CODING THEOREMS FOR HYBRID CHANNELS. II

Kuznetsova A. A.† Holevo A. S.‡

Abstract

The present work continues investigation of the capacities of measurement (quantum-classical) channels in the most general setting, initiated in [10]. The proof of coding theorems is given for the classical capacity and entanglement-assisted classical capacity of the measurement channel with arbitrary output alphabet, without assuming that the channel is given by a bounded operator-valued density.

1 Introduction

The present work continues investigation of the capacities of measurement channels in the most general setting, initiated in [10]. The proof of coding theorems is given for the classical capacity (theorem 1) and entanglement-assisted classical capacity (theorem 2) of the measurement channel with arbitrary output alphabet under the minimal regularity assumptions. The statement of theorem 2 was proved previously in [10] under additional assumption that the channel is given by a bounded operator-valued density. In the present work we relax this restriction by using a generalization of the Radon-Nikodym theorem for probability operator-valued measures [6]. The result obtained is illustrated by an example of homodyne measurement in quantum optics.

†Work partially supported by RFBR (grant No 12-01-00319) and Russian Quantum Center.

†N. E. Baumann MHTU, Moscow, Russia (kuznetsova.a.a@bk.ru).

‡Steklov Mathematical Institute, RAS, Moscow, Russia (holevo@mi.ras.ru).
We remark that the entanglement-assisted classical capacity was studied by a number of authors under the names purification capacity, measurement strength, forward classical communication cost. In the recent paper [2], where one can find further references, its alternative interpretation is developed. It is shown that a (finite-dimensional) measurement channel can be asymptotically simulated by transmission of a classical message of the size equal to the maximal entropy reduction, assisted with sufficient classical correlation between the input and the output. The result can be considered as a quantum reverse Shannon theorem in which entanglement and quantum channel are replaced, correspondingly, by classical correlation and classical channel.

2 Preliminaries

Let \(\mathcal{H} \) be a separable Hilbert space. We use the following notations: \(\mathcal{B}(\mathcal{H}) \) is the algebra of all bounded operators, \(\mathcal{S}(\mathcal{H}) \) is the space of trace-class operators in \(\mathcal{H} \), \(\mathcal{S}(\mathcal{H}) \) is its convex subset of density operators (i.e. positive operators with unit trace), called also quantum states.

We introduce the measure space \((\Omega, \mathcal{F}, \mu)\), where \(\Omega\) is a complete separable metric space, \(\mathcal{F}\) is a \(\sigma\)-algebra of its subsets, \(\mu\) is a \(\sigma\)-finite measure on \(\mathcal{F}\). A hybrid (classical-quantum) system is described by von Neumann algebra \(\mathcal{L} = L^\infty(\Omega, \mathcal{F}, \mu; \mathcal{B}(\mathcal{H})) \), consisting of weakly measurable, essentially bounded functions \(X(\omega), \omega \in \Omega \) with values in \(\mathcal{B}(\mathcal{H}) \). Consider the predual joint space \(\mathcal{L}^* = L_1(\Omega, \mathcal{F}, \mu; \mathcal{S}(\mathcal{H})) \), the elements of which are measurable functions \(S = \{S(\omega)\} \) with values in \(\mathcal{S}(\mathcal{H}) \), integrable with respect to the measure \(\mu \). An element \(S = \{S(\omega)\} \in \mathcal{L}^* \) such that

\[
S(\omega) \geq 0 \pmod{\mu}, \quad \int_\Omega \text{Tr} S(\omega) \mu(d\omega) = 1,
\]

is called state on the algebra \(\mathcal{L} \). In notations of entropic characteristics of hybrid systems we will use the index “cq”, of classical and quantum systems — the indices “c” and “q” correspondingly.

Following [4], we introduce the notions of entropy and relative entropy of cq-states. Concerning the definitions and properties of quantum entropies see e. g. [8].

Definition 1. The entropy of a cq-state \(S \) is defined by the relation

\[
H_{cq}(S) = \int_\Omega H_q(S(\omega)) \mu(d\omega),
\]
where \(H_q(S) = -\text{Tr} S \log S \) is the von Neumann entropy of positive operator \(S \in \mathcal{S}(\mathcal{H}) \).

Note that

\[
H_{cq}(S) = H_c(p) + \int_\Omega p(\omega) H_q(\hat{S}(\omega)) \mu(d\omega), \tag{1}
\]

where \(p(\omega) = \text{Tr} S(\omega), \hat{S}(\omega) = (p(\omega))^{-1} S(\omega), H_c(p) \) is the differential entropy of the probability distribution with the density \(p(\omega) \) with respect to the measure \(\mu \).

Definition 2. The relative entropy of cq-states \(S_1, S_2 \) is defined by the relation

\[
H_{cq}(S_1 \parallel S_2) = \int_\Omega H_q(S_1(\omega) \parallel S_2(\omega)) \mu(d\omega),
\]

where

\[
H_q(S_1(\omega) \parallel S_2(\omega)) = \text{Tr} S_1(\omega)(\log S_1(\omega) - \log S_2(\omega))
\]

is the quantum relative entropy.

To describe measurement channels we will need the following definition.

Definition 3. Probability operator-valued measure (POVM) on \(\Omega \) is a family \(M = \{M(A), A \in \mathcal{F}\} \) of bounded Hermitian operators in \(\mathcal{H} \), satisfying the conditions:

1) \(M(A) \geq 0, A \in \mathcal{F} \);

2) \(M(\Omega) = I \), where \(I \) is the unit operator in \(\mathcal{H} \);

3) for arbitrary countable decomposition \(A = \bigcup_i A_i (A_i \cap A_j = \emptyset, i \neq j) \), the relation \(M(A) = \sum_i M(A_i) \) holds in the sense of weak convergence of operators.

POVM defines a quantum observable with values in \(\Omega \). The probability distribution of observable \(M \) in the state \(S \) is given by the formula

\[
P_S(A) = \text{Tr} SM(A), \quad A \in \mathcal{F}. \tag{2}
\]

For brevity, we sometimes write \(P_S(d\omega) = \text{Tr} SM(d\omega) \).

If POVM \(M(d\omega) \) is defined by the density \(P(\omega) \) with respect to scalar \(\sigma \)-finite measure \(\mu \), where \(P(\omega) \) is a uniformly bounded (with respect to the operator norm) weakly measurable operator-valued function, then its probability distribution has the density \(p_S(\omega) = \text{Tr} SP(\omega) \) with respect to the measure \(\mu \). This case is studied in [10].
In the general case the following lemma holds (a generalization of the Radon-Nikodym theorem for POVM [6]).

Lemma 1. For an arbitrary POVM on a separable metric space \(\Omega \) there exist a dense subspace \(\mathcal{D} \in \mathcal{H} \), a \(\sigma \)-finite measure \(\mu \) on \(\Omega \), a countable set of Borel functions \(\omega \rightarrow a_k(\omega) \) where for almost all \(\omega \) the \(a_k(\omega) \) are linear functionals on \(\mathcal{D} \), satisfying the conditions

\[
\int_\Omega \sum_k |\langle a_k(\omega)|\psi\rangle|^2 \mu(d\omega) = \|\psi\|^2, \quad \psi \in \mathcal{D},
\]

\[\langle \psi|M(A)|\psi\rangle = \int_A \sum_k |\langle a_k(\omega)|\psi\rangle|^2 \mu(d\omega), \quad \psi \in \mathcal{D}. \]

In [6] it is shown that for \(\mathcal{D} \) one can take \(\text{lin} \{\varphi_i\} \) — the linear span of a fixed orthonormal basis \(\{\varphi_i\} \).

Lemma 2. For arbitrary observable \(M(d\omega) \) with values in \(\Omega \) and a density operator \(S \in \mathcal{S}(\mathcal{H}) \), the probability distribution \(P_S(d\omega) = \text{Tr} SM(d\omega) \) has density \(p_S(\omega) \) with respect to measure \(\mu \).

Proof. Consider the spectral decomposition of the state \(S \):

\[
S = \sum_{i=1}^{\infty} \lambda_i |\varphi_i\rangle \langle \varphi_i|. \]

Apply lemma 1 with \(\mathcal{D} = \text{lin}\{\varphi_i\} \). For all \(A \in \mathcal{F} \) the equality holds

\[
P_S(A) \equiv \text{Tr} SM(A) = \int_A p_S(\omega) \mu(d\omega),
\]

where

\[
p_S(\omega) = \sum_{i=1}^{\infty} \lambda_i \sum_k |\langle a_k(\omega)|\varphi_i\rangle|^2
\]

is a nonnegative integrable function by the condition (3) and the spectral decomposition (5). The lemma is proved.

Let us fix an orthonormal system \(\{e_k\} \) in \(\mathcal{H} \). According to the same conditions (3) and (5), the relation

\[
\tilde{S}(\omega) = (p_S(\omega))^{-1} \sum_{i=1}^{\infty} \lambda_i \sum_{j,k} |e_k\rangle \langle a_k(\omega)|\varphi_i\rangle \langle a_j(\omega)|\varphi_i\rangle \langle e_j|
\]

is a nonnegative function on \(\Omega \).
for P_S-almost all ω defines a density operator in \mathcal{H}, which we will call posterior state. The meaning of this term is that under certain conditions the operator $\hat{S}(\omega)$ describes state of the quantum system after measurement of observable M, which resulted with the outcome ω [8].

Following [7], define the entropy reduction by the relation

$$ER(S, M) = H_q(S) - \int_{\Omega} p(\omega) H_q(\hat{S}(\omega)) \mu(d\omega),$$

which is consistent provided $H_q(S) < \infty$. We mention the following approximation properties. Consider a sequence of states $S_n = \sum_{i=1}^{n} \tilde{\lambda}_i |\varphi_i\rangle\langle \varphi_i|$, where $\tilde{\lambda}_i = (\sum_{k=1}^{n} \lambda_k)^{-1}\lambda_i$. By lemma 4 of the paper [11], the above sequence S_n satisfies the condition

$$\lim_{n \to \infty} H_q(S_n) = H_q(S) < \infty. \quad (9)$$

According to the theorem 2 from [7], this implies

$$\lim_{n \to \infty} ER(S_n, M) = ER(S, M) < \infty. \quad (10)$$

3 The classical capacity of a measurement channel

Definition 4. Let M be a POVM, P_S — its probability distribution in the state S, which is given by the formula (2). Measurement channel \mathcal{M} is an affine map $S \to P_S(d\omega)$ of the convex set of quantum states $\mathcal{S}(\mathcal{H})$ into the set of probability distributions on Ω.

To apply the method of block coding, we need to define the n-th degree $\mathcal{M}^\otimes n$ of the channel \mathcal{M}. Let $\mathcal{H}^\otimes n$ be the n-th tensor degree of the Hilbert space \mathcal{H} and let $(\Omega^\times n, \mathcal{F}^\times n)$ be the product of n copies of the measurable space (Ω, \mathcal{F}). The channel $\mathcal{M}^\otimes n$ is defined by the observable $M^\otimes n$ with values in $\Omega^\times n$ such that

$$M^\otimes n(A_1 \times \cdots \times A_n) = M(A_1) \otimes \cdots \otimes M(A_n).$$

By using an analog of the extension theorem for POVM, one can show that this relation defines uniquely all the values $M^\otimes n(A^{(n)})$, $A^{(n)} \in \mathcal{F}^\times n$.

In the case of infinite-dimensional \mathcal{H} one usually introduces a constraint onto the input states of the channel (otherwise the capacities are infinite as a rule). Let F be a positive selfadjoint (in general unbounded) operator in the space \mathcal{H}, with the spectral decomposition $F = \int_0^\infty x \, dE(x)$, where $E(x)$ is the spectral function. We introduce the subset of states
\[\mathcal{A}_E = \{ S \in \mathfrak{S}(\mathcal{H}) : \text{Tr} SF \leq E \}, \] (11)
where E is a positive constant, and the trace in (11) is understood as the integral $\int_0^\infty x \, d(\text{Tr} SE(x))$ (for more detail see [3]). Notice that if the operator F satisfies the condition
\[\text{Tr} \exp(-\beta F) < \infty \quad \beta > 0, \] (12)
then $H_q(S) < \infty$ for all S such that $\text{Tr} SF \leq E$ (see [3]). The corresponding constraint for the channel $\mathcal{M}^\otimes n$ is determined by the operator
\[F^{(n)} = F \otimes I \otimes \cdots \otimes I + \cdots + I \otimes I \otimes \cdots \otimes F. \]

Denote
\[\mathcal{A}_E^{(n)} = \{ S^{(n)}_i \in \mathfrak{S}(\mathcal{H}^\otimes n) : \text{Tr} S^{(n)}_i F^{(n)} \leq nE \}. \] (13)

Definition 5. The code of length n and size N is a pair $(\Sigma^{(n)}, V^{(n)})$, where:
1) $\Sigma^{(n)} = \{ S^{(n)}_i, \ i = 1, \ldots, N \}$ is a family of states from $\mathcal{A}_E^{(n)}$;
2) $V^{(n)} = \{ V_j, \ j = 0, 1, \ldots, N \}$ is a decomposition of the space $\Omega^{\times n}$.

Definition 6. The average error probability of the code $(\Sigma^{(n)}, V^{(n)})$ is the quantity
\[\bar{u}(\Sigma^{(n)}, V^{(n)}) = \frac{1}{N} \sum_{j=1}^{N} \left(1 - \text{Tr} S^{(n)}_j M^{\otimes n}(V_j) \right). \] (14)

We denote by $u(n, N)$ the greatest lower bound of the quantity $\bar{u}(\Sigma^{(n)}, V^{(n)})$ with respect to all codes of length n and size N.

Definition 7. We call the classical capacity $C(\mathcal{M}, \mathcal{A}_E)$ of the measurement channel \mathcal{M} with the constraint (13) the supremum of all achievable rates i.e. the values $R > 0$, satisfying the condition
\[\lim_{n \to \infty} u(n, 2^{nR}) = 0. \] (15)

We call by ensemble of states a finite probability distribution $\pi = \{ \pi_x ; S_x \}$ on the set of states $\mathfrak{S}(\mathcal{H})$, ascribing probabilities π_x to certain states S_x. The
average state of ensemble is defined as: \(\overline{S}_\pi = \sum_x \pi_x S_x \). Let us denote \(\mathcal{P}_E \) the set of ensembles \(\pi \) such that \(\overline{S}_\pi \in \mathcal{A}_E \); similarly, we denote \(\mathcal{P}_E^{(n)} \) the set of ensembles \(\pi^{(n)} \) in \(\mathcal{G}(\mathcal{H}^\otimes n) \), the average state of which satisfying the condition (13).

For given measurement channel \(\mathcal{M} \) and ensemble \(\pi \) define the quantity
\[
I(\pi, \mathcal{M}) = \sum_x \pi_x \int_\Omega p(\omega|x) \log \frac{p(\omega|x)}{p(\omega)} \mu(d\omega).
\] (16)

Here \(p(\omega) \) and \(p(\omega|x) \) are the probability densities of the distributions \(\overline{P}(d\omega) = \text{Tr} \overline{S}_\pi \mathcal{M}(d\omega) \) and \(P_x(d\omega) = \text{Tr} S_x \mathcal{M}(d\omega) \) correspondingly. The quantity \(I(\pi, \mathcal{M}) \) is the Shannon mutual information between the discrete random variable \(X \), having the probability distribution \(\{\pi_x\} \) and the random variable \(\omega \) with conditional probability density \(p(\omega|x) \), defined via lemma [2] Notice that there is a representation of the quantity \(I(\pi, \mathcal{M}) \) as a supremum over decompositions \(\mathcal{V} = \{V_i\} \) of the output space \(\Omega \) (cf. [3] formula (1.2.3)):
\[
I(\pi, \mathcal{M}) = \sup_{\mathcal{V}} \left(\sum_i \sum_x \pi_x P_x(V_i) \log \frac{P_x(V_i)}{P(V_i)} \right). \tag{17}
\]
The quantity under supremum is equal to \(I(\pi, \mathcal{M}_V) \), where \(\mathcal{M}_V \) is the measurement channel, corresponding to the discrete observable \(\{M(V_i)\} \).

Theorem 1. The classical capacity of the measurement channel \(\mathcal{M} \) with the constraint (13) is given by the relation
\[
C(\mathcal{M}, \mathcal{A}_E) = \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}). \tag{18}
\]

Proof. Denote
\[
C_n = \sup_{\pi^{(n)} \in \mathcal{P}_E^{(n)}} I(\pi^{(n)}, \mathcal{M}_E^{\otimes n}).
\]
We need to show that
\[
C(\mathcal{M}, \mathcal{A}_E) = C_1.
\]
Let us first establish the additivity property \(C_n = nC_1 \).

For a fixed decomposition \(\mathcal{V} = \{V_i\} \), the measurement channel \(\mathcal{M}_V \) is embedded into quantum entanglement-breaking channel (see e.g. [4]), therefore according to [3] its capacity is given by the expression
\[
C(\mathcal{M}_V, \mathcal{A}_E) = \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}_V), \tag{19}
\]
and has the additivity property (see [6])

\[C(\mathcal{M}^\otimes_n, \mathcal{A}_E^n) = nC(\mathcal{M}, \mathcal{A}_E). \]

Notice that similarly to (19), the left-hand side is equal to \(\sup_{\pi(n) \in \mathcal{P}_E} I(\pi(n), \mathcal{M}_V^\otimes n) \), so that

\[\sup_{\pi(n) \in \mathcal{P}_E} I(\pi(n), \mathcal{M}_V^\otimes n) = n \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}_V). \]

(20)

By using a result of R. L. Dobrushin (theorem 2.2 in [5]), we have

\[I(\pi(n), \mathcal{M}_V^\otimes n) = \sup_{\mathcal{V}} I(\pi(n), \mathcal{M}_V^\otimes n), \]

because the supremum in the right-hand side is equal to the supremum of the information with respect to decompositions of the space \(\Omega^\times n \) of special form, consisting of products \(V_1 \times \cdots \times V_n \) of the sets from the decomposition \(\mathcal{V} \). The class of all such products has the ordering property that is required for validity of theorem 2.2 in [5]. Hence

\[C_n = \sup_{\mathcal{V}} \sup_{\pi(n) \in \mathcal{P}_E} I(\pi(n), \mathcal{M}_V^\otimes n) = \sup_{\mathcal{V}} \sup_{\pi(n) \in \mathcal{P}_E} I(\pi(n), \mathcal{M}_V^\otimes n) \]

\[= n \sup_{\mathcal{V} \pi \in \mathcal{P}_E} I(\pi, \mathcal{M}_V) = n \sup_{\mathcal{V} \pi \in \mathcal{P}_E} I(\pi, \mathcal{M}_V) \]

\[= n \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}) = nC_1, \]

where we used (20) in the third equality.

Now let us prove the inequality \(C(\mathcal{M}, \mathcal{A}_E) \leq C_1 \). Without loss of generality we can suppose that \(C_1 < \infty \). Let \(R > C_1 \). By applying Fano’s inequality, we obtain similarly to the relation (10.19) in [8]

\[u(n, 2^{nR}) \geq 1 - \frac{C_n}{nR} - \frac{1}{nR} = 1 - \frac{C_1}{R} - \frac{1}{nR}, \]

where in the second equality we used the additivity \(C_n = nC_1 \). Therefore \(\liminf_{n \to \infty} u(n, 2^{nR}) > 0 \), and hence \(C(\mathcal{M}, \mathcal{A}_E) \leq C_1 \).

For the proof of the converse inequality we note that

\[C(\mathcal{M}, \mathcal{A}_E) \geq C(\mathcal{M}_V, \mathcal{A}_E) = \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}_V) \]

for arbitrary decomposition \(\mathcal{V} \). By taking supremum over the decompositions \(\mathcal{V} \), we obtain \(C(\mathcal{M}, \mathcal{A}_E) \geq \sup_{\pi \in \mathcal{P}_E} I(\pi, \mathcal{M}) = C_1 \). The theorem 1 is proved.
4 Entanglement-assisted capacity of a measurement channel

Consider the following protocol of classical information transmission through the measurement channel M. Transmitter A and receiver B are in the pure entangled state $S_{AB} = |\psi\rangle\langle\psi|$, where $|\psi\rangle = \sum_j c_j |e_j\rangle \otimes |\tilde{e}_j\rangle$, satisfying the condition $H_q(S_A) = H_q(S_B) < \infty$.

Let X be a finite alphabet, and the classical signal $x \in X$ appears with probability π_x. The party A performs encoding $x \rightarrow E_x$, and then sends its part of the resulting common state via the channel M. Thus party B has at its disposal the hybrid system Ω_B, where Ω is the classical system at the output of the measurement channel. After the measurement of observable $M(d\omega)$, the state in the hybrid system is described in the following way:

$$\sigma_x(d\omega) = \sum_{j,k} c_j c_k \text{Tr} [E_x(|e_j\rangle \langle e_k|)M(d\omega)] |e_j\rangle \langle e_k|.$$

Then the party B may perform measurement of an observable in the system Ω_B, extracting in this way information about the signal x.

With the block coding, the encoded states transmitted through the channel $M^\otimes n \otimes I_B^\otimes n$, have the form

$$S^{(n)}_{\alpha} = (E^{(n)}_\alpha \otimes I_B^\otimes n)[S^{(n)}_{AB}], \quad (21)$$

where $S^{(n)}_{AB}$ is pure entangled state for n copies of the system AB, satisfying the condition $H(S^{(n)}_B) < \infty$, α is the classical message (e.g. a word in an alphabet X), $\alpha \rightarrow E^{(n)}_\alpha$ are the encodings for n copies of the system A. The input states of the channel $M^\otimes n$ are subject to the constraint (13), which is equivalent to similar constraint for the channel $M^\otimes n \otimes I_B^\otimes n$ with the operators $F^{(n)} \otimes I_B^\otimes n$.

For the channel M with the input constraint (13) we consider the quantity

$$C^{(n)}_{ca}(M^\otimes n, A^{(n)}_E) = \sup_{(\pi^{(n)}_{\alpha}, S^{(n)}_{\alpha})} \chi_{cq} \left(\{\pi^{(n)}_{\alpha}\}; \{M^\otimes n \otimes I_B^\otimes n)S^{(n)}_{\alpha}\} \right), \quad (22)$$

where

$$\chi_{cq} (\{\pi_x\}; \{S_x\}) = H_{cq} \left(\sum_x \pi_x S_x \right) - \sum_x \pi_x H_{cq} (S_x), \quad S_x \in \mathcal{L}. $$
and the supremum is taken over all state ensembles of the form (21), satisfying the condition
\[\sum_\alpha \pi_\alpha^{(n)} \text{Tr} S_\alpha^{(n)} (F^{(n)} \otimes I_B^{\otimes n}) \leq nE. \]

The classical entanglement-assisted capacity for the quantum-classical channel \(\mathcal{M} \) with the constraint (11) is defined by the relation
\[C_{ea}(\mathcal{M}, A_E) = \lim_{n \to \infty} \frac{1}{n} C_{ea}^{(n)} (\mathcal{M}^{\otimes n}, A_E^{(n)}). \]

Theorem 2. Let \(\mathcal{M} \) be an arbitrary measurement channel with the input constraint (13). Assume, that the operator \(F \) satisfies the condition (12), and the channel \(\mathcal{M} \) satisfies the condition
\[\sup_{S, A: \text{Tr} S A F \leq E} \text{Tr} S A F \leq E H_c (p S A) < \infty, \] (23)
where \(H_c (p S A) \) is the classical differential entropy of the probability density of the output distribution of the channel \(\mathcal{M} \). Then the entanglement-assisted capacity is given by the expression
\[C_{ea}(\mathcal{M}, A_E) = \sup_{S, A: \text{Tr} S A F \leq E} \text{ER} (S_A, M). \] (24)

Proof. In the proof we use the corresponding result for measurement channels defined by a bounded operator density, obtained in [10].

Let \(S_{AB} \) be the initial entangled state of the system \(AB \). After applying encoding \(\mathcal{E}_A \) in the system \(A \) the state of the composite system is described by the operator
\[S_{AB}^x = (\mathcal{E}_A^x \otimes \text{Id}_B) S_{AB} \]
with the partial states \(S_A^x = \mathcal{E}_A^x (S_A) \) and \(S_B^x = S_B \).

To establish the inequality \(\leq \) in the formula (24), it is sufficient to prove (see [10] for detail) that
\[H_{cq} \left(\sum_x \pi_x (\mathcal{M} \otimes \text{Id}_B) S_{AB}^x \right) - \sum_x \pi_x H_{cq} (\mathcal{M} \otimes \text{Id}_B (S_{AB}^x)) \leq \text{ER} (\overline{S}_A, M). \] (25)
Here \(\overline{S}_A = \sum_x \pi_x S_A^x \), and the constraint (13) implies the condition
\[\text{Tr} \overline{S}_A F \leq E. \] (26)
A result of [10] implies that the relation (25) holds for finite-rank states S_A satisfying the constraint (26). For the proof in the general case we apply approximation by finite-rank states.

Assume first that $\operatorname{Tr} S_A F \leq E' < E$ for a positive E'. Let S_A have the spectral decomposition $S_A = \sum_i \lambda_i |\varphi_i\rangle \langle \varphi_i|$. Consider the increasing sequence of projections $P_n = \sum_{i=1}^n |\varphi_i\rangle \langle \varphi_i|$ converging to the unit operator I_A, and the sequence of states

$$S_{AB}^x(n) = P_n \otimes I_B S_{AB}^x(n),$$

where $S_{AB}^x(n) = \operatorname{Tr}_A (P_n \otimes I_B S_{AB}^x(n) \otimes I_B)$, $|\phi\rangle$ is a fixed unit vector from $\text{lin}\{\varphi_i\}$, belonging to the domain of \sqrt{F}. The partial states of $S_{AB}^x(n)$ are

$$S_A^x(n) = \operatorname{Tr}_B S_{AB}^x(n) = P_n S_A^x(n) + (1 - \operatorname{Tr} P_n S_A^x)|\phi\rangle \langle \phi|, \quad \operatorname{Tr}_A S_{AB}^x(n) = S_B.$$

Then the average state in the system A is equal to

$$S_A(n) = \sum_x \pi_x S_A^x(n) = P_n S_A P_n + (1 - \operatorname{Tr} P_n S_A)|\phi\rangle \langle \phi|.$$

We have $S_A(n) = \sum_{i=1}^n \lambda_i |\varphi_i\rangle \langle \varphi_i| + (1 - \operatorname{Tr} P_n S_A)|\phi\rangle \langle \phi|$, then $\|S_A(n) - S_A\|_1 \to 0$ for $n \to \infty$ and

$$\operatorname{Tr} S_A(n) F = \sum_{i=1}^n \lambda_i \|\sqrt{F} \varphi_i\|^2 + (1 - \operatorname{Tr} P_n S_A)|\phi\rangle \langle F \phi| \leq E' + \varepsilon_n,$$

$\varepsilon_n \to 0$ as $n \to \infty$. Thus, starting from some value of n, the density operator $S_A(n)$ satisfies the input constraint (26).

Using the condition (23), similarly to the proof of the coding theorem for measurement of observable in [10] we obtain the inequality (25) for the ensemble $\{\pi_x, S_{AB}^x(n)\}$, which can be written in the following form based on the relative entropy:

$$\sum \pi_x H_{cq} \left((\mathcal{M} \otimes I_B)(S_{AB}^x(n)) \right) \left\| \sum \pi_x (\mathcal{M} \otimes I_B) S_{AB}^x(n) \right\| \leq \operatorname{ER} (\operatorname{Tr} S_A(n), M).$$

Take the limit $n \to \infty$ in (27). By noting that $\lim_{n \to \infty} H_q(S_A(n)) = H_q(S_A)$, using theorem 2 from [7] (i.e. the equality (10)) in the left-hand side and the lower semicontinuity of the relative entropy in the right-hand side, we obtain (25) for the ensemble $\{\pi_x, S_{AB}^x\}$.
Now consider the case $\text{Tr} \overline{S}_A F = E$. Take a unit vector $|e\rangle \in \text{lin}\{\phi_i\}$, satisfying the condition $\langle e| F e \rangle < E$, and construct the approximation $S_{AB}^x(\varepsilon) = (1 - \varepsilon)S_{AB}^x + \varepsilon|e\rangle\langle e| \otimes S_B$, $0 < \varepsilon < 1$. Then the average state of the system A is $\overline{S}_A(\varepsilon) = (1 - \varepsilon)\overline{S}_A + \varepsilon|e\rangle\langle e|$, and the following condition holds

$$\text{Tr} \overline{S}_A(\varepsilon) F < E.$$

Let us repeat previous argument approximating $S_{AB}^x(\varepsilon)$ by the states of the form

$$(1 - \varepsilon)P_n \otimes I_B S_{AB}^x P_n \otimes I_B + |e\rangle\langle e|(S_B - (1 - \varepsilon)\text{Tr}_A P_n \otimes I_B S_{AB}^x)$$

with the partial states $(1 - \varepsilon)S_A^x + (1 - (1 - \varepsilon)\text{Tr}_A S_{AB}^x)|e\rangle\langle e|$ and S_B in the systems A and B correspondingly. We obtain that the inequality (25) holds for $S_{AB}^x(\varepsilon)$, $\overline{S}_A(\varepsilon)$. Since $\lim_{\varepsilon \to 0} H_q(S_A(\varepsilon)) = H_q(\overline{S}_A)$, then, tending ε to zero we obtain (25) for ensembles satisfying the condition $\text{Tr} \overline{S}_A F = E$. The rest of the proof is similar to the case of observable with a bounded density [10].

To prove the inequality \geq in (24) we consider an arbitrary state $S \in \mathcal{S}(\mathcal{H})$, $S = \sum_{i=1}^{\infty} \lambda_i |\varphi_i\rangle\langle \varphi_i|$, satisfying the input constraint. Apply lemma 1, setting $D = \text{lin}\{\varphi_i\}$ and defining posterior states $\hat{S}(\omega)$ by the relation (7). Then the argument is similar to the proof of proposition 4 from [3], and also theorem 3 from [10]. Theorem 2 is proved.

Of special interest is the case of pure POVM for which there exists a representation (4) of the form

$$\langle \psi|M(A)\psi\rangle = \int_A |\langle a(\omega)|\psi\rangle|^2 \mu(d\omega), \quad \psi \in D.$$

(28)

In this case the posterior state (7) is a pure state, not depending on x:

$$\hat{S}(\omega) = |e\rangle\langle e|,$$

(29)

where $e \in \mathcal{H}$ is a unit vector. Thus, $H_q(\hat{S}(\omega)) = 0$ and the entropy reduction is equal to

$$\text{ER} (S, M) = H_q(S).$$

(30)

The relation (24) takes the form

$$C_{ea}(\mathcal{M}, \mathcal{A}_E) = \sup_{S_A: \text{Tr} S_A F \leq E} H_q(S).$$

(31)
It is well known that this supremum is attained on the Gibbs state
\[S_\beta = c(\beta)^{-1} \exp(-\beta F), \quad c(\beta) = \text{Tr} \exp(-\beta F), \quad (32) \]
where \(\beta \) is found from the condition \(\text{Tr} S_\beta F = E \), and it is equal to \(\beta E + c(\beta) \).
Thus theorem \ref{theorem:supremum} implies the following statement.

Corollary 1. For arbitrary measurement channel, corresponding to pure POVM,
\[C_{ea}(\mathcal{M}, \mathcal{A}_E) = \beta E + c(\beta), \]
where \(\beta \) is found from the condition \(\text{Tr} S_\beta F = E \).

Let us illustrate this result by two examples. Let \(\mathcal{H} = L^2(\mathbb{R}) \), \(Q \) be the operator of multiplication by \(x \), \(P = -id/dx \) with the common essential domain \(\mathcal{D} = \mathcal{S}(\mathbb{R}) \) (the space of infinitely differentiable functions rapidly decreasing with all derivatives, see e.g. \cite{8}). The spectral measure \(M \) of the selfadjoint operator \(Q \) can be represented in the form (28):
\[\langle \psi | M(A) | \psi \rangle = \int_A |\langle x | \psi \rangle|^2 dx, \quad \psi \in \mathcal{S}(\mathbb{R}), \]
where \(\langle x | \psi \rangle = \psi(x), \psi \in \mathcal{S}(\mathbb{R}) \), are the Dirac’s \(\delta \)-functionals. Thus the POVM \(M \) does not have bounded operator density, the result of the paper \cite{10} is not applicable and one should apply the approach of the present paper.
Arbitrary density operator \(S \) in \(L^2(\mathbb{R}) \) is defined by the kernel which is conveniently written in the symbolic form \(\langle x | S | y \rangle \) (for continuous kernels this notation can be understood literally). Consider the channel corresponding to the measurement of observable \(Q \), which maps a density operator \(S \) into the probability density \(\langle x | S | x \rangle \) with respect to the Lebesgue measure on the real line. In quantum optics such a channel describes statistics of homodyne measurement of one mode \(Q, P \) of electromagnetic field \cite{12}. As a constraint operator one usually takes the oscillator energy \(F = (P^2 + Q^2)/2 \). Notice that the condition (23) is fulfilled, as the inequality \(\text{Tr} SF \leq E \) implies
\[\int x^2 \rho_S(x) \, dx = \text{Tr} SQ^2 \leq 2\text{Tr} SF \leq 2E, \]
and the maximal differential entropy (equal to \((1/2) \log(2\pi e(2E)) \)) under this constraint is attained on the Gaussian probability density. Substituting this value of supremum, equal to the entropy of the Gibbs state of oscillator with the mean energy \(E \) (see e.g. \cite{12}, \cite{8}) into (31), we obtain
\[C_{ea}(\mathcal{M}, \mathcal{A}_E) = \left(E + \frac{1}{2} \right) \log \left(E + \frac{1}{2} \right) - \left(E - \frac{1}{2} \right) \log \left(E - \frac{1}{2} \right). \quad (33) \]
On the other hand, the classical capacity of homodyne channel computed in [12], [13] is equal to

\[C(M_{\text{hom}}, A_E) = \log(2E). \]

(34)

According to the corollary 1, the relation (33) holds for arbitrary pure measurement channel including heterodyne channel, which maps a density operator \(S \) into probability density \(\langle x, y | S | x, y \rangle \) with respect to the Lebesgue measure on the plane, where \(|x, y\rangle \) are the coherent states of the quantum oscillator [4]. Notice that in this case the bounded operator density exists and results of paper [10] are applicable. The classical capacity of the heterodyne channel computed in [13], [4] is equal to

\[C(M_{\text{het}}, A_E) = \log \left(E + \frac{1}{2} \right). \]

(35)

For all \(E > 1/2 \) the inequalities hold

\[C(M_{\text{het}}, A_E) < C(M_{\text{hom}}, A_E) < C_{\text{ea}}(M, A_E). \]

The graphs of the three capacities are shown on Fig. 1.
References

[1] Bennett C. H., Shor P. W., Smolin J. A., Thapliyal A. V. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. — IEEE Trans. Inform. Theory, 2002, v. 48, No 10, p. 2637–2655.

[2] Berta M., Renes J. M., Wilde M. M. Identifying the information gain of a quantum measurement. arXiv:1301.1594.

[3] Holevo A. S. The classical capacities of quantum channel with input constraint. — Theory Probab. Appl., 2004, v. 48, No 2, p. 243255.

[4] Holevo A. S. Information capacity of quantum observable. — Problems Inform. Transmission, 2012, v. 48, No 1, p. 1–10.

[5] Dobrushin R. L. General formulation of Shannon theorem in information theory. — Russian Math. Surveys, 1959, v. 14, No 6, p. 3–104.

[6] Holevo A. S. Entanglement-breaking channels in infinite dimensions. — Problems Inform. Transmission, 2008, v. 44, No 3, p. 171-184.

[7] Shirokov M. E. Entropy reduction of quantum measurement. — J. Math. Phys., 2011, v. 52, No 5, paper No 052202, 18 p.

[8] Holevo A. S. Quantum systems, channels, information. , 2010, 327.

[9] Barchielli A., Lupieri G. Instruments and mutual entropies in quantum information. — Banach Center Publ., 2006, v. 73, p. 65–80.

[10] Kuznetsova A. A., Holevo A. S. Coding theorems for hybrid channels. — Theory Probab. Appl., 2013, v. 58, No 2, p. 298–324.

[11] Lindblad G. Expectations and entropy inequalities for finite quantum systems. — Comm. Math. Phys., 1974, v. 39, p. 111–119.

[12] Caves C. M., Drummond P. B. Quantum limits of bosonic communication rates. — Rev. Modern Phys., 1994, v. 66, p. 481–538.

[13] Hall M. J. W. Quantum information and correlation bounds. — Phys. Rev. A, 1997, v. 55, No 1, p. 100–113.