A high-pressure polarized 3He gas target for nuclear-physics experiments using a polarized photon beam

Q. Ye1,a, G. Laskaris1, W. Chen3, H. Gao1, W. Zheng1, X. Zong1, T. Avevet2, G.D. Cates3, and W.A. Tobias3

1 Triangle Universities Nuclear Laboratory and Department of Physics, Duke University, Durham, NC 27708, USA
2 Department of Physics, College of William and Mary, Williamsburg, VA, USA
3 Department of Physics, University of Virginia, Charlottesville, VA 22904, USA

Received: 15 September 2009 / Revised: 31 December 2009
Published online: 26 February 2010 – © Societ`a Italiana di Fisica / Springer-Verlag 2010
Communicated by Z.-E. Meziani

Abstract. Following the first experiment on three-body photodisintegration of polarized 3He utilizing circularly polarized photons from High-Intensity Gamma Source (HI3S) at Duke Free Electron Laser Laboratory (DFELL), a new high-pressure polarized 3He target cell made of pyrex glass coated with a thin layer of sol-gel doped with aluminum nitrate nonahydrate has been built in order to reduce the photon beam-induced background. The target is based on the technique of spin exchange optical pumping of hybrid rubidium and potassium and the highest polarization achieved is $\sim 62\%$ determined from both NMR-AFP and EPR polarimetreis. The phenomenological parameter that reflects the additional unknown spin relaxation processes, X, is estimated to be ~ 0.10 and the performance of the target is in good agreement with theoretical predictions. We also present beam test results from this new target cell and the comparison with the GE180 3He target cell used previously at HI3S. This is the first time that the sol-gel coating technique has been used in a polarized 3He target for nuclear-physics experiments.

1 Introduction

Quantum chromodynamics (QCD) is the theory of strong interaction in terms of quark and gluon degrees of freedom. While QCD has been well tested in the high-energy regime where perturbative calculations can be carried out, it is still unsolved in the low-energy, non-perturbative regime. Understanding the structure of the nucleon from the underlying theory of QCD, a fundamental and challenging task in nuclear and particle physics, remains an area of active research. With developments in polarized beam, recoil polarimetry, and polarized target technologies, polarization experiments have provided new observables on quantities related to the nucleon structure.

The High-Intensity Gamma Source (HI3S) at the Duke Free Electron Laser Laboratory (DFELL) opens a new window to studies of fundamental quantities related to the structure of the nucleon through polarized Compton scattering from polarized targets [1]. Such measurements allow access to nucleon spin polarizabilities, which describe the response of a spin-aligned nucleon to a quasistatic external electromagnetic field. Since there are no stable free neutron targets, effective neutron targets, such as deuteron and 3He, are commonly used. A polarized 3He target is an effective polarized neutron target [2,3] due to the fact that the neutron is $\sim 90\%$ polarized in a polarized 3He nucleus. There have been extensive studies employing polarized 3He targets to extract the neutron electromagnetic form factors [4–11], and neutron spin structure functions [12–17]. To extract information on neutron using a polarized 3He target, nuclear corrections need to be applied which rely on the state-of-the-art calculations of three-body systems.

The HI3S facility also provides unique opportunities to test the three-body calculations. In 2008, a first measurement of double polarized three-body photodisintegration of 3He was carried out at HI3S [18] with an incident gamma beam energy of 11.4 MeV. In addition to providing tests of three-body calculations, three-body photodisintegration of 3He is of further importance to experimental tests of the Gerasimov-Drell-Hearn (GDH) sum rule [19,20]. In this experiment, a high-pressure, longitudinally polarized 3He gas target [21] and a circularly polarized photon beam were employed. Seven liquid-scintillator detectors were placed around the 3He target to detect the neutrons from the three-body breakup channel. The 3He gas target cell was made of aluminosilicate (GE180) glass. This type of glass has fewer magnetic impurities and is less permeable to 3He atoms than regular pyrex glass. However, the rich concentration of barium in the GE180 glass produced a large amount of background events in the neutron detectors. To reduce the background
for future measurements at HI\textsubscript{7}S, a new high-pressure ^3He cell made of sol-gel-coated pyrex glass has been developed and tested.

The coating technique was developed by doping sol-gel with aluminum nitrate nonahydrate ($\text{Al(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O}$) [22,23]. This method produces a glass with better homogeneity and higher purity via a chemical route. Single sealed pyrex cells produced using the sol-gel coating technique have yielded longer relaxation times than those from cells without the coating [22]. This is the first time that this technique has been applied to a high-pressure ^3He target, a double-cell system for nuclear-physics experiments. The smooth paramagnetic-free aluminosilicate glass-coated surface reduces the probability of ^3He de-polarization from the wall. Its low ^3He permeability helps to prevent the loss of ^3He atoms. This allows a long-term operation at temperatures typical of the spin exchange optical pumping process (185°C for Rb-only cells and 238°C for Rb-K hybrid cells). The target cell “BOLT” was coated at the University of Virginia and filled at the College of William and Mary. A photon beam test of BOLT at HI\textsubscript{7}S was carried out in May, 2009. The rest of the paper is organized as follows. Section 2 describes the experimental apparatus and procedure. The target performance and a comparison between theoretical calculations and experimental results are presented in sect. 3. The in-beam test results of this new target are reported in sect. 4.

2 Experimental apparatus and procedure

A schematic of the experimental apparatus is shown in fig. 1. It consists of a pair of Helmholtz coils with a diameter of 173 cm to provide a magnetic holding field with a typical value of 21 G. BOLT is a pyrex glass cell coated with aluminosilicate and contains a mixture of Rb-K. It consists of a spherical pumping chamber with a radius of 4.3 cm and a target chamber with a length and a diameter of 38.7 cm and 3.1 cm, respectively. The chambers are connected by a tube that is 9 cm long with a diameter of 1.3 cm. The cell is installed in the center of the Helmholtz coils with the pumping chamber in an oven.

The ^3He polarization is measured using both the NMR-adiabatic fast passage (AFP) method [24] and the electron paramagnetic resonance (EPR) technique [25]. The AFP system includes two \sim79 cm diameter RF coils with a separation of 39.5 cm placed horizontally above and below the cell and a pair of rectangular pickup coils located on both sides of the target chamber. The pickup coils are perpendicular to both the holding field and the RF field. The EPR system includes a 5.1 cm diameter EPR coil inside the oven close to the pumping chamber and a photo diode to monitor the EPR signal. Details of the polarimetry systems can be found in [21]. The ^3He nuclei are polarized through spin exchange optical pumping. Limits of alkali polarization have been observed for the broadband laser light [26] and a spectrally narrowed laser is added to the experimental setup. Three lasers with three separate sets of optics are used to produce circularly polarized laser light. After the optics, the net output power of the two Coherent DUO-FAP broad-band lasers is \sim78 W and the third spectra physics narrowed laser has a net power output of 23 W.

Before the ^3He nuclei are polarized, the cell is heated to 120°C in a separate oven and a tunable laser is used to probe the line shape of the Rb D_1 transition. Collisions between Rb and ^3He can broaden the resonance lines of rubidium so that the width is proportional to the density of ^3He in the cell [27]. By measuring the width of the D_1 line, the density of ^3He is determined to be 5.16 ± 0.29 amagats. To polarize the ^3He nuclei, the pumping chamber is heated up in the oven by air flowing through three heaters. The pressure inside the cell is ~ 7.66 atm with the pumping chamber at (238 ± 0.5)°C and the target chamber at (60 ± 0.5)°C. The Rb atoms in the pumping chamber are polarized through the optical pumping process and then transfer the angular momentum to the K atoms. The spin exchange collisions between K and ^3He and between Rb and ^3He subsequently polarize the ^3He nuclei [28]. The time to reach the maximum polarization for such a Rb-K hybrid cell is much faster than a Rb-only cell due to the higher efficiency for polarizing ^3He by K [29].

The ^3He polarization measured by the NMR-AFP method is recorded every three hours during the polarization accumulation period ("pump-up" period). After the polarization has reached a maximum, EPR measurements are carried out to measure the absolute ^3He polarization, which can be compared to the value from the NMR signal after water calibration [24]. With the lasers off and the alkali no longer in vapor form, AFP measurements are continued in order to measure the spin-lattice relaxation time, T_1, in the cell at room temperature.

The systematic error of the relaxation time is dominated by the uncertainty in the determination of the AFP losses, which is derived by fitting n consecutive AFP measurements to $A_0(1 - L)^n$, where L is the AFP inefficiency.