Pathological Association Between Radical Prostatectomy and Needle Biopsy Specimen in Prostate Cancer Patients

Babak Javanmard 1, Mohammad Reza Razzaghi 1,2, Omid Javanbakht 1, Morteza Fallah Karkan 1 and Saleh Ghiasy 1,2, *

1 Laser Application in Medical Science Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
*Corresponding author: MD, Resident of Urology, Department of Urology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-2122749221, Email: saleh.ghiasy@sbmu.ac.ir

Received 2019 March 15; Revised 2019 November 26; Accepted 2019 November 27.

Abstract

Background: Prostate cancer (PCa) is the second most common cancer in men worldwide. The accuracy of Gleason score (GS), as a useful system for histopathological assessment, is important because any fault in the assessment and calculation leads to inappropriate approaches and complications. Multifocality is common in PCa and it is expected that different grading of cancer would be seen in different areas. This is one of the sources of diversity in pathologic reports of transrectal ultrasound guided biopsy (TRUS BX) and radical prostatectomy, which is obtained in 41% to 43% of samples with exact accordance; so, when choosing the treatment plan is based on of the needle biopsy sample, the accuracy of TRUS BX GS is bolded.

Objectives: In this study, we compared the pathology reports of initial biopsy and final pathology of the prostate after radical prostatectomy to determine the discrepancy among the Iranian population.

Methods: In this retrospective study, 105 of 127 patients that underwent both TRUS BX and radical prostatectomy in Shohada-e-Tajrish Hospital from August 2009 to October 2017 enrolled in the study.

Results: In the current study, 55% of the patients were without change and 36% were upgraded. The rate of abnormal digital rectal examination and the increase of prostate-specific antigen levels have a statistically significant correlation with the upgrading of GS, respectively (P = 0.001 and 0.02).

Conclusions: It is generally concluded that the initial biopsy with the final pathology of radical prostatectomy is similar in our investigation.

Keywords: Prostate Cancer, Gleason Score, Trans Rectal Ultrasound Guided Biopsy of the Prostate, Radical Prostatectomy

1. Background

Prostate cancer (PCa) is the second most common cancer in men worldwide. The annual incidence is 759000 in the more developed region and 353000 in less developed regions. PCa death rate varies between 142000 in more developed regions and 165000 in less developed regions (1-3). In Iran, PCa is the 3rd most commonly-diagnosed visceral cancer (4-9).

When prostate-specific antigen (PSA) levels are abnormal or nodules are palpitated on digital rectal examination, transrectal ultrasound guided biopsy of the prostate (TRUS BX) should be done (10). The result of TRUSBX provides tumor data of the Gleason score (GS) (11). The GS system is the most useful system for the histopathological assessment of PCa worldwide (12) and is an important factor for the choice of treatment (13). GS includes two scores ranging from 1 to 5; the first score presents the most common patterns and the second score presents the highest grade patterns for the tumor (14). The accuracy of GS is important because any fault in the assessment and calculation leads to inappropriate approaches and complications (15, 16).

Pathologic staging is one of the outcome predictors of PCa (17). Currently, due to widespread PCa screening by using PSA level and due to increasing the use of TRUS BX, assessing the accuracy of biopsy in predicting pathological grading and tumor aggressiveness is very important in the outcome of pathological samples of radical prostatectomy (RP) (17, 18).

The multifocal disposition of PCa is a common finding; therefore, it is expected that different areas within the prostate tissue would have different cancer grading. This is one of the diverse sources in the pathological reports of TRUS BX and RP. These reports show 41% to 43% exact ac-
cordance between samples. Accordingly, to these findings, TRUS BX GS accuracy is bolded in choosing the treatment plan (19-21).

Some studies report a discrepancy of pathological correlation between TRUS Bx and RP regarding GS. The upgradation of GS between the TRUS Bx sample and the final specimen from RP was reported in multiple articles. The accuracy among specimens extended from 30% to 74% (18, 22-28).

2. Objectives

In this study, we compared the pathology reports of initial biopsy and final pathology of the prostate after RP to determine the discrepancy among the Iranian population.

3. Methods

3.1. Sampling

In this retrospective observational study, 105 consecutive patients with a mean age of 66.1 ± 9.6 years old, who underwent both TRUS Bx and RP in Shohada-e-Tajrish Hospital from August 2009 to October 2017, were included in the study. The exclusion criteria included the patients, who had a history of chemoradiotherapy before RP surgery and the patients, who had incomplete medical records. Finally, 12 patients, who underwent radiotherapy before surgery or those who underwent TRUS Bx in other medical centers, were excluded from the study.

3.2. Pathologic Reassessment

TRUS Bx and RP specimens were reviewed by one expert specialized uropathology. The systematic biopsy was performed through the 12 biopsy scheme (2 core from the base, mid, and apex bilaterally). The patient underwent RP through the open retro-pubic approach. Upgrading was defined as a raise in GS in pathological specimens after RP. RP specimens were examined and reviewed based on the Stanford protocol. Each prostate lobe was divided into 2 sections of anterior and posterior. Whole specimens were sliced to 5 µm and stained, using hematoxylin-eosin.

3.3. Study Outcome

Demographics data, PSA serum levels, prostate size, and pathological stage and grade were recorded. The main aim of the study was to investigate the correlation between GS of needle biopsy and RP specimen.

3.4. Data Analysis

Statistical analysis was performed, using statistical package for social sciences (SPSS V. 19). For assessing qualitative data, the chi-square test was used. Quantitative outcomes were apprised through descriptive statistics (mean ± standard deviation) and independent t-test. The statistically significant level was considered P < 0.05.

3.5. Ethical Considerations

The Ethics Committee of Shohada-e-Tajrish Hospital approved this study and let us for review of patients’ medical data. The personal data of the subjects were not disclosed and the principles of patient secrecy were respected.

4. Results

This study revealed that in TRUS BX samples, 80% had adenocarcinoma and 20% had acinar type adenocarcinoma. The final pathological diagnosis was observed in 2% of Prostatic intraepithelial neoplasia (PIN) cases, 25% of adenocarcinoma cases, 69% of acinar type cases, and 4% of non-malignant cases. In our study, 55% of cases show no change between TRUS BX and RP pathological specimens. Also, it is shown that 36% of the cases enrolled in the study have had an upgrade and the rest of them downgrade the tumor grading in the RP specimens compared with TRUS BX. The rate of abnormal digital rectal examination (DRE) and increase of PSA levels have a statistically significant correlation with the upgrading of GS (P = 0.001 and 0.02) (Table 1). The pathology reports of TRUS BX were adenocarcinoma and acinar adenocarcinoma in 80% and 20%, respectively; however, the last pathology reports were adenocarcinoma, acinar adenocarcinoma, high-grade PIN, and no malignancy in 25%, 69%, 2%, and 4%, respectively.

5. Discussion

The most important diagnostic test that leads to choosing the most appropriate approach is the pathological examination of biopsy samples. Therefore, it is of great importance to recognize the factors that affect biopsy samples results. Some studies show incompatibility between histopathological specimen examination of RP and TRUS Bx (18).

In our study, 55% of the cases show no change between TRUS BX and RP pathological specimens. Also, it is shown that 36% of the cases enrolled in the study have had an upgrade of the tumor grading in the RP specimens. We found that patients with abnormal DRE and high PSA levels are more prone to upgrade and have a statistically significant correlation with upgrading respectively (P = 0.001 and 0.02).

In 1998, Cecchi et al. evaluated tumor clinical grading and pathologic stage in association with GS and PSA levels. The study had 72 men enrolled. The patients underwent TRUS Bx and RP. Only 47.2% of the cases had the same GS in biopsy and final pathology; 37.5% of the cases were undergraded and 15.2% were overgraded. Clinical and pathologic stage was similar in 30.5% of the patients; 61.1% of the patients were understaged and 8.3% were overstaged. In conclusion, the GS in needle biopsy may be useful in predicting...
Table 1. Clinico-Pathological Data of the Cases

Variable	Values	Without Change	Upgrade	P Value
No. Pts	105	55%	36%	
Age, mean ± SD	66.1 ± 9.6	66 ± 9.7	66.4 ± 8.2	0.9
Abnormal DRE, %	48	24	21	0.001
PSA, mean ± SD	8.3 ± 6	7.7 ± 4.6	10.1 ± 7.4	0.02
Mean prostate, volume ± SD	49 ± 29.2	48.7 ± 21.4	51.3 ± 36	0.7
PSAD	0.2 ± 0.1	0.19 ± 0.08	0.2 ± 0.17	0.6

Abbreviations: DRE, digital rectal examination; PSA, prostate-specific antigen; PSAD: PSA density; SD, standard deviation.

5.1. Conclusions

It is generally concluded that the initial biopsy with the final pathology of RP is similar in our investigation.

Acknowledgments

We thank the Shohada-e-Tajrish Hospital medical records staff, who helped us with data collection.

Footnotes

Authors’ Contribution: Study design: Babak Javanmard; performed the experiments: Mohammad Reza Razzaghi; data acquisition: Omid Javanbakht; data analysis: Morteza Fallah Karkan; wrote the manuscript: Saleh Ghiasy.

Conflict of Interests: The authors declare that there is no conflict of interest.

Ethical Approval: The Ethical Committee of Shohada-e-Tajrish Hospital approved this study and let us for review of patients’ medical data. The personal data of the subjects was not disclosed and the principles of patient secrecy were respected.

Funding/Support: The authors declared no funding for the study.
References

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2013;132(5):1158-66. doi:10.1002/ijc.28259.

2. Allameh F, Rahavani AH, Ghiasi S. Prevalence of castration success rate in Iranian metastatic prostate cancer patients - a referral center statistics. Int J Cancer Manag. 2018;11(10). e8363. doi:10.5842/ijcm.8363.

3. Jamali L, Moradi A, Ganji M, Ayati M, Kazeminezhad B, Fazeli Attar Z, et al. Potential prognostic role for SPOP, DAXX, RARRES1, and LAMP2 as an autophagy related genes in prostate cancer. Urol J. 2019. doi:10.22037/uj.40.9493.5. [PubMed: 30882757].

4. Moussavi SM. Toward prostate cancer early detection in Iran. Asian Pac J Cancer Prev. 2009;10(3):413-8. [PubMed: 19640818].

5. Abedi AR, Fallah-Karkan M, Allameh F, Ranjbar A, Shadmehr A. Incidental prostate cancer: A 10-year review of a tertiary center, Tehran, Iran. Iran Rep Urol. 2018;20(3-4). doi:10.2147/RRUJ.31465.59. [PubMed: 29392121]. [PubMed Central: PMC5768285].

6. Pourmand G, Salem S, Mehrsai A, Lotfi M, Amirzargar MA, Mazdak H, et al. The risk factors of prostate cancer: A multicentric case-control study. Iran. Asian Pac J Cancer Prev. 2007;8(3):422-8. doi:10.18869/issn.1687-5295.2007.03.028. [PubMed: 17549961].

7. Pourmand GR, Allameh F, Mohammad K, Dehghani S, Pourmand B, et al. Gleason score and tumor laterality in radical prostatectomy and needle biopsy patients with Gleason Score 3+3 who met the criteria for active surveillance. J Urol. 2016;12:1915-9981. [PubMed: 28521916].

8. Ghiasy S, Abedi AR, Moradi A, Hosseini SY, Karkan MF, Sadri G, et al. Is chemotherapy related with prostate cancer patients with Gleason Score 3+3 who met the criteria for active surveillance? J Urol. 2016;12:1915-9981. [PubMed: 28521916].

9. Javanmard B, Yousefi M, Yaghoobi M, Hasanzadeh Hadad A, Momeni SA, et al. Relationship between perineural invasion in prostate needle biopsy specimens and pathologic staging after radical prostatectomy. Nephron Mon. 2016;8(3). e3602. doi:10.5812/nm.36022. [PubMed: 30663022].

10. Moussa AS, Li J, Soriano M, Klein EA, Dong F, Jones JS. Prostate biopsy clinical and pathological variables that predict significant grading changes in patients with intermediate and high grade prostate cancer. BJU Int. 2009;103(5):43-8. doi:10.1111/j.1464-410X.2008.08055.x. [PubMed: 18782303].

11. Epstein JJ, Partin AW, Sauvageot J, Walsh PC. Prediction of progression following radical prostatectomy. A multivariate analysis of 721 men with long-term follow-up. Am J Surg Pathol. 1996;20(3):286-92. doi:10.1097/00000458-199603000-00004. [PubMed: 8772781].

12. Fukagai T, Namiki T, Namiki H, Carlile RG, Shimada M, Yoshida H. Discrepancies between Gleason scores of needle biopsy and radical prostatectomy specimens. Pathol Int. 2001;51(5):364-70. doi:10.1046/j.1440-1827.2001.01207.x. [PubMed: 11422794].

13. Arellano L, Castillo O, Metrebian E. [Concordance of Gleason histological score: Examining the predictors of upgrade and downgrade results]. Rev Med Chil. 2004;132(1):30-8. doi:10.1016/s0210-6708(04)70030-4. [PubMed: 14640109].

14. Ojeda Calvo A, Reparaz RR, Ruiz MR, Villanueva JP, Hualde AA, et al. Correlation between Gleason score on prostate biopsies diag nostic of adenocarcinoma and radical prostatectomy specimens. Arch Esp Urol. 2004;57(5):519-23.

15. Arelano L, Castillo O, Metrebian E. [Concordance of Gleason histological scoring for prostatic cancer in needle biopsies and the surgical piece obtained during radical prostatectomy]. Rev Med Chil. 2004;132(8):871-8. Spanish. doi:10.4067/S0034-98272004000900009. [PubMed: 15478299].

16. Cookson MS, Flehser NE, Soloway SM, Fair WR. Correlation between Gleason score of needle biopsy and radical prostatectomy specimens: Accuracy and clinical implications. J Urol. 1997;157(2):559-62. [PubMed: 8996556].

17. Fine SW, Amin MB, Berny DM, Bjartell A, Igevad L, Epstein JJ, et al. A contemporary update on pathology reporting for prostate cancer: Biopsies and radical prostatectomy specimens. Eur Urol. 2012;62(1):20-39. doi:10.1016/j.eururo.2012.02.055. [PubMed: 22421081].

18. Ojea Calvo A, Nunez Lopez A, Dominguez Freire F, Alonso Rivero A, Castilla MD, Castilla MD, et al. Correlation of the anatomo-pathological staging of radical prostatectomy specimens with the amount of cancer in the preoperative sextant biopsy. Acta Urol Esp. 2013;37(6):328-37. Spanish. doi:10.1007/s10212-013-0729-9. [PubMed: 12981499].

19. Lopez-Corona E, Ohori M, Wheeler TM, Reuter VE, Scardino PT, Kantor MW, et al. Prostate cancer diagnosed after repeat biopsies have a favorable pathological outcome but similar recurrence rate. J Urol. 2006;175(3 Pt 1):923-7. discussion 927-8. doi:10.1016/j.juro.2005.07.020. [PubMed: 16495581]. [PubMed Central: PMC3955312].

Javanmard B et al. Int J Cancer Manag. 2020;13(1):e91609.