Some Characterizations of Slant Helices in the Euclidean Space E^n

Ahmad T. Ali
Mathematics Department
Faculty of Science, Al-Azhar University
Nasr City, 11448, Cairo, Egypt
E-mail: atali71@yahoo.com

Melih Turgut*
Department of Mathematics,
Buca Educational Faculty, Dokuz Eylül University,
35160 Buca, Izmir, Turkey
E-mail: melih.turgut@gmail.com, melih.turgut@ogr.deu.edu.tr

Abstract

In this work, notion of a slant helix is extended to space E^n. Necessary and sufficient conditions to be a slant helix in the Euclidean $n-$space are presented. Moreover, we express some integral characterizations of such curves in terms of curvature functions.

M.S.C. 2000: 53A04
Keywords: Euclidean n-space; Frenet equations; Slant helices.

1 Introduction and Statement of Results

Inclined curves or so-called general helices are well-known curves in the classical differential geometry of space curves [9] and we refer to the reader for recent works on this type of curves [6] [12]. Recently, Izumiya and Takeuchi have introduced the concept of slant helix in Euclidean 3-space E^3 saying that the normal lines makes a constant angle with a fixed direction [7]. They characterize a slant helix if and only if the function

$$
\frac{\kappa^2}{(\kappa^2 + \tau^2)^{3/2}} \left(\frac{\tau}{\kappa} \right)'
$$

*[Corresponding author.]
is constant. In the same space, spherical images, the tangent and the binormal indicatrix and some characterizations of such curves are presented by [8]. With the notion of a slant helix, similar works are treated by the researchers, see [1, 3, 5, 11, 13].

In this work, we consider the generalization of the concept of a slant helix in the Euclidean n-space E^n.

Let $\alpha : I \subset \mathbb{R} \rightarrow E^n$ be an arbitrary curve in E^n. Recall that the curve α is said to be of unit speed (or parameterized by arc-length function s) if $\langle \alpha'(s), \alpha'(s) \rangle = 1$, where $\langle \cdot, \cdot \rangle$ is the standard scalar product in Euclidean space E^n given by

$$\langle X, Y \rangle = \sum_{i=1}^{n} x_i y_i,$$

for each $X = (x_1, \ldots, x_n), \ Y = (y_1, \ldots, y_n) \in E^n$.

Let $\{V_1(s), \ldots, V_n(s)\}$ be the moving frame along α, where the vectors V_i are mutually orthogonal vectors satisfying $\langle V_i, V_i \rangle = 1$. The Frenet equations for α are given by (10)

$$\begin{bmatrix}
V'_1 \\
V'_2 \\
V'_3 \\
\vdots \\
V'_{n-1} \\
V'_n
\end{bmatrix} = \begin{bmatrix}
0 & \kappa_1 & 0 & 0 & \cdots & 0 & 0 \\
-\kappa_1 & 0 & \kappa_2 & 0 & \cdots & 0 & 0 \\
0 & -\kappa_2 & 0 & \kappa_3 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & \kappa_{n-1} \\
0 & 0 & 0 & 0 & \cdots & -\kappa_{n-1} & 0
\end{bmatrix} \begin{bmatrix}
V_1 \\
V_2 \\
V_3 \\
\vdots \\
V_{n-1} \\
V_n
\end{bmatrix}.$$

Recall the functions $\kappa_i(s)$ are called the i-th curvatures of α. If $\kappa_{n-1}(s) = 0$ for any $s \in I$, then $V_n(s)$ is a constant vector V and the curve α lies in a $(n-1)$-dimensional affine subspace orthogonal to V, which is isometric to the Euclidean $(n-1)$-space E^{n-1}. We will assume throughout this work that all the curvatures satisfy $\kappa_i(s) \neq 0$ for any $s \in I$, $1 \leq i \leq n-1$. Here, recall that a regular curve with constant Frenet curvatures is called a W-curve [10].

Definition 1.1. A unit speed curve $\alpha : I \rightarrow E^n$ is called slant helix if its unit principal normal V_2 makes a constant angle with a fixed direction U.

Our main result in this work is the following characterization of slant helices in Euclidean n-space E^n.

Theorem 1.2. Let $\alpha : I \rightarrow E^n$ be a unit speed curve in E^n. Define the functions

$$G_1 = \int \kappa_1(s)ds, \ G_2 = 1, \ G_3 = \frac{\kappa_1}{\kappa_2}G_1, \ G_i = \frac{1}{\kappa_{i-1}} \left[\kappa_{i-2}G_{i-2} + G'_{i-1} \right],$$

where $4 \leq i \leq n$. Then α is a slant helix if and only if the function

$$\sum_{i=1}^{n} G_i^2 = C$$

is constant and non-zero. Moreover, the constant $C = \sec^2 \theta$, being θ the angle that makes V_2 with the fixed direction U that determines α.

2
This theorem generalizes in arbitrary dimensions what happens for \(n = 3 \), namely: if \(n = 3 \), (1.3) writes
\[
1 + \left(1 + \frac{\kappa_1^2}{\kappa_2^2}\right)G_1^2 = C.
\]
It is easy to prove that: this equation is equivalent to
\[
\frac{\kappa_1^2}{(\kappa_1^2 + \kappa_2^2)^{3/2}} \left(\frac{\kappa_2}{\kappa_1}\right)' = \frac{1}{\sqrt{C - 1}}
\]
equation (1.1) where \(C \neq 1 \).

2 Proof of Theorem 1.2

Let \(\alpha \) be a unit speed curve in \(E^n \). Assume that \(\alpha \) is a slant helix curve. Let \(U \) be the direction with which \(V_2 \) makes a constant angle \(\theta \) and, without loss of generality, we suppose that \(\langle U, U \rangle = 1 \). Consider the differentiable functions \(a_i, 1 \leq i \leq n \),
\[
(2.1) \quad U = \sum_{i=1}^{n} a_i(s) V_i(s), \quad s \in I,
\]
that is,
\[
a_i = \langle V_i, U \rangle, \quad 1 \leq i \leq n.
\]
Then the function \(a_2(s) = \langle V_2(s), U \rangle \) is constant, and it agrees with \(\cos \theta \) as follows:
\[
(2.2) \quad a_2(s) = \langle V_2, U \rangle = \cos \theta
\]
for any \(s \). Because the vector field \(U \) is constant, a differentiation in (2.1) together gives the following system of ordinary differential equation:
\[
(2.3) \quad \begin{cases}
 a'_1 - \kappa_1 a_2 &= 0 \\
 \kappa_1 a_1 - \kappa_2 a_3 &= 0 \\
 a'_i + \kappa_{i-1} a_{i-1} - \kappa_i a_{i+1} &= 0, \quad 3 \leq i \leq n - 1 \\
 a'_n + \kappa_{n-1} a_{n-1} &= 0.
\end{cases}
\]
Let us define the functions \(G_i = G_i(s) \) as follows
\[
(2.4) \quad a_i(s) = G_i(s) a_2, \quad 1 \leq i \leq n.
\]
We point out that \(a_2 \neq 0 \): on the contrary, (2.4) gives \(a_i = 0 \), for \(1 \leq i \leq n \) and so, \(U = 0 \), which is a contradiction. Since, the first \(n \)-equations in (2.3) lead to
\[
(2.5) \quad \begin{cases}
 G_1 = \int \kappa_1(s) ds \\
 G_2 = 1 \\
 G_3 = \frac{\kappa_1}{\kappa_2} G_1 \\
 G_i = \frac{1}{\kappa_i} \left[\kappa_{i-2} G_{i-2} + G'_{i-1} \right], \quad 4 \leq i \leq n.
\end{cases}
\]
The last equation of (2.3) leads to the following condition:

\[G'_{n} + \kappa_{n-1} G_{n-1} = 0. \]

(2.6)

We do the change of variables:

\[t(s) = \int^{s} \kappa_{n-1}(u) du, \quad \frac{dt}{ds} = \kappa_{n-1}(s). \]

In particular, and from the last equation of (2.5), we have

\[G'_{n-1}(t) = G_{n}(t) - \left(\frac{\kappa_{n-2}(t)}{\kappa_{n-1}(t)} \right) G_{n-2}(t). \]

As a consequence, if \(\alpha \) is a slant helix, substituting the equation (2.6) to the last equation, we express

\[G''_{n}(t) + G_{n}(t) = \frac{\kappa_{n-2}(t) G_{n-2}(t)}{\kappa_{n-1}(t)}. \]

By the method of variation of parameters, the general solution of this equation is obtained

\[G_{n}(t) = A - \int \frac{\kappa_{n-2}(t) G_{n-2}(t)}{\kappa_{n-1}(t)} \sin t \, dt \]

\[+ \left(B + \int \frac{\kappa_{n-2}(t) G_{n-2}(t)}{\kappa_{n-1}(t)} \cos t \, dt \right) \sin t, \]

where \(A \) and \(B \) are arbitrary constants. Then (2.7) takes the following form

\[G_{n}(s) = \left(A - \int \kappa_{n-2}(s) G_{n-2}(s) \sin \kappa_{n-1}(s) ds \right) \cos \kappa_{n-1}(s) ds \]

\[+ \left(B + \int \kappa_{n-2}(s) G_{n-2}(s) \cos \kappa_{n-1}(s) ds \right) \sin \kappa_{n-1}(s) ds. \]

From (2.6), the function \(G_{n-1} \) is given by

\[G_{n-1}(s) = \left(A - \int \kappa_{n-2}(s) G_{n-2}(s) \sin \kappa_{n-1}(s) ds \right) \sin \kappa_{n-1}(s) ds \]

\[- \left(B + \int \kappa_{n-2}(s) G_{n-2}(s) \cos \kappa_{n-1}(s) ds \right) \cos \kappa_{n-1}(s) ds. \]

From Equation (2.7), we have

\[\sum_{i=1}^{n-2} G_{i} G'_{i} = G_{1} G'_{1} + G_{2} G'_{2} + \sum_{i=3}^{n-2} G_{i} G'_{i} \]

\[= \kappa_{1} G_{1} + \sum_{i=3}^{n-2} G_{i} \left[\kappa_{i} G_{i+1} - \kappa_{i-1} G_{i-1} \right] \]

\[= \kappa_{1} G_{1} + \sum_{i=3}^{n-2} \left[\kappa_{i} G_{i+1} - \kappa_{i-1} G_{i-1} G_{i} \right] \]

\[= \kappa_{1} G_{1} + \kappa_{n-2} G_{n-2} G_{n-1} - \kappa_{2} G_{2} G_{3} \]

\[= \kappa_{n-2} G_{n-2} G_{n-1}. \]
Substituting (2.9) to the above equation and integrating it, we have:

\[\sum_{i=1}^{n-2} G_i^n = C - \left(A - \int \left[\kappa_{n-2}(s)G_{n-2}(s) \sin \int \kappa_{n-1} ds \right] ds \right)^2 \]

\[- \left(B + \int \left[\kappa_{n-2}(s)G_{n-2}(s) \cos \int \kappa_{n-1} ds \right] ds \right)^2, \tag{2.10} \]

where \(C \) is a constant of integration. Using equations (2.8) and (2.9), we have

\[G^n_2 + G^{n-1}_2 = \left(A - \int \left[\kappa_{n-2}(s)G_{n-2}(s) \sin \int \kappa_{n-1} ds \right] ds \right)^2 \]

\[+ \left(B + \int \left[\kappa_{n-2}(s)G_{n-2}(s) \cos \int \kappa_{n-1} ds \right] ds \right)^2, \tag{2.11} \]

It follows from (2.10) and (2.11) that

\[\sum_{i=1}^{n} G_i^n = C. \]

Moreover this constant \(C \) can be calculated as follows. From (2.4), together the \((n-2)\)-equations (2.5), we have

\[C = \sum_{i=1}^{n} G_i^n = \frac{1}{a_2^n} \sum_{i=1}^{n} a_i^2 = \frac{1}{a_2^n} = \sec^2 \theta, \]

where we have used (1.3) and the fact that \(U \) is a unit vector field.

We do the converse of Theorem. Assume that the condition (2.5) is satisfied for a curve \(\alpha \). Let \(\theta \in \mathbb{R} \) be so that \(C = \sec^2 \theta \). Define the unit vector \(U \) by

\[U = \cos \theta \left[\sum_{i=1}^{n} G_i V_i \right]. \]

By taking account (2.6), a differentiation of \(U \) gives that \(\frac{dU}{ds} = 0 \), which it means that \(U \) is a constant vector field. On the other hand, the scalar product between the unit tangent vector field \(V_2 \) with \(U \) is

\[(V_2(s), U) = \cos \theta. \]

Thus, \(\alpha \) is a slant helix in the space E\(^n\).

As a direct consequence of the proof, we generalize theorem 1.2 in Minkowski space for timelike curves and give an another theorem which characterizes slant helices with constant curvatures.

Theorem 2.1. Let \(E^n_1 \) be the Minkowski \(n \)-dimensional space and let \(\alpha : I \to E^n_1 \) be a unit speed timelike curve. Then \(\alpha \) is a slant helix if and only if the function \(\sum_{i=1}^{n} G_i^2 \) is constant, where the functions \(G_i \) are defined as in (1.2).

Proof. The proof carries the same steps as above and we omit the details. We only point out that the fact that \(\alpha \) is timelike means that \(V_1(s) = \alpha'(s) \) is a timelike vector field. The other \(V_i \) in the Frenet frame, \(2 \leq i \leq n \), are unit spacelike vectors and so, the second equation in Frenet equations changes to \(V_2^2 = \kappa_1 V_1 + \kappa_2 V_3 \) (for details of Frenet equations see [4]).
Theorem 2.2. There are no slant helices with constant and non-zero curvatures (W−slant helices, i.e.) in the space E^n.

Proof. Let us suppose a slant helix with constant and non-zero curvatures. Then the equations in (2.3) and (2.5) hold. Since, we easily have for odd i, $G_i = \delta_i$, where $\delta_i \in \mathbb{R}$ and for even i, $G_i = \delta_i$. Then, we form

$$\sum_{i=1}^{n} G_i^2 = (\delta_1 s)^2 + (\delta_2 s)^2 + (\delta_3 s)^2 + ...$$

and it is easy to say that $\sum_{i=1}^{n} G_i^2$ is nowhere constant. By the theorem 1.2, we arrive at that there does not exist a slant helix with constant and non-zero curvatures in the space E^n.

3 Further Characterizations of Slant Helices in E^n

In this section we present new characterizations of slant helix in E^n. The first one is a consequence of Theorem 1.2.

Theorem 3.1. Let $\alpha : I \subset \mathbb{R} \rightarrow E^n$ be a unit speed curve in Euclidean space E^n. Then α is a slant helix if and only if there exists a C^2-function $G_n(s)$ such that

$$G_n = \frac{1}{\kappa_{n-1}} \left[\kappa_{n-2} G_{n-2} + G'_{n-1} \right], \quad \frac{dG_n}{ds} = -\kappa_n(s) G_{n-1}(s),$$

where

$$G_1 = \int \kappa_1(s) ds, G_2 = 1, G_3 = \frac{\kappa_1}{\kappa_2} G_1, G_i = \frac{1}{\kappa_{i-1}} \left[\kappa_{i-2} G_{i-2} + G'_{i-1} \right], \quad 4 \leq i \leq n-1.$$

Proof. Let now assume that α is a slant helix. By using Theorem 1.2 and by differentiation the (constant) function given in (1.3), we obtain

$$0 = \sum_{i=1}^{n} G_i G'_i$$

$$= G_1 \kappa_1 + G_3 \left(\kappa_3 G_4 - \kappa_2 G_2 \right) + G_4 \left(\kappa_4 G_5 - \kappa_3 G_3 \right) + ...$$

$$+ G_{n-1} \left(\kappa_{n-1} G_n - \kappa_{n-2} G_{n-2} \right) + G_n G'_n$$

$$= G_n \left(G'_n + \kappa_{n-1} G_{n-1} \right).$$

This shows (3.1). Conversely, if (3.1) holds, we define a vector field U by

$$U = \cos \theta \left[\sum_{i=1}^{n} G_i V_i \right].$$

By the Frenet equations, $\frac{dU}{ds} = 0$, and so, U is constant. On the other hand, $\langle V_2(s), U \rangle = \cos \theta$ is constant, and this means that α is a slant helix. \qed
We end giving an integral characterization of a slant helix.

Theorem 3.2. Let \(\alpha : I \subset \mathbb{R} \rightarrow E^n \) be a unit speed curve in Euclidean space \(E^n \). Then \(\alpha \) is a slant helix if and only if the following condition is satisfied

\[
G_{n-1}(s) = \left(A - \int \left[\kappa_{n-2} G_{n-2} \sin \int \kappa_{n-1} du \right] ds \right) \sin \int s \kappa_{n-1} du - \left(B + \int \kappa_{n-2} G_{n-2} \cos \int \kappa_{n-1} du \right) \cos \int s \kappa_{n-1} du.
\]

for some constants \(A \) and \(B \).

Proof. Suppose that \(\alpha \) is a slant helix. By using Theorem 3.1, let define \(m(s) \) and \(n(s) \) by

\[
\phi(s) = \int s \kappa_{n-1} du,
\]

\[
m(s) = G_n(s) \cos \phi + G_{n-1}(s) \sin \phi + \int \kappa_{n-2} G_{n-2} \sin \phi ds,
\]

\[
n(s) = G_n(s) \sin \phi - G_{n-1}(s) \cos \phi - \int \kappa_{n-2} G_{n-2} \cos \phi ds.
\]

If we differentiate equations (3.3) with respect to \(s \) and taking into account of (3.2) and (3.1), we obtain \(\frac{dm}{ds} = 0 \) and \(\frac{dn}{ds} = 0 \). Therefore, there exist constants \(A \) and \(B \) such that \(m(s) = A \) and \(n(s) = B \). By substituting into (3.3) and solving the resulting equations for \(G_{n-1}(s) \), we get

\[
G_{n-1}(s) = \left(A - \int \kappa_{n-2} G_{n-2} \sin \phi ds \right) \sin \phi - \left(B + \int \kappa_{n-2} G_{n-2} \cos \phi ds \right) \cos \phi.
\]

Conversely, suppose that (3.2) holds. In order to apply Theorem 3.1 we define \(G_n(s) \) by

\[
G_n(s) = \left(A - \int \kappa_{n-2} G_{n-2} \sin \phi ds \right) \cos \phi + \left(B + \int \kappa_{n-2} G_{n-2} \cos \phi ds \right) \sin \phi.
\]

with \(\phi(s) = \int s \kappa_{n-1}(u) du \). A direct differentiation of (3.2) gives

\[
G'_{n-1} = \kappa_{n-1} G_n - \kappa_{n-2} G_{n-2}.
\]

This shows the left condition in (3.1). Moreover, a straightforward computation leads to \(G'_{n}(s) = -\kappa_{n-1} G_{n-1} \), which finishes the proof. \(\square \)

ACKNOWLEDGEMENTS: The second author would like to thank Tübitak-Bideb for their financial supports during his Ph.D. studies.

References

[1] Ali, A. *Inclined curves in the Euclidean 5-space \(E^5 \)*, J. Advanced Research in Pure Math., 1 (1), 15–22, 2009.

[2] Ali, A. and López, R. *Slant helices in Minkowski space \(E^3_1 \)*, preprint 2008: [arXiv:0810.1464v1 [math.DG]].
[3] Ali, A. and López, R. *Timelike B_2-slant helices in Minkowski space E^4_1*, preprint 2008:arXiv:0810.1460v1 [math.DG].

[4] Ekmekci, N., Hacisalihoglu, H.H. and Ilarslan, K. *Harmonic Curvatures in Lorentzian Space*, Bull. Malaysian Math. Soc. (Second Series), 23 (2), 173-179, 2000.

[5] Erdogan, M. and Yilmaz, G. *Null generalized and slant helices in 4-dimensional Lorentz-Minkowski space*, Int. J. Contemp. Math. Sci., 3 (23), 1113-1120, 2008.

[6] Gluck, H. *Higher curvatures of curves in Euclidean space*, Amer. Math. Monthly, 73, 699–704, 1966.

[7] Izumiya, S. and Takeuchi, N. *New special curves and developable surfaces*, Turk J. Math., 28 (2), 531–537, 2004.

[8] Kula, L. and Yayli, Y. *On slant helix and its spherical indicatrix*, Appl. Math. Comput. 169 (1), 600607, 2005.

[9] Milman, R.S. and Parker, G.D. Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.

[10] Petrovic-Torgasev, M. and Sucurovic, E. *W-curves in Minkowski spacetime*, Novi. Sad. J. Math. 32 (2), 55–65, 2002.

[11] Onder, M., Kazaz, M., Kocayigit, H. and Kilic, O. *B_2-slant helix in Euclidean 4-space E^4_1*, Int. J. Contemp. Math. Sci., 2008, 3(29): 1433-1440.

[12] Scofield, P.D. *Curves of constant precession*, Amer. Math. Monthly, 102, 531–537, 1995.

[13] Turgut, M. and Yilmaz, S. *Some characterizations of type-3 slant helices in Minkowski space-time*, Involve J. Math., 2 (1), 115-120, 2009