FINITE SOLVABLE GROUPS WHOSE GRUENBERG-KEGEL GRAPH HAS A CUT-SET

LORENZO BONAZZI

ABSTRACT. Let $\Gamma(G)$ be the Grunberg-Kegel graph of a finite group G. We prove that if G is solvable and σ is a cut-set for $\Gamma(G)$, then G has a σ-series of length at most 5, whose factors are controlled. As a consequence, we prove that if G is a solvable group and $\Gamma(G)$ has a cut-vertex p, then the Fitting length $\ell_F(G)$ of G is bounded and the bound obtained is the best possible.

Keywords: Grunberg-Kegel graph, prime graph of finite groups, cut-set, solvable groups

1. Introduction

If G is a finite group, we define the Grunberg-Kegel graph $\Gamma(G)$ as follows: the vertices consist in $\pi(G)$, the set of primes that divide $|G|$, and two vertices are joined if and only if there is an element of G with order pq. One of the first results that appeared in the context is the celebrated Grunberg-Kegel Theorem, stating that if G is solvable and $\Gamma(G)$ is disconnected, then G is a Frobenius or a 2-Frobenius group and there are exactly two connected components that are complete subgraphs. See Theorem 2.5 below.

If Γ is a graph with vertices V and σ is a set, then $\Gamma - \sigma$ is graph that has vertices $V \setminus \sigma$ and two vertices of $\Gamma - \sigma$ are adjacent in $\Gamma - \sigma$ if and only if they are adjacent in Γ. We say that σ is a pseudo cut-set of Γ if $\Gamma - \sigma$ is disconnected. If Γ is connected and $\sigma \subseteq V$ is a pseudo cut-set of Γ, then we call σ a cut-set of Γ. If $\sigma = \{v\}$ is a cut-set for Γ, then v is called a cut-vertex of Γ. The definition of cut-set that we have given is standard in graph theory. The notion of pseudo cut-set is introduced in order to make the proofs smooth, avoiding to distinguish the case where Γ is disconnected. In this case, every σ such that $\sigma \cap V = \emptyset$ is a pseudo cut-set for Γ. Note that if σ is a cut-set for Γ, then σ is a pseudo cut-set for Γ.

Theorem A. Let G be a solvable finite group. Suppose that $\sigma \subseteq \pi(G)$ is a pseudo cut-set for $\Gamma(G)$. Then, $\Gamma(G) - \sigma$ consists of two complete connected components with vertex-sets π_1, π_2 and, up to exchanging π_1 and π_2, a normal series

$$1 \leq G_0 \leq G_1 \leq G_2 \leq G_3 \leq G$$

such that G_0 and G_2/G_1 are σ-groups, G_1/G_0 is a nilpotent $\pi_1(G)$-group, G_3/G_2 is a nilpotent $\pi_2(G)$-group and G/G_3 is not nilpotent only if $2 \in \pi_2(G)$ and $G/O(G) \simeq (2.S_4)^-; \text{ in this case, } \ell_F(G/G_3) = 2$.

If G is a finite group and σ is a set of primes, then $\ell_\sigma(G)$, the σ-length of G, is the minimal length among all the normal series for G whose factors are σ-groups or σ'-groups. As a consequence of Theorem A, we have the following.
Corollary B. Let G be a solvable group. Suppose that σ is a cut-set for $\Gamma(G)$, then $\ell_2(p, G) \leq 3$. Moreover, if σ consists of a cut-vertex p of $\Gamma(G)$, then $\ell_F(G) \leq 6$ and if $G/O(G) \not\cong (2, S_4)^{-}$, then $\ell_F(G) \leq 5$. The bounds are the best possible.

The motivation of this paper is [11, Lemma 2.3], where it is studied $\ell_G(G)$ when G is solvable and $\Gamma(G)$ is a 3-chain.

2. Preliminary results

Definition 2.1. If G is a group, we say that G is a 2-Frobenius group if there is a normal series $1 < H < K < G$ such that K is a Frobenius group with kernel H and G/H is a Frobenius group with kernel K/H. We call H the lower kernel and K/H the upper kernel.

Lemma 2.2. Let G be a Frobenius group. Then $F(G)$ is the Frobenius kernel.

Proof. Let L be the Frobenius kernel of G. Then $L \leq F(G)$ by [4, Theorem 10.3.1, so $Z(F(G)) \leq C_G(L) \leq L$ as L is the Frobenius kernel of G. Then $F(G) \leq C_G(Z(F(G))) \leq L$, so in fact $F(G) = L$. □

Proposition 2.3. Let G be a 2-Frobenius group. Then $F(G)$ is the lower kernel and $F_2(G)/F(G)$ is the upper kernel. Moreover, the upper kernel is a cyclic group of odd order, $G/F_2(G)$ is cyclic and the lower kernel is not cyclic.

Proof. By definition, there is a normal series $1 < H < K < G$ of G such that H is a Frobenius kernel of K and K/H is a Frobenius kernel of G/H. By Lemma 2.2 we have that $F(G/K) = H/K$, therefore $F(G) \leq H$. By Lemma 2.2 again, we have that $H = F(K)$, therefore $F(G) \leq H \leq F(G)$, so $H = F(G)$ and $K = F_2(G)$. The remaining part of the Proposition can be found in [5, Lemma 2.1]. □

The next proposition, that is known as the "Lucido’s 3 primes Lemma".

Lemma 2.4. [9, Proposition 1] Let G be a solvable group. If p, q, r are distinct primes dividing $|G|$, then G contains an element of order the product of two of these three primes.

The following is a version of Grunberg-Kegel Theorem whose statement is suitable for our scopes.

Theorem 2.5 (Grunberg-Kegel). Let G be a solvable group. Suppose that σ is a pseudo cut-set of $\Gamma(G)$ and let $H \in \text{Hall}_\sigma(G)$. Then $\Gamma(H) = \Gamma(G) - \sigma$ and $\Gamma(H)$ consists of two complete connected components. Moreover, one of the following holds.

1. H is a Frobenius group and the vertex-set of one component of $\Gamma(H)$ consists of the primes dividing the size of a Frobenius complement of H.
2. H is a 2-Frobenius group and the vertex-set of one component of $\Gamma(H)$ consists of the primes dividing the size of a Frobenius complement of $F_2(H)$.

Proof. Suppose that σ is a pseudo cut-set of G. Observe that the vertex set of $\Gamma(G) - \sigma$ is equal to the vertex set of $\Gamma(H)$. In addition, two vertices of $\Gamma(H)$ are adjacent in $\Gamma(H)$ if and only if they are adjacent in $\Gamma(G) - \sigma$. This follows from the fact that every σ'-element is contained in some conjugate of H, being G solvable and $H \in \text{Hall}_\sigma(G)$. Therefore, this implies that $\Gamma(G) - \sigma = \Gamma(H)$. By [11, Corollary], $\Gamma(H)$ consists of two components and either part 1 or part 2 of the theorem holds,
where the lower complement of H is the Frobenius complement of H when H is a Frobenius group, and the complement of $F_2(H)$ when H is a 2-Frobenius group. By Lucido’s three Primes Lemma 2.4, these connected components are complete subgraphs of $\Gamma(H)$.

3. PROOF OF THEOREM 3

According to Theorem 2.5 we give the following definition.

Definition 3.1. Let G be a solvable group and σ be a set of primes that is a pseudo cut-set of $\Gamma(G)$. Let $H \in \text{Hall}_{\sigma}(G)$. Then, in view of the Theorem 2.5 we adopt the following definitions.

1. If H is a Frobenius group, then $\pi_{2,\sigma}(G)$ consists of primes that divide the order of a Frobenius complement of H.
2. If H is a 2-Frobenius group, then $\pi_{2,\sigma}(G)$ consists of primes that divide the order of a Frobenius complement of $F_2(H)$.

Moreover, we define, $\pi_{1,\sigma}(G) = \pi(H) \setminus \pi_{2,\sigma}(G)$. If the pseudo cut-set σ is fixed, we write $\pi_1(G) = \pi_{1,\sigma}(G)$ and $\pi_2(G) = \pi_{2,\sigma}(G)$.

Lemma 3.2. Let G be a solvable group and σ be a set of primes that is a pseudo cut-set for $\Gamma(G)$. Then $\pi_1(G)$ and $\pi_2(G)$ are the vertex-sets of the connected components of $\Gamma(G) - \sigma$ and $F(G/O_{\sigma}(G))$ is a $\pi_1(G)$-group.

Proof. By Theorem 2.5 if $H \in \text{Hall}_{\sigma}(G)$, then $\Gamma(H) = \Gamma(G) - \sigma$ consists of two complete connected components and one of them has $\pi_2(G)$ as vertex-set. So, $\pi_1(G)$ is the vertex set of the other connected component. This is because $\pi(H) = \pi(G) \setminus \sigma = \pi_1(G) \cup \pi_2(G)$. We prove the remaining part of the lemma. Without loss of generality, we can assume that $O_{\sigma}(G) = 1$. Then $F(G)$ is a σ'-group and hence $F(G) \leq H$. This means that $F(G) \leq F(H)$. It follows from Theorem 2.5 that $F(H)$ is a $\pi_1(G)$-group, so $F(G)$ is a $\pi_1(G)$-group. \qed

The next result stands at the core of our study on Grunberg-Kegel graphs.

Proposition 3.3. Let r be a prime, H a solvable group and V a faithful $GF(r)H$-module. Suppose that σ is a pseudo cut-set for $\Gamma(HV)$ and $r \not\in \sigma$. Then, $r \in \pi_1(HV)$ and there is $K \leq H$ such that the following holds.

1. K is nilpotent and $\pi(K) \leq \pi_2(HV)$.
2. $F(H/O_{\sigma}(H)) = K\langle O_{\sigma}(H) \rangle / O_{\sigma}(H)$.

Proof. Let $\pi_i = \pi_i(HV)$ for $i = 1, 2$. Since $V = F(HV)$ is an r-group, we have that $O_{\sigma}(HV) = 1$ and $r \in \pi_1$ by Lemma 3.2. By Theorem 2.5 if $U \in \text{Hall}_{\sigma}(HV)$, we have that $\Gamma(HV) - \sigma = \Gamma(U)$ consists of two complete connected components, having vertex-sets π_1 and π_2 by Lemma 3.2. Moreover, U is either a Frobenius group or a 2-Frobenius group. Write $F = F(U)$ and note that $V = F$. Indeed, we have that $V \leq F$. Since $V = F(HV)$, the opposite inclusion also follows: $F = C_U(F) \leq C_U(V) \leq V$.

Consider $\tilde{H} = H/O_{\sigma}(H)$. Then $O_{\sigma}(\tilde{H}) = 1$ and $F(\tilde{H})$ is a σ'-group. Let N the preimage in H of $F(\tilde{H})$. Then $N/O_{\sigma}(H) = F(\tilde{H})$. Let $U_0 \in \text{Hall}_{\sigma}(HV)$ such that $U_0 \leq U$. Since V is an r group with $r \not\in \sigma$ and $U \in \text{Hall}_{\sigma}(HV)$, we have that $U = VU_0$. Write $K = U_0 \cap N$, so that $KV \leq U$ and $N = O_{\sigma}(H) \times K$. Observe that K is nilpotent because $K \simeq F(\tilde{H})$. Since $V = F(U)$, it follows that $K \leq F_2(U)$.

If U is a 2-Frobenius group, we have that V is the Frobenius kernel for $F_2(U)$ by Proposition 2.3, so K is contained in a Frobenius complement of $F_2(U)$. If U is a Frobenius group, then V is the Frobenius kernel of U by Lemma 2.2 and therefore K is contained in a Frobenius complement of U. In any case, K is a π_2-group by Definition 3.1. Note that $KO_\sigma(H)/O_\sigma(H) = F(H/O_\sigma(H))$. This concludes the proof. \hfill \square

Definition 3.4. Let G be a group. We denote with $O(G)$ the largest normal subgroup of G that has odd order.

Lemma 3.5. Let G be a solvable group. Suppose that $G/O(G)$ is isomorphic to the extension of $SL_2(3)$ by a cyclic group of order $2q$ with q odd and that a Sylow 2-subgroup of $G/O(G)$ is a generalized quaternion group. Then $G/O(G)$ is isomorphic to the SmallGroup(48,28).

Proof. Call $H = G/O(G)$ and observe that $O(H) = 1$. Suppose that H is the extension of $SL_2(3)$ by a cyclic group of order $2q$, with q odd. Let $N \trianglelefteq G$ such that H/N is cyclic of order q. Then N contains a subgroup of index 2 that is normal in G and that is isomorphic to $SL_2(3)$. Moreover, a Sylow 2-subgroup of N is a generalized quaternion group. Therefore, by direct check with the software GAP, up to isomorphism there is only one such a group, namely the SmallGroup(48,28).

Note that $\text{Aut}(N) = C_2 \times S_4$. Let $R \in \text{Hall}_2(H)$, then R acts on N and $R/R_0 \trianglelefteq \text{Aut}(N)$, where $R_0 = C_N(R)$. Therefore, $[R : R_0] \leq 3$. Take $x \in N$ of order 3; therefore x acts non trivially on N and hence $(x) \cap R_0 = 1$. It follows that $R = (x) \times R_0$. Since R_0 is cyclic, we have that $NR \leq C_H(R_0)$ and $R_0 \leq Z(H)$. Thus, $R_0 \leq O(H) = 1$.

Definition 3.6. We denote by $(2.S_4)^-$ the group SmallGroup(48,28). Following \cite{1}, we call $(2.S_4)^-$ the binary octaedral group.

We now prove Theorem 3.7 that we restate for convenience.

Theorem 3.7. Let G be a solvable group. Suppose that σ is a set of primes that is a pseudo cut-set for $\Gamma(G)$. Then there is a normal series

$$1 \leq G_0 \leq G_1 \leq G_2 \leq G_3 \leq G$$

such that G_0 and G_2/G_1 are σ-groups, G_1/G_0 is a nilpotent $\pi_1(G)$-group, G_3/G_2 is a nilpotent $\pi_2(G)$-group and G/G_3 is not nilpotent only if $2 \in \pi_2(G)$ and $G/O(G) \simeq (2.S_4)^-$; in this case, $\ell_F(G/G_3) = 2$.

Proof. Let $\pi_i = \pi_i(G)$ for $i = 1, 2$. Call $G_0 = O_\sigma(G)$ and $\bar{G} = (G/G_0)/\Phi(G/G_0)$. Suppose that there is a normal series $1 \leq \bar{G}_1 \leq \bar{G}_2 \leq \bar{G}_3 \leq \bar{G}$ such that $\bar{G}_1 = F(G)$ is a π_1-group, \bar{G}_1/\bar{G}_2 is a σ-group, \bar{G}_3/\bar{G}_2 is a nilpotent π_2-group and \bar{G}/\bar{G}_3 is not nilpotent if and only if $2 \in \pi_2$ and $\bar{G}/O(\bar{G})$ is isomorphic to $(2.S_4)^-$. Consider G_i the preimage of \bar{G}_i in G. Then, $(G_1/G_0)/\Phi(G(G_0)) = F(G/G_0)/\Phi(G/G_0)$ by \cite{3} III Satz 3.5] and it follows that $G_1/G_0 = F(G/G_0)$, that is a nilpotent π_1-group. For $i \geq 2$, it is easy to see that $G_i/G_{i-1} \simeq G_i/\bar{G}_i \simeq G_{i-1}$ and $1 \leq G_0 \leq G_1 \leq G_2 \leq G_3 \leq G$ satisfies the thesis of the theorem; in particular, G/G_3 is not nilpotent if and only if \bar{G}/\bar{G}_3 is not nilpotent. This happens if and only if $2 \in \pi_2$ and $\bar{G}/O(\bar{G}) \simeq (2.S_4)^-$. Since $\bar{G} = (G/O_\sigma(G))/(\Phi(G/O_\sigma(G)))$ and $\pi_2 = \pi(G) \setminus (\sigma \cup \pi_1)$, we have that \bar{G} is the quotient of G by a normal $\sigma \cup \pi_1$-group. Observe that $2 \notin \sigma \cup \pi_1$; so, we deduce that $O(\bar{G})$ is a quotient of $O(G)$ and $G/O(G) \simeq (2.S_4)^-$. We proved
that if \(\bar{G} \) possesses a series that satisfies the thesis of the Theorem, then the same is true for \(G \). Hence, it is no loss to assume \(O_\sigma(G) = 1 \), \(\Phi(G) = 1 \) and \(F(G) \) is a \(\pi_1 \)-group. By Gaschütz’s Theorem \([10, 1.12]\), \(F(G) \) has a complement \(H \) in \(G \) and \(F(G) \) is a faithful completely reducible \(H \)-module, possibly of mixed characteristic. Write \(F(G) = M_1 \times \cdots \times M_n \) as the product of irreducible \(H \)-modules, so that \(M_i \) is an elementary abelian \(r_i \)-group for \(r_i \in \pi_1 \). Call \(H_i = H/C_H(M_i) \) and \(\bar{H} = \prod H_i \). Note that \(H_i \leq \bar{H} \), since \(\bigcap H_i = C_H(M_i) = C_H(F(G)) = 1 \). The group \(M_i \) is a faithful irreducible \(H_i \)-module. Note that \(M_i H_i = G/C_H(M_i) \bigcap_{j \neq i} M_j \), so \(\Gamma(M_i H_i) \) is a subgraph of \(\Gamma(G) \). Let \(L \in \text{Hall}_{\pi_2}(H) \); since no vertex in \(\pi_2 \) is adjacent in \(\Gamma(G) \) to any vertex in \(\pi_1 \), we have that \(L \cap C_L(M_i) = 1 \). Therefore, for every \(i \), \(H_i \) contains a subgroup that is isomorphic to \(L \). In particular, \(\pi_2 \leq \pi(H_i) \). Since \(r_i \in \pi_1 \), \(H_i \) is isomorphic to an extension of the group \(C_2 \) by \(G \). By Proposition \([5, 3]\), for every \(i \), there are \(H_{i,2}, H_{i,3} \leq H_i \) such that \(H_{i,2} = O_{\pi}(H_i) \) and \(F(H_i/H_{i,2}) = H_{i,3}/H_{i,2} \). Moreover, we have that \(H_{i,3} = K_i H_{i,2} \), where \(K_i \in \text{Hall}_{\pi_2}(H_{i,3}) \) and \(K_i \) is nilpotent. Suppose that \(\sigma \) is a set of primes, \(a \)-length is well-behaved
with subgroups and quotient. Moreover, if $\ell_F(G) = n$, then $\ell_\sigma(G) \leq n - 1$. Now the first part of Corollary \[3.3\] easily follows from Theorem \[3.7\].

Corollary 3.8. Let G be a solvable group. Suppose that σ is a cut-set for $\Gamma(G)$, then $\ell_\sigma(G) \leq 3$. Moreover, if σ consists of a cut-vertex p of $\Gamma(G)$, then $\ell_F(G) \leq 6$ and if $G/O(G) \not\cong (2.S_4)^-$, then $\ell_F(G) \leq 5$. The bounds are the best possible.

Proof. By Theorem \[3.7\] there is a series $1 \leq G_0 \leq G_1 \leq G_2 \leq G_3 \leq G$ such that G_0 and G_2/G_1 are σ-groups, G_1/G_0 is a $\pi_1(G)$-group and G_3/G_2 is a $\pi_2(G)$-group. Now, G/G_3 is not nilpotent if and only if $G/O(G)$ is isomorphic to $(2.S_4)^-$. It is easy to see that $\ell_\sigma(G/G_3) \leq 1$. Thus, $\ell_\sigma(G) \leq 3$.

Suppose now that $\sigma = \{p\}$. Clearly G_0 and G_2/G_1 are nilpotent because they are p-groups. The factor G/G_3 is not nilpotent if and only if $G/O(G) \simeq (2.S_4)^-$. In this case, $\ell_F(G/G_3) = 2$. So $\ell_F(G) \leq 5$ except when $\ell_F(G/G_3) = 2$. In this case, $G/O(G) \simeq (2.S_4)^- \text{ and } \ell_F(G) \leq 6$.

For proving that the bounds obtained are the best possible, it suffices to assume that $\sigma = \{p\}$, where p is a cut-vertex. If G is the group constructed in \[4.1\] Remark 2, then G is solvable, 3 is a cut-vertex of $\Gamma(G)$ and $\ell_\sigma(G) = 3$, where $\sigma = \{3\}$. Moreover, $\ell_F(G) = 6$. Observe that $G/O(G) \simeq (2.S_4)^-$. Suppose that $G/O(G) \not\simeq (2.S_4)^-$, then Theorem \[4.5\] below provides an example of a group G of odd order such that $\ell_F(G) = 5$ and $\Gamma(G)$ has a cut-vertex.

4. Examples

Example 4.1. Let G be a solvable group and σ a cut-set for G. If $|\sigma| = 1$, then there is a bound for $\ell_F(G)$ by Corollary \[3.3\]. If $|\sigma| \geq 2$, then there is no such bound for $\ell_F(G)$. In fact, let $n \geq 2$ be a large integer. It is not difficult to find a group G_1 of order p^aq^b with Fitting length n, where $p, q \geq 5$ are two primes. Consider $G_2 = S_3$, so G_2 is the union of two connected components that consist of the prime 2 and the prime 3. Let $G = G_1 \times G_2$, then $\{p, q\}$ is a cut-set for $\Gamma(G)$ and $\ell_F(G) = n$.

In the hypotheses of Corollary \[3.8\], if $G/O(G) \not\simeq (2.S_4)^-$, then the bound obtained is the best possible. In fact, in Theorem \[4.5\] we construct a group G, of odd order and arbitrarily large derived length, such that $\Gamma(G)$ has a cut-vertex and $\ell_F(G) = 5$.

Some concepts of representation theory are involved; we adopt the notation in \[7\] Ch. 9. Let r be a prime, \mathbb{R} be the ring of local integers for the prime r (see \[7\] pag. 265) and $*: \mathbb{R} \to \mathbb{R}/M$ be the projection map of \mathbb{R} on the quotient \mathbb{R}/M, where M is a maximal ideal of \mathbb{R} containing r. In this section, F denotes the field \mathbb{R}/M.

Lemma 4.2. Let G be a group and $x \in G$. Let χ be the ordinary character of G afforded by the representation $\mathcal{X}: G \to GL(V)$. Then $[\chi_{\langle x \rangle}, 1_{\langle x \rangle}] = 0$ if and only if $\mathcal{X}(x)$ acts fixed-point-freely on V.

Proof. The principal character $1_{\langle x \rangle}$ appears among the irreducible constituents of $\chi_{\langle x \rangle}$ if and only if $\mathcal{X}(x)$ has one eigenvector with eigenvalue 1, namely there is a fixed point.

Let \mathcal{X} a complex representation of a group G and suppose that, for every $g \in G$, $\mathcal{X}(g)$ has entries in \mathbb{R}. Then, following \[7\] pag. 266, if $F = \mathbb{R}/M$, we can construct
an \mathbb{F}-representation \mathfrak{X}^* of G by setting $\mathfrak{X}^*(g) = \mathfrak{X}(g)^*$, where $\mathfrak{X}(g)^*$ is the matrix obtained by applying \ast to every entry of $\mathfrak{X}(g)$.

If $E \subseteq \mathbb{F}$ is a subfield and \mathfrak{Z} is an E-representation of G, then \mathfrak{Z} maps G into a group of non-singular matrices over E. We may, therefore, view \mathfrak{Z} as an F-representation of G. As such we denote it by \mathfrak{Z}^F (see [7, pag. 144]). If \mathfrak{X}, \mathfrak{Y} are two G-representations that are similar over some field, we write $\mathfrak{X} \simeq \mathfrak{Y}$.

Lemma 4.3. Let \mathfrak{X} be an irreducible \mathbb{C}-representation of a group G. Suppose that r is a prime and $r \nmid |H|$. Then, there is a finite field $E \subseteq F$, a \mathbb{C}-representation \mathfrak{Y} similar to \mathfrak{X} that takes values in \bar{F} and an absolutely irreducible E-representation \mathfrak{Z} such that $\mathfrak{Y}^* \simeq \mathfrak{Z}^F$.

Proof. Let \mathfrak{X} be a \mathbb{C}-representation of a group H and χ be its complex character. By [7, Theorem 15.8], there exists a \mathbb{C}-representation \mathfrak{Y}, similar to \mathfrak{X}, that takes values in \bar{F}, namely $\mathfrak{Y}(g) \in M_{\chi(1)}(\bar{F})$ for all $g \in G$. Moreover \mathfrak{Y}^* is an \mathbb{F}-representation of G and $\tilde{\chi}$ is its Brauer character. Since $r \nmid |G|$, by [7, Theorem 15.13] we have $\tilde{\chi} = \chi$ and $\tilde{\chi}$ is irreducible. Hence \mathfrak{Y}^* is irreducible. The field \mathbb{F} is algebraically closed over its prime field \mathbb{F}_p by [7, Lemma 15.1c]), so \mathfrak{Y}^* is absolutely irreducible by [7, Corollary 9.4]. Let $E \subseteq \mathbb{F}$ a splitting field for the polynomial $x^{[G]} - 1 \in \mathbb{F}_p[x]$. Note that E is a finite-degree extension of the prime field of \mathbb{F}, therefore E is finite.

For every $g \in G$, $\chi^*(g)$ is a sum of $|G|$-roots of unity, so $\chi^*(g) \in \mathbb{E}$ for every $g \in G$. By [7, Theorem 9.14] there exists an absolutely irreducible E-representation \mathfrak{Z} of G such that $\mathfrak{Z}^E \simeq \mathfrak{Y}^*$. □

Proposition 4.4. Let \mathfrak{X} be a \mathbb{C}-representation for a group G and W the associated $\mathbb{C}[G]$-module. Then, there is a finite splitting field E of G and a $E[G]$-module V, such that $(|G|, |V|) = 1$ and

$$\dim_{\mathbb{E}} C_W(x) = \dim_{\mathbb{E}} C_V(x)$$

for every $x \in G$.

Proof. Let r be a prime that does not divide $|G|$ and denote \bar{R} the ring of local integers at the prime r. By Lemma 4.3, there is a \mathbb{C}-representation \mathfrak{Y}, similar to \mathfrak{X}, that takes values in \bar{R}, a finite field $E \subseteq \bar{F} = \bar{R}/M$ (where M is the unique maximal ideal of \bar{R}) and absolutely irreducible E-representation \mathfrak{Z} such that $\mathfrak{Y}^* \simeq \mathfrak{Z}^F$. Call W the $C[G]$-module associated to \mathfrak{X} and V the $E[G]$-module associated to \mathfrak{Z}. Note that V is finite since E is finite, moreover $(|G|, |V|) = 1$. Let $x \in G$, the number $m = \dim_{\mathbb{E}} C_W(x)$ is the geometric multiplicity of the eigenvalue 1 of the matrix $\mathfrak{Y}(x)$, that is equal to the algebraic multiplicity of 1 of the matrix $\mathfrak{Y}(x)$. This is because the characteristic of W is 0 and thus the action of $\langle x \rangle$ on W is completely reducible by Maschke’s Theorem. Hence, following the proof of [7, Lemma 2.15], $\mathfrak{Y}(x)$ is diagonalizable and, therefore, algebraic and geometric multiplicities of $\mathfrak{Y}(x)$ coincide. Note that m, as the algebraic multiplicity of 1 in $\mathfrak{Y}(x)$, is equal to the algebraic multiplicity of the 1 in $\mathfrak{Y}^*(x)$. Since $\mathfrak{Y}^*(x)$ and $\mathfrak{Z}^F(x)$ are similar, m is the algebraic multiplicity of 1 for the matrix $\mathfrak{Z}^F(x)$, that is the algebraic multiplicity of 1 in $\mathfrak{Z}(x)$. Using the same argument as above, since the characteristic of V does not divide $|G|$, m is the geometric multiplicity of 1 for $\mathfrak{Z}(x)$, that is equal to $\dim_{\mathbb{E}} C_V(x)$. □
Theorem 4.5. Let \(n \geq 5 \) be an integer. Then, there is a solvable group \(G \) of odd order, with derived length greater than \(n \), such that \(\ell_F(G) = 5 \) and \(\Gamma(G) \) is the graph in Figure 7.

Proof. Let \(t, q \) be two odd primes and \(T, Q \) two cyclic groups of order respectively \(t^2 \) and \(q^2 \). Let \(T_0 \leq T \) the subgroup of order \(t \) and \(Q_0 \leq Q \) the subgroup of order \(q \). Choosing \(t \) to be a prime divisor of \(q^2 - 1 \), it is no loss to assume that there is an action of \(T \) on \(Q \) that has kernel \(T_0 \). Consider \(L = Q \times T \), \(L_0 = Q_0T_0 \) and \(\bar{L} = L/L_0 \). Let \(p \) be an odd prime. By [3, Theorem 22.25], there is a \(p \)-group \(P \) of derived length \(n \) that has a faithful irreducible character \(\theta \). If \(P_0 \) is the base group of \(P \) on \(\bar{L} \), there is an action of \(L \) on \(P_0 \) and the kernel of such an action is \(L_0 \). Call \(H = P_0 \times L \), note that \(F(H) = P_0L_0 \), \(F_2(H) = P_0F(L) \) and \(F_3(H) = H \). Moreover, the derived length of \(H \) is greater than \(n \). Now, \(P_0 = \prod_{j \in \mathbb{N}} P_j \) with \(P_j \simeq P \) for every \(j \) and there is a character \(\theta \) of \(P_j \) that is isomorphic to \(\theta \). Consider \(\psi = \prod_j \theta^j \). By construction, \(\psi \) is a faithful irreducible character of \(P_0 \). Consider now two non-trivial characters \(\lambda \in \text{Irr}(Q_0) \) and \(\mu \in \text{Irr}(T_0) \) such that \(\lambda \mu \) is a faithful irreducible character of \(L_0 \). Note that \(L_0P_0 = P_0 \times Q_0 \times T_0 \), hence \(\psi \lambda \mu \in \text{Irr}(P_0L_0) \). Let \(\chi \in \text{Irr}(H \mid \psi \lambda \mu) \), it is easy to see that \(\chi \) is faithful. Indeed \(\ker \chi \cap P_0 = 1 \) since \([\chi_{P_0}, \psi] \neq 0 \) and \(\psi \) is faithful. Moreover, if \(q \) divides \(|\ker \chi| \), we have that \(Q_0 \leq \ker \chi \), but \([\chi_{Q_0}, \lambda] \neq 0 \) and this is impossible. Replacing \(q \) by \(t \), we have that \(t \) does not divide \(|\ker \chi| \). So, we have that \(\ker(\chi) = 1 \) and \(\chi \) is faithful. The same argument also implies that \([\chi_{Q_0}, 1_{Q_0}] = [\chi_{T_0}, 1_{T_0}] = 0 \). Therefore, by Lemma 4.2, if \(\chi \) is a representation for \(H \) that affords \(\chi \) and \(x \) is an element of order \(t \) or \(q \), then \(x \) is contained in of either \(T_0 \) or \(Q_0 \) and \(\chi(x) \) acts fixed point freely on \(W \), the \(C[H] \)-module associated to \(\chi \). Let \(r \) be an odd prime such that \(r \mid |H| \). By Proposition 4.4, there is a finite field \(\mathbb{E} \) of characteristic \(r \) and a finite \(\mathbb{E}[H] \)-module \(V \) such that, for every \(x \in H \)

\[
\dim_{\mathbb{C}} C_W(x) = \dim_{\mathbb{E}} C_V(x).
\]

Note that, since \(W \) is faithful, \(V \) is faithful. Moreover, an element \(x \in H \) acts fixed-point-freely on \(V \) whenever it does on \(W \). So, every element in \(H \) of order \(t \) or \(q \) acts fixed-point-freely on \(V \) and \(HV \) does not contain any element of order \(tr \) or \(qr \).

On the other hand, the subgroup \(P_0 \) has an elementary abelian subgroup of order \(p^2 \). Hence the action of \(P_0 \) on \(V \) is not regular by [3, Theorem 10.3.1]. So, there is one element of order \(rp \). In addition, in \(HV \) there are elements of order \(tp, qp \) and \(tq \) since \(F(H) = P_0L_0 \). This means that \(p \) is a cut-vertex for the connected graph \(\Gamma(HV) \). Note that \(F(HV) = V \) and \(HV \) has Fitting length 4. Now consider \(C_p \) a group of order \(p \) and let \(G = C_p \ltimes (HV) \). Note that \(G \) has odd order, \(\ell_F(G) = 5 \) and that \(G \) has derived length greater than \(n \). \(\square \)
The above theorem shows that bound for $\ell_F(G)$ obtained in Corollary 3.8 is the best possible and that is independent from the derived length of the group.

References

[1] O. A. Alekseeva, A.S. Kondrat’ev, *Finite groups whose prime graphs are triangle-free. I*, (Russian) Tr. Inst. Mat. Mekh. 21 (2015), no. 3, 3–12; translation in Proc. Steklov Inst. Math. 295 (2016), suppl. 1, S11–S20.

[2] M. Aschbacher, *Finite Group Theory*, Corrected reprint of the 1986 original. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 1993.

[3] Y. Berkovich, *Groups of Prime Power Order, Vol I*, De Gruyter Expositions in Mathematics, 46. Walter de Gruyter GmbH & Co. KG, Berlin, 2008. Cambridge University Press, Cambridge, 1986.

[4] D. Gorenstein, *Finite groups*, Second edition. Chelsea Publishing Co., New York, 1980.

[5] A. Gruber, T. M. Keller, M. L. Lewis, K. Naughton, B. Strasser, *A characterization of the prime graph of solvable groups*, J. Algebra 442 (2015), 397–422.

[6] B. Huppert, *Endliche Gruppen I*, Die Grundlehren der Mathematischen Wissenschaften, Vol. 134, Springer, Berlin–New York, 1967.

[7] I.M. Isaacs, *Character Theory of Finite groups*, Corrected reprint of the 1976 original [Academic Press, New York; MR0406423]. Dover Publications, Inc., New York, 1994.

[8] G. D. James, *The Representation theory of Symmetric Groups*, Springer-Verlag Berlin Heidelberg New York 1978.

[9] M. S. Lucido, *The diameter of a prime graph of a finite group*, J. Group Theory 2 (1999), no. 2, 157–172.

[10] O. Mana T. R. Wolf, *Representations of Solvable Groups*, London Mathematical Society Lecture Notes, 185, Cambridge University Press (1993).

[11] J. S. Williams, *Prime graph components of finite groups*, J. Algebra 69 (1981), no. 2, 487–513.

Department of Mathematics and Informatics, University of Florence
Email address: lorenzo.bonazzi@unifi.it