Unsupervised morphological segmentation and clustering with document boundaries

Taesun Moon Katrin Erk and Jason Baldridge

Department of Linguistics
University of Texas at Austin
1 University Station B5100
Austin, TX 78712-0198 USA

Empirical Methods in Natural Language Processing 2009
Introduction
Morphology acquisition

Morphology acquisition involves one or more of . . .

- Segmentation of a word into constituent morphemes
 - inflectional: morphemes = morpheme + s
 - derivational: segmentation = segment + ation
 - indiscriminate: morphemes = morph + eme + s

- Clustering of words which are morphological variants
 cluster, clusters, clustered, clustering

- Generation of unobserved, inflected/derived word forms
 morpheme \rightarrow morphemes
Introduction

Goals

Aid language documentation

- Documentation of endangered languages before they disappear
- Analysis of language data: typically by human annotators
- Aim: aid analysis using unsupervised machine learning
- Morphological preprocessing important part of producing Interlinearized Glossed Text

Use on data from endangered languages

- Allow use out of the box
- Minimize number of parameters
- Work with small amounts of data
Introduction

Core ideas

The core ideas of the model are . . .

- filter affixes by significant co-occurrence
- use document boundaries to eliminate noise
Model
Overview

1. Generate affixes and collect statistics
 - Document based
 - Global

2. Filter Candidates

3. Cluster Affixes
 - Document based
 - Global

4. Cluster Words

Moon et al. (Univ. of Texas) Unsupervised Morphology EMNLP '09 5 / 1
Model
Stage I. Candidate Generation

- Build a trie from the lexicon of a document/all documents
- Split word into stem and affixes if paths after a branch are shorter than the path from the root to the branch
- Collect counts and pairwise counts for affixes

Figure: → neutral edges, → edges to affixes

Affixes (counts)
$ (2), s (1), d (2),
ed (1), ory (1)

Pairs (counts)
$/d (2), ory/e (1),
ory/ed (1), e/ed (1)
Model
Stage II. Candidate Filtering

Filtering rule

Only retain affix pairs which are significantly correlated under χ^2 test.

Sample counts: Doc

	ed	\simed
ing	10273	21853
\siming	27120	4119332

Table: $\chi^2=352678$

	le	\simle
s	122	132945
\sims	936	4044575

Table: $\chi^2=239.132$

Sample Counts: Global

	ed	\simed
ing	2651	1310
\siming	1490	150848

Table: $\chi^2=65101.6$

	le	\simle
s	20	12073
\sims	198	144008

Table: $\chi^2=0.631 (p = 0.427)$
Model
Stage III & IV

Stage III. Affix clustering
- Bottom up, minimum distance clustering
- Cluster membership is not exclusive and thus clusters are *not disjoint*

Stage IV. Word clustering
Cluster words iff
- the words occurred in the same document / global lexicon
- they have a shared path longer than some length in a trie defined for the document / global lexicon
- the affixes for these words belong to a cluster induced in stage iii.
Data

Training data

- two languages: English and Uspanteko
- for English, two data sets from NYTimes
 - one large (9M tokens), one small (187K tokens)
 - to simulate effect of small data sizes
- Uspanteko: Mayan language of K’ichee’ branch with approx. 1320 speakers
- for Uspanteko, an even smaller data set (50K words)

English gold data

evaluate on the *inflectional* morphology portion of CELEX.

Uspanteko gold data

- use gold data from documentation project
- manually evaluate subsample of output
Evaluation

Metric

Basic counts
- Calculate numbers for correct (C), inserted (I) and deleted (D) words.
- Take into account overlapping clusters
- Modification of Schone & Jurafsky (2001)

Scoring formula
Calculate precision (P), recall (R) and f-score (F):

\[
P = \frac{C}{C + I}
\]

\[
R = \frac{C}{C + D}
\]

\[
F = \frac{2PR}{P + R}
\]
Evaluation

Results: English

	MINI-NYT		NYT			
	P	R	F	P	R	F
Lingustica	64.30	**93.34**	76.15	47.50	**88.33**	61.77
Morfessor	45.2	87.8	59.7	63.6	69.2	66.3
Cand-D + Clust-G	69.41	91.42	78.91	46.00	79.81	58.36
Cand-D + Clust-D	83.47	80.36	81.89	59.02	74.50	65.86
Cand-G + Clust-G	73.44	88.72	80.36	61.81	82.98	70.85
Cand-G + Clust-D	**88.34**	77.95	**82.82**	**77.71**	70.24	**73.79**

Table: Benchmarks performed with **Lingustica** (Goldsmith, 2001) and **Morfessor** (Creutz and Lagus, 2007). (*Cand* = candidate generation; *Clust* = clustering; *D* = document-wise; *G* = global)
Evaluation

Results: Uspanteko (machine evaluation)

	P	R	F
Cand-G + Clust-D	95.42	47.89	63.78
Cand-G + Clust-G	92.03	50.01	64.80
LINGUISTICA	81.14	47.60	60.00
LINGUISTICA	84.15	52.00	64.28
MORFESSOR	28.12	**62.28**	38.75

Table: *Cand* = candidate generation; *Clust* = clustering; *D* = document-wise; *G* = global
Evaluation

Results: Uspanteko (expert evaluation)

	Acc.	FAcc.	Avg. Sz.
Cand-G + Clust-G	98.5	79.0	2.94
LINGUISTICA	96.0	85.0	2.64
MORFESSOR	85.3	55.0	4.8

Table: Human expert evaluated accuracy (Acc.), full cluster accuracy (FAcc.) and average cluster size in words (Avg. Sz.). Conducted on 100 non-singleton cluster subsamples. Full cluster accuracy is the number of clusters with no errors divided by subsample size (100)
Discussion I

Interaction of affix criterion and tries

- Global candidate generation more effective in filtering out spurious forms
- Only long words generate candidates in global candidate generation
- Chance of morphologically unrelated but orthographically similar short words co-occurring in the same document increases with data size
- Morphologically unrelated but orthographically similar words do generate candidates in global candidate generation but counts are suppressed
Summary

- Document clustering is effective in filtering out spurious members.
- Document candidate generation enhances recall for small data sets.
- Model outperforms Linguistica and Morfessor in terms of f-score and precision in all experiments.
- Model is simple, intuitive and flexible.
Future work

- Approach not suited for languages with more complex morphology, e.g. agglutinative languages
- Performance deteriorates as size of data increases
 - perhaps phenomenon restricted to languages with relatively impoverished morphological inventory
 - similar results observed for English with Linguistica here and Morfessor in Creutz and Lagus (2005).
 - approach seems feasible even with limited data for such languages