A Systematic Approach for Resilience Assessment in Road Transport Routes Involving Natural and Human Interruptions

Ramón Antonio Figueroa-Carranza a, Jesús Manuel Núñez-López a, Elia Mercedes Alonso-Guzmán b, Wilfrido Martínez-Molina b and José María Ponce-Ortega a*

a Department of Chemical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica S/N, Building V1, Ciudad Universitaria, Morelia, Michoacán, 58060 México.

b Department of Civil Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Múgica S/N, Building D, Ciudad Universitaria, Morelia, Michoacán, 58060, México.

Authors’ contributions

This work was carried out in collaboration among all authors. Author RAFC implemented the project, carried out and modified the methodology in all its stages, obtained and analyzed the results, approved changes in the final wording and wrote the final manuscript. Author JMNL reviewed and indicated a better design for the methodology. Author EMAG gave her opinion on the writing of the first draft of the manuscript; likewise, she suggested modifications in the methodological part of the project. Author WMM managed data collection with SIPUMEX. Author JMPO approved the methodology used and reviewed the analysis of the results obtained. All authors read and approved the final manuscript.

ABSTRACT

This work presents a new approach for resilience assessment in road transport routes interrupted by natural causes (rain, earthquakes) as well as by human influence (accidents). In this way, by knowing the state of preservation of the elements located within a road, particularly bridges, it will be possible to identify which are those with the highest priority to be attended for their conservation, repair, and even replacement, thus relating the cost of maintenance and the number of people...
benefited. To test this methodology, a case study was proposed. The proposed systematic approach is applied in the federal highway 15 route, which is an international route that passes through seven states of Mexico, ending in Alberta Canada. The study is limited to the Michoacan state of Mexico, which corresponds to 426 kilometers. This study identified the highway bridges within the road and analyzed their deterioration, the cost of repair, and the benefited inhabitants. The most significant scenarios were obtained in terms of repair cost and people benefited, identifying which bridges have priority to be served, having a more accurate decision and distribution of adequate financial resources.

Keywords: Accidents; natural disasters; resilience; road transportation routes.

1. INTRODUCTION

Roads and all communication routes are designed, built, and planned to offer a great service to the user. One of the structures of great importance on these roads is the bridge. A bridge can be defined as a structure destined to overcome natural obstacles, such as rivers, valleys, sea; and artificial obstacles, such as railways or roads, to link paths for travelers, animals, and merchandise [1].

The design of bridges considers external factors, such as the type of seismic zone, the ground, materials, transit [2], economical issues, etc. However, situations can arise that interrupt a fluid passage through these bridges, some of these situations appear as natural phenomena (heavy rainstorms and earthquakes) [3], [4] and automobile accidents [5] either due to high speeds, being in a state of drugs or drunkenness, or fatigue of the user, to name a few. This way, the term resilience has been considered, which can help to select those bridges that require maintenance or repair with higher priority, involving minimizing the costs [6], [7], considering increasing the fluidity of the routes and the affected people who make use of these bridges [8], [9]. For example, Pan, Yan, He and He [10] reviewed the recent progress in the study of vulnerability and resilience. Specific definitions of resilience and vulnerability are first given from the perspective of the transportation system's supply and demand.

Resilience is a concept that has had a lot of relevance in recent years, this concept was used for the first time in the 19th century in the area of materials science as the ability of an object to resist loads without permanent distortion [11]; it comes from the Latin "resilire", which means "bounces back" [12]. At first, resilience was only evaluated qualitatively, but recently some works have evaluated it quantitatively. Fiksel [13] presented a design protocol that involves identifying system function and boundaries, establishing requirements, selecting appropriate technologies, developing a system design, evaluating anticipated performance, and devising a practical mean for system development. Dinh, Pasman, Gao and Mannan [14] proposed six principles and five factors that contribute to the resilience of a process. The principles include flexibility, controllability, early detection, minimization of failure, limitation of effects, administrative controls/procedures, and the main contributing factors, including design, detection potential, emergency response plan, human factor, and safety management.

On the other hand, resilience is a term that has great relevance in the area of process systems engineering. There are reported works where it is qualitatively evaluated for risk analysis and safety issues. Jain, Rogers Pasman, Keim, Mannan [15] presented a novel hazard analysis approach that incorporates both technical and social factors within a single analysis method called Resilience-based Integrated Process Systems Hazard Analysis (RIPSHA), which is based on resilience aspects, early detection, error-tolerant design, plasticity, and recoverability. Jain, Rogers Pasman, Keim, Mannan [16] presented a novel approach, Process Resilience Analysis Framework (PRAF) that consists of a resilience methodology emphasizing dynamics, unforeseen and even unknown types of threats, uncertainty, system degradation, and complex interactions. Gasser et al. [17] presented an overview of resilience definitions used across various scientific disciplines, followed by an in-depth analysis of resilience assessment and quantification for energy systems.

Similarly, several works have been published where resilience is quantitatively evaluated, especially in power systems [18], [19]. Gong and You [20] proposed a general framework for resilience optimization that incorporates an
Improved quantitative measure of resilience and a comprehensive set of resilience enhancement strategies for process design and operation. Other approaches considered natural disasters that may cause some disruption in the system, for example for food supply chain network [21], [22] and systems that incorporate the resilience assessment in the water-energy-food nexus [23].

In the same way, in infrastructure/engineered system science, resilience has been defined as the ability to withstand acceptably, degradation parameters and to recover within an acceptable time and costs [24], [25]. Venkittaraman and Banerjee [26] evaluated the seismic resilience of highway bridges, which are important components of the highway transportation system. To mitigate losses incurred from bridge damage during seismic events, bridge retrofit strategies are selected such that the retrofit not only enhances bridge seismic performance but also improves the resilience of the system consisting of these bridges [27]. Zhang, Wang and Nicholson [28] presented a novel resilience-based framework to optimize the scheduling of the post-disaster recovery actions for road-bridge transportation networks. Koc et. al. [29] introduced a comprehensive resilience assessment framework for transportation systems, which is designed to achieve a holistic analysis of transportation disruptions.

Different contributions to resilience have been made in this area; however, most of them focus on the recovery time of bridges due to the occurrence of a partial or total failure [24]. Thus, there is no analysis of the cost that this entails. Therefore, the objective of this work is to find the associated cost, which includes the maintenance and repair costs of some specific bridges in a certain region to improve the fluidity in the part of transportation services. To solve this problem, a systematic approach is proposed to analyze the possible state of deterioration of each of the bridges on the road; also, the cost of repairing the deteriorated area, possible interruptions in the system, being of natural origin or human influence. With the above, the number of benefited people is identified, as well as being able to identify which area is the highest priority to attend. This proposed strategy allows the distribution of monetary resources more sensibly and successfully. The priority is determined according to the damage obtained to the bridge and the number of people affected in the event of an interruption in that part. It may happen that the bridge with the highest priority is not the one with the greatest "deterioration", but the one with the most people benefiting from its repair.

2. PROBLEM STATEMENT

Given a transport route, whether, of greater or lesser commercial use, it does not lose its importance as a means of communication for nearby residents. However, considering that such a road is used as a means of commercial or labor connection, a failure within the system could mean significant economic losses.

Sometimes, the lack of knowledge regarding the state of conservation of the road and how to properly distribute the economic resources to meet the needs of the elements located within the communication road, as well as ignoring the priority areas, can influence to make incorrect maintenance decisions.

With the above, it is needed a systematic approach to identify the highest priority areas based on the study of the system's resilience. Determining, this way, the parts of the highest priority bridges for repairing and maintenance considering the distributing associated traffic and distributed resources across this route.

3. METHODOLOGY

In this work, the theory of resilience was incorporated to obtain the cost associated with the maintenance and repair of specific bridges in a certain region to improve the fluidity of the transport services. With the foregoing, the number of beneficiaries is identified, as well as the areas of highest priority to maintain. The priority is determined according to the damage obtained on the bridge and the number of people affected in the event of an interruption on that part of the road, which can be of natural origin or human influence. In case the interruption is caused by an incident of human origin, the interruption would be given from what happened and depending on the magnitude, it would include the arrival of the pertinent authorities, the survey of facts by the experts, withdrawal of the unit, cleaning, etc. If the incident is caused by a natural effect, the magnitude of the problem would have to be measured, if it caused damage not only to the infrastructure but also to humans and their units, cleaning, if large vehicles were used for cleaning, etc. Therefore, applying the theory of resilience is not focused directly on the interruption, but on the adequate distribution of resources to make use of the priority zones.
A methodology to assess the resilience in the repair and maintenance of bridges through a route where a large number of cars and transport services pass every day is proposed. In this approach, the steps indicated in Fig. 1 are considered.

The objective is to minimize the total cost of repairing bridges considering the benefited people. A resilience index that considers the bridge repair costs, as well as the benefited people by it, is proposed:

\[
Re_{f,t} = \frac{\text{ImpCost}^\text{Max}_{f,t}}{\text{BP}^\text{Max}_{f,t}} - \frac{\text{ImpCost}_{f,t}}{\text{BP}_{f,t}}
\]

(1)

To reduce the terms in eq. (1), the relationship between the imposed cost (ImpCost) and the benefited people (BP) was considered as an index (Index).

\[
Re_{f,t} = \frac{\text{Index}^\text{Max}_{f,t} - \text{Index}_{f,t}}{\text{Index}^\text{Max}_{f,t} - \text{Index}^\text{Min}_{f,t}}
\]

(2)

Imposed cost related to each possible failure in each period is calculated as follows:

\[
\text{ImpCost}_{f,t} = \sum_x \text{RepairCost}_{s,t} \cdot \text{AreaBridge}_{s,t}
\]

(3)

Where, RepairCost (Table 1) is the bridge repair cost, which depends on the level of deterioration that this has based on the classification given by SIPUMEX (Comprehensive system of Mexican bridges) [30], and is the total area to be repaired for each level of bridges.

3.1 Case Study

A case study, which analyzes the existing bridges on Federal Highway 15 that crosses the state of Michoacán, located in the central-west part of Mexico was considered (Fig. 2). SIPUMEX is a database that contains the inventory of bridges on federal toll-free highways in Mexico. This one proposes a scale of deterioration, which goes from level zero to five, depending on the damage to each bridge. 0, No damage; 1, Small damage, no repair necessary; 2, some damage, necessary repair, when the occasion arises; 3, significant damage, repair needed soon; 4, serious damage, repair needed very soon; 5, extreme damage, risk of total failure. In the analyzed section of said highway, there are 83 bridges, of which 31 correspond to level 2, 32 to level 3, and 20 to level 4 in the deterioration scale proposed by SIPUMEX. The road is divided into 8 sections, Table 1 shows the sections as well as the average daily traffic per section (TDPA) and the number of bridges by the level of deterioration in each of the sections.
Table 1. Total area and benefited people for section

Section	TDPA	Area of repaired bridges according to SIPUMEX classification (m²)		
		2	3	4
Lim. Mex./Mich.-Entr. Huajumbaro	28,618	14,931	7,465	6,221
Entr. Huajumbaro-Morelia	891	0	446	446
Morelia-Quiroga	30,418	21,293	3,042	6,084
Quiroga-Comanja	4,571	0	2,286	2,286
Comanja-Carapan	13,040	8,693	4,347	0
Carapan-Zamora	45,314	6,473	25,894	12,947
Zamora-Jiquilpan	24,906	0	11,321	13,585
Jiquilpan-Lim.Mich./Jal.	24,215	3,725	20,490	0

Fig. 2. System boundaries for the analyzed case study

4. RESULTS AND DISCUSSION

For solving the addressed problem, the Pareto curve of Fig. 3 was constructed, where each scenario represents damage to one section of the Federal highway. Each scenario represents the total cost of repairing that section versus the people who would benefit from it. Table 2 shows that scenario I, where all the bridges of all the sections are repaired, entails a cost of $US 280,659,143, and 171,973 people are benefited. On the other hand, when analyzing the sections individually, it is observed that scenario E (Comanja-Carapan) is the one that represents a lower repair cost $US 5,580,310 and 13,040 people obtain a benefit, while scenario F (Carapan-Zamora) is the one where a greater number of people is benefited (45,314) for $US 20,429,128.

Subsequently, the resilience of the mentioned scenarios was analyzed using equations 1-3. Twelve-time periods were specified, each corresponding to a month of the year, and these were identified as possible failures, which required maintenance previously, car accidents, and natural phenomena (heavy rain, earthquake, etc.).

Afterward, the three-dimensional matrix (Fig. 4, Fig. 5, and Fig. 6) was identified for each of the selected scenarios, where the periods of time, possible failures, and the area of existing bridges according to their level of deterioration are considered. Using the penalty costs (Table 3) and the probability (Table 4) for every possible failure [31], a two-dimensional matrix was calculated to estimate the imposed costs for each failure mode and each period of time (Tables 5 to 7). Figs. 7, 8, and 9 show the imposed costs for the selected scenarios in a graphical way. A greater cost can be noticed in the event of a car crash different from the other failure modes, this is due to the higher incidence that this type of failure presents.
Fig. 3. Pareto curve for the analyzed case study

Table 2. Values for Pareto curve

Scenario	Section	Benefited People	Cost ($US)
A	Lím. Mex./Mich.-Entr.Huajumbaro	28,618	86,786,861
B	Entr.Huajumbaro-Morelia	891	11,606,343
C	Morelia-Quiroga	30,418	44,836,849
D	Quiroga-Comanja	4,571	5,869,114
E	Comanja-Carapan	13,040	5,580,310
F	Carapan-Zamora	45,314	20,429,128
G	Zamora-Jiquilpan	24,906	61,016,866
H	Jiquilpan-Lim.Mich./Jal.	24,215	44,533,671
I	All	171,973	280,659,143

Fig. 4. Three-dimensional matrix for scenario E (Minimum cost)
Fig. 5. Three-dimensional matrix for scenario F (Maximum benefit people)

Level 5	Level 4	Level 3	Level 2	Level 1
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

Fig. 6. Three-dimensional matrix for scenario I (All sections repaired)

Table 3. Penalty costs according to level bridge

Bridge Level	Penalty cost ($US/m²)
0	0
1	8,963
2	12,614
3	19,965
4	29,827
5	900,012

Table 4. Probabilities for failure mode for period of time

Failure mode	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	0.69	1	1.05	0.98	0.98	0.91	0.94	0.94	0.5	0.84	0.94	0.82
Previously damaged	1.05	1.54	1.61	1.51	1.51	1.4	1.44	1.44	0.77	1.3	1.44	1.26
Car crash	4.73	6.93	7.25	6.78	6.78	6.3	6.46	6.46	3.47	5.83	6.46	5.67
Table 5. Imposed costs for the scenario E

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	38,271	56,075	58,619	54,833	54,833	50,988
Previous needed	58,814	86,176	90,085	84,267	84,267	78,359
Car crash	263,961	386,762	404,305	378,194	378,194	351,676

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	52,290	52,290	28,038	47,144	52,290	45,842
Previous needed	80,358	80,358	43,088	72,450	80,358	70,450
Car crash	360,651	360,651	193,381	325,157	360,651	316,182

Table 6. Imposed costs for the scenario F

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	140,107	205,288	214,600	200,741	200,741	186,665
Previous needed	215,315	315,485	329,795	308,497	308,497	286,865
Car crash	966,342	1,415,908	1,480,131	1,384,543	1,384,543	1,287,460

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	191,429	191,429	102,644	172,589	191,429	167,825
Previous needed	294,187	294,187	157,743	265,234	294,187	257,913
Car crash	1,320,319	1,320,319	707,954	1,190,378	1,320,319	1,157,519

Table 7. Imposed costs for the scenario I

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	1,924,817	2,820,288	2,948,212	2,757,813	2,757,813	2,564,439
Previous needed	2,958,044	4,334,197	4,530,790	4,238,186	4,238,186	3,941,010
Car crash	13,275,786	19,452,002	20,334,319	19,021,104	19,021,104	17,687,369

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	2,629,888	2,629,888	1,410,144	2,371,065	2,629,888	2,305,615
Previous needed	4,041,593	4,041,593	2,167,098	3,643,834	4,041,593	3,543,252
Car crash	18,138,787	18,138,787	9,726,001	16,353,635	18,138,787	15,902,217

Fig. 7. Imposed costs for the scenario E
According to Cuevas-Colunga et al. [31], in the studied route, 73% of road accidents are caused by damage to the vehicle or carelessness of the driver (recklessness, lane invasion, not keeping distance, not giving way, speeding, among others). 16% of accidents is caused by the lack of road repairs and 11% by natural agents (rain, fog, smoke). Similarly, the greatest number of accidents are reported between February to May, those where there is a greater presence of the natural agents mentioned.

Once the imposed costs were calculated, each one of them was divided between the people who would benefit from the repair of the respective bridges in each section (Tables 8 to 10).

Table 8. Relation between cost and benefited people for the scenario E

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	2.93	4.3	4.5	4.21	4.21	3.91
Previous needed	4.51	6.61	6.91	6.46	6.46	6.01
Car crash	20.24	29.66	31	29	29	26.97

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	4.01	4.01	2.15	3.62	4.01	3.52
Previous needed	6.16	6.16	3.3	5.56	6.16	5.4
Car crash	27.66	27.66	14.83	24.94	27.66	24.25
Table 9. Relation between cost and benefit people for the scenario F

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	3.09	4.53	4.74	4.43	4.43	4.12
Previous needed	4.75	6.96	7.28	6.81	6.81	6.33
Car crash	21.33	31.25	32.66	30.55	30.55	28.41

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	4.22	4.22	2.27	3.81	4.22	3.7
Previous needed	6.49	6.49	3.48	5.85	6.49	5.69
Car crash	29.14	29.14	15.62	26.27	29.14	25.54

Table 10. Relation between cost and benefit people for the scenario I

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	11.19	16.4	17.14	16.04	16.04	14.91
Previous needed	17.2	25.2	26.35	24.64	24.64	22.92
Car crash	77.2	113.11	118.24	110.61	110.61	102.85

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	15.29	15.29	8.2	13.79	15.29	13.41
Previous needed	23.5	23.5	12.6	21.19	23.5	20.6
Car crash	105.47	105.47	56.56	95.09	105.47	92.47

As well in Figs. 7, 8 and 9, and Tables 8, 9, and 10, it is shown that the relation between costs and benefited people is greater in the case of a car crash than in the other failure modes, since if the repair of a bridge is presented in a place where the incidence of a car crash is higher, the greater the number of benefited people, by repairing those sections and seeking to reduce the number of accidents. Finally, the maximum relationship is identified to calculate the resilience in each of the points (Tables 11 to 13) according to Equation 2. The resilience calculation allows identifying those aspects to which more importance should be taken. In the case of scenario E (minimum cost), it can be observed that from February to May there are lower indexes of resilience, so it is important to take preventive measures and repair the damage caused on these dates to reduce repair costs and accidents.

Table 11. Resilience indices for scenario E

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	0.975	0.964	0.962	0.964	0.964	0.967
Previous needed	0.962	0.944	0.942	0.945	0.945	0.949
Car crash	0.829	0.749	0.738	0.755	0.755	0.772

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	0.966	0.966	0.982	0.969	0.966	0.97
Previous needed	0.948	0.948	0.972	0.953	0.948	0.954
Car crash	0.766	0.766	0.875	0.789	0.766	0.795

Table 12. Resilience indices for scenario F

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	0.974	0.962	0.96	0.963	0.963	0.965
Previous needed	0.96	0.941	0.938	0.942	0.942	0.946
Car crash	0.82	0.736	0.724	0.742	0.742	0.76

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	0.964	0.964	0.981	0.968	0.964	0.969
Previous needed	0.945	0.945	0.971	0.95	0.945	0.952
Car crash	0.754	0.754	0.868	0.778	0.754	0.784
Table 13. Resilience indices for the scenario I

	Jan	Feb	Mar	Apr	May	Jun
Natural agent	0.905	0.861	0.855	0.864	0.864	0.874
Previous needed	0.855	0.787	0.777	0.792	0.792	0.806
Car crash	0.347	0.043	0	0.065	0.065	0.13

	Jul	Aug	Sep	Oct	Nov	Dec
Natural agent	0.871	0.871	0.931	0.883	0.871	0.887
Previous needed	0.801	0.801	0.893	0.821	0.801	0.826
Car crash	0.108	0.108	0.522	0.196	0.108	0.218

Similarly, for scenario F (maximum benefited people), the lowest resilience indices are found in the event of a possible deterioration through a car accident. Remarkably similar values are presented throughout the year, except for January and September, so if we want to increase the number of people benefited who make use of bridges, it is advisable to carry out necessary repairs throughout the year.

On the other hand, in the scenario I, the one in which all the bridges of all the sections are repaired, we can observe in the event of a car accident, extremely low resilience values, thus the ratio of the cost of repair to people benefited by it is not particularly good.

However, for both scenarios E and F, good resilience indices are presented, which means that the cost-benefit relationship is good to considering the repair of all the bridges in these two sections.

5. CONCLUSION

In this work, a methodology for a new approach to assessing resilience in road transport routes has been presented. A specific route has been analyzed as a case study to test this methodology. A federal highway route was analyzed, called "a commercial corridor" that crosses seven states of Mexico, reaching the USA, and ending in Canada. However, only the section corresponding to the state of Michoacan was taken into account. The highway section was divided into eight sections of which all the bridges located in each corresponding section were evaluated. In this way, it was estimated which bridges according to their state of conservation and the number of benefited people were a priority for their attention.

In the three scenarios studied; scenario E (Comanja-Carapan), which represents a minimum cost, was identified as the one where the resilience indexes are lower from February to May. This means that, in that period, the system could be affected by being interrupted by the damages caused. Therefore, it is recommended to carry out preventive measures to attend to the damages caused in that period to reduce repair costs and decrease accidents.

Similarly, in scenario F (Carapan-Zamora), identified as the one that benefits the most people, low resilience indices are observed in terms of deterioration due to accidents. The values are remarkably similar throughout the year, except for January and September. Thus, it is necessary to make repairs throughout the year to reduce road accidents.

Referring to scenario I, which is the one in which all the bridges on federal highway 15 are repaired, it presents extremely low rates of resilience in case of accidents. Thus, the relationship between the cost of repair and benefited people is not particularly good.

However, scenarios E and F present good resilience indices, which indicates that the cost-benefit is good, so it can be suggested to consider repairing all the bridges in these two sections.

ACKNOWLEDGEMENTS

The authors thank the Science and Technology Council (CONACYT) for the financial support provided during the doctoral stay. To the graduate of the chemical engineering faculty and the staff of the Ing. Luis Silva Ruelas Materials Laboratory for the use of the installation, and the advice at all times to carry out this work.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pérez Quiroz JT, Ramirez Reyes JL, Terán Guillén J, Lomelí González G. Evaluación Electroquímica de Cables Postensados
con Aplicación. Publicación Técnica No. 248, Instituto Mexicano del Transporte, Sanfandila, Queretaro; 2011.

2. Persyn D, Díaz-Lanchas J, Barbero J. Estimating road transport costs between and within European Union regions. Transport Policy. National evaluation plan of federal bridges, free of toll damaged by corrosion 2020. A quantification of results, projects and collaborations. Technical Publication No.327. 12. 2020.

3. Chen X, Su W, Kavousi-Fard A, Skowronska AG, Mourelatos ZP, Hu Z. Resilient microgrid system design for disaster impact mitigation. Sustainable and Resilient Infrastructure. 2021;6(1-2),56-72.

4. Nelson K, Gillespie-Marthaler L, Baroud H, Abkowitz M, Kosson D. An integrated and dynamic framework for assessing sustainable resilience in complex adaptive systems. Sustainable and Resilient Infrastructure. 2020;5(5):311-329.

5. Afrin T, Yodo N. A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability. 2020;12(11):4660.

6. Makarova I, Buyvol P, Magdin K, Pashkevich A, Boyko A, Shubenkova K. Usage of microscopic simulation to estimate the environmental impact of road transport. Transportation Research Procedia. 2020;44:86-93.

7. Peceny L, Mesko P, Kampf R, Gasparik J. Optimisation in transport and logistic processes. Transportation Research Procedia. 2020;44:15-22.

8. [Dui H, Zheng X, Wu S. Resilience analysis of maritime transportation systems based on importance measures. Reliability Engineering and System Safety. 2021;209:107461.

9. Hosseini SA, Pons O, de la Fuente A. A sustainability-based model for dealing with the uncertainties of post-disaster temporary housing. Sustainable and Resilient Infrastructure. 2020;5(5):330-348.

10. Pan S, Yan H, He J, He Z. Vulnerability and resilience of transportation systems: A recent literature review. Physica A: Statistical Mechanics and its Applications. 2021;12:6235.

11. Tredgold T. On the transverse strength and resilience of timber. The Philosophical Magazine. 2018;51(239),214–216

12. Alexander DE. Resilience and disaster risk reduction: An etymological journey. Natural Hazards and Earth System Sciences. 2013;13(11):2707–2716.

13. Fiksel J. Designing resilient, sustainable systems. Environmental Science and Technology. 2003;37(23):5330-5339.

14. Dinh LT, Pasman H, Gao X, Mannan MS. Resilience engineering of industrial processes: principles and contributing factors. Journal of Loss Prevention in the Process Industries. 2012;25(2):233-241.

15. Jain P, Rogers WJ, Pasman HJ, Keim KK, Mannan MS. A resilience-based integrated process systems hazard analysis (RIPSHA) approach: Part I plant system layer. Process Safety and Environmental Protection. 2018;116:92-105.

16. Jain P, Diangelakis NA, Pistikopoulos EN, Mannan MS. Process resilience based upset events prediction analysis: Application to a batch reactor. Journal of Loss Prevention in the Process Industries. 2019;62:103957.

17. Gasser P, Lustenberger P, Cinelli M, Kim W, Spada M, Burgher P, Hirschberg S, Stojadinovic B, Sun TY. A review on resilience assessment of energy systems. Sustainable and Resilient Infrastructure. 2019;1-27.

18. Aziz T, Waseem ML, Liu S. Review on optimization methodologies in transmission network reconfiguration of power systems for grid resilience. International Transactions on Electrical Energy Systems. 2021;31(3):e12704.

19. Wu J, Wang P. Risk-averse optimization for resilience enhancement of complex engineering systems under uncertainties. Reliability Engineering and System Safety. 2021;107836.

20. Gong J, You F. Resilient design and operations of process systems: Nonlinear adaptive robust optimization model and algorithm for resilience analysis and enhancement. Computers and Chemical Engineering. 2018;116:231-252.

21. Martínez-Guido SI, Núñez-López JM, Ponce-Ortega JM. Involving resilience in synthesizing food networks in low-income communities. Process Integration and Optimization for Sustainability. 2021;139-157.

22. Emenike SN, Falcone G. A review on energy supply chain resilience through optimization. Renewable and Sustainable Energy Reviews. 2020;134:110088.

23. Núñez-López JM, Rubio-Castro E, Ponce-Ortega JM. Involving resilience in...
optimizing the water-energy-food nexus at macroscopic level. Process Safety and Environmental Protection. 2021;147:259-273.

24. Liu Y, McNeil S, Hackl J, Adey BT. Prioritizing transportation network recovery using a resilience measure. Sustainable and Resilient Infrastructure. 2020;1-12.

25. Haimes YY, Crowther K, Horowitz BM. Homeland security preparedness: Balancing protection with resilience in emergent systems. Systems Engineering. 2008;11(4):287–308.

26. Venkittaraman A, Banerjee S. Enhancing resilience of highway bridges through seismic retrofit. Earthquake Engineering and Structural Dynamics. 2014;43(8):1173-1191.

27. Yan M, Shahidehpour M, Paaso A, Zhang L, Alabdulwahab A, Abusorrah A. Distribution system resilience in ice storms by optimal routing of mobile devices on congested roads. IEEE Transactions on Smart Grid. 2020;12(2):1314-1328.

28. Zhang W, Wang N, Nicholson C. Resilience-based post-disaster recovery strategies for road-bridge networks. Structure and Infrastructure Engineering. 2017;13(11):1404-1413.

29. Koc E, Cetiner B, Rose A, Soibelman L, Taciroglu E, Wei D. CRAFT: Comprehensive resilience assessment framework for transportation systems in urban areas. Advanced Engineering Informatics. 2020;46:101159.

30. Torres-Acosta A, del Valle-Moreno A, Martinez-Madrid M, Perez-Quiroz JT, Backhoof-Polhs M. National evaluation plan of federal bridges, free of toll damaged by corrosion (2000-2005). A quantification of results, projects and collaborations. Technical Publication. 2010;327(12).

31. Cuevas-Colunga et al. Anuario estadístico de accidentes en carreteras federales 2018. Documento técnico número, Sanfandila Qro. 2019. Spanish. 2019;77.