The f-conditioned Phase Transform

Dong Pyo Chi∗, Jinsoo Kim† and Soojoon Lee‡

Department of Mathematics, Seoul National University
Seoul 151-742, Korea
February 25, 2000

Abstract

We present a quantum algorithm for the f-conditioned phase transform which does not require any initialization of ancillary register. We also develop a quantum algorithm that can solve the generalized Deutsch-Jozsa problem by a single evaluation of a function.

1 Introduction

Several quantum algorithms have been implemented by NMR quantum computers [1, 3, 8, 9, 11, 12, 13, 14, 18, 19, 21, 22] among which much attention has been paid to the Deutsch-Jozsa algorithm [10] due to its simplicity whereas the power of a quantum computer over a classical one can be demonstrated. In NMR implementation for Deutsch-Jozsa algorithm there are two approaches, one of which is the Cleve’s version [6] that requires an n-qubit control register for storing function arguments and a one-qubit ancillary register for function evaluation to solve the n-bit Deutsch-Jozsa problem. It has been implemented by several research groups [4, 18, 19] up to four qubits following the first successful implementation [13] of a quantum algorithm on any physical system with two qubits. In general for a quantum computer

∗E-mail address: dpchi@math.snu.ac.kr, Fax: +822-887-4694
†E-mail address: jskim@math.snu.ac.kr
‡E-mail address: level@math.snu.ac.kr
with a larger numbers of qubits the associated requirement of appreciable coupling between any pair of spins raises difficulties. The conditional phase transform enables us to eliminate some ancillary register in the description of quantum algorithms, one of which examples is the refined Deutsch-Jozsa algorithm in [8]. Its realization has been reported with three-qubit arguments [9, 12] and with four-qubit arguments [19].

To perform conditional phase transform we have to evaluate a given function on a quantum computer. Unitary evolution property of quantum computation necessitates at least one ancillary register from which we have to extract relative phases conditioned on a function. If we can initialize the ancillary register the phase-encoded information can easily be accomplished. We generalize the conditional phase transform to have arbitrary relative phases controlled by a given function, which we call the \(f \)-conditioned phase transform. We present an algorithm to implement the \(f \)-conditioned phase transform without initializing the ancillary register. Furthermore, the application of the algorithm turns the ancillary register back to its initial state. This implies that we are free to compose this temporary register while it is being used in another computational process without corrupting its computation. Our algorithm is optimal in that it involves two \(f \)-dependent operations. Because to realize the \(f \)-conditioned phase transform at least two operations dependent of \(f \) are necessary. This is because we do not require any initialization of the ancillary register. If some kind of initialization is involved, only one \(f \)-dependent operation is sufficient. Using the \(f \)-conditioned phase transform we develop a quantum algorithm that can solve the generalized Deutsch-Jozsa problem by a single evaluation of a given function.

2 The \(f \)-conditioned Phase Transform

For \(N \in \mathbb{N} \) we denote by \(\mathbb{Z}_N = \{0, 1, \ldots, N - 1\} \) the additive cyclic group of order \(N \). Let \(\{|a\rangle\}_{a \in \mathbb{Z}_N} \) be the standard basis of the Hilbert space \(\mathcal{H}_N \) representing the state of an \(n \)-qubit quantum register.

Given a function \(f : \mathbb{Z}_N \to \mathbb{Z}_M \) where \(N, M \in \mathbb{N} \), the operation \(R_{k,f} : \langle{x}\rangle \mapsto \omega_M^{kf(x)}\langle{x}\rangle \) plays an important role in quantum algorithms for an appropriately chosen \(k \in \mathbb{Z}_M \) according to the problems and \(\omega_M = \exp(2\pi i/M) \) is a primitive \(M \)-th root of unity. The resulting interference pattern is used to determine global property of the function and most known quantum algorithms rely on this \(f \)-conditioned phase transform. In order for the values of
a function to be encoded in the phases we need a quantum circuit to evaluate a function.

On a quantum computer the evaluation of a function is performed by a unitary operation $U_f : |x\rangle|y\rangle \mapsto |x\rangle|y + f(x)\rangle$. The first n-qubit register we call the control register contains the states we wish to interfere. The second m-qubit register we call the auxiliary or ancillary register is used to induce relative phase changes in the first register. In view of the second register the function evaluation employs a translation operator $T_z : |y\rangle \mapsto |y + z\rangle$ where $z = f(x)$ is dependent of the state of the first register. That is, U_f can be regarded as an operation $|x\rangle|y\rangle \mapsto |x\rangle T_f(x)|y\rangle$. If we concentrate on the ancillary register, the required operation is $J_{k,z} : |y\rangle \mapsto \omega_M^k |y\rangle$ for all $y \in \mathbb{Z}_M$. $J_{k,z}$ has an eigenvalue ω_M^k and the corresponding eigenspace is the whole Hilbert space \mathcal{H}_M.

For simplicity, let us assume that N and M are powers of 2, that is, $N = 2^n$ and $M = 2^m$ for some nonnegative integers n and m. Let $R_{k,I} = \text{QFT}^{-1} T_{-k} \text{QFT}$ where I is an identity map and QFT is the quantum Fourier transform. Then it maps $|y\rangle$ to $\omega_M^{ky}|y\rangle$ in which the phase-encoded information depends on the state.

We first describe an algorithm to implement $J_{k,z}$. We prepare an arbitrary m-qubit register with no initialization and let $|\psi\rangle = \sum_{y=0}^{M-1} a_y |y\rangle$ be its state. Now we proceed the following steps.

1. Applying the translation T_z we get

$$\sum_{y=0}^{M-1} a_y |y + z\rangle.$$

2. Applying $R_{k,I}$ we obtain

$$\sum_{y=0}^{M-1} \omega_M^{ky} a_y |y + z\rangle.$$

3. Applying $T_{-z} = T_z^{-1}$ the state becomes

$$\sum_{y=0}^{M-1} \omega_M^{k(y+z)} a_y |y\rangle.$$
4. Apply $R^{-1}_{k,I} = \text{QFT}^{-1}T_k\text{QFT}$. Then the final state is

$$\omega^{k_z}_{M}\langle\psi\rangle.$$

This algorithm realizes $J_{k,z}$ via $R^{-1}_{k,I}T^{-1}_{z}R_{k,I}T_{z}$. That is, for an arbitrary initial state $| \psi \rangle$

$$R^{-1}_{k,I}T^{-1}_{z}R_{k,I}T_{z}| \psi \rangle = \omega^{k_z}_{M}| \psi \rangle.$$

The algorithm to implement $J_{k,z}$ is not unique. In fact, all cyclic rotational permutations of the operational steps are identical. If we write $[A,B] = ABA^{-1}B^{-1}$, then we can easily check that $J_{k,z} = [R^{-1}_{k,I},T^{-1}_{z}] = [T_{z},R_{k,I}] = [R_{k,I},T_{z}] = [T_{z}^{-1},R_{k,I}]$ and $J_{-k,z} = [R_{k,I},T_{z}^{-1}] = [T_{z},R_{k,I}] = [R_{k,I}^{-1},T_{z}] = [T_{z}^{-1},R_{k,I}^{-1}]$. For example, we can start at Step 2, perform successive steps, and end at Step 1. Noting that $S_{k,I} = \text{QFT}T_{z}\text{QFT}$ maps $| y \rangle$ to $\omega^{k_z}_{M}| -y \rangle$, we can easily check that

$$R^{-1}_{k,I}T^{-1}_{z}R_{k,I}T_{z} = S_{k,I}T_{z}S_{k,I}T_{z}.$$

We remark that $S_{k,I}^{-1} = S_{k,I}$. Thus we have another algorithm for $J_{k,z}$. However, the number of T_{z} or T_{z}^{-1} in each implementation is always equal to or more than two and cannot be reduced. This is because we require no initialization, which we shall explain more precisely later. It follows that the f-conditioned phase transform requires two evaluations of f.

Especially when $M = 2$ and $k = 1$, QFT is the Walsh-Hadamard operator W and $T_{z} = T_{-z}$ is the Pauli spin matrix $\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ which represents a bit-flip operator. Thus the operator $R_{k,I}$ is just a phase-flip operator $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. The overall scheme $[16]$ is $\sigma_{z}U_{f}\sigma_{z}U_{f}$.

We turn to the operator $R_{k,f}$ for a general function f. In this case we need two registers as we have already mentioned. In the ancillary register U_{f} can be seen as a translation $T_{f(x)}$ conditioned on the control register which state is in $| x \rangle$. Using the above algorithm we can perform $R_{k,f}$ without any initialization of the ancillary register. We let $| \phi \rangle = \sum_{x=0}^{N-1} a_{x} | x \rangle$ and $| \psi \rangle = \sum_{y=0}^{M-1} b_{y} | y \rangle$ be the states of the control and ancillary registers, respectively and perform the following algorithm.

1. Applying U_{f} we get

$$\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} a_{x} b_{y} | x \rangle | y + f(x) \rangle.$$

4
2. Applying $I \otimes R_{k,I}$ we obtain
\[
\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} a_x b_y \omega_M^{k(y+f(x))} |x\rangle |y + f(x)\rangle.
\]

3. Applying $U_f^{-1} = U_{-f}$ the state becomes
\[
\sum_{x=0}^{N-1} \sum_{y=0}^{M-1} a_x b_y \omega_M^{k(y+f(x))} |x\rangle |y\rangle.
\]

4. Apply $I \otimes R_{k,I}^{-1} = I \otimes R_{-k,I}$. Then the final state is
\[
\left(\sum_{x=0}^{N-1} \omega_M^{kf(x)} a_x |x\rangle \right) |\psi\rangle.
\]

If we discard the ancillary register, then we obtain the f-conditioned phase transform $R_{k,f} : |x\rangle \mapsto \omega_M^{kf(x)} |x\rangle$ without any initialization of ancillary register. The ancillary register can consist of any m qubits which may be composed of parts of any other registers even though they are still being used in another computation regardless of their states possibly entangled with other qubits. We note that after extracting the desired relative phase the initial state of ancillary register is recovered. Thus this temporary register can be used in continuing the previously stopped computation.

Our algorithm requires both U_f and U_{-f}. In other words, at least two evaluations of f are necessary. If we can initialize the ancillary register, only one evaluation of f is sufficient. We see that QFT$[-k]$ is an eigenvector of T_z with the corresponding eigenvalue ω_M^{kz}. If we let $|\psi\rangle = \text{QFT}T_z|0\rangle$, then $U_f : |x\rangle|\psi\rangle \mapsto \omega_M^{kf(x)} |x\rangle|\psi\rangle$. The special case when $k = 1$ was studied in [3, 7].

However, if we are to start with any state of ancillary register we have to find unitary operators V and W satisfying $VT_z W = \omega_M^{kz} I$. Notice that T_z has to be used at least once whether we employ initialization or not. Since $W^\dagger VT_z = \omega_M^{kz} I$, it is enough to find a unitary operator V such that $VT_z = \omega_M^{kz} I$. Since $V = \omega_M^{kz} T_{-z}$, V has to depend on z. Thus in some step of the algorithm we have to use information on z once more and so we need at least two T_z or T_{-z}. Therefore to realize $R_{k,f}$ we need at least two evaluation of f. In this sense the algorithm presented here is optimal.
Let us consider the case $f : \mathbb{Z}_N \to [0,1) \subset \mathbb{R}$. Then with m-bit approximation $\tilde{f} : \mathbb{Z}_N \to \mathbb{Z}_M$ of f the approximate f-conditioned phase transform $R_{k,f}$ can be accomplished. This approximate f-conditioned phase transform is useful in the conditional γ-phase transform and the β-phase diffusion transform which are constructed in [2,3]. Similarly we can achieve any m-bit approximate of more general phase transform which can be described by $R_{1,gof}$ given a function $g : \mathbb{Z}_M \to [0,1) \subset \mathbb{R}$.

3 Generalized Deutsch-Jozsa Problem

The Deutsch-Jozsa problem is to determine whether a function $f : \mathbb{Z}_N \to \mathbb{Z}_2$ is either constant or balanced under the assumption that f is either one. This problem, in which $m = 1$ and thus $\omega_M = -1$, can be solved by measuring $W_nR_{1,f}W_n|0^n\rangle$: when the outcome is $|0^n\rangle$ f is constant and otherwise f is balanced. This procedure can easily be extended to solve the generalized Deutsch-Jozsa problem by employing f-conditioned phase transform. We say that f is even distributed if f has evenly distributed $D > 0$ values and the numbers of x which map to the same value are all equal. If f is evenly distributed, then there exist $D > 0$ and $a \geq 0$ such the period of the range of f is $L = M/D$ with a possible initial shift a;

$$\{f(x) : x \in \mathbb{Z}_N\} = \{jL + a : j \in \mathbb{Z}_D\}$$

and $|A_1| = |A_2| = \cdots |A_D|$ where $A_j = \{x \in \mathbb{Z}_N : f(x) = jL + a\}$ for $j \in \mathbb{Z}_D$. The generalized Deutsch-Jozsa problem is to determine whether f is constant or evenly distributed when f is either one.

We now explain the procedure to solve the generalized Deutsch-Jozsa problem. We prepare an n-qubit register with its initial state being $|0^n\rangle$ and apply $W_nR_{k,f}W_n$ for $k \neq 0$ where W_n is the n-qubit Walsh-Hadamard transform. Then we have

$$|0\rangle \xrightarrow{W_n} \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \xrightarrow{R_{k,f}} \frac{1}{N} \sum_{y=0}^{N-1} \omega_M^{kf(x)} |x\rangle \xrightarrow{W_n} \left(\sum_{x=0}^{N-1} (-1)^{x \cdot y} \omega_M^{kf(x)}\right) |y\rangle$$

where $x \cdot y$ stands for the XOR of the bitwise AND of the binary strings x and y in \mathbb{Z}_2^n. Let S be the inner summation in the final state;

$$S = \sum_{x=0}^{N-1} (-1)^{x \cdot y} \omega_M^{kf(x)}.$$
If f is constant, then

$$S = \sum_{x=0}^{N-1} (-1)^{x \cdot y} x^y$$

$$= \begin{cases} 0 & \text{when } y \neq 0 \\ N\omega_M^{k(0)} & \text{when } y = 0. \end{cases}$$

If f is evenly distributed, then for $y = 0$ we have

$$S = \frac{N}{D} \sum_{j=0}^{D-1} \omega_{M}^{k(jL+a)}$$

$$= \frac{N}{D} \omega_{M}^{a} \sum_{j=0}^{D-1} \omega_{D}^{kj}$$

$$= 0.$$

Hence when f is constant the final state is $|0\rangle$ while $|0\rangle$ disappears when f is evenly distributed. Now we measure the register. If the outcome of the measurement is $|0\rangle$ then we conclude that f is constant. Otherwise, we conclude that f is evenly distributed. Thus we can solve the generalized Deutsch-Jozsa problem by a single evaluation of f with known initialization of the ancillary register and by two evaluations of f with unknown state of the ancillary register.

We note that our procedure is independent of D, L and a. To determine whether f is constant or evenly distributed we need $N/D + 1$ evaluations of f classically in worst case. This is the case when D or L is known. However, if neither D nor L is available, any classical algorithm for this problem would require $N/2 + 1$ evaluations of f in the worst case before determining the answer with certainty. Whence the generalized Deutsch-Jozsa problem has the same complexity as the original Deutsch-Jozsa problem.

Furthermore, when f is evenly distributed we can determine D, L and a. The image of f has period L with initial shift a. Finding the period L of a function with an unknown initial shift a can easily be solved on a quantum computer. Actually the quantum Fourier transform wipes off the initial shift and changes its period to $M/L = D$. This useful property was used to solve factoring problem by Shor [20].

When f is onto, f is an evenly distributed function if and only if f is an r-to-one function where $r = N/D$. Thus the generalized Deutsch-Jozsa
algorithm can determine whether \(f \) is constant or \(r \)-to-one. The \(r \)-to-one function appears in collision and claw problems \cite{1} under the assumption that \(f \) is onto.

We note that for general positive integers \(N \) and \(M \), the approximate Fourier transform in \cite{17} can be used.

Acknowledgments

We gratefully acknowledge the support of Research Institute of Mathematics.

References

[1] G. Brassard, P. Høyer, and A. Tapp, *Quantum algorithm for the collision problem*, Los Alamos e-print archive [quant-ph/9705002] (1997).

[2] D. P. Chi and J. Kim, *Quantum database search by a single query*, Quantum computing and quantum communications, First NASA International Conference, selected papers, QCQC’98, C. P. Williams Ed., (Palm Springs, California, USA, February 17-20, 1998), Lecture Notes in Computer Science, Vol. 1509, pp. 148–151, Springer-Verlag, 1999; Los Alamos e-print archive [quant-ph/9708003] (1997).

[3] D. P. Chi and J. Kim, *Quantum database search with certainty by a single query*, Chaos, Solitons, and Fractals 10 (1999), 1689–1693.

[4] I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Lloyd, *Experimental realization of a quantum algorithm*, Nature 393 (1998), 143–146; Los Alamos e-print archive [quant-ph/9801037] (1998).

[5] I. L. Chuang, N. Gershenfeld, and M. G. Kubinec, *Experimental implementation of fast quantum searching*, Phys. Rev. Lett. 80 (1998), 3408–3411.

[6] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, *Quantum algorithms revisited*, Proc. R. Soc. Lond. A 454 (1998), 339–354; Los Alamos e-print archive [quant-ph/9708010] (1997).
[7] R. Cleve, A. Ekert, L. Henderson, C. Macciavello, and M. Mosca, *On quantum algorithms*, Complexity 4 (1998), 33–42; Los Alamos e-print archive quant-ph/9903061 (1999).

[8] D. Collins, K. W. Kim, and W. C. Holton, *Deutsch-Jozsa algorithm as a test of quantum computation*, Phys. Rev. A 58 (1998), R1633–R1636.

[9] D. Collins, K. W. Kim, W. C. Holton, H. Sierzputowska-Gracz, and E. O. Stejskal, *NMR quantum computation with indirectly coupled gates*, Los Alamos e-print archive quant-ph/9910006 (1999).

[10] D. Deutsch and R. Jozsa, *Rapid solution of problems by quantum computation*, Proc. Roy. Soc. Lond. A 439 (1992), 553–558.

[11] K. Dorai, Arvind, and A. Kumar, *Implementing quantum logic operations, pseudo-pure states and the Deutsch-Jozsa algorithm using non-commuting selective pulses in NMR*, Los Alamos e-print archive quant-ph/9906027 (1999).

[12] Arvind, K. Dorai, and A. Kumar, *Quantum entanglement in the NMR implementation of the Deutsch-Jozsa algorithm*, Los Alamos e-print archive quant-ph/9909067 (1999).

[13] J. A. Jones and M. Mosca, *Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer*, J. Chem. Phys 109 (1998), 1648–1653; *Implementation of a quantum algorithm to solve Deutsch’s problem on a nuclear magnetic resonance quantum computer*, Los Alamos e-print archive quant-ph/9801027 (1998).

[14] J. A. Jones, M. Mosca, R. H. Hansen, *Implementation of a quantum search algorithm on a quantum computer*, Nature 393 (1998), 344–346; *Implementation of a quantum search algorithm on a nuclear magnetic resonance quantum computer*, Los Alamos e-print archive quant-ph/9805069 (1988).

[15] J. A. Jones and M. Mosca, *Approximate quantum counting on an NMR ensemble quantum computer*, Phys. Rev. Lett. 83 (1999), 1050–1053; Los Alamos e-print archive quant-ph/9808056 (1998).
[16] J. Kim, *Quantum mechanical algorithms, inverse problems, and regularity for elliptic problems in nonsmooth domains*, Ph.D. Thesis, Seoul National University, 1998.

[17] A. Yu. Kitaev, *Quantum measurements and the abelian stabilizer problem*, Los Alamos e-print archive quant-ph/9511026 (1995).

[18] N. Linden, H. Barjat, and R. Freeman, Chem. Phys. Lett. 296 (1998), 61–67; *An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer*, Los Alamos e-print archive quant-ph/9808039 (1998).

[19] R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, *Realization of a 5-bit NMR Quantum Computer Using a New Molecular Architecture*, Los Alamos e-print archive quant-ph/9905087 (1999).

[20] P. W. Shor, *Algorithms for quantum computations: Discrete logarithms and factoring*, Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science (Piscataway, NJ), IEEE Computer Society Press, 1994, pp. 124–134; *Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer*, SIAM J. Comput. 26 (1997), 1484–1509.

[21] Y. S. Weinstein, S. Lloyd, and D. G. Cory, *Implementation of the Quantum Fourier Transform*, Los Alamos e-print archive quant-ph/9906059 (1999).

[22] C. S. Yannoni, M. H. Sherwood, L. M. K. Vandersypen, D. C. Miller, M. G. Kubic, and I. L. Chuang, *Nuclear Magnetic Resonance Quantum Computing Using Liquid Crystal Solvents*, Appl. Phys. Lett. 75 (1999), 3563-3565; Los Alamos e-print archive quant-ph/9907063 (1999).