LOW-IONIZATION LINE EMISSION FROM A STARBURST GALAXY: A NEW PROBE OF A GALACTIC-SCALE OUTFLOW

KATE H. R. RUBIN1, J. XAVIER PROCHASKA1, BRICE MÉNARD2, NORMAN MURRAY2,
DANIEL KASEN1,3, DAVID C. KOO4, AND ANDREW C. PHILLIPS1

1 University of California Observatories, University of California, Santa Cruz, CA 95064, USA; rubin@ucolick.org
2 Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8, Canada

Received 2010 August 6; accepted 2010 November 17; published 2011 January 20

ABSTRACT

We study the kinematically narrow, low-ionization line emission from a bright, starburst galaxy at $z = 0.69$ using slit spectroscopy obtained with Keck/LRIS. The spectrum reveals strong absorption in Mg II and Fe II resonance transitions with Doppler shifts of -200 to -300 km s$^{-1}$, indicating a cool gas outflow. Emission in Mg II near and redward of systemic velocity, in concert with the observed absorption, yields a P-Cygni-like line profile similar to those observed in the Lyα transition in Lyman break galaxies. Further, the Mg II emission is spatially resolved and extends significantly beyond the emission from stars and H II regions within the galaxy. Assuming that the emission has a simple, symmetric surface brightness profile, we find that the gas extends to distances $\gtrsim 7$ kpc. We also detect several narrow Fe II* fine-structure lines in emission near the systemic velocity, arising from energy levels that are radiatively excited directly from the ground state. We suggest that the Mg II and Fe II* emission is generated by photon scattering in the observed outflow and emphasize that this emission is a generic prediction of outflows. These observations provide the first direct constraints on the minimum spatial extent and morphology of the wind from a distant galaxy. Estimates of these parameters are crucial for understanding the impact of outflows in driving galaxy evolution.

Key words: galaxies: halos – galaxies: ISM – galaxies: starburst

Online-only material: color figures

1. INTRODUCTION

Galactic-scale outflows may be a primary driver of galaxy evolution through the removal of cool gas from star-forming regions to a galaxy’s halo or beyond. Measurements of outflow properties in distant galaxies, such as the mass and energy outflow rates, are central to understanding their role in feedback and quenching processes. However, accurate determinations of these outflow rates require knowledge of the spatial extent of the wind, a parameter that is difficult to constrain observationally.

While gas that is shocked or heated by winds is detected in the optical line and X-ray emission around local starburst galaxies to distances of several kiloparsecs (e.g., Heckman et al. 1990; Martin 1999; Veilleux et al. 2003), because this emission is faint, outflows in distant galaxies have traditionally been detected only in absorption against the stellar continuum. This technique probes cool gas ($T \lesssim 10^4$ K) traced by transitions such as Na I D (e.g., Rupke et al. 2005) and Mg II (e.g., Weiner et al. 2009; Rubin et al. 2010b), and constrains the outflow velocity, covering fraction and column density. Recently, Ménard et al. (2009) also showed that Mg II absorption tracks the overall star formation history of the universe. However, these absorption-line studies provide only weak constraints on the radial extent, spatially resolved geometry, and volume density of the outflow. In turn, estimates of the rates of mass and energy loss are uncertain by at least two orders of magnitude. Improved constraints are critical for understanding the role played by outflows in polluting a galaxy’s halo and the surrounding intergalactic medium (IGM).

A novel technique for studying outflows in the distant universe is analysis of emission from the outflowing gas. Rather than arising from shocks or cooling processes, this emission may be due to resonance-line scattering off of the flow of fluorescent radiation powered by luminous star clusters and traces gas in the phases observed in absorption. In the case of resonance-line scattering, the emission, with the corresponding absorption, may exhibit a P-Cygni-like line profile. The high optical depth of the Lyα transition results in P-Cygni profiles commonly observed in Lyman break galaxy (LBG) spectra (e.g., Pettini et al. 2001, 2002). Although it has much lower optical depth than Lyα, Mg II $\lambda 2796$, 2803 photons can also be resonantly trapped and will produce strong emission where the gas is optically thick (i.e., at hydrogen column densities $N_H \sim 10^{19}$ cm$^{-2}$). Likewise, the resonance transition Na I D $\lambda \lambda 5892, 5898$ exhibits a P-Cygni profile in the nearby starburst galaxy NGC 1808 (Phillips 1993) and in stacked spectra of star-forming galaxies drawn from the Sloan Digital Sky Survey (Chen et al. 2010).

In contrast, optically thick Fe II resonance absorption is not trapped, but pumps UV Fe II* emission lines at $\sim 2000–3000$ Å. In principle, Mg II and Fe II* emission can be particularly useful for tracing winds at $z > 0.3$, where it is detected into the optical; moreover, Mg II emission has already been detected in star-forming galaxies at $z \sim 0.3$ and ~ 1 (Martin & Bouche 2009; Weiner et al. 2009; Rubin et al. 2010b). Measurement of the spatial extent of this emission provides a firm lower limit on the radial extent of the outflow and constrains the wind morphology.

In this paper, we examine the line emission from a bright starburst at $z = 0.694$ known to exhibit a P-Cygni profile in Mg II and Fe II* emission (Rubin et al. 2010a). We report in detail on the observed characteristics of the emission and suggest possible production mechanisms. We adopt a ΛCDM cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_M = 0.3$, and $\Omega_{\Lambda} = 0.7$.

3 Hubble Fellow.
Figure 1. Mg II line profile in the galaxy spectrum. Dotted portions of the spectrum are associated with the transition in the opposite panel. The systemic velocity is marked by vertical dotted lines, and the horizontal dashed line marks the continuum level. The profile exhibits blueshifted absorption extending to ∼800 km s$^{-1}$ relative to the systemic velocity. Emission at and redward of systemic velocity is also evident. Together, these features exhibit a P-Cygni profile, suggestive of a galactic outflow. We propose that the red and blue sections of the spectrum in the left-hand panel arise from different areas of the outflow, as indicated in Figure 4.

(A color version of this figure is available in the online journal.)

2. OBSERVATIONS

Details of our observations of the target galaxy (TKRS4389) and data reduction are given in Rubin et al. (2010a). We obtained spectroscopy of this galaxy using the Low Resolution Imaging Spectrometer (LRIS) on Keck 1 (Cohen et al. 1994). Our instrumental setup afforded an FWHM resolution ranging between 190 and 300 km s$^{-1}$ and wavelength coverage of ∼3200 to 7600 Å. We used a 0′′.9 slitlet oriented NE (Figure 1; Rubin et al. 2010a) and collected six ∼1800 s exposures with FWHM ≈ 0′′.6 seeing. The data were reduced using the XIDL LowRedux4 data reduction pipeline. The galaxy redshift ($z = 0.69425$) was determined via a template-fitting method as discussed in Rubin et al. (2010a) and is consistent (i.e., within 39 km s$^{-1}$) with the Team Keck Treasury Redshift Survey measurement from Wirth et al. (2004).

3. ANALYSIS

As noted in Rubin et al. (2010a), this galaxy is exceptionally bright for its redshift, with a star formation rate (SFR) of ∼80 M_\odot yr$^{-1}$. Stellar population modeling indicates that the spectrum is dominated by light from the intense star formation activity. The deepest parts of the Mg II and Fe II resonance absorption lines are blueshifted by ∼200–300 km s$^{-1}$, with high-velocity tails extending to −800 km s$^{-1}$, indicating that these ions trace an outflow (Figures 1 and 2). Here, we analyze the observed emission from these ions.

3.1. Characteristics of Mg II Emission

The one-dimensional spectrum of this galaxy reveals strong Mg II emission near systemic velocity and extending to the red (Figure 1). We measure the kinematic extent v_{extent} of each emission line (Table 1) using standard techniques (Cooksey et al. 2008). Line fluxes are measured by integrating the continuum-subtracted spectrum over this velocity range. The continuum is measured from clean regions on either side of the doublet, and its error is determined through Monte Carlo realizations. Line fluxes, the flux-weighted velocity centroids of the lines (v_{cen}), and the brightest pixel in each line (smoothed by 3 pixels; v_{peak}) are listed in Table 1.

Figure 2. Fe II transitions in the galaxy spectrum. The systemic velocity and continuum are marked as in Figure 1. The left-hand column shows resonance absorption lines, while the right-hand column shows Fe II* emission profiles (top four panels) and the [Ne III] λ3869 line (bottom panel, black). The green line in the bottom panel shows the co-add of the detected (and unblended) Fe II* emission lines. Gray arrows mark Fe II transitions arising from states that cannot be radiatively excited directly from the ground state (see Section 4 and Table 1). We propose that the red and blue sections of the spectrum in the left-hand panel and the magenta and cyan sections in the right-hand panel arise from different areas of the outflow, as indicated in Figure 4.

(A color version of this figure is available in the online journal.)

Mg II absorption and emission are also evident in the two-dimensional spectrum of the target (Figure 3). To explore the spatial extent of the Mg II emission, we subtract a model of the two-dimensional continuum profile from the original two-dimensional spectrum. The residual emission extends up to ∼2′ from the spatial center of the galaxy continuum and extends well beyond the stellar structure (i.e., the components of the galaxy which generate the continuum flux near Mg II). The two emission features at 2796 Å below and above the galaxy continuum have fluxes of (8.0 ± 0.4) and $(4.4 \pm 0.4) \times 10^{-18}$ erg cm$^{-2}$ s$^{-1}$, respectively, and have flux-weighted velocity centroids of ∼27 km s$^{-1}$ and 74 km s$^{-1}$. The corresponding fluxes at 2803 Å are (4.0 ± 0.3) and $(2.5 \pm 0.4) \times 10^{-18}$ erg cm$^{-2}$ s$^{-1}$. There is a significant difference in the flux of the 2796 Å line in these two locations; this may reflect the geometrical distribution of the emitting gas, suggesting a lack of spherical symmetry. Combined, these features contribute most (∼65%) of the total 2796 Å flux. In Figure 3(c), we also present the continuum-subtracted spatial profile averaged over the velocity range covered by both lines. Errors calculated from the extraction of continuum-subtracted spatial profiles at other locations along the slit are consistent with the error bars in the Figure in the wings of the profile and are larger by up to a factor of ∼2 near the profile center. Spatially extended emission from strong lines arising in H II regions, e.g., Hγ and [OIII], is not detected.

Finally, we develop a rudimentary model for the spatial distribution of the line-emitting material to constrain its distance from
way as the young stars in the galaxy; i.e., as in the nebular emission component is distributed in roughly the same and a more extended area with variable geometry and size. The slit (2) in a ring with radius R_{out} or R_{ring} between 0.5 and 3 kpc in increments of 0.25 kpc. These realizations are added to the b_{315} image, and the resulting “extended emission image” is convolved with a Gaussian and “observed” through the slit. We then subtract the continuum model profile from the extended emission model profile, first scaling the continuum profile to the peak flux value in the extended emission profile. In general, we find that the uniform surface brightness model provides acceptable fits to the data if $1.25 < f_{\text{extended}} < 2.5$, although adjustments to the value of R_{out} are required. With $f_{\text{extended}} = 1.5$, R_{out} must exceed 9.5 kpc to match the observations. As f_{extended} increases, values in the range 8.25 kpc < R_{out} < 13 kpc provide an excellent match to the observed emission (Figure 3(c); red solid line). Additionally, though the best-fit uniform surface brightness model yields a lower χ^2 value than any of the ring-like emission models, realizations of the latter with 6.5 kpc < R_{out} < 8.25 kpc and f_{extended} ~ 1.25 are allowed by the data (gray dashed line). While this framework is quite simplistic, the models suggest that the material giving rise to the Mg ii emission is distributed over a large area, extending to distances of at least 6.5 kpc.

λ_{high} (Å)	λ_{low} (Å)	J	λ (Å)	$<f>$ EW (Å)	v_{peak} (km s$^{-1}$)	v_{cen} (km s$^{-1}$)	v_{extant} (km s$^{-1}$)	
Fe ii UV1 38458.98	0.00	9/2→9/2	2600.17	Absorption	2.54 ± 0.08	
Fe ii UV1 38458.98	38479	9/2→7/2	2626.45	3.41E+07	−0.85 ± 0.08	0.953 ± 0.081	50	−27 −287→219
Fe ii UV1 38660.04	0.00	7/2→9/2	2586.65	Absorption	1.89 ± 0.07	
Fe ii UV1 38660.04	38479	7/2→7/2	2621.65	1.23E+08	−0.57 ± 0.07	0.752 ± 0.091	−62	−19 −316→277
Fe ii UV1 38660.04	66768	7/2→5/2	2632.11	6.21E+07	−0.20 ± 0.05	0.264 ± 0.063	163	163 −5→332
Fe ii UV2 41968.05	0.00	7/2→9/2	2382.76	Absorption	2.00 ± 0.07	
Fe ii UV2 42114.82	0.00	7/2→9/2	2367.59	3.21E+04	< 0.278	
Fe ii UV3 42658.22	0.00	7/2→9/2	2399.97	1.37E+08	< 0.303	
Mg ii	
Mg ii ...	2796.35	2.63 ± 0.07	
[Ne v]	−1.70 ± 0.05	1.920 ± 0.065	61	90	−98→298
[O iii]	2803.53	1.61 ± 0.05	
[Ne iii]	−1.86 ± 0.06	2.103 ± 0.079	162	226	−75→557
Hα	−0.64 ± 0.13	0.482 ± 0.103	52	213	−270→696
Hγ	3426.98	−66.73 ± 0.25	49.952 ± 0.189	195	−463→733
Hδ	3727.10	−5.74 ± 0.13	4.667 ± 0.111	−25	26 −372→437
He ii	3869.84	−5.48 ± 0.15	3.551 ± 0.115	−38	39 −311→398
He iii	4102.90	−5.73 ± 0.13	4.667 ± 0.111	−25	26 −372→437
Notes. Rest-frame EW, fluxes, and kinematic measurements from LRIS spectroscopy. Upper and lower energy levels, total angular momenta (J), and Einstein coefficients (A) are given for Fe ii transitions (Morton 2003). Errors are 1σ uncertainties with 3σ limits. Blended transitions are marked with “b.” We check Fe ii identifications by comparing A coefficients among different transitions. For optically thin gas, the flux ratio of two lines that originate from the same excited state is approximately the ratio of the corresponding A coefficients. For example, the flux ratio of the 2612 Å and 2632.11 Å transitions ($E_{\text{high}} = 38660.04$ cm$^{-1}$) is ~2.8 ± 0.8, i.e., ~1σ higher than the ratio of A coefficients (1.98).}								

* Line fluxes are determined by summing the continuum-subtracted spectrum over the velocity range of the line, as described in Section 3.1.
3.2. Characteristics of Fe II* Emission

The Fe II ion is notable for its multitude of permitted transitions in the wavelength range 2000–3000 Å (Table 1). We observe several Fe II resonance lines in absorption (Figure 2) which are blueshifted by ~ -200 km s$^{-1}$, similar to Mg II. We also identify several transitions in emission (Figure 2). All of these are consistent with transitions arising exclusively from the $J = 9/2$ or $7/2$ upper levels (see Table 1 for details).

For each emission line, fluxes, velocity limits, v_{cen} and v_{peak} are determined as for Mg II. Continuum regions are chosen on either side of each line multiplet. Both v_{peak} and v_{cen} are redward or within 30 km s$^{-1}$ of systemic velocity in four of five detected lines. In an inverse variance-weighted stack of the emission lines at 2365 Å, 2396.35 Å, 2612 Å, and 2626 Å (overplotted in green in Figure 2), $v_{\text{peak}} = +50$ km s$^{-1}$ and $v_{\text{cen}} = +9$ km s$^{-1}$. We note that this differs from the velocity profiles of nebular emission lines such as [Ne III], Hα, and Hγ, which have peak velocities near or blueward of systemic and blueward of v_{cen}. The [Ne III] velocity profile is shown in Figure 2 for reference; this line is chosen because the profile is not contaminated by broad stellar absorption. The velocity profiles of the Fe II* emission lines significantly differ both from those of the Fe II resonance absorption lines and from the profiles of lines tracing the kinematics of the galactic H II regions.

4. DISCUSSION

We now suggest a possible production mechanism for the observed Mg II and Fe II* emission: photon scattering in a large-scale galactic outflow. As discussed in Section 1, this has been invoked in previous work to explain the P-Cygni profile of Lyα emission in LBGs. Similarly to Lyα, Mg II is likely to have high optical depths in the interstellar medium of star-forming galaxies. Additionally, the Mg II transitions of interest arise from a set of two close upper energy levels that can only decay to the ground level. Mg II photons are therefore resonantly trapped in high optical depth conditions (Prochaska et al. 2010).

Figure 4 illustrates the effects of a transition resonantly trapped in an outflow. Mg II ions in the section of the wind nearest Earth absorb continuum photons at the wavelength of the Mg II transition in the rest frame of the gas; this produces a blueshifted absorption-line profile. Mg II ions in the far section of the wind scatter photons with wavelengths redshifted relative to the Mg II transition in the front part of the wind; these photons can therefore travel through the wind, generating emission at and redward of systemic velocity. Such an outflow may also produce the spatially extended emission evident in Figure 3. This emission arises from gas above and below the galaxy in Figure 4 moving tangentially to our line of sight and is expected to occur near the systemic velocity. We note that our non-detection of spatially extended [O II] and Hγ lines (Section 3.1) is consistent with this picture, as [O II] and Hγ emission must be generated via recombination or collisional excitation rather than photon scattering. [O II] may arise in shocked shells of gas in the wind as discussed in Veilleux et al. (2005); however, this emission need not be cospatial with cool, Mg II-absorbing gas.

A similar mechanism can produce the observed Fe II* emission. Fe II ions in the front side of the wind will produce blueshifted absorption in resonance transitions, as for Mg II. In the case of Fe II, however, the excited ions in all parts of the wind will emit photons and decay to states with $|\Delta J| \leq 1$, including Fe II* transitions to fine-structure levels with $J \geq 5/2$. We note that these are the only transitions observed; i.e., we do not detect emission lines with lower energy levels having $J = 3/2$ or 1/2. The detection of these lines in higher signal-to-noise data would rule out this picture. Further, the observed emission arises from the same upper levels excited in the resonance transitions. The lack of observed absorption from these excited states indicates that they decay before the ion is re-excited. The wind is therefore completely optically thin to the observed Fe II* photons.

5. IMPLICATIONS

The mechanism described above is only one of several which may produce Mg II and Fe II* emission. These lines may arise in recombination regions (Kinney et al. 1993) or in active galactic nuclei (Vestergaard & Wilkes 2001). However, because the kinematics of all the lines discussed are qualitatively...
The galaxy is surrounded by a spherically symmetric wind, Mg II and Fe II ions in the section of the wind nearest Earth absorb continuum photons at the rest frequency of the ions; this produces a blueshifted absorption-line profile (shown in blue in Figures 1 and 2). Ions in the back side of the wind scatter photons with wavelengths redshifted relative to systemic velocity; these photons travel through the wind and into our line of sight (shown in red in Figures 1 and 2). Because there are several energy levels accessible to Fe II ions, the photons are not resonantly trapped and escape via emission to excited states (indicated in cyan and magenta in Figure 2).

(A color version of this figure is available in the online journal.)

different from the kinematics of the nebular emission in the spectrum, and because our analysis of the spatial distribution of the Mg II emission suggests that it arises from distances out to \(\geq 7 \) kpc from the galaxy center, we consider photon scattering the most probable production mechanism for the observed emission. As such, our observation represents the first detection of a galactic outflow in emission in a distant galaxy and provides the first constraints on the minimum spatial extent (\(\geq 7 \) kpc) and morphology of this outflow. Stringent constraints on the mass and energetics of the gas require a solution to the radiative transfer equation in the wind. However, here we use our equivalent width (EW) measurements (Table 1) to make crude estimates of the physical properties of the outflow. The ratio of the Mg II absorption-line EWs (the “doublet ratio”) is \(\sim 1.63 \); this indicates that the optical depth (\(\tau_{\lambda 2796} \)) is \(\geq 1.4 \) along the line of sight to the galaxy itself (Spitzer 1968; Jenkins 1986; Rubin et al. 2010b). This analysis does not account for the effects of the emission on the absorption EWs; however, because the 2803 Å absorption line is filled in by emission from both transitions, the EW is likely reduced more than the 2796 Å absorption EW. We therefore consider this estimate a conservative lower limit. Assuming a covering fraction \(\sim 1 \) and invoking Equation (2-41) of Spitzer (1968), \(\tau_{\lambda 2796} \geq 1.4 \) implies a column density \(N_{\text{Mg II}} > 10^{14} \) cm\(^{-2}\).

In the case of an isotropic wind which is fully covered by the slit, the sum of the EWs of absorption and emission in a given transition equals zero (Prochaska et al. 2010). The total Mg II EW measured in the galaxy spectrum is non-zero but small (\(\sim 0.7 \) Å), indicating that the outflow is nearly isotropic, and hence that the sections of the wind observed in emission have \(\tau_{\lambda 2796} \geq 1.4 \) (i.e., they are similar to the portions of the wind observed along the line of sight). Assuming a wind velocity \(v_{\text{wind}} = 300 \) km s\(^{-1}\) and a wind velocity gradient \(\Delta v_{\text{wind}} = 500 \) km s\(^{-1}\) over a distance \(\Delta R_{\text{wind}} = 7 \) kpc, we use the equation \(\tau_{\lambda 2796} = (\pi e^2/m_e c^2) f_{\lambda 2796} \lambda_{\text{2796}} n_{\text{Mg II}} (\Delta R_{\text{wind}}/\Delta v_{\text{wind}}) \) modified from Equation (8.45) of Lamers & Cassinelli (1999), where \(e \) is the electron charge, \(m_e \) is the electron mass, and \(f_{\lambda 2796} \) and \(\lambda_{\text{2796}} \) are the oscillator strength and rest wavelength of the Mg II \(\lambda_{\text{2796}} \) transition, to find a number density \(n_{\text{Mg II}} \sim 7 \times 10^{-9} \) cm\(^{-3}\). Neglecting any ionization correction, and assuming solar abundance (\(\log \text{Mg/H} = -4.42 \)) and a factor of \(-1.2 \) dex dust depletion (Savage & Sembach 1996), the corresponding limit on \(n_{\text{H}} \) is 0.003 cm\(^{-3}\). While this estimate suffers from large uncertainties, the limits on both the wind radius and \(n_{\text{H}} \) determined from this analysis provide novel information which is crucial to constraining both the mass and energy carried by the outflow.

Beyond the analysis presented here, future studies of these emission features in other galaxies will provide critical insight into the impact of galactic winds on the redistribution of metals and dust to the outer halos of galaxies (Ménard et al. 2010) and the IGM (Simcoe et al. 2002). In principle, scattered emission from outflows will be generated around any galaxy which drives an approximately isotropic wind traced by optically thick Mg II or Fe II and which is not heavily obscured by dust (Prochaska et al. 2010). The surface brightness of this emission increases with the number of photons emitted by the galaxy continuum at \(\sim 2000−3000 \) Å; therefore, galaxies similar to one discussed here (with high SFRs and blue colors) are likely to produce the brightest wind emission. However, a rest-frame UV spectroscopic survey of the 23 galaxies at \(0.3 < z < 1.4 \) (K. H. R. Rubin et al. 2011, in preparation) reveals that these emission features are common at \(z \sim 1 \). Moreover, cool outflows with velocities of \(\sim 250 \) km s\(^{-1}\) and covering fractions \(\geq 0.5 \) are ubiquitous among the SFR \(> 10 M_{\odot} \) yr\(^{-1}\), z \(> 1 \) samples of Weiner et al. (2009) and Rubin et al. (2010b). These velocities are sufficient to move gas to \(\sim 25 \) kpc distances on small (\(< 100 \) Myr) timescales. In addition, QSO absorption-line studies detect ultrastrong Mg II absorption systems (EW(2796) > 3 Å) likely arising from outflows to distances greater than 10 kpc from galaxies having a broad range of SFRs (2.3 \(M_{\odot} \) yr\(^{-1}\) \(<\) \(\leq 17 M_{\odot} \) yr\(^{-1}\); Bouché et al. 2007). Galaxies exhibiting SFRs \(> 10 M_{\odot} \) yr\(^{-1}\) are therefore likely to drive cool gas beyond the extent of their stellar and nebular emission, and may thus be targeted for follow-up observations with integral field unit spectrographs to create maps of the outflow morphology. High spectral resolution observations of Fe II* emission will probe the gas kinematics in detail from the outskirts of the wind to deep within the galaxy, both on the far and near side of the stellar disk; in addition, the observed flux in the fine-structure lines can provide an independent constraint on the radial extent of the gas (e.g., Prochaska et al. 2006). These studies, when performed in concert with radiative transfer modeling of the emission features, will probe the morphology of outflows at an unprecedented level of detail in numerous distant galaxies.

The authors are grateful for support for this project from NSF grants AST-0808133 and AST-0507483. J.X.P. acknowledges funding through an NSF CAREER grant (AST-0548180). We thank Crystal Martin for valuable discussions of these results, and Robert da Silva and Michele Fumagalli for providing code to co-add two-dimensional spectra. Finally, we acknowledge the anonymous referee, whose suggestions helped to improve this manuscript.

REFERENCES

Bouché, N., Murphy, M. T., Péroux, C., Davies, R., Eisenhauer, F., Förster Schreiber, N. M., &Tacconi, L. 2007, ApJ, 669, L5.

Chen, Y., Tremonti, C. A., Heckman, T. M., Kauffmann, G., Weiner, B. J., Brinchmann, J., & Wang, J. 2010, AJ, 140, 445.
