Added value of serial bio-adrenomedullin measurement in addition to lactate for the prognosis of septic patients admitted to ICU

Alice Blet 1,2, Charles de Roquetaillade 1,2, Oliver Hartmann 3, Joachim Struck 3, Alexandre Mebazaa 1,2, Benjamin Glenn Chousterman 1,2* and on behalf of the AdrenOSS-1 study investigators

To the editor:

Sepsis mortality decreased over the last decades, although it remains dramatically high [1]. The implementation of guidelines such as the Surviving Sepsis Campaign (SSC) contributed to these progresses. SSC recommends to guide resuscitation on normalization of lactate levels [2]. Guiding resuscitation on lactate reduction is highly debated [3]. Anyway, normalization of lactate is associated with improved outcome [4]. We have recently shown that plasma levels of bio-adrenomedullin (bio-ADM), a peptide regulating vascular integrity and endothelial function, were associated with patient outcome during sepsis [5]. Interestingly, we observed that patients with elevated bio-ADM levels at admission and with low bio-ADM levels 2 days later had similar outcome to patients with persistently low bio-ADM levels. We therefore aimed to evaluate the added value of bio-ADM to lactate measurement in the AdrenOSS-1 cohort.

The AdrenOSS-1 study is a prospective observational study conducted in 24 centers within 5 European countries and included 583 septic patients from June 2015 to May 2016 [5]. The primary endpoint was 28-day mortality. We evaluated the relationship between the association of initial evolution of lactate plasma levels and bio-ADM level at 24 h and outcome in patients for whom both markers were available at admission and 1 day later (“24 h”). As described previously, bio-ADM levels below or above 70 pg/mL were considered respectively as low and high [5].

In patients with high lactate levels (> 2 mmol/L) at admission (n = 328) (Table 1), lactate normalization (< 2 mmol/L) at 24 h was associated with better outcome than in patients with persistently high lactate at 24 h (28-day mortality 15.9% vs 41.9% respectively, HR 3.3 [2.0–5.3], p < 0.001) (Fig. 1). Interestingly, among patients with decreasing lactate, high and low bio-ADM levels at 24 h identified patients with substantially different outcomes (28-day mortality 7% vs 26% for low vs high bio-ADM respectively, HR 4.4 [1.6–11.7], p < 0.005) (Fig. 1). High and low bio-ADM levels at 24 h also differentiated outcome of patients with persistently elevated lactate (HR 4.5 [1.6–12.3], p < 0.005).

In patients with low initial lactate (n = 234 admitted and n = 171 alive at 24 h), overall 28-day mortality was 11.2%, neither lactate nor bio-ADM added prognostic value.

For all analyses, similar results were obtained, when missing 24 h data were replaced by the last available values.

Accordingly, our data suggest that measurement of bio-ADM in addition to lactate may help physicians to refine risk stratification and therefore to guide resuscitation during sepsis.
Table 1: Clinical characteristics of septic patients admitted with a lactate level > 2 mmol/L and alive at 24 h (n = 269)

Patient characteristics	All (n = 269)	24 h lactate < 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate < 2 mmol/L and bio-ADM > 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM > 70 pg/mL	p value	Number of patients (if not indicated n = 269)
Number of patients (n, %)	269 (100)	75 (27.9)	70 (26.0)	28 (10.4)	96 (35.7)		
bio-ADM at admission (pg/ml)	113.7 [59.3–206.4]	46.7 [33.1–63.0]	137.3 [103.2–217.8]	61.5 [36.3–84.3]	192.4 [129.0–355.6]	< 0.0001	
Lactate at admission (mmol/l)	3.6 [2.6–5.5]	2.8 [2.3–3.5]	3.3 [2.5–4.5]	3.5 [2.7–4.6]	5.4 [3.5–8.8]	< 0.0001	
Age (years)	65.7 [54.7–75.6]	64.0 [54.4–71.8]	65.7 [58.5–74.3]	66.7 [65.8–76.9]	67.8 [54.6–77.4]	0.4697	
Male sex (n, %)	171 (63.6)	52 (69.3)	45 (64.3)	18 (64.3)	56 (58.3)	0.5253	
Body mass index (kg/m²)	26.1 [23.1–30.8]	26.1 [23.9–29.4]	25.1 [20.5–30.4]	26.4 [22.9–31.3]	27.3 [23.6–31.8]	0.3834	n = 232
Septic shock at admission (n, %)	172 (63.9)	34 (45.3)	46 (65.7)	15 (53.6)	77 (80.2)	0.0001	
Type of ICU admission							0.1378
Medical (n, %)	198 (73.6)	62 (82.7)	49 (70.0)	24 (85.7)	63 (65.6)		
Surgical—emergency procedure (n, %)	60 (22.3)	10 (13.3)	18 (25.7)	4 (14.3)	28 (29.2)		
Surgical—elective procedure (n, %)	11 (4.1)	3 (4.0)	3 (4.3)	0 (0.0)	5 (5.2)		
Origin of sepsis						0.0156	
Lung (n, %)	87 (32.3)	28 (37.3)	16 (22.9)	15 (53.6)	28 (29.2)		
Bloodstream (n, %)	35 (13)	14 (18.7)	8 (11.4)	4 (14.3)	9 (9.4)		
Urinary tract (n, %)	46 (17.1)	4 (5.3)	15 (21.4)	4 (14.3)	23 (24)		
Catheter (n, %)	15 (5.6)	4 (5.3)	3 (4.3)	3 (10.7)	5 (5.2)		
Peritonitis (n, %)	16 (5.9)	6 (8.0)	3 (4.3)	0 (0.0)	7 (7.3)		
Endocarditis (n, %)	14 (5.2)	4 (5.3)	4 (5.7)	1 (3.6)	5 (5.2)		
Bile duct infection (n, %)	4 (1.5)	0 (0.0)	2 (2.9)	0 (0.0)	2 (2.1)		
CNS (n, %)	1 (0.4)	1 (1.3)	0 (0.0)	0 (0.0)	0 (0.0)		
Skin and soft tissue (n, %)	4 (1.5)	4 (5.3)	0 (0.0)	0 (0.0)	0 (0.0)		
Gynecologic (n, %)	1 (0.4)	0 (0.0)	0 (0.0)	0 (0.0)	1 (1.0)		
Other (n, %)	46 (17.1)	10 (13.3)	19 (27.1)	1 (3.6)	16 (16.7)		
Medical history							0.0481
Any cardiac comorbidity (n, %)	184 (68.4)	43 (57.3)	49 (70)	18 (64.3)	74 (77.1)	< 0.0001	
Chronic heart failure (n, %)	29 (10.9)	6 (8.0)	5 (7.2)	3 (11.1)	15 (15.8)	0.2684	
Hypertension (n, %)	143 (53.8)	33 (44.0)	38 (55.1)	14 (50.0)	58 (61.7)	0.1407	
Diabetes mellitus (n, %)	76 (28.4)	21 (28.0)	19 (27.5)	3 (10.7)	33 (34.4)	0.1102	
Any noncardiac comorbidity (n, %)	198 (73.6)	51 (68.0)	55 (78.6)	21 (75.0)	71 (74.0)	0.5447	
Chronic renal disease (n, %)	31 (11.7)	6 (8.1)	10 (14.5)	2 (7.1)	13 (13.7)	0.4978	
Active/Recent malignant tumors (n, %)	60 (22.5)	10 (13.3)	19 (27.9)	7 (25.0)	24 (25.0)	0.1565	
Smoking (active) (n, %)	57 (21.8)	17 (23.0)	15 (22.1)	5 (19.2)	20 (21.5)	0.9827	
COPD (n, %)	35 (13.1)	9 (12.0)	12 (17.4)	5 (17.9)	9 (9.5)	0.4156	
Table 1	Clinical characteristics of septic patients admitted with a lactate level > 2 mmol/L and alive at 24 h (n = 269) (Continued)						
---------	--						
Patient characteristics	All	24 h lactate < 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate < 2 mmol/L and bio-ADM > 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM > 70 pg/mL	p value	Number of patients (if not indicated n = 269)
Any chronic medication (n, %)	176 (65.4)	42 (56.0)	53 (75.7)	16 (57.1)	65 (67.7)	0.0032	
Immunosuppressive therapy (n, %)	26 (9.7)	5 (6.7)	5 (7.1)	3 (10.7)	13 (13.9)	0.3963	
Physiological values at admission							
Temperature (°C)	37.2 [36.3–38.3]	37.2 [36.4–38.3]	37.2 [36.4–38.2]	36.9 [35.8–37.7]	37.2 [36.3–38.4]	0.6926	
Mean blood pressure (mmHg)	73 [62–92]	82 [68.5–99]	70.5 [60–64]	77.5 [58–94.2]	69 [58.5–86]	0.0009	n = 266
Heart rate (beats/min)	108 [96–122]	110 [93–123.5]	107 [95.2–118.7]	106 [97.7–115]	112.5 [97.7–130.2]	0.2976	
Central venous pressure (mmHg)	8 [5–12]	8 [5–13]	7 [3–11]	8 [7–8]	9 [6–12]	0.3535	n = 75
Glasgow Coma Scale score (points)	15 [13–15]	15 [14–15]	15 [14–15]	14 [13–15]	15 [13–15]	0.4721	n = 253
Fluid balance (mL)	2500 [1141–4716]	1930 [892–2626]	2156 [1375–3939]	2820 [1292–4323]	3657 [1426–5750]	0.0002	n = 235
Urine output for 24 h (mL)	1000 [554–1867]	1350 [941–2667]	675 [301–1619]	1562.5 [951–2220]	600 [177–1480]	<0.0001	n = 248
PaO2/FiO2	220 [131–330]	254 [155–362]	231 [148–321]	211 [96–330]	190 [115–314]	0.1637	n = 244
Laboratory values at admission							
Arterial pH	7.36 [7.27–7.42]	7.41 [7.34–7.45]	7.37 [7.26–7.42]	7.38 [7.31–7.44]	7.31 [7.22–7.38]	<0.0001	n = 261
Bilirubin (µmol/L)	12 [7–22]	13 [5.75–22.2]	11 [5.5–20.5]	12 [8–20.5]	12 [7–22]	0.7229	n = 259
Platelets (10^9/L)	188 [116–265]	180 [128–261]	176 [110–284]	243 [135–336]	181 [110–245]	0.2770	n = 268
Creatinine (mg/dL)	15 [10.2–22.6]	11.3 [8.5–16.8]	1.7 [1.23–2.65]	1.03 [0.74–1.45]	1.72 [1.2–2.62]	<0.0001	
Urea (mg/dL)	66 [41–109.91]	50.45 [36.04–78.34]	85.29 [53.6–118.77]	52 [33.48–77.27]	73.57 [46.7–120.84]	0.0001	
Hematocrit (%)	35 [30–39]	36 [30–39]	35 [30–40]	35 [31–37]	34 [29–40]	0.9579	n = 265
White blood cell count (per µm³)	11,690 [8037–18,142]	13,400 [8390–18,700]	11,115 [5497–16,500]	11,770 [7780–15,950]	10,780 [4200–17,722]	0.1827	n = 268
Troponin T, maximum at admission (ng/mL)	41.73 [18–219]	24 [14–50.5]	40.86 [19.5–126.75]	14 [13–47]	87.5 [27.82–329.25]	0.0515	n = 73
Troponin I, maximum at admission (ng/mL)	100 [29.9–323]	79 [19.25–327.23]	135 [37.02–233.68]	114.95 [22.48–230]	100 [31.9–312.95]	0.9752	n = 77
PCT, maximum at admission (ng/mL)	19.17 [6.39–73.93]	10.36 [4.35–37.93]	27.62 [7.75–60]	54.22 [24.1–112.1]	43.64 [9.6–1034.1]	0.0054	n = 144
PCT, central laboratory (ng/mL)	15.34 [5.37–48.43]	8.21 [2.4–18.21]	22.55 [6.68–53.25]	7.12 [2.04–20.73]	29.22 [8.73–648]	<0.0001	n = 269
BNP, maximum at admission (pg/mL)	376.2 [159–1132]	376.2 [169.5–1011]	356.1 [228–540.2]	219 [143.7–324]	757 [141.7–1619.5]	0.4335	n = 49
NT-proBNP, maximum at admission (pg/mL)	5119 [1620–17,118]	1847 [621–6709]	3873 [2594–23,052]	792 [249–3074]	7097 [4884–24,340]	0.0135	n = 54
Organ support at admission							
Mechanical ventilation	125 (46.5)	24 (32.0)	29 (41.4)	12 (42.9)	60 (62.5)	0.0008	
Noninvasive (n, %)	49 (18.2)	16 (21.3)	9 (12.9)	7 (25.0)	17 (17.7)		
None (n, %)	95 (35.3)	35 (46.7)	32 (45.7)	9 (32.1)	19 (19.8)		
Renal replacement therapy (n, %)	28 (10.4)	1 (1.3)	7 (10.0)	3 (10.7)	17 (17.7)	0.0070	
Vasopressors/inotropes at admission (n, %)	192 (71.4)	41 (54.7)	51 (72.9)	18 (64.3)	82 (85.4)	0.0001	
Patient characteristics	All	24 h lactate < 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate < 2 mmol/L and bio-ADM > 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM < 70 pg/mL	24 h lactate > 2 mmol/L and bio-ADM > 70 pg/mL	p value	Number of patients (if not indicated n = 269)
-------------------------	-----	---	---	---	---	--------	--
ICU scoring systems							
SOFA (points)	8 [6–11]	6 [4–9]	8 [7–11]	8 [5–9]	10 [7–11.5]	< 0.0001	n = 240
APACHE II (points)	17 [13–22]	15 [10–18]	17 [12.2–21]	18.5 [13.7–23]	19 [15–23.2]	< 0.0001	
ICU length of stay (days)	6 [3–11]	5 [3–7.5]	7 [4–13]	5.5 [2.7–9.5]	7 [3–16.2]	0.0170	
Mortality							
28-day, deaths (n, %)	75 (27.9)	5 (6.7)	18 (25.7)	4 (14.3)	48 (50.0)	< 0.0001	
90-day, deaths (n, %)	93 (34.6)	10 (13.3)	22 (31.4)	6 (21.4)	55 (57.3)	< 0.0001	

Data are presented as median [IQR] or n (%).
Acknowledgements

The authors are particularly grateful to Marie-Céline Fournier, who coordinated organizational aspects of the study. The authors also thank the Centre de Recherche Clinique (CRC) of Lariboisière University Hospital for support.

Listing of site investigators of the AdrenOSS-1 study:

Belgium, Brussels: Pierre-François Laterre, Caroline Berge, Marie-France Dujardin, Suzanne Renard, Xavier Witteboele, Christine Colienne, Diego Castañares Zapatero; Ottignies: Thierry Dugernier, Marco Vinetti, Nicolas de Schynvy, Anne-Thiilays, Jacques Mairesse; Haute-Brabant: Vincent Huberlant, Hélène Pétre, Isabelle Buelens, Pierre-Henri, Hugues Time, Yves Laurent, Loïc Sébastien, Paul Goukens, Laurent Kehr; France, Limoges: Bruno François, Philippe Vigneron, Nicolas Pichon, Emmanuelle Begoet, Anne-Laure Fedou, Catherine Chapellas, Antoine Galy, Nicolas Rodier, Ludmilla Baudrillard, Michelle Nouaille, Séverine Lalou, Claire Mancia, Thomas Daix, Paul Bourzeix, Isabelle Héra, Anne-Aurore Duchambon; La Rochelle: Jean Baptiste Lascarrou, Maud Fiancette, Gwenhaël Colin, Matthieu Levy-Lagage, Christopher Leber, Laurent Martin-Lev-Lerne, Isabelle Vritier, Alain Yehia, Konstantinos Bachoumas, Aurélie Joret, Jean Reigner, Cécile Rousseau, Nathalie Marquignou, Yolande Alcout, Vanessa Erragne Zinzonni, Angélique Deschamps, Angelina Robert; Tours: Emmanuelle Mercier, Véronique Simeon-Veleles, Aurélie Aubrey, Christine Malatit, Denis Garot, Stephan Ehrmann, Annick Legras, Manikandan, Yousouf Jouan, Pierre-François Dequin, Antoine Guillot, Aëtia Béchet-Contentin, Emmanuelle Roux, Charlotte Salmon, Lysiane Brice, Stéphane Massat, Angoulême: Arnaud Desachy, Marie Anne Fally, Laurence Robin, Christophe Caccio, Charles Lafort, Sylvie Calvat, Stéphane Rouleau, David Schnell, Angers: Sigismund Lasocki, Philippe Fesard, Damien Leblanc, Guillaume Bouhours, Claire Chassier, Mathieu Conte, Thomas Gaillard, Floriane Denou, Mathieu Kervyn, Marion Guyon, Anthéa Loiz, Stéphanie Lebreton; Strasbourg – Nouvel Hôpital Civil: Pierre Meziani, Hatay Allam, Samir Charnaf, Hassène Rahmani, Sarah Heenen, Christine Kumermer, Xavier Delabranche, Alexandre Boivin, Raphaël Clerc-Jehl, Yannick Rabouel; Strasbourg – Hôpital Haute-Pierre: Julien Poit, Sophie Bayer, Catherine Metzger, Stéphane Heckettsweiler, Pierre Olivier Ludes, Hortense Benacencourt, Nadia Dhi, Guy Frey, Jean-Marc Lessinger, Anne Leunoy, Aude Ruym, Alain Meyer, M. Sazagot; Paris – Hôpital Lariboisière: Alexandre Mebazaa, Nicolas De, Etienne Gayat, Marie-Céline Fournier, Sarra Aboug, Badr Louda, Elodie Feliot, Sébastien Voicu, Isabelle Malinson, Bruno Megarbane, Philippe Manivet, Gardiance Vici, Da Silva Kelly, Béatrice La Fouchet, Valérie Pierre, Lamia Kerdjia, Thomas Bee, Antoine Gouay, Pierre Garcon, Samuel Guiguen, Benjamin Glenn Chousterman, Benjamin Huot, Romain Barthelem, Benjamin Sayay, Paris – Hôpital St Louis: Laurent Jacob, Mathieu Legrand, Marie-Céline Fournier, Francine Bonnet, Chloé Legall, Haikel Oueslati, Alexandre Cupacu, Philippe Manivet, Badr Louda, Paris – Hôpital Bichat: Romain Sonneville, Sophie Letrou, Lilou Bryadma, Bruno Mourvillier, Véronique Deier, Eric Magalhaes, Mathilde Neville, Jean-François Timion, Agnès Rejou; Colombe: Stéphane Gaudry, Emeline Dubief, Jonathan Messika, Béatrice La Combe, Damien Roux, Guillaume Berquier, Mohamed Laisi, Jean-Damien Ricard, Clemont Fennard, Jean-Michel Constanti, Sébastien Perret, Julie Delmas, Julien Pascal, Sophie Cayot, Renaud Guerin, Matthieu Jabaudon, Laurence Roszyk, Christine Rolhion, Justine Boudier, Mathilde Lematte, Charline Gouhé, Camille Verhac, Thomas Godet, Sophieh Schnad, Etoile Caumon, Sandrine Thibault, Germany: Aachen: Matthias Lehm, Tobias Schuerholz, Jessica Pezechka, Florian Feld, Christian Brüll, Thorben Beecher, Tim-Philipp Simon, Robert Deisz, Achim Schindler, Bianca Meier, Thorsten Jansch, Köln: Andreas Hohn, Dirk Schedler, Wolfgang Witsh, Daniel Schröder; Erfurt: Andreas Meier-Heßmann, Alexander Lucht, Robert Henker, Magdalena Römmer, Torsten Meinig; Frankfurt: Kai D. Zacharowski.

Fig. 1 Impact of 24 h lactate and bio-ADM values in patients with elevated lactate level at admission. The green curve in the left KM-plot illustrates data from 75 patients with 5 events, the red curve 70 patients with 18 events. The green curve in the right KM-plot illustrates data from 28 patients with 4 events, the red curve 96 patients with 48 events. Of note, differences in numbers between admission (n = 328) and 24 h (n = 269) is related to initial mortality.
Funding
AdrenOSS-1 (ClinicalTrials.gov identifier NCT02393781) was funded by sphingotec GmbH, Neuendorfstraße 15a, 16761 Hennigsdorf, Germany. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement 666328.

Availability of data and materials
AM had full access to all data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Ethics approval and consent to participate
The present study was conducted in France, Belgium, The Netherlands, Italy, and Germany. The study protocol was approved by the local ethics committees, and the study was conducted in accordance with Directive 2001/20/EC as well as good clinical practice (International Conference on Harmonization Harmonized Tripartite Guideline version 4 of May 1, 1996, and decision of November 24, 2006) and the Declaration of Helsinki. Patients were included from June 2015 to May 2016.

Consent for publication
Not applicable.

Competing interests
AM has received speaker’s honoraria from Novartis, Orion, and Servier and fees as a member of the advisory board and/or steering committee from Cardiorentis, Adrenomed, sphingotec, Sanofi, Roche, Abbott, and Bristol-Myers Squibb. EG has received consulting fees from Adrenomed, Roche Diagnostics, and Magnisense and lecture fees from Edwards Lifesciences. OH and JS are employees of sphingotec GmbH, the company that developed and holds patent rights in the bio-ADM assay. BC received fees as a member of an advisory board from Roche Diagnostics. The other authors declare that there are no competing interests.

Author details
1Department of Anesthesiology and Critical Care, Hôpital Lariboisière, DMU Parabol, APHP.Nord, Paris, France. 2Inserm U942 MASCOT, Université de Paris, Paris, France. 3Sphingotec GmbH, Hennigsdorf, Germany.

Received: 14 January 2020 Accepted: 17 February 2020
Published online: 28 February 2020

References
1. Fleischmann C, Scherag A, Adhikari NK, Hartog CS, Tsaganos T, Schlattmann P, et al. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 2016;193(3):259–72.

2. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 update. Crit Care Med. 2018;46(6):997–1000.

3. Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45(1):82–9.

4. Vincent JL, Quintairos ESA, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20(1):257.

5. Mbayaa A, Geven C, Hollinger A, Wittebole X, Chousterman BG, Blet A, et al. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit Care. 2018;22(1):354.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.