РИНКОВІ АСПЕКТИ ЗМІН КЛІМАТУ ЄС

Зміни клімату є суттєвою проблемою, яка спричиняє як загрози, так і можливості в різних сферах життєдіяльності людини. Фінансовий сектор, як одна з найбільш чутливих галузей економіки, реагує на всі тенденції і зміни в навколишньому середовищі. Результати його діяльності безпосередньо залежать від змін факторів впливу на діяльність господарюючих суб’єктів, тому його завданням є відслідковувати як глобальні, так і локальні зміни на ринках, в оточенні та у внутрішньому просторі підприємств. Кількість катастроф, спричинених стихійними лихами, що пов’язані зі змінами клімату, зростає з кожним роком, що призводить до фінансових наслідків. Загальні страхові збитки від погодних явищ в ЄС досягли 0,1% ВВП, а загальні економічні втрати навіть перевищують цю суму. Метою статті є вивчення впливу змін клімату на ринок страхування життя за допомогою панельних даних 28 країн Європейського Союзу (ЄС) за останні 9 років. Це дослідження базується на панельній моделі, де сума премій за договорами страхування життя визначається як функція основоположного фактору зміни клімату – викидів парникових газів. Згідно емпіричними висновками, збільшення на тисячу тон викидів парникових газів призводить до збільшення суми премій на страхування життя на 0,1786 млн євро. Також було виявлено, що збільшення на тисячу тон викидів парникових газів призводить до збільшення смертей у Європейському Союзі на 1,0442 осіб, і ці наслідки є статистично значущими. Загалом, наші результати свідчать про те, що ринок страхування життя як і ринок non-life страхування залежний від змін клімату. Емпіричні результати цього дослідження дають ціну уяву про те, як викиди парникових газів впливають на смертність у Європейському Союзі, щоб забезпечити споживачам вигідні за вартістю варіанти, з кінцевою метою розширення послуг зі страхування життя.

Ключові слова: страхування життя, зміна клімату, вплив, Європейський Союз.

Постановка проблеми. Європейський Союз розглядає п’ять основних ризиків катастроф: повені, екстремальні погодні явища, такі як спека, промислові та ядерні аварії, а також лісові пожежі. Інші ризики, які прилягаються значна увага, включають епідемії, порушення критичної інфраструктури, тероризм, кіберзагрози, сейсмічні ризики та хвороби тварин і рослин [1].
При цьому перші відносяться до тих, що пов’язані зі зміною клімату. Це широке коло місцевих, регіональних та глобальних змін середніх моделей погоди, зумовлених в основному діяльністю людей протягом останніх 100 років [2]. Ці зміни спричиняють структурні та інші зміни в різних сферах суспільства, зокрема, фінансового сектора, який одним із перших реагує на глобальні виклики. Так, останні події пов’язані з поширенням коронавірусної хвороби (COVID-19) яскраво це продемонстрували: всі ринки в цілому відреагували різними за значенням, але однозначно суттєвими змінами у фінансових показниках [3; 4; 5; 6; 7; 8; 9; 10; 11; 12].

Важливою частиною фінансового сектора економіки є страховий сектор, який відіграє суттєву роль у фінансовій стабільність в цілому [13]. Страхування складається з двох основних підгруп: страхування, не пов’язане із життям, та страхування життя (non-life insurance and life insurance). Страхування, не пов’язане з життям (non-life insurance), як правило, має короткострокові контракти, тоді як страхування життя має довгострокові контракти [14, 15, 16]. Страхування життя — це договір між клієнтом і страховиком, за яким страховик виплачує вигоду клієнту після їх смерті або продовження життя в обмін на премію. При non-life страхуванні оформлюється страховий поліс для покриття майнових ризиків [17].

Страхування життя можна розуміти як довгострокову інвестицію, яка вимагає періодичних виплат. Цей тип страхування орієнтований на страховальників, які хочуть запобігти економічній катастрофі для своїх утриманців, коли вони помруть [18] або прагнуть забезпечити собі старість, якщо доживуть до закінчення терміну дії договору. Таким чином, він не лише служить захистом життєвого циклу, але й забезпечує потенційний вигідний вплив на пенсійний рівень у майбутньому [19] з метою досягнення прийнятного рівня фінансової безпеки [20]. Тому цей продукт продается часто як заощаджувальний або інвестиційний засіб.

Non-life охоплює страхування майна за короткий термін (зазвичай один рік) і забезпечує захист від збитків [21]. Функціонування окремих секторів економіки, таких як аграрний бізнес, нерухомість, напряму залежить від належної системи страхування ризиків пов’язаних з погодними явищами [22]. Відповідно більшість досліджень, присвящених темі страхування зосереджени на оцінці взаємозв’язку страхування non-life та змін клімату, хоча зміни в навколишньому середовищі мають суттєвий вплив також на здоров’я й життя людей, а також на ринок страхування життя, взаємозв’язки з яким не так глибоко досліджені.

Аналіз останніх досліджень і публікацій. Аналіз останніх досліджень свідчить, що в науковій літературі найчастише вивчаються питання взаємозв’язку страхування non-life та змін клімату, що виглядає логічним з огляду на об’єкти страхування. Безпосередній зв’язок між наслідками змін клімату такими як повені, урагани, пожежі, засухи та ризиками збитків завданих екстремальними погодними явищами, включаючи більш часті та більш інтенсивні спекотні хвилі, посуху, екстремальні опади, шторми та високий рівень сонячної радіації, із суттєвими збитками та витратами на відновлення, яка впливає на здоров’я й життя людей, а також на фінансове становище у страхових компаніях у вигляді пошкоджень чи знищення активів агрогосподарств [27; 28; 29; 30].

У дослідженні N. Ranger, S. Surminski [31] прогнозують, що валові обсяги премій страхування non-life в економіках країн БРІКС можуть зростати у розмірі від 5,4 до 12,3% на рік протягом наступного десятиліття залежно від країни. Вони також доводять, що збільшення багатства було важливим довгостроковим рухом зростання сукупного страхового попиту у країнах, що розвиваються.

Незважаючи на важливу роль, яку страхування відіграє у фінансовому захисті господарств від збитків, спричинених погодними явищами, що негативно впливають на добробут та соціально-економічне становище у світі, небагато дослідників вивчали ринок страхування життя в європейському контексті в умовах змін клімату. Тому нові докази щодо тенденцій у страхуванні...
життя та передбачуваної поведінки є критично важливими для інформаційної політики в цій галузі.

Дослідження [32] придає навіть увагу залежності між забобонами та витratами фермерів на страхування життя. Автори доводять, домогосподарства збільшують свої витрати на страхування життя на 18,5% протягом року, який відповідає знаку зодіаку того року, коли народились ці особи, а в інші роки таке збільшення не відбувається.

І хоча за останні 20 років (з 2000 до 2020) тривалість життя у світі збільшилась з 80,3 до 83,9 років [33], що могло б бути додатковим стимулом для придбання полісів страхування життя, проте надалі існують різні бар’єри для зростання цього ринку, зокрема, пов’язані з освітою, пенсійним віком, самотніми домогосподарствами, віком людей, шлюбом, відсутністю дітей на утриманні [34], самодисципліна [35, 36].

При цьому в літературі не заперечується, що зі зміною клімату зростають також ризики смертей від стихійних лих. Так, у світовому масштабі за останнє десятиліття стихійні лиха були причиною в середньому 0,1% від загальної кількості смертей. Приблизно 60 000 людей щороку померли внаслідок стихійних лих [37].

Franzke, C. L. E. та H. Torelló i Sentelles знаходять чіткі докази того, що режими зміни клімату впливають на схильність та кількість смертей [38]. У 2020 році було зареєстровано 389 стихійних лих, в результаті яких загинуло 15 080 людей, 98,4 мільйони людей постраждали і 171,3 мільярда доларів США становили економічні втрати від цих стихійних лих [39]. З них 41 випадок був зафіксований у Європі, що призвело до 42,9% всіх смертей за вказаний період в результаті таких подій [40]. Однією з найімовірніших причин сталася "Катріна", що обійшлося страховій галузі приблизно в 82,4 мільярда доларів США [41, 42]. Дослідження Мітчелла та ін. [43] знаходять чіткі докази того, що режими зміни клімату впливають на схильність та кількість смертей на всіх контinentах.

Однак залежність між зростанням ризиків змін клімату та розмірами премії за договорами страхування життя у сучасних дослідженнях вивчалась недостатньо, хоч на перший погляд виглядає логічним припущення, що зі зміною клімату і впливу його наслідків на якість життя людей змінюється і їх ставлення до управління ризиками і орієнтація на їх страхування шляхом співпраці зі страховими компаніями в цьому напрямі.

Метою статті є вивчення впливу змін клімату на ринок страхування життя на основі даних 28 країн ЄС протягом 2011–2019 років. Результати цього дослідження вперше були представлені на конференції в Лондоні у вересні 2021 року [23] і публікуються українською мовою вперше з метою донесення даних до читачів з різних країн з суттєвим опрацюванням матеріалу авторами цієї статті.

Викладення основного матеріалу дослідження. Хоча, залежно від країни учасниці Європейського Союзу, структура та динаміка в показниках страхування життя мають суттєві відхилення, країни ЄС представляють цікаву ситуацію для вивчення цих відносин, оскільки вони демонструють значні відмінності у структурі ринку страхування, а також у рівні фінансового розвитку. Враховуючи, що середній рівень проникнення страхування на внутрішній ринок Європи за останні роки складав 5,25% [24], ЄС можна розділити на кластери, як показано нижче [25, 26]:

1-й кластер: Люксембург, Ірландія, Великобританія, Данія, Франція, Італія. У цих країнах середній рівень проникнення складає вище 5,25%.

2-й кластер: Швеція, Португалія, Бельгія, Німеччина, Мальта, Іспанія, Фінляндія, Нідерланди, Кіп, Польща, Словаччина, Чехія, Австрія, Угорщина, Словенія, Греція. У цих країнах середній рівень проникнення нижує ніж 5,25%, але вище 1%.

3-й кластер – країни з низьким рівнем проникнення: Естонія, Хорватія, Литва, Латвія, Румунія, Болгарія. У цих країнах рівень проникнення менше 1%.
Це дослідження зосереджене на взаємозалежності змін клімату та ринку страхування життя і вносить наступний вклад у літературу в цьому напрямі. По-перше, досліджено ринок страхування життя Європейського Союзу за останні роки, завдяки чому виявлено відмінності у структурі ринку страхування в різних країнах ЄС. По-друге, через відсутність доказів це дослідження намагається розšíрити знання про вплив показників змін клімату на страхування життя в ЄС.

Важливо сприяти розвитку страхування життя з метою зниження ризиків настаяття фінансових труднощів, а також підвищення рівня фінансової безпеки для домогосподарств шляхом збільшення грошових накопичень. Надійним та ефективним інструментом для цього може бути страхування життя. Наскільки відомо авторам, ця стаття є однією з перших, яка кількісно аналізує вплив на сіднів змін клімату на проникнення страхування життя в Європейському Союзі. Емпіричні результати можуть допомогти страховим компаніям вживання заходів для збільшення ринку страхування життя через інформування про вплив змін клімату на якість життя та ризики смертності, які їх провокують.

Незважаючи на те, що це дослідження об’єднюєється з великою кількістю літератури, яка прагне пояснити зв’язок між проникненням страхування й іншими соціально-економічними показниками, ми заповнюємо прогалину в літературі, зосереджуючись на страхуванні життя як інструменту накопичення грошової вартості на майбутнє та досягнення прийнятного рівня фінансової безпеки для домогосподарств. У цьому дослідженні використовується значна вибірка (28 країн-членів ЄС) та часовий період (2011–2019), порівняно з кількома попередніми роботами, де досліджується проникнення страхування життя та non-life страхування разом.

Аналіз даних спирається на незбалансований набір даних з 28 країн Європейського Союзу за період 2011–2019 роки. Період був обраваний на основі наявності всіх рядів даних. Залежною зміною розглядається сума премій страхування життя (PREMIUS). Незалежними змінними, що представляють інтерес для цілей цього дослідження, є показники, що безпосередньо пов’язані з наслідками змін клімату: викиди парникових газів, відхилення температури, загальний показник смертності в ЄС та витрати на охорону навколишнього середовища (табл. 1).

Таблиця 1

Назва	Визначення	Абревіатура	Джерело
Загальні валові премії	Валові внески зі страхування життя	PREMIUS	OECD [44]
Викиди парникових газів	Парникові гази (CO₂, N₂O в CO₂ еквіваленті, CH₄ в CO₂ еквіваленті, HFC в CO₂ еквіваленті, PFC в CO₂ еквіваленті, SF₆ в CO₂ еквіваленті, NF₃ в CO₂ еквіваленті)	GGE (тисяч тонн)	Eurostat [45]
Відхилення температури	Середнє відхилення температури біля поверхні	TD (°C)	FAOSTAT [46]
Летальні випадки	Кількість смертей в ЄС	F	Eurostat [47]
Витрати на охорону навколишнього середовища	Рахунки витрат на охорону навколишнього середовища	EPEA (мільйон euro)	Eurostat [48, 49, 50]

У таблиці 2 представлено описова статистика для повного незбалансованого набору даних панелі з 28 країнами та 252 спостережень за часом. Стандартне відхилення PREMIUS становить 52994,88, що свідчить про те, наскільки різноманітна наша вибірка щодо страхування життя. За даними панелі, найменше премій сплачується в Болгарії (у середньому за досліджуваний період 40,16 million euro), а найбільше – у Великій Британії (231988,92 million euro за цей же період).
Таблиця 2

Змінні	Кількість обсервацій	Середнє значення	Середньоквадратичне відхилення	Мінімум	Максимум
PREMIUS	252	27224,75	52994,88	0,00	283789,44
GGE (Thousand tonnes)	252	160837,70	214224,73	2279,56	966107,30
TD (°C)	252	182542,92	229598,91	3236,00	954874,00
F	252	1,67	0,57	0,37	2,72
EPEA	252	6952,08	11863,89	0,00	54388,00

Джерело: власні розрахунки

У таблиці 3 представлена кореляційна матриця залежних та незалежних змінних. Спостерігається значний рівень кореляції між преміями страхування життя й викидами парникових газів, кількістю смертей, середнім відхиленням температури та витратами на охорону навколишнього середовища. Також прості співвідношення між модельними змінними показують, що викиди парникових газів сильно корелюють з кількістю смертей в ЄС.

Таблиця 3

Матриця кореляції	PREMIUS	GGE	F	TD	EPEA
PREMIUS	1				
GGE	0,72227	1			
F	0,747745	0,974313	1		
TD	-0,2295	-0,12268	-0,09253	1	
EPEA	0,667356	0,86541	0,86	-0,09109	1

Джерело: власні розрахунки

Розмір премії за договорами страхування життя (PREMIUS) в цьому дослідженні визначається як функція від викидів парникових газів (GGE) наступним чином:

$$PREMIUS_{i,t} = b_0 + b_1 * GGE_{i,t} + \varepsilon_{i,t}$$

де країни позначаються індексом і (i = 1, ..., N); період часу позначається індексом t (t = 1, ..., T); b1 - коефіцієнт регресора, оцінений за допомогою регресійного аналізу. Він показує, що за умови, що інші змінні залишаються фіксованими, збільшення на одну одиницю пояснювальної змінної збільшує (або зменшує) суму премій за договорами страхування життя на b одиниць. \(\varepsilon_{i,t} \) – член випадкової помилки, що охоплює всі фактори, що впливають на суму премій, але не входять до змінних специфікації моделі.

Очікується позитивний зв’язок між зростанням наслідків змін клімату та сумами премій за договорами страхування життя Європейською Союзом.

Модель у рівнянні (1) представляє загальну специфікацію, спрямовану на вивчення ролі показників змін клімату на ринок страхування життя, де сума премій розглядається як залежна змінна в той час як викиди парникових газів розглядаються як пояснювальна змінна.

Для виявлення залежності ринку страхування життя від змін клімату ми використаємо модель регресійного аналізу. Ми провели тести на рівні країн CC з використанням панельних даних.

Оскільки матриця кореляції (таблиця 3) показує також взаємозв’язок між кількістю смертей та викидами парникових газів ми також проаналізували цю залежність. Таким чином, кількість смертей у ЄС (F) розглядається як функція від викидів парникових газів (GGE) наступним чином:
де країни позначаються індексом і (i = 1, ..., N); період часу позначається індексом t (t = 1, ..., T); b1 - коефіцієнт регресора, оцінений за допомогою регресійного аналізу. Він показує, що за умови, що інші змінні залишаються фіксованними, збільшення на одну одиницю пояснювальної змінної збільшує (або зменшує) кількість смертей на b одиниць. εi,t – член випадкової помилки, що охоплює всі фактори, що впливають на кількість смертей, але не входять до змінних специфікації моделі.

У таблиці 4 наведені результати базової специфікації, зазначені у розділі 2. Відповідно до панельної моделі збільшення на тисячу тон викидів парникових газів призводить до збільшення суми премій на страхування життя на 0,1786 млн євро і цей ефект є статистично значущим на рівні 0%.

Таблиця 4

Емпіричні результати впливу викидів парникових газів на розмір премій на страхування життя
GGE
GGE
R-squared
Total panel (unbalanced) observations

Джерело: Результати дослідження. Примітка: Стандартна помилка в дужках; * p < 0,0001

У таблиці 5 наведені результати базової специфікації, зазначені у розділі 2. Відповідно до панельної моделі збільшення на тисячу тон викидів парникових газів призводить до збільшення смертей у Європейському Союзі на 1,0442 осіб і цей ефект є статистично значущим на рівні 0%.

Таблиця 5

Емпіричні результати впливу викидів парникових газів на кількість смертей
GGE
GGE
R-squared
Total panel (unbalanced) observations

Джерело: Результати дослідження. Примітка: Стандартна помилка в дужках; * p < 0,0001

Надійність наших висновків перевіряється шляхом запуску моделей на підвіборках, сформованих країнами CC відповідно до кластерів 1 та 2, зазначених у розділі 1. Країни з кластеру 3 мають незначний рівень проникнення страхування життя, тому його не варто використовувати для перевірки моделі, оскільки показники ринку страхування життя не є репрезентативними. Результати представлені в таблиці 6 і підтверджують попередні висновки. Загалом, наші результати свідчать про те, що зміни клімату впливають на розвиток ринку страхування життя і на розміри премій за договорами страхування життя на рівні 0% значущості.

Таблиця 6

Перевірка надійності – доповнена модель
PREMIUS – кластер 1
GGE
R-squared
Total panel (unbalanced) observations

Джерело: Результати дослідження. Примітка: Стандартна помилка в дужках; * p < 0,0001
Висновки. Метою статті було вивчення впливу змін клімату на розвиток ринку страхуванням життя в Європейському Союзі за допомогою панельних даних 28 країн ЄС за період 2011–2019 років. Були розглянуті чотири фактори: викиди парниковых газів, відхилення температури, загальний показник смертності в ЄС, а також витрати на охорону навколишнього середовища.

Результати панельної моделі підкреслюють значний позитивний зв’язок між викиди парникових газів та розміром премій за договорами страхування життя, виглядає логічним, оскільки зі зміною клімату і впливу його наслідків на якість життя людей змінюється і їх ставлення до управління ризиками і орієнтація на їх страхування шляхом співпраці зі страховими компаніями в цьому напрямі.

Згідно з емпіричними висновками, збільшення на тисячу тон викидів парникових газів призводить до збільшення суми премій на страхування життя на 0,1786 млн євро. Також було виявлено, що збільшення на тисячу тон викидів парникових газів призводить до збільшення смертей у Європейському Союзі на 1,0442 осіб, і ці наслідки є статистично значущими. Це, на приклад, означає, що при збільшенні середніх викидів парникових газів у Болгарії до середніх значень по Євросоюзу може призвести до додаткових 98019 смертей в цій країні.

Загалом, наші результати свідчать про те, що ринок страхування життя як і ринок non-life страхування залежний від змін клімату.

З огляду на ці висновки, пропонується звертати увагу домогосподарств на підтримання концепції сталого розвитку та інформування про можливості забезпечення фінансової безпеки завдяки механізмам страхування життя.

Емпіричні результати дають цінну уяву про те, як викиди парникових газів впливають на смертність у Європейському Союзі, щоб забезпечити споживачам вигідні за вартістю варіанти, з кінцевою метою розширення послуг зі страхування життя. Це дослідження, на скільки нам відомо, є першим дослідженням зв’язку між змінами клімату та розвитком ринку страхуванням життя в Європейському Союзі, і надзвичайно важливою темою в довгостроковій перспективі, враховуючи сучасні тенденції і прагнення ЄС до зменшення ризиків, пов’язаних зі зміною клімату.

Наше дослідження не позбавлене обмежень. По-перше, висновки, отримані в результаті цього дослідження, обмежені даними, на яких базуються результати. По-друге, аналіз використовує обмежену кількість змінних, що визначають зміни клімату. Ми були змушені піти на компроміс між визначальними змінними та повною наявністю даних для вибірки країн. Майбутні дослідження повинні включати інші змінні, які впливають на зміни клімату, та здійснити перевірку як тільки дані будуть доступні протягом тривалого часу. Це дослідження є продовженням наукових напрацювань і передбачає розвиток порушених у ньому проблем та зроблених висновків у напрямі концепції сталого розвитку, Індустрії 4.0, використання штучного інтелекту у прийнятті рішень, у тому числі щодо страхування життя.

References
1. The European Commission publishes the new report on disaster risks in the EU. URL: https://ec.europa.eu/echo/news/european-commission-publishes-new-report-disaster-risks-eu_en (accessed on 10 July 2021)
2. Bindoff, N.L., Stott, P.A., AchutaRao, K.M., Allen, M.R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., et al. (2013). Chapter 10 – Detection and attribution of climate change: From global to regional. In: Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Cambridge: Cambridge University Press
3. Vatamanyuk-Zelinska, U., & Melnychenko, O. (2020). The effectiveness of financial and economic regulation of land relations in the context of stimulating entrepreneurial activity in the regions of Ukraine. Problems and Perspectives in Management, 18(3), 11-27. http://dx.doi.org/10.21511/ppm.18(3).2020.02
4. Arif, M., Hasan, M., Alawi, S., & Naeem, M. A. (2021). COVID-19 and time-frequency connectedness between green and conventional financial markets. Global Finance Journal, 49, 100650. https://doi.org/10.1016/j.gfj.2021.100650

5. Dursun-de Neef, H.Ö., & Schandlbauer, A. (2021). COVID-19 and Lending Responses of European Banks. Journal of Banking & Finance, 106236. https://doi.org/10.1016/j.jbankfin.2021.106236

6. Hasan, I., N.Politisid, P., & Sharma, Z. (2021). Global syndicated lending during the COVID-19 pandemic. Journal of Banking & Finance, 106121. https://doi.org/10.1016/j.jbankfin.2021.106121

7. Melnychenko, O. (2021). The Energy of Finance in Refining of Medical Surge Capacity. Energies, 14(1), 210. https://doi.org/10.3390/en14010210

8. Moretto, A., & Caniato, F. (2021). Can Supply Chain Finance help mitigate the financial disruption brought by Covid-19? Journal of Purchasing and Supply Management, 100713. https://doi.org/10.1016/j.pursup.2021.100713

9. W. Goodell, J. (2020). COVID-19 and finance: Agendas for future research. Finance Research Letters, 35, 101512. https://doi.org/10.1016/j.frl.2021.101512

10. Szczygelski, J. J., Charteris, A., Bwanya, P. R., & Brzeszczyński, J. (2021). The impact and role of COVID-19 uncertainty: A global industry analysis. International Review of Financial Analysis, 101837. https://doi.org/10.1016/j.irfa.2021.101837

11. Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance Research Letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528

12. Zheng, M. (2021). Is cash the panacea of the COVID-19 pandemic: Evidence from corporate performance. Finance Research Letters, 102151. https://doi.org/10.1016/j.frl.2021.102151

13. Diallo, B., & Al-Mansour, A. (2017). Shadow banking, insurance and financial sector stability. Research in International Business and Finance, 42, 224-232. https://doi.org/10.1016/j.ribaf.2017.04.024

14. Balcilar, M., Gupta, R., Lee, Ch.-Ch., & Olasehinde-Williams, G. (2020). Insurance and economic policy uncertainty. Research in International Business and Finance, 54, 101253. https://doi.org/10.1016/j.ribaf.2020.101253

15. Flores, E., Carvalho, J. V. F., & Sampaio, J. O. (2021). Impact of interest rates on the life insurance market development: Cross-country evidence. Research in International Business and Finance, 58, 101444. https://doi.org/10.1016/j.ribaf.2021.101444

16. Möhlmann, A. (2020). Interest rate risk of life insurers: Evidence from accounting data. Financial Management, 1-26. https://doi.org/10.1111/fima.12305

17. Dickson, D. C. M., Hardy, M. R., & Waters, H. R. (2009). Actuarial Mathematics for Life Contingent Risks, Second Ed. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511800146

18. Fang, H., & Wu, Z. (2020). Life insurance and life settlement markets with overconfident policyholders. Journal of Economic Theory, 189, 105093. https://doi.org/10.1016/j.jet.2020.105093

19. Rabbani, A. G. (2020). Cash value life insurance ownership among young adults: The role of self-discipline and risk tolerance. Journal of Behavioral and Experimental Finance, 27, 100385. https://doi.org/10.1016/j.jbef.2020.100385

20. Melnychenko, O. Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security? Journal of Risk and Financial Management, 13(9), 191 (2020). https://doi.org/10.3390/jrfin13090191

21. B. Wason, & R.D. Hill. (1986). The Insurance Industry in Economic Development. New York University Press.

22. Doherty, E., Mellett, S., Norton, D., McDermott, T. K. J., O’Hora, D., & Ryan, M. (2021). A discrete choice experiment exploring farmer preferences for insurance against extreme weather events. Journal of Environmental Management, 290, 112607. https://doi.org/10.1016/j.jenvman.2021.112607

23. Melnychenko, O., Kalna-Dubinyuk, T., Vovchak, O., & Girchenko, T. (2021). The influence of climate change on the life insurance in the EU: A panel data approach. E3S Web Conf., 307, 07001. https://doi.org/10.1051/e3scconf/202130707001

24. Total premiums to GDP ratio as insurance penetration measure on the domestic market in Europe from 2004 to 2019. URL: https://www.statista.com/statistics/433054/insurance-premiums-to-gdp-ratio/

25. Gaganis, C., Hasan, I., & Pasiouras, F. (2020). Cross-country evidence on the relationship between regulations and the development of the life insurance sector. Economic Modelling, 89, 256-272. https://doi.org/10.1016/j.econmod.2019.10.024

26. Beck T., & Webb I. (2009). Economic, demographic, and institutional determinants of life insurance consumption across countries. World Bank Econ. Rev., 17, 51-88 (2003); Chui, A. C. W., Kwok, C. C. Y. Cultural practices and life insurance consumption: An international analysis using GLOBE scores. Journal of Multinational Financial Management, 19, 4, 273-290. https://doi.org/10.1016/j.mulfin.2009.02.001
27. Cannon, C., Gotham, K. F., Lauve-Moon, K., & Powers, B. (2020). The climate change double whammy: Flood damage and the determinants of flood insurance coverage, the case of post-Katrina New Orleans. *Climate Risk Management*, 27, 100210. https://doi.org/10.1016/j.crm.2019.100210

28. Ivčević, A., Statzu, V., Satta, A., Bertoldo, R. (2021). The future protection from the climate change-related hazards and the willingness to pay for home insurance in the coastal wetlands of West Sardinia, Italy. *International Journal of Disaster Risk Reduction*, 52, 101956. https://doi.org/10.1016/j.ijdrr.2020.101956

29. Leblois, A., Le Cotty, T., & Maître d'Hôtel, E. (2020). How Might Climate Change Influence farmers' Demand for Index-Based Insurance? *Ecological Economics*, 176, 106716. https://doi.org/10.1016/j.ecolecon.2020.106716

30. Crick, F., Jenkins, K., & Surminski, S. (2018). Strengthening insurance partnerships in the face of climate change – Insights from an agent-based model of flood insurance in the UK. *Science of The Total Environment*, 636, 192-204. https://doi.org/10.1016/j.scitotenv.2018.04.239

31. Ranger, N., & Surminski, S. (2013). A preliminary assessment of the impact of climate change on non-life insurance demand in the BRICS economies. *International Journal of Disaster Risk Reduction*, 3, 14-30. https://doi.org/10.1016/j.ijdrr.2012.11.004

32. Liu, Y., Zhang, Y., Chen, X., & Yang, Y. (2021). Superstition and farmers’ life insurance spending. *Economics Letters*, 206, 109975. https://doi.org/10.1016/j.econlet.2021.109975

33. Islam, M. R., Liu, S., Biddle, R., Razzak, I., Wang, X., Tiloca, P., Xu, G. Discovering dynamic adverse behavior of policyholders in the life insurance industry. Technological Forecasting and Social Change, 163, 120486 (2021). https://doi.org/10.1016/j.techfore.2020.120486

34. Strzelecka, A., Kurdyś-Kujawska, A., & Zawadzka, D. (2020). Application of multidimensional correspondence analysis to identify socioeconomic factors conditioning voluntary life insurance. Procedia Computer Science, 176, 3407-3417. https://doi.org/10.1016/j.procs.2020.09.056

35. Rabbani, A. G. (2020). Cash value life insurance ownership among young adults: The role of self-discipline and risk tolerance. *Journal of Behavioral and Experimental Finance*, 27, 100385. https://doi.org/10.1016/j.jbef.2020.100385

36. Shkodina, I., Melnychenko, O., & Babenko, M. (2020). QUANTITATIVE EASING POLICY AND ITS IMPACT ON THE GLOBAL ECONOMY. *Financial And Credit Activity: Problems Of Theory And Practice*, 2(33), 513-521. http://dx.doi.org/10.18371/jcaptive.v2i33.207223

37. Hannah Ritchie and Max Roser (2014) - "Natural Disasters". Published online at OurWorldInData.org. URL: https://ourworldindata.org/natural-disasters (accessed on 10 July 2021)

38. Franzke, C. L. E., & Torelló i Sentelles, H. (2020). Risk of extreme high fatalities due to weather and climate hazards and its connection to large-scale climate variability. *Climatic Change*, 162, 507–525. https://doi.org/10.1007/s10584-020-02825-z

39. Disaster Year in Review 2020 Global Trends and Perspectives. URL: https://cred.be/sites/default/files/CredCrunch62.pdf (accessed on 10 July 2021)

40. The Non-Covid year in disasters: Global trends and perspectives. URL: https://dial.uclouvain.be/pr/boreal/en/object/boreal%3A245181/datastream/PDF_01/view (accessed on 10 July 2021)

41. Global number of deaths from natural disasters 2000-2020. URL: https://www.statista.com/statistics/510952/number-of-deaths-from-natural-disasters-globally/ (accessed on 10 July 2021)

42. Most costly catastrophes to the insurance industry worldwide from 1970 to 2017. URL: https://www.statista.com/statistics/267210/natural-disaster-damage-totals-worldwide-since-1970/ (accessed on 10 July 2021)

43. Mitchell D., Heaviside C., Vardoulakis S., Huntingford C., Masato G., Guillod B. P., Frumhoff P., Bowery A., Wallom D., & Alle M. (2016). Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ Res Lett 11(7), 074006.

44. Insurance indicators. URL: https://stats.oecd.org/viewhtml.aspx?datasetcode=INSIND&lang=en (accessed on 10 July 2021)

45. Greenhouse gas emissions by source sector. URL: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_egg&lang=en (accessed on 10 July 2021)

46. Temperature change. URL: http://www.fao.org/faostat/en/#data/ET (accessed on 10 July 2021)

47. Population change - Demographic balance and crude rates at national level. Deaths total. URL: https://ec.europa.eu/eurostat/databrowser/view/demo_gind/default/table?lang=en (accessed on 10 July 2021)
48. Production of environmental protection services of general government by economic characteristics. URL: https://ec.europa.eu/eurostat/databrowser/view/env_ac_pepssg/default/table?lang=en (accessed on 16 July 2021)

49. Production of environmental protection services of corporations as specialist producers by economic characteristics. URL: https://ec.europa.eu/eurostat/databrowser/view/env_ac_pepsnp/default/table?lang=en (accessed on 16 July 2021)

50. Production of environmental protection services of corporations other than specialist producers by economic characteristics and NACE Rev. 2 activity. URL: https://ec.europa.eu/eurostat/databrowser/view/env_ac_pepssg/default/table?lang=en (accessed on 16 July 2021)

51. Bardash, S., & Osadcha, T. (2021a). Substantiation Of Theoretical Fundamentals Of Social Control In The Sphere Of Economic Management. Baltic Journal of Economic Studies, 7(1), 19-26. https://doi.org/10.30525/2256-0742/2021-7-1-19-26

52. Bardash, S., & Osadcha, T. (2021b). Ontology of Variability of Accounting for Financial Rent. Accounting and Finance, 2, 5-10. https://doi.org/10.33146/2307-9878-2021-2(92)-5-10

53. Bardash, S., & Osadcha, T. (2020a). INTEGRATED RENTAL CLASSIFICATION OF SUBJECTS OF ECONOMIC RELATIONS. European Cooperation, 2(46), 18-31. https://doi.org/10.32070/ec.v2i46.81

54. Bardash, S., & Osadcha, T. (2020b). PROBLEMS AND PROSPECTS OF TRANSFORMATION OF NATURAL RENT DISTRIBUTION ACCORDING TO THE PROVISIONS OF THE SUSTAINABLE DEVELOPMENT CONCEPT. European Cooperation, 1(45), 7-23. https://doi.org/10.32070/ec.v1i45.72

55. Kostyrko, R., Kosova, T., Kostyrko, L., Zaitseva, L., & Melnychenko, O. (2021). Ukrainian Market of Electrical Energy: Reforming, Financing, Innovative Investment, Efficiency Analysis, and Audit. Energies, 14, 5080. https://doi.org/10.3390/en14165080

56. Miskiewicz, R. (2020a). Internet of Things in Marketing: Bibliometric Analysis. Marketing and Management of Innovations, 3, 371-381. http://doi.org/10.21272/mni.2020.3-27

57. Miśkiewicz, R. (2020b). Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits. Energies, 13(22), 6106. https://doi.org/10.3390/en13226106

58. Miśkiewicz, R. (2021a). The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. Journal of Risk and Financial Management, 14(2), 59. https://doi.org/10.3390/jrfm14020059

59. Miśkiewicz, R. (2021b). The Impact of Innovation and Information Technology on Greenhouse Gas Emissions: A Case of the Visegrád Countries. Journal of Risk and Financial Management, 14(2), 59. https://doi.org/10.3390/jrfm14020059

60. Miskiewicz, R. (2017). Knowledge in the Process of Enterprise Acquisition. Progress in Economic Sciences, 4, 415-432. https://doi.org/10.14595/PES/04/029

61. Miskiewicz, R. (2018). Transparency in Knowledge Transfer Processes in an Enterprise. Przegląd Organizacji, 8, 10-17.

62. Miśkiewicz, R. (2019a). Challenges Facing Management Practice in the Light of Industry 4.0: The Example of Poland. Virtual Economics, 2(2), 37-47. https://doi.org/10.34201/ve.2019.02.02(2)

63. Miśkiewicz, R. (2019b). Implementing the Industry 4.0 Concept into the Economy on the Example of the Realloys Company. Zeszyty Naukowe. Organizacja i Zarządzanie/Politechnika Śląska, 141, 249-260.

64. Miśkiewicz, R. (2017a). Knowledge in the Process of Enterprise Acquisition. Progress in Economic Sciences, 4, 415-432. https://doi.org/10.14595/PES/04/029

65. Miśkiewicz, R. (2017b). Knowledge Transfer in Merger and Acquisition Processes in the Metallurgical Industry. Warsaw: PWN.

66. Melnychenko, O. (2020). Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security? Journal of Risk and Financial Management, 13, 191. https://doi.org/10.3390/jrfm13090191

67. Melnychenko, O. (2021). The Energy of Finance in Refining of Medical Surge Capacity. Energies, 14, 210. https://doi.org/10.3390/en14010210

68. Melnychenko, O. (2013). Economic analysis tools of electronic money and transactions with it in banks. Financial And Credit Activity: Problems Of Theory And Practice, 2(15), 59-66. https://doi.org/10.18371/fcapp.v2i15.25006

69. Melnychenko, O., & Чхеайло, А. (2015). Психологічні бар’єри у використанні електронних грошей. Współpraca Europejska, 3(3), 96–104.

70. Melnychenko O., & Hartinger R. (2017). Role of blockchain technology in accounting and auditing. European Cooperation, 9(28), 27 – 34
THE EU LIFE INSURANCE MARKET IN THE CONDITIONS OF CLIMATE CHANGE

Introduction. The issue of the climate impact on the life insurance market in the European Union has been little researched so far. Previous research is mainly focused on non-life insurance, which is directly linked to environmental changes, since the business's and the public losses from natural disasters and catastrophes are more direct and immediate. However, climate change also affects people's quality and life expectancy. Although over the past decades, the duration of life in the world has increased, during the same period there have been no catastrophic changes in nature. However, over time, the connection between natural disasters and human life may increase.

Purpose. The aim of this study is to access the tendencies of the EU life insurance market in the conditions of climate change.

Results. The panel model results show the substantial positive relations between the size of premiums and greenhouse gas emissions for life insurance contracts.

Originality. This article contributes to the scientific literature and fills the gap in the investigation of the climate change impact on the life insurance market in the EU.

Conclusions. Despite the paucity of data on the impact of climate change on the level and duration of human life in the long term, the results of our study indicate the growing interest in life insurance. It seems that this is not related to the people's desire to reduce the risk of premature death or with the understanding that climate change can increase the risk of death, but with the desire and ability to save money at a later time, thus increasing their financial security in future periods.

Keywords: life insurance, climate change, impact, the European Union.