A new super-Hopf algebra, denoted by H, is obtained by using the standard method (the RTT-relation) with an R-matrix which is a solution of the quantum Yang-Baxter equation.

Keywords: Yang-Baxter equation, super-Hopf algebra, quantum supergroup.

GL(1|2) Süper Grubunun Bir İki-parametreli Deformasyonu

ÖZET: Kuantum Yang-Baxter denkleminin çözümü olan bir R-matrisi yardımcıla, standard RTT-bağntısı kullanılarak ile gösterilen yeni bir süper-Hopf cebiri elde edilmiştir.

Keywords: Yang-baxter equation, super-hopf cebiri, kuantum super grup.

1 Sultan ABACI ÇELİK (0000-0003-3465-8209), Yildiz Technical University, Faculty of Arts and Sciences, Departmet of Mathematics, Istanbul, Turkey

Sorumlu yazar/Corresponding Author: Sultan ABACI ÇELİK, sultan@yildiz.edu.tr
INTRODUCTION

Quantum groups (Drinfeld, 1986) have a rich mathematical structure (Klimyk and Schmüdgen, 1997), (Majid, 1995). The standard method to construct a new algebra from a solution of the quantum Yang-Baxter equation (Yang, 1967) was initiated by Faddeev et al. in 1990. With this method, we will introduce a new superalgebra related to a \mathbb{Z}_2-graded R-matrix with two-parameter. The RTT-relation for the quantum supergroups has the same form as in the (Faddeev et al. in 1990), but matrix tensor product contains a factor (-1), as additional to the (Kulish and Sklyanin, 1982) related to \mathbb{Z}_2-grading (Berezin, 1987).

The tensor product of two even matrices U and V has the signs

$$(U \otimes V)_{ij,kl} = (-1)^{\tau(i) + \tau(k)} U_{ik} V_{jl}$$

where $\tau(U) = \tau(i) + \tau(j)$. Because of this description, a matrix in the form $I \otimes U$ has the same block-diagonal form as in the standard (no-grading) case while a matrix in the form $U \otimes I$ contains the factor (-1) for odd elements standing at odd rows of blocks. To give a little explanation, we consider the matrix $U = \begin{pmatrix} a & \alpha \\ \gamma & b \end{pmatrix}$ appearing as T_{33} on page 7, line 5. Then the tensor product of the matrices U and $I = (\delta_{ij})$ has the signs

$$(U \otimes I)_{ij,kl} = (-1)^{\tau(i) + \tau(k)} U_{ik} \delta_{jl}$$ and $$(I \otimes U)_{ij,kl} = (-1)^{\tau(i) + \tau(k)} \delta_{ik} U_{jl}$$

where δ_{ij} denotes the kronecker delta. So, we have, for example

$$(U \otimes I)_{11,21} = U_{12} \delta_{11} = \alpha, \quad (U \otimes I)_{12,22} = -U_{12} \delta_{22} = -\alpha, \quad (U \otimes I)_{22,12} = -U_{21} \delta_{12} = -\gamma, \text{ etc.}$$

In this paper, we construct a two-parameter deformation of the supergroup $GL(1|2)$ denoted by $GL_{\mu,\nu}(1|2)$.
MATERIAL AND METHODS

Let \(a,b,c,d,e,\alpha,\beta,\gamma,\delta \) be generators of an algebra \(A \), where the generators \(a,b,c,d,e \) are of grade 0 and the generators \(\alpha,\beta,\gamma,\delta \) are of grade 1. Let \(O(M(1|2)) \) be defined as the polynomial algebra \(k[a,b,c,d,e,\alpha,\beta,\gamma,\delta] \). It will be sometimes more convenient and more illustrative to write a point \((a,b,c,d,e,\alpha,\beta,\gamma,\delta)\) of \(O(M(1|2)) \) in the matrix form, as a supermatrix,

\[
T = \begin{pmatrix}
a & \alpha & \beta \\
\gamma & b & c \\
\delta & d & e \\
\end{pmatrix} = (t_{ij}). \tag{1}
\]

We consider the \(R \)-matrix

\[
R = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & q^{-1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & q^{-1} & p^{-1} & 0 & 0 & 0 & 1 - p^{-1} \\
0 & 1 - p^{-1} & 0 & q p^{-1} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & p^{-1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & q p^{-1} & 0 & p^{-1} - 1 \\
0 & 0 & 0 & 0 & 0 & 0 & q & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p^{-1} \\
\end{pmatrix}
\]

where \(p, q \in \mathbb{C} - \{0\} \). This matrix satisfies the graded Yang-Baxter equation

\[
R_{12} R_{13} R_{23} = R_{23} R_{13} R_{12} \quad \text{where} \quad R_{12} = R \otimes I_3, \quad \text{etc} \quad \text{with the 3x3 identity matrix} \quad I_3.
\]

The matrix \(\hat{R} \) satisfies the \(\mathbb{Z}_2 \)-graded braid relation

\[
\hat{R}_{12} \hat{R}_{23} \hat{R}_{12} = \hat{R}_{23} \hat{R}_{12} \hat{R}_{23}
\]
and the \mathbb{Z}_2-graded Hecke condition

$$(\hat{R} - I_q)(\hat{R} + p^{-1}I_q) = 0.$$

The eigenvalues of \hat{R} are 1 and $-p^{-1}$ and it can be written, as a sum of projectors, in the form

$$\hat{R} = -p^{-1}P_{-} + P_{+},$$

where

$$P_{-} = \frac{-\hat{R} + I_q}{1 + p^{-1}}, \quad P_{+} = \frac{\hat{R} + p^{-1}I_q}{1 + p^{-1}} \quad (2)$$

provided that $1 + p^{-1} \neq 0$. The projectors obey $P_{i}P_{j} = \delta_{ij}P_{j}$ (no summation) and $P_{-} + P_{+} = I_q$.

RESULTS AND DISCUSSION

In this section, we get the (p,q)–commutation relations of the elements of the supermatrix T given in (1) and show that the algebra $O(GL_{p,q}(1|2))$ is a super-Hopf algebra.

Theorem 3.1. A 3x3-supermatrix T is a \mathbb{Z}_2-graded quantum matrix if and only if

$$\hat{R}T_2T_2 = T_1T_2\hat{R} \quad (3)$$

where $T_2 = I_3 \otimes T$, $T_1 = PT_2P$ and $\hat{R} = PR$ with the super permutation matrix P. As a result of (3), the elements of the supermatrix T satisfy the relations
\[ab = ba + q(1-p^{-1}) \gamma a, \quad ac = p^{-1}ca, \quad ad = p da, \]
\[ae = ea + q(1-p) \delta b, \quad bc = q cb, \quad bd = pq^{-1} db, \]
\[be = eb + q^{-1}(p-1) dc, \quad cd = pq^{-2} dc, \quad ce = pq^{-1} ec, \quad de = q ed, \]
\[aa = pq^{-1}aa, \quad a\beta = q^{-1}p^{-1} \beta a, \quad a\gamma = q \gamma a, \quad a\delta = q \delta a, \]
\[ba = pq^{-1}ab, \quad b\beta = \beta b + q^{-1}(p-1) ac, \quad b\gamma = q \gamma b, \quad (4) \]
\[b\delta = \delta b + q(1-p) \gamma d, \quad ca = pq ac, \quad c\beta = pq \beta c, \quad c\gamma = q \gamma c, \]
\[c\delta = p \delta c, \quad da = q^{-1}p^{-1} ad, \quad db = p^{-1} bd, \quad d\gamma = q^{2}p^{-1} \gamma d, \quad d\delta = q \delta d, \]
\[ea = q^{-2} ae + q^{-1}(p^{-1}-1) \beta d, \quad e\beta = q^{-1}p^{-1} \beta e, \quad e\gamma = q^{2} \gamma e + q(1-p) \delta c, \]
\[e\delta = q \delta e, \quad a\beta = -q \beta \alpha, \quad a\gamma = -q^{2} p^{-1} \gamma a, \quad a\delta = -q^{2} \delta a + q(p-1) \alpha, \]
\[\beta \gamma = -q^{2} \gamma \beta + q(1-p) ac, \quad \beta \delta = -p q^{2} \delta \beta, \quad \gamma \delta = -q^{-1} \delta \gamma, \]
\[\alpha^{2} = \beta^{2} = \gamma^{2} = \delta^{2} = 0. \]

Proof. Results can be obtained by making direct calculations. \(\square \)

One can see that when \(p = q \), these relations coincide with those of \(GL_{p,q}(1|2) \) given in (Celik, 2016).

Definition 3.1. The superalgebra \(O(M_{p,q}(1|2)) \) is the quotient of the free algebra \(k <a,b,c,d,e,\alpha,\beta,\gamma,\delta> \) by the two-sided ideal \(J_{p,q} \) constituted by the relations in (4) of Theorem 3.1.

Let \(A \) and \(B \) be two superalgebras. Then their tensor product \(A \otimes B \) is a superalgebra with respect to tensor product of \(A \) and \(B \). The product rule for tensor product of superalgebras is given in the following definition. We denote by \(\tau(a) \) the grade of an element \(a \in A \).

Definition 3.2. If \(A \) is a superalgebra, then the product rule in the superalgebra \(A \otimes A \) is described by
\[(a_i \otimes a_j)(a_i \otimes a_j) = (-1)^{\tau(a_i)\tau(a_j)} a_ia_j \otimes a_ia_j\]

where \(a_i\)'s are homogeneous elements in the superalgebra \(A\).

The quantum superdeterminant for the supermatrix \(T\) in the block form is given by (cf. Kobayashi and Uematsu, 1992)

\[s \det(T) = \det(A - BD^{-1}C)(\det(D))^{-1}\]

and it is not a central element. If the inverse of the quantum superdeterminant \(s \det(T)\) exists, then the algebra \(O(GL_{p,q}(112))\) has a super-Hopf algebra structure. The super-Hopf algebra structure of \(O(GL_{p,q}(112))\) is given in below.

Theorem 3.2. The algebra \(O(GL_{p,q}(112))\) has a unique super-Hopf algebra structure with co-maps \(\Delta, \varepsilon\) and \(S\) such that

\[\Delta(t_{ij}) = \sum_{j=1}^{3} t_{ik} \otimes t_{kj}, \quad \varepsilon(t_{ij}) = \delta_{ij}\] and \(S(T) = T^{-1}\).

Proof. The following properties of the co-structures can easily verified:

The comultiplication \(\Delta\) is coassociative in the sense that

\[(\Delta \otimes \text{id}) \circ \Delta = (\text{id} \otimes \Delta) \circ \Delta\]

where \(\text{id} : A \rightarrow A\) denotes the identity map and \(\Delta(uv) = \Delta(u)\Delta(v)\), \(\Delta(1) = 1 \otimes 1\).

The counit \(\varepsilon\) has the property

\[m \circ (\varepsilon \otimes \text{id}) \circ \Delta = \text{id} = m \circ (\text{id} \otimes \varepsilon) \circ \Delta\]

where \(m : A \otimes A \rightarrow A\) and \(\varepsilon(uv) = \varepsilon(u)\varepsilon(v)\), \(\varepsilon(1) = 1\).
The coinverse S satisfies

$$m \circ (S \otimes \text{id}) \circ \Delta = \varepsilon = m \circ (\text{id} \otimes S) \circ \Delta$$

and $S(uv) = (-1)^{r(u) r(v)} S(v)S(u)$, $S(I) = 1$. □

Definition 3.3. The super-Hopf algebra $O(GL_{p,q}(1|2))$ is called the coordinate algebra of the quantum supergroup $GL_{p,q}(1|2)$.

A discussion of some submatrices

Here are a few comments about some submatrices of T.

1. Let us first consider the even 2x2-submatrix $T_{33} = \begin{pmatrix} a & \alpha \\ \gamma & b \end{pmatrix}$ which forms subgroup $GL_{p,q}(111)$ with the commutation rules

 $$aa = pq^{-1}aa, \quad a\gamma = qa, \quad b\alpha = pq^{-1}ab, \quad b\gamma = q\gamma b,$$

 $$ab = ba + q(1 - p^{-1})\gamma a, \quad a\gamma = -q^2p^{-1}\gamma a, \quad \alpha^2 = \gamma^2 = 0.$$

These relations coincide with relations in (Dabrowski and Wang, 1991) when p is replaced by pq. If we assume that the formal inverse b^{-1} of b exists, then the quantum superdeterminant is given by the expression

$$s \det(T_{33}) = ab^{-1} - ab^{-1}\gamma b^{-1}$$

and it is a central element of the quantum superalgebra $O(GL_{p,q}(111))$.

It can be seen in a similar way that the even 2x2-submatrix $T_{22} = \begin{pmatrix} a & \beta \\ \delta & e \end{pmatrix}$ forms subgroup $GL_{p,q}(111)$ with the defining commutation relations.
2. We now consider an algebra A generated by the elements a, α, δ, d and defining commutation rules

$$
a\beta = q^{-1}p\beta a, \quad a\delta = q\delta a, \quad e\beta = q^{-1}p\beta e, \quad e\delta = q\delta e,
$$

$$
ae = ea + q(1 - p)\delta\beta, \quad \beta\delta = -p q^2\delta\beta, \quad \beta^2 = \delta^2 = 0.
$$

Obviously these relations represent a two-parameter deformation of the algebra A. Here the generators a and d are almost even (bosonic) and the generators α and δ are almost odd (fermionic). Indeed, as $p, q \to 1$ the algebra A with these relations becomes a superalgebra. However, submatrices of the form $T_{23} = \begin{pmatrix} a & \alpha \\ \delta & d \end{pmatrix}$ with the defined relations (except for $p=q=1$) do not form a subgroup $GL_{p,q}(11)$. It seems that such matrices are related to the super braided matrices (Majid, 1991). If so, this will be addressed in another study.

3. The 2×2-submatrix $T_{23} = \begin{pmatrix} b & c \\ d & e \end{pmatrix}$ forms subgroup $GL_{p,q}(2)$ subject to the relations

$$
bc = qcb, \quad bd = pq^{-1}db, \quad ce = pq^{-1}ec, \quad de = qed,
$$

$$
be = eb + q^{-1}(p - 1)dc, \quad cd = pq^{-2}dc.
$$

These relations coincide with relations given in (Schirrmacher et al., 1991) when q is replaced by p and pq^{-1} is replaced by q. The quantum determinant is given by

$$
\det(T_{11}) = be - q cd = eb - q^{-1}dc
$$

and it is not in the centre of the algebra $O(GL_{p,q}(2))$, but it becomes central if $p = q^2$.

Acknowledgements: I would like to express my deep gratitude to the referees for many comments and suggestions on the manuscript.
CONCLUSION

An R-matrix satisfying quantum Yang-Baxter equation was found, and using this matrix, deformation of the supergroup with a two-parameter was obtained and it shown that has a super-Hopf algebra structure, as usual.

Acknowledgements: I would like to express my deep gratitude to the referees for many comments and suggestions on the manuscript.

REFERENCES

Berezin F A, 1987. Introduction to Algebra and Analysis with Anticommuting Variables. Springer +Science Business Media Dordrecht-Holland.

Celik S, 2016. Bicovariant Differential Calculus on the Quantum Superspace $\mathbb{R}^4(1|2)$. Journal of Algebra and Its Applications, 15:1650172-1-17.

Dabrowski L, and Wang L, 1991. Two-parameter Quantum Deformation of GL(1|1). Physics Letters B, 266:51-54.

Kobayashi T and Uematsu T, 1992. Differential Calculus on the Quantum Superspace and Deformation of Phase Space. Zeitschrift für Physik C Particles and Fields, 56:193-199.

Kulish P P and Sklyanin E K, 1982. Solutions of the Yang-Baxter Equation. Journal of Soviet Mathematics, 19:193-225.

Majid S, 1991. Examples of Braided Groups and Braided Matrices. Journal of Mathematical Physics, 32:3246-325.

Majid S, 1995. Foundations of Quantum Group Theory. Cambridge University press, England.

Schirrmacher A, Wess J and Zumino B, 1991. The two-parameter deformation of GL(2), its differential calculus, and Lie algebra. Zeitschrift für Physik C Particles and Fields, 49:317.

Yang C N, 1967. Some Exact Results for the Many-Body Problem in one Dimension with Repulsive 324.