Differences in post-mating transcriptional responses between conspecific and heterospecific matings in Drosophila

Yasir H. Ahmed-Braimah1, Mariana F. Wolfner, Andrew G. Clark2

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY

* current address: Department of Biology, Syracuse University, Syracuse, NY 13244

1. yahmed@syr.edu
2. ac347@cornell.edu

Abstract

In many animal species, females undergo physiological and behavioral changes after mating. Some of these changes are driven by male-derived seminal fluid proteins, and are critical for fertilization success. Unfortunately, our understanding of the molecular interplay between female and male reproductive proteins remains superficial. Here we analyze the post-mating response in a Drosophila species that has evolved strong gametic incompatibility with its sister species; D. novamexicana females produce only \(~1\%\) fertilized eggs in crosses with D. americana males, compared to \(~98\%\) produced in within-species crosses. This incompatibility is likely caused by mismatched male and female reproductive molecules. In this study we use short-read RNA sequencing to examine the evolutionary dynamics of female reproductive genes and the post-mating transcriptome response in crosses within and between species. First, we found that most female reproductive tract genes are slow-evolving compared to the genome average. Second, post-mating responses in con- and heterospecific matings are largely congruent, but heterospecific mating induces expression of additional stress-response genes. Some of those are immunity genes that are activated by the Imd pathway. We also identify several genes in the JAK/STAT signaling pathway that are induced in heterospecific, but not conspecific mating. While this immune response was most pronounced in the female reproductive tract, we also detect it in the female head and ovaries. Our results show that the female’s post-mating transcriptome-level response is determined in part by the genotype of the male, and that divergence in male reproductive genes and/or traits can have immunogenic effects on females.

1 Introduction

In internally fertilizing organisms, gamete fusion is often preceded by a complex array of biochemical interactions within the female reproductive tract that mediate reproductive success \([1,2]\). During copulation, males transfer sperm and a cocktail of seminal fluid proteins (SFPs) that facilitate a variety of post-mating effects that are required for successful fertilization \([3-5]\). In Drosophila melanogaster, several of these SFPs are well-characterized and play important roles in post-mating processes within the female reproductive tract \([6-15]\). These processes include facilitating sperm
storage [16,17], inducing ovulation [18], reducing the female’s propensity to remate [7,19], and affecting female longevity and survival [20,21]. In addition, females undergo dramatic physiological and behavioral changes after mating [22–24]. However, little is known about the female proteins that facilitate these post-mating responses and their role in fertilization success [25–28]. This shortcoming is due in part to the difficulty in isolating and characterizing the interacting female proteins. One approach that is widely used to understand female post-mating reproductive processes is to analyze changes in gene expression after mating [29–39].

The majority of studies on the transcriptional dynamics in females after mating have been conducted in D. melanogaster. Overall, these studies show that females typically display a transcriptional response within 3 hours after mating [29], and the peak response occurs around 6 hours after mating [30]. These changes in female gene expression are induced by a combination of transferred SFPs, sperm, and non-ejaculate components of mating [29], the latter potentially including copulatory and behavioral cues. Furthermore, the functional categories of genes that are typically up-regulated in mated females include proteases, protease inhibitors, and immune response genes, which suggests that these classes of proteins play important roles in post-copulatory interactions [29,30,32,39–41,41,42]. Indeed, these functional categories are typically enriched among post-mating response genes in species outside the Drosophila genus [33,36–38,43], suggesting broad functional conservation of post-mating processes among insects.

Reproductive interactions between the sexes are often subject to intense postcopulatory sexual selection [44,45]. In species where females can simultaneously store sperm from multiple males, the reproductive tract becomes an arena for intense selective forces that act among ejaculates from different males (e.g. sperm competition [46]) and between the sexes (e.g. cryptic female choice [47]). Furthermore, reproductive interactions can evolve through coevolutionary arms races, which can result in opposing fitness interests between the sexes (e.g. sexual conflict [48]). Taken together, these forces can generate rapid evolutionary changes between diverging lineages and can ultimately lead to reproductive isolation between closely related species [49].

Many closely related species are reproductively isolated at the gametic level (e.g. [50–55]), whereby sperm from one species fail to fertilize eggs from the other species. Although the mechanisms that cause these post-mating pre-zygotic barriers are not yet well-understood, they likely involve defects in postcopulatory processes that can be directly impacted by biochemical mismatches between male and female proteins. Thus, species that are reproductively isolated at the gametic level provide a unique opportunity to identify the molecular mechanisms within females that mediate post-copulatory processes. For example, Bono et al. [35] used females from the cactophilic species, D. mojavensis, to analyze the post-mating transcriptional changes that take place in the female reproductive tract after mating to conspecific (D. mojavensis) or heterospecific (D. arizonae) males. They found significant perturbations in gene expression in heterospecifically-mated females, indicating failed molecular interactions between male and female proteins that are consistent with the strong gametic incompatibility between this species pair. In addition to being the first of its kind, this study highlighted the utility of using closely related sister species for identifying the post-mating molecular events that are essential for fertilization success.

The Drosophila virilis species complex has recently emerged as an ideal system to study the genetic basis of reproductive interactions and their evolutionary consequences [56]. This species group exhibits strong post-mating pre-zygotic reproductive isolation between member species [53,54,56,57], in addition to marked gametic incompatibilities between populations of the same species [54,58–60]. Between
the closely related pair within the virilis sub-group, *D. americana* and *D. novamexicana*, fertilization rate is only ~1% in heterospecific crosses when *D. novamexicana* is the female in the cross [54]. This species pair diverged ~0.5 million year ago, and maintains allopatric distributions in the continental United States [61]. Importantly, gametic isolation is the only detectable reproductive barrier between this species pair, suggesting that postcopulatory sexual selection is a particularly strong divergence force in these species.

Here we exploit this system to analyze the post-mating transcript abundance changes in *D. novamexicana* females after mating to *D. novamexicana* (conspecific) or *D. americana* (heterospecific) males. First, we identify candidate female reproductive tract genes based on tissue-biased expression and analyze their functional categories and patterns of molecular evolution. Second, we characterize the transcript abundance landscape in the female reproductive tract, ovaries, and head after conspecific and heterospecific mating. Finally, we analyze the set of male-derived mRNAs and identify their tissue origin in males. Our results show that female reproductive tract genes with tissue-biased expression are largely slow evolving in this species group, and that the female post-mating response after heterospecific mating is highly distinct from conspecific mating due to consistent up-regulation of stress response genes shortly after mating.

2 Methods

2.1 Single-pair matings and dissections

The *D. novamexicana* (15010-1031.04) and *D. americana* (SB02.06) strains were maintained at a constant temperature (22°C) in a 12-hr day/night cycle on cornmeal/sucrose/yeast media. Virgin males (*D. americana* and *D. novamexicana*) and females (*D. novamexicana* only) were collected under CO₂ anesthesia within a day after eclosion and housed in single-sex groups of ~20. On day 12 post-eclosion, individual males and females were paired without anesthesia and mating was observed. *D. novamexicana* females were either mated to a *D. americana* male (conspecific), a *D. americana* male (heterospecific), or were unmated (virgin). All matings were performed in the morning between 8:00 a.m. and 11:00 a.m., and males were removed immediately after mating. Females were subsequently allocated to one of three post-mating dissection time points: 3, 6, and 12 hours post-mating (hereafter 3 hpm, 6 hpm, and 12 hpm). Virgin females were also allocated to the three dissection time points to control for dissection time. At each post-mating time point, conspecific/heterospecific/virgin females were individually anesthetized and immediately dissected in 1×PBS. The lower reproductive tract (bursa, seminal receptacle, spermathecae, and lower oviduct) was extracted, then the ovaries were removed, and finally the head was severed from the thorax; the three tissues were placed in separate tubes containing ice-cold TRIzol. In addition to those three tissues, the gonadectomized carcass was also preserved for the virgin sample (Figure S1). Each virgin and post-mating reproductive tract sample contained three replicates, and ≥100 reproductive tracts were pooled for each replicate of each treatment. The head, ovaries and carcass samples had two replicates and contained pooled tissues from ~50 individuals.
2.2 RNA isolation, library preparation, sequencing and mapping

Total RNA was extracted from each sample using TRIzol reagent following manufacturer guidelines (Invitrogen, Carlsbad, CA). Single-end, strand-specific mRNA libraries were prepared using the Illumina TruSeq Stranded mRNA library kit (cat. no. 20020594) following manufacturer guidelines. Libraries were sequenced to 100 bp read lengths on an Illumina HiSeq 2500 at the Cornell Biotechnology Resource Center. Raw reads were first processed by filtering clusters from low quality tiles on the flow cell. Subsequently the first 10 bases of each read were clipped, followed by quality-trimming at both ends to a minimum PHRED quality score of 20. Processed reads were mapped to the *D. viridis* transcriptome (FlyBase r1.06) using Bowtie2 v2.2.2 [62]. Finally, a genome-guided de novo transcriptome was generated using Trinity r20140717, using reads generated from the virgin and conspecific samples, in combination with male *D. novamexicana* reads from a previous study (SRP100565, [56]).

2.3 Differential expression analysis

2.3.1 Tissue-biased genes

To identify genes in *D. novamexicana* with female tissue-biased expression, we used a filtered count matrix (CPM > 5) of male and virgin female tissue samples. The differential expression tests used a design matrix where the focal tissue is compared against all other male and female tissues. Gene-wise differential expression tests were performed by fitting a quasi-likelihood negative binomial generalized log-linear model to the filtered count data and subsequent gene-wise F-test, implemented in edgeR (glmQLFit and glmQLFTest, [63]). Female tissue-biased genes are defined as genes that have >2-fold mRNA abundance and FDR < 0.01 when compared to other female tissues in pair-wise comparisons. We performed tissue-bias tests using female samples and separately using tissues from the two sexes. We also include an analysis of tissue-biased genes from male reproductive organs that were obtained from a previous study [56].

2.3.2 Post-mating transcript abundance

To analyze the post-mating transcript abundance landscape in females, we analyzed six female reproductive tract samples (3 conspecific and 3 heterospecific), four ovary samples (2 conspecific, 2 heterospecific), and four head samples (2 conspecific, 2 heterospecific). We compared these post-mating transcript abundance states in each tissue to their respective unmated control samples, in addition to comparisons between the conspecific and heterospecific post-mating samples. For each tissue type, we created a subsetted matrix that only included the tissue to be analyzed and filtered the genes to only include rows where the CPM value was >5 in at least 3 (female RT) or 2 (head and ovary) replicate samples. For the differential expression analysis we implemented removal of erroneous variation between samples using the RUVseq package [64] with k = 2 (Figure S3A). We included the residuals from this model in the design matrix that was used to fit a quasi-likelihood negative binomial generalized log-linear model to the count data (edgeR). We then performed differential expression (DE) contrasts between the con- and heterospecific post-mating samples at each time point or between post-mating samples and the virgin sample and classified significantly differentially expressed genes as those that were up- or down-regulated by >2-fold and FDR < 0.05.
2.4 Transcript annotations and gene ontology (GO) analysis

Custom annotations of the *D. virilis* genome (FlyBase version 1.06) were produced in a previous study [56]. These annotations included UniProt orthologies and orthologs against the *D. melanogaster* genome that were checked against the FlyBase orthology calls. These annotations also included gene ontology (GO) associations for protein sequences that contain an orthologous hit in the UniProt database. GO ontology enrichment analyses were performed using the GOseq R package [65].

2.5 Population genetic analysis

The rate of nucleotide and amino acid substitution between species in the *D. virilis* group was calculated using custom Perl scripts and BioPerl libraries (https://github.com/YazBraimah/cbsu_bin/blob/master/SAPA.pl). Whole-genome DNA-seq data from the four group members (*D. virilis*, *D. lummei*, *D. americana* and *D. novamexicana*) was aligned to the *D. virilis* genome and known coding gene sequences (CDS) were extracted. We then generated multiple sequence alignment for each CDS and performed pairwise dN/dS between *D. americana* and *D. novamexicana*, and calculated ω (a close proxy for dN/dS [66]) across the subgroup phylogeny using PAML [66]. We also used the multiple sequence alignments to calculate the pair-wise percent conservation of amino acids from cDNA sequences using our custom Perl script. Finally, we performed the "branch-site" test along each branch of the phylogeny to test for the impact of natural selection on each gene [67]. To identify genes with a significant signature of positive selection, we performed a likelihood ratio test (LRT) between a model with ω = 1 and a model where ω is estimated from the data, and derived p values using the χ² distribution.

2.6 Analysis of transferred paternal mRNAs

To identify paternally transferred mRNAs we first identified annotated *D. virilis* genes in our dataset that show higher abundance at the earliest post-mating time point (3 hpm) in either the conspecific or heterospecific crosses, and only analyzed genes that do not show a decline in abundance at subsequent time points. We then separately identified the *de novo*-assembled *D. novamexicana* transcripts that show higher abundance at 3 hpm and subsequent gradual decline. We used BLAST results between those two sets to identify the overlap between them and used the overlap set for downstream analysis. We then analyzed single nucleotide polymorphisms (SNPs) that are present/absent in the *de novo*-assembled transcripts and identified whether mapped reads from the heterospecific 3 hpm sample contained distinct SNPs; if there is a mismatch between reads from the heterospecific sample and the assembled *de novo* transcriptome, we infer that these reads—and thus, the mRNA that produced them—are paternally derived.

2.7 Data and script availability

The Illumina sequence reads are available through the Sequence Read Archive (SRA) under project accession PRJNA611072. The processed data files and analysis scripts are available through a GitHub repository: github.com/YazBraimah/DnovPmRNAseq.
3 Results

3.1 Evolutionary dynamics of female reproductive tract genes

The female reproductive tract is the site of complex interactions between male ejaculate proteins/sperm and female reproductive tract components. It is thus a hotbed of mutually beneficial—or conflicting—evolutionary dynamics that can drive species differentiation or co-evolution between male and female reproductive genes. It is widely appreciated that male reproductive genes tend to diverge rapidly between species [68,69], but the evolutionary dynamics of female reproductive genes are less clearly understood, owing in part to the difficulty in defining the set of female reproductive proteins that specifically interact with male proteins. In our first analysis we used the unmated female tissue samples to identify female reproductive tract-biased genes to characterize their functional attributes and evolutionary dynamics.

3.1.1 Female reproductive tract genes are enriched for proteolytic enzymes and membrane-bound receptors

To analyze female reproductive tract (fRT) genes in D. novamexicana, we defined such genes based on expression bias in the lower female reproductive tract (bursa, spermathecae, seminal receptacle, and oviduct) compared to other female and male tissues. Specifically, we defined fRT genes as those that show >2-fold mRNA abundance (FDR<0.01) relative to ovaries, head, gonadectomized female carcass, and male tissues. This classification yielded 148 fRT-biased genes (Figure 1A). We performed gene ontology (GO) enrichment analysis on this set of genes and found that they are enriched for serine-type peptidases, suggesting that the fRT plays roles in dictating proteolytic cleavage of male and/or female compounds [70,71] (Figure 1B). All ten proteolytic enzymes are almost exclusively expressed in the fRT, and contain six trypsins, 3 serine proteinases (Stubble-like) and one collagenase (Table S1). One of the trypsins is orthologous to the D. melanogaster Send1/Send2 proteins, which are specifically expressed in the secretory cells of the spermatheca [27] (Table S1). We also found a significant enrichment of plasma membrane-bound proteins, some of which are known receptors that might bind male-derived compounds. For example, one of those receptor proteins is the D. melanogaster ortholog of a gustatory receptor (Gr39a), which shows fRT-specific expression and has likely been co-opted into a reproductive function in this species (Table S1).

The chromosomal distribution of reproductive genes can often be informative with regards to the evolutionary forces that impact them. For instance, male reproductive proteins—particularly seminal fluid proteins—tend to be under-represented on the X chromosome [4,56]. We found that fRT-biased genes do not show a biased distribution on the X chromosome, suggesting that their chromosomal distribution is not affected by sex-specific selection (Figure 1C). However, ovary-biased genes are over-represented on the X chromosome (Figure 1C; [72]).

We were surprised to find that, if we do not include male reproductive tissues in the expression bias analysis, several fRT-biased genes also show reproductive tissue-biased expression in males (Figure S2A). To explore this further, we analyzed fRT-biased genes using female tissues only, and examined the overlap with male reproductive tissue-bias (accessory glands, ejaculatory bulb, and testes). Strikingly, we found that 14, 31, and 20 fRT biased-genes are also biased in the accessory-glands, ejaculatory bulb, and testes, respectively (Figure S2B). Several of these genes show exclusive expression in the fRT in females and a corresponding male reproductive tissue (examples in Figure S2C).

These results show that our classification of female reproductive tract genes using
Figure 1. Functional and evolutionary dynamics of female reproductive tract genes. (A) Heatmap of female tissue-biased genes, with tissue categories shown on the left and key on the right (RT: lower reproductive tract; H: head; OV: ovaries). (B) Lollipop plot of gene ontology enrichment of fRT-biased genes. The number of fRT genes within each enriched category is indicated within the circles. (BP: Biological Process, CC: Cellular Component, MF: Molecular Function). (C) Chromosomal distribution of ovary-biased and fRT-biased genes. The horizontal dashed-line at y = 1 indicates random expectation of observed/expected number of genes on a given chromosome. (D) Amino acid conservation between *D. americana* and *D. novamexicana* reproductive genes. "SFPs" are the subset of accessory gland-biased genes that contain a predicted signal sequence. Error bars represent standard error. (E) Average pair-wise non-synonymous to synonymous substitution rate (dN/dS). (F) Gene-wise ω (a proxy for dN/dS) for fRT genes along the five major chromosomes. The dotted line indicates the genome average ω value (0.2). The size of each dot indicates the -log10(FDR) derived from the LRT under a χ² distribution. The two significant genes (FDR<0.05) are indicated. (*: p ≤ 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001)

mRNA expression bias can provide robust candidates for analyzing female reproductive genes. These results also show that using sex-bias as a criterion for defining reproductive genes might miss a set of reproductive genes that are shared between the sexes.

3.1.2 Female reproductive tract genes show a reduced rate of sequence divergence compared to male accessory gland-derived genes

One of the hallmarks of reproductive genes is their rapid divergence between species [68], yet the extent to which this phenomenon holds for female reproductive genes remains understudied. Here we analyzed the rate of nucleotide divergence by examining (1) conservation of amino acid sequence between *D. americana* and *D. novamexicana*, (2) the average pair-wise ratio of non-synonymous to synonymous substitutions between *D. americana* and *D. novamexicana*, and (3) evidence of positive natural selection using the "branch-site" test implemented in PAML [67].

First, we found that fRT genes are highly conserved but are slightly less conserved than the genome average (Figure 1D, p = 0.024; Mann-Whitney U test). In contrast, male accessory gland genes, especially those that contain a predicted secretion signal, are less conserved compared to fRT genes and the genome average (Figure 1D, p << 0.0001; Mann-Whitney U test). Second, the average ratio of non-synonymous to synonymous substitutions is lower in fRT genes compared to the genome average,
although this difference is not significant (Figure 1E, p = 0.2; Mann-Whitney U test).
It is, however, significantly lower than male accessory gland genes and predicted SFPs
(Figure 1E, p << 0.0001; Mann-Whitney U test). Finally, we performed the
"branch-site" test in PAML to examine evidence of positive selection at any of the 148
fRT-biased genes. We performed the test using the core D. virilis species sub-group
(D. americana, D. lummei, D. novamexicana, and D. virilis), and found that only two
genes show evidence of a significant signature of positive selection. One gene
(GJ26540; LRT = 52.3, FDR = 6.2×10^{-10}) resides on the X chromosome, has a
substitution ratio that is equal to the genome average, and has no known ortholog or
function. The other gene (GJ26527; LRT = 26.1, FDR = 0.0001) resides on
chromosome 3, has the highest ω ratio among fRT-biased genes, and is orthologous to
Titin, which is a muscle-associated protein. Thus, we conclude that fRT genes tend to
be conserved relative to male reproductive genes in this species group, but a small
subset of genes could experience rapid bouts of selection.

3.2 Post-mating transcript abundance changes in females after
con- or heterospecific matings

Females undergo a variety of physiological changes after mating, and these changes are
induced in part by male-derived molecules that are transferred during
copulation [13,24]. Many of these physiological changes are likely driven by changes in
gene expression that trigger cascades of concomitant biochemical changes throughout
female tissues. Unfortunately we still do not fully understand how the molecular
interplay between male ejaculate components and the fRT results in these post-mating
changes, and how these changes affect fertilization success. To ameliorate this
problem, here we sought to analyze the post-mating transcript abundance changes
that occur in D. novamexicana females after mating with a conspecific male or a
heterospecific male. This allows us to identify the impact of divergent male molecules
(SFPs, other ejaculate molecules, and sperm proteins) on post-mating transcript
abundance in females, and may shed light on the importance of these changes to the
observed fertilization incompatibility in heterospecific crosses between D.
novamexicana and D. americana.

3.2.1 Heterospecifically-mated females show a distinct transcript
abundance profile in the fRT compared to conspecifically-mated females

We collected mRNA abundance data from the fRT after two distinct mating
conditions (conspecific or heterospecific), at three different time points after mating (3
hr, 6 hr, and 12 hr), and from unmated females (virgin) as a control. First, after
filtering transcripts with low counts, we examined the grouping of replicates within
each sample using a Pearson correlation matrix to assess the suitability of our
downstream analyses, and found that replicates do indeed cluster as expected (Figure
S3B). Next, we examined replicate and sample groupings by constructing a
multidimensional scaling (MDS) plot of fRT data using the filtered counts, and observe
distinct clustering of post-mating samples based on cross type and post-mating time
point (Figure 2A). Specifically, early post-mating time points (3 hpm and 6 hpm) were
clearly distinct from the virgin control sample, and showed the strongest difference
between the two cross types. At 12 hpm the two cross types were somewhat congruent
and clustered closer to each other than the two preceding time points. These
observations suggest that, shortly after mating, the transcript abundance profile
between females mated to a conspecific or a heterospecific male are highly distinct.
Figure 2. Post-mating transcript abundance profiles differ between conspecific and heterospecific crosses. (A) Multi-dimensional scaling (MDS) plot of unmated and post-mating fRT samples, using the first two dimensions. The key on the right indicates the post-mating time-point or unmated sample (shape) and the cross type (color). (B) Venn diagram depicting the overlap between all post-mating DE genes. (C) and (D) k-means clustering of post-mating DE genes. Conspecific and heterospecific transcript abundance responses are plotted together and are distinguished by color (see key). Solid black lines represent the average abundance profile for each of the two cross types.

Next, we performed pair-wise differential abundance analysis between each post-mating time point and the virgin control sample for both cross types separately. We define significantly differentially expressed (DE) genes as those with >2-fold change in abundance (FDR < 0.05) in the post-mating sample relative to the virgin control. We found many more genes that are up-regulated after mating (281) than down-regulated (163) (Figure 2B). Furthermore, the number of DE genes in the heterospecific mating samples is greater than the conspecific samples: 251 up-regulated and 141 down-regulated in heterospecific matings, 162 up-regulated and 93 down-regulated in conspecific matings, and 132 shared up-regulated and 72 shared down-regulated in both cross types (Figure 2B).

We performed GO analysis for all up-regulated genes and found several enriched GO categories (Figure S4A; FDR < 0.05). Prominent among these were terms associated with the proteasome complex, which is involved in the degradation of poly-ubiquinated proteins in the nucleus and the cytosol [73]. Seventeen genes that
Figure 3. Misregulated post-mating genes in the fRT. A subset of (A) immune response genes and (B) stress response genes that are upregulated in the heterospecific cross but remain largely unchanged in the conspecific cross. The D. melanogaster ortholog gene name is shown, followed by the D. viridis gene name and a gene description derived from a SwissProt database search. Error bars represent standard error.

code for various subunits of the proteasome core complex gradually increase in abundance after mating to either a con- or heterospecific male, however the magnitude of increase is markedly higher among heterospecifically-mated females than conspecifically-mated ones (Figure S4B). Other enriched GO terms represent other proteolytic processes and the immune response (see below). Only two GO terms are significant among down-regulated genes: oxidoreductase and alanine-glyoxylate transaminase activity.

To further explore the post-mating expression profiles across the three time-points, we performed separate k-means clustering of the up- and down-regulated DE genes, with k = 6 (Figures 2C and 2D, respectively). This analysis revealed that the expression profiles between the con- and heterospecific cross types are largely congruent, but two clusters in the up-regulated set (cluster 1 and cluster 4) contained several genes that show distinct expression profiles between the con- and heterospecific cross types (Figure 2C). We performed GO enrichment analysis on the up-regulated clusters and found that clusters 2, 3, and 4 were enriched for several GO categories. Cluster 2 contained several terms related to stress response mechanisms (e.g. response to hypoxia, topologically incorrect proteins, and acid chemicals), which are primarily driven by several heat shock proteins that are up-regulated at 3 hpm in both con- and heterospecific crosses (Table S3). Cluster 3 was enriched for terms related to proteolytic activity and the proteasome complex, which reflect the overall composition of all up-regulated transcripts. Notably, cluster 4 primarily contained an enrichment of immune response genes, and these appear to show the most distinct abundance response between con- and heterospecific cross types.

To probe the abundance differences between the con- and heterospecific cross types directly, we performed DE analysis between the two post-mating samples at each time-point. We identified 65 genes that show significantly higher abundance in the heterospecific samples across all time-points, and only 15 that show significantly higher abundance in the conspecific sample (Figure S4C). Of the 65 genes that show higher abundance in the heterospecific cross, 47 are significant at the earliest time-point (3 hpm). We performed GO enrichment analysis on these 65 genes and recovered significant enrichment of immune response terms (Figure S4D). These immune genes include the NF-κB signaling protein, Relish, which is a transcription factor that is a
master regulator of immunity through the Imd pathway [74] (Figure 3A). Several immune effectors that act as antimicrobial peptides (Attacin, Cecropin, Defensin, and Diptericerin) are also up-regulated distinctly in the heterospecific cross, and show little or no response after conspecific mating (Figure 3A). Furthermore, other classes of immune-related genes show a distinct response in the heterospecific cross, including a recognition protein with beta-glucan binding activity (Gram-negative bacteria binding protein, GNBP) and a coagulation effector protein (Tiggrin) (Table S3).

We also found that several genes that are involved in some stress response pathways in Drosophila are up-regulated in the heterospecific cross but mRNA levels remain largely unchanged in the conspecific cross. These include a negative regulator of the Janus Kinase/Signal Transduction and Activator of Transcription (JAK/STAT) signaling pathway, Socs36E, which shows a ~3-fold increase in abundance at 3 hpm and 6 hpm only after heterospecific mating (Figure 3B). Another stress response gene is a phospholipase, GIIIispla2, which acts as a downstream target of various stress response pathways and metabolizes phospholipids.

These results show that the two cross types largely induce congruent changes in transcript abundance that are likely required for normal post-mating processing, but that the heterospecific cross induces additional abnormal changes in transcript abundance that indicate a heightened stress response.

3.2.2 Several genes are mis-regulated in ovaries after heterospecific mating

We analyzed transcript abundance changes in ovaries and female heads after conspecifically mated females at 6 hpm. In D. melanogaster, mating increases oogenesis and stimulates ovulation in part through the action of transferred male SFPs (e.g. Sex Peptide and ovulin; [14,75,76]). We therefore reasoned that heterospecific mating could cause misregulation in ovaries.

Our analysis of the ovaries revealed that, indeed, transcript abundance profiles of mated and non-mated female ovaries at 6 hpm are distinct between the two cross types: conspecifically-mated female samples cluster separately from heterospecifically-mated females (Figure S5A-B). Differential expression tests revealed that more genes are differentially abundant after conspecific mating relative to virgin (96 up-regulated and 25 down-regulated; Table S4), compared to heterospecific mating relative to virgin (23 up-regulated and 4 down-regulated; Table S4). However, when we compared the two post-mating samples against each other (conspecific vs. heterospecific) we found that only 11 genes show higher abundance in the conspecific sample. Of the 11 genes with higher abundance in the conspecific sample, three are orthologous to Cytochrome C oxidase subunit 1 or 2 (Figure 4). In addition, one of the 11 genes is orthologous to the D. melanogaster actin gene, Act79B, which localizes to the actin cytoskeleton and is often expressed in muscle tissue [77]. Conversely, only one gene—an fRt-biased, textilin-like protease inhibitor—shows higher abundance in the heterospecific sample compared to the conspecific sample. The D. melanogaster ortholog of this gene has not been characterized, but is a predicted kunitz-type serine protease inhibitor that is predicted to localize to the extracellular matrix (FlyBase.org).

We performed GO enrichment analysis of up-regulated genes in the ovaries and, as expected, recovered significant terms associated with developmental processes involved with reproduction and vitelline membrane formation (Table S5). We also recovered terms associated with the immune response, and this enrichment was driven by ten genes—e.g., two peptidoglycan-recognition proteins, thioester-containing protein, and Cathepsin—that were similarly up-regulated in the conspecific sample after mating (~2k-fold) but massively up-regulated after the
Figure 4. Log-fold change in the ovaries and female head at 6 hpm. The log2 fold-change of heterospecific crosses is represented on the x-axis, and the log2 fold-change of conspecific crosses is represented on the y-axis. Each point represents a single gene, and the DE status is indicated by color (see legend). "Normal" gene data points are defined as those that are DE in both the conspecific and heterospecific cross when compared to the unmated control, and show a log2 fold-change in the same direction. "Conspecific" and "heterospecific" gene data points refer to those that are significantly DE between the conspecific post-mating sample—and not the heterospecific sample—and the unmated control, or between the heterospecific sample—and not the conspecific sample—and the unmated control, respectively. Genes that are significantly differentially expressed between the conspecific and the heterospecific sample are indicated by text (color represents the cross type in which the gene is higher in abundance).

heterospecific cross (~17k-fold; Table S4).
These findings suggest that heterospecific mating induces distinct post-mating transcriptional changes in ovaries.

3.2.3 A single antimicrobial peptide is detected as mis-regulated in the female head after heterospecific mating

Insect females undergo various behavioral changes after mating that might reflect underlying transcriptional changes in the head. Indeed, female *D. novamexicana* up-regulate 51 genes and down-regulate 56 genes at 6 hr post-mating in head tissue (Table S6). Notably, the post-mating transcript abundance changes in the female head are almost identical after cons- or heterospecific mating and replicates do not cluster by cross (Figure S5B). We sought to examine whether the two cross types induce different transcript abundance patterns at 6 hpm, but found that only one gene shows a significant increase in the heterospecific cross but remains unchanged in the conspecific cross: the antimicrobial peptide Attacin-A. This gene is also up-regulated in the fRT after heterospecific mating but not conspecific, suggesting that the mechanism of induction could be organism-wide.

3.3 Males transfer testes-expressed mRNAs to females during copulation

Two studies that examined post-mating gene expression in *D. mojavensis* and *Aedes aegypti* females have shown that some mRNAs that may appear to be up-regulated in the fRT after mating are derived from male reproductive tissues [35,37]. In both cases
these male-derived mRNAs were highly expressed in the male accessory glands, and some have been characterized as SFPs [37]. Although the functional significance of these male-derived mRNAs in the iRT is not clear, it may indicate some as yet unknown male contributions to the female through the ejaculate.

We identified several genes that were "up-regulated" after mating and that exhibited high expression in male reproductive tissues. This prompted us to examine whether these transcripts are transferred from the male during copulation. First we identified all mRNAs that were up-regulated at 3 hpm and gradually decreased in abundance in subsequent time points, which is an abundance pattern that indicates transfer from males and subsequent decay or usage (see cluster 1 and 2 in Figure 2C). We confirmed—using species-specific single nucleotide polymorphisms (SNPs)—that 13 of these mRNAs are male-derived (Figure 5, Table S6). Notably, three of these encode heat shock proteins (Hsp23, Hsp68, and Hsp70Ab) that show testis-biased expression but have relatively low normalized abundance (transcripts per million, or "TPM" ~7-60, Table S4). All but two of the remaining genes also show strong testis-biased expression but high relative normalized abundance (TPM ~280-61,000, Table S6).

These results show that paternally-derived mRNA transcripts that are found in the mated iRT can originate from testes, which shows that testes can contribute non-sperm components to the ejaculate.

4 Discussion

Here we investigated the mRNA abundance patterns within the reproductive tract of unmated D. novamexicana females and females mated to either conspecific or heterospecific (D. americana) males. This species pair is well-suited for genetic investigations of postcopulatory interactions as they have diverged recently (~0.5mya) and have evolved strong gametic incompatibilities [54,61]. These incompatibilities manifest as reduced fertilization and premature loss of sperm from storage after heterospecific mating. Because these incompatibilities are likely caused by a mismatch...
between the male ejaculate and the female reproductive tract, we sought to identify incongruent transcript abundance changes in females after mating with conspecific or heterospecific males to identify potential molecular mechanisms within the female that mediate reproductive success. We also used the mRNA abundance data to identify fRT-biased genes, as these are likely to have specialized reproductive functions.

One of the most pervasive patterns in molecular evolution is the rapid divergence of reproductive genes in a wide variety of organisms [68,69,78]. Male reproductive genes in *Drosophila*, particularly SFPs, are a classic example of this phenomenon. However little is known about the evolutionary dynamics of female reproductive tract genes because they are not well-characterized across a broad range of species. Studies in other *Drosophila* species show that some fRT genes, particularly those that code for proteases, show elevated rates of amino acid substitution [26,79–81]. Thus, these rapidly evolving fRT genes might directly interact with male seminal proteins. However we do not observe an appreciable signature of rapid divergence in fRT genes between *D. americana* and *D. novamexicana*: most fRT genes have ω values that are below the genome average and below the 0.5 threshold used by studies in *D. melanogaster*. These observations can be due to differences in divergence patterns between these disparate species, but can also be due to methodological differences in identifying fRT genes; we used a strict expression bias criterion to identify fRT genes, whereas other studies in *Drosophila* used expressed sequence tags (ESTs) from fRT tissues. In addition, we found that categorizing fRT genes based on functional classes or secretion signal does not affect the overall divergence estimates reported here. Thus, our results suggest that fRT-biased genes are slow evolving relative to accessory gland-biased genes in this group and likely have distinct evolutionary divergence patterns compared to species in the *Sophophora* subgenus.

Our analysis of the post-mating transcript abundance changes shows that some of the same functional categories of genes that are up-regulated in other insect taxa are also up-regulated in *D. novamexicana* females after mating [29–34,37,42,82]. A commonly enriched functional class is proteolytic enzymes, which are thought to process peptides and activate enzymatic reactions within the female reproductive tract [70]. Another class of genes that is often up-regulated after mating is immune response genes [29,30,32,37,40,42]. Our results show that post-mating induction of immune effector genes in the female reproductive tract is largely determined by male genotype: heterospecific males induce a heightened immune response in the female reproductive tract that peaks at 6 hpm, whereas conspecific males induce a mild immune response. The downstream activation of effector immune genes such as anti-microbial peptides (AMPs) is triggered by the transcription factor, Relish, which is an NF-κB Imd pathway activator of immune defenses, typically against gram-positive bacteria and fungi [74]. Relish mRNA levels significantly increase at 3 hpm after heterospecific, but not conspecific mating, suggesting that AMP activation is triggered through the Imd pathway.

The initiation of immune defenses after mating in insects has been widely regarded as a mechanism to thwart potential infection during copulation, and can potentially trigger an investment trade-off between immune defense and reproduction [83–86]. However recent evidence suggests that the magnitude and direction of post-mating immune responses varies across study systems and may have additional explanations [39,41,87–90]. In particular, several studies suggest that male ejaculate components can be "immunogenic" such that they are directly triggering immune responses in females [89]. Our results support this hypothesis, and show that post-mating immune responses are elevated as a consequence of heterospecific mating, where male seminal proteins have diverged from their conspecific counterparts. Furthermore, our results indicate that additional stress responses through alternative
pathways (e.g. JAK/STAT) are exacerbated in the heterospecific cross and may be a consequence of divergent ejaculate components. Overall the *D. novamexicana* system provides a unique opportunity to investigate the consequences of post-mating immune activation and can provide a tractable experimental system to uncouple hypotheses of immune activation as a reproductive process or pathogen defense mechanism [87,90].

During copulation, males are thought to transfer a cocktail of sperm and SFPs, but recent work has shown that males can also transfer mRNAs that can be detected in the female’s post-mating transcriptome [35,91]. In both of the reported cases in insects, the mRNAs appear to originate from the male accessory glands as the mRNAs are derived from known SFP genes or show strong expression bias in the accessory glands. We examined transcripts that were identified as up-regulated after mating in *D. novamexicana* and confirmed that these were transferred during copulation. Surprisingly, we found that these appear to originate from the testes. Previous work in mammals has identified spermatozoal associated mRNAs [92,93], and these mRNAs share functional properties with mRNAs that were identified in *D. melanogaster* sperm, such as ribosomal proteins [94]. Our results reveal a distinct class of ejaculate mRNAs from testes, such as heat shock proteins, and suggest that non-sperm components of the ejaculate can originate in the testes. It is not clear if the transfer of mRNAs in the male ejaculate has functional significance, and more work is needed to rule out that this mRNA transfer simply reflects the presence of cellular debris from the testes or accessory glands.

Overall this study provides new insights into the reproductive functions of the JRT in an emerging genetic model clade, and lays the groundwork for future investigation into the genetic basis of gamete interactions in *Drosophila*.

Acknowledgments

We thank Amanda Manfredo for technical assistance, Sofie Delbore for discussion and comments on the manuscript, the Cornell Biotechnology Resource Center for sequencing and computational resources, and members of the Clark and Wolner labs for comments and suggestions. This work was supported by NIH grant R01-HD059060 to A.G.C and M.F.W.
References

1. Mariana F Wolfner. "S.P.E.R.M." (seminal proteins (are) essential reproductive modulators): the view from *Drosophila*. _Society of Reproduction and Fertility supplement_, 65:183–199, 2007.

2. Mariana F Wolfner. Battle and ballet: molecular interactions between the sexes in *Drosophila*. In _The Journal of heredity_, pages 399–410, July 2009.

3. K Ravi Ram and Mariana F Wolfner. Sustained post-mating response in *Drosophila melanogaster* requires multiple seminal fluid proteins. _PLoS genetics_, 3(12):2428–2438, December 2007.

4. K Ravi Ram and Mariana F Wolfner. Seminal influences: *Drosophila* Acps and the molecular interplay between males and females during reproduction. _American Zoologist_, 47(3):427–445, September 2007.

5. Jessica L Sitnik, Dragan Gligorov, Robert K Maeda, François Karch, and Mariana F Wolfner. The female post-mating response requires genes expressed in the secondary cells of the male accessory gland in *Drosophila melanogaster*. _Genetics_, 202(3):1029–1041, March 2016.

6. Tracey Chapman, Deborah M Neubaum, Mariana F Wolfner, and Linda Partridge. The role of male accessory gland protein Acp36DE in sperm competition in *Drosophila melanogaster*. _Proceedings of the Royal Society of London. Series B: Biological Sciences_, 267(1448):1097–1105, 2000.

7. Huanfa Liu and Eric Kubli. Sex-peptide is the molecular basis of the sperm effect in *Drosophila melanogaster*. _Proceedings of the National Academy of Sciences of the United States of America_, 100(17):9929–9933, August 2003.

8. Tracey Chapman, Laura A Herndon, Yael Heifetz, Linda Partridge, and Mariana F Wolfner. The Acp26Aa seminal fluid protein is a modulator of early egg hatchability in *Drosophila melanogaster*. _Proceedings of the Royal Society of London. Series B: Biological Sciences_, 268(1477):1647–1654, 2001.

9. Geoffrey D Findlay, Xianhua Yi, Michael J Maccos, and Willie J Swanson. Proteomics reveals novel *Drosophila* seminal fluid proteins transferred at mating. _PLoS biology_, 6(7):e178, July 2008.

10. Alex Wong, Shannon N Albright, Jonathan D Giebel, K Ravi Ram, Shuqing Ji, Anthony C Fiulnera, and Mariana F Wolfner. A role for Acp29AB, a predicted seminal fluid lectin, in female sperm storage in *Drosophila melanogaster*. _Genetics_, 180(2):921–931, October 2008.

11. K Ravi Ram and Mariana F Wolfner. A network of interactions among seminal proteins underlies the long-term postmating response in *Drosophila*. _Proceedings of the National Academy of Sciences_, 106(36):15384–15389, 2009.

12. Frank W Avila, K Ravi Ram, Margaret C Bloch Qazi, and Mariana F Wolfner. Sex peptide is required for the efficient release of stored sperm in mated *Drosophila* females. _Genetics_, 186(2):595–600, October 2010.

13. Frank W Avila, Laura K Sirot, Brooke A LaFlamme, C Dustin Rubenstein, and Mariana F Wolfner. Insect seminal fluid proteins: identification and function. _Annual Review of Entomology, Vol 56_, 56:21–40, 2011.
14. C Dustin Rubinsteint and Mariana F Wolfner. *Drosophila* seminal protein ovulin mediates ovulation through female octopamine neuronal signaling. *Proceedings of the National Academy of Sciences of the United States of America*, 110(43):17420–17425, October 2013.

15. Geoffrey D Findlay, Michael J MacCoss, and Willie J Swanson. Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in *Drosophila*. *Genome research*, 19(5):886–896, May 2009.

16. Deborah M Neubaum and Mariana F Wolfner. Mated *Drosophila melanogaster* females require a seminal fluid protein, Acp36DE, to store sperm efficiently. *Genetics*, 153(2):845–857, October 1999.

17. Uyen Tram and Mariana F Wolfner. Male seminal fluid proteins are essential for sperm storage in *Drosophila melanogaster*. *Genetics*, 153(2):837–844, October 1999.

18. Laura A Herndon and Mariana F Wolfner. A *Drosophila* seminal fluid protein, Acp26Aa, stimulates egg laying in females for 1 day after mating. *Proceedings of the National Academy of Sciences*, 92(22):10114–10118, October 1995.

19. Pang S Chen, E Stumm-Zollinger, Toshiro Aigaki, Josephine Balmer, Mariann Biehn, and Peter Böhlen. A male accessory gland peptide that regulates reproductive behavior of female *D. melanogaster*. *Cell*, 54(3):291–298, July 1988.

20. Alberto Civetta and Andrew G Clark. Correlated effects of sperm competition and postmating female mortality. *Proceedings of the National Academy of Sciences*, 97(24):13162–13165, November 2000.

21. Andrew I Barnes, Stuart Wigby, James M Boone, Linda Partridge, and Tracey Chapman. Feeding, fecundity and lifespan in female *Drosophila melanogaster*. *Proceedings. Biological sciences*, 275(1643):1675–1683, July 2008.

22. Gil B Carvalho, Pankaj Kapahi, David J Anderson, and Seymour Benzer. Allocrine modulation of feeding behavior by the Sex Peptide of *Drosophila*. *Current Biology*, 16(7):692–696, April 2006.

23. Alexandra L Mattei, Mark L Riccio, Frank W Avila, and Mariana F Wolfner. Integrated 3D view of postmating responses by the *Drosophila melanogaster* female reproductive tract, obtained by micro-computed tomography scanning. *Proceedings of the National Academy of Sciences of the United States of America*, 112(27):8475–8480, July 2015.

24. Ido Carmel, Uyen Tram, and Yael Heifetz. Mating induces developmental changes in the insect female reproductive tract. *Current Opinion in Insect Science*, 13:106–113, February 2016.

25. Nilay Yapici, Young-Joon Kim, Carlos Ribeiro, and Barry J Dickson. A receptor that mediates the post-mating switch in *Drosophila* reproductive behaviour. *Nature*, 451(7174):33–37, January 2008.

26. Adriannie Prokupek, Federico Hoffmann, Seong-il Eyun, Etsuko Moriyama, Min Zhou, and Lawrence Harshman. An evolutionary expressed sequence tag analysis of *Drosophila* spermatheca genes. *Evolution; international journal of organic evolution*, 62(11):2936–2947, November 2008.
27. Sandra L Schnakenberg, Wilfredo R Matias, and Mark L Siegal. Sperm-Storage Defects and Live Birth in *Drosophila* Females Lacking Spermathecal Secretory Cells. *PLoS biology*, 9(11), November 2011.

28. Geoffrey D Findlay, Jessica L Sitnik, Wenke Wang, Charles F Aquadro, Nathan L Clark, and Mariana F Wolfer. Evolutionary rate covariation identifies new members of a protein network required for *Drosophila melanogaster* female post-mating responses. *PLoS genetics*, 10(1):e1004108, January 2014.

29. Lisa A McGraw, Greg Gibson, Andrew G Clark, and Mariana F Wolfer. Genes regulated by mating, sperm, or seminal proteins in mated female *Drosophila melanogaster*. *Current Biology*, 14(16):1509–1514, August 2004.

30. Paul D Mack, Anat Kapelnikov, Yael Heifetz, and Michael Bender. Mating-responsive genes in reproductive tissues of female *Drosophila melanogaster*. *Proceedings of the National Academy of Sciences*, 103(27):10358–10363, July 2006.

31. Lisa A McGraw, Andrew G Clark, and Mariana F Wolfer. Post-mating gene expression profiles of female *Drosophila melanogaster* in response to time and to four male accessory gland proteins. *Genetics*, 179(3):1395–1408, July 2008.

32. Anat Kapelnikov, Einat Zelinger, Yuval Gottlieb, Kahn Rhrissorракrai, Kristin C Gunsalus, and Yael Heifetz. Mating induces an immune response and developmental switch in the *Drosophila* oviduct. *Proceedings of the National Academy of Sciences of the United States of America*, 105(37):13912–13917, September 2008.

33. Sarah D Kocher, Freddie-Jeanne Richard, David R Tarpy, and Christina M Grozinger. Genomic analysis of post-mating changes in the honey bee queen (*Apis mellifera*). *BMC genomics*, 9(1):232, December 2008.

34. Justin E Dalton, Tanvi S Kacheria, Simon RV Knott, Matthew S Lebo, Allison Nishitani, Laura E Sanders, Emma J Stirling, Ari Winbush, and Michelle N Arbeitman. Dynamic, mating-induced gene expression changes in female head and brain tissues of *Drosophila melanogaster*. *BMC genomics*, 11(1):1, October 2010.

35. Jeremy M Bono, Luciano M Matzkin, Erin S Kelleher, and Therese A Markow. Postmatting transcriptional changes in reproductive tracts of cons- and heterospecifically mated *Drosophila mojavensis* females. *Proceedings of the National Academy of Sciences of the United States of America*, 108(19):7878–7883, May 2011.

36. Janis Thailayil, Kalle Magnusson, H Charles J Godfray, Andrea Crisanti, and Flaminia Catteruccia. Spermless males elicit large-scale female responses to mating in the malaria mosquito *Anopheles gambiae*. *Proceedings of the National Academy of Sciences of the United States of America*, 108(33):13677–13681, August 2011.

37. Catalina Alfonso-Parra, Yasir H Ahmed-Brainah, Ethan C Degner, Frank W Avila, Susan M Villarreal, Jeffrey A Pleiss, Mariana F Wolfer, and Laura C Harrington. Mating-induced transcriptome changes in the reproductive tract of female *Aedes aegypti*. *PLOS Neglected Tropical Diseases*, 10(2), February 2016.
38. Nooria Al-Wathiqi, Erik B Dopman, and Sara M Lewis. Postmating transcriptional changes in the female reproductive tract of the European corn borer moth. *Insect Molecular Biology*, 25(5):629–645, October 2016.

39. Brian Hollis, Mareike Koppik, Kristina U Wensing, Hanna Ruhmann, Eléonore Genzoni, Berra Erkosal, Tadeusz J Kawecki, Claudia Fricke, and Laurent Keller. Sexual conflict drives male manipulation of female postmating responses in *Drosophila melanogaster*. *Proceedings of the National Academy of Sciences of the United States of America*, 116(17):8437–8444, April 2019.

40. Mara KN Lawniczak and David J Begun. A genome-wide analysis of courting and mating responses in *Drosophila melanogaster* females. *Genome*, 47(5):900–910, October 2004.

41. Paolo Innocenti and Edward H Morrow. Immunogenic males: a genome-wide analysis of reproduction and the cost of mating in *Drosophila melanogaster* females. *Journal of Evolutionary Biology*, 22(5):964–973, May 2009.

42. Sofie Y N Delbarre, Clement Y Chow, Mariana F Wolfner, and Andrew G Clark. Roles of female and male genotype in post-mating responses in *Drosophila melanogaster*. *The Journal of heredity*, 108(7):740–753, October 2017.

43. W Robert Shaw, Eleonora Teodori, Sara N Mitchell, Francesco Baldini, Paolo Gabrieli, David W Rogers, and Flaminia Catteruccia. Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in *Anopheles gambiae*. *Proceedings of the National Academy of Sciences*, 111(16):5854–5859, April 2014.

44. Timothy R Birkhead and Tommaso Pizzari. Evolution of sex: Postcopulatory sexual selection. *Nature Reviews Genetics*, 3(4):262–273, April 2002.

45. Scott Pitnick, Mariana F Wolfner, and Susan S Suarez. Ejaculate–female and sperm–female interactions. In *Sperm Biology*, pages 247–304. Elsevier, 2009.

46. G. A. Parker. Sperm competition and its evolutionary consequences. *Biological Reviews*, 1970.

47. William G Eberhard. *Female Control*. Sexual selection by cryptic female choice. Princeton University Press, 1996.

48. Jennifer C Perry and Locke Rowe. The evolution of sexually antagonistic phenotypes. *Cold Spring Harbor Perspectives in Biology*, 7(6):a017558, June 2015.

49. T A Markow. Assortative fertilization in *Drosophila*. *Proceedings of the National Academy of Sciences*, 94(15):7756–7760, July 1997.

50. Theresa Robinson, Norman A Johnson, and Michael J Wade. Postcopulatory, prezygotic isolation - intraspecific and interspecific sperm precedence in *Tribolium* Spp, flour beetles. 73(2):155–159, August 1994.

51. Pamela G Gregory, Jiming Chu, and Michael L Cain. Conspecific sperm precedence is an effective barrier to hybridization between closely related species. *Evolution; international journal of organic evolution*, 52(2):511, April 1998.
52. Catherine S C Price, Christine H Kim, Carina J Gronlund, and Jerry A Coyne. Cryptic reproductive isolation in the *Drosophila simulans* species complex. *Evolution; international journal of organic evolution*, 55(1):81–92, January 2001.

53. Andrea L Sweigart. The genetics of postmating, prezygotic reproductive isolation between *Drosophila virilis* and *D. americana*. *Genetics*, 184(2):401–410, February 2010.

54. Yasir H Ahmed-Braimah and Bryant F McAllister. Rapid evolution of assortative fertilization between recently allopatric species of *Drosophila*. *International Journal of Evolutionary Biology*, 2012(5393):1–9, January 2012.

55. Kerry L Shaw and Jonathan M Lambert. Dissecting post-mating prezygotic speciation phenotypes. *BioEssays: news and reviews in molecular, cellular and developmental biology*, 36(11):1050–1053, November 2014.

56. Yasir H Ahmed-Braimah, Robert L Unckless, and Andrew G Clark. Evolutionary dynamics of male reproductive genes in the *Drosophila virilis* subgroup. *G3: Genes—Genomes—Genetics*, 7(9):g3.1136.2017–3155, January 2017.

57. Yasir H Ahmed-Braimah. Multiple genes cause postmating prezygotic reproductive isolation in the *Drosophila virilis* group. *G3: Genes—Genomes—Genetics*, 6(12):4067–4076, December 2016.

58. Jackson H Jennings, Dominique Mazzi, Michael G Ritchie, and Anneli Hoikkala. Sexual and postmating reproductive isolation between allopatric *Drosophila montana* populations suggest speciation potential. *BMC evolutionary biology*, 11:68, March 2011.

59. Jackson H Jennings, Rhonda R Snook, and Anneli Hoikkala. Reproductive isolation among allopatric *Drosophila montana* populations. *Evolution; international journal of organic evolution*, 68(11):3095–3108, November 2014.

60. Martin D Garlovsky and Rhonda R Snook. Persistent postmating, prezygotic reproductive isolation between populations. *Ecology and Evolution*, 8(17):9062–9073, September 2018.

61. Bryan C Caletka and Bryant F McAllister. A genealogical view of chromosomal evolution and species delimitation in the *Drosophila virilis* species subgroup. *Molecular Phylogenetics and Evolution*, 33(3):664–670, December 2004.

62. Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9(4):357–359, April 2012.

63. Mark D Robinson, Davis J McCarthy, and Gordon K Smyth. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1):139–140, January 2010.

64. Davide Risso, John Ngai, Terence P Speed, and Sandrine Dudoit. Normalization of RNA-seq data using factor analysis of control genes or samples. *Nature Biotechnology*, 32(9):896–902, September 2014.

65. Matthew D Young, Matthew J Wakefield, Gordon K Smyth, and Alicia Oshlack. Gene ontology analysis for RNA-seq: accounting for selection bias. *Genome Biology*, 11(2):R14, 2010.
66. Ziheng Yang. PAML 4: phylogenetic analysis by maximum likelihood. *Molecular biology and evolution*, 24(8):1586–1591, August 2007.

67. Jianzhi Zhang, Rasmus Nielsen, and Ziheng Yang. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. *Molecular Biology and Evolution*, 22(12):2472–2479, December 2005.

68. Willie J Swanson and Victor D Vacquier. The rapid evolution of reproductive proteins. *Nature Reviews Genetics*, 3(2):137–144, February 2002.

69. Wilfried Haerty, Santosh Jagadeeshan, Alex Wong, Kristipati Ravi Ram, Laura K Sirot, Lisa Levesque, Carlo G Artieri, and Alberto Civetta. Evolution in the fast lane: rapidly evolving sex-related genes in *Drosophila*. *Genetics*, 177(3):1321–1335, November 2007.

70. Erin S Kelleher and James E Pennington. Protease gene duplication and proteolytic activity in *Drosophila* female reproductive tracts. *Molecular biology and evolution*, 26(9):2125–2134, September 2009.

71. Brooke A LaFlamme, K Ravi Ram, and Mariana F Wolfner. The *Drosophila melanogaster* seminal fluid protease “Seminase” regulates proteolytic and post-mating reproductive processes. *PLoS genetics*, 8(1):e1002435, January 2012.

72. Michael Parisi, Rachel Nuttall, Daniel Naiman, Gerard Bouffard, James Malley, Justen Andrews, Scott Eastman, and Brian Oliver. Paucity of genes on the *Drosophila* X chromosome showing male-biased expression. *Science (New York, N.Y.)*, 299(5607):697–700, January 2003.

73. Eleni N Tsakiri, Gerasimos P Sykiotis, Issidora S Papassideri, Vassilis G Gorgoulis, Dirk Bohmann, and Ioannis P Trougakos. Differential regulation of proteasome functionality in reproductive vs. somatic tissues of *Drosophila* during aging or oxidative stress. *FASEB journal : official publication of the Federation of American Societies for Experimental Biology*, 27(6):2407–2420, June 2013.

74. Charles Hetru and Jules A Hoffmann. NF-kappaB in the immune response of *Drosophila*. *Cold Spring Harbor Perspectives in Biology*, 1(6):a000232–a000232, December 2009.

75. Matthias Soller, Mary Bownes, and E Kubli. Mating and sex peptide stimulate the accumulation of yolk in oocytes of *Drosophila melanogaster*. *European journal of biochemistry / FEBS*, 243(3):732–738, February 1997.

76. Yaël Heifetz, Oliver Lung, and Edward A Frongillo Jr. The *Drosophila* seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary. *Current Biology*, 10(2):99–102, January 2000.

77. Tracy E Dohn and Richard M Cripps. Absence of the *Drosophila* jump muscle actin Act79B is compensated by up-regulation of Act88F. *Developmental dynamics : an official publication of the American Association of Anatomists*, 247(4):642–649, April 2018.

78. Willie J Swanson, Andrew G Clark, Heidi M Waldrup-Dail, Mariana F Wolfner, and Charles F Aquadro. Evolutionary EST analysis identifies rapidly evolving male reproductive proteins in *Drosophila*. *Proceedings of the National Academy of Sciences*, 98(13):7375–7379, June 2001.
79. Willie J Swanson, Alex Wong, Mariana F Wolfner, and Charles F Aquadro. Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. *Genetics*, 168(3):1457–1465, November 2004.

80. Erin S Kelleher, Willie J Swanson, and Therese A Markow. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts. *PLoS genetics*, 3(8):e148, August 2007.

81. Adrianne M Prokupek, S I Eyun, L KO, Etsuko N Moriyama, and Lawrence G Harshman. Molecular evolutionary analysis of seminal receptacle sperm storage organ genes of Drosophila melanogaster. *Journal of Evolutionary Biology*, 23(7):1386–1398, July 2010.

82. Nooria Al-Wathiqi, Sara M Lewis, and Erik B Dopman. Using RNA sequencing to characterize female reproductive genes between Z and E Strains of European Corn Borer moth (*Ostrinia nubilalis*). *BMC genomics*, 15(1):189, 2014.

83. Michael T Siva-Jothy, Yoshitaka Tsubaki, and Rowan E Hooper. Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. *Physiological Entomology*, 23(3):274–277, September 1998.

84. Kurt A McKeen and Leonard Nunney. Increased sexual activity reduces male immune function in Drosophila melanogaster. *Proceedings of the National Academy of Sciences*, 98(14):7904–7909, July 2001.

85. Jens Rolff and Michael T Siva-Jothy. Copulation corrupts immunity: A mechanism for a cost of mating in insects. *Proceedings of the National Academy of Sciences*, 99(15):9916–9918, July 2002.

86. Robin A Schwenke and Brian P Lazzaro. Juvenile hormone suppresses resistance to infection in mated female Drosophila melanogaster. *Current Biology*, 27(4):596–601, February 2017.

87. Mara K N Lawniczak, Andrew I Barnes, Jon I Linklater, James M Boone, Stuart Wigby, and Tracey Chapman. Mating and immunity in invertebrates. *Trends in ecology & evolution*, 22(1):48–55, January 2007.

88. Kenneth M Fedorka, Jodell E Linder, Wade Winterhalter, and Daniel Promislow. Post-mating disparity between potential and realized immune response in Drosophila melanogaster. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 274(1614):1211–1217, May 2007.

89. Edward H Morrow and Paolo Innocenti. Female postmating immune responses, immune system evolution and immunogenic males. *Biological reviews of the Cambridge Philosophical Society*, 87(3):631–638, August 2012.

90. Keiko Oku, Tom A R Price, and Nina Wedell. Does mating negatively affect female immune defences in insects? *Animal Biology*, 69(1):117–136, February 2019.

91. Catalina Alfonso-Parra, Frank W Avila, Prasit Deewatthanawong, Laura K Sirot, Mariana F Wolfner, and Laura C Harrington. Synthesis, depletion and cell-type expression of a protein from the male accessory glands of the dengue vector mosquito *Aedes aegypti*. *Journal of Insect Physiology*, 70:117–124, November 2014.
92. Yangxing Zhao, Qiaoli Li, Chenjiang Yao, Zhaoxia Wang, Yin Zhou, Yajing Wang, Limin Liu, Yifei Wang, Lianyun Wang, and Zhongdong Qiao. Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression. *Human reproduction*, 21(6):1583–1590, June 2006.

93. Jean-Pierre Dadoune. Spermatozoal RNAs: what about their functions? *Microscopy research and technique*, 72(8):536–551, August 2009.

94. Bettina E Fischer, Elizabeth Wasbrough, Lisa A Meadows, Owen Randlet, Steve Dorus, Timothy L Karr, and Steven Russell. Conserved properties of *Drosophila* and human spermatozoal mRNA repertoires. *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 279(1738):2636–2644, July 2012.
Supporting Information

Figure S1. **Experimental design and tissues used in the study.** Three tissues were used to generate short read RNA-seq data: heads, ovaries, and lower reproductive tracts. We also used the gonadectomized carcass to identify tissue-biased transcripts. Virgin RNA-seq libraries included all four tissue samples, while post-mating libraries included heads (6 hpm), ovaries (6 hpm), and lower reproductive tracts (3 hpm, 6 hpm, and 12 hpm).
Figure S2. Shared reproductive tissue-biased genes in females and males. (A) Heatmap of centered log2 mean TPM of fRT genes (logFC ≥2) across male and female D. novamexicana tissues. Row annotations on the left indicate the tissue-biased classification with the key on the right (fRT: female reproductive tract; AG: accessory glands; EB: ejaculatory bulb). (B) Venn diagram showing the overlap of fRT-biased genes with male reproductive tract-biased genes. (C) Examples of three genes that show fRT-biased expression in females but also show accessory gland-biased (top), ejaculatory bulb-biased (middle), or testes-biased (bottom) expression in males.
Figure S3. (A) Distribution of RUVseq residual correction variables across fRT replicates and samples with \(k = 2 \). (B) Correlation matrix (Pearson coefficient) of virgin and post-mating fRT samples. Row and column annotation bars represent sample ID.
Figure S4. (A) Significantly enriched Gene Ontology (GO) terms among up-regulated genes in the fRT after mating. Redundant and/or nested GO terms were trimmed using GOtrim. The number of differentially abundant transcripts that belong to each ontology term is indicated within the circle, and the ontology category is indicated by color (BP: Biological Process; CC: Cellular Component; MF: Molecular Function). (B) Genes that code for components of the core proteasome complex that are up-regulated in the female fRT after mating to conspecific (yellow) or heterospecific (blue) males. (C) Venn diagram of the number of transcripts that are differentially abundant between conspecific and heterospecific fRT post-mating samples. (D) Significantly enriched GO terms among genes that have significantly higher abundance in the heterospecific fRT samples compared to the conspecific fRT samples (GO terms not pruned as in (A)).
Figure S5. (A) Correlation matrix (Pearson coefficient) of virgin and post-mating ovary samples. (B) MDS plot of virgin and post-mating ovary samples. (C) Correlation matrix (Pearson coefficient) of virgin and post-mating head samples. (D) MDS plot of virgin and post-mating head samples.