Transgene-mediated expression of tumor necrosis factor soluble receptor attenuates morphine tolerance in rats

J Sun¹, S Liu¹,², M Mata¹, DJ Fink¹ and S Hao¹,²

Opiate/narcotic analgesics are the most effective treatments for chronic severe pain, but their clinical utility is often hampered by the development of analgesic tolerance. Recent evidence suggests chronic morphine may activate glial cells to release proinflammatory cytokines. In this study, we used herpes simplex virus (HSV) vector-based gene transfer to dorsal root ganglion to produce a local release of p55 tumor necrosis factor (TNF) soluble receptor in the spinal cord in rats with morphine tolerance. Subcutaneous inoculation of HSV vectors expressing p55 TNF soluble receptor into the plantar surface of the hindpaws enhanced the antinociceptive effect of acute morphine in rats. Subcutaneous inoculation of those vectors into hindpaws also delayed the development of chronic morphine tolerance in rats. TNF soluble receptor expressed by HSV vector reduced gene transcription of spinal TNFα and interleukin-1β (IL-1β) induced by repeated morphine. Furthermore, we found that TNF soluble receptor mediated by HSV reversed the upregulation of protein level of TNFα and IL-1β and phosphorylation of p38 mitogen-activated protein kinase induced by repeated morphine. These results support the concept that proinflammatory cytokines may have an important role in the pathogenesis induced by morphine. This study provides a novel approach to treating morphine tolerance.

Gene Therapy (2012) 19, 101–108; doi:10.1038/gt.2011.76; published online 26 May 2011

Keywords: morphine tolerance; cytokines; TNF soluble receptor

INTRODUCTION

Chronic pain caused from tissue injury or damage to structures in the nervous system is a multidimensional phenomenon involving physical states and psychosocial variables, and is a significant clinical problem. Opiate/narcotic analgesics are the most effective treatments for severe pain, but their clinical utility is often hampered by the development of analgesic tolerance, as well as by de novo painful hypersensitivity to innocuous and noxious stimuli, phenomena observed in both animal and human studies.¹–⁴ Classical concepts (the prevailing neuron-centered view) have evolved in recent years with the realization that alterations in neuronal functions fail to explain all of the crucial mechanisms involved.⁵,⁶ Since early 1990s, the studies have progressively challenged the classical glia only serve a passive support function in the central nervous system. Glial cells are considered to be crucial sources of nitric oxide, cytokines (for example, tumor necrosis factor α (TNFα) and interleukin-1β (IL-1β)) and cyclooxygenase products that influence synaptic transmission in the central nervous system.⁷ The chronic morphine-induced activation of glial proinflammatory immune responses could activate the mitogen-activated protein kinase (MAPK) and protein kinase C pathways, which are key factors in the intracellular signaling cascade leading to the development of morphine tolerance.⁸ Administration of the glial metabolic inhibitor, fluorocitrate, has been found to attenuate the development of morphine tolerance.⁹ Pentoxifylline (a glia inhibitor) significantly blocked the development of morphine tolerance in naïve mice as well as in a model of neuropathic pain.¹⁰ It has been reported that intrathecal pretreatment with minocycline (microglia inhibitor) attenuates not only the development of morphine antinociceptive tolerance but also the activities of spinal glia induced by chronic morphine treatment.¹¹ Chronic morphine increased glia activation releasing TNFα and/or IL-1β in the spinal cord, and inhibition of these factors may delay morphine tolerance.³,¹² The mechanism underlying the involvement of glial cell products in morphine tolerance is unclear in detail.

Gene transfer offers the possibility to produce and release bioactive macromolecules in a local site in vivo. The local production of neurotransmitters achieved by therapeutic gene transfer may be used to achieve desired outcomes while avoiding unwanted adverse side effects that would result from the activation of same receptors in other pathways by a systemically administered drug.¹⁴ Among the several gene transfer vectors that are available, herpes simplex virus (HSV) is particularly well suited for the delivery of a gene in the peripheral nervous system.¹⁵ Recombinant vectors that are entirely replication defective, retain the ability to establish a persistent quiescent state in neurons, but are unable to replicate (or reactivate) in the nervous system.¹⁵ We have constructed highly replication-defective HSV genomic vectors that establish a persistent state that can be used to deliver and express transgenes in dorsal root ganglia (DRG) neurons. Transduction of sensory neurons of the DRG by footpad inoculation with HSV-based vectors coding for human proenkephalin, produces an antihyperalgesic effect in models of acute thermal pain,¹⁶ is antinociceptive in subacute inflammatory pain,¹⁶ is antinociceptive in subacute inflammatory pain, and reduces both nociceptive behavior and joint destruction in a rodent model of arthritis.¹⁸ DRG neurons transduced with HSV vector transport transgene-coded enkephalin both centrally and peripherally in the bipolar axon of the primary sensory afferent.¹⁹ Recently, we have
demonstrated that highly defective HSV-based vectors can be used to transduce neurons of the DRG to release bioactive peptides from nerve terminals in the spinal cord to produce antiinflammatory effects in models of inflammatory and neuropathic pain. In this study, we investigated the effect of HSV-mediated expression of p55 TNF soluble receptor (TNFSR) on morphine tolerance in rats. We found that HSV vector-mediated TNFSR expression enhanced the antiinflammatory effects of acute morphine and attenuated tolerance of chronic morphine in rats.

RESULTS
Expression of TNF soluble receptor mediated by T0TNFSR vector in vivo
We have previously reported that the non-replicating HSV vector T0TNFSR produces p55 TNFSR in primary DRG neurons in culture in vitro, and in the lumbar DRG and spinal cord in vivo following subcutaneous inoculation with the vector in the hindpaws of rats. In this study, the expression of spinal TNFSR mediated by HSV in morphine-tolerance rats was tested. We injected vectors (T0TNFSR or control vector T0Z) into the rat hindpaws. At 1 week after vector injection, rats received chronic morphine for 7 days. Then the spinal cords were harvested and western blots were carried out for the expression of TNFSR. We found that inoculation of T0TNFSR significantly upregulated the expression of TNFSR in the spinal dorsal horn (Figure 1).

The effects of HSV-vector-expressing TNFSR on acute morphine antinociception
Previous evidence shows that intrathecal injection of acute morphine produces analgesia that dissipates by ~100 min, and then intrathecal administration of IL-1 receptor antagonist (IL-1ra), soluble TNF receptor or IL-6-neutralizing antibody unmasks significant continuing analgesia (135 and 155 min). Morphone analgesia is extended in mice with transgenic overexpression of IL-1ra within the brain and spinal cord or mice with targeted deletion of IL-1 receptor. In this study, rats were inoculated into two hindpaws with T0TNFSR or T0Z. At 1 week after vector inoculation, animals received acute morphine (1, 3, or 10 mg kg⁻¹, i.p.). Thermal tail flick test and hot plate test were conducted to get thermal latency. Antinociceptive response induced by acute morphine progressively declined at 90 min, being almost completely abolished at 120–150 min in rats inoculated with T0Z. However, rats inoculated with T0TNFSR still showed the antinociceptive effect at 120–150 min. Therefore, we think that HSV vector T0TNFSR expressing TNFSR enhanced antinociceptive effect of acute morphine (Figure 2).

The changes of the spinal TNF, IL-1β and p-p38 in morphine-tolerance rats
Evidence demonstrates that intrathecally or systemically repeated morphine induces upregulation of proinflammatory cytokines (for example, TNFα and IL-1β) and phosphorylation of p38 in our model of morphine tolerance, saline or morphine (17.5 mg kg⁻¹, i.p.) were administered once daily for 7 days. Thermal tail flick test and hot plate test were conducted at 60 min after morphine to get thermal latency. After a 7-day treatment with chronic morphine, rats showed a significant loss of the antinociceptive effect compared with that on day 1 (data not shown). After a 7-day treatment with chronic morphine or saline, spinal TNFα and IL-1β were examined with western blots. Chronic morphine significantly upregulated spinal TNFα and IL-1β, and enhanced phosphorylation of p38 compared with vehicle (Figure 3).

The effect of HSV-vector-expressing TNFSR on mRNA of spinal TNFα and IL-1β in morphine-tolerance behavioral response
Recent studies demonstrate that repeated morphine induced upregulation of proinflammatory cytokines (for example, TNFα, IL-1β and IL-6) and that morphine tolerance is markedly attenuated by genetic or pharmacological blockade of IL-1 signaling. A soluble TNF receptor may prevent TNFα from binding TNF receptor on the plasma membrane of cells. In this study, we examined whether overexpression of TNFSR mediated by HSV vectors changed chronic morphine tolerance. At 1 week after vectors, rats received chronic morphine for 7 days. A thermal tail flick test and hot plate test were conducted to get thermal latency. Rats with T0TNFSR showed a higher maximum possible effect at day 5–7 after morphine compared with rats with T0Z. Thus, HSV vectors expressing TNFSR delayed the development of morphine tolerance (Figure 4).

The effects of HSV-vector-expressing TNFSR on mRNA of spinal TNFα and IL-1β in morphine-tolerance rats
Glia in the central nervous system are activated by chronic morphine and increase gene transcription of proinflammatory cytokines. In this study, the gene expression of spinal TNFα and IL-1β was measured by quantitative reverse transcription-PCR. In the sham group, rats received T0Z and chronic saline for 7 days. Chronic morphine significantly increased mRNA levels of TNFα and IL-1β in rats with T0Z compared with the sham group. The expression of TNFα and IL-1β mRNA in morphine-tolerance rats with T0TNFSR was significantly lower than that in morphine-tolerance rats with T0Z, suggesting that HSV-vector-expressing TNFSR significantly suppressed the transcriptional induction of TNFα and IL-1β by morphine tolerance (Figure 5).
Figure 2. The time-courses of acute morphine antinociception with the effect of TOTNFSR or TOZ were described. The non-replicating HSV vector TOTNFSR producing p55 TNFSR, and control vector TOZ were used. At 7 days after vector inoculation, rats received a single dose of morphine (1, 3 and 10 mg kg⁻¹, i.p.). Thermal latency was tested in the tail flick test (a-c) and hot plate test (d-f). The maximum possible effect (MPE) of morphine in rats with TOTNFSR was significantly higher than that with TOZ at 90–150 min. *P<0.05, **P<0.01 versus TOZ, n=5–6, t-test.

Figure 3. The expression of TNFα, IL-1β and p-p38 in morphine tolerance (MT). Rats received a repeated morphine dose for 7 days. At day 7, 1 h after the last dose of morphine, L4/5 spinal dorsal horns were harvested, and the expression of TNFα (a), IL-1β (b) and p-p38 (c) was tested using western blots. Repeated morphine significantly induced upregulation of spinal TNFα, IL-1β and p-p38, *P<0.05 versus vehicle (vehi), n=3–4, t-test.
The effects of HSV-vector-expressing TNFSR on TNFα, IL-1β and p-p38 in the DRG in morphine-tolerance rats

Accumulating evidence indicates that the DRG is essential for morphine antinociceptive tolerance.29 Although there are reports suggesting that repeated morphine induces proinflammatory cytokines release from the spinal glia cells, few studies investigate the change of proinflammatory cytokines in the DRG level. Previous studies demonstrate that chronic morphine exposure increased phosphorylation of MAPKs, including p38 in DRG neurons.30,31 In this study, we examined whether overexpression of TNFSR mediated by HSV vector reduced neurochemical changes in morphine tolerance. In the sham group, animals received T0Z and chronic saline for 7 days. Animals inoculated with T0Z showed a statistically significant increase in TNFα, IL-1β and p-p38 in the DRG in the chronic morphine state compared with sham. TNFα, IL-1β and p-p38 in morphine-tolerance rats with T0TNFSR in the DRG were significantly lower than that in morphine-tolerance rats with T0Z (Figure 6).

The effects of HSV-vector-expressing TNFSR on the spinal TNFα, IL-1β and p-p38 in morphine-tolerance rats

In this study, we challenged whether overexpression of TNFSR mediated by HSV vector reduced neurochemical changes in morphine tolerance. In the sham group, animals received T0Z and chronic saline for 7 days. Animals inoculated with T0Z showed a statistically significant increase in the spinal TNFα, IL-1β and p-p38 in the chronic morphine state compared with sham. The expression of spinal TNFα, IL-1β and p-p38 in morphine-tolerance rats with T0TNFSR was significantly lower than that in morphine-tolerance rats with T0Z (Figure 6).

DISCUSSION

Evidence suggests that proinflammatory cytokines have an important role in the phenomena of morphine tolerance.9,12,25 The results of this study demonstrated that (1) the expression of TNFSR mediated by HSV vectors enhanced acute morphine antinociception; (2) spinal TNFα, IL-1β and p-p38 were increased in morphine-tolerance rats; (3) HSV-vector-expressing TNFSR suppressed the mRNA level of spinal TNFα and IL-1β in morphine tolerance;...
tested using western blots. Repeated morphine administrations significantly induced upregulation of TNFα, IL-1β, and control vector T0Z were used. Rats received a repeated morphine dose at 1 week after vectors. In the sham group, rats receive T0Z and a repeated dose of saline. At day 7, 1 h after the last dose of morphine or saline, L4/5 DRGs were harvested, and the expression of TNFα, IL-1β and p-p38 was tested using western blots. Repeated morphine administrations significantly induced upregulation of TNFα, IL-1β and p-p38. The expression of TNFα (a), IL-1β (b) and p-p38 (c) in morphine-tolerance rats with T0TNFSR was significantly lower than that in morphine-tolerance rats with T0Z. *P<0.05 versus sham; **P<0.01 versus T0Z, n=4–6, analysis of covariance, post hoc comparisons using Fisher’s protected least significant difference test (StatView J 5.2). MT, morphine tolerance.

Figure 6 The effect of T0TNFSR or T0Z on the expression of TNFα, IL-1β and p-p38 in the DRG. The non-replicating HSV vector T0TNFSR expressing p55 TNFSR, and control vector T0Z were used. Rats were inoculated with T0TNFSR or T0Z. Rats received a repeated morphine dose at 1 week after vectors. In the sham group, rats receive T0Z and a repeated dose of saline. At day 7, 1 h after the last dose of morphine or saline, L4/5 DRGs were harvested, and the expression of TNFα, IL-1β and p-p38 was tested using western blots. Repeated morphine administrations significantly induced upregulation of TNFα, IL-1β and p-p38. The expression of TNFα (a), IL-1β (b) and p-p38 (c) in morphine-tolerance rats with T0TNFSR was significantly lower than that in morphine-tolerance rats with T0Z. *P<0.05 versus sham; **P<0.01 versus T0Z, n=4–6, analysis of covariance, post hoc comparisons using Fisher’s protected least significant difference test (StatView J 5.2). MT, morphine tolerance.

Figure 7 The effect of T0TNFSR or T0Z on the expression of spinal TNFα, IL-1β and p-p38. The non-replicating HSV vector T0TNFSR producing p55 TNFSR, and control vector T0Z were used. Rats were inoculated with T0TNFSR or T0Z. Rats received a repeated morphine dose at 1 week after vectors. In the sham group, rats receive T0Z and a repeated dose of saline. At day 7, 1 h after the last dose of morphine or saline, L4/5 spinal dorsal horns were harvested, and the expression of TNFα, IL-1β and p-p38 was tested using western blots. Repeated morphine administrations significantly induced upregulation of spinal TNFα, IL-1β and p-p38. The expression of spinal TNFα (a), IL-1β (b) and p-p38 (c) in morphine-tolerance rats with T0TNFSR was significantly lower than that in morphine-tolerance rats with T0Z. *P<0.05 versus sham; **P<0.01 versus T0Z, n=4–6, analysis of variance, post hoc comparisons using Fisher’s protected least significant difference test (StatView J 5.2). MT, morphine tolerance.

and (4) HSV-vector-expressing TNFα receptor reversed upregulation of spinal TNFα, IL-1β and p-p38 induced by repeated morphine.

Morphine has profound immunomodulatory effects, influencing immune cells directly via opioid receptors and indirectly by modulating neuroendocrine systems that regulate immune function. Systemic morphine induced upregulation of spinal proinflammatory cytokines. Moreover, brain-to-spinal cord projections contribute markedly to systemic opioid tolerance. Chronic morphine given intrathecally induced morphine tolerance and activation of the spinal proinflammatory systems. Thus, activation of spinal proinflammatory systems after systemic morphine may be, at least in part, involved in morphine tolerance.

It is notable that the expression of glial activation markers increases in the spinal cord and brain only after chronic exposure to morphine, and that activated glia release proinflammatory cytokines. Recent evidence shows that proinflammatory cytokines (for example, TNFα and IL-1β) have an important role in the antagonism of morphine analgesia and the development of morphine tolerance and withdrawal. Glial inhibitor potentiated the antinociceptive effect of acute morphine. In the acute morphine experiment, intrathecal injection of morphine produces antinociceptive effect that dissipates by about 100 min, following which intrathecal administration of TNFα soluble receptor unmasks significant continuing analgesia (135–155 min). An important finding from this study is that the overexpression of soluble TNF receptor by HSV vector enhanced the acute antinociceptive effect of morphine, which is consistent with the previous results. Spinal IL-1 protein also opposes systemic opioid analgesia. The systemic IL-1ra potentiates acute systemic morphine antinociception. Acute morphine and methadone administration causes a proinflammatory cytokines-mediated opposition of acute intrathecal and/or systemic opioid antinociception. These data above demonstrate that opioid-induced proinflammatory mediators contribute significantly to the opposition of morphine analgesia even on the first exposure to opioids.
binding the TNF receptor on the surface of cells. Propentofylline (inhibitor of the activation of glia) reduces chronic morphine-induced upregulation of mRNA for IL-1β, IL-6 and TNFα at the L5 lumbar spinal cord.13 Chronic administration of a combination of IL-1ra, TNFαR and anti-IL-6 antibody restores acute morphine antinociception in nerve-injured rats, and also significantly reversed the development of morphine tolerance.12,13 Antinociceptive effect of morphine is extended in strains of mice genetically impaired in IL-1 signaling: acute or chronic blockade of IL-1 signaling by various IL-1ra, or IL-1α peptide antagonist significantly prolongs and potentiates antinociceptive effect of morphine.26 Proinflammatory mediators often synergize and interact in the morphine tolerance. P38 MAPK activation is pivotal to the release of several inflammatory cytokines,38,39 and has been implicated in glia-mediated morphine anti-nociception.40 Etanercept is a recombinant TNF soluble receptor, it binds to the released TNFα and prevents its interaction with membrane receptors. A recent study demonstrates that etanercept restores the antinociceptive effect of morphine in morphine-tolerant rats by inhibition of proinflammatory cytokine TNFα, IL-1β and IL-6 expression and spinal neuroinflammation.41 Application of a MAPKs inhibitor reduces morphine tolerance.32 Chronic morphine has been shown to activate several MAPKs, including p38, known to regulate the production of proinflammatory mediators.27,28,43–46

It has been reported that chronic morphine induces proinflammatory cytokines release from the spinal glial cells,7,12 however, few studies investigate the change of proinflammatory cytokines in the DRG level. Previous studies demonstrate that chronic morphine exposure induced an increase in the phosphorylation of MAPKs, including p38 in DRG neurons.30,31 In this study, to our knowledge, we are the first to report that cytokines (TNFα and IL-1β) in the DRGs were upregulated in morphine tolerance.

The intracellular transduction mechanisms by which chronic morphine modulates cytokine formation are not known with certainty, but a few possibilities are proposed on the basis of existing literature in diverse fields. Recent studies demonstrate that toll-like receptor 4, ceramide and reactive oxygen species likely have important roles in the modulation of cytokine release in the face of morphine tolerance. A growing body of evidence has emerged recently that implicates activation of toll-like receptor 4 on glial cells in the development of opiate-induced hyperalgesia and antinociceptive tolerance as well as neuropathic pain.45,47 Recent evidence shows that morphine and its metabolite (morphine-3-glucuronide) activate glial toll-like receptor 4 receptor in a non-steroselective pattern.48,49 The activation of the toll-like receptor 4-derived signaling pathway by morphine45 is one potential pathway that links chronic morphine administration to the activation of proinflammatory cytokines-p38 MAPK pathway, hence, the development of hyperalgesia and antinociceptive tolerance to morphine. In addition, evidence demonstrates that the development of antinociceptive tolerance to repeated doses of morphine is consistently associated with the appearance of several tyrosine-nitrated proteins in the dorsal horn of the spinal cord; blocking protein nitration attenuates proinflammatory cytokines (for example, TNFα and IL-1β), and prevents the development of tolerance to morphine44 in mice. Ceramide is a potent proinflammatory and proapoptotic sphingolipid.50 Chronic administration of morphine activates the ceramide metabolic pathway in spinal glial cells, resulting in increased production in spinal sphingosine-1-phosphate (the end product of ceramide metabolism) by sphingosine kinases. After its extracellular release, sphingosine-1-phosphate would then bind to its receptors on glial cells, initiating a series of signaling pathways, culminating in enhanced production of IL-1β and TNFα.27,43,44,51

In summary, our results demonstrated the release of spinal proinflammatory molecules is necessary for chronic morphine tolerance. Blocking the proinflammatory cytokines was able to delay the development of morphine tolerance. These studies will prove a novel approach to morphine tolerance.

MATERIALS AND METHODS

Construction of HPS vector expressing the p55 TNFSR

The vector TOTNFSR expressing p55TNFSR was generated as described previously.20,24 The coding sequence for amino acids 1–211 of the human p55 TNFSR is under the regulatory control of the HSV ICP0 immediate early promoter, which is in the U41 locus of an HSV recombinant defective for HSV genes ICP4, ICP22 and ICP27. Control vector TOZ is identical to TOTNFSR except that it contains the Escherichia coli lacZ gene in place of p55 TNFSR. The schematic representation for the HSV vector construction has been shown.20

Animal and evaluation of morphine tolerance

Male Sprague–Dawley rats (body weight 225–250 g) were housed one to two per cage approximately 1 week before the beginning of the study, with free access to food and water and maintained on a 12:12, light:dark schedule at 21 °C and 60% humidity. All housing conditions and experimental procedures were approved by the University Institutional Animal Care and Use Committee. Animals were inoculated subcutaneously into the plantar surface of the hindpaws with 30 μl of TOTNFSR or TOZ. To induce antinociceptive tolerance to morphine, 7 days after vector inoculation rats received a repeated dose of morphine (17.5 mg kg−1, once a day, i.p.) for 1 week. Morphine injection and behavior counting were carried out by a blinded operator.

Behavioral testing

Tail flick test. The hot water tail flick test was performed by placing the distal third of the tail in a water bath maintained at 55 ± 0.3 °C. Rats were restrained in a hard plastic box. The latency until tail withdrawal from the bath was determined. The intensity was adjusted to produce a baseline latency of approximately 3 s. If rats did not show tail withdrawal response in 10 s, we ceased the experiment, and 10 s were used as cutoff to avoid tissue damage.

Hot plate test. Hot plate thermal latency was performed with a Harvard Apparatus Ltd hot plate apparatus (Edenbridge, Kent, UK). In the test, the rats were kept inside a circular transparent plastic cage on the hot plate (52 ± 0.3 °C). Licking or shaking the hindpaw or jumping was considered as a sign of thermal nociceptive response. Time to the first reaction was measured. To avoid tissue damage, the cutoff time was set to 40 s.

Western blot analysis

At 1 h after the last dose of morphine administration, the L4/L5 spinal dorsal horn was harvested. Samples were rapidly homogenized in lysis buffer (50 mM Tris HCl, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% NP-40 and 1% sodium deoxycholate). After homogenization, samples were put on ice for 10 min, sonicated, and then centrifuged at a 13,000 × g for 10 min. Supernatants were collected and stored at −80 °C. Protein concentration for each sample was tested using Bio-Rad DC Protein Assay (Bio-Rad, Hercules, CA, USA). Protein samples with equal amounts (40 μg per lane) were loaded and separated on SDS-polyacrylamide gel electrophoresis gels and transferred to polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). Membranes were blocked using 5% non-fat milk for 1 h, and incubated overnight at 4 °C with a primary antibody of anti-TNFα immunoglobulin G (1:500, Millipore), rabbit anti-IL-1β immunoglobulin G (1:2000, Chemicon, Billerica, MA, USA), rabbit anti-p-p38 immunoglobulin G (1:200, Santa Cruz Biotechnology, Santa Cruz, CA, USA) or mouse anti-β-actin (1:5000, Sigma, St Louis, MO, USA). Membranes were then incubated in horseradish peroxidase-conjugated secondary antibody for 1 h at room temperature, and followed by enhanced chemiluminescence detection (Amersham Biosciences, Arlington Heights, IL, USA). Quantification of western blots was carried out from the obtained chemiluminescence values (Bio-Rad ChemiDoc, Bio-Rad). A ratio of the intensity of the band of
interest to β-actin as an internal control was determined using Bio-Rad Imaging systems.

Quantitative real-time PCR
Total RNA was isolated from the spinal cord using the TRIzol reagent (Invitrogen, Camarillo, CA, USA), treated with RNase-free DNase-I (Roche, Indianapolis, IN, USA) and re-purified, and then quantified spectro-photometrically. Total RNA (1 μg) was reverse transcribed (Omniscript RT kit, Qiagen, Valencia, CA, USA) using random hexamers PCR primer. Complementary DNA was amplified using the following primer sets: glyceraldehyde 3-phosphate dehydrogenase, forward 5'-GTTTGTAGGTTGTTGAAACC-3' and reverse 5'-TCTCTGGATGTCGAGTATG-3', TNFα, forward 5'-CTTCAAGGGGAAAGCTCTG-3' and reverse 5'-GGGCTGGACTTCTCTTG-3', IL-1β, forward 5'-CATTGTCGCTTTGAGGAGAAG-3' and reverse 5'-ATATCCTACCCAGATGTCACAG-3'. PCR was performed with equal amounts of complementary DNA in the ABI PRISM 7700 sequence detection system (Applied Biosystems, Foster City, CA, USA), using SYBR Green PCR Master Mix (Applied Biosystems). Reactions (total volume, 25 μl) were incubated at 50 °C for 2 min, at 95 °C for 10 min, followed by 40 cycles of 15 s at 95 °C and 1 min at 60 °C. Each sample was measured, and data points were examined for integrity by analysis of the amplification plot. The comparative threshold cycle (Ct) method was used for relative quantification of gene expression, with Ct indicating the cycle number at which the fluorescence signal of the PCR product crosses an arbitrary threshold set within the exponential phase of the PCR. The amount of mRNA normalized to the endogenous control (glyceraldehyde 3-phosphate dehydrogenase) and relative to a calibrator is given by 2^(ΔΔCt), and ΔΔCt=[(Ct target (unknown sample)−Ct actin (unknown sample))−(Ct target (calibrator sample)−Ct actin (calibrator sample))], as previously described.22

Drugs and data analysis
Morphine hydrochloride was obtained from Elkins-Sinn (Cherry Hill, NJ, USA). Antinociceptive effects were assessed 30, 60, 90 and 120 min after administration of acute morphine. Drugs were dissolved in physiological (0.9%) saline. In the tail flick and hot plate tests, the antinociceptive effects of morphine were represented as a percentage of maximum possible effect using the formula percentage of maximum possible effect = (test−baseline)/(cutoff−baseline)×100%. Mean ± s.e.m. value of percentage of maximum possible effect was calculated for each group. The statistical significances of the differences were determined by analysis of variance (StatView J 5.2, SAS Institute, Cary, NC, USA) followed by post hoc comparisons using Fisher's protected least significant difference test or by t-test. P-values of <0.05 were considered to be statistically significant.

CONFLICT OF INTEREST
David Fink receives compensation for professional services from the University of Michigan and from the Department of Veterans Affairs. He also receives payments from the University of Pittsburgh for patents owned by the University on which he is a co-inventor. All others authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This work was supported by grants from the NIH DA020078 (SH), DA026734 (SH), DA025527 (SH) and NS066792 (SH), Department of Veterans Affairs and the NINDS NS038880 and NIDDK DK044935 (DFJ and MM). We acknowledge the excellent technical assistance of Vikram Thakur.
34 Vanderah TW, Ossipov MH, Lai J, Malan Jr TP, Porreca F. Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin. Pain 2001; 92: 5–9.

35 Hao S, Liu S, Zheng X, Zheng W, Ouyang H, Mata M et al. The role of TNFalpha in the periaqueductal gray during naloxone-precipitated morphine withdrawal in rats. Neuropsycopharmacology 2011; 36: 664–676.

36 Beltner-Johnson D, Guitart X, Nestler EJ. Gial fibrillary acidic protein and the mesolimbic dopamine system: regulation by chronic morphine and Lewis-Fischer strain differences in the rat ventral tegmental area. J Neurochem 1993; 61: 1766–1773.

37 Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL et al. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009; 23: 240–250.

38 Svensson CI, Marsala M, Westerlund A, Calcutt NA, Campana WM, Freshwater JD et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem 2003; 86: 1534–1544.

39 Wu HE, Sun HS, Cheng CW, Tseng LF. p38 mitogen-activated protein kinase inhibitor SB203580 reverses the antianalgesia induced by dextro-morphine or morphine in the mouse spinal cord. Eur J Pharmacol 2006; 550: 91–94.

40 Wu HE, Thompson J, Sun HS, Terashvili M, Tseng LF. Antianalgesia: stereoselective action of dextro-morphine over levo-morphine in the mouse spinal cord. J Pharmacol Exp Ther 2005; 314: 1101–1108.

41 Shen CH, Tsai RY, Shih MS, Lin SL, Tai YH, Chien CC et al. Etanercept restores the antinociceptive effect of morphine and suppresses spinal neuroinflammation in morphine-tolerant rats. Anesth Analg 2011; 112: 454–459.

42 Chen Y, Sommer C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol 2009; 40: 101–107.

43 Muscoli C, Doyle T, Daghstino C, Bryant L, Chen Z, Watkins LR et al. Counter-regulation of opioid analgesia by gial-derived bioactive sphingolipids. J Neurosci 2010; 30: 15400–15408.

44 Muscoli C, Cuzzocrea S, Ndengele MM, Mollace V, Porreca F, Fabrizi F et al. Therapeutic manipulation of peroxynitrite attenuates the development of opiate-induced antinociceptive tolerance in mice. J Clin Invest 2007; 117: 3530–3539.

45 Watkins LR, Hutchinson MR, Rice KC, Maier SF. The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 2009; 30: 581–591.

46 Horvath RJ, Landry RP, Romero-Sandoval EA, DeLeo JA. Morphine tolerance attenuates the resolution of postoperative pain and enhances spinal microglial p38 and extracellular receptor kinase phosphorylation. Proc Natl Acad Sci USA 2005; 102: 5856–5861.

47 Hutchinson MR, Bland ST, Johnson KW, DeLeo JA. Morphine-induced glial activation: mechanisms of activation and implications for opioid analgesia, dependence, and reward. ScientificWorldJournal 2007; 7: 98–111.

48 Lewis SS, Hutchinson MR, Rezvani N, Lorum LC, Zhang Y, Maier SF et al. Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin-1beta. Neuroscience 2010; 165: 569–583.

50 Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9: 139–150.

51 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2([−]Delta Delta C(T)) method. Methods 2001; 25: 402–408.