Proteins in the periplasmic space and outer membrane vesicles of *Rhizobium etli* CE3 grown in minimal medium are largely distinct and change with growth phase

Hermenegildo Taboada,† Niurka Meneses,† Michael F. Dunn,† Carmen Vargas-Lagunas,† Natasha Buchs,‡ Jaime A. Castro-Mondragón,§ Manfred Heller and Sergio Encarnación†,*

Abstract

Rhizobium etli CE3 grown in succinate-ammonium minimal medium (MM) excreted outer membrane vesicles (OMVs) with diameters of 40 to 100 nm. Proteins from the OMVs and the periplasmic space were isolated from 6 and 24 h cultures and identified by proteome analysis. A total of 770 proteins were identified: 73.8 and 21.3 % of these occurred only in the periplasm and OMVs, respectively, and only 4.9 % were found in both locations. The majority of proteins found in either location were present only at 6 or 24 h: in the periplasm and OMVs, only 24 and 9 % of proteins, respectively, were present at both sampling times, indicating a time-dependent differential sorting of proteins into the two compartments. The OMVs contained proteins with physiologically varied roles, including *Rhizobium* adhering proteins (Rap), polysaccharidases, polysaccharide export proteins, auto-aggregation and adherence proteins, glycosyl transferases, peptidoglycan binding and cross-linking enzymes, potential cell wall-modifying enzymes, porins, multidrug efflux RND family proteins, ABC transporter proteins and heat shock proteins. As expected, proteins with known periplasmic localizations (phosphatases, phosphodiesterases, pyrophosphatases) were found only in the periplasm, along with numerous proteins involved in amino acid and carbohydrate metabolism and transport. Nearly one-quarter of the proteins present in the OMVs were also found in our previous analysis of the *R. etli* total exproteome of MM-grown cells, indicating that these nanoparticles are an important mechanism for protein excretion in this species.

INTRODUCTION

Bacterial protein secretion is a vital function involving the transport of proteins from the cytoplasm to other cellular locations, the environment or to eukaryotic host cells [1]. Of the proteins synthesized by *Escherichia coli* on cytoplasmic ribosomes, about 22 % are inserted into the inner membrane (IM) while 15 % are targeted to periplasmic, outer membrane (OM) and extracellular locations [2].

The IM is a phospholipid bilayer that surrounds the cytoplasm. The OM is comprised of an inner leaflet containing phospholipids and lipoproteins and an outer leaflet comprised mostly of lipopolysaccharide (LPS) and also containing proteins such as porins [3]. The periplasmic space of Gram-negative bacteria is delineated by the IM and OM, with a thin peptidoglycan layer attached to both membranes by membrane-anchored proteins. The periplasm of *E. coli*, for example, contains hundreds of proteins including transporters, chaperones, detoxification proteins, proteases and nucleases [4, 5]. About a dozen specialized export systems for bacterial protein secretion have been described [1]. Gram-negative bacteria also excrete proteins and other substances in outer membrane vesicles (OMVs). Phospholipid accumulation in the OM triggers the formation of these spherical structures, which are composed of a membrane bilayer derived from the bacterial OM [6]. The amount of OMVs produced by a given bacterium varies in response to environmental conditions including growth phase, nutrient sources, iron and oxygen availability, abiotic stress, presence of host cells and during biofilm formation [7]. Depending on the species and growth conditions, OMVs may enclose cytoplasmic, periplasmic and transport proteins, as well as
DNA, RNA and outer membrane-derived components such as LPS and phospholipids. The inclusion of proteins in the OMVs is not random but appears to be determined by specific sorting mechanisms [2–5, 8]. Suggested roles for OMVs include invasion, adherence, virulence, antibiotic resistance, modulation of the host immune response, biofilm formation, intra- and interspecies molecule delivery, nutrient acquisition and signalling [2, 8–12].

Rhzobia are Gram-negative bacteria that reduce atmospheric nitrogen to ammonia in symbiotic association with leguminous plants. The excretion of specific proteins and polysaccharides by rhizobia is an essential component of this process [13]. The alpha-proteobacterium Rhizobium etli CE3 establishes a nitrogen-fixing symbiosis with Phaseolus vulgaris (common bean). We have shown that R. etli CE3 secretes many proteins during exponential and stationary phase growth in minimal medium cultures [14] and suggested that some of the secreted proteins might be exported in OMVs, although these nanoparticles have not been reported in rhizobia [15]. Mashburn-Warren and Whiteley have hypothesized that hydrophobic rhizobial nodulation (Nod) factors could be packaged in OMVs for delivery to the plant root, where they induce plant responses required for nodulation [10]. OMVs produced by symbiotic rhizobia have not, however, been studied experimentally.

Relatively few studies have been done on OMVs produced by plant-associated bacteria, where these protein and molecule-bearing structures could enhance the benefits obtained by the prokaryote in mutualistic or pathogenic interactions [16, 17]. Our major aim in this work was to identify proteins present in purified R. etli OMVs obtained from cells grown in culture. Because periplasmic proteins could be (perhaps nonspecifically) incorporated into the OMVs, we also identified proteins in the periplasm of cells grown under the same conditions. A major finding was that only a small fraction of the periplasmic proteins were also present in OMVs, which suggests that they are not randomly incorporated into the latter during vesicle formation. Our data also indicate that nearly one-quarter of the previously identified exoproteins produced by R. etli [14] are excreted in OMVs.

METHODS

Bacterial strains and growth conditions

Rhizobium etli strain CE3 was maintained in 15 % glycerol stocks prepared from PY-rich medium cultures containing 200 and 20 µg ml\(^{-1}\) of streptomycin and nalidixic acid, respectively. Minimal medium (MM) contained 10 mM each of succinate and ammonium chloride as carbon and nitrogen sources, respectively [14]. *Bacillus subtilis* 168 was obtained from E. Martínez (Centro de Ciencias Genómicas-UNAM, Cuernavaca, México) and maintained on PY-rich medium [14].

Isolation of periplasmic proteins

A modification of the hypo-osmotic shock technique used with *R. leguminosarum* by Krenchbrink et al. [18] was used to isolate *R. etli* periplasmic proteins. To do this, bacterial cells obtained by centrifugation (6000 g) were washed twice with cold 1.0 M NaCl, resuspended in cold sucrose buffer (20 % (w/v) sucrose, 1 mM EDTA and 10 µl of protease inhibitor cocktail (#13743200, Roche)) per 10 ml and incubated for 5 min at room temperature. The samples were centrifuged at 6000 g for 10 min at 4 °C, and the pellets were resuspended in cold distilled water for 5 min at room temperature followed by centrifugation as above for 30 min. The supernatants were transferred to fresh tubes and precipitated with 2.5 volumes of cold acetone followed by overnight incubation at −20°C. The samples were centrifuged at 8000 g for 45 min, and the pellets were washed with 80 % acetone and resuspended in urea solubilization buffer (7 M urea, 2 % (v/v) CHAPS, 1 mM DTT) and stored at −20 °C until required for analysis.

Isolation of OMV proteins

Cultures of *R. etli* were grown in 2 L of MM under conditions described previously [14] for 6 and 24 h, reaching optical densities (ODs) of 0.2 and 0.6 at 540 nm (Beckman Coulter DU 800 spectrophotometer), respectively, or approximately 20 and 110 µg ml\(^{-1}\) of protein, respectively, with a standard deviation less than 10 % between the two replicates [19]. To isolate OMVs, the cultures were centrifuged at 6000 g for 10 min at 4 °C. The supernatant was filtered through a 0.22 µm filter and concentrated to dryness by lyophilization. Lyophilized samples were resuspended in 1 mM Tris-HCl (pH 8.0) buffer and ultra-centrifuged in transparent tubes (Beckman 14 × 89 mm), at 100 000 g for 2 h at 4 °C in a SW41 swinging-bucket rotor (Beckman) [20]. The pelat was resuspended in 500 µl of 1 mM Tris-HCl (pH 8.0 buffer), and the proteins were extracted with phenol and kept at −20 °C until required [15].

Transmission electron microscopy

Samples from different purification stages of the OMV and periplasm isolations were resuspended in 20 mM Tris-HCl (pH 8). Five microlitres of purified OMV samples were applied to 400-mesh copper grids, then 2 % acid phosphotungstic was added followed by incubation for 1 min at room temperature. Grids were observed in a JEM1011 (JEOL, Japan) at 100 kilowatts of acceleration voltage.

SDS-PAGE and protein digestion

The protein concentration of OMVs and periplasm samples was determined by the Bradford method [21]. Gel electrophoresis was carried out on 12.5 % resolving gels loaded with 20 µg of total protein per lane. Gels were stained with Coomassie blue and 5 mm-wide gel slices were excised, transferred to micro-centrifuge tubes and covered with 20 µl of 20 % ethanol. Gel slices were sequentially washed with 100 mM Tris-HCl (pH 8) and 50 % aqueous acetonitrile, then reduced with 50 mM DTT in 50 mM Tris-HCl (pH 8) for 30 min at 37°C. Samples were alkylated with 50 mM 200 and 20 µg ml\(^{-1}\) of streptomycin and nalidixic acid, respectively.
iadocetamide in 50 mM Tris-HCl (pH 8) for 30 min at 37 °C (in darkness), and incubated for 5 h at 37 °C with trypsin (10 ng µl⁻¹, sequencing grade, Promega, Switzerland) in 20 mM Tris-HCl (pH 8). The tryptic fragments were extracted with 20 µl of 20 % (v/v) formic acid. Two independent experiments to obtain OMV and periplasmic fractions were performed, with 85 % of the exoproteins identified being found in both experiments. Only these proteins are included in the data reported here.

Mass spectrometry

Peptide sequencing was performed on a LTQ XL-Orbitrap mass spectrometer (Thermo Scientific, Bremen; Germany) equipped with a Rheos Allegro nano-flow system with AFM flow splitting (Flux Instruments, Reinach; Switzerland) and a nano-electrospray ion source operated at a voltage of 1.6 kV. Peptide separation was performed on a magic C18 nano column (5 µm, 100 Å, 0.075×70 mm) using a flow rate of 400 nl min⁻¹ and a linear gradient (60 min) from 5 to 40 % acetonitrile in H₂O containing 0.1 % formic acid. Data acquisition was in data-dependent mode on the top five peaks with an exclusion for 15 s. Survey full-scan MS spectra were from 300 to 1800 m/z, with resolution R=60 000 at 400 m/z, and fragmentation was achieved by collision-induced dissociation with helium gas in a LTQ XL-Orbitrap mass spectrometer.

Protein identification and prediction of subcellular localization

Mascot generic files (mgf) were created by means of a perl script using Hardklor software, v1.25 (M. Hoopmann and M. MacCoss, University of Washington). MS/MS data (mgf files) were submitted to EasyProt (version 2.3) for a search against the SwissProt database (Rhizobium_Homo_Tryp_. ForRev (20100415) in two rounds. First-round parameters were: parent error tolerance 20 ppm, normal cleavage mode with one missed cleavage, permitted amino acid modifications (fixed Cys_CAM, variable Oxidation_M), minimal peptide z-score 5, maximum p-value 0.01 and AC score of 5. Second round parameters were: parent error tolerance 20 ppm, half-cleaved mode with four missed cleavages, permitted amino acid modifications (variable Cys_CAM, variable Deamid, variable phos, variable Oxidation_M, variable pyrr) minimal peptide z-score 5, maximum p-value 0.01. Protein identifications were accepted only with an AC score of 10, i.e. when two different peptide sequences could be matched. The PSLpred program [22] was used to predict subcellular localization of the proteins. We determined potential protein–protein interactions among the *R. etli* exoproteome using the ProLinks server (http://prl.mbi.ucla. edu/prlbeta/) [23].

Cytotoxic OMV activity

OMVs purified from 24 h *etli* CE3 were extracted with ethyl acetate. *B. subtilis* 168 was cultured overnight in PY at 30 °C, and cells were washed twice with sterile distilled water and diluted with sterile water to an optical density of 0.05 at 540 nm. Two hundred microlitres of *B. subtilis* cells were plated on Petri dishes of PY supplemented with 0.1 mM CaCl₂. Whatman filter paper circles (0.5 cm diameter) were placed on the plate and impregnated with 5 µl test samples. The plates were incubated for 48 h at 30 °C before determining the presence of zones of growth inhibition surrounding the paper discs.

RESULTS AND DISCUSSION

General characteristics of the *R. etli* periplasmic and OMV fractions

We used proteome analysis to identify proteins in the periplasmic and OMV fractions prepared from *R. etli* cultures grown in MM for 6 and 24 h (OD of 0.2 and 0.6, respectively, at 540 nm; see Methods) (Table S1, available in the online version of this article). Only proteins found in two experimental replicates are included in the dataset (see Methods). The suitability of hypo-osmotic shock protocols similar to that used here to isolate periplasmic proteins has been demonstrated in several rhizobia [18, 24]. The presence of cytoplasmic proteins in periplasmic protein preparations is commonly reported in the literature (see below), and could be an artefact resulting from cell lysis [24]. In *Pseudomonas aeruginosa* periplasm (obtained by spheroplasting), 39 and 19 % of 395 proteins identified were predicted to be cytoplasmic and periplasmic, respectively [25]. The periplasmic proteomes of *Pseudoalteromonas haloplanktis* [26] and *Xanthomonas campestris pv. campestris* [27], both obtained by hypo-osmotic shock, contained many cytoplasmic enzymes for carbohydrate and amino acid metabolism, among others. In contrast, over 94 % of the 140 proteins obtained by osmotic shock and identified in the periplasms of *E. coli* strains BL21(DE3) and MG1655 were predicted to be periplasmic [28].

We used the PSLpred program to predict the subcellular localization of *R. etli* proteins. While the localization predictions made with this program are over 90 % accurate for proteins from Gram-negative bacteria [22], we noted that several proteins had an unexpected predicted localization. For example, the ribosomal proteins S12 and L31 were predicted that S12 is in fact cytoplasmic, but that L31 was predicted to be cytoplasmic and periplasmic, respectively [25].

Based on PSLpred, the predicted cellular localizations of the 568 proteins found only in *R. etli* periplasm (Table S2) were 57 % cytoplasmic, 25 % periplasmic, 14.9 % IM, 1.8 % extracellular and 1.4 % OM. Importantly, the eight highest-abundance proteins found in the total proteome of *R. etli* CE3 grown in MM [30] under conditions similar to those used in the present study were absent from both the periplasmic and OMV fractions (Table S1). This result argues against significant contamination of the periplasmic and OMV fractions by proteins resulting from cell lysis. Among
the proteins identified in the R. etli OMVs and periplasm, all those classed as phosphatases, phosphodiesterases or pyrophosphatases were found only in the periplasm (Table S1), consistent with the biochemically determined localization of these enzymes in other rhizobia [24, 31]. In addition, electron microscopic examination of the cell preparations obtained after hypo-osmotic shock showed that the IMs were still intact (results not shown).

The R. etli OMV fraction was obtained by differential centrifugation of culture filtrates. Transmission electron microscopic examination of the OMVs purified from 6 and 24 h cultures showed that the vesicles were spherical and had diameters of 40 to 100 nm, within the size range expected for OMVs [16, 32]. No pili, bacteria, flagella or membrane debris were detected (Fig. 1). SDS-PAGE analysis showed that the OMV protein patterns differed significantly from those of whole-cell extracts (Fig. S1). Although artefactual protein contamination of the OMVs cannot be completely excluded [33], these results are consistent with the proposal that specific protein-sorting mechanisms are important in determining the protein content of bacterial OMVs [3, 10, 34].

For proteins present only in the OMVs (Table 1), 39 and 34 % were predicted to be periplasmic and cytoplasmic, respectively, followed by 14 % IM, 8 % OM and 4 % extracellular. Although the presence of cytoplasmic and IM proteins as bona fide components of bacterial OMVs is controversial [3, 34], they have been found in similar proportions in OMVs from several species [32, 35–38]. In comparison to the periplasm, the OMVs contain 5.7 times the number of OM proteins, consistent with the enrichment of these proteins in bacterial OMVs [34]. For the 38 proteins found in both periplasmic and OMV fractions (Table S3), the predicted localizations were biased towards periplasmic proteins (53 %), followed by cytoplasmic (29 %), IM (16 %) and OM (3 %).

Previously, we identified 383 extracellular proteins in R. etli MM culture filtrates [14], which would include OMVs. Ninety of the proteins that occurred exclusively in OMVs or in both periplasm and OMVs (Tables 1 and S3) were also found in the previously determined exoproteome [14]. Thus, nearly one-quarter of the exoproteins identified in our previous study were apparently excreted in OMVs. It should be noted that the mass spectrometric methods used for protein identification in this and our previous [14, 15] work do not allow the quantitation of proteins, but only reveal their presence or absence in a sample.

The 770 proteins identified in the R. etli periplasmic and OMV fractions at 6 and/or 24 h (Table S1) represent 12.8 % of the 6022 predicted ORFs encoded in its genome. Only 14.2 % of these proteins are plasmid-encoded, representing less than half of the 32 % of the R. etli proteome that is extra-chromosomally encoded. There was no significant difference in the relative proportion of plasmid-encoded proteins in the periplasm-only, OMV-only, and in both the periplasm and OMV categories.

Of the 770 proteins identified, 568 and 164 (74 and 21 %) occurred exclusively in the periplasm (Table S1) and OMV (Table 1) fractions, respectively. Remarkably, only 4.9 % of the total proteins were found in both fractions (Table S3),
Table 1. Proteins occurring in *R. etli* OMVs but absent from the periplasm

The presence of the protein at 6 and/or 24 h is indicated by a shaded box.

Protein(s) and accession number(s)*	Loc.†	COG‡	6 h	24 h
Autoaggregation protein RHE_RS11065	Per	–		
Autoaggregation protein RHE_RS12180	Cyt	–		
Autoaggregation protein RHE_RS23910	Per	–		
Hypothetical protein RHE_RS20105	Per	–		
Hypothetical protein RHE_RS26095	IM	–		
Hypothetical proteins RHE_RS04195, RHE_RS04515	Per	–		
Hypothetical proteins RHE_RS05200, RHE_RS11420, RHE_RS16465, RHE_RS21050	Cyt	–		
Hypothetical proteins RHE_RS05795, RHE_RS07780, RHE_RS08450, RHE_RS13310, RHE_RS13575	Cyt	–		
Hypothetical proteins RHE_RS06290, RHE_RS17695, RHE_RS18165, RHE_RS24115, RHE_RS24445, RHE_RS24870	Per	–		
Hypothetical proteins RHE_RS08890, RHE_RS11225	Per	–		
Polysaccharidase RHE_RS03110	Per	–		
Polysaccharidase RHE_RS13340	Per	–		
Porin RHE_RS18285	OM	–		
Porins RHE_RS06685, RHE_RS12455	OM	–		
Pseudo RHE_RS31185, RHE_RS31705	Ext	–		
Right-handed parallel beta-helix repeat-containing protein RHE_RS13345	Per	–		
RTX toxin RHE_RS09670	Ext	–		
SPOR domain-containing protein RHE_RS09300	IM	–		
ATP synthase subunit alpha RHE_RS19810	IM	C		
ATP synthase subunit B 1 RHE_RS04365	Cyt	C		
ATP synthase subunit B 2 RHE_RS04795	IM	C		
Cytchrome b RHE_RS15535	IM	C		
Cytochrome c RHE_RS13405	Per	C		
Cytochrome c oxidase subunit II CoxB RHE_RS04795	IM	C		
Cytochrome c1 family protein RHE_RS15530	Per	C		
Dihydrolipoyl dehydrogenase RHE_RS19855	Cyt	C		
F0F1 ATP synthase subunit gamma RHE_RS19805	IM	C		
NADH dehydrogenase subunit E RHE_RS08225	Cyt	C		
NADH-quinone oxidoreductase subunit B 1 RHE_RS08200	Cyt	C		
NADH-quinone oxidoreductase subunit C RHE_RS08205	Cyt	C		
NADH-quinone oxidoreductase subunit D 1 RHE_RS08215	Cyt	C		
NADH-quinone oxidoreductase subunit G RHE_RS08240	Per	C		
NADH-quinone oxidoreductase subunit I 1 RHE_RS08250	Cyt	C		
NADH-ubiquinone oxidoreductase RHE_RS09650	Per	C		
NADH-ubiquinone oxidoreductase subunit NDUFA12 RHE_RS09530	Per	C		
NADP-dependent malic enzyme RHE_RS01970	IM	C		
Pyruvate dehydrogenase complex E1 component subunit beta RHE_RS09875	Cyt	C		
Septum formation inhibitor Maf RHE_RS02960	IM	D		
ABC transporter substrate-binding protein RHE_RS15485	IM	E		
ABC transporter substrate-binding proteins RHE_RS10970, RHE_RS22990	Per	E		
Alanine dehydrogenase Ald RHE_RS09050	Cyt	E		
Amino acid ABC transporter substrate-binding protein RHE_RS07475	Cyt	E		
Argininosuccinate synthase RHE_RS20070	Cyt	E		
Asparagine synthetase B AsnB RHE_RS03835	IM	E		
Cysteine synthase A CysK RHE_RS01645	Cyt	E		
Glycine dehydrogenase GcvP RHE_RS11470	Cyt	E		
NAD-glutamate dehydrogenase RHE_RS09875	Per	E		
Periplasmic alpha-galactoside-binding protein RHE_RS24485	Per	E		
Adenylosuccinate lyase RHE_CH02273	Cyt	F		
Dihydroorotate RHE_RS08400	Cyt	F		
Multifunctional 2',3'-cyclic-nucleotide 2'-phosphodi-esterase/5'-nucleotidase/3'-nucleotidase-5' RHE_RS18170	Per	F		
Protein(s) and accession number(s)*	Loc.†	COG‡	6 h	24 h
------------------------------------	-------	------	-----	-----
Phosphoribosylaminomimidazolesuccinocarboxamide synthase RHE_RS11645	Cyt F			
Ribose-phosphate pyrophosphokinase RHE_RS15465	IM F			
ABC transporter permease RHE_RS16190	IM G			
ABC transporter substrate-binding protein RHE_RS02490	Per G			
Arabinose ABC transporter substrate-binding protein RHE_RS18895	Per G			
Carbohydrate ABC transporter substrate-binding protein RHE_RS08805	Per G			
Carbohydrate ABC transporter substrate-binding protein RHE_RS10590	Per G			
Sugar ABC transporter ATP-binding protein RHE_RS24973	Per G			
Sugar ABC transporter substrate-binding protein RHE_RS22625	Per G			
Sugar ABC transporter substrate-binding protein RHE_RS26655	IM G			
Porphobilinogen synthase RHE_RS07675	Cyt H			
Riboflavin synthase RHE_RS07710	Cyt H			
Acetyl-CoA carboxylase carboxyl transferase subunit alpha RHE_RS19575	Cyt I			
Beta-ketoacyl-ACP reductase RHE_RS20550	Cyt I			
Enoyl-[acyl-carrier-protein] reductase RHE_RS04730	Cyt I			
Transporter RHE_RS09265	OM I			
30S ribosomal protein S12 RHE_RS08550	Per J			
50S ribosomal protein L1 RHE_RS08520	Per J			
50S ribosomal protein L15 RHE_RS08670	Cyt J			
50S ribosomal proteins L22 RHE_RS08600 L24 RHE_RS08630, L30 RHE_RS08665	Cyt J			
50S ribosomal protein L31 RHE_RS17920	Per J			
Ribonuclease PH RHE_RS01835	Cyt J			
Translation initiation factor IF-1 Infa RHE_RS02950	IM J			
Transcription elongation factor GreA RHE_RS15185	Cyt K			
DNA gyrase subunit A RHE_RS10805	IM L			
Integration host factor subunit alpha RHE_RS07825	Cyt L			
Chromosome partitioning protein ParA RHE_RS16540	IM M			
Complex I NDUF9 subunit family protein RHE_RS01580	Cyt M			
Curlin RHE_RS24865	Per M			
α-alanyl-α-alanine carboxypeptidase RHE_RS11305	Per M			
Efflux RND transporter periplasmic adaptor subunit RHE_RS18860	Cyt M			
Exopolysaccharide glucosyl ketal-pyruvate-transferase RHE_RS16450	Cyt M			
GDP-fucose synthetase RHE_RS03860	IM M			
Glycosyl transferase RHE_RS16485	Cyt M			
MexE family multidrug efflux RND transporter periplasmic adaptor subunits RHE_RS17125, RHE_RS17180 (MexE2)	IM M			
Nodulation protein NodT RHE_RS17445	OM M			
Organic solvent tolerance protein OstA RHE_RS07410	Per M			
Outer membrane protein assembly factor BamA RHE_RS09805	OM M			
Peptidoglycan-binding protein RHE_RS09350	OM M			
Porin RHE_RS0409	OM M			
Sugar ABC transporter substrate-binding protein RHE_RS07970	Per M			
Sugar ABC transporter substrate-binding protein RHE_RS16550	OM M			
Flagellar basal body rod modification protein FlgD RHE_RS03460	Per N			
Flagellar basal body rod proteins FlgE RHE_RS03315, FlgG RHE_RS03345	Per N			
Flagellar hook protein FlgE RHE_RS03345	Per N			
Flagellar hook-associated protein FlgK RHE_RS03440	Per N			
Flagellar hook-associated protein Flgl RHE_RS03445	Per N			
Flagellin C protein RHE_RS14380	Ext N			
Flagellin RHE_RS03400	Ext N			
GlcNAc transferase RHE_RS18450	OM N			
Heat-shock protein Hsp20 RHE_RS01855	Cyt O			
which argues against the random inclusion of periplasmic proteins in the OMVs during their formation and supports the idea that specific protein-sorting mechanisms are at least partly responsible for determining OMV protein content [34].

The number and identity of periplasmic and OMV proteins produced by bacteria change with culture age and growth conditions [4, 34, 37]. In *R. etli*, we found significant differences in the identities of the proteins present in the periplasm and OMVs at 6 versus 24 h (Table S1). In the

Protein(s) and accession number(s)*	Loc.†	COG‡	6h	24h
Metallopeptidase RHE_RS03660	Ext	O		
Metalloprotease RHE_RS08470	Cyt	O		
Molecular chaperone SurA RHE_RS07405	Per	O		
Peptidylprolyl isomerase RHE_RS11115	Per	O		
Protease modulators RHE_RS14300 (HfIC), RHE_RS14305 (HfIK)	Per	O		
Carbonic anhydrase RHE_RS30365	Cyt	P		
Copper oxidase RHE_RS12890	Per	P		
Fe** ABC transporter substrate-binding protein RHE_RS13955	Per	P		
Ferrichrome ABC transporter substrate-binding protein RHE_RS13730	Per	P		
Hemin ABC transporter substrate-binding protein RHE_RS16725	Per	P		
ABC transporter RHE_RS11985	Per	R		
Acryltransferase RHE_RS30975	Cyt	R		
Membrane protein RHE_RS24075	Cyt	R		
Outer membrane protein assembly factor BamD RHE_RS14515	Cyt	R		
RNA-binding protein Hfq RHE_RS09975	Cyt	R		
Zinc/cadmium-binding protein RHE_RS27255	Per	R		
DUF992 domain-containing protein RHE_RS22070	Per	S		
Hypothetical protein RHE_RS00750	Per	S		
Hypothetical protein RHE_RS06795	Cyt	S		
Hypothetical protein RHE_RS09255	IM	S		
Hypothetical protein RHE_RS12895	Per	S		
L,D-transpeptidase RHE_RS00275	Ext	S		
L,D-transpeptidase RHE_RS04095	OM	S		
L,D-transpeptidase RHE_RS06695	Cyt	S		
Membrane protein RHE_RS19980	Ext	S		
Peptidoglycan-binding protein LysM RHE_RS07230	Cyt	S		
Polyhydroxyalkanoate synthesis repressor PhaR RHE_RS20540	Cyt	S		
Restriction endonuclease RHE_RS01175	IM	S		
Ribosome maturation factor Rnp RHE_RS00610	Cyt	S		
Secretion protein RHE_RS02740	Cyt	S		
Inosine-5-monophosphate dehydrogenase RHE_RS11270	Cyt	T		
Conjugal transfer protein TrbB RHE_RS21970	Cyt	U		
Conjugal transfer proteins RHE_RS21935 (TrbF), RHE_RS21930 (TrbG), RHE_RS21920 (TrbI)	Per	U		
Hypothetical protein RHE_RS01020	OM	U		
Hypothetical protein RHE_RS25690	Per	U		
Preprotein translocase subunit YajC RHE_RS09360	OM	U		
Protein TolR RHE_RS17705	IM	U		
VirB4 family type IV secretion/conjugal transfer ATPase RHE_RS21955	Per	U		

*Protein names and accessions from GenBank. Where multiple proteins have the same COG, predicted localization and temporal distribution in periplasm and/or OMV, these are listed as a group.

†Predicted cellular localization based on *in silico* analysis. Cyt, cytoplasmic; Ext, extracellular; IM, inner membrane; Per, periplasmic, OM, outer membrane.

‡COGs (Clusters of Orthologous Groups) represent the following functional groups: minus sign, without COG; C, energy production and conversion; D, cell cycle control and mitosis; E, amino acid metabolism and transport; F, nucleotide metabolism and transport; G, carbohydrate metabolism and transport; H, co-enzyme metabolism; I, lipid metabolism; J, translation; K, transcription; L, replication and repair; M, cell wall/membrane/envelope biogenesis; N, cell motility; O, post-translational modification, protein turnover, chaperone functions; P, inorganic ion transport and metabolism; R, general functional prediction only; S, function unknown; T, signal transduction; U, intracellular trafficking and secretion.
periplasm-only fraction (Table S2), 31 and 45 % of the proteins were present only at 6 and 24 h, respectively, and 24 % were present at both 6 and 24 h. For the proteins found exclusively in the OMVs (Table 1), 49 and 42 % were present only at 6 and 24 h, respectively, and 9 % were present at both times. The largely distinct protein profiles for OMVs from log and stationary phase cultures, with relatively few proteins present at both sampling times, indicate a time-dependent differential packaging of proteins into the OMVs. For example, several Cluster Orthologous Groups (COGs) (C, D, I, J, L, O, T and U) comprising proteins found only in OMVs contain a majority of proteins that are present at 6 but not 24 h. What accounts for the disappearance of these proteins between 6 and 24 h? Possibly, these proteins are selectively degraded within the OMVs, or are released from them, as the culture ages. It has been proposed that different sub-populations of OMVs with a distinctive protein content could exist in the same bacterial culture, but this has hardly been addressed experimentally [39].

Proteins without a dedicated transport mechanism might enter the exoproteome by interacting with one or more other proteins that are specifically excreted. We determined potential protein–protein interactions in the R. etli proteome using the ProLinks server (http://prl.mbi.ucla.edu/prlbeta/) [23]. While highly probable (P=1.0) interactions were predicted to occur between certain members of the total proteome, none were found among the proteins identified in the periplasm and/or OMVs, even at the lowest probability setting (P=0.4).

Functional distribution of periplasmic and OMV proteins

An important reason for identifying proteins in the R. etli periplasm was to determine whether the OMVs also contained a significant number of these proteins. As mentioned previously, less than 5 % of the proteins identified were shared between the two locations. The identity of periplasmic proteins has perhaps been best established in E. coli, which contains a wide functional diversity of proteins among the hundreds that are present (4). The R. etli periplasmic proteins are also diverse in functional categories (Fig. 2a). The general functional prediction-only COG (R) had the greatest number of proteins (13 % of the total), and proteins involved in amino acid and carbohydrate metabolism and transport were also highly represented. With the exception of the COGs for periplasmic proteins having very few or no members (cell cycle control, replication, motility, secondary metabolism and trafficking/secretion), at least 10 proteins were present in the other COGs and had a relatively even (Fig. 2a) numerical distribution among them. For proteins present in OMVs but absent in the periplasm, those without an assigned COG were the most abundantly represented category, accounting for about 21 % of the total (Table 1 and Fig. 2b). About 59 % of OMV-exclusive proteins in this COG were present only at 24 h. In comparison, only 5.1 % of those present in the periplasm but absent in OMVs were in this category (Fig. 2a). Note that the majority (61–70 %) of proteins without COG present only in the periplasm or only in OMVs were hypothetical proteins. The remainder of the OMV-exclusive proteins were more or less evenly distributed among many of the remaining COGs, with 6 h samples usually having the greatest number of proteins. Over half of the COGs lacked representatives from 6 and/or 24 h, with several COGs (e.g. cell cycle control, co-enzyme metabolism, transcription) having a markedly lower number of total proteins (Fig. 2b). These comparisons highlight the fact that distinct temporal and numerical patterns in periplasm and OMV proteins occur during the growth of R. etli in culture. The exoproteins in our dataset (Table S1) were not biased towards being the products of R. etli genes expressed as part of specific regulons [40–42] or under conditions of biofilm formation [43].

OMV-localized proteins of physiological interest

Here we mention some of the OMV proteins with potentially important physiological roles. Based on their analysis of proteins reported in a variety of OMV proteomes, Lee et al. [44] found that many of the proteins belonged to a relatively limited number of protein functional families, including porins, murein hydrolases, multidrug efflux pumps, ABC transporters, proteases/chaperones, adhesins/invasins and cyttoplasmic proteins. Many of the R. etli OMV proteins described below fit into one of these categories.

Based on what is known of orthologous proteins in other rhizobia, the Rhizobium-adhering proteins (Rap) and polysaccharidases described below are probably secreted by the R. etli PrsDE type I secretion system (T1SS) [45, 46]. The three auto-aggregation/adherence proteins (accessions RHE_RS11065, RHE_RS12180 and RHE_RS23910; Table 1) found in OMVs but not in the periplasm belong to the Rap family and include the sole plasmid-encoded Rap paralogue and two of the four chromosomally encoded Raps found in R. etli. These calcium-binding , cell surface-localized proteins are found exclusively in _Rhzobium leguminosarum_ biovars and in R. etli [47], They are important in rhizobial autoaggregation in both species, in _R. leguminosarum_ bv. _trifolii_ RapA1 influence binding to host cell roots and, when overexpressed, nodule competitiveness on clover [47–49]. Curlin (RHE_RS24865) forms curli fibrils, surface proteins that are common in bacteria and that in Enterobacteria are important for attachment to host cells and for biofilm formation [50]. Whether the R. etli Rap proteins and curlin in OMVs act as adhesion bridges to surfaces (12) is a topic for future research.

In _R. leguminosarum_ bv. _viciae_, the PlyA, B and C polysaccharidases degrade and reduce the molecular mass of _R. leguminosarum_ exopolysaccharides (EPS) and also attack carboxymethylcellulose, an analogue of plant cell wall cellulose [45, 51]. A number of similar polysaccharidases are unique to the R. etli OMV fraction, namely the right-handed helix repeat-containing pectin–lyase-like PlyB orthologue RHE_RS13345, the continguously encoded PlyC orthologue RHE_RS13340 and polysaccharidase RHE_RS03110. In
R. leguminosarum, polysaccharidases PlyA and PlyB have been well characterized while PlyC, which shares a high sequence identity with PlyB has not. PlyA and PlyB are not required for an effective symbiosis between R. leguminosarum and pea or vetch [51], but mutants in either polysaccharidase form significantly less biofilm than the parent strain [52]. In R. leguminosarum PlyA and PlyB are secreted by the TISS and diffuse away from the producing cells, but are inactive until they interact with EPS on the surface of cells in the vicinity. Both enzymes are able to cleave nascent but not mature EPS chains, and are not activated by partially purified R. leguminosarum EPS [53]. If the R. leguminosarum polysaccharidases are present in OMVs like their orthologues in R. etli (Table 1), this might facilitate their delivery to R. leguminosarum cells or host plant roots. That a protein exported by a TISS can be present in OMVs was demonstrated for the E. coli α-haemolysin [54].

The R. etli OMVs contained the RTX toxin haemolysin-type calcium-binding protein RHE_RS09670. In R. leguminosarum bv. viciae, an exported protein of the same family, designated NodO, has been shown to bind calcium and may be important for the attachment of bacteria to roots [55]. Other OMV-localized proteins that determine cell surface characteristics include the glucosyl ketal-pyruvate-transferase RHE_RS16450 (a PssM orthologue), the glycosyl transferase RHE_RS16485, peptidoglycan-binding protein LysM and the organic solvent tolerance protein OstA. The last of these has varied roles in membrane synthesis in different

![Fig. 2. Distribution of periplasm-only (a) and OMV-only proteins (b) by functional category and presence at 6 h, 24 h, or at both 6 and 24 h. COG categories are as described in Table 1.](image)
bacteria and is an essential protein in *E. coli* [56]. The L,D-transpeptidases RHE_RS00275, RHE_RS04095 and RHE_RS06695 likely catalyse alternative peptidoglycan cross-linking reactions. In *E. coli*, the alternative cell wall cross-links introduced by these enzymes are essential for resistance to certain antibiotics [57]. Antibiotic resistance in rhizobia is potentially important for their competition with antibiotic-producing soil organisms [58]. Other cell wall-modifying enzymes identified in OMVs include the peptidoglycan-binding protein RHE_RS09350 and the D-alanyl-D-alanine carboxypeptidase RHE_RS11305.

Many proteins involved in transport or excretion were identified in the OMVs. Three chromosomally encoded outer membrane *Rhizobium* outer membrane protein A (RopA) orthologues were found in the OMV fraction. The function of these porins in rhizobia is largely undefined, but it was determined that the RopA1, RopA2 and RopA3 proteins found in *R. etli* OMVs are not involved in copper transport like the plasmid-encoded RopAe [59], which was not present in the exoproteome. In *Sinorhizobium meliloti* RopA1 is a major phase-binding site and, presumably due to other, as yet undefined physiological roles, is essential for cell viability [60, 61]. Certain bacteria produce OMVs containing phase-binding proteins as decoy targets for the virus [62, 63]. In *R. leguminosarum* bv. *viciae*, RopA1 and RopA2 are secreted, along with polysaccharidases P1A and P1A2, by the TISS [52]. Other secretion-related OM proteins include the preprotein translocase subunit YajC, RHE_RS09360, the ExbD/TolR bioplymer transport family protein RHE_RS17705 and the VirB4 family type IV secretion/conjugal transfer ATPase RHE_RS21955. Two proteins annotated as sugar ABC transporter substrate-binding proteins (RHE_RS07970 and RHE_RS16550) have sequence similarities to proteins involved in polysaccharide export. In the 24 h OMVs we identified two IM-localized MexE family multidrug efflux RND (resistance nodulation cell division) transporter periplasmic adaptor subunits, MexE1 and MexE2. These are expected to form part of the HlyD (Type I) multi-drug efflux system. A related protein, RHE_RS18860, encodes an efflux RND transporter periplasmic adaptor subunit. RND efflux pumps contribute to nodulation competitiveness and antimicrobial compound resistance in *S. meliloti* [64]. Mex efflux pumps were present in OMVs from *Pseudomonas* species [37]. BamA (RHE_RS09805) is the OM component of the β-barrel assembly machinery (BAM) responsible for the insertion of virtually all OM proteins in Gram-negative bacteria [65]. BamD, the outer membrane protein assembly factor that forms part of the Bam complex, was also present in OMVs. Although the reconstituted *E. coli* Bam complex is able to insert proteins into artificial membrane vesicles [66], it is not known whether Bam complex components can do the same in natural OMVs. Porin RHE_RS04090 also has a sequence indicative of an OM beta-barrel protein. Three porins (RHE_RS18285, RHE_RS06895 and RHE_RS12455), all predicted to be OM proteins of the porin family common in alphaproteobacteria, were present in the OMVs. Nodulation protein NodT RHE_RS17445 is a chromosomally encoded OM lipoprotein that is not involved in Nod factor synthesis or transport. A functional *nodT* is essential for the viability of *R. etli* CE3, where NodT is proposed to play a role in chromosome segregation or maintaining OM stability rather than as an export pump [67]. The dicarboxylate transporter RHE_RS15195 (DctA) is expected to be a symaptically essential gene in *R. etli*, since rhizobial mutants defective in dicarboxylate transport are unable to fix nitrogen [68]. Three other ABC transporter substrate-binding proteins similar to UgpB are probably involved in glycerol 3-phosphate transport (RHE_RS08805, RHE_RS24975 and RHE_RS10590). Polymyins are involved in growth and stress resistance in rhizobia [69], RHE_RS10970 resembles a lysine/arginine/ornithine-binding periplasmic protein that could transport polyamine precursor amino acids into the cell, and RHE_RS22990 is likely to be a spermidine/putrescine-binding periplasmic protein (PotD). Certain bacteria package signal molecules for quorum sensing in OMVs [10, 11, 70]. Transporter RHE_RS09265 is a FadL orthologue: in rhizobia, these are important for the uptake of quorum sensing system long-chain N-acyl-homoserine lactones. These FadL orthologues are probably involved in transporting long-chain acyl-homoserine lactones across the OM [71], but the presence of a FadL transporter in OMVs could provide for their uptake into vesicles, which could deliver them, perhaps in a concentrated dose, to recipient cells.

Proteins involved in energy production and conversion represent more than 11% of the OMV-exclusive proteins, over twofold more than among the periplasm-only proteins. For oxidative phosphorylation, numerous components of NADH dehydrogenase, cytochrome c, NADH-quinone oxidoreductase and ATP synthase were found principally in the OMVs, although not all of the proteins required to completely assemble these complexes was present.

Among the cytoplasmic proteins present only in OMVs, we found Tme, the NADP+-specific malic enzyme that in *S. meliloti* appears to serve as a secondary pathway for pyruvate synthesis during growth on succinate [72]. Porphobilinogen synthase is required for the synthesis of tetrapyrrole pigments such as porphyrin and vitamin B12. Ribonuclease PH is involved in rRNA processing. Ribosomal protein subunits accounted for 2.6 and 4.2%, respectively, of the *R. etli* periplasm- and OM-exclusive proteins, and have been found in OMVs from *E. coli* and *Neisseria meningitides* [73, 74].

OMV-localized chaperones include the cytoplasmic heat-shock protein Hsp20 and the periplasmic peptidyl-prolyl isomerases SurA and RHE_RS11115, the protease modulators HifC and HifK and the RNA chaperone Hfq. The latter protein has diverse functions in riboregulation in rhizobia [75].

Finally, because certain of the OMV-localized proteins such as peptidoglycan-modifying enzymes may have
antimicrobial activity, we assayed for the ability of purified \textit{R. etli} OMVs to inhibit the growth of \textit{Bacillus subtilis}, a soil bacterium that co-exists with \textit{R. etli} and is able to sporulate and resist multiple environmental conditions [76] (Fig. S2). In plate assays, we found that purified OMVs and, especially, ethyl acetate extracts of OMVs, inhibited the growth of \textit{B. subtilis}. It is possible that peptidoglycan-modifying enzymes cause the cytotoxicity of OMVs. No inhibition was observed in assays with \textit{R. etli} MM culture or culture supernatant, or with ethyl acetate.

In summary, we show here that \textit{R. etli} produces OMVs with significant temporal differences in their protein content during growth in culture. The proteins in the OMVs are largely distinct from those of the periplasmic space and include many proteins of physiological interest, including some with known symbiotic roles. The excretion of these proteins in OMVs could give a survival or metabolic advantage to free-living or symbiotically associated \textit{R. etli} cells, and provides an exciting topic of research that we are currently exploring.

Funding information
Part of this work was supported by CONACyT grant 220790 and DGAPA-PAPIIT grant IN213216.

Acknowledgements
We thank Esperanza Martínez (CCG-UNAM) for supplying \textit{B. subtilis} 168.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Green ER, Mecsas J. Bacterial secretion systems: an overview. Microbiol Spectr 2016;4:1–19.
2. Tsirigotaki A, de Geyter J, Šoštarić N, Economou A, Karamanou S. Protein export through the bacterial Sec pathway. \textit{Nat Rev Microbiol} 2017;15:21–36.
3. Chatterjee SN, Chaudhuri K. Outer Membrane Vesicles of Bacteria. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012.
4. Weiner JH, Li L. Proteome of the \textit{Escherichia coli} envelope and technological challenges in membrane proteome analysis. \textit{Biochim Biophys Acta} 2008;1778:1698–1713.
5. Goemans C, Denoncin K, Collet JF. Folding mechanisms of periplasmic proteins. \textit{Biochim Biophys Acta} 2014;1843:1517–1528.
6. Roier S, Zingl FG, Ca kar F, Durakovic S, Kohl P et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. \textit{Nat Commun} 2016;7:10515.
7. Orench-Rivera N, Kuehn MJ. Environmentally controlled bacterial vesicle-mediated export. \textit{Cell Microbiol} 2016;18:1526–1536.
8. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. \textit{J Bacteriol} 1999;181:4725–4733.
9. Bonnington KE, Kuehn MJ. Protein selection and export via outer membrane vesicles. \textit{Biochim Biophys Acta} 2014;1843:1612–1619.
10. Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking in prokaryotes. \textit{Mol Microbiol} 2006;61:839–864.
11. Toyofuku M, Morinaga K, Hashimoto Y, Uhl J, Shimamura H et al. Membrane vesicle-mediated bacterial communication. \textit{ISME J} 2017;11:1504–1509.
12. Jan AT. Outer membrane vesicles (OMVs) of Gram-negative bacteria: a perspective update. \textit{Front Microbiol} 2017;8:1053.
34. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. *Annu Rev Microbiol* 2010;64:163–184.

35. Avila-Calderón ED, Lopez-Merino A, Jain N, Peralta H, López-Villegas EO et al. Characterization of outer membrane vesicles from *Brucella melitensis* and protection induced in mice. *Clin Dev Immunol* 2012;2012:1–13.

36. Bai J, Kim SI, Ryu S, Yoon H. Identification and characterization of outer membrane vesicle-associated proteins in *Salmonella enterica* serovar Typhimurium. *Infect Immun* 2014;82:4001–4010.

37. Choi CW, Park EC, Yun SH, Lee SY, Lee YG et al. Proteomic characterization of the outer membrane vesicle of *Pseudomonas putida* KT2440. *J Proteome Res* 2014;13:4298–4309.

38. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. *Nat Rev Microbiol* 2015;13:605–619.

39. Schwechheimer C, Sullivan CJ, Kuehn MJ. Envelope control of outer membrane vesicle production in Gram-negative bacteria. *Biochemistry* 2013;52:3031–3040.

40. Bittinger MA, Handelsman J. Identification of genes in the RosR regulon of *Rhizobium etli*. *J Bacteriol* 2000;182:1706–1713.

41. Salazar E, Díaz-Mejía JA, Moreno-Hagelsieb G, Martínez-Batallar G, Mora Y et al. Characterization of the Nfa-RpoN regulon in *Rhizobium etli* in free life and in symbiosis with *Phaseolus vulgaris*. *Appl Environ Microbiol* 2010;76:4510–4520.

42. Vercruysse M, Fauvart M, Jans A, Beullens S, Braeken K et al. Transcriptomic analysis of the (p)pGpp-dependent response in *Rhizobium etli* strains. *Genome Biol* 2011;12:R17–19.

43. Reyes-Pérez A, Vargas MC, Hernández M, Aguirre-von-Wobeser E, Pérez-Rueda E et al. Transcriptomic analysis of the process of biofilm formation in *Rhizobium etli* CFA12. *Arch Microbiol* 2016;198:847–860.

44. Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. *Mass Spectrom Rev* 2008;27:535–555.

45. Delepelaire P. Type I secretion in gram-negative bacteria. *Biochim Biophys Acta* 2004;1694:149–161.

46. Downie JA. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. *FEMS Microbiol Rev* 2010;34:150–170.

47. Ausmee N, Jacobsson K, Lindberg M. A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of *Rhizobium*-adhering proteins (Rap) in *Rhizobium leguminosarum* bv. *trifolii*. *Microbiology* 2001;147:549–559.

48. Mongiardini EJ, Ausmee N, Pérez-Giménez J, Julia Althabegoi i M, Ignacio Quelas J et al. Stress response regulators identified through genome-wide transcriptome analysis of the (p)pGpp-dependent response in *Rhizobium etli*. *Genome Biol* 2011;12:R17–19.

49. Perez-Gimenez J, Mongiardini EJ, Althabegoi i M, Covelli J, Ignacio Quelas J et al. The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. *FEMS Microbiol Ecol* 2008;65:279–288.

50. Pérez-Giménez J, Mongiardini EJ, Althabegoi i M, Covelli J, Quelas J et al. Soybean lectin enhances biofilm formation by *Bradyrhizobium japonicum* in the absence of plants. *Int J Microbiol* 2009;2009:1–8.

51. Berne C, Ducret A, Hardy GG, Brun YV. Adhesins involved in attachment to abiotic surfaces by Gram-negative bacteria. *Microbiol Spectr* 2015;3:1–45.

52. Finnie C, Zorreguieta A, Hartley NM, Downie JA. Characterization of *Rhizobium leguminosarum* exopolysaccharide glycans that are secreted via a type I secretion system in an exopolysaccharide-related component. *J Bacteriol* 2000;182:1304–1312.

53. Balsalobre C, Silván JM, Berglund S, Mizuno Y, Uhlin BE et al. Release of the type I secreted alpha-haemolysin via outer membrane vesicles from *Escherichia coli*. *Mol Microbiol* 2006;59:99–112.

54. Economidou A, Hamilton WD, Johnston AW, Downie JA. The *Rhizobium* nodulation gene nodD encodes a Ca(2+)-binding protein that is exported without N-terminal cleavage and is homologous to haemolysins and related proteins. *Embo J* 1990;9:349–354.

55. Braun M, Silhavy TJ. Imp/OstA is required for cell envelope biogenesis in *Escherichia coli*. *Mol Microbiol* 2002;45:1289–1302.

56. Magnet S, Dubost L, Marie A, Arthur M, Gutmann L. Identification of peptides for transpeptidase cross-linking in *Escherichia coli*. *J Bacteriol* 2008;190:4782–4785.

57. Naamal J, Jaiswal SK, Dakora FD. Antibiotics Resistance in *Rhizobium*: Type, Process, Mechanism and Benefit for Agriculture. *Curr Microbiol* 2016;72:804–816.

58. González-Sánchez A, Cubillas CA, Miranda F, Dávalos A, García-de Javier S, Santos A. The ropA gene encodes a porin-like protein involved in copper transit in *Rhizobium etli* CFN42. *Microbiologyopen* 2018;7:e00573.

59. Roest HP, Bloemendaal CJ, Wijffelman CA, Lugtenberg BJ. Isolation and characterization of ropA homologous genes from *Rhizobium leguminosarum* biovars *viciae* and *trifolii*. *J Bacteriol* 1995;177:4985–4991.

60. Crook MB, Draper AL, Guilloy RJ, Griffiths JS. The *Sinorhizobium meliloti* essential porin RopA1 is a target for numerous bacteriophages. *J Bacteriol* 2013;195:3663–3671.

61. Pérez-Montaño F, del Cerro P, Jiménez-Guerrero I, López-Baena FJ, Cubo MT et al. RNA-seq analysis of the *Rhizobium tropici* CIAT 899 transcriptome shows similarities in the activation patterns of symbiotic genes in the presence of apigenin and salt. *BMGenomics* 2016;17:1–11.

62. Guerrero-Mandujano A, Hernández-Cortez C, Ibarra JA, Castro-Escarpulli G. The outer membrane vesicles: Secretion system type zero. *Traffic* 2017;18:425–432.

63. Eda S, Mitsui H, Minamisawa K. Involvement of the smfAB multi-drug efflux pump in resistance to plant antimicrobials and contribution to nodulation competitiveness in *Sinorhizobium meliloti*. *Appl Environ Microbiol* 2011;77:2855–2862.

64. Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly. *Nat Rev Microbiol* 2009;7:206–214.

65. Hussain S, Bernstein HD. The Bam complex catalyzes efficient insertion of bacterial outer membrane proteins into membrane vesicles of variable lipid composition. *J Biol Chem* 2018;293:2959–2973.

66. Hernández-Mendoza A, Nava N, Santana O, Abreu-Googder C, Tovar A et al. Diminished redundancy of outer membrane factor proteins in rhizobiales: a nod‘ homolog is essential for free-living *Rhizobium* etli. *J Mol Microbiol Biotechnol* 2007;13:22–34.

67. Yurgel SN, Kahn ML. Dicarboxylate transport by rhizobia. *FEMS Microbiol Rev* 2004;28:489–501.

68. Mesenes N, Taboada H, Dunn MF, Vargas MDC, Buchs N et al. The naringenin-induced exoproteome of *Rhizobium etli* CE3. *Arch Microbiol* 2017;199:737–755.

69. Mashburn LM, Whiteley M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. *Nature* 2005;437:422–425.

70. Krol E, Becker A. Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. *Proc Natl Acad Sci USA* 2014;111:10702–10707.

71. Zhang Y, Smallbone LA, Dicenzo GC, Morton R, Finan TM. Loss of malic enzymes leads to metabolic imbalance and altered levels of...
trehalose and putrescine in the bacterium *Sinorhizobium meliloti*. BMC Microbiol 2016;16:1–13.

73. Aguilera L, Toloza L, Giménez R, Odena A, Oliveira E et al. Proteomic analysis of outer membrane vesicles from the probiotic strain *Escherichia coli* Nissle 1917. Proteomics 2014;14:222–229.

74. Vipond C, Wheeler JX, Jones C, Feavers IM, Suker J. Characterization of the protein content of a meningococcal outer membrane vesicle vaccine by polyacrylamide gel electrophoresis and mass spectrometry. Hum Vaccin 2005;1:80–84.

75. Becker A, Overlöper A, Schlüter JP, Reinkensmeier J, Robledo M et al. Riboregulation in plant-associated α-proteobacteria. RNA Biol 2014;11:550–562.

76. Maougal RT, Bargaz A, Sahel C, Amenc L, Djekoun A et al. Localization of the *Bacillus subtilis* beta-propeller phytase transcripts in nodulated roots of *Phaseolus vulgaris* supplied with phytate. Planta 2014;239:901–908.

Edited by: I. J. Oresnik and G. H. Thomas

Five reasons to publish your next article with a Microbiology Society journal

1. The Microbiology Society is a not-for-profit organization.
2. We offer fast and rigorous peer review – average time to first decision is 4–6 weeks.
3. Our journals have a global readership with subscriptions held in research institutions around the world.
4. 80% of our authors rate our submission process as ‘excellent’ or ‘very good’.
5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.