Method Development for Determination of EDTA in Water by Using Traditional Split/Splitless Injector – Comparing External and Internal Standard Methods of Quantification

Pavel Kuran 1, Dominik Pilnaj 1, Magdalena Dzurkova 2, Martin Smaha 2

1 Faculty of Environment, University of Jan Evangelista Purkyne, Kralova Vysina 7, 400 96 Usti nad Labem, Czech Republic
2 Faculty of Science, University of Jan Evangelista Purkyne, Ceske Mladeze 8, 400 96 Usti nad Labem, Czech Republic

e-mail: pavel.kuran@ujep.cz

Abstract. Ethylenediaminetetraacetic acid (EDTA) has increasing potential as an environmentally hazardous material. Although EDTA exhibits relatively low acute toxicity, it has been found to be cytotoxic and weakly genotoxic in laboratory animals. In addition, oral exposures can cause reproductive and developmental effects. EDTA is commonly used in wood industry, pulp and paper industry, textile industry, cement industry and food industry. It is also widely used in laundry applications in order to reduce the water hardness and in many cleaning solutions.

Due to chemical properties of EDTA (polarity, relatively good solubility in water and chelating ability towards metal ions) it cannot be efficiently removed on common water treatment plants. As a result, the EDTA can be observed in the aquifer downstream near the outputs from water treatment plants of larger industrial entities. Therefore, the reliable monitoring of EDTA in water samples is of great importance. Commonly, the chromatographic methods are used for EDTA analysis with dominance of liquid chromatography coupled with UV-VIS or MS detectors. However, these methods suffer often from the lack of sensitivity towards EDTA at ppt levels. The combination of gas chromatography with high resolution MS can offer significantly lower detection limits (units of ug/l) as well as powerful identification tool. However, the derivatization of EDTA is required when GC-MS is being used. In addition, according to the Czech standard for EDTA determination the Programmed Temperature Vaporising (PTV) injector or cool on-column injection are recommended. In our paper we report on the GC-MS method development for determination of EDTA in water by using traditional split/splitless injector. We compare the external and internal standard methods of EDTA quantification for several different internal standards. The developed method was applied to analysis EDTA in real aqueous samples.

1. Introduction

The monitoring of EDTA in environmental samples is of growing interest due to increasing applications of EDTA in many industrial branches. It is widely used in wood industry, pulp and paper industry, textile industry, cement industry and food industry [1]. Significant amount of EDTA is also used in laundry applications in order to reduce the water hardness and in many cleaning solutions. [1, 2, 3]. However, the chemical properties of EDTA especially polarity, relatively good solubility in water and chelating properties cause the removal of EDTA on common water treatment plants to be difficult [4, 5]. For effective removal of EDTA the pH of treated water must be higher than 8 and longer retention times of
treated water in the plant are required (more than 12 days) [6,7]. As a result, EDTA is only poorly
degraded in traditional wastewater treatment plants. Synergy of these effects results in occurrence of
EDTA in surface water as anthropogenic compound at significant concentration levels (hundreds of
µg/l). The main environmental hazards of EDTA consist in possible mobilization of heavy and
radioactive metals from sediments under specific conditions [2]. In addition, the molecule of EDTA
might be a source of bioavailable nitrogen or can carry chelated phosphate [1, 2]. This way, the EDTA
can indirectly cause eutrophication. The free molecule of EDTA is able to disrupt cellular division or
cause necrosis in photosynthetic plants due to withdrawal of essential metals. It is also hard to be
removed from the drinking water due to its hydrophilic character. Moreover, the products of EDTA
degradation may support microbial growth [1, 2].

The determination of EDTA in water is commonly carried out by chromatographic methods with
dominance of liquid chromatography coupled with UV-VIS or MS detectors. However, these methods
are suitable for analysis of EDTA mostly at mg/l levels. The combination of gas chromatography with
high resolution MS equipped with Programmed Temperature Vaporizing (PTV) injector or cool on-
column injection enables to achieve significantly lower detection limits (units of µg/l) for analysis of
derivatized EDTA samples. [8, 9, 10, 11]

In this paper, we report on the GC-MS method development for determination of EDTA in water by
using traditional split/splitless injector. We tested the external and internal standard methods of EDTA
quantification using several internal standards – polyaromatic hydrocarbons, 1-chlorotetradecane, 1,2-
diaminopropane-N, N, N',N'-tetraacetic acid (1,2-PDTA) and beta-alanindiacetic acid. The developed
method was applied to analysis of EDTA in real aqueous samples.

The main aim of this work was to examine the applicability of traditional split/splitless injector in
GC-MS system for EDTA determination as tetrabutylester derivate and validate the overall method for
determination of EDTA in water by GC-MS with split/splitless injector.

2. Experimental work

Procedure for sample treatment was based on EN ISO 16588:2003[11] with small modifications. All
water samples were preserved by addition of formaldehyde (1:100) in situ and immediately filtrated.
After transport to the laboratory, the samples were diluted and internal standard of 1,2-PDTA or beta-
alanindiacetic acid was added. This aqueous solution was evaporated to dryness under N2 atmosphere
at 90°C, acidified by 1 ml of 1M HCl and dried again. 2 ml of esterification agent (acetyl chloride,
butanol 1:9) were pipetted to the dry residue and heated for 1 hour in closed vial at 90 °C. After the vials
cooled down to the laboratory temperature, hexane with internal standard (16 PAHs or 1-
chlorotetradecane) was added, the solution was transferred to 50 ml volumetric flask with 1 ml of 1M
NaOH and filled with deionized water. After 2 minutes of vigorous shaking, the organic phase was
pipetted into 4 ml vial with 0.5 g of anhydrous sodium sulphate to get the rid of the residual water. After
3 minutes of shaking, the solution was transferred to 2 ml vials and got ready to GC-MS analysis.

Calibration series of EDTA concentrations ranging between 5 - 100 µg/l was prepared by diluting
appropriate amount of stock solution in 5 ml of deionized water. These calibration solutions were
handled the same way as samples.

The all GC-MS analyses were done on GC-MS system consisting of gas chromatograph Bruker 456-
GC, ion source Apollo II with atmospheric pressure chemical ionization and mass spectrometer Bruker
compact. GC configuration was following: Autosampler Combi PAL, split/splitless injector heated to
300 °C set to splitless at the first 0.3 min and following split 1:10. Column Rxi-5ms (5% diphenyl, 95% dimethylpolysiloxane) 30 m long with inner diameter 0.25 mm and film thickness
0.25 µm was heated to 105 °C for 1.5 min followed by rate 30 °C/min up to 180 °C, then with rate 10°C
up to 300 °C held for 16 minutes. The helium mobile phase flow was set to constant flow of 1 ml/min. To minimize contact between sample and the liner in injector, pressure pulse 1.2 bar for 0.3 min has been set.

3. Results and discussions
3.1. Elimination of EDTA losses in injector

The CSN EN ISO 16588:2003 recommends cool on-column injection or PTV injector. However, our GC-MS system is equipped only with traditional split/splitless injector. After a few injections of EDTA standard solution, we observed a significant loss of EDTA when using this traditional split/splitless injector with gooseneck standardly deactivated liner with silanized glass wool. Surprisingly, the analysis of PAHs in the same samples was running without any problems or peak shape distortions proving that at least MS system was running well. In our opinion, the loss of EDTA was result of some specific interactions of EDTA in liner with active sites. In order to verify our hypothesis and eliminate this issue, we examined several injection methods (with and without pressure pulse) and types of liners - gooseneck standardly deactivated (Agilent CrossLab 8004-0101) and gooseneck highly deactivated TOPAZ (Restek) with and without silanized glass wool. After optimization process, we found that the best results with no observable loss of EDTA after 100 injections were obtained for pressure pulse injection with single goose neck highly deactivated TOPAZ liner (Restek) without any silanized glass wool in the liner. PAHs were observed in all tested variants. On the basis of obtained results we can state that the application of traditional split/splitless injector for determination of EDTA by GC-MS is possible, but the injector must be free of any active sites with highly deactivated liner TOPAZ (Restek). As it was mentioned above, even silanized glass wool can make the determination of derivatized EDTA impossible.

3.2. Comparison of external and internal standard methods of EDTA quantification

After solving the problems with losses of EDTA in injector the external standard method (ESTD) for determination of EDTA was tested as the first due to its simplicity and economy (no internal standard needed). As it is demonstrated on figure 1, the application of ESTD method for quantification of EDTA was practically impossible due to poor correlation coefficient for ESTD calibration curve (R²=0.762).

![Figure 1. Calibration curve for determination of EDTA – ESTD method](image)
That is why we focused on the development of a reliable internal standard method (ISTD) for quantification of EDTA. We selected four suitable and available internal standards - 1,2-PDTA, PAHs and beta-alanindiacetic acid and 1-chlorotetradecane.

After preliminary experiments with real samples we had to exclude beta-alanindiacetic acid as internal standard due to its presence in the studied samples. The mixture of PAHs as internal standard showed insufficient correction ability of injection errors due to different behaviour in the injection system compared to EDTA. Therefore, PAHs as internal standard were used just for verification of the proper function of analytical MS system. The application of 1-chlorotetradecane as an internal standard was found to be problematic due to its thermal lability at 300°C in the injector. Thus, only the usage of 1,2-PDTA as an internal standard eliminates these random errors effectively and sufficiently due to very similar chemical composition to EDTA and the same behaviour in the injection system as EDTA. The calibration curve for determination of EDTA in water using 1,2-PDTA as an internal standard is shown on figure 2.

![Calibration curve for determination of EDTA – ISTD method with 1,2-PDTA as internal standard](image)

Figure 2. Calibration curve for determination of EDTA – ISTD method with 1,2-PDTA as internal standard

The distinct improvement of calibration curve for EDTA determination by ISTD method in comparison to ESTD method especially regarding the correlation coefficient ($R^2=0.999$) can be seen from the figure 2. Linear response of ISTD calibration curve ranges between 5–100 µg/l.

3.3. **Performance characteristics of ESTD and ISTD methods for EDTA quantification**

The basic performance characteristics e.g. standard deviation (STD), limit of detection (LOD), limit of quantification (LOQ), relative standard deviation (RSD) of ESTD and ISTD methods for EDTA quantification were tested at 20 µg/l level of EDTA in water. LOD with ESTD method was estimated to be 15.9 µg/l and LOQ 53.1µg/l. Correction with ISTD improved the values to 4.0 µg/l for LOD and 13.3µg/l for LOQ respectively. The RSD value for EDTA determination by ESTD method was calculated to be ± 31.0 %. By using optimized ISTD method, the RSD dropped to 3.4 %. On the basis of above mentioned data it is possible to state that the ISTD method using 1,2-PDTA as an internal standard is in all determined characteristics (LOD, LOQ, STD, RSD) better than ESTD method.

3.4. **Analysis of real samples from Labe and Bílina rivers**
The developed ISTD method was used for determination of EDTA in Labe and Bílina rivers. The samples were taken during July 2018 in Ústí nad Labem and processed without dilution in order to achieve low concentration levels of EDTA. Concentration of EDTA in Labe was found to be 202.9 µg/l, Bílina contained 67.3 µg/l.

4. Conclusions
On the basis of obtained results we proved that the application of traditional split/splitless injector for determination of EDTA by GC-MS is possible, but the injector must be equipped with highly deactivated liner TOPAZ without silanized glass wool and free of any active sites. The best results with no observable loss of EDTA after 100 injections were obtained for pressure pulse injection technique.

It was developed a reliable ISTD method for quantification of EDTA in water. We showed that only the usage of 1,2-PDTA as an internal standard eliminates random errors during injection effectively and sufficiently due to very similar chemical composition to EDTA and the same behaviour in the injection system. When comparing ESTD versus ISTD methods we distinctly improved the calibration curve for EDTA determination by ISTD method in comparison to ESTD method especially regarding the correlation coefficient (R^2=0.999 for ISTD versus 0.762 for ESTD). Linear response of ISTD calibration curve ranges between 5–100 µg/l.

The basic performance characteristics e.g. standard deviation (STD), limit of detection (LOD), limit of quantification (LOQ), relative standard deviation (RSD) of ESTD and ISTD methods for EDTA quantification were determined at 20 µg/l level of EDTA in water. LOD with ESTD method was estimated to be 15.9 µg/l and LOQ 53.1 µg/l. Correction with ISTD improved the values to 4.0 µg/l for LOD and 13.3 µg/l for LOQ respectively. The RSD values for EDTA determination were 31.0 % for ESTD method and 3.4 % for optimized ISTD method.

Acknowledgment
This research was supported by Internal Student Grant Agency – Grant No. 4420115208701 of the University of Jan Evangelista Purkyně in Ústínad Labem.

The authors acknowledge the assistance provided by the Research Infrastructure NanoEnviCz, supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2015073.

References
[1] C. Oviedo, J. Rodriguez, “EDTA: the chelating agent under environmental scrutiny”. Quim.Nova 26(6), 901–905, 2003.
[2] D. Kolodynska, „Chelating agents of a new generation as alternative to conventional chelators for heavy metal ions removal from different wastewater“, Expanding issues in desalination, 2001. ISBN: 978-953-307-624-9
[3] V. Kužílek, P. Lochovský, „Influence of the Pardubice-Semtín industrial site on the quality of the Elbe aquatic ecosystems in terms of specific organic pollutants“. Vodohospodářské technicko-ekonomické informace 52(1), 5–8, 2010. (in Czech)
[4] R. Lowe, E. P. Go, G. C. Tong, N. H. Voelcker, G. Siuzdak, “Monitoring EDTA and endogenous metabolite biomarkers from serum with mass spectrometry”. Spectroscopy 19, 137–146, 2005.
[5] A. Mónico, E. Martínez-Senra, F. J. Canada, S. Zorrilla, D. Pérez-Sala, “Drawbacks of dialysis procedures for removal of EDTA”. PLoS ONE 12(1), 1–9, 2017.
[6] P. Ager, W. D. Marshall, “The removal of metals and release of EDTA from pulp wash water”. Journal of wood chemistry and technology 21(4), 2007.
[7] C. G. Ginkel, K. L. Vandenbroucke, C. A. Stroo, “Biological removal of EDTA in conventional activated-sludge plants operated under alkaline conditions”. Bioresource technology 59(2–3), 151–155, 1997.
[7] K. A. Krishnan, K. G. Sreejalekshmi, S. Varghese, T. S. Anirudhan, “Removal of EDTA from aqueous solutions using activated carbon prepared from rubber wood sawdust: kinetic and equilibrium modelling”. CLEAN – Soil, Air, Water 38(4), 2010.

[8] C. Z. Xie, T. Healy, P. Robinson, K. Stewart, “Determination of EDTA in diary wastewater and adjacent surface water”. International Journal of Environmental and Ecological Engineering 2(8), 82–86, 2008.

[9] C. Randt, R. Wittlinger, W. Merz, “Analysis of nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) in water, particularly wastewater”. Fresenius Journal of Analytical Chemistry 346, 728–731, 1993.

[10] ČSN 16588. “Water quality - Determination of six complexing agents - Gas chromatography method”. Czech Standards Institute, 2004. (in Czech)