Helminth’s assemblage of a small frog in the Brazilian semiarid: parasite-host-environment relationships

Pamella B. C. Soares1,3, Daniel C. Passos1,2,3, Luciano A. dos Anjos4, Milena Wachlevski1,2

ABSTRACT. Parasite infections may contingency different aspects of the hosts’ lives, and are usually expected to directly or indirectly compromise host reproduction. However, although amphibians have historically been study models in parasite ecology, the effects of parasitism on amphibians’ reproduction remain unknown. Thus, we investigated how the parasite load varies as a function of climatic seasonality (rainy and dry season) and intrinsic host characteristics (size and sex), as well as the relationship between parasite load and reproductive investment in males and females of a small frog (Pseudopaludicola pocoto Magalhães, Loebmann, Kokubum, Haddad & Garda, 2014) in the Brazilian semiarid region. The parasitological parameters of the studied population were not influenced by the season of the year or by the hosts’ body size, but females of P. pocoto had a higher prevalence and intensity of infection than males. The number of oocytes and the volume of the testes were not related to the parasite load, revealing that the parasitism did not negatively impact the gonadal investment in P. pocoto. Our findings suggest that short-lived species, such as the tiny Pseudopaludicola species, have a high reproductive investment independent of their parasitic interactions. In addition, this should be true mainly in those species that live in seasonally dry environments, such as P. pocoto, in which reproduction is even more constrained by the shortened and unpredictable rainy period.

PALAVRAS-CHAVE. Amphibia, Pseudopaludicola, seasonality, reproductive allocation, Nematoda.

Macroparasites, such as helminths, can interact with their hosts in many different ways, which can cause severe damage, subtle injuries, or even not generate apparent disadvantages for the hosts (POULIN, 2007). These different consequences may be related to factors such as environmental conditions where interactions are established (MINCHELLA, 1985), as well as intrinsic host and parasite features (MINCHELLA, 1985; GALVANI, 2003; DYBDahl & STORFER, 2003; POULIN, 2007).

Parasites that live in environments with high climatic seasonality might have contingencies in terms of survival, transmissibility and reproduction (ALTZER et al., 2006; CHANDRA & GUPTA, 2007; POULIN, 2007). For example, in semiarid regions where rainfall is scarce, unpredictable and has high variability between years (Ab’Saber, 2003), helminths can be affected by the high risk of desiccation of eggs and larvae, as well as the unavailability of active hosts most of the time (PERRY, 1999; MADELAIRE et al., 2020). Thus, in these environments, rainy periods tend to be more favorable for the infection, development and reproduction of helminths (POULIN & MORAND, 2000; CHANDRA & GUPTA, 2007).
Aspects inherent to hosts such as size, sex and vagility can substantially influence helminth infection rates (AHO, 1990; PRICE, 1990; HAMANN et al., 2006; TOLEDO et al., 2015, 2018). For example, hosts with larger body sizes tend to harbor a greater number of parasites (POULIN, 2007; CAMPIÃO et al., 2015). The impairment or inhibition of reproduction in hosts is one of the ways the parasites maintain the host in good energetic conditions (HURD, 2001; HEINS et al., 2004). Thus, it is plausible to expect that parasitism can compromise the reproductive investment of hosts (HURD, 2001). However, if on the one hand a reduction in fecundity can be an adverse effect of energy limitation provoked by infection. On the other hand, it can constitute a host defensive strategy, resulted of greater investment in survival at the expense of reproduction (HURD, 2001).

Amphibians has been historically good study models for parasitic ecology, as they harbor a high diversity of parasites (CAMPIÃO et al., 2014) and many species are locally abundant and easy to sample (DUELMAN & TRUEB, 1994). It is known that parasitic infections can affect anuran population dynamics (JOHNSON & MACKENZIE, 2009; VREDENBURG et al., 2010), with parasitological parameters that can vary ontogenetically (CAMPIÃO et al., 2009; TODELO et al., 2015) and differ between the sexes (VAN SLUYS et al., 2006). As reproduction in amphibians is an activity with high energy demand (WELLS, 2007), it is expected that parasitic infections may also compromise their reproductive efficiency. However, there is a relative lack of information on the general effects of parasitism on the reproductive investment of hosts (HURD, 2001; GALDINO et al., 2014; KISS et al., 2019), particularly for amphibians (PRÖHL et al., 2013).

Parasitic interactions in amphibians have been more studied in wet tropical environments (SANTOS & AMATO, 2010; AGUIAR et al., 2015; TOLEDO et al., 2015, 2017, 2018) than in dry tropical environments (MORETTI et al., 2017; SILVA et al., 2018a; MADELAIRE et al., 2020). The Caatinga corresponds to the largest area of Tropical Dry Forest in South America (DA SILVA et al., 2017) and harbor one of the richest amphibian fauna among semi-arid regions in the world (GARDA et al., 2017). However, knowledge about parasitism in Caatinga anurans is basically constituted by punctual infection records (TELES et al., 2014, 2017, 2018) and lists of helmint fauna for some host species (TELES et al., 2015; ALCANTARA et al., 2018; OLIVEIRA et al., 2019). Since these semi-arid environments have a marked seasonality in relation to water availability, which is a limiting factor both for amphibians (CARVALHO et al., 2010; MADELAIRE & GOMES, 2016) and for helminths (PERRY, 1999; MADELAIRE et al., 2020), it reinforces the need to provide information on host-parasite interactions between helmint and anurans in the Caatinga domain.

In the Brazilian semi-arid region, most frogs concentrate their reproductive activities in the short rainy period of the year (ARZABE et al., 2005; JARED et al., 2019). This is also the case of the tiny frog *Pseudopaludicola pocoto* Magalhães, Loebmann, Kokubum, Haddad & Garda, 2014, a species described in the last decade, despite being common and widely distributed in the Brazilian semi-arid region (PEREIRA et al., 2015; LANTYER-SILVA et al., 2016), has little ecological information available (SILVA et al., 2018a, b). The community of helminths that parasitize *P. pocoto* is known for only one location in the Caatinga (SILVA et al., 2018a) and the relationships between its parasite load and its reproductive investment are completely unknown. In this study, we evaluated the ecological interactions between *P. pocoto* and its associated helminth fauna, specifically investigating: 1) how marked rainfall seasonality affects the parasitological parameters; 2) in what extension host body size and sex influence the parasite load and; 3) what are the relationships between the parasite load with the reproductive investment of females and males hosts.

MATERIAL AND METHODS

Fieldwork was carried out in Assú municipality (5°34'38"S, 36°54'30"W), a semi-arid area located in the western region of the state of Rio Grande do Norte, Brazil. This macroregion is classified according to Köppen-Geiger as presenting a Warm Semi-arid Climate (BSH), which may present a variation in annual precipitation from 400 to 1000 mm depending on the location, and annual average temperatures ranging between 22°C and 35°C (DA SILVA et al., 2017; INMET, 2018). The Brazilian semi-arid region is characterized by high temperatures and seasonal rains, with short rainy periods of three to four months, with unpredictable rainfall, and the dry season lasting from 7 to 10 months (DA SILVA et al., 2017). Assú municipality has historically an average annual precipitation of 587.4 mm, with a concentration of rainfall between February and May, whilst September use to be the driest month in the region (MEDEIROS et al., 2005).

We sampled specimens of *Pseudopaludicola pocoto* through active searches along breeding sites (SCOTT JR & WOODWARD, 1994). The samplings took place in three temporary ponds, in the rainy months (March and May 2017, February, April and May 2018) and in the dry months (September and October 2017). We collect 94 individuals of *Pseudopaludicola pocoto*, 41 females and 53 males, including 23 collected in rainy and 71 in dry season. Individuals were manually captured and collected under licenses from **Instituto Chico Mendes de Conservação da Biodiversidade** (n°. 58431-1 and n°. 35650-1). The sampled individuals were transferred to the **Laboratório de Ecologia e Comportamento Animal** – LECA of the Universidade Federal Rural do Semi-Árido – UFERSA, in the municipality of Mossoró, Rio Grande do Norte state, where their body size was measured in terms of snout-vent length (SVL) with a caliper (resolution 0.01 mm). After that, the individuals were euthanized following the recommended ethical precepts (RESOLUÇÃO DO CONSELHO FEDERAL DE BIOLOGIA – CFBJ nº. 301/2012) and had their internal organs (gonads, lungs, stomach, small and large intestines) removed for parasite inspection. For proper fixation of the helminths, the organs were fixed in 70% alcohol at 60°C, and preserved in 70% alcohol for further screening, counting and identification. After necropsy, the...
individuals of *P. pocoto* were fixed in 10% formalin, preserved in 70% alcohol and deposited in the Coleção Herpetológica do Semiárido – CHSA at UFERSA (CHSA. A 642, 665, 681, 683-687, 700-708, 710-715, 726-732, 744-750, 755-766, 786-811, 813-816, 990, 1041-1047 and 1055-1061).

For taxonomic identification, the parasites were clarified in Lactofenol, subjected to compression between the slide and cover slip, and analyzed using an optical microscope. We identified the parasite specimens at the lowest possible taxonomic level according to *Bacher & Vacher* (1985), *Vicente et al.* (1991) and, *Mordeglia & Digiani* (1998). Twenty-seven helminths could not be identified because they had diagnose structures were damaged, but were included in general parasitological metrics. We calculate the total prevalence rate (%); the mean intensity of infection and mean abundance following *Bush et al.* (1997). These values were calculated separately by infection site, host sex and climatic season. All the helminths recorded belong to Rhabditida (*Schoch et al.*, 2020), feeding through valves in the esophageal bulb (*Anderson*, 2000). Thus, in view of the similar mechanisms of these parasites interact with the hosts, we consider the total number of helminths per host as the proxy to parasite load.

The reproductive investment of females was measured in terms of the total number of post-vitellogenic (mature) oocytes, those oocytes collored with a dark brown animal pole and a milky vegetative pole (*Perotti*, 1997; *Melchior et al.*, 2004). For males, we consider the mean testes volume of each individual as a proxy for reproductive investment (*Emerson*, 1997). The testis volume (in mm3) was calculated using the prolate spheroid formula: $V = 4/3\pi (L/2) (W/2)^2$, where “V” is the testis volume, “L” is the testis length and “W” is the testis width (*Anjos & Rocha*, 2008). We measured the width and length of each testis using a digital caliper (resolution 0.01 mm). Twenty-eight specimens of *P. pocoto* were excluded from this analysis as they did not have mature oocytes or the testes were degraded.

To investigate the factors affecting the parasite load, we performed a model selection by simplification of a full generalized linear model (GLM), considering a Poisson error distribution of the response variable (parasite load; i.e. the total number of parasites per host, including zeros) and all interactions between explanatory variables: snout-vent length (in mm), sampling period (rainy and dry season), and sex (female or male). To evaluate the possible negative effects of parasite load on reproductive investment, we first searched for influence of host body size (SVL) on the response variables (log transformed number of oocytes and raw testis volume) using Simple Linear Regressions (SLR). When a significant relationship was found (only in males, see results), we extracted the residuals from the regression model for further analysis. So, we made one sided Spearman’s Correlations (SC) between parasite load (the total number of parasites per host, including zeros) and gonads’ parameters (log transformed number of oocytes for females, and residuals from testis volume–SVL regression model for males). Prior to analysis, we evaluated the datasets regarding premises of homoscedasticity and error distributions. Whenever possible, we transformed the response variable for the use of parametric tests. All statistical analyses were conducted in R environment v.3.6.1 (*R Core Team* 2019), considering a significance level $\alpha = 0.05$, and using the package “beeswarm” v.0.2.3 (*Eklund*, 2016) for graphical purposes. Descriptive characterization of variables was provided as mean ± one standard error.

RESULTS

We found a total of 91 helminths in *Pseudopaludicola pocoto*, and the mean intensity of infection (MII) was 1.78 ± 0.18 parasites per host. We recorded at least one helminth for 51 hosts, representing 54% of total prevalence.

The host population was infected by three nematodes species: *Cosmocerca parva* Travassos, 1925 (13 males and 6 females) (*Cosmocercidae*), *Physaloptera* sp. (8 larvae) (*Physalopteridae*), and *Oxyascaris* sp. (37 females) (*Oxyascarididae*) (Tab. I). In most of the infected hosts (86%), we found only one species of helminth, with no host harboring all three species simultaneously. The highest prevalence of helminths was in the digestive tract, mainly in small intestine (38%), followed by large intestine (14%) and stomach (12%). The small intestine was parasitized by *Oxyascaris* sp. (64%), *C. parva* (27%) and *Physaloptera* sp. (9%), the stomach by *C. parva* (67%) and *Physaloptera* sp. (33%), and the large intestine only by *Oxyascaris* sp. Only one individual of *Physaloptera* sp. was found in body cavity, and no lungs or gonads were infected. Regarding mean intensity of infection by site, large intestine was more infected (MII = 1.69; n = 13) than small intestine (1.4% and stomach (1.2%). The small intestine was parasitized by *Oxyascaris* sp. (64%), *C. parva* (27%) and *Physaloptera* sp. (9%), the stomach by *C. parva* (67%) and *Physaloptera* sp. (33%), and the large intestine only by *Oxyascaris* sp. Only one individual of *Physaloptera* sp. was found in body cavity, and no lungs or gonads were infected. Regarding mean intensity of infection by site, large intestine was more infected (MII = 1.69; n = 13) than small intestine (1.4% and stomach (1.2%).

Concerning the infection patterns along the time, 56% of hosts were infected in rainy season with a mean intensity of infection of 1.38 ± 0.22, while in the dry season the prevalence was 53% with mean intensity of infection of 1.92 ± 0.16. In relation to intersexual differences, 61% of females (SVL 13.19 ± 0.14 mm) and 49% of males (SVL 11.81 ± 0.21 mm) were infected, with a mean intensity of infection of 2.04 ± 0.26 for females and 1.53 ± 0.10 for males. The overall parasite load was not influenced by body size nor sampling period, and the minimal adequate model had only host sex as the unique significant parameter (GLM - Z = -2.37; p = 0.02; Fig. 1).

Tab. 1. Helminth assemblage associated with *Pseudopaludicola pocoto* (Anura, Leptodactylidae) (n = 51 frogs) from the municipality of Assú, Rio Grande do Norte State, Brazil. HN = total number of hosts per parasite species; PN = total number of nematode parasites; TPR = total prevalence rate (%); MII = mean intensity of infection, MA = mean abundance and IS = infection site (St = stomach; SI = small intestine; LI = large intestine; Cav = body cavity).

Nematoda	HN	PN	TPR(%)	MII	MA	IS
Cosmocerca parva	16	19	17.02	1.19	0.20	St, SI
Oxyascaris sp.	23	37	24.47	1.61	0.39	SI, LI
Physaloptera sp.	7	8	7.45	1.14	0.08	St, SI, Cav
Regarding influence of parasite load on reproductive investment, we considered 32 females and 34 males for which number of oocytes and testes volume were respectively quantified. The number of oocytes was not influenced by body size (SLR - R² = 0.01; p = 0.60), and the parasite load was not negatively correlated with the number of oocytes (SC – r = 0.03; p = 0.57). The mean testes volume was positively affected by body size (SLR - R² = 0.11; p = 0.05), but the parasite load was not negatively correlated the testis volume after removed the effects of body size (SC – r = - 0.15; p = 0.20).

DISCUSSION

Nematode parasites are most commonly found in frogs of the Leptodactylidae (CAMPião et al., 2014), with eight species previously known to parasitize Pseudopaludicola pocoto (Silva et al., 2018a). We recorded three species of Nematoda parasitizing P. pocoto in Assú municipality, Rio Grande do Norte state. Cosmocerca parva is widely distributed in South American anurans (CAMPião et al., 2014) and has previously been reported to parasitize other Caatinga amphibians (OLIVEIRA et al., 2019), including P. pocoto (Silva et al., 2018a). Oxyascaris sp. and Physaloptera sp. recorded by us in P. pocoto could not be identified at the species level, as there were only females of Oxyascaris sp. (diagnostic characters in males – (BACHER & VAUCHER, 1985) and larvae of Physaloptera sp. (anurans are intermediate hosts - BOQUIPÂNI-FREITAS et al., 2001). The total prevalence observed in Assú population was similar to that found for another population of P. pocoto located 400 km away (50% in Silva et al., 2018a and 54% in the present study). However, we observed a higher mean intensity of infection in the study area (MII = 1.8 ± 1.3 parasites/host) than that previously recorded for another population (MII = 1.0 ± 0.5 parasite/host) (Silva et al., 2018a). As other species of Oxyascaris and Physaloptera have also been reported to parasitize P. pocoto (Silva et al., 2018a), our results suggest that the helminth fauna composition in P. pocoto may not vary substantially between populations.

The prevalence and mean intensity of infection in P. pocoto did not differ between the rainy and dry seasons. In semiarid regions, it is expected that the activity of most frogs is restricted to the short rainy period of the year, when reproduction is concentrated (ABE, 1995; GARRA et al., 2017). We expected that the number of parasites per host would be greater during the reproductive period (FILHO et al., 2016; OLIVEIRA et al., 2017), when the majority of anurans are active and, consequently, they would be more exposed to infection by parasites (POULIN & MORAND, 2000). However, as observed in another population (Silva et al., 2018a), we also recorded some P. pocoto individuals active in the first months of dry period next to remaining water bodies. In this sense, it is known that anuran species that have a prolonged period of activity tend to have prevalence and infection rates more distributed over time (MADELAIRE et al., 2020). Thus, although the reproductive activity of Pseudopaludicola species are considered explosive, it is possible that P. pocoto behaves in an opportunistic way, taking advantage of fortuitous favorable conditions between years according to rainfall distribution. If this is true, this strategy could explain the low variation observed in the parasitological parameters of P. pocoto between the rainy and dry periods.

The body size of P. pocoto was not related to the parasite load. However, it is known that the body size of the host is in general positively related to the richness and abundance of parasites, both because large species have a greater capacity for ingesting prey, and because they have a larger surface area and body volume for colonization by helminths (CAMPião et al., 2015; TOLEDO et al., 2018). Our results suggest that the low variation in body size of P. pocoto individuals is not enough to enable a significantly higher number of parasites in larger hosts. It is noteworthy that the widely known pattern of sexual dimorphism for anurans, in which females are larger than males (DUELMAN & TRUEB, 1994), is not observed in P. pocoto (Silva et al., 2018b), contributing to explain the lack of relationship between body size and parasite load. In fact, Pseudopaludicola species are recognized by their small body size, a characteristic that can restrict the parasite load independent of intraspecific variation in body size (DURE et al., 2004).

Sex significantly influenced the parasite load in P. pocoto, with the number of parasitized females 10% higher than those of males and with females harboring 30% more parasites than males. Although in general amphibians have low vagility compared to other vertebrates (WELLS, 2007), females occasionally travel longer distances than males (WELLS, 2007; WANG et al., 2019). This displacement may be related to greater foraging/feeding intensity to offset...
the greater energy demands for oocyte production (Price, 1990; Muths, 2003). Thus, it is possible that females of *P. pocoto* are doubly more susceptible to infection by helminths, both because of the possible greater vagility in search of prey (cutaneous infection route – Poulin, 2007), and because they feed on a greater diversity of prey (infection oral route – Poulin, 2007; Leivas et al., 2018). Since the only study on the foraging ecology of *P. pocoto* did not assess the intersexual differences in diet (see Silva et al., 2018a), we recommend future studies on this topic to test the aforementioned predictions.

Hosts with a higher parasite load may present reproductive contingencies (Minchella, 1985; Hurd, 2001; Bower et al., 2018), but the reproductive investment of *P. pocoto* was not affected by the parasite load. It is known that anuran species with small body size tend to live shorter than larger ones (Duellman & Trueb, 1994; Stark & Meiri, 2018). Consequently, despite the trade-off between growing and reproducing, short-lived species are expected to have a relatively higher reproductive investment (Scharf et al., 2015). Thus, it is possible that the species of *Pseudopaludicola*, among the smallest representatives of the Leptodactylidae (Giarettta & Kokobum, 2003; Andrade et al., 2016, 2020; Pansonato et al., 2016), have a low longevity and may present a high reproductive investment independent of their parasitic interactions (Silva et al., 2018a,b).

Although parasitic infections are often related to the damage of hosts (Agnew et al., 2000; Galdino et al., 2014; Moretti et al., 2017), this pattern did not occur in a *P. pocoto* population from Caatinga. As an environment with a short and unpredictable rainy season, the semiarid is known to exert an even greater contingency for the reproduction of amphibians, and may frame specific ecological and behavioral strategies (Maêlaire & Gomes, 2016). For example, it has been suggested in last years that amphibians from semiarid regions have a relatively more intense immune response, contributing so that parasitic diseases do not cause substantial damage to reproduction (Maêlaire et al., 2017). In conclusion, keeping in mind that the patterns of the host’s life history and their relationships with the environment can act as mediators of physiological responses to parasitism (Minchella, 1985), our findings contribute to the understanding of the consequences of parasitic interactions in amphibians, revealing the nature of parasitism by nematodes in a small frog from a semiarid environment.

Acknowledgments. We thank Anysa Oliveira, Eduarda Lima-Alves, Nilton Aquino and Paulo Cunha for assistance in the fieldwork and laboratory analysis; Camila Kamblevicvius for help to parasites identification. We are grateful to Castiele Bezerra and José Luis Novaes for valuable suggestions to a prior version of this manuscript. P.B.S. thanks the Universidade Federal Rural do Semi-Arido - UFRSA and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq for undergraduate scholarship of scientific initiation.

REFERENCES

Abe, A. S. 1995. Estivation in south American amphibians and reptiles. *Brazilian Journal of Medical and Biological Research* 28(11/12):1241-1247.

An’Sabir, A. N. 2003. *Os domínios de natureza no Brasil: potencialidades paisagísticas*. São Paulo, Atlética Editorial. 160 p.

Agnew, P.; Koella, J. C. & Michaelakis, Y. 2000. Host life history responses to parasitism. *Microbes and Infection* 2(8):891-896.

Aguiar, A.; Toledo, G. M.; Anjos, L. A. & Silva, R. J. 2015. Helminth parasite communities of two *Physalaemus cuvieri* Fitzinger, 1826 (Anura: Leuiperidae) populations under different conditions of habitat integrity in the Atlantic Rain Forest of Brazil. *Brazilian Journal of Biology* 75(4):963-968.

Aho, J. M. 1990. Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes. *In: Esch G. W.; Bush, A. O. & Aho, J. M. eds. Parasite Communities: Patterns and Processes*. Dordrecht, Springer, p. 157-195.

Alcantara, E. P.; Ferreira-Silva, C.; Silva, L.; Lins, A.; Silva, J. R.; Avila, R. W. & Morris, D. H. 2018. Helminths of *Dermatonotus muelleri* (Anura: Microhyliidae) from northeastern Brazil. *Journal of Parasitology* 104(5):550-556.

Altizer, S.; Dobson, A.; Hosseini, P.; Hudson, P.; Pascual, M. & Rohani, P. 2006. Seasonality and the dynamics of infectious diseases. *Ecology Letters* 9(4):467-484.

Anderson, R. C. 2000. *Nematode parasites of vertebrates. Their development and transmission*. 2ed CABI Publishing, Wallingford, Oxon (UK). 650 p.

Andrade, F. S.; Magalhães, F. M.; Nunes-de-Almeida, C. H. L.; Veriga-Menoncello, A. C. P.; Santana, D. J.; Garda, A. A.; Loebmann, D.; Recco-Pimentel, S. M.; Giaretta, A. A. & Toledo, L. F. 2016. A new species of long-legged *Pseudopaludicola* from northeastern Brazil (Anura, Leptodactylidae, Leuiperinae). *Salamandra* 52(2):107-124.

Andrade, F. S.; Haga, I. A.; Lyra, M. L.; Carvalho, T. R.; Haddad, C. F. B.; Giaretta, A. A. & Toledo, L. F. 2020. Reassessment of the taxonomic status of *Pseudopaludicola paranaia* (Anura, Leptodactylidae, Leuiperinae), with the description of a new cryptic species from the Brazilian Cerrado. *European Journal of Taxonomy* 679:1-36.

Anjos, L. A. & Rocha, C. F. D. 2008. Reproductive ecology of the invader species gekkonid lizard *Hemidactylus mabouia* in an area of southeastern Brazil. *Iheringia, Série Zoologia* 98(2):205-209.

Arzabé, C.; Skuk, G.; Santana, G. G.; Delphi, F. R.; Lima, Y. C. C. & Abrantes, S. H. F. 2005. Herpetofauna da área de Curimataú, Paraíba. *In: Araújo, F. S.; Rodal, M. J. N. & Barbosa, M. R. V. eds. Análise das variações da biodiversidade do bioma Caatinga: suporte a estratégias regionais de conservação*. Brasília, Ministério do Meio Ambiente, p. 259-274.

Bacher, M. R. & Vacher, C. 1985. Helminths of the horned leaf frog, *Proceratophrys appendiculata*, from southeastern Brazil. *Iheringia, Série Zoologia* 82(2):303-310.

Boquimpani-Freitas, L.; Vrcibradic, D.; Vicente, J. J.; Bursey, C. R.; Boquimpani-Freitas, L.; Vrcibradic, D.; Vicente, J. J.; Bursey, C. R.; Bacher, M. R. & Vacher, C. 1985. Parasitic helminths from Paraguay (Nematoda, Cosmocercoidea). *Revue Suisse de Zoologie* 92(2):303-310.

Boquimpani-Freitas, L.; Vrcibradic, D.; Vicente, J. J.; Bursey, C. R.; Bacher, M. R. & Vacher, C. 1985. Helminths of the horned leaf frog, *Proceratophrys appendiculata*, from southeastern Brazil. *Iheringia, Série Zoologia* 82(2):303-310.

Boquimpani-Freitas, L.; Vrcibradic, D.; Vicente, J. J.; Bursey, C. R.; Bacher, M. R. & Vacher, C. 1985. Helminths of the horned leaf frog, *Proceratophrys appendiculata*, from southeastern Brazil. *Iheringia, Série Zoologia* 82(2):303-310.

Boquimpani-Freitas, L.; Vrcibradic, D.; Vicente, J. J.; Bursey, C. R.; Bacher, M. R. & Vacher, C. 1985. Helminths of the horned leaf frog, *Proceratophrys appendiculata*, from southeastern Brazil. *Iheringia, Série Zoologia* 82(2):303-310.
Campião, K. M.; Ribas, A. & Tomaz, L. E. R. 2015. Diversity and patterns of interaction of an anuran–parasite network in a neotropical wetland.
Parasitology 142(4):1751-1757.

Campião, K. M.; Silva, R. J. & Ferreira, V. L. 2009. Helmint parasites of Leptodactylus podicipinus (Anura: Leptodactylidae) from south-eastern Pantanal, state of Mato Grosso do Sul, Brazil. Journal of Helminthology 83(4):345-349.

Carvalho, J. E.; Navas, C. A. & Pereira, I. C. 2010. Energy and water in aestivating amphibians. In: Navas, C. A. & Carvalho, J. eds. Aestivation: progress in molecular and subcellular biology. Springer, Berlin, p. 141-170.

Chandra, P. & Gupta, N. 2007. Habitat preference and seasonal fluctuations in the helminthofauna of amphibian hosts of Rohilkhand zone, India. Asian Journal of Experimental Science 21(1):69-78.

Da Silva, J. M. C.; Leal, I. R. & Tabarelli, M. 2017. Caatinga: the largest tropical dry forest region in South America. Amsterdam, Springer International Publishing, 482 p.

Duellman, W. E. & Trueb, L. 1994. Illustrated field guide to the amphibians of North America. New York, Springer.

Duré, M. I.; Schaeffer, E. F.; Hamann, M. I. & Kehr, A. I. 2004. Consideraciones ecológicas sobre la dieta, la reproducción y el parasitismo de Pseudopaludicola boliviana (Anura, Leptodactylidae) de Corrientes, Argentina. Phylomedusa 3(2):121-131.

Eklund, A. 2016. Host life-history variation in response to parasitism. Behavioral Ecology Sociobiology 41:227-235.

Eklund, A. 2016. Beeswarm: The bee swarm plot, an alternative to stripchart. R package version 0.2.3. Available at <https://CRAN.R-project.org/package=beeswarm>.

Filho, J. A.; Brito, S. V.; Lima, V. F.; Pereira, A. M.; Mesquita, D. C.; Passos, D. C.; Melo, G. C. & Zanchi-Silva, D. 2014. Helminths infection patterns in a lizard (Tropidurus hispidus) population from a semiarid neotropical area: associations between female reproductive allocation and parasite loads. The Journal of Parasitology 100(6):864-867.

Gardarson, J. A.; Brito, S. V.; Lima, V. F.; Pereira, A. M.; Mesquita, D. C.; Almeida, W. O. 2016. Influence of temporal variation and host condition on helmint abundance in the lizard Tropidurus hispidus from north-eastern Brazil. Journal of Helminthology 91(3):312-319.

Galdino, C. A.; Ávila, R. W.; Bezerra, C. H.; Passos, D. C.; Melo, G. C. & Zanchi-Silva, D. 2014. Helminths infection patterns in a lizard (Tropidurus hispidus) population from a semiarid neotropical area: associations between female reproductive allocation and parasite loads. The Journal of Parasitology 100(6):864-867.

Garda, A. A.; Stein, M. G.; Machado, R. B.; Lion, M. B.; Juncá, F. A. & Napoli, M. F. 2017. Ecology, biogeography, and conservation of amphibians of the Caatinga. In: Silva, J. M. C.; Leal, I. R. & Tabarelli, M. eds. Caatinga: The largest tropical dry forest region in South America. Amsterdam, Springer, p. 133-150.

Gareta, A. A. & Kokobum, M. N. 2003. A new species of Pseudopaludicola (Anura, Leptodactylidae) from northern Brazil. Zootaxa 383(1):1-8.

Galvani, A. P. 2003. Epidemic dilemmas: how evolutionary theory can inform public health. Nature 423:837-844.

Hamann, M. I.; Kehr, A. I. & González, C. E. 2006. Species affinity and infracommunity ordination of helminths of amphibians from Caatinga biome, Brazil. Acta Herpetologica 12(1):103-108.

Héns, D. C.; Uleniski, B.; Johnson, J. & Baker, J. A. 2004. Effect of the cestode macroparasite Schistocephalus puntigus on the reproductive success of ninespine stickleback, Pungitius pungitius. Canadian Journal of Zoology 82(11):1731-1737.

Hurd, H. 2001. Host fecundity reduction - a strategy for damage limitation? Trends in Parasitology 17(8):363-368.

INMET - Instituto Nacional de Meteorologia do Brasil. 2018. Normais Climatológicas (1981/2010). Available in [https://clima.inmet.gov.br/progp/0]. Accessed on 22 May 2021.

Jared, C.; Mailho-Fontana, P. L.; Mendelson, J. & Antoniazzi, M. M. 2019. Life history of frogs of the Brazilian semi-arid (Caatinga), with emphasis in aestivation. Acta Zoologica 101(3):302-310.

Johnson, P. T. J. & McKenzie, V. J. 2009. Effects of environmental change on helmint infections in amphibians: exploring the emergence of Ribeiroia and Echinostoma infections in north America. In: Toledo, R. & Fried, B. eds. The Biology of Echinostomes. New York, Springer. 333p.

Kiss, J.; Rádai, Z.; Rosa, M. E.; Kosztolányi, A. & Barta, Z. 2019. Seasonal changes in immune response and reproductive investment in a biparental beetle. Journal of Insect Physiology 121:1-31.

Laityer-Silva, A. S. F.; Matos, M. A.; Goolliath, M.; Marçanjo-Jr, E. & Nicula, P. A. 2016. New records of Pseudopaludicola poecost Magalhães, Loebmann, Kokubum, Haddad & Garda, 2014 (Amphibia: Anura: Leptodactylidae) in the Caatinga biome, Brazil. Check List 12(6):1-4.

Levas, P. T.; Levas, F. W. T. & Campião, K. 2018. Diet and parasites of the anuran Physalaemus cuvieri Fitzinger, 1826 (Leptodactyliidae) from an Atlantic Forest fragment. Herpetology Notes 11:109-113.

Madelaine, C. B. & Gomes, F. R. 2016. Breeding under unpredictable conditions: annual variation in gonadal maturatetion, energetic reserves and plasma levels of androgens and corticosterone in anurans from the Brazilian semi-arid. General and Comparative Endocrinology 228:9-16.

Madelaine, C. B.; Sokolova, I. & Gomes, F. R. 2017. Seasonal patterns of variation in steroid plasma levels and immune parameters in anurans from Brazilian semi-arid area. Physiological and Biochemical Zoology 90(4):415-433.

Malvy, D. 2003. Epidemiology meets evolutionary ecology. Galdino, C. A.; Ávila, R. W.; Bezerra, C. H.; Passos, D. C.; Melo, G. C. & Zanchi-Silva, D. 2014. Helminths infection patterns in a lizard (Tropidurus hispidus) population from a semiarid neotropical area: associations between female reproductive allocation and parasite loads.

Morchella, D. J. 1985. Host life-history variation in response to parasitism. Parasitology 90(1):205-216.

Moretta, E. H.; Titon, B.; Madelaine, C. B.; Abrudza, R.; Alvarenga, R.; Gomes, F. R. 2017. Behavioral, physiological and morphological correlates of parasite intensity in the wild Cururu toad (Rhinella ictericia). International Journal for Parasitology: Parasites and Wildlife 6(3):46-154.

Murillo, C. & Orjani, M. C. 1998. Cosmocerca parva Travassos, 1925 (Nematoda: Cosmocercidae) from toads from Argentina. Memórias do Instituto Oswaldo Cruz 91(6):737-738.

Peters, D. 1999. Desiccation survival of parasitic nematodes. Parasitology 119:S19-S30.

Poulin, R. 2007. Evolutionary ecology of parasites, 2ed. Princeton, Oxford, Princeton University Press. 360p.

Poulin, R. & Morand, S. 2000. The diversity of parasites. The Quarterly Review of Biology 75(3):277-293.

Price, P. W. 1990. Host populations as resources defining parasite community organization. In: Esch, G. W.; Bush, A. O. & Aho, J. M. eds. Parasite communities: patterns and processes. Dordrecht, Springer, p. 21-40.
Helminth’s assemblage of a small frog in the Brazilian semiarid...

Soares et al.

Pröhle, H.; Eulenburg, J.; Meuche, I. & Bolaños, F. 2013. Parasite infection has little effect on sexual signals and reproductive behaviour in strawberry poison frogs. Evolutionary Ecology 27(4):675-692.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Resolução do Conselho Federal de Biologia - CFBio n°.301/2012, de 8 de dezembro de 2012.

Santos, V. G. T. & Amato, S. B. 2010. Helminth fauna of Rhinella fernandezae (Anura: Bufonidae) from the Rio Grande do Sul coastland, Brazil: analysis of the parasite community. Journal of Parasitology 96(4):823-826.

Scharp, I.; Feldman, A.; Novosolov, M.; Pinheiro-Donoso, D.; Das, I.; Böhm, M.; Uetze, P.; Torres-Carvaja, O.; Bauer, A.; Roll, U. & Meiri, S. 2015. Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Global Ecology and Biogeography 24(4):396-405.

Schroth, C. L.; Cifso, S.; Dombrachey, M.; Hotton, C. L.; Kannan, S.; Khovanskaya, R.; Leppe, D.; Mceveigh, R.; O’Neill, K.; Robbertse, B.; Sharma, S.; Souslov, V.; Sullivan, J. P.; Sun, L.; Turner, S. & Karsch-Mizrachi, I. 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). baao062. PubMed: 32761142, PMC: PMC7408187.

Scott Jr, N. J. & Woodward, B. D. 1994. Surveys at breeding sites. In: Heyer, W. R.; Donnelly, M. A.; McDiarmid, R. W; Hayek, L. C. & Foster, M. S. eds. Measuring and monitoring biological diversity, standard methods for amphibians. Washington and London, Smithsonian Institution Press, p. 119-124.

Silva, C. S.; Ávila, R. W. & Moraes, D. H. 2018a. Helminth community dynamics in a population of Pseudopodarcis podoce (Leptodactylidae: Leioperinae) from Northeast-Brazilian. Helminthologia 55(4):292-305.

Silva, C. S.; Sousa, J. G. G.; Lima, Y. F.; Ávila, R. W. & Moraes, D. H. 2018b. Diet and morphological aspects of a population of Pseudopodarcis podoce (Anura: Leptodactylidae) from Northeast Brazil. Neotropical Biology and Conservation 13(4):313-320.

Stark, G. & Meiri, S. 2018. Cold and dark captivity: drivers of amphibian longevity. Global Ecology and Biogeography 27(11):1384-1397.

Teles, D. A.; Cabral, M. E. S.; Araújo-Filho, J. A.; Dias, D. Q.; Ávila, R. W. & Almeida, W. O. 2014. Helminths of Leptodactylus vastus (Anura: Leptodactylidae) in an area of Caatinga, Brazil. Herpetology Notes 7:355-356.

Teles, D. A.; Sousa, J. G. G.; Teixeira, A. A. M.; Silva, M. C.; Oliveira, R. H. & Ávila, R. W. 2015. Helminths of the frog Pleuropodema diplostern (Anura, Leptodactylidae) from the Caatinga in Pernambuco state, Northeast Brazil. Notes and Comments 75(1):251-253.

Teles, D. A.; Brito, S. V.; Filho, J. A. A.; Teixeira, A. A. M.; Ribeiro, S. C.; Mesquita, D. O. & Almeida, W. O. 2017. Nematode parasites of Proceratophrys aridas (Anura: Odontophrynidae), an endemic frog of the Caatinga domain of the neotropical region in Brazil. Herpetology Notes 10:525-527.

Toledo, G. M.; Fonseca, M. G.; Iannaccone, J. A.; Callirgos, J. M. C.; Vidaurre, C. U. M. & Silva, R. J. 2017. Helminth parasites of Rhinella marina (Linnaeus, 1758) (Anura: Bufonidae) from Tarapoto, Peru. The Biologist 15(2):459-468.

Toledo, G. M.; Morais, D.; Silva, R. & Anjos, L. 2015. Helminth communities of Leptodactylus latrans (Anura: Leptodactylidae) from the Atlantic rainforest, south-eastern Brazil. Journal of Helminthology 89(2):250-254.

Teles, D. A.; Pinto, C. L. M.; Teixeira, A. A. M. & Filho, J. A. A. 2018. First report of Rhabdias sp. infecting Leptodactylus macrosternum from the Caatinga domain, neotropical region. Cuadernos de Herpetología 32(2):117-118.

Van Sluys, M.; Schittini, G. M.; Marra, R. V.; Azevedo, A. R. M.; Vicente, J. J. & Vricibradic, D. 2006. Body size, diet and endoparasites of the microhyd frog Chiasmocleis capixaba in an Atlantic Forest area of southern Bahia state, Brazil. Brazilian Journal of Biology 66(1a):107-173.

Vicente, J. J.; Rodrigues, H. O.; Gomes, D. C. & Pinto, R. M. 1991. Nematóides do Brasil 2ª parte: nematóides de anfíbios. Revista Brasileira de Zoológia 7(4):549-626.

Vredenburg, V. T.; Knapp, R. A.; Tunstall T. S. & Briggs, C. J. 2010. Dynamics of an emerging disease drive large-scale amphibian populations extinctions. Proceedings of the National Academy of Sciences 107(21):9689-9694.

Wang, W.; Wei, S.; Chen, M. & Wu, H. 2019. Female-biased dispersal of the Emei Moustache toad (Leptobrachium boringii) under Local resource competition. Asian Herpetological Research 10(1):24-31.

Wells, K. D. 2007. The ecology and behaviour of amphibians. Chicago, University of Chicago Press. 1148p.