Role of Genes and Treatments for Parkinson’s Disease

Falaq Naz1 and Yasir Hasan Siddique1,*

1Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India

Abstract: Parkinson’s Disease (PD) is a complex neurodegenerative disorder that mainly results due to the loss of dopaminergic neurons in the substantia nigra of the midbrain. It is well known that dopamine is synthesized in substantia nigra and is transported to the striatum via nigrostriatal tract. Besides the sporadic forms of PD, there are also familial cases of PD and number of genes (both autosomal dominant as well as recessive) are responsible for PD. There is no permanent cure for PD and to date, L-dopa therapy is considered to be the best option besides having dopamine agonists. In the present review, we have described the genes responsible for PD, the role of dopamine, and treatment strategies adopted for controlling the progression of PD in humans.

Keywords: Parkinson’s disease, Neurodegenerative diseases, Dopamine, Vata rogas, Neurological disorder, Shaking palsy.

1. INTRODUCTION

Neurodegeneration refers to the condition which primarily affects neurons [1]. Hippocrates (460-375 BC), in his important treatise entitled ‘On The Sacred Disease’ describes epilepsy and relates it with the brain. In the ancient period, neurological disorders were classified under humor- Vata rogas (diseases) in Ayurveda. Vata refers to the energy present in the body involved in controlling both voluntary and involuntary functions. Any change in vata leads to the pathogenesis of the neurodegenerative disease. In Ayurveda, about eighty types of neurological disorders have been described, such as apasmara /apasmati (Epilepsy), kampavata (Parkinson’s disease). The clinical symptoms and treatments of neurodegenerative disease have been described by Hippocrates [2 - 5].

The clinical symptoms of neurodegenerative diseases are often characterized by alteration in cognitive function, movement, memory and learning, co-ordination and autonomic control [6]. Worldwide neurological disorders have more than 6% of the total burden of diseases [7]. The most common neurological diseases are Alzheimer's Disease (AD), Parkinson’s Disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS), fronto-temporal dementia and the spinocerebellar ataxia (Table 1).

Neurodegenerative diseases/disorders have different pathophysiology, along with cognitive impairments. The loss of brain cells in neurodegenerative diseases is not a rapid process but rather a very slow process that becomes worse during the progression of the disease. Sporadic, as well as familial forms of neurodegenerative diseases, are common in the human population. These forms are difficult to distinguish phenotypically as well as histologically. A number of causative genes have been discovered for the neurodegenerative disease [8]. James Parkinson was born on April 11, 1755, in the semi-urban hamlet of Hoxton, Northeast of the city of London, England. He describes PD for the first time. PD is an age-progressive disease, (second after AD), of the nervous system. James Parkinson was the first who provided a description of “Paralysis agitans” or “Shaking palsy”, in his popular monograph named “An Essay on the Shaking Palsy”, in 1817 [9, 10].

2. BASIC STRUCTURE AND FORMATION OF DOPAMINE IN DOPAMINERGIC NEURONS

PD is a complex neurological disorder of CNS that affects mainly the motor system of the body. The non-motor symptoms also become worsen as the disease progresses [11, 12]. Early symptoms of the PD are shaking, rigidity, slowness of movement, and difficulty in walking [13, 14]. The behavioural problems may also occur with the disability of thinking power. It is reported that about 3% of the affected
people are above 65 years of age [15]. In PD, nerve cells of substantia-nigra of the mid-brain are degenerated. The basal ganglia help in initiating and smoothing of voluntary muscle movements, suppresses involuntary movements and problem in changes of posture [16, 17]. Each part of the brain consists of Globus pallidus i.e. internal and external. The other part of the brain which is involved in the neurotransmitter function is the striatum, which includes caudate nucleus, putamen and substantia nigra. There are basically two pathways by which three main neurotransmitters work i.e. Glutamate, GABA and Dopamine [18, 19]. The basal ganglia release neurotransmitters (chemical messenger) for the activation of nerve impulse pathways. The main neurotransmitter in the basal ganglia is dopamine [20]. If the nerve cells in the basal ganglia are degenerated then there will be less production of dopamine, leading to the loss of control on muscle movements (Fig. 1). It leads to tremors, bradykinesia, hypokinesia, posture problems and the loss of overall coordination of functions. The substantia nigra, which is degenerated in PD plays an important role in the normal functioning of motor and non-motor activity of the body. The substantia nigra sends chemical message through axons that pass throughout the striatum and help in the movement of a particular part of the body. This is known as the nigrostriatal pathway or dopamine secretion pathway [21, 22].

The signals from one neuron to another are transferred through the active neuron refers as dopaminergic neurons. Within the striatum, there are neurons having specific receptors to recognize and respond to dopamine only. These receptors cannot be activated by any other neurotransmitters. When the cells in substantia nigra are dead, the level of dopamine decreases rapidly as a result, striatal cells are not activated and the PD symptoms increases day by day [23, 24]. The presence of dopaminergic neurons in the brainstem was first reported by Dahlstrom and Fuxe in 1964. In the pathophysiology of PD, the importance of dopamine depletion was first suggested by Carlsson in the late 1950s [25, 26]. In 1960, Ehringer and Hornykiewicz published their report after examining six cases of PD that the dopamine content in the neostriatum was found to be severely reduced. Dopamine (an amine), is synthesized by a precursor molecule L-Dopa. It is synthesized in the brain as well as in kidneys [27, 28].

It is well established that dopamine itself is a neurotransmitter that is synthesized in substantia nigra and transported to the striatum via the nigrostriatal tract. Several other functions have also been attributed to dopamine i.e. it can act as a vasodilator, it enhances sodium excretion and urine output; it reduces insulin production, gastrointestinal motility and protects intestinal mucosa. It also reduces the activity of lymphocytes [25, 29]. Dopamine is not able to cross the blood-brain barrier, so the interest was focused on the dopamine precursor levodopa. Levodopa takes entry into the brain with a large neutral amino acid transport pathway and can be decarboxylated to form dopamine. Henry Dale, a Physician, was first to examine the biological activity of dopamine in 1910. He suggested the shorter name dopamine in 1952. The Physician George Barger and James Hill synthesized 3,4-dihydroxyphenylethylamine at The Well-Come Laboratories in London [30]. At the same time, Kathleen Montagu and Arvid Carlsson, together with Lindqvist, Magnusson, and Waldeck in 1957, reported the presence of dopamine in the brain, and in 1959, the Swedish group claimed the presence of dopamine in high concentrations in the striatum [31 - 33]. Marthe Vogt suggests that there is a continuous discharge of dopamine but was not sure about dopamine to be a conventional neurotransmitter in the neurons of nigrostriatal regions [34]. Dahlstrom (1973) [35] was also not sure about the presence of dopamine in the Central Nervous System (CNS). Dopamine receptors play an essential role in daily life functions. There are various dopamine receptors in the CNS, specifically in the hippocampal dentate gyrus and sub-ventricular zone. The five types of dopamine receptors, namely, D1, D2, D3, D4, and D5 has been described to date. Each receptor has a different function. According to Mishra et al. (2018) [36] the functions

Table 1. Common Neurodegenerative diseases and their pathological characteristics with their founders.

Diseases	Neurodegenerative Diseases					
Dementia	Dr. Philippe Pinel, 1797					
Parkinson’s disease (PD)	Dr. James Parkinson, 1817					
Spino-cerebellar Ataxia (SCA)	Dr. Nikolaus Friedrich, 1863					
Huntington’s disease (HD)	Dr. George Huntington, 1872					
Amyotrophic lateral sclerosis (ALS)	Dr. Jean-Martin Charcot, 1874					
Alzheimer’s disease (AD)	Dr. Alois Alzheimer, 1906					
Characteristics	The two lobes become damaged and then shrink. The genetic mutations are thought to have a negative effect on a protein called the tau protein. All brain cells contain tau proteins that help to keep them stable but abnormal tau proteins may lead to dementia.	Normally brain neurons produce chemical messenger known as dopamine. When the neurons die or become impaired, they produce less dopamine and Lewy bodies formed unusual clumps of the protein α-synuclein in substantia nigra which causes the PD.	Mutation in several forms of SCA1 protein in brainstem cerebellum and spinal cord lead to Spino-cerebellar Ataxia.	Mutation in HTT gene instruct to make a protein i.e. huntingtin. DNA segment “CAG” segment is repeated normal 36 to more than 120 times which cause HD.	Mutations in gene encoding superoxide dismutase 1 (SOD1) in nerve cells that cause ALS.	Abnormal clumps i.e. amyloid plaques and tangled bundles of fibers i.e. neurofibrillary tangles or tau.
of various dopamine receptors are as follows:

- **D1**: memory, attention, impulse control, regulation of renal function and locomotion.
- **D2**: locomotion, attention, sleep, memory and learning.
- **D3**: cognition, impulse control, attention and sleep.
- **D4**: cognition, impulse control, attention and sleep.
- **D5**: decision making, cognition, attention and renin secretion.

Further, the two types of sub-families of dopamine receptors are D1-like family and D2 like family. The D1 and D5 receptors belong to D1-like family of dopamine receptors, and D2, D3 and D4 receptors belong to the D2-like family [37]. D1 and D5 receptors coupled to G stimulatory sites and activate adenylyl cyclase. The activation of adenylyl cyclase leads to the production of the second messenger cAMP, which further leads to the production of protein kinase A (PKA) and affects transcription in the nucleus [38, 39]. The D1 receptor is most abundantly distributed in the CNS, followed by D2, D3, D5 and D4 (D1>D2>D3>D5>D4) [40]. D1 receptors regulate the development of neurons are play an important role in the regulation of most of the cognitive activities as well as locomotion [41]. D1 and D5 receptors have high density in the striatum, nucleus accumbens, olfactory bulb, and substantia nigra. D1 and D5 receptors, along with stimulating adenyl cyclase, also activates phospholipase C, which leads to the induction of intracellular calcium release and activation of protein kinase C. Protein kinase C is a calcium-dependent protein kinase. Cal-cium is also involved in modulating the neurotransmitter released by exocytosis. D1 and D5 inhibits Na/K ATPase i.e. cyclic AMP-dependent Protein Kinase (PKA) calcium- and phospholipid-dependent Protein Kinase (PKC) pathways in the kidneys [42]. D2, D3, and D4 receptors are expressed mainly

![Diagram](image_url)
Fig. (1). Direct and indirect dopaminergic pathway.
in the striatum, external globus pallidus, core of nucleus accumbens, hippocampus, amygdala, and cerebral cortex. These receptor affects the postsynaptic receptor-mediated extrapyramidal activity. D2-D4 receptors are important for signaling, the survival of human dopaminergic neurons and their development [43, 44]. It has been reported in mice that the dysfunction of the dopaminergic pathways leads to neurological and psychiatric disorders [45, 46]. Fig. (2) shows a comparison of the normal brain with a brain affected by various factors that are responsible for inducing PD. The dopamine signaling is important for maintaining the normal physiological processes. The disruption of pathways may lead

Fig. (2). Comparison of dopamine signaling pathway in normal brain and PD brain.
to the dysfunctions attributed to neurodegenerative disorders. Tyrosine in the presence of Tyrosine Hydroxylase (TH) is converted into L-Dopa. Then, L-Dopa is converted into the Dopamine in the presence of DOPA Decarboxylase (DDC). Dopamine is transported from the cytosol by a Vesicular Monoamine Transporter (VMAT2) into the synaptic vesicles where it is stored until its release into the synaptic cleft. Dopamine receptors are present in both post as well as presynaptic neurons (including Dopamine Transporter, DAT). The required dopamine reaches the postsynaptic synapse through the dendrites, which leads to the normal functioning of both motor and non-motor neurons [47].

3. GENETICS OF PARKINSON’S DISEASE (PD)

Several common cellular mechanisms of protein aggregation are involved in the progression of neurodegenerative diseases. The β-amyloid is the main part of plaques formation in AD, α-synuclein in Lewy bodies (LBs) formation in the substantia nigra in PD and dementia with LBs (DLB), and expanded repetition of polyglutamine is found as intra-nuclear and cytoplasmic inclusions in HD [48, 49]. The LBs were first described by F.H. Lewy in 1912, in the nucleus of Basalis of Meynert and the dorsal vagal nucleus in patients with PD. It was named in the honour of Friederich H. Lewy by Tretiakoff, who confirmed the presence of LBs in the substantia nigra [50 - 52]. LBs are rounded, eosinophilic and intra-cytoplasmic neuronal inclusion or aggregation of α-synuclein. According to some studies, the LBs are found in the selected areas of the brain i.e. substantia nigra, locus ceruleus, dorsal vagal nucleus, the nucleus of Meynert, hypothalamus cortex and sympathetic ganglia [53 - 55]. For the last 20 years several important discoveries have been made by researchers on the genetics of PD. The SNCA and its mutations are associated with autosomal dominant parkinsonism [56, 57]. Mutations in this gene include missense, which results in amino acid substitutions. SNCA-related PD is not so common, but identification of SNCA mutations has led to the identification of α-synuclein as the major component of Lewy bodies [58 - 61]. α-synuclein has 140 amino acids, that belongs to the family of related synucleins (β-synuclein of 134 amino acids) [62, 63]. α-synuclein contains an acidic stretch towards the C-terminus and there are no cysteines and tryptophans. Structurally, human α-synuclein consists of three regions i.e. an N-terminal amphipathic region, a hydrophobic central region, and an acidic C-terminal region [61, 64 - 66]. Six genes have been found to be associated with autosomal dominant forms of PD i.e. SNCA, LRRK2, VPS35, EIF4G1, DNAJC13, and CHCHD2 and three with autosomal recessive forms of PD i.e. Parkin, PINK 1 and DJ-1 [67, 68].

4. GENES INVOLVED IN THE AUTOSOMAL DOMINANT FORMS OF PD:

4.1. SNCA (PARK1-4)

The product of SNCA is α-synuclein protein. Its aggregation leads to the formation of Lewy bodies [69, 70]. It is localized in presynaptic terminals of the dopaminergic neurons [71]. It is reported that patients suffering from PD with SNCA mutations are associated with early-onset of PD (age of onset ≤50 year). The association of REP1 polymorphism in the promoter region of the gene and PD has been suggested by the researchers [72, 73]. The exact function of α-synuclein is still unknown, but it has been suggested that it plays an important role in the transport of synaptic vesicles thus maintaining the synaptic plasticity [74]. The abnormal form of the protein is more susceptible to fibrillogensis and self-aggregation [58, 75, 76]. Only three different missense mutations in the form of duplications and triplications have been reported to date [77]. The first missense is p.A53T, which is most frequent and reported in various studies from Italy, Greek, Korea and Sweden [76, 78 - 82], p.A53T substitution was discovered in 1997. The p.A30P and p.E46K substitutions were discovered in 1998 and 2004, respectively [53, 76].

The penetrance of the missense mutations is about 85% for p.A53T [83, 84]. However, the penetrance of SNCA duplication was surprisingly found to be low as 33.3%, in Japanese family [85]. The SNCA consist of six exons ranging in size from 42 to 1110 bp and the α-synuclein is about 140 amino acid long [86]. It has three domains: (i) the amino-terminal region (ii) a central hydrophobic domain and (iii) an acidic, negatively charged C-terminal domain. All three missense mutations are associated with the amino-terminal domain [87]. When associated with the phospholipid membranes, via its amino-terminal repeats (amino acids 71-82), it adopts a structure rich in α-helical character [88]. The mutation in the gene results in the formation of toxic oligomers of stable β-sheets and thus forming protofibrils and amyloid fibrils [89 - 91]. The accumulation of glucocerebrosides, due to the loss of functional glucocerebroside is inhibits the aggregation of α-synuclein. α-synuclein inhibits the lysosomal activity of glucocerebroside in the neurons [92, 93].

4.2. LRRK2 (PARK8)

LRRK2 (leucine-rich repeat kinase-2), is a large multidomain protein, involved in neurite outgrowth, synaptic morphogenesis, protein cargo trafficking, autophagy and protein synthesis [94]. The LRRK2 is also involved in the making of dardarin [95]. LRRK2 also play an important role in regulating the innate immune system. It has a conserved supra domain consisting of a Ras-like GTPase called Roc (Ras of complex proteins) and a C-terminal of Roc (COR) domain [96]. LRRK2 is involved in dual enzymatic functions (GTPase and kinase activity). So far 80 mutations have been reported for LRRK2, and only six mutations have been found to be associated with PD i.e. N1437H, R1441 G/H/C, Y1699C, I2012T, G2019S, and I2020T [97 - 99].

Mutation in the LRRK2 (PARK8) gene (leucine-rich repeated kinase-2) is the most common cause of late-onset autosomal-dominant PD (ADPD) as well as the sporadic form of PD, having a mutation frequency of 2 to 40% among different populations [100 - 102]. LRRK2 consists of 51 exons and encodes the 2527 amino acid cytoplasmic protein. It consists of a leucine-rich repeat towards the amino terminus and a kinase domain towards the carboxyl terminus. More than 50 different missense and nonsense mutations have been reported for LRRK2 to date among which 16 of them (including the six recurrent mutations- p.R114C, p.R1441G, p.R1441H,
p.Y1699C, p.G2019S, and p.I2020T) seems to be pathogenic [103]. The mutation c.6055G >A (p.G2019S) has been reported in 40% of Arabs [101], 20% of Ashkenazi Jews [102], and 1%-7% of Europeans [104, 105]. Few researchers have described p.G2019S mutation in homozygous conditions [106]. Due to the founder effect, p.R1441G is very frequent among Basques [107, 108] and p.I2020T among Japanese patients [109]. The p.G2019S showed reduced penetrance, whereas p.R1441 mutation has been reported to be highly penetrant [110]. The exact mechanism leading to PD by LRRK2 mutations is not properly understood. However, due to its large size, any change in its domain would lead to the loss of its interaction with other proteins, thus inhibiting its function. In addition, various mutations have also been reported to affect its kinase activity [111].

4.3. VPS35, EIF4G1, DNAJC13 and CHCHD2

VPS35, EIF4G1, DNAJC13, and CHCHD2 are the most recent genes to be associated with autosomal dominant form of PD. VPS35 (vacular protein sorting 35), a multi subunit complex, is found to be associated with endosomes and is involved in intracellular membrane-bound compartments transportation between the plasma membrane to golgi bodies [112, 113]. EIF4G1 (eukaryotic translation initiation factor 4-gamma) mutations are also linked with PD. It may interact with FMR1, involved in the regulation of the actin cytoskeleton pathway, have shown the strongest association with PD [103, 114]. DNAJC13 (mammalian homolog to receptor-mediated endocytosis 8 (REM-8)) is a chaperone protein found in endosomes and regulates trans-membrane protein transfer. A mutation in DNAJC13 showed aberrant endosomal confinement of α-synuclein, which might stimulate the process of neurodegeneration leading to PD [115, 116]. CHCHD2 (Coiled-coil-helix-coiled-coil-helix domain containing protein 2), is a mitochondrial protein, promotes mitochondrial oxygen consumption and its mutation leads to apoptosis and production of reactive oxygen species (ROS) (mitochondrial dysfunctioning) [117 - 119].

5. GENES INVOLVED IN AUTOSOMAL RECESSIVE FORMS OF PD

Three genes (parkin, PINK1 and DJ-1) have been identified to be associated with autosomal recessive form of inherited parkinsonism. parkin encodes for E3 ubiquitin ligase, which controls the proteasome-dependent degradation or autophagy in neurons [120]. PINK1, is a mitochondrial kinase plays an important role in mitophagy [121, 122]. The mutations in DJ-1 bring changes in mitochondrial morphology and leads to the high production of reactive oxygen species [123]. The most common cause of autosomal recessive PD is the mutation in parkin. Parkin mutation has been reported in about 49% of familial cases and about 15% of sporadic cases [124, 125]. Mutations in DJ1 (1-8%) and PINK1 (1-2%) are less common. The function of DJ-1 is not well understood, but it protects mitochondria against the oxidative stress [126 - 128]. The proteins encoded by parkin, PINK1 and DJ-1 are directly or indirectly involved in the recovery of damaged mitochondria [129 - 131]. The other genes associated with PD are ATP13A2 [132, 133], FBX07 [134, 135], PLA2G6 [136, 137], POLG1 [138, 139] and SYNJ1 [140, 141]. Genetic mapping methods such as linkage analysis and genome-wide association studies have been reported to be helpful in identifying new genes responsible for PD [142].

5.1. Parkin (PARK2)

Parkin gene was discovered in 1998. It contains 12 exons. The clinical phenotypes of Parkin, PINK1 and DJ-1 linked PD are identical [143, 144]. A number of parkin mutations have been identified in all 12 exons [106, 124]. The mutations associated with parkin lead to the early onset of PD that accounts for about 77% of the familial cases with an age of onset <30 years [124]. The protein has a conserved Ubiquitin-Like domain (UBL) with Really Interesting New Gene (RING) finger motifs [145, 146]. There are two main targets for parkin (i) CDCrel - 1, belongs to the family of GTPases called sepins, and is expressed in synapic vesicles [145, 147], (ii) Pael-R (Parkin associated endothelin receptor). Parkin specifically ubiquititates this receptor in the presence of ubiquitin-conjugating enzymes and promotes the degradation of insoluble Pael-R, resulting in the suppression of cell death. In the absence of functional parkin, Pael-R accumulates in the brains and leads to neuronal death [148, 149]. It has been reported that protein synphilin-1, ubiquitinated by parkin leads to the formation of protein aggregates [150].

5.2. PINK1 (PARK6)

PINK1 (PTEN-induced kinase 1), is a mitochondrial serine or threonine-protein kinase. PINK1 is a 581 amino acid protein kinase [151]. The mitochondrial membrane protein PINK1 mutations are also found in the forms of familial PD. An amino-terminal of the protein has 34 amino acids (mitochondrial targeting motif), and the carboxy-terminal serve as an autoregulatory domain. Some recent studies have suggested that PINK1 and parkin, are associated with a common pathway, for eliminating the deformed mitochondria [152]. PINK1 attaches itself to the mitochondrial membrane and recruits parkin from the cytosol. Once recruited parkin becomes enzymatically active and initiates the process of eliminating the mitochondria (mitophagy) [153].

Mutations in the phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) leads to the onset of early autosomal recessive PD. The frequency of PINK1 mutations is about 1-9%, varying among different ethnic groups [129, 151, 154 - 156]. PINK1 mutations have been reported as either missense or nonsense mutations in the Sudanese family (exons 4-8) [157], exons 6-8 deletion in a sibling family [156], and exon-7 deletion [158], and one with a splice site mutations [159]. To date, about 60 different missense and nonsense mutations have been reported in more than 170 patients, affecting all eight PINK1 exons with a nearly equal frequencies (5-10 different mutations in each exon) [160].

5.3. DJ-1 (PARK7)

The mutation of DJ-1 is reported in about 1-2% of PD cases [161]. DJ-1 has different mechanisms to protect dopaminergic neurons against neurodegeneration in PD [162]. DJ-1-linked PD is rare and so far, only ten different point
mutations and exonic deletions have been found to be associated with the disease [163]. The level of oxidative stress regulates its activity [164]. The gene consists of seven exons and codes for a protein of 189 amino acids [165]. In physiological condition, DJ-1 protein forms a dimeric structure [166].

6. OTHER GENES RESPONSIBLE FOR PD

Mutations in ATP13A2 are associated with an autosomal recessive form of PD i.e. Kufor-Rakeb syndrome (KRS). It has a juvenile onset with rapid progression, followed by dementia, supranuclear gaze palsy and pyramidal signs [167, 168]. The gene consists of 29 exons, which codes for a protein of 1180 amino acids. The ATP13A2 protein is normally located in the membrane of lysosome, with 10 trans-membrane domains having an ATPase domain [169]. The first mutation in ATP13A2 (PARK9) was reported in a Chilean family [170, 171]. The lysosomal enzyme β-glucocerebrosidase is coded by GBA gene and play a role in glycolipid metabolism. Mutations in the GBA gene results in the production of non-functional β-glucocerebrosidase which leads to Gaucher disease [172]. GBA mutations are reported to enhance the progression of PD and about 8-14% of the autopsy revealed its link with PD [173 - 175].

The complex interactions of environmental and genetic factors may lead to PD. Such cases have been classified as sporadic [176, 177]. Damage in the substantia nigra has been reported in most of the sporadic cases [178, 179]. Some gene mutations can lead to the accumulation of unwanted protein that may alter the function of mitochondria leading to the increase in oxidative stress [180, 181]. Table 2 gives a description of genes associated with PD.

Table 2. Mutation in Genes associated with PD.

S.No.	Gene Symbol	Locus/Location	Chromosomal Localization	Year of Discovery	Year of Discovery	Year of Discovery	Mutation in Genes associated with PD	Target in Cell	Possible Function(s)	Reference(s)
1.	PARK4	4q21	4p13	1997	1997	1997	ATP13A2, PINK1	N07P2,		[182]
2.	PARK2	6q25.2-q27	1p36	2003	2003	2003	F182L, DJ1C106	N07P2,		[184]
3.	PARK5	1q36	1q36-1p35	2004	2004	2004	G328E, PINK1	N07P2,		[187]
4.	PARK6	15q26.1	15q26.1	2004	2004	2004	POLG	N07P2,		[190]
5.	PARK7	12q12-12q12	1p36	2004	2004	2004	LRRK2	N07P2,		[192]
6.	PARK8	1q36-1p35	1p36	2006	2006	2006	ATP13A2	N07P2,		[195]
7.	PARK9	22q12.13	22q12.3	2008	2008	2008	FBOX7	N07P2,		[196]
8.	PARK11	2q37.1	2p12	2008	2008	2008	G16F	N07P2,		[198]
9.	GIGYF2	15p13.1	15p13.1	2008	2008	2008	POLG	N07P2,		[199]
7. POST TRANSLATION MODIFICATIONS OF SNCA, DJ1, PARKIN AND LRRK2

The pathogenesis of PD mainly involves dysfunction of mitochondria, protein misfolding, aggregation and oxidative stress [220]. A number of post-translational modifications (PTMs) regulates the activity of protein; for example, nitration, arginylation and N-terminal acetylation which affects the structure and behaviour of α-synuclein to interact with other bio-molecules [221]. The modification of α-synuclein, its aggregation, toxicity and targets for future therapeutics has been extensively reviewed by Barrett and Greenamyre [222]. Although PTMs are required for the normal functions of α-synuclein, abnormal modifications may promote pathogenesis of the PD [223]. The phosphorylation of S129 residue has been reported to be associated with the formation of Lewy bodies [224]. Nitration of tyrosine residues in α-synuclein at Y39, Y125, Y133 and Y136 has been reported to be associated with the formation of Lewy bodies of the PD [223]. The phosphorylation of S129 residue has been confirmed by other researchers [230]. There are evidences that the activity of Parkin, choice of E2, choice of substrate, localization and solubility can be regulated by post-translational modification [231]. It has been reported that reactive cysteine (cysteinylation) is essential for the proper functioning of DJ1 in humans [232]. Due to the increase in oxidative stress either by aggregation of α-synuclein or environmental agents promotes the oxidation of cysteine to sulfenic, sulfinic and sulfonic acid [232]. The oxidation results in the loss of the activity of DJ-1 and thus enhances the progression of PD. The phosphorylation of LRRK2 can occur in two ways constitutive and auto-phosphorylation. These phosphorylations are modulated in PD [233]. The mutations in the ROCO domain (Ras of complex proteins) results in the decrease of phosphorylation at R1441C, R1441G, and Y1699C, which leads to the aggregation of LRRK2 in the substantia nigra [234]. Ubiquitination also regulates the activity of LRRK2. The mutations R1441C, R1441G and Y1699C and 12020T may
result in the decrease of constitutive phosphorylation or hyper-
ubiquitination or instability, leading to the formation of protein aggregates [235].

8. GENOME WIDE ASSOCIATION STUDIES (GWAS)

Genome wide association studies are helpful in under-
standing the genetic basis of PD [236]. About 24 loci have been
reported to be associated significantly with the risk of
disease in the individuals of European ancestry [237]. In
another study, 17 novel PD loci, using a neurocentric candidate
gene nomination pipeline, found that these loci play a role in
dysosomal biology and autophagy [238]. The identification of
such candidate genes will definitely help in understanding the
role of causal genes and will also open new horizons for the
therapeutic approaches.

9. TREATMENTS FOR PARKINSON’S DISEASE

The past half century of research has brought many
alluring advancements in the treatment of PD. It is a fact that
PD is a progressive disease with no permanent cure, but the
symptoms can be suppressed or delayed by the treatment of
levodopa [239 - 241]. To overcome the side effects of
Levodopa, there are several treatment strategies for the
management of PD in order to provide more improvement in
combating the PD symptoms [242]. Various treatment
strategies for the PD are as follows:

9.1. Levodopa

Levodopa is also known as L-Dopa (L-3,4-dihydroxy
phenylalanine). For treating early symptoms of PD the
levodopa is given to the PD patients [243]. It is a precursor of
dopamine which is activated through decarboxylation by the
cytosolic enzyme Aromatic Amino Acid Decarboxylase
(AADC). It is formed by the hydroxylation of the amino acid
L-tyrosine. This reaction is catalyzed by tyrosine hydroxylase
and is a rate-limiting step in the biosynthesis of the
neurotransmitter dopamine. Dopamine is formed by the
decarboxylation of levodopa in the presence of enzyme L-
amino acid decarboxylase or Dopa Decarboxylase (DDC). The
absorption of levodopa takes place first in the small intestine
and enters as large neutral amino acids (LNAAs). Levodopa
accesses in brain by the help of LNAAs system, where it is
converted to dopamine. Once the dopamine is formed it acts on
dopamine receptors (D1 and D2 families) to improve the motor
functions in PD. The levodopa is absorbed by the specific
LNAAs transporter i.e. protein rich meals. The therapeutic
efficacy of levodopa is reduced due to the over-saturation of
the transporter with amino acid derived from dietary protein.
Thus, it is recommended that the levodopa should be taken
without the meal to ensure the full absorption [244, 245]. In
Commercial preparations, levodopa is combined with carbidopa
or benserazide, which act as inhibitors of decarboxylase, thus
reducing the risk of peripheral side effects [246, 247].

The long term use of levodopa is associated with side
effects such as nausea, vomiting, constipation and hallu-
cinations [248, 249]. L-dopa may also induce cell death in
neuronal cells by increasing the activity of caspase-3 [250,
251]. L-dopa treatment may lead to alteration in D1 dopamine
receptors and might form the basis for the occurrence of
dyskinesia and motor fluctuations [252, 253].

9.2. Catechol-O-methyl Transferase (COMT) inhibitors

COMT is an enzyme that metabolizes or degrades
neurotransmitters such as dopamine, hence the COMT
inhibitors may be useful to enhance the half-life of dopamine.
Tolcapone and entacapone are commonly used in COMT
inhibitors. Although, both the drugs are associated with side
effects such as diarrhea, hepatotoxicity, increased dyskinesia,
and urine discoloration [254, 255]. Opipapone, a third-
generation COMT inhibitor, is also used to treat PD at a dosage
of 50 mg daily [256]. It is prescribed in Germany and the
United Kingdom, but further detailed studies are required for
the validation of the efficacy and long-term risks associated
with it. Most of the COMT inhibitors prevents the peripheral
catabolism of L-dopa and increase the half-life of L-dopa [257,
258].

9.3. Amantadine

Although the exact mechanism of amantadine is not
known, it is thought that the symptomatic relief is due to its
anticholinergic property [259]. It blocks the glutamaticergic
N-

9.4. Anti-cholinergic Drugs

Anticholinergics (anti-muscarinics) are used to reduce
tremors in PD patients. Due to neuropsychiatric side effects
(memory loss, confusion) and autonomic side effects
(constipation, urinary retention, dry mouth), these drugs are not
normally recommended to the patients above 65 years [262].
Trihexyphenidyl, benztprine, orphenadrine, procyclidine, and
biperiden are commonly use anticholinergic drugs [263 - 265].

9.5. Monoamine Oxidase Inhibitors (MAOIs)

They inhibit the activity of one or both monoamine oxidase
enzymes i.e. Monoamine Oxidase A (MAO-A) and
Monoamine Oxidase B (MAO-B). They are used as a powerful
anti-depressants to treat panic disorders and social phobias
[266, 267]. MAO-A shows greater affinity for hydroxylated
amine, i.e. noradrenaline (NA) and serotonin (5-HT), while
MAO-B shows greater affinity for non-hydroxylated amines,

i.e. benzylamine and β-Phenylethylamine (PEA) [268, 269].
MAO-A degrades dopamine, norepinephrine and serotonin by
oxidative deamination. It is mostly expressed in neuronal
cardiac cells and is localized in the outer mitochondrial
membrane [270, 271]. MAO-B enzymes are mostly expressed
in the brain and regulate the storage as well as free intra-
neuronal concentration of dopamine. MAO-B is involved in the
breakdown of dopamine [272, 273]. It has been well
established that the inhibition of MAO-B increases the level of
synaptic dopamine and provides symptomatic relief [274]. Two
commonly used MAO-B inhibitors are seleagine and
rasagiline. Selegiline is used as adjunctive therapy to L-dopa
for patients exhibiting motor fluctuations [275, 276].
Rasagline (N-propargyl-L(3)-aminoindan) is a selective
Table 3. Pharmacology of ergot and non-ergot derivatives of dopamine agonists.

Ergoline Derivatives	Non-Ergoline Derivatives									
Name of Derivatives	Bromocriptine	Cabergoline	Pergolide	Lisuride	Apomorphine	Piribedil	Pramipexole	Rotigotine		
Trade Name(s)	Parlodol and Cyclosset	Cabaser and Dostinex	Permax	Prascend	Dopergin, Proclacam and Revanil	Apokyn, Ixense, Spontane and Uprima	Trivastal, Pronoran, Trastalan	Mirapex and Mirapex ER	Requip and Requip XL	Neupro
Half-life (t1/2)	12-14 hours	63-69 hours	27 hours	2 hours	30-60 minutes	20 hours	8-12 hours	6 hours	3 hour	
Peak Plasma Time	58 minutes	2-3 hours	2-3 hours	40 min	10-60 min	1 hour	IR-2 hour, ER-6 hour	IR -1-2 hour, ER 6-10 hour	15-18 hour	
Highest binding affinity	D2 receptors	D2 receptors	D2 receptors	D2 receptors	D2 receptor	D2 receptor	D2 and D3 receptors	D3 receptor	D2 and D3 receptors	D3 receptor
Chemical formula	C19H22BrNO3	C21H21NO6	C19H21N3S	C21H21N	C19H21NO3	C19H21NO	C19H21N	C19H21NO	C19H21NO	C19H21NO
Protein Binding (%)	90-96%	40-42%	90%	15%	50%	-	15%	40% bound to plasma proteins	92%	
Metabolism	Gastrointestinal tract and liver	Hepatic	Hepatic	-	Hepatic	-	Hepatic	Hepatic	Hepatic	
Route of Administration	oral, vaginal, intravenous	Oral	Oral	Oral	Subcutaneous	-	Oral	Oral	Transdermal	
Route of Elimination	Liver and Kidney	Urine, Fecal	Kidney	-	-	-	Urine	Urine	Urine, Fecal	

inhibitor of MAO-B and therefore does not interfere with MAO-A. It has been approved to be used as an adjunct therapeutic agent for the PD patients on L-dopa and experiencing motor fluctuations [277 - 279]. It has a prolonged effect on the ability to reduce the motor fluctuations associated with L-dopa therapy [280]. Safinamide, an MAO-B inhibitor, has been introduced in Europe as an adjunct therapy to levodopa. It is a selective and reversible MAO-B inhibitor [281 - 284].

9.6. Dopamine Agonists (DAs)

DAs are synthetic drugs which directly act on striatal postsynaptic dopamine receptors. They are reported to have a better pharmacokinetic profile than levodopa and are divided into two broad classes: Ergot derived and nonergot derived. The ergot-derived includes: Bromocriptine, cabergoline, lisuride, dihydro-ergocryptine, and pergolide [285, 286]. Non-ergot-derived includes: Pramipexole, ropinirole, piribedil and rotigotine [287]. Apomorphine is used in advanced stages of PD. It acts on both D1 and D2 dopamine receptors. It displays the pharmacological profile of all clinically available DAs, but due to the short half-life and poor oral bioavailability, it is not used for the treatment of early stages of PD [288]. DAs are also associated with side effects such as nausea, day time somnolence, confusion, hallucinations, leg edema, orthostatic hypotension, and erythropoiesis (particularly ergot derivatives) [285]. The pharmacological properties of ergot and non-ergot derived drugs are listed in Table 3.

10. NONPHARMACOLOGICAL THERAPIES

Non-pharmacological therapies includes: Deep Brain Stimulation (DBS), Gene therapy and Cell transplantation.

10.1. Deep Brain Stimulation (DBS)

In DBS, the two hyperactive regions during the progression of PD i.e. Subthalamic Nucleus (STN) and Globus Pallidus internus (GPI) are used as targets. DBS blocks unusual signals through the cortico-basal ganglia loop [289]. DBS of STN and GPI-DBS showed a significant improvement in dyskinesias and motor fluctuations associated with PD patients [290, 291]. A study on low frequency (60 Hz of DBS) showed great potential to improve overall motor symptoms associated with PD, such as swallowing, gait and freezing [292 - 294]. Some pre-clinical studies have concluded that DBS showed improvement in the survival of dopaminergic neurons and also the levels of BDNF in the substantia nigra [295, 296]. According to Wong et al. [297], STN-DBS and GPI-DBS are equally potent in reducing tremors associated with PD patients.

10.2. Gene Therapy

Gene therapy involves creating new cells that produces a specific neurotransmitter (i.e. dopamine). The modified cells are transplanted in PD patients [298]. It is well known that enzyme Aromatic Acid Decarboxylase (AADC) plays a major role in converting the levodopa to dopamine. In PD patients, the loss of neurons in the substantia nigra leads to the loss of AADC, which leads to the inability to convert levodopa to dopamine. The gene therapy has been conducted to restore the activity of AADC in the striatum, which levodopa to dopamine [299, 300]. In 2012, the gene therapy experiment was also performed on primates for Tyrosine Hydroxylase (TH) activity in astrocytes. The results showed behavioral improvement in the rats receiving transplantation by gene therapy [301, 302].

10.3. Cell Transplantation

Cell transplantation has been used for decades and the
clinical trials have shown positive results improving the motor symptoms [303 - 305]. In 2015, dopaminergic neurons transplantation was reported to maintain healthy and functional expression of DA transporters with normal mitochondrial morphology [306].

10.4. Physical Therapy

Physical therapy plays an important role in improving walking and postural instability. The physical therapy includes some compensatory strategies such as, motor skill learning and education to optimize physical activity. According to Morris et al. [307] management of gait disorders in people with PD should follow a critically designed training. In this training PD patients should be taught how to move more easily and maintain postural stability by using cognitive strategies. It targets the primary motor control deficits in the basal ganglia, brain stem, and motor cortex. There are two forms of strategies: (1) compensatory strategies to pass the defective basal ganglia and (2) learning strategies to improve performance through practice. Worldwide, Physical therapists provides the following measures to reduce the PD symptoms [308]:

- Lecture on self-management.
- Routine exercise associated with improvements in mobility, quality of life and disease severity.
- Ways to maintain safety while performing exercises.
- Help in normal physical activity which includes walking.
- Practicing to maintain balance or stability.
- Getting around (daily routine work).

CONCLUSION

Since there is no permanent cure for the disease to date, a continuous efforts in the direction of treatment strategies is the need of the hour. It is difficult to differentiate between the sporadic and familial forms of PD on the basis of symptoms. Recently, the GWAS studies have paved the pathway for studying the collective role of the loci in the progression of PD. Hence, GWAS should be conducted for the better understanding of pathology as well as treatment of PD.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING
None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS
Declared none.

REFERENCES

[1] Przedborski S. Neurodegeneration. Neuroimmune Pharmacology, Boston, MA: Springer 2008. [http://dx.doi.org/10.1007/978-0-387-25753-4_17]
[2] Mills J. The history of modern psychiatry in India, 1858-1947. Hist Psychiatry 2001; 12(48 Pt 4): 431-58. [http://dx.doi.org/10.1177/0957154X010204803] [PMID: 11951867]
[3] Ganesan U. Medicine and modernity: The ayurvedic revival movement in india Studies on Asia, Fall 2010; 4(1).
[4] Jacoby A, Snape D, Baker GA. Epilepsy and social identity: The stigma of a chronic neurological disorder. Lancet Neurol 2005; 4(3): 171-8. [http://dx.doi.org/10.1016/S1474-4422(05)70020-X] [PMID: 15721827]
[5] Basu S. History of neurodegenerative diseases and its impact on aged population in India: An assessment. Ind J His Psych 2017; 52: 106-15.
[6] Swerdlow RH, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis: An update. Exp Neurol 2009; 218(2): 308-15. [http://dx.doi.org/10.1016/j.expneuro.2009.01.011] [PMID: 19416677]
[7] World Health Organization WHO. Neurological disorders: Public health challenges. World Health Organization 2006.
[8] Dominguez C, Ed. Neurodegenerative diseases. Springer Science & Business Media 2010; Vol. 6.
[9] Morris AD. James Parkinson, born April 11, 1755. Lancet 1955; 268(6867): 761-3. [http://dx.doi.org/10.1016/S0140-6736(55)90558-4] [PMID: 14368866]
[10] McCall B. Young-onset Parkinson’s disease: A guide to care and support. Nurs Times 2003; 99(30): 28-31. [PMID: 12961940]
[11] Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord 2011; 26(3): 399-406. [http://dx.doi.org/10.1002/mds.23462] [PMID: 21264941]
[12] Noyce AJ, Bestwick JP, Silveira-Moriyama L, et al. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 2012; 72(6): 893-901. [http://dx.doi.org/10.1002/ana.23687] [PMID: 23071076]
[13] Khoo TK, Yarnall AJ, Duncan GW, et al. The spectrum of nonmotor symptoms in early Parkinson disease. Neurology 2013; 80(3): 276-81. [http://dx.doi.org/10.1212/WNL.0b013e31821827de] [PMID: 23319473]
[14] Duncan GW, Khoo TK, Yarnall AJ, et al. Health-related quality of life in early Parkinson’s disease: The impact of nonmotor symptoms. Mov Disord 2014; 29(2): 195-202. [http://dx.doi.org/10.1002/mds.25664] [PMID: 24123307]
[15] Reeves A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: Why is advancing age the biggest risk factor? Ageing Res Rev 2014; 14: 19-30. [http://dx.doi.org/10.1016/j.arr.2014.01.004] [PMID: 24503004]
[16] Nambu A. A new approach to understand the pathophysiology of Parkinson’s disease. J Neurol 2005; 252(4(Suppl. 4): IV1-4. [http://dx.doi.org/10.1007/s00415-005-4002-y] [PMID: 16224341]
[17] Calabresi P, Piccon B, Tozzii A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat Neurosci 2014; 17(8): 1022-30. [http://dx.doi.org/10.1038/nn.3743] [PMID: 25065439]
[18] Beeler JA, Frank MJ, McDaid J, et al. A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson’s disease. Cell Rep 2012; 2(6): 1747-51. [http://dx.doi.org/10.1016/j.celrep.2012.11.014] [PMID: 22346005]
[19] Obeso I, Wilkinson L, Casanova E, et al. Deficits in inhibitory control and conflict resolution on cognitive and motor tasks in Parkinson’s disease. Exp Brain Res 2011; 212(3): 371-84. [http://dx.doi.org/10.1007/s00221-011-2736-6] [PMID: 21643718]
[20] Perreault ML, Hasbi A, O’Dowd BF, George SR. The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: evidence for a third distinct neuronal pathway in Basal Ganglia. Front Neuroanat 2011; 5: 31. [http://dx.doi.org/10.3389/fnana.2011.00031] [PMID: 21747759]
[21] Hernández-Romero MC, Delgado-Cortés MJ, Sarmiento M, et al. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system. Neurotoxicology 2012; 33(3): 347-60. [http://dx.doi.org/10.1016/j.neuro.2012.01.018] [PMID: 22330755]
[22] Machado A, Herrera AJ, Venero JL, et al. Peripheral inflammation
increases the damage in animal models of nigrostriatal dopamine neurodegeneration: Possible implication in Parkinson’s disease incidence. Park Dis 2011.

23. Surmeier DJ, Guzmán JN, Sánchez-Padilla J, Goldberg JA. What causes the death of dopamine neurons in Parkinson’s disease? Prog Brain Res 2010; 183: 59-77.

24. Venda LL, Crag SJ, Buchman VL, Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 2010; 33(12): 559-68.

25. Björklund A, Dunnett SB. Fifty years of dopamine research. Trends Neurosci 2007; 30(5): 185-7.

26. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957; 180(4596): 1200-0.

27. Hoehn B, Yahr MD, Wine E, Young J, McOsker J. The discovery of dopamine deficiency in the parkinsonian brain. 2006.

28. Hornykiewicz O. How L-DOPA was discovered as a drug for Parkinson’s disease 40 years ago. 2001.

29. Borgh C, Eklund T, Södersten P, Nordin C. Altered dopamine function in pathological gambling. Psychol Med 1997; 27(2): 475-3.

30. Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to dopamine D(1)-like receptor function in two opossum kidney cell clonal sublines. Cell Physiol Biochem 2002; 12(5-6): 259-68.

31. Contraseras F, Pourchoux C, Bolivar A, et al. Dopamine, hypertension and obesity. J Hum Hypertens 2002; 16(1 Suppl. 1): S117-3.

32. Portig PJ, Vogt M. Release to the cerebral ventricles of substances with possible transmitter function in the caudate nucleus Foresight Brain Science, Addiction and Drugs www.foresight.org.uk.1969.

33. Dahlström A. Aminergic transmission. Introduction and short review. Brain Res 1975; 62(2): 441-60.

34. Mishra A, Singh S, Shukla S. Physiological and functional basis of brain dopamine systems and their regulation. Palgrave Macmillan, London 1986; pp. 3-18.

35. Kebabian O. A quarter century of brain dopamine research. Brain Res 1973; 62(2): 441-60.

36. McAllister G, Knowles MR, Ward-Booth SM, et al. Functional coupling of human D2, D3, and D4 dopamine receptors in HEK293 cells. J Recept Transd Res 1995; 1(1-4): 267-81.

37. Stein AM, Haskins JH, Klar S, et al. Familial aggregation of Parkinson’s disease: The Mayo Clinic family study. Ann Neurol 2004; 56(4): 495-502.

38. Blumberg PT Jr, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol 2002; 14(5): 653-60.

39. Schiller F. Fritz Lewy and his bodies. J Hist Neurosci 2000; 9(2): 148-51.

40. Roccia WA, McDonnell SK, Strain KJ, et al. Familial aggregation of Parkinson’s disease: The Mayo Clinic family study. Ann Neurol 2004; 56(4): 495-502.

41. Schiller F. Fritz Lewy and his bodies. J Hist Neurosci 2000; 9(2): 148-51.

42. Zarranz JJ, Algreje G, Gómez-ESTEBAN JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55(2): 164-73.

43. Kon T, Tomiyama M, Wakabayashi K. Neuropathology of Lewy body disease: Clinicopathological crosstalk between typical and atypical cases. Neuropathology 2020; 40(1): 30-9.

44. Finelli S, Erro M, Baldelli B, et al. Alterations in homocysteine metabolism in Serum from Patients with Parkinson’s disease. Parkinsonism Relat Disord 2016; 22(Suppl. 1): S1-S6.

45. Uéda K, Fukushima H, Masliah E, et al. Parkinson disease. Neurology 2002; 58(2): 179-85.

46. Lim KL, Dawson VL, Dawson TM. The genetics of Parkinson’s disease. Trends Neurosci 1997; 9(2): 323-7.

47. Klein MO, Buttagallo DS, Cardoso AR, Hauser DN, Bittencourt JC, Corra RG. Dopamine: Functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 2019; 39(1): 31-59.

48. Contraseras F, Pourchoux C, Bolivar A, et al. Dopamine, hypertension and obesity. J Hum Hypertens 2002; 16(1 Suppl. 1): S117-3.

49. Blumberg PT Jr, Brice A. Genetics of Parkinson’s disease and biochemical studies of implicated gene products. Curr Opin Cell Biol 2002; 14(5): 653-60.

50. E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 2004; 55(2): 164-73.

51. Contraseras F, Pourchoux C, Bolivar A, et al. Dopamine, hypertension and obesity. J Hum Hypertens 2002; 16(1 Suppl. 1): S117-3.

52. Kevers C, Robitaille Y, Gagnon L, et al. The alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5291): 2045-7.

53. Kon T, Tomiyama M, Wakabayashi K. Neuropathology of Lewy body disease: Clinicopathological crosstalk between typical and atypical cases. Neuropathology 2020; 40(1): 30-9.

54. St. John's wort, a natural compound, is found to increase the damage in animal models of nigrostriatal dopaminergic neurodegeneration. Possible implication in Parkinson’s disease incidence. Park Dis 2011.

55. Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to dopamine D(1)-like receptor function in two opossum kidney cell clonal sublines. Cell Physiol Biochem 2002; 12(5-6): 259-68.

56. Schiller F. Fritz Lewy and his bodies. J Hist Neurosci 2000; 9(2): 148-51.
encoding an unrecognized component of amyloid in Alzheimer disease. Proc Natl Acad Sci USA 1997; 95(1): 2372-6.

[62] Jakos, R, Spillantini MG, Goedert M. Identification of two distinct synucleins from human brain. FEBS Lett 1994; 345(1): 27-32.

[63] Clayton DF, George JM. The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci 1998; 21(6): 249-54.

[64] Uversky VN. A protein-chameleon: Conformational plasticity of α-synuclein, a disordered protein involved in neurodegenerative disorders. J Biomol Struct Dyn 2003; 21(2): 211-34.

[65] Shulman JM, De Jager PL, Feinby MB. Parkinson’s disease: Genetics and pathogenesis. Annu Rev Pathol 2011; 6: 193-222.

[66] Devine MJ, Gwinn K, Singleton A, Hardy J. Parkinson’s disease and α-synuclein expression. Mov Disord 2011; 26(12): 2160-8.

[67] Spillantini MG, Aloe L, Alleva E, et al. Nerve growth factor mRNA and protein increase in hypothalamus in a mouse model of aggregation.World Scientific Series in 20th Century Biology. 1997.

[68] Charriér-Harlin MC, Kachergus J, Roumier C, et al. The synaptic function of α-synuclein: From structure and toxicity to therapeutic target. Nat Rev Neurosci 2013; 14(1): 38-48.

[69] Conaway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4(11): 1318-20.

[70] Krüger R, Kahn W, Müller T, et al. Alpha30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998; 18(2): 106-8.

[71] Klein C, Schlossmacher MG. The genetics of Parkinson disease: Implications for neurological care. Nat Clin Pract Neurol 2006; 2(3): 136-46.

[72] Athanassiadou A, Voutsinas G, Pissouri L, et al. Genetic analysis of familial Parkinson disease. Neurol Sci 2000; 21(2): 65-9.

[73] Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA. Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr α-synuclein mutation. Ann Neurol 2001; 49(3): 313-9.

[74] Choi JM, Woo MS, Ma HI, et al. Analysis of PARK genes in a Korean cohort of early-onset Parkinson disease. Neurogenetics 2008; 9(4): 263-9.

[75] Puschmann A, Ross OA, Vilariño-Güell C, et al. A Swedish family with de novo α-synuclein A53T mutation: Evidence for early cortical dysfunction. Parkinsonism Relat Disord 2009; 15(9): 627-32.

[76] Gómez-Valero A, Beyer K. Alternative splicing of alpha- and beta-synuclein genes plays differential roles in synucleopathies. Genes (Basel) 2018; 9(2): 63.

[77] Lee S, Imai Y, Gehrike S, Liu S, Lu B. The synaptic function, plasticity, neurodegeneration and disease. Annu Rev Pathol 2011; 6: 193-222.

[78] Golbe LI. α-synuclein and Parkinson’s disease. Mov Disord 1999; 14(1): 6-9.

[79] Trinh J, Guella I, Farrer MJ. Disease penetration of late-onset parkinsonism: A meta-analysis. JAMA Neurol 2014; 71(12): 1535-9.

[80] Lesage S, Leutenegger AL, Ibanez P, et al. A Swiss family with the gene encoding alpha-synuclein. Ann Hum Genet 1999; 65(2): 136-46.

[81] Ahn J, Boardman JL, Planell-Duran J, et al. Alpha-synuclein mutation in a patient with early-onset Parkinson disease. JAMA Neurol 2002; 65(2): 163-5.
DNAJC13 mutation aggravates alpha-synuclein-induced neurotoxicity through perturbation of endosomal trafficking. Hum Mol Genet 2018; 27(5): 823-36. [http://dx.doi.org/10.1093/hmg/ddy003] [PMID: 29309590]

Meng H, Yamashita C, Shibak-Fukushima K, et al. Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nat Commun 2017; 8: 15500. [http://dx.doi.org/10.1038/ncomms15500] [PMID: 28589937]

Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: A genome-wide linkage and sequencing study. Lancet Neurol 2015; 14(3): 274-82. [http://dx.doi.org/10.1016/S1474-4227(14)70666-2] [PMID: 25662902]

Jansen IE, Bras JM, Lesea S, et al. CHCHD2 and Parkinson’s disease. Lancet Neurol 2015; 14(7): 678-9. [http://dx.doi.org/10.1016/S1474-4227(15)00094-0] [PMID: 26067110]

Chen NC, Salazar AM, Pham AH, et al. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum Mol Genet 2011; 20(9): 1726-37. [http://dx.doi.org/10.1093/hmg/ddq430] [PMID: 21296689]

Deas E, Plan-Favreau H, Gandhi S, et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. J Cell Biol 2010; 191(5): 933-42. [http://dx.doi.org/10.1083/jcb.201008084] [PMID: 21158003]

Thomas KJ, McCoy MK, Blackinton J, et al. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum Mol Genet 2010; 19(19): 3803-13. [http://dx.doi.org/10.1093/hmg/ddq430] [PMID: 2094049]
Role of Genes and Treatments

The Open Biology Journal, 2020, Volume 8

[PMID: 20696900] Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.

[PMID: 21179058] Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol 2008; 7(7): 583-90.

[PMID: 18539534] Bonfini V, Rebi CF, Breedveld GI, et al. Early-onset parkinsonism associated with PINK1 mutations: Frequency, genotypes, and phenotypes. Neurology 2005; 65(1): 87-95.

[PMID: 16900981] Li Y, Tomiyama H, Sato K, et al. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005; 64(1): 1955-7.

[PMID: 15959593] Capegnuolo C, Sàn C, Ibraham SA, et al. A new complex homozygous large rearrangement of the PINK1 gene in a Sudanese family with early onset Parkinson’s disease. Neurogenetics 2009; 10(3): 265-70.

[PMID: 19214605] Camargo P, Duan D, Monnere P, et al. Familial Parkinsonism and early onset Parkinson’s disease in a Brazilian movement disorders clinic: Phenotypic characterization and frequency of SNCA, PARKN, PINK1, and LRRK2 mutations. Mov Disord 2009; 24(5): 662-6.

[PMID: 19205068] Maronig R, Abou-Sleem A, Antonini E, et al. Exonic deletion and splicing mutations expand the PINK1 genotype spectrum. Hum Mutat 2007; 28(1): 98.

[PMID: 17154281] Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888.

[PMID: 22315721] Pankratz N, Pauciolu MW, Elaesser VE, et al. Mutations in DJ-1 are rare in familial Parkinson disease. Neurosci Lett 2006; 406(3): 209-13.

[PMID: 1697464] Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AV. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 2019; 51(3): 175-88.

[PMID: 17502657] Kobayashi T, Wang M, Hattori N, Matsumine H, Kondo T, Mizuno Y. Exonic deletion mutations of the Parkin gene among sporadic patients with Parkinson’s disease. Parkinsonism Relat Disord 2000; 6(3): 129-31.

[PMID: 10817951] Mizuno Y, Hattori N, Mori H, Suzuki T, Tanaka K. Parkin and Parkinson’s disease. Curr Opin Neuro 2001; 14(4): 477-82.

[PMID: 14799064] Takahashi-Niki K, Taira T, Iuchi-Arima SG, et al. Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson’s disease. J Bioenerg Biomembr 2019; 51(3): 175-88.

[PMID: 1705627] Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson’s disease. Mov Disord 2010; 25(S1 Suppl. 1): S32-9.

[PMID: 10803200] Desai AH, Joshee CA. RNA-RING domain E3 ubiquitin ligases. Annu Rev Biochem 2007; 76: 399-434.

[PMID: 19487925] Shimura H, Schwartz JR, Gyi GP, Kosik KS. CHIP:Hsp70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 2004; 279(6): 4869-76.

[PMID: 14612456] Bordallo J, Plemper RK, Finger A, Wolf DH. Derp1p/Rfd1p is required for endoplasmic reticulum accumulation of misfolded luminal and integral membrane proteins. Mol Biol Cell 1998; 9(1): 209-22.

[PMID: 9437001] Imai Y, Soda M, Inoue JJ, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105(7): 891-902.

[PMID: 11888976] Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the n- synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7(10): 1144-50.

[PMID: 11599439] Poix-Razafina C, Bhattacharyya A, et al. DJ-1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004; 56(3): 336-41.

[PMID: 15349606] Poulogiannis G, McIntyre RD, Dimitriadis M, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc Natl Acad Sci USA 2010; 107(34): 15145-50.

[PMID: 2009914107] Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.

[PMID: 21179058] Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol 2008; 7(7): 583-90.

[PMID: 18539534] Bonfini V, Rebi CF, Breedveld GI, et al. Early-onset parkinsonism associated with PINK1 mutations: Frequency, genotypes, and phenotypes. Neurology 2005; 65(1): 87-95.

[PMID: 16900981] Li Y, Tomiyama H, Sato K, et al. Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005; 64(1): 1955-7.

[PMID: 15959593] Capegnuolo C, Sàn C, Ibraham SA, et al. A new complex homozygous large rearrangement of the PINK1 gene in a Sudanese family with early onset Parkinson’s disease. Neurogenetics 2009; 10(3): 265-70.

[PMID: 19214605] Camargo P, Duan D, Monnere P, et al. Familial Parkinsonism and early onset Parkinson’s disease in a Brazilian movement disorders clinic: Phenotypic characterization and frequency of SNCA, PARKN, PINK1, and LRRK2 mutations. Mov Disord 2009; 24(5): 662-6.

[PMID: 19205068] Maronig R, Abou-Sleem A, Antonini E, et al. Exonic deletion and splicing mutations expand the PINK1 genotype spectrum. Hum Mutat 2007; 28(1): 98.

[PMID: 17154281] Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888.

[PMID: 22315721] Pankratz N, Pauciolu MW, Elaesser VE, et al. Mutations in DJ-1 are rare in familial Parkinson disease. Neurosci Lett 2006; 406(3): 209-13.

[PMID: 1697464] Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AV. Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J Bioenerg Biomembr 2019; 51(3): 175-88.

[PMID: 10803200] Desai AH, Joshee CA. RNA-RING domain E3 ubiquitin ligases. Annu Rev Biochem 2007; 76: 399-434.

[PMID: 19487925] Shimura H, Schwartz JR, Gyi GP, Kosik KS. CHIP:Hsp70 complex ubiquitinates phosphorylated tau and enhances cell survival. J Biol Chem 2004; 279(6): 4869-76.

[PMID: 14612456] Bordallo J, Plemper RK, Finger A, Wolf DH. Derp1p/Rfd1p is required for endoplasmic reticulum accumulation of misfolded luminal and integral membrane proteins. Mol Biol Cell 1998; 9(1): 209-22.

[PMID: 9437001] Imai Y, Soda M, Inoue JJ, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001; 105(7): 891-902.

[PMID: 11888976] Chung KK, Zhang Y, Lim KL, et al. Parkin ubiquitinates the n- synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7(10): 1144-50.

[PMID: 11599439] Poix-Razafina C, Bhattacharyya A, et al. DJ-1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004; 56(3): 336-41.
Naz and Siddique

Santorelli FM. Dopamine-agonist responsive Parkinsonism in a patient with the SNORD98 syndrome caused by POLG mutation. BMC Med Genet 2013; 14(1): 105.

Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase mutations: Clinical and molecular genetic study. Lancet 2004; 364(9437): 875-82.

Shu L, Zhang Y, Sun Q, Pan H, Tang B. A comprehensive analysis of population differences in LRR2K variant distribution in Parkinson’s disease. Front Aging Neurosci 2019; 11: 1.

Hagishi S, Biskup S, West AB, et al. Localization of Parkinson’s disease-associated LRR2K in normal and pathological human brain. Brain Res 2007; 1155: 205-19.

Lin CH, Chen ML, Chen GS, Tai CH, Wu RM. Novel variant Pro443Ala in HTRA2 contributes to Parkinson’s disease by inducing hyperphosphorylation of HTRA2 protein in mitochondria. Hum Genet 2011; 130(6): 817-27.

Ross OA, Soto AI, Vilaño-Güell C, et al. Genetic variation of Omi/HtrA2 and Parkinson’s disease. Parkinsonism Relat Disord 2008; 14(7): 539-43.

Unal Gulseren H, Gulseren S, Mercan FN, et al. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc Natl Acad Sci USA 2014; 111(51): 18285-90.

Najim Al-Din AS, Wriekat A, Mubaidin A, Dasouki M, Hiari M. Pallido-pyramidal degeneration, supranuclear opague paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 1994; 89(5): 347-52.

Zhang Y, Sun QY, Yu RH, Guo JF, Tang BS, Yan XX. The alpha-Synuclein gene (PARK15). PLoS One 2011; 6(2):e16983.

Ross OA, Soto AI, Vilariño-Güell C, et al. Genetic Variation of Omi/HtrA2 and Parkinson's disease. Parkinsonism Relat Disord 2008; 14(7): 539-43.

Zhao T, De Graaff E, Breedveld GJ, et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syndrome (PARK15). PLoS One 2011; 6:e16983.

Shu L, Zhang Y, Sun Q, Pan H, Tang B. A comprehensive analysis of population differences in LRR2K variant distribution in Parkinson’s disease. Front Aging Neurosci 2019; 11: 13.

Podhajska A, Musso A, Trancikova A, et al. Nonparkinsonian parkinsonism: Clinical, genetic and pathogenetic features. In: Saka H, editor. Parkinson disease. Springer Berlin Heidelberg; 2013. p. 205-18.

Moors TE, Paciotti S, Ingrassia A, et al. Characterization of brain isocitrate dehydrogenase 1 (IDH1) in Parkinson’s disease. Eur J Neurol 2015; 22(10): 1681-90.

Yoo HY, Yoon JS, Shin SW, et al. Characterization of brain isocitrate dehydrogenase 1 (IDH1) in Parkinson’s disease. Eur J Neurol 2015; 22(10): 1681-90.

Shen T, Hu J, Jiang Y, et al. Early-onset Parkinson’s disease caused by POLG mutation. BMC Med Genet 2013; 14(1): 105.

Luoma P, Melberg A, Rinne JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase mutations: Clinical and molecular genetic study. Lancet 2004; 364(9437): 875-82.

http://dx.doi.org/10.1016/j.neulet.2010.04.021 [PMID: 20398936]

Bandettini di Poggio M, Nesti C, Bruno C, Meschini MC, Schenone A, Santorelli FM. Dopamine-agonist responsive Parkinsonism in a patient with the SNORD98 syndrome caused by POLG mutation. BMC Med Genet 2013; 14(1): 105.

http://dx.doi.org/10.1016/j.neulet.2010.04.021 [PMID: 20398936]

http://dx.doi.org/10.1038/nature09195 [PMID: 20499043]

http://dx.doi.org/10.1016/j.neurology.2003.11.004 [PMID: 14728994]

http://dx.doi.org/10.1038/nature09195 [PMID: 20499043]

http://dx.doi.org/10.1016/j.neurology.2003.11.004 [PMID: 14728994]
Parkinson’s disease. J Parkinsons Dis 2017; 7(2): 219-33.

[208] Weng YC, Chen CM, Chen YC, et al. Eukaryotic translation initiation factor 4-γ, 1 gene mutations are rare in Parkinson’s disease among Taiwanese. J Formos Med Assoc 2016; 115(9): 728-33.

[209] Edvardsson S, Cinnamon Y, Ta-Shma A, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoupling-co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One 2012; 7(5):e36458.

[210] Kiregu, Ch, Bayal, L, Cetinkaya, M, Karassi, H, Tolun A. DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism Relat Disord 2013; 19(3): 320-4.

[211] Bouchouche A, Tesson C, Regragui W, et al. Mutation analysis of consanguineous moroccan patients with Parkinson’s disease combining microarray and gene panel. Front Neurol 2017; 8: 567.

[212] Haffner C, Takei K, Chen H, et al. Synaptotagmin 1: Localization on coated endocytic intermediates in nerve terminals and interaction of its 170 KDa isoform with Eps15. FEBS Lett 1997; 419(2-3): 175-80.

[213] Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC proteins and pathways to parkinsonism. FEBS J 2019; 286(16): 3080-94.

[214] Vilarino-Güell C, Rajput AH, Milnerwood AJ, et al. DNAJC13 mutations in Parkinson disease. Hum Mol Genet 2014; 23(7): 1794-801.

[215] Imai Y, Meng H, Shibata-Fukushima K, Hartori N. Twin CICH Proteins, CHC1D2, and CHC1D10: Key molecules of Parkinson’s disease, amyotrophic lateral sclerosis, and frontotemporal dementia. Int J Mol Sci 2019; 20(4): 908.

[216] Lee RG, Sedghi M, Safari M, et al. Early-onset Parkinson disease caused by a mutation in CHC1D2 and mitochondrial dysfunction. Neurrol Genet 2018; 4(5): e276.

[217] Brodeur J, Thériault C, Lessard-Beaudoin M, Marciel A, Dahan S, Lavoie C. LDLR-related protein 10 (LRP10) regulates amyloid precursor protein (APP) trafficking and processing: Evidence for a role in Alzheimer’s disease. Mol Neurodegener 2012; 7(1): 31.

[218] Willnow TE. The low-density lipoprotein receptor gene family: Multiple roles in lipid metabolism. J Mol Med (Berl) 1999; 77(3): 306-15.

[219] Quadri M, Mandemakers W, Grochowska MM, et al. LRP10 genetic variants in familial Parkinson’s disease and dementia with Lewy bodies: A genome-wide linkage and sequencing study. Lancet Neurol 2018; 17(7): 597-608.

[220] Chakraborty J, Basso V, Ziviani E. Post translational modification of active site cysteine alters binding properties of the Parkinsonism protein DJ-1. Biochem Biophys Res Commun 2018; 504(1): 328-33.

[221] Xuong H, Wang D, Chen L, et al. Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009; 119(3): 650-60.

[222] Duda JE, Giasson BI, Chen Q, et al. Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies. Am J Pathol 2000; 157(5): 1439-45.

[223] deCormack AL, Mak SK, Di Monte DA. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis 2012; 3(5): e135-5.

[224] Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J. Proteasomal inhibition induced by manganese ethylene-bis(dithiocarbamate): Relevance to Parkinson’s disease. Neuroscience 2004; 128(2): 281-91.

[225] Roosen DA, Blauwendraat C, Cookson MR, Lewis PA. DNAJC proteins and pathways to parkinsonism. FEBS J 2019; 286(16): 3080-94.

[226] Rustgi AK, Chang D, Nalls MA, Hallgrímsdóttir IB, et al. Large-scale meta-analysis of Parkinsonism protein DJ-1 genetic variants. PLoS One 2016; 11(12): e0167485.

[227] McCormack AL, Mak SK, Di Monte DA. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis 2012; 3(5): e135-5.

[228] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.

[229] deCormack AL, Mak SK, Di Monte DA. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra. Cell Death Dis 2012; 3(5): e135-5.

[230] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.

[231] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.

[232] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.

[233] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.

[234] Vuillerme NM, de la Torre E, Troyk PR. Functional antagonism of α-synuclein phosphorylation in synucleinopathy lesions. Nat Cell Biol 2002; 4(2): 160-4.
in Parkinson's disease. Neurology 1998; 50(Suppl. 6): S11-4.

Münchau A, Bhatia KP. Pharmacological treatment of Parkinson's disease. Postgrad Med J 2000; 76(900): 602-10.

Müller T, Welner S, Mahlack S. Acute levodopa administration reduces cortisol release in patients with Parkinson's disease. J Neural Transm (Vienna) 2007; 114(3): 347-50.

Potirier AA, Aubé B, Côté M, et al. Gastrointestinal dysfunctions in Parkinson's disease: Symptoms and treatments. Parkinson's Disease 2016.

Varanese S, Bimbbaum Z, Rossi R. Treatment of advanced Parkinson's disease. Parkinson's disease 2010. http://dx.doi.org/10.4061/2010/480260

Gupta HV, Lyons KE, Wachter N, Palha R. Long term response to levodopa in Parkinson's disease. J Parkinsons Dis 2019; 9(1): 525-9.

Müller T, Möhr JD. Long-term management of Parkinson's disease using levodopa combinations. Expert Opin Pharmacother 2018; 19(9): 1003-11.

Ahlfors JE, Muentner MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001; 16(3): 448-58.

Bordia T, Perez XA, Heiss J, Zhang D, Quik M. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis 2016; 91: 47-58.

Martinez-Martin P, O'Brien CP. Extending dopa action: COMT inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Lv X, Wang XX, Hou J, et al. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases. Toxicol Appl Pharmacol 2016; 301: 42-9.

Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease. P&T 2008; 33(10): 590-600.

Bordia T, Perez XA, Heiss J, Zhang D, Quik M. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis 2016; 91: 47-58.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Heikkilinen H, Varane MM, Remes AR, et al. Treatment of advanced Parkinson's disease. Codon Publications 2018.

Goldenberg MM. Medical management of Parkinson's disease. P&T 2008; 33(10): 590-600.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease. P&T 2008; 33(10): 590-600.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Heikkilinen H, Varane MM, Remes AR, et al. Treatment of advanced Parkinson's disease. Codon Publications 2018.

Goldenberg MM. Medical management of Parkinson's disease. P&T 2008; 33(10): 590-600.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Heikkilinen H, Varane MM, Remes AR, et al. Treatment of advanced Parkinson's disease. Codon Publications 2018.

Goldenberg MM. Medical management of Parkinson's disease. P&T 2008; 33(10): 590-600.

Bordia T, Perez XA, Heiss J, Zhang D, Quik M. Optogenetic activation of striatal cholinergic interneurons regulates L-dopa-induced dyskinesias. Neurobiol Dis 2016; 91: 47-58.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Smith Y, Wichmann T, Factor SA, DeLong MR. Parkinson's disease. P&T 2008; 33(10): 590-600.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Heikkilinen H, Varane MM, Remes AR, et al. Treatment of advanced Parkinson's disease. Codon Publications 2018.

Goldenberg MM. Medical management of Parkinson's disease. P&T 2008; 33(10): 590-600.

Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Entacapone and tolcapone against human UDP-glucuronosyltransferase inhibition. Neurology 1998; 50(Suppl. 6): S27-32.

Heikkilinen H, Varane MM, Remes AR, et al. Treatment of advanced Parkinson's disease. Codon Publications 2018.

Goldenberg MM. Medical management of Parkinson's disease. P&T 2008; 33(10): 590-600.
Role of Genes and Treatments

The Open Biology Journal, 2020, Volume 8 65

[283] Bette S, Shipner DS, Singer C, Moore H. Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence. Ther Clin Risk Manag 2018; 14: 1737-45. [http://dx.doi.org/10.2147/TCRM.S139545] [PMID: 30271159]

[284] Borgsain R, Saez J, Stanzione P. Two-year, randomized, controlled study of safinamide in add-on levodopa in mid to late Parkinson’s disease. Mov Disord 2014; 29(10): 1273-80. [http://dx.doi.org/10.1002/mds.25961] [PMID: 25044402]

[285] Zanettini R, Antonini A, Gatto G, Gentile R, Tesi S, Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 2007; 356(1): 39-46. [http://dx.doi.org/10.1056/NEJMoa054830] [PMID: 17202454]

[286] Delgado-Rosas F, Gómez R, Ferrero H, et al. The effects of ergot and non-ergot-derived dopamine agonists in an experimental mouse model of endometriosis. Reproduction 2011; 142(5): 745-55. [http://dx.doi.org/10.1530/REP-11-0223] [PMID: 21862695]

[287] Kailash P, Bhattacharjee R, Chaudhuri R, et al. Parkinson’s disease edited. Int Rev Neurobiol 2017; 132: 2-523.

[288] Colosimo C, Merello M, Albanese A. Clinical usefulness of apomorphine in movement disorders. Clin Neuropharmacol 1994; 97(3): 23-59. [http://dx.doi.org/10.1097/00002826-199406000-00004] [PMID: 8316670]

[289] Chiken S, Nambu A, Kinouchi T, et al. Mechanism of deep brain stimulation: Inhibition, excitation, or disruption? Neuroscientist 2016; 22(3): 313-22. [http://dx.doi.org/10.1177/1073858415581986] [PMID: 25888630]

[290] Weaver FM, Follett KA, Stern M, et al. Randomized trial of deep brain stimulation for Parkinson disease: Thirty-six-month outcomes. Neurology 2012; 79(1): 55-65. [http://dx.doi.org/10.1212/WNL.0b013e3182385dcd] [PMID: 22722632]

[291] Ricco MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: From the advanced phase towards the late stage of the disease? Parkinsonism Relat Disord 2014; 20(4): 376-81. [http://dx.doi.org/10.1016/j.parkreldis.2014.01.012] [PMID: 24508574]

[292] Sidirepoulos C, Xie T, Vigil J, et al. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology 2015; 85(6): 557-77. [http://dx.doi.org/10.1212/WNL.0000000000001823] [PMID: 26259857]

[293] Eusebio A, Chen CC, Lu CS, et al. Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Exp Neurol 2008; 209(1): 125-30. [http://dx.doi.org/10.1016/j.expneurol.2007.09.007] [PMID: 17956279]

[294] Khoo HM, Kishima H, Hosomi K, et al. Low-Frequency subthalamic nucleus stimulation in parkinson’s disease: A randomized clinical trial. Mov Disord 2014; 1-5. [http://dx.doi.org/10.1002/mds.25810]

[295] Kumar R, Lozano AM, Sime E, Halket E, Lang AE. Comparative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation. Neurology 1999; 53(3): 561-6. [http://dx.doi.org/10.1212/WNL.53.3.561] [PMID: 10449121]

[296] Herzog J, Weiss PH, Assmus A, et al. Subthalamic stimulation modulates control of urinary bladder in Parkinson’s disease. Brain 2006; 129(Pt 12): 3366-75. [http://dx.doi.org/10.1093/brain/awl302] [PMID: 17077105]

[297] Wong JK, Caurbaugh JH, Ho KWD, et al. STN vs. GPI deep brain stimulation for tremor suppression in Parkinson disease: A systematic review and meta-analysis. Parkinsonism Relat Disord 2010; 16: 58-62. [http://dx.doi.org/10.1016/j.parkreldis.2008.08.017] [PMID: 19717491]

[298] Axelsen TM, Waldby DPD. Gene therapy for Parkinson’s disease. An update. J Parkinsons Dis 2018; 8(2): 195-215. [http://dx.doi.org/10.2133/jpd.18-1131] [PMID: 29710735]

[299] Hadaczek P, Eberling JL, Pivritto P, Bringas J, Forsayeth J, Bankiewicz KS. Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AA.VV-bhADC. Mol Ther 2010; 18(8): 1458-61. [http://dx.doi.org/10.1016/j.ymthe.2010.06.016] [PMID: 20531394]

[300] Cellini B, Montioli R, Oppici E, Voltattorni CB. Biochemical and computational approaches to improve the clinical treatment of dopa decarboxylase-related diseases: An overview. Open Biochem J 2012; 6: 131-8. [http://dx.doi.org/10.2174/18740911X1206010131] [PMID: 23264832]

[301] Campos-Romo A, Ojeda-Flores R, Moreno-Briseño P, et al. Behavioral improvement in MPTP-treated nonhuman primates in the HALLWAY task after transfer of TH cDNA to host astrocytes. Acta Neurobiol Exp (Warsz) 2012; 72(2): 166-76. [PMID: 22801018]

[302] Denyer R, Douglas MR. Gene therapy for Parkinson’s disease. Parkinson Dis 2012; 2012: 757305. [http://dx.doi.org/10.1155/2012/757305] [PMID: 22619738]

[303] Allan LE, Petit GH, Brundin P. Cell transplantation in Parkinson’s disease: Problems and perspectives. Curr Opin Neurol 2010; 23(4): 426-32. [PMID: 20489615]

[304] Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 2009; 136(5): 964-77. [http://dx.doi.org/10.1016/j.cell.2009.02.013] [PMID: 19269371]

[305] Newman MB, Bakay RA. Therapeutic potentials of human embryonic stem cells in Parkinson’s disease. Neurotherapeutics 2008; 5(2): 237-51. [http://dx.doi.org/10.1007/s13311-008-0204-x] [PMID: 18394566]

[306] Lindvall O. Treatment of Parkinson’s disease using cell transplantation. Philoso Transac Royal Soc B: Bio Sci 2015; 370(1680): 20140370.

[307] Morris ME, Martin CL, Schenkman ML. Stridng out with Parkinson disease: Evidence-based physical therapy for gait disorders. Phys Ther 2010; 90(2): 280-8. [http://dx.doi.org/10.2522/ptj.20090091] [PMID: 2002998]

[308] Radder DLM, Sturkenboom IH, van Nimwegen M, Keus SH, Bloem BR, de Vries NM. Physical therapy and occupational therapy in Parkinson’s disease. Int J Neurosci 2017; 127(10): 930-43. [http://dx.doi.org/10.1080/00207454.2016.1275617] [PMID: 28007002]

© 2020 Naz and Siddique. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.