Short Communication

Potentially Pathogenic Leptospira Species Isolated from a Waterfall in Thailand

Somjit Chaiwattanarungruengpaisan¹, Sarin Suwanpakdee¹², Nareerat Sangkachai¹, Tatiyanuch Chamsai¹, Kanokwan Taruyanon¹, and Metawee Thongdee¹*¹

¹The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals; ²Department of Clinical Science and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom; and ³Department of National Parks, Wildlife and Plant Conservation, Bangkok, Thailand

SUMMARY: We collected water and soil samples from a waterfall in Thailand to investigate the presence of potentially pathogenic Leptospira. Isolation of Leptospira from all the 17 environmental samples was successful. Based on 16S rRNA gene sequence analysis, a diverse group of Leptospira species was recovered from waterfall samples including 2 pathogenic species (Leptospira alstonii [5/17, 29%] and Leptospira kentiy [1/17, 6%]); 1 intermediate species (Leptospira woffii [9/17, 53%]); and 2 non-pathogenic species (Leptospira meyeri [1/17, 6%] and Leptospira idonii [1/17, 6%]). The high prevalence of pathogenic and intermediate Leptospira indicates that a waterfall may serve as a natural reservoir of possible pathogens of leptospirosis.

Leptospirosis is an important zoonotic disease that affects humans and other animals worldwide. The disease is caused by spirochete bacteria of the genus Leptospira. Infection can occur by direct contact with urine of infected animals or via indirect contact with a contaminated environment. Lately, leptospirosis transmission via recreational activities has been increasingly recognized, particularly via water-based activities (1,2). In many countries including Thailand, a waterfall is a popular place for tourism and outdoor recreational activities. There is evidence of human leptospirosis that is related to contact with water bodies of waterfalls, e.g., several leptospirosis outbreaks in Malaysia (1). Similarly, 2 leptospirosis cases associated with swimming in a waterfall have been reported (French travelers who returned from Koh Samui, Thailand) (3). No causative Leptospira spp. could be confirmed in those reported cases. Because a waterfall seems to be a possible source of leptospirosis, in our study, we attempted to investigate the presence of potentially pathogenic Leptospira in environmental samples obtained from a waterfall in Thailand.

The study was carried out in November 2016 in the western part of Thailand where a waterfall we chose as a sampling site is located. A total of 17 environmental samples including 13 water samples and 4 soil samples were collected along the route from the top to the base of the waterfall (Fig. 1). Sampling was performed in the water stagnation zone at a specific sampling point. The geographical position of each sampling point was recorded. Temperature and pH of water were averaged from 3 measurements at each sampling point. The samples were transported under ambient condition to the laboratory.

Approximately 30 mL of each water sample was passed through a 0.2-µm filter, and 0.5 mL of the filtrate was inoculated in duplicate, into 2 mL of the liquid Ellinghausen-McCullough-Johnson-Harris (EMJH) medium containing 100 µg/mL 5-fluorouracil (5-FU). The rest of the filtrate was centrifuged, and the pellet was inoculated into 2 mL of the semisolid EMJH medium containing 0.2% of Noble agar base and 100 µg/mL 5-FU. As for soil, approximately 50 g of each soil sample was added into100 mL phosphate buffered saline to create a soil suspension and was mixed by manual shaking before incubation for 30 min to ensure sedimentation at room temperature. Water at the top was passed through 0.2-µm filter, and the filtrate was inoculated into the liquid and semisolid EMJH medium as mentioned above. The cultures were maintained in 28°C, and the possible presence of leptospires was examined under a dark-field microscope weekly. One milliliter of a stationary-phase liquid culture was centrifuged at 20,000 × g for 10 min, and DNA was extracted from the pellet using the Genomic DNA Mini Kit (blood and cultured cells) (Geneaid, New Taipei City, Taiwan). To detect the pathogenic or intermediate group of leptospires, amplification of the partial 16S rRNA gene from the extracted DNA was performed using outer primers of a published nested PCR assay (4). A DNA sample with the absence of a PCR product was then confirmed by Leptospira genus-specific PCR involving another set of 16S rRNA gene primers (5) to detect non-pathogenic groups of leptospires. Amplified DNA products were purified from an agarose gel using the GeneHelp Gel/PCR Kit (Geneaid). DNA sequencing of purified DNA products was carried out at AITbiotech (West Coast, Singapore), and trimmed nucleotide sequences were deposited in the GenBank database. Nucleotide sequence analysis was conducted using National Center for Biotechnology Information (NCBI) BLAST, and a phylogenetic tree of 16S rRNA gene sequences was constructed by the neighbor-joining method in MEGA ver. 7.0.
The environmental samples were collected along the waterfall route within an approximate distance of 1.5 km as shown in Fig. 1. During the sampling period, the average temperature of waterfall water ranged from 24.3°C to 25.1°C, and the average pH ranged from 7.49 to 8.63. Leptospira isolation from all 17 environmental samples was successful with 70% (12/17) and 100% (17/17) culture yield in the liquid and semisolid EMJH medium, respectively. The moderately warm temperature and relatively high pH of the waterfall water in this study were within the range that has been previously reported to promote leptospiral viability (6). This result implied that physical factors such as temperature and pH of waterfall water should support the survival of leptospires although information on those parameters in soil samples was not available in this study. The 16S rRNA gene PCR analyses of 17 Leptospira-positive cultures showed that 15 (88%) cultures contained intermediate or pathogenic Leptospira, and the remaining 2 (12%) cultures contained non-pathogenic Leptospira. The phylogenetic tree was constructed based on partial 16S rRNA gene nucleotide sequences of our 17 Leptospira isolates (GenBank accession Nos. MF380456–MF380472) (Fig. 2).

Our isolates recovered from waterfall environmental samples were categorized into all 3 clades of Leptospira spp. Six water isolates ended up in the pathogenic leptospiral clade. Of these, 5 isolates (5/17, 29%) were found to be closely related to L. alstonii with 99% to 100% identity, whereas 1 isolate (1/17, 6%) is closely related to L. kmetyi, with 99% identity. The presence of L. alstonii and L. kmetyi in the environment has been reported in many countries (7–10). Recently, L. alstonii was isolated from greater white toothed-shrews in Ireland (11) and from an asymptomatic cow in a slaughter house in Brazil (12). On the other hand, L. kmetyi was identified in a blood sample of a patient with suspected leptospirosis who participated in canyoning activities on the Caribbean island of Martinique (2). Although there is evidence of human and animal infection by either L. alstonii or L. kmetyi, pathogenicity of both species still needs to be elucidated because the previous hamster experiments have revealed that no hamsters show any signs of leptospirosis or die after inoculation with either L. alstonii or L. kmetyi isolates (9–11).

The majority of waterfall isolates (9/17, 53%) including 6 water isolates and 3 soil isolates, clustered within the intermediate leptospiral clade, and those isolates manifested 98% to 99% identity with reported sequences of L. wolffii. The intermediate L. wolffii was originally isolated from the urine of a male patient with suspected leptospirosis from Nakornrachasima province, Thailand (13). Some studies have shown that L. wolffii can be detected in clinical samples from human patients with suspected leptospirosis and various kinds of animals in Iran (14) and India (15). The circulation of L. wolffii among different host species is suggestive of its role in the transmission cycle and its potential to cause the disease in human and animal hosts; possibly either symptomatic or asymptomatic diseases. In addition, the remaining of 2 waterfall isolates (2/17, 12%) were classified into the non-pathogenic leptospiral clade and had 99% identity to L. meyeri and L. idonii.

The diversity of Leptospira spp. found in our study may indicate that waterfall affords physical factors such

Fig. 1. Map of the waterfall route shows sampling points and their waterfall Leptospira isolates.

Fig. 2. Phylogenetic tree analysis of partial 16S rRNA gene sequences of Leptospira isolated from waterfall samples. Reference species and their GenBank accession Nos. are included.
as temperature and pH that are suitable for survival of diverse species of Leptospira. Moreover, our study revealed that waterfall samples have high prevalence of pathogenic and intermediate Leptospira, which may be responsible for leptospirosis. Our findings are expected to raise public awareness and address the important function of waterfalls as a natural reservoir of potential pathogens of leptospirosis.

Acknowledgments We greatly thank staffs of Department of National Parks, Wildlife and Plant Conservation for their field work assistance. This work was financially supported by the Faculty of Veterinary Science, Mahidol University, Salaya, Nakhon Pathom, Thailand.

Conflict of interest None to declare.

REFERENCES
1. Garba B, Bahaman AR, Khairani-Bejo S, et al. Retrospective study of leptospirosis in Malaysia. Ecohealth. 2017;14:389-98.
2. Hochedez P, Escher M, Decoussy H, et al. Outbreak of leptospirosis among canyoning participants, Martinique, 2011. Euro Surveill. 2013;18(18). pii: 20472.
3. Christen JR, Savini H, Pierrou C, et al. Two cases of leptospirosis in French travelers returning from Koh Samui, Thailand. J Travel Med. 2015;22:419-21.
4. Boonsilp S, Thaipadungpanit J, Amornchai P, et al. Molecular detection and speciation of pathogenic Leptospira spp. in blood from patients with culture-negative leptospirosis. BMC Infect Dis. 2011;11:338.
5. Thaipadungpanit J, Wuthiekanun V, Chierakul W, et al. A dominant clone of Leptospira interrogans associated with an outbreak of human leptospirosis in Thailand. PLoS Negl Trop Dis. 2007;1:e56.
6. Henry RA, Johnson RC. Distribution of the genus Leptospira in soil and water. Appl Environ Microbiol. 1978;35:492-9.
7. Azali MA, Yean Yean C, Harun A, et al. Molecular characterization of Leptospira spp. in environmental samples from north-eastern Malaysia revealed a pathogenic strain, Leptospira alstonii. J Trop Med. 2016;2016:2060241.
8. Lall C, Kumar KV, Raj RV, et al. Prevalence and diversity of leptospires in different ecological niches of urban and rural areas of south Andaman Island. Microbes Environ. 2016;31:79-82.
9. Saito M, Villanueva SY, Chakraborty A, et al. Comparative analysis of Leptospira strains isolated from environmental soil and water in the Philippines and Japan. Appl Environ Microbiol. 2013;79:601-9.
10. Saito M, Miyahara S, Villanueva SY, et al. PCR and culture identification of pathogenic Leptospira spp. from coastal soil in Leyte, Philippines, after a storm surge during Super Typhoon Haiyan (Yolanda). Appl Environ Microbiol. 2014;80:6926-32.
11. Nally JE, Arent Z, Bayles DO, et al. Emerging infectious disease implications of invasive mammalian species: the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland. PLoS Negl Trop Dis. 2016;10:e0005174.
12. Loureiro AP, Pestana C, Medeiros MA, et al. High frequency of leptosporal vaginal carriers among slaughtered cows. Anim Reprod Sci. 2017;178:50-4.
13. Slack AT, Kalambaheti T, Symonds ML, et al. Leptospira wolffii sp. nov., isolated from a human with suspected leptospirosis in Thailand. Int J Syst Evol Microbiol. 2008;58:2305-8.
14. Zakeri S, Khorami N, Ganji ZF, et al. Leptospira wolffii, a potential new pathogenic Leptospira species detected in human, sheep and dog. Infect Genet Evol. 2010;10:273-7.
15. Balamurugan V, Gangadhar NL, Mohandoss N, et al. Characterization of leptospira isolates from animals and humans: phylogenetic analysis identifies the prevalence of intermediate species in India. Springerplus. 2013;2:362.