Ferromagnetism in the Kondo-lattice model

C. Santos and W. Nolting

Lehrstuhl Festkörpertheorie, Institut für Physik,
Humboldt-Universität zu Berlin,
Invalidenstr. 110, 10115 Berlin, Germany

(Dated: October 28, 2018)

We propose a modified RKKY (Rudermann, Kittel, Kasuya, Yosida) technique to evaluate the magnetic properties of the ferromagnetic Kondo-lattice model. Together with a previously developed self-energy approach to the conduction-electron part of the model, we obtain a closed system of equations which can be solved self-consistently. The results allow us to study the conditions for ferromagnetism with respect to the band occupation n, the interband exchange coupling J and the temperature T. Ferromagnetism appears for relatively low electron (hole) densities, while it is excluded around half-filling ($n = 1$). For small J the conventional RKKY theory ($\sim J^2$) is reproduced, but with strong deviations for very moderate exchange couplings. For not-too-small n a critical J_c is needed to produce ferromagnetism with a finite Curie temperature T_C, which increases with J, then running into a kind of saturation, in order to fall off again and disappear above an upper critical exchange J. Spin waves show a uniform softening with rising temperature, and a nonuniform behaviour as functions of n and J. The disappearance of ferromagnetism when varying T, J and n is uniquely connected to the stiffness constant D becoming negative.

PACS numbers: 71.10.Fd, 75.30.MB, 75.30Vn

I. INTRODUCTION

The Kondo-lattice model (KLM) describes the interplay of itinerant electrons in a partially filled conduction band with quantum-mechanical spins (magnetic moments) localized at certain lattice sites. Typical model properties result from an interband exchange between the two subsystems. They are provided by a model Hamiltonian, which consists of two parts:

$$H = H_s + H_{sf},$$

H_s describes uncorrelated electrons in a nondegenerate energy band ("s electrons")

$$H_s = \sum_{ij\sigma} T_{ij\sigma} c_{i\sigma}^\dagger c_{j\sigma},$$

where $c_{i\sigma}^\dagger (c_{i\sigma})$ creates (annihilates) an electron specified by the lower indices. The index i refers to a lattice site \mathbf{R}_i, and $\sigma = \uparrow, \downarrow$ is the spin projection. $T_{ij\sigma}$ are the hopping integrals. The second term in Eq. (1) represents an interband exchange as an intra-atomic interaction between the itinerant electron spin $\mathbf{\sigma}_i$ and the localized spin \mathbf{S}_i ("f electrons"):

$$H_{sf} = -J \sum_i \mathbf{\sigma}_i \cdot \mathbf{S}_i.$$

According to the sign of the exchange coupling J, a parallel ($J > 0$) or an antiparallel ($J < 0$) alignment of itinerant and localized spin is favored with remarkable differences in the physical properties. We restrict our considerations in the following to the $J > 0$ case, sometimes referred to as "ferromagnetic Kondo-lattice model", and also known as "$s-f (s-d)$ model". The applications of the KLM are manifold. In the 1970s it was extensively used to describe the electronic and magneto-optic properties of magnetic semiconductors such as the ferromagnetic EuO and EuS. Most studies focussed on the spectacular temperature dependence of the unoccupied band states. The well-known "red shift" of the optical absorption edge upon cooling from $T = T_C$ to $T = 0$ K can be understood as a corresponding temperature shift of the lower 5d conduction-band edge. Recent quasiparticle band-structure calculation for bulk EuO confirm the observed striking temperature dependence as a consequence of a ferromagnetic exchange J of the order of some tenth an eV. The interest in EuO, in particular in thin films, was strongly revived by the observation of a temperature driven metal-insulator transition below T_C with a large drop of the resistivity by as much as eight orders of magnitude. This gives rise to a colossal magnetoresistance (CMR) much stronger than that of the manganites as La$_{1-x}$Sr$_x$MnO$_3$. Recently, a surface half-metal-insulator transition was predicted for Eu(100) film. The reason for this is an exchange-split surface state.

In ferromagnetic local moment metals like Gd a RKKY-type interaction is believed to cause the ferromagnetic order, so that in principle a self-consistent description of magnetic and electronic properties by the KLM is possible. The $T = 0$-moment of Gd is found to be 7.63 μ_B which stems from the exactly half-filled $4f$ shell. The excess moment of 0.63 μ_B is due to an induced spin polarization of the "a priori" nonmagnetic (5d, 6s) conduction-bands, indicating a weak or intermediate $J > 0$.

An interesting application of the KLM refers to semimagnetic semiconductors, where randomly distributed Mn$^{2+}$ or Fe$^{2+}$ ions provide localized magnetic moments which influence, via the exchange coupling J, the band...
states of systems like Ga$_{1-x}$Mn$_x$As. The Mn$^{2+}$ ions provide both localized spins ($S = \frac{5}{2}$, concentration x) and free carriers (holes, concentration $x^* < x$). The latter take care for an indirect coupling between the moments leading for small x even to a ferromagnetic order. The highest T_C so far reached is 110 K for $x = 0.05$, where x^* is found to be about 15% of the Mn concentration x.

The origin of ferromagnetism in Ga$_{1-x}$Mn$_x$As is controversial. The authors of Ref. 11 claimed that the measured $T_C(x)$ is consistent with a conventional RKKY interaction between the Mn ions. However, they estimated the exchange coupling J to be of several eV, therewith comparable to the Fermi energy. This makes second order perturbation theory with respect to J rather questionable. RKKY should be modified to account for higher-order spin polarization terms. In this paper we are going to present a respective proposal.

Another modern application of the $J > 0$ KLM aims at the manganese oxides with perovskite structures $\mathrm{T}_1-x \mathrm{D}_x \mathrm{MnO}_3$ ($\mathrm{T}=\mathrm{La}, \mathrm{Pr}, \mathrm{Nd}; \mathrm{D}=\mathrm{Sr},\mathrm{Ca}, \mathrm{Ba}, \mathrm{Pb}$) which have attracted great scientific interest because of their CMR effect. Parent compounds like the protagonist La$_3$Mn$_3$O$_7$ are antiferromagnetic insulators with a localized Mn spin of $S = 2$. Replacing a trivalent La$^{3+}$ ion by a divalent earth-alkali ion (Ca$^{2+}$) leads to a homogenous valence mixture of the manganese ion (Mn$^{3+}$, Mn$^{4+}$). The three $3d-t_{2g}$ electrons of Mn$^{2+}$ can be considered as almost localized, forming an $S = \frac{7}{2}$ spin. Furthermore, $(1-x)$ electron per Mn site are of $3d-e_g$ type, and itinerant. They are exchange coupled to the $S = \frac{5}{2}$ spins, realizing just the situation which is modelled by the KLM. The exchange coupling is ferromagnetic ($J > 0$).

Since the manganites are bad electrical conductors, it can be assumed that the intraatomic exchange $J > 0$ is much larger than the hopping-matrix element $|t|$. With estimated e_g bandwidths of $1-2$ eV and lower limits for J of ≥ 1 eV, the manganites surely belong to the group of strongly coupled materials. Many fascinating features of the CMR materials can be traced back to an intimate correlation between magnetic and electronic components. One of the not yet fully understood features concerns the spin dynamics in the ferromagnetic phase ($x \sim 0.3$ in La$_{1-x}$(Ca,Pb)$_x$MnO$_3$). It was reported that the spin wave dispersion (SWD) of materials with high T_C (e.g.: La$_{0.7}$Pb$_{0.3}$MnO$_3$: $T_C \approx 355K$) can be reasonably reproduced by a simple Heisenberg model with nearest-neighbour exchange, only. Furukawa et al. gave qualitative arguments that this can be understood for strongly exchange coupled materials. However, strong deviations from the typical Heisenberg behavior of the SWD have been found for manganites with lower T_C's.

It is a challenging question whether or not the softening of the SWD at the zone boundary can be explained by a better treatment of the KLM, i.e. by an appropriate consideration of the influence of the conduction-electron self-energy on the effective coupling between the localized magnetic moments. Solovyev and Terakura argue in such a way claiming that the SWD-softening has a purely magnetic background. By contrast, Mancini et al. believe that the KLM [Eq. 1] has to be extended by a direct (superexchange) interaction between the Mn moments to account for antiferromagnetic tendencies, which dominate the magnetic behaviour of the parent material LaMnO$_3$.

The above-presented, of course incomplete, list documents the rich variety of, at least, qualitative applications for the KLM. However, the model Hamiltonian [Eq. 1] provokes such a complicated many-body problem that approximations have to be tolerated. Most of the recent theoretical work on the KLM, aiming at the CMR materials, assumed classical spins, mainly in order to apply "dynamical mean field theory" (DMFT). It is surely not unfair to consider this assumption as rather problematic.

It is the intention of the present paper to use a special RKKY technique for a detailed investigation of the magnetic properties of the KLM with fermomagnetic interband exchange. We exploit the method of Ref. 3 to map the interaction operator H_{sf} [Eq. 3] to the Heisenberg model Hamiltonian. This is done by averaging out the conduction electron degrees of freedom by properly defining "restricted" Green functions. The resulting effective Heisenberg exchange integrals are functionals of the itinerant-electron self-energy, and therewith strongly temperature and band occupation dependent. These dependencies manifest themselves in fundamental magnetic properties such as phase diagrams, Curie temperature, spin-wave dispersions and so on.

The electronic self-energy is taken from a "moment conserving decoupling approach" (MCDA) introduced in Ref. 10 and successfully applied to several topics in previous papers. The method carefully interpolates between nontrivial limiting cases.

The final goal of our effort is to obtain quantitative information about magnetism and the temperature-dependent electronic structure of real local-moment systems. For this purpose it is intended in a future work to combine our model study with a "first principles" band-structure calculation. First attempts in this direction were done for EuO and GaAs, however, the magnetic ordering could not yet be derived self-consistently. The paper is organized as follow. In Sec. II we briefly formulate the many-body problem of the KLM. Section II reproduces the most important aspects of the "modified RKKY-interaction" (M-RKKY), the understanding of which is vital for a correct interpretation of the results, which are discussed in Sec. IV.

II. KONDO-LATTICE MODEL

The model Hamiltonian [Eq. 1] provokes a nontrivial many-body problem, which can rigorously be solved only for a small number of limiting cases. For practical reasons, it sometimes appears convenient to use the second
quantized form of the exchange interaction [Eq. (3)],

\[H_{sf} = -\frac{1}{2} \sum_{i\sigma} \left(\varepsilon_{i\sigma} S_i^\sigma n_{i\sigma} + S_i^\sigma c_{\downarrow -}^\dagger c_{i\sigma} \right), \]

(4)

with the abbreviations:

\[n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma}, \quad \varepsilon_{i\sigma} = \delta_{\sigma\uparrow} - \delta_{\sigma\downarrow}, \quad S_i^\sigma = S_i^\uparrow + i\varepsilon_{i\sigma} S_i^\downarrow. \]

(5)

The first term in Eq. (4) describes an Ising-like interaction between the \(z \) components of the localized and the itinerant spin. The second term comprises spin-exchange processes between the two subsystems.

To study the conduction-electron properties we use the single-electron Green function,

\[G_{ij\sigma}(E) = \left\langle \left\langle c_{ij\sigma}^\dagger c_{ij\sigma} \right\rangle \right\rangle_E. \]

(6)

Its equation of motion reads

\[\sum_m \left(E\delta_{im} - T_{im} \right) G_{mj\sigma}(E) = \hbar \delta_{ij} - \frac{1}{2} J_\omega I_{ii,ij\sigma}(E) + F_{ii,ij\sigma}(E), \]

(7)

where the two types of interaction terms in Eq. (4) are causing the "spinflip function"

\[F_{im,j\sigma}(E) = \left\langle \left\langle S_i^\sigma c_{m-\sigma}^\dagger c_{j\sigma} \right\rangle \right\rangle_E \]

(8)

and the "Ising function"

\[I_{im,j\sigma}(E) = \left\langle \left\langle S_i^\sigma c_{m\sigma}^\dagger c_{j\sigma} \right\rangle \right\rangle_E. \]

(9)

These two "higher" Green functions prevent a direct solution of the equation of motion (2). A formal solution of the Fourier-transformed single-electron Green function,

\[G_{k\sigma}(E) = \frac{1}{N} \sum_{ij} G_{ij\sigma}(E) e^{i\mathbf{k}\cdot(\mathbf{R}_i - \mathbf{R}_j)}, \]

(10)

defines the complex electron self-energy \(\Sigma_{k\sigma}(E) \):

\[G_{k\sigma}(E) = \frac{\hbar}{E + \mu + i0^+ - \varepsilon(k) - \Sigma_{k\sigma}(E)}, \]

(11)

\[\left\langle \left\langle c_{k\sigma}, H_{sf} \right\rangle_{-\sigma}; c_{k\sigma} \right\rangle_E = \Sigma_{k\sigma}(E) G_{k\sigma}(E). \]

(12)

\(\varepsilon(k) \) are the Bloch energies:

\[\varepsilon(k) = \frac{1}{N} \sum_{ij} T_{ij} e^{i\mathbf{k}\cdot(\mathbf{R}_i - \mathbf{R}_j)}. \]

(13)

By use of the quasiparticle density of states

\[\rho_{\sigma}(E) = -\frac{1}{\hbar \pi N} \sum_{\mathbf{k}} \text{Im} G_{k\sigma}(E - \mu), \]

(14)

we can calculate the spin-dependent occupation numbers important to fix the band polarization \(m = \langle n_\uparrow \rangle - \langle n_\downarrow \rangle \).

\[f_\sigma(E) = \exp(\beta(E - \mu) + 1)^{-1} \] is the Fermi function.

The central quantity is the self-energy, the determination of which solves the problem. However, for finite temperatures and arbitrary band occupations an exact expression is not available. In Ref. \[24 \] a "moment conserving decoupling approach" (MCDA) predicts the following structure of the self-energy.

\[\Sigma_{k\sigma}(E) = -\frac{1}{2} J_\omega \langle S^z \rangle + \frac{1}{4} J^2 D_{k\sigma}(E). \]

(16)

The first term is linear in the coupling \(J \), and proportional to the the local-moment magnetization \(\langle S^z \rangle \). It represents the result of a mean-field approach which is correct in the weak coupling limit. The second term is predominantly determined by spin-exchange processes between band electrons and localized moments. It is a complicated functional of the self-energy itself. Thus Eq. (16) is not an analytical solution at all, but an implicit equation for \(\Sigma_{k\sigma}(E) \). The MCDA, the detail of which are presented in ref. \[24 \], is a nonperturbative decoupling approach to a set of properly defined Green functions that correctly reproduces the nontrivial exact limiting cases of the KLM. A weighty example is the special case of a "ferromagnetically saturated semiconductor" \[32,39 \]. The various "higher" Green functions have been approximated by linear combination of "lower" functions, where the rigorous spectral representations of these "higher" Green functions and their exact special cases \(\langle S = 1/2 \), ferromagnetic saturation, \ldots \) justify the respective ansatz. Free parameters are finally fitted to exactly known spectral momenta. In a certain sense, the method can be considered an interpolation scheme between important limiting cases. It was successfully used in the past for several applications \[32,38,39 \]. We refer the reader for technical details to one of these papers.

The term \(D_{k\sigma}(E) \) in Eq. (16) contains certain expectations values such as

(a) \(\langle n_{i\sigma} \rangle, \ldots \),

(b) \(\langle S_i^z \rangle, \langle S_i^\sigma S_i^\tau \rangle, \langle (S_i^z)^2 \rangle, \ldots \),

(c) \(\Delta_{\sigma} = \langle S_i^\sigma n_{i\sigma} \rangle, \gamma_\sigma = \langle S_i^\sigma c_{i\sigma}^\dagger c_{i\sigma} \rangle, \ldots \).

By use of the spectral theorem, terms (a) and (c) can exactly be expressed by the Green functions (6), (8) and
it reproduces the conventional RKKY method. The result is a "modified" RKKY interaction space. According to Eq. (20) we have to calculate exchange integrals \(\langle \epsilon \rangle \) on an effective Heisenberg model with effective exchange integrals \(J_{ij} \) being functionals of the electronic self-energy. The result is a "modified" RKKY interaction (M-RKKY) that takes into account the exchange-induced spin polarization of the band electrons. In lowest order it reproduces the conventional RKKY method.

III. EFFECTIVE EXCHANGE OPERATOR

The starting idea is to map the interband \((s - f)\) exchange on an effective spin Hamiltonian of the Heisenberg type.

\[
H_f = -\sum_{ij} J_{ij} S_i \cdot S_j.
\]

(19)

For this purpose we use the \(s - f \) interaction in the following form:

\[
H_{sf} = -J \sum_{\alpha \sigma} \sum_{kq} e^{-iq} R_{\alpha} (S_i \cdot \hat{\sigma}_{\sigma\sigma'} \epsilon_{k+q\alpha\sigma'}^\dagger \epsilon_{k\alpha\sigma}).
\]

(20)

\(\hat{\sigma} \) is the band electron spin operator, the components of which are Pauli spin matrices. The above-mentioned mapping occurs by averaging out the band electron degrees of freedom:

\[
H_{sf} \longrightarrow \langle H_{sf} \rangle^{(e)} = H_f.
\]

(21)

Averaging only in the band electron subspace means that \(\langle H_{sf} \rangle^{(e)} \) retains operator character in the \(f \)-spin subspace. According to Eq. (24) we have to calculate

\[
\langle \epsilon_{k+q\alpha\sigma'}^\dagger \epsilon_{k\alpha\sigma'} \rangle^{(e)} = \frac{1}{\Xi'} \text{Tr} \left(e^{-\beta H'} \epsilon_{k+q\alpha\sigma'}^\dagger \epsilon_{k\alpha\sigma} \right).
\]

(22)

\(H' \) has exactly the same structure as the KLM Hamiltonian \(H \) [Eq. (1)], except for the fact that for the averaging procedure the \(f \)-spin operators are to be considered as \(\alpha \)-numbers, therefore not affecting the trace. \(\Xi' \) is the corresponding grand partition function. The expectation value [Eq. (23)] does not necessarily vanish for \(q \neq 0 \) and for \(\sigma \neq \sigma' \), as it would do when averaging in the full Hilbert space of the KLM. To calculate Eq. (22) we introduce a proper "restricted" Green function:

\[
\hat{G}_{k,k+q}^{(0)}(E) = \langle \epsilon_{k\alpha\sigma}^\dagger \epsilon_{k+q\alpha\sigma} \rangle^{(e)}.
\]

(23)

which has the "normal" definition of a retarded Green function, only the averages have to be done in the Hilbert space of \(H' \). The equation of motion is readily derived for both cases, namely, in the case that \(\epsilon_{k\alpha\sigma} \) is the active operator or \(\epsilon_{k+q\alpha\sigma} \). By use of the "free" Green function,

\[
G_{k,k+q}^{(0)}(E) = \frac{\hbar}{E + \mu - \epsilon(k)}.
\]

(24)

we can combine both equations:

\[
\hat{G}_{k,k+q}^{(\sigma\sigma')}(E) = \delta_{\sigma\sigma'} \delta_{q,0} G_{k,k+q}^{(0)}(E) - \frac{J}{2N} \sum_{i\sigma'} \left\{ e^{-i(k-q)R_i} G_{k,k+q}^{(0)}(E) \langle S_i \cdot \hat{\sigma}_{\sigma\sigma'} \epsilon_{k\sigma\sigma'}^\dagger \epsilon_{k+q\sigma\sigma'} \rangle \right. \\
+ e^{-i(k-q)R_i} G_{k,k+q}^{(0)}(E) \langle S_i \cdot \hat{\sigma}_{\sigma'\sigma} \epsilon_{k\sigma'\sigma}^\dagger \epsilon_{k+q\sigma\sigma'} \rangle \left\}.
\]

(25)

This equation is still exact and can be iterated up to any desired accuracy.

In first order, where the restricted Green function on the right-hand side of [Eq. (25)] is replaced by the "free" Green function Eq. (24), one obtains

\[
\left(\hat{G}_{k,k+q}^{(\sigma\sigma')}(E) \right)^{(1)} = \delta_{\sigma\sigma'} \delta_{q,0} - \frac{J}{N} \sum_i e^{iqR_i} G_{k,k+q}^{(0)}(E) \langle S_i \cdot \hat{\sigma}_{\sigma\sigma'} \rangle.
\]

(26)

Exploiting the spectral theorem in the restricted Hilbert space, for the expectation value [Eq. (23)] one finds

\[
\left(\frac{1}{N} \sum_k \langle \epsilon_{k+q\alpha\sigma'}^\dagger \epsilon_{k\alpha\sigma} \rangle^{(e)} \right)^{(1)} = \delta_{\sigma\sigma'} \delta_{q,0} \frac{1}{N} \sum_k f_-(-\epsilon(k)) \\
- \frac{J}{\hbar} \frac{1}{N} \sum_i e^{iqR_i} D_{q,1}^{(1)} \langle S_i \cdot \hat{\sigma}_{\sigma'\sigma} \rangle.
\]

(27)

Here we have defined

\[
D_{q}^{(1)} = -\frac{1}{\pi} \int_{-\infty}^{\infty} dE f_-(E) \text{Im} \frac{1}{N} \sum_k G_{k,k+q}^{(0)}(E - \mu) G_{k+q,k}^{(0)}(E - \mu).
\]

(28)

Because of

\[
S_i \cdot \hat{\sigma} = \frac{1}{2} \left(S_i^+ S_i^- + S_i^- S_i^+ \right)
\]

(29)

one realizes that the first term in Eq. (27) does not contribute to Eq. (24), while the second term gives rise to
an effective Hamiltonian like Eq. (19) with the following effective exchange integrals:

\[j^{(1)}_{ij} = \frac{1}{N} \sum_{q} J^{(1)}(q) e^{-i\mathbf{q} \cdot (\mathbf{R}_i - \mathbf{R}_j)}, \]

For the required expectation value [Eq. (22)], we obtain

\[\text{Exploiting the inversion symmetry, one proves} \]

the electronic self-energy Eq. (16), and therefore receives

single-electron Green function [Eq. (6)]:

\[\text{starting from an unpolarized conduction electron gas. In} \]

rived by conventional second-order perturbation theory

in first order of our Green function procedure.

It is well-known that Eq. (31) can be equivalently de-

\[\text{It is well-known that Eq. (31) can be equivalently de-} \]

\[\text{derived by conventional second-order perturbation theory} \]

starting from an unpolarized conduction electron gas. In order to incorporate the exchange-induced spin polarization of the conduction electrons to higher order, it almost suggests itself to modify approximation (23) by replacing in the exact expression [Eq. (23)] the restricted Green function by the full, all polarization processes containing single-electron Green function [Eq. (1)]:

\[G_{k',\mathbf{k} + \mathbf{q}}^{\sigma\sigma'}(E) \rightarrow \delta_{\sigma\sigma'} \delta_{k'k + \mathbf{q}} G_{k + \mathbf{q}\sigma}(E), \]

\[G_{\mathbf{k},\mathbf{k}}^{\sigma\sigma'}(E) \rightarrow \delta_{\sigma\sigma'} \delta_{kk} G_{k\sigma\sigma}(E). \]

For the required expectation value [Eq. (22)], we obtain

an expression similar to Eq. (27), only \(D^{(1)}_q \) has to be replaced by

\[D_{\mathbf{q}}^{\sigma\sigma'} = -\frac{1}{\pi} \int_{-\infty}^{+\infty} dE \, f_-(E) \, \text{Im} \left(\frac{1}{N} \sum_{\mathbf{k}} \delta_{\mathbf{k} \mathbf{k} + \mathbf{q}} \right. \times \]

\[\times \left(G_{\mathbf{k}}^{(0)}(E - \mu) G_{\mathbf{k} + \mathbf{q}\sigma}(E - \mu) + \right. \]

\[\left. + G_{\mathbf{k} + \mathbf{q}\sigma}(E - \mu) G_{\mathbf{k}\sigma\sigma}(E - \mu) \right). \]

Exploiting the inversion symmetry, one proves

\[D_{\mathbf{q}}^{\uparrow\downarrow} = D_{\mathbf{q}}^{\downarrow\uparrow} = \frac{1}{2} \sum_{\sigma} D_{\mathbf{q}}^{\sigma\sigma}, \]

This guarantees an isotropic effective exchange operator Eq. (19) with the exchange-integral

\[\tilde{J}(\mathbf{q}) = -\frac{J^2}{4} \int_{-\infty}^{+\infty} dE f_-(E) \, \text{Im} \left(\frac{1}{N} \sum_{\mathbf{k}\sigma} \left(-\frac{1}{\pi} \right) \right. \times \]

\[\times \left. G_{\mathbf{k} + \mathbf{q}\sigma}(E - \mu) \right) \right). \]

Via \(G_{\mathbf{k} + \mathbf{q}\sigma}(E - \mu) \) the effective exchange is a functional of the electronic self-energy Eq. (16), and therefore receives a distinct temperature and electron density dependence.

To obtain the magnetic properties of the local-moment system from the effective operator [Eq. (19)], we use the spin Green function

\[P^{(a)}_{ij}(E) = \expval{S^+_i e^{a S^-_j} S^-_j}_E \]

first proposed by Callen \[a \] is a real number, which eventually helps to derive several spin-correlation functions by applying the spectral theorem to \(P^{(a)}_{ij}(E) \) and a proper differentiation with respect to \(a \). The equation of motion of \(P^{(a)}_{ij}(E) \) reads

\[E P^{(a)}_{ij}(E) = 2\hbar \delta_{ij} \langle A_a \rangle - 2\hbar \sum_m \tilde{J}_{jm} \times \]

\[\times \expval{S^+_m S^-_j - S^+_j S^-_m e^{a S^-_j S^-_j}}_E. \]

Here we have abbreviated

\[\langle A_a \rangle = \expval{S^+_i e^{a S^-_j} S^-_j}_E. \]

It is well-known that a simple random-phase-approximation decoupling of the higher Green function on the right-hand side of Eq. (38) yields surprisingly convincing results in the low- and high-temperature region ("Tyablikov-approximation"). Doing so, after a Fourier-transformation we obtain

\[P_{\mathbf{q}}^{(a)}(E) = \frac{2\hbar^2 \langle A_a \rangle}{E - E(\mathbf{q}) + i0^+}. \]

In this approximation the magnon energies \(E(\mathbf{q}) \) are real:

\[E(\mathbf{q}) = 2\hbar \langle S^z \rangle (\tilde{J}_0 - \tilde{J}(\mathbf{q})), \]

\[\tilde{J}_0 = \tilde{J}(\mathbf{q} = 0) = \sum_i \tilde{J}_{ij}. \]

Following the Callen-method \[\tilde{J}_0 \] for the local-moment magnetization one obtains

\[\langle S^z \rangle = \hbar \frac{(1 + S + \varphi) \varphi^{2S+1} + (S + \varphi) (1 + \varphi)^{2S+1}}{(1 + \varphi)^{2S+1} - \varphi^{2S+1}}. \]

\(\varphi \) is the average magnon number,

\[\varphi(S) = \frac{1}{N} \sum_{\mathbf{q}} \frac{1}{e^\beta E(\mathbf{q}) - 1}, \]

which determines \(\langle S^z \rangle \) and many other spin correlations. Some typical examples are

\[\expval{S^- S^+} = 2\hbar \langle S^z \rangle \varphi(S), \]

\[\expval{(S^z)^3} = \hbar^2 (S + 1) \varphi(S) + \hbar^2 \langle S^z \rangle (S + 1) + \]

\[+ \varphi(S) - \hbar \langle (S^z)^2 \rangle (1 + 3 \varphi(S)). \]

Via Eq. (36) all spin correlations [Eqs. (43)-(46)] are fixed by the electron self-energy [Eq. (19)].
The key quantity of ferromagnetism is the Curie temperature T_C. Performing the limiting process
\[
T \rightarrow T_C^-(1); \langle S^z \rangle \rightarrow 0^+ \tag{47}
\]
one finds, from Eq. (43),
\[
k_B T_C = \frac{2}{3} \hbar^2 S(S + 1) \left[\frac{1}{N} \sum \limits_q \left(\hat{J}_0 - \hat{J}(q) \right)^{-1}_{T_C} \right]^{-1}. \tag{48}
\]

The effective exchange integrals are temperature-dependent and have to be used here for $T \rightarrow T_C$.

For the results presented in Sec. IV, we have used the self-energy approach of Ref. 16. The same approach has been applied in Refs. [39, 40, 41, 42, 43], so that we can refrain here from presenting details of the method. As explained after Eq. (10) the self-energy of Ref. 36 depends on three types of expectation values: purely electronic terms, which are accessible with the single-particle Green function [Eq. (6)]; pure local-spin correlation such as Eqs. (13), (14), and mixed itinerant-electron-local-moment correlations, which are expressible by the "higher" Green functions [Eqs. (5) and (6)]. Eventually, we have a closed system of equations that can be solved self-consistently for the desired electronic and magnetic properties of the KLM. Some typical results are discussed in Sec. [V].

IV. MAGNETIC PROPERTIES

We have evaluated our theory for a s.c. lattice (bandwidth: $W = 1$ eV) to find out the magnetic properties of the ferromagnetic KLM. The latter are, however, strongly correlated with the electronic properties, so that they can not be understood without referring to the itinerant-electron subsystem. Fig. 1 shows the quasiparticle density of states (QDOS) $\rho_{\sigma}(E)$ for a band occupation $n = 0.2$ and a moderate exchange coupling $J = 0.2$ eV. The self-consistently determined Curie temperature turns out to be $T_C = 232K$. In the low-temperature, ferromagnetic phase the QDOS exhibits a remarkable temperature-dependence. For $T \rightarrow 0$ the \uparrow spectrum becomes rather simple (solid line in the upper half of Fig. 1) since the local-moment system is ferromagnetically saturated. A \uparrow electron has therefore no chance to exchange its spin with the localized spins. That means that only the Ising-like interaction term in Eq. (4) really works, leading to a rigid shift of about $-\frac{1}{2}J_S$ of $\rho_{\uparrow}(E)$ with respect to the "free" Bloch DOS $\rho_0(E)$. The down-spin QDOS, however, is much more complicated, because a \downarrow electron can exchange its spin with the saturated localized spins. That can, e.g., be done by emitting a magnon $\hbar \omega(q)$, where the electron reverses its spin from \downarrow to \uparrow. Consequently, this part of the spectrum ("scattering states") exactly coincides with $\rho_{\uparrow}(E)$. However, the \downarrow electron has another possibility to exchange its spin with the perfectly aligned localized spins. It can polarize its local spin surrounding by repeated magnon emission and reabsorption. This can even lead to a bound state, which we call the "magnetic polaron". For the special case of a single \downarrow electron in an otherwise empty conduction band coupled to a ferromagnetically saturated spin system the formation of the magnetic polaron can rigorously be shown[24, 25] (see Fig. 1 in Ref. [22]). Formation of a polaron costs more energy than magnon emission. Polaron states therefore build the upper part of the \downarrow spectrum.

Magnon emission by the \downarrow electron is equivalent to magnon absorption of a \uparrow electron, with one exception: magnon absorption can occur only if there are magnons in the system. This is not the case at $T = 0$ in the ferromagnetic saturation. At finite temperature, however, there are magnons to be absorbed by \uparrow electrons. Consequently, scattering states appear in the \uparrow spectrum too. Because of the possible spin exchange both spin spectra occupy exactly the same energy region at all $T > 0$. It is interesting to observe that even for such a moderate coupling $J = 0.2$ eV ($W = 1$ eV) there opens a gap between a lower and an upper quasiparticle subband. In the lower subband the electron hops mainly over lattice sites, where it orients its spin parallel to the local moment, either without or with preceding spin-flip by magnon emission (absorption). The upper subband consists of polaron states with finite lifetimes. Note that such elementary processes are not recognizable when for mathematical simplicity classical spins ($S \rightarrow \infty$) are assumed[24, 25, 26].

The QDOS in Fig. 1 clearly demonstrates that the conduction electrons are not at all fully spin polarized as is often used in DMFT treatments of the KLM[44]. That is true only in the unphysical limit $S \rightarrow \infty$.

Let us now concentrate the rest of the discussion on the magnetic properties of the KLM. They are determined by the respective behaviour of the effective exchange integrals \hat{J}_{ij}.

Fig. 1 shows the distance dependence of \hat{J}_{ij}, as it follows from the conventional RKKY [Eq. (31)]. We recognize
the well-known oscillating and long-range behavior. According to Eq. (31) two parameters influence the oscillation: the interband exchange J and the band occupation n. The "amplitude" of the oscillation is proportional to J^2, while the "period" is fixed via the chemical potential μ by the conduction electron density n. A remarkable temperature dependence is not observed.

The oscillations of the effective exchange integrals \hat{J}_{ij} are less regular when higher-order polarization effects in

the conduction band are taken into account [Eq. (36)].

Fig. 2 and Fig. 3 show two examples for two different J’s and several band occupations n. The nonregular

structure in the weak-coupling region, being, one order of magnitude smaller than $J_{2,3}$ and even two orders of magnitude smaller than J_1. For $J > 0.2$ eV J_3, \ldots, J_9 are so strongly damped that the magnetism of the KLM can be described by a Heisenberg model with next- and next-nearest-neighbor exchanges only. In the weak-coupling regime, however, the higher terms J_3, \ldots, J_9 can not be
neglected. Similar statements can be found in [2]. Maybe this is an explanation why CMR materials with high T_C can be described reasonably well [1] by a short-range Heisenberg model, while other materials with lower T_C exhibit strong deviations [22,23,24]. In any case the main contribution to the exchange coupling stems from the next-nearest-neighbors. J_1 determines the stable magnetic configuration. The negative slope of J_1 for $J > 0.5$ eV indicates already a breakdown of the ferromagnetic order, which is more carefully inspected below.

The effective exchange integrals J_x exhibit an interesting electron-density dependence (Fig. 6). For low densities up to $n = 0.3$ only J_1 is of importance. A Heisenberg model with nearest-neighbour exchange will appropriately describe the magnetic properties of the KLM. For larger n, however, the exchange interaction becomes very long-range, even J_0 is not negligible. From Fig. 6 and 9 we learn that the interplay between local interband exchange J and band occupation n does lead to a rather complicated behaviour of the effective RKKY exchange integrals.

The effective exchange integrals determine the magnetic properties of the KLM. On the other hand, they depend on the electron self-energy which is strongly influenced by magnetic correlation functions. Typical examples of the latter are plotted in Fig. 7, calculated for $J = 0.2$ eV. The electronic part of the self-consistent solution, represented by the temperature dependent QDOS, is shown in Fig. 1. The Curie temperature is found as $T_C = 232$ K. The local-moment magnetization $\langle S^z \rangle$ is of Brillouin function type, and the qualitative shapes of the other spin correlations are also familiar from the pure Heisenberg model.

The key-quantity of ferromagnetism is the Curie temperature T_C. $T_C > 0$ comes out as a consequence of an indirect coupling between the local moments, mediated by spin polarization of itinerant electrons. Therefore, a strong particle density dependence of T_C has to be expected. Figure 8 shows $T_C(n)$ for various J from the weak to moderate coupling regime, calculated according to Eq. (18). Ferromagnetism appears for low particle (hole) densities, where the ferromagnetic region increases with increasing J. The T_C values are of realistic order. A similar n dependence of T_C has been found in Ref. [29] within an extended multi-band KLM. No ferromagnetism appears around half-filling ($n = 1$). It can be speculated that antiferromagnetism, which is not considered within our approach, becomes stable near $n = 1$. It is interesting to compare the results of Fig. 8 with their counterparts from conventional RKKY (Fig. 3), using the same model parameters and the same T_C-formula [Eq. (18)]. The T_C values are higher, but the region of n where ferromagnetism appears, is distinctly narrower. The critical n, where T_C vanishes again, is independent of J, in contrast to the full theory in Fig. 3.

The Curie temperature shows a remarkable J dependence, which is plotted in Fig. 10 for various band occupations. According to conventional RKKY theory one
would expect a monotonic increase of T_C with increasing J. A mean-field evaluation of the effective Heisenberg model would lead to $T_C \sim J^2$. Our theory becomes identical to conventional RKKY theory for small J. However, because of the random-phase-approximation (RPA) treatment of the Heisenberg operator [Eq. (15)], there are deviations of T_C from the J^2 behavior even for small J. A more important and very characteristic feature of our modified RKKY approach is the appearance of a critical coupling J_c for band occupations $n \geq 0.13$, below which no ferromagnetism occurs. This occurs for band fillings, for which conventional RKKY theory fails to yield a ferromagnetic RPA solution (Fig. 3). Therefore the existence of J_c does not disprove the agreement of conventional and modified RKKY theory for small J. After a steep increase as function of J, T_C runs into a kind of saturation, where the plateau becomes smaller the larger the bandfilling n. With a further increase of J, the Curie temperature again decreases and disappears at an upper critical J value. The upper critical value of J coincides with the point where the stiffness constant D of the spin-wave dispersion [Eq. (11)] ($E(q) \approx Dq^2$ near the Γ point) becomes negative due to a respective behavior of the dominating effective exchange integrals J_1, J_2, J_3 (see inset in Fig. 3 and Eq. (18)). It can be suspected that for larger J the local-moment system becomes antiferromagnetic. Furthermore, it cannot be excluded that for still larger J's the system returns to ferromagnetism. These features are far beyond conventional RKKY theory and due to higher order polarization terms, which come into play via the full Green function $G_{k+q\alpha}(E-\mu)$ in the expression (17) for the effective exchange integral $\hat{J}(q)$. The manganites are often treated as ferromagnets with $J \rightarrow \infty$ in the KLM. According to Fig. 10 this must be reexamined. For $J \approx W$ ferromagnetism is unlikely in the KLM.

The spin-wave dispersion, plotted in Fig. 11 for the main symmetry direction, obtains, via the effective exchange integrals a distinct temperature dependence. Upon heating the dispersion relation uniformly softens, disappearing above T_C. This agrees qualitatively with a neutron-scattering study of the spin dynamics in the manganite $\text{Pr}_{0.68}\text{Sr}_{0.32}\text{MnO}_3$. However, we do not share the view of the authors of Ref. 22, i.e., that the unexpected results rule out a simple Heisenberg Hamiltonian. In our opinion the Heisenberg model works as long as the exchange integrals are renormalized in a proper way by the conduction-electron self-energy.

Changing the doping in the III-V based diluted magnetic semiconductors such as Ga_1-xAs, or in manganites like $\text{La}_{1-x}\text{Ca}_x\text{MnO}_3$, does alter the band occupation and therewith the physics of these materials. It is therefore worthwhile to inspect the n dependence of the spin-wave dispersion. This is done in Fig. 12 for low band occupations and in Fig. 13 for higher band occupations for a model system with $J=0.2$ eV. For low densities (Fig. 12) we observe a strengthening of the magnon dispersion with increasing band filling, while the opposite is true for stronger fillings (Fig. 13). This is in accordance with the T_C behavior of Fig. 3. The band occupation $n=0.485$ is very close to the upper critical point of the $J=0.2$ eV curve in Fig. 3. The corresponding
spin-wave dispersion in Fig. 13 shows a strong softening. A slightly higher n leads to parts of the Brillouin zone with negative magnon energies, i.e. the ferromagnetic ground state becomes unstable. The stiffness D, defined by $E(q) \approx D q^2$ for $q \to 0$, becomes negative. The points where $D = D(n, J, T = 0) = 0^+$ exactly coincide in our theory with those for which $T_C = T_C(n, J) \to 0$, directly derived from the local-moment magnetization $\langle S_z \rangle$. Qualitatively the same n dependence of the spin-wave dispersion is reported in Ref. 40.

An example for the J dependence of the spin-wave dispersion is presented in Fig. 14 $(n = 0.2, T = 0 \text{ K}, S = \frac{7}{2})$. Again we observe a strengthening of the dispersion with J when T_C increases simultaneously, and a softening, when T_C decreases (see Fig. 10).

V. SUMMARY

We have evaluated an approximate but self-consistent theory for a local-moment ferromagnet described within the framework of the ferromagnetic Kondo-lattice model. Candidates for this model are magnetic semiconductors (EuO, EuS), diluted magnetic semiconductors (Ga$_{1-x}$Mn$_x$As), magnetic metals (Gd, Dy, Tb) and CMR materials (La$_{1-x}$Ca$_x$MnO$_3$). We have used a previously developed Green function technique for a detailed investigation of the magnetic properties of the exchange-coupled local moment-itinerant electron system. An extended RKKY mechanism has been worked out to derive magnetic phase diagrams as well as spin-wave dispersions. The latter show strong dependencies on temperature (uniform softening for $T \to T_C$), on the band occupation n, and on the exchange coupling J. These dependencies are due to the respective behaviors of the effective exchange integrals between the localized moments. The effective exchange integrals are found by mapping the interband exchange $(s - f)$ coupling, characteristic of the KLM, to an effective Heisenberg model. They turn out to be functions of the electronic self-energy, being therewith strongly temperature and electron density dependent. For small J our theory reproduces the results of the well-known conventional RKKY treatment, which represents second-order perturbation theory to the KLM. Already for very moderate J, however, substantial deviations appear, when higher-order terms of the induced conduction-electron spin polarization bring their influence to bear.

For the future the presented approach has to be extended to antiferromagnetic moment configurations in order to complete the phase diagram. Furthermore, Coulomb correlations have to be introduced for the conduction-electron subsystem. Their neglect in the original KLM seems to be only poorly justified.

It is further intended to apply the modified RKKY procedure to the antiferromagnetic KLM ($J < 0$) in order to investigate the interplay between “Kondo screening” and RKKY. This, however, requires a serious check whether or not the MCDA in its present form is able to account for the subtle low-temperature (Kondo) physics.
1 C. Zener, Phys. Rev. 81, 440 (1951).
2 P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
3 T. Kasuya, Prog. Theor. Phys. 16, 45 (1956).
4 J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
5 E. L. Nagaev, phys. stat. sol. (b) 65, 11 (1974).
6 W. Nolting, phys. stat. sol. (b) 96, 11 (1979).
7 S. G. Ovchinnikov, Phase Transitions 36, 15 (1991).
8 M. Donath, P. A. Dowben, and W. Nolting, eds., Magnetism and Electronic Correlations in Local-Moment Systems; Rare-Earth Elements and Compounds (World Scientific, Singapore, 1998).
9 G. Busch, P. Junod, and P. Wachter, Phys. Lett. 12, 11 (1964).
10 R. Schiller and W. Nolting, Solid State Commun. 118, 173 (2001).
11 P. G. Steeneken, L. H. Tjeng, I. Elfimov, G. A. Sawatzky, G. Ghiringhelli, N. B. Brookes, and D.-J. Huan, cond-mat/0105527 (2001).
12 R. Schiller and W. Nolting, Phys. Rev. Lett. 86, 3847 (2001).
13 L. W. Roeland, G. J. Cock, F. A. Muller, C. A. Moleman, K. A. M. McEwen, R. C. Jordan, and D. W. Jones, J. Phys. F 5, L233 (1975).
14 S. Rex, V. Eyert, and W. Nolting, J. Magn. Magn. Mat. 192, 529 (1999).
15 H. Ohno, Science 281, 951 (1998).
16 F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037 (1998).
17 S. Jin, T. H. Tiefel, M. McCorneke, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413 (1994).
18 A. P. Ramirez, J. Phys.: Condens. Matter 9, 8171 (1997).
19 S. Satpathy, Z. S. Popovic, and F. R. Vukajlovic, Phys. Rev. Lett. 76, 960 (1996).
20 T. G. Perring, G. Aeppli, S. M. Hayden, S. A. Carter, J. P. Remeika, and S.-W. Cheong, Phys. Rev. Lett. 77, 711 (1996).
21 N. Furukawa, J. Phys. Soc. Japan 65, 1174 (1996).
22 H. Y. Hwang, P. Dai, S.-W. Cheong, G. Aeppli, D. A. Tennant, and H. A. Mook, Phys. Rev. Lett. 80, 1316 (1998).
23 J. A. Fernandez-Baca, P. Dai, H. Y. Hwang, C. Kloc, and S.-W. Cheong, Phys. Rev. Lett. 80, 4012 (1998).
24 P. Dai, H. Y. Hwang, J. Zhang, J. A. Fernandez-Baca, S.-W. Cheong, C. Kloc, Y. Tomioka, and Y. Tokura, Phys. Rev. B 61, 9553 (2000).
25 X. Wang, Phys. Rev. B 57, 7427 (1998).
26 M. Vogt, C. Santos, and W. Nolting, phys. stat. sol. (b) 223, 679 (2001).
27 I. V. Solovyev and K. Terakura, Phys. Rev. Lett. 82, 2959 (1999).
28 F. Mancini, N. B. Perkins, and N. M. Plakida, cond-mat/0011464 (2000).
29 N. Furukawa, Physics of Manganites (Plenum, New York, 1999), p. 1.
30 A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).
31 K. Held and D. Vollhardt, Phys. Rev. Lett. 84, 5168 (2000), the authors incorporate a Hubbard-interaction between the conduction electrons; "correlated KLM".
32 D. Meyer, C. Santos, and W. Nolting, J. Phys.: Condens. Matter 13, 2531 (2001).
33 W. Nolting, S. Mathi Jaya, and S. Rex, Phys. Rev. B 54, 14455 (1996).
34 W. Nolting, S. Rex, and S. M. Jaya, J. Phys.: Condens. Matter 9, 1301 (1997).
35 H. B. Callen, Phys. Rev. 130, 890 (1963).
36 R. Schiller, W. Muller, and W. Nolting, Phys. Rev. B 64, 134409 (2001).
37 B. S. Shastry and D. C. Mattis, Phys. Rev. B 24, 5340 (1981).
38 W. Nolting, U. Dubil, and M. Matlak, J. Phys.: Condens. Matter 18, 3687 (1985).
39 A. Chattopadhyay and A. J. Millis, Phys. Rev. B 64, 024424 (2001).
40 P. Wiruth and E. Muller-Hartmann, Europ. Phys. J. B 5, 403 (1998).
41 Note that j_2 is already the fourth-nearest neighbour.