CP violation in B decays to charmonia at LHCb

Giovanni Cavallero on behalf of the LHCb collaboration

University of Genova and INFN Genova
E-mail: gcavalle@cern.ch

Abstract. B^0_s meson decays to states containing a charmonium meson are theoretically clean modes to measure the weak mixing phases ϕ_d and ϕ_s, one of the key goals of the LHCb experiment. The current status of measurements of these observables performed by the LHCb collaboration is presented. The future perspectives, as well as the expected precision that will be achieved from LHCb, are also discussed.

1. Introduction

Measurements of time-dependent CP asymmetries in the B^0 and B^0_s systems using $b \to c\bar{c}s$ transitions, e.g. decay modes involving a charmonium meson in the final state, are sensitive to the CKM phases $\beta \equiv \arg\left(\frac{-(V_{td}V_{cb}^*)}{(V_{td}V_{cb})}\right)$ and $\beta_s \equiv \arg\left(\frac{-(V_{ts}V_{tb}^*)}{(V_{cs}V_{cb})}\right)$, respectively. The interference between the B^0_s mixing and decay processes introduces the CP-violating observables $\sin2\beta$ and $\sin2\beta_s$. Within the Standard Model (SM), and neglecting subleading decay diagrams, they can be identified with $\sin2\beta = 2\beta$ and $\sin2\beta_s = -2\beta_s$. These observables are precisely predicted from global fits to experimental data, and deviations from these predictions would indicate New Physics (NP) contributions entering the loops describing the B^0_s mixing. On the other side, the experimental constraints on these phases put stringent limits on NP models. The LHCb detector [1, 2], having an excellent decay time resolution of ~ 45 fs [3] and a tagging power of the B^0_s flavour at production of $\sim 4\%$ [4], has been designed to perform leading measurements of these CP-violating observables, requiring flavour-tagged time-dependent angular (or amplitude) analyses. All measurements presented here used samples of pp collisions data collected by the LHCb experiment at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV during Run 1.

2. Status of ϕ_d measurement

The $B^0 \to J/\psi K^0_S$ decay channel is the golden mode for the measurement of ϕ_d. The LHCb collaboration measured $\sin\phi_d = 0.731 \pm 0.035 \pm 0.020$ using $B^0 \to J/\psi(\to \mu^+\mu^-)K^0_S(\to \pi^+\pi^-)$ decays, where the first uncertainty is statistical and the second systematic [5]. The signal yield asymmetry as a function of the B^0 decay time is shown in Fig. 1(a). The analysis provides the most precise measurement of ϕ_d at an hadronic collider with the result having a similar precision to the single measurements by the BaBar [6] and Belle [7] collaborations.

LHCb also measured ϕ_d using the $B^0 \to J/\psi(\to e^+e^-)K^0_S(\to \pi^+\pi^-)$ and $B^0 \to \psi(2S)(\to \mu^+\mu^-)K^0_S(\to \pi^+\pi^-)$ decay modes, improving the precision on $\sin2\beta$ by $\sim 20\%$ [8]. The combination of the LHCb measurements, shown in Fig. 1(b), results in

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
\[
\sin \phi_d = 0.760 \pm 0.034. \quad \text{The world average is given by} \quad \sin \phi_d = 0.691 \pm 0.017 \quad [9], \quad \text{to be compared with the SM prediction of} \quad \sin \phi_d = 0.740^{+0.020}_{-0.025} \quad [10, 11].
\]

Figure 1. (Colours online) Panel (a): signal yield asymmetry determined in the flavour-tagged time-dependent analysis of \(B^0 \to J/\psi K^0_S\) decays. Panel (b): combination of LHCb measurements of \(\phi_d\). Within the SM, \(C \sim 0\) and \(S \sim 2\beta\). LHCb combination gives \(S = 0.760 \pm 0.034\) and \(C = -0.017 \pm 0.029\).

3. Status of \(\phi_s\) measurement
The golden mode for the measurement of \(\phi_s\) is the \(B^0_s \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-)\) decay channel, that can be precisely measured at hadronic colliders only. The final state involves two vector mesons, motivating a time-dependent angular analysis in order to disentangle the \(CP\)-odd and \(CP\)-even components. Moreover, a \(K^+K^-\) S-wave amplitude, of the order of \(\sim 2\%\), is present under the \(\phi\) region. The advantage in performing such angular analysis is the possibility to also measure the \(B^0_s\) mixing parameters. The LHCb collaboration performed the analysis of the \(B^0_s \to J/\psi(\to \mu^+\mu^-)\phi(\to K^+K^-)\) decay channel \([12]\) obtaining the results shown in Table 1. The result of the angular analysis is reported in Fig. 2(a). It has also been possible to test the dependence of the \(\phi_s\) value on the polarisation of the final state. No evidence for a polarisation-dependent \(CP\)-violation is found for \(B^0_s \to J/\psi \phi\) decays.

Table 1. Parameters determined from the flavour-tagged time-dependent angular analysis of the \(B^0_s \to J/\psi \phi\) decay channel. The results are the most precise determinations of these parameters to date.

Parameter	Value		
\(\phi_s\)	\(-58 \pm 49 \pm 6\) mrad		
\(\Delta \Gamma_s\)	\(0.0805 \pm 0.0091 \pm 0.0032\) ps\(^{-1}\)		
\(\Gamma_s\)	\(0.6603 \pm 0.0027 \pm 0.0015\) ps\(^{-1}\)		
\(\lambda	\)	\(0.964 \pm 0.019 \pm 0.007\)

As suggested in Ref. \([13]\), the full \(m(K^+K^-)\) spectrum in \(B^0_s \to J/\psi K^+K^-\) decays can be used to increase the sensitivity on \(\phi_s\). The LHCb collaboration performed the time-dependent amplitude analysis of \(B^0_s \to J/\psi(\to \mu^+\mu^-)K^+K^-\) decays using the \(m(K^+K^-) > 1.05\) GeV
range, \textit{i.e.} above the ϕ resonance region \cite{14}. The amplitude fit is shown in Fig. 2(b). The results, reported in Table 2, have uncertainties two times larger than the $B^0_s \rightarrow J/\psi \phi$ decay channel analysis. The combination of the results obtained in the two $m(K^+K^-)$ ranges is $\phi_s = -25 \pm 45 \pm 8$ mrad.

Table 2. Parameters determined from the time-dependent angular analysis of the $B^0_s \rightarrow J/\psi K^+K^-$ decay channel, with $m(K^+K^-) > 1.05$ GeV.

Parameter	Value		
ϕ_s	$119 \pm 107 \pm 34$ mrad		
$\Delta \Gamma_s$	$0.066 \pm 0.018 \pm 0.010$ ps$^{-1}$		
Γ_s	$0.650 \pm 0.006 \pm 0.004$ ps$^{-1}$		
$	\lambda	$	$0.994 \pm 0.018 \pm 0.006$

Figure 2. (Colours online) Panel (a): angular distribution of $B^0_s \rightarrow J/\psi K^+K^-$ decays in the ϕ region. The CP-even, CP-odd and S-wave components are shown in the legend. Panel (b): amplitude fit results of $B^0_s \rightarrow J/\psi K^+K^-$ decays. Above the ϕ region, the decay amplitude mainly proceeds through the $f_0(1525)$ resonance.

The LHCb collaboration measured ϕ_s also using the $B^0_s \rightarrow J/\psi \pi^+\pi^-$ \cite{15} and $B^0_s \rightarrow \psi(2S)\phi$ \cite{16} decay channels, and using open-charm \cite{17} and charmless decay modes \cite{18}. The most precise contribution to the world average $\phi_s = -21 \pm 31$ mrad \cite{9}, shown in Fig. 3(a), is given by LHCb and its value is consistent with the SM prediction $\phi_s^{SM} = -37.6^{+0.7}_{-0.8}$ mrad \cite{19, 20}. The large experimental uncertainty, far from the theoretical precision, leaves room for NP contributions in the B^0_s mixing sector.

4. Control of penguin effects

As the experimental precision improves, the penguin pollution involving hadronic effects \cite{21, 22} must be controlled. The experimental values of ϕ_d and ϕ_s can be written as

$$\phi_d^{exp} = 2\beta + \Delta \phi_d^{pen} + \Delta \phi_d^{NP},$$

$$\phi_s^{exp} = -2\beta_s + \Delta \phi_s^{pen} + \Delta \phi_s^{NP},$$

where \(\beta, \beta_s\) are the FCNC contributions, \(\Delta \phi_d^{pen}, \Delta \phi_s^{pen}\) are the penguin contributions, and \(\Delta \phi_d^{NP}, \Delta \phi_s^{NP}\) are the NP contributions.
where $\Delta \phi^\text{pen}$ indicates contributions from doubly Cabibbo-suppressed diagrams in the decay amplitudes, and $\Delta \phi^\text{NP}$ indicates NP contributions. Therefore, it is important to control penguin effects that could mimic NP contributions in case ϕ^exp shows any deviations from the SM prediction.

The $\Delta \phi^\text{pen}$ shift arises from hadronic effects and it is difficult to compute due to the non-perturbative nature of the QCD processes involved. A strategy to constrain the effects of the subleading penguin diagrams has been defined [23], exploiting SU(3)$_f$-related modes, where penguin diagrams are Cabibbo-allowed: $\Delta \phi^\text{pen}_d$ can be constrained using the $B^0_s \rightarrow J/\psi K^0_S$ decay mode, and $\Delta \phi^\text{pen}_s$ can be constrained using the $B^0 \rightarrow J/\psi \rho^0$ and $B^0 \rightarrow J/\psi K^{*0}$ decay modes. The penguin parameters can then be converted into the golden modes counterparts to obtain the expected shifts in the ϕ_d and ϕ_s values. A small shift $\Delta \phi^\text{pen}_s = -(1.10^{+0.70}_{-0.85})^\circ$ has been measured. Given the experimental precision of $\sigma(\phi_d) \sim 1.6^\circ$, one needs to improve the $\Delta \phi^\text{pen}_d$ measurement when more statistics will be available. $\Delta \phi^\text{pen}_s$ has been measured for the three different polarisations of the $J/\psi \phi$ final state, obtaining shift values that are a factor of ten less than the current experimental precision of $\sigma(\phi_s) \sim 0.03^\circ$.

5. Conclusions and future perspectives

The LHCb collaboration, using Run 1 data, measured the ϕ_d phase with a precision that is competitive with the results from the B-factories, and provided the most precise measurement of the ϕ_s observable. New results using Run 2 data and new B decay modes to charmonium states will allow updated measurements of CP-violating effects. The statistical uncertainty on the weak mixing phases, $\sigma_{\text{stat}}(\phi_{d,s})$, depends not only on the integrated luminosity, but also on the tagging power ϵ_{tag} of the experiment: $\sigma_{\text{stat}}(\phi_{d,s}) \propto 1/\sqrt{\epsilon_{\text{tag}} N}$, where N is the number of events in the corresponding decay channel.

The LHCb collaboration will provide a measurement of $\sin \phi_d$ with a precision of 0.006 with an integrated luminosity of 50 fb$^{-1}$ from Upgrade I, competitive with the precision that will be reached by the Belle II collaboration.

The LHCb experiment is a unique place to measure the ϕ_s observable, which is particularly interesting given the currently large experimental uncertainty. Future contributions to the ϕ_s measurement will also be possible using decay modes into CP-eigenstates, such as $B^0_s \rightarrow \ldots$
$\eta_c(1S)\phi$ [24] and $B^0 \to J/\psi\eta$ [25] decay channels. The projections of the expected statistical uncertainty on ϕ_s that will be obtained by the LHCb experiment after LHC Run 2, after LHCb Phase I Upgrade, and after an eventual Phase II Upgrade that will enable the LHCb experiment to run in the High-Luminosity-LHC conditions, are reported in Fig. 3(b). The expected precision on ϕ_s combining all decay modes is ~ 10 mrad after Upgrade I and ~ 3 mrad after Upgrade II.

References
[1] LHCb collaboration, Alves Jr A et al., 2008 JINST 3 S08005
[2] LHCb collaboration, Aaij R et al., 2015 Int. J. Mod. Phys. A 30 1530022
[3] LHCb collaboration, Aaij R et al., 2013 Phys. Rev. D 87 112010
[4] LHCb collaboration, Aaij R et al., 2015 JINST 11 P05010
[5] LHCb collaboration, Aaij R et al., 2015 Phys. Rev. Lett. 115 031601
[6] BaBar collaboration, Aubert B et al., 2012 Phys. Rev. Lett. 108 171802
[7] Belle collaboration, Adachi I et al., 2012 Phys. Rev. Lett. 108 171802
[8] LHCb collaboration, Aaij R et al., 2017 JHEP 11 170
[9] Heavy Flavor Averaging Group, Amhis Y et al., 2017 Eur. Phys. J. C 77 895, updated results and plots available at https://hflav.web.cern.ch/
[10] CKMfitter group, Charles J et al., 2005 Eur. Phys. J. C 41 1, updated results and plots available at http://ckmfitter.in2p3.fr/
[11] UFit collaboration, Bona M et al., 2006 JHEP 10 081, updated results and plots available at http://www.utfit.org/
[12] LHCb collaboration, Aaij R et al., 2015 Phys. Rev. Lett. 114, 041801
[13] Zhang L and Stone S, 2013 Phys. Lett. B 719 383
[14] LHCb collaboration, Aaij R et al., 2017 JHEP 08 037
[15] LHCb collaboration, Aaij R et al., 2014 Phys. Lett. B 736 186
[16] LHCb collaboration, Aaij R et al., 2016 Phys. Lett. B 762 253
[17] LHCb collaboration, Aaij R et al., 2014 Phys. Rev. Lett. 113 211801, arXiv:1409.4619 [hep-ex]
[18] Gabriel E, 2018 these proceedings
[19] Artuso M, Borissov G, and Lenz A, 2016 Rev. Mod. Phys. 88 045002
[20] Charles J et al., 2015 Phys. Rev. D 91 073007
[21] Faller S, Fleischer R, and Mannel T, 2009 Phys. Rev. D 79 014005
[22] Bhattacharya B, Datta A and London D, 2013 Int. J. Mod. Phys. A 28 1350063
[23] De Bruyn K, Fleischer R, 2015 JHEP 03 145
[24] LHCb collaboration, Aaij R et al., 2017 JHEP 07 021
[25] LHCb collaboration, Aaij R et al., 2016 Phys. Lett. B 762 484