Design and Synthesis of Two Azete Derivatives Using some Chemical Strategies

Lauro Figueroa-Valverde 1, Francisco Díaz-Cedillo 2, Marcela Rosas-Nexactica 3, Maria Virginia Mateu-Armad 4, Maria López-Ramos 1, Tomas Lopez-Gutierrez 1, Magdalena Alvarez-Ramirez 4, Catalina Cervantes-Ortega 4, Regina Cauich-Carrillo 4

1 Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Mélgar s/n, Col. Buenavista C.P. 24039 Campeche, Camp., México
2 Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, D.F. C.P. 11340, México
3 Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, México
4 Correspondence: lfiguero@uacam.mx (F.V.L); maclopez@uacam.mx (R.N.M);

Scopus Author ID 55995915500
Received: 3.07.2021; Revised: 20.08.2021; Accepted: 25.08.2021; Published: 20.10.2021

Abstract: There are several methods for preparing nitrogen-containing four-membered heterocycles using some reagents that require special conditions such as higher temperatures or differences in the pH. This research aimed to prepare two azete derivatives from 1-Bromo-3,5-dinitrobenzene using some chemical strategies. The chemical structure was characterized by NMR spectroscopic methods. The results indicate that protocols used to synthesize two azete analogs do not require special conditions to give a good yielding. In conclusion, is reported a facile method for the synthesis of two azete derivatives.

Keywords: azete; synthesis; four-membered; heterocyclic.

1. Introduction

For several years, heterocycles have been of great interest in both biological and chemical fields [1-4]. In this way, several methods have been used for its preparation., for example, azete derivative synthesis from 4-phenylbenzo-1,2,3-triazine under extreme conditions (420 to 450 °C) [5]. Besides, a report showed the intramolecular reaction of O-tert-propargylic oximes in the presence of a Chloro(1,5-cyclooctadiene)copper(I) dimer to form an azete-N-oxide [6]. Other data display the preparation of an azete derivative by thermolysis of the cyclopropenyl azide [7]. In addition, an azete derivative was synthesized from α-(O-nitroaryl)benzylphosphonate, potassium tert-butoxide, and tetrahydrofurane [8]. Other data showed the synthesis of an azete analog from a cyclopenta[alphenanthrene]-17-one derivative, 4-Nitrophenylacetonitrile, and CopperII chloride [9]. In addition, a 4-sulfoniminoazet-2-amine was prepared using the three-component system (alkyne, sulfonyl azide, and tetramethylguanidine) in the presence of copper(I) iodide [10]. Recently, an azete-steroid derivative was prepared via an intramolecular reaction of methylidene(methylsulfanyl)amine with an alkyne-derivative using copper(II) chloride as catalyst [11]. All these data show several protocols for synthesizing some nitrogen-containing four-membered heterocycles that require
special conditions such as higher temperatures and different pHs. This study aimed to prepare two azete derivatives using some chemical strategies.

2. Materials and Methods

2.1. General method.

Starting materials were purchased from commercial suppliers (Sigma-Aldrich). NMR spectra were recorded on a Varian VX300/5 FT apparatus (300 MHz/CDCl3) using tetramethylsilane as an internal standard. Electron Ionization mass spectrometry (EIMS) was recorded on a Finnigan PolarisQ ion trap mass spectrometer. Melting-point (m.p.) was determined on an electrothermal-900 model apparatus. The infrared spectrum (IR) was determined on a thermo-scientific iSOFT/IR device. Elemental analysis was determined using a PerkinElmer apparatus (Ser. II CHNS / 02400).

2.2. Synthesis.

6-(3,5-Dinitro-phenyl)-hex-5-yn-1-ol (2)

A solution of 1-Bromo-3,5-dinitro-benzene (200 mg, 0.81 mmol), 5-hexyn-1-ol (100 µl, 0.91 mmol), Copper(II) chloride anhydrous (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using chloroform:hexane (3:1) system; yielding 63% of product; m.p. 86-88 °C; IR (νmax, cm⁻¹) 3400 and 1542: ¹H NMR (300 MHz, CDCl3-d) δH: 1.60-1.62 (m, 4H), 1.96 (broad, 1H), 2.26-3.64 (m, 4H), 8.52-8.96 (m, 3H) ppm. ¹³C NMR (300 Hz, CDCl3) δC: 19.70, 25.74, 31.82, 62.20, 73.30, 88.80, 121.32, 121.72, 135.74, 147.92 ppm. EI-MS m/z: 264.07. Anal. Calcd. for C12H12N2O5: C, 54.55; H, 4.58; N, 10.60; O, 30.28. Found: C, 54.52; H, 4.55

11-Nitro-2-oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene (3)

A solution of compound 2 (200 mg, 0.75 mmol), potassium carbonate (110 mg, 0.79 mmol) in dimethyl sulfoxide (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:agua (3:1) system; yielding 44% of product; m.p. 66-68 °C; IR (νmax, cm⁻¹) 1542 and 1210: ¹H NMR (300 MHz, CDCl3-d) δH: 1.00-3.96 (m, 8H), 6.74-7.74 (m, 3H) ppm. ¹³C NMR (300 Hz, CDCl3) δC: 19.20, 25.74, 31.82, 62.20, 73.30, 88.80, 121.32, 121.72, 135.74, 147.92 ppm. EI-MS m/z: 217.07. Anal. Calcd. for C12H11NO3: C, 66.35; H, 5.10; N, 6.45; O, 22.10. Found: C, 66.32; H, 5.08.

1-(2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn-11-yloxy)-naphthalen-2-ol (4)

A solution of compound 3 (200 mg, 0.92 mmol), 1-Nitro-naphthalen-2-ol (175 mg, 0.92 mmol), potassium carbonate (130 mg, 0.93 mmol) in dimethyl sulfoxide (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:hexane:benzene (3:1:1) system; yielding 52% of product; m.p. 120-122 °C; IR (νmax, cm⁻¹) 3402 and 1212: ¹H NMR (300 MHz, CDCl3-d) δH: 1.00-3.96 (m, 8H), 6.34-6.64 (m, 3H), 6.89 (broad, 1H), 7.22-8.10 (m, 6H) ppm. ¹³C NMR (300 Hz, CDCl3) δC: 19.20, 25.80, 26.62, 67.34, 78.36, 89.92, 107.22, 112.42, 117.42, 119.22, 120.72.
A solution of compound 4 (200 mg, 0.60 mmol), 1-Phenyl-but-3-en-1-ol (110 µl, 0.73 mmol), potassium carbonate (130 mg, 0.93 mmol) in dimethyl sulfoxide (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:agua (4:1) system; yielding 48% of product; m.p. 110-112 °C; IR (νmax, cm⁻¹) 1582 and 1212: ¹H NMR (300 MHz, CDCl₃-d) δH: 1.00-2.00 (m, 6H), 2.18-2.34 (m, 2H), 3.90-3.96 (m, 2H), 4.96 (m, 1H), 5.14-5.90 (m, 3H), 6.36-6.66 (m, 3H), 7.20-7.40 (m, 1H), 7.48 (m, 2H), 7.60-8.10 (m, 5H) ppm. ¹³C NMR (300 Hz, CDCl₃) δ: 19.20, 25.80, 26.62, 44.22, 67.34, 78.36, 81.37, 89.92, 104.00, 109.23, 115.82, 118.66, 119.98, 122.16, 122.80, 123.70, 125.02, 126.54, 127.74, 127.96, 128.32, 128.95, 132.30, 138.66, 141.70, 149.92, 151.00, 161.64, 163.14 ppm. EI-MS m/z: 460.20. Anal. Calcd. for C₃₂H₂₆O₃: C, 83.45; H, 6.13; O, 10.42. Found: C, 83.42; H, 10.40.

A solution of compound 4 (200 mg, 0.60 mmol), 5-hexyn-1-ol (70 µl, 0.63 mmol) potassium carbonate (70 mg, 0.50 mmol) in dimethyl sulfoxide (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:hexane (3:1) system; yielding 54% of product; m.p. 134-136 °C; IR (νmax, cm⁻¹) 2138 and 1210: ¹H NMR (300 MHz, CDCl₃-d) δH: 1.00 (m, 2H), 1.62-1.84 (m, 4H), 1.94 (s, 1H), 1.96-2.00 (m, 3H), 2.22 (m, 2H), 3.94-3.96 (m, 2H), 4.20 (m, 2H), 6.36-6.66 (m, 3H), 7.40-8.10 (m, 6H) ppm. ¹³C NMR (300 Hz, CDCl₃) δ: 18.06, 19.20, 25.02, 25.80, 26.62, 28.94, 67.34, 68.62, 70.22, 78.44, 84.13, 89.89, 107.92, 113.14, 117.40, 117.76, 119.94, 122.00, 123.86, 123.92, 126.54, 128.32, 129.88, 130.80, 148.96, 150.78 161.64, 163.30 ppm. EI-MS m/z: 410.18. Anal. Calcd. for C₂₈H₂₆O₃: C, 81.92; H, 6.38; O, 11.69. Found: C, 81.90; H, 6.35.

A solution of compound 4 (200 mg, 0.60 mmol), (4-Nitro-phenyl)-acetonitrile (100 mg, 0.61 mmol) potassium carbonate (70 mg, 0.50 mmol) in dimethyl sulfoxide (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the hexane:methanol (1:2) system; yielding 55% of product; m.p. 108.110 °C; IR (νmax, cm⁻¹) 3320 and 1212: ¹H NMR (300 MHz, CDCl₃-d) δH: 1.00-2.00 (m, 6H), 3.62 (m, 2H), 3.92-6.72 (m, 5H), 7.22-7.35 (m, 4H), 7.50-8.22 (m, 6H) ppm. ¹³C NMR (300 Hz, CDCl₃) δ: 19.20, 23.42, 25.80, 26.63, 67.38, 78.42, 89.92, 104.00, 109.23, 115.82, 117.30, 117.40, 117.44, 121.45, 122.46, 122.54, 123.10, 123.94, 124.34, 125.12, 125.62, 125.68, 126.20, 136.30, 143.84, 157.52, 161.80, 164.32 ppm. EI-MS m/z: 445.16. Anal. Calcd. for C₃₀H₂₃NO₃: C, 80.88; H, 5.20; N, 3.14; O, 10.77. Found: C, 80.85; H, 5.17.
2-[2-[[1-(2-oxabicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn-11-yl)-oxy]-2-phenyl-ethyl]-4-[[1-(2-oxabicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn-11-yl)-2-naphthyl]-oxy]phenyl]methyl]-2,3-dihydroazete (8)

A solution of compound 5 (200 mg, 0.43 mmol), compound 7 (195 mg, 0.43 mmol), Copper(II) chloride (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:agua (4:1) system; yielding 65% of product; m.p. 144-146 °C; IR (V_max, cm⁻¹) 3320 and 1212; ¹H NMR (300 MHz, CDCl₃-d) δH: 1.00-1.96 (m, 8H), 1.98 (m, 1H), 2.00 (m, 2H), 2.26 (m, 1H), 2.32-2.82 (m, 4H), 3.56 (m, 2H), 3.92-3.96 (m, 2H), 4.66-5.06 (m, 3H), 5.50 (m, 1H), 5.70 (m, 1H), 6.30-6.72 (m, 5H), 6.88-6.96 (m, 4H), 7.32 (m, 3H), 7.42-7.50 (m, 2H), 7.52 (m, 2H), 7.60-8.26 (m, 10H) ppm. ¹³C NMR (300 Hz, CDCl₃) δC: 19.20, 25.80, 26.62, 33.42, 40.32, 42.70, 45.96, 67.34, 78.42, 79.24, 79.92, 89.92, 104.00, 107.98, 109.22, 113.16, 114.70, 115.82, 117.44,118.34, 119.94, 121.42, 122.12, 122.54, 122.81, 123.13 123.70, 124.31, 124.37, 125.12, 125.62, 125.68, 125.80, 126.22, 126.52, 126.60, 127.60, 128.34, 129.16, 129.82, 133.10, 136.30, 139.92, 143.86, 149.58, 151.00, 157.54, 161.64, 162.10, 164.26, 166.02 ppm. EI-MS m/z: 905.37. Anal. Calcd. for C₃₁H₂₃NO₆: C, 82.16; H, 5.64.

2-[4-[[1-(2-oxabicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn-11-yl)-oxy]butyl]-4-[[1-(2-oxabicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn-11-yl)-2-naphthyl]-oxy]phenyl|methyl]azete (9)

A solution of compound 6 (200 mg, 0.48 mmol), compound 7 (220 mg, 0.48 mmol), Copper(II) chloride (120 mg, 0.89 mmol) in methanol (5 ml) was stirring for 48 h at room temperature. Then the solvent is evaporated on a rotary evaporator and the product is separated using the chloroform:agua (4:1) system; yielding 63% of product; m.p. 128-130 °C; IR (V_max, cm⁻¹) 3322 2 and 1210; ¹H NMR (300 MHz, CDCl₃-d) δH: 1.00-1.30 (m, 4H), 1.52 (m, 2H), 1.62 (m, 2H), 1.68 (m, 2H), 1.94-2.35 (m, 6H), 2.72 (m, 2H), 2.82 (m, 2H), 3.70 (m, 2H), 3.90-3.94 (m, 2H), 4.12 (m, 2H), 4.96 (d, 1H, J = 1.79 Hz), 5.50-6.74 (m, 6H), 6.90-6.96 (m, 4H), 7.40-8.28 (m, 12H) ppm. ¹³C NMR (300 Hz, CDCl₃) δC: 19.20, 21.90, 25.80, 26.62, 28.00, 31.34, 45.54, 67.34, 68.50, 78.36, 89.92, 104.00, 107.95, 109.20, 111.34, 113.12, 115.70, 115.84, 117.42, 117.78, 119.94, 121.42, 122.00,122.54, 123.12, 123.84, 123.92, 124.37, 125.12, 125.62, 125.68, 126.17, 126.20, 126.50, 126.55, 128.34, 129.92, 130.80 136.30, 143.87, 148.96, 150.74, 153.60, 157.54, 161.64, 162.08, 163.32, 164.24, 165.90 ppm. EI-MS m/z: 445.16. Anal. Calcd. for C₆₈H₆₀NO₆: C, 81.38; H, 5.77; N, 1.64; O, 11.21. Found: C, 81.35; H, 5.74.

2.3. Physicochemical properties.

Theoretical electronic parameters, such as HOMO (highest occupied molecular orbital), LUMO (lowest unoccupied molecular orbital) energy, orbital coefficients distribution, molecular dipole moment, HBD (hydrogen bond donor groups), HBA (hydrogen bond acceptor groups), and TPSA (topological polar surface area) were evaluated using SPARTAN (v.1.4) software [12-15].
2.4. Pharmacophore model.

The 3D-pharmacophore model for both compounds 8 and 9 was determined using LigandScout 4.08 software [16-18].

3. Results and Discussion

There are some protocols for the synthesis of some azete derivatives which require special conditions [5-11]. Analyzing these data, this study aimed to prepare two azete analogs using some chemical tools as follows:

3.1. Coupling of terminal alkynes with benzyl bromide.

There are several studies for the addition of benzyl halide to terminal alkyne using several reagents such as CuI [19], SIMesCuCl [20], Gold(I) [21], Pd/Ni [22]. However, some protocols require different pH and high temperatures. In this investigation, 1-Bromo-3,5-dinitro-benzene reacted with 5-hexyn-1-ol (in the presence of Copper(II) chloride (Figure 1) to form the hexynol (2). The 1H NMR spectra from 2 showed different bands at 1.00-1.62 and 2.26-3.64 ppm for methylene groups bound to both alkyne and hydroxyl groups; at 1.96 ppm for hydroxyl group; at 8.52-9.86 ppm for phenyl group. 13C NMR spectra showed chemical shifts at 19.70-62.20 ppm for methylene groups bound to both alkyne and hydroxyl groups; at 73.30-88.80 ppm for alkyne group; at 121.32-147.92 ppm for phenyl group. Besides, the mass spectrum from 2 displays a molecular ion (m/z) at 264.07.

![Figure 1](https://doi.org/10.33263/BRIAC124.55675578)

Figure 1. Synthesis of an naphthalenol derivative (4). Reagents and conditions: \(i = 5\)-hexyn-1-ol, (Copper(II) chloride, MeOH, room temperature; \(ii = K_2CO_3, DMSO, room temperature; \(iii = 1\)-Nitro-naphthalen-2-ol, \(K_2CO_3, DMSO, room temperature. DMSO = dimethyl sulfoxide.

3.2. Preparation of ether derivatives.

Several methods have been employed to the synthesis of some ether analogs using different reagents, such as p-toluenesulfonic acid [23], Tetrabutylammonium bromide [24], Cu/ZnO/ZrO$_2$ [25], lithium aluminum hydride [26]. Besides, other reports have shown the synthesis of ether derivatives via the nitro group's displacement in the presence of dimethyl sulfoxide [27]. In the first stage, compound 3 was prepared from compounds 2 and dimethyl sulfoxide in mild conditions. (Figure 1). The 1H NMR spectra from 3 different display bands at 1.00-3.96 ppm for methylene groups linked to both alkyne and ether groups; at 6.74-7.74
ppm for phenyl group. 13C NMR spectra showed chemical shifts at 19.20-89.92 for methylene groups bound to both alkyne and ether groups; at 108.72-155.72 ppm for phenyl group. In addition, the mass spectrum from 3 displays a molecular ion (m/z) at 217.07.

The second stage was achieved through reaction of 3 with 1-Nitro-naphthalen-2-ol in the presence of dimethylsulfoxide to form compound 4 (Figure 1). The 1H NMR spectra from 4 showed several signals at 1.00-6.64 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 6.89 ppm for hydroxyl group; at 7.22-8.10 ppm for naphthalene fragment. 13C NMR spectra showed chemical shifts at 19.20-117.42, 126.90 and 161.72-162.10 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 119.22-126.49 and 134.16-146.10 ppm for naphthalene fragment. Additionally, the mass spectrum from 4 displays a molecular ion (m/z) at 330.12.

The third stage involves the synthesis of compounds 5 from 4 and 1-Phenyl-but-3-en-1-ol, dimethyl sulfoxide in mild conditions (Figure 2).

![Figure 2. Synthesis of two 2-oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yne derivatives (5 and 6). Reagents and conditions: iv = 1-Phenyl-but-3-en-1-ol, K$_2$CO$_3$, DMSO, room temperature; v = 5-hexyn-1-ol, (K$_2$CO$_3$, DMSO, dimethyl sulfoxide, room temperature. DMSO, dimethyl sulfoxide](https://doi.org/10.33263/BRIAC124.55675578)

The 1H NMR spectra from 5 showed several signals at 1.00-2.00, 3.90-3.96 and 6.36-6.66 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 2.18-2.34 and 4.96 for methylene groups bound to both alkene and phenyl groups; at 5.14-5.90 for alkene group; at 7.20-7.40 and 7.48 ppm for phenyl group; at 7.44 and 7.60-8.10 ppm for naphthalene fragment. 13C NMR spectra showed chemical shifts at 19.20-26.62, 67.34-78.36, 89.92-113.14, 117.40, 129.85 and 161.64-163.14 for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 44.22 and 81.37 ppm for methylene groups linked to both alkene and phenyl groups; at 114.46, 141.70 ppm for alkene group; at 118.66-123.70, 126.54, 128.32, 132.30 and 149.92-151.00 ppm for naphthalene fragment; at 125.02, 127.74-127.96 and 138.66 ppm for phenyl group. Besides, the mass spectrum from 5 displays a molecular ion (m/z) at 460.20.

The fourth stage was achieved through reaction of 4 with 5-hexyn-1-ol in the presence of dimethyl sulfoxide to form compound 6 (Figure 2). The 1H NMR spectra from 6 showed several signals at 1.00-2.00, 3.94-3.96 and 6.36-6.66 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 1.62-1.84, 2.22 and 4.20 ppm for methylene groups linked to both ether and alkylene groups; at 1.94 ppm for alkylene group; at 7.40-8.10 ppm for naphthalene fragment. 13C NMR spectra showed chemical shifts at 18.05, 25.02-28.94 and 70.22 ppm for methylene groups bound to both ether and alkylene groups; at 19.20, 25.80-26.62, 67.34, 78.44, 89.89-117.40, 129.88 and 161.64-163.30 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-ylene fragment; at 68.62 and 84.13 ppm for alkylene group; at 117.76-128.32 and 130.80-150.78 ppm for naphthalene group. Finally, the mass spectrum from 6 displays a molecular ion (m/z) at 410.18.

The fifth stage involves the reaction of 4 with 1-Nitro-4-prop-2-ynyl-benzene in the presence of dimethyl sulfoxide to form compound 7 (Figure 3).
The \(^1\)H NMR spectra from 7 showed several signals at 1.00-2.00 and 3.92-6.72 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn fragment; at 7.22-7.35 ppm for phenyl group; at 7.50-8.22 ppm for naphthalene fragment. \(^{13}\)C NMR spectra showed chemical shifts at 19.20, 25.80-109.23, 117.44, 125.68 and 157.52-164.32 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-trien-7-yn fragment; at 23.42 ppm for methylene bound to both phenyl and cyanide groups; at 115.12, 121.45, 122.54-123.10, 124.34-125.62 and 126.20-143.84 ppm for naphthalene fragment; at 117.30, 122.46 and 123.94 for phenyl group; at 117.40 for cyanide group. Besides, the mass spectrum from 7 displays a molecular ion (m/z) at 445.16.

3.3. Synthesis of an azetidine derivative.

There are some methods for the synthesis of azetidine derivatives using some reagents such as Copper(II) chloride [11], tetrakis(acetonitrile)copper(I) tetrafluoroborate [28], 1-azabicyclo[1.1.0]butanes [29], p-toluenesulfonyl chloride [30]. This stage was achieved by preparing compound 8 via reaction of 5 with compound 7 using Copper(II) chloride as catalyst (Figure 4).
ppm for azete ring; at 6.88-6.96, 7.32 and 7.52 ppm for phenyl groups bound to ether groups at 7.60-8.26 ppm for naphthalene fragment. 13C NMR spectra showed chemical shifts at 19.20-26.62, 67.34-78.42, 88.92-113.16, 117.44, 125.68, 129.82, 157.54-161.64 and 164.26 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-tyne fragments; at 40.32, 45.96 and 79.24 ppm for phenyl groups linked to ether groups; at 114.70, 125.80, 126.60 and 162.10 ppm for phenyl group bound to ether group; at 21.90, 28.00-31.34 and 68.50 ppm for methylene groups bound to both azete ring and ether group; at 4.96 ppm for azete ring; at 6.90-6.96 ppm for phenyl group; at 7.40-8.18 ppm for naphthalene fragments. 13C NMR spectra showed chemical shifts at 19.20, 25.80-26.62, 67.34, 78.36-109.20, 113.12, 125.68, 117.42-125.62, 129.92, 157.54-161.64 and 163.32-164.24 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-tyne fragments; at 21.90, 28.00-31.34 and 68.50 ppm for methylene groups bound to both azete ring and ether group; at 45.54 ppm for methylene group bound to azete ring; at 11.34, 153.60 and 165.90 ppm for azete ring; at 115.70, 126.17, 126.55 and 162.08 ppm for phenyl group; at 115.84, 117.78, 126.20-126.50, 128.34 and 130.80-150.74 ppm for naphthalene fragments. Besides, the mass spectrum from 8 displays a molecular ion (m/z) at 905.37.

Preparation of an azete derivative

Several studies have showed the preparation of some azete analogs using some reagents such as Rh$_2$(OAc)$_4$ [31], N-nitrenes [32], 2,3-dibromopropylamine [33], 1-aminoacetylenes [34]. In this investigation, an azete derivative (9) was synthesized. This stage was achieved via 2 + 2 addition of 6 to compound 7 in the presence of copper(II) chloride (Figure 5). The 1H NMR spectra from 9 showed several signals at 1.00-1.30, 1.62, 1.94-2.35, 2.82, 3.90-3.94 and 5.50-6.74 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-tyne fragments; at 1.52, 1.68, 2.72 and 4.12 ppm for methylene groups bound to both azete ring and ether group; at 3.70 ppm for methylene group bound to azete ring; at 4.96 ppm for azete ring; at 6.90-6.96 ppm for phenyl group; at 7.40-8.18 ppm for naphthalene fragments. 13C NMR spectra showed chemical shifts at 19.20, 25.80-26.62, 67.34, 78.36-109.20, 113.12, 125.68, 117.42-125.62, 129.92, 157.54-161.64 and 163.32-164.24 ppm for 2-Oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-tyne fragments; at 21.90, 28.00-31.34 and 68.50 ppm for methylene groups bound to both azete ring and ether group; at 45.54 ppm for methylene group bound to azete ring; at 11.34, 153.60 and 165.90 ppm for azete ring; at 115.70, 126.17, 126.55 and 162.08 ppm for phenyl group; at 115.84, 117.78, 126.20-126.50, 128.34 and 130.80-150.74 ppm for naphthalene fragments. Besides, the mass spectrum from 9 displays a molecular ion (m/z) at 855.35.

Figure 5. Synthesis of a 2-naphthyl-oxy-phenyl-methyl-azete derivative (9). Reagents and conditions: vii = 2-oxa-bicyclo[7.3.1]trideca-1(12),9(13),10-tyne derivative (6), naphthalen-2-yloxy-phenyl-acetonitrile derivative (7), Copper(II) chloride, room temperature.

3.4. Electronic factors

The molecular orbitals and their physicochemical properties, such as energy and the frontier electronic density, have been used to predict the reactivity of several compounds, which involves the π-electron system and several types of reactions on conjugated systems [35]. Some studies suggest that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) values and their energy gap could be related to the
chemical activity of several compounds. By analyzing these data, both HOMO and LUMO involved in the chemical structure of either compounds 8 or 9 were evaluated in this study. The results showed that the HOMO-LUMO gap values were different for 8 compared to 9 (Figure 6 and Table 1). This process could be conditioned by π orbital, which is localized in either 2,3-Dihydro-azete or azete rings.

![Figure 6](https://doi.org/10.33263/BRIAC124.55675578)

Figure 6. Molecular orbitals (HOMO and LUMO) involved in the compounds 8 (left) and 9 (right), visualized with SPARTAN'06 software

Table 1. Physicochemical parameters involved in the chemical structure of compounds 8 and 9. The values were calculated using Spartan software.

Parameters	Compounds
HOMO (eV)	8
LUMO (eV)	9
LogP	8
HBD	9
HBA	8

3.5. Pharmacophore ligand model.

Some chemical models have been used to determine the three-dimensional orientation adopted by the functional groups of several compounds to predict its binding with different biomolecules [36]. In this way, in this research, a pharmacophore model for both compounds 8 and 9 was determined using the LigandScout 4.1 (Figure 7). The data indicate that functional groups of compounds 8 and 9 could interact via hydrophobic contacts, hydrogen bond acceptors, or hydrogen bond donors with some biomolecules.
Figure 7. The scheme representing a pharmacophore from both compounds 8 (left) and 9 (right) using the LigandScout 4.1 software. The model involves a methyl group (yellow), hydrogen bond acceptors (HBA, red) and hydrogen bond donor (HBD, yellow).

4. Conclusions

This research reports the synthesis of two azete derivatives that do not require special conditions to give a good yielding. Besides, the differences of parameters electronic such as HOMO and LUMO values and their energy gap may be associated with the chemical activity produced by these compounds; this is supported by other studies carried out in some biological models [37, 38].

Funding

This research received no external funding.

Acknowledgments

The authors acknowledge Benjamin Valverde and Raquel Anzurez for their unconditional support of this manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Didier, D.; Baumann, A.; Eisold, M. Unsaturated four-membered N-heterocycles: From synthesis to applications. *Tetrahedron Letters* **2018**, *59*, 3975-3987, https://doi.org/10.1016/j.tetlet.2018.09.055.
2. Kerru, N.; Gummididi, L.; Maddila, S.; Gangu, K.; Jonnalagadda, S. A review on recent advances in nitrogen-containing molecules and their biological applications. *Molecules* **2020**, *25*, 1909. https://doi.org/10.3390/molecules25081909.
3. Parshikov, I.; Silva, E.; Furtado, N. Transformation of saturated nitrogen-containing heterocyclic compounds by microorganisms. *Applied Microbiology and Biotechnology* **2014**, *98*, 1497-1506.
4. Alcaide, B.; Almendros, P. Four-Membered Ring Systems. In Progress in Heterocyclic Chemistry 2012, 24., 115-137.

5. Adger, B.; Keating, M.; Rees, C.; Storr, R. 2-Phenylbenzazete, an azacyclobutadiene. Journal of the Chemical Society, Chemical Communications 1973, 1, 19-20, https://doi.org/10.1039/C39730000019.

6. Nakamura, I.; Shiga, K.; Suzuki, M. Terada, M. Efficient synthesis of O-tert-propargyl oximes via Nicholas reaction. Synthesis 2020, 52, 3461-3465, https://doi.org/10.1055/s-0040-1707191.

7. Ledermann, M.; Regitz, M.; Angermund, K.; Binger, P.; Krüger, C.; Mynott, R.; Hyla-Kryspin, I. First Structure Analysis and Photoelectron Spectroscopic Investigation of an Azete and an Azete-Cobalt Complex. Angewandte Chemie International Edition 1988, 27, 1559-1562, https://doi.org/10.1002/anie.198815591.

8. Sulikowski, D.; Makosza, M. Synthesis of 3-Phenyl-2, 1-benzisoxazoles via Conversion of Diethyl α-(o-Nitroaryl) benzylphosphonates. Acta Chimica Slovenica 2009, 56, 3.

9. Figueroa-Valverde, L.; Diaz-cedillo, F.; Rosas-Nextica, M.; Garcimarrero, A.; Mateu, V. Facile synthesis of two azete-steroid derivatives and theoretical evaluation of its interaction with the aromatase enzyme. Hacettepe Journal of Biology and Chemistry 2019, 47, 415-428. https://doi.org/10.15671/hjbc.602183.

10. Snieckus, V.; Board, J. Copper-Catalyzed Synthesis of 1, 4-Dihydroazete Derivatives. Synfacts 2012, 8, 1308-1308, https://doi.org/10.1055/s-0032-1317660.

11. Figueroa-Valverde, L.; Diaz-cedillo, F.; Lopez, M.; Rosas-Nextica, M.; Mateu, V.; Ake, Y. Design and synthesis of a bismethylsulfonyl-steroid-azetyl butanol derivative from 2-nitroestriadiol. Journal of Heterocyclic Chemistry 2020, 57, 1737-1747. https://doi.org/10.1002/jhet.3899.

12. Abdullahi, M.; Uzairu, A.; Shallangwa, G.; Mamza, P.; Arthur, D.; Ibrahim, M. In-silico modelling studies on some C14-urea-tetrandrine derivatives as potent anti-cancer agents against prostate (PC3) cell line. Journal of King Saud University-Science 2020, 32, 770-779.

13. Olausu, S.; Uzairu, A.; Adamu, G.; Uba, S. Computational modeling and pharmacokinetics/ADMET study of some arylpiperazine derivatives as novel antipsychotic agents targeting depression. Chemistry Africa 2020, 3, 979-988.

14. Shahzad, H.; Ahmadi, R.; Adhami, F.; Najafpour, J. Adsorption of cytarabine on the surface of fullerene C20: a comprehensive DFT study. Eurasian Chemical Communications 2020, 2, 162-169, https://doi.org/10.33945/SAMI/ECC.2020.2.1.

15. Isyaka, S.; Langat, M.; Mas-Claret, E.; Mbala, B.; Mvingu, B.; Mulholland, D. Ent-abietane and ent-pimarane diterpenoids from Croton mubango (Euphorbiaceae). Phytochemistry 2020, 170, 112217. https://doi.org/10.1016/j.phytochem.2019.112217.

16. Schaller, D.; Śríbar, D.; Noonan, T.; Deng, L.; Nguyen, T.; Pach, S.; Wolber, G. Next generation 3D pharmacophore modeling. Wiley Interdisciplinary Reviews: Computational Molecular Science 2020, 10, e1468, https://doi.org/10.1002/wcms.1468.

17. Porey, S.; Zhang, X.; Bhowmick, S.; Kumar S.; Guin, S.; Paton, R.; Maiti, D. Alkyne linchpin strategy for drug: pharmacophore conjugation: Experimental and computational realization of a meta-selective inverse sonogashira coupling. Journal of the American Chemical Society 2020, 142, 3762-3774, https://doi.org/10.1021/jacs.9b10646.

18. Mascarenhas, A.; De Almeida, R.; De Araujo, M.; Mendes, G.; Da-Cruz, J.; Dos-Santos, C.; Leite, F.; Pharmacophore-based virtual screening and molecular docking to identify promising dual inhibitors of human acetylcholinesterase and butyrylcholinesterase. Journal of Biomolecular Structure and Dynamics 2020, 1-10, https://doi.org/10.1080/07391102.2020.1796791.

19. Davies, K.; Abel, R.; Wulff, J. Operationally Simple Copper-Promoted Coupling of Terminal Alkynes with Benzyl Halides. The Journal of organic chemistry 2009, 74, 3997-4000, https://doi.org/10.1021/jo900444x.

20. Zhang, H.; Sun, N.; Hu, B.; Shen, Z.; Hu, X.; Jin, L. Copper-catalyzed direct couplings of terminal alkynes with primary and secondary benzyl bromides. Organic Chemistry Frontiers 2019, 6, 1983-1988, https://doi.org/10.1039/C9QO00335E.

21. Li, C.; Li, W.; Wang, J. Gold (I)-catalyzed alymethylolation of terminal alkynes. Tetrahedron Letters 2009, 50, 2533-2535, https://doi.org/10.1016/j.tetlet.2009.03.067.

22. Cao, Y.; Dong, X.; Yang, J.; Jiang, S.; Zhou, S.; Li, Z.; Liu, X. A Copper-Catalyzed Sonogashira Coupling Reaction of Diverse Activated Alkyl Halides with Terminal Alkynes Under Ambient Conditions. Advanced Synthesis & Catalysis 2020, 362, 2280-2284, https://doi.org/10.1002/adsc.202000189.
23. Kanakikodi, K.; Churipard, S.; Shanbhag, G.; Halgeri, A.; Raju, C.; Valavarasu, G.; Maradur, S. Exploring the acidity of a functionalized mesoporous polymer catalyst (P-SO 3 H) for glycerol tert-butyl ether synthesis. *Sustainable Energy & Fuels* **2020**, *4*, 6299-6310, https://doi.org/10.1039/D0SE01262A.

24. Yearty, K.; Maynard, R.; Cortes, C.; Morrison, R. A multioutcome experiment for the Williamson ether synthesis. *Journal of Chemical Education* **2020**, *97*, 578-581. https://doi.org/10.1021/acs.jchemed.9b00503.

25. Polierer, S.; Guse, D.; Wild, S.; Herrera, K.; Otto, T.; Zevaco, T.; Pitter, S. Enhanced Direct Dimethyl Ether Synthesis from CO2-Rich Syngas with Cu/ZnO/ZrO2 Catalysts Prepared by Continuous Co-Precipitation. *Catalysts* **2020**, *10*, 816, https://doi.org/10.3390/catal10080816.

26. Kikelj, D. Recent progress in diaryl ether synthesis. *Synthesis* **2006**, *14*, 2271-2285, https://doi.org/10.1055/s-2006-942440.

27. Figueroa-Valverde, L.; Lopez, M.; Diaz-Cedillo, F.; Rosas-Nesticapa, M.; Mateu, V.; Garcimarrero, A.; Ake, Y. Design and synthesis of new azetidine-steroid derivative with inotropic activity in a heart failure model. *Vietnam Journal of Chemistry* **2020**, *58*, 10-19, https://doi.org/10.1002/vch.201900131.

28. Prieto, A. Synthesis of Four-Membered Aza-Heterocycles through Catalytic [2+ 2] Cycloaddition Reactions Assisted by Metal Complexes. *Synthetic Approaches to Nonaromatic Nitrogen Heterocycles* **2020**, 37-58, https://doi.org/10.1002/9781119708841.ch3.

29. Andresini, M.; Degenaro, L.; Luisi, R. The renaissance of strained 1-azabicyclo [1.1. 0] butanes as useful reagents for the synthesis of functionalized azetidines. *Organic & Biomolecular Chemistry* **2020**, *18*, 5798-5810, https://doi.org/10.1039/D0OB01251C.

30. Singh, G.; Advances in synthesis and chemistry of azetidines. *Advances in Heterocyclic Chemistry* **2020**, *130*, 1-74. https://doi.org/10.100166.aiich.2019.10.001.

31. Smetanin, I.; Novikov, M.; Rostovskii, N.; Khlebnikov, A.; Starova, G.; Yufit, D. 4-Halo-2-azabuta-1, 3-dienes as intermediates in the rhodium carbene-initiated transformation of 2-halo-2H-azirines into 2, 3-dihydroazetes and 2, 5-dihydrooxazoles. *Tetrahedron* **2015**, *71*, 4616-4628. https://doi.org/10.1016/j.tet.2015.05.022.

32. Rees, C.; Storr, R. Interconversions of some nitrogen-containing heterocyclic systems. *Chemistry of Heterocyclic Compounds* **1974**, *10*, 629-639.

33. Gensler, W. Investigation of the Compound Described as Azacyclobutadiene. *Journal of the American Chemical Society* **1974**, *96*(8), 1966-1968. https://doi.org/10.1021/ja01200a038.

34. Penning, M.; Okay, G.; Reinhoudt, D.; Harkema, S.; Van-Hummel, G. Chemistry of four-membered cyclic nitrones. 2. 1, 3-Dipolar cycloaddition reactions with electron-deficient acetylenes and conversion of the 1, 3-dipolar adducts into pyridine derivatives. *The Journal of Organic Chemistry* **1982**, *47*, 4413-4418. https://doi.org/10.1021/jo00349a004.

35. Figueroa-Valverde, L.; Díaz-Cedillo, F.; Garcia-Cervera, E. Synthesis of two steroids derivatives and its relationship with some physicochemical parameters. *E-Journal of Chemistry* **2012**, *9*, 27-34, https://doi.org/10.1155/2012/481769.

36. Schneider, G.; Neidhart, W.; Giller, T.; Schmid, G. Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. *Angewandte Chemie International Edition* **1999**, *38*, 2894-2896, https://doi.org/10.1002/AID-ANIE2894>3.0.CO;2-F.

37. Chaviara, A.; Kioseoglou, E.; Pantazaki, A.; Tsipis, A.; Karipidis, P.; Kyriakidis, D.; Bolos, C. DNA interaction studies and evaluation of biological activity of homo-and hetero-trihalide mononuclear Cu (II) Schiff base complexes. Quantitative structure–activity relationships. *Journal of inorganic biochemistry* **2008**, *102*(9), 1749-1764. https://doi.org/10.1016/j.jinorgbio.2008.05.005

38. Mabkhot, Y.; Aldawsari, F.; Al-Showiman, S.; Barakat, A.; Soliman, S.; Choudhary, M.; Hadda, T. Novel enamimone derived from thieno [2, 3-b] thienie: Synthesis, x-ray crystal structure, HOMO, LUMO, NBO analyses and biological activity. *Chemistry Central Journal* **2015**, *9*(1), 1-11.