Study of LaFe$_{1-x}$Mn$_x$O$_3$ ($x=0.05, 0.1, 0.15, 0.2$) perovskite materials by impedance spectroscopy

A W Anugrah, D Triyono and H Laysandra
Department of Physics, Faculty of Mathematics and Natural Sciences (FMIPA)
Universitas Indonesia, Depok 16424, Indonesia

Corresponding author: djoko.triyono@sci.ui.ac.id

Abstract. We use room-temperature impedance spectroscopy to investigate LaFe$_{1-x}$Mn$_x$O$_3$ ($x=0.05, 0.1, 0.15$ and 0.2) perovskite-type oxides. The samples were synthesized using the sol-gel method followed by a sintering process to form bulk samples. The microstructural and chemical composition were analyzed using scanning electron microscopy and x-ray fluorescence, with the results indicating a grain size of 373–305 nm and an atomic composition compatible with the chemical formula LaFe$_{1-x}$Mn$_x$O$_3$. Applying impedance spectroscopy to LaFe$_{1-x}$Mn$_x$O$_3$ at room temperature reveals a decreasing impedance and relaxation time with increasing Mn content. The dielectric spectra show an increasing dielectric constant with increasing Mn content.

Keywords: sol-gel method, impedance spectroscopy, LaFe$_{1-x}$Mn$_x$O$_3$

1. Introduction
Perovskites have an ABX$_3$ structure where A and B are cations and X is usually an anion such as LaFeO$_3$, LaMnO$_3$, etc. Lanthanum orthoferrite (LaFeO$_3$), an orthoferrite perovskite compound, is the focus of the present work because of its structural stability and suitability in gas-sensor applications [1]. Previous research has reported substitution into the La and/or Fe sites of LaFeO$_3$, which enhances its electronic properties by producing an increased dielectric constant, decreased dielectric loss, and high thermal stability [2,3]. Cao et al. [2] reported that Na substitution into the La site of La$_{1-x}$Na$_x$FeO$_3$ ($x=0, 0.1, 0.2$) results in a higher dielectric constant, with the maximum being 10 for $x=0.2$. Phokha et al. [3] reported that LaFe$_{1-x}$Ti$_x$O$_3$ ($x=0, 0.1, 0.2$) has a higher dielectric constant, with the maximum at $x=0.2$ being to the order of 104. In addition, Fe substitution into the Mn site of LaMn$_{1-x}$Fe$_x$O$_3$ ($x=0.15, 0.3, 0.5, 0.7, 1$) was investigated by Karmakar et al. [4], who reported an increasing dielectric constant with increasing Fe content. Zeng et al. [5] reported that LaMn$_{0.5}$Fe$_{0.5}$O$_3$ nanocrystalline materials have crystallite sizes and a dielectric constant of ~25 nm and ~4300 at room temperature, respectively.

Building on previous research, we investigate how Mn doping into the Fe site of LaFe$_{1-x}$Mn$_x$O$_3$ with $x=0.05, 0.1, 0.15, 0.2$ affects the microstructural and dielectric properties at room temperature. The samples were synthesized by using the sol-gel method followed by sintering to form bulk samples. The chemical composition and microstructural properties were examined by using x-ray fluorescence and scanning electron microscopy (SEM), respectively. RLC-Meter FLUKE-PM 6303 with frequency range of 100 Hz to 1 MHz is used to characterize the electrical properties of the samples. The data were analyzed by using impedance spectroscopy and the parallel-plate method.

2. Experimental
By using the sol-gel method, LaFe$_{1-x}$Mn$_x$O$_3$ perovskite compounds were prepared with $x=0.05, 0.10$, 0.15, and 0.20 with lanthanum (III) oxide La$_2$O$_3$, manganese (II) chloride tetrahydrate MnCl$_2$.4H$_2$O, and
Table 1. Results of x-ray fluorescence analysis of LaFe$_{1-x}$Mn$_x$O$_3$ with $x = 0.05, 0.10, 0.15, \text{ and } 0.20$ after calcination at 1173 K.

LaFe$_{1-x}$Mn$_x$O$_3$ (%) weight	(%) weight experimental	(%) weight calculated
$x = 0.05$	65.48	25.50
$x = 0.10$	61.48	22.70
$x = 0.15$	63.72	22.16
$x = 0.20$	65.22	21.25

Figure 1. SEM images of LaFe$_{1-x}$Mn$_x$O$_3$ with $x = (a) 0.05, (b) 0.1, (c) 0.15 \text{ and } (d) 0.2$.

iron (III) nitrate nanohydrate Fe(NO$_3$)$_3$·9H$_2$O (analytical grade) as raw materials. The materials were mixed stoichiometrically with aquades and citric acid monohydrate as a solvent and stirred at 393 K until a gel formed. The gel was dried at 473 K for 5 h then calcined at 1173 K to obtain the nanoparticle form. To obtain nanocrystalline form, the material was pressed into bulk samples by applying 3 kN/m2 and sintered at 1273 K for 12 h. The chemical composition was checked by x-ray fluorescence. The morphology was analyzed by using SEM (FEI QUANTA 650). To apply the parallel-plate capacitor model, the materials were coated with carbon by using a Quorum K975x Turbo Evaporator. RLC-Meter FLUKE-PM 6303 with frequency of 100 Hz to 1 MHz is used to measured the electrical properties of the samples at room temperature.

3. Results and discussion

X-ray fluorescence analysis confirms an atomic composition consistent with the chemical formula LaFe$_{1-x}$Mn$_x$O$_3$. Table 1 shows the composition of LaFe$_{1-x}$Mn$_x$O$_3$ with $x = 0.05, 0.10, 0.15, 0.20$ after calcination at 1173 K. The results of these measurements differ slightly from the calculation, which may be attributed to preparation conditions and insufficient measurement accuracy.

Figure 1 shows typical SEM images of Mn-doped LaFeO$_3$ sintered at 1273 K for 12 h. The average grain sizes are in the range of 373–305 nm. The SEM images show a homogenous surface morphology with spherical grains [6]. Zeng et al. [5] reported a similar morphology for LaFe$_{1-x}$Mn$_x$O$_3$.
The grain size and dielectric constant of LaFe$_{1-x}$Mn$_x$O$_3$ increases with increasing Mn content. The dielectric constant also increases with increasing Mn content. Figure 4a shows the dielectric constant $\varepsilon'(f)$ for all materials, which increases with increasing frequency and Mn content. This phenomenon is similar to that in BaTi$_{1-x}$Mn$_x$O$_3$ (with $x = 0.00, 0.01, 0.02, 0.03, 0.04$) [7], where the dielectric constant also increases with increasing Mn content. Figure 4b shows the dielectric loss tan $\delta(f)$ of LaFe$_{1-x}$Mn$_x$O$_3$ at room temperature, which shows that the dielectric loss depends on Mn content. In addition, all materials exhibit the dielectric-relaxation phenomenon. The varying dielectric constant and dielectric loss may be due to the number of grain boundaries and to the Mn doping. LaFe$_{1-x}$Mn$_x$O$_3$ has a higher dielectric constant than the others, which indicates that it has a smaller grain size and fewer grain boundaries. Riaz et al. [8] reported variations in dielectric constant and dielectric loss due to several factors, including grain size and grain boundaries. The decrease in grain size reportedly changes the dielectric constant in BiFe$_{1-x}$Mn$_x$O$_3$. In addition, Islam et al. [7] reported a decrease in the dielectric constant of BaMnTi$_{1-x}$O$_4$ with increasing Mn content and increasing grain size, and Verma et al. [9] reported a small dielectric constant resulting from a large number of grain boundaries. Riaz et al. [8] also reported increased dielectric parameter values due to a large number of grain boundaries and Mn doping.

Figure 2. (a) Nyquist plot and (b) impedance Z as a function of frequency for LaFe$_{1-x}$Mn$_x$O$_3$ with $x = 0.05, 0.1, 0.15$, and 0.2 at room temperature.

Figure 3. (a) Real and (b) imaginary part of impedance as a function of frequency (Bode plot) for LaFe$_{1-x}$Mn$_x$O$_3$ with $x = 0.05, 0.1, 0.15$, and 0.2 at room temperature.
Figure 4. Frequency dependence of the (a) real part of dielectric constant and (b) dielectric loss of LaFe$_{1-x}$Mn$_x$O$_3$ with $x = 0.05$, 0.1, 0.15, and 0.2 at room temperature.

4. Conclusions
Perovskites LaFe$_{1-x}$Mn$_x$O$_3$ with four variations of Mn ($x = 0.05$, 0.1, 0.15, and 0.2) were successfully synthesized by using the sol-gel technique followed by sintering. The results of x-ray fluorescence spectroscopy indicate an atomic composition consistent with the chemical formula LaFe$_{1-x}$Mn$_x$O$_3$. SEM images show a morphology consisting of homogeneously distributed spherical grains. The average grain size decreases with increasing Mn content, and Mn doping decreases the impedance and increases the dielectric constant.

Acknowledgements
The authors would like to appreciate PITTA Grant from Universitas Indonesia for financial support that was provided under contract number 2257/UN2.R3.1/HKP05.00/2018 and Einago (www.einago.com) for the English language review.

References
[1] Cyza A, Kopia A, Cieniek L and Kusinski J 2016 Mater. Today Proc. 3 2707–12
[2] Cao E, Qin Y, Cui T, Sun L, Hao W and Zhang Y 2017 Ceram. Int. 43 7922–8
[3] Phokha S, Hunpratup S, Pinitsoontorn S, Putasaeng B, Rujirawat S and Maensiri S 2015 Mater. Res. Bull. 67 118–25
[4] Karmakar A, Majumdar S, Singh A K and Giri S 2009 J. Phys. D: Appl. Phys. 42 092004
[5] Zeng C, He Y, Li C and Xu Y 2013 Ceram. Int. 39 5765–9
[6] Sultan K, Ikram M and Asokan K 2015 RSC Adv. 5 93867–76
[7] Islam R, Choudhury S, Rahman S N and Rahman M J 2012 J. Ceram. Process Res. 13 248–51
[8] Riaz S, Shah S M H, Akbar A, Atiq S and Naseem S 2015 J. Solgel Sci. Technol. 74 329–39
[9] Vermaa K C, Ram M, Singh J and Kotnala R K 2011 J. Alloys Compd. 509 4967–71