UPPER BOUNDS FOR EIGENVALUES OF CONFORMAL LAPLACIAN ON SPHERES

YANNICK SIRE AND HANG XU

Abstract. In this paper, we introduce a new functional for the conformal spectrum of the conformal laplacian on a closed manifold M of dimension at least 3. For this new functional we provide a Korevaar type result. The main body of the paper deals with the case of the sphere but a section is devoted to more general closed manifolds.

CONTENTS

1. Introduction 1
2. Geometry of metric measure space 2
3. construction of test functions 4
4. Proof of Theorem 1.1 7
5. Generalizations and Related Questions 9
5.1. Generalizations to any closed manifolds 9
5.2. Hersch Type Results 11
References 12

1. Introduction

Let (M^n, g) with $n \geq 3$ be a compact boundaryless manifold with scalar curvature R_g. Let $[g]$ be the conformal class of g and let c_n denote the constant $\frac{n-2}{4(n-1)}$. Consider the conformal laplacian

$\Box_g = -\Delta_g + c_n R_g.$

Let \tilde{g} be a conformal metric to g, i.e. $\tilde{g} = \mu^{4/(n-2)} g$ for some positive function $\mu \in C^\infty(M)$. We investigate the eigenvalue problem

$(-\Delta_{\tilde{g}} + c_n R_{\tilde{g}}) u = \lambda u \quad (1.1)$

Suppose (S^n, g) is the n-sphere with the round metric and $\tilde{g} \in [g]$. Recall that a celebrated result by Korevaar [5] implies that the kth eigenvalue $\lambda_k(S^n, -\Delta_{\tilde{g}})$ of the laplacian satisfies

$\lambda_k(S^n, -\Delta_{\tilde{g}}) \cdot \text{Vol}(S^n, \tilde{g})^{2/n} \leq C(n) k^{2/n}.$
However, the same estimate is false for the conformal laplacian \([1]\). By changing the quantity
\[
\text{Vol}((S^n, \tilde{g}))^{2/n} = \left(\int_{S^n} \mu^{\frac{2}{n-2}} dV_{\tilde{g}} \right)^{2/n}
\]
to a smaller one in the sense of Lebesgue space embeddings, we have

Theorem 1.1. Let \((S^n, g)\) be the \(n\)-sphere with the round metric. For any metric \(\tilde{g} \in [g]\), the \(k\)th eigenvalue \(\tilde{\lambda}_k = \lambda_k(S^n, \tilde{g})\) of the conformal laplacian \(\Box_{\tilde{g}}\) satisfies the inequality

\[
\tilde{\lambda}_k \int_{S^n} \mu^{\frac{4}{n-2}} dV_g \leq C(n)k^{2/n},
\]

where \(C(n)\) is a constant only depending on \(n\).

The proof follows in a similar way from [3, 4], in which the idea traces back to [2] and [5].

Upper bounds for the conformal spectrum of geometric differential operators play a crucial role in the geometry of manifolds. An extensive program initiated by S. T. Yau and collaborators (see [7, 11] for instance) has been instrumental in these aspects. The existence of extremal metrics on general surfaces has been proved by Nadirashvili and the first author [9, 10] (see also [8]).

Acknowledgements. The second author thanks Professor Hamid Hezari and Professor Zhiqin Lu for many useful discussions on this topic. The second author would also like to thank Professor Bernard Shiffman for his constant support and mentoring.

2. Geometry of metric measure space

In this section, we will show the existence a large number of disjoint annuli carrying a sufficient amount of the volume measure. Let \((X, d)\) be a metric space. For any \(p \in X\) and \(0 \leq r < R < +\infty\), we denote the ball \(B(p, r) = \{ x \in X : d(x, p) < r \}\) and the annulus \(A(p; r, R) = \{ x \in X : r \leq d(x, p) < R \}\). Recall the following definition.

Definition 2.1. Given a positive integer \(N\), we say that a metric space \((X, d)\) satisfies \(N\)-covering property if for any ball \(B(p, r)\) in \(X\), there exists a family of at most \(N\) balls of radii \(r/2\), which cover \(B(p, r)\).

The main tool we will use to construct disjoint annuli is the following theorem by Grigoryan, Netrusov and Yau [2] (see Theorem 3.5 and Lemma 3.10).

Theorem 2.2 ([2]). Let \((X, d)\) be a metric space and \(m\) be a Borel measure. Assume that

- \((X, d)\) satisfies \(N\)-covering property;
all balls in X are precompact;
measure m is finite and non-atomic.

Then for any positive integer k, there exists annuli $A_j = A(p_j; r_j, R_j)$ for $1 \leq j \leq k$ such that

- $2A_j = A_j(p_j; \frac{r_j}{2}, 2R_j)$ for $1 \leq j \leq k$ are pairly disjoint;
- for each $1 \leq j \leq k$, $m(A_j) \geq c \frac{m(X)}{k}$.

Here $c = c(N)$ is a constant only depending on N.

In our case, we will set metric space $(X, d) = (S^n, d_g)$, where d_g is the distance function induced from the round metric g. Since (S^n, g) is positively curved, it satisfies the doubling property. That is to say, there exists some constant $C(n)$, such that $\text{Vol}_g(B(p, 2r)) \leq C(n) \text{Vol}_g(B(p, r))$ for any ball $B(p, r) \subset S^n$. In fact, we can take $C(n) = 2^n$ for (S^n, d_g) by using the volume comparison theorem. And it follows that (S^n, d_g) satisfies N-covering property for any $N \geq 4^n$ by using a packing argument. In particular, the constant c here only depends on the dimension n if we set $N = 4^n$.

Let $\nu, \tilde{\nu}$ be the volume measure induced by the metric g, \tilde{g} respectively. Furthermore, we will set the Borel measure

$$m = \mu^{-2}d\nu = \mu^\frac{4}{n-2}d\nu.$$

(2.1)

Applying Theorem 2.2 to $(S^n, d_g, \mu^\frac{4}{n-2}d\nu)$ and positive integer $2k$, we obtain a collection of annuli $\{A_j = A(p_j; r_j, R_j)\}_{j=1}^{2k}$ such that

1. $2A_j = A_j(p_j; \frac{r_j}{2}, 2R_j)$ for $1 \leq j \leq 2k$ are pairly disjoint;
2. for each $1 \leq j \leq 2k$,

$$\int_{A_j} \mu^\frac{4}{n-2}d\nu \geq \frac{c}{k} \int_{S^n} \mu^\frac{4}{n-2}d\nu = \frac{c}{k} m(S^n),$$

(2.2)

where $c = c(n)$ is a constant only depending on n.

Furthermore, we can assume the first k many annuli in the collection $\{A_j\}_{j=1}^{2k}$ satisfy

$$\nu(2A_j) \leq \frac{\nu(S^n)}{k}, \quad \text{for } 1 \leq j \leq k.$$

(2.3)

This is because $\{2A_j\}_{j=1}^{2k}$ are pairly disjoint and thus we have

$$\sum_{j=1}^{2k} \nu(2A_j) \leq \nu(S^n).$$

By re-indexing the collection of annuli, we can assume $\nu(2A_1) \leq \nu(2A_2) \leq \cdots \leq \nu(2A_{2k})$ and (2.3) clearly follows.
3. CONSTRUCTION OF TEST FUNCTIONS

In this section, we will construct test functions supported in each annulus $2A_j$ for $1 \leq j \leq k$.

Fix an annulus $A = A(p; r, R) \subset S^n$. Let $x = (x^0, x^1, \cdots, x^n) \in \mathbb{R}^{n+1}$ be the Cartesian coordinates. Let $\sigma_p : S^n \setminus \{p\} \to \mathbb{R}^n$ be the stereographic projection with the base point p to the subspace $L_p = \{x \in \mathbb{R}^{n+1} : x \cdot p = 0\}$.

For any $t > 0$, we denote $\delta_t : \mathbb{R}^n \to \mathbb{R}^n$ as the rescaling map by factor t, i.e., $\delta_t(y) = ty$ for any $y \in \mathbb{R}^n$. Define $\theta_{p,t} = \sigma_p^{-1} \circ \delta_t \circ \sigma_p$, which is a conformal diffeomorphism of (S^n, g), since each map in the composition is conformal. It is not hard to see the following properties of $\theta_{p,t}$ are satisfied.

- $\theta_{p,t}$ fixes the points $\pm p$.
- $\theta_{p,t}$ preserves level sets of the distance function $d_g(p, \cdot)$.
- For any $x \in S^n \setminus \{\pm p\}$, $\theta_{p,t}(x) \to p$ as $t \to +\infty$, while $\theta_{p,t}(x) \to -p$ as $t \to 0$.

We start the construction with a special case that $r = 0$ and $A(p; r, R) = B(p, R)$. Given $R \in (0, \pi)$, we can choose the value $t = t(R) \in \mathbb{R}^+$ so that $\theta_{p,t}$ maps $B(p, 2R)$ to the hemisphere $B(p, \pi)$. Let $x_p = x \cdot p$. We define

$$\varphi_{p,R}(x) = \begin{cases} x_p \circ \theta_{p,t}(x), & \text{if } x \in B(p, 2R), \\ 0, & \text{if } x \notin B(p, 2R). \end{cases}$$

Let ∇ be the Levi-Civita connection for the round metric g. Then we have the following lemma on the function $\varphi_{p,R}$.

Lemma 3.1. $\varphi_{p,R}$ is a Lipschitz function on S^n satisfying

- $0 \leq \varphi_{p,R}(x) \leq 1$ for any $x \in S^n$;
- $\varphi_{p,R}(x) \geq \frac{3}{4}$ for any $x \in B(p, R)$;
- $\text{supp } \varphi_{p,R} \subset B(p, 2R)$;
- $$\int_{S^n} |\nabla \varphi_{p,R}|_g^2 d\nu \leq C(n),$$

where $C(n)$ is a constant only depending on n.

Proof. The first property follows immediately by noting $x_p = x \cdot p = \cos (d_g(p, x))$. The third property is also straightforward by the definition of $\varphi_{p,R}$. It remains to check the second one and the last one.

We need to compute t in terms of R explicitly. As (S^n, g) is homogeneous under the action of $\text{SO}(n+1)$, we can assume that $p =$
We denote $x' = (x^1, x^2, \ldots, x^n)$ and $x = (x^0, x')$. Recall the formulas for the stereographic projection:

$$\sigma_p(x) = \frac{x'}{1-x^0} \quad \text{for any } x \in S^n,$$

and

$$\sigma_p^{-1}(y) = \left(\frac{|y|^2 - 1}{|y|^2 + 1}, \frac{2y}{|y|^2 + 1} \right) \quad \text{for any } y \in \mathbb{R}^n.$$

By a straightforward computation, we obtain that for any $x \in S^n$

$$\theta_{p,t}(x) = \left(\frac{t^2(1 + x^0) - (1 - x^0)}{t^2(1 + x^0) + (1 - x^0)}, \frac{2tx'}{t^2(1 + x^0) + (1 - x^0)} \right). \quad (3.1)$$

Recall that t is chosen so that $\theta_{p,t}$ maps $B(p, 2R)$ onto $B(p, \frac{\pi}{2})$. In particular, $\theta_{p,t}$ maps $\partial B(p, 2R)$ to $\partial B(p, \frac{\pi}{2})$ since it preserves level sets of the distance function $d_g(p, \cdot)$. Take $x \in \partial B(p, 2R)$. Then

$$x_p = x^0 = \cos(d_g(x, p)) = \cos(2R).$$

And $\theta_{p,t}(x) \in \partial B(p, \frac{\pi}{2})$ implies that

$$x_p(\theta_{p,t}(x)) = \frac{t^2(1 + x^0) - (1 - x^0)}{t^2(1 + x^0) + (1 - x^0)} = \cos(\pi/2) = 0.$$

Combine these two equations and we can solve

$$t = \sqrt{\frac{1 - \cos(2R)}{1 + \cos(2R)}} = \tan R.$$

We are now ready to prove the second property. Since $\varphi_{p,R}(x) = \cos(d_g(p, \theta_{p,t}(x)))$ on the closed ball $x \in B(p, R)$, the minimum is attained on the boundary $\partial B(p, R)$. For any $x \in \partial B(p, R)$, we have $x^0 = \cos R$ and

$$\varphi_{p,R}(x) = \frac{\tan^2 R \cdot (1 + \cos R) - (1 - \cos R)}{\tan^2 R \cdot (1 + \cos R) + (1 - \cos R)} = \frac{2 \cos R + 1}{2 \cos^2 R + 2 \cos R + 1}.$$

We set $f(R) = \frac{2 \cos R + 1}{2 \cos^2 R + 2 \cos R + 1}$. A straightforward computation shows that $f(R)$ is increasing on $(0, \frac{\pi}{2})$. Therefore, the second property follows by the fact

$$\lim_{R \to 0} f(R) = \frac{3}{5}.$$
Next we prove the last property of $\varphi_{p,R}$. Using the spherical coordinates, we have

\[\begin{align*}
 x^0 &= \cos \phi_1, \\
 x^1 &= \sin \phi_1 \cos \phi_2, \\
 x^2 &= \sin \phi_1 \sin \phi_2 \cos \phi_3, \\
 \vdots \\
 x^{n-1} &= \sin \phi_1 \sin \phi_2 \cdots \sin \phi_{n-1} \cos \phi_n, \\
 x^n &= \sin \phi_1 \sin \phi_2 \cdots \sin \phi_{n-1} \sin \phi_n.
\end{align*}\]

Accordingly, the round metric writes into

\[
g = d\phi^2 + \sin^2 \phi_1 d\phi_2^2 + \sin^2 \phi_1 \sin^2 \phi_2 d\phi_3^2 + \cdots + \sin^2 \phi_1 \sin^2 \phi_2 \cdots \sin^2 \phi_{n-1} d\phi_n^2.
\]

Thus, using the expression in (3.1), we obtain

\[
\int_{S^n} |\nabla \varphi_{p,R}|^n d\nu
\leq 4^n \int_0^\pi \frac{t^{2n} \sin^{2n-1} \phi_1}{(t^2(1 + \cos \phi_1) + 1 - \cos \phi_1)^{2n}} d\phi_1
\cdot \int_0^\pi \cdots \int_0^\pi \sin^{n-2} \phi_2 \sin^{n-3} \phi_3 \cdots \sin \phi_{n-1} d\phi_2 d\phi_3 \cdots d\phi_n.
\]

As the second integral on the right-hand side is a constant only depending on n, we just need to estimate the first one. Note that $t^2(1 + \cos \phi_1) + 1 - \cos \phi_1 \geq 2t \sin \phi_1$ by Cauchy-Schwartz inequality. It follows that

\[
\int_0^\pi \frac{t^{2n} \sin^{2n-1} \phi_1}{(t^2(1 + \cos \phi_1) + 1 - \cos \phi_1)^{2n}} d\phi_1 \leq 4^{1-n} \int_0^\pi \frac{t^2 \sin \phi_1}{(t^2(1 + \cos \phi_1) + 1 - \cos \phi_1)^2} d\phi_1
= 4^{1-n} \int_{-1}^1 \frac{t^2}{(t^2(1 + x_1) + 1 - x_1)^2} dx_1
= 2^{1-2n}.
\]

Therefore, there exists some constant $C(n)$ only depending on n, such that

\[
\int_{S^n} |\nabla \varphi_j|^n d\nu \leq C(n).
\]

\[
\square
\]

Similarly, for a given point $p \in S^n$ and $r \in (0, \pi)$, we choose $\tau = \tau(r) \in \mathbb{R}^+$ such that $\theta_{p,\tau}$ maps $B(p, \frac{r}{2})$ onto $B(p, \frac{\pi}{2})$. And we define

\[
\bar{\varphi}_{p,r}(x) = \begin{cases}
0, & \text{if } x \in B(p, \frac{r}{2}), \\
-x_p \circ \theta_{p,\tau}(x), & \text{if } x \notin B(p, \frac{r}{2}).
\end{cases}
\]

$\bar{\varphi}_{p,r}(x)$ has similar properties as in Lemma 3.1.
Lemma 3.2. \(\bar{\varphi}_{ p, r } \) is a Lipschitz function on \(S^n \) satisfying

- \(0 \leq \bar{\varphi}_{ p, r } (x) \leq 1 \) for any \(x \in S^n \);
- \(\bar{\varphi}_{ p, r } (x) \geq \frac{3}{5} \) for any \(x \notin B(p, r) \);
- \(\text{supp} \ \bar{\varphi}_{ p, r } \subset S^n \setminus B(p, \frac{r}{2}) \).

\[
\int_{S^n} |\nabla \bar{\varphi}_{ p, r }|^n g d\nu \leq C(n),
\]

where \(C(n) \) is a constant only depending on \(n \).

Generally, for a given annulus \(A(p; r, R) \subset S^n \), we construct the test function as

\(\varphi_{ p, r, R } = \varphi_{ p, R } \cdot \bar{\varphi}_{ p, r } \).

Combining Lemma 3.1 and Lemma 3.2, we have

Lemma 3.3. \(\varphi_{ p, r, R } \) is a Lipschitz function on \(S^n \) satisfying

- \(0 \leq \varphi_{ p, r, R } (x) \leq 1 \) for any \(x \in S^n \);
- \(\varphi_{ p, r, R } (x) \geq \frac{9}{25} \) for any \(x \in A(p; r, R) \);
- \(\text{supp} \ \varphi_{ p, r, R } \subset A(p; \frac{r}{2}, 2R) \).

\[
\int_{S^n} |\nabla \varphi_{ p, r, R }|^n g d\nu \leq C(n),
\]

where \(C(n) \) is a constant only depending on \(n \).

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Recall the collection of annuli \(\{ A_j = A(p_j; r_j, R_j) \}_{j=1}^k \) satisfying properties (i), (ii) and (2.3) in Section 2. For each annulus \(A_j \) with \(1 \leq j \leq k \), set \(\varphi_j := \varphi_{ p_j; r_j, R_j } \). We use \(\nabla, \tilde{\nabla} \) to denote the Levi-Civita connection for the metric \(g \) and \(\tilde{g} \) respectively. For any Lipschitz function \(f \) on \(S^n \), let \(R(f) \) be the Rayleigh quotient:

\[
R(f) = \frac{\int_{S^n} |\nabla f|^2 \tilde{g} + c_n R_\tilde{g} |f|^2 d\tilde{\nu}}{\int_{S^n} |f|^2 d\tilde{\nu}},
\]

where \(c_n = \frac{n-2}{4(n-1)} \) is the constant appearing in the conformal laplacian.

To prove Theorem 1.1, it is sufficient to show that for \(1 \leq j \leq k \),

\[
R (\varphi_j / \mu) \leq C(n) k^{2/n} \left(\int_{S^n} \mu^{\frac{2}{n-2}} dV_g \right)^{-1}.
\]

(4.1)

We will estimate the numerator and denominator in the Rayleigh quotient respectively.
We begin with the denominator. Since \(\varphi_j \geq \frac{9}{25} \) on \(A_j \) and by (2.2), we have
\[
\int_{S^n} |\varphi_j/\mu|^2 \, d\tilde{\nu} \geq \left(\frac{3}{5} \right)^4 \int_{A_j} \mu^{-2} d\tilde{\nu} \geq c \left(\frac{3}{5} \right)^4 \frac{m(S^n)}{k},
\]
where \(c \) is a constant only depends on \(n \).

Now we consider the denominator. We can actually change the metric \(\tilde{g} \) to the round metric \(g \) by the following lemma.

Lemma 4.1. For any Lipschitz function \(f \) on \(S^n \), we have
\[
\int_{S^n} |\nabla f|^2_{\tilde{g}} + c_n R_{\tilde{g}} |f|^2 \, d\tilde{\nu} = \int_{S^n} |\nabla (\mu f)|^2_g + c_n R_g |\mu f|^2 \, d\nu
\]
(4.3)

Proof. It is sufficient to consider \(f \in C^\infty(M) \). The conformal law for the conformal laplacian gives for metrics related by \(\tilde{g} = \mu^{4/(n-2)} g \)
\[
(-\Delta_g + c_n R_g)(\mu f) = \mu^{(n+2)/(n-2)} (-\Delta_{\tilde{g}} + c_n R_{\tilde{g}})(f)
\]
(4.4)

And the volume measures are related by
\[
d\tilde{\nu} = \mu^{2n/(n-2)} \, d\nu.
\]

Therefore,
\[
(-\Delta_g + c_n R_g)(\mu f) \cdot (\mu f) \, d\nu = \mu^{(n+2)/(n-2)} (-\Delta_{\tilde{g}} + c_n R_{\tilde{g}})(f) \cdot (\mu f) \mu^{-2n/(n-2)} d\tilde{\nu}
\]
\[
= (-\Delta_{\tilde{g}} + c_n R_{\tilde{g}})(f) \cdot f \, d\tilde{\nu}.
\]

The result follows immediately by integration by parts. \(\square \)

Applying (4.3) to the numerator in \(R(\varphi_j/\mu) \), we obtain
\[
\int_{S^n} |\nabla (\varphi_j/\mu)|^2_g + c_n R_g |\varphi_j/\mu|^2 \, d\tilde{\nu} = \int_{S^n} |\nabla (\varphi_j)|^2_g + c_n R_g |\varphi_j|^2 \, d\nu
\]
(4.5)

By using the Hölder inequality, as \(\text{supp} \varphi_j \subset 2A_j \),
\[
\int_{S^n} |\nabla \varphi_j|^2_g \, d\nu \leq \left(\int_{S^n} |\nabla \varphi_j|^n \, d\nu \right)^{2/n} \cdot \nu(2A_j)^{1-2/n}.
\]

Recalling (2.3) and (3.2), it follows that
\[
\int_{S^n} |\nabla \varphi_j|^2_g \, d\nu \leq C(n)^{2/n} \cdot \left(\frac{\nu(S^n)}{k} \right)^{1-2/n}.
\]

What’s more,
\[
\int_{S^n} c_n R_g |\varphi_j|^2 \, d\nu \leq n(n-1)c_n \cdot \nu(2A_j) \leq n(n-1)c_n \frac{\nu(S^n)}{k}.
\]
Plugging the above two inequalities into (4.5) and enlarging the constant \(C(n) \) if necessary,

\[
\int_{S^n} |\tilde{\nabla}(\varphi_j/\mu)|^2_g + c_n R_g|\varphi_j/\mu|^2 d\tilde{V} \leq \frac{C(n)}{k^{1-2/n}}.
\]

(4.6)

Combining (4.2) and (4.6), it follows that for any \(1 \leq j \leq k \),

\[
\mathcal{R}\left(\frac{\varphi_j}{\mu} \right) \leq \frac{C(n)}{c} \left(\frac{5}{3} \right)^4 k^{2/n} (m(S^n))^{-1}.
\]

The result therefore follows by renaming the constant \(\frac{C(n)}{c} \left(\frac{5}{3} \right)^4 \) to \(C(n) \). □

5. Generalizations and Related Questions

5.1. Generalizations to any closed manifolds. Let \((M^n, g)\) be a closed Riemannian manifold of dimension \(m \geq 3 \). Then we can isometrically embed \((M, g)\) into \((S^N, g_0)\) for some \(N \in \mathbb{N} \) depending on \(n \) with the round metric \(g_0 \). Let \(\phi : (M, g) \to (S^N, g_0) \) be such an embedding satisfying

\[
\phi^*g_0 = g.
\]

Let \(\tilde{g} \in [g] \) be a conformal metric, which is related to \(g \) as

\[
\tilde{g} = \mu^{4/(n-2)} g,
\]

for some \(\mu \in C^\infty(M) \).

Recall the \(N \)-conformal volume \(V_c(N, \phi) \) of \(\phi \) (5.1), defined as

\[
V_c(N, \phi) = \sup \{ Vol(M, (s \circ \phi)^* g_0) : s \text{ is a conformal diffeomorphism of } S^N \}.
\]

(5.1)

For closed Riemannian manifolds, we can bound the eigenvalues of the conformal laplacians by the \(N \)-conformal volume \(V_c(N, \phi) \).

Theorem 5.1. For any metric \(\tilde{g} \in [g] \), the \(k \)th eigenvalue \(\tilde{\lambda}_k = \lambda_k(M^n, \tilde{g}) \) of the conformal laplacian \(\Box \tilde{g} \) satisfies the inequality

\[
\tilde{\lambda}_k \int_M \mu^{4-2} dV g \leq C(n) \left(V_c(N, \phi) k^{2/n} + \sup_M R_g \right).
\]

(5.2)

Proof. Let \(m = \phi_* \left(\mu^{4/(n-2)} dV g \right) \) be the push-forward measure on \(S^N \). For the metric space \((S^N, d_{g_0})\) and measure \(m \) and any \(k \in \mathbb{Z}^+ \), we can similarly construct the collection of annuli \(\{A_j\}_{j=1}^k \) satisfying properties (i), (ii) and (2.3) in Section 2. And for each \(A_j \), we can construct test functions \(\varphi_j \) satisfying the first three properties as in Lemma 3.3.
We will consider the Rayleigh quotient \(R(\varphi_j \circ \phi) \). Using (2.2), the denominator gives
\[
\int_M \left| \frac{\varphi_j \circ \phi}{\mu} \right|^2 dV_\tilde{g} \geq \left(\frac{3}{5} \right)^4 \int_{\phi^{-1}(A_j)} \mu^{-2} dV_\tilde{g} \geq c \left(\frac{3}{5} \right)^4 \frac{m(S^N)}{k}. \tag{5.3}
\]
Let \(\nabla \) and \(\tilde{\nabla} \) be the Levi-Civita connection for \(g \) and \(\tilde{g} \) respectively. For the numerator of the Rayleigh quotient,
\[
\int_M \left| \tilde{\nabla} \left(\frac{\varphi_j \circ \phi}{\mu} \right) \right|^2 dV_\tilde{g} + c_n R_\tilde{g} \left| \frac{\varphi_j \circ \phi}{\mu} \right|^2 dV_\tilde{g} = \int_M \left| \nabla (\varphi_j \circ \phi) \right|^2 g + c_n R_g |\varphi_j \circ \phi|^2 dV_g. \tag{5.4}
\]
The first term on the right side can be estimated as
\[
\int_M \left| \nabla (\varphi_j \circ \phi) \right|^2 g dV_g \leq \left(\int_M \left| \nabla (\varphi_j \circ \phi) \right|^n g dV_g \right)^{2/n} \cdot \left(\text{Vol}_g(2A_j) \right)^{1-2/n}.
\]
Recall that \(\varphi_j = x_{p_j} \circ \theta_{p_j} \) for some conformal diffeomorphism \(\theta_{p_j} \) of \(S^N \). Since \(\theta_{p_j} \circ \phi \) is conformal, we have
\[
(\theta_{p_j} \circ \phi)^* g_0 = \frac{1}{n} \left| \nabla (\theta_{p_j} \circ \phi) \right|^2 g.
\]
Therefore,
\[
\int_M \left| \nabla (\varphi_j \circ \phi) \right|^n g dV_g \leq \int_M \left| \nabla (\theta_{p_j} \circ \phi) \right|^n g dV_g
\]
\[
= \frac{n}{2} \text{Vol}(M, (\theta_{p_j} \circ \phi)^* g_0)
\]
\[
\leq \frac{n}{2} \text{Vol}_c(N, \phi).
\]
And by (2.3),
\[
\text{Vol}_g(2A_j) \leq \frac{\text{Vol}_g(M)}{k} \leq \frac{\text{Vol}_c(N, \phi)}{k}.
\]
Therefore,
\[
\int_M \left| \nabla (\varphi_j \circ \phi) \right|^2 g dV_g \leq \frac{n \text{Vol}_c(N, \phi)}{k^{1-2/n}}.
\]
On the other hand, the second term on the right side of (5.4) satisfies
\[
\int_M c_n R_g |\varphi_j \circ \phi|^2 dV_g \leq c_n \sup_M R_g \cdot \text{Vol}_g(2A_j) \leq c_n \sup_M R_g \cdot \frac{\text{Vol}_c(N, \phi)}{k}.
\]
Combining the above two estimates, we obtain
\[
\int_M \left| \tilde{\nabla} \left(\frac{\varphi_j \circ \phi}{\mu} \right) \right|^2 \tilde{g} + c_n R_\tilde{g} \left| \frac{\varphi_j \circ \phi}{\mu} \right|^2 dV_\tilde{g} \leq \left(n + c_n \frac{\sup_M R_g}{k^{2/m}} \right) \frac{\text{Vol}_c(n, \phi)}{k^{1-2/m}}. \tag{5.5}
\]
Using (5.5) and (5.3), the desired estimates for the Rayleigh quotient \(R(\varphi \cdot \phi) \) is obtained and the result follows immediately. \(\square \)

Remark 5.2. Given an immersion \(\phi : M \to S^N \), Li and Yau \([7]\) gives the following condition for the conformal volume \(V_c(N, \phi) \) to be identical to the volume of \(M \).

Theorem 5.3 ([7]). Let \(M \) be a homogeneous Riemannian manifold of dimension \(n \). Suppose \(\phi : M \to S^N \) is an immersion of \(M \) into \(S^N \) which satisfies the properties:

(i) \(\phi \) is an isometric minimal immersion.

(ii) The transitive subgroup \(H \) of the isometry group of \(M \) is induced by a subgroup, also denoted by \(H \), of \(O(N + 1) \) (i.e., \(\phi \) is equivariant).

(iii) \(\phi(M) \) does not lie on any hyperplane of \(\mathbb{R}^{N+1} \).

Then

\[
V_c(N, \phi) = \text{Vol}(M).
\]

In particular, when \(M \) is an irreducible homogeneous manifold, a theorem of Takahashi (see \([6]\)) says that one can minimally immerse \(M \) isometrically into \(S^N \subseteq \mathbb{R}^{N+1} \) by its first eigenspace of \(M \). If we denote this isometric immersion \(M \to S^N \) by \(\phi \), then \(V_c(N, \phi) = \text{Vol}(M) \) and (5.2) writes into

\[
\bar{\lambda}_k \int_M \mu^{n-2} dV_g \leq C(n) \left(\text{Vol}(M, g) k^{2/n} + \sup_M R_g \right).
\]

5.2. **Hersch Type Results.** Let \((M, g)\) be a closed Riemannian manifold. For any metric \(\tilde{g} \in [g] \), related by \(\tilde{g} = \mu^{4/(n-2)} g \), we define the functional

\[
\bar{\lambda}_k(M, g, \tilde{g}) = \left(\lambda_k(\tilde{g}) \cdot \int_M \mu^{n-2} dV_g \right).
\]

And we also define the supreme over the conformal class as

\[
\Lambda_k(M, g) = \sup_{\tilde{g} \in [g]} \bar{\lambda}_k(M, g, \tilde{g}).
\]

It is natural to ask what \(\Lambda_k(M, g) \) is and whether \(\Lambda_k(M, g) \) is achieved by certain Riemannian metric in general. If the maximal metric exist, it is defined up to multiplication by a positive constant due to the rescaling invariance of the functional. We can prove the following results in this direction.

Theorem 5.4. For the sphere with the standard round metric \((S^n, g_0)\),

\[
\Lambda_0(S^n, g_0) = \tilde{\lambda}_0(S^n, g_0, g_0).
\]
And $\Lambda_0(S^n, g_0) = \bar{\lambda}_0(S^n, g_0, \tilde{g})$ holds only when \tilde{g} is the round metric up to scaling.

Proof. For any $\tilde{g} \in [g_0]$ related as $\tilde{g} = \mu^{4/(n-2)} g_0$, take $1/\mu$ as the test function for the Rayleigh quotient and we obtain

$$\lambda_0(S^n, \tilde{g}) \leq \frac{\int_{S^n} \left| \nabla_{\tilde{g}} \left(\frac{1}{\mu} \right) \right|^2 + c_n R_{\tilde{g}} \left| \frac{1}{\mu} \right|^2 dV_{\tilde{g}}}{\int_{S^n} \left| \frac{1}{\mu} \right|^2 dV_{\tilde{g}}}.$$ \hspace{1cm} (5.8)

By using (4.3), the above inequality writes into

$$\lambda_0(S^n, \tilde{g}) \leq \frac{\int_{S^n} c_n R_{g_0} dV_{g_0}}{\int_{S^n} \mu^{4/(n-2)} dV_{g_0}} = \frac{\bar{\lambda}_0(S^n, g_0, g_0)}{\int_{S^n} \mu^{4/(n-2)} dV_{g_0}}.$$

If (5.8) holds with equality, then $1/\mu$ is an eigenfunction with eigenvalue $\lambda_0(S^n, \tilde{g})$. By (4.4), we have

$$\lambda_0(S^n, g_0) = (-\Delta_{g_0} + c_n R_{g_0})1 = \mu^{(n-2)/(n-2)} (-\Delta_{\tilde{g}} + c_n R_{\tilde{g}})(1/\mu) = \lambda_0(S^n, \tilde{g}) \mu^{4/(n-2)}.$$

Therefore, μ is a constant function and the result follows. \hfill \square

References

[1] Bernd Ammann and Pierre Jammes. The supremum of first eigenvalues of conformally covariant operators in a conformal class. In Variational problems in differential geometry, volume 394 of London Math. Soc. Lecture Note Ser., pages 1–23. Cambridge Univ. Press, Cambridge, 2012.

[2] A. Grigor’yan and S.-T. Yau. Decomposition of a metric space by capacitors. In Differential equations: La Pietra 1996 (Florence), volume 65 of Proc. Sympos. Pure Math., pages 39–75. Amer. Math. Soc., Providence, RI, 1999.

[3] G. Kokarev. Conformal volume and eigenvalue problems. ArXiv e-prints, December 2017.

[4] G. Kokarev. Bounds for Laplace eigenvalues of Kaehler metrics. ArXiv e-prints, January 2018.

[5] Nicholas Korevaar. Upper bounds for eigenvalues of conformal metrics. J. Differential Geom., 37(1):73–93, 1993.

[6] H. Blaine Lawson, Jr. Lectures on minimal submanifolds. Vol. I, volume 9 of Mathematics Lecture Series. Publish or Perish, Inc., Wilmington, Del., second edition, 1980.

[7] Peter Li and Shing Tung Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math., 69(2):269–291, 1982.

[8] N. Nadirashvili. Berger’s isoperimetric problem and minimal immersions of surfaces. Geom. Funct. Anal., 6(5):877–897, 1996.

[9] Nikolai Nadirashvili and Yannick Sire. Conformal spectrum and harmonic maps. Mosc. Math. J., 15(1):123–140, 182, 2015.

[10] Nikolai Nadirashvili and Yannick Sire. Maximization of higher order eigenvalues and applications. Mosc. Math. J., 15(4):767–775, 2015.
[11] Paul C. Yang and Shing Tung Yau. Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. *Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)*, 7(1):55–63, 1980.

Department of Mathematics, Johns Hopkins University, Baltimore, MA 21218, USA

E-mail address: sire@math.jhu.edu

Department of Mathematics, Johns Hopkins University, Baltimore, MA 21218, USA

E-mail address: hxu@math.jhu.edu