Genome-Wide Association Study Reveals Natural Variations Contributing to Drought Resistance in Crops

Hongwei Wang¹,² and Feng Qin³*

¹ Agricultural College, Yangtze University, Jingzhou, China, ² Huabei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China, ³ College of Biological Sciences, China Agricultural University, Beijing, China

Crops are often cultivated in regions where they will face environmental adversities; resulting in substantial yield loss which can ultimately lead to food and societal problems. Thus, significant efforts have been made to breed stress tolerant cultivars in an attempt to minimize these problems and to produce more stability with respect to crop yields across broad geographies. Since stress tolerance is a complex and multi-genic trait, advancements with classical breeding approaches have been challenging. On the other hand, molecular breeding, which is based on transgenics, marker-assisted selection and genome editing technologies; holds great promise to enable farmers to better cope with these challenges. However, identification of the key genetic components underlying the trait is critical and will serve as the foundation for future crop genetic improvement. Recently, genome-wide association studies have made significant contributions to facilitate the discovery of natural variation contributing to stress tolerance in crops. From these studies, the identified loci can serve as targets for genomic selection or editing to enable the molecular design of new cultivars. Here, we summarize research progress on this issue and focus on the genetic basis of drought tolerance as revealed by genome-wide association studies and quantitative trait loci mapping. Although many favorable loci have been identified, elucidation of their molecular mechanisms contributing to increased stress tolerance still remains a challenge. Thus, continuous efforts are still required to functionally dissect this complex trait through comprehensive approaches, such as system biological studies. It is expected that proper application of the acquired knowledge will enable the development of stress tolerant cultivars; allowing agricultural production to become more sustainable under dynamic environmental conditions.

Keywords: GWAS, drought tolerance, gene cloning, crops, natural variation

INTRODUCTION

In order to meet the demands of the ever-growing human population, it is predicted that world food production will need to double by the year 2050 (Tilman et al., 2002). Unfortunately, crop production is facing severe potential threats from changes within our global climate (Battisti and Naylor, 2009; Boyer et al., 2013). For example, when crops suffer under abiotic stress conditions...
such as drought, salinity, and temperature extremes, primary losses of crop productivity might occur worldwide with an average yield loss of $>50\%$ for major crops (Boyer, 1982). Drought stress dramatically reduces agricultural harvests, resulting in widespread risk of food insecurity and social problems. Thus, given the unpredictable nature of drought and climate variability over the years, breeding crops that are tolerant to abiotic stresses, especially to drought, is one of the most important approaches to maintain or increase crop production (Gill and Tuteja, 2010; Tester and Langridge, 2010).

Due to the complex genetic basis of stress tolerance, classical breeding strategies often fail to meet the needs for stabilizing yield under variable conditions (Tester and Langridge, 2010), although these strategies have significantly impacted the yield potential of crops during the past century, without preexisting knowledge of the exact genetic factors controlling the trait (Collins et al., 2008). On the other hand, molecular breeding approaches, which include transgenic, genome-wide marker-assisted selection and genome editing technologies, are more accurate and rely on clear genetic information of the favorable alleles contributing to the trait. As such, transgenic approaches can insert or create novel alleles beyond those that are available within naturally occurring populations. However, there are limitations for the broad utility of these products due to the requirements for passing environmental safety and regulatory approvals prior to their acceptance for cultivation. In contrast, marker-assisted selection (MAS), which uses DNA markers to track specific chromosomal regions carrying natural favorable alleles in sequential runs of crossing and selection, is free from artificial genetic modification and is widely considered to be natural and safe. Although this approach is time-consuming, the products generated from these breeding strategies have a greatly accelerated path to market. By leveraging the knowledge of biochemistry and genetics, the emerging genome editing technology can efficiently introduce specific mutations into target loci referring and can be considered as transgenic-free. This technology enables direct functional studies of genes of interest in the crop context and provides a suite of new methodologies for crop improvement (Voytas and Gao, 2014; Gao, 2015).

Due to their sessile nature, crops have evolved sophisticated mechanisms to adapt to environmental changes. As a result, it is likely that the functional mechanisms underlying environmental stress responses in plants are probably more advanced and prominent than in animals. The question of how plants survive various environmental stresses is one of the most attractive topics to plant biologists and agronomists. As a result, there is tremendous interest in and demand for enhancing the stress tolerance of crops through biotechnology with the knowledge of how plants react and resist to drought stress. Thus, this review describes advances in natural genetic variations detected for drought tolerance, which may offer genomic selection targets for molecular breeding to accelerate drought-resistance breeding and sheds light into the mechanism of how plants react to stress.

QUTITATIVE TRAIT LOCI (QTL) ANALYSIS FOR DROUGHT TOLERANCE

The mechanism of how plants respond to drought is sophisticated, which includes processes such as the regulation of genetic and metabolic pathways on molecular, physiological and population levels (Chaves et al., 2003; Izanloo et al., 2008; Xu et al., 2009). Overall, the adaptation to drought can be split into different categories including: ‘drought avoidance’ by escaping the water deficit, owing to inherent developmental distinctions such as early/late flowering time and robust root systems (Geber and Dawson, 1990); ‘water preservation’ of specialized anatomic leaf structures (Schulze, 1986; Jackson et al., 2000) and advanced leaf senescence (Hoffmann and Merila, 1999; Chaves et al., 2003; Sherrard et al., 2009; Maherali et al., 2010); and ‘cellular drought tolerance’ to dehydration (Bartoli et al., 1999). The last aspect is often inferred as ‘drought tolerance’ by researchers specialized in plant abiotic stress response. With respect to the cellular drought tolerance, when soil water potential is decreased, stress related signal transduction networks involving ABA dependent or non-ABA dependent pathways will be stimulated and transduced after these stress signals are perceived by plant cells. Transcription factors, which are master regulators of stress-responsive gene expression, are then subsequently activated. The expression of stress-responsive genes will result in biochemical and physiological processes, including hormone biosynthesis and transport, adjusted osmotic status, photosynthesis, stomatal regulation and detoxification in plant cells. Thus, stress induced morphology changes, including root growth enhancement and leaf area reduction, will result in acquired tolerance and survival strategies (Figure 1). All these categories, which can enhance plant survival and growth under the stress, are referred as drought resistance.

In order to dissect the genetic basis of plant drought resistance, forward genetics strategies have been utilized to identify QTLs underlying the trait. However, due to the complexity and poor heritability of the crop yield trait, individual trait components are more frequently identified and characterized due to their better heritability in replicated experiments (Meyer et al., 2007; Riedelshheimer et al., 2012). For example, the trait components regarding maize drought resistance are usually dissected into (1) seedling survival rate under severe water deficits (Liu et al., 2013; Mao et al., 2015; Wang et al., 2016); (2) yield loss which is often indexed by ear length, kernel number per row, and hundred-kernel weight (Lu et al., 2006; Vikram et al., 2012; Yadaw et al., 2013); (3) anthesis and silking interval (ASI), which is an important indicative trait for maize drought tolerance. Drought stress often delays maize ear silk emergence and elongation, but not tassel development and pollen shedding; which leads to a significantly prolonged ASI. Thus, it dramatically reduces pollination efficiency and yields (Lebreton et al., 1995; Ribaut et al., 1996; Tuberosa et al., 2002a; Welcker et al., 2007; Lu et al., 2010). When identifying QTLs for grain yield and ASI across populations and under water stressed and well-watered environments, 68 QTLs were discovered with each physical
interval of the QTL consisting of approximately five candidate genes (Semagn et al., 2013).

In addition, ABA is regarded as a stress hormone which can be significantly produced under drought and stimulates the expression of a large number of stress responsive genes and triggers stomatal closure (Bray, 1993; Close, 1996; And and Bartels, 2003). Thus, many studies have focused on the identification of QTLs that could enhance the concentration of ABA under stress in an attempt to better understand drought tolerance (Lebreton et al., 1995; Sanguineti et al., 1999; Landi et al., 2005; Rahman et al., 2011; Ichisa et al., 2014; Barakat et al., 2015). Specially, Landi et al. (2005) found a major maize QTL for L-ABA in bin 2.04 which indicated that the QTL not only enhances yield but also affects root architecture under drought conditions.

In the mean time, root architecture (e.g., seminal root number; nodal root number; root pulling force; primary root diameter, length and weight; and adventitious seminal root weight) also play an important role in the process of drought resistance (Guino et al., 1998; Tuberosa et al., 2002b; Gowda et al., 2011; Messmer et al., 2011; Sebastian et al., 2016). Tuberosa and Salvi (2002) reported that a deep root system with higher root density increased the survivability of plants under drought. Furthermore, four QTLs for nodal root angle (qRA), three for root dry weight, two for shoot dry weight, and three for plant leaf area were reported in sorghum; of which nodal root angle QTL presented new opportunities for improving drought adaptation mechanisms (Mace et al., 2012). Specially, introducing DEEPER ROOTING 1 (DRO1) into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought via increased root depth; which ultimately resulted in maintenance of high yield performance under drought conditions relative to the recipient cultivar (Uga et al., 2013). The 1 bp deletion in the open reading frame may be the causative site responsible for the differentiating root morphology between IR64 and KP, two rice varieties which differ in root architecture. The discovered allelic variation of DRO1 not only reveals the possible mechanism of how root morphology is modulated, but also suggests that the control of root architecture will contribute to the drought avoidance of crops. Over the last two decades, many studies have focused on the aforementioned drought resistance trait components in crops (Table 1). Thus, our knowledge pertaining to the genetic loci controlling drought resistance has increased substantially.

THE DEVELOPMENT OF POPULATION DESIGN, GENOTYPING, AND VARIANCE COMPONENTS ESTIMATION APPROACHES FOR GENOME-WIDE ASSOCIATION STUDY (GWAS)

In plants, linkage mapping and genome-wide association study (GWAS) are the two major adopted methods to identify the QTLs for complex traits. The fundamental basis for linkage mapping and association mapping is genetic recombination. Linkage mapping exploits the functional polymorphisms and adjacent markers within families or pedigrees with known ancestry, whereas, association mapping exploits historical
TABLE 1 | Genetic dissection for drought resistance and related traits.

Trait	Species	Mapping population	Closest marker to major locus	Candidate gene	Reference
Components of grain yield	Maize	B73 × Mo17	pio10005	None	Beavis et al., 1994
	Maize	SD3 × SD35	umc76	None	Agrama and Moussa, 1996
	Maize	Ac7643S5 × Ac7729/TZSRWS5	None	None	Ribaut et al., 1997
	Maize	Zong 3 × 87-1	umc1024–brng1244	None	Lu et al., 2006
	Maize	X178 × B73	bins 9.03-9.05	None	Hao et al., 2008
	Rice	Basmati334 × Swarna and N22 × MTU1010	RM11943–RM12091	None	Vikram et al., 2012
	Maize	Association mapping panel	PZE-104036909	GRMZM2G125777	Xue et al., 2013
	Maize	SD34 × SD35	umc140	None	Yadav et al., 2013
	Maize	Ac7643S5 × Ac7729/TZSRWS5	umc174	None	Ribaut et al., 1996
	Maize	X178 × B73	bin 1.03	None	Hao et al., 2008
	Maize	Integrated linkage–LD mapping population	bin2.03	GRMZM2G164400	Lu et al., 2010
	Maize	Association mapping panel	PZE-103179220	GRMZM2G137961	Xue et al., 2013
	Maize	25 MARS populations	19,226,000-22,594,000	112 candidate genes	Semagn et al., 2013
Anther-silk interval	Maize	Polj17 × F-2	UMC39b	None	Lebreton et al., 1995
	Maize	Os420 × IABO78	csu133	None	Tuberosa et al., 1998
	Maize	Os420 × IABO78	csu128, csu133, csu109a and umc193d	None	Sanguineti et al., 1999
	Maize	Os420 × IABO78	bin2.04	None	Landi et al., 2005
	Maize	DTP79 × B73	csu29-csu81	None	Rahman et al., 2011
	Maize	Association mapping panel	PZB01403.4	GRMZM2G124260	Setter et al., 2011
	Wheat	Chinese Spring (CS) × Hope5A	Xbarc186-Xgwm617	None	Iehisa et al., 2014
	Wheat	Yecora Rojo × Pavon 76	Wm161-Wmcc96	None	Barakat et al., 2015
Abscisic acid	Maize	Polj17 × F-2	UMC39b	None	Lebreton et al., 1995
	Maize	Os420 × IABO78	csu133	None	Tuberosa et al., 1998
	Maize	Os420 × IABO78	csu128, csu133, csu109a and umc193d	None	Sanguineti et al., 1999
	Maize	Os420 × IABO78	bin2.04	None	Landi et al., 2005
	Maize	DTP79 × B73	csu29-csu81	None	Rahman et al., 2011
	Maize	Association mapping panel	PZB01403.4	GRMZM2G124260	Setter et al., 2011
	Wheat	Chinese Spring (CS) × Hope5A	Xbarc186-Xgwm617	None	Iehisa et al., 2014
	Wheat	Yecora Rojo × Pavon 76	Wm161-Wmcc96	None	Barakat et al., 2015
Sucrose	Maize	Association mapping panel	PZB02017.1	GRMZM2G173784	Setter et al., 2011
	Maize	Association mapping panel	PZA03635.1	GRMZM2G0021044	Setter et al., 2011
	Maize	Association mapping panel	PZZ00027.3	GRMZM2G110153	Setter et al., 2011
	Maize	Association mapping panel	PZZ00027.3	GRMZM2G110153	Setter et al., 2011
	Maize	Association mapping panel	PZZ00027.3	GRMZM2G137961	Xue et al., 2013
Total sugar	Maize	Association mapping panel	PZZ00027.3	GRMZM2G137961	Xue et al., 2013
	Maize	Association mapping panel	PZZ00027.3	GRMZM2G137961	Xue et al., 2013
Seedling survival rate	Maize	Association mapping panel	S9,94178074	ZmVPP1	Wang et al., 2016
	Maize	Association mapping panel	S10,2680244	ZmNAC111	Mao et al., 2015
	Maize	Association mapping panel	S1,201957243	ZmDEFB2.7	Liu et al., 2013
	Maize	Association mapping panel	allele-338	ZmPSCC-A10	Xiang et al., 2017
Root traits	Maize	Lo964 × Lo1016	PGAMCTA206	None	Tuberosa and Salvi, 2002
	Sorghum	B923296 × SC170-6-8	SPb-6287/SPb-9490	None	Mace et al., 2012
	Rice	IR64 × KP	id07_14 id07_17	DRO1	Uga et al., 2013

And evolutionary recombinations at a natural population level. Populations adopted for linkage mapping are usually derived from a bi-parental cross with a clear ancestry, while a collection of cultivars with unobserved ancestry are often adopted for association mapping (Cockram et al., 2010; Zhao et al., 2011; Hung et al., 2012; Riedelsheimer et al., 2012; Zhang et al., 2015; Zhou et al., 2015). Thus, biased association may occur due to the population structure and imbalanced familial relatedness among cultivars. In order to break the population structure and improve the statistic power for detecting rare variations, the creation and usage of newly designed populations in plants has emerged. In 2008, nested association mapping (NAM) and multi-parent advanced generation inter-cross (MAGIC) were used (Cavanagh et al., 2008; Yu et al., 2008) as methodologies to enable the functional identification of loci of interest. The NAM approach benefits from the historical and recent recombination events with clear population structure, whereas, MAGIC can examine the effect of loci unbiased due to the balanced contributions from all founders. In addition to these approaches, an additional population design is the random open-parents association mapping (ROAM) population which improves genetic resolution and statistical power for detecting rare variations (Pan et al., 2016; Xiao et al., 2016). Collectively, the recently designed populations have demonstrated their capacity to reveal the genetic components underlying complicated traits such as heterosis.
crops.

In addition to the sufficient amount of molecular markers, the fast and accurate variance component estimation method is also one of the prerequisites to perform a GWAS. In the early stage of GWAS, the general linear model was employed which included genome control (Henderson, 1975), family test (Abecasis et al., 2000) and structural correlation (Pritchard et al., 2000) to control possible false positive associations. Later, Yu et al. (2006) proposed a method based on a mixed linear model (MLM) for better control of the population structure and the imbalance correlation among various materials; of which the population structure (Pritchard et al., 2000) and the familial relatedness among the different genotypes were treated as fixed effects and random effects, respectively. However, no matter which statistical method is applied, a large amount of samples is needed to obtain sufficient statistical power (Balding, 2006). This is especially important to detect the associations of a complex trait to loci with small effects (Buckler et al., 2009). Since the computational burden is proportional to the cube of the sample number fitted as random effects, massive computational time is demanded by the MLM. Especially, when associations are analyzed for a large number of markers with the phenotypic information from thousands of individuals, heavy computational burden occurs. In order to solve this problem, the sire model was first used in animal association studies to enhance the computational speed by reducing random effects (Henderson, 1975; Thompson, 1979; Quaas and Pollak, 1980; Pollak and Quaas, 1983). After that, genome-wide rapid association analysis using mixed model and regression (GRAMMER) built in GenABEL software was developed to approximately estimate the random effects via a two-step residuals approach. It estimates the residuals from the linear mixed model by removing the marker effects first, and then the residuals are treated as a phenotype for each marker under a standard linear regression model (Aulchenko et al., 2007). This method significantly reduced the computational time for each marker association calculation. Unlike the approximate estimation, efficient mixed-model association (EMMA) matrix is a method for an accurate estimation of variance component, including the genetic variance and residual variance, which can speed up the iterative process (Kang et al., 2008). However, for a GWAS of a population consisting of a few thousand individuals and a half million SNPs, it is probable that several years of central processing unit time would be necessary to complete the computing when using the EMMA method (Kang et al., 2010; Zhang et al., 2010). Population parameters previously determined (P3D) (Zhang et al., 2010) and EMMA eXpedited (EMMAX) (Kang et al., 2010) were the other two complex approximate estimation methods to reduce the computational processing. The two calculation methods made it possible for a personal desktop computer to perform GWAS; which adopts 1000 samples with 500 thousand markers or more. Although in most cases, the approximate variance estimation method would generate a nearly identical estimation as compared to the accurate method (Kang et al., 2010; Zhang et al., 2010). The accuracy of approximate estimation would be unknown in the absence of accurate estimation for variance components. Thus, factored spectrally transformed linear mixed models (FaST-LMM) (Lippert et al., 2011) and genome-wide efficient...
mixed-model association (GEMMA) (Zhou and Stephens, 2012) were developed. These approaches had advantages to directly estimate variance components including fixed effects in MLM and reduce the calculation burden for the single maker analysis. Benefiting from continuous efforts, with the massively reduced computational time and effective statistics method, the GWAS strategy became computationally practical the enable the genetic dissection for a trait of interest.

GWAS FACILITATES QTL CLONING FOR DROUGHT TOLERANCE

Although several QTLs for drought resistance have been identified through traditional linkage analysis, to date, no QTLs responsible for drought resistance have been cloned; despite the reports of their mapping information (Hao et al., 2009; Messmer et al., 2009; Almeida et al., 2013; Semagn et al., 2013). In order to clone a stress resistant QTL through traditional segregation and linkage analysis, not only do the different recombinants in the identified QTL region need to be screened, but the resistance of their progenies also need to be phenotyped and compared to determine which genetic region co-segregates with the resistance. In order to narrow down the QTL region to candidate genes, it usually takes several rounds of the fine mapping step; which makes QTL cloning time-consuming and laborious. As a result, the identification of the genetic components underlying drought resistance has been considered and proven to be very challenging. Nevertheless, owing to the advantage of a rapid life cycle and less space requirements for the cultivation of the model plant compared with crops; significant achievements have been made in Arabidopsis thaliana to study the molecular mechanisms for drought tolerance. Although, the genetic basis of quantitative variation for drought resistance in crops remains poorly understood, a complex gene network involving various kinds of genes has been conceive (Li et al., 2005; Qin et al., 2011; Osakabe et al., 2014).

Based on linkage disequilibrium (LD), the GWAS method enabled researchers to greatly increase the knowledge base of the genetic architecture and it also facilitated the cloning of genes underlying complex traits in crops. For example, the genetic basis of heterosis (Huang et al., 2016) and some important agronomic traits (Cockram et al., 2010; Tian et al., 2011; Sukumaran et al., 2014; Zhang et al., 2015; Si et al., 2016) were investigated through GWAS in a large amount of collected or constructed populations. However, it was estimated that for self-pollinating species, such as rice and soybean, the LD decay of cultivated rice had a long-range from about 100 kb to over 200 kb (McNally et al., 2009; Huang et al., 2010); whereas those of soybean landraces and improved cultivars were approximately 83 and 133 kb, respectively (Zhou et al., 2015). Whereas, for maize, which is an out-pollination species, the LD decay was estimated to be ≤2 kb among 26 founder genotypes of a nested association mapping population (Gore et al., 2009); whereas the LD decay was ~500 bp in a maize natural variation population (Fu J. J. et al., 2013). Therefore, the rapid LD decay in the maize genome with above 1 million high-quality SNPs (Fu J. J. et al., 2013; Li et al., 2013) could make the resolution of GWAS reach the single gene level (Fu J. J. et al., 2013; Li et al., 2013; Wang et al., 2016). As a result, GWAS facilitated the gene cloning of ZmCCT which controls maize photoperiod sensitivity (Hung et al., 2012; Yang et al., 2013) and the investigation of evolutionary ZmWAK locus which controls the resistance to Sporisorium reilianum, a soil-borne fungus causing head smut disease in maize (Zuo et al., 2015).

Drought resistance is a complex and intrinsic trait, and the improvement of plant drought resistance through molecular breeding strategy is an ever growing hotspot for both basic and applied research areas. By leveraging knowledge gained from model plants, plant drought tolerance has been enhanced by manipulating the expression of drought-responsive genes (Li et al., 2005; Qin et al., 2011; Osakabe et al., 2014). In crops, however, limited allelic variation underlying drought tolerance has been identified. Recently, GWAS has contributed to the identification of favorable alleles for drought tolerance, especially in maize. Setter et al. (2011) reported that a candidate gene association analysis identified loci involved in the accumulation of carbohydrates and ABA metabolites under drought; of which eight candidate SNPs were confirmed to be significantly associated with the tolerance. Later, each genotype of this association panel was crossed with a common tester (CML312) and the generated F1 plants were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. As a result of this analysis, an additional 42 associated SNPs were identified (Xue et al., 2013). Liu et al. (2013) analyzed all the functional (Dehydration Responsive Element Binding protein) DREB genes in maize and examined their associations with the natural variation in drought tolerance among 368 maize varieties collected from tropical/subtropical and temperate regions (Fu J. J. et al., 2013; Li et al., 2013). A significant association of the natural variation in ZmDREB2.7 gene with drought tolerance was detected which locates in the gene promoter region and most likely enables an early induction of stress responsive gene expression. Thirunavukkarasu et al. (2014) reported that by using 240 accessions of subtropical maize with a high density marker set, 61 significant SNPs were identified under water stress condition; 48% of which were stress tolerance related genes. Moreover, the genetic basis of drought resistance in Hordeum vulgare, Cicer arietinum, A. thaliana, Medicago truncatula were also investigated by GWAS (Thudi et al., 2014; Verslues et al., 2014; Kang et al., 2015; Wehner et al., 2015). Recently, combined data from 15 bi-parental populations of maize were developed under the Water-Efficient Maize for Africa (WEMA) project to identify drought resistance genes by GWAS. The study identified several hundred genetic variants that are associated with plant height and flowering time under various water deficit conditions (Wallace et al., 2016). By adopting a global maize diversity panel (Yang et al., 2010; Fu J. J. et al., 2013; Li et al., 2013), Wang et al. (2016) reported a GWAS of maize drought resistance at the seedling stage and identified 83 genetic variants, which were resolved to 42 candidate genes. The peak GWAS signal overlapped with a previously reported drought related QTL9.3 (Semagn et al., 2013), and is directly located in the ZmVPP1 gene on Chromosome 9 which encodes a vacuolar-type H+-pyrophosphatase (H+-PPase). The ZmVPP1
Gene is a homolog of AVP1 which encodes an Arabidopsis H+-PPase. The AVP1 gene was shown to confer drought and salt resistance when over-expressed in Arabidopsis (Gaxiola et al., 2001). Yeast and E. coli H+-pyrophosphatases can establish a proton gradient across the vacuolar membrane by means of pyrophosphate (PPi) hydrolysis (Maeshima, 2000; Rea and Poole, 2003) and acidify the vacuole (Lin et al., 2012). Other studies also found that transgenic plants expressing the H+-PPase from Arabidopsis or other species developed larger root systems and were more resistant to salt, drought stress, and phosphorous deficiency (Gaxiola et al., 2001; Park et al., 2005; Zhao et al., 2006; Li et al., 2008; Lv et al., 2008; Bao et al., 2009; Pasapula et al., 2011; Pei et al., 2012; Schilling et al., 2014). The GWAS study demonstrated that the natural variation in ZmVPP1, had the most significant impact to the drought resistance of young seedlings on a genome-wide scale. In the tolerant allele of ZmVPP1 containing three MYB recognition sequences (WAACCA, W: A or T), a 366-bp insertion was found as the causative variation that conferred the drought inducible expression of ZmVPP1 (Wang et al., 2016). Moreover, an additional natural variation in ZmNAC111 located on maize Chromosome 10, which encodes a NAM, ATAF, CUC2 (NAC) type transcription factor, was also found to contribute to the tolerance. ZmNAC111 belongs to a plant-specific transcription factor superfamily which is comprised of members that participate in various biological processes, including plant development, stress response, leaf senescence, and ion re-location (Uauy et al., 2006; Jeong et al., 2010; Nakashima et al., 2012; Liang et al., 2014). An 82-bp miniature inverted-repeat transposable element, forming a stem-loop structure, inserts in the gene promoter. It represses the gene expression most likely through RNA-directed DNA and histone methylation (Mao et al., 2015). Further transgenic data suggested that the biological function of ZmNAC111 and ZmVPP1 were different and are most likely functionally involved in the reduction of water loss under water deficit or the enhancement of water uptake and leaf photosynthesis (Mao et al., 2015; Wang et al., 2016). Notably, in Arabidopsis it is found that clade A protein phosphatase 2C genes (PP2C-A) negatively function in ABA signaling and plant drought response (Ma et al., 2009; Park et al., 2009). In order to find the natural variations of ZmPP2C-A that are directly associated with maize drought tolerance, a candidate gene association analysis was conducted. Among this gene family, ZmPP2C-A10 was found to be tightly associated with drought tolerance. Furthermore, a causal natural variation of this gene was identified, lacking an endoplasmic reticulum stress response element (ERSE) in the gene promoter due to a 14-bp deletion, could lead to increased plant drought tolerance (Xiang et al., 2017).

Furthermore, the adoption of global natural varieties which originate from different regions and periods of time, GWAS can infer the trend of evolution and/or the artificial selection of an important trait. Crops have been subjected to cultivation and extensive selection for grain productivity and quality to meet with human demand. For example, the ZmWAK locus, which conferred resistance to head smut, was lost from the teosinte wild ancestry during the domestication of maize (Zuo et al., 2015). Thus, a GWAS population consisting of the ancestral varieties of a species and those from adverse environments would be of great value to identify genetic loci contributing to the stress tolerance or help to understand the domestication history of an important trait by utilization of a superior allele (Hung et al., 2012; Yang et al., 2013; Zhou et al., 2015).

NETWORK ANALYSIS OFFERS A NEW TOOL TO REVEAL THE MECHANISM FOR DROUGHT TOLERANCE

Despite the fact that stress responsive genes are often studied in a one by one manner to undercover their roles in stress tolerance, coordinated expression of related genes has also been confirmed. For example, microarray and RNA gel blot analyses confirmed that a drought-inducible transcription factor (DREB2A) can regulate the expression of many stress-responsive genes (Sakuma et al., 2006). Findings such as this support the strategy for enhancing stress tolerance by manipulating a single regulatory gene and systematically altering the expression of a large number of genes involved in the drought-responsive network. Despite a large number of genes that are involved in the co-expression network, based on the integrative large scale data acquisition and analysis, systems biology offers a new and integrated tool to dissect the network. Sulpice et al. (2010) found that by profiling maximum catalytic activities of 37 enzymes from central metabolism, a matrix was generated to investigate species-wide connectivity among metabolites, enzymes, and biomass. The results showed that biomass can be predicted by two independent integrative metabolic biomarkers that could result in the preferential investment in photosynthetic machinery and optimization of carbon use. The genetic loci controlling differential gene expression in maize kernels were investigated through GWAS, which revealed a comprehensive gene regulatory network consisting of 31 zein and 16 key kernel genes (Fu J. J. et al., 2013). A comprehensive study of maize kernel metabolites, in relation to genetic variations and gene expressions, identified biomarkers associated with kernel weight which may facilitate the genetic improvement of maize (Wen et al., 2014). Undoubtedly, stress resistance consists of a combination of dynamic networks that contain many correlated genes. The potential for the expression of a specific gene to enhance stress tolerance or not depends on multiple factors such as its position, branch point, direction, and redundant reactions in the network. Recently, network analysis has provided a framework for understanding and modulating plant responses to salt stress and abscisic acid application, through chromatin immuno-precipitation sequencing. Genome-wide targets of 21 ABA-related transcription factors were identified and a comprehensive regulatory network was constructed. Moreover, a new family of transcriptional regulators was discovered to be functionally involved in ABA and salt responsiveness, and shown to modulate plant tolerance to osmotic stress in Arabidopsis (Song et al., 2016). Taken together, knowledge derived from network analyses will provide us with new strategies to cope with the ongoing challenges of drought stress.
STACKING OR COMBINING FAVORABLE ALLELES TO IMPROVE DROUGHT TOLERANCE

The key to meet the ever-growing demand for crops yield, and to relieve the threat on crop productivity imposed by environmental stress, is to cultivate high-yield and high-resistance varieties. As a result, it is very important that breeders can have access to tools and technologies that will enable them to improve their selection efficiency. Molecular breeding, which includes MAS, genome editing, genomewide selection and transgenics, is based on the knowledge of QTL/gene mapping and cloning and is considered as an innovative approach for precision breeding in the 21st century to meet growing demand for food sources (Collard and Mackill, 2008; Voytas and Gao, 2014; Gao, 2015). A favorable allele from wild soybean was used to increase seed protein content in soybean by MAS (Sebolt et al., 2000). Merchuk-Ovnat et al. (2016) generated a near isogenic line (NIL-7A-B-2) by introgressing a drought-related QTL on chromosome 7A from wild emmer wheat into a cultivated wheat variety; resulting in enhanced grain yield and biomass production across environments. Notably, by using the (CRISPR)-Cas9 genome editing technology (Cong et al., 2013; Mali et al., 2013), targeted mutations were successfully introduced into the three homoeoalleles encoding MILDEW-RESISTANCE LOCUS (MLO) proteins; which conferred heritable resistance to powdery mildew in hexaploid bread wheat (Wang et al., 2014). The reported natural allele variation of DRO1 (Uga et al., 2013), ZmDREB2.7 (Liu et al., 2013), ZmNAC111 (Mao et al., 2015), and ZmVPPI (Wang et al., 2016) shed novel insight into how natural variation factors into improving crop drought tolerance or resistance. Moreover, the cumulative effects of multiple quantitative resistance loci could be exploited to produce high tolerance (Miedaner et al., 2006; Richardson et al., 2006). Thus, it is plausible that several favorable alleles, not restricted to ZmDREB2.7, ZmNAC111, and ZmVPPI, can be stacked to improve drought tolerance in maize and other crops by marker-assisted selection or genome editing technology.

REFERENCES

Abecasis, G. R., Cardon, L. R., and Cookson, W. O. (2000). A general test of association for quantitative traits in nuclear families. Am. J. Hum. Genet. 66, 279–292. doi: 10.1086/302698
Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., et al. (1991). Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656. doi: 10.1126/science. 2047873
Agraham, H. A. S., and Moussa, M. E. (1996). Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91, 89–97. doi: 10.1007/ bfh0035278
Almeida, G. D., Makumbi, D., Magorosokocho, C., Nair, S., Borem, A., Ribaut, J. M., et al. (2013). QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126, 583–600. doi: 10.1007/s00122-012-2003-7

PERSPECTIVES

Global climate change threatens crop production worldwide. Unexpected changes in weather patterns, such as high temperature and drought have dramatically affected crop yield which in turn could result in food and societal crises. It is plausible that molecular breeding strategies may speed up the traditional breeding processes to increase stress resistance in cultivars; enabling them to better cope with the changing environment. Along with the development of high-throughput DNA sequencing technology, whole genome covered markers can be produced more cost-effectively with unprecedented increases of accuracy. Meanwhile, the advances of statistical analyses for quantitative genetics provide new methodologies to dissect the genetic basis of complex traits. It can be anticipated that systematic network analyses, consisting of genomics, transcriptomics, proteomics, metabolomics, and phenomics, will provide integrative information for increase our understanding of the balance between stress response and grain yield and quality. Undoubtedly, this acquired knowledge will be of great value to put us in a better position to enable the precise molecular design of new cultivars with desired stress resistance and yields.

AUTHOR CONTRIBUTIONS

HW wrote the manuscript. FQ designed and revised the manuscript.

FUNDING

This work is supported by National Key Research and Development Plan of China (2016YFD0100605) and the National Natural Science Foundation of China (31625022).

ACKNOWLEDGMENTS

The authors would like to thank Drs. Shengxue Liu and Xianglan Wang for their discussions and inputs to this work.

Altshuler, D., Pollara, V. J., Cowles, C. R., Van, Etten WJ, Baldwin, J., Linton, L., et al. (2000). An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516.
And, J. I., and Bartels, D. (2003). The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Biol. 47, 377–403. doi: 10.1146/annurev.arplant.47. 1.377
Aulchenko, Y. S., Ripke, S., Isaacs, A., and van Duijn, C. M. (2007). GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296. doi: 10.1093/bioinformatics/btm108
Balding, D. J. (2006). A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791. doi: 10.1038/ nrg1916
Bao, A. K., Wang, S. M., Wu, G. Q., Xi, J. J., Zhang, J. L., and Wang, C. M. (2009). Overexpression of the Arabidopsis H++PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci. 176, 232–240. doi: 10.1016/j.plantsci.2008.10.009
Bartoli, C. G., Simontacchi, M., Tambussi, E., Beltrano, J., Montaldi, E., and Battisti, D. S., and Naylor, R. L. (2009). Historical warnings of future food insecurity.

Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construction of a gene map for muscle-specific DNA sequences. Plant Physiol.

Bray, E. A. (1993). Molecular responses to water deficit. Plant Physiol.

Boyer, J. S. (1982). Plant productivity and environment. Trends Plant Sci.

Fu, J. J., Cheng, Y. B., Linghu, J. J., Yang, X. H., Kang, L., Zhang, Z. X., et al. (2013). Genome-wide association study of flowering time in wheat: a novel approach for precision plant breeding in the twenty-first century. Proc. Natl. Acad. Sci. U.S.A. 110, 1455–1459.

Fu, Y. B., Cheng, B. F., and Peterson, G. W. (2013). Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping-by-sequencing. Plant Genet. Resour. Crop Evol. 61, 579–594. doi: 10.1038/pjbre.2012.008

Fu, Y. B., and Peterson, G. W. (2011). Genetic diversity analysis with 454 pyrosequencing and genomic reduction confirmed the eastern and western division in the cultivated barley gene pool. Plant Genome 4, 226–237. doi: 10.3835/plantgenome2011.08.0022

Gao, C. (2015). Genome editing in crops: from bench to field. Natl. Sci. Rev. 2, 13–15. doi: 10.1093/nsr/nwu054

Gxiali, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., et al. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. U.S.A. 98, 11444–11449. doi: 10.1073/pnas.191389398

Geber, M. A., and Dawson, T. E. (1990). Genetic variation in and covariation between leaf gas exchange, morphology and development in Polygonum arenastrum, an annual plant. Oecologia 85, 153–158. doi: 10.1007/BF0031 9396

Gill, S. S., and Tuteja, N. (2010). Polymamides and abiotic stress tolerance in plants. Plant Signal. Behav. 5, 26–33. doi: 10.4161/pbi.5.1.10291

Gore, M. A., Chia, J. M., Ellis, R. J., Sun, Q., Ersoz, E. S., Hurwitz, R. L., et al. (2001). A first-generation haplotype map of maize. Science 262, 1115–1117. doi: 10.1126/science.1177837

Gowda, V. R. P., Henry, A., Yamashita, A., Shashidhar, H. E., and Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field Crops Res. 122, 1–13. doi: 10.1016/j.fcr.2011.03.001

Guengo, E., Hebert, Y., and Charcosset, A. (1998). Genetic analysis of root traits in maize. Agronomie 18, 225–235. doi: 10.1051/agro:19980305

Hao, Z., Li, X., Liu, X., Xie, C., Li, M., Zhang, D., et al. (2009). Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174, 165–177. doi: 10.1007/s10681-009-0991-5

Hao, Z. F., Li, X. H., Xie, C. X., Li, M. S., Zhang, D. G., Bai, L., et al. (2008). Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann. Appl. Biol. 153, 73–83. doi: 10.1111/j.1744-7348.2008.02239.x

Henderson, C. R. (1975). Comparison of alternative sire evaluation methods. J. Anim. Sci. 41, 760–770. doi: 10.2527/jas1975.413760x

Hoffmann, A. A., and Merila, J. (1999). Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol. Evol. 14, 96–101. doi: 10.1016/S0169-5347(99)01595-5

Huang, X., Pauli, M. J., Boer, M., Effgen, S., Keizer, P., Koornneef, M., et al. (2011). Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc. Natl. Acad. Sci. U.S.A. 108, 4488–4493. doi: 10.1073/pnas.110465108

Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., et al. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967. doi: 10.1038/ng.695

Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., et al. (2016). Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633. doi: 10.1038/nature19760

Huang, X. Y., Shannon, L. M., Tian, F., Bradbury, P. J., Chen, C., Flint-Garcia, S. A., et al. (2012). ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl. Acad. Sci. U.S.A. 109, E1913–E1921. doi: 10.1073/pnas.1203189109

Ichisa, J. C. M., Matsuura, T., Mori, I. C., Yokota, H., Kobayashi, F., and Takumi, S. (2014). Identification of quantitative trait loci for abscisic acid responsiveness in the D-genome of hexaploid wheat. J. Plant Physiol. 171, 830–841. doi: 10.1016/j.jplph.2014.02.003

Izunoo, A., Condon, A. G., Langridge, P., Tester, M., and Schnurbusch, T. (2008). Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 59, 3327–3346. doi: 10.1093/jxb/erm199

Jackson, R. B., Sperry, J. S., and Dawson, T. E. (2000). Root water uptake and transpiration: using physiological processes in global predictions. Trends Plant Sci. 5, 73–78. doi: 10.1016/S1360-1385(00)01766-0

Jeong, J. S., Kim, Y. S., Baek, K. H., Jung, H., Ha, S., Choi, Y. D., et al. (2010). Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 153, 185–197. doi: 10.1104/pp.110.154773

Kang, H. M., Sul, J. H., Lee, K. H., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., et al. (2010). Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354. doi: 10.1038/ng.548

Kang, H. M., Zaitlen, N. A., Wade, C. M., Kirby, A., Heckerman, D., Daly, M. J., et al. (2008). Efficient control of population structure in model
organism association mapping. Genetics 178, 1709–1723. doi: 10.1534/genetics.107.080101
Kang, Y., Sakiroglu, M., Krom, N., Stantongeddes, J., Wang, M., Lee, Y., et al. (2015). Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula. Plant Cell Environ. 38, 1997–2011. doi: 10.1111/pce.12520
Konieczny, A., and Ausubel, F. M. (1993). A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 4, 403–410. doi: 10.1046/j.1365-313X.1993.0040403.x
Lam, H. M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F. L., et al. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42, 1053–1059. doi: 10.1038/ng.11751
Lebreton, C., Lazicjancic, V., Steed, A., Pekic, S., and Quarrie, S. A. (1995). A procedure for mapping Arabidopsis floral START proteins. Am. Nat. 155, 291–303. doi: 10.1086/210322
Lieber, S., Mace, E. S., Singh, V., Van Oostrom, E. J., Hammer, G. L., Hunt, C. H., and Iordan, D. R. (2012). QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor. Appl. Genet. 124, 97–109. doi: 10.1007/s00122-011-1690-9
Maeshima, M. (2000). Vacular H+-pyrophosphatase. Biochim. Biophys. Acta 1465, 37–51. doi: 10.1016/S0005-2736(00)01330-9
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826. doi: 10.1126/science.1230203
Mao, H., Wang, H., Liu, S., Li, Z., Yang, X., Yan, J., et al. (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat. Commun. 6:8326. doi: 10.1038/ncomms9326
Mali, P., Yang, L., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). FaST linear mixed models for genome-wide association studies. Theor. Appl. Genet. 126, 1012–1027. doi: 10.1007/s00122-012-2072-7
Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., et al. (2013). RNA-guided human genome engineering via Cas9. Science 339, 823–826. doi: 10.1126/science.1230203
Marsh, T. S., and Simm, N. G. (2015). Selection of QTL alleles from wild emmer wheat improve grain yield, biomass and photosynthesis across environments in modern wheat. Plant Sci. 215, 23–34. doi: 10.1016/j.plantsci.2016.05.003
Meyer, R. C., Steinfath, M., Lisej, J., Becher, M., Witslewall, H., Torjek, O., et al. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 104, 4749–4774. doi: 10.1073/pnas.0609701010
Miedaner, T., Wilde, F., Steiner, B., Buerstmayr, H., Kurozn, V., and Ebmeyer, E. (2006). Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non-adapted sources in an European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor. Appl. Genet. 112, 562–569. doi: 10.1007/s00122-005-0163-4
Myles, S., Peiffer, J., Brown, P. J., Ersso, E. S., Zhang, Z., Costich, D. E., et al. (2009). Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21, 2194–2202. doi: 10.1105/tpc.109.086437
Nakashima, K., Takasai, H., Mizoi, J., Shinozaki, K., and Yamaguchishinozaki, K. (2012). NaCl transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta 1819, 97–103. doi: 10.1016/j.bbagrm.2011.10.001
Narum, S. R., Buermle, C. A., Davey, J. W., Miller, M. R., and Hohenlohe, P. A. (2013). Genotyping-by-sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847. doi: 10.1111/mec.12350
Osakabe, Y., Yamaguchi-Shinozaki, K., Shinozaki, K., and Tran, L. S. (2014). ABA control of plant macromolecule membrane transport systems in response to water deficit and high salinity. New Phytol. 202, 35–49. doi: 10.1111/nph.12613
Paran, I., and Michelmore, R. W. (1993). Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor. Appl. Genet. 85, 985–993. doi: 10.1007/bf00215038
Park, S., and Kim, S. (2003). P3CL1 alanine mutants: light dependent vacuolar sorting in Arabidopsis. Plant J 31, 531–539. doi: 10.1046/j.1365-313X.2003.02010.x
Park, S. Y., Fung, P., Nishimura, N., Jensen, D. R., Fujii, H., Zhao, Y., et al. (2009). Absciscic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071. doi: 10.1126/science.1173041
Passapula, V., Shen, G., Kuppus, S., Paez-Valencia, J., Mendoza, M., Hou, P., et al. (2011). Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought- and salt tolerance and increases fibre yield

Frontiers in Plant Science | www.frontiersin.org
10 June 2017 | Volume 8 | Article 1110

Wang and Qin
Gene Cloning for Drought Tolerance in Crops
in the field conditions. *Plant Biotechnol.* 9, 88–99. doi: 10.1111/j.1467-6752.2010.00535.x

Pei, L., Wang, J., Li, K., Li, Y., Li, B., Gao, F., et al. (2012). Overexpression of *Thellungiella* halophila H+-pyrophosphatase gene improves low phosphate tolerance in maize. *PLoS ONE* 7:e34501. doi: 10.1371/journal.pone.0034501

Poland, J. A., and Rife, T. W. (2012). Genotyping-by-sequencing for plant breeding and genetics. *Plant Genome* 5, 592. doi: 10.3835/plantgenome2012.05.0005

Pollar, E. J., and Quaas, R. L. (1983). Definition of group effects in sire evaluation models. *J. Dairy Sci.* 66, 1503–1509. doi: 10.3168/jds.s0022-0302(83)81965-1

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. *Genetics* 155, 945–959. doi: 10.1111/j.1471-4286.2007.01758.x

Qin, F., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. *Plant Cell Physiol.* 52, 1569–1582. doi: 10.1093/pcp/pct106

Quaas, R. L., and Pollak, E. J. (1980). Mixed model methodology for farm and ranch beef cattle testing programs. *J. Anim. Sci.* 51, 1277–1287. doi: 10.1093/jas/51.7.1277

Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. *Curr. Opin. Plant Biol.* 5, 94–100. doi: 10.1016/S1369-5266(02)00240-6

Rahman, H., Pekic, S., Lazicjancic, V., Quarrie, S., Shah, S. M. A., Pervez, A., et al. (2014). Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. * BMC Genomics* 14, 313. doi: 10.1186/1471-2164-14-313

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., et al. (2011). Comprehensive genotyping of the USA national maize reference genome. *PLoS ONE* 6, e28660. doi: 10.1371/journal.pone.0028660

Sebolt, A., Shoemaker, R. C., and Diers, B. W. (2000). Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. *Crop Sci.* 40, 1438–1444. doi: 10.2135/cropsci2000.40415438x

Sherrard, M. E., Maherali, H., and Latta, R. G. (2009). Water stress alters the genetic architecture of functional traits associated with drought adaptation in *Avena barbata*. *Evolution* 63, 702–715. doi: 10.1111/j.1558-5646.2008.00580.x

Shenjide, J., and Ji, H. (2008). Next-generation DNA sequencing. *Nat. Biotechnol.* 26, 1135–1145. doi: 10.1038/nbt1486

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. *Nat. Biotechnol.* 26, 1135–1145. doi: 10.1038/nbt1486

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. *Nat. Biotechnol.* 26, 1135–1145. doi: 10.1038/nbt1486

Shrestha, L., Lam, J. Y., Guo, X., Hao, X., Chen, X., Zhang, S., et al. (2011). OsSPL13 is a translocating pyrophosphatase. *Proc. Natl. Acad. Sci. U.S.A.* 108, 3066–3071. doi: 10.1073/pnas.1014281108

Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). Achievements and challenges in understanding plant abiotic stress responses and tolerance. *Plant Cell Physiol.* 52, 1569–1582. doi: 10.1093/pcp/pcr106

SJim, X., Chen, J., Jiang, X., Gong, H., Luo, J., Hou, Q., et al. (2016). OsSPL13 controls grain size in cultivated rice. *Nat. Genet.* 48, 447–456. doi: 10.1038/ng.3518

Song, L., Huang, S. C., Wise, A., Castanon, R., Nery, J. R., Chen, H., et al. (2016). A transcription factor hierarchy defines an environmental stress response network. *Science* 354:aag1550. doi: 10.1126/science.aag1550

Srivastava, A. (2006). Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. *Biotechniques* 28, 732–738.

Sulpice, R., Trenkamp, S., Steinfath, M., Usadel, B., Gibon, Y., Witucka-Wall, H., et al. (2010). Network analysis of enzyme activities and metabolite levels and their relationship to biomass in a large panel of *Arabidopsis* accessions. *Plant Cell* 22, 2872–2893. doi: 10.1105/tpc.1010.01076653

Tapp, I., Malmberg, L., Renzel, E., Wik, M., and Syvanen, A. C. (2000). Homogeneous scoring of single-nucleotide polymorphisms: comparison of the 5′-nuclease TaqMan assay and Molecular Beacon probes. *Biotechniques* 28, 732–738.

Testa, M., and Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. *Science* 327, 818–822. doi: 10.1126/science.1183700

Thirunavukkarasu, N., Hossain, F., Arora, K., Sharma, R., Shringi, K., Mittal, S., et al. (2014). Functional mechanisms of drought tolerance in subtropical maize (*Zea mays* L.) identified using genome-wide association mapping. *BMC Genomics* 15:1182. doi: 10.1186/1471-2164-15-1182

Thompson, R. (1979). Sire evaluation. *Biometrics* 35, 339–353. doi: 10.1038/nrg1916

Thudi, M., Li, Y., Jackson, S. A., May, G. D., and Varshney, R. K. (2012). Current state-of-art of sequencing technologies for plant genomics research. *Brief Funct. Genomics* 11, 3–11. doi: 10.1093/bfgp/elr045

Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy, L., Roorkiwal, M., et al. (2014). Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. *PLoS ONE* 9:e96758. doi: 10.1371/journal.pone.0096758

 Tian, F., Bradbury, P. J., Brown, P. J., Hung, H., Sun, Q., Flint-Garcia, S., et al. (2011). Genome-wide association study of leaf architecture in the maize nested association mapping population. *Nat. Genet.* 43, 159–162. doi: 10.1038/ng.9746

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. (2002). Agricultural sustainability and intensive production practices. *Nature* 418, 671–677. doi: 10.1038/nature01014

Tuberosa, R., and Salvi, S. (2002). “QTL for agronomic traits in maize production,” in *Handbook of Maize: Its Biology*, eds J. L. Bennetzen and S. C. Hake (Dordrecht: Springer), 501–542. doi: 10.1007/978-0-387-79418-1_26

Tuberosa, R., Salvi, S., Sanguineti, M. C., Landi, P., Maccateri, M., and Conti, S. (2002a). Mapping QTLs regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. *Ann. Bot.* 89, 941–963. doi: 10.1006/abio.2001.1335

Tuberosa, R., Sanguineti, M. C., Landi, P., Giuliani, M. M., Salvi, S., and Conti, S. (2002b). Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. *Plant Mol. Biol.* 48, 697–712. doi: 10.1023/A:1014976076670
Wang, X., Wang, H., Liu, S., Ferjani, A., Li, J., Yan, J., et al. (2016). Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet. 48, 1077–1082. doi: 10.1038/ng.2310

Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., et al. (2014). Genome-wide association mapping reveals a rich genetic architecture of the maize ear genetic architecture using multiple populations. New Phytol. 210, 1095–1106. doi: 10.1111/nph.13814

Xu, Z. Z., Zhou, G. S., and Shimizu, H. (2009). Effects of soil drought with nocturnal warming on leaf stomatal traits and mesophyll cell ultrastructure of a perennial grass. Crop Sci. 19, 1843–1851. doi: 10.2135/cropsci2008.12.0725

Xue, Y., Warburton, M. L., Sawkins, M., Zhang, X., Setter, T. T., Xu, Y., et al. (2013). Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Genet. 126, 2587–2596. doi: 10.1007/s00122-013-2158-x

Yadav, R. B., Dixit, S., Raman, A., Mishra, K. K., Vikram, P., Swamy, B. P. M., et al. (2013). A QTG for high grain yield under lowland drought in the background of popular rice variety Sabitri from Nepal. Field Crops Res. 144, 281–287. doi: 10.1016/j.fcr.2013.01.019

Yang, Q., Li, Z., Li, W., Ku, L., Wang, C., Ye, J., et al. (2013). CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc. Natl. Acad. Sci. U.S.A. 110, 16969–16974. doi: 10.1073/pnas.1310949110

Yang, X., Yan, J., Shah, T., Warburton, M. L., Li, Q., Li, L., et al. (2010). Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor. Appl. Genet. 121, 417–431. doi: 10.1007/s00122-010-1320-y

Yu, J., Holland, J. B., McMullen, M. D., and Buckler, E. S. (2008). Genetic design and statistical power of nested association mapping in maize. Genetics 178, 539–551. doi: 10.1534/genetics.107.074245

Zhang, Z., Ersoz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al. (2005). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 33, 408–414. doi: 10.1038/nbt.3096

Zhang, Y., He, J., Wang, Y., Xing, G., Zhao, J., Li, Y., et al. (2015). Establishment of a 100-seed weight quantitative trait locus-allelic matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J. Exp. Bot. 66, 6311–6325. doi: 10.1093/jxb/erv342

Zhang, Z., Erosz, E., Lai, C. Q., Todhunter, R. J., Tiwari, H. K., Gore, M. A., et al. (2010). Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360. doi: 10.1038/ng.496

Zhao, F. Y., Zhang, J. X., Li, P. H., Zhao, Y. X., and Zhang, H. (2006). Co-expression of the Sucrea salsa SnNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SnNHX1. Mol. Breed. 17, 341–353. doi: 10.1007/s10032-006-9005-6

Zhao, K., Tung, C. W., Eizenga, G. C., Wright, M. H., Ali, M. L., Price, A. H., et al. (2011). Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2:467. doi: 10.1038/ncomms1467

Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 44, 821–824. doi: 10.1038/ng.2310

Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., et al. (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33, 408–414. doi: 10.1038/nbt.3096

Zhu, Y. L., Song, Q. J., Hyten, D. L., Van Tassell, C. P., Matukumalli, L. K., Grimm, D. R., et al. (2003). Single-nucleotide polymorphisms in soybean. Genetics 163, 1123–1134.

Zuo, W., Chao, Q., Zhang, N., Ye, J., Tan, G., Li, B., et al. (2015). A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 47, 151–157. doi: 10.1038/ng.3170

Copyright © 2017 Wang and Qin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.