Speaker Verification By Partial AUC Optimization With Mahalanobis Distance Metric Learning

Zhongxin Bai, Xiao-Lei Zhang, and Jingdong Chen

Abstract—Receiver operating characteristic (ROC) and detection error tradeoff (DET) curves are two widely used evaluation metrics for speaker verification. They are equivalent since the latter can be obtained by transforming the former’s true positive y-axis to false negative y-axis and then re-scaling both axes by a probit operator. Real-world speaker verification systems, however, usually work on part of the ROC curve instead of the entire ROC curve given an application. Therefore, we propose in this paper to use the area under part of the ROC curve (pAUC) as a more efficient evaluation metric for speaker verification. A Mahalanobis distance metric learning based back-end is applied to optimize pAUC, where the Mahalanobis distance metric learning guarantees that the optimization objective of the back-end is a convex one so that the global optimum solution is achievable. To improve the performance of the state-of-the-art speaker verification systems by the proposed back-end, we further propose two feature preprocessing techniques based on length-normalization and probabilistic linear discriminant analysis respectively. We evaluate the proposed systems on the major languages of NIST SRE16 and the core tasks of SITW. Experimental results show that the proposed back-end outperforms the state-of-the-art speaker verification back-ends in terms of seven evaluation metrics.

Index Terms—pAUC, metric learning, squared Mahalanobis distance, speaker verification.

I. INTRODUCTION

Speaker verification aims to verify whether an utterance is pronounced by a hypothesized speaker based on some utterances pre-recorded from that speaker. Depending on whether it requires the to-be-verified speaker to pronounce some pre-defined text or not, speaker verification can be classified into two classes, i.e., text-dependent and text-independent. This paper focuses on the text-independent case. There are generally two approaches to this problem: a two-step one, which consists of a front-end feature extractor and a back-end classifier, and a one-step approach, which trains an end-to-end system [1]–[4]. This paper focuses on the two-step approach.

In a two-step approach, it is important to have a good front-end. In the literature, the Gaussian mixture model (GMM) based universal background model (UBM) [5] plus identity vector (i-vector) [6] is commonly used. In such a front-end, a GMM-UBM is first trained to collect Baum-Welch statistics, which is formed as a supervector for each utterance. Then, factor analysis is used to reduce the dimensionality of the supervectors to low-dimensional i-vectors. Many extensions of the GMM-UBM/i-vector front-end were proposed recently, e.g., [7]. Motivated by the paradigm shift of speech recognition from GMM-based acoustic modeling to deep neural network (DNN) based one, a DNN-UBM/i-vector front-end was developed [8]–[10]. It essentially uses the DNN-based acoustic model trained for speech recognition to generate the posterior probabilities instead of GMM-UBM. Tan et al. further employed a denoising autoencoder to replace the DNN-based acoustic model for dealing with environmental noise [11]. These method, however, needs transcriptions of the training data to train the acoustic models, which may not be always available.

An emerging direction of the front-end research is deep embedding. Deep embedding uses a DNN to distinguish the training speakers in a closed set by a classification-based loss function, and takes the outputs of the hidden layers of the DNN for verification. An early deep embedding front-end is the so-called d-vector [12], [13], in which frame-level speaker features are extracted from the top hidden layer, and then utterance-level speaker features are derived as the average of the frame-level features. However, the average of the frame level features does not consider the dependency of the contextual frames. Several efforts have been made to address this problem [14]–[17]. For example, in [14], [15], Snyder et al. proposed to insert an average pooling layer into DNN to handle variable-length segments. In [18], Gao et al. exploited a cross-convolutional-layer pooling method to extract the first-order statistics of the input segments. Attention mechanism was also studied to generate utterance-level features [16], [17]. Another problem with the deep embedding front-end is on the training loss function. Because the classification-based loss is only a surrogate loss function of the final evaluation metrics of speaker verification, finding more effective loss functions become an important issue. In [19], [20], the authors proposed to minimize the classification-based loss and center loss together. In [21], Zhang et al. took triplet loss as the training objective of a deep embedding network. Although employing the above training loss functions is shown to be able to improve the performance, the extracted speaker features still have significant intra-class variations, which need to be handled by back-ends.

Regarding the back-end, commonly used back-end classifiers include cosine similarity scoring [6], support vector
machine [22], and probabilistic linear discriminant analysis (PLDA) [23]–[25]. DNNs have also been investigated [26], [27]. Inter-session variability compensation is a main task of back-ends, since the front-ends are inter-session- and speaker-dependent. Linear compensation techniques such as linear discriminant analysis (LDA) and within class covariance normalization [28] are often used. Recently, nonlinear compensation methods have been studied as well: Cumani et al. [29], [30] proposed a nonlinear transformation to i-vectors to make them more suitable for PLDA [31]; Zheng et al. developed a DNN-based dimensionality reduction method as an alternative to LDA [32]. However, because the aforementioned back-ends do not optimize the evaluation metrics directly, such as equal error rate (EER), their performance may be suboptimal.

To optimize the evaluation metrics directly, metric learning needs to be used, which attempts to learn an appropriate similarity measurement space of data points. It has been widely studied in the machine learning community. One of the most popular metric learning methods is to optimize the parameters of a Mahalanobis distance in a linear space [33]. Recently, deep metric learning [34]–[36], which uses a DNN to learn a nonlinear similarity measurement, has also received much attention. Metric learning has been recently studied in speaker verification as well. For example, some metric learning based back-ends [37], [38] have been proposed to compensate the inter-session variability of the embedding features, where the work in [37] minimizes the EER of speaker verification directly. It is also popular to train an end-to-end speaker verification system [11]–[14] or an embedding DNN [21] by deep metric learning. In our recent work [37], we proposed a linear cosine metric learning algorithm to minimize the overlap region of decision scores. Similarly, in [38], Novoselov et al. proposed a triplet-loss-based cosine similarity metric learning back-end.

Although directly optimizing an evaluation metric of speaker verification improves the performance, current methods focus mainly on optimizing EER. Since it needs to work at a different point of its receiver operating characteristic (ROC) curve for different applications, a speaker verification system tuned to yield the minimum EER in one scenario may not produce the best performance in another scenario. To address this issue, this paper proposes a back-end to directly optimize part of the area under the ROC curve (named partial AUC, or pAUC for short). The main contributions of this paper are summarized as follows:

- A new calibration-insensitive evaluation metric named “pAUC” is proposed for speaker verification. pAUC represents partial area under the ROC curve. It meets the evaluation requirement of real-world applications that work on different parts of ROC curves, such as bank security systems or terrorist detection systems. It is a supplement evaluation metric to the existing metrics. As shown in Fig. 1, the pAUC for a specific application is defined by two false positive rate (FPR) parameters: α and β.

- A Mahalanobis metric learning back-end is proposed to maximize pAUC (pAUCMetric). pAUCMetric evaluates the similarity between two speaker features by a squared Mahalanobis distance, and optimizes the parameters of the distance metric to maximize pAUC where the working points of the speaker verification system locate. pAUC-Metric is formulated as a convex optimization problem, where the global optimum solution is guaranteed. We further combine pAUCMetric with two feature preprocessing techniques: 1) length-normalization, and 2) latent variables of PLDA, which combine the ranking property of pAUC into the Cosine similarity or PLDA back-ends for further performance improvement. It is shown that the AUC optimization, such as the one in [39], [40], can be viewed as a special case of pAUC with $\alpha = 0$ and $\beta = 1$.

Experiments are conducted to evaluate the effectiveness of pAUCMetric and compare pAUCMetric with PLDA and cosine similarity scoring back-ends that do not optimize evaluation metrics directly. For each experiment, all back-ends use the same front-end, which is either the GMM/i-vector or the x-vector. We train the comparison methods on switchboard, NIST SRE04–SRE10 and VoxCeleb datasets, and evaluate them on the major languages of NIST SRE16 and the core tasks of SITW. The evaluation is conducted under the conditions of both noise-matching and -mismatching. The experimental results show that pAUCMetric outperforms PLDA by relatively 10%, 9% and 20% in terms of EER, pAUC and AUC metrics respectively.

The rest of this paper is organized as follows: Section II presents the motivations. Section III and V describe the proposed algorithm. Section VII presents the experiment results. Finally, important conclusions are drawn in section VII.

II. MOTIVATION

A. Motivation for the pAUC evaluation metric

It is known that a speaker verification system first generates a similarity score of a trial by a speaker detection algorithm,
and then makes a hard decision according to a threshold as illustrated in Fig. 2. The speaker detection algorithm assigns higher scores to target trials than non-target trials, which determines the discriminability of the system. The decision threshold is usually determined by first calibrating the similarity scores to the log-likelihood ratios (LLR) and then applying the Bayes decision theory [41] using application-dependent priors, i.e., the prior of targets and the costs of false negative rate (also known as miss detection rate) and false positive rate (also known as false alarm rate).

The evaluation metrics of speaker verification in Fig. 2 can be categorized to two classes—calibration-sensitive metrics and calibration-insensitive ones. The calibration-sensitive metrics, which include the actual detection cost function (actDCF) and cost of LLR (C_{llr}), aim to evaluate a calibrated speaker verification system under the framework of Bayes decision theory. Specifically, the application-dependent actDCF evaluates the empirical Bayes risk of a system at the Bayes decision threshold [41], which determines how good is the hard decision. C_{llr} evaluates the discrimination of the calibrated LLR in an application-independent manner [42]. While calibration-sensitive evaluation metrics have many pros in evaluating the suitability of a calibrated system, we often need to evaluate the detection algorithm of an uncalibrated system directly.

In contrast, calibration-insensitive metrics evaluate the discriminability of the detection algorithm. They include the detection error tradeoff (DET) curve, EER, minimum detection cost function (minDCF), and average precision. DET curve is an alternative form of the ROC curve. As a matter of fact, the DET curve can be obtained by transforming the ROC curve’s true positive y-axis to false negative y-axis and then re-scaling both axes by a non-linear warping named the probit operator [41], [43]. It reflects the global discriminability of a speaker verification system. EER and minDCF are two points on the DET curve, which reflect the discriminability of the system to some extent. Like the DET curve, average precision is a global metric that combines recall and precision for ranked retrieval results, which is however sensitive to class-imbalanced problems such as speaker verification. To summarize, DET curve and average precision are two global metrics, while EER and minDCF are two local points on the DET curve.

In practice, a speaker verification system usually works on a local fraction of the DET curve with a tunable threshold, instead of a single local point. For example, a bank security system is tuned in a range where the false positive rate is controlled below 0.01%. In contrast, a terrorist detection system of a public security department is tuned in a range whose recall rate is required in a range of higher than 99%. As shown in Fig. 1, pAUC may meet such a requirement. First, [α, β] in Fig. 1 defines the interested operating points of a real-world working scenario. Second, pAUC, which is a scalar in the range of [0, 1], describes the interested part of the ROC curve efficiently. At last, its calculation method, which will be presented in [7], does not depend on a decision threshold. Hence, we adopt pAUC as a new calibration-insensitive evaluation metric.

III. pAUC METRIC LEARNING BACK-END

In this section, we first provide an overview to the speaker verification system in Section II-A and then present the objective function and optimization algorithm of the proposed back-end in Sections III-B and III-C respectively.

A. System overview

The diagram of the pAUCMetric based speaker verification system is shown in Fig. 3. The front-end is used to extract speaker features from speech signals. We use i-vector [6] or x-vector [15] as the front-end. After feature extraction by the front-end, we further preprocess the features as described in
Section \[\text{A}\] and then use the preprocessed feature as the input of pAUCMetric.

The role of pAUCMetric is to judge whether two preprocessed features \(x_{q_1}\) and \(x_{q_2}\) belong to the same speaker based on their similarity. The similarity is measured by the following squared Mahalanobis distance:

\[
S(x_{q_1}, x_{q_2}; M) = (x_{q_1} - x_{q_2})^T M (x_{q_1} - x_{q_2})
\]

(1)

where \(M\) is a symmetric positive semi-definite matrix, which is to be learned by pAUCMetric. If the squared Mahalanobis distance between \(x_{q_1}\) and \(x_{q_2}\) is smaller than a pre-specified threshold \(\theta^*\), \(x_{q_1}\) and \(x_{q_2}\) are regarded as from the same speaker; otherwise, they are regarded as from different speakers. We denote \(z_i = x_{q_1} - x_{q_2}\), and denote \(S(x_{q_1}, x_{q_2}; M)\) as \(S(z_i; M)\) for simplicity. A probabilistic explanation of the Mahalanobis distance is given in Appendix A.

B. Objective function

Given a training set with \(N\) speakers and \(Q\) embedding vectors \(X = \{(x_q, y_q)\}_{q=1}^{Q}\), where \(y_q = 1, \ldots, N\) is the identity of \(x_q\), we first construct a pairwise training set

\[
\mathcal{T} = \{(z_i, l_i)\}_{i=1}^{I}
\]

(2)

where \(z_i = x_{q_1} - x_{q_2}\) with \(q_1 = 1, \ldots, Q\) and \(q_2 = 1, \ldots, Q\) \((q_1 \neq q_2)\), \(I\) is the size of \(\mathcal{T}\), and \(l_i\) is the ground-truth label of \(z_i\) satisfying:

\[
l_i = \begin{cases}
1, & \text{if } y_{q_1} = y_{q_2} \\
-1, & \text{otherwise}
\end{cases}
\]

(3)

We define the subset of the true trials of \(\mathcal{T}\) as:

\[
\mathcal{P} = \{(z_j^+, l_j = 1)\}_{j=1}^{J}
\]

(4)

and the subset of the impostor trials of \(\mathcal{T}\) as:

\[
\mathcal{N} = \{(z_k^-, l_k = -1)\}_{k=1}^{K}
\]

(5)

where \(J\) and \(K\) are the sizes of \(\mathcal{P}\) and \(\mathcal{N}\) respectively.

After the above preliminary setting, the pAUC is calculated as follows. We define a subset of \(\mathcal{N}\) that defines the pAUC over the FPR range \([\alpha, \beta]\):

\[
\mathcal{N}_0 = \{(z_r^-, l_r = -1)\}_{r=1}^{R}
\]

(6)

where \(R \leq K\), and \(\mathcal{N}_0\) is determined as follows. Because the impostor set \(\mathcal{N}\) contains only a limited number of trials, we first replace \([\alpha, \beta]\) by \([k_\alpha/K, k_\beta/K]\) where \(k_\alpha = \lceil K \alpha \rceil\) and \(k_\beta = \lfloor K \beta \rfloor\) are two integers. Then, \(\{S(z_k^-; M)\}_{z_k^- \in \mathcal{N}}\) are sorted in ascending order. Finally, we pick the trials ranked from the top \(k_\alpha\)th to \(k_\beta\)th positions to form \(\mathcal{N}_0\). The calculation of pAUC is equivalent to that of the normalized AUC over \(\mathcal{P}\) and \(\mathcal{N}_0\), which is computed as:

\[
pAUC = 1 - \frac{1}{JR} \sum_{j=1}^{J} \sum_{r=1}^{R} \left[\mathbb{I}(S(z_j^+; M) > S(z_r^-; M)) + \frac{1}{2} \mathbb{I}(S(z_j^+; M) = S(z_r^-; M)) \right]
\]

(7)

where \(\mathbb{I}(\cdot)\) is an indicator function that returns 1 if the statement is true, and 0 otherwise.

However, directly optimizing (7) is an NP-hard problem. To circumvent this, let us relax \(\mathcal{P}\) by replacing the indicator function by a hinge loss function:

\[
\ell_{hinge}(S(z_j^+; M) > S(z_r^-; M)) = \max[0, \delta - (S(z_r^-; M) - S(z_j^+; M))]
\]

(8)

where \(\delta > 0\) is a tunable hyper-parameter controlling the distance margin between \(\{S(z_r^-; M)\}_{z_r^- \in \mathcal{N}_0}\) and \(\{S(z_j^+; M)\}_{z_j^+ \in \mathcal{P}}\). Substituting (8) into (7) and further changing the maximization problem (7) into an equivalent minimization one gives (9).

\[
\ell = \frac{1}{JR} \sum_{j=1}^{J} \sum_{r=1}^{R} \max(0, \delta - S(z_r^-; M) + S(z_j^+; M))
\]

(9)

The proposed pAUCMetric minimizes (9) over \(\mathcal{P}\) and \(\mathcal{N}_0\). To prevent overfitting to the training data, we add a regularization term \(\lambda \Omega(\cdot)\) to the minimization problem according to a plausible formulation in [46], which gives the objective function of pAUCMetric:

\[
M^* = \arg \min_M \ell(\mathcal{P}, \mathcal{N}; M) + \lambda \Omega(M),
\]

(10)

where \(\lambda\) is a regularization hyperparameter, and \(\Omega(\cdot)\) is defined as:

\[
\Omega(M) = \frac{\gamma}{N} \sum_{j=1}^{J} S(z_j^+; M) + \mu [\text{tr}(M) - \log \det(M)]
\]

(11)

with \(\gamma\) and \(\mu\) being two tunable hyper-parameters. The first term on the right-hand side of (11), i.e., \(\frac{1}{N} \sum_{j=1}^{J} S(z_j^+; M)\), which was first introduced in [47], aims to bound \(S(z_j^+; M)\) in (9). The second term, i.e., \(\text{tr}(M) - \log \det(M)\), which is a specifical case of LogDet divergence [48] defined over positive semi-definite (PSD) matrices [33], is used to improve the generalization ability and further constrain \(M\) to be PSD. (10) can also be interpreted from another viewpoint using the following lemma.

Lemma 1. The maximization of pAUC in (10) is a problem of enlarging a weighted margin between the positive and negative trials while minimizing the within-class variances of the two class trials simultaneously.

Proof. Let us define an index matrix \(\Pi \in \{0, 1\}^{J \times R}:

\[
\Pi(j, r) = \begin{cases}
1, & \text{if } \delta + S(z_j^+; M) > S(z_r^-; M) \\
0, & \text{otherwise}
\end{cases}
\]

(12)

and rewrite the loss function of (9) as:

\[
\ell = \frac{\delta}{JR} \sum_{j=1}^{J} \sum_{r=1}^{R} \Pi(j, r) + \frac{1}{JR} \sum_{j=1}^{J} \left(\frac{1}{R} \sum_{r=1}^{R} \Pi(j, r) \right) S(z_j^+; M)
\]

\[
- \frac{1}{R} \sum_{r=1}^{R} \left(\frac{1}{J} \sum_{j=1}^{J} \Pi(j, r) \right) S(z_r^-; M)
\]

\[
= c + \frac{1}{J} \sum_{j=1}^{J} p_j S(z_j^+; M) - \frac{1}{R} \sum_{r=1}^{R} p_r S(z_r^-; M)
\]

(13)
where $c = \frac{\delta}{\eta R} \sum_{j=1}^{J} \sum_{r=1}^{R} \Pi(j, r)$ is a constant in a single iteration, $p_j = \frac{1}{J} \sum_{r=1}^{R} \Pi(j, r)$ and $p_r = \frac{1}{J} \sum_{j=1}^{J} \Pi(j, r)$ are the weights of the positive and negative trials respectively. It is clear that minimizing Π^{J} is a problem of enlarging the weighted margin between the positive and negative trials. □

Because the regularization term $\frac{\gamma}{2} \sum_{j=1}^{J} S(z_j^T; M)$ minimizes the within-class variance, we see that the objective (10) enlarges the between-class distance and minimizes the within-class variance simultaneously, which is also the principle behind many well-known back-ends, such as LDA, WCCN, and PLDA. The difference lies in that pAUCMetric works in the squared Mahalanobis distance space and encodes the pAUC information into the weights p_j and p_r.

C. Optimization algorithm

In order to solve the optimization problem in (6), substituting (12) into (10) gives

$$M^* = \arg \min_{M} (P + \gamma P_P, M)_F + \mu [\text{tr}(M) - \log \det(M)] ,$$

where $(\cdot)_F$ denotes the Frobenius norm operator, and

$$P_P = \frac{1}{J} \sum_{j=1}^{J} z_j z_j^T, \quad (15)$$

$$P = \frac{1}{JR} \sum_{j=1}^{J} \sum_{r=1}^{R} \Pi(j, r)(z_j^T z_r^T - z_r z_r^T). \quad (16)$$

We employ the proximal point algorithm (PPA) [46] to optimize (14). The resulting algorithm, which is summarized in Algorithm 1, consists of the following three steps at each iteration:

- The first step constructs the training set T from X^t. However, if we consider all trials in X^t the construction of T becomes enormous. To prevent the overload of computing, we construct a pairwise set T' at each iteration by a random sampling strategy as follows. We first randomly select s speakers from X^t, then randomly select two embedding vectors from each of the selected speakers, and finally construct T' by a full permutation of the 2s embedding vectors. T' contains s true training trials and $s(2s - 1) - s$ imposter training trials.
- The second step calculates N_0^t according to (9), and calculates P_1 and P_2 according to (15) and (16) respectively.
- The third step updates M by PPA [46], which first applies eigenvalue decomposition to $X = M_1 - \eta(\gamma P_P + \mu I_0)$, i.e., $X = UVU^T$ where $V = \text{diag}(v_1, v_2, \cdots , v_d)$ with $v_1 \geq v_2 \geq \cdots \geq v_d$, and then adopts the following updating equation:

$$\phi^*_\lambda(x) = U \text{diag}(\phi^*_\lambda(v_1), \cdots , \phi^*_\lambda(v_d))]U^T, \quad (17)$$

where $\phi^*_\lambda(v) = [(v^2 + 4\lambda)^{1/2} + v] / 2$, and d is the dimension of the input feature.

D. Connection to the back-ends trained with training trials.

There are two basic classes of back-ends depending on how they construct the training data. One class takes training utterances as the training data for training a generative PLDA. The other groups training utterances into training trials for training binary-class classifiers, in which back-ends differ in two aspects—basic classifiers and loss functions. Here we focus on discussing the difference between the loss functions of the second class, which include the pairwise SVM [22], [49], [50], triplet-loss-based, and pAUCMetric back-ends whose loss functions are denoted as the classification-loss, triplet-loss, and pAUC-loss [9], respectively.

The classification-loss [22], triplet-loss [21], and pAUC-loss all use the hinge loss function to relax the $0/1$-loss. The only difference between them is how the errors are accumulated. The classification-loss accumulates the classification error, which suffers from the class-imbalance problem of speaker verification. In contrast, the pAUC-loss focuses on the ranking of the similarity scores; So, it does not suffer from the class-imbalance problem.

The triplet-loss requires that the features from the same speaker are closer than those from different speakers in a triplet trial [21], i.e.,

$$S(x^a, x^a; M) - S(x^a, x^p; M) > \delta \quad (18)$$

where x^a, x^p, and x^n represent, respectively, the anchor, positive, and negative utterances of a trial. For clarity, we denote the speaker features in a constraint as a relative constraint. For example, we call $\{x^a, x^p, x^n\}$ in (18) as a relative constraint of the triplet-loss. The difference between the triplet-loss (18) and pAUC-loss (9) lies in the following three aspects.

First, the relative constraints of the triplet-loss (18) are triplet, which cannot deal with the situation where the training data contains only positive or negative trials. While the relative constraints of the pAUC-loss (9) are tetrad, which matches the pipeline of speaker verification. Therefore, (9) does not have the same limitation as (18). Second, the pAUC-loss is intrinsically able to pick difficult training trials from the exponentially large number of training trials, while the triplet-loss lacks such an ability (that is why it has to use additional training trial selection methods). Third, as proven in Appendix B, the relative constraints of the triplet-loss are a subset of the relative constraints of the AUC-loss. As a result, the triplet-loss is a specific case of the AUC-loss. Moreover, because the AUC-loss is a specific case of the pAUC-loss with $\alpha = 0$ and $\beta = 1$, we conclude that the triplet-loss is a specific case of the pAUC-loss.

To validate the above analysis, we propose a new triplet-loss based algorithm for experimental comparison, which differs from pAUCMetric only in the loss function. The new algorithm, named TripletMetric, replaces the tetrad constraints (9) with the triplet constraints (18). Its training data are constructed in a similar way as T in Section III-C, which randomly selects s speakers with each speaker selecting two embedding vectors. The number of the training triplet trials is $2s(2s - 2)$. Note that, because the number of the tetrad
Algorithm 1: Mini-batch PPA [46] algorithm for pAUC-Metric optimization.

Require:
Development set: \(\mathbf{X} \);
False positive rate: \(\alpha \geq 0, \beta > 0 \);
Hyperparameter: \(\delta \geq 0, \gamma \geq 0, \mu \geq 0 \);
Batch size: \(s \);
Step size parameter: \(\eta > 0 \);
Initialize: \(t \leftarrow 0, M_0 = I_0 \), where \(I_0 \) is the identity matrix;

repeat
\(t \leftarrow t + 1 \);
Construct a mini-batch subset of \(\mathbf{X} \) by random sampling;
Construct \(\mathcal{T} \) from the subset of \(\mathbf{X} \) by (12);
Compute \(\mathcal{P} \) and \(N_0 \) by (4) and (6);
Calculate \(P_t \) and \(P_t^\top \) on \(\mathcal{P} \) and \(N_0 \) by (15) and (16);

\[
M_{t+1} \leftarrow \phi_x(M_t - \eta(P_t + \gamma P_t^\top + \mu I_0)), \quad \lambda = \gamma \eta; \]
until converged;

Output: \(M_t \)

Corollary 1. Given the batch size \(s \), the computational complexity of pAUCMetric is reduced to
\[
O(2cs^3) \quad (23)
\]
where \(c \) is a coefficient related to the FPR range \([\alpha, \beta]\).

Proof. According to Section III-C we have \(I = 2s^2 - s, \quad J = s, \quad K = 2s^2 - 2s, \) and \(R = c(2s^2 - 2s) \). Therefore, the computational complexity is reduced to \(O(2cs^3) + O(d^3) \). Because the dimension \(d \) is small, the computational complexity depends mainly on \(s \) only.

Corollary shows that the computational complexity of pAUCMetric is cubic with respect to \(s \). As will be shown in Section VI-F3 pAUCMetric can achieve good performance with a small value of \(s \).

V. THE INPUT FEATURES OF pAUCMETRIC

After the feature extraction by a front-end, one needs to preprocess the features for boosting the performance of pAUCMetric as shown in Fig. 3. This section presents two preprocessing techniques.

A. Length-normalization

Given a speaker feature \(y \) from a front-end, we use the length-normalized feature \(\frac{y}{\|y\|_2} \) as the input to pAUCMetric:
\[
x = \frac{y}{\|y\|_2} \quad (24)
\]
The underlying reason for this normalization is as follows. Learning a transform matrix in the cosine similarity scoring framework, i.e.,
\[
S_{cos}(y_1, y_2; M) = \frac{\langle A y_1, A y_2 \rangle}{\|A y_1\|_2 \|A y_2\|_2} \quad (25)
\]
has been studied extensively, e.g., [6]. However, the learning problem is nonlinear and non-convex. Existing methods either learn \(A \) independently by, e.g., LDA, WCCN [6], or learn \(A \) in the above framework with a good initialization [37]. Both ways are suboptimal.

The Euclidean distance scoring is empirically inferior to the cosine similarity scoring when given the same input \(y \). But it is equivalent to the cosine similarity scoring if its input is the length-normalized feature \(x \) since
\[
S_{Euc}(x_1, x_2) = \|x_1\|_2^2 + \|x_2\|_2^2 - 2\langle x_1, x_2 \rangle = 2 - 2S_{cos}(y_1, y_2). \quad (26)
\]
More importantly, learning A in the following Euclidean distance scoring framework does not suffer from the nonlinear and non-convex issues:

$$S_\text{Euc}(x_1, x_2; A) = ||Ax_1 - Ax_2||_2^2$$

$$= (x_1 - x_2)^T M (x_1 - x_2)$$

$$= S(x_1, x_2; M)$$

(27)

where $M = A^T A$ and $S(\cdot)$ is the scoring function of our pAUCMetric.

B. PLDA-based preprocessing

Two kinds of PLDA algorithms have been widely adopted in speaker verification, i.e., the simplified PLDA [23], [25] and the two-covariance based PLDA [51]. We adopt the latent variables of the simplified PLDA [23] as the input features of pAUCMetric. It generates a centralized feature x by first generating a speaker center h according to:

$$h \sim N(0, \Phi_b)$$

(28)

and then generating the observation data according to:

$$x \sim N(h, \Phi_w),$$

(29)

where Φ_b is required to be positive semi-definite, and Φ_w is required to be positive definite. The expectation maximization algorithm is employed to estimate the parameters. Φ_b and Φ_w can be simultaneously diagonalized by solving the following generalized eigenvalue problem:

$$\Phi_b W = \Psi \Phi_w W,$$

(30)

which leads to

$$W \Phi_b W^T = \Psi$$

(31)

$$W \Phi_w W^T = I_0$$

(32)

where W is a square matrix whose columns are the generalized eigenvectors of Φ_b, Ψ is a diagonal matrix whose diagonal elements are the generalized eigenvalues of Φ_b, and I_0 is the identity matrix.

Finally, the centralized feature is calculated as:

$$x = W^{-1} u,$$

(33)

where $u \sim N(v, I_0)$, and $v \sim N(v, \Psi)$. v represents the speaker, and u represents an example of that speaker in the latent space. Therefore, the example x in the original space is related to its latent representation u via an invertible transformation W. We take the latent variable u as input features of pAUCMetric. This preprocessing method adopts the advantage of the PLDA adaptation into the input features, which improves the overall performance of the speaker verification system.

VI. EXPERIMENTS

In this section, we first present the datasets and experimental settings and then the main results as well as analysis on the effects of the hyperparameters of pAUCMetric.

A. Datasets

1) Training datasets: The training data consists of Switchboard (SWBD), NIST speaker recognition evaluation (SRE), and VoxCeleb database. SWBD consists of Switchboard Cellular 1 and 2 as well as Switchboard 2 Phase 1, 2, and 3. It contains 28,181 English utterances from 2,594 speakers. The SRE database consists of NIST SREs from 2004 to 2010 along with Mixer 6. It contains 64,388 telephone and microphone recordings from 4,392 speakers. Most of the utterances are in English, while some utterances are in Chinese, Russian, Arabic etc. VoxCeleb consists of VoxCeleb1 [52] and VoxCeleb2 [53], which contains over 1 million recordings from 7,363 celebrities. It is collected from real world noisy environments, therefore it contains background chatter, laughter and overlapping speech etc. In addition, we adopt the same data augmentation scheme as in [15] to further increase the amount and diversity of the training data. See Table II for summarization of the training data.

2) Evaluation datasets: The evaluation data include NIST SRE 2016 (SRE16) [54] and the Speakers in the Wild (SITW) [55] datasets. Specifically, SRE16 contains two major languages—Cantonese and Tagalog. They are recorded in real-world noisy environments. The Cantonese language contains 965,393 trials. The Tagalog language contains 1,021,332 trials. The enrollment segments vary from 60 to 180 seconds, and the test utterances are about 10 to 180 seconds long. The SITW is collected from open-source media, which contains real-world noise, reverberation, intra-speaker variability and compression artifacts. It contains 299 speakers. Each recording varies from 6 to 180 seconds. It has two evaluation tasks—Dev.Core which consists of 338,226 trials, and Eval.Core, which consists of 721,788 trials. See Table III for summarization of the evaluation data.

B. Experimental settings

1) Training schemes: Due to different collection methods and sampling rates of the training data, we define two kinds of systems:

- 8 kHz system: We adopt the augmented SWBD and SRE data, which include 220,569 recordings in total, to train front-end feature extractors. The back-ends are trained on the augmented SRE data. The signals originally sampled at 16 kHz are downsampled to 8 kHz.

- 16 kHz system: We use the VoxCeleb data to train an i-vector feature extractor, and use the augmented VoxCeleb data to train an x-vector feature extractor. We randomly selected 200,000 recordings from the augmented VoxCeleb data to train the back-ends.

2) Front-ends: We use the GMM-UBM/i-vector and x-vector front-ends to extract speaker features. The front-ends are implemented using Kaldi [56]. Their parameter settings are also the same as in Kaldi, which are summarized in Table IV.

Specifically, for the i-vector extractor, the frame length is 25 ms, and the frame shift is 10 ms. The frame-level acoustic features of the 8 kHz and 16 kHz systems are 20- and 24-dimensional MFCCs respectively, which are further mean-
normalized over a sliding window of 3 s. The final acoustic features are a concatenation of the MFCCs and their delta and delta-delta coefficients, which produces a total of 60-dimensional acoustic feature vector for the 8 kHZ system and 72-dimensional acoustic feature vector for the 16 kHZ system. An energy-based voice activity detector (VAD) is employed to remove non-speech frames. The number of Gaussian mixtures is set to 2048 for both the 8 kHZ and 16 kHZ systems. The dimension of the i-vectors is set to 600 for the 8 kHZ system, and 400 for the 16 kHZ system.

For the x-vector extractor, we used the standard Kaldi SRE16 and SITW recipes. Specifically, the frame-length is 25 ms, and the frame shift is 10 ms. The acoustic features of the 8 kHZ and 16 kHZ systems are 24- and 30-dimensional MFCCs, respectively, which are further mean-normalized over a sliding window of 3 s. The energy-based VAD is the same as that in the i-vector extractor. The 8 kHZ x-vector extractor is a newly trained system by Kaldi. The dimensions of the x-vectors in both the systems are set to 200 for the 8 kHZ system and 150 for the 16 kHZ system. If the x-vector front-end is used, the LDA dimension is set to 150 and 128 in the 8 kHZ system and 16 kHZ system, respectively. The dimensions of LDA are summarized in Table IV. We use the output of LDA as the input of PLDA to compute the similarity scores.

- **Cosine similarity scoring (Cosine):** We adopt the same dimension reduction as that in Table IV by LDA, and then use the dimension-reduced feature as the input of the cosine similarity scoring to make decisions.

- **PLDA-adp:** We conduct domain adaptation to the PLDA back-end of the 8 kHZ system by using an unlabeled major dataset in NIST 2016 SRE, which consists of 2, 272 utterances. The adaptation technique is implemented in kaldi-master/egs/sre16 of Kaldi.

- **pAUCMetric:** We adopt the same dimension reduction as that in Table IV by LDA. Then, the speaker features are preprocessed according to Section V. At last, the preprocessed features are used as the input of pAUCMetric. The default hyperparameters of pAUCMetric are as follows. \(\alpha = 0, \beta = 0.01, \mu = 10^{-3}, \eta = 10, \) and \(s = 500. \) \(\gamma \) is set to 0.5 for the x-vector front-end, and set to \(\gamma = 0.1 \) for the i-vector front-end. As will be shown in Section VI-F2, pAUCMetric performs robustly with a wide range of hyperparameter settings.

- **TripletMetric:** The algorithm was proposed in the last paragraph of Section III-D. Its hyperparameter setting is the same as that of pAUCMetric.

We evaluated the studied methods using the calibration-insensitive metrics, including the EER, minDCF with \(P_{tar} = 0.01 \) and equal costs of misses and false alarms, pAUC with \(\alpha = 0, \beta = 0.01 \) (pAUC\([0,0.01])\), AUC, and average precision (AP).

We also conducted an experiment in Section VI-E, where we evaluated the performance by the calibration-sensitive metrics, including the actDCF with \(P_{tar} = 0.01 \) and equal costs of misses and false alarms, and C\(\text{llir}. \)

C. Results based on PLDA-based preprocessing

This section presents the main experimental results of the pAUCMetric with the PLDA-based preprocessing technique. We evaluate both the 8 kHZ and 16 kHZ systems on the SRE16 and SITW datasets, which contains the following four evaluation schemes:

- **E1:** This scheme conducts the comparison on language mismatched conditions. The evaluation is carried out with the 8 kHZ system on the SRE16 dataset. Most training
data of the 8 kHz system are in English, while the SRE16 test data are in Cantonese and Tagalog languages.

- **E2**: Contrary to E1, this scheme conducts the comparison on language matched conditions. The evaluation is carried out with the 8 kHz system on the SRE16 dataset as well, and furthermore, the domain adaptation technique is adopted. The input features of pAUCMetric are the latent variables of PLDA-adp.

- **E3**: This scheme makes an evaluation on channel and noise mismatched conditions. We conducted the evaluation with the 8 kHz system on the SITW data, where we downsampled the SITW from 16 kHz to 8 kHz. The mismatched problem is caused by the fact that SITW is collected from multi-media videos, while the training data, i.e., SWBD and SRE, are collected from telephone or meeting conditions.

- **E4**: Contrary to E3, this scheme makes an evaluation on channel and noise matched conditions. Specifically, we make the evaluation with the 16 kHz system on the SITW dataset. Both the SITW and VoxCeleb datasets are collected from multi-media videos.

The experimental results of E1 are presented in Table VI. As seen, pAUCMetric achieves obvious performance improvement over PLDA on the Cantonese language. Specifically, when the x-vector front-end is used, it obtains 11% relative EER reduction and 5% relative minDCF reduction; it also achieves 9% relative pAUC$_{0.01}$ improvement, 22% relative AUC improvement, and 12% relative AP improvement. When the i-vector front-end is used, it obtains 7% relative EER reduction and 14% relative AUC improvement. However, the experimental results of PLDA and pAUCMetric on the Tagalog language are not good, which may be due to the large mismatch between the Tagalog and the languages of the training data, as well as the fact that the Tagalog data is quite noisy.

The experimental results of E2 are presented in Table VII. It is seen that pAUCMetric yields better performance than PLDA-adp, for both the i-vector and x-vector front-ends. Specifically, when the x-vector front-end is applied to the Cantonese language of SRE16, pAUCMetric obtains 13% relative EER reduction and 5% relative minDCF reduction; it also achieves 9% relative pAUC$_{0.01}$ improvement, 22% relative AUC improvement, and 12% relative AP improvement. When the i-vector front-end is used, it obtains 7% relative EER reduction and 14% relative AUC improvement. However, the experimental results of PLDA and pAUCMetric on the Tagalog language are not good, which may be due to the large mismatch between the Tagalog and the languages of the training data, as well as the fact that the Tagalog data is quite noisy.

The experimental results of E3 are presented in Table VIII. As seen, pAUCMetric achieves obvious performance improvement over PLDA on the Cantonese language. Specifically, when the x-vector front-end is used, it obtains 11% relative EER reduction and 5% relative minDCF reduction; it also achieves 9% relative pAUC$_{0.01}$ improvement, 22% relative AUC improvement, and 12% relative AP improvement. When the i-vector front-end is used, it obtains 7% relative EER reduction and 14% relative AUC improvement. However, the experimental results of PLDA and pAUCMetric on the Tagalog language are not good, which may be due to the large mismatch between the Tagalog and the languages of the training data, as well as the fact that the Tagalog data is quite noisy.
relative EER reduction and 5% relative minDCF reduction respectively; it also achieves 9% relative improvement in terms of pAUC\(_{[0,0.01]}\) and 30% relative improvement in terms of AUC. When the i-vector front-end is applied to the Cantonese language, pAUCMetric also obtains 11% relative EER reduction and 23% relative AUC improvement, respectively. pAUCMetric also achieves better performance than PLDA-adp on the Tagalog language.

The experimental results of E3 are presented in Table VII. One can see that pAUCMetric achieves better performance than PLDA. Specifically, when the x-vector front-end is used, pAUCMetric achieves 10% relative EER reduction, 3% relative minDCF reduction, and more than 8% relative pAUC\(_{[0,0.01]}\) improvement on both the Dev.Core and Eval.Core tasks; it also obtains more than 20% and 12% relative AUC improvement on the Dev.Core and Eval.Core tasks, respectively. When the i-vector front-end is used, it also achieves better performance than PLDA.

The experimental results of E4 are presented in Table VIII. From this table, one can see that pAUCMetric also yields better performance than PLDA. Specifically, when the x-vector front-end is used, it obtains approximately 10% relative EER reduction; it also obtains about 9% relative pAUC\(_{[0,0.01]}\) improvement, and more than 20% relative AUC improvement. When the i-vector front-end is used, a similar experimental phenomenon is observed as well.

To summarize, when the x-vector front-end is used, pAUCMetric obtains about 10% relative EER reduction, 9% relative pAUC\(_{[0,0.01]}\) improvement, and more than 20% relative AUC improvement over the state-of-the-art PLDA, except the Eval.Core task of the SITW dataset in the E3 evaluation scheme. Although the performance improvement with the i-vector front-end is not so significant as that with the x-vector front-end, the trends are consistent. For clarity, the relative EER improvement of pAUCMetric over PLDA in different evaluation schemes is summarized in Fig. 4. pAUCMetric also achieves better performance than TripletMetric in all of the above four conditions.

Figure 5 plots the ROC and DET curves of the comparison methods with the x-vector front-end in the SRE16 Cantonese of the E1 evaluation scheme. It is seen from the figure that pAUCMetric yields better ROC and DET curves than PLDA. We further draw the DET curves of the E2 ~ E4 schemes in Appendix C, where we also see the effectiveness of pAUCMetric.

D. Results based on length-normalization preprocessing

This section presents the main experimental results of the pAUCMetric with the length-normalization preprocessing technique. We compare it with the Cosine back-end.

Specifically, we first evaluate the 8 kHZ system on the Cantonese data of SRE16 and the Dev.Core and Eval.Core tasks of SITW. The experimental results are summarized in Table IX. As shown in the table, pAUCMetric achieves significant performance improvement over the Cosine back-end. When the i-vector front-end is used, it obtains about 16% to 23% relative EER reduction, and approximately 2% to 7% minDCF reduction respectively; it also obtains about 7% to 13% relative improvement in terms of pAUC\(_{[0,0.01]}\), and about 23% to 37% relative improvement in terms of AUC.
TABLE IX: Comparison results of pAUCMetric and Cosine with the models of the 8 kHz system.

Back-ends	EER(%)	minDCF	pAUC_{0.01}	AUC	AP(%)	EER(%)	minDCF	pAUC_{0.01}	AUC	AP(%)
Cantonese										
Cosine	13.68	0.744	0.467	0.940	59.10	9.25	0.606	0.613	0.968	73.23
TripletMetric	11.78	0.715	0.507	0.954	63.60	6.89	0.551	0.677	0.981	79.34
pAUCMetric	10.57	0.689	0.537	0.962	66.75	6.35	0.523	0.700	0.984	81.20
Dev.Core										
Cosine	11.09	0.650	0.552	0.960	57.77	9.01	0.573	0.643	0.974	66.53
TripletMetric	10.70	0.638	0.568	0.966	59.37	6.89	0.526	0.684	0.984	71.02
pAUCMetric	9.07	0.616	0.593	0.971	62.29	5.94	0.497	0.719	0.987	74.41
Eval.Core										
Cosine	11.86	0.684	0.519	0.956	49.13	8.53	0.600	0.617	0.974	59.92
TripletMetric	10.83	0.692	0.527	0.962	50.07	7.20	0.576	0.648	0.982	62.82
pAUCMetric	10.00	0.668	0.553	0.966	52.88	6.40	0.539	0.689	0.985	67.09

TABLE X: Comparison results of pAUCMetric and Cosine with the models of the 16 kHz system.

Back-ends	EER(%)	minDCF	pAUC_{0.01}	AUC	AP(%)	EER(%)	minDCF	pAUC_{0.01}	AUC	AP(%)
Cantonese										
Cosine	7.30	0.569	0.661	0.981	68.20	6.40	0.472	0.758	0.991	77.68
TripletMetric	6.12	0.532	0.691	0.987	71.74	3.85	0.442	0.785	0.994	80.34
pAUCMetric	5.61	0.496	0.722	0.988	74.89	3.35	0.352	0.834	0.995	85.35
Dev.Core										
Cosine	7.45	0.606	0.616	0.979	60.60	5.41	0.465	0.744	0.989	73.15
TripletMetric	6.40	0.581	0.644	0.984	62.94	4.54	0.444	0.769	0.992	75.69
pAUCMetric	5.96	0.547	0.679	0.986	66.51	3.80	0.374	0.825	0.994	81.48
Eval.Core										
Cosine	9.07	0.616	0.593	0.971	60.60	5.94	0.497	0.719	0.987	74.41
TripletMetric	8.36	0.672	0.644	0.984	62.94	4.54	0.444	0.769	0.992	75.69
pAUCMetric	7.30	0.647	0.679	0.986	66.51	3.80	0.374	0.825	0.994	81.48

TABLE XI: EER results of the comparison back-ends with different input feature dimensions. The term “length-normalization” denotes the length normalization preprocessing. The term “PLDA-based” denotes the PLDA-based preprocessing.

Back-ends	50 dim	100 dim	150 dim	200 dim	250 dim	300 dim	350 dim	400 dim
Length-normalization								
Cosine	9.14	8.51	9.25	9.93	10.91	11.78	12.55	13.23
pAUCMetric	10.00	9.40	9.84	10.12	11.09	11.96	12.73	13.43
PLDA-based								
PLDA	8.36	6.72	6.82	7.50	8.11	8.77	9.26	9.67
PLDA	8.02	6.19	6.05	6.54	7.08	7.67	7.89	8.18

Fig. 7: ROC and DET curves of the comparison methods with the x-vector front-end of the 8 kHz system on the Cantonese data of SRE16.

When the x-vector front-end is used, pAUCMetric obtains more than 25% relative EER reduction; moreover, it obtains about 20% relative pAUC_{0.01} improvement and more than 40% relative AUC improvement.

Then, we evaluate the 16 kHz system on the Dev.Core and Eval.Core tasks of SITW. The experimental results are summarized in Table X. One can see that pAUCMetric also yields significant performance improvement over the Cosine back-end. For example, when the x-vector front-end is used, it obtains 27% and 30% relative EER reduction on the Dev.Core task and Eval.Core task respectively. It also obtains more than 40% relative AUC improvement on both of the tasks. The performance trend with the i-vector front-end is consistent with the trend with the x-vector front-end.

To summarize, when the length-normalization is adopted to preprocess the speaker features, pAUCMetric achieves significant performance improvement over the Cosine back-end. For clarity, the relative EER improvement on different evaluation dataset is summarized in Fig. 6. Moreover, the relative improvement of the pAUCMetric over PLDA with the x-vector front-end behaves better than that with the i-vector front-end. pAUCMetric also achieves better performance than TripletMetric, when the length-normalization preprocessing is adopted.

Figure 7 plots the ROC and DET curves of the comparison methods with the x-vector front-end on the SRE16 Cantonese data. It is seen from the figure that pAUCMetric yields better ROC and DET curves than Cosine.

E. Calibration

In real applications, it is needed to present the verification result in terms of calibrated LLR [57]. So, we applied calibration to all the studied back-ends, i.e., Cosine, PLDA, TripletMetric, and pAUCMetric, with the linear logistic regression method of BOSARIS Toolkit2, where the calibration model was trained on the Dev.Core dataset of SITW and evaluated on its Eval.Core dataset.

We conducted experiments on the conditions of the 8 kHz and 16 kHz systems respectively. From the experimental

2Available at: https://sites.google.com/site/bosaristoolkit/.
TABLE XII: Score calibration results on the x-vector of Eval.Core task of the SITW dataset.

Preprocessing	Back-ends	8 KHz System	16 KHz System		
		mTRM F	mTRM F	mTRM F	mTRM F
Length-normalization	Cosine	0.6029	0.3012	0.4708	0.3901
	pAUCMetric	0.5775	0.2590	0.4494	0.1670
	PLDA-based	0.5404	0.2351	0.3762	0.1461
	pAUCMetric	0.5502	0.2304	0.3354	0.1380
	PLDA-based	0.5640	0.2404	0.3446	0.1353
	pAUCMetric	0.5324	0.2209	0.3221	0.1199

TABLE XIII: Relative EER reduction of pAUCMetric over PLDA with respect to γ and µ.

µ	γ	0	10⁻⁷	10⁻⁶	10⁻⁵	10⁻⁴	10⁻³	10⁻²	10⁻¹
0	0	7.5	7.4	7.8	6.8	6.5	7.6	1.2	-5.9
0.01	0.05	8.4	9.2	8.4	9.5	9.0	10.3	2.0	-6.1
0.1	0.15	9.4	7.4	9.4	9.1	9.3	10.2	1.7	-6.2
0.5	0.6	9.6	9.5	9.6	10.8	10.5	11.0	1.9	-6.2
1	1.0	8.0	10.6	8.0	9.5	8.5	10.9	2.1	-6.0
1.5	1.5	6.9	5.5	6.8	8.7	8.4	8.6	2.7	-5.8
3	3.0	1.4	3.3	1.3	3.6	0.2	1.0	1.1	-5.6

TABLE XIV: Relative pAUC[0,0.1] reduction of pAUCMetric over PLDA with respect to γ and µ.

µ	γ	0	10⁻⁷	10⁻⁶	10⁻⁵	10⁻⁴	10⁻³	10⁻²	10⁻¹
0	0	5.0	4.6	4.9	4.2	4.1	4.3	-0.6	-6.2
0.01	0.05	5.2	5.4	5.2	5.4	4.9	4.8	-0.6	-6.3
0.1	0.15	5.6	6.1	5.6	6.2	5.8	6.6	-0.1	-6.1
0.5	0.5	6.9	5.4	6.9	6.6	6.6	7.1	-0.1	-6.1
1	1.0	7.3	7.4	7.3	7.3	7.4	8.0	-0.2	-6.1
1.5	1.5	6.1	7.3	6.1	6.6	4.9	7.5	0.4	-6.1
3	3.0	4.6	3.8	4.6	2.9	6.0	5.6	1.5	-5.9
3.0	3.0	-3.5	-4.4	-1.8	-2.6	-3.2	-0.3	-0.7	-6.1

results in Table XII one can see that pAUCMetric achieves better performance than the compared methods on all the four conditions in terms of actDCF and Cllr.

F. Discussion

In this section, we first discuss the effect of the input feature dimension of pAUCMetric on performance, then analyze the effects of its hyperparameters, and at last discuss the computational complexity and performance with respect to the batch size s.

All discussions use the x-vector front-end of the 8 kHz system to extract speaker features, and compare PLDA-based preprocessing of the x-vectors with the pAUCMetric that adopts the PLDA-based preprocessing on the Cantonese data of SRE16. No domain adaptation is adopted in the discussions.

1) Effect of the input feature dimension on performance:
We set the dimensions of the input features of the comparison back-ends from 50 to 400 with a step size of 50, where the features are produced from LDA. The experimental results are summarized in Table XI. From this table, one can see that pAUCMetric obtains lower EER scores and smaller performance variances than the comparison back-ends in all cases. It reaches the lowest EER when the input feature dimension is set to 150.

2) Effects of the hyperparameters of pAUCMetric: pAUCMetric has five hyperparameters α, β, δ, γ, and µ. The reason why we set α = 0 and β = 0.01 is that the number of the imposter trials is much larger than the number of the true trials, hence restricting the working area [α, β] to a FPR range of close to zero makes the algorithm focus on discriminating the difficult trials.

We study the effects of δ, γ, and µ by grid search. We first search δ in [0, 10] with the other hyperparameters set to their default values. Figure 8 shows the relative performance improvement of pAUCMetric over PLDA. From the figure, we find that pAUCMetric is robust in a wide range of δ with the best δ being around 1.5. We search γ and µ in grid jointly as listed in Tables XIII and XIV with the other hyperparameters set to their default values. It is observed that the stable working region is µ ∈ [0, 10⁻³] ∩ γ ∈ [0, 1.5]. Interestingly, pAUCMetric still works well even without regularization, i.e., µ = 0 and γ = 0. The above observation is consistent across all training scenarios of this paper. To summarize, pAUCMetric is insensitive to the 3 hyperparameters.

3) Complexity analysis: In Section VI-F3 we have proven that the computational complexity is cubic with respect to the batch size s. This section further discusses the effect of s on the computational complexity and performance of pAUCMetric.

Figure 9 shows the training time of the pAUCMetric at each iteration with respect to the batch size s. One can see that the training time increases sharply with the value of s, which is
In this paper, we presented a speaker verification back-end based on the squared Mahalanobis distance, i.e., pAUCMetric, to maximize pAUC. Because directly optimizing pAUC is an NP-hard problem, we first relaxed the optimization problem to a polynomial-time solvable one, and then adopted a random sampling strategy to reduce the computational complexity. The pAUC optimization was proven to be a problem of enlarging the weighted margin between the positive and negative trials, where the information of pAUC is encoded in the weights of the trials. In order to boost the performance of pAUCMetric, we further proposed to use the length-normalization and the PLDA-based preprocessing techniques. Experimental results on the NIST 2016 SRE and SITW data demonstrated the effectiveness of pAUCMetric and showed that pAUCMetric is insensitive to the hyperparameter settings in all the studied evaluation scenarios.

The proposed method can be further improved in many aspects. Work is in progress to study automatic hyperparameter tuning algorithms via auto machine learning and investigate new methods that do not need feature preprocessing. Since pAUCMetric does not need a decision threshold, it is interesting to explore whether the pAUC optimization can be integrated with score calibration, which will be carried out in the near future. A speaker verification system consists of both front-end and back-end. So, only developing a good back-end may not give the best performance. Consequently, it is legitimate to extend pAUCMetric to end-to-end training, which is also on our roadmap. Furthermore, as suggested by one anonymous reviewer, it is interesting to separate the effects of back-ends and loss functions, and evaluate how well the hinge loss can approximate the indicator function in pAUCMetric.

ACKNOWLEDGEMENTS

The authors are grateful to Dr. Kong Aik Lee, the Associate Editor, and the anonymous reviewers for their valuable comments, which helped greatly improve the quality of the paper.

APPENDIX A

A probabilistic explanation of the Mahalanobis distance is given as follows. Let \(z = x_1 - x_2 \) be the difference between two embedding vectors. We further assume that \(p(z|\text{tar}) = N(0, \Sigma_0) \) and \(p(z|\text{non}) = N(0, \Sigma_1) \), where “\text{tar}” and “\text{non}" denote target and non-target respectively. The LLR test is:

\[
LLR(z) = \log(p(z|\text{tar})) - \log(p(z|\text{non})),
\]

which can be transformed to:

\[
2LLR(z) = -z^T(\Sigma_0^{-1} - \Sigma_1^{-1})z + \log|\Sigma_1| - \log|\Sigma_0|. \tag{35}
\]

Neglecting the constant terms of \(\text{35} \) gives:

\[
\hat{LLR}(z) = -z^TMz \tag{36}
\]

where \(M = \Sigma_0^{-1} - \Sigma_1^{-1} \) is the parameters of the Mahalanobis distance \([58]\).
The relative constraints of the triplet-loss are a subset of the relative constraints of the AUC-loss.

Proof. Let x_i^m be the ith embedding vector of the mth speaker. The relative constraints of the triplet-loss Tri is:

$$Tri = \{(x_i^m, x_j^m, x_k^l) | i \neq j, m \neq n\}$$ \hspace{1cm} (37)

The relative constraints of the AUC-loss Tet can be divided into the following four sets:

$$Tet_1 = \{(x_i^m, x_j^m, x_k^l) | i \neq j, m \neq n\}$$ \hspace{1cm} (38)

$$Tet_2 = \{(x_i^m, x_j^l, x_k^l) | i \neq j, m \neq n\}$$ \hspace{1cm} (39)

$$Tet_3 = \{(x_i^m, x_j^m, x_k^l) | i \neq j, l \neq n\}$$ \hspace{1cm} (40)

$$Tet_4 = \{(x_i^m, x_j^m, x_k^l) | i \neq j, m \neq t \neq n\}$$ \hspace{1cm} (41)

with $Tet = Tet_1 \cup Tet_2 \cup Tet_3 \cup Tet_4$. Obviously, $Tet_1 \cup Tet_2 = Tri$, which derives $Tri \subset Tet$.

The DET curves of the studied methods on the E2 ~ E4 schemes are plotted in Figs. 12 to 14.

References

[1] G. Heigold, I. Moreno, S. Bengio, and N. Shazeer, “End-to-end text-dependent speaker verification,” in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on. IEEE, 2016, pp. 5115–5119.

[2] S.-X. Zhang, Z. Chen, Y. Zhao, J. Li, and Y. Gong, “End-to-end attention based text-dependent speaker verification,” in Spoken Language Technology Workshop (SLT), 2016 IEEE. IEEE, 2016, pp. 171–178.

[3] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero, Y. Carmiel, and S. Khudanpur. “Deep neural network-based speaker embeddings for end-to-end speaker verification,” in Spoken Language Technology Workshop (SLT), 2016 IEEE. IEEE, 2016, pp. 165–170.

[4] J.-W. Jung, H.-S. Heo, I.-H. Yang, H.-J. Shim, and H.-J. Yu, “A complete end-to-end speaker verification system using deep neural networks: From raw signals to verification result,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 5349–5353.

[5] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted gaussian mixture models,” Digital signal processing, vol. 10, no. 1-3, pp. 19–41, 2000.

[6] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for speaker verification,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 4, pp. 788–798, 2011.

[7] S. Cuman and P. Laface, “Speaker recognition using e-vectors,” IEEE/ACM Transactions on Audio, Speech, and Language Processing (TASLP), vol. 26, no. 4, pp. 736–748, 2018.

[8] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for speaker recognition using a phonetically-aware deep neural network,” in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014, pp. 1695–1699.

[9] P. Kenny, V. Gupta, T. Stafylakis, P. Ouellet, and J. Alam, “Deep neural networks for extracting extract-welch statistics for speaker recognition,” in Proc. Odyssey, 2014, pp. 293–298.

[10] F. Richardson, D. Reynolds, and N. Dehak, “Deep neural network approaches to speaker and language recognition,” IEEE Signal Processing Letters, vol. 22, no. 10, pp. 1671–1675, 2015.

[11] Z. Tan, M.-W. Mak, B. K.-W. Mak, and Y. Zhu, “Denoised senone i-vectors for robust speaker verification,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 4, pp. 820–830, 2018.

[12] E. Variani, X. Lei, E. McDermott, I. Lopez-Moreno, and J. Gonzalez-Dominguez, “Deep neural networks for small footprint text-dependent speaker verification,” in ICASSP, vol. 14. Citeseer, 2014, pp. 4052–4056.

[13] L. Li, Y. Chen, Y. Shi, Z. Tang, and D. Wang, “Deep speaker feature learning for text-independent speaker verification,” in Proc. Interspeech, 2017, pp. 1542–1546.

[14] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur, “Deep neural network embeddings for text-independent speaker verification,” in Proc. Interspeech, 2017, pp. 999–1003.

[15] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018.

[16] K. Okabe, T. Koshinaka, and K. Shinoda, “Attentional statistics pooling for deep speaker embedding,” arXiv preprint arXiv:1803.10963, 2018.
