+H526D respectively. The occurrence of single and combine mutations in rpoB gene where found to be 51.5% in the codons D516V, 20.4% in H526Y, 11.7% in S531L and 10.7% in H526D respectively while no mutation was found in 16 (15.5%) other cases, even though the wild probes had disappeared.

Occurrence of codon mutations in rifampicin and isoniazid resistant isolates from different countries/ geographical settings
The comparison of the occurrence of codon mutations in rifampicin and isoniazid resistant MTBC isolates from different geographic regions is presented in Table 3 & 4 respectively. The frequency of

Table 1 Patients characteristics

Characteristics	Male (%)	Female (%)
Number of patients	83 (75.5)	27 (24.5)
Age	36.5 (16 - 86)	39.9 (14 – 70)
HIV positive	6 (75.0)	2 (25.0)
HIV negative	75 (75.8)	24 (24.2)
With TB treatment history	79 (80.0)	26 (20.0)
New patients	4 (73.8)	1 (26.2)
RIF- resistance	76 (75.5)	27 (24.5)
INH-resistance	83 (75.5)	27 (24.5)
Both RIF-INH-resistance	72 (75.0)	24 (25.0)

RIF: rifampicin; INH: isoniazid

The mutations responsible for high-level isoniazid resistance in katG gene were observed in the codons S315T1 (77.3%), S315T2 (2.7%), unknown (3.6%) while combined high-level isoniazid resistance mutations in katG and inhA gene where observed in the codons C8T+S315T (14.5%) respectively. The mutations responsible for a low level of resistance to isoniazid in inhA were observed in the codons C8T+C15T (0.9%) with unknown mutation (0.9%).

Citation: Diandé S, Ogbonmon EO, Gueye A, et al. Occurrence of mutations associated with rifampicin and isoniazid resistant in Mycobacterium tuberculosis isolates from patients in Burkina Faso. Int J Mol Biol Open Access. 2019;4(3):106–111. DOI: 10.15406/ijmboa.2019.04.00105
Occurrence of mutations associated with rifampicin and isoniazid resistant in Mycobacterium tuberculosis isolates from patients in Burkina Faso

Copyright: ©2019 Diandé et al.

Citation: Diandé S, Ogbomon EO, Gueye A, et al. Occurrence of mutations associated with rifampicin and isoniazid resistant in Mycobacterium tuberculosis isolates from patients in Burkina Faso. Int J Mol Biol Open Access. 2019;4(3):106–111. DOI: 10.15406/ijmboa.2019.04.00105

Mutations in the rpoB gene were found in the codons 516, 526 and 531 varied in different geographic regions (Table 3). It is the same for the occurrence of mutations in the katG gene and inhA gene promoter (Table 4).

Table 2 Occurrence of mutations in Mycobacterium tuberculosis genes (rpoB, katG and inhA) associated to rifampicin and isoniazid resistance

Resistance to drugs	Resistance no drug	%	
RIF-résistance (rpoB gene)	Mutant probes	N = 103	%
WT probes			
SS31L	6	5.8	
ΔWT3/4	DS16V	43	41.7
ΔWT7	HS26Y	18	17.5
ΔWT7	DS16V + HS26Y	3	2.9
ΔWT7	DS16V + HS26D	1	1
ΔWT3-8	DS16V + SS31L	6	5.8
ΔWT8	HS26D	3	2.9
ΔWT7/8	HS26D	7	6.8
ΔWT8	unknown	6	5.8
ΔWT7	unknown	5	4.9
ΔWT2/7	unknown	1	1
ΔWT2/3	unknown	1	1
ΔWT3-4-8	unknown	1	1
ΔWT3-8	unknown	2	1.9

Table 3 Occurrence of codon mutations in rifampicin-resistant M. tuberculosis isolates from different countries/geographical settings

Countries	Year	n	S31	S16	S26	Ref
Burkina Faso	2019	103	0 (0.0)	43 (41.7)	28 (27.2)	Our study
China	2018	79	46 (58.2)	8 (10.1)	10 (12.7)	22
Kyrgyzstan	2018*	185	120 (64.8)	15 (8.1)	32 (17.3)	23
Punjab (India)	2017	137	80 (58.4)	8 (5.8)	12 (8.7)	24
Ethiopia	2017*	49	40 (81.6)	1 (2.04)	4 (8.16)	25
Ghana	2017*	13	2 (15.4)	6 (46.2)	3 (23.1)	11
Brasil	2016**	43	27 (62.8)	-	3 (7.0)	15
South West Ethiopia	2016**	34	28 (82.4)	-	1 (2.9)	16
Ivory Coast	2016	60	11 (18.3)	23 (38.3)	15 (25.0)	12
Nigeria	2015**	10	5 (50.0)	2 (20.0)	3 (30.0)	6
Discussion

This study evaluated the occurrence of mutations in the *rpoB*, *katG*, and *inhA* gene promoters responsible for the resistance of *M. tuberculosis* complex to rifampicin and isoniazid in patients detected RR-TB by Xpert MTB/RIF. It revealed mutations in the *rpoB* gene most commonly at codons D516V, H526Y and S531L. The codon 516 (51.5%) had the highest mutations in the *rpoB* genes. Such a high occurrence agrees with the reports of previous studies in Burkina Faso and other parts of the world; such as who reported 46.2% in Ghana. It is possible that the epidemiology of TB is identical for these Countries.

On the other hand, studies carried out in South West Ethiopia and neighboring countries contrast enormously with the results of numerous studies which reported higher rates of mutations at 531. Some authors attributed the variations in the frequency of *rpoB*-specific mutations to the geographical differences in RMP-resistant *M. tuberculosis* strains circulating in different settings and their clone propagation. So, for Taiwan, codon 531 accounted for 68.2% of mutations could be due to the spread of a prevalent genetic clone. The high occurrence of *rpoB*531 mutations in MDR-TB strains from Samara region in Russian Federation was attributed to the high frequency of Beijing genotype strains, but that’s not a certainty. For instance, the frequency of *rpoB*531 mutations is much lower in RMP-resistant strains in China where the frequency of the Beijing genotype

Table 4 Occurrence of codon mutations in isoniazid-resistant *Mycobacterium tuberculosis* isolates from different countries/geographical settings

Country	Year	Number	katG	inhA
Our study	2017	16	99.7	0
China	2018	65	44	2
Kyrgyzstan	2019	104	91.7	1
Punjab (India)	2018	134	110	2
Ethiopia	2017	52	52	2
Ghana	2017	29	24	2
South West Ethiopia	2016	41	36	2
Brasil	2016	43	18	2
Ivory Coast	2016	59	59	2
Nigeria	2015	7	3	2
Ivory Coast	2014	120	76	2
Georgia	2013	634	535	2
Ethiopia	2012	35	33	2
Burkina Faso	2009	36	36	2
Russia	2009	117	68	2
Taipei, Taiwan	2009	198	96	2

*: only H526Y; **: only H526D
strains is high. The occurrence of mutation at 526 reported in the current study is higher than rate found in Burkina Faso neighboring Countries, lower than the value reported in Nigeria and similar to findings reported from India and Kyrgyzstan. All this indicates that mutations at codons 531, 526 and 516 are common, with a varied occurrence across the geographical areas.

In this study, occurrence of gene mutation attributed to low level drug resistance mainly caused by the mutations in the promoter region of \textit{inhA} gene was lower than the mutation frequent C15T observed in Ivory Coast. Occurrence of \textit{katG315} mutations was lower than those obtained in Ghana and in Southwest Ethiopia, similar to an Ivorian study, and higher than a report from Nigerian. The high occurrence (90-95\%) of \textit{katG315} mutations among \textit{M. tuberculosis} strains in Russia was attributed to the high frequency of Beijing genotype strains. However, the frequency of \textit{katG315} mutations is much lower in INH resistant strains in Taiwan, where the frequency of the Beijing genotype strains is high. Some authors reported variations of the occurrence of \textit{katG315} mutations in isoniazid-resistant isolates among patients of different ethnic groups at the same geographic locations. It remains to be elucidated whether these differences of variations are due to differences in the genetic background of \textit{M. tuberculosis} isolates or to differences in ethnic origin of the infected TB patients or both.

Our study showed higher level of rifampicin-resistant isolates with no mutation. It corroborated with similar reports from elsewhere. It is possible that less common mutations in \textit{rpoB} gene cannot be detected by \textit{DRplus}. In addition, the possibilities of absence of mutation in RRDR of \textit{rpoB} gene in MDR-TB isolates may be due to existence of other rare \textit{rpoB} mutations outside RRDR or different mechanism of rifampicin resistance. For strains classified as isoniazid-resistant with no mutation, it is known that about 10\% to 25\% of isoniazid-resistance strains are thought to have mutations outside \textit{KatG} and \textit{inhA loci}. Efflux system may play such a role. To cater the geographic specificity of the target genes and be able to detect more possible mutations in different geographical areas, it is necessary to improve molecular assay kit diagnosis.

Conclusions

In Burkina Faso, the general pattern of \textit{rpoB}, \textit{katG} and \textit{inhA} mutations observed is similar to that reported globally in most clinical \textit{M. tuberculosis} isolates. The highest mutation occurrence was observed respectively at 516 and 526 of \textit{rpoB}, and \textit{katG} (S315T1) genes. However, the \textit{DRplus}, did not identify certain mutations while the wild probes had disappeared. So, the mutations identified are useful as molecular markers for the detection of multidrug resistant isolates but are not yet sufficient to fully predict a multidrug resistance of \textit{M. tuberculosis}. Hence the need to improve molecular assay kit diagnosis to cater for the genetic variations associated with the geographic specificity of the target genes and be able to detect most frequent mutations in different geographical areas. Likewise, using phenotypic drug susceptibility testing and sequencing will allow identifying missing mutations not detected by the \textit{DRplus}.

Acknowledgments

None

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Prasad R, Gupta N, Banka A. Multidrug-resistant \textit{tuberculosis}/rifampicin-resistant \textit{tuberculosis}: Principles of management. Lung India. 2018;35(1):78–81.

2. Jemil S, Jain MA, Patra SK, et al. Emerging Trend of Mutation Profile of \textit{rpoB} Gene in MDR, \textit{Tuberculosis}, North India. Indian J Clin Biochem. 2012;27(4):370–374.

3. Rigouts L, Nolasco O, Rijk P de, et al. Newly developed primers for comprehensive amplification of the \textit{rpoB} gene and detection of Rifampicin resistance in \textit{Mycobacterium tuberculosis}. J Clin Microbiol. 2007;45(1):252–254.

4. Hilleman D, Rusch Gerdes S, Richter E. \textit{Tuberculosis} Strains and Clinical Susceptibility Testing of \textit{Mycobacterium Assay for Rifampin and Isoniazid Evaluation of the GenoType MTBDRplus Specimens}. J Clin Microbiol. 2007;45(8):2635–2640.

5. Seifert M, Catanzano D, Catanzano A, et al. Genetic Mutations Associated with Isoniazid Resistance in \textit{Mycobacterium tuberculosis}: A Systematic Review. PLoS ONE. 2015;10(3):e0119628.

6. Alfred C, Nyumgee NA, Nabwuii C, et al. Performance of \textit{GenoType MTBDRplus} in the Detection of Resistance to Rifampicin and Isoniazid Among Clinical Mycobacteria Isolates in Ilorin, Nigeria. Curr HIV Res. 2015;13(4):308–314.

7. \textit{GenoType MTBDR Plus, Ver. 2.0, Instructions for Use, IFU-304A-02, Hain Life Sciences}; 2012.

8. Ahmad S, Al Mutairi NM, Mokaddas E. Variations in the occurrence of specific \textit{rpoB} mutations in rifampicin-resistant \textit{Mycobacterium tuberculosis} isolates from patients of different ethnic groups in Kuwait. Indian J Med Res. 2012;135(5):756–762.

9. Kigozi E, Kasule GW, Musisi K, et al. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in \textit{Mycobacterium tuberculosis} isolates from Uganda. PLoS ONE. 2018;13(15):e0219809.

10. Miotto P, Saleri N, Dembele M, et al. Molecular detection of rifampin and isoniazid resistance to guide chronic TB patient management in Burkina Faso. Infect Dis. 2009;9:142.

11. Addo KK, Addo SO, Mensah GI, et al. Genotyping and drug susceptibility testing of mycobacterial isolates from population-based \textit{tuberculosis} prevalence survey in Ghana. BMC Infect Dis. 2017;17(1):743.

12. N’gessan KR, Alaguna R, Dutoziet CC, et al. Genotyping of mutations detected with \textit{GenoExpert}. Int J Mycobact. 2016;5(2):142–147.

13. N’gessan KR, Assi JS, Ouassa T, et al. Assessment of the \textit{GenoType MTBDRplus} Assay for rifampicin and isoniazid detection on sputum samples in Côte d’Ivoire. Eur J Microbiol Immunol. 2014;4(3):166–173.

14. Assi JS, N’gessan KR, Bamba S, et al. Genetic basis of resistance to rifampin and isoniazid in cases of failure and relapse from first-line drugs in Côte d’Ivoire. Int J Curr Microbiol Appl Sci. 2014;3(9):775–784.

15. Cafe Oliveira LN, Muniz Sobrinho JdaS, Oliveira Melo SC, et al. Detection of multidrug-resistant \textit{Mycobacterium tuberculosis} strains isolated in Brazil using a multiplex marker genetic assay for \textit{katG} and \textit{rpoB} genes. Braz J infect dis. 2016;20(2):166–172.

16. Tadesse M, Aragaw D, Dimah B, et al. Drug resistance-conferring mutations in \textit{Mycobacterium tuberculosis} from pulmonary tuberculosis patients in South West Ethiopia. \textit{Inter J Mycobacteriol}. 2016;5(2):185–191.

17. Elbir H, Yousi\'N. Frequency of mutations in the \textit{rpoB} gene of multidrug-resistant \textit{Mycobacterium tuberculosis} clinical isolates from Sudan. \textit{J Infect Dev Ctries}. 2014;8(6):796–798.
Occurrence of mutations associated with rifampicin and isoniazid resistant in Mycobacterium tuberculosis isolates from patients in Burkina Faso.

Shubladze N, Tadumadze N, Babilshvili N. Molecular patterns of multidrug resistance of Mycobacterium tuberculosis in Georgia. *Inter J Mycobact.* 2013;2(2):73–78.

Sharma BK, Bhandari S, Maharjan Bh, et al. Rapid Detection of Rifampicin and Isoniazid Resistant. *Mycobacterium tuberculosis* Using Genotype MTBDRplus Assay in Nepal. *Int Sch Res Notices.* 2014;1–6.

Ferro BE, Garcia PK, Nieto LM, et al. Predictive value of molecular drug resistance Testing of *Mycobacterium tuberculosis* isolates in Valle del Cauca, Colombia. *J Clin Microbiol.* 2013;51(7):2220–2224.

Tessema B, Beer J, Emmrich F, et al. Analysis of gene mutations associated with isoniazid, rifampicin and ethambutol resistance among *Mycobacterium tuberculosis* isolates from Ethiopia. *BMC Infect Dis.* 2012;12:37.

Jian J, Yang X, Yang J, et al. Evaluation of the GenoType MTBDR plus and MTBDRsl for the detection of drug-resistant *Mycobacterium tuberculosis* isolates from Beijing, China. *Infect Drug Resist.* 2018;11:1627–1634.

Isakova J, Sovkhozova I, Vinnikov D, et al. Mutations of rpoB, katG, inhA and aph genes in rifampicin and isoniazid-resistant *Mycobacterium tuberculosis* in Kyrgyz Republic. *BMC Microbiol.* 2018;18(1):22.

Singhal R, Arora J, Sah GC, et al. Frequency of multidrug resistance and mutations in *Mycobacterium tuberculosis* isolates from Punjab state of India. *J Epidemiol Glob Health.* 2017;7(3):175–180.

Kebede A, Demisse D, Assefa M, et al. Performance of MTBDRplus assay in detecting multidrug resistant tuberculosis at hospital level. *BMC Res Notes.* 2017;10(1):661.

Lin YH, Tai CH, Li CR, et al. Resistance profiles and rpoB gene mutations of *Mycobacterium tuberculosis* isolates in Taiwan. *J Microbiol Immunol Infect.* 2013;46(4):266–270.

Luo T, Zhao M, Li X, et al. Selection of mutations to detect multidrug-resistant *Mycobacterium tuberculosis* strains in Shanghai, China. *Antimicrob agents chemother.* 2010;54(3):1075–1081.

Nikolayevskyy V, Balabanova Y, Simak T, et al. Performance of the Genotype® MTBDRplus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation. *BMC Clin Pathol.* 2009;9:2.

Huang WL, Chen HY, Kuo YM, et al. Performance Assessment of MTBDRplus test and DNA sequencing in detection of multidrug-resistant *Mycobacterium tuberculosis*. *J Clin Microbiol.* 2009;47(8):2520–2524.

Ahmad S, Mokaddas E, Fares E. Characterization of rpoB mutations in rifampin-resistant clinical *Mycobacterium tuberculosis* isolates from Kuwait and Dubai. *Diagn Microbiol Infect Dis.* 2002;44(3):245–252.

Huang H, Jin Q, Chen X, et al. Characterization of rpoB mutations in rifampin-resistant *Mycobacterium tuberculosis* isolates in China. *Tuberculosis.* 2001;81(4):231–235.

Martilla HJ, Soini H, Eerola E, et al. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant *Mycobacterium tuberculosis* isolates originating from the St. Petersburg area in Russia. *Antimicrob Agents Chemother.* 1998;42(9):2443–2445.

Mokrousov I, Narvskaya O, Otten T, et al. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant *Mycobacterium tuberculosis* clinical isolates from northwestern Russia, 1996–2001. *Antimicrob Agents Chemother.* 2002;46(5):1417–1424.

Jou R, Chen HY, Chiang CY, et al. Genetic diversity of multidrug-resistant *Mycobacterium tuberculosis* isolates and identification of 11 novel rpoB alleles in Taiwan. *J Clin Microbiol.* 2005;43(3):1390–1394.

Hwang HY, Chang CY, Chang LL, et al. Characterization of rifampin-resistant *Mycobacterium tuberculosis* in Taiwan. *J Med Microbiol.* 2003;52(3):239–245.

Alonso M, Palacios JJ, Herranz M, et al. Isolation of *Mycobacterium tuberculosis* strains with a silent Mutation in rpoB Leading to potential misassignment of resistance category. *J Clin Microbiol.* 2011;49(7):2688–2690.

Tolani MP, Desiree D’souza TB, Mistry NF. Drug resistance mutations and heteroresistance detected using the GenoType MTBDRplus assay and their implication for treatment outcomes in patients from Mumbai, India. *BMC Infect Dis.* 2012,12:9.

Zaw MT, Emran NA, Lin Z. Mutations inside rifampicin-resistance determining region of rpoB gene associated with rifampicin-resistance in *Mycobacterium tuberculosis*. *J Infect Public Health.* 2018;11(5):605–610.

Zhang Y, Yew WW. Mechanisms of drug resistance in *Mycobacterium tuberculosis*. *Int J Tuberc Lung Dis.* 2015;19(11):1276–1289.

Machado D, Couto I, Perdigao J, et al. Contribution of efflux to the emergence of isoniazid and multidrug resistance in *Mycobacterium tuberculosis*. *PLoS One.* 2012;7(4):e34338.

Viveiros M, Portugal I, Bettencourt R, et al. Isoniazid-induced transient high-level resistance in *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother.* 2002;46(9):2804–2810.

Takawira FT, Mandishora RSD, Dhlamini Z, et al. Mutations in rpoB and katG genes of multidrug resistant *Mycobacterium tuberculosis* undetectable using genotyping diagnostic methods. *Pan Afr Med J.* 2017;27:145.

Citation: Diandé S, Ogbonon EO, Gueye A, et al. Occurrence of mutations associated with rifampicin and isoniazid resistant in *Mycobacterium tuberculosis* isolates from patients in Burkina Faso. *Int J Mol Biol Open Access.* 2019;4(3):106–111. DOI: 10.15406/ijmboa.2019.04.00105