Colorectal Cancer Grows and Proliferates Due to Crosstalk Between Intestinal Microbiota and Mucosal Epithelium

Tadashi Ohara, M.D., Ph.D.

Department of Gastroenterology, Kitashinagawa Third Hospital, Kohno Clinical Medicine Research Institute, Tokyo, Japan.

ABSTRACT

Background/Aim: The details of how intestinal microbiota are involved in the carcinogenesis, growth and proliferation of colorectal cancer have not been elucidated. This study investigated how intestinal microbiota were involved in colorectal carcinogenesis, growth and proliferation.

Subjects and Methods: Samples were feces and tumor epithelium of patients with colorectal cancer (n=18), and analyzed using a metagenomic analysis after collected genomic DNA from each sample.

Results: According to the functional analysis of common microorganisms in feces and tumor epithelium microflora of patients with colorectal cancer, there were no microorganisms which activate any carcinogenic pathways and cancer-related signals. There were observed microorganisms involved in tumor growth such as expression of transporters essential for amino acids uptake, DNA replication / repair, RNA degradation, transcription factors and microorganisms involved in tumor metabolism.

Conclusions: Although the colorectal carcinogenic mechanism was unknown, it has been suggested that colorectal cancer may grow and proliferate due to crosstalk between intestinal microbiota and tumor epithelium.

Keywords
Colorectal cancer, Microbiota, Crosstalk between microorganisms and tumor epithelium.

Introduction
The combination of high-throughput DNA sequencing technology and advanced bioinformatics tools have led to rapid advances in the understanding of microbial ecology and the human microbiome. Short chain fatty acids (SCFAs) are produced by intestinal microbiota. We had reported that SCFAs such as butyric acid, isobutyric acid, and acetic acid have antitumor effects in colorectal cancer cultures [1]. Then, we had investigated the mechanism of SCFAs antitumor action from in silico analysis and reported that SCFAs suppresses molecules involved in tumor growth and tumor metabolism [2]. In silico analysis of the tumor pathology is a comprehensive and one-time computer analysis of biological functions and pathways based on experimental data (bioinformatics) using microarrays, metabolomics, proteomics and RNA-Seq. SCFAs suppress carcinogenesis by suppressing molecules in tumor growth and tumor metabolism.

The relationship between colorectal carcinogenesis and microbiota has not yet been elucidated in details. In order to investigate the relationship between colorectal carcinogenesis / growth / proliferation and intestinal microbiota, I analyzed the microbial flora in feces and tumor epithelium of patients with colorectal cancer in this time.
Subjects and Methods

Total eighteen patients with colorectal cancer were recruited for this study. Samples are feces and tumor epithelium of patients with colorectal cancer. All experiments were performed in accordance with the 1964 Declaration of Helsinki and its later amendments. Patients with colorectal cancer were informed of the experimental nature. Patients provided written, informed consent before participating. The study was approved by the Ethics Committee of Fukushima Daiichi-Hospital, Fukushima, Japan.

Fecal samples were collected from participants and genomic DNA was extracted and used for each analysis. The analysis of microbiota in colorectal tumor epithelium was performed in the same manner as feces. DNA was extracted from 200 μL of the suspension using an automatic nucleic acid extractor (Precision System Science, Chiba, Japan) after centrifugation at 5000 rpm for 1 min. MagDEA DNA 200 GC (Precision System Science) was used as the reagent for automatic nucleic acid extraction [3]. Each sample was stored at -4°C prior to DNA extraction.

Sequences of the 16S rRNA gene of gut microbiota were analyzed by next-generation sequencing using the MiSeq system (Illumina, San Diego, CA, USA), as previously described [4]. The V3 and V4 hypervariable regions of the 16S rRNA gene were amplified by polymerase chain reaction (PCR) from microbial genomic DNA using prokaryote universal primer sets [5]. The V3 and V4 regions of the 16S rRNA fragments were amplified in 25-μL PCR reactions containing ~30 ng DNA template, 12.5 μL 2× MightyAmp Buffer (v.2.0; Mg2+, dNTP plus; TaKaRa Bio, Inc., Shiga, Japan), 0.25 μM of each primer, and 0.625 U MightyAmp DNA polymerase (TaKaRa Bio, Inc.). The PCR conditions for DNA amplification were as follows: initial denaturation at 98°C for 2 min, followed by 35 cycles of annealing beginning at 65°C and ending at 55°C for 15 s and extension at 68°C for 30 s. The annealing temperature was lowered 1°C every cycle until it reached 55°C, which was maintained for the remaining cycles. PCR products were purified through a MultiScreen PCRu96 filter plate (Merck Millipore, Billerica, MA, USA). To prepare the amplicon pool, purified products were quantified by real-time quantitative PCR on a Rotor-Gene Q quantitative thermal cycler using MightyAmp reagents and SYBR Plus (TaKaRa Bio, Inc.). Barcoded amplicons were sequenced using paired ends and the MiSeq reagent kit (v.3.0; Illumina) on the MiSeq system (600 cycles, 2×284 bp/cycle; Illumina) [6].

Paired-end reads were concatenated using the FASTQ-join program with default options (Erik A. 2011). Only joined reads with quality value score >20 for >99% of the sequence were extracted using the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). Chimeric sequences were deleted using uSearch version 6.1 software [7].

Bacterial identification from analyses of the sequence reads was performed using Metagenome KIN software (v.2.2.1; World Fusion, Tokyo, Japan) and the TechnoSuruga Lab microbial identification database (DB-BA 10.0; TechnoSuruga Laboratory, Shizuoka, Japan) using a homology threshold of >97%.

To indicate specific or common taxonomies among the microbial-compositional structures of samples, Venn diagrams were constructed using the R Venn Diagram package (https://www.r-project.org/) based on the microbial-community results returned from DB-BA 10.0 analysis [8]. Heatmap clustering of the bacterial taxonomies identified in the fecal microbiota by the R amap and gplots packages was performed to visualize the abundance of taxonomies and similar microbial-compositional structures [9]. Data for each sample were aligned to a dendrogram constructed using the Ward algorithm based on a Euclidean distance matrix.

Operational taxonomic units (OTUs) were constructed using the raw data reads. To join two paired-end reads, we used FASTQ-join software with default options [10], and chimeric sequences were deleted with uSearch version 6.1 software [11]. OTUs at 97% sequence similarity were selected using the Greengenes database (http://greengenes.secondgenome.com/) and pick_open_reference_otros.py in the quantitative insight into microbial ecology (QIIME)1.8.0 pipeline [10]. QIIME is the genome structural analysis. Functional analysis of microbiota based on the Kyoto Encyclopedia of Genes and Genomes Orthology (KEGG) database was performed using PICRUSt version 1.1.1 [12]. KEGG is a database resource for understanding high-level functions and utilities of the biological system, such as the cell, the organism and the ecosystem, from molecular-level information, especially large-scale molecular datasets generated by genome sequencing and other high-throughput experimental technologies.

Statistical analysis was performed with repeated measures analysis of variance for continuous variables and Pearson’s chi-squared test for categorical variables. Differences in taxa abundance between groups were measured using an unpaired t test (assuming unequal variance), with significance determined at p < 0.05. All data were analyzed using SPSS (v.20.0; IBM Corp. Armonk, NY, USA).

Results

There were Heatmap clustering of taxonomy (species) identified in the fecal microbiota of patients with each part of colorectal cancer using 16s rRNA amplicon sequencing (Figure 1a). QIIME and PICRUSt of taxonomy (species) was each functional analysis tool in the fecal microbiota of patients with colorectal cancer. The colorectal cancer cases included ascending colon cancer, transverse colon cancer, descending colon cancer, sigmoid colon cancer and rectal cancer. In the analysis of these microbial flora, the structural analysis of fecal microorganisms by QIIME showed differences depending on each tumor site (Figure 1b), but the pathological function analysis of microorganisms by PICRUSt did not show any difference depending on the tumor site (Figure 1c).

Analysis by Venn diagram results of fecal microflora of three patients with colorectal cancer (rectal cancer, sigmoid colon cancer and descending colon cancer), and analysis results of
Figure 1a: Heatmap clustering of taxonomy (species) identified in the fecal microbiota of patients with each part of colorectal cancer using 16s rRNA amplicon sequencing.

The eighteen cases of colorectal cancer were ascending colon cancer (3 cases), transverse colon cancer (3 cases), descending colon cancer (4 cases), sigmoid colon cancer (4 cases), and rectal cancer (4 cases), all of which were advanced colorectal cancers.

The number on the left in Figure 1a is each colorectal cancer sample number.
Figure 1b: QIIME of taxonomy (species) in fecal microbiota of colorectal cancer. The number in the lower part of Figure 1b is sample number for each colorectal cancer. The genomic structure of each microorganism was displayed in different color, individually. Genomic structures of microorganisms in feces of patients with colorectal cancer were quite different.

Figure 1c: PICRUSt of taxonomy (species) in fecal microbiota of colorectal cancer. The number in the lower part of Figure 1c is sample number for each colorectal cancer. The function of each microorganism was displayed in different color, individually. Functions of microorganisms which observed in feces of patients with colorectal cancer were almost same.
microorganisms’ structure and pathophysiological function by QIIME and PICRUSt tools were shown follows. Figure 2a is Heatmap clustering of taxonomy(species) identified in the fecal microbiota of patients with each part of colorectal cancer. Figure 2b is QIIME of taxonomy (species) in fecal microbiota of patients with each part of colorectal cancer. Figure 2c is PICRUSt of taxonomy (species) in fecal microbiota of patients with each part of colorectal cancer. Figure 2d is the functional analysis of fecal microorganisms (species) of patients with colorectal cancer by PICRUSt was confirmed the following functions; transporters, ABC transporters, phosphotransferase system, chaperon system, DNA repair / recombination / replication, transcription factor, ribosome, cysteine, methionine, phenylalanine, tyrosine, valine, leucine, isoleucine, alanine, aspartic acid, glutamine metabolism, tryptophan affects biosynthesis / metabolism, amino acid-related enzymes, TCA circuit, fructose / mannose metabolism, glycolysis / glycation, purine / pyrimidine metabolism, pentos phosphate pathway, energy metabolism, nitrogen metabolism, methane metabolism, and one carbon pool by folic acid. Sixty-seven microbial species were identified by Venn diagram as common microorganisms in feces of patients with colorectal cancer (Figure 2d, Table 1).

In the same analysis of the microbiota of the tumor epithelium of patients with colorectal cancer as described above, the Heatmap clustering of taxonomy (species) was different from that of feces (Figure 3a). Similarly, QIIME analysis also showed results that were not uniform in terms of molecular structure, similar to feces (Figure 3b). In addition, analysis of PICRUSt of the microflora of the tumor epithelium confirmed that it has the same function.

Figure 2a: Heatmap clustering of taxonomy (species) identified in fecal microbiota of patients with each part of colorectal cancer using 16s rRNA amplicon sequencing.

These are fecal microbial examination results of studies on rectal cancer (X01), sigmoid colon cancer (X02) and descending colon cancer (X03).
Figure 2b: QIIME of taxonomy (species) in fecal microbiota of patients with each part of colorectal cancer.

Genomic structures of microorganisms of feces in rectal cancer (01), sigmoid colon cancer (02), and descending colon cancer (03) showed different, respectively. In each colorectal cancer, the genomic structure of the microorganism was apparently different.

Figure 2c: PICRUSt of taxonomy (species) in fecal microbiota of patients with each part of colorectal cancer.

Functions of microorganisms of feces in rectal cancer (01), sigmoid colon cancer (02), and descending colon cancer (03) is shown, respectively. Functions of fecal microorganisms in each colorectal cancer were same and uniformity.

The function of each microorganism is shown in a different color. It was confirmed that microorganisms found in each colorectal cancer have same common functions.

Common functions of microorganisms in feces of patients with colorectal cancers were transporter, ABC transporter, phosphotransferase system, chaperon system, DNA repair / recombination / replication, transcription factor, ribosome, cysteine, methionine, phenylalanine, tyrosine, valine, leucine, Isoleucine, alanine, aspartic acid, glutamine metabolism, tryptophan biosynthesis / metabolism, amino acid-related enzymes, TCA circuit, fructose / mannose metabolism, glycolysis / gluconeogenesis, purine / pyrimidine metabolism, Pentos phosphate pathway, energy metabolism, nitrogen metabolism, methane Microorganisms that affect metabolism and 1 carbon pool due to folic acid, individually.
Figure 2d: Venn diagram showing taxonomy (species) of fecal microbial compositional structures in patients with colorectal cancer. The Venn diagram shows the number of common microbial taxonomies according to overlapping regions. Sample identifiers: 01 as rectal cancer, 02 as sigmoid colon cancer and 03 as descending colon cancer, respectively. Sixty-seven common microorganisms circled in red were confirmed as the result.

Table 1: Identified common microorganisms of feces in patients with colorectal cancer. There were 67 common microorganisms which identified by Venn diagram.
Figure 3a: Heatmap clustering of taxonomy (species) identified in tumor epithelial microbiota of patients with each part of colorectal cancer using 16s rRNA amplicon sequencing. These are results of microbial examination in tumor epithelia studies on rectal cancer (X01), sigmoid colon cancer (X02) and descending colon cancer (X03).

Figure 3b: QIIME of taxonomy (species) in tumor epithelial microbiota of patients with each part of colorectal cancer. Genomic structures of microorganisms of tumor epithelium in rectal cancer (01), sigmoid colon cancer (02) and descending colon cancer (03) showed apparently different similar to fecal examination, respectively.
Figure 3c: PICRUSt of taxonomy (species) in tumor epithelial microbiota of patients with each part of colorectal cancer. Functions of microorganisms of tumor epithelium in rectal cancer (01), sigmoid colon cancer (02), and descending colon cancer (03) is shown, respectively. Functions of microorganisms of tumor epithelium in each colorectal cancer were same and uniformity. The function of each microorganism is shown in a different color. It was confirmed that microorganisms found in each colorectal cancer have same common functions. Common functions of microorganisms in tumor epithelium of patients with colorectal cancers were transporters, ABC transporters, amino acid-related enzymes, leucine, valine, isoleucine, methionine, phenylalanine, tryptophan biosynthesis / metabolism, glycolysis / gluconeogenesis, TCA cycle, Pentos phosphate pathway, pyruvate metabolism, purine / pyrimidine metabolism, DNA repair / replication, protein export and RNA degradation / transcription, individually.

Figure 3d: Venn diagram showing taxonomy (species) of microbial compositional structures of tumor epithelium in patients with colorectal cancer. The Venn diagram shows the number of common microbial taxonomies according to overlapping regions. Sample identifiers: 01 as rectal cancer, 02 as sigmoid colon cancer and 03 as descending colon cancer, respectively. One hundred-two common microorganisms circled in red were confirmed as the result.
uniformly as feces. Its specific functions were transporters, ABC transporters, amino acid-related enzyme, leucine, valine, isoleucine, methionine, phenylalanine, tryptophan biosynthesis / metabolism, glycolysis / gluconeogenesis, TCA cycle, pentose phosphate pathway, pyruvate. It affected metabolism, purine / pyrimidine metabolism, DNA repair / replication, transcription factors (Figure 3c). One hundred-two microbial species were identified by Venn diagram as common microorganisms in tumor epithelium of patients with colorectal cancer (Figure 3d, Table 2).

Table 2: Identified common microorganisms of tumor epithelium in patients with colorectal cancer.

There were 102 common microorganisms which identified by Venn diagram.

Discussion
Many unsolved problems remain regarding the relationship between colorectal carcinogenesis / growth / proliferation and intestinal microorganisms. The question of whether there are specific microorganisms involved in colorectal cancer, and how intestinal microbes affect the carcinogenic and growth / proliferative mechanisms is the problem which must be solved.

Functions of microorganisms in feces and tumor epithelium were followings : transporters, ABC transporters, phosphotransferase system, chaperon system, DNA repair / recombination / replication, transcription factor, ribosome, cysteine, methionine, phenylalanine, tyrosine, valine, leucine, isoleucine, alanine, aspartic acid, glutamine metabolism, tryptophan affects biosynthesis / metabolism, amino acid-related enzymes, TCA circuit, fructose / mannose metabolism, glycolysis / glycation, purine / pyrimidine metabolism, pentos phosphate pathway, energy metabolism,
nitrogen metabolism, methane metabolism, and one carbon pool by folic acid, leucine, valine, isoleucine, methionine, phenylalanine, tryptophan biosynthesis / metabolism, gluconeogenesis, pyruvate. purine / pyrimidine metabolism, DNA repair / replication, protein export, RNA degradation and transcription factors.

Transporters and ABC transporters are essential for the uptake of molecules such as amino acids as a crosstalk between intestinal microbiota and intestinal epithelium. At above-mentioned results, it confirmed that the function of microorganisms in feces and tumor epithelium affects the tumor growth and tumor metabolism. Intestinal microorganisms take in substances necessary for living organisms.

According to the functional analysis of microorganisms in feces and tumor epithelium of patients with colorectal cancer, there were no microorganisms which activate any carcinogenic pathways as the cancer-related signals, Wnt signal, VEGF signal, TGFβ signal, mTOR signaling pathway or MAPK signaling pathway. It was the surprising and unexpected results that microorganisms of patients with colorectal cancer did not affect cancer-related pathways, but rather molecules involved in cancer growth and metabolism. These results are considered to be important discoveries which will be a breakthrough for future colorectal cancer and intestinal microbiological research.

Colorectal cancer research has been conducted so far because microorganisms such as Fusobacterium nucleatum (F. nucleatum) are considered to be involved in carcinogenesis [13, 14, 15, 16, 17, 18, 19]. However, F. nucleatum was found in feces but not in tumor epithelium in this study. It has been reported that F. nucleatum is also found in normal mucosal epithelium and not in large amounts in tumor epithelium. Regarding the relationship between F. nucleatum and colorectal cancer, F. nucleatum is involved in the progression of colorectal cancer, but there are negative reports on colorectal carcinogenesis, and the details of colon carcinogenesis have not been clarified [20].

On the other hand, we had reported that the antitumor effect of SCFAs produced by intestinal microbiota is due to the suppression of tumor growth and metabolic system molecules [2]. At the metabolome analysis of patients with colorectal cancer, it had reported that a large amount of s-acetylmethionine and methionine metabolites were present in the tumor tissue [21]. This report suggests that colorectal cancer may grow on the methionine cycle. It has been reported that methionine is taken up by tissues via LT1 which is an amino acid transporter expressed on tissue cell membranes [22,23].

Results of this study also confirmed the presence of microorganisms involved in the expression of transporters which take up amino acids such as methionine in intestinal microbiota of patients with colorectal cancer.

It was confirmed that the fecal and tumor epithelial microorganisms of patients with colorectal cancer have functions related to the uptake of amino acids such as transporters essential for tumor growth and proliferation, and also confirmed that the above-mentioned microorganisms have functions of DNA repair / replication, protein export, RNA degradation and transcription factors essential for tumor growth / proliferation / metabolism. In other words, it was confirmed that colorectal tumor growth and proliferation due to crosstalk between intestinal microorganisms and mucosal epithelium in this analysis. Although it is necessary to carry out same studies by increasing the number of cases, these are new findings. However, this study did not provide data suggesting a direct involvement of intestinal microorganisms in colorectal carcinogenesis.

These results should be the foundation of new therapeutic strategies for colorectal cancer. If drugs of capable of simultaneously inhibiting the methionine metabolic cycle and specifically inhibiting the pathogenic microorganisms of colorectal cancer can be developed, it will be epoch-making therapeutic drugs for colorectal cancer. Elucidation of the mechanism of colorectal carcinogenesis is a mandatory task which must be done.

Conclusions
I have examined the relationship between colon carcinogenesis / growth / proliferation and intestinal microbiota. From the results of these examination, it was suggested that intestinal microorganisms involved to tumor growth and proliferation among the systems in colorectal carcinogenesis / growth / proliferation. However, this study did not confirm the involvement of intestinal microbiota in colorectal carcinogenesis.

References
1. Ohara T, Suzutani T. Intake of Bifidobacterium longum (BB536) and Fructo-Oligosaccharides (FOS) prevents colorectal carcinogenesis. Euroasian J Hepato-Gastroenterology, 2018; 8: 11-17.
2. Ohara T, Mori T. Antiproliferative effects of short-chain fatty acids on human colorectal cancer cells via gene expression inhibition. Anticancer Res 2019, 39: 4659-4666.
3. Hosomi K, Ohno H, Murakami H, et al. Method for preparing DNA from feces in guanidine thiocyanate solution affects 16S rRNA-based profiling of human microbiota diversity. Sci Rep. 2017, 7: 4339.
4. Takahashi S, Tomita J, Nishioka K, et al. Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS One. 2014, 9: e105592.
5. Dethlefsen L, Huse S, Sogin ML, et al. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol. 2008, 6: e280.
6. Aronesty E. Command-line tools for processing biological sequencing data. ea-utils: FASTQ processing utilities; 2011. Available from: http://code.google.com/p/ea-utils.
7. Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves
sensitivity and speed of chimera detection. Bioinformatics. 2011; 7: 2194–2200.

8. Hisada T, Endoh K, Kuriki K. Inter- and intra-individual variations in seasonal and daily stabilities of the human gut microbiota in Japanese. Arch Microbiol. 2015; 197: 919–934.

9. Core Team R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna; 2013.

10. Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010; 7: 335–336.

11. Parks DH, Tyson GW, Hugenholtz P, Beiko RG: STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014; 30: 3123–3124.

12. Langille MG, Zaneveld J, Caporaso JG, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013; 31: 814-21.

13. Chen Y, Peng Y, Yu J, et al. Inversive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PARK1 cascade. Oncotarget. 2017; 8: 31802-31814.

14. Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017; 89: 918-925.

15. Jungck M, Grinhage F, Spengler U, et al. E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, beta-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis. 2004; 9: 438-445.

16. Yamaoka Y, Suehiro Y, Hashimoto S, et al. Fusobacterium nucleatum as a prognostic marker of colorectal cancer in a Japanese population. J Gastroenterol. 2018; 53: 517-524.

17. Tahara T, Yamamoto E, Suzuki H, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014; 74: 1311-1318.

18. Rubinstein MR, Wang X, Liu W, et al. Carcinogenesis by modulating E- cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013; 14: 195-206.

19. Kostic AD, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013; 14: 207-215.

20. Ohara T. Colorectal carcinogenesis, colorectal cancer development and Fusobacterium nucleatum. Frontiers Drug Chemistry Clinical Res. 2021;

21. Satoh K, Yachida S., Sugimoto M., et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci USA. 2017; 114(37): E7697-E7706.

22. Salisbury TB, Arthur S. The Regulation and Function of the L-Type Amino Acid Transporter 1 (LAT1) in Cancer. Int J Mol Sci. 2018; 19: 2373.

23. Scalise M, Galluccio M, Console L, et al. The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front Chem. 2018; 6: 243.