Molecular Evolution of Respiratory Syncytial Virus Fusion Gene, Canada, 2006–2010

Jesse Papenburg, Julie Carbonneau, Marie-Ève Hamelin, Sandra Isabel, Xavier Bouhy, Najwa Ohoumanne, Pierre Déry, Bosco A. Paes, Jacques Corbeil, Michel G. Bergeron, Gaston De Serres, and Guy Boivin

To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006–2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients.

Human respiratory syncytial virus (RSV) is the most common cause of acute respiratory tract infections (RTIs) and a major cause of hospital admission and death among children <5 years of age worldwide (1). Risk for severe RSV-associated illness is highest among children born prematurely or with chronic medical disorders (2). Palivizumab immunoprophylaxis is the only available measure to prevent severe RSV disease.

The RSV fusion (RSV-F) surface glycoprotein mediates virus fusion to host cells. It is a major antigenic determinant that elicits neutralizing antibodies and cytotoxic T-lymphocyte immunity (3). Palivizumab (MedImmune, Gaithersburg, MD, USA) is a humanized mouse monoclonal antibody that inhibits RSV-F by binding to a defined epitope (residues 262–276) (4,5). Palivizumab immunoprophylaxis is recommended for the prevention of serious lower RTIs caused by RSV in children at high risk (6). RSV strains with mutations in key amino acid residues within the palivizumab binding site are resistant to this antibody (7–9); however, little is known about the prevalence of such mutations in clinical samples. Furthermore, despite its role in RSV pathogenesis, immunity, and prevention strategies, few data on RSV-F molecular evolution are available (10,11) because previous phylogenetic studies have focused on the RSV-G glycoprotein (12,13). Therefore, we monitored evolutionary changes in RSV-F, particularly potential resistance mutations in the palivizumab binding site, among strains from children who did and did not receive palivizumab.

The Study

This cohort study was approved by the Centre Hospitalier Universitaire de Québec Research Ethics Board. Participants were <3 years of age and either received medical attention at an outpatient pediatric clinic or were hospitalized at a pediatric center for acute RTI during 4 winter seasons (2006–2010), in Québec City, Québec, Canada.

Clinical data were prospectively collected at study entry and after 1-month follow-up. For all patients, at the first visit a nasopharyngeal aspirate was collected. The aspirate was frozen at −80°C until subsequent testing by a multiplex PCR/DNA hybridization assay that detects RSV genotype-A (RSV-A), RSV-B, and 22 other respiratory viruses (Infiniti RVP assay; Autogenomics, Carlsbad, CA, USA) (14).

RSV infection was identified in aspirates from 467 (63.6%) of 734 hospitalized children (257 RSV-A, 210 RSV-B) and from 147 (48.2%) of 305 outpatient children (85 RSV-A, 62 RSV-B). During 2006–2010, a total of 724 children received palivizumab in the Québec City region (L. Cliche, pers. comm.). RSV-positive samples from all 12 study participants receiving palivizumab and from 100 not receiving palivizumab underwent RSV-F sequencing.

Additionally, F-gene analysis was performed on 11 RSV-positive clinical samples from palivizumab recipients retrospectively identified by using neonatal clinic registries at McMaster Children’s Hospital (Hamilton, Ontario, Canada) and Montréal Children’s Hospital (Montréal, Québec, Canada) during 2009–2010. Clinical data were collected by chart review.

RNA was extracted directly from nasopharyngeal samples by using a QIAamp Viral RNA Mini Kit (QIAGEN, Mississauga, Ontario, Canada). Random primers (Amersham, Piscataway, NJ, USA) and Superscript II RT Kit (Invitrogen, Carlsbad, CA, USA) were used for reverse transcription. PCR amplification was performed with QuantiFast Probe PCR+ROX Vial Kit (QIAGEN); primers and thermocycling conditions are available from G.B. upon request. RSV-F amplicons were sequenced by using an automated sequencer (Applied Biosystems, Foster City, CA, USA).
Microneutralization assays were performed as described elsewhere, with minor modifications (9). RSV was incubated (for 2 h at 37°C) with serially diluted palivizumab, then cultured in Vero cells (for 5 d). RSV replication and 50% inhibitory concentrations (IC_{50}) were subsequently determined by F protein quantification by using ELISA. The mean ± SD IC_{50} of C0910–1006A, a N276S strain, was 0.33 ± 0.04 μg/mL, similar to that of RSV-A2 wild type (IC_{50} 0.46 ± 0.04 μg/mL) and therefore was considered susceptible. Position-272 variants did not grow in culture and were not tested.

Conclusions

We report the prevalence of resistance-conferring mutations in RSV-F among children receiving or not receiving palivizumab. Although infrequent (8.7% of infections in palivizumab recipients), residue 272 mutations were significantly associated with palivizumab exposure and not observed at all in nonexposed patients.

We identified 2 new clinical specimens with position 272 mutations (K272Q and K272M). We cannot exclude the possibility that additional specimens contained mixed viral populations with minor proportions of position-272 mutants not detectable by conventional sequencing methods. Changes at this position (from lysine to asparagine, glutamine, glutamic acid, methionine, or threonine) have produced palivizumab resistance in vitro (9) and in a cotton rat model (7). As previously reported, 1 (10.0%) of 10 sequences from our 2004–2005 study of palivizumab patients carried a 272 mutation (K272E) (13). The K272E substitution is the only substitution also demonstrated to confer resistance to motavizumab, an enhanced-potency monoclonal antibody developed by affinity maturation of palivizumab (9). We could not perform neutralization assays on position-272 variants because they did not grow in culture. This finding suggests that such changes adversely affect viral replicative capacity (7,9).

Phylogenetic analysis demonstrated that mutations in the palivizumab binding site occur in diverse genetic backgrounds; all 3 strains with substitutions at residue 272 grouped to different clades (Figure). Furthermore, these mutant strains caused mild disease treatable in an outpatient clinic and severe illness requiring hospitalization.

From 3 Canadian communities we detected a lineage harboring an N276S mutation in 44.4% of RSV-A sequences.
Table 2. Characteristics of 23 children in whom clinically significant respiratory syncytial virus respiratory tract infection developed while receiving palivizumab immunoprophylaxis, Canada, 2006–2010*

Location and patient ID	Age, mo/sex†	GA at birth, wk + d	Underlying comorbidities	No. doses PZB‡	Delay, d§	Clinical diagnoses H	Multiplex PCR/DNA results	Mutation	
Québec City, Québec (2006–2010)									
C0607-1023	9/F	32 + 4	Prematurity, LBW	3	21	Bronchiolitis	No	RSV-A; enterovirus type A	K272Q
H0607-064	24/M	38 + 3	Congenital myopathy	3	15	Pneumonia; bronchospasm	Yes	RSV-B	NF
H0607-132	12/M	38 + 5	Pulmonary artery stenosis	5	7	Bronchiolitis	Yes	RSV-A	NF
H0708-199	4/M	30 + 4	Prematurity, VLBW	4	14	Bronchiolitis	Yes	RSV-B	NF
H0809-037	11/F	27 + 5	Prematurity, ELBW	3	14	Bronchiolitis	Yes	RSV-A	NF
C0809-1055	6/F	29 + 0	Prematurity, ELBW, triplet	4	27	Bronchiolitis	No	RSV-A	N276S
C0809-1056	6/M	29 + 0	Prematurity, ELBW, triplet	4	27	Bronchiolitis	No	RSV-A	N276S
C0899-1057	6/M	29 + 0	Prematurity, VLBW	4	27	Bronchiolitis	No	RSV-A	N276S
H0910-004	4/F	39 + 5	Choanal hypoplasia	1	16	Apnea; upper RTI	Yes	RSV-A	N276S
H0910-140	6/M	25 + 5	Prematurity, ELBW	4	29	Bronchiolitis	Yes	RSV-B	NF
H0910-144	13/F	26 + 5	Prematurity, VLBW	4	7	Pneumonia	Yes	RSV-A	K272M, N276S
H0910-150	9/M	28 + 3	Prematurity, VLBW	4	12	Upper RTI; acute otitis media	No	RSV-A; adenovirus type C	N276S
Montréal, Québec (2009–2010)									
MCH0910-001	15/M	40 + 4	Total anomalous pulmonary venous return	3	26	Pneumonia	Yes	RSV¶	N276S
MCH0910-002	6/F	39 + 0	Pulmonary valve stenosis, right aortic arch	2	7	Bronchiolitis	Yes	RSV¶	N276S
MCH0910-003	5/M	39 + 6	Cystic fibrosis	3	24	Bronchiolitis	No	RSV¶	N276S
MCH0910-004	7/M	36 + 2	Prematurity, BPD hypotonia	4	6	Bronchiolitis	Yes	RSV¶	N276S
MCH0910-005	15/M	40 + 4	Neuromuscular disorder, recurrent aspirations	4	13	Upper RTI; acute otitis media	No	RSV¶	N276S
MCH0910-006	2/M	34 + 6	Prematurity, LBW	1	14	Bronchiolitis	Yes	RSV¶	N276S
MCH0910-007	19/F	25 + 0	Prematurity, ELBW, BPD	3	19	Bronchiolitis	Yes	RSV¶	N276S
MCH0910-008	2/F	38 + 1	Neuromuscular disorder, ventricular septal defect	2	12	Bronchiolitis	Yes	RSV¶	N276S
Hamilton, Ontario (2009–2010)									
MAC0910-001	1/F	34 + 5	Prematurity, LBW	2	3	Bronchiolitis	Yes	RSV¶	N276S
MAC0910-002	6/F	34 + 3	Prematurity, LBW, twin	1	25	Bronchiolitis	Yes	RSV¶	N276S
MAC0910-003	6/F	34 + 3	Prematurity, VLBW, IUGR, twin	1	27	Bronchiolitis	Yes	RSV¶	N276S

*Patient identification (ID) nomenclature: hospitalized (H) or clinic (C) prospective study participant, Montréal Children’s Hospital (MCH) or McMaster Children’s Hospital (MAC) patient. GA, gestational age; PZB, palivizumab; multiplex PCR/DNA, hybridization assay; mutation, mutation in respiratory syncytial virus fusion protein PZB binding site (residues 262–276); RSV, respiratory syncytial virus; LBW, low birthweight (1,500–2,500 g); NF, no mutation found in PZB binding site; VLBW, very low birthweight (1,000–1,499 g); ELBW, extremely low birthweight (<1,000 g); RTI, respiratory tract infection; BPD, bronchopulmonary dysplasia; IUGR, intrauterine growth restriction. †Median patient age 6.0 mo (range 3–24 mo). ‡Mean ± SD no. palivizumab doses received that winter: 3.0 ± 1.2 doses. §Median interval between last palivizumab dose and symptom onset: 15.0 d (range 3–27 d). ¶Retrospectively identified participants from Montréal Children’s Hospital or McMaster Children’s Hospital were RSV-positive by direct immunofluorescence assay (Chemicon International, Temecula, CA, USA) and were not tested by the multiplex PCR/DNA hybridization assay (14).
Molecular Evolution of RSV Fusion Gene

from 2008–2009 and 100% from 2009–2010, unrelated to palivizumab exposure. Adams et al. have proposed that N276S led to palivizumab resistance in a clinical specimen (8). However, that sample also comprised a K272E subpopulation. Our microneutralization assay results and unpublished neutralization data using recombinant viruses and clinical isolates (Q. Zhu, pers. comm.) suggest that N276S does not confer resistance.

Although serious RSV RTIs during palivizumab prophylaxis remain uncommon, we observed an 8.7% prevalence of known resistance mutations among 23 medically attended patients receiving palivizumab. These findings underscore the need for continued monitoring of RSV-F evolution.

Acknowledgments

We thank Patricia Fontela for her constructive review of this manuscript; Jane McDonald, Lorraine Piché, and Diane Newby for providing the clinical samples from patients at the Montréal Children’s Hospital; James Mahony and Sylvia Chung for providing the clinical samples from patients at McMaster Children’s Hospital; Susan Steele for performing medical chart reviews at McMaster Children’s Hospital; Yun Kyung Kim and Hoan Jong Lee for sharing previously unpublished RSV-F
sequences from the Seoul National University; Hao Qiang Zheng for sharing previously unpublished RSV-F sequences from the US Centers for Disease Control and Prevention; and Marie-Hélène Cavanagh and Laetitia Aerts for technical assistance.

This study was supported by the Canadian Institutes of Health Research and a research grant from Abbott Laboratories Ltd.

Dr Papenburg is a pediatric infectious disease specialist and medical microbiologist who performed this work during a fellowship at the Centre de Recherche en Infectiologie de l’Université Laval. His clinical practice is now at the Montréal Children’s Hospital, McGill University. His research interests include the clinical epidemiology and molecular virology of childhood respiratory tract infections.

References

1. Nair H, Nokes DJ, Gessner BD, Dherani M, Madhi SA, Singleton RJ, et al. Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis. Lancet. 2010;375:1545–55. doi:10.1016/S0140-6736(10)60206-1
2. Welliver RC. Review of epidemiology and clinical risk factors for severe respiratory syncytial virus (RSV) infection. J Pediatr. 2006;143:S112–7. doi:10.1067/mjpa/2006/12
3. Collins PL, Crowe JE. Respiratory syncytial virus and metapneumovirus. In: Knipe DM, Howley PM, editors. Field’s virology. 5th ed. New York: Lippincott Williams and Wilkins; 2007. p. 1601–46.
4. Crowe JE, Firestone CY, Crim R, Beeler JA, Coelingh KN, Barbas CF, et al. Monoclonal antibody-resistant mutants selected with a respiratory syncytial virus–neutralizing human antibody Fab fragment (Fab 19) define a unique epitope on the fusion (F) glycoprotein. Virology. 1998;252:373–8. doi:10.1006/viro.1998.9462
5. Huang K, Incognito L, Cheng X, Ulbrant ND, Wu H. Respiratory syncytial virus–neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J Virol. 2010;84:8132–40. doi:10.1128/JVI.02699-09
6. Committee on Infectious Diseases. From the American Academy of Pediatrics: policy statements—modified recommendations for use of palivizumab for prevention of respiratory syncytial virus infections. Pediatrics. 2009;124:1694–701. doi:10.1542/peds.2009-2345
7. Zhao X, Chen FP, Megaw AG, Sullender WM. Variable resistance to palivizumab in cotton rats by respiratory syncytial virus mutants. J Infect Dis. 2004;190:1941–6. doi:10.1086/423515
8. Adams O, Bonzel L, Kovacevic A, Mayatepek E, Hoehn T, Vogel M. Palivizumab-resistant human respiratory syncytial virus infection in infancy. Clin Infect Dis. 2010;51:185–8. doi:10.1086/653534
9. Zhu Q, McAuliffe JM, Patel NK, Palmer-Hill FJ, Yang CF, Liang B, et al. Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab. J Infect Dis. 2011;203:674–82. doi:10.1093/infdis/jiq100
10. Kim YK, Choi EH, Lee HJ. Genetic variability of the fusion protein and circulation patterns of genotypes of the respiratory syncytial virus. J Med Virol. 2007;79:820–8. doi:10.1002/jmv.20891
11. Zheng H, Storch GA, Zang C, Peret TC, Park CS, Anderson LJ. Genetic variability in envelope-associated protein genes of closely related group A strains of respiratory syncytial virus. Virus Res. 1999;59:89–99. doi:10.1016/S0168-1702(98)00132-4
12. Gilca R, De Serres G, Tremblay M, Vachon ML, Leblanc E, Bergeron MG, et al. Distribution and clinical impact of human respiratory syncytial virus genotypes in hospitalized children over 2 winter seasons. J Infect Dis. 2006;193:54–8. doi:10.1086/498526
13. Peret TC, Hall CB, Hammond GW, Piedra PA, Storch GA, Sullender WM, et al. Circulation patterns of group A and B human respiratory syncytial virus genotypes in 5 communities in North America. J Infect Dis. 2000;181:1891–6. doi:10.1086/315508
14. Raymond F, Carbonneau J, Boucher N, Robitaille L, Boivert S, Wu WK, et al. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children. J Clin Microbiol. 2009;47:743–50. doi:10.1128/JCM.01297-08
15. Boivin G, Caouette G, Frenette L, Carbonneau J, Ouakki M, De Serres G. Human respiratory syncytial virus and other viral infections in infants receiving palivizumab. J Clin Virol. 2008;42:52–7. doi:10.1016/j.jcv.2007.11.012

Address for correspondence: Guy Boivin, CHUL, Rm RC-709, 2705 Blvd Laurier, Québec City, Québec G1V 4G2, Canada; email: guy.boivin@crchul.ulaval.ca