Review article

Review on the occurrence of the mcr-1 gene causing colistin resistance in cow's milk and dairy products

Ágnes Nagy*, Rita Székelyhidi, Erika Hanczné Lakatos, Viktória Kapcsándi

Department of Food Science, Faculty of Agricultural and Food Sciences, Szechenyi Istvan University, 9200, Mosonmagyaróvár, Lucsony utca 15-17, Hungary

ABSTRACT

Both livestock farmers and the clinic use significant amount of antibiotics worldwide, in many cases the same kind. Antibiotic resistance is not a new phenomenon, however, it is a matter of concern that resistance genes (mcr - Mobilized Colistin Resistance - genes) that render last-resort drugs (Colistin) ineffective, have already evolved. Nowadays, there is a significant consumption of milk and dairy products, which, if not treated properly, can contain bacteria (mainly Gram-negative bacteria). We collected articles and reviews in which Gram-negative bacteria carrying the mcr-1 gene have been detected in milk, dairy products, or cattle. Reports have shown that although the incidence is still low, unfortunately the gene has been detected in some dairy products on almost every continent. In the interest of our health, the use of colistin in livestock farming must be banned as soon as possible, and new treatments should be applied so that we can continue to have a chance in fighting multidrug-resistant bacteria in human medicine.

1. Introduction

1.1. Milk

Cow's milk is a nutritious liquid and known to be consumed by humankind for centuries. Its consumption had probably started with the domestication of the cow. Recent statistics show that milk consumption in the world is constantly increasing. The largest consumer of milk is India (77.7M tons), followed by the EU (33.4 M tons), and the next is the US (Shahbandeh 2020a). At least 3% of the US population consumes raw milk (Liu et al., 2020a). The major milk producers are also these three countries, with the EU leading the list (155M tons), followed by the US (99M tons) (Shahbandeh 2020b).

Singh et al. (2015) have shown that milk consumption increases with age and those in better social status consume more milk than their poorer counterparts. In addition, women consume slightly more milk than men. Because milk consumption is significant, the quality of the milk content is important. Mastitis is one of the most important and costly worldwide infectious diseases in the dairy industry. Mastitis parenchymatosa can be caused by several strains of bacteria, however, inflammations caused by Escherichia coli may be the most severe (Hamann 2010) Intramammary infections often recur and are easily transmitted (Döpfner et al. 1999, 2000). Plenty of antibiotics are used to treat and prevent infection (Timofte et al., 2014).

1.2. Colistin

Colistin (Yang et al., 2020; Li et al., 2005) has been used in the clinic since 1959, however, due to its nephrotoxicity and neurotoxicity, it has been replaced by other antibiotics since the 1970s. However, in the last 10 years, multidrug-resistant (MDR) pathogens have reappeared, which was traced back to clinical use (Silva et al., 2013).

Colistin is currently used as a last resort against MDR bacteria in clinical practice. It has been widely used in agricultural production and veterinary medicine for decades to treat infections caused by MDR bacteria in livestock, primarily for the treatment of intestinal diseases. It has been shown that a significant proportion of colistin and other polymyxins, which are much more widely used in animal husbandry, are transferred to humans through food. Intestinal colonizers readily exchange genetic material with any member of the microbiota (whether pathogenic or symbiont), which significantly increases the risk of infection (Stecher et al., 2012). A significant problem is that antibiotics are used not only to treat disease (Alcantara et al., 2020), but also as a prophylaxis (Catry et al., 2015) or even as a growth promoter (Vidovic...
and Vidovic, 2020). The review by Kempf et al. (2016) also describes that colistin is used in farm animals on several continents, particularly for the treatment of gastrointestinal disorders, and also as a growth promoter.

Saini et al. (2012) measured the frequency of colistin use in dairy farms in Canada, even though colistin is not officially licensed in veterinary medicine (Webb et al., 2017). The study describes that colistin is used very often and that antibiotic use increases in proportion to the amount of milk produced. In South Korea, from 2005 to 2015, on average 6–16 tons of colistin was given annually to food-producing animals (Belayneh et al., 2018). In 2015, approximately 12,000 tons of colistin was used in food production, and the use of this antibiotic is estimated to increase to 16,500 tons by 2021 (Liu et al., 2016).

The inevitable consequence of the use of antibiotics is the development of bacterial resistance. The extent of this varies from bacteria to species and antibiotics, which is a rather complex process. Wang et al. (2017) tested 125 samples of livestock, poultry meat, milk and aquatic products in 2016, and showed that 40% of these samples had some antibiotic content.

In the case of Gram-negative bacteria, the range of antibiotics that can be administered has been narrowed significantly. There is a constant need for new antibiotics, but this situation cannot be sustained indefinitely and it is also costly. A more advisable approach would be to prevent the spread of resistance. It must be recognized that this is a global and geographically inseparable phenomenon, that certain MDR bacteria cause little or no medical problems and, last but not least, that bacterial resistance is a growing economic burden (Bacanli and Basaran, 2019). Perhaps the Swann report (Swann et al., 1969), as early as in 1969, was the first to seriously address the potential consequences of the overuse of antibiotics and drew attention to limiting them to prescription and to banning certain types. Following the publication of the report, Swann appeared before the English Parliament and sparked a serious debate between food manufacturers and health professionals. The spread of antibiotic resistance and resistance genes will only increase in the coming years (Zhao et al., 2020).

The use of colistin poses a serious risk, because resistance genes can be transferred from animals to humans (McEachran et al., 2015), and it is predicted that antimicrobial resistance will cause the death of 10 million people by 2050 (Luo et al., 2020).

1.3. mcr-1 gene

Antimicrobial resistance (AMR) occurs when microorganisms change when exposed to an antimicrobial activity for an extended period of time or at very low concentrations. One of the leading health problems worldwide is AMR in human and veterinary medicine (Pardon et al., 2012). These microorganisms are sometimes called “superbugs”. As a result of the change, the drug used against them is no longer effective. This problem may be exacerbated if microorganisms become resistant to multiple antibiotics (like MDR). More and more attention is being paid to AMR transfer from animals to humans, especially when related to food production (Liebana et al., 2013; Madec and Haenni, 2018; Wegener et al., 2012). These microorganisms are sometimes called "superbugs". As a result of the change, the drug used against them is no longer effective. This problem may be exacerbated if microorganisms become resistant to multiple antibiotics (like MDR). More and more attention is being paid to AMR transfer from animals to humans, especially when related to food production (Liebana et al., 2013; Madec and Haenni, 2018; Wegener et al., 2012).

The mcr-1 gene that causes resistance was discovered at the end of 2015, so research on this gene is quite new (Liu et al., 2016). It protects bacteria from colistin (also known as polymyxin E), which is a polypeptide antimicrobial agent. This gene encodes an enzyme called phosphatidylethanolamine transferase which transfers the phosphatidylethanolamine residue to the lipid A of the gram-negative bacterial cell membrane, to which colistin would bind (Guachalla et al., 2018). El-Sayed Ahmed et al. (2020) summarizes the characteristics of the mechanisms of colistin resistance. The primary mechanism of resistance to polymyxins is through modification of the bacterial outer membrane, which is essentially a chromosomally encoded resistance. In addition, it can develop through heteroresistance, where subpopulations of susceptible bacteria survive antibiotic levels above the minimum inhibitory concentrations (MIC). Because polymyxins have amphipathic nature, the efflux pump system may involved in the development of resistance. Colistin resistance follows primarily after exposure to colistin, but may develop without it. There are strains that have intrinsic colistin resistance, and in many cases the mechanism for the development of resistance is still unknown.

Shortly after the discovery of the mcr-1 gene, it has been detected in almost all food-producing animal species in 57 countries, on 5 continents (Luo et al., 2020) (Sokv and Monnet, 2016).

Most mcr genes were found in members of the family Enterobacteriaceae, and the prevalence was highest in E.coli (Gilbediwi et al., 2019). However, the genes are also being detected in more and more species such as Salmonella, Shigella sonnei, Klebsiella pneumoniae, Enterobacter aerogenes, and Enterobacter cloacae. As early as in 2012 in a Nature article, Gilbert (2012) drew attention to the importance of antibiotic resistance. mcr-1 was shown to alter the susceptibility of bacteria to unrelated antibiotics, which promotes the development of MDR (McGann et al., 2016; Sonnevend et al., 2016; Yang et al., 2017).

To date, nine mcr-family genes have been described (Hadjadj et al., 2019; Simoni et al., 2018; Xavier et al., 2016; Fukuda et al., 2018), Ling et al. (2020) summarized the geographical distribution of mcr genes. mcr-1 and mcr-9 genes have been detected on all continents. mcr-4, mcr-6, mcr-7, and mcr-8 genes have only been found in a few countries, but have not yet been studied in many countries. Based on a phylogenetic study, mcr-1 and mcr-3 have the largest number of variants. And the most mcr-positive isolates are restricted to various Enterobacteriaceae species. Furthermore, 11 variants of the mcr-1 gene have been found so far (AbuOun et al., 2017; Sun et al., 2018). Because the gene is located on a plasmid, it easily spreads to other bacteria (Hmede and Kassem 2019), thereby increasing the number of resistant strains, creating even MDR species. Phylogenetic analysis of mcr-1 genes isolated from E. coli was performed by Li et al. (2018). This study found that the strains acquired the gene independently, so clonal transmission is not the only pathway for the spread of the resistance gene. The gene has been detected in a large number of environmental samples (Ananyuw et al., 2020) (hospital source, contact surfaces at public transportation routes, water – lake, river, sea, public beach; aquaculture, soil, plant, sewage, wastewater, wildlife – birds, mammals, reptiles, fish and flies), manure ecosystem (pig slurry, farming soil), food (Ghafura et al., 2019) (imported seafood) and the human body. Kassem et al. (2019) reported that the mcr-1 gene was present in Lebanese irrigation waters, and most of the isolates were MDR. This observation is worrying because it can affect a wide variety of environments, including the Mediterranean basin.

2. Methods

2.1. Data collection

The research was performed using the PRISMA-ScR Checklist. Systematic searches were performed in PubMed, Scopus, ScienceDirect, Web of Science, and Researchgate databases in English without limiting the year of publication. We selected articles, book chapters, reviews, reports, short communication and letters to the editor that had published or accepted status. Some publications were selected from the references of the articles found. The mainline of search was colistin-resistant E. coli strains (with mcr-1 gene) found specifically in cow’s milk and dairy products, such as yogurt, cottage cheese, cheese, and butter. However, it was apparent from the number of articles that this area is under-researched, so we extended the study to other samples, such as manure, faeces, meat, intestinal tract, and environment. The following keywords were used in the search: „colistin resistance”, „colistin and milk”, „mcr-1 and milk”, „ESBL (Extended Spectrum Beta-Lactamase) and milk”, „cheese and colistin”, „cheese and mcr-1”, „yogurt and mcr-1”, „yogurt and colistin”, „E.coli and colistin”.
3. Results

Since their discovery in 2015, several studies focused on the mcr genes, their occurrence and modification. A number of reviews were written on the subject, for example Gharairbeh and Shatnawi (2019) published a great article showing the widespread use of colistin in the world. This review also reports that some research groups are considering new antibiotics or an alternative solution to replace colistin. mcr has been found several times in human samples, posing a potential hazard to human health. Hu et al. (2017) examined fecal samples from children and found that five samples were positive for the mcr-1 gene. The children were 2–27 months old and most of them had not yet received a polymyxin antibiotic; two of them were still breastfeeding and have not yet been started on solid foods. It was also found that mcr-1-containing plasmids and other resistance determinants could possibly be co-transferred to other species, which helps the spread of these genes between species. In the Castanheira et al. (2016) study, 390 samples were collected from 183 hospitals, and 19 of these showed colistin resistance (Belgium (1 isolate), Brazil (1 isolate), Germany (5 isolates), Hong Kong (1 isolate), Italy (4 isolates), Malaysia (1 isolate), Poland (1 isolate), Russia (1 isolate), Spain (3 isolates) and the United States (1 isolate)). Al-Tawfiq et al. (2017) reviewed articles from the last 10 years, and found that animal (mainly consumed as food) and human samples were positive for the mcr-1 gene. Colistin-resistant E. coli isolates of human origin were reported from seven countries in Southeast Asia (Cambodia, Indonesia, Laos, Malaysia, Singapore, Thailand, and Vietnam) (Malchione et al., 2019).

The occurrence of the mcr-1 gene detected in human samples on different continents is shown in Table 1 (Luo et al., 2020).

### 3.1. Occurrence of E.coli in samples

Oh et al. (2020) investigated the mcr-1 gene in approximately 1,300 fresh produce (leaves, stems, roots and fruits) in South Korea. The gene was detected in E. coli isolates from one lettuce. The same E. coli ST10 strain has been detected in several human and animal samples (Manges et al., 2015), which suggests that the antibiotic used in veterinary medicine is excreted and transferred into manure, which is then absorbed by the plants.

Since the mcr-1 gene is, in most cases, carried by E. coli, it is also very important to know how often and in what diseases or in which samples this bacterium occurs. One study (Metzger et al., 2018) examined primiparous Holstein cows with no history of mastitis. The milk sample was taken directly from the gland cistern of 20 cows, as well as looking at the skin of teats and determining the microbiota, where a large number of Gram-negative bacteria were found. All of this may be a cause for concern, as the mcr-1 gene occurs mainly in Gram-negative bacteria. Odenthal et al. (2016) in Germany took 866 bulk tank milk samples, of which ESBL-producing strains were found in 82 samples. This might pose a problem, because ESBL-producing strains may also carry genes encoding resistance to other antibiotics, and therefore ESBL-producing strains are characterized by MDR.

Ntuli et al. (2016) have shown that E.coli strains (and other Enterobacteriaceae) occur not only in raw milk, but also in pasteurized milk, and several of these strains have been shown to be resistant. Sonnier et al. (2018) examined 488 bulk tank milk samples in the US, 30.5% of which was positive for the E. coli virulence gene. Dell Oro et al. (2019) characterized a total of 149 E. coli isolates from bulk tank milk and raw milk filters, of which 35.6% were pathogenic. They were tested 16 different types of antibiotics and received high MIC in some antibiotic, confirming the potential risk these raw bacteria pose for the spread of antimicrobial resistance in milk.

Unfortunately, colistin resistance has not been looked at by the researchers.

### 3.2. Occurrence of colistin resistance in samples

Monitoring colistin use is a difficult task in several ways. Colistin is not allowed to be used on cattle farms in China, therefore little or no publications were written on the subject (Wang et al., 2020b).

In some countries, such as the U.S.A., Finland, Norway and Iceland, colistin is not permitted for use in food-producing animals as well as polymyxins (European Medicines Agency 2016). Although prohibited in some countries for use in certain animal species, it is illegally available, so for assessing antibiotic use, we need to depend on the honesty of the farm manager. Due to these circumstances, mapping the use of colistin is a rather difficult task. In a study by Ojo et al. (2016), the high levels of antibiotic use among livestock farms in some areas of Nigeria is described. Of the 454 livestock producers, 89 used colistin. Antibiotic resistance in farm animals has been studied in several articles, which show that pigs and poultry have a much higher incidence of colistin resistance genes than cattle (Garch et al., 2018; García et al., 2018). Since there are several farms where not just one type of animal is kept, or there are meat processing plants, where multiple types of animals are slaughtered, the bacterium can easily be transferred from one animal to another, posing a significant problem.

Fu et al. (2018) also detected colistin A and colistin B in 29.63% of feed samples in different provinces of China. The E. coli O157: H7 strain, that can lead to fatal disease in people, is very common in beef cattle as was shown by Beauvais et al. (2018). In this research, 2759 fecal samples were examined between 2014 and 2015, and 21.2% of the samples gave a positive result. It would have been worthwhile to look at colistin resistance because it is common in this strain. Magwira et al. (2005) investigated the O157: H7 strain in 400 meat samples, and the E.coli from 26% of the samples were resistant to colistin. In another study, the researchers collected milk or fecal samples from cattle after mastitis or enteric infection between 2004 and 2010 in France and Germany. E.coli was identified in 150 samples, of which 3 showed MDR, and 3 showed colistin resistance (Brennan et al., 2016).

Irgang et al. (2016) examined samples coming from cattle and other species in German livestock and food. These samples were obtained between 2010 and 2015 from the German monitoring program on antimicrobial resistance in zoonotic agents. From 909 beef cattle faeces samples, 6 were positive for colistin resistance, 1 resistant strain was found in 196 bulk tank milk samples, and 1 resistant strain was detected in 76 cheese samples.

Tark et al. (2017) in South Korea studied milk samples from 374 cows suffering from mastitis, which samples were collected animal agency and veterinary service agencies between 2012 and 2015. Colistin resistance was detected in 0.5% of isolated E.coli strains. The presence of the mcr-1 gene was not observed in the samples.

### 3.3. Occurrence of mcr-1 gene

#### 3.3.1. In animal samples

Due to the large amount of antibiotic use in farm animals, which is sometimes unnecessary, the antibiotic content of the meat sold is also high. All this contributes to the development of antibiotic resistance. Many researchers have studied animals or their meat for the presence of colistin-resistant strains, which formed under the influence of antibiotics. Filioussis et al. (2019) studied 400 cows suffering from mastitis on 23
Greek farms. 89 samples were positive for colistin resistance from half of the farms and about 6 samples showed multidrug resistance and contained the \textit{mcr-1} gene.

The use of animal manure in agriculture is quite widespread, so special attention should be paid to its quality. Due to the frequent use of antibiotics, the incidence of antibiotic-resistant strains in manure is high. 51 animal manure samples were examined by Gao et al. (2019), where the \textit{mcr-1} gene was detectable in 31% of the samples. However, all \textit{mcr-1} resistant strains were successfully eliminated by thermophilic composting. Zhang et al. (2019) also studied fecal animal samples in China, but these farms rarely use colistin. From 156 cow samples, 26.92% showed colistin resistance. The \textit{mcr-1} gene was detected in 71.43%, almost all from milking cows, while both \textit{mcr-1} and \textit{mcr-2} genes were detectable in 3 cows. Zheng et al. (2019) examined faecal samples of 651 dairy cows in China in 2016, of which 290 contained ESBL-producing strains, and 3 positive for the \textit{mcr-1} gene. He et al. (2017) also detected the \textit{mcr-1} gene in one sample from 203 cattle faecal samples. Ngbede et al. (2020) examined 1119 samples from humans, camels, cattle, dogs, pigs and poultry. 583 bacterial strains were identified in these samples, of which 17.0% (99/583) were colistin-resistant. The \textit{mcr-1} gene was also detectable in 1 of the 36 cattle samples. Haenni et al. (2016) collected isolates from the faeces of calves suffering from diarrhea between 2005 and 2014 on French farms and detected the \textit{mcr-1} gene.

In Brazil, \textit{mcr-1} and other genes responsible for colistin resistance were isolated from healthy bovine faecal samples. This is also a major concern, because Brazil is one of the largest exporters of beef (Palmeira et al., 2018).

Between 2006 and 2014, colon or caecal isolates were collected from several European countries by Garch et al. (2018) from all major food-producing species (beef cattle, slaughter pigs and broiler chickens). Fortunately, none of the cattle samples were found to be \textit{mcr-1} positive.

In South-Korea, Belayneh et al. (2018) examined 636 healthy animal faecal samples between 2014 and 2017, of which 341 were derived from cattle. A colistin-resistant strain was not detected in these samples either.

### 3.3.2. In food

In the U.S., Wang et al. (2020\textsuperscript{a}) examined 5,169 samples, of which 1,057 were beef and 1,369 were minced beef (the other samples were chicken, catfish, pork, and poultry). Strains with the \textit{mcr-1} gene were not detected. However, the \textit{mcr-1} gene has been detected in beef in Canada (Mulvey et al., 2016), and in Gram-negative bacteria isolated from ready-to-eat food in Bolivia (Sennai et al., 2017). A review by Oliveira et al. (2019) summarized results from clinical, animal, food, and environmental samples examined in Latin America. Of the 18705 isolates, 550 contained some type of \textit{mcr} gene, 95.8% of which was \textit{E. coli} (some from cattle). Latin America uses large amounts of colistin, which is a huge problem in terms of Brazil’s significant meat exports (Silva et al., 2013).

Chen et al. (2017) collected 1371 food samples in China, these included meat products (chicken, duck, pork, beef and mutton), seafood (shrimp, fish and shell fish), dairy products (yogurt, milk cheese and butter), fresh produce (lettuce, cabbage, broccoli, cauliflower etc.) and other food products (tofu etc.), and 36% were positive for the \textit{mcr-1} gene (some from beef).

As EFSA reports show, colistin resistance was also detected in 0.9% of calves under one year of age and in bovine meat (EFSA 2015; 2017).

Table 2 summarizes the prevalence of the \textit{mcr-1} gene detected in cattle and beef by country.

From the table, we can see that the \textit{mcr-1} gene is found in almost every continent in some of the bovine samples. In the last 3 items of the

### Table 2. Occurrence of the \textit{mcr-1} gene in bovine samples.

| Country    | Sample                              | Number of samples positive for \textit{mcr-1} | Ratio to total samples | Reference               |
|------------|-------------------------------------|-----------------------------------------------|------------------------|-------------------------|
| Algeria    | bovine manure                       | 1                                             | 12.5%                  | Touati et al., (2020)   |
| Belgium    | cattle                              | 1                                             | 0.03%                  | Garci et al., (2017)    |
| Belgium    | calves                              | 6                                             | 11.5%                  | Xavier et al., (2016), Kumar et al., (2016) |
| Canada     | lean ground beef                    | 2                                             | 0.125%                 | Mulvey et al., (2016)   |
| China      | cattle manure                       | 2                                             | 9.52%                  | Gao et al., (2019)      |
| China      | beef                                | 1                                             | 3.03%                  | Sun et al., (2021)      |
| China      | beef                                | 10                                            | 28.5%                  | Chen et al., (2017)     |
| China      | faecal swabs (cattle)               | 42                                            | 27%                    | Zhang et al., (2019)    |
| Egypt      | beef (raw, ready to eat)            | 4                                             | 3.8%                   | Sabala et al., (2020)   |
| Egypt      | beef sausage                        | 1                                             | 0.7%                   | Sadek et al., (2020)    |
| France     | calves                              | 4                                             | 0.4%                   | Gay et al., (2019)      |
| France     | cattle                              | 9                                             | 0.28%                  | Garci et al., (2017)    |
| France     | faecal (cattle)                     | 1                                             | 0.66%                  | Brennan et al., (2016)  |
| Germany    | veal, calves, faeces                | 22                                            | 2.45%                  | Irrgang et al., (2016)  |
| Germany    | calves, colon content               | 4                                             | 0.83%                  | Irrgang et al., (2016)  |
| Germany    | veal                                | 1                                             | 1.42%                  | Irrgang et al., (2016)  |
| Italy      | cattle                              | 2                                             | 0.09%                  | Garci et al., (2017)    |
| Japan      | cattle (mastitis)                   | 4                                             | 0.042%                 | Sunuki et al., (2016)   |
| Netherland | veal calves                         | 2                                             | 15.3%                  | Veldman et al., (2016)  |
| Nigeria    | cattle, rectal swab                 | 1                                             | 2.77%                  | Ngbede et al., (2020)   |
| Spain      | healthy cattle younger than 1 year  | 6                                             | 0.94%                  | Hernandez et al., (2017) |
| Spain      | cattle faeces                       | 5                                             | 3.28%                  | Hernandez et al., (2017) |
| Spain      | with waste milk fed to calves (faecal sample) | 31                                           | 8%                     | Maynou et al., (2017)   |
| Taiwan     | beef meat                           | 1                                             | 1.12%                  | Kuo et al., (2016)      |
| Tunisia    | bovine faeces                       | 3                                             | 2.5%                   | Hassan et al., (2019)   |
| Portugal   | meat and animal sample, bovine      | 0/364                                         | 0%                     | Clemente et al., (2019) |
| South America | cattle                         | 0/158                                         | 0%                     | Fernandes et al., (2016) |
| Europe     | cattle                              | 0/3101                                        | 0%                     | Garci et al., (2018)    |
Table 3. Colistin resistance can be detected in dairy samples from cattle by country.

| Country     | Sample                   | Number of strains with mcr-1 | Ratio to total samples | Reference                  |
|-------------|--------------------------|-----------------------------|------------------------|----------------------------|
| China       | mastitic milk            | 5                           | 1%                     | Liu et al. (2020a)         |
| China       | bovine mastitic milk     | 5                           | 0.245%                 | Liu et al., (2020b)        |
| Egypt       | ready to eat karish cheese| 4                           | 2%                     | Hammad et al., (2019)      |
| Greece      | single-quarter mastitic milk samples | 6 | 1.5%                  | Filioussis (2019)         |
| South Korea | bovine mastitic milk     | 2                           | 0.5%                   | Singh et al., (2015)       |
| Tunisia     | bovine raw milk          | 1                           | 1%                     | Hassen et al., (2019)      |
| France      | milk, cheese             | 107, just colistin resistance| 62%                    | Coton et al., (2012)       |
| India       | bovine milk              | 0/182                       | 0%, but 6.5% ESBL-positive | Batabyal et al., (2018)    |
| Nigeria     | “nono” fermented cow milk | 16 just colistin resistant   | 32%                    | Shehu and Adesiyun (1990)  |

The mcr-1 gene was not detected in milk and dairy products in a large-scale study in the US (Wang et al., 2020a). However, it has not been studied in many countries to this date, so we have little information on the presence of mcr-1 genes in milk and dairy products worldwide, even though consumption of milk and dairy products is significant. Since colistin resistance has already been shown in probiotics (Li et al., 2020), which are favorably used in the manufacture of dairy products, it would certainly be worthwhile to carry out a comprehensive study regarding mcr-1 in milk.

4. Conclusions

AMR is a growing problem in the world. Use of "last-resort" antibiotics is especially risky if resistance develops against them. Because the use of colistin is rarely allowed in dairy farms, the presence of mcr genes in milk has been studied in quite a few countries. However research is important, as resistance genes can also be transmitted to cattle by horizontal gene transfer and from the environment.

To get an accurate picture of the prevalence of AMR, it would be advisable to monitor milks, especially in countries where antibiotic use is significant or where such measurements have not yet been made. This would give an accurate picture of the presence of mcr genes worldwide.

In order for last-resort antibiotics to remain effective in human medicine, their use in animal husbandry should be discontinued. Instead, the simultaneous use of multiple antibiotics at higher doses in diseased animals may be effective. In addition, efforts should be made to strengthen the immune system of the animals by adding probiotics to the feed.

Antibiotics getting wastewater treatment plants cannot be properly removed, so they contribute to the development of resistant microbes.
when they enter the environment. Wastewater treatment plants need to be upgraded to reduce the spread of antibiotic resistance.

The use of these antibiotics must be limited in order to ensure that they remain effective in hospital and veterinary treatments, especially in non-targeted applications.

**Declarations**

**Author contribution statement**

All authors listed have significantly contributed to the development and the writing of this article.

**Funding statement**

This work was supported by the European Union and co-financed by the European Social Fund (EFOP-3.6.1-16-2016-00024).

**Data availability statement**

Data included in article supplementary material / referenced in article.

**Declaration of interests statement**

The authors declare no conflict of interest.

**Additional information**

No additional information is available for this paper.

**References**

AbuOun, M., Stubberfield, E.J., Duggett, N.A., Kirchner, M., Dormer, L., Nunez-Garcia, J., Randall, L.P., Lemma, F., Crook, D.W., Teale, C., Smith, R.P., Anjum, M.F., 2017. mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 72 (10), 2745–2749.

Alcantara, I.R., Ferrari, R.G., Panzenhagen, P.H.N., Mano, S.B., Conte-Junior, C.A., 2020. Antimicrobial resistance genes in bacteria from animal-based foods. Adv. Appl. Microbiol. 112, 143–183.

Al-Tawfiq, J.A., Laxminarayan, R., Mendelson, M., 2017. How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int. J. Infect. Dis. 54, 77–84.

Ananyewu, M.U., Jaja, I.F., Nwobi, O.C., 2020. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: a review. Int. J. Environ. Res. Publ. Health 17 (3), 1028.

Belayneh, K.M., Shina, S.W., Park, K.Y., Jang, J.Y., Won, H.G., Yoon, I.J., Yoo, H.S., Beauvais, W., Gart, E.V., Bean, M., Blanco, A., Wilsey, J., McWhinney, K., Bryan, L., Anyanwu, M.U., Jaja, I.F., Nwobi, O.C., 2019. Importance of antibiotic residues in animal food. Food Control. 108, 222–229.

Bercovier, D., Barkema, H.W., Lam, T.J., Nederbragt, H., Oliver, S.P., Gaatra, W., 2020. Adhesion and invasion of Escherichia coli from single and recurrent clinical cases of bovine mastitis in vitro. Vet. Microbiol. 74 (4), 331–343.

Blenke, M., Delbes-Paux, F., Irlinger, F., Desmarres, N., Le Fleche, A., Stahl, V., Montel, M.C., Coton, E., 2012. Diversity and assessment of potential risk factors of Gram-negative isolates associated with French cheeses. Food Microbiol. 29 (1), 48–98.

Dell'Oro, F., Guzmara, C., Loiacono, M., Gugliotta, T., Albonico, F., Mortarrino, M., Zeconzi, A., 2019. Evaluation of virulence factors profiles and antimicrobials resistance of Escherichia coli isolated from bulk tank milk and raw milk filters. Res. Vet. Sci. 125, 77–85.

Döpfer, D., Barkema, H.W., Almeida, R.A., Lam, T.J., Nederbragt, H., Oliver, S.P., Gaatra, W., 2020. Emergence of multidrug-resistant Escherichia coli in bovine dairy cows. J. Dairy Sci. 81 (2), 80–85.

EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2015. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food. EFSA J. 13 (2), 178, 4036.

EFSA, 2017. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 15 (2), 212.

Elbedwi, M., Li, Yan, Paudyal, Narayan, Pan, Hang, Xiaoliang, Xin, Shaohua, Andrea Rask-Kristensen, Feng, Youjun, Fang, Ming, Wei, Lin, Haining, Rankin, Shelley C., Yue, V.Y., 2019. Global burden of colistin-resistant bacteria: mobilized colistin resistance genes study (1980–2018). Microorganisms 7, 461.

El-Shayed Ahmed, M.A.E.G., Zhong, L.-L., Shen, C., Yang, Y., Dey, Y., Tian, G.-B., 2020. Colistin and its role in the Era of antibiotic resistance: an extended review. Int. J. Antimicrob. Agents 50, 105809.

EFSA, 2017. Emerging antimicrobials and usages in livestock products: a review. Emerg. Microb. Infect. 9 (1), 868–885.

European Medicines Agency, 2016. Updated advice on the use of colistin products in animals within the European Union: development of resistance and possible impact on human and animal health. EMA/CVM/CHMP/213573/2016. https://tinyurl.com/3ye3p9y.

Fernandes, M.R., Mora, Q., Sartori, L., Silva, K.C., Cunha, M.P., Espósito, F., Lopes, R., Ootutumi, L.K., Gonçalves, D.D., Dropa, M., Mattel, M.H., Monte, D, Fin, Landsgraf, M., Francisco, G.R., Bueno, M., de Oliveira Garcia, D., Knoln, T., Moreno, A.M., Lincopan, N., 2016. Silent dissemination of colistin-resistant Escherichia coli in South America could contribute to the global spread of the mcr-1 gene. Euro Surveill. 21, 30214.

Filousis, G., Kachrimanidou, M., Christodoulopoulos, G., Kyriini, M., Hadjichristodoulou, M., Adamopoulou, M., Trivara, A., Kristas, S.K., Grinberg, A., 2019. Short communication: bovine mastitis caused by a multidrug-resistant, mcr-1-positive (colistin-resistant), extended-spectrum beta-lactamase-producing Escherichia coli clone on a Greek dairy farm. J. Dairy Sci. 103, 852–857.

Fu, Q., Li, X., Zheng, K., Ke, Y., Wang, Y., Wang, L., Yu, F., Xia, X., 2018. Determination of colistin in animal tissues, egg, milk, and feed by ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 248, 166–172.

Fukuda, A., Sato, T., Shingawat, S., Asai, T., Yokota, S., Usui, M., Tamura, Y., 2018. High prevalence of mcr-1, mcr-3 and mcr-5 in Escherichia coli derived from diseased pigs in Japan. J. Antimicrob. Agents 51 (1), 163–164.

Gao, Y., Lu, C., Shen, D., Liu, J., Ma, Z., Yang, B., Ling, W., Waig, M.G., 2019. Elimination of the risks of colistin resistance gene (mcr-1) in livestock manure during composting. Environ. Int. 126, 61–68.

Garch, F.E., de Jonge, A., Bertrand, X., Hoquot, D., Sauget, M., 2018. mcr-1 detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet. Microbiol. 213, 42–46.

Garch, F.E., Sauget, M., Hoquot, D., LeChaudee, D., Woehrle, F., Bertrand, X., 2017. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin. Microbiol. Infect. 23, 1–4.

García, V., García-Menino, I., Mora, A., Flament-Simon, S-C., Díaz-Jiménez, D., Blanco, J.E., Alonso, M.P., Blanco, J., 2018. Co-occurrence of mcr-1, mcr-4 and mcr-5 genes in multidrug-resistant ST10 Enterotriogeic and Shiga toxin-producing Escherichia coli in Spain (2006-2017). Int. J. Antimicrob. Agents 52, 104–108.

Gay, E., Bour, M., Cazeau, G., Jarrière, N., Martinet, C., Madec, J.-Y., Haeni, Marisa, 2019. Antimicrobial usages and antimicrobial resistances in commensal Escherichia coli from veal calves in France: evolution during the fattening process. Front. Microbiol. 10, 792.

Ghafari, A., Shankar, S., Soundari, P.G., Venkatesan, M., Mani, D., Thirunaranayanan, M.A., Veeraraghavan, B., 2019. Detection of chromosomal and plasmid-mediated mechanisms of colistin resistance in Escherichia coli isolated from Kollam-bred Nepali sheepmeat from Indian food samples. J. Global Antimicrob. Resist. 16, 48–52.

Gharibhei, M.H., Shattawi, S.Q., 2019. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet. World 12 (1), 1735–1746.

Gilbert, N., 2012. Rules tighten on use of antibiotics on farms: clampdown aims to stop the spread of drug-resistant microbes. Nature 481, 125, 7380.
Guachalla, L.M., Ramoni, K., Varga, C., Matti, M., Ghazawi, A., Pal, T., Nagy, E., Sonnevend, A., Nagy, G., Szejtticz, V., 2018. Retained activity of an O25b2-specific monoclonal antibody in a producing Escherichia coli strain. Antimicrob. Agents Chemother. 62 (7). AAC00486-16.

Haidjai, L., Baron, S.A., Olaitan, A.O., Morand, S., Rolain, J.-M., 2019. Co-occurrence of vancomycin-resistant enterococci and methicillin-resistant Staphylococcus aureus in milk. Int. J. Food Microbiol. 304, 47–54.

Hanninen, M., Poirel, L., Kieffer, N., Château, P., Saras, E., M اللغة العربية ترجمة المقال إلى العربية: 

هانني، م.، بويرل، ل.، كيهف، ن.، شاطو، ن.، صاراب، إ.، مالان، س.، روين، ج.م.، 2019. تواجد المقاومة ضد السيكلين في البكتيريا مقاومة للسيكلين. العناصر المضادة للبكتيريا. الأوروبية 68 (1). DOI: 41–42.

He, T., Wei, R., Zhang, L., Sun, L., Pang, M., Wang, R., Yang, Y., 2017. Characterization of NDM-5-positive extensively resistant Escherichia coli isolates from dairy cows. Vet. Microbiol. 207, 153–158.

Hernández, M., Iglesias, M.R., Rodríguez-Lázaro, D., Gallardo, A., Quijada, N.M., Miguela-Villoldo, P., Campos, M.J., Piriz, S., López-Orozco, G., de Frutos, C., Saez, J.L., Ugarte-Ruiz, M., Domínguez, L., Quesada, A., 2017. Co-occurrence of colistin resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from livestock in Spain. J. Antimicrob. Chemother. 72, 2129–2136.

Hemed, N., Kassem, L., 2011. First report of the plasmid-borne colistin resistance gene (mcr-1) in Proteus mirabilis isolated from a toddler in non-clinical settings. ID Cases 5 (5), 25–27.

Hew, K.Y., Wan, Y.L., Sun, Q.I., Huang, Z.X., Wang, H.Y., Zhang, R., Chen, G.X., 2017. Colistin resistance gene mcr-1 in gut microbiota of children. Int. J. Antimicrob. Agents 50, 593–597.

Irrgang, A., Roschanski, N., Tenhagen, B.A., Grobbel, M., Skladniikwicz-Zieumer, T., Thomas, R., Roedel, H., Kirschhöcher, A., 2016. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PloS One 11 (7), e0159863.

Kassem, L., Hemed, N., Sulaiman, A.A.A., Jaafar, H., 2016. Emergence of plasmid-borne colistin resistance gene mcr-1 in multidrug-resistant Escherichia coli isolated from irrigation water in Lebanon. Int. J. Antimicrob. Agents. 47, 114–119.

Kempf, I., Jouy, E., Chavvin, C., 2016. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents. 48, 590–596.

Kumar, S.M., Xavier, B.B., Das, A.J., Lammens, C., Butaye, P., Goossens, H., 2016. Colistin resistance gene mcr-1 harboured on a multidrug resistant plasmid. Lancet Infect. Dis. 16, 283–284.

Kuo, S.-C., Huang, W.-C., Wang, H.-Y., Shiao, Y.-R., Cheng, M.-F., Lauderdale, T.-L., 2016. Colistin resistance gene mcr-1 in Escherichia coli isolates from human and retail meats. Taiwan. J. Antimicrob. Chemother. 71 (8), 2327–2329.

Lekunberri, I., Balcazar, J.L., Borrego, C.M., 2017. Detection and quantification of ESBL genes in ready-to-eat beef products in Egypt. Food Contr. 119, 107436.

Magwira, C.A., Gashe, B.A., Collinson, E.K., 2005. Prevalence and antibiotic resistance profiles of Escherichia coli O157:H7 in beef products from retail outlets in gaborone, Botswana. J. Food Prot. Microbiol. 68, 203–206.

Maloni, G., Leibovici, A., Robertson, A.K., 2020. Antibiotics, bacteria, and antibiotic resistance genes: aerial monitoring of emerging and overlapping challenges. Int. J. Antimicrob. Agents. 54, 1027–1035.

Mangé, A.R., Harel, J., Masson, L., Edens, T.J., Port, A., Reid-Smith, R.J., Zhanel, G.G., Kropinski, A.M., Boerlin, P., 2015. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog. Dis. 12 (4), 302–310.

Maynou, G., Bach, A., Terré, M., 2017. Feeding of waste milk to Holstein calves affects antimicrobial resistance of Escherichia coli and Pasteurella multocida isolated from animals. J. Dairy Sci. 100, 2329–2341.

McClurkan, A.D., Blackwell, B.R., Hanson, J.D., Wooten, K.J., Mager, G.D., Cox, S.B., Smith, P.N., 2015. Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environ. Health Perspect. 123 (9), 1170–1177.

McGann, P., Snedrud, E., Maybank, R., Corey, B., Ong, A.C., Clifford, R., Hinkle, M., Whitman, T., Lesho, E., Schaecker, K., 2016. Escherichia coli harboring mcr-1 and blactX-M-1 on a novel IncF plasmid: first report of mcr-1 in the USA. Antimicrob. Agents Chemother. 60 (7), 4420–4421.

Metzger, S.A., Hernandez, L.L., Skarljups, J.H., Søren, G., Walker, T.M., Ruegg, P.L., 2018. Influence of sampling technique and bedding type on the milk microbiota: results of a pilot study. J. Dairy Sci. 101, 6346–6356.

Nevsky, M.B., Matsaye, L.F., Robertson, A.K., 2020. First report of CTX-M-15-ST394/D E. coli from goats. Comp. Immunol. Microbiol. Infect. Dis. 67, 101367.

Ong, L.B., Sadek, M., Poirel, L., Nordmann, P., Nariya, H., Shimamoto, T., Shimamoto, T., 2020. Characterization of CTXM-24-producing E. coli from goat meat and its plasmid-mediated colistin resistance. Sci. Rep. 10, 20769.

Oh, S.S., Song, J., Kim, J., Shin, J., 2020. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy foods in south Korea. Int. J. Food Microbiol. 238, pp.72–79.

Palmeira, J.D., Ferreira, H., Madoe, J.-Y., Haeneni, M., 2018. Draft genome of a ST443 mcr-1- and blactX-M-2-carrying Escherichia coli from cattle in Brazil. J. Global Antimicrob. Resist. 13, 269–270.

Pandey, B., Carity, B., Dewll, J., Dossens, D., Hostens, M., Bleeker, R.D., Deprez, P., 2012. Prospective study on quantitative and qualitative antimicrobial and anti-inflammatory drug use in white veal calves. J. Antimicrob. Chemother. 67, 1027–1038.

Perfumo, N., Blücher, M., Milner, R.W., Turner, J.D., 2013. Public health risks of enterobacterial isolates producing extended-spectrum $eta$-lactamases (ESBL) in France and mapping of emerging and overlapping challenges. Int. J. Antimicrob. Agents. 54, 1027–1035.

Pereira-Carvalho, A., Nagy, G., Szijártó, P., Saras, E., Magwira, C.A., Gashe, B.A., Collinson, E.K., 2005. Prevalence and antibiotic resistance profiles of Escherichia coli O157:H7 in beef products from retail outlets in gaborone, Botswana. J. Food Prot. Microbiol. 68, 203–206.

Pimentel, I., Balcazar, J.L., Borrego, C.M., 2017. Detection and quantification of ESBL genes in ready-to-eat beef products in Egypt. Food Contr. 119, 107436.
Singh, G.M., Micha, R., Khatibzadeh, S., Shi, P., Lim, S., Andrews, K.G., Engell, R.E., Ezzati, M., Mozaffarian, D., 2015. Global Burden of Diseases Nutrition and Chronic Disease Expert Group (NutriCoDE). Global, regional and national consumption of sugar-sweetened beverages, fruit juices, and milk: a systematic assessment of beverage intake in 187 countries. PLoS One 10 (8), e0124845.

Skov, R.L., Momet, D.L., 2016. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 21 (9).

Sun, J., Zhang, H., Liu, Y.-H., Feng, Y., 2018. Towards understanding MCR-like colistin resistance. Trends Microbiol. 26 (9), 794–808.

Sonnier, J.L., Karns, J.S., Lombard, J.E., Kopral, C.A., Haley, B.J., Kim, S-Wan, Van Skov, R.L., Monnet, D.L., 2016. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 21 (9).

Spencer, J., Tansawai, U., Thomas, D., Wang, S., Wang, Y., Shen, J., Walsh, T., 2017. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between pathogenic and commensal Enterobacteriaceae. Proc. Natl. Acad. Sci. Unit. States Am. 109 (4), 1269–1274.

Sun, C., Wang, Y., Ma, S., Zhang, S., Liu, D., Wang, Y., Wu, C., 2021. Surveillance of antimicrobial resistance in Escherichia coli and enterococci from food products at retail in Beijing, China. Food Contr. 119, 107483.

Sun, J., Zhang, H., Liu, Y.-H., Feng, Y., 2018. Towards understanding MCR-like colistin resistance. Trends Microbiol. 26 (9), 794–808.

Suzuki, S., Ohashi, M., Kawanishi, M., Akiba, M., Kuroda, M., 2016. Investigation of a plasmid genome database for colistin-resistance gene mcr-1. Lancet Infect. Dis. 16 (3), 284–285.

Swanson, M.M., Baxter, K.L., Field, H.I., Howie, J.W., Lucas, L.A.M., Millar, E.L.M., Murdoch, J.C., Parsons, J.H., White, E.G., 1969. Report of the Joint Committee on the Use of Antibiotics in Animal Husbandry and Veterinary Medicine. Her Majesty's Stationary Office, London, UK. https://api.parliament.uk/historic-hansard/common/1969/nov/20/use-of-antibiotics-in-animal-husbandry.

Tark, D.-S., Moon, D.C., Kang, H.-Y., Kim, S.-R., Nam, H.-M., Lee, H.-S., Jung, S.-C., Lim, S.-K., 2017. Antimicrobial susceptibility and characterization of extended-spectrum β-lactamas from Escherichia coli isolated from bovine mastitic milk in South Korea from 2012 to 2015. J. Dairy Sci. 100, 3463–3469.

Timofte, D., Maciuca, Iuliana E., Evans, Nicholas J., Williams, Helen, Wattret, Andrew, Fick, Jenny C., Williams, Nicola J., 2014. Detection and molecular characterization of Escherichia coli CTX-M-15 and Klebsiella pneumoniae SHV-12 β-lactamases from bovine mastitic milk in South Korea. Food Contr. 118, 107434.

Touati, M., Hadjadj, L., Berrazeg, M., Baron, S.A., Rolain, J.M., 2020. Emergence of colistin resistance in pathogenic Escherichia coli in bulk tank milk and milk products in Shanghai and human exposure assessment. Food Cont. 80, 217e225.

Webb, H.E., Angulo, P.J., Gnanier, S.A., Scott, H.M., Loneragan, G.H., 2017. Illustrative examples of probable transfer of resistance determinants from food animals to humans: streptothricins, glycopeptides, and colistin. F1000 Research 6, 1805.

Yedman, K., van Essen-Zandbergen, A., Rapallini, M., Wit, B., Heymans, R., van Peters, M., Mevaart, D., 2016. Location of colistin resistance gene mcr-1 in Enterobacteriaceae from livestock and meat. J. Antimicrob. Chemother. 71 (8), 2340–2342.

Vidovic, N., Vidovic, S., 2020. Antimicrobial resistance and food animals: influence of livestock. Environ. Emerg. Disseminated. Antimicrob. Resist. Antivir. 9 (2), 52.

Wang, H., Ren, L., Yu, X., Hu, J., Chen, Y., He, G., Jiang, Q., 2017. Antibiotic resistome in meat, milk and aquatic products in Shanghai and human exposure assessment. Food Cont. 80, 217e225.