Problem of the complete measurement for CP—violating parameters in neutral B—meson decays

Ya.I. Azimov*, V.L. Rappoport, V.V. Sarantsev
Petersburg Nuclear Physics Institute
Gatchina, St.Petersburg 188350, Russia

April 24, 2021

Abstract

Phenomenological CP-violating parameters in decays of neutral B-mesons are discussed. Special attention is given to the degree of their measurability. We emphasize important role of the sign of Δm_B and suggest how it could be determined experimentally.

PACS: 11.30.Er, 14.40.Jz

*azimov@lnpi.spb.su
1 Introduction

Two opinions may be considered now as generally accepted (see, e.g., reviews [1, 2]):

1. The origin of CP–violation will not be established till its manifestations are known only for neutral kaons.

2. The most promising test-ground for detailed studies of CP–violation is given by decays of neutral B–mesons.

As a result, much work was devoted to discussion of B–meson decay modes favourable for CP–violation searches and to experimental manifestations of possible sources of the violation (see, e.g., references in [1, 2]). A more straightforward problem, degree of measurability of phenomenological parameters describing CP–violation in B–meson decays, has not been considered. One possible reason could be a close similarity of neutral B–mesons to neutral kaons. But heavier masses of the third quark generation produce various differences, sometimes rather essential, in the meson decay properties. Therefore, in the present paper we reanalyse basic CP–violating parameters for B–mesons. Special attention is given to the question how one could achieve their complete measurement.

The presentation goes as follows. In Section 2 we discuss various parameters that are familiar to express CP–violation. Of special interest is degree of their rephasing (in)dependence. Section 3 considers how the parameters appear in experimental lifetime distributions. The role of width and mass differences for measurability of phenomenological parameters is emphasized. This consideration is continued in Section 4 where we also suggest how one could measure the sign of Δm_B providing the basis for the complete measurement of all CP–violating parameters. Summary of our results and their short discussion are given in the last Section.

2 CP–violating parameters

As is well-known the time evolution of neutral B–mesons is determined by two states

$$B_\pm = \frac{1}{\sqrt{2(1+|\varepsilon_B|^2)}} \left[(1+\varepsilon_B)B^0 \pm (1-\varepsilon_B)\overline{B}^0\right].$$ (1)

If we use the phase convention

$$\overline{B}^0 = (CP)B^0,$$ (2)

the exact CP–conservation would lead to $\varepsilon_B = 0$ and the states B_\pm having the definite CP–parity equal ± 1. Generally, they are eigen-states of the effective (non-Hermitian) Hamiltonian. But possibility of rephasing \overline{B}^0 (with appearance of a phase-factor in relation (2) but without changing B_+ and B_-) means that ε_B itself can not be measurable.
Only \(\left|\frac{1+\varepsilon_B}{1-\varepsilon_B}\right|\) is rephasing-invariant and admits measurement. The value

\[
\delta_B = \frac{|1 + \varepsilon_B|^2 - |1 - \varepsilon_B|^2}{|1 + \varepsilon_B|^2 + |1 - \varepsilon_B|^2} = \frac{2\text{Re}\varepsilon_B}{1 + |\varepsilon_B|^2}
\]

may be considered as the measure of \(CP\)-violation in \(B\bar{B}\) mixing.

Similar quantity for neutral kaons, \(\delta_K\), describes the charge asymmetry in semileptonic decays of \(K_L\) (or in decays of pure \(K_S\) if it could be separated). The same would be true for \(B\)-mesons as well. But the real separation of \(B_L\) and \(B_S\) is hardly possible because of expected smallness of \((\Gamma_S - \Gamma_L)_B\). Therefore, the problem arises how to find ways of physical identification for the states \(B_{\pm}\) in the absence of \(CP\)-conservation.

Mixing of \(B^0\) and \(\bar{B}^0\) is mainly determined by the very heavy intermediate state \(t\bar{t}\). The corresponding transition amplitude contains quarks from two generations only. Since \(CP\)-violation (by the standard CKM-mechanism) requires participation of all three quark generations, the value of \(\delta_B\) has an additional kinematic suppression by the factor \(m_c^2/m_t^2\) (more detailed discussion see, e.g., in [3]). Thus, contrary to neutral kaons, there are no hopes to find experimentally nonvanishing \(\delta_B\) in near future.

More promising are studies of decays

\[
B^0(\bar{B}^0) \rightarrow f
\]

with final states \(f\) having definite \(CP\)-parity [3,4]. As the measure of \(CP\)-violation for a particular decay one may use deviation of the parameter

\[
\lambda_B^{(f)} = \frac{1 - \varepsilon_B}{1 + \varepsilon_B} \cdot \frac{\langle f|\bar{B}^0\rangle}{\langle f|B^0\rangle}
\]

from the \(CP\)-parity value of the state \(f\). Any \(\lambda_B^{(f)}\) is rephasing-invariant and, hence, its complete measurement (i.e., of both the absolute value and phase) should be possible.

Now we can restrict ourselves to considering such independent states where final state interaction produces only elastic rescattering (really we mean states that diagonalize \(S\)-matrix of strong interactions; analogues in neutral kaon decays are, e.g., two-pion states with definite isospin values). Any other final state can be expanded as series over the independent ones.

Assumption of \(CPT\)-invariance leads to the conclusion that the ratio of amplitudes in expression (5) for an independent final state is a phase factor. So we have

\[
|\lambda_B^{(f)}| = \left|\frac{1 - \varepsilon_B}{1 + \varepsilon_B}\right|
\]

for every independent state \(f\).

Thus, the parameter \(\delta_B\) generated by the \(CP\)-violation in mixing appears to be universal and determines deviation of any \(|\lambda_B^{(f)}|\) from unity. Only one additional \(CP\)-violating
parameter, arg($\lambda_B^{(f)}$), may arise for each particular independent final state f in the neutral B—decays. They are just the parameters that phenomenologically correspond to direct CP—violation in the particular decay mode.

Traditional CP—violating parameters η, similar to ones used for kaon decays, are simply related to λ’s. For CP—even states $f+$:

$$\eta_B^{(f+)} = \frac{1 - \lambda_B^{(f+)}}{1 + \lambda_B^{(f+)}};$$ \hspace{1cm} (7)

for CP—odd state $f-$:

$$\eta_B^{(f-)} = \frac{1 + \lambda_B^{(f-)}}{1 - \lambda_B^{(f-)}}.$$ \hspace{1cm} (8)

Comparing eqs.(5),(7),(8) shows that one is always able to find an appropriate phase convention for B and \bar{B} which changes ε_B so to equate

$$\varepsilon_B = \eta_B^{(f)}$$ \hspace{1cm} (9)

for any chosen independent state f. Independently of any phase convention we have

$$\delta_B = \frac{2\text{Re} \eta_B^{(f)}}{1 + |\eta_B^{(f)}|^2}.$$ \hspace{1cm} (10)

Note that all the above relations, including eq.(10), are true for neutral kaons as well. This leads to new experimental predictions based on the CPT—invariance. E.g., CP—violating parameters in decays $K^0(\overline{K}^0) \to 2\pi$ and $K^0(\overline{K}^0) \to 3\pi$ should satisfy equality

$$\frac{\text{Re} \eta_K^{(2\pi)}}{1 + |\eta_K^{(2\pi)}|^2} = \frac{\text{Re} \eta_K^{(3\pi)}}{1 + |\eta_K^{(3\pi)}|^2} = \frac{1}{2} \delta_K$$ \hspace{1cm} (11)

(we assume here both 2π and 3π states to have a definite isotopic structure). Thus, measurement of the corresponding $|\eta|^2$ immediately leads to determination of arg η (double-valued, up to the sign of Imη). Eq.(11) should be applicable also to the decay $K^0(\overline{K}^0) \to \pi^+\pi^-\gamma$ where CP—violation has been observed experimentally [5]. It does really work within available precision.

Specific feature of neutral B—mesons, having no analogues for neutral kaons, is the presence of decays

$$B^0(\overline{B}^0) \to fK^0(\overline{K}^0),$$ \hspace{1cm} (12)

with f, again, being definite CP—parity states. They are induced by the quark decay $b \to c\bar{s}s$. The most popular final state of such a kind is $J/\psi K^0(\overline{K}^0)$. Unique property of decays (12) is the coherence of neutral B and neutral K evolutions [3].
Decays (12) generate new set of parameters:

\[
\lambda^{(f)}_{BK} = \frac{1 - \varepsilon_B}{1 + \varepsilon_B} \cdot \frac{1 + \varepsilon_K}{1 - \varepsilon_K} \cdot \frac{\langle fK^0|B^0 \rangle}{\langle fK^0|B^0 \rangle} \tag{13}
\]

similar to (5). They are invariant under rephasing of both \(B \) and \(K \) mesons and should also be completely measurable. If the final system may be considered as independent (in the above sense) then the ratio of amplitudes in eq.(13) is again a phase factor and deviation of \(|\lambda^{(f)}_{BK}|\) from unity becomes universal. But it is influenced, differently from \(|\lambda^{(f)}_B|\), by the \(CP \)–violation in both \(B \)– and \(K \)–mixing.

3 Experimental manifestation and measurability

To suggest ways for the complete measurement of the parameters \(\lambda \) we should first consider how they reveal themselves experimentally. The problem of measurement for \(\delta_B \) looks quite clear and we will not discuss it here anymore. Situation is not so clear for parameters \(\lambda \).

Standard calculations for the decay (4) in the case of the initially pure \(B^0 \)–meson lead to the time distribution

\[
W^{(f)}_{B^0}(t) \sim \left| \frac{1 + \lambda^{(f)}_B}{2} \right|^2 \exp(-\Gamma_+ t) + \left| \frac{1 - \lambda^{(f)}_B}{2} \right|^2 \exp(-\Gamma_- t) + \exp\left(-\frac{\Gamma_+ + \Gamma_-}{2} t\right) \left(1 - |\lambda^{(f)}_B|^2\right) \cos \Delta m_B t - \Im \lambda^{(f)}_B \cdot \sin \Delta m_B t \right).
\]

Here \(\Delta m_B = m_+ - m_\mp; m_+, \Gamma_+ \) and \(m_-, \Gamma_- \) are the mass and width of the corresponding state \(B_+ \) or \(B_- \). To obtain the distribution for the initially pure \(B^0 \)–meson one should change \(\lambda \rightarrow 1/\lambda \). Eq.(14) has the same structure as, e.g., distribution of decays \(K^0(t) \rightarrow \pi \pi \). The first two terms are contributions of states \(B_\pm \), the last two terms describe their interference.

Distribution (14) contains contributions of \(|\lambda^{(f)}_B|^2 \), \(\Re \lambda^{(f)}_B \) and \(\Im \lambda^{(f)}_B \) multiplied by different functions of time. So, at first sight the three quantities can all be easily extracted if the distribution is experimentally measured with sufficient accuracy.

However \(\Re \lambda^{(f)}_B \) does not appear explicitly in distribution (14) if \(\Gamma_+ \) and \(\Gamma_- \) coincide. Thus, a very small expected difference of \(\Gamma_+ \) and \(\Gamma_- \), contrary to neutral kaons, may prevent direct measurement of \(\Re \lambda^{(f)}_B \). The situation for \(\Im \lambda^{(f)}_B \) is not so simple as well. In eq.(14) it is multiplied by \(\sin \Delta m_B t \), which sign is still unknown since only \(\Delta m_B \) has been measured.

Therefore, distribution (14) suggests straightforward measurement for \(|\lambda^{(f)}_B| \) and \(|\Im \lambda^{(f)}_B| \). The sign of \(\Im \lambda^{(f)}_B \) can be measured only in respect to the sign of \(\Delta m_B \).

Surely, even if \(\Re \lambda^{(f)}_B \) can not be directly measured one is able to calculate \(|\Re \lambda^{(f)}_B| \) from \(|\lambda^{(f)}_B| \) and \(|\Im \lambda^{(f)}_B| \). After that the only unknown pieces of information on \(\lambda^{(f)}_B \) are the signs of \(\Re \lambda^{(f)}_B \) and \(\Im \lambda^{(f)}_B \). Let us discuss them in more details.
Note, first of all, that definition (1) can not be used for unambiguous determination of the states B_{\pm}. Indeed, rephasing may even interchange the two expressions. So we need some physical identification for the states. For neutral kaons it was easily done due to large difference of lifetimes of two neutral kaon states (i.e., of K_L and K_S). But separation of two states by their lifetimes does not show by itself which of the states K_L and K_L (or B_S and B_L) corresponds to, e.g., K_+ (or B_+ respectively) in the sense of eq.(1). For this purpose one should accurately study particular decays (for the kaon case they are pion decays).

To identify the states B_{\pm} let us first introduce amplitudes $a^{(f)}_{\pm}$ for decays $B_{\pm} \rightarrow f$. Then we may rewrite eq.(5) as

$$\lambda_B^{(f)} = \frac{a^{(f)}_+ - a^{(f)}_-}{a^{(f)}_+ + a^{(f)}_-},$$

and

$$\text{Re} \lambda_B^{(f)} = \frac{|a^{(f)}_+|^2 - |a^{(f)}_-|^2}{|a^{(f)}_+ + a^{(f)}_-|^2}; \quad \text{Im} \lambda_B^{(f)} = 2 \frac{\text{Im}(a^{(f)}_+ a^{(f)*}_-)}{|a^{(f)}_+ + a^{(f)}_-|^2}. \quad (16)$$

Consider, for definiteness, a CP–even final state f^+. If CP were conserved it would be natural to define B_{\pm} as the states with CP–parity ± 1. Then $a^{(f^+)}_+ = 0$ and $\lambda^{(f^{+})}_B = +1$ (for CP–odd states f^- we would have $a^{(f^-)}_+ = 0$ and $\lambda^{(f^-)}_B = -1$).

In the CP–violation case one can not use the CP–parity to identify the states B_{\pm}. But assuming smallness of the violation we can define $B_+(B_-)$ as being approximately CP–even (CP–odd). It means, by definition, that

$$|a^{(f^+)}_+| > |a^{(f^+)}_-|, \quad |a^{(f^-)}_+| > |a^{(f^-)}_-|.$$ \quad (17)

Surely, such a case of approximate CP–conservation leads to the same sign(Re $\lambda_B^{(f)}$) as in the exact CP–conservation case.

Now, without any preliminary assumptions, we can choose one particular final state f (with a definite CP–parity) and identify states B_{\pm} by the corresponding inequality (17). In other words, we ascribe the CP–parity of the particular final state f to the approximate CP–parity for that of two states B_{\pm} which has larger partial width for the decay to f.

If the CP–violation is small indeed then inequalities (17) for all other f’s are satisfied as well. However, if the CP–violation is really intrinsically large then after fixing the states B_{\pm} and B_- some of inequalities (17) might degenerate to equalities or even reverse their signs (in other words, various decay channels might ascribe different values of approximate CP–parity to the same particular state of the pair B_{\pm}). The latter case can be tested experimentally by comparing signs of various $\text{Re} \lambda_B^{(f)}$ determined from time dependencies (14) for various final states. It is possible only if the experiment is exact enough to discriminate Γ_+ and Γ_-. Surely, such an experiment would also allow one to identify two neutral B–meson states by their lifetimes as B_L and B_S, just similar to neutral kaons.

In the absence of such possibility we assume that all inequalities (17) are correct simultaneously and, thus, sign($\text{Re} \lambda_B^{(f)}$) is known for any state f being the same as if CP were
conserved. After that to make $\lambda^{(f)}_B$ completely measured one needs to find $\text{sign}(\text{Im} \lambda^{(f)}_B)$ as well.

Note, first of all, that this sign may be definite only for a definite choice of the states B_\pm. Indeed, according to eq.(16) their interchange reverses $\text{sign}(\text{Im} \lambda^{(f)}_B)$. But even if we identified the states in one way or another we can not fix the sign by some convention similar to that suggested above for the sign of $\text{Re} \lambda^{(f)}_B$. The reason is that in the limit of CP-conservation $\text{Re} \lambda^{(f)}_B$ tends to the definite finite limit, while $\text{Im} \lambda^{(f)}_B$ vanishes. As a result, the sign of $\text{Re} \lambda^{(f)}_B$ is ”kinematic” at not very large CP—violation, while the sign of $\text{Im} \lambda^{(f)}_B$ is ”dynamic” at any degree of the violation.

Thus, we see that the complete measurement of parameters λ_B for decays (4) requires to determine $\text{sign}(\text{Im} \lambda_B)$ from experiment, i.e. from the corresponding distribution (14). However, such distributions can only relate signs of $\text{Im} \lambda^{(f)}_B$ and Δm_B, but cannot measure them separately. Therefore, the complete measurement of parameters of direct CP—violation is possible only if one knows $\text{sign}(\Delta m_B)$.

The situation is the same for neutral kaons where $\text{sign} (\text{arg} \eta_K)$ can be measured only in respect to $\text{sign}(\Delta m_K)$. Essential difference between kaons and B—mesons is much longer lifetime of kaons (even for K_S) which gave possibility to measure $\text{sign}(\Delta m_K)$ in complicated regeneration experiments. Similar experiments for B—mesons are impossible, and experiments on decays (4) or flavor-tagged decays (including semileptonic ones) are insensitive to the absolute sign of Δm_B (just as corresponding decays of neutral kaons).

Thus, neutral B—meson decays (4) are able to demonstrate manifestations of direct CP—violation. But they can provide the complete measurement for the corresponding CP—violating parameters only if $\text{sign}(\Delta m_B)$ is known from some different experiments.

4 Measurability of the sign of Δm_B

In the preceding Section we discussed only parameters λ_B for decays (4). Parameters λ_{BK} for decays (12) studied in [6] have similar properties. In particular, signs of various $\text{Re} \lambda_{BK}$ may be used for identifying states B_\pm and testing intrinsic smallness of CP—violation by inequalities similar to (17). On the other side, signs of $\text{Im} \lambda_{BK}$ can not be fixed by any convention for the choice of states and should be determined from experiment. For more detailed discussion on these parameters see [6].

Time distributions in decays (12) are more complicated than distributions (14) in decays (4). They were also studied in [8]. Here we will not describe them in detail but summarize two essential points:

- The neutral kaon produced in the decay (12) can be observed only after its own decay by the decay products. As a result, coherence of $B^0(\bar{B}^0)$ and $K^0(\bar{K}^0)$ evolutions relates the primary decay (of neutral B) and the secondary one (of neutral K) to
each other. Distribution in primary t_1 and secondary t_2 lifetimes appears, generally, non-factorizable and depends on the secondary decay mode.

E.g., distribution in t_1 at $t_2 \to 0$ for kaon semileptonic decays has the same form as for direct semileptonic decays of neutral B–mesons (though with different normalization). Two-pion kaon decay in the same limit $t_2 \to 0$ produces t_1–dependence of the form (14) with substitution

$$\lambda_B \to \lambda_{BK} \lambda_K^{\pi\pi}, \quad \lambda_K^{\pi\pi} = \frac{1 - \eta^{\pi\pi}_K}{1 + \eta^{\pi\pi}_K}.$$ \hfill (18)

The opposite extreme case $t_2 \to \infty$ restores factorization since only K_L survives in the limit. The corresponding t_1–distribution, independent of kaon decay modes, is given by eq.(14) with

$$\lambda_B \to -\lambda_{BK}.$$ \hfill (19)

• What is most interesting for purposes of the present paper, interference of K_L and K_S in the intermediate region of t_2 together with interference of $B_+ and B_-$ produces time distributions sensitive to the sign of Δm_B relative to known signs of kaon parameters. This sensitivity survives even after integration over t_1.

Therefore, decays (12) allow one not only to search for CP–violation but also to determine experimentally $\text{sign}(\Delta m_B)$ and, thus, provide a necessary basis for the complete measurement of all parameters of the direct CP–violation in neutral B–meson decays. It can be done in various ways. For example, one can fix both t_1 and t_2 lifetimes and investigate their correlations in observed time distributions. Alternatively, one may not select definite t_1 and study only time distribution of secondary kaon decays integrated over t_1. Corresponding general expressions for both approaches are given in [6].

As an illustration let us consider here the sequence of decays

$$B^0(\bar{B}^0) \to J/\psi K^0(\bar{K}^0), \quad J/\psi \to \ell^+\ell^-, \quad K^0(\bar{K}^0) \to \pi^+\pi^-,$$ \hfill (20)

which has clear experimental manifestation. Using experimental branching ratios for $B^0 \to J/\psi K^0$ [7], $J/\psi \to e^+e^-$, $\mu^+\mu^-$ [8], $K_S \to \pi^+\pi^-$ [8] and the factor 1/2 for $K^0 \to K_S$ we find the effective branching ratio for events (20) to be equal

$$(Br)_{\pi^+\pi^-}^{\text{eff}} \approx 0.47 \cdot 10^{-4}.$$ \hfill (21)

According to [3], the initial pure B^0–state produces the secondary $\pi^+\pi^-$ yield integrated over t_1 with the secondary decay time distribution

$$W_B^{\pi^+\pi^-}(t_2) \sim D \cdot \exp(-\Gamma_S t_2) + |\eta|^2 E \exp(-\Gamma_L t_2)$$
$$+ 2\text{Re} \{\eta \cdot F \exp(-i\Delta m_K t_2)\} \exp \left(-\frac{\Gamma_L + \Gamma_S}{2} t_2\right),$$ \hfill (22)
where
\[
D = \frac{1}{1 - y_B^2} \left(\frac{1 + |\lambda|^2}{2} - y_B \text{Re} \lambda \right) + \frac{1}{1 + x_B^2} \left(\frac{1 - |\lambda|^2}{2} - x_B \text{Im} \lambda \right),
\]
\[
E = D(-\lambda),
\]
\[
F = \frac{1}{1 - y_B^2} \left(\frac{1 + |\lambda|^2}{2} + iy_B \text{Im} \lambda \right) + \frac{1}{1 + x_B^2} \left(\frac{1 + |\lambda|^2}{2} - ix_B \text{Re} \lambda \right).
\] (23)

The notations used here are:
\[
y_B = \frac{\Gamma_+ - \Gamma_-}{\Gamma_+ + \Gamma_-}, \quad x_B = 2 \frac{\Delta m_B}{\Gamma_+ + \Gamma_-} = 2 \frac{m_- - m_+}{\Gamma_+ + \Gamma_-},
\] (24)
\[
\lambda \equiv \lambda_{BK}^{J/\psi}, \quad \eta \equiv \eta_{K}^{\pi^+\pi^-}.
\]

Surely, \(\Gamma_L \) and \(\Gamma_S \) in eq.(22) are widths of neutral kaons.

Distribution (22) and its coefficients (23) illustrate similarity and difference between properties of decays (4) and (12). Similar to distribution (14), coefficients \(D \) and \(E \) are sensitive to the relative signs of \(\Delta \Gamma_B = \Gamma_+ - \Gamma_- \) and \(\text{Re} \lambda_{BK} \), of \(\Delta m_B \) and \(\text{Im} \lambda_{BK} \). But the coefficient \(F \) has another structure. It may be obtained from \(D \) by interchange of \(y_B \) and \(ix_B \). As a result, this coefficient and the corresponding part of distribution (22), differently from distribution (14), are sensitive to the relative signs of \(\Delta \Gamma_B \) and \(\text{Im} \lambda_{BK} \), of \(\Delta m_B \) and \(\text{Re} \lambda_{BK} \). Therefore, if we identify the states \(B_{\pm} \) by fixing the sign of \(\text{Re} \lambda_{BK} \) we can measure three other signs.

Hence, each particular decay (12), in difference with decays (4), can provide by itself the complete measurement of the corresponding parameter \(\lambda_{BK} \). Of more universal interest is that any decay (12) can be used for measuring \(\text{sign}(\Delta m_B) \), thus providing necessary information for the complete measurement of any parameter \(\lambda_{B} \) as well.

For such purposes we may neglect here \(CP\)–violation in the primary decay (20) and use \(\lambda_{BK}^{J/\psi} = -1 \). We also neglect, for simplicity, the small quantity \(|y_B| \). Then
\[
D = E = 1, \quad F = \cos \alpha_B \cdot e^{i\alpha_B}, \quad \tan \alpha_B = x_B.
\] (25)

Available data [8] give
\[
|x_B| = 0.71 \pm 0.06, \quad |\alpha_B| = (35 \pm 2)^\circ, \quad \cos \alpha_B = 0.815 \pm 0.023.
\] (26)

The distribution (22) may be rewritten now as
\[
W_{B^{\pi^+\pi^-}}(t_2) \sim \exp(-\Gamma_st_2) + |\eta|^2 \exp(-\Gamma_L t_2)
\]
\[
+ 2 |\eta| \cdot \cos \alpha_B \cdot \cos(\alpha_B + \varphi - \Delta m_K t_2) \cdot \exp\left(-\frac{\Gamma_S + \Gamma_L}{2} t_2\right),
\] (27)

where [8]
\[
\varphi = \arg \eta = \varphi_{+-} = (44.3 \pm 0.8)^\circ.
\]
The value of $|\alpha_B|$ is large and comparable to φ. Thus, two possible signs of α_B (i.e., of x_B) produce very different phases of oscillation in the third term of distribution (27). However, because of the small factor $|\eta| \approx 2 \cdot 10^{-3}$, their discrimination requires high experimental statistics.

Therefore, $B-$factories look inappropriate to determine the sign of Δm_B from events (20). More promising might be LHC. The detector LHC-B dedicated for $B-$physics at LHC \[\text{is expected to accumulate 55000 events (20) per year (10}^7 \text{ seconds) at restricted luminosity } 1.5 \cdot 10^{32} \text{cm}^{-2}\text{s}^{-1}. \text{We have used Monte Carlo simulation based on PYTHIA to estimate their statistical meaning for the above task (note that modifications of the original PYTHIA were necessary to account for the coupled coherence of } B- \text{ and } K-\text{evolutions; more details will be published elsewhere). Our results show that reliable determination of sign}(\Delta m_B) \text{ requires at least an order more events (20), i.e. about } 10^6 \text{ events. This could be achieved if LHC-B were modified so to work with higher LHC luminosity.}

Another way is to use different sequence of decays

$$B^0(\bar{B}^0) \rightarrow J/\psi K^0(\bar{K}^0), \quad J/\psi \rightarrow \ell^+\ell^-, \quad K^0(\bar{K}^0) \rightarrow \pi^\pm \ell^\mp \nu \quad (28)$$

with the effective branching ratio (compare to (21))

$$(Br)^{\ell\ell}_{eff} \approx 0.45 \cdot 10^{-4}. \quad (29)$$

Its secondary decay time distribution, again integrated over t_1 and with $\lambda_{B_K}^{J/\psi} = -1$, has the form (compare to (27))

$$W^\pm_B(t_2) \sim \exp(-\Gamma_S t_2) + \exp(-\Gamma_L t_2) \quad (30)$$

$$\quad \pm 2 \cos \alpha_B \cdot \cos(\alpha_B - \Delta m_K t_2) \cdot \exp\left(-\frac{\Gamma_S + \Gamma_L}{2} t_2 \right).$$

Here W^\pm_B refers to the secondary lepton ℓ^\pm in the kaon decay. Note that all the distributions (22), (27) and (30) are written for the initially pure B^0-state. For the initial \bar{B}^0-state one should change the sign of the interference term in (27) and (30) and, additionally, substitute $\lambda \rightarrow 1/\lambda$ in (22).

At $\alpha_B = 0$ the expression (30) coincides with distributions of kaon semileptonic decays. In difference with (27), it does not contain small factor $|\eta|$. Nevertheless, some smallness appears here as well since only a small part of decays, in the t_2 interval of order τ_S, demonstrates oscillations while their main part, with characteristic time $\tau_L \gg \tau_S$, does not. Experiments on kaon semileptonic decays show [10] that oscillations are observable only up to $t_2 \lesssim 10^{-9}s$. Comparing to $\tau_L \approx 5 \cdot 10^{-8}s$ we see that not more than 1/50 of all events (28) may be used to extract the oscillating term. This number noticeably exceeds, however, the smallness parameter $|\eta| \approx 2 \cdot 10^{-3}$ for events (20).

Therefore, one may hope that determination of the sign of Δm_B will be really achieved at LHC-B or some other facilities by studying time distribution of events (28). More reliable estimation of necessary statistics requires detailed investigation of trigger efficiencies for such events in a particular detector.
5 Summary and conclusions

Here we briefly summarize results of the above considerations.

There are several kinds of CP-violating parameters in decays of neutral B-mesons. One of them, δ_B (see Eq.(3)), is universal and related to $B\bar{B}$ mixing. However it can be measured only if the experiment is sensitive enough to discriminate Γ_L and Γ_S for B-mesons. But even in such a case, the conventional CKM-mechanism of CP-violation strongly suppresses δ_B and makes it hardly measurable.

Another set of parameters corresponds to direct CP-violation in B-meson decays (4) to final states having definite CP-parity. It can be identified with phases of quantities λ_B (see Eq.(5)) for the decays with pure elastic final-state rescattering (one of neutral kaon analogues is the kaon decay to 2π with the definite isospin).

One more set of direct CP-violating parameters having no analogues in neutral kaon decays is generated by decays (12) of neutral B-meson to neutral kaon accompanied by a definite CP-parity system (e.g., J/ψ). It can be identified with phases of various λ_{BK} (see Eq.(13)).

Both values and signs for the direct CP-violating phases are physically meaningful and worth to measure. For example, in kaon decays only one sign of $\text{arg}\eta$ leads to agreement of experimental data with the superweak model of CP-violation [11]. Moreover, the CKM-mechanism with 3 quark generations should unambiguously relate the signs of CP-violating parameters for neutral B-meson and neutral kaon decays (they are all expressible through only one CP-violating parameter of the CKM-matrix). However we demonstrate that any decay (4) by itself can not provide measurement of the sign of the corresponding CP-violating phase. To achieve the complete measurement of CP-violating parameters one should separately find the sign of Δm_B.

Therefore, $\text{sign}(\Delta m_B)$ appears to be a universal element which knowledge is very important for studies of CP-violation in neutral B-meson decays. We suggest how one can measure the sign of Δm_B. This goal may be achieved by extracting the secondary kaon decay oscillations in the decay sequences (20) or (28). Monte Carlo simulations show that experimental statistics will be insufficient in the near future for events (20) with two-pion kaon decays. The situation looks more promising for events (28) with semileptonic kaon decays. Corresponding measurements could be done at LHC-B or some other facilities.

Two of the authors (Ya.I.A. and V.L.R.) thank the International Science Foundation for support (grants NO 7000 and NO 7300).
References

[1] Bigi I.I., Khoze V.A., Uraltsev N.G., Sanda A.I., in: "CP Violation" (ed.Jarlskog C.), World Scientific, Singapore, 175–218 (1989).

[2] Nir Y., Quinn H.R., Ann.Rev.Nucl.Part.Sc., 42, 211–250 (1992).

[3] Azimov Ya.I., Uraltsev N.G., Khoze V.A., Yad.Fiz. 45, 1412 (1987) (Sov.J.Nucl.Phys. 45, 878 (1987).

[4] Dunietz I., Rosner J., Phys.Rev. D34, 1404 (1986).

[5] Ramberg E.J. et al., Phys.Rev.Lett. 70, 2529 (1993).

[6] Azimov Ya.I., Phys.Rev. D42, 3705 (1990).

[7] Abe F. et al., Phys.Rev.Lett. 76, 2015 (1996).

[8] Particle Data Group, Phys.Rev. 50, No.3, Pt.1 (1994).

[9] LHC-B, Letter of intent. CERN/LHCC 95–5, August 1995.

[10] Kleinknecht K., in: "CP Violation" (ed.Jarlskog C.), World Scientific, Singapore, 41–104 (1989).

[11] Wolfenstein L., Phys.Rev.Lett., 13, 562 (1964).