Transition strengths from 10B(e, e')10B

D. J. Millener

Brookhaven National Laboratory, Upton, NY 11973

Abstract

Inelastic electron scattering form factors are fitted with polynomial times Gaussian expressions in the variable $y = (bq/2)^2$ to extract electromagnetic transition strengths at the photon point.

1 Introduction

The table of radiative widths from the 1979 Ajzenberg-Selove tabulation was based on the low-q results of Spamer [1] (Darmstadt) for the 6.03-MeV 4^+; 0 level and the 7.48-MeV 2^+; 1 level, together with the 180° results of Fagg et al. [2] (NRL) for a number of levels. The 1984 and 1988 tabulations added results based on the work of Ansaldo et al. [3] (Saskatoon) for $0.61 < q < 1.81$ fm$^{-1}$ but did not take into account the erratum to that work [3].

The more recent work of Cichocki et al. [4] (NIKHEF) gives longitudinal and transverse form factors in the range $0.48 < q < 2.58$ fm$^{-1}$ for most levels up to the 6.56-MeV $4^-; 0$ level. The analysis in this work includes extensive shell-model calculations and the extraction of B(C2) values for five levels of 10B. The analysis also includes data up to $q \sim 4$ fm$^{-1}$ taken at 180° for the ground-state, the 1.74-MeV level, and the 5.17-MeV level [5] (Bates). For most transitions, the form factors are plotted as a function of the effective momentum transfer $q_{\text{eff}} = q(1 + 2.75/E_0)$, where the beam energy E_0 is in MeV. This way of relating form factors in the plane-wave and distorted-wave Born approximations must also be applied to the data from the earlier works.

Cichocki et al. used a polynomial times Gaussian (e^{-y}) in the variable $y = (bq/2)^2$, where b is the harmonic oscillator parameter, to represent the form factors and extract B(C2) values. The procedure is spelled out by Millener et al. [6] who defined

$$B(C\lambda, q) = f^{-2} \frac{Z^2}{4\pi} \left[\frac{(2\lambda + 1)!!}{q^{2\lambda}} \right] F_L^2,$$

$$B(M\lambda, q) = f^{-2} \frac{Z^2}{4\pi} \frac{\lambda}{\lambda + 1} \left[\frac{(2\lambda + 1)!!}{q^{\lambda}} \right] F_T^2,$$

where $f = f_{\text{SN}} f_{\text{c.m.}} e^{-y}$ takes out the exponential dependences in the (theoretical) form factor. In the conventional definition of $B(C\lambda, q)$ and $B(M\lambda, q)$, we should set $f = 1$. Because nature does not know about $f_{\text{c.m.}}$ (and even in theory we don’t need it if we use an appropriate system of relative coordinates), we perform the fit, with $f = f_{\text{SN}} e^{-y}$, to

$$B(\lambda, q)^{1/2} = f (A + By + Cy^2 + ...)$$

$$= \left[b^{\lambda} \right] (A' + B'y + C'y^2 + ...) .$$

1
2 Corrections for electron distortion

We use the effective momentum transfer \(q_{\text{eff}} = q(1 + 2.75/E_0) \) prescription [4] to approximately correct the original data for electron distortion so that we can use form factors calculated in the plane-wave Born approximation. This is especially important at low incident energies \(E_0 \) and needs to be performed for the Darmstadt [1], NRL [2], and Saskatoon [3] data as sketched in the next subsections.

2.1 Darmstadt data

The measured quantity is the ratio of inelastic to elastic cross section and we could use this data together with a modern parametrization of the elastic cross section. The derived quantity \(B(\lambda, q) \) is tabulated as a function of \(q^2 \) where

\[
q^2 = 2k_0^2 (1 - \cos \theta) (1 - k/k_0) + k^2
\]

(5)

and \(k = E_x/\hbar c \) and \(k_0 = E_0/\hbar c \) (\(\hbar c = 197.32696 \text{ MeV.fm} \)). We recalculate \(q \) and calculate \(q_{\text{eff}} \) using the tabulated values of \(E_0 \) and \(\theta \). The units for \(B(\lambda, q) \) are given as \(10^{-51} \text{ cm}^4 = 10^{-4} \text{ fm}^4 \) for \(C2 \) and \(10^{-28} \text{ cm}^2 = 10^{-2} \text{ fm}^2 \) for \(M1 \). We absorb the factor of \(\alpha \hbar c = e^2 \) from the expressions of Spamer [1] so that \(B(\lambda, q) \) is expressed in the conventional units of \(e^2 \text{ fm}^{2\lambda} \). Then, from Eqs. (1) and (2) (with \(f = 1 \)) in terms of the \(B(\lambda, q) \) tabulated in Ref. [1]

\[
F_L^2 = 10 B(C2) \times 2.234 \times 10^{-3} \times q^4
\]

(6)

for the longitudinal form factor of the 6.025-MeV \(4^+; 0 \) level, and

\[
F_T^2 = 10^{-2} B(M1) \times 1.117 \times 10^{-1} \times q^2
\]

(7)

for the transverse form factor of the 7.477-MeV \(2^+; 1 \) level.

2.2 NRL data

Fagg et al. [2] give the 180° cross sections in \(\text{nb/sr} (= 10^{-7} \text{ fm}^2/\text{sr}) \) for three incident energies (40.5, 50.6, and 60.6 MeV and we have \((e^2 = 1.44 \text{ MeV.fm}) \)

\[
\frac{d\sigma}{d\Omega} = \frac{Z^2 e^4}{4 E_0^2 R} \cdot F_T^2
\]

(8)

with the recoil factor \(R = (1+2E_0/M) \) (\(M \) = nuclear mass, and e.g., \(R = 1.013 \) for \(E_0 = 60.6 \text{ MeV} \)) and \(q \) from Eq. (5).

2.3 Saskatoon data

The data are already tabulated as form factors and we simply change \(q \) to \(q_{\text{eff}} \).
3 C2 transitions

In their appendix, Cichocki et al. [4] extract B(C2) values for five states using Eq. (3), perhaps without the inclusion of the single-nucleon form factor f_{SN} but this is essentially irrelevant at the photon point. For the 6.025-MeV level, the low-q data from Darmstadt and the Saskatoon data were also included. In the following subsections, we discuss fits to each level starting with the 6.025-MeV $4^+; 0$ level. As in Ref. [4], the oscillator parameter is fixed at 1.60 fm. In principle, we could include b in the fit but it turns out that $b = 1.60$ fm is close to the optimum value. Besides a change of b in Eq. (4) is compensated for by a change in A' when fitting to data. Of course, theoretical B(C2) values calculated with harmonic oscillator wave functions scale as b^4.

3.1 The 6.025-MeV $4^+; 0$ level

The original Darmstadt value for the B(C2) is 24.4 ± 2.5 e2fm4 (the inclusion of 5 data points from Orsay lead to a slightly smaller value of 23.4 ± 2.5 e2fm4) - this value is quite well reproduced in the first line of Table 1. Taking the effect of distortion into account via the q_{eff} prescription results in a considerably lower value of 17.34 ± 1.97 e2fm4 (note that $B(C2) = (b/2)^4 A^2$) as pointed out by Cichocki et al. [4] - taking the q values from Table 1 of Spamer [1] instead of recomputing them gives $B(C2) = 17.66 \pm 1.98$ e2fm4. Note that the parameter B is not well determined and that the e^{-y} term in the oscillator form factor pretty much takes into account the terms involving the transition radius in the original Darmstadt paper. As the third line of Table 1 shows one can obtain a one-parameter fit of similar quality but with a smaller error because of the restrictive nature of the fitting function. The fact that essentially a p-shell form factor fits so well is surprising because the transition is very strong and the higher-order terms responsible for this should lead to a B coefficient which is

Data	N	χ^2/DF	A	B	C	D	B(C2)
D	9	0.392	7.707(410)	-2.18(231)			24.33(259)
D b	9	0.346	6.507(369)	2.14(178)			17.34(197)
D	9	0.365	6.746(139)				18.64(77)
N+S	28	1.59	6.707(131)	-0.945(290)	0.435(173)	-0.010(30)	18.42(91)
N+S c	25	1.69	6.600(194)	-0.545(556)	0.032(452)	0.013(109)	17.84(137)
N+S c	25	1.62	6.619(108)	-0.607(194)	0.085(71)		17.95(74)
N+S+D	37	1.28	6.761(106)	-1.052(244)	0.491(71)	-0.108(27)	18.72(66)
N+S+D c	34	1.33	6.727(137)	-0.875(417)	0.275(360)	-0.040(90)	18.53(87)
N+S+D c	34	1.30	6.682(91)	-0.707(169)	0.118(64)		18.29(57)

a Uncorrected Darmstadt data.
b Darmstadt data vs. q_{eff} with q from E_0, θ.
c $q_{eff} < 2$ fm$^{-1}$.

Table 1: Fits to C2 form factors for the 6.025-MeV $4^+; 0$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations. When χ^2/DF is greater than one, the error on B(C2) is inflated by the square root of this quantity.
negative (e.g., the harmonic oscillator form factor for the $2\hbar \omega$ giant quadrupole resonance is of the form $y(1 - 1/3y)e^{-y}$ and coherence at low q means a negative coefficient for the next term).

If we fit the NIKHEF data using a 3-parameter polynomial, the χ^2/DF is 1.77; for the NIKHEF + Saskatoon data, it is 2.02. Adding an extra term to take care of the high-q behavior leads to some improvement (line 4 of Table 1). Removing the three data points with $q_{\text{eff}} > 2$ fm$^{-1}$ doesn’t lead to much change, although a three-parameter fit is now possible, as the next two lines of Table 1 show. The final three lines of Table 1 show fits to the complete data set. The four-parameter fit gives $B(C2) = 18.7 \pm 0.7$ e2fm4. To compare with the electromagnetic value for the $4^+ \to gs$ transition, we multiply by $7/9$ and convert to Weisskopf units (1 W.u. = 1.2797 e2fm4) getting 11.4 ± 0.4 W.u. This agrees with the electromagnetic value of 12.4 ± 1.8 W.u., which is derived from the $\omega \gamma$ value from the $^6\text{Li}(\alpha, \gamma)$ reaction and an E2/M1 mixing ratio.

3.2 The 0.718-MeV $1^+; 0$ level

The lifetime for this long-lived level is precisely known, $\tau = 1.020 \pm 0.005$ nsec. This corresponds to a $B(C2)$ for electron scattering of $1.796(9)$ e2fm4. The value of $1.71(14)$ e2fm4 in the first line of Table 2 derived from the NIKHEF data is in good agreement. Therefore including the electromagnetic value as a data point changes the χ^2 only slightly. A three-parameter fit gives a significant increase in χ^2.

Table 2: Fits to C2 form factors for the 0.718-MeV $1^+; 0$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations. The error on $B(C2)$ is inflated by $\sqrt{\chi^2/DF}$.

Data	N	χ^2/DF	A	B	C	D	B(C2)
N	14	1.29	2.045(73)	-1.042(155)	0.390(94)	-0.058(17)	1.71(14)
N+EM	15	1.21	2.093(5)	-1.144(51)	0.450(47)	-0.068(11)	1.795(9)

3.3 The 2.154-MeV $1^+; 0$ level

The first line of Table 3 shows a 3-parameter fit to all the NIKHEF data points while the next line shows the same fit with the highest q data point removed. The 2-parameter fit in the third line shows very little deterioration in χ^2. The last line shows a 1-parameter fit which is still acceptable in terms of χ^2 but is certainly not as good as the other fits. The χ^2 doesn’t change for $b = 1.56$ fm or $b = 1.66$ fm and neither does $B(C2)$ to any significant extent.

The electromagnetic data in the current tabulation gives $0.75(9)$ e2fm4 for the $B(C2)$ up. This depends on a number of values for lifetime (2.13 ± 0.20 ps) and the ground-state branch ($21.1 \pm 1.6 \%$). Probably, the previous lifetime average of 2.30 ± 0.02 ps should be used but this only gets the the $B(C2)$ down to 0.69 e2fm4 (the lowest γ-ray branch of 17.5% would give 0.57 e2fm4).
Table 3: Fits to C2 form factors for the 2.154-MeV $1^+; 0$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations.

Data	N	χ^2/DF	A	B	C	D	B(C2)
N	13	0.84	0.963(50)	0.091(74)	-0.015(22)	0.380(36)	
N a	12	0.40	1.005(52)	0.010(81)	0.013(25)	0.413(43)	
N a	12	0.39	0.981(27)	0.052(17)		0.394(22)	
N a	12	1.15	1.047(14)			0.449(14)	

*a Highest q data point removed.

3.4 The 3.587-MeV $2^+; 0$ level

The first line of Table 4 shows a 3-parameter fit to all the NIKHEF data points which yields $B(C2) = 0.616 \pm 0.044 \text{ e}^2\text{fm}^4$ which is in reasonable agreement with the electromagnetic value of $0.85 \pm 0.25 \text{ e}^2\text{fm}^4$. The latter depends on lifetime, branch, and mixing ratio.

Table 4: Fits to C2 form factors for the 3.587-MeV $2^+; 0$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations.

Data	N	χ^2/DF	A	B	C	D	B(C2)
N 16	1.16	1.226(42)	-0.130(64)	0.061(21)		0.616(44)	
N 16	1.21	1.261(61)	-0.226(139)	0.129(91)	-0.014(18)	0.652(63)	

3.5 The 5.920-MeV $2^+; 0$ level

The first line of Table 5 shows a 3-parameter fit to all the NIKHEF data points while the next line shows the same fit with the highest q data point removed. The 2-parameter fit in the third line shows very little deterioration in χ^2. The same can be said of the 1-parameter fit in the last line but the $B(C2)$ changes from 0.164 to 0.202 as b changes from 1.55 fm to 1.65 fm. In 2-parameter or 3-parameter fits the χ^2 and $B(C2)$ vary little with modest changes in b.

Table 5: Fits to C2 form factors for the 5.920-MeV $1^+; 0$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations.

Data	N	χ^2/DF	A	B	C	D	B(C2)
N	12	0.89	0.555(91)	0.279(182)	-0.157(83)	0.126(35)	
N a	11	0.87	0.602(100)	0.161(213)	-0.089(105)	0.148(49)	
N a	11	0.85	0.679(38)	-0.015(44)		0.189(21)	
N a	11	0.78	0.667(13)			0.182(7)	

*a Highest q data point removed.
4 M3 transitions

In addition to the transition to the 1.74-MeV 0\(^+\) 1 level, the transverse form factor to the 5.164-MeV 2\(^+\) 1 level is dominantly M3 with a small correction for M1 at low \(q\). The \(q_{\text{eff}}\) prescription can be used on the Saskatoon data but the NIKHEF data for the 0\(^+\) 1 level is given as a function of \(q\) and can’t be corrected without a knowledge of \(E_0\) for each point. However, a B(M3) is available from a DWBA analysis of the data. Note that for \(A = 10\), 1 W.u. = 35.548 \(\mu^2\text{fm}^4 = 0.3932 e^2\text{fm}^6\).

4.1 The 1.740-MeV 0\(^+\) 1 level

We first note that \(\Gamma_\gamma = (1.05 \pm 0.25) \times 10^{-9}\) from the original analysis of the Saskatoon data (see erratum of Ref. [3]) corresponds to \(B(\text{M3} \uparrow) = (8.27 \pm 1.97) e^2\text{fm}^6 = (748 \pm 178) \mu^2\text{fm}^4\).

The first line of Table 6 gives \(B(\text{M3} \uparrow) = (804 \pm 110) \mu^2\text{fm}^4\) for a fit to the data as a function of \(q\). This is reduced to \((688 \pm 101) \mu^2\text{fm}^4\) for a fit to the data as a function of \(q_{\text{eff}}\). The value from a DWBA fit to the complete data set shown in Ref. [4] is 633 \(\mu^2\text{fm}^4\) (R. Hicks, private communication).

Data	N	\(\chi^2/\text{DF}\)	\(A\)	\(B\)	\(B(\text{M3} \uparrow)\)
S	8	0.37	5.823(400)	0.213(400)	8.89(122)
S	8	0.36	5.386(396)	0.522(388)	7.61(112)

4.2 The 5.164-MeV 2\(^+\) 1 level

The original analysis of the Saskatoon data [3] gave \(B(\text{M3} \uparrow) = (21.6 \pm 2.2) e^2\text{fm}^6 = (1953 \pm 19) \mu^2\text{fm}^4\). This fit included an M1 contribution.

The first two lines of Table 7 contain no correction for the M1 contribution at low \(q\). The first line fits the Saskatoon and NIKHEF data as a function of \(q_{\text{eff}}\) while the second line also contains the Catholic University of America low \(q\) data. A significant difference in the extracted \(B(\text{M3})\) can be seen when the two points with \(q_{\text{eff}} < 0.8 \text{ fm}^{-1}\) are removed from the S+N data set (third line).

Finally, we subtract an M1 contribution calculated by normalizing the computed M1 shell-model form factor to the B(M1) obtained from electromagnetic data. Because there is such a large cancellation for the lowest \(q\) data point of the CUA data set, we omit this point entirely. This results in \(B(\text{M3} \uparrow) = 19.4 \pm 2.0 e^2\text{fm}^6\) or \((1756 \pm 181) \mu^2\text{fm}^4\); \(B(\text{M3} \downarrow) = 27.2 \pm 2.8 e^2\text{fm}^6\) or \((69.1 \pm 7.1)\) W.u. This corresponds to \(\Gamma_\gamma = (1.00 \pm 0.10) \times 10^{-6}\) eV.

5 M1 transition for the 7.48-MeV level

Ansaldo et al. [3] give \(\Gamma_\gamma = 11.75 \pm 0.75\) eV for this strong M1 transition while Spamer [1] gives \(\Gamma_\gamma = 12.0 \pm 2.2\) eV. However, Chertok [7] corrected the later value to 11.0 \(\pm 2.2\) eV.
Table 7: Fits to M3 form factor for the 5.164-MeV $2^+; 1$ level using Eq. (4). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations. The unit for B(M3) is e^2fm^6.

Data	N	χ^2/DF	A	B	C	B(M3↑)
S+N	17	0.51	9.611(543)	-3.059(945)	1.608(364)	24.2(27)
S+N+CUA	20	0.68	9.913(397)	-3.571(726)	1.793(294)	25.8(21)
S+N a	15	0.37	8.672(838)	-1.569(1380)	1.090(502)	19.7(38)
S+N+CUA b	19	0.39	8.612(452)	-1.466(805)	1.052(319)	19.4(20)

$^a q_{\text{eff}} > 0.81$ fm$^{-1}$.

b Theoretical $F_T^2(M1)$ normalized to $B(M1) = 0.023 \pm 0.006$ W.u. subtracted and CUA $q = 0.41$ fm$^{-1}$ point omitted because of a large cancellation.

The fit as a function of q_{eff} in the first line of Table 8 yields $\Gamma_0^\gamma = 10.84 \pm 1.58$ eV. Adding the CUA data points gives $\Gamma_0^\gamma = 11.00 \pm 1.14$ eV. The Saskatoon contains three points around the second maximum of the M1 form factor. Adding these data points gives a worse fit and $\Gamma_0^\gamma = 11.35 \pm 0.37$ eV. Increasing the number of parameters to three improves the fit but gives a substantially larger $B(M1)$ value corresponding to $\Gamma_0^\gamma = 12.55 \pm 0.58$ eV.

As far as the $B(M1)$ is concerned, it is preferable to stick with the value derived from the low-q data.

Table 8: Fits to M1 form factor for the 7.48-MeV $2^+; 1$ level using Eq. (3). The harmonic oscillator parameter is fixed at $b = 1.60$ fm. The quantities in parentheses are standard deviations. The unit for B(M1) is e^2fm^2.

Data	N	χ^2/DF	A	B	B(M1↑)	
D	12	0.56	0.133(10)	-0.0126(945)	0.0177(26)	
D+CUA	15	0.54	0.134(7)	-0.0123(45)	0.0180(19)	
D+CUA+S	23	0.95	0.136(2)	-0.162(5)	0.0185(6)	
D+CUA+S	23	0.58	0.1432(33)	-0.196(13)	0.023(8)	0.0205(10)

6 C3 transitions

Cichocki et al. [4] present data on the form factors for the $2^−$, $3^−$, and $4^−$ levels at 5.110 MeV, 6.127 MeV, and 6.561 MeV. The longitudinal form factor for the isolated 6.56-MeV level is best defined. The C3 Weisskopf unit is $5.94 e^2fm^6$.

6.1 The 6.56-MeV $4^−; 0$ level

The C1 and C3 harmonic oscillator form factors for $1/\hbar \omega$ transitions cannot be distinguished. However, the shell-model calculations in Ref. [4] indicate the the C3 transition is dominant for the $4^−$ level.
The first line of Table 9 shows a 4-parameter fit to the full NIKHEF data set which shows that B, C, and D are not determined and that there is a large error on B(C3). The second line shows a 3-parameter fit and a significant change in B(C3) (but within errors). Because we are interested in pinning down a low-\(q\) parameter, the third line shows the effect of omitting the two highest \(q\) data points. Now C is undetermined and the final line shows a 2-parameter fit to the reduced data set (there is no change in the overall \(\chi^2\)). Then B(C3↑) = 21.8 ± 1.1 e²fm⁶ and B(C3↓) = 17.0 ± 0.9 e²fm⁶ = 2.9 ± 0.2 W.u.

Table 9: Fits to C3 form factor for the 6.560-MeV 4⁻; 0 level using Eq. (4). The harmonic oscillator parameter is fixed at \(b = 1.60\) fm. The quantities in parentheses are standard deviations. The unit for B(C3) is e²fm⁶.

Data	N	\(\chi^2/DF\)	A	B	C	D	B(C3↑)
N	14	0.87	8.642(1180)	-0.115(1880)	-0.597(871)	0.112(122)	19.6(54)
N	14	0.86	9.621(479)	-1.764(522)	0.189(126)		24.3(24)
N	12	0.89	9.115(651)	-1.077(793)	-0.004(210)		21.7(31)
N	12	0.80	9.127(233)	-1.093(121)			21.8(11)

\(a\) \(q_{\text{eff}} < 2.2\) fm⁻¹.

6.2 The 6.13-MeV 3⁻; 0 level

This form factor is not so well defined because of the difficulty of separating the cross section from the strong 4⁺ level at 6.025 MeV. Again, the shell-model calculations of Ref. [4] indicate the the C3 transition is dominant but in this case a significant C1 contribution is also predicted.

The first line of Table 10 shows a 3-parameter fit to the full NIKHEF data set which is poor and gives a large error on B(C3). The second line shows the effect of omitting the two highest \(q\) data points and reducing the number of parameters by one. A better \(\chi^2\) is obtained in the last line by omitting two high data points. Then B(C3↑) = B(C3↓) = 33.1 ± 2.7 e²fm⁶ = 5.6 ± 0.5 W.u.

Table 10: Fits to C3 form factor for the 6.130-MeV 3⁻; 0 level using Eq. (4). The harmonic oscillator parameter is fixed at \(b = 1.60\) fm. The quantities in parentheses are standard deviations. The unit for B(C3) is e²fm⁶.

Data	N	\(\chi^2/DF\)	A	B	C	B(C3↑)
N	13	3.55	10.27(81)	-1.30(134)	-1.20(50)	27.6(82)
N	11	2.85	11.21(38)	-0.96(33)		33.0(38)
N	9	1.54	11.25(39)	-1.13(34)		33.1(27)

\(a\) \(q_{\text{eff}} < 1.7\) fm⁻¹.

\(b\) Points at \(q_{\text{eff}} = 1.08\) and 1.46 fm⁻¹ omitted.
6.3 The 5.11-MeV 2−; 0 level

Here, the shell-model calculations of Ref. [4] indicate that the C1 transition is dominant over C3. In addition, there exists a non-zero B(E1↓) of \((5.0 \pm 1.0) \times 10^{-4} \) W.u. that arises from isospin mixing. This corresponds to \(B(E1↑) = (1.07 \pm 0.21) \times 10^{-4} \ e^2\text{fm}^2 \).

The first line of Table 11 assumes good isospin and therefore no A coefficient. Allowing A to be non-zero improves the fit (second line). Including the photon point in the fit worsens the \(\chi^2 \) somewhat but still gives a reasonable fit.

Table 11: Fits to the longitudinal form factor for the 5.110-MeV 2−; 0 level using Eq. (3). The harmonic oscillator parameter is fixed at \(b = 1.60 \) fm. The quantities in parentheses are standard deviations.

Data	N	\(\chi^2/\text{DF} \)	A	B	C	B(C1↑)
N	8	1.62	0.259(11)	-0.100(13)	0.0	
N	8	0.83	-0.036(16)	0.366(47)	-0.171(33)	\((1.3 \pm 1.1) \times 10^{-3} \)
N \(^a \)	9	1.16	-0.0106(11)	0.290(12)	-0.121(13)	\((1.09 \pm 0.23) \times 10^{-4} \)

\(^a \) Including electromagnetic data for the photon point.

7 Higher levels

Ansaldo et al. [3] give a longitudinal form factor for a level at 8.07 MeV with a width of 760 keV, which they assign as 2+; 0, and a transverse form factor for the 2+; 1/3−; 1 doublet at 8.9 MeV. Fitting the data for the 8.07-MeV level yields a \(B(C2↑) = 5.1 \pm 0.7 \ e^2\text{fm}^4 \). This is about a quarter of the strength of the very strong transition to the 6.025-MeV 4+ level. As Zeidman et al. [8] note, this should lead to a very strong excitation in inelastic pion scattering which is not seen. In fact, even adding the cross sections for states at 7.8 and 8.07 MeV still gives less than 25% of the expected cross section for an isoscalar C2 excitation.

For the 8.9-MeV doublet, it is difficult to say anything much without guidance from the shell-model as to the dominant multipoles expected. The state is stronger than expected for an isovector excitation in inelastic pion scattering [8].

This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

References

[1] E. Spamer, Z. Phys. 191 (1966) 24.
[2] L.W. Fagg, R.A. Lindgren, W.L. Bendel, and E.C. Jones, Phys. Rev. C 14 (1976) 1727.
[3] E.J. Ansaldo, J.C. Bergstrom, R. Yen, and H.S. Caplan, Nucl. Phys. A 322 (1979) 237; A 342 (1980) 532(E).
[4] A. Cichocki, J. Dubach, R.S. Hicks, G.A. Peterson, C.W. de Jager, H. de Vries, N. Kalantar-Nayestanaki, and T. Sato, Phys. Rev. C 51 (1995) 2406.
[5] R.S. Hicks, J. Button-Shafer, B. Debebe, J. Dubach, A. Hotta, R.L. Huffman, R.A. Lindgren, G.A. Peterson, R.P. Singhal, and C.W. de Jager, Phys. Rev. Lett. 60 (1988) 905.

[6] D.J. Millener, D.I. Sober, H. Crannell, J.T. O’Brien, L.W. Fagg, S. Kowalski, C.F. Williamson, and L. Lapikás, Phys. Rev. C 39 (1989) 14.

[7] B.T. Chertok, Phys. Rev. 187 (1969) 1340.

[8] B. Zeidman, D.F. Geesaman, P. Zupranski, R.E. Segel, G.C. Morrison, C. Olmer, G.R. Burleson, S.J. Greene, R.L. Boudrie, C.L. Morris, L.W. Swensson, G.S. Blanpied, B.G. Ritchie, and C.L. Harvey Johnstone, Phys. Rev. C 38 (1988) 2251.