Transcriptome Analysis of *Houttuynia cordata* Thunb. by Illumina Paired-End RNA Sequencing and SSR Marker Discovery

Lin Wei¹,²,³, Shenghua Li¹,²,³, Shenggui Liu¹,²,³, Anna He¹,²,³, Dan Wang¹, Jie Wang¹,⁴, Yulian Tang¹,²,³, Xianjin Wu¹,²,³,

¹The College of Life Science, Huaibei University, Huaibei, China, ²Key Laboratory of Hunan Province for Study and Utilization of Ethnic Medicinal Plant Resources, Huaibei, China, ³Key Laboratory of Hunan Higher Education for Hunan-Western Medicinal Plant and Ethnobotany, Huaibei, China, ⁴The College of Life Science, Hunan University, Changsha, China

Abstract

Background: *Houttuynia cordata* Thunb. is an important traditional medical herb in China and other Asian countries, with high medicinal and economic value. However, a lack of available genomic information has become a limitation for research on this species. Thus, we carried out high-throughput transcriptomic sequencing of *H. cordata* to generate an enormous transcriptome sequence dataset for gene discovery and molecular marker development.

Principal Findings: Illumina paired-end sequencing technology produced over 56 million sequencing reads from *H. cordata* mRNA. Subsequent de novo assembly yielded 63,954 unigenes, 39,982 (62.52%) and 26,122 (40.84%), of which had significant similarity to proteins in the NCBI nonredundant protein and Swiss-Prot databases (E-value < 10⁻¹⁰), respectively. Of these annotated unigenes, 30,131 and 15,363 unigenes were assigned to gene ontology categories and clusters of orthologous groups, respectively. In addition, 24,434 (38.21%) unigenes were mapped onto 128 pathways using the KEGG pathway database and 17,964 (44.93%) unigenes showed homology to *Vitis vinifera* (Vitaceae) genes in BLASTx analysis. Furthermore, 4,800 cDNA SSRs were identified as potential molecular markers. Fifty primer pairs were randomly selected to detect polymorphism among 30 samples of *H. cordata*; 43 (86%) produced fragments of expected size, suggesting that the unigenes were suitable for specific primer design and of high quality, and the SSR marker could be widely used in marker-assisted selection and molecular breeding of *H. cordata* in the future.

Conclusions: This is the first application of Illumina paired-end sequencing technology to investigate the whole transcriptome of *H. cordata* and to assemble RNA-seq reads without a reference genome. These data should help researchers investigating the evolution and biological processes of this species. The SSR markers developed can be used for construction of high-resolution genetic linkage maps and for gene-based association analyses in *H. cordata*. This work will enable future functional genomic research and research into the distinctive active constituents of this genus.

Introduction

Saururaceae, a member of the paleoherbs, is an ancient family with six species in four genera, *Amœnopus*, *Gymnotheca*, *Houttuynia* and *Simarina* [1]. *Houttuynia cordata* Thunb. (Yuxingcao in Chinese) is the only species in the genus *Houttuynia* [2,5]. It is distributed mainly in the central, southeastern and southwestern regions of China, and extends to Japan, Korea and Southeast Asia, where it grows in moist, shady places [4]. *H. cordata* is an important traditional medical herb native to China and other Asian countries [5,6]. It plays a unique role in improving the immune system of patients with severe acute respiratory syndrome (SARS) [7,8]. Extracts of *H. cordata* have diverse pharmacological effects including anticestodal [9], antibacterial [10,11], antiviral [12-15], anticancer [16,17], antioxidant [18,19], anti-allergenic [20,21], anti-inflammatory [22-24], antimutagenic [18] and anti-obesity [25] activities. *H. cordata* is also consumed as a vegetable in China for its special aroma. Although *H. cordata* is of high medicinal and nutritional value, there are no genomic resources for this non-model genus. This lack of genomic information has become a limitation for extensive and intensive research on this important traditional medicinal herb.

Previous studies on this plant have mainly focused on cultivation techniques [26,27], its physiological and biochemical properties [28,29], its genetic relationships and the diversity among *H. cordata* germplasm collections from different places [4,30,31], and its pharmacological effects [7-25]. To date, few gene sequences or...
novel genes have been reported on this species, although much effort has been devoted to cloning key genes. RNA-Seq, which is based on next generation sequencing, is a high throughput technology that has great advantages in examining the fine structure of a transcriptome [32]. When no genome sequence is available, transcriptome sequencing provides an effective way to obtain large amounts of sequence data [33]. RNA-Seq has been widely used in many organisms to obtain mass sequence data for transcriptional analysis, gene discovery and molecular marker development [34–36]. The genetic relationships and diversity among H. cordata germplasm collections have been investigated mostly using AFLP [37], ISSR [4], PCR-RFLP [30] and RAPD markers [31]. No simple sequence repeat (SSR) markers have been reported in H. cordata. Compared with other types of molecular markers, SSR markers have many advantages, such as simplicity, effectiveness, abundance, hypervariability, reproducibility, codominant inheritance, and extensive genomic coverage [38]. Because of the lack of effective molecular markers, marker-assisted selection and molecular breeding of H. cordata has lagged behind other medicinal plants such as Panax notoginseng (Burk.) F.H.Chen [39], Gastrodiae elata Blume [40], and Glycyrrhiza uralensis Fisch. [41]. Thus, a rapid, low-cost and effective approach is required to develop SSRs molecular markers for H. cordata.

In this study, we applied the next-generation massively parallel sequencing technique (Illumina HiSeq 2000) to the sequencing and analysis of the complete H. cordata transcriptome for the first time. We sampled the pooled transcriptomes of flower, leaf, stem and rhizome tissues of H. cordata and used Illumina paired-end sequencing technology to generate a large-scale EST database and develop a set of SSR markers. These results provide a very useful genomic resource for research on H. cordata in the future.

Results

Illumina paired-end sequencing and de novo assembly

To obtain a global overview of the H. cordata transcriptome and gene activity at the nucleotide resolution, RNA was extracted from four different H. cordata tissues including the rhizome, stem, leaf and flower, and mixed at equivalent concentrations. Sequencing was performed on an Illumina HiSeq2000 genome analyzer. Each sequencing pass can yield two 90-bp independent reads from either end of a DNA fragment. In all, 56,668,324 sequence reads were generated, of which 51,973,070 were of acceptable quality after cleaning the low-quality reads (Table 1), then we used the Trinity short reads assembly program to assemble the reads for the assembled unigenes ranged from 200 to 8,507 bp. There were 63,954 assembled sequences, 39,982 (62.52%) showed homology to sequences in the Nr database (Table S1), while 26,122 (40.84%) unigenes had homology to proteins in the Swiss-Prot database. In addition, 99.06% of the unigenes over 1,000 bp in length showed homologous matches, whereas only 29.28% of the unigenes shorter than 300 bp showed matches (Fig. 2). The 2,624 unigenes that had no matches in either the Nr or Swiss-Prot databases were subjected to gene prediction analysis using ESTScan (Version 3.0.2) [43]. In total, 42,785 unigenes were detected by homology analysis using the Nr and Swiss-Prot databases or ESTScan prediction.

The E-value distribution of the top hits in the Nr database showed that 62.2% of the mapped sequences had strong homology (E-value < 10^−30) and 50.8% had very strong homology (E-value < 10^−45) to available plant sequences, whereas 37.8% of the homologous sequences had E-values in the range 10^−3 to 10^−30 (Fig. 3A). The similarity distribution of sequences database showed that 3,880 (9.70%), 12,513 (31.30%), 16,642 (41.62%), 6,198 (15.50%) and 749 (1.87%) sequences were 18–40%, 41–60%, 61–80%, 81–95% and 95–100% similar, respectively (Fig. 3B). In terms of species distribution, 44.93%, 12.16%, 10.51%, 7.53%, 2.26% and 2.21% and 1.75% of the distinct sequences had matches to sequences from Vitis vinifera (Vitaceae), Ricinus communis (Euphor-

![Figure 1. Length distribution of H. cordata Unigenes.](image)

doi:10.1371/journal.pone.0084105.g001

Table 1. Summary of sequencing output statistics.

Samples	Total Raw Reads	Total Clean Reads	Total Clean Nucleotides*	Q20%	N%	GC%
H. cordata	56,668,324	51,973,070	46,77,576,300	97.83%	0.00%	50.62%

*Total Clean Nucleotides = Total Clean Reads1 × Read1 size + Total Clean Reads2 × Read2 size.

doi:10.1371/journal.pone.0084105.t001
biaceae), *Populus trichocarpa* (Salicaceae), *Glycine max*, *Medicago truncatula* (Leguminosae), *Oryza sativa* Japonica Group, and *Sorghum bicolor* (Gramineae), respectively. And 18.35% of the distinct sequences had matches to sequences from ‘other’ species. (Fig. 3C).

Based on Nr annotation, 30,131 unigenes were assigned gene ontology (GO) terms. The sequences that belonged to the biological process, cellular component, and molecular function clusters were categorized into 46 functional groups (Fig. 4). ‘Cellular processes’ and ‘metabolic processes’, ‘cell’ and ‘cell part’, ‘antioxidant activity’ and ‘binding’ were the dominant groups among the three main categories (biological process, cellular component and molecular function), respectively. However, we did not find any genes in the clusters ‘carbon utilization’, ‘locomotion’, ‘nitrogen utilization’, ‘sulfur utilization’, ‘viral reproduction’, ‘extracellular matrix’, ‘extracellular matrix part’, ‘extracellular region part’, ‘channel regulator activity’, ‘metallo-chaperone activity’, ‘protein tag’ or ‘translation regulator activity’ (Fig. 4).

In addition, all unigenes were subjected to a search against the Cluster of Orthologous Groups (COG) database for functional prediction and classification. Overall, 15,363 of the 39,982 sequences showing Nr hits were assigned COG classifications. The COG-annotated putative proteins were functionally classified into at least 25 molecular families including cellular structure, biochemistry metabolism, molecular processing, and signal transduction (Fig. 5).

The cluster for ‘general function prediction only’ (5,362, 13.58%) represented the largest group, followed by transcription (4,124, 10.44%), replication, recombination and repair (3,242, 8.21%), posttranslational modification, protein turnover and chaperones (3,014, 7.63%), function unknown (2,787, 7.06%), signal transduction mechanisms (2,614, 6.62%), translation, ribosomal structure and biogenesis (2,603, 6.59%), cell cycle control, cell division, chromosome partitioning (2,446, 6.19%), carbohydrate transport and metabolism (2,340, 5.93%), cell wall/membrane/envelope biogenesis (2,263, 5.73%), intracellular trafficking, secretion, and vesicular transport (1,244, 3.15%), amino acid transport and metabolism (1,177, 2.98%), secondary metabolites biosynthesis, transport and catabolism (1,109, 2.81%), inorganic ion transport and metabolism (909, 2.30%), lipid transport and metabolism (887, 2.25%), energy production and conversion (823, 2.08%), coenzyme transport and metabolism (501, 1.27%), defense mechanisms (447, 1.13%), cytoskeleton cell (398, 1.00%), motility (385, 0.98%), nucleotide transport and metabolism (298, 0.75%), chromatin structure and dynamics (270, 0.68%) and RNA processing and modification (222, 0.56%), whereas only a few unigenes were assigned to nuclear structure and extracellular structure (13 and 11 unigenes, respectively). The COG function classification of *H. cordata* unigenes is shown in Fig. 5.

Metabolic pathway assignment by KEGG analysis

A total of 24,434 assembled sequences were associated with 128 predicted KEGG metabolic pathways. The number of sequences ranged from 3 to 6,718. The top 20 pathways with the greatest number of sequences are shown in Table 2. The greatest number of transcripts was found in the metabolic pathways. The top 10 metabolic pathways were: glycerophospholipid metabolism (1,974), ether lipid metabolism (1,853), starch and sucrose metabolism (869), purine metabolism (697), pyrimidine metabolism (637), phenylpropanoid biosynthesis (381), oxidative phosphorylation (298), amino sugar and nucleotide sugar metabolism (296), and glutathione metabolism (295). These pathways are involved in various biological processes and play crucial roles in the metabolic processes of *H. cordata*.
Figure 3. Characteristics of homology search of Illumina sequences against the nr database. (A) E-value distribution of BLAST hits for each unique sequence with a cut-off E-value of 1.0E-5. (B) Similarity distribution of the top BLAST hits for each sequence. (C) Species distribution is shown as a percentage of the total homologous sequences with an E-value of at least 1.0E-5.

doi:10.1371/journal.pone.0084105.g003

Figure 4. Gene ontology classification of assembled unigenes.

doi:10.1371/journal.pone.0084105.g004
glycolysis/gluconeogenesis (267), and flavonoid biosynthesis (214) (Table S2).

Development and characterization of SSR markers

For further assessment of the assembly quality and development of new molecular markers, all 63,954 unigenes generated in this study were used to mine potential microsatellites, which were defined as di- to hexa-nucleotide SSRs with a minimum of four repetitions for all motifs. The SSRs that were only located in one single read had been eliminated. Using the MIcroSAtellite (MISA, http://pgrc.ipk-gatersleben.de/misa/) tool, a total of 4,800 potential SSRs were identified in 4,413 unigenes, 357 of which contained more than one SSR; 164 SSRs were present in compound form (Table 3).

The frequency, type and distribution of the 4,800 potential SSRs were also analyzed in this study. The compilation of all SSRs revealed that, on average, one SSR could be found every 9.04 kb in the unigenes. Among the 4,800 SSRs, tri-nucleotide repeat motifs were the most abundant type (1,994, 41.54%), followed by mono- (1,313, 27.35%), di- (1,278, 26.63%), hexa- (110, 2.29%), penta- (66, 1.38%) and tetra-nucleotide (39, 0.81%) repeat motifs. The mono- to hexa-nucleotide motifs were further analyzed for SSR repeat numbers (Table 4).

SSR length was mostly distributed in the 12 to 20 bp range, accounting for 87.04% (4035 SSRs) of the total SSRs, followed by 21–99 bp (562 SSRs, 12.12%). There were 39 SSRs longer than 100 bp.

Within the SSRs, 119 motif sequence types were identified, of which mono-, di-, tri-, tetra-, penta- and hexa-nucleotide repeats had 2, 4, 10, 11, 31 and 58 types, respectively. The most abundant motif detected in the SSRs was the A/T mono-nucleotide repeat (1,296, 27.0%), followed by the motifs AG/CTT (505, 10.52%), AGG/CCT (458, 9.54%), AGC/CTG (269, 5.60%), ACC/GGT (239, 4.98%), ATC/ATG (183, 3.81%) and CCG/CGG (183, 3.81%), AC/GT (93, 1.94%), AT/AT (80, 1.67%), ACG/CTT (68, 1.42%), AAC/GTT (56, 1.17%), AAT/ATT (20, 0.42%), ACT/AGT (15, 0.27%), and CG/CG (5, 0.10%). The remaining 215 types of motifs accounted for 4.48% in total (Fig. 6).

Identification of polymorphic markers

Fifty primer pairs (designated HM_1–HM_50) were randomly selected from the microsatellites, excluding mono-nucleotide repeats motif, to evaluate their applicability and the polymorphism across 30 individuals of *H. cordata* (Table S3). 45 of the 50 primer pairs successfully amplified fragments. Among the 48 successful primer pairs, 43 produced amplicons of expected size and 5 generated PCR fragments longer than expected. The majority of the 43 microsatellite loci showed allelic polymorphism. The number of alleles per locus varied from three to 10 (mean: 5.74). The observed heterozygosity values varied from 0.40 to 1.00 with
an average of 0.83, while the expected values varied from 0.59 to 0.96 with an average of 0.78. Polymorphism information content (PIC) values ranged from 0.49 to 0.96 (mean: 0.72) (Table 5).

Discussion

Next generation sequencing technologies provide a low cost, labor saving and rapid means of transcriptome sequencing and characterization [44], which enables various functional genomic studies on an organism. Although the 454 Life Sciences (Roche) technology is often used for transcriptome analysis of non-model organisms, it is more expensive than the Illumina technology [45].

Table 2. The top 20 pathways with highest sequence numbers.

Number	Pathway	All genes with pathway annotation (24434)	Pathway ID
1	Metabolic pathways	6,718 (27.49%)	ko01100
2	Biosynthesis of secondary metabolites	2,448 (10.02%)	ko01110
3	Endocytosis	2,112 (8.64%)	ko04144
4	Glycerophospholipid metabolism	1,974 (8.08%)	ko0564
5	Ether lipid metabolism	1,853 (7.58%)	ko0565
6	Plant-pathogen interaction	1,319 (5.4%)	ko04626
7	Plant hormone signal transduction	1,111 (4.55%)	ko04075
8	RNA transport	1,058 (4.33%)	ko03013
9	Spliceosome	894 (3.66%)	ko03040
10	Starch and sucrose metabolism	869 (3.56%)	ko00500
11	Purine metabolism	697 (2.85%)	ko02300
12	mRNA surveillance pathway	665 (2.72%)	ko03015
13	Pyrimidine metabolism	637 (2.61%)	ko02400
14	Protein processing in endoplasmic reticulum	602 (2.46%)	ko01410
15	Pentose and glucuronate interconversions	535 (2.19%)	ko00040
16	Ubiquitin mediated proteolysis	503 (2.06%)	ko04120
17	Ribosome	462 (1.89%)	ko03010
18	RNA polymerase	431 (1.76%)	ko03020
19	Ribosome biogenesis in eukaryotes	426 (1.74%)	ko03008
20	RNA degradation	426 (1.74%)	ko03018

doi:10.1371/journal.pone.0084105.t002

Table 3. Summary of SSR searching results.

Searching Item	Numbers
Total number of sequences examined	63,954
Total size of examined sequences (bp)	43,395,361
Total number of identified SSRs	4,800
Number of SSR containing sequences	4,413
Number of sequences containing more than 1 SSR	357
Number of SSRs present in compound formation	164
Mono-nucleotide	1,313
Di-nucleotide	1,278
Tri-nucleotide	1,994
Tetra-nucleotide	39
Penta-nucleotide	66
Hexa-nucleotide	110

doi:10.1371/journal.pone.0084105.t003

Table 4. Length distribution of SSRs based on the number of repeaters.

Number of repeaters	mono-	Di-	Tri-	Tetra-	Penta-	Hexa-	Total
4	-	-	-	57	94	151	
5	-	-	1,275	34	9	10	1,328
6	-	446	481	5	0	2	934
7	-	284	208	0	0	3	498
8	-	202	21	0	0	0	223
9	-	145	3	0	0	0	148
10	-	119	0	0	0	0	119
11	-	76	2	0	0	0	80
12	604	4	0	0	0	0	608
13	305	0	1	0	0	0	306
14	169	0	0	0	0	0	169
15	108	0	0	0	0	0	108
16	38	0	1	0	0	0	40
17	21	0	0	0	0	0	21
18	3	0	1	0	0	0	4
19	7	0	0	0	0	0	7
20	58	0	1	0	0	0	59

doi:10.1371/journal.pone.0084105.t004
using short reads has received attention [47]. In this study, we
demonstrated a strategy for de novo assembly of a transcriptome
using short reads for a non-model medicinal plant, *H. cordata*, for
which sequence data is very limited in the public databases at
present. We showed that assembly program parameters and
sequence quality have a significant effect on the assembly output.
Although the length of contigs were often less than 500 bp, the
Illumina sequencing solution was reliable, such as the average
contig size of sesame was less than 200 bp [48], whitefly was only
40 bp [49], sweet potato was 202 bp [50]. Compared with these
reports, the assembled contigs in this study was quite long
(253 bp). This suggested that the coverage was relatively high.
Greater N50 and average lengths are considered indicative of a
better assembly. Here, the N50 length of the unigenes was
1,051 bp and the average length was 679 bp, which suggests that
the relatively short reads from Illumina paired-end sequencing for
this non-model organism have been effectively and accurately
assembled.

Illumina sequencing yielded 56.67 million paired-end reads for
H. cordata. The 63,954 unigenes produced here may be useful for
further research into *H. cordata* functional genomics. Of the *H.
cordata* unigenes, 39,982 (62.52%) showed homology to sequences
in the Nr database. Comparatively, in *Epimedium sagittatum* [51],
whitefly [49], sweet potato [50] and sesame [48], only 38.50%,
16.20%, 46.21% and 54.03% of the unigenes, respectively, had
homologs in the Nr database. The average unigene length in our
dataset, and in the four studies mentioned above. The higher
percentage of hits found in this study was partially a result of the
increased number of long sequences in our unigene database; the
results for whitefly [49] and sesame [48] support this conclusion.
Homologs in other species were not found for 18.3% of the unique
sequences. Specifically, only 29.28% of the unigenes shorter than
300 bp showed matches, meaning that 70.72% produced no hits
(Fig. 3). These shorter sequences may lack a characterized protein
domain, or they may contain a known protein domain but the
query sequence is too short to show sequence matches, resulting in
false-negative results. Additionally, little genomic and transcriptomic
information is currently available for *H. cordata*, and
consequently, many *H. cordata* lineage-specific genes might not be
included in current databases.

Both gene annotation and KEGG pathway analyses are useful
for predicting potential genes and their functions at a whole-
transcriptome level. In the *H. cordata* transcriptome, the
dominant gene clusters are involved in the cellular process and
metabolic process categories of the biological process GO domain,
the cell and cell part categories of the cellular component domain,
and antioxidant activity and binding categories of the molecular
function domain. Similar results were found in sesame [51] and
whitefly [49]. However, in the chickpea transcriptome, the
sequences were found to be mainly involved in protein metabolism
(biological process) and transferase activity (molecular function)
[52]. This suggests remarkable differences among different species
of plants.

KEGG analysis showed that 24,434 sequences were involved in
128 known metabolic or signaling pathways, including endocyto-
sis, plant hormone signal transduction and plant-pathogen
interaction. *H. cordata* is one of the most important medicinal
plants and is rich in secondary metabolites, which makes it a very
important target for genomic studies. In this study, 2,448 (10.02%)
sequences of *H. cordata* were associated with biosynthesis of
secondary metabolites (Table 2). These results may be useful for
further investigation of gene function in the future.

The large number of sequences generated for *H. cordata* in this
study for the first time provides valuable sequence information at
the transcriptomic level for screening of novel functional genes, or
for investigation of molecular mechanisms.

SSR markers play an important role in genetic diversity
research, population genetics, linkage mapping, comparative
genomics, and association analysis [38,53]. Previously, genetic
diversity analysis of *H. cordata* germplasm was restricted to AFLP
[37], ISSR [4], PCR-RFLP [30] and RAPD markers [31]. One of
the main reasons for this was the lack of a genome sequence or
transcriptome information for *H. cordata*. Our results have resolved
this problem and enabled development of SSR markers for this
species. In the present study, 4,800 perfect microsatellites
exceeding 12 bp were identified from the *H. cordata* dataset, and
119 motif sequence types were identified. If mono-nucleotide
Table 5. Characterization of 43 SSRs in *H. cordata*.

Primer	SSRs	Forward primer (5'-3')	Reverse primer (5'-3')	No. of alleles	Observed heterozygosity (Ho)	Expected heterozygosity (He)	Polymorphism information content (PIC)
HM_1	(TGA)5	GAAGCTTAAAGGAGTGAGGCTG	CAGTAAAGGTTGTCGAAAGGTC	3	1.00	0.59	0.49
HM_2	(AGA)6	GAAGGACGTGAGAGAAATCCTGA	CCCCCCTCCTGCTCCTCCTCTT	7	1.00	0.86	0.84
HM_3	(AC)7	AAGATGGATTGCATCAACAGC	AGAGCTCGGCAAAATATAGCTTG	6	0.89	0.93	0.93
HM_4	(AGA)5	CGACAGCATGAGGAGGCTT	GAGGCCCCACCATCCTTC	4	1.00	0.71	0.63
HM_5	(AG)10	AAGGGGAAGAGAAGAAAGAGAG	CCAATTTAAAGCTACTGGTCTG	6	1.00	0.84	0.79
HM_6	(CTC)5	CTACAAACCCCTCCCTCCAAAAT	GACAGGCGAGAGAGGATTTG	8	0.60	0.79	0.68
HM_7	(GCT)5	CTCGTTGGGAAAGCTCTG	CGCTATTATAGGAGGATTACTT	5	0.91	0.90	0.89
HM_8	(TCC)5	CAGTCTGGTGAGCTATCTGTG	CAAATGGTAGTGAGGAGAAAC	4	1.00	0.73	0.66
HM_9	(TGA)6	CTGCTGTAGTCGTGATAATCTCT	GACAGGCTCTGATCTCAGAG	7	1.00	0.79	0.75
HM_10	(AG)6	TATGTGTATATAATTACGGACG	TTCCTCCAATATGTGGGTATAA	8	0.67	0.80	0.72
HM_11	(TGG)5	GGGCAGGCTGTTGTAGTCT	CAAAGAGAAGCTGGGAGGGT	10	0.65	0.82	0.73
HM_12	(TCT)6	CAGTCTTCCATCTTTGTCTGA	GAGTGTGATGAAATGCTCTTCTC	4	1.00	0.76	0.70
HM_13	(TGA)7	GAGCACTGACCTTAAAAGGATG	TACAAACAAAGAATTACCATGTCG	4	1.00	0.75	0.68
HM_14	(TA)7	CATGCTCAAGCTCATGTAGCAT	ATTTGGGATAGGCTGAGCTA	5	0.80	0.69	0.65
HM_15	(CT)6	ACCATCTCCCTGCTCCCAAC	GGAAGTAAAGGCTGAGAGGCTT	8	1.00	0.89	0.84
HM_16	(GQG)6	AGTGAATCCTCTTCCTGGGTA	GAGCACTGAGCTAGCTACAG	7	0.63	0.82	0.65
HM_17	(TCT)5	GAGTGAAGTGGTTCTGTGAGG	CCACAGACAAAATAACACCA	6	1.00	0.85	0.80
HM_18	(ACT)5	AATGGAAGCAGCTAATCTCTT	CTAAGCTCGAATGAGGTCTC	6	0.54	0.65	0.63
HM_19	(CCA)5	CCTCTCTCTCTTTGAGGGG	GTGTCGGGCTCTTATTTTCA	4	0.58	0.96	0.96
HM_20	(TCA)5	TCAGTATGTTAGTCTCTTCCTCC	CTGTTAAACAGAGCTATGCTC	7	0.88	0.79	0.78
HM_21	(GAR)8	AAATAGAGTACACGGCCCCAAA	CTTTGGATTCTTTGCTGACTTT	8	0.64	0.83	0.76
HM_22	(TCT)5	TCTGCTGTTCTCCCTCTATT	GTCTTTACAGAGATCCGCTTGTC	4	0.50	0.67	0.62
HM_23	(TCT)6	AACTCAGAACGCAAACACACAT	ACTACGTGTTCTAGGCGGGGAG	4	1.00	0.68	0.60
HM_24	(GAA)5	AAATTTTAAACAGCAATTCCTCCG	TCCTCTTCCTGCTAAGGGTCTC	4	1.00	0.65	0.57
HM_25	(GCC)6	AAGGAGTCCCTCTGGAATCGTAC	ACCACAAACAGAACGGATTC	7	0.40	0.61	0.52
HM_26	(CT)7	TCTCTCTGTCCTGACTAGCTCTT	TCTGTCCAAAGCTTCCTCCCTC	8	0.67	0.76	0.65
HM_27	(GAR)8	ATCAAGAGCTGACTGTTACATCG	TTGTCAACACTGGAAATCA	5	0.60	0.80	0.73
HM_28	(GGA)5	GGTCTACGGGCAAACAGATAGC	CGATCTCTCAGCTTCAAAA	7	0.59	0.80	0.71
HM_29	(AT)8	CTGAGCAGATGGGGTGTTTTT	GTAAGGAGCTAAATACTGTGGC	4	1.00	0.73	0.66
HM_30	(CTC)5	AGATCCGCCAAGGAAAAGCAGCA	AGTCACTGTTGAGAAAGGCAAG	4	1.00	0.75	0.68
HM_31	(GCCCA)4	GGCGTAGGCTGTAGAAGAAGATAC	TAGTTCCAACCTTGAGGTGAAT	5	0.75	0.63	0.59
HM_32	(TGT)7	GTAGCAGAAGAGAGATAGGGG	TCACAAAGAAACAACGACCAA	8	1.00	0.87	0.82
HM_33	(TCC)5	GTCAAGTTGACGGAGGCTAATC	CTCTGCTGAGGAGGATAGT	6	0.68	0.78	0.76
HM_34	(GAA)7	GACGCAATGTAACCCCCTAATA	ATGTCTCCTACTGGGTCTCAT	5	0.52	0.71	0.64
repeats were excluded, di-nucleotide repeats were the most abundant type, followed by tri- nucleotide repeats, which is consistent with previous reports [54–57]. The fact that the most abundant di- and tri-nucleotide motifs were AG/TC and AAG/ TTC, respectively, was also coincident with previous reports on other species of plants [54–56].

In this study, 48 (96%) of the primer pairs designed from the unigenes successfully yielded high-quality amplicons. These results suggested that the unigenes were suitable for specific primer design, that the assembled unigenes were of high quality, and that the SSRs identified from our dataset could be useful in the future. Five primer pairs produced products that deviated from the expected size, which might have been caused by the presence of introns [51,58,59], large insertions or repeat number variations, or a lack of specificity [51]. The failure of two primer pairs to produce amplicons might have been because of the primer(s) being located across splice sites, large introns, chimeric primer(s), poor-quality sequences, or assembly errors [51,59].

The 43 primer pairs in our dataset were used to investigate polymorphisms in 30 individuals of *H. cordata* from 15 populations located across the natural distribution of the species in 13 provinces of China. The results indicated that the level of polymorphism was relatively high, which was also coincident with previous reports using ISSR [4], RAPD [31] and RAMP markers [60]. Since we identified other SSRs in our dataset, more PCR primers could be developed that would be very useful in germplasm polymorphism assessment, quantitative trait loci mapping [61], comparative genomics [62], functional genomics and proteomics studies.

Conclusions

In this study, we have analyzed the transcriptome of *H. cordata* using high-throughput Illumina paired-end sequencing. We obtained 39,982 sequences and demonstrated some important features of the *H. cordata* transcriptome through gene annotation and KEGG pathway analysis. In addition, we identified reliable genetic markers in the form of 4,800 SSRs. Fifty primer pairs were randomly selected to detect polymorphism among 30 *H. cordata* accessions, and 43 (86%) of these primer pairs successfully amplified fragments, revealing abundant polymorphisms. The SSR markers developed in this study can be used for construction of high-resolution genetic linkage maps and to perform gene-based association analyses in *H. cordata*. This is the first application of Illumina paired-end sequencing technology to investigate the whole transcriptome of *H. cordata* and to assemble RNA-seq reads without a reference genome. This study will provide useful resources and markers for functional genomics and proteomics research on *H. cordata* in future.

Materials and Methods

Plant materials and RNA extraction

H. cordata, whose seeds came from national forest park of Zhong Po Mountain in Huaihua City of Hunan Province, was grown in the experimental station of the Department of Life Sciences, Huaihua University, Huaihua, China. The individuals have 18 chromosomes and diploid karyotype (Fig.7). Flower, leaf, stem and rhizome tissues were harvested 14 weeks post planting, because *H. cordata* was planted in spring, and their flowers began to open after 14 weeks. All of the samples were immediately frozen in liquid nitrogen and stored at −80°C until use.

Total RNA was isolated using the TRIzol reagent according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA).
It was treated with RNase-free DNase I (Worthington, Lakewood, CO, USA) for 30 min at 37°C to remove any residual DNA. The quality and quantity of each RNA sample was determined by biophotometer (Eppendorf, Germany). Only those RNA samples with an A$_{260}$/A$_{280}$ ratio from 1.9 to 2.1 and an A$_{260}$/A$_{230}$ ratio from 2.0 to 2.3 were used for the analysis. A total of 20 μg of RNA was equally pooled from the four different tissues for cDNA library preparation.

cDNA library construction and sequencing

Beads with oligo(dT) were used to isolate poly(A) mRNA after total RNA was collected from the samples. Fragmentation buffer was added to disrupt the mRNA into short fragments. Taking these short fragments as templates, random hexamer primers were used to synthesize first-strand cDNA. Second-strand cDNA was then synthesized using buffer, dNTPs, RNase H and DNA polymerase I. The short fragments were purified with a QiaQuick PCR extraction kit and resolved with EB buffer for end reparation and A tailing. The short fragments were then connected with sequencing adapters. After agarose gel electrophoresis, suitable fragments were selected for PCR amplification as templates. The cDNA library was sequenced on an Illumina HiSeq2000 sequencing platform.

Data filtering and de novo assembly

The raw reads were cleaned by removing adapter and low-quality sequences, because sequencing errors can create difficulties for the short-read assembly algorithm. We therefore carried out a stringent filtering process. Firstly, we discarded all reads with adaptor contamination. Secondly, we ruled out low-quality reads with ambiguous sequences “N”. Thirdly, the reads with more than 10% Q<20 bases were also removed. De novo transcriptome assembly was carried out with the short reads assembly program in the Trinity software [42]. Contigs were created by combining reads that had a certain length of overlap. The reads were then mapped back to the contigs; with paired-end reads we were able to detect contigs from the same transcript as well as the distances between the contigs. The contigs were connected using the Trinity software to get sequences that could not be extended at either end. Such sequences were defined as unigenes. These unigenes were further processed by sequence splicing and redundancy removal using the TGICL software (Version 2.1) [63] to acquire non-redundant unigenes that were as long as possible. After gene family clustering, the unigenes could be divided to two classes. One was clusters, including unigenes that were >70% similar to each other; the other was singletons. In the final step, the sequence direction of the unigenes was determined.

Function annotation

The unigenes were first aligned to sequences in the NCBI Nr and Swiss-Prot protein databases with an E-value $<10^{-5}$ using BLASTx. Unigenes that did not have homologs in the databases were scanned using ESTScan (Version 3.0.2) [43]. Blast2GO (Version 2.5.0) [64] was used to obtain GO annotations for the unigenes based on BLASTx hits against the NCBI Nr database with an E-value threshold of $<10^{-5}$. WEGO [65] was used for GO functional classification of all unigenes and to plot the distribution of the *H. cordata* gene functions. The unigene sequences were also aligned to the COG database to predict and classify their functions. Pathway assignments were carried out based on the KEGG database [66], which contains a systematic analysis of inner-cell metabolic pathways and the functions of gene products.

Simple sequence repeat marker discovery and primer design

A microsatellite program (MISA; http://pgrc.ipk.gatersleben.de/misa/) was used to identify and localize microsatellite motifs. We searched for all types of simple sequence repeats (SSRs) from mononucleotide to hexanucleotide using the following parameters: at least 12 repeats for mono-, six repeats for di-, five repeats for tri- and tetra-, and four repeats for penta- and hexa-nucleotide simple repeats. Primer pairs were designed using the software Primer 3-2.2.2. The major parameters for primer design were set as follows: primer length of 18–25 bases (optimal 21 bases), PCR product size of 80–200 bp (optimal 100–150 bp), GC content of 40–60% (optimal 50%), and DNA melting temperature of 57–64°C (optimal annealing temperature 55–59°C).

Survey of SSR polymorphism

Thirty individuals of *H. cordata* from 15 populations located across the natural distribution of the species in 13 provinces of China (Table S3) were selected for polymorphism investigation with the SSRs. Leaf samples were collected, dried and preserved in silica gel until DNA extraction. Genomic DNA was extracted from the leaves of each individual using the CTAB protocol [67], dissolved in double distilled water, and quantified using agarose gel electrophoresis. The DNA concentration was calculated according to DNA standards. PCR amplification was performed in 16 μL reaction mixtures. Each reaction contained 0.2 μL *Taq* DNA polymerase (0.5 U/μL), 2.5 μL PCR buffer, 1.5 μL MgCl$_2$,

![Figure 7. The number of chromosomes and karyotype of *H. cordata*.](doi:10.1371/journal.pone.0084105.g007)
(25 mmol/L), 0.5 μL dNTPs (2.5 mmol/L), 0.4 μL each primer (10 pmol/L), 2.0 μL template DNA (50 ng/μL), and 0.5 μL sterilized H2O. The temperature profiles were: initial denaturation at 94°C for 3 min, 35 cycles of denaturation at 94°C for 30 s, annealing at the optimal temperature of each primer pair for 30 s, and extension at 72°C for 45 s. Final extension was at 72°C for 5 min, and then samples were held at 4°C. After PCR amplification, 6 μL aliquots of the amplified PCR products were loaded onto an 8% polyacrylamide gel. After 3–4 h of electrophoresis (250 V), the gels were stained with silver nitrate (silver staining). Perfectly amplified loci were tested for polymorphism by genotyping 30 individuals of H. cordata. The genetic diversity and mean allele number were calculated using Popgene version 1.32 [68]. Polymorphism information content (PIC) was derived according to the following formula:

\[
PIC = 1 - \sum_{i=1}^{n} p_i^2 - \sum_{j=1}^{n} \sum_{i=1}^{n} 2p_i^2 p_j^2
\]

where \(n\) is the number of alleles at one locus; \(p_i\) and \(p_j\) are the frequencies of the \(i\)th and \(j\)th alleles at one locus; \(j = i + 1\).

References

1. Liang HX (1995) On the evolution and distribution in Saururaceae. Acta Bot Yunnanica 17: 255-267.
2. Fang WP (1991) Flora Sichuanica. Chengdu: Sichuan People Press. 126–127p.
3. Tseng YC (1982) Floraese Repubicae Popularis Sinicae. Beijing: Science Press. 9p.
4. Wei L, Wu XJ (2012) Genetic Variation and Population Differentiation in a Medical Herb Houttuynia cordata in China Revealed by Inter-Simple Sequence Repeats (ISSRs). Int J Mol Sci 13: 8159-8170.
5. Yang L, Gu X, Cheng L, Yuan Q, Li Y, et al. (2010) Adverse events to Houttuynia injection: A systematic review. J Evid Based Med 3: 168-76.
6. Wu W, Zheng YL, Chen L, Wei YM, Yan ZH (2005) Genetic diversity among populations of the germplasm resources of the genus Houttuynia Thunb. in China based on RAMP markers. Genetic Resources and Crop Evolution 52: 473-482.
7. Lu HM, Liang YZ, Yi LZ, Wu XJ (2006) Anti-inflammatory effect of Houttuynia cordata leaf extract against Hymenolosia diminuta in experimentally infected rats. J Parasit Dis 35: 190-194.
8. Hu L, Wu X, Liang Y, Zhang J (2006) Variation in chemical composition and antibacterial activities of essential oils from two species of Houttuynia cordata Thunb. Chem Pharm Bull 54: 936-940.
9. Liu GS, Liu LX, Liu J, Liu J, Han DY, et al. (2008) Biological and antibacterial activities of the natural herb Houttuynia cordata water extract against the intracellular bacterial pathogen salmonella within the RAW 264.7 macrophage. Biol Pharm Bull 31: 2012-2017.
10. Hayashi K, Kamiya M, Hayashi T,(1995) Virucidal effects of the steam distillate of Houttuynia cordata Thunb. leaves against HCMV. J Antimicrob Chemother 36: 917-922.
11. Kim GS, Kim DH, Lim JJ, Lee JJ, Han DY, et al. (2008) Biological and antibacterial activities of essential oils from two species of Houttuynia cordata. J Ethnopharmacol 117: 34-40.
12. Hayashi K, Kamiya M, Hayashi T,(1995) Virucidal effects of the steam distillate of Houttuynia cordata Thunb. leaves against HCMV. J Antimicrob Chemother 36: 917-922.
13. Chen X, Wang Z, Yang Z, Wang J, Xu Y, et al. (2011) Houttuynia cordata blocks HSV infection through inhibition of NF-κB activation. Antiviral Res 92: 171-176.
14. Yin J, Li G, Li J, Yang Q, Ren X (2011) In vitro and in vivo effects of Houttuynia cordata on infectious bronchitis virus. Avian Pathol 40: 491-498.
15. Liu FS, Shu H, Shi YJ, Liu Y, Jin YH, et al. (2010) Pharmacodynamic experiments of the antiviral effects of Houttuynia cordata on influenza virus in mice. Yao Xue Xue Bao 47: 399-402.
16. Zhou NN, Tang J, Chen WD, Feng G, Xie BF, et al. (2012) Houttuyninum, an active constituent of Chinese herbal medicine, inhibits phosphorylation of HER2/erbB2 receptor tyrosine kinase and the tumor growth of HER2/neu-overexpressing cancer cells. Life Sci 90: 770-775.
17. Liu KC, Chiu VJ, Tang YJ, Lin KL, Chiang JH, et al. (2010) Houttuynia cordata Thunb. extract inhibits cell growth and induces apoptosis in human primary colorectal cancer cells. Anticancer Res 30: 3549-3556.
18. Chen YY, Liu JJ, Chen CM, Chao PY, Chang TJ (2003) A study of the antioxidative and antimutagenic effects of Houttuynia cordata Thunb. using an oxygen-feeding aged model. J Nutr Sci Vitaminol 49: 327-333.
19. Toda S (2005) Antioxidative effects of polyphenols in leaves of Houttuynia cordata on protein preservation by copper-hydrogen peroxide in vitro. J Med Food 8: 269-268.
20. Li GZ, Chai OH, Lee MS, Han EH, Kim HT, et al. (2005) Inhibitory effects of Houttuynia cordata water extracts on anaphylactic reaction and mast cell activation. Biol Pharm Bull 28: 1864-1868.
21. Lee JS, Kim IS, Kim JH, Kim JS, Kim DH, et al. (2008) Suppressive effects of Houttuynia cordata Thunb. on Th2 immune response. J Ethnopharmacol 117: 34-40.
22. Li W, Zhou P, Zhang Y, He L (2011) Houttuynia cordata, a novel and selective COX-2 inhibitor with anti-inflammatory activity. J Ethnopharmacol 133: 922–927.
23. Kim D, Park D, Kyung J, Yang VH, Choi EK, et al. (2012) Anti-inflammatory effects of Houttuynia cordata extract in carrageenan-air pouch inflammation model. Lab Anim Res 28: 137–140.
24. Shin S, Joo SS, Jeon JH, Park DS, Jiang MJ, et al. (2010) Anti-inflammatory effects of a Houttuynia cordata supercritical extract. J Vet Sci 11: 273–275.
25. Miyata M, Koyama T, Yawata K (2010) Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. J Nutr Sci Vitaminol 56: 150-156.
26. Wang D (2012) Study on Highly Effective Cultivation Techniques of Houttuynia cordata Thunb in Cold Alpine Region. Horticulure & Seed 21: 57-60,75.
27. Wu XJ (2011) Study on germplasm and planting standard operation procedures of Houttuynia cordata Thunb. Beijing: Science Press. 88p.
28. Wang XP, Ye MR, Yang AZ, Sun Z, Zhang J (2012) Moisture gradient affects the growth and physiological characteristics of Houttuynia cordata. Guilin 32: 107–112.
29. Lin MZ, Cai YF, Ma Y, Tina HQ (2011) Phytotoxicity studies on plants of Houttuynia cordata. Chinese Pharmaceutical Journal 46: 1711–1714.
30. Wu W, Zheng YL, Chen L, Wei YM, Yan ZH, et al. (2005) PCR-RFLP analysis of cpDNA and mtDNA in the genus Houttuynia in some areas of China. Hereditas 142: 1-9.
31. Wu W, Zheng YL, Chen L, Wei YM, Yan ZH, et al. (2002) RAPD analysis on the germplasm resources of herba Houttuynia. Acta Pharm Sin 37: 896–902.
32. Feng C, Chen M, Xu GJ, Bai L, Yin XR, et al. (2012) Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq. BMC Genomics 13: 19.
33. Fu BD, He SP (2012) Transcriptomic Analysis of Silver Carp(Hypophthalmichthys molitrix) by Paired-End RNA Sequencing. DNA Res 19: 1-12.
34. Brautigam A, Mullick T, Schilsky S, Weber ADM (2011) Critical assessment of assembly strategies for non-model species mRNA-Seq data and application of next-generation sequencing to the comparison of C(5) and C(4) species. J Exp Bot 62: 3093-3102.
35. Hahn DA, Ragland GJ, Shoemaker DD, DeLingher DL (2009) Gene discovery using massively parallel pyrosequencing to develop ESTs for the flesh fly Sarcophaga crassipalpis. BMC Genomics 10: 234.
36. Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lactobacillus japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics 11: 472.
37. Li XY, Wei L, Wu XJ, Rao LQ (2010) Analysis on genetic diversity of different geographical populations of Houttuynia cordata. Chinese Traditional and Herbal Drugs 41: 283-288.

Supporting Information

Table S1 The statistics and annotations of unigenes. (XLS)
Table S2 The KEGG pathways. (XLSX)
Table S3 30 individuals of H. cordata examined in the simple sequence repeat (SSR) analysis. (XLSX)

Acknowledgments

We thank the anonymous referees and the editor for their comments and suggestions that helped improve the manuscript.

Author Contributions

Conceived and designed the experiments: LW XW. Performed the experiments: DW JW. Analyzed the data: S. Li S. Liu. Contributed reagents/materials/analysis tools: AH YT. Wrote the paper: LW XW.
52. Rohini G, Ravi K, Akhilesh K, Tyagi, Mukesh J (2011) De Novo Assembly of

51. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, et al. (2010) Development of a EST dataset

47. Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, et al. (2009)

46. Schuster S.C (2008) Next-generation sequencing transforms today’s biology.

45. Vera JC, Wheat CW, Fescheny HW, Frilander MJ, Crawford DL, et al. (2008)

44. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing

42. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-

40. Wang XL, Chang CR, Song JX, Zou JN (2012) Analysis in different germplasms

39. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

38. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, et al. (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for
germplasm analysis. Mol Genet 11: 225–238.

37. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

36. Kim YH, Hwang HS, Yang H, Park S, et al. (2012) Development of a EST database

35. Liu Y, Huang YH, Sun HB, Feng JC, Zhang SX, et al. (2012) Analysis of SSR

34. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

33. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

32. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

31. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

30. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

29. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

28. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

27. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

26. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

25. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

24. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

23. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

22. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

21. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

20. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

19. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

18. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

17. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

16. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

15. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

14. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

13. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

12. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

11. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

10. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

9. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

8. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

7. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

6. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

5. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

4. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

3. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

2. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

1. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax

0. Zhang J, Yang W, Cui X, Yu H, Jin H, et al. (2011) Breeding strains of Panax