Survey on Iris Image Analysis

K. Kade Mahesh¹*, P. V. V. Kishore¹ and J. Karande Kailash²

¹Department of Electronics and Communication Engineering, KL University, Vijaywada – 522502, Andhra Pradesh, India; maheshkade@gmail.com, pvvkishore@gmail.com
²Department of Electronics and Telecommunication Engineering, SKNSCOE, Korti, Solapur University, Solapur – 413304, Maharashtra, India; kailashkarande@yahoo.co.in

Abstract

Objectives: Iris recognition is one of biometric identification methods adopted over worldwide. In this paper we intend to update the previous survey and cover the survey over the period of roughly 2010 to 2015. Methods: We focus on the paper that appeared in Springer, IEEE Xplore and International Conferences, National and International journals covering Image Processing, Signal Processing, Pattern recognition and Bioinformatics. This paper primarily focuses on the survey of Iris camera for Iris acquisition, Methods adopted for iris segmentation, feature extraction, matching and public Iris database. Iris segmentation and feature extraction are important steps in Iris recognition. As there are several publications on the segmentation and feature extraction separately in literature, we have selected and summarized only prominent work in our paper. Findings: We have compared the algorithm used by various researchers with the performance parameter obtained by other researchers. We have found that there is scope for improvement in algorithms and need to understand the Iris Code in detail. Application: This comparative analysis will help researcher to get view on present scenario related to Iris recognition system.

Keywords: Acquisition Segmentation, Database, Features, Iris, Matching

1. Introduction

In our daily lives, authentication of the person is necessary in order to verify their identity in various areas, for example ATM, secure entrance to building (residential and logical access control), iris patterns in lieu of passports and national biometric identification projects (ADHAR in India). Biometrics provides a valid authentication of humans by their peculiar characteristics and special knowledge of bodily working system i.e. physiological and behavioral type, so as to identify and recognize an individual, compared to traditional authentication mechanisms such as ID cards and passwords. The physiological characteristics are palmprint, iris, fingerprint and face, whereas voice, signature and gait recognition system falls under the behavioral recognition type system. A biometric system can be operated in two modes i.e. first is verification mode and other is Identification mode.

In the biometrics, using identification mode the goal is to identify the input biometric signal from the available biometric database signal by comparing the features of input signal with the stored features i.e. one-to-many matching process. In biometrics using verification mode the input biometric signal is verified with the claimed identity i.e. one-to-one matching process is initiated. In recent past, iris recognition system has been given more

*Author for correspondence
attention by the academic researcher due to number of advantages such as availability of hardware which gives high computation speed and accuracy of the result. Iris recognition system is also a one of pattern-recognition techniques which is based on the Iris images. The human iris is a circular part between the dark pupil and the white sclera, which has a peculiar pattern structure that provides many miniature characteristics such as stripes, freckles and coronas etc. Figure 1 shows typical human eye structure. These visible characteristics, which are called the texture of the iris, are unique. Iris has 256 unique spot compared to other biometric has 13 to 60 unique characteristics. Each eye is unique and remain stable for lifelong. Iris pattern are such that it does not matches with the left eye iris to right eye iris of same person and also it does not match with the iris of identical twins. No two irises in the universe are same.

The paper is organised as Section 2 discusses about the basic steps used in iris recognition system and different iris cameras used for iris acquisition. Section 3 explores the segmentation technique applied in Iris recognition and Comparative analysis is presented in tabular form. Section 4 explores the feature extraction and matching methods. Section 5 discusses the public available Iris data base.

2. Basic Iris Recognition System

The important steps involved in an iris recognition system are, (1) Acquisition of Iris Images (2) Accurate Segmentation (3) Normalization (4) Extraction of Iris features (5) Comparison of extracted features with database or claimed identity (6) Finding the Similarity values

Figure 1. Front view of human eye.
for recognition. Figure 2 shows the steps in iris recognition algorithm.

2.1 Acquisition of Iris Images
Acquisition of Iris Images is done by using a standard Iris cameras operated in visible and infrared light band. Acquisition of Iris Image can be achieved by manual or automatic method. In the manual method, the person needs to adjust within six to twelve inches from the camera for correct focusing. In automatic image acquisition method set of cameras are used to locate the iris automatically. Pre-processing steps like histogram equalization, filtering and standard noise removal to remove the noise may be employed to enhance the image quality of image before applying to the next processing step. The various cameras to be selected for Iris acquisition are LG make Iris access 3000, LG 2200, LG 4000 camera with features such as auto focus, auto zoom, interface for voice. Panasonic make ET 3000 with features having dual eye camera, oblique illumination so that eye glasses may not be removed for acquiring iris image. Oki make Irispass M camera has facility to adjust height and position to find the tilted eye. Iris guard make H100 camera has lcd, usb interface along with autofocus and auto zoom facility. Securimeterics make PIER handheld camera is deployed in military and police. Iris Access iCam 7 Series is also best camera for iris acquisition, IrisKing IKEMB-100, Panas BM –ET100, Nikkon E5700, Cannon 5D; Sony DSC –F717, Sony Dxc-950p and Topcon TRC501A, are the other commercial camera adopted for iris acquisition.

2.2 Accurate Segmentation
Segmentation steps consist of localizing the pupil and inner sclera boundary in eye image. Eyelids and eyelash is located and removed. Iris segmentation method can be divided into two categories first is classification according to the region of starting point of segmentation and second classification is according to the operators used to describe the shapes. In the first category researchers starts the segmentation from darkest region of image i.e. pupil. Edge detection technique is used and it is followed by Hough transform to detect the shape of iris and pupil. In the second category, the process starts from the less saturated part of image i.e. sclera region. After determining the sclera region, the iris is detected using any one type of operators. The different types of operators used to detect
the edges are like daugman’s integro-differential operator, wildes and canny operator. Various method discussed in literature are gradient based hough transform, masek method, fuzzy clustering algorithm, pulling and pushing method, eight-neighbor connection based clustering, key local variations method, active contours.

2.3 Image Normalization

During the iris acquisition process, the size of image will change if there is variation in the location of person looking into camera. Size of the pupil is varying so to deal with this difficulty, the segmented iris part is converted in the Cartesian coordinate system to a fixed length from the polar coordinate system. Variation in illumination will also result in low contrast of iris texture which affects the accuracy of iris recognition process. To deal with all such difficulties image normalization and enhancement algorithms are used.

2.4 Extraction of Features and Template Creation

Extraction of features is a process in which features such as texture features, visual features and statistical features are extracted from normalized iris image. Then the most important features from the iris image which represent the most discriminating information related to iris image with dimensionality reduction is used for template creation i.e. unique representation or Iris code. Various feature extraction algorithm includes 2D Gaussian filter, wavelet encoding, multichannel Gabor filters, Log-Gabor filters, DWT Haar wavelet, Laplacian of Gaussian filters, principal component analysis, independent component analysis.

The comparison between the templates is done and a similarity or dissimilarity numeric value is obtained. Threshold is set, if the dissimilarity value is higher than a threshold value, the iris recognition system determines it as a non-recognise Iris, otherwise, the system determines a matched Iris, resulting in identification of the person. For this matching process bit to bit iris code is compared. Hamming distance and multi-block Binary pattern is used for matching and generating dissimilarity value.

3. Segmentation Techniques in Iris Recognition

Iris segmentation is an important step of the iris recognition which is directly affecting the feature extraction and coding step resulting on iris recognition accuracy. However, iris segmentation is a difficult problem due to the nonlinear deformations, different camera angles, pupil dilations, head rotations, motion blurs, reflections, non-uniform illumination and low image contrast present in the iris image. The iris segmentation algorithm segments the iris by regarding the iris as a ring between the pupil and sclera and finding the inner edge and outer edge of the iris. Typical steps involved in iris segmentation are depicted in Figure 3.

Various algorithms proposed in the literature for iris segmentation is discussed:

In\(^5\) proposed iris image segmentation method using watershed and region merging. Image is divided into structure part and texture part using total variation flow model. Light spots in pupil are removed by closing. In the proposed approach, watershed and region merging are both applied in structure part which is further divided.

Figure 3. Iris segmentation steps.
into separate parts. An iris segmentation algorithm is presented \(^5\) which is based on the local statistics of the texture region in the iris and is suited for segmenting poor quality iris images. The segmentation algorithm is inspired by the work on Active Contours without Edges for iris segmentation. Method proposed in \(^2\) includes pre-processing a gray-level input eye image in order to suppress abrupt gray variations. Later, a two-fold robust strategy based on CDA and gray statistics is adopted to localize coarse iris region reliably in pre-processed image along with pupillary boundary is localization. Finally, eyelids are localized using PDA and eyelashes and in addition to this reflection are also marked adaptively.

In \(^8\) researcher describes new iris segmentation scheme by using game theory to elicit iris/pupil boundaries from a non-ideal iris image. A parallel game-theoretic decision making procedure is applied by modifying algorithm, which include the region-based segmentation and gradient-based boundary computation. An iris segmentation method based on the Fourier spectral density is proposed by \(^2\) for noisy frontal view eye images captured with minimum cooperation from the subjects. The computational complexity of the method presented is lower than the methods based on Hough transform and active contour. A novel method is proposed to improve the reliability and accuracy of colour iris segmentation for both from static and mobile devices using a fusion strategy based on selection among the segmentation outcomes of various segmentation methods.\(^9\)

In \(^11\) author proposed a method for the detection and segmentation of iris in frontal eye images. Coordinates of outer and inner iris borders and a decision that the image does not contain the iris of acceptable quality are obtained at the output. A knowledge-based approach is described to address the problem of locating and segmenting the iris in images showing close-up human eyes.\(^5\) The algorithm involves a succession of phases that deal with image pre-processing, pupil location, iris location, combination of pupil and iris, eyelids detection, and filtering of reflections. A novel algorithm is presented for iris segmentation in eye images taken under visible and near infrared light the proposed method consists of reflections localization, reflections filling in, iris boundaries localization and eyelids boundaries localization.\(^12\)

An approach for fast iris segmentation that relies on the closed nested structures of iris anatomy and on its polar symmetry is proposed by \(^14\). The developed algorithm applies mathematical morphology for polar/ radial-invariant image filtering and for circular segmentation using shortest paths from generalized grey-level distances. In \(^14\) describes how to accurately extract the iris regions from, non-ideal quality iris images. The proposed method uses AdaBoost eye detection in order to compensate for the iris detection error caused by the two circular edge detection operations and it uses a colour segmentation technique for detecting obstructions by the ghosting effects of visible light. A fast iris segmentation algorithm is constructed by finding the rough position of the pupil centre using the circular Gabor filter.\(^14\) Later, the iris and pupil circles are localised using the Daugman’s integro differential operator taken into account that the real centres of the iris and pupil are in the small area around the rough position of the pupil centre. Finally, the upper and lower eyelid boundaries are extracted using the live-wire technique.

In \(^12\) power of sparsity induced by L1-norm is used in overcoming the noise and degradations for color iris Images. The developed algorithm is divided into the different components, coarse iris localization, limbic boundary segmentation, pupillary boundary segmentation, eyelids fitting, reflection and shadow removal. The major boundaries are obtained by using canny edge Detector and Curvelet transform based feature extraction technique is explored for iris segmentation. Principal Component Analysis is then used to reduce the dimension of the features and finally SVM has been used as classifier.\(^14\) Effect Image degradations and how it can effect on the iris segmentation process is introduced by F Alonso and he evaluated the impact of 8 quality measures in the performance of iris segmentation.\(^12\). In \(^12\) Adopted a method which distinguishes iris images exhibiting the red eye effect from those with a dark pupil. The detector starts with a 2D darkness map of the iris image, and generates a customized shape context descriptor from the estimated pupil region. The descriptor is then compared with the reference descriptor, generated from a number of training images with dark pupils.
Table 1. Comparison of various iris segmentation algorithms

Sr no	Paper Ref No	Authors	Feature extraction principle	Accuracy	Year
1	[5]	In⁵	Watershed and Region merging	--	2014
2	[6]	In⁶	Local texture statistics	90.3%	2011
3	[7]	In⁷	Circo differential accumulator (CDA) and gray statistics	99.42	2014
4	[8]	In⁸	A parallel game-theoretic decision making procedure by integrating the region-based segmentation and gradient-based boundary-finding	97.17	2012
5	[9]	In⁹	Fourier spectral density	98.49	2011
6	[10]	In¹⁰	Histogram of Oriented Gradients (HOG)	1.73 (Mean E₁ Score)	2015
7	[11]	In¹¹	Approximate detection	--	2014
8	[12]	In¹²	Knowledge based	--	2010
9	[13]	In¹³	Edge map processing	93.24	2010
10	[14]	In¹⁴	Mathematical morphology for polar/radial-invariant image filtering grey-level distances	$E = 0.022$	2010
Table 1 Continued

		In				
11	[15]	In	15	Adaboost	--	2010
12	[16]	In	16	Using circular Gabor filter	97.36	2012
13	[17]	In	17	Sparcity induced by `1-norm	E=1.49	2014
14	[18]	In	18	Curve lets Transform	100	2013
15	[19]	In	19	8 quality measures	--	2013
16	[20]	In	20	A 2D darkness map generation and extraction of shape context descriptor	98.13	2013
17	[21]	In	21	Active contour and morphology	--	2014
18	[22]	In	22	Delogne–Kása Circle Fitting Based on Orientation Matching Transform	FPR=0.01	2014
19	[23]	In	23	Based on the active contours “Snake”.	E=0.77%.	2012
20	[24]	In	24	Morphological maps	E=1.05	2014
21	[25]	In	25	Based on analysis of the curvature of isophotes, curves connecting pixels in the image with equal intensity.	86.5	2014
Fast and accurate algorithm for iris segmentation using a combination of morphological operations and Chan-Vese active contour model is developed by21. To determine a rough boundary of the iris region the morphological operations are used while the precise boundary is found by active contour.

In22 uses the orientation matching transform based on edge map to find the rough outer and inner iris boundaries. Delogne–Kåsa Circle Fitting (DKCFS) is used to eliminate the outlier points of the rough outer and inner iris boundaries to extract a more precise iris area from an eye image. Pre-processing method using Bias-Corrected Fuzzy C-Mean (BCFCM) and iris segmentation based on the active contours “Snake” is presented23. Iris segmentation algorithm in which, approximate detection of eye center position is followed by approximate detection of inner and outer borders of iris region24. The method generates iris with precise borders.

In25 used a method for iris segmentation that can be used in unconstrained environments, under non-ideal imaging conditions which does not require any interaction for adaptation to different operating conditions. Algorithm proposed in26 takes an image as input and produces the circles along with their co-ordinate values. Finally, inner and outer circles which include eyelids and eyelashes are obtained resulting in iris segmentation.

Table 1 shows the summary of various iris segmentation algorithms proposed by different researchers. The work covers the period from 2010 to 2015.

4. Feature Extraction Techniques in Iris Recognition

Feature extraction is very important step in iris recognition. Visual features are such as colour, shape, colour histogram, Colour Moments (CM), Colour Coherence Vector (CCV) and colour correlogram. Shape feature extraction techniques can be broadly classified into two groups viz., contour based and region based methods. Texture features can be broadly classified into spatial texture feature extraction methods and spectral texture feature extraction methods based on the domain from which they are extracted. Texture features are getting extracted by computing the pixel statistics or by finding the local pixel structures in original image domain, whereas the second approach transforms an image into frequency domain and then calculates feature from the transformed image. Texture properties are coarseness, contrast, directionality, line likeness, regularity and roughness.

In27 proposes a novel method for recognition of iris patterns by using a support vector machine and Hamming distance. Iris features are extracted using the zigzag colllarette area of the iris. An adopted Gabor filter for feature extraction was used to evaluate half iris for recognition and with Support Vector Machine as classifier28. The proposed techniques could be used to overcome occlusion due to eyelids and eyelashes during segmentation. Improved iris recognition algorithm is developed using DWT and DCT based feature extraction and binary particle swarm optimization for feature selection by29. In addition to this, Radon transform is employed for lines detection presented in iris texture and Top hat filtering is used for image enhancement.

Empirical Mode Decomposition (EMD) which is an adaptive multi-resolution decomposition technique is used for iris recognition30. It was shown that, ignoring the boundary effect still can indicate eminent performance for iris recognition in the paper. A novel method based on a multi-scale Taylor expansion for feature extraction was developed31. They are: (1) a phase-based representation that is based on binarized first and second order multi-scale Taylor coefficient, (2) based on the most significant local extremum points of the first two Taylor expansion coefficients and (3) combination of the first two representations. An iris recognition method was proposed based on dynamic partition of the noise-free iris into disjoint regions from which MPEG-7 color and shape descriptors are extracted32.

In33 first segmented iris image and projected onto 1-D signals by the vertical projection and then the 1-D signal features are extracted by the 1-D wavelet transform. Finally, a PSO algorithm is adopted to train the PNN and optimizes the structure of PNN. In34 uses data partitioning approach. Feed forward artificial neural network classifier is employed for the classification purpose. In35...
used DauBechies Wavelet Transform (DBWT) to extract the textural features and Genetic Algorithms (GAs) were deployed to select the subset of informative features by combining the multiple feature selection criteria. Finally, a combined approach called the Adaptive Asymmetrical Support Vector Machines (AASVMs) was used for detection.

In36 proposed a novel method to perform iris encoding using bi-orthogonal wavelets and directional bi-orthogonal filters is discussed. Firstly, all the iris images are enhanced using the wavelet domain in-band de-noising method. In addition to this, a framework to assess the iris image quality based on occlusion, contrast, focus and angular deformation is developed. When iris images are captured under unconstrained conditions then quality can be highly degraded by poor focus, off-angle view, motion blur, Specular Reflection (SR), and other artifacts. To overcome these issues, an iris recognition algorithm for noisy images is proposed in37. Feature extraction is done using the 1-D Gabor filter is applied to the red, green, and gray image channels to get sets of iris codes from iris textures. Another iris recognition algorithm for unconstrained conditions is proposed by 38, using reverse bi-orthogonal wavelet transform.

In39 applied a Weighted Co-occurrence Phase Histogram (WCPH) for representing the local characteristics of texture pattern. The weighting function used in the algorithm avoids the quantization problem typical of the traditional histogram. The WCPH models the joint probability distribution of both the phase angle and spatial layout which is capable of capturing richer information in texture pattern. In40 applied Daubechies Wavelet Transform (DWT) for feature extraction and the Modified Contribution-Selection Algorithm (MCSA) for iris feature ranking based on the Multi-Perturbation Shapley Analysis (MSA), a framework which relies on cooperative game theory to estimate the effectiveness of the features iteratively and select them using either forward selection or backward. An approach to construct two-dimensional (2-D) non-separable, non-redundant, multiscale Combined Directional Wavelet FilterBank (CDWFB) for iris feature-extraction is proposed in 41. The CDWFB is obtained by the combination of Directional Wavelet FilterBank (DWF) and Rotated Directional Wavelet FilterBank (RDWF). Also, the dissimilarity measure of each region is fused at the decision level by exploring 1-out-of-n: post-classifier in order to reduce the false rejection rate.

An algorithm proposed in42 for iris recognition with a low lighting or low contrast ratio between the iris and pupil iris images using Iso-contrast limited adaptive histogram equalization approach. Two functions are sued for implementing the algorithm: (1) a local intensity histogram and (2) cumulative distribution function. In43 presented a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. The study was performed in order to evaluate cross-sensor matching, where the test samples were verified using data enrolled with a different sensor, often led to reduced performance.

In44 proposes an accurate iris recognition from the distantly acquired face or eye images under less constrained environments. A set of coordinate-pairs, which is referred to as geometric key which uniquely defines the way how the iris features are encoded from the localized iris region pixels is randomly generated and exclusively assigned to each subject enrolled into the system. The presence of a textured cosmetic contact lens which poses a challenge to iris recognition with contact lens is discussed by 45. In46 also proposes bag of words method for contact lens detection using IIIT-D Iris Contact Lens.

In47 proposes, a Zernike moment based phase encoding for iris features. Zernike moments-based phase features are computed from the partially overlapping regions to more effectively accommodate local pixel region variations in the normalized iris images. Experimental results presented using UBIRIS.v2, FRGC, and CASIA.v4 iris image database.

Iris code is a binary code that summarizes the features of iris. In48 author attempted to understand the iris code by looking for stable bit in iris code using log Gabor filter. In iris code all the bits are not equally useful; some bits are more consistent than other bits. The bits toward the pupil and limbic boundary are more fragile and investigated the
Table 2. Table of comparison of feature extraction and matching method

Sr	Paper Ref No	Feature Extraction principle	Database used	Matching Process	Accuracy
1	[27]	Zigzag Collarette area of the iris.	CASIA	SVM	99.91% and 99.88%
2	[28]	Gabor features	CASIA	SVM	FAR and FRR of 0.21%
3	[29]	DWT and DCT	Phoenix and IITD	Euclidean distance classifier	88.56
4	[30]	EMD	CASIA	Hamming Distance	98.7
5	[31]	Multi-scale Taylor expansion of the iris texture.	Casia 2.0 ICE-1 and MBGC-3l	Elastic similarity metric	EER=0.026 (CASIA 2.0)
6	[32]	MPEG.7 color and shape descriptors	NICE:II	Similarity metric	FAR = 0.01
7	[33]	1-D wavelet transform	CASIA	PNN	99.1
8	[34]	Horizontal, vertical and block partitioning method	CHUK	FANN	93.33%
9	[35]	Textural features using Daubechies wavelet transform (DBWT)	UBIIRS Version 2, the ICE 2005, and the WVU	Adaptive asymmetrical support vector machines	99.13, 98.94, 98.50
Table 2 Continued

		Bi-orthogonal wavelets and directional bi-orthogonal filters	CASIA, Bath, WVU and Clarkson	Hamming Distance	EER = 0.07%, 0.15%, 0.81% and 1.29
11	[37]	Feature extraction using 1-D Gabor filter applied to the red, green, and gray image channels	NICE.II	Hamming distance	EER = 16.942
12	[38]	Reverse biorthogonal wavelet transform	UBIRIS & NICE I	Hamming Distance	EER = 12.03%
13	[39]	weighted co-occurrence phase histogram (WCPH)	UBIRIS.v2	Bhattacharyya distance	EER = 0.2278
14	[40]	Daubechies Wavelet Transform (DWT)	ICE 2005, UBIRIS	Hausdorff distance (HD)	98.3, 97.49,
15	[41]	multiscale combined directional wavelet filterbank (CDWFB)	UBIRIS & MMUI	Canberra distance (CD)	99 & 98.16
16	[42]	Iso-contrast limited adaptive histogram equalization	UBIRIS.v2	Hamming Distance	95.5
17	[43]	1D Log-Gabor filter.	LG2200 and LG4000	squared euclidean distance	95.73
Survey on Iris Image Analysis

Table 2 Continued

18	[44]	Randomly generated set of coordinate-pairs, which is referred to as geometric key	UBIRIS.v2, FRGC, and CASIA.v4	Hamming distance	EER= 0.1667, 0.1987, 0.0356
19	[45]	Textured effect of Contact Lenses.	IIT-D Iris Contact Lens database and the ND-Contact Lens	Weka classifier	80.94 & 80.04
20	[47]	Zernike moment based phase encoding	UBIRIS.v2, FRGC, and CASIA.v4	modified Hamming distance	0.1196, 0.1986, 0.0290

Iris code using zero DC Gabor filter. In author investigated using non zero DC Gabor filter. Iris code is still very incomplete because limited work is devoted to its theory.

The Table 2 shows the summary of feature extraction and matching methods proposed by various researchers. The work included is covering the period 2010 to 2015.

5. Public Datasets for Iris Images

Various iris image databases are available publically. We reviewed few of the important iris image databases in this section including CASIA, ICE, UBIRIS, WVU, BATH and MMU. database.

5.1 CASIA Iris Database

Casia iris image dataset of (version 1.0) consist of 108 different classes and total 756 images. Two sessions were employed to capture 7 images, first session collected three samples and second session collected four. The casia Version 3 consist of 2655 images and 249 persons were used and dataset has 396 classes. Images were acquired in two sessions with a gap of one month. Images are of size 320 X 280 with 8-bit gray intensity levels.

5.2 ICE Database

The Iris Challenge Evaluation (ICE) dataset consist of 244 classes and total 2954 images which is divided into 1528 images of left eye iris and 1425 of right eye iris. Few iris ICE database contains images with poorly focused and iris covered by eyelids and eyelash. Also, there are some rotated iris images and partially captured images. Size of iris image is 640 X 480 with 8-bit intensity level.

5.3 UBIRIS Database

It is an iris dataset for biometric purposes. The ubiris Version 1 database consist of total 2,410 iris images captured in visible wavelength. Two sessions were employed to capture iris image. Noisy images are also provided in database so that robustness and accuracy of algorithm can be checked.
5.4 WVU Database
The West Virginia University (WVU) dataset consist of total 800 images captured in poor illumination condition and with 200 classes\(^\text{31}\). Each class is consisting of four images collected at three different angles. The size of iris images 640X480 with 8-bit intensity level.

5.5 Bath Database
The University of Bath (BATH) iris image database presently consist more than 16000 iris images, 400 subjects were considered for 800 eyes. The student and staff of bath university were main subjects for this dataset and very high quality camera was employed.

5.6 MMU Database
The Multimedia University (MMU) has a small data set consisting of only 450 iris images\(^\text{35}\). The iris image database consists of 100 subjects with five iris images per subject with different ages and nationalities.

Other useful dataset is released by Dam University ND IRIS -0405, IIT Delhi and UPOL.

6. Conclusion
This study is effective in understanding various algorithms used for iris segmentation, extracting features of iris, and matching of iris code which are main steps in iris recognition system. This work identified that most of the algorithm techniques used provide good results, yet there is scope to improve the results. This paper will be useful for researcher who wish to view a larger picture of current state of Iris recognition system, as this paper covers right from the type of camera to be used for image acquisition to list of public database of iris available for research.

7. References
1. Wildes R. Iris recognition: An emerging biometric technology. Proceedings of the IEEE. 1997 Sep; 85(9):1348–63. CrossRef.
2. Hugo P, Luis A. Iris recognition: Measuring feature’s quality for the feature selection in unconstrained image capture environments. International Conference on Computational Intelligence for Homeland Security and Personal Safety, USA; 2006. p. 35–40.
3. Sujatha P, Sudha KK. Performance analysis of different edge detection techniques for image segmentation. Indian Journal of Science and Technology. 2015 Jul; 8(14):1–6. CrossRef.
4. Saminathan K, Chakravarthi T, Chithravee M. Comparative study on biometrics Iris recognition based on Hamming distance and Multi block local binary pattern. Indian Journal of Science and Technology. 2015 Jun; 8(11):1–8. CrossRef.
5. Fei Y, Yantao T. Iris segmentation using watershed and region merging. 9th IEEE Conference on Industrial Electronics and Application, China; 2014. p. 792–7.
6. Boddeti VN, Vijaykumar BV. Improved iris segmentation based on local texture statistics. 45th Asilomar Conference on Signals, Systems and Computers, USA; 2011. p.2147–51.
7. Jan F, Usman I. Iris segmentation for visible wavelength and near infrared eye images Farmanullah. International Journal for Light and Electron Optics. 2014 Aug; 125(16):4274–82. CrossRef.
8. Roy K, Bhattacharya P, Cheng S. Iris segmentation using game theory. Journal of Signal, Image and Video Processing. 2012 Jun; 6(2):301–15.
9. Puhan NB, Niladri B, Sudha N, Kaushalram AS. Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density. Journal of Signal, Image and Video Processing. 2011 Mar; 5(1):105–19.
10. Hu Y, Konstantinos S, Gareth H. Improving colour iris segmentation using a model selection technique. Pattern Recognition Letters. 2015 May; 57(1):24–32. CrossRef.
11. Matveev I, Konstantin G. Iris image segmentation based on approximate methods with subsequent refinements. 22nd International Conference on Pattern Recognition, Sweden; 2014. p. 704–1709
12. Almedia P, Butterworth HN. A knowledge-based approach to the iris segmentation problem. Journal of Image and Vision Computing. 2010 Feb; 28(2):238–45. CrossRef.
13. Sankowski W, Kamil G, Malgorzata N, Mariusz Z, Andrzej N. Reliable algorithm for iris segmentation in eye image. Journal of Image and Vision Computing. 2010 Feb; 28(2):231–7. CrossRef.
14. Miguel A, Luengo O. Robust iris segmentation on uncalibrated noisy images using mathematical morphology.
15. Jeong DA, Hwang JA. A new iris segmentation method for non-ideal iris image. Image and Vision Computing. 2010 Feb; 28(2):278–84. CrossRef.

16. Radman A. Fast and reliable iris segmentation algorithm. IET Image Processing. 2012 Nov; 7(1):42–9. CrossRef.

17. Yang H. A robust algorithm for colour iris segmentation based on 1-norm regression. IEEE International Joint Conference on Biometrics, USA; 2014 Oct. p. 1–8.

18. Zafar MF. Novel iris segmentation and recognition system for human identification. 10th International Conference on Applied Sciences and Technology, Bhurban; 2013 Jan. p. 128–36. CrossRef.

19. Fernando AE. Quality factors affecting iris segmentation and matching. International Conference on Biometrics, Madrid; 2013 Jun. p. 1–6.

20. Changpeng T. Red eye detector for iris segmentation using shape context. Conference on Biometric and Surveillance Technology for Human and Activity Identification, USA; 2013 May. 8712–26

21. Abdullah MAM. Fast and accurate method for complete iris segmentation with active contour and morpholog. IEEE International Conference on Imaging Systems and Techniques, Greece; 2014 Oct. p. 123–8.

22. Chung PC. An iris segmentation scheme using Delogne–Kåsa circle fitting based on orientation matching transform. International Symposium on Computer, Consumer and Control. Taiwan; 2014 Jun. p. 127–30.

23. Hanene G. Novel iris segmentation method. International Conference on Multimedia Computing and Systems, Morocco; 2012 May. p. 260–5.

24. Matveev I. Iris segmentation system based on approximate feature detection with subsequent refinements. 22nd International Conference on Pattern Recognition, Sweden; 2014 Aug. p. 1704–9. CrossRef.

25. Leo M, Tommaso DM. Highly usable and accurate iris segmentation. 22nd International Conference on Pattern Recognition, Sweden; 2014 Aug. p. 2489–94. CrossRef.

26. Shashidhara HR, Aswath AR. A novel approach to circular edge detection for iris image segmentation. Fifth International Conference on Signal and Image Processing (ICSIP); 2014.

27. Rai H, Aswath AR. Iris recognition using combined support vector machine and Hamming distance approach. Journal of Expert Systems with Applications. 2014 Feb; 41(2):588–93. CrossRef.

28. Musab AMA, Nooritawati MT. Half iris gabor based iris recognition. IEEE 10th International Colloquium on Signal and Processing and its Applications, Malaysia; 2014 Sep. p. 282–7.

29. Dhuge SS, Hegde SS, Manikantan K. DWT based feature extraction and radon transform based contrast enhancement for improved iris recognition. International Conference on Advanced Computing Technologies and Applications, India. 2015 Mar; 45:256–65. CrossRef.

30. Chien PC, Jen CL. Using empirical mode decomposition for iris recognition. Computer Standards and Interfaces. 2009 Jun; 31(4):729–39. CrossRef.

31. Bastys A, Justas K. Iris recognition by fusing different representations of multi-scale Taylor expansion. Computer Vision and Image Understanding. 2011 Jun; 115(6):804–16. CrossRef.

32. Hugo P. Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths. Computer Vision and Image Understanding. 2012 Feb; 116(2):167–78. CrossRef.

33. Ching HC, Chia TC. High performance iris recognition based on 1-D circular feature extraction and PSO–PNN classifier. Journal of Expert Systems with Applications. 2009 Sep; 36(7):10351–6. CrossRef.

34. Fadi NS, Hafsa IH, Raja MN. Iris recognition using artificial neural networks. Expert Systems with Applications. 2011 May; 38(5):5940–6. CrossRef.

35. Roy K, Prabir B, Ching YS. Towards nonideal iris recognition based on level set method, genetic algorithms and adaptive asymmetrical SVMs. Engineering Applications of Artificial Intelligence. 2011 Apr; 24(3):458–75. CrossRef.

36. Abhayankar A, Stephenie S. Iris quality assessment and bi-orthogonal wavelet based encoding for recognition. Pattern Recognition Letters. 2009 Sep; 30(11):1878–94. CrossRef.

37. Kwang YS, Gi PN. New iris recognition method for noisy iris images. Pattern Recognition Letters. 2012 Jun; 33(8):991–9. CrossRef.

38. Szewczyk R, Grabowski K. A reliable iris recognition algorithm based on reverse biorthogonal wavelet transform. Pattern Recognition Letters. 2012 Jun; 33(8):1019–26. CrossRef.

39. Li P, Xiaomin L, Nannan Z. Weighted co-occurrence phase histogram for iris recognition. Pattern Recognition Letters. 2012 Jun; 33(8):1000–5. CrossRef.
40. Roy K, Bhattacharya P. Iris recognition using shape-guided approach and game theory. Pattern Analysis and Applications; 2011 Nov. p. 329–48. CrossRef.
41. Rahulkar AD, Holambe RS. Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter bank. Journal of Neurocomputing. 2012 Apr; 81(1):12–23. CrossRef.
42. Anis FMR, Hishammuddin A. A low lighting or contrast ratio visible iris recognition using iso-contrast limited adaptive histogram equalization. Knowledge-Based Systems. 2015 Jan; 74:40–8. CrossRef.
43. Pillai JK, Maria P, Rama C. Cross-sensor iris recognition through kernel learning. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2014; 36(1):73–85. CrossRef.
44. Tan C, Ajay K. Efficient and accurate at-a-distance iris recognition using geometric Key-based iris encoding. IEEE Transactions on Information Forensic and Security. 2014 Sep; 9(9):1518–26.
45. Daksha Y, Kohli N, James D, Richa S. Unraveling the effect of textured contact lenses on iris recognition. IEEE Transactions on Information Forensic and Security. 2014 May; 9(5):851–62.
46. Sujhata R, Lalithamani N. Counter measure for indirect attack for iris based biometric authentication. Indian Journal of Science and Technology. 2016 May; 9(19):1–6.
47. Tan C, Ajay K. Accurate iris recognition at a distance using stabilized iris encoding and zernike moments phase features. IEEE Transactions on Image Processing. 2014 Aug; 23(9):3962–74.
48. Hollingsworth KP, Bowyer KW. The best bits in iris code. IEEE Transaction on Pattern Analysis and Machine Intelligence. 2009 Jun; 31(6):964–73.
49. Burge MJ, Bowyer KW. Hand book of iris recognition. Advances in Computer Vision and Pattern Recognition, Springer –Verlag, London; 2013. p. 321–36.
50. Gonzalez SY, Gill JL. Iris segmentation methods and current challenges: State of art; 2014.
51. CASIA-IrisV3 Interval [Internet]. Available from: http://www.cbir.ai.ac.cn/IrisDatabase.htm.
52. Iris Challenge Evaluation (ICE) dataset [Internet]. Available from: http://iris.nist.gov/ICE/.
53. UBIRIS dataset obtained from Department of Computer Science, University of Beira Interior, Portugal [Internet]. Available from: http://iris.di.ubi.pt/.
54. Iris Dataset obtained from West Virginia University (WVU) [Internet]. Available from: http://citer.wvu.edu/biometric_data_collection.
55. Multimedia Iris Database [Internet]. Available from: http://www1.mmu.edu.my/~ccteo/.