No scalar hair theorem for neutral Neumann stars: static massive scalar fields nonminimally coupled to gravity

Yan Peng1
*

1 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

Abstract

In a recent paper, Hod proved that spherically symmetric Dirichlet reflecting compact stars cannot support static scalar fields nonminimally coupled to gravity. In the present paper, we study the validity of no hair theorems for compact stars with Neumann surface boundary conditions. We find that Neumann compact stars cannot support static massive scalar field hairs with a generic dimensionless field-curvature coupling parameter.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z

* yanpengphy@163.com
I. INTRODUCTION

The classical no hair theorem [1]-[8] plays an important role in the development of black hole theories. It states an intriguing property that asymptotically flat black holes cannot support minimally coupled static scalar fields, for recent progress see references [9]-[23] and reviews [24, 25]. It was usually believed that this no hair property is due to the existence of black hole absorbing horizons.

However, no scalar hair behavior also appears in the horizonless spacetime. It was firstly proved that asymptotically flat neutral Dirichlet reflecting horizonless compact stars cannot support massive scalar field hairs [26]. In the asymptotically dS gravity, massive scalar, vector and tensor fields also cannot exist outside neutral horizonless Dirichlet reflecting compact stars [27]. Then whether no hair theorem exists in the charged horizonless gravity is still an question to be answered. In fact, it was shown that static scalar fields cannot condense outside reflecting shells of large radii [28–30]. Moreover, large charged reflecting stars cannot support static scalar field hairs [31–35]. It was also showed that scalar fields cannot exist outside compact stars with Neumann surface boundary conditions [36].

All front no scalar hair theorems only consider minimally coupled scalar field hairs. Interestingly, black hole no scalar hair theorem also holds with nonminimal field-curvature couplings [37–40]. Considering nonminimal coupling parameter ξ, compact stars with generic boundary conditions can rule out the existence of scalar hairs in ranges $\xi < 0$ and $\xi > \frac{1}{4}$ and compact stars with Dirichlet reflecting boundary conditions can also rule out exterior scalar hair for $0 \leq \xi \leq \frac{1}{4}$ [41-43]. So it is interesting to study no scalar hair properties with other boundary conditions in the range $0 \leq \xi \leq \frac{1}{4}$. In this work, we plan to investigate the no nonminimal scalar hair behavior in the background of horizonless compact stars with Neumann boundary conditions.

The rest of this work is as follows. We construct the gravity model of static scalar fields nonminimally coupled to gravity in the background of Neumann compact stars. We find that no scalar hair theorem holds for generic coupling parameters. At last, we summarize the main results.
II. NO HAIR THEOREM FOR SCALAR FIELDS OUTSIDE NEUMANN STARS

We study the gravity model of massive scalar fields nonminimally coupled to the compact star gravity. And the asymptotically flat spherically symmetric spacetime reads 37–41

\[ds^2 = -e^{\nu}dt^2 + e^{\lambda}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2). \] (1)

The functions \(\nu \) and \(\lambda \) only depend on the radial coordinate \(r \). We define the radial coordinate \(r = r_s \) as the star radius. Asymptotic flatness of the spacetime requires the behaviors 37

\[\nu(r \to \infty) \sim O\left(\frac{1}{r}\right), \quad \lambda(r \to \infty) \sim O\left(\frac{1}{r}\right). \] (2)

The Lagrange density with scalar fields nonminimally coupled to gravity is 40, 41

\[\mathcal{L} = R - \xi R\psi^2 - |\nabla_\alpha \psi|^2 - \mu^2 \psi^2, \] (3)

where \(\psi(r) \) is the scalar field with mass \(\mu \). We label \(R \) as scalar Ricci curvature of the spacetime. Since we are interested in the asymptotically flat background, there is

\[R(r \to \infty) \to 0. \] (4)

The dimensionless physical parameter \(\xi \) describes the nonminimal coupling strength between scalar fields and curvature. Hod proved that compact stars with generic boundary conditions can rule out the existence of scalar hairs in ranges \(\xi < 0 \) and \(\xi > \frac{1}{4} \) 41. It remains to study no hair theorem in the background of compact regular star for parameters satisfying

\[0 \leq \xi \leq \frac{1}{4}. \] (5)

The scalar field equation is 41

\[\psi'' + \left(\frac{2}{r} + \frac{\nu'}{2} - \frac{\lambda'}{2}\right)\psi' - (\mu^2 + \xi R)e^\lambda \psi = 0. \] (6)

At the star surface, we take the Neumann boundary condition. Around the infinity, the scalar field asymptotically behaves in the form

\[\psi \sim A \cdot \frac{1}{r}e^{-\mu r} + B \cdot \frac{1}{r}e^{\mu r}, \] (7)

where \(A \) and \(B \) are integral constants. The physical solution requires \(B = 0 \) 40. It yields boundary conditions

\[\psi'(r_s) = 0, \quad \psi(\infty) = 0. \] (8)
The Ricci scalar curvature is
\[R = -\frac{8\pi}{1 - 8\pi \xi^2 \psi^2} \{ e^{-\lambda} \{ \xi \left(\frac{12}{r} + 3\nu' - 3\lambda' \} \psi \psi' + 6\xi \psi'' + (6\xi - 1)(\psi')^2 \} - 2\mu^2 \psi^2 \}. \] (9)

Substituting (9) into the scalar field equation (6), we arrive at
\[F \cdot \psi'' + \left[F \cdot \left(\frac{2}{r} + \frac{\nu'}{2} - \frac{\lambda'}{2} \right) + 8\pi \xi (6\xi - 1) \psi \psi' \right] \psi' - \mu^2 e^\lambda (1 + 8\pi \xi \psi^2) \psi = 0, \] (10)
where we have defined \(F(r, \xi) = 1 + 8\pi \xi (6\xi - 1) \psi^2. \)

We divide the proof of no hair theorem into three cases
\[\psi(r_s) = 0, \ \psi(r_s) > 0 \ \text{and} \ \psi(r_s) < 0. \] (11)

It is known that the nontrivial scalar field cannot exist for \(\psi(r_s) = 0 \) [41]. Considering the symmetry \(\psi \rightarrow -\psi \) of equation (10), it remains to prove no hair theorem for
\[\psi(r_s) > 0. \] (12)

In the range \(0 \leq \xi \leq \frac{1}{4} \), there is \(F(r, \xi) \geq 0 \), which is important in the following analysis [41]. The proof of \(F(r, \xi) \geq 0 \) is as follows. In the range \(\frac{1}{6} \leq \xi \leq \frac{1}{4} \), there is \(F(r, \xi) \geq 0 \). For \(0 \leq \xi < \frac{1}{6} \), \(F(r, \xi) \) cannot switch signs. Otherwise, \(F(r, \xi) \) vanishes at some point \(r_0 \). And at this point \(r = r_0 \), there is the relation
\[8\pi \xi (6\xi - 1) \psi'^2 = \mu^2 e^\lambda (1 + 8\pi \xi \psi^2). \] (13)
In the regime \(0 \leq \xi < \frac{1}{6} \), the functional expression on the left side of (13) is non-positive whereas the functional expression on the right side of (13) is positive definite. One therefore concludes that the radial function \(F(r, \xi) \) cannot switch signs. At the infinity, \(F(r, \xi) \) behaves as
\[F(r \rightarrow \infty, \xi) \rightarrow 1 + 8\pi \xi (6\xi - 1) \psi(\infty)^2 = 1 > 0. \] (14)
So we find \(F(r, \xi) > 0 \) in the case of \(0 \leq \xi \leq \frac{1}{6} \). As a summary, for \(0 \leq \xi \leq \frac{1}{4} \), there is the relation
\[F(r, \xi) \geq 0. \] (15)

We divide the analysis into two cases
\[\psi''(r_s) \leq 0 \ \text{and} \ \psi''(r_s) > 0. \] (16)

In the case of \(\psi''(r_s) \leq 0 \), we obtain following relations at the star surface \(r = r_s \) as
\[\{ \psi^2 > 0, \ \psi' = 0 \ \text{and} \ \psi'' \leq 0 \} \ \text{for} \ \ r = r_s. \] (17)
At the star radius \(r_s \), relations (15), (17) and \(0 \leq \xi \leq \frac{1}{4} \) give the characteristic inequality

\[
F \cdot \psi'' + \left[F \cdot \left(\frac{2}{r} + \frac{\nu'}{2} - \frac{\lambda'}{2} \right) + 8\pi\xi(6\xi - 1)\psi\psi' \right] \psi\psi' - \mu^2 e^{-\lambda}(1 + 8\pi\xi\psi^2)\psi^2 < 0,
\]

which is in contradiction with equation (10).

In another case of \(\psi''(r_s) > 0 \), also considering the condition \(\psi'(r_s) = 0 \), we will have \(\psi'(r) > 0 \) around \(r_s \). With increase of the radial coordinate, the scalar field firstly becomes more positive and finally approaches zero at the infinity. In this case, there is at least one positive maximum extremum point \(r = r_{peak} \) between the star surface \(r_s \) and the infinity boundary. At this extremum point, the scalar field is characterized by following relations

\[
\{ \psi^2 > 0, \quad \psi' = 0 \quad \text{and} \quad \psi\psi'' \leq 0 \} \quad \text{for} \quad r = r_{peak}.
\]

At this extremum point \(r = r_{peak} \), relations (15), (19) and \(0 \leq \xi \leq \frac{1}{4} \) lead to the inequality

\[
F \cdot \psi'' + \left[F \cdot \left(\frac{2}{r} + \frac{\nu'}{2} - \frac{\lambda'}{2} \right) + 8\pi\xi(6\xi - 1)\psi\psi' \right] \psi\psi' - \mu^2 e^{-\lambda}(1 + 8\pi\xi\psi^2)\psi^2 < 0.
\]

It can be easily seen that relation (20) is in contradiction with equation (10). So nontrivial scalar field solution of equation (10) cannot exist. Here we prove no nonminimally coupled scalar hair theorem for \(0 \leq \xi \leq \frac{1}{4} \). Also considering known results that compact stars with generic boundary conditions cannot support scalar hairs in ranges \(\xi < 0 \) and \(\xi > \frac{1}{4} \) [41], we conclude that scalar hair cannot form outside regular neutral Neumann stars for any coupling parameter \(\xi \).

III. CONCLUSIONS

In the background of spherically symmetric regular Neumann stars, we studied no hair theorem for static massive scalar fields nonminimally coupled to the asymptotically flat gravity. We considered the field-curvature coupling and included scalar fields’ backreaction on the background. We obtained the characteristic inequalities (18) at the star surface and (20) at extremum points, which are in contradiction with the scalar field equation (10). It means that there is no nontrivial scalar field solution. At last, we concluded that asymptotically flat spherically symmetric regular Neumann stars cannot support the existence of exterior massive scalar field hairs for generic nonminimal coupling parameters.
Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2018QA008.

[1] J. D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28, 452 (1972).
[2] J. E. Chase, Event horizons in Static Scalar-Vacuum Space-Times, Commun. Math. Phys. 19, 276 (1970).
[3] C. Teitelboim, Nonmeasurability of the baryon number of a black-hole, Lett. Nuovo Cimento 3, 326 (1972).
[4] R. Ruffini and J. A. Wheeler, Introducing the black hole, Phys. Today 24, 30 (1971).
[5] W.K.H. Panofsky, Needs Versus Means In High-energy Physics, Phys. Today 33(1980)24-33.
[6] M. Heusler, A No hair theorem for selfgravitating nonlinear sigma models, J. Math. Phys. 33(1992)3497-3502.
[7] Markus Heusler, A Mass bound for spherically symmetric black hole space-times, Class. Quant. Grav. 12(1995)779-790.
[8] J.D. Bekenstein, Novel “no-scalar-hair” theorem for black holes, Phys. Rev. D 51(1995)no.12,R6608.
[9] D. Núñez, H. Quevedo, and D. Sudarsky, Black Holes Have No Short Hair, Phys. Rev. Lett. 76, 571 (1996).
[10] S. Hod, Hairy Black Holes and Null Circular Geodesics, Phys. Rev. D 84, 124030 (2011).
[11] Pallab Basu, Chethan Krishnan, P.N.Bala Subramanian, Hairy black holes in a box, JHEP 11(2016)041.
[12] S. Hod, Stationary Scalar Clouds Around Rotating Black Holes, Phys. Rev. D 86, 104026 (2012).
[13] C. A. R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112, 221101 (2014).
[14] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu, Kerr-Newman scalar clouds, Phys. Rev. D 90, 104024 (2014).
[15] Yan Peng, Hair mass bound in the black hole with non-zero cosmological constants, Physical Review D 98, 104041 (2018).
[16] Yan Peng, Hair distributions in noncommutative Einstein-Born-Infeld black holes, Nucl. Phys. B941(2019)-10.
[17] J. C. Degollado and C. A. R. Herdeiro, Stationary scalar configurations around extremal charged black holes, Gen. Rel. Grav. 45, 2483 (2013).
[18] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, and H. F. Rumarsson, Shadows of Kerr black holes with scalar hair, Phys. Rev. Lett. 115, 211102 (2015).
[19] Y. Brihaye, C. Herdeiro, and E. Radu, Inside black holes with synchronized hair, Phys. Lett. B 760, 279 (2016).
[20] S. A. Hartnoll, C. P. Herzog and G. T. Horowitz, Holographic Superconductors, JHEP 0812(2008)015.
[21] Nicolas Sanchis-Gual, Juan Carlos Degollado, Pedro J. Montero, Jos A. Font, Carlos Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett. 116 (2016) 141101.
[22] Sam R Dolan, Supakchai Ponglertsakul, Elizabeth Winstonley, Stability of black holes in Einstein-charged scalar field theory in a cavity, Phys. Rev. D 92(2015)124047.
[23] Chen Wu, Renli Xu, Decay of massive scalar field in a black hole background immersed in magnetic field, Eur. Phys. J. C 75(2015) no.8,391.
[24] J. D. Bekenstein, Black hole hair: 25-years after, arXiv:gr-qc/9605059.
[25] Carlos A. R. Herdeiro, Eugen Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24(2015)09,1542014.
[26] S. Hod, No-scalar-hair theorem for spherically symmetric reflecting stars, Physical Review D 94, 104073 (2016).
[27] Srijit Bhattacharjee, Sudipta Sarkar, No-hair theorems for a static and stationary reflecting star, Physical Review D 95, 084027 (2017).
[28] S. Hod, Charged massive scalar field configurations supported by a spherically symmetric charged reflecting shell, Physics Letters B 763, 275 (2016).
[29] S. Hod, Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell, Physics Letters B 768(2017)97-102.
[30] Yan Peng, Bin Wang, Yunqi Liu, Scalar field condensation behaviors around reflecting shells in Anti-de Sitter spacetimes, Eur. Phys. J. C 75 (2018) no.8, 680.
[31] Yan Peng, Scalar field configurations supported by charged compact reflecting stars in a curved spacetime, Physics Letters B 780(2018)144-148.
[32] Shahar Hod, Charged reflecting stars supporting charged massive scalar field configurations, European Physical Journal C 78, 173 (2017).
[33] Yan Peng, Static scalar field condensation in regular asymptotically AdS reflecting star backgrounds, Phys. Lett. B 782(2018)717-722.
[34] Yan Peng, On instabilities of scalar hairy regular compact reflecting stars, JHEP 10(2018)185.
[35] Yan Peng, Hair formation in the background of noncommutative reflecting stars, Nucl. Phys. B 938(2019)143-153.
[36] Yan Peng, Scalar condensation behaviors around regular Neumann reflecting stars, Nucl. Phys. B 934 (2018) 459-
[37] Avraham E. Mayo, Jacob D. Bekenstein, No hair for spherical black holes: Charged and nonminimally coupled scalar field with selfinteraction, Phys. Rev. D 54(1996)5059-5069.

[38] Alberto Saa, Searching for nonminimally coupled scalar hairs, Phys. Rev. D 53(1996)7377-7380.

[39] S.Hod, No nonminimally coupled massless scalar hair for spherically symmetric neutral black holes, Physics Letters B 771(2017)521-523.

[40] S.Hod, No hair for spherically symmetric neutral black holes: Nonminimally coupled massive scalar fields, Physical Review D 96,124037(2017).

[41] S.Hod, No hair for spherically symmetric neutral reflecting stars: Nonminimally coupled massive scalar fields, Physics Letters B 773(2017)208-212.

[42] S.Hod, No nonminimally coupled massless scalar hair for spherically symmetric neutral reflecting stars,Physical Review D 96, 024019 (2017).

[43] S.Hod, No-go theorem for static boson stars, Physics Letters B 778(2018)239-241.