Activin receptor type IIB in rohu (*Labeo rohita*): molecular characterization, tissue distribution and immunohistochemical localization during different stages of gonadal maturation

Siddhi Patnaik · Lakshman Sahoo · Mausumee Mohanty · Amrita Bit · Prem Kumar Meher · Sachidananda Das · Pallipuram Jayasankar · Jatindra Nath Saha · Paramananda Das

Received: 17 March 2021 / Accepted: 26 May 2021 / Published online: 17 July 2021
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract Activin receptor type IIB (ActRIIB) is a transmembrane serine/threonine kinase receptor which plays a pivotal role in regulating the reproduction in vertebrates including teleost. Earlier studies have documented its importance in governing gonadal maturation in higher vertebrates. However, reports on the regulation of fish reproductive system by ActRIIB gene are still limited. Here, we report the identification and characterization of *ActRIIB* cDNA of *Labeo rohita*, a commercially important fish species of the Indian subcontinent. The full-length gene encoding rohu *ActRIIB* was cloned and found to be of 1674 bp in length. Functional similarities were evident from evolutionary analysis across vertebrates. Real-time PCR to measure the expression of *ActRIIB* transcript in rohu revealed significant mRNA levels in gonads followed by non-reproductive tissues, including the brain, pituitary and muscle. With respect to different gonadal maturation stages, predominant expression of *ActRIIB* mRNA was observed during the pre-spawning phase of both sexes. To further delineate its role in rohu reproduction, a recombinant protein of the extracellular domain of *ActRIIB* (rECD-ActRIIB) was produced, and polyclonal antibody is raised against the protein for its immuno-localization studies during different gonadal maturation stages. Strong immunoreactivity was noticed in the pre-vitellogenic oocytes which decreased dramatically in the fully mature oocytes. Similarly, the strong and intense immunoreactivity was found in the spermatids and spermatocytes of the immature testis, and eventually the intensity reduced with the progression of the maturation stage. These results provide the first evidence of the presence of *ActRIIB* in rohu gonadal tissues. Taken together, our observations lay the groundwork for further understanding and investigating on the potential role of *ActRIIB* in fish reproduction system in the event of gonadal maturation.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10695-021-00973-2.

S. Patnaik
Department of Cancer and Stem Cell Biology, Duke–NUS Medical School, 8 College Road, Singapore 169857, Singapore

L. Sahoo · A. Bit · P. K. Meher · J. N. Saha · P. Das (✉)
Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
e-mail: pdc77@hotmail.com

M. Mohanty
Barcode Biosciences, Dr. Shivaram Karanth Nagar, Bengaluru 560077, India

S. Das
PG Department of Zoology, Utkal University, Bhubaneswar 751004, Odisha, India

P. Jayasankar
Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Kochi 682018, India
Keywords Activin receptor type IIB · Serine/threonine kinase · Labeo rohita · Real-time expression · Recombinant extracellular domain protein · Polyclonal Ab · Immunohistochemistry

Introduction

As aquaculture industry aims to boost production of viable eggs with high survival rate, it is vital to bridge the gaps that still remain in understanding the dynamic processes controlling teleost reproduction. The regulation of oocyte maturation and spermatogenesis in fish is a complex process that involves the interaction of several regulatory molecules. Activin receptors (ActRs), members of transforming growth factor-beta (TGF-β) superfamily, with their unique characteristics of wide range ligand specificities are capable of governing several cellular responses in reproduction and development. They are single-pass transmembrane serine/threonine kinase receptors and are basically of two types, type I and type II, having a small extracellular ligand binding domain and an intracellular kinase domain, which act cooperatively to transduce signals for important physiological and molecular processes such as cell proliferation, growth and differentiation of skeletal tissues and gonadal function (Mathews 1994; Mathews and Vale 1991; Patnaik et al. 2017; Goebel et al. 2019). Multiple TGF-β ligands like activin, myostatin and follistatin, in their bio-active dimeric forms bind to the extracellular domain of the type II receptors for signal activation. Both the receptors undergo dimerization followed by phosphorylation of Gly-Ser residues in the GS domain preceding the kinase domain for signal transmission (Huang and Chen 2012; Kubiczkova et al. 2012). Among the many ligands of TGF-β family, activin upon interaction with type II receptors plays a key role in promoting follicle growth, primarily regulating ovarian maturation. Two variants of type II receptors such as IIA (ActRIIA) and IIB (ActRIIB) are known (Tsuchida et al. 1993; Yamashita et al. 1994; Dijke et al. 1996) having differences in binding affinity and signalling strength and produced by differential splicing. Experimental findings suggest that ActRIIB has higher affinity for activin than ActRIIA (Attisano et al. 1992). Despite their structural resemblances, no functional overlap or sequence similarity exist between the two receptors.

Till date, ActRs have been characterized in higher vertebrates, and its importance in regulating vertebrate reproduction and development has also been studied. Biochemical and localization studies have demonstrated the expression of ActRII mRNA in bovine and mouse testis (Ethier et al. 1994; Wu et al. 1994) suggesting their putative role in testis maturation. Experimental evidences of the presence of activin receptor and Smad proteins in oocytes of rat might implicate their role in follicular development (Drummond et al. 2002). Moreover, the expression of ActRIIA/IIB has been found in oocytes of other vertebrates regulating both folliculogenesis and differentiation (Van den Hurk and Van de Pavert 2001). Recently, it has been demonstrated that activin, TGF-β, Nodal and their respective type II and type I receptors are expressed in sex- and cell-type-specific patterns suggesting their specific role in testis and germ cell development (Miles et al. 2013).

Among teleosts, genes encoding ActRIIA cDNA have been cloned and characterized in zebrafish and grass carp (Nagaso et al. 1999; DiMuccio et al. 2005). The significance of ActRIIA in zebra fish reproductive axis is evident from its expression in the oocyte during embryonic developmental stages (Nagaso et al. 1999). Rohu ActRIIA cDNA has been characterized, and its expression during different reproductive stages has been studied (Patnaik et al. 2017). There are ample evidences that have supported specific role of ActRIIB in regulating skeletal muscle development in fishes (Carpio et al. 2009; Funkenstein et al. 2012). Although most of the studies on ActRIIB are associated with its role in regulating body growth, there are also reports suggesting its importance in regulating teleost reproduction and development. Experimental studies provide the proof of ActRIIB expression in zebrafish oocyte at different developmental stages (Garg et al. 1999; Wu et al. 2000). However, much less is known about the expression of ActRIIB in teleost gonad and its importance in ovary and testis maturation. Therefore, molecular characterization of activin receptors in a large number of non-model fish species may be essential to establish molecular mechanisms underlying its role in fish reproduction.

Indian major carp, Labeo rohita (rohu), is a popular table fish widely cultured in monoculture and polyculture systems of India and adjacent countries.
In the present study, we have identified and characterized ActRIIB to determine its role in rohu reproduction. Furthermore, the expression of ActRIIB during different reproductive stages in gonadal tissue has also been detected and quantified. We have also synthesized a recombinant protein for extracellular domain of rohu ActRIIB (rECD-ActRIIB) and have produced polyclonal antibodies in order to investigate the immunohistochemical localization of the receptor gene in the gonadal tissue during the pre- and post-reproductive stages. These findings in the future would help us to comprehend the importance of the receptor gene in regulating fish reproduction, particularly during gonadal maturation and development in a more defined way.

Materials and methods

Sample preparation

Rohu carps collected from the farm of Indian Council of Agricultural Research (ICAR)-Central Institute of Freshwater Aquaculture, Bhubaneswar, India, were used for this study. Fishes were anesthetized with 300 mg/L of tricaine methane sulfonate (MS222; Sigma–Aldrich) before the collection of tissue samples. For studying tissue distribution, the testis, ovary, kidney, heart, liver, intestine, brain, pituitary and muscle were dissected. For expression studies during different reproductive stages, tissue samples were collected from pre-spawning (March–May), spawning (June–August) and post-spawning (September–October) phases of rohu. All the samples were snap-frozen in liquid nitrogen before storage and RNA extraction.

RNA extraction and cloning of ActRIIB cDNA

Total RNA extraction and cDNA synthesis were performed as described earlier (Patnaik et al. 2017). In brief, RNA was extracted using TRIzol reagent from approximately 100 mg to each tissue. Subsequently, DNA was removed by DNase I treatment followed by column purification. Reverse transcription was performed taking ~5 µg of the total RNA from testis tissue, using SuperScript® III cDNA synthesis kit (Invitrogen, USA) as per the manufacturer’s instructions. Partial cDNA sequence of rohu ActRIIB was amplified using first-strand cDNA as template. The PCR primers used for this purpose (Supplementary Table 1) were designed from conserved regions of the genes of related species available in the NCBI database (http://www.ncbi.nlm.nih.gov). The PCR amplification was carried out in 25 µl of reaction volume with the following conditions: initial denaturation at 95 °C for 5 min followed by 30 cycles with 95 °C for 30 s, 58 °C for 30 s, 72 °C for 1 min and finally 72 °C for 7 min. The amplified products were gel purified and cloned into pGEM-T Easy Vector (Promega, USA) and sequenced in ABI 3730 XL automated DNA analyser (Perkin-Elmer Applied Bio system) using SP6 and T7 primers. The verification of partial ActRIIB sequences was done using NCBI- BLAST service.

Gene-specific primers (Supplementary Table 1) were designed from the rohu partial ActRIIB sequence obtained above, and full-length cDNA of rohu ActRIIB was generated by rapid amplification of cDNA ends (RACE) with different primer sets using SMARTerTM RACE cDNA Amplification Kit (Clontech, USA) as described earlier (Patnaik et al. 2017). In brief, touchdown PCR was carried out with different sets of 3’ and 5’ primers as follows: one cycle of initial denaturation at 94 °C for 2 min followed by five cycles at 94 °C for 30 s, 64 °C for 3 min, five cycles of 94 °C for 30 s, 62 °C for 30 s, 72 °C for 3 min and another 27 cycles at 94 °C for 30 s, 60 °C for 30 s and 72 °C for 3 min. Amplified products were cloned and sequenced as mentioned above.

Bioinformatic analysis

The full-length cDNA sequence generated was blasted against the public database using NCBI-BLAST (http://www.ncbi.nlm.nih.gov/BLAST). The program ORF finder of NCBI (http://www.ncbi.nlm.nih.gov) was used for the identification of putative amino acid translation and open reading frames (ORF) followed by the validation in EXPASY translate tool. Rohu ActRIIB amino acid sequence was aligned with other ActRIIB amino acid sequences using the program BioEdit v7 (Hall 1999). SignalP4.0 server (http://www.cbs.dtu.dk/services/SignalIP-4.0/) was used to predict signal peptide of rohu ActRIIB. TMPred (http://www.ch.embnet.org/software/TMPRED) and Protter (http://wlab.ethz.ch/prott...
er/start/) were used to predict transmembrane helices. Further, InterProScan (http://www.ebi.ac.uk/Tools/pfa/interproscan5/) and SMART program as implemented in ExPaSy tools (http://smart.embl-heidelberg.de/) were used to characterize the motifs and domains present in rohu ActRIIB. ScanProsite (http://www.expasy.org/tools/scanprosite/), ProtParam (http://web.expasy.org/protparam/) and NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhosK/) programs were used to predict the serine/threonine kinase active site, to determine the physicochemical properties and to detect phosphorylation sites, respectively. For the prediction of secondary structures, SOPMA (http://nhjy.hzau.edu.cn/kech/swxxx/jakj/dianzi/Bioinf7/Expasy/Expasy8.htm) was used, and PsiPred (http://bioinf.cs.ucl.ac.uk/psipred/) was used to assess the confidence level. In addition to this, we also predicted the 3D structures of kinase domain of rohu ActRIIB using SWISS-MODEL (https://swissmodel.expasy.org/), and best model was evaluated using Ramachandran plot analysis as implemented in MolProbity (http://kinemage.biochem.duke.edu). A neighbour-joining phylogenetic tree was generated following MEGA 6.06 (Tamura et al. 2013) with bootstrapping of 1000 repetitions. The program, Matrix Global Alignment Tool Program (Campanella et al. 2003), was used to deduce the similarity and identity percentage of rohu ActRIIB protein with others. Table 1 presents the accession numbers of protein sequences used in the present study.

Quantitative real-time PCR

Gonadal tissue expression pattern during different reproductive phases and tissue distribution study were carried out by quantitative real-time PCR (qRT-PCR) as described earlier (Patnaik et al. 2017) using Light Cycler® 480 II real-time PCR detection system (Roche, Germany). Reactions for expression studies were performed in triplicates using SYBR Green Real-time Master Mix II (Roche Diagnostics, Germany) at an annealing temperature of 58 °C. Possibilities of DNA contamination were excluded by taking negative control in each experiment, and determination of PCR efficiency was carried out by serial dilution. The house keeping gene β-actin was taken as a positive calibrator for normalization of target gene expression. The PCR primers used for gene expression study are presented in Supplementary Table 1.

Melting curve analysis was performed to confirm primer specificity, and agarose gel electrophoresis was carried out to check size of transcript.

Expression of Recombinant Extracellular Domain of rohu ActRIIB (rECD-ActRIIB)

The recombinant protein for the extracellular domain was produced using pET28a expression vector. Rosetta DE3 host cells harbouring the recombinant plasmid, pET28rECD-ActRIIB, was transformed and positive colony (kanamycin and chloramphenicol resistant) grown overnight in 3-ml culture tube containing Luria Bertani (LB) broth following the manufacturer’s standardized protocol. Thirty ml seed culture was grown by inoculating LB broth with 1% of overnight culture and kept in shaker at 37 °C. The overnight grown seed culture was inoculated in 1 l LB. When the culture attained an absorbance of 0.6

| Table 1 Percentage of similarity and identity of Labeo rohita ActRIIB with other species counterparts |
|---------------------------------|------|------|
| Species | Similarity (%) | Identity (%) |
| Danio rerio NM_131210.3 | 95.29 | 90.2 |
| Ctenopharyngodon idella FJ198047.1 | 97.45 | 95.88 |
| Carassius auratus AF001406.1 | 94.51 | 89.02 |
| Oncorhynchus mykiss NM_001190941.1 | 94.52 | 89.82 |
| Xenopus laevis NP_001084061 | 87.72 | 80.51 |
| Capra hircus NM_001314169.1 | 89.45 | 80.47 |
| Ovis aries JX422071.1 | 89.26 | 80.27 |
| Sus scrofa AY705387.1 | 89.45 | 80.47 |
| Gallus gallus NP_989648.1 | 90.63 | 93.59 |
| Bos taurus NM_174495.2 | 89.26 | 79.88 |
| Rattus norvegicus NM_031571.2 | 88.48 | 80.08 |
| Mus musculus M84120.1 | 88.67 | 80.27 |
| Homo sapiens AH006936.2 | 89.06 | 80.47 |
at 600 nm, the cells were induced with 1 mM IPTG for a minimum period of 4 h at 37 °C. Induced culture cells were harvested by centrifugation. The pellet obtained was washed in 20 ml of wash buffer (Tris, 50 mM, NaCl, 300 mM, pH 7.4, stock concentration, 100 mg/ml). After washing, 0.5 mg/ml lysozyme (stock 100 mg/ml) was added and incubated at room temperature in a shaker at 37 °C for 30 min followed by sonication for 10 min. The pellet obtained after centrifugation was again suspended in wash buffer and again incubated in shaker for another 30 min. The suspension was then centrifuged, and the clear supernatant was collected following protein purification.

Purification of recombinant protein (rECD-ActRIIB)

One ml Ni–NTA resin was packed in a Bio-Rad column and washed by passing 10 cv de-ionized water. The column was equilibrated by passing 20 cv equilibration buffer (50 mM Tris, pH 7.4, 8 M urea, 300 mM NaCl). The inclusion body (prepared as per the standard protocol) was solubilized in 50 mM Tris, pH 7.4, 8 M urea, 300 mM NaCl containing 10 mM imidazole. Sample was centrifuged, and the supernatant obtained was loaded onto Ni–NTA resin and incubated for 1 h. After incubation, the supernatant was allowed to pass, and the column was washed by passing 10 cv equilibration buffer with 10 mM imidazole. On column, refolding was done by passing gradient from 8 M urea to 2 M urea in 50 mM Tris, pH 7.4, 150 mM NaCl, 5% glycerol and 500 mM imidazole. The eluted fractions were analysed in SDS-PAGE, and fraction containing pure proteins were pooled and dialysed against buffer: 2 M urea, 50 mM Tris, pH 8, 150 mM NaCl and 10% glycerol. Protein was concentrated by using 3 kDa MWCO Centricon (Millipore) at 4000 rpm. The protein was kept in small aliquots at −80 °C for further use.

SDS-PAGE analysis

SDS-PAGE was carried out according to Laemmli (1970). Samples were mixed with loading buffer in the presence of 5% β-mercaptoethanol and separated in 12.5% mini gels. Protein bands were visualized by Coomassie Brilliant blue staining.

Polyclonal antibody production and validation

Polyclonal Ab against the rECD-ActRIIB peptide of rohu was raised in two rabbits, A and B, for immunohistochemical localization study in gonadal tissue of rohu during pre- and post-reproductive stages. The Ab raised was further validated by western blot and Indirect ELISA.

Western blot analysis

For antibody validation, cell lysate electrophoresed on 12% SDS-PAGE was transferred onto the nitrocellulose membrane in Western transfer buffer (25 mM Tris–Cl pH 8.3, 192 mM glycine and 10% methanol) using Bio-Rad Trans blot apparatus following Towbin et al. (1979). Pre-immune sera and third immune sera of both rabbits A and B were tested on recombinant protein (20 ng) at 1:50,000 dilutions. Five percent blocking solution skim milk powder in 1X TBST (pH, 8.0) and 1% SKM in TBST was prepared freshly. Antibodies were diluted in 1% blocking solution (~2.3 µl in 5 ml blocking solution) and shaken well for at least 15 min. The strips were soaked in methanol for 2 min. The strips were washed twice with 1X TBST for 5 min. The strips were blocked in 5% blocking solution for 15 min while shaking. The strips were washed 2 to 3 times in 1X TBST for 5–10 min. The strips were transferred on the antibody solutions for primary Ab incubation while shaking for 2 h at RT and then at 4 °C. The next day, strips were washed once in 1X TBST for 30 min, and strip blocks were made. The blocks were washed in 1X TBST for 30–45 min with twice change of TBST. TBST was discarded, and secondary Ab (HRP conjugate anti-rabbit IgG) (1:5000 dilution in 1% blocking solution) was added and incubated for exactly 1 h at RT. The blocks were washed in 1X TBST for 2–3 h with 3 to 4 changes to reduce background staining. Chemiluminescence’s solution (SuperSignal West Pico™ Chemiluminescent, Pierce), 1:1 solution A and solution B, was prepared and kept for 5 min and was mixed well and kept for 5 min. The strip blocks were soaked well in the solution for 5 min under constant shaking. The strip blocks were arranged on a Hyper film with fluorescent marks on the corner, and
transparent film was placed over it. Three exposures at 15 s, 1.5 min and 3 min were taken for observation of the band development pattern. The film was taken out and kept in developer solution and allowed to develop followed by washing in tap water and kept in fixer solution. After 5 to 10 min, the film was taken out and then washed in running water, and the film was dried. Finally, the developed film along with the strips was aligned on the fluorescent paper, and individual lanes and marker were marked.

Indirect ELISA analysis

Indirect ELISA was performed from the immune sera obtained from the immunized rabbits A and B to validate the polyclonal Ab produced. First and third immune sera of rabbit A were tested against the synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab. Similarly, first and third immune sera of rabbit B were tested against synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab. Pre-immune sera were used as control in place of primary Ab in both rabbits A and B. Plates read were taken after 15 min of enzyme substrate reaction.

Immunohistochemistry

Rohu testis and ovary collected from immature pre-reproductive and mature reproductive stages were cut into small sections and preserved in 10% NBF (neutral buffer formalin) for 18–24 h. Paraffin wax-embedded tissue blocks made were cut into serial sections in LEICA RM2125 microscope to the desired thickness of 3 microns and mounted to microscopic slides treated with Chicken/Mayer’s albumin and kept in room temperature for overnight. The slides were then deparaffinized and rehydrated by routine protocol. The slides were suspended in 3% H$_2$O$_2$, diluted in methanol and kept in humid chamber for 15 min. Heat-induced antigen retrieval was performed using the Tris–EDTA Buffer (pH 9.0) in a microwave oven for 3 min. The slides were washed three times 3 min each with 1X TBST buffer and kept in slide jar with warm Tris–EDTA buffer for antigen retrieval for 15 min at room temperature followed by again washing. The slides were blocked in boxes by Pap pen marker and then suspended in Sniper (Biocare Medical, USA) for 15 min in humid chamber in order to block and minimize background staining. The slides were washed in 1X TBST buffer, and the sections were suspended with primary antibody (polyclonal Ab raised against rECD-ActRIIB) in three dilution ratios, i.e. 1:500, 1:750 and 1:1500 (dilution in 1X PBS) and incubated for 90 min in a humidified chamber. The slides were rinsed with 1X TBST and then suspended in HRP-conjugated secondary antibody (UltraTek Anti-polyvalent Biotinylated Ab) for 10 min in humidified chamber followed by washing in 1X TBST buffer. Three hundred microliter substrate buffer (Betazoid DAB chromogen) was applied for 10 min to stain the nuclei of the cells in the sections. Then haematoxylin was added, and the slides were washed under tap water followed by rehydration in xylene for 20–30 min. Slides were mounted with DPX, and the sections were observed for immunostaining using the LEICA light microscope with digital camera. As control, primary antibodies were omitted in a few test sections in each experiment.

Data analysis

Gene expression data obtained from qRT-PCR study in triplicates, along with β-actin, was used to normalize any differences in reverse transcriptase efficiency. Relative gene expression was calculated using Pfaffl method (Pfaffl 2001) based on the threshold cycle (C$_t$) value. All data are expressed as mean ± SEM and analysed by ANOVA followed by Duncan multiple-range test using SPSS18.0 software.

Results

Molecular cloning and sequence analysis of rohu ActRIIB

Rohu ActRIIB partial cDNA (*LrActRIIB*) was synthesized from testis RNA using normal PCR that generated a sequence of 939 bp. The complete CDS of *LrActRIIB* was obtained by RACE PCR strategy that produced a sequence of 1674 bp in length (KX710215) with 27 bp of 5’ UTR and 114 bp of 3’UTR (Fig. 1). The ORF consisted of 1533 bp that translated into 510aa sequence with a molecular weight of 57.7 KDa and theoretical isoelectric point of 5.43. Comparison of *LrActRIIB* with teleost, amphibian, avian and mammalian orthologues exhibited similarity ranging from 97 to 87% showing...
Amino acid sequence alignment of LrActRIIB with other vertebrate counterparts (Supplementary Fig. 2) revealed that the gene is organized into three major domains, typical of TGF-β superfamily, including a signal peptide (SP, 1-22aa), a short extracellular domain (ECD, 27-117aa), a hydrophobic transmembrane domain (TMD, 136-158aa, Supplementary Fig. 3) and a large intracellular serine/threonine kinase domain (ICD, 188-476aa). Disulphide bonds formed by the 10 conserved cysteine residues present in rohu ActRIIB govern the folding of the ligand.

Fig. 1 Sequence information of Labeo rohita ActRIIB. The full-length nucleotide and deduced amino acid sequences of the rohu ActRIIB with numbers are represented on the right side. The start and stop codons are in bold letters. Ten conserved cysteine in extracellular domain are inside rectangular boxes. The two characteristic Ser/Thr kinase motifs are shaded in black. “D319” in bold letters is predicted to be the Ser/Thr kinase active site. “K215” as the ATP binding site is shown in circle. The amino acid sequence shaded in grey and underlined is predicted to be the nucleotide binding site. The PDZ protein binding motif is in the rectangular box.
binding domain (Fig. 1) which is in agreement with earlier reports (Greenwald et al. 1999; Lin et al. 2006; Walton et al. 2012). The characteristic HRDFKSKN (317-324aa) and GTRRYM (358-363aa) Ser/Thr kinase motifs present in the ICD region and D$_{319}$, respectively, are predicted to be the Ser/Thr kinase active sites. The characteristic ESSI motif essential for mediating functions between ActRIIs and PDZ-domain of activin receptor-interacting proteins (ARIPS) (Tsuchida et al. 2004) is present at the C-terminal end of \(Lr\text{ActRIIB} \). Further, it is predicted that KARGRFGCV (194-202aa) and K$_{215}$ are nucleotide binding site and ATP binding site, respectively. Two potential N-glycosylation sites and potential post-translational modification (PTM) sites are also found to be present in the putative transmembrane structure of the rohu ActRIIB. It is predicted to have 17 serine phosphorylation sites, 7 threonine phosphorylation sites and 4 tyrosine phosphorylation sites. Secondary structure analysis using SOPMA showed that \(Lr\text{ActRIIB} \) holds 43.33% alpha helix, 36.67% random coil, 13.98% extended strands and 6.02% beta turns (Supplementary Fig. 4). The results of the Ramachandran plot analysis of modelled 3D structure of kinase domain of \(Lr\text{ActRIIB} \) showed 92.12% in favourable region and 100% of the residues in the allowed region (Supplementary Figs. 5 and 6).

Phylogenetic analysis

The evolutionary relationship of rohu gene with other vertebrates was evaluated by constructing a neighbour-joining (NJ) tree using the protein sequences available in the public database. The tree showed two distinct clades, with teleost ActRIIBs forming one major cluster whereas higher vertebrates, i.e. mammalian ActRIIBs forming another major cluster as illustrated in Fig. 2. The teleostean clade was further sub-divided according to their habitat and family. Percentage of similarity and identity of rohu ActRIIB amino acid sequences with other species are presented in Table 1. The highest percentage of similarity and identity (97.45% and 95.88% respectively) were observed between rohu and Ctenopharyngodon idella demonstrating their high degree of relatedness.

Quantitative expression of ActRIIA mRNA during different reproductive and growth stages

Tissue distribution of ActRIIB mRNA

qRT-PCR analysis revealed the expression of ActRIIB transcript in different tissues of juvenile rohu. The expression of ActRIIB mRNA was observed in all tissues studied. The highest expression was found in the gonad and then the brain, pituitary, liver and muscle. In contrast, the expression in the intestine, heart and kidney is exceptionally low (Fig. 3A, \(P < 0.05 \)).

Expression profiling of \(Lr\text{ActRIIB} \) mRNA during different reproductive stages of rohu

Variation in expression pattern during pre-spawning, spawning and post-spawning stages was carried out. During pre-spawning phase, the expression of \(Lr\text{ActtRIIB} \) transcript in ovary is observed to be highest. Similarly, in testis during pre-spawning phase, \(Lr\text{ActtRIIB} \) expression was significantly high followed by a remarkable decline during spawning and post-spawning stages. The expression profile of \(Lr\text{ActRIIB} \) in the

![Fig. 2 Phylogenetic relationship of \(Labeo rohita \) ActRIIB. The evolutionary relationship with other ActRIIB protein counterparts was analysed with Mega 6.06 program by bootstrap analysis using neighbour-joining with 1000 replicates](image)
Expression and purification of recombinant extracellular domain of LrActRIIB protein (rECD-ActRIIB)

The recombinant protein, i.e. extracellular domain of LrActRIIB of 113aa, was synthesized and expressed in pET28a vector. The theoretical molecular weight and pI were estimated to be 14.04 kDa and 4.73 kDa, respectively. For the screening of the expressed protein, the supernatant and the pellet isolated from induced cells were run on SDS-PAGE, and the protein of approximately similar molecular weight to the estimated value was found in the supernatant as shown in Fig. 4A. The isolated protein was purified on Ni–NTA column, and column refolding was done by passing gradient from 8 M urea to 2 M urea in 50 mM Tris, pH 7.4 and 300 mM NaCl. After the final wash, the protein was eluted with 10 cv elution buffer, 2 M urea, 50 mM Tris, pH 7.4, 150 mM NaCl,

![Fig. 3](image1) A Tissue distribution of ActRIIB transcript in juvenile rohu. Relative expression of ActRIIB mRNA in various tissues of rohu with kidney as the calibrator. Values are mean ± SEM (n = 3 for each sample). Bars with different letters show significant differences. B Expression analysis of ActRIIB transcript in rohu gonads during different reproductive phases (pre-spawning, spawning, post-spawning). Relative expression is measured in folds with β-actin taken as the reference. Values are mean ± SEM (n = 6 for each sample)

![Fig. 4](image2) A SDS-PAGE (12%) analysis of Rosetta DE3 cells harbouring pET28a for rECD-ActRIIB expression. The arrow points towards expressed rECD (~14 kDa) (1, pellet; 2, supernatant; and 3, marker). B Final pooled purified protein in a single band (1, marker, and 2, pooled)
5% glycerol, 500 mM imidazole and fractions containing pure protein were pooled and dialysed against buffer. 2 M urea, 50 mM Tris, pH 8, 150 mM NaCl and 10% glycerol as shown in Fig. 4B.

Production and validation of polyclonal antibody against rECD-ActRIIB peptide

Polyclonal Ab against the rECD-ActRIIB peptide was produced for immunohistochemical study in gonadal tissue of rohu during pre-spawning and spawning stages. Indirect ELISA was performed from the immune sera obtained from the immunized rabbits A and B to validate the polyclonal Ab produced. The first immune sera of rabbit A tested against the synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab, obtained a value of 1.176 OD at 450 nm. The third immune sera of rabbit A, also tested against synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab, obtained a value of 1.215 OD at 450 nm. Similarly, the first immune sera of rabbit B, tested against synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab, obtained a value of 1.056 OD at 450 nm. The third immune sera of rabbit B, tested against synthesized antigen at 200 ng, at 1:5000 dilution of primary Ab, obtained a value of 1.174 OD at 450 nm as shown in Fig. 5A. The third immune sera of rabbit A were purified and validated by indirect ELISA. Protein A purified Ab (200 ng), tested against 200 ng of antigen, obtained a value of 2.572 OD at 450 nm as shown in Fig. 5B. Pre-immune sera were used as control in place of primary Ab at 1:5000 dilutions. The Ab raised was further validated by western blot analyses of the immune sera derived from the two immunized rabbit, resulting in a single band in the blot with an apparent molecular weight slightly higher than that of the calculated weight of ~14 kDa as shown in Fig. 5C. Besides western blot, the purified Ab was further used for immunohistochemical localization study in rohu gonadal tissue during reproductive stages.

Immunohistochemical localization study in gonadal tissue of rohu during pre-spawning and spawning stages

In the pre-vitellogenic ovary, the cytoplasm of oogonia and the primary oocytes displayed strong immunoreactivity of ECD-ActRIIB (Fig. 6A, i–ii). As ovarian maturity progressed, follicle cells (granulosa) surrounding the oocyte showed weak immunoreactivity. Also, specific immunostaining in the follicular cell layer of vitellogenic oocytes and the nuclei (germinal vesicles) were completely negative with no staining (Fig. 6A, iv–vi). In addition, the cytoplasm of oocytes that started to accumulate yolk inclusions gradually lost its immunoreactivity, with the reaction intensity being inversely proportional to the amount of yolk globules in the oocyte. The oocytoplasm of mature oocyte was weak for ActRIIB, whereas immunostain was found in zona pellucida region and follicular cell layer. The ECD-ActRIIB Ab immunoreactivity in the pre-vitellogenic stage was stronger, and the

![Fig. 5](image-url)
immunostain reduced with maturation of oocyte. In immature male rohu during spermatogenesis in pre-spawning stage, the testis was filled with primary and secondary spermatocyte and spermatids, showing strong immunoreactivity to ECD-ActRIIB Ab. However, during spawning stage, the testis was filled with spermatozoas and was in the stage of spermiating. The immunoreactivity reduced with maturation, and the germ cells in the stage of spermiation showed weak immunostain than pre-spawning stage as noticed in a similar pattern in the oocytes (Fig. 6B).

Discussion

In the present study, ActRIIB of rohu has been cloned and characterized. ActRIIB cDNA of rohu consists of 510 aa with 89% to 95% similarity to its vertebrate counterparts. The characterized protein in rohu possesses the typical domain architecture of TGF-β type II receptors with conserved cysteine residues in the activin receptor-specific extracellular domain essential for ligand binding (Kingsley 1994; Josso and di Clemente 1997; Shav-Tal et al. 2001). Moreover, Ser/Thr kinase motifs in ICD appeared to be well
conserved. The protein sequence, “KARGRFGCV”, for nucleotide binding is conserved for type II receptors of TGF-β superfamily. This is striking to observe such high level of structural conservation through evolution, suggesting similar functional role of the gene in fishes including rohu. The PDZ motif essential for receptor binding to PDZ protein for interaction with ARIPS for receptor internalization is conserved for type II receptors. The COOH-terminal sequence of rohu ActRIIA is E–S–S–L (Patnaik et al. 2017), and the COOH-terminal sequence of \(Lr \)ActRIIB is E–S–S–I, both of which are concordant with a class I consensus PDZ binding motif XSX (V/I/L) (where X is any amino acid). Among the various receptor, ActRIIs from different species contain a PDZ binding motif at their COOH-terminus (Shoji et al. 2000; Matsu-zaki et al. 2002; Tsuchida et al. 2004). The structural dissimilarity might suggest difference in their receptor functioning upon different ligand interaction. The predicted kinase domain of rohu ActRIIB is of good quality as revealed from the Ramachandran plot analysis and is comparable to the predicted structure of kinase domain of rohu ActRIIA as reported earlier (Patnaik et al. 2017). Phylogenetic analysis showed that the receptor gene is evolutionarily conserved across the vertebrate lineage, signifying that it might share common biological functions with its other counterparts. \(Lr \)ActRIIB formed a major cluster with its counterparts. The structural similarity/identity value observed between rohu and its counterparts may suggest structural and functional similarity among them.

Functional involvement of ActRIIB in diverse biological processes was evident form ubiquitously expression in reproductive as well as non-reproductive tissues. However, high expression level of the gene in the gonad, brain, pituitary, muscle and liver might impli cate its potential role in governing physiological traits like reproduction and body growth. Recently, we have also examined the expression of ActRIIA gene in rohu, demonstrating its importance in regulating gonadal maturation and skeletal muscle development (Patnaik et al. 2017). The results of the present study are also in agreement with previous reports in other vertebrates including teleosts (Carpio et al. 2009; Otto and Patel 2010; Østbye et al. 2007). A comparative expression profiling of the transcript has been done in the gonadal tissue of rohu during the reproductive cycle, i.e. pre-spawning, spawning and post-spawning stages. In agreement with previous studies, high level of expression of rohu ActRIIB mRNA in gonad during pre-spawning stage demonstrated its significant role in stimulating oocyte maturation and spermatogenesis (Wu et al. 2000; Van den Hurk and Van de Pavert 2001; Pangas et al. 2002; Silva et al. 2004). However, decreasing \(Lr \)ActRIIB transcript expression towards the post-spawning stage might suggest the effect of feedback inhibition of follicular activin signalling by antagonists like inhibin to decrease FSH release from pituitary as described in earlier reports (Yuen and Ge 2004; Cheng et al. 2007).

Besides qRT-PCR studies showing high expression levels of the receptor gene in gonadal tissue, we also determined the spatial distribution of the immunoreactive ECD-ActRIIB peptide in the ovary and testis of rohu by immunohistochemical study. In the pre-vitellogenic and vitellogenic ovary of rohu, the cytoplasm of oogonia and primary oocytes exhibited strong immunoreactivity of ActRIIB peptide. However, the immunoreactivity significantly decreased and was eventually found to be localized in the follicular cell layer and zona pellucid region when the oocytes became fully mature. This result signifies its role in regulating oocyte maturation as reported in earlier studies (Wu et al. 2000; Cheng et al. 2007). The decrease in intensity of immunoreactivity suggests that ActRIIB mRNA expression may decrease with the development of oocytes. Alternatively, this could be due to the dilution of a constant amount of the mRNA as oocytes become larger. This result is consistent with the reports of previous studies in zebrafish (Garg et al. 1999) as well as in mammals (Cameron et al. 1994). In the localization studies of ECD-ActRIIB peptide in male rohu, strong and intense immunoreactivity was found in spermatids and spermatocytes of immature testis. However, in mature rohu, immunosignals were particularly evident towards the periphery of the testis but with reduced immunostaining centrally. This result is in accordance with previous studies as reported in mammals (Anderson et al. 2002), suggesting its role in regulating spermatogenesis in rohu. In correlation with the present localization study of ECD-ActRIIB peptide in rohu, ActRII and ActRIIB mRNA have also been detected in bovine and rat (Cameron et al. 1994; Ethier et al. 1994; Drummond et al. 2002). Thus, we can conclude that the receptor gene might possess
potential role in regulating reproductive physiology of rohu.

Conclusion

The present study reports for the first time the characterization of ActRIIB gene in rohu and its spatial and stage-specific expression during different reproductive phases. Furthermore, recombinant protein, \(Lr\text{ActRIIB-ECD} \), found to be localized in the gonadal tissues of rohu provides the evidence of its potential in promoting oocyte maturation and spermatogenesis. Thus, the information obtained from this study will be of interest for further research towards understanding great details of ActRIIB involvement in teleost reproductive system.

Acknowledgements The authors are grateful to the Department of Biotechnology, Government of India, New Delhi, and ICAR-Central Institute of Freshwater Aquaculture for financial support. The authors are thankful to Dr. K. D. Mahapatra and Dr. P. Routray, Principal Scientists, ICAR-CIFA, for generously providing a part of the experimental samples.

Author contribution PD, SD and PJ conceived the project; JNS performed animal rearing and tissue sampling; SP, MM and LS carried out the laboratory experiments; AB and PKM carried out the bioinformatics analysis; SP, LS, PD, SD and PJ wrote and reviewed the MS. All authors read and approved the manuscript.

Data availability The ActRIIB cDNA sequence was submitted in the GenBank with accession number KX710215.

Declarations

Ethics approval All handling of fish was carried out following the guidelines for control and supervision of experiments on animals by the Government of India and approved by Institutional Animal Ethics Committee (AEC) of ICAR-CIFA.

Consent to participate Not applicable.

Conflict of interest The authors declare no competing interests.

References

Anderson RA, Cambray N, Hartley PS, McNeilly AS (2002) Expression and localization of inhibin alpha, inhibin/activin betaA and betaB and the activin type II and inhibin beta-glycan receptors in the developing human testis. Reprod 123(6):779–788. https://doi.org/10.1530/repop.0.1230779

Attisano L, Wrana JL, Cheifetz S, Massague J (1992) Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell 68:97–108. https://10.1016/0092-8674(92)90209-u

Cameron VA, Nishimura ER, Mathews LS, Lewis KA, Sawchenko PE, Vale WW (1994) Hybridization histochemical localization of activin receptor subtypes in rat brain, pituitary, ovary, and testis. Endocrinology 134(2):799–808. https://doi.org/10.1210/endo.134.2.8299574

Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:29. https://doi.org/10.1186/1471-2105-4-29

Carpio Y, Acosta J, Morales R, Santisteban Y, Sanchez A, Estrada MP (2009) Regulation of body mass growth through activin type IIB receptor in teleost fish. Gen Comp Endocrinol 160:158–167. https://doi.org/10.1016/j.jcen.2008.11.009

Cheng FYG, Yuen CW, Ge W (2007) Evidence for the existence of a local activin– follistatin negative feedback loop in the goldfish pituitary and its regulation by activin and gonadal steroids. J Endocrinol 195:373–384. https://doi.org/10.1677/JOE-07-0265

Dijke PT, Miyazono K, Heldin CH (1996) Signaling via hetero-oligomeric complexes of type I and type II serine/threonine kinase receptors. Curr Opin Cell Biol 8:139–145.

DiMuccio T, Mukai ST, Clelland E, Kohli G, Cuartero M, Wu T, Peng C (2005) Cloning of a second form of activin-betaA cDNA and regulation of activin-betaA subunits and activin type II receptor mRNA expression by gonadotropin in the zebrafish ovary. Gen Comp Endocrinol 143:287–299. https://doi.org/10.1016/j.jcen.2005.04.003

Drummond AE, Le MT, Ethier JF, Dyson M, Findlay JK (2002) Expression and localization of activin receptors, Smads, and βglycan to the postnatal rat ovary. Endocrinology 143(4):1423–1433. https://doi.org/10.1210/endo.143.4.8728

Ethier JF, Houde A, Lussier JG, Silversides DW (1994) Bovine activin receptor type II cDNA: cloning and tissue expression. Mol Cell Endocrinol 106:1–8. https://doi.org/10.1016/j.jcen.2005.04.003

Funkenstein B, Krol E, Esterin E, Kim YS (2012) Structural and functional characterizations of activin type 2B receptor (acvr2b) ortholog from the marine fish, gilthead sea bream, Sparus aurata: evidence for gene duplication of acvr2b in fish. J Mol Endocrinol 49(3):175. https://doi.org/10.1530/JME-12-0075

Garg RR, Bally-Cuif L, Lee SE, Gong Z, Ni X, Hwang CL, Peng C (1999) Cloning of zebrafish activin type IIB receptor (ActRIIB) cDNA and mRNA expression of ActRIIB in embryos and adult tissues. Mol Cell Endocrinol 153(1–2):169–181. https://doi.org/10.1016/s0303-7207(99)00044-1

Goebel EI, Corpin RA, Hinck CS, Czepnik M, Castonguay R, Grencha R, Boisvert A, Milkossy G, Fullerton PT, Matzuk MM, Idone VJ, Economides AN, Kumar R, Hink...
AP, Thompson TB (2019) Structural characterization of an activin class ternary receptor complex reveals a third paradigm for receptor specificity. PNAS 116(31):15505–15513. https://doi.org/10.1073/pnas.1906253116

Greenwald J, Fischer WH, Vale WW, Choe S (1999) Three-finger toxin folds for the extracellular domain of the type II activin receptor serine kinase. Nat Struct Biol 6:18–22. https://doi.org/10.1038/4887

Hall TA (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–8. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

Huang F, Chen YG (2012) Regulation of TGF-β receptor activity. Cell Bio Sci 2:9. https://doi.org/10.1186/1475-2872-1058-1018

Kosso N, di Clemente N (1997) Serine/threonine kinase receptors and ligands. Curr Opin Genetics Dev 7(3):371–377. https://doi.org/10.1016/s0959-437x(97)80151-7

Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8(2):133–146. https://doi.org/10.1101/gad.8.2.133

Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S (2012) Molecular characterization of rat transforming growth factor- β typeII receptor. Biochem Biophys Res Commun 1074/2010. https://doi.org/10.1016/j.bbrc.2010.01.082

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

Lin SJ, Lerch TF, Cook RW, Jardetzky TS, Woodruff TK (2006) The structural basis of TGF-β, bone morphogenetic protein and activin ligand binding. Reproduction 132(2):179–190. https://doi.org/10.1530/reprod.1.01072

Mateszuk T, Hanai S, Kishi H, Liu Z, Bao Y, Kituchi A, Tsuchida K, Nakatani M, Matsuzaki T, Yamakawa N, Liu Z, Nakamura T, Sugino H (2000) Identification and characterization of a PDZ protein that interacts with activin type II receptors. J Biol Chem 275(8):5485–5492. https://doi.org/10.1074/jbc.275.8.5485

Silva JR, Van den Hurk R, Van Tol HT, Roelen BA, Figueiredo JR (2004) Gene expression and protein localization for activin-A, follistatin and activin receptors in goat ovaries. J Endocrinol 183(2):405–415. https://doi.org/10.1677/joe.1.015756

Tamura K, Stecher G, Peterson D, Filipski A, Kurotsumi S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/ms319

Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354. https://doi.org/10.1073/pnas.76.9.4350

Tsuchida K, Lewis KA, Mathews LS, Vale WW (1993) Molecular characterization of rat transforming growth factor- β typeII receptor. Biochem Biophys Res Commun 191(3):790–795. https://doi.org/10.1016/0006-291x.1993.00126

Tsuchida K, Nakatani M, Matsuzaaki T, Yamakawa N, Liu Z, Bao Y, Arai KY, Murakami T, Takehara Y, Kurisaki A, Sugino H (2004) Novel factors in regulation of activin signaling. Mol Cell Endocrinol 225(1):1–8. https://doi.org/10.1016/j.mce.2004.02.006

Van den Hurk R, Van de Pavert SA (2001) Localization of an activin/activin receptor system in the porcine ovary. Mol Reprod Dev 60(4):463–471. https://doi.org/10.1002.mrd.1111

Wu T, Patel H, Mukai S, Melino C, Garg R, Ni X, Chang J, Peng C (2000) Activin, inhibin, and follistatin in zebrafish ovary: expression and role in oocyte maturation. Biol Reprod 62(6):1585–1592. https://doi.org/10.1095/biolreprod.62.6.1585
Wu TC, Jih MH, Wang L, Wan YJ (1994) Expression of activin receptor II and IIB mRNA isoforms in mouse reproductive organs and oocytes. Mol Reprod Dev 38:9–15. https://doi.org/10.1002/mrd.1080380103

Yamashita H, Dijke PT, Franzen P, Miyazono K, Heldin CH (1994) Formation of hetero-oligomeric complexes of type I and type II receptors for transforming growth factor-beta. J Biol Chem 269(31):20172–20178

Yuen CW, Ge W (2004) Follistatin suppresses FSH-beta but increases LH-beta expression in the goldfish – evidence for an activin-mediated autocrine/paracrine system in fish pituitary. Gen Comp Endocrinol 135:108–115. https://doi.org/10.1016/j.ygcen.2003.08.012

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.