Supplemental Data

Mast cells are required for full expression of allergen/SEB-induced skin inflammation

By Tomoaki Ando, Kenji Matsumoto, Siavash Namiranian, Hirotaka Yamashita, Haley Glatthorn, Miho Kimura, Brandon R. Dolan, James J. Lee, Stephen J. Galli, Yuko Kawakami, Colin Jamora, and Toshiaki Kawakami

Content

Supplementary Description of Microarray Data

Supplementary Materials and Methods

Tables S1

Figures S1-S6
Supplementary Description of Microarray Data

Top similarity-contributing genes (Table S1) were mostly found in the following categories:

Similarly regulated epidermal growth/differentiation genes: Hyper-proliferation of epidermis was reflected in the increase of keratin 16 (KRT16 [human gene], Krt16 [mouse gene]) and its binding partner keratin 6 (KRT6A, Krt6b), which are selectively induced in the suprabasal layers under stressful conditions, such as wounding or chronic inflammation (Paladini et al., 1996). Downregulated keratins include keratin 15 (KRT15, Krt15), 77 (KRT77, Krt77), and 13 (KRT13, Krt13). Keratin 15 downregulation has been observed in two hyper-proliferating situations, psoriasis and hypertrophic scars (Waseem et al., 1999). Mutations in keratin 13 and keratin 4 have been associated with the autosomal dominant keratotic disorder white sponge nevus (OMIM #193900). Genes related to the cell cycle and survival were also found as top similarity-contributing genes, such as FOXM1 (Foxm1), HOXA10 (Hoxa10), MCM10 (Mcm10), KIAA1199 (RIKEN 9930013L23), BCL2A1 (Bcl2a1d), CDC6 (Cdc6), BUB1 (Bub1), BIRC5 (Birc5), and G0S2 (G0s2). Interestingly, FOXM1 and BUB1 are selectively upregulated in AD skin, not in psoriasis (Guttman-Yassky et al., 2009).

Besides hyper-proliferation, differential expression of the genes related to keratinocyte terminal differentiation (i.e., cytoplasmic compaction, cornification, and lipid release) has been implicated in the pathogenesis of AD (De Benedetto et al., 2012; Guttman-Yassky et al., 2009). During the formation of cornified cell envelopes, transglutaminases cross-link precursors, such as elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 (Steinert and Marekov, 1995). Among these, Sprr2k (murine ortholog of human SPRR2A, B, D, E, F, G), Sprr1b (human SPRR3), and transglutaminase 3 (TGM3, Tgm3) were commonly upregulated in human AD and our model. Consistent with this, E74-like factor 3 (ELF3, Elf3), an epithelial-specific transcription factor required for the expression of genes such as small proline-rich proteins, transglutaminase-3, and profilaggrin during terminal differentiation of keratinocytes (Andreoli et al., 1997; Sark et al., 1998), was also commonly increased. While most of the late cornified envelope (LCE) genes are not orthologous between human and mouse, Lce1m (human LCE1D) was a commonly downregulated gene, indicating an impairment of terminal differentiation of keratinocytes in our model. Other genes implicated in the terminal differentiation, such as ets-homologous factor (EHF, Ehf), retinoic acid receptor responder 1 (RARRES1, Rarres1), Serine protease 27 (PRSS27, Prss27), Trypsinogen 1, 3 (PRSSI, 3, Prss2) were also found among the top similarity-contributing genes. Interestingly, although the filaggrin-2 gene, whose expression was reduced, was found among the similarity-contributing genes (Table S1), filaggrin and loricrin were not. Loricrin mRNA level was lower at the steady state and further downregulated by AD induction in NC/Nga mice, in line with the high susceptibility of these mice to AD-like dermatitis.

Similarly regulated skin barrier-related genes: Consistent with human AD, Der f/SEB-induced mice had impaired skin barrier, as revealed by high levels of TEWL (Fig. S2). Epidermal barrier function is controlled by layers of cells and intercellular spaces, a fine-tuned balance between proteinases and proteinase inhibitors, lipid metabolism, and
adhesion molecules (Cork et al., 2009; De Benedetto et al., 2012; Elias and Schmuth, 2009). Epidermal corneocytes are tightly bound with corneodesmosomes, desmosomes modified with corneodesmosin (CDSN). Kallikrein (KLK)-related peptidases degrade CDSN and other desmosome proteins leading to desquamation. Among eight KLKs expressed in epidermis (Lundwall and Brattsand, 2008), KLK8, KLK6, and KLK13 were commonly upregulated in human AD and our model. KLK6 and KLK13 degrades desmoglein-1, one of the adhesive proteins in the corneodesmosome (Borgono et al., 2007). KLK8 has been implicated in terminal differentiation of keratinocytes (Kuwae et al., 2002). However, expression of the KLK inhibitor LEKTI (lymphoepithelial Kazal-type-related inhibitor), encoded by AD-associated SPINK5 gene (Walley et al., 2001), was not changed in our model, suggesting a shift of protease-inhibitor balance towards desquamation. Another group of serine protease inhibitors expressed in skin, SERPINB3, 4, 13 (Serpinh3d, 3a, 13a in mouse), related to carcinogenesis (Meyer-Hoffert, 2009), were all highly upregulated.

The second barrier under the stratum corneum is tight junction in the stratum granulosum. Although the claudins were not found as the top similarity-contributing genes, claudin-1 (CLDN1, Cldn1) was downregulated in AD-induced B6 mice (but unchanged in NC/Nga mice), and claudin-23 (CLDN23, Cldn23) was downregulated in both strains. Both were selectively downregulated in AD non-lesional skin compared to psoriasis non-lesional skin (De Benedetto et al., 2012). Non-lesional skin of AD patients is known to have an altered gene expression profile similar to that of lesional skin (Leung et al., 2004; Suarez-Farinas et al., 2011). Comparison with the changes in non-lesional epidermal tissue from AD patients (Table 1) revealed that many of similarly expressed genes in whole AD skin tissues are also expressed in non-lesional epidermal tissue, suggesting the substantial contribution of epidermal changes to gene expression in the whole skin samples. Interestingly, the similarity score between AD-induced mice and non-lesional epidermal tissue from psoriasis patients was lower than those between AD-induced mice and AD patients (Table 1). Another intercellular junction protein, connexin-26 (GJB2, Gjb2), was commonly upregulated in the AD patients and our model, which was also selectively observed in AD non-lesional epidermis compared to psoriasis (De Benedetto et al., 2011). Increased expression of aquaporin 3 (AQP3, Aqp3), which transports water as well as glycerol, and water-selective aquaporin 5 (AQP5, Aqp5) might also contribute to the change in epidermal barrier function (Table S1).

Similarly regulated lipid/energy metabolism genes: Interestingly, the similarity-contributing genes related to lipid metabolism were downregulated in human AD and mouse models. These include fatty acid transport proteins (SLC27A2 (Slc27a2) and FABP4 (Fabp4)), regulators of lipid metabolism (PRKAA2 (Prkaa2) and THRSP (Thrsp)); lipid metabolic enzymes (ACACB (Acacb), FA2H (Fa2h), FASN (Fasn), and FAR2 (Far2)); a transcription coactivator/phosphatidase phosphatase (LPIN1 (Lpin1)) implicated in adipose tissue development; and obesity-related hormones (LEP (Lep) and ADIPOQ (Adipoq) and a downstream molecule NNAT (Nnat)). Importantly, fatty acid 2-hydroxylase (FA2H, Fa2h) accounts for the synthesis of sphingolipids in keratinocytes required for extracellular lamellar membrane formation, which is important for the epidermal permeability barrier (Uchida et al., 2007). Top similarity-contributing genes also include other metabolic enzymes (PCK1 (Pck1), GPD1 (Gpd1) and ALDH1A1.
(Aldh1a1)) and a transcriptional coactivator that regulates genes involved in energy metabolism (PPARGC1A (Ppargc1a)).

Similarly regulated immune response genes: Growth factors, cytokines, and chemokines secreted from keratinocytes, leukocytes, and stromal cells regulate inflammatory responses in the skin (Yamanaka and Mizutani, 2011). A commonly downregulated gene, betacellulin (BTC, Btc) is one of the seven EGF receptor ligands (Shing et al., 1993). Mice lacking the EGF receptor in keratinocytes develop AD-like skin inflammation (Franzke et al., 2012). Interestingly, blockade of the EGF receptor signaling results in enhanced chemokine expression in keratinocytes (Mascia et al., 2003). Such chemokines as CCL2 (mouse Ccl12), CCL5 (mouse Ccl5), and CXCL10 (mouse Cxcl10) were all upregulated and found among top similarity-contributing genes in our models. Keratinocytes also produce alarmins S100A8 and S100A9, which have both intracellular and extracellular functions. As secreted proteins, they regulate leukocyte functions such as adhesion and transendothelial migration (Ryckman et al., 2003) through binding to Toll-like receptor-4 (Vogl et al., 2007) and the receptor for advanced glycation end products (Boyd et al., 2008). Other chemokines and cytokines or their receptors found among top similarity-contributing genes include CXCL1 (Cxcl3), CCL4 (Ccl4), CXCL2 (Cxcl1), IL1F9 (Il1f9), IL1F5 (Il1f5), IL1F8 (Il1f8), IL4R (Il4ra), and CXCR4 (Cxcr4). As described previously (Kawakami et al., 2007), IL-4, IL-5 and IL-17 were upregulated in both mouse strains, IL-13 was upregulated only in B6 mice; IL-33 and interferon γ were upregulated in NC/Nga mice; IL-25 was downregulated in both strains.

Similarly regulated extracellular matrix genes: Matrix metalloproteinases (MMPs) play an important role in tissue remodeling during inflammation (Page-McCaw et al., 2007). MMP12, 9, and 3 were upregulated by AD induction and found as top similarity-contributing genes. In the skin, eosinophils, mast cells, Langerhans cells, and keratinocytes express MMP-9 and MMP-3. MMP-9, but not MMP-3, was shown to be upregulated in keratinocytes in response to IL-13 (Purwar et al., 2008). Tissue inhibitor of metalloproteinases-4 (TIMP4, Timp4), which can bind MMP-3 and MMP-4, were also upregulated. Other upregulated proteins related to extracellular matrices include tenascin C (TNC, Tnc), which is a large extracellular matrix glycoprotein, and periostin (POSTN, Postn). Tenascin C expression was induced by patch tests in skin of atopic individuals (Phipps et al., 2004), where the tenascin C-positive cells were identified morphologically as fibroblasts. Periostin expression was shown to be increased in human AD and house dust mite extract-induced mice, where periostin secreted from Th2 cytokine-stimulated skin fibroblasts induced TSLP expression in keratinocytes and TSLP in turn induced dendritic cells to differentiate T cells into Th2 cells, thus forming a vicious cycle to amplify Th2 inflammation (Masuoka et al., 2012).

References
Andreoli JM, Jang SI, Chung E, Coticchia CM, Steinert PM, Markova NG (1997) The expression of a novel, epithelium-specific ets transcription factor is restricted to the most differentiated layers in the epidermis. Nucleic acids research 25:4287-95.
Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. (2007) A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. *The Journal of biological chemistry* 282:3640-52.

Boyd JH, Kan B, Roberts H, Wang Y, Walley KR (2008) S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. *Circ Res* 102:1239-46.

Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, et al. (2009) Epidermal barrier dysfunction in atopic dermatitis. *The Journal of investigative dermatology* 129:1892-908.

De Benedetto A, Kubo A, Beck LA (2012) Skin barrier disruption: a requirement for allergen sensitization? *The Journal of investigative dermatology* 132:949-63.

De Benedetto A, Rafael NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, et al. (2011) Tight junction defects in patients with atopic dermatitis. *The Journal of allergy and clinical immunology* 127:773-86 e1-7.

Elias PM, Schmuth M (2009) Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. *Curr Opin Allergy Clin Immunol* 9:437-46.

Franzke CW, Cobzaru C, Triantafyllopoulou A, Loffek S, Horiuchi K, Threadgill DW, et al. (2012) Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. *The Journal of experimental medicine*.

Guttman-Yassky E, Suarez-Farinas M, Chiricozzi A, Nograles KE, Shemer A, Fuentes-Duculan J, et al. (2009) Broad defects in epidermal cornification in atopic dermatitis identified through genomic analysis. *The Journal of allergy and clinical immunology* 124:1235-44 e58.

Hoffmann R, Lottaz C, Kuhne T, Rolink A, Melchers F (2007) Neutrality, compensation, and negative selection during evolution of B-cell development transcriptomes. *Mol Biol Evol* 24:2610-8.

Kawakami T, Inagaki N, Takei M, Fukamachi H, Coggeshall KM, Ishizaka K, et al. (1992) Tyrosine phosphorylation is required for mast cell activation by Fc epsilon RI cross-linking. *J Immunol* 148:3513-9.

Kawakami Y, Yumoto K, Kawakami T (2007) An improved mouse model of atopic dermatitis and suppression of skin lesions by an inhibitor of tec family kinases. *Allergol Int* 56:403-9.

Kuwae K, Matsumoto-Miyai K, Yoshida S, Sadayama T, Yoshikawa K, Hosokawa K, et al. (2002) Epidermal expression of serine protease, neuropsin (KLK8) in normal and pathological skin samples. *Mol Pathol* 55:235-41.
Lee P, Lee DJ, Chan C, Chen SW, Ch’en I, Jamora C (2009) Dynamic expression of epidermal caspase 8 simulates a wound healing response. *Nature* 458:519-23.

Leung DY, Boguniewicz M, Howell MD, Nomura I, Hamid QA (2004) New insights into atopic dermatitis. *J Clin Invest* 113:651-7.

Li C, Lasse S, Lee P, Nakasaki M, Chen SW, Yamasaki K, *et al.* (2010) Development of atopic dermatitis-like skin disease from the chronic loss of epidermal caspase-8. *Proceedings of the National Academy of Sciences of the United States of America* 107:22249-54.

Lottaz C, Yang X, Scheid S, Spang R (2006) OrderedList--a bioconductor package for detecting similarity in ordered gene lists. *Bioinformatics* 22:2315-6.

Lundwall A, Brattsand M (2008) Kallikrein-related peptidases. *Cell Mol Life Sci* 65:2019-38.

Mascia F, Mariani V, Girolomoni G, Pastore S (2003) Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. *The American journal of pathology* 163:303-12.

Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S, *et al.* (2012) Periostin promotes chronic allergic inflammation in response to Th2 cytokines. *The Journal of clinical investigation* 122:2590-600.

Meyer-Hoffert U (2009) Reddish, scaly, and itchy: how proteases and their inhibitors contribute to inflammatory skin diseases. *Arch Immunol Ther Exp (Warsz)* 57:345-54.

Nakano T, Sonoda T, Hayashi C, Yamatodani A, Kanayama Y, Yamamura T, *et al.* (1985) Fate of bone marrow-derived cultured mast cells after intracutaneous, intraperitoneal, and intravenous transfer into genetically mast cell-deficient W/Wv mice. Evidence that cultured mast cells can give rise to both connective tissue type and mucosal mast cells. *J Exp Med* 162:1025-43.

Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. *Nature reviews Molecular cell biology* 8:221-33.

Paladini RD, Takahashi K, Bravo NS, Coulombe PA (1996) Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. *The Journal of cell biology* 132:381-97.

Phipps S, Flood-Page P, Menzies-Gow A, Ong YE, Kay AB (2004) Intravenous anti-IL-5 monoclonal antibody reduces eosinophils and tenascin deposition in allergen-challenged human atopic skin. *The Journal of investigative dermatology* 122:1406-12.
Purwar R, Kraus M, Werfel T, Wittmann M (2008) Modulation of keratinocyte-derived MMP-9 by IL-13: a possible role for the pathogenesis of epidermal inflammation. The Journal of investigative dermatology 128:59-66.

Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA (2003) Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. Journal of immunology 170:3233-42.

Sark MW, Fischer DF, de Meijer E, van de Putte P, Backendorf C (1998) AP-1 and ets transcription factors regulate the expression of the human SPRR1A keratinocyte terminal differentiation marker. The Journal of biological chemistry 273:24683-92.

Shing Y, Christofori G, Hanahan D, Ono Y, Sasada R, Igarashi K, et al. (1993) Betacellulin: a mitogen from pancreatic beta cell tumors. Science 259:1604-7.

Steinert PM, Marekov LN (1995) The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. The Journal of biological chemistry 270:17702-11.

Suarez-Farinas M, Tintle SJ, Shemer A, Chiricozzi A, Nogales K, Cardinale I, et al. (2011) Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. The Journal of allergy and clinical immunology 127:954-64 e1-4.

Uchida Y, Hama H, Alderson NL, Douangpanya S, Wang Y, Crumrine DA, et al. (2007) Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. The Journal of biological chemistry 282:13211-9.

Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, et al. (2007) Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nature medicine 13:1042-9.

Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29:175-8.

Waseem A, Dogan B, Tidman N, Alam Y, Purkis P, Jackson S, et al. (1999) Keratin 15 expression in stratified epithelia: downregulation in activated keratinocytes. The Journal of investigative dermatology 112:362-9.

Yamanaka K, Mizutani H (2011) The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr Probl Dermatol 41:80-92.
Yang X, Bentink S, Scheid S, Spang R (2006) Similarities of ordered gene lists. *J Bioinform Comput Biol* 4:693-708.

Supplementary Materials and Methods

Determination of transepidermal water loss (TEWL)

TEWL was measured on lesional skin and the dorsal skin of shaved mice by using a Tewameter™ 300 (Courage-Khazaka Electronics, Cologne, Germany) as described (Li *et al.*, 2010).

Microarray analysis of gene expression

Total RNA was extracted from skin using Trizol One Step RNA Reagent (BioPioneer Inc., San Diego, CA). We combined four RNA samples for AD-induced B6, three RNA samples for naive B6 mice, and two RNA samples each for naive and AD-induced NC/Nga mice. The same amount of RNA from 2-4 mice were mixed and cleaned by RNeasy Total RNA Mini Kit (Qiagen). A microarray analysis was performed using 200 ng of total RNA from each cohort and SurePrint G3 Mouse Gene Expression 8x60K arrays (Agilent Technologies) according to the manufacturer’s instructions. The microarray data will be deposited in Gene Expression Omnibus upon acceptance of this manuscript (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE_). Data analysis was performed with GeneSpring software (version 11.5.1). Signal intensity was normalized by 75 percentile shift and reduced difference in the levels of beta-actin and 18S ribosomal subunit was confirmed. To eliminate genes containing only a background signal, genes were selected only if the raw values of “Expression” were more than 100. A total of 29,573 probes met this criterion and were subjected to further analysis.

Detection of similarity in expression pattern between different species was detailed elsewhere (Hoffmann *et al.*, 2007; Lottaz *et al.*, 2006; Yang *et al.*, 2006). Briefly, orthologs were collected from human and mouse microarray data sets according to the HomoloGene database build 65 (NCBI). These genes were listed in the order of fold changes, and the gene lists were compared for human and mouse data using OrderedList package on R software version 2.14.1. Similarity score is defined as follows: for a gene list G, let the flipped gene list is denoted by $f(G)$. For two gene lists G_1 and G_2, let $O_n(G_1, G_2)$ equal the number of common genes in top n ranks of both lists. Large O_n indicate that the same genes accumulate in the top n ranks, which suggests commonly upregulated genes. On the flipped gene lists, $O_n(f(G_1), f(G_2))$ detect commonly downregulated genes. A similarity score is calculated as:

$$S'_\alpha(G_1, G_2) = \sum_{n} e^{-\alpha n} \{O_n(G_1, G_2) + O_n(f(G_1), f(G_2))\}$$

where α is a parameter which determines the weight on both ends of the lists. Therefore, if an ortholog is ranked high at either top (upregulated) or bottom (downregulated) end in both human and mouse gene list, this ortholog contributes highly to the similarity score. By comparing a similarity score with the random distribution of the scores (the similarity scores calculated on two randomized lists) ([Fig. S1B](#fig:S1B)), p-value for the significance of similarity is obtained (Table 1). Computation was performed at alpha=0.01151 (max rank=1000), with 1000 permutations for random distribution.
Real-time RT-PCR
RNA was extracted from skin and spleen samples. cDNA was prepared with SuperScript II reverse transcriptase (Invitrogen, Carlsbad, CA). Primers (sequences to be provided upon request) were tested for the amplification efficiency along with 18S ribosomal RNA as an internal control. Real-time RT-PCR was performed using LightCycler® 480 System (Roche Applied Science). Relative expression levels were determined using ΔΔCt method.

Histological analysis
Dorsal skin samples were fixed in 10% formaldehyde, paraffin embedded and cut into 6 μm sections. Deparaffinized sections were stained with hematoxylin and eosin (H&E), toluidine blue (pH 4.0), Congo red, or Masson Trichrome (Sigma Aldrich). The remaining part of the skin was embedded in an OCT compound, snap frozen in liquid nitrogen and stored at −80°C until use. Frozen sections cut at 6 μm were incubated with primary antibodies at 4°C overnight, followed by fluorochrome-conjugated secondary antibodies. Antibodies for keratin 5, keratin 1, and loricrin were generated in the Jamora laboratory (Lee et al., 2009). E-cadherin antibody was purchased from Invitrogen; keratin 6 antibody from Covance and collagen antibody from Chemicon. Anti-TSLP antibody was provided by Amgen. Coverslips were mounted with Prolong Gold antifade reagent with DAPI (Invitrogen). Fluorescence was observed under Zeiss Axiovert 200M Marianas system. Cells were counted under a microscope at a magnification of x400 and expressed as the total number of the cells in five high power fields per section.

Bone marrow-derived mast cells (BMMCs) and their engraftment
BMMCs were generated by culturing bone marrow cells in IL-3 (Kawakami et al., 1992). Expression (>95% of the cells) of c-Kit and FcεRI was confirmed by flow cytometry before use. Engraftment of Kit^{W-sh/W-sh} mice with BMMCs was performed 6 weeks before the Der f/SEB experiments (Nakano et al., 1985).

Serum IgE
Serum IgE levels were measured using an enzyme-linked immunoassay kit purchased from BD Biosciences Pharmingen.

Statistical Analysis
Data are expressed as mean ± SEM. One-way ANOVA with Tukey post-hoc test (Fig. 1A) and Student’s t test (all other comparisons) was used for mean comparisons. Differences were considered statistically significant at P values < 0.05.
Table S1. Similarity-contributing genes.

Human Data Set	AD Ilexical / normal	AD Ilexical / non-lexical	AD Non-lexical / normal	AD Non-lexical / non-lexical	Mouse Gene Symbol	Mouse Dendritic Change	Mouse Fold Change	Mouse Fold Change	Mouse Fold Change
(mouse H1D)									
74496	SERPINB4	Serpinb3a	7.385	7.17	serine (or cysteine) peptidase inhibitor, clade B (ovotransaminase), member 3A				
20547	MMP12	Mmp12	2.248	2.175	matrix metalloproteinase 12				
20665	S100A6	S100a6	8.346	7.142	S100 calcium binding protein A6 (calgranulins) B				
2285	S100A8	S100a8	6.027	5.856	S100 calcium binding protein A8 (calgranulins A)				
1174	LTP	Ltf	4.796	2.842	decorin				
31145	KRT18	Krt18	3.501	6.198	keratin 18				
37380	SLCO2A2	Slc2a2	2.250	5.181	solute carrier family 27 (fatty acid transporter), member 2				
36028	KRT16	Krt16	5.583	9.763	keratin 88				
48584	SERPINB3	Serpinb3d	4.508	7.218	serine (or cysteine) peptidase inhibitor, clade B (ovotransaminase), member 3D				
55530	TNC	Tnc	3.159	5.968	tenascin C				
68655	IL22RA	Ilt2a	2.234	4.484	interleukin 22 receptor, alpha				
62724	CXCL1	Cxcl1	1.593	2.327	chemokine C-X-C motif ligand 1				
105184	DZMB	Dmrtb	1.352	3.768	granulocyte				
5218	GALNT6	Galnt6	1.726	3.633	O-Linked N-acetylglucosaminyltransferase B				
31413	SPPR2A, B, D, E, F, G	Spp2k	5.631	7.122	small proline-rich protein 2K				
7321	BTF	Btf2	1.669	2.644	etv homologous factor				
21125	EPHI	Eph1	1.436	2.249	Eph receptor-like				
43530	BIRC5	Birc5	4.224	6.812	baculovirus IAP repeat-containing				
1159	Bcl2	Bcl2	1.305	2.095	b-cell lymphoma/leukemia 2				
2975	CCL1	Ccl1	1.179	2.349	chemokine C-C motif ligand 1				
45905	TPSMB	Tspam	2.794	2.140	transcriptase				
37256	CA2	Car2	3.300	6.940	carbonic anhydrase 2				
11748	SAM51	Samd51	1.405	2.937	SAM domain, SH3 domain and nuclear localization signals 1				
36995	MMP3	Mmp3	1.372	2.487	matrix metalloproteinase 3				
194	SGCG	Sgcp2	1.690	1.900	saposin 2				
4551	PRKAA	Prkaa2	1.772	2.203	protein kinase A, protein-activated, alpha 2 catalytic subunit				
139	LEF2	Lef2	2.034	2.032	lymphoid enhancer factor 2				
81738	ECL3	Ecl3	1.620	2.405	b-cell leukemia/lymphoma 3				
45490	KRT77	Krt77	2.722	6.925	keratin 77				
7794	POU2F1	POU2F1	1.279	2.267	POU domain containing 1				
7318	FOXN1	Foxn1	1.332	2.127	forkhead box M1				
2975	CCL1	Ccl1	1.568	2.063	chemokine C-C motif ligand 1				
35605	CLEC7A	Clec7a	1.002	2.999	colony-stimulating factor receptor				
28716	SERPINB13	Serpinb13	1.626	1.889	serine (or cysteine) peptidase inhibitor, clade B (ovotransaminase), member 13				
117632	CCL2	Ccl2	1.367	2.413	chemokine C-C motif ligand 2				
7784	IL1R	Il1r1	1.286	2.068	interleukin 1 receptor, alpha				
67285	CXCL6	Cxcl6	1.203	2.371	chemokine C-X-C motif ligand 6				
52452	S100A6	S100a6	5.571	7.186	S100 calcium binding protein A6 (calgranulins) B				
8599	NR1D1	Nrd1	1.860	3.841	neuregulin 1				
11748	NKX5.1	Nkx5.1	1.428	2.410	transcription factor 5, directly regulated 18				
1944	PCK1	Pck1	2.317	2.020	phosphoenolpyruvate carboxykinase 1, cytosolic				
10922	MS447	Ms447	1.836	3.567	membrane-spanning 44A, subfamily A, member 7				
4056	PPPR1A	Pppr1a	1.378	3.180	protein phosphatase 1A, regulatory (inhibitor) subunit 1A				
20960	TGM1	Tgm1	2.068	1.134	transglutaminase 3, E polypeptide				
50385	RIL5	Ril5	1.625	3.034	ribosomal protein L5				
30738	COCH	Cogh1	1.609	2.563	chemokine (C-X-C motif) receptor 4				
388	SEL4	Sel4	3.867	4.983	selectin, endothelial cell				
4510	DAO3	Daus1	0.730	2.118	2-o-furaldehyde dehydrogenase 3				
68256	MMY4	Myo4	0.711	2.039	myosin heavy polypeptide 4B, smooth muscle				
31036	HNL1	Hnl1	2.346	1.648	hair and a half LIN1				
47947	ATP5A2	Atp5a2	1.046	2.046	ATPase, Na+/K+ transporting, alpha 2 ATPase				
7784	A22A	A2a2	1.174	2.007	ATPase, Na+/K+ transporting, alpha 2 ATPase				
7365	MOX1	Mox1	2.868	2.957	homeobox 450				
38377	DSC2	Dsc2	0.810	2.722	desmocollin 2				
Gene Name	Description	Gene Name	Description						
-----------	-------------	-----------	-------------						
TMEM132A	transmembrane protein 132A	ZWILCH	ZW1 linear chaperone homolog						
IN10B1		ED39	E3 ubiquitin-protein ligase						
MAPK6	mitogen-activated protein kinase 6	ARHGAP4	Rho GTPase activating protein 4						
NNT	nicotine receptor, alpha 9	NUP210	nucleoporin 210						
CAS2	DnaE2								
SLC3A1A	solute carrier family 3 (sodium/pendrin/crude exchanger), member 2	PHLDA2	PHL domain containing 2						
MX1		PRSS2	proprotein convertase subtilisin/kexin type 2						
RASG1	RasG1	CXCL9	C-X-C motif chemokine 9						
UAP5		ADAM9	ADAM metalloprotease (disintegrin and metalloproteinase) domain 9						
SLN12									
TUBB8									
CYBA									
PLSCR1									
HDX1C13									
LUMN									
HER1									
CD290									
TPK2									
FUT7									
PC2D2									
CCH2									
1372									
PIGH									
C10Q1									
853									
68902									
56497									
62175									
89676									
HCLS1									
TSER1A									
TSC22D3									
RAB89b									
MLYK									
HSD3B1									
GAPB3									
GRK1									
GABP5									
CRC2									
MYC1									
NEDD4L									
HCV									
INOS									
TSFNT1									
IFIT1									
TAP2B1									
PKH1									
MRP									
PCED4									
C1orf51									
RUNK2									
CIDEB									
DUSP1									
PTG1									
C0BL									
AGR2									
SERPINF2									
SCN2B									
SPAG11B									
PLCP									
AATT									
SPRI5									
PIN3L3									
ARM3									
CYP2J2									
RA2									
HOWER2									
HMV1									
AHK4									
PKNOX2									
INTC7									
MTERF1									
SOC3									
FLBG									
Gene Name	Description								
-----------	-------------								
TMD01	Transmembrane domain 1								
SHBG	Sex hormone-binding globulin								
BRMS	BRM-related protein								
LRR2	LRR-domain containing 2								
MMP13	Matrix metalloproteinase 13								
COL5A1	Collagen, type V, 1								
COL5A2	Collagen, type V, 2								
Sema3A	Semaphorin domain-containing 3A								
LRR3C	LRR-domain containing 3C								
MYB2	Myb-domain containing 2								
AP1D1	AP1 domain-containing 1D								
LOC289489	Locus tag LOC289489								
LRR3C	LRR-domain containing 3C								
BCL2L11	Bcl-2-like 11								
KCNH1	Potassium voltage-gated channel, subfamily H (Kv) member 1								
ASPN	ASPN domain-containing protein								
HLA-C	Histocompatibility antigen, C								
SLCO5A1	Solute carrier organic anion transporting polypeptide 5A1								
PDE6C	Phosphodiesterase 6C								
MLK4	MLK interacting protein								
COL5A5	Collagen, type V, 5								
CLEC8	C-type lectin domain-containing 8								
GNL3L	GTPase-activating like 3L								
CYP11B1	Cytochrome P450, family 11, subfamily B, polypeptide 1								
MCT10	Multicarrier 10								
KRT7	Keratin 7								
EMT	E-cadherin								
TACR1	Tachykinin receptor 1								
CASZ1	Cazpin								
GGT1	Glutamyltransferase 1								
CYB58	Cytochrome b58								
CAPN8	Calpain 8								
ELF7	Endoplasmic reticulum enzyme, family F, member 7								
GSTT3	Glutathione S-transferase T3								
CDH17	Cadherin 17								
NINBB	Ninbin								
TBC1D30	TBC1 domain, family D, member 30								
ST6GALN4	ST6 alpha-galactosaminyltransferase 4								
NINBB	Ninbin								
ILR6	Interleukin 6 receptor, alpha								
GAB5	GABA A receptor, gamma 5								
SLC4A8	Solute carrier organic anion transporting polypeptide 4A8								
SLC4A8	Solute carrier organic anion transporting polypeptide 4A8								
SGK2	Serine/threonine kinase 2								
VWA2	VWA domain-containing protein 2								
PTP1B	Protein tyrosine phosphatase 1B								
KRT18	Keratin 18								
ECHS1	Enolase 1								
AVPR1A	V2 vasopressin receptor 1A								
PRKG1	Protein kinase G, type 1								
GPRK1	G protein-coupled receptor 1								
DUSP1	Dual-specific protein phosphatase 1								
MGC12540	MGC 12540								
MYOT	Myotube								
TAF12	TAF1 domain-containing protein 12								
ATP2B2	ATPase, Ca++ transporting, plasma membrane 2								
PKA	Protein kinase, cyclic AMP-regulated, alpha								

16
In comparison between human AD and mouse models, a gene that has higher fold changes in expression both in human and mouse contributes more to the similarity score. Each comparison gives a list of the top genes that contribute to a total of 95% of a similarity score. Twenty comparisons were performed between ten human AD datasets and two mouse models, and the genes appearing in similarity-contributing gene lists of this Table were sorted by the frequency appearing in these comparisons. A filled box indicates that the gene is listed among the top similarity-contributing genes in the comparisons. Two additional comparisons between psoriasis non-lesional epidermis and mouse models are also shown. HID, HomoloGene ID.
Figure S1. Clustering analysis of global gene expression and confirmation by quantitative RT-PCR.
(A) Among 29,573 gene probes, 7,475 probes were upregulated or downregulated by 2-fold or more through AD-induction in at least one strain of B6 and NC/Nga. These genes were subjected to hierarchical clustering. (B) An example of random distribution of similarity scores and observed scores in comparison between GSE32924 data set and B6 data set. Three observed similarity scores were off the random distribution, indicating a significant similarity. Random distribution was calculated by 1000 permutations. (C) RT-qPCR analysis of the selected genes. Each symbol represents one mouse.
Figure S2. Impaired skin barrier in Der f/SEB-induced skin lesions.
Der f/SEB induction experiments were done on NC/Nga mice and TEWL was assessed as described in the Materials and Methods. Each symbol represents one mouse.

Figure S3. Expression of epidermal differentiation markers in allergen-induced eczematous mice.
Immunofluorescence microscopy was performed before and after Der f/SEB induction on WT, μMT, TCRβ+, and Rag1−/− mice, as described in Materials and Methods. k1, keratin 1; k5, keratin 5; k6, keratin 6; lor, loricrin; Ecad, E-cadherin; Col, collagen.
Figure S4. Numbers of mast cells in inflammatory skin are correlated with the clinical skin score.

Mast cells were counted in Toluidine-blue stained skin sections. (A) Mast cell numbers per the entire skin section with surface area of 1 mm2 are presented. *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001; n.s., not significant. (B) Weak correlation was detected between mast cell numbers and clinical scores. Linear regression line is shown. Each symbol represents one mouse.
Figure S5. Mast cell-deficient Cpa3-Cre;Mcl-1^{fl/fl} mice exhibited attenuated skin inflammation.

Der f/SEB induction experiments were performed on Cpa3-Cre;Mcl-1^{fl/fl} mice. (A) Clinical skin scores. (B) Macroscopic features. (C,D) H&E staining of the lesional or non-lesional skin sections. The rectangle portions are enlarged below. The epidermal-dermal borders are shown by dotted lines. Bar, 200 μm. (E) Toluidine blue staining was also done. Only a few mast cells were detected in lesional and non-lesional skin areas of Cpa3-Cre;Mcl-1^{fl/fl} mice. Each symbol represents one mouse. *, p<0.05; ***, p<0.001.
Figure S6. Numbers of neutrophils in inflammatory skin are correlated with the clinical skin score.
Neutrophils were counted in Congo red-stained skin sections. (A) Their numbers per high power field are presented. *, p<0.05; ***, p<0.001; n.s., not significant. (B) Significant correlation was detected between neutrophil numbers and clinical scores. Linear regression line is shown. Each symbol represents one mouse.