Towards an exact treatment of exchange and correlation in materials: Application to the “CO adsorption puzzle” and other systems

Qing-Miao Hu,1 Karsten Reuter,1 and Matthias Scheffler1,2

1Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
2Departments of Chemistry & Biochemistry and Materials, UCSB, Santa Barbara, CA 93106, USA

It is shown that the errors of present-day exchange-correlation (xc) functionals are rather short ranged. For extended systems the correction can therefore be evaluated by analyzing properly chosen clusters and employing highest-quality quantum chemistry methods. The xc correction rapidly approaches a universal dependence with cluster size. The method is applicable to bulk systems as well as to defects in the bulk and at surfaces. It is demonstrated here for CO adsorption at transition-metal surfaces, where present-day xc functionals dramatically fail to predict the correct adsorption site, and for the crystal bulk cohesive energy.

PACS numbers: 68.43.Bc,71.15.Mb,71.15.Nc

Electronic structure theory is the base for a multiscale modeling of materials properties and functions (see e.g. Ref. [1]). Obviously, if the needed accuracy is lacking at this base, there is little hope that accurate predictions can be made at any level of modeling that follows. For polyatomic systems, density-functional theory (DFT) with present-day exchange-correlation (xc) functionals has proven to be an excellent technique for calculations at this electronic-structure base. However, it is not as good for certain types of binding interactions. Accurate treatments of strong electronic correlations, van der Waals interactions, and molecular dynamics for electronically excited states represent unsolved challenges. Besides numerical approximations (e.g. the basis set, possible use of the pseudopotential approximation, etc.), that good theoretical work is typically scrutinizing, a satisfying test of the quality of the xc functional was not possible for bigger systems, so far. Sometimes the results obtained with different functionals have been compared, and when they agreed this was taken as indicator for reliability. Though this was the best possible approach, it is neither safe nor justified. Exchange-correlation functionals are typically built on the homogeneous electron gas [the local-density approximation (LDA) [2]], adding corrections while ensuring consistency with known sum rules [e.g. the generalized gradient approximation (GGA) [3], or they are constructed to reproduce certain data of some small molecules (e.g. the B3LYP functional [4]). There is no systematic expansion in terms of successively decreasing errors, and, there is no proof that, e.g. the GGA will always work more trustfully than the LDA. On the other hand, for wavefunction methods, several promising concepts exist for better xc treatments also for extended systems (see Ref. [3,4] and references therein). However, these are not yet efficient, in particular for metals.

It is often argued that the xc error is largely canceled when total-energy differences are studied, and that the xc approximation affects the geometry only by little. However, this is generally not correct. A key example for the xc problem is the low-coverage adsorption of CO at the (111) surface of Pt or Cu, where the LDA as well as the GGA predict that the molecule adsorbs in the threefold-coordinated hollow site. Experiments, on the other hand, show undoubtedly that the adsorption site is in the onefold coordinated top site. Obviously the conclusion based on DFT-LDA/GGA is even qualitatively incorrect; and when comparing the calculated energies of the two sites in question, the error in the energy difference is indeed significant: In the LDA it must be larger than 0.4 eV.

The comprehensive study of CO at Pt(111) by Feibelman et al. [7] set the ball rolling, showing that when properly realizing all technical aspects of the calculations (e.g. basis set, supercell, cluster geometry) the LDA and GGA put the molecule at the wrong adsorption site. For several other close packed transition metal surfaces, including Cu(111), the situation is analogous (e.g. [8]). Shortly after the paper by Feibelman et al. [7] it was realized that the wrong site preference of CO may be related to the fact that DFT-LDA and GGA inaccurately describe the CO-molecule’s chemical bond. This was then expressed in terms of the HOMO-LUMO splitting (the 5σ and 2π* energy levels) or correspondingly the singlet-triplet excitation. An upshift of the one electron 2π* level makes a partial charge transfer from the 5σ to the 2π* orbital more difficult and therefore stabilizes the CO bond. Indeed, such (semi-empirical) upshift brought the CO molecule to the experimentally known site. Thus, the problem appears to be understood (to some degree), but altogether the situation is unsatisfactory. A first-principles theory should provide a reliable answer, and an add-on, that is triggered by a disagreement with experiment, questions the usefulness of the whole self-consistent procedure. We also note that the full correction of the LDA/GGA functional will not just shift the CO 2π* orbital to higher energies; it will also modify the substrate d-states and thereby the substrate-
adsorbate bonding in various terms. Below we will take
the “CO adsorption puzzle” as our main example for a
systematic, non-empirical approach to correct xc errors.
And we will also discuss a fundamentally different case,
namely the bulk cohesive energy.

For small systems (say up to 20-50 atoms) high-level
quantum chemistry methods or the quantum Monte
Carlo approach can be employed to obtain accurate re-
results for the exchange-correlation energy. We will show
that calculations on such small clusters are sufficient to
evaluate the DFT-LDA error of extended systems. We
will concentrate on CO/Cu(111), CO/Ag(111), and Cu
bulk as for these systems relativistic effects are small.
We use accurate full-potential augmented plane wave
(LAPW/APW+lo) DFT calculations [14] with LDA [2]
and GGA [3] functionals to calculate the CO adsorption
energies with a numerical uncertainty of ±0.02 eV [15].
Supercells with relaxed, symmetric five layer slabs are
employed to model the low-coverage adsorption at 1/9
monolayer on the extended surface. In good agreement
with previous studies [8,12,13], we obtain the fcc hol-
low site to be more stable than the correct top site (by
0.33 eV within the LDA, by 0.11 eV within the GGA).

Our approach works as follows (we are using here DFT-
LDA as the starting point, but, of course, one could as
well start with other functionals, e.g. DFT-GGA):

1. Do supercell calculations for the extended system
using DFT-LDA.

2. Do cluster calculations with the same functional
and same geometry as in step 1. It may be convenient
to saturate the cluster surface by hydrogen adatoms, but
there is in principle no need to do so.

3. Do corresponding calculations for exactly the same
cluster as in step 2, but using an improved xc treatment.
This may employ the B3LYP functional, or Hartree-Fock
(HF) plus Møller-Plesset perturbation theory (MP2), a
coupled-cluster, or a quantum Monte Carlo calculation.

The difference of the results of steps 3 and 2, i.e.

\[E^{\text{xc corr.}} = E^{\text{cluster}}(\text{xc - better}) - E^{\text{cluster}}(\text{LDA}) \]

then is the xc correction. Why should this cluster quanti-
y, \(E^{\text{xc corr.}} \), be of much relevance for the extended sys-
tem? Figure 1 shows how \(E^{\text{xc corr.}} \) changes with cluster
size using the CO adsorption energy in the fcc hollow
site at Cu(111) as example. These calculations [16,17]
were performed at the DFT-LDA, GGA, and B3LYP
levels, as well as with HF-MP2. The correction of the
LDA result is dramatic: It is of the order of several hun-
dreds eV, and the different xc treatments all give note-
icably different results. In this respect we note that
none of the employed methods (LDA, GGA, B3LYP,
HF-MP2) fulfills the variational principle for the ground
state of the true many-electron Hamiltonian, i.e. they
all could, in principle, give results that are even be-
low the true many-body ground state energy. For a
free CO molecule, for example, the total energies are

\[-3.059.01\text{eV (LDA)}, -3.079.83\text{eV (GGA)}, -3.083.30\text{eV (B3LYP)}, -3.075.89\text{eV (HF-MP2)}, \]

with respect to the LDA as function of cluster size and for \(\text{xc} = \text{GGA}, \text{B3LYP}, \text{and HF-MP2} \) for the adsorption of CO at Cu(111) in
the fcc hollow site.

![Figure 1](image1.png)

FIG. 1: Total energy correction \(E^{\text{xc corr.}} \), see eq. [1], with respect to the LDA as function of cluster size and for \(\text{xc} = \text{GGA}, \text{B3LYP}, \text{and HF-MP2} \) for the adsorption of CO at Cu(111) in
the fcc hollow site.

![Figure 2](image2.png)

FIG. 2: The energy correction difference \(E^{\text{xc corr.}}(\text{fcc}) - E^{\text{xc corr.}}(\text{top}) \). The dash-dotted line at 0.33 eV marks the
minimum xc correction required to obtain the correct top ad-
sorption site. The \(N = \infty \) result for the GGA-LDA correction
was obtained by supercell calculations (LAPW/APW+lo).

Obviously, \(E^{\text{xc corr.}} \) is very different for different xc
functionals. Interestingly, if we evaluate differences, e.g.
for different adsorption sites, these differences rapidly ap-
proach a constant value. Figure 2 shows the difference of
\(E^{\text{xc corr.}} \) for CO at Cu(111) in the fcc and in the top
adsorption sites. Thus, xc-approximate total energy differences of the extended surface can be corrected through
higher-level calculations for finite clusters, and the cluster
size where the xc energy correction term \(\Delta E^{\text{xc corr.}} \) be-
comes constant determines the efficiency of the local correction approach. For the GGA we also have the supercell result at 1/9 monolayer coverage, where the adsorbate-adsorbate interaction is negligible, and we added this $N = \infty$ result as well. Figure 2 demonstrates that $\Delta \Delta E_{\text{exc}}$ is converged already for very small clusters (a 16 Cu atom cluster appears to be sufficient). We emphasize that this applies to the differences and the LDA error. For adsorption or reaction energies such clusters are by far too small. Apparently the LDA error is even shorter ranged than Kohn’s nearsightedness concept [20] which refers to interaction energies.

Using the converged values of $\Delta \Delta E_{\text{exc}}$ enables us to correct the LDA energy of the slab calculations. The GGA correction decreases the wrong LDA preference for the fcc site, but it can not yet change the energetic order of the hollow and top adsorption sites. However, at the B3LYP level the top site is now more stable by 0.20 eV, so that the diffusion barrier for the top-bridge pathway is more than doubled: from 0.14 eV to 0.20 eV, +0.21 eV, +0.26 eV, +0.20 eV.

Table 1 gives the energies for all high-symmetry adsorption sites at the Cu(111) and Ag(111) surfaces, namely top, bridge, fcc, and hcp. For CO/Cu(111) the top site is now the most stable adsorption site, and the optimum diffusion energy barrier for the top-bridge-top pathway is 0.20 eV. For the other system, CO at Ag(111), already GGA yields the correct top site as the most stable one [8 12], and it is interesting to verify that a higher-level xc treatment does not spoil this description. As shown in Table 1 the energetic order does not change at the GGA and B3LYP levels, and the top site is in fact further stabilized by 0.20 eV, so that the diffusion barrier for the top-bridge-top pathway is more than doubled: from 0.14 eV (GGA) to 0.35 eV (B3LYP).

The approach is not just applicable to localized perturbations, like an adsorbate or a defect. It can also be used to study the bulk cohesive energy. In this case, however, it is not possible to express the correction in terms of energy differences so that cluster size and edge effects cancel. We therefore now write the total energy of the many-atom system as sum over contributions assigned to the individual atoms, $E = \sum_I E_I$. Here E_I is the energy contribution due to atom I. In the simplest, yet physically meaningful approach for metals, E_I is roughly proportional to \sqrt{c}, where c is the local coordination, i.e. the number of nearest neighbors (see, e.g., [21 22]). For our close-packed Cu clusters we then get

$$E = N \star E_{\text{atom}} + (E_{\text{coh}}/\sqrt{12}) \sum_{c=1}^{12} \sqrt{c} \star N_c,$$

where E_{atom} is the calculated total energy of the free atom at the given xc level, N the number of atoms in the cluster, N_c the number of atoms in the cluster that are c-fold coordinated, and E_{coh} corresponds to the cohesive energy expected for an infinite size cluster. Figure 3 shows how E_{coh} changes with cluster size and how it depends on the xc functional.

It can be seen that the correction $\Delta E_{\text{coh}}(\text{GGA} – \text{LDA}) = E_{\text{coh}}(\text{GGA}) – E_{\text{coh}}(\text{LDA})$, as well as those for the other xc functionals, is converged already for $N = 24$ clusters with an uncertainty of ±0.1 eV. Hartree-Fock shows the same convergence behavior as B3LYP but at a value of −3.8 eV. For the GGA we also performed calculations for the infinite crystal, and this gives the difference between the GGA and LDA cohesive energies as −1.06 eV, in very close agreement to the converged value we get with our xc correction scheme. Neef and Doll [22] had obtained values of −1.05 eV and −2.04 eV for the (GGA−LDA) and (B3LYP−LDA) correction, respectively, which is rather close to our results given in Fig. 3. However, this (B3LYP−LDA) correction is too large to match experiment. The experimental cohesive energy for Cu

System	xc	top	fcc	hcp	bridge
Cu(111)	GGA	+0.13	+0.01	0	+0.05
	B3LYP	0	+0.21	+0.26	+0.20
Ag(111)	GGA	0	+0.22	+0.15	+0.14
	B3LYP	0	+0.42	+0.43	+0.35

FIG. 3: Cohesive energy E_{coh} of Cu (cf. eq. 2) for the LDA (black line, open squares), and ΔE_{coh} corrections with respect to the LDA for GGA, B3LYP, and HF-MP2. The $N = \infty$ result for the LDA and the GGA-LDA correction was obtained by crystal bulk calculations (LAPW/APW+lo).
is 3.49 eV \[19\], which differs by −0.83 eV from the LDA cohesive energy. Apparently, B3LYP is very bad in its description of Cu bulk. Also our cohesive energy at the HF-MP2 level (2.82 ±0.1 eV) is significantly smaller than the experimental value, but at this point we cannot rule out that the HF-MP2 convergence with cluster size is different to that of other treatments. In fact, whether or not HF-MP2 should work for metals needs a deeper theoretical analysis. A more detailed discussion will be given elsewhere. \[25\]

All results in Fig. 3 were obtained for the LDA lattice constant. Of course, we could have easily optimized the lattice constants for the different treatments (or we could have shown the equations of state for the different xc levels). However, this would have complicated the graphs due to the intermingling of different effects. The focus of the present work is on metal surfaces and bulk. However, the methodology proposed in this paper for correcting DFT-slab adsorption, cohesive, and diffusion energies is also applicable to semiconductors (e.g. for correcting DFT-slab adsorption, cohesive, and diffusion energies are also treatable, e.g. with HF-MP2, it is only the xc correction, not the total energy, that is converged. The approach is demonstrated by computing the energetic order of the high-symmetry sites for the low-coverage adsorption of CO at Cu(111) and Ag(111). The corrections to potential energy surfaces obtained with LDA or GGA are found to be significant: For CO diffusion at Ag(111) energy barriers are changed by more than a factor of two, and for CO at Cu(111) even the topology is altered. Furthermore, the approach was applied to evaluate the cohesive energy of Cu bulk, enabling us to perform HF-MP2 calculations (via a systematic extrapolation, starting from the LDA) for an extended system. In this paper we only addressed changes in energy, but for forces the correction is straightforward, analogous to eq. (1).

Discussions with Thorsten Klueener and Martin Fuchs are gratefully acknowledged. Part of the work was supported by the Deutsche Forschungsgemeinschaft (SFB658) and the Alexander von Humboldt foundation.