An approach to fast fits of the unintegrated gluon density

(\textit{PROFFIT} – a PROgram For FITting)

A. Bacchetta (Jef Lab), H. Jung, A. Knutsson, K. Kutak (DESY)

HERA-LHC workshop 2008, 26-30th May, CERN

Outline

- The fitting method
- The unintegrated gluon density
- uPDF determination from HERA di-jet data
- Results
Former fitting method: Based on running the generator in an interactive procedure in parameter space. Time consuming.

New Approach: Describe parameter dependence before parameter fitting, by building up a grid in parameter space. On the following slides I present the details.
The new approach was developed for tuning Monte Carlo models

Suggested already 12 years ago...

“Tuning and test of fragmentation models based on identified particles and precision event shape data.”
Z.Phys.C73:11-60,1996

Also work on Tuning MC in Lund.

Parameter Optimisation in Monte Carlo Event Generators

Hendrik Hoeth
(University of Lund)
1st Mcnet School, IPPP Durham, 18-20th April 2007

We carry out the same method for fitting uPDFs.
1. Build up a grid in parameter – cross section space using Monte Carlo.
 If you have a CPU farm (or use the GRID) this ultimately takes the time of running the MC generator once.
New fitting approach

1. Build up a grid in parameter – cross section space using Monte Carlo.

 If you have a CPU farm (or use the GRID) this ultimately takes the time of running the MC generator once.

2. Fit polynomials to the Monte Carlo grid.

 \[\sigma_{\text{poly}} = A + \sum_{i=1}^{N} B_i \cdot p_i + \sum_{i=1}^{N} C_i \cdot p_i^2 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} D_{ij} \cdot p_i p_j + H.O. \]

 \(A, B, C \) and \(D \) are determined by fitting the polynomial to the parameter grid. (Singular Value Decomposition)
Singular Value Decomposition

Number of Monte Carlo grid points > Coefficients \[\text{Overdetermined system}\]

\[
\sigma_{\text{poly}}(p_1, p_2) = A + B_1 p_1 + B_2 p_2 + C_1 p_1^2 + C_2 p_2^2 + C_3 p_1 p_2 + H.O.
\]

i.e.

\[
P_{n,m} X_m = \sigma_{n,\text{poly}} \quad \text{where} \quad X_n = (A, B_1, B_2, C_1, C_2, C_3, \ldots) \\
P_n = (1, p_1, p_2, p_1^2, p_1 p_2, p_2^2, \ldots) \\
n = \text{Grid point}
\]

Approach based on SVD algorithm:

To obtain solution we minimize \[|PX - \sigma|^2\]

by \[\chi^2\]-minimization
New fitting approach

1. Build up a grid in parameter – cross section space using Monte Carlo.
 If you have a CPU farm (or use the GRID) this ultimately takes the time of running the MC generator once.

2. Fit polynomials to the Monte Carlo grid.

\[\sigma_{\text{poly}} = A + \sum_{1}^{N} B_i \cdot p_i + \sum_{1}^{N} C_i \cdot p_i^2 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} D_{ij} \cdot p_i p_j + H.O. \]

\(A, B, C \) and \(D \) are determined by fitting the polynomial to the parameter grid. (Singular Value Decompostion)

Takes care of correlation between parameters
New fitting approach

1. Build up a grid in parameter – cross section space using Monte Carlo.
 If you have a CPU farm (or use the GRID) this ultimately takes the time of running the MC generator once.

2. Fit polynomials to the Monte Carlo grid.

 \[\sigma_{\text{poly}} = A + \sum_{i=1}^{N} B_i \cdot p_i + \sum_{i=1}^{N} C_i \cdot p_i^2 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} D_{ij} \cdot p_i p_j + H.O. \]

 \(A, B, C \) and \(D \) are determined by fitting the polynomial to the parameter grid.

Step 1. and 2. are done for each data point in the measurement. Takes only a few seconds.
1. Build up a grid in parameter – cross section space using Monte Carlo.
 If you have a CPU farm (or use the GRID) this ultimately takes the time of running the MC generator once.

2. Fit polynomials to the Monte Carlo grid.

\[
\sigma_{\text{poly}} = A + \sum_{1}^{N} B_i \cdot p_i + \sum_{1}^{N} C_i \cdot p_i^2 + \sum_{i=1}^{N} \sum_{j=i+1}^{N} D_{ij} \cdot p_i p_j + H.O.
\]

\(A, B, C\) and \(D\) are determined by fitting the polynomial to the parameter grid.

Step 1. and 2. are done for each data point in the measurement. Takes only a few seconds.

3. Determine PDF parameters, \(p_i\), by fitting all the polynomials to data simultaneously. Also this takes only a few seconds.

Step 3. are done by Chi2-minimization using MINUIT.
1 dimensional example

Simplest possible example
1 parameter, 1 data cross-section

1. Build up the grid

Monte Carlos cross-sections
1 dimensional example

Simplest possible example
1 parameter, 1 data cross-section

2. Describe Monte Carlo by polynomial

![Graph showing Monte Carlo cross-sections and polynomial fit]
Simplest possible example
1 parameter, 1 data cross-section

3. Minimize Chi2 to data
• The method is implemented into a program – PROFFIT check for updates on www.hepforge.org/PROFFIT.

• A lot of data available for tuning in hztool

 (“HZTool is a library of routines which will allow you to reproduce an experimental result using the four-vector final state from Monte Carlo generators.”

 In the future replaced by RIVET)
The unintegrated gluon density

The uPDF starting distribution:

\[x A_0(x, k_T, \bar{q}_0) = N \cdot x^{-B} \cdot (1 - x)^C \cdot \exp\left(-\frac{(k_T - \mu)^2}{2\sigma^2} \right) \]

- \(N \): Normalization (fitted)
- \(B \): Small x behaviour (fitted)
- \(C=4 \): Large x behaviour (kept fixed)
- \(\mu, \sigma \): Determines the shape of the intrinsic \(k_T \) of the gluon below \(k_T=1.2 \text{ GeV} \) (\(\mu \) fitted)

Calculated at some starting scale (\(\bar{q}_0 \)).
The uPDF is calculated for higher scales by emissions of gluons according to the CCFM evolution scheme.
(Monte carlo event generator \(\text{CASCADE(ep/pp)} \))

The parameters \(N, B, C, \mu, \sigma \), are not theoretically calculable.

We need to fit the uPDF to experimental data.
Example of application

Fit unintegrated gluon density to HERA di-jet data

H1 Collab., A. Aktas et al., Eur. Phys. J. C33 (2004) 477

Inclusive Dijet Production at Low x_B in DIS

Target hard di-jets.
Dominated by BGF, sensitivity to gluon.

Require $E_T, \text{jet} \ 1 > (5 + \Delta) \text{ GeV}$
$E_T, \text{jet} \ 2 > 5 \text{ GeV}$

and measure jet cross-section as a function of Δ

Sensitivity to gluon k_t
$E_T, \text{ jet } 1 > (5 + \Delta) \text{GeV}$

Total dijet cross-section as a function of Δ

- NLO di-jet calculation fails in parts of phase space
- NLO di-jet calculation not possible for low Δ due to divergencies.

H1 Collab., A. Aktas et al., Eur. Phys. J. C33 (2004) 477
Di-jet data

\[E_T, \text{jet } 1 > (5 + \Delta) \text{ GeV} \]

Total dijet cross-section as a function of \(\Delta \)

Existing **CASCADE** prediction has some problems describing data.

Best is “set A0” (determined by fit to proton structure functions), giving a \(\text{Chi2/ndf}=3.5 \)

Improve by fitting using PROFFIT...
Di-jet data - fit results

E_T, jet 1 > (5 + Δ) GeV

Total dijet cross-section as a function of Δ

Fitted uPDF improves data description!

Chi2/ndf	2.01
N	0.28 +/- 0.02
B	0.25 +/- 0.03
μ	3.0 +/- 0.04
σ	2, fixed

$N \cdot x^{-B} \cdot (1 - x)^C \cdot \exp\left(-\frac{(k_T - \mu)^2}{2\sigma^2}\right)$
Comparison to existing uPDF

The new fit to the dijet data suggest **stronger rising x** and a **shifted gaussian for k_t**.

\[
N \cdot x^{-B} \cdot (1 - x)^C \cdot exp\left(-\frac{(k_T - \mu)^2}{2\sigma^2}\right)
\]
Inclusive Multijet Cross-section in DIS

Cross check with other data

ZEUS Collaboration, S. Chekanov et al, Nucl.Phys.B786:152-180,2007

Description of inclusive di-jet and 3-jet cross section improved by the new fit
D*-production in Photoproduction

H1 Collab., A. Aktas et al., Eur.Phys.J.C50:251-267, 2007

Inclusive D* production in PHP:

D* production and additional jet:

PDF fit to di-jet in DIS Better description of D* and D*-jet correlation in PHP
The new PDF gives a pretty good over all description except at very low x and “high” x.

What is required in order to describe the data in these bins?

Very fast (~5 sec) to remake fit with PROFFIT...
Di-jet data result

Fitting only the low x bin

\[\langle Q^2 \rangle = 6.5 \text{ GeV}^2 \]
\[\langle x \rangle = 0.00014 \]

Suggests a lower B value

	All bins	Low x fit
B	0.25	0.13
\(\mu\)	3	3

\[x_{Bj} \]

\[Q^2 \]

\[\Delta [\text{GeV}] \]

\[xA(x, k_t^2, \mu^2) \]

\[k_t^2 = 1 \text{ GeV}^2 \]

\[k_t^2 = 10 \text{ GeV}^2 \]
Di-jet data result

Fitting only the "high" x bin
\[\langle Q^2 \rangle = 71 \text{ GeV}^2 \]
\[\langle x \rangle = 0.0047 \]

Suggests a negative B value

	All bins	Low x fit	High x fit
B	0.25	0.13	-0.17
\(\mu \)	3	3	3

\[\Delta \text{[GeV]} \]
Di-jet data result

Fitting only the “high” x bin
\[
\langle Q^2 \rangle = 71 \text{ GeV}^2 \\
\langle x \rangle = 0.0047
\]

Suggests a negative B value

	All bins	Low x fit	High x fit
B	0.25	0.13	-0.17
\(\mu\)	3	3	3

Suggests more flexible in parameterisation of starting distribution
A new approach for fitting (u)PDFs have successfully been tested.

It is based on determination of parameter dependence, by grid interpolation, before the fitting is performed.

The method will be available in the program PROFFIT (www.hepforge.com/PROFFIT).

Fitting uPDF to HERA dijet data suggests a strong dependence on x and a large shift of the intrinsic kt in the gluon starting distribution.
Backup slides
Azimuthal jet decorrelations (H1)
Former fitting approach

1. Calculate cross-section using Monte Carlo for a given set of parameter values
2. Compare to data, calculate Chi2 and feed it to MINUIT
3. MINUIT (e.g. the MIGRAD method) estimates new parameter values
4. Iterate 1. - 3. until Chi2 is minimized

This means that if MINUIT needs 100 iterations to minimize Chi2, the generator is run 100 times, not simultaneously:

If one MC generator run takes 1 hour, the minimization takes 100 hours.

One may need exclusive measurements

A lot of MC statistics. Minimization $>>$ 100h.
1. Calculate cross-section using Monte Carlo for a given set of parameter values
2. Compare to data, calculate Chi2 and feed it to MINUIT
3. MINUIT (e.g. the MIGRAD method) estimates new parameter values
4. Iterate 1. - 3. until Chi2 is minimized

This means that if MINUIT needs 100 iterations to minimize Chi2, the generator is run 100 times, **not simultaneously:**

If one MC generator run takes 1 hour, the minimization takes 100 hours.

One may need exclusive measurements

A lot of MC statistics. **Minimization >> 100h.**

Also delicate: Fitting several “event types” simultaneously, e.g. Charm production and inclusive jet production

Above method makes separated event generation difficult.
1. Calculate cross-section using Monte Carlo for a given set of parameter values
2. Compare to data, calculate Chi2 and feed it to MINUIT
3. MINUIT (e.g. the MIGRAD method) estimates new parameter values
4. Iterate 1. - 3. until Chi2 is minimized

This means that if MINUIT needs 100 iterations to minimize Chi2, the generator is run 100 times, **not simultaneously**:

 If one MC generator run takes 1 hour, the minimization takes 100 hours.

 One may need exclusive measurements

 A lot of MC statistics. **Minimization >> 100h.**

 Also delicate: Fitting several “event types” simultaneously,
 e.g. Charm production and inclusive jet production
 Above method makes separated event generation difficult.

New Approach: Describe parameter dependence before parameter fitting,
by using **grid in parameter space**.
Singular Value Decomposition

Number of Monte Carlo grid points > Coefficients → Overdetermined system

\[\sigma_{\text{poly}}(p_1, p_2) = A + B_1p_1 + B_2p_2 + C_1p_1^2 + C_2p_2^2 + C_3p_1p_2 + H.O. \]

i.e.

\[P_{n,m} X_m = \sigma_{n,\text{poly}} \quad \text{where} \quad X_n = (A, B_1, B_2, C_1, C_2, C_3, \ldots) \]
\[P_n = (1, p_1, p_2, p_1^2, p_1p_2, p_2^2, \ldots) \]
\[n = \text{Grid point} \]

Approach based on SVD algorithm:

To obtain solution we minimize \[|PX - \sigma| \]
by \[\chi^2 \]-minimization
Could also use MINUIT, but it is sensitive on starting values.

	SVD	MINUIT	MINUIT bad starting values
Chi2 [Polynomial-MC]/ndf:	1.8	1.8	4.1

Minimization of polynomial coefficients stuck in local minimum
Chi2 scans

N

B

\(\chi^2 \)

\(\chi^2 \)
SVD vs MINUIT

Coefficients in 4th order polynomial determined from:

	SVD	MINUIT	MINUIT bad starting values
-25404.9082	-25315.4624	358.56777	
765676.064	762720.857	694969.672	
357293.297	358067.861	-52198.7414	
3091.77111	2347.15353	3582.44715	
114841.02	140499.037	52826.8157	
166905.85	157433.813	1929633.41	
-31421.3098	-32900.9618	-61072.7505	
-927589.152	-927572.803	98180.9293	
-60480.3599	-61180.0691	-12538.2387	
2524.9688	4162.80871	1618.16049	
-1064150.37	-1135039.64	-465510.961	
5799612.85	5804476.94	1334921.4	
12981.5342	16228.0397	104971.842	
2592311.1	2623536.1	1662889.02	
313456.597	315635.922	284934.203	
-26463.828	-26091.529	-22961.2676	
-429940.571	-419854.565	-72213.1127	
-318899.245	-320294.755	553178.07	
-23885.636	-23727.0438	4989.53369	
1446.24668	525.83837	308.86517	
855372.625	918885.733	-135820.813	
-3554618.	-3552083.15	354725.482	
97974.8469	95580.1082	203313.617	
-5838295.7	-5848044.35	536995.25	
-214807.392	-216430.586	-978685.349	
-9020.6301	-9326.67473	-22832.1865	
10567702.9	10534823.1	2166665.32	
-437402.716	-439016.175	427727.795	

Chi2 [Polynomial-MC]/ndf: 1.8 1.8 4.1

For example here, large difference between Coefficients. Resulting in that MINUIT gets stuck in local minimum.
Chi2/ndf for polynomial description of parameter space:

Degree of polynomial:	2nd	3rd	4th	5th
chi2/ndf for histo 1, bin 1 =	12.46	1.461	1.515	1.715
chi2/ndf for histo 1, bin 2 =	10.76	1.541	1.555	1.535
chi2/ndf for histo 1, bin 3 =	8.057	1.725	1.815	1.445
chi2/ndf for histo 1, bin 4 =	4.194	1.640	1.900	1.425
chi2/ndf for histo 1, bin 5 =	2.021	1.266	1.175	1.375
chi2/ndf for histo 2, bin 1 =	18.52	0.993	0.875	1.315
chi2/ndf for histo 2, bin 2 =	15.57	0.935	0.895	1.265
chi2/ndf for histo 2, bin 3 =	10.39	1.037	1.085	0.925
chi2/ndf for histo 2, bin 4 =	4.439	0.975	1.035	1.075
chi2/ndf for histo 2, bin 5 =	1.950	0.990	0.935	1.135
chi2/ndf for histo 3, bin 1 =	10.91	1.639	1.695	1.765
chi2/ndf for histo 3, bin 2 =	9.129	1.763	1.635	1.645
chi2/ndf for histo 3, bin 3 =	6.594	1.867	1.855	1.225
chi2/ndf for histo 3, bin 4 =	3.016	1.351	1.195	1.495
chi2/ndf for histo 3, bin 5 =	1.426	1.201	1.125	1.215
chi2/ndf for histo 4, bin 1 =	5.219	1.579	1.435	1.305
chi2/ndf for histo 4, bin 2 =	4.454	1.536	1.495	1.255
chi2/ndf for histo 4, bin 3 =	2.738	1.266	1.205	1.325
chi2/ndf for histo 4, bin 4 =	1.651	1.171	1.085	1.245
chi2/ndf for histo 4, bin 5 =	1.036	0.965	1.105	1.085
chi2/ndf for histo 5, bin 1 =	7.408	1.101	1.275	1.514
chi2/ndf for histo 18, bin 1 =	14.7	1.67	1.555	2.864
chi2/ndf for histo 18, bin 2 =	13.0	3.66	2.465	3.120
chi2/ndf for histo 18, bin 3 =	9.68	3.64	2.685	3.225
chi2/ndf for histo 18, bin 4 =	4.77	3.43	2.804	3.255
chi2/ndf for histo 18, bin 5 =	1.44	2.56	2.405	1.268

Parameter values from fit to data:

Parameter	Value	Error
p1	0.372	±0.047
p2	0.144	±0.041
p3	3.07	±0.08

- 2nd degree polynomial bad grid description.
- For higher orders the final fit is consistent within errors of fit.
Example of application

Fit unintegrated gluon density to HERA data

H1 Collab., A. Aktas et al., Eur. Phys. J. C33 (2004) 477
Inclusive Dijet Production at Low x_{Bj} in DIS

Integrated PDF: DGLAP

LO: Gluon collinear with proton

\[k_{t,\text{gluon}} = 0 \]
\[\Delta E_{T,jets} = 0 \text{ in HCM} \]

Higher orders:

\[k_{t,\text{gluon}} \neq 0 \]
\[\Delta E_{T,jets} \neq 0 \]

Unintegrated PDF: CCFM or BFKL

\[k_{t,\text{gluon}} \neq 0 \]
\[\Delta E_{t,jets} \neq 0 \]
already at LO

Target hard di-jets.
Dominated by BGF, sensitivity to gluon.

Require

\[E_{T,jet\ 2} > 5 \ \text{GeV} \]
\[E_{T,jet\ 1} > (5 + \Delta) \ \text{GeV} \]

and measure jet cross-section as a function of Δ

Sensitivity to k_t of gluon
PROFFIT

Steering card

* *************** Name of grid file
GRFIL steer_grid_dijets
* *************** Number of cross-sections for grid:
NXSEC 80
* *************** Grid fitting method (1=SVD, 2=minuit):
GRFIT 1
* *************** Functional form (1=poly, 2=user):
FUNCT 1
* *************** Degree of poly, (FUNCT=1)
*************** or Number of koefficients in function (FUNCT=2)
NPDGR 3
* *************** Number of parameters:
NPARA 3
* *************** Number of histos:
NHIST 18
* *************** Reference to histos and number of bins:
* -dir- -MC hist- -Data hist- -#bins-
HNAME
 03160 3011 -3111 5
 03160 3012 -3112 5
 03160 3013 -3113 5
 03160 3014 -3114 5
PROFFIT

Steering card

* ** Name of grid file
 GRFIL steer_grid_dijets
* ** Number of cross-sections for grid:
 NXSEC 80
* ** Grid fitting method
 GRFIT 1
* ** Functional form (FRTEX)
 FUNCT 1
* ** Degree of poly. (FRTPOLY) or Number of koef.
 NPDGR 3
* ** Number of parameters
 NPRA 3
* ** Number of histos:
 NHIST 18
* ** Reference to hists.
 * -dir- -MC hist- -Data hist
 HNAME
 03160 3011 -3111
 03160 3012 -3112
 03160 3013 -3113
 03160 3014 -3114
 **
 * MC FILES *
 **
 * parameter values
 **
 p1 p2 p3 p4
 0.03 0.1 0.0 2
 0.03 0.1 1 2
 0.03 0.1 2 2
 0.03 0.1 3 2
 0.03 0.2 0.0 2
 0.03 0.2 1 2
 0.03 0.2 2 2
 0.03 0.2 3 2
 0.03 0.3 0.0 2
 0.03 0.3 1 2
 0.03 0.3 2 2
 0.03 0.3 3 2
PROFFIT

Steering card

```
********** Name of grid file
GRFIL steer_grid_dijets
```

```
********** Number of cross-sections for grid:
NXSEC 80
```

```
********** Grid fitting method
GRFIT 1
```

```
********** Functional form (F or NPDGR or Number of koeff)
FUNCT 1
```

```
********** Degree of poly (F or NPDGR or Number of koeff)
NPDGR 3
```

```
********** Number of parameters
NPARA 3
```

```
********** Number of histos:
NHIST 18
```

```
********** Reference to histo file:
* -dir- -MC hist- -Data histo
HNAME
```

```
 03160 3011 -3111
 03160 3012 -3112
 03160 3013 -3113
 03160 3014 -3114
```

```
********** MC FILES
```

```
|    | p1   | p2   | p3   | p4   |
|----|------|------|------|------|
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
| 0.03| 0.3  | 0.2  | 0.1  | 0.0  |
```
PROFFIT

Steering card

*
*********** Name of grid file
GRFIL steer_grid_dijets
*
*********** Number of cross-sections for grid:
NXSEC 80
*
*********** Grid fitting method (1=SVD, 2=minuit):
GRFIT 1
*
*********** Functional form (1=poly, 2=user):
FUNCT 1
*
*********** Degree of poly (FUNCT=1)
*********** or Number of coefficients in function (FUNCT=2)
NPDGR 3
*
*********** Number of parameters:
NPARA 3
*
*********** Number of histos:
NHIST 18
*
*********** Reference to histos and number of bins:
* -dir- -MC hist- -Data hist- -#bins-
HNAME

03160	3011	3111	5
03160	3012	3112	5
03160	3013	3113	5
03160	3014	3114	5

Degree of polynomial for description of Monte Carlo grid
PROFFIT

Steering card

```plaintext
* **************** Name of grid file
GRFIL steer_grid_dijets
*
**************** Number of cross-sections for grid:
NXSEC 80
*
**************** Grid fitting method (1=SVD, 2=minuit):
GRFIT 1
*
**************** Functional form (1=poly, 2=user):
FUNCT 1
*
**************** Degree of poly (FUNCT=1)
**************** or Number of koefficients in function (FUNCT=2)
NPDGR 3
*
**************** Number of parameters:
NPARA 3
*
**************** Number of histos:
NHIST 18
*
**************** Reference to histos and number of bins:
* -dir-  -MC hist- -Data hist- -#bins-
HNAME  
  03160  3011  -3111  5
  03160  3012  -3112  5
  03160  3013  -3113  5
  03160  3014  -3114  5
```

Number of parameters to fit
PROFFIT

Steering card

```plaintext
*  ********** Name of grid file
GRFIL steer_grid_dijets  
*  ********** Number of cross-sections for grid:
NXSEC 80
*  ********** Grid fitting method (1=SVD, 2=minuit):
GRFIT 1
*  ********** Functional form (1=poly, 2=user):
FUNCT 1
*  ********** Degree of poly, (FUNCT=1)
********** or Number of coefficients in function (FUNCT=2)
NPDGR 3
*  ********** Number of parameters:
NPARA 3
*  ********** Number of histos:
NHIST 18
*  ********** Reference to histos and number of bins:
* -dir- -MC hist- -Data hist- -#bins-
HNAME
  03160  3011  -3111  5 
  03160  3012  -3112  5 
  03160  3013  -3113  5 
  03160  3014  -3114  5
```

- **Number of histograms**
- **Histogram info**