Rod-like anhydrous V$_2$O$_5$ assembled by tiny nanosheets as a high-performance cathode material for aqueous zinc-ion batteries

Weijun Zhou, Jizhang Chen,* Minfeng Chen, Xinwu Xu, Qinghua Tian, Junling Xu* and Ching-Ping Wong

a College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

b Department of Chemistry, School of Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China

c Department of Electronic Engineering, The Chinese University of Hong Kong, NT, Hong Kong, China

d School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, United States

E-mail addresses: jizhang.chen@hotmail.com (J. Chen) and junlingxu@outlook.com (J. Xu)
Fig. S1 TGA curve of RA-V₂O₅, measured in air at a heating rate of 10 °C min⁻¹.

Fig. S2 XRD pattern of C-V₂O₅, in comparison with that of RA-V₂O₅.
Fig. S3 (a, b) SEM images C-V₂O₅.

Fig. S4 XPS spectra of RA-V₂O₅ and C-V₂O₅.
Fig. S5 CV curves of C-V$_2$O$_5$ in initial three cycles at 0.2 mV s$^{-1}$.

Fig. S6 GCD curves of C-V$_2$O$_5$ in initial three cycles at 0.1 A g$^{-1}$.
Fig. S7 Log (i) versus log (v) plots of different redox peaks of (a) RA-V$_2$O$_5$ and (b) C-V$_2$O$_5$ under CV measurements.

Fig. S8 XRD pattern of neat CNT power.
Fig. S9 The magnified ex situ XRD patterns of RA-V$_2$O$_5$ at nine different charge/discharge states at 21$^{\text{th}}$ and 22$^{\text{th}}$ cycles.

Fig. S10 SEM images of the RA-V$_2$O$_5$ electrode surface after 2000 cycles at 2 A g$^{-1}$.
Table S1 The capacities of RA-V$_2$O$_5$ in comparison with that of state-of-the-art vanadium-based cathode materials for AZIBs.

Cathode material	Capacity	Reference
RA-V$_2$O$_5$	449.8 mA h g$^{-1}$ at 0.1 A g$^{-1}$	This report
	314.3 mA h g$^{-1}$ at 2 A g$^{-1}$	
	186.8 mA h g$^{-1}$ at 5 A g$^{-1}$	
Mg$_{0.34}$V$_2$O$_5$·0.84H$_2$O	353 mA h g$^{-1}$ at 0.1 A g$^{-1}$	1
	81 mA h g$^{-1}$ at 5 A g$^{-1}$	
Ag$_{0.4}$V$_2$O$_5$	340 mA h g$^{-1}$ at 0.1 A g$^{-1}$	2
	185 mA h g$^{-1}$ at 2 A g$^{-1}$	
Porous V$_2$O$_5$ nanofibers	319 mA h g$^{-1}$ at 0.02A g$^{-1}$	3
	104 mA h g$^{-1}$ at 3 A g$^{-1}$	
V$_2$O$_5$ nanosheets	224 mA h g$^{-1}$ at 0.1 A g$^{-1}$	4
	100 mA h g$^{-1}$ at 2 A g$^{-1}$	
V$_2$O$_5$ hollow spheres	188.7 mA h g$^{-1}$ at 0.5 A g$^{-1}$	5
	138.3 mA h g$^{-1}$ at 5 A g$^{-1}$	
VO$_2$	280 mA h g$^{-1}$ at 0.2 A g$^{-1}$	6
	147 mA h g$^{-1}$ at 5 A g$^{-1}$	
VO$_2$	283 mA h g$^{-1}$ at 0.1 A g$^{-1}$	7
	72 mA h g$^{-1}$ at 5 A g$^{-1}$	
V$_{10}$O$_{24}$·12H$_2$O	164.5 mA h g$^{-1}$ at 0.2 A g$^{-1}$	8
	90.4 mA h g$^{-1}$ at 5 A g$^{-1}$	
VS$_2$	190.3 mA h g$^{-1}$ at 0.05 A g$^{-1}$	9
	115.5 mA h g$^{-1}$ at 2 A g$^{-1}$	
LiV$_3$O$_6$	230 mA h g$^{-1}$ at 0.033 A g$^{-1}$	10
	29 mA h g$^{-1}$ at 1.666 A g$^{-1}$	
NaV$_3$O$_8$·1.5H$_2$O	375 mA h g$^{-1}$ at 0.1 A g$^{-1}$	11
	165 mA h g$^{-1}$ at 4 A g$^{-1}$	
NaV$_3$O$_{15}$ nanorods	427 mA h g$^{-1}$ at 0.05 A g$^{-1}$	12
	195 mA h g$^{-1}$ at 1.6 A g$^{-1}$	
Zn$_2$V$_2$O$_7$	203.4 mA h g$^{-1}$ at 0.3 A g$^{-1}$	13
	155 mA h g$^{-1}$ at 4 A g$^{-1}$	
Zn$_2$(OH)$_2$VO$_4$	204 mA h g$^{-1}$ at 0.1 A g$^{-1}$	14
	160 mA h g$^{-1}$ at 2 A g$^{-1}$	
Zn$_3$V$_2$O$_7$(OH)$_2$·2H$_2$O	213 mA h g$^{-1}$ at 0.05 A g$^{-1}$	15
	76 mA h g$^{-1}$ at 3 A g$^{-1}$	
Fe$_5$V$_{15}$O$_{30}$(OH)$_9$·9H$_2$O	385 mA h g$^{-1}$ at 0.1 A g$^{-1}$	16
	105 mA h g$^{-1}$ at 5 A g$^{-1}$	
VOPO$_4$	139 mA h g$^{-1}$ at 0.05 A g$^{-1}$	17
	50 mA h g$^{-1}$ at 5 A g$^{-1}$	
References

1. F. W. Ming, H. F. Liang, Y. J. Lei, S. Kandambeth, M. Eddaoudi and H. N. Alshareef, ACS Energy Lett., 2018, 3, 2602-2609.
2. L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou and S. Liang, Energy Storage Mater., 2018, 18, 10-14.
3. X. Chen, L. Wang, H. Li, F. Cheng and J. Chen, J. Energy Chem., 2019, 38, 20-25.
4. J. Zhou, L. T. Shan, Z. X. Wu, X. Guo, G. Z. Fang and S. Q. Liang, Chem. Commun., 2018, 54, 4457-4460.
5. F. Liu, Z. Chen, G. Fang, Z. Wang, Y. Cai, B. Tang, J. Zhou and S. Liang, Nano-Micro Lett., 2019, 11, 25.
6. H. Qin, L. Chen, L. Wang, X. Chen and Z. Yang, Electrochim. Acta, 2019, 306, 307-316.
7. L. N. Chen, Y. S. Ruan, G. B. Zhang, Q. L. Wei, Y. L. Jiang, T. F. Xiong, P. He, W. Yang, M. Y. Yan, Q. Y. An and L. Q. Mai, Chem. Mater., 2019, 31, 699-706.
8. T. Y. Wei, Q. Li, G. Z. Yang and C. X. Wang, J. Mater. Chem. A, 2018, 6, 8006-8012.
9. T. Y. Wei, Q. Li, G. Z. Yang and C. X. Wang, Electrochim. Acta, 2018, 287, 60-67.
10. P. He, M. Y. Yan, G. B. Zhang, R. M. Sun, L. N. Chen, Q. Y. An and L. Q. Mai, Adv. Energy Mater., 2017, 7, 1601920.
11. M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K. S. Lee, Y. K. Sun and J. Kim, Chem. Mater., 2017, 29, 1684-1694.
12. F. Wan, L. L. Zhang, X. Dai, X. Y. Wang, Z. Q. Niu and J. Chen, Nat. Commun., 2018, 9, 1656.
13. S. Islam, M. H. Alfaruqi, B. Sambandam, D. Y. Putro, S. Kim, J. Jo, S. Kim, V. Mathew and J. Kim, Chem. Commun., 2019, 55, 3793-3796.
14. B. Sambandam, V. Soundhartrajan, S. Kim, M. H. Alfaruqi, J. Jo, S. Kim, V. Mathew, Y. K. Sun and J. Kim, J. Mater. Chem. A, 2018, 6, 3850-3856.
15. D. L. Chao, C. Zhu, M. Song, P. Liang, X. Zhang, N. H. Tiep, H. F. Zhao, J. Wang, R. M. Wang, H. Zhang and H. J. Fan, Adv. Mater., 2018, 30, 1803181.
16. C. Xia, J. Guo, Y. J. Lei, H. F. Liang, C. Zhao and H. N. Alshareef, Adv. Mater., 2018, 30, 1705580.
17. Z. Peng, Q. L. Wei, S. S. Tan, P. He, W. Luo, Q. Y. An and L. Q. Mai, Chem. Commun., 2018, 54, 4041-4044.
18. F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu and J. Chen, Angew. Chem. Int. Edit., 2019, 58, 7062-7067.