Solar Neutrino Constraints on the BBN Production of Li

Richard H. Cyburt1,2, Brian D. Fields3 and Keith A. Olive4

1TRIUMF, Vancouver, BC V6T 2A3 Canada
2Department of Physics, University of Illinois, Urbana, IL 61801, USA
3Center for Theoretical Astrophysics, Department of Astronomy, University of Illinois, Urbana, IL 61801, USA
4William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

Using the recent WMAP determination of the baryon-to-photon ratio, $10^{10} \eta = 6.14$ to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of η, the 7Li abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) 7Li depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the 3He(α, γ)7Be reaction, which is the only important 7Li production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN 7Li problem at $\gtrsim 95\%$ CL. Additional laboratory data on 3He(α, γ)7Be will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this “nuclear fix” to the 7Li BBN problem is unlikely; other possible solutions are briefly discussed.
1 Introduction

The recent all-sky, high-precision measurement of microwave background anisotropies by WMAP [1] has opened the possibility for new precision analyses of big bang nucleosynthesis (BBN). Until now, one could use the predictions of standard BBN [2, 3] for the abundances of the light element isotopes, D, 3He, 4He, and 7Li and compare those results with the observational determination of those isotopes and test the concordance of the theory. If concordance is found, the theory is also able to predict the value of the baryon-to-photon ratio, η. Indeed, concordance is found, so long as a liberal estimation of systematic uncertainties are included in the analysis. The accuracy of the predicted value of η from BBN alone based on likelihood methods [4, 5, 6, 7] is modest: $\eta_{10} = 5.7^{+1.0}_{-0.6}$ when D, 4He, and 7Li are used, and $\eta_{10} = 6.0^{+1.4}_{-0.5}$ when using D alone, where $\eta_{10} = 10^{10}\eta$. This pales in comparison with the recent WMAP result of $\Omega_B h^2 = 0.0224 \pm 0.0009$ which is equivalent to $\eta_{10,\text{CMB}} = 6.14 \pm 0.25$. This result is the WMAP best fit assuming a varying spectral index and is sensitive mostly to WMAP alone (primarily the first and second acoustic peaks) but does include CBI [8] and ACBAR [9] data on smaller angular scales, and Lyman α forest data (and 2dF redshift survey data [10]) on large angular scales.

If we use the WMAP data to fix the baryon density, we can make quite accurate predictions for the light element abundances. At this density, we can make a direct comparison [11] between theory and observation as shown in Table 1.

Table 1: Light Element Abundances: BBN Predictions and Observations

element	theory	Observation
D/H	$2.75^{+0.24}_{-0.19} \times 10^{-5}$	$2.78 \pm 0.29 \times 10^{-5}$
4He	$0.2484^{+0.0004}_{-0.0005}$	$0.238 \pm 0.002 \pm 0.005$
7Li	$3.82^{+0.73}_{-0.60} \times 10^{-10}$	$1.23^{+0.34}_{-0.16} \times 10^{-10}$

As one can see, the agreement between the predicted abundance of D/H and the observed value (based on the average of the 5 best determined quasar absorption system abundances [12, 13, 14, 15]) is perfect. The comparison with 4He is less good, as BBN predicts a mass fraction which is high compared to most observations [16, 17, 18, 19]. The value in Table 1 is based on a combined analysis [18] which is close agreement with the recent observations of [19]. One should note that 1) the data of [16] alone give a higher value for the 4He abundance $Y_p = 0.242 \pm 0.002 \pm 0.005$, and 2) important systematic effects have been underestimated [20]. Among the most probable cause for a serious underestimate of the 4He abundance
is underlying stellar absorption. Whether or not this effect can account for the serious
discrepancy now uncovered remains to be seen.

Clearly the key problem concerning the concordance of BBN theory and the observational
determinations of the light element abundances is 7Li. The primordial abundance of 7Li is
determined from the “Spite plateau” \cite{21} in Li/H observed in low metallicity halo dwarf stars
(extreme Population II). The observed value is clearly discrepant with the BBN+WMAP
prediction. The cause of the discrepancy may be:

- Stellar depletion of 7Li – however, the lack of dispersion in the observed data, make it
 unlikely that dispersion alone can account for the difference.

- Stellar parameters – the determined 7Li is sensitive to the assumed surface temperature
 of the star. However, to account for a discrepancy this large temperatures would have
 to be off by at least 500K. This may not be reasonable.

- The nuclear rates – this is the case we wish to explore here.

Of course, it is also possible that the 7Li discrepancy is real, and points to new physics.
However, it is our view that at present, the case for new physics is not compelling, though
it certainly merits serious investigation. Furthermore, a firm rejection of the more “prosaic”
possibilities we have outlined is a prerequisite which must be satisfied before we are driven
to more radical and exciting new solutions. It is in this spirit that we investigate possible
systematic errors in the BBN theoretical predictions for 7Li.

Uncertainties in the nuclear reaction rates which determine 7Li are dominated by 3He(α, γ)7Be.
There has been concerted experimental and theoretical effort to understand this reaction,
and indeed the cross section shape versus energy appears to be well-understood \cite{22}. How-
ever, a challenge to both experimental and theoretical work has been the determination
of the absolute normalization of the cross section. This uncertainty propagates into an
overall systematic error in the 3He(α, γ)7Be rate.

We thus pose the following question. Independent of the quoted (or derived) laboratory
uncertainties in 3He(α, γ)7Be, what is the maximum allowable amount that this rate can be
adjusted. Of course, we are not completely free to adjust this rate, since this nuclear reaction
occurs in the Sun and is in part responsible for the observed flux of solar neutrinos. Thus our
goal is to use the standard solar model \cite{23} as a constraint on the BBN nucleosynthesis rates.
In order to reduce the predicted 7Li abundance in Table 1, to the observed one requires a
reduction in the 3He(α, γ)7Be by a factor of 0.27. We show that by using the concordance
between the standard solar model and the observed flux of solar neutrino, this is excluded
at the 99.9999 % CL. At the 95% CL, the largest reduction factor possible is 0.65. Thus, it is not possible to argue that the uncertainties in nuclear reactions are solely responsible for the 7Li discrepancy.

In section 2, we detail the problem of BBN produced 7Li. In section 3, we discuss the key nuclear reactions which contribute to the overproduction of 7Li. We derive our constraints on these reactions using the observed flux of solar neutrinos in section 4. A summary and discussion is given in section 5.

2 The Overproduction of 7Li

As noted in Table 1, the BBN 7Li abundance is predicted to be $3.82^{+0.73}_{-0.60} \times 10^{-10}$ for $\eta_{10} = 6.14 \pm 0.25$. This result [11] is based on a BBN calculation [7] using the updated rates compiled by the NACRE collaboration [25]. Other calculations tend to give even higher values, e.g., 7Li/H = $4.87^{+0.64}_{-0.60}$ [26]; 7Li/H = 4.18 ± 0.46 [27]. These results differ due to the different nuclear data sets and procedures used to fit them and derive thermonuclear rates. The variations are thus a measure of known systematics in the 7Li prediction.

The observed Li/H value in Table 1 reflects the inferred mean abundance in the atmospheres for a set of Pop II stars. The analysis is that of [28], based on the data of [29]. The data sample consists of 23 very metal poor halo stars, with metallicities ranging from $[\text{Fe/H}] = -2.1$ to -3.3. The data show a remarkably uniform abundance of Li and negligible dispersion about a tiny slope which is consistent with the production of some Li in Galactic cosmic ray collisions (primarily $\alpha + \alpha$). Note that any Galactic component of Li only compounds the BBN discrepancy.

The 7Li value in Table 1 assumes that the Li abundance in the stellar sample reflects the initial abundance at the birth of the star; however, an important source of systematic uncertainty comes from the possible depletion of Li over the $\gtrsim 10$ Gyr [30] age of the Pop II stars. Stellar interiors can burn Li and alter its surface abundance. The atmospheric Li abundance will suffer depletion if the outer layers of the stars have been transported deep enough into the interior, and/or mixed with material from the hot interior; this may occur due to convection, rotational mixing, or diffusion. However, if mixing processes are not efficient, then Li can remain intact and undepleted in a thin outer layer of the atmosphere, which contains a few percent of the star’s mass but is the portion of the star’s material that is observable.

Standard stellar evolution models predict Li depletion factors which are very small (<0.05 dex) in very metal-poor turnoff stars [31]. However, there is no reason to believe
that such simple models incorporate all effects which lead to depletion such as rotationally-induced mixing and/or diffusion. Current estimates for possible depletion factors are in the range ~ 0.2–0.4 dex \cite{32}. While the upper end of this range is close to the required depletion factor of $\simeq 0.3$ necessary to account for the difference in the BBN and observed abundance, depletion models typically predict the existence of star-to-star differences in observed Li abundances due to the range of stellar rotation and other intrinsic stellar properties to which the models have some sensitivity. As noted above, this data sample \cite{29} shows a negligible intrinsic spread in Li leading to the conclusion that depletion in these stars is as low as 0.1 dex.

Another important source for potential systematic uncertainty stems from the fact that the Li abundance is not directly observed but rather, inferred from an absorption line strength and a model stellar atmosphere. Its determination depends on a set of physical parameters and a model-dependent analysis of a stellar spectrum. Among these parameters, are the metallicity characterized by the iron abundance (though this is a small effect), the surface gravity which for hot stars can lead to an underestimate of up to 0.09 dex if log g is overestimated by 0.5, though this effect is negligible in cooler stars. Typical uncertainties in log g are ± 0.1 – 0.3. The most important source for error is the surface temperature. Effective-temperature calibrations for stellar atmospheres can differ by up to 150–200 K, with higher temperatures resulting in estimated Li abundances which are higher by ~ 0.08 dex per 100 K. Thus accounting for a difference of 0.5 dex between BBN and the observations, would require a serious offset of the stellar parameters.

We note however, that a recent study \cite{33} with temperatures based on Hα lines (considered to give systematically high temperatures) yields $^{7}\text{Li/}H = (2.19 \pm 0.28) \times 10^{-10}$. These results are based on a globular cluster sample and do show considerable dispersion. A related study (also of globular cluster stars) gives $^{7}\text{Li/}H = 2.29 \times 10^{-10}$ \cite{34}. The difference between these results and the BBN value is just over 0.2 dex making it plausible that depletion may be responsible for the difference in these stars which show systematically high temperatures. It remains an open question why stars in a globular cluster—which are usually thought of as sharing a common origin site and epoch—seem to show a larger Li dispersion (and higher temperatures) than field halo stars whose evolution has not been so tightly related.

Finally, the remaining source of systematic uncertainty pertains not to the observations, but to the BBN calculation itself. Here we will limit ourselves to a discussion of those cross sections which have a bearing on the production of ^{7}Be, which is the dominant source of mass-7 at the high values of η consistent with the WMAP result.\footnote{At $\eta_{10} = 6.14$, the production ratio is $^{7}\text{Be}/^{7}\text{Li} = 10.8$. Of course, the ^{7}Be eventually suffer electron capture.} As such the principle
cross sections of interest are: \(^3\text{He}(\alpha, \gamma)^7\text{Be} \) and \(^7\text{Be}(p, \gamma)^8\text{B} \). The reaction \(^7\text{Be}(n, p)^7\text{Li} \) is not of interest since it does not largely affect the final abundance of \(^7\text{Li} \).

3 Nuclear Rates contributing to BBN \(^7\text{Li} \) production

3.1 Standard BBN

Since our aim is to fix the \(^7\text{Li} \) problem by changing nuclear reaction rates, specifically the \(^3\text{He}(\alpha, \gamma)^7\text{Be} \) and \(^7\text{Be}(p, \gamma)^8\text{B} \) reactions, it is important to understand how they do or do not impact primordial nucleosynthesis. We will start with the all-too-familiar \(n(p, \gamma)d \) reaction and how it affects the light element yields. This will guide us when looking specifically at the other reactions. It is well-known that nucleosynthesis in the early Universe is delayed due to the deuterium bottleneck. It is important to understand how the deuterium bottleneck affects the abundances of the light elements. The delay being caused by the large number of photons to baryons, which makes the deuterium photo-destruction rates much larger than the production rates. At lower temperatures, about 70 keV, deuterium production proceeds and the burning into heavier nuclei occurs until the Coulomb barrier halts nucleosynthesis. We burn until we deplete the neutron fuel and the Coulomb barrier stops charged-induced reactions, happening at a temperature around 50 keV.

While the bottleneck is in place, neutrons and protons remain at their weak freeze-out values, except for the occasional \(n \)-decay, and deuterium at its equilibrium value. The other light element abundances exist in a quasi-static statistical equilibrium, being determined by various algebraic combinations of the important thermonuclear reaction rates \cite{35}. When the bottleneck ends and the neutron fuel is depleted into \(^4\text{He} \), these abundances tend to freeze-out at particular values depending on the overall baryon content in the universe and when the bottleneck ended.

The deuterium bottleneck ends when the photo-dissociation rate \(d(\gamma, n)p \) becomes less significant than the \(np \)-capture rate. This is done by setting the ratio of equilibrium abundances to unity, \(X_d/X_pX_n \sim 1 \) for which there is an analytic expression \cite{35} that can be solved iteratively:

\[
T_d = \frac{B_d}{28.7 - \ln (\eta_{10}/6.0) - 1.5 \ln (T_d/\text{MeV})}
\]

One finds that for \(B_d = 2.224 \text{ MeV} \) and \(\eta_{10} = 6.0 \), the deuterium bottleneck ends at \(T_d = 0.07 \text{ MeV} \). This method can also be used to determine when certain processes become inefficient, capture and decay to \(^7\text{Li} \) before recombination and long before incorporation into Pop II stars.
such as $^7\text{Be}(\gamma, \alpha)^3\text{He}$ and $^8\text{B}(\gamma, p)^7\text{Be}$. Using equations that can be similarly solved iteratively, we find the temperature for which the photo-dissociation of ^7Be and ^8B listed earlier is not significant:

$$T_{34} = \frac{Q_{34}}{28.2 - \ln(\eta_{10}/6.0) - 1.5\ln(T_{34}/\text{MeV})}$$

$$T_{17} = \frac{Q_{17}}{30.1 - \ln(\eta_{10}/6.0) - 1.5\ln(T_{17}/\text{MeV})}$$

Using Q-values of 1.587 MeV and 0.137 MeV for the $^7\text{Be}(\gamma, \alpha)^3\text{He}$ and $^8\text{B}(\gamma, p)^7\text{Be}$ respectively, we find $T_{34} = 0.05$ MeV and $T_{17} = 0.004$ MeV. These temperatures are below the deuterium bottleneck, suggesting that if these reactions dominate the formation of these elements, then they should exist at their equilibrium abundances. This is true for the $^3\text{He}(\alpha, \gamma)^7\text{Be}$ reaction. However, $^7\text{Be}(p, \gamma)^8\text{B}$ must compete with ^8B decay, with mean lifetime ~ 1 s. An equilibrium abundance of ^8B during the epoch of big bang nucleosynthesis will be greatly suppressed and in fact is completely negligible. In other words, ^8B and its decay products do not contribute to the primordial light element abundances. Knowing that $^3\text{He}(\alpha, \gamma)^7\text{Be}$ is the dominant contribution to the BBN ^7Li abundance prediction, we now discuss what we need to fix the ^7Li problem.

3.2 Modified BBN: A Nuclear Solution to the Lithium Problem

The question of interest to us here, is to what extent can these key rates be altered to enhance the ^7Be (^7Li) abundance and yet remain consistent with experimental constraints. To this end, we define a new S-factor S_{17}^{NEW} which we assume for simplicity to be proportional to the old one, S_{17}^{OLD}. Note that for S_{17}, a proportionality factor between 0 and 2 does not change the BBN predictions significantly. In contrast, the dependence of the mass 7 abundance on S_{34} is nearly 1:1, as apparent in Table 2, and in good agreement with the results of 6, who find that $^7\text{Li}_{\text{BBN}} \propto S_{34}^{0.95}$. As discussed above, there are two sets of ^7Li observations we can try to match by renormalizing the $^3\text{He}(\alpha, \gamma)^7\text{Be}$ reaction. Using the ^7Li measurements of a metal poor globular cluster 34 would require a change of $S_{34}^{NEW} = 0.53 S_{34}^{OLD}$. Using the ^7Li measurements of metal poor stars in the Galactic halo 28 would require a change of $S_{34}^{NEW} = 0.27 S_{34}^{OLD}$.

The determination of the BBN light element yields is from 7, where new normalizations and errors to the NACRE 24 rates important for primordial nucleosynthesis have been assigned. The value, $S_{17}^{OLD}(0) = 0.021 \pm 0.002$ keV b is taken straight from the NACRE

2The S-factor is defined by the cross section: $S(E) = \sigma(E)E \exp(8\pi^2\alpha Z_1 Z_2 / v)$. The last term is the Coulomb penetration factor, in which Z_i are the charges of the incoming nuclei and v their relative velocity.
collaboration. For 3He(α, γ)7Be, the BBN calculation uses the renormalized NACRE rate $S_{34}^{\text{OLD}}(0) = 0.504 \pm 0.0534$ keV b \[7\]. As one can see, shifts in the 3He(α, γ)7Be cross section as large as that necessary to produce S_{34}^{NEW} are strongly excluded given the cited uncertainties for this reaction. Although adjustments in the nuclear cross-sections of this size are unlikely given the stated experimental errors, one could worry that additional systematic effects are present, particularly given the difficulties in establishing the absolute normalization for this reaction. As stated in the Introduction, these rates in particular can be bounded by another means. In the next section, we will determine the maximum possible downward adjustment to S_{34} which is consistent with solar neutrino fluxes.

The effect of changing the yields of certain BBN reactions was recently considered by Coc et al. \[27\]. In particular, they concentrated on the set of cross sections which affect 7Li and are poorly determined both experimentally and theoretically. In many cases however, the required change in cross section far exceeded any reasonable uncertainty. Nevertheless, it may be possible that certain cross sections have been poorly determined. In \[27\], it was found for example, that an increase of the 7Li(d, n)24He reaction by a factor of 100 would reduce the 7Li abundance by a factor of about 3. Another reaction which is poorly determined is 7Be(d, p)24He. An increase in this rate by a factor of \sim 100 could also alleviate the 7Li discrepancy.

4 The Sun as a Nuclear Laboratory

The 3He(α, γ)7Be reaction plays a crucial role not only in BBN 7Li synthesis, but also in solar neutrino production. In particular, this reaction is responsible for the creation of 7Be, which will then either (1) produce a monoenergetic neutrino via electron capture 7Be(e^{-}, ν_{e})7Li, or (2) produce 8B via radiative capture of a proton, 7Be(p, γ)8B. The branching between these paths determines the solar 8B abundance and thus directly sets the flux of 8B neutrinos. SNO (as well as Super-K) are sensitive exclusively to these neutrinos. Furthermore, SNO measures directly the total 8B neutrino flux, with no assumptions about mixing \[36\]. They
find:
\[\phi_8 = [5.21 \pm 0.27 \text{ (stat)} \pm 0.38 \text{ (syst)}] \times 10^6 \text{ cm}^{-2} \text{ s}^{-1}, \]
(4)
where this is determined with no assumed shape of the 8B energy spectrum. This flux thus offers a constraint on the 3He(α, γ)7Be reaction, as follows.

The Standard Solar Model of Bahcall can be used to predict the solar neutrino fluxes that can be observed by experiments. These fluxes depend upon various solar parameters, such as the luminosity, the chemical abundances, and nuclear fusion cross sections. In fact, the neutrino flux uncertainties are dominated by the cross section errors. Provided by Bahcall, simple scalings between neutrino fluxes and these cross sections robustly describe the SSM predictions. The 8B neutrino flux scaling is:
\[\phi_8 \propto S_{11}^{-2.6} S_{33}^{-0.4} S_{34}^{0.81} S_{17}^{1.0} S_{e7}^{-1.0}. \]
(5)
Here, the S’s are the astrophysical S-factors, except for S_{e7}. The S_{e7} reaction is the electron capture rate on 7Be. One usually takes some nuclear rate compilation and uses the S-factors to evaluate the neutrino flux given these scalings. Two such nuclear compilations are from Adelberger et al and the NACRE collaboration. Their determinations relevant for this work are shown in Table 3.

Reaction	Adelberger [24] (keV b)	NACRE [25] (keV b)
$p(p, e^+\nu_e)^2H$	$S_{11} = 4.0 \times 10^{-22}(1.0 \pm 0.007^{+0.020}_{-0.011})$	$S_{11} = 3.94 \times 10^{-22}(1.0 \pm 0.05)$.
3He(3He, $2p)^4$He	$S_{33} = 5.4 \times 10^4(1.0 \pm 0.074)$	$S_{33} = 5.18 \times 10^4(1.0 \pm 0.06)$.
3He($\alpha, \gamma)^7$Be	$S_{34} = 0.53(1.0 \pm 0.09434)$	$S_{34} = 0.54(1.0 \pm 0.167)$.
7Be($p, \gamma)^8$B	$S_{17} = 0.019(1.0^{+0.21}_{-0.11})$	$S_{17} = 0.021(1.0 \pm 0.11)$.
7Be($e^-, \nu_e)^7$Li	$S_{e7} = 5.6 \times 10^{-9}(1.0 \pm 0.02) \text{ s}^{-1}$	-NA-

Our strategy is thus to use the SNO measurements of the 8B neutrino flux and the SSM to constrain S_{34}. This is accomplished via the scalings in eq. (5). A complication is that these scalings also depend on other reactions, none of which are significant for BBN, and all of which are better measured than 3He($\alpha, \gamma)^7$Be. This approach amounts to the extreme case in which we ignore all of the hard-won laboratory and theoretical information on S_{34}, using only solar neutrino data as well as constraints on other reactions, S_{17}. This can be viewed as providing independent information about S_{34}, or as a test of the systematics in the normalization, which is a salient feature for the BBN 7Li problem. Our results will thus use the Sun to provide new and independent limits on the systematics of S_{34}. We will derive these using both approximate analytical methods and more accurate numerical methods.
4.1 Analytic Formalism and Results

We can estimate the impact these rate compilations have on the neutrino flux, by doing linear error propagation as follows:

\[
\left(\frac{\sigma_8}{\phi_8} \right)^2 \approx \left(\frac{2.6\sigma_{11}}{S_{11}} \right)^2 + \left(\frac{0.4\sigma_{33}}{S_{33}} \right)^2 + \left(\frac{0.81\sigma_{34}}{S_{34}} \right)^2 + \left(\frac{\sigma_{17}}{S_{17}} \right)^2 + \left(\frac{\sigma_{e7}}{S_{e7}} \right)^2.
\]

We find that the Adelberger and NACRE compilations predict \(\sigma_8/\phi_8 = \pm 0.19 \) and \(\sigma_8/\phi_8 = \pm 0.22 \) respectively using this linear approximation. With these results, we find that the error in the predicted flux is determined primarily by the \(S_{17}, S_{34} \) and \(S_{11} \) reactions. With our ultimate aim of constraining \(S_{34} \), we will have to treat at least the \(S_{17} \) and \(S_{11} \) uncertainties directly, in addition to the error in the solar neutrino flux measurement.

We can now use the scalings in eqn. 5 to estimate the likely value of \(S_{34} \) and its uncertainty, based on the SNO observations ([14]),

\[
\frac{S_{34}}{S_{34,0}} = \left(\frac{S_{11}}{S_{11,0}} \right)^{3.21} \left(\frac{S_{33}}{S_{33,0}} \right)^{0.49} \left(\frac{S_{17}}{S_{17,0}} \right)^{-1.23} \left(\frac{S_{e7}}{S_{e7,0}} \right)^{1.23} \left(\frac{\phi_8}{\phi_{8,0}} \right)^{1.23}
\]

where we use the Bahcall et al. results for the Adelberger and NACRE reaction complications (the \(S_{i,0} \)) to determine the flux normalization

\[
\phi_{8,0}^{\text{ADL}} = 5.05 \times 10^{-6} \text{cm}^{-2} \text{s}^{-1}
\]

\[
\phi_{8,0}^{\text{NAC}} = 5.44 \times 10^{-6} \text{cm}^{-2} \text{s}^{-1}
\]

These normalizations are both in excellent agreement with the observed flux (eq. 5). In the extreme case in which all of the small mismatch between predicted and observed fluxes is attributed to \(S_{34} \), we expect a shift of \(S_{34}/S_{34}^{\text{ADL}} = 1.04 \) and \(S_{34}/S_{34}^{\text{NAC}} = 0.95 \) using the purely Adelberger and NACRE rate compilations, respectively; the smallness of these shifts just restates the success of the SSM in light of the SNO observations.

If we adopt the scaling laws and propagate the errors according to the usual rules, we have

\[
\left(\frac{\sigma_{34}}{S_{23}} \right)^2 \approx \left(\frac{3.21\sigma_{11}}{S_{11}} \right)^2 + \left(\frac{0.49\sigma_{33}}{S_{33}} \right)^2 + \left(\frac{1.23\sigma_{17}}{S_{17}} \right)^2 + \left(\frac{1.23\sigma_{e7}}{S_{e7}} \right)^2 + \left(\frac{1.23\sigma_8}{\phi_8} \right)^2.
\]

This gives a dispersion of \(\sigma_{34}/S_{34} = 0.24 \) for both compilations. This is much larger than the small shifts in the mean found in the above paragraph. Moreover, we see that to solve the BBN \(^7\text{Li}\) problem with reaction rate uncertainties alone requires a \(~2\sigma\) change in \(S_{34} \). Thus we find that this solution to the \(^7\text{Li}\) problem is excluded at \(~95\%\) CL. We now turn to numerical results which will confirm and better quantify this limit.
4.2 Numerical Formalism and Results

Our analytic discussion uses standard error propagation which is good only to first order, and assumes gaussian errors as well as linearity. To explore this scenario more rigorously, we perform this calculation numerically, taking into account the non-gaussian nuclear errors and non-linear scalings. We set out to perform a Monte Carlo integration of an integral of the form:

$$\int L_{SSM}(\vec{S}, \phi_8) L_{NUC}(\vec{S}) L_{SNO}(\phi_8) d\vec{S} d\phi_8,$$

(11)

where \vec{S} is a set of reaction rates (such as the rates already listed) and ϕ_8 is the 8B solar neutrino flux. L_{SSM}, L_{NUC}, and L_{SNO} are the likelihood distributions of the Standard Solar Model given a reaction network and a solar neutrino flux, the reaction network given various rate compilations, and the total 8B solar neutrino flux given by the SNO collaboration.

In order to test the reliability and accuracy of this method, we first predict the total 8B neutrino flux given a complete reaction network, using both the Adelberger and NACRE compilations and then compare to the predictions shown in the works of Bahcall et al \[23\]. The integral we are performing is:

$$L(\phi_8) = \int L_{SSM}(\vec{S}, \phi_8) L_{NUC}(\vec{S}) d\vec{S}.$$

(12)

A Monte Carlo integration uses one of the likelihood functions to draw random numbers and average the remaining function over those generated random numbers. For our case, we will generate random numbers for the independent reaction rates given by either the Adelberger or NACRE compilations. We combine statistical and systematic uncertainties by adding them in quadrature, since only the total uncertainty is needed for this analysis. We generate gaussian or piecewise gaussian distributions for the reaction rates, depending on whether the quoted errors are symmetric or asymmetric about the most likely value. For each random draw of the reaction rates, we can calculate a solar neutrino flux, given the scalings shown in eqn. 5. Once a large sample of ϕ_8 is created, we can calculate its likelihood distribution. To summarize:

1. $L_{NUC}(\vec{S})$ generates reaction rates randomly.
2. $L_{SSM}(\vec{S}, \phi_8)$ enforces the scalings in eqn. 5.
3. The resulting sample of ϕ_8 is used to find $L(\phi_8)$.

The normalization or best value and the errors are calculated separately. The flux values for Adelberger and NACRE, as given in Tables 7 and 9 in \[23\] are the standard solar
model predictions for the neutrino fluxes, adopting each compilations best fit values, without marginalizing over the reaction network. The errors are then propagated separately, as described in [38] using the scalings already mentioned. The scalings are valid in determining the uncertainties to 10%. Thus, we will adopt the scalings shown in eqn. [5] normalized such that when a given compilation is used, we reproduce the values listed in [23]

\[\phi_{8}^{ADL} = 5.05 \times 10^6 \left(\frac{S_{11}}{S_{11,0}} \right)^{-2.6} \left(\frac{S_{33}}{S_{33,0}} \right)^{-0.40} \left(\frac{S_{34}}{S_{34,0}} \right)^{0.81} \left(\frac{S_{17}}{S_{17,0}} \right)^{1.0} \left(\frac{S_{e7}}{S_{ADL,e7,0}} \right)^{-1.0} \] (13)

\[\phi_{8}^{NAC} = 5.44 \times 10^6 \left(\frac{S_{11}}{S_{11,0}} \right)^{-2.6} \left(\frac{S_{33}}{S_{33,0}} \right)^{-0.40} \left(\frac{S_{34}}{S_{34,0}} \right)^{0.81} \left(\frac{S_{17}}{S_{17,0}} \right)^{1.0} \left(\frac{S_{e7}}{S_{NAC,e7,0}} \right)^{-1.0} \] (14)

By using the Adelberger scaling relation to predict the NACRE scaling relation and vice versa, we can verify the accuracy of these fits. We find deviations from the relations listed above at the 8 or 9% level, thus we adopt an overall 10% systematic uncertainty in the predicted flux. Also, since the resulting distributions are non-gaussian, we expect our marginalized best fit neutrino fluxes to be different from the neutrino flux determined by adopting only the best values of the reaction rates.

We find remarkable agreement between our confidence intervals and those placed by Bahcall et al [23]. Our results are summarized below, as well as in figure 11

\[\phi_{8}^{ADL} = 5.09 \left[1.0^{+0.20 (0.44)}_{-0.16 (0.29)} \right] (stat) \pm 0.10(syst) \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \] (15)

\[\phi_{8}^{NAC} = 5.19 \left[1.0^{+0.25 (0.53)}_{-0.21 (0.38)} \right] (stat) \pm 0.10(syst) \times 10^6 \text{ cm}^{-2} \text{ s}^{-1} \] (16)

where the flux numbers listed are the most likely values for the Adelberger-based and NACRE-based compilations and their respective 68% (95%) confidence limits, as determined from the marginalized likelihood distributions. Notice that our most likely values are different than the fluxes determined by adopting the best values for the reaction rates. This shift in best values is due to the marginalization over the non-linear scalings and asymmetric nuclear errors. Had the scalings been linear and additive, and all nuclear errors symmetric, no shift would have been seen. As one expected, NACRE has slightly inflated errors as compared to Adelberger. This is simply due to NACRE’s overall larger rate uncertainties, as shown in our analytic work.

As discussed earlier, the solar neutrino flux depends primarily on the \(S_{17} \) and \(S_{34} \) reactions. The \(S_{33} \) and \(S_{e7} \) reactions have little impact on the results due to their small errors and the weak dependence of the flux on them. The \(S_{11} \) rate has negligible effect in the Adelberger compilation, but has significant impact in the NACRE compilation’s results. NACRE’s uncertainty for this rate is a factor of 2 larger than the Adelberger’s compilation.
Figure 1: Shown are the Standard Solar model predictions of the total 8B neutrino flux. The binned likelihood based on the Adelberger (NACRE) rate compilation is plotted with solid (open) squares. The 10% systematic error has not been included here.

Below we will use the differing results of these two compilations as a probe of the S_{11} error assignment.

Given the scalings in eqn. 5, we can use the SSM and the SNO measurement of the total 8B neutrino flux to constrain these rates in the following combination: $x = S_{17} S_{34}^{0.81}$. As before, we will generate random numbers for the independent reaction rates given by either the Adelberger or NACRE compilations. However, we now fix S_{17} and S_{34} with various values of x. For each random draw of the reaction rates, we can calculate a solar neutrino flux, given the scalings shown in eqn. 5 With this flux, we then average $\mathcal{L}_{SNO}(\phi_8)$ over the sample to find the likelihood of a given x. To summarize:

1. $\mathcal{L}_{\text{NUC}}(\vec{S})$ generates reaction rates randomly.
2. $\mathcal{L}_{\text{SSM}}(\vec{S}, \phi_8)$ enforces the scalings in eqn. 5.
3. Calculate $\mathcal{L}(x) \equiv \langle \mathcal{L}_{SNO}(\phi_8) \rangle$.

Using the S_{11} and S_{33} from the Adelberger and NACRE compilations respectively and the S_{e7} from Adelberger compilation, and the SNO collaborations constraint on the total 8B neutrino flux, we place the following constraints on x.

$$x^{ADL} = 0.0119 \left[1.0^{+0.16(0.35)}_{-0.14(0.25)} \right] \text{[keV b]}^{0.81}$$ (17)
Figure 2: Shown are the likelihood distributions of the parameter \(x = S_{17}S_{34}^{9.81} \), given the subset of reactions from the Adelberger (solid) and NACRE (dashed) compilations respectively and the SNO collaborations measurement of the solar \(^8\)B neutrino flux. The 10% systematic uncertainty in the flux scalings has been included as gaussian.

\[
x^{\text{NAC}} = 0.0121 \left[1.0^{+0.21(0.46)}_{-0.17(0.32)} \right] \text{[keV b]}^{1.81},
\]

where the most likely values, the 68\% (95\%) confidence intervals. The 10\% systematic error has been included in the calculation and assumed to be gaussian. These resulting likelihoods for \(x \) are shown in figure 2. The Adelberger and NACRE-based results agree quite well with each other. With differences mainly attributable to the larger error in \(S_{11} \) adopted by NACRE.

Since we are constraining \(x \) only, we cannot determine the \(S_{17} \) and \(S_{34} \) reactions uniquely. We require additional information. If a total \(p-p \) or \(^7\)Be neutrino flux measurement existed, we could in principle determine both cross sections. Since we are using the Sun to constrain systematic errors in the normalization of \(S_{34} \), in an attempt to fix the BBN \(^7\)Li problem, we will adopt various experimentally-determined values of \(S_{17} \) to place constraints on \(S_{34} \). Once a value of \(S_{17} \) is adopted, we convolve the \(x \) likelihood distribution with the experimental \(S_{17} \) distribution to get our \(S_{34} \) likelihood.

Besides using the Adelberger and NACRE rate compilations for \(S_{17} \), we also use two more recent determinations. We use the recommended values from Junghans et al. [39], and Davids and Typel [40]. The Junghans quoted value, \(S_{17} = 21.4 \pm 0.5(\text{expt}) \pm 0.6(\text{theor}) \text{ eV b} \), is based on several direct capture data sets. The Davids and Typel value, \(S_{17} = \)
Figure 3: Shown are the likelihood distributions of S_{34}, given S_{17} measurements listed in Table 4. The upper (lower) panel shows the results using the Adelberger (NACRE) compilation for the S_{11}, S_{33} and S_{e7} reactions. We have used values for S_{17} from Junghans [39] (solid), Davids [40] (dashed) and Adelberger [24] and NACRE [25] (dotted). Again, the 10% systematic uncertainty in the scalings has been included and assumed gaussian.
Table 4: Shown are the constraints placed on S_{34} using reaction rates from various sources. Column 1 lists the adopted S_{17} constraint used, while Columns 2 and 3 show the compilation used for the S_{11} and S_{33} reaction rates. The S_{34} numbers cited are the most likely values and their 68% (95%) confidence intervals.

Adopted S_{17} (eV b)	Adelberger-based [24]	NACRE-based [25]
Adelberger [24]	$S_{34} = 0.51^{+0.15}_{-0.12}(0.34)$	N.A.
$S_{17} = 19.0^{+4.0}_{-2.0}$		
NACRE [25]	$S_{34} = 0.51^{+0.17}_{-0.12}(0.38)$	
$S_{17} = 21.0 \pm 2.31$		
Junghans [39]	$S_{34} = 0.49^{+0.14}_{-0.11}(0.30)$	
$S_{17} = 21.4 \pm 0.5(expt) \pm 0.6(theor)$	$S_{34} = 0.57^{+0.13}_{-0.11}(0.30)$	$S_{34} = 0.49^{+0.14}_{-0.11}(0.30)$
Davids [40]	$S_{34} = 0.59^{+0.17}_{-0.13}(0.39)$	
$S_{17} = 18.6 \pm 0.4(expt) \pm 1.1(extrp)$	$S_{34} = 0.57^{+0.13}_{-0.11}(0.30)$	$S_{34} = 0.59^{+0.17}_{-0.13}(0.39)$

18.6$^{+0.4(expt)}_{-1.1(extrp)}$ eV b, is based on both direct capture and Coulomb dissociation measurements, excluding the Junghans data set because it is systematically higher than the other data sets. Had the Junghans data been used, the value of S_{17} would lie between the two cited values. We will adopt the cited numbers, keeping in mind that the difference in their values are a measure of this systematic difference.

Our constraints in Table 4 are based on the likelihood functions in figure 3. We find that, $S_{34} > 0.35$ keV barn

at 95% CL for the case of the NACRE S_{17} value. Other choices give slightly higher limits, e.g., Adelberger with the Davids S_{17} gives $S_{34} > 0.42$ keV barn.

As shown in Table 2, these limits on S_{34} place essentially identical limits to 7Li production in BBN. Thus, eq. (19), along with the fiducial BBN results in Table 1, demands that

$$\left(\frac{^7\text{Li}}{\text{H}}\right)_{\text{BBN}} > 2.72^{+0.36}_{-0.34} \times 10^{-10},$$

(20)

where we have fixed the reaction normalization such that $S_{34} = 0.35$ keV barn, but propagated the other nuclear uncertainties in the BBN code [7] and convolved the predictions with the WMAP determination of the baryon density [1]. We see that this alleviates the BBN 7Li problem somewhat, but still requires a combination of effects to fix the problem–i.e., that 7Li observations be systematically low, in addition to adopting the limits to nuclear systematics we have derived.
Put another way, we can ask how far a “nuclear-only” BBN solution stretches our constraints on $^3\text{He}(\alpha, \gamma)^7\text{Be}$ systematics. We saw in §3.2 that for halo star observations to reflect the primordial ^7Li abundance requires that S_{34} be systematically lowered, to 53% and perhaps 27% of its fiducial value. A reduction of $S_{34}^{\text{new}} < 0.267 \text{ keV barn}$ is excluded at the 99.5% CL for the NACRE case (and above for others in Table 4). A reduction of $S_{34}^{\text{new}} < 0.136 \text{ keV barn}$ is excluded at more than 99.9999% CL. This restates our finding that the solar constraints on S_{34} remove this reaction as the main suspect in the ^7Li problem.

5 Discussion and Conclusions

The hot big bang cosmology has seen a great triumph in the agreement between the baryon density found by WMAP and the BBN value implied by the D/H ratio measured at high redshifts. However, this triumph is somewhat muted by the much poorer agreement between the primordial ^7Li value as predicted from BBN and the WMAP baryon density, and the observed values seen in halo stars. The predictions are at least a factor of 2 above the observations. This discrepancy impels a search for any possible systematic errors, which could either explain the mismatch, or if no systematics can be found, would reveal the true seriousness of the problem and a need for a more fundamental solution.

In this paper we have considered the effect of systematic errors in the nuclear reactions. In particular, we have focused on the $^3\text{He}(\alpha, \gamma)^7\text{Be}$ reaction, which is the sole important production channel of ^7Li at the WMAP baryon density. As such, systematic errors in this reaction have an immediate impact on the BBN ^7Li abundance. And indeed, while there has been extensive and careful work for this reaction, both fronts meet with technical difficulties which leave open the possibility for systematic errors in the absolute normalization of this rate.

Thus we have identified a new constraint on this reaction, coming from its influence on ^7Be and ^8B production in the Sun, and the associated ^8B solar neutrinos. The excellent agreement between the standard solar model and the total measured ^8B neutrino flux places demands that the underlying nuclear reactions cannot have large systematics. In particular, using the solar neutrino theory and observations, as well as some information on other reactions, notably $^7\text{Be}(p, \gamma)^8\text{B}$, we find that S_{34} cannot be smaller than 65% of its fiducial value (e.g., NACRE or Adelberger). This limit is strong enough to exclude the $^3\text{He}(\alpha, \gamma)^7\text{Be}$ reaction as the dominant solution to the BBN ^7Li problem.

Other nuclear solutions to the ^7Li problem are logically possible but in fact unlikely. While many reactions are important for ^7Li production, the requirements that we not spoil
agreement with D, and not (further) underproduce 4He, leads us to focus on reactions which only affect 7Li. Since we have shown that the production channel cannot be lowered sufficiently, we might hope to increase 7Be destruction. This is done via the 7Be(n, p)7Li reaction, followed by 7Li(p, γ)8He. The Sun does not constrain 7Be(n, p)7Li because the solar interior has a negligible neutron density. However, this reaction is nevertheless very well-studied because its inverse is a common laboratory neutron source. Since deuterium observations and CMB determinations suggest a baryon density on the high side, the destruction of 7Li through the reaction 7Li(p, γ)8He has negligible impact. Its mirror reaction, 7Be(n, γ)8He, important on the higher baryon density side, is negligible compared to 7Be(n, p)7Li. Furthermore, 7Li has a somewhat weaker dependence on the destruction cross section (7Li$_{BBN} \propto S_{34}^{0.95} S_n^{-0.74}$[6]), so that the needed systematic error would be even larger than what we have considered for the production channel.

Thus nuclear solutions do not seem allowed by the current data. Of course, it remains possible that extremely large (factors $\gtrsim 100$) systematic errors lurk in otherwise negligible 7Li production and destruction channels [27]. For these reasons, continued efforts to improve nuclear cross section experiments and theory (with particular attention to absolute normalizations and systematics) will reap benefits for BBN as well as solar neutrinos. Tighter experimental errors (including systematics) will reduce the BBN theoretical uncertainty budget, which will not only further clarify the seriousness of the 7Li problem, but also allow for stronger constraints on astrophysics [11] when and if the 7Li problem is resolved. In this respect, we particularly call attention to the 3He(α, γ)7Be reaction, but also to 7Be(p, γ)8B, as they are undoubtedly linked through solar neutrinos. Determining a more accurate low-energy extrapolation in either of these reactions will impact the other through the solar neutrino constraint on the parameter $x = S_{17} S_{34}^{0.81}$.

Where, then, does the 7Li problem stand? We have found nuclear reaction systematics are very unlikely to be the dominant source of the discrepancy. Of the remaining possibilities, the most conservative is that the problem is dominated by systematic errors in the observational 7Li value. This could either be due to difficulties in the understanding the stellar parameters and in extracting the abundance from spectral lines, or from stellar evolution effects which deplete Li without introducing large dispersion in the Spite plateau. A similarly conventional solution would ascribe the 7Li discrepancy to a combination of nuclear and observational systematics, both at the edge of what is currently allowed.

Finally, a more radical but intriguing possibility would be that new physics is required. If this is so, nature has been somewhat subtle in revealing this twist, as the perturbation to
standard BBN has been small enough not to be noticed until now.3 Nonstandard scenarios have already been proposed to alleviate the 7Li problem by introducing new physics, e.g., by a late-decaying gravitino \[41\]. However, most of the scenarios require fine tuning, as one wishes to reduce 7Li without spoiling the superb concordance between deuterium and the CMB.

In summary, we use solar neutrinos to remove the possibility of a solution to the 7Li problem from the 3He$(\alpha, \gamma)^7$Be reaction, and thereby cast more doubt that the problem is due to nuclear systematics. By removing a possible resolution, we have both clarified the problem, and made it more acute. In our view, the most important arena now is the observations and astrophysics which lead to the primordial 7Li inference. And while we continue to suspect that this is the likely solution, a parallel examination of nonstandard BBN scenarios is at this point not unwise.

Acknowledgments

We thank John Bahcall, Barry Davids, Byron Jennings, and Vijay Pandharipande for useful discussions. The work of K.A.O. was partially supported by DOE grant DE-FG02-94ER-40823. The work of B.D.F. and R.H.C. was supported by the National Science Foundation under grant AST-0092939.

References

[1] C.L. Bennett et al., *Astrophys. J.* submitted, [arXiv:astro-ph/0302207](http://arxiv.org/abs/astro-ph/0302207); D. N. Spergel et al., *Astrophys. J.* submitted, [arXiv:astro-ph/0302209](http://arxiv.org/abs/astro-ph/0302209).

[2] T. P. Walker, G. Steigman, D. N. Schramm, K. A. Olive and K. Kang, *Ap.J.* **376** (1991) 51; K. A. Olive, G. Steigman, and T. P. Walker, *Phys. Rep.* **333** (2000) 389; B. D. Fields and S. Sarkar, *Phys. Rev.* **D66** (2002) 010001.

[3] S. Sarkar, *Rep. Prog. Phys.* **59** (1996) 1493.

[4] B.D. Fields and K.A. Olive, *Phys. Lett.* **B368** (1996) 103; B.D. Fields, K. Kainulainen, D. Thomas, and K.A. Olive, *New Astronomy* **1** (1996) 77.

3If so, this probably has been fortuitous for the development of cosmology. Had there always been large problems with standard BBN, one can imagine that this would have led to great skepticism about the viability of the hot big bang framework.
[5] N. Hata, R. J. Scherrer, G. Steigman, D. Thomas, T. P. Walker, S. Bludman and P. Langacker, Phys. Rev. Lett. 75, 3977 (1995) arXiv:hep-ph/9505319; N. Hata, G. Steigman, S. Bludman and P. Langacker, Phys. Rev. D 55, 540 (1997) arXiv:astro-ph/9603087; S. Esposito, G. Mangano, G. Miele and O. Pisanti, Nucl. Phys. B 568 (2000) 421 arXiv:astro-ph/9906232; S. Burles, K. M. Nollett and M. S. Turner, Astrophys. J. 552, L1 (2001) arXiv:astro-ph/0010171.

[6] G. Fiorentini, E. Lisi, S. Sarkar and F. L. Villante, simulations,” Phys. Rev. D 58, 063506 (1998) arXiv:astro-ph/9803177.

[7] R. H. Cyburt, B. D. Fields and K. A. Olive, New Astron. 6 (1996) 215 arXiv:astro-ph/0102179.

[8] J. L. Sievers et al., Comparisons with BOOMERANG, DASI, and MAXIMA,” arXiv:astro-ph/0205387.

[9] J. H. Goldstein et al., arXiv:astro-ph/0212517.

[10] W. J. Percival et al., Monthly Not. Royal Astr. Soc., 337, 1297 (2001).

[11] R. H. Cyburt, B. D. Fields and K. A. Olive, Phys. Lett. 567 (2003) 227 arXiv:astro-ph/0302431.

[12] S. Burles and D. Tytler, Ap.J. 499, 699 (1998); Ap.J. 507, 732 (1998).

[13] J. M. O’Meara, D. Tytler, D. Kirkman, N. Suzuki, J. X. Prochaska, D. Lubin and A. M. Wolfe, Astrophys. J. 552, 718 (2001) arXiv:astro-ph/0011179.

[14] D. Kirkman, D. Tytler, N. Suzuki, J. M. O’Meara and D. Lubin, arXiv:astro-ph/0302006.

[15] M. Pettini and D. V. Bowen, Convergence with the Baryon Density from the CMB?,” Astrophys. J. 560, 41 (2001) arXiv:astro-ph/0104474.

[16] Y. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, Ap. J. 435 (1994) 647; Y. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, Ap. J. 108 (1997) 1; Y. I. Izotov and T. X. Thuan, Ap. J. 500 (1998) 188; Y. I. Izotov and T. X. Thuan, astro-ph/0310421.

[17] K.A. Olive, E. Skillman, and G. Steigman, Ap.J. 483 (1997) 788.

[18] B. D. Fields and K. A. Olive, Ap. J. 506 (1998) 177 arXiv:astro-ph/9803297.
[19] M. Peimbert, A. Peimbert and M. T. Ruiz, Ap. J. **541** (2000) 688; A. Peimbert, M. Peimbert and V. Luridiana, Ap. J. **565** (2002) 668.

[20] K.A. Olive, and E. Skillman, *New Ast.* **6** (2001) 119 [arXiv:astro-ph/0007081]; D. Sauer, and K. Jedamzik, A.A. **381**, 361 (2002); R. Gruenwald, G. Steigman and S. M. Viegas, *Astrophys. J.* **567** (2002) 931. [arXiv:astro-ph/0109071].

[21] F. Spite, and M. Spite, A.A. **115** (1982) 357.

[22] K. M. Nollett, Phys. Rev. C **63** (2001) 054002 [arXiv:nucl-th/0102022].

[23] Bahcall, J.N., Pinsonneault, M.H., & Basu, S. ApJ **555** (2001) 990.

[24] Adelberger, E.C. *et al.* Rev. Mod. Phys. **70** (1998) 1265.

[25] C. Angulo et al. (NACRE Collaboration), *Nucl. Phys. A* **656** (1999) 3.

[26] K. M. Nollett and S. Burles, *Phys. Rev.* **D61** (2000) 123505 [arXiv:astro-ph/0001440].

[27] A. Coc, E. Vangioni-Flam, P. Descouvemont, A. Adahchour and C. Angulo, [arXiv:astro-ph/0309480].

[28] S.G. Ryan, T.C. Beers, K.A. Olive, B.D. Fields, and J.E. Norris, *Ap. J. Lett.* **530**, L57 (2000).

[29] S.G. Ryan, J.E. Norris, and T.C. Beers, Ap. J. **523** (1999) 654.

[30] C. Sneden, et al., Ap. J. **591** (2003) 936.

[31] C.P. Deliyannis, P. Demarque, and S.D. Kawaler, Ap. J. Supp., **73** (1990) 21.

[32] S. Vauclair,and C. Charbonnel, Ap. J. **502** (1998) 372; M. H. Pinsonneault, T. P. Walker, G. Steigman and V. K. Narayanan, Ap. J. **527** (1998) 180 [arXiv:astro-ph/9803073]; M. H. Pinsonneault, G. Steigman, T. P. Walker, and V. K. Narayanan, Ap. J. **574** (2002) 398 [arXiv:astro-ph/0105439].

[33] P. Bonifacio, et al., Astron. Astrophys., **390** (2002) 91.

[34] P. Bonifacio, Astron. Astrophys. **395** (2002) 515.

[35] Esmailzadeh, R., Starkman, G.D., & Dimopoulos, S. ApJ **378** (1991) 504.

[36] SNO Collaboration, submitted to Phys. Rev. Lett. (2003) [arXiv:nucl-ex/0309004]
[37] J. N. Bahcall, Neutrino Astrophysics (1989), Cambridge and New York, Cambridge University Press.

[38] Bahcall, J. N. & Ulrich, R. K. Rev. Mod. Phys., 60 (1988) 297.

[39] Junghans, A.R. et al. arXiv:nucl-ex/0308003

[40] Davids, B. & Typel, S., Phys. Rev. C 68 (2003) 045802 arXiv:nucl-ex/0304054

[41] S. Dimopoulos, R. Esmailzadeh, L. J. Hall and G. D. Starkman, Astrophys. J. 330 (1988) 545; R. H. Cyburt, J. R. Ellis, B. D. Fields and K. A. Olive, Phys. Rev. D 67, 103521 (2003) arXiv:astro-ph/0211258.