Abstract

In this paper, we revisit the problem of smoothed online learning, in which the online learner suffers both a hitting cost and a switching cost, and target two performance metrics: competitive ratio and dynamic regret with switching cost.

To bound the competitive ratio, we assume the hitting cost is known to the learner in each round, and investigate the simple idea of balancing the two costs by an optimization problem. Surprisingly, we find that minimizing the hitting cost alone is max(1, 2/3)-competitive for \(\alpha \)-polyhedral functions and 1 + \(2/\lambda \)-competitive for \(\lambda \)-quadratic growth functions, both of which improve state-of-the-art results significantly. Moreover, when the hitting cost is both convex and \(\lambda \)-quadratic growth, we reduce the competitive ratio to 1 + \(2/\sqrt{\lambda} \) by minimizing the weighted sum of the hitting cost and the switching cost.

To bound the dynamic regret with switching cost, we follow the standard setting of online convex optimization, in which the hitting cost is convex but hidden from the learner before making predictions. We modify Ader, an existing algorithm designed for dynamic regret, slightly to take into account the switching cost when measuring the performance. The proposed algorithm, named as Smoothed Ader, attains an optimal \(O(\sqrt{T(1 + P_T)}) \) bound for dynamic regret with switching cost, where \(P_T \) is the path-length of the comparator sequence. Furthermore, if the hitting cost is accessible in the beginning of each round, we obtain a similar guarantee without the bounded gradient condition, and establish an \(\Omega(\sqrt{T(1 + P_T)}) \) lower bound to confirm the optimality.

1. Introduction

Online learning is the process of making a sequence of predictions given knowledge of the answer to previous tasks and possibly additional information (Shalev-Shwartz, 2011). While the traditional online learning aims to make the prediction as accurate as possible, in this paper, we study smoothed online learning (SOL), where the online learner incurs a switching cost for changing its predictions between rounds (Cesa-Bianchi et al., 2013). SOL has received lots of attention recently because in many real-world applications, a change of action usually brings some additional cost. Examples include the dynamic right-sizing for data centers (Lin et al., 2011), geographical load balancing (Lin et al., 2012), real-time electricity pricing (Kim and Giannakis, 2014), video streaming (Joseph and de Veciana, 2012), spatiotemporal sequence prediction (Kim et al., 2015), multi-timescale control (Goel et al., 2017), and thermal management (Zanini et al., 2010).

Specifically, SOL is performed in a sequence of consecutive rounds, where at round \(t \) the learner is asked to select a point \(x_t \) from the decision set \(X \), and suffers a hitting cost
Depending on the performance metric, the learner may be allowed to observe $f_t(\cdot)$ when making decisions, which is different from the traditional online learning in which $f_t(\cdot)$ is revealed to the learner after submitting the decision (Cesa-Bianchi and Lugosi, 2006). Additionally, the learner also incurs a switching cost $m(x_t, x_{t-1})$ for changing decisions between successive rounds. The switching cost $m(x_t, x_{t-1})$ could be any distance function, such as the ℓ_2-norm distance $\|x_t - x_{t-1}\|$ and the squared ℓ_2-norm distance $\|x_t - x_{t-1}\|^2/2$ (Goel et al., 2019). In the literature, there are two performance metrics for SOL: competitive ratio and dynamic regret with switching cost.

Competitive ratio is popular in the community of online algorithms (Borodin and El-Yaniv, 1998). It is defined as the worst-case ratio of the total cost incurred by the online learner and the offline optimal cost:

$$\frac{\sum_{t=1}^{T} (f_t(x_t) + m(x_t, x_{t-1}))}{\min_{u_0, u_1, \ldots, u_T \in X} \sum_{t=1}^{T} (f_t(u_t) + m(u_t, u_{t-1}))}. \tag{1}$$

When focusing on the competitive ratio, the learner can observe $f_t(\cdot)$ before picking x_t. The problem is still nontrivial due to the coupling created by the switching cost. On the other hand, dynamic regret with switching cost is a generalization of dynamic regret—a popular performance metric in the community of online learning (Zinkevich, 2003). It is defined as the difference between the total cost incurred by the online learner and that of an arbitrary comparator sequence $u_0, u_1, \ldots, u_T \in X$:

$$\sum_{t=1}^{T} (f_t(x_t) + m(x_t, x_{t-1})) - \sum_{t=1}^{T} (f_t(u_t) + m(u_t, u_{t-1})). \tag{2}$$

Different from previous work (Chen et al., 2018; Goel et al., 2019), we did not introduce the minimization operation over u_0, u_1, \ldots, u_T in (2). The reason is that we want to bound (2) by certain regularities of the comparator sequence, such as the path-length

$$P_T(u_0, u_1, \ldots, u_T) = \sum_{t=1}^{T} \|u_t - u_{t-1}\|. \tag{3}$$

When focusing on (2), $f_t(\cdot)$ is generally hidden from the learner before submitting x_t. The conditions for bounding the two metrics are very different, so we study competitive ratio and dynamic regret with switching cost separately. To bound the two metrics simultaneously, we refer to Andrew et al. (2013) and Daniely and Mansour (2019), especially the meta-algorithm in the latter work.

This paper follows the line of research stemmed from online balanced descent (OBD) (Chen et al., 2018; Goel and Wierman, 2019). The key idea of OBD is to find an appropriate balance between the hitting cost and the switching cost through iterative projections. It has been shown that OBD and its variants are able to exploit the analytical properties of the hitting cost (e.g., polyhedral, strongly convex) to derive dimension-free competitive ratio. At this point, it would be natural to ask why not use the greedy algorithm, which minimizes the weighted sum of the hitting cost and the switching cost in each round, i.e.,

$$\min_{x \in X} f_t(x) + \gamma m(x, x_{t-1}) \tag{4}$$
to balance the two costs, where $\gamma \geq 0$ is the trade-off parameter. We note that the greedy algorithm is usually treated as the baseline in competitive analysis (Borodin and El-Yaniv, 1998), but its usage for smoothed online learning is quite limited. One result is given by Goel et al. (2019), who demonstrate that the greedy algorithm as a special case of Regularized OBD (R-OBD), is optimal for strongly convex functions. Besides, Lin et al. (2020) have analyzed the greedy algorithm with $\gamma = 0$, named as the naive approach below, for polyhedral functions and quadratic growth functions.

In this paper, we make the following contributions towards understanding the behavior of the greedy algorithm.

- For α-polyhedral functions, the competitive ratio of the naive approach is $\max(1, \frac{2}{\alpha})$, which is a significant improvement over the $3 + \frac{3}{\alpha}$ competitive ratio of OBD (Chen et al., 2018) and the $1 + \frac{2}{\alpha}$ ratio proved by Lin et al. (2020, Lemma 1). When $\alpha > 2$, the ratio becomes 1, indicating that the naive approach is optimal in this scenario.
- For λ-quadratic growth functions, the competitive ratio of the naive algorithm is $1 + \frac{4}{\lambda}$, which matches the lower bound of this algorithm (Goel et al., 2019, Theorem 5), and is better than the $\max(1 + \frac{2}{\lambda}, 4)$ ratio obtained by Lin et al. (2020, Lemma 1).
- If the hitting cost is both convex and λ-quadratic growth, the greedy algorithm with $\gamma > 0$ attains a $1 + \frac{2}{\sqrt{\lambda}}$ competitive ratio, which demonstrates the advantage of taking the switching cost into considerations. Our $1 + \frac{2}{\sqrt{\lambda}}$ ratio is on the same order as Greedy OBD (Goel et al., 2019, Theorem 3) but with much smaller constants.
- Our analysis of the naive approach and the greedy algorithm is very simple. In contrast, both OBD and Greedy OBD rely on intricate geometric arguments.

While both OBD and R-OBD are equipped with sublinear dynamic regret with switching cost, they are unsatisfactory in the following aspects:

- The regret of OBD depends on an upper bound of the path-length instead of the path-length itself (Chen et al., 2018, Corollary 11), making it nonadaptive.
- The regret of R-OBD is adaptive but it uses the squared ℓ_2-norm to measure the switching cost, which is not suitable for general convex functions (Goel et al., 2019).
- Both OBD and R-OBD observe $f_t(\cdot)$ before selecting x_t, which violates the convention of online learning.

To avoid the above limitations, we demonstrate that a small change of Ader (Zhang et al., 2018), which is an existing algorithm designed for dynamic regret, is sufficient to minimize the dynamic regret with switching cost under the setting of online convex optimization (Shalev-Shwartz, 2011). Ader runs multiple online gradient descent (OGD) (Zinkevich, 2003) with different step sizes as expert-algorithms, and uses Hedge (Freund and Schapire, 1997) as the meta-algorithm to aggregate predictions from experts. The only modification is to incorporate the switching cost into the loss of Hedge. The proposed algorithm, named as Smoothed Ader (SAder), attains the optimal $O(\sqrt{\sqrt{P_T+1}})$ dynamic regret, where P_T is the path-length defined in (3). Thus, our regret bound is adaptive because it automatically becomes small when the comparators change slowly. Finally, we also investigate the case that the hitting cost is available before predictions, and establish a similar result without the bounded gradient condition. To this end, we design a lookahead version of SAder, which

1. We usually assume the convex function is Lipschitz continuous, and in this case choosing the ℓ_2-norm distance as the switching cost makes it on the same order as the hitting cost.
chooses the greedy algorithm in (4) as the expert and utilizes the cost of the current round in Hedge. To show the optimality of this algorithm, we further establish an \(\Omega(\sqrt{T(1 + P_T)}) \) lower bound under the lookahead setting.

2. Related Work

This section reviews related work on smoothed online learning (SOL) and dynamic regret.

2.1 Smoothed Online Learning

SOL has been investigated under the setting of multi-armed bandits (Agrawal et al., 1990; Guha and Munagala, 2009; Dekel et al., 2014; Koren et al., 2017a,b), prediction with expert advice (Cesa-Bianchi et al., 2013), and online convex optimization (Lin et al., 2011; Bansal et al., 2015; Zhao et al., 2020b). In the following, we focus on smoothed online convex optimization (SOCO).

The early works on SOCO are motivated by real-world applications with switching costs, and focus on designing competitive algorithms in the low-dimensional setting (Lin et al., 2011). In particular, Bansal et al. (2015) show that for SOCO on the real line, the competitive ratio can be upper bounded by 2, which is proved to be optimal (Antoniadis and Schewior, 2018). They also establish a competitive ratio of 3 under the memoryless setting. In the study of SOCO, it is common to assume that the learner has access to predictions of future hitting costs, and several algorithms (Lin et al., 2012; Chen et al., 2015, 2016; Li et al., 2018; Li and Li, 2020) have been developed based on receding horizon control (RHC) (Kwon and Han, 2005). In fact, the greedy algorithm in (4) can be treated as a variant of RHC. However, previous results for RHC are limited to special problems, and (4) remains under-explored. For example, when the learner can observe the next \(W \) hitting costs, Li et al. (2018) demonstrate that both the competitive ratio and the dynamic regret with switching cost decay exponentially fast with \(W \). But their analysis relies on very strong conditions, including strong convexity and smoothness.

One milestone is the online balanced descent (OBD) (Chen et al., 2018), which has dimension-free competitive ratio even when the learner can only observe the hitting cost of the current round. Specifically, OBD iteratively projects the previous point onto a carefully chosen level set of the hitting cost so as to balance the switching cost and the hitting cost. When the hitting cost is \(\alpha \)-polyhedral and convex, and the switching cost is the \(\ell_2 \)-norm distance, OBD attains a \(3 + \frac{8}{\alpha} \) competitive ratio. Furthermore, OBD can also be tuned to control the dynamic regret with switching cost. Let \(L \) be an upper bound of the path-length of the comparator sequence, i.e., \(P_T(u_0, u_1, \ldots, u_T) \leq L \). Chen et al. (2018, Corollary 11) have proved that

\[
\sum_{t=1}^{T} (f_t(x_t) + \|x_t - x_{t-1}\|) - \min_{P_T(u_0, u_1, \ldots, u_T) \leq L} \sum_{t=1}^{T} (f_t(u_t) + \|u_t - u_{t-1}\|) = O(\sqrt{TL})
\]

leading to sublinear regret when \(L = o(T) \). However, there are two limitations: (i) the value of \(L \) needs to be given as a parameter; and (ii) it is nonadaptive because the upper bound depends on \(L \) instead of the actual path-length \(P_T \).
Table 1: Competitive Ratio of OBD and Related Methods

Algorithm	Assumptions	Competitive Ratio
OBD (Chen et al., 2018)	\(f_t(\cdot) \) is \(\alpha \)-polyhedral	3 + \(\frac{8}{\alpha} \)
	\(f_t(\cdot) \) is convex	
	\(\mathcal{X} \) is convex	
The Naive Approach (Lin et al., 2020)	\(f_t(\cdot) \) is \(\alpha \)-polyhedral	1 + \(\frac{2}{\alpha} \)
The Naive Approach (Theorem 1)	\(f_t(\cdot) \) is \(\alpha \)-polyhedral	max (1, \(\frac{2}{\alpha} \))
Greedy OBD (Goel et al., 2019)	\(f_t(\cdot) \) is \(\lambda \)-quadratic growth	\(O \left(\frac{1}{\sqrt{\lambda}} \right) \) as \(\lambda \to 0 \)
	\(f_t(\cdot) \) is quasiconvex	
	\(\mathcal{X} \) is convex	
The Naive Approach (Lin et al., 2020)	\(f_t(\cdot) \) is \(\lambda \)-quadratic growth	max \((1 + \frac{6}{\lambda}, 4) \)
The Naive Approach (Theorem 2)	\(f_t(\cdot) \) is \(\lambda \)-quadratic growth	1 + \(\frac{4}{\lambda} \)
The Greedy Algorithm (Theorem 3)	\(f_t(\cdot) \) is \(\lambda \)-quadratic growth	1 + \(\frac{2}{\sqrt{\lambda}} \)
	\(f_t(\cdot) \) is convex	
	\(\mathcal{X} \) is convex	
OBD (Goel and Wierman, 2019)	\(f_t(\cdot) \) is \(\lambda \)-strongly convex	3 + \(O \left(\frac{1}{\lambda} \right) \)
The Greedy Algorithm, and R-OBD (Goel et al., 2019)	\(\mathcal{X} \) is convex	\(\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{4}{\lambda}} \)
Constrained OBD (Argue et al., 2020a)	\(f_t(\cdot) \) is \(\lambda \)-strongly convex	4 + \(4 \sqrt{\frac{2H}{\lambda}} \)
	\(f_t(\cdot) \) is \(H \)-smooth	
	\(\min_{x \in \mathbb{R}^d} f_t(\cdot) = 0 \)	
	\(\mathcal{X} \) is convex	

Later, Goel and Wierman (2019) demonstrate that OBD is 3 + \(O \left(\frac{1}{\lambda} \right) \)-competitive for \(\lambda \)-strongly convex functions, when the switching cost is set to be the squared \(\ell_2 \)-norm distance. In a subsequent work, Goel et al. (2019, Theorem 4) propose Regularized OBD (R-OBD), which improves the competitive ratio to \(\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{4}{\lambda}} \), matching the lower bound of strongly convex functions exactly (Goel et al., 2019, Theorem 1). R-OBD includes (4) as a special case, which also enjoys the optimal competitive ratio for strongly convex functions. Furthermore, Goel et al. (2019, Theorem 6) have analyzed the dynamic regret of R-OBD.
and the following result can be extracted from that paper

\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) - \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right) = O\left(\sqrt{T} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2 \right)
\]

Compared with (5), this bound is adaptive because the upper bound depends on the switching cost of the comparator sequence. However, it chooses the squared \(\ell_2 \)-norm as the switching cost, which is not suitable for general convex functions, and the proof makes use of the vanishing gradient condition, which may fail because the domain is bounded. When the hitting cost is both quasiconvex and \(\lambda \)-quadratic growth, Goel et al. (2019, Theorem 3) have demonstrated that their Greedy OBD algorithm attains an \(O(1/\sqrt{\lambda}) \) competitive ratio, as \(\lambda \to 0 \).

Lin et al. (2020) have analyzed the naive approach which ignores the switching cost and simply minimizes the hitting cost in each round, i.e., the greedy algorithm with \(\gamma = 0 \). It is a bit surprising that this naive approach is \(1 + \frac{2}{\alpha} \)-competitive for \(\alpha \)-polyhedral functions and \(\max(1 + \frac{6}{\lambda}, 4) \)-competitive for \(\lambda \)-quadratic growth functions, without any convexity assumption (Lin et al., 2020, Lemma 1). Argue et al. (2020a) have investigated a hybrid setting in which the hitting cost is both \(\lambda \)-strongly convex and \(H \)-smooth, but the switching cost is the \(\ell_2 \)-norm distance instead of the squared one. They develop Constrained OBD, and establish a \(4 + 4 \sqrt{2H/\lambda} \) competitive ratio. However, their analysis relies on a strong condition that the hitting cost is non-negative over the whole space, i.e., \(\min_{x \in \mathcal{X}} f_t(x) = 0 \), as opposed to the usual condition \(\min_{x \in \mathcal{X}} f_t(x) = 0 \). To facilitate comparisons, we summarize the competitive ratios of OBD, its variants, and the greedy algorithm in Table 1.

Finally, we note that SOCO is closely related to convex body chasing (CBC) (Friedman and Linial, 1993; Antoniadis et al., 2016; Bansal et al., 2018; Argue et al., 2019; Bubeck et al., 2019, 2020). In this problem, the online learner receives a sequence of convex bodies \(\mathcal{X}_1, \ldots, \mathcal{X}_T \subseteq \mathbb{R}^d \) and must select one point from each body, and the goal is to minimize the total movement between consecutive output points. Apparently, we can treat CBC as a special case of SOCO by defining the hitting cost \(f_t(\cdot) \) as the indicator function of \(\mathcal{X}_t \), which means that the domains of hitting costs are allowed to be different. On the other hand, we can also formulate a \(d \)-dimensional SOCO problem as a \(d + 1 \)-dimensional CBC problem (Lin et al., 2020, Proposition 1). For the general setting of CBC, the competitive ratio exhibits a polynomial dependence on the dimensionality, and the state-of-the-art result is \(O(\min(d, \sqrt{d \log T})) \) (Argue et al., 2020b; Sellke, 2020), which nearly match the \(\Omega(\sqrt{d}) \) lower bound (Friedman and Linial, 1993). Our paper aims to derive dimensionality-independent competitive ratios and sublinear dynamic regret for SOCO, under appropriate conditions.

2.2 Dynamic Regret

Recently, dynamic regret has attained considerable interest in the community of online learning (Zhang, 2020). The motivation of dynamic regret is to deal with changing environments, in which the optimal decision may change over time. It is defined as the difference between the cumulative loss of the learner and that of a sequence of comparators.
\(u_1, \ldots, u_T \in \mathcal{X} \):

\[
\text{D-Regret}(u_1, \ldots, u_T) = \sum_{t=1}^{T} f_t(x_t) - \sum_{t=1}^{T} f_t(u_t). \tag{6}
\]

In the general form of dynamic regret, \(u_1, \ldots, u_T \) could be an arbitrary sequence (Zinkevich, 2003; Hall and Willett, 2013; Zhang et al., 2018; Zhao et al., 2020a; Cutkosky, 2020), and in the restricted form, they are chosen as the minimizers of online functions, i.e., \(u_t \in \text{argmin}_{x \in \mathcal{X}} f_t(x) \) (Jadbabaie et al., 2015; Besbes et al., 2015; Yang et al., 2016; Mokhtari et al., 2016; Zhang et al., 2017; Zhao and Zhang, 2021). While it is well-known that sublinear dynamic regret is unattainable in the worst case, one can bound the dynamic regret in terms of some regularities of the comparator sequence. An instance is given by Zinkevich (2003), who introduces the notion of path-length defined in (3) to measure the temporal variability of the comparator sequence, and derives an \(O(\sqrt{T(1+P_T)}) \) bound for the dynamic regret of OGD. Later, Zhang et al. (2018) develop adaptive learning for dynamic environment (Ader), which achieves the optimal \(O(\sqrt{T(1+P_T)}) \) dynamic regret. In this paper, we show that a small change of Ader attains the same bound for dynamic regret with switching cost. We summarize our and previous results on dynamic regret in Table 2.

3. Competitive Ratio

In this section, we choose competitive ratio as the performance metric. Without loss of generality, we assume the hitting cost is non-negative, since the competitive ratio can only improve if this is not the case.

3.1 Polyhedral Functions

We first introduce the definition of polyhedral functions.

Definition 1 A function \(f(\cdot) : \mathcal{X} \mapsto \mathbb{R} \) with minimizer \(v \) is \(\alpha \)-polyhedral if

\[
f(x) - f(v) \geq \alpha \|x - v\|, \quad \forall x \in \mathcal{X}. \quad (7)
\]

We note that polyhedral functions have been used for stochastic network optimization (Huang and Neely, 2011) and geographical load balancing (Lin et al., 2012).

Following Chen et al. (2018), we set the switching cost as \(m(x_t, x_{t-1}) = \|x_t - x_{t-1}\| \). Intuitively, we may expect that the switching cost should be taken into consideration when making decisions. However, our analysis shows that minimizing the hitting cost alone yields the tightest competitive ratio so far. Specifically, we consider the following naive approach that ignores the switching cost and selects

\[
x_t = \text{argmin}_{x \in \mathcal{X}} f_t(x). \tag{8}
\]

The theoretical guarantee of (8) is stated below.

Theorem 1 Suppose each \(f_t(\cdot) : \mathcal{X} \mapsto \mathbb{R} \) with minimizer \(v_t \) is \(\alpha \)-polyhedral. We have

\[
\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| \right) \leq \max \left(1, \frac{2}{\alpha} \right) \sum_{t=1}^{T} \left(f_t(u_t) + \|u_t - u_{t-1}\| \right), \quad \forall u_0, u_1, \ldots, u_T \in \mathcal{X}
\]

where we assume \(x_0 = u_0 \).
Table 2: Results on Dynamic Regret with or without Switching Cost. In this table, all the algorithms assume that (i) $f_t(\cdot)$ is convex and (ii) \mathcal{X} is bounded, so we omit these two conditions. The condition “$f_t(\cdot)$ is known/unknown” is relative to the beginning of the t-th round.

Algorithm	Assumptions	Metric	Upper Bounds
OBD	$f_t(\cdot)$ is known	$\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| - f_t(u_t) - \|u_t - u_{t-1}\| \right)$	$O\left(\sqrt{TL}\right)$
R-OBD	$f_t(\cdot)$ is known	$\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 - f_t(u_t) - \frac{1}{2}\|u_t - u_{t-1}\|^2 \right)$	$O\left(\sqrt{T \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2}\right)$
OGD	$f_t(\cdot)$ is unknown	$\sum_{t=1}^{T} \left(f_t(x_t) - f_t(u_t) \right)$	$O\left(\sqrt{T \sum_{t=1}^{T} \|u_t - u_{t-1}\|}\right)$
Ader	$f_t(\cdot)$ is unknown	$\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| - f_t(u_t) - \|u_t - u_{t-1}\| \right)$	$O\left(\sqrt{T \sum_{t=1}^{T} \|u_t - u_{t-1}\|}\right)$
SAd	$f_t(\cdot)$ is known	$\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| - f_t(u_t) \right)$	$O\left(\sqrt{T \sum_{t=1}^{T} \|u_t - u_{t-1}\|}\right)$
Remark: Our max(1, $\frac{2}{\alpha}$) competitive ratio is much better than the $3 + \frac{8}{\alpha}$ ratio of OBD (Chen et al., 2018), and also better than the $1 + \frac{2}{\alpha}$ ratio established by Lin et al. (2020) for (8). When $\alpha > 2$, the ratio becomes 1, indicating that the naive approach is optimal in this scenario. Furthermore, the proof of Theorem 1 is much simpler than that of OBD, and refines that of Lin et al. (2020, Lemma 1).

To examine the role of the switching cost, we have tried to analyze the greedy algorithm (4) with $\gamma > 0$, but failed to obtain better ratios. So, the current knowledge suggests that there is no need to consider the switching cost when facing polyhedral functions. It is unclear whether this is an artifact of our analysis or an inherent property, and will be investigated in the future.

3.2 Quadratic Growth Functions

In this section, we consider the quadratic growth condition.

Definition 2 A function $f(\cdot): \mathcal{X} \mapsto \mathbb{R}$ with minimizer v is λ-quadratic growth if

$$f(x) - f(v) \geq \frac{\lambda}{2}\|x - v\|^2, \forall x \in \mathcal{X}.$$ \hfill (9)

The quadratic growth condition has been exploited by the optimization community (Drusvyatskiy and Lewis, 2018; Necoara et al., 2019) to establish linear convergence, and this condition is weaker than strong convexity (Hazan and Kale, 2011).

Following Goel et al. (2019), we set the switching cost as $m(x_t, x_{t-1}) = \|x_t - x_{t-1}\|^2/2$. We also consider the naive approach in (8) and have the following theoretical guarantee.

Theorem 2 Suppose each $f_t(\cdot): \mathcal{X} \mapsto \mathbb{R}$ with minimizer v_t is λ-quadratic growth. We have

$$\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 \right) \leq \left(1 + \frac{4}{\lambda} \right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2}\|u_t - u_{t-1}\|^2 \right),$$

for all $u_0, u_1, \ldots, u_T \in \mathcal{X}$, where we assume $x_0 = u_0$.

Remark: The above theorem implies that the naive approach achieves a competitive ratio of $1 + \frac{4}{\lambda}$, which matches the lower bound of this algorithm (Goel et al., 2019, Theorem 5). Furthermore, it is also much better than the max($1 + \frac{\sqrt{2}}{\lambda}, 4$) ratio established by Lin et al. (2020) for (8). Similar to the case of polyhedral functions, it seems safe to ignore the switching cost here.3

3.3 Convex and Quadratic Growth Functions

When $f_t(\cdot)$ is both quasiconvex and λ-quadratic growth, Goel et al. (2019) have established an $O(1/\sqrt{\lambda})$ competitive ratio for Greedy OBD. Inspired by this result, we introduce convexity to further improve the competitive ratio. In this case, the switching cost plays a role

2 In the early version of this manuscript, we have proved a $1 + \frac{2}{\alpha}$ competitive ratio for the greedy algorithm (4) with $\gamma > 0$ when dealing with α-polyhedral functions.

3 In the early version of this manuscript, we have proved a $1 + \frac{2(\sqrt{1+\lambda}+1)}{\lambda}$ competitive ratio for the greedy algorithm (4) with $\gamma > 0$ when dealing with λ-quadratic growth functions.

9
in deriving tighter competitive ratios. Specifically, we choose the greedy algorithm with \(\gamma > 0 \) to select \(x_t \), i.e.,

\[
x_t = \arg\min_{x \in \mathcal{X}} \left(f_t(x) + \frac{\gamma}{2} \|x - x_{t-1}\|^2 \right).
\] (10)

The theoretical guarantee of (10) is stated below.

Theorem 3 Suppose the domain \(\mathcal{X} \) is convex, and each \(f_t(\cdot) : \mathcal{X} \rightarrow \mathbb{R} \) with minimizer \(v_t \) is \(\lambda \)-quadratic growth and convex. By setting

\[
\gamma = \frac{\lambda}{\lambda + \sqrt{\lambda}},
\]

we have

\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) \leq \left(1 + \frac{2}{\sqrt{\lambda}} \right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right),
\]

for all \(u_0, u_1, \ldots, u_T \in \mathcal{X} \), where we assume \(x_0 = u_0 \).

Remark: The above theorem shows that the competitive ratio is improved to \(1 + \frac{2}{\sqrt{\lambda}} \) under the additional convexity condition. According to the \(\frac{1}{2} + \frac{1}{2} \sqrt{1 + \frac{4}{\lambda}} \) lower bound of the competitive ratio of strongly convex functions (Goel et al., 2019, Theorem 1), the ratio in Theorem 3 is optimal up to constant factors. Compared with Greedy OBD (Goel et al., 2019), our assumption is slightly stronger, since we require convexity instead of quasiconvexity. However, our algorithm and analysis are much simpler, and the constants in our bound are much smaller.

4. Dynamic Regret with Switching Cost

When considering dynamic regret with switching cost, we adopt the common assumptions of online convex optimization (OCO) (Shalev-Shwartz, 2011).

Assumption 1 All the functions \(f_t \)'s are convex over their domain \(\mathcal{X} \).

Assumption 2 The gradients of all functions are bounded by \(G \), i.e.,

\[
\max_{x \in \mathcal{X}} \|\nabla f_t(x)\| \leq G, \ \forall t \in [T].
\] (11)

Assumption 3 The diameter of the domain \(\mathcal{X} \) is bounded by \(D \), i.e.,

\[
\max_{x, x' \in \mathcal{X}} \|x - x'\| \leq D.
\] (12)

Assumption 2 implies that the hitting cost is Lipschitz continuous, so it is natural to set the switching cost as \(m(x_t, x_{t-1}) = \|x_t - x_{t-1}\| \).
Algorithm 1 SAdex: Meta-algorithm

Require: A step size β, and a set \mathcal{H} containing step sizes for experts
1: Activate a set of experts $\{E_{\eta} | \eta \in \mathcal{H}\}$ by invoking Algorithm 2 for each step size $\eta \in \mathcal{H}$
2: Sort step sizes in ascending order $\eta_1 \leq \eta_2 \leq \cdots \leq \eta_N$, and set $w_{1}^\eta = \frac{C}{i(i+1)}$
3: for $t = 1, \ldots, T$ do
4: Receive x_{η}^t from each expert E_{η}
5: Output the weighted average $x_t = \sum_{\eta \in \mathcal{H}} w_{t}^\eta x_{\eta}^t$
6: Observe the loss function $f_t(\cdot)$
7: Update the weight of each expert by (14)
8: Send gradient $\nabla f_t(x_t)$ to each expert E_{η}
9: end for

4.1 The Standard Setting

We first follow the standard setting of OCO in which the learner can not observe the hitting cost when making predictions, and develop an algorithm based on Ader (Zhang et al., 2018). Specifically, we demonstrate that a small change of Ader, which modifies the loss of the meta-algorithm to take into account the switching cost of experts, is sufficient to minimize the dynamic regret with switching cost. Our proposed method is named as Smoothed Ader (SAdex), and stated below.

Meta-algorithm The meta-algorithm is similar to that of Ader (Zhang et al., 2018, Algorithm 3), and summarized in Algorithm 1. The inputs of the meta-algorithm are its own step size β, and a set \mathcal{H} of step sizes for experts. In Step 1, we activate a set of experts $\{E_{\eta} | \eta \in \mathcal{H}\}$ by invoking the expert-algorithm for each $\eta \in \mathcal{H}$. In Step 2, we set the initial weight of each expert. Let η_i be the i-th smallest step size in \mathcal{H}. The weight of E_{η_i} is chosen as

$$w_{1}^\eta = \frac{C}{i(i+1)}, \text{ and } C = 1 + \frac{1}{|\mathcal{H}|} \quad (13)$$

In each round, the meta-algorithm receives a set of predictions $\{x_{\eta}^t | \eta \in \mathcal{H}\}$ from all experts (Step 4), and outputs the weighted average (Step 5):

$$x_t = \sum_{\eta \in \mathcal{H}} w_{t}^\eta x_{\eta}^t$$

where w_{t}^η is the weight assigned to expert E_{η}. After observing the loss function, the weights of experts are updated according to the exponential weighting scheme (Step 7) (Cesa-Bianchi and Lugosi, 2006):

$$w_{t+1}^\eta = \frac{w_{t}^\eta e^{-\beta \ell_t(x_{\eta}^t)}}{\sum_{\eta \in \mathcal{H}} w_{t}^\eta e^{-\beta \ell_t(x_{\eta}^t)}} \quad (14)$$

where

$$\ell_t(x_{\eta}^t) = \langle \nabla f_t(x_{t}), x_{\eta}^t - x_t \rangle + \|x_{\eta}^t - x_{t-1}^\eta\| \quad (15)$$

When $t = 1$, we set $x_{\eta}^0 = 0$, for all $\eta \in \mathcal{H}$. As can be seen from (15), we incorporate the switching cost $\|x_{\eta}^t - x_{t-1}^\eta\|$ of expert E_{η} to measure its performance. This is the only modification made to Ader. In the last step, we send the gradient $\nabla f_t(x_t)$ to each expert E_{η} so that they can update their own predictions.
Algorithm 2 SAder: Expert-algorithm

Require: The step size η

1: Let x_1^η be any point in \mathcal{X}
2: for $t = 1, \ldots, T$ do
3: Submit x_t^η to the meta-algorithm
4: Receive gradient $\nabla f_t(x_t)$ from the meta-algorithm
5: $x_{t+1}^\eta = \Pi_{\mathcal{X}}[x_t^\eta - \eta \nabla f_t(x_t)]$
6: end for

Expert-algorithm The expert-algorithm is the same as that of Ader (Zhang et al., 2018, Algorithm 4), which is OGD over the linearized loss or the surrogate loss

$$s_t(x) = \langle \nabla f_t(x_t), x - x_t \rangle. \quad \text{(16)}$$

For the sake of completeness, we present its procedure in Algorithm 2. The input of the expert is its step size η. In Step 3 of Algorithm 2, each expert submits its prediction x_t^η to the meta-algorithm, and receives the gradient $\nabla f_t(x_t)$ in Step 4. Then, in Step 5, it performs gradient descent

$$x_{t+1}^\eta = \Pi_{\mathcal{X}}[x_t^\eta - \eta \nabla f_t(x_t)]$$

to get the prediction for the next round. Here, $\Pi_{\mathcal{X}}[\cdot]$ denotes the projection onto the nearest point in \mathcal{X}.

We have the following theoretical guarantee.

Theorem 4 Set

$$\mathcal{H} = \left\{ \eta_i = 2^{i-1} \sqrt{\frac{D^2}{T(G^2 + 2G)}}, i = 1, \ldots, N \right\} \quad \text{(17)}$$

where

$$N = \left\lceil \frac{1}{2} \log_2(1 + 2T) \right\rceil + 1, \text{ and } \beta = \frac{2}{(2G + 1)D} \sqrt{\frac{2}{5T}}$$

in Algorithm 1. Under Assumptions 1, 2 and 3, for any comparator sequence $u_0, u_1, \ldots, u_T \in \mathcal{X}$, SAder satisfies

$$\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} f_t(u_t) \leq \frac{3}{2} \sqrt{T(G^2 + 2G) \left(D^2 + 2D \sum_{t=1}^{T} \|u_t - u_{t-1}\| \right)} + (2G + 1)D \sqrt{\frac{5T}{8}} [1 + 2 \ln(k + 1)]$$

$$= O \left(\sqrt{T(1 + P_T)} + \sqrt{T(1 + \log \log P_T)} \right) = O \left(\sqrt{T(1 + P_T)} \right)$$

where we define $x_0 = 0$, and

$$k = \left\lceil \frac{1}{2} \log_2 \left(1 + \frac{2P_T}{D} \right) \right\rceil + 1. \quad \text{(19)}$$
Algorithm 3 Lookahead SAder: Meta-algorithm

Require: A step size \(\beta \), and a set \(\mathcal{H} \) containing step sizes for experts
1: Activate a set of experts \(\{E^\eta|\eta \in \mathcal{H}\} \) by invoking Algorithm 4 for each step size \(\eta \in \mathcal{H} \)
2: Sort step sizes in ascending order \(\eta_1 \leq \eta_2 \leq \cdots \leq \eta_N \), and set \(w^\eta_0 = \frac{C}{i(i+1)} \)
3: for \(t = 1, \ldots, T \) do
 4: Observe the loss function \(f_t(\cdot) \) and send it to each expert \(E^\eta \)
 5: Receive \(x^\eta_t \) from each expert \(E^\eta \)
 6: Update the weight of each expert by (20)
 7: Output the weighted average \(x_t = \sum_{\eta \in \mathcal{H}} w^\eta_t x^\eta_t \)
8: end for

Remark: Theorem 4 shows that SAder attains an \(O(\sqrt{T(1+P_T)}) \) bound for dynamic regret with switching cost, which is on the same order as that of Ader for dynamic regret.
From the \(\Omega(\sqrt{T(1+P_T)}) \) lower bound of dynamic regret (Zhang et al., 2018, Theorem 2), we know that our upper bound is optimal up to constant factors. Compared with the regret bound of OBD in (5) (Chen et al., 2018), the advantage of SAder is that its regret depends on the path-length \(P_T \) directly, and thus becomes tighter when focusing on comparator sequences with smaller path-lengths. Finally, note that in (18), we did not minus the switching cost of the comparator sequence, i.e., \(P_T \), that is because it is always smaller than \(\sqrt{DT(1+P_T)} \) and does not affect the order.

4.2 The Lookahead Setting

It is interesting to investigate whether we can do better if the hitting cost is available before predictions. In this case, we propose a lookahead version of SAder, and demonstrate that the regret bound remains on the same order, but Assumption 2 can be dropped. That is, the gradient of the function could be unbounded, and thus the function could also be unbounded.

Meta-algorithm We design a lookahead version of Hedge, and summarize it in Algorithm 3. Compared with Algorithm 1, we make the following modifications.
- In the \(t \)-th round, the meta-algorithm first sends \(f_t(\cdot) \) to all experts so that they can also benefit from the prior knowledge of \(f_t(\cdot) \) (Step 4).
- After receiving the prediction from experts (Step 5), the meta-algorithm makes use of \(f_t(\cdot) \) to determine the weights of experts (Step 6):
 \[
 w^\eta_t = \frac{w^\eta_{t-1} e^{-\beta \ell_t(x^\eta_t)}}{\sum_{\eta \in \mathcal{H}} w^\eta_{t-1} e^{-\beta \ell_t(x^\eta_t)}} \tag{20}
 \]
 where \(\ell_t(x^\eta_t) \) is defined in (15).

Expert-algorithm To exploit the hitting cost of the current round, we choose an instance of the greedy algorithm in (4) as the expert-algorithm, and summarize it in Algorithm 4. The input of the expert is its step size \(\eta \). After receiving \(f_t(\cdot) \) (Step 2), the expert solves the following optimization problem to obtain \(x^\eta_t \) (Step 3):

\[
\min_{x \in \mathcal{X}} f_t(x) + \frac{1}{2\eta} \|x - x^\eta_{t-1}\|^2. \tag{21}
\]
Algorithm 4 Lookahead SAder: Expert-algorithm

Require: The step size η

1: for $t = 1, \ldots, T$ do
2: Receive the loss $f_t(\cdot)$ from the meta-algorithm
3: Solve the optimization problem in (21) to obtain x_t^η
4: Submit x_t^η to the meta-algorithm
5: end for

We have the following theoretical guarantee of the lookahead SAder.

Theorem 5 Set

$$\mathcal{H} = \left\{ \eta_i = 2^{i-1}\sqrt{\frac{D^2}{T}} \mid i = 1, \ldots, N \right\}$$

where

$$N = \left\lceil \frac{1}{2} \log_2(1 + 2T) \right\rceil + 1, \text{ and } \beta = \frac{1}{D} \sqrt{\frac{2}{T}}$$

in Algorithm 3. Under Assumptions 1 and 3, for any comparator sequence $u_0, u_1, \ldots, u_T \in \mathcal{X}$, the lookahead SAder satisfies

$$\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} f_t(u_t) \leq \frac{3}{2} \sqrt{T(D^2 + 2D \sum_{t=1}^{T} \|u_t - u_{t-1}\|)} + D \sqrt{\frac{T}{2}} [1 + 2\ln(k + 1)]$$

$$= O \left(\sqrt{T(1 + P_T)} + \sqrt{T(1 + \log \log P_T)} \right) = O \left(\sqrt{T(1 + P_T)} \right)$$

where $x_0 = 0$, and k is defined in (19).

Remark: Similar to SAder, the lookahead SAder also achieves an $O(\sqrt{T(1 + P_T)})$ bound for dynamic regret with switching cost. In the lookahead setting, we do not need Assumption 2 any more, and the constants in Theorem 5 are independent from G.

To show the optimality of Theorem 5, we provide the lower bound of dynamic regret with switching cost under the lookahead setting.

Theorem 6 For any online algorithm with lookahead ability and any $\tau \in [0, TD]$, there exists a sequence of functions f_1, \ldots, f_T and a sequence of comparators u_1, \ldots, u_T satisfying Assumptions 1 and 3 such that (i) the path-length of u_1, \ldots, u_T is at most τ and (ii) the dynamic regret with switching cost w.r.t. u_1, \ldots, u_T is at least $\Omega(\sqrt{T(D^2 + D\tau)})$.

Remark: The above theorem indicates an $\Omega(\sqrt{T(1 + P_T)})$ lower bound, which implies that the lookahead SAder is optimal up to constant factors. Thus, even in the lookahead setting, it is impossible to improve the $O(\sqrt{T(1 + P_T)})$ upper bound.
5. Analysis

In this section, we present the analysis of main theorems, and defer the proofs of supporting lemmas to appendices.

5.1 Proof of Theorem 1

Recall that x_t is the minimizer of $f_t(\cdot)$, which is α-polyhedral. When $t \geq 2$, we have

$$f_t(x_t) + \|x_t - x_{t-1}\|$$

$$\leq f_t(x_t) + \|x_t - u_t\| + \|u_t - u_{t-1}\| + \|u_{t-1} - x_{t-1}\|$$

(7)

$$\leq f_t(x_t) + \frac{1}{\alpha} (f_t(u_t) - f_t(x_t)) + \frac{1}{\alpha} (f_{t-1}(u_{t-1}) - f_{t-1}(x_{t-1})) + \|u_t - u_{t-1}\|.$$

For $t = 1$, we have

$$f_t(x_1) + \|x_1 - x_0\|$$

$$\leq f_1(x_1) + \|x_1 - u_1\| + \|u_1 - u_0\| + \|u_0 - x_0\|$$

$$= f_1(x_1) + \|x_1 - u_1\| + \|u_1 - u_0\|$$

(7)

$$\leq f_1(x_1) + \frac{1}{\alpha} (f_1(u_1) - f_1(x_1)) + \|u_1 - u_0\|.$$

Summing over all the iterations, we have

$$\sum_{t=1}^{T} (f_t(x_t) + \|x_t - x_{t-1}\|)$$

$$\leq \sum_{t=1}^{T} f_t(x_t) + \frac{1}{\alpha} \sum_{t=1}^{T} (f_t(u_t) - f_t(x_t)) + \frac{1}{\alpha} \sum_{t=2}^{T} (f_{t-1}(u_{t-1}) - f_{t-1}(x_{t-1})) + \sum_{t=1}^{T} \|u_t - u_{t-1}\|$$

$$\leq \sum_{t=1}^{T} f_t(x_t) + \frac{2}{\alpha} \sum_{t=1}^{T} (f_t(u_t) - f_t(x_t)) + \sum_{t=1}^{T} \|u_t - u_{t-1}\|$$

$$= \frac{2}{\alpha} \sum_{t=1}^{T} f_t(u_t) + \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \sum_{t=1}^{T} \left(1 - \frac{2}{\alpha}\right) f_t(x_t).$$

(23)

where the second inequality follows from the fact that $f_T(x_T) \leq f_T(u_T)$.

Thus, if $\alpha \geq 2$, we have

$$\sum_{t=1}^{T} (f_t(x_t) + \|x_t - x_{t-1}\|)$$

(8),(23)

$$\leq \frac{2}{\alpha} \sum_{t=1}^{T} f_t(u_t) + \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \sum_{t=1}^{T} \left(1 - \frac{2}{\alpha}\right) f_t(u_t)$$

(24)

$$\leq \sum_{t=1}^{T} (f_t(u_t) + \|u_t - u_{t-1}\|)$$
which implies the naive algorithm is 1-competitive. Otherwise, we have

\[
\sum_{t=1}^{T} (f_t(x_t) + \|x_t - x_{t-1}\|) \leq \frac{2}{\alpha} \sum_{t=1}^{T} f_t(u_t) + \sum_{t=1}^{T} \|u_t - u_{t-1}\| \leq \frac{2}{\alpha} \sum_{t=1}^{T} (f_t(u_t) + \|u_t - u_{t-1}\|).
\]

(23)\(2\)

We complete the proof by combining (24) and (25).

5.2 Proof of Theorem 2

We will make use of the following basic inequality of squared \(\ell_2\)-norm (Goel et al., 2019, Lemma 12).

\[
\|x + y\|^2 \leq (1 + \rho)\|x\|^2 + \left(1 + \frac{1}{\rho}\right)\|y\|^2, \quad \forall \rho > 0.
\]

When \(t \geq 2\), we have

\[
f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 \leq f_t(x_t) + \frac{1 + \rho}{2}\|u_t - u_{t-1}\|^2 + \frac{1}{2} \left(1 + \frac{1}{\rho}\right)\|x_t - x_{t-1} - u_t + u_{t-1}\|^2
\]

(26)

\[
\leq f_t(x_t) + \frac{1 + \rho}{2}\|u_t - u_{t-1}\|^2 + \left(1 + \frac{1}{\rho}\right)(\|u_t - x_t\|^2 + \|u_{t-1} - x_{t-1}\|^2)
\]

(26)

\[
\leq f_t(x_t) + \frac{1 + \rho}{2}\|u_t - u_{t-1}\|^2 + \frac{2}{\lambda} \left(1 + \frac{1}{\rho}\right)(f_t(u_t) - f_t(x_t) + f_{t-1}(u_{t-1}) - f_{t-1}(x_{t-1})).
\]

For \(t = 1\), we have

\[
f_t(x_1) + \frac{1}{2}\|x_1 - x_0\|^2 \leq f_1(x_1) + \frac{1 + \rho}{2}\|u_1 - u_0\|^2 + \frac{2}{\lambda} \left(1 + \frac{1}{\rho}\right)(f_1(u_1) - f_1(x_1)).
\]

(26), (9)

Summing over all the iterations, we have

\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2\right)
\]

\[
\leq \sum_{t=1}^{T} f_t(x_t) + \frac{1 + \rho}{2} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2 + \frac{2}{\lambda} \left(1 + \frac{1}{\rho}\right) \sum_{t=1}^{T} (f_t(u_t) - f_t(x_t))
\]

\[
+ \frac{2}{\lambda} \left(1 + \frac{1}{\rho}\right) \sum_{t=2}^{T} (f_{t-1}(u_{t-1}) - f_{t-1}(x_{t-1}))
\]

(27)

\[
\leq \sum_{t=1}^{T} f_t(x_t) + \frac{1 + \rho}{2} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2 + \frac{4}{\lambda} \left(1 + \frac{1}{\rho}\right) \sum_{t=1}^{T} (f_t(u_t) - f_t(x_t))
\]

\[
= \frac{4}{\lambda} \left(1 + \frac{1}{\rho}\right) \sum_{t=1}^{T} f_t(u_t) + \frac{1 + \rho}{2} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2 + \left(1 - \frac{4}{\lambda} \left(1 + \frac{1}{\rho}\right)\right) \sum_{t=1}^{T} f_t(x_t).
\]
First, we consider the case that
\[1 - \frac{4}{\lambda} \left(1 + \frac{1}{\rho} \right) \leq 0 \iff \frac{\lambda}{4} \leq 1 + \frac{1}{\rho} \] (28)
and have
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right)
\leq \frac{4}{\lambda} \left(1 + \frac{1}{\rho} \right) \sum_{t=1}^{T} f_t(u_t) + \frac{1 + \rho}{2} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2
\leq \max \left(\frac{4}{\lambda} \left(1 + \frac{1}{\rho} \right), 1 + \rho \right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right) .
\] (27),(28)

To minimize the competitive ratio, we set
\[\frac{4}{\lambda} \left(1 + \frac{1}{\rho} \right) = 1 + \rho \Rightarrow \rho = \frac{4}{\lambda} \]
and obtain
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) \leq \left(1 + \frac{4}{\lambda} \right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right) .
\] (29)

Next, we study the case that
\[1 - \frac{4}{\lambda} \left(1 + \frac{1}{\rho} \right) \geq 0 \iff \frac{\lambda}{4} \geq 1 + \frac{1}{\rho} \]
which only happens when \(\lambda > 4 \). Then, we have
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) \leq \sum_{t=1}^{T} f_t(u_t) + \frac{1 + \rho}{2} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2 .
\] (8),(27)

To minimize the competitive ratio, we set \(\rho = \frac{4}{\lambda - 4} \), and obtain
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) \leq \frac{\lambda}{\lambda - 4} \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right)
\]
which is worse than (29). So, we keep (29) as the final result.

5.3 Proof of Theorem 3
Since \(f_t(\cdot) \) is convex, the objective function of (10) is \(\gamma \)-strongly convex. From the quadratic growth property of strongly convex functions (Hazan and Kale, 2011), we have
\[
f_t(x_t) + \frac{\gamma}{2} \|x_t - x_{t-1}\|^2 + \frac{\gamma}{2} \|u - x_t\|^2 \leq f_t(u) + \frac{\gamma}{2} \|u - x_{t-1}\|^2, \forall u \in \mathcal{X} .
\] (30)
Similar to previous studies (Bansal et al., 2015), the analysis uses an amortized local competitiveness argument, using the potential function f. We proceed to bound $f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 + c\|x_t - u_t\|^2 - c\|x_{t-1} - u_{t-1}\|^2$, and have

$$\begin{align*}
f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 + c\|x_t - u_t\|^2 - c\|x_{t-1} - u_{t-1}\|^2 \\
\leq f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 + c(2\|x_t - v_t\|^2 + 2\|v_t - u_t\|^2) - c\|x_{t-1} - u_{t-1}\|^2 \\
\leq \left(1 + \frac{4c}{\lambda}\right) f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 + \frac{4c}{\lambda} f_t(u_t) - c\|x_{t-1} - u_{t-1}\|^2 \\
= \left(1 + \frac{4c}{\lambda}\right) \left(f_t(x_t) + \frac{\lambda}{2(\lambda + 4c)}\|x_t - x_{t-1}\|^2\right) + \frac{4c}{\lambda} f_t(u_t) - c\|x_{t-1} - u_{t-1}\|^2.
\end{align*}$$

Suppose

$$\frac{\lambda}{\lambda + 4c} \leq \gamma,$$

we have

$$\begin{align*}
f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2 + c\|x_t - u_t\|^2 - c\|x_{t-1} - u_{t-1}\|^2 \\
\leq \left(1 + \frac{4c}{\lambda}\right) \left(f_t(x_t) + \frac{\gamma}{2}\|x_t - x_{t-1}\|^2\right) + \frac{4c}{\lambda} f_t(u_t) - c\|x_{t-1} - u_{t-1}\|^2 \\
\leq \left(1 + \frac{8c}{\lambda}\right) f_t(u_t) + \frac{\gamma(\lambda + 4c)}{2\lambda}\|u_t - x_{t-1}\|^2 - \frac{\gamma(\lambda + 4c)}{2\lambda}\|u_t - x_t\|^2 - c\|x_{t-1} - u_{t-1}\|^2.
\end{align*}$$

Summing over all the iterations and assuming $x_0 = u_0$, we have

$$\begin{align*}
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2}\|x_t - x_{t-1}\|^2\right) + c\|x_T - u_T\|^2 \\
\leq \left(1 + \frac{8c}{\lambda}\right) \sum_{t=1}^{T} f_t(u_t) + \frac{\gamma(\lambda + 4c)}{2\lambda} \sum_{t=1}^{T}\|u_t - x_{t-1}\|^2 \\
- \frac{\gamma(\lambda + 4c)}{2\lambda} \sum_{t=1}^{T}\|u_t - x_t\|^2 - c \sum_{t=1}^{T}\|x_{t-1} - u_{t-1}\|^2 \\
\leq \left(1 + \frac{8c}{\lambda}\right) \sum_{t=1}^{T} f_t(u_t) + \frac{\gamma(\lambda + 4c)}{2\lambda} \sum_{t=1}^{T}\|u_t - x_{t-1}\|^2 - \left(\frac{\gamma(\lambda + 4c)}{2\lambda} + c\right) \sum_{t=1}^{T}\|x_{t-1} - u_{t-1}\|^2 \\
\leq \left(1 + \frac{8c}{\lambda}\right) \sum_{t=1}^{T} f_t(u_t) + \frac{\gamma(\lambda + 4c)}{2\lambda} \sum_{t=1}^{T}\|u_t - x_{t-1}\|^2 \\
- \left(\frac{\gamma(\lambda + 4c)}{2\lambda} + c\right) \sum_{t=1}^{T}\left(\frac{1}{1 + \rho}\|x_{t-1} - u_t\|^2 - \frac{1}{\rho}\|u_t - u_{t-1}\|^2\right).
\end{align*}$$
\[
\leq \left(1 + \frac{8c}{\lambda}\right) \sum_{t=1}^{T} f_t(u_t) + \left(\frac{\gamma(\lambda + 4c)}{2\lambda} + c\right) \frac{1}{\rho} \sum_{t=1}^{T} \|u_t - u_{t-1}\|^2
\]
\[
\leq \max \left(1 + \frac{8c}{\lambda}, \left(\frac{\gamma(\lambda + 4c)}{2\lambda} + c\right) \frac{2}{\rho}\right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right)
\]

where in the penultimate inequality we assume
\[
\frac{\gamma(\lambda + 4c)}{2\lambda} \leq \left(\frac{\gamma(\lambda + 4c)}{2\lambda} + c\right) \frac{1}{1 + \rho} \Leftrightarrow \frac{\gamma(\lambda + 4c)}{2\lambda} \leq \frac{c}{\rho}.
\]

Next, we minimize the competitive ratio under the constraints in (31) and (32), which can be summarized as
\[
\frac{\lambda}{\lambda + 4c} \leq \gamma \leq \frac{\lambda}{\lambda + 4c} \frac{2c}{\rho}.
\]

We first set \(c = \frac{\rho}{2}\) and \(\gamma = \frac{\lambda}{\lambda + 4c}\), and obtain
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \frac{1}{2} \|x_t - x_{t-1}\|^2 \right) \leq \max \left(1 + \frac{4\rho}{\lambda}, 1 + \frac{1}{\rho}\right) \sum_{t=1}^{T} \left(f_t(u_t) + \frac{1}{2} \|u_t - u_{t-1}\|^2 \right).
\]

Then, we set
\[
1 + \frac{4\rho}{\lambda} = 1 + \frac{1}{\rho} \Rightarrow \rho = \frac{\sqrt{\lambda}}{2}.
\]

As a result, the competitive ratio is
\[
1 + \frac{1}{\rho} = 1 + \frac{2}{\sqrt{\lambda}},
\]

and the parameter is
\[
\gamma = \frac{\lambda}{\lambda + 4c} = \frac{\lambda}{\lambda + 2\rho} = \frac{\lambda}{\lambda + \sqrt{\lambda}}.
\]

5.4 Proof of Theorem 4

The analysis is similar to the proof of Theorem 3 of Zhang et al. (2018). In the analysis, we need to specify the behavior of the meta-algorithm and expert-algorithm at \(t = 0\). To simplify the presentation, we set
\[
x_0 = 0, \text{ and } x^\eta_0 = 0, \forall \eta \in \mathcal{H}.
\]

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts simultaneously.

Lemma 3 Under Assumptions 2 and 3, and setting \(\beta = \frac{2}{(2G+1)D} \sqrt{\frac{2}{M}}\), we have
\[
\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(s_t(x^\eta_t) + \|x^\eta_t - x^\eta_{t-1}\| \right) \leq (2G+1)D \sqrt{\frac{5T}{8}} \left(\ln \frac{1}{w^\eta_1} + 1 \right)
\]

for each \(\eta \in \mathcal{H} \).
Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence $u_0, u_1, \ldots, u_T \in \mathcal{X}$.

Lemma 4 Under Assumptions 2 and 3, we have

$$
\sum_{t=1}^{T} \left(s_t(x_t^\eta) + \|x_t^\eta - x_{t-1}^\eta\| \right) - \sum_{t=1}^{T} s_t(u_t) \leq \frac{D^2}{2\eta} + \frac{D}{\eta} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \eta T \left(\frac{G^2}{2} + G \right). \tag{35}
$$

Then, we show that for any sequence of comparators $u_0, u_1, \ldots, u_T \in \mathcal{X}$ there exists an $\eta_k \in \mathcal{H}$ such that the R.H.S. of (35) is almost minimal. If we minimize the R.H.S. of (35) exactly, the optimal step size is

$$
\eta^*(P_T) = \sqrt{\frac{D^2 + 2DP_T}{T(G^2 + 2G)}}. \tag{36}
$$

From Assumption 3, we have the following bound of the path-length

$$
0 \leq P_T = \sum_{t=1}^{T} \|u_t - u_{t-1}\| \leq TD. \tag{37}
$$

Thus

$$
\sqrt{\frac{D^2}{T(G^2 + 2G)}} \leq \eta^*(P_T) \leq \sqrt{\frac{D^2 + 2TD^2}{T(G^2 + 2G)}}.
$$

From our construction of \mathcal{H} in (17), it is easy to verify that

$$
\min \mathcal{H} = \sqrt{\frac{D^2}{T(G^2 + 2G)}}, \text{ and } \max \mathcal{H} \geq \sqrt{\frac{D^2 + 2TD^2}{T(G^2 + 2G)}}.
$$

As a result, for any possible value of P_T, there exists a step size $\eta_k \in \mathcal{H}$ with k defined in (19), such that

$$
\eta_k = 2^{k-1} \sqrt{\frac{D^2}{T(G^2 + 2G)}} \leq \eta^*(P_T) \leq 2\eta_k. \tag{38}
$$

Plugging η_k into (35), the dynamic regret with switching cost of expert E^η_k is given by

$$
\sum_{t=1}^{T} \left(s_t(x_t^\eta) + \|x_t^\eta - x_{t-1}^\eta\| \right) - \sum_{t=1}^{T} s_t(u_t)
\leq \frac{D^2}{2\eta_k} + \frac{D}{\eta_k} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \eta_k T \left(\frac{G^2}{2} + G \right)
\leq \frac{D^2}{\eta^*(P_T)} + \frac{2D}{\eta^*(P_T)} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \eta^*(P_T)T \left(\frac{G^2}{2} + G \right)
\leq \frac{D^2}{\eta^*(P_T)} + \frac{2D}{\eta^*(P_T)} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \eta^*(P_T) \sqrt{T(G^2 + 2G)(D^2 + 2DP_T)}. \tag{39}
$$
From (13), we know the initial weight of expert E^η is
\[w_1^\eta = \frac{C}{k(k+1)} \geq \frac{1}{k(k+1)} \geq \frac{1}{(k+1)^2}. \]
Combining with (34), we obtain the relative performance of the meta-algorithm w.r.t. expert E^η:
\[
\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(s_t(x^\eta_{kt}) + \|x^\eta_{kt} - x^\eta_{k(t-1)}\| \right) \leq (2G+1)D\sqrt{\frac{5T}{8}} [1 + 2\ln(k+1)].
\]
From (39) and (40), we derive the following upper bound for dynamic regret with switching cost
\[
\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} s_t(u_t)
\leq \frac{3}{2} \sqrt{T(G^2 + 2G)(D^2 + 2DP_T)} + (2G + 1)D\sqrt{\frac{5T}{8}} [1 + 2\ln(k+1)].
\]
Finally, from Assumption 1, we have
\[
f_t(x_t) - f_t(u_t) \leq \langle \nabla f_t(x_t), x_t - u_t \rangle \overset{\text{(16)}}{=} s_t(x_t) - s_t(u_t).
\]
We complete the proof by combining (41) and (42).

5.5 Proof of Theorem 5

The analysis is similar to that of Theorem 4. The difference is that we need to take into account the lookahead property of the meta-algorithm and the expert-algorithm.

First, we bound the dynamic regret with switching cost of the meta-algorithm w.r.t. all experts simultaneously.

Lemma 5 Under Assumption 3, and setting $\beta = \frac{1}{T} \sqrt{\frac{2}{T}}$, we have
\[
\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} s_t(u_t)
\leq D\sqrt{\frac{T}{2}} \left(\ln \frac{1}{w_0^\eta} + 1 \right)
\]
for each $\eta \in \mathcal{H}$.

Combining Lemma 5 with Assumption 1, we have
\[
\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(f_t(x^\eta_{kt}) + \|x^\eta_{kt} - x^\eta_{k(t-1)}\| \right) \leq D\sqrt{\frac{T}{2}} \left(\ln \frac{1}{w_0^\eta} + 1 \right)
\]
for each $\eta \in \mathcal{H}$.

Next, we bound the dynamic regret with switching cost of each expert w.r.t. any comparator sequence $u_0, u_1, \ldots, u_T \in \mathcal{X}$.
Lemma 6 Under Assumptions 1 and 3, we have

\[
\sum_{t=1}^{T} \left(f_t(x_t^\eta) + \|x_t^\eta - x_{t-1}^\eta\| \right) - \sum_{t=1}^{T} f_t(u_t) \leq \frac{D^2}{2\eta} + \frac{D}{\eta} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \frac{\eta T}{2}.
\] (45)

The rest of the proof is almost identical to that of Theorem 4. We will show that for any sequence of comparators \(u_0, u_1, \ldots, u_T \in X\) there exists an \(\eta_k \in \mathcal{H}\) such that the R.H.S. of (45) is almost minimal. If we minimize the R.H.S. of (45) exactly, the optimal step size is

\[
\eta^*(P_T) = \sqrt{\frac{D^2 + 2DP_T}{T}}.
\] (46)

From (37), we know that

\[
\sqrt{\frac{D^2}{T}} \leq \eta^*(P_T) \leq \sqrt{\frac{D^2 + 2TD^2}{T}}.
\]

From our construction of \(\mathcal{H}\) in (22), it is easy to verify that

\[
\min \mathcal{H} = \sqrt{\frac{D^2}{T}}, \quad \text{and} \quad \max \mathcal{H} \geq \sqrt{\frac{D^2 + 2TD^2}{T}}.
\]

As a result, for any possible value of \(P_T\), there exists a step size \(\eta_k \in \mathcal{H}\) with \(k\) defined in (19), such that

\[
\eta_k = 2^{k-1} \sqrt{\frac{D^2}{T}} \leq \eta^*(P_T) \leq 2\eta_k.
\] (47)

Plugging \(\eta_k\) into (45), the dynamic regret with switching cost of expert \(E^{\eta_k}\) is given by

\[
\sum_{t=1}^{T} \left(f_t(x_t^{\eta_k}) + \|x_t^{\eta_k} - x_{t-1}^{\eta_k}\| \right) - \sum_{t=1}^{T} f_t(u_t)
\leq \frac{D^2}{2\eta_k} + \frac{D}{\eta_k} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \frac{\eta_k T}{2}
\leq \frac{D^2}{\eta^*(P_T)} + \frac{2D}{\eta^*(P_T)} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \frac{\eta^*(P_T)T}{2}
\overset{(47)}{=} \frac{D^2}{\eta^*(P_T)} + \frac{2D}{\eta^*(P_T)} \sum_{t=1}^{T} \|u_t - u_{t-1}\| + \frac{\eta^*(P_T)T}{2}
\overset{(46)}{=} \frac{3}{2} \sqrt{T(D^2 + 2DP_T)}.
\] (48)

From Step 2 of Algorithm 3, we know the initial weight of expert \(E^{\eta_k}\) is

\[
w_0^{\eta_k} = \frac{C}{k(k+1)} \geq \frac{1}{k(k+1)} \geq \frac{1}{(k+1)^2}.
\]

Combining with (44), we obtain the relative performance of the meta-algorithm w.r.t. expert \(E^{\eta_k}\):

\[
\sum_{t=1}^{T} \left(f_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(f_t(x_t^{\eta_k}) + \|x_t^{\eta_k} - x_{t-1}^{\eta_k}\| \right) \leq D \sqrt{\frac{T}{2} \left[1 + 2 \ln(k+1) \right]}.
\] (49)

We complete the proof by summing (48) and (49) together.
5.6 Proof of Theorem 6

The proof is built upon a lower bound of competitive ratio (Argue et al., 2020a). By setting \(\gamma = \frac{D}{2\sqrt{d}} \) in Lemma 12 of Argue et al. (2020a), we can guarantee that Assumption 3 is satisfied. Then, we choose \(\mu = 0, \lambda = 1/\gamma \) in that lemma, and obtain the conclusion below.

Lemma 7 For any online algorithm \(A \) and any fixed value of \(d \), there exists a sequence of convex functions \(f_1(\cdot), \ldots, f_d(\cdot) \) over the domain \([-\frac{D}{2\sqrt{d}}, \frac{D}{2\sqrt{d}}]^d\) in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of \(A \) is at least \(\frac{3\gamma d}{4} = \frac{3D\sqrt{d}}{8} \);
2. there exist a fixed point \(u \) whose hitting cost is 0.

We consider two cases: \(\tau < D \) and \(\tau \geq D \). When \(\tau < D \), from Lemma 7 with \(d = T \), we know that the dynamic regret with switching cost w.r.t. a fixed point \(u \) is at least \(\Omega(D\sqrt{T}) \).

Next, we consider the case \(\tau \geq D \). Without loss of generality, we assume \(\lfloor \tau/D \rfloor \) divides \(T \). Then, we partition \(T \) into \(\lfloor \tau/D \rfloor \) successive stages, each of which contains \(T/\lfloor \tau/D \rfloor \) rounds. Applying Lemma 7 to each stage, we conclude that there exists a sequence of convex functions \(f_1(\cdot), \ldots, f_T(\cdot) \) over the domain \([-\frac{D}{2\sqrt{d}}, \frac{D}{2\sqrt{d}}]^d\) where \(d = T/\lfloor \tau/D \rfloor \) in the lookahead setting such that

1. the sum of the hitting cost and the switching cost of any online algorithm is at least \(\lfloor \tau/D \rfloor \cdot \frac{3D\sqrt{d}}{8} = \frac{3D\sqrt{T\tau}}{8} \);
2. there exist a sequence of points \(u_1, \ldots, u_T \) whose hitting cost is 0 and switching cost (i.e., path-length) is at most \(D \lfloor \tau/D \rfloor \leq \tau \)

since they switch at most \(\lfloor \tau/D \rfloor - 1 \) times.

Thus, the dynamic regret with switching cost w.r.t. \(u_1, \ldots, u_T \) is at least

\[
\frac{3D}{8} \sqrt{T \lfloor \tau/D \rfloor} - \tau = \Omega(\sqrt{T\tau}).
\]

We complete the proof by combining the results of the above two cases.

6. Conclusion and Future Work

We investigate the problem of smoothed online learning (SOL), and derive constant competitive ratio or sublinear dynamic regret with switching cost. For competitive ratio, we demonstrate that the naive approach, which only minimizes the hitting cost, is \(\max(1, \frac{2}{\alpha}) \)-competitive for \(\alpha \)-polyhedral functions and \(1 + \frac{4}{\lambda} \)-competitive for \(\lambda \)-quadratic growth functions. Furthermore, we show that the greedy algorithm, which minimizes the weighted sum of the hitting cost and the switching cost, is \(1 + \frac{2}{\lambda} \)-competitive for convex and \(\lambda \)-quadratic growth functions. For dynamic regret with switching cost, we propose smoothed Ader (SAder), which attains the optimal \(O(\sqrt{T(1 + P_T)}) \) bound. We also develop a lookahead version of SAder to make use of the prior knowledge of the hitting cost, and establish an
\(\Omega(\sqrt{T(1 + P_T)}) \) lower bound. All the proposed algorithms are very simple, and our results served as the baselines for SOL.

The research on SOL is still on its early stage, and there are many open problems.

1. Although we can upper bound the sum of the hitting cost and the switching cost, we do not have a direct control over the switching cost. However, in many real problems, there may exist a hard constraint on the switching cost, motivating the study of switch-constrained online learning, in which the times of switches is limited (Altschuler and Talwar, 2018; Chen et al., 2020). It would be interesting to investigate how to impose a budget on the switching cost.

2. The current analysis of competitive ratio and dynamic regret with switching cost relies on very different conditions. Generally speaking, to bound the competitive ratio, we need stronger assumptions, such as polyhedrality or strong convexity. It is unclear how to make use of those conditions when bounding the dynamic regret.

3. As aforementioned, for polyhedral functions and quadratic growth functions, the best competitive ratio is obtained by the naive approach which ignores the switching cost, which is counterintuitive. To better understand the challenge, it is important to reveal the lower bound of polyhedral functions and quadratic growth functions.

4. We note that SOL has a similar spirit with continual learning (Kirkpatrick et al., 2017; Aljundi et al., 2019), which aims to learn consecutive tasks (corresponding to minimize the hitting cost) without forgetting how to perform previously trained tasks (corresponding to minimize the switching cost). So, the theoretical studies of SOL may lay the foundation for continual learning.

Acknowledgments

The authors would like to thank Yuxuan Xiang for discussions about Theorem 4.

References

R. Agrawal, M. Hegde, and D. Teneketzis. Multi-armed bandit problems with multiple plays and switching cost. *Stochastics and Stochastic Reports*, 29(4):437–459, 1990.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection for online continual learning. In *Advances in Neural Information Processing Systems 32*, pages 11816–11825, 2019.

Jason Altschuler and Kunal Talwar. Online learning over a finite action set with limited switching. In *Proceedings of the 31st Annual Conference on Learning Theory*, pages 1569–1573, 2018.

Lachlan Andrew, Siddharth Barman, Katrina Ligett, Minghong Lin, Adam Meyerson, Alan Roytman, and Adam Wierman. A tale of two metrics: Simultaneous bounds on competitiveness and regret. In *Proceedings of the 26th Annual Conference on Learning Theory*, pages 741–763, 2013.
Antonios Antoniadis and Kevin Schewior. A tight lower bound for online convex optimization with switching costs. In Approximation and Online Algorithms, pages 164–175, 2018.

Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, Kevin Schewior, and Michele Scquizzato. Chasing convex bodies and functions. In Proceedings of the 12th Latin American Symposium on Theoretical Informatics, pages 68–81, 2016.

C.J. Argue, Sébastien Bubeck, Michael B. Cohen, Anupam Gupta, and Yin Tat Lee. A nearly-linear bound for chasing nested convex bodies. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 117–122, 2019.

C.J. Argue, Anupam Gupta, and Guru Guruganesh. Dimension-free bounds for chasing convex functions. In Proceedings of 33rd Conference on Learning Theory, pages 219–241, 2020a.

C.J. Argue, Anupam Gupta, Guru Guruganesh, and Ziye Tang. Chasing convex bodies with linear competitive ratio. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1519–1524, 2020b.

Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy, Kirk Pruhs, Kevin Schewior, and Cliff Stein. A 2-competitive algorithm for online convex optimization with switching costs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 96–109, 2015.

Nikhil Bansal, Martin Böhm, Marek Eliáš, Grigorios Koumoutsos, and Seeun William Umboh. Nested convex bodies are chaseable. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1253–1260, 2018.

Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations Research, 63(5):1227–1244, 2015.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Sébastien Bubeck, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Competitively chasing convex bodies. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 861–868, 2019.

Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing nested convex bodies nearly optimally. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1496–1508, 2020.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other adaptive adversaries. In Advances in Neural Information Processing Systems 26, pages 1160–1168. 2013.

Lin Chen, Qian Yu, Hannah Lawrence, and Amin Karbasi. Minimax regret of switching-constrained online convex optimization: No phase transition. In Advances in Neural Information Processing Systems 33, pages 3477–3486, 2020.

Niangjun Chen, Anish Agarwal, Adam Wierman, Siddharth Barman, and Lachlan L.H. Andrew. Online convex optimization using predictions. In Proceedings of the 2015 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pages 191–204, 2015.

Niangjun Chen, Joshua Comden, Zhenhua Liu, Anshul Gandhi, and Adam Wierman. Using predictions in online optimization: Looking forward with an eye on the past. In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pages 193–206, 2016.

Niangjun Chen, Gautam Goel, and Adam Wierman. Smoothed online convex optimization in high dimensions via online balanced descent. In Proceedings of the 31st Conference on Learning Theory, pages 1574–1594, 2018.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, second edition, 2006.

Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In Proceedings of the 37th International Conference on Machine Learning, pages 2250–2259, 2020.

Amit Daniely and Yishay Mansour. Competitive ratio vs regret minimization: achieving the best of both worlds. In Proceedings of the 30th International Conference on Algorithmic Learning Theory, pages 333–368, 2019.

Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: $t^{2/3}$ regret. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 459–467, 2014.

Dmitriy Drusvyatskiy and Adrian S. Lewis. Error bounds, quadratic growth, and linear convergence of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):592–606, 2012.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.
Joel Friedman and Nathan Linial. On convex body chasing. *Discrete & Computational Geometry*, 9:293–321, 1993.

Gautam Goel and Adam Wierman. An online algorithm for smoothed regression and lqr control. In *Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics*, pages 2504–2513, 2019.

Gautam Goel, Niangjun Chen, and Adam Wierman. Thinking fast and slow: Optimization decomposition across timescales. In *Proceedings of the 56th IEEE Conference on Decision and Control*, pages 1291–1298, 2017.

Gautam Goel, Yiheng Lin, Haoyuan Sun, and Adam Wierman. Beyond online balanced descent: An optimal algorithm for smoothed online optimization. In *Advances in Neural Information Processing Systems 32*, pages 1875–1885, 2019.

Sudipto Guha and Kamesh Munagala. Multi-armed bandits with metric switching costs. In *Proceedings of the 36th International Colloquium on Automata, Languages, and Programming*, pages 496–507, 2009.

Eric C. Hall and Rebecca M. Willett. Dynamical models and tracking regret in online convex programming. In *Proceedings of the 30th International Conference on Machine Learning*, pages 579–587, 2013.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic strongly-convex optimization. In *Proceedings of the 24th Annual Conference on Learning Theory*, pages 421–436, 2011.

Longbo Huang and Michael J. Neely. Delay reduction via lagrange multipliers in stochastic network optimization. *IEEE Transactions on Automatic Control*, 56(4):842–857, 2011.

Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online optimization: Competing with dynamic comparators. In *Proceedings of the 18th International Conference on Artificial Intelligence and Statistics*, pages 398–406, 2015.

Vinay Joseph and Gustavo de Veciana. Jointly optimizing multi-user rate adaptation for video transport over wireless systems: Mean-fairness-variability tradeoffs. In *Proceedings of the 31st Annual IEEE International Conference on Computer Communications*, pages 567–575, 2012.

Seung-Jun Kim and Geogios B. Giannakis. Real-time electricity pricing for demand response using online convex optimization. In *Proceedings of the 2012 IEEE PES Conference on Innovative Smart Grid Technologies*, pages 1–5, 2014.

Taehwan Kim, Yisong Yue, Sarah Taylor, and Iain Matthews. A decision tree framework for spatiotemporal sequence prediction. In *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 577–586, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. *Proceedings of the National Academy of Sciences*, 114(13):3521–3526, 2017.

Tomer Koren, Roi Livni, and Yishay Mansour. Multi-armed bandits with metric movement costs. In *Advances in Neural Information Processing Systems 30*, pages 4119–4128. 2017a.

Tomer Koren, Roi Livni, and Yishay Mansour. Bandits with movement costs and adaptive pricing. In *Proceedings of the 30th Annual Conference on Learning Theory*, pages 1242–1268, 2017b.

Wook Hyun Kwon and Soohee Han. *Receding Horizon Control*. Springer, 2005.

Yingying Li and Na Li. Leveraging predictions in smoothed online convex optimization via gradient-based algorithms. In *Advances in Neural Information Processing Systems 33*, pages 14520–14531. Curran Associates, Inc., 2020.

Yingying Li, Guannan Qu, and Na Li. Using predictions in online optimization with switching costs: A fast algorithm and a fundamental limit. In *the 2018 Annual American Control Conference*, pages 3008–3013, 2018.

Minghong Lin, Adam Wierman, Lachlan L.H. Andrew, and Enno Thereska. Dynamic rightsizing for power-proportional data centers. In *Proceedings of the 30th IEEE International Conference on Computer Communications*, pages 1098–1106, 2011.

Minghong Lin, Zhenhua Liu, Adam Wierman, and Lachlan L.H. Andrew. Online algorithms for geographical load balancing. In *Proceedings of the 2012 International Green Computing Conference*, pages 1–10, 2012.

Yiheng Lin, Gautam Goel, and Adam Wierman. Online optimization with predictions and non-convex losses. *Proceedings of the ACM on Measurement and Analysis of Computing Systems*, 4(1):18:1–18:32, 2020.

Aryan Mokhtari, Shahin Shahrampour, Ali Jadbabaie, and Alejandro Ribeiro. Online optimization in dynamic environments: Improved regret rates for strongly convex problems. In *Proceedings of the 55th IEEE Conference on Decision and Control*, pages 7195–7201, 2016.

I. Necoara, Yu. Nesterov, and F. Glineur. Linear convergence of first order methods for non-strongly convex optimization. *Mathematical Programming*, 175(1):69–107, 2019.

Mark Sellke. Chasing convex bodies optimally. In *Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1509–1518, 2020.

Shai Shalev-Shwartz. Online learning and online convex optimization. *Foundations and Trends in Machine Learning*, 4(2):107–194, 2011.

Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant: Optimal dynamic regret of online learning with true and noisy gradient. In *Proceedings of the 33rd International Conference on Machine Learning*, pages 449–457, 2016.
Francesco Zanini, David Atienza, Giovanni De Micheli, and Stephen P. Boyd. Online convex optimization-based algorithm for thermal management of mp socs. In *Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI*, pages 203–208, 2010.

Lijun Zhang. Online learning in changing environments. In *Proceedings of the 29th International Joint Conference on Artificial Intelligence*, pages 5178–5182, 2020. Early Career.

Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, and Zhi-Hua Zhou. Improved dynamic regret for non-degenerate functions. In *Advances in Neural Information Processing Systems 30*, pages 732–741, 2017.

Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments. In *Advances in Neural Information Processing Systems 31*, pages 1323–1333, 2018.

Peng Zhao and Lijun Zhang. Improved analysis for dynamic regret of strongly convex and smooth functions. In *Proceedings of the 3rd Annual Learning for Dynamics and Control Conference*, 2021.

Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth functions. In *Advances in Neural Information Processing Systems 33*, pages 12510–12520, 2020a.

Yawei Zhao, Qian Zhao, Xingxing Zhang, En Zhu, Xinwang Liu, and Jianping Yin. Understand dynamic regret with switching cost for online decision making. *ACM Transactions on Intelligent Systems and Technology*, 11(3), 2020b.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *Proceedings of the 20th International Conference on Machine Learning*, pages 928–936, 2003.
Appendix A. Proof of Lemma 3

Based on the prediction rule of the meta-algorithm, we upper bound the switching cost when $t \geq 2$ as follows:

$$
\|x_t - x_{t-1}\| = \left\| \sum_{\eta \in H} w_t^\eta x_t^\eta - \sum_{\eta \in H} w_t^\eta x_{t-1}^\eta \right\| = \left\| \sum_{\eta \in H} w_t^\eta (x_t^\eta - x) - \sum_{\eta \in H} w_t^\eta (x_{t-1}^\eta - x) \right\|
$$

$$
\leq \left\| \sum_{\eta \in H} w_t^\eta (x_t^\eta - x) - \sum_{\eta \in H} w_t^\eta (x_t^\eta - x) \right\| + \left\| \sum_{\eta \in H} w_t^\eta (x_{t-1}^\eta - x) - \sum_{\eta \in H} w_t^\eta (x_{t-1}^\eta - x) \right\|
$$

$$
= \left\| \sum_{\eta \in H} w_t^\eta (x_t^\eta - x_t^\eta) \right\| + \left\| \sum_{\eta \in H} (w_t^\eta - w_{t-1}^\eta)(x_{t-1}^\eta - x) \right\|
$$

$$
\leq \sum_{\eta \in H} \|x_t^\eta - x_{t-1}^\eta\| + \sum_{\eta \in H} |w_t^\eta - w_{t-1}^\eta| \|x_{t-1}^\eta - x\|
$$

(12) \leq \sum_{\eta \in H} \|x_t^\eta - x_{t-1}^\eta\| + D \sum_{\eta \in H} |w_t^\eta - w_{t-1}^\eta| = \sum_{\eta \in H} w_t^\eta \|x_t^\eta - x_{t-1}^\eta\| + D\|w_t - w_{t-1}\|_1
$$

(50)

where x is an arbitrary point in \mathcal{X}, and $w_t = (w_t^\eta)_{\eta \in H} \in \mathbb{R}^N$. When $t = 1$, from (33), we have

$$
\|x_1 - x_0\| = \|x_1\| = \left\| \sum_{\eta \in H} w_1^\eta x_1^\eta \right\| \leq \sum_{\eta \in H} \|w_1^\eta\| \|x_1^\eta\| = \sum_{\eta \in H} w_1^\eta \|x_1^\eta - x_0^\eta\|.
$$

(51)

Then, the relative loss of the meta-algorithm w.r.t. expert E^η can be decomposed as

$$
\sum_{t=1}^T \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^T \left(s_t(x_t^\eta) + \|x_t^\eta - x_{t-1}^\eta\| \right)
$$

(16),(50),(51)

$$
\leq \sum_{t=1}^T \left(\sum_{\eta \in H} \|x_t^\eta - x_{t-1}^\eta\| - (\langle \nabla f_t(x_t), x_t^\eta - x_t \rangle + \|x_t^\eta - x_{t-1}^\eta\|) \right)
$$

$$
+ D \sum_{t=2}^T \|w_t - w_{t-1}\|_1
$$

(52)

$$
\overset{(15)}{=} \sum_{t=1}^T \left(\sum_{\eta \in H} w_t^\eta \ell_t(x_t^\eta) - \ell_t(x_t) \right) + D \sum_{t=2}^T \|w_t - w_{t-1}\|_1.
$$

We proceed to bound A and $\|w_t - w_{t-1}\|_1$ in (52). Notice that A is the regret of the meta-algorithm w.r.t. expert E^η. From Assumptions 2 and 3, we have

$$
|\langle \nabla f_t(x_t), x_t^\eta - x_t \rangle| \leq \|\nabla f_t(x_t)\| \|x_t^\eta - x_t\| \overset{(11),(12)}{\leq} GD.
$$

30
Thus, we have
\[-GD \leq \ell_t(x^\eta_t) \leq (G + 1)D, \forall \eta \in \mathcal{H}.\] (53)

According to the standard analysis of Hedge (Zhang et al., 2018, Lemma 1) and (53), we have
\[
\sum_{t=1}^{T} \left(\sum_{\eta \in \mathcal{H}} w^\eta_t \ell_t(x^\eta_t) - \ell_t(x^\eta_t) \right) \leq \frac{1}{\beta} \ln \frac{1}{w^1_1} + \frac{\beta T(2G + 1)^2 D^2}{8}. \tag{54}
\]

Next, we bound \(\|w_t - w_{t-1}\|_1\), which measures the stability of the meta-algorithm, i.e., the change of coefficients between successive rounds. Because the Hedge algorithm is translation invariant, we can subtract \(D/2\) from \(\ell_t(x^\eta_t)\) such that
\[
|\ell_t(x^\eta_t) - D/2| \leq (G + 1/2)D, \forall \eta \in \mathcal{H}. \tag{55}
\]
It is well-known that Hedge can be treated as a special case of “Follow-the-Regularized-Leader” with entropic regularization (Shalev-Shwartz, 2011)
\[
R(w) = \sum_i w_i \log w_i
\]
over the probability simplex, and \(R(\cdot)\) is 1-strongly convex w.r.t. the \(\ell_1\)-norm. In other words, we have
\[
w_{t+1} = \arg\min_{w \in \Delta} \left(-\frac{1}{\beta} \log(w_1) + \sum_{i=1}^{t} g_i, w \right) + \frac{1}{\beta} R(w), \forall t \geq 1
\]
where \(\Delta \subseteq \mathbb{R}^N\) is the probability simplex, and \(g_i = [\ell_i(x^\eta_t) - D/2]_{\eta \in \mathcal{H}} \in \mathbb{R}^N\). From the stability property of Follow-the-Regularized-Leader (Duchi et al., 2012, Lemma 2), we have
\[
\|w_t - w_{t-1}\|_1 \leq \beta\|g_{t-1}\|_\infty \leq \beta(G + 1/2)D, \forall t \geq 2. \tag{55}
\]

Then
\[
\sum_{t=2}^{T} \|w_t - w_{t-1}\|_1 \leq \beta(T - 1)(2G + 1)D \tag{56}
\]

Substituting (54) and (56) into (52), we have
\[
\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(s_t(x^\eta_t) + \|x^\eta_t - x^\eta_{t-1}\| \right)
\leq \frac{1}{\beta} \ln \frac{1}{w^1_1} + \frac{\beta T(2G + 1)^2 D^2}{8} + \frac{\beta(T - 1)(2G + 1)D^2}{2} \leq \frac{1}{\beta} \ln \frac{1}{w^1_1} + \frac{5\beta T(2G + 1)^2 D^2}{8}.
\]

We complete the proof by setting \(\beta = \frac{2}{(2G + 1)D} \sqrt{\frac{2}{w^1_1}}\).
Appendix B. Proof of Lemma 4

First, we bound the dynamic regret of the expert-algorithm. Define

\[x^\eta_{t+1} = x^\eta_t - \eta \nabla f_t(x_t). \]

Following the analysis of Ader (Zhang et al., 2018, Theorems 1 and 6), we have

\[s_t(x^\eta_t) - s_t(u_t) \overset{(16)}{=} \langle \nabla f_t(x_t), x^\eta_t - u_t \rangle = \frac{1}{\eta} (x^\eta_t - \bar{x}^\eta_{t+1}, x^\eta_t - u_t) \]

\[
= \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 + \| x^\eta_t - \bar{x}^\eta_{t+1} \|_2^2 \right) \\
= \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 \right) + \frac{\eta}{2} \| \nabla f_t(x_t) \|_2^2 \\
\overset{(11)}{\leq} \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 \right) + \frac{\eta}{2} G^2 \\
\leq \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 \right) + \frac{\eta}{2} G^2 \\
= \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 + \| x^\eta_t - \bar{x}^\eta_{t+1} \|_2^2 - \| x^\eta_t - u_t \|_2^2 \right) + \frac{\eta}{2} G^2 \\
= \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 + \| x^\eta_t - \bar{x}^\eta_{t+1} + u_t + \bar{x}^\eta_{t+1} - u_t \| \right) + \frac{\eta}{2} G^2 \\
\leq \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 + \| \| x^\eta_t - u_t \| + \| \bar{x}^\eta_{t+1} - u_t \| \right) + \frac{\eta}{2} G^2 \\
\overset{(12)}{\leq} \frac{1}{2\eta} \left(\| x^\eta_t - u_t \|_2^2 - \| \bar{x}^\eta_{t+1} - u_t \|_2^2 \right) + \frac{D}{\eta} \| u_t - u_{t-1} \| + \frac{\eta}{2} G^2.
\]

Summing the above inequality over all iterations, we have

\[\sum_{t=1}^{T} (s_t(x^\eta_t) - s_t(u_t)) \leq \frac{1}{2\eta} \| x^\eta_1 - u_1 \|_2^2 + \frac{D}{\eta} \sum_{t=1}^{T} \| u_{t+1} - u_t \| + \frac{\eta T}{2} G^2 \]

\[\overset{(12)}{\leq} \frac{1}{2\eta} D^2 + \frac{D}{\eta} \sum_{t=1}^{T} \| u_{t+1} - u_t \| + \frac{\eta T}{2} G^2. \]

(57)

Since (57) holds when \(u_{T+1} = u_T \), we have

\[\sum_{t=1}^{T} (s_t(x^\eta_t) - s_t(u_t)) \leq \frac{1}{2\eta} D^2 + \frac{D}{\eta} \sum_{t=1}^{T} \| u_t - u_{t-1} \| + \frac{\eta T}{2} G^2. \]

(58)

Next, we bound the switching cost of the expert-algorithm. To this end, we have

\[\sum_{t=1}^{T} \| x^\eta_t - x^\eta_{t-1} \| = \sum_{t=0}^{T-1} \| x^\eta_t - x^\eta_t \| \leq \sum_{t=0}^{T-1} \| \bar{x}^\eta_{t+1} - x^\eta_t \| = \sum_{t=0}^{T-1} \| \eta \nabla f_t(x_t) \| \overset{(11)}{\leq} \eta T G. \]

(59)

We complete the proof by combining (58) with (59).
Appendix C. Proof of Lemma 5

We reuse the first part of the proof of Lemma 3, and start from (52). To bound A, we need to analyze the behavior of the lookahead Hedge. To this end, we prove the following lemma.

Lemma 8 The meta-algorithm in Algorithm 3 satisfies

$$\sum_{t=1}^{T} \left(\sum_{\eta \in H} w_t^\eta \ell_t(x_t^\eta) \right) \leq \frac{1}{\beta} \ln \frac{1}{w_0^\eta} - \frac{1}{2\beta} \sum_{t=1}^{T} \|w_t - w_{t-1}\|^2_1$$

for any $\eta \in H$.

Substituting (60) into (52), we have

$$\sum_{t=1}^{T} \left(s_t(x_t) + \|x_t - x_{t-1}\| \right) - \sum_{t=1}^{T} \left(s_t(x_t^\eta) + \|x_t^\eta - x_{t-1}^\eta\| \right) \leq \frac{1}{\beta} \ln \frac{1}{w_0^\eta} - \frac{1}{2\beta} \sum_{t=1}^{T} \|w_t - w_{t-1}\|^2_1 + D \sum_{t=2}^{T} \|w_t - w_{t-1}\|_1$$

$$\leq \frac{1}{\beta} \ln \frac{1}{w_0^\eta} - \frac{1}{2\beta} \sum_{t=1}^{T} \|w_t - w_{t-1}\|^2_1 + \sum_{t=2}^{T} \left(\frac{1}{2\beta} \|w_t - w_{t-1}\|^2_1 + \frac{\beta D^2}{2} \right)$$

$$\leq \frac{1}{\beta} \ln \frac{1}{w_0^\eta} + \frac{\beta TD^2}{2} = D \sqrt{\frac{T}{2} \left(\ln \frac{1}{w_0^\eta} + 1 \right)}$$

where we set $\beta = \frac{1}{D} \sqrt{2 \frac{2}{T}}$.

Appendix D. Proof of Lemma 8

To simplify the notation, we define

$$W_0 = \sum_{\eta \in H} w_0^\eta = 1, \quad L_t^\eta = \sum_{i=1}^{t} \ell_i(x_t^\eta), \quad \text{and} \quad W_t^\eta = \sum_{\eta \in H} w_0^\eta e^{-\beta L_t^\eta}, \forall t \geq 1.$$

From the updating rule in (20), it is easy to verify that

$$w_t^\eta = \frac{w_0^\eta e^{-\beta L_t^\eta}}{W_t}, \forall t \geq 1.$$ (62)

First, we have

$$\ln W_T = \ln \left(\sum_{\eta \in H} w_0^\eta e^{-\beta L_T^\eta} \right) \geq \ln \left(\max_{\eta \in H} w_0^\eta e^{-\beta L_T^\eta} \right) = -\beta \min_{\eta \in H} \left(L_T^\eta + \frac{1}{\beta} \ln \frac{1}{w_0^\eta} \right).$$ (63)

Next, we bound the related quantity $\ln(W_t/W_{t-1})$ as follows. For any $\eta \in H$, we have

$$\ln \left(\frac{W_t}{W_{t-1}} \right) = \ln \left(\frac{w_t^\eta e^{-\beta L_t^\eta}}{w_{t-1}^\eta} \right) = \ln \left(\frac{w_t^\eta}{w_{t-1}^\eta} \right) - \beta \ell_t(x_t^\eta).$$ (64)
Then, we have

\[
\ln \left(\frac{W_t}{W_{t-1}} \right) = \ln \left(\frac{W_t}{W_{t-1}} \right) \sum_{\eta \in \mathcal{H}} w_t^\eta = \sum_{\eta \in \mathcal{H}} w_t^\eta \ln \left(\frac{W_t}{W_{t-1}} \right)
\]

\[= \sum_{\eta \in \mathcal{H}} w_t^\eta \ln \left(\frac{w_{t-1}^\eta}{w_t^\eta} \right) - \beta \sum_{\eta \in \mathcal{H}} w_t^\eta \ell_t(x_t^\eta) \leq -\frac{1}{2} \|w_t - w_{t-1}\|_1^2 - \beta \sum_{\eta \in \mathcal{H}} w_t^\eta \ell_t(x_t^\eta) \]

(64)

(65)

where the last inequality is due to Pinsker’s inequality (Cover and Thomas, 2006, Lemma 11.6.1). Thus

\[
\ln W_T = \ln W_0 + \sum_{t=1}^T \ln \left(\frac{W_t}{W_{t-1}} \right) = \sum_{t=1}^T \left(-\frac{1}{2} \|w_t - w_{t-1}\|_1^2 - \beta \sum_{\eta \in \mathcal{H}} w_t^\eta \ell_t(x_t^\eta) \right). \tag{66}
\]

Combining (63) with (66), we obtain

\[-\beta \min_{\eta \in \mathcal{H}} \left(L_T^\eta + \frac{1}{\beta} \ln \frac{1}{w_0^\eta} \right) \leq \sum_{t=1}^T \left(-\frac{1}{2} \|w_t - w_{t-1}\|_1^2 - \beta \sum_{\eta \in \mathcal{H}} w_t^\eta \ell_t(x_t^\eta) \right) \]

We complete the proof by rearranging the above inequality.

Appendix E. Proof of Lemma 6

The analysis is similar to that of Theorem 10 of Chen et al. (2018), which relies on a strong condition

\[x_t^\eta = x_{t-1}^\eta - \eta \nabla f_t(x_t^\eta).\]

Note that the above equation is essentially the vanishing gradient condition of x_t^η when (21) is unconstrained. In contrast, we only make use of the first-order optimality criterion of x_t^η (Boyd and Vandenberghe, 2004), i.e.,

\[
\left\langle \nabla f_t(x_t^\eta) + \frac{1}{\eta}(x_t^\eta - x_{t-1}^\eta), y - x_t^\eta \right\rangle \geq 0, \quad \forall y \in \mathcal{X} \tag{67}
\]

which is much weaker.
Then, the dynamic regret with switching cost can be upper bounded as follows

\[
\frac{1}{\eta}(x_t^\eta - x_{t-1}^\eta, u_t - x_t^\eta) = \frac{1}{2\eta} (||x_{t-1}^\eta - u_t||^2 - ||x_t^\eta - u_t||^2 - ||x_t^\eta - x_{t-1}^\eta||^2)
\]

\[
= \frac{1}{2\eta} (||x_{t-1}^\eta - u_t||^2 - ||x_t^\eta - u_t||^2 + ||x_t^\eta - u_t||^2 - ||x_t^\eta - x_{t-1}^\eta||^2)
\]

\[
= \frac{1}{2\eta} (||x_{t-1}^\eta - u_t||^2 - ||x_t^\eta - u_t||^2 + (x_t^\eta - u_t + x_t^\eta - u_t - u_t - u_t) - ||x_t^\eta - x_{t-1}^\eta||^2)
\]

\[
\leq \frac{1}{2\eta} (||x_{t-1}^\eta - u_t||^2 - ||x_t^\eta - u_t||^2 + (||x_{t-1}^\eta - u_t|| + ||x_{t-1}^\eta - u_t||)||u_t - u_{t-1}||)
\]

\[
- \frac{1}{2\eta}||x_t^\eta - x_{t-1}^\eta||^2
\]

\[
\leq \frac{1}{2\eta} (||x_{t-1}^\eta - u_t||^2 - ||x_t^\eta - u_t||^2) + \frac{D}{\eta}||u_t - u_{t-1}|| - \frac{1}{2\eta}||x_t^\eta - x_{t-1}^\eta||^2.
\]

Summing the above inequality over all iterations, we have

\[
\sum_{t=1}^{T} (f_t(x_t^\eta) - f_t(u_t)) \leq \frac{1}{2\eta}||x_0^\eta - u_0||^2 + \frac{D}{\eta} \sum_{t=1}^{T}||u_t - u_{t-1}|| - \frac{1}{2\eta} \sum_{t=1}^{T}||x_t^\eta - x_{t-1}^\eta||^2
\]

\[
\leq \frac{1}{2\eta}D^2 + \frac{D}{\eta} \sum_{t=1}^{T}||u_t - u_{t-1}|| - \frac{1}{2\eta} \sum_{t=1}^{T}||x_t^\eta - x_{t-1}^\eta||^2.
\]

Then, the dynamic regret with switching cost can be upper bounded as follows

\[
\sum_{t=1}^{T} (f_t(x_t^\eta) + ||x_t^\eta - x_{t-1}^\eta|| - f_t(u_t))
\]

\[
\leq \frac{1}{2\eta}D^2 + \frac{D}{\eta} \sum_{t=1}^{T}||u_t - u_{t-1}|| - \frac{1}{2\eta} \sum_{t=1}^{T}||x_t^\eta - x_{t-1}^\eta||^2 + \sum_{t=1}^{T}||x_t^\eta - x_{t-1}^\eta||
\]

\[
\leq \frac{1}{2\eta}D^2 + \frac{D}{\eta} \sum_{t=1}^{T}||u_t - u_{t-1}|| - \frac{1}{2\eta} \sum_{t=1}^{T}||x_t^\eta - x_{t-1}^\eta||^2 + \sum_{t=1}^{T} \left(\frac{1}{2\eta}||x_t^\eta - x_{t-1}^\eta||^2 + \frac{\eta}{2} \right)
\]

\[
= \frac{1}{2\eta}D^2 + \frac{D}{\eta} \sum_{t=1}^{T}||u_t - u_{t-1}|| + \frac{\eta T}{2}.
\]