Calcification of Cardiac Valves in Metabolic Bone Disease: An Updated Review of Clinical Studies

This article was published in the following Dove Press journal:
Clinical Interventions in Aging

Abstract: Epidemiological and clinical data have suggested the existence of a relationship between cardiovascular diseases and metabolic bone disease. Several studies have demonstrated that heart valve calcification presents substantial similarities with that of bone. Literature data indicate that there are many active processes which promote osteogenesis and loss of mineralization inhibitors that lead to the deposition of extracellular matrix and proteins of bone tissue in cardiac valves. This review aimed to synthesize the available data in order to allow a better understanding of the relationship between osteoporosis or other metabolic bone diseases, such as primary hyperparathyroidism, and valvular calcification in humans. Electronic databases of Pubmed-Medline, Cochrane Library, and SCOPUS from inception to March 31, 2019 were searched. The full set of the articles potentially eligible were carefully assessed and reviewed. Finally, 23 studies were eligible and included in the systematic review. The majority of studies reported that osteoporosis and/or osteopenia were independent risk factors for valvular calcifications, even after adjusting for common cardiovascular risk factors. This suggests that this relationship is not only due to the presence of common cardiovascular risk factors but rather to underlying biological factors that connect them. Instead, regarding the association between primary hyperparathyroidism and valve calcification, conflicting data were found in the literature. To sum up, most of the literature data confirm that cardiac valve calcification processes are strongly influenced by alterations in bone metabolism. In particular, the patients with osteoporosis or primary hyperparathyroidism have an acceleration in the process of valvular calcification. Additional studies are needed to specifically address the mechanisms by which metabolic bone diseases could influence cardiac valve calcification.

Keywords: valvular calcification, osteoporosis, primary hyperparathyroidism, bone mineral density

Introduction
Over the years there has been growing interest in studying the relationship between metabolic bone disease and cardiovascular diseases. Nevertheless, at present, literature data on relationships between metabolic bone diseases and valvular calcifications are scarce and inconclusive. Heart valve calcification is common in the elderly, and is associated with increased cardiovascular morbidity and mortality. Among valve calcifications, the most studied is aortic valve calcification (AVC), which represents the most frequent cardiovascular disease after coronary artery disease and arterial hypertension, with a prevalence of 0.4% in the general population and 1.7% in the population over 65 years. Moreover, if severe aortic stenosis remains untreated, life expectancy is reduced to less than 5 years. As regards mitral...
valve calcification (MVC), literature data indicate that these mainly affect the posterior part of the annulus and are influenced by advancing age, chronic kidney disease (CKD), and cardiovascular risk factors.\(^3\)

As demonstrated by several studies, heart valve calcification presents substantial similarities with that of bone, sharing many regulatory pathways and subpopulation cells with osteoblastic phenotype.\(^4\) Moreover, literature data indicate that there are many active processes which promote osteogenesis and loss of mineralization inhibitors that lead to the deposition of an extracellular matrix and proteins of bone tissue in cardiac valves. Among these, the endothelial damage induced by mechanical stress is also important.\(^5\) The result is an “active and chronic” process, and not “passive or degenerative”, as hypothesized some time ago. Therefore, at present cardiac valve calcification should be considered the final consequence of a complex and gradual filling process of calcium and mineral phosphate on valves.

Although similar to the atherosclerosis and vascular calcification process, there are some important differences in valvular calcification, both from a physiopathological and pharmacological point of view.\(^6,7\) Literature data, although often being controversial, allow us to better define the major regulatory pathways influencing the valve calcification process. The source of osteoblast-like cells within the cardiac valves remains one of the most controversial and crucial points. Transforming growth factor beta1 (TGF-\(\beta\)) has been reported to be the most important factor in the differentiation of valve interstitial cells (VIC) into an osteoblast phenotype, which may represent the first step in the valvular calcification process. Transforming growth factor-beta1 also promotes the increase of some important bone morphogenetic proteins (BMP).\(^8,9\) In fact, bone formation in heart valves was associated with the expression of BMP-2 and BMP-4 which increase the activity of alkaline phosphatase and osteocalcin in VIC.\(^11\) Other studies have reported that in the early stages of aortic valve calcification the differentiation of valve interstitial cells into an osteoblastic phenotype is influenced by the action of proinflammatory cytokines.\(^7,12\) On the other hand, pathways able to modulate the process of valvular calcification have been identified. In particular, a recent study reported that Matrix Gla Protein (MGP), a known calcification inhibitor which antagonizes BMP-2, negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves, so highlighting its role as an anti-calcification protein.\(^13\) Fetuin-A is a circulating protein that can exist in isolation or as a complex with MGP. Fetuin-A, similarly to MGP, antagonizes BMP-2 and TGF-\(\beta\)1 and prevents calcification by binding to calcium crystals. Recently, significant correlations between low levels of fetuin-A and aortic valve stenosis or calcification have been reported.\(^14,15\) Moreover, high levels of Asymmetric Dimethylarginine (ADMA), an inhibitor of Nitric Oxide (NO) synthase, were found in patients with aortic stenosis; therefore, NO appears to slow aortic valve calcification, probably via of a direct effect on valve interstitial cells.\(^4,8\)

Wnt/\(\beta\)-catenin and a receptor activator of nuclear factor kappa \(\beta\) (RANK)/receptor activator of nuclear factor kappa \(\beta\) ligand (RANKL)/osteoprotegerin (OPG) pathways play a crucial role in the later stages of the valvular calcification process.\(^7\) In vascular cells, TGF-\(\beta\)1 and BMP-2 are able to induce nuclear translocation of \(\beta\)-catenin and increase Wnt signaling expression, stimulating the osteogenic differentiation of mesenchymal progenitor cells.\(^2\) The Wnt system is one of the most important regulators in bone formation, leading to expression of RUNX2 and promoting formation of bone tissue by osteoblasts.\(^2,7,16\) In heart valves, stimulation of RANK by RANKL induces an osteoblastic phenotype in VIC (contrary to the bone tissue where the stimulation of RANK by RANKL promotes an osteoclastic phenotype). Moreover, while in bone OPG binds RANKL and prevents bone resorption, at a valvular level the inhibition of RANKL by OPG impedes valve calcification. Confirming this, whilst OPG-deficient mice develop osteoporosis, they simultaneously accelerate vascular calcification in association with increased expression of RANKL in both regions.\(^7\) These data may explain the “calcification paradox” in osteoporosis which is associated with age-independent increases in vascular calcification and even cardiovascular mortality. Fibroblast Growth Factor-23 (FGF-23) works by inhibiting sodium-phosphate transporter in the kidneys, increasing the excretion of phosphate and inhibiting the enzyme 1-\(\alpha\)-hydroxylase, so decreasing the production of active Vitamin D (calcitriol). A loss of its function leads to an increase in serum phosphates, with a potential risk of renal calcinosis. However, the Multi-Ethnic Study of Atherosclerosis (MESA) reported a significant correlation between elevated FGF-23 levels and the annual progression of mitral valve calcification but not that of the aortic valve.\(^17\) PTH is a key factor in the regulation of bone metabolism and essential for bone tissue formation; nevertheless, the role of PTH in the valvular calcification process remains unclear. However, the
increase in PTH values is correlated with the progression of aortic valve calcification and with an increase of valve calcification area.18,19 Finally, human VIC cells, cultured with high concentrations of extracellular adenosine triphosphate (ATP), enhance the expression of osteoblast cell markers such as alkaline phosphatase, and demonstrates the inhibitory effects of adenosine on this process.4,20

The major regulatory pathways influencing valve calcifications are listed in Table 1.

This review aimed to summarize the available data in order to allow a better understanding of the relationship between osteoporosis or other metabolic bone diseases, such as primary hyperparathyroidism, and valvular calcification in humans.

Materials and Methods
A literature review was conducted from inception to May 31, 2019. PubMed-Medline, Cochrane Library, ClinicalTrials.gov, and SCOPUS databases were searched using the following search terms (“Valvar Calcification” or “Aortic valve calcification” or “Mitral valve calcification”) and (“osteoporosis” or “Bone Mineral Density” or “Primary Hyperparathyroidism” or “Paget’s disease”).

The process of selection of the studies for review was carried out according to the PRISMA checklist and a PRISMA flow diagram has been shown in Figure 1.

Results
Heart Valve Calcifications and Osteoporosis
Studies on valvular calcification, both in vitro and in animal models, have shown evidence of regulatory pathways and cell types similar to those of bone tissue. Over the years, although the interest in the association between bone metabolism and cardiovascular disease has been the subject of increasing attention, only a few clinical studies correlated valvular calcification and osteoporosis (or decreased bone mineral density) obtaining non-univocal results. The studies reporting the correlations between these two conditions are listed in Table 2.

In 1990 Mori et al21 first observed a statistically significant correlation between the lower values of bone

Table 1 Factors Influencing Valvular Calcification
TGFB1
BMP
MGP
WNT
RANK/RANKL/OPG
NO
ATP
Fetuin A
FGF-23
PTH

Abbreviations: TGFB1, transforming growth factor beta 1; VIC, valvular interstitial cells; BMP, bone morphogenetic proteins; MGP, matrix Gla protein; WNT, Wnt signaling pathways; RUNX2, runt-related transcription factor 2; RANK, receptor activator of nuclear factor; RANKL, receptor activator of nuclear factor ligand; OPG, osteoprotegerin; NO: nitric oxide; ATP, adenosine triphosphate; FGF-23, fibroblast growth factor-23; PTH, parathormone.
mineral density (BMD) and mitral annular calcification in elderly Japanese women. Similarly, some years later, Ouchy et al.\(^{22}\) showed that BMD values were significantly lower in elderly women with aortic valve calcification (AVC). Interestingly, another study carried out on 239 elderly subjects (62 males and 177 females) reported that BMD at lumbar spine (as assessed by Computed Tomography CT) was inversely associated with MVC but not with AVC, in postmenopausal women only.\(^{23}\)

In 2004, Davutoğlu et al.\(^{24}\) in a study of 340 women (mean age 56±10 years), observed that the incidence of MVC was higher in women with osteoporosis and that there was a positive correlation between severity of mitral calcification and severity of osteoporotic disease. Instead, the study by Aksoy et al.\(^{25}\) conducted on 114 patients (49 with AVC and 65 without), found that age and hypertension but not gender were independent risk factors for the development of valve calcification; in this study BMD was inversely correlated with the presence of AVC, and this correlation remained significant after adjusting for age. Similarly, a study carried out on a subset of the EPIC population (Norfolk, UK), found an inverse correlation between BMD at calcaneus, as measured by ultrasound, and risk of AVC independently of known risk factors and potential confounders.\(^{26}\)
Table 2: Main Characteristics of the Nine Studies Included in the Review on Valvular Calcifications in Osteoporosis

Study/Year	Study Population	Primary Measures	Bone Evaluation	Valve Calcification Evaluation	Results: Changes in Outcomes
Ouchi Y. 1993	16♀ (69.6±1.3 years) AVC+ 32♂ (67.3±0.8 years) AVC-	AVC LS-BMD WB-BMD	DXA	Echocardiography	↓ WB-BMD and LS-BMD in AVC+
Sugihara N. 1993	62♂ and 177♀ (80.2±4.4 years) Group-C: MAC-AVC- Group-M: MAC+AVC-/+ Group-A: AVC+ MAC-	AVC MAC LS-BMC	CT	Echocardiography	↑ osteoporosis in ♂ MAC+AVC-/+ ↓ LS-BMC in MAC+AVC-/+
Davutoglu V. 2004	340 PM♀ (56±10 years) 217♂ and 177♀ (80.2±4.4 years) Group-C: MAC-AVC- Group-M: MAC+AVC-/+ Group-A: AVC+ MAC-	MAC LS-BMD Hip-BMD	DXA	Echocardiography	↑ osteoporosis in ♂ MAC+AVC-/+ ↓ LS-BMC in MAC+AVC-/+
Aksoy Y. 2005	23♂ and 26♀ (68±8 years) AVC+ 43♂ and 29♀ (63±8 years) AVC-	AVC LS-BMD Hip-BMD	DXA	Echocardiography	↓ BMD T-score in AVC+ (−2.15±1.10 Vs -1.2±1.3; P<0.001) T-score inversely associated with AVC+ (OR=0.59; 95% CI=0.41–0.87)
Choi H.S. 2009	50♂ (62.3± 6.9 years) AVC+ 161♀ (52.4± 7.5 years) AVC- 18♀ (62.3± 6.9 years) AVC+ 99♀ (52.4± 7.5 years) AVC-	AVC LS-BMD Hip-BMD	DXA	Echocardiography	↓ BMD T-score in AVC+ (−2.15±1.10 Vs -1.2±1.3; P<0.001) T-score inversely associated with AVC+ (OR=0.59; 95% CI=0.41–0.87)
Celik A. 2010	59 RSF subjects (41.5 years) 11 MAC+; 48 MAC- 40 healthy subjects (44.2 years): 1 MAC+ 39 MAC-	MAC LS-BMD Hip-BMD	DXA	Echocardiography	↓ BMD T-score in ♂ MAC+ (1.6±1.0 Vs -0.5±1.2; P<0.01) BMD T-score predictive of MAC+ (P=0.04)
Pfister R. 2014	15,651 (62.1±9.1 years) of the EPIC Norfolk population study since Jan 1998 to Oct 2000	AS BUA at heel	AS defined by ICD-10 code 135	QUS by CUBA device	Inverse association between BUA and AS ↑ SD in BUA is associated with ↓ 20% in AS (HR=0.80)
Chan J.J. 2015	619♀ and 628♂ (60 years) of the Framingham Offspring Study since 2002 to 2005	AVC MVC AAC CAC vBMD of L3	CT	Agastone Score by CT	No association between vBMD and AVC + or MAC+ vBMD inversely associated with CAC+ and AAC+ in ♀ but not in ♂
Messera D. 2017	868♀ and 629♂ (76.2 ± 4.8 years) of the Cardiovascular Health Study	AVC MAC Hip-BMD	DXA	Echocardiography	No association between BMD and AVC+ or MAC+ in ♀ or in ♂ Inverse association between Hip-BMD and AVC+ (RR=1.24; 95% CI 1.01–1.56) in ♀ Borderline association Hip-BMD and MAC+ in ♂

Abbreviations: ♀, female; ♂, male; AVC, aortic valve calcification; BMD, bone mineral density; LS-BMD, BMD at lumbar spine; WB-BMD, BMD at whole body; Hip-BMD, BMD at femoral; DXA, dual-energy X-ray absorptiometry; MAC, mitral annular calcification; LS-BMC, bone mineral content at lumbar spine; CT, computed tomography; PM, postmenopausal; RSF, renal stone formation; MVC, mitral valve calcification; AS, aortic stenosis; ICD-10, “International Classification of Disease” (ICD)-10 hospital discharge code 135; QTC, quantitative computed tomography; AAC, abdominal aortic calcification; CAC, coronary artery calcification.

Also Choi et al., in a study conducted on 328 Korean patients (211 men and 117 women), reported that the presence of AVC, assessed by echocardiography, was inversely correlated with BMD; however, in this latter study, after adjusting for various comorbidities (age, BMI, cigarette smoking, arterial hypertension, hypercholesterolemia, and
diabetes mellitus), the BMD remained independently and inversely related with AVC only in women.

As previously reported, MVC is correlated not only with common cardiovascular risk factors, but also with the presence of CKD and, consequently, altered phospho-calcic metabolism.

However, this study provided further evidence by evaluating a signiﬁcant correlation with vertebral fractures that resulted from MVC in 49% (vs controls: 12% and 15%, respectively). Interestingly, while left ventricular hypertrophy presented a regression after parathyroidectomy, valve calcification was greater in male patients with osteoporosis at total femur after adjusting for various confounding factors. This result has not been demonstrated for women. Conversely, in women there was a correlation (although not statistically signiﬁcant) between calcification of the mitral valve and the decrease in BMD at the femur.

Valvular Calcifications in Primary Hyperparathyroidism

It has long been known that patients with primary hyperparathyroidism (PHP) have structural and functional changes to the heart, with a consequent increasing of cardiovascular events. The principal studies which have evaluated the relationship between valve calcification and primary hyperparathyroidism are reported in Table 3.

Already in 1981, Roberts and Waller, 39 by evaluating morphological aspects in the heart during the autopsies of 18 patients with chronic hypercalcemia, reported that chronic hypercalcemia was associated with an accelerated deposition of calcium in heart valves, in media and intima of coronary arteries and in the myocardium.

More recently, Nierdle et al, 40 in a study carried out on 21 PHP patients and compared with 21 age- and sex-matched controls, observed a significant increase in the incidence of aortic valve and mitral annulus calcifications in subjects with PHP compared to controls.

In a prospective study, Stefenelli 41 evaluated the effects of PHP on heart valves, myocardium, and myocardial function in 54 PHP patients, who underwent echocardiography examination before and 12±2 months after parathyroidectomy. A control group of 49 people was used for comparison; also in this case, the results highlighted a close correlation between the presence of primary hyperparathyroidism and cardiac valve calcifications. In fact, AVC was found in 63% of subjects with PHP and MVC in 49% (vs controls: 12% and 15%, respectively). Interestingly, while left ventricular hypertrophy presented a regression after parathyroidectomy, valve calcifications remained unchanged and without progression over time.

Some years later, a prospective study by the same authors carried out on 123 PHP patients undergoing parathyroidectomy and controlled up to 41 months later, conﬁrmed regression of left ventricular hypertrophy and no progression of valvular calcifications. 42 Also, in the study by Langle et al 43 a significant increase of cardiac calcifications in patients with PHP compared to controls was reported, but in this study no signiﬁcant correlations.
between cardiac calcification findings and severity of the clinical features were observed.

In contrast, Dalberg et al.,

also the study by Walker et al.,

reported that there was no correlation between PHP and valve calcification or cardiac hypertrophy. In 2011, in a study conducted in the same patients cohort, Iwata et al

compared the structure and function of the aortic

also the study by Walker et al.,

carried out on a group of 54 PHP subjects, reported that there was no correlation between PHP and valve calcification or cardiac hypertrophy. In 2011, in a study conducted in the same patients cohort, Iwata et al

compared the structure and function of the aortic
valve of PHP patients with a control population and found that aortic valve calcification area resulted greater in PHP subjects (even when adjusted for risk factors such as age, sex, BMI, cigarette smoking, hypertension, hypercholesterolemia, and GFR estimated). Note that aortic valve calcification area was positively and significantly correlated with parathyroid hormone values, but not with remaining parameters of phospho-calcium metabolism such as serum calcium, serum phosphate, and 25 hydroxy-Vitamin-D. This demonstrates a significant role of PTH in the pathophysiology of cardiac valve calcification.

It should be noted, however, that the patients enrolled in the studies of Walker et al, Iwata et al, and Dalberg et al had serum calcium levels below 12 mg/dL, while in other studies the serum calcium levels were higher (>12 mg/dL), implying a possible dose dependent effect of calcemia in the valve calcification process.

Nevertheless, a recent study conducted on a small number of patients suffering from PHP (18 patients), with mean calcemia values higher than 12 mg/dL (12.5 ±1.4 mg/dL) did not show the presence of valvular calcifications in affected patients.

Valvular Calcifications in Paget’s Disease of Bone
Also Paget’s disease has been associated with an increase in cardiac calcifications, including myocardium and valve apparatus. The first studies date back to 1944, when Harrison and Lennox, using data from autopsies, reported an increase in incidence of valvular calcifications in patients suffering from Paget’s disease compared to unaffected subjects (17 of 43 cases, 39%, vs 8% in 223 controls of similar age distribution). Later, Strickberger et al, in a study based on autopsy reports, found a higher incidence of aortic valve calcification with respect to mitral valve and that the severity of the calcifications was correlated with the severity of Paget’s disease.

Similarly, the study by Hultgren et al showed a strong association between aortic valve calcification and Paget’s severity (22% in severe disease vs 5.5% in moderate disease and 3.5% in controls). Moreover, in this latter study no differences in the severity of atherosclerosis between pagetic patients and controls were found, suggesting that in Paget’s disease cardiac valve calcification may be independent from atherosclerosis. Finally, a more recent study carried out on 220 pagetic patients the valvular calcifications were found to be present in 15% of pagetic patients.

Discussion
Although valvular calcification and osteoporosis share several cardiovascular risk factors such as age, hypertension, dyslipidemia, diabetes, and cigarette smoking, the majority of studies of this review reported that osteoporosis and/or osteopenia were independent risk factors for valvular calcifications even after adjusting for common cardiovascular risk factors. This suggests that this relationship is not only due to the presence of common cardiovascular risk factors but most probably also to underlying biological factors that connect them.

Furthermore, it seems unlikely that valvular calcification could be secondary only to the catabolic processes in osteoporotic bone, also considering the lack of any significant impact of bisphosphonate therapy in the progression of aortic valve calcification, as confirmed in a recent retrospective observational study. The existence of underlying bio-humoral mechanisms that connect the two pathological conditions would seem more probable.

In support of this, it has been proposed that Vitamin D may also represent a common regulator of both bone metabolism and valve calcification. In fact, in the study by Orlepp et al it was shown that the genetic polymorphism of vitamin D (VDR Bsm1 allele B with respect to b) associated with low bone mineral density is also associated with a higher risk of developing calcific aortic stenosis.

Interesting results were also noted in gender difference, in particular as reported in the study by Choi et al the association between low bone mineral density and aortic valve calcification seems to be stronger in women than in men. Estrogens could explain this relationship; in fact, estrogens play an important role in the pathophysiology of both osteoporosis and cardiovascular diseases in women. Moreover, an estrogen receptor-alpha gene polymorphism that is associated with BMD in many clinical studies has also been observed in post menopausal women with AVC.

Moreover, in Messera et al’s study, BMD values at the femoral neck correlated with AVC in males, while in women they correlated with MVC. Similarly, in the study by Sugihara and Matsuzaki a higher incidence of MVC was found in women with low bone mineral density than in men. A stronger association between MVC and low BMD in women than in men could be explained by the fact that mitral valve calcification is more common in women as they have a higher incidence of osteoporosis, also due to the effect of the estrogenic decline in the post menopausal
period. Furthermore, alteration in bone metabolism seems to have a greater impact on development of MVC.50 These considerations support a higher risk of MVC in women suffering from bone metabolism disorders.

Also, with regard to the association between primary hyperparathyroidism and valve calcification, conflicting data has been found in the literature.

Normally, PTH plays a central role in the regulation of calcium homeostasis and its release is triggered by a reduction in serum calcium level.61 Certainly, there is a positive correlation between the severity of the disease and valvular calcification. In PHP, the role of hypercalcemia found in the advanced stages of the disease appears to be a fundamental element for the development of valvular calcifications. This could explain the poor association between these two conditions in the studies where the mean value of calcemia was lower than 12 mg/dL.19,45,62

In the study by Iwata et al,19 the aortic valve calcification area was greater in PHP patients than in controls, implying a role of PTH not only in the beginning of calcification but also in its progression. Also, it is important to emphasize that in PHP patients who have undergone parathyroidectomy there is an absence of regression implying a role of PTH not only in the beginning of valve calcification but also of progression in valve calcification.41,42,62

The fact that in patients without PHP affected by severe AVC there is a significant recurrence of the AA variant of \textit{PTH} gene62 and that patients with secondary hyperparathyroidism present a significant increase in valvular calcifications19 supports the crucial role of PTH in the valve calcification process.

In pagetic patients the high AVC incidence can be explained by hemodynamic changes that occur in advanced stages of the disease rather than to alterations of serum calcium and phosphate which are usually normal in patients with Paget’s disease.

In fact, due to the increased cardiac output, the aortic valve is affected by a greater stress which would lead to endothelial damage which would favor the triggering of calcification and thickening of leaflet; this hypothesis seems to confirm literature data reporting that the degree of aortic valve calcification was positively correlated with the severity of Paget’s disease.49,50

To date, the fact that the prevalence of valvular calcifications is lower in more recent reports about Paget and PHP is probably due to the early stage of diagnosis in these diseases.

To sum up, most of literature data confirm that cardiac valve calcification processes are strongly influenced by alterations in bone metabolism. In particular, the patients with osteoporosis or primary hyperparathyroidism have an acceleration in the process of valvular calcification. Additional studies are needed to specifically address the mechanisms by which metabolic bone diseases could influence cardiac valve calcification.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Barasch E, Gottidiener JS, Marino Larsen EK, Chaves PH, Newman AB. Cardiovascular morbidity and mortality in community-dwelling elderly individuals with calcification of the fibrous skeleton of the base of the heart and aortosclerosis (The Cardiovascular Health Study). \textit{Am J Cardiol}. 2006;97(9):1281–1286. doi:10.1016/j.amjcard.2005.11.065

2. Lindman BR, Clavel MA, Mathieu P, et al. Calcific aortic stenosis. \textit{Nature Rev Dis Primers}. 2016;2(2):16006. doi:10.1038/nrdp.2016.6

3. Shekar C, Budoff M. Calcification of the heart: mechanisms and therapeutic avenues. \textit{Expert Rev Cardiovasc Ther}. 2018;16(7):527–536. doi:10.1080/14779072.2018.1484282

4. Chester AH. Molecular and cellular mechanisms of valve calcification. \textit{Aswan Heart Centre Sci Pract Series}. 2011;4. doi:10.5339/ahcsps.2011.4

5. Gomel MA, Lee R, Grande-Allen KJ. Comparing the role of mechanical forces in vascular and valvular calcification progression. Front Cardiovasc Med. 2019;6(1):1–14

6. Sud K, Agarwal S, Parashar A, et al. Degenerative mitral stenosis: unmet need for percutaneous interventions. \textit{Circulation}. 2016;133(16):1594–1604. doi:10.1161/CIRCULATIONAHA.115.020185

7. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: the skeleton key. \textit{J Am Coll Cardiol}. 2015;66(5):561–577. doi:10.1016/j.jacc.2015.05.066

8. Kennedy JA, Hua X, Mishra K, Murphy GA, Rosenkranz AC, Horowitz JD. Inhibition of calcifying nodule formation in cultured porcine aortic valve cells by nitric oxide donors. \textit{Eur J Pharmacol}. 2009;602:28–35. doi:10.1016/j.ejphar.2008.11.029

9. Clark-Greuel JN, Connolly JM, Sorichillo E, et al. Transforming growth factor-β1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. \textit{Ann Thorac Surg}. 2007;83:946–953. doi:10.1016/j.athoracsur.2006.10.026

10. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodelling in heart valve disease. \textit{Circ Res}. 2004;95:253–260. doi:10.1161/01.RES.0000136520.07995.aa

11. Mohler ER, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS. Bone formation and inflammation in cardiac valves. \textit{Circulation}. 2001;103:1522–1528. doi:10.1161/01.CIR.103.11.1522

12. Hjortnaes J, Butcher J, Figuereido JL, et al. Articular and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. \textit{Eur Heart J}. 2010;31(16):1975–1984. doi:10.1093/eurheartj/ehq237

13. Chiyoya M, Seya K, Yu Z, et al. Matrix Gla protein negatively regulates calcification of human aortic valve interstitial cells isolated from calcified aortic valves. \textit{J Pharmacol Sci}. 2018;136(4):257–265.

14. Di Minno A, Zanobini M, Myasoedova VA, et al. Could circulating fetuin A be a biomarker of aortic valve stenosis? \textit{Int J Cardiol}. 2017;249:426–430. doi:10.1016/j.ijcard.2017.05.040
15. Carracedo M, Back M, Fetuin A in aortic stenosis and valve calcification: not crystal clear. Int J Cardiol. 2018;265(15):77–78. doi:10.1016/j.ijcard.2018.04.115

16. Rajamannan NM, Subramaniam M, Caira F, Stock SR, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced calcification in the aortic valves via the Lrp5 receptor pathway. Circulation. 2005;112:1229–1234.

17. Bortnik AE, Xu S, Kim RS, et al. Biomarkers of mineral metabolism and progression of aortic valve and mitral annular calcification: the multi-ethnic study of atherosclerosis. Atherosclerosis. 2019;285:79–86. doi:10.1016/j.atherosclerosis.2019.04.215

18. Iwata S, Hyodo E, Yanagi S, et al. Parathyroid hormone and systolic blood pressure accelerate the progression of aortic valve stenosis in chronic hemodialysis patients. Int J Cardiol. 2013;163(3):256–259. doi:10.1016/j.ijcard.2011.06.025

19. Iwata S, Walker MD, Di Tullio MR, et al. Aortic valve calcification in mild primary hyperparathyroidism. J Clin Endocrinol Metab. 2012;97(1):132–137. doi:10.1210/jc.2011-2107

20. Osman L, Chester AH, Amrani M, Yacoub MH, Smolenski RT. A novel role of extracellular nucleotides in valve calcification: a potential target for atorvastatin. Circulation. 2006;114:1566–1572. doi:10.1161/CIRCULATIONAHA.105.001214

21. Mori H, Oku Y, Hashiba K, Seto M, Mameya G. The relationship of osteoporosis to mitral annular and aortic valvular calcification in elderly women. J Cardiovasc Med. 1990;20(2):393–399.

22. Ouchy Y, Akishita M, de Souza AC, Nakamura T, Orimo H. Age-related loss of bone mass and aortic/aortic valve calcification—re-evaluation of recommended dietary allowance of calcium in the elderly. Ann N Y Acad Sci. 1993;676:297–307. doi:10.1111/j.1749-6632.1993.tb38743.x

23. Sugihara N, Matsuzaki M. The influence of severe bone loss on mitral annular calcification in postmenopausal osteoporosis of elderly Japanese women. Jpn Circ J. 1993;57(1):14–26. doi:10.1253/jcj.57.14

24. Davutoglu V, Yilmaz M, Soydinc S, et al. Mitral annular calcification is associated with osteoporosis in women. Am J Heart. 2004;147:1113–1116. doi:10.1067/ahj.2003.12.002

25. Aksoy Y, Yagmur C, Tekin GO, et al. Aortic valve calcification: association with bone mineral density and cardiovascular risk factors. Coron Artery Dis. 2005;16:379–383. doi:10.1097/00019501-200509000-00007

26. Pfister R, Michels G, Sharp SJ, Lubren R, Wareham NJ, Khaw KT. Inverse association between bone mineral density and risk of aortic stenosis in men and women in EPIC-Norfolk prospective study. Int J Cardiol. 2015;178:29–30. doi:10.1016/j.ijcard.2014.10.065

27. Choi HS, Rhee Y, Chung N, Lee EJ, Lim SK. Association of bone mineral density with valvular and annular calcification in community-dwelling older people: the cardiovascular health study. Arch Osteoporos. 2017;12(1):52. doi:10.1007/s11657-017-0347-y

28. Nierdle B, Stellon F, Glogar D, Woloszczuk W, Roka R, Mayr H. Cardiac calcific deposits in patients with primary hyperparathyroidism: preliminary results of a prospective echocardiographic study. Surgery. 1998;105(10):1052–1056.

29. Stellon F, Mayr H, Bergler-Klein J, Globits S, Woloszczuk W, Niederle B. Primary hyperparathyroidism: incidence of cardiac abnormalities and partial reversibility after successful parathyroidectomy. Am J Med. 1993;95(2):197–202. doi:10.1016/0002-9343(93)90260-V

30. Stellon F, Abela C, Frank H, et al. Cardiac abnormalities in patients with primary hyperparathyroidism: implications for follow-up. J Clin Endocrinol Metab. 1997;82(1):106–112. doi:10.1210/jcem.82.1.3666

31. Langle F, Abela C, Koller-Strametz J, et al. Primary hyperparathyroidism and the heart: cardiac abnormalities correlated to clinical and biochemical data. World J Surg. 1994;18(4):619–624. doi:10.1007/BF00337780

32. Dalberg K, Brodin LA, Juhlin-Dannfelt A, Farnebo LO. Cardiac function in primary hyperparathyroidism before and after operation. An echocardiographic study. Eur J Surg. 1996;162(3):171–176.

33. Walker MD, Fleischer JB, Di Tullio MR, et al. Cardiac structure and vascular system abnormalities in patients with advanced primary hyperparathyroidism. J Clin Endocrinol Metab. 2010;95(5):2172–2179. doi:10.1210/jc.2009-2072

34. Mishra AK, Agarwal A, Kumar S, Mishra SK. Assessment of cardiovascular system abnormalities in patients with advanced primary hyperparathyroidism by detailed echocardiographic analysis: a prospective study. World J Endoc Surg. 2017;9(2):46–50. doi:10.5005/jp-journals-10002-1209

35. Harrison CV, Lennox B. Heart block in osteitis deformans. Br Heart J. 1948;10(3):167–176. doi:11.1136/hrt.10.3.167

36. King M, Huang JM, Glassman E. Paget's disease of bone in Italy. J Bone Miner Res. 1987;2(3):36–42. doi:10.1002/jbmr.000198-002-1316-9

37. Hultgren HH. Osteitis deformans (Paget’s disease) and calcific disease of the heart valves. Am J Cardiol. 1998;81(12):1461–1464. doi:10.1016/s0002-9149(98)00213-6

38. Merlotti D, Gennari L, Galli B, et al. Characteristics and familial aggregation of Paget's disease of bone in Italy. J Bone Miner Res. 2005;20(8):1356–1364. doi:10.1359/jbmr.050322
52. Hofbauer LC, Brueck CC, Shanahan CM, Schoppet M, Dobnig H. Vascular calcification and osteoporosis from clinical observation towards molecular understanding. *Osteoporos Int*. 2007;18 (3):251–259. doi:10.1007/s00198-006-0282-z

53. Aksoy O, Cam A, Goel SS, et al. Do bisphosphonates slow the progression of aortic stenosis? *J Am Coll Cardiol*. 2012;59 (16):1452–1459. doi:10.1016/j.jacc.2012.01.024

54. Ortlepp JR, Hoffmann R, Ohme F, Lauscher J, Bleckmann F, Hanrath P. The vitamin D receptor genotype predisposes to the development of calcific aortic valve stenosis. *Heart*. 2001;85 (6):635–638. doi:10.1136/heart.85.6.635

55. Bellavia D, Costa V, De Luca A, et al. Vitamin D level between calcium-phosphorus homeostasis and immune system: new perspective in osteoporosis. *Curr Osteoporos Rep*. 2016. doi:10.1007/s11914-016-0331-2

56. Ett PK, Sharma RK, Gupta A. Study of chronic kidney disease-mineral bone disorders in newly detected advanced renal failure patients: a hospital-based cross-sectional study. *Saudi J Kidney Dis Transpl*. 2017;28(4):874–885.

57. Nam HS, Shin MH, Kweon SS, et al. Association of estrogen receptor-alpha gene polymorphisms with bone mineral density in postmenopausal Korean women. *J Bone Miner Metab*. 2005;23 (1):84–89. doi:10.1007/s00774-004-0545-8

58. Long JR, Zhang YY, Liu PY, et al. Association of estrogen receptor alpha and vitamin D receptor gene polymorphisms with bone mineral density in Chinese males. *Calcif Tissue Int*. 2004;74(3):270–276. doi:10.1007/s00223-003-0087-4

59. Nordstrom P, Glader CA, Dahlén G, et al. Oestrogen receptor alpha gene polymorphism is related to aortic valve sclerosis in postmenopausal women. *J Intern Med*. 2003;254(2):140–146. doi:10.1046/j.1365-2796.2003.01179.x

60. Bortnik AE, Bartz TM, Ix JH, et al. Association of inflammatory, lipid and mineral markers with cardiac calcification in older adults. *Heart*. 2016;102(22):1826–1834. doi:10.1136/heartjnl-2016-309404

61. Marx SJ. Hyperparathyroid and hypoparathyroid disorders. *N Engl J Med*. 2000;343(25):1863–1875. doi:10.1056/NEJM200012213432508

62. Walker MD, Rundek T, Homma S, et al. Effect of parathyroidectomy on subclinical cardiovascular disease in mild primary hyperparathyroidism. *Eur J Endocrinol*. 2012;167(2):277–285. doi:10.1530/EJE-12-0124

63. Schmitz F, Ewering S, Zerres K, Klomfass S, Hoffmann R, Ortlepp JR. Parathyroid hormone gene variant and calcific aortic stenosis. *J Heart Valve Dis*. 2009;18(3):262–267.