Renormalized Wolfram model exhibiting non-relativistic quantum behavior

José Manuel Rodríguez Caballero
External affiliate of the Wolfram Physics Project
Director of Caballero Software Inc.
Ontario, Canada
August 20, 2021

Abstract

We show a Wolfram model whose renormalization generates a sequence of approximations of a wave function having the Pauli-x matrix as Hamiltonian.

1 Introduction

According to the principle of computational irreducibility, [Wol02], generically, computations that are not obviously simple cannot be made shorter. This result prevents developing a theory powerful enough to verify any possible prediction in a complex system before its execution. Nevertheless, by coarse-graining the complex system, it may be possible to get a new system that is simple enough to be predictable. For example, Navot Israeli and Nigel Goldenfeld [IG06] were able to make predictions in computationally irreducible cellular automata after applying coarse-graining. This technique, known as renormalization, was widely used by Didier Sornette et al. [SS95, SS96, ALFSS95, SS06, SS99, ZS03, Sor89, GS02] to make predictions in multidisciplinary fields. For an introduction to renormalization, the author recommends Didier Sornette’s book [Sor06].

In the present work, we propose an alternative approach to the quantum mechanics of the Wolfram model based on renormalization. In this approach,
we apply coarse-graining to the structures presented by Stephen Wolfram [Wol20] in his physics project, and we obtain a sequence of approximations of a wave function. In principle, this approach differs from previous attempts of mathematical formalization of quantum mechanics in the Wolfram model [Gor20, GNA21, GNA20]. Furthermore, suppose the mathematical model that we are presenting describes the ultimate reality of the universe. In that case, it will be incompatible with ’t Hooft model of quantum mechanics [tH16], since we are working with templates. In contrast, ’t Hooft considers that the universe evolves from one ontic state to another ontic state. A physical interpretation of the approach to the Wolfram model that we are proposing is likely to be related to the many-worlds school.

2 Definition of the Wolfram model

Fix a positive integer K. Consider the alphabet $\Sigma = \{a_0, a_1, a_2, ..., a_K\}$. Define a Wolfram model where the states are words over Σ and the non-deterministic evolution rule is the set of all concatenations of the argument and any symbol from Σ, i.e.,

$$\Omega = \begin{cases}
 w \mapsto w a_0 \\
 w \mapsto w a_1 \\
 \vdots \\
 w \mapsto w a_K
\end{cases}$$

where w is an arbitrary word generated by the alphabet Σ.

For example, for $K = 2$ and initial condition a_0, we get the following multiway system (shown until level 3, starting by level 0). We omitted the a’s in the label of the vertices and only wrote their subindex to improve visibility.
3 Renormalization

Any state $w = w_1w_2...w_\ell$, where $w_1, w_2, ..., w_\ell \in \Sigma$, of our Wolfram model will be coarse-grained as

$$(-i)^m | m \mod 2 \rangle ,$$

where m is the number of times that the character K appears in the list $w_1, w_2, ..., w_\ell$. Notice that the renormalization of Ω is the multiset of rules

$$\omega = \begin{cases}
|0\rangle \mapsto |0\rangle & K \text{ times} \\
|0\rangle \mapsto |0\rangle \\
|1\rangle \mapsto |1\rangle & K \text{ times} \\
|1\rangle \mapsto |1\rangle \\
|0\rangle \mapsto -i |1\rangle \\
|1\rangle \mapsto -i |0\rangle
\end{cases}$$

The multiway system of the renormalized Wolfram model looks as follows (the initial condition and the value of K are the same as before).

Instead of $|0\rangle$ and $|1\rangle$, we have chosen to write x and y respectively, since the graph is easier to visualize in this way. The initial condition and the value of K are the same as before.

The sum of the elements of the k-th level of the multiway system of the renormalized Wolfram model will be called the k-th template and will be denoted as $|T_k\rangle$.

4 Schrödinger equation

Let $|\Psi(t)\rangle$ be the solution of the Schrödinger equation (for $\hbar = 1$)

$$i \frac{d}{dt}|\Psi(t)\rangle = H|\Psi(t)\rangle,$$
satisfying the initial condition

\[|\Psi(0)\rangle = |0\rangle, \]

where the Hamiltonian is the Pauli-x matrix

\[H = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]

In this case, it is possible to find an explicit expression for the solution,

\[|\Psi(t)\rangle = (\cos t |0\rangle - i \sin t |1\rangle). \]

The wave function \(|\Psi(t)\rangle \) is the continuous limit of the sequences of normalized templates,

\[\lim_{K \to \infty} \left(\frac{1}{K} \right)^t |T_{tK}\rangle = |\Psi(t)\rangle. \]

This result is a trivial consequence of the following formula for the exponential of a matrix \(M \),

\[\lim_{n \to \infty} \left(1 + \frac{1}{n} M \right)^n = e^M. \]

Conclusions

Despite the widespread belief that quantum systems cannot be simulated by classical systems, we have shown that, after renormalization, the Wolfram model can be used to approximate a solution of the Schrödinger equation, having the Pauli-x matrix as Hamiltonian. This result motivates the study of the renormalization of Wolfram models as a method to describe the (non-relativistic) quantum systems. Whether there are some advantages in using a discrete template generated by a renormalized Wolfram model instead of a continuous wave function is an empirical question that can be answered by measuring quantum systems and comparing the prediction of the renormalized Wolfram model with those of mainstream quantum mechanics.

Acknowledgments

The author would like to thank Stephen Wolfram for the interesting exchange of ideas. Also, the author is very grateful to all the members of the Wolfram Physics Project for having contributed every day to the development of this new approach to fundamental physics.
References

[ALFSS95] J-C Anifrani, C Le Floc’h, Didier Sornette, and Bernard Souillard. Universal log-periodic correction to renormalization group scaling for rupture stress prediction from acoustic emissions. *Journal de Physique I*, 5(6):631–638, 1995.

[GNA20] Jonathan Gorard, Manojna Namuduri, and Xerxes D Arsiwalla. Zx-calculus and extended hypergraph rewriting systems i: A multiway approach to categorical quantum information theory. *arXiv preprint arXiv:2010.02752*, 2020.

[GNA21] Jonathan Gorard, Manojna Namuduri, and Xerxes D Arsiwalla. Zx-calculus and extended wolfram model systems ii: Fast diagrammatic reasoning with an application to quantum circuit simplification. *arXiv preprint arXiv:2103.15820*, 2021.

[Gor20] Jonathan Gorard. Some quantum mechanical properties of the wolfram model. *Complex Systems*, 29(2):537–598, 2020.

[GS02] Simon Gluzman and Didier Sornette. Classification of possible finite-time singularities by functional renormalization. *Physical Review E*, 66(1):016134, 2002.

[IG06] Navot Israeli and Nigel Goldenfeld. Coarse-graining of cellular automata, emergence, and the predictability of complex systems. *Physical Review E*, 73(2):026203, 2006.

[Sor89] Didier Sornette. Failure thresholds in hierarchical and euclidian space by real space renormalization group. *Journal de Physique*, 50(7):745–755, 1989.

[Sor06] Didier Sornette. *Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools*. Springer Science & Business Media, 2006.

[SS95] Didier Sornette and Charles G Sammis. Complex critical exponents from renormalization group theory of earthquakes: Implications for earthquake predictions. *Journal de Physique I*, 5(5):607–619, 1995.
[SS99] Anne Sornette and Didier Sornette. Renormalization of earthquake aftershocks. *Geophysical Research Letters*, 26(13):1981–1984, 1999.

[SS06] A Saichev and Didier Sornette. Renormalization of branching models of triggered seismicity from total to observable seismicity. *The European Physical Journal B-Condensed Matter and Complex Systems*, 51(3):443–459, 2006.

[SSS96] Hubert Saleur, Charles G Sammis, and Didier Sornette. Renormalization group theory of earthquakes. *Nonlinear Processes in Geophysics*, 3(2):102–109, 1996.

[tH16] Gerard ’t Hooft. *The cellular automaton interpretation of quantum mechanics*. Springer Nature, 2016.

[Wol02] Stephen Wolfram. *A new kind of science*, volume 5. Wolfram media Champaign, IL, 2002.

[Wol20] Stephen Wolfram. A class of models with the potential to represent fundamental physics. *Complex Systems*, 29(2), 2020.

[ZS03] Wei-Xing Zhou and Didier Sornette. Renormalization group analysis of the 2000–2002 anti-bubble in the us s&p500 index: explanation of the hierarchy of five crashes and prediction. *Physica A: Statistical Mechanics and its Applications*, 330(3-4):584–604, 2003.