A Novel Application of Electroactive Polyimide Doped with Gold Nanoparticles: As a Chemiresistor Sensor for Hydrogen Sulfide Gas

Lee Marvin G. Padua¹, Jui-Ming Yeh²*, and Karen S. Santiago³*

¹ Department of Math and Physics, College of Science, University of Santo Tomas, Manila 1015
² Department of Chemistry; Research and Development Center for membrane Technology; Center for Nanotechnology, Chung Yuan Christian University, Taiwan
³ Department of Chemistry, College of Science; Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015

* Correspondence: juiming@cycu.edu.tw (J.-M.Y.); kssantiago@ust.edu.ph (K.S.S.)

Abstract: This research paper presents a new application of electroactive polyimide doped with gold nanoparticles (PI/AuNPs) as a new chemiresistor sensor for detecting hydrogen sulfide gas.

The synthesis of PI/AuNPs was done in a simple 3-step process of polymerization using the as prepared amine-capped aniline trimer (ACAT), followed by imidization, and doping. Spectral analyses via FTIR, LC-MS and ¹H-NMR confirmed the formation of amine-capped aniline trimer with a MW of 288 g mol⁻¹. Comparison of ACAT, BSAA, and PI FTIR spectra showed successful polymerization of the last, while XRD validated the incorporation of metal nanoparticles onto the polymer matrix showing characteristic diffraction peaks corresponding to gold. Furthermore, TEM, and FE-SEM revealed the presence of well-dispersed Au nanoparticles with an average diameter of about 60nm. The electroactive PI/AuNPs-based sensor showed a sensitivity of 0.29% ppm⁻¹ H₂S at a linear concentration range of 50 to 300 ppm H₂S (r = 0.9777). The theoretical limit of detection was found at 0.142 ppm or 142 ppb H₂S gas. The sensor provided a stable response reading at an average response time of 43±5 seconds, which was easily recovered after an average time of 99±5 seconds. The sensor response was highly repeatable and reversible with RSD values of 8.88%, and 8.60%, respectively. Compared with the performance of the conventional conducting polyaniline also doped with gold nanoparticles (PANI/AuNPs), the fabricated electroactive PI/AuNPs exhibited improved sensing performance making it a potential candidate in monitoring H₂S in the environment and for work-related safety.

Keywords: conducting polymers; metal nanoparticles; gas sensor; hydrogen sulfide gas

1. Introduction

Characterized by a pungent odor similar to the smell of rotten eggs, this colorless and flammable gas known as hydrogen sulfide (H₂S) is considered poisonous at certain concentrations. As reported in Occupational and Safety and Health Administration [1,2], inhaling 20 ppm H₂S may cause possible fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Depending on the length of exposure to H₂S gas, severe conditions may occur when exposed to higher concentrations. For example, prolonged exposure to 150 ppm H₂S gas could quickly paralyze the olfactory nerve disabling it from its capacity to recognize its presence. An hour of exposure to 700 ppm H₂S gas could seriously damage the eyes, cause rapid loss of consciousness, or worst lead to possible sudden death [3-6].

Commonly, hydrogen sulfide gas is released in high quantities during excavation of landfills or swamps [7,8], and in higher amounts during a volcanic activity [9-11]. Furthermore, H₂S gas is present in petrochemical processes -- in oil and natural gas wells, pipelines where unrefined petroleum is transported, and in refinery stations where H₂S is removed [12-14].
[15,16], and iron smelters [17], H₂S is a usual by-product. As H₂S gas is denser than air, it can easily accumulate in areas like mine tunnels [18] sewers [19], and manure tanks [20,21]. Due to the ubiquity of H₂S gas, and the possible danger this gas may cause, its detection is deemed highly important. However, the gas should not be directly perceived by the olfactory nose nor should the level be closely assessed without the use of external devices.

There were reports on the use of gas chromatography (GC) [22-24], infrared spectroscopy (IR) [25], ultraviolet spectroscopy (UV) [26-29], and fluorometry [30] in H₂S determination, but these techniques involved the use of relatively expensive bulky instrumentation, and requirement of tedious sampling preparations. Alternatively, the use of sensors was also a heightened subject of interest due to the many modes of detection that could be explored such as electrochemical [30-32], optical [33,34], piezoelectric [35,36], and chemiresistive [37,38]. Sensors based on chemiresistive mode was the simplest, which operates based on the change in electrical resistance as the sensing material absorbs the gas analyte [39-43]. Metal oxide sensors (MOS) have been widely used in the construction of chemiresistive sensors of noxious gases due to their inexpensiveness, simplicity in both preparation and operation. These sensors also offer a wide array of detectable gases, hence expanding possible fields of applications. However, gas sensors fabricated using inorganic materials like metal oxides require operation at higher temperatures, as the high sensitivity of the said sensors is based on the high working temperature. Often possible, through the use of heated filament, and this entails requirement of higher electricity to operate [44,45]. On the other hand, conducting polymers (CPs) also appear attractive as active element in gas sensors. Compared with MOs, CPs present many advantages such as high sensitivity, short response time, and room temperature operation. But CPs offers low processability, poor mechanical strength, and chemical stability [46,47]. There were also reports on the use of metal nanoparticles such as silver nanoparticles [48,49], and gold nanoclusters [30] but the detection is coupled to costly optical measurement devices.

This study, therefore explored the use of combined electroactive polymers and gold nanoparticles to address issues encountered when these materials are used individually. Based on the literature survey conducted, this is the first time that electroactive polyimide decorated with gold nanoparticles was used and developed for detecting trace levels of hydrogen sulfide gas at ambient room temperature. In the past, electroactive polyimide doped with gold nanoparticles was investigated for other applications such as electrochemical sensing of ascorbic acid [50]. Other studies of these combined materials focused on the effects of gold nanoparticles to polyimide in improving fluxes of the polymer for its possible nanofiltration application [51]. Most studies involving various uses dealt with EPI in different forms, while maximizing its inherent properties. Based on redox property, EPI was used as a recognition element in the fabrication of electrochemical sensors [52-55]; and anticrosion material [56-64]. Based on doping and dedoping capability, EPI was also explored as a gas separation membrane [65], and as a smart material characterized for its switchable superhydrophobicity [66]. There were also papers that investigated means to improve EPI’s mechanical strength [67-68] and thermal properties [69].

2. Experimental

2.1. Chemicals and equipment

Aniline (99.0%, Fluka) was distilled under reduced pressure prior to use. Chemicals such as 4, 4’-diaminodiphenylamine sulfate hydrate (>97.0%, TCI), 4,4’-(4,4’-isopropyldene diphenoxy)-bis(phthalic anhydride) (BSAA, 97.0%, Aldrich), gold(III)chloride trihydrate (HAuCl₃·3H₂O, 99.99%, Alfa Aesar) 1-methyl-2-pyrrolidone (NMP, 99.7%, MACRON), N,N-dimethylacetamide (DMAc, 99.0%, MACRON, and 99%, Sigma-Aldrich), acetone (Ac, 99.5%, J.T. Baker), methanol (MeOH, 99.8%, J.T. Baker), tetrahydrofuran (THF, 99.8%, RCI Labscan), cyclohexanone (CH, 100%, J.T. Baker), dimethylformamide (DMF, 99.9%, J.T. Baker), acetonitrile (ACN, 100%, J.T. Baker) were used without further purification.
Infrared spectra were recorded using JASCO FT/IR-4100. To confirm presence of the Au nanoparticles, the samples were cut using a diamond knife to a 60–90 nm thick sections, and observed using a JEOL-200FX TEM. The morphology of samples was recorded using a scanning electron microscopy (SEM) (Hitachi S-2300). X-ray diffraction (XRD) analyses were recorded using a Philips X’pert Pro X-ray diffractometer. Electrochemical properties were investigated using a conventional three-electrode system connected to a VoltaLab 40 analytical voltammeter. 1H NMR investigations were carried out using Bruker 300 spectrometer, referenced to internal standard of tetramethylsilane (TMS). DMSO was used as solvent. LC-MS further facilitated analysis of samples.

A UNI-T UT71A multimeter with UT71A_B V3.00 software/Agilent 34410A desktop multimeter with Keysight BenchVue V 3.0 software by MatLab, was used in testing the gas sensing capability of the polymeric membranes.

2.2. Synthesis and characterization of PI and PI/AuNPs

Amino-capped aniline trimer (ACAT) was prepared by following the procedure reported by Wei et al. Briefly, the synthesis of ACAT involved the use of ammonium persulfate to oxidize 2 equivalents of aniline and 1,4-phenylenediamine [70]. The success of ACAT preparation was confirmed by 1H NMR mass, LC-MS, and FT-IR spectroscopy.

The electroactive polyimide (PI) was synthesized using ACAT and BSAA. Solution A was prepared by dissolving BSAA (0.52 g, 1 mmol) in 8.0 g of DMAc with continuous stirring for 30 min at room temperature. Solution B was prepared by dissolving ACAT (0.29g, 2 mmol) in 8.0 g of DMAc with continuous stirring for 30 min at room temperature. After stirring for 30 min, solution B was added to solution A, and mechanically stirred for 24 h to prepare a poly(amic acid) solution. The poly(amic acid)(PAA) was converted to polyimide(PI) by chemical imidization reaction. This reaction was done by adding acetic anhydride (0.102 g, 1 mmol) and pyridine (0.079 g, 1 mmol) to the solution, and refluxing for 3 h under nitrogen. Methanol (250 mL) was used to wash the PI and dried at 60°C under vacuum for 1 day. The PI was characterized by 1H NMR, LC-MS, FT-IR spectroscopy, X-ray diffraction.

The gold nanoparticle doped electroactive polyimide (PI/AuNPs) samples were prepared by dissolving PI in DMAc, and adding aqueous HAuCl4 solution (1 mM) at room temperature, then stirring for 6 h. After the reaction, centrifugal filtration was done to collect the precipitate. Large volumes of distilled water were used to wash the residue. The PI/AuNPs were dried in a vacuum oven at 60°C. The PI-AuNP was characterized using TEM, FT-SEM, and X-ray diffraction.

2.2.1. Evaluation of fabricated sensors toward H2S

H2S headspace generation. Hydrogen sulfide is generated in a reaction chamber by mixing 7.1 mg ferrous sulfide (FeS) and 10 mL 5M hydrochloric acid (HCl). This reaction produced 50 ppm concentration of H2S in a 55 mL sample chamber. The procedure was repeated to achieve 100, 150, 200, 250, and 300 ppm H2S.

As illustrated in Figure 1(a), the gas sensing set-up was composed of a nitrogen tank connected to an enclosed reaction chamber (left, V=55 mL), where generation of hydrogen sulfide gas occurred. The generated H2S gas was flushed into the sample chamber (middle, V=55 mL) for determination using the fabricated sensor attached to a UNI-T multimeter. The resistance data obtained was recorded continuously using a computer. The gas exhausted from the sample chamber was bubbled in the third chamber containing water.
Figure 1. An illustration of the (a) gas sensing set-up: (1) N₂ tank, (2) reaction chamber, (3) sample chamber, (4) PI/AuNP's-based H₂S gas chemiresistor sensor, (5) reservoir for exhausted gas, (6) multimeter, and (7) computer; and (b) sensor substrate configuration: left-side view, and right-top view (1') Au discs (end of Au wires), (2') Teflon block, and (3') insulated Cu wires.

Substrate preparation. The substrate (Figure 1(b)) is composed of gold wires (18 karats, Ø = 0.5 mm, l = 0.5cm) soldered to polished copper wires (Ø = 0.5 mm, l = 2.5 cm). A pair of soldered Au-Cu wires, separated by a 200 µm gap, was mounted into a custom made Teflon bar (10 mm x 10 mm x 4 mm). The wires were cleaned via ultrasonication in detergent solution for 15 minutes. This step was immediately followed with washing of wires using water, acetone, methanol, water, and then dried. The wires were held in a sturdy and upright position by applying a cyanoacrylate adhesive (Mighty Bond™ by Pioneer ® adhesives). The exposed Au ends, which served as the substrate, were subsequently polished with high grade of abrasive paper (1200 grit) and pad with aluminum slurry (Ø = 3 µm). The polished electrodes were then washed with methanol, sonicated in ultrapure water for 5 minutes, and dried.

Sensor performance evaluation. The sensor performance was evaluated based on sensitivity, linearity, linear concentration range, limit of detection, dynamic response and recovery characteristics, repeatability and reproducibility, and selectivity.

3. Results and Discussion

3.1. Synthesis and Characterization of PI-based materials

Synthesis of electroactive polyimide-based materials. The ACAT was synthesized by the oxidative coupling of 4-4'-diaminodiphenylamine and aniline monomer by the addition of ammonium persulfate as the oxidant (Scheme 1). The synthesized ACAT was then subjected to chemical polymerization with the aid of BSAA, resulting to the formation of poly(amic acid). Finally, the poly(amic acid) underwent chemical imidization by acetic anhydride and pyridine to form the final product, electroactive polyimide.
Scheme 1. Proposed mechanism for the synthesis of electroactive polyimide.

Shown in Scheme 2 is the formation of electroactive PI/AuNPs by doping gold nanoparticles onto the synthesized PI, with the aid of dimethyl acetamide and ethyl acetate solvents.

Scheme 2. Proposed mechanism for the synthesis of gold nanoparticle-doped electroactive polyimide.

Structural and Morphological Characterization. Figure 2(a)-(b) shows the LC-MS spectra of the synthesized ACAT. It can be seen that the maximum intensity in the MS\(^+\) spectrum occurred at 289.1 m/z, while the maximum in the MS\(^-\) spectrum occurred at 286.9 m/z. These results suggest that the synthesized powder is ACAT. In theory, the molecular weight of ACAT is 288 g mol\(^{-1}\). The peak shifted by +/- 1 which could be attributed to H.
Figure 2. LC-MS spectra (a) MS+ mode and (b) MS- mode, and (c) 1H-NMR spectrum of the synthesized ACAT powder.
Further confirmation of the successful synthesis of ACAT using 1H-NMR spectroscopy was done. The sample used was prepared by dissolving a small amount of the synthesized ACAT in dimethylsulfoxide-d$_6$((CD$_3$)$_2$SO). Figure 2(c) shows the spectrum obtained from the analysis.

The results show that PI (Figure 3(c)) has the same characteristic peaks with ACAT (Figure 3(a)) at 1504 and 1596 cm$^{-1}$. The characteristic peaks at 1504 cm$^{-1}$ and 1596 cm$^{-1}$ may be due to the vibration bands of benzenoid rings and quinoid rings of ACAT, respectively. At 1750 cm$^{-1}$, PI (Figure 3(c)) and BSAA (Figure 3(b)) have characteristic peaks referring to the vibration bands of BSAA’s C=O groups. Based on the overall spectra, the synthesis of PI was successfully achieved.

![Figure 3. FTIR spectra of (a) synthesized ACAT, (b) BSAA, (c) synthesized electroactive PI.](image)

![Figure 4. (a), (b) TEM, and (c), (d) FE-SEM images of the synthesized electroactive PI/AuNPs.](image)
TEM and FE-SEM micrographs reveal the presence of well-dispersed Au nanoparticles with an average diameter of about 60nm, as shown in Figure 4.

![Figure 5. XRD pattern of electroactive (a) PI and (b) PI/AuNPs.](image)

The diffractogram in Figure 5(a) shows a broad peak between 15-20° (2θ), which can be attributed to the semi-crystalline nature of the PI sample, having periodic parallel polymer chains. The diffractogram of the PI/AuNPs (Figure 5(b)) show the characteristic peaks of gold occurring at 38.01°, 43.96°, 64.50°, and 77.42° (2θ), corresponding to reflections from the planes, (111), (200), (220), and (311) [71]. The prominent diffraction at 38.01° revealed that zero valent gold grew and mostly fixed in the direction (111). This behavior also signifies formation of pure gold nanocrystals [72].

3.2. Evaluation of the sensor’s performance

Sensitivity, linearity, and limit of detection. Shown in Figure 6(a) is the calibration curve constructed based on the performance of electroactive polyimide doped with gold nanoparticles (PI/AuNPs) towards increasing concentration of hydrogen sulfide gas. Responses were reported as $(\Delta R/R_0) \times 100\%$, $\Delta R = R_g - R_0$, where R_g is the resistance of the chemiresistor gas sensor and R_0 refers to baseline resistance. The sensor presented a sensitivity of 0.29% ppm⁻¹ H₂S gas and a linearity of 0.9777 at a dynamic linear concentration range of 50 to 300 ppm H₂S gas. The theoretical detection limit was found to be 0.142 ppm or 142 ppb H₂S, estimated according to the least-square method of fitting in the linear regime.
Figure 6. (a) Calibration plot obtained after the electroactive PI/AuNPs-based chemiresistor sensor was exposed towards increasing concentrations of H$_2$S gas at RT (n=3); and (b) the proposed sensing mechanism.

As indicated in Figure 6(b), the decrease in resistance in the electroactive PI/AuNPs film could possibly be attributed to further doping of the polymer due to the sulfurous acid formed. Hydrogen sulfide gas in humid condition may generate sulfurous acid, which consequently, dissociates into hydrogen and sulfite ions. The hydrogen ions, then, protonate the polymer’s nitrogen sites of the ACAT chains. This phenomenon results to a corresponding increase in conductivity or decrease in resistance. The higher the concentration of the H$_2$S gas, therefore, leads to a higher decrease in resistance.

Repeatability of the sensor’s response. Figure 7(a) shows a comparison of calibration plots of electroactive PI/AuNPs and PANI/AuNPs chemiresistor sensors towards increasing concentration of hydrogen sulfide gas. The latter has a sensitivity of 0.11% ppm$^{-1}$ H$_2$S, a theoretical detection limit of 0.45 ppm H$_2$S, and a linearity of 0.9551 at the same linear concentration range of 50 to 300 ppm H$_2$S gas. Based on sensitivity values, there was a 62% improvement in the performance with electroactive PI/AuNPs sensor. This may be attributed to the formation of additional conducting paths due to further doping of PI's active sites. This, consequently, improved hopping of electrons throughout the polymeric chain.

The repeatability studies depicted in Figure 7(b)-(c) prove better precision of all the trials, with respect to sensitivity values, in electroactive PI/AuNPs (% RSD = 8.88%) than PANI/AuNPs (% RSD = 28.36%).
Figure 7. (a) A comparison of the calibration plots of electroactive PI/AuNPs-, and PANI/AuNPs-based chemiresistor gas sensors towards increasing concentrations of H₂S gas (50 to 300 ppm, n=3, RT). Repeatability studies based on the calibration plots of (b) PI/AuNPs, and (c) PANI/AuNPs.

Response and Recovery Characteristics of the Sensor. Response time refers to the duration it takes the sensor to change from its initial state to its stable value, while recovery time is the period it takes the sensor to return to its initial state. As shown in Figure 8, a response time of 43 s and recovery time of 99 s has been exhibited by the PI/AuNPs while a response time of 55 s and recovery time of 103 s has been shown by the PANI/AuNPs.
Figure 8. Dynamic response and recovery characteristics of (a) PI/AuNPs, and (b) PANI/AuNPs-based chemiresistor sensors towards 150 ppm H$_2$S at RT (cycle=1).

Reversibility of the Sensor's response. As shown in Figure 9(a), the PI/AuNPs sensor exhibited a good reversibility within 3 cycles of exposure to alternating N$_2$ blank and 200 ppm H$_2$S (RSD = 8.60 %). The reading returned to its baseline value once the gas analyte was removed.
Figure 9. A comparison of the reversibility of the response of (a) PI/AuNPs, and (b) PANI/AuNPs-based chemiresistor sensors towards 200 ppm H2S at RT (cycles=3).

The case is different compared with the performance of PANI/AuNPs sensor. Figure 9(b) shows that the sensor did not exhibit a good reversible process. The sensor experienced difficulty in reverting to the baseline reading after the first cycle of exposure to H2S gas. An RSD of 41.79% validated that PANI/AuNPs showed a poor reversibility.

Selectivity. The selectivity studies in Figure 10 revealed that indeed the electroactive PI/AuNPs-based chemiresistor sensor resulted to highest resistance change towards 300 ppm hydrogen sulfide gas compared to minimal to almost negligible response when the sensor was exposed to pure forms of hexane, ethyl acetate, and methanol vapors.

Figure 10. Selectivity test of electroactive PI/AuNPs with 300 ppm concentration of H2S, ethyl acetate (pure), methanol (pure), hexane (pure); (n=3, RT).

4. Conclusion

An electroactive polyimide/gold nanoparticles-based chemiresistor sensor that operates at ordinary room temperature was developed. The change in the electrical property, particularly the resistance of the sensing material, was used as a means to monitor the change in H2S gas concentration. Spectral studies confirmed successful synthesis of its sensing material. Morphological studies, on the other hand, confirmed the increase in surface area of electroactive polyimide after decorating it with gold nanoparticles. Compared with the conventional conducting PANI, likewise doped with AuNPs to ensure similar matrix, the electroactive PI/AuNPs exhibited an improved sensing performance. The proposed sensor offers an alternative means of monitoring hydrogen sulfide gas in a simple and inexpensive way.
Author Contributions: J.-M. Yeh and K.S. Santiago conceptualized the project and overall design of the experiment. L.M.G. Padua performed the experimental part under the supervision of K.S. Santiago, and both wrote the manuscript. J.-M. Yeh and K.S. Santiago edited and finalized the paper.

Acknowledgements: The authors extend their gratitude for the financial assistance provided by the Department of Science and Technology-Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD, through the Manila Economic and Cultural Office-MECO), and University of Santo Tomas-Research Center for the Natural and Applied Sciences; and the Ministry of Science and Technology, Taiwan, R.O.C (MOST 104-2113-M-003-001-MY3 and MOST 104-2923-M-003-001-MY2) as well as the Department of Chemistry at Chung Yuan Christian University.

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

1. OSHA Fact Sheet, U.S. Department of Labor, 2005.
2. Occupational Safety and Health Administration Technical Center: Hydrogen Sulfide Backup Data Report (ID-141). Salt Lake City, UT. Revised 1989.
3. Rubright, S., Pearce, L., Peterson, J. Environmental toxicology of hydrogen sulfide, *Nitric oxide* 2017, 71, 1-13.
4. Guidotti, Tee L. Hydrogen sulfide intoxication. Chapter 8, 111-133. Handbook of Clinical Neurology, Vol. 131 (3rd series) Occupational Neurology M. Lotti and M.L. Bleecker, Editors, 2015.
5. Roth, Sheldon H. Handbook of Hazardous Materials. Academic Press, 1993, 367–376
6. Sauve, Terrence Hydrogen Sulphide in Agricultural Biogas Systems. Ministry of Agriculture, Food and Rural Affairs 2011, 1-7.
7. Plaza, Cristine, Qiyong Xu, Timothy Townsend, Gabriel Bitton, Matthew Booth, “Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills,” *Journal of Environmental Management* 2007, 84, 314–322.
8. Shen, Dong-Sheng, Yao Du, Yuan Fang, Li-Fang Hu, Cheng-Ran Fang, Yu-Yang Long, “Characteristics of H2S emission from aged refuse after excavation exposure,” *Journal of Environmental Management* 2015, 154, 159-165.
9. Textor, Christiane, Hans-F. Graf, and Michael Herzog, Injection of gases into the stratosphere by explosive volcanic eruptions, *Journal of Geophysical Research* 2003, 108, D19, 4606. doi:10.1029/2002JD002987.
10. Oppenheimer, Clive, Bruno Scaillet, Robert S. Martin. Sulfur Degassing from Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts. Reviews in Mineralogy and Geochemistry, *Mineralogical Society* 2011, 73, 363-421.
11. Edmonds, M., Gratton J., Michnowicz S. Volcanic Gases: Silent Killers. In: Fearnley C.J., Bird D.K., Haynes K., McGuire W.J., Jolly G. (eds) Observing the Volcano World. Advances in Volcanology (An Official Book Series of the International Association of Volcanology and Chemistry of the Earth’s Interior – IAVCEI, Barcelona, Spain) 2015. Springer, Cham
12. Jafarinejad, Shahryar, Odums emission and control in the petroleum refinery: A review, Current Science Perspectives 2016, 2(3), 78-82.
13. Jafarinejad, Shahryar. Pollutions and Wastes from the Petroleum Industry. *Petroleum Waste Treatment and Pollution Control* 2017, 19–83.
14. Shivnanthan MC, Perera H, Jayasinghe S, Karunanyake P, Chang T, Ruwanpathirana S, Jayasinghe N, De Silva Y, Jayaweerabandara D. Hydrogen sulphide inhalational toxicity at a petroleum refinery in Sri Lanka: a case series of seven survivors following an industrial accident and a brief review of medical literature. *J Occup Med Toxicol.* 2013, 8(1):9. doi: 10.1186/1745-6673-8-9. PMID: 23578012; PMCID: PMC3637136.
15. Kangas J, Jäppinen P, Savolainen H., Exposure to hydrogen sulfide, mercaptans and sulfur dioxide in pulp mill industry, *Am Ind Hyg Assoc J.* 1984, 45(12), 787-90.
16. Veluchamy, C., Ajay S. Kalamdhad, Enhancement of hydrolysis of lignocellulose waste pulp and paper mill sludge through different heating processes on thermal pretreatment, *Journal of Cleaner Production* 2017, 168, 219-226, ISSN 0959-6526.
17. Crundwell F, Moats M, Ramachandran V, Robinson T et al. Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals. Kidlington, Oxford, United Kingdom: Elsevier Ltd. 2011, 443-55. ISBN 9 780 0809 6809 4.
18. Chaulya, S.K. and G.M. Prasad. Chapter 3 – Gas Sensors for Underground Mines and Hazardous Areas. Sensing and Monitoring Technologies for Mines and Hazardous Areas Monitoring and Prediction Technologies 2016, 161–212.

19. Jiang, Guangming, Jurg Keller, Philip L. Bond, Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion, Water Research 2014, 65, 157-169, ISSN 0043-1354.

20. Andriamanohiarisoamanana, Fetra J., Yushi Sakamoto, Takaki Yamashiro, Seiichi Yasui, Masahiro Iwasaki, Ikko Ihara, Osamu Tsujii, Kazutaka Umetu, Effects of handling parameters on hydrogen sulfide emission from stored dairy manure, Journal of Environmental Management 2015, 154, 110-116, ISSN 0301-4797, https://doi.org/10.1016/j.jenvman.2015.02.003.

21. Maurer, Devin L., Jacek A. Koziel, Kelsey Bruning, David B. Parker, Farm-scale testing of soybean peroxidase and calcium peroxide for surficial swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions, Atmospheric Environment 2017, 166, 467-478, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2017.07.048.

22. Kim, K.H. Performance characterization of the GC/PFPD for H2S, CH3SH, CH3SCH3, and CH3SSCH3 in air. Atmos. Environ. 2005, 39, 2235–2242.

23. Vitvitsky, Victor and Ruma Banerjee, H2S Analysis in Biological Samples Using Gas Chromatography with Sulfur Chemiluminescence Detection, Methods Enzymol. 2015, 554: 111–123. doi:10.1016/bs.mie.2014.11.013.

24. Varlet, Vincent, Nicole Giuliani, Cristian Palmiere, Geraldine Maujean and Marc Augsburger, “Hydrogen Sulfide Measurement by Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS): Application to Gaseous Samples and Gas Dissolved in Muscle,” Journal of Analytical Toxicology 2015, 39:52–57.

25. Larsen, Elisabeth S., William W. Hong, Martin L. Spartz, Hydrogen Sulfide Detection by UV-Assisted Infrared Spectroscopy, Applied Spectroscopy 1997, 51, 11, 1656-1667.

26. Chen, Rui, Hannah R. Morris, Paul M. Whitmore, “Fast detection of hydrogen sulfide gas in the ppbv range with silver nanoparticle films at ambient conditions, Sensors and Actuators B 2013, 186, 431–438.

27. Sander, Gersen, Martijn van Essen, Pieter Visser, Mohammad Ahmad, Anatoli Mokhov, Alexey Sepman, Ramon Alberts, Arno Douma and Howard Levinsky, “Detection of H2S, SO2 and NO2 in CO2 at pressures ranging from 1-40 bar by using broadband absorption spectroscopy in the UV/VIS range,” Energy Procedia 2014, 63, 2570 – 2582.

28. Shariati-Rad, M., M. Irandoust, F. Jalilvand, Spectrophotometric determination of hydrogen sulfide in environmental samples using sodium 1,2-naphthoquinone-4-sulfonate and response surface methodology, Int. J. Environ. Sci. Technol. 2016, 13:1347–1356 DOI 10.1007/s13762-016-0959-6.

29. Wallace, Karl J., Steven R. Cordero, Christina P. Tan, Vincent M. Lynch, Eric V. Anslyn, “A colorimetric response to hydrogen sulfide,” Sensors and Actuators B 2007, 120, 362–367.

30. Zhang, Yan, Min Li, Qinqin Niu, Pengfei Gao, Guomei Zhang, Chuan Dong, Shaomin Shuang, “Gold nanoclusters as fluorescent sensors for selective and sensitive hydrogen sulfide detection,” Talanta 2017, 171, 143–151.

31. Lawrence, Nathan S., Randhir P. Deo, Joseph Wang, “Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes,” Analytica Chimica Acta 2004, 517, 131–137.

32. Zeng, Lihua, Mei He, Huihui Yu and Daoliang Li, “An H2S Sensor Based on Electrochemistry for Chicken Coops,” Sensors 2016, 16, 1398.

33. Ke, Zhi-Jun, Dong-Lin Tang, Xin Lai, Zhi-Yong Dai, Qi Zhang, “Optical fiber evanescent-wave sensing technology of hydrogen sulfide gas concentration in oil and gas fields,” Optik 2018, 157, 1094–1100.

34. Zhou, Hong, Jun-Qing Wen, Xiao-Zhen Zhang, Wei Wang, De-Quan Feng, Qi Wang, Fei Ji, “A Study on Fiber-optic Hydrogen Sulfide Gas Sensor,” Physics Procedia 2014, 56, 1102 – 1106. 8th International Conference on Photonic Technologies LANE 2014.

35. He, Haoxuan, Chuanyi Dong, Yongming Fu, Wuxiao Han, Tianming Zhao, Lili Xing, Xinyu Xue, Self-powered smelling electronic-skin based on the piezo-gas-sensor matrix for real-time monitoring the mining environment, Sensors and Actuators B: Chemical 2018, 267, 392-402.

36. Kuchmenko, T.A., Kochetova, Z.Y., Silina, Y.E., Korenman, Ya. I., Kulin, L. A., and I. V. Lapitski Determination of Trace Amounts of Hydrogen Sulfide in a Gas Flow Using a Piezoelectric Detector, J Anal Chem 2007, 62, 781.

37. Berahmana, M. and M.H. Sheikh, “Hydrogen sulfide gas sensor based on decorated zigzag graphene nanoribbon with copper,” Sensors and Actuators B 2015, 219, 338–345.
38. Tomchenko, Alexey A., Gregory P. Harmer, Brent T. Marquis, John W. Allen, “Semiconducting metal oxide sensor array for the selective detection of combustion gases,” *Sensors and Actuators B* 2003, 93 126–134.

39. Malek Alaie, M., M. Jahangiri, A.M. Rashidi, A. Haghighi Asl, N. Izadi, Selective hydrogen sulfide (H2S) sensors based on molybdenum trioxide (MoO3) nanoparticle decorated reduced graphene oxide, *Materials Science in Semiconductor Processing* 2015, 38, 93-100, ISSN 1369-8001, https://doi.org/10.1016/j.mssp.2015.03.034.

40. Kaur, Manmeet, Namrata Jain, Kamalkant Sharma, Shovit Bhattacharya, Mainak Roy, A.K. Tyagi, S.K. Gupta, J.V. Yakhmi, Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers, *Sensors and Actuators B: Chemical* 2008, 133, Issue 2, 456-461, ISSN 0925-4005.

41. Malek Alaie, M., M. Jahangiri, A.M. Rashidi, A. Haghighi Asl, N. Izadi, A novel selective H2S sensor using dodecylamine and ethylenediamine functionalized graphene oxide, *Journal of Industrial and Engineering Chemistry* 2015, 29, 97-103, ISSN 1226-086X.

42. Sarfraz, J., P. Ihalainen, A. Määttänen, J. Peltonen, M. Lindén, Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite, *Thin Solid Films* 2013, 534, 621-628, ISSN 0040-6090.

43. Li, Min, Dongxiang Zhou, Jun Zhao, Zhiping Zheng, Jungang He, Long Hu, Zhe Xi, Jiang Tang, Huan Liu, “Resistive gas sensors based on colloidal quantum dot (CQD) solids for hydrogen sulfide detection,” *Sensors and Actuators B* 2015, 217, 198–201.

44. Kumar, Vinod, Sunny, Ishpal Rawal, V.N. Mishra, R. Dwivedi, R.R. Das, Fabrication and characterization of gridded Pt/SiO2/Si MOS structure for hydrogen and hydrogen sulphide sensing, *Materials Chemistry and Physics* 2014, 146, Issue 3, 418-424, ISSN 0255-0488.

45. Emelin, E.V. and Nikolaev, I.N. “Sensitivity of mos sensors to hydrogen, hydrogen sulfide, and nitrogen dioxide in different gas atmospheres,” *Measurement Techniques* 2006, 49: 524.

46. Crowley, K., Morrin, A., Sheperd, R., Panhuis, M., Wallace, G., Smyth, M., Killard, A. (2010). Fabrication of Polyimide-Based Gas Sensors using Piezoelectric Inkjet and Silkscreen Printing for the Detection of Hydrogen Sulfide, *IEEE Sensors Journal* 2010, 10, 9.

47. Liu, C., Hayashi, K., Toko, K. Au nanoparticles decorated polyaniline nanofiber sensor for detecting volatile sulfur compounds in expired breath, *Sensors and Actuators B* 2012, 161, 504–509.

48. Chen, Rui, Hannah R. Morris, Paul M. Whitmore, “Fast detection of hydrogen sulfide gas in the ppm range with silver nanoparticle films at ambient conditions,” *Sensors and Actuators B* 2013, 186, 431–438.

49. Chen, Rui, and Paul M. Whitmore. Chapter 6: Silver Nanoparticle Films as Hydrogen Sulfide Gas Sensors with Applications in Art Conservation. In The Science and Function of Nanomaterials: From Synthesis to Application; Harper-Leatherman, et al.; ACS Symposium Series; American Chemical Society: Washington, DC, 2014.

50. Ji, Wei-Fu, Chich-Ming Chu, Sheng-Chieh Hsu, Yi-De Lu, Yun-Chieh Yu, Karen S. Santiago, Jui-Ming Yeh, “Synthesis and characterization of organo-soluble aniline oligomer-based electroactive doped with gold nanoparticles, and application to electrochemical sensing of ascorbic acid,” *Polymer* 2017, 128, 218-228

51. Vanherck, Katrien, Ivo Vankelecom, Thierry Verbiest, Improving fluxes of polyimide membranes containing gold nanoparticles by photothermal heating, *Journal of Membrane Science* 2011, 373, Issues 1–2, 5-13, ISSN 0376-7388, https://doi.org/10.1016/j.memsci.2011.02.010.

52. Weng, Chang-Jian, Yu-Sian Jhoo; Ya-Lun Chen, Chun-Fang Feng, Jui-Ming Yeh; Yen Wei, “Intrinsically Electroactive Polyimide Microspheres Fabricated by Electrospaying Technology for Ascorbic Acid Detection,” *Journal of Materials Chemistry* 2011, 21, 15666-15672.

53. Weng, Chang-Jian, Kuan-Yeh Huang, Yu-Sian Jhoo, Ya-Lun Chen, Jui-Ming Yeh, “Controllable Electroactive Polyimide Particles Size Generated by Electrospaying,” *Polymer international* 2012, 61, 205-212.

54. Huang, Tsao-Cheng, S.T. Lin, Lu-Chen. Yeh, C.A. Chen, H.Y. Huang, C.Y. Nien, M.H. Tsai and J.M. Yeh, “Aniline pentamer-based electroactive polyimide prepared from oxidation coupling polymerization for electrochemical sensing application,” *Polymer* 2012, 53, 4373-4379.

55. Huang, Tsao-Cheng; Lu-Chen Yeh; Hsiu-Ying Huang; Zheng-Yong Nian; Yi-Chun Yeh; Yi-Chen Chou; Jui-Ming Yeh; Mei-Hui Tsai, “The use of a carbon paste electrode mixed with multiwalled carbon nanotube/electroactive polyimide composites as an electrode for sensing ascorbic acid,” *Polymer Chemistry* 2014, 5, 630-637.

56. Huang, Kuan-Yeh, Yu-Sian Jhoo, Chich-Hisen Lin, Jui-Ming Yeh, Yuan-Hsiang Yu, “Electrochemical Studies for the Content of Amine-Capped Aniline Trimers on the Corrosion Protection Effect of as-prepared Electroactive Polyimide Coatings,” *European Polymer Journal* 2009, 45, 485-493.
57. Weng, Chang-Jian, Ju-Yu Huang, Yu-Sian Juo, Mei-Hui Tsai, Jui-Ming Yeh, “Advanced Anticorrosive Coatings Prepared from Electroactive Polyimide-TiO2 Hybrid Nanocomposite Materials,” 2010, Electrochimica Acta, 55, 8430-8438.

58. Huang, Hsu-Ying, Cheng-Ling Lai, Tsao-Cheng Huang, Tzu-Chun Yeh, Mei-Hui Tsai, Jui-Ming Yeh, Yi-Chen Chou, “Advanced Anticorrosive Materials Prepared from Amine-Capped Aniline-Driven Electroactive Polyimide-Clay Nanocomposite Materials with Synergistic Effects of Redox Catalytic Capability and Gas Barrier Properties,” Polymer 2011, 52, 2391-2400.

59. Huang, Tsao-Cheng, Tzu-Chun Yeh, Hsu-Ying Huang, Yi-Chen Chou, Wei-I Hung, Jui-Ming Yeh, Mei-Hui Tsai, “Electrochemical Studies on aniline-pentamer-Based Electroactive Polyimide Coating: Corrosion Protection and Electrochromic Properties,” Electrochimica Acta 2011, 56, 10151-10158.

60. Chang, Kung-Chin, Hsin-I Lu, Chih-Wei Peng, Mei-Chun Lai, Sheng-Chieh Hsu, Min-Hsiang Hsu, Yuan-Kai Tsai, Chi-Hao Chang, Wei-I Hung, Yen Wei, Jui-Ming Yeh, “Nanocasting Technique to Prepare Lotus-leaf-like Superhydrophobic Electroactive Polyimide as Advanced Anticorrosive Coatings,” ACS Applied Materials & Interfaces 2013, 5, 1460-1467.

61. Chou, Yi-Chen; Lee, Pei-Chi; Hsu, Tzu-Fang; Huang, Wen-Ying; Li, Zi-Han; Chuang, Chun-Yu; Yang, Ta-I; Yeh, Jui-Ming, “Synthesis and anticorrosive properties of electroactive polyimide/SiO2 composites,” Polymer Composites 2014, 35, 617-625.

62. Chang, Kung-Chin and Jui-Ming Yeh, “Advanced Anticorrosive Coatings Prepared from Electroactive Polyimide/graphene Nanocomposites with Synergistic Effects of Redox Catalytic Capability and Gas Barrier Properties,” eXpress Polymer Letters 2014, 8, 243-255.

63. Huang, Tsao-Cheng; Yeh, Lu-Chen; Lai, Guan-Hui; Huang, Bi-Sheng; Yang, Ta-I; Hsu, Sheng-Chieh; Lo, An-Ya; Yeh, Jui-Ming, “Advanced superhydrophobic electroactive fluorinated polyimide and its application in anticorrosion coating,” International Journal of Green Energy 2016, 14, 113-120.

64. Ji, Wei-Fu, Chih-Wei Li, Shih-Kai Yu, Ping-Jung Chen, Hui-Ling Chen, Rui-Da Chen, Ching-Ling Hsu, Jui-Ming Yeh, “Biomimetic electroactive polyimide with rose petal-like surface structure prepared from nanocasting technique for anticorrosive coating application,” eXpress Polymer Letters 2017, 11, 635-644.

65. Weng, Chang-Jian, Yu-Sian Juo, Kuan-Yeh Huang, Jui-Ming Yeh, Yen Wei, Mei-Hui Tsai, “Mechanically and Thermally Enhanced Intrinsically Dopeable Polyimide Membrane with Advanced Gas Separation Capability,” 2011, Macromolecules, 44, 6067-6076.

66. Weng, Chang-Jian, Yu-Sian Juo, Chi-Hao Chang, Chun-Fang Peng, Chi-Wei Peng, Jui-Ming Yeh, Yen Wei, “A Smart Surface Prepared using the Switchable Superhydrophobicity of Neat Electrospun Intrinsically Electroactive Polyimide Fiber Mats,” 2011, Soft Matter, 7, 10313-10318.

67. Chang, Kung-Chin; Huang, Kuan-Yeh; Hsu, Chien-Hua; Ji, Wei-Fu; Lai, Mei-Chun; Hung, Wei-I; Chuang, Tsao-Li; Yeh, Jui-Ming, “Synthesis of ultrahigh-strength electroactive polyimide membranes containing oligoaniline in the main chain by thermal imidization reaction,” European Polymer Journal 2014, 56, 26-32.

68. Chang, Kung-Chin, Hsin-I Lu, Mei-Chun Lai, Min-Hsiang Hsu, Yuan-Kai Tsai, Wei-I Hung, Tsao-Li Chuang, Jui-Ming Yeh, Wei-Ren Liu, Mei-Hui Tsai, “Enhanced Physical Properties of Electroactive Polyimide Nanocomposites by Addition of Graphene Nanosheets,” Polymer International 2014, 63, 1011-1017.

69. Jeon, Hyungjoon, Kangtaek Lee, Effect of gold nanoparticle morphology on thermal properties of polyimide nanocomposite films, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 579, 123651, ISSN 0927-7757.

70. Wei, Y., Yang, C., & Ding, T. A one-step method to synthesize n,n′-bis(4′-aminopipienyl)- 1,4-quinonenediimine and its derivatives. Tetrahedron Letters 1996, 37(6), 731-734.

71. Krishnamurthy, Sneha, Andrea Esterle, Nilesh C Sharma and Shivendra V Sahi. Yucca-derived synthesis of gold nanomaterial and their catalytic potential, Nanoscale Research Letters 2014, 9:627.

72. Sneha, K., Sathishkumar M, Kim S, Yun YS: Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles. Process Biochem 2010, 45:1450–1458.