Buckling analysis of nanoplates using IGA

P Phung-Van1, M Abdel-Wahab1, H Nguyen-Xuan2

1 Department of Electrical Energy, Metals, Mechanical Constructions and Systems, Faculty of Engineering and Architecture, Ghent University, Belgium
2 Center for Interdisciplinary Research in Technology, Hutech University, Ho Chi Minh City, Vietnam

E-mail: Phuc.PhungVan@UGent.be

Abstract. Isogeometric analysis (IGA) based on HSDT is used to simulate buckling analysis of nanoplates. The material properties of nanoplates based on the Mori–Tanaka schemes and the rule of mixture are used. The differential nonlocal equations with size effect are utilized. The nonlocal governing equations are approximated according to IGA, that satisfies naturally the higher-order derivatives continuity requirement in weak form of nanoplates. Several numerical results are presented to demonstrate the reliability of the proposed method.

1. Introduction

There has recently been a fast growth in applications of nanoscale structures, which are primarily concerned with fabrication of FGMs. This is considered a new revolutionary of materials with enhanced functionality. FGM nanoplates, as specific nanostructures, have been applied in the engineering and technology sectors such as mechanical engineering, aeronautic manufacturing industry, nuclear engineering, etc. Therefore, the understanding of the behaviors of the FGM nanoplates is essential for the development of nanostructures because of their huge potential applications in the real life.

To carry out numerical analysis of nanostructures, three general types of modelling approaches can be listed as follows: (i) hybrid atomistic continuum mechanic, (ii) atomistic and (iii) continuum mechanics. In continuum mechanics, one of the well-known theories is the nonlocal continuum theory of Eringen [1]. Finite Element method (FEM) is a very well known numerical techniques and has been used for a wide range of applications [2-15]. Using FEM, Free vibration analysis of FG size-dependent nanobeams was studied by Alshorbagy et al. [16]. The free vibration and buckling analyses of FG nanoplate using Navier solution subjected to thermal load were reported in Ref. [17]. Size-dependent thermal stability analysis of embedded FG annular nanoplates resting on an elastic foundation under various types of thermal using an exact analytical solution was reported in Ref. [18]. The mechanical behaviour for homogenous nonlinear microbeams [19], FG nonlinear microbeams [20]. A nonlinear microbeams model based on the strain gradient elasticity is introduced in Refs. [21, 22]. Farokhi et al. [23] studied nonlinear dynamics of a geometrically imperfect microbeams using Hamilton’s principle for the nonlinear differential equation of motion for an initially curved beam. free vibration of FGM circle plates using the analytical solution based on the first-order shear deformation theory (FSDT) and the nonlocal theory was derived in Ref [24]. Size-dependent free analysis of FGM square plate based on FSDT was reported by Natarajan et al. [25]. Size-dependent analysis of FG nanoplates using IGA based on quasi-3D theory is recently examined in Ref [26]. Recently, Phung-Van et al. studied static and free vibration analyses of FG-CNTRC nanoplates [27] and nonlinear
transient analysis of FGM nanoplates [28]. Furthermore, mechanical behaviours of FGM composite plates based on the local continuum theory have recently been published in Refs. [29-46].

As one may note, almost cited references deal with the modelling of micro/nano-beams. A very limited literature is available for nano-scale FGM structures. This paper hence aims to fill in this gap by developing a size-dependent geometrically nonlinear transient analysis of FGM nanoplates by a combination of IGA and the nonlocal continuum theory based on HSDT. In particular, we show that IGA based on HSDT fulfilling C2-continuity requirements can easily achieve the higher-order derivatives in the framework of the nonlocal continuum theory, which is of interest in this study. Size effects based on Eringen [1] in the differential nonlocal equations are performed. The effect of nonlocal approach on buckling analysis of the FGM nanoplates with various volume fraction exponents are discussed in details.

2. Functional graded materials
A functionally graded material nanoplate made of ceramic and metal is considered in this research. The properties materials based on the rule of mixture can be given by:

\[P(z) = \left(P_c - P_m \right) V_c + P_m ; \quad V_c = \left(\frac{1}{2} + \frac{z}{t} \right)^n \quad (n \geq 0) ; \quad V_m = 1 - V_c \]

where \(m \) and \(c \) represent the metal and ceramic constituents, respectively, \(P \) refers to the effective material properties including the thermal conductivity \(k \), Poisson’s ratio, \(\nu \) density, \(E \) Young’s modulus and \(\alpha \) thermal expansion. \(V_m \) and \(V_c \) are the volume fraction of the metal and ceramic, respectively, \(z \) is the thickness coordinate of plate and varies from \(-t/2\) to \(t/2\) and \(n \) is the volume fraction exponent.

The effective bulk and shear moduli based on the Mori-Tanaka scheme [47] can be defined as:

\[K_e - K_m \]

\[K_e - K_m = \frac{V_c}{1 + V_m} \frac{K_e - K_m}{K_m + \frac{K_e - K_m}{2\mu_m}} ; \quad \mu_e - \mu_m = \frac{V_c}{1 + V_m} \frac{\mu_e - \mu_m}{\mu_m + \mu_c} \]

where \(f_1 = \frac{\mu_m(9K_m+8\mu_m)}{6(K_m+2\mu_m)} \). The Young’s modulus and Poisson’s ratio are now expressed by:

\[E_e = \frac{9K_e \mu_e}{3K_e + \mu_e} ; \quad \nu_e = \frac{3K_e - 2\mu_e}{2(3K_e + \mu_e)} \]

3. Theoretical formulation

3.1 Nonlocal elasticity theory
In the nonlocal elasticity theory proposed by Eringen [1], the stress field depends on all points of the considered body, and an equivalent form of differential equations of nonlocal stress at any points \(x \) can be expressed as follows:

\[(1 - \mu \nabla^2) \tau_{ij} = \tau_{ij} \]

where \(\mu = \epsilon_l l, 0 \leq \mu \leq 4 \) is the small-scale effect; \(l \) is an internal characteristic length; \(\epsilon_l \) is material constant and \(\nabla^2 = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 \) is the Laplace operator.

3.2 Displacement field
The displacement field can be expressed as follows [48]:

\[u(x, y, z) = u_0 + z \beta_x + cz^2 (\beta_y + w_y) \]

\[v(x, y, z) = v_0 + z \beta_y + cz^2 (\beta_y + w_y), \quad (-h/2 \leq z \leq h/2) \]

\[w(x, y, z) = w_0 \]

where \(c = 4/3h^2 \).

The Green strain-displacement relations are now given as:
\[\varepsilon = [\varepsilon_{xx}, \varepsilon_{yy}, \varepsilon_{xy}]^T = \varepsilon_m + z \varepsilon_1 + z^2 \varepsilon_2 ; \quad \gamma = [\gamma_{xz}, \gamma_{yz}, \gamma_{yx}]^T = \varepsilon_s + z^2 \kappa_s \]

where

\[\varepsilon_m = \begin{bmatrix} u_{0,x} \\ v_{0,y} \end{bmatrix} ; \quad \varepsilon_1 = \begin{bmatrix} \beta_{1,s} \\ \beta_{1,t} \end{bmatrix} ; \quad \varepsilon_2 = \begin{bmatrix} \beta_{2,s} + w_{0,xx} \\ \beta_{2,t} + \nu w_{0,xy} \end{bmatrix} ; \quad \varepsilon_s = \begin{bmatrix} \beta_s + w_{0,s} \\ \beta_t + w_{0,t} \end{bmatrix} ; \quad \kappa_s = 3c \begin{bmatrix} \beta_s + w_{0,s} \\ \beta_t + w_{0,t} \end{bmatrix} \]

The nonlocal equations in Eq. (4) can be rewritten as:

\[\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{xy} \\ \tau_{yx} \\ \tau_{xz} \end{bmatrix} - \mu \nabla^2 = \begin{bmatrix} Q_{11} & Q_{12} & Q_{13} \\ Q_{21} & Q_{22} & Q_{23} \\ Q_{31} & Q_{32} & Q_{33} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \varepsilon_{xy} \end{bmatrix} \]

where the material constants are given by:

\[Q_{11} = Q_{22} = \frac{E}{1-\nu^2}, \quad Q_{33} = Q_{44} = Q_{55} = Q_{66} = \frac{E}{2(1+\nu)}, \quad C_{12} = C_{21} = \frac{E\nu}{1-\nu^2}, \quad Q_{13} = Q_{23} = Q_{32} = 0 \]

3.3 Isogeometric analysis

The displacement field of the plate can be expressed as:

\[u^h(\xi, \eta) = \sum_{I=1}^{N_0} R_I(\xi, \eta) d_I \]

where \(d_I = [u_{0I}, v_{0I}, \beta_{0I}, \beta_{1I}, w^I] \) is the vector of degrees of freedom associated with the control point \(I \), and \(R_I \) is the shape function as defined in Ref [49].

The in-plane and shear strains can be expressed as:

\[[\varepsilon_0, \kappa_1, \kappa_2, \kappa_3] = \sum_{I=1}^{N_0} [B_{11}, B_{13}, B_{12}, B_{14}] d_I \]

The governing algebraic equations for buckling analysis can be obtained as follows

\[(\mathbf{K} - \lambda \mathbf{K}_g) d = 0 \]

where

\[\mathbf{K} = \int_{\Omega} \left[(\mathbf{B}^m)^T D_{mm} \mathbf{B}^m + (\mathbf{B}^t)^T D_{tt} \mathbf{B}^t \right] d\Omega \]

\[\mathbf{K}_g = \int_{\Omega} \left[(\mathbf{B}^t)^T - \lambda \nabla^2 (\mathbf{B}^t)^T \right] N_0 \mathbf{B}^t d\Omega \]

in which
4. Numerical results

In this study, the critical buckling loads $P_{cr} = P_{cr}R^2/D_m$ of Al/Al2O3 circular plate (radius $R = 10$, $h = 0.34$) are performed. Table 1 shows Non-dimensional buckling load of simply supported and clamped circle nanoplate. It can be observed that the present results match well with the reference solution [26].

Table 1. Material properties of FGM plates.

BCs	Model	μ	n	0	1	2	5	10
SSSS	RPT-1 [26]	0		22.7572	9.6391	8.1921	6.9000	6.0401
	RPT [26]			22.7567	9.6389	8.1920	6.9002	6.0399
	Quasi 3D [26]			23.1059	10.0048	8.1920	7.0907	6.1583
	IGA			22.7565	9.6263	8.1811	6.8955	6.0381
	RPT-1 [26]	1		21.8371	9.2241	7.8382	6.6039	5.7855
	RPT [26]			21.8367	9.2257	7.8396	6.6053	5.7863
	Quasi 3D [26]			22.1473	9.5755	8.1448	6.7891	5.8991
	IGA			21.8371	9.2172	7.8328	6.6045	5.7871
	RPT-1 [26]	4		19.4782	8.1913	6.9602	5.8774	5.1565
	RPT [26]			19.4779	8.1920	6.9608	5.8784	5.1572
	Quasi 3D [26]			19.7025	8.4927	7.2273	6.0387	5.2522
	IGA			19.4795	8.1788	6.9501	5.8754	5.1572
CCCC	RPT-1 [26]	0		79.3355	31.5217	26.7612	23.1849	20.7162
	RPT [26]			79.3304	31.5202	26.7602	23.1835	20.7141
	Quasi 3D [26]			82.3402	33.5902	28.5574	24.4165	21.6023
	IGA			79.3204	31.5156	26.7567	23.1807	20.7108
	RPT-1 [26]	1		69.1774	27.4857	23.3347	20.2163	18.0637
	RPT [26]			69.1730	27.4844	23.3338	20.2151	18.0619
	Quasi 3D [26]			71.7287	29.2705	24.8837	21.2721	18.8188
	IGA			69.1652	27.4808	23.3311	20.2129	18.0593
	RPT-1 [26]	4		49.9794	19.8579	16.8589	14.6059	13.0507
	RPT [26]			49.9762	19.8569	16.8582	14.6050	13.0494
	Quasi 3D [26]			51.6664	21.1039	17.9361	15.3215	13.5514
	IGA			49.9809	19.8586	16.8593	14.1510	12.7227

5. Conclusions

In this paper, size-dependent buckling analysis of nanoplates using using IGA based on HSDT is investigated. The material properties of FGM based on the Mori–Tanaka schemes and the rule of mixture are considered. The differential nonlocal equations are utilized to take into account effect of
the size-dependent. The buckling nonlocal governing equations of motion is approximated according to IGA based on HSDT, which satisfies naturally the 3rd derivatives of displacement field. The effects of volume fraction exponent and small scale parameter on buckling analysis of nanoplates are also performed. Numerical results proved high accuracy and reliability of the present method in comparison with other available numerical approaches.

Acknowledgements

P Phung-Van would like to acknowledge the financial support of the Special Research Fund (BOF) of Ghent University (BOF16/PDO/88).

References

[1] Eringen AC 1983 *Journal of Applied Physics* **54**(9) 4703-4710
[2] Yue T and Abdel Wahab M 2017 *Tribology International* **107** 274-282
[3] Pereira K, Yue T and Abdel Wahab M 2017 *Tribology International* **110** 222-231
[4] Martínez JC, Vanegas Useche LV and Wahab MA 2017 *International Journal of Fatigue* **100**, Part 1 32-49
[5] Kumar D, Biswas R, Poh LH and Abdel Wahab M 2017 *Tribology International* **109** 124-132
[6] Bhatti NA and Abdel Wahab M 2017 *Tribology International* **109** 552-562
[7] Yue T and Abdel Wahab M 2016 *Materials* **9** 597; doi:10.3390/ma9070597
[8] Resende Pereira KD, Bordas S, Tomar S, Trobec R, Depolli M, Kosec G and Abdel Wahab M 2016 *Materials* **9** 639; doi:10.3390/ma9080639
[9] Ferjaoui A, Yue T, Abdel Wahab M and Hojjati-Talemi R 2015 *International Journal of Fatigue* **73** 66-76
[10] Yue T and Abdel Wahab M 2014 *Wear* **321** 53-63
[11] Noda N-A, Chen X, Sano Y, Wahab MA, Maruyama H, Fujisawa R and Takase Y 2016 *MATERIALS & DESIGN* **96** 476-489
[12] Gadala I, Abdel Wahab M and Alfantazi A 2016 *MATERIALS & DESIGN* **97** 287-299
[13] Wang C, Sun Q, Abdel Wahab M, Zhang X and Xu L 2015 *Waste Management* **43** 19-27
[14] Vanegas-Useche L, Abdel Wahab M and Parker G 2015 *Waste Management* **43** 28-36
[15] Junyan Ni and Wahab MA 2017 *Computers & Structures* **186** 35-49
[16] Alshorbagy AE, Eltaher MA and Mahmoud FF 2011 *Applied Mathematical Modelling* **35**(1) 412-425
[17] Ansari R, Ashrafi M, Pourashraf T and Sahmani S 2015 *Acta Astronaut* **109** 42-51
[18] Ashoori AR, Sallari E and Sadough Vanini SA 2016 *International Journal of Mechanical Sciences* **119** 369-411
[19] Ashghari M, Kahrobaiyan MH and Ahmadian MT 2010 *International Journal of Engineering Science* **48**(12) 1749-1761
[20] Ke LL, Wang YS, Yang J and Kitipornchai S 2012 *International Journal of Engineering Science* **50**(1) 256-267
[21] Rajabi F and Ramezani S 2012 *Archive of Applied Mechanics* **82** 363-376
[22] Ghayesh MH, Amabili M and Farokhi H 2013 *International Journal of Engineering Science* **63** 52-60
[23] Farokhi F, Ghayesh MH and Amabili M 2013 *International Journal of Engineering Science* **68** 11-23
[24] Hosseini-Hashemi S, Bedroud M and Nazernejad R 2013 *Composite Structures* **103** 108-118
[25] Natarajan S, Chakraborty S, Thangavel M, Bordas SPA and Rabczuk T 2012 *Computational Materials Science* **65** 74-80
[26] Nguyen NT, Hui D, Lee J and Nguyen-Xuan H 2015 *Computer Methods in Applied Mechanics and Engineering* **297** 191-218
[27] Phung-Van P, Lieu X Q, Nguyen-Xuan H and Abdel-Wahab M 2017 *Composite Structures* **166** 120-135
[28] Phung-Van P, Ferreira AJM, Nguyen-Xuan H and Abdel-Wahab M 2017 *Composites Part B Engineering*
[29] Phung-Van P, Nguyen-Thoi T, Luong-Van H and Lieu-Xuan Q 2014 Computer Methods in Applied Mechanics and Engineering 270 15-36
[30] Phung-Van P, Nguyen-Thoi T, Dang-Trung H and Nguyen-Minh N 2014 Composite Structures 111 553-565
[31] Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, Nguyen-Hoang S and Nguyen-Xuan H 2014 KSCE Journal of Civil Engineering 18(4) 1072-1082
[32] Phung-Van P, Nguyen-Thoi T, Luong-Van H, Thai-Hoang C and Nguyen-Xuan H 2014 Computer Methods in Applied Mechanics and Engineering 272 138-159
[33] Phung-Van P, Thai CH, Nguyen-Thoi T and Nguyen-Xuan H 2014 Composites Part B-Engineering 60 227-238
[34] Luong-Van H, Nguyen-Thoi T, Liu GR and Phung-Van P 2014 Engineering Analysis with Boundary Elements 42 8-19
[35] Nguyen-Thoi T, Luong-Van H, Phung-Van P, Rabczuk T and Tran-Trung D 2013 International Journal for Composite Materials 3(A) 19-27
[36] Phung-Van P, Luong-Van H, Nguyen-Thoi T and Nguyen-Xuan H 2014 International Journal for Numerical Methods in Engineering 98(13) 988-1014
[37] Phung-Van P, Nguyen-Thoi T, Le-Dinh T and Nguyen-Xuan H 2013 Smart Materials and Structures 22(9)
[38] Nguyen-Thoi T, Rabczuk T, Lam-Phat T, Ho-Huu V and Phung-Van P 2014 Theoretical and Applied Fracture Mechanics 72 150-163
[39] Phung-Van P, Nguyen-Thoi T, Tran LV and Nguyen-Xuan H 2013 Computational Materials Science 79 857-872
[40] Phung-Van P, Tran LV, Ferreira AJM, Nguyen-Xuan H and Abdel-Wahab M 2017 Nonlinear Dynamics 87(2) 879-894
[41] Phung-Van P, Nguyen LB, Tran LV, Dinh TD, Thai CH, Bordas SPA, Abdel-Wahab M and Nguyen-Xuan H 2015 International Journal of Non-Linear Mechanics 76 190-202
[42] Phung-Van P, De Lorenzis L, Thai CH, Abdel-Wahab M and Nguyen-Xuan H 2015 Computational Materials Science 96 495-505
[43] Nguyen-Thoi T, Luong-Van H, Phung-Van P, Rabczuk T and Tran-Trung D 2013 International Journal of Composite Materials 3(A) 19-27
[44] Tran LV, Phung-Van P, Lee J, Wahab MA and Nguyen-Xuan H 2016 Composite Structures 140 655-667
[45] Phung-Van P, Nguyen-Thoi T, Bui-Xuan T and Lieu-Xuan Q 2015 Computational Materials Science 96 549-558
[46] Nguyen-Thoi T, Phung-Van P, Thai-Hoang C and Nguyen-Xuan H 2013 International Journal of Mechanical Sciences 74 32-45
[47] Mori T and Tanaka K 1973 Acta Metallurgica 21(5) 571-574
[48] Reddy JN 1984 Journal of Applied Mechanics-Transactions of the Asme 51(4) 745-752
[49] Cottrell JA, Hughes TJR and Bazilevs Y 2009 Isogeometric analysis, towards integration of CAD and FEA ed editors. Wiley