Introduction.

Primordial black holes (PBHs) [1, 2] are formed in the very early Universe due to the collapse of over-densed regions which are generated by the enhanced curvature power spectrum on small scales compared to those on the cosmic microwave background (CMB) scales. PBHs can not only represent the dark matter (DM) in the Universe, but also may potentially provide an explanation to the merger events detected by LIGO-Virgo Collaboration (LVC) if the fraction of the stellar mass PBHs in cold dark matter (CDM) is \(f_{\text{PBH}} \sim \text{few} \times 10^{-3} \) [3–12].

Among all the merger events detected by LVC, some of them are likely to have ambiguities in the astrophysical scenario. Firstly, the primary component of GW190521 has a high probability to be within the pair-instability supernovae mass gap [13], implying that the primary black hole (BH) might not have a stellar origin. Secondly, even though the component masses of GW190425 lie in the mass range of \([1.12 M_\odot, 2.52 M_\odot]\) and are consistent with the individual binary component being neutron star (NS) [14], the source-frame chirp mass and total mass are significantly larger than any known binary NS system. Thirdly, GW190814 is reported to have a compact object with a mass of \(2.5 - 2.67 M_\odot\) [15], which falls in the “lower mass gap” where no NSs or BHs have been observed in a double compact-object system. Finally, LVC recently reported GW200105 and GW200115 [16] in which the secondary component masses are respectively \(1.9^{+0.3}_{-0.2} M_\odot\) and \(1.5^{+0.7}_{-0.3} M_\odot\), indicating that both of them are well below the maximal mass of an NS. In addition, there are no electromagnetic counterparts to confirm and PBHs are speculated to provide an explanation to these five gravitational-wave (GW) events [14–17].

In this letter, we will give a comprehensive investigation for the possibility that if the GW events, in particular the five events mentioned above, can be explained in the PBH scenario. We adopt a binned method to model-independently reconstruct the PBH mass function from GWTC-3 [18], and we find that GW190521 can be explained by a binary PBH merger. But the other four GW events (GW190814, GW190425, GW200105, and GW200115) are quite unlikely to be interpreted as binary PBHs because the corresponding merger rates of binary PBHs are much smaller than those given by LVC even though the PBH mass function around \(\sim 1 M_\odot\) is significantly enhanced due to the softening of the equation of state during the QCD phase transition [19].

In addition, we compute the gravitational-wave background (GBW) from both the PBH binary coalescences [20] and the so-called scalar-induced gravitational waves (SIGWs) generated by the curvature perturbation during the formation of PBHs [21]. We find that the GWB associated with PBHs is compatible with the current limits of observations and should be detected by the ground-based and space-borne GW detectors and pulsar timing arrays in the future.

A model-independent reconstruction of PBH mass function. In this work, the PBH mass is considered in the range of \([1 M_\odot, 130 M_\odot]\). To infer the PBH mass function from the GWTC-3, we adopt a model-independent
the form of \[4\], be the free parameters. The merger rate density in units in which the mass function \(P(m)\) is independent, and \(\theta = \{P_1, P_2, P_3, P_4\}\) are chosen to be the free parameters. The merger rate density in units of Gpc\(^{-3}\) yr\(^{-1}\) for a general mass function, \(P(m|\theta)\), takes the form of \([4]\)

\[
R_{12}(t|\bar{\theta}) \approx 2.8 \times 10^6 \times \left(\frac{t}{t_0}\right)^{-\frac{34}{21}} f_{PBH}^2 (0.7 f_{PBH}^3 + \sigma_{m0}^2)^{-\frac{34}{21}}
\]

\[
\times \min \left(\frac{P(m_1|\bar{\theta})}{m_1}, \frac{P(m_2|\bar{\theta})}{m_2}\right) \left(\frac{P(m_1|\bar{\theta})}{m_1} + \frac{P(m_2|\bar{\theta})}{m_2}\right)
\]

\[
\times (m_1 m_2) \frac{m}{(m_1 + m_2)}^{\frac{35}{21}},
\]

where the component masses \(m_1\) and \(m_2\) are in units of \(M_\odot\), \(f_{PBH} \equiv \Omega_{PBH}/\Omega_{CDM}\) is the energy density fraction of PBHs in CDM, and \(\sigma_{m0} \approx 0.005\) \([4, 22]\) is the variance of density perturbations of the rest CDM on scale of order \(\mathcal{O}(10^9 \sim 10^{3})\) at radiation-matter equality.

We perform the hierarchical Bayesian inference \([23–29]\) to extract the population parameters \(\{\bar{\theta}, f_{PBH}\}\) from observed BBHs. Given the data of \(N\) binary BH (BBH) detections, \(\hat{d} = (d_1, \ldots, d_N)\), the likelihood for an inhomogeneous Poisson process is \([26–29]\)

\[
p(\hat{d}|\bar{\theta}, R) \propto e^{-\beta(\bar{\theta})} \prod_{i=1}^{N} \int d\tilde{X} p(\tilde{X}|d_i) R_{12}(\tilde{X}|\bar{\theta}),
\]

where \(\tilde{X} \equiv \{m_1, m_2\}\), \(p(\tilde{X}|d_i)\) is the posterior of an individual event, and \(\beta(\bar{\theta}) \equiv \int d\tilde{X} VT(\tilde{X}) R_{12}(\tilde{X}|\bar{\theta})\) where \(VT(\tilde{X})\) is the spacetime sensitivity volume of LIGO-Virgo detectors. We use the GW events from GWTC-3 by discarding events with false alarm rate larger than 1 yr\(^{-1}\), and events with the secondary component mass smaller than 3\(M_\odot\) to avoid contamination from putative events involving neutron stars \([11]\). On the other hand, although PBHs are expected to have negligible spin at formation \([30, 31]\), they might become fast rotating through accretion effects \([32, 33]\). However, given that the accretion model is very sensitive to the cut-off points of the redshift and there is no evidence to support the accretion effects on PBHs so far, we consider two cases where in case I we discard the events with non-vanishing effective spin while we keep these events in case II.

The median value and 90% equal-tailed credible intervals for the parameters \(\{\bar{\theta}, f_{PBH}\}\) are represented by crosses in Fig. 1. For the case I, the results are

\[
P_1 = 1.5^{+0.6}_{-0.0} \times 10^{-1} M_\odot^{-1}, \quad P_2 = 2.5^{+1.8}_{-0.7} \times 10^{-2} M_\odot^{-1},
\]

\[
P_3 = 1.4^{+0.4}_{-0.3} \times 10^{-2} M_\odot^{-1}, \quad P_4 = 2.0^{+0.9}_{-0.7} \times 10^{-3} M_\odot^{-1},
\]

and \(f_{PBH} = 2.9^{+0.7}_{-0.6} \times 10^{-3}\). Therefore, the total local merger rate is \(154_{-88}^{+86}\) Gpc\(^{-3}\) yr\(^{-1}\) according to Eq. (2).

For the case II, the results are \(P_1 = 1.1^{+0.8}_{-0.5} \times 10^{-1} M_\odot^{-1},\)

\[
P_2 = 4.2^{+1.2}_{-0.5} \times 10^{-2} M_\odot^{-1},
\]

\[
P_3 = 1.3^{+0.3}_{-0.2} \times 10^{-2} M_\odot^{-1}, \quad P_4 = 2.6^{+0.7}_{-0.6} \times 10^{-3} M_\odot^{-1},
\]

and \(f_{PBH} = 3.4^{+0.5}_{-0.7} \times 10^{-3}\). Therefore, the total local merger rate is \(175_{-68}^{+144}\) Gpc\(^{-3}\) yr\(^{-1}\).

![FIG. 1. The median values and the 90% credible intervals of the population parameters \(f_{PBH}P_i\) with \(i = 1, \ldots, 5\). The blue (red) curves correspond to the mass function of PBHs generated by a broad tilted curvature power spectrum corresponding to discarding (keeping) non-vanishing effective spin events.](image)

From our binned reconstruction of PBH mass function, the inferred merger rates of binary PBHs for the events with component masses in the upper mass gap \((m > 65M_\odot)\) and the light mass range \((m < 3M_\odot)\) are listed in the third column of Tab. I. Compared to the merger rates given by LVC (the second column of Tab. I), we conclude that the upper mass gap event GW190521 can be explained by the PBH scenario, while the events with at least one component mass being smaller than 3\(M_\odot\) (GW190425, GW190814, GW200105, and GW200115) are quite unlikely to be explained in the PBH scenario because the merger rates of corresponding binary PBHs are at least one order of magnitude smaller than those given by LVC.

It is also worthy figuring out a physical explanation for the PBH mass function reconstructed from GWTC-3 in Fig. 1. Here, we take into account a broad tilted power spectrum for the curvature perturbations, namely

\[
P_R(k) = A(k/k_{min})^\alpha \Theta(k - k_{min}) \Theta(k_{max} - k),
\]

where \(\Theta\) is the heaviside theta function, \(k_{min} = 3.2 \times 10^5\) Mpc\(^{-1}\) and \(k_{max} = 9.5 \times 10^6\) Mpc\(^{-1}\). After PBHs are formed, they evolve like dust-like matter during radiation.
TABLE I. The local merger rate inferred by LIGO-Virgo and PBH.

Event	$R_{\text{LVC}}[\text{Gpc}^{-3}\text{yr}^{-1}]$	$R_{\text{GW}}[\text{Gpc}^{-3}\text{yr}^{-1}]$
GW190521	$0.13^{+0.30}_{-0.11}$ [13]	$0.12^{+0.11}_{-0.07}$ $0.16^{+0.11}_{-0.08}$
GW190424	460^{+1060}_{-300} [14]	$3.6^{+4.8}_{-2.8}$ $2.5^{+6.8}_{-1.1}$
GW190814	7^{+16}_{-6} [15]	$0.13^{+0.09}_{-0.07}$ $0.12^{+0.09}_{-0.05}$
GW200105	16^{+38}_{-14} [16]	$1.9^{+1.8}_{-1.0}$ $2.8^{+2.1}_{-1.4}$
GW200115	36^{+82}_{-30} [16]	$6.3^{+7.4}_{-3.8}$ $8.7^{+8.1}_{-4.5}$

dominated era, and then

$$f_{\text{PBH}}P(m) = \frac{1}{\Omega_{\text{CDM}}^m} \left(\frac{M_{\text{eq}}}{m} \right)^{1/2} \beta(m),$$ \hspace{1cm} (5)

where $M_{\text{eq}} \approx 2.8 \times 10^{17} M_\odot$ is the horizon mass at matter-radiation equality and $\beta(m)$ describes the mass fraction of the Universe that collapse to form PBHs. Using Press-Schechter formalism [34], $\beta(m)$ can be evaluated by integrating the probability distribution function (PDF) $P(\delta)$ of the density contrast δ that is larger than the threshold value, namely

$$\beta(m) \equiv \int_{\delta_c}^{\infty} d\delta \frac{m}{M_H} P(\delta),$$ \hspace{1cm} (6)

where

$$M_H \approx 17 \left(\frac{g}{10.75} \right)^{-1/6} \left(\frac{k}{10^5 \text{Mpc}^{-1}} \right)^{-2} M_\odot \hspace{1cm} (7)$$

is the horizon mass. Here g is the degree of freedom of relativistic particles, δ_c is the threshold value of density contrast for the formation of PBHs, $P(\delta) = e^{-\delta^2/2\sigma_k^2}/\sqrt{2\pi\sigma_k^2}$ with variance σ_k related to the curvature power spectrum by

$$\sigma_k^2 = \left(\frac{4}{9} \right)^2 \int_0^\infty dq q^2 W^2(q, R_H) \left(\frac{q}{k} \right)^4 T^2(q, R_H) \mathcal{P}_\gamma(q).$$ \hspace{1cm} (8)

where

$$T(k, R_H) = 3 \sin(kR_H/\sqrt{3}) - (kR_H/\sqrt{3}) \cos(kR_H/\sqrt{3})$$ \hspace{1cm} (9)

is the transfer function during radiation dominated era. A window function $W(k, R_H)$ is needed to smooth out the density contrast on a comoving length $R \sim k^{-1}$, for which we use a top-hat window function in real space, namely

$$W(k, R_H) = \frac{3 \sin(kR_H) - kR_H \cos(kR_H)}{(kR_H)^3}.$$ \hspace{1cm} (10)

The PBH mass m is related to the density contrast by the critical collapse, namely $m = M_H \kappa (\delta_m - \delta_c)^7$ [35–37] with $\kappa = 3.3$ and $\gamma = 0.36$ [38]. The nonlinear relation between the density contrast and the curvature perturbation δ_c leads to $\delta_m = \delta_c - 3/8 \kappa^2$ [39–41]. For the equation of state $w = 1/3$, numerical simulation indicates $\delta_c \approx 0.45$ [42, 43]. The threshold value of density contrast δ_c slightly decreases due to the softening of equation of state [44, 45] during the QCD phase transition [45, 46], and therefore the PBH mass function around $m \sim 1 M_\odot$ should be significantly enhanced [19]. In this letter, the data of equation of state and the sound speed are adopted from [45].

Here, the best-fit values of A and α are $A = 0.004647$ and $\alpha = -0.1033$ for case I, and $A = 0.004640$ and $\alpha = -0.1003$ for case II, and then the PBH mass function generated by such a broad tilted curvature power spectrum is illustrated by the blue (case I) and red (case II) curves in Fig. 1. In particular, the enhancement of PBH mass function around $m \sim 1 M_\odot$ just attributes to the softening of the equation of state during the QCD phase transition. In a word, our results indicate that such a broad red-tilted curvature power spectrum provides a quite reasonable explanation for the PBH mass function implied by GWTC-3.

GWBS associated with PBHs. GWB is supposed to be a superposition of incoherent GWs that are characterized statistically. The GWB associated with PBHs includes two main contributions: one is the coalescences of binary PBHs [20] (see more discussion in [47, 48]) and the other is SIGW inevitably generated by the curvature perturbations during the formation of PBHs [21].

For binary systems, the energy-density spectrum of a GWB which defined as the energy density of GWs per logarithm frequency, $f = k/(2\pi)$, can be calculated as [58–62]

$$\Omega_{\text{GW}}(f) = \frac{f}{\rho_c H_0} \int d\Omega m_1 m_2 \frac{R_{12}(z)}{(1 + z) E(z)} \frac{dE_{\text{GW}}}{dfs},$$ \hspace{1cm} (11)

where $\rho_c = 3H_0^2/(8\pi)$ is the critical energy density of our Universe, f_s is frequency of GWs in the source frame, H_0 is the Hubble constant, and $E(z) = \sqrt{\Omega_\gamma (1 + z)^4 + \Omega_m (1 + z)^3 + \Omega_\Lambda}$ accounts for the evolution of our Universe with Ω_γ, Ω_m and Ω_Λ the density parameters for radiation, matter and dark energy. Here, we adopt the best-fit results from Planck 2018 [63] and approximate the energy spectrum dE_{GW}/dfs emitted by an individual BBH using expressions from [61, 64, 65]. The corresponding GWBs for case I and case II are respectively shown as the blue and red band in Fig. 2, indicating that both of them are compatible with the current limits given by LIGO O3 [49], and should be detected by the future ground-based and space-borne GW detectors, such as Neutron Star Extreme Matter Observatory (NEMO) [57], Cosmic Explorer (CE) [56], Einstein Telescope (ET) [55], Taiji [54], TianQin [53] and LISA [52].

On the other hand, it is known that the GWs should be
Fig. 2. The GWB associated with PBHs. The blue (red) band corresponds to the GWB from the coalescences of binary PBHs from Case I (Case II), and the purple curve corresponds to the SIGWs generated by the curvature perturbation during the formation of PBHs. The two dark shaded regions are ruled out by the LIGO O3 [49] and NANOGrav 12.5-year data [50], respectively. We also show the sensitivity curves of FAST [51], LISA [52], TianQin [53], Taiji [54], LIGO Design, Einstein Telescope (ET) [55], Cosmic Explorer (CE) [56] and NEMO [57].

Generated by the scalar curvature perturbations at second order in perturbation theory [66–76]. In this sense, SIGWs are inevitably produced during the formation of PBHs. The perturbed metric in Newton gauge is given by

\[ds^2 = a^2 \left\{ -(1 + 2\Phi)dt^2 + \left[(1 - 2\Phi)\delta_{ij} + h_{ij}(\eta) \right] dx^i dx^j \right\}, \]

where \(\Phi = -2H/3 \) is the Bardeen potential, \(h_{ij} \) is the second-order transverse and traceless tensor mode and \(\eta \) is the conformal time. The equation of motion for \(\Phi \) is given by

\[\Phi'' + 3H(\eta) (1 + c_s^2) \Phi' + 3H^2 (c_s^2 - w) \Phi - c_s^2 \nabla^2 \Phi = 0, \]

where \(w \) and \(c_s \) are the equation of state and the sound speed, respectively. \(\Phi_k(\eta) \) is related to its initial value \(\Phi_k(\eta \to 0) \) by \(\Phi_k(\eta) = \Phi_k T_k(\eta) \), where \(T_k(\eta) \) is the transfer function. The equation of motion for the second-order tensor modes, \(h_{ij} \), takes the form

\[h_{ij}' + 2Hh_{ij}' - \nabla^2 h_{ij} = -4T_{ij}^{\ell m} S_{\ell m}, \]

with \(T_{ij}^{\ell m} = e^{(+)}\lambda(\textbf{k}) e^{(+)}\lambda m(\textbf{k}) + e^{(x)}\lambda(\textbf{k}) e^{(x)}\lambda m(\textbf{k}) \) selects the transverse-traceless part of the source term, with \(c_{ij} \) the polarization tensor and \(H = a'/a \). The source term is given by

\[S_{ij} = 2\Phi \partial_i \partial_j \Phi - \frac{4}{3(1 + w)} \left(\partial_i \Phi + \frac{\partial_i \Phi'}{H(\eta)} \right) \left(\partial_j \Phi + \frac{\partial_j \Phi'}{H(\eta)} \right). \]

Here the prime denotes the derivative with respect to \(\eta \). Following [77], Eq. (14) can be solved by the Green’s function and the transfer function method, and the energy density parameter by today is given by

\[\Omega_{GW} = \frac{\Omega_c}{6} \int_0^\infty du \int_{|1 - u|}^{1+u} dv^2 \int_{w^2}^{v^2} w^2 \left[1 - \left(\frac{1 + v^2 - u^2}{2v} \right)^2 \right] \theta(u + v - \sqrt{3}) \]

The kernel function takes the form [77]

\[K^2(u, v) = \frac{9(u^2 + v^2 - 3)^2}{32u^6 v^6} \left\{ -4uv + (u^2 + v^2 - 3) \right\} \]

The sensitivity curves of FAST [51], LISA [52], TianQin [53], Taiji [54], LIGO Design, Einstein Telescope (ET) [55], Cosmic Explorer (CE) [56] and NEMO [57].
For the curvature power spectrum given in Eq. (4) with A and α taking their best-fit values, the SIGWs are illustrated as the purple curve (coincides for case I and II) in Fig. 2. We find that the predicted SIGWs are compatible with NANOGrav 12.5-yr data [50], and should be detected by FAST [51] in the future. Note that recent analysis implies there is no statistically significant evidence for the tensor transverse polarization mode in the NANOGrav 12.5-yr data set [50, 78, 79], PPTA second data release [80, 81], IPTA second data release [82], and EPTA second data release [83].

Conclusion and Discussion. In this letter, we use a binned PBH mass function to model-independently reconstruct the PBH mass function from GWTC-3, and find that such a mass function can be naturally explained by a broad red-tilted curvature power spectrum. By comparing the merger rates of binary PBHs with those given by LVC, we conclude that GW190521 with the primary component being within the pair-instability supernovae mass gap can be explained by the merger of binary PBHs, but the light components (i.e. $m < 3M_\odot$) in GW190814, GW190425, GW200105, and GW200115 events should be NSs or other exotic compact objects. In addition, the PBH scenario proposed in this letter can be tested by searching for the GWB generated by the binary PBHs and the SIGW inevitably produced by the curvature perturbations during the formation of PBHs.

Acknowledgments. We acknowledge the use of HPC Cluster of ITP-CAS and HPC Cluster of Tianhe II in National Supercomputing Center in Guangzhou. This work is supported by the National Key Research and Development Program of China Grant No.2020YFC2201502, grants from NSFC (grant No. 11975019, 11991052, 12047503), Key Research Program of Frontier Sciences, CAS, Grant NO. ZDBS-LY-7009, CAS Project for Young Scientists in Basic Research YSBR-006, the Key Research Program of the Chinese Academy of Sciences (Grant NO. XDPB15), and the science research grants from the China Manned Space Project with NO. CMS-CSST-2021-B01.

* chenzucheng@itp.ac.cn
† yuanchen@itp.ac.cn
‡ Corresponding author: huangqg@itp.ac.cn

[1] Bernard J. Carr and S. W. Hawking, “Black holes in the early Universe,” Mon. Not. Roy. Astron. Soc. **168**, 399–415 (1974).

[2] Bernard J. Carr, “The Primordial black hole mass spectrum,” *Astrophys. J.** **201**, 1–19 (1975).

[3] Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, and Shuichiro Yokoyama, “Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914,” *Phys. Rev. Lett.* **117**, 061101 (2016), [arXiv:1603.08338 [astro-ph.CO]].

[4] Zu-Cheng Chen and Qing-Guo Huang, “Merger Rate Distribution of Primordial-Black-Hole Binaries,” *Astrophys. J.** **864**, 61 (2018), arXiv:1801.10327 [astro-ph.CO].

[5] Martti Raidal, Christian Spethmann, Ville Vaskonen, and Hardi Veermäe, “Formation and Evolution of Primordial Black Hole Binaries in the Early Universe,” *JCAP** **1902**, 018 (2019), arXiv:1812.01930 [astro-ph.CO].

[6] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “Primordial Black Holes Confront LIGO/Virgo data: Current situation,” *JCAP** **06**, 044 (2020), arXiv:2005.05641 [astro-ph.CO].

[7] Alex Hall, Andrew D. Gow, and Christian T. Byrnes, “Bayesian analysis of LIGO-Virgo mergers: Primordial vs. astrophysical black hole populations,” *Phys. Rev. D** **102**, 123524 (2020), arXiv:2008.13704 [astro-ph.CO].

[8] S. Bhagwat, V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “The importance of priors on LIGO-Virgo parameter estimation: the case of primordial black holes,” *JCAP** **01**, 037 (2021), arXiv:2008.12320 [astro-ph.CO].

[9] Gert Hütsi, Martti Raidal, Ville Vaskonen, and Hardi Veermäe, “Two populations of LIGO-Virgo black holes,” (2020), arXiv:2012.0778 [astro-ph.CO].

[10] Kaze W. K. Wong, Gabriele Franciolini, Valerio De Luca, Vishal Baibhav, Emanuele Berti, Paolo Pani, and Antonio Riotto, “Constraining the primordial black hole scenario with Bayesian inference and machine learning: the GWTC-2 gravitational wave catalog,” *Phys. Rev. D** **103**, 023026 (2021), arXiv:2011.01865 [gr-qc].

[11] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “Bayesian Evidence for Both Astrophysical and Primordial Black Holes: Mapping the GWTC-2 Catalog to Third-Generation Detectors,” *JCAP** **05**, 003 (2021), arXiv:2102.03809 [astro-ph.CO].

[12] Gabriele Franciolini, Vishal Baibhav, Valerio De Luca, Ken K. Y. Ng, Kaze W. K. Wong, Emanuele Berti, Paolo Pani, Antonio Riotto, and Salvatore Vitale, “Quantifying the evidence for primordial black holes in LIGO/Virgo gravitational-wave data,” (2021), arXiv:2105.03349 [gr-qc].

[13] R. Abbott et al. (LIGO Scientific, Virgo), “GW190521: A Binary Black Hole Merger with a Total Mass of 150M_\odot,” *Phys. Rev. Lett.* **125**, 101102 (2020), arXiv:2009.01075 [gr-qc].

[14] B. P. Abbott et al. (LIGO Scientific, Virgo), “GW190425: Observation of a Compact Binary Coalescence with Total Mass $\sim 3.4M_\odot$,” *Astrophys. J. Lett.* **892**, L3 (2020), arXiv:2001.01761 [astro-ph.HE].

[15] R. Abbott et al. (LIGO Scientific, Virgo), “GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object,” *Astrophys. J. Lett.* **896**, L44 (2020), arXiv:2006.12611 [astro-ph.HE].

[16] R. Abbott et al. (LIGO Scientific, KAGRA, VIRGO), “Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences,” *Astrophys. J. Lett.* **915**, L5 (2021), arXiv:2106.15163 [astro-ph.HE].

[17] V. De Luca, V. Desjacques, G. Franciolini, P. Pani, and A. Riotto, “GW190521 Mass Gap Event and the Primordial Black Hole Scenario,” *Phys. Rev. Lett.* **126**, 051101 (2021), arXiv:2009.01728 [astro-ph.CO].

[18] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third
Observing Run,” (2021), arXiv:2111.03606 [gr-qc].

[19] Christian T. Byrnes, Mark Hindmarsh, Sam Young, and Michael R. S. Hawkins, “Primordial black holes with an accurate QCD equation of state,” JCAP 08, 041 (2018), arXiv:1801.06138 [astro-ph.CO].

[20] Zu-Cheng Chen, Fan Huang, and Qing-Guo Huang, “Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA,” Astrophys. J. 871, 97 (2019), arXiv:1809.10360 [gr-qc].

[21] Ryo Saito and Jun’ichi Yokoyama, “Gravitational wave background as a probe of the primordial black hole abundance,” Phys. Rev. Lett. 102, 161101 (2009), [Erratum: Phys. Rev. Lett.107,069901(2011)], arXiv:0812.4339 [astro-ph].

[22] Yacine Ali-Haïmoud, Ely D. Kovetz, and Marc Yaco, “Merger rate of primordial black-hole binaries,” Phys. Rev. D 96, 123523 (2017), arXiv:1709.06576 [astro-ph.CO].

[23] B. P. Abbott et al. (LIGO Scientific, Virgo), “The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914,” Astrophys. J. Lett. 833, L1 (2016), arXiv:1602.03842 [astro-ph.HE].

[24] B. P. Abbott et al. (LIGO Scientific, Virgo), “Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914,” Astrophys. J. Suppl. 227, 14 (2016), arXiv:1606.03939 [astro-ph.HE].

[25] B. P. Abbott et al. (LIGO Scientific, Virgo), “Binary Black Hole Mergers in the first Advanced LIGO Observing Run,” Phys. Rev. X6, 041015 (2016), [erratum: Phys. Rev.X8,no.3,039903(2018)], arXiv:1606.04856 [gr-qc].

[26] Daniel Wysocki, Jacob Lange, and Richard O’Shaughnessy, “Reconstructing phenomenological distributions of compact binaries via gravitational wave observations,” Phys. Rev. D 100, 043012 (2019), arXiv:1805.06442 [gr-qc].

[27] Maya Fishbach, Daniel E. Holz, and Will M. Farr, “Does the Black Hole Merger Rate Evolve with Redshift?” Astrophys. J. Lett. 863, L41 (2018), arXiv:1805.10270 [astro-ph.HE].

[28] Ilya Mandel, Will M. Farr, and Jonathan R. Gair, “Extracting distribution parameters from multiple uncertain observations with selection biases,” Mon. Not. Roy. Astron. Soc. 486, 1086–1093 (2019), arXiv:1809.02063 [physics.data-an].

[29] Eric Thrane and Colm Talbot, “An introduction to Bayesian inference in gravitational-wave astronomy: parameter estimation, model selection, and hierarchical models,” Publ. Astron. Soc. Austr. 36, e010 (2019), [Erratum: Publ.Astron.Soc.Austral. 37, e036 (2020)], arXiv:1809.02933 [astro-ph.IM].

[30] V. De Luca, V. Desjacques, G. Franciolini, A. Malhotra, and A. Riotto, “The initial spin probability distribution of primordial black holes,” JCAP 05, 018 (2019), arXiv:1903.01179 [astro-ph.CO].

[31] Mehrdad Mirbabayi, Andrei Gruzinov, and Jorge Noreña, “Spin of Primordial Black Holes,” JCAP 03, 017 (2020), arXiv:1901.05963 [astro-ph.CO].

[32] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “The evolution of primordial black holes and their final observable spins,” JCAP 04, 052 (2020), arXiv:2003.02778 [astro-ph.CO].

[33] V. De Luca, G. Franciolini, P. Pani, and A. Riotto, “Constraints on Primordial Black Holes: the Importance of Accretion,” Phys. Rev. D 102, 043505 (2020), arXiv:2003.12589 [astro-ph.CO].

[34] William H. Press and Paul Schechter, “Formation of galaxies and clusters of galaxies by self-similar gravitational condensation,” Astrophys. J. 187, 425–438 (1974).

[35] Matthew W. Choptuik, “Universality and scaling in gravitational collapse of a massless scalar field,” Phys. Rev. Lett. 70, 9–12 (1993).

[36] Charles R. Evans and Jason S. Coleman, “Observation of critical phenomena and selfsimilarity in the gravitational collapse of radiation fluid,” Phys. Rev. Lett. 72, 1782–1785 (1994), arXiv:gr-qc/9402041.

[37] Jens C. Niemeyer and K. Jedamzik, “Near-critical gravitational collapse and the initial mass function of primordial black holes,” Phys. Rev. Lett. 80, 5481–5484 (1998), arXiv:astro-ph/9709072.

[38] Tatsuhiko Koike, Takashi Hara, and Satoshi Adachi, “Critical behavior in gravitational collapse of radiation fluid: A Renormalization group (linear perturbation) analysis,” Phys. Rev. Lett. 74, 5170–5173 (1995), arXiv:gr-qc/9503007.

[39] Sam Young, Ilia Musco, and Christian T. Byrnes, “Primordial black hole formation and abundance: contribution from the non-linear relation between the density and curvature perturbation,” JCAP 11, 012 (2019), arXiv:1904.00984 [astro-ph.CO].

[40] V. De Luca, G. Franciolini, A. Kehagias, M. Peloso, A. Riotto, and C. Uñal, “The Inexudable Non-Gaussianity of the Primordial Black Hole Abundance,” JCAP 07, 048 (2019), arXiv:1904.00970 [astro-ph.CO].

[41] Masahiro Kawasaki and Hiromasa Nakatsuka, “Effect of nonlinearity between density and curvature perturbations on the primordial black hole formation,” Phys. Rev. D 99, 123501 (2019), arXiv:1903.02994 [astro-ph.CO].

[42] Ilia Musco, John C. Miller, and Luciano Rezzolla, “Computations of primordial black hole formation,” Class. Quant. Grav. 22, 1405–1424 (2005), arXiv:gr-qc/0412063.

[43] Ilia Musco, John C. Miller, and Alexander G. Polnarev, “ Primordial black hole formation in the radiative era: Investigation of the critical nature of the collapse,” Class. Quant. Grav. 26, 235001 (2009), arXiv:0811.1452 [gr-qc].

[44] Ilia Musco and John C. Miller, “Primordial black hole formation in the early universe: critical behaviour and self-similarity,” Class. Quant. Grav. 30, 145009 (2013), arXiv:1201.2379 [gr-qc].

[45] Ken’ichi Saikawa and Satoshi Shirai, “Can we distinguish gravitational waves from the axion mass based on high-temperature lattice quantum chromodynamics,” Nature 539, 69–71 (2016), arXiv:1606.07494 [hep-lat].

[46] Suvodip Mukherjee and Joseph Silk, “We can distinguish astrophysical from primordial black holes via the stochastic gravitational wave background?” Mon. Not. Roy. Astron. Soc. 506, 3977–3985 (2021), arXiv:2105.11139 [gr-qc].

[47] Suvodip Mukherjee, Matthew S. P. Meinema, and Joseph Silk, “Prospects of discovering sub-solar primordial black holes using the stochastic gravitational wave
background from third-generation detectors,” (2021), arXiv:2107.02181 [astro-ph.CO].

[49] R. Abbott et al. (KAGRA, Virgo, LIGO Scientific), “Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run,” Phys. Rev. D **104**, 022004 (2021), arXiv:2101.12130 [gr-qc].

[50] Zaven Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background,” Astrophys. J. Lett. **905**, L34 (2020), arXiv:2009.04946 [astro-ph.HE].

[51] Rendong Nan, Di Li, Chengjin Jin, Qiming Wang, Lichun et al., “The Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST) Project,” Int. J. Mod. Phys. D **39**, 989–1024 (2011), arXiv:1105.3794 [astro-ph.IM].

[52] H. Audley et al. (LISA), “Laser Interferometer Space Antenna,” (2017), arXiv:1702.00786 [astro-ph.IM].

[53] Jun Luo et al. (TianQin), “TianQin: a space-borne gravitational wave detector,” Class. Quant. Grav. **33**, 035010 (2016), arXiv:1512.02076 [astro-ph.IM].

[54] E. S. Phinney, “A General relativistic approach to the nonlinear evolution in the expanding universe,” Progress of Theoretical Physics **102**, 035010 (1999), arXiv:gr-qc/9710117.

[55] M. Punturo et al., “The Einstein Telescope: A third-generation gravitational wave observatory,” Proceedings, 14th Workshop on Gravitational wave data analysis (GWDAW-14): Rome, Italy, January 26-29, 2010, Class. Quant. Grav. **27**, 194002 (2010).

[56] Benjamin P. Abbott et al. (LIGO Scientific), “Exploring the Sensitivity of Next Generation Gravitational Wave Detectors,” Class. Quant. Grav. **34**, 044001 (2017), arXiv:1607.08697 [astro-ph.IM].

[57] K. Ackley et al., “Neutron Star Extreme Matter Observatory: A kilohertz-band gravitational-wave detector in the global network,” Publ. Astron. Soc. Austral. **37**, e047 (2020), arXiv:2007.03128 [astro-ph.HE].

[58] M. Punturo et al. (Laser Interferometer Space Antenna (LISA) Collaboration), “Laser Interferometer Space Antenna,” (2017), arXiv:1702.00786 [astro-ph.IM].

[59] E. S. Phinney, “A Practical theorem on gravitational wave backgrounds,” astro-ph/0108028 (2001).

[60] T. Regimbau and V. Mandic, “Astrophysical Sources of Stochastic Gravitational-Wave Background,” Proceedings, 12th Workshop on Gravitational wave data analysis (GWDAW-12): Cambridge, USA, December 13-16, 2007, Class. Quant. Grav. **25**, 184018 (2008), arXiv:0806.2794 [astro-ph].

[61] Xing-Jiang Zhu, E. Howell, T. Regimbau, D. Blair, and Zong-Hong Zhu, “Stochastic Gravitational Wave Background from Coalescing Binary Black Holes,” Astrophys. J. **739**, 86 (2011), arXiv:1104.3565 [gr-qc].

[62] Xing-Jiang Zhu, Eric J. Howell, David G. Blair, and Zong-Hong Zhu, “On the gravitational wave background from compact binary coalescences in the band of ground-based interferometers,” Mon. Not. Roy. Astron. Soc. **431**, 882–899 (2013), arXiv:1209.0595 [gr-qc].

[63] N. Aghanim et al. (Planck), “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. **641**, A6 (2020), arXiv:1807.06209 [astro-ph.CO].

[64] C. Cutler, Eric Poisson, G. J. Sussman, and L. S. Finn, “Gravitational radiation from a particle in circular orbit around a black hole. 2: Numerical results for the nonrotating case,” Phys. Rev. D **47**, 1511–1518 (1993).

[65] David F. Chernoff and Lee Samuel Finn, “Gravitational radiation, inspiraling binaries, and cosmology,” Astrophys. J. **411**, L5–L8 (1993), arXiv:gr-qc/9304020 [gr-qc].

[66] Kenji Tomita, “Non-linear theory of gravitational instability in the expanding universe,” Progress of Theoretical Physics **37**, 831–846 (1967).

[67] Sabino Matarrese, Ornella Pantano, and Diego Saéz, “A General relativistic approach to the nonlinear evolution of collisionless matter,” Phys. Rev. D **47**, 1311–1323 (1993).

[68] Sabino Matarrese, Ornella Pantano, and Diego Saéz, “General relativistic dynamics of irrotational dust: Cosmological implications,” Phys. Rev. Lett. **72**, 320–323 (1994), arXiv:astro-ph/9310036 [astro-ph].

[69] Sabino Matarrese, Silvia Mollerach, and Marco Bruni, “Second order perturbations of the Einstein-de Sitter universe,” Phys. Rev. D **58**, 043504 (1998), arXiv:astro-ph/9707278 [astro-ph].

[70] Hyerim Noh and Jai-chan Hwang, “Second-order perturbations of the Friedmann world model,” Phys. Rev. D **69**, 104011 (2004).

[71] Carmelita Carbone and Sabino Matarrese, “A Unifed treatment of cosmological perturbations from super-horizon to small scales,” Phys. Rev. D **71**, 043508 (2005), arXiv:astro-ph/0407611 [astro-ph].

[72] Kouji Nakamura, “Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables,” Prog. Theor. Phys. **117**, 17–74 (2007), arXiv:gr-qc/0605108 [gr-qc].

[73] Chen Yuan, Zu-Cheng Chen, and Qing-Guo Huang, “Scalar induced gravitational waves in different gauges,” Phys. Rev. D **101**, 063018 (2020), arXiv:1912.00885 [astro-ph.CO].

[74] Chen Yuan, Zu-Cheng Chen, and Qing-Guo Huang, “Probing Primordial-Black-Hole Dark Matter with Scalar Induced Gravitational Waves,” Phys. Rev. D **100**, 081301 (2019), arXiv:1906.11549 [astro-ph.CO].

[75] Chen Yuan, Zu-Cheng Chen, and Qing-Guo Huang, “Log-dependent slope of scalar induced gravitational waves in the infrared regions,” (2019), arXiv:1910.09099 [astro-ph.CO].

[76] Chen Yuan and Qing-Guo Huang, “A topic review on probing primordial black hole dark matter with scalar induced gravitational waves,” (2021), arXiv:2103.04739 [astro-ph.GA].

[77] Kazunori Kohri and Takahiro Terada, “Semi-analytic calculation of gravitational wave spectrum nonlinearly induced from primordial curvature perturbations,” Phys. Rev. D **97**, 123532 (2018), arXiv:1804.08577 [gr-qc].

[78] Zu-Cheng Chen, Chen Yuan, and Qing-Guo Huang, “Non-tensorial gravitational wave background in NANOGrav 12.5-year data set,” Sci. China Phys. Mech. Astron. **64**, 120412 (2021), arXiv:2101.08679 [astro-ph.CO].

[79] Zaven Arzoumanian et al. (NANOGrav), “The NANOGrav 12.5-year Data Set: Search for Non-Einsteinian Polarization Modes in the Gravitational-wave Background,” Astrophys. J. Lett. **923**, L22 (2021), arXiv:2109.14706 [gr-qc].
[80] Boris Goncharov et al., “On the evidence for a common-spectrum process in the search for the nanohertz gravitational-wave background with the Parkes Pulsar Timing Array,” (2021), 10.3847/2041-8213/ac17f4, arXiv:2107.12112 [astro-ph.HE].

[81] Yu-Mei Wu, Zu-Cheng Chen, and Qing-Guo Huang, “Constraining the Polarization of Gravitational Waves with the Parkes Pulsar Timing Array Second Data Release,” (2021), arXiv:2108.10518 [astro-ph.CO].

[82] Zu-Cheng Chen, Yu-Mei Wu, and Qing-Guo Huang, “Searching for Isotropic Stochastic Gravitational-Wave Background in the International Pulsar Timing Array Second Data Release,” (2021), arXiv:2109.00296 [astro-ph.CO].

[83] A. Chalumeau et al., “Noise analysis in the European Pulsar Timing Array data release 2 and its implications on the gravitational-wave background search,” (2021), 10.1093/mnras/stab3283, arXiv:2111.05186 [astro-ph.HE].