Thailandina and **Neothailandina** and their family Thailandinidae salvaged: a valid taxonomic group of peculiar Permian fusuline Foraminifera

Katsumi Ueno

Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan <katsumi@fukuoka-u.ac.jp>

The fusuline genera **Thailandina** Toriyama and Kanmera, 1968 and **Neothailandina** Toriyama and Kanmera, 1968 were established by Toriyama and Kanmera (1968) based on material from the Khao Phleng Phrab section of the Permian Rat Buri Limestone in central Thailand that is currently assigned to the Khao Khd Formation of the Saraburi Group (Ueno and Charoenritit, 2011). These fusuline genera are peculiar in having paranchomata and replaced tests by secondary mineralization. Moreover, **Neothailandina** was described to have a test with transverse septula, considered to be characteristic for Neoschwagerinidae. Based on these remarkable test features, Toriyama and Kanmera (1968) newly introduced the subfamily Thailandininae to accommodate these two genera and assigned it to the Neoschwagerinidae, despite the lack of septula in **Thailandina**. Later, Kobayashi et al. (2010) argued that **Thailandina** and **Neothailandina** are just a mixed grouping of several known genera of schwagerinids, verbeekinids, and neoschwagerinids that are too altered by recrystallization to be recognizable, and rejected the taxonomic validity of these two genera as well as Thailandininae.

The Khao Phleng Phrab section represents one of the standard late Cisuralian—Guadalupian (late early—middle Permian) fusuline successions in the eastern Paleotethys (Zhang and Wang, 2018) and contains not only **Thailandina** and **Neothailandina** but also abundant schwagerinid, verbeekinid, and neoschwagerinid fusulines (Toriyama, 1975; Fig. 1). I investigated the original specimens described by Toriyama and Kanmera (1968) and Toriyama (1975) from the section that are housed in the Department of Earth and Planetary Sciences of Kyushu University, Japan. I found that most of the grounds for Kobayashi et al.’s (2010) arguments to regard the thailandin genera as taxonomically invalid are not supported by observations on these specimens as explained in the account that follows. In this taxonomic note, I propose that **Thailandina** and **Neothailandina**, and their family Thailandinidae, should be retained as valid taxonomic groups.

Kobayashi et al. (2010) noted, while referring to a similar opinion by Rauzer-Chernousova et al. (1996), that **Thailandina buravasi** Toriyama and Kammera, 1968 (Figs. 2.1–2.5, 3.13), the type species of the genus, merely represents replaced specimens of the genus **Miscellina** Schenck and Thompson, 1940. In fact, **Thailandina** usually occurs together with several different species of **Miscellina** (Figs. 1, 3.1–3.3, 3.9, 3.13), e.g., **Miscellina** cf. **Miscellina termieri** (Deprat, 1915) and **Miscellina confugaspira** Leven, 1967, and also occurs with the somewhat similar **Armenina saraburiensis** (Toriyama and Kanmera in Toriyama, 1975) (Fig. 3.8) and **Maklaya saraburiensis** Kammera and Toriyama, 1968 (Fig. 3.4). But, T. buravasi consistently has an ~1.5–2 times larger test in axial length than coexisting **Miscellina**, **Armenina**, and **Maklaya** spp. **Thailandina hongnusonthiae** Toriyama and Kammera, 1968 (Fig. 2.7) and T. sp. A (Fig. 2.6) have even larger tests, which are definitely out of the size range of known **Miscellina** spp. These observations conclude that **Thailandina** cannot be regarded as recrystallized specimens of coexisting **Miscellina**, or even of the similar **Armenina** Miklukho-Maklay, 1955 and **Maklaya** Kammera and Toriyama, 1968. Moreover, Kobayashi et al. (2010) thought that the apparent large to giant proloculi in thailandin specimens are the mere result of recrystallization of (smaller) proloculi and the early few volutions of the test and thus, do not show the original size of the proloculus. However, this observation does not seem reasonable. As illustrated in Figures 2.1–2.3, 2.5–2.7, and 3.13, a circular wall seen in the central part of **Thailandina** makes a distinct boundary with the inner hollow space, which is filled with mosaic calcite crystals that are similar to sparry calcite cement surrounding fusuline tests in the same limestone sample. Additionally, there is no vestige of test structure inside the circular wall. These observations lead to an interpretation that the large spherical ‘openings’ in the central part of **Thailandina** tests could never be a replaced relict of small proloculi plus a few inner whorls, but indeed represent the proloculus. **Neothailandina** has even larger proloculi (Fig. 2.8–2.12, 2.16, 2.17) and, as in **Thailandina**, these specimens also have a sharp prolocular wall separating the inner hollow space and outer coiled chambers, although in some specimens (Fig. 2.8, 2.17), the wall becomes slightly vague. It is interesting to note that there is a somewhat irregular, large, first coiled chamber that surrounds the large proloculus in some **Neothailandina** specimens (Fig. 2.9, 2.11) and this resembles the circumproloculus chamber described by Thompson (1964, fig. 283). Thus, the large central ‘openings’ in both **Thailandina** and **Neothailandina** are not made by the selective recrystallization of the inner part of the tests, but are considered as innate morphology of these fusulines, i.e., the proloculus.

As for some **Neothailandina** (Fig. 2.8, 2.10, 2.15–2.18), Kobayashi et al. (2010) considered that they are probably referable to recrystallized Parafusulina-like schwagerinids. In this regard, they probably mistook regularly arranged semicircular
structures seen in the lower part of chambers in the outer volutions of Neothailandina for septal loops in schwagerinids. In fact, there are a number of schwagerinid species, including those of Parafusulina Dunbar and Skinner, 1931, co-occurring with Neothailandina in the Khao Phlong Phrab section (Fig. 1). However, most associated Parafusulina spp. have elongate fusiform and cylindrical tests exemplified by Parafusulina japonica (Gümbel, 1874) (Fig. 3.12), and are fundamentally different in gross test morphology from thailandinids. Especially, Neothailandina komalarjuni Toriyama and Kanmera, 1968 (Fig. 2.17, 2.18), with its gigantic test, is not comparable to any schwagerinids from the section. There are a few species of Parafusulina and Pseudofusulina Dunbar and Skinner, 1931 that have fusiform or short cylindrical tests (e.g., Pseudofusulina kueichowensis obesa Sheng, 1963; Fig. 3.11). But, they have different internal test structures from thailandinids and so, these schwagerinids would not look like thailandinids even if they exhibited recrystallization. Kobayashi et al. (2010) also stated that some of Neothailandina (including the specimen illustrated in Fig. 2.14) are possibly recrystallized Neoschwagerinidae because vague, recrystallized partitions are preserved that probably correspond to transverse and axial septula. As shown in Fig. 1, there are a number of neoschwagerinid species from the Khao Phlong Phrab section and Toriyama...
Figure 2. *Thailandina* and *Neothailandina* reported by Toriyama and Kanmera (1968) from the Khao Phlong Phrab section of central Thailand. Original photomicrographs from Toriyama and Kanmera’s (1968) thin sections; plate and figure numbers in parentheses denote those by Toriyama and Kanmera (1968). (1–5): *Thailandina buravasi* Toriyama and Kanmera, 1968: (1) axial section of holotype (GK.D14009; pl. 6, fig. 1), Kpp-5; (2, 3) axial sections (pl. 6, figs. 5, 7), Kpp-5 and Kpp-24; (4) axial section of microspheric specimen (pl. 6, fig. 8), Kpp-5; (5) sagittal section (pl. 6, fig. 13), Kpp-5; (6) *Thailandina* sp. A, axial section (pl. 6, fig. 16), Kpp-10; (7) *Thailandina hongnusonthiae* Toriyama and Kanmera, 1968: axial section of holotype (GK.D13712a; pl. 7, fig. 1), Kpp-20; (8–16) *Neothailandina pitakpaivani* Toriyama and Kanmera, 1968: (8) axial section of holotype (GK.D13074a; pl. 7, fig. 9), Kpp-39; (9, 10, 12) sagittal sections (pl. 8, figs. 4, 5, 7), Kpp-30 and Kpp-39; (11, 15, 16) axial sections (pl. 7, figs. 10, 12, 14), Kpp-29, Kpp-37, and Kpp-51; (13) tangential section (pl. 7, fig. 19), Kpp-39; (14) oblique section (pl. 7, fig. 17), Kpp-29; (17, 18): *Neothailandina komalajaranii* Toriyama and Kanmera, 1968: (17) axial section (pl. 8, fig. 12), Kpp-51; (18) tangential section (pl. 8, fig. 14), Kpp-46. Scale bar = 1 mm (applicable to all specimens).
Neothailandina pitakpaivani sp. A, and all of these species are much smaller than landina neoschwagerinids in the B4 biostratigraphic interval where the result from simple recrystallization of coexisting iyama and Kanmera in Toriyama, 1975 (Fig. 3.10), and Kpp-37 from the replaced Neoschwagerinidae, occurred in samples Kpp-29 and (Leven, 1967) (Fig. 3.5), this interval, neoschwagerinids consist of Maklaya pamirica e.g., Neoschwagerina simplex simplex specimens of mera, 1968, which Kobayashi et al. (2010) considered to be relevant Neothailandina pitakpaivani of central Thailand, as reported by Toriyama (1975). Original photomicrographs from Toriyama (1975) illustrated somewhat large neoschwagerinid specimens, Figure 3. Major schwagerinid, verbeekinid, and neoschwagerinid fusulines associated with Thailandina and Neothailandina from the Khao Phlong Phrab section of central Thailand, as reported by Toriyama (1975). Original photomicrographs from Toriyama’s (1975) thin sections; plate and figure numbers in parentheses in (1-12) denote those by Toriyama (1975). (1) Misellina cf. Misellina termieri (Deprat, 1915), axial section (pl. 12, fig. 7), Kpp-9; (2) Misellina confraqaspira Leven, 1967, axial section (pl. 12, fig. 11), Kpp-5; (3) Misellina claudiae (Deprat, 1912), axial section (pl. 13, fig. 1), Kpp-23; (4) Maklaya saraburiensis Kanmera and Toriyama, 1968, axial section (pl. 18, fig. 21), Kpp-22; (5) Maklaya pamirica (Leven, 1967), axial section (pl. 18, fig. 16), Kpp-39; (6) Neoschwagerina simplex simplex Ozawa, 1927, axial section (pl. 19, fig. 26), Kpp-52; (7) Colania douvillei (Ozawa, 1922), axial section (pl. 20, fig. 23), Kpp-77; (8) Armenina saraburiensis (Toriyama and Kanmera in Toriyama, 1975), axial section (pl. 13, fig. 16), Kpp-9; (9) Misellina subelliptica (Deprat, 1915), axial section (pl. 12, fig. 3), Kpp-24; (10) Cancellina phlongphrabensis Toriyama and Kanmera in Toriyama, 1975, axial section (pl. 16, fig. 18), Kpp-34; (11) Pseudofusulina kueichowensis obesa Sheng, 1963, axial section (pl. 2, fig. 5), Kpp-21; (12) Parafusulina japonica (Gümbel, 1874), axial section (pl. 5, fig. 4), Kpp-38; (13) Thailandina buravasi (left) and Misellina cf. Misellina termieri (right) showing two different modes of preservation in the same thin section, Kpp-5; this photomicrograph has almost the same field of view as that shown by Toriyama and Kanmera (1968, pl. 8, fig. 15)—note that the proloculus and the chambers of T. buravasi are filled with sparry calcite cement that has a similar nature to that seen in interstitial spaces between grains in this limestone. Scale bars = 1 mm.

(1975) illustrated somewhat large neoschwagerinid specimens, e.g., Neoschwagerina simplex simplex Ozawa, 1927 (Fig. 3.6) and Colania douvillei (Ozawa, 1922) (Fig. 3.7). However, the specimens of Neothailandina pitakpaivani Toriyama and Kanmera, 1968, which Kobayashi et al. (2010) considered to be replaced Neoschwagerinidae, occurred in samples Kpp-29 and Kpp-37 from the Maklaya pamirica Biozone (B1a) (Fig. 1). In this interval, neoschwagerinids consist of Maklaya pamirica (Leven, 1967) (Fig. 3.5), Cancellina phlongphrabensis Toriyama and Kanmera in Toriyama, 1975 (Fig. 3.10), and Cancellina sp. A, and all of these species are much smaller than Neothailandina pitakpaivani. Thus, it is not likely that Neothailandina resulted from simple recrystallization of coexisting neoschwagerinids in the B1 biostratigraphic interval where the relevant Neothailandina pitakpaivani specimens were obtained.

The above-mentioned various lines of evidence lead to a conclusion that Thailandina and Neothailandina are not mere taphotaxa (Lucas, 2001) formed in the course of diageneis, but are indeed existing taxonomic entities that can be characterized by recrystallized tests probably originally of aragonite (e.g., Fig. 3.13) and parachomata (e.g., Fig. 2.1, 2.16). Moreover, Neothailandina has partitions of the chambers, which correspond to transverse septula (Fig. 2.13, 2.15, 2.18). The supposed original aragonitic test mineralogy in Thailandinidae suggests a close phylogenetic relationship to the existing fusuline family Staffellidae (Vachard et al., 2010), but the development of parachomata and transverse septula is disparate from that family. In view of the higher taxonomy of the fusulines, therefore, Thailandina and Neothailandina should be considered as forming a distinct family that constitutes a small collateral clade of Staffellidae in the superfamily Staffelloidea of the order Fusulinida.

In conclusion, contrary to Kobayashi et al.’s (2010) arguments, Thailandina and Neothailandina, and the higher taxon Thailandinidae to include these genera, should be retained as taxonomically valid and included in the Staffelloidea in fusuline...
systematics. Kobayashi et al. (2010) assumed, while referring to a notable photomicrograph by Toriyama and Kanmera (1968, pl. 8, fig. 15) showing Thailandina with a recrystallized test in close association with well-preserved Misellina (Fig. 3.13), that it appears to be an exceptional example of (selective) metamorphic recrystallization. However, my thorough observation of Toriyama and Kanmera’s (1968) and Toriyama’s (1975) Khao Phlong Phrabor material concludes that this case can be of universal application to all of the co-occurrences of thailandinids and other microgranular fusulines from the section. In those samples, all tests of Thailandinidae are invariably recrystallized whereas microgranular species are always well preserved. Kobayashi et al. (2010) further argued that sedimentary reworking of specimens at a disconformity can also potentially produce a mixture of specimens in different preservation states. As noted above, however, the internal spaces (proloculus and chambers) of thailandinid tests are filled with the same type of cement found in the interstitial spaces between grains in the host limestone (Fig. 3.13). That interpretation is, therefore, rejected for the Khao Phlong Phrabor thailandinids. Kobayashi et al. (2010, fig. 1) illustrated schwagerinid, neoschwagerinid, and verbeeki-nid fusuline specimens from the Akasaka Limestone of central Japan that represent several different states of contact metamorphic alteration from partial recrystallization to complete degradation of tests. Using this example, they intended to demonstrate that thailandinids were made by a similar metamorphic process affected on other microgranular fusulines. But, those illustrated fusulines show an essentially different recrystallization appearance from thailandinid specimens in the Khao Phlong Phrabor section (e.g., Fig. 3.13). Recrystallization of the latter is due probably to the mineralogical change from aragonite to calcite in their tests, which occurred during early diagenesis. It is a different content from contact metamorphism.

A similar occurrence in the mixture of recrystallized Thailandina and well-preserved microgranular fusulines (verbeekinids and neoschwagerinids) was also reported by Zhou and Planetary Sciences (G. K. D.). I am also grateful to M. K. N. N. S. Tell (University of Texas at Arlington, USA) and Y. Wang (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences) for their constructive reviews, and to J. S. Jin and G. Nestell for editorial suggestions.

References

Deprat, J., 1912, Étude géologique du Yun-Nan oriental, 3e partie: Étude des Fusulinés de Chine et d’Indochine et classification des calcaires à Fusulines: Mémoires du Service Géologique de l’Indochine, v. 1, fasc. 3, p. 1–76.

Deprat, J., 1913, Étude des Fusulinés de Chine et d’Indochine et classification des calcaires à fusulines (2e Mémoire): Les Fusulinés des calcaires carbonnifièrs et permien du Tonkin, du Laos et du Nord-Annam: Mémoires du Service Géologique de l’Indochine, v. 2, fasc. 1, p. 1–74.

Deprat, J., 1915, Étude des Fusulinés de Chine et d’Indochine et classification des calcaires à fusulines (4e Mémoire): Les Fusulinés des calcaires carbonnifièrs et permien du Tonkin, du Laos et du Nord-Annam: Mémoires du Service Géologique de l’Indochine, v. 4, fasc. 1, p. 1–30.

Dunbar, C.O., and Skinner, J.W., 1931, New fusulinid genera from the Permian of west Texas: American Journal of Science, ser. 5, v. 22, p. 252–268.

Günther, C.W. von, 1874, Japanische Gesteine: Das Ausland, v. 47, p. 479–480.

Hanzawa, S., 1942, Parafusulina yabei n. sp. from Tomuro, Simotuke Province, Japan: Japanese Journal of Geology and Geography, v. 18, p. 127–131.

Kanmera, K., 1963, Fusulines of the middle Permian Kozaki Formation of southern Kyushu: Memoirs of the Faculty of Science, Kyushu University, ser. D, Geology, v. 14, p. 79–141.

Kanmera, K., and Toriyama, R., 1968, Fusulineaceans from Thailand, Part 3: Maklaya, new generic designation for neoschwagerinids of the group of Cancellina pummarica Leven, in Kobayashi, T., and Toriyama, R., eds., Geology and Palaeontology of Southeast Asia, Volume 5: Tokyo, University of Tokyo Press, p. 31–46.

Kobayashi, F., Ross, C.A., and Ross, J.R.P., 2010, Thailandina and Neothailandina, and their subfamily Thailandininae: An example of an invalid taxonomic group of Permian fusuline Foraminifera: Journal of Palaeontology, v. 84, p. 360–361, https://doi.org/10.1666/0022-3360(2010)84[360:TAANAT]2.0.CO;2.

Kobayashi, M., 1957, Paleontological study of the Biakiyama Limestone, Shiga Prefecture, central Japan: Science Reports of the Tokyo Kyoku Daitaka, ser. C, Geology, Mineralogy and Geography, v. 5, p. 247–311.

Kochansky-Devidé, V., 1958, Die Neoschwagerinidenfauna der südlichen Crna Gora (Jugoslawien): Geologija i Vjesnik v. 11, p. 45–76.

Leven, E.Y., 1967, [Stratigrafiya i fuzulinidki permiskikh otlozhennii Pamiir]: Akademiya Nauk SSSR, Trudy Geologicheskogo Instituta, v. 167, p. 1–224. [in Russian]

Lucas, S.G., 2001, Taphotaxon: Lethaia, v. 34, p. 30, https://doi.org/10.1080/002189901100463198.

Mikulko-Maklay, A.D., 1955, [Novye dannoye o permiskikh fuzulinidkakh yuzhnykh rayonov SSSR]: Doklad Akademii Nauk SSSR, v. 105, p. 573–576. [in Russian]

Ozawa, Y., 1922, [Preliminary note on the classification of the family Fusiulini-dae: Journal of the Geological Society of Japan, v. 29, p. 357–374. [in Japanese]

Ozawa, Y., 1925, Paleontological and stratigraphical studies on the Perm-Carboniferous limestone of Nagato, Part 2, Paleontology: Journal of the College of Science, Imperial University of Tokyo, v. 45, no. 6, p. 1–90.

Ozawa, Y., 1927, Stratigraphical studies of the Fusulina Limestone of Akasaka, Province of Mino: Journal of the Faculty of Science, Imperial University of Tokyo, Section 2, Geology, Mineralogy, Geography, Seismology, v. 2, p. 121–164.

Rauzer-Chernousova, D.M., Bensh, F.S., Vdovenko, M.V., Gibshman, N.B., Leven, E.Ya., Lipina, O.A., Reitlinger, E.A., Solov’eva, M.N., and Chediya, I.O., 1996, [Spravochnik po Sistematike Foraminifer Paleozoya]: Moscow, Nauka, 207 p. [in Russian]

Roemer, F., 1880, Über eine Kohlenkalk-Fauna der Westküste von Sumatra: Palaeontographica, v. 27, p. 1–11.

Sakaguchi, S., and Sugano, K., 1966, A new species of Misellina from the Akiyoshi Limestone at the Kairimizu Sink Hole, Yamaguchi Prefecture, southwest Japan: Memoirs of the Osaka University of the Liberal Arts and Education, ser. B, Natural Science, v. 15, p. 143–152.

Schellwien, E., 1898, Die Fauna des karnischen Fusulinenkalks, Teil 2, Foraminifera: Palaeontographica, v. 44, p. 237–238.

Schenck, H.G., and Thompson, M.L., 1940, Misellina and Brevisaxina, new Per- mian fusulino Foraminifera: Journal of Paleontology, v. 14, p. 584–589.

Sheng, J.C., 1963, Permin fusulino Foraminifera of Khao Phlong Phrabor and Szechuan: Palaeontographica Sinica, n. ser. B, no. 10, p. 1–247.

Sheng, J.C., 1965, [Fusulins from the western part of Hainan Island, Kwangtung Province]: Acta Palaeontologica Sinica, v. 13, p. 563–579. [in Chinese with English abstract and new species description]

Staff, H. von, 1912, Monographie der Fusulinen, Teil 3, Die Fusulinen (Schell- wienien) Nordamerikas: Palaeontographica, v. 59, p. 157–192.

Thompson, M.L., 1964, Fusulinae, in Loeblich, A.R., Jr., and Tappan, H., eds., Treatise on Invertebrate Palaeontology, Part C, Protista 2, Sarcodina Chiefly ‘Thecamoebians’ and Foraminifera: Boulder and Lawrence,
Thompson, M.L., and Miller, A.K., 1944, The Permian of southernmost Mexico and its fusulinid faunas, Journal of Paleontology, v. 18, p. 481–504.
Thompson, M.L., Wheeler, H.E., and Hazzard, J.C., 1946, Permian fusulinids of California: Geological Society of America Memoir, v. 17, p. 1–77.
Toriyama, R., 1975, Fusuline fossils from Thailand, Part 9, Permian fusulines from the Ratburi Limestone in the Khao Phlong Phrab area, Sara Buri, central Thailand: Memoires of the Faculty of Science, Kyushu University, ser. D, Geology, v. 23, p. 1–116.
Toriyama, R., and Kanmera, K., 1968, Fusulinacean fossils from Thailand, Part 2, Two new Permian genera from Thailand, in Kobayashi, T., and Toriyama, R., eds., Geology and Palaeontology of Southeast Asia, Volume 4: Tokyo, University of Tokyo Press, p. 29–44.
Ueno, K., and Charoentitirat, T., 2011, Carboniferous and Permian, in Ridd, M.F., Barber, A.J., and Crow, M.J., eds., The Geology of Thailand: London, The Geological Society, p. 71–136.
Vachard, D., Pille, L., and Guillot, J., 2010, Palaeozoic Foraminifera: Systematics, palaeoecology and responses to global changes: Revue de Micropaléontologie, v. 53, p. 209–254, https://doi.org/10.1016/j.revmic.2010.10.001.
Zhang, Y.C., and Wang, Y., 2018, Permian fusuline biostratigraphy, in Lucas, S.G., and Shen, S.Z., eds., The Permian Timescale: London, The Geological Society, Special Publications no. 450, p. 253–288, https://doi.org/10.1144/SP450.14.
Zhou, Z.R., and Liengjarern, M., 2007, Early Permian verbeekinacean fusulinids associated with ammonoid Perrinites from Thailand: Acta Micropalaeontologica Sinica, v. 24, p. 346–358.
Accepted: 14 August 2021