Molecular engineering of antiferromagnetic rings for quantum computation

F. Troiani, A. Ghirri, M. Affronte, S. Carretta, P. Santini, G. Amoretti, S. Piligkos, G. Timco, and R.E.P. Winpenny

1INFM - S3 National Research Center on nanoStructures and bioSystems at Surfaces and Dipartimento di Fisica, Università di Modena e Reggio Emilia, via G. Campi 213/A, I-41100 Modena, Italy
2INFM and Dipartimento di Fisica, Università di Parma, Parco Area delle Scienze, I-43100 Parma, Italy
3Department of Chemistry, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom

(Dated: March 22, 2022)

The substitution of one metal ion in a Cr-based molecular ring with dominant antiferromagnetic couplings allows to engineer its level structure and ground-state degeneracy. Here we characterize a Cr-Ni molecular ring by means of low-temperature specific-heat and torque-magnetometry measurements, thus determining the microscopic parameters of the corresponding spin Hamiltonian. The energy spectrum and the suppression of the leakage-inducing S-mixing render the Cr-Ni molecule a suitable candidate for the qubit implementation, as further substantiated by our quantum-gate simulations.

PACS numbers: 75.50.Xx, 03.67.-a, 75.40Cx

Due to their relative decoupling from the environment and to the resulting robustness, electron spins in solid-state systems are currently considered among the most promising candidates for the storing and processing of quantum information (QIP) \cite{1}. In this perspective, an increasing interest has recently been attracted by a novel class of molecular magnets, including both ferromagnetic \cite{2} and antiferromagnetic \cite{3} systems. In the latter case the quantum hardware is thought as a collection (e.g., a planar array) of coupled molecules, each corresponding to a different qubit. A major advantage with respect to analogous schemes based on single-spin encodings would arise from the larger dimensions of the physical subsystem, and on the resulting reduction of the spatial resolution which is required for a selective addressing of each qubit by means of local magnetic fields \cite{1}. A detailed, system-specific investigation is however mandatory in order to verify the actual feasibility of this approach, and to suitably engineer the intra- and inter-cluster interactions, the coupling between the computational and the environmental degrees of freedom, as well as the gating strategy.

It is the purpose of the present Letter to argue the suitability of Cr-based antiferromagnetic molecular rings for the qubit implementation on the basis of a detailed theoretical and experimental investigation of its wavefunctions and energy levels, and of its simulated time evolution as induced by sequences of pulsed magnetic fields. Molecular rings \cite{4} are characterized by a cyclic shape and by a dominant antiferromagnetic coupling between nearest neighbouring ions. In the absence of applied fields and for even numbers of spin centers, their energy spectrum typically consists in a singlet ground state and in characteristic rotational excitations \cite{5}. The recently demonstrated substitution of a Cr$^{3+}$ ion with a divalent transition metal \cite{6}, provides an extra spin to the otherwise fully compensated molecule: this may in turn result in the formation of a ground state doublet energetically separated from the higher energy levels, i.e. in a suitable level structure for the qubit implementation.

In the octanuclear heterometalic ring of our present concern, one of the Cr$^{3+}$ $(s=3/2)$ ions is substituted by a Ni$^{2+}$ $(s=1)$ one. The cyclic molecule, with a diameter $d \sim 1$ nm, is characterized by a planar arrangement; we thus define θ to be the angle between the static magnetic field \mathbf{B}_0 and \mathbf{z}, the latter being perpendicular to the ring plane. The spin Hamiltonian corresponding to the single molecular magnet reads \cite{7}:

$$\mathcal{H} = \sum_{i=1}^{8} J_i \mathbf{s}_i \cdot \mathbf{s}_{i+1} + \sum_{i=1}^{8} d_i [s_{z,i}^2 - s_i (s_i + 1)/3] + \sum_{i<j=1}^{8} \mathbf{s}_i \cdot \mathbf{D}_{ij} \cdot \mathbf{s}_j + \mu_B \sum_{i=1}^{8} g_i \mathbf{B} \cdot \mathbf{s}_i,$$

where the first term accounts for the dominant isotropic exchange interaction, the second and third ones describe the anisotropic local crystal-field and the intrachannel dipole-dipole interaction, respectively; isotropic g factors are assumed for the last, Zeeman term. The anisotropic part of \mathcal{H} does not commute with the squared total spin operator \mathbf{S}^2, and thus mixes subspaces corresponding to different values of the total spin (S-mixing). Due to its reduced symmetry, \mathcal{H} can no longer be independently diagonalized within each $(2S + 1)$-dimensional block: an efficient solution scheme, based on an irreducible tensor operator formalism, has therefore been developed (see Ref. \cite{7} and references therein) and applied to the present case.

In order to estimate the parameters entering the above spin Hamiltonian, we measure the heat capacity C as a function of the temperature $(0.4 < T < 10 \text{ K})$ and of the magnetic field $(0 < B_0 < 7 \text{ T})$ \cite{8}. The sam-
We are now able to include the microscopic parameters in \mathcal{H} and accordingly draw the pattern of the low-lying energy levels ϵ_i as a function of $B_0 = B_0 \hat{z}$ (Fig. 2). At zero field the ground state is a degenerate doublet ($\epsilon_0,1$), with a largely dominating (≥99%) total-spin component $S = 1/2$; the first excited states ($\epsilon_2,3$), instead, belong to a typical rotational band, with $S \approx 3/2$. Noticeably enough, these low values of the S-mixing allow us to consider the total spin as a good quantum number for the lowest eigenstates of the Cr$_7$Ni molecule. As discussed in more detail in the following, two other physical quantities also play a crucial role in the perspective of a QIP implementation. The first one is the energy difference between the ground-state doublet and the higher-lying levels, i.e. $\Delta \equiv \epsilon_2 - \epsilon_1$: in fact, Δ determines to which extent the ring behaves as an effective two-level system, i.e. a meaningful population of any state but $|0\rangle$ and $|1\rangle$ can be avoided throughout the molecule manipulation. The second one is the splitting between the two $S = 1/2$ states, $\delta \equiv \epsilon_1 - \epsilon_0$: δ fixes the temperature the systems has to be cooled at in order for it to be initialized to its ground state. Likewise the same existence of a ground-state doublet and the suppression of the S-mixing, the large energy separation from the higher states in the present molecule, $\Delta(0) \approx 13$ K, is a non-trivial result of the system engineering. Besides, the magnetic field allows a further tuning of the molecule’s level structure. In particular, it increases δ,
FIG. 2: Energy levels of the Cr$_7$Ni molecule as a function of a static magnetic field applied along the z-axis. At zero field the ground-state doublet is energetically separated from the higher states ($\Delta(0) \approx 13$ K), thus representing a suitable choice for the qubit encoding.

whereas it decreases the energy difference $\Delta(B_0)$ between $|1\rangle$ and $|S = 1/2, M = 1/2\rangle$ and $|2\rangle$ and $|S = 3/2, -3/2\rangle$. The achievement of the best trade-off between the conflicting requirements of maximizing Δ and Δ therefore determines the optimal value of the field, which we identify with $B_0 = 2$ T (see the discussion below). As a consequence, the achievable temperature required for the system initialization to the $|0\rangle$ state is $T << \delta/k_B \approx 2.4$ K, whereas $\Delta(B_0) \approx \Delta(0) - 2g\mu_BB_0 \approx 9.4$ K. On the grounds of the above results, the Cr$_7$Ni molecule can be considered as an effective $S = 1/2$ spin cluster, and the information states $|0\rangle$ and $|1\rangle$ safely identified with its ground-state doublet. Such conclusion is unaffected by the uncertainty on $\Delta(0)$ (resulting from that on the microscopic parameters) which is roughly equal to that on J_{Cr} [10].

The time simulation of the quantum gates provides an important feedback for the optimization of the physical parameters. In fact, the general unitary transformation applied to the computational space is decomposed into a sequence of elementary gates, such as the SU(2) rotations of the single qubit and the two-qubit CNOT [11]. We start by considering the former, which can be obtained as a combination of 3 rotations about any two orthogonal axes, e.g. $U(\alpha, \beta, \gamma) = \exp(-i\alpha\sigma_z)\exp(-i\beta\sigma_x)\exp(-i\gamma\sigma_x)$, being $\sigma_{x,2,3}$ the Pauli matrices. Transitions between the $|0\rangle$ and $|1\rangle$ states, i.e. rotations about the x and y axes, can be induced by means of resonant, in-plane electromagnetic pulses $B_1(t)\cos\omega t$, where $B_1(t) \ll B_0$ represents the slowly-varying envelope. In the case of an effective two-level system, however, the transverse magnetic field also couples the $|0\rangle$ and $|1\rangle$ states to the higher-lying ones, thus inducing a population loss (leakage) during gating, quantified by $L = 1 - \langle|0\rangle\langle \psi(t)|^2 + \langle |1\rangle\langle \psi(t)\rangle^2 \rangle$. More specifically, the occurrence of such unwanted transitions is due to the S-mixing and to possible intracluster inhomogeneities in the magnetic fields (or, equivalently, in the ion g factors): both result in non-vanishing matrix elements $\langle 0,1|H_{op}|i \geq 2\rangle$, with $H_{op} = \mu_B \sum_{i=1}^8 g_i B_1 \cdot s_i$. Together with a molecular engineering aimed at the suppression of the S-mixing, the minimization of L can be achieved by the use of “soft” enough pulses, i.e. by keeping the pulse spectral dispersion $\Delta \omega < (\Delta - \delta)/\hbar$. Being $\Delta \omega \sim 1/\tau_g$, such inequality gives a lower bound to the ratio τ_g/τ_d that can in principle be achieved ($\tau_{g,d}$ are the gating and decoherence time, respectively).

Here, by means of a numerical integration of the Schrödinger equation, we calculate the time dependence of $|c_{0,1}|^2 = |\langle 0,1|\psi(t)\rangle|^2$ and of L corresponding to a π rotation about the x axis, for $\psi(0) = |0\rangle$ and $B_0 = 2$ T (see Fig. 3): the pulsed field is assumed to have a gaussian profile $B_1(t) = A\exp\left(-(t-t_0)^2/(2\sigma^2)\right)$, with $A = 0.1$ T and $\sigma = 150$ ps. To a very large extent the leakage involves the first excited multiplet, and its value remains lower than 10^{-5} throughout the time evolution: the lower limit of τ_d imposed by the presence of upper levels is thus by far larger than the one arising, e.g., from the present technological limitations in the pulse generation. Further simulations, performed with more reasonable values of the magnetic field ($A = 0.01$ T) [12], give proportional increases of the pulse duration, with a further suppression of L. We have also investigated the gate robustness with respect to possible spatial inhomogeneities of B_1, generally leading to a larger values of L: even in the worst limiting case of a B_1 which is nonzero only at the Ni-ion site, L remains below the threshold of 10^{-4} ($A = 0.15$ T, $\tau_g \sim 2\tau \sim 300$ps). A larger value of the static field B_0 would polarize nuclear spins, thus reducing the decoherence due to hyperfine field fluctuations (see below). For $B_0 > 5.6T$, $\epsilon_1 > \epsilon_2$ and $|1\rangle$ can relax into $|2\rangle$ by emitting a phonon (the decay to $|0\rangle$ is practically forbidden, owing to the approximate Kramers-doublet nature of the computational basis). These processes, however, are expected to be completely negligible with respect to other sources of decoherence, due to the small value of $(\epsilon_1 - \epsilon_2)/k_B B_0$. An increase of L might arise from the breakdown of the condition that $\Delta > \Delta\omega$. In order to estimate this effect, we have considered a static field $B_0 = 5.61$ T, which implies $\Delta \simeq 0$ (Fig. 3): L is seen to reach $\sim 3\%$, but even small deviations of B_0 from this critical values is enough to suppress L.

The experimental demonstration of the intercluster coupling required for the implementation of the two-qubit gates is beyond the scope of the present work. In the following we discuss the present scenario and possible strategies to be pursued in order to achieve the required conditional dynamics. In particular, links between Cr$_7$Ni rings formed by delocalized aromatic molecules have already been synthesized [12], and intercluster couplings have been demonstrated in similar systems [14]. The simplest case occurs when the coupling between the rings results from the interaction of the n-th spin in molecule I with the n-th of II. If we apply the first-order perturbation theory and restrict ourselves to the product space $\{|0\rangle, |1\rangle\}_I \otimes \{|0\rangle, |1\rangle\}_II$, a Heisenberg interaction $\mathcal{H}_{I,II} = J^{\pm} s^{\pm}_m \cdot s^{\pm}_n$ can be rephrased as follows in terms of the cluster total spins:

$$\mathcal{H}_{I,II} = J_{eff} S_I \cdot S_{II},$$

where

$$J_{eff} = 2/3 J^* |1/2| s_m ||1/2\rangle \langle 1/2| s_n ||1/2\rangle$$

(analogous equations apply to the case of an Ising interaction). In the present molecules the single-cluster
reduced matrix elements $\langle 1/2|s_{m,n}|1/2 \rangle$ has a modulus of the order of unity and alternating positive-negative signs as a function of n and m, whereas it is always negative for the Ni ion. If the interchain couplings are more than one, J_{eff} is given by the sum of the single contributions. Therefore, J_{eff} has the same order of magnitude of the coupling J^* between single spins, whereas its site dependence provides additional flexibility to the implementation scheme.

Within the present scenario the inter-cluster couplings, though engineerable during the growth process, are untunable thereafter. This shortcoming is common to other implementations, and doesn’t in principle prevent from performing the single- and two-qubit quantum gates. In fact, depending on the form and magnitude of the interchain coupling, different approaches can be adopted. Weak and Ising-like interactions allow the use of the so-called “refocusing techniques”, widely developed within the NMR community [17]. Off-diagonal (e.g., Heisenberg) intercluster interactions could instead require either multi-ring encodings of the qubit, resulting in a symmetry-induced cancellation of the logical coupling between the encoded qubits [17], or the use of inter-qubit molecules acting as tunable barriers [17].

We finally discuss the decoherence of the cluster-spin degrees of freedom, which is expected to mainly arise from the hyperfine coupling with the nuclear spins. A first estimate can be obtained by considering the dipolar interaction of one Cr ion ($s=3/2$) with the neighboring F nucleus (natural abundance ~ 100% of the $I = 1/2$ isotope). Being $g_F = +5.2577$ and the distance of each of the eight F atoms from the nearest Cr ion $d = 0.191$nm, the interaction energy corresponds to $E_{hyp}/k_B = 0.38$ mK. For an octanuclear ring this would give $\tau_d \approx h/8E_{hyp} \sim 2.5$ ns, that can be considered as a lower bound for τ_d. Similar τ_d values have been estimated for other molecular magnets [14, 18]. Direct measurements of the electron-spin resonance linewidth on a Cr$_7$Ni crystal (which also includes the effects of possible inhomogeneities, the so-called “dephasing”) provides τ_d values one order of magnitude larger than the above one [10]. Substantial enhancements of τ_d will result from the suppression of the hyperfine field fluctuations (mK temperatures and few-T static fields) and from the substituting of the F ions with OH groups in the Cr$_7$Ni compound, which we are already working at. Besides, the static field induces a large mismatch between the energy gaps of the nuclear and electronic spins, thus rendering highly inefficient the relaxation processes of the latter. A second potential source of decoherence, namely the ring-ring dipolar coupling, is characterized by a lower energy scale, $E_{dip}/k_B \simeq (g\mu_B S)^2/10 \sim 0.1$ mK ($S = 1/2$ and $V = 6.346$nm3), further reducible in diluted Cr$_7$Ni molecular systems.

In conclusion, the energy spectrum of the investigated Cr$_7$Ni molecule fully justifies its description in terms of an effective two-level system; besides, the symmetries of the ground-state doublet (S-mixing below 1%) suppress the coupling to the higher levels as induced by the transverse magnetic fields which are required for the quantum-gate implementation. In fact, our simulations of the single-qubit gates provide negligible values for the leakage ($L \lesssim 10^{-2}$) even for gating times of the order of 105 ps, i.e. well below the tens of ns estimated for the spin decoherence times. While further work is needed for the engineering of the intercluster coupling, these results strongly support the suitability of the Cr$_7$Ni rings for the qubit encoding and manipulation.

* Corresponding author: troiani.filippo@unimore.it

[1] D. Awschalom, N. Samarth, D. Loss, Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
[2] M.N. Leuenberg, D. Loss, Nature 410, 789 (2001).
[3] F. Meier, J. Levy, D. Loss, Phys. Rev. Lett. 90, 047901 (2003); Phys. Rev. B 68, 134417 (2003).
[4] K.L. Taft et al., J. Am. Chem. Soc. 116, 823, (1994);
[5] J. Schnack and M. Luban, Phys. Rev. B 63, 014418 (2000); O. Waldmann et al., Phys. Rev. Lett. 91, 237202 (2003).
[6] F.K. Larsen et al., Angew. Chem. Int. Ed. 42, 101 (2003).
[7] S. Carretta et al., Phys. Rev. B 67, 094405 (2003); M. Affronte et al., Eur. Phys. J. B 15, 633 (2000); Appl. Phys. Lett. 84, 3468 (2004).
[8] S. Carretta, A. Ghirri, M. Affronte, G. Amoretti, S. Piligkos, R.E.P. Winpenny, unpublished.
[9] S. Carretta et al., cond-mat/0412628; R. Caciuffo et al., cond-mat/0412169.
[10] The lowest eigenstates of the AF ring can be approximately described by means of the sublattice spin operators (where all the odd spins are assumed to be parallel to each other, and so the even ones): $S_A = \sum_{i=1}^{7} S_{2i-1}$, $S_B = \sum_{i=1}^{7} S_{2i}$. The dominant term in H is thus $J_i/2S_A \cdot S_B$, which gives a splitting of $3S/2I_i$ between $S = 3/2$ and $S = 1/2$.
[11] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).
[12] D.A. Lidar and J. H. Thywissen, J. Appl. Phys. 96, 754 (2004).
[13] G. Timco, R.E.P. Winpenny to be published.
[14] S. Hill et al., Science 302, 1015 (2003).
[15] See, e.g., J.A. Jones and E. Knill, J. Magn. Reson. 141, 322 (1999).
[16] X. Zhou et al., Phys. Rev. Lett. 89, 197903 (2002).
[17] S.C. Benjamin and S. Bose, Phys. Rev. Lett. 90, 247901 (2003).
[18] E. del Barco et al., cond-mat/0405331
[19] W. Wernsdorfer, private communication.
