Interpolation Properties of Certain Classes of Net Spaces

A. Kalidolday* and E. Nursultanov1,2**

(Submitted by A. B. Muravnik)

1Institute of Mathematics and Mathematical Modeling, Almaty, 050010 Kazakhstan
2Lomonosov Moscow State University (Kazakhstan Branch), Astana, 010010 Kazakhstan

Received March 1, 2023; revised April 10, 2023; accepted April 13, 2023

Abstract—The paper studies the interpolation properties of net spaces \(N_{p,q}(M) \), when \(M \) is the set of dyadic cubes in \(\mathbb{R}^n \), and also when \(M \) is the family of all cubes with parallel faces to the coordinate axes in \(\mathbb{R}^n \). It is shown that, in the case when \(M \) is the set of dyadic cubes the scale of spaces is closed with respect to the real interpolation method. In the case, when \(M \) is the set of all cubes with parallel faces to the coordinate axes, an analogue of the Marcinkiewicz–Calderon theorem on cones of non-negative functions is given.

DOI: 10.1134/S199508022305030X

Keywords and phrases: net spaces, interpolation properties of net spaces.

1. INTRODUCTION

Let \(\mu \) be \(n \)-dimensional Lebesgue measure in \(\mathbb{R}^n \) and \(M \) be the set of all cubes in \(\mathbb{R}^n \). We call \(M \) a “net” hereinafter. For a function \(f(x) \), defined and integrable on each \(e \) from \(M \), we define the function

\[
\tilde{f}(t, M) = \sup_{e \in M, \ |e| \geq t} \frac{1}{|e|} \left| \int e f(x) \, dx \right|, \quad t > 0,
\]

where the supremum is taken over all \(e \in M \) of measure \(|e| = \mu e \geq t \). If \(\sup \{|e| : e \in M\} = \alpha < \infty \) and \(t > \alpha \), then we set \(\tilde{f}(t, M) = 0 \).

Let parameters \(p, q \) satisfy the conditions \(0 < p, q \leq \infty \). We define the net spaces \(N_{p,q}(M) \), as the set of all functions \(f \), such that for \(q < \infty \)

\[
\|f\|_{N_{p,q}(M)} = \left(\int_0^{\infty} \left(t^{\frac{1}{p}} \tilde{f}(t, M) \right)^q \frac{dt}{t} \right)^{\frac{1}{q}} < \infty,
\]

and for \(q = \infty \)

\[
\|f\|_{N_{p,\infty}(M)} = \sup_{t > 0} t^{\frac{1}{p}} \tilde{f}(t, M) < \infty.
\]

These spaces were introduced in the work [12].

Net spaces have found important applications in various problems of harmonic analysis, operator theory and the theory of stochastic processes [1–3, 13, 15–18].

*E-mail: aitolkynnur@gmail.com
**E-mail: er-nurs@yandex.ru
In this paper we study the interpolation properties of these spaces. It should be noted here, that net spaces are in a sense close to the Morrey space

\[
M^\alpha = \left\{ f : \sup_{y \in \mathbb{R}^n, t > 0} t^{-\lambda} \left(\int_{|x+y| \leq t} |f(x)|^p \, dx \right)^{\frac{1}{p}} < \infty \right\}.
\]

In the case when \(f(x) \geq 0 \), for \(\frac{1}{p} = 1 - \frac{\lambda}{n} \)

\[
\|f\|_{N_{p,\infty}(M)} \asymp\|f\|_{M^\lambda}.
\]

The question of interpolation of Morrey spaces was considered in the \([8, 9, 11, 19–21]\). It follows from the results of \([19]\) that

\[
(M_{\lambda_0}^\lambda, M_{\lambda_1}^\lambda)_{\theta, \infty} \hookrightarrow M_p^\lambda,
\]

where \(\lambda = (1 - \theta) \lambda_0 + \theta \lambda_1 \). It was established in \([8, 20]\) that this inclusion is strict.

For net spaces \(N_{p,q}(M) \), where \(M \) is an arbitrary system of measurable sets from \(\mathbb{R}^2 \), we also have an embedding (see \([12]\), Theorem 1)

\[
(N_{p_0,q_0}(M), N_{p_1,q_1}(M))_{\theta,q} \hookrightarrow N_{p,q}(M),
\]

where \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}, 0 < \theta < 1, 0 < q \leq \infty \).

From (1) it follows that if the linear operator \(T \) bounded from \(A_i \) to \(N_{p,\infty}(M) \), \(i = 0, 1 \), then the operator \(T \) bounded from \(A_{\theta,q} \) to \(N_{p,q}(M) \), where \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \).

The question arises whether the following equality will take place

\[
(N_{p_0,q_0}(M), N_{p_1,q_1}(M))_{\theta,q} = N_{p,q}(M).
\]

Here, in contrast to the Morrey spaces in the one-dimensional case, when \(M \) is the set of all segments, the answer is positive \([18]\). In this paper we show that, if \(M \) is the set of dyadic cubes in \(\mathbb{R}^n \), then the relation (2) holds. In case, if \(M \) is the set of all cubes, an analogue of the Marcinkiewicz–Calderon theorem on the cones of non-negative functions is obtained.

Given functions \(F \) and \(G \), in this paper \(F \lesssim G \) means that \(F \leq CG \), where \(C \) is a positive number, depending only on numerical parameters, that may be different on different occasions. Moreover, \(F \asymp G \) means that \(F \lesssim G \) and \(G \lesssim F \).

2. MAIN RESULTS

Let \((A_0, A_1)\) be a compatible pair of Banach spaces \([4]\);

\[
K(t, a; A_0, A_1) = \inf_{a=a_0+a_1} (\|a_0\|_{A_0} + t\|a_1\|_{A_1}), \ a \in A_0 + A_1,
\]

be the Petre functional. For \(0 < q < \infty, 0 < \theta < 1 \) the interpolation space is defined by

\[
(A_0, A_1)_{\theta,q} = \left\{ a \in A_0 + A_1 : \|a\|_{(A_0, A_1)_{\theta,q}} = \left(\int_0^\infty (t^{-\theta} K(t, a))^q \frac{dt}{t} \right)^{1/q} < \infty \right\},
\]

and for \(q = \infty \) by

\[
(A_0, A_1)_{\theta,q} = \left\{ a \in A_0 + A_1 : \|a\|_{(A_0, A_1)_{\theta,q}} = \sup_{0 < t < \infty} t^{-\theta} K(t, a) < \infty \right\}.
\]

A family of sets from \(\mathbb{R}^n \) of the form

\[
Q^n_k = \left[\frac{k_1}{2m}, \frac{k_1+1}{2m} \right) \times \ldots \times \left[\frac{k_n}{2m}, \frac{k_n+1}{2m} \right),
\]

lobachevskij journal of mathematics vol. 44 no. 5 2023
where $k \in \mathbb{Z}^n$, $m \in \mathbb{Z}$, is called the family of dyadic cubes and denoted by M.

Note that for arbitrary $m \in \mathbb{Z}$ the space \mathbb{R}^n can be represented in the form $\mathbb{R}^n = \bigcup_{k \in \mathbb{Z}^n} Q_k^m$, and the measure of intersection

$$|Q_k^m \cap Q_r^m| = \begin{cases} 2^{nm}, & k_i = r_i, \; i = 1, \ldots, m \\ 0, & \text{in other cases.} \end{cases}$$

Let $m \in \mathbb{Z}$, cubes Q_k^m, $k \in \mathbb{Z}^n$ are called cubes of m order. Note also that if $n \geq m$, then each cube of n order is partitioned into 4^{n-m} cubes of m order.

Theorem 1. Let $0 < p_0 < p_1 < \infty$ and $0 < q_0, q_1, q \leq \infty$. Let M be the family of dyadic cubes. Then,

$$\left(N_{p_0, q_0}(M), N_{p_1, q_1}(M) \right)_{\theta, q} = N_{p, q}(M),$$

where $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$, $\theta \in (0, 1)$.

The following statement is an attempt to answer the question about the interpolation of net spaces, when M is the family of all cubes with parallel faces to the coordinate axes in \mathbb{R}^n.

Theorem 2. Let $n \leq p_0 < p_1 < \infty$, $0 < q \leq \infty$, M be the family of all cubes with parallel faces to the coordinate axes in \mathbb{R}^n. Let $G = \{ f : f(x) \geq 0 \}$, then for any $f \in G \cap N_{p, q}(M)$ it is true

$$\|f\|_{(N_{p_0, q_0}(M), N_{p_1, q_1}(M))_{\theta, q}} \leq \|f\|_{N_{p, q}(M)},$$

where the corresponding constants depend only on $p_1, q_1, \theta, q, i = 0, 1$.

The following corollary holds from Theorem 2.

Corollary 1. Let $n \leq p_0 < p_1 < \infty$, $1 \leq q_0, q_1 \leq \infty$, $q_0 \neq q_1$, $0 < \tau$, $\sigma < \infty$; M and G are sets from Theorem 2. If the following inequalities hold for a quasilinear operator

$$\|Tf\|_{N_{p_0, q_0}(M)} \leq F_0\|f\|_{N_{p_0, \sigma}(M)}, \; f \in N_{p_0, \sigma}(M),$$

$$\|Tf\|_{N_{p_1, q_1}(M)} \leq F_1\|f\|_{N_{p_1, \sigma}(M)}, \; f \in N_{p_1, \sigma}(M),$$

then for any $f \in G \cap N_{p, \tau}$ we have

$$\|Tf\|_{N_{q, \tau}(M)} \leq cF_0^{1-\theta}F_1^\theta\|f\|_{N_{p, \tau}(M)},$$

where $\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1}$, $\theta \in (0, 1)$ and the corresponding constant depends only on $p_1, q_1, \sigma, i = 0, 1$.

Comment. In the case when M is the set of parallelepipeds in \mathbb{R}^n for the scale of spaces $N_{p, q}(M)$ equality (3) does not hold. Here, apparently, it is necessary to use interpolation methods for spaces with mixed metrics [10, 13, 14], and also to use the ideas of works [5–7].

3. PROOF OF THEOREM 1

Proof. Let M be the set of dyadic cubes, $1 < p_0 < \infty$. Let us prove first

$$(N_{1, \infty}(M), N_{\infty, \infty}(M))_{\theta, q} = N_{p, q}(M),$$

where $\frac{1}{p} = 1 - \theta$, $\theta \in (0, 1)$.

Let $m \in \mathbb{Z}$, then the Euclidean space \mathbb{R}^n is partitioned into disjoint cubes of order m from M

$$\mathbb{R}^n = \bigcup_{k \in \mathbb{Z}^n} Q_k^m.$$

Let $f \in N_{p, q}(M)$, define the function

$$\varphi_0(x) = \frac{1}{|Q_k^m|} \int_{Q_k^m} f(x) dx, \; x \in Q_k^m, \; k \in \mathbb{Z}^n.$$

Then, taking into account that the measure $|Q_k^m| = 2^{nm}$ we have

$$|\varphi_0(x)| \leq \tilde{f}(2^{nm}, M), \; x \in \mathbb{R}^n,$$

LOBACHEVSKIJ JOURNAL OF MATHEMATICS Vol. 44 No. 5 2023
and

\[\int_{Q_k^n} (f(x) - \varphi_0(x)) dx = 0. \]

For the Petre functional, we have the following

\[K(t, f; N_{p_0, \infty}(M), N_{\infty, \infty}(M)) = \inf_{f = f_0 + f_1} \left(||f_0||_{N_{p_0, \infty}(M)} + t ||f_1||_{N_{\infty, \infty}(M)} \right) \]

\[\leq \sup_{s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) + t \sup_{s > 0} \varphi_0(s, M) = \sup_{s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) + t \bar{f}(2^{nm}, M). \]

Consider the first term

\[\sup_{s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) \geq \sup_{2^{nm} \geq s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) + \sup_{s \geq 2^{nm}} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M). \]

Let \(I \) be an arbitrary cube from \(M \) such that \(|I| \geq 2^{nm}\). Hence, \(I \) is some cube of order \(n \), where \(n \geq m \). Taking into account that each dyadic cube of \(n \) order is partitioned into mutually disjoint cubes of \(m \) order, we obtain

\[\left| \int_I (f - \varphi_0)(x) dx \right| = \left| \sum_{Q_k^n \subseteq I} \int_{Q_k^n} (f(x) - \varphi_0(x)) dx \right| = 0. \]

Hence,

\[\sup_{s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) = \sup_{2^{nm} \geq s > 0} s^{\frac{1}{p_0}} (f - \varphi_0)(s, M) \leq \sup_{2^{nm} \geq s > 0} s^{\frac{1}{p_0}} \bar{f}(s, M) \]

\[+ \sup_{2^{nm} \geq s > 0} s^{\frac{1}{p_0}} \varphi_0(s, M) \leq \sup_{2^{nm} \geq s > 0} s^{\frac{1}{p_0}} \int_0^s \frac{1}{p_0} \bar{f}(t, M) \frac{dt}{t} + \sup_{s \geq 2^{nm}} s^{\frac{1}{p_0}} \bar{f}(2^{nm}, M) \]

\[\leq \sup_{2^{nm} \geq s > 0} \frac{1}{p_0} \int_0^s \frac{1}{p_0} \bar{f}(t, M) \frac{dt}{t} + 2^{nm} \bar{f}(2^{nm}, M) \]

\[= \frac{1}{p_0} \int_0^{2^{nm}} \frac{1}{p_0} \bar{f}(t, M) \frac{dt}{t} + \frac{1}{p_0} \int_0^{2^{nm}} \frac{1}{p_0} \bar{f}(t, M) \frac{dt}{t} = \frac{2}{p_0} \bar{f}(2^{nm}, M). \]

In this way,

\[K(a^m, f; N_{p_0, \infty}(M), N_{\infty, \infty}(M)) \leq c \int_0^{2^{nm}} \frac{1}{p_0} \bar{f}(y, M) \frac{dy}{y} + a^m \bar{f}(2^{nm}, M), \]

where \(a = 2^{\frac{m}{p_0}} > 1 \). Then, we have

\[||f||_{(N_{p_0, \infty}(M), N_{\infty, \infty}(M))_{\theta, q}} \leq \left(\sum_{m \in \mathbb{Z}} \left(a^{-\theta m} K(a^m, f) \right)^q \right)^{\frac{1}{q}} \]

\[\leq \left(\sum_{m \in \mathbb{Z}} \left(a^{-\theta m} \left(c \int_0^{2^{nm}} \frac{1}{p_0} \bar{f}(y, M) \frac{dy}{y} + a^m \bar{f}(2^{nm}, M) \right) \right)^q \right)^{\frac{1}{q}}. \]
Applying the Minkowski inequality, we obtain the following
\[
\|f\|_{(N_{p_0,\infty}(M),N_{\infty,\infty}(M))_{\theta,q}} \leq \left(\sum_{m \in \mathbb{Z}} \left(\sum_{k=-\infty}^{m} \frac{1}{p_0} f(2^n, M) \right)^{\frac{1}{q}} \right)^{\frac{1}{q}}
\]

Further, taking into account that \(a = 2^{\frac{m}{p_0}}\) and applying Hardy’s inequality for the first term, we obtain
\[
\|f\|_{(N_{p_0,\infty}(M),N_{\infty,\infty}(M))_{\theta,q}} \leq \left(\sum_{m \in \mathbb{Z}} \left(\sum_{k=-\infty}^{m} \frac{1}{p_0} f(2^n, M) \right)^{\frac{1}{q}} \right)^{\frac{1}{q}}
\]
\[
\text{where } \frac{1}{p} = \frac{1-\theta}{p_0}, \theta \in (0, 1).
\]

So we got the embedding
\[
N_{p,q} \hookrightarrow (N_{1,\infty}(M),N_{\infty,\infty}(M))_{\theta,q},
\]
where \(\frac{1}{p} = 1 - \theta, \theta \in (0, 1)\). The reverse embedding follows from (1). Hence the relation (7) holds. To prove the general case, we use the reiteration theorem ([4], Theorem 3.5.3).

Let \(1 < p_0 < p_1 < \infty\). From (7) it follows that, there are \(\theta_0, \theta_1 \in (0, 1)\), such that
\[
(N_{1,\infty}(M),N_{\infty,\infty}(M))_{\theta_0,q_0} = N_{p_0,q_0}(M), \quad (N_{1,\infty}(M),N_{\infty,\infty}(M))_{\theta_1,q_1} = N_{p_1,q_1}(M),
\]
then by the reiteration theorem it follows that
\[
(N_{p_0,q_0}(M),N_{p_1,q_1}(M))_{\theta,q} = (N_{1,\infty}(M),N_{\infty,\infty}(M))_{\eta,q} = N_{p,q}(M).
\]
In the last equality, we took into account that \(\eta = (1-\theta)\theta_0 + \theta \theta_1\). \(\square\)

4. PROOF OF THEOREM 2

Proof. Let \(\tau > 0\), Euclidean space \(\mathbb{R}^n = \bigcup_{k=1}^{\infty} I_k\) partitions into non-intersecting half-open cubes \(\{I_k\}_{k=1}^{\infty}\) with faces parallel to the coordinate axes and such that \(|I_k| = \tau\). Let \(f \in G \cap N_{p,q}(M)\), define the function
\[
\varphi_0(x) = \frac{1}{|I_k|} \int_{I_k} f(x) dx, \quad x \in I_k, \quad k \in \mathbb{N}.
\]
Then, it is obvious that
\[
\varphi_0(x) \leq \bar{f}(\tau), \quad x \in \mathbb{R}^n,
\]
and
\[
\int_{I_k} (f(x) - \varphi_0(x)) dx = 0.
\]
Let $0 < \sigma < \min \{ q_0, q_1, q \}$, then
\[
K(t; f; N_{p_0,\sigma}(M), N_{p_1,\sigma}(M)) = \inf_{f = f_0 + f_1} (\|f_0\|_{N_{p_0,\sigma}(M)} + t\|f_1\|_{N_{p_1,\sigma}(M)})
\leq \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \frac{(f - \varphi_0)(s)}{s} \right)^\frac{\sigma}{p} \frac{ds}{s} \right)^\frac{1}{\sigma} + t \left(\int_0^\infty \left(\frac{1}{s^{p_1}} \varphi_0(s) \right)^\frac{\sigma}{p} \frac{ds}{s} \right)^\frac{1}{\sigma}.
\]

Estimate the first term, taking into account the inequality (8), we have
\[
\left(\int_0^\infty \left(\frac{1}{s^{p_0}} \frac{(f - \varphi_0)(s)}{s} \right)^\frac{\sigma}{p} \frac{ds}{s} \right)^\frac{1}{\sigma} \leq \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \frac{f(s)}{s} \right)^\frac{\sigma}{p} \frac{ds}{s} \right)^\frac{1}{\sigma} + \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \varphi_0(s) \right)^\frac{\sigma}{p} \frac{ds}{s} \right)^\frac{1}{\sigma}.
\]

Let I be an arbitrary cube from M, ∂I – its boundary, then
\[
\left| \int_I (f - \varphi_0)(x)dx \right| = \left| \sum_{I_k \subset I} \int_{I_k} (f(x) - \varphi_0(x))dx \right| + \sum_{|I_k \cap \partial I| \neq 0} \int_{I_k} (f(x) - \varphi_0(x))dx \right|
\]

Note that the first sum is equal to zero, and the second contains at most $2^n \left(\left(\frac{H}{\tau} \right) \frac{1}{n} + 1 \right)^{n-1}$ terms. Moreover, taking into account the non-negativity of the function f, the second sum is estimated as follows
\[
\left| \sum_{|I_k \cap \partial I| \neq 0} \int_{I_k} (f(x) - \varphi_0(x))dx \right| \leq 2 \sum_{|I_k \cap \partial I| \neq 0} \int_{I_k} f(x)dx \leq 2 \sum_{|I_k \cap \partial I| \neq 0} \tau \bar{f}(\tau) \leq 4^n \left(\frac{n+1}{n} \right) \frac{1}{\tau^n} \bar{f}(\tau).
\]

Hence,
\[
\sup_{|I| \geq s} \frac{1}{|I|} \left| \int_I (f - \varphi_0)(x)dx \right| \leq \sup_{|I| \geq s} \frac{1}{|I|} 4^n |I| \left(\frac{n+1}{n} \right) \frac{1}{\tau^n} \bar{f}(\tau) = 4^n \frac{1}{\tau^n} \bar{f}(\tau) \sup_{|I| \geq s} \frac{1}{|I|} \leq 4^n \frac{\tau^n}{s^n} \bar{f}(\tau).
\]
Further, taking into account that $p_0 \geq n$ we have
\[
\left(\int_0^\infty \left(\frac{1}{s^{p_0}} (f - \varphi_0)(s) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} = \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \sup_{|I| \geq s} \left| \int_I (f - \varphi_0)(x) \, dx \right| \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \\
\leq 4^n \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \frac{1}{\sigma} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} = 4^n \int_0^\infty \left(\frac{1}{s^{p_0}} \frac{1}{\sigma} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \\
\times \tau^n \frac{1}{\sigma} \int_0^\infty \left(\frac{1}{s^{p_0}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds = \tau^n \int_0^\infty \left(\frac{1}{s^{p_0}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds.
\]
Hence,
\[
\left(\int_0^\infty \left(\frac{1}{s^{p_0}} (f - \varphi_0)(s) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \leq c \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma},
\]
where c depends only on parameters p_0, σ. To estimate the second term, we first show that
\[
\varphi_0(s) \leq \begin{cases} \bar{f}(\tau), & \text{at } s \leq \tau, \\ 4\bar{f}(s), & \text{at } s > \tau. \end{cases} \tag{9}
\]
For $s \leq \tau$ from (8) we have $\varphi_0(s) \leq \bar{f}(\tau)$. Let $s > \tau$, $Q \in M$, $|Q| = s$ and by Q' we denote a cube, whose center coincides with the center of Q and has an edge twice as large, then we have
\[
\varphi_0(s) = \sup_{|Q| \geq s} \frac{1}{|Q|} \sum_{I_k \cap Q \neq 0} \int_{I_k} f(x) \, dx \\
\leq \sup_{|Q| \geq s} \frac{1}{|Q|} \sum_{I_k \cap Q \neq 0} \int_{I_k \cap Q} f(x) \, dx = \sup_{|Q| \geq s} \frac{1}{|Q|} \sum_{I_k \cap Q \neq 0} \int_{I_k \cap Q} f(x) \, dx \\
\leq \sup_{|Q| \geq s} \frac{1}{|Q|} \int_{Q'} f(x) \, dx \leq 4\bar{f}(s).
\]
Further, using the relation (9), we obtain
\[
\left(\int_0^\infty \left(\frac{1}{s^{p_1}} \varphi_0(s) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} = \left(\int_0^\infty \left(\frac{1}{s^{p_1}} \varphi_0(s) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \\
+ \left(\int_0^\infty \left(\frac{1}{s^{p_1}} \varphi_0(s) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \leq \tau^n \int_0^\infty \left(\frac{1}{s^{p_1}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} \\
+ 4 \left(\int_0^\infty \left(\frac{1}{s^{p_1}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma} = c\tau^n \int_0^\infty \left(\frac{1}{s^{p_1}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma},
\]
where c depends only on parameters p_1, σ. Hence,
\[
K(t, f; N_{p_0, \sigma}(M), N_{p_1, \sigma}(M)) \leq c \left(\int_0^\infty \left(\frac{1}{s^{p_0}} \bar{f}(\tau) \right) \frac{\sigma}{s} \, ds \right)^\frac{1}{\sigma}.
\]
Taking into account the monotonicity of \(f(s) \), for \(\tau = t \left(\frac{1}{p_0} - \frac{1}{p_1} \right)^{-1} \) we obtain

\[
\left\| f \right\|_{(N_{p_0, \sigma}(M), N_{p_1, \sigma}(M))_{\theta, q}} \leq \left(\int_0^\infty t^{-\theta} \left(\int_0^\infty \left(\frac{1}{s^{p_0}} f(s) \right)^{\frac{\sigma}{s}} ds \right)^{\frac{1}{\sigma}} dt \right)^{\frac{q}{\theta} \frac{1}{q}} + \left(\int_0^\infty \gamma \left(\gamma^{1-\theta} \left(\frac{1}{s^{p_0}} f(s) \right)^{\frac{\sigma}{s}} ds \right)^{\frac{1}{\sigma}} d\gamma \right)^{\frac{q}{\theta} \frac{1}{q}}.
\]

Making the replacement \(\gamma = t \left(\frac{1}{p_0} - \frac{1}{p_1} \right)^{-1} \) and applying the Minkowski inequality, we arrive at the following

\[
\left\| f \right\|_{(N_{p_0, \sigma}(M), N_{p_1, \sigma}(M))_{\theta, q}} \leq \left(\int_0^\infty \left(\gamma^{-\theta} \left(\frac{1}{s^{p_0}} f(s) \right)^{\frac{\sigma}{s}} ds \right)^{\frac{1}{\sigma}} \frac{d\gamma}{\gamma} \right)^{\frac{q}{\theta} \frac{1}{q}} + \left(\int_0^\infty \left(\gamma \left(\gamma^{1-\theta} \left(\frac{1}{s^{p_0}} f(s) \right)^{\frac{\sigma}{s}} ds \right)^{\frac{1}{\sigma}} \frac{d\gamma}{\gamma} \right)^{\frac{q}{\theta} \frac{1}{q}} \right).
\]

Further, for the first and third terms, we apply the following variants of Hardy inequalities: if \(\mu > 0, -\infty < \nu < \infty \) and \(0 < \sigma, \tau \leq \infty \), then

\[
\left(\int_0^\infty \left(y^{-\mu} \left(\int_0^y (r^{-\nu}|g(r)|)^{\sigma} \frac{dr}{r} \right)^{\frac{1}{\sigma}} \frac{dy}{y} \right)^{\tau} \right)^{\frac{1}{\tau}} \leq (\mu\sigma)^{\frac{1}{\tau}} \left(\int_0^\infty (y^{-\mu-\nu}|g(y)|)^{\tau} \frac{dy}{y} \right)^{\frac{1}{\tau}}
\]

and

\[
\left(\int_0^\infty \left(y^{\mu} \left(\int_0^y (r^{-\nu}|g(r)|)^{\sigma} \frac{dr}{r} \right)^{\frac{1}{\sigma}} \frac{dy}{y} \right)^{\tau} \right)^{\frac{1}{\tau}} \leq (\mu\sigma)^{\frac{1}{\tau}} \left(\int_0^\infty (y^{\mu-\nu}|g(y)|)^{\tau} \frac{dy}{y} \right)^{\frac{1}{\tau}}.
\]

According to these inequalities, we have

\[
\left\| f \right\|_{(N_{p_0, \sigma}(M), N_{p_1, \sigma}(M))_{\theta, q}} \leq \left(\int_0^\infty \left(\gamma^{-\theta} f(\gamma) \right) q \frac{d\gamma}{\gamma} \right)^{\frac{1}{q} \frac{q}{\theta}} = \left\| f \right\|_{N_{p,q}},
\]

and hence,

\[
\left\| f \right\|_{(N_{p_0, q_0}(M), N_{p_1, q_1}(M))_{\theta, q}} \leq \left\| f \right\|_{(N_{p_0, \sigma}(M), N_{p_1, \sigma}(M))_{\theta, q}} \leq \left\| f \right\|_{N_{p,q}(M)},
\]

where \(\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \). From the theorem in ([12], Theorem 1) we know that the following embedding holds

\[
(N_{p_0, q_0}(M), N_{p_1, q_1}(M))_{\theta, q} \hookrightarrow N_{p,q}(M),
\]

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 5 2023
From the relation (1) we have

\[\|f\|_{N_{p,q}(M)} \lesssim \|f\|_{(N_{p_0,q_0}(M),N_{p_1,q_1}(M))_{\theta,q}}. \]

This proves the equivalence (4). \(\square \)

5. PROOF OF COROLLARY 1

Proof. According to the real interpolation method ([4], Theorem 3.1.2) and the inequalities (5) and (6) it follows

\[\|Tf\|_{(N_{p_0,\infty}(M),N_{p_1,\infty}(M))_{\theta,\tau}} \leq F_0^{1-\theta} F_1^\theta \|f\|_{(N_{p_0,\sigma}(M),N_{p_1,\sigma}(M))_{\theta,\tau}}. \]

From the relation (1) we have

\[\|Tf\|_{N_{q,\tau}(M)} \leq c \|Tf\|_{(N_{p_0,\infty}(M),N_{p_1,\infty}(M))_{\theta,\tau}}. \]

From Theorem 2, taking into account, that \(f \geq 0 \), we obtain

\[\|f\|_{N_{p,\tau}(M)} \asymp \|f\|_{(N_{p_0,\sigma}(M),N_{p_1,\sigma}(M))_{\theta,q}}. \]

\(\square \)

FUNDING

The study has been funded by the Ministry of Education and Science of the Republic of Kazakhstan (project no. AP14870758).

REFERENCES

1. R. Akylyzhanov and M. Ruzhansky, “\(L_p - L_q \) multipliers on locally compact groups,” J. Funct. Anal. **278** (3), 1–49 (2020).
2. R. Akylyzhanov and M. Ruzhansky, “Net spaces on lattices, Hardy–Littlewood type inequalities, and their converses,” Euras. Math. J. **8** (3), 10–27 (2017).
3. R. Akylyzhanov, M. Ruzhansky, and E. D. Nursultanov, “Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and \(L_p - L_q \) Fourier multipliers on compact homogeneous manifolds,” J. Math. Anal. Appl. **479**, 1519–1548 (2019).
4. J. Bergh and J. Löfström, *Interpolation Spaces. An Introduction* (Springer, Berlin, 1976).
5. K. A. Bekmaganbetov and E. D. Nursultanov, “Interpolation of Besov and Lizorkin–Triebel spaces \(B^{sq}_{pr}([0,2\pi)^n] \),” J. Anal. Math. **35**, 169–188 (2009).
6. K. A. Bekmaganbetov and E. D. Nursultanov, “On interpolation and embedding theorems for the spaces \(B^{pq}_{sr}(\Omega) \),” Math. Notes **84**, 733–736 (2008).
7. K. A. Bekmaganbetov and E. D. Nursultanov, “Embedding theorems for anisotropic Besov spaces \(B^{pq}_{sr}(\Omega) \),” Izv. Math. **73**, 655–668 (2009).
8. Ph. Blasco, A. Ruiz, and L. Vega, “Non interpolation in Morrey–Campanato and block spaces,” Ann. Scuola Norm. Sup. Pisa Cl. **4** (1), 31–40 (1999).
9. R. Campanato and M. Murthy, “Una generalizzazione del teorema di Riesz–Thorin,” Ann. Scuola Norm. Sup. Pisa Cl. **19** (1), 87–100 (1965).
10. D. L. Fernandez, “Interpolation of 2n Banach spaces,” Stud. Math. (PRL) **65**, 175–201 (1979).
11. P. G. Lemarié–Rieusset, “Multiplicers and Morrey spaces,” Potent. Anal. **38**, 741–752 (2013).
12. E. D. Nursultanov, “Net spaces and inequalities of Hardy–Littlewood type,” Sb. Math. **189**, 399–419 (1998).
13. E. D. Nursultanov, “On the coefficients of multiple Fourier series in \(L_p \)-spaces,” Izv. Math. **64**, 93–120 (2000).
14. E. D. Nursultanov, “Application of interpolation methods to the study of properties of functions of several variables,” Math. Notes **75**, 341–351 (2004).
15. E. D. Nursultanov and T. U. Aubakirov, “Interpolation methods for stochastic processes spaces,” Abstr. Appl. Anal. **2013** (12), 1–12 (2013).
16. E. D. Nursultanov and A. G. Kostyuchenko, “Theory of control of catastrophes,” Russ. Math. Surv. **53**, 628–629 (1998).
17. E. D. Nursultanov and N. T. Tleukhanova, “Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces,” Funk. Anal. **34**, 151–153 (2000).
18. E. D. Nursultanov and S. Yu. Tikhonov, “Net spaces and boundedness of integral operators,” J. Geom. Anal. **21**, 950–981 (2011).
19. P. Peetre, “On the theory of \(L_{p,\lambda} \) spaces,” J. Func. Anal. **4**, 71–87 (1969).
20. A. Ruiz and L. Vega, “Corrigenda to ‘Unique continuation for Schrodinger operators’ and a remark on interpolation of Morrey spaces,” Publ. Mat. **39**, 405–411 (1995).
21. G. Stampacchia, “\(L_{p,\lambda} \)-spaces and interpolation,” Comm. Pure Appl. Math. **17**, 293–306 (1964).