Production of one and two $c\bar{c}$ pairs at LHC

Antoni Szczurek* and Rafał Maciula†

*Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland,
University of Rzeszów, PL-35-959 Rzeszów, Poland
†Institute of Nuclear Physics PAN, PL-31-342 Cracow, Poland

Abstract. We report on charm production at LHC. The production of single $c\bar{c}$ pairs is calculated in the k_t-factorization approach with different unintegrated gluon distributions. Examples of transverse momentum distributions for charmed mesons are presented and compared to recent experimental results from LHC. Some missing strength is observed for most of UGDFs. Furthermore we discuss production of two $c\bar{c}$ pairs within double-parton scattering (DPS) and single-parton scattering (SPS) mechanisms. Surprisingly large cross sections, comparable to single $c\bar{c}$ pair production are predicted. We discuss first experimental results from LHCb collaboration on production of pairs of D mesons of the same flavour.

Keywords: k_t factorization, heavy quarks, double parton scattering
PACS: 14.65.Dw, 14.40.Lb

INTRODUCTION

The cross section for open charm production at the LHC is very large. Different mesons have been measured recently [1, 2]. Some other experiments are preparing their experimental cross sections. Different theoretical approaches for heavy quark production are used in the literature. In the present communication we present briefly some results for charmed meson production within k_t-factorization approach. A more detailed analysis will be presented elsewhere [3]. Previously we used the k_t-factorization approach for charm production at the Tevatron [5] and for nonphotonic electron production at RHIC [6, 7]. The k_t-factorization approach was also successfully used for beauty [8] and top [9] quark (antiquark) inclusive production.

Recently we have made first estimates for the production of two $c\bar{c}$ pairs [10, 11]. We have considered both double-parton scattering (DPS) mechanism [10] as well as single-parton scattering (SPS) mechanism [11]. Comparison of contributions of both mechanisms leads to the conclusion that the production of two $c\bar{c}$ pairs is a favourite place to study and identify double-parton scattering effects. Recently the LHCb collaboration has measured several pairs of D mesons [12]. We argue that their measurement confirms large double-parton scattering effects.

SKETCH OF FORMALISM

In the leading-order (LO) approximation within the k_t-factorization approach the quadruply differential cross section in the rapidity of $Q(y_1)$, in the rapidity of $\bar{Q}(y_2)$...
and in the transverse momentum of $Q(p_{1,t})$ and $\bar{Q}(p_{2,t})$ can be written as

$$
\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \sum_{i,j} \int \frac{d^2 \kappa_{1,t}}{\pi} \frac{d^2 \kappa_{2,t}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} |\mathcal{M}_{ij\rightarrow Q\bar{Q}}|^2
\delta^2 (\vec{\kappa}_{1,t} + \vec{\kappa}_{2,t} - \vec{p}_{1,t} - \vec{p}_{2,t}) \mathcal{F}_i(x_1, \kappa_{1,t}^2) \mathcal{F}_j(x_2, \kappa_{2,t}^2),
$$

where $\mathcal{F}_i(x_1, \kappa_{1,t}^2)$ and $\mathcal{F}_j(x_2, \kappa_{2,t}^2)$ are so-called unintegrated gluon (parton) distributions.

The hadronization is done in the way explained in Ref.[6].

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{SPS_DPS.png}
\caption{SPS (left) and DPS (right) mechanisms of $(c\bar{c})(c\bar{c})$ production.}
\end{figure}

The cross section for differential distribution in a simple double-parton scattering in leading-order collinear approximation can be written as

$$
\frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t} d^2 p_{2,t}} = \frac{1}{2\sigma_{eff}} \frac{d\sigma}{dy_1 dy_2 d^2 p_{1,t}} \cdot \frac{d\sigma}{dy_3 dy_4 d^2 p_{2,t}}
$$

which by construction reproduces the formula for integrated cross section [10]. This cross section is formally differential in 8 dimensions but can be easily reduced to 7 dimensions noting that physics of unpolarized scattering cannot depend on azimuthal angle of the pair or on azimuthal angle of one of the produced c (\bar{c}) quark (antiquark). This can be easily generalized by including QCD evolution effects for double parton distributions [10].

Recently we have generalized this approach to the k_t-factorization approach [13] where transverse momenta of particles 1 and 2 as well as transverse momenta of particles 3 and 4 are not balanced. This approach generate effectively higher-order corrections.

RESULTS

In Fig.2 we show two examples of transverse momentum distribution of D mesons. Our results are compared with the recent experimental data [1, 2]. Some strength seems to be missing. A possible explanation is discussed below. More distributions will be shown in our future publication [3].
In Fig. 3 we compare cross sections for the single $c\bar{c}$ pair production as well as for single-parton and double-parton scattering $c\bar{c}c\bar{c}$ production as a function of proton-proton center-of-mass energy. At low energies the conventional single $c\bar{c}$ pair production cross section is much larger. The cross section for SPS production of $c\bar{c}c\bar{c}$ system is more than two orders of magnitude smaller than that for single $c\bar{c}$ production. For reference we show the proton-proton total cross section as a function of energy. At higher energies the DPS contribution of $c\bar{c}c\bar{c}$ quickly approaches that for single $c\bar{c}$ production as well as the total cross section.

In Table 1 we show our first estimate of the cross sections for the production of two D mesons, both containing cc quarks, for different UGDF from the literature. More details, including differential distributions, will be shown in [13]. Our DPS estimate gives good order of magnitude with respect to the LHCb data.
FIGURE 4. Comparison of SPS and DPS contributions. Left panel shows results without and with QCD evolution of double parton distributions. Right panel compares results for DPS and SPS production of $c\bar{c}c\bar{c}$.

TABLE 1. Total cross sections for a production of pairs of mesons within LHCb acceptance region.

Mode	σ_{tot}^{EXP}	KMR	Jung set A0+	KMS
D^0D^0	690 ± 40 ± 70	256	101	100
D^0D^+	520 ± 80 ± 70	204	81	80
D^0D^-	270 ± 50 ± 40	72	29	28
D^+D^-	80 ± 10 ± 10	41	16	16
$D^+D^+_c$	70 ± 15 ± 10	29	12	11
$D^+_S D^-_S$	–	10	4	4

CONCLUSIONS

We have presented our selected new results for charmed meson production at LHC. Results of our calculation have been compared with recent ALICE and LHCb experimental data for transverse momentum distribution of D mesons. There seems to be a missing strength, especially for the LHCb kinematics.

One of possible explanation is a presence of DPS contributions. We have compared energy dependence of the DPS contribution to the $c\bar{c}c\bar{c}$ production with that for the $c\bar{c}$ production. The cross section for two pair production grows much faster than that for single pair production. At high energies the two cross sections become comparable. We have also discussed some correlation observables that could be used to identify double-parton scattering contribution. The rapidity difference between cc (or $\bar{c}\bar{c}$) is one of the good examples.

We have also estimated corresponding single-parton scattering contributions in a high energy approach. The latter turned out to be much smaller than the double-parton scattering contributions.

In Ref.[10] we suggested that a good possibility to identify DPS effects would be to measure D mesons of the same flavour. The LHCb collaboration has presented recently results of such first studies [12]. Our calculation predicts cross section of right order of magnitude.

In summary, we have found that the production of two $c\bar{c}$ pairs is one of the best places to study and identify double-parton scattering effects.
This work was supported in part by the MNiSW grant No. PRO-2011/01/N/ST2/04116.

REFERENCES

1. B. Abelev et al. (ALICE Collaboration), JHEP 01 (2012) 128.
2. LHCb Collaboration, LHCb-CONF-2010-013.
3. R. Maciula and A. Szczurek, a paper to be submitted to a journal.
4. B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, arXiv:1202.0439 [hep-ph].
5. M. Łuszczak and A. Szczurek, Phys. Rev. D73 (2006) 054028.
6. M. Łuszczak, R. Maciula and A. Szczurek, Phys. Rev. D79 (2009) 034009.
7. R. Maciula, A. Szczurek and G. Ślipek, Phys. Rev. D83 (2011) 054014.
8. H. Jung, M. Kraemer, A.V. Lipatov and N.P. Zotov, arXiv:1111.1942.
9. A.V. Lipatov and N.P. Zotov, Phys. Lett. B704 (2011) 189.
10. M. Łuszczak, R. Maciula and A. Szczurek, Phys. Rev. D85 (2012) 094034, arXiv:1111.3255 [hep-ph].
11. W. Schäfer and A. Szczurek, Phys. Rev. D85 (2012) 094029, arXiv:1203.4129 [hep-ph].
12. R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 06 (2012) 141, arXiv:1205.0975 [hep-ex].
13. R. Maciula and A. Szczurek, a paper to be submitted to a journal.