Prediction of Normal Boiling Points of Hydrocarbons Using Simple Molecular Properties

Kamal I. Al-Malah

Department of Chemical Engineering, University of Hail, Hail, Saudi Arabia

Address correspondence to Kamal I. Al-Malah, almalak61@hotmail.com

Received 6 November 2012; Revised 8 February 2013; Accepted 12 February 2013

Copyright © 2013 Kamal I. Al-Malah. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Four hundred and seventy-six hydrocarbons (CnHm) were utilized to fit their normal boiling point temperatures (NBPT) as a function of molecular weight and carbon atomic fraction. The proposed model is of the following form: NBPT = a(Cfrac)^b x (MW)^c, where a, b, and c are the non-linear regressed parameters for the given model; Cfrac is the carbon atomic fraction in a molecule, which is equal to n/(n + m) for a hydrocarbon compound; and MW is the molecular weight, which is calculated as 12n + 1m. The model was found to predict NBPT with an adequate accuracy, in general, via the associated percent relative error (PRE) of the curve-fitted NBPT. Out of the examined 476 hydrocarbons, methane, ethylene, and acetylene were found to have PRE values higher than 10%. If the confidence interval is further reduced to PRE value less than 5%, then 43 compounds will be excluded, and then NBPT for the other 433 compounds could be well predicted by the proposed model. Although the proposed model does not differentiate among isomers having the same molecular weight and chemical formula, nevertheless, the differences in NBPT among isomers is not really significant to be picked up by a simple, straightforward model. A more rigorous model will work hard to offset such small differences in NBPT among isomers, nevertheless, at the expense of model simplicity.

Keywords

model; normal boiling point; hydrocarbons; carbon atoms; molecular formula; hydrocarbons

1 Introduction

The prediction of physicochemical properties like the normal boiling point temperature (NBPT) of a substance is a major target of computational chemistry. NBPT is one of the major physicochemical properties used to identify a compound. This property is a fundamental characteristic of chemical compounds, and it is involved in many correlations used to estimate thermo-physical properties. In fact, commercial simulators, like ASPEN PLUS®, can be used to identify, or fill in the gaps of, a molecule with given chemical formula; nevertheless, software packages require some properties of the compound as a priori. NBPT and standard liquid density are the most important properties, for such properties, along with group contribution methods, facilitate the estimation of other missing properties.

NBPT of a compound is related, in general, to its molecular structure; but the nature of the relationship is not straightforward. Different models were used to correlate the boiling points of homologous hydrocarbons with the number of carbon atoms or molecular weight [5]. The group contribution method, used for predicting NBPT, relies on the assumption that the cohesion forces in the liquid predominantly have a short-range character, and the complex molecule is sub-divided into predefined structural groups, each of which adds a constant increment to the value of a property for a compound. In general, the group contribution methods give good predictions of boiling points for small and non-polar molecules [4].

Ivanciuc et al. [3] used quantitative structure—property relationship (QSPR) models for the estimation of boiling points of organic compounds containing halogens, oxygen, or sulfur without hydrogen bonding, accompanied by the comprehensive descriptors for structural and statistical analysis (CODESSA). Using the multi-linear regression (MLR), the boiling points of 185 compounds containing oxygen or sulfur could be accurately computed with an MLR equation containing six theoretical descriptors and having the following statistical indices: \(R^2 = 0.992 \) and standard deviation of 6.3 °C. For a set of 534 halogenated alkanes C1–C4, the best MLR equation with five descriptors has \(R^2 = 0.990 \) and standard deviation of 9.0 °C. In their opinion, the QSPR models developed with CODESSA allowed accurate computation of the boiling points of organic compounds using simple constitutional, topological, electrostatic, and quantum indices that could be computed with standard quantum chemistry.

Cholakov et al. [2] proposed a correlation between the molecular structure and the normal boiling point of hydrocarbons. Its main features are the relative simplicity, sound predictions, and applicability to diversified industrially important structures, whose boiling points and numbers of
carbon atoms span a wide range. They used two types of descriptors: molecular energy and carbon atom descriptors. For the first type, a structure is treated as a collection of atoms held together by elastic (harmonic) forces-bonds, which constitute the force field. For the second type, it comprises the highest level of sophistication, like the graph topological indices, derived from the adjacency and distance matrices of a chemical structure and the lowest level of sophistication of carbon atom descriptors, like the numbers of atoms engaged in specific groups (atom counts).

Wang et al. [6] extended the application of conductor-like screening model-based segment activity coefficient model for boiling point calculation (COSMO-SAC-BP) solvation model to predict NBPT for environmentally significant substances that are large and more complex molecules, including pollutants, herbicides, insecticides, and drugs. The average absolute deviation in the predicted boiling points of these complex molecules, which spans the range of 266–708 K, was 17.8 K or 3.7%. They concluded that their 3.7% was similar to the value of 3.2% that was obtained for 369 molecules in their earlier study, indicating that this method could be applied well outside the systems used to train the model.

Chan et al. [1] proposed an empirical method for estimating the boiling points of organic compounds based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections. The boiling points were calculated as the sum of three contributions. The first term was directly calculated from the structural formula of the molecule and was related to its effective surface area. The second was a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third was employed only for planar aromatic molecules. The method was found applicable to a very diverse range of organic molecules, with normal boiling points in the range of −50 °C to 500 °C, and included 10 different elements (C, H, Br, Cl, F, N, O, P, S, and Si).

In this model, the NBPT of a hydrocarbon compound is expressed as a function of simple molecular indicators, namely, the carbon atomic fraction \(C_{\text{frac}}\) and molecular weight \(MW\). Such molecular indicators are really simple to calculate. For example, given methane \((\text{CH}_4)\), then its \(C_{\text{frac}}\) will be \(1/(1+4) = 0.20\). Moreover, its \(MW\) is simply equal to \(1 \times 12 + 4 \times 1 = 16\). On the other hand, the difference in NBPT among isomers having the same \(C_{\text{frac}}\) and \(MW\) was found to be small. Any attempt to account for such small differences among isomers will be at the expense of model simplicity.

2 Model development

Four hundred and seventy-six hydrocarbon compounds were used in the non-linear regression process for finding the best fit for their normal boiling point properties. The database of hydrocarbon compounds includes the following categories:

1. Normal paraffin: example: \(n\)-alkane.
2. Non-normal paraffin: example: iso-alkane, methyl-alkane, ethyl-alkane, and methyl-ethyl-alkane.
3. Naphthene: the major structure is saturated ring; example: cyclo-alkane.
4. Olefin: contains a single \(C=C\) double bond; example: alkene, methyl-alkene, ethyl-alkene, and di-methyl-alkene.
5. Diolefin: contains two \(C=C\) double bonds; example: alkadiene, methyl-alkadiene, and ethyl-alkadiene.
6. Cyclic olefin: contains a single \(C=C\) double bond within the otherwise saturated ring; example: cyclo-alkene, methyl-cyclo-alkene, and ethyl-cyclo-alkene.
7. Alkyne: contains a \(C≡C\) triple bond between carbons; example: acetylene, methyl acetylene, pentyne, and hexyne.
8. Aromatic: contains a single ring; example: benzene, toluene, and xylene.
9. Aromatic with attached olefin side chain: example: Styrene, ethenyl-benzene, and propenyl-benzene.
10. Aromatic with multiple rings directly connected by \(C−C\) bonds between the rings: example: bi-phenyl and 1-methyl-2-phenylbenzene.
11. Aromatic with multiple rings connected through other saturated carbon species: example: di-phenyl-methane and 1,1-di-phenyl-dodecane.
12. Aromatic with multiple rings connected through other carbon species with triple bond: example: di-phenyl-acetylene.
13. Aromatic with multiple condensed rings: example: naphthalene, pyrene, methyl-naphthalene, and nonyl-naphthalene.
14. Aromatic with attached saturated rings: examples: 1,2,3,4-tetra-hydro-naphthalene and 1-methyl-2,3-dihydro-indene.
15. Aromatic with attached unsaturated (but not aromatic) rings: example: indene and 1-methyl-indene.

The carbon atomic fraction \(X\) and molecular weight \(Y\) were chosen as the independent variables, and the NBPT represented the dependent variable \(Z\) from regression point of view:

\[
Z = a \times (X)^b \times (Y)^c = \text{NBPT} = a(C_{\text{frac}})^b \times (MW)^c. \tag{1}
\]

For example, given methane \((\text{CH}_4)\), then its \(C_{\text{frac}}\) will be \(1/(1+4) = 0.20\). Moreover, its \(MW\) is simply equal to \(1 \times 12 + 4 \times 1 = 16\).

The results of non-linear regression for (1), with 95% confidence interval, are:

\[
Z = \text{NBPT} = (49.5 \pm 0.24) \times (C_{\text{frac}})^{(0.2791 \pm 0.0021)} \times (MW)^{(0.5039 \pm 0.0008)}. \tag{2}
\]
Table 1: Small size molecules, like methane, ethylene, and acetylene were found to have PRE higher than 10%.

Database SN	Compound	Formula	PRE (%)
1	Methane	CH₄	14.6%
191	Ethylene	C₂H₄	15.4%
321	Acetylene	C₂H₂	11.5%

S: Serial number in the API database of hydrocarbons.

The goodness of fit for (2) is given by \(R\text{-square} \) as 0.9997 and adjusted \(R\text{-square} \) as 0.9997 with the sum of squared error (SSE) of 1,796 K² and root mean squared error (RMSE) of 1.949 K. The RMSE is essentially the standard error in MATLAB® notation.

The PRE is defined as:

\[
\text{PRE} = \frac{|\text{Curve-fitted NBPT} - \text{Experimental NBPT}|}{\text{Experimental NBPT}} \times 100\%.
\] (3)

From engineering applications standpoint, it is tolerated to have uncertainty associated with a measured or calculated quantity, which amounts to a maximum PRE value of 10%.

3 Results and discussion

The mean PRE for all examined compounds was found to be 2.07, with a standard error of 2.1. However, Table 1 shows three compounds that have PRE higher than 10%.

Other than that, the model could predict well the normal boiling point temperature of a hydrocarbon as a function of its molecular size and carbon atomic (mole) fraction.

Figure 1 shows the plot of the curve-fitted NBPT versus the experimental NBPT for all examined 476 hydrocarbons. Most of the data points fall on the 45° diagonal (\(Y = X \)). There is, however, a small deviation in the high-boiling point region. Figure 2 shows that only three data points lie above the 10% PRE datum. In fact, if we take our datum to be 5% not 10%, then we will exclude only 43 compounds with PRE higher than 5%. The 43 compounds that have PRE > 5.0 are shown in Table 2. The appendix contains all hydrocarbons used in this study.

On the other hand, regarding the isomers or stereochemistry of molecules, an example is shown here to demonstrate the strength and weakness of the model. Table 3 shows 17 different isomers that have the same chemical formula, that is, C₈H₁₈ and molecular weight of 114.23.

Table 2: Forty-three compounds with PRE higher than 5%.

#	SN	Compound	Formula	PRE (%)
1	1	Methane	CH₄	14.5595
2	30	n-triacontane	C₃₀H₆₂	5.4471
3	33	Neopentane	C₃H₁₂	7.4944
4	90	2,2,5,5-tetramethylhexane	C₁₀H₂₂	5.9635
5	178	Cycloheptane	C₅H₁₄	6.2384
6	179	Cyclooctane	C₆H₁₆	7.3618
7	180	Cyclononane	C₇H₁₈	7.6306
8	183	cis-decahydronaphthalene	C₁₀H₁₈	5.0833
9	185	1-methyl-[cis-decahydro-naphthalene]	C₁₁H₂₀	9.6191
10	186	1-methyl-[trans-decahydro-naphthalene]	C₁₁H₂₀	8.1962
11	187	1-ethyl-[cis-decahydro-naphthalene]	C₁₁H₂₂	8.6644
12	188	1-ethyl-[trans-decahydro-naphthalene]	C₁₁H₂₂	7.7997

Figure 1: Plot of the curve-fitted NBPT versus the experimental NBPT for all examined 476 hydrocarbons.

Figure 2: The PRE for all examined 476 hydrocarbons.
Table 2: To be continued.

#	SN	Compound	Formula	PRE (%)
13	191	Ethylene	C₂H₄	15.3562
14	192	Propylene	C₃H₆	6.3560
15	201	3-methyl-1-butene	C₅H₁₀	5.7819
16	218	3,3-dimethyl-1-butene	C₅H₁₂	8.1481
17	247	4,4-dimethyl-1-pentene	C₆H₁₄	6.3129
18	253	Trans-4,4-dimethyl-2-pentene	C₆H₁₄	5.0300
19	289	Propadiene	C₃H₆	5.1350
20	291	1,3-butadiene	C₄H₆	6.5436
21	295	1,4-pentadiene	C₅H₈	6.3488
22	318	Dicyclopentadiene	C₁₀H₁₂	5.0799
23	319	Alpha-pinene	C₁₀H₁₆	5.0768
24	321	Acetylene	C₂H₂	11.4610
25	325	Vinylacetylene	C₄H₈	7.4442
26	328	3-methyl-1-butyne	C₄H₈	6.2127
27	408	1,1-diphenylhexane	C₁₈H₂₂	5.4717
28	409	1,1-diphenyldodecane	C₂₂H₃₀	6.7123
29	410	1,1-diphenylundecane	C₂₃H₃₄	7.2137
30	411	1,1-diphenylundecane	C₂₃H₃₄	7.2137
31	412	1,1-diphenylundecane	C₂₃H₃₄	7.2137
32	413	1,1-diphenylundecane	C₂₃H₃₄	7.2137
33	414	1,1-diphenylundecane	C₂₃H₃₄	7.2137
34	415	1,1-diphenylundecane	C₂₃H₃₄	7.2137
35	416	1,1-diphenylundecane	C₂₃H₃₄	7.2137
36	417	1,1-diphenylundecane	C₂₃H₃₄	7.2137
37	418	Cis-1,2-diphenylethane	C₁₄H₁₂	6.6479
38	420	Phenylacetylene	C₈H₆	5.0306
39	422	1,2-diphenylbenzene	C₁₆H₁₄	7.3042
40	472	Anthracene	C₁₄H₁₀	5.5665
41	473	Phenanthrene	C₁₄H₁₀	5.4280
42	474	Pyrene	C₁₆H₁₀	6.0386
43	476	Chrysene	C₁₆H₁₂	7.2446

Table 3: Seventeen different stereo-chemical compounds with the same molecular weight (114.3) and chemical formula (C₈H₁₈). The minimum, maximum, and mean of NBPT (K) is shown at the bottom.

#	Compound	Experimental NBPT (K)	Predicted NBPT (K)	PRE (%)
1	2-methylheptane	390.79		
2	3-methylheptane	392.07		
3	4-methylheptane	390.86		
4	3-ethylhexane	391.68		
5	2,2-dimethylhexane	379.99		
6	2,3-dimethylhexane	388.76		
7	2,4-dimethylhexane	382.58		
8	2,5-dimethylhexane	382.26		
9	3,3-dimethylhexane	385.12		
10	3,4-dimethylhexane	390.88		
11	2-methyl-3-ethylpentane	388.80		
12	3-methyl-3-ethylpentane	391.41		
13	2,2,3-trimethylpentane	382.99		
14	2,2,4-trimethylpentane	372.39		
15	2,3,3-trimethylpentane	387.92		
16	2,3,4-trimethylpentane	386.62		
17	2,2,3,3-tetramethylbutane	379.62		
Minimum		372.39	387.8	4.1
Maximum		392.07	387.8	1.1
Mean		386.16	387.8	0.4
Based on the proposed model (2), the predicted NBPT is:

\[
NBPT = (49.5) \times (0.30769)^{(0.2791)} \times (114.23)^{(0.5039)} = 387.8 \text{ K.}
\]

This means that the value given by the proposed model matches well the mean value shown in Table 3, with a PRE value of 0.4%. As Table 3 shows, the maximum PRE (%) is found to be 4.1% for such a set of stereo-chemical compounds. Moreover, in the previous set, the maximum percent relative difference occurs between the lowest and mean of experimental NBPT:

\[
\frac{(386.2 - 372.4)}{386.2} \times 100\% = 3.6\%.
\]

So strictly speaking, it is true that the proposed model does not differentiate among isomers of the same molecular weight and chemical formula; however, at the same time, a maximum percent relative difference of 3.6% is really hardly noticeable by this model. A more rigorous model will work hard to offset this 3.6% value, but at the expense of model simplicity.

4 Conclusion

The NBPT for a hydrocarbon compound could be expressed as a function of simple molecular properties with an adequate accuracy manifested via the associated PRE of the curve-fitted NBPT. It is very easy for the user to calculate both the molecular weight and the carbon atomic fraction for a given chemical formula of a hydrocarbon \((C_nH_m)\). Out of the examined 476 hydrocarbons, methane, ethylene, and acetylene were found to have PRE values higher than 10%. If the confidence interval is further confined down to PRE value less than 5%, then 43 compounds will be excluded, and then NBPT for the other 433 compounds could be well predicted by the proposed model. Consequently, in fulfillment of the acceptable engineering accuracy, one can say that the model adequately predicts NBPT for each of 433 different hydrocarbons with PRE less than 5% for each.

Appendix

List of 476 hydrocarbons used in the non-linear regression process to express the normal boiling point temperature as a function of hydrocarbon molecular weight and its carbon atomic fraction.

DB SN	Compound	Formula	DB SN	Compound	Formula
1	Methane	CH₄	29	n-nonacosane	C₂₉H₆₀
2	Ethane	C₂H₆	30	n-triacontane	C₁₀H₁₂
3	Propane	C₃H₈	31	Isobutane	C₃H₁₀
4	n-butane	C₄H₁₀	32	Isopentane	C₅H₁₂
5	n-pentane	C₅H₁₂	33	Neopentane	C₅H₁₂
6	n-hexane	C₆H₁₄	34	2-methylpentane	C₅H₁₄
7	n-heptane	C₇H₁₆	35	3-methylpentane	C₅H₁₄
8	n-octane	C₈H₁₈	36	2,2-dimethylbutane	C₇H₁₄
9	n-nonane	C₉H₂₀	37	2,3-dimethylbutane	C₇H₁₄
10	n-decane	C₁₀H₂₂	38	2-methylhexane	C₈H₁₆
11	n-undecane	C₁₁H₂₄	39	3-methylhexane	C₈H₁₆
12	n-dodecane	C₁₂H₂₆	40	3-ethylpentane	C₈H₁₆
13	n-tridecane	C₁₃H₂₈	41	2,2-dimethylpentane	C₈H₁₆
14	n-tetradecane	C₁₄H₃₀	42	2,3-dimethylpentane	C₈H₁₆
15	n-pentadecane	C₁₅H₃₂	43	2,4-dimethylpentane	C₈H₁₆
16	n-hexadecane	C₁₆H₃₄	44	3,3-dimethylpentane	C₈H₁₆
17	n-heptadecane	C₁₇H₃₆	45	2,2,3-trimethylbutane	C₈H₁₆
18	n-octadecane	C₁₈H₃₈	46	2-methylheptane	C₈H₁₈
19	n-nonadecane	C₁₉H₄₀	47	3-methylheptane	C₈H₁₈
20	n-eicosane	C₂₀H₄₂	48	4-methylheptane	C₈H₁₈
21	n-heneicosane	C₂₁H₄₄	49	3-ethylhexane	C₈H₁₈
22	n-docosane	C₂₂H₴₆	50	2,2-dimethylhexane	C₈H₁₈
23	n-tricosane	C₂₃H₴₈	51	2,3-dimethylhexane	C₈H₁₈
24	n-tetracosane	C₂₄H₵₀	52	2,4-dimethylhexane	C₈H₁₈
25	n-pentacosane	C₂₅H₵₂	53	2,5-dimethylhexane	C₈H₁₈
26	n-hexacosane	C₂₆H₵₄	54	3,3-dimethylhexane	C₈H₁₈
27	n-heptacosane	C₂₇H₵₆	55	3,4-dimethylhexane	C₈H₁₈
28	n-octacosane	C₂₈H₵₈	56	2-methyl-3-ethylpentane	C₈H₁₈
DB	Compound	Formula	DB	Compound	Formula
----	----------	---------	----	----------	---------
57	3-methyl-3-ethylpentane	C9H18	112	Trans-1-methyl-2-ethyl-cyclopentane	C10H20
58	2,2,3-trimethylpentane	C9H18	113	Cis-1-methyl-3-ethyl-cyclopentane	C10H20
59	2,2,4-trimethylpentane	C9H18	114	Trans-1-methyl-3-ethyl-cyclopentane	C10H20
60	2,3,3-trimethylpentane	C10H20	115	1,1,2-trimethylcyclopentane	C10H20
61	2,3,4-trimethylpentane	C10H20	116	1,1,3-trimethylcyclopentane	C10H20
62	2,2,3,3-tetramethylbutane	C10H20	117	cis-2,2-trimethylcyclopentane	C10H20
63	2-methylcyclooctane	C10H20	118	cis-2,3-trimethylcyclopentane	C10H20
64	3-methylcyclooctane	C10H20	119	trans-2,3-trimethylcyclopentane	C10H20
65	4-methylcyclooctane	C10H20	120	cis-2,4-trimethylcyclopentane	C10H20
66	3-ethylheptane	C10H20	121	cis-2,4-trimethylcyclopentane	C10H20
67	2,2-dimethylheptane	C10H20	122	trans-2,4-trimethylcyclopentane	C10H20
68	2,6-dimethylheptane	C10H20	123	n-butylcyclooctane	C11H22
69	2,2,3-trimethylhexane	C10H20	124	isobutylcyclooctane	C11H22
70	2,2,4-trimethylhexane	C10H20	125	1-methyl-1-n-propylcyclohexane	C10H20
71	2,2,5-trimethylhexane	C10H20	126	1,1-dimethylcyclooctane	C11H22
72	2,3,3-trimethylhexane	C10H20	127	cis-1,2-dimethylcyclooctane	C11H22
73	2,4,4-trimethylhexane	C10H20	128	1,1-dimethyl-2-ethylcyclooctane	C11H22
74	3,3,4,4-tetramethylpentane	C10H20	129	n-pentylcyclohexane	C10H20
75	3,3-diethylpentane	C10H20	130	n-hexylcyclohexane	C10H22
76	2,2-dimethyl-3-ethylpentane	C10H20	131	n-heptylcyclohexane	C10H24
77	2,4-dimethyl-3-ethylpentane	C10H20	132	n-octylcyclohexane	C10H26
78	2,2,3,3-tetramethylpentane	C10H20	133	n-nonylcyclohexane	C11H24
79	2,2,4,4-tetramethylpentane	C10H20	134	n-decylcyclohexane	C11H26
80	2,2,5,5-tetramethylpentane	C10H20	135	n-dodecylcyclohexane	C12H28
81	2,3,3,3-tetramethylpentane	C10H20	136	n-tridecylcyclohexane	C13H30
82	2,2,2,3-tetramethylpentane	C10H20	137	n-tetradecylcyclohexane	C14H32
83	3-methylcyclobutane	C4H8	138	n-pentadecylcyclohexane	C15H32
84	4-methylcyclobutane	C4H8	139	n-hexadecylcyclohexane	C16H34
85	5-methylcyclobutane	C4H8	140	n-heptadecylcyclohexane	C17H36
86	2,7-dimethylcyclobutane	C4H8	141	n-heptadecylcyclohexane	C17H38
87	3,3,4,4-tetramethylpentane	C10H20	142	n-octadecylcyclohexane	C18H40
88	3,3,5,5-tetramethylpentane	C10H20	143	n-nonadecylcyclohexane	C19H42
89	2,2,3,3-tetramethylhexane	C10H20	144	n-eicosylcyclohexane	C20H44
90	2,2,5,5-tetramethylhexane	C10H20	145	cyclohexane	C6H12
91	2,4-dimethyl-3-isopropyl-pentane	C10H20	146	Methylcyclohexane	C7H12
92	Cyclopropane	C3H6	147	Ethylcyclohexane	C8H12
93	Methylcyclopropane	C4H8	148	1,1-dimethylcyclohexane	C9H18
94	Ethylcyclopropane	C4H8	149	cis-1,2-dimethylcyclohexane	C9H18
95	cis-1,2-dimethylcyclopropane	C9H18	150	TRANS-1,2-dimethylcyclohexane	C9H18
96	Trans-1,2-dimethylcyclopropane	C9H18	151	cis-1,3-dimethylcyclohexane	C9H18
97	Cyclobutane	C4H8	152	trans-1,3-dimethylcyclohexane	C9H18
98	Methylcyclobutane	C4H8	153	cis-1,4-dimethylcyclohexane	C9H18
99	Ethylcyclobutane	C4H8	154	trans-1,4-dimethylcyclohexane	C9H18
100	Cyclopentane	C5H10	155	n-propylcyclohexane	C8H18
101	Methylcyclopentane	C5H10	156	Isopropylcyclohexane	C9H18
102	Ethylcyclopentane	C5H10	157	n-butylcyclohexane	C8H20
103	1,1-dimethylcyclopentane	C7H12	158	isobutylcyclohexane	C8H20
104	cis-1,2-dimethylcyclopentane	C7H12	159	sec-butylcyclohexane	C8H20
105	trans-1,2-dimethylcyclopentane	C7H12	160	tert-butylcyclohexane	C8H20
106	cis-1,3-dimethylcyclopentane	C7H12	161	1-methyl-4-isopropylcyclohexane	C8H20
107	trans-1,3-dimethylcyclopentane	C7H12	162	n-pentylcyclohexane	C8H22
108	n-propylcyclopentane	C8H16	163	n-hexylcyclohexane	C8H24
109	Isopropylcyclopentane	C8H16	164	n-heptylcyclohexane	C8H26
110	1-methyl-1-ethylcyclopentane	C8H16	165	n-octylcyclohexane	C8H28
111	cis-1-methyl-2-ethyl-cyclopentane	C8H16	166	n-nonylcyclohexane	C8H30
DB	Compound	Formula	DB	Compound	Formula
----	--------------------------------	---------	----	--------------------------------	---------
167	2,3-dimethyl-1-hexene	C_10H_{16}	222	Trans-2-heptene	C_7H_{14}
168	3-methyl-1-hexene	C_9H_{18}	223	Cis-3-heptene	C_9H_{18}
169	2,4-dimethyl-1-pentene	C_9H_{18}	224	Trans-3-heptene	C_9H_{18}
170	2,4,4-trimethyl-2-pentene	C_10H_{22}	225	2-methyl-1-hexene	C_8H_{16}
171	3-methyl-1-hexene	C_8H_{16}	226	3-methyl-1-hexene	C_8H_{16}
172	4-methyl-1-hexene	C_8H_{16}	227	4-methyl-1-hexene	C_8H_{16}
173	5-methyl-1-hexene	C_8H_{16}	228	5-methyl-1-hexene	C_8H_{16}
174	2-methyl-2-hexene	C_8H_{16}	229	2-methyl-2-hexene	C_8H_{16}
175	3-methyl-2-hexene	C_8H_{16}	230	3-methyl-2-hexene	C_8H_{16}
176	Trans-3-methyl-2-hexene	C_8H_{16}	231	Trans-3-methyl-2-hexene	C_8H_{16}
177	Trans-3-methyl-2-hexene	C_8H_{16}	232	CIS-4-methyl-2-hexene	C_8H_{16}
178	Cycloheptane	C_8H_{16}	233	Trans-4-methyl-2-hexene	C_8H_{16}
179	Cyclooctane	C_9H_{20}	234	Cis-5-methyl-2-hexene	C_8H_{18}
180	Cyclononane	C_{10}H_{22}	235	Trans-5-methyl-2-hexene	C_8H_{18}
181	Ethylcycloheptane	C_{10}H_{22}	236	Trans-2-methyl-3-hexene	C_8H_{18}
182	Bicyclohexyl	C_{10}H_{22}	237	Trans-2-methyl-3-hexene	C_8H_{18}
183	CIS-decahydronaphthalene	C_{10}H_{18}	238	CIS-3-methyl-3-hexene	C_8H_{18}
184	Trans-decahydronaphthalene	C_{10}H_{18}	239	Trans-3-methyl-3-hexene	C_8H_{18}
185	2-ethyl-1-pentene	C_8H_{16}	240	2-ethyl-1-pentene	C_8H_{16}
186	3-ethyl-1-pentene	C_8H_{16}	241	3-ethyl-1-pentene	C_8H_{16}
187	2,4-dimethyl-2-pentene	C_8H_{16}	242	3,4-dimethyl-2-pentene	C_8H_{16}
188	2,3-dimethyl-1-pentene	C_8H_{16}	243	2,3-dimethyl-1-pentene	C_8H_{16}
189	2,4-dimethyl-1-pentene	C_8H_{16}	244	2,4-dimethyl-1-pentene	C_8H_{16}
190	3,3-dimethyl-1-pentene	C_8H_{16}	245	3,3-dimethyl-1-pentene	C_8H_{16}
191	Ethylene	C_2H_{6}	246	3,4-dimethyl-1-pentene	C_8H_{16}
192	Propane	C_2H_{6}	247	4,4-dimethyl-1-pentene	C_8H_{16}
193	1-butene	C_2H_{6}	248	2,3-dimethyl-2-pentene	C_8H_{16}
194	Cis-2-butene	C_2H_{6}	249	2,4-dimethyl-2-pentene	C_8H_{16}
195	Trans-2-butene	C_2H_{6}	250	CIS-3,4-dimethyl-2-pentene	C_8H_{16}
196	Isobutene	C_2H_{6}	251	Trans-3,4-dimethyl-2-pentene	C_8H_{16}
197	1-pentene	C_2H_{6}	252	CIS-4,4-dimethyl-2-pentene	C_8H_{16}
198	2-methyl-1-butenene	C_2H_{6}	253	Trans-4,4-dimethyl-2-pentene	C_8H_{16}
199	3,3-trimethyl-1-butene	C_2H_{6}	254	3-methyl-2-ethyl-1-butenene	C_8H_{18}
200	2,3,3-trimethyl-1-butene	C_2H_{6}	255	2,3,3-trimethyl-1-butene	C_8H_{18}
201	3-methyl-1-butene	C_2H_{6}	256	1-octene	C_2H_{6}
202	2-methyl-2-butene	C_2H_{6}	257	Trans-2-octene	C_2H_{6}
203	1-hexene	C_2H_{6}	258	Trans-2-octene	C_2H_{6}
204	2-methyl-2-hexene	C_2H_{6}	259	Trans-3-octene	C_2H_{6}
205	2-hexene	C_2H_{6}	260	Trans-3-octene	C_2H_{6}
206	3-hexene	C_2H_{6}	261	Trans-4-octene	C_2H_{6}
207	3-hexene	C_2H_{6}	262	Trans-4-octene	C_2H_{6}
208	2-methyl-1-pentene	C_2H_{6}	263	2-methyl-1-heptene	C_2H_{6}
209	3-methyl-1-pentene	C_2H_{6}	264	3-methyl-1-heptene	C_2H_{6}
210	4-methyl-1-pentene	C_2H_{6}	265	4-methyl-1-heptene	C_2H_{6}
211	2-methyl-2-pentene	C_2H_{6}	266	Trans-6-methyl-2-heptene	C_2H_{6}
212	2,4-dimethyl-2-pentene	C_2H_{6}	267	Trans-3-methyl-3-heptene	C_2H_{6}
213	2-ethyl-1-hexene	C_2H_{6}	268	2-ethyl-1-hexene	C_2H_{6}
214	3-ethyl-1-hexene	C_2H_{6}	269	3-ethyl-1-hexene	C_2H_{6}
215	Cis-3-methyl-3-hexene	C_2H_{6}	270	4-ethyl-1-hexene	C_2H_{6}
216	2,3-dimethyl-1-hexene	C_2H_{6}	271	2,3-dimethyl-1-hexene	C_2H_{6}
217	2,3-dimethyl-2-hexene	C_2H_{6}	272	2,3-dimethyl-2-hexene	C_2H_{6}
218	3,3-dimethyl-3-hexene	C_2H_{6}	273	CIS-3,3-dimethyl-3-hexene	C_2H_{6}
219	2,3,3-trimethyl-1-pentene	C_2H_{6}	274	2,3,3-trimethyl-1-pentene	C_2H_{6}
220	2,4-trimethyl-1-pentene	C_2H_{6}	275	2,4-trimethyl-1-pentene	C_2H_{6}
221	2,4,4-trimethyl-2-pentene	C_2H_{6}	276	2,4,4-trimethyl-2-pentene	C_2H_{6}
DB SN	Compound	Formula	DB SN	Compound	Formula
-------	---------------	---------	-------	---------------	---------
277	1-nonene	C9H18	332	1-nomyne	C9H16
278	1-decene	C10H20	333	1-decylene	C10H18
279	1-undecene	C11H22	334	Benzene	C6H6
280	1-dodecene	C12H24	335	Toluene	C6H5
281	1-tridecene	C13H26	336	Ethylbenzene	C6H5
282	1-tetradecene	C14H28	337	O-xylene	C6H5
283	1-pentadecene	C15H30	338	M-xylene	C6H5
284	1-hexadecene	C16H32	339	P-xylene	C6H5
285	1-heptadecene	C17H34	340	n-propylbenzene	C6H5
286	1-octadecene	C18H36	341	O-ethyltoluene	C6H5
287	1-nonadecene	C19H38	342	O-ethyltoluene	C6H5
288	1-eicosene	C20H40	343	M-ethyltoluene	C6H5
289	Propadiene	C2H4	344	P-ethyltoluene	C6H5
290	1,2-butadiene	C6H10	345	1,2,3-trimethylbenzene	C6H5
291	1,3-butadiene	C6H10	346	1,2,4-trimethylbenzene	C6H5
292	1,2-pentadiene	C6H10	347	1,3,5-trimethylbenzene	C6H5
293	Cis-1,3-penta-	C6H10	348	n-butylbenzene	C6H5
294	Trans-1,3-penta-	C6H10	349	Isobutylbenzene	C6H5
295	1,4-pentadiene	C6H10	350	Sec-butylbenzene	C6H5
296	2,3-pentadiene	C6H10	351	Tert-butylbenzene	C6H5
297	3-methyl-1,2-butadiene	C6H10	352	1-methyl-2-n-propylbenzene	C6H5
298	2-methyl-1,3-buta-	C6H10	353	1-methyl-3-n-propylbenzene	C6H5
299	2,3-dimethyl-1,3-buta-	C6H10	354	1-methyl-4-n-propylbenzene	C6H5
300	1,2-hexadiene	C6H10	355	O-cymene	C6H5
301	1,5-hexadiene	C6H10	356	M-cymene	C6H5
302	2,3-hexadiene	C6H10	357	P-cymene	C6H5
303	3-methyl-1,2-pentadiene	C6H10	358	O-diethylbenzene	C6H5
304	2-methyl-1,5-hexadiene	C6H10	359	M-diethylbenzene	C6H5
305	2-methyl-2,4-hexadiene	C6H10	360	P-diethylbenzene	C6H5
306	2,6-octadiene	C6H10	361	1,2-dimethyl-3-ethylbenzene	C6H5
307	2,6-dimethyl-1,5-heptadiene	C7H12	362	1,2-dimethyl-4-ethylbenzene	C6H5
308	3,7-dimethyl-1,6-octadiene	C7H12	363	1,3-dimethyl-2-ethylbenzene	C6H5
309	Cyclopentene	C5H6	364	1,3-dimethyl-4-ethylbenzene	C6H5
310	1-methyl-cyclopentene	C6H10	365	1,3-dimethyl-5-ethylbenzene	C6H5
311	1-ethylcyclopentene	C6H10	366	1,4-dimethyl-2-ethylbenzene	C6H5
312	3-ethylcyclopentene	C6H10	367	1,2,3,4-tetramethylbenzene	C6H5
313	1-n-propylcyclopentene	C7H12	368	1,2,3,5-tetramethylbenzene	C6H5
314	Cyclohexene	C6H10	369	1,2,4,5-tetramethylbenzene	C6H5
315	1-methylcyclohexene	C7H12	370	n-pentylenbenzene	C6H5
316	1-ethylcyclohexene	C7H12	371	n-hexylbenzene	C6H5
317	Cyclopentadiene	C6H8	372	n-heptylenbenzene	C6H5
318	Dicyclopentadiene	C6H12	373	n-octylbenzene	C6H5
319	Alpha-pinene	C10H16	374	n-nonylbenzene	C6H5
320	Beta-pinene	C10H16	375	n-decylenbenzene	C6H5
321	Acetylene	C2H4	376	n-undecylbenzene	C6H5
322	Methylacetylene	C2H6	377	n-dodecylbenzene	C6H5
323	Dimethylacetylene	C2H6	378	n-tridecylbenzene	C6H5
324	Ethylacetylene	C2H6	379	n-tetradecylbenzene	C6H5
325	Vinylacetylene	C2H6	380	n-pentadecylbenzene	C6H5
326	1-pentyne	C5H10	381	n-hexadecylbenzene	C6H5
327	2-pentyne	C5H10	382	Cyclohexylbenzene	C6H5
328	3-methyl-1-butyne	C5H10	383	Styrene	C6H5
329	1-hexyne	C6H10	384	cis-l-propenyl benzene	C6H5
330	1-heptyne	C7H12	385	Trans-l-propenyl benzene	C6H5
331	1-octyne	C8H12	386	2-propenyl benzene	C6H5
DB	Compound	Formula	DB	Compound	Formula
----	----------	---------	----	----------	---------
387	1-methyl-2-ethenyl benzene	C12H16	432	1-n-propynaphthalene	C13H14
388	1-methyl-3-ethenyl benzene	C13H16	433	2-n-propynaphthalene	C13H14
389	1-methyl-4-ethenyl benzene	C13H18	434	1-n-butynaphthalene	C14H16
390	1-methyl-4-(trans-1-n-propenyl)benzene	C13H20	435	2-N-butynaphthalene	C14H16
391	1-ethyl-2-ethenyl benzene	C13H18	436	1-n-pentylnaphthalene	C15H18
392	1-ethyl-3-ethenyl benzene	C13H20	437	1-n-hexynaphthalene	C16H20
393	1-ethyl-4-ethenyl benzene	C13H20	438	2-n-hexynaphthalene	C16H20
394	2-phenyl-1-BUTENE	C14H12	439	1-n-heptynaphthalene	C17H22
395	Biphenyl	C12H10	440	1-octynaphthalene	C18H24
396	1-methyl-2-phenylbenzene	C12H12	441	1-N-nonylnaphthalene	C19H26
397	1-methyl-3-phenylbenzene	C12H12	442	2-N-nonylnaphthalene	C19H26
398	1-methyl-4-phenylbenzene	C12H12	443	1-N-decynaphthalene	C20H28
399	1-ethyl-4-phenylbenzene	C13H14	444	1,2,3,4-tetrahydronaphthalene	C10H12
400	1-methyl-(4-methylphenyl)benzene	C14H16	445	1-methyl-[1,2,3,4-tetrahydronaphthalene]	C11H14
401	Diphenylmethane	C12H12	446	4-ethyl-[1,2,3,4-tetrahydronaphthalene]	C12H16
402	1,1-diphenylethane	C13H18	447	2,2-dimethyl-[1,2,3,4-tetrahydronaphthalene]	C12H16
403	1,2-diphenylethane	C13H18	448	2,6-dimethyl-[1,2,3,4-tetrahydronaphthalene]	C12H16
404	1,1-diphenylpropane	C13H20	449	6,7-dimethyl-[1,2,3,4-tetrahydronaphthalene]	C12H16
405	1,2-diphenylpropane	C13H20	450	1-n-propyl-[1,2,3,4-tetrahydronaphthalene]	C13H18
406	1,1-diphenylbutane	C14H18	451	6-n-propyl-[1,2,3,4-tetrahydronaphthalene]	C13H18
407	1,1-diphenylpentane	C14H20	452	1-n-butyl-[1,2,3,4-tetrahydronaphthalene]	C14H20
408	1,1-diphenylhexane	C14H22	453	6-n-butyl-[1,2,3,4-tetrahydronaphthalene]	C14H20
409	1,1-diphenylheptane	C14H24	454	1-n-pentyl-[1,2,3,4-tetrahydronaphthalene]	C15H22
410	1,1-diphenyloctane	C14H26	455	6-n-pentyl-[1,2,3,4-tetrahydronaphthalene]	C15H22
411	1,1-diphenylnonane	C14H28	456	1-n-hexyl-[1,2,3,4-tetrahydronaphthalene]	C16H24
412	1,1-diphenyldecane	C14H30	457	1-n-heptyl-[1,2,3,4-tetrahydronaphthalene]	C17H26
413	1,1-diphenylundecane	C14H32	458	1-n-octyl-[1,2,3,4-tetrahydronaphthalene]	C18H28
414	1,1-diphenyldodecane	C14H34	459	1-n-nonyl-[1,2,3,4-tetrahydronaphthalene]	C19H30
415	1,1-diphenyltridecane	C14H36	460	1-n-decyl-[1,2,3,4-tetrahydronaphthalene]	C20H32
416	1,1-diphenyltetradecane	C14H38	461	Indene	C9H8
417	1,1-diphenypentadecane	C14H40	462	1-methylindene	C10H10
418	Cis-1,2-diphenylethyne	C12H12	463	2-methylindene	C10H10
419	Trans-1,2-diphenylethyne	C12H12	464	2,3-dihydronaphthalene	C10H10
420	Phenylacetylene	C9H8	465	1-methyl-2,3-dihydronaphthalene	C10H12
421	Diphenylacetylene	C10H10	466	2-methyl-2,3-dihydronaphthalene	C10H12
422	1,2-diphenylbenzene	C13H18	467	4-methyl-2,3-dihydronaphthalene	C10H12
423	1,3-diphenylbenzene	C13H18	468	5-methyl-2,3-dihydronaphthalene	C10H12
424	1,4-diphenylbenzene	C13H18	469	Acenaphthalene	C13H8
425	Naphthalene	C10H8	470	Acenaphthene	C13H10
426	1-methylnaphthalene	C11H14	471	Fluorene	C13H10
427	2-methylnaphthalene	C11H14	472	Anthracene	C14H10
428	1-ethynaphthalene	C12H12	473	Phenanthrene	C14H10
429	2-ethynaphthalene	C12H12	474	Pyrene	C16H10
430	1,2-dimethynaphthalene	C12H12	475	Fluoranthe	C16H10
431	1,4-dimethynaphthalene	C12H12	476	Chrysene	C18H12

References

[1] P. Chan, C. Tong, and M. Durrant, *Estimation of boiling points using density functional theory with polarized continuum model solvent corrections*, J Mol Graph Model, 30 (2011), 120–128.

[2] G. S. Cholakov, W. A. Wakeham, and R. P. Stateva, *Estimation of normal boiling points of hydrocarbons from descriptors of molecular structure*, Fluid Phase Equilib, 163 (1999), 21–42.

[3] O. Ivanciuc, T. Ivanciuc, and A. T. Balaban, *Quantitative structure-property relationship study of normal boiling points for halogen-/ oxygen-/ sulfur-containing organic compounds using the codessa program*, Tetrahedron, 54 (1998), 9129–9142.

[4] A. R. Katritzky, L. Mu, V. S. Lobanov, and M. Karelson, *Correlation of boiling points with molecular structure. 1. A training set of 298 diverse organics and a test set of 9 simple inorganics*, J Phys Chem, 100 (1996), 10400–10407.

[5] J. Walker, *The boiling points of homologous compounds. Part I. Simple and mixed ethers*, J Chem Soc Trans, 65 (1894), 193–202.

[6] S. Wang, S.-T. Lin, J. Chang, W. A. Goddard III, and S. I. Sandler, *Application of the COSMO-SAC-BP solvation model to predictions of normal boiling temperatures for environmentally significant substances*, Ind Eng Chem Res, 45 (2006), 5426–5434.