Management of Large Size Wartasasia

Bakulesh Khamar*
Research and Development department, India

Received: March 09, 2018; Published: April 30, 2018
*Corresponding author: Bakulesh Khamar, Research and Development department, Cadila Pharmaceuticals Limited, Ahmabad, India, Tel: 0091-2718-225001; Fax: 0091-2718-225031; Email: bmk@cadilapharma.co.in

Abstract

Large warts are difficult to treat as they need repeated treatment for a longer duration compared to small warts. They are associated with high viral load and significantly more cell mediated immune suppression. There are no standardized guidelines for management of large warts. Intralesional immunotherapy like Candida antigen, Cadi-05 and antiviral like Cidofovir are found to be useful in achieving complete remission as a monotherapy and can be tried as first line treatment. Quadrilateral HPV vaccine is also useful in achieving complete remission as a first line therapy. Combination of ablative therapy and topical therapy may be useful in quicker resolution of mass and achieving complete resolution.

Keywords: Wart; Large wart; Immunomodulators; Combination therapy; Immune profile; Cidofovir; Immunosuppressant; Surgery

Abbreviations: HPV: Human Papilloma Virus (HPV), HIV: Human Immunodeficiency Virus (HIV), PD-1: Programmed Cell Death Protein 1, RR: Risk Ratio, IFN: Interferon, CI: Confidence Interval, PDL: Pulsed Dye Lasers, NSCLC: Non-Small Cell Lung Cancer, PDT: Photo Dynamic Therapy (PDT), TNF: Tumor Necrosis Factor

Introduction

Warts are caused by the Human Papilloma Virus (HPV) mainly by low risk HPV. Human papilloma viruses (HPVs) essentially induce skin and mucosal epithelial lesions [1-3]. Immune compromised individuals are more prone to HPV infection. HPV infection is almost six times more common in patients with human immunodeficiency virus (HIV) [4,5]. Low-risk HPV types behaving more aggressively in immune compromised patients [4]. Each HPV type is typically associated with infections of specific areas (location) on the body and induces distinct histological lesion [6-9].

Common warts (verruca vulgaris)

HPV types 2 and 4 (most common); also types 1, 3, 26, 29, and 57 and others. Clinically they appear as slightly raised rough surface epithelial proliferations. They are most often seen on hands but can grow anywhere on the body.

Flat warts (verruca plana)

HPV types 3, 10, 28, 38, and 49. Clinically they appear as a small (1-2mm), smooth flattened, skin colored wart [10]. They can occur in large numbers. They are most common on the face, neck, hands, wrists and lower part of legs but never in the soles of hands. Very rarely they assume large size. They usually regress and get cleared on their own within 2 months with resolution of infection.

Plantar warts (verruca plantaris) (myrmecia)

HPV type 1 (most common) also types 2, 3, 4, 27, 28, 58, 66 and others. A plantar wart is a wart occurring on the bottom of the foot or toes [11], usually on pressure points on the soles of the feet.

Anogenital warts (condylomata, acuminata or venereal warts)

HPV types 6, 11(most common), 16, 18, 42, 44 and also others; a wart that occurs on the genitalia, anal region. They can be confluent or large size.

Butcher’s warts of the hands and fingers (HPV 7)

Butcher’s wart is a cutaneous (skin) condition with a prevalence of 8.5% to 23.8% among butchers and other meat-handling professions [12,13].

Natural Course and Immune Profile

Like majority of viral diseases almost 75% of warts regress spontaneously [8] with 30% regressing within four months [14]. Rest persist, progress with increase in no. and size. Immune response to HPV infection is responsible for spontaneous regression of warts. Spontaneously regressing warts have epidermal and dermal influx of CD4+ activated memory lymphocytes, low level of IL-10, high level of Interferon and Th1 response [4,15,16]. CD4+ve lymphocytes within the wart
stoma and the surface epithelium [5] along with macrophage predominance [2,17] in regressing wart. There is a significant change in the ratio of CD4+ to CD8+ cells [17].

The failure to develop effective cell-mediated immunity to clear or control infection is associated with systemic or local immune dysfunction or defects [18]. There is a down regulation of major histo compatibility complex I and II in local lesions, alternation of the ratio of CD4+ and CD8+ T lymphocytes, decrease in expression of tumor necrosis factor (TNF) α, GM CSF, interleukin (IL) 1α and IL 1β, increased expression of IL 10; the dysfunction and decreased number of langerhans cells and expression defects of co stimulatory molecules [4,8]. There is a marked increase in Tregs expressing expression Foxp3, TGF β1, IL 10, CTLA4, GITR and PD 1 [18,19]. Increase Tregs are induced by epithelial cell expressing E7 protein [20]. NK cell activity is suppressed due to reduction in expression of NKG2D and Nkp46 [18]. There is a decreased ratio of Th1/Th2 and Tc1/Tc2 [19,21]. There is decrease in Th1 cytokine (IL 2, IL 12 and IFN γ) and increase in Th2 cytokines (IL 4 and IL 10) [18,21]. Persisting warts can be divided into small (<5mm) medium (5 to 8mm) or large (>8mm) as per size. Intralasional cell mediated immune suppression is proportionate to size of wart. FoxP3 expressing Tregs (immune suppressive cells) are highest in large wart and absent in small warts [22]. This cell seems to be responsible for decreased expression of IFN and IL-2 and increased expression of IL-10 and TGF-beta in large wart compared to small warts [22].

Response to Therapy and Immune Changes

Like spontaneous regression, increased cell mediated immune response of Th1 type with infiltration of immune cells [16,23-34] are important for treatment induced regression of warts. There is no change in immune profile of non-responders/ per sisters. In spite of clearance with therapy, recurrence is seen in large no (25%-67%) within three months. Reactivation at the site of previous infection, and persistence following are believed to be responsible for recurrence [8]. Cell mediated immune suppression as revealed by decrease in Th1 cytokine and CD4 T cells, suppression of delayed type hypersensitivity and increase in 12. Programmed cell death protein 1(PD-1) expressing T cells is found in recurrent warts [24,35,36]. Predominant Th1 or mixed Th1/Th2 cytokine profile is seen in non- recurrent warts [24].

Therapeutic Options

Warts are superficial lesions harboring virus. One of the options is to get rid of tissues harboring viruses and include surgical removal, cryotherapy, laser therapy, pulsed laser therapy etc. as provider administered or office procedures. Uses of topical medications to be self-administered for removal of tissues include salicylic acid, podophelic. The other options include use of immune modulators to correct immune dysfunction for persistence of infection. Immunomodulators like imiquimod, Sinecatechins are topical medications while isotretinoin, cyclophosphamide are oral medication for self-administrations. Immunomodulators can be administered intralasional as office procedure. Intralasional immune modulators include allergens (antigen) like candida used for determining dermal hypersensitivity, CADI-05. Quadrilateral HPV vaccine approved for prevention of HPV vaccine is also found useful in treatment of warts. Cidofovir is antiviral agent active against cytomegalovirus infection. It is found useful in management of warts when administered topically or intralasional.

With multiple options available, treatment in a given patient is determined by number, size, and location of lesions [2] and preference of a physician as well as patients. Large warts are difficult to treat due to their size and associated cell mediated immune suppression. The management may require repeated treatments over a prolonged time period [37]. Their size makes it difficult for topical therapies to achieve desired tissue concentrations. First-line treatment is not always successful in achieving complete clearance [37]. Current evidence is also not adequate to suggest best option for treatment of large warts [37]. CO2 laser therapy, are generally associated with higher probabilities of complete clearance at the end of treatment for large warts [37]. Very large wart lesions, including Buschke-Löwenstein tumors, can be considered for surgical treatment [37]. However surgical treatment is generally not recommended as first line therapy due to scar formation following it and or need for anesthesia and another specialist [37]. Review of literature suggests that some of the immunotherapeutic agents are useful in management of large wart as a monotherapy and include Candida antigen, CADI-05, Quadrivalent HPV vaccine. Of these, CADI-05 is found to have antiviral properties and viral load, as well. Cidofovir is also described as useful in management of large warts as a monotherapy.

Compared to smaller warts, large warts are associated with increased viral load and cell mediated immune suppression and so targeting both may be useful. This can be achieved by combining two or more therapeutic options. For decreasing viral load by removing tissue, cryotherapy, surgical excision/ debulking, Laser therapy, photodynamic therapy can be used. The advantage of these procedures is immediate decrease in viral load. Disadvantages include need for multiple treatment session for complete cure, high recurrence rate and scar formation. Cidofovir, an antiviral agent, can be administered topically or intralasional. For improving immune profile, Imiquimod, Sinecatechins, CADI-05, Quadrilateral HPV vaccine, cyclophosphamide are found useful. Combination therapies described to be useful in management of large warts include ablative procedure like cryotherapy/ laser therapy with topical immunotherapy like Imiquimod, Sinecatechins. Ablative procedure is also combined with isotretinoin and cyclophosphamide. Combination of ablative procedure with antiviral cidofovir is also found useful.
Candida Antigen

Sensitivity testing by intradermal injection of an antigen (allergen) is a measure of delayed cell mediated immunity. Candida antigen injection in patients sensitive to Candida antigen is associated with complete resolution of warts in [54% -76%] of patients [38-43]. Clearance of distant untreated warts is seen in [57% -78%] of patients [38-43]. Candida antigen is useful irrespective of size (small or large) or no. of warts [38-43]. It is effective in newly diagnosed warts as well as warts resistant to standard treatment in immune compromised individuals also [38-45]. Intradermal injection of Candida antigen up regulates the cell-mediated immune response, augmenting the overall clearance of the HPV [46].

The baseline immune status as determined by IFN-gamma levels seems to predict outcome with higher levels seen in responders [41]. The response is associated with HPV L1 peptide specific cell mediated immune response [47].

The recommended dosing regimen is 0.1-0.3mL of Candida antigen injected intradermally into the largest lesion every two to three weeks until complete clearance of the wart or a maximum of three to five treatments [39,41,42]. Side effects include mild erythema and pain at the site of injection. There is one reported case of vitiligo and another case of painful, purple discoloration at the site of injection [40,48,49]. Like Candia antigen, other skin sensitizing agents used include mumps, trichophyton and tuberculin [50].

CADI-05

CADI-05 is a potent TLR 2 agonist which induces pure potent systemic Th1 response [51]. It induces prominent delayed hypersensitivity response by increasing innate as well as adaptive immune response [52-54]. Unlike other immunotherapy it decreases immunosuppressive T cells like Treg also [52,56]. Effect on immune suppression is significant and manifests as improved CD4 count in HIV positive individuals [55]. The systemic immune response generated is strong enough to work as monotherapy in bladder cancer [56] and melanoma [57]. It is approved for treatment of advanced Non-small cell lung cancer (NSCLC) along with chemotherapy in India.

In management of wart it is administered intradermally or intralesional or combination of two [58-66]. It generates systemic immune response following intralesional administration and clears remote (distant, non-injected) warts [61-63,65]. Its administration is associated with clearance of HPV virus also [64]. It achieves complete clearance in small as well as large warts, cutaneous as well as anogenital warts [58-66]. It is effective in newly diagnosed as well as recalcitrant wart which has not responded to other therapies or recurred following other therapies [58-62]. No. of administration for achieving complete response seems to be related to size and/or no. of warts [63]. New warts following clearance, if seen are at a different location [63].

Following therapy with CADI-05 of large refractory extra-genital warts, complete clearance of treated warts was seen in 66.7% (20/30) of the patients with clearance of 46.2% of distant warts [61]. Complete clearance is also seen in large anogenital warts [58,66]. The reported systemic side effects include flu-like symptoms, fever, and lymphadenopathy [60,62,63,65]. Injection site reaction include pain, modularity, ulceration, scarring at the site of injection [60,62,63,65].

Quadrivalent HPV Vaccine

Quadrivalent HPV vaccine, GARDASIL, is approved for prevention of diseases caused by HPV types 6,11,16,18. It is also found useful in management of wart as a therapeutic vaccine [67-76]. It induces complete clearance of chronic warts, warts not responding to other therapies irrespective of its size [67,68,70-76]. It works in immune compromised individuals also [67,69,72,75]. The decrease in size is evident following first injection. Complete clearance is achieved three months after third dose. Clearance of warts caused by other (not included in vaccine) e.g. HPV 2 type is also seen [68,72]. Surprisingly anogenital warts are not cleared while cutaneous warts are cleared following administration of quadravalent vaccine [69].

The major drawback of quadrilateral vaccine is time required for administration of three dose (0, 2 and 6 months) and time taken for complete resolution of warts. Quadrivalent vaccine is now replaced by nine talent vaccine providing prophylaxis against HPV type 31, 33, 45, 52, and 58 also. This should provide better efficacy than quadrivalent vaccine. It will be useful to evaluate it in recalcitrant large size warts.

Cidofovir

Cidofovir is approved for treatment of cytomegalovirus infection by intravenous route of administration [77,78]. Cidofovir has been shown to reduce E6 and E7 expression in HPV +ve cells and thereby reducing proliferation of infected cells leading to apoptosis, and virustatic control of HPV infection [78,79]. Cidofovir works on HPV transformed cells having compromised DNA repair [80]. It has no effect on normal cells. In animal studies of HPV infections, systemic administration is not found useful [81]. Topical treatment is useful in small/medium size lesions [81]. Intralesional cidofovir cures even large papilloma [81]. Recurrences following intralesional cidofovir can be eliminated by combining it with immunotherapy [82].

Topical and intralesional cidofovir has been successfully used in treatment of warts [78,79,83-93]. Best results with topical cidofovir are seen with 3% cidofovir applied twice daily. Treatment should be stopped if there is no response after 10 weeks [83]. It is found useful for warts on the oral mucosa, hands and anogenital region [84]. Complete response following topical cidofovir range from 47%-57.5% [94,95]. Complete response is also possible in a large wart [83]. Female gender; younger age and genital warts are likely to have complete response following topical cidofovir [95].
The most common side effects of topical cidofovir are pain, pruritus and rash at the application site [96].

Intralresional cidofovir 7.5mg to 25mg/mL is administered once a month [84,91,92]. This achieved complete wart clearance 276 of 280 patients (98.5%) in recalcitrant warts with no recurrence [85]. Intralresional cidofovir is found useful in management of a large wart [92]. The most common adverse events with these injections were pain, burning sensation, itching, erythema, and post-inflammatory hyper pigmentation [85]. Topical cidofovir 3% is found useful in management of large warts in immune compromised hosts with surgical debulking in anecdotal cases [97,98].

Cryotherapy

Cryotherapy, an inexpensive and simple provider administered procedure using liquid nitrogen in a spray or cryoprobe. The temperatures involved with cryotherapy are cold to the point that there is permanent dermal and vascular damage leading to necrosis and clearance of the abnormal cells and is frequently used to destroy warts by cold-induced cytolysis. It does not treat subclinical lesions in the surrounding skin and can account for recurrence. A recent systematic review of randomized controlled trials (RCTs) on local treatments for immune competent and HIV infected patients globally concluded that ablative techniques are clinically more effective at completely clearing warts immediately.

Cryotherapy is considered a first-line provider administered therapy due to its relative ease of administration and cost. Cryotherapy efficacy did not appear to differ from that of topical therapies [99-101] and is very effective for multiple and small warts [102]. Recurrence rates are estimated between 25% and 42% [102-105]. Combining it with interferon (IFN) - alpha does not improve clearance rate as well as recurrence rate [105] outcome. Electro surgery was weakly associated with better AGW clearance than cryotherapy (risk ratio (RR) 0.80, 95% confidence interval (CI) 0.65-0.99) [100]. Cryotherapy is associated with more immediate adverse events (erythema, stinging, or irritation; RR 3.02, 95% CI 1.38-6.61) and immediate pain requiring oral analgesics (RR 0.5 IU/mL; median, 0.3mL/wart) achieved 89% remission in recalcitrant hand warts [127] with 80% in an immune suppressed patients are especially susceptible to scarring and delayed wound healing [115]. This can be combined with other therapies to improve the outcome. Its side effect profile is better than cryotherapy [100].

Surgical Excision

Warts may be removed surgically via shave excision, scissor excision, curettage, and/or electro cautery [102]. Surgical intervention provides immediate results, which is useful in patients with large, obstructive or extensive warts [102]. It also provides opportunity for histopathological assessment for lesions suspicious of malignancy. Recurrence following surgical excision is described in 19% to 29% of cases [107-109]. The high recurrence rates may be attributed to the clinically unapparent surrounding tissue that continues to harbor the HPV virus. Disadvantages include bleeding, longer healing course, and pain. It can be combined with other topical therapies to improve outcome. This is not the procedure of choice for majority of patients with large wart.

Laser therapy

Carbon dioxide laser

Carbon dioxide (CO2) laser has been a valuable tool as a destructive therapy for genital warts that uses infrared light energy to vaporize targeted areas [110-112] to provide bloodless removal. Clearance rates range between 23% and 52% with recurrence rates as high as 77%. HIV-negative patients responded better to treatment with a 71% cure rate versus 58% for HIV-positive patients. Scarring, hypo pigmentation, are some of the disfiguring adverse effects of CO2 laser treatment of warts [113,114]. Postoperative pain and prolonged wound healing are other complications [113.114]. Scarring has been reported in up to 61% of patients treated for recalcitrant warts and appeared unrelated to wart duration or location [113]. Immune suppressed patients are especially susceptible to scarring and delayed wound healing [115]. This can be combined with other therapies to improve the outcome. Its side effect profile is better than cryotherapy [100].

Pulsed Dye Lasers

Pulsed dye lasers (PDL) emit a wavelength from 585 to 595nm, consistent with a hemoglobin absorption peak. It is hypothesized that PDL destroys the characteristically dilated superficial capillaries that supply warts, thereby starving the epidermal cells that host viral molecules [116-118]. Furthermore, it has been suggested that PDL destroys the HPV virus itself as a result of the virus’s heat-sensitive properties [116,119-121]. PDL therapy has been used to treat simple and recalcitrant common, palmar, planar, and flat warts, with studies reporting remission rates ranging from 47% to 100% [116,117,120-127]. Palmar warts may have higher response rates than plantar warts (75% palmar vs 20% plantar [125]; 93% palmar vs 69% plantar [126]). PDL can treat warts in cosmetically important area. PDL is combined with other modalities to improve outcome. In recalcitrant warts, PDL followed by intralresional bleomycin (0.5 IU/mL; median, 0.3mL/wart) achieved 89% remission in recalcitrant hand warts [127] with 80% in an immune compromised patients. Adverse effects of PDL therapy include local pain during and after the procedure, bullae, crusting, scarring, and temporary pigment changes [117,118,124]. PDL has significantly fewer adverse effects than the CO2 laser [122]. Compared with cryotherapy, PDL has a lower incidence of pain and bula formation [122]. It is found useful in management of large warts also as a monotherapy.
Photodynamic Therapy

5-aminolevulinic acid is a photosensitive which accumulates in HPV-infected cells in greater quantities than in adjacent normal skin following topical application [28] and is used for destruction of tissue harboring HPV by phototoxic reaction in photodynamic therapy (PDT). There is a significant, up to 10 fold increase of interleukin (IL)-1 alpha and a 2.5-fold increase of tumor necrosis factor-alpha [128] following photodynamic therapy (PDT). Response to therapy is associated with increase in CD8+ cells [28,128], CD4+ cells [129], dendritic cells, and decrease in Treg cells [130] with achievement of normal Treg level by three weeks. 5-aminolevulinic acid can be injected into lesion to enhance penetration and increase its effectiveness e.g larger or thicker lesions [131,132].

The main advantages of PDT are a high degree of effectiveness and safety, a short recovery period, good cosmetic results and the ability to treat a large surface area with minimal scarring and low recurrence rate [133-140] irrespective of site of lesion in general complete clearance rates of 56%–100% in recalcitrant hand and foot warts have been reported [135]. The reported recurrence rates with PDT are best amongst all ablative procedures as a monotherapy. PDT has been proposed for treating refractory lesions and lesions that recur despite the correct administration of another treatment. However, ALA-PDT was not shown to be beneficial as an adjunctive treatment to ablation of condyloma acuminata with a CO2 laser [141]. The adverse effects, all local, include pain [142], a burning sensation, and erythema [143]. Photodynamic therapy is is better than cryotherapy for wart clearance and adverse events [140].

Imiquimod

Imiquimod (an imidazoquinoline amine), is an immune response modifier licensed for the topical treatment of external genital and perianal warts. Imiquimod acts through a Toll-like receptor (TLR7) [144,145]. Treatment with Imiquimod [32,34] activates cell mediated immune response of Th1 type as revealed by significant increases in mRNA expression. Wart clearance [33] following treatment with Imiquimod is associated with evidence of tissue production of interferon (IFN)-alpha, IFN-gamma, 2’5’ AS’, TNF-alpha, CD4 and CD8. Imiquimod is associated [33,146] with a decrease in HPV DNA and in mRNA expression. Wart clearance [33] following treatment with Imiquimod is associated with evidence of tissue production of interferon-alpha, -beta, and -gamma and tumor necrosis factor-alpha. A significant correlation between the presence of circulating, pre-existing HPV specific T lymphocytes and regression of HPV positive lesions has also been observed [147,148].

In clinical studies, wart clearance has been reported in 35-68% of patients with treatment courses up to 16 weeks [144,145,149-155]. The reported clearance rates are higher in women than in men, and also women have a shorter median time to clearance than men. Clearance is seen between 8-12 weeks for small cutaneous warts [156]. Recurrence rates (6-26%) after successful clearance are low [144,145,151,152,155]. Erythema is often seen as a side effect with Imiquimod therapy [156] and sometimes appears to precede clinical resolution [50]. Occasionally severe inflammation is seen necessitating discontinuation of therapy [50]. Rare side effects include psoriasis form eruptions, mucosal ulcerations, hyperpigmentation [157,158].

It is combined with other therapies like laser [159-162], cryo therapy [163] salicylic acid [163,164] to improve clearance rates and minimize recurrences it has been successfully used as a combination therapy in management of large warts [164].

Sinecatechins

Sinecatechins (Polyphenon E) Polyphenon E is a standardized extract of green tea leaves (Camellia sinensis). Sinecatechins inhibits proliferation of HPV infected cells and also induces apoptosis in vitro [165]. Sinecatechins use is associated decreased viral load in warts. The decreased viral load is associated with changes in genes involved in regulation of cell signaling, immune response and apoptosis processes [166-168]. Sinecatechins inhibits MMP-2, MMP-7, MMP-9; lipoxygenases and cyclooxygenases [COX-1, COX-2]; epidermal growth factor [169].

An ointment containing Sinecatechins at a concentration of 15% and 10% are available as approved products for the treatment of external anogenital wart. Both have similar results. The dosage is 3 applications daily for up to 16 weeks. Randomized controlled trials in patients of both sexes has shown overall lesion clearance rates of between 54% and 65% compared to an average clearance rate of 35% in placebo groups [170-174]. Recurrence rates were between 6% and 12% after 12 weeks of follow-up. The effect of this substance is not evident clinically until approximately the third week of treatment and becomes more apparent in the fourth to sixth weeks [170].

The most common undesirable effects (80%) are local ones, particularly erythema and pruritus that begin to appear in the second or third week of treatment [170-173]. Although a large percentage of patients have adverse reactions, they are well tolerated. Inflammation, indicative of the drug’s activity, arises from a local immune response mediated by pro-inflammatory cytokines. The incidence of local skin reactions has been reported to be higher in responders than nonresponders [171]. The efficacy in immune compromised individuals is not known. Recurrence rate (6.5%) is identical to placebo group [173]. Use of Sinecatechins following cryotherapy for warts, improves response rate of cryotherapy [175]. Response rate can be as high as 96.3% with a recurrence rate of 7.4% [176]. The combination may be useful on management of large tumors.

Isotretinoin

Retinoic Acid suppresses transcription of HPV [177]. Oral isotretinoin is used successfully in management of warts as a single agent [178-181]. Oral low dose (0.5mg/day) is also useful [182-184]. Complete clearance is seen in 31.2% - 100%
Topical isotretinoin is not as effective as oral isotretinoin [181]. It can be combined with topical podophyllin for achieving complete response in partial responding/recurrent warts with topical podophyllin alone [187]. It is safe for use in immune compromised individuals [179,188]. It is found useful in treatment of large wart as a monotherapy seen in B-cell lymphoma following Rituximab [179]. It has been possible to achieve complete remission of large wart in immune compromised individual after surgical debulking [188]. Combining with interferon alpha does not seem to offer any additional advantage [186].

Cyclophosphamide

Large warts are associated with significant immune suppression via increased Treg cells and are believed to be responsible for partial response/recurrence following therapy. Oral cyclophosphamide (50mg/day for a week) is found useful in depleting Treg cells. Anecdotal case reports suggest its usefulness in achieving complete response as a standalone therapy for newly diagnosed and recurrent anogenital warts [189]. When used with laser therapy for large wart it helps in achieving and maintaining response. Recurrences are amenable to re-administration of oral cyclophosphamide [190]. This is achieved by altering milieu of lesion to normal.

Conclusion

Large warts are difficult to treat. There are no guidelines for its management. It is possible to achieve complete response with intralesional immunotherapy like Candida antigen, CADI-05 or antiviral Cidofovir. Quadrilateral HPV vaccine is also useful. Combination of ablution of lesion using various modalities with topical immunotherapy or antiviral is also useful.

Conflict of Interest

I have no conflict of interest since it is a review of published information. However, I am an employee of Cadila Pharmaceuticals limited who is a manufacturer of CADI-05.

References

1. de Villiers EM, Fauquet C, Broker TR, Bernard HU, Zur Hausen H (2004) Classification of papillomaviruses. Virology 324(1): 17-27.
2. Scheinfeld N, Lehman DS (2006) An evidence-based review of medical and surgical treatments of genital warts. Dermatol Online J 12(3): 5.
3. Cheah PL, Looi LM (1998) Biology and pathological associations of the human papillomaviruses: a review. Malays J Pathol 20(1): 1-10.
4. Sasagawa T, Takagi H, Makinoda S (2012) Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother 18(6): 807-815.
5. Yamada R, Sasagawa T, Kirumi LB, Kingoro A, Kanajja DK, et al. (2008) Human papillomavirus infection and cervical abnormalities in Nairobi, Kenya, an area with a high prevalence of human immunodeficiency virus infection. J Med Virol 80(5): 847-855.
6. Mulhem E, Pinelas S (2011) Treatment of nongenital cutaneous warts. Am Fam Physician 84(3): 288-293.
7. Kodner CM, Narasaty S (2004) Management of genital warts. Am Fam Physician 70(12): 2335-2342.
8. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, et al. (2012) The biology and life-cycle of human papillomaviruses. Vaccine 30(Suppl 5): F55-F70.
9. Mui JN, Haley CT, Tyring SK (2017) Viral Oncology: Molecular Biology and Pathogenesis. J Clin Med.
10. Yoo H, Won SS, Choi HC, Yoon TJ, Ye SK, et al. (2005) Detection and identification of human papillomavirus types isolated from Korean patients with flat warts. Microbiol Immunol 49(7): 633-638.
11. Davis MD, Gostout BS, McGovern RM, Persing DH, Schut RL, et al. (2000) Large plantar warts caused by human papillomavirus-66 and resolution by topical cidofovir therapy. J Am Acad Dermatol 43(2 Pt 2): 340-343.
12. Porro AM, Alchorne MM, Mota GR, Michalany N, Pignatari AC, et al. (2003) Detection and typing of human papillomavirus in cutaneous warts of patients infected with human immunodeficiency virus type 1. Br J Dermatol 149(6): 1192-1199.
13. Majewski S, Jablonska S, Pavre M, Orth G (2001) Human papillomavirus type 7 and butcher's warts. Arch Dermatol 137(12): 1655-1656.
14. Torres Poveda K, Bahena Roman M, Madrid Gonzalez C, Burguete Garcia AI, Bermudez Morales VH, et al. (2014) Role of IL-10 and TGF-β1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol 5(4): 753:763.
15. Scott M, Stites DP, Moschick AB (1999) Th1 cytokine patterns in cervical human papillomavirus infection. Clin Diag Lab Immunol 6(5): 751-755.
16. Arany I, Evans T, Tyring SK (1998) Tissue-specific HPV expression and down regulation of local immune responses in condylomas from HIV seropositive individuals. Sex Transm Infect 1998; 74(5): 349-353.
17. Coleman N, Birley HD, Renton AM, Hanna NF,阮 BK, et al. (1994) Immunological events in regressing genital warts. Am J Clin Pathol 102(6): 768-774.
18. Shi YJ, Yang J, Yang W (2013) Mechanistic investigation of immunosuppression in patients with condyloma acuminata. Mol Med Rep 9(2): 400-406.
19. Xu Y, Zhu KJ, Zhu N, Jiang DH, Chen XZ, et al. (2009) Expression of Foxp3+CD4+CD25+ regulatory T cells and Th1/Th2, Tc1/Tc2 profiles in the peripheral blood of patients with condyloma acuminatum. Clin Exp Dermatol 34(2): 229-235.
20. Narayan S, Choyce A, Lindele R, Saunders NA, Dahler A, et al. (2009) Epithelial expression of human papillomavirus type 16 E7 protein results in peripheral CD8 T-cell suppression mediated by CD4+CD25+ T cells. Eur J Immunol 39(2): 481-490.
21. Li L, Zhou ZG, Zeng K, Liang LP, Zhou XY, et al. (2003) Changes in peripheral blood Th1/Th2 cell balance in patients with condyloma acuminatum. J Clin Oncol 5(4): 753-763.
22. Cao Y, Zhao J, Lei Z, Shen S, Liu C, et al. (2008) Local accumulation of FOXP3+ regulatory T cells: evidence for an immune evasion mechanism in patients with large condyloma acuminata. J Immunol 180(11): 7681-7686.
23. Arany I, Tyring SK (1996) Status of local cellular immunity in interferon-responsive and -nonresponsive human papillomavirus-associated lesions. Sex Transm Dis 23(6): 475-480.
24. Grassegger A, Rollinger Holzinger I, Zelger BW, et al. (1997) Spontaneous or interferon-gamma-induced T-cell infiltration, HLADR and ICAM-1 expression in genital warts are associated with TH1 or mixed TH1/TH2 cytokine mRNA expression profiles. Arch. Dermatol. Res. 289(5): 243-250.

[178,183-186].
25. Resta L, Troia M, Russo S, Colucci GA, Sabatini R, et al. (1992) Variations of lymphocyte sub-populations in vulvar condylomata during therapy with beta-interferon. Eur J Gynaecol Oncol 13(5): 440-444.

26. Flierleeg K, Schiebel U, Müller C (1989) Immuno histology of genital warts in different stages of regression after therapy with interferon gamma. Dermatologica 179(4): 191-195.

27. Anny I, Tyring SK (2009) Activation of focal cell-mediated immunity in interferon-resistant patients with human papillomavirus-associated lesions. Journal of Interferon & Cytokine Research 16(6): 453-460.

28. Abdel Hady ES, Martin Hirsch P, Duggan Keen M, Stern PL, Moore JV, et al. (2001) Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Cancer Res 61(1): 192-196.

29. Anny I, Tyring SK, Brysk MM, Stanley MA, Tomai MA, et al. (2000) Correlation between pretreatment levels of interferon response genes and clinical responses to an immune response modifier (Imiquimod) in genital warts. Antimicrobial Agents and Chemotherapy 44(7): 1869-1873.

30. Anny I, Brysk MM, Brysk H, Tyring SK (1996) Response to interferon treatment decreases with epidermal differentiation in condylomas. Antiviral Res 32(1): 19-26.

31. Tyring SK, Cauda R, Ghanta V, Hiramoto R (1988) Activation of natural killer cell function during interferon-alpha treatment of patients with condyoma acuminate is predictive of clinical response. J Biol Regul Homeost Agents 2(2): 62-63.

32. Anny I, Tyring SK, Stanley MA, Tomai MA, Miller RL, et al. (1999) Enhancement of the innate and cellular immune response in patients with genital warts treated with topical imiquimod cream 5%. Antiviral Res 43(1): 55-63.

33. Tyring SK, Arany I, Stanley MA, Tomai MA, Miller RL, et al. (1998) A randomized, controlled, molecular study of condylomata acuminate clearance during treatment with imiquimod. J Infect Dis 178(2): 551-555.

34. Tyring SK, Arany I, Stanley MA, Stoler MH, Tomai MA, et al. (1998) Mechanism of action of imiquimod 5% cream in the treatment of anogenital warts. Prim. Prim Care Update 0b Gyns 5(4): 151-152.

35. Chang DY, Song SH, You S, Lee J, Kim J, et al. (2014) Programmed death-1 (PD-1)-dependent functional impairment of CD4(+) T cells with Mycobacterium indicus pranii (MIP) therapy in tumor bearing mice. PLoS One 6(9): e25424.

36. Banerjee S, Halder K, Ghosh S, Bose A, Majumdar S (2015) The combination of a novel immunomodulator with a regulatory T cell suppressor antibody (DTA-1) regress advanced stage B16F10 solid tumor by regulating tumor associated macrophages in situ. Oncoimmunology 4(3): e995559.

37. Raksit S, Ponnamsetty S, Papanna S, Saha B, Ahmed A, et al. (2012) Immunotherapeutic efficacy of Mycobacterium indicus pranii in eliciting anti-tumor T cell responses: critical roles of IFNγ. Int J Cancer 130(4): 865-875.

38. Kharkar R (2002) Immune recovery in HIV with Mycobacterium W. J Indian Med Assoc 100(9): 578-579.

39. Khamar B, O Donnell M, Belani PC (2012) Intradermal toll like receptor-2 (TLR2) agonist mycobacterium w (Cdi-05) in the treatment of BCG refractory non muscle invasive transitional cell carcinoma of bladder. Journal of Immunotherapy.

40. Mosca PJ, Nair SG, Ayre SK, Wenshin Shi RN, Sherrine Edi, et al. (2010) Immunologic Therapy with Cadi-05 for the Treatment of Advanced Melanoma.

41. Kuilman T, van der Groten MC, van Delft FM, Vermeulen L, Pfizenmaier K, et al. (2011) Kupffer cell dysfunction is restored by combination treatment with Cadi-05 and the CD3 T cell activator 1303. Int J Cancer 129(11): 275-284.

42. Krause H, Sjoerdsma A, van der Valk P, Versteeg R, et al. (2012) Recurrent warts. Skinmed 14(6): 413-421.
60. Thappa DM, Chiramel MJ (2016) Evolving role of immunotherapy in the treatment of refractory warts. Indian Dermatol Online J 7(5): 364-370.

61. Dhakar AK, Dogra S, Vinay K, Sarangal R, Kanwar AJ, et al. (2016) Intraleusal Mycobacterium w Vaccine Versus Cryotherapy in Treatment of Recurrent Extragenital Warts: A Randomized, Open-Label, Comparative Study. J Cutan Med Surg 20(2): 123-129.

62. Singh S, Chouban K, Gupta S (2014) Intraleusal immunotherapy with killed Mycobacterium indicus pranii vaccine for the treatment of extensive cutaneous warts. Indian J Dermatol Venereol Leprol 80(6): 509-514.

63. Garg S, Baveja S (2014) Intraleusal immunotherapy for difficult to treat warts with Mycobacterium w vaccine. J Cutan Aesthetic Surg 7(4): 203-208.

64. Kumar P, Dar L, Saldiwal S, Varma S, Datt Upadhyay A, et al. (2014) Intraleusal injection of Mycobacterium w vaccine in patients with anogenital warts: a randomized clinical trial. JAMA Dermatol 150(10): 1072-1078.

65. Meena JK, Malhotra AK, Mathur DK, Mathur DC (2013) Intraleusal immunotherapy with Mycobacterium w vaccine in patients with multiple cutaneous warts: uncontrolled open study. JAMA Dermatol 149(2): 237-239.

66. Gupta S, Malhotra AK, Verma KK, Sharma VK (2008) Intraleusal immunotherapy with killed Mycobacterium w vaccine for the treatment of ano-genital warts: an open label pilot study. J Eur Acad Dermatol Venereol 22(9): 1089-1093.

67. Smith SP, Bacendeh HE, Sterling JC (2017) Clearance of recalcitrant warts in a patient with idiopathic immune deficiency following administration of the quadrivalent human papillomavirus vaccine. (2017) Clin Exp Dermatol 42(3): 306-308.

68. Martín JM, Escandell I, Ayala D, Jordà E (2016) Spontaneous Remission of Recalcitrant Warts in Girls After Human Papillomavirus Vaccination. Actas Dermosifiliogr 107(6): 533-535.

69. Moscato GM, Di Matteo G, Ciotti M, Di Bonito P, Andreoni M, et al. (2016) Dual response to human papilloma virus vaccine in an immunodeficiency disorder: resolution of plantar warts and persistence of condylomas. J Eur Acad Dermatol Venereol 30(7): 1212-1213.

70. Abeck D, Föster-Holst R (2015) Quadriavalent human papillomavirus vaccination: a promising treatment for recalcitrant cutaneous warts in children. Acta Derm Venereol 95(8): 1017-1019.

71. Landini MM, Borgogna C, Peretti A, Doorbar J, Griffin H, et al. (2015) Identification of the skin virome in a boy with widespread human papillomavirus-2-positive warts that completely regressed after administration of tetravalent human papillomavirus vaccine. Br J Dermatol 173(2): 597-600.

72. Silling S, Wieland U, Werner M, Pfister H, Potthoff A, et al. (2014) Resolution of novel human papillomavirus-induced warts after HPV vaccination. Emerg Infect Dis 20(1): 142-145.

73. Daniel BS, Murrell DF (2013) Complete resolution of chronic multiple verruca vulgaris treated with quadriavalent human papillomavirus vaccine. JAMA Dermatol 149(3): 370-372.

74. Landis MN, Lookingbill DP, Shavezich JC (2012) Recalcitrant plantar warts treated with recombinant quadriavalent human papillomavirus vaccine. J Am Acad Dermatol 67(2): e73-e74.

75. Kreuter A, Waterboer T, Wieland U (2010) Regression of cutaneous warts in a patient with WILD syndrome following recombinant quadriavalent human papillomavirus vaccination. Arch Dermatol 146(10): 1196-1197.

76. Venugopal SS, Murrell DF (2010) Recalcitrant cutaneous warts treated with recombinant quadriavalent human papillomavirus vaccine (types 6, 11, 16, and 18) in a developmentally delayed, 31-year-old white man. Arch Dermatol 146(5): 475-477.

77. De Clercq E (2003) Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections. Clin Microbiol Rev 16(4): 569-596.

78. Stern PL, van der Burg SH, Hampson IN, Broker TR, Fiander A, et al. (2012) Therapy of human papillomavirus-related disease. Vaccine 30 Suppl 5: F71-82.

79. Amine A, Rivera S, Opolon P, Mehdi Dekkal, Biard SFD, et al. (2009) Novel anti-metastatic action of cidofovir mediated by inhibition of E6/E7, CXC4R4 and Rho/ROCK signaling in HPV tumor cells. Plos One 4(3): e5018.

80. Donne AJ, Hampson L, He XT, Day PJ, Salway F, et al. (2009) Potential risk factors associated with the use of cidofovir to treat benign human papillomavirus-related disease. Antivir Ther 14(7): 939-952.

81. Christensen ND, Pickel MD, Budgeon LR, Kreider JW (2000) In vivo anti-papillomavirus activity of nucleoside analogues including cidofovir on CRPV-induced rabbit papillomas. Antiviral Res. 46(2): 131-142.

82. Christensen ND, Han R, Cladel NM, Pickel MD (2001) Combination treatment with intraleusal cidofovir and viral-DNA vaccination cures large cutontal rabbit papillomavirus-induced papillomas and reduces recurrences. Antimicrob Agents Chemother other 45(4): 1201-1209.

83. Padilla España L, Del Boz J, Fernández Morano T, Arenas Villafranca J, de Troyo Martín M, et al. (2014) Topical cidofovir for plantar warts. Dermatol Ther 27(2): 89-93.

84. Padilla España L, Del Boz J, Fernández Morano T, Arenas-Villafranca J, de Troyo M, et al. (2014) Successful treatment of periangual warts with topical cidofovir. Dermatol Ther 27(6): 337-342.

85. Broganeli R, Chiaretta A, Fragnelli B, Bernengo MG (2012) Intraleusal cidofovir for the treatment of multiple and recalcitrant cutaneous viral warts. Dermatol Ther 25(5): 468-471.

86. Henriksson SE, Treat JR (2017) Topical Cidofovir for Recalcitrant Verruca in Individuals with Severe Combined Immunodeficiency After Hematopoietic Stem Cell Transplantation. Pediatr Dermatol 34(4): e22-e25.

87. Cleary A, Watson R, McMahon CJ (2014) Successful treatment of refractory cutaneous warts using topical 3% cidofovir in a child after heart transplant. J Heart Lung Transplant 33(9): 971-972.

88. Fernández Morano T, Del Boz J, Frieyro Elchegui M, Repiso JB, Padilla España L, et al. (2013) [Treatment of anogenital warts with topical cidofovir]. Enferm Infec Microbiol Clin 31(4): 222-226.

89. Gupta M, Bayliss SJ, Berk DR (2013) Topical cidofovir for refractory verrucae in children. Pediatr Dermatol 30(1): 131-134.

90. Fernández Morano T, del Boz J, González Garrascosa M, Tortajada B, de Troyo M (2011) Topical cidofovir for viral warts in children. J Eur Acad Dermatol Venereol 25(12): 1487-1489.

91. Zabawski EL, Sands B, Goetz D, Naylor M, Cockerell CJ, et al. (1997) Treatment of verruca vulgaris with topical cidofovir. JAMA 278(2): 1236.

92. Moore E, Kovarik C (2015) Intraleusal cidofovir for the treatment of a planter wart. J Am Acad Dermatol 73(1): e23-e24.

93. Blouin MM, Cloutier R, Noël R (2012) Intraleusal cidofovir in the treatment of cutaneous warts in a renal transplant patient. J Cutan Med Surg 16(6): 462-464.

94. Germay-RH, Kovarik CL (2012) Human papillomavirus-related genital disease in the immunocompromised host: Part II. J Am Acad Dermatol 66(6): 883.
Loo SKF, Tang WYM (2015) Warts (non-genital). BMJ Clin Evid.

didofovir: predictive factors of good response. J Eur Acad Dermatol Venereol130(7): 1218-1220.

96. Cha S, Johnston L, Natkunam Y, Brown J (2005) Treatment of verruca vulgaris with topical cidofovir: a case report and review of the literature. Transpl Infect Dis 7(3-4): 158-161.

97. D'Souza GF, Zins JE (2017) Severe Plantar Warts in an Immunocompromised Host with Systemic Interleukin 2 and D'Souza GF, Zins JE (2017) Severe Plantar Warts in an Immunocompromised Patient. N Engl J Med 377(3): 267.

98. Nambudiri VE, Mutymbizki K, Walls AC, Fisher DC, Bleday R, et al. (2013) Successful treatment of perianal giant condyloma acuminate in an immunocompromised host with systemic interleukin 2 and topical cidofovir. JAMA Dermatol 149(9): 1068-1070.

99. Loo SKF, Tang WYM (2015) Warts (non-genital). BMJ Clin Evid.

100. Bertolotti A, Dupin N, Boucardat F, Milpied B, Derancourt C (2017) Cryotherapy to treat anogenital warts in nonimmunocompromised adults: Systematic review and meta-analysis. J Am Acad Dermatol 77(3): 518-526.

101. Kwok CS, Gibbs S, Bennett G, Holland R, Abbott R (2012) Topical treatments for warts in children. Cochrane Database Syst Rev (9): CD001781.

102. Fathi R, Tsoukas MM (2014) Genital warts and other HPV infections: established and novel therapies. Clin Dermatol 32(2): 299-306.

103. Stone KM, Becker TM, Hadgu A, Kraus SJ (1990) Treatment of external genital warts: a randomized clinical trial comparing podophyllin, cryotherapy, and electrodesiccation. Genitourin Med 66(1): 16-19.

104. Godley MJ, Rindheer CS, Gellan M, Thin RN (1987) Cryotherapy compared with trichloroacetic acid in treating genital warts. Genitourin Med 63(6): 390-392.

105. Handley JM, Maw RD, Horner T, Lawther H, McNeill T, et al. (1992) Non-specific immunity in patients with primary anogenital warts treated with interferon alpha plus cryotherapy or cryotherapy alone. Acta Derm Venereol 72(1): 39-40.

106. Bruggink SC, Gusskeko J, Berger MY, Zaalijer K, Assendelft WJ, et al. (2010) Cryotherapy with liquid nitrogen versus topical salicylic acid application for cutaneous warts in primary care: randomized controlled trial. CMAJ 182(15): 1624-1630.

107. Duus BR, Philipsen T, Christensen JD, Lundvall F, Søndergaard J (1985) Refractory condyoma acuminata: a controlled clinical trial of carbon dioxide laser versus conventional surgical treatment. Genitourin Med 61(1): 59-61.

108. Khawaja HT (1989) Podophyllin versus scissor excision in the treatment of perianal condyoma acuminata: a prospective study. Br J Surg 76(10): 1067-1068.

109. Jensen SL (1985) Comparison of podophyllin application with simple surgical excision in clearance and recurrence of perianal condyoma acuminata. Lancet 2(8465): 1146-1148.

110. Bellina JH (1983) The use of carbon dioxide laser in the management of condyoma acuminatum with eight-year follow-up. American Journal of Obstetrics & Gynecology 147(4): 375-378.

111. Garden JM, O’Banion MK, Shelinitz LS, Pinski KS, Bakus AD, et al. (1988) Papillomavirus in the vapor of carbon dioxide laser-treated verrucae. JAMA 259(8): 1199-1202.

112. Badawi A, Shokeir HA, Salem AM, Soliman M, Fawzy S, et al. (2002) Treatment of anogenital warts by pulsed dye laser. J Cosmet Laser Ther 28(4): 350-352.

113. Logan RA, Zachary CB (1989) Outcome of carbon dioxide laser therapy for persistent cutaneous warts. Br J Dermatol 121(1): 99-105.

114. Hruza GJ (1997) Laser treatment of warts and other epidermal and dermal lesions. Dermatol Clin 15(3): 487-506.

115. Ozuier SM, Chuen BY, Barlow RJ, Markey AC (2001) Hypertrophic scar formation following carbon dioxide laser ablation of plantar warts in cyclosprin-treated patients. Br J Dermatol 145(6): 1005-1007.

116. Robson KJ, Cunningham NM, Kruzan KL, Patel DS, Kreiter CD, et al. (2000) Pulsed-dye laser versus conventional therapy in the treatment of warts: a prospective randomized trial. J Am Acad Dermatol 43(2 Pt 1): 275-280.

117. Sparrowboom EE, Luijks HG, Luiling Welkenhuizen HA, Willems PW, Groeneveld CP, et al. (2014) Pulsed dye laser treatment is effective in the treatment of recalcitrant viral warts. Dermatol Surg Off Publ Am Soc Dermatol 40(1): 67-72.

118. Sterling JC, Gibbs S, Haque Hussain SS, Mohd Mustafa MF, Handfield Jones SE (2014) British Association of Dermatologists' guidelines for the management of cutaneous warts 2014. Br J Dermatol 171(4): 696-712.

119. Tan OT, Hurwitz RM, Staffor DJ (1993) Pulsed dye laser treatment of recalcitrant verrucae: a preliminary report. Lasers Surg Med 13(1): 127-137.

120. Keton Smith J, Tan SF (1999) Pulsed dye laser therapy for viral warts. Br J Plast Surg 52(7): 554-558.

121. Vargas HL, Hove CR, Dupree ML, Williams EF (2002) The treatment of facial verruca with the pulsed dye laser. The Laryngoscope 112(9): 1573-1576.

122. Akhyani M, Ehsani A, Noormohammadpour P, Roghieth Shamsodini, Sahar Azizabari, et al. (2011) Comparing Pulsed-dye Laser with Cryotherapy in the Treatment of Common Warts. Journal of Lasers in Medical Sciences 1(1): 14-19.

123. Nguyen J, Korta DZ, Chapman JW, Kelly KM (2016) Laser Treatment of Nongenital Verrucae: A Systematic Review. JAMA Dermatol 152(9): 1025-1034.

124. Park HS, Choi WS (2008) Pulsed dye laser treatment for viral warts: a study of 120 patients. J Dermatol 35(8): 491-498.

125. Ross BS, Levine VJ, Nehal K, Tse Y, Ashino FF, et al. (1999) Pulsed dye laser treatment of warts: an update. Dermatol Surg 25(5): 377-380.

126. Sethuraman G, Richards KA, Hiremagalore RN, Wagner A (2010) Effectiveness of pulsed dye laser in the treatment of recalcitrant warts in children. Dermatol Surg 36(1): 58-65.

127. Pollock B, Sheehan Dare R (2002) Pulsed dye laser and intralesional bleomycin for treatment of resistant viol hand warts. Lasers Surg Med 30(2): 135-140.

128. Karrer S, Bosserhoff AK, Weiderer P, Landthaler M, Szeimies RM (2004) Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts. Br J Dermatol 151(4): 776-783.

129. Giomi B, Pagnini F, Cappuccini A, Bianchi B, Tiradritti L, et al. (2011) Photodynamic Therapy for Genital Warts. Immunological Activity of Photodynamic Therapy for Genital Warts. J Dermatol 38(15): 1573-1576.

130. Nguyen J, Korta DZ, Chapman JW, Kelly KM (2016) Laser Treatment of Nongenital Verrucae: A Systematic Review. JAMA Dermatol 152(9): 1025-1034.

131. Kim JE, Kim SJ, Hwang II, Lee KJ, Park HJ, et al. (2012) New proposal for the treatment of viral warts with intralesional injection of 5-aminolevulinic acid photodynamic therapy. J Dermatolog Treat 23(3): 192-195.
Clinical and immunologic results of a phase II trial of sequential imiquimod and photodynamic therapy for vulval intraepithelial neoplasia. Clin Cancer Res 14(16): 5292-5299.

140. Komiericki P, Abdulkir Materna M, Strimitzer T, Aberer W (2011) Efficacy and safety of imiquimod versus podophyllotoxin in the treatment of anogenital warts. Sex Transm Dis 38(3): 216-218.

141. Beutner KR, Tyring SK, Trosfater KF, Douglas JM, Spruance S, et al. (1998) Imiquimod, a patient-applied immune-response modifier for treatment of external genital warts. Antimicrob Agents Chemother 42(4): 789-794.

142. Beutner KR, Spruance SL, Hougham AJ, Foxx TL, Owens ML, et al. (1998) Treatment of genital warts with an immune-response modifier (imiquimod). J Am Acad Dermatol 38(2 Pt 1): 230-239.

143. Edwards L, Ferenczy A, Erion L, Baker D, Owens ML, et al. (1998) Self-administered topical 5% imiquimod cream for external anogenital warts. HPV Study Group. Human Papilloma Virus. Arch Dermatol 134(1): 25-30.

144. Fike KH, Ferenczy A, Douglas JM, Brown DR, Smith M, et al. (2001) Treatment of external genital warts in men using 5% imiquimod cream applied three times a week, once daily, twice daily, or three times a day. Sex Transm Dis 28(4): 226-231.

145. Garland SM, Waddell R, Mindel A, Denham IM, McCloskey JC (2006) An open-label phase II pilot study investigating the optimal duration of imiquimod 5% cream for the treatment of external genital warts in women. Int J STD AIDS 17(7): 448-452.

146. Schöfer H, Van Ophoven A, Henke U, Lenz T, Eul A (2006) Randomized, comparative trial on the sustained efficacy of topical imiquimod 5% cream versus conventional ablative methods in external anogenital warts. Eur J Dermatol 16(6): 642-648.

147. Hengge UR, Esser S, Schulte-wolter T, Behrendt C, Meyer T, et al. (2000) Self-administered topical 5% imiquimod for the treatment of common warts and molluscum contagiosum. Br J Dermatol 143(5): 1026-1031.

148. Smith WA, Siegel D, Lyon VB, Holland KE (2013) Psoriasiform eruption and oral ulcerations as adverse effects of topical 5% imiquimod treatment in children: a report of four cases. Pediatr Dermatol 30(6): e157-e160.

149. Rosenblatt A, de Campos Guidi HG (2012) Local and systemic adverse effects of imiquimod therapy for external anogenital warts in men: report of three cases. Int J STD AIDS 23(12): 909-910.

150. Zeng Y, Zheng YQ, Wang L (2014) Vagarious successful treatment of common warts and molluscum contagiosum. Br J Dermatol 167(6): 1340-1346.

151. Howe MB, Hagedorn M, Schindler AE, Schneede P, Hopfenmüller W, et al. (2002) Effect of adjuvant imiquimod 5% cream on sustained clearance of anogenital warts following laser treatment. Infect Dis Obstet Gynecol 10(2): 79-88.

152. Park SM, Kim GW, Mun JH, Song M, Kim HS, et al. Fractional Laser-Assisted Topical Imiquimod 5% Cream Treatment for Recalcitrant Common Warts in Children: A Pilot Study. Dermatol Surg 42(12): 1340-1346.

153. Viazis N, Vlachogiannakos J, Vlachogiannakos J, Theodoropoulos I, Savariadis A, et al. (2007) Earlier eradication of intra-oral warts with argon plasma coagulator combined with imiquimod cream compared with argon plasma coagulator alone: a prospective, randomized trial. Dis Colon Rectum 50(12): 2173-2179.

154. Housman TS, Joritzo JL (2002) Anecdotal reports of 3 cases illustrating a spectrum of resistant common warts treated with cryotherapy followed by topical imiquimod and salicylic acid. J Am Acad Dermatol 46(4): 635-638.
164. Tucker SB, Ali A, Ransdell BL. (2003) Plantar wart treatment with combination imiquimod and salicylic acid pads. J Drugs Dermatol 2(2): 124-126.

165. Tyring SK. (2012) Effect of Sinecatechins on HPV-Activated Cell Growth and Induction of Apoptosis. J Clin Aesthetic Dermatol 5(2): 34-41.

166. Nguyen HP, Doan HQ, Rady P, Tyring SK. (2015) Cellular signaling in sinecatechins-treated external genital and perianal warts: unraveling the mechanism of action of a botanical therapy. Virol Sin 30(3): 214-217.

167. Harrison Nguyen, Hung Q Doan, David J Brunell, Peter L. Rady, Stephen Keith Tyring (2014) Apoptotic gene expression in sinecatechins-treated external genital and perianal warts. Viral Immunol 27(10): 556-558.

168. Doan HQ, Nguyen HP, Rady P, Tyring SK. (2015) Expression patterns of immune-associated genes in external genital and perianal warts treated with sinecatechins. Viral Immunol 28(4): 236-240.

169. Tyring SK. (2012) Sinecatechins: Effects on HPV-Induced Enzymes Involved in Inflammatory Mediator Generation. J Clin Aesthetic Dermatol 5(1): 19-26.

170. Tzellos TG, Sandell C, Lallas A, Papazisis G, Chourdakis M, et al. (2011) Efficacy, safety and tolerability of green tea catechins in the treatment of external anogenital warts: a systematic review and meta-analysis. J Eur Acad Dermatol Venereol 25(3): 345-353.

171. Gross G, Meyer KG, Pres H, Thielert C, Tawfik H, et al. (2007) A randomized, double-blind, four-arm parallel-group, placebo-controlled Phase II/III study to investigate the clinical efficacy of two galenic formulations of Polyphenon E in the treatment of external genital warts. J Eur Acad Dermatol Venereol 21(10): 1404-1412.

172. Stockfleth E, Beti H, Orasan R, Grigorian F, Mescheder A, et al. (2008) Topical Polyphenon E in the treatment of external genital and perianal warts: a randomized controlled trial. Br J Dermatol 158(6): 1329-1338.

173. Tatti S, Swinehart JM, Thielert C, Tawfik H, Mescheder A, et al. (2008) Sinecatechins, a defined green tea extract, in the treatment of external anogenital warts: a randomized controlled trial. Obstet Gynecol 111(6): 1371-1379.

174. Tatti S, Stockfleth E, Beutner KR, Tawfik H, Ekasser U, et al. (2010) Polyphenon E: a new treatment for external anogenital warts. Br J Dermatol 162(1): 176-184.

175. On SC, Linkner RV, Haddican M, Yew YW, Pan JY. (2014) A single-blinded randomized controlled study to assess the efficacy of twice daily application of sinecatechins 15% ointment when used sequentially with cryotherapy in the treatment of external genital warts. J Drugs Dermatol 13(11): 1400-1405.

176. Juul ME, Sekrovic V, Antonijevic S, Krunic A. (2016) Combined treatment of anogenital HPV infection with cryodestruction, podophyllin 25% and post-ablation immunomodulation with sinecatechins 15% ointment-a retrospective analysis. Int J STD AIDS 27(12): 1071-1078.

177. Falahdeli Z, Rodler I, Csejtey A, Tyring SK, Ember IA, et al. (2004) All-trans retinoic acid (ATRA) suppresses transcription of human papillomavirus type 16 (HPV16) in a dose-dependent manner. Anticancer Res 24(2B): 807-809.

178. Olguin García MG, Jurado Santa Cruz F, Peralta Pedroso ML, Morales Sánchez MA. (2015) A double-blind, randomized, placebo-controlled trial of oral isotretinoin in the treatment of recalcitrant facial flat warts. J Dermatol Treat 26(1): 78-82.

179. Monastirli A, Matsouka P, Pasmatsi E, Melachrinou M, Georgiou S, et al. (2005) Complete remission of recalcitrant viral warts under oral isotretinoin in a patient with low-grade B-cell lymphoma. Acta Derm Venereol 85(4): 358-360.

180. Katz RA. (1986) Isotretinoin treatment of recalcitrant warts in an immunosuppressed man. Arch Dermatol 122(1): 19-20.

181. Kaur GJ, Brar BK, Kumar S, Brar SK, Singh B. (2017) Evaluation of the efficacy and safety of oral isotretinoin versus topical isotretinoin in the treatment of plane warts: a randomized open trial. Int J Dermatol 56(12): 1352-1358.

182. Miljkovic J. (2012) A novel therapeutic approach to plane warts: a report on two cases. Acta Dermatovenerol Alp Pannonica Adriat 21(3): 63-64.

183. Al Hamamy HR, Salman HA, Abdulbattar NA. (2012) Treatment of plane warts with a low-dose oral isotretinoin. ISRN Dermatology 2012(2012): 1-3.

184. Georgala S, Katoullis AG, Georgala C, Bozi E, Mortakis A. (2004) Oral isotretinoin in the treatment of recalcitrant condylomata acuminata of the cervix: a randomised placebo controlled trial. Sex Transm Infect 80(3): 216-218.

185. Tsambaos D, Georgiou S, Monastirli A, Sakkis T, Sagriotis A, et al. (1997) Treatment of condylomata acuminata with oral isotretinoin. J Urol 158(5): 1810-1812.

186. Cardamakis EK, Koutoulis IG, Dimopoulos DP, Stathopoulos EN, Michopoulos JT. et al. (1996) Comparative study of systemic interferon alfa-2a with oral isotretinoin and oral isotretinoin alone in the treatment of recurrent condylomata acuminata. Arch Gynecol Obstet 258(1): 35-41.

187. Jha AK, Sonthalia S, Ganguly S. (2018) Oral isotretinoin as an adjunctive treatment for recurrent genital warts. J Am Acad Dermatol 78(2): e35-e36.

188. Yew YW, Pan JY. (2014) Complete remission of recalcitrant genital warts with a combination approach of surgical debulking and oral isotretinoin in a patient with systemic lupus erythematosus. Dermatol Ther 27(2): 79-82.

189. Cao Y, Zhao J, Yang Z, Cai Z, Zhang B, et al. (2010) CD4+FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. Clin Immunol 136(1): 21-29.

190. Zhang Y, Duan Y, Zhao J, Huang B, Cao YC. (2013) Low-dose oral cyclophosphamide therapy is effective for condylomata acuminata. Chin Med J (Engl) 126(16): 3198-3199.
