Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	Frenzel, A.J., C. H. Lui, Y. C. Shin, J. Kong, and N. Gedik. "Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene." Phys. Rev. Lett. 113, 056602 (July 2014). © 2014 American Physical Society
As Published	http://dx.doi.org/10.1103/PhysRevLett.113.056602
Publisher	American Physical Society
Version	Final published version
Accessed	Sat Dec 08 17:59:42 EST 2018
Citable Link	http://hdl.handle.net/1721.1/88651
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Detailed Terms	
Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight in Graphene

A. J. Frenzel,1,2 C. H. Lui,1 Y. C. Shin,3 J. Kong,4 and N. Gedik1,*

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
4Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 14 March 2014; published 31 July 2014)

We investigate the transient photoconductivity of graphene at various gate-tuned carrier densities by optical-pump terahertz-probe spectroscopy. We demonstrate that graphene exhibits semiconducting positive photoconductivity near zero carrier density, which crosses over to metallic negative photoconductivity at high carrier density. These observations can be accounted for by the interplay between photoinduced changes of both the Drude weight and carrier scattering rate. Our findings provide a complete picture to explain the opposite photoconductivity behavior reported in (undoped) graphene grown epitaxially and (doped) graphene grown by chemical vapor deposition. Notably, we observe nonmonotonic fluence dependence of the photoconductivity at low carrier density. This behavior reveals the nonmonotonic temperature dependence of the Drude weight in graphene, a unique property of two-dimensional massless Dirac fermions.

DOI: 10.1103/PhysRevLett.113.056602 PACS numbers: 72.80.Vp, 72.40.+w, 73.40.Qv, 78.20.—e

Charge carriers in graphene mimic two-dimensional (2D) massless Dirac fermions with linear energy dispersion, resulting in unique optical and electronic properties [1]. They exhibit high mobility and strong interaction with electromagnetic radiation over a broad frequency range [2]. Interband transitions in graphene give rise to pronounced optical absorption in the mid-infrared to visible spectral range, where the optical conductivity is close to a universal value \(\sigma_0 = \pi e^2/2h \) [3]. Free-carrier intraband transitions, on the other hand, cause low-frequency absorption, which varies significantly with charge density and results in strong light extinction at high carrier density [4]. In addition to this density dependence, the massless Dirac particles in graphene are predicted to exhibit a distinctive nonmonotonic temperature dependence of the intraband absorption strength, or Drude weight, due to their linear dispersion [5,6]. This behavior contrasts with the temperature-independent Drude weight expected in conventional systems of massive particles with parabolic dispersion [7,8]. Although the unique behavior of the Drude weight in graphene has been considered theoretically, experimental signatures are still lacking.

The intrinsic properties of Drude absorption in graphene can be revealed by studying its dynamical response to photoexcitation. In particular, optical-pump terahertz-probe spectroscopy provides access to a wide transient temperature range via pulsed optical excitation, and allows measurement of the ac Drude conductivity by a time-delayed terahertz probe pulse [9]. This technique has been applied to study transient photoconductivity (PC) in graphene, but conflicting results have been reported [9–15]. Positive PC was observed in epitaxial graphene on SiC (Ref. [15]), while negative PC was seen in graphene grown by chemical vapor deposition (CVD) [11–14]. It has been argued that the opposite behavior in these samples arises from their different charge densities. Here we study graphene samples with gate tunable carrier density to resolve these issues and further reveal the unique Drude response of massless Dirac fermions.

In this Letter, we present an investigation of the Drude absorption dynamics in graphene over a wide range of carrier density and temperature. Using optical-pump terahertz-probe spectroscopy, we drove the carriers to high transient temperature and probed the Drude absorption of the hot carriers as they relaxed to equilibrium. By adjusting the gate voltage, pump-probe delay, and excitation fluence, we were able to observe the change of Drude absorption over a broad range of carrier density and transient temperature. Near the charge neutrality point, our samples exhibited positive (semiconducting) ultrafast PC, due to thermal excitation of electron-hole pairs after photoexcitation. At high charge density, however, the samples exhibited negative (metallic) PC due to the decrease of both the Drude weight and the carrier scattering time at high transient temperature. The observed density-dependent PC provides a unifying framework for understanding previously reported positive PC in (undoped) epitaxial graphene and negative PC in (p-doped) CVD graphene.

0031-9007/14/113(5)/056602(6) 056602-1 © 2014 American Physical Society
Additionally, at low charge density, we observed unusual fluence dependence of the terahertz Drude response, where the PC first decreased and then increased as the pump fluence increased. This is consistent with the behavior expected from the nonmonotonic temperature dependence of the Drude weight in graphene. By using the Drude model with an estimated temporal evolution of the hot carrier temperature, we were able to reproduce our main observations.

A key advance in our experiment is the fabrication of large-area gated graphene devices without a terahertz PC response from the substrate [Fig. 1(a)]. This is not possible with commonly used SiO₂/Si substrates, which produce a large background signal in optical-pump terahertz-probe experiments [16]. We used z-cut crystalline quartz substrates and deposited 35-nm indium tin oxide (ITO) and 400-nm parylene-C thin films as the back-gate electrode and dielectric, respectively. We experimentally confirmed that the back-gate structure had negligible pump-probe response (see the Supplemental Material [17]). High-quality single-layer CVD graphene sheets [28] were transferred onto our back-gate substrates. Graphite-paint source and drain electrodes were attached to graphene with a separation of ~5 mm. The devices exhibited excellent bipolar gating behavior with low unintentional doping [Fig. 1(b); gate voltage $V_g = 3 \text{ V} \equiv V_{\text{CN}}$ at charge neutrality (CN), corresponding to unintentional hole doping $p = 1.7 \times 10^{11} \text{ cm}^{-2}$, estimated from our device capacitance].

The graphene devices, investigated at room temperature in high vacuum ($P < 10^{-3} \text{ Torr}$), were photoexcited with 100 fs laser pulses at 1.55 eV photon energy generated using a 5 kHz amplified Ti:sapphire laser system. The transient PC was probed by measuring the complex transmission coefficient of time-delayed picosecond terahertz pulses (photon energy 2–10 meV) with controllable time delay τ [Fig. 1(a)]. In these measurements, the local detection time of the picosecond terahertz pulse was synchronized with the pump pulse such that the whole terahertz waveform experienced the same time delay after photoexcitation [29]. To reduce experimental errors due to laser drift, we simultaneously measured the transmitted terahertz electric field waveform $E_0(t)$ without optical excitation and the optical-pump-induced change of the field $\Delta E_i(t)$ via electro-optic sampling using a data acquisition card [16,17,30]. The resulting ratio $-\Delta E_i/E_0$ (referred to as “differential field”) approximately represents the PC, $\Delta \sigma_{\text{r};1}$ (Refs. [9–12,17]).

Pump-probe measurements with incident pump fluence $F = 10 \mu \text{J/cm}^2$ and pump-probe delay $\tau = 1.5 \text{ ps}$ reveal that the sign of the PC changes from positive near charge neutrality to negative at moderate carrier density [Fig. 2]. The calculated device geometry taken into account (see the Supplemental Material [17]), shows a positive real part [Fig. 2(b)]. In sharp contrast, $\Delta E_i(t)$ has the same form and sign as $E_0(t)$ when $V_g = V_{\text{CN}} + 52 \text{ V}$ ($n \approx 3 \times 10^{12} \text{ cm}^{-2}$), indicating a photoinduced decrease in absorption [Fig. 2(d)]. As expected, the real part of the PC, $\Delta \sigma_{\text{r};1}$, is negative in this case [Fig. 2(e)].

To further investigate the mechanism driving the observed PC sign change, we measured the temporal (τ) dynamics of $\Delta \sigma_{\text{r};1}$ at various carrier densities. Figure 3(a) displays the ratio $-\Delta E_i(t)/E_0(t)$ as a function of τ at fixed $t = 0$ [Figs. 2(a) and 2(d)] for gate voltages between -48 and $+2 \text{ V}$ from V_{CN} (incident fluence $F = 10 \mu \text{J/cm}^2$). The dynamics exhibits a relaxation time of ~2 ps, with no systematic dependence on carrier density. From these dynamical data, we evaluated the differential field averaged over τ, $\langle -\Delta E_i/E_0 \rangle$, as a function of gate voltage [Fig. 3(c)]. The result demonstrates that the overall PC signal changes from positive at charge neutrality to negative at moderate charge density for both electron and hole sides, consistent with dc measurements [31]. Similar results were observed at different fluences (see, for example, results for $F = 3 \mu \text{J/cm}^2$ in the Supplemental Material [17]).

The above observations can be qualitatively understood by considering the interplay between photoinduced changes of carrier population and scattering rate. Photoexcited carriers in graphene are known to thermalize within a few tens of femtoseconds [32]. With the > 100 fs resolution in
our experiment, the carriers can be well described by a thermal distribution at temperature T_e for all pump-probe delay times τ. For graphene near the charge neutrality point, an increase of carrier temperature promotes the free-carrier population and thus enhances absorption. This behavior mimics that observed in epitaxial graphene [15] and other semiconductors [9,29], where optically generated electron-hole pairs increase the infrared absorption. For graphene with high carrier density, laser-induced carrier heating only modifies the carrier distribution near the Fermi level, without changing the total carrier density. The carrier scattering rate, however, increases due to an enlarged phase space and the presence of hot optical phonons [33]. This causes a reduction of free-carrier absorption, a behavior analogous to that in metals and observed in p-doped CVD graphene [11–14]. For a more thorough understanding of the density-dependent PC dynamics, we consider a Drude model for free carrier conductivity in graphene [4,6,11,12,15],

$$\sigma(\omega) = \frac{D}{\pi(\Gamma - i\omega)}. \quad (1)$$

Here, Γ is the transport scattering rate and D is the Drude weight, which quantifies the oscillator strength of free-carrier absorption. In a metal or semiconductor with parabolic dispersion, $D = \pi n e^2 / m$, independent of temperature [8,17]. In graphene, a 2D system with linear dispersion, however, D exhibits a distinctive carrier temperature dependence [5,6,17,34],

$$D(T_e) = \frac{2e^2}{\hbar^2} k_B T_e \ln \left[2 \cosh \left(\frac{\mu(T_e)}{2k_B T_e} \right) \right]. \quad (2)$$

This relation predicts that, in intrinsic graphene, $D(T_e)$ increases linearly with temperature when $k_B T_e \gg \epsilon_F$, and approaches $(e^2 / \hbar^2) \mu \propto \sqrt{n}$ for electronic temperatures $k_B T_e \ll \epsilon_F$. For graphene samples on substrates, charge inhomogeneity and disorder smear out intrinsic behavior near the Dirac point [35]. We include these effects by using a phenomenologically broadened chemical potential.
The other parameter in the Drude model, the scattering rate Γ, depends on the chemical potential μ, the carrier temperature T_c, the phonon temperature T_{ph}, and the specific scattering mechanisms [37]. In our samples, we expect charged impurities and hot optical phonons to dominate scattering [17,33,37,38]. To facilitate our calculations, we consider a contribution $\Gamma_C \propto |\mu|^{-1}$ due to Coulomb impurity scattering [35] and the expression given in Ref. [38] for scattering with intrinsic optical phonons, assuming that $T_{ph} = T_c$ [Refs. [10,32]; Fig. 4(b)]. We neglect the unknown coupling of carriers to surface phonons in the parylene-C dielectric [31,37].

We used $D(T_c)$ and $\Gamma(T_c, T_{ph})$ as estimated above to calculate the temperature- and density-dependent change of conductivity for our experimental conditions, $\Delta \sigma_1(T_c) = \sigma_1(T_c) - \sigma_1(300 \text{ K})$, at a representative frequency $\omega/2\pi = 1 \text{ THz}$. The result [Fig. 4(c)] shows that $\Delta \sigma_1(T_c)$ is positive (red area) near charge neutrality ($V_g < 5 \text{ V}$), but becomes negative (blue area) at high carrier density ($V_g > 15 \text{ V}$), as anticipated from the qualitative discussion above.

To simulate the transient PC dynamics, we also considered the temporal (τ) evolution of the carrier temperature after photoexcitation. Such hot carrier dynamics have been discussed extensively in the literature. We therefore estimated the transient temperature profile from previous publications [32,33,39] and simulated the temporal PC dynamics. In particular, we assumed a biexponential decay with time constants $\tau_1 = 0.3 \text{ ps}$ and $\tau_2 = 3.1 \text{ ps}$ and a 200 fs rise time [Refs. [33,39]; see inset of Fig. 3(b)]. The maximum estimated temperature was $\sim 800 \text{ K}$ for incident fluence $10 \mu\text{J/cm}^2$. Based on this temperature profile, we calculated $\Delta \sigma_1(\omega)$ [Figs. 2(c) and 2(f)] and $-\Delta E_c/E_0$ [Figs. 3(b) and 3(d)]. Our simulations, though based on a simple model, were found to reproduce all the main features of our observations.

An essential aspect of our model is the distinctive Drude weight of graphene with nonmonotonic temperature dependence [Eq. (2) and Fig. 4(a)]. Specifically, for finite carrier density, $D(T_c)$ first decreases to a minimum value as T_c increases, then increases linearly with T_c for temperatures much greater than ϵ_F [Fig. 4(a); Refs. [5,17]]. Simulations performed without considering this temperature dependence yielded results qualitatively different from the experimental data (see Fig. S7 of the Supplemental Material [17]). In order to reveal this unique Drude behavior of graphene more directly, we examined the fluence dependence of $-\Delta E_c/E_0$ in the PC crossover regime [Fig. 4(d)]. Since T_c increases monotonically with excitation fluence [32,33], any nonmonotonicity of $D(T_c)$ should also manifest in its fluence dependence. This phenomenon was indeed observed in our experiment [Fig. 4(d)]. At a representative $\tau = 3.5 \text{ ps}$ near the PC crossover ($V_g = -7 \text{ V}$), $-\Delta E_{3.5 \text{ ps}}/E_0$ was found to first decrease and then increase with increasing fluence. This nonmonotonic behavior gradually weakens as the density moves away from the crossover (see, e.g., $V_g = -5$ and -9 V in Fig. 4(d)]. This peculiar fluence dependence was observed for all $\tau = 1-8 \text{ ps}$. We also observed independent evidence for the nonmonotonic $D(T_c)$ in the temporal PC dynamics at the crossover, where the PC sign flips multiple times as the carriers are heated up by the pump pulse and subsequently cool (see the Supplemental Material [17] for details).

The observed nonmonotonic temperature dependence of the Drude weight can be understood by considering conservation of spectral weight of optical transitions [4,6,40]. Optical absorption in graphene consists of two contributions: high-energy interband absorption and low-energy intraband absorption. Interband absorption in graphene with finite charge density shows an onset at photon energy $\hbar\omega = 2|\mu|$ due to Pauli blocking [3,4,6]. When carriers are heated to moderate temperatures $k_B T_c \ll \epsilon_F$, $\mu(T_c)$ decreases due to particle conservation [8]. The corresponding decrease of onset energy for interband absorption increases the interband spectral weight. To conserve total spectral weight, the intraband absorption must decrease. When carrier temperatures become comparable to ϵ_F, however, interband transitions are Pauli blocked by thermally excited carriers, reducing the spectral weight. This increases the intraband spectral weight, as has been observed in graphite [40]. This unique behavior...
originates from the distinctive linear dispersion of 2D massless Dirac fermions in graphene, and is absent in conventional materials with parabolic dispersion.

In conclusion, we have studied the temperature- and density-dependent Drude conductivity in graphene through its dynamical response to pulsed photoexcitation. We demonstrated that the transient photoconductivity of graphene can be tuned continuously from semiconducting to metallic by varying the Fermi level from the charge neutrality point to either the electron or hole side. Our results resolve the controversy between previous experiments, which observed positive photoconductivity in epitaxial graphene and negative photoconductivity in CVD graphene. By detailed simulation based on the Drude model, we found that photoinduced changes of both the Drude weight and carrier scattering rate play important roles in the terahertz photoconductivity dynamics.

We acknowledge J. C. W. Song and O. Khatib for helpful discussions; V. Fatemi, J. D. Sanchez-Yamagishi, and M. A. Smith for assistance with device fabrication; and D. V. Pilon for assistance with experiments. This work was supported by the U.S. Department of Energy Office of Basic Energy Sciences Grant No. DE-SC0006423 (sample fabrication, experimental setup, and data acquisition) and STC Center for Integrated Quantum Materials, NSF Grant No. DMR-1231319 (data analysis). A. J. F. acknowledges support from NSF GRFP. This work also made use of Harvard’s Center for Nanoscale Systems (CNS), supported by the National Science Foundation under Grant No. ECS-0335765, and the MIT Microsystems Technology Laboratory (MTL).

Note added.—Recently we became aware of similar work by another group [41].

*gedik@mit.edu

[1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009); S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
[2] K. F. Mak, L. Ju, F. Wang, and T. F. Heinz, Solid State Commun. 152, 1341 (2012).
[3] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008); Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532 (2008); F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, Science 320, 206 (2008).
[4] J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Phys. Rev. B 83, 165113 (2011); L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawaiyama, M. Tonouchi, J. M. Tour, and J. Kono, Nano Lett. 12, 3711 (2012).
[5] M. Müller, M. Bräuninger, and B. Trauzettel, Phys. Rev. Lett. 103, 196801 (2009).
[6] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, New J. Phys. 11, 095013 (2009).
[7] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Phys. Rev. B 75, 165407 (2007).
[8] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Brooks-Cole, Belmont, MA, 1976).
[9] R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).
[10] T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).
[11] G. Jinawali, Y. Yao, H. Yan, and T. F. Heinz, Nano Lett. 13, 524 (2013).
[12] A. J. Frenzel, C. H. Lui, W. Fang, N. L. Nair, P. K. Herring, P. Jarillo-Herrero, J. Kong, and N. Gedik, Appl. Phys. Lett. 102, 113111 (2013).
[13] C. J. Docherty, C.-T. Lin, H. J. Joyce, R. J. Nicholas, L. M. Herz, L.-J. Li, and M. B. Johnston, Nat. Commun. 3, 1228 (2012).
[14] K. J. Tielrooij, J. C. W. Song, S. A. Jensen, A. Centeno, A. Pesquera, A. Zurutuza Elorza, M. Bonn, L. S. Levitov, and F. H. L. Koppens, Nat. Phys. 9, 248 (2013).
[15] H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, Appl. Phys. Lett. 94, 172102 (2009); J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, Nano Lett. 11, 4902 (2011); S. Winnerl, M. Orlita, P. Plochocka, P. Kossacki, M. Potemski, T. Winzer, E. Malic, A. Knorr, M. Sprinkle, C. Berger, W. A. de Heer, H. Schneider, and M. Helm, Phys. Rev. Lett. 107, 237401 (2011); J. Kim, S. C. Lim, S. J. Chae, I. Maeng, Y. Choi, S. Choi, Y. H. Lee, and H. Choi, Sci. Rep. 3, 02663 (2013).
[16] K. Iwasczuk, D. G. Cooke, M. Fujwara, H. Hashimoto, and P. U. Jepsen, Opt. Express 17, 21969 (2009).
[17] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.113.056602, which includes Refs. [18-27].
[18] A. Kahouli, A. Sylvestre, L. Ortega, F. Jomni, B. Yangui, M. Maillard, B. Berge, J.-C. Robert, and J. Legrand, Appl. Phys. Lett. 94, 152901 (2009).
[19] R. D. Averitt, G. Rodriguez, J. L. W. Siders, S. A. Trugman, and A. J. Taylor, J. Opt. Soc. Am. B 17, 327 (2000).
[20] L. Duvillaret, F. Garet, and J.-L. Coutaz, IEEE J. Sel. Top. Quantum Electron. 2, 739 (1996).
[21] M. C. Nuss and J. Orenstein, in Millimeter and Submillimeter Wave Spectroscopy of Solids, edited by G. Grünner (Springer, Berlin, 1998) Chap. 2, pp. 7–50.
[22] X. Liu, S. MacNaughton, D. B. Shrekenhamer, H. Tao, S. Selvarasah, A. Totachawattana, R. D. Averitt, M. R. Dokmeci, S. Sonkusale, and W. J. Padilla, Appl. Phys. Lett. 96, 011906 (2010).
[23] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, Nat. Nanotechnol. 3, 206 (2008).
[24] T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76, 205423 (2007).
[25] K. He, L. Zhao, J. Shan, K. F. Mak, N. Petron, J. Hone, T. F. Heinz, and G. L. Carr, Bull. Am. Phys. Soc. T5, 8 (2013).
[26] C. Larsen, D. G. Cooke, and P. U. Jepsen, J. Opt. Soc. Am. B 28, 1308 (2011).
[27] T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006).
[28] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
[29] M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, \textit{Phys. Rev. B} \textbf{62}, 15764 (2000).

[30] C. A. Werley, S. M. Teo, and K. A. Nelson, \textit{Rev. Sci. Instrum.} \textbf{82}, 123108 (2011).

[31] M. Freitag, T. Low, F. Xia, and P. Avouris, \textit{Nat. Photonics} \textbf{7}, 53 (2012).

[32] C. H. Lui, K. F. Mak, J. Shan, and T. F. Heinz, \textit{Phys. Rev. Lett.} \textbf{105}, 127404 (2010); M. Breusing, S. Kuehn, T. Winzer, E. Malić, F. Milde, N. Severin, J. P. Rabe, C. Ropers, A. Knorr, and T. Elsaesser, \textit{Phys. Rev. B} \textbf{83}, 153410 (2011); D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, \textit{Nat. Commun.} \textbf{4}, 1987 (2013); J. C. Johannsen, S. Ulstrup, F. Cilento, A. Crepaldi, M. Zacchigna, C. Cacho, I. C. Edmond Turcu, E. Springate, F. Fromm, C. Raidel, T. Seyller, F. Parmigiani, M. Grioni, and P. Hofmann, \textit{Phys. Rev. Lett.} \textbf{111}, 027403 (2013); I. Gierz, J. C. Petersen, M. Mitran, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, \textit{Nat. Mater.} \textbf{12}, 1119 (2013).

[33] L. M. Malard, K. F. Mak, A. H. Castro Neto, N. M. R. Peres, and T. F. Heinz, \textit{New J. Phys.} \textbf{15}, 015009 (2013).

[34] M. Wagner, Z. Fei, A. S. McLeod, A. S. Rodin, W. Bao, E. G. Iwinski, Z. Zhao, M. Goldflam, M. Liu, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro Neto, C. N. Lau, S. Amarie, F. Keilmann, and D. N. Basov, \textit{Nano Lett.} \textbf{14}, 894 (2014).

[35] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, \textit{Proc. Natl. Acad. Sci. U.S.A.} \textbf{104}, 18392 (2007).

[36] S. Kim, J. Nah, I. Jo, D. Shahrjerdi, L. Colombo, Z. Yao, E. Tutuc, and S. K. Banerjee, \textit{Appl. Phys. Lett.} \textbf{94}, 062107 (2009).

[37] E. H. Hwang and S. Das Sarma, \textit{Phys. Rev. B} \textbf{77}, 115449 (2008); S. Fratini and F. Guinea, \textit{ibid.} \textbf{77}, 195415 (2008); E. H. Hwang and S. Das Sarma, \textit{ibid.} \textbf{79}, 165404 (2009).

[38] V. Perebeinos and P. Avouris, \textit{Phys. Rev. B} \textbf{81}, 195442 (2010).

[39] M. W. Graham, S.-F. Shi, Z. Wang, D. C. Ralph, J. Park, and P. L. McEuen, \textit{Nano Lett.} \textbf{13}, 5497 (2013).

[40] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, \textit{Phys. Rev. Lett.} \textbf{100}, 117401 (2008).

[41] S.-F. Shi, T.-T. Tang, B. Zeng, L. Ju, Q. Zhou, A. Zettl, and F. Wang, \textit{Nano Lett.} \textbf{14}, 1578 (2014).