Hybrid consistency and plausibility verification of product data according to the EU regulation on food information to consumers (FIC)

Christian Schorr

Trier University of Applied Sciences, Environmental Campus Birkenfeld, 55761 Birkenfeld, Germany
c.schorr@umwelt-campus.de

Abstract. The labelling of food products in the EU is regulated by the Food Information of Customers (FIC). Companies are required to provide the corresponding information regarding nutrients and allergens among others. With the rise of e-commerce more and more food products are sold online. There are often errors in the online product descriptions regarding the FIC-relevant information due to low data quality in the vendors’ product data base. In this paper we propose a hybrid approach of both rule-based and machine learning to verify nutrient declaration and allergen labelling according to FIC requirements. Special focus is given to the problem of false negatives in allergen prediction since this poses a significant health risk to customers. Results show that a neural net trained on a subset of the ingredients of a product is capable of predicting the allergens contained with a high reliability.

Keywords: Multi-label classification, machine learning, product data, FIC

1 Introduction

1.1 Motivation

Since 25 October 2011, the Food Information to Customers (FIC) Regulation governs the labelling of foodstuffs in the European Union as Regulation No. 1169/2011 [EU 2011]. The FIC applies to food companies at every level of the food chain, insofar as their activities concern the provision of food information to consumers. In particular it applies to all foods intended for the final consumer, including foods supplied by mass caterers and foods intended for supply to mass caterers. The aim of the FIC is the provision of food information serves the overall protection of consumer health and interests by providing a basis for informed choice and safe use of food by final consumers, taking particular account of health, economic, environmental, social and ethical considerations.

In the context of this report, the following labels are relevant, which prepackaged food must bear in accordance with FIC.

- Nutrition declaration / nutrition labelling
- Ingredients and excipients (and their derivatives) listed in Annex II which cause allergies and intolerances
- List of ingredients, if more than one is contained

With the increasing importance of online trade in the food sector, it is important that the labelling required by the FIC is correctly indicated. In contrast to stationary trade, the customer in an e-shop cannot pick up the product and read the information on nutrients, allergens and ingredients provided by
the manufacturer. Instead, they must be able to rely on the e-shop operator to correctly maintain the relevant information in his database and to reproduce it completely on his website. As product data is often of poor quality and subject to errors, there is a need for automated FIC compliance checks in the retail sector due to the huge amount of different products. We propose a hybrid approach of rule-based methods and machine learning algorithms to achieve this goal. The present report deals with two main topics within this context: rule-based consistency testing of nutritional values and ML-based prediction of contained allergens from the list of ingredients. In combination these two aspects cover the most important part of the labelling required by the FIC. The first chapter of this report introduces the problem and summarises the current state of science and technology. The second chapter explains the regulation on Food Information to Consumer (FIC) with a focus on nutrients and allergens. Questions to be considered regarding consistency and plausibility are discussed. The third chapter provides an overview of the product data used, explains necessary pre-processing steps and analyses the product data statistically. The fourth chapter introduces the problem of multi-label classification and presents various solutions and classification methods. The fifth chapter presents the results of the experiments and determines the best model based on these results. The sixth chapter summarises and explains the results. An outlook on further research is given.

1.2 State of the art

At the time of writing this report, there are no scientific publications on the determination of FIC compliance using machine learning methods. Rule-based checks for nutrient declaration compliance are straight-forward and used by most companies. The general problem of multi-label classification as it occurs in the prediction of allergens is the subject of ongoing research, though. A general overview can be found in [Zhang 2014, Zhang 2010, Tsoumakas 2007, Boutell 2004]. The approach of binary relevance has been studied in [Zhang 2018]. The topic of the Classifier Chains is dealt with in [Dembczyński 2012, da Silva 2014, Liu 2018, Tenenboim-Chekina 2013, Liu 2019].

2 EU Regulation Food Information to Customers (FIC)

2.1 Nutrition Declaration

According to FIC, every product has to display a declaration stating the amount the contained nutrients.

Basis nutrient (abbreviation)	Energy Value [kJ/g]	Energy Value [kcal/g]	Implicit conversion factor
Carbohydrate (CH)	17	4	4.25
Polyols (POL)	10	2.4	4.17
Protein (PRO)	17	4	4.25
Fat (FAT)	37	9	4.11
Ethanol (ALC)	29	7	4.14
Organic acid (SFA/UFA)	13	3	4.33
Fibre (FIB)	8	2	4.00
Salt (SAL)	0	0	1.00

Table 1: Energy values of basic nutrients according to FIC (EU) Nr. 1169/2011 – Appendix XIV
The FIC defines exactly the energy value of every nutrient. This value is specified both in kJ and in kcal. The resulting implicit conversion factor from kcal to kJ is variable for rounding reasons. Vitamins and minerals have no energy value. An overview can be found in Table 1. In addition, FIC clearly regulates the recommended daily reference intake of an average adult, defined per nutrient and with the accompanying unit of measurement (UoM). Table 2 lists the corresponding values:

Nutrient / Vitamin / Mineral	Unit of measurement	Daily reference intakes [UoM]
Energy Value	kJ	8400
Energy Value	kcal	2000
Fat (FAT)	g	70
Saturates (SFA)	g	20
Carbohydrate (CH)	g	260
Sugar (SUG)	g	90
Protein (PRO)	g	50
Salt (SAL)	g	6

Table 2: Units of measurement and recommended daily reference intakes according to FIC (EU) Nr. 1169/2011 – Appendix XIV

2.2 Allergen Labelling

FIC requires a mandatory labelling of the following allergens (Appendix II (FIC) Regulation (EU) Nr. 1169/2011):

- Cereals containing gluten
- Crustaceans
- Eggs
- Fish
- Peanuts
- Soybeans
- Milk and lactose
- Nuts
- Celery
- Mustard
- Sesame
- Sulphur dioxide and sulphites
- Lupine
- Molluscs

All products containing one or more of the allergens requiring labelling must have them marked in their list of ingredients. Either by indicating the ingredients containing allergens in capital letters or in bold type. In the product data from the SAP system there is no possibility to save individual ingredients in bold letters. Capital letters, however, are possible but are not stringently used depending on the company and master data manager. For the present report, therefore, the general case is assumed in which the allergenic ingredients are not specifically highlighted in the product data and therefore cannot be formally distinguished from allergen-free ingredients.
3 Data Model

3.1 Design of a FIC specific data model

The internal data structures of many companies do not follow a uniform standard. Product data is usually stored in an Enterprise Resource Planning system (ERP) such as SAP Retail. However, the naming individual attributes varies greatly. For this reason, a data model (see Fig. 1) has been developed specifically to meet the requirements of an FIC consistency check, on which all implemented algorithms in this report are based.

![Data model FIC](image)

Fig. 1: Data model FIC
Instead of having to adapt the software individually for each company, using the FIC data model it is only necessary to assign the company-specific named attributes to those contained in the data model. This process can be carried out in a simple pre-processing step by means of a mapping table and thus leaves the underlying software untouched. The data model comprises seven areas. For the present technical report, the focus lies on the areas NUTRIENT, ALLERGEN and INGREDIENT. The number of items in the test data containing information on VITAMIN, MINERAL and WARNING is too small to justify inclusion. The data model nevertheless contains these areas, as it is intended to serve as a fundamental basis for all FIC-relevant checks. In addition to the verification methods developed here, this ensures an easy expandability by future checks.

3.1.1 Data Area Product

The data area Product comprises the general attributes of a product such as name, GTIN (Global Trade Item Number), brand, product group, net content, unit of measure of the net quantity and portions contained.

3.1.2 Data Area Nutrient

The nutrients of a product are summarised in the data area Nutrient. In addition to the absolute amounts, the data also includes the portion-wise information as well as the proportion of the recommended daily reference dose. As a further FIC relevant attribute, alcohol content per volume is also considered.

3.1.3 Data Area Allergen

The 14 allergens subject to labelling according to FIC form the allergen data area.

3.1.4 Data Area Vitamin

The data area Vitamin consists of the 13 vitamins relevant to FIC.

3.1.5 Data Area Mineral

The data area Mineral encompasses the 14 elements covered by FIC.

3.1.6 Data Area Ingredient

The list of ingredients of a product constitutes the data area Ingredient.

3.1.7 Data Area Warning

The data area Warning contains all warnings required by FIC, e.g. caffeine or artificial sweeteners.
3.2 Data Exploration

Our data set was provided by an European retailer consisting of 69076 products from the food sector. Among them 40063 products contained all FIC relevant attributes - nutrients, allergens and list of ingredients. In order to evaluate the data set for machine learning purposes, data exploration was conducted regarding the distribution of the difference nutrients and allergens.

3.2.1 Data Pre-processing

To obtain a processable data format, FIC-relevant information from different tables must be combined. The target format is the data model designed in 3.1. The individual aggregation steps depend on the company-specific data format and are not described in detail here for reasons of confidentiality.

3.2.2 Statistical Nutrient Analysis

Table 3 shows the number of products with a corresponding nutritional value greater than 0. A critical point is the unequal occurrence of the energy value information in kJ and kcal. According to the FIC, both values must be entered in pairs. However, only about half of all products in the data set have an energy value in kJ. Multi-chain alcohols and unsaturated fatty acids are rarely declared. Products containing starch are completely missing.

Value	Number of products
ENER_KJ	22912
ENER_KC	40897
Fat (FAT)	37505
Saturated fatty acids (SFA)	34197
Carbohydrates (CH)	37005
Sugar (SUG)	34773
Protein (PRO)	37141
Salt (SAL)	35274
Fibres (FIB)	9291
Polyols (POL)	77
Starch (STA)	0
Unsaturated fatty acids (UFA)	409

Table 3: Nutrient distribution in the test data set
3.2.3 Allergen Distribution

As expected, the allergens contained in the data set are not evenly distributed. Most of them can be assigned to the classes milk, gluten, soya and eggs. Exotic allergens such as lupine, molluscs and crustaceans, on the other hand, are only rarely found. The data set is therefore unbalanced which has to be taken into account during model training. Table 4 lists the number of products containing a specific allergen:

Allergen	Number of products
Milk	17283
Soybeans	10068
Gluten	12823
Sulphur	2870
Eggs	9897
Fish	2770
Nuts	7599
Celery	4609
Mustard	5275
Peanuts	2714
Sesame	2832
Lupine	802
Molluscs	606
Crustaceans	939

Table 4: Allergen distribution in the test data set

In order to analyse possible dependencies between allergens, heat maps were computed showing the relative and absolute frequencies of pairwise allergen occurrence (Fig. 2). As can be seen, the allergen milk, for example, occurs very frequently in combination with the allergen fish.
Table 1: Relative frequency of pairwise allergen occurrence [%]

Allergen	Milk	Soybeans	Gluten	Sulfur	Eggs	Fish	Nuts	Celery	Mustard	Peanuts	Sesame	Lupin	Molluscs	Crustacea	
Milk	100.00	39.00	20.59	66.63	62.83	81.28	74.74	55.97	62.94	59.39	64.66	85.67	80.35	64.94	
Soybeans	100.00	10.00	13.72	16.18	8.80	6.86	9.79	7.57	7.36	12.88	10.88	20.08	85.86	71.80	
Gluten	100.00	12.68	10.83	7.77	5.41	6.89	6.28	6.22	6.02	7.11	12.08	20.07	47.86	32.81	
Sulfur	100.00	17.07	17.81	10.00	13.64	11.24	16.79	15.70	26.12	16.91	15.86	41.80	80.88	52.06	42.21
Eggs	100.00	32.18	32.18	21.79	79.44	100.08	34.68	28.00	26.78	47.06	55.84	72.67	53.52	70.51	58.43
Fish	100.00	42.15	20.30	70.47	70.47	100.00	70.47	84.86	56.78	82.93	84.50	81.68	80.00	58.43	
Nuts	100.00	35.51	20.79	66.63	57.29	57.02	19.83	38.97	56.96	52.97	81.58	85.21	75.95	68.70	
Celery	100.00	19.39	19.39	88.21	98.43	98.77	100.00	98.77	98.77	98.77	98.77	98.77	98.77	98.77	
Mustard	100.00	52.95	19.39	14.84	28.94	24.05	31.12	12.95	10.06	15.77	31.54	30.70	31.34	52.31	
Peanuts	100.00	12.31	30.30	32.35	12.35	12.59	30.34	8.40	100.00	27.52	47.57	44.53	32.31		
Sesame	100.00	17.25	15.14	21.25	21.25	16.82	16.08	16.10	17.87	20.02	100.00	79.52	47.95	43.95	
Lupin	100.00	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	
Molluscs	100.00	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	
Crustacea	100.00	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	19.39	

Fig. 2: Relative frequency of pairwise allergen occurrence [%]
4 Metrics and Classification Algorithms

4.1 Text transformations and classification algorithms

In order to render textual information usable for machine learning, the two text transformations Bag-of-words (BOW) and Term Frequency - Inverse Document Frequency (TF-IDF) [Jones 1972] were applied to the data set. For classification purposes we used neural networks (NN) [Schmidhuber 2015], support vector machines (SVM) [Cortes 1995], and the Random Forest (RF) algorithm [Ho 1995] from the package scikit-learn for Python in version 0.23.1. These methods are also compatible with the classifier chain implementation provided by the library sk-multilearn in version 0.2.0.

The hyper parameter optimisation was performed by grid search on suitable search sets. For SVM the parameters X and Y were taken into account, for neural networks, different layer topologies were considered. The parameter choice delivering the best prediction results are X and Y for SVM and a topology consisting of \([n,100,30]\) layers for neural networks, where \(n\) represents the number of words in the dictionary used to transform the data.

Fig. 3: Absolute frequency of pairwise allergen occurrence
4.2 Classification algorithms for multi-label problems

The prediction of allergens is a multi-label problem because multiple allergens can be assigned to a single product. There are several approaches to solving such problems, two of which are being investigated - binary relevance and classifier chains.

4.2.1 Binary relevance

Binary relevance trains an ensemble of binary (yes or no) classifiers, one for each allergen [Burkhardt 2015, Zhang 2018]. Each of these classifiers predicts whether the corresponding allergen is contained in the product or not. The combination of all predictions is then interpreted as a multi-label prediction. This procedure is relatively easy to implement and can be parallelized, but does not take into account possible correlations between the allergens.

4.2.2 Classifier chains

If several binary classifiers C_0, C_1, \ldots, C_n are combined in such a way that the classifier C_i uses all predictions of the classifiers C_j, with $j < i$, a classification chain is obtained [Dembczyński 2012, Tenenboim-Chekina 2013, da Silva 2014, Liu 2018]. In this way, the interdependencies of allergens can be taken into account. As many classifiers are trained as there are different allergens. In comparison to binary relevance, however, these are sequentially dependent on each other. Direct parallelisation is therefore not possible. The order in which the classifiers are called has an influence on the result. There are strategies how to choose this order as favourable as possible [da Silva 2014]. Fig. 4 shows the principle of a classification chain for the case of three different classifiers.

![Fig 4: Schematic depiction of a classifier chain](image)

9
4.2.3 Metrics

4.2.3.1 Standard metrics

For evaluation purposes we use the standard metrics precision (Pr), recall (Re) and F1-score (F1). Let \(Y_x \) be the set of all correct labels and \(P_x \) be the set of all predicted labels of a data set \(x \). Then \(F_x^P \) denotes the set of all false positive labels and \(F_x^N \) the set of all false negative labels, whereas \(T_x^P \) and \(T_x^N \) stand for the sets of all true positive respectively true negative labels.

\[
Pr(P_x) = \frac{|T_x^P|}{|T_x^P| + |F_x^P|}, \quad Re(P_x) = \frac{|T_x^P|}{|T_x^P| + |F_x^N|}, \quad F_1(P_x) = \frac{Pr(P_x) \cdot Re(P_x)}{Pr(P_x) + Re(P_x)}
\]

4.2.3.2 Alpha evaluation

The alpha evaluation [Boutell 2004] is a metric that allows to weight false positive and false negative predictions differently. The alpha evaluation of a prediction \(P_x \) is defined as follows:

\[
\alpha(P_x) = \left(1 - \frac{\beta|F_x^N| + \gamma|F_x^P|}{|Y_x \cup P_x|}\right)^\alpha, \quad \text{with } \alpha \geq 0 \text{ and } 0 \leq \beta, \gamma \leq 1
\]

The so-called forgiveness rate \(\alpha \) determines how lenient the metric generally reacts to errors. Small values of \(\alpha \) are more aggressive and more forgiving of errors than large values which punish errors more severely. For the borderline case \(\alpha = \infty \) the metric becomes 1 only if all predictions are correct. In the opposite case \(\alpha = 0 \) the metric always takes the value 1 unless all predictions are wrong. For allergen prediction we choose a rather high value of 7.0. The parameter \(\beta \) weights the false negative labels, while the parameter \(\gamma \) weights the false positive labels. A suitable parameter selection therefore allows us to focus on one of these two wrongly predicted label classes. In the present case of allergen prediction it is less problematic to obtain false positive predictions than false negative ones. If an allergen is assigned to a product that does not actually contain it, this does not represent a health risk for the consumer. However, if a contained allergen is not predicted, the consumption of the product can lead to life-threatening reactions in people susceptible to this allergen. Therefore, in order to assess the prediction quality of the classification algorithms considered, emphasis is placed on the false negative predictions and the parameters are chosen as follows:

\(\alpha = 7.0, \beta = 0.33, \gamma = 1.0 \)

4.2.3.3 Multi-label characteristics

The degree of "multi-label-ness" of a data set can be expressed by the two metrics label cardinality (\(L_c \)) and label density (\(L_d \)). If \(Y_i \) are the labels (specific allergens) of the \(i \)th entry (product), then the label cardinality is defined as the average number of labels (specific allergens) per entry (product):

\[
L_c = \frac{1}{N} \sum_{i=1}^{N} |Y_i|
\]

The label density is defined as the number of labels (specific allergens) per entry (product) divided by the total number of all labels (specific allergens), averaged over all entries (products):

\[
L_d = \frac{1}{N} \sum_{i=1}^{N} \frac{|Y_i|}{|L|}, \quad \text{with } L = \bigcup_{i=1}^{N} Y_i
\]

For the present data set these metrics have the values \(L_c = 5.048 \) and \(L_d = 0.194 \). According to [Silva 2013], label cardinality and density influence the training of classifiers.
5 Nutrient consistency verification

We propose a rule-based verification of the FIC-compliant consistency of the nutrient declaration displayed on a product. To this end, the FIC requirements are converted into formula-based rules and applied to each product in the test data set. This allows the definition of defect classes which provide information about the FIC conformity of the products.

5.1 Energy value

Three basic verification checks regarding the conformity of the energy value declarations of a product can be directly deduced from the FIC regulation.

5.1.1 Total energy

A basic check can be carried out by adding the quantities \(m_x \) of a nutrient \(x \) multiplied by the corresponding energy values \(EV_x \) given in table X:

\[
kJ = m_{CH} \cdot EV_{CH} + m_{Prot} \cdot EV_{Prot} + m_{Fat} \cdot EV_{Fat} + m_{Alc} \cdot EV_{Alc} + m_{Fib} \cdot EV_{Fib}
\]

The corresponding value in kcal is obtained by multiplying the energy value in kJ by the conversion factor

\[
k'_{cal} = \frac{1}{4.1868} = 0.239
\]

In practice, the conversion from kJ to kcal cannot be calculated by multiplication by \(k'_{cal} \), since different conversion factors apply to the individual nutritional values and the total gross energy value is the sum of these (see Article 31: "(1) The energy value shall be calculated using the conversion factors listed in Annex XIV.") The implicit conversion factors calculated in Table 1 vary between 4.0 and 4.33 - therefore the conversion factor for the total energy value can never be obtained.

5.1.2 Maximum energy value

The total energy value must not be higher than 900 kcal / 100g or 3805 kJ / 100g

5.1.3 Energy declaration units of measurement

The energy values for kcal and kJ must be maintained together and cannot stand alone.

5.2 Nutrient quantities
5.2.1 Single nutrients

The sum of all individual quantities m_x of nutrients x must not exceed 100g (except for ME ml):

$$m_{CH} + m_{Pro} + m_{Fat} + m_{Alc} + m_{Fib} + m_{Sat} \leq 100$$

5.2.2 Sub-component quantities

The subcomponent amounts of un-/saturated fatty acids for fat and sugar for carbohydrates must not be greater than the basic amounts for fat and sugar.

$$m_{uFA} + m_{sFA} \leq m_{Fat}$$

$$m_{Sug} \leq m_{CH}$$

5.3 Implemented verification checks

From the rules described in sections 5.1-5.3, the error classes described in Table 3 are derived. For each of them, a rule-based test was implemented.

Error ID	Cause
MV_KJ	Declaration of energy [kJ] missing
MV_KC	Declaration of energy [kcal] missing
CE_EN	Conversion factor [kJ] to [kcal] outside of tolerance bounds
SE_EN	Sum of energy values differs too much from total energy value
VE_FAd	Contains more fatty acids [g] than fat [g]
VE_SUd	Contains more sugar [g] than carbohydrates [g]
VE_INd	Contains more than 100g per 100g of a nutrient

Table 5: FIC relevant data errors with assigned error ID

5.3.1 Results using company data

Based on the FIC specifications, the checks implemented in section 5.3 regarding FIC-compliant nutrient information were applied to the company data set presented in section 3.2. The results are shown in Table 6.

Error ID	MV_KJ	MV_KC	CE_EN	SE_EN	VE_FA	VE_SU	VE_IN
#Products	21949	3964	1767	37521	396	357	12

Table 6: Result of nutrient verification

As can be clearly seen, in almost half of all cases the information on the energy value in kJ is missing. The corresponding value in kcal, however, is maintained for over 90% of the products. According to FIC, however, the energy value must be indicated for both units. The conversion factor from kJ to kcal is also often outside a tolerance range of 4.1 and 4.3. The exact physical conversion factor of 4.1868 is practically not maintained for any product. This is because different conversion factors are implicitly
used for the individual nutrients in FIC, which vary between 4.0 and 4.33. This leads to the paradox that the conversion factor for total energy value, which is actually prescribed, cannot be achieved.

Figures 5 and 6 show the pair-wise error occurrence in mutual dependence in the form of heat maps.

![Heat Map](image)

Fig. 5: Relative frequencies of pairwise error ID occurrence [%]
6 Allergen prediction using machine learning

6.1 Allergen warning verification

All FIC relevant allergens are considered (see 2.2 (Annex II of the Food Information Regulation (FIR) Regulation (EU) No 1169/2011)). In the present product data allergens according to the providing company's specification are also listed. These subdivide the FIC relevant allergens into finer categories. For example, instead of the general allergen fish, a division into the individual fish species is used. There are therefore specific allergens for salmon, trout and other, partly exotic, fish. In the context of the question of FIC consistency of product data, these additional or finer subdivided allergens are not taken into account.

In principle, there are two questions regarding allergens: are there any allergens in a product and if yes, which specific allergens are contained in it? In both cases, the list of ingredients is used for prediction using machine learning methods.

A hybrid approach with a rule-based part is also conceivable. For this purpose, the list of ingredients is checked for signal words that are assigned to corresponding allergens using a predefined dictionary.
Especially for allergens that are only very rarely found in the product data, this hybrid approach can mean a quality gain.

The list of ingredients was first converted to lower case letters for further use, then special characters and numbers were removed. In a separate step, all allergenic ingredients listed in capital letters were extracted and used as an additional optional feature.

6.2 Binary Relevance

6.2.1 Predicting general allergen incidence

First of all, the classification into products that may or may not contain allergens based on their ingredient list is considered.

The complete list of ingredients is used as a basis, which contains about 40,000 individual ingredients (words). From this, the most frequent words are determined with the help of various parameters for the lower frequency of word occurrence (\(\text{min}_\text{df} = 0.01, 0.001, 0.0001, 0.00003\)). In this way, 244, 1226, 4634 and 9456 ingredients with the highest word occurrence have been taken into account as parameter \(\text{Voc(abulary)}\). The use of all ingredients increases the calculation time enormously and does not give better results, as tests have shown. Table 8. indicates that a neural network (NN) with 9456 words in bag-of-words (BOW) format gives the best results regarding all considered metrics. Of 2566 allergen-containing products, 2366 are successfully detected, while 5405 allergen-free products are correctly predicted (see section 10.1.1 in the appendix). 42 allergen-free products are incorrectly classified as containing allergens and 200 allergenic products misclassified as free of allergens. The method therefore provides very good results in predicting and elucidating the general allergen incidence of products.

Algo	Voc	TT	\(P_{\text{macro}}\)	\(R_{\text{macro}}\)	\(F_{\text{macro}}\)	\(P_{\text{micro}}\)	\(R_{\text{micro}}\)	\(F_{\text{micro}}\)	Alpha
NN	244	BOW	0.925	0.947	0.934	0.942	0.942	0.942	0.687
NN	244	TF-IDF	0.928	0.942	0.935	0.942	0.942	0.942	0.705
NN	1226	BOW	0.959	0.972	0.965	0.969	0.969	0.969	0.823
NN	1226	TF-IDF	0.954	0.971	0.962	0.967	0.967	0.967	0.804
NN	4634	BOW	0.97	0.980	0.975	0.978	0.978	0.978	0.875
NN	4634	TF-IDF	0.968	0.977	0.972	0.976	0.976	0.976	0.866
NN	9456	BOW	\textbf{0.977}	\textbf{0.983}	\textbf{0.980}	\textbf{0.982}	\textbf{0.982}	\textbf{0.982}	\textbf{0.903}
NN	9456	TF-IDF	0.975	0.982	0.979	0.982	0.982	0.982	0.898
SVM	244	BOW	0.886	0.921	0.899	0.908	0.908	0.908	0.508
SVM	244	TF-IDF	0.89	0.922	0.902	0.911	0.911	0.911	0.530
SVM	1226	BOW	0.941	0.960	0.949	0.956	0.956	0.956	0.755
SVM	1226	TF-IDF	0.945	0.961	0.952	0.957	0.957	0.957	0.761
SVM	4634	BOW	0.962	0.970	0.966	0.970	0.970	0.970	0.842
SVM	4634	TF-IDF	0.959	0.968	0.963	0.968	0.968	0.968	0.834
SVM	9456	BOW	0.957	0.964	0.961	0.966	0.966	0.966	0.826
SVM	9456	TF-IDF	0.961	0.966	0.964	0.968	0.968	0.968	0.842
RF	244	BOW	0.931	0.949	0.939	0.947	0.947	0.947	0.716
6.2.2 Predicting specific allergen incidence

In contrast to 6.2.1, each individual allergen is now to be predicted separately. This is done both by using the entire list of ingredients (6.2.2.1) and by exclusively considering ingredients containing allergens (6.2.2.2).

6.2.2.1 Using all ingredients

Allergen	Algo	Voc	TT	Pr_{macro}	Re_{macro}	F1_{macro}	Pr_{micro}	Re_{micro}	F1_{micro}	Alpha
Milk	NN	9456	BOW	0.968	0.970	0.969	0.969	0.969	0.969	0.880
Soybeans	NN	9456	TF-IDF	0.964	0.958	0.961	0.971	0.971	0.971	0.859
Gluten	NN	4634	BOW	0.942	0.949	0.946	0.953	0.953	0.953	0.810
Sulphur	NN	4634	TF-IDF	0.963	0.932	0.947	0.988	0.988	0.988	0.934
Eggs	NN	9456	BOW	0.967	0.963	0.965	0.974	0.974	0.974	0.874
Fish	NN	9456	TF-IDF	0.969	0.933	0.950	0.987	0.987	0.987	0.929
Nuts	NN	4634	TF-IDF	0.950	0.942	0.946	0.967	0.967	0.967	0.841
Celery	NN	4634	TF-IDF	0.965	0.947	0.956	0.982	0.982	0.982	0.907
Mustard	NN	1226	BOW	0.960	0.953	0.956	0.981	0.981	0.981	0.908
Peanuts	NN	9456	BOW	0.948	0.918	0.932	0.984	0.984	0.984	0.914
Sesame	NN	1226	BOW	0.946	0.905	0.924	0.982	0.982	0.982	0.902
Lupine	NN	9456	BOW	0.903	0.859	0.880	0.991	0.991	0.991	0.953
Molluscs	NN	9456	TF-IDF	0.948	0.885	0.914	0.995	0.995	0.995	0.969
Crustaceans	NN	9456	BOW	0.947	0.868	0.903	0.993	0.993	0.993	0.961

Table 9: Results of the best methods for each allergen using the list of ingredients

For the selected parameterisation of the alpha metric, neural networks (NN) provide the best results. The Random Forest (RF) algorithm achieves slightly lower metrics while Support Vector Machines (SVM) are inferior to both for the most part (full results can be found in section 10.1.1 in the appendix). The tendency that more extensive dictionaries achieve better results is clearly visible. BOW is more often a better choice of text transformation than TF-IDF. In general, it should be noted that the alpha metric is considered decisive in this evaluation. If one considers Precision, Recall and F₁-score, NN and RF are equally good. As the allergens predicted as false negative (FN) are much more critical for the allergen prediction than the false positive (FP) ones due to the potential danger for the consumer, the alpha metric...
was parameterised accordingly. False negative predictions are weighted three times more than false positive predictions.

6.2.2.2 Using allergenic ingredients only

In the present data set, the allergenic ingredients are indicated in capital letters within the list of ingredients. According to FIC, these ingredients must either be printed in bold or appear in capital letters on the product. However, typical ERP systems and databases do not support bold letters. Therefore, it cannot be assumed that the format of the allergenic ingredients can be distinguished from the other ingredients. To compare the prediction based on the whole ingredient list, regular expressions were used to extract the capitalised ingredients and used as input for the models employed in 6.1. Due to the univocal results of 6.2.2.1 only neural networks are considered from now on.

Note that the number of words used (Voc) for classifier training is smaller as in 6.2.1, although the same parameter choices for min_df were made. This is due to the fact that the allergenic ingredients constitute only a small subset of the entire set of ingredients and thus fewer words satisfy the required lower frequency of word occurrence given by the parameter min_df.

Allergen	Algo	Voc	TT	Pr\textsubscript{macro}	Re\textsubscript{macro}	F1\textsubscript{macro}	Pr\textsubscript{micro}	Re\textsubscript{micro}	F1\textsubscript{micro}	Alpha
Milk	NN	1225	BOW	0.941	0.952	0.945	0.948	0.948	0.948	0.723
Soybeans	NN	1225	BOW	0.926	0.916	0.920	0.927	0.927	0.927	0.651
Gluten	NN	3432	BOW	0.926	0.926	0.926	0.927	0.927	0.927	0.693
Sulphur	NN	1225	TFIDF	0.971	0.934	0.952	0.985	0.985	0.985	0.916
Eggs	NN	1225	BOW	0.946	0.932	0.938	0.944	0.944	0.944	0.707
Fish	NN	3432	TFIDF	0.953	0.920	0.936	0.978	0.978	0.978	0.880
Nuts	NN	1225	BOW	0.921	0.911	0.916	0.934	0.934	0.934	0.694
Celery	NN	1225	BOW	0.953	0.903	0.926	0.961	0.961	0.961	0.780
Mustard	NN	1225	TFIDF	0.963	0.924	0.942	0.966	0.966	0.966	0.804
Peanuts	NN	1225	TFIDF	0.911	0.858	0.882	0.961	0.961	0.961	0.799
Sesame	NN	1225	BOW	0.937	0.857	0.892	0.963	0.963	0.963	0.792
Lupine	NN	1225	TFIDF	0.909	0.792	0.84	0.986	0.986	0.986	0.917
Molluscs	NN	3432	TFIDF	0.842	0.801	0.82	0.987	0.987	0.987	0.935
Crustaceans	NN	3432	BOW	0.906	0.824	0.86	0.984	0.984	0.984	0.913

Table 10: Results of the best methods for each allergen using allergenic ingredients only

Comparing the results shown in table 10 with those using the complete list of ingredients (table 9), it is clear that using the complete list for each specific allergen provides better predictions than restricting the list of ingredients to those containing only allergens. Although the underlying dictionaries are more comprehensive than in the purely allergenic case, even for sesame, for which there is almost the same amount of words in both models 1225 and 1226 respectively, the complete ingredient list provides a significantly higher alpha metric of 0.902 than the purely allergenic ingredient list with 0.792. This could be due to combinations of non-allergenic ingredients hinting more strongly at allergens, than using only the allergenic ingredients themselves - which are usually not available in the data sets anyway.

6.3 Classifier Chains

Prediction with chained classifiers depends strongly on the order in which the individual allergen-specific classifiers are called. Therefore, for each combination of text transformation and vocabulary
size, ten or twenty runs with randomly permuted order were performed and the metrics averaged. For comparison purposes, an optimised sequence was determined on the basis of the results from Table 9 with regard to the mutual dependence of the allergens (see Fig. 3) and the corresponding classifier chain was also calculated for this sequence.

6.3.1 Predicting specific allergen incidence (averaged randomized order)

Text transformation BOW and 4634 words, averaged over 10 runs with randomized order.

Allergen	Voc	Pr_{macro}	Re_{macro}	F1_{macro}	Pr_{micro}	Re_{micro}	F1_{micro}	Alpha
Milk	4634	0.525	0.333	0.244	0.576	0.576	0.576	0.000
Soybeans	4634	0.422	0.345	0.315	0.749	0.749	0.749	0.065
Gluten	4634	0.317	0.256	0.220	0.682	0.682	0.682	0.014
Sulphur	4634	0.313	0.332	0.322	0.936	0.936	0.936	0.620
Eggs	4634	0.585	0.334	0.287	0.755	0.755	0.755	0.065
Fish	4634	0.324	0.333	0.321	0.925	0.925	0.925	0.563
Nuts	4634	0.288	0.333	0.309	0.865	0.865	0.865	0.305
Celery	4634	0.233	0.250	0.241	0.932	0.932	0.932	0.591
Mustard	4634	0.309	0.333	0.321	0.928	0.928	0.928	0.571
Peanuts	4634	0.327	0.333	0.330	0.981	0.981	0.981	0.874
Sesamine	4634	0.404	0.493	0.381	0.794	0.794	0.794	0.529
Lupine	4634	0.387	0.443	0.380	0.855	0.855	0.855	0.623
Molluscs	4634	0.525	0.333	0.244	0.576	0.576	0.576	0.000
Crustaceans	4634	0.422	0.345	0.315	0.749	0.749	0.749	0.065

Table 11: Results using classifier chains and ingredient list with randomized order and 10x averaging
Table 12: Results using classifier chains and ingredient list with randomized order and 20x averaging

	Pr_{macro}	Re_{macro}	F1_{macro}	Pr_{micro}	Re_{micro}	F1_{micro}	Alpha
Milk	0.359	0.333	0.244	0.576	0.576	0.576	0.000
Soybeans	0.632	0.622	0.627	0.956	0.956	0.956	0.780
Gluten	0.226	0.333	0.269	0.678	0.678	0.678	0.111
Sulphur	0.313	0.333	0.323	0.937	0.937	0.937	0.623
Eggs	0.363	0.333	0.287	0.754	0.754	0.754	0.065
Fish	0.309	0.333	0.321	0.927	0.927	0.927	0.567
Nuts	0.162	0.200	0.179	0.808	0.808	0.808	0.159
Celery	0.294	0.333	0.312	0.881	0.881	0.881	0.363
Mustard	0.360	0.383	0.350	0.666	0.666	0.666	0.146
Peanuts	0.341	0.334	0.324	0.930	0.930	0.930	0.588
Sesame	0.309	0.332	0.320	0.926	0.926	0.926	0.567
Lupine	0.327	0.333	0.330	0.981	0.981	0.981	0.874
Molluscs	0.333	0.333	0.333	0.960	0.960	0.960	0.836
Crustaceans	0.250	0.250	0.250	0.956	0.956	0.956	0.802

Table 13: Results using classifier chains and ingredient list with optimised order

6.3.2 Predicting specific allergen incidence (optimized order)

The advantage of classifier chains lies their capability to consider dependencies between the individual labels. Based on Fig. 2, an optimised sequence was therefore determined, attempting to model the individual allergens in their presumed dependencies on each other. Starting with the allergen gluten, which is the least dependent on other allergens, this optimised sequence is determined in the order of the highest dependency:

Gluten → Molluscs → Crustaceans → Lupine → Sesame → Peanuts → Sulphur → Celery → Eggs → Nuts → Milk → Fish → Mustard → Soybeans

The results show that the prediction of allergens using classifier chains gives significantly worse results than using the binary relevance approach. This could be due to the training data, which is extended by one feature with each link in the chain, thus distracting the resulting model too much from the list of ingredients and instead focusing on the already predicted allergens. Implicitly this means that the specific allergens are independent of each other, otherwise the additional information that the classification chain exploits should lead to a better prediction. There is no quality gain between randomly chosen order and optimised order of allergens. This also indicates that the individual allergens are independent of each other.
7 Conclusion

The rule-based testing of nutrients for FIC compliance has revealed two distinct problems in the test data. Firstly, the energy value data in kJ and kcal are maintained in clear contradiction to the FIC specifications. Nearly half of the products display only the kcal value and not both kcal and kJ values.

Secondly, consistency of the energy values is not given. The conversion factor from kcal to kJ given in the FIC is rarely used in the energy value specification. This is due to the fact that the conversion factors for each basic component are defined differently in the FIC to avoid floating point numbers. The sum of the individual basic constituents cannot therefore satisfy the actually also prescribed conversion factor of 4.1868.

The checks implemented within the scope of this report can be easily extended to portion and daily dose declarations. The developed data model allows the use of the presented rule and ML-based checks for data from various sources by means of mapping tables. The integration of further checks is made possible by the comprehensive modelling of all FIC-relevant attributes.

Allergen prediction by machine learning gives good results with some variation depending on the allergen. This is also due to the fact that allergens are not evenly distributed in the data, but rarer allergens such as lupine or molluscs are only present in a few products, compared to gluten or milk, for example. This reduces the accuracy of the prediction. It has been shown that the binary relevance approach gives better results than classifier chains. This is due to the fact that the occurrence of allergens is largely independent of each other. Some combinations such as gluten and milk are dependent to a certain extent, but there is no pairwise interdependence across the whole allergen spectrum. This is why the assumption of dependence distorts the prediction and leads to poor results. Classifier chains, which require more computing time, can therefore be excluded in favour of the more parallelizable binary relevance algorithms.

To further increase the prediction quality, ensembles of several different models can be examined or the topology of the neural network used can be further optimised. Moreover, additional features such as product name or brand could further improve the results.

8 Acknowledgements

This work is part of the KMU-innovativ project "Intelligent Master Data Quality Assurance Assistant" (IMQAA) funded by the German Ministry of Education and Research under grant number 01|S18018.
9 References

[Boutell 2004] Boutell, Matthew R.; Luo, Jiebo; Shen, Xipeng; Brown, Christopher M. (2004): Learning multi-label scene classification, Pattern Recognition, Vol 37.9, Pages 1757-1771

[Burkhardt 2015] Burkhardt, Sophie; Kramer, Stefan (2015): On the spectrum between binary relevance and classifier chains in multi-label classification. Proceedings of the 30th Annual ACM Symposium on Applied Computing, S. 885–892.

[Cortes 1995] Cortes, C. and V. N. Vapnik (1995). Support-vector networks. Machine Learning. 20 (3): 273–297

[da Silva 2014] da Silva, Pablo Nascimento; Gonçalves, Eduardo Corrêa; Plastino, Alexandre; Freitas, Alex A. (2014): Distinct Chains for Different Instances: An Effective Strategy for Multi-label Classifier Chains, Proceedings of the ECML PKDD 2014, S. 453–468.

[Dembczyński 2012] Dembczyński, Krzysztof; Waegeman, Willem; Hüllermeier, Eyke (2012): An Analysis of Chaining in Multi-Label Classification.

[EU 2011] Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 (Text with EEA relevance), OJ L 304, 18–63

[Ho 1995] Ho, T.K. (1995). Random Decision Forests. Proceedings of the 3rd ICDAR, 278–282

[Jones 1972] Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11–21

[Liu 2018] Liu, Bin; Tsoumakas, Grigorios (2018): Making Classifier Chains Resilient to Class Imbalance. Online verfügbar unter http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.9705&rep=rep1&type=pdf.

[Silva 2013] Silva, R., Bernardini, F. (2013). Analyzing the Influence of Cardinality and Density Characteristics on Multi-label Learning, Proceedings of BRACIS 2013

[Schmidthuber 2015] Schmidthuber, J. (2015): Deep learning in neural networks: An overview, Neural Networks, Vol 61, 85-117

[Szymański 2017] Szymański, Piotr; Kajdanowicz, Tomasz (2017): A scikit-based Python environment for performing multi-label classification. Online verfügbar unter http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.9705&rep=rep1&type=pdf.

[Tenenboim-Chekina 2013] Tenenboim-Chekina, Lena; Rokach, Lior; Shapira, Bracha (2013): Ensemble of Feature Chains for Anomaly Detection, Proceedings of the 11th International Workshop, MCS, S. 295–306.

[Tsoumakas 2007] Tsoumakas, Grigorios; Katakis, Ioannis (2007): Multi-Label Classification - An Overview. In: International Journal of Data Warehousing and Mining 3 (3), S. 1–13. DOI: 10.4018/jdwm.2007070101.

[Zhang 2018] Zhang, Min-Ling; Li, Yu-Kun; Liu, Xu-Ying; Geng, Xin (2018): Binary relevance for multi-label learning: an overview. In: Front. Comput. Sci. 12 (2), S. 191–202. DOI: 10.1007/s11704-017-7031-7.

[Zhang 2010] Zhang, Min-Ling; Zhang, Kun (2010): Multi-label learning by exploiting label dependency, Proceedings of the 16th ACM SIGKDD, S. 999.

[Zhang 2014] Zhang, Min-Ling; Zhou, Zhi-Hua (2014): A Review on Multi-Label Learning Algorithms. In: IEEE Trans. Knowl. Data Eng. 26 (8), S. 1819–1837. DOI: 10.1109/TKDE.2013.39
10 Appendix

The appendix contains detailed tables of the results of the allergen classification experiments. The best metric values achieved are displayed in bold type.

10.1 Results Binary Relevance

10.1.1 General allergen occurrence

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	5166	2385	102	360	0.946	0.942	0.943	0.687
NN	244	TF-IDF	5093	2454	146	320	0.944	0.942	0.942	0.705
NN	1226	BOW	5275	2490	52	196	0.97	0.969	0.969	0.823
NN	1226	TF-IDF	5306	2439	45	223	0.968	0.967	0.967	0.804
NN	4634	BOW	5380	2458	41	134	0.979	0.978	0.978	0.875
NN	4634	TF-IDF	5362	2456	53	142	0.976	0.976	0.976	0.866
NN	9456	BOW	5405	2466	42	100	**0.983**	**0.982**	**0.982**	**0.903**
NN	9456	TF-IDF	5405	2460	41	107	0.982	**0.982**	**0.982**	0.898
SVM	244	BOW	2446	4826	105	636	0.920	0.908	0.910	0.508
SVM	244	TF-IDF	2424	4875	121	593	0.921	0.911	0.913	0.530
SVM	1226	BOW	2360	5302	73	278	0.959	0.956	0.957	0.755
SVM	1226	TF-IDF	2533	5135	76	269	0.959	0.957	0.957	0.761
SVM	4634	BOW	2512	5262	75	164	0.971	0.970	0.970	0.842
SVM	4634	TF-IDF	2439	5319	84	171	0.969	0.968	0.968	0.834
SVM	9456	BOW	2410	5329	98	176	0.966	0.966	0.966	0.826
SVM	9456	TF-IDF	2473	5284	101	155	0.968	0.968	0.968	0.842
RF	244	BOW	5187	2398	112	316	0.949	0.947	0.947	0.716
RF	244	TF-IDF	5123	2373	172	345	0.938	0.935	0.936	0.680
RF	1226	BOW	5266	2477	78	192	0.967	0.966	0.966	0.819
RF	1226	TF-IDF	5291	2398	123	201	0.960	0.960	0.960	0.800
RF	4634	BOW	5370	2438	70	135	0.975	0.974	0.975	0.867
RF	4634	TF-IDF	5322	2434	127	130	0.968	0.968	0.968	0.855
RF	9456	BOW	5423	2382	62	146	0.975	0.974	0.974	0.860
RF	9456	TF-IDF	5381	2388	128	116	0.970	0.970	0.970	0.687
10.1.2 Specific allergen occurrence

10.1.3 Milk and lactose

10.1.3.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	Fl	Alpha
NN	244	BOW	3210	4438	132	233	0.955	0.954	0.954	0.773
NN	244	TF-IDF	3276	4343	165	229	0.951	0.951	0.951	0.767
NN	1226	BOW	3339	4432	105	137	0.970	0.970	0.970	0.855
NN	1226	TF-IDF	3243	4540	112	118	0.971	0.971	0.971	0.869
NN	4634	BOW	3327	4426	112	148	0.968	0.968	0.968	0.844
NN	4634	TF-IDF	3316	4458	130	109	0.970	0.970	0.970	0.871
NN	9456	BOW	3361	4405	158	89	0.969	0.969	0.969	0.880
NN	9456	TF-IDF	3396	4449	130	109	0.970	0.970	0.970	0.857
SVM	244	BOW	4426	3085	121	381	0.939	0.937	0.937	0.668
SVM	244	TF-IDF	4428	3087	132	366	0.939	0.938	0.938	0.676
SVM	1226	BOW	4490	3217	108	198	0.962	0.962	0.962	0.806
SVM	1226	TF-IDF	4512	3185	115	201	0.961	0.961	0.960	0.802
SVM	4634	BOW	4417	3203	190	203	0.951	0.951	0.951	0.780
SVM	4634	TF-IDF	4449	3202	156	206	0.955	0.955	0.955	0.787
SVM	9456	BOW	4370	3165	241	237	0.940	0.940	0.940	0.741
SVM	9456	TF-IDF	4439	3212	135	227	0.955	0.955	0.955	0.776
RF	244	BOW	3256	4423	105	229	0.959	0.958	0.958	0.783
RF	244	TF-IDF	3233	4407	148	225	0.953	0.953	0.953	0.775
RF	1226	BOW	3322	4437	117	137	0.968	0.968	0.968	0.852
RF	1226	TF-IDF	3289	4429	157	138	0.963	0.963	0.963	0.840
RF	4634	BOW	3363	4403	110	137	0.969	0.969	0.969	0.854
RF	4634	TF-IDF	3333	4395	136	149	0.964	0.964	0.964	0.837
RF	9456	BOW	3354	4432	99	128	0.972	0.972	0.972	0.864
RF	9456	TF-IDF	3346	4417	135	115	0.969	0.969	0.969	0.865
10.1.3.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	3054	1929	94	416	0.916	0.907	0.908	0.518
NN	75	TF-IDF	3041	1982	93	377	0.921	0.914	0.915	0.553
NN	298	BOW	3146	1998	91	258	0.939	0.936	0.937	0.668
NN	298	TF-IDF	3178	1996	92	227	0.944	0.942	0.942	0.700
NN	1225	BOW	3249	1961	71	212	0.950	0.948	0.949	0.723
NN	1225	TF-IDF	3231	1942	90	230	0.944	0.942	0.942	0.697
NN	3432	BOW	3251	1956	65	221	0.950	0.948	0.948	0.716
NN	3432	TF-IDF	3177	1997	91	228	0.944	0.942	0.942	0.699

10.1.4 Soybeans

10.1.4.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	1849	5851	155	158	0.961	0.961	0.961	0.825
NN	244	TF-IDF	1776	5898	116	223	0.957	0.958	0.957	0.785
NN	1226	BOW	1824	5922	84	183	0.967	0.967	0.966	0.824
NN	1226	TF-IDF	1830	5906	106	171	0.965	0.965	0.965	0.828
NN	4634	BOW	1880	5916	70	147	**0.973**	**0.973**	0.973	0.857
NN	4634	TF-IDF	1835	5873	153	152	0.962	0.962	0.962	0.830
NN	9456	BOW	1891	5871	127	124	0.969	0.969	0.969	0.860
NN	9456	TF-IDF	1867	5913	98	135	0.971	0.971	**0.971**	**0.859**
SVM	244	BOW	5936	1602	101	374	0.941	0.941	0.939	0.678
SVM	244	TF-IDF	5887	1650	101	375	0.941	0.941	0.939	0.677
SVM	1226	BOW	5895	1797	109	212	0.960	0.960	0.960	0.795
SVM	1226	TF-IDF	5833	1812	150	218	0.954	0.954	0.954	0.779
SVM	4634	BOW	5788	1738	233	254	0.939	0.939	0.939	0.730
SVM	4634	TF-IDF	5856	1754	176	227	0.949	0.950	0.949	0.765
SVM	9456	BOW	5754	1737	246	276	0.935	0.935	0.935	0.710
SVM	9456	TF-IDF	5820	1764	175	254	0.946	0.946	0.946	0.745
RF	244	BOW	1819	5902	84	208	0.963	0.964	0.963	0.805
RF	244	TF-IDF	1822	5856	125	210	0.958	0.958	0.958	0.792
10.1.4.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	1642	3389	124	338	0.917	0.916	0.915	0.578
NN	75	TF-IDF	1648	3347	137	361	0.910	0.909	0.908	0.552
NN	298	BOW	1742	3318	157	276	0.921	0.921	0.921	0.626
NN	298	TF-IDF	1745	3333	122	293	0.925	0.924	0.924	0.622
NN	1225	BOW	1766	3324	149	254	0.927	0.927	0.927	0.651
NN	1225	TF-IDF	1781	3332	96	284	**0.932**	**0.931**	**0.930**	0.640
NN	3432	BOW	1751	3352	124	266	0.929	0.929	0.929	0.648
NN	3432	TF-IDF	1726	3376	121	270	0.929	0.929	0.929	0.645

10.1.5 Gluten

10.1.5.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	2274	5271	263	205	0.942	0.942	0.942	0.759
NN	244	TF-IDF	2390	5145	248	230	0.940	0.940	0.940	0.744
NN	1226	BOW	2376	5220	222	195	0.948	0.948	0.948	0.777
NN	1226	TF-IDF	2332	5264	202	215	0.948	0.948	0.948	0.768
NN	4634	BOW	2382	5252	227	152	0.953	0.953	0.953	**0.810**
NN	4634	TF-IDF	2379	5233	224	177	0.950	0.950	0.950	0.791
NN	9456	BOW	2412	5230	192	179	**0.954**	**0.954**	**0.954**	0.798
NN	9456	TF-IDF	2366	5257	188	202	0.951	0.951	0.951	0.781
SVM	244	BOW	5083	2296	334	300	0.921	0.921	0.921	0.670
SVM	244	TF-IDF	5103	2314	316	280	0.926	0.926	0.926	0.689
SVM	1226	BOW	5180	2337	264	232	0.938	0.938	0.938	0.738
SVM	1226	TF-IDF	5213	2315	239	246	0.939	0.939	0.939	0.734
SVM	4634	BOW	5152	2266	311	284	0.926	0.926	0.926	0.687
Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
------	-------	-------	-----	-----	-----	-----	-----	-----	-----	-------
NN	75	BOW	2258	2695	251	289	0.902	0.902	0.902	0.579
NN	75	TF-IDF	2254	2749	206	284	0.911	0.911	0.911	0.600
NN	298	BOW	2340	2674	218	261	0.913	0.913	0.913	0.618
NN	298	TF-IDF	2384	2675	190	244	0.921	0.921	0.921	0.645
NN	1225	BOW	2360	2711	210	212	0.923	0.923	0.923	0.671
NN	1225	TF-IDF	2375	2663	200	255	0.917	0.917	0.917	0.631
NN	3432	BOW	2332	2758	213	190	0.927	0.927	0.927	0.693
NN	3432	TF-IDF	2370	2699	188	236	0.923	0.923	0.923	0.654

10.1.5.2 Using allergenic ingredients only

10.1.6 Sulphur

10.1.6.1 Using list of ingredients
Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	271	4998	25	199	0.958	0.959	0.955	0.755
NN	75	TF-IDF	277	4974	26	216	0.954	0.956	0.951	0.736
NN	298	BOW	414	4982	12	85	0.982	0.982	0.982	0.890
NN	298	TF-IDF	399	4970	24	99	0.977	0.977	0.977	0.869
NN	1225	BOW	414	4998	15	66	0.985	0.985	0.985	0.912
NN	1225	TF-IDF	416	4996	20	61	0.985	0.985	0.985	0.916
NN	3432	BOW	434	4967	19	72	0.983	0.983	0.983	0.903
NN	3432	TF-IDF	421	4965	25	82	0.980	0.981	0.980	0.888

10.1.6.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
SVM	244	BOW	7514	261	2	236	0.971	0.970	0.966	0.805
SVM	244	TF-IDF	7492	272	1	247	0.970	0.969	0.964	0.797
SVM	1226	BOW	7442	424	77	69	0.982	0.982	0.982	0.919
SVM	1226	TF-IDF	7445	446	43	79	0.984	0.985	0.985	0.920
SVM	4634	BOW	7371	425	142	75	0.975	0.973	0.974	0.896
SVM	4634	TF-IDF	7427	420	94	72	0.980	0.979	0.979	0.912
SVM	9456	BOW	7443	396	96	78	0.979	0.978	0.978	0.906
SVM	9456	TF-IDF	7458	406	69	80	0.981	0.981	0.981	0.912
RF	244	BOW	346	7511	15	141	0.980	0.981	0.979	0.877
RF	244	TF-IDF	307	7512	6	188	0.976	0.976	0.973	0.842
RF	1226	BOW	430	7487	18	78	0.988	0.988	0.988	0.928
RF	1226	TF-IDF	395	7530	7	81	0.989	0.989	0.989	0.929
RF	4634	BOW	387	7525	8	93	0.987	0.987	0.987	0.918
RF	4634	TF-IDF	411	7510	6	86	0.988	0.989	0.988	0.925
RF	9456	BOW	418	7495	8	91	0.987	0.988	0.987	0.920
RF	9456	TF-IDF	420	7489	8	95	0.987	0.987	0.986	0.917
10.1.7 Eggs

10.1.7.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	1711	5900	171	231	0.949	0.950	0.950	0.764
NN	244	TF-IDF	1728	5857	205	223	0.946	0.947	0.947	0.761
NN	1226	BOW	1775	5996	82	160	0.970	0.970	0.970	0.843
NN	1226	TF-IDF	1798	5965	124	126	0.969	0.969	0.969	0.859
NN	4634	BOW	1819	5957	76	161	0.970	0.970	0.970	0.844
NN	4634	TF-IDF	1795	5981	99	138	0.970	0.970	0.970	0.856
NN	9456	BOW	1856	5949	89	119	0.974	0.974	0.974	0.874
NN	9456	TF-IDF	1821	5963	105	124	0.971	0.971	0.971	0.866
SVM	244	BOW	5875	1529	173	436	0.923	0.924	0.922	0.617
SVM	244	TF-IDF	5866	1525	148	474	0.922	0.922	0.920	0.598
SVM	1226	BOW	5912	1804	110	187	0.963	0.963	0.963	0.814
SVM	1226	TF-IDF	5972	1731	96	214	0.961	0.961	0.961	0.797
SVM	4634	BOW	5869	1728	229	187	0.949	0.948	0.948	0.782
SVM	4634	TF-IDF	5887	1776	168	182	0.956	0.956	0.956	0.802
SVM	9456	BOW	5811	1742	233	227	0.943	0.943	0.943	0.750
SVM	9456	TF-IDF	5903	1741	156	213	0.954	0.954	0.954	0.782
RF	244	BOW	1745	5944	107	217	0.959	0.960	0.959	0.792
RF	244	TF-IDF	1719	5918	129	247	0.953	0.953	0.953	0.763
RF	1226	BOW	1784	5973	69	187	0.968	0.968	0.968	0.825
RF	1226	TF-IDF	1769	5975	100	169	0.966	0.966	0.966	0.831
RF	4634	BOW	1786	5997	78	152	0.971	0.971	0.971	0.851
RF	4634	TF-IDF	1756	5999	87	171	0.968	0.968	0.968	0.833
RF	9456	BOW	1806	5959	81	167	0.969	0.969	0.969	0.838
RF	9456	TF-IDF	1792	5947	95	179	0.966	0.966	0.966	0.825
10.1.7.2 Nur allergene Zutaten

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	Fl	Alpha
NN	75	BOW	1619	3387	135	352	0.912	0.911	0.910	0.561
NN	75	TF-IDF	1657	3350	141	345	0.912	0.912	0.910	0.566
NN	298	BOW	1667	3476	111	239	0.936	0.936	0.936	0.680
NN	298	TF-IDF	1737	3399	85	272	0.936	0.935	0.934	0.656
NN	1225	BOW	1771	3414	85	223	0.944	0.944	0.943	0.707
NN	1225	TF-IDF	1682	3486	70	255	0.942	0.941	0.940	0.679
NN	3432	BOW	1777	3375	92	249	0.938	0.938	0.937	0.677
NN	3432	TF-IDF	1715	3424	101	253	0.936	0.936	0.935	0.669

10.1.8 Fish

10.1.8.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	Fl	Alpha
NN	244	BOW	280	7375	46	312	0.952	0.955	0.949	0.737
NN	244	TF-IDF	282	7358	79	294	0.949	0.953	0.948	0.741
NN	1226	BOW	406	7427	26	154	0.977	0.978	0.976	0.863
NN	1226	TF-IDF	389	7445	48	131	0.977	0.978	0.977	0.876
NN	4634	BOW	476	7423	28	86	0.985	0.986	0.985	0.919
NN	4634	TF-IDF	443	7431	24	115	0.982	0.983	0.982	0.896
NN	9456	BOW	486	7417	23	87	0.986	0.986	0.986	0.919
NN	9456	TF-IDF	490	7422	27	74	0.987	0.987	0.987	0.929
SVM	244	BOW	7450	72	24	467	0.928	0.939	0.918	0.633
SVM	244	TF-IDF	7474	55	5	479	0.938	0.940	0.916	0.630
SVM	1226	BOW	7408	376	50	179	0.970	0.971	0.970	0.837
SVM	1226	TF-IDF	7435	383	38	157	0.975	0.976	0.974	0.858
SVM	4634	BOW	7314	480	111	108	0.973	0.973	0.973	0.877
SVM	4634	TF-IDF	7364	461	83	105	0.976	0.977	0.976	0.887
SVM	9456	BOW	7357	436	116	104	0.973	0.973	0.973	0.879
SVM	9456	TF-IDF	7373	463	77	100	0.978	0.978	0.978	0.893
RF	244	BOW	217	7440	30	326	0.953	0.956	0.948	0.731
RF	244	TF-IDF	184	7443	10	376	0.952	0.952	0.941	0.700
10.1.8.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	189	4901	58	345	0.918	0.927	0.914	0.595
NN	75	TF-IDF	169	4902	56	366	0.913	0.923	0.909	0.576
NN	298	BOW	351	4925	43	174	0.959	0.960	0.958	0.776
NN	298	TF-IDF	382	4871	39	201	0.955	0.956	0.953	0.748
NN	1225	BOW	474	4879	11	129	0.975	0.975	0.973	0.839
NN	1225	TF-IDF	473	4910	13	97	0.980	0.980	0.979	0.875
NN	3432	BOW	436	4928	25	104	0.976	0.977	0.976	0.862
NN	3432	TF-IDF	469	4901	39	84	0.977	0.978	0.977	0.880

10.1.9 Nuts

10.1.9.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	1341	6372	113	187	0.962	0.963	0.962	0.813
NN	244	TF-IDF	1253	6400	132	228	0.954	0.955	0.954	0.777
NN	1226	BOW	1356	6386	108	163	0.966	0.966	0.966	0.834
NN	1226	TF-IDF	1287	6376	74	276	0.956	0.956	0.955	0.756
NN	4634	BOW	1354	6390	112	157	0.966	0.966	0.966	0.837
NN	4634	TF-IDF	1392	6353	117	151	0.966	0.967	0.966	0.841
NN	9456	BOW	1336	6397	96	184	0.965	0.965	0.965	0.820
NN	9456	TF-IDF	1348	6389	99	177	0.965	0.966	0.965	0.825
SVM	244	BOW	6384	1154	138	337	0.939	0.941	0.939	0.694
SVM	244	TF-IDF	6329	1194	110	380	0.938	0.939	0.937	0.671
SVM	1226	BOW	6387	1241	131	254	0.951	0.952	0.951	0.757
SVM	1226	TF-IDF	6353	1283	158	218	0.952	0.953	0.953	0.777

10.1.8.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	189	4901	58	345	0.918	0.927	0.914	0.595
NN	75	TF-IDF	169	4902	56	366	0.913	0.923	0.909	0.576
NN	298	BOW	351	4925	43	174	0.959	0.960	0.958	0.776
NN	298	TF-IDF	382	4871	39	201	0.955	0.956	0.953	0.748
NN	1225	BOW	474	4879	11	129	0.975	0.975	0.973	0.839
NN	1225	TF-IDF	473	4910	13	97	0.980	0.980	0.979	0.875
NN	3432	BOW	436	4928	25	104	0.976	0.977	0.976	0.862
NN	3432	TF-IDF	469	4901	39	84	0.977	0.978	0.977	0.880

10.1.9 Nuts

10.1.9.1 Using list of ingredients
10.1.10 Celery

10.1.10.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	842	6995	71	105	0.978	0.978	0.978	0.891
NN	244	TF-IDF	803	7019	53	138	0.976	0.976	0.976	0.869
NN	1226	BOW	809	7049	57	98	0.980	0.981	0.980	0.900
NN	1226	TF-IDF	831	6995	72	115	0.976	0.977	0.976	0.882
NN	4634	BOW	837	7034	50	92	0.982	0.982	0.982	0.907
10.1.10.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	715	4485	77	216	0.945	0.947	0.945	0.717
NN	75	TF-IDF	676	4503	105	209	0.941	0.943	0.941	0.714
NN	298	BOW	725	4495	52	221	0.950	0.950	0.950	0.721
NN	298	TF-IDF	706	4557	37	193	0.958	0.958	0.958	0.757
NN	1225	BOW	748	4530	46	169	0.960	0.961	0.960	0.780
NN	1225	TF-IDF	683	4577	47	186	0.957	0.958	0.956	0.761
NN	3432	BOW	762	4494	62	175	0.956	0.957	0.956	0.767
NN	3432	TF-IDF	722	4537	63	171	0.957	0.957	0.956	0.771
10.1.11 Mustard

10.1.11.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	987	6822	71	133	0.974	0.975	0.974	0.868
NN	244	TF-IDF	920	6874	57	162	0.972	0.973	0.972	0.848
NN	1226	BOW	911	6950	67	85	0.981	0.981	0.981	**0.908**
NN	1226	TF-IDF	967	6895	30	121	0.981	0.981	0.981	0.889
NN	4634	BOW	962	6913	49	89	0.983	0.983	0.983	0.910
NN	4634	TF-IDF	966	6889	45	113	0.980	0.980	0.980	0.891
NN	9456	BOW	961	6915	36	101	0.983	0.983	0.983	0.904
NN	9456	TF-IDF	931	6920	56	106	0.980	0.980	0.980	0.894
SVM	244	BOW	6923	796	60	234	0.962	0.963	0.962	0.791
SVM	244	TF-IDF	6894	795	76	248	0.958	0.960	0.958	0.776
SVM	1226	BOW	6846	927	74	166	0.969	0.970	0.969	0.841
SVM	1226	TF-IDF	6959	846	73	135	0.974	0.974	0.974	0.866
SVM	4634	BOW	6788	911	171	143	0.961	0.961	0.961	0.832
SVM	4634	TF-IDF	6850	897	112	154	0.966	0.967	0.967	0.840
SVM	9456	BOW	6756	911	188	158	0.957	0.957	0.957	0.816
SVM	9456	TF-IDF	6826	915	124	148	0.966	0.966	0.966	0.841
RF	244	BOW	881	6940	25	167	0.976	0.976	0.976	0.853
RF	244	TF-IDF	906	6922	28	157	0.977	0.977	0.977	0.860
RF	1226	BOW	941	6912	27	133	0.980	0.980	0.980	0.880
RF	1226	TF-IDF	908	6940	25	140	0.979	0.979	0.979	0.875
RF	4634	BOW	916	6961	15	121	0.983	0.983	0.983	0.893
RF	4634	TF-IDF	903	6973	25	112	0.983	0.983	0.983	0.898
RF	9456	BOW	936	6934	22	121	0.982	0.982	0.982	0.891
RF	9456	TF-IDF	929	6912	23	149	0.978	0.979	0.978	0.868

10.1.11.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	842	4392	45	214	0.953	0.953	0.951	0.731
NN	75	TF-IDF	850	4408	49	186	0.957	0.957	0.956	0.760
NN	298	BOW	891	4371	59	172	0.957	0.958	0.957	0.771
10.1.12 Peanuts

10.1.12.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	416	7410	55	132	0.976	0.977	0.976	0.873
NN	244	TF-IDF	387	7423	46	157	0.973	0.975	0.973	0.856
NN	1226	BOW	439	7433	39	102	0.982	0.982	0.982	0.902
NN	1226	TF-IDF	491	7384	53	85	0.982	0.983	0.983	0.912
NN	4634	BOW	431	7434	45	103	0.981	0.982	0.981	0.900
NN	4634	TF-IDF	470	7394	47	102	0.981	0.981	0.981	0.900
NN	9456	BOW	456	7425	46	86	**0.983**	**0.984**	**0.983**	**0.914**
NN	9456	TF-IDF	435	7416	57	105	0.979	0.980	0.979	0.895
SVM	244	BOW	7465	262	25	261	0.963	0.964	0.959	0.780
SVM	244	TF-IDF	7453	270	17	273	0.963	0.964	0.959	0.773
SVM	1226	BOW	7423	391	58	141	0.974	0.975	0.974	0.865
SVM	1226	TF-IDF	7392	416	57	148	0.973	0.974	0.973	0.860
SVM	4634	BOW	7275	394	200	144	0.959	0.957	0.958	0.823
SVM	4634	TF-IDF	7331	418	115	149	0.966	0.967	0.967	0.843
SVM	9456	BOW	7214	445	223	131	0.959	0.956	0.957	0.827
SVM	9456	TF-IDF	7368	396	120	129	0.969	0.969	0.969	0.858
RF	244	BOW	394	7424	22	173	0.975	0.976	0.974	0.849
RF	244	TF-IDF	349	7452	16	196	0.973	0.974	0.971	0.833
RF	1226	BOW	442	7400	22	149	0.978	0.979	0.977	0.869
RF	1226	TF-IDF	408	7444	22	139	0.979	0.980	0.979	0.877
RF	4634	BOW	402	7468	16	127	0.982	0.982	0.981	0.888
RF	4634	TF-IDF	369	7484	14	146	0.980	0.980	0.979	0.873
RF	9456	BOW	409	7431	20	153	0.978	0.978	0.977	0.866
RF	9456	TF-IDF	362	7470	21	160	0.977	0.977	0.976	0.860
10.1.12.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	370	4855	78	190	0.948	0.951	0.949	0.744
NN	75	TF-IDF	343	4896	78	176	0.951	0.954	0.952	0.760
NN	298	BOW	370	4900	66	157	0.957	0.959	0.958	0.785
NN	298	TF-IDF	349	4941	38	165	**0.962**	**0.963**	**0.961**	0.787
NN	1225	BOW	391	4884	57	161	0.959	0.960	0.958	0.784
NN	1225	TF-IDF	391	4889	69	144	0.960	0.961	0.960	**0.799**
NN	3432	BOW	386	4876	73	158	0.956	0.958	0.956	0.782
NN	3432	TF-IDF	413	4831	114	135	0.954	0.955	0.954	0.791

10.1.13 Sesame

10.1.13.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	439	7380	59	135	0.975	0.976	0.975	0.870
NN	244	TF-IDF	414	7385	83	131	0.972	0.973	0.973	0.866
NN	1226	BOW	443	7424	46	100	**0.981**	**0.982**	**0.981**	**0.902**
NN	1226	TF-IDF	468	7373	67	105	0.978	0.979	0.978	0.892
NN	4634	BOW	455	7412	28	118	0.981	0.982	0.981	0.892
NN	4634	TF-IDF	486	7353	72	102	0.978	0.978	0.978	0.893
NN	9456	BOW	454	7400	44	115	0.980	0.980	0.980	0.890
NN	9456	TF-IDF	494	7350	55	114	0.978	0.979	0.978	0.888
SVM	244	BOW	7388	327	48	250	0.960	0.963	0.959	0.782
SVM	244	TF-IDF	7404	357	45	207	0.967	0.969	0.966	0.816
SVM	1226	BOW	7346	424	83	160	0.968	0.970	0.969	0.843
SVM	1226	TF-IDF	7375	449	75	114	0.976	0.976	0.976	0.882
SVM	4634	BOW	7298	424	157	134	0.964	0.964	0.964	0.843
SVM	4634	TF-IDF	7290	464	108	151	0.967	0.968	0.967	0.843
SVM	9456	BOW	7256	409	199	149	0.958	0.957	0.957	0.820
SVM	9456	TF-IDF	7321	428	106	158	0.966	0.967	0.966	0.838
RF	244	BOW	411	7409	32	161	0.975	0.976	0.974	0.856
RF	244	TF-IDF	377	7416	29	191	0.972	0.973	0.970	0.833
RF	1226	BOW	444	7424	27	118	**0.981**	0.982	0.981	0.892
10.1.13.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	355	4866	67	205	0.948	0.950	0.947	0.732
NN	75	TF-IDF	388	4783	95	227	0.938	0.941	0.938	0.699
NN	298	BOW	386	4887	47	173	0.958	0.960	0.958	0.775
NN	298	TF-IDF	351	4899	60	183	0.953	0.956	0.953	0.759
NN	1225	BOW	415	4876	43	159	0.962	0.963	0.961	0.792
NN	1225	TF-IDF	409	4854	69	161	0.956	0.958	0.956	0.780
NN	3432	BOW	406	4865	66	156	0.958	0.960	0.958	0.786
NN	3432	TF-IDF	388	4848	92	165	0.951	0.953	0.952	0.766

10.1.14 Lupine

10.1.14.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	74	7836	9	94	0.986	0.987	0.985	0.917
NN	244	TF-IDF	85	7823	36	69	0.986	0.987	0.986	0.931
NN	1226	BOW	104	7824	25	60	0.989	0.989	0.989	0.941
NN	1226	TF-IDF	103	7817	42	51	0.988	0.988	0.988	0.944
NN	4634	BOW	102	7833	22	56	0.990	0.990	0.990	0.946
NN	4634	TF-IDF	104	7837	12	60	0.990	0.991	0.990	0.945
NN	9456	BOW	117	7824	27	45	0.991	0.991	0.991	0.953
NN	9456	TF-IDF	97	7839	23	54	0.990	0.990	0.990	0.947
SVM	244	BOW	7844	0	0	169	0.958	0.979	0.968	0.859
SVM	244	TF-IDF	7821	0	0	192	0.953	0.976	0.964	0.840
SVM	1226	BOW	7749	87	115	62	0.982	0.978	0.980	0.914
SVM	1226	TF-IDF	7824	77	36	76	0.984	0.986	0.985	0.925
SVM	4634	BOW	7729	90	120	74	0.979	0.976	0.977	0.903
10.1.14.2 **Using allergenic ingredients only**

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	75	BOW	52	5298	30	113	0.969	0.974	0.970	0.850
NN	75	TF-IDF	50	5325	13	105	0.975	0.979	0.974	0.866
NN	298	BOW	102	5290	27	74	0.980	0.982	0.980	0.897
NN	298	TF-IDF	70	5325	16	82	0.980	0.982	0.980	0.892
NN	1225	BOW	86	5320	16	71	0.983	0.984	0.983	0.905
NN	1225	TF-IDF	87	5327	18	61	**0.984**	0.986	0.984	**0.917**
NN	3432	BOW	88	5312	25	68	0.981	0.983	0.982	0.905
NN	3432	TF-IDF	108	5275	52	58	0.980	0.980	0.980	0.906

10.1.15 Molluscs

10.1.15.1 **Using list of ingredients**

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	58	7858	23	74	0.986	0.988	0.986	0.930
NN	244	TF-IDF	43	7878	12	80	0.987	0.989	0.986	0.928
NN	1226	BOW	71	7858	28	56	0.989	0.990	0.989	0.944
NN	1226	TF-IDF	79	7855	23	56	0.989	0.990	0.989	0.945
NN	4634	BOW	92	7855	21	45	0.991	0.992	0.991	0.955
NN	4634	TF-IDF	83	7868	8	54	0.992	0.992	0.991	0.951
NN	9456	BOW	93	7862	21	37	0.992	0.993	0.993	0.962
Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
------	-------	-------	----	----	----	----	-----	-----	-----	-------
NN	75	BOW	30	5361	11	91	0.978	0.981	0.977	0.883
NN	75	TF-IDF	20	5358	24	91	0.973	0.979	0.975	0.878
NN	298	BOW	57	5360	16	60	0.984	0.986	0.985	0.919
NN	298	TF-IDF	45	5365	8	75	0.983	0.985	0.982	0.904
NN	1225	BOW	62	5359	23	49	0.986	0.987	0.986	0.929
NN	1225	TF-IDF	63	5341	22	67	0.982	0.984	0.982	0.908
NN	3432	BOW	67	5354	9	63	0.986	0.987	0.985	0.918
NN	3432	TF-IDF	65	5357	29	42	0.986	0.987	0.987	0.935

10.1.15.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	9456	TF-IDF	108	7861	12	32	0.994	0.995	0.994	0.969
SVM	244	BOW	7901	0	0	112	0.972	0.986	0.979	0.905
SVM	244	TF-IDF	7887	0	0	126	0.969	0.984	0.976	0.893
SVM	1226	BOW	7854	51	30	78	0.984	0.987	0.985	0.925
SVM	1226	TF-IDF	7876	48	19	70	0.987	0.989	0.987	0.935
SVM	4634	BOW	7794	77	85	57	0.984	0.982	0.983	0.927
SVM	4634	TF-IDF	7849	66	46	52	0.987	0.988	0.988	0.942
SVM	9456	BOW	7826	72	58	57	0.986	0.986	0.986	0.934
SVM	9456	TF-IDF	7870	63	37	43	0.990	0.990	0.990	0.952
RF	244	BOW	19	7897	3	94	0.986	0.988	0.984	0.919
RF	244	TF-IDF	7	7876	5	125	0.978	0.984	0.977	0.893
RF	1226	BOW	49	7866	13	85	0.986	0.988	0.986	0.924
RF	1226	TF-IDF	58	7874	3	78	0.990	0.990	0.988	0.932
RF	4634	BOW	57	7893	3	60	0.992	0.992	0.991	0.948
RF	4634	TF-IDF	59	7895	6	53	0.992	0.993	0.992	0.953
RF	9456	BOW	69	7875	9	60	0.991	0.991	0.990	0.946
RF	9456	TF-IDF	59	7898	1	55	0.993	0.993	0.992	0.952

10.1.16 Crustaceans

10.1.16.1 Using list of ingredients

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	F1	Alpha
NN	244	BOW	95	7771	33	114	0.979	0.982	0.979	0.894
10.1.16.2 Using allergenic ingredients only

Algo	Vocab	TextT	TP	TN	FP	FN	Pr	Re	Fl	Alpha
NN	75	BOW	41	5275	28	149	0.959	0.968	0.960	0.809
NN	75	TF-IDF	45	5272	29	147	0.960	0.968	0.961	0.811
NN	298	BOW	101	5280	19	93	0.978	0.980	0.977	0.878
NN	298	TF-IDF	76	5285	23	109	0.973	0.976	0.972	0.857
NN	1225	BOW	138	5249	15	91	0.980	0.981	0.979	0.882
NN	1225	TF-IDF	105	5304	17	67	**0.984**	**0.985**	0.983	0.910
NN	3432	BOW	117	5289	25	62	0.983	0.984	**0.983**	**0.913**
NN	3432	TF-IDF	130	5269	24	70	0.982	0.983	0.982	0.903

10.1.16.2 Using allergenic ingredients only

- SVM: Support Vector Machine
- RF: Random Forest
- NN: Neural Network
- BOW: Bag of Words
- TF-IDF: Term Frequency-Inverse Document Frequency
- TP: True Positive
- TN: True Negative
- FP: False Positive
- FN: False Negative
- Pr: Precision
- Re: Recall
- Fl: F1 Score
- Alpha: Alpha Score

The table above shows the performance metrics for different algorithms using allergenic ingredients only. The metrics include TP, TN, FP, FN, Pr, Re, Fl, and Alpha values for each algorithm. The best performance is indicated by bold values.
10.2 Results Classifier Chains

Results obtained using neural nets and averaging over ten runs with randomized chain order.

Allergen	Voc	TT	P_{macro}	R_{macro}	F_{macro}	P_{micro}	R_{micro}	F_{micro}	Alpha
Milk	1226	BOW	0.968	0.970	0.969	0.969	0.969	0.969	0.880
Soybeans	1226	BOW	0.964	0.958	0.961	0.971	0.971	0.971	0.859
Gluten	1226	BOW	0.942	0.949	0.946	0.953	0.953	0.953	0.810
Sulphur	1226	BOW	0.963	0.932	0.947	0.988	0.988	0.988	0.934
Eggs	1226	BOW	0.967	0.963	0.965	0.974	0.974	0.974	0.874
Fish	1226	BOW	0.969	0.933	0.950	0.987	0.987	0.987	0.929
Nuts	1226	BOW	0.950	0.942	0.946	0.967	0.967	0.967	0.841
Celery	1226	BOW	0.965	0.947	0.956	0.982	0.982	0.982	0.907
Mustard	1226	BOW	0.960	0.953	0.956	0.981	0.981	0.981	0.908
Peanuts	1226	BOW	0.948	0.918	0.932	0.984	0.984	0.984	0.914
Sesame	1226	BOW	0.946	0.905	0.924	0.982	0.982	0.982	0.902
Lupine	1226	BOW	0.903	0.859	0.880	0.991	0.991	0.991	0.953
Molluscs	1226	BOW	0.948	0.885	0.914	0.995	0.995	0.995	0.969
Crustaceans	1226	BOW	0.947	0.868	0.903	0.993	0.993	0.993	0.961
Milk	4634	BOW	0.968	0.970	0.969	0.969	0.969	0.969	0.880
Soybeans	4634	BOW	0.964	0.958	0.961	0.971	0.971	0.971	0.859
Gluten	4634	BOW	0.942	0.949	0.946	0.953	0.953	0.953	0.810
Sulphur	4634	BOW	0.963	0.932	0.947	0.988	0.988	0.988	0.934
Eggs	4634	BOW	0.967	0.963	0.965	0.974	0.974	0.974	0.874
Fish	4634	BOW	0.969	0.933	0.950	0.987	0.987	0.987	0.929
Nuts	4634	BOW	0.950	0.942	0.946	0.967	0.967	0.967	0.841
Celery	4634	BOW	0.965	0.947	0.956	0.982	0.982	0.982	0.907
Mustard	4634	BOW	0.960	0.953	0.956	0.981	0.981	0.981	0.908
Peanuts	4634	BOW	0.948	0.918	0.932	0.984	0.984	0.984	0.914
Sesame	4634	BOW	0.946	0.905	0.924	0.982	0.982	0.982	0.902
Lupine	4634	BOW	0.903	0.859	0.880	0.991	0.991	0.991	0.953
Molluscs	4634	BOW	0.948	0.885	0.914	0.995	0.995	0.995	0.969
Crustaceans	4634	BOW	0.947	0.868	0.903	0.993	0.993	0.993	0.961

Allergen	Voc	TT	P_{macro}	R_{macro}	F_{macro}	P_{micro}	R_{micro}	F_{micro}	Alpha
Milk	1226	TF-IDF	0.968	0.970	0.969	0.969	0.969	0.969	0.880
Soybeans	1226	TF-IDF	0.964	0.958	0.961	0.971	0.971	0.971	0.859
Gluten	1226	TF-IDF	0.942	0.949	0.946	0.953	0.953	0.953	0.810
Food	Document ID	TF-IDF	0.963	0.932	0.947	0.988	0.988	0.988	0.934
----------	-------------	--------	-------	-------	-------	-------	-------	-------	-------
Sulphur	1226	TF-IDF	0.963	0.932	0.947	0.988	0.988	0.988	0.934
Eggs	1226	TF-IDF	0.967	0.963	0.965	0.974	0.974	0.974	0.874
Fish	1226	TF-IDF	0.969	0.933	0.950	0.987	0.987	0.987	0.929
Nuts	1226	TF-IDF	0.950	0.942	0.946	0.967	0.967	0.967	0.841
Celery	1226	TF-IDF	0.965	0.947	0.956	0.982	0.982	0.982	0.907
Mustard	1226	TF-IDF	0.960	0.953	0.956	0.981	0.981	0.981	0.908
Peanuts	1226	TF-IDF	0.948	0.918	0.932	0.984	0.984	0.984	0.914
Sesame	1226	TF-IDF	0.946	0.905	0.924	0.982	0.982	0.982	0.902
Lupine	1226	TF-IDF	0.903	0.859	0.880	0.991	0.991	0.991	0.953
Molluscs	1226	TF-IDF	0.948	0.885	0.914	0.995	0.995	0.995	0.969
Crustaceans	1226	TF-IDF	0.947	0.868	0.903	0.993	0.993	0.993	0.961
Milk	4634	TF-IDF	0.968	0.970	0.969	0.969	0.969	0.969	0.880
Soybeans	4634	TF-IDF	0.964	0.958	0.961	0.971	0.971	0.971	0.859
Gluten	4634	TF-IDF	0.942	0.949	0.946	0.953	0.953	0.953	0.810
Sulphur	4634	TF-IDF	0.963	0.932	0.947	0.988	0.988	0.988	0.934
Eggs	4634	TF-IDF	0.967	0.963	0.965	0.974	0.974	0.974	0.874
Fish	4634	TF-IDF	0.969	0.933	0.950	0.987	0.987	0.987	0.929
Nuts	4634	TF-IDF	0.950	0.942	0.946	0.967	0.967	0.967	0.841
Celery	4634	TF-IDF	0.965	0.947	0.956	0.982	0.982	0.982	0.907
Mustard	4634	TF-IDF	0.960	0.953	0.956	0.981	0.981	0.981	0.907
Peanuts	4634	TF-IDF	0.948	0.918	0.932	0.984	0.984	0.984	0.914
Sesame	4634	TF-IDF	0.946	0.905	0.924	0.982	0.982	0.982	0.908
Lupine	4634	TF-IDF	0.903	0.859	0.880	0.991	0.991	0.991	0.953
Molluscs	4634	TF-IDF	0.948	0.885	0.914	0.995	0.995	0.995	0.969
Crustaceans	4634	TF-IDF	0.947	0.868	0.903	0.993	0.993	0.993	0.961