Does a Randall-Sundrum scenario create the illusion of a torsion-free universe?

Biswarup Mukhopadhyaya\textsuperscript{1}, Somasri Sen\textsuperscript{2}

\textit{Harish-Chandra Research Institute,}
\textit{Chhatnag Road, Jhusi, Allahabad - 211 019, India}

Soumitra SenGupta\textsuperscript{3}

\textit{Department of Theoretical Physics, Indian Association for the Cultivation of Science,}
\textit{Calcutta - 700 032, India}

\textit{PACS Nos.: 04.20.Cv, 11.30.Er, 12.10.Gq}

\textbf{Abstract}

We consider spacetime with torsion in a Randall-Sundrum (RS) scenario where torsion, identified with the rank-2 Kalb-Ramond field, exists in the bulk together with gravity. While the interactions of both graviton and torsion in the bulk are controlled by the Planck mass, an additional exponential suppression comes for the torsion zero-mode on the visible brane. This may serve as a natural explanation of why the effect of torsion is so much weaker than that of curvature on the brane. The massive torsion modes, on the other hand, are correlated with the corresponding gravitonic modes and may be detectable in TeV-scale experiments.

\textsuperscript{1}\text{E-mail: biswarup@mri.ernet.in}
\textsuperscript{2}\text{E-mail: somasri@mri.ernet.in}
\textsuperscript{3}\text{E-mail: tpssg@mahendra.iacs.res.in}
Theories with large compact extra dimensions have gained considerable attention in recent times, primarily because of their role in solving the naturalness problem. A high point of such theories is the prediction of TeV-scale observable effects of the Kaluza-Klein modes of the gravitational field which is assumed to exist in the ‘bulk’. Such speculation can be broadly classified into two schools of thought, based essentially on the approaches of Arkani-Hamed, Dimopoulos and Dvali (ADD)[1] on one hand, and Randall and Sundrum (RS)[2] on the other. In both types of models, all visible matter (i.e. the content of the standard model (SM) of particle interactions) is supposed to be confined to a ‘3-brane’ on which the projections of the bulk gravity gives rise to Kaluza-Klein modes. The spacings of these modes and their interactions with the SM fields are determined by specifics of the model.

In various extensions of the above models, implications of other types of bulk fields, such as scalars, gauge fields and fermions, have been explored[3]-[7]. In this note, we examine what happens if bulk spacetime in an RS picture is endowed with both curvature and torsion, a possibility that is motivated from string theory[8]. From such an assumption, we try to explain why, sitting on the visible brane, one might feel the presence of curvature but not of torsion, although both might have originally (i.e. at the bulk level) been on the same footing.

It has been an old suggestion to modify theories of gravity by incorporating torsion in space-time along with curvature. The most straightforward way of including torsion is to add an antisymmetric component to the connection $\Gamma^\alpha_{\mu\nu}$. This is the essence of the so-called Einstein-Cartan type of theories[9].

Once torsion enters into the theory in the above manner, it can couple with all matter fields with spin. It can be easily seen that such interaction terms in general are of dimension 5, and are suppressed by the Planck mass ($M_P$), much in the same way as in the case of gravitonic couplings. Efforts have been on to constrain the torsion field and its coupling strength from a variety of considerations such as atomic energy level splitting [10] and the phenomena of optical activity in radiation from distant galactic sources[11, 12]. However, it is not clearly understood from any fundamental theoretical consideration whether the coupling of torsion with visible matter should be different from that of curvature, and if so, why. This is precisely the question we address here, within the framework of an RS theory.

In its minimal version the RS scenario, defined in 5-dimensions[2], is characterised by the background metric

$$ds^2 = e^{-2\sigma} \eta_{\mu\nu} dx^\mu dx^\nu + r_c^2 d\phi^2$$

with $\eta_{\mu\nu} = (-,+,+,+)$, and $\sigma = kr_c|\phi|$. $r_c$ is the compactification radius for the fifth dimension, and $k$ is on the order of the higher dimensional Planck mass $M$. The extra dimension, characterized by a variable $\phi$ ranging from $-\pi$ to $+\pi$, forms an $S_1/Z_2$ orbifold. The standard model fields reside at $\phi = \pi$ while gravity peaks at $\phi = 0$. The dimensional parameters defined above are related to the 4-dimensional Planck scale $M_P$ through the relation
\[ M_P^2 = \frac{M^3}{k} [1 - e^{-2k r_c \pi}] \]  

Clearly, \( M_P, M \) and \( k \) are all of the same order of magnitude. For \( k r_c \simeq 12 \) the exponential factor (frequently referred to as the ‘warp factor’) produces TeV scale mass parameters (of the form \( m = M e^{-k r_c \pi} \)) from the Planck scale when one considers projections on the ‘standard model’ brane. Thus the hierarchy between the Planck and TeV scales can be accommodated without the need of fine-tuning.

It is well-known that the likely source of torsion is some matter field(s) with spin, just as curvature is associated with mass/energy. Attempts have been made in some earlier works [13, 14] to relate torsion with fermion fields residing either on the brane or in the bulk. Here we take the standpoint that, being as much a characteristic of spacetime as curvature, it is natural for torsion to coexist with gravity in the bulk. We have earlier performed some analyses in this line in the context of an ADD model [15].

In the scenario adopted by us, the source of torsion is taken to be the rank-2 antisymmetric Kalb-Ramond (KR) field \( B_{MN} \) which arises as a massless mode in heterotic string theories [8]. To understand the above statement, let us recall that the low energy effective action for the gravity and Electromagnetic sectors in D dimensions is given by

\[ S = \int d^D x \sqrt{-G} \left[ R(G) - \frac{1}{4} F_{MN} F^{MN} + \frac{3}{2} H_{MNL} H^{MNL} \right] \]  

It has been shown earlier [16] that an action of the form

\[ S = \int d^D x \sqrt{-G} \left[ R(G,T) - \frac{1}{4} F_{MN} F^{MN} - \frac{1}{2} H_{MNL} H^{MNL} + T_{MNL} H^{MNL} \right] \]  

reproduces the low energy string effective action if one eliminates the torsion field \( T_{MNL} \) (which is an auxiliary field) by using the equation of motion \( T_{MNL} = H_{MNL}. \)

Thus torsion can be identified with the rank-3 antisymmetric field strength tensor \( H_{MNL} \) which in turn is related to the KR field \( B_{MN} \) [17] as

\[ H_{MNL} = \partial_M B_{NL} \]  

with each Latin index running from 0 to 4. (Greek indices, on the other hand, run from 0 to 3.) Furthermore, we use the KR gauge fixing conditions to set \( B_{4\mu} = 0 \). Therefore, the only non-vanishing KR field components correspond to the brane indices. These components, of course, are functions of both compact and non-compact co-ordinates.

The 5-dimensional action for the curvature-torsion sector in this case is

\[ S_G = \int d^4 x \int d\phi \sqrt{-G} 2 M^3 R(G,H) \]
where $G_{MN}$ is given by equation (1) and $R(G, H)$ is the scalar curvature constructed from the modified affine connection:

$$\tilde{\Gamma}^K_{NL} = \Gamma^K_{NL} - \frac{1}{M^2} H_{NL}^K$$  \hspace{1cm} (7)

Clearly, the action can be decomposed into two independent parts - one consisting of pure curvature, and the other, of torsion:

$$S_G = \int d^4x \int d\phi \sqrt{-G} \left[ M^3 R(G) - H_{MNL} H^{MNL} \right]$$  \hspace{1cm} (8)

with $H_{MNL}$ related to the Kalb-Ramond field $B_{NL}$ as in equation (3).

Thus the 5-dimensional action corresponding to the Kalb-Ramond field, up to a dimensionless multiplicative constant, is given by

$$S_H = \int d^4x \int d\phi \sqrt{-G} H_{MNL} H^{MNL}$$  \hspace{1cm} (9)

Using the explicit form of the RS metric, and remembering that $B_{4\mu} = 0$, we have

$$S_H = \int d^4x \int d\phi \, r_c \, e^{2\sigma(\phi)} \left[ \eta^{\mu\alpha} \eta^{\nu\beta} \eta^{\lambda\gamma} H_{\mu\nu\lambda} H_{\alpha\beta\gamma} - \frac{3}{r_c^2} e^{-2\sigma(\phi)} \eta^{\mu\alpha} \eta^{\nu\beta} B_{\mu\nu} \partial_\phi^2 B_{\alpha\beta} \right]$$  \hspace{1cm} (10)

Next, we consider Kaluza-Klein decomposition for the Kalb-Ramond field:

$$B_{\mu\nu}(x, \phi) = \sum_{n=0}^\infty B_n^{\mu\nu}(x) \chi_n(\phi) \sqrt{r_c}$$  \hspace{1cm} (11)

In terms of the four-dimensional projections $B_n^{\mu\nu}$, an effective action of the form

$$S_H = \int d^4x \sum_{n=0}^\infty \left[ \eta^{\mu\alpha} \eta^{\nu\beta} \eta^{\lambda\gamma} H_n^{\mu\nu\lambda} H_n^{\alpha\beta\gamma} + 3m_n^2 \eta^{\mu\alpha} \eta^{\nu\beta} B_n^{\mu\nu} B_n^{\alpha\beta} \right]$$  \hspace{1cm} (12)

can be obtained provided

$$- \frac{1}{r_c^2} \frac{d^2 \chi_n^m}{d\phi^2} = m_n^2 \chi_n^m e^{2\sigma}$$  \hspace{1cm} (13)

and subject to the orthonormality condition

$$\int e^{2\sigma(\phi)} \chi_n^m(\phi) \chi_n^m(\phi) d\phi = \delta_{mn}$$  \hspace{1cm} (14)

where $H_n^{\mu\nu\lambda} = \partial_\mu B_n^{\nu\lambda}$ and $\sqrt{3m_n}$ gives the mass of the $n$th mode. In terms of $z_n = \frac{m_n}{k} e^{\sigma(\phi)}$, equation (11) can be recast in the form

$$\left[ \frac{2}{z_n} \frac{d^2}{dz_n^2} + \frac{d}{dz_n} + \frac{2}{z_n^2} \right] \chi_n^m = 0$$  \hspace{1cm} (15)

The above equation admits of the following solution:
\[ \chi^n = \frac{1}{N_n} \left[ J_0(z_n) + \alpha_n Y_0(z_n) \right] \]  

where \( J_0(z_n) \) and \( Y_0(z_n) \) are respectively Bessel and Neumann functions of order zero. \( \alpha_n \) as well as \( m_n \) can be determined from the continuity conditions for the derivative of \( \chi_n \) at \( \phi = 0 \) and \( \pi \), which are dictated by self-adjointness of the left-hand side of equation (11). On using the fact that \( e^{kr_c \pi} \gg 1 \) and the mass values \( m_n \) on the brane should be on the order of the TeV scale \( (<< k) \), we obtain from the continuity condition at \( \phi = 0 \)

\[ \alpha_n \simeq x_n e^{-2kr_c \pi} \]  

with \( x_n = z_n(\pi) \). The boundary condition at \( \phi = \pi \) gives

\[ J_1(x_n) \simeq \frac{\pi}{2} x_n e^{-2kr_c \pi} \]  

Since the right-hand side of the above equation is very small, the roots can be closely approximated to the zeros of \( J_1(x_n) \). These roots of \( J_1 \) give \( m_n \) on the TeV range, as expected initially.

Since \( x_n \simeq 1 \), from equation (15) \( \alpha_n \) becomes \( << 1 \). The normalization condition yields

\[ N_n = \frac{\pi}{2\sqrt{kr_c}x_n e^{-kr_c \pi}} \]  

Thus the final solution for the massive modes turns out to be

\[ \chi^n(z_n) = \frac{2\sqrt{kr_c}e^{kr_c \pi}}{\pi x_n} J_0(z_n) \]  

At this point it is useful to compare the solutions with those for bulk gravitons and gauge fields. First, here the massive solutions are governed by zeroth-order Bessel functions, as against second and first order ones in the two other cases. Furthermore, a comparison with the above references shows that whereas a massive gravitonic mode contains the same exponential enhancement factor as that in equation (18), it is absent in the case of bulk gauge fields. This difference can be attributed essentially to the tensorial structures of the different types of bulk fields as well as to the characteristic forms of the 4-dimensional effective actions into which the theory must reduce in the different cases.

| \( n \) | \( m_{\text{grav}}^{\text{grav}} \) (TeV) | \( m_{\text{tor}}^{\text{grav}} \) (TeV) |
|-------|----------------|----------------|
| 1     | 1.66           | 2.87           |
| 2     | 3.04           | 5.26           |
| 3     | 4.40           | 7.62           |
| 4     | 5.77           | 9.99           |

Table 1: The masses of a few low-lying gravitonic modes vis-a-vis the massive KR modes for \( kr_c = 12 \) and \( k = 10^{19}\) Gev.

As table 1 shows, the mass spectrum here is correlated with the masses of the gravitonic modes. This is because the masses in both cases are effectively given, upto an overall factor of \( \sqrt{3} \), by the
zeros of $J_1(x_n)$ (as we have already noticed, the right-hand side of equation (16) is negligibly small). Thus the scenario proposed here has an added element of predictability as far as the graviton and torsion KK modes are concerned. The $B^m_{\mu\nu}$ spacings ($n = 1$ onwards) are just scaled with respect to the gravitonic modes by a factor of $\sqrt{3}$ to a close approximation, and therefore the low-lying states in the spectrum should be within the reach of TeV-scale collider experiments.

However, a more drastic difference is noticed when we consider the massless mode. In this case the solution to (11) turns out to be

$$\chi^0(\phi) = c_1|\phi| + c_2 \quad (21)$$

The condition of self-adjointness leaves the scope of only a constant solution. Using the normalization condition, one obtains

$$\chi^0 = \sqrt{kr_c} e^{-kr_c\pi} \quad (22)$$

Thus, in contrast to the other types of bulk fields mentioned above, the zero mode $\chi^0$ exhibits a suppression by a large exponential factor. This causes the massless KR mode to be severely suppressed on the visible brane, granting a practically imperceptible presence to torsion.

This can be seen more clearly if we consider the coupling of torsion to matter fields on the visible brane. Let us for example consider the interaction with spin-1/2 fields[19]. Starting with a 5 dimensional action and remembering that the fermion and all its interactions are confined to the brane at $\phi = \pi$, the fermionic action in terms of the modified affine connection is given by:

$$S_\psi = i \int d^4x \int d\phi [\det V] \bar{\psi} \left[ i\gamma^\mu \sigma^a \nu^\mu \partial_\mu v^a_\nu \delta^a_\nu \delta^L_\lambda - G_{AB} \sigma^a \nu^\mu \delta^\nu_\mu \delta^B_\lambda \delta^D_\beta \right] \psi \delta(\phi - \pi) \quad (23)$$

where $G_{MN}$ is given by,

$$G_{MN} = v^a_M v^b_N \eta_{ab} \quad (24)$$

and the vierbein $v^a_\mu$ is given in this case by

$$v^a_4 = 1; \quad v^a_\mu = e^{-\sigma} \delta^a_\mu, \quad \det V = e^{-4\sigma} \quad (25)$$

$a, b$ etc. being tangent space indices.

Integrating out the compact dimension and using the fact that the fermion field on the brane is consistently renormalized as $\psi \rightarrow e^{3kr_c\pi/2} \psi$, one obtains the effective 4-dimensional fermion KR interaction as

$$\mathcal{L}_{\psi\bar{\psi}H} = -\bar{\psi} \left[ i\gamma^\mu \sigma^a \nu^\mu \left\{ \frac{1}{M_P e^{kr_c\pi}} H^0_{\mu\nu\lambda} + \frac{1}{\Lambda_\pi} \frac{2J_0(x_n)}{x_n} \sum_{n=1}^{\infty} H^n_{\mu\nu\lambda} \right\} \right] \psi \quad (26)$$

where $H^n_{\mu\nu\lambda} = \partial_\mu B^n_{\nu\lambda}$ and $\Lambda_\pi = M_P e^{-kr_c\pi}$. 

A rather remarkable fact becomes evident from above. Although gravity and torsion are treated at par on the bulk, with the Planck mass characterizing any dimensional parameter controlling their interactions, the coupling of the zero-mode torsion field with fermionic matter suffers an enormous additional suppression via the warp factor when one compactifies the extra dimension in the RS scheme. However, the massless graviton continues to have interactions driven by $1/M_P$ on the brane. In a way, this leads to the conclusion that the experimental signatures of torsion will continue to be elusive so long as we are sitting on the brane, with the apparent feeling that we are living in a torsionless universe.

The massive modes $H^\mu_{\nu \lambda}$, however, have enhanced coupling with matter, caused by the usual warp factor. The lowest-lying modes are in the TeV scale and their interaction strength is suppressed by a mass of similar magnitude. One can hope to see observable effects of these modes through new resonances in TeV scale accelerator experiments, or in the helicity flip of, say, high-energy massive neutrinos interacting with torsion.$^{[20]}$

As far as the interaction of bulk torsion with standard model gauge fields is concerned, very similar effects can be seen. We show this in the context of the $U(1)_{EM}$ gauge field. First it has to be remembered that gauge invariant interactions of this type cannot be obtained without introducing some amount of nonminimality into the theory. A rather convenient way of doing so is to augment the brane components of the torsion tensor $H_{MNL}$ with a so-called Chern-Simons term$^{[8]}$: $^{[8]}$

$$H_{\mu \nu \lambda}(x, \phi = \pi) \rightarrow H_{\mu \nu \lambda}(x, \phi = \pi) + \frac{1}{M_P^2} A[\mu(x) F_{\nu \lambda}(x)$$

(27)

Such a term is natural in the context of gauge anomaly cancellation in a heterotic string theory$^{[8]}$. On considering the KK modes $B^\mu_{\nu}$, and appropriately redefining the electromagnetic field on the brane, one ends up with interaction terms of the following nature:

$$L_{em-H} = -\frac{1}{M_P e^{kr \pi}} A[\mu F^{\nu \lambda}](x) H^\mu_{\nu \lambda}(x) - \frac{2 J_0(x_n)}{x_n} A[\mu F^{\nu \lambda}](x) \sum_{n=1}^{\infty} H^n_{\mu \nu \lambda}(x)$$

(28)

where again we notice an additional suppression for the massless modes and an enhancement for the massive ones, just as in the case of spin-1/2 particles coupling to torsion. This extreme suppression of the zero-mode coupling could weaken torsion-induced optical activities, as suggested in some recent works$^{[11, 12]}$.

The following picture emerges from the above analysis. Torsion, caused by a KR field, can be postulated to exist in the bulk in a 5-dimensional RS scenario, together with gravity. At that level, only one mass parameter (of the order of the Planck scale) controls the actions for both gravity and torsion. The compactification of the fifth dimension gives rise to a spectrum of Kaluza Klein modes for the KR field, just as in the case of gravity. However, the torsion zero mode on the visible brane has an added suppression through the warp factor in its interaction with matter fields. This indicates that it is going to be nearly impossible to see its trace in any observation performed on the visible brane. Therefore, we shall continue to have the impression of residing in a torsionless universe if this scenario is correct. On the other hand, the massive KR spectrum gets correlated...
with the spectrum of graviton, and their signals in TeV scale accelerator experiments can make the hypothesis of bulk torsion verifiable.

Acknowledgement: The work of BM and SSG has been partially supported by the Board of Research in Nuclear Sciences, Government of India. SSG acknowledges the hospitality of Harish-Chandra Research Institute while this work was in progress. SS thanks P. Crawford for hospitality at the University of Lisbon where part of the work was done.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998); Phys.Rev. D.59, 086004 (1999); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436, 257 (1998).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); ibid, 83, 4690 (1999).

[3] W.D.Goldberger and M.B.Wise, Phys.Rev.D60, 107505 (1999).

[4] H.Davoudiasl, J.L.Hewett and T.G.Rizzo, Phys. Lett. B473, 43 (2000).

[5] Y.Grossman and M.Neubert, Phys. Lett. B474, 361 (2000).

[6] K.Agashe, N.G.Deshpande and G.H.wu, Phys. Lett. B511, 85 (2001).

[7] N.Arkani-Hamed, S. Dimopoulos, G. Dvali and J.M.Russell, Phys. Rev. D65, 0240032 (2002).

[8] Superstring Theory, M. B. Green, J. H. Schwarz and E. Witten, Cambridge University Press, Cambridge (1987);

[9] F.Hehl et al., Rev. of Mod. Phys. 48, 393(1976); Phys.Rev. D58, 73 (1995); Phys. Rep, 258, 223 (1995); Spin and Torsion in Gravitation, V. De Sabbata and C. Sivaram, World Scientific, Singapore (1994).

[10] C. Laemmerzahl, Phys. Lett. A228, 223 (1997).

[11] S. Kar, P. Majumdar and S. SenGupta, Eur.Phys.J. C23, 357 (2002).

[12] S. Kar, P. Majumdar, S. SenGupta and S.Sur, Class.Quant. Grav. 19, 677 (2002).

[13] L. N. Chang, O. Lebedev, W. Loinaz and T. Takeuchi, Phys Rev. Lett. 85, 3765 (2000).

[14] O.Lebedev, hep-ph/0201125.

[15] B.Mukhopadhyaya, S.Sen and S.SenGupta, hep-ph/0110308.

[16] P.Majumdar and S.SenGupta, Class.Quant.Grav.16, L89 (1999). String Theory, J.Polchinski, Cambridge University Press., Cambridge, (1998).
[17] M.Kalb and P.Ramond, Phys.Rev. D9, 2273 (1974).

[18] H.Davoudiasl, J.L.Hewett and T.G.Rizzo, Phys. Rev. Lett. 84, 2080 (2000).

[19] B. Mukhopadhyaya and S. SenGupta, Phys. Lett. B458, 8 (1999).

[20] S. Sengupta and A. Sinha, Phys. Lett. B514, 109 (2001).