Clinical significance of serum interleukin-8 and soluble tumor necrosis factor-like weak inducer of apoptosis levels in patients with diabetic nephropathy

Shu-yan Liu, Jie Chen, Yong-feng Li*
Department of Endocrinology, The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People’s Hospital), Jiaozuo, China

Keywords
Diabetic nephropathy, Interleukin-8, Soluble tumor necrosis factor-like weak inducer of apoptosis

*Correspondence
Yong-feng Li
Tel.: +86-138-3917-1285
Fax: +86-391-262-5785
E-mail address: liyongfeng017@126.com

ABSTRACT

Aims/Introduction: Recent studies suggest that chronic inflammatory responses are important in the development of diabetic nephropathy (DN). Various inflammatory and angiogenesis molecules affect the pathogenesis and progression of DN. Inflammation damages the microcirculation and causes kidney damage. In the present study, we studied changes in interleukin-8 (IL-8) and soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) levels in patients with DN, and investigated the clinical significance of these two inflammatory factors.

Materials and Methods: Participants were categorized into healthy controls (n = 30) and patients with type 2 diabetes mellitus (n = 124). The type 2 diabetes mellitus group was further subdivided into the normoalbuminuria (n = 34), microalbuminuria (MAU; n = 46) and proteinuria (MaAU; n = 44) groups. Patients with DN were included in the MAU and MaAU groups. Total cholesterol, triglyceride, low-density lipoprotein cholesterol, glycosylated hemoglobin, fasting blood glucose, 2-h postprandial blood glucose, blood urea nitrogen, serum creatinine, 24-h urine microalbumin, IL-8 and sTWEAK levels were measured. Logistic regression was used to analyze the factors associated with proteinuria.

Results: In the healthy controls, normoalbuminuria, MAU and MaAU groups, we found that IL-8 levels increased, whereas sTWEAK levels decreased (P < 0.05). IL-8 might be an independent risk factor and serum sTWEAK a protective factor for MAU and MaAU. Serum levels of sTWEAK, IL-8 and microalbumin were significantly correlated in the MAU and MaAU groups.

Conclusions: Serum IL-8 and sTWEAK levels might be markers that can be used for an early diagnosis of DN.

INTRODUCTION

Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which has become a common cause of chronic renal failure and a major cause of death due to diabetes. Its pathogenesis has not been completely explained, but is known to be related to multiple factors, including hemodynamic changes, heredity factors, inflammatory mediators, impaired glucose metabolism and cytokines.

Recently, the role of the inflammatory response in the pathogenesis of DN has been emphasized. The interaction of numerous inflammatory cells, adhesion factors, chemokines and growth regulatory factors promote an inflammatory cascade that ultimately leads to the development of DN. Interleukin-8 (IL-8) is a chemokine with extensive sources and diversified biological functions, which can induce leukocyte (e.g., neutrophil) chemotaxis and activation. IL-8 is also involved in the development of complications, such as diabetic retinopathy, DN, cardiovascular disease (CVD) and infections. Serum IL-8 levels were found to change before a significant decline in renal function among patients with kidney injuries.

Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a glycoprotein of the tumor necrosis factor...
The present study compared the serum levels of IL-8 and sTWEAK in healthy individuals and type 2 diabetes mellitus patients with normoalbuminuria (NMAU), microalbuminuria (MAU) and proteinuria (MaAU; of these, patients with MAU and MaAU were considered as having DN), and probed the clinical significance of IL-8 and sTWEAK levels for diagnosing and assessing the progression of DN.

METHODS
Study participants
The present study was approved by our hospital’s ethics committee (institutional review board number: 20150013), and was carried out in accordance with the Declaration of Helsinki in 1995 (as revised in Fortaleza, Brazil, October 2013). All patients granted written informed consent to participate in the study.

Healthy adults (n = 30) who underwent a physical examination at the outpatient department of The First Affiliated Hospital of Henan Polytechnic University (Jiaozuo Second People’s Hospital), Jiaozuo, China, from October 2015 to May 2016 were enrolled as the NC group. Patients with type 2 diabetes mellitus were further subdivided into those with NMAU (n = 34), MAU (n = 46) and MaAU (n = 44). Patients with NMAU, MAU and MaAU were defined as having a 24-h urine microalbunmin (MAL) level of <30 mg/24 h, 30–300 mg/24 h and >300 mg/24 h, respectively. We excluded patients with infectious diseases, acute infections, heart failure, hyperthyroidism, tumors, immune system diseases, hematological system disorders, and moderate-to-severe hepatic and renal insufficiency. The following data were recorded for all participants: sex, age, disease course, disease history, ankle brachial index (ABI) and risk factors for DN (hypertension, hyperlipidemia and obesity).

Data collection
Fasting venous blood samples (4 mL) were collected from the arms of all patients on the morning of the second day after admission. Enzyme-linked immunosorbent assays were utilized to determine the serum levels of IL-8 (for optimal IL-8 ELISA® kit; Dakota Biotechnology Co., Ltd., Wuhan, China) and sTWEAK (soluble tumor necrosis factor micro apoptosis inducers enzyme-linked immunosorbent assay kit; Huamei Biological Engineering Co., Ltd., Wuhan, China). We also measured total cholesterol, triglyceride (TG), low-density lipoprotein cholesterol, glycosylated hemoglobin (HbA1c), fasting blood glucose, fasting insulin, 2-h postprandial blood glucose, blood urea nitrogen, serum creatinine (Scr) and MAL levels. The insulin resistance index (homeostasis model assessment for insulin resistance = FPG × fasting insulin/22.5) was assessed using the homeostasis model assessment steady-state model. Other relevant auxiliary examinations, such as electrocardiography and liver/kidney color Doppler ultrasonography, were also carried out.

Statistical analysis
SPSS 19.0 (IBM Corp., Armonk, NY, USA) was used for all statistical analyses. The χ²-test was utilized to compare quantitative data between groups. Different statistical methods were used in accordance with the data distribution patterns. For data with normal distribution, the indicators in each group were expressed as mean ± standard deviation. For data with non-normal distribution, the indicators in each group were expressed as the median (minimum and maximum values). The Kruskal–Wallis test and rank-sum test were utilized to compare data among the four groups, the Mann–Whitney U-test was applied for intragroup pairwise comparisons in the case of significant intergroup differences, and Spearman’s correlation test was used to analyze the correlations among all indicators. In patients with type 2 diabetes mellitus, a binary logistic regression model was used to investigate the factors associated with MAU and MaAU. P < 0.05 was considered statistically significant.

RESULTS
We found no statistically significant differences for sex, age, body mass index, low-density lipoprotein cholesterol and blood urea nitrogen levels between the NC, NMAU, MAU and MaAU groups (P > 0.05; Table 1). In contrast, significant differences between the NC and the other three groups were found for the disease course, hypertension, non-alcoholic fatty liver disease, ABI, homeostasis model assessment for insulin resistance, HbA1c, fasting blood glucose, postprandial blood glucose, total cholesterol, TG, Scr, MAL, IL-8 and sTWEAK levels (P < 0.05). When comparing the NMAU, MAU and MaAU groups, we detected no statistically significant differences in hypertension, non-alcoholic fatty liver disease, homeostasis model assessment for insulin resistance, fasting blood glucose, postprandial blood glucose, total cholesterol and TG (P > 0.05). From healthy individuals, to those with diabetes and DN, a decrease in the ABI was noted (P < 0.05). Similarly, the concentrations of IL-8 and MAL were increased (P < 0.05), whereas the concentration of sTWEAK was decreased (P < 0.05; Figure 1).

The factors associated with MAU in patients with type 2 diabetes mellitus were investigated using logistic regression (Table 2). Age, disease course, HbA1c, TG and Scr levels were not significantly associated (P > 0.05), whereas ABI, IL-8 and sTWEAK were significantly associated (P < 0.05). ABI and sTWEAK were protective factors (relative risk [RR] < 1), and IL-8 was a risk factor (RR > 1).
We then investigated the factors associated with MaAU (MAL >300 mg/24 h) in patients with type 2 diabetes mellitus (Table 3). Hba1c, TG, and ABI were not significantly associated (P > 0.05). Age, disease course, Scr, IL-8 and sTWEAK levels were all significantly associated with MaAU (P < 0.05); sTWEAK was a protective factor (RR <1), whereas age, disease course, IL-8 and Scr were risk factors (RR > 1).

Correlation analysis showed that in the MAU group, sTWEAK demonstrated a strong negative linear correlation with IL-8 (r = -0.760) and MAL (r = -0.945); IL-8 showed a strong positive linear correlation with MAL (r = 0.806). In the MaAU group, TWEAK showed a significant negative linear correlation with IL-8 (r = -0.651); sTWEAK showed a strong negative linear correlation with MAL (r = -0.820) and IL-8 showed a strong positive linear correlation with MAL (r = 0.822).

DISCUSSION

Diabetic nephropathy is a common and severe microangiopathy that can occur in patients with diabetes; its major pathological changes include glomerular hypertrophy, mesangial matrix expansion and obvious thickening of the basilar membrane, resulting in nodular or diffuse glomerulosclerosis. Most cases of DN show no obvious clinical symptoms early in the disease. Although renal puncture is an important criterion for the diagnosis of DN, patients are reluctant to undergo this procedure; therefore, it cannot be routinely used for patients with type 2 diabetes mellitus. The clinical test with the highest sensitivity and the best predictive value for an early diagnosis of DN is the measurement of albuminuria in urinary tests; measuring MAL is considered the gold standard.

For data with non-normal distribution, the indicators in each group are expressed as the median (minimum and maximum values). For data with normal distribution, the indicators in each group are expressed as mean ± standard deviation. For data with strong positive linear correlation with MAL, Hba1c, soluble tumor necrosis factor-like weak inducer of apoptosis; TG, triglyceride. MAL, 24-h urine microalbumin; NAFLD, non-alcoholic fatty liver disease; NC, control group; PBG, postprandial blood glucose; Scr, serum creatinine; TWEAK, soluble tumor necrosis factor-like weak inducer of apoptosis; TG, triglyceride.

Table 1 | Comparison between the four groups

Group	NC (n = 30)	NMAU (n = 34)	MAU (n = 46)	MaAU (n = 44)	t-test/χ²/P
Sex (male/female)	15/15	15/19	23/23	18/26	6.996/0.072
Age (years)	51.0 ± 11.0	52.0 ± 8.0	55.0 ± 10.0	57.0 ± 12.0	2.591/0.055
Disease course (years)	-	600 ± 5.40†	8.00 ± 5.50‡	9.0 ± 5.20‡‡	6.767/0.016
Hypertension, n (%)	0 (0.0)	16 (47.1)†	25 (54.3)†	26 (59.1)†‡	29.83/0.001
NAFLD, n (%)	0 (0.0)	8 (23.5)†	9 (19.6)†‡	10 (22.7)†	8.18/0.043
BMI (kg/m²)	23.35	25.05 ± 3.84	24.10 ± 3.16	23.15 ± 3.37	2.166/0.094
AHI	1.22 ± 0.67	1.17 ± 0.47	0.86 ± 0.39†	0.85 ± 0.47‡‡	5.898/0.001
Hba1c (%)	5.20 (4.70, 6.10)	10.3 (6.60, 15.0)	9.30 (7.00, 15.7)	10.2 (8.00, 13.2)	79.676/0.001
HOMA-IR	1.61 ± 0.65	2.05 ± 0.71†	2.13 ± 0.67†	2.22 ± 0.59§	5.735/0.001
FBG (mmol/L)	4.60 (4.20, 5.40)	9.00 (3.80, 18.9)	9.40 (4.20, 20.5)	9.61 (6.10, 18.3)	59.477/0.001
PBO (mmol/L)	6.20 (5.30, 7.20)	19.1 (10.6, 30.4)	17.0 (12.8, 26.3)	18.8 (12.3, 27.8)	76.438/0.001
CHOL (mmol/L)	4.20 (3.63, 5.63)	5.08 (3.00, 6.40)	4.75 (2.70, 6.10)	5.05 (3.34, 6.20)	88.292/0.032
TG (mmol/L)	1.20 (0.73, 1.62)	1.74 (0.38, 3.52)	1.76 (0.62, 6.54)	1.77 (0.41, 3.29)‡	23.573/0.001
LDL (mmol/L)	2.47 (2.02, 3.56)	2.46 (1.35, 3.19)	2.55 (1.33, 3.77)	2.84 (1.14, 3.78)	2.856/0.414
BUN (mmol/L)	4.67 ± 0.41	4.63 ± 1.25	4.49 ± 1.25	4.45 ± 1.57	0.399/0.754
Scr (µmol/L)	55.37 ± 6.57	65.59 ± 12.89‡	62.57 ± 11.44‡	72.36 ± 20.85‡‡	9.068/0.001
MAL (mg/24 h)	9.00 ± 4.33	25.29 ± 5.62‡	147.02 ± 53.53‡‡	855.34 ± 367.07‡‡	166.681/0.001
sTWEAK (ng/mL)	214.79 ± 4.43	182.86 ± 12.85‡‡	165.41 ± 10.76‡‡	112.31 ± 15.53‡‡	711.933/0.001
IL-8 (ng/mL)	16.99 ± 0.55	26.16 ± 1.63‡‡	33.96 ± 4.09‡‡	62.94 ± 17.74‡‡	160.038/0.001

For data with non-normal distribution, the indicators in each group are expressed as the median (minimum and maximum values). For data with normal distribution, the indicators in each group are expressed as mean ± standard deviation. For data with strong positive linear correlation with MAL, Hba1c, soluble tumor necrosis factor-like weak inducer of apoptosis; TG, triglyceride.
Inflammatory cytokines can all participate in the pathogenesis and progression of DN\(^{17}\). Some researchers have hypothesized that a long-term micro-inflammatory state and immune factors might related to the pathogenesis of DN\(^{16}\), whereas others have proposed that inflammation is the key factor in the development of DN\(^{18}\).

IL-8, which can be expressed in vascular endothelial cells, fibroblasts, monocytes and epithelial cells, can mediate a series of cascade reactions stimulating the migration of white blood cells, the formation of neutrophil peroxide, as well as lysosome release, activation and chemotaxis. Thus, IL-8 is thought to be involved in the pathogenesis and progression of complications, such as diabetic retinopathy, DN, CVD and infections. IL-8 was found to stimulate neutrophils\(^{19}\), leading to a significant promotion of human renal mesangial cell proliferation. Furthermore, IL-8 can induce oxidative stress\(^{20}\), changes in vascular permeability, increased endothelial coagulation ability and reduced diastolic function, resulting in abnormal blood flow regulation that contributes to the development of DN.

Tumor necrosis factor-like weak inducer of apoptosis is a tumor necrosis factor superfamily cytokine, consisting of 249 amino acids, that has a molecular weight of 27 kD. As for most tumor necrosis factor members, the TWEAK protein is present as a membrane-bound (mTWEAK) and soluble (sTWEAK) form after furin protease proteolytic cleavage. Both forms are biologically active and can bind to their only signal transduction receptor, fibroblast growth factor-induced 14 (Fn14)\(^{21}\). In vitro studies have shown that mTWEAK, which can act as a collocation signal molecule, and sTWEAK through Fn14\(^{22,23}\), lead to qualitatively different activity states. A combination of the two factors is involved in cell proliferation, apoptosis, cytokine production, angiogenesis and mediated immune injury during organ damage during the pathophysiology of immune system-mediated tissue damage and disease\(^{24}\).

Some authors have observed a low level of sTWEAK in patients with atherosclerosis, and a negative correlation between sTWEAK levels and endometrial/medial thickness in asymptomatic patients; furthermore, sTWEAK levels were identified as a CVD indicator\(^{25}\). Therefore, sTWEAK can be considered as a potential biomarker of CVD\(^{26}\). Urbonavičienė et al.\(^{27}\) found that, in patients with severe ischemic intermittent claudication, sTWEAK levels were significantly reduced. However, they also found that sTWEAK levels and atherosclerosis in the lower extremities showed a positive correlation. According to a recent prospective case–control study\(^{28}\), low serum sTWEAK levels can be used to predict type 2 diabetes mellitus. In that study, a lower sTWEAK serum level was found in the type 2 diabetes mellitus group when compared with the NC group, suggesting a link between sTWEAK concentration and type 2 diabetes mellitus.\(^{29}\) Although low sTWEAK levels were shown to have a protective effect on vascular diseases, the mechanism of this association has not yet been fully elucidated, and several hypotheses have been proposed. One hypothesis for the decrease in sTWEAK levels is the uptake of sTWEAK by Fn14 receptors\(^{29}\). Fn14 is expressed in renal innate cells, including mesangial cells, podocytes and endothelial cells. Fn14 expression is significantly increased during acute and chronic

![Figure 1](http://onlinelibrary.wiley.com/journal/jdi)

Figure 1 | Comparison of 24-h urine microalbumin (MAL), serum interleukin 8 (IL-8) and soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) levels between the control (NC), normoalbuminuria (NMAU), microalbuminuria (MAU) and proteinuria (MaAU) groups. (a) Comparison of MAL levels between the NC, NMAU, MAU and MaAU groups. (b) Comparison of serum IL-8 levels between the NC, NMAU, MAU and MaAU groups. (c) Comparison of serum sTWEAK levels between the NC, NMAU, MAU and MaAU groups. *Compared with NC: P < 0.05. †Compared with NMAU: P < 0.05. ‡Compared with MAU: P < 0.05.
inflammation kidney damage; an increase in the sTWEAK ligand can lead to a decrease in peripheral serum sTWEAK levels. Recently, sTWEAK has been found to promote the proliferation of renal parenchymal cells, the fibrosis of renal tubules and an increase in the exudation of inflammatory cells in patients with DN; sTWEAK levels might gradually decrease with a decline in renal function. These findings show the value of sTWEAK in diagnosing DN.

The results of the present study found that, with DN progression, serum IL-8 levels gradually increased and sTWEAK levels gradually decreased. Logistic regression analysis showed that serum IL-8 levels were an independent risk factor for type 2 diabetes mellitus patients with MAU and MaAU. Serum IL-8 levels were an independent risk factor for MAU and MaAU, whereas serum sTWEAK levels were an independent protective factor for MAU and MaAU in patients with type 2 diabetes mellitus. The concentration of IL-8 increased with an increase in renal damage. Furthermore, serum IL-8 concentration was highly correlated with MAL in the MAU and MaAU groups, and sTWEAK concentration showed a negative correlation with IL-8 and MAL in patients with DN. These findings suggest that serum IL-8 and sTWEAK have important roles in the development of DN. We suggest that IL-8 and sTWEAK levels could be used for an early assessment of DN damage and as indicators of type 2 diabetes mellitus progression.

We also found that ABI was a protective factor for DN; however, we detected no difference in ABI between the NC and the NMAU groups or between the MAU and MaAU groups. Our data only showed that the ABI level in the MAU and MaAU groups were lower than those in the NC and MAU groups. This relationship will require further analysis in future studies.

In conclusion, serum IL-8 and sTWEAK levels might be sensitive markers for diagnosing DN, as they play important roles in the occurrence and progression of DN. The limitations of the present study include its small sample size and that all participants were residents of Henan Province, China. As this was a cross-sectional study, no causal relationship between IL-8/sTWEAK levels and DN could be established. However, as we found an RR < 1 for sTWEAK and >1 for IL-8, we hypothesize that sTWEAK might be a protective factor for DN, whereas IL-8 might be a risk factor for DN. Further prospective cohort studies with larger sample sizes are required to explore the causal relationship between these two indicators and DN.

Table 2 | Binary logistic regression analysis of the factors associated with microalbumin in patients with type 2 diabetes mellitus

Variable	Regression coefficient (B)	Signific ance level (P)	Relative risk (RR)	95% CI of the OR Lower limit	Upper limit
Age (years)	-0.008	0.663	0.992	0.959	1.027
Disease course (years)	0.075	0.082	1.078	0.990	1.172
HbA1c (%)	-0.187	0.052	0.830	0.689	0.999
TG (mmol/L)	0.138	0.453	1.148	0.801	1.645
ABI	-0.607	0.019	1.267	1.102	1.533
Scr (µmol/L)	0.007	0.579	1.007	0.982	1.033
IL-8 (pg/mL)	0.721	0.002	2.056	1.310	3.225
sTWEAK (pg/mL)	-0.167	<0.001	0.846	0.783	0.914

Dependent variable, the presence/absence of microalbumin. ABI, ankle brachial index; CI, confidence interval; HbA1c, glycosylated hemoglobin; IL-8, interleukin 8; OR, odds ratio; Scr, serum creatinine; sTWEAK, soluble tumor necrosis factor-like weak inducer of apoptosis.

Table 3 | Binary logistic regression analysis of the factors associated with proteinuria in patients with type 2 diabetes mellitus

Variable	Regression coefficient (B)	Signific ance level (P)	Relative risk (RR)	95% CI of the OR Lower limit	Upper limit
Age (years)	0.069	0.003	1.071	1.023	1.122
Disease course (years)	0.197	<0.001	1.218	1.100	1.349
HbA1c (%)	0.213	0.064	1.238	0.988	1.552
TG (mmol/L)	0.148	0.383	1.160	0.831	1.618
ABI	-0.983	0.216	1.025	0.895	1.079
Scr (µmol/L)	0.038	0.008	1.039	1.010	1.069
IL-8 (pg/mL)	6.486	0.036	1.410	1.244	1.782
sTWEAK (pg/mL)	5.757	0.043	0.883	0.676	0.972

Proteinuria, microalbumin >300 mg/24 h. Dependent variable, microalbumin >300 mg/24 h = 1 vs microalbumin ≤300 mg/24 h = 0. ABI, ankle brachial index; CI, confidence interval; HbA1c, glycosylated hemoglobin; IL-8, interleukin 8; OR, odds ratio; Scr, serum creatinine; sTWEAK, soluble tumor necrosis factor-like weak inducer of apoptosis.
ACKNOWLEDGMENT
This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 2013; 124: 139–152.
2. Baggiolini M, Walz A, Kunkel SL. Neutrophil-activating peptide-1/interleukin8, a novel cytokine that activates neutrophils. J Clin Invest 1989; 84: 1045–1049.
3. Smith WB, Gamble JR, Clark-Lewis L, et al. Interleukin-8 induces neutrophil transendothelial migration. Immunology 1991; 72: 65–72.
4. Perlman AS, Chevalier JM, Wilkinson P, et al. Serum inflammatory and immune mediators are elevated in early stage diabetic nephropathy. Ann Clin Lab Sci 2015; 45: 256–263.
5. Winkles JA. The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 2008; 7: 411–425.
6. Wiley SR, Winkles JA. TWEAK, a member of the TNF superfamily, is a multifunctional cytokine that binds the TweakR/Fn14 receptor. Cytokine Growth Factor Rev 2003; 14: 241–249.
7. Desplat-Jego S, Varriale S, Creidy R, et al. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J Neuroinmunol 2002; 133: 116–123.
8. Schwartz N, Rubinstein T, Burkly LC, et al. Urinary TWEAK as a biomarker of lupus nephritis: a multicenter cohort study. Arthritis Res Ther 2009; 11: 143.
9. Carrero JJ, Ortiz A, Qureshi AR, et al. Additive effects of soluble TWEAK and in inflammation on droded in hemodialysis patients. Clin J Am Soc Nephrol 2009; 1: 110–118.
10. Hamano K, Nakadaira I, Suzuki J, et al. N-terminal fragment of probrain natriuretic peptide is associated with diabetes microvascular complications in type 2 diabetes. Vasc Health Risk Manag 2014; 10: 585–589.
11. Huang GM, Huang KY, Lee TY, et al. An interpretable rule-based diagnostic classification of diabetic nephropathy among type 2 diabetes patients. BMC Bioinformatics 2015; 16: 55.
12. Narita T, Hosoba M, Kakei M, et al. Increased urinary excretions of immunoglobulin, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes. Diabetes Care 2006; 29: 142–144.
13. Dyer AR, Greenland P, Elliott P, et al. Evaluation of measures of urinary albumin excretion in epidemiologic studies. Am J Epidemiol 2004; 160: 1122–1131.
14. Gu D, Xu P, Yuan Y, et al. Albuminuria is suggested as a potential health screening biomarker for senior citizens and general population with hypertension or diabetes in China. Clin Lab 2016; 62: 2267–2269.
15. Pickup JC, Mattick MB, Chusney GD, et al. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome. X Diabetologia 1997; 40: 1286–1292.
16. Chow FY, Nikolle-Paterson DJ, Ozols E, et al. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int 2006; 69: 73–80.
17. Chen Y, Ding H, Wang L, et al. Effects of Ad-FLT-1/PC on the expression of inflammatory factors in rats with diabetic nephropathy atherosclerosis. Zhonghua Yi Xue Za Zhi 2015; 95: 1961–1965 (Chinese).
18. Utimura R, Fujihara CK, Mattar AL. Mycophenolate mofetil prevents the development of glomerular injury in experimental diabetes. Kidney Int 2003; 63: 209–216.
19. Hidalgo MA, Carretta MD, Teuber SE, et al. IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils. J Immunol Res 2015; 2015: 120348.
20. Mojiminiyi OA, Abdella N, Moussa MA, et al. Association of C-reactive protein with coronary heart disease risk factors in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2002; 58: 37–44.
21. Browns SA, Ghosh A, Winkles JA. Full-length, membrane-anchored TWEAK can function as a juxtacrine signaling molecule and activate the NF-kappaB pathway. J Biol Chem 2010; 285: 17432–17441.
22. Roos C, Wicosky A, Mühler N, et al. Soluble and transmembrane TNF-like weak inducer of apoptosis differentially activate the classical and noncanonical NF-kappa B pathway. J Immunol 2010; 185: 1593–1605.
23. Locksley RM, Killean N, Lenardo MJ. The TNF and TNF receptor superfamilies: optimized mammalian biology. Cell 2001; 104: 487–501.
24. Kaplan MJ, Lewis EE, Shelden EA, et al. The Apoptotic Ligands TRAIL, TWEAK, and Fas Ligand Mediate Monocyte Death Induced by Autologous Lupus T Cells. J Immunol 2002; 169: 6020–6029.
25. Chorianopoulos E, Rosenberg M, Zuckc C, et al. Decreased soluble TWEAK levels predict an adverse prognosis in patients with chronic stable heart failure. Eur J Heart Fail 2009; 11: 1050–1056.
26. Blanco-Colio LM, Martín-Ventura JL, Muñoz-García B, et al. Identification of soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) as a possible biomarker of subclinical atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 916–922.
27. Urbanoavigiene G, Martin-Ventura JL, Lindholt JS, et al. Impact of soluble TWEAK and CD163/TWEAK ratio on long-
term cardiovascular mortality in patients with peripheral arterial disease. *Atherosclerosis* 2011; 16: 1–8.

28. Dyaz-López A, Chacón MR, Bulló M, et al. Serum sTWEAK concentration and risk of developing type 2 diabetes in a high tube risk population: a nested case. *J Clin Endocrinol Metab* 2013; 98: 3482–3489.

29. Vita JA, Keaney JF Jr. Endothelial function: a barometer for cardiovascular risk? *Circulation* 2002; 106: 640–642.

30. Valdivielso JM, Coll B, Martín-Ventura JL, et al. Soluble TWEAK is associated with atherosclerotic burden in patients with chronic kidney disease. *J Nephrol* 2013; 26: 1105–1113.