Analytical Investigation of R134a Flowing Through Adiabatic Helically Coiled Capillary Tubes

Buddha Chouhan¹, Poshal², Suresh Kumar³

Student, Mechanical Engineering, Spoorthy Engineering College, Nadergul, Hyderabad, Telangana¹
Assistant Professor, Mechanical Engineering, Spoorthy Engineering College, Nadergul, Hyderabad, Telangana²
Associate Professor, Mechanical Engineering, Spoorthy Engineering College, Nadergul, Hyderabad, Telangana³

Abstract: Capillary tubes are used as expansion device in low capacity refrigeration machines like domestic refrigerators and window type air conditioners. The advantages of the capillary tube over other expansion devices are simple, inexpensive and cause compressor to start at low torque as the pressure across the capillary tube equalize during the off-cycle. The flow characteristics of refrigerants through capillary tubes have been studied extensively in past six decades, both experimentally and analytically, most of these studies mainly focused on straight capillary tubes. In this thesis, the effects of the relevant parameters on the flow characteristic of R134a and R-22 flowing through adiabatic helical capillary tubes were experimentally studied. The capillary tubes’ diameter, coil diameter, and parameters relating to flow conditions such as inlet pressures and degree of sub cooling were the major parameters investigated. In this thesis, the CFD analysis is to determine the heat transfer rate, pressure drop, velocity, mass flow rate and heat transfer coefficient for the fluids R134A and R-22 with different tube and coil diameters. Thermal analysis is to determine the temperature distribution and heat flux for copper and aluminum as tube materials. 3D modeling is done pro-engineer and analysis is done in ANSYS software.

Keywords: finite element analysis, capillary tube, refrigerants, heat transfer rate.

I. INTRODUCTION

A capillary tube is a long, narrow tube of constant diameter. The word “capillary” is a misnomer since surface tension is not important in refrigeration application of capillary tubes.

A simple vapour compression refrigeration system consists of mainly five components namely compressor, condenser, expansion device, evaporator and a filter/drier[1]. The following study is focused towards finding out the effect of the capillary tube on the performance of the refrigeration system. A capillary tube is a small diameter tube which is used for the expansion of the flowing fluid. The pressure difference between the entry and exit ends of the capillary tube is always equal to the pressure difference between the condenser and the evaporator.

The diameter of the capillary tube used in the refrigeration appliances varies from 0.5mm to 2.3mm. The effect of the capillary tube has been investigated by many researchers in the past and encouraging results were obtained.

II. LITERATURE REVIEW

AN EXPERIMENTAL STUDY OF THE EFFECT OF CAPILLARY TUBE DIAMETER AND CONFIGURATION ON THE PERFORMANCE OF A SIMPLE VAPOUR COMPRESSION REFRIGERATION SYSTEM

The study of the expansion device in the simple vapour compression refrigeration system is necessary in order to understand the parameters which can enhance the overall performance [1] [2] of the system. The experimental study was done on the capillary tubes of 31 gauge, 36 gauge and 40 gauge and each test section was studied with three distinct configurations i.e. helical coiled, straight coiled and serpentine coiled configuration. The effect of the configuration and the capillary tube diameter on the overall performance of the system was studied. The findings of the experimental study revealed that the mass flow rate is maximum for the straight configuration and is least for the helical coiled configuration. The refrigeration effect was found to be maximum for the helical coiled configuration and was found to be least for straight coiled.
configuration. The compressor work was found to reduce as the load was increased on the system. Decreasing the capillary tube diameter increased the mass flow rate in the system and decreased the refrigeration effect produced[3].

III. PROBLEM DESCRIPTION

The objective of this project is to make a 3D model of the capillary tube and study the CFD and thermal behavior of the capillary tube by performing the finite element analysis. 3D modeling software (PRO-Engineer) was used for designing and analysis software (ANSYS) was used for CFD and thermal analysis.

The methodology followed in the project is as follows:
- Create a 3D model of the capillary tube assembly using parametric software pro-engineer.
- Convert the surface model into Para solid file and import the model into ANSYS to do analysis.
- Perform thermal analysis on the capillary tube assembly for thermal loads.
- Perform CFD analysis on the existing model of the surface capillary tube for pressure inlet to find out the mass flow rate, heat transfer rate, pressure drop.

IV. INTRODUCTION TO CAD/CAE

Computer-aided design (CAD), also known as computer-aided design and drafting (CADD), is the use of computer technology for the process of design and design-documentation.

INTRODUCTION TO FINITE ELEMENT METHOD:
Finite Element Method (FEM) is also called as Finite Element Analysis (FEA). Finite Element Method is a basic analysis technique for resolving and substituting complicated problems by simpler ones, obtaining approximate solutions. Finite element method being a flexible tool is used in various industries to solve several practical engineering problems. In finite element method it is feasible to generate the relative results.

V. RESULTS AND DISCUSSIONS:
MODELLING AND ANALYSIS

CFD ANALYSIS OF HELICALLY COILED CAPILLARY TUBES
FLUID – R134A
COIL DIAMETER - 25mm

→→ Ansys → workbench→ select analysis system → fluid flow fluent → double click
→→ Select geometry → right click → import geometry → select browse → open part → ok

Fig 2 pro-e model

Fig 3 imported model

Fig 4 meshed model

Select faces → right click → create named section → enter name → water inlet
Select faces → right click → create named section → enter name → water outlet
Fig 5 inlet and outlet conditions

Model → energy equation → on.
Viscous → edit → k-epsilon
Enhanced Wall Treatment → ok
Materials → new → create or edit → specify fluid material or specify properties → ok
Select air and water
Boundary conditions → select water inlet → Edit → Enter pressure → 750KPA and Inlet Temperature – 353K
Solution → Solution Initialization → Hybrid Initialization → done
Run calculations → no of iterations = 50 → calculate → calculation complete
→ Results → graphics and animations → contours → setup

PRESSURE

Fig 6 pressure

TEMPERATURE

Fig 7 temperature

MASS FLOW RATE

	(kg/s)
inlet	2.5915148
interior--msbr	21561.639
outlet	-2.3935401
wall--msbr	0
Net	0.1981647

HEAT TRANSFER RATE

	(W)
inlet	135858.17
outlet	-65275.977
wall--msbr	-64687.754
Net	5094.4414

THERMAL ANALYSIS OF HELICALLY COILED CAPILLARY TUBES

MATERIAL-ALUMINUM

Open work bench 14.5→select steady state thermal in analysis systems>select geometry>right click on the geometry>import geometry>select IGES file>open

IMPORTED MODEL

Fig 8 imported model

MESHEd MODEL

Fig 9 meshed model

Finite element analysis or FEA representing a real project as a “mesh” a series of small, regularly shaped tetrahedron connected elements, as shown in the above fig. And then setting up and solving huge arrays of simultaneous equations. The finer the mesh, the more accurate the results but more computing power is required.
BOUNDARY CONDITIONS

COIL DIAMETER-30mm

TEMPERATURE

Fig 10 temperature

Fig 11 convection

T = 353K
Select steady state thermal > right click > insert > select convection > enter film coefficient value
Select steady state thermal > right click > insert > select heat flux
Select steady state thermal > right click > solve
Solution > right click on solution > insert > select temperature
Heat transfer co-efficient values are taken from CFD analysis at different velocities
MATERIAL - ALUMINUM COIL DIAMETER-25mm TEMPERATURE

Fig 12 temperature distribution

HEAT FLUX

Fig 13 heat flux

COIL DIAMETER-40mm

TEMPERATURE

Fig 14 temperature distribution

Fig 15 heat flux

MATERIAL - ALUMINUM COIL DIAMETER-40mm TEMPERATURE

Fig 16 temperature distribution

HEAT FLUX

Fig 17 heat flux
COIL DIAMETER-50mm

TEMPERATURE

RESULT TABLES

CFD ANALYSIS RESULTS

Fluid	Coi dia (mm)	Pressure (Pa)	Temperature (°C)	Mass flow rate (kg/s)	Heat transfer rate (w)
R134A	25	7.41*10^4	3.50*10^2	0.198*10^{-6}	2094.441
	30	7.41*10^4	3.50*10^2	0.080*10^{-1}	4328.296
	40	7.40*10^4	3.50*10^2	0.302*10^{-6}	17705.25
	50	7.40*10^4	3.50*10^2	1.47*10^{-1}	79467.456
R22A	25	1.05*10^2	3.50*10^2	0.205*10^{-2}	13773.382
	30	7.40*10^4	3.50*10^2	0.124*10^{-2}	6491.99
	40	7.40*10^4	3.50*10^2	0.062*10^{-2}	3696.4003
	50	7.40*10^4	3.50*10^2	0.387*10^{-2}	30362.797

HEAT FLUX

THERMAL RESULT TABLE

Coi dia (mm)	Material	Temperature (°C)	Heat flux (w/mm²)
25	Aluminum	31.91	0
30		31.18	1.1332
40		30.45	1.1881
50		30.18	1.0534
25	Copper	37.25	0
30		35.32	2.1043
40		32.95	2.2149
50		33.0	1.9919

MATERIAL- COPPER

COIL DIAMETER-25mm

TEMPERATURE

GRAPHS

Pressure plot

Mass flow rate plot
CONCLUSION

In this thesis, the effects of the relevant parameters on the flow characteristic of R134a and R22 flowing through adiabatic helical capillary tubes were experimentally studied. The capillary tubes’ diameter, coil diameter, and parameters relating to flow conditions such as inlet pressures and degree of sub cooling were the major parameters investigated. By observing the CFD analysis the pressure drop value is increased at coil dia. 25mm by the fluid R22A. By observing the thermal analysis, the Heat flux value is more for copper when we compare with aluminum material. So we can conclude the copper material and fluid R22A better for capillary tube.

REFERENCES

[1] Hirendra Kumar Paliwall, Keshav Kant2, "A model for helical capillary tubes for refrigeration systems," International Refrigeration and Air Conditioning Conference Purdue University, 2006.

[2] M.Y.Taib, A.A.Aziz and A.B.S.Ali, “Performance analysis of a domestic refrigerator”, National Conference in Mechanical Engineering Research and Postgraduate Students, 2010.

[3] J.K.Dabas, A.K.Dodega, Sudhir Kumar and K.S.Kasana, “Performance characteristics of ‘vapour compression refrigeration system’ under real transient conditions”, International Journal of Advancements in Technology, 2011. [4] Ankush Sharma and Jagdev Singh, “Experimental investigation of refrigerant flow rate with spirally coiled adiabatic capillary tube in vapour compression refrigeration cycle using eco friendly refrigerant”, International Journal of Mechanical and Production Engineering Research and Development, 2013.

[5] Sudharash Bhargava and Jagdev Singh, “Experimental study of azeotropic blend(30% propane, 55% n-butane, 15% iso-butane) refrigerant flow through the serpentine capillary tube in vapour compression refrigeration system”, International Journal of Mechanical and Production Engineering Research and Development, 2013.

[6] Thamir K. Salim, “The effect of the capillary tube coil number on the refrigeration system performance”, Tikrit Journal of Engineering Sciences, 2012.

[7] M.A. Akintunde, Ph.D. “Effect of Coiled Capillary Tube Pitch on Vapor Compression Refrigeration System Performance,” The Pacific Journal of Science and Technology Volume 9. Number 2. November (2008), pp. 284-294.

[8] M.M.Tayde, Pranav Datar and Pankaj Kumar, “Optimum choice of refrigerant for miniature vapour compression refrigeration system”, Indian Journal of Applied Research, 2013.

[9] Nishant P. Tekade and Dr. U.S.Wankhede, “Selection of spiral capillary tube for refrigeration appliances”, International Journal of Modern Engineering Research, 2012.

[10] Akash Deep Singh, "Flow characteristics of refrigerant inside diabatic capillary tube," Thapar University, Patiala, (2009), pp. 1-96.

[11] D.V.Raghunath Reddy, Dr P.Bharamara and Dr K.Govindarajulu, “Performance and Optimization of Capillary Tube Length In a Split Type Air Conditioning System”, International Journal of Engineering Research & Technology (IJERT), 2012.

[12] Shashank shekhar pathak, Prakhar shukla, Sanjeev chauhan, “Effect of capillary tube on the performance of a simple vapour compression refrigeration system”, International Organisation of Scientific Research - Journal of Mechanical and Civil Engineering (IOSR – JMCE), 2014.