THE DENOMINATORS OF NORMALIZED R-MATRICES OF TYPES $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$, $B_n^{(1)}$ AND $D_{n+1}^{(2)}$

SE-JIN OH

ABSTRACT. Denominators of normalized R-matrices provide important information on finite dimensional integrable representations over quantum affine algebras, and over quiver Hecke algebras by the generalized quantum affine Schur-Weyl duality functors. We compute the denominators of all normalized R-matrices between fundamental representations of types $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$, $B_n^{(1)}$ and $D_{n+1}^{(2)}$. Thus we can conclude that the normalized R-matrices of types $A_{2n-1}^{(2)}$, $A_{2n}^{(2)}$, $B_n^{(1)}$ have only simple poles, and of type $D_{n+1}^{(2)}$ have double poles under certain conditions.

INTRODUCTION

Let \mathfrak{g} be an affine Kac-Moody algebra and $U'_q(\mathfrak{g})$ be the quantum affine algebra corresponding to \mathfrak{g}. The finite dimensional integrable representations over $U'_q(\mathfrak{g})$ have been investigated by many authors during the past twenty years from different perspectives (see [1, 3, 4, 10, 11, 23, 26]). Among these aspects, we focus on the theory of R-matrices which has deep relationship with q-analysis, operator algebras, conformal field theories, statistical mechanical models, etc.

The purpose of this paper is to compute the denominators of normalized R-matrices between the fundamental representations $V(\varpi_{ik})$'s over $U'_q(\mathfrak{g})$. Knowing the denominators is quite crucial to study the finite dimensional integrable representations by the following theorem:

Theorem [1, 23] Let M be a finite dimensional irreducible integrable $U'_q(\mathfrak{g})$-module M. Then, there exists a finite sequence $\{(i_1, a_1), \ldots, (i_l, a_l)\}$ in $\{1, 2, \ldots, n\} \times \mathbb{C}^\times$ such that

- $d_{i_k, i_k'}(a_{k'})
eq 0$ for $1 \leq k < k' \leq l$ and
- M is isomorphic to the head of $\otimes_{k=1}^{l} V(\varpi_{ik})_{a_k}$.

Moreover, such a sequence $\{(i_1, a_1), \ldots, (i_l, a_l)\}$ is unique up to permutation. Here $\mathbb{k} = \overline{\mathbb{Q}(q)} \subset \cup_{m>0} \mathbb{C}((q^{1/m}))$ and $d_{i_k, i_k'}(z) \in \mathbb{k}[z]$ denotes the denominator of the normalized R-matrix

$$R_{i_k, i_k'}^{\text{norm}}(z) := R_{V(\varpi_{ik}), V(\varpi_{ik'})}^{\text{norm}}(z) : V(\varpi_{ik}) \otimes V(\varpi_{ik'}) \rightarrow \mathbb{k}(z) \otimes \mathbb{k}[z^{\pm 1}] \left(V(\varpi_{ik'})_{z} \otimes V(\varpi_{ik})\right)$$

satisfying

$$d_{i_k, i_k'}(z) R_{i_k, i_k'}^{\text{norm}}(z)(V(\varpi_{ik}) \otimes V(\varpi_{ik'})_{z}) \subset V(\varpi_{ik'})_{z} \otimes V(\varpi_{ik})$$

Thus the study of denominators is one of the first step to study the category $\mathcal{C}_\mathfrak{g}$ consisting of finite dimensional integrable representations over $U'_q(\mathfrak{g})$.

Date: July 7, 2014.

2010 Mathematics Subject Classification. 81R50, 16G, 16T25, 17B37.

Key words and phrases. Quantum affine algebra, Normalized R-matrix.
On the other hand, Kang, Kashiwara and Kim [18, 19] recently constructed the quantum affine Schur-Weyl duality functor \mathcal{F} by observing zeros of denominators of normalized R-matrices. The way of constructing \mathcal{F} can be described as follows: Let $\{V_s\}_{s \in \mathcal{S}}$ be a family of fundamental representations over $U_q'(\mathfrak{g})$. For an index set J and two maps $X : J \rightarrow k^\times$, $s : J \rightarrow \mathcal{S}$, we can define a quiver $Q^J = (Q^J_0, Q^J_1)$ associated with (J, X, s) as (i:vertices) $Q^J_0 = J$, (ii:arrows) for $i, j \in J$, we put d_{ij} many arrows from i to j, where d_{ij} is the order of the zero of $d_{s(i), s(j)}$ at $X(j)/X(i)$.

Then we obtain a symmetric Cartan matrix $A^J = (a^J_{ij})_{i,j \in J}$ associated with (J, X, s) by

$$a^J_{ij} = 2 \quad \text{if} \quad i = j \quad \text{and} \quad a^J_{ij} = -d_{ij} - d_{ji} \quad \text{if} \quad i \neq j.$$

Let R^J be the quiver Hecke algebras associated with the symmetric Cartan matrix A^J and the parameters ([24, 25, 29])

$$Q_{i,j}(u, v) = (u - v)^{d_{ij}}(v - u)^{d_{ji}} \quad \text{if} \quad i \neq j \quad \text{and} \quad Q_{i,i}(u, v) = 0 \quad \text{for all} \quad i \in J.$$

Theorem [18] There exists a functor

$$\mathcal{F} : \text{Rep}(R^J) \rightarrow \mathcal{C}_g$$

where $\text{Rep}(R^J)$ denotes the category of finite dimensional representations over R^J. Moreover, the functor enjoys the following properties:

(a) \mathcal{F} is a tensor functor; that is, there exist $U_q'(\mathfrak{g})$-module isomorphisms

$$\mathcal{F}(R^J(0)) \simeq k \quad \text{and} \quad \mathcal{F}(M_1 \circ M_2) \simeq \mathcal{F}(M_1) \otimes \mathcal{F}(M_2)$$

for any $M_1, M_2 \in \text{Rep}(R^J)$.

(b) If the Cartan matrix A^J is of type $A_n(n \geq 1)$, $D_n(n \geq 4)$, E_6, E_7 or E_8, then the functor \mathcal{F} is exact.

Thus the generalized quantum affine Schur-Weyl duality functor provides the way of investigating the category \mathcal{C}_g via the category $\text{Rep}(R^J)$ and the other way around (see [20]).

Note that A^J depends on the choice of (J, X, s) and the denominators. Hence one may expect various exact functors defined on $\text{Rep}(R^J)$ for a fixed algebra R^J. In the forthcoming papers by the author and his collaborators ([21, 22]), they will consider such situations, and the denominator formulas given in this paper will play an important role.

The denominators of all normalized R-matrices $R_{k,l}^{\text{norm}}(z)$ for $A_n^{(1)}$, $C_n^{(1)}$ and $D_n^{(1)}$ were studied in [11, 6, 19] and the denominators of normalized R-matrix $R_{1,1}^{\text{norm}}(z)$ (resp. $R_{n,n}^{\text{norm}}(z)$) between vector representations (resp. spin representations) for all classical affine types are given in [17, 27]. On the other hand, the explicit forms of normalized R-matrix $R_{k,l}^{\text{norm}}(z)$ for all classical affine types were studied in [7, 13, 14, 15]. With these results, we will compute the denominators $d_{k,l}(z)$ of all normalized R-matrices $R_{k,l}^{\text{norm}}(z)$ by employing the framework given in [19, Appendix A].

Our main results are

$$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z^t - (-q^t)^{k-l+2s}(z^t - (p^*)^t(-q^t)^{2s-k-l})$$

if $V(\varpi_k)$ and $V(\varpi_l)$ are not spin representations, and

$$d_{k,n}(z) = \prod_{s=1}^{k} (z - (-1)^{n+k}q^{2n-2k-1+4s}) \quad \text{if} \quad g = D_n^{(1)} \quad \text{and} \quad k < n,$$

$$d_{k,n}(z) = \prod_{s=1}^{k} (z^2 + (-q^2)^{n-k+2s}) \quad \text{if} \quad g = D_{n+1}^{(2)} \quad \text{and} \quad k < n.$$
Here,
\[
t = \begin{cases}
2 & \text{if } g = D^{(2)}_{n+1}, \\
1 & \text{otherwise,}
\end{cases}
\]
for the null root δ (see (1.2)). Hence, we can conclude that
(a) $R^{\text{dim}}_{k,l}(z)$ of $A^{(2)}_{2n-1}$, $A^{(2)}_{2n}$ or $B^{(1)}_n$ has only simple poles,
(b) $R^{\text{dim}}(z)$ of $D^{(2)}_{n+1}$ has a double pole at $z = (-q^2)^{s/2}$ if
\[2 \leq k, l \leq n - 1, \quad k + l > n, \quad 2n + 2 - k - l \leq s \leq k + l \text{ and } s \equiv k + l \mod 2,
\]
(c) $R^{\text{dim}}_{k,l}(z)$ has a pole at $\pm (-q^k)^{l/t}$ only if $k \in \mathbb{Z}$ such that $2 \leq t \leq (\rho, \delta)$ (see [8]).

This paper is organized as follows. In the first section, we recall the notion of quantum affine algebras and R-matrices, briefly. In the next section, we give the $U'_q(g)$-module structure of the vector representations and spin representations over $U'_q(g)$. In the third section, we study morphisms in $\text{Hom}_{U'_q(g)}(V(\varpi_i)_a \otimes V(\varpi_j)_b, V(\varpi_k)_c)$, called the Dorey’s type morphisms. After that, we prove the existence of certain surjective homomorphisms which can be understood as $D^{(2)}_{n+1}$-analogue of [13] Lemma A.3.2. In the last section, we propose the general framework for computing the denominators, which is originated from [19] Appendix A. Then we compute $d_{1,n}(z)$ for $g = D^{(2)}_{n+1}$ and the unknown denominators $d_{k,l}(z)$ of normalized R-matrices for $g = A^{(2)}_{2n-1}$, $A^{(2)}_{2n}$, $B^{(1)}_n$ and $D^{(2)}_{n+1}$, by using the results in the previous sections. In the appendix, we provide a table of $d_{k,l}(z)$ for all classical affine types for reader’s convenience.

Acknowledgements. The author would like to express his sincere gratitude to Professor Seok-Jin Kang, Professor Masaki Kashiwara and Myungho Kim for many fruitful discussions. The author gratefully acknowledge the hospitality of RIMS (Kyoto) during his visit in 2013 and 2014.

1. Quantum affine algebras and R-matrices

In this section, we briefly recall the backgrounds and theories on quantum affine algebras, their finite dimensional integral representations and R-matrices. We refer to [1] [13] [23] for precise statements and definitions.

1.1. Quantum affine algebras and their representations. Let $I = \{0, 1, \ldots, n\}$ be a set of indices and set $I_0 := I \setminus \{0\}$. An affine Cartan datum is a quadruple (A, P, Π, Π') consisting of
(a) a matrix A of corank 1, called the affine Cartan matrix satisfying
\[
(i) \quad a_{ii} = 2 \quad (i \in I), \quad (ii) \quad a_{ij} \in \mathbb{Z}_{\leq 0}, \quad (iii) \quad a_{ij} = 0 \text{ if } a_{ji} = 0
\]
with $D = \text{diag}(d_i \in \mathbb{Z}_{>0} \mid i \in I)$ making DA symmetric,
(b) a free abelian group P of rank $n + 2$, called the weight lattice,
(c) $\Pi = \{\alpha_i \mid i \in I\} \subset P$, called the set of simple roots,
(d) $\Pi' = \{h_i \mid i \in I\} \subset P' := \text{Hom}(P, \mathbb{Z})$, called the set of simple coroots,
which satisfy
\[
(1) \quad \langle h_i, \alpha_j \rangle = a_{ij} \text{ for all } i, j \in I,
(2) \quad \Pi \text{ and } \Pi' \text{ are linearly independent sets},
(3) \quad \text{for each } i \in I, \text{ there exists } \Lambda_i \in P \text{ such that } \langle h_i, \Lambda_j \rangle = \delta_{ij} \text{ for all } j \in I.
\]
We set $Q = \bigoplus_{i \in I} \mathbb{Z} \alpha_i$, $Q_+ = \bigoplus_{i \in I} \mathbb{Z}_{>0} \alpha_i$, $Q^\vee = \bigoplus_{i \in I} \mathbb{Z} h_i$ and $Q^\vee_+ = \bigoplus_{i \in I} \mathbb{Z}_{>0} h_i$. We choose the imaginary root $\delta = \sum_{i \in I} a_i \alpha_i \in Q_+$ and the center $c = \sum_{i \in I} c_i h_i \in Q^\vee_+$ such that \([16 \text{ Chapter 4}])

$$\{\lambda \in Q \mid \langle h_i, \lambda \rangle = 0 \text{ for every } i \in I\} = \mathbb{Z} \delta$$

and

$$\{h \in Q^\vee \mid \langle h, \alpha_i \rangle = 0 \text{ for every } i \in I\} = \mathbb{Z} c.$$

Set $h = Q \otimes \mathbb{Z} P^\vee$. Then there exists a symmetric bilinear form (\cdot, \cdot) on h^* satisfying

$$\langle h_i, \lambda \rangle = \frac{2(\alpha_i, \lambda)}{(\alpha_i, \alpha_i)}$$

for any $i \in I$ and $\lambda \in h^*$.

We normalize the bilinear form by

$$\langle c, \lambda \rangle = (\delta, \lambda)$$

for any $\lambda \in h^*$.

Let us denote by g the affine Kac-Moody Lie algebra associated with (A, P, Π, Π^\vee) and by W the Weyl group of g, generated by $(s_i)_{i \in I}$. We define g_0 the subalgebra of g generated by the chevalley generators $e_i, f_i,$ and h_i for $i \in I_0$. Then g_0 is a finite dimensional simple Lie algebra.

Let γ be the smallest positive integer such that

$$\gamma(\alpha_i, \alpha_i)/2 \in \mathbb{Z}$$

for any $i \in I$.

Let q be an indeterminate. For $m, n \in \mathbb{Z}_{>0}$ and $i \in I,$ we define $q_i = q^{(\alpha_i, \alpha_i)/2}$ and

$$[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}}, \quad [n]_i! = \prod_{k=1}^{n} [k]_i, \quad \frac{m}{n} = \frac{[m]_i!}{[m-n]_i! [n]_i!}.$$

Definition 1.1. The quantum affine algebra $U_q(g)$ associated with (A, P, Π, Π^\vee) is the associative algebra over $\mathbb{Q}(q^{1/\gamma})$ with 1 generated by e_i, f_i ($i \in I$) and q^h ($h \in \gamma^{-1} \Pi^\vee$) satisfying following relations:

1. $q^0 = 1, q^h q^{h'} = q^{h+h'}$ for $h, h' \in \gamma^{-1} \Pi^\vee$,
2. $q^h e_i q^{-h} = q^{(h, \alpha_i)} e_i, \quad q^h f_i q^{-h} = q^{-(h, \alpha_i)} f_i$ for $h \in \gamma^{-1} \Pi^\vee$, $i \in I$,
3. $e_i f_j - f_j e_i = \delta_{ij} K_i - K_i^{-1},$ where $K_i = q_i^{h_i}$,
4. $\sum_{k=0}^{1-a_{ij}} (-1)^k e_i^{1-a_{ij}-k} f_j e_i^{(k)} = 0$ for $i \neq j$,

where $e_i^{(k)} = e_i^k/[k]_i!$ and $f_i^{(k)} = f_i^k/[k]_i!$.

We denote by $U'_q(g)$ the subalgebra of $U_q(g)$ generated by $e_i, f_i, K_i^{\pm 1}$ ($i \in I$) and we call it also the quantum affine algebra. Throughout this paper, we mainly deal with $U'_q(g)$.

For $U'_q(g)$-modules M and N, $M \otimes N$ becomes a $U'_q(g)$-module by the coproduct Δ of $U'_q(g)$:

$$\Delta(q^h) = q^h \otimes q^h, \quad \Delta(e_i) = e_i \otimes K_i^{-1} + 1 \otimes e_i, \quad \Delta(f_i) = f_i \otimes 1 + K_i \otimes f_i.$$

Set $P_{cl} := P/\mathbb{Z} \delta$ and $cl: P \to P_{cl}$ as the canonical projection.

We say that a $U'_q(g)$-module M is integrable provided that

1. M decomposes into P_{cl}-weight spaces; that is,

$$M = \bigoplus_{\mu \in P_{cl}} M_{\mu},$$

where $M_{\mu} := \{v \in M \mid K_i v = q^{(h_i, \mu)} v\}$,
2. e_i and f_i ($i \in I$) act on M nilpotently.
For $i \in I_0$, the level 0 fundamental weight ϖ_i is defined by

$$\varpi_i := \gcd(c_0, c_i)^{-1}(c_0 \Lambda_i - c_i \Lambda_0) \in \mathcal{P}.$$

Then $\{\cl(\varpi_i) \mid i \in I_0\}$ forms a basis for the space of classical integral weight level 0, denoted by \mathcal{P}_\cl^0, which is defined as follows:

$$\mathcal{P}_\cl^0 = \{ \lambda \in \mathcal{P}_\cl \mid (c, \lambda) = 0 \}.$$

The Weyl group W_0 of \mathfrak{g}_0, generated by $(s_i)_{i \in I_0}$, acts on \mathcal{P}_\cl^0 (see [1, §1.2]). We denote by w_0 the longest element of W_0.

Definition 1.2. [1, §1.3] For $i \in I_0$, the ith fundamental module is a unique finite dimensional integrable $U_q'(\mathfrak{g})$-module $V(\varpi_i)$ satisfying the following properties:

1. The weights of $V(\varpi_i)$ are contained in the convex hull of $W_0 \cl(\varpi_i)$.
2. $V(\varpi_i)_{\cl(\varpi_i)} = \mathbb{C}(q)v_{\varpi_i}$. (We call the vector v_{ϖ_i} a dominant integral weight vector.)
3. For any $\mu \in W_0 \cl(\varpi_i)$, we can associate a non-zero vector u_μ, called an extremal vector of weight μ, such that

$$S_i \cdot u_\mu := u_{s_i \mu} = \begin{cases} f_{q_i}^{\langle h_i, \mu \rangle} u_\mu & \text{if } \langle h_i, \mu \rangle \geq 0, \\ e_{q_i}^{\langle -h_i, \mu \rangle} u_\mu & \text{if } \langle h_i, \mu \rangle \leq 0, \end{cases}$$

for any $i \in I$.

4. v_{ϖ_i} generates $V(\varpi_i)$ as a $U_q'(\mathfrak{g})$-module.

Let k be an algebraic closure of $\mathbb{C}(q)$ in $\cup_{m>0} \mathbb{C}((q^{1/m}))$. When we deal with $U_q'(\mathfrak{g})$-modules, we regard the base field as k.

For a $U_q'(\mathfrak{g})$-module M, we denote by $^* M$ the right dual and M^* the left dual of M, if there exist $U_q'(\mathfrak{g})$-homomorphisms

$$M^* \otimes M \overset{\text{tr}}{\longrightarrow} k, \quad k \longrightarrow M \otimes M^* \quad \text{and} \quad M \otimes ^* M \overset{\text{tr}}{\longrightarrow} k, \quad k \longrightarrow M^* \otimes M.$$

Recall that $V(\varpi_i)$ is finite dimensional and has the right dual and left dual as follows:

$$V(\varpi_i)^* := V(\varpi_i^*)_{\rho^*}, \quad *V(\varpi_i) := V(\varpi_i^*)_{p^*} \quad \text{and} \quad p^* := (-1)^{\rho^*} q^{\langle \rho, \delta \rangle}.$$

where

- * is the involution of I_0 defined by the image of ϖ_i under the action w_0; i.e., $w_0(\varpi_i) = -\varpi_i^*$,
- ρ is defined by $\langle h_i, \rho \rangle = 1$ and ρ^* is defined by $\langle \rho^*, \alpha_i \rangle = 1$ for all $i \in I$.

We call an integrable $U_q'(\mathfrak{g})$-module M good if M satisfies certain properties. In this paper, the whole definition of the good module is not needed. Thus we refer [23] for the precise definition of good module. However, we would like to emphasize one condition of the good module:

A good module M contains the unique (up to constant) weight vector v_M of weight λ, such that

$$\text{wt}(M) \subset \lambda + \sum_{i \in I_0} \mathbb{Z}_{\geq 0} \cl(\alpha_i).$$

We call v_M the dominant extremal weight vector and λ dominant extremal weight. For instance, the ith fundamental representation is a good module.

For an indeterminate z and a $U_q'(\mathfrak{g})$-module M, let us denote by $M_z = \{ u_z \mid u \in M \}$ the $U_q'(\mathfrak{g})$-module $k[z^{\pm 1}] \otimes M$ with the action of $U_q'(\mathfrak{g})$ given by

$$e_i(u_z) = z^{\delta_i, 0} e_i(u) z, \quad f_i(u_z) = z^{-\delta_i, 0} f_i(u) z, \quad K_i(u_z) = (K_i u) z.$$

We sometimes use the notation u for u_z to simplify equations. (For example, see the proof of Proposition 4.7)
1.2. Normalized and universal \(R \)-matrices. We call a \(k[z^\pm 1] \otimes U'_q(\mathfrak{g}) \)-module homomorphism between \(M \otimes N_z \) and \(N_z \otimes M \) as an **intertwiner**. It is known that, for finite dimensional integral \(U'_q(\mathfrak{g}) \)-modules \(M \) and \(N \), there exists an intertwiner

\[
R_{M,N}^{\text{univ}}(z) : M \otimes N_z \rightarrow N_z \otimes M
\]

which satisfies

\[
R_{M,N}^{\text{univ}} \otimes R_{N',N}^{\text{univ}}(z) = (N_z \otimes R_{M,N}^{\text{univ}}(z)) \circ (R_{M,N}^{\text{univ}}(z) \otimes N'_z).
\]

We call \(R_{M,N}^{\text{univ}} \) the **universal \(R \)-matrix** \([9]\).

Definition 1.3. For good modules \(M \) and \(N \), the **normalized \(R \)-matrix** \(R_{M,N}^{\text{norm}} \) is the \(U'_q(\mathfrak{g}) \)-module homomorphism

\[
R_{M,N}^{\text{norm}} : M_\mathbb{Z}M \otimes N_{\mathbb{Z}N} \rightarrow k(z_M, z_N) \otimes _{k[z_M^\pm 1, z_N^\pm 1]} N_{\mathbb{Z}N} \otimes M_\mathbb{Z}M
\]

which satisfies

\[
R_{M,N}^{\text{norm}} \circ z_M = z_M \circ R_{M,N}^{\text{norm}}, \quad R_{M,N}^{\text{norm}} \circ z_N = z_N \circ R_{M,N}^{\text{norm}} \quad \text{and} \quad R_{M,N}^{\text{norm}}(v_M \otimes v_N) = v_N \otimes v_M.
\]

\([1] \text{ Corollary 2.5} \) tells that, for good modules \(M \) and \(N \)

\[
\text{Hom}_{k(z) \otimes U'_q(\mathfrak{g})}(M \otimes N_z, N_z \otimes M) \simeq k(z),
\]

and hence there exists \(a_{M,N}(z) \in k(z) \) such that

\[
a_{M,N}(z)R_{M,N}^{\text{norm}}(z).
\]

Note that

\[
R_{M,N}^{\text{norm}}(z)(M \otimes N_z) \subset k(z) \otimes_{k[z^\pm 1]} (N_z \otimes M)
\]

and there exists a unique monic polynomial \(d_{M,N}(z) \in k[z] \) such that

\[
d_{M,N}(z)R_{M,N}^{\text{norm}}(z)(M \otimes N_z) \subset (N_z \otimes M).
\]

We call \(d_{M,N}(u) \) the **denominator** of \(R_{M,N}^{\text{norm}}(z) \).

Lemma 1.4 (**[1]** Lemma C.15). Let \(V', V'' \), \(V \) and \(W \) be irreducible \(U'_q(\mathfrak{g}) \)-modules. Assume that we have a surjective \(U'_q(\mathfrak{g}) \)-homomorphism

\[
V' \otimes V'' \rightarrow V.
\]

Then we have

\[
\frac{d_{W,V'}(z)d_{W,V''}(z)a_{W,V}(z)}{d_{W,V}(z)a_{W,V'}(z)a_{W,V''}(z)} \quad \text{and} \quad \frac{d_{V',W}(z)d_{V'',W}(z)a_{V',W}(z)}{d_{V,W}(z)a_{V',W}(z)a_{V'',W}(z)} \in k[z^\pm 1].
\]

2. **Vector and spin representation.**

In this section, we record the \(U'_q(\mathfrak{g}) \)-module structure of

- \(V(\varnothing_1) \), called the **vector representation**,
- \(V(\varnothing_n) \), called the **spin representation**, for \(\mathfrak{g} = B_n^{(1)} \) or \(D_n^{(2)} \).

As a vector space, the vector representation can be expressed as follows (**[12]** Chapter 11):

\[
V(\varnothing_1) = (\bigoplus_{j=1}^n k\varnothing_j) \oplus (\bigoplus_{j=1}^n k\varnothing_j) \oplus W
\]

where

\(\mathfrak{g} \)	\(A_{2n-1}^{(2)} \)	\(B_n^{(1)} \)	\(A_{2n}^{(2)} \)	\(D_{n+1}^{(2)} \)
\(W \)	\(\emptyset \)	\(k\varnothing_0 \)	\(k\varnothing_0 \)	\(k\varnothing_0 \oplus k\varnothing_0 \)
The actions of e_i, f_i and q^h are defined by follows:

$$q^h \cdot v_j = q^{(h, \text{wt}(v_j))}v_j \quad \text{for} \quad h \in P_{cl}^\vee,$$

\mathfrak{g}	$e_i v_j$	$f_i v_j$
$A_{2n-1}^{(2)}$	v_i if $j = i + 1$ and $i \neq n$, v_{i+1} if $j = 1$ and $i \neq n$, v_n if $j = \overline{i}$ and $i = n$, v_{n-1} if $j = 1$ and $i = 0$, v_{n+1} if $j = 2$ and $i = 0$, 0 otherwise,	v_{i+1} if $j = i$ and $i \neq n$, v_7 if $j = i + 1$ and $i \neq n$, v_{n+1} if $j = n$ and $i = n$, v_{n-1} if $j = \overline{i}$ and $i = 0$, v_1 if $j = 2$ and $i = 0$, 0 otherwise,
$A_{2n}^{(2)}$	v_i if $j = i + 1$ and $i \neq n$, v_{i+1} if $j = 7$ and $i \neq n$, v_0 if $j = 1$ and $i = 0$, 0 otherwise,	v_{i+1} if $j = i$ and $i \neq n$, v_7 if $j = i + 1$ and $i \neq n$, v_0 if $j = n$ and $i = n$, v_{n+1} if $j = \overline{i}$ and $i = 0$, v_1 if $j = 2$ and $i = 0$, 0 otherwise,
$B_n^{(1)}$	v_i if $j = i + 1$ and $i \neq n$, v_{i+1} if $j = i + 1$ and $i \neq n$, v_n if $j = 0$ and $i = n$, v_{n-1} if $j = 1$ and $i = 0$, v_{n+1} if $j = 2$ and $i = 0$, 0 otherwise,	v_{i+1} if $j = i$ and $i \neq n$, v_7 if $j = i + 1$ and $i \neq n$, v_0 if $j = n$ and $i = n$, v_{n+1} if $j = \overline{i}$ and $i = 0$, v_1 if $j = \overline{i}$ and $i = 0$, 0 otherwise,
$D_{n+1}^{(2)}$	v_i if $j = i + 1$ and $i \neq n$, v_{i+1} if $j = i + 1$ and $i \neq n$, v_n if $j = 0$ and $i = n$, v_{n-1} if $j = 1$ and $i = 0$, v_{n+1} if $j = 2$ and $i = 0$, 0 otherwise,	v_{i+1} if $j = i$ and $i \neq n$, v_7 if $j = i + 1$ and $i \neq n$, v_0 if $j = n$ and $i = n$, v_{n+1} if $j = \overline{i}$ and $i = 0$, v_1 if $j = \overline{i}$ and $i = 0$, 0 otherwise,

where

$$\text{wt}(v_j) = e_j, \quad \text{wt}(v_{\overline{j}}) = -e_j \quad \text{for} \quad j = 1, \ldots, n \quad \text{and} \quad \text{wt}(v_0) = \text{wt}(v_{\overline{0}}) = 0.$$

For $\mathfrak{g} = B_n^{(1)}$ or $\mathfrak{g} = D_{n+1}^{(2)}$, the spin representation $V(\omega_n)$ is the k-vector space with a basis

$$\mathcal{B}_{sp} = \{(m_1, \ldots, m_n) ; m_i = + \text{ or } - \}.$$

Its $U_q'(\mathfrak{g})$-module structure is given by defining the action of e_i, f_i and q^h as follows:

$$q^h v = q^{(h, \text{wt}(v))}v \quad \text{for} \quad h \in P_{cl}^\vee, \text{ where } \text{wt}(v) = \frac{1}{2} \sum_{k=1}^n m_k e_k,$$
3. Surjective Homomorphisms Between Integrable $U_q(g)$-Modules

In this section, we first study the morphisms in

$$\text{Hom}_{U_q(g)}(V(\varpi_i)_a \otimes V(\varpi_j)_b, V(\varpi_k)_c) \quad \text{for } i, j, k \in I_0 \text{ and } a, b, c \in k^\times.$$

These kinds of morphisms are known as Dorey’s type morphisms and have been investigated in [5] for the classical untwisted affine types $A_n^{(1)}$, $B_n^{(1)}$, $C_n^{(1)}$ and $D_n^{(1)}$. In the last part of this section, we study the surjective homomorphisms which can be understood as $D_{n+1}^{(2)}$-analogue of the surjective homomorphisms given in [19] (A.17)

Hereafter, we will use the following convention frequently:

For a statement P, $\delta(P)$ is 1 if P is true and 0 if P is false.

By the result on $B_n^{(1)}$ in [5], it suffices to consider when $g = A_{2n-1}^{(2)}$ ($n \geq 3$), $A_{2n}^{(2)}$ ($n \geq 2$) and $D_{n+1}^{(2)}$ ($n \geq 2$).

The finite Dynkin diagrams of g_0 associated with g are given as follows:

$$C_n : \frac{\epsilon_1 - \epsilon_2}{n-1} \cdots \frac{\epsilon_{n-1} - \epsilon_n}{n-1} \frac{\epsilon_n}{n} (A_{2n-1}^{(2)}, A_{2n}^{(2)}) \quad B_n : \frac{\epsilon_1 - \epsilon_2}{n-1} \cdots \frac{\epsilon_{n-1} - \epsilon_n}{n} \frac{2\epsilon_n}{n} (D_{n+1}^{(2)}).$$

We denote by $V_0(\varpi_i)$ for $i \in I_0$, the highest weight $U_q(g_0)$-module with the highest weight ϖ_i.

Throughout this paper, we set

$$(3.1) \quad t = \begin{cases} 2 & \text{if } g = D_{n+1}^{(2)}, \\ 1 & \text{otherwise,} \end{cases} \quad \vartheta = \begin{cases} 1 & \text{if } g = B_n^{(1)} \text{ or } D_{n+1}^{(2)}, \\ 0 & \text{otherwise.} \end{cases}$$
3.1. \(i + j = k \leq n - \vartheta\). Recall that there exists an injective \(U_q(\mathfrak{g}_0)\)-module homomorphism (see, [12], Chapter 8]) \[
\Phi_{i,j} : V_0(\varpi_{i+j}) \rightarrow V_0(\varpi_i) \otimes V_0(\varpi_j) \quad \text{for} \quad i + j \leq n - \vartheta
\]
given by
\[
(3.2) \quad u_\lambda \mapsto v_\lambda = \sum_{\lambda = \mu + \xi} C_{\mu,\xi}^\lambda u_\mu \otimes u_\xi \quad (C_{\mu,\xi}^\lambda \in k)
\]
where \(\lambda \in W_0 \cdot \varpi_{i+j}\) and \(\mu\) (resp. \(\xi\)) runs over the elements in \(W_0 \cdot \varpi_i\) (resp. \(W_0 \cdot \varpi_j\)).

For a positive integer \(l \leq n - \vartheta\), we sometimes write \(\lambda \in \text{wt}(V_0(\varpi_l))\) as a sequence \((\lambda_1, \ldots, \lambda_n) \in \{1, 0, -1\}^n\) such that \(\lambda = \sum_{k=1}^n \lambda_k \epsilon_k\).

In [32], since \(\Phi_{i,j}\) is a \(U_q(\mathfrak{g}_0)\)-homomorphism and \(V(\varpi_{i+j})\) is generated by \(u_{\varpi_{i+j}}\), we can observe that
\[
(3.3) \quad \lambda_k \geq 0 \implies \mu_k, \xi_k \geq 0 \quad \text{and} \quad \lambda_k \leq 0 \implies \mu_k, \xi_k \leq 0.
\]
Since \(\lambda_k \in \{1, 0, -1\}\), we can conclude that
\[
(3.4) \quad \mu_k \xi_k = 0 \quad \text{for all} \quad 1 \leq k \leq n.
\]
From the observation (3.3), \(C_{\mu,\xi}^\lambda\) must be the same as \(C_{s_k \mu, s_k \xi}^{s_k \lambda} \) whenever \(\langle h_k, \lambda \rangle \neq 0\).

Proposition 3.1. Set \[
(3.5) \quad c_{\mu,\xi}^\lambda = \# \{(a, b) \mid a < b, (\mu_a, \xi_a) = (0, 1), \mu_b \neq 0\}
\]
\[
\quad \quad \quad \quad + \# \{(a, b) \mid a < b, (\mu_a, \xi_a) = (-1, 0), \xi_b \neq 0\}.
\]
Then the \(C_{\mu,\xi}^\lambda\) in (3.2) is given as follows:
\[
C_{\mu,\xi}^\lambda = (-q_1)^{c_{\mu,\xi}^\lambda}.
\]

Proof. First, we check that \(C_{s_k \mu, s_k \xi}^{s_k \lambda} = c_{\mu,\xi}^\lambda\) whenever \(\langle h_k, \lambda \rangle \neq 0\). To do this, it suffices to consider \((a, b) = (k, k + 1)\). Then one can easily check that
\[
\# \{(a, b) \mid a < b, (\mu_a, \xi_a) = (0, 1), \mu_b \neq 0\}
\]
\[
\quad \quad \quad \quad + \# \{(a, b) \mid a < b, (\mu_a, \xi_a) = (-1, 0), \xi_b \neq 0\}
\]
\[
\quad \quad \quad = \# \{(a, b) \mid a < b, ((s_k \mu)_a, (s_k \xi)_a) = (0, 1), (s_k \mu)_b \neq 0\}
\]
\[
\quad \quad \quad \quad + \# \{(a, b) \mid a < b, ((s_k \mu)_a, (s_k \xi)_a) = (-1, 0), (s_k \xi)_b \neq 0\}.
\]
Thus we can assume that \(\lambda = \varpi_{i+j}\). If \(k \geq i + j\), then \(e_k v_\lambda = 0\), trivially. When \(1 \leq k < i + j\),
\[
0 = e_k v_\lambda = \sum_{(\mu_k, \mu_{k+1}) = (0, 1)} C_{\mu_k,\xi_k}^{\lambda, \mu_k} v_{s_k \mu} \otimes v_{s_k \xi} + \sum_{(\mu_k, \mu_{k+1}) = (1, 0)} C_{\mu_k,\xi_k}^{\lambda, \mu_k} v_{s_k \mu} \otimes v_{s_k \xi}.
\]
Thus, for \((\mu_k, \mu_{k+1}) = (0, 1)\) and \((\xi_k, \xi_{k+1}) = (1, 0)\), we have
\[
c_{\mu,\xi}^\lambda = c_{s_k \mu, s_k \xi}^{s_k \lambda} + 1
\]
which implies our assertion. \(\Box\)

Now we shall determine \(x, y \in k^\times\) such that there exists an injective \(U_q'(\mathfrak{g})\)-module homomorphism \[
(3.6) \quad V(\varpi_{i+j}) \rightarrow V(\varpi_i)_x \otimes V(\varpi_j)_y.
\]
The strategy in this subsection can be explained as follows: As a \(U_q(\mathfrak{g}_0)\)-module, we have an injection \(V_0(\varpi_{i+j}) \rightarrow V(\varpi_i)_x \otimes V(\varpi_j)_y\).
Proposition 3.3. Let \(\lambda, \mu \) and \(\xi \) be extremal weights and \(\langle h_0, \lambda \rangle \neq 0 \). Let \(f(x) \) and \(g(y) \) be functions arising from the action of \(e_0 \) or \(f_0 \) on \(V(\varpi_i)_x \) or \(V(\varpi_j)_y \).

Recall the notion \(S_k \cdot u_\mu = u_{s_k \mu} \) for an extremal weight \(\mu \) in [111].

Proposition 3.2. Let \(g = A^{(2)}_{2n-1} \) \((n \geq 3)\). Then the \(x, y \) in (3.6) are given as follows:

\[
\begin{align*}
\lambda &= (-q)^j \\
\mu &= (-q)^{-i}.
\end{align*}
\]

Proof. The Dynkin diagram of \(A^{(2)}_{2n-1} \) is given as follows:

\[
\begin{array}{c}
\varepsilon_1 - \varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_{n-1} - \varepsilon_n \\
\varepsilon_n
\end{array}
\]

It suffices to consider \(\lambda \in W_0 \cdot \varpi_{i+j} \) such that \(\lambda_1, \lambda_2 \geq 0 \). Thus it is enough to consider when \(\mu_1, \mu_2, \xi_1, \xi_2 \geq 0 \). Then we have

\[
S_0 \cdot v_\lambda = v_{s_0 \lambda} = \sum_{\mu, \xi} C^\lambda_{\mu, \xi} \cdot x^{\delta(\mu_1=1)+\delta(\mu_2=1)} y^{\delta(\xi_1=1)+\delta(\xi_2=1)} v_{s_0 \mu} \otimes v_{s_0 \xi}.
\]

Here \(s_0(\varepsilon_1, \varepsilon_2, \varepsilon_3, \ldots, \varepsilon_n) = s_0(-\varepsilon_2, -\varepsilon_1, \varepsilon_3, \ldots, \varepsilon_n) \) \((\varepsilon_i \in \{-1, 0, 1\})\). Thus

\[
C^\lambda_{s_0 \mu, s_0 \xi} = x^{\delta(\mu_1=1)+\delta(\mu_2=1)} y^{\delta(\xi_1=1)+\delta(\xi_2=1)} C^\lambda_{\mu, \xi}.
\]

On the other hand, by (3.3),

\[
\begin{align*}
C^\lambda_{s_0 \mu, s_0 \xi} - C^\lambda_{\mu, \xi} &= +\delta(\mu_1 = 1) \times \# \{ b > 1 \mid \xi_b \neq 0 \} + \delta(\mu_2 = 1) \times \# \{ b > 1 \mid \xi_b \neq 0 \} \\
&- \delta(\xi_1 = 1) \times \# \{ b > 1 \mid \mu_b \neq 0 \} - \delta(\xi_2 = 1) \times \# \{ b > 1 \mid \mu_b \neq 0 \} \\
&= \delta(\mu_1 = 1) \times j + \delta(\mu_2 = 1) \times (j - \delta(\xi_2 = 1)) \\
&- \delta(\xi_1 = 1) \times i - \delta(\xi_2 = 1) \times (i - \delta(\mu_2 = 1)).
\end{align*}
\]

By (3.4), \(\mu_i \xi_i = 0 \) \((i = 1, 2)\) and hence we can conclude that

\[
C^\lambda_{s_0 \mu, s_0 \xi} - C^\lambda_{\mu, \xi} = -\delta(\xi_1 = 1) + \delta(\xi_2 = 1) \times i + \delta(\mu_1 = 1) + \delta(\mu_2 = 1) \times j.
\]

Thus we have

\[
\begin{align*}
\lambda &= (-q)^j \\
\mu &= (-q)^{-i}.
\end{align*}
\]

\[
\square
\]

Proposition 3.3. Let \(g = A^{(2)}_{2n} \) \((n \geq 2)\). Then the \(x, y \) in (3.6) are given as follows:

\[
\begin{align*}
\lambda &= (-q)^j \\
\mu &= (-q)^{-i}.
\end{align*}
\]

Proof. The Dynkin diagram of \(A^{(2)}_{2n} \) is given as follows:

\[
\begin{array}{c}
\varepsilon_1 - \varepsilon_2 \\
\varepsilon_3 \\
\varepsilon_{n-1} - \varepsilon_n \\
\varepsilon_n
\end{array}
\]

It suffices to consider \(\lambda \in W_0 \cdot \varpi_{i+j} \) such that \(\langle h_0, \lambda \rangle < 0 \) and hence \(\lambda_1 = 1 \). Then we have

\[
S_0 \cdot v_\lambda = v_{s_0 \lambda} = e^{(2)}_0 v_\lambda = C^\lambda_{\mu, \xi} \cdot x^{\delta(\mu_1=1)} y^{\delta(\xi_1=1)} v_{s_0 \mu} \otimes v_{s_0 \xi}.
\]
Here $s_0(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) = s_0(-\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$. Thus
\[
C_{s_0, s_0 \mu, s_0 \xi}^{\delta(\mu_1 = 1) y^{\delta(\xi_1 = 1)}} = x^\delta(\mu_1 = 1) y^{\delta(\xi_1 = 1)} C_{\mu, \xi}^\lambda.
\]
On the other hand, by (3.5),
\[
C_{s_0 \mu, s_0 \xi}^{\delta(\mu_1 = 1) \# \{ b > 1 \mid \xi_b \neq 0 \}} = (-q)^{\delta(\mu_1 = 1) \# \{ b > 1 \mid \mu_b \neq 0 \}} C_{\mu, \xi}^\lambda.
\]
Thus we can conclude that
\[
x = (-q)^j \quad \text{and} \quad y = (-q)^{-i}.
\]

Proposition 3.4. Let $g = D_{n+1}^{(2)}$. Then the x, y in (3.6) are given as follows:
\[
x = (-q^2)^{j/2} \quad \text{and} \quad y = (-q^2)^{-i/2}.
\]

Proof. The Dynkin diagram of $D_{n+1}^{(2)}$ is given as follows:
\[
\begin{array}{c}
\varepsilon_1 \quad \varepsilon_2 \quad \cdots \quad \varepsilon_{n-1} \quad \varepsilon_n \\
0 \quad 1 \quad \cdots \quad n-1 \quad n
\end{array}
\]
It suffices to consider $\lambda \in W_0 \cdot \varpi_{i+j}$ such that $\langle h_0, \lambda \rangle < 0$. Thus we assume that $\lambda_1 = 1$. Note that $q_1 = q^2$. Then we have
\[
S_0 \cdot v_{\lambda} = v_{\lambda} = e_0^{(2)} v_{\lambda} = \sum C_{\mu, \xi}^{\lambda} x^{2\delta(\mu_1 = 1)} y^{2\delta(\xi_1 = 1)} v_{s_0 \mu} \otimes v_{s_0 \xi}.
\]
Here $s_0(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n) = s_0(-\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$. Thus
\[
C_{s_0, s_0 \mu, s_0 \xi}^{\delta(\mu_1 = 1) y^{\delta(\xi_1 = 1)}} = x^{2\delta(\mu_1 = 1)} y^{2\delta(\xi_1 = 1)} C_{\mu, \xi}^\lambda.
\]
On the other hand, by (3.5),
\[
C_{s_0 \mu, s_0 \xi}^{\delta(\mu_1 = 1) \# \{ b > 1 \mid \xi_b \neq 0 \}} = (-q)^{\delta(\mu_1 = 1) \# \{ b > 1 \mid \mu_b \neq 0 \}} C_{\mu, \xi}^\lambda.
\]
Thus we can conclude that
\[
x^2 = (-q^2)^{j} \quad \text{and} \quad y^2 = (-q^2)^{-i},
\]
which yield our assertion.

Theorem 3.5. For $i + j = k \leq n - \vartheta$, there exists a surjective $U_q'(g)$-module homomorphism
\[
p_{i,j}: V(\varpi_i)(-q^2)^{j-\vartheta} \otimes V(\varpi_j)(-q^2)^{i-\vartheta} \rightarrow V(\varpi_k).
\]
By taking dual, there exists an injective $U_q'(g)$-module homomorphism
\[
\iota_{i,j}: V(\varpi_k) \rightarrow V(\varpi_i)(-q^2)^{j-\vartheta} \otimes V(\varpi_j)(-q^2)^{-i-\vartheta}.
\]

Proof. The proof immediately comes from the previous propositions.
3.2. \(i = j = n, \ k < n \) for \(g = D_{n+1}^{(2)} \). In this subsection, we fix \(g = D_{n+1}^{(2)} \). Recall that there exists an injective \(U_q(B_n) \)-module homomorphism (see. [12, Chapter 8])

\[
V_0(\varpi_i) \rightarrow V_0(\varpi_n) \otimes V_0(\varpi_n)
\]
given by

\[
u_\lambda \longmapsto v_\lambda = \sum_{\lambda = \mu + \xi} C_{\mu, \xi}^\lambda u_\mu \otimes u_\xi
\]

where \(\lambda \in W_0 \cdot \varpi_i \) and \(\mu, \xi \in W_0 \cdot \varpi_n \).

We sometimes write \(\mu \in \text{wt}(V_0(\varpi_n)) \) as a sequence \((\mu_1, \ldots, \mu_n) \in \{+,-\}^n \) such that

\[
\mu = \sum_{k=1}^n \frac{\mu_k}{2} \epsilon_k.
\]

Proposition 3.6. Set

\[
1c_{\mu, \xi}^\lambda = \# \{(a, b) \mid a < b, \ (\mu_a, \xi_a) = (-, +), \ (\mu_b, \xi_b) = (+, -)\},
\]

\[
2c_{\mu, \xi}^\lambda = \# \{a \mid (\mu_a, \xi_a) = (-, +)\},
\]

\[
\varphi(c) = (-q)^c(-q^2)^{\frac{k-1}{2}}.
\]

Then \(C_{\mu, \xi}^\lambda \) in (3.9) is given as follows:

\[
C_{\mu, \xi}^\lambda = (-q^2)^{1c_{\mu, \xi}^\lambda} \varphi(2c_{\mu, \xi}^\lambda).
\]

Proof. As in Proposition 3.1, one can check that \(C_{s_k \mu, s_k \xi}^{s_k \lambda} = C_{\mu, \xi}^\lambda \) whenever \((h_k, \lambda) \neq 0 \). Thus we can assume that \(\lambda = \varpi_i \). If \(k \leq i \), then \(e_k u_\lambda = 0 \), trivially. Thus, for \(k > i \), we have

\[
0 = e_k v_\lambda = \begin{cases}
\sum_{(\mu_k, \mu_{k+1}) = (+, -)} C_{\mu, \xi}^\lambda (q^2)^{-1} u_{s_k \mu} \otimes u_\xi \\
+ \sum_{(\mu_k, \mu_{k+1}) = (+, -)} C_{\mu, \xi}^\lambda u_\mu \otimes u_{s_k \xi} & \text{if } i < k < n,
\sum_{(\mu_n, \xi_n) = (-, +)} C_{\mu, \xi}^\lambda q^{-1} u_{s_n \mu} \otimes u_\xi \\
+ \sum_{(\mu_n, \xi_n) = (+, -)} u_\mu \otimes u_{s_n \xi} & \text{if } k = n.
\end{cases}
\]

Thus we have

\[
C_{\mu, \xi}^\lambda = \begin{cases}
-q^2 C_{s_k \mu, s_k \xi}^{s_k \lambda} & \text{if } i < k < n \text{ and } (\mu_k, \xi_k) = (-, +),
(-q)^{-1} C_{s_n \mu, s_n \xi}^{s_n \lambda} & \text{if } k = n \text{ and } \mu_n = +.
\end{cases}
\]

On the other hand, for \(i < k < n \) and \((\mu_k, \xi_k) = (-, +) \), we have

\[
1c_{\mu, \xi}^\lambda = \begin{cases}
1c_{s_k \mu, s_k \xi}^{s_k \lambda} - 1 & \text{if } i < k < n \text{ and } (\mu_k, \xi_k) = (-, +),
1c_{\mu, \xi}^\lambda = 1c_{s_k \mu, s_k \xi}^{s_k \lambda} + 2c_{\mu, \xi}^\lambda & \text{if } k = n \text{ and } \mu_n = +,
\end{cases}
\]

\[
2c_{\mu, \xi}^\lambda = \begin{cases}
2c_{s_k \mu, s_k \xi}^{s_k \lambda} & \text{if } i < k < n \text{ and } (\mu_k, \xi_k) = (-, +),
2c_{\mu, \xi}^\lambda = 2c_{s_k \mu, s_k \xi}^{s_k \lambda} - 1 & \text{if } k = n \text{ and } \mu_n = +.
\end{cases}
\]

which yield our assertion. \(\square \)

Theorem 3.7. For \(k \leq n - 1 \), there exists a surjective \(U_q'(D_{n+1}^{(2)}) \)-module homomorphism

\[
p_{n,k} : V(\varpi_n) \oplus \sqrt{-1}(-q^2)^{\frac{n-k}{2}} V(\varpi_n) \rightarrow V(\varpi_k).
\]
By taking dual, there exists an injective $U_q'(D_{n+1}^{(2)})$-module homomorphism

$$\iota_{n,k}: V(\varpi_k) \rightarrow V(\varpi_n) \pm \sqrt{-1} (-q^2)^{\frac{a_{n-k}}{2}} \otimes V(\varpi_n) \pm \sqrt{-1} (-q^2)^{-\frac{a_{n-k}}{2}}. \tag{3.12}$$

Proof. We apply the same strategy of (3.11) i.e., we determine the x and y in (3.6). As in Proposition 3.4, we first consider $\lambda \in W_0 \cdot \varpi_k$ with $\lambda_1 = 1$ and hence $\mu_1 = \xi_1 = +$. In this case, we have

$$S_0 \cdot v_\lambda = u_{s_0 \lambda} = e_0^{(2)} v_\lambda = \sum C_{x,y}^\lambda u_{s_0 \mu} \otimes u_{s_0 \xi}.$$

On the other hand

$$1 c_{x,y}^\lambda = 1 c_{s_0 \mu, s_0 \xi}^\lambda, \quad 2 c_{x,y}^\lambda = 2 c_{s_0 \mu, s_0 \xi}^\lambda,$$

Thus we conclude that

$$xy = 1.$$

Consider $\lambda \in W_0 \cdot \varpi_i$ with $\langle h_0, \lambda \rangle = 0$. Equivalently $\lambda_1 = 0$ and hence $-\mu_1 = \xi_1$. In this case,

$$0 = e_0 v_\lambda = \sum_{(\mu_1, \xi_1) = (+,-)} C_{x,y}^\lambda q^{-1} x u_{s_0 \mu} \otimes u_{s_0 \xi} + \sum_{(\mu_1, \xi_1) = (-,+)} C_{x,y}^\lambda u_{s_0 \mu} \otimes u_{s_0 \xi}.$$

Thus, for $\mu_1 = +$, we have

$$C_{s_0 \mu, s_0 \xi}^\lambda = C_{x,y}^\lambda (-q)^{-1} x = C_{x,y}^\lambda (-q)^{-1} x^2.$$

On the other hand,

$$1 c_{s_0 \mu, s_0 \xi}^\lambda = 1 c_{x,y}^\lambda + \# \{b \mid (\mu_b, \xi_b) = (+,-) \} \quad \text{and} \quad 2 c_{s_0 \mu, s_0 \xi}^\lambda = 2 c_{x,y}^\lambda + 1.$$

Thus we have

$$x^2 = (-q^2)^{n-k},$$

which yields our assertion. \hfill \Box

3.3. $j = 1$ and $i = k = n$ for $\mathfrak{g} = A_{2n}^{(2)}$

In this subsection, we show that there exists a surjective $U_q'(A_{2n}^{(2)})$-homomorphism

$$V(\varpi_n)_{(-q)^{-1}} \otimes V(\varpi_1)_{(-q)^n} \rightarrow V(\varpi_n). \tag{3.13}$$

Indeed, we do not use (3.13) in this paper. However, for the forthcoming works, we present the existence of such a homomorphism.

Similar to the previous subsections, we determine the relations among a, b and c such that

$$V(\varpi_n)_a \rightarrow V(\varpi_1)_b \otimes V(\varpi_n)_c. \tag{3.14}$$

Recall that for $k \in I_0$ (see [28 Table 1]),

$$V(\varpi_k) \simeq \bigoplus_{j=0}^k V_0(\varpi_j)$$

as a $U_q(C_n)$-module.

Here $V_0(\varpi_0)$ is the trivial $U_q(\mathfrak{g})$-module \mathbf{k}. Thus

$$V_0(\varpi_n)^{\otimes 2} \rightarrow V(\varpi_1) \otimes V(\varpi_n)$$

as a $U_q(C_n)$-module.

The crystal graph of $V(\varpi_1)$ is given by (see [12 Example 11.1.4])

$$\begin{array}{cccccccccc}
0 & 1 & 2 & 2 & \ldots & n-2 & n-1 & n \\
\begin{array}{cccccccccc}
0 & 1 & 2 & 2 & \ldots & n-2 & n-1 & n \\
\end{array}
\end{array}$$
We denote by
\[
\mathbf{u}
\]
the dominant integral weight vector of \(V(\varpi_n)\) with its weight \(\varpi_n = \sum_{i \in I_0} \epsilon_i\).

For \(i_1, \ldots, i_k, j_1, \ldots, j_l \in I_0\), we set \(u[i_1, \ldots, i_k, j_1, \ldots, j_l]\) the vector in \(V_0(\varpi_{n-l})\) with its weight given by
\[
\text{wt}(u[i_1, \ldots, i_k, j_1, \ldots, j_l]) = \text{wt}(u) - \sum_{s=1}^k 2\epsilon_{i_s} - \sum_{t=1}^l \epsilon_{j_t},
\]
if such a weight vector exists in \(V_0(\varpi_{n-l})\).

The map \((3.14)\), if it exists, sends \(u\) to the following vector, say \(v\):
\[
u \mapsto v = v_0 \otimes u + (-q^{-1}c) \left(\sum_{k=1}^n (-q)^{-1} v_k \otimes u[\hat{k}] \right),
\]
which is unique (up to constant) in the sense that it satisfies \(e_i v = 0\) for \(i \in I_0\), and \(f_0 u = 0\).

In \(V(\varpi_n)\), we have
\[
(3.15) \quad S_0 \cdot u = a S_w \cdot u \quad \text{where} \quad S_w = S_1 S_2 \cdots S_n \quad \text{for} \quad w = s_1 s_2 \cdots s_n \in W_0.
\]

On the other hand,
\[
S_0 \cdot v = e_0^{(2)} v = c v_1 \otimes u[1] - q c v_0 \otimes u[\hat{1}] - q b^{-1} c \sum_{k \neq 1} (-q)^{k-1} v_k \otimes u[\hat{1}, \hat{k}],
\]
\[
S_w \cdot v = f_1^{(2)} f_2^{(2)} \cdots f_{n-1}^{(2)} f_n v = v_0 \otimes u[\hat{1}] + (-q^{-1}c) \left(\sum_{k \neq n} (-q)^{k-1} v_{k+1} \otimes u[\hat{1}, \hat{k}+1] \right)
\]
\[
+ (-q^{-1}c)(-q)^{n-1} v_0 \otimes u[\hat{1}],
\]
where \(d\) is an element in \(k^\times\) such that
\[
(3.16) \quad e_0^{(2)} u[\hat{k}] = d \times u[\hat{1}, \hat{k}] \quad \text{for} \quad k \neq 1 \quad \text{in} \quad V(\varpi_n).c
\]

By \((3.15)\), we can conclude that
\[
(3.17) \quad a = -q c, \quad b = a(-q)^n, \quad d = c.
\]

Now, it suffices to show that \(d = c = 1\).

Proposition 3.8. For \(1 \neq k \in I_0\), the coefficient \(d\) in \((3.16)\) must be equal to 1; i.e.,
\[
e_0^{(2)} u[\hat{k}] = u[\hat{1}, \hat{k}] \quad \text{in} \quad V(\varpi_n).c.
\]

Proof. By Definition \([3.1]\) (3), we have
\[
f_1 e_0 u[2] = e_0 f_1 u[2] = e_0 u[1] = [2]_0 u[\hat{1}].
\]

Thus
\[
e_1 e_0 u[2] = [2]_0 e_1^{(2)} u[\hat{1}] = [2]_0 u[\hat{2}].
\]

From the actions \(e_i\) \((i \in I)\) on \(V(\varpi_n).c\), we have
\[
e_0 e_1 e_0^{(2)} u[\hat{2}] = c e_0 e_1 u[\hat{1}, \hat{2}] = c e_0 u[\hat{2}, \hat{1}] = c [2]_0 u[\hat{1}, \hat{2}].
\]
Since all vectors in $V(\varpi_n)$ are annihilated by the action $e_0^{(3)}$, the relation in Definition 1.1 (4) implies that

\[(3.19) \quad e_0 e_1^{(2)} u[2] = (e_1^{(2)} + e_0^{(2)} e_1 - e_0^{(3)} e_1) u[2] = e_0^{(2)} e_1 e_0 u[2] = [2]_0 e_0^{(2)} u[2] = [2]_0 u[1, 2].\]

From (3.17), (3.18) and (3.19), we can conclude that $d = c = 1$.

Now, we have the following theorem.

Theorem 3.9. There exists a surjective $U'_q(A^{(2)}_{2n})$-module homomorphism

\[(3.20) \quad p_{1,n} : V(\varpi_n)_{(-q)^{-1}} \otimes V(\varpi_1)_{(-q)^n} \twoheadrightarrow V(\varpi_n).\]

By taking dual, there exists an injective $U'_q(A^{(2)}_{2n})$-module homomorphism

\[(3.21) \quad \iota_{1,n} : V(\varpi_n) \rightarrow V(\varpi_1)_{(-q)^n} \otimes V(\varpi_n)_{(-q)^{-1}}.\]

3.4. $D^{(2)}_{n+1}$-analogue of the surjective homomorphisms given in [19] (A.17)]. This subsection is devoted to proving the following lemma.

Lemma 3.10. Let $\eta, \eta' \in \{\sqrt{-1}, -\sqrt{-1}\}$ and $1 \leq k, l \leq n - 1$ such that $k + l = n$. Then there exists a surjective $U'_q(D^{(2)}_{n+1})$-module homomorphism

\[V(\varpi_k)^{\eta(-q^2)^{-\frac{1}{2}}} \otimes V(\varpi_l)^{\eta'(-q^2)^{\frac{1}{2}}} \twoheadrightarrow V(\varpi_n)_{(-q)^{n-k-l}} \otimes V(\varpi_n).\]

Proof. Note that $\eta/\eta' = \pm 1$. By Theorem 3.7 there are two injective $U'_q(D^{(2)}_{n+1})$-homomorphisms

\[\psi_1 : V(\varpi_k)^{\eta(-q^2)^{-\frac{1}{2}}} \rightarrow V(\varpi_n)_{(-q^2)^{-n-k-l}},\]

\[\psi_2 : V(\varpi_l)^{\eta'(-q^2)^{\frac{1}{2}}} \rightarrow V(\varpi_n)_{(-q^2)^{n-k-l}} \otimes V(\varpi_n),\]

by taking dual. Then we can obtain $\varphi = (\text{id}_{V(\varpi_n)_{(-q)^{-1}}} \otimes \text{tr} \otimes \text{id}_{V(\varpi_n)_{-1}}) \circ (\psi_1 \otimes \psi_2)$,

\[\varphi : V(\varpi_k)^{\eta(-q^2)^{-\frac{1}{2}}} \otimes V(\varpi_l)^{\eta'(-q^2)^{\frac{1}{2}}} \rightarrow V(\varpi_n)_{(-q^2)^{-n-k-l}} \otimes V(\varpi_n),\]

since $V(\varpi_n)_{(-q^2)^{-n-k-l}}$ and $V(\varpi_n)_{(-q^2)^{n-k-l}}$ are dual to each other.

Applying the argument of [19] Lemma A.3.2], we have

\[\varphi(v \otimes w) \equiv \text{tr}(u_{-\varpi_n} \otimes u_{\varpi_n}) v_1 \otimes w_1 \mod \bigoplus_{\lambda \neq -\varpi_k + \varpi_n} \left(V(\varpi_n)_{(-q^2)^{-\frac{1}{2}}} \otimes V(\varpi_n)_{-\varpi_k + \varpi_l - \lambda}\right),\]

where

- v is the $U_q(B_n)$-lowest weight vector of $V(\varpi_k)^{\eta(-q^2)^{-\frac{1}{2}}}$ of weight $-\varpi_k$,
- w is the $U_q(B_n)$-highest weight vector of $V(\varpi_l)^{\eta'(-q^2)^{\frac{1}{2}}}$ of weight ϖ_l,
- v_1 is a non-zero vector of $V(\varpi_n)_{(-q^2)^{-1}}$ of weight $-\varpi_k + \varpi_n$,
- w_1 is a non-zero vector of $V(\varpi_n)$ of weight $\varpi_l - \varpi_n$.

Thus φ is non-zero. Then our assertion follows from the fact that $V(\varpi_n)_{(-q^2)^{-1}} \otimes V(\varpi_n)$ is irreducible. \square
4. The computation of denominators between fundamental representations

For simplicity, we write $R^\text{norm}_{k,l}$ for $R^\text{norm}_{V(\varpi_k), V(\varpi_l)}$ in (1.4), $d_{k,l}$ for $d_{V(\varpi_k), V(\varpi_l)}$ in (1.6) and $a_{k,l}$ for $a_{V(\varpi_k), V(\varpi_l)}$ in (1.5).

By the result of [1, Appendix A] and [2], the denominator $d_{k,l}(z)$ and the element $a_{k,l}(z) \in \mathfrak{k}(z)$ are symmetric with respect to the indices k and l; that is,
\begin{equation}
 d_{k,l}(z) = d_{l,k}(z) \quad \text{and} \quad a_{k,l}(z) = a_{l,k}(z).
\end{equation}

4.1. General framework. In this subsection, we propose the strategy for computing $d_{k,l}(z)$, which is originated from [19, Appendix A].

Note that we have a surjective homomorphism
\begin{equation}
p_{l-1,1}: V(\varpi_{l-1})(-q^t)^{-1/t} \otimes V(\varpi_1)(-q^t)^{-1/t} \to V(\varpi_l) \quad \text{if } l \leq n - d,
\end{equation}
by the previous section.

Assumption 4.1. Assume the followings:

(A) We know $a_{k,l'}(z)$ for $k \in I_0$ and $l' \leq l - 1$.

(B) We know $d_{1,1}(z)$ for all g, and $d_{1,n}(z)$ for $g = B^{(1)}_n$ or $g = D^{(2)}_{n+1}$.

With these assumptions and (1.3), consider the following commutative diagram:
\begin{equation}
\begin{array}{c}
V(\varpi_k) \otimes V(\varpi_{l-1})(-q^t)^{-1/t} \otimes V(\varpi_1)(-q^t)^{-1/t} \otimes V(\varpi_k) \otimes V(\varpi_l)
\\
\downarrow R_{k,l-1}^{\text{inv}}((q^t)^{-1/t}) \otimes V(\varpi_1)(-q^t)^{-1/t}
\\
V(\varpi_{l-1})(-q^t)^{-1/t} \otimes V(\varpi_k) \otimes V(\varpi_1)(-q^t)^{-1/t}
\\
\downarrow V(\varpi_{l-1})(-q^t)^{-1/t} \otimes V(\varpi_k)(-q^t)^{-1/t} \otimes V(\varpi_k)
\\
\downarrow V(\varpi_{l-1})(-q^t)^{-1/t} \otimes V(\varpi_1)(-q^t)^{-1/t} \otimes V(\varpi_k) \otimes V(\varpi_k)
\\
\end{array}
\end{equation}

Then we have
\begin{equation}
v[1,\ldots,k] \otimes v[1,\ldots,l-1] \otimes v_l \quad \text{and} \quad a_{k,l-1}((q^t)^{-1/t})v[1,\ldots,l-1] \otimes v[1,\ldots,k] \otimes v_l
\end{equation}
\begin{equation}
a_{k,l-1}((q^t)^{-1/t})v[1,\ldots,l-1] \otimes v[1,\ldots,k] \otimes v_l
\end{equation}
\begin{equation}
a_{k,l-1}((q^t)^{-1/t})v[1,\ldots,l-1] \otimes v[1,\ldots,k] \otimes v_l
\end{equation}
\begin{equation}
a_{k,l-1}((q^t)^{-1/t})v[1,\ldots,l-1] \otimes w \quad \text{and} \quad a_{k,l}(z)v[1,\ldots,l-1] \otimes v[1,\ldots,k],
\end{equation}
where
- $v[1,\ldots,a]$ is the dominant extremal weight vector of $V(\varpi_a)$ for $a \in I_0$,
- $w = R^\text{norm}_{k,1}((q^t)^{-1/t})(v[1,\ldots,k] \otimes v_l)$.

By observing the vector w, we can get an equation explaining the relationship between
\begin{equation}
a_{k,l-1}(-q^{-1}z)a_{k,1}((-q)^{-1/z}) \quad \text{and} \quad a_{k,l}(z).
\end{equation}

By Assumption 4.1 (A), we can compute $a_{k,l}(z)$ by using an induction.
After getting \(a_{k,l}(z) \), we use the formulas in Lemma 4.3 by applying two surjective homomorphisms in Section 3.

\[
\begin{align*}
 p_{k-1,1} : V(\varpi_{k-1})(-q^i)^{-1/t} \otimes V(\varpi_1)(-q^j)^{k-1/t} & \to V(\varpi_k), \\
p_{k-1,1}^* : V(\varpi_k)(-q^i)^{-1/t} \otimes V(\varpi_1)(-q^j)^{k-1/t} & \to V(\varpi_{k-1}),
\end{align*}
\]

and setting \(W = V(\varpi_l) \) or \(V(\varpi_n) \), to get two elements in \(k[z^\pm 1] \) which are described in terms of \(d_{k,l}(z) \)'s and \(a_{k,l}(z) \)'s. Here (4.6) is the composition of \(U'_q(\mathfrak{g}) \)-homomorphisms given as follows:

\[
V(\varpi_k)(-q^i)^{-1/t} \otimes V(\varpi_1)(-q^j)^{k-1/t} \to V(\varpi_k) \otimes V(\varpi_1)(-q^j)^{k-1/t} \\
\to V(\varpi_{k-1}) \otimes k \simeq V(\varpi_{k-1}).
\]

Since we know the forms of \(a_{k,l}(z) \)'s, two elements in \(k[z^\pm 1] \) can be described in terms of \(d_{k,l}(z) \)'s and polynomials in \(k[z] \) (up to constant multiple of \(k[z^\pm 1]^\times \)).

By the assumptions, we know \(d_{1,1}(z) \), \(d_{1,n}(z) \) and hence we can compute \(d_{k,l}(z) \) and \(d_{k,n}(z) \), by manipulating the two elements in \(k[z^\pm 1] \) and using inductions.

The denominator \(d_{1,1}(z) \) of \(R_{1,1}^{\text{norm}}(z) : V(\varpi_1) \otimes V(\varpi_1)_z \to V(\varpi_1)_z \otimes V(\varpi_1) \) are computed in [17] (see also [13] for \(g = A_2(2) \)) as follows:

\[
d_{1,1}(z) = (z^t - (q^2)^t)(z^t - (p^*)^t).
\]

The denominator \(d_{1,n}(z) \) of \(R_{1,n}^{\text{norm}}(z) : V(\varpi_1) \otimes V(\varpi_n)_z \to V(\varpi_n)_z \otimes V(\varpi_1) \) for \(g = B_n(1) \) is computed in [17] as follows:

\[
d_{1,n}(z) = d_{n,1}(z) = z - (1)^{n+1}q^2n+1.
\]

Considering Assumption 4.11, the only missing part is the denominator \(d_{1,n}(z) \) for \(g = D_{n+1}^{(2)} \).

4.2. The denominator \(d_{1,n}(z) \) for \(g = D_{n+1}^{(2)} \). To compute the denominator \(d_{1,n}(z) \) for \(g = D_{n+1}^{(2)} \), we follow the notations and arguments given in [17] Section 4.

By the \(U'_q(D_{n+1}^{(2)}) \)-module structure of \(V(\varpi_1) \) and \(V(\varpi_n) \) in Section 2 we have

\[
V(\varpi_1) \simeq V_0(\varpi_1) \oplus V_0(0) \quad \text{and} \quad V(\varpi_n) \simeq V_0(\varpi_n) \quad \text{as} \quad U_q(B_n)\text{-modules}.
\]

Here \(V_0(\varpi_n) \) (resp. \(V_0(0) \)) is the highest \(U_q(B_n) \)-module with the highest weight \(\varpi_n \) (resp. 0). Thus we have

\[
V(\varpi_n) \otimes V(\varpi_1) \simeq V_0(\lambda) \oplus V_0(\varpi_n)^{\otimes 2} \quad \text{as} \quad U_q(B_n)\text{-module},
\]

where \(\lambda = (\begin{smallmatrix} 1 & 2 & \ldots & n \\ \frac{1}{2} & \frac{1}{2} & \ldots & \frac{1}{2} \end{smallmatrix}) \). Let

\[
m^+_n = (+, \ldots, +) \quad \text{and} \quad m^i = (+, \ldots, +, -^i, +, \ldots, +) \quad (1 \leq i \leq n)
\]

be the elements in \(V(\varpi_n) \). Then we have the following lemmas by the direct calculation:

Lemma 4.2. Let \(u_\lambda, u_{\varpi_n}^1 \) and \(u_{\varpi_n}^2 \) be the \(U_q(B_n) \)-highest weight vectors with the weight \(\lambda, \varpi_n \) and \(\varpi_n \) in \(V(\varpi_n)_x \otimes V(\varpi_1)_y \) respectively. Then we have

(a) \(u_\lambda = (m^+_n) \otimes v_1 \),
(b) \(u_{\varpi_n}^1 = [2]_0^{-1}(m^+_n) \otimes v_0 \),
(c) \(u_{\varpi_n}^2 = \sum_{k=1}^{n-1}(-1)^kq^{2k}(m^{n+1-k}) \otimes v_{n+1-k} + [2]_n^{-1}(m^+_n) \otimes v_0 \).

Lemma 4.3. Let \(\bar{u}_\lambda, \bar{u}_{\varpi_n}^1 \) and \(\bar{u}_{\varpi_n}^2 \) be the \(U_q(B_n) \)-highest weight vectors with the weight \(\lambda, \varpi_n \) and \(\varpi_n \) in \(V(\varpi_1)_y \otimes V(\varpi_n)_x \) respectively. Then we have
Lemma 4.6. \(\tilde{u}_\lambda = (1) \otimes (m^+_n) \),
(b) \(\tilde{u}^i_{\omega_n} = \sum_{k=1}^{n} (-1)^{n+1-k} q^{-2(n+1-k)} v_k \otimes (m^k) + q^{-1}[2]_{1} v_0 \otimes (m^+_n) \).
(c) \(u^2_{\omega_n} = \sum_{k=1}^{n} (-1)^{n-1-k} q^{-2(n-1-k)} v_k ^{-1} \).

Hence \(R^{\text{norm}}_{1,n} : V(\omega_1)_y \otimes V(\omega_n)_x \rightarrow V(\omega_n)_x \otimes V(\omega_1)_y \) can be expressed by
\[R^{\text{norm}}_{1,n}(\tilde{u}_\lambda) = u_\lambda \quad \text{and} \quad R^{\text{norm}}_{1,n}(\tilde{u}^i_{\omega_n}) = \sum_{j=1}^{2} a^{\omega_n}_{ij} u^i_{\omega_n}. \]

The following lemmas can be obtained by direct calculations.

Lemma 4.4. For the highest weight vectors defined in Lemma 4.2, we have
(a) \(f_0(u^1_{\omega_n}) = x^{-1} y^{-1} (q^{-1} x) u_\lambda \),
(b) \(f_0(u^2_{\omega_n}) = x^{-1} y^{-1} ((-1)^{n} q^{2 n-2} y) u_\lambda \),
(c) \(e_1 \cdot e_{n-1} e_n^{(2)} e_{n-1} \cdot e_2 e_1 e_0(u^1_{\omega_n}) = (y) u_\lambda \),
(d) \(e_1 \cdot e_{n-1} e_n^{(2)} e_{n-1} \cdot e_2 e_1 e_0(u^2_{\omega_n}) = (q^{-1} x) u_\lambda \),
in \(V(\omega_n)_x \otimes V(\omega_1)_y \).

Lemma 4.5. For the highest weight vectors defined in Lemma 4.3, we have
(a) \(f_0(u^1_{\omega_n}) = x^{-1} y^{-1} (x) \tilde{u}_\lambda \),
(b) \(f_0(u^2_{\omega_n}) = x^{-1} y^{-1} ((-1)^{n} q^{2 n-2} y) \tilde{u}_\lambda \),
(c) \(e_1 \cdot e_{n-1} e_n^{(2)} e_{n-1} \cdot e_2 e_1 e_0(u^1_{\omega_n}) = (q^{-1} y) \tilde{u}_\lambda \),
(d) \(e_1 \cdot e_{n-1} e_n^{(2)} e_{n-1} \cdot e_2 e_1 e_0(u^2_{\omega_n}) = (q^{-1} x) \tilde{u}_\lambda \),
in \(V(\omega_1)_y \otimes V(\omega_n)_x \).

From these lemmas, we obtain
\[
\begin{pmatrix}
q^{-1} y^{-1} & (-1)^{n} q^{2 n-1} x^{-1} \\
(y^{-1} q^{-1} y) & q^{-1} x
\end{pmatrix} (a^{\omega_n}_{ij}) = \begin{pmatrix}
y^{-1} & (-1)^{n} q^{-2 n-2} x^{-1} \\
q^{-1} x & q^{-1} x
\end{pmatrix},
\]
and hence
\[
(a^{\omega_n}_{ij}) = \frac{1}{z^2 + (-q^2)^{n+1}} \begin{pmatrix}
z q^2 - (-1)^{n} q^{2 n+1} & (-1)^{n} (q^{-2 n-1} - q^{2 n+1}) \\
1 - q^2 & z^2 - (-1)^{n} q^{-2 n}
\end{pmatrix},
\]
where \(z = x y^{-1}. \)

Hence we can conclude that
\[
d_{1,n}(z) = d_{n,1}(z) = z^2 + (-q^2)^{n+1} \quad \text{for} \ g = D^{(2)}_{n+1}.
\]

4.3. Denominators between fundamental representations. Write
\[
d_{k,l}(z) = \prod_{\nu}(z - x_\nu).
\]

For rational functions \(f, g \in k(z) \), we write \(f \equiv g \) if there exists an element \(a \in k[z^{\pm 1}] \) such that \(f = ag. \)

Lemma 4.6. For \(k, l \in I_0 \), we have
\[
ak_{k,l}(z) a_{k,l}(p^*)^{-1} z \equiv \frac{d_{k,l}(z)}{d_{k,l}(p^* z^{-1})},
\]
\[
ak_{k,l}(z) = q^{(\omega_k, \omega_l)} \prod_{\nu}(p^* x_\nu z; p^* z^{-1} z; p^2 z; p^2)_{\infty},
\]
\[
+ (x_\nu z; p^2)_{\infty}(p^2 x_\nu z^{-1} z; p^* z; p^2)_{\infty},
\]
where \((z;q)_\infty = \prod_{n=0}^{\infty}(1 - q^n z)\).

Now we list a table for triple \((\delta,c,p^*)\) for each \(g\):

\(g\)	\(\delta\)	\(c\)	\(p^*\)
\(A^{(2)}_{2n-1}\)	\(\alpha_0 + \alpha_1 + 2(\alpha_2 + \cdots + \alpha_{n-1}) + \alpha_n\)	\(h_0 + h_1 + 2(2h_2 + \cdots + h_n)\)	\(-(-q)^{2n}\)
\(A^{(2)}_{2n}\)	\(2(\alpha_0 + \cdots + \alpha_{n-1}) + \alpha_n\)	\(h_0 + 2(h_1 + \cdots + h_n)\)	\(-(-q)^{2n+1}\)
\(B_{n+1}^{(1)}\)	\(\alpha_0 + \alpha_1 + 2(\alpha_2 + \cdots + \alpha_n)\)	\(h_0 + h_1 + 2(2h_2 + \cdots + h_{n-1}) + h_n\)	\(-(-q)^{2n-1}\)
\(D^{(2)}_{n+1}\)	\(\alpha_0 + \alpha_1 + \cdots + \alpha_n\)	\(h_0 + 2(h_1 + \cdots + h_{n-1}) + h_n\)	\(-(-q)^n\)

Table 1. \((\delta,c,p^*)\) for each affine type

By Lemma 4.6 and (4.7), we can compute \(a_{1,1}(z)\) for all \(g\) as follows:

\[
a_{1,1}(z) = \begin{cases}
q^{(2n+2)/2n-2} [4n][0] & \text{if } g = A^{(2)}_{2n-1}, \\
q^{(2n+3)/2n-1} [4n+2][0] & \text{if } g = A^{(2)}_{2n}, \\
q^{(2n+3)/2n-1} [4n+2][0] & \text{if } g = B_{n+1}^{(1)}, \\
q^{(2n+3)/2n-1} [4n+2][0] & \text{if } g = D^{(2)}_{n+1}, \\
q^{(n+1)n} / \{1\{2n-1\}} & \text{if } g = D^{(2)}_{n+1}, \\
\end{cases}
\]

(4.11)

where, for \(a \in \mathbb{Z}\) and \(b \in \frac{1}{2} \mathbb{Z}\),

\[a = ((-q)^a z; p^{*2})_\infty, \quad \langle a \rangle = (-(q)^a z; p^{*2})_\infty\] and \(\{b\} = ((-q)^b z; p^{*2})_\infty \times (-(q)^b z; p^{*2})_\infty\).

Note that, for \(a \in \mathbb{Z}\) and \(b \in \frac{1}{2} \mathbb{Z}\), we have

\[
[a]/[a + 4n] \equiv z - (-q)^{-a} \quad \text{and} \quad \langle a \rangle / (a + 4n) \equiv z + (-q)^{-a} \quad \text{if } g = A^{(2)}_{2n-1},
\]

\[
[a]/[a + 4n + 2] \equiv z - (-q)^{-a} \quad \text{if } g = A^{(2)}_{2n},
\]

\[
[a]/[a + 4n - 2] \equiv z - (-q)^{-a} \quad \text{if } g = B_{n+1}^{(1)},
\]

\[
\{b\} / (b + 2n) \equiv z^2 - (-q)^{-2b} \quad \text{if } g = D^{(2)}_{n+1}.
\]

Following [15, 7, (3.12)] and [14, (3.7)], we recall the image of \(v_k \otimes v_l\) \((k \neq l \in I_0)\) under the normalized \(R\)-matrix

\[
R \text{ }^\text{norm}_{1,1}(z) : V(\varpi_1) \otimes V(\varpi_1)_z \rightarrow V(\varpi_1)_z \otimes V(\varpi_1),
\]

which is given by

\[
R \text{ }^\text{norm}_{1,1}(z)(v_k \otimes v_l) = \frac{(1 - (q^2)^t)z^t \times \delta(k \prec l)}{z^t - (q^2)^t}(v_k \otimes v_l) + \frac{q^t(z^t - 1)}{z^t - (q^2)^t}(v_l \otimes v_k).
\]

Here \(\prec\) is the linear order on the labeling set of the basis of \(V(\varpi_1)\) (see [12, Section 8]).
Proposition 4.7. For $1 \leq k, l \leq n - \vartheta$, we have

\[
(4.14) \quad a_{k, l}(z) = \left\{
\begin{array}{ll}
\frac{[k-l][4n-k-l]}{[k+l][4n-k-l]}(2n+k+l)(2n-k-l) & \text{if } g = A_{2n-1}^{(2)}, \\
\frac{[k-l][4n+2-k-l]}{[k+l][4n-k-l]}(2n+k+l)(2n-k-l) & \text{if } g = A_{2n}^{(2)}, \\
\frac{[k-l][4n+1+k+l]}{[k+l][4n-k-l]}(2n+1+k+l)(2n-k-l) & \text{if } g = B_{n+1}^{(2)}, \\
\frac{[k-l][2n+k-l-1]}{[k+l][2n-k-l-1]}(2n+k+l-1)(2n-k-l-1) & \text{if } g = D_{n+1}^{(2)}.
\end{array}
\right.
\]

Proof. We prove only for the case when g is of type $A_{2n-1}^{(2)}$. For the other g, one can apply the same argument to prove our assertion. We first consider when $k = 1$.

By (4.11), our assertion for $k = l = 1$ holds. Applying the commutative diagram (4.3) for $k = 1$, we have

\[
(4.15) \quad a_{1, 1-1}((-q)^{-1}z)a_{1, 1}((-q)^{-1}z)v_{[1, ..., l-1]} \otimes w \mapsto a_{1, l}(z)v_{[1, ..., l-1]} \otimes v_1,
\]
where

\[
w = R_{1, 1}^{\text{norm}}((-q)^{-1}z)v_{1} \otimes v_1 = \frac{q((-q)^{-1}z-1)}{(-q)^{-1}z-q^2}v_1 \otimes v_1 + \frac{(1-q^2)}{(-q)^{-1}z-q^2}v_1 \otimes v_1.
\]

Since $v_{[1, ..., l-1]} \otimes v_1$ vanishes under the map $p_{l-1, 1}$, (4.15) indicates that

\[
a_{1, l}(z) = a_{1, l-1}((-q)^{-1}z)a_{1, 1}((-q)^{-1}z)q((-q)^{-1}z-1)
\]

\[
\times \frac{(l-1)}{(-q)^{-1}z-q^2} \left\{ \frac{4n+l-3}{4n+l+3} \right\}.
\]

Hence our assertion for $k = 1$ follows from an induction on l:

\[
(4.16) \quad a_{1, l}(z) = a_{1, 1}(z) = \left\{ \frac{[l-1][4n-l+1]}{[l+1][4n-l-1]}(2n-l-1)(2n+l+1) \right\}.
\]

By (4.1), we now assume $2 \leq l \leq k \leq n$. By the direct calculation, one can show that

\[
(f_{l-1}f_{l-2} \cdots f_1(v_{1, ..., k}) \otimes v_1) = v_{1, ..., k} \otimes v_1 \quad \text{and} \quad (f_{l-1}f_{l-2} \cdots f_1(v_1 \otimes v_{1, ..., k})) = v_1 \otimes v_{1, ..., k}.
\]

Since $R_{k, 1}^{\text{norm}}$ is a $U_q'(g)$-homomorphism and sends $v_{1, ..., k} \otimes v_1$ to $v_1 \otimes v_{1, ..., k}$, we have

\[
R_{k, 1}^{\text{norm}}(z)(v_{1, ..., k} \otimes v_1) = v_1 \otimes v_{1, ..., k}.
\]

Thus, the image in (4.4),

\[
a_{k, l-1}((-q)^{-1}z)a_{k, 1}((-q)^{-1}z)v_{[1, ..., l-1]} \otimes w \mapsto a_{k, l}(z)v_{[1, ..., l-1, l]} \otimes v_{[1, ..., k]}
\]

for $w = R_{k, 1}^{\text{norm}}((-q)^{-1}z)v_{[1, ..., k]} \otimes v_1 = v_1 \otimes v_{1, ..., k}$, implies that

\[
(4.17) \quad a_{k, l}(z) = a_{k, l-1}((-q)^{-1}z)a_{k, 1}((-q)^{-1}z) \quad (2 \leq l \leq k \leq n).
\]

Hence one can obtain our assertion by applying an induction on l. \hfill \square

Theorem 4.8. For $1 \leq k, l \leq n - \vartheta$, we have

\[
(4.18) \quad d_{k, l}(z) = \prod_{s=1}^{\min(k,l)} (z^s - (-q^s)^{k-l+2s})(z^s - (p^*)^s(-q^t)^{2s-k})�.
\]
Proof. For $1 \leq k, l \leq n - \vartheta$, set

$$D_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z^t - (-q^t)^{|k-l|+2s})(z^t - (p^*)^t(-q^2)^{2s-k-l}).$$

Then we can observe that $D_{k,l}(z)$ behaves similar to $d_{k,l}(z)$. Namely, (cf. (4.11), (4.7) and (4.10))

$$D_{1,1}(z) = d_{1,1}(z), \quad D_{k,l}(z) = D_{l,k}(z),$$

$$\frac{D_{k,l}(z)}{D_{k,l}(p^* z^{-1})} \equiv a_{k,l}(z)a_{k,l}((p^*)^{-1}z) \equiv \frac{d_{k,l}(z)}{d_{k,l}(p^* z^{-1})}.$$

By calculations, one can check that

$$D_{k,l}(z) = D_{k,l-1}((-q^t)^{-1/t} z)D_{k,1}((-q^t)^{1-t/2} z) \quad \text{for } 2 \leq k \leq n - \vartheta,$$

which is similar to (4.17), also.

Now we give a proof for $g = D_{n+1}^{(2)}$, since this case is most complicated. For the other g, one can apply the similar argument to prove.

We shall show that $D_{k,l}(z) = d_{k,l}(z)$ indeed. Our assertion for $k = l = 1$ is presented in (4.9). Assume that $1 \leq k \leq n - 1$ and $2 \leq l \leq n - 1$.

From the a surjective homomorphism in Theorem 3.5

$$\pi_{l-1,1}: V(\varpi_{l-1}) \otimes V(\varpi_1) \rightarrow V(\varpi_l),$$

the first formula in Lemma 1.4 with setting $W = V(\varpi_k)$ yields an element in $k[z^\pm 1]$ as follows:

$$\frac{d_{k,l-1}((-q^2)^{-1/2} z)d_{k,1}((-q^2)^{1/2} z)}{d_{k,l}(z)} \equiv \frac{a_{k,l}(z)}{a_{k,l-1}((-q^2)^{-1/2} z)a_{k,1}((-q^2)^{1/2} z)} \in k[z^\pm 1],$$

for $1 \leq k \leq n - 1$ and $2 \leq l \leq n - 1$. In particular, if $2 \leq l \leq k \leq n - 1$,

$$\frac{d_{k,l-1}((-q^2)^{-1/2} z)d_{k,1}((-q^2)^{1/2} z)}{d_{k,l}(z)} \in k[z^\pm 1],$$

since (cf. (4.17))

$$\frac{a_{k,l}(z)}{a_{k,l-1}((-q^2)^{-1/2} z)a_{k,1}((-q^2)^{1/2} z)} \in k[z^\pm 1]^x$$

by the computation using (4.14).

Using (4.14) once again, for $k = 1 < l$, one can compute that

$$\frac{a_{1,l}(z)}{a_{1,l-1}((-q^2)^{-1/2} z)a_{1,1}((-q^2)^{1/2} z)} = \frac{(z^2 - (-q^2)^{1-l})}{(z^2 - (-q^2)^{3-l})} \quad \text{for } 2 \leq l \leq n - 1.$$

Set $k = 1$ and then replace l with k in (4.23). Then (4.23) becomes

$$\frac{d_{1,k-1}((-q^2)^{-1/2} z)D_{1,1}((-q^2)^{1/2} z)(z^2 - (-q^2)^{-1-k})}{d_{1,k}(z)} \equiv \frac{d_{1,k-1}((-q^2)^{-1/2} z)(z^2 - (-q^2)^{2n-k+1})(z^2 - (-q^2)^{1-k})}{d_{1,k}(z)} \in k[z^\pm 1] \quad \text{for } 2 \leq k \leq n - 1,$$

since $D_{1,1}(z) = d_{1,1}(z)$.
On the other hand, from the surjective homomorphism
\[
V(\varpi_k)(-q^2)^{-\frac{j}{2}} \otimes V(\varpi_l)(-q^2)^{2n-k} \to V(\varpi_{k-1}),
\]
the second formula in Lemma 1.3 with setting \(W = V(\varpi_l) \) yields an element in \(k[z^\pm 1] \) as follows:
\[
(4.26) \quad \frac{a_{k-l}(z)}{a_{k-l}((-q^2)\frac{1}{2} z)a_{k-1,l}((-q^2)\frac{1}{2} z)} \in k[z^\pm 1].
\]

By computation using (4.14), we have
\[
\frac{a_{k-l}(z)}{a_{k-l}((-q^2)\frac{1}{2} z)a_{k-1,l}((-q^2)\frac{1}{2} z)} = \begin{cases} (2 - (q^2)^n)_{n-k-l-1} & \text{if } 1 \leq l < k \leq n - 1, \\ (2 - (q^2)^n)_{n-k-l+1} & \text{if } 2 \leq l = k \leq n - 1. \end{cases}
\]

Thus the element (4.26) in \(k[z^\pm 1] \) can be written as follows:
\[
(4.27) \quad \frac{d_{k-l}((-q^2)\frac{k}{2} z)d_{k-l}((-q^2)\frac{1}{2} z)}{d_{k-1,l}(z)} \in k[z^\pm 1] \quad \text{if } 1 \leq l < k \leq n - 1,
\]
and
\[
(4.28) \quad \frac{d_{k-l}((-q^2)\frac{k}{2} z)d_{k-1,l}((-q^2)\frac{1}{2} z) (2 - (q^2)^n)_{n-k-l-1} (2 - (q^2)^n)_{n-k-l+1}}{(2 - (q^2)^n)_{n-k+1}} \in k[z^\pm 1]
\]
if \(2 \leq l = k \leq n - 1. \)

Setting \(l = 1 \) in (4.27), we obtain
\[
(4.29) \quad \frac{D_{1,l}((-q^2)\frac{k}{2} z)d_{k-1,l}(z)}{d_{k-1,l}((-q^2)^\frac{-1}{2} z)} \in k[z^\pm 1] \quad \text{for } 2 \leq k \leq n - 1.
\]

Now we claim that
\[
d_{1,k}(z) = D_{1,k}(z) = (2 - (q^2)^{k+1})(2 - (q^2)^{2n-k+1}) \quad \text{for } 2 \leq k \leq n - 1.
\]

With (4.20), we can start an induction on \(k \). Thus (4.25) can be written in the following form:
\[
(4.30) \quad \frac{D_{1,k-1}(z) (2 - (q^2)^{2n-k+1})(2 - (q^2)^{k-1})}{d_{1,k}(z)} = \frac{(2 - (q^2)^{k+1})(2 - (q^2)^{2n-k+3})(2 - (q^2)^{2n-k+1})(2 - (q^2)^{k-1})}{d_{1,k}(z)} \in k[z^\pm 1].
\]

Now we claim that
\[
(4.31) \quad k = \pm (q^2)^{\frac{k}{2}}, \pm (q^2)^{2n-k+1} \quad \text{are not zero of } d_{1,k}(z).
\]

If (4.31) is true, we have
\[
(4.32) \quad \frac{D_{1,k}(z)}{d_{1,k}(z)} = \frac{(2 - (q^2)^{k+1})(2 - (q^2)^{2n-k+1})}{d_{1,k}(z)} \in k[z^\pm 1] \quad (2 \leq k \leq n - 1).
\]

Since \(\frac{1-k}{2} \leq 0, \pm (q^2)^{\frac{k}{2}} \notin \mathbb{C}[[q]]. \) Then [19, Theorem 2.2.1 (i)] tells that \(\pm (q^2)^{\frac{k}{2}} \) cannot be a zero of \(d_{1,k}(z). \)
If \(z = \pm (-q^2)^{\frac{k-3}{2}} \) is a zero of \(d_{1,k}(z) \), we have a contradiction to the fact that the element \((4.32)\) is in \(k[z^{\pm 1}] \). Thus we know that \(z = \pm (-q^2)^{\frac{k-3}{2}} \) is not a zero of \(d_{1,k}(z) \). Since \(\frac{D_{k,l}(z)}{d_{k,l}(z)} = \frac{D_{k,l}(p^sz^{-1})}{d_{k,l}(p^sz^{-1})} \) by \((4.21)\), one can check that

- \(z = \pm (-q^2)^{\frac{k-3}{2}} \) is not a pole of \(D_{1,k}(z)/d_{1,k}(z) \),
- \(z = \pm (-q^2)^{\frac{2n-k+3}{2}} \) is not a pole of \(D_{1,k}(-(-q^2)^n z^{-1})/d_{1,k}(-(-q^2)^n z^{-1}) \).

Thus \(\pm (-q^2)^{\frac{2n-k+3}{2}} \) cannot be zero of \(d_{1,k}(z) \) and hence the claim in \((4.31)\) holds.

By an induction on \(k \) in \((4.29)\), we also obtain

\[
\frac{d_{1,k}(z)}{(z^2 - (-q^2)^{k+1})(z^2 - (-q^2)^{2n+1-k})} \in k[z^{\pm 1}] \quad \text{if } k \neq n - 1,
\]
\[
\frac{d_{1,k}(z)}{(z^2 - (-q^2)^{2n+1-k})} \in k[z^{\pm 1}] \quad \text{if } k = n - 1.
\]

By Theorem \(3.5\) and Lemma \(3.10\) \(d_{1,k}(z) \) has zeros at \(\pm (-q^2)^{\frac{k-3}{2}} \) for \(1 \leq k \leq n - 1 \). Thus we have

\[
(4.33) \quad \frac{d_{1,k}(z)}{D_{1,k}(z)} = \frac{d_{1,k}(z)}{(z^2 - (-q^2)^{k+1})(z^2 - (-q^2)^{2n+1-k})} \in k[z^{\pm 1}] \quad (2 \leq k \leq n - 1).
\]

By considering \((4.32)\) and \((4.33)\) together, our assertion for \(k = 1 \) holds:

\[
(4.34) \quad \frac{d_{k,l-1}((-q^2)^{\frac{k-3}{2}} z) d_{k,l}((-q^2)^{\frac{k-3}{2}} z)}{d_{k,l}(z)} = \frac{D_{k,l-1}((-q^2)^{\frac{k-3}{2}} z) D_{k,l}((-q^2)^{\frac{k-3}{2}} z)}{D_{k,l}(z)} = \frac{D_{k,l}(z)}{d_{k,l}(z)} \in k[z^{\pm 1}]
\]

for \(2 \leq l \leq k \leq n - 1 \).

Let \(\phi_{k,l}(z) \) be the elements in \(k[z^{\pm 1}] \) satisfying \(D_{k,l}(z) = d_{k,l}(z) \phi_{k,l}(z) \). We claim that

\[
\phi_{k,l}(z) = 1 \quad \text{for} \quad 2 \leq l \leq k \leq n - 1.
\]

Note that

\[
\frac{D_{1,l}((-q^2)^{\frac{k-3}{2}} z)D_{k,l}((-q^2)^{\frac{k-3}{2}} z)}{D_{k-1,l}(z)} \left(\frac{z^2 - (-q^2)^{2n-k-l+1}}{(z^2 - (-q^2)^{2n-k-l+1})} \right) = \begin{cases}
\left(z^2 - (-q^2)^{4n-k-l+1} \right) (z^2 - (-q^2)^{2n-k-l+1}) & \text{if } l < k, \\
\left(z^2 - (-q^2)^{4n-k-l+1} \right) (z^2 - (-q^2)^{2n-k-l+1}) (z^2 - (-q^2)^{2n+1}) (z^2 - (-q^2)^{1}) & \text{if } l = k.
\end{cases}
\]

By \((4.27), (4.28)\) and an induction on \(k + l \), the above elements are written in the following form:

\[
\frac{(z^2 - (-q^2)^{4n-k-l+1})(z^2 - (-q^2)^{2n-k-l+1})}{\phi_{k,l}((-q^2)^{\frac{k-3}{2}} z)} \in k[z^{\pm 1}] \quad \text{if } l < k,
\]
\[
\frac{(z^2 - (-q^2)^{4n-k-l+1})(z^2 - (-q^2)^{2n-k-l+1}) (z^2 - (-q^2)^{2n+1})(z^2 - (-q^2)^{1})}{\phi_{k,l}((-q^2)^{\frac{k-3}{2}} z)} \in k[z^{\pm 1}] \quad \text{if } l = k.
\]

Since \(\phi_{k,l}((-q^2)^{\frac{k-3}{2}} z) \) divides \(D_{k,l}((-q^2)^{\frac{k-3}{2}} z) \), we conclude that

\[
\phi_{k,l}(z) = 1 \quad \text{if } k + l < n,
\]
\[
(4.34) \quad \frac{(z^2 - (-q^2)^{2n-k-l})}{\phi_{k,l}(z)} \in k[z^{\pm 1}] \quad \text{if } k + l \geq n.
\]
Now our assertion holds if \(z = \pm (q^2)^{\frac{2n-k-1}{2}} \) is not a zero of \(\phi_{k,l}(z) \) for \(k + l \geq n \). From (4.21), one can see that \(\phi_{k,l}(-q^2n^{-1}) = \phi_{k,l}(z) \). Thus we suffice to prove that \(z = \pm (q^2)^{\frac{k+l}{2}} \) is not a zero of \(\phi_{k,l}(z) \) for \(k + l \geq n \). If \(k + l > n \), then we have \(n > 2n - k - l \) and hence \(\phi_{k,l}(z) = 1 \).

Now we consider when \(k + l = n \). Then Lemma 3.10 tells that \(d_{k,l}(z) \) has zeros at \(z = \pm (q^2)^{\frac{k+l}{2}} \). By the definition of \(D_{k,l}(z) \), \(\pm (q^2)^{\frac{k+l}{2}} \) is a zero of multiplicity 1. Thus \(\pm (q^2)^{\frac{k+l}{2}} \) cannot be a zero of \(\phi_{k,l}(z) \) when \(k + l = n \).

Now we shall compute \(d_{k,n}(z) \) for \(g = B_n^{(1)} \) and \(g = D_n^{(2)} \). By Lemma 4.6, (4.37) and (4.38), we have

\[
a_{1,n}(z) = \begin{cases} \frac{2n - 3}{2[n+1]} & \text{if } g = B_n^{(1)}, \\ \frac{2n + 1}{2[n+1]} & \text{if } g = D_n^{(2)}, \\ \frac{3n + 1}{2[n+1]} & \text{if } g = D_n^{(2)}. \end{cases}
\]

where, for \(a, k \in \mathbb{Z} \) and \(b \in \frac{1}{2}\mathbb{Z} \),

\[
[a]_k = ((-1)^k q^a z; p^{-2})_\infty \quad \text{and} \quad [b] = (-\sqrt{-1}(-q^2)^{b}; p^{2})_\infty (\sqrt{-1}(-q^2)^{b}; p^{2})_\infty.
\]

Now, we give a proof only for \(g = B_n^{(1)} \). For \(g = D_n^{(2)} \), one can apply the same arguments.

Proposition 4.9. For \(1 \leq l \leq n - 1 \), we have

\[
a_{l,n}(z) = \begin{cases} \frac{2n - 2l - 1}{2[n+1]} & \text{if } g = B_n^{(1)}, \\ \frac{2n + 2l - 1}{2[n+1]} & \text{if } g = D_n^{(2)}, \\ \frac{3n + 1}{2[n+1]} & \text{if } g = D_n^{(2)}. \end{cases}
\]

Proof. By (4.35), it suffices to consider when \(2 \leq l \leq n - 1 \). Applying the commutative diagram (4.3) with setting \(k = n \), (4.4) tells that we have

\[
a_{n,l-1}(-q^{-1}z) a_{n,1}((-q)^{-1}z) v_{[1,\ldots,l-1]} \otimes w \longrightarrow a_{n,l}(z) v_{[1,\ldots,l-1]} \otimes m_n^+, \]

where \(w = R_{n,1}^{\text{norm}}((-q)^{-1}z)(m_n^+ \otimes v_l) \) for the highest weight vector \(m_n^+ \) of \(V(\varpi_n) \).

Since \(m_n^+ \) vanishes by the action \(f_k \) (\(1 \leq i \leq l - 1 \)), as in the proof of Proposition 4.7

\[
w = R_{n,1}^{\text{norm}}((-q)^{-1}z)(m_n^+ \otimes v_l) = v_l \otimes m_n^+,
\]

and hence

\[
a_{n,l}(z) = a_{n,l-1}(-q^{-1}z) a_{n,1}((-q)^{-1}z) \quad \text{for } 2 \leq l \leq n - 1.
\]

By (4.35) and an induction on \(l \), our assertion follows.

Theorem 4.10. For \(1 \leq k \leq n - 1 \), we have

\[
d_{k,n}(z) = \begin{cases} \prod_{s=1}^{k} (z - (-1)^{n+k} q^2) & \text{if } g = B_n^{(1)}, \\ \prod_{s=1}^{k} (z^2 + (-q^2)^{n-k+2s}) & \text{if } g = D_n^{(2)}. \end{cases}
\]
Proof. By (4.8), it suffices to consider when $2 \leq k \leq n - 1$. From the surjective homomorphism in Theorem 3.5, we have

$$V(\varpi_{k-1})(-q)^{-1} \otimes V(\varpi_1)(-q)^{k-1} \rightarrow V(\varpi_k),$$

the first formula in Lemma 1.4 with $W = V(\varpi_n)$ yields an element in $k[z^{\pm 1}]$ as follows:

$$\frac{d_{k-1,n}(-q^{-1}z)d_{1,n}(-q^{k-1}z)}{d_{k,n}(z)} \frac{a_{k,n}(z)}{a_{k-1,n}(-q^{-1}z)a_{1,n}((-q)^{k-1}z)} \in k[z^{\pm 1}].$$

By (4.37), the element is written in more simplified form as follows:

$$\frac{d_{k-1,n}(-q^{-1}z)d_{n,1}((-q)^{k-1}z)}{d_{k,n}(z)} \equiv \frac{d_{k-1,n}(-q^{-1}z)(z - (-1)^{n+k}q_s^{2n-2k+3})}{d_{k,n}(z)} \in k[z^{\pm 1}].$$

On the other hand, for each $2 \leq k \leq n - 1$, we have a surjective homomorphism

$$V(\varpi_k)_q^{-1} \otimes V(\varpi_1)_{(-q)^{2n-1-k}} \rightarrow V(\varpi_{k-1}).$$

Then the second formula in Lemma 1.4 with $W = V(\varpi_n)$ yields an element in $k[z^{\pm 1}]$ as follows:

$$\frac{d_{1,n}((-q)^{k+1-2n}z)d_{k,n}(-q^z)}{d_{k-1,n}(z)} \frac{a_{k-1,n}(z)}{a_{1,n}((-q)^{k+1-2n}z)a_{k,n}(-q^z)} \in k[z^{\pm 1}].$$

Using (4.36), the second factor of (4.39) can be written as

$$\frac{a_{k-1,n}(z)}{a_{1,n}((-q)^{k+1-2n}z)a_{k,n}(-q^z)} \equiv \frac{z - (-1)^{n+k+1}q_s^{2n-2k-3}}{z - (-1)^{n+k+1}q_s^{2n-2k+1}}.$$

and hence (4.40) becomes

$$\frac{d_{k,n}(z)(z - (-1)^{n+k+1}q_s^{2n-2k+1})(z - (-1)^{n+k+1}q_s^{2n-2k-3})}{d_{k-1,n}(z)(z - (-1)^{n+k+1}q_s^{2n-2k+1})} \in k[z^{\pm 1}].$$

By the induction hypothesis, $z = (-1)^{n+k+1}q_s^{2n-2k+1}$ and $(-1)^{n+k+1}q_s^{2n-2k-3}$ are not zeros of $d_{k-1,n}(z)$. Hence we can conclude that

$$\frac{d_{k,n}(-q^z)}{d_{k-1,n}(z)(z - (-1)^{n+k+1}q_s^{2n-2k+1})} \in k[z^{\pm 1}],$$

which is equivalent to

$$\frac{d_{k,n}(z)}{d_{k-1,n}(-q^{-1}z)(z - (-1)^{n+k}q_s^{2n-2k+3})} \in k[z^{\pm 1}].$$

Considering (4.39) and (4.41) together, our assertion follows:

$$d_{k,n}(z) \equiv d_{k-1,n}(-q^{-1}z)(z - (-1)^{n+k}q_s^{2n-2k+3}) = \prod_{s=1}^{k}(z - (-1)^{n+k}q_s^{2n-2k-1+4s}).$$

\[\square\]

Remark 4.11. In conclusion, we can observe that

for all $1 \leq k \leq n$, $R_{k,l}^{\text{norm}}(z)$ has only simple poles unless $g = D_{n+1}^{(2)}$.

For $g = D_{n+1}^{(2)}$, $R_{k,l}^{\text{norm}}(z)$ has a double pole at $z = \pm(-q^2)^{s/2}$ if

$$2 \leq k, l \leq n - 1, \ k + l > n, \ 2n + 2 - k - l \leq s \leq k + l \text{ and } s \equiv k + l \mod 2.$$
A. The table of denominators.

Type	n	k, l	Denominators
$A_n^{(1)}$	$n \geq 1$	$1 \leq k, l \leq n$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l,n+1-k,n+1-l)} (z - (-q)^{2s+k-l})$
$B_n^{(1)}$	$n \geq 3$	$1 \leq k, l \leq n-1$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z - (-q)^{k-l+2s})(z + (-q)^{2n-k-l+2s})$
	$q_s^2 = q$	$1 \leq k \leq n-1$	$d_{k,n}(z) = \prod_{s=1}^{k} (z - (-1)^{n+k}q_{s}^{2n-2k-1+4s})$
		$k = l = n$	$d_{n,n}(z) = \prod_{s=1}^{n} (z - (q_{s})^{4s-2})$
$C_n^{(1)}$	$n \geq 2$	$1 \leq k, l \leq n-2$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z - (-q)^{k-l+2s})(z - (-q)^{2n-2k-l+2s})$
		$1 \leq k \leq n-2$	$d_{k,n-1}(z) = d_{k,n}(z) = \prod_{s=1}^{k} (z - (-q)^{n-k-1+2s})$
		$\{k, l\} = \{n, n-1\}$	$d_{n,n-1}(z) = d_{n-1,n}(z) = \prod_{s=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (z - (-q)^{4s})$
		$k = l \in \{n, n-1\}$	$d_{n,n}(z) = d_{n-1,n-1}(z) = \prod_{s=1}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (z - (-q)^{4s-2})$
$A_{2n-1}^{(2)}$	$n \geq 3$	$1 \leq k, l \leq n$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z - (-q)^{k-l+2s})(z + (-q)^{2n-2k-l+2s})$
$A_{2n}^{(2)}$	$n \geq 1$	$1 \leq k, l \leq n$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z - (-q)^{k-l+2s})(z + (-q)^{2n+1-k-l+2s})$
$D_{n+1}^{(2)}$	$n \geq 2$	$1 \leq k, l \leq n-1$	$d_{k,l}(z) = \prod_{s=1}^{\min(k,l)} (z^2 - (-q^2)^{k-l+2s})(z^2 - (-q^2)^{2n-k-1+l+2s})$
		$1 \leq k \leq n-1$	$d_{k,n}(z) = \prod_{s=1}^{k} (z^2 + (-q^2)^{n-k+2s})$
		$k = l = n$	$d_{n,n}(z) = \prod_{s=1}^{n} (z + (-q^2)^{s})$

References

[1] T. Akasaka and M. Kashiwara, *Finite-dimensional representations of quantum affine algebras*, Publ. RIMS. Kyoto Univ., **33** (1997), 839-867.

[2] V. Chari, *Braid group actions and tensor products*, Int. Math. Res. Not. **2002** (7) (2010), 357-382.
[3] V. Chari, D. Hernandez, *Beyond Kirillov-Reshetikhin modules*, In *Quantum affine algebras, extended affine Lie algebras, and their applications*, Contemp. Math., 506, Amer. Math. Soc., Providence, (2010), 49–81.

[4] V. Chari and A. Pressley, *A guide to Quantum Groups*, Cambridge U. Press, Cambridge, 1994.

[5] V. Chari, D. Hernandez, *Yangians, integrable quantum systems and Dorey’s rule*, Comm. Math. Phys. 181 (1996), no. 2, 265-302.

[6] E. Date and M. Okado, *Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type A_1^(1)*, Internat. J. Modern Phys. A 9 (3) (1994), 399–417.

[7] B. Davies and M. Okado, *Excitation spectra of spin models constructed from quantized affine algebras of type B_1^(1), D_1^(1)*, Internat. J. Modern Phys. A 11 (11) (1996), 1975-2017.

[8] E. Frenkel and E. Mukhin, *Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras*, Commun. Math. Phys. 216 (2001), 23–57.

[9] I. B. Frenkel and N. Yu. Reshetikhin, *Quantum affine algebras and holonomic difference equations*, Commun. Math. Phys. 146 (1992), 1–60.

[10] E. Frenkel and N. Reshetikhin, *The q-characters of representations of and deformations of W-algebras in quantum affine algebras* in *Recent Developments in Quantum Affine Algebras and Related Topics*, (Raleigh, N.C., 1998), Contemp. Math. 248, Amer. Math. Soc., (Providence), (1999), 163–205.

[11] V. Ginzburg and Ž. Vasserot, *Langlands reciprocity for affine quantum groups of type A_n*, Int. Math. Res. Not. (1993), no. 3, 67–85.

[12] J. Hong and S.-J. Kang, *Introduction to Quantum Groups and Crystal Bases*, Graduate Studies in Mathematics, 42, Amer. Math. Soc., (Providence), RI, (2002).

[13] B.-Y. Hou, W.-L. Yang and Y.-Z. Zhang, *The twisted quantum affine algebra U_q(A_2^(2)) and correlation functions of the Izergin-Korepin model*, Nuclear Phys. B556, (1999), 485–504.

[14] M. Jimbo, *Quantum R matrix for the generalized Toda system*, Comm. Math. Phys., 102 (4) (1986), 537–547.

[15] N. Jing, K. C. Misra and M. Okado, *q-wedge modules for quantized enveloping algebras of classical type*, J. Algebra 230 (2000) 518–539.

[16] V. Kac, *Infinite dimensional Lie algebras*, 3rd ed., Cambridge University Press, Cambridge, 1990.

[17] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, *Perfect crystals of quantum affine Lie algebras*, Duke Math. J. 68 (1992), 499–607.

[18] S.-J. Kang, M. Kashiwara and M. Kim, *Symmetric quiver hecke algebras and R-matrices of quantum affine algebras*, arXiv:1304.0923 [math.RT].

[19] S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, *Simplicity of heads and socles of tensor products*, arXiv:1404.4125 [math.RT].

[20] S.-J. Kang, M. Kashiwara, M. Kim and S.-j. Oh, *Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras III*, arXiv:1406.0959 [math.RT].

[21] M. Kashiwara, *On level zero representations of quantum affine algebras*, Duke. Math. J. 112 (2002), 117–175.

[22] M. Khovanov and A. D. Lauda, *A diagrammatic approach to categorification of quantum groups I*, Represent. Theory 13 (2009), 309–347.

[23] M. Khovanov and A. D. Lauda, *A diagrammatic approach to categorification of quantum groups II*, Trans. Amer. Math. Soc. 363 (2011), no. 5, 2685–2700.

[24] H. Nakajima, *Quiver varieties and finite-dimensional representations of quantum affine algebras*, J. Amer.Math. Soc. 14 (2001), 145–238.

[25] M. Okado, *Quantum R matrices related to the spin representations of B_n and D_n*, Commun. Math. Phys. 134 (1990), 467–486.

[26] M. Okado, A. Schilling, *Existence of Kirillov-Reshetikhin crystals for nonexceptional types*, Representat. Theory 12 (2008), 186–207.

[27] R. Rouquier, *2 Kac-Moody algebras*, [arXiv:0812.5023](http://arxiv.org/abs/0812.5023) (2008).

Department of Mathematical Sciences, Seoul National University, Gwanak-ro 599, Gwanak-gu, Seoul 151-747, Korea

E-mail address: mezin0920@gmail.com