SEQUENCE-COVERING MAPS ON GENERALIZED METRIC SPACES

FUCAI LIN* AND SHOU LIN

Abstract. Let \(f : X \to Y \) be a map. \(f \) is a sequence-covering map\(^2\) if whenever \(\{y_n\} \) is a convergent sequence in \(Y \) there is a convergent sequence \(\{x_n\} \) in \(X \) with each \(x_n \in f^{-1}(y_n) \); \(f \) is an 1-sequence-covering map\(^1\) if for each \(y \in Y \) there is \(x \in f^{-1}(y) \) such that whenever \(\{y_n\} \) is a sequence converging to \(y \) in \(Y \) there is a sequence \(\{x_n\} \) converging to \(x \) in \(X \) with each \(x_n \in f^{-1}(y_n) \). In this paper, we mainly discuss the sequence-covering maps on generalized metric spaces, and give an affirmative answer for a question in \(^1\) and some related questions, which improve some results in \(^{13, 16, 28}\), respectively. Moreover, we also prove that open and closed maps preserve strongly monotonically monolithicity, and closed sequence-covering maps preserve spaces with a \(\sigma \)-point-discrete \(k \)-network. Some questions about sequence-covering maps on generalized metric spaces are posed.

1. Introduction

A study of images of topological spaces under certain sequence-covering maps is an important question in general topology \(^{9, 11, 12, 13, 15, 18, 19, 20, 28}\). S. Lin and P. F. Yan in \(^{15}\) proved that each sequence-covering and compact map on metric spaces is an 1-sequence-covering map. Recently, F. C. Lin and S. Lin in \(^{13}\) proved that each sequence-covering and boundary-compact map on metric spaces is an 1-sequence-covering map. Also, the authors posed the following question in \(^{13}\):

Question 1.1. \(^{13}\) Question 3.6 Let \(f : X \to Y \) be a sequence-covering and boundary-compact map. Is \(f \) an 1-sequence-covering map if \(X \) is a space with a point-countable base or a developable space?

In this paper, we shall give an affirmative answer for Question 1.1.

S. Lin in \(^{16}\) Theorem 2.2 proved that if \(X \) is a metrizable space and \(f \) is a sequence-quotient and compact map, then \(f \) is a pseudo-sequence-covering map. Recently, C. F. Lin and S. Lin in \(^{13}\) proved that if \(X \) is a metrizable space and \(f \) is a sequence-quotient and boundary-compact map, then \(f \) is a pseudo-sequence-covering map. Hence we have the following Question 1.2.

Question 1.2. Let \(f : X \to Y \) be a sequence-quotient and boundary-compact map. Is \(f \) a pseudo-sequence-covering map if \(X \) is a space with a point-countable base or a developable space?

\(^2\)2000 Mathematics Subject Classification. 54C10; 54E40; 54E99.

Key words and phrases. Sequence-covering maps; boundary-compact maps; closed maps; point-countable bases; \(g \)-metrizable; strongly monotonically monolithic spaces; \(\sigma \)-point-discrete \(k \)-network.

*The corresponding author.
On the other hand, the authors in [28] proved that each closed sequence-covering map on metric spaces is an 1-sequence-covering map. Hence we have the following Question 1.3.

Question 1.3. Let $f : X \to Y$ be a closed sequence-covering map. Is f an 1-sequence-covering map if X is a regular space with a point-countable base or a developable space?

In this paper, we shall give an affirmative answer for Question 1.2, which improves some results in [13] and [16], respectively. Moreover, we give an affirmative answer for Question 1.3 when X has a point-countable base or X is g-metrizable.

In [27], V. V. Tkachuk introduced the strongly monotonically monolithic spaces. In this paper, we also prove that strongly monotonically monolithic spaces are preserved by open and closed maps, and spaces with a σ-point-discrete k-network are preserved by closed sequence-covering maps.

2. Definitions and terminology

Let X be a space. For $P \subset X$, P is a sequential neighborhood of x in X if every sequence converging to x is eventually in P.

Definition 2.1. Let $\mathcal{P} = \bigcup_{x \in X} \mathcal{P}_x$ be a cover of a space X such that for each $x \in X$, (a) if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$; (b) \mathcal{P}_x is a network of x in X, i.e., $x \in \bigcap \mathcal{P}_x$, and if $x \in U$ with U open in X, then $P \subset U$ for some $P \in \mathcal{P}_x$.

1. \mathcal{P} is called an sn-network for X if each element of \mathcal{P}_x is a sequential neighborhood of x in X for each $x \in X$.

2. \mathcal{P} is called a weak base [1] for X if whenever $G \subset X$ satisfying for each $x \in X$ there is a $P \in \mathcal{P}_x$ with $P \subset G$, G is open in X. X is g-metrizable [26] if X is regular and has a σ-locally finite weak base.

Definition 2.2. Let $f : X \to Y$ be a map.

1. f is a compact (resp. separable) map if each $f^{-1}(y)$ is compact (separable) in X;

2. f is a boundary-compact (resp. boundary-separable) map if each $\partial f^{-1}(y)$ is compact (separable) in X;

3. f is a sequence-covering map [25] if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_n\}$ in X with each $x_n \in f^{-1}(y_n)$;

4. f is an 1-sequence-covering map [14] if for each $y \in Y$ there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$;

5. f is a sequentially quotient map [5] if whenever $\{y_n\}$ is a convergent sequence in Y there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_n)$;

6. f is a pseudo-sequence-covering map [9, 10] if for each convergent sequence L in Y there is a compact subset K in X such that $f(K) = L$.

It is obvious that
Remind readers attention that the sequence-covering maps defined the above-mentioned are different from the sequence-covering maps defined in [9], which is called pseudo-sequence-covering maps in this paper.

Definition 2.3. [23] Let \(A \) be a subset of a space \(X \). We call an open family \(\mathcal{N} \) of subsets of \(X \) an external base of \(A \) in \(X \) if for any \(x \in A \) and open subset \(U \) with \(x \in U \) there is a \(V \in \mathcal{N} \) such that \(x \in V \subset U \).

Similarly, we can define an externally weak base for a subset \(A \) of a space \(X \).

Throughout this paper all spaces are assumed to be Hausdorff, all maps are continuous and onto. The letter \(\mathbb{N} \) will denote the set of positive integer numbers. Readers may refer to [6, 8, 15] for unstated definitions and terminology.

3. SEQUENCE-COVERING AND BOUNDARY-COMPACT MAPS

Let \(\Omega \) be the sets of all topological spaces such that, for each compact subset \(K \subset X \in \Omega \), \(K \) is metrizable and also has a countably neighborhood base in \(X \). In fact, E. A. Michael and K. Nagami in [23] has proved that \(X \in \Omega \) if and only if \(X \) is the image of some metric space under an open and compact-covering map. It is easy to see that if a space \(X \) is developable or has a point-countable base, then \(X \in \Omega \) (see [4] and [27], respectively).

In this paper, when we say an \(snf \)-countable space \(Y \), it is always assume that \(Y \) has an \(sn \)-network \(\mathcal{P} = \bigcup \{ \mathcal{P}_y : y \in Y \} \) such that \(\mathcal{P}_y \) is countable and closed under finite intersections for each point \(y \in Y \).

Lemma 3.1. Let \(f : X \to Y \) be a sequence-covering and boundary-compact map, where \(Y \) is \(snf \)-countable. For each non-isolated point \(y \in Y \), there exists a point \(x_y \in \partial f^{-1}(y) \) such that whenever \(U \) is an open subset with \(x_y \in U \), there exists a \(P \in \mathcal{P}_y \) satisfying \(P \subset f(U) \)

Proof. Suppose not, there exists a non-isolated point \(y \in Y \) such that for every point \(x \in \partial f^{-1}(y) \), there is an open neighborhood \(U_x \) of \(x \) such that \(P \not\subset f(U_x) \) for every \(P \in \mathcal{P}_y \). Then \(\partial f^{-1}(y) \subset \bigcup \{ U_x : x \in \partial f^{-1}(y) \} \). Since \(\partial f^{-1}(y) \) is compact, there exists a finite subfamily of \(U \subset \bigcup \{ U_x : x \in \partial f^{-1}(y) \} \) such that \(\partial f^{-1}(y) \subset \bigcup U \).

We denote \(U \) by \(\{ U_i : 1 \leq i \leq n_0 \} \). Assume that \(\mathcal{P}_y = \{ P_n : n \in \mathbb{N} \} \) and \(\mathcal{W}_y = \{ F_n = \bigcap_{i=1}^{n_0} P_i : n \in \mathbb{N} \} \). It is obvious that \(\mathcal{W}_y \subset \mathcal{P}_y \) and \(F_{n+1} \subset F_n \) for every \(n \in \mathbb{N} \). For each \(1 \leq n \leq n_0, n \in \mathbb{N} \), it follows that there exists \(x_{n,m} \in F_n \setminus f(U_m) \). Then denote \(y_k = x_{n,m} \), where \(k = (n-1)n_0 + m \). Since \(\mathcal{P}_y \) is a network at point \(y \) and \(F_{n+1} \subset F_n \) for every \(n \in \mathbb{N} \), \(\{ y_k \} \) is a sequence converging to \(y \) in \(Y \).

Because \(f \) is a sequence-covering map, \(\{ y_k \} \) is an image of some sequence \(\{ x_k \} \) converging to \(x \in \partial f^{-1}(y) \) in \(X \). From \(x \in \partial f^{-1}(y) \subset \bigcup U \) it follows that there

1. Let \(f : X \to Y \) be a map. \(f \) is called a compact-covering map [23] if in case \(L \) is compact in \(Y \) there is a compact subset \(K \) of \(X \) such that \(f(K) = L \).
exists \(1 \leq m_0 \leq n_0\) such that \(x \in U_{m_0}\). Therefore, \(\{x\} \cup \{x_k : k \geq k_0\} \subseteq U_{m_0}\) for some \(k_0 \in \mathbb{N}\). Hence \(\{y\} \cup \{y_k : k \geq k_0\} \subseteq f(U_{m_0})\). However, we can choose an \(n > k_0\) such that \(k = (n - 1)n_0 + m_0 \geq k_0\) and \(y_k = x_{n,m_0}\), which implies that \(x_{n,m_0} \in f(U_{m_0})\). This contradicts to \(x_{n,m_0} \in F_n \setminus f(U_{m_0})\). \(\Box\)

The next lemma is obvious.

Lemma 3.2. Let \(f : X \rightarrow Y\) be 1-sequence-covering, where \(X\) is snf-countable. Then \(Y\) is snf-countable.

Theorem 3.3. Let \(f : X \rightarrow Y\) be a sequence-covering and boundary-compact map, where \(X\) is first-countable. Then \(Y\) is snf-countable if and only if \(f\) is an 1-sequence-covering map.

Proof. Necessity. Let \(y\) be a non-isolated point in \(Y\). Since \(Y\) is snf-countable, it follows from Lemma 3.1 that there exists a point \(x_y \in \partial f^{-1}(y)\) such that whenever \(U\) is an open neighborhood of \(x_y\), there is a \(P \in \mathcal{P}_y\) satisfying \(P \subseteq f(U)\). Let \(\{B_n : n \in \mathbb{N}\}\) be a countably neighborhood base at point \(x_y\) such that \(B_{n+1} \subseteq B_n\) for each \(n \in \mathbb{N}\). Suppose that \(\{y_n\}\) is a sequence in \(Y\), which converges to \(y\). Next, we take a sequence \(\{x_n\}\) in \(X\) as follows.

Since \(B_n\) is an open neighborhood of \(x_y\), it follows from the Lemma 3.1 that there exists a \(P_n \in \mathcal{P}_y\) such that \(P_n \subseteq f(B_n)\) for each \(n \in \mathbb{N}\). Because every \(P \in \mathcal{P}_y\) is a sequential neighborhood, it is easy to see that for each \(n \in \mathbb{N}\), \(f(B_n)\) is a sequential neighborhood of \(y\) in \(Y\). Therefore, for each \(n \in \mathbb{N}\), there is an \(i_n \in \mathbb{N}\) such that \(y_i \in f(B_n)\) for every \(i \geq i_n\). Suppose that \(1 < i_n < i_{n+1}\) for every \(n \in \mathbb{N}\). Hence, for each \(j \in \mathbb{N}\), we take

\[
x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap B_n, & \text{if } i_n \leq j < i_{n+1}. \end{cases}
\]

We denote \(S = \{x_j : j \in \mathbb{N}\}\). It is easy to see that \(S\) converges to \(x_y\) in \(X\) and \(f(S) = \{y_n\}\). Therefore, \(f\) is an 1-sequence-covering map.

Sufficiency. It easy to see that \(Y\) is snf-countable by Lemma 3.2 \(\Box\)

We don’t know whether, in Theorem 3.3, \(f\) is an 1-sequence-covering map when \(X\) is only first-countable. However, we have the following Theorem 3.6 which gives an affirmative answer for Question 1.1. Firstly, we give some technique lemmas.

Lemma 3.4. \([23]\) If \(X \in \Omega\), then every compact subset of \(X\) has a countably external base.

Lemma 3.5. Let \(f : X \rightarrow Y\) be a sequence-covering and boundary-compact map. If \(X \in \Omega\), then \(Y\) is snf-countable.

Proof. Let \(y\) be a non-isolated point for \(Y\). Then \(\partial f^{-1}(y)\) is non-empty and compact for \(X\). Therefore, \(\partial f^{-1}(y)\) has a countably external base \(\mathcal{U}\) in \(X\) by Lemma 3.4.

Let

\[
\mathcal{V} = \{\bigcup \mathcal{F} : \text{There is a finite subfamily } \mathcal{F} \subseteq \mathcal{U} \text{ with } \partial f^{-1}(y) \subseteq \bigcup \mathcal{F} \}.
\]

Obviously, \(\mathcal{V}\) is countable. We now prove that \(f(\mathcal{V})\) is a countable sn-network at point \(y\).

1) \(f(\mathcal{V})\) is a network at \(y\).

Let \(y \in U\). Obviously, \(\partial f^{-1}(y) \subset f^{-1}(U)\). For each \(x \in \partial f^{-1}(y)\), there exist an \(U_x \in \mathcal{U}\) such that \(x \in U_x \subset f^{-1}(U)\). Therefore, \(\partial f^{-1}(y) \subset \bigcup \{U_x : x \in \partial f^{-1}(y)\}\).
\(\partial f^{-1}(y) \). Since \(\partial f^{-1}(y) \) is compact, it follows that there exists a finite subfamily \(F \subset \{ U_x : x \in \partial f^{-1}(y) \} \) such that \(\partial f^{-1}(y) \subset \bigcup F \subset f^{-1}(U) \). It is easy to see that \(F \in \mathcal{V} \) and \(y \in \bigcup f(F) \subset U \).

(2) For any \(P_1, P_2 \in f(\mathcal{V}) \), there exists a \(P_3 \in f(\mathcal{V}) \) such that \(P_3 \subset P_1 \cap P_2 \).

It is obvious that there exist \(V_1, V_2 \in \mathcal{V} \) such that \(f(V_1) = P_1, f(V_2) = P_2 \), respectively. Since \(\partial f^{-1}(y) \subset V_1 \cap V_2 \), it follows from the similar proof of (1) that there exists a \(V_3 \in \mathcal{V} \) such that \(\partial f^{-1}(y) \subset V_3 \subset V_1 \cap V_2 \). Let \(P_3 = f(V_3) \). Hence \(\partial f^{-1}(y) \subset V_3 \subset \bigcup f(V) \subset f^{-1}(U) \). Therefore, \(\{ x_n \} \) is eventually in \(V \), and this is implied that \(\{ y_n \} \) is eventually in \(P \).

Therefore, \(f(\mathcal{V}) \) is a countable sn-network at point \(y \). \(\square \)

Theorem 3.6. Let \(f : X \to Y \) be a sequence-covering and boundary-compact map. If \(X \in \Omega \), then \(f \) is an 1-sequence-covering map.

Proof. From Lemma 3.5 it follows that \(Y \) is snf-countable. Therefore, \(f \) is an 1-sequence-covering map by Theorem 3.3. \(\square \)

By Theorem 3.6, it easily follows the following Corollary 3.7 which gives an affirmative answer for Question 1.1.

Corollary 3.7. Let \(f : X \to Y \) be a sequence-covering and boundary-compact map. Suppose also that at least one of the following conditions holds:

1. \(X \) has a point-countable base;
2. \(X \) is a developable space.

Then \(f \) is an 1-sequence-covering map.

Lemma 3.8. Let \(f : X \to Y \) be a sequence-covering map, where \(Y \) is snf-countable and \(\partial f^{-1}(y) \) has a countably external base for each point \(y \in Y \). Then, for each non-isolated point \(y \in Y \), there exists a point \(x_y \in \partial f^{-1}(y) \) such that whenever \(U \) is an open subset with \(x_y \in U \), there exists a \(P \in \mathcal{P}_y \) satisfying \(P \subset f(U) \).

Proof. Suppose not, there exists a non-isolated point \(y \in Y \) such that for every point \(x \in \partial f^{-1}(y) \), there is an open neighborhood \(U_x \) of \(x \) such that \(P \not\subset f(U_x) \) for every \(P \in \mathcal{P}_y \). Let \(B \) be a countably external base for \(\partial f^{-1}(y) \). Therefore, for each \(x \in \partial f^{-1}(y) \), there exists a \(B_x \in B \) such that \(x \in B_x \subset U_x \). For each \(x \in \partial f^{-1}(y) \), it follows that \(P \not\subset f(B_x) \) whenever \(P \in \mathcal{P}_y \). Assume that \(\mathcal{P}_y = \{ P_n : n \in \mathbb{N} \} \) and \(\mathcal{W}_y = \{ F_n = \bigcap_{i=1}^{n} P_i : n \in \mathbb{N} \} \). We denote \(\{ B_x \in B : x \in \partial f^{-1}(y) \} \) by \(\{ B_m : m \in \mathbb{N} \} \). For each \(n, m \in \mathbb{N} \), it follows that there exists \(x_{n,m} \in F_n \setminus f(B_m) \). For \(n \geq m \), we denote \(y_k = x_{n,m} \) for \(k = m + n(n-1)/2 \).

Since \(\mathcal{P}_y \) is a network at point \(y \) and \(F_{n+1} \subset F_n \) for every \(n \in \mathbb{N} \), \(\{ y_k \} \) is a sequence converging to \(y \) in \(Y \). Because \(f \) is a sequence-covering map, \(\{ y_k \} \) is an image of some sequence \(\{ x_k \} \) converging to \(x \in \partial f^{-1}(y) \) in \(X \). From \(x \in \partial f^{-1}(y) \subset \bigcup \{ B_m : m \in \mathbb{N} \} \) it follows that there exists a \(B_m \in \mathbb{N} \) such that \(B_m \) is an open neighborhood at \(x \). Therefore, \(\{ x \} \cup \{ x_k : k \geq k_0 \} \subset f(B_m) \). However, we can choose a \(k \geq k_0 \) and an \(n \geq m_0 \) such that \(y_k = x_{n,m_0} \), which implies that \(x_{n,m_0} \in f(B_m) \). This contradictions to \(x_{n,m_0} \in F_n \setminus f(B_m) \). \(\square \)
Theorem 3.9. Let $f : X \to Y$ be a sequence-covering and boundary-separable map. If X has a point-countable base and Y is snf-countable, then f is an 1-sequence-covering map.

Proof. Obviously, $\partial f^{-1}(y)$ has a countably external base for each point $y \in Y$. Therefore, it is easy to see by Lemma 3.8 and the proof of Theorem 3.3. \qed

Remark. We can’t omit the condition “Y is snf-countable” in Theorem 3.9. Indeed, the sequence fan S_{ω} is the image of metric spaces under the sequence-covering s-maps by [15, Corollary 2.4.4]. However, S_{ω} is not snf-countable, and therefore, S_{ω} is not the image of metric spaces under an 1-sequence-covering map.

In this section, we finally give an affirmative answer for Question 1.2.

Lemma 3.10. [5] Let $f : X \to Y$ be a map. If X is a Fréchet space, then f is a sequentially quotient map if and only if Y is a Fréchet space and f is a sequentially quotient map.

Theorem 3.11. Let $f : X \to Y$ be a boundary-compact map. If $X \in \Omega$, then f is a sequentially quotient map if and only if it is a pseudo-sequence-covering map.

Proof. First, suppose that f is sequentially quotient. If $\{y_n\}$ is a non-trivial sequence converging to y_0 in Y, put $S_1 = \{y_0\} \cup \{y_n : n \in \mathbb{N}\}$, $X_1 = f^{-1}(S_1)$ and $g = f|_{X_1}$. Thus g is a sequentially quotient, boundary compact map. So g is a pseudo-open map by Lemma 3.10. Since $X \in \Omega$, let $\{U_n\}_{n \in \mathbb{N}}$ be a decreasingly neighborhood base of compact subset $\partial g^{-1}(y_0)$ in X_1. Thus $\{U_n \cup \text{Int}(g^{-1}(y_0))\}_{n \in \mathbb{N}}$ is a decreasingly neighborhood base of $g^{-1}(y_0)$ in X_1. Let $V_n = U_n \cup \text{Int}(g^{-1}(y_0))$ for each $n \in \mathbb{N}$. Then $y_0 \in \text{Int}(g(V_n))$, thus there exists an $i_n \in \mathbb{N}$ such that $y_i \in g(V_n)$ for each $i \geq i_n$, so $g^{-1}(y_i) \cap V_n \neq \emptyset$. We can suppose that $1 < i_n < i_{n+1}$. For each $j \in \mathbb{N}$, we take

$$x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap V_n, & \text{if } i_n \leq j < i_{n+1}. \end{cases}$$

Let $K = \partial g^{-1}(y_0) \cup \{x_j : j \in \mathbb{N}\}$. Clearly, K is a compact subset in X_1 and $g(K) = S_1$. Thus $f(K) = S_1$. Therefore, f is a pseudo-sequence-covering map.

Conversely, suppose that f is a pseudo-sequence-covering map. If $\{y_n\}$ is a convergent sequence in Y, then there is a compact subset K in X such that $f(K) = \{y_n\}$. For each $n \in \mathbb{N}$, take a point $x_n \in f^{-1}(y_n) \cap K$. Since K is compact and metrizable, $\{x_n\}$ has a convergent subsequence $\{x_{n_k}\}$. So f is sequentially quotient. \qed

Corollary 3.12. Let $f : X \to Y$ be a boundary-compact map. Suppose also that at least one of the following conditions holds:

1. X has a point-countable base;
2. X is a developable space.

Then f is a sequentially quotient map if and only if it is a pseudo-sequence-covering map.

2S_{ω} is the space obtained from the topological sum of ω many copies of the convergent sequence by identifying all the limit points to a point.

3X is said to be a Fréchet space if $x \in \overline{P} \subset X$, there is a sequence in P converging to x in X.

4f is a pseudo-open map if whenever $f^{-1}(y) \subset U$ with U open in X, then $y \in \text{Int}(f(U))$.
Question 3.13. Let $f : X \to Y$ be a sequence-covering and boundary-compact (or compact) map. Is f an 1-sequence-covering map if one of the following conditions is satisfied?

1. Every compact subset of X is metrizable;
2. Every compact subset of X has countable character.

Remark If X satisfies the conditions (1) and (2) in Question 3.13, then f is an 1-sequence-covering map by Theorem 3.6.

4. Sequence-covering maps on g-metrizable spaces

In this section, we mainly discuss sequence-covering maps on spaces with a specially weak base.

Lemma 4.1. Let $f : X \to Y$ be a sequence-covering and boundary-compact map. For each non-isolated point $y \in Y$, there exist a point $x \in \partial f^{-1}(y)$ and a decreasingly weak neighborhood base $\{B_n\}_n$ at x such that for each $n \in \mathbb{N}$, there are a $P \in \mathcal{P}_y$ and $i \in \mathbb{N}$ with $P \subset f(B_n)$ if X and Y satisfy the following (1) and (2):

1. Y is snf-countable;
2. Every compact subset of X has a countably externally weak base in X.

Proof. Suppose not, there exists a non-isolated point $y \in Y$ such that for every point $x \in \partial f^{-1}(y)$ and every decreasingly weak neighborhood base $\{B_n\}_n$ of x, there is an $n \in \mathbb{N}$ such that $P \subset f(B_n)$ for every $P \in \mathcal{P}_y$. Since $\partial f^{-1}(y)$ is compact, it follows that $\partial f^{-1}(y)$ has a countably externally weak base \mathcal{B} of X. Without loss of generality, we can assume that \mathcal{B} is closed under finite intersections. Therefore, for each $x \in \partial f^{-1}(y)$, there exists a $B_x \in \mathcal{B}$ such that $P \subset f(B_x)$ for every $P \in \mathcal{P}_y$. Next, using the argument from the proof of Lemma 3.8, this leads to a contradiction. □

The following Lemma 4.2 is easily to check, and hence we omit it.

Lemma 4.2. Let X have a compact-countable weak base. Then every compact subset of X has a countably externally weak base in X.

Theorem 4.3. Let $f : X \to Y$ be a sequence-covering and boundary-compact map, where X has a compact-countable weak base. Then Y is snf-countable if and only if f is an 1-sequence-covering map.

Proof. Necessity. Let y be a non-isolated point in Y. Since X has a compact-countable weak base, it follows from Lemmas 4.1 and 4.2 that there exists a point $x_y \in \partial f^{-1}(y)$ and a decreasingly countably weak base $\{B_n : n \in \mathbb{N}\}$ at point x_y such that for each $n \in \mathbb{N}$, there is a $P \in \mathcal{P}_y$ satisfying $P \subset f(B_n)$. Suppose that $\{y_n\}$ is a sequence in Y, which converges to y. Then we can take a sequence $\{x_n\}$ in X by the similar argument from the proof of Theorem 3.3. Therefore, f is an 1-sequence-covering map.

Sufficiency. By Lemma 3.2 Y is snf-countable. □

We don’t know whether the condition “compact-countable weak base” on X can be replaced by “point-countable weak base” in Theorem 4.3.

Corollary 4.4. Let $f : X \to Y$ be a sequence-covering and boundary-compact map, where X is g-metrizable. Then Y is snf-countable if and only if f is an 1-sequence-covering map.
Each closed sequence-covering map on metric spaces is 1-sequence-covering [28]. Now, we improve the result in the following theorem.

Theorem 4.5. Let $f : X \to Y$ be a closed sequence-covering map, where X is g-metrizable. Then f is an 1-sequence-covering map.

Proof. Since X is g-metrizable and f is a closed sequence-covering map, Y is g-metrizable [21, Theorem 3.3]. Therefore, f is a boundary-compact map by [21, Corollary 2.2]. Hence f is an 1-sequence-covering map by Corollary 4.6. □

Question 4.6. Let $f : X \to Y$ be a sequence-covering and boundary-compact map. If X is g-metrizable, then is f an 1-sequence-covering map?

5. Closed sequence-covering maps

Say that a Tychonoff space X is strongly monotonically monolithic [27] if, for any $A \subset X$ we can assign an external base $\mathcal{O}(A)$ to the set \overline{A} in such a way that the following conditions are satisfied:

(a) $|\mathcal{O}(A)| \leq \max\{|A|, \omega\}$;
(b) if $A \subset B \subset X$ then $\mathcal{O}(A) \subset \mathcal{O}(B)$;
(c) if α is an ordinal and we have a family $\{A_\beta : \beta < \alpha\}$ of subsets of X such that $\beta < \beta' < \alpha$ implies $A_\beta \subset A_{\beta'}$, then $\mathcal{O}(\bigcup_{\beta < \alpha} A_\beta) = \bigcup_{\beta < \alpha} \mathcal{O}(A_\beta)$.

From [27, Proposition 2.5] it follows that a Tychonoff space with a point-countable base is strongly monotonically monolithic. Moreover, if X is a strongly monotonically monolithic space, then it is easy to see that $X \in \Omega$ by [27, Theorem 2.7].

Lemma 5.1. Let $f : X \to Y$ be a closed sequence-covering map, where X is a strongly monotonically monolithic space. Then Y contains no closed copy of S_ω.

Proof. Suppose that Y contains a closed copy of S_ω, and that $\{y\} \cup \{y_i(n) : i, n \in \mathbb{N}\}$ is a closed copy of S_ω in Y, here $y_i(n) \to y$ as $i \to \infty$. For every $k \in \mathbb{N}$, put $L_k = \cup \{y_i(n) : i \in \mathbb{N}, n \leq k\}$. Hence L_k is a sequence converging to y. Let M_k be a sequence of X converging to $u_k \in f^{-1}(y)$ such that $f(M_k) = L_k$. We rewrite $M_k = \cup \{x_i(n, k) : i \in \mathbb{N}, n \leq k\}$ with each $f(x_i(n, k)) = y_i(n)$.

Case 1: $\{u_k : k \in \mathbb{N}\}$ is finite.

There are a $k_0 \in \mathbb{N}$ and an infinite subset $\mathbb{N}_1 \subset \mathbb{N}$ such that $M_k \to u_{k_0}$ for every $k \in \mathbb{N}_1$, then X contains a closed copy of S_ω. Hence X is not first countable. This is a contradiction.

Case 2: $\{u_k : k \in \mathbb{N}\}$ has a non-trivial convergent sequence in X.

Without loss of generality, we suppose that $u_k \to u$ as $k \to \infty$. Since X is first-countable, let $\{U_m\}$ be a decreasingly and open neighborhood base of X at point u with $\bigcup_{m \in \mathbb{N}} U_m = \{u\}$. Fix n, pick $x_{i_m}(n, k_m) \in U_{i_m} \cap \{x_i(n, k_m)\}$. We can suppose that $i_m < i_{m+1}$, then $\{f(x_{i_m}(n, k_m))\}$ is a subsequence of $\{y_i(n)\}$. Since f is closed, $\{x_{i_m}(n, k_m)\}_{i_m}$ is not discrete in X. Then there is a subsequence of $\{x_{i_m}(n, k_m)\}_{i_m}$ converging to a point $b \in X$ because X is a first-countable space. It is easy to see that $b = u$ by $x_{i_m}(n, k_m) \in U_m$ for every $m \in \mathbb{N}$. Hence $x_{i_m}(n, k_m) \to u$ as $m \to \infty$. Then $\{u\} \cup \{x_{i_m}(n, k_m) : n, m \in \mathbb{N}\}$ is a closed copy of S_ω in X. Thus, X is not first countable. This is a contradiction.

Case 3: $\{u_k : k \in \mathbb{N}\}$ is discrete in X.

Let $B = \{u_k : k \in \mathbb{N}\} \cup \{M_k : k \in \mathbb{N}\}$. Since X is strongly monotonically monolithic, \overline{B} is metrizable. Hence there exists a discrete family $\{V_k\}_{k \in \mathbb{N}}$ consisting of open subsets of \overline{B} with $u_k \in V_k$ for each $k \in \mathbb{N}$. Pick $x_{ik}(1,k) \in V_k \cap \{x_i(1,k))_i$ such that $\{f(x_{ik}(1,k))\}_k$ is a subsequence of $\{y_i(n)\}$. Since $\{x_{ik}(1,k)\}_k$ is discrete in \overline{B}, $\{f(x_{ik}(1,k))\}_k$ is discrete in Y. This is a contradiction.

In a word, Y contains no closed copy of S_ω. \hfill \Box

Lemma 5.2. Let $f : X \to Y$ be a closed sequence-covering map, where X is a strongly monotonically monolithic space. Then $\partial f^{-1}(y)$ is compact for each point $y \in Y$.

Proof. From Lemma 5.1 it follows that Y contains no closed copy S_ω. Since X is a strongly monotonically monolithic space, every closed separable subset of X is metrizable, and hence is normal. Therefore, $\partial f^{-1}(y)$ is countable compact for each point $y \in Y$ by [21] Theorem 2.6. From [27] Theorem 2.7 it easily follows that every countable compact subset of X is compact. \hfill \Box

Theorem 5.3. Let $f : X \to Y$ be a closed sequence-covering map, where X is a strongly monotonically monolithic space. Then f is an 1-sequence-covering map.

Proof. It is easy to see by Lemma 5.2 and Theorem 3.6. \hfill \Box

Corollary 5.4. Let $f : X \to Y$ be a closed sequence-covering map, where X is a Tychonoff space with a point-countable base. Then f is an 1-sequence-covering map.

In fact, we can replace “Tychonoff” by “regular” in Corollary 5.4, and hence we have the following result.

Corollary 5.5. Let $f : X \to Y$ be a closed sequence-covering map, where X is a regular space with a point-countable base. Then f is an 1-sequence-covering map.

Proof. Since X has a point-countable base and f is a closed sequence-covering map, Y has a point-countable base by [21] Theorem 3.1. Therefore, f is a boundary-compact map by [22] Lemma 3.2. Hence f is an 1-sequence-covering map by Corollary 3.7. \hfill \Box

We don’t know whether, in Corollary 5.5, the condition “X has a point-countable base” can be replaced by “$X \in \Omega$”. So we have the following question.

Question 5.6. Let $f : X \to Y$ be a closed sequence-covering map. If $X \in \Omega$ (and X is regular), then is f an 1-sequence-covering map?

Corollary 5.7. Let $f : X \to Y$ be a closed sequence-covering map, where X is a strongly monotonically monolithic space. Then f is an almost-open map.\footnote{\textit{f is an almost-open map}2 if there exists a point $x_y \in f^{-1}(y)$ for each $y \in Y$ such that for each open neighborhood U of x_y, $f(U)$ is a neighborhood of y in Y.}

Proof. f is an 1-sequence-covering map by Theorem 5.3. For each point $y \in Y$, there exists a point $x_y \in f^{-1}(y)$ satisfying the Definition 2.2(4). Let U be an open neighborhood of x_y. Then $f(U)$ is a sequential neighborhood of y. Indeed, for each sequence $\{y_n\} \subset Y$ converging to y, there exists a sequence $\{x_n\} \subset X$ such that $\{x_n\}$ converges to x_y and $x_n \in f^{-1}(y_n)$ for each $n \in \mathbb{N}$. Obviously, $\{x_n\}$ is eventually in U, and therefore, $\{y_n\}$ is eventually in $f(U)$. Hence $f(U)$
is a sequential neighborhood of \(y \). Since \(X \) is first-countable, \(Y \) is a Fréchet space. Then \(f(U) \) is a neighborhood of \(y \). Otherwise, suppose \(y \in Y \setminus \text{int}(f(U)) \), and therefore, \(y \in Y \setminus f(U) \). Since \(Y \) is Fréchet, there exists a sequence \(\{y_n\} \subset Y \setminus f(U) \) converging to \(y \). This is a contradiction with \(f(U) \) is a sequential neighborhood of \(y \). Therefore, \(f \) is an almost-open map.

\[\square \]

Remark In [27], V. V. Tkachuk has proved that closed maps don’t preserve strongly monotonically monolithic spaces. However, if perfect maps\(^6\) preserve strongly monotonically monolithic spaces, then it is easy to see that closed sequence-covering maps preserve strongly monotonically monolithity by Lemma 5.2. So we have the following two questions.

Question 5.8. Do closed sequence-covering maps (or an almost open and closed maps) preserve strongly monotonically monolithity?

Question 5.9. Do perfect maps preserve strongly monotonically monolithity?

In [27], V. V. Tkachuk has also proved that open and separable maps preserve strongly monotonically monolithity. However, we have the following result.

Theorem 5.10. Let \(f : X \rightarrow Y \) be an open and closed map, where \(X \) is a strongly monotonically monolithic space. Then \(Y \) is a strongly monotonically monolithic space.

Proof. From [21] Theorem 3.4 it follows that \(f \) is a sequence-covering map. Therefore, \(\partial f^{-1}(y) \) is compact for each point \(y \in Y \) by Lemma 5.2. Then \(\partial f^{-1}(y) \) is metrizable by [27] Theorem 2.7, and hence it is separable, for each point \(y \in Y \). For each point \(y \in Y \), if \(y \) is a non-isolated point, let \(A_y \) be a countable dense set in the subspace \(\partial f^{-1}(y) \); if \(y \) is an isolated point, then we choose a point \(x_y \in f^{-1}(y) \) and let \(A_y = \{x_y\} \).

Let \(B \subset Y \). Put \(A_B = \bigcup \{A_y : y \in B\} \) and \(\mathcal{N}(B) = \{f(W) : W \in \mathcal{O}(A_B)\} \). It is easy to see that \(\mathcal{N}(B) \) satisfies the conditions (a)-(c) of the definition of strongly monotonically monolithicity. Therefore, we only need to prove that \(\mathcal{N}(B) \) is an external base for \(\overline{B} \). For each point \(y \in \overline{B} \), let \(U \) be open subset in \(Y \) with \(y \in U \).

Case 1: \(y \) is a non-isolated point in \(Y \).

Since \(f \) is an open map, \(\emptyset \neq f^{-1}(y) \subset \overline{f^{-1}(B)} \), and hence \(\partial f^{-1}(y) \subset \overline{f^{-1}(B)} \). Take any point \(x \in \partial f^{-1}(y) \). Then \(x \in \overline{A_B} \). Therefore, there exists a \(V \in \mathcal{O}(A_B) \) such that \(x \in V \subset f^{-1}(U) \). So \(W = f(V) \in \mathcal{N}(B) \) and \(y \in W \subset U \).

Case 2: \(y \) is an isolated point in \(Y \).

It is easy to see that \(\{y\} \in \mathcal{N}(B) \), and therefore, \(y \in \{y\} \subset U \).

In a word, \(\mathcal{N}(B) \) is an external base for \(\overline{B} \). \(\square \)

Let \(\mathcal{B} = \{B_\alpha : \alpha \in H\} \) be a family of subsets of a space \(X \). \(\mathcal{B} \) is point-discrete (or weakly hereditarily closure-preserving) if \(\{x_\alpha : \alpha \in H\} \) is closed discrete in \(X \), whenever \(x_\alpha \in B_\alpha \) for each \(\alpha \in H \).

It is well-known that metrizability, \(g \)-metrizability, \(\aleph \)-spaces, and spaces with a point-countable base are preserved by closed sequence-covering maps, see [21], [28]. Next, we shall consider spaces with a \(\sigma \)-point-discrete \(k \)-network, and shall prove that spaces with \(\sigma \)-point-discrete \(k \)-network are preserved by closed sequence-covering maps. Firstly, we give some technique lemmas.

\(^6\)A map \(f \) is called perfect if \(f \) is a closed and compact map
Lemma 5.11. Let X be an \mathfrak{N}_1-compact space\footnote{A space X is called \emph{\mathfrak{N}_1-compact} if each subset of X with a cardinality of \mathfrak{N}_1 has a cluster point.} with a σ-point-discrete network. Then X has a countable network.

Proof. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ-point-discrete network for X, where each \mathcal{P}_n is a point-discrete family for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, let

$$B_n = \{ x \in X : |\mathcal{P}_n|_x > \omega \}.$$

Claim 1: $\{ P \setminus B_n : P \in \mathcal{P}_n \}$ is countable.

Suppose not, there exist an uncountable subset $\{ P_\alpha : \alpha < \omega_1 \} \subset \mathcal{P}_n$ and $\{ x_\alpha : \alpha < \omega_1 \} \subset X$ such that $x_\alpha \in P_\alpha \setminus B_n$. Since \mathcal{P}_n is a point-discrete family and X is \mathfrak{N}_1-compact, $\{ x_\alpha : \alpha < \omega_1 \}$ is countable. Without loss of generality, we can assume that there exists $x \in X \setminus B_n$ such that each $x_\alpha = x$. Therefore, $x \in B_n$, a contradiction.

Claim 2: For each $n \in \mathbb{N}$, B_n is a countable and closed discrete subspace for X.

For each $Z \subset B_n$ with $|Z| \leq \omega_1$, let $Z = \{ x_\alpha : \alpha \in \Lambda \}$. By the definition of B_n and Well-ordering Theorem, it is easy to obtain by transfinite induction that $\{ P_\alpha : \alpha \in \Lambda \} \subset \mathcal{P}_n$ such that $x_\beta \in P_\alpha$ and $P_\alpha \neq P_\beta$ for each $\alpha \neq \beta$. Therefore, Z is a countable and closed discrete subspace for X. Hence B_n is a countable and closed discrete subspace.

For each $n \in \mathbb{N}$, let $\mathcal{P}'_n = \{ P \setminus B_n : P \in \mathcal{P}_n \} \cup \{ \{ x \} : x \in B_n \}$. Then \mathcal{P}'_n is a countable family.

Obviously, $\bigcup_{n \in \mathbb{N}} \mathcal{P}'_n$ is a countable network for X. \hfill \Box

The proof of the following lemma is an easy exercise.

Lemma 5.12. Let $\{ F_\alpha \}_{\alpha \in A}$ be a point-discrete family for X and countably compact subset $K \subset \bigcup_{\alpha \in A} F_\alpha$. Then there exists a finite family $\mathcal{F} \subset \{ F_\alpha \}_{\alpha \in A}$ such that $K \subset \bigcup \mathcal{F}$.

Lemma 5.13. Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is a σ-point-discrete wcs^*-network\footnote{A family \mathcal{P} of X is called a wcs^*-network if, whenever a sequence $\{ x_n \}$ converges to $x \in U$ with U open in X, there are a $P \in \mathcal{P}$ and a subsequence $\{ x_{n_i} \}$ of $\{ x_n \}$ such that $x_{n_i} \in P \subset U$ for each $n_i \in \mathbb{N}$.} for X if and only if \mathcal{P} is a σ-point-discrete k-network\footnote{A family \mathcal{P} of X is called a k-network if whenever K is a compact subset of X and $K \subset U$ with U open in X, there is a finite subfamily $\mathcal{P}' \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{P}' \subset U$.} for X.

Proof. Sufficiency. It is obvious. Hence we only need to prove the necessity.

Necessity. Let $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ-point-discrete wcs^*-network, where each \mathcal{P}_n is a point-discrete family for each $n \in \mathbb{N}$. Suppose that K is compact and $K \subset U$ with U open in X. For each $n \in \mathbb{N}$, let

$$\mathcal{P}'_n = \{ P \in \mathcal{P}_n : P \subset U \}, \quad F_n = \bigcup \mathcal{P}'_n.$$

Then there exists $m \in \mathbb{N}$ such that $K \subset \bigcup_{k \leq m} F_k$. Suppose not, there is a sequence $\{ x_n \} \subset K$ with $x_n \in K \setminus \bigcup_{i \leq n} F_i$. By Lemma 5.11 it is easy to see that K is metrizable. Therefore, K is sequentially compact. It follows that there exists a convergent subsequence of $\{ x_n \}$. Without loss of generality, we assume that $x_n \to x$. Since \mathcal{P} is a wcs^*-network, there exist a $P \in \mathcal{P}$, and a subsequence $\{ x_{n_i} \}$ of $\{ x_n \}$ such that $\{ x_{n_i} \} : i \in \mathbb{N} \subset P \subset U$. Therefore, there exists $l \in \mathbb{N}$
such that $P \in P'$. Choose $i > l$, since $P \subset F_l$, $x_n \in F_l$, a contradiction. Hence there exists $m \in \mathbb{N}$ such that $K \subset \bigcup_{k \leq m} F_k$. By Lemma 5.12 there is a finite family $P'' \subset \bigcup_{i \leq m} P'_i$ such that $K \subset \bigcup P'' \subset U$. Therefore, P is a k-network. □

Theorem 5.14. Closed sequence-covering maps preserve spaces with a σ-point-discrete k-network.

Proof. It is easy to see that closed sequence-covering maps preserve spaces with a σ-point-discrete ωcs^*-network. Hence closed sequence-covering maps preserve spaces with a σ-point-discrete k-network by Lemma 5.13. □

Question 5.15. Do closed maps preserve spaces with a σ-point-discrete k-network?

References

[1] A. V. Arhangel’ski̇, Mappings and spaces, *Russian Math. Surveys*, 21(1966), 115–162.
[2] A. V. Arhangel’ski̇, On open and almost open mappings of topological spaces (in Russian), *Dokl. Akad. Nauk. SSSR*, 147(1962), 999–1002.
[3] A. V. Arhangel’ski̇, Some types of factor mappings and the relations between classes of topological spaces (in Russian), *Dokl. Akad. Nauk. SSSR*, 153(1963), 743–746.
[4] B. Alleche, A. Arhangel’ski̇, J. Calbrix, Weak developments and metrization, *Topology Appl.*, 100(2000), 23–38.
[5] J. R. Boone, F. Siwiec, Sequentially quotient mappings, *Czech. Math. J.*, 26(1976), 174–182.
[6] R. Engelking, General Topology (revised and completed edition): Heldermann Verlag, Berlin, 1989.
[7] S. P. Franklin, Spaces in which sequences suffice, *Fund. Math.*, 57(1965), 107-115.
[8] G. Gruenhage, Generalized metric spaces, In: K. Kunen, J. E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B V, Amsterdam, 1984, 423–501.
[9] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, *Pacific J. Math.*, 113(1984), 303–332.
[10] Y. Ikeda, C. Liu, Y. Tanaka, Quotient compact images of metric spaces, and related matters, *Topology Appl.*, 122(2002), 237–252.
[11] J. Li, S. L. Jiang, On sequence-covering K-mappings, *Indian J. Pure Appl. Math.*, 34(2003), 397–403.
[12] Z. W. Li, Images of locally compact metric spaces, *Acta Math. Hungar.*, 99(2003), 81–88.
[13] F. C. Lin, S. Lin, On sequence-covering boundary compact maps of metric spaces, *Adv. Math(China)*, 39(1)(2010), 71–78.
[14] S. Lin, On sequence-covering s-maps(in Chinese), *Math. Adv.(in Chinese)*, 25(1996), 548–551.
[15] S. Lin, Point-countable Covers and Sequence-covering Mappings(in Chinese): Science Press, Beijing, 2002.
[16] S. Lin, A note on sequence-covering mappings, *Acta Math. Hungar.*, 107(2005), 193–197.
[17] S. Lin, Y. Tanaka, Point-countable k-networks, closed maps, and related results, *Topology Appl.*, 59(1994), 79-86.
[18] S. Lin, P. Yan, Sequence-covering maps of metric spaces, *Topology Appl.*, 109(2001), 301–314.
[19] S. Lin, J. Zhu, Y. Ge and J. Gu, Almost-open maps, sequence-coverings and sn-networks, *Indian J. Pure Appl. Math.*, 37(2006), 111–119.
[20] C. Liu, S. Lin, On countable-to-one maps, *Topology Appl.*, 154(2007), 449–454.
[21] C. Liu, Notes on closed maps, *Houston J. Math.*, 33(2007), 249–259.
[22] C. Liu, On weak bases, *Topology Appl.*, 150(2005), 91–99.
[23] E. A. Michael, K. Nagami, Compact-covering images of metric spaces, *Proc. Amer. Math. Soc.*, 37(1973), 260–266.
[24] P. O’Meara, On paracompactness in function spaces with the compact-open topology, *Proc. Amer. Math. Soc.*, 29(1971), 183–189.
[25] F. Siwiec, Sequence-covering and countably bi-quotient maps, *General Topology Appl.*, 1 (1971), 143–154.

[26] F. Siwiec, On defining a space by a weak base, *Pacific J. Math.*, 52 (1974), 233–245.

[27] V. V. Tkachuk, *Monolithic spaces and D-spaces revisited*, Topology Appl., 156 (2009), 840–846.

[28] P. F. Yan, S. Lin, S. L. Jiang, *Metrizability is preserved by closed sequence-covering maps*. In: 2000 Summer Conference on Topology and its Appl., June 26–29, Maimi University, Oxford, Ohio, USA.

(Fucai Lin) Department of Mathematics, Zhangzhou Normal University, Zhangzhou 363000, P. R. China

E-mail address: linfucai2008@yahoo.com.cn

(Shou Lin) Institute of Mathematics, Ningde Teachers’ College, Ningde, Fujian 352100, P. R. China

E-mail address: linshou@public.ndptt.fj.cn