Dominant resistance against plant viruses

Dryas de Ronde, Patrick Butterbach and Richard Kormelink*

Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands

Edited by:
Corne M. J. Pieterse, Utrecht University, Netherlands

Reviewed by:
Peter Moffett, Université de Sherbrooke, Canada
Frank L. W. Takken, University of Amsterdam, Netherlands

*Correspondence:
Richard Kormelink, Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
E-mail: richard.kormelink@wur.nl

INTRODUCTION

During the past decades it has become clear that plants have a unique and complex defense system that consists of several layers, which enables them to avoid, suppress, or actively defend against pathogens from all kingdoms like fungi, bacteria, nematodes, and viruses. Of all plant viruses known, only a few cause serious diseases and, if so, mostly limited to a very small number of crops. In general, most viruses have a limited (natural) host range and the number of so-called non-hosts exceeds those of hosts. In those plants that are hosts, viruses encounter different mechanisms of defense. Some act general against all viruses and this response is part of the innate immune system, while others are virus-specific and involve resistance genes. Triggering of the latter simultaneously mediates a rapid necrosis at the site of virus entry and prevents further spread of the virus throughout the host. In several cases resistance genes do not confer absolute resistance and low levels of virus replication can still be observed. In those cases the genes are referred to as partial resistance genes or tolerance genes.

While throughout the years reviews on resistance genes have appeared with regular intervals, these mostly had their main focus on fungal and bacterial resistance genes, primarily due to the large amount of data available. This review aims to present an overview on the current status of resistance genes against plant viruses, with emphasis on single dominant resistance genes. The very basis of plant pathogens (among others plant viruses) not being able to infect all plants is due to a mechanism called non-host resistance (NHR) (For an extensive review on this, see Uma et al., 2011). NHR holds for all plant pathogens and is a generic, nonspecific resistance that can be divided into two main types, distinguished by the mechanism and mode of recognition (Mysore and Ryu, 2004). Type 1 is the most pre-dominant type of NHR and presents a basic defense mechanism that prevents pathogen invasion, e.g., thickening of the cell-wall, secondary metabolite production, etc. This type of resistance usually is symptomless. In contrast, type 2 NHR is associated with induction of necrosis at the site of infection, and is induced when pathogens overcome type 1 resistance. Here, the pathogen is recognized through specific structures or proteins that are associated with the pathogen. The recognition of these structures/proteins, so called microbe associated molecular patterns (MAMPs) or PAMPs (Pathogen), takes place by pattern recognition receptors (PRRs) on plant plasma membranes. These PRRs recognize conserved structures of pathogens, like flagellin from the flagella of bacteria or chitin from the cell wall of fungi, and induce a so called PAMP triggered immunity (PTI) response (Jones and Dangl, 2006). Since plant viruses need to overcome the physical barrier of a cell wall, they enter their host cells either via mechanical inoculation or the infection is mediated by vectors like insects, nematodes, or even fungi. Direct recognition of viruses probably does not occur in the apoplast. However, a study recently reported on the possible involvement of (intracellular) receptor-like kinases (RLKs), of the like that are involved in PAMP recognition by PRRs, in plant-virus interactions (Kørner et al., 2013).

One of the first innate immune responses all plant viruses encounter when invading a host consists of antiviral RNA silencing [also called RNA interference (RNAi) and in the very early days post-transcriptional gene silencing (PTGS)]. RNA silencing is a host response triggered by double stranded (ds)RNA. These molecules thus act as a MAMP/PAMP and in which RNAi can be regarded as PTI. The main difference with pathogens such as fungi and bacteria is that recognition of viral MAMPs/PAMPs occurs intracellularly (Ding and Voinnet, 2007).

RNA silencing consists of two major “branches”: the first one is that of small-interfering (si)RNAs, and one of the hallmarks for antiviral RNAi, and the second one is that of (host-gene encoded) micro (mi)RNAs involved in gene regulation. The antiviral RNAi response is induced by viral double stranded (ds)RNA molecules that arise from replicative intermediates or secondary RNA folding structures. These structures are sensed by a host RNase
type III-like enzyme called Dicer-like (DCL) protein and cleaved into short interfering (si)RNA of 21–24 nucleotides (nt) in size (Sharma et al., 2013). The siRNAs generated are unwound and only one strand, the so-called guide-strand, is uploaded into a functional protein complex termed RNA-induced silencing complex (RISC). This activated complex next surveils and subsequently degrades (viral) RNA target molecules with sequence complementarity to the guide-strand. Degradation of the target RNA is mediated by slicer, the core component of RISC, which is represented by a member of the Argonaut (AGO) family of proteins (Vacheret, 2008; Sharma et al., 2013). After primary siRNAs have been generated, in plants an amplification of siRNAs follows, which is required to mount an RNAi response to effectively combat virus infections locally and systemically. This amplification involves host RNA dependent RNA polymerases (RDRs) that are able to convert (aberrant) viral (m)RNAs into dsRNA in a siRNA-dependent and -independent manner (Csorba et al., 2009). Their subsequent processing by DCL leads to the generation of secondary siRNAs that correspond to sequences outside the primary target sequence, a process also called transitive silencing (Sijen et al., 2001). The antiviral RNAi response acts against all RNA and DNA viruses (Incarbone and Dunoyer, 2013), but in general is a relatively slow process that does not lead to complete clearance of viral infections. For an extensive description of RNAi readers are referred to nice reviews from e.g., Ding (2010) and Sharma et al. (2013).

Besides RNAi, viruses may also run into another, second layer of defense that involves resistance genes. While most of these are triggered by and confer resistance to a specific virus only, some act against several (related) viruses. The major class of these genes represent single dominant resistance genes (and of which the biggest group consists of the NB-LRR type), while others are recessive, tolerance, or partial resistance genes. A very nice example of a dominant resistance gene of the latter case has recently been described with the cloning and characterization of the Ty-1 resistance gene from tomato against Tomato yellow leaf curl geminivirus (TYLCV) This gene encodes an RNA-dependent RNA polymerase (RdRp) and is proposed to confer resistance to TYLCV by amplifying the RNAi signal (Verlaan et al., 2013). Tomato plants containing Ty-1 do not show symptoms upon a challenge with TYLCV, but low levels of virus can still be detected.

Recessive resistance (Truniger and Aranda, 2009) acting against viruses, relies on the observation that viruses require host factors (also called susceptibility factors) to enable an infection. The inability of interaction between such host factor and the virus leads to resistance. Since susceptibility factors are dominant, a resistance based on these requires all gene copies to be in the (resistant) recessive state. This explains why such resistance is generally termed recessive resistance. The majority of the recessive resistance genes known against plant viruses have been reported for potyviruses (Kang et al., 2005) and encode translation initiation factors of the 4E or 4G family (eIF4E/eIF4G) (Truniger and Aranda, 2009). The latter proteins need to interact with the cap-structure on (viral) transcripts, to allow for translation. Potyviral transcripts do not contain a cap structure, but provide a VPG (Virus-protein genome linked) to render their transcripts translatable in a cap-independent manner. Potyvirus infection leads to host shut off of cap-dependent transcripts, but only allow the cap-independent transcripts to be translated mediated by a subgroup of translation initiation factors; eIF(iso)4E/G. Viruses that encode their own cap-like structure (like potyviruses: VPG) require interaction with the translation initiation factors eIF4E/eIF4G for translation, this in turn induces a selection pressure on the host to escape the interaction between VPG and eIF4e, leading to recessive resistance. Recessive resistance genes toward other pathogens, such as fungi and bacteria have only been described to a limited extent and their encoded susceptibility factors (S genes) are proposed to provide a more durable resistance than dominant R genes. However due to their functions they may cause pleiotropic effects when knocked out from the host genome (Gawehns et al., 2013).

DOMINANT RESISTANCE

EFFECTOR-MEDIATED TRIGGERING OF SINGLE DOMINANT RESISTANCE GENES

Plant pathogens need to evade or suppress the PTI response in plants and achieve the latter by encoding effector proteins that can interfere with the recognition by PRRs, usually by binding to the substrate that PRRs would otherwise recognize. This process allows the pathogen to establish a successful infection, and is referred to as Effector Triggered Susceptibility (ETS) (Figure 1): a strategy that also applies to antiviral RNAs. One of the most common strategies plant viruses use to counteract RNAi is to encode RNA silencing suppressors (RSS), viral proteins that interfere with a specific part of the RNAi pathway and thereby reduce its effectiveness against plant viruses (Burgian and Havelda, 2011). The majority of plant virus RSS proteins exert this activity through binding of small interfering (si)RNAs, or sometimes (also) long dsRNA, and thereby prevent their uploading into RISC and Dicer-cleavage, respectively (Lakatos et al., 2006). In recent years some RSS have also been discovered to inhibit the RNAi pathway in other ways, e.g., by binding directly to key-enzyme proteins like AGO1, the core component of RISC during the antiviral RNAi response (Zhang et al., 2006; Giner et al., 2010). Viral suppression of RNAi leads to a stage of ETS during which viruses are able to establish a successful infection.

Single dominant resistance (R) gene products (in)directly sense the presence of a specific pathogen by their effector, termed avirulence factors (Avr), as a counter defense against ETS, leading to a stage called Effector-Triggered Immunity (ETI) (Figure 1). Triggering of R genes is generally associated with a (concomitant) induction of a programmed cell death response, as visualized by the rapid appearance of necrotic lesions (a hypersensitive response, HR) or in rare occasions extreme resistance (ER) during which no necrosis is observed at all. However, more and more evidence is presented, that there is an uncoupling of the resistance response from the programmed cell death response, although both can work in concert. Due to these responses, viruses (and other pathogens) are confined to the site of entry/invasion where infections are prevented. In contrast to the slower onset of antiviral RNAi, the R gene response generally is rapid and within ~3/4 days lead to containment of the virus.

Dominant R genes basically can be grouped into two classes, namely those that encode NB-LRRs and all others. The major
class of R genes consists of the NB-LRR type and encode proteins that, irrespective of the pathogen they recognize, consist of three domains; (1) the Nucleotide Binding Site (NBS) in the center of the protein, (2) a Leucine Rich Repeat (LRR) at the C-terminal end, and (3) a Coiled-coil (CC) or T oll and Interleukin-1 Receptor (TIR) domain at the N-terminal end of the resistance gene product (Moffett, 2009). The LRR determines the specificity of the target protein and is the most variable part of the protein, therefore considered to be under selection pressure to evolve for recognition of (new) target proteins. The NBS is composed of a conserved part that contains the Nucleotide Binding site (NB) and an ARC-domain, both required to bind and hydrolyze ATP. R genes that contain an N-terminal TIR domain are only found in dicots from the angiosperms (Collier et al., 2011), and through this domain share homology to Toll-like receptor (TLR) proteins, that act as PRRs in the innate immunity response in animal systems. Those with no predicted structure at its N-terminus, are grouped with the CC-domain (Maekawa et al., 2011a; Hao et al., 2013) in the non-TIR group. All three domains are involved in an interaction with each other and change conformationally upon activation to subsequently induce the resistance response (Lukasik and Takken, 2009; Slootweg et al., 2010).

Only a few cases have been described in which the dominant R gene product recognizes an Avr protein through direct interaction (Jia et al., 2000; Deslandes et al., 2003; Dodds et al., 2006; Krasileva et al., 2010; Chen et al., 2012; Cesari et al., 2013), of which one is the TMV-p50 helicase domain (Ueda et al., 2006). In the majority of known R genes recognition of the pathogen occurs indirectly and involves host proteins, which are considered guardees, decoys, or baits, depending on the model, as further discussed below (Model of R Gene Recognition) (Van Der Biezen and Jones, 1998; Jones and Dangl, 2006; Van Der Hoorn and Kamoun, 2008; Collier and Moffett, 2009).

CLONED R GENES AND THEIR KNOWN Avr DETERMINANTS
While for fungi and bacteria many resistance genes have been cloned and characterized, resistance genes against plant viruses have received growing interest during the last two decades, still only few of the latter have been cloned so far. Table S1.1 gives an up-to-date summary of all R genes against plant viruses, known or currently under investigation. For some of these genes the viral Avr determinant has been identified. From this large, extensive list of R genes (>200), only 22 have been cloned and characterized. Some R genes have functional alleles in other plant species, often showing a similar Avr recognition. The majority of the known R gene products are of the CC-NB-LRR type, whereas only a small group belongs to the TIR-NB-LRR group (Table 1).

A few dominant R genes against viruses have been described that do not belong to the NB-LRR type of genes, e.g., RTM1, RTM2, and RTM3. Latter resistance genes have been identified from A. thaliana and prevent the systemic spread of several potyviruses. In those cases the virus is not able to upload into the phloem to systemically disseminate into the host. In addition, there is also no induction of HR or production of salicylic acid (SA), as commonly observed with NB-LRR mediated resistance responses (Cosson et al., 2012). No direct interaction occurs between the RTM proteins with the potyvirus CP (Avr) protein. A resistance gene recently identified is JAX, a lectin gene that resembles the RTM gene based resistance and works broadly against potexviruses in A. thaliana, indicating an important role for lectins in plant immunity (Yamaji et al., 2012). Another type of a distinct R gene is Tm-1, found in the wild tomato species S. hisutum, encoding a protein that contains a TIM-barrel. This barrel binds the replication proteins of Tomato mosaic virus (ToMV) and thereby inhibits RNA replication (Ishibashi et al., 2007). Also here, no typical NB-LRR type-associated response, like HR, is induced. Many homologs of Tm-1 are found in other organisms from different kingdoms, like fungi, archae, and bacteria, suggesting that this gene (originally) presents a housekeeping gene (Ishibashi et al., 2012). Both RTM and Tm-1 seem to play a role in the inhibition of a specific step required for successful infection by the virus. Whether these present a new class of dominant resistance genes remains to be determined.

From only a 1/3 of the total number of R genes directed against plant viruses, the virus Avr determinant is identified (Tables 1 and S1.1). Interestingly, functionally quite different viral proteins act as Avr determinants. Several R genes belong to the same locus (for instance the L-proteins in Capsicum spec.) or clearly act as homologs (Rx1 and Rx2 from S. tuberosum) and recognize the same Avr protein from overlapping virus species, indicating that these conserved R proteins are able to recognize similar structures but with an adapted spectrum (Bendahmane et al., 1995, 2000; Moury and Verdin, 2012). For several viruses, their corresponding R genes have not been identified yet, but their single dominant nature is deduced from the observation that an HR is being triggered. In some of these cases, the viral gene responsible for the induction of resistance, as indirectly monitored by HR, has been identified.

As described before and clear from Table 1, many different viral proteins can act as Avr determinants; whether it is the coat protein (e.g., L-locus from Capsicum against Tobamoviruses), the movement protein (e.g., Tm-2/Tm-2 from tomato against Tobamoviruses), the replicase protein (e.g., Tm-1 from tomato against Tobacco mosaic virus) or the RNAi suppressor protein (e.g., HRT from A. thaliana against Turnip crinkle virus), all...
Table 1 | Cloned dominant resistance genes against plant viruses, organized into the NB-LRRs and the non-NB-LRRs, and their Avr determinants (when identified).

Plant host	R gene	Type: NB-LRR	Recognizes	Virus genus	AVR	References
Arabidopsis thaliana	HRT	CC-NB-LRR [HR]	TCV [Turnip crinkle virus]	Carmovirus	CP	1, 2
Mouse ear cress	RCY1	CC-NB-LRR [HR]	CMV [Cucumber mosaic virus]	Cucumovirus	CP	3–6
Brassica campestris	BcTuR3	TIR-NBS-LRR	TuMV [Turnip mosaic virus]	Potyvirus	Unknown	17, 18
Field mustard						
Capsicum annuum	L-locus:	CC-NB-LRR	TMV [Tobacco mosaic virus] by L²³⁴	Tobamovirus	CP (all)	25, 31–34, 43–45
frutescens	L¹					
chinense	L²					
chacoense	L⁴					
Pepper						
Glycine max	Rsv1 (locus)	CC-NB-LRR [ER/HR]	SMV [Soybean mosaic virus]	Potyvirus	P3+	65–69
Soybean	Pvr1	TIR-NB-LRR	PRSV [Papaya ringspot virus]	Potyvirus	HC-Pro	Unknwon
Cucumis melo	Pvr2	TIR-NB-LRR	TMV [Tobacco mosaic virus]	Tobamovirus	p50	[Helicase]
Muskmelon	N	TIR-NB-LRR	[cell-cell mov.]			105–111
Nicotiana glutinosa	L	TIR-NB-LRR	BCMV [Bean common mosaic virus]	Potyvirus	Unknown	127–133
Tobacco		[ER/HR/phloem necr.]	BNMV [Bean necrotic mosaic virus]			
Phaseolus vulgaris	I (locus)	TIR-NB-LRR	BICMV [Blackeye cowpea mosaic virus]			
Kidney bean			AzMV [Azuki mosaic virus]			
			CABMV [Cowpea aphid-borne mosaic virus]			
			PWV [Passionfruit woodiness virus]			
			SMV [Soybean mosaic virus]			
			ThPV [Thailand passiflora virus]			
			WMV [Watermelon mosaic virus]			
			ZYMV [Zucchini yellow mosaic virus]			
Poncirus trifoliate	Ctv (locus)	CC-NB-LRR	CTV [Citrus tristeza virus]	Closterovirus	Unknown	158–160
Trifoliate orange						

(Continued)
Table 1 | Continued

Plant host	R gene	Type: NB-LRR	Recognizes	Virus genus	AVR	References
Solanum peruvianum Tomato	Sw5b	CC-NB-LRR [HR]	TSWV [Tomato spotted wilt virus] and other tospoviruses	Tospovirus	NSm	179–183
Tm-2	CC-NB-LRR [HR]	TMV [Tobacco mosaic virus] and other tobamoviruses	Tobamovirus	30 kD MP	171, 189	
Tm-22	CC-NB-LRR [HR]	ToMV [Tomato mosaic virus] and other tobamoviruses	Tobamovirus	30 kD MP	171, 190–193	
Solanum tuberosum Potato	Rx1	CC-NB-LRR [ER/HR]	PVX [Potato virus X] and other potex viruses	Potexvirus	CP	196, 198, 199, 230–234
Rx2	CC-NB-LRR	PVX [Potato virus X]	Potexvirus	CP	138, 232	
Y-1	TIR-NB-LRR	PYY [Potato virus Y]	Potyvirus	Unknown	237, 238	
Vigna mungo Black gram	CYR1	CC-NB-LRR	MYMV [Mungbean yellow mosaic virus]	Begomovirus	CP	256, 257

Plant host	R gene	Type: non NB-LRR	Recognizes	Virus genus	AVR	References
Arabidopsis thaliana Mouse ear cress	JAX1	Jacalin-like [lectin gene]	Broad resistance against potexvirus	Potexvirus	Unknown	258
RTM1	Jacalin-like [prev. syst. mov.] [RTM3 not cloned]	TEV [Tobacco etch virus]	Potyvirus	CP	7–9	
RTM2		PPV [Plum pox virus]		CP		
RTM3		LMV [Lettuce mosaic virus]		CP		
Solanum chilense Tomato	Ty-1	RDR [Tel.]	TYLCV [Tomato yellow leaf curl virus]	Begomovirus	No	30, 166, 167
Ty-3						
Solanum hirsutum Tomato	Ty-1	TIM-barrel-like domain protein [ER] [Replication]	ToMV [Tomato mosaic virus]	Tobamovirus	Replicase Helicase-domain	169–174

potentially can act as elicitor of resistance (Meshi et al., 1989; Ishibashi et al., 2012; Mouri and Verdin, 2012). Interestingly, for a majority of cases the ability to induce the resistance, as monitored by visual HR, could be uncoupled from the endogenous function of the viral protein but exceptions exist.

While the function of a viral protein is not a selective criterion to act as Avr-determinant, the “Zig-zag-model” by Jones and Dangl (2006) (Figure 1) implies that ETI (R gene mediated resistance) is a response to ETS and governed by effectors, i.e., molecules that act as virulence factors and contribute to
(enhance) pathogen fitness. It is obvious that in case of RNAi as a PTI response against viruses, viral Avr proteins containing RSS activity contribute to virus fitness as a result of PTI suppression and thereby initiating ETS. On the other hand, some viral Avr proteins lack RSS activity which would indicate that effectors not necessarily would have to suppress PTI (RNAi) to contribute to virulence, as observed with several bacterial effectors. Unless, instead of RNAi, another innate immune response is being counteracted that is triggered via the activation of different intracellular PAMP receptors (e.g., in analogy to animal TLRs, see below).

MODEL OF R GENE RECOGNITION

Although the mode of action of resistance genes still remains a matter of debate, models have been proposed for the triggering of the largest and most studied group of the NB-LRR type of dominant R genes. One of the most commonly accepted models is the “guard hypothesis” (Van Der Biezen and Jones, 1998; Jones and Dangl, 2006). In this model the resistance gene product guards a certain host protein, the “guardee,” and perceives alterations of this protein upon interaction with the Avr determinant to subsequently initiate a resistance response. It is possible that multiple R genes guard the same guardee, possibly *vice versa* as well, which thereby broadens the resistance spectrum of (a limited number of) R genes to a wide range of various pathogens; e.g., Rx1 and GPA2 both interact with the same guardee RanGAP2 (Tameling and Baulcombe, 2007; Moffett, 2009). Unfortunately, this model does not explain how resistance breaking viruses isolate maintain their virulence. For this reason, alternative models have been postulated. According to the “decoy model” (Van Der Hoorn and Kamoun, 2008), a (proteinaceous) decoy evolved to act as a molecular sensor to only detect a pathogen without having any other role in the household machinery of the host. The “bait and switch model” and the similar “mousetrap model” have been more recently postulated and proposes that the R gene product in an “OFF” state forms a complex together with the guardee/decoy protein, that upon interaction of the Avr protein with the complex leads to a conformational switch (“ON”) and activates a downstream signaling pathway leading to resistance (Collier and Moffett, 2009; Lukasik and Takken, 2009). Recent studies on the resistance gene Rx from potato against PVX have shown that indeed intramolecular interactions keep the R gene product in an inactive state, while interaction of the effector protein releases these interactions and thereby activating the resistance downstream (Bendahmane et al., 2002; Moffett et al., 2002; Lukasik and Takken, 2009; Slootweg et al., 2013).

The downstream mechanism after resistance induction still remains unclear. However, one described case of the R gene from tobacco, the N gene, has revealed some of the downstream ways of controlling virus replication and obtaining resistance. The N gene encodes a TIR-NB-LRR protein and confers resistance against TMV and, upon transient co-expression with the p50 elicitor (helicase), an HR is induced in *N. tabacum*, a response that does not occur in *N. benthamiana*. Bhattacharjee et al. (2009) employed this observation in a series of experiments to dissect and assign downstream signaling of defense responses, related to the R gene. The studies indicated that the N gene based antiviral response leads to a translational arrest of viral transcripts by a process that involves Argonaute 4 (AGO4). As a result, synthesis of viral proteins is inhibited, ultimately preventing virus accumulation and spread. Whether this mechanism is generic to all R genes against plant-viruses remains to be investigated.

More recently, two independent studies were published that showed that the translation of R genes is tightly controlled through the activity of miRNAs. One study showed the miR482/2118 superfamily negatively controlled the translation of NB-LRR proteins by targeting its P-loop motif (Shivaprasad et al., 2012), while Li et al. (2012) showed that other miRNA families controlled the translation of NB-LRR proteins as well, with the TIR-NB-LRR protein N as example. During the ongoing "arms race" between virus and host, viruses counter-defend against PTI/antiviral RNAi by their RSS proteins, some of which exhibit strong affinity to bind small (si- and mi-)RNAs. As a consequence such RSS proteins may suppress the miRNA induced silencing of R genes, and lead to enhanced expression of the R genes and induction of ETI. Considering that high expression levels of R genes lead to auto-immunity (Xia et al., 2013), viral RSS proteins with affinity to sRNAs thus may play a major role in the induction of HR. However, viral RSS are clearly not the only criterion as observed by the virus-specific activation of R genes and final HR, which indicates that a more complex interplay between viral effectors and R gene products is (additionally) required.

DOWNSTREAM DEFENSE RESPONSES

Dominant R genes trigger a hypersensitive response (HR) or an extreme response (ER) in case the reaction occurs in a single cell. Both involve a programmed cell death (PCD) response that rapidly kills infected cells and prevents systemic spread of the (virus) pathogen. An induced HR is quite characteristic and involves the activation and expression of SA, jasmonic acid (JA), nitrite oxide (NO), ethylene, reactive oxygen species (ROS), and Ca$^{2+}$, and expression of Pathogenesis Related (PR)-genes. While each component has a specificity toward certain pathogens, only SA, ROS, and Ca$^{2+}$ seem to be effective against viruses (Loebenstein, 2009; Carr et al., 2010).

In the past, an HR was considered to be part of the resistance response, however, recent insights into R protein downstream signaling indicate that programmed cell death (HR) and resistance are distinct physiological pathways (Bendahmane et al., 1999; Bai et al., 2012). One of the best examples in support of this comes from studies on Rx based resistance against PVX. The Rx gene product is a CC-NB-LRR protein from potato that is triggered by the PVX structural CP protein. The Rx protein localizes in the cytoplasm while shuttling to and from the nucleus thereby triggering resistance (Slootweg et al., 2010). Although an HR is monitored, this response can be knocked out without affecting Rx-mediated resistance against PVX (Bendahmane et al., 1999). Another example is the N gene mediated resistance against TMV as described above in section Model of R Gene Recognition (Bhattacharjee et al., 2009). Similar observations have been made by others (Cole et al., 2001; Cawly et al., 2005; Genger et al., 2008; Bulgarelli et al., 2010; Bai et al., 2012) and indicate that the actual resistance response is different from an HR, although both mostly are triggered and may act in concert to clear viral
intrusions. Whether both are triggered by a pathogens’ Avr determinant or whether HR is sequentially triggered following the R gene response is not clear.

While several interacting proteins have been identified that control R protein activity in the absence of pathogens (e.g., RAR1, GT1, WRKY1, TPR1, Hsp90), more recently it has been found that there are also proteins that modulate the strength of defense responses (RanGAP, EDS1-PAD4) (Lu et al., 2003; Wiermer et al., 2005; Sacco et al., 2009). The benefit for the plant in a modulated fine-tuning of the ETI response to specific pathogens lies in improved effector sensing and minimizing the fitness costs involved with certain defense responses (free radical production, defense protein synthesis, cell death) (Padmanabhan and Dinesh-Kumar, 2010). While R gene mediated defense is taking place locally at the site of entry, it is also able to induce defense signaling responses in distally located tissues, known as systemic acquired resistance (SAR) (Vlot et al., 2008). For both the N gene in tobacco and Rx1 in potato, SAR has been demonstrated (Delaney et al., 1994; Liu et al., 2010) and in both cases this response is mediated by the SA-dependent pathway as a mobile signal. SAR also prevents infection by other pathogens in the host by activating PR genes in the systemic tissue, which are used as a hallmark of SAR and were shown to have antimicrobial activity, although a direct inhibition on virus replication has not been shown (Durrant and Dong, 2004; Loebenstein, 2009; Carr et al., 2010).

FUNCTIONAL AND STRUCTURAL HOMOLOGY OF PLANT- AND ANIMAL-SENSORS OF INNATE IMMUNITY

Viruses are pathogens to many different organisms and, irrespective of the host species they infect, often share similarities in genome organization and functions of encoded proteins. A good example of this is exemplified by viruses from the Bunyaviridae family where all members infect animals with the exception of those from the Tospovirus genus that, besides infecting their thrips vector, are plant pathogenic and are postulated to have evolved from a common ancestor. Likewise, as a result of co-evolution driven by host-pathogen interactions, plants and animals show some similarities in their innate immune sensory systems. While in plants the aforementioned R genes are important in mounting an ETI response, in animals two major classes are distinguished that (partially) share similarity to these R genes, however both function as PRRs in the PTI response. The first major class present the “nucleotide-binding domain and leucine-rich repeat” proteins (NLRs) and the second class is that of Toll like receptors (TLRs), which are all found to function as PRRs in the PTI response. Both are immune receptors aimed at detecting “foreign” structures and activating downstream defense responses.

The family of NLRs share the most homology, as evidenced when looking at R genes from plants and NACHT-LRR encoding genes from the animal kingdom (NAIP–CIITA–HET-E–TP1 domain) (Leipe et al., 2004; Takken et al., 2006; Maekawa et al., 2011b). They both contain a nucleotide binding domain and leucine-rich repeat domains (NLRs) and the second class is that of Toll-like receptors (TLRs), which are all found to function as PRRs in the PTI response. Both are immune receptors aimed at detecting “foreign” structures and activating downstream defense responses. The family of NLRs share the most homology, as evidenced when looking at R genes from plants and NACHT-LRR encoding genes from the animal kingdom. (NAIP–CIITA–HET-E–TP1 domain) (Leipe et al., 2004; Takken et al., 2006; Maekawa et al., 2011b). They both contain a nucleotide binding domain and leucine-rich repeat domains (NLRs) and the second class is that of Toll-like receptors (TLRs), which are all found to function as PRRs in the PTI response. Both are immune receptors aimed at detecting “foreign” structures and activating downstream defense responses.

![Figure 2](https://www.frontiersin.org)

Figure 2 Comparison between the structure of plant and animal NLRs. (A) The structure of “Nucleotide binding and leucine rich repeat proteins” (NLRs) from the animal and plant kingdom share highest homology, as all proteins belonging to this class have a C-terminal leucine rich repeat (LRR), a central nucleotide binding domain and a varying N-terminal domain (modified from Maekawa et al., 2011b). Animal TLRs also contain an (extracellular) LRR domain and possess a TIR-domain, they do however, lack a nucleotide binding domain. CC, Coiled-coil; TIR, Toll-interleukin receptor; CARD, Caspase-activation and recruitment domain; PYR, Pyrin domain; BIR, Baculovirus inhibitor-of-apoptosis repeats; NB-ARC, Nucleotide binding and Apaf-1-R protein-CED4 domain; NACHT, NAIP – CIITA - HET-E - TP1 domain. (B) A model of NB-LRR R protein recognizing a specific Avr protein through a guardee or decoy host protein. Upon interaction with the Avr protein the R protein conformationally changes and the ADP can be exchanged for ATP, leading to a second conformational change triggering downstream resistance (Modified from Lukasik and Takken, 2009). Whether the R protein returns to its resting state is not known yet. G/D, Guardee/Decoy.

The NLRs of both plant and animal kingdom share homology through the presence of the Leucine-rich repeats (LRR) in these proteins. The most prevalent type of R proteins in plants belong to the NB-LRR protein structural class, from which the central nuclear binding domain (NBS) exhibits similarity to the nucleotide binding domain in several metazoan apoptosis regulating proteins like Apaf-1 from mammals and CED-4 from C. elegans. Due to the latter the NBS domain is also often referred...
to as NB-ARC domain (from Apaf-1–R-protein–CED4) (Van Der Biezen and Jones, 1998; Takken et al., 2006). The N-terminal domain furthermore separates different classes of R genes; TIR-NB-LRRs harbor a Toll/Interleukin-1 Receptor domain with similarity to metazoan TLRs (Burch-Smith et al., 2007; Bernoux et al., 2011; Maekawa et al., 2011b; Hao et al., 2013). CC-NB-LRRs contain coiled coil domain forming the more irregular shaped intertwined alpha-helices (Lupash, 1997). Parallel to the discovery of many NB-LRR encoding R genes in plants in the recent years, the search for homology to Apaf-1 and CED-4 resulted in the recognition of the NACHT-LRR protein family in vertebrates (Koonin and Aravind, 2000; Leipe et al., 2004). Animal NLRs activate caspase-1 leading to activation and release of the cytokine interleukin-1 beta (Case, 2011), which subsequently induces local and systemic immune reactions. Similar to plant NB-LRR proteins, NLRs were found to act as higher-order active complexes, e.g., NLRP1-3 and NLRC4 form a complex often termed the inflammasome (Maekawa et al., 2011b).

TLRs represent the best studied family of PRRs in mammals so far. They are transmembrane glycoprotein receptors with an extracellular PAMP-binding domain consisting of multiple LRR that fold into a “horseshoe” structure. Additionally, it possesses intracellular signaling regions that have similarity to the intracellular domain of the Interleukin-1 receptor (IL-1R), which is referred to as Toll/IL-1R (TIR) domain that mediates downstream signaling upon activation of the receptor. TLRs initiate signal cascades involving the activation of nuclear factor kappa b (NF-kB), mitogen-activated protein kinase (MAPK), and interferon regulatory factors (IRFs). This subsequently leads to a concerted expression of interferons, cytokines, and chemokines. Finally, inflammatory processes, cell cycle arrest, and cell death are induced (Honda et al., 2005; Kaisho and Akira, 2006). In humans, 10 TLRs have been identified of which TLR2, -3, -7, -8 are involved in sensing structural components of RNA viruses like double-stranded RNA, single-stranded RNA and viral glycoproteins (Bowie and Unterholzner, 2008). While most TLRs are involved in extracellular recognition of PAMPs, TLR3, -7, -8 are primarily restricted to intracellular compartments (endoplasmic-reticulum (ER), endosomes etc.) where they sense structural components of viral RNA. Besides TLRs, plants have a range of additional receptors that are involved in the recognition of PAMPs. The best characterized is LysM domain-containing receptors (LysM-RRs), which recognize the LysM domain of bacterial glycoproteins (Weber et al., 1994). Some NBS-LRRs contain coiled coil domain forming the more irregular shaped intertwined alpha-helices (Lupash, 1997). Parallel to the discovery of many NB-LRR encoding R genes in plants in the recent years, the search for homology to Apaf-1 and CED-4 resulted in the recognition of the NACHT-LRR protein family in vertebrates (Koonin and Aravind, 2000; Leipe et al., 2004). Animal NLRs activate caspase-1 leading to activation and release of the cytokine interleukin-1 beta (Case, 2011), which subsequently induces local and systemic immune reactions. Similar to plant NB-LRR proteins, NLRs were found to act as higher-order active complexes, e.g., NLRP1-3 and NLRC4 form a complex often termed the inflammasome (Maekawa et al., 2011b).

OUTLOOK

Dominant resistance against plant viruses are of increasing interest to breeders and scientists in the past years. More and more is known about the molecular mechanisms behind R gene mediated defense and the induction of the HR. However, the number of well-studied examples is still very limited, and therefore makes it difficult to extrapolate to other less studied R genes. In depth studies on other R genes from different crops providing resistance against different phytopathogens will have to show whether there is common mechanism of defense shared between all R genes, or whether specialization between different classes of R genes occurs. Knowledge on mammalian innate immunity sensors and their mode of action may provide interesting and cross pollinating views in this. The rapid generation of resistance breaking virus isolates against dominant resistance genes already indicates the importance for alternative resistance genes, to provide more durable, and effective resistances.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00307/abstract

REFERENCES

Acosta-Leal, R., Bryan, B. K., Smith, J. T., and Rush, C. M. (2010). Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel C2 mutation in its p25 gene. **Phytopathology** 100, 127–133. doi: 10.1094/PHYTO-100-2-0127

Amiri, R., Moghaddam, M., Mesbah, M., Sadeghian, S. Y., Ghannadha, M. R., and Izadpanah, K. (2003). The inheritance of resistance to **Beet necrotic yellow vein virus** (BNYVV) in *B. vulgaris* subsp maritima, accession WBJ42: Statistical comparisons with Holly-1-4. **Euphytica** 132, 363–373. doi: 10.1023/A:1025063625350

Anagnostou, K., Jahn, M., and Perl-Treves, R. (2000). Inheritance and linkage analysis of resistance to *Zucchini yellow mosaic virus*, *Watermelon mosaic virus*, *Papaya rongpot virus* and powdery mildew in melon. **Euphytica** 116, 265–270. doi: 10.1023/A:1020540578086

Angell, C. A., Hsieh, Y.-C., and Schoelz, J. E. (2011). Comparative analysis of the capacity of Tombusvirus P22 and P19 proteins to function as avirulence determinants in *Nicotiana species*. **Mol. Plant Microbe Interact.** 24, 91–99. doi: 10.1094/MPMI-04-10-0089

Angell, C. A., and Schoelz, J. E. (2013). A survey of resistance to *Tomato bushy stunt virus* in the genus *Nicotiana* reveals that the hypersensitive response is triggered by one of three different viral proteins. **Mol. Plant Microbe Interact.** 26, 240–248. doi: 10.1094/MPMI-06-12-0157-R

Ariyarathe, H. M., Coyne, D. P., Jung, G., Skroch, P. W., Vidaver, A. K., Steadman, J. R., et al. (1999). Molecular mapping of disease resistance genes for halo blight, common bacterial blight, and bean common mosaic virus in a segregating population of common bean. **J. Am. Soc. Hortic. Sci.** 124, 654–662.

Baercke, M. L. (1967). Hypersensitivity to the S-virus of potato in a Bolivian *andigena* clone. *Der Züchter* 37, 281–286.

Bagnall, R. H., and Young, D. A. (1972). Resistance to virus S in potato. **Am. Potato J.** 49, 196. doi: 10.1007/BF02864739.

Bai, S., Liu, J., Chang, C., Zhang, L., Maekawa, T., Wang, Q., et al. (2012). Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. **PLoS Pathog.** 8:e1002752. doi: 10.1371/journal.ppat.1002752

Baker, B., Dineshkumar, S. P., Corr, C., and Whitham, S. (1995). Isolation and characterization of the *Tobacco mosaic virus* resistance gene *N. Plant Physiol.* 108, 2.

Barker, H. (1996). Inheritance of resistance to *potato viruses* Y and A in progeny obtained from potato cultivars containing gene *Ry*: evidence for a new gene for extreme resistance to PVA. **Theor. Appl. Genet.** 93, 710–716. doi: 10.1007/BF00224066
Barker, H. (1997). Extreme resistance to *Potato virus V* in clones of *Solanum tuberosum* that are also resistant to *Potato viruses Y* and *A*: evidence for a locus conferring broad-spectrum potyvirus resistance. *Theor. Appl. Genet.* 95, 1258–1262. doi: 10.1007/s001220050690

Baish, M., Iqbal, M. S., Ghafoor, A., Ahmad, Z., and Qureshi, A. S. (2002). Variability in cowpea germplasm for reaction to virus infection under field conditions. *Pak. J. Bot.* 34, 47–48.

Baures, I., Candresse, T., Leveau, A., Bendahmane, A., and Stobrois, B. (2008). The Rx gene confers resistance to a range of potyviruses in transgenic *Nicotiana* plants. *Mol. Plant Microbe Interact.* 21, 1154–1164. doi: 10.1094/MPMI-21-9-1154

Ben Chaim, A., Grube, R. C., Lapidot, M., Jahn, M., and Paran, I. (2001). Identification of quantitative trait loci associated with resistance to *Cucumber mosaic virus* in *Capsicum annuum*. *Theor. Appl. Genet.* 102, 1213–1220. doi: 10.1007/s001220010581

Bendahmane, A., Farnham, G., Moffett, M., and Baulcombe, D. C. (2002). Constitutive gain-of-function mutants in a nucleotide binding site-leucine rich repeat protein encoded at the Rx locus of potato. *Plant J.* 32, 195–204. doi: 10.1046/j.1365-313X.2002.01413.x

Bendahmane, A., Kanyuka, K., and Baulcombe, D. C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. *Plant Cell* 11, 781–792. doi: 10.1105/tpc.11.5.781

Bendahmane, A., Kohn, B. A., Dedi, C., and Baulcombe, D. C. (1995). The coat protein of *Potato virus X* is a strain-specific elicitor of Rx1-mediated virus resistance in potato. *Plant J.* 8, 933–941. doi: 10.1046/j.1365-313X.1995.00933.x

Bendahmane, A., Querci, M., Kanyuka, K., and Baulcombe, D. C. (2000). Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. *Plant J.* 21, 73–81. doi: 10.1046/j.1365-313X.2000.00654.x

Bernoux, M., Ve, T., Williams, S., Warren, C., Hatters, D., Valkov, E., et al. (2011). Structural and functional analysis of a plant resistance protein TIR domain reveals interfaces for self-association, signaling, and autoregulation. *Cell Host Microbe* 9, 200–211. doi: 10.1016/j.chom.2011.02.009

Berzal-Herranz, A., De La Cruz, A., Tenllado, F., Diaz-Ruiz, J. R., Lopez, L., Sanz, A. L., et al. (1995). The *Capsicum* L3 gene-mediated resistance against the tobamoviruses is elicited by the coat protein. *Virology* 209, 498–505. doi: 10.1006/viro.1995.1282

Bhattacharjee, S., Zamora, A., Azhar, M. T., Sacco, M. A., Lambert, L. H., et al. (1995). The rice resistance protein pair RGA4/RGA5 recognizes the *Magnaporthe grisea* oomycete effectors AVR-Pia and AVR1-CO39 by direct binding. *Plant Cell* 25, 1463–1481. doi: 10.1105/tpc.11.2.107201

Chen, Y., Liu, Z., and Halterman, D. A. (2012). Molecular determinants of resistance in *Brassica* to *Papaya ring spot virus* protein 2b. *EMBO Rep.* 9, 754–760. doi: 10.1038/embor.2008.118

Chen, Q., Friebe, B., Conner, R. L., Liu, Z., and Gill, B. S. (1998b). Molecular characterization of the genome composition of partial amphiplodids derived from *Triticum aestivum* *x* *Thinopyrum ponticum* and *T. aestivum* *x* *Th. intermedium* as sources of resistance to Wheat streak mosaic virus and its vector, *Aceria tosichella*. *Theor. Appl. Genet.* 97, 1–8. doi: 10.1007/s001220050860

Chen, Q., Conner, R. L., Ahmad, F., Laroche, A., Fedak, G., and Thomas, J. B. (2003). Inheritance of resistance to four cucurbit viruses in *Cucurbita moschata*. *Mol. Genet. Genomics* 269, 47–48. doi: 10.1007/s00438-003-1065-9

Chen, Y., Yang, J., Lin, C., and Yuan, Y. A. (2008). Structural basis for RNA-silencing suppression by *Tomato aspermy virus* protein 2b. *EMBO Rep.* 9, 754–760. doi: 10.1038/embor.2008.118

Chen, Q., Friebe, B., Conner, R. L., Laroche, A., Thomas, J. B., and Gill, B. S. (1998a). Molecular cytogetic characterization of *Thinopyrum intermedium* derived wheat germplasm specifying resistance to *Wheat streak mosaic virus*. *Theor. Appl. Genet.* 96, 1–7. doi: 10.1007/s0012200505701

Chen, Y., Liu, Z., and Halterman, D. A. (2012). Molecular determinants of resistance activation and suppression by *Phytophthora infestans* effector IPI-O. *PLoS Pathog.* 8:e1002595. doi: 10.1371/journal.ppat.1002595

Chisholm, S. T., Mahajan, S. K., Whitham, S. A., Yamamoto, M. L., and Carrington, C. J. (2000). Cloning of the Arabidopsis *RTM1* gene, which controls restriction of long-distance movement of *Tobacco mosaic virus* etch virus. *Proc. Natl. Acad. Sci. U.S.A.* 97, 499–494. doi: 10.1073/pnas.97.1.499

Chung, H. Y., Yang, Y.-M., Mun, J.-H., Lee, S.-S., Chung, W.-H., and Yu, H.-J. (2014). Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a *TuMV* resistance locus in *Brassica rapa*. *Mol. Genet. Genomics* 289, 149–160. doi: 10.1007/s00438-013-0798-9

Cockerham, G. (1943). VIII. Potato breeding for virus resistance. *Euphytica* 28, 149–160. doi: 10.1007/s10681-013-0798-9

Coombs, S. H., Frary, A., Frary, A., and Tanksley, S. D. (2000). The *Ben Chaim*, A., Grube, R. C., Lapidot, M., Jahn, M., and Paran, I. (2001). Brotman, Y., Normantovich, M., Goldenberg, Z., Zvirin, Z., Kovalski, I., Stovbun, N., et al. (2013). Dual resistance of melon to *Papaya ring spot virus* etch virus. *Proc. Natl. Acad. Sci. U.S.A.* 97, 499–494. doi: 10.1073/pnas.97.1.499

Cunningham, J. D., Lee, E. Y., and Parish, R. W. (2004). The genetic basis of watermelon mosaic virus resistance in *Cucumis melo* L. 1. *Theor. Appl. Genet.* 109, 1158–1167. doi: 10.1007/s001220050644

Cunningham, J. D., Lee, E. Y., and Parish, R. W. (2004). The genetic basis of watermelon mosaic virus resistance in *Cucumis melo* L. 2. *Theor. Appl. Genet.* 109, 1168–1177. doi: 10.1007/s001220050645

Cunningham, J. D., Lee, E. Y., and Parish, R. W. (2004). The genetic basis of watermelon mosaic virus resistance in *Cucumis melo* L. 3. *Theor. Appl. Genet.* 109, 1178–1186. doi: 10.1007/s001220050646

Dey, M. K., and Razzaque, M. A. (2003). Characterization of *Plant virus resistance*.
Fisher, M. L., and Kyle, M. M. (1994). Inheritance of resistance to potyviruses in \textit{Phaeolus vulgaris} L. III. Co-segregation of phenotypically similar dominant responses to nine potyviruses. \textit{Theor. Appl. Genet.} 89, 818–823.

Fisher, M. L., and Kyle, M. M. (1996). Inheritance of resistance to potyviruses in \textit{Phaeolus vulgaris}. IV. Inheritance, linkage relations, and environmental effects on systemic resistance to four potyviruses. \textit{Theor. Appl. Genet.} 92, 204–212. doi: 10.1007/BF00223377

Flis, B., Hermig, J., Straczek-Zyda, D., Gebhardt, C., and Marezewski, W. (2005). The \textit{Ry-fisto} gene from \textit{Solanaum litorum} for extreme resistant to potato virus \textit{Y} maps to potato chromosome XII and is diagnosed by PCR marker GP122(718) in PYY resistant potato cultivars. \textit{Mol. Breed.} 15, 95–101. doi: 10.1007/s11032-004-2736-3

Ford, C. M., Paltridge, N. G., Rathjen, J. P., Moritz, R. L., Simpson, R. J., and Ford, C. M., Paltridge, N. G., Rathjen, J. P., Moritz, R. L., Simpson, R. J., and Ryder, E. J. (2005). Genetic analysis and mapping of resistance to lettuce ringspot virus in \textit{L. III. Cosegregation of phenotypically similar dominant resistances.\textit{Physiol. Mol. Plant Pathol.}\text{ }77, 1624–1629. doi: 10.1094/Phyto-77-1624

Hajimorad, M., Eggenberger, A., and Hill, J. (2005a). Absence of Soybean mosaic virus elicitor functions provoking RV1-mediated resistance response is insufficient for virulence on RV1-genotype soybean. \textit{Phytopathology} 95:539.

Hajimorad, M. R., Eggenberger, A. L., and Hill, J. H. (2003b). Loss and gain of elicitor function of \textit{Soybean mosaic virus G7} provoking RV1-mediated lethal systemic hypersensitive response map to \textit{P3. J. Virol.} 79, 1215–1222. doi: 10.1128/JVI.79.2.1215-1222.2005

Hajimorad, M. R., and Hill, J. H. (2001). RV1-mediated resistance against \textit{Soybean mosaic virus-N} is hypersensitive response independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. \textit{Mol. Plant Microbe Interact.} 14, 587–598. doi: 10.1094/MPMI.2001.14.5.587

Hall, T. J. (1980). Resistance at the \textit{Tim-2} locus in the tomato \textit{Tomato mosaic virus}. \textit{Eucalyptus} 29, 189–197. doi: 10.1078/BF00037266

Hallwass, M., Silva Da Oliveira, A., Dianese, E., Lohuis, D., Boiteux, L. S., Inoue-Nagata, A. K., et al. (2014). The Tomato spotted wilt virus cell-to-cell movement protein (NSm) triggers a hypersensitive response in \textit{Sw-5} containing resistant tomato lines and \textit{Nicotiana benthamiana} transformed with the functional \textit{Sw-5} resistance gene copy. \textit{Mol. Plant Pathol.}. 110,11111mphp.12144. [Epub ahead of print].

Hamalainen, J. H., Sorri, V. A., Watanabe, K. N., Gebhardt, C., and Valkonen, J. P. T. (1998). Molecular examination of a chromosome region that controls resistance to potato \textit{Y} and \textit{Potyviruses in potato}. \textit{Theor. Appl. Genet.} 96, 1036–1043. doi: 10.1007/s0012200505836

Hanson, P. M., Bernacchi, D., Green, S., Tankely, S. D., Munipyaappu, V., Padma, S., et al. (2000). Mapping a wild tomato introgression associated with \textit{tomato yellow leaf curl virus} resistance in a cultivated tomato line. \textit{J. Am. Soc. Hortic. Sci.} 125, 15–20.

Hao, W., Collier, S. M., Moffett, P., and Chai, J. (2013). Structural basis for the interaction between the \textit{Potato virus X} resistance protein (Rt) and its cofactor \textit{Ran GTPase-activating Protein 2} (RanGAP2). \textit{J. Biol. Chem.} 288, 35868–35876. doi: 10.1074/jbc.M113.137147

Hao, Y. F., Wang, Y. C., Chen, Z. B., Bland, D., Li, S. S., Brown-Guedira, G., et al. (2012). A conserved locus conditioning \textit{Soil-borne wheat} \textit{wheat virus resistance on the long arm of chromosome 3D in common wheat}. \textit{Mol. Breed.} 30, 1453–1464. doi: 10.1007/s11032-012-9731-x

Harper, S. J., Dawson, T. E., and Pearson, M. N. (2010). Isolates of \textit{Citrus tristeza virus} that overcome \textit{Poncirus triflora} resistance comprise a novel strain. \textit{Arch. Virol.} 155, 471–480. doi: 10.1007/s00705-010-0604-5

Hassan, S., and Thomas, P. E. (1983). Two types of immunity to \textit{Tomato yellow top virus} identified in \textit{Lycopersicon peruvianum} and its tomato hybrids. \textit{Phytopathology} 73, 959–959.

Hassan, S., and Thomas, P. E. (1984a). Discovery of resistance to infection and translocation of \textit{Tomato yellow top virus} (\textit{TYTV}) in \textit{Lycopersicon peruvianum} and some of its tomato hybrids. \textit{Phytopathology} 74, 1138.

Hassan, S., and Thomas, P. E. (1984b). Etiological distinctions between \textit{Tomato yellow top virus} and \textit{Potato leafroll} and \textit{Beet western yellow} \textit{whewles} \textit{virus}. \textit{Plant Dis.} 68, 684–685. doi: 10.1094/SPD-68-684

Hays, A. J., Jeong, S. C., Gore, M. A., Yu, Y. G., Buss, G. R., Tolin, S. A., et al. (2004). Recombination within a nucleotide-binding-site/leucine-rich-repeat gene cluster produces new variants conditioning resistance to \textit{Soybean mosaic virus} in \textit{soybeans}. \textit{Genetics} 166, 493–503. doi: 10.1534/genetics.166.1.493

Hays, A. J., Ma, G. R., Buss, G. R., and Maroof, M. A. S. (2000). Molecular marker mapping of \textit{RSV4}, a gene conferring resistance to all known strains of \textit{Soybean mosaic virus}. \textit{Crop Sci.} 40, 1434–1437. doi: 10.2135/cropsci2000.4051434x

Hikida, H. R., and Raymer, W. B. (1972). Sources and inheritance of peru tomato virus tolerance in \textit{tomato}. \textit{Phytopathology} 62, 764.

Hobb, H. A., Jossey, S. W., Yang, J. H., Hartman, G. L., and Domier, L. L. (2012). Diverse \textit{diseases} \textit{accessions} identified with temperature-sensitive resistance to \textit{Tobacco streak virus}. \textit{Crop Sci.} 52, 738–744. doi: 10.2135/cropsci2011.05.0265

Hobb, H. A., Kuhn, C. W., Papa, K. E., and Brantley, B. S. (1987). Inheritance of non-mosaic resistance to \textit{Southern bean mosaic virus in cowpea}. \textit{Phytopathology} 77, 1624–1629. doi: 10.1094/Phyto-77-1624

Hoffmann, K., Qiu, W. P., and Moyer, J. W. (2001). Overcoming host- and \textit{pathogen-mediated resistance in tomato and tobacco} to the \textit{M RNA of \textit{Tomato}} \textit{spotted wilt virus}. \textit{Mol. Plant Microbe Interact.} 14, 242–249. doi: 10.1094/MPMI.2001.14.2.242
Holmes, F. O. (1937). Inheritance of resistance to tobacco mosaic disease in the pepper. *Phytopathology* 24, 984–1002.

Holmes, F. O. (1948). Resistance to spotted wilt in tomato. *Phytopathology* 38, 467–473.

Honda, K., Yanai, H., Negishi, H., Asagiri, M., Sato, M., Mizutani, T., et al. (2005). IRF-7 is the master regulator of type-I interferon-dependent immune responses. *Nature* 434, 772–777. doi: 10.1038/nature03644

Hu, Z., Zhang, T., Yao, M., Feng, Z., Miriam, K., Wu, J., et al. (2012). The 2A protein of *Cucumber mosaic virus* induces a hypersensitive response in cowpea independently of its replicase activity. *Virus Res.* 170, 169–173. doi: 10.1016/j.virusres.2012.10.007

Hughes, S. L., Green, S. K., Lydiat, D. J., and Walsh, J. A. (2002). Resistance to *Turnip mosaic virus* in *Brassica rapa* and *B. napus* and the analysis of genetic inheritance in selected lines. *Plant Pathol.* 51, 567–573. doi: 10.1046/j.1365-3059.2002.00753.x

Hughes, S. L., Hunter, P. J., Sharpe, A. G., Kearsey, M. J., Lydiat, D. J., and Walsh, J. A. (2003). Genetic mapping of the novel *Turnip mosaic virus* resistance gene *TuRB03* in *Brassica napus*. *Theor. Appl. Genet.* 107, 1169–1173. doi: 10.1007/s00122-003-1364-4

Hussain, M., Mansoor, S., Iram, S., Fatima, A. N., and Zafar, Y. (2005). The molecular mapping of *Ryn17*, a dominant and *rym18* a recessive *Barley yellow mosaic virus* (BaYMV) resistance genes derived from *Hordeum vulgare* L. *Theor. Appl. Genet.* 124, 577–583. doi: 10.1007/s00122-001-1730-5

Kaiso, T., and Akira, S. (2006). Toll-like receptor function and signaling. *J. Allergy Clin. Immunol.* 117, 979–987. doi: 10.1016/j.jaci.2006.02.023

Kano, Y. H., Iemak, T., Suehiro, N., Natsuki, T., and Masuta, C. (2004). Fine genetic mapping of the TuNL locus causing systemic vein necrosis by *Turnip mosaic virus* infection in *Arabidopsis thaliana*. *Theor. Appl. Genet.* 110, 33–40. doi: 10.1007/s00122-004-1824-4

Kang, B. C., Yeam, I., and Jahn, M. M. (2005). Genetics of plant virus resistance. *Annu. Rev. Phytopathol.* 43, 581–621. doi: 10.1146/annurev.phyto.43.011205.141140

Kang, W. H., Hoang, N. H., Yang, H. B., Kwon, J. K., Jo, S. H., Seo, J. K., et al. (2010). Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (*Capsicum annuum* L.). *Theor. Appl. Genet.* 120, 1587–1596. doi: 10.1007/s00122-010-1278-9

Kang, W. H., Seo, J. K., Chung, B. N., Kim, K. H., and Kang, B. C. (2012). Helice domain encoded by *Cucumis mosaic virus* RNA polymerase determines virulent/avirulent phenotypes on cowpea. *Phytopathology* 98, 1189–1192. doi: 10.1094/PHYTO.1999.88.12.1186

Kato, M., Ishibashi, K., Kobayashi, C., Ishikawa, M., and Kato, E. (2013). Expression, purification, and functional characterization of an N-terminal fragment of the *Turnip mosaic virus* resistance protein *Tim-1*. *Protein Expr. Purif.* 89, 1–6. doi: 10.1016/j.pep.2013.02.001

Kelley, K. B., Whithurst, J. L., and Novy, R. G. (2009). Mapping of the *Potato leafroll virus* resistance gene *Rlr* (*etb*), from *Solanum etuberosum* identifies interchromosomal translocations among its E-genome chromosomes 4 and 9 relative to the A-genome of *Solanum L.* sect. Petota. *Mol. Breed.* 23, 489–500. doi: 10.1007/s11032-008-9251-x

Kelly, J. D., Afanador, L., and Haley, S. D. (1995). Pyramiding genes for resistance to *Bean common mosaic virus*. *Euphytica* 82, 207–212. doi: 10.1007/BF00029562

Khattabi, B., Fajolu, O. L., Wen, R. H., and Hajimorad, M. R. (2012). Evaluation of north American isolates of *Soybean mosaic virus* for gain of virulence on *Rv*-genotype soybeans with special emphasis on resistance-breaking determinants on *Rv4*. *Mol. Plant Pathol.* 13, 1077–1088. doi: 10.1111/j.1364-3703.2012.00817.x

Kim, B. M., Suehiro, N., Natsuki, T., Inumai, T., and Masuta, C. (2010). The P3 protein of *Turnip mosaic virus* can alone induce hypersensitive response-like cell death in *Arabidopsis thaliana* carrying *TuNL*. *Mol. Plant Microbe Interact.* 23, 144–152. doi: 10.1094/MPMI-23-2-0144

Kim, C. H., and Palukaitis, P. (1997). The plant defense response to *Cucumber mosaic virus* in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. *EMBO J.* 16, 4060–4068. doi: 10.1093/emboj/16.13.4060

Kiraly, L., Cole, A. B., Bourque, J. E., and Schoedl, I. E. (1999). Systemic cell death is elicited by the interaction of a single gene in *Nicotiana clevelandii* and gene VI of *Cauliflower mosaic virus*. *Mol. Plant Microbe Interact.* 12, 919–925. doi: 10.1094/MPMI.1999.12.10.919
Knight, V. H., and Barbara, D. J. (1981). Susceptibility of red raspberry varieties to Raspberry bushy dwarf virus and its genetic control. *Euphytica* 30, 803–811. doi: 10.1007/BF00308809

Knorr, D. A., and Dawson, W. O. (1988). A point mutation in the Tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. *Proc. Natl. Acad. Sci. U.S.A.* 85, 170–174. doi: 10.1073/pnas.85.1.170

Koonin, E. V., and Aravind, L. (2000). The NACHT family – a new group of leucine-rich repeat domain with the cognate oomycete effector. *Curr. Opin. Struct. Biol.* 10, 333–345. doi: 10.1016/S0959-440X(99)00138-3

Krasileva, K. V., Dahlbeck, D., and Staskawicz, B. J. (2010). Activation of an Arabidopsis resistance protein is specified by the in planta association of its amino acids. *Plant Cell* 22, 1271–1280. doi: 10.1094/PMCMI-06-13-0179-R

Krasileva, K. V., Dahbeck, D., and Staskawicz, B. J. (2010). Activation of an Arabidopsis resistance protein is specified by the in planta association of its amino acids. *Plant Cell* 22, 1271–1280. doi: 10.1094/PMCMI-06-13-0179-R

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6

Kraus, S. J., and Loake, G. J. (2001). MicroRNA regulation of plant innate immune receptors. *Curr. Opin. Plant Biol.* 4, 236–241. doi: 10.1016/S1369-5266(01)00102-6
Matsumoto, K., Sawada, H., Matsumoto, K., Hamasda, H., Yoshimoto, E., Ito, T., et al. (2008). The coat protein gene of tobamovirus P-0 pathotype is a determinant for activation of temperature-insensitive La-A gene-mediated resistance in *Capsicum* plants. *Arch. Virol.* 153, 645–650. doi: 10.1007/s00705-008-0032-y

Melchinger, A. E., Kuntze, L., Gumbet, R. K., Lubberstedt, T., and Fuchs, E. (1998). Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. *Theor. Appl. Genet.* 96, 1151–1161. doi: 10.1007/s001220050858

Metsi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N., and Okada, Y. (1988). Two concomitant base substitutions in the putative replication genes of Tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. *EMBO J.* 7, 1575–1581.

Metsi, T., Motoyoshi, F., Maeda, T., Yoshiwaka, S., Watanabe, H., and Okada, Y. (1989). Mutations in the Tobacco mosaic virus 3′ KD protein gene overcome Tm-2 resistance in tomato. *Plant Cell* 1, 515–522. doi: 10.1105/tc.1.5.515

Mestre, P., Brigneti, G., and Baulcombe, D. C. (2000). An R-mediated resistance response in potato requires the intact active site of the NLA proteinase from *Potato virus Y*. *Plant J.* 23, 653–661. doi: 10.1046/j.1365-313x.2000.00834.x

Mestre, P., Brigneti, G., Durrant, M. C., and Baulcombe, D. C. (2003). *Potato virus Y* NLA protease activity is not sufficient for elicitation of R-mediated disease resistance in potato. *Plant J.* 36, 755–761. doi: 10.1046/j.1365-313x.2003.01917.x

Mignouna, H. D., Abang, M. M., Omasanya, A., Agindotan, B., and Asiedu, R. (2004). A novel major gene on chromosome 6H for resistance of barley against the *Barley yellow dwarf virus*. *Theor. Appl. Genet.* 109, 1536–1543. doi: 10.1007/s00122-004-1777-7

Nikos-Womdrid, R., Marchoux, G., Pochard, E., Palloix, A., and Gebre-Selassie, K. (1991). Resistance of pepper lines to the movement of *Cucumber mosaic virus*. *J. Phytopathol.* 132, 21–32. doi: 10.1111/j.1439-0434.1991.tb00990.x

Novy, R. G., Gillen, A. M., and Whittworth, J. L. (2007). Characterization of the expression and inheritance of *Potato leafroll virus* (PLRV) and *Potato virus Y* (PVY) resistance in three generations of germplasm derived from *Solanum etuberosum*. *Theor. Appl. Genet.* 114, 1161–1172. doi: 10.1007/s00122-007-0508-2

Osono, J. M., Munoz, C. G., Beaver, J. S., Ferwerda, F. H., Bassett, M. J., Miklas, P. N., et al. (2007). Two genes from *Phaseolus coccineus* confer resistance to *Bean golden yellow mosaic virus* in common bean. *J. Am. Soc. Hortic. Sci.* 132, 530–533.

Ovesna, I., Vacek, J., Kucera, L., Chrpova, J., Novakova, I., Jahoof, A., et al. (2000). Genetic analysis of resistance in barley to *Barley yellow dwarf virus*. *Plant Breed.* 119, 481–486. doi: 10.1046/j.1439-0523.2000.00522.x

Padgett, H. S., and Beachy, R. N. (1993). Analysis of a *Tobacco mosaic virus* strain capable of overcoming N gene-mediated resistance. *Plant Cell* 5, 577–586. doi: 10.1105/tpc.5.5.577

Padgett, H. S., Watanabe, Y., and Beachy, R. N. (1997). Identification of the TMV replicase sequence that activates the N gene-mediated hypersensitive response. *Mol. Plant Microbe Interact.* 10, 709–715. doi: 10.1094/MPMI.1997.10.679

Padmanabhan, M. S., and Dinesh-Kumar, S. P. (2010). All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. *Mol. Plant Microbe Interact.* 23, 1368–1380. doi: 10.1094/MPMI-05-10-0113

Pal, S. S., Dhaliwal, S. H., and Bains, S. S. (1991). Inheritance of resistance to *Yellow mosaic virus* in some *Vigna* species. *Plant Breed.* 106, 168–171. doi: 10.1046/j.1439-0523.1991.tb00496.x

Paltridge, N. G., Collins, N. C., Bendahmane, A., and Symons, R. H. (1998). Development of YLM, a codominant PCR marker closely linked to the Yld2 gene for resistance to barley yellow dwarf disease. *Theor. Appl. Genet.* 96, 1170–1177. doi: 10.1007/s001220050583

Palukaitis, P. (2012). Resistance to viruses of potato and their vectors. *Plant Pathol.* J. 28, 248–258. doi: 10.5437/PPJW.2006.01207

Palukaitis, P., and Garcia-Arenal, F. (2003). *Cucumoviruses*. *Adv. Virus Res.* 62, 241–323. doi: 10.1016/S0065-3527(03)62005-1

Paris, H. S., and Brown, R. N. (2005). The genes of pumpkin and squash. *HortScience* 40, 1620–1630.

Park, S. J., and Tu, J. C. (1991). Inheritance and allelism of resistance to a severe strain of *Bean yellow mosaic virus* in common bean. *Can. J. Plant Pathol.* 13, 7–10. doi: 10.1007/0-7666-90950-90967

Parrella, G., Moretti, A., Gognalons, P., Lesage, M. L., Marchoux, G., Gebre-Selassie, K., et al. (2004). The Am gene controlling resistance to *Alfalfa mosaic virus* in tomato is located in the cluster of dominant resistance genes on chromosome 6. *Phytopathology* 94, 345–350. doi: 10.1094/PHYTO.2004.94.4.345

Patel, P., Miligo, J., Leyna, H., Kuwite, C., and Mmbaga, E. (1982). Sources of resistance, inheritance, and breeding of cowpeas for resistance to a strain of *Cowpea aphid-borne mosaic virus* from Tanzania. *Indian J. Genet. Plant Breed.* 42, 221–229.

Peiro, A., Carmen Canizares, M., Rubio, L., Lopez, C., Moriones, E., Aramburu, J., et al. (2014). The movement protein (NSm) of *Tomato spotted wilt virus* is the avirulence determinant in the tomato Sw-5 gene-based resistance. *Mol. Plant Pathol.* doi: 10.1111/mpp.12142 [Epub ahead of print].

Pelham, J. (1966). Resistance in tomato to *Tobacco mosaic virus*. *Euphytica* 15, 258. doi: 10.1007/BF00223331

Pitrat, M., and Lecocq, H. (1988). Inheritance of resistance to *Cucumber mosaic virus* transmission by *Aphis gossypii* in *Cucumis melo*. *Phytopathology* 78, 958–961. doi: 10.1094/Phyto-78-958

Pitrat, M., and Lecocq, H. (1983). Two alleles for *Watermelon mosaic virus* resistance in *Cucumis melo*. *Indian J. Genet. Plant Breed.* 43, 221–229.

Providne, R. (1974). Inheritance of resistance to *Watermelon mosaic virus* 2 in *Phaseolus vulgaris*. *Phytopathology* 64, 1448–1450. doi: 10.1094/Phyto-64-1448
Seifers, D. L., Perumal, R., and Little, C. R. (2012). New sources of resistance in sorghum (Sorghum bicolor) germplasm are effective against a diverse array of potyvirus spp. *Plant Dis.* 96, 1775–1779. doi: 10.1094/PDIS-03-12-0224-RE

Seke, K. T., Ishihara, T., Hase, S., Kasano, T., Shah, J., and Takahashi, H. (2006). Single amino acid alterations in *Arabidopsis thaliana* RCV1 compromise resistance to *Cucumber* mosaic virus, but differentially suppress hypersensitive response-like cell death. *Plant Mol. Biol.* 62, 669–682. doi: 10.1007/s11103-006-9048-4

Seo, Y. S., Gepts, P., and Gilbertson, R. L. (2004). Genetics of resistance to the geminivirus, *Bean dwarf mosaic virus*, and the role of the hypersensitive response in common bean. *Theor. Appl. Genet.* 108, 786–793. doi: 10.1007/s00122-003-1304-9

Seo, Y. S., Jeon, J. S., Rojas, M. R., and Gilbertson, R. L. (2007). Characterization of a novel Toll/interleukin-1 receptor (TIR)-TIR gene differentially expressed in common bean (*Phaseolus vulgaris cv. Orthello*) undergoing a defense response to the geminivirus *Bean dwarf mosaic virus*. *Mol. Plant Pathol.* 8, 151–162. doi: 10.1111/j.1364-3703.2007.00379.x

Seo, Y. S., Rojas, M. R., Lee, I. Y., Lee, S. W., Jeon, J. S., Ronald, P., et al. (2006). A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. *Proc. Natl. Acad. Sci. U.S.A.* 103, 11856–11861. doi: 10.1073/pnas.0604815103

Sharma, N., Sahu, P. P., Puranik, S., and Prasad, M. (2013). Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). *Mol. Biotechnol.* 55, 63–77. doi: 10.1007/s12033-012-9615-7

Sharma, P., and Ikegami, M. (2010). *Tomato leaf curl Java virus* V2 protein is a determinant of virulence, hypersensitive response and suppression of post-transcriptional gene silencing. *Virology* 396, 83–93. doi: 10.1016/j.virol.2009.10.012

Shepherd, D. N., Martin, D. P., Van Der Walt, E., Dent, K., Varsani, A., and Rybicki, E. P. (2010). *Maize streak virus* is an old and complex ‘emerging’ pathogen. *Mol. Plant Pathol.* 11, 1–12. doi: 10.1111/j.1364-3703.2009.00568.x

Shivaprasad, P. V., Chen, H.-M., Patel, K., Bond, D. M., Santos, B. A., and Baulcombe, D. C. (2012). A microRNA superfamily regulates nucleotide binding site–leucine-rich repeats and other mRNAs. *Plant Cell* 24, 859–874. doi: 10.1105/tpc.111.093380

Sijen, T., Fleenen, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., et al. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. *Cell* 107, 465–476. doi: 10.1016/S0092-8674(01)00576-1

Simko, I., Pechenick, D. A., Mchale, K. L., Truco, M. J., Ochoa, O. E., Michelmore, R. W., et al. (2009). Association mapping and marker-assisted selection of the lettuce dieback resistance gene *Tvr1*. * BMC Plant Biol.* 9:135. doi: 10.1186/1471-2229-9-135

Sinclair, J. B., and Walker, J. C. (1955). Inheritance of resistance to *Phytophthora capsici* in common bean (*Phaseolus vulgaris L.*) resistant common bean. *J. Am. Soc. Hortic. Sci.* 129, 549–552.

Ross, A. E. (1961). Localized acquired resistance to plant virus infection in hypersensitive hosts. *Virology* 14, 329. doi: 10.1016/0042-6822(61)90318-X

Ruge, B., Linz, A., Pickering, R., Proeseler, G., Greif, P., and Wehling, P. (2003). Mapping of *Rym14* (*Hb*), a gene introgressed from * Hordeum bulbosum* and conferring resistance to *BaMMV* and *BaYMV* in barley. *Theor. Appl. Genet.* 107, 965–971. doi: 10.1007/s00122-003-1339-4

Ruge-Wehling, B., Linz, A., Habeckus, A., and Wehling, P. (2006). Mapping of *Rym16*(*Hb*), the second soil-borne virus-resistance gene introgressed from *Hordeum bulbosum*. *Theor. Appl. Genet.* 113, 867–873. doi: 10.1007/s00122-006-0345-8

Sacco, M. A., Koropacka, K., Grenier, E., Jaubert, M. J., Blanchard, A., Govere, A., et al. (2009). The cyst nematode *SRYPSE* protein RBP-1 elicits Gpa2 and RLR2-dependent plant cell death. *PLoS Pathog.* 5:e1000564. doi: 10.1371/journal.ppat.1000564

Saito, T., Meshi, T., Takamatsu, N., and Okada, Y. (1987). Coat protein sequence of Tobacco mosaic virus encodes a host resistance determinant. *Proc. Natl. Acad. Sci. U.S.A.* 84, 6074–6077. doi: 10.1073/pnas.84.17.6074

Salanki, K., Gellert, A., Naray-Subo, G., and Balats, E. (2007). Modeling-based characterization of the elicitor function of amino acid 461 of *Cucumber mosaic virus* 1 protein in the hypersensitive response. *Virology* 358, 109–118. doi: 10.1016/j.virology.2006.08.014

Sawada, H., Takeuchi, S., Hamada, H., Kiba, A., Matsumoto, M., and Hikichi, Y. (2004). A new tobamovirus-resistance gene, *L-1a*, of sweet pepper (*Capsicum annuum L.*). *J. Jpn. Soc. Hort. Sci.* 73, 552–557. doi: 10.2503/jshs.73.552

Sawada, H., Takeuchi, S., Matsumoto, K., Hamada, H., Kiba, A., Matsumoto, M., et al. (2005). A new tobamovirus-resistance gene, *Hk*, in *Capsicum annuum*. *J. Jpn. Soc. Hort. Sci.* 74, 289–294. doi: 10.2503/jshs.74.289

Schaefer, I., Shepherd, R. J., and Dauwet, S. (1986). Region VI of *Cauliflower mosaic virus* encodes a host range determinant. *Mol. Cell. Biol.* 6, 2632–2637. doi: 10.1128/mcb.6.12.2632

Schroeder, W. T., and Provvidenti, R. (1968). Resistance of bean (*Phaseolus vulgaris*) to *PVX* strain from *Bean yellow mosaic virus* conditioned by single dominant gene. *By. Phytopathology* 58, 1710.

De Ronde et al. Plant virus resistance
Stewart, L. R., Haque, M. A., Jones, M. W., and Redinbaugh, M. G. (2013). Response of maize (Zea mays L.) lines carrying Wsm1, Wsm2, and Wsm3 to the potyviruses Johnstonsongrass mosaic virus and Sorghum mosaic virus. Mol. Breed. 31, 289–297. doi:10.1007/s11032-012-9789-5

Stoutsieljik, P., Kamminga, S. J., Kleven, S., Matsay, S., Banks, P. M., and Larkin, P. J. (2001). PCR-based molecular marker for the BdV2 Thinopyrus intermedium source of barley yellow dwarf virus resistance in wheat. Aust. J. Agric. Res. 52, 1383–1388. doi:10.1071/AR100183

Swiezynski, K. M., Krusiec, J., Osiecka, M., Sieczka, M. T., and Zarzycka, H. (1993). Potato-tuber resistance to Phytophthora infestans and its relation to maturity. Plant Breed. 110, 161–164. doi:10.1111/j.1439-0523.1993.tb01229.x

Takacs, A. P., Kazinczi, G., Horvath, J., and Gaborjanyi, R. (2003). Reaction of tomato plants in Hungary. Cereal Res. Commun. 34, 689–691. doi:10.1556/CRC.34.2006.1.172

Tameling, W. I., and Baulcombe, D. C. (2007). Physical association of the NB-ARC domain: a novel model for perception of plant pathogen effectors. Mol. Plant Microbe Interact. 20, 2009–2017. doi:10.1094/MPMI-06-10-0127

Tian, Y. P., and Valkonen, J. P. T. (2013). Genetic determinants of disease resistance. Curr. Opin. Plant Biol. 16, 701–717. doi:10.1016/j.pplb.2013.06.005

Tli, M. A., Provvidenti, R., and Gonsalves, D. (1981). Inheritance of resistance to黄瓜病毒在Vigna unguiculata. J. Hered. 72, 433–434.

Takacs, A., Kazinczi, G., Horvath, J., and Hadzis, M. (2006). Natural virus infection of tomato plants in Hungary. Cereal Res. Commun. 34, 689–691. doi:10.1556/CRC.34.2006.1.172

Takacs, A. P., Kazinczi, G., Horvath, J., and Gaborjanyi, R. (2003). Reaction of Lycopersicon species and varieties to Tomato virus Y (PVY(NTN)) and Tomato mosaic virus (ToMV). Commun. Agric. Biol. Sci. J. 68, 561–563.

Takahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., et al. (2004). Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to Cucumber mosaic virus. Plant Cell Physiol. 45, 803–809. doi:10.1093/pcp/pcp085

Takahashi, H., Miller, J., Nozaki, Y., Takeda, M., Shah, J., Hase, S., et al. (2002). RCY1, an Arabidopsis thaliana RPP8/HRT family resistance gene conferring resistance to Cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant J. 32, 655–667. doi:10.1046/j.1365-313X.2002.01453.x

Takahashi, H., Suzuki, M., Natsuki, K., Shigyo, T., Hino, K., Teraoka, T., et al. (2001). Mapping the virus and host genes involved in the resistance response in Cucumber mosaic virus infected Arabidopsis thaliana. Plant Cell Physiol. 42, 340–347. doi:10.1093/pcp/pcf039

Takken, F. L. W., Albrecht, M., and Tameling, W. I. L. (2006). Resistance proteins: molecular switches of plant defence. Curr. Opin. Plant Biol. 9, 383–390. doi:10.1016/j.pcbi.2006.05.009

Tameling, W. I. L., and Baulcombe, D. C. (2007). Physical association of the NB-ARC resistance protein Rx with a Ran GTase-activating protein is required for extreme resistance to Potato virus X. Plant Cell 19, 1682–1694. doi:10.1105/tpc.107.050880

Tanksley, S. D., Bernachi, D., Beck-Bunn, T., Emmatty, D., Eshed, Y., Inai, S., et al. (1998). Yield and quality evaluations on a pair of processing tomato lines nearly isogenic for the gene controlling yield and quality evaluations on a pair of processing tomato lines. Crop Sci. 38, 1229–1242. doi:10.1094/CropSci-38-1229

Taylor, S., and Martin, R. R. (1999). Sequence comparison between common and resistance breaking strains of Raspberry bushy dwarf virus. Phytopathology 89:576.

Tian, Y. P., and Valkonen, J. P. T. (2013). Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. Mol. Plant Microbe Interact. 26, 297–305. doi:10.1094/MPMI-09-12-0219-R

Tomita, R., Murai, J., Miura, Y., Ishihara, H., Liu, S., Kubotera, Y., et al. (2008). Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L0(5) of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor. Appl. Genet. 117, 1107–1118. doi:10.1007/s00122-008-0848-6

Tomita, R., Sekine, K. T., Mizumoto, H., Sakamoto, M., Murai, J., Kiba, A., et al. (2011). Genetic basis for the hierarchical interaction between tobamovirus spp. and L resistance gene alleles from different pepper species. Mol. Plant Microbe Interact. 24, 108–117. doi:10.1094/MPMI-06-10-0127
de Ronde et al.

Plant virus resistance

Weber, H., Schultz, S., and Pfitzner, A. J. (1993). Two amino acid substitutions in the *Tomat o mosaic virus* 30-kilodalton movement protein confer the ability to overcome the *Tm-2 (2)* resistance gene in the tomato. *J. Virol.* 67, 6432–6438.

Weeden, N. F., and Provvidenti, R. (1988). A marker locus, Adh-1, for resistance to *P adium mosaic virus in P adium sativum*. *J. Hered.* 79, 128–131.

Welz, H. G., Schechert, A., Fernet, A., Pizey, K. V., and Geiger, H. H. (1998). A gene for resistance to the *Maize streak virus* in the African CIMMYT maize inbred line CML202. *Mol. Breed.* 4, 147–154. doi: 10.1023/A:1009602620244

Wen, R. H., Khatabi, B., Ashfield, T., Saghai Maroof, M. A., and Hajimorad, M. R. (2013). The HC-Pro and P3 cistrons of an avirulent *Soybean mosaic virus* are recognized by different resistance genes at the complex Rs1 locus. *Mol. Plant Microbe Interact.* 26, 203–215. doi: 10.1094/MPMI-06-12-0156-R

Whitham, S. A., Anderberg, R. J., Chisholm, S. T., and Carrington, J. C. (2000). *Arabidopsis* RTM2 gene is necessary for specific restriction of *Tobacco etch virus* and encodes an unusual small heat shock-like protein. *Plant Cell* 12, 569–582. doi: 10.1105/tpc.12.4.569

Whitham, S., Dineshkumar, S. P., Choi, D., Hehl, R., Corr, C., and Baker, B. (1994). The product of the *Tobacco mosaic virus* resistance gene *N*: similarity to Toll and the Interleukin-1 receptor. *Cell* 78, 1101–1115. doi: 10.1016/0092-8674(94)90283-6

Wiermer, M., Feyes, B. J., and Parker, J. E. (2005). Plant immunity: the EDS1 regulatory node. *Curr. Opin. Plant Biol.* 8, 383–389. doi: 10.1016/j.pplb.2005.05.010

Xia, S., Cheng, Y. T., Huang, S., Win, J., Soards, A., Jinn, T.-L., et al. (2013). Origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes. *New Phytol.* 193, 1049–1063. doi: 10.1111/j.1469-8137.2011.04006.x

Zaumeyer, W. J., and Meiners, J. P. (1975). Disease resistance in beans. *Annu. Rev. Phytopathol.* 13, 33–334. doi: 10.1146/annurev.phyto.13.090175.001525

Zhang, Q. P., Li, Q., Wang, X., Wang, H. Y., Lang, S. P., Wang, Y. N., et al. (2005). Development and characterization of a *Triticum aestivum*-Haynaldia villosa translocation line T4Vs centor 4DL conferring resistance to *Wheat spindle streak mosaic virus*. *Euphytica* 145, 317–320. doi: 10.1007/s10681-005-1743-8

Zhang, X., Yuan, Y. R., Pei, Y., Lin, S. S., Tuschl, T., Patel, D. J., et al. (2006). *Cucumber mosaic virus* encoded 2b suppressor inhibits *Arabidopsis* Argonaute1 cleavage activity to counter plant defense. *Genes Dev.* 20, 3253–3268. doi: 10.1101/gad.1495506

Zhang, Z. Y., Lin, Z. S., and Xin, Z. Y. (2009). Research progress in BYDV resistance genes derived from wheat and its wild relatives. *J. Genet. Genomics* 36, 567–573. doi: 10.1016/S1673-8527(08)60148-4

Zhang, Z. Y., Xin, Z. Y., and Larkin, P. I. (2001). Molecular characterization of a *Triticum intermedium* Group 2 chromosome (2Ai-2) conferring resistance to *Barley yellow dwarf virus*. *Genome* 44, 1129–1135. doi: 10.1139/gen-44-6-1129

Zhang, Z. Y., Xin, Z. Y., Lin, Z. S., Chen, X., and Wang, X. P. (2000). Identification of molecular markers for the *Triticum intermedium* chromosome 2Ai-2 with resistance to *Barley yellow dwarf virus*. *Acta Bot. Sin.* 42, 1051–1056.

Zhao, Z. Y., Xu, J. S., Xu, Q. J., Larkin, P., and Xin, Z. Y. (2004). Development of novel PCR markers linked to the BYDV resistance gene *Bdv2* useful in wheat for marker-assisted selection. *Theor. Appl. Genet.* 109, 433–439. doi: 10.1007/s00122-004-1649-1

Zhang, Y., and Edwards, M. C. (1990). Expression of resistance to *Barley stripe mosaic virus* in barley and oat protoplasts. *J. Gen. Virol.* 71, 1865–1868. doi: 10.1099/0022-1317-71-8-1865

Zhou, Y. C., Garrido-Ramirez, E. R., Sudarshan, M. R., Yenduri, S., and Gilbertson, R. L. (2007). The N-terminus of the Begomovirus nuclear shuttle protein (BV1) determines virulence or avirulence in *Phoseus vulgaris*. *Mol. Plant Microbe Interact.* 20, 1523–1534. doi: 10.1094/MPMI-20-12-1523

Zvereva, A. S., and Pooggin, M. M. (2012). Silencing and innate immunity in plant defense against viral and non-viral pathogens. *Viruses* 4, 2578–2597. doi: 10.3390/v4112578

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.