THE RELATIONSHIP BETWEEN DEMOGRAPHIC CHARACTERISTIC AND QUALITY OF LIFE IN PATIENTS WITH CORONARY ARTERY DISEASE

Teguh Santoso1*, Suhartini Ismail2, Untung Sujianto3, Dwi Susilawati4
1STIKES Guna Bangsa Yogyakarta, Indonesia
2,3,4Universitas Diponegoro, Indonesia
*email: tg.santoso21@gmail.com

ABSTRACT

Coronary artery disease is one of the non-communicable diseases that lead to the cause of death globally. It not only can disturb of physical, psychological, and social aspects, but also decrease the quality of life (QoL). The perception of QoL is a difference among patients with coronary artery disease. Characteristic demographic can assist patients in identifying and addressing QoL declined. This study examined the relationship between demographic characteristics and quality of life in patients with coronary artery disease. This is a cross-sectional study that reviewed patients with coronary artery disease. Participants were 124 (96 males and 28 females) with purposive sampling. Quality of life was measured with (SF-36) questionnaire. Spearman rho correlation has utilized the relationships between the independent and dependent variables. Spearman rho correlation coefficient analysis indicated that demographic characteristics (age (0.216), gender (0.075), marital status (0.224), and alcohol consumption (0.092)) were not correlated significantly, but education level (0.002), occupation (0.001), income (0.003), and exercise (0.014) were related significantly with quality of life. There was a statistically significant relationship between demographic characteristics and quality of life in patients with coronary artery disease.

Keywords: coronary artery disease, SF-36, quality of life

BACKGROUND

Coronary artery disease (CAD) is caused by atherosclerosis plaque and or narrowing coronary artery. It is one of disease that responsible leading cause of death in the world. According to World health organization in 2012, 7.4 million people die due to CAD (World Health Organization, 2017). Base on basic research of health by Ministry of Health in 2013, mortality rate by CAD is 883.447 peoples in Indonesia. Furthermore, in central java the number of people with CAD is 120.447 peoples (Badan Penelitian Dan Pengembangan Kesehatan Kementerian Kesehatan RI, 2013). Coronary artery disease affects to physical, psychological, and social aspects (Molazem, Rezaei, Mohebbl, Ostovan, & Keshavarzi, 2013).

The effect of CAD to physical aspect is men have a higher risk of developing coronary heart disease than women. increasing age can lower testosterone levels. Decreased testosterone levels can increase low-density lipoprotein (LDL) cholesterol levels, thereby triggering the formation of atherosclerotic plaques (American Heart Association, 2017; Mozaffarian et al., 2016). atherosclerotic plaques can result decrease oxygen supply to myocardium, pain, and dyspnea. Previous study explained that CAD patients who suffering chest pain, and dyspnea had low of activities daily living, sexual intercourse, and failed to finished their work (Bimala & Charuwan kritprach, 2011) (Rosidawati et al., 2016).

Phycological effect of CAD is stress, low of mood, anxiety, and depression. Anxiety and depression can to increase cardiac beat, power of atrial and ventricular contractility, and vasoconstriction. That conditions can disrupted of physical functioning and misperception of the disease (Dirksen, Lewis, Heitkemper, Bucher, 2010) (Monahan & Phipps, 2007). Finally, social effect of CAD is decrease of social interactions, hobbies, and stop from working (Rosidawati et al., 2016). Other study explores that
coronary artery disease had high of relapse and hos-
pitalize rate in the word. It indicated decrease of quality
of life (QoL) (Sanfilippo et al., 2010). Previous stud-
ies reported that coronary artery disease patients had
low quality of life (Saengsiri, Thanasilp, & Preechawong,
2014) (Dale et al., 2014). Similarly, in
Indonesia, 30% patients with coronary artery disease
had low QoL (Yulianti, Kosasih, & Emaliyanti, 2012).
Quality of life is a multidimensional concept and dif-
ferent perception among peoples. Many factors re-
lated to the quality of life in patients with coronary
artery disease. Previous study were examined age,
gender, occupation, education level, income, marital
status, history of health, alcohol consumption, and
exercise associated with quality of life (Mozaffarian
et al., 2016; National Institutes of Health, 2015).
However, the finding still unclear. Thus, it seemed to
be important to identify the relationships between
demographic characteristics and quality of life in pa-
tients with coronary artery disease.

METHODS

This study was used a cross-sectional de-
scriptive correlational study design. The participants
in this study were 96 males and 28 females by purpos-
sive sampling according to inclusion and exclusion
criteria. The Participants were patients with coro-
nary artery disease who were admitted to the car-
diac ward when the study was conducted. The inclu-
sion criteria were artery disease patients admitted in
the hospital, age more than equal 35 years old, able
to read and write. Artery disease patients with stroke
and congestive heart failure were exclusion criteria.
Data collected in cardiac ward of Kariadi general
hospital of Semarang on July to September 2017. De-
mographic characteristics questionnaire was struc-
tured by researchers and used for gathering demo-
graphic characteristics of age, gender, occupation,
education level, income, marital status, history of
health, alcohol consumption, and physical activities
or exercise. Quality of life measurement used Short
form 36 (SF-36) Indonesia version with Cronbach's
alpha >0.70 (Salim, Yamin, Alwi, & Setiati, 2017). SF-
36 consists of 36 questions which are divided into 2
dimensions (physical and mental). The physical do-
main consists of physical functions, physical roles,
pain, and general health. The mental domain consists
of mental health, emotional role, social functioning,
and vitality. The question in every domain has a code
and a score range of 0-100 (Burholt & Nash, 2011).
The complete data were analyzed using the statisti-
cal program. The relationships between age and qual-
ity of life were used Person correlation. The rela-
tionships between gender, occupation, education level,
icome, marital status, history of health, alcohol con-
sumption, and exercise, and quality of life were used
Spearman rho correlation coefficient.

RESULTS

In table 1, total participants in this study were
124. The most participants were male 96 (77.4%)
with mean age of 55.42 years old. Also, 121 (97.6)
participants had married with higher education level
is senior high school 47 (37.9%), non-government 49
(39.5%) and had income more than minimal of re-
gional wage 67 (54%). The majority of participants
had hypertension 78 (62.9%), never drinking of alco-
hol 119 (96%), and never exercise 58 (46.8%).

As shown in table 2, education level, occu-
pation, income, and exercise were statistically posi-
tive significant associated with quality of life with value
<0.005. It indicated that there were relationships be-
tween education level, occupation, income, and ex-
ercise and quality of life in patients with coronary
artery disease.

DISCUSSION

The result demonstrate that the demographic
characteristics included education level, occupation,
icome, and exercise were related quality of life in pa-
tients with coronary artery disease.

This study shows that gender was not asso-
ciated with the quality of life. The participants in this
more than 70% is male. In previous study reported
men had higher quality of life than women. The rea-
son is unclear but in other study explained that women
more often to suffering of psychological distress, have
a higher burden of comorbid illnesses and living alone
(Rahimian-Boogar & Rostami, 2014) (Kramer et al.,
2012). In relation to the marital status was not related
with QoL. Prior studies explained that patients living
alone had worse quality of life score and impaired
familial relationship, having difficulty in home works
due to marital stress decreased the QoL significantly
(Barbareschi, Sanderman, Kempen, & Ranchor, 2008)
(Horsten et al., 2003).

Moreover, education level was related with
QoL. In this study, the participants had high educa-
tion level. Individuals with higher education level in-
dicate better quality of life, have a good network of
friends, improve self-efficacy, and maintaining of
health. Level of education influences of psychoso-
cial and behavior factors (Colet, Mayorga, & Amador,
In this study found that occupation associated with QoL. This can be explained the most of the participants in this study are employee. Participants who had occupation may had higher income and to access the medical and rehabilitation activities. Moreover, unemployed patients had better quality of life than employed patients. This is possible that the unemployed patients have greater chance to rehab their functional activity so that it could improve the quality (Singhpoo et al., 2012). Similar, in accordance with previous paper, participant who had higher income indicate better quality of life in physical functioning, mental health, and social aspects. Unemployment and low income were associated with depression and worse QoL (Lemos, Rodrigues, & Veiga, 2015). In contrast, prior studies explore that higher income had higher of stress level (Lundin, Falkstedt, Lundberg, & Hemmingsson, 2014) (Torén et al., 2014).

In this, health history was not associated with QoL. Similarly, with previous study in 2005 explored that past medical history was weakly correlated with quality of life (Rogers, Kenyon, Lowe, Grant, &

| Demographic characteristics | Frequency | Percentage (%) |
|-----------------------------|-----------|----------------|
| **Gender:**                 |           |                |
| Men                         | 96        | 77.4           |
| Women                       | 28        | 22.6           |
| **Age (Mean (SD)):**        |           |                |
| 35-44                       | 55.42 (8.44) |                |
| 45-54                       | 9         | 7.3            |
| 55-64                       | 49        | 39.5           |
| ≥ 65                        | 46        | 37.1           |
| **Marital status:**         |           |                |
| Married                     | 121       | 97.6           |
| Single/divorce              | 3         | 2.4            |
| **Education level:**        |           |                |
| Primary                     | 28        | 22.6           |
| Senior high school          | 47        | 37.9           |
| University                  | 44        | 35.5           |
| Illiterate                  | 5         | 4              |
| **Occupation:**             |           |                |
| Government employee         | 27        | 21.8           |
| Non-government              | 49        | 39.5           |
| Retired/unemployed          | 48        | 38.7           |
| **Income:**                 |           |                |
| < minimal of regional wage  | 33        | 26.6           |
| = minimal of regional wage  | 24        | 19.4           |
| > minimal of regional wage  | 67        | 54             |
| **Health history:**         |           |                |
| Diabetic                    | 15        | 12.1           |
| Hypertension                | 78        | 62.9           |
| Diabetic & hypertension     | 31        | 25             |
| **Alcohol consumption:**    |           |                |
| Rare                        | 5         | 4              |
| Never                       | 119       | 96             |
| **Exercise:**               |           |                |
| Overtimes                   | 19        | 15.3           |
| Rare                        | 47        | 37.9           |
| Never                       | 58        | 46.8           |

Variable a = Spearman Rank Correlation Coefficient
Variable b = Pearson Coefficient Correlation
** Correlation is significant at the 0.01 level (2-tailed)
* Correlation is significant at the 0.05 level (2-tailed).
Dempsey, 2005). It is not possible adequately distinguish current from historical issues. The result of this study explores that alcohol consumption was not relationship with quality of life. In this study, more than 90% of the participant said that never drink. In contrast, Kim in 2013 said that low and moderate alcohol consumption was associated with better QoL and social interactions (Kim et al., 2013). In previous study explain, harmful consumption of alcohol indicated negative health-related behaviors (Kim & Kim, 2015). In this study, exercise was had related with quality of life. Possible explanation, almost of the participant in had limited or minimal physical activities such as regular exercise as effect of the disease. Although, exercise needed to increase nitric oxide in the blood vessel (Lee et al., 2012).

The number of CAD patients in the world and especially in Indonesia continues to increase. The nurse as a one of healthcare provider always stand in front of line should be given excellence services with improve knowledges, skills based on evidence practice. The limitation of this study is instrument to measurement of Quality of life used generic questionnaire (SF-36). The limitation of this study is that it cannot describe the overall characteristics of patients with coronary heart disease globally and clinical characteristics data research is needed.

**CONCLUSION**

Results showed that there was a relationship between demographic characteristics (level education, occupation, income, and exercise) and quality of life in patients with coronary artery disease. Quality of life is subjective among peoples and need to know affecting it. According to this study, these will help the healthcare provider (nurses) to identify quality of life, promotion of health, exercise especially in CAD patients.

**REFERENCES**

American Heart Association. 2017. HDL (Good), LDL (Bad) Cholesterol and Triglycerides.

Badan Penelitian Dan Pengembangan Kesehatan Kementerian Kesehatan RI. 2013. Riset Kesehatan Dasar. Retrieved from http://www.depkes.go.id/resources/download/general/HasilRiskesdas2013.pdf

Barbareschi, G., Sanderman, R., Kempen, G. I. J. M., & Ranchor, A. V. 2008. The mediating role of perceived control on the relationship between socioeconomic status and functional changes in older patients with coronary heart disease. Journals of Gerontology - Series B Psychological Sciences and Social Sciences. https://doi.org/10.1093/geronb/63.6.P353

Bimala, P., & Charuwan kritprach. 2011. Review?: Anxiety and Quality of life in Patients with Myocardial Infarction. Nurse Media Journal of Nursing, (January), 105-115. https://doi.org/10.14710/nmjn.v1i1.750

Burholt, V., & Nash, P. 2011. Short Form 36 (SF-36) Health Survey Questionnaire: Normative data for Wales. Journal of Public Health. https://doi.org/10.1093/pubmed/fdr006

Colet, C. de F., Mayorga, P., & Amador, T. A. 2010. Educational level, socio-economic status and relationship with quality of life in elderly residents of the city of Porto Alegre/RS, Brazil. Brazilian Journal of Pharmaceutical Sciences, 46(4), 805-810. https://doi.org/10.1590/S1984-8250201000400023

Dale, L. P., Whittaker, R., Jiang, Y., Stewart, R., Rolleston, A., & Maddison, R. 2014. Improving coronary heart disease self-management using mobile technologies (Text4Heart): a

| Variables                        | Quality of life |
|----------------------------------|-----------------|
| Gendera                          | -0.160          | 0.075           |
| Ageb                            | -0.112          | 0.216           |
| Marital statusa                  | 0.110           | 0.224           |
| Education levelc                 | 0.273**         | 0.002           |
| Occupationa                      | -0.291**        | 0.001           |
| Incomea                          | 0.267**         | 0.003           |
| Health historya                  | -0.145          | 0.108           |
| Alcohol consumptiona             | 0.009           | 0.092           |
| Exercisea                        | -0.221*         | 0.014           |

## Table 2. Relationships between Demographic Characteristic and Quality of Life
randomised controlled trial protocol. 1-9.

Dirksen, Lewis, Heitkemper, Bucher, & L. 2010. Medical-surgical nursing: Assessment and management of clinical problems. Network.

Horsten, M., Schneiderman, N., Schenck-Gustafsson, K., Orth-Gomér, K., Wamala, S. P., & Mittleman, M. A. 2003. Marital Stress Worsens Prognosis in Women With Coronary Heart Disease. JAMA, 284(23), 3008. https://doi.org/10.1001/jama.284.23.3008

Kim, C. H., Vincent, A., Clauw, D. J., Luedtke, C. A., Thompson, J. M., Schneekloth, T. D., & Oh, T. H. 2013. Association between alcohol consumption and symptom severity and quality of life in patients with fibromyalgia. Arthritis Research and Therapy. https://doi.org/10.1186/ar4200

Kim, K. H., & Kim, J. S. 2015. The association between alcohol consumption patterns and health-related quality of life in a nationally representative sample of South Korean adults. PLoS ONE. https://doi.org/10.1371/journal.pone.0119245

Kramer, L., Hirsch, O., Schlößler, K., Träger, S., Baum, E., & Donner-Banzhoff, N. 2012. Associations between demographic, disease related, and treatment pathway related variables and health related quality of life in primary care patients with coronary heart disease. Health and Quality of Life Outcomes. https://doi.org/10.1186/1477-7525-10-78

Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., Katzmarzyk, P. T., ... Wells, J. C. 2012. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet. https://doi.org/10.1016/S0140-6736(12)60130-9

Lemos, C. F., Rodrigues, M. P., & Veiga, J. R. P. 2015. Family income is associated with quality of life in patients with chronic kidney disease in the pre-dialysis phase: A cross sectional study. Health and Quality of Life Outcomes, 13(1), 1-9. https://doi.org/10.1186/s12955-015-0390-6

Lundin, A., Falkstedt, D., Lundberg, I., & Hemmingsson, T. 2014. Unemployment and coronary heart disease among middle-aged men in Sweden: 39 243 men followed for 8 years. Occupational and Environmental Medicine. https://doi.org/10.1136/oemed-2013-101721

Molazem, Rezaei, Mohebbi, Ostovan, & Keshavarzi. 2013. Effect of continuous care model on lifestyle of patients with myocardial infarction. ARYA Atherosclerosis, 9(3), 186-191. Retrieved from http://arya.mui.ac.ir/index.php/arya/article/download/518/1159Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed11&NWS=N&AN=2013327703

Monahan, F. D., & Phipps, W. J. 2007. Phipps' medical-surgical nursing?: health and illness perspectives. St. Louis, Mo.: Mosby Elsevier.

Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., ... Turner, M. B. 2016. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation. https://doi.org/10.1161/CIR.000000000000350

National Institutes of Health. 2015. What Is Coronary Heart Disease NHLBI NIH.

Rahimian-Boogar, I., & Rostami, R. 2014. Health Related Quality of Life in Patients with Coronary Heart Disease: Psychological and Socio-Demographical Determinants. Zahedan Journal of Research in Medical Sciences, 18(2), 2014. https://doi.org/10.1002/cpa.21516

Rogers, S., Kenyon, P., Lowe, D., Grant, C., & Dempsey, G. 2005. The relation between health-related quality of life, past medical history, and American Society of Anesthesiologists' ASA grade in patients having primary operations for oral and oropharyngeal cancer. British Journal of Oral and Maxillofacial Surgery. https://doi.org/10.1016/j.bjoms.2004.03.007

Rosidawati, I., Ibrahim, K., Nuraeni, A., Muhammadiyah, U., Keperawatan, F., & Padjadjaran, U. 2016. Kualitas Hidup Pasien Pasca Bedah Pintas Arteri Koroner (BPAK): Quality of Life among Patients with Post Coronary Artery Bypass Surgery. Jurnal Keperawatan Padjadjaran, 4, 151-161.

Saengsiri, A. O., Thanasilp, S., & Preechawong, S. 2014. Factors predicting quality of life for coronary artery disease patients after percutaneous coronary intervention. Asian Biomedicine. https://doi.org/10.5372/1905-7415.0801.259

Salim, S., Yamin, M., Alwi, I., & Setiati, S. 2017. Validity and Reliability of the Indonesian Version of SF-36 Quality of Life Questionnaire on Patients with Permanent Pacemakers.
Sanfilippo, F. M., Knuiman, M., Briffa, T. G., Hickling, S., Tonkin, A., Hobbs, M. S., & Ridout, S. C. 2010. Population Trends of Recurrent Coronary Heart Disease Event Rates Remain High. Circulation: Cardiovascular Quality and Outcomes, 4(1), 107-113. https://doi.org/10.1161/circoutcomes.110.957944

Singhpoo, K., Charerntanyarak, L., Ngamroop, R., Hadee, N., Chantachume, W., Lekbunyasin, O., … Tiamkao, S. 2012. Factors related to quality of life of stroke survivors. Journal of Stroke and Cerebrovascular Diseases, 21(8), 776-781. https://doi.org/10.1016/j.jstrokecerebrovasdis.2011.04.005

Torén, K., Schiöler, L., Giang, W. K., Novak, M., Söderberg, M., & Rosengren, A. 2014. A longitudinal general population-based study of job strain and risk for coronary heart disease and stroke in swedish men. BMJ Open. https://doi.org/10.1136/bmjopen-2013-004355

World Health Organization. 2017. Fact Sheet: cardiovascular disease. Cardiovascular Diseases.

Yulianti, N., Kosasih, C. E., & Emaliyanti, E. 2012. Gambaran kualitas hidup pasien ACS.pdf. Retrieved from http://jurnal.unpad.ac.id/ejournal/article/view/651/693