AN INTEGRAL LIFT OF THE Γ-GENUS

JACK MORAVA

Abstract. The Hirzebruch genus of complex-oriented manifolds associated to Euler’s Γ-function lifts to a homomorphism of ring-spectra associated to a family of deformations of the Dirac operator, parametrized by the homogeneous space Sp/U.

Introduction

Kontsevich, in his early work on deformation quantization [12 §4.6], drew attention to interesting formal properties of Euler’s Γ-function, regarded as defining something like a Hirzebruch genus. This note presents that idea in the language of cobordism and formal groups, following [16]. The formalism of multiplicative power series defines a homomorphism

$$\chi_\infty : M U_* \to \mathbb{C}[v]$$

(of graded rings, with a book-keeping indeterminate v) having no very immediate integrality properties, but classical function theory [§2.3.1] shows it to take values in the ring $\mathbb{Q}[\tilde{\zeta}(\text{odd})]$ generated over the rationals by normalized zeta-values, usually expected to be transcendental. The principal result here [§3.1] is that a topologically reasonable homomorphism

$$MU \xrightarrow{\Gamma} M U \wedge_{M \text{Sp}} KO \xrightarrow{\simeq \frac{1}{2}} \text{Sp}/U \wedge KO[\frac{1}{2}]$$

of ring-spectra provides a lift of χ_∞, via the composition

$$KO_*(\text{Sp}/U) \xrightarrow{\text{ch}} H_*(\text{Sp}/U, \mathbb{Q}[\sqrt{v}]) \to H_*(BU, \mathbb{Q}[\sqrt{v}]) \to \mathbb{C}[\sqrt{v}]$$

which sends primitive generators of $H_*(\text{Sp}/U, \mathbb{Q})$ to odd ζ-values.

It was the appearance of these periods (and their relation to the theory of mixed Tate motives in algebraic geometry) that precipitated much of the interest in the Γ-genus. They appear in the lift as generic parameters for a family of deformations of a Dirac operator over the homogeneous space Sp/U. This seems to have interesting connections with [10] and [17].

Date: 15 July 2012.

1991 Mathematics Subject Classification. 55N22.

The author was supported in part by the NSF.
I’d like to thank Professor Hirzebruch for interest and conversation about this material, and Peter Landweber and Ulrike Tillmann for helpful correspondence; but I owe special thanks to Bob Stong, for watching over my shoulder as I wrote.

1. Coigns of vantage

1.0 It’s useful to distinguish a coordinate z at a point x_0 of a space X from the corresponding parametrization of a neighborhood $U \ni x_0$: the former is a nice function $X \ni U \xrightarrow{z} A$ sending x_0 to 0 in some commutative ring A, while the latter is the map $z : \text{Spec } A \to U \subset X$ it defines (assuming we’re in a context where this makes sense).

1.1 For example, at the point $x_0 = [1 : 1]$ of the projective line, we have a coordinate $[u:1] \mapsto u - 1 := z$ which defines the parametrization $z \mapsto [1 + z : 1]$ of a neighborhood of $[1 : 1]$. Similarly, $[q:1] \mapsto q^{-1} := z$ is a coordinate at $[1 : 0] = \infty \in P_1$, while $[x:1] \mapsto x := z$ is a coordinate at $[0 : 1] = 0$.

1.2 An abelian group germ G at $x_0 \in X$ is the germ of a function $G : U \times U, x_0 \times x_0 \to U, x_0$ satisfying identities such as $G(x, G(y, z)) = G(G(x, y), z), G(x, x_0) = G(x_0, x) = x, \&c$; if G is suitably analytic, then a coordinate z at x_0 associates to G, the formal group law $(z \circ G)(z \times z) := z_0 + G z_1 \in A[[z_0, z_1]]$.

For example, the additive group germ $G_a(x, y) = x + y$ at $[0 : 1] \in P_1$ defines $z_0, z_1 \mapsto z_0 + z_1$, while the multiplicative group germ $G_m(u, v) = uv$ at $[1 : 1]$ defines $z_0 + G_m z_1 = z_0 + z_1 + z_0 z_1$.

(with coordinates as above). Different choices of coordinate (for fixed \(G\) and \(x_0\)) define, in general, distinct (but isomorphic) formal group laws: for example, if \(t \in A^\times\) then \(z = t^{-1}(u - 1)\) associates the formal group law
\[
z_0, z_1 \mapsto z_0 + z_1 + t z_0 z_1.
\]
to the multiplicative group at \([1 : 1]\).

1.3.1 The introduction of such a variable \(t\) suggests the consideration of families, or deformations, of group laws:
\[
\mathbf{u}, \mathbf{v} \mapsto \mathbf{uv},
\]
at \([1 : 1]\) (easily checked, e.g., for nilpotent \(t\), to satisfy the axioms) is an interesting example. With coordinate as above, the associated group law
\[
z_0, z_1 \mapsto \frac{z_0 + z_1 + (1 + t)z_0 z_1}{1 - t z_0 z_1};
\]
is (strictly) isomorphic to \(+_{G_m}\), under the coordinate change
\[
z \mapsto (1 + t)^{-1}\log \left[\frac{t}{-1} \right](z) \in \mathbb{Q}[[t]][[z]];
\]

1.3.2 Similarly, \(\exp_A(z) := 2 \sinh \frac{z}{2}\) defines
\[
z_0 +_A z_1 = z_0(1 + \frac{1}{4}z_1^{1/2}) + z_1(1 + \frac{1}{4}z_0^{1/2}) \in \mathbb{Z}[[z_0, z_1]],
\]
which is a specialization (at \(\delta = -\frac{1}{8}, \epsilon = 0\)) of the formal group law
\[
z_0 +_E z_1 = \frac{z_0 R(z_1) + z_1 R(z_0)}{1 - \epsilon z_0^2 z_1^2}
\]
defined by Jacobi’s quartic \(Y^2 = R(X)^2 := 1 - 2\delta X^2 + \epsilon X^4\).

1.4 The focus of this note is the group germ
\[
G_\infty : [q_0 : 1], [q_1 : 1] \mapsto [\Gamma(\log_\infty(q_0^{-1}) + \log_\infty(q_1^{-1})) : 1]
\]
at \(\infty \in P_1(\mathbb{R})\) defined by the expansion
\[
\exp_\infty(z) := z \exp(\gamma z - \sum_{k \geq 2} \zeta(k) k (-z)^k) \in \mathbb{R}[[z]]
\]
of the entire function \(\Gamma(z)^{-1}\) near 0 (with \(\log_\infty(z)\) denoting its formal composition inverse): thus
\[
z_0 +_{\infty} z_1 = \Gamma(\log_\infty(z_0) + \log_\infty(z_1))^{-1} = z_0 + z_1 + 2\gamma z_0 z_1 + \cdots \in \mathbb{R}[[z_0, z_1]]
\]
with \(z_k = q_k^{-1}\). Ohm’s law for parallel resistors, in comparison, defines a group germ
\[
[q_0 : 1], [q_1 : 1] \mapsto [1 : q_0^{-1} + q_1^{-1}]
\]
\(^1\text{a.k.a. the harmonic mean of Archytas of Tarentum}\)
at ∞, which (because $\frac{x^y}{x+y}$ is not differentiable at $(0,0)$) is not analytic.

2. Characteristic classes and Hirzebruch genera

2.1 A complex line bundle $\lambda \in H^1(X, \mathbb{C}^\times)$ has an associated class

$$\lambda^{-1}d\lambda \mapsto 2\pi i[\lambda] : H^1(X, \mathbb{Z}(1)) \to H^2(X, 2\pi i\mathbb{Z})$$

corresponding to the coordinate [1 §2.3, 19 §5.10]

$$z = vx \in H^\text{even}(X, \mathbb{Z}[v^{\pm 1}])$$
on the Picard group of topological complex line bundles. Interpreting v as the product of the Bott class with Deligne’s motive $2\pi i$ reconciles some conventions of algebraic geometry with those of algebraic topology: for example

$$\frac{\pi[\lambda]}{\sin \pi[\lambda]} \mapsto \frac{vx/2}{\sinh vx/2}.$$When the grading is of background interest, I’ll set v equal to 1.

2.2.1 A (one-dimensional) formal group law over a \mathbb{Q}-algebra A can be written uniquely as

$$z_0 +_G z_1 = \exp_G(\log_G(z_0) + \log_G(z_1)) ;$$in that case let

$$H_G(z) := \frac{z}{\exp_G(z)} \in A[[z]]^\times$$
denote its Hirzebruch multiplicative series [8 §15.5]. The function

$$M \mapsto \left(\prod_{i=1}^{i=n} H_G(vx_i) \right)[M] \in A[v]$$
from (cobordism classes of) compact closed complex-oriented manifolds of real dimension $2n$, with Chern roots x_i, defines a homomorphism

$$\chi_G : MU_* \to A[v]$$of graded rings: the Hirzebruch genus associated to the group law G. By a theorem of Mishchenko,

$$\log_G(v) = \sum_{n \geq 1} \frac{\chi_G(P_{n-1}(\mathbb{C}))}{n} \in A[[v]] ;$$the deformation of the multiplicative group in §1.3.1, for instance, represents Hirzebruch’s genus χ_{-t} genus (defined on smooth projective complex varieties by

$$V \mapsto \sum (-1)^p (-t)^q \dim \mathcal{H}^{p,q}_{dg}(V) v^{\dim C} V .$$
The coordinate rescaling \(v \mapsto t^{-1/2} v \) sends its logarithm to
\[
\sum_{n \geq 1} [n](t) \frac{v^n}{n}
\]
(with Gaussian \(\frac{n^{1/2} - t^{-n/2}}{t^{1/2} - t^{-1/2}} = [n](t) \)), and its formal group law to
\[
X, Y \mapsto \frac{X + Y + (t^{1/2} + t^{-1/2})vXY}{1 - vXY}
\]
(which is symmetric under the involution \(t \mapsto 1/t \)).

2.2.2 I’ll refer below to \(MSO, MU, \) and \(MSp \) as the cobordism theories of \(R, C, \) and \(H \)-oriented manifolds, respectively.

The Pontryagin classes
\[
P_t^{SO}(V) = \sum_{k \geq 0} p_k^{SO}(V)t^{2k} := \sum_{k \geq 0} (-1)^k c_{2k}(V \otimes C)t^{2k}
\]
of a real vector bundle \(V \) are defined in terms of the Chern classes of its complexification; if \(V \) was complex to begin with, then
\[
c_t(V \otimes C) = \sum_{k \geq 0} c_k(V \otimes C)t^k = c_t(V) \cdot c_t(V)
\]
equals
\[
\prod (1 - x_i^2 t^2) = \sum (-1)^k e_k(x_i^2)t^{2k}
\]
which expresses the Pontryagin classes
\[
p_k^{SO}(V) = e_k(x_i^2)
\]
in terms of elementary symmetric functions of the Chern roots \(x_i \) of \(V \otimes C \).

If \(H_G(z) := \hat{H}_G(z^2) \) is an even power series, then the associated genus \(\chi_G \) of a \(C \)-oriented manifold \(M \) can be evaluated in terms of Pontryagin classes, since
\[
\prod \hat{H}_G(x_i^2) := H_G(p_k^{SO})
\]
for some polynomial \(H_G \); this factors \(\chi_G \) through a homomorphism
\[
MU \longrightarrow MSO \overset{\chi_G}{\longrightarrow} A[v].
\]
The complex vector bundle underlying a quaternionic vector bundle \(V \), on the other hand, can be decomposed as the sum of a complex bundle with its conjugate. In that case we have
\[
P_t^{SO}(V) = p_t^{SO}(W \oplus \overline{W}) = p_t^{SO}(W)^2
\]
(at least, with coefficients in a \(\mathbb{Z}[\frac{1}{2}] \)-algebra). The symplectic Pontryagin classes of \(V \) are defined by
\[
P_t^{Sp}(V) = \sum (-1)^k c_{2k}(V)t^{2k}
\]
so $p^\text{Sp}_t(V) = p^\text{SO}_t(W)$, hence $p^\text{SO}_t(V) = (p^\text{Sp}_t(W))^2$. Since $p^\text{SO}_t(V)$ can be expressed in terms of the power sums $\sum x_i^{2k} = s^\text{SO}_k$ of the Chern roots of $V \otimes \mathbb{C}$ as

$$\exp\left(\sum s^\text{SO}_k \frac{t^{2k}}{k}\right),$$

we have

$$s^\text{SO}_{2k} := s_{2k}(V \otimes \mathbb{C}) = 2s_{2k}(V) := 2s^\text{Sp}_{2k},$$

(in terms of the Chern roots of the complex structure underlying a quaternionic structure on V).

2.3.1 Rewriting the logarithm of Weierstrass’s product formula for Γ, we have

$$\Gamma(1 + z) = \exp(-\gamma z + \sum_{k > 1} \frac{\zeta(k)}{k} (-z)^k);$$

from this, and the duplication formula

$$\Gamma(z)\Gamma(1 - z) = \frac{\pi}{\sin \pi z},$$

it follows that

$$\frac{x/2}{\sinh x/2} = \exp\left(\sum_{k \geq 1} \frac{\zeta(2k)}{(2\pi i)^{2k}} x^{2k}\right),$$

with rational coefficients

$$\frac{\zeta(2k)}{(2\pi i)^{2k}} = -\frac{B_{2k}}{2(2k)!}.$$

The \hat{A}-genus of an oriented manifold (corresponding to the group law in §1.3.2) can thus be calculated by evaluating

$$\prod \left(\frac{vx_i/2}{\sinh vx_i/2}\right) = \exp\left(-\sum \frac{B_{2k}}{4k!} s^\text{SO}_{2k} x_i^{2k}\right)$$

on its fundamental class. If the manifold is \mathbb{H}-oriented, this characteristic class equals the product

$$\prod \left(\frac{x_i/2}{\sinh x_i/2}\right)^{1/2}$$

(now taken over the Chern roots of the complex bundle underlying the \mathbb{H}-oriented structure).

Proposition. The genus of complex-oriented manifolds defined by the multiplicative series

$$H_{G_{\infty}}(x) = \Gamma(1 + [\lambda]) = \left(\frac{x/2}{\sinh x/2}\right)^{1/2} \exp\left(i \gamma \frac{\zeta(\text{odd})}{2\pi} x + \sum \frac{\zeta(\text{odd})}{(2\pi i)^{\text{odd}}} x^{\text{odd}}\right) \in \mathbb{C}[[x]]$$

agrees on the image of $M\text{Sp}$ in MU with the \hat{A}-genus.

[Because the odd terms in the exponential cancel, for a bundle of the form $W \oplus \overline{W}$.]
2.3.2 Note that the Witten genus [14]

\[H_W(x) = \frac{x/2}{\sinh x/2} \prod_{n \geq 1} [(1 - q^n e^x)(1 - q^n e^{-x})]^{-1} \]

can be written similarly, in terms of Eisenstein series, as

\[\exp(\sum_k G_{2k}(q) \frac{x^{2k}}{2k}) ; \]

but this deformation of the \(\hat{A} \)-genus is an even function of \(x \).

2.4 The elementary symmetric functions \(e_n \) and the corresponding power sums \(s_n \) are related by

\[e(z) = \sum_{n \geq 0} e_n z^n := \prod_{k \geq 1} (1 + x_k z) = \exp(- \sum_{n \geq 1} \frac{s_n (-z)^n}{n}) . \]

The assignment \(x_k \mapsto 1/k \) requires some care, but, suitably interpreted, sends \(s_k \) to \(\zeta(k) \) if \(k > 1 \), and \(s_1 \) to \(\gamma \). The formal power series

\[\text{Exp}_\infty(z) = z \cdot e(z) \]

thus specializes to \(\text{exp}_\infty(z) \) under this mapping, defining a lift \(G_\infty \) of \(G_\infty \) to a formal group law over the polynomial algebra \(\mathbb{Z}[e_n \mid n \geq 1] \). Since its exponential is defined over \(\mathbb{Z} \), it is of additive type, and is in fact the universal such formal group law.

Similarly

\[H_{G_\infty}(z) = \sum_{k \geq 0} h_k (-z)^k , \]

in terms of the complete symmetric functions \(h_k \).

3. The Real structure of \(MU \)

3.1 Proposition. In the homotopy-commutative diagram

\[
\begin{array}{ccccccc}
\text{MU} & \longrightarrow & S^0[BU_+] \wedge \text{HZ} & \longrightarrow & S^0[Sp/U_+ \wedge BSp_+] \wedge \text{HZ}[\frac{1}{2}] & \downarrow & \zeta(\text{even}) \\
\Gamma[\frac{1}{2}] & \downarrow & S^0[Sp/U_+] \wedge \text{MSp} & \longrightarrow & S^0[Sp/U_+] \wedge \text{KO}[\frac{1}{2}] & \longrightarrow & S^0[Sp/U_+] \wedge \text{HQ}[v^{\pm 1}] \\
\text{MSp} & \longrightarrow & \hat{A} & \longrightarrow & \text{KO} & \longrightarrow & \text{HC}[v^{\pm 1}] \\
\end{array}
\]

of spectra, the diagonal composition represents the \(\Gamma \)-genus.
3.2 Proof. Here $S^0[G_+]$ is the suspension ring-spectrum defined by an H-space G, such as the fiber $Sp/U \sim \Omega Sp \sim B(U/O)$ of the quaternionification map $BU \rightarrow BSp$. Note that the inclusion of the fiber into BU makes $S^0[BU_+]$ (and hence MU) into $S^0[Sp/U_+]$-modules.

The two vertical maps at the lower left side of the diagram are the obvious smash products with the unit $S^0 \rightarrow S^0[Sp/U_+]$, while the horizontal maps across the middle of the diagram are smash products with the \hat{A}-genus, regarded as defined by the index of a Dirac operator on an \mathbb{H}-oriented manifold, followed by the Chern character on KO. The top left-hand map is just the total characteristic number homomorphisms of Boardman and Quillen, and can alternately be described as the composition

$$MU_* \rightarrow MU_* \otimes S_* \rightarrow \mathbb{Z} \otimes S_* = S_*$$

of the total Landweber-Novikov operation with Steenrod’s cycle map

$$1 \in H^0(BU, \mathbb{Z}) \rightarrow H^0(MU, \mathbb{Z}) = [MU, H\mathbb{Z}]_0.$$

The (related) upper left-hand vertical and upper right-hand horizontal maps are more interesting. An element of $MSp_*(Sp/U_+)$ can be interpreted as the bordism class of an \mathbb{H}-oriented manifold M, equipped with a map to Sp/U, and if we regard M as merely complex-oriented, then the product composition

$$M \rightarrow Sp/U_+ \wedge BU_+ \rightarrow BU_+$$

defines a new complex orientation on M, and thus a ring homomorphism

$$MSp_*(Sp/U_+) \rightarrow MU_*.$$

By [3], this is in fact an isomorphism away from the prime (2); similarly, the composition

$$Sp/U_+ \wedge BSp_+ \rightarrow Sp/U_+ \wedge BU_+ \rightarrow BU_+$$

defines an isomorphism

$$H_*(Sp/U, \mathbb{Z}[[\frac{1}{2}]]) \otimes_{\mathbb{Z}[[\frac{1}{2}]}} H_*(BSp, \mathbb{Z}[[\frac{1}{2}]]) \cong H_*(BU, \mathbb{Z}[[\frac{1}{2}]])$$

of Hopf algebras, which is the upper right-hand map.

Since the diagonal maps are defined by the diagram, only the right-hand vertical maps remain to be constructed, but that is the content of §2.4: the power-sum generators of $H_*(BU, \mathbb{Q})$ map to normalized zeta-values

$$s_k \mapsto \tilde{\zeta}(k) := (2\pi i)^{-k}\zeta(k) \text{ if } k > 1, \quad \mapsto -\frac{\gamma}{2\pi} \cdot i \text{ if } k = 1.$$

This is factored into two steps:

$$\zeta(\text{even}) : s_{2k} \mapsto \frac{B_{2k}}{4k(2k)!} \in \mathbb{Q}$$

can be interpreted as defining the \hat{A}-genus, while

$$\zeta(\text{odd}) : s_{2k+1} \mapsto (-1)^{k+1}(2\pi)^{-2k-1}\zeta(2k+1) \cdot i.$$
3.3 Complex conjugation on MU is represented by the coordinate change $z \mapsto [-1](z)$ on the formal group, which corresponds to complex conjugation on the value group of the Γ-genus. In other words, the Γ-genus is naturally \mathbb{Z}_2-equivariant, with respect to the Galois action defined by the Real structure on complex cobordism.

Away from (2), the Landweber-Novikov algebra of cobordism operations is an enveloping algebra of a \mathbb{Z}_2-graded Lie (NB not super-Lie) algebra. The odd part corresponds, in classical Lie theory, to the tangent space of the symmetric space associated to the complexification of a real Lie group; it acts transitively on $\text{Spec} \, H_*(Sp/U, \mathbb{Q})$, cf. [3, 17].

4. Closing remarks

4.1 The index map $MSp \to KO$ dates back to Conner and Floyd’s 1968 work on the relation of cobordism to K-theory, but seems to have received remarkably little attention: it is surely represented geometrically by a Dirac operator on \mathbb{H}-oriented manifolds, but the question of a nice construction seems not to have caught the differential geometers’ attention. In view of this, I have not tried to define an explicit family of deformations of such an operator over Sp/U.

4.2 R. Lu [8] has proposed an analytic interpretation of a variant of the Γ-genus of a complex-oriented M as a \mathbb{T}-equivariant Euler class of its free loopspace, following Atiyah ([2]; see also [1]). Lu’s construction depends on a choice of polarization

$$
\begin{align*}
U/O \quad \overset{BGL_{\text{res}} \sim B(\mathbb{Z} \times BO)}{\longrightarrow} \quad \overset{LBU \sim B(LU) \sim B(\mathbb{Z} \times BU)}{\longrightarrow} \quad L\!M \quad \overset{BGL_{\text{res}} \sim B(\mathbb{Z} \times BO)}{\longrightarrow} \quad \overset{LBU \sim B(LU) \sim B(\mathbb{Z} \times BU)}{\longrightarrow} \quad \overset{\text{U/O} \sim \Omega(Sp/U)}{\longrightarrow} \quad \overset{\text{U/O} \sim \Omega(Sp/U)}{\longrightarrow} \quad U/O \sim \Omega(Sp/U)
\end{align*}
$$

of the tangent bundle of LM: that is, a lift of the map classifying its tangent bundle, to the restricted Grassmannian defined by writing loops in the tangent space as a sum of something like positive and negative-frequency components. Since M is complex-oriented, such a lift exists, but is not in general unique: it can be twisted by a map

$$
LM \to U/O \sim \Omega(Sp/U)
$$

[6 §2, 7, 10]. The free loops on a map $\alpha : M \to Sp/U \in KO^2(X)$ thus define a twist

$$
L(\alpha) : LM \to L(Sp/U) \sim U/O \times Sp/U \to U/O ;
$$

its restriction to the subspace M of constant loops defines a map to $Sp/U \sim \Omega Sp$ which acts naturally on $U/O \sim \Omega(Sp/U)$, and it seems reasonable to expect that Lu’s class for the polarized manifold $\langle M, L(\alpha) \rangle$ can be expressed
in terms of $\Gamma(M)$ evaluated at suitable values $s_{2k}(\alpha)$ of the deformation parameters.

4.3 I have also not tried to pin down the two-local properties of Γ, which seem quite interesting. Away from (2), Sp/U is closely related [4] to $B\text{Sp}(\mathbb{Z})^+$, which is in turn related (via Siegel) to the K-theory spectrum of the symmetric monoidal category of Abelian varieties. This suggests that one might hope to see in the Γ-genus, some homotopy-theoretic residue of the intermediate Jacobians of complex projective manifolds.

4.4 Kontsevich’s original remarks were motivated by questions of quantization, and nothing in the discussion above says much about that: homotopy theory is often revealing about the bones of a subject, without resolving the surrounding analytical structures.

It is intriguing that the points 0, 1, ∞ on the projective line seem to have naturally associated genera and cohomology theories: the additive group at zero is related to de Rham theory, and the multiplicative group at one to K-theory. The association of the point at infinity with the Kontsevich genus suggests it might be related to a Galois theory of asymptotic expansions, along lines suggested by Cartier, Connes, Kreimer, Marcolli, and others.

References

1. M. Ando, J. Morava, A renormalized Riemann-Roch formula and the Thom isomorphism for the free loop space, in Topology, geometry, and algebra: interactions and new directions 11 - 36, Contemp. Math. 279, AMS (1999), available at arXiv:math/0101121
2. MF Atiyah, Circular symmetry and stationary-phase approximation, in Colloquium in honor of Laurent Schwartz, Astérisque 131 (1985) 43 - 59.
3. A. Baker, J. Morava, $M\text{Sp}$ localised away from 2 and odd formal group laws, Glasgow preprint 93/55, available at http://www.maths.gla.ac.uk/~ajb/
4. J. Berrick, M. Karoubi, Hermitian K-theory of the integers, Amer. J. Math 127 (2005) 785 - 823
5. P. Cartier, Functions polylogarithms, nombres polyzétas et groupes pronüipotents, Sem. Bourbaki 885, in Asterisque 282 (2002)
6. RL Cohen, JDS Jones, GB Segal, G. B. Floer’s infinite-dimensional Morse theory and homotopy theory, in The Floer memorial volume, 297 - 325, Progr. Math. 133, Birkhäuser (1995)
7. ——, V Godin, A polarized view of string topology, in Topology, geometry and quantum field theory, 127 - 154, LMS Lecture Notes 308, Cambridge (2004)
8. F. Hirzebruch, Topological methods in algebraic geometry, Classics in Mathematics. Springer-Verlag, Berlin (1995)
9. M. Hoffman, The algebra of multiple harmonic series, J. Alg. 194 (1997) 477 - 495
10. N. Kitchloo, The stable symplectic category and geometric quantization, arXiv:1204.5720
11. ——, J Morava, Thom prospectra for loopgroup representations, in Elliptic cohomology, 214 - 238, LMS Lecture Notes 342, Cambridge (2007)
12. M. Kontsevich, Operads and motives in deformation quantization, Lett. Math. Phys. 48 (1999) 35 - 72, available at math.QA/990408
13. Lu Rongmin, The ı-genus and a regularization of an S^1-equivariant Euler class, J. Phys. A 41 (2008), no. 42, 425204
14. I. MacDonald, Symmetric functions and Hall algebras, 2nd ed, OUP
15. H. Miller, The elliptic character and the Witten genus, in Algebraic topology (Evanston 1998) 281 - 289, Contemp. Math. 96 AMS (1998)
16. J. Morava, The motivic Thom isomorphism, in Elliptic cohomology 265 - 285, LMS Lecture Notes 342, Cambridge (2007), available at arXiv:math/0306151
17. ——, The Cosmic Galois group as Koszul dual to Waldhausen’s $A(pt)$
18. J. Rognes, Galois extensions of structured ring spectra, Mem. AMS 192 no. 898 (2008), available at arXiv:math/0502183
19. N. Strickland, Formal schemes and formal groups, in Homotopy invariant algebraic structures 263 - 352, Contemp. Math. 239, AMS (1999)
20. R. Stong, Some remarks on symplectic cobordism. Ann. of Math. 86 (1967) 425 - 433.

Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218

E-mail address: jack@math.jhu.edu