T Lymphocyte Subsets and Cytokines in Rats Transplanted with Adipose-Derived Mesenchymal Stem Cells and Acellular Nerve for Repairing the Nerve Defects

Liang-fu Jiang, M.D., Ph.D.,¹ Ou Chen, M.D.,² Ting-gang Chu, M.D.,³ Jian Ding, M.D.,³ Qing Yu, M.D., Ph.D.¹
Department of Hand & Plastic Surgery,¹ The Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
Department of Orthopaedics,² Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Zhejiang, China

Objective: The aim of this study was to explore the immunity in rats transplanted with adipose-derived mesenchymal stem cells (ADSCs) and acellular nerve (ACN) for repairing sciatic nerve defects.

Methods: ADSCs were isolated from the adipose tissues of Wistar rats. Sprague-Dawley rats were used to establish a sciatic nerve defect model and then divided into four groups, according to the following methods: Group A, allogenic nerve graft; Group B, allograft with ACN; Group C, allograft ADSCs+ACN, and Group D, nerve autograft.

Results: At the day before transplantation and 3, 7, 14, and 28 days after transplantation, orbital venous blood of the Sprague-Dawley rats in each group was collected to detect the proportion of CD3⁺, CD4⁺, and CD8⁺ subsets and the serum concentration of IL-2, TNF-α and IFN-γ using enzyme-linked immunosorbent assay (ELISA). At each postoperative time point, the proportion of CD3⁺, CD4⁺, and CD8⁺ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ in group C were all near to those in group B and group D, in which no statistically significant difference was observed. As compared with group A, the proportion of CD3⁺, CD4⁺, and CD8⁺ subsets and the serum concentration of IL-2, TNF-α, and IFN-γ were significantly reduced in group C (p<0.05).

Conclusion: The artificial nerve established with ADSCs and ACN has no obvious allograft rejection for repairing rat nerve defects.

Key Words: Neural transplantation · Immunity · T cell subsets · Cytokines.

INTRODUCTION

Peripheral nerve defect is a common disabling disease clinically. To date, the most common and effective treatment for it is autologous nerve transplantation. However, there are still a lot of disadvantages existing in this treatment, such as the donor site dysfunction, neuroma formation, limited sources, the size being difficult to match and so on.¹ Allogenic transplantation has a wide range of sources but great immunological rejection. The histocompatibility complex existing on the surface of the nerve cells contributes to the antigens of the immunological rejection.⁴⁶ Hudson et al.⁶ reported that chemical extraction methods can remove the membrane and medulla sheath of nerve tissues, so as to eliminate the antigens including the histocompatibility complex, which can greatly reduce the immune response of the nerve graft and retain the base pipe membrane and lamellar structure of the nerve cells, providing a good bionic channel for nerve regeneration. However, a body of experiments shows that a simple transplantation with acellular nerve (ACN) cannot achieve the similarly satisfactory clinical results with autologous nerve graft. It probably results from the removal of Schwann cells.⁲² Adipose-derived mesenchymal stem cells (ADSCs) are a class of stem cells with multipotent differentiation capacity with little or no immunological rejection, because their surfaces express less or no major histocompatibility complex (MHC)-II. They can be oriented to differentiate into Schwann cells and then promote the peripheral nerve regeneration, which has been proved by in vivo and in vitro studies.⁴⁶⁷,¹⁵,¹⁶,²⁵ In this study, an artificial neural repair of rat sciatic nerve defects constructed with ADSCs and ACN was used to observe the proportion of T lymphocyte subsets and cytokine changes, so as to explore the immunological rejection of trans-
placation with ADSCs and ACN and provide an immunological evidence for its clinical application.

MATERIALS AND METHODS

Animals

32 healthy male Sprague-Dawley (SD) rats and 12 healthy male Wistar rats, weighing 150 g to 200 g, were offered by the Experimental Animal Center of Wenzhou Medical University, Zhejiang, China. SD rats were used as the recipients of nerve transplantation and Wistar rats were used as the donors of ADSCs and ACN.

Preparation for adipose-derived mesenchymal stem cells

After Wistar rats (n=8) were intraperitoneally anesthetized with 10% chloral hydrate (0.3 mL/100 g), the bilateral inguinal fat pads of the rats were isolated and cut into pieces. Then double volumes of 0.1% collagenase I were added into the tissue fragments and incubated at 37°C for 60 min (shaking it in every 10 minutes). The digestion was stopped by the equal volume of DMEM/F12 medium containing 15% fetal bovine serum (FBS). After filtered with a 200 mesh filter, the filtrate was centrifuged for 10 minutes at 1000 r/min. Removing the supernatant, the precipitate was resuspended in DMEM/F12 containing 15% FBS. 1×10^5 cells were seeded in the 25 cm2 flasks and incubated in a CO2 incubator. The medium was changed in every 48h. As the cells adhered and grew to 80–90% of confluence, they were passaged in a ratio of 1 : 3. The third passage was observed under an inverted microscope and then harvested for detection of the surface markers CD44, CD90, and CD45 by flow cytometry.

Preparation for acellular nerve cells

ACN was also donated by the 8 Wistar rats after they donated the adipose tissues. Under the sterile conditions, about 2.0 cm bilateral sciatic nerves were cut out. Following the methods described by Hudson et al., the nerves were successively treated with distilled water, sulfobetaine-10 (SB-10), sulfobetaine-16 (SB-16) and Triton-200 to extract the acellular nerve. Part of the nerves was used for hematoxylin-eosin staining (HE) staining and electron microscopic scanning.

Establishment of artificial nerves with ADSCs and ACN

ADSCs were prepared into 1.0×10^7 mL with DMEM/F12 medium containing 15% FBS and 1% penicillin-streptomycin. Then 10 μL ADSCs suspension were injected into the ACN with micro-syringe, every 2 μL and every other 3 mm to each injection point, then incubated in the 5% carbon dioxide incubator at 37°C overnight to construct artificial nerve.

Establishment of nerve defects rat model and treatment

32 SD rats were intraperitoneally anesthetized with 10% chloral hydrate (0.4 mL/100 g) and then 1.5 cm of the right sciatic nerve was cut out under the piriformis to make sciatic nerve defect model. Then the rats were randomly divided into four groups (n=8) and underwent immediate nerve transplantation, secured with a 8-0 suture according to the following programs:
group A was treated with allogenic nerve; group B was treated with ACN extracted chemically; group C was treated with artificial nerves constructed with ADSCs and ACN (Fig. 1), and group D was treated with nerve autograft.

Flow cytometry assay
At the day before the transplantation and 3, 7, 14, and 28 days after the transplantation, orbital venous blood of SD rats in each group was collected to detect the proportion of CD3⁺, CD4⁺, and CD8⁺ subsets using flow cytometry. 7 μL anti-rat CD3, CD4, and CD8 antibodies were added into 50 μL orbital venous blood, respectively. After the cells were mixed thoroughly and incubated in dark for 30 min, 600 μL solution A (0.12% formic acid, prepared before use) was added into each tube and mixed thoroughly. 15 s later, solution B (NaCl 14.5 g, Na₂SO₄ 31.3 g, and Na₂CO₃ 6.0 g in 1000 mL distilled water, prepared before use) was also added. After mixed, cells were centrifuged at 1500 rpm for 5 min. The cells were washed with PBS buffer once again and centrifuged for 5 minutes. Then the labeled cells were resuspended in 500 μL PBS buffer and detected on a FACSArial digital cell sorter (BD Biosciences Pharmingen, San Jose, CA, USA).

Enzyme-linked immunosorbent assay
The serum concentration of IL-2, TNF-α, and IFN-γ of rats in each group at the day before the transplantation and 3, 7, 14, and 28 days after the transplantation were determined using the Ready-SET-Go ELISA kits (Lianke Bio Co. Ltd., Hangzhou, China), following the manufacturer’s instructions.

Statistical analysis
Data were expressed as mean±standard deviation and analyzed using SSPS16.0 statistical software. The pairwise comparisons between groups were carried out using LSD t-test. \(p<0.05 \) was considered statistically significant.

RESULTS
ADSCs
ADSCs showed fibroblast-like cells under an inverted microscope. Their phenotypes were CD45 (-), 90 (+), and 44 (+) (Fig. 2).

ACN
The ACN extracted chemically showed milky white and intact shape. As stained with hematoxylin-eosin, ACN revealed intact nerve membrane but its components had disappeared. As scanned by a scanning electron microscopy, medulla sheath and Schwann cells could not be observed any more. However, the three-dimensional structure of the acellular nerve cells was kept better, as observed with a transmission electron microscopy (Fig. 3).

The proportion of CD3⁺, CD4⁺, and CD8⁺ subsets
The proportion of CD3⁺, CD4⁺, and CD8⁺ subsets of group C...
at 3, 7, 14, and 28 days after the transplantation increased slightly, as compared with those before the transplantation, but there was no significant difference ($p>0.05$). They were also not significantly different from those of group B and group D ($p>0.05$). The proportion of CD3⁺, CD4⁺, and CD8⁺ subsets of group A began to increase at 3 days after the transplantation, but showed no significant difference from those before the transplantation. However, they increased continually and reached a peak at 7–14 days after the transplantation and then decreased at 28 days after the transplantation, showing a significant difference from those before the transplantation. The postoperative proportion of CD3⁺, CD4⁺, and CD8⁺ subsets of group A were also significantly different from those of group B, C, and D ($p<0.05$, Table 1–5) (Fig. 4).

Serum concentration of IL-2, TNF-α, and IFN-γ

The serum concentration of IL-2, TNF-α, and IFN-γ of group C at 3, 7, 14, and 28 days after the transplantation showed similar increasing trend with the proportion of T lymphocyte subsets as compared with those before the transplantation ($p>0.05$) or those of group B and group D ($p>0.05$, respectively). IL-2, IFN-γ, and TNF-α in group A began to increase at 3 days after the transplantation, in which IL-2 level showed significant difference ($p<0.05$) but IFN-γ and TNF-α showed no significant difference ($p>0.05$), as compared with those before the transplantation. IL-2, IFN-γ, and TNF-α also increased to a peak at 7–14 days after the transplantation. IL-2, IFN-γ, and TNF-α were also not significantly different from those before the transplantation ($p>0.05$).

Groups	CD3⁺ (%)	CD4⁺ (%)	CD8⁺ (%)	IL-2 (pg/mL)	IFN-γ (pg/mL)	TNF-α (pg/mL)
Nerve allograft	57.90±1.36	32.89±1.23	17.69±1.17	34.82±1.81	110.51±4.35	55.69±1.86
Acellular nerve graft	57.92±1.62	33.31±1.60	17.70±1.84	34.43±1.32	107.37±4.97	56.43±1.83
Artificial nerve graft	57.06±1.49	32.90±1.41	18.05±1.55	34.53±1.35	108.55±5.99	54.85±2.51
Nerve autograft	57.36±1.36	32.75±1.32	17.39±1.76	35.08±2.24	108.65±5.27	55.89±1.74

IL-2 : interleukin-2, TNF-α : tumor necrosis factor-α, IFN-γ : interferon-γ

Groups	CD3⁺ (%)	CD4⁺ (%)	CD8⁺ (%)	IL-2 (pg/mL)	IFN-γ (pg/mL)	TNF-α (pg/mL)
Nerve allograft	57.90±1.36	32.89±1.23	17.69±1.17	34.82±1.81	110.51±4.35	55.69±1.86
Acellular nerve graft	57.92±1.62	33.31±1.60	17.70±1.84	34.43±1.32	107.37±4.97	56.43±1.83
Artificial nerve graft	57.06±1.49	32.90±1.41	18.05±1.55	34.53±1.35	108.55±5.99	54.85±2.51
Nerve autograft	57.36±1.36	32.75±1.32	17.39±1.76	35.08±2.24	108.65±5.27	55.89±1.74

IL-2 : interleukin-2, TNF-α : tumor necrosis factor-α, IFN-γ : interferon-γ
on the surface of all of the mature T cells, which is also an im-
portant indicator for the body's transplantation immunity. CD3 antigen is expressed
inhibitor/killer T cells, whose balance is an important indicator to
clude cytotoxic T cells (CTL) and T helper cells (THL). CTL
The effector cells of cell-mediated immunological response in-
organ transplantation, which is a typical cell-mediated rejection.
7 to 14 days after the transplantation and then declined after 28
days, which were all significantly different from those before
transplantation (p<0.05). Similarly, they were also significantly
higher than those of group B, C, and D (p<0.05).

DISCUSSION

The counts and types of lymphocyte subsets in vivo are sensi-
tive indicators to reflect the graft rejection and immune status
in vivo. Normally, the number of T lymphocyte and its subsets
are relatively stable in the peripheral blood. However, if there
were immune dysfunction or graft rejection happening, the
number of T lymphocyte would increase accordingly. CD4+ T
cells are helper/inducer T lymphocytes and CD8+ T cells are in-
hibitor/killer T cells, whose balance is an important indicator to
reflect the transplantation immunity. CD3 antigen is expressed
on the surface of all of the mature T cells, which is also an im-
portant indicator for the body’s transplantation immunity. Arti-
ficial nerves constructed with Schwann cells that orientedly
induced from acellular nerve and ADSCs by tissue engineering
are non-vascularized before they are transplanted. Its transplan-
tation differs from the allograft rejection of vascularized solid
nerve and ADSCs were not significantly different in immuno-
ological rejection, suggesting that topical application of ADSCs
in vivo can induce a host immune tolerance, which may
be able to survive in vivo to induce a host immune tolerance, which may
have immunomodulatory effects on T lymphocytes (105), B cells (107),
and natural killer cells (108), but rarely cause immunological rejec-
tion (109). Since neither acellular nerve nor ADSCs have signifi-
cant immunogenicity, co-graft of acellular nerve and ADSCs
does not cause immunological rejection. Kuo et al. (11) found that
ADSCs can inhibit the proliferation of T cells. The infusion of
donor ADSCs in combination with other immunosuppressive
therapy can significantly prolong the survival time of allogenic
limb transplantation and reduce the tissue rejection. However,
if the topical application of allogeneic ADSCs would affect the
immunological response of the host is rarely reported yet. In this
study, the acellular nerve graft and the co-graft with acellular
erve and ADSCs were not significantly different in immuno-
logical rejection, suggesting that topical application of ADSCs
has no obvious effect on the host immunological response. The
weakness of this experiment is that we didn’t trace the trans-
planted ADSCs to show it survived in the host or differentiated
into Schwann-like cells? However, there were reports show the
transplanted ADSCs survived for a long time. Santiago et al. (18)
reported that human uASCs enhanced peripheral nerve regen-
eration and decreased muscular atrophy when transplanted into
caprolactone nerve guides to repair a 6-mm nerve gap in
athymic rats; cells survived up to 12 weeks after transplantation
but did not differentiate into Schwann cells.

Fig. 4. The proportion of CD3+, CD4+, and CD8+ subsets and the serum
concentration of IL-2, IFN-γ, and TNF-α. IL-2 : interleukin-2, TNF-α :
tumor necrosis factor-α, IFN-γ : interferon-γ.
CONCLUSION

In summary, artificial nerve graft established with ADSCs and acellular nerves for repairing the rat sciatic nerve defects would not induce a significant allograft rejection. It will be safe to be used as a new artificial nerve for clinical application.

• Acknowledgements

This work was supported by grants from the Natural Science Foundation of Zhejiang Province, China (Y2100253) and the Science and Technology Program of Wenzhou City, Zhejiang Province, China (Y20130203).

References

1. Bain JR, Mackinnon SE, Hudson AR, Falk RE, Falk JA, Hunter DA: The peripheral nerve allograft: an assessment of regeneration across nerve allografts in rats immunosuppressed with cyclosporin A. Plast Reconstr Surg 82: 1052-1066, 1988
2. Comoli P, Ginevri F, Maccario R, Avanzini MA, Marconi M, Groff A, et al.: Human mesenchymal stem cells inhibit antibody production induced in vitro by allostimulation. Nephrol Dial Transplant 23: 1196-1202, 2008
3. de Ruiter GC, Spinner RI, Yasemski MJ, Windebank AJ, Mallesy MJ: Nerve tubes for peripheral nerve repair. Neurosurg Clin N Am 20: 91-105, vii, 2009
4. Gao X, Wang Y, Chen J, Peng J: The role of peripheral nerve ECM components in the tissue engineering nerve construction. Rev Neurosci 24: 443-453, 2013
5. Hong SJ, Traktuev DO, March KL: Therapeutic potential of adipose-derived stem cells in vascular growth and tissue repair. Curr Opin Organ Transplant 15: 86-91, 2010
6. Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, et al.: Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 10: 1641-1651, 2004
7. Jiang L, Zhu JK, Liu XL, Xiang P, Hu J, Yu WH: Differentiation of rat adipose tissue-derived stem cells into Schwann-like cells in vitro. Neuroreport 19: 1015-1019, 2008
8. Kang HG, Zhang D, Degauque N, Mariati C, Alexopoulos S, Zheng XX: Effects of cyclosporine on transplant tolerance: the role of IL-2. Am J Transplant 7: 1907-1916, 2007
9. Kingham PJ, Kalbermatten DE, Mahay D, Armstrong SJ, Wiberg M, Terenghi G: Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207: 267-274, 2007
10. Klyushnenkova E, Mosca JD, Zernetskina V, Majumdar MK, Beggs KL, Simonetti DW, et al.: T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 12: 47-57, 2005
11. Koo JR, Chen CC, Goto S, Lee IT, Huang CW, Tsai CC, et al.: Modulation of immune response and T cell regulation by donor adipose-derived stem cells in a rodent hind-limb allotransplant model. Plast Reconstr Surg 126: 661e-672e, 2011
12. Krist M, Sondell M, Kanje M, Dahlin LB: Regeneration in, and properties of, extracted peripheral nerve allografts and xenografts. J Plast Surg Hand Surg 45: 122-128, 2011
13. Lin CS, Lin G, Lue TF: Allogeneic and xenogeneic transplantation of adipose-derived stem cells in immunocompetent recipients without immunosuppressants. Stem Cells Dev 21: 2770-2778, 2012
14. Liu GB, Cheng YX, Feng YK, Pung CJ, Li Q, Wang Y, et al.: Adipose-derived stem cells promote peripheral nerve repair. Arch Med Sci 7: 592-596, 2011
15. Mackinnon SE, Dooblah VB, Novak CB, Trulock EP: Clinical outcome following nerve allograft transplantation. Plast Reconstr Surg 107: 1419-1429, 2001
16. Marconi S, Castiglione G, Turano E, Bissolotti G, Angiari S, Farinazzo A, et al.: Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Eng Part A 18: 1264-1272, 2012
17. Novak VM, Bishop DK, Boxer LP, Wood SC, Mungara AK, Cederna PS: Peripheral nerve transplantation: the role of chemical acellularization in eliminating allograft antigenicity. J Reconstr Microsurg 21: 207-213, 2005
18. Santiago LY, Clavijo-Alvarez J, Brayfield C, Rubin JP, Marra KG: Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant 18: 145-158, 2009
19. Sioud M, Mobergsladen A, Boudabous A, Flessand Y: Evidence for the involvement of galectin-2 in mesenchymal stem cell suppression of allogeneic T-cell proliferation. Scand J Immunol 71: 267-274, 2010
20. Sondell M, Lundborg G, Kanje M: Regeneration of the rat sciatic nerve into allografts made acellular through chemical extraction. Brain Res 795: 44-54, 1998
21. Siotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papaioannou M: Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24: 74-85, 2006
22. Sun XH, Che YQ, Tong XJ, Zhang LX, Feng Y, Xu AH, et al.: Improving nerve regeneration of acellular nerve allografts seeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol 29: 347-353, 2009
23. Tung TH, Mohanakumar T, Mackinnon SE: TH1/TH2 cytokine profile of the immune response in limb component transplantation. Plast Reconstr Surg 116: 557-566, 2005
24. Velásquez SY, García LF, Opelz G, Alvarez CM, Sisal C: Release of soluble CD30 after allogeneic stimulation is mediated by memory T cells and regulated by IFN-γ and IL-2. Transplantation 96: 154-161, 2013
25. Wang Y, Zhao Z, Ren Z, Zhao B, Zhang L, Chen J, et al.: Recellularized nerve allografts with differentiated mesenchymal stem cells promote peripheral nerve regeneration. Neurosci Lett 514: 96-101, 2012
26. Xu X, Jiang Y, Lu L, Gong X, Sun X, Yuan Z, et al.: A crucial role of IL-17 and IFN-γ during acute rejection of peripheral nerve xenotransplantation in mice. PLoS One 7: e34419, 2012
27. Zhang Y, Luo H, Zhang Z, Lu Y, Huang X, Yang L, et al.: A nerve graft constructed with xenogenic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials 31: 5312-5324, 2010
28. Zimmerer JM, Horni PH, Fiesinger LA, Fisher MG, Pham TA, Saklayen SL, et al.: Cytotoxic effecter function of CD4(-) and CD8(-) T cells is mediated by TNF-α/TNFβ. Transplantation 94: 1103-1110, 2012