Review

Metformin in cardiovascular diabetology: a focused review of its impact on endothelial function

Yu Ding1, Yongwen Zhou1,3, Ping Ling1,3, Xiaojun Feng2, Sihui Luo1, Xueying Zheng1, Peter J. Little4,5, Suowen Xu1,3* and Jianping Weng1,3*

1. Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
2. Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
3. Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
4. Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD 4575, Australia.
5. School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, Queensland 4102, Australia.

*Corresponding authors: Jianping Weng, MD, PhD, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China. E-mail: wengjp@ustc.edu.cn; Suowen Xu, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China. E-mail: sxu1984@ustc.edu.cn.

© The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

Accepted: 2021.08.30; Published: 2021.09.09

Abstract

As a first-line treatment for diabetes, the insulin-sensitizing biguanide, metformin, regulates glucose levels and positively affects cardiovascular function in patients with diabetes and cardiovascular complications. Endothelial dysfunction (ED) represents the primary pathological change of multiple vascular diseases, because it causes decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion and atherosclerosis. Caused by “biochemical injury”, ED is also an independent predictor of cardiovascular events. Accumulating evidence shows that metformin improves ED through liver kinase B1 (LKB1)/5'-adenosine monophosphat-activated protein kinase (AMPK) and AMPK-independent targets, including nuclear factor-kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt), endothelial nitric oxide synthase (eNOS), sirtuin 1 (SIRT1), forkhead box O1 (FOXO1), krüppel-like factor 4 (KLF4) and krüppel-like factor 2 (KLF2). Evaluating the effects of metformin on endothelial cell functions would facilitate our understanding of the therapeutic potential of metformin in cardiovascular diabetology (including diabetes and its cardiovascular complications). This article reviews the physiological and pathological functions of endothelial cells and the intact endothelium, reviews the latest research of metformin in the treatment of diabetes and related cardiovascular complications, and focuses on the mechanism of action of metformin in regulating endothelial cell functions.

Key words: Metformin, cardiovascular diabetology, endothelial function, diabetes, panvascular disease

Diabetes and cardiovascular disease - the dangerous liaison

Patients with diabetes suffer from a higher incidence and rate of mortality of cardiovascular disease (CVD) compared with nondiabetic subjects [1]. Diabetes per se is also a high-risk factor for CVD [2]. According to the disease statistic report from the International Diabetes Federation, the global prevalence of diabetes was 9.3% in 2019 estimated and is projected to reach 10.2% by 2030 [3]. Numerous studies have shown that there is a positive correlation between glucose levels and the incidence of CVD. It is reported that the incidence of heart failure increases by 15% when glycosylated hemoglobin increases by 1%, and the incidence of myocardial infarction decreases by 16% if anti-hyperglycemic drugs are used intensively [4, 5]. With multiple pathophysiological components, including hyperglycemia, insulin resistance (IR), hyperinsulinemia and hyperlipidemia, diabetes changes the vascular responsiveness to
various vasoconstrictors and vasodilators and is a vital factor in the occurrence and development of vascular complications of diabetes [5]. Hyperglycemia is the primary determinant factor of thrombosis in the coronary vessels through the modification of microbiota thrombus colonization in hyperglycemic patients with ST-segment elevation myocardial infarction (STEMI) [6], and via the direct modification of atherosclerotic plaque instability and rupture with consequent acute thrombosis (in STEMI) and worse prognosis [7, 8]. The overexpression of inflammatory and pro-thrombotic markers is linked to the hyperglycemic levels in the serum, the coronary thrombus [9] and the peri-coronary fat [10]. This is evidence of excessive inflammation and pro-thrombotic effects of hyperglycemia in patients with atherosclerotic plaque instability, rupture, acute thrombosis, and STEMI.

Various diabetes-related pathological changes vary with the size and location of blood vessels, leading to decreased arterial plasticity, increased vascular resistance, reduced tissue perfusion, and atherosclerosis [11, 12]. In the process of atherosclerotic plaque formation, circulating monocytes first adhere to the lesion area of the vascular wall, then infiltrate into the wall, and differentiate into macrophages. These macrophages take up modified lipids through phagocytosis and scavenger receptor mediated processes, and leading to the formation of foam cells, which represent the hallmark of arterial plaques [13-16]. Based on these pathological changes, the development and progression of atherosclerosis plays a critical role in the underlying pathological basis of most patients with stable coronary disease [17].

Ross and colleagues proposed the "endothelial cell injury" model of atherosclerosis ("response to injury") sort of assuming that atherosclerosis results from physical damage to the endothelium [18]. It was subsequently found that biochemical molecules [19, 20], including turbulent blood flow and inflammatory cytokines/chemokines, actually serve as physiochemical injury. We propose the hypothesis that "biochemical injury" is the cause of endothelial dysfunction (ED). ED is related to a series of pathological events in diabetes and its complications [21]. In patients with stable coronary disease, with the increase of IR and carbohydrate intolerance, the functional coronary circulation abnormalities of endothelium-dependent vascular movement will gradually worsen [22]. Impaired NO-dependent vasodilatation is a predictor of future cardiac events and the development of coronary ED [23]. Moreover, coronary ED is as a cause of ischemic heart disease (IHD) linked worse prognosis in diabetic patients with stable coronary disease [24, 25]. This is evidenced in stable IHD patients during angiography of coronary vessels and invasive measurements of ED. It is noteworthy that the occurrence of ED and the development of atherosclerosis is very rapid in patients with diabetes in the absence of an effective pharmacological intervention [26]. ED is also linked to insulin resistant states including obesity, diabetes, and the metabolic dysfunction [27]. Hyperglycemia is the major causal factor in the development of ED in patients with diabetes. Hyperglycemia is also a main risk factor for CVD, particularly IHD alone and in combination with diabetes. Indeed, hyperglycemia is a risk factor for CVD/IHD independently from diabetes.

Diabetes can be classified into several categories, including type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus, and specific types of diabetes due to other causes. Accounting for 90 - 95% of all diabetes, T2D is generally due to a progressive loss of β-cell insulin secretion frequently on the background of IR [28]. The established relationship between T2D and CVD provides a therapeutic framework that anti-diabetic drugs may have beneficial effects on cardiovascular risk factors and help reduce the atherosclerotic process in diabetic patients. In addition to hypoglycemic benefits, whether anti-diabetic drugs can prevent or treat ED and improve atherosclerosis and CVD is an important research direction [29, 30]. When choosing pharmacological interventions for patients with the comorbidities of diabetes and CVD, the hypoglycemic effects and potential cardiovascular benefits should be considered simultaneously. These considerations are critical to our understanding of the potential role of antidiabetic medications in reducing the development and progression of atherosclerosis and CVD in patients both with and without diabetes.

Because the treatment of hyperglycemia changes many factors other than circulating glucose levels, clinical and experimental data support the hypothesis that factors other than hyperglycemia are the culprit [31]. As the first-line drug for most patients with T2D, metformin is indicated because of its benefits on glycemia management but also affects several other pathways/mechanisms including oxidative stress, inflammation, lipoprotein metabolism and thrombosis [32, 33]. For example, metformin provides a protective effect on cardiovascular function by reducing weight gain and serum-free insulin level, according to the report from UK Prospective Diabetes Study (UKPDS) [34]. Moreover, various studies have emphasized on the anti-inflammatory and antioxidant role of antidiabetic medications, with multiple mechanisms, which activation of 5'-adenosine
monophosphat-activated protein kinase (AMPK) by metformin has had a key role in many of them [35-37]. Notably, the pleiotropic effects of antidiabetic medications have been seen for metformin and new classes of antidiabetic drugs and incretins. To date, metformin shows pleiotropic effects to reduce the peri-coronary inflammatory stress [10], including anti-thrombotic and anti-atherosclerotic properties, which are also played by incretins in STEMI [38] and non-STEMI [39] patients. Therefore, this evidences the protective effects played by incretins on the atherosclerotic plaque for patients with acute coronary syndrome, in the condition of acute coronary thrombosis [38] and multivessel disease with and ED [39]. For a detailed review of cardiovascular actions and molecular targets of glucagon-like peptide-1 receptor agonists (GLP-1RAs) [36] and sodium glucose cotransporter 2 inhibitors (SGLT2i) [37], please refer to our recent reviews. As mentioned above, ED can be an independent predictor of cardiovascular events and the first step toward coronary arteriosclerosis [40]. Therefore, evaluating the effects of metformin on improving ED would deepen our knowledge of the therapeutic potential of metformin. In this review, we aim to provide a comprehensive account of the physiological and pathological functions of endothelial cells and the intact endothelium, and summarize the latest research on metformin in diabetes and associated cardiovascular complications, with particular emphasis on the role of metformin on regulating endothelial cell functions.

Among all the functions of the intact endothelium [43], the first is its role as a physiological semi-permeable barrier and an emerging component of innate immunity. As the barrier and site of innate immunity between blood and tissues, the endothelium actively regulates the exchange and transport of small and large molecules and defends against invading pathogens and infections [44, 45]. In addition, as a carbohydrate-rich layer lining the vascular endothelium [46], the glycocalyx acts as a barrier between blood, the endothelium and underlying tissues and plays an essential role in maintaining the barrier integrity and consequently homeostasis and quiescence of the vasculature [47].

A pivotal function of the endothelium is to regulate vascular tone through secreting substances that relax and constrict blood vessels. Nitric oxide (NO), a classical mediator of vasodilation, is produced by endothelial cells and glycocalyx. NO regulates the relaxation of vascular smooth muscle cells (VSMCs) mainly by stimulating soluble guanylyl cyclase to produce cyclic guanosine monophosphate [46, 48]. By reacting with the Cys thiol group and reversibly regulating S-nitrosylation, NO can play a role in relaxing blood vessels [49]. Endothelial nitric oxide synthase (eNOS) is the leading source of most vascular NO, and is also a critical enzyme to protect endothelium against vascular damage [50, 51]. Besides NO, vasodilators include other dissolved gasses such as hydrogen sulfide (H2S) and carbon monoxide (CO), which are also secreted by endothelial cells [52-54]. The endothelium also produces vasoconstrictor molecules, such as angiotensin II (AngII), endothelin 1 (ET-1), thromboxane A2 (TXA2), thrombin, and others [55]. The dynamic balance between vasoconstrictor and vasodilator mediators is an important foundation for endothelial cells to maintain homeostasis. On the other hand, the autonomic nervous system and various neurotransmitters play an essential role in the regulation of vascular tone [56]. The endothelial cells express a variety of receptors that specifically interact with neurotransmitters from the nerve terminal. Among various neurotransmitters, norepinephrine (NE), adenosine triphosphate (ATP) and neuropeptide Y (NPY) relax blood vessels, while acetylcholine (Ach) and calcitonin gene-related peptide (CGRP) act as vasodilators. The endothelial cells are triggered to produce NO and other

Endothelial cell functions

There are three layers of blood vessels, and the innermost layer is the intima composed of a monolayer of endothelial cells and the underlying internal elastic lamella [41]. In the physiological state, the healthy endothelium serves diverse biological functions (Figure 1) and creates an adaptive life support system that extends to almost every tissue and organ [42].

![Figure 1. Multi-faceted biological functions of endothelium.](http://www.thno.org)
vasoactive gases when the adrenergic endothelial receptors are activated [57].

The endothelium senses mechanical stress and mediates mechano-transduction through mechanosensors or mechanosensitive complexes [58]. Endothelial cells convert mechanical stress into intracellular biochemical signals, such as increased NO, H2S, and calcium concentration [59-61]. Thus, these responses of vascular mechano-transduction serve to prevent vascular cells from damage induced by mechanical injury [58]. Endothelial integrity, another primary function of the endothelium, is affected by the degree of injury and depends on the integrity of the endogenous repair ability of the vessels [62]. When an adjacent endothelial cell is damaged, the local mature endothelial cell can replicate to replace the lost and damaged cell. However, if endothelial cells only rely on local replication function, it is far from enough to resist external damage [63]. A recently study shows that the protection is driven by a transient activation of extracellular-signal-regulated kinase (ERK) in endothelial cells neighboring extruding cells, which inhibits caspase activation and prevents elimination of endothelial cells in clusters [64]. Endothelial progenitor cells (EPCs) in the circulation participate in another repairing mechanism for maintaining the integrity of the endothelium, which has been clearly explained [65]. Therefore, mechano-transduction and circulating EPCs may play an essential role in the pathogenesis of vascular disease by affecting endothelial injury and repair.

Maintaining the balance between anticoagulant and procoagulant status of the vessel wall and blood is a critical function of the endothelium. Although endothelial cells have close contact with platelets, there is no harmful reaction in the blood vessels of a healthy organism [66]. Plasminogen activator (PA) and plasminogen activator inhibitor (PAI) are synthesized and secreted by endothelial cells, providing anticoagulant and procoagulant regulatory mechanisms, respectively [67]. There are several mechanisms involved in the regulation process, such as enhanced plasminogen activation by tissue-PA (t-PA) or urokinase-PA (u-PA), reduced inhibition of plasmin by α2-antiplasmin or of PAs by PAs, and enhanced conversion of single-chain u-PA to two chain u-PA [68].

Angiogenesis, depending on endothelial cell migration, is another basic function of the endothelium [69]. Endothelial cells regulate angiogenesis through producing several factors, including vascular endothelial growth factor (VEGF), NO, matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and triggers [44, 70]. On this basis, endothelial cells have the ability to adjust their number and arrangement to meet local needs.

As a sizeable endocrine organ, endothelial cells have a metabolic (large source of energy form glycolysis) and synthetic function. In addition to vasoactive substances, endothelial cells can also secrete various mediators, thus affecting the whole-body cell function [44]. Endothelial cells are also processing factories of important metabolites, such as glucose, fatty acids, amino acids, lipids, ATP, acetyl coenzyme A, and lactate, and endothelial cells regulate the supply of nutrition and oxygen to all tissues of the body [44, 71]. The angiocrine and angiogenic function of endothelial cells underlie its importance in regulating tumor metastasis and neovascularization in states of myocardial infarction.

In summary, these physiological functions of the intact endothelium complement each other, and each role is crucial to maintaining the homeostasis of the vasculature.

Endothelial dysfunction (ED) in diabetes and its complications

Hyperglycemia and ED

ED occurs when the production and secretion of vasodilators and vasoconstrictors are out of balance, leading to impaired endothelium-dependent vasodilation. Hyperglycemia, as the defining clinical feature of diabetes mellitus, is known to cause ED through several mechanisms [72], including those involving advanced glycation end products (AGEs), hexosamine, glycocalyx reduction, protein kinase C (PKC), oxidative stress, proliferative dysfunction, ascorbic acid and aldose reductase [73-78]. Hyperglycemia induces changes in a variety of cellular signaling and metabolic pathways including altered hemodynamics due to decreased eNOS activity and increased ET-1 synthesis, increased oxidative stress and inflammation, basement membrane thickening caused by transforming growth factor-β (TGF-β) mediated increased synthesis of collagen IV and fibronectin, extracellular matrix changes, VEGF-induced damage to VSMC vascular permeability, cellular growth, inhibition of protein kinase B (PKB, also known as Akt) activation, angiogenesis, and decrease of Na+K+-ATPase activity [79-81]. These changes can further lead to endothelial function injury. In addition, fluctuating plasma glucose levels in people with diabetes can also cause endothelial cell damage [82]. It is speculated that endoglin is involved in the regulation of ED, and oxidative stress may play a role in this regulation [83]. Through suppression of phosphatidylinositol 3 kinase (PI3K)-Akt signalling
and activation of FOXO1 in cultured primary endothelial cells, hyperglycemia stimulated placenta growth factor (PIGF) secretion which is a pro-inflammatory angiogenic mediator [84]. Hyperglycemia drives ED via different mechanisms, including excessive oxidative stress, over activated inflammation and reduced NO bioavailability (see Figure 2). Mechanistically, metformin improves ED through liver kinase B1 (LKB1)/AMPK and AMPK-independent targets [85]. The mechanisms involved can interact with each other and amplify the influence, which may bring a vicious circle.

Previous studies have shown that hyperglycemia-induced oxidative stress could cause deoxyribonucleic acid (DNA) damage and induce endothelial cell senescence, injury, apoptosis, and endothelial-to-mesenchymal transition (EndoMT) [86-88]. Upon DNA damage, the nuclear enzyme poly ADP-ribose polymerase (PARP) is activated, promoting the production of adenosine diphosphate (ADP)-ribose polymers. Then, hyperglycemia-induced overproduction of superoxide also inhibits glyceraldehyde phosphate dehydrogenase (GAPDH) activity [89]. Furthermore, glycolytic intermediates produce to diacylglycerol, which can activate both classical and novel PKC pathways [81] involved in vascular hyperpermeability, cell growth, neovascularization and other vascular abnormalities of diabetes. There are at least 11 PKC isoforms, and the β- and δ-isoforms appear to be activated preferentially by the diabetic milieu [81]. High glucose-induced nuclear factor-kappaB (NF-κB) DNA binding activity may also induce a low-grade pro-inflammatory state and mediate this inhibition of cellular migration by regulating the NO levels in endothelial cells [90, 91]. In addition, the release of endothelial cell-derived vasoconstrictor factors and the disruption of the endothelial glyocalyx both increase in a high-glucose environment [92, 93]. The main precursor of AGEs, methylglyoxal (MGO), a reactive dicarbonyl generated is believed to play a critical role in ED. As presented in a previous study, after treatment with MGO for three months, it was observed that the formation of AGEs and the expression of monocyte chemotactic protein 1 (MCP1) and the receptor for AGEs (RAGE) were increased compared to the matched control group [94], while the bioavailability of NO was decreased significantly concurrent with increased level of superoxide anion. Therefore, MGO scavengers have the potential to attenuate hyperglycemia-induced ED and MGO through ATP-sensitive potassium (K ATP)/mitogen-activated protein kinase (MAPK) pathway activation [95].

Figure 2. Role of endothelial dysfunction in diabetes and its cardiovascular complications. Hyperglycemia is the leading and common characteristic of diabetes and its cardiovascular complications, including insulin resistance and glucose fluctuation. Hyperglycemia drives endothelial dysfunction via different mechanisms, such as 1) Decreased bioavailability of NO and increased secretion of vasoconstrictors, e.g., ET-1 and Ang II; 2) Increased level of MGO/AGE/RAGE; 3) Enhanced inflammatory response, which is also affected by increased glucose fluctuation; 4) Enhanced oxidative stress; 5) Disruption of endothelial glyocalyx; 6) The expression of epigenetic, such as the level some miRNA, lncRNA. The role of endothelial dysfunction is reflected in the following aspects: 1) The vasodilation decreases and the vasoconstriction increases, and then the vascular homeostasis is broken; 2) Leukocytes adhesion and migration, and platelet aggregation increase; 3) The injury/apoptotic process of endothelial cells is increased; 4) The process of EndoMT is promoted; 5) The endothelial senescence is increased; 6) The permeability of endothelial cells increases. Abbreviations: AMPK, 5'-adenosine monophosphate-activated protein kinase; AGEs, advanced glycation end products; Ang II, angiotensin II; EndoMT, endothelial-to-mesenchymal transition; ET-1, endothelin 1; ICAM1, intercellular adhesion molecule 1; lncRNAs, long noncoding RNAs; MGO, methylglyoxal; mRNAs, microRNAs; NF-κB, nuclear factor-kappaB; PARP, poly ADP-ribose polymerase; Akt, also known as PKB, protein kinase B; RAGE, receptor for AGEs; SIRT1, sirtuin 1; VCAM1, vascular cell adhesion molecule 1.
Insulin resistance (IR) and ED

In diabetes mellitus, hyperinsulinemia and hyperglycemia are both reported to selectively impair receptor-dependent, endothelium-dependent relaxation [96]. The metabolic disorders of IR, hyperglycemia and excessive circulating free fatty acids cause vascular tissue oxidative stress, mild inflammation, platelet hyperactivity, and ED. In 1997, Pinkney et al. proposed that the IR syndrome was accompanied by many aspects of atherogenesis, which could be viewed as the different consequences of the effect of ED on different vascular beds [97]. In a rat model of IR, the endothelium-dependent relaxation is impaired due to the defect in NO/prostanoid-independent relaxation [98]. Associated with lipotoxicity, glucotoxicity, and inflammation, IR may damage the endothelial cell and thus trigger and accelerate atherosclerosis and CVD [30, 99-102].

Insulin activates the PI3K-Akt pathway, phosphorylates eNOS at Serine 117 site, thereby promoting the synthesis of NO in endothelial cells under normal physiological conditions [103]. However, when the body is in a state of IR, the PI3K-Akt pathway is impaired, as well as the process of NO production. Alternatively, the MAPK pathway causes the synthesis of inflammatory markers, including PAI-1, intercellular adhesion molecule 1 (ICAM1), E-selectin, and vascular cell adhesion molecule 1 (VCAM1), thereby leading to ED [104]. Therefore, the pathogenic factors of ED induced by obesity, one of the main causes of IR, in the early stages will further impair the insulin signaling pathways of endothelial cells, resulting in reduced vasodilatation, abnormal capillary recruitment, and the transfer of insulin substrate to the target tissues [105]. Even after blood glucose levels have returned to normal, the known phenomenon of ‘metabolic memory’ persists and the harmful effects of hyperglycemia are perpetuated. In addition, molecular and vascular abnormalities involving NO persisted for several months even though the biochemical parameters of IR and ED were normalized, confirming the long-term effects of metabolic memory [106]. Increasing evidence shows that chronic inflammation of metabolic tissues plays a causal role in obesity-induced IR. However, it is still unclear how specific endothelial factors affect metabolic tissues [107].

Advanced glycation end products (AGEs) and ED

The reactive oxygen intermediates (ROI), the reactive chemical entities accelerating the formation of AGEs, activate multiple mechanisms that are potentially involved in the development of vascular complications, such as the activation of NF-κB, PKC and upregulation of the hexosamine pathway [108]. The binding of AGEs to RAGE increases intracellular enzymatic superoxide production [109] and induces the expression of heparanase in human umbilical vein endothelial cells (HUVECs), via activation of the forkhead box O4 (FOXO4) [110]. In a cohort study, independent of other cardiovascular risk factors, the elevated serum AGEs levels in patients with T2D was shown to be associated with ED [111]. AGEs impair endothelial-dependent vascular relaxation and the mechanism is primarily due to reduced bioavailability and activity of NO [112] and activation of p38 and ERK1/2 by reducing eNOS expression and increasing the level of reactive oxygen species (ROS) production [113]. Of note, serum AGEs do not follow the same time course even though glycated hemoglobin A1c and markers of endothelial function improve under insulin therapy [114], suggesting that there may be other factors affecting AGEs, in addition to hyperglycemia, such as oxidative stress.

More recently, mounting evidence has supported the contention that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are associated with ED [115-118]. In this regard, AGEs induce downregulation of miR-200c and miR-200b, which leads to increased expression of target genes Rho-associated coiled-coil kinase (ROCK) and RhoA, respectively [119].

Oxidative stress, inflammation and ED

Oxidative stress is a state of imbalance between antioxidant systems and exposure to toxic ROS and related chemical species. It has been established that a low concentration of intracellular ROS is essential in maintaining antioxidant/redox homeostasis, vascular integrity and function. However, under pathological conditions such as occurring during the development of atherosclerosis, injury after ischemia-reperfusion and hypoxia, the ROS level is elevated in response to adverse stimuli [120]. ROS are produced by a variety of oxidase enzymes, including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), lipoxygenase, xanthine oxidase, cyclooxygenase, glucose oxidase, eNOS uncoupling, and mitochondrial electron transport (cytochromeP450 monooxygenase) [121-128]. It follows that proteins and lipids are oxidized by excessive ROS (especially free radicals), which leads to the overexpression of redox genes, intracellular calcium overload and DNA fragmentation, and consequently damage to VSMCs, endothelial cells and myocardial cells [129]. In the early stage of atherosclerosis, the number of inflammatory cells (monocytes/macrophages/
T-lymphocytes) and the process of arteriosclerosis are all associated with enhanced serum levels of inflammatory parameters [130]. As seen in chronic inflammation, the arteriosclerotic artery produces different adhesion molecules, cytokines, and growth factors [20, 131]. When endothelial cells are activated by inflammation, the increased expression of VCAM1, selectins and ICAM1 will promote monocyte adhesion to the vessel wall [132]. Many cytokines, including circulating inflammatory cytokines, tumor necrosis factor-α (TNF-α), ROS, oxidized low-density lipoprotein (oxLDL), and traditional risk factors can directly or indirectly induce abnormal functioning of endothelial cells, resulting in impaired vasodilation, increased endothelial permeability, increased leukocyte adhesion and thrombosis [133-135].

Over-inflammatory/oxidative stress causes ED in patients with and without diabetes [136, 137]. Indeed, in young women without IHD and low risk of CVD (“low risk subjects”), the over-inflammatory/oxidative stress may be the main determinant factors of ED and major adverse cardiovascular events (MACE) [137]. It is relevant to note that ED could be linked to other non-classical CVDs’ risk factors as adipose tissue deposition and excess. This is observed in women [137] with different classes of breast fat density (lowest breast density) and increased risk of pre-diabetes and diabetes. On the other hand, it has been remarked in overweight patients with altered glycemia and IR, as those with pre-DM and without first clinical manifestation of CVD. Excess of abdominal adipose tissue in these overweight pre-diabetics patients with IR is a chronic source of inflammatory molecules that cause ED and reduction of cardiac performance and worse prognosis [138, 139].

In 2002, a study from Ceriello et al. [74] showed that oxidative stress was a common mediator of post-prandial hyperglycemia and hypertriglyceridemia on endothelial function. Hyperglycemia increases intracellular ROS through the interrogation mechanism between cytosolic and mitochondrial ROS production [140], which once again shows that the decrease in NO production and the imbalance of increased ROS production may be related to the impaired endothelium-dependent vasodilation in patients with CVD. Conditions such as hyperlipidemia can also induce increased levels of AGEs, leading to increased ROS and oxLDL accumulation in diabetic animals [141]. Cytokines and oxLDL stimulate endothelial cell permeability, and NF-κB-dependent inflammatory gene expression and ROS appear to play a central role in mediating both responses [72]. Therefore, the vicious cycle among ED, oxidative stress and inflammation will lead to atherosclerosis in diabetes and associated conditions [128].

Endothelial-to-mesenchymal transition (EndoMT) and ED

EndoMT is an extremely complex pathophysiological process during which endothelial cells lose their specific markers and acquire the phenotypes of mesenchymal cells or myofibroblasts [142]. In hyperglycemia, it is deduced that high glucose levels induce EndoMT through ERK, Smad2/3, nucleotide-binding oligomerization domain-containing protein 2 (NOD2), ROCK1, and serum response factor in glomerular endothelial cells – this sequence results in increased expression of mesenchymal markers in different types of endothelial cells [143, 144]. Recently, evidence has suggested that EndoMT is a critical link in the interactions between ED and inflammation. Through this process, varieties of inflammatory mediators activate endothelial cells and transform them into mesenchymal-like cells. The factors implicated in this response are interleukin-1beta (IL-1β), TNF-α, NF-κB transcription factor, and endotoxins [145-147]. In addition to inflammation and hyperglycemia, hypoxia [148], dyslipidemia [149], miRNAs and lncRNAs [150] and other abnormalities are related to the induction of EndoMT. Notwithstanding these findings, the totalities of the mechanisms involved in EndoMT are not fully understood.

Current status of metformin in the amelioration of ED

Metformin is a biguanide derivative that exerts an anti-hyperglycemic effect with minimal risk of hypoglycemia. Metformin is currently the first choice for the majority of patients with newly diagnosed T2D requiring medical therapy. The primary status of metformin has arisen from the results of clinical evidence from the UKPDS [34]. The reduction of glucose production in liver cells and increased uptake in skeletal muscle are considered the primary processes mediating the hypoglycemic effect of metformin although multiple other actions have been suggested [151].

As for the efficacy of SGLT2i [37] and GLP-1RAs [36], numerous clinical studies have shown that metformin can improve vascular endothelial function and reduce CVD in patients with diabetes (see Table 1 [152-167]). A study reported in 2001, utilizing a moderate dose of metformin (500 mg twice daily) administered for 12 weeks and compared to placebo, showed improvement in Ach-stimulated flow (and IR) was observed among diet-treated T2D patients. In this study IR was the sole predictor of
endothelium-dependent blood flow after metformin treatment [152]. Similar benefits were observed with longer-term and higher doses of metformin. Fifteen T2D patients took 1700 mg per day for three months, and t-PA, VCAM1 and ICAM1 levels were significantly reduced [155]. For obese patients who have previously received medical nutrition guidance and regular exercise, after taking metformin for 12 weeks (average dosage 1381 ± 85 mg/d), a decrease in PAI-1 and VEGF was observed, effects which were independent of favourable effects of metformin on body mass index (BMI) and glycemic control [156]. Among T2D patients with stable coronary heart disease, treatment with metformin affects VCAM1 and asymmetric dimethylarginine (ADMA) levels [166]. Still, it does not impair the endothelial healing of drug-eluting stents in these patients with or without insulin use [168]. In the long-term treatment (4.3 years) with metformin plus insulin, most of the inflammatory biomarkers, such as the von Willebrand factor (vWF), soluble VCAM1, t-PA, and ICAM1, were significantly reduced even after adjusting for baseline differences in age, sex, smoking and severity of previous CVD [161]. When comparing the effect with the other antihyperglycemic agents, at equivalent levels of glycemic control, metformin was more effective in reducing biomarkers reflecting inflammation and improving endothelial functions than repaglinide (an insulin secretagogue) [157], and only rosiglitazone (the insulin-sensitizing agent) improved endothelium-dependent vasodilatation and insulin sensitivity more than metformin [169]. In addition, with lipid-lowering agents, such as atorvastatin or fenofibrate, used in combination among T2D patients, metformin is demonstrated not only to prevent the glucose-induced impairment of endothelial functions partly but also potentiates lymphocyte-suppressing, endothelial protective and systemic anti-inflammatory effects of fenofibrate, superior to monotherapy [158, 170]. A recent randomized controlled trial showed that through distinct or complementary mechanisms of action on the vascular wall, metformin was able to improve functional capillary density during post-occlusive reactive hyperemia in obese newly diagnosed drug-naive women with T2DM [165].

The traditional paradigms of T2D occurring only in adults and T1D only in children are no longer accurate, as both diseases occur in both age-groups. There is less data available about metformin affects on the endothelium among patients with T1D in whom increasing evidence suggests the deleterious effect of glycemic variability and fluctuations on CVD. The

Reversing with Metformin Vascular Adverse Lesions (REMOVAL) trial, the largest and longest trial of metformin in T1D to date, has demonstrated that metformin does not reduce either the carotid intima-media thickness (IMT) or the reactive hyperemia index (RHI) after treatment with metformin for approximately three years [167]. However, among the uncomplicated subjects with T1D, metformin is shown to improve the flow mediated dilation (FMD) and the biomarker of oxidative stress (urinary 8-iso-prostaglandin F2α) after 6-month treatment, irrespective of its effects on glycemic control and BMI [160]. There was a cardioprotective effect of metformin for those without overt CVD through improving circulating EPCs, pro-angiogenic cells, and circulating endothelial cells count and function independently [171]. In addition, with the combination of metformin and the SGLT2i, empagliflozin, used in patients with T1D, arterial stiffness and endothelial function assessed by FMD and RHI were significantly improved in the combination therapy group compared to those on monotherapy [164].

Furthermore, metformin reduces the inflammatory biomarkers, such as vWF, sVCAM1, and sICAM1, among volunteers with impaired glucose tolerance [172]. Moreover, metformin may improve vascular function and decrease myocardial ischemia in nondiabetic women with chest pain and angiographically normal coronary arteries [173]. Among women with polycystic ovary syndrome (PCOS), those resulting from the critical pathophysiologic component contributing to hyperandrogenisms and the reproductive metabolic features with IR, conflicting results have been reported regarding the effects of metformin on endothelial function [174]. Metformin (850-1700 mg daily) therapy could reduce the baseline diameter of the brachial artery, FMD, IMT, and serum VEGFB after reactive hyperemia among women with PCOS, and even improve the FMD values, plasma ET-1 after 6-month treatment [175-179]. In one study which compared the characteristics among nonobese adolescents with PCOS and healthy age-matched volunteers, only the surrogate markers of cardiovascular risk such as blood pressure, levels of C-reactive protein (CRP), and PAI-1, whereas the deterioration of vascular structure and function has also been undetected even after 6-month treatment with metformin [180]. Metformin therapy reduces the high risk of cardiovascular events in pre-DM patients by reducing coronary ED with two-year therapy [181].
Table 1. Clinical evidence demonstrating the effect of metformin on endothelial function among diabetic patients

Articles	Subjects	Intervention in metformin	Assessments	Conclusions
Mather, K. J. (2001) [152]	Diet-treated T2D	1000 mg/d, 12 weeks, N = 29	Ach-stimulated flows: ↑; Nitroprusside-stimulated flows: NS; Verapamil-stimulated flows: NS	IR was the sole predictor of endothelium-dependent blood flow following metformin treatment.
Abbasi F (2004) [153]	T2D	1000-2000 mg/d, 12 weeks, N = 16	sICAM-1 ↓; sVCAM-1: NS; ET-1: NS	Metformin, either as monotherapy or in combination with a sulfonylurea drug, led to a decrease in several CVD risk factors in patients with T2D.
De Jager J (2005) [154]	T2D treated with insulin	850 mg/d, 16 weeks, N = 196	vWF ↑; sET-1 ↓; t-PA ↓; PAI-1 ↑; s-ICAM-1: NS; s-VCAM-1: NS	An improvement of endothelial function with metformin in T2D treated with insulin, which was largely unrelated to changes in glycemic control.
Skrha J (2007) [155]	T2D	1700 mg/d, 12 weeks, N = 15	tPA ↑; sVCAM-1↑; sICAM-1 ↓; Microcirculation by laser Doppler: NS	Metformin treatment promotes endothelial effects associated with a complex of metabolic changes in T2D.
Ensoy C (2008) [156]	Obese T2D	1381 ± 85 mg/d, 12 weeks, N = 24	PAI-1 ↓; VEGF ↑	A beneficial effect on VEGF and PAI-1 levels with metformin in obese T2D.
Lund SI (2008) [157]	Non-obese T2D without insulin	2000 mg/d, 16 weeks, N = 83	PAI-1 ↓; tPA ↓; s-ICAM-1 ↓; sVCAM-1: ↑; ET-1: ↑	Metformin was more effective in reducing selected biomarkers reflecting inflammation and endothelial dysfunction compared with repaglinide despite similar glycemic levels between treatments.
Tousoulis D (2010) [158]	Newly diagnosed DM	850 mg/d, 6 weeks, N = 15	Resting FBF: NS; EDD: decrease in combination with atorvastatin	Combined with metformin and atorvastatin for 6 weeks partly prevented the glucose-induced impairment of EDD.
Fidan E (2011) [159]	T2D	850-2550 mg/d, 12 weeks, N = 20	PAI-1: NS; sICAM-1: ↓; ET-1: NS; Fibrinogen: NS	Metformin was effective in controlling inflammatory markers in addition to metabolic parameters.
Pitocco D (2013) [160]	Uncomplicated T1D	2550 mg/d, 6 months, N = 21	FMD ↑; NMD: NS	Metformin improved FMD and increased PGF2α in uncomplicated T1D.
de Jager J (2014) [161]	T2D treated with insulin	850 mg/d, 4.3 years, N = 131	vWF ↓; sVCAM-1: ↓; sICAM-1: ↓; t-PA, PAI-1 ↓; ET-1: NS	Metformin is associated with improvement in some markers of endothelial function in T2D.
Kruszelnicka O (2015) [162]	T2D with stable CHD	Previous 1 year, N = 40	sVCAM-1: ↑, ADMA ↑	Metformin affects VCAM1 and ADMA levels among T2D patients with stable CHD.
Shigiyama F (2017) [163]	T2D treated with metformin	750-1500 mg/d, 16 weeks, N = 54	FMD: NS in alone; increase in combination with linagliptin	Among T2D patients with moderate hyperglycemia, metformin plus linagliptin induced both better glycemic control and improvement of endothelial function.
Kitao N (2017) [164]	T2D treated with metformin	1000-1500 mg/d, 12 weeks, N = 48	FMD: NS	Combination of vildagliptin and metformin did not affect endothelial function but exerted favorable effects on adipokine with T2D without advanced atherosclerosis.
Petrie JR (2017) [165]	T1D at increased risk for CVD	2000 mg/d, 3 years, N = 219	Progression of mean cIMT: NS; Reactive hyperaemia index: NS	Metformin did not affect on endothelial function but might have a wider role in cardiovascular risk management.
Lunder, M (2018) [166]	T1D	2000 mg/d, 12 weeks, N = 10	Beta stiffness: NS in metformin alone; FMD ↑	Empagliflozin on top of metformin treatment significantly improved arterial stiffness compared to metformin in T1D.
Schiapacassa, A (2019) [167]	Obesity T2DM women	1700 mg/d, 30 days, N = 19	Nutritive microvascular reactivity ↑; Functional capillary density during post-occlusive reactive hyperemia ↑	Metformin was able to improve vascular function in obese newly diagnosed drug-naive T2DM women, through distinct or complementary mechanisms of action on the vascular wall.

Abbreviations: Ach, acetylcholine; ADMA, asymmetric dimethylarginine; CHD, coronary heart disease; CVD, cardiovascular Disease; DM, diabetes mellitus; EDD, endothelium-dependent vasodilation; ET-1, endothelin-1; FBF, forearm blood flow; FMD, flow mediated dilation; IR, insulin resistance; NMD, nitroglycerin-mediated dilation; NS, non-significant; PAI-1, plasminogen activator inhibitor-1; PGF2α, prostaglandin F2α; s-ICAM-1, soluble intercellular adhesion molecule-1; s-VCAM-1, soluble vascular cell adhesion molecule-1; T1D, type 1 diabetes; T2D, type 2 diabetes; t-PA, tissue plasminogen activator; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.

Pharmacological effects of metformin on endothelial function

Regulation of vascular tone

Impaired endothelium-dependent vasodilation is a common characteristic in arteries in both T1D and T2D. NO is the major vasodilator synthesized from its precursor L-arginine via eNOS [182]. Metformin (60 mg/kg/d) treatment improves endothelial functions in the T2D rat model (Goto-Kakizaki rats) and significantly improves NO bioavailability in rats [183]. Metformin (300 mg/kg/d) therapy does not effectively correct hyperglycemia; however, the reduction of vasodilation and total eNOS activity in a T1D rat model (streptozotocin, STZ-induced rats) can be corrected by metformin treatment [184]. In a 2006 study, AMPK was found to be necessary for metformin to enhance eNOS activation in vitro [35]. There is a positive correlation between the concentrations of metformin (50-500 mmol/L) and the levels of eNOS with serum-1179 (Ser1179) phosphorylation and heat shock protein 90 (HSP90), resulting in increased eNOS activation and NO bioactivity [35]. Henceforth, AMPK activation became one main recognised mechanisms of the vascular protective effects of metformin. Recently, the eNOS activating effect of metformin (250 mg/kg/d) on EPCs of STZ-induced diabetic mice has also been demonstrated [185].

In diabetes, part of the eNOS process produces superoxide anion instead of NO, and this is referred to
as “eNOS uncoupling”. The decrease of endothelium-derived tetrahydrobiopterin (BH4, a vital cofactor for eNOS) promotes the uncoupling of eNOS [50, 51]. Metformin (300 mg/kg/d) treatment normalizes Ach-induced endothelial relaxation and increased GTP cyclohydrolase 1 (GCH1, the rate-limiting enzyme in BH4 biosynthesis) and BH4 levels [186] in both diabetic and wild type mice by slowing down the degradation of GCH1 via a post-translational mechanism [187]. Metformin (2 mmol/L, 200 mg/kg/d, respectively) may also inhibit NOX (p47-phox) via AMPK activation in HUVECs [188] and increase the phosphorylation of AMPKα and PARP1 in the aortas of spontaneously hypertensive rats [189]. Metformin (100-500 mg/kg/d) treatment increases NO bioavailability and attenuates high-sensitivity CRP (hCRP)-induced hypertension by activating of AMPK/peroxisome proliferator-activated receptor δ (PPARδ) pathway [190] and AMPK-eNOS phosphorylation pathway [191] in animal studies. Metformin (500 μM) also reduces p38 MAPK signal transduction through an AMPK dependent mechanism [192].

Metformin affects the expression of several vasoconstrictor molecules such as ET-1, AngII, and tissue factors to regulate vascular tone. In both clinical and basic research, metformin treatment reduces ET-1 levels in patients with PCOS (Diamanti-Kandarakis et al. 2001) and insulin-resistant human endothelial cells [193]. Metformin inhibits PKC membrane translocation and activity induced by AngII [194]. AngII stimulates vascular NOX and is activated through the AngII receptor AT1R-PKC pathway [195], and is closely related to vascular oxidative stress in ED under diabetic conditions [196]. In addition, by inhibiting vasoconstrictor prostanooids, metformin also improves the endothelial function of mesenteric arteries in a T2D rat model [197].

Inhibition of inflammation and leukocyte adhesion to endothelial cells

Metformin inhibits the pro-inflammatory changes induced by cytokines, which may be one mechanism for its vascular actions beyond the hypoglycemic effect. Like the AMPK activator AICAR, which can inhibit the increase in NF-κB reporter gene expression incubated with TNF-α in HUVECs [198], metformin (2-10 mM) is been found to inhibit inflammation through the AMPK-dependent IKK/IKBa/ NF-κB inhibitory pathway (Figure 3) [199]. Except for inhibition of NF-κB through blockade of the PI3K-Akt pathway in human saphenous vein endothelial cells [200], metformin also inhibits TNF-α induced production of Interleukin-6 (IL-6) [201] and several other inflammatory molecules responsible for monocyte adhesion to activated endothelial cells including VCAM1, MCPI, E-selectin, and ICAM1, by up-regulating B-cell lymphoma 6 (BCL6) and AMPK-induced phosphorylation of PARP1 at ser-177 [202], and the phosphorylation of histone deacetylase 5 (HDAC5) at serine 498 [203].

Treatment with metformin decreases retinal leukocyte adhesion [204], palmitic acid-induced monocye adhesion [205], and reduces clinically relevant high levels of CRP-induced ED and hypertension [191]. Metformin (300-500 mg/kg/d) pretreatment also reduces ferrous chloride-induced thrombosis in carotid arteries [206]. Metformin can also reduces the uptake of oxLDL by endothelial cells and reduces subsequent inflammatory signals, thereby preventing macrophage adhesion and infiltration [207]. Additional mechanisms of metformin-stimulated autophagic flux [205] and krüppel-like factor 2 (KLF2) restoration [203, 208] partially contribute to the anti-inflammatory action of metformin in endothelial cells.

Inhibition of oxidative stress in endothelial cells

Metformin inhibits ROS production and reduces ROS levels in endothelial cells through multiple antioxidant mechanisms, including inhibiting NOX and stimulating catalase activity [209] and inhibiting lectin-like oxidized LDL receptor 1 (LOX-1) expression [210]. Other antioxidant mechanisms include reducing PKC membrane translocation and activity [194], increasing peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC1α) [211] and thioredoxin (TRX) expression [212], and normalizing mitochondrial ROS production [211]. Some evidence suggests that PGC1α is an essential regulator of intracellular ROS levels. Metformin can induce PGC1α and manganese superoxide dismutase (MnSOD), resulting in inhibition of mitochondrial ROS [213] and increased TRX expression through activation of the AMPK-forkhead box O3 (FOXO3) pathway in human aortic endothelial cells (HAECs) [212]. In addition, metformin therapy inhibits endoplasmic reticulum stress (ER stress) and oxidative stress on activation of the AMPK/PPARδ pathway in obese diabetic mice [190]. ER stress plays a key role in progression of diabetes and development of complications, especially CVD [214]. While oxLDL is a product of chronic oxidative stress which generate pro-oxidant effects by inducing ROS generation, metformin (20 μM) decreases ROS levels by inhibiting LOX-1 expression and increasing Akt/eNOS levels [210].
Figure 3. Protective effects of metformin against endothelial dysfunction and its molecular targets. Metformin improves endothelial dysfunction through the following mechanisms: 1) increasing NO production and inhibiting eNOS uncoupling, 2) inhibiting inflammation and leukocyte adhesion to endothelial cells, 3) inhibiting oxidative stress, 4) inhibiting endothelial cell senescence, 5) preventing endothelial cell death and apoptosis, 6) inhibition of EndoMT, 7) inhibition of endothelial permeability, 8) increasing differentiation of EPCs. These pharmacological effects of metformin were exerted through LKB1/AMPK and AMPK-independent targets. Abbreviations: AMPK, 5′-adenosine monophosphate-activated protein kinase; AGEs, advanced glycation end products; BCL6, B-cell lymphoma 6; BDNF, brain-derived neurotrophic factor; BH4, tetrahydrobiopterin; ChREBP, carbohydrate response element-binding protein; CREB, cyclic AMP response element binding; Ch25h, cholesterol-25-hydroxylase; DOT1L, Dot1-like protein; ER stress, endoplasmic reticulum stress; ERK, extracellular-signal-regulated kinase; eNOS, endothelial nitric oxide synthase; EPCs, endothelial progenitor cells; EndoMT, endothelial-to-mesenchymal transition; FOXO1, forkhead box O1; FOXO3, forkhead box O3; GCH1, Gtp cyclohydrolase 1; H3K79me3, histone H3 lysine 79 trimethylation; HIF-1α, hypoxia inducible factor -1 alpha; ICAM1, intercellular adhesion molecule 1; IL-6, interleukin-6; LOX-1, lectin-like oxidized LDL receptor 1; KLF2, krüppel-like factor 2; KLF4, krüppel-like factor 4; LKB1, liver kinase B1; mTOR, mammalian target of rapamycin; MnSOD, manganese superoxide dismutase; MAPK, mitogen-activated protein kinase; MCP1, monocyte chemoattractant protein 1; MPP, matrix metalloproteinases; mPTP, mitochondrial permeability transition pore; MAPK, mitogen-activated protein kinase; MCP1, monocyte chemoattractant protein 1; MiR, microRNA; NF-κB, nuclear factor-kappaB; NO, nitric oxide; NOX, NADPH oxidase; OGG1, 8-oxoguanine glycosylase 1; oxLDL, oxidized low-density lipoprotein; PARP1-p, phosphorylation of poly ADP-ribose polymerase 1; PFN1, profilin-1; PTEN, phosphatase and tensin homolog; ROS, reactive oxygen species; SIRT1, sirtuin 1; TRAF3IP2, TRAF3-interacting protein 2; TRX, thioredoxin; TXNIP, TRX-interacting protein; VCAM1, vascular cell adhesion molecule 1.

Besides its effect on oxidative stress, metformin also reduces nitrooxidative stress. The treatment of metformin (300 mg/kg/d) is observed to increase the production of NO by 37% and 57% in aortic and glomerular endothelial cells of experimental rats, respectively, while decreasing ONOO (-) (cytotoxic peroxynitrite) by 32% and 34%, compared with controlled animals [215]. Moreover, as the main DNA glycosylase, 8-oxoguanine glycosylase 1 (OGG1) can resist ROS and is involved in various vascular diseases. The level of OGG1 increases under metformin (0.5 mM) treatment through the AMPK/Lin-28/OGG1 pathway [216]. The anti-oxidative function of metformin (10 μM-1 mM) also relates to inhibition of TRAF3-interacting protein 2 (TRAF3IP2), which is a redox-sensitive cytoplasmic adapter protein functions upstream of IKK/NF-kB and c-Jun N-terminal kinase (JNK)/AP-1 (Activator protein-1) [217].

Inhibition of endothelial cell senescence

Endothelial cell senescence leads to ED and contributes to the progression of age-associated vascular disorders [218]. Endothelial cell senescence is characterized by cell cycle arrest and pro-inflammatory gene expression [219-221] and is driven by many factors, including high glucose, ROS, inflammatory cytokines, ionizing radiation, and telomere dysfunction [222, 223]. High glucose induces endothelial cell senescence by inhibiting sirtuin 1 (SIRT1) expression, which can be attenuated with metformin (50-250 μM) treatment by modulating the SIRT1 downstream targets forkhead box O1 (FOXO1) and p53/p21 [224, 225]. In ApoE-/- mice, metformin (50 mg/kg/d) therapy significantly reduces vascular aging and inhibits atherosclerotic plaque formation through AMPK activation leading to SIRT1/Dot1-like protein (DOT1L)/ histone H3 lysine 79 trimethylation (H3K79me3)-induced upregulation of sirtuin 3 (SIRT3) levels [226]. Metformin increases fenestrations in liver sinusoidal endothelial cells isolated form old and young mice [227]. Calcification is a vascular disease marker and a prognostic factor of CVD, which is related to the aging of the vascular system [228]. It is speculated that metformin, acting via AMPK dependent mechanisms, may be a potential target for the treatment of vascular calcification [229]. Indeed, clinical trials have been designed to assess the potential benefits of metformin as an anti-aging drug that enhances healthspan and extends lifespan [230]. The beneficial effects of metformin on aging and...
healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function [230].

Inhibition of endothelial cell death and apoptosis

Metformin (100 μM) prevents endothelial cell death by inhibiting mitochondrial permeability transition pore (mPTP), which is a mitochondrial channel involved in cell death [231]. Metformin partly protects endothelial cells from dysfunction and apoptosis via reducing p38 MAPK phosphorylation [192], inhibiting the mammalian target of rapamycin (mTOR) pathway [232], promoting the PI3K-Akt and phospho-ERK 1/2 pathways [233], and down regulation of TRX-interacting protein (TXNIP) transcription by inactivating carbohydrate response element-binding protein (ChREBP) and FOXO1 [234] in endothelial cells. Metformin (0.01-1.0 mmol/L) also inhibits endothelial cell apoptosis via upregulation of VEGF receptors, fatty acid binding protein 4 (FABP4) [235] and the AMPK/ cyclic AMP response element binding (CREB)/brain-derived neurotrophic factor (BDNF) pathway [236]. Metformin (100 μmol/L or 10 mmol/L) can also inhibit mPTP (a sensitive channel) opening in three endothelial cell types, including HMEC-1, HUVECs, and bovine aortic endothelial cells (BAECs), from preventing hyperglycemia-induced cell death [231].

Inhibition of EndoMT

EndoMT is a driver event in the pathogenesis of atherosclerosis, diabetes associated myocardial remodeling, pulmonary hypertension and others. A study in 2018 explored the effects of different flow patterns on the EndoMT in endothelial cells, indicating that pharmacological activation of AMPK or SIRT1 could attenuate oscillatory shear stress (OS)-induced EndoMT [237]. The beneficial therapeutic effect of metformin on atherosclerosis may be mediated at least in part by inhibiting the EndoMT in the vasculature. The expression of Krüppel-like factor 4 (KLF4), a major transcription factor showing endothelial protection and maintenance of vascular homeostasis, and cholesterol-25-hydroxylase (Ch25h) decreases in high glucose level [238], while metformin (200 mg/kg/d) can increase the expression of KLF4 and Ch25h to suppress EndoMT [239].

Inhibition of the permeability of the endothelium

The increased permeability of the endothelium is accompanied by inflammation-mediated reversible cell rounding and inter-endothelial gap formation [240] and high glucose-activated PKC pathway [241]. Metformin (0.33 mg/ml, two weeks) treatment is associated with improved glyocalyx barrier properties and indicates reduced vascular permeability in mice [242]. Metformin (400 mg/kg/d, 100 mg/kg/d, respectively) administration is associated with reduced lung endothelial hyperpermeability and systemic inflammatory response in STZ-induced diabetic mice [243] and alleviates microvascular ED by suppressing hypoxia inducible factor-1 alpha (HIF-1α)/Profilin-1 (PFN1) signaling, which mediates endothelial cell permeability during diabetic retinopathy [244]. Moderate doses of metformin (0.1-1.0 mM) are shown to produce a increase in the trans-endothelial resistance of endothelial monolayers and enhance the vascular barrier integrity [245]. By activation of AMPK signaling pathway and regulation of oxidant/anti-oxidant balance, metformin abrogates the disruptive effect of polyphosphate which induce hyper-permeability and inflammatory responses through mTOR pathway in endothelial cells [246].

Increased differentiation of endothelial progenitor cells (EPCs)

By restoring damaged endothelial cells, EPCs represent new targets for treating vascular diseases [247, 248]. EPCs, originating from bone marrow [249] and circulating in peripheral blood, have the ability of endothelial differentiation and secretion of angiogenic growth factors and cytokines [250]. Metformin treatment significantly increases EPC differentiation in vitro (1 mM) [251] and in diabetic mice (250 mg/kg/d) [185]. As to mechanism, increased levels of AMPK and eNOS phosphorylation [185], light chain 3 (LC3) expression and NO production, and decreased mTOR, p70 S6K, TGF-β expression [251] and MMP-2 and MMP-9 expression [252] are found in EPCs. In addition, the effects of metformin on improving EPC dysfunction are mediated by several miRNAs, such as miR-130a/ phosphatase and tensin homolog (PTEN) [253] and miR-221/p27 [254].

Future directions

Epigenetic effects of metformin

MicroRNAs (miRNAs) are highly conserved, small, and noncoding RNAs involved in the post-transcriptional regulation of gene expression. MiRNAs participate in regulating endothelial function and dysfunction. Diabetes and hyperlipidemia-induced inflammatory responses upregulate the expression of connexins and Rho kinase by selective downregulation of miR-10a, miR-139b, miR-206, and miR-222 [116]. A study in 2006 found that metformin...
(50 μM), or the inhibition of miR-34a by treatment with an anti-miR-34a inhibitor, increased the expression of SIRT1 and attenuated the impairment in angiogenesis in high glucose-exposed mouse microvascular endothelial cells (MMECs) [255]. In metformin (0-10 mM) or miR-221 siRNA-treated EPCs, AMPK inhibition decreased the expression of p27 and AMPK-mediated autophagic activity [254]. In contrast, upregulation of miR-130a [253], miR-146a and miR-155 [256] via the treatment of metformin (50 μM, 200 mg/kg/d) is observed in PA-exposed EPCs and endothelium, respectively. Giuliani et al. [257] investigated the miRNA landscape in endothelial cells subject to replicative senescence after a long-term application with metformin (20 μM), and found the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p).

Long noncoding RNAs (lncRNAs) represent a family of non-protein-coding transcripts (>200 nucleotides), which occupy the majority of the human genome [258], while circular RNAs (circRNAs) are a large category of noncoding RNAs widely expressed in eukaryotic cells [259]. Growing evidence suggests that lncRNAs [260-263] and circular RNAs [264-268] regulate endothelial functions, while the role of lncRNAs and circular RNAs in the protective effect of metformin on endothelial cells remains largely unclear.

Metformin on endothelial cell metabolism

Evidence has demonstrated the importance of endothelial cells in the maintenance of homeostasis across the entire vascular system. The initiation and progression of atherosclerosis may originate from the disorder of endothrium intracellular metabolism that can be detected at the earliest stages of developing the syndrome [269]. Endothelial cell metabolism is important for maintaining metabolic health, such as glucose, lipid and amino acid, as they have been most extensively studied [270]. The study identifies a metabolic program that promotes the acquisition of a quiescent endothelial state and emphasizes the role of metabolites as signaling molecules in endothelial cells [271]. The activity and migration of endothelial cells decrease when the enzymes related to glucose metabolisms, such as G6P dehydrogenase and transketolase, are inhibited [272]. Previous studies showed that metformin affects FABP4 mediated endothelial fatty acid metabolism [273, 274]. Endothelial cells internalize chylomicrons, which trigger lipid accumulation in aortic of lipoprotein lipase-deficient mice [275]. Recently, metformin (100 μM) is shown to reduce saturated fatty acid-induced lipid accumulation and inflammatory response by restoring autophagic flux in endothelial cells [205]. In addition, metformin (1-5 mM) takes part in regulation of hexose transport [276], reversing glucose starvation-induced ER stress [277] in endothelial cells. Metformin, GLP-1RAs, and SGLT2i are the only drugs screened in seven classes of anti-hyperglycemic drugs which reduce ER stress caused by pharmacological or hyperglycemic conditions in human coronary artery endothelial cells (HCAECs) [214]. In endothelial cells arginine, glutamine, leucine and valine play a role in the metabolism of endothelial cells [278-281].

Metformin on mitochondrial dynamics

Mitochondria are critical integrators that participate in signal transduction, energy production, ROS generation, and cell apoptosis. Recent studies have highlighted the importance of mitochondrial dynamics, especially mitochondrial fusion and fission in mitochondrial homeostasis [282]. In endothelial cells, more fragmented structures caused by fission are associated with mitochondrial dysfunction, contributing to ED with an unclear mechanism [283]. Mitochondrial division is triggered when Dynamin-related protein 1 (DRP1), a cytosolic guanosine-5′-triphosphatase, binds with fission 1 (FIS1) or mitochondrial fission factor (MFF) on mitochondria [282]. Metformin (300 mg/kg/d) is observed to suppress the progression of atherosclerosis through the inhibition of DRP1-mediated mitochondrial fission in STZ-induced diabetic ApoE−/− mice [284]. In addition to inhibiting mitochondrial division, promoting mitochondrial fusion may also benefit endothelial cell function and represent a potential therapeutic approach for diabetes patients with CVD, which is an area that needs further study. In terms of the efficacy of metformin, studies have also shown that metformin (0.01-2 mmol/L) can promote mitochondrial biogenesis by activating AMPK and inducing PGC1α in HUVECs [213].

Therapeutic potential of metformin in COVID-19 patients with diabetes

Coronavirus disease 19 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), is associated with multiple factors, such as cytokine storm, hyperactive inflammatory and immune responses, and coagulation disorders [285]. Among COVID-19 patients with diabetes, the intensive care hospitalization rate and mortality rate are two to three times higher than that of patients without diabetes [286]. Diabetes has been identified as an independent risk factor for poor prognosis of COVID-19 [287, 288]. The underlying pathogenic links between COVID-19 and diabetes include effects on inflammation, glucose homeostasis, immune status changes and renin angiotensin aldosterone system.

http://www.thno.org
(RAAS) activation [289]. Metformin treatment is associated with reduced mortality in COVID-19 patients with diabetes [290-292]. Patients who used metformin before hospitalization also showed lower severity parameters at admission [293]. During SARS-CoV-2 infection, in addition to controlling the glucose level, metformin may attenuate ED, inhibit viral entry and infection, resist oxidative stress, and change inflammatory and immune responses that would explain its ability to achieve cardiovascular protection in COVID-19 [294, 295]. Therefore, metformin may represent a drug candidate for treating COVID-19 and gain the advantage of fighting SARS-CoV-2 induced immune storm in COVID-19 patients with diabetes [296].

Metformin on other transcriptional factors

Recent data has shown that islet ED in db/db mice was evident compared with non-diabetic mice [297]. Metformin/empagliflozin treatment (6 weeks) could reduce the expression of dysfunction marker genes and increase insulin release in vivo [297]. It is speculated that metformin may improve the blood glucose level of T2D patients by enhancing the function of islet endothelial cells. Metformin (100 mg/kg/d) can also promote the development of pulmonary vessels and up regulate the expression of glioma-associated oncogene homolog 1 (Gli1) in pulmonary vascular endothelial cells of hyperoxia newborn mice [298].

Conclusion

Similar as SGLT2i and GLP-1RAs, numerous clinical studies have shown that metformin can improve vascular endothelial functions and reduce CVD in patients with diabetes. Mechanistically, metformin improves ED through LKB1/AMPK and AMPK-independent targets. In addition to several common mechanisms, including increasing NO production, inhibiting inflammation and oxidative stress, metformin can protect endothelial cell functions and the intact endothelium by reducing EndoMT and increasing the differentiation ability of EPCs. Based on the protective effects of metformin on blood vessels summarized in these basic and clinical studies, we suggest that metformin is also worthy of attention for potential treatments for CVD and other panvascular diseases in which ED plays a fundamental role.

Abbreviations

Ach: Acetylcholine; ADP: Adenosine Diphosphate; AMPK: 5’-Adenosine Monophosphate-activated Protein Kinase; AP-1: Activator Protein-1; ATP: Adenosine Triphosphate; AGEs: Advanced Glycation End Products; AngII: AngiotensinII; ADMA: Asymmetric Dimethylarginine; BCL6: B-Cell Lymphoma 6; BDNF: Brain-Derived Neurotrophic Factor; BH4: Tetrahydrobiopterin; BMI: Body Mass Index; BAECs: Bovine Aortic Endothelial Cells; CCRP: Calcitonin Gene-related Peptide; ChREBP: Carbohydrate Response Element-binding Protein; CO: Carbon Monoxide; CREB: Cyclic AMP Response Element Binding; CVD: Cardiovascular Disease; Ch25h: Cholesterol-25-Hydroxylase; CRP: C-Reactive Protein; DNA: Deoxyribonucleic Acid; DOT1L: Dot1-like Protein; ED: Endothelial Dysfunction; ER stress: Endoplasmic Reticulum Stress; ERK: Extracellular-signal-regulated Kinase; eNOS: Endothelial Nitric Oxide Synthase; EPCs: Endothelial Progenitor Cells; EndoMT: Endothelial-To-Mesenchymal Transition; ET-1: Endothelin 1; FABP4: Fatty Acid Binding Protein 4; FBF: Forearm Blood Flow; FMD: Flow Mediated Dilation; FOXO1: Forkhead Box O1; FOXO3: Forkhead Box O3; FOXO4: Forkhead Box O4; GAPDH: Glyceraldehyde Phosphate Dehydrogenase; Gli1: Glioma-associated Oncogene Homolog 1; GCH1: Gtp Cyclohydrolase 1; GLP-1RAs: Glucagon-like Peptide-1 Receptor Agonists; H3K79me3: Histone H3 Lysine 79 Trimethylation; HSP90: Heat Shock Protein 90; hCRP: High-Sensitivity CRP; HDAC5: Histone Deacetylase 5; HAECs: Human Aortic Endothelial Cells; HCAECs: Human Coronary Artery Endothelial Cells; HIF-1α: Hypoxia Inducible Factor-1 Alpha; HUVECs: Human Umbilical Vein Endothelial Cells; H2S: Hydrogen Sulfide; IR: Insulin Resistance; ICAM1: Intercellular Adhesion Molecule 1; IHD: Ischemic Heart Disease; IL-1β: Interleukin-1Beta; IL-6: Interleukin-6; IMT: Intima-Media Thickness; JNK: C-Jun N-terminal Kinase; KLF2: Krüppel-Like Factor 2; KLF4: Krüppel-Like Factor 4; LC3: Light Chain3; LKB1: Liver Kinase B1; LncRNAs: Long Noncoding RNAs; LOX-1: Lectin-like Oxidized LDL Receptor 1; MGO: Methylglyoxal; mTOR: Mammalian Target Of Rapamycin; MrtSOD: Manganese Superoxide Dismutase; MMPs: Matrix Metalloproteinases; mPTP: Mitochondrial Permeability Transition Pore; MAPK: Mitogen-Activated Protein Kinase; MCP1: Monocyte Chemoattractant Protein 1; MiRNAs: MicroRNAs; MMECs: Mouse Microvascular Endothelial Cells; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; NE: Norepinephrine; NF-kB: Nuclear Factor-KappaB; NMD: Nitroglycerin-Mediated Dilation; NO: Nitric Oxide; NOD2: Nucleotide-Binding Oligomerization Domain-Containing Protein 2; NOX: NADPH Oxidase; NPY: Neuropeptide Y; OGG1: 8-Oxoguanine Glycosylase 1; OS: Oscillatory Shear Stress; oxLDL: Oxidized Low-Density Lipoprotein; PFN1: Profilin-1; PPARδ: Peroxisome Proliferator-Activated Receptor δ; PGC1α:
Peroxisome Proliferator-Activated Receptor-Gamma Coactivator 1α; PI3K: Phosphatidylinositol 3 Kinase; PA: Plasminogen Activator; PAI: Plasminogen Activator Inhibitor; PARP: Poly ADP-ribose Polymerase; PCOS: Polycystic Ovary Syndrome; PIGF: Placenta Growth Factor; PTEN: Phosphatase And Tensin Homolog; PKB, also known as Akt: Protein Kinase B; PKC: Protein Kinase C; RHI: Reactive Hyperemia Index; ROI: Reactive Oxygen Intermediates; ROS: Reactive Oxygen Species; RAGE: Receptor For AGEs; ROCK: Rho-Associated Coiled-Coil Kinase; SGLT2i: Sodium Glucose Cotransporter 2 inhibitors; SIRT1: Sirtuin 1; SIRT3: Sirtuin 3; STEMI: Coarse Kinase; SGLT2i: Sodium Glucose Cotransporter 2 inhibitors; SIRT1: Sirtuin 1; SIRT3: Sirtuin 3; STEMI: Coarse Kinase; SGLT2i: Sodium Glucose Cotransporter 2 inhibitors.

Acknowledgements

Funding

This study was supported by grants from the National Natural Science Foundation of China (Grant No. 81170210), the National Key Research and Development Program (Grant No. 2020YFA0710201), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB38010100). This work was also supported by the National Natural Science Foundation of China (Grant No. 81170210). The authors also acknowledge support from the National Natural Science Foundation of China (Grant No. 81170210) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB38010100).

Author contributions

J.W. and S.X. conceived the project and guided the study. Y.D. wrote the manuscript. Y.Z., P.L., X.F., S.L., Z.X. and P.J.L. provided insightful comments on the manuscript. All authors read and revised the manuscript. The authors also acknowledge support from the National Natural Science Foundation of China (Grant No. 81170210) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB38010100).

Competing Interests

The authors have declared that no competing interest exists.

References

1. Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA. 1999;281(14):1291-7.
2. Anna-Maria K, Dimitri J, Almados R, George L, Nikolaos P, Christodoulos S. Potential pathogenic inflammatory mechanisms of endothelial dysfunction induced by type 2 diabetes mellitus. Curr Pharm Des. 2011;17(37):4147-58.
3. Saedi P, Petersohn I, Salpea P, Malanda B, Karunanga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
4. Yamaguchi A, Ino T, Adachi H, Murata S, Kamiyo H, Okada M, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy. Ann Thorac Surg. 1998;65(2):434-8.
5. Stratton IM, Adler AI, Neil HAW, Matthews DR, Manley SE, Cull CA, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:d405-12.
6. Sandu C, Consiglio Trotta M, Santella B, D'Orofino N, Barbieri M, Rizzo MR, et al. Microbiota thrombus colonization may influence athero-thrombosis in hyperglycemic patients with ST segment elevation myocardial infarction (STEMI). Mariniella study. Diabetes Res Clin Pract. 2021;173:108670.
7. D'Orofino N, Sandu C, Paolillo P, Minicucci F, Cragnano F, Ferracchio F, et al. MicroRNA-33 and SIRT1 influence the coronary thrombus burden in hyperglycemic STEMI patients. J Cell Mol Med. 2020;23(5):1438-52.
8. Sandu C, Barbieri M, Balestrieri ML, Sinisalchi M, Paolillo P, Calabro P, et al. Thrombus aspiration in hyperglycemic ST-elevation myocardial infarction (STEMI) patients: clinical outcomes at 1-year follow-up. Cardiovasc Diabetol. 2018;17(1):152.
9. Sandu C, D'Orofino N, Mauro C, Balestrieri ML, Marfella R. Thrombus aspiration in hyperglycemic patients with high inflammation levels in coronary thrombus. J Am Coll Cardiol. 2019;73(4):530-31.
10. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular biology and on the structure and function of blood vessels. J Clin Invest. 2001;107(12):1505-17.
11. Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: the endothelium comes of age. J Mol Cell Biol. 2021. doi: 10.1093/jmcb/jmba024. Online ahead of print.
12. Maruhashi T, Higashi Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction. Antioxidants (Basel). 2021;10(8):1306.
13. Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17(1):121.
14. Tian K, Oghara S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci. 2019;1443(1):34-53.
15. Xu S, Oghara S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2015;72(16):2859-72.
16. Wang D, Yang Y, Lei Y, Tzetvot NT, Liu X, Yeung AWK, et al. Targeting foam cell formation in atherosclerosis: therapeutic potential of natural products. Pharmacol Rev. 2019;71(4):596-670.
17. Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117.
18. Ross R, Glomset J, Harker L. Response to injury and atherogenesis. Am J Pathol. 1977;86(3):675-84.
19. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708-14.
20. Zhang C. The role of inflammatory cytokines in endothelial dysfunction. Circulation. 2000;101(9):948-54.
21. Sasso FC, Pafundi PC, Marfella R, Calabro P, Piscione F, Furbatto F, et al. Adiponectin and insulin resistance are related to restenosis and overall new PCI in patients with normal glucose tolerance: the prospective AIRE study. Cardiovasc Diabetol. 2019;18(1):126.
22. Saeedi P, Petersohn I, Salpea P, Malanda B, Karunanga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843.
23. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular biology and on the structure and function of blood vessels. J Clin Invest. 2001;107(12):1505-17.
24. Goraya TY, Leibson CL, Palmouro PJ, Weston SA, Killian JM, Pfeifer EA, et al. Coronary atherosclerosis in diabetes mellitus: a population-based autopsy study. J Am Coll Cardiol. 2002;40(5):846-53.

http://www.thno.org
27. Rask-Madsen C, King GL. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(1):46-56.
28. American Diabetes A. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S15-S33.
29. Yang SN, Burch ML, Tannock LR, Evanko S, Osman N, Little PJ. Transforming growth factor-beta regulation of proteoglycan synthesis in vascular smooth muscle cells: contribution to lipid binding and accelerated atherosclerosis in diabetes. J Diabetes. 2010;2(4):23-42.
30. Nigro J, Osman N, Dart AM, Little PJ. Insulin resistance and atherosclerosis. Endocr Rev. 2006;27(7):242-59.
31. Nofal RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes: beyond glucose. Cell Metab. 2021;33(8):1519-1545.
32. Anabatwi A, Miles JM. Metformin: nonglycemic effects and potential novel indications. Endocr Pract. 2016;22(8):999-1007.
33. Fujita Y, Inagaki N. Metformin: new preparations and nonglycemic benefits. Curr Diab Rep. 2010;10(4):295-302.
34. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352(9131):837-53.
35. Davis BJ, Xie Z, Viollert B, Zou MH. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. J Diabetes. 2006;6(5):496-505.
36. Ma X, Liu Z, Ilyas I, Little PJ, Sabheka A, et al. GLP-1 receptor agonists (GLP-1RAs): cardiovascular actions and therapeutic potential. Int J Biol Sci. 2021;17(8):2050-68.
37. Liu J, Xu M, Xu B, Zheng X, Luo S, Little PJ, et al. Impact of sodium glucose cotransporter 2 (SGLT2) inhibitors on atherosclerosis: from pharmacology to pre-clinical and clinical therapeutics. Theranostics. 2021;11(9):4502-15.
38. Marfella R, Sardu C, Balestrieri ML, Siniscalchi M, Minicucci F, Signoriello G, et al. Effects of fenofibrate treatment on cardiovascular outcomes in diabetic STEMI-patients with culprit obstructive and multivessel non obstructive-coronary-stenosis. Diabet Metab Syndr. 2018;10:1.
39. Marfella R, Sardu C, Calabro P, Siniscalchi M, Minicucci F, Signoriello G, et al. Non-ST-elevation myocardial infarction outcomes in patients with type 2 diabetes with non-obstructive coronary artery stenosis: Effects of incetim treatment. Diabetes Obes Metab. 2018;20(3):723-29.
40. Vanhoucke PM. Endothelial dysfunction: the first step toward coronary atherosclerosis. J Mol Med. 2009;77(9):595-606.
41. Tennent M, Meagher JC. Blood vessel structure and function: a brief update. Arch. 2007;454(3):345-59.
42. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: the first step toward coronary endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87(3):290-100.
43. Denninger JW, Marletta MA. Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta. 1999;1412(2-3):334-50.
44. Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, et al. S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci U S A. 1992;89(1):444-8.
45. Laurent JB, Somers M, Kurz S, McCarrn L, Warnholz A, Freeman BA, et al. Endothelial regulation of vasomotion in apolipoprotein-dicient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103(9):1282-8.
46. Chang Dia, Michiels V, Bucher D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Circ Res. 2010;107(3):300-10.
47. Denucci A, Babini F, Brancaccio V, Dell’Era P, Chiarini G, et al. Evidence for an independent and cumulative effect of postprandial hyperglycemia and hyperinsulinemia on endothelial function and oxidative stress generation: effects of short- and long-term simvastatin treatment. J Endocrinol. 2005;181(1):121-144.
48. Varma S, Lal BK, Zheng Breslin JW, Saito S, Pappas PJ, et al. Hyperglycemia alters PI3K and Akt signaling and leads to endothelial cell proliferative dysfunction. Am J Physiol Heart Circ Physiol. 2007;293(4):H414-33.
49. Funk SD, Yurdagul A, Jr., Orr AW. Hyperglycemia and endothelial dysfunction in atherosclerosis: lessons from type 1 diabetes. Int J Vasc Med. 2012;2012:569045.
50. Price KD, Price CS, Reynolds RD. Hyperglycemia-induced ascorbic acid deficiency promotes endothelial dysfunction and the development of atherosclerosis. Atherosclerosis. 2001;138(1):1-12.
51. Ceroniello A, Talboga C, Tomutti L, Quagliao L, Picorni L, Bais B, et al. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. J Endocrinol. 2005;181(1):121-144.
52. Chouly M, Cerqueira-Campos F, Hernandez D, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55(2):480-6.
53. Hamilton SJ, Chew GT, Watts GF. Therapeutic regulation of endothelial dysfunction in type 2 diabetes mellitus. Diab Vasc Dis Res. 2007;4(2):89-102.
54. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70.
55. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuka K, Way KJ, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55(3):691-8.
56. Chen S, Apostolova MD, Cherian MG, Chakrabarti S. Interaction of endothelin-1 with vasoactive factors in mediating glucose-induced increased permeability in endothelial cells. Lab Invest. 2000;80(8):1311-21.
57. Meier M, King GL. Protein kinase C activation and its pharmacological inhibition in vascular disease. Vascul Med. 2000;5(3):173-85.
58. Terzis K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2015;14:1.
59. La Sala L, Pujadas G, De Nigris V, Canivell S, Novials A, Genovese S, et al. Oscillating glucose and constant high glucose induce endoglin expression in endothelial cells: the role of oxidative stress. Acta Diabetol. 2015;52(3):505-12.
60. Sissoumi S, Egginton S, Ting L, Ahmad A, Hewett PW. Hyperglycaemia upregulates placental growth factor (PGF) expression and secretion in endothelial cell via suppression of P38 kinase-Akt signalling and activation of FOXO1. Sci Rep. 2021;11(1):16344.
85. Silva C, Rodrigues I, Andrade S, Costa R, Soares R. Metformin reduces vascular assembly in high glucose-treated human microvascular endothelial cells in an AMPK-independent manner. Cell J. 2021;23(2):174-83.

86. Oeseburg H, Iusuf D, van der Harst P, van Gilst WH, Henning RH, Roks AJ. Bradykinin protects against oxidative stress-induced endothelial senescence. Hypertension. 2009;53(2):472-22.

87. Du XL, Edelstein D, Fantus IG, Goldberg H, Ziyadeh F, et al. Advanced glycated end products and endothelial dysfunction in type 2 diabetes. Neth J Med. 2006;64(1):3-8.

88. Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, et al. Long-lasting partnership between the receptor for advanced glycation end products and through activation of Th17 cells. Front Immunol. 2018;9:381.

93. Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care. 2016;4:59.

114. Menterik C, Kihara Y, Ziyadeh F, et al. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products by increasing Sp1 glycosylation. Proc Natl Acad Sci U S A. 2000;97(22):12222-6.

115. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest. 2008;116(10):1341-8.

116. Chen L, van der Harst P, van Gilst WH, Henning RH, Roks AJ. Advanced glycation end-products decrease expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc Diabetol. 2017;16(1):52.

117. Xi H, Li X, Li J, Jiang L, Wang Q, et al. Analysis of long non-coding RNA expression profiles in high-glucose treated vascular endothelial cells. BMC Endoc Rew. 2020;21(1):107.

118. Shao J, Zhang Y, Fan G, Xin Y, Yao Y. Transcriptome analysis identified a novel 3-lncRNA regulatory network of tissue hypertrophy attenuating glucagon induced hRECs dysfunction in diabetic retinopathy. BMC Med Genomics. 2019;12(1):134.

119. Wu XD, Liu WL, Zeng K, Lei HY, Zhang QG, Zhou SQ, et al. Advanced glycation end products activate the miRNA/RhoA/ROCK2 pathway in endothelial cells. Microcirculation. 2014;21(2):178-86.

120. Rodrigo R, Gonzalez J, Paletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34(4):431-40.

121. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and inflammation/miRNA pathway. Am J Physiol Endocrinol Metab. 2015;308(4):E257-69.

122. Xu H, Li X, Li J, Jiang L, Wang Q, et al. Analysis of long non-coding RNA expression profiles in high-glucose treated vascular endothelial cells. BMC Endoc Rew. 2020;21(1):107.

123. Adachi MA, D’Oria R, Natalizio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19.

124. Incalza MA, D’Oria R, Natalizio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19.

125. Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond). 2005;109(6):217-26.

126. Rueschhoff U, Duerrschmidt M, Morawietz H. NADPH oxidase in endothelial cells: impact on atherosclerosis. Antioxid Redox Signal. 2005;2(5):171-80.

127. Tallapragada DS, Karpe PA, Tikoo K. Long-lasting partnership between the receptor for advanced glycation end products and through activation of Th17 cells. Front Immunol. 2016;7:381.

128. Vicario VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009;15(26):2988-3002.

129. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;2017:1315.

130. Sun H, Lu K, Xu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha in rat alloagraft atherosclerotic and alloagraft arteriosclerosis. Transplant Proc. 2009;41(9):3909-12.

131. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial function associated with insulin resistance syndrome. Med Hypotheses. 2005;64(6):1211-5.

132. Rodrigo R, Gonzalez J, Paletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011;34(4):431-40.

133. True AL, Rahman A, Malik AB. Activation of NF-kappaB induced by H(2)O(2) and TNF-alpha and its effects on ICAM-1 expression in endothelial cells. J Biol Chem. 2017;292(1):69-80.

134. Renkonen R, Mennander A, Ustinov J, Mattila P. Activation of protein kinase C in human monocytic cells: contribution of the metabolic syndrome. Med Hypotheses. 2013(5):412-26.

135. Orsoni N, Piovano G, Galluzzi A, Fumagalli S, Passerini L, Zunin P. Oxidative stress and TNF-alpha induce apoptosis in human endothelial cells in an AMPK-independent manner. Cell J. 2021;23(2):174-83.

136. Fassina S, Colombo E, Arletti R, Formenti M, Taddei S. NADPH oxidase and endothelial cell function. Clin Sci (Lond). 2005;109(6):217-26.

137. Ray R, Shah AM. NADPH oxidase and endothelial cell function. Clin Sci (Lond). 2005;109(6):217-26.
140. Bhattacharyya S, Dey R, Bhandari S, et al. Metformin improves cardiovascular outcomes in type 2 diabetes patients with chronic kidney disease. J Hypertens. 2021;39(13):2426-34.

141. Shichapaska C, Manarhão PA, de Souza M, Panazzolo DG, Nogueira Neto JF, Bouskela E, et al. 30-day effects of vildagliptin on vascular function, plasma viscosity, inflammation, oxidative stress, and intestinal peptides on drug-naive women with type 2 diabetes (REMOVAL): a double-blind, randomized, placebo-controlled trial. Diabetes Metab Syndr Obes. 2021;14:929-38.

142. Kruzenszlicka A, Chychrél B, Golay A, Surdacki A. Differential associations of circulating asymmetric dimethylarginine and cell adhesion molecules with type 2 diabetes mellitus and stable coronary artery disease. Amino Acids. 2015;47(9):1951-9.

143. PETRÉJR, CHATURVEDI N, BROWERS M, GREENLAW N, TILLIN T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVED): a double-blind, randomized, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):597-609.

144. Piérac I, Maurois Durango N, Riedel CA, Echeverria K, Callegaris AM, Cabelló-Verrugio E, et al. Endothelial-to-mesenchymal transition, cytokine-mediated pathways that determine endothelial function under pathological conditions: potential link with oxidative stress. Front Cell Dev Biol. 2018;6:359.

145. Wiensperger NF, Bailey CJ. The anti-inflammatory effect of metformin on vascular and cellular markers. Drugs. 1999;55:Suppl 1-311, discussion 77-82.

146. Marker KJ, Verma S, Anderson TJ. Improved endothelial function with low-dose metformin and atorvastatin on glucose-induced changes of endothelial function in adults with newly diagnosed type 2 diabetes mellitus: a single-blind study. Clin Ther. 2010;32(10):1720-8.

147. Fidan E, Oncüler Eroş H, Yılmaz M, Yılmaz H, Kooçak M, Karahan C, et al. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 2011;48(4):297-302.

148. Forooz A, Kojou J, Kudak F, Oral G, Gebizlioglu M, Duran C, et al. The effect of metformin treatment on VECP and PAI-1 levels in obese type 2 diabetic patients. Diabet Res Clin Pract. 2008;81(1):56-60.

149. Lund SS, Tarnow L, Stehouwer CD, Schalkwijk CG, Teerlink T, Gram J, et al. Effects of metformin on markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur J Endocrinol. 2008;158(5):631-41.

150. Tououssil D, Konari K, Antonides C, Milionis A, Noutou M, Nikolopoulos A, et al. Impact of 6 weeks of treatment with low-dose metformin and atorvastatin on glucose-induced changes of endothelial function in adults with newly diagnosed type 2 diabetes mellitus: a single-blind study. Clin Ther. 2010;32(10):1720-8.

151. Shichapaska C, Manarhão PA, de Souza M, Panazzolo DG, Nogueira Neto JF, Bouskela E, et al. 30-day effects of vildagliptin on vascular function, plasma viscosity, inflammation, oxidative stress, and intestinal peptides on drug-naive women with type 2 diabetes (REMOVAL): a double-blind, randomized, placebo-controlled trial. Diabetes Metab Syndr Obes. 2021;14:929-38.

152. Piérac I, Maurois Durango N, Riedel CA, Echeverria K, Callegaris AM, Cabelló-Verrugio E, et al. Endothelial-to-mesenchymal transition, cytokine-mediated pathways that determine endothelial function under pathological conditions: potential link with oxidative stress. Front Cell Dev Biol. 2018;6:359.

153. Wiensperger NF, Bailey CJ. The anti-inflammatory effect of metformin on vascular and cellular markers. Drugs. 1999;55:Suppl 1-311, discussion 77-82.

154. Marker KJ, Verma S, Anderson TJ. Improved endothelial function with low-dose metformin and atorvastatin on glucose-induced changes of endothelial function in adults with newly diagnosed type 2 diabetes mellitus: a single-blind study. Clin Ther. 2010;32(10):1720-8.

155. Fidan E, Oncüler Eroş H, Yılmaz M, Yılmaz H, Kooçak M, Karahan C, et al. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 2011;48(4):297-302.

156. Forooz A, Kojou J, Kudak F, Oral G, Gebizlioglu M, Duran C, et al. The effect of metformin treatment on VECP and PAI-1 levels in obese type 2 diabetic patients. Diabet Res Clin Pract. 2008;81(1):56-60.

157. Lund SS, Tarnow L, Stehouwer CD, Schalkwijk CG, Teerlink T, Gram J, et al. Effects of metformin on markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur J Endocrinol. 2008;158(5):631-41.

158. Tououssil D, Konari K, Antonides C, Milionis A, Noutou M, Nikolopoulos A, et al. Impact of 6 weeks of treatment with low-dose metformin and atorvastatin on glucose-induced changes of endothelial function in adults with newly diagnosed type 2 diabetes mellitus: a single-blind study. Clin Ther. 2010;32(10):1720-8.

159. Fidan E, Onder Eroş H, Yılmaz M, Yılmaz H, Kooçak M, Karahan C, et al. The effects of rosiglitazone and metformin on inflammation and endothelial dysfunction in patients with type 2 diabetes mellitus. Acta Diabetol. 2011;48(4):297-302.
209. Gallo A, Ceolotto G, Pinton P, Iori E, Murphy E, Rutter GA, et al. Metformin regulates oxLDL-activated receptor δ pathway. Arterioscler Thromb Vasc Biol. 2014;34(4):830-6.

210. Cheng L, Wang L, Guo M, He J, Deng Y, Liu J, et al. AMPKα2 exerts its anti-inflammatory effects through PARP-1 and Bcl-6. Proc Natl Acad Sci U S A. 2013;110(8):3161-6.

211. Chambard J, Martin R, Bossu F, Delcourt C, Delfraissy JF, et al. AMPK activators. Free Radic Biol Med. 2014;70:117-28.

212. Hou X, Song J, Li XN, Zhang L, Wang X, Chen L, et al. Metformin reduces angiotensin-mediated intracellular production of reactive oxygen species in endothelial cells through the inhibition of protein kinase C. Biochem Pharmacol. 2021;907:115917-21.

213. Almeida CA, Prandi E, Dhalla AN, Slagle BM, et al. Inflammatory networks in ageing, age-related diseases and pathological states. Aging Cell. 2020;19(6):e13108-12.

214. Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol. 2014;171(2):532-35.

215. Sambe T, Mason RP, Dawoud H, Bhatt DL, Malinski T. Metformin treatment decreases nitrosative stress, restores nitric oxide bioavailability and endothelial function beyond glucose control. Biomed Pharmacother. 2018;98:134-47.

216. Tiao L, Fan X, Sun J, Zhang Z. Metformin prevented high glucose-induced endothelial dysfunction in vivo via OGG1 in an AMPKα-Lin-29-dependent pathway. Life Sci. 2021;268:119015.

217. Valente AJ, Irmen AM, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2 inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;71:7-20.

218. Mininshtia T, Miyahara K, Yoshida H, Ishida K, Taniyama Y, Komuro I. Endothelial senescence in human atherosclerosis: role of telomere in endothelial function. Circulation. 2002;105(13):1541-4.

219. Erusalimsky JD. Vascular endothelial senescence: from mechanisms to disease. Atherosclerosis. 1998;140(1):207-37.

220. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;194(2):547-56.

221. Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res. 2012;111(2):245-59.

222. Valenzuela MT, Nunez MI, Villalobos M, Siles E, McMillan TJ, Pedraza V, et al. A comparison of p53 and p16 expression in human tumor cells treated with hyperthermia or ionizing radiation. Int J Cancer. 1997;72(3):307-12.

223. Sasto S, Candore G, Balistreri CR, Caruso M, Colonna-Romano G, Grimaldi MP, et al. Inflammatory networks in ageing, age-related diseases and longevity. Mech Ageing Dev. 2007;128(1-3):83-91.

224. Arunachalam G, Samuel SM, Marei I, Ding H, Triggle CR. Metformin modulates hyperglycaemia-induced endothelial senescence and apoptosis through SIRT1. Br J Pharmacol. 2014;171(2):532-35.

225. Zhang E, Guo Q, Gao H, Xu R, Teng S, Wu Y. Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/53/p21 pathway. PLoS One. 2015;10(12):e0143814.

226. Karnewar S, Neeli PK, Panaganti D, Kotagiri S, Mallappa S, Jain N, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K97 methylation: relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol Basis Dis. 2018;1884(4 Pt A):1115-28.

227. Hunt NJ, Lockwood GP, Kang SWS, Pulpitel T, Clark X, Mao H, et al. The effects of metformin on age-related changes in the liver sinusoidal endothelial function beyond glucose control. Biochem Biophys Acta Mol Basis Dis. 2018;1884(4 Pt A):1115-28.

228. Radford NB, DeFina LF, Barlow CE, Lakoski SG, Leonard D, Paiaro AR, et al. Progression of CAC score and risk of incident CVD. JACC Cardiovasc Imaging. 2016;9(12):1420-29.

229. Liu Y, Yuan T, Min X, Yuan J, Cai Z. AMPK: potential therapeutic target for vascular calcification. Front Cardiovasc Med. 2021;8:670222.

230. Mohammed I, Hollenberg MD, Ding H, Triggle CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front Endocrinol (Lausanne). 2021;12:781942.

231. Detaille D, Guigas B, Chauvin C, Batandier C, Fontaine E, Wimsperger N, et al. Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes. 2015;64(7):2179-87.

232. Laoireun S, Sannier A, Norkowski E, Cauchi F, Doblas S, Rautou PE, et al. Endothelial fatty liver binding protein 4: a new targetable mediator in hepatocellular carcinoma related to metabolic syndrome. Oncogene. 2019;38(12):1996-2011.

233. Xu XX, Zheng SS, Lin HL, Lin Q, Shen LE, Ansong E, et al. Metformin promotes regression of the induced endothelium via inhibition of endoplasmic reticulum stress-induced apoptosis. Repr Sci. 2020;5(4):560-68.

234. Li X, Kover KL, Heruth DP, Watkins DJ, Moore WV, Jackson K, et al. New insight into metformin action: regulation of CHREBP and FOXO1 activities in endothelial cells. Mol Endocrinol. 2015;29(1):1184-96.

235. Bakhshash S, Ahmed F, Schulten HJ, Ahmed FW, Gianville M, Al-Qahtani M, et al. Proangiogenic effect of metformin in endothelial cells in hypoxia. PLoS One. 2016;11(10):e0167798.

236. Han X, Wang B, Sun Y, Huang J, Wang X, Ma W, et al. Metformin modulates high glucose-induced human umbilical vein endothelial cells proliferation and apoptosis through AMPK/CREB/BDNF pathway. Front Pharmacol. 2018;9:1266.
258. Xu S, Kamato D, Little PJ, Nakagawa S, Pelisek J, Jin ZG. Targeting epigenetics and non-coding RNAs in atherosclerosis: from mechanisms to therapeutics. J Mol Cell Cardiol. 2018;116:57-68.

259. Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental approaches. Sci Rep. 2020;10(1):21782.

260. Gou L, Liu G, Ma R, Regmi A, Zeng T, Zheng J, et al. High fat-induced impaired angiogenesis in endothelial cells: effects of metformin. J Pharmacol Exp Ther. 2016;358(2):314-23.

261. Pan L, Liu FL, Li Y. Circular RNA has_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186-1/HIF-1a axis. Biochem Biophys Res Commun. 2017;492(2):104-10.

262. Pan L, Lian W, Zhang J, Han J. Circular RNA circH11c impairs vascular endothelial cell function by sponging miR-186-1. J Mol Cell Cardiol. 2020;147:106-17.

263. Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Hu J, et al. Human circular RNA-004633 regulates high glucose-induced vascular endothelial cell dysfunction through the microRNA-218/roundabout 1 and microRNA-218/heme oxygenase-1 axes. Int J Mol Med. 2018;42(1):597-606.

264. Dang RY, Liu FL, Li Y. Circular RNA has_circ_0010729 regulates vascular endothelial cell proliferation and apoptosis by targeting the miR-186-1/HIF-1a axis. Biochem Biophys Res Commun. 2017;492(2):104-10.
291. Hariyanto TI, Kurniawan A. Metformin use is associated with reduced mortality rate from coronavirus disease 2019 (COVID-19) infection. Obes Med. 2020;19:10200.

292. Lalau JD, Al-Salameh A, Hadjadj S, Goronflot T, Wiernsperger N, Pichelin M, et al. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 2020;47(5):101216.

293. Tamura RE, Said SM, de Freitas LM, Rubio IGS. Outcome and death risk of diabetes patients with Covid-19 receiving pre-hospital and in-hospital metformin therapies. Diabetol Metab Syndr. 2021;13(1):76.

294. Samuel SM, Varghese E, Busselberg D. Therapeutic potential of metformin in COVID-19: reasoning for its protective role. Trends Microbiol. 2021. doi: 10.1016/j.tim.2021.03.004.

295. Varghese E, Samuel SM, Liskova A, Kubatka P, Busselberg D. Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of metformin intervention and the scientific basis of drug repurposing. PLoS Pathog. 2021;17(6):e1009634.

296. Hua S, Yang Y, Zou D, Li J, Yan K, Xu Y, et al. COVID-19 and metabolic comorbidities: An update on emerging evidences for optimal therapies. Biomed Pharmacother. 2021;140:111685.

297. Hogan MF, Hackney DJ, Aplin AC, Mundinger TO, Larmore MJ, Castillo JJ, et al. SGLT2i improves markers of islet endothelial cell function in db/db diabetic mice. J Endocrinol. 2021;248(2):95-106.

298. Xiang X, Wang L, Zhou L, Chen Y, Xia H. Metformin upregulates the expression of Gli1 in vascular endothelial cells in hyperoxia-exposed neonatal mice. Am J Transl Res. 2020;12(10):6092-106.