Marine mollusc extracts—Potential source of SARS-CoV-2 antivirals

Rebecca L. Pedler | Peter G. Speck

College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia

Correspondence
Peter G. Speck, College of Science and Engineering, Flinders University, Bedford Park, GPO Box 2100, Adelaide 5001, South Australia, Australia.
Email: peter.speck@flinders.edu.au

Summary
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid-19). There is an urgent need for effective antivirals to treat current Covid-19 cases and protect those unable to be vaccinated against SARS-CoV-2. Marine molluscs live in an environment containing high virus densities (>10^7 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc-derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS-CoV-2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.

KEYWORDS
human coronaviruses, molluscs, Pacific oyster (Crassostrea gigas), SARS-CoV-2 antivirals

1 | INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel human coronavirus which emerged in Wuhan, China during December 2019.1–3 SARS-CoV-2 is the causative agent of the coronavirus disease 2019 (Covid-19) and as of August 2021, has infected more than 196 million people globally and resulted in over 4.2 million deaths.4 Although vaccination will likely form the path out of the SARS-CoV-2 pandemic, effective antivirals are still required to treat current Covid-19 cases and protect those unable or unwilling to be vaccinated.2,5,6 or in whom vaccines have poor efficacy. The efficacy of vaccines and antivirals currently in clinical trials are also threatened by the ongoing emergence of new SARS-CoV-2 variants.7–9 Since March 2020, several SARS-CoV-2 variants of concern (VOC), including the alpha, beta, gamma and more recently, delta strain have emerged with discernible changes in epidemiology and transmissibility.10,11 Immune-modulating agents to control the excessive inflammation seen in Covid-19 will play an important role,12 and this will be complemented by development of better antiviral drugs. As the science community continues to tackle a moving target, ongoing research to identify novel antiviral compounds against SARS-CoV-2 is crucial.

2 | CURRENT STATUS OF SARS-CoV-2 ANTIVIRAL DRUG DISCOVERY

Human coronaviruses are enveloped, single stranded RNA viruses that can further be classified as alpha-coronaviruses (human coronavirus-229E (HCoV-229E) and HCoV-NL63) or beta-coronaviruses (HCoV-OC43, HCoV-HKU1, Middle Eastern...
there are over 100,000 species of mollusc, some of which live over 400 years, such as the ocean quahog, Arctica islandica. Molluscan antiviral compounds can be sourced exogenously from their algae-based diets, continuously expressed, or transiently expressed in response to viral challenge.26,38,39 Molluscs derived antivirals are yet to be used clinically despite the activity of many extracts, against human viruses, being demonstrated \textit{in vitro}.40,41 As listed in Table 1, numerous marine mollusc extracts have been shown to have antiviral activity. The circulatory fluid (hemolymph) and lipophilic digestive gland extract of greenlip abalone (Haliotis laevigata), has been shown to inhibit herpes simplex virus 1 (HSV-1) in Vero cells.30 Time-of-addition assays suggested that \textit{H. laevigata} hemolymph either inhibited the entry of HSV-1 into Vero cells or was internalised simultaneously with the virus and acted during an early intracellular stage of infection.30 \textit{Haliotis laevigata} lipophilic digestive gland likely inhibits an intracellular stage of HSV-1 infection.30 Inhibition of HSV-1 has also been observed \textit{in vitro} using extracts from the common cockle (Cerastoderma edule), Japanese carpet shell (Ruditapes philippinarum), European flat oyster (Ostrea edulis), common whelk (Buccinum undatum),41 blacklip abalone (\textit{Haliotis rubra}),42,43 veined rapa whelk (\textit{Rapana venosa})44 and the Mediterranean mussel (\textit{Mytilus galloprovincialis}).45 Early work involving oral administration of aqueous extracts from canned red abalone (\textit{Haliotis rufescens}), in Swiss mice, showed protection against poliovirus and influenza A.46,47 Antiviral activity against poliovirus has also been observed using paolin II, an extract from the Eastern oyster (\textit{Crassostrea virginica}).48

3 | MARINE MOLLUSCS AS A SOURCE OF ANTIVIRAL COMPOUNDS

Marine invertebrates represent an almost totally unexploited source of medicinal compounds.6,26–28 Marine invertebrates lack an adaptive immune system and only have the capacity to elicit innate immune responses,29–31 despite living in an environment which contains virus particles in the order of \textgreater 107 per ml.12,23 This demonstrates the success of their innate immunity, which includes the production of potent antiviral compounds.28,30 The nucleosides spongouridine and spongouridine, which contain D-arabinose rather than D-ribose, were isolated in the 1950s from the marine sponge, Tectitethya crypta (formerly \textit{Cryptotheca crypta}), and this led to the development of the only marine invertebrate derived antiviral drug currently available on the market, vidarabine.6,28,30 Vidarabine later inspired the design of antiviral drugs, acyclovir, and zidovudine.28,34 Acyclovir and vidarabine are both nucleoside analogues which inhibit the nucleic acid synthesis of certain herpesviruses6,35 while zidovudine is a nucleoside reverse transcriptase inhibitor (NRTI) used in treatment of human immunodeficiency virus (HIV).36 The success of vidarabine, zidovudine and acyclovir exemplify how marine invertebrates not only represent a direct source of antiviral compounds but can also inspire the synthesis of novel antivirals.

Marine organisms of the phylum Mollusca are responsible for much of the diversity among marine invertebrates, and it is estimated that)..
chaperone.52 it is possible that \textit{C. gigas} cavortin has potential antiviral activity against SARS-CoV-2 and may also act as a metal chaperone which facilitates movement of zinc into host cells.

The discovery of antiviral agents is challenged by the limited number of laboratories which have the appropriate biosafety containment level for working with SARS-CoV-2.5,61 HCoV-229E is a related coronavirus responsible for mild infections resembling the common cold.62,63 HCoV-229E can be handled in lesser-rated laboratories making it more accessible for research on human coronaviruses64 and this virus could be used for initial screening for anti-coronavirus activity. Identification of potential new antiviral compounds against human coronaviruses will have considerable relevance in the current COVID-19 pandemic.

\section*{ACKNOWLEDGEMENT}
None.

\section*{CONFLICT OF INTEREST}
The authors declare no conflict of interests.

\section*{AUTHOR CONTRIBUTIONS}
Peter G. Speck was involved in conception, writing and editing. Rebecca L. Pedler was involved in writing and editing.

\section*{DATA AVAILABILITY STATEMENT}
Not applicable.

\section*{ORCID}
Peter G. Speck \url{https://orcid.org/0000-0001-9087-258X}

\section*{REFERENCES}
1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470-473.
2. Ghanbari R, Teimoori A, Sadeghi A, et al. Existing antiviral options against SARS-CoV-2 replication in COVID-19 patients. Future Microbiol. 2021;15.
3. Triggle CR, Bansal D, Ding H, et al. A comprehensive review of viral characteristics, transmission, pathophysiology, immune response, and management of SARS-CoV-2 and COVID-19 as a basis for controlling the pandemic. Front Immunol. 2021;12:631139.
4. World Health Organisation. WHO Coronavirus disease (COVID-19) dashboard; 2021. [Online].
5. Hall MD, Anderson JM, Anderson A, et al. Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit. J Infect Dis. 2021;224:51-521.
6. Riccio G, Ruocco N, Mutalipassi M, et al. Ten-year research update review: antiviral activities from marine organisms. Biomolecules. 2020;10:1-36.
7. Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization. Nature. 2021;596:276-280.
8. Olliaro P, Torreelle E, Vaillant M. COVID-19 vaccine efficacy and effectiveness—the elephant (not) in the room. Lancet Microbe. 2021;2:e279-e280.

9. Baum A, Fulton BO, Wlaga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 2020;369:1014-1018.

10. World Health Organisation. Tracking SARS-CoV-2 Variants; 2021. [Online].

11. Ong DSY, Koeleman JGM, Vaessen N, Breijer S, Paltansing S, de Man P. Rapid screening method for the detection of SARS-CoV-2 variants of concern. J Clin Virol. 2021;141:104903.

12. Buonaguro FM, Ascierto PA, Morse GD, et al. Covid-19 vaccine efficacy and safety of a single-dose dose in frail elderly patients: a randomized, double-blind, placebo-controlled, multinational, non-inferiority study. JAMA Intern Med. 2021;181:195-202.

13. Wu P, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-271.

14. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for the treatment of Covid-19—final report. N Engl J Med. 2020;383:1813-1826.

15. Indari O, Jakhmola S, Manivannan E, Jha HC. An update on antiviral therapy against SARS-CoV-2: how far have we come? Front Pharmacol. 2021;12:632677.

16. Abella BS, Jakhmola S, Manivannan E, Jha HC. An update on antiviral therapy against SARS-CoV-2: how far have we come? Front Pharmacol. 2021;12:632677.

17. Martinez MA. Lack of effectiveness of repurposed drugs for COVID-19 treatment. Front Immunol. 2021;12:633571.

18. Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother. 2020;64.

19. Beigel JH, Tomashok KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19—a randomized, double-blind, placebo-controlled, multinational, non-inferiority study. J Am Med Assoc. 2020;324:1048-1057.

20. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30:269-271.

21. Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020;383:1827-1837.

22. Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomized, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395:1569-1578.

23. Abella BS, Jakhmola S, Biney BT, et al. Efficacy and safety of hydroxchloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers: a randomized clinical trial. JAMA Intern Med. 2021;181:195-202.

24. Tan Q, Duan L, Ma Y, et al. Is oseltamivir suitable for fighting against COVID-19: in silico assessment, in vitro and retrospective study. Bioorg Chem. 2020;104:104257.

25. Benkendorff K. Molluscus biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev Camb Philos Soc. 2010;85:757-775.

26. Summer K, Browne J, Liu L, Benkendorff K. Molluscus compounds provide drug leads for the treatment and prevention of respiratory disease. Mar Drugs. 2020;18:570.

27. Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8:2619-2638.

28. Agius JR, Corbeil S, Helbig KJ. Immune control of herpesvirus infection in molluscs. Pathogens. 2020;9:1-11.

29. Dang VT, Benkendorff K, Green T, Speck P. Marine snails and slugs: A great place to look for antiviral drugs. J Virol. 2015;89:8114-8118.

30. Tiscar PG, Mosca F. Defense mechanisms in farmed marine molluscs. Vet Res Commun. 2004;28:57-62.
54. te Velthuis AJW, van den Worml SHE, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn\(^{2+}\) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. *PLoS Pathog.* 2010;6:e1001176.

55. Lee C-C, Kuo C-J, Hsu M-F, et al. Structural basis of mercury- and zinc-conjugated complexes as SARS-CoV 3C-like protease inhibitors. *FEBS Lett.* 2007;581:5454-5458.

56. Han Y-S, Chang G-G, Juo C-G, et al. Papain-like protease 2 (PLP2) from severe acute respiratory syndrome coronavirus (SARS-CoV): expression, purification, characterization and inhibition. *Biochemistry.* 2005;44:10349-10359.

57. Carlucci PM, Ahuja T, Petrilli C, Rajagopalan H, Jones S, Rahimian J. Zinc sulfate in combination with a zinc ionophore may improve outcomes in hospitalized COVID-19 patients. *J Med Microbiol.* 2020;69:1228-1234.

58. Brewer J, Gomez Marti JL, Brufsky A. Potential interventions for SARS-CoV-2 infections: zinc showing promise. *J Med Virol.* 2021;93:1201-1203.

59. Asl SH, Nikfarjam S, Majidi Zolbanin N, Nassiri R, Jafari R. Immunopharmacological perspective on zinc in SARS-CoV-2 infection. *Int Immunopharmacol.* 2021;96:107630.

60. Kong N, Zhao Q, Liu C, et al. The involvement of zinc transporters in the zinc accumulation in the Pacific oyster *Crassostrea gigas*. *Gene.* 2020;750:144759.

61. Kaufer AM, Theis T, Lau KA, Gray JL, Rawlinson WD. Laboratory biosafety measures involving SARS-CoV-2 and the classification as a risk group 3 biological agent. *Pathology.* 2020;52:790-795.

62. Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. *J Pathol.* 2015;235:185-195.

63. Mei M, Tan X. Current strategies of antiviral drug discovery for Covid-19. *Front Mol Biosci.* 2021;8:671263.

64. Bracci N, Pan H-C, Lehman C, Kehn-Hall K, Lin S-C. Improved plaque assay for human coronaviruses 229E and OC43. *PeerJ.* 2020;8:e10639.

65. Zanjani NT, Sairi F, Marshall G, et al. Formulation of abalone hemocyanin with high antiviral activity and stability. *Eur J Pharm Sci.* 2014;53:77-85.

66. Dolashka P, Nesterova N, Zagorodnya S, et al. Antiviral activity of hemocyanin *Rapana venosa* and its isoforms against Epstein-Barr virus. *Global J Pharmacol.* 2014;8:206-212.

How to cite this article: Pedler RL, Speck PG. Marine mollusc extracts—Potential source of SARS-CoV-2 antivirals. *Rev Med Virol.* 2022;32(4):e2310. [https://doi.org/10.1002/rmv.2310]