Prototype-to-Style: Dialogue Generation with Style-Aware Editing on Retrieval Memory

Yixuan Su1, Yan Wang2, Simon Baker1, Deng Cai3, Xiaojiang Liu2, Anna Korhonen1, and Nigel Collier1

1University of Cambridge
2Tencent AI Lab
3The Chinese University of Hong Kong
\{ys484,sb895,alk23,nhc30\}@cam.ac.uk, thisisjcykcd@gmail.com
\{brandenwang,kieranliu\}@tencent.com

Abstract

The ability of a dialog system to express pre-specified language style during conversations has a direct, positive impact on its usability and on user satisfaction. We introduce a new prototype-to-style (PS) framework to tackle the challenge of stylistic dialogue generation. The framework uses an Information Retrieval (IR) system and extracts a response prototype from the retrieved response. A stylistic response generator then takes the prototype and the desired language style as model input to obtain a high-quality and stylistic response. To effectively train the proposed model, we propose a new style-aware learning objective as well as a de-noising learning strategy. Results on three benchmark datasets from two languages demonstrate that the proposed approach significantly outperforms existing baselines in both in-domain and cross-domain evaluations1.

1 Introduction

Most early research on dialogue response generation focused on generating grammatical and contextually relevant responses (Ritter et al., 2011; Chen et al., 2017; Martinovsky and Traum, 2003). While promising results have been demonstrated (Wen et al., 2016; Wang et al., 2016), syntactically coherent responses alone do not guarantee an engaging and attractive dialogue system. Expressing a unique and consistent speaking style has been shown to be crucial for increasing the user’s engagement with dialogue systems (Gan et al., 2017). There are various definitions of language style (Roberts, 2003; Bell, 1984; Bell and Johnson, 1997; Niederhoffer and Pennebaker, 2002; Traugott, 1975). In this work, from a purely computational standpoint, we refer to language style as any characteristic style of expression. Hence, our work is in line with previous work on dialogue generation with emotion (Zhou et al., 2018; Huang et al., 2018; Zhou and Wang, 2018; Zhong et al., 2019); response attitude (Niu and Bansal, 2018), and speaker personality (Li et al., 2016b).

The aforementioned approaches explicitly incorporate the language style information into the model configuration either via embeddings or memory modules to control the process of response generation. In our replication experiments, we found that these approaches tend to overemphasise the importance of the language style. As a result, the generated responses tend to be generic and non-informative (Li et al., 2016a), but they do express a distinct style; e.g., they generate a generic response: “I am happy to hear that.” that conveys a ‘happy’ emotion to different queries.

In this work, we propose a novel prototype-to-style (PS) framework to tackle the challenge of stylistic dialogue generation. Our motivation is two-fold: (1) Human-written responses are informative and diverse, which could be leveraged as guidance for the generation model; (2) However, the retrieved response is not guaranteed to express the desired language style. Moreover, the quality of the retrieved response varies among different queries due to the instability of the IR system. Therefore, to transform the retrieved result into a relevant and stylistic response, an adequate editing process is necessary.

An illustration of the proposed framework is shown in Figure 1, where a prototype is first extracted from the retrieved response. The stylistic response generator then takes the desired language style and the extracted prototype as additional input to obtain an adequate and stylistic response. The proposed stylistic response generator mainly inherits from the GPT-2 model (Radford et al., 2019) which is pre-trained with a large unlabeled text corpus. However, the GPT-2 model

1All code and trained models will be made publicly available.
In summary, the contributions of this work are: (1) We propose a novel framework that tackles the challenge of stylistic dialogue generation by leveraging useful information contained in the retrieved responses; (2) We propose a new stylistic response generator by making proper adaptations to a large-scale pre-trained language model. We train our model with a new style-aware learning objective in a de-noising manner. Experiments show that the proposed model outperforms many strong baselines on three benchmark datasets on both in-domain and cross-domain evaluations.

2 Related Work

We summarize three categories of relevant work in the following.

Text Style Transfer: The task of text style transfer aims to transfer the style contained in a sentence while preserving its meaning. Li et al. (2018) proposed a DRG framework to tackle this task with the help of external knowledge. Recently, based on the pre-trained language model, Sudhakar et al. (2019) further improved the system performance under the same DRG framework.

Retrieval Guided Dialogue Generation: Many prior works (Song et al., 2018; Zhu et al., 2019; Wu et al., 2019; Cai et al., 2019) proposed to leverage information from the retrieved responses to improve the system performance on non-task oriented dialogue generation. It should be noted that all these approaches aim to improve the content quality of the generated responses but do not take the style aspect into consideration.

Stylistic Dialogue Generation: Extensive research has tried to tackle the task of stylistic dialogue generation. Li et al. (2016b) proposed to represent the user’s personality with embeddings and incorporated them into the decoder structure to control the response generation process. Niu and Bansal (2018) used reinforcement learning to train the generation model via the interaction with a pre-trained classifier to generate responses with specified attitude. Zhou et al. (2018); Huang et al. (2018); Zhou and Wang (2018); Zhong et al. (2019) incorporated external knowledge into the model architecture either via embeddings or internal and external memory modules, such that during the generation process, emotion-based styles can be dynamically controlled. Gao et al. (2019)

Figure 1: Prototype-to-Style Framework: It first constructs a neutral response prototype by masking the stylistic words from the retrieved response. The stylistic response generator then takes the extracted prototype and the desired language style information to generate an adequate and stylistic response.
proposed to use a shared latent space for stylistic dialogue generation.

3 Methodology

The proposed framework leverages the results acquired from an IR system. A major challenge is that the retrieved response is not guaranteed to express the desired language style. At the first step, a neutral response prototype is extracted by masking all stylistic words contained in the retrieved response. A stylistic response generator then takes the desired language style and the extracted prototype as additional input to generate an adequate and stylistic response to the input query. To better emphasize the generation of stylistic expressions, we propose a style-aware learning objective. Finally, to prevent the model from learning to uncritically copy the prototype, we adopt a denoising learning strategy (Jain and Seung, 2008; Krull et al., 2019) to train the generator.

3.1 Prototype Extraction

The response prototype is constructed from the retrieved response by masking the stylistic words. To determine whether a word is stylistic, we use the pointwise mutual information (PMI) (Church and Hanks, 1990) metric. The relevance between the word \(x\) and the style \(s\) is measured as

\[
\text{PMI}(x; s) = \log \frac{p(x, s)}{p(x)p(s)},
\]

where \(p(x, s)\) is the frequency that the word \(x\) appears in a response with style \(s\) in the training corpus. And a word \(x\) is stylistic given the style \(s\) if \(\text{PMI}(x, s) \geq t_s\). In our experiments, we empirically set \(t_s\) as \(t_s = \frac{3}{4} \times \max_{v \in V} \text{PMI}(v; s)\), where \(V\) is the vocabulary set of the training corpus. Given the set of all possible language styles \(\mathcal{S}\), the stylistic vocabulary \(\mathcal{SV}\) is defined as all words that express any style \(s \in \mathcal{S}\). An example is provided in Figure 1 where the prototype: “That’s ... I will go with my... together!” is extracted from the retrieved response by masking the stylistic words great, bro and buddies.

3.2 Stylistic Response Generator

The proposed Stylistic Response Generator inherits from the GPT-2 (Radford et al., 2019) model which consists of a 12-layer decoder-only Transformer (Vaswani et al., 2017). To make use of the GPT-2 model, the input tokens must be a consecutive natural sequence (e.g. sentence, document).

Based on the input sequence, the input representation is constructed by adding up the token embeddings and the corresponding position embeddings.

To achieve the goal of adapting the GPT-2 model under the proposed PS framework, we first make modifications to the form of the input sequence. As shown in Figure 2, we construct the input sequence as the concatenation of the input query, the response prototype and the reference response. Then we introduce a special token \([B]\) to indicate the boundary between these three parts. To further ensure the model can identify the different parts of the input sequence, we introduce a new segment level input which consists of three learnable segment embeddings \(E_Q, E_P\) and \(E_R\) to indicate the positions of the input query, the response prototype and the response history.

To control the language style of the generated response, we propose to incorporate learnable style embeddings into the input representation. Specifically, we add the style embeddings\(^2\) to the entire part of the response history. This way, the model is constantly aware of the desired language style through the entire generation process.

3.3 Learning

3.3.1 Style-Aware Learning Objective

We propose to use a new style-aware learning objective to train the stylistic response generator. Consider a training instance consists of the input query \(X = (x_1, ..., x_N)\), the reference response \(Y = (y_1, ..., y_T)\), the reference language style \(s\) and the response prototype \(C = (c_1, ..., c_T)\), the proposed objective is defined as

\[
L_{S-MLE}(\theta) = \sum_{i=1}^{T} \log p_{\theta}(y_i|y_1, ..., y_{i-1}; X, C, s) \cdot f(y_i)
\]

\[
f(y_i) = \begin{cases}
1 + \alpha & \text{if } y_i \in \mathcal{SV} \\
1 & \text{otherwise},
\end{cases}
\]

where \(\theta\) are the model parameters and \(\mathcal{SV}\) is the stylistic vocabulary introduced in §3.1. By increasing \(\alpha\), the proposed objective encodes more knowledge about stylistic expressions into the model parameters.

We find that including the language model as an auxiliary objective in addition to the supervised

\(^2\)Each style embedding corresponds to one specific language style; e.g. if we consider three different gender styles, the number of different style embeddings is 3.
Figure 2: Illustration of the proposed Stylistic Response Generator: The input representation is constructed by adding up four different level embeddings. By specifying different style embeddings, the model can generate responses with different language styles.

Figure 3: Illustration of de-noising training strategy. style-aware learning objective helps to improve generalization as well as accelerate convergence. This observation is in line with Rei (2017); Radford et al. (2018). In this work, the language model objective is defined as the reconstruction loss of the input query based on itself:

\[
L_{\text{LM}}(\theta) = -\log p_{\theta}(X) = -\sum_{j=2}^{N} \log p_{\theta}(x_j|x_1, \ldots, x_{j-1}).
\]

The final learning objective is then defined as

\[
L(\theta) = L_{\text{S-MLE}}(\theta) + \beta L_{\text{LM}}(\theta),
\]

where \(\beta \) regulates the importance of the auxiliary objective\(^3\).

3.3.2 De-noising Training

We use a de-noising training strategy similar to Jain and Seung (2008); Krull et al. (2019) for training data construction, as shown in Figure 3. Specifically, during training, the response prototype is extracted from the reference response by the following steps. First, we mask all the stylistic words in the reference response. Second, we randomly select some words (40\%) and replace it with a special token [MASK] or a random word drawn from the vocabulary.

The second step is necessary otherwise the model will learn to generate a response by uncritically copying the response prototype, since the prototype after the first step is always an integral part of the golden response. This copy mechanism is undesirable since during testing the retrieved response is likely to contain information that is irrelevant to the input query. Thus, we deliberately train the response generator with noisy input to let the model learn to filter out the inappropriate information contained in the response prototype.

4 Datasets

We conduct extensive experiments on three dialogue datasets: gender-specific (Chinese) dataset, emotion-specific (Chinese) dataset, and sentiment-specific (English) dataset. For each dataset, we randomly select 200 instances as a held-out test set for evaluation.
Table 1: Data Statistic of Sentiment-Specific Dataset

Queries	26,265,224
Responses	
Positive	4,275,978 16.28%
Negative	4,282,641 23.92%
Neutral	15,706,605 59.80%

4.1 Gender-Specific Dialogue Dataset
We use a publicly available gender-specific dialogue dataset (Su et al., 2020). In this dataset, each response contains one specific gender preference including Female, Male and Neutral.

4.2 Emotion-Specific Dialogue Dataset
We use a publicly available emotion-specific dataset (Zhou et al., 2018) which contains responses with 6 different emotions including Like, Disgust, Happy, Anger, Sad and Other.

4.3 Sentiment-Specific Dialogue Dataset
To construct this dataset, we first build a classifier on the basis of BERT (Devlin et al., 2019) and finetuned it on the the SemEval-2017 Subtask A dataset (Rosenthal et al., 2017). This dataset consists of twitter instances with different sentiments including Positive, Negative and Neutral.

The sentiment classifier attains 81.4% classification accuracy which is further used to annotate the OpenSubtitles dataset (Lison and Tiedemann, 2016). The data statistic of the resulting sentiment-specific dialogue dataset is shown in Table 1.

5 Experiments
5.1 Pretraining and Implementation Details
As there is no off-the-shelf pre-trained word-level language model in Chinese, we manually pre-trained one. The corpus collection and model pre-training details are presented in the supplementary material. For the English pre-trained language model, we use the PyTorch adaptation released by the HuggingFace team.

To optimize the model, we use the Adam optimizer (Kingma and Ba, 2015) with a batch size of 64 and learning rate of 2e-5. During inference, the retrieval system is built from the training corpus, and the retrieved responses are selected using the Jaccard similarity (Liptusk, 1999) between queries.

During the inference stage, we retrieve the candidates from the training set. Specifically, we employ Jacquard Similarity to calculate the similarity between the input query q and queries in training set and find the most similar query q’. Then we directly adopt the response of the retrieved query q’ to construct the response prototype.

5.2 Model Comparison
We compare the proposed approach with several competitive baselines that can be categorized into two classes: generative approaches and retrieval-based approaches.

5.2.1 Generative Approaches
Seq2seq: Standard sequence-to-sequence model with attention mechanism (Bahdanau et al., 2015; Luong et al., 2015).

GPT2-FT: To examine the effect of leveraging the pre-trained language model for the task of dialogue generation, we directly fine-tune the GPT-2 model on the dialogue data without any designed adaptations.

Speaker: Model proposed by Li et al. (2016b) which incorporates distributed style embeddings into the structure of decoding cells to control the generation process.

ECM: Model proposed by Zhou et al. (2018) which uses memory modules to control the stylistic expressions in the generated responses.

5.2.2 Retrieval-Based Approaches
Skeleton-to-Response (SR): Model proposed by Cai et al. (2019) which modifies the retrieved response based on the lexical difference between the input and the retrieved query. This approach does not take the style aspect into consideration.

Retrieval + Style Transfer (RST): For this approach, we apply the state-of-the-art style transfer (Sudhakar et al., 2019) model on the retrieved response. This approach does not consider the input query information during the transfer process.

Retrieval + Reranking (RRe): Given the input query, a style classifier is used to rerank the top 10 retrieved responses. The response with the highest score on the desired style is selected.

5.2.3 Ablation Study
PS: The full model proposed in this work.
PS w/o R: In the ablated model, we examine how the retrieved prototype effects our model’s performance. To this end, we remove the response prototype from the input representation.

https://github.com/huggingface/pytorch-openai-transformer-lm
5.3 Evaluation Metrics

The quality of dialogue responses is known to be difficult to measure automatically (Deriu et al., 2019); we therefore rely on human evaluation. To evaluate the responses, we hire five annotators from a commercial annotation company. To prevent introducing potential bias to the annotators, all results are randomly shuffled before being evaluated. All results are evaluated by the annotators following the metrics below.

Quality: This metric evaluates the content quality of the generated responses. The annotators are asked to give a score within 5-point scale where 5 means perfectly human-like response (relevant, fluent and informative), 3 means marginally acceptable and 1 means unreadable and impossible to understand.

Style Expression: This metric measures how well the generated responses express the desired style. The annotators give a score ranging from 1 to 5 to this metric, where 5 means very strong style, 3 means no obvious style and 1 means very conflicted style. The style conflict means the generated style is conflicted to the desired one (e.g. female to male, positive to negative emotion).

Ranking: The annotators are further asked to jointly evaluate the content quality and the style expression of the generated responses from different approaches. Then the annotators give a ranking to each result where top 1 means the best.

5.4 Main Results

Both human and automatic evaluation results on the three benchmark datasets are shown in Table 2.
Table 4: Evaluation Results on Sentiment-Specific Dialogue Generation

Style	Metrics	Generative	Retrieval-Based	Ours						
	Seq2seq	GPT2-FT	Speaker	ECM	SR	RST	RRe	PS w/o R	PS	
Positive	Quality↑	2.63	2.97	2.72	2.72	1.90	2.42	2.49	2.93	3.28
	Style Expression↑	2.52	2.55	3.51	3.89	2.72	2.96	2.70	3.44	3.76
	Ranking↑	4.39	4.05	3.10	2.38	4.71	4.10	4.12	2.61	1.79
Negative	Quality↑	2.69	2.96	2.99	2.56	1.82	2.26	2.64	2.80	3.20
	Style Expression↑	3.15	3.09	3.62	3.47	2.71	3.18	2.82	3.42	3.63
	Ranking↑	3.62	3.68	3.48	3.04	4.81	4.00	3.80	2.78	2.39
Overall	Quality↑	2.66	2.97	2.86	2.64	1.86	2.34	2.57	2.87	3.24
	Style Expression↑	2.83	2.82	3.57	3.68	2.72	3.07	2.76	3.43	3.70
	Ranking↑	4.00	3.85	2.79	2.71	4.76	4.05	3.96	2.69	2.09
	Distinct-1(%)↑	24.65	29.92	23.61	14.22	30.06	40.13	49.94	32.29	44.70
	Distinct-2(%)↑	48.74	56.27	43.11	23.72	75.73	71.73	91.59	68.35	87.15

2, 3 and 4. For each dataset, we present results on individual styles as well as the overall results.

We observe that the proposed model achieves the top performance results on most of the metrics. It generates responses with both intense style and high response quality. In addition, we also measure the diversity of the generated responses with two automatic metrics: Distinct-1 and Distinct-2 (Li et al., 2016b). The results show that the proposed model achieves the closest performance to that of the RRe approach whose responses are all written by human. On the ranking metric which jointly evaluates the content quality and the style expression, the proposed model outperforms other approaches by a substantial margin.

From the results in Table 3 and 4, we observe that ECM obtains the highest style expression scores on the emotion and sentiment dialogue datasets. This is because ECM directly incorporates the style information into its model architecture to force the generation of stylistic expressions. However, as shown in the quality scores, this behavior also undermines the quality of the generated responses. Therefore, the overall performance of ECM is not optimal as shown in the results of the ranking metric.

From the experiment results, we observe that removing retrieved information (PS w/o R) from the proposed model causes a drastic drop on the quality score. This demonstrates that the retrieved information is indispensable for the model to generate a stylistic response and maintain a high response quality. In addition, comparing with GPT2-FT baseline, the ablated model (PS w/o R) shows similar content quality and much stronger stylistic expression, which is gained from the model architectural design and the new training strategy.
Table 5: Examples of generated responses with different gender and emotion styles. The words in red color are the informative details that the model extracts from the retrieved response.

Query	Retrieved Response	Style	Generated Response	Translation
没有做完的演讲稿，	先去完成明天的演讲稿，	Male	你是我家的乖乖	Buddy, I have been having nightmares at these days.
Unfinished dreams hurt the most.	不是的，我需要改稿子。	Female	I always have nightmares on the days before my menstruation.	
这几天有时候做噩梦。	我不喜欢做噩梦。	Like	I enjoy my nightmares at these days.	
People sometimes have nightmares these days.	我最近做很多的噩梦。	Disgust	I am so annoyed because I have nightmares everyday.	
哎哎，这几天我有时候做噩梦。	哎哎，这几天我有时候做噩梦。	Happy	Lol, I always see you in dreams at these days.	
悲伤：我要去死！这几天我老是做噩梦。	悲伤：我要去死！这几天我老是做噩梦。	Anger	*F**! I am going to die. I have too many nightmares at these days.*	
Sad: 哎，日子没法过了，老是做噩梦。	Sad: 哎，日子没法过了，老是做噩梦。			

Table 6: Examples of generated responses with different sentiments.

Query	Retrieved Response	Positive Sentiment	Negative Sentiment
I know a game perfect for the two of us.	You want us to target those old ones?	I want us to target those pretty nice ones.	I don’t want us to target the wrong ones anymore.
My answer would still be the same as before.	He can make his own decision.	You can make a pretty good decision.	You can make a very stupid decision.
I don’t believe a word of this.	They all sound the same to me.	I mean it all sound pretty nice to me.	Damn all sound like shit to me!

As shown in Figure 6, some of the strong base-lines exhibit a drastic drop in response quality after domain variation such as GPT2-FT and PS w/o R. In contrast, the PS model successfully maintains high response quality in spite of domain variation. The model seems to benefit from leveraging retrieved results to bridge the gap between the two different domains. This can also be observed in the results of RST and RRe which also use the retrieved results and get a even higher performance when facing domain variation.

5.6 Case Study

We present several examples of generated responses by the proposed PS approach. Table 5 shows responses with different gender and emotion styles, and Table 6 shows responses with different sentiments. Examples in Table 5 show that the proposed approach is able to extract in-
formative details such as "have nightmares" and "higher salary" that are relevant to the queries from the retrieved responses. By taking the desired style as input, the proposed model generates adequate and stylistic responses while producing the informative details. Examples in Table 6 also demonstrate that the proposed model is able to generate responses with desired sentiments based on the informative details (e.g. "want us to target ones ", "can make decision," and "sound to me ") contained in the retrieved response.

6 Conclusion

In this work, we propose a novel PS framework to tackle the task of stylistic dialogue generation. Additionally, we propose a new stylistic response generator which works coherently with the proposed framework. We conduct extensive experiments on three benchmark datasets from two languages. Results of human and automatic evaluation show that the proposed approach outperforms many strong baselines by a substantial margin.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by jointly learning to align and translate. In ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Allan Bell. 1984. Language style as audience design. Language in Society, 13(2):145-204.

Allan Bell and Gary Johnson. 1997. Towards a sociolinguistics of style. University of Pennsylvania Working Papers in Linguistics, 4(1):2.

Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, Wai Lam, and Shuming Shi. 2019. Skeleton-to-response: Dialogue generation guided by retrieval memory. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 1219–1228.

Hongshen Chen, Xiaorui Liu, Dawei Yin, and Jiliang Tang. 2017. A survey on dialogue systems: Recent advances and new frontiers. SIGKDD Explorations, 19(2):25–35.

Kenneth Ward Church and Patrick Hanks. 1990. Word association norms, mutual information, and lexicography. Computational linguistics, 16(1):22–29.

Jan Deriu, Álvaro Rodrigo, Arantxa Otegi, Guillermo Echegoyen, Sophie Rosset, Eneko Agirre, and Mark Ciéliebak. 2019. Survey on evaluation methods for dialogue systems. CoRR, abs/1905.04071.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.

Chuang Gan, Zhe Gan, Xiaodong He, Jianfeng Gao, and Li Deng. 2017. Stylenet: Generating attractive visual captions with styles. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 955–964.

Xiang Gao, Yizhe Zhang, Sungjin Lee, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2019. Structuring latent spaces for stylized response generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 1814–1823.

Chenyang Huang, Osmar R. Zaíane, Amine Trabelsi, and Nouha Dziri. 2018. Automatic dialogue generation with expressed emotions. In NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pages 49–54.

Viren Jain and H. Sebastian Seung. 2008. Natural image denoising with convolutional networks. In Advances in Neural Information Processing Systems 21, Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8-11, 2008, pages 769–776.

Zhijing Jin, Di Jin, Jonas Mueller, Nicholas Matthews, and Enrico Santus. 2019. Unsupervised text style transfer via iterative matching and translation. CoRR, abs/1901.11333.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. 2019. Noise2void - learning denoising from single noisy images. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 2129–2137.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016a. A diversity-promoting objective function for neural conversation models. In NAACL HLT 2016, The 2016 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego California, USA, June 12-17, 2016, pages 110–119.

Jiwei Li, Michel Galley, Chris Brockett, Georgios P. Spithourakis, Jianfeng Gao, and William B. Dolan. 2016b. A persona-based neural conversation model. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, retrieve, generate: a simple approach to sentiment and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 1865–1874.

Alan H Lipkus. 1999. A proof of the triangle inequality for the tanimoto distance. Journal of Mathematical Chemistry, 26(1-3):263–265.

Pierre Lison and Jörg Tiedemann. 2016. Opensubtitles2016: Extracting large parallel corpora from movie and TV subtitles. In Proceedings of the Tenth International Conference on Language Resources and Evaluation, LREC 2016, Portorož, Slovenia, May 23-28, 2016.

Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural machine translation. In EMNLP 2015, Lisbon, Portugal, September 17–21, 2015, pages 1412–1421.

Bilyana Martinovsky and David Traum. 2003. 2003.the error is the clue: Breakdown in human-machine interaction. In In Proceedings of the ISCA Workshop on Error Handling in Dialogue Systems.

Kate Niederhoffer and James Pennebaker. 2002. Linguistic style matching in social interaction. Journal of Language and Social Psychology, 21:337–360.

Tong Niu and Mohit Bansal. 2018. Polite dialogue generation without parallel data. TACL, 6:373–389.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar. A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1532–1543.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. In Technical report, OpenAI.
neural dialogue systems. In EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2153–2162.

Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhoujun Li, and Ming Zhou. 2019. Response generation by context-aware prototype editing. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 7281–7288.

Peixiang Zhong, Di Wang, and Chunyan Miao. 2019. An affect-rich neural conversational model with biased attention and weighted cross-entropy loss. In AAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019., pages 7492–7500.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan Zhu, and Bing Liu. 2018. Emotional chatting machine: Emotional conversation generation with internal and external memory. In AAAI-18, New Orleans, Louisiana, USA, February 2-7, 2018, pages 730–739.

Xianda Zhou and William Yang Wang. 2018. Mojitalk: Generating emotional responses at scale. In ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 1128–1137.

Qingfu Zhu, Lei Cui, Weinan Zhang, Furu Wei, and Ting Liu. 2019. Retrieval-enhanced adversarial training for neural response generation. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 3763–3773.
Supplementary Material

1 Dataset

1.1 Gender-Specific Dataset

Since there is no off-the-shelf dialogue dataset which specifically considers the gender style of the responses. To facilitate future research in this area, we manually collected over 4.5 million query-response pairs from popular Chinese social media platforms, including Tieba, Zhidao, Douban and Weibo. From the collected dataset, we randomly select a subset of 200,000 query-response pairs and recruit five professional annotators from an annotation company to annotate the gender style contained in the responses. For each query-response pair, each annotator is asked to assign one of the three labels (Male, Female or Neutral) to the response. Labels are selected if at least four out of five annotators agree.

The final annotated subset contains 5,184 male instances and 10,710 female instances. To properly balance the data distribution, we then randomly select 15,000 neutral instances. Therefore, the final gender style response classification dataset contains 5,184 male, 10,710 female and 15,000 neutral instances. Some examples of the annotated dataset are shown in Table 1.

Style	Input Query	Response
Male	我们出去走走？	我是绅士，当然陪你去走走。
Female	Which one of us should come first?	I am a gentleman, of course it should be you.
Neutral	你多少岁？	我是一个17岁的少女。
	How old are you?	I am a 17-year old teenage girl.
	我要找个人。	你是在找我吗？
	I am looking for someone.	Are you looking for me?

Table 1: Examples of gender response classification dataset: Both Chinese and translated versions are provided.

After building the gender classification dataset, we train a gender classifier based on BERT (?) which achieves a 91.7% accuracy. Then we use the trained classifier to automatically annotate the collected 4.5 million query-response pairs to get a large gender-specific dialogue dataset. The data statistic of the gender-style dialogue dataset is shown in Table 2. To facilitate future research in this area, both the gender classification dataset and the large gender-specific dialogue dataset will be made publicly available.

Queries	4,579,712	Percentage(%)
Responses		
Male	68,350	1.49%
Female	206,654	4.51%
Neutral	4,304,708	94.00%

Table 2: Data Statistic of Gender-Specific Dialogue Dataset

1.2 Emotion-Specific Dataset

In addition to the gender-specific dataset, we use a publicly available emotion-specific dataset (?) which is also written in Chinese. This dataset contains responses with six different emotions including Like, Disgust, Happy, Anger, Sad and Other. We refer the readers to the original paper for more details of this dataset.

1.3 Sentiment-Specific Dataset

To evaluate the proposed model’s performance across different languages, we also conduct experiments on an English sentiment-specific dialogue dataset. Specifically, we build the sentiment-specific dataset on the basis of the publicly available OpenSubtitles dataset (?).

To train a sentiment classifier, we resort to the SemEval-2017 Subtask A dataset (?), which consists of twitter instances with different sentiments (Positive, Negative and Neutral). The sentiment classifier is also constructed with BERT which achieves 71.4% classification accuracy. The trained classifier is further used to annotate the OpenSubtitles dataset and the resulting data statistic is shown in Table 3.

1We use the data preprocessed by ?.

2 Experiments

2.1 Chinese Large-Scale Language Model Pre-training

Because there is no off-the-shelf pre-trained word-level language model in Chinese, we manually pre-trained one ourselves. Specifically, we first collected a large-scale Chinese corpus from popular Chinese News sites, including Sina, Baidu, Tencent, Toutiao, BBC China and New York Times China. We pre-process the acquired corpus with PKUSEG (?) tokenizer to create a word-level corpus. After filtering out invalid contents (e.g. URLs), the resulting corpus contains over 7.6 million sentences and over 350 million words.

Then we build the transformer-based language model following the same configuration as the one of ?. We refer the readers to the original paper for more details. We pre-train our language model for 10 epochs with 4 GeForce GTX 1080 Ti GPUs.

2.2 Implementation Details

For experiments on different datasets, we limit the vocabulary size as 20,000. To optimize the proposed model, we use Adam (?) optimizer with a batch size of 64 and learning rate of 2e-5. For each dataset, the model is trained for 3 epochs.

At inference stage, for simplicity, we build the retrieval system based on the training corpus. Specifically, given a new input query, the Jaccard similarity (?) is measured between the new input query and queries contained in the training corpus. Then we select the response of the most similar query in the training corpus as the retrieved response.

3 Cross-Domain Evaluation

In this section, we present evaluation results of different models when facing the domain variation. To this end, we use the model trained on gender-specific dataset to conduct inference on the test set of the emotion-specific dataset and vice versa. The results are evaluated by the annotators following the same protocol as the one in previous experiments. The numerical results of cross-domain evaluation are shown in Table 4 and 5.

Style	Metrics	Seq2seq	GPT2-FT	Speaker	ELM	Retrieval-Based	Ours
Male	Quality↑	2.72	3.13	2.37	2.43	Retrieval-Based	Ours
Female	Style Expression↑	2.74	3.15	2.76	2.54	2.28 2.20 2.54	2.93
Female	Ranking↓	3.26	3.29	3.36	3.36	4.41 3.88 4.10	2.17
Male	Ranking↓	3.86	3.29	3.36	3.36	4.41 3.88 4.10	2.17
Overall	Quality↑	3.00	3.01	3.44	3.48	3.00 3.24 2.99	3.59
Overall	Style Expression↑	3.41	3.09	3.42	3.34	4.20 3.76 3.87	2.13
Overall	Ranking↓	3.41	3.09	3.42	3.34	4.20 3.76 3.87	2.13

Table 4: Cross-Domain Evaluation Results on Gender-Specific Dialogue Generation: (↑) means the higher the better and ↓ means the lower the better. The best results of each metric are presented in bond font.) Sign tests on human evaluation scores show that our full model significantly outperforms other models with p-value < 0.05.

We also compare the results of both in-domain and cross-domain evaluations. The results for quality, style expression and ranking are shown in Figure 1, 2 and 3 respectively.

Firstly, in Figure 1, drastic drop after domain-variation can be found on some strong baselines like GPT2-FT and PS w/o R. In contrast, the PS model successfully maintains high response quality after domain variation. It is benefit from the leveraging of retrieved results which helps to bridge the gap.
Results on Emotional-Specific Dialogue Generation:

Style	Metrics	Seq2Seq	Ground	Speaker	GPT2-FT	Speaker	ELM	SR	RST	RRe	PS w/o R	PS
Like	Quality†	2.75	3.17	2.11	1.99	2.01	2.30	2.44	2.57	3.03	3.10	3.61
	Ranking†	2.74	2.92	3.89†	3.48†	2.98	3.69	3.03	3.19	2.88	3.76†	3.71
Disgust	Style Expression†	4.26	4.03	4.08‡	3.91‡	3.76‡	3.19	4.37	3.76	3.69	2.27‡	1.81
	Ranking‡	2.63	2.67	3.96†	3.78†	3.89‡	3.73	2.90	3.10	2.93	3.50‡	3.46
Happy	Quality†	5.40	4.18	3.93	4.00	4.23	3.74	2.90	3.10	2.93	3.50‡	3.46
Anger	Quality‡	2.70	3.15	1.78‡	2.23‡	2.41	2.63	2.93	3.04	3.50	3.50‡	3.50
	Ranking‡	2.57	2.98	4.48†	3.49†	3.42	4.10	4.63	2.91	4.00	4.80‡	4.70
Sad	Quality†	2.69	3.15	2.04‡	2.19‡	2.39	2.60	2.84	2.35	3.45	2.31‡	1.67
	Ranking‡	1.99‡	2.44‡	3.62†	3.32†	2.86	3.14	2.96	3.56	3.61	3.56‡	3.61
Overall	Style Expression†	4.96	4.24	4.15‡	4.06‡	4.10	3.34	3.45	2.31	2.88	2.88‡	2.88
	Ranking‡	2.63‡	2.76‡	4.05‡	4.88§	2.95	3.50	2.92	3.91§	3.86	3.86‡	3.86

Table 5: Cross-Domain Evaluation Results on Emotional-Specific Dialogue Generation: († means the higher the better and ↓ means the lower the better. The best results of each metric are presented in bold font.) Sign tests on human evaluation scores show that our full model significantly outperforms other models with p-value < 0.05 with the only exception marked by ‡.

Figure 1: In-domain and cross-domain evaluations on the quality of the generated responses. The red column represents the averaged quality score on in-domain test set, and the blue column denotes the averaged quality score after domain variation.

Figure 2: In-domain and cross-domain evaluations on the style expression of the generated responses. The red column represents the averaged ranking on in-domain test set, and the blue column denotes the averaged style expression score after domain variation.

between the two different domains. The same effect can also be observed in the results of RST and RRe which also use the retrieved results and get a even higher performance when facing domain variation.

Secondly, looking at style expression performance in Figure 2, we can see that there is not obvious difference between the results of in-domain and cross-domain evaluations. Our analysis is that, to generate responses with desired language style, the model could simply generate the characteristic expressions for that language style without considering the input query. Therefore, the domain variation actually poses little effect on the performance of style expression.
Figure 3: In-domain and cross-domain evaluations on the ranking of generated responses. The red column represents the averaged ranking on in-domain test set, and the blue column denotes the averaged ranking after domain variation.

Finally, by jointly considering the quality and style expression, from Figure 3 we can see that the proposed model achieves best ranking for both in-domain and cross-domain evaluation. Therefore, it is safe to say that the proposed model is the best and the most robust one among all approaches.