Superinsulator as a phase of bi-particle localized states

J. Lages1 and D.L. Shepelyansky2

1Institut UTINAM, UMR CNRS 6213, Université de Franche-Comté, 25030 Besançon, France
2Laboratoire de Physique Théorique du CNRS (IRSAMC), Université de Toulouse, UPS, F-31062 Toulouse, France

(Dated: November 30, 2010; updated December 4, 2010)

PACS numbers: 74.20.-z, 71.30.+h, 72.15.Rn

We propose a physical picture of superinsulator observed recently in experiments with superconducting films in a magnetic field. On the basis of previous numerical studies we argue that a moderate attraction creates bi-particle localized states at intermediate disorder strength when noninteracting electron states are delocalized and metallic. Our present numerical study show that such localized pairs are broken by a static electric field which strength is above a certain threshold. We argue that such a breaking of localized pairs by a static field is at the origin of superinsulator breaking with a current jump observed experimentally above a certain critical voltage.

I. INTRODUCTION

An interplay of disorder, Anderson localization and superconductivity attracts active experimental and theoretical interest (see e.g. reviews [1, 2] and a recent research article [3]). A weak disorder does not significantly affect the superconducting phase in agreement with the Anderson theorem [4, 5]. However, a relatively strong disorder can lead to a nontrivial situation when an attraction between electrons creates bi-particle localized states (BLS phase) from noninteracting metallic delocalized electron states [6, 7] (see Fig. 1a,b). First signatures of this BLS phase have been obtained in the frame of the generalized Cooper problem [8] of two interacting particles above a frozen Fermi sea in presence of disorder. Further extensive quantum Monte Carlo studies of two and three-dimensional (2D, 3D) Hubbard model [9, 10], with attraction, disorder and about hundred electrons, confirmed the attraction induced picture of localized Cooper pairs proposed in [6, 7]. This picture is in a qualitative agreement with 2D disordered films experiments on superconductor-insulator transition (SIT) of Gantmakher et al. [11], which clearly display a presence of localized pairs in the insulating phase appearing from the superconducting phase at relatively large magnetic field (see also [2] and Refs. therein). At even larger magnetic fields these samples show a metallic type behavior which is argued to correspond to underlying metallic noninteracting states [7].

Recent experiments also discovered that in 2D disordered films the above insulating phase is abruptly destroyed by a static dc-voltage [12–16]. It was argued that this unusual insulating phase is related to a certain collective state named superinsulator [15]. The physical origin of this state is under hot theoretical debates [15, 17–20]. However, this physical problem involves nontrivial interplay of interactions, disorder and localization which is not easy to handle by purely analytical methods. Indeed, it is known that repulsive or attractive interactions can produce delocalization of two interacting particles above Fermi level when all one-particle states are exponentially localized due to the Anderson localization (see e.g. [21–26]). This two interacting particles (TIP) effect leads to an effective 3D Anderson transition for TIP excitations at certain energy above the Fermi level in the case of Coulomb or other long range interactions [27, 28]. But at the same time attractive interactions...
create the BLS phase in the vicinity of Fermi level even when noninteracting states are metallic and delocalized [6, 7, 9, 10]. Due to that for a better understanding of physics of superinsulator it would be rather useful to study numerically the effects of a static electric field on localization-delocalization transition in presence of interactions. A certain progress has been reached in studies of attractive Hubbard model with disorder by quantum Monte Carlo methods since there is no sign problem in such a case and numerical simulations can be done with a large number of electrons (see e.g. [9, 10, 29] and Refs. therein). However, this approach is not easy to adapt to a case of finite static field.

In this work we study effects of static field in the frame of the generalized Cooper problem using the approach of two interacting particles with an attractive Hubbard interaction U [6, 7]. Qualitative description of a physical picture of BLS phase and its destruction by a static electric field F is given in Section II. In Section III we describe our model of the generalized Cooper problem in presence of dc-field, the results of numerical simulations are presented in Section IV, discussion of physical results and comparison with experiments are given in Section V.

II. PHYSICAL PICTURE OF SUPERINSULATOR

The results obtained in [6, 7, 9, 10] give the following qualitative physical picture of the BLS phase, which is at the origin of superinsulator as it is argued below:

i) For a moderate disorder, which e.g. by a factor two or less smaller than the critical value for the Anderson transition for 3D case, noninteracting electron states are still delocalized and metallic. A similar situation appears for finite size 2D samples where one-particle localization length is larger than the sample size.

ii) However, an attractive Hubbard interaction creates singlet spin pairs of two electrons which total mass is twice larger than electron mass, hence, an effective hopping matrix element of such a pair becomes twice smaller or, equivalently, effective strength of disorder becomes twice larger that leads to localization of pairs and BLS phase. Such localized pairs have a certain localization size ℓ and a coupling energy Δ. It is important to stress that the Bogoliubov - de Gennes meanfield approach is not able to capture this BLS phase [6, 7, 9, 10]. The BLS phase is an insulator existing at temperature $T < \Delta$. In a certain sense attraction between two electrons creates an effective well which captures localized electron pairs. However, excitations with energy $\Delta E > E_D \approx \Delta$ are delocalized. Indeed, even if all one-particle states are localized, the excited states above the Fermi level become delocalized by interactions between electrons as it is shown in [24, 26–28]. Moreover, the energy excitations of BLS phase are delocalized above certain energy $E_D \approx \Delta$ since noninteracting states are metallic. According to the

Fermi-Dirac statistical distribution an excitation probability to high energy drops exponentially and therefore for $T < \Delta$ the resistivity R_{xx} is characterized by the Arrhenius law $R_{xx} \propto \exp(T_0/T)$ with $T_0 \approx E_D \approx \Delta$.

iii) In real 2D superconducting films, studied experimentally (see e.g. [2, 11]), an increase of magnetic field B up to a few Tesla effectively decreases attraction inside Cooper pairs due to breaking of time reversal and also effectively increases an effective strength of the disorder since magnetic field increases a return probability and scattering on impurities. As a result superconductivity disappears, electron pairs become localized, but at even stronger magnetic field attraction between electrons is completely eliminated and one obtains a metal of noninteracting electrons. This effective change of attraction U and disorder strength W with the increase of magnetic field B is schematically shown in Fig. 2 by a dashed curve. In this picture, resistivity R_{xx} initially grows with increase of B but above a certain value it starts to decrease with B giving a peak in R_{xx}, which is a characteristic feature of experiments (see e.g. Fig. 1 in [11]).

iv) Thus, the BLS phase and its energy excited states can be viewed as a sequence of wells with localized pairs and continuum of delocalized states as it is schematically shown in Fig. 3a. A static electric field with force F creates an energy slope leading to a tilted washboard potential as it is schematically shown in Fig. 3b. Above
a certain critical force $F > F_c$ the localized states inside a well (localized pairs) become coupled to continuum states of delocalized electrons that creates an avalanche of delocalized electrons. For $F > F_c$ all electrons become delocalized that produces a sharp increase (jump) of electron current which is a characteristic feature of superinsulator experiments [12–16]. The critical field F_c above which the superinsulator is destroyed can be estimated by taking into account that the coupling energy of localized pairs Δ should be comparable with the energy change in a static field F_c on the pair size ℓ that gives

$$F_c \approx \Delta/\ell, \quad V_c = F_c \ell$$

The physical meaning of this relation is rather direct: a strong field breaks BLS pairs and creates a charge current. A critical voltage V_c, at which a jump of current takes place in an experiment, is proportional to the sample size L.

In next Sections we present numerical simulations of the generalized Cooper problem in a tilted potential which justifies this physical picture.

III. MODEL DESCRIPTION

For our numerical studied of delocalization of BLS pairs by a static electric field F we use 2D Anderson model with disorder strength W and Hubbard attraction U between two particles. Following [7], with the same notations, we use the one-particle Hamiltonian:

$$H_1 = \sum_n (E_n + F \cdot n) |n\rangle \langle n| + V \sum_{\langle n, n' \rangle} |n\rangle \langle n'|$$

where n and n' are index vectors on the two-dimensional square lattice with periodic boundary conditions in x-direction, and zero boundary conditions in y-direction, V is the nearest neighbor hopping term and the random on-site energies E_n are homogeneously distributed in the energy interval $[-\frac{W}{2}, \frac{W}{2}]$. We choose the direction of a static electric force \mathbf{F} along y-axis. We consider a square lattice with linear size L up to $L = 40$. At such sizes the eigenstates at a half filling $\nu = 1/2$ are practically delocalized over the whole lattice for $W < 7V$ and $F = 0$ so that such finite samples can be considered to be metallic (see more details in [7]). We consider the particles in the singlet state with zero total spin so that the spatial wavefunction is symmetric with respect to particle permutation (interaction is absent in the triplet state).

To take into account the effects of Hubbard interaction we write the TIP Hamiltonian in the basis of noninteracting eigenstates at $F = 0$:

$$(E_{m_1} + E_{m_2}) \chi_{m_1, m_2} + \sum_{m'} (F_{m_1, m'} \chi_{m', m_2} + F_{m_2, m'} \chi_{m_1, m'}) + U \sum_{m_1, m_2} Q_{m_1, m_2, m'_1, m'_2} \chi_{m'_1, m'_2} = E \chi_{m_1, m_2}.$$

(3)

Here E_m are the one-particle eigenenergies corresponding to the one-particle eigenstates $|\phi_m\rangle$ and χ_{m_1, m_2} are the components of the TIP eigenstate in the non-interacting eigenbasis $|\phi_{m_1}, \phi_{m_2}\rangle$ at $F = 0$. The matrix elements $F_{m_1, m'}$ describe the static force transitions between one-particle eigenstates $|\phi_{m_1}, \phi_{m_2}\rangle$. The matrix elements $UQ_{m_1, m_2, m'_1, m'_2}$ give the interaction induced transitions between non-interacting eigenstates $|\phi_{m_1}, \phi_{m_2}\rangle$ and $|\phi'_{m_1}, \phi'_{m_2}\rangle$. These matrix elements are obtained by rewriting the Hubbard interaction in the non-interactive eigenbasis of model (2) at $F = 0$. In the analogy with the original Cooper problem [8] the summation in (3) is done over the states above the Fermi level with eigenenergies $E_{m_{1,2}} > E_F$ with $m_{1,2} > 0$. The Fermi energy $E_F \approx 0$ is determined by a fixed filling factor $\nu = 1/2$. To keep the similarity with the Cooper problem we restrict the summation on $m_{1,2}$ by the condition $1 < m_1 + m_2 \leq M$. In this way the cut-off with M unperturbed orbitals introduces an effective phonon energy $E_{ph} \approx \hbar \omega_D \approx 3.75VM/L^2 = 3.75V/\alpha$ where L is the linear system size. When varying L we keep $\alpha = L^2/M$ fixed so that the phonon energy is independent of system size. All the data in this work are obtained with $\alpha = 15$ but we also checked that the results are not sen-
FIG. 4: Dependence of the average IPR ξ of lowest energy states on the static force F; average is done over $N_l = 15$ lowest energy states with a maximum of $f(x, y)$ inside a stripe $0.4L \leq y \leq 0.6L$ in a middle of the lattice at $y = L/2$ for $N_D = 30$ disorder realizations; the lattice size is $L = 20$ (\circ), $L = 30$ (\blacksquare), $L = 40$ (\Box) at $U = -2V$; the values of ξ for noninteracting case are shown by open symbols (\square) for $L = 40, U = 0$. Here $W = 5V$.

IV. NUMERICAL RESULTS

The delocalization of BLS pairs by a static electric force F is illustrated in Fig. 1 for one specific disorder realization. Here the disorder strength is relatively weak so that at $U = 0$ noninteracting eigenstates taken at half filling $\nu = 1/2$ and $E_F \approx 0$ are delocalized over the whole lattice of size $L = 40$ (see Fig. 1b in [7]). At $F = 0$ a moderate Hubbard attraction $U = -2V$ creates localized pairs with a certain coupling energy Δ (Fig. 1a,b). This localization remains robust against a weak static field (Fig. 1c,d) but at larger fields the localization is destroyed by a static force and particles become delocalized over the whole lattice (Fig. 1e,f,g,h); to avoid boundary effects at finite F we select states in the middle of the lattice at $y = L/2$). The probability to have two particles close to each other also drops drastically for $F > F_c$ clearly demonstration pair breaking.

The dependence of average IPR ξ of lowest energy states on the static force F is shown in Fig. 4. At small $F < F_c$ the values of ξ are size independent being much smaller compared to the case of noninteracting particles. This shows that a Hubbard attraction gives localization of pairs at low energy. For $F > F_c$ IPR starts to grows with the system size L demonstrating breaking of pairs and particle delocalization over the whole lattice. According to the data of Fig. 4 we have $F_c \approx 0.015V$ at given $U = -2V$ and $W = 5V$. The data in Fig. 5 give the coupling energy $\Delta \approx 0.1V$. Hence, this F_c value is in a good agreement with a simple estimate (1) with a numerical factor $A = F_c \xi/\Delta \approx 1$ corresponding to $\xi(F = 0) \approx \sqrt{\xi(F = 0)} \approx 6$ and $\Delta = 0.1V$.

The dependence of ξ on coupling energy $\Delta E = E - 2E_F$, for states in the middle of the lattice at $y \approx L/2$, is shown in Fig. 5. According to this data the coupling energy is $\Delta \approx 0.1V$. This value is by a factor 2 smaller than the one found in [7] since only one lowest state for a given disorder realization was taken in [7] while here we average over few lowest states and also allow a relatively weak overlap f_d between TIP states. The states with $-\Delta \leq \Delta E < 0$ are well localized at $F = 0$ since its IPR ξ is independent of lattice size L. In contrast, for $F = 0.036V > F_c$ the IPR ξ grows with the system size.

titive to the change of α. We note that the Hamiltonian (3) exactly describes the noninteracting problem.

To analyze the effects of static force on localized BLS pairs we solved numerically the Schrödinger equation (3). After that we rewrite the obtained eigenstates in the original lattice basis with the help of the relation between lattice basis and one-particle eigenstates $|n\rangle = \sum_{m} R_{n,m} |e_{m}\rangle$. As a result of this procedure we obtain the two-particle probability distribution $f_2(n_1, n_2)$ from which we extract the one-particle probability $f(n) = \sum_{n_2} f_2(n_1, n_2)$ and the probability of interparticle distance $f_d(r) = \sum_{n_2} f_2(r + n_2, n_2)$ with $r = n_1 - n_2$. The localization properties are characterized by the one-particle inverse participation ratio (IPR) $\xi = \sum_n f(n)/\sum_n f^2(n)$.

While in [7] only the ground state properties of given disorder realization have been studied here we also investigate the properties of excited states with the TIP energy ΔE counted from the Fermi level of noninteracting particles: $\Delta E = E - 2E_F$, where E is the eigenenergy of (3). We also consider only eigenstates with a maximum of one-particle probability inside the space range $-L/4 \leq y \leq L/4$ to avoid finite size effects in y-direction. In addition, we analyze only those eigenstates where the overlap probability of TIP to be on the same site is relatively large $f_d(0,0) > 5/L(2L-1)$. In this way the states with strongly separated particles are eliminated. Such an approach approximately corresponds to a finite particle density. We use usually $N_D = 30$ disorder realizations for statistical average.

Below we present numerical results for $U = -2V$, $W = 5V$ and $L \leq 40$ at various values of F. The detailed studies presented in [7] ensure that at $F = 0$ these conditions are located well inside the BLS phase when the noninteracting states are delocalized (see Fig. 1b in [7]) while the ground state in presence of Hubbard attraction is well localized (see Fig. 1e,f in [7] and Fig. 1a,b here). We checked that the behavior in F remains similar at other values of parameters, e.g. $W = 3V$.
FIG. 5: (Color online) Average IPR ξ, for states peaked inside a stripe $0.4L \leq y \leq 0.6L$, as a function of the coupling energy $\Delta E = E - 2E_F$ for $U = -2V, W = 5V$ and lattice size $L = 20$ (blue circles), $L = 30$ (red triangles), $L = 40$ (black squares), at field $F = 0$ (open symbols) and $F = 0.036V$ (full symbols). The same averaged IPR ξ for $U = 0, W = 5V, F = 0$ and $L = 40$ is shown by (+) symbols.

FIG. 6: (Color online) Average IPR ξ, for states peaked inside a stripe $0.4L \leq y \leq 0.6L$, as a function of the coupling energy $\Delta E = E - 2E_F$ and static force F for $U = -2V, W = 5V$ (top panel) and $U = 0, W = 5V$ (bottom panel); here $L = 40$.

$\Delta E/V$

F/V

ξ

L showing that in this regime the states are delocalized.

At energies $\Delta E > 0$ the IPR grows with energy and becomes comparable with the system size L^2; also its is not sensitive to F. This is in agreement with the fact that noninteracting states are delocalized. Also interaction for excited states gives an additional TIP delocalization. For large values of $L = 40$ the static force gives a certain restriction of eigenstates spreading along the force direction due to the TIP energy conservation that gives a decrease of IPR value comparing to the case $F = 0$.

A more detailed dependence of ξ on coupling energy ΔE and static force F is given in Fig. 6. For $U = 0$ we have $\xi \approx 200$ which is practically independent of ΔE and F while for $U = -2V$ we have very small $\xi \sim 10$ for $F = 0$ and large $\xi \sim 300$ for large F at $-0.1 < \Delta E/V < 0$. For energies $\Delta E > 0$ the states are delocalized at all F. These data also confirm the picture of field induced destruction of the BLS phase and delocalization.

Dependence of ξ on y and coupling energy ΔE is shown in Fig. 7 for different values of F with and without interaction. For $U = 0$ we have ξ practically independent of y and ΔE in agreement with previous data of Figs. 4, 5, 6. In contrast, in presence of attraction the states in the middle of the lattice in y have small ξ (localized) at lowest energies for small F (panels b, d) and have large ξ (delocalized) for large F (panels f, h). However, at the ends of the lattice in y direction the values of ξ are less sensitive to F due to boundary effects. Indeed, the static field forces particles to stay close to the boundary at y-ends of the lattice and hence the field induced delocalization is not well visible in this region. Due to that reason we use the states in the middle of the lattice to detect field induced delocalization in a clear way in Figs. 4, 5, 6.

V. DISCUSSION

The obtained numerical results confirm the physical picture of superinsulator destruction by a static field described in Section II: the BLS pairs, localized by attraction inside noninteracting metallic phase, in presence of static field start to be coupled with higher energy delocalized states and above certain threshold $F > F_c$ (1) all pairs become delocalized. This creates an avalanche of delocalized electrons which gives an enormous increase of current in agreement with experimental observations. Of course, our numerical data detect delocalization of only one pair in a given disorder realization. However, the distribution of values of pair coupling energy $\Delta = 2E_F - E_g$ is strongly peaked near its average value (see Fig. 8) so that a large fraction of localized pairs becomes delocalized approximately at the same static field that gives a sharp current growth for $V > V_c = F_cL$ (here E_g is a ground state energy for a given disorder realization at $F = 0$).

At that point we would like to note that even if our at-
FIG. 7: (Color online) The IPR ξ for $W = 5V$ at $U = 0$ (left column) and $U = -2V$ (right column), at different values of the static force $F = 0$ (a,b), $F = 0.004V$ (c,d), $F = 0.016V$ (e,f), $F = 0.04V$ (g,h). Each panel has 40×40 cells, the vertical direction corresponds to the coupling energy $\Delta E = E - 2E_F$, the horizontal one to $1 \leq y \leq 40$. The bottom row corresponds to the lowest coupling energy, and the upper row corresponds to the highest coupling energy within the energy intervals at $U = 0$ being $(0,0.54V)$ (a), $(-0.05V,0.59V)$ (c), $(-0.25V,0.78V)$ (e), $(-0.69V,1.18V)$ (g) and at $U = -2V$ being $(-0.2V,0.39V)$ (b), $(-0.23V,0.57V)$ (d), $(-0.39V,0.75V)$ (f), $(-0.77V,1.17V)$ (h). The cell color gives the average ξ inside the cell (with ΔE being in the corresponding energy range defined by the row, and the maximum of probability distribution $f(y)$ along y, being located at y position defined by the column). For each panel ~ 30000 states are used with $N_D = 30$ disorder realizations. These states are selected in such a way that the probability of two particles located at the same site is greater than $5/L(2L - 1)$; here $L = 40$.

FIG. 8: (Color online) Distribution histogram of pair coupling energy $\Delta = 2E_F - E_g$ obtained from $N_D = 1000$ disorder realizations at $U = -2V$, $W = 5V$, $F = 0$, $L = 40$; here N gives a number of realizations found in a given cell of Δ/V. E_g is the ground state energy of a given realization obtained numerically from (3).
simulations, we fixed an attraction at a relatively strong value, our numerical data show that such a choice is still in the regime of weakly coupled pairs of relatively larger size that corresponds to the experimental regime. We note that even larger $|U|/V$ values are typically used in quantum Monte Carlo simulations (see e.g. [29]).

The main result of this studies is given by Eq. (1) which determines the critical voltage V_c of superinsulator destruction via the sample size L, BLS coupling energy Δ and pair size ℓ. According to (1) the critical voltage V_c is proportional to the sample size and hence, F_c is independent of L. This is in a good agreement with the experimental data obtained in [14] (see Fig. 9 with experimental points from Fig.5 in [14]). Indeed, in the range $0.5\mu m < L < 150\mu m$ the value of F_c shows significant fluctuations but in average remains constant. The average value is $F_c \approx 30V/cm$, and since the typical value of pair coupling energy is $\Delta \approx 3 - 15K$, we find the size of localized pairs to be $\ell = T0/F_c = 100 - 500nm$. The theory (1) is valid for $L > \ell$ where indeed F_c is independent of L, a part of fluctuations. However, for $L < \ell \sim 0.5\mu m$ one enters into another regime where the sample size becomes comparable with the pair size that can lead to an increase of F_c seen experimentally. It is clear that as soon as the superinsulator phase is destroyed at $F > F_c$, a further decrease of F below F_c places localized pairs in other new locations where due to fluctuations of disorder one gets a comparable but somewhat different new value of F_c. This leads to a hysteresis behavior observed experimentally.

It is also interesting to note that the relation (1) allows to determine the dependence of ℓ on magnetic field. Indeed, in experiments [12, 13, 15] the values of L is known, and also $\Delta \approx T0$ and V_c are experimentally known as a function of magnetic field B that allows to determine the dependence $\ell(B)$ from the relation (1).

On the basis of presented results we can draw a global phase diagram in the temperature-disorder plane shown in Fig. 10 for a fixed attraction strength (e.g. at $U = -2V$), zero static field and fixed Fermi energy E_F. At small disorder and temperature we have the superconducting phase S which is followed by a transition to metallic phase M at large temperature or to the localized BLS phase at low temperature. At a larger disorder $W > W_c$, but still small temperatures, the BLS phase enters in the insulating regime of noninteracting Anderson insulator I. In this regime with $W > W_c$ but temperature above a certain threshold $T > T_2 \sim |U|(1/\xi + 1/\xi_1)$, the TIP pairs become delocalized by interactions with emergence of metallic phase of TIP delocalized pairs, as it is discussed in [21, 22, 24]. Here ξ_1 is a noninteracting one-particle IPR which gives a dominant contribution for a disorder $W > W_c$ which is not very close to the critical point $W = W_c$, the term $1/\xi$ with IPR of BLS is included to have interpolation between two phases.

In conclusion, we presented the BLS based physical picture for a destruction of superinsulator by a finite static field observed experimentally in [12–16]. This pic-
ture is rather different from other theoretical explanations discussed in [15, 17–20]. The main new element of our theory is the existence of localized pairs created by attraction inside noninteracting metallic phase which is absent in the above theoretical proposals. In our theory the BLS phase is the basis of superinsulator and since the noninteracting states are metallic this phase is sharply broken by a finite static field which breaks electron pairs, localized by attraction, and lets them propagate like noninteracting particles in a metal. Our analysis considers a breaking of only two interacting particles. In a real system with many pairs a breaking of a few pairs can create a strong avalanche and breaking of other pairs so that a critical static field can be determined by breaking of mostly weakly coupled pairs with a smaller critical fields, compared to average field values found here. This physical picture is rather different from the superinsulator picture discussed in [15]. However, we keep the term superinsulator which in our opinion nicely describes impressive experiments [12, 13, 15, 16] with superconducting films, which become insulating in magnetic fields with abrupt emergence of current above a certain critical dc—voltage.

This research is supported in part by the ANR PNANO project NANOTERRA. We thank V.F. Gantmakher for useful remarks and M.V Feigel’man for constructive critical comments.

[1] A. Goldman and N. Markovic, Physics Today 51 (11), 39 (1998).
[2] V.F. Gantmakher and V.T. Dolgopolov, Physics Uspekhi 53n 3 (2010).
[3] M.V. Feigel’man, L.B. Ioffe, V.E. Kravtsov and E. Cuevas, Ann. Phys. 325, 1368 (2010).
[4] P. W. Anderson, J. Chem. Solid 11, 26 (1959).
[5] P. G. de Gennes, Superconductivity of metals and alloys (Benjamin, New York, 1966) p.157.
[6] J.Lages and D.L.Shepelyansky, Phys. Rev. B 62, 8665 (2000).
[7] J.Lages and D.L.Shepelyansky, Phys. Rev. B 64, 094502 (2001).
[8] L.N. Cooper, Phys. Rev. B 104, 1189 (1956).
[9] B.Srinivasan and D.L.Shepelyansky, Eur. Phys. J. B 24, 469 (2001).
[10] B.Srinivasan, G.Benenti and D.L.Shepelyansky, Phys. Rev. B 66, 172506 (2002).
[11] V.F. Gantmakher, M.V. Golubkov, V.T. Dolgopolov, G.E. Tsdyzhlapov, and A.A. Shashkin, Pis’ma Zh. Eksp. Teor. Fiz. 68, 337 (1998) [JETP Lett. 68, 363 (1998)].
[12] G. Sambandamurthy, L.W. Engel, A. Johansson, E. Peled, and D. Shahar, Phys. Rev. Lett. 94, 017003 (2005).
[13] T.I. Baturina, A.Yu. Mironov, V.M. Vinokur, M.R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99, 257003 (2007).
[14] D. Koval and Z. Ovadyahu, Physica C 468, 322 (2008).
[15] V.M. Vinokur, Y.I. Baturina, A.Yu. Mironov, M.R. Baklanov, and C. Strunk, Nature (London) 452, 613 (2008).
[16] M. Ovadia, B. Sacépé, and D. Shahar, Phys. Rev. Lett. 102, 176802 (2009).
[17] M.V. Fistul, V.M. Vinokur, and T.I. Baturina, Phys. Rev. Lett. 100, 086805 (2008).
[18] K.B. Efetov, M.V. Feigel’man, and P.B. Wiegmann, arXiv:0804.3775 (2008); Phys. Rev. Lett. 102, 049701 (2009).
[19] B.L. Altshuler, V.E. Kravtsov, I.V. Lerner, and I.L. Aleiner, Phys. Rev. Lett. 102, 176803 (2009).
[20] S.V. Syzranov, K.B. Efetov, and B.L. Altshuler, Phys. Rev. Lett. 103, 127001 (2009).
[21] D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).
[22] Y. Imry, Europhys. Lett. 30, 405 (1995).
[23] D. Weinmann, A. Müller-Groeling, J.-L. Pichard, and K. Frahm, Phys. Rev. Lett. 75, 1596 (1995).
[24] P. Jacquod and D.L.Shepelyansky, Phys. Rev. Lett. 78, 4986 (1997).
[25] K.M. Frahm, Eur. Phys. J. B 10, 371 (1998).
[26] J. Lages, in Electronic Correlations : from meso- to nano-physics, Rencontres de Moriond 2001, Eds. T. Martin, G. Montambaux and J. Tran Thanh, ISBN-10: 2868835708, EDP Sciences, Les Ulis (2003) p. 329
[27] D.L. Shepelyansky, Phys. Rev. B 61, 4588 (2000); G. Benenti and D.L. Shepelyansky, Phys. Rev. B 63, 235103 (2001).
[28] J.Lages and D.L.Shepelyansky, Eur. Phys. J. B 21, 129 (2001).
[29] K. Bouadim, Y.L. Loh, M. Randeria, and N. Trivedi, arXiv:1011.3275 (2010).