ON STABILITY OF CLASSES OF SOLUTIONS TO PARTIAL
DIFFERENTIAL RELATIONS CONSTRUCTED BY
QUASICONVEX FUNCTIONS AND NULL LAGRANGIANS
WITH RESPECT TO PRECOMPACT FAMILIES IN C_{loc}

A. A. EGOROV

Abstract. We prove theorems on stability of classes of solutions to partial
differential relations constructed by quasiconvex functions and null Lagrangians
with respect to precompact families in C_{loc}.

Let G be the class of $W^{1,k}_{\text{loc}}$-solutions $u: V \to \mathbb{R}^m$ (defined on domains $V \subset \mathbb{R}^n$) to the equation
\[
F(u'(x)) = G(u'(x)) \quad \text{a.e. } x \in V,
\]
where $F: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a nonnegative quasiconvex function and $G: \mathbb{R}^{m \times n} \to \mathbb{R}$ is
a null Lagrangian. Here $u'(x)$ denotes the Jacobi matrix of u at $x \in V$.

Let F be the class of mappings $v \in W^{1,k}_{\text{loc}}(V; \mathbb{R}^n)$ (defined on domains $V \subset \mathbb{R}^n$) for which there exists a finite measurable function $K: V \to [1, +\infty)$, finite almost everywhere, such that
\[
F(v'(x)) \leq KG(v'(x)) \quad \text{a.e. } V.
\]
Then for $v: V \to \mathbb{R}^m$ of the class \mathfrak{F} and for a.e. $x \in V$ we can define
\[
K(x, v) = \begin{cases}
\frac{F(v'(x))}{G(v'(x))} & \text{if } G(v'(x)) > 0; \\
1 & \text{if } F(v'(x)) = 0.
\end{cases}
\]

The class \mathfrak{G} has some stability property if any mapping $v \in \mathfrak{F}$ for which the
function $K(x, v)$ is close to 1 also close to some mapping $u \in \mathfrak{G}$.

In [17], the author has obtained some results on stability of \mathfrak{G} in the case when the
discrepancy between $K(x, v)$ and 1 is measured in the norm of $L^\infty(V)$. In this case v
belongs to the classes $\mathfrak{G}(K) := \{ v: V \to \mathbb{R}^m, v \in \mathfrak{F}, \text{ess sup}_{x \in V} K(x, V) < K \}$,
$K \geq 1$. Note that the class $\mathfrak{G}(K)$ consists of $W^{1,k}_{\text{loc}}$-solutions $v: V \to \mathbb{R}^m$ (defined
on domains $V \subset \mathbb{R}^n$) of the inequality
\[
F(v'(x)) \leq KG(v'(x)) \quad \text{a.e. } V.
\]
The aim of the present paper is to prove that a mapping $v \in \mathfrak{G}(K)$ is close to
some $u \in \mathfrak{G}$ in the case when the function $K(x, v)$ is close to 1 only some integral
sense.

Our results are analogues of N. A. Kudryavtseva and Yu. G. Reshetnyak’s re-
results [36] on stability of M"obius transformations with respect to precompact (in
C_{loc}) families of mappings with bounded distortion. A mapping $v \in W^{1,n}_{\text{loc}}(V; \mathbb{R}^n)$

\[\text{The author is supported by the Russian Foundation for Basic Research grant No. 20–01–00661.}\]
of an open set $V \subset \mathbb{R}^n$ is an (orientation-preserving) mapping with K-bounded distortion, $K \geq 1$, if v satisfies the distortion inequality
\begin{equation}
|v'(x)|^n \leq K \det v'(x) \quad \text{a.e. } V,
\end{equation}
where $|v'(x)|$ is the operator norm of the matrix $v'(x)$. If, in addition, v is topological, then v is K-quasisymmetric. The distortion inequality is the particular case of (2) with the following functions $F(v'(x)) = |v'(x)|^n$ and $G(v'(x)) = \det v'(x)$. The theory of quasisymmetric mappings and mappings with bounded distortion is the key part of modern geometric analysis which has many diverse applications, for example, see monographs [2, 8, 6, 22, 23, 24, 26, 30, 34, 39, 40, 43, 44, 45, 46, 47, 48, 52, 53] and the bibliography therein. In this monograph the results on stability of M"obius transformations are playing an important role. Other examples of classes of mappings which can be described as solutions of (1) with some function F and G can be found in [7, 9, 10, 11, 12, 28, 29, 30, 31, 49, 50]. The author has obtained some results on other properties of mappings of classes $\Theta(K)$ and \mathfrak{g} in [14, 15, 16, 17, 18, 19, 20, 21].

1. Notation and Terminology

Let A be a set in \mathbb{R}^n. The topological boundary of A is denoted by ∂A. The diameter of A is defined as $\text{diam } A := \sup \{ |x - y| : x, y \in A \}$. The outer Lebesgue measure of A is denoted by $|A|$.

The set $\mathbb{R}^{m \times n} := \{ \zeta = (\zeta_{\mu})_{\mu=1,\ldots,m} : \zeta_{\mu} \in \mathbb{R}^n, \mu = 1, \ldots, m, \nu = 1, \ldots, n \}$ consists of all real $(m \times n)$-matrices. We identify a matrix $\zeta = (\zeta_{\mu})_{\mu=1,\ldots,m} \in \mathbb{R}^{m \times n}$ with the linear mapping $(\zeta_1, \ldots, \zeta_m) : \mathbb{R}^n \to \mathbb{R}^m$, where $\zeta_{\mu}(x) := \sum_{\nu=1}^{n} \zeta_{\mu \nu} x_{\nu}$, $\mu = 1, \ldots, m$, $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$. The operator norm in $\mathbb{R}^{m \times n}$ is defined as $|\zeta| := \sup \{|\zeta(x)| : x \in \mathbb{R}^n, |x| < 1 \}$. The number of k-tuples of ordered indices in $\Gamma^k_n := \{ I = (i_1, \ldots, i_k) : 1 \leq i_1 < \cdots < i_k \leq n, i_\nu \in \{1, \ldots, n\}, \nu = 1, \ldots, k \}$ equals the binomial coefficient $\binom{n}{k} := \frac{n!}{k!(n-k)!}$. Given $x \in \mathbb{R}^n$ and $I \in \Gamma^k_n$, we put $x_I := (x_{i_1}, \ldots, x_{i_k}) \in \mathbb{R}^k$. If $I \in \Gamma^k_n$ and $J \in \Gamma^k_m$, then $\det_J I \zeta := \det \begin{pmatrix} \zeta_{i_1 j_1} & \cdots & \zeta_{i_1 j_k} \\ \vdots & \ddots & \vdots \\ \zeta_{i_k j_1} & \cdots & \zeta_{i_k j_k} \end{pmatrix}$ is the $k \times k$-minor of the matrix $\zeta \in \mathbb{R}^{m \times n}$.

The Jacobi matrix of $u = (u_1, \ldots, u_m) : U \subset \mathbb{R}^n \to \mathbb{R}^m$ at a point $x \in U$ is the matrix $u'(x) := \left(\frac{\partial u_\mu}{\partial x_\nu}(x) \right)_{\mu=1,\ldots,m, \nu=1,\ldots,n}$. If $I \in \Gamma^k_n$ and $J \in \Gamma^k_m$ then $\frac{\partial u_\mu}{\partial x_{i_1}}(x) = \frac{\partial (u_{i_1}, \ldots, u_{i_k})}{\partial x_{i_1}}(x) := \det_J I u'(x)$ and $\frac{\partial u_\mu}{\partial x_{i_1}}(x) := \left(\frac{\partial u_\mu}{\partial x_{i_1}}(x), \ldots, \frac{\partial u_\mu}{\partial x_{i_1}}(x) \right), \mu = 1, \ldots, m$.

Let \mathcal{V} be a real vector space equipped with a norm $| \cdot |$. We say that a function $\Phi : \mathcal{V} \to \mathbb{R}$ is positively homogeneous of degree $p \in \mathbb{R}$ if $\Phi(t x) = t^p \Phi(x)$ for all $t > 0$ and $x \in \mathcal{V} \setminus \{0\}$.

Following Ch. B. Morrey [11], we say that a continuous function $F : \mathbb{R}^{m \times n} \to \mathbb{R}$ is quasiconvex, if
\begin{equation}
|B(0,1)| F(\zeta) \leq \int_{B(0,1)} F(\zeta + \varphi'(x)) \, dx
\end{equation}
for all $\varphi \in C^\infty_c(B(0,1); \mathbb{R}^m)$ and $\zeta \in \mathbb{R}^{m \times n}$. Let $p \geq 1$. Following M. A. Sychev [51], we say that a quasiconvex function F is strictly p-quasiconvex if, for $\zeta \in \mathbb{R}^{m \times n}$ and $\varepsilon, C > 0$, there is $\delta = \delta(\zeta, \varepsilon, C) > 0$ such that, for each mapping $\varphi \in C^\infty(B(0,1); \mathbb{R}^m)$ satisfying $\| \varphi' \|_{L^p(B(0,1); \mathbb{R}^{m \times n})} \leq C|B(0,1)|^{1/p}$, the condition
\[\int_{B(0,1)} F(\zeta + \varphi'(x)) \, dx \leq |B(0,1)|(F(\zeta) + \delta) \] implies \[\{x \in B(0,1) : |\varphi'(x)| \geq \varepsilon \} \leq \varepsilon |B(0,1)|. \]

Observe that in the mathematical literature the term strictly quasiconvexity is also used for another property (which is close but nonequivalent to ours) consisting in the fact that the strict inequality in the definition of quasiconvexity is valid for nonzero mappings \(\varphi \) (for example, see [27]). In this article we use the term in the sense of M. A. Sychev’s definition [51]. In the case \(p > 1 \) the notion of strictly \(p \)-quasiconvexity for functions \(F \) of this article is equivalent to the notion of strictly closed \(p \)-quasiconvexity from J. Kristensen’s article [33] which is defined in terms of the theory of gradient Young measures (see [33, Proposition 3.4]). Observe that we can replace the ball \(B(0,1) \) in the definitions of quasiconvexity and strictly \(p \)-quasiconvexity by an arbitrary bounded domain \(U \) with \(|\partial U| = 0 \) (for example, see [42]). A function \(G : \mathbb{R}^{m \times n} \to \mathbb{R} \) is a null Lagrangian if both functions \(G \) and \(-G \) are quasiconvex. The term “null Lagrangian” appeared due to \(\partial U \). The only the affine combinations of minors (called quasi-affine functions) are null Lagrangians [13, 37] (also see [3, 4, 5, 26, 41, 12]); i.e.

\[
G(\zeta) = \gamma_0 + \sum_{k=1}^{\min\{m,n\}} \sum_{J \in \Gamma^l_k \, l \in \Gamma^r_k} \gamma_{Jl} \det J \zeta, \quad \zeta \in \mathbb{R}^{m \times n},
\]

for some \(\gamma_0, \gamma_{Jl} \in \mathbb{R} \).

Let \(C_{\text{loc}}(V; \mathbb{R}^m) \) be the space \(C(V; \mathbb{R}^m) \) furnished with the topology of locally uniform convergence.

2. Statement of the Main Results

Let \(n, m, k \in \mathbb{N} \) such that \(2 \leq k \leq \min\{n, m\} \). We need the following hypothesis on continuous functions \(F : \mathbb{R}^{m \times n} \to \mathbb{R} \) and \(G : \mathbb{R}^{m \times n} \to \mathbb{R} \) (see [17]):

(H1) \(F \) is quasiconvex;

(H1') \(F \) is strictly \(k \)-quasiconvex;

(H2) \(G \) is a null Lagrangian;

(H3) \(F \) and \(G \) are positively homogeneous of degree \(k \);

(H4) \(\sup \{ K \geq 0 : F(\zeta) \geq KG(\zeta), \ \zeta \in \mathbb{R}^{m \times n} \} = 1; \)

(H5) \(c_F := \inf \{ F(\zeta) : \zeta \in \mathbb{R}^{m \times n}, |\zeta| = 1 \} > 0. \)

By (H3), the representation (5) for the null Lagrangian \(G \) consists only of \((k \times k) \)-minors; i.e.,

\[
G(\zeta) = \sum_{J \in \Gamma^l_k \, l \in \Gamma^r_k} \gamma_{Jl} \det J \zeta, \quad \zeta \in \mathbb{R}^{m \times n}.
\]

It follows from (H4) that \(\mathcal{S} = \mathcal{S}(1). \)

The following theorems are the main results of the present paper.

Theorem 2.1. Suppose \(F \) and \(G \) satisfy (H1)–(H5). Let \(V \) be a bounded domain in \(\mathbb{R}^n \), \(K \geq 1 \), and let \(\mathcal{S} \subset \mathcal{S}(K) \cap C(V; \mathbb{R}^m) \) such that \(\mathcal{S} \) is precompact in \(C_{\text{loc}}(V; \mathbb{R}^m) \). Then for a compact subset \(U \subset V \) there exists a function \(\alpha(\varepsilon) = \alpha_{S,V}(\varepsilon), 0 \leq \varepsilon \leq \varepsilon_0, \lim_{\varepsilon \to 0} \alpha(\varepsilon) = \alpha(0) = 0, \) such that, for every mapping \(v \in \mathcal{S} \) with \(\|K(\cdot,v) - I\|_{L^1(V)} < \varepsilon_0 \), there is a mapping \(u : V \to \mathbb{R}^m \) in the class \(\mathcal{S} \)
such that
\[
\|v - u\|_{C(U; \mathbb{R}^m)} \leq \alpha(\|K(\cdot, v) - 1\|_{L^1(V)}).
\]

Theorem 2.2. Suppose \(F\) and \(G\) satisfy (H1') and (H2)--(H5). Let \(V\) be a bounded domain in \(\mathbb{R}^n\), \(K \geq 1\), and let \(S \subset \mathcal{G}(K) \cap C(V; \mathbb{R}^m)\) such that \(S\) is precompact in \(C_{\text{loc}}(V; \mathbb{R}^m)\). Then for a compact subset \(U \subset V\) there exists a function \(\beta(\cdot) \leq 0\), \(0 \leq \varepsilon < \varepsilon_0\), \(\lim_{\varepsilon \to 0} \beta(\varepsilon) = \beta(0) = 0\), such that, for every mapping \(v \in S\) with \(\|K(\cdot, v) - 1\|_{L^1(V)} < \varepsilon_0\), there is a mapping \(u: V \to \mathbb{R}^m\) in the class \(\mathcal{G}\) such that
\[
\|v - u\|_{C(U; \mathbb{R}^m)} + \|v' - u'\|_{L^k(U; \mathbb{R}^{m \times n})} \leq \beta(\|K(\cdot, v) - 1\|_{L^1(V)}).
\]

3. Proof of Theorem 2.2

To prove Theorem 2.2 we need the following auxiliary lemma from [17].

Lemma 3.1 ([17] Lemma 1). Let \(F\) and \(G\) satisfy (H2)--(H5). Let \(K \geq 1\), \(V \subset \mathbb{R}^n\) be a domain, and \(S = \{v: V \to \mathbb{R}^m\} \subset \mathcal{G}(K)\). Suppose that \(S\) is uniformly bounded in \(C_{\text{loc}}(V; \mathbb{R}^m)\) and \(S\) is uniformly bounded in \(W^{1,k}_{\text{loc}}(V; \mathbb{R}^m)\).

Let us prove Theorem 2.1. Proceeding by way of contradiction, assume that there are a compact subset \(U \subset V\), a number \(\varepsilon > 0\), and a sequence \((v_l) \in S\) with \(\|K(\cdot, v_l) - 1\|_{L^1(V)} \leq 1/l\) such that the inequality
\[
\|v_l - u\|_{C(U; \mathbb{R}^m)} > \varepsilon
\]
holds for all mappings \(u: V \to \mathbb{R}^m\) of the class \(\mathcal{G}\). Since \(S\) is precompact in \(C_{\text{loc}}(V; \mathbb{R}^m)\) and \(\|K(\cdot, v_l) - 1\|_{L^1(V)} \to 0\) as \(l \to \infty\), from the sequence \((v_l)\) we can extract subsequence (we denote it by \((v_l)\) again) such that it converges locally uniformly in \(V\) to some mapping \(v: V \to \mathbb{R}^m\) and
\[
K(\cdot, v_l) \to 1 \quad \text{a.e. in } V
\]
as \(l \to \infty\). Since \(S \subset \mathcal{G}(K)\), from Lemma 3.1 we obtain that the sequence \((v_l)\) is uniformly bounded in \(W^{1,k}_{\text{loc}}(V; \mathbb{R}^m)\). It follows from the general properties of the Sobolev spaces that \(v \in W^{1,k}_{\text{loc}}(V; \mathbb{R}^m)\) (for example, see [13] Chapter I, Theorem 1.1]). We have
\[
F(v_l'(x)) \leq K(x, v_l)G(v_l'(x)) \quad \text{a.e. in } V.
\]
and
\[
K(x, v_l) \leq K \quad \text{a.e. in } V.
\]
Multiply both sides of (11) by an arbitrary nonnegative function \(\eta \in C_0^\infty(V)\) and integrate over \(V\). Eventually, we obtain \(\int_V \eta F(v_l') \leq \int_V \eta K(\cdot, v_l)G(v_l')\). Passing to the limit in the last inequality over \(l\) and using the theorem on weak semicontinuity of the functionals of calculus of variations [11] Theorem II.4], the theorem on weak continuity of minors [13] Chapter II, Lemma 4.9], (10), and (12), we obtain
\[
\int_V \eta F(v') \leq \liminf_{l \to \infty} \int_V \eta F(v_l') \leq \limsup_{l \to \infty} \int_V \eta F(v_l') \leq \limsup_{l \to \infty} \int_V \eta K(\cdot, v_l)G(v_l') \leq \int_V \eta G(v').
\]
By the arbitrariness of \(\eta \), the last inequality means validity of (2) for \(v \) with \(K = 1 \). It follows that \(v \in \mathfrak{S} \). The sequence \((v_l) \) converges locally uniformly in \(V \) to \(v \). This contradicts the assumption (9). Theorem 2.1 is proven.

4. Proof of Theorem 2.2

To prove Theorem 2.2, we need the following auxiliary proposition from [17].

Proposition 4.1 ([17] Proposition 1). Let \(p > 1 \), and suppose that \(F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R} \) is a strictly \(p \)-quasiconvex function satisfying \(c|\zeta|^p \leq F(\zeta) \leq C(|\zeta|^p + 1) \), \(\zeta \in \mathbb{R}^{m \times n} \), with some constants \(0 < c < C < \infty \). Let \(V \subset \mathbb{R}^n \) be a bounded domain with Lipschitz boundary, and let \((v_l)_{l \in \mathbb{N}} \), \(v_l \in W^{1,p}(V; \mathbb{R}^m) \), be a sequence of mappings such that \(v_l \rightharpoonup v \) in \(L^1(V; \mathbb{R}^m) \) for some mapping \(v \in W^{1,p}(V; \mathbb{R}^m) \). Suppose that \(\int_V \eta F(v_l') \rightarrow \int_V \eta F(v') < \infty \). Then \(v_l \rightharpoonup v \) in \(W^{1,p}(V; \mathbb{R}^m) \).

Let us prove Theorem 2.2. Assume that there is no function with necessary properties. Then for some number \(\varepsilon > 0 \) and some compact subset \(U \subset V \) and every \(l \in \mathbb{N} \) there exists a mapping \(v_l \in \mathfrak{S} \) with \(\| F(\cdot, v_l) - 1 \|_{L^1(V)} \leq 1/l \) such that the inequality

\[
\| v_l - u \|_{C(U; \mathbb{R}^m)} + \| v_l' - u' \|_{L^k(U; \mathbb{R}^{m \times n})} > \varepsilon
\]

holds for each mapping \(u \in \mathfrak{S} \). Arguing as the proof of Theorem 2.1, we obtain that for the sequence \((v_l) \) there is a subsequence (denote it again by \((v_l) \)) converging locally uniformly in \(V \) to some mapping \(v: V \rightarrow \mathbb{R}^m \) from the class \(\mathfrak{S} \) and satisfying (13) for any nonnegative function \(\eta \in C^\infty_0(V) \). We have that \(v \) satisfies (1). Combining (13) with (1), we have

\[
\liminf_{l \to \infty} \int_V \eta F(v_l') = \limsup_{l \to \infty} \int_V \eta F(v_l') = \int_V \eta F(v').
\]

It means that there is a subsequence (denoted again by \((v_l) \)) such that \(\int_V \eta F(v_l') \rightarrow \int_V \eta F(v') \). Observe that this subsequence depends on the chosen function \(\eta \). Taking an appropriate collection of \(\eta \) and using Proposition ???, we find that there is a subsequence (for which we preserve the notation \((v_l) \)) such that \(\| v_l' - v' \|_{L^k(U; \mathbb{R}^{m \times n})} \to 0 \).

Using the locally uniform convergence of \((v_l) \) to \(v \in \mathfrak{S} \), we arrive at a contradiction with (14). Theorem 2.2 is proven.

References

[1] Acerbi E., Fusco N. Semicontinuity problems in the calculus of variations // Arch. Ration. Mech. Anal. 1984. Vol. 86. P. 125–145.

[2] Ball J. M. Convexity conditions and existence theorems in nonlinear elasticity // Arch. Ration. Mech. Anal. 1977. Vol. 63. P. 337–403.

[3] Ball J. M. Convexity conditions and existence theorems in nonlinear elasticity // Arch. Ration. Mech. Anal. 1977. Vol. 63. P. 337–403.

[4] Ball J. M. Convexity conditions and existence theorems in nonlinear elastostatics // In: Nonlinear analysis and mechanics: Heriot–Watt Symposium (Edinburgh, 1976). Pitman, London, 1977. Vol. 1. P. 187–241.

[5] Ball J. M., Currie J. C., Olver P. J. Null Lagrangians, weak continuity, and variational problems of arbitrary order // J. Funct. Anal. 1981. Vol. 41. P. 135–174.

[6] Belinski˘ı P. P. General properties of quasiconformal mappings // Novosibirsk: Nauka, 1974. [Russian].

[7] Bezrukova O. L., Dairbekov N. S., Kopylov A. P. On mappings which are close in the \(C \)-norm to classes of solutions of linear elliptic partial differential equations // Tr. Inst. Mat. 1987. Vol. 7. P. 19–30. [Russian]
[8] Bojarski B., Gutlyanskii V., Martio O., Ryazanov V. Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. EMS Tracts in Mathematics. Vol. 19. Zurich: European Mathematical Society, 2013. IX+205 p.

[9] Dairbekov N. S. Stability in the C-norm of classes of solutions of linear elliptic partial differential equations. Candidate’s dissertation. Novosibirsk, 1986. [Russian].

[10] Dairbekov N. S. The concept of a quasiregular mapping of several n-dimensional variables // Dokl. Akad. Nauk, Ross. Akad. Nauk. 1992. Vol. 324, No. 3. P. 511–514. [Russian]; English transl. in Russ. Acad. Sci., Dokl., Math. 1992. Vol. 45, No. 3. P. 578–582.

[11] Dairbekov N. S. Quasiregular mappings of several n-dimensional variables // Sib. Mat. Zh. 1993. Vol. 34, No. 4. P. 87–102. [Russian]; English transl. in Sib. Math. J. 1993. Vol. 34, No. 4. P. 669–682.

[12] Dairbekov N. S. Stability of classes of mappings, Beltrami equations, and quasiregular mappings of several variables. Doctoral dissertation. Novosibirsk, 1995. [Russian].

[13] Edelen D. G. B. Non local variations and local invariance of fields. Modern Analytic and Computational Methods in Science and Engineering. Vol. 19. Elsevier, New York, 1969.

[14] Egorov A. A. Stability of classes of solutions to partial differential relations constructed by convex and quasiaffine functions // In: Proc. on geometry and analysis. Novosibirsk: Izdatel’stvo Instituta Matematiki SO RAN, 2003. P. 275–288. [Russian]

[15] Egorov A. A. Stability of classes of solutions to partial differential relations constructed by quasiconvex functions and null Lagrangians // In: EQUADIFF 2003. Hackensack, NJ: World Sci. Publ., 2005. P. 1065–1067.

[16] Egorov A. A. Stability of classes of mappings, quasiconvexity, and null Lagrangians // Dokl. Akad. Nauk, Ross. Akad. Nauk. 2007. Vol. 415, No. 6. P. 599–602.

[17] Egorov A. A. Quasiconvex functions and null Lagrangians in the stability problems of classes of mappings // Sib. Mat. Zh. 2008. Vol. 49, No. 4. P. 796–812. [Russian]; English transl. in Sib. Math. J. 2008. Vol. 49, No. 4. P. 637–649.

[18] Egorov A. A. One integral inequality for solutions of the differential inequality with a null Lagrangian and its application // In: The collection of the scientific articles of the International school-seminar “Lomonosov’s readings in Altai 2012” (Barnaul, 20–23 November, 2012). Vol. 1. Barnaul: ASPA, 2012. P. 284–289.

[19] Egorov A. A. On the weak limit of a sequence of mappings satisfied the differential inequality with a quasiconvex function and a null Lagrangian // Mathematical notes of YaSU. 2013. Vol. 20, No. 2. P. 41-47.

[20] Egorov A. A. Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. I // Vladikavkaz Mathematical Journal. 2014. Vol. 16, No. 3. P. 22–37.

[21] Egorov A. A. Solutions of the differential inequality with a null Lagrangian: higher integrability and removability of singularities. II // Vladikavkaz Mathematical Journal. 2014. Vol. 16, No. 4. P. 41–48.

[22] Gol’dshleĭt V. M., Reshetnyak Yu. G. Introduction to the theory of functions with generalized derivatives, and quasiconformal mappings. M.: Nauka, 1983. 265 p. [Russian]

[23] Gol’dshleĭt V. M., Reshetnyak Yu. G. Quasiconformal mappings and Sobolev spaces. Mathematics and Its Applications: Soviet Series. Vol. 54. Dordrecht etc.: Kluwer Academic Publishers, 1990. XIX+371 p.

[24] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E. The Beltrami equation. A geometric approach. Developments in Mathematics. Vol. 26. Berlin: Springer, 2012. XIII+301 p.

[25] Iwaniec T., Martin G. Quasiregular mappings in even dimensions // Acta Math. 1993. V. 170, No. . P. 29–81.

[26] Iwaniec T., Martin G. Geometric function theory and non-linear analysis. Oxford Mathematical Monographs. Oxford: Oxford University Press, 2001.

[27] Knops R. J., Stuart C. A. Quasiconvexity and uniqueness of equilibrium solutions in non-linear elasticity // Arch. Ration. Mech. Anal. 1984. V. 86, No. 3. P. 233–249.

[28] Kopylov A. P. Stability of classes of multidimensional holomorphic mappings. III. Properties of mappings that are close to holomorphic mappings // Sib. Mat. Zh. 1983. Vol. 24, No. 3. P. 70–91. [Russian]; English transl. in Sib. Math. J. 1983. V. 24, No. 3. P. 373–391.

[29] Kopylov A. P. Stability of classes of multidimensional holomorphic mappings. Doctoral dissertation. Novosibirsk, 1984. [Russian].
[30] Kopylov A. P. Stability in the C-norm of classes of mappings. Novosibirsk: Nauka, 1990. [Russian].

[31] Kopylov A. P. On stability of classes of conformal mappings. I // Sib. Mat. Zh. 1995. Vol. 36, No. 2. P. 348–369. [Russian]; English transl. in Sib. Math. J. 1995. V. 36, No. 2. P. 305–323.

[32] Kopylov A. P. On stability of classes of conformal mappings. III // Sib. Mat. Zh. 1997. Vol. 38, No. 4. P. 825–842. [Russian]; English transl. in Sib. Math. J. 1997. V. 38, No. 4. P. 715–729.

[33] Kristensen J. Finite functionals and Young measures generated by gradients of Sobolev functions. Mathematical Institute. Technical University of Denmark MAT-REPORT No. 1994–34. Lyngby, Denmark, 1994. 58 p.

[34] Krushkal’ S. L. Quasiconformal mappings and Riemann surfaces. Novosibirsk: Nauka, 1975. 195 p. [Russian]

[35] Krushkal’ S. L. Quasiconformal mappings and Riemann surfaces. Scripta Series in Mathematics. A Halsted Press Book. Washington, D.C.: V. H. Winston & Sons, New York etc.: John Wiley & Sons, 1979. XII+319 p.

[36] Kudryavtseva N. A., Reshetnyak Yu. G. On stability of Möbius transformations in the class of mappings with bounded distortion // Sib. Mat. Zh. 1993. Vol. 34, No. 6. P. 86–90. [Russian]; English transl. in Sib. Math. J. 1993. Vol. 34, No. 6. P. 1076–1080.

[37] Landers A. W. Invariant multiple integrals in the calculus of variations // Contributions to the calculus of variations, 1938–1941. Chicago: University of Chicago Press, 1942. P. 184–189.

[38] Lehto O., Virtanen K. I. Quasiconformal mappings in the plane. 2nd ed. Grundlehren der Math. Wissenschaften. Vol. 126. Berlin-Heidelberg-New York: Springer-Verlag, 1973. VIII+258 p.

[39] Martio O. Modern tools in the theory of quasiconformal maps. Textos de Matematica. Serie B. Vol. 27. Coimbra: Universidade de Coimbra, Departamento de Matematica, 2000. 43 p.

[40] Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in modern mapping theory. New York, NY: Springer, 2009. XII+367 p.

[41] Morrey Ch. B. Multiple integrals in the calculus of variations. Grundlehren der Math. Wiss. Vol. 130. Berlin etc.: Springer-Verlag, 1966.

[42] Müller S. Variational models for microstructure and phase transitions Calculus of variations and geometric evolution problems // Lectures given at the 2nd session of the Centro Internazionale Matematico Estivo (CIME), Cetraro, Italy, June 15–22, 1996. Lect. Notes Math. Vol. 1713. Berlin: Springer, 1999. P. 85–210.

[43] Reshetnyak Yu. G. Space mappings with bounded distortion Novosibirsk: Nauka, 1982. 288 p. [Russian].

[44] Reshetnyak Yu. G. Stability theorems in geometry and analysis. Novosibirsk: Nauka, 1982. 232 p. [Russian].

[45] Reshetnyak Yu. G. Space mappings with bounded distortion. Translations of Math. Monographs. Vol. 73. Providence, R. I.: Amer. Math. Soc., 1989.

[46] Reshetnyak Yu. G. Stability theorems in geometry and analysis. Mathematics and its Applications (Dordrecht). Vol. 304. Dordrecht: Kluwer Academic Publishers, 1994. XI+394 p.

[47] Reshetnyak Yu. G. Stability theorems in geometry and analysis. 2nd rev. ed. Novosibirsk: Izdatel’stvo Institututa Matematiki SO RAN, 1996. 424 p. [Russian].

[48] Rickman S. Quasiregular mappings. Results in Mathematics and Related Areas (3). Vol. 26. Berlin: Springer-Verlag, 1993. X+213 p.

[49] Sokolova T. V. Behavior of nearly homothetic mappings // Mat. Zametki. 1991. V. 50, No. 4. P. 154–156. [Russian]; English transl. in Math. Notes. 1991. V. 50, No. 4. P. 1089–1090.

[50] Sokolova T. V. Stability in the Space W^1_p of homothety transformations. Candidate’s dissertation. Novosibirsk, 1991. [Russian].

[51] Sychev M. Young measure approach to characterization of behaviour of integral functionals on weakly convergent sequences by means of their integrands // Ann. Inst. H. Poincaré Anal. Non Linéaire. 1998. V. 15. P. 755–782.

[52] Vuorinen M. Conformal geometry and quasiregular mappings. Lect. Notes Math. Vol. 1319. Berlin etc.: Springer-Verlag, 1988. XIX+209 p.
Sobolev Institute of Mathematics, Novosibirsk, Russia
Email address: yegorov@math.nsc.ru