Tumor Necrosis Factor-α Inhibits Transforming Growth Factor-β/Smad Signaling in Human Dermal Fibroblasts via AP-1 Activation*

Received for publication, June 19, 2000
Published, JBC Papers in Press, July 19, 2000, DOI 10.1074/jbc.M005310200

Franck Verrecchia‡, Marcia Pessah§, Azeddine Atti§, and Alain Mauviel‡

From ‡INSERM U532, Hôpital Saint-Louis, 75010 Paris and §INSERM U482, Hôpital Saint-Antoine, 75012 Paris, France

Understanding the molecular mechanisms underlying the antagonistic activities of tumor necrosis factor-α (TNF-α) against transforming growth factor-β (TGF-β) is of utmost importance given the physiopathological implications of these cytokines. In this report, we demonstrate that TNF-α prevents TGF-β-induced Smad-specific gene transactivation without inducing detectable levels of inhibitory Smads in human dermal fibroblasts. On the other hand, c-Jun and JunB, both induced by specific gene transactivation without inducing detectable expression of antisense c-Jun mRNA prevents TNF-α. In addition, Jun members compete with Smad3 for the common transcription co-activator p300. These two mechanisms are likely to act in concert to decrease Smad-specific transcription.

The TGF-β family of growth factors comprises activins, bone morphogenic proteins, and TGF-β, multipotent cytokines that control various aspects of cell growth and differentiation and play an essential role in embryonic development, tissue repair, or immune homeostasis (1, 2). TGF-β signals through serine/threonine kinase transmembrane receptors, which phosphorylate cytoplasmic mediators of the Smad family (3, 4). The Smad protein family can be divided into three groups. The receptor-associated Smads such as Smad1, Smad2, Smad3, and Smad5 interact directly with and are phosphorylated by activated TGF-β receptor type I (TBRI or BMPR1) and are ligand-specific (5). Upon phosphorylation, these form heteromeric complexes with Smad4, which is a common mediator for all Smad pathways (5). These heterocomplexes are then translocated into the nucleus where they function as transcription factors, binding DNA either directly or in association with other proteins (6). Finally, a third group of Smad proteins, the inhibitory Smads such as Smad6 and Smad7, prevent phosphorylation and/or nuclear translocation of receptor-associated Smads (3).

Tumor necrosis factor-α (TNF-α) is a potent pro-inflammatory cytokine implicated in the pathogenesis of degenerative diseases such as rheumatoid arthritis, as well as in HIV reactivation, graft versus host disease, scleroderma, and shock (7, 8). Prior to its activation, the 26-kDa TNF-α pro-peptide is proteolytically converted to its active 17-kDa form. After subsequent trimerization, TNF-α binds and activates two distinct membrane-bound receptors, the 55-kDa type I receptor (TNFR1) and the 75-kDa type II receptor (TNFR2), found on most cell types. Most effects are transduced by TNFR1, and the most characterized translocation of Smad families activated by TNF-α are NF-κB and AP-1.

NF-κB consists of dimers of proteins of the Rel family (9–11). Prior to activation, homo- and heterodimeric members of the Rel family are held latent in the cytoplasm by IκB family members. Upon appropriate stimulation, a series of phosphorylation events occurs, terminating on IκB via the IκB kinase-α (Iκk-α) (11) leading to its degradation and to the nuclear translocation of NF-κB.

Expression and activation of the AP-1 family of transcription factors represent another essential pathway by which numerous biological effects of TNF-α are mediated (7, 8). They consist of homo- and heterodimers of the protein products of the fos and jun gene families, characterized by a leucine-zipper structure allowing dimerization and subsequent DNA binding to the consensus DNA sequence TGAGTCA (12, 13). AP-1 transcription factors have also been implicated in some of the TGF-β regulatory effects on gene expression such as the modulation, either negative or positive, of interstitial collagenase (MMP-1), plasminogen activator inhibitor-1 (PAI-1), or transin (rat MMP-3) (14–16). In the context of tissue remodeling, TGF-β essentially plays an anabolic role favoring extracellular matrix deposition. On the other hand, TNF-α is known to antagonize most of TGF-β effects on gene expression (16–19). We have previously demonstrated that TNF-α as well as c-Jun overexpression prevents TGF-β activation of the a2 type I collagen gene (COL1A2) promoter (18). To date, however, despite numerous evidences for the antagonistic activities of TGF-β and TNF-α, it is not clear whether TNF-α directly interferes with Smad signaling, and if so, its mechanism. It has been recently suggested that TNF-α through NF-κB activation can either...
induce or inhibit Smad7 expression, a molecule that interferes with Smad phosphorylation by TBR1 and subsequent translocation into the cell nucleus. (20, 21). TNF-α alters inhibitory Smad7 expression in a cell type-specific manner, as ReLA translocation induces Smad7 expression and subsequent blockade of TGF-β signaling in mouse embryonic fibroblasts (20), whereas in human embryonic kidney 293 cells, NF-κB activation inhibits Smad7 gene expression (21).

In this report, we have examined the relative contributions of both AP-1 and NF-κB pathways in mediating TNF-α effects on TGF-β/Smad signaling in human dermal fibroblasts. We provide evidence for an essential role of AP-1 (c-Jun and JunB) downstream of TNF-α in blocking Smad signaling. We also demonstrate that NF-κB activation by TNF-α does not lead to significant expression of Smad7 in this cell type and that blockade of either the NF-κB pathway or Smad7 expression does not alter TNF-α effect on Smad signaling, as opposed to blockade of c-Jun expression. Our data suggest that TNF-α repression of Smad signaling may be achieved through repression of the transcriptional effects of Smad3 within the cell nucleus, by c-Jun and JunB, which directly interfere at the level of Smad3-DNA interactions and subsequent gene transactivation.

MATERIALS AND METHODS

Cell Cultures—Human dermal fibroblast cultures, established by explanting tissue specimens obtained from neonatal foreskins, were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% heat-inactivated fetal calf serum (FCS), 2 mM glutamine, and antibiotics (100 units/ml penicillin, 50 μg/ml streptomycin-G and 0.25 μg/ml Fungizone®), and utilized in passages 3–8. Human recombinant TGF-β1 and TNF-α were from R&D Systems Inc. (Minneapolis, MN).

Plasmid Constructs—(SBE)2-Lux (22) was a kind gift from Dr. Scott Kern at Johns Hopkins University, Baltimore, MD. For c-Jun and JunB expression we used a full-length human cDNA in pRSV-e expression vector (Ref 23, kindly provided by Dr. M. Kurin, La Jolla, CA). Tagged Smad2, Smad3, c-Jun, and JunB vectors were obtained by subcloning the entire coding sequences into either pCDNA3-FLAG, pCDNA3-Myc, or pCDNA3-HA. G5E1b-Lux containing five Gal4 binding sites driving the expression of luciferase and Gal4 DNA binding domain expression vector, containing the full-length Smad3 cDNA excised from pGEX-Smad3 (kind gift from Dr. R. Derynck, University of California, San Francisco) and subcloned in frame with the Gal4 DNA binding domain into pSG24, has been described previously (24). p300 expression vector was a kind gift from Dr. T. Shioda, Boston, MA. Integrity of all constructs was verified by automated sequencing (Applied Biosystems).

Transient Cell Transfections and Reporter Assays—Transient cell transfections of human dermal fibroblasts were performed with the calcium phosphate/DNA co-precipitation procedure using a commercial assay kit (Promega, Madison, WI). Following appropriate incubation periods (see figure legends), the cells were rinsed one time with phosphate-buffered saline, harvested by scraping, and lysed in 200 μl of reporter lysis buffer. pRSV-β-galactosidase was co-transfected in every experiment, and the β-galactosidase activities were used to monitor transfection efficiency. Aliquots corresponding to identical β-galactosidase activity were used for each reporter assay. Luciferase activity was determined with a commercial assay kit according to the manufacturer’s protocol.

In Vitro Protein Synthesis—T7 promoter-driven transcription and translation of Smad2-FLAG, Smad3-Myc, c-Jun-HA, and JunB-FLAG proteins were performed in a single tube assay (Tnt80, Promega, Madison, WI) according to the manufacturer’s protocol.

Electrophoresis Mobility Shift Assays—A 39-base pair Smad-specific probe (3X CAGA, Ref. 25) was used to determine the effect of TNF-α on TGF-β-induced Smad-DNA interactions. Nuclear extracts were isolated using a small scale preparation (26) aliquoted into small fractions to avoid repetitive freeze-thawing, and stored at −80 °C until use. The protein concentration in the extracts was determined using a commercial assay kit (Bio-Rad). Binding mixtures were separated electrophoretically on 4% acrylamide gels in 0.5X Tris-Borate-EDTA as described previously (27, 28).

Immunoprecipitations and Western Blotting—COS-7 cells were transfected with activated TGF-β receptor type I expression vector together with tagged Smad3 and c-Jun tagged expression vectors. Forty hours later, cells were washed twice with cold phosphate-buffered saline (PBS) and lysed in immunoprecipitation buffer containing 1% deoxycholate, 1% Triton X-100, 10 mM NaCl, 200 mM NaF, 100 mM Na3VO4, 100 mM Na3P04, 500 μg/ml aprotinin, 1 mM phenylmethylsulfonyl fluoride, and 1 mM leupeptin. Lysates were cleared of debris by centrifugation and incubated with anti-Myc 9E10 antibody (Santa Cruz Biotechnology, Santa Cruz, CA), 2 h at 4 °C, followed by incubation with protein G-Sepharose beads at 4 °C for 1 h (Amersham Pharmacia Biotech). After five washes with solubilization buffer, the immunoprecipitates were eluted by boiling for 3 min in SDS sample buffer (100 mM Tris-HCl, pH 8, 0.01% bromphenol blue, 36% glycerol, 4% SDS) and subjected to SDS-polyacrylamide gel electrophoresis. Proteins were electrotransferred to nitrocellulose filters, immunoblotted with appropriate anti-HA, -FLAG, and -Myc antibodies (Santa Cruz Biotechnology) and detected using a chemiluminescence detection system (Amersham Pharmacia Biotech).

RESULTS

TNF-α Prevents TGF-β-induced Smad-mediated Gene Transactivation but Does Not Induce Detectable Levels of Smad7 in Human Dermal Fibroblasts—We have previously established that TNF-α is a potent antagonist of TGF-β-induced COLIA2 promoter activity (18). Activation of the latter promoter by TGF-β has recently been shown to involve Smad3/4 (29). To determine precisely whether TNF-α may exert an inhibitory activity on Smad-specific transcription and to circumvent any interference of additional non-Smad-specific cis-elements, we examined the modulation of (SBE)2-Lux, a reporter construct in which four tandem repeats of a consensus Smad3/4 binding element (SBE, Ref. 22) drive the expression of the luciferase gene. As shown in Fig. 1 and as expected from the literature, TGF-β-enhanced (SBE)2-Lux activity approximately 3-fold above control levels. Interestingly, this induction was completely abolished by addition of TNF-α 1 h prior to TGF-β.

A recent report has shown that Smad7 induction by TNF-α via NF-κB activation may be responsible for its ability to interfere with the Smad signaling pathway in mouse fibroblasts (20). Also, Smad7 was recently identified as a direct Smad3/4 target downstream of TGF-β (30). However, Smad7 promoter activity is inhibited by TNF-α through NF-κB in 293 cells (21). Consistent with the known inhibitory activity of Smad7 on TGF-β/Smad signaling, we observed that overexpression of
TNF-α Inhibition of Smad Signaling Is Mediated by AP-1

Fig. 2. TGF-β and TNF-α do not induce early expression of Smad7 in human dermal fibroblasts. A, subconfluent fibroblasts were incubated for 24 h in fresh medium supplemented with 1% FCS. TNF-α or TGF-β (10 ng/ml) were added 1 h later. Incubations were continued for 3 h, and total protein extracts were subjected to Western blot analysis using anti-Smad7 and anti-c-Jun antibodies. B, COS-7 cells were transfected with activated TGF-β receptor type I expression vector and pRSV-β-galactosidase, with either empty cytomegalovirus (CMV) expression vector or Smad7 expression vector in the absence or presence of antisense Smad7 vector. Twenty-four hours later, amounts of cell extracts corresponding to identical DNA amounts were subjected to Western blot analysis using a Smad7 antibody.

Smad7 efficiently blocked the TGF-β effect on (SBE)4-Lux activity (data not shown). Therefore, we tested whether Smad7 was rapidly induced by TNF-α and by TGF-β in our experimental system and could therefore account for the inhibitory activity of TNF-α on Smad-driven gene transactivation. For this purpose, confluent fibroblast cultures were treated for 1 h with TNF-α prior to addition of TGF-β. Three hours later, total cell extracts were subjected to Western blot analysis using an anti-Smad7 antibody. As shown in Fig. 2A, neither TNF-α nor TGF-β induced detectable levels of Smad7. In contrast, c-Jun levels were markedly elevated by TNF-α, but not by TGF-β, consistent with our previous observations (16, 31). Functionality of the anti-Smad7 antibody was verified using cell extracts from COS-7 cells transfected with a Smad7 expression vector pGFP-Smad7 in the presence or absence of the antisense Smad7 vector pGFP-ASSmad7 (Fig. 2B). A strong Smad7 signal was detected in Smad7-transfected COS-7 cell extracts, and this signal was significantly lowered when the antisense vector was co-transfected. These data establish both the functionality of the anti-Smad7 antibody to recognize its antigen and the efficacy of the antisense Smad7 vector to block Smad7 expression.

c-Jun and JunB Block Smad3-mediated Transactivation—We have previously shown that transactivation of the human COL1A2 promoter by TGF-β is abolished by c-Jun overexpression (18). Because c-Jun and JunB are both potentially induced by TNF-α in dermal fibroblasts (31), we examined the effects of their overexpression on Smad3-mediated transactivation of the reporter constructs (SBE)4-Lux. As shown in Fig. 3, neither JunB nor c-Jun had an effect on the basal activity of the construct, whereas Smad3 overexpression induced its activity by several times. When co-expressed with Smad3, JunB abrogated Smad3-dependent transactivation of (SBE)4-Lux in a dose-dependent manner, reaching 80% when identical amounts of Jun and Smad3 expression vectors were used. Similarly, c-Jun overexpression did not modify the basal activity of the construct but strongly inhibited Smad3-mediated transactivation. These results indicate that both c-Jun and JunB members of the AP-1 family directly antagonize Smad3-driven gene transactivation.

Expression of Antisense c-Jun mRNA Prevents TNF-α Inhibition of TGF-β/Smad Signaling Whereas That of a Dominant-Negative IκB-α or Antisense Smad7 Does Not—To determine the relative contributions of the AP-1 and NF-κB pathways on TNF-α inhibition of TGF-β/Smad signaling, (SBE)4-Lux was co-transfected in parallel with either an antisense c-Jun vector pRSV-ASc-Jun or a dominant-negative IκB-α expression vector pD/N-Iκk-α or pGFP-ASSmad7. As shown in Fig. 4, pRSV-ASc-Jun expression prevented the TNF-α inhibitory effect on (SBE)4-Lux transactivation by TGF-β, whereas empty pRSV had no effect. Contrary to pRSV-ASc-Jun, neither pD/N-Iκk-α nor pGFP-ASSmad7 had an effect on the inhibitory activity exerted by TNF-α on TGF-β-induced Smad (SBE)4-Lux transactivation. Efficient NF-κB activation/translocation by TNF-α was verified by electrophoretic mobility shift assay using a consensus NF-κB oligonucleotide as a probe and nuclear extracts from parallel controls or TNF-α-treated (30 min) fibroblast cultures (data not shown). Together, these data suggest that c-Jun, not NF-κB/Smad7 is responsible for TNF-α inhibition of Smad signaling in human dermal fibroblasts.

c-Jun and JunB Interact with Smad3 off-DNA and Reduces Smad-DNA Interactions—To investigate the mechanisms by which c-Jun antagonizes Smad-mediated gene transactivation, we first examined the ability of Smad3 and Jun proteins to participate in off-DNA protein-protein interactions. For this purpose, COS-7 cells were transfected with Smad3/Myc and c-Jun/HA expression vectors. Immunoprecipitations of the cell lysates were performed with an anti-Myc, followed by Western blot analysis with anti-Myc and anti-FLAG antibodies. As demonstrated in Fig. 5, c-Jun interacts with Smad3 off-DNA, as evidenced by the co-precipitation of c-Jun/HA together with Smad3/Myc. Alternatively, COS-7 cells were transfected with Smad3/FLAG and JunB/MyC expression vectors. In the latter case, we observed co-immunoprecipitation of Smad3/FLAG with JunB/Myc (data not shown). These data establish the capacity of Smad3 to form heterocomplexes with Jun family members off-DNA, and corroborate recent observations (32, 33).

We next tested the ability of c-Jun to interact with Smad3/4 in the context of TGF-β-induced Smad-DNA complexes. For this purpose, electrophoretic mobility shift assays were performed using nuclear extracts from TGF-β-stimulated fibroblast cultures incubated with a radiolabeled 3X CAGA probe. In vitro transcribed c-Jun or JunB were added to the binding
TNF-α Inhibition of Smad Signaling Is Mediated by AP-1

Fig. 4. Antisense c-Jun prevents TNF-α inhibition of Smad-dependent activation of (SBE)₄-Lux by TGF-β. Subconfluent fibroblasts were co-transfected with 3 μg of (SBE)₄-Lux together with either pRSV-AS-c-Jun or pD/N-Ikk-α or antisense Smad7 expression vectors. Empty pRSV was used to maintain equivalent amounts of transfected DNA in each plate. After glycerol shock, the cells were placed in medium supplemented with 1% FCS. Cytokines (10 ng/ml) were added 18 h later. Incubations were continued for 24 h, and luciferase activity was determined. Note that only the antisense c-Jun vector blocked TNF-α effect on TGF-β-driven transactivation of (SBE)₄-Lux. Bars indicate mean ± S.D.

Fig. 5. Evidence for Smad3/c-Jun interaction off-DNA. COS-7 cells were transfected with TGF-β receptor type 1 expression vector together with tagged Smad3-Myc and c-Jun-HA expression vectors. 48 h later, cell extracts were immunoprecipitated with an anti-Myc antibody. The immunoprecipitates were subjected to Western blot analysis using anti-HA or anti-Myc antibodies.

Fig. 6. c-Jun and JunB reduce Smad3-DNA interactions. Electrophoretic mobility shift assays were performed using the Smad3/4-specific 3× CAGA oligonucleotide (Dennler et al., (25)) as a probe, together with nuclear extracts from control and TGF-β-treated (30 min.) fibroblast cultures, in the absence or presence of in vitro synthesized full-length c-Jun or Smad2 (A), or JunB (B), as indicated. Mock TnT® reaction mix (without expression vector) was used in lanes 1 and 2.

reactions, and their effects on TGF-β-induced Smad-DNA complex formation was determined. As shown in Fig. 6A, and as expected from our previous observations (27, 28), TGF-β induced the formation of a unique Smad/DNA complex (Fig. 6A, lane 2 versus lane 1). Addition of in vitro synthesized c-Jun to the binding reaction strongly diminished Smad interactions with DNA, as compared with addition of an identical amount of mock TnT® reaction (Fig. 6A, lane 4 versus lane 2). Quantitation with a phosphor imager of the radioactivity present in the Smad/DNA complexes in lanes 2 and 4 indicated 80% reduction in Smad-DNA complex formation upon c-Jun addition, whereas no change was induced by addition of an equal amount of Smad2 (Fig. 6A, lane 6). A similar reduction in Smad-DNA complex formation was also observed when JunB was added to the Smad-DNA binding reaction instead of c-Jun, although slightly less marked (approximately 50% reduction in Smad-DNA complex formation (Fig. 6B, lane 4 versus lane 2).

From these experiments, it is suggested that off-DNA Smad3-AP-1 interactions may sequester some of the available Smad3 and compete against Smad binding to its cognate cis-element, a phenomenon that likely inhibits Smad3-dependent transcription.

p300 Overexpression Prevents c-Jun Inhibition of Smad Signaling—Another possibility for AP-1 members to interfere with the Smad pathway would be to compete for certain co-factors necessary for optimal transcriptional responses. One such factor is p300. Because the amount of p300 is limiting within the cell nucleus (34), formation of c-Jun/p300 complexes may reduce the amount of p300 available to Smad3 for optimal transcription. If this scenario is correct, then overexpression of p300 should overcome the inhibitory effect of TNF-α/c-Jun on TGF-β/Smad3 activation of the (SBE)₄-Lux construct. To test this hypothesis, we first measured the effect of p300 overexpression on c-Jun inhibition of (SBE)₄-Lux transactivation by Smad3. As shown in Fig. 7A, p300 overexpression prevented the inhibitory effect of c-Jun. Similarly, p300 overexpression overcame the inhibitory effect of TNF-α on TGF-β-mediated (SBE)₄-Lux transactivation (Fig. 7B). It should also be noted that p300 overexpression resulted in increased (SBE)₄-Lux activity in response to both TGF-β stimulation and Smad3 overexpression, a result which is consistent with the concept of limited availability of p300 and which confirms the recently described role of p300 as a Smad3 co-activator (35–37).

The role of p300 as a Smad3 co-activator with limited availability was further examined in a Gal4-Smad3 fusion protein-based transactivation assay. As shown in Fig. 7C, this Gal4 fusion-based assay fully recapitulated the data obtained with the (SBE)₄-Lux construct. Specifically, Gal4-Smad3, but not c-Jun, activated the reporter gene containing five Gal4 binding sites upstream of the luciferase gene. This activation by Gal4-Smad3 was repressed by c-Jun and enhanced by p300 overexpression, the latter preventing the inhibitory effect of c-Jun.

Together, these data demonstrate that c-Jun competes against Smad3 for the available p300 in the cell nucleus. The latter mechanism, in turn, would act in concert with direct off-DNA Smad3-Jun interactions to decrease Smad3-specific gene transcription.
DISCUSSION

We report a mechanism of suppression of TGF-β/Smad3 signaling by TNF-α, which involves the transcription factors c-Jun and JunB. These AP-1 components are key factors in the transmission of signals from various pro-inflammatory cytokines known to antagonize TGF-β in the context of tissue repair and maintenance of tissue homeostasis. This phenomenon is complementary to a recently uncovered mechanism by which TNF-α may block Smad signaling. Specifically, it has been shown that, in certain situations, RelA/NF-κB can induce the expression of the inhibitory Smad7, and stabilize the association of the latter with activated TGF-β type I receptors. Thus, Smad7 induction by TNF-α via RelA activation could represent a mechanism by which TNF-α antagonizes TGF-β signaling at the level of TGF-β type I receptor function by preventing Smad2 and Smad3 phosphorylation and subsequent translocation into the nucleus. This is, however, not a universal mechanism because other reports indicate (a) that TNF-α or NF-κB overexpression inhibits Smad7 promoter activity human embryonic 293 kidney cells (21), and (b) that neither TNF-α nor TGF-β induce Smad7 expression in endothelial cells (38) and in human dermal fibroblasts (this report). Also, the latter observations are not consistent with the recent demonstration that TGF-β may induce Smad7 expression in certain cell types (30, 39), a phenomenon that is Smad3/4-dependent (30). It appears therefore that the control of Smad7 expression by cytokines is cell-type specific. It should be noted that the lack of induction of Smad7 expression in human dermal fibroblasts occurred despite efficient NF-κB/RelA activation and subsequent nuclear translocation upon TNF-α treatment (31, 40) and despite rapid activation of Smad signaling and Smad-dependent transcription by TGF-β (our data and Refs. 27 and 28). These observations indicate that Smad7 gene regulation by either TNF-α or TGF-β requires mechanisms other than just RelA and/or Smad3 activation.

In this report, we have demonstrated that TNF-α, via AP-1 activation, interferes with Smad signaling within the cell nucleus. First, we suggest the possibility of a direct Smad3 squelching mechanism, where Jun proteins bind Smad3 off-DNA and prevent its binding to specific DNA binding sites. In support of these findings, it has been shown that the interaction between Smad3 and JunB occurs between the MH1 domain of Smad3 and a 20-amino acid region close to the leucine-zipper domain of c-Jun and JunB (32, 33). Because the MH1 domain is also the DNA binding domain of Smad3, it may be speculated that off-DNA interactions with Jun proteins are not compatible with simultaneous DNA binding of Smad3, consistent with both our observations and deductions from the crystal structure of the MH1 domain of Smad3 (41). Secondly, we have demonstrated that p300 overexpression overcomes the inhibitory effect of TNF-α/AP-1 on TGF-β/Smad3-specific transcription from the (SBE)_4-Lux construct. These results were confirmed in a Gal4-Smad3 fusion protein assay system. A possible mechanism for the inhibitory effect of TNF-α/c-Jun would be that c-Jun sequesters p300, a known transcriptional co-activator for both Smads and Jun proteins (35–37, 42), whose availability within the nucleus is limited (34, 42). Such sequestration of p300 by c-Jun likely reduces p300-Smad3 interactions and resulting Smad3-dependent transcription. A similar working model of competition for p300 has been proposed to explain the antagonistic effects of E1A and RelA on c-Jun- and Smad3-dependent transcription. A similar working model of competition for p300 has been proposed to explain the antagonistic effects of E1A and RelA on c-Jun- and Smad3-dependent transcription (13, 43, 44).

Despite the characterization of several Smad-responsive natural promoters in the literature, such as those for COL1A2, COL7A1 or PAI-1, we chose to focus our study on the artificial Smad-specific (SBE)₄-Lux construct. The reasons for this choice are as follows. First, we have previously shown that the direct inhibitory effect of TNF-α on COL1A2 gene transcription is an NF-κB-dependent mechanism, through direct binding of RelA/NF-κB1 (p65/p50) complexes to a cis-element immediately adjacent to the COL1A2 TGF-β response element (39). TNF-α may also exert an antagonistic activity against TGF-β effect on the COL1A2 promoter via c-Jun induction (18), a phenomenon which may reflect c-Jun-mediated inhibition of the Smad3/4 pathway, the latter participating in COL1A2 gene
transactivation (29). However, because of the direct inhibitory effect of NF-κB on COL1A2 promoter activity, the use of the latter as a tool to study the transcriptional outcome of Smad-AP-1 interactions specifically seemed inappropriate. Regarding the COL7A1 gene, we have shown that TNF-α and TGF-β synergistically activate its promoter via distinct Smad- and NF-κB-specific cis-elements (45). Somewhat similarly, the PAI-1 promoter, which contains at least three AP-1 sites distant from three CAGA boxes, is stimulated by both Smad- and AP-1 pathways (15, 25). Therefore, the presence of multiple cytokine-responsive elements within natural promoters known to be Smad-responsive prevented us from using them in this study, as additional non-Smad-dependent regulatory mechanisms would have participated in the outcome of the experiments.

In conclusion, the present report establishes that the AP-1 pathway downstream of TNF-α directly interferes with TGF-β/Smad3 signaling at the level of Smad3-mediated gene transcription. Direct c-Jun/Smad3 or JunB/Smad3 interactions off-MD) for her valuable comments on the manuscript.

Acknowledgments—We thank Charlotte Tacheau for invaluable technical help. The authors also wish to express their gratitude to Drs. A. B. Roberts (NCI, Bethesda, MD) for her valuable comments on the manuscript.

REFERENCES

1. Letterio, J. J. J., and Roberts, A. B. (1997) Clin. Immunol. Immunopathol. 84, 244–250
2. Massague, J. (1998) Annu. Rev. Biochem. 67, 753–791
3. Piek, E., Heldin, C. H., and Ten Dijke, P. (1999) EMBO J. 18, 2105–2124
4. Massague, J., and Chen, Y. Q. (2000) Genesis 14, 627–644
5. Derynck, R., Zhang, Y., and Feng, X. H. (1998) Genes Dev. 12, 737–740
6. Massague, J., and Wotton, D. (2000) EMBO J. 19, 1745–1754
7. Goldring, M. B. (1999) Connect. Tissue Res. 40, 1–11
8. DeLuca, C., Kwon, H., Lin, R., Wainberg, M., and Hiscott, J. (1999) Cytokine Growth Factor Rev. 10, 235–253
9. Bazerle, P., and Henkel, T. (1994) Annu. Rev. Immunol. 12, 141–179
10. Ghosh, S., May, M. J., and Kopp, E. B. (1998) Annu. Rev. Immunol. 16, 225–260
11. Barnes, P. J., and Karin, M. (1997) N. Engl. J. Med. 336, 1066–1071
12. Karin, M., Liu, Z., and Zandi, E. (1997) Curr. Opin. Cell Biol. 9, 240–246
13. Wisdom, R. (1999) Exp. Cell Res. 253, 180–185
14. Kerr, L. D., Miller, D. B., and Matrisian, L. M. (1990) Cell 61, 267–278
15. Keeten, M. R., Curriden, S. A., van Zonneveld, A. J., and Loskutoff, D. J. (1991) J. Biol. Chem. 266, 23048–23052
16. Mauviel, A., Chung, K. Y., Agarwal, A., Tai, K., and Uitto, J. (1996) J. Biol. Chem. 271, 10917–10923
17. Mauviel, A., and Uitto, J. (1993) Wounds 5, 137–152
18. Chung, K. Y., Agarwal, A., Uitto, J., and Mauviel, A. (1996) J. Biol. Chem. 271, 3272–3278
19. Alevizopoulos, A., and Mermod, N. (1996) J. Biol. Chem. 271, 29672–29678
20. Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A. A., Rojkind, M., and Rottinger, E. P. (2000) Genes Dev. 14, 187–197
21. Nagarajan, R. C., Chen, F., Li, W., Vig, E., Harrington, M. A., Nakashahi, H., and Chen, Y. (2000) Biochem. J. 348, 591–596
22. Zawel, L., Le Dai, J., Buckhaults, P., Zhou, S., Knizler, K. W., Vogelstein, B., and Kern, S. E. (1998) Mol. Cell 1, 611–617
23. Chiu, R., Angel, P., and Karin, M. (1998) Cell 99, 979–986
24. Atfi, A., Buisine, M., Mazars, A., and Geschp, C. (1997) J. Biol. Chem. 272, 24731–24734
25. Dennler, S., Itoh, S., Vivien, D., ten Dijke, P., Huet, S., and Gauthier, J.-M. (1998) EMBO J. 17, 3091–3100
26. Andrews, N. C., and Faller, D. V. (1991) Nucleic Acids Res. 19, 2499
27. Vindevoghel, L., Kon, A., Lechleider, R. J., Uitto, J., Roberts, A. B., and Mauviel, A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14769–14774
28. Chen, S. J., Yuan, W., Mori, Y., Levenson, A., Trojanowska, M., and Varga, J. (1999) J. Invest. Dermatol. 112, 49–57
29. von Gersdorff, G., Susztak, K., Rezvani, F., Bitzer, M., Liang, D., and Rottinger, E. P. (2000) J. Biol. Chem. 275, 11320–11326
30. Mauviel, A., Chen, Y. Q., Dong, W., Evans, C. H., and Uitto, J. (1993) Curr. Biol. 3, 822–831
31. Zhang, Y., Feng, X. H., Derynck R. (1998) Nature 394, 909–913
32. Liberati, N. T., Datto, M. B., Frederick, J. P., Shen, X., Wang, C., Rougier-Chapman, E. M., and Wang, X. F. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 4844–4849
33. Potto, M. O., Felzien, L. K., and Nabel, G. J. (1998) EMBO J. 17, 3124–3134
34. Feng, X. H., Zhang, Y., Wu, R. Y., and Derynck, R. (1998) Genes Dev. 12, 2153–2163
35. Janknecht, R., Wells, N. J., and Hunter, T. (1998) Genes Dev. 12, 2114–2119
36. Shen, X., Hu, P. P., Liberati, N. T., Datto, M. B., Frederick, J. P., and Wang, X. F. (1998) Mol. Biol. Cell 9, 3309–3319
37. Topper, J. N., Cai, J., Qiu, Y., Anderson, K. R., Xu, Y. Y., Deeds, J. D., Feeley, R., Gimeno, C. J., Wolf, E. A., Tayber, O., Mays, G. G., Sampson, B. A., Schoon, P. J., Gimbrone, M. A., Jr., and Falb, D. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 9314–9319
38. Nakao, A., Afrakhte, M., Moren, A., Nakayama, T., Christian, J. L., Heuchel, R., Itoh, S., Kawabata, M., Heldin, N. E., Heldin, C. H., and ten Dijke, P. (1997) Nature 389, 631–635
39. Kowal, D. J., Chung, Y. R., Vindevoghel, L., Kon, A., Klement, J. F., Uitto, J., and Mauviel, A. (1999) J. Immunol. 162, 4226–4234
40. Shi, Y., Wang, Y. F., Jayaraman, L., Yang, H., Massague, J., and Pavletich, N. P. (1998) Cell 94, 585–594
41. Kamei, Y., Xu, L., Heinzel, T., Terchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G. (1996) Cell 85, 463–414
42. Lee, J. S., See, R. H., Deng, T., and Shi, Y. (1996) Mol. Cell. Biol. 16, 4322–4326
43. Maggiwuar, S. B., Ramirez, S., Tong, N., Gelbard, H. A., and Dewhurst, S. (2000) J. Neurochem. 74, 527–539
44. Kon, A., Vindevoghel, L., Kowal, D. J., Fujimura, Y., Uitto, J., and Mauviel, A. (1999) Oncogene 18, 1837–1844