Comprehensive evaluation of cell-type quantification methods for immuno-oncology

Gregor Sturm
Experimental Bioinformatics, Technical University of Munich
Pieris Pharmaceuticals GmbH, Freising

g.sturm@tum.de github.com/grst grst.github.io
Type and abundance of immune cells in the tumor microenvironment affect outcome.

	CD8⁺ T cells	TLS	Treg cell	M	M1	M2
Breast cancer	![Green](#)	![Green](#)	![Green](#)	![Red](#)	![Red](#)	![Red](#)
Melanoma	![Green](#)	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)
Pancreatic cancer	![Green](#)	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)
NSCLC	![Green](#)	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)
Hepatocellular cancer	![Green](#)	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)
Ovarian cancer	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)	![Red](#)
Head and Neck	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)	![Red](#)
Bladder cancer	![Green](#)	![Orange](#)	![Red](#)	![Red](#)	![Red](#)	![Red](#)

Fridman, W. H., et al. (2017). Nature Reviews Clinical Oncology. doi:10.1038/nrclinonc.2017.101
Computational methods can estimate cell type abundance from bulk RNA-seq data.

Bulk RNA-seq data → Deconvolution → Cell type fractions

30%
50%
20%

Finotello et al. (2019). Genome Medicine, doi:10.1186/s13073-019-0638-6
But … which method should I use?
‘Deconvolution’, as opposed to ‘marker gene-based’ methods allow to compute cell fractions.

Marker genes: list of enriched genes for each cell type

Deconvolution: ‘inverse’ matrix multiplication with reference-profiles

Finotello et al. (2018). Cancer Immunology, Immunotherapy. doi:10.1007/s00262-018-2150-z
EPIC and quanTIseq are the only methods to compute cell fractions.

Marker gene-based

tool	score	between sample	between cell-type
MCP-counter	arbitrary units	✓	✗
xCell	arbitrary units	✓	✗

Deconvolution-based

tool	score	between sample	between cell-type
CIBERSORT	immune cell fractions	✗	✓
CIBERSORT abs.	arbitrary units	✓	✓
EPIC	cell fractions	✓	✓
quanTIseq	cell fractions	✓	✓
TIMER	arbitrary units	✓	✗
FACS is a “gold standard” for comparing computational cell-type quantification methods.
FACS is a “gold standard” for comparing computational cell-type quantification methods.

Only 15 samples available!

Image credit: https://www.abcam.com/protocols/fluorescence-activated-cell-sorting-of-live-cells
Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

Schelker et al. (2017). Nature Communications, doi:10.1038/s41467-017-02289-3
Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

$11k$ single cells

Simulated bulk RNA-seq

correlation

$\text{background predictions}$

& detection limit

true

predicted

true

Schelker et al. (2017).
Nature Communications,
doi:10.1038/s41467-017-02289-3
Simulating bulk RNA-seq samples from single-cell data allows us to systematically assess the methods.

Schelker et al. (2017). Nature Communications, doi:10.1038/s41467-017-02289-3
Simulating bulk RNA-seq samples to assess...

Correlation true vs. predicted
Simulating bulk RNA-seq samples to assess...

Background predictions

- S1
 - Dendritic cells
 - Macrophages
 - Melanoma cells

No CD4+ T cells!
Simulating bulk RNA-seq samples to assess...

Background predictions

- **S1**
 - Dendritic cells
 - Macrophages
 - Melanoma cells

- **No CD4+ T cells!**

Minimal detection fraction

- **S2, S3, S4, S5**

 - **CD4+ T cells**

 - **0% 5% 10%**

 - **true CD4+ T**

 - **predicted CD4+ T**
Simulating bulk RNA-seq samples to assess...

Spillover

S1 S2 S3 S4

- Macrophages
- CD4+ T cells
- CD8+ T cells
- Dendritic cells
Simulating bulk RNA-seq samples to assess...

Spillover

	S1	S2	S3	S4
	![Bar Chart](image)			

- **Macrophages**
- **CD4+ T cells**
- **CD8+ T cells**
- **Dendritic cells**

Predicted cell-type
We recommend EPIC and quanTIseq for general purpose deconvolution.
Beware of dendritic cell subtypes!

- m = myeloid
- d = monocyte-derived
- p = plasmacytoid
Background predictions are widespread among deconvolution-based approaches.
xCell is robust against background predictions (stat. enrichment test)

	B	DC	Mac/Mono	NK	T CD4+	T CD8+	T CD4+ n.r.	T reg	CAF	Endo
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2

Diagram:
- **Predicted** vs. **true**
- **Background predictions**
- **Minimal detection fraction**

Graph:
- **Fraction of spike-in cells**
- **Average estimate**
Removing genes with low cell-type specificity can reduce background predictions

quanTIseq: Macrophage/Monocyte

![Graph showing average estimate against fraction of spike-in cells](image)

Mathematical formulation:

\[
M = S_1 F_1 + S_2 F_2 + ... + S_N F_N
\]

for \(j = 1, ..., N \)
Removing genes with low cell-type specificity can reduce background predictions

quanTIseq: Macrophage/Monocyte

\[
M = \sum_{j=1}^{N} S_j F_{j1} + S_j F_{j2} + \ldots + S_j F_{jC} \quad \text{for } j = 1, \ldots, N
\]
Removing genes with low cell-type specificity can reduce background predictions

quanTIseq: Macrophage/Monocyte

\[M_i = S_{ij}F_1 + S_{ij}F_2 + \ldots + S_{ij}F_{c} \quad \text{for} \quad j = 1, \ldots, N \]
Removing genes with low cell-type specificity can reduce background predictions.

Remove 5 non-specific genes.
Which method should I use?

- EPIC, quanTIseq (absolute scores, solid performance)
- MCP-counter (good for between-sample comparisons)
- xCell (no ‘background predictions’)

More observations

- We need signatures that address dendritic cell subtypes
- Background predictions can be addressed by identifying non-specific genes

Outlook

- More scRNA-seq data now available (200k+ cells)
- Cancer-type specific signatures?
Availability

- This talk ➔ grst.github.io/talks
- The paper ➔ Sturm et al. in the proceedings

Immunedeconv R package
Unified interface to methods

deconvolute(expr_mat, "epic")

github.com/grst/immunedeconv

Reproducible Pipeline
Reproduce entire benchmark

snakemake --use-conda

github.com/grst/immune_deconvolution_benchmark
Acknowledgements

- Florent Petitprez, Ligue contre le cancer, Paris
- Wolf H. Fridman, Cordeliers Research Centre, Paris
- Jitao David Zhang, Roche, Basel
- Jan Baumbach, Experimental Bioinformatics, TUM
We are hiring!

Pieris Pharmaceuticals
● zettl@pieris.com

Experimental Bioinformatics, TUM
● exbio@wzw.tum.de

Division of Bioinformatics, Medical University of Innsbruck
● francesca.fiotello@i-med.ac.at

Markus Zettl
Tatsiana Aneichyk
Markus List

Francesca Finotello
Supplementary Slides
Table

Table C

	B	DC	Mono	NK	T	T CD4+	T CD8+
CBA	0.89	0.25	0.58	0.93	0.77	0.74	0.32
CBS	0.95	0.3	0.79	0.97	0.93	0.36	0.21
EPC	0.95	0.87	0.97	0.98	0.72	< 0	
MCP	0.83	0.88	0.57	0.98	0.95	0.72	< 0
QTS	0.93	0.45	0.7	0.96	0.97	0.75	0.48
TMR	0.6	0.31	0.7	< 0	0.93	0.57	
XCL	0.91	0.83	0.85	0.81	0.9	0.54	0.75
All datasets (n=15)							

Table D

	B	DC	Mono	NK	T
CBA	0.79	n/a	0.58	0.98	0.77
CBS	0.81	n/a	0.79	0.99	0.93
EPC	0.9		0.87	0.98	0.98
MCP	0.89	0.87	0.57	0.99	0.95
QTS	0.73	0.55	0.7	0.99	0.97
TMR	0.73	0.71		0.99	< 0
XCL	0.85	0.94	0.85	0.99	0.9

Notes

- **Table C** represents data from various datasets with the number of datasets specified as (n=15).
- **Table D** represents data from Hoek (PBMC, n=8) with the following observations:
 - CBA: 0.79
 - CBS: 0.81
 - EPC: 0.9
 - MCP: 0.89
 - QTS: 0.73
 - TMR: 0.73
 - XCL: 0.85
| Cell type | Recommended methods | Overall perf. | Abs. score | No background predictions |
|---------------|---------------------|---------------|------------|---------------------------|
| B | EPIC | ++ | ++ | + |
| | MCP-counter | ++ | - | - |
| T CD4+ | EPIC | ++ | ++ | - |
| | xCell | ++ | - | ++ |
| T CD4+ n.r. | quantITseq | + | ++ | + |
| | xCell | + | - | ++ |
| T reg. | quantITseq | ++ | ++ | - |
| | xCell | ++ | - | ++ |
| T CD8+ | quantITseq | ++ | ++ | - |
| | EPIC | ++ | ++ | - |
| | MCP-counter | ++ | - | - |
| | xCell | + | - | ++ |
| NK | EPIC | ++ | ++ | + |
| | MCP-counter | ++ | - | - |
| Mac/Mono | xCell | - | ++ | |
| | EPIC | + | ++ | + |
| | MCP-counter | ++ | - | - |
| CAF | EPIC | ++ | ++ | + |
| | MCP-counter | ++ | - | - |
| Endo | EPIC | ++ | ++ | + |
| | xCell | ++ | - | ++ |
| DC | None of the methods can be recommended to estimate overall DC content. MCP-counter and quantITseq can be used to profile myeloid DCs. |
| dataset/method | subtype | reference |
|---------------|-------------------------|---|
| Schelker\(^1\) | plasmacytoid DC | Identified in the single cell data using CD123 and CD303 marker genes\(^1\) which are pDC marker genes according to \(^6\). |
| Hoek\(^3\) | myeloid DC | primary human myeloid DC according to annotation on GSE64655 |
| MCP-counter\(^9\) | myeloid DC | signature explicitly annotated as myeloid DC |
| CIBERSORT\(^10\) | monocyte-derived DC | “Monocytes isolated as above were cultured in RPMI with 10% heat-inactivated FBS, 1 × Pen/Strep, 2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, then differentiated into dendritic cells by 17 ng/ml IL4, and 67 ng/ml GMCSF for 5 days at 5 × 10^6 cells/ml.” (GSE22886)\(^11\) |
| quantIseq\(^5\) | myeloid DC | signatures derived from Hoek\(^3\) data |
| EPIC\(^4\) | (no DC signature provided) | |
| TIMER\(^12\) | monocyte-derived DC | training data is a mix of various monocyte-derived DCs from HPCA (See table S8 of \(^12\)) |
| xCell\(^13\) | myeloid DC | uses a combination of various, mostly myeloid, DC samples (personal communication with authors) |
Certain cell-types are susceptible to spillover.
Certain cell-types are susceptible to spillover
Spillover occurs between NK and CD8+ T cells
Spillover occurs between CD4+ and CD8+ T cells
Spillover occurs between DCs and B cells
What causes spillover between DC and B cells?

	Simulated sample (single cell)	Pure sample (FACS)
CD4+ T ↔ CD8+ T	✓	✓
NK ↔ CD8+ T	✓	✓
DC ↔ B	✓	✗
