Marine connectivity in spatial conservation planning: analogues from the terrestrial realm

Elina A. Virtanen · Atte Moilanen · Markku Viitasalo

Abstract

Context Spatial prioritization is an analytical approach that can be used to provide decision support in spatial conservation planning (SCP), and in tasks such as conservation area network design, zoning, planning for impact avoidance or targeting of habitat management or restoration.

Methods Based on literature, we summarize the role of connectivity as one component of relevance in the broad structure of spatial prioritization in both marine and terrestrial realms.

Results Partially diffuse, directed connectivity can be approximated in Zonation-based multi-criteria SCP by applying hydrodynamic modelling, knowledge on species traits, and information on species occurrences and quality of habitats. Sources and destinations of larvae or propagules can be identified as separate spatial layers and taken into account in full-scale spatial prioritization involving data on biota, as well as economic factors, threats, and administrative constraints. While population connectivity is an important determinant of metapopulation persistence, the importance of marine connectivity depends on species traits and the marine environment studied. At one end of the continuum are species that occupy isolated habitats and have long pelagic larval durations in deeper sea areas with strong directional currents. At the other extreme are species with short pelagic durations that occupy fragmented habitats in shallow topographically complex sea areas with weak and variable currents.

Conclusions We conclude that the same objectives, methods, and analysis structures are applicable to both terrestrial and marine spatial prioritization. Marine spatial conservation planning, marine spatial planning, marine zoning, etc., can be implemented using methods originated in the terrestrial realm of planning.

Keywords Marine connectivity · Ecosystem services · Systematic conservation planning · Marine spatial planning · Zonation software
Introduction

Connectivity is a fundamental component of spatial ecology and a target of conservation in its own right, as evidenced by the field of connectivity conservation (Hanski and Ovaskainen 2000; Crooks and Sanjayan 2006; Kool et al. 2013). While generally agreed to be of relevance for conservation planning, accounting for population connectivity turns out to be very complicated at the operational level. The spatial scale of connectivity required is different for a home range, local population, regional metapopulation or for connectivity needed to allow range shifts following climate change (Hodgson et al. 2009; Mokany and Ferrier 2011; Gerber et al. 2014; Magris et al. 2014). Connectivity depends on temporal scale and can be different between daily movements, seasonal movements and long-term distribution changes (Kool et al. 2013). Further, connectivity is different depending whether it happens passively or actively, on the ground or through air or water, and whether the organism moves itself or is carried by others, as is the case for many invasive species carried by humans. Physical barriers may influence connectivity strongly, at times totally restricting connectivity between sub-populations. Scaling of connectivity is also highly specific to species-group, ranging from meters for sessile plants, algae, molluscs and certain corals (Shanks et al. 2003), to almost global for whales and some migratory birds.

Additional to ecological considerations, connectivity interacts with the human dimension. Land ownership may impact land use decisions, which needs to be accounted for when integrating connectivity in conservation planning. Pressures (threats) are often linked to the presence of people (destructive human activities), which disrupt connectivity of populations (Joppa et al. 2016). A form of human dimension connectivity is also the demand and equitable availability of ecosystem services, and associated accessibility (Kukkala and Moilanen 2017). The effectiveness of conservation actions may be impacted by the spatial aggregation (connectivity) of protected sites in relation to human pressures (Crooks and Sanjayan 2006; Kool et al. 2013). Overall, it follows that connectivity is conceptually highly relevant for management and planning decisions but dealing with connectivity operationally may appear confusing.

Connectivity has long been studied in the context of habitat fragmentation and, consequently, most applications of connectivity are from the terrestrial realm. For instance, the ISI Web of Science finds (in May 2019) over 20,000 studies on topic “(species or population) AND connectivity”, but when the qualifier “AND marine” is added to the search phrase, the number of found records declines to 2500. This discrepancy stems from practical obstacles for measuring dispersal rates in the marine environment, and from an earlier paradigm that marine populations are demographically “open” and therefore naturally highly connected. Long pelagic larval durations (PLDs of many weeks to over one year) in many marine species, coupled with predicted advection of passive or semi-passive larvae and propagules by oceanic currents, were taken to imply that long-distance dispersal among subpopulations may be a pervasive phenomenon (Cowen et al. 2000; Becker et al. 2007). A wealth of research has since confirmed this perception to be inaccurate, and that marine connectivity is often strongly modified by both demographic and behavioral traits of species and variation in oceanographic processes (Cowen and Sponaugle 2009; Olds et al. 2018; Balbar and Metaxas 2019, and references therein).

Consequently, connectivity can be a major determinant of marine community structure and ecosystem functioning. Many marine organisms have several life history stages which occupy different habitats, and exchange of individuals between sub-populations is necessary for metapopulation persistence (Cowen et al. 2007; Cowen and Sponaugle 2009; Watson et al. 2012). Marine connectivity studies have therefore investigated dispersal of propagules, such as seeds, spores, eggs, plant fragments, larvae and juveniles (Jones et al. 2009; Harrison et al. 2012; Green et al. 2015; Selkoe et al. 2016; Johannesson et al. 2018), estimated connectivity in a changing environment (Gerber et al. 2014; Magris et al. 2014; Coleman et al. 2017; Jonsson et al. 2018), and the relationship between estuarine and coastal systems and land-sea interface (Vasconcelos et al. 2011; Tétard et al. 2016; Perez-Ruzafa et al. 2019). Especially for fragmented populations the key question is whether the habitat is large enough for the population to be self-seeding, or if propagules from adjacent sub-populations are needed for local population maintenance. This question has been addressed by a large number of studies where the importance of population connectivity on the functionality of marine protected
area networks has been studied (e.g. Palumbi 2003; Christie et al. 2010; Berglund et al. 2012; Soria et al. 2014; Green et al. 2015; Balbar and Metaxas 2019; Ortodossi et al. 2019).

Planning of multiple uses of ocean space conceptually intertwines with similar questions in the terrestrial realm. Which areas can be reserved for conservation and which for, e.g., offshore energy production or marine mineral extraction? Where building of a port or a major bridge jeopardizes marine biodiversity and its ecosystem services? Such questions of marine spatial planning benefit from practical tools and analyses that support decision making. For instance, the Atlantis ecosystem model considers biophysical, economic and social aspects (Link et al. 2010), The Cumulative Impacts Assessment (Menegon et al. 2018) and Cumulative Human Impact (Halpern et al. 2019) tools allow for estimation of multiple pressures to marine ecosystems. The Integrated Valuation of Ecosystem Services and Tradeoffs tool (InVEST) aims to estimate how ecosystem services are influenced by human activities and climate (Nelson et al. 2009), and Marxan (Ball et al. 2009) implements target-based planning, where a representation target level is specified for each species/habitat and an optimal minimum cost solution is then sought.

What then differentiates marine connectivity from its terrestrial counterpart? Many marine species have a larval stage with weak or negligible swimming capabilities, and connectivity in the marine environment is therefore foremost physically driven, dictated by the horizontal and vertical movement of the water (ocean currents, wave action, upwelling, etc.), which may vary inter-annually, seasonally and in short term. Rapidly developing field of research, that aims to resolve how physically driven connectivity should be taken into account in designating marine protected area networks, is the graph theoretic approach and network analysis (Treml et al. 2008; Kininmonth et al. 2011, 2019; Krueck et al. 2017; Treml and Kool 2018; Fox et al. 2019; Friesen et al. 2019), which can be coupled with oceanographic and biophysical modelling that integrates the physics of the ocean and the characteristics of species (Watson et al. 2012; Thomas et al. 2014; Lequeux et al. 2018), including the effects of larval traits and habitat quality (Berglund et al. 2012; Corell et al. 2012; Jonsson et al. 2016; Magris et al. 2016).

There is always a tradeoff between the level of realism and applicability of approaches to spatial conservation planning. In some cases there may be sufficient information for the credible application of some form of direct spatial population dynamical modelling (Burgess et al. 2014; Lett et al. 2015; Treml et al. 2015; Kininmonth et al. 2019). In many cases, data for the reliable parameterization and optimization on top of species-specific meta-population dynamical models are not available, and some simpler approach is called for. Therefore, the present work concerns generic approaches to spatial prioritization based on distribution data, the most common type of data available for spatial planning.

Two major generic approaches to spatial conservation planning are embodied by the software packages Marxan (Ball et al. 2009) and Zonation (Moilanen et al. 2005; Lehtomaki and Moilanen 2013), which are different both conceptually and operationally. At the very highest level of description, these approaches can be characterized as follows. Marxan implements target-based planning, in which the minimum performance characteristics of the solution are specified in advance for all biodiversity features (the targets) and the emergent property of optimization is the budget needed to satisfy targets. Zonation on the other hand implements a set of principles that apply to an arguably well-justified, balanced and cost-efficient priority ranking solution. The balance between species (the coverage of each species) is an emergent outcome of analysis and the budget can be selected post-hoc. Marxan operates on polygons (pre-defined planning units) whereas Zonation operates on high-resolution grids that model, among other things, variable habitat quality and costs. Recently, Marxan Connect implemented a host of graph-theoretic connectivity (Minor and Urban 2007) measures into Marxan analysis (Daigle et al. 2018). There are examples of the use of Marxan and Marxan Connect in the marine context (Beger et al. 2010; Weeks 2017; Daigle et al. 2018), but we will not repeat this previously published material here. Rather, we draw from terrestrial parallels and investigate the role of the connectivity methods of Zonation (version 4) in marine spatial prioritization, which is poorly covered by prior publications. In contrast to the graph-theoretic methods of Marxan, most of these methods are based on kernel-based, declining by distance, connectivity calculations on high-resolution grids.
We start by outlining the role of connectivity in spatial prioritization and the role of marine partially directed diffuse connectivity among other forms of connectivity. We then summarize how forms of connectivity can be incorporated together with other factors such as economics, human pressures and administrative constrains, in Zonation-based multi-criterion MPA network design. An operational solution, drawing on the factors accounted by (Jonsson et al. 2020) in the Baltic Sea, is suggested for the approximation of diffuse marine connectivity. The practical considerations we identify, and the conclusions we make, are broadly relevant for marine spatial planning and marine spatial conservation prioritization in general.

Data requirements for a balanced solution in SCP

Before considering the role of connectivity in SCP, it is useful to consider different data types common in spatial prioritization, which commonly uses hundreds or thousands of spatial layers as inputs. These data broadly represent ecology, economics, threats and administrative restrictions (Fig. 1) (Kujala et al. 2018a):

1. **Ecology.** Primary ecological data describes distributions of species and habitats (ecosystems, biotopes, communities). Closely associated is ecosystem service (ES) provision, which arises from species and habitats, but with ES there are further considerations of supply and demand and of equitable availability (Kukkala and Moilanen 2017). Obviously, species, habitats and ES are all relevant both in the terrestrial and the marine realms.

2. **Economics.** Incorporating economical costs facilitates cost-effective planning and promotes societal acceptability of conservation efforts (Naidoo et al. 2006; Kukkala and Moilanen 2013). Costs can be divided into direct costs of conservation and opportunity costs, which represent lost income by stakeholders due to, e.g., fisheries no-take zones. Again, costs are relevant for both terrestrial and marine applications.

3. **Threats,** a.k.a. pressures, stressors, drivers represent human activities that degrade the environment and which should be counteracted (Joppa et al. 2016). Threats can be stoppable, such as resource extraction, partially stoppable, such as human disturbance, and effectively unstoppable by local action, such as waterborne pollution or climate change. Stoppable threats can be prioritized for action whereas unstoppable threats cannot be addressed through protected area network design. Again, threats are relevant for both realms.

4. **Administrative restrictions,** including land (water) ownership, or areas restricted for specific activities, such as nature conservation, energy production, military activities or aviation, etc. These data typically constrain the spatial pattern that can be prioritized for action. Again, this category of data is relevant for both terrestrial and marine applications, which brings about an interim conclusion that there is nothing fundamentally different between the broad requirements and data demands of SCP in terrestrial and marine realms.

From Fig. 1 it becomes evident that connectivity is an important factor that comes in numerous forms and depends on the amount, quality and spatial distribution of habitat, which are the primary drivers of biodiversity persistence. At the same time connectivity influences other biodiversity features, such as ecosystem services. It is however as evident that connectivity is only one factor influencing spatial prioritization. A host of societal considerations under the categories economics, threats and administrative restrictions also impact the prioritization, and connectivity is also intertwined with societal forms of connectivity, accessibility (connectivity) of ES to people.

Forms of connectivity and implementation options relevant for marine SCP

Connectivity has a fundamental role in both terrestrial and marine spatial ecology, since it links structural aspects of the landscape to the demography and persistence of populations. From the perspective of a species, the two most elemental aspects of landscape (and seascape) structure are habitat area and quality, which determine the carrying capacity of the landscape (Hodgson et al. 2009). Connectivity follows from habitat aggregation (opposite of fragmentation)
and influences via metapopulation dynamics the fraction of carrying capacity utilized (Hodgson et al. 2009). It is broadly accepted that sparse and fragmented habitat networks may lose connectivity and consequently metapopulation viability (e.g. Hanski and Ovaskainen 2000). Whether a habitat network is occupied by a species is much dependent on the density of habitat across the landscape (e.g. Hanski and Ovaskainen 2000).

Connectivity is usually considered as an ecological process, determined by an interaction between demographic and behavioral parameters of species and their physical environment. For the purposes of a multicriteria analysis supporting SCP, also other forms of connectivity need to be accounted for Table 1 (the three left-hand columns) summarizes forms of marine and terrestrial connectivity relevant either from the ecological or societal perspective.

It is notable that most forms of connectivity are common to both environments, except for the final one, partially directed diffuse connectivity (PDDC). In the terrestrial environment, seeds, spores and other propagules may be carried laterally by winds, but the direction is rarely strongly directed. In the marine environment, in contrast, there are several types of directed processes including oceanic currents, different scale gyres, wind-induced water movement, tides, river discharges, and coastal upwelling, that may transport propagules of marine organisms hundreds of meters vertically and tens or hundreds of kilometers laterally (Shanks et al. 2003; Jones et al. 2009; Harrison et al. 2012). The same processes also facilitate the spread of less welcomed agents, such as contaminants and pathogens (Kough et al. 2014).

In Table 1, we also summarize how the different forms of connectivity can be implemented in SCP (the three right-hand columns). The decision support tool expanded out in detail in the diagram: other higher-level factors could be similarly expanded as well.
Table 1 Forms of connectivity and implementation options for marine connectivity in SCP. Options for implementing connectivity during (i) data preprocessing, possibly using external tools, (ii) during Zonation priority ranking analysis, and (iii) after analysis in post-processing either within or outside Zonation. A question mark = no satisfactory implementation is known to us. Techniques marked L&M13 are summarized and original citations can be found e.g., in Lehtomaki and Moilanen (2013)

Type of connectivity	Terrestrial, marine, or both	Explanation	Implementation in SCP		
Primarily ecological connectivity needs					
Structural contiguity	Both	Size of structurally connected patch, associated with home range size, minimum viable population size (habitat area) and local population persistence (e.g. Hanski and Ovaskainen 2000)	Pre-processing	Use of large enough selection units	
			During analysis	Boundary length penalty. As by-product of functional connectivity methods. (L&M13)	
			Post-processing	Filtering of too small areas	
Functional, scaled (declining) by distance	Both	Declining-by-distance, species-specific scale of landscape use. Also relevant for species with passive dispersal such as wind dispersed seeds or marine species larvae. Can be scaled, e.g., according to home range size, area needed by local population or dispersal capability of species	Pre-computed current velocity fields with connectivity patterns	Corridor-Zonation (Pouzols and Moilanen 2014)	
Path-like; corridors	Both	Connectivity guided through very specific habitats, which can be corridor-like remnants of previously more widespread habitats. Dispersal may be blocked by barriers (motorways, artificial structures in seascape, physical barriers (anoxia, thermocline, etc.). (Tétard et al. 2016; Bishop et al. 2017; Johannesson et al. 2018)	Precomputed connectivity surfaces, Circuitscape, etc. Forcing of known bottlenecks into solution	Spatial overlay by corridors developed elsewhere	
Strongly directed	Terrestrial (riverine) marine	Water flows downriver; sea areas with strong and consistent marine currents	Precomputed current velocity fields with connectivity patterns	Zonation freshwater connectivity (L&M13)	
			Inclusion of large river segments, including headwaters, into conservation plan		
Type of connectivity	Terrestrial, marine, or both	Explanation	Implementation in SCP		
----------------------	-----------------------------	-------------	----------------------		
Diffuse 2D, directed by landscape structure and pattern of habitats	Both	Diffuse movements of animals guided by habitat pattern and preference as well as variable movement rates and mortalities of species in different habitats (Ovaskainen et al. 2019)	See next section		
Connectivity interactions	Both	Interaction e.g. between predator and prey, present and future distribution, or (negative interaction) between species and disturbance (threat, pressure) (Rayfield et al. 2009)	GIS overlays or pairwise connectivity transforms	Pairwise connectivity interaction (positive or negative) (L&M13)	
Network-level connectivity	Both	Maintenance of sufficiently high regional habitat density that viable metapopulations are preserved	Inclusion of data that emphasizes landscape-level key locations for connectivity	Arises from application of functional connectivity in analysis	Delineation of dense enough (however defined) networks of areas
Connectivity in environmental space (as opposed to geographic space)	Both	Based on environmental similarity in addition to geographic proximity. Relevant for long-distance, long-time, distributional changes following, for example, environmental change due to climate warming. May require large corridor-like elements with environmental gradients (Mokany and Ferrier 2011)	?	e.g. specialized quantitative analysis methods (Mokany and Ferrier 2011)	Post-hoc overlay with corridors over suitably chosen environmental gradients
Partially directed, diffuse, possibly 3D	Marine	Partially directed, diffuse, connectivity due to physical drivers, e.g. ocean currents, waves, winds, tides and river discharges. Characteristic to marine environments and most relevant to species with passive dispersal	See next section		
specifically referenced here is Zonation, which develops a balanced spatial priority ranking through the full analysis area and is applicable both to conservation planning and ecological impact avoidance. Zonation can balance many biodiversity features, habitat quality, multiple cost components, threats and administrative constraints. Also multiple forms of connectivity, including several declining by distance, kernel-based methods have been available since 2005 (see Lehtomaki and Moilanen 2013 for references). A more thorough review of Zonation is available in a recent marine application based on extensive data in the Finnish waters (Virtanen et al. 2018), a recent global analysis that includes both terrestrial and marine areas (Di Minin et al. 2019) and in a summary of Zonation methods (Lehtomaki and Moilanen 2013).

The main conclusion from Table 1 is that many terrestrial connectivity methods are transferable to the marine realm and therefore applicable to marine SCP, and practical methods to account for them exist in spatial prioritization tools, such as Zonation. The implementation of the connectivity forms typical for the marine realm, PDCC, in SCP is explained in more detail in the next section.

Type of connectivity	Terrestrial, marine, or both	Explanation	Implementation in SCP	
Primarily human-motivated connectivity needs				
Logistic	Both	Size and connectivity requirements influence conservation area establishment and management. A few large PAs are less expensive to design and maintain than many small (Ball et al. 2009). Such design also contributes to cost-efficiency and hence social acceptability of conservation (Fernandes et al. 2005)	Use of large enough selection units, Choice of analysis area itself	Additional aggregation via the BLP, Filtering of areas by size and possibly other factors
Accessibility	Both	Accessibility of ES to people, associated with the connectivity between supply and demand	Utilize precomputed relative accessibility surface	e.g., use accessibility surface as feature, or in a connectivity interaction or in condition transform
Negative (threats)	Both	Spatially correlated degradation of habitat quality due to some pressure such as pollution, hunting, or invasive species	Inclusion of threat layer as negatively weighted feature (for avoidance)	Negative connectivity interaction (L&M13)
Equitable availability (e.g., ES)	Both	Implies dispersed availability of ES (Kukkala and Moilanen 2017; Verhagen et al. 2017)	Separate feature layers for sub-areas (Verhagen et al. 2017)	Analysis with automated administrative units division (Pouzols et al. 2014)
				Selection of regional priority areas for biodiversity and ES
On the approximation of partially directed diffuse connectivity

A simple qualitative approach to incorporate PDDC in spatial prioritization is to identify and utilize marine habitats (e.g. reefs, inhabited by many sessile macroalgae and invertebrates, or underwater sandbanks, occupied by seagrasses) that are important sources and/or destinations of dispersal propagules (Jonsson et al. 2020). Spatial data on these habitats can then be added into analysis that elevates priorities of these regions in SCP. Expressed in a more recipe-like manner in the context of Zonation:

0. **Starting point.** Develop spatial prioritization setup that includes all normal components relevant for your application, including some combination of distributions of biodiversity features (species, habitats, ecosystem services), costs, opportunity costs, threats, administrative restrictions, and ecological parameters such as connectivity (Lehtomaki and Moilanen 2013; Kukkala and Moilanen 2017; Kujala et al. 2018a).

1. Add distributions that approximate PDDC (described below), to elevate priorities in areas relevant for it. Remember that PDDC is probably only relevant for a subset of features included in analysis.

2. Run analysis as usual, for a recent application in the marine realm see Virtanen et al. (2018).

Here, the key is the layers (spatial grids) that represent the approximation for PDDC. Develop two or three layers per species, species group, or habitat, as relevant for your application. These layers are:

(i) The distribution map for the feature, a basic building block of spatial prioritization. This layer typically models local habitat quality on continuous scale, possibly using some statistical distribution modelling technique (for a review see e.g. Norberg et al. 2019). This layer represents where the feature is; you cannot protect species or habitats where they do not occur. Note that for most species effects of habitat quality are much stronger than effects of connectivity and that connectivity derives from habitat quality; there is no connectivity without quality (Hodgson et al. 2009). Persistence of populations is of course positively correlated with both area and habitat quality.

(ii) Possibly add separate “source map” that represents the outflow of dispersing larvae or individuals (e.g. Jonsson et al. 2020). At first approximation this could be the same map as the previous one. However, a separate feature layer can be developed to allow distinction between local habitat quality and export of propagules (converse of retention), which depends on the structural complexity of the seascape and hydrodynamic flows in the region. Development of this layer will utilize a biophysical flow model, described below.

(iii) Add map of local habitat quality (layer i) weighted by inflow of dispersing propagules. These locations are well connected to the network. Also, this layer is developed using the flow model.

To obtain a more quantitative estimate for the effects of biophysically driven connectivity, (i) a hydrodynamic model projecting particle trajectory, (ii) information on larval longevity, and other relevant traits, and (iii) habitat quality maps for the species of interest are needed. Of these, the hydrodynamic information is compulsory. Presence–absence habitat distribution data and a generic decay function can be used if more detailed information on larval traits and habitats is missing. Based on this information, input PDDC layers are produced in the following manner.

Depending on local habitat quality, assign each grid cell a number of dispersing propagules. Use the external flow model to diffusely disperse those propagules across the seascape. Use a decay function to model death of propagules during the process. For each grid cell, keep track of where propagules end up. Also, save the number of propagules arriving to each cell. As a result, two layers are obtained, (i) one for how many propagules the cell contributes to the network (source layer), and (ii) one for how many propagules the cell receives from the network (destination layer). As different species or species groups can have different habitat requirements and dispersal parameters, the process should be replicated as necessary.

When the PDDC layers described above are added into the spatial prioritization setup, priorities become elevated for locations that have (i) high local quality...
for features, (ii) high export of propagules that reach other sites, and (iii) high inflow of propagules. The most valuable habitats are locally good quality and both export end receive lots of dispersing propagules. The least valuable habitats are low quality and isolated, with small or missing flow of dispersing propagules. These effects become balanced across all features in analysis. The overall effect of single data layer is expected to be small, because the priority ranking is an balancing over many layers of information with one layer only representing a minor fraction of the totality (Kujala et al. 2018b).

The benefit of this approach is that completely independent simulation models for larval dispersal can be used to develop the input layers, which can then be entered into SCP. While this approach is conceptually simple, we recognize that getting sufficient data about habitat distributions and dispersal parameters may not be easy, and that simulating circulation and larval dispersal at a high resolution over large areas can be computationally demanding.

Zonation-technically, the aggregate weight of the PDDC layers should be set in relation to all other factors included in analysis (see Fig. 1). Using hierarchical division of weights (Lehtomäki and Moilanen 2013), the weight of individual PDDC layers can be further adjusted accounting for the relevance of PDDC for the particular species, species group and/or habitat.

Discussion

Marine and terrestrial organisms obviously differ and have different distribution drivers. Even so, the broad principles that govern protected area network design and spatial conservation prioritization are largely the same (Kukkala and Moilanen 2013; Kujala et al. 2018a). For both, it is desirable to conserve species and habitats; conservation areas should form networks; individual protected areas should be large enough to support viable populations; and threats should be identified and counteracted cost-effectively (Naidoo et al. 2006; Joppa et al. 2016; Kujala et al. 2018a).

There are certain features that are typical for marine connectivity, however. One important distinction is that many marine organisms, both fish and invertebrates, utilize different habitats during different life history stages (Ayre et al. 2009; Cowen and Sponaugle 2009), which needs to be considered when assessing the effects of connectivity for metapopulation persistence. It is also notable that in marine environments direct measurements of dispersal are still rare, and mostly concern larvae of coral reef fish (Almany et al. 2007; Planes et al. 2009; Harrison et al. 2012). In the majority of studies connectivity is inferred with graph-theoretic approaches or using biophysical analyses based on oceanographic models and knowledge on species traits affecting dispersal (Cowen and Sponaugle 2009; Balbar and Metaxas 2019, and references therein).

Here we have concentrated on pointing out the applicability of terrestrial SCP connectivity methods in the marine environment (Fig. 1; Table 1), and specifically when using the Zonation approach to spatial prioritization. The same connectivity techniques can be used for dealing with patch size, functional connectivity, connectivity interactions (positive and negative), accessibility, distributed provision of ES, and network-level structure that arises from these. Mainly only partially directed, diffuse connectivity (PDDC) needs to be accounted for by different techniques than in terrestrial environments.

How relevant is this type of connectivity for SCP in the marine environment? As outlined above, it depends on interaction between the dispersal characteristics of the organism and the physical properties of the marine area of interest. Different patterns are likely to emerge between shallow, topographically complex areas with mosaic habitat patterns, and deeper areas where habitats suitable for target organisms are located further apart. Dubois et al. (2016) and Largier (2003) pointed out that flow speeds are typically slow near the shore, due to the coastal boundary layer, which retains, e.g., fish larvae in the near-shore areas. Nickols et al. (2015) showed that coastal boundary layer decreases dispersal distances by 59%, and increases self-retention of larvae by three orders of magnitude. Almany et al. (2007) and Andutta et al. (2012) concluded that dispersal of coral reef propagules is slowed down by the “sticky water” of dense reef areas, which generates hot spots of self-seeding within the reefs. Similar hydrodynamic phenomena occur also in fragmented archipelagos, with strong seabed shear and variable current patterns, which makes dispersal substantially shorter and more stochastic than in deeper open sea areas.
To sum up, partially directed, diffuse connectivity is most relevant in marine environments where species occupy somewhat isolated habitats and rely on passive drift, and where significant directional currents prevail. In contrast, in sea areas where water movement patterns are fluctuating, weak, stochastic or without much direction, such as in complex reef areas (Andutta et al. 2012) then directional currents will have a relatively smaller effect for metapopulation persistence. This is likely to be the case also in complex archipelagos, such as those in the northern Baltic Sea, where species niches are fragmented (Virtanen et al. 2018), currents variable and depend on short-term variation in wind direction and air pressure (Tuomi et al. 2018). In such areas, other parameters, such as habitat quality and productivity, probably override vague connectivity effects (Fig. 1; Kujala et al. 2018a), and radially symmetric, declining by distance, connectivity responses may be perfectly sufficient approximations for spatial prioritization.

It is also notable that in fragmented shallow water environments, many functionally important species occur both inside and outside the MPAs. They therefore receive propagules not only from neighboring MPAs, but also from other areas occupied by the species. In such cases it is necessary to assess dispersal of propagules not only between MPAs, but also between all habitats where the species may occur. For such species, a full-scale spatial prioritization (Virtanen et al. 2018), or a more comprehensive localization of the subpopulations combined with a posteriori analysis of the MPA network (Jacobi et al. 2012), is necessary to understand how a functional network of MPAs should be structured.

We have above explained how marine connectivity can be accounted for in spatial conservation planning, through hydrodynamic modelling, habitat quality maps, and considering species traits, and outlined options available in data pre-processing, during the spatial prioritization analysis itself, and in the post-processing of results. Several broadly similar approaches have previously demonstrated how connectivity can be considered in MPA network planning (Corell et al. 2012; Gallego et al. 2016). Many of these studies have considered oceanographic processes and taken into account dispersal traits, such as typical habitat depth and pelagic larval duration (e.g. Berglund et al. 2012; Corell et al. 2012; Jonsson et al. 2016; Magris et al. 2016), but few have explicitly used the connectivity data in a multi-criteria analysis that can integrate a broad suite of ecological, economic and societal factors.

Conclusion

Connectivity is important for persistence of marine species that have a pelagic larval phase or other means for passive or semi-passive dispersal. The dispersal rates however vary greatly depending on species traits and geomorphology and oceanography of the sea area in question. In areas where subpopulations occupy isolated habitats and directional currents prevail, connectivity is a major determinant for metapopulation persistence. In contrast in shallow and fragmented areas, where currents are weak and variable, other factors may override the importance of connectivity. We have above discussed the similarities between marine and terrestrial forms of connectivity and demonstrated how partially directed diffuse connectivity can be approximated in the marine environment using a grid-based spatial prioritization tool. While differences in spatial distribution of data layers will be plentiful, we conclude that the same objectives, types of data, methods, analysis structures and connectivity methods are by and large applicable to both terrestrial and marine analyses.

Acknowledgements Open access funding provided by Finnish Environment Institute (SYKE). We acknowledge support from the Strategic Research Council which operates in association with the Academy of Finland (project SmartSea, Grant nos. 292985 and 314225), as well as the Finnish Ministry of the Environment for funding the Finnish Inventory Programme for Underwater Marine Environment VELMU.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
References

Almany GR, Berumen ML, Thorrold SR, Planes S, Jones GP (2007) Local replenishment of coral reef fish populations in a marine reserve. Science 316(5825):742–744

Andutta FP, Kingsford MJ, Wolanski E (2012) ‘Sticky water’ enables the retention of larvae in a reef mosaic. Estuar Coast Shelf Sci 101:54–63

Ayre DJ, Minchington TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18(9):1887–1903

Balbar AC, Metaxas A (2019) The current application of ecological connectivity in the design of marine protected areas. Glob Ecol Conserv 17:e00569

Ball I, Possingham H, Watts M (2009) MarXan and relatives: software for spatial conservation prioritisation. In: Moilanen A, Wilson K, Possingham H (eds) Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, UK, pp 185–195

Becker BJ, Levin LA, Podri FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104(9):3267–3272

Beger M, Linke S, Watts M, Game E, Treml E, Ball I, Possingham HP (2010) Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv Lett 3(5):359–368

Berglund M, Jacobi MN, Jonsson PR (2012) Optimal selection of marine protected areas based on connectivity and habitat quality. Ecol Model 240:105–112

Bishop MJ, Mayer-Pinto M, Airoldi L, Firth LB, Morris RL, Loke LHL, Hawkins SJ, Naylor LA, Coleman RA, Chee SY, Dafforn KA (2017) Effects of ocean sprawl on ecological connectivity: impacts and solutions. J Exp Mar Biol Ecol 492:7–30

Burgess SC, Nickols KJ, Gieserme CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Bottrford LW (2014) Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. Ecol Appl 24(2):257–270

Christie MR, Tisot BN, Albins MA, Beets JP, Jia Y, Ortiz DM, Thompson SE, Hixon MA (2010) Larval connectivity in an effective network of marine protected areas. PLoS ONE 5(12):e15715

Coleman MA, Cetina-Heredia P, Roughan M, Feng M, van Sebille E, Kelaher BP (2017) Anticipating changes to future connectivity within a network of marine protected areas. Glob Change Biol 23(9):3533–3542

Corell H, Moksnes P-O, Engkvist A, Döös K, Jonsson PR (2012) Depth distribution of larvae critically affects their dispersal and the efficiency of marine protected areas. Mar Ecol Prog Ser 467:29–46

Cowen RK, Gawarkiewicz G, Pineda J, Thorrold SR, Werner FE (2007) Population connectivity in marine systems an overview. Oceanography 20(3):14–21

Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287(5454):857–859

Cowen RK, Sponaugle S (2009) Larval dispersal and marine population connectivity. Ann Rev Mar Sci 1:443–466

Crooks K, Sanjayan M (eds) (2006) Connectivity conservation. Cambridge University Press, Cambridge, UK

Daigle RM, Metaxas A, Balbar A, McGowan J, Treml EA, Kuempel CD, Possingham HP, Beger M (2018) Operationalizing ecological connectivity in spatial conservation planning with MarXan Connect. Bioirvix:315424

Di Minin E, Brooks TM, Toivonen T, Butchart SH, Heikinheimo V, Watson JE, Burgess ND, Challender DW, Goettsh B, Jenkins R, Moilanen A (2019) Identifying global centers of unsustainable commercial harvesting of species. Sci Adv 5(4):eaau2879

Dubois M, Rossi V, Ser-Giacomi E, Arnaud-Haond S, Lopez C, Hernandez-Garcia E (2016) Linking basin-scale connectivity, oceanography and population dynamics for the conservation and management of marine ecosystems. Glob Ecol Biogeogr 25(5):503–515

Fernandes L, Day JO, Lewis A, Slegers S, Kerrigan B, Breen DA, Cameron D, Jago B, Hall J, Lowe D, Innes J (2005) Establishing representative no-take areas in the great barrier reef: large-scale implementation of theory on marine protected areas. Conserv Biol 19(6):1733–1744

Fox AD, Corne DW, Adame CGM, Polton JA, Henry LA, Roberts JM (2019) An efficient multi-objective optimization method for use in the design of marine protected area networks. Front Mar Sci 6

Friesen SK, Martone R, Rubidge E, Baggio JA, Ban NC (2019) An approach to incorporating inferred connectivity of adult movement into marine protected area design with limited data. Ecol Appl 29(4):e01890

Gallego A, Gibb FM, Tullet D, Wright PJ (2016) Bio-physical connectivity patterns of benthic marine species used in the designation of Scottish nature conservation marine protected areas. ICES J Mar Sci 74(6):1797–1811

Gerber LR, Mancha-Cisneros MD, O’Connor MI, Selig ER (2014) Climate change impacts on connectivity in the ocean: implications for conservation. Ecosphere 5(3):1–18

Green AL, Maypa AP, Almany GR, Rhodes KL, Weeks R, Abesamis RA, Gleason MG, Mumby PJ, White AT (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90(4):1215–1247

Halpern BS, Frazier M, Afflebach J, Lowndes JS, Micheli F, O’Hara C, Scarborough C, Selkoe KA (2019) Recent pace of change in human impact on the world’s ocean. Sci Rep 9(1):11609

Hanski I, Ovaskainen O (2000) The metapopulation capacity of a fragmented landscape. Nature 404(6779):755–758

Harrison HB, Williamson DH, Evans RD, Harrison HB, Williamson DH, Evans RD, Almany GR, Thorrold SR, Russ GR, Feldheim KA, Van Herwerden L, Planes S, Srinivasan M, Berumen ML, Jones GP (2012) Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr Biol 22(11):1023–1028

Hodgson JA, Thomas CD, Wintle BA, Moilanen A (2009) Climate change, connectivity and conservation decision making: back to basics. J Appl Ecol 46(5):964–969

Jacobi MN, André C, Döös K, Jonsson PR (2012) Identification of subpopulations from connectivity matrices. Ecography 35(11):1004–1016

Johannesson K, Ring A-K, Johannesson KB, Renborg E, Jonsson PR, Havenhand JN (2018) Oceanographic barriers to
gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. Mar Biol 165(8):126

Jones GP, Almany GR, Russ GR, Sale PF, Steneck RS, van Oppen MJH, Willis BL (2009) Larval retention and connectivity among populations of corals and reef fishes: history, advances and challenges. Coral Reefs 28(2):307–325

Jonsson PR, Kotta J, Andersson HC, Herkül K, Virtanen EA, Nyström Sandman A, Johannesson K (2018) High climate velocity and population fragmentation may constrain climate-driven range shift of the key habitat former Fucus vesiculosus. Divers Distrib 24(7):892–905

Jonsson PR, Moksnes P-O, Corell H, Bomsdorff E, Nilsson JM (2020) Ecological coherence of marine protected areas: new tools applied to the Baltic Sea network. Mar Freshw Ecosyst, Aquat Conserv

Jonsson PR, Nilsson Jacobi M, Moksnes P-O (2016) How to select networks of marine protected areas for multiple species with different dispersal strategies. Divers Distrib 22(2):161–173

Joppa LN, Connor B, Visconti P, Smith C, Geldmann J, Hoffmann M, Watson JEM, Butchart SHM, Virah-Sawm Y, Halpern BS, Ahmed SE, Balmford A, Sutherland WJ, Harfoot M, Hilton-Taylor C, Foden W, Di Minin E, Pagad S, Genovesi P, Hutton J, Burgess ND (2016) Filling in biodiversity threat gaps. Science 352(6284):416

Kininmonth S, Beger M, Bode M, Peterson E, Adams VM, Dorfman D, Brumbaugh DR, Possingham HP (2011) Dispersal connectivity and reserve selection for marine conservation. Ecol Model 222(7):1272–1282

Kininmonth S, Weeks R, Abesamis RA, Bernardo LP, Beger M, Treml EA, Williamson D, Pressley RL (2019) Strategies in scheduling marine protected area establishment in a network system. Ecol Appl 29(1):e01820

Kool JT, Moilanen A, Treml EA (2013) Population connectivity: recent advances and new perspectives. Landscape Ecol 28(2):165–185

Kough AS, Paris CB, Behringer DC, Butler MJ IV (2014) Modelling the spread and connectivity of waterborne marine pathogens: the case of PaV1 in the Caribbean. ICES J Mar Sci 72(suppl_1):i139–i146

Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Rignos C, Treml EA, Mummy PJ (2017) Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol Appl 27(3):925–941

Kujala H, Lahoz-Monfort JJ, Elith J, Moilanen A (2018a) Not all data are equal: Influence of data type and amount in spatial conservation prioritisation. Methods Ecol Evol 9(11):2249–2261

Kujala H, Moilanen A, Gordon A (2018b) Spatial characteristics of species distributions as drivers in conservation prioritization. Methods Ecol Evol 9(4):1121–1132

Kukkala AS, Moilanen A (2013) Core concepts of spatial prioritisation in systematic conservation planning. Biol Rev 88(2):443–464

Kukkala AS, Moilanen A (2017) Ecosystem services and connectivity in spatial conservation prioritization. Landscape Ecol 32(1):5–14

Largier JL (2003) Considerations in estimating larval dispersal distances from oceanographic data. Ecol Appl 13(sp1):71–89

Lehtomaki J, Moilanen A (2013) Methods and workflow for spatial conservation prioritization using zonation. Environ Model Softw 47:128–137

Lequeux BD, Ahumada-Sempoa MA, Lopez-Perez A, Reyes-Hernandez C (2018) Coral connectivity between equatorial eastern Pacific marine protected areas: a biophysical modeling approach. PLoS ONE 13(8):e0202995

Lett C, Nguyen-Huu T, Cuif M, Saenz-Agudelo P, Kaplan DM (2015) Linking local retention, self-recruitment, and persistence in marine metapopulations. Ecology 96(8):2236–2244

Link JS, Fulton EA, Gamble RJ (2010) The northeast US application of ATLANTIS: a full system model exploring marine ecosystem dynamics in a living marine resource management context. Prog Oceanogr 87(1):214–234

Magr RA, Pressley RL, Weeks R, Ban NC (2014) Integrating connectivity and climate change into marine conservation planning. Biol Cons 170:207–221

Magr RA, Treml EA, Pressley RL, Weeks R (2016) Integrating multiple species connectivity and habitat quality into conservation planning for coral reefs. Ecosystem 39(7):649–664

Menegon S, Sarretta A, Depellegrin D, Farella G, Venier C, Barbanti A (2018) Tools4MSP: an open source software package to support Maritime Spatial Planning. PeerJ Comput Sci 4:e165

Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit population models in conservation planning. Ecol Appl 17(6):1771–1782

Moilanen A, Franco AMA, Early RI, Fox R, Wintle B, Thomas CD (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc Royal Soc B 272(1575):1885–1891

Mokany K, Ferrier S (2011) Predicting impacts of climate change on biodiversity: a role for semi-mechanistic community-level modelling. Divers Distrib 17(2):374–380

Naidoo R, Balmford A, Ferraro PJ, Polasky S, Ricketts TH, Rouget M (2006) Integrating economic costs into conservation planning. Trends Ecol Evol 21(12):681–687

Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron D, Chan KM, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front Ecol Environ 7(1):4–11

Nickols KJ, White JW, Lagier JL, Gaylord B (2015) Marine population connectivity: reconciling large-scale dispersal and high self-retention. Am Nat 185(2):196–211

Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Attiwa J, Araujo MB, Dallas T, Dunson D, Elith J, Foster SD, Fox R, Franklin J, Godsoe W, Guisan A, O’Hara B, Hill NA, Holt RD, Hui FKC, Husby M, Källas JA, Lehikoinen A, Luoto M, Mo HD, Newell G, Renner I, Roslin T, Soiminen J, Thuiller W, Vanhatalo J, Watson D, White M, Zimmermann NE, Gravel D, Ovaskainen O (2019) A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89(3):e01370
Olds AD, Nagelkerken I, Huijbers CM, Gilby BL, Pittman SJ, Schlacher TA (2018) Connectivity in coastal seascapes. In: Pittman SJ (ed) Seascape ecology. Wiley-Blackwell, Hoboken, NJ, pp 261–291

Ortodossi NL, Gilby BL, Schlacher TA, Connolly RM, Yabsley NA, Henderson CJ, Olds AD (2019) Effects of seascape connectivity on reserve performance along exposed coastlines. Conserv Biol 33(3):580–589

Ovaskainen O, Ramos DL, Slade EM, Mercx T, Tikhonov G, Pennanen J, Pizo MA, Ribeiro MC, Morales JM (2019) Joint species movement modeling: how do traits influence movements? Ecology 100(4):e02622

Palumbi SR (2003) Population genetics, demographic connectivity, and the design of marine reserves. Ecol Appl 13(1):S146–S158

Pérez-Ruzafa A, De Pascalis F, Ghezzo M, Quispe-Becerra JI, Hernández-García R, Muñoz I, Vergara C, Pérez-Ruzafa IM, Umgissier G, Marcos C (2019) Connectivity between coastal lagoons and sea: asymmetrical effects on assemblages’ and populations’ structure. Estuar Coastal Shelf Sci 216:171–186

Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci 106(14):5693–5697

Pouzols FM, Moilanen A (2014) A method for building corridors in spatial conservation prioritization. Landscape Ecol 29(5):789–801

Pouzols FM, Toivonen T, Di Minin E, Kukkala AS, Kullberg P, Kuusterä J, Lehtomäki J, Tenkanen H, Verburg PH, Moilanen A (2014) Global protected area expansion is compromised by projected land-use and parochialism. Nature 516(7531):383–386

Rayfield B, Moilanen A, Fortin M-J (2009) Incorporating consumer–resource spatial interactions in reserve design. Ecol Model 220(5):725–733

Selkoe KA, Aloia CC, Crawall ED, Iacchei M, Liggins L, Puritz JB, von der Heyden S, Toonen RJ (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19

Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13(sp1):159–169

Soria G, Torre-Cosio J, Munguia-Vega A, Marinone SG, Lavín MF, Cinti A, Moreno-Báez M (2014) Dynamic connectivity patterns from an insular marine protected area in the Gulf of California. J Mar Syst 129:248–258

Tétard S, Feunteun E, Bultel E, Gadais R, Bégout M-L, Trancart T, Lasne E (2016) Poor oxic conditions in a large estuary reduce connectivity from marine to freshwater habitats of a diadromous fish. Estuar Coast Shelf Sci 169:216–226

Thomas CJ, Lambrechts J, Wolanski E, Traag VA, Blondel VD, Deleersnijder E, Hanert E (2014) Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol Model 272:160–174

Treml EA, Ford JR, Black KP, Swearer SE (2015) Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov Ecol 3(1):17

Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23:19–36

Treml EA, Kool J (2018) Networks for quantifying and analyzing seascape connectivity. In: Pittman SJ (ed) Seascape ecology. Wiley-Blackwell, Hoboken, NJ., pp 293–318

Tuomi L, Miettunen E, Alenius P, Myrberg K (2018) Evaluating hydrography, circulation and transport in a coastal archipelago using a high-resolution 3D hydrodynamic model. J Mar Syst 180:24–36

Vasconcelos RP, Reis-Santos P, Costa MJ, Cabral HN (2011) Connectivity between estuaries and marine environment: integrating metrics to assess estuarine nursery function. Ecol Ind 11(5):1123–1133

Verhagen W, Kukkala AS, Moilanen A, van Teeffelen AJA, Verburg PH (2017) Use of demand for and spatial flow of ecosystem services to identify priority areas. Conserv Biol 31(4):860–871

Virtanen EA, Viitasalo M, Lappalainen J, Moilanen A (2018) Evaluation, gap analysis, and potential expansion of the Finnish marine protected area network. Front Mar Sci 5:402

Watson JR, Kendall BE, Siegel DA, Mitarai S (2012) Changing seascapes, stochastic connectivity, and marine metapopulation dynamics. Am Nat 180(1):99–112

Weeks R (2017) Incorporating seascape connectivity in conservation prioritisation. PLoS ONE 12(7):e0182396

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.