Plant diversity in agroforestry system and its traditional use by three different ethnics in Central Sulawesi Indonesia

Ramadanil Pitopang1, Agung Tri Atmoko2, Yusran3, Wardah4, Sudarkam R. Mertosono5 and Panji Anom Ramawangsa4

1Department of Biology, Faculty of Mathematics & Natural Sciences, Tadulako University, Jl. Sukarno Hatta Km 9, Kampus Bumi Tadulako Tondo, Palu, Indonesia
2Post Graduate Program Tadulako University, Jl. Sukarno Hatta Km 9, Kampus Bumi Tadulako Tondo, Palu, Indonesia
3Department of Forest Management, Faculty of Forestry, Tadulako University, Jl. Sukarno Hatta Km 9, Campus Bumi Tadulako Tondo, Palu, Indonesia
4Faculty of Teachers’ Training and Education, Tadulako University, Faculty of Agriculture, Tadulako University, Campus Bumi Tadulako Tondo, Sukarno Hatta Street Km 10, Tondo Palu, Indonesia
5Department of Architecture, Faculty of Engineering, University of Bengkulu, Jl. W.R Supratman, Kandang Limun, Bengkulu 38371, Sumatera, Indonesia

E-mail: pitopang_64@yahoo.com

Abstract. This paper discusses the result of the study on plant diversity in the Agroforestry system and its traditional uses by the three different ethnicsities in Banggai Regency, Central Sulawesi, Indonesia. The basic data of traditional plants used by each of the ethnic groups in the research site were collected through an in-depth interview initiated by an informed consent using a questionnaire containing open-ended questions—fifty (50) respondents from each of the ethnic groups representing different jobs. The result showed that the highest number of plant species was found in research site B, but the highest number of individual plants was noted in research site A. The highest Important Value Index (IVI) of tree, poles, sapling and seedling level of plant species differed among the three research sites. When viewed from the perspective of traditional plant use, the highest ICS of plants utilized by the three ethnics was “coconut” (Cocos Nucifera L). The number of the utiliplantslant was different among the three ethnics. Tao Taa Wana people have utilized about 43 plant species, 27 of which were used for medicines, 20 for foods, 2 for natural dying, 18 for fuels, 6 for building materials, 5 for ritual ceremonies. In research site B (Singkoyo), 52 plant species have been extensively used by Javanese people for a wide range of culturally related activities, 28 species were used as medicine, 32 for food, 17 for fuel, 7 for building materials, and 10 for ornaments. Unlikely, in site C (Mentawa, 39 plant species were used traditionally by Balinese people; 18 of which were used for medicines, 18 for food, and 13 for ritual ceremonies).
1. Introduction

Central Sulawesi is one of the provinces in Indonesia, located in Sulawesi Island (previously known as Celebes)—the main island in the “Wallacean region” that possesses exhibitst unique biodiversity [1]. Like other areas in Indonesia, Central Sulawesi has a large tropical forest area. The tropical rainforest is arguably the most urgent terrestrial ecosystem [2]. It is important as a carbon sink, house of world’s biodiversity, provide economic benefits through ecotourism, non-timber forest products [3–5]. Apart from this, much of the forest area in Sulawesi has been damaged due to human activities and converted into different land uses such as lightly disturbed primary forests, degraded forests, home gardens, plantations, and agroforestry systems [6,7].

Agroforestry, a very simple term, may be referred to a deliberate growing of woody perennials on the same area and, at the same time, as agricultural crops and/or fodder plants in the form of a spatial mixture and/or a temporal sequence [8]. Tropical agroforestry systems are often complex associations of multi-functional and uneven-aged trees and crops [9]. Many people in developing tropical countries depend on agroforestry systems for subsistence, economic income, in order to maintain watershed functions, retain carbon in the plant-soil system, and conserve biological diversity [10–16]. Greater attention is now being paid to those co-complex tree-based traditional practices that are so widespread in traditional tropical land use. In addition to generating timber and firewood, agroforestry can also provide supplementary income from associated tree crops [17].

In Banggai regency of Central Sulawesi, many forested areas are inhabited by different ethnic communities, both indigenous and immigrants, who live in harmony with their environment strongly uphold their local wisdom, customs, and cultures. Tao Taa Wana tribe is one of the indigenous people of Sulawesi who live traditionally in the area, in addition to the two other transmigrating ethnic groups (i.e. Javanese people, the largest ethnic group in Indonesia, who are considered culturally and politically dominant and Balinese people, who are famous with their Hinduism faith, often use plants or plant parts to make offerings to ancestors, spirits and supernatural forces [1,18–20]. Both Javanese and Balinese, who have lived for a few years, still practice their own culture and knowledge system in maintaining their agroforestry systems.

This study intends to: (1) assessing the species richness of plants grown under traditional agroforestry systems and (2) investigating the traditional use of plant diversity by three different ethnicities in the studied area.

2. Materials and methods

2.1. Study sites

The study was conducted in Banggai Regency, Central Sula, si Indonesia (Figure 1). Three (3) different locations and ethnicities were chofor resecharceserach sites: Menyo’e, Singkoyo, and Mentawa. The description of each agroforestry system in the research site is provided in Table 1.

No	Parameter	Research Site			
		Menyo’e (A)	Singkoyo (B)	Mentawa (C)	
1	Ethnic	Tao Taa Wana	Javanese	Balinese	
	Indigenous	Indigenous	Migrants	Migrants	
2	Administration	Momosolato district, North Morowali Regency	Toili district, Banggai regency	West Toili district, Banggai regency	
3	Geographical position	Altitude (m a.s.l)	Montane area 1.234	Lowland 10	Lowland 15

Table 1. Description of agroforestry system
Latitude: 1° 21' 0" - 1° 22' 0" S, 1° 24' 0" S - 1° 25' 0" S, 0° 55' 0" - 1° 45' 0" S
Longitude: 121° 48' 0" E – 121° 49' 0" E, 121° 17' 0" E – 121° 18' 0" E, 21° 35' 0.00" – 122° 50' 0" E

Climate	Temperature	Annual Precipitation
	27°C	2200 mm/year
	32°C	1880 mm/year
	32°C	1850 mm/year

Figure 1. Map of Research sites—1. Desa Menyo’e, (Momosalato district, inhabited by Tao Taa Wana ethnic group), 2. Desa Singkoyo, Toili District (Javanese ethnic group), and 3. Desa Mentawa, Toili barat district (Balinese ethnic group).

2.2. Vegetation analyses
The structure and composition of vegetation were studied using double plots methods [1,6]. A total of five main plots of 20x20m were placed purposively in each research site. Five plots of 20x20m in size were used for tree level sampling (dbh ≥ 20 cm). In the plot of 20 x20m, some plots of 10x10m were established for pole level sampling (10 cm ≤ dbh < 20 cm). In some plots of 10x10m, some plots of 5x5m were made for sampling analysis (2cm < dbh< 10cm) and 2x2m for seedling and understorey (dbh < 2 cm). All plant species found in each plot were collected following Bridson and Forman (1999) [21]. The information recorded from the field included locality, vernacular names, uses, habits, trunk diameter, trunk height, and clear bole, as well as a cover percentage for seedlings and understorey. Processing and identification of samples were conducted at the Laboratory of Plant Biosystematics, Faculty of Mathematics and Natural Sciences, and at the Herbarium Celebense (CEB) Tadulako University Palu. Vouchers specimens were deposited in CEB.

2.3. Ethnobotanical data
The basic data on the traditional plants used by each of the ethnic groups in the research site has been collected by using in-depth interviews initiated with informed consent using an open-ended quequestionnaire snowball technique was used to obtain prapropriateespondents beginning from the village leader [22]. Fifty (50) respondents from each of the ethnic groups different jobs such as village leaders, custom (adat) leaders, religious leaders, traditional healers, foresters (i.e. rattan and dammar
collectors), farmers, laborers, traders, and craft people, etc., were asked a series of questions related to perceptions of the traditional use of plants [23].

2.4. Data analyses
The data collected were then tabulated and analyzed to determine the value of density, relative density, frequency, relative frequency, dominance, relative dominance, and important value index [24]. To analyze alpha diversity, Shannon-Wiener diversity index and species dominance index were used [25]. The ethnobotanical data were analyzed and tabulated using Index Cultural Significance (ICS) [26].

3. Results and discussions
3.1. Number and composition of species
We recorded a total of 43 plant species from Agroforestry ecosystem at Menyo’e (research site A), which consisted of 15 tree (dbh ≥20cm), 18 poles (10cm ≤ dbh < 20cm), 22 saplings (2cm < dbh ≤10cm), 32 seedling-understory species (dbh ≤2cm) and 720 individual plant. From research site B, Singkoyo, there were 52 plant species recorded, which included 19 trees, 22 poles, 29 saplings, 30 seedling-understory with 664 total individual numbers. In Mentawai, the research site C, only 32 plant species consisting of 16 trees, 15 poles, 18 saplings, 21 seedling and understory species, and 312 individual numbers (Table 2).

Tree species (dbh ≥20cm) that have the highest Importance Value Index (IVI) in each of the research sites were Aleurites mollucana (research site A), Parkia speciosa (research site B), and Artocarpus heterophyllus (research site C), while that for pole level plants were Theobroma cacao, Cocos nucifera and Theobroma cacao in research site A, B and C respectively. The highest IVI for sapling level plants (2cm < dbh < 10cm) was Manihot esculenta (30.27%) in research site A, Leucaena leucocephala (31.64) in research site B, and Theobroma cacao C (IVI= 85.80 %) in research site C. Finally, the highest IVI for seedling and understory were Piper nigrum, Curcuma longa, and Zingiber officinale in sites A, B and C respectively (Table 3, 4, 5 and 6).

Code	Research Site (Ethnic)	Total of Species Number	Total of Family Number	Tree / Pole / Sapling / Seedling-understory / ∑ Ind.
A	Menyoe (Tao Ta'a Wana)	43	25	15 / 102 18 / 95 22 / 171 32 / 352 720
B	Singkoyo (Javanese)	52	28	19 / 102 22 / 111 29 / 197 30 / 254 664
C	Mentawa (Balinese)	39	28	16 / 18 15 / 52 18 / 50 21 / 129 312
Table 3. The Fifth most important tree species (dbh ≥20cm) in the three research sites. Local name, botanical name, family, relative density (RD), relative frekuen (RF), relative dominance (RDo), Important Value Index, and Shanon-Whiener Diversity Index (H’)

No	Local Name	Botanical Name (L.)	Family	RD (%)	RF (%)	RDo (%)	IVI (%)	H’
A	Manyo’e (Tao Taa Wana)							
1	Veau	Aleurites moluccana	Euphorbiaceae	13.2	9.80	19.8	42.9	
2	Seronge	Pterocarpus indicus	Leguminosae	13.2	9.80	11.5	34.6	
3	Kaumama	Neolamarckia cadamba (Roxb.) Bosser	Rubiaceae	11.2	9.80	11.4	32.5	
4	Coklat	Theobroma cacao L.	Malvaceae	12.2	9.80	8.61	30.7	
5	Jati	Tectona grandis L.f.	Lamiaceae	8.16	9.80	10.9	28.9	
	Remaining species			41.8	50.9	37.5	130	
	Total			100	100	100	300	2.48
B	Singkoyo (Javanese)							
1	Pete	Parkia speciosa Hassk	Leguminosae	12.6	8.89	13.8	35.3	
2	Jati	Tectona grandis L.f.	Lamiaceae	8.42	8.89	11.0	28.4	
3	Duren	Durio zibethinus L.	Malvaceae	6.32	11.1	7.77	25.2	
4	Coklat	Theobroma cacao L.	Malvaceae	9.47	6.67	7.53	23.7	
5	Rambutan	Nephelium lappaceum L.	Sapindaceae	8.42	6.67	7.85	22.9	
	Remaining species			54.7	57.7	51.9	164.	
	Total			100	100	100	300	2.75
C	Mentawa (Balinese)							
1	Nangke	Artocarpus heterophyllus Lam	Moraceae	9.43	10.0	14.0	33.4	
2	Nyuh	Cocos nucifera L.	Areaceae	7.55	10.0	10.7	28.3	
3	Bunga	Cananga odorata (Lam.) Hook.f. & Thomson	Annonaceae	7.55	10.0	7.72	25.2	
4	Sandad			0	5	0	0	
5	Rambutan	Nephelium lappaceum L.	Sapindaceae	5.66	6.67	6.69	19.0	
	Cengkeh	Syzygium aromaticum (L.) Merr. & L.M.Perry	Myrtaceae	3.77	6.67	5.13	15.5	
	Remaining species			66.0	56.6	55.7	178.	
	Total			100	100	100	300	2.34
Table 4. The Fifth most important pole species (10cm ≤ dbh < 20cm) in three research sites. Local name, botanical name, family, relative density (RD), relative frequency (RF), relative dominance (RDo), Important Value Index (IVI) and Shannon-Whiener Diversity Index (H').

No	Local Name	Botanical Name	Family	RD (%)	RF (%)	RDo (%)	IVI (%)	H'
A	Desa Manyoe (Tao Taa Wana)							
1	Coklat	*Theobroma cacao* L.	Malvaceae	16.4	11.63	19.7	47.8	
				7	3	2		
2	Jati	*Tectona grandis* L.f.	Lamiaceae	12.9	11.63	15.9	40.5	
				4	7	3		
3	Kayuku	*Cocos nucifera* L.	Areceae	14.1	11.63	14.6	40.4	
				2	5	0		
4	Seronge	*Pterocarpus indicus*	Leguminosae	14.1	11.63	12.8	38.6	
				2	5	0		
5	Veau	*Aleurites moluccana* (L.) Willd.	Euphorbiaceae	10.5	11.63	10.4	32.6	
				9	0	2		
		Remaining species		31.7	41.86	26.4	100.0	
				6	0	1		
		Total		100	100	100	300.0	
B	Desa Singkoyo (Javanese)							
1	Kelapa	*Cocos nucifera* L.	Areceae	10.8	7.41	14.8	33.1	
				9	9	9		
2	Jati	*Tectona grandis* L.f.	Lamiaceae	10.8	7.41	13.5	31.8	
				9	3	3		
3	Coklat	*Theobroma cacao* L.	Malvaceae	7.92	5.56	8.31	21.7	
				8	9	8		
4	Rambutan	*Nephelium lappaceum* L.	Sapindaceae	6.93	5.56	8.99	21.4	
				8	8	8		
5	Talok	*Muntingia calabura* L.	Muntingiaceae	7.92	5.56	5.81	19.2	
				9	3	9		
		Remaining species		55.4	68.52	48.4	172.0	
				5	7	4		
		Total		100	100	100	300.0	
C	Mempawa (Balinese)							
1	Coklat	*Theobroma cacao* L.	Malvaceae	34.2	14.81	32.5	81.5	
				1	4	6		
2	Nyuh	*Cocos nucifera* L.	Areceae	10.5	11.11	13.6	35.2	
				3	3	7		
3	Bunga Sandad	*Cananga odorata* (Lam.) Hook.f. & Thomson	Annonaceae	10.5	11.11	12.1	33.7	
				3	0	3		
4	Nangke	*Artocarpus heterophyllus* Lam	Moraceae	7.89	11.11	7.94	26.9	
				5	4	5		
5	Sotong	*Psidium guajava* L.	Myrtaceae	7.89	11.11	5.66	24.6	
				6	4	3		
		Remaining species		28.9	40.74	28.1	97.8	
				5	4	3		
		Total		100	100	100	300.0	

Table 1. The Fifth most important pole species (10cm ≤ dbh < 20cm) in three research sites. Local name, botanical name, family, relative density (RD), relative frequency (RF), relative dominance (RDo), Important Value Index (IVI) and Shannon-Whiener Diversity Index (H').
Table 5. The Fifth most important sapling species (2cm < dbh< 10cm) in the three research sites. Local name, botanical name, family, relative density (RD), relative frequency (RF), relative dominance (RDo), Important Value Index (IVI) and Shanon-Whiener Diversity Index (H’)

No	Local Name	Botanical Name	Family	RD (%)	RF (%)	RDo (%)	IVI (%)	H’
A	Desa Manyoe (Tao Taa Wana)							
1	Kasubi	*Manihot esculenta* Crantz	Euphorbiaceae	15.0	11.36	3.91	30.2	
2	Seronge	*Pterocarpus indicus* Wild.	Leguminosae	10.7	9.09	10.1	29.9	
3	Bunta	*Ficus variegata* Blume	Moraceae	8.57	9.09	11.2	28.8	
4	Coklat	*Theobroma cacao* L.	Malvaceae	8.57	6.82	13.4	28.8	
5	Delima	*Punica granatum* L.	Lythraceae	6.43	9.09	12.4	27.9	
	Remaining species			50.7	54.55	48.9	154.	
B	Desa Singkoyo (Javanese)							
1	Klandin gan	*Leucaena leucocephala* (Lam.) de Wit	Leguminosae	11.7	6.25	13.6	31.6	
2	Amoxici llin	*Jatropha multifida* L.	Euphorbiaceae	7.65	4.69	10.2	22.5	
3	Pala	*Myristica fragrans* Houtt.	Myristicaceae	7.06	4.69	9.04	20.7	
4	Jati	*Tectona grandis* L.f.	Lamiaceae	3.53	4.69	5.74	13.9	
5	Turi Putih	*Sesbania grandiflora* (L.) Pers.	Leguminosae	5.88	6.25	5.65	17.7	
	Remaining species			64.1	73.44	55.7	193.	
C	Mentawa (Balinese)							
1	Coklat	*Theobroma cacao* L.	Malvaceae	31.2	15.38	39.1	85.8	
2	Jepun	*Nerium oleander* L.	Apocynaceae	15.6	19.23	17.4	52.3	
3	Bunga Sandad	*Cananga odorata* (Lam.) Hook.f. & Thomson	Annonaceae	6.25	7.69	5.06	19.0	
4	Sentong	*Psidium guajava* L.	Myrtaceae	6.25	7.69	4.93	18.8	
5	Puring	*Codiaeum variegatum* (L.) Rumph. ex A.Juss.	Euphorbiaceae	6.25	7.69	3.54	17.4	
	Remaining species			34.3	42.31	29.8	106.	

Remaining species: 100% 100% 100% 300 2.67

Remaining species: 100% 100% 100% 300 3.05

Remaining species: 100% 100% 100% 300 2.27
Table 6. The Fifth most important seedling and understory species in the three research sites. Local name, botanical name, family, relative density (RD), relative frequency (RF), relative dominance (RDo), Important Value Index (IVI), and Shanon-Whiener Diversity Index (H')

No	Local Name	Botanical Name	Family	RD (%)	RF (%)	IVI (%)	H'
A	Menyo'e (Tao Taa Wana)						
1	Marisa	*Piper nigrum* L	Piperaceae	9.65	5.43	15.0	9
2	Rumput tikus	*Phyllanthus urinaria* L	Phyllanthaceae	7.51	5.43	12.9	4
3	Coklat	*Theobroma cacao* L	Malvaceae	5.9	5.43	11.3	3
4	Yalintai	*Mallotus mollusimus* (Geisler) Airy Shaw	Euphorbiaceae	6.7	4.35	11.0	5
5	Katumbar	*Lantana camara* L	Verbenaceae	6.43	4.35	10.7	8
	Remaining Species			63.8	1	138.15	100
				1	75.0	8	200
B	Singkoyo (Javanese)			10.3	15.5	1.43	1
1	Kunir	*Curcuma longa* L	Zingiberaceae	8	5.13	1	
2	Jagung	*Zea mays* L	Poaceae	9.23	5.13	6	12.8
3	Kemangi	*Ocimum basilicum* L	Lamiaceae	7.69	5.13	2	12.0
4	Meniran	*Phyllanthus urinaria* L	Phyllantaceae	6.92	5.13	5	10.5
5	Patikan kebo	*Euphorbia hyrta* L	Euphorbiaceae	5.38	5.13	1	60.3
	Remaining species			8	74.36	8	134.6
				100	100	200	3.25
C	Mentawa (Balinese)			12.4	22.4		
1	Jae	*Zingiber officinale* Roscoe	Zingiberaceae	1	10.00	1	
2	Kunyit	*Curcuma longa* L	Zingiberaceae	2	8.00	2	15.5
3	Isen	*Alpinia galanga* (L) Wild.	Zingiberaceae	2	8.00	9	12.9
4	Kayu manis	*Sauprus androgynus* (L.) Merr.	Phyllantaceae	6.9	6.0	0	10.7
5	Jarak	*Jatropha curcas* L	Euphorbiaceae	2.76	8.0	6	58.6
	Remaining species			2	60.0	6	118.6
				100	100	200	3.01
3.2. Plant utilization and Index of Cultural Significance (ICS)

The value of Index of Cultural Significance (ICS) of plants utilized by the three different ethnics in each agroforestry system in the studied area was presented in Tables 2 and 7. Tao Taa Wana people who live in Menyoe village (research site B) have utilized about 43 plant species (belonging to 23 families), 27 of which were used for medicines, 20 for foods, two for dying (coloring), 18 for firewoods, six for building materials, and five for customary rituals. Besides, they used the plants for forage, ornament, rope and botanical pesticide. In Singkoyo (research site B), 52 plant species have been extensively used by the Javanese people for a wide range of cultural uses. Twenty-eight species were used for medicines, 32 for foods, 17 for firewoods, seven for building materials, and 10 for ornaments. In research site B (Mentawa village), 39 plant species were used traditionally by Balinese people. Eighteen of them were used for medicines, 18 for foods, and 13 for ceremonial rituals.

Five species of the plants that have high Index of Cultural Significance (ICS) for the Tao Taa Wana ethnic group were coconut (Cocos nucifera), banana (Musa paradisiaca), cassava (Manihot esculenta), dammar (Agathis dammara) and sugar palm (Arenga pinnata), similar with study in South Sulawesi [27,28]. The same phenomenon of the highest value of ICS were also showed by Javanese people in Singkoyo village and Balinese people in Mentawa village respectively.

Table 7. Index of Culture Significance (ICS) of plants used by Tao Taa, Javanese and Balinese ethnics in the studied area.

No	Local Name	Botanical Name	Family	ICS	Uses
A	Tao Taa Wana				
1	Kayuku	*Cocos nucifera* L.	Arecales	116	Medicines, foods, Ritual ceremonies, Ropes, Fuels, Building materials
2	Loka	*Musa paradisiaca* L.	Musaceae	80	Foods, ritual ceremonies
3	Kasubi	*Manihot esculenta* Crantz	Euphorbiaceae	64	Foods, Fuels
4	Soga	*Agathis dammara* (Lamb.) Rich. & A.Rich.	Araucariaceae	62	Medicines, Fuels
5	Enau	*Arenga pinnata* (Wurmb) Merr.	Arecales	61	Foods
6	Kafu	*Ceiba pentandra* (L.) Gaertn	Malvaceae	57	Medicines, Ropes, Fuels, Building materials
7	Jati	*Tectona grandis* L.f.	Verbenaceae	56	Ritual ceremonies, Fuels, Building materials
8	Lauro	*Calamus zollingerii* Becc	Arecales	52	Foods, Ropes
9	Taripa	*Mangifera indica* L.	Anacardiacae	44	Foods, Fuels
10	Andolia	*Cananga odorata* (Lam.) Hook.f. & Thomson	Annonaceae	33	Medicines, Fuels, Building materials
11	Kuni	*Curcuma longa* L.	Zingiberaceae	33	Medicines, Natural dyes, Spices, Pesticides
12	Veau	*Aleurites moluccana* (L.) Wildl.	Euphorbiaceae	32	Fuels
13	Coklet	*Theobroma cacao* L.	Malvaceae	32	Foods, Fuels
14	Bunta	*Ficus variegata* Blume	Moraceae	31.5	Medicines, Foods, Fuels
15	Seronge	*Pterocarpus indicus*	Fabaceae	31	Medicines, Natural dyes, Fuels
16	Kaumama	*Neolamarckia cadamba*	Rubiaceae	31	Forages, Fuels, Building materials
17	Jambu biji	*Psidium guajava*	Myrtaceae	30	Medicines, Foods, Fuels
18	Puti mata	*Macaranga gigantea*	Euphorbiaceae	30	
19	Nunang	*Syzygium cumini*	Myrtaceae	24	Medicines, Fuels
20	Nantu	*Manilkara fasciculata*	Sapotaceae	24	Medicines, ritual ceremonies, Pesticides
21	Gamal	*Gliricidia sepium*	Fabaceae	21	Fuels, Building materials, Forage, Fuels, Soil fertilizer
22	Binongol	*Solanum melongena*	Solanaceae	21	Medicines, Foods
23	Yalintai	*Mallotus mollissimus*	Euphorbiaceae	21	Medicine, Fuel
24	Katu	*Sauropus androgynus*	Phyllanthaceae	21	Medicines, Foods
25	Pepaya	*Carica papaya*	Caricaceae	18	Medicines, Foods
26	Marisa	*Piper nigrum*	Piperaceae	18	Medicines, Foods
27	Jahe	*Zingiber officinale*	Zingiberaceae	18	Medicines, Foods, Spices
28	Salu Bugis	*Jatropha curcas*	Euphorbiaceae	15	Medicines, Pesticides, Medicines, ritual ceremonies
29	Timpono	*Piper sp.*	Piperaceae	15	
30	Katumbara	*Lantana camara*	Verbenaceae	13	Medicines, Ornaments
31	Jambu Air	*Syzygium aqueum*	Myrtaceae	12	Foods, Fuels
32	Delima	*Punica granatum*	Punicaceae	12	Foods
33	Tebu	*Saccharum officinarum*	Poaceae	10	Foods, Forage
34	Tambole	*Senna alata*	Fabaceae	9	Medicines
35	Ngareo	*Euphorbia hirta*	Euphorbiaceae	9	Medicines
36	Wayo	*Myrmecodia pendens*	Rubiaceae	9	Medicines
37	Patoncu	*Sellaginella doederleini*	Selaginellaceae	9	Medicines
38	Rumput Tikus	*Phyllanthus uncinus*	Phyllanthaceae	9	Medicines
39	Benalu	*Macrosolen cochinichenis*	Loranthaceae	9	Medicines
40	Rica	*Capsicum annuum*	Solanaceae	9	Foods
41	Pau	*Phaleria macrocarpa*	Thymelaceae	8	Medicines, Ornaments
42	Kadaka	*Asplenium nidus*	Apleniaceae	2	Ornaments
43	Alang-alang	*Imperata cylindrica*	Poaceae	2	Medicines

B Javanese
No.	Name	Scientific Name	Family	Page
1	Kelapa	*Cocos nucifera* L.	Arecaceae	94
2	Gedang	*Musa paradisiaca* L. *Manihot esculenta*	Musaceae	82
3	Ubi Kayu	Crantz	Euphorbiaceae	73
4	Jati	*Tectona grandis* L.f.	Verbenaceae	69
5	Kapuk	*Ceiba pentandra* (L.) Gaertn	Malvaceae	53
6	Duren	*Durio zibethinus* L. *Arenga pinnata* (Wurmb)	Malvaceae	52
7	Aren	*Citrus sinensis* (L.) Merr.	Rutaceae	48
8	Jeruk	*Colocasia esculenta* (L.) Osbeck	Araceae	48
9	Bete	*Neolamarckia cadamba* (Roxb.) Bosser	Araceae	45
10	Jabon	*Theobroma cacao* L. *Artocarpus altilis* (Parkinson ex F.A.Zorn)	Malvaceae	32
11	Coklat	*Sesbania grandiflora* (L.) Fosberg	Fabaceae	29
12	Sukun	*Annona muricata* L.	Annonaceae	32
13	Sabrang	*Cananga odorata* (Lam.) Hook.f. & Thomson	Annonaceae	32
14	Kenanga	*Myristica fragrans* Houtt.	Myristicaceae	30
15	Pala	*Curcuma longa* L. *Sesbania grandiflora* (L.)	Zingiberaceae	30
16	Kunir	*Pers. Sesbania grandiflora* (L.) Pers.	Fabaceae	29
17	Turi Merah	*Leucaena leucocephala* (Lam.) de Wit	Fabaceae	29
18	Turi Putih	*Terminalia catappa* L. *Zea mays* L.	Combretaceae	26
19	Klandangan	*Alpinia galangl* L. Wild. *Zingiber officinale* Roscoe	Zingiberaceae	24
20	Ketapang		Poaceae	25
21	Jagung		Poaceae	24
22	Laos		Zingiberaceae	24
23	Jahe		Zingiberaceae	24
No.	Name	Scientific Name	Family	Usage
-----	-----------------	---	------------	--
24	Salam	Syzygium polyanthum (Weight) Walp.	Myrtaceae	21 Medicines, Foods
25	Katuk	Sauropus androgynus (L.) Merr.	Phyllantaceae	21 Medicines, Foods
				Pesticides, ritual ceremonies
26	Sri Sambungnyowo	Piper betle L. Gynura procumbens	Piperaceae	21 Medicines
27	Pete	Parkia speciosa Hassk	Fabaceae	20 Foods, Fuels
29	Lombok	Capsicum annuum L.	Solanaceae	20 Foods
30	Talok	Muntingia calabura L. Syzygium aromaticum (L.) Merr. & L.M.Perry Mucuna pruriens (L.)	Muntingiaceae	18 Medicines, Foods, Fuels
31	Cengkeh	DC	Fabaceae	18 Medicines, Foods
32	Koro	Cymbopogon citratus (DC. Stapf)	Poaceae	18 Medicines, Foods, Forage
33	Serai			
34	Kariango	Acorus calamus L. Archidendron pauciflorum (Benth.)	Araceae	17 Medicines, ritual ceremonies
35	Jengkol	I.C.Nielsen	Fabaceae	16 Foods, Fuels
36	Amoxilin	Jatropha multifida L.	Euphorbiaceae	15 Medicines, Ornaments
37	Jarak	Jatropha curcas L. Bryophyllum pinnatum	Euphorbiaceae	15 Medicines, Pesticides
38	Cocor Bebek	(Lam.) Oken Piper crocatum Ruit and Pav	Crassulaceae	15 Medicines, Ornaments
39	Sirih Merah	Coleus scutellaroides (L.) Benth.	Lamiaceae	15 Medicines, Ornaments
40	Mayana Merah			
41	Pandan Mojo	Dracaena sp	Pandanaceae	13 Natural dyes
42	Rambutan	Nepheleum lappaceum L. Solanum torvum Sw	Sapindaceae	12 Foods, Fuels
43	Poka		Solanaceae	12 Foods
44	Kemangi	Ocimum basilicum L.	Lamiaceae	12 Foods, Spices
45	Kenikir	Cosmos caudatus Kunth Mahkota Phaleria macrocarpa	Asteraceae	12 Foods, Ornaments
46	Dewa	(Scheff.) Boerl	Thymelaceae	10 Medicines, Ornaments
47	Pace	Morinda citrifolia L. Anredera cordifolia (Ten.) Steenis	Rubiaceae	9 Medicines
48	Binahong			
49	Meniran	Phyllanthus urinaria L.	Phyllantaceae	9 Medicines
50	Patikan Kebo	Euphorbia hirta L. Orthosiphon aristatus	Euphorbiaceae	9 Medicines
51	Kumis	(Blume) Miq Phalaenopsis amabilis (L.) Blume	Lamiaceae	9 Medicines
52	Anggrek		Orchidaceae	6 Ornaments

C Balinese
No.	Plant Name	Genus and Species	Family	Uses
1	Nyuh	*Cocos nucifera* L.	Arecaceae	Medicines, foods, ritual ceremonies, ropes, building materials
2	Biyu	*Musa paradisiaca* L.	Musaceae	Medicines, foods, ropes, ritual ceremonies, Medicine, ritual ceremonies, fuels
3	Bunga Sandad	*Cananga odorata* (Lam.)	Anonaceae	Foods, ornamemt, ritual ceremonies
4	Kladi	*Schott*	Araceae	Foods, forage, Ornaments, ritual ceremonies
5	Jepun	*Nerium oleander* L.	Apocynaceae	Ornaments, ritual ceremonies, fuels
6	Cempaka	*Michelia alba* DC.	Magnoliaceae	Medicines, foods, ritual ceremonies, building materials, natural dyes
7	Kunyit	*Curcuma longa* L.	Zingiberaceae	Foods, fuels, Ropes, ritual ceremonies
8	Coklat	*Theobroma cacao* L.	Malvaceae	Ceremonial rituals, Ropes, Ceremonial rituals, ropes
9	Ibung	*Onocendera tigillarium* (Jack) Ridl.	Arecaceae	Ceremonial rituals, Ropes
10	Janur	*Nypa fruticans* Wurmb	Areaceae	Ceremonial rituals, ropes
11	Tiing	*Bamusa maculata* Widjaja	Bambusaceae	Food, natural dyes, ornament, ritual ceremonies
12	Arrum	*Pandanus amaryllifolius*	Pandanaceae	Medicines, foods, ritual ceremonies
13	Sotong	*Psidium guajava* L.	Myrtaceae	Medicine, foods, ritual ceremonies
14	Manas	*Ananas comosus* (L.)	Bromeliaceae	Firewood, building materials, Ornament, ritual ceremonies, Medicines
15	Jabon	*Ixora*	Rubiaceae	Medicine, foods, ritual ceremonies, Medicines
16	Sokka	*Aciculiflora* Bremek	Rubiaceae	Medicines, foods, ornaments, Medicines, ritual ceremonies
17	Isen	*Wild*	Zingiberaceae	Medicines, foods, foods, fuels, natural dyes, ornament, ritual ceremonies
18	Gedang	*Carica papaya* L. *Zingiber officinale*	Caricaceae	Foods
19	Jae	*Rosco*	Zingiberaceae	Medicine, spices
20	Cengkeh	*Syzygium aromatum* (L.) Merr. & L.M.Perry	Myrtaceae	Medicine, spices
21	Kayu Manis	*Anacardium occidentale* (L.) Merr. Merr.	Phyllantaceae	Medicine, foods
22	Meteh	*L.*	Anacardiaceae	Food, fuels
23	Rambutan	*Nephelium lappaceum* L. Manikara kauki (L.)	Sapindaceae	Food, fuels
24	Sao	*Bougainvillea spectabilis* P.Royen	Sapotaceae	Food, ornaments
25	Bunga Kertas	*Choisy*	Nyctaginaceae	Ornament, ritual ceremonies
Syzigium aromaticum, according to Kessler et al. (2002), rambutan (Nephelium lappaceum), nutmeg (Myristica fragrans), cloves (Syzygium aromaticum), rambutan (Nephelium lappaceum), sawo (Manilkara kauki), jack fruit (Artocarpus heterophyllus), corn (Zea mays), banana (Musa paradisiaca), turmeric (Curcuma longa), ginger (Zingiber officinale), and chili (Capsicum frutescens). This indicated resemblance of the plant species found in agroforestry system of Lore Lindu.

26	Puring	Codiaeum variegatum (L.) Rumph. ex A.Juss.	Euphorbiaceae	20	Ornaments, Medicines, Pesticides, ritual ceremonies
27	Base	Piper betle L.	Piperaceae	20	Foods, Medicines, ritual ceremonies
28	Nangke	Artocarpus heterophyllus	Fabaceae	17	Medicines, pesticides
29	Dada	Erythrina variegata L.	Fabaceae	15	Medicines, pestsides
30	Jarak	Jatropha curcas L.	Euphorbiaceae	12	Foods
31	Mahkota	Solanum melongena L.	Solanaceae	10	Medicines, ornaments
32	Dewa	Phaleria macrocarpa	Rubiaceae	9	Medicines
33	Nibah	Morinda citrifolia L.	Rubiaceae	9	Medicines
34	Kumis	Orthosiphon aristatus	Lamiaceae	9	Medicines
35	Kucing	Anredera cordifolia	Lamiaceae	9	Medicines
36	Gendola	Digitaria abudens (Roe m. & Schult.) Veldkamp	Baselineae	9	Medicines
37	Suket	Cereus jamacaru DC.	Cactaceae	8	Ornaments
38	Kaktus	Mimosa pudica L. Imperata cylindrica (L.)	Fabaceae	6	Medicines
39	Putri malu	Rauensh.	Poaceae	4.5	Forages

3.3. Discussions

There was a significant different in a number of plant species among the three agroforestry systems in the studied area. We recorded 43, 5,2 and 39 plant species in research sites A, B, and C, respectively. The species composition was also quite different among the research sites (A in Menyo’e village; B in Singkoyo; and C in Mentawa).

Menyo’e village was generally composed of mixed natural plants and cultivated plant species. Some species, such as Agathis dammara, Arenga pinnata, Calamus zollingerii, Cananga odorata, Ficus variegata, Neolamarckia cadamba, Macaranga gigantea and Manilkara fasciculata, were categorized as natural plant species of Sulawesi, while coconut (Cocos nucifera), banana (Musa paradisiaca), kapok (Ceiba pentandra), Aleurites mollucca, teak (Tectona grandis), gamal (Glyricidia sepium), cacao (Theobroma cacao), cassava (Manihot esculenta), Pterocarpus indicus, Syzygium cumini belonged to cultivated species. According to Kessler et al., 2002, there are 2100 (about 120 families) natural woody plant species in Sulawesi and many of them are endemic Sulawesi [29]. Henderson and Pitopang (2018) pointed out that seventy-eight (78) percent of Wallacea rattans are endemic to the region, including Calamus zollingerii Becc [30]. Pitopang and Safaruddin (2012) also discovered that “Tao Taa Wana” people who live around Morowali Nature Reserve rely on “baratan” (collecting rattan) and “badamar” (tapping resin tree/Agathis spp.) as their main livelihood [31]. Rattan means Lauro (in Tao Taa Language). Some rattans species collected by them included “lauro vata” (Calamus zollingerii), lauro toiti (Calamus inops), and lauro jarmasi.

The plant species mostly cultivated by the people in Singkoyo and Mentawa villages included coconut (Cocos nucifera), durian (Durio zibethinus), teak (Tectona grandis), coklat (Theobroma cacao), breadfruit (Artocarpus elasticus), lemon (Citrus chinensis), aren (Arenga pinnata), soursop (Annona muricata), nutmeg (Myristica fragrans), clove (Syzygium aromaticum), rambutan (Nephelium lappaceum), sawo (Manilkara kauki), jack fruit (Artocarpus heterophyllus), corn (Zea mays), banana (Musa paradisiaca), turmeric (Curcuma longa), ginger (Zingiber officinale), and chili (Capsicum frutescens). This indicated resemblance of the plant species found in agroforestry system of Lore Lindu.
National Park (Gradstein et al., 2007) which included species, such as *Durio zibethinus*, *Artocarpus heterophyllus*, *Nepheleinum lappaceum* and *Artocarpus elasticus*, were also recorded in the agroforestry “Tembawang” at Sekadau Hulu, West Kalimantan [32,33].

In the perspective of traditional utilization of plants, “coconut” (*Cocos nucifera* L) has the highest Index of Cultural Significant (ICS) among the three different ethnicities. Index of Cultural Significance (ICS) is the result of quantitative ethnobotany analysis to determine utilization of plant diversity and its importance for the people [26]. *C.nucifera* is pantropical medium-sized to large palm, which is believed to have originated from the Melanesian region (Rehm and Espig, 1991) as a result of human activities of dispersion on tropical and subtropical shores throughout the world [34]. This species is one of the most useful trees in the world—it has multitvarious utilities. The water is drinkable, the fleshy seed (endosperm) can be eaten raw, and the coconut milk can be used for cooking. Copra (dried form of endosperm) is processed for soap manufacturing, coconut oil, and other useful products [35]. Many parts of the coconut tree are used for utensils, handy crafts, fuels, building materials and for medicines [35–37]. The constituents of *C. nucifera* have some biological effects such as anti-helmintic, anti-inflammatory, anti-nociceptive, anti-oxidant, anti-fungal, anti-microbial and anti-tumor activities [38].

The traditional plant usage by the three different ethnicities in the agroforestry ecosystems is different, although they are generally used for food, medicine, natural coloring, botanical pesticide, ornament, forage, customary rituals, rope, firewood, and building material (construction).

3.3.1. Food plants.

Javanese community has utilized many of the plant species for their daily need. We noted as many as thirty-two species were used for food. These comprised “kelapa” (*Cocos nucifera*), “gedang” (*Musa paradisiaca*), “ubi kayu” (*Manihot esculenta*), “jagung” (*Zea mays*), “duren” (*Durio zibethinus*), “sukun” (*Artocapus elasticus*), “aren” (*Arenga pinnata*), “jeruk” (*Citrus sinensis*), “bete” (*Colacasia esculenta*), “coklat” (*Theobroma cacao*), “nangka sebrang” (*Annona muricata*), “turi merah” (*Sesbania grandiflora*), “klandangan” (*Leucaena leucocephala*), “kemangi” (*Ocinum basilicum*), “lombok” (*Capsicum annuum*), “petai” (*Parkia timoriana*), “jengkol” (*Archidendron pauciflorum*) and “rambutan” (*Nephelium lappaceum*).

Twenty species of the plants have been made use by the Tao Taa wana people for food such as “taripa” (*Mangifera indica*), “loka” (*Musa paradisica*), “papaya” (*Carica papaya*), “jambu air” (*Syzygium aqueum*), “tebu” (*Saccharum officinarum*), “kasubi” (*Manihot esculenta*), “kayuku” (*Cocos nucifera*), and “delima” (*Punica granatum*).

In Mentawa village, Balinese people have utilized 18 plant species for food which included “kladi” (*Colacasia esculenta*), “gedang” (*Carica papaya*), “coklat” (*Theobroma cacao* L), “nangke” (*Artocarpus heterophyllus*), “terong” (*Solanum melongena*), “meth” (*Anacardium occidentale*), “rambutan” (*Nephelium lappaceum*), and “biyu” (*Musa paradisiaca*). According to Rivera et al., (2010), those foods have positive physiological effects beyond their nutritional function of providing nutrients [39]. Verheij and Coronel (1992) also noted about 400 plant species are used as food in southeast Asia including edible fruits, nuts or seeds [40]. Meanwhile, Siemonsma and Piluek (1994) reported more than 1000 species in Southeast Asia are known to yield vegetable products, although only 50 of them have been developed into highly commercialized crops [41].

3.3.2. Medicinal plants.

Indonesian people in general and some indigenous communities including Javanese, Balinese and Kailinese have long been utilizing plants as traditional medicine to maintain their health. Fathurrühman et al., (2016) reported 62 plant species were used by Kaili Inde tribe in Central Sulawesi as medicine, while Paik et al.,(2013) recorded 165 medicinal plants in Lore Lindu National Park, Sulawesi Indonesia [23,42]. Such tradition of making use of plants for healing in Indonesia dates back to prehistoric times.

In this study, we recorded a large number of medicinal plants being used by the three ethnicities in the studied area. Twenty-seven species were used by Tao Taa Wana, 28 by the Javanese and 18 by the Balinese community. The knowledge and art of utilizing plants as medicine have been handed down from generation to generation. Some plants, such as *Borassus flabellifer*, *Calophyllum*
inophyllum, Datura metel and Syzygium cumini, are still used in traditional medicine, which can be found in varied reliefs as portrayed on the wall of temples in Java (i.e. Borobudur, Prambanan and Sukuh [43].

In Javanese community, utilizing herbal plants for the purpose of medication (called “Jamu”) has been noted down for a long time. The so-called “Jamu”, which has now been adopted into the Indonesian language, may consist of a single or a mixture of some medicinal plants. Sumarni et al., (2019) reveals that the knowledge of traditional “jamu” formula was preserved and disseminated orally throughout generations [44]. This is in line with the definition of traditional medicine delivered by the World Health Organization (WHO). Like the Javanese community, Balinese people also used plants as medicine. Sujarwo et al. (2020) recorded 50 species of plants were used in traditional system of medicinal use called "Usada" in Bali island [20].

3.3.3. Plants for traditional rituals. There was a difference in the perspective of traditional use of plants as ceremonial or customary rituals by the three different ethnics. The Balinese people in Mentawa have used more plants as traditional rituals (15 species) than those used by the other two ethnics: Tao Taa Wana (5 species) and the Javanese people (6 species). The Balinese people, which are identical with Hinduism, have given incredibly important attention to plants and forests. Sujarwo et al., (2020) recorded 125 species (112 genera, 49 families) of plants are used for the sake of religious offerings in Bali, most of which belong to the wild ethnoflora of Bali [45]. In Bali, too, traditional and religious ceremonies are more frequent than in any other places in the wider Hindu world [46].

3.3.4. Plant for fuels and building materials. The Tao Taa Wana community have used 18 species of plants for firewood and 6 others for building materials. Similarly, the Javanese have used 17 species for firewood and seven others for building materials. Unlike these two ethnics, the Balinese have only used 8 species for fuels and 4 others for building materials. All these plants belong to woody plants. The plants that were used for fuels included “jambu biji” (Psyidium guajava), “kayuku” (Cocos nucifera), “coklat” (Theobroma cacao), “pete” (Parkia timorensis), and “rambutan” (Nephelium lappaceum)—some of them are categorized as wild plants such as “andolia” (Cananga odorata), “puti mata” (Macaranga gigantea), “bunta” (Ficus variegata), and “soga” (Agathis dammara). The tree species used for building materials included “jati” (Tectona grandis), “nantu” (Manilkara fassculata), “andolia (Cananga odorata), “durian” (Durio zibethinus), and “jabon” (Neolamarckia cadamba). Kessler et al, (2005) noted that there are 2100 woody plant species in Sulawesi [6].

3.3.5. Plants for botanical pesticides, forages, natural dyes and ornaments. The three ethnic groups in the studied areas have also used some of the plant species for botanical pesticides, forages, ornamental plants and natural dyes. Turmeric (Curcuma longa) and jatropha curcas were used for natural dyes and botanical pesticides respectively by the three ethnics. Unlike the Javanese people have used more of the plants for forages and ornaments than those used by the Tao Taa wana and Balinese people. Mannetje and Jones (1992) reported that there are 115 major forage species in southeast Asia [47]. Rahayu et al, (2020) recorded 22 plants species are used by Lombok people as dying and natural color in traditional Pringgasela woven fabric, East Lombok, Nusa Tenggara, Indonesia [48].

4. Conclusions

In conclusion, the highest number of plant species is found in research site B, but the highest number of individuals is noted in research site A. The highest Important Value Index (IVI) of tree, poles, sapling and seedling level plant species differ among the three research sites. In the perspective of traditional plant use, the highest of Index of Cultural Significat (ICS) of plants among the three ethnics is “coconut” (Cocos nucifera L.), but the number of plant used and its utilization are different among the ethnics. The Tao Taa Wana people have utilized about 43 plant species—27 are used as medicines, 20 for foods, two for natural dyes, 18 as fuels, six for building materials, and five for ritual ceremonies. In research site B (Singkoyo), 52 plant species have been extensively used by the Javanese people for a variety of culture uses—28 of them are used as medicines, 32 for foods, 17 for fuels, seven for building
materials, and 10 for ornamental purposes. Quite similarly, in research site C (Mentawa), as many as 39 plant species are used traditionally by the Balinese people—18 are used as medicine, 18 for food, and 13 for ritual ceremonies.

References
[1] Pitopang R 2012 Impact of Forest Disturbance on The Structure and Composition of Vegetation in Tropical Rainforest of Central Sulawesi, Indonesia Biodiversitas J. Biol. Divers. 13 178–89
[2] Brearley F Q, Adinugroho W C, Cámara-Leret R, Krisnawati H, Ledo A, Qie L, Smith T E L, Aini F, Garnier F and Lestari N S 2019 Opportunities and Challenges for An Indonesian Forest Monitoring Network Ann. For. Sci. 76 1–12
[3] Mattsson E, Ostwald M, Nissanka S P and Pushpakumara D 2015 Quantification of Carbon Stock and Tree Diversity of Homegardens in A Dry Zone Area of Moneragala District, Sri Lanka Agrofor. Syst. 89 435–45
[4] Culmsee H, Pitopang R, Mangopo H and Sabir S 2011 Tree Diversity and Phytogeographical Patterns of Tropical High Mountain Rain Forests in Central Sulawesi, Indonesia Biodivers. Conserv. 20 1103–23
[5] Manurung K, Basir-Cyio M and Basri H 2019 The Development and Potential Evaluation of Indonesian Lore Lindu National Park Ecotourism in Relation to the Economic Growth of the Surrounding Community J Env. Manag Tour 10 366–73
[6] Kessler M, Kessler P J A, Gradstein S R, Bach K, Schmull M and Pitopang R 2005 Tree Diversity in Primary Forest and Different Land Use Systems in Central Sulawesi, Indonesia Biodivers. Conserv. 14 547–60
[7] Barkmann J, Burkard G, Faust H, Fremerey M, Koch S and Lanini A 2010 Land Tenure Rights, Village Institutions, and Rainforest Conversion in Central Sulawesi (Indonesia) Tropical Rainforests and Agroforests under Global Change (Springer) pp 141–60
[8] Viswanath S, Lubina P A, Subbanna S and Sandhya M C 2018 Traditional Agroforestry Systems and Practices: A Review Adv Agric Res Technol J 2 18–29
[9] Sanchez P A 1995 Science in Agroforestry Agrofor. Syst. 30 5–55
[10] Hernández M Y, Macario P A and López-Martínez J O 2017 Traditional Agroforestry Systems and Food Supply Under The Food Sovereignty Approach Ethnobiol. Lett. 8 125–41
[11] Paul C, Griess V C, Havardi-Burger N and Weber M 2015 Timber-Based Agrisilviculture Improves Financial Viability of Hardwood Plantations: A Case Study from Panama Agrofor. Syst. 89 217–35
[12] Ruslim Y, Yusuf S, Lahjie A M and Lisnawati A 2017 Agroforestry System Biodiversity of Arabica Coffee Cultivation in North Toraja District, South Sulawesi, Indonesia Biodiversitas 18 741–51
[13] Markum M, Ariesoesilonsih E, Suprayogo D and Hairiah K 2013 Contribution of Agroforestry System in Maintaining Carbon Stocks and Reducing Emission Rate at Jangkok Watershed, Lombok Island AGRIVITA, J. Agric. Sci. 35 54–63
[14] Fifanou V G, Ousmane C, Gauthier B and Brice S 2011 Traditional Agroforestry Systems and Biodiversity Conservation in Benin (West Africa) Agrofor. Syst. 82 1–13
[15] Cicuzza D, Kessler M, Clough Y, Pitopang R, Leitner D and Tjitrosoedirdjo S S 2011 Conservation Value of Cacao Agroforestry Systems for Terrestrial Herbaceous Species in Central Sulawesi, Indonesia Biotropica 43 755–62
[16] Lestari N D, Suprayogo D and Rachmansyah A 2019 Local Biodiversity Conservation in Sigi, Central Sulawesi, Indonesia: Analysis of The Effect of Elevation, Land Accessibility, and Farmers Income and Perception on Vegetation Diversity in Agroforestry Systems Biodiversitas J. Biol. Divers. 20 283–91
[17] Ramachandran Nair P K 2007 Agroforestry for Sustainability of Lower-Input Land-Use Systems J. Crop Improv. 19 25–47
[18] Pitopang R and Ihsan M 2014 Biodiversitas Tumbuhan di Cagar Alam Morowali Sulawesi Tengah
Indonesia Nat. Sci. J. Sci. Technol. 3 287 – 296

[19] Irawanto D W, Ramsey P L and Ryan J C 2011 Challenge of Leading in Javanese Culture Asian Etnh. 12 125–39

[20] Sujarwo W, van der Hoeven B and Pendit I M R 2020 Usada: A book about Traditional Balinese Medicinal Plants (Jakarta: Indonesian Institute of Sciences (LIPI))

[21] Bridson D M and Forman L 1999 Herbarium Handbook 3rd Edition (Kew, London: Royal Botanic Gardens)

[22] Bernard R 2002 Research Methods in Anthropology: Qualitative and Quantitative Methods (3rd ed) (California: Altamira Oxford)

[23] F F, Nursanto J, Madjid A and Ramadaniil R 2016 Ethnobotanical Study of “Kaili Inde Tribe” in Central Sulawesi Indonesia Emirates J. Food Agric. 28 337–47

[24] Mueller Dombois D and Ellenberg H 1974 Aims and Methods of Vegetation Ecology (New York: John Wiley & Sons)

[25] Ludwig J A, Reynolds J F, QUARTET L and Reynolds J F 1988 Statistical ecology: a primer in methods and computing vol 1 (John Wiley & Sons)

[26] Turner N J 1988 “The Importance of A Rose”: Evaluating The Cultural Significance of Plants in Thompson and Lillooet Interior Salish Am. Anthropol. 90 272–90

[27] Paembonan S A, Millang S, Dassir M and Ridwan M 2018 Species variation in home garden agroforestry system in South Sulawesi, Indonesia and its contribution to farmers’ income IOP Conf. Ser. Earth Environ. Sci. 343 1–11

[28] Sandabunga R M, Umar A, Millang S, Bachtiar B, Paembonan S, Restu M and Larekeng S H 2019 Land compliance of agroforestry compiler components evaluation in Pangli sub-district Desean district , North Toraja regency IOP Conf. Ser. Earth Environ. Sci. 343 1–11

[29] Kessler P J A, Bos M M, Sierra Daza S E C, Kop A, Willemse L P M, Pitopang R and Gradstein S R 2002 Checklist of Woody Plants of Sulawesi Indonesia Blumea. Suppl. 14 1–160

[30] Henderson A and Pitopang R 2018 Short communication: The rattans (arecaceae) of Wallacea Biodiversitas 19 18–21

[31] Pitopang R and Safaruuddin 2012 Ethnoecological system of Tao Taa Wana Tribe in the Morowali Nature Reserve, Central Sulawesi, Indonesia Proc Soc. Indon. Biodiv Int. Conf. 1 201–9

[32] Gradstein S R, Kessler M and Pitopang R 2007 Tree Species Diversity Relative to Human Land Uses in Tropical Rain Forest Margins in Central Sulawesi (Springer)

[33] Pitopang R and Rafdinal 2019 The Phytososiological of Agroforestry Tembawang at Secundary Forest Sekadau Hulu in West Kalimantan Indonesia Journal of Physics: Conference Series vol 1242 (IOP Publishing) p 12041

[34] Rehm S and Espig G 1991 The Cultivated Plants of The Tropics and Subtropics: Cultivation, Economic Value, Utilization (Margraf)

[35] DebMandal M and Mandal S 2011 Coconut (Cocos nucifera L.: Arecales): In health promotion and disease prevention Asian Pac. J. Trop. Med. 4 241–7

[36] Ali M 2011 Coconut Fibre: A Versatile Material and its Applications in Engineering J. Civ. Eng. Constr. Technol. 2 189–97

[37] Tchogou A P, Sënonu M, Dougnon T V, Agossadou A, Assogba F, Kinsciclonon E G, Ewedjè E, Agbangnan D C P, Gbënow J and Lalëyè A 2016 The Aqueous Extract of Cocos nucifera L.(Arecales) Effectively Treat Induced Anemia. Experimental study on Wistar Rats Int. J. Biol. 8 1–9

[38] Lima E B C, Sousa C N S, Meneses L N, Ximenes N C, Santos M A, Vasconcelos G S, Lima N B C, Patrocínio M C A, Macedo D and Vasconcelos S M M 2015 Cocos nucifera (L.)(Arecales): A Phytochemical and Pharmacological Review Brazilian J. Med. Biol. Res. 48 953–64

[39] Rivera G, Bocanegra-Garcia V and Monge A 2010 Traditional Plants as Source of Functional Foods: A Review CyTA–Journal Food 8 159–67

[40] Verheij E W M and Coronel R E 1992 Plant Resources of South East-Asia : Edible Fruits and Nuts (Bogor: Prosea Foundation)
[41] Siemonsma J and Kasem P 1994 Vegetables, Plant resources of South-East Asia (Prosea) J Ethnopharmacol 46 130–56
[42] Paik J H, Lee J, Choi S, Marwoto B, Juniarti F, Irawan D and Pitopang R 2013 Medicinal of Lore Lindu National Park, Sulawesi Indonesia Vol. I. KRIIBB-BPPT-Tadulako Univ. PT. Alimindo Sejati. Bekasi Indonesia.
[43] De Padua L S, Bunyapraphatsara N and Lemmens R 1999 Plant resources of South-East Asia vol 12 (Leiden: Backhuys Publ.)
[44] Sumarni W, Sudarmin S and Sumarti S S 2019 The Scientification of Jamu: A Study of Indonesian’s Traditional Medicine Journal of Physics: Conference Series vol 1321 (IOP Publishing) p 32057
[45] Sujarwo W, Caneva G and Zuccarello V 2020 Patterns of Plant Use in Religious Offerings in Bali (Indonesia) Acta Bot. Brasilia 34 40–53
[46] Jones C and Ryan J D 2007 Encyclopedia of inHduism (New York: Infobase publishing)
[47] Mannetje L T and Jones R M 1992 Plant resources of South-East Asia. No. 4: Forages (Bogor: PROSEA (Plant Resources of South-East Asia) Foundation)
[48] Rahayu M, Kuncari E S, Rustiami H and Susan D 2020 Utilization of Plants as Dyes and Natural Color Binder in Traditional Pringgasela Woven Fabric, East Lombok, West Nusa Tenggara, Indonesia Biodiversitas J. Biol. Divers. 21 636–41