Zinc Uptake and Shoot Partitioning Between Zinc Efficient and Inefficient Exacum Genotypes

Andrew Riseman1
University of British Columbia Botanical Garden and Center for Plant Research, University of British Columbia, 6804 Southwest Marine Drive, Vancouver, BC, Canada, V6T1Z4

Richard Craig and Jonathan P. Lynch
Department of Horticulture, The Pennsylvania State University, University Park, PA

ABSTRACT. Interspecific hybrids of exacum (Exacum L.) display variable responses to zinc nutrition. Our research compared two genotypes with contrasting zinc efficiency phenotypes in terms of root cation exchange capacity (CEC), whole plant 65Zn uptake, and the effects of Cu$^{2+}$ and Mg$^{2+}$ on 65Zn uptake and partitioning to shoot tissues. Results show that the zinc efficient and inefficient genotypes had significantly different root CEC (27.2 and 16.9 cmol(+)/kg dry weight [DW], respectively) and whole plant 65Zn uptake rates (0.048 and 0.026 μmol·h$^{-1}$·g$^{-1}$ DW, respectively). In equimolar concentrations to Zn$^{2+}$, Cu$^{2+}$ reduced Zn$^{2+}$ uptake by approximately 50% in both genotypes while supplemental Mg$^{2+}$ enhanced Zn$^{2+}$ uptake. In addition, Mg$^{2+}$ facilitated a larger proportion of absorbed 65Zn to the upper shoot of the efficient genotype. We conclude zinc is absorbed through a specific Zn$^{2+}$/Cu$^{2+}$ transporter and that zinc efficiency in exacum is based on a combination of apoplastic and symplastic traits. In addition, a secondary Mg$^{2+}$ × Zn$^{2+}$ interaction may contribute to the zinc efficiency phenotype.

Received for publication 17 Dec. 2004. Accepted for publication 7 Mar. 2005.

The authors acknowledge financial support from the Graduate School, the College of Agricultural Sciences and the Dept. of Horticulture at The Pennsylvania State Univ. We also thank Drs. Iain Taylor, Art Bomke, and Anthony Glass from the Univ. of British Columbia and Dr. Thomas Kinraide from the Appalachian Farming Systems Research Center for their constructive critiques during the preparation of the manuscript.

1To whom reprint request should be addressed. E-mail: ariseman@interchange.ubc.ca.
affinities for Zn\(^{2+}\) that may provide a resource or pool of Zn\(^{2+}\) available for uptake mechanisms to access (Sakal et al., 1988); differences in translocation rates where absorbed Zn\(^{2+}\) is differentially translocated within the plant (Graham and Rengel, 1993); and differences in the effects of competing ions where elemental interactions positively or negatively affect the uptake or translocation of Zn\(^{2+}\) (Amber and Brown, 1969; Brown and McDaniel, 1978; Jolley and Brown, 1991; Parker et al., 1992; Pedler et al., 2004).

This research was conducted to identify factors which contribute to zinc efficiency and were suitable for use in germplasm evaluations designed to identify zinc efficient genotypes. In addition, we feel this information helps to elucidate mechanisms that may have affected the evolution of exacum taxa. Previously, zinc efficiency in our germplasm was determined to be primarily root-based (Riseman, 1997) and highly correlated with Zn\(^{2+}\) uptake per unit of root length (Riseman and Craig, 2000). However, additional root-based traits have been associated with Zn\(^{2+}\) efficiency. In this research, we compared Zn\(^{2+}\) efficient and inefficient genotypes with respect to 1) root cation exchange capacity (CEC); 2) whole plant Zn\(^{2+}\) uptake rates; 3) the competitive effects of Cu\(^{2+}\) and Mg\(^{2+}\) on Zn\(^{2+}\) uptake rates; and 4) the effects of Cu\(^{2+}\) and Mg\(^{2+}\) on Zn\(^{2+}\) partitioning to shoot tissues.

Materials and Methods

Plant material. Two interspecific hybrids of exacum, derived from species native to Sri Lanka, were used. These genotypes were selected based on comparable total biomass averaging 108 g (±4 g) fresh weight. Average age of experimental units was 8 weeks from time of transfer to greenhouse.

Root CEC experiments. Root CEC was measured according to the method of Helmy and Elgabaly (1958). Five-gram fresh weight root samples were acidified through five rinses of 0.1 N HCl. Samples were then rinsed five times in deionized water followed by back titration to pH 8 with a 0.04 N KOH solution. Titration time was approximately 2 min. Extra care was paid to titration time to equalize the effect of carbonic acid formation by CO\(_2\) diffusion into the solution. After titration, tissues were dried at 80 °C in a forced air oven for 24 h. Root CEC is expressed as cmol(+)·kg\(^{-1}\) dry tissue.

Zn\(^{2+}\) desorption, uptake, and tissue partitioning experiments. Preliminary trials were conducted to empirically determine an adequate desorption period following 6 h of exposure to \(^{65}\)Zn-labeled uptake solution. Plants were removed from the uptake solution (see \(^{65}\)Zn uptake solution section below), blotted free of surface solution and placed in ice cold desorption solution consisting of 0.5 mM CaCl\(_2\). The plant roots and solution were agitated by gentle manual manipulation. Desorption solutions were sampled at 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, and 25 min after root contact. At each sample interval, a 0.5-mL aliquot was collected and analyzed for radioactivity. A final desorption period was determined when no additional radioactivity was recorded in three consecutive aliquots. This time period was used for all subsequent trials and for both genotypes. Based on these trials, a 15-min desorption period was used for all subsequent experiments.

Upon initiation of the \(^{65}\)Zn uptake experiments, plants were moved from the glasshouse to the laboratory where the roots were washed free of sand with deionized water. Roots were easily removed from the sand without any perceivable damage. Plants were then placed into 1-L plastic containers with holes drilled through the lid to provide support for the shoot while allowing the roots to be immersed in the uptake solution. Two pretreatment solutions were used consecutively. The first solution consisted of full-strength solution (Jonson et al., 1957) composed of the following salts and concentrations: KNO\(_3\) (6 mM), Ca(NO\(_3\))\(_2\) (6 mM), MgSO\(_4\) (225 μM), KCl (50 μM), H\(_2\)BO\(_3\) (25 μM), MnSO\(_4\) (2 μM), CuSO\(_4\) (0.5 μM), (NH\(_4\))\(_6\)Mo\(_7\)O\(_24\) (0.5 μM), Fe\(_2\)(SO\(_4\))\(_3\) (2 μM), ZnSO\(_4\) (2 μM). All solutions were constantly aerated. Plants remained exposed to the first pretreatment solution for 24 h. The second solution consisted of only CaCl\(_2\) (0.5 mM) and ZnCl\(_2\) (2 μM). Plants remained exposed to the second pretreatment solution for an additional 24 h. All pretreatments and uptake experiments were used a water bath to maintain solution temperatures at 30 °C. Irradiance levels of 450 μmol·m\(^{-2}\)·s\(^{-1}\) PAR were produced by one 1000-W metal halide lamp positioned 1 m above the plants.

\(^{65}\)Zn uptake solution. Following the second 24-h pretreatment, the CaCl\(_2\) + ZnCl\(_2\) solution was replaced with the uptake solution. Composition of the uptake solution was CaCl\(_2\) (0.5 mM) and ZnCl\(_2\) (2 μM) with the addition of 370 kBq \(^{65}\)Zn (10 μCi) supplied as the chloride salt (Amersham Corp., Arlington Heights, Ill.). At harvest, roots were blotted with paper towels to remove surface solution, desorbed for 15 min, partitioned by tissue category and dried at 80 °C for 48 h. Roots were cut into 10-mm segments and mixed to form homogenous subsamples. Shoots were partitioned into individual leaf pairs and internode sections. After drying, all samples were weighed and measured for radioactivity.

Competition experiments. For ion competition experiments, a single radioactive CaCl\(_2\) + ZnCl\(_2\) solution, as described above,
was made and divided into two equal aliquots. The first aliquot remained unchanged and served as the control while the second aliquot was supplemented with either Mg2+ or Cu2+. This arrangement allowed for a common specific activity to be used within each replication. Both Mg2+ and Cu2+ were used in equimolar concentrations to the Zn2+ concentration (2 \textmu M) and evaluated individually in separate trials. Magnesium chloride and copper chloride were used as the source of the competing ions. Three complete replications were conducted for each ion. Plant tissues were divided into the following categories prior to analyses: “upper shoot,” meaning all tissue distal to and including youngest fully expanded leaf pair; “mid shoot,” meaning all tissue basal to upper shoot to the second oldest leaf pair; “lower shoot,” meaning all tissue basal to the mid shoot to the oldest leaf pair; “lower stem,” meaning all tissue basal to the oldest leaf pair; and “roots,” meaning all root tissue.

65Zn radioactivity was measured on a Gamma Scintillation Spectrometer (model 5230; Packard Instrument Co., Downers Grove, Ill.). The detection parameters were set at a lower limit of 450 MeV with a window of 210 MeV. All samples were counted for a minimum of either 20 min or 10,000 counts. Background radiation was accounted for by bracketing each sample with blanks and subtracting the average between them from the embedded sample. Specific activity was determined by counting an initial aliquot collected from the uptake solution prior to exposure to the plants and then converted to counts per minute (CPM)/\mu mol Zn2+ based on the initial Zn2+ concentration of 2 \mu M. Individual specific activity calculations were determined for each block and utilized in only that block.

ExPERIMENTAL design and statistics. For root CEC experiments, five plants of each genotype were utilized as replicates. The roots of each plant were partitioned into three groups and considered subsamples. Statistics were performed by StatView SE+ Graphics (Abacus Concepts, Berkeley, Calif.) statistical software.

For 65Zn uptake and ion competition experiments, two plants of each genotype were placed in a single container; each container served as a replicate in the statistical analyses. A total of 10 replicates were utilized in each experiment. Statistical procedures (i.e., analysis of variance, mean separation and paired t tests of means) were performed with Systat for the Macintosh version 5.2 (Systat, Evanston, Ill.). For the ion competition studies, data are presented as both absolute values and as a percentage of control. For Zn2+ uptake and partitioning comparisons, plant tissues were grouped as described above.

Results

Root CEC. The efficient genotype had significantly greater root CEC than the inefficient genotype (Fig. 1). This difference is presumed to have affected the amount of Zn2+ released from the root tissues following 15 min of desorption. Following desorption, the two genotypes released significantly different amounts of Zn2+, with the efficient genotype releasing 0.25 \mu mol-g-1 DW root while the inefficient genotype released only 0.16 \mu mol Zn2+.

Zn2+ Uptake and Tissue Partitioning. After 1 h, there were no significant genotype differences in 65Zn concentration within any tissue category (Table 1). However, in each category, the zinc efficient genotype contained a higher mean 65Zn concentration than the inefficient genotype. After 6 h of exposure to the uptake solution, whole-plant Zn2+ uptake rates were significantly greater in the efficient genotype (188.2 pmol-h-1g-1 DW) than in the inefficient genotype (94.8 pmol-h-1g-1 DW) (calculated from Table 1, \textit{P} < 0.05). In addition, significant differences were observed for Zn2+ allocation rates (i.e., sum of Zn2+ in all non-root tissues divided by the uptake period and total shoot dry weight) between the genotypes where the Zn2+ efficient and inefficient genotypes translocated 6.0 and 3.9 pmol-h-1g-1 DW, respectively (calculated from Table 1).

Effects of Cu2+ and Mg2+ on Zn2+ Uptake and Shoot Partitioning. As compared to the inefficient genotype, the efficient genotype absorbed significantly greater amounts of Zn2+ regardless of the competing ion (Fig. 2A). In general, Cu2+ reduced overall Zn2+ uptake while Mg2+ facilitated uptake, regardless of genotype or exposure time. After 6 h, Zn2+ uptake in the presence of Cu2+ was significantly reduced in the efficient genotype from 1129.2 to 745.3 pmol while in the inefficient genotype, Zn2+ uptake was significantly reduced from 568.9 to 312.9 pmol (Fig. 2A). On average, Cu2+ reduced root Zn2+ uptake compared to the control by 64% and 51% for the Zn2+ efficient and inefficient genotypes, respectively (Fig. 2B).

Magnesium enhanced Zn2+ uptake in both genotypes at both time intervals. After 6 h, Zn2+ uptake in the presence of Mg2+ was

![Fig. 1. Root cation exchange capacity (CEC) for efficient and inefficient genotypes of exacum. Mean of 15 replicates; error bars = se; means of efficient and inefficient genotypes significant at \textit{P} < 0.001.](Image)

Table 1. Radiolabeled zinc uptake in efficient and inefficient exacum genotypes for each tissue category at 1 h and 6 h after exposure to solution [mean (se) of 10 replicates].

Tissue category\(^{a} \)	Efficient genotype	Inefficient genotype	Efficient genotype	Inefficient genotype
Upper shoot	0.2 (0.04) a	0.2 (0.04) a	0.2 (0.04) a	0.2 (0.04) a
Mid shoot	0.2 (0.04) a	0.2 (0.04) a	0.2 (0.04) a	0.2 (0.04) a
Lower shoot	0.5 (0.09) a	0.5 (0.09) a	0.5 (0.09) a	0.5 (0.09) a
Lower stem	26.0 (9) a	26.0 (9) a	31.0 (8) a	31.0 (8) a
Roots	374.0 (90) a	374.0 (90) a	545.0 (90) b	545.0 (90) b

\(^{a} \)Tissue categories: upper shoot = all tissue distal to and including youngest fully expanded leaf pair; mid shoot = all tissue basal to upper shoot to the second oldest leaf pair; lower shoot = all tissue basal to the mid shoot to the oldest leaf pair; lower stem = all tissue basal to the oldest leaf pair; and roots = all root tissue. \(^{b} \)T statistics performed between genotypes within an exposure time and within tissue category; means followed by a common letter are not different \((P \leq 0.05) \) by Fisher’s protected least significant difference.
Fig. 2. Effect of Cu$^{2+}$ and Mg$^{2+}$ ions on whole plant Zn uptake of efficient and inefficient genotypes of exacum; (A) whole plant concentration and (B) proportion of control. Mean of 10 replicates; error bars = SE. 65Zn = CaCl$_2$ (0.5 mM) and ZnCl$_2$ (2 μM) with the addition of 370 kBq 65Zn; 65Zn + Cu$^{2+}$ = 65Zn treatment solution with the addition of 2 μM CuCl$_2$; 65Zn + Mg$^{2+}$ = 65Zn treatment solution with the addition of 2 μM MgCl$_2$.

significantly increased in the efficient genotype from 1129.2 to 1309.9 pmol while in the inefficient genotype, Zn$^{2+}$ uptake was significantly increased from 568.9 to 676.9 pmol (Fig. 2A). These increases were 116% and 119%, over the controls for the efficient and inefficient genotypes, respectively (Fig. 2B).

After 6 h, Zn$^{2+}$ partitioning to shoot tissue categories significantly differed between the two genotypes with the addition of either Cu$^{2+}$ or Mg$^{2+}$ to the uptake solution. In the Zn$^{2+}$ efficient genotype, the lower stem tissue contained <60% of the shoot Zn$^{2+}$ regardless of competing ion (Fig. 3). In addition, Mg$^{2+}$-altered Zn$^{2+}$ distribution within the plant by facilitating movement from the lower stem to the upper shoot category (i.e., reducing the percentage of allocated Zn$^{2+}$ in lower stem from 50% to 20%) while both the mid shoot and lower shoot categories were unchanged. Copper appeared to have a less pronounced effect than Mg$^{2+}$ in that more Zn$^{2+}$ was present in the upper than the mid shoot categories while the percentage in the lower stem remained approximately equal. In the inefficient genotype, neither Mg$^{2+}$ nor Cu$^{2+}$ induced the same responses observed in the efficient genotype. Overall, the lower stem category contained over 60% of the shoot Zn$^{2+}$ while the upper shoot accounted for ≈4%, regardless of competing ion. In addition, Cu$^{2+}$ appeared to significantly reduce allocation out of the lower stem to any other tissue category while Mg$^{2+}$ had no overall effect on distribution.

Discussion

Our results have identified several significant differences between Zn$^{2+}$ efficient and inefficient genotypes of exacum. The Zn$^{2+}$ efficient genotype possessed greater root CEC, greater Zn$^{2+}$ uptake, greater Zn$^{2+}$ partitioning to the upper shoot and greater ability to absorb and translocate Zn$^{2+}$ in the presence of competing ions. We believe these differences are the basis for the Zn$^{2+}$ efficient phenotype previously observed in common glasshouse experiments (Riseman, 1997). The presence of multiple traits associated with a nutrient efficiency is not surprising based on Rengel’s (2001) generalizations for genotypic differences in nutrient efficiency already mentioned. In addition to these generalizations, mechanisms associated with nutrient efficiency may operate at various levels of plant organization (i.e., molecular, physiological, structural, or developmental). Our results indicate multiple traits, across different levels of plant organization are associated with Zn$^{2+}$ efficiency in exacum.

The Zn$^{2+}$ efficient genotype was found to have significantly higher root CEC and greater overall Zn$^{2+}$ uptake. As in soil, root CEC is a measure of the ability to electrostatically bind cations to negative surface charges. In roots, this is often called apoplastic binding and is comprised of charges on both the cell wall and exterior plasma membrane. These charges often arise from ligands containing negatively charged organic functional groups such as the carboxyl residues of pectins (Ostateck-Boczynski et al., 1995). Apoplastic CEC can influence cation selectivity and ion competition for membrane transporters. This is because diverse cations have different affinities for apoplastic exchange sites, and nutrients for apoplastic exchange site repulsion of like charges (Shomer et al., 2003). In relation to the observed differences in Zn$^{2+}$ uptake, apoplastic CEC may selectively position greater amounts of Zn$^{2+}$ near transporters thereby.
resulting in greater uptake by efficient genotypes. However, other possibilities exist and include differences in transporter affinities, kinetics, number, or transporter gene expression/regulation.

To evaluate whether specific ions affected Zn\(^{2+}\) uptake, Mg\(^{2+}\) and Cu\(^{2+}\) were used in equimolar concentrations to Zn\(^{2+}\) as competitive inhibitors. In both genotypes, Mg\(^{2+}\) enhanced Zn\(^{2+}\) uptake while Cu\(^{2+}\) inhibited uptake. Two models, each with empirical support, have been proposed for Zn\(^{2+}\) uptake: 1) a general divalent cation channel and 2) a specific Zn\(^{2+}/Cu\(^{2+}\) transporter. In support of the general divalent cation model, Chaudhry and Loneragan (1972) demonstrated that all of the alkaline earth cations (Ca\(^{2+}\), Mg\(^{2+}\), Sr\(^{2+}\) and Ba\(^{2+}\)) inhibited Zn\(^{2+}\) uptake in wheat (*Triticum aestivum* L.), indicating a common uptake mechanism. Kochian (1993), in summarizing zinc uptake research, proposed that Zn\(^{2+}\), as well as Cu\(^{2+}\), Mn\(^{2+}\) and Mg\(^{2+}\), is probably absorbed through a common divalent cation channel and not by specific ion transporters. In opposition to this model, there is research that supports the existence of specific Zn\(^{2+}/Cu\(^{2+}\) transporters. Schmid et al. (1965) demonstrated using barley (*Hordeum vulgare* L.), that Cu\(^{2+}\) strongly inhibited Zn\(^{2+}\) uptake while Mn\(^{2+}\) had no effect. Bowen (1987), using rice (*Oryza sativa* L.) and tomato (*Lycopersicon esculentum* Mill.), showed that Cu\(^{2+}\) and Zn\(^{2+}\) mutually and competitively inhibited uptake of each other and suggested both micronutrients were absorbed through the same uptake mechanism or carrier site. These apparently conflicting models may, in reality, both be correct. Often, inadequate experimental methods, that do not account for uptake/release rates, uptake of ions from complex solutions (e.g., solutions with multiple ions), or electrostatic affinities of ions present in low concentrations, inhibit the accurate characterization of ion specific transporters. Therefore, much of the published micronutrient uptake research must be viewed with care. However, research that attempted to account for these issues has identified both high and low affinity transporters within a single plant species (Reid et al., 1996). They state that the low affinity transporter had broad substrate specificity while they made no comment on the substrate specificity for the high affinity transporter. These two Zn\(^{2+}\) uptake mechanisms may individually represent the two proposed models where the low affinity transporter is analogous to the general divalent cation channel and the high affinity transporter is analogous to the Zn\(^{2+}/Cu\(^{2+}\) specific transporter. Data from this research, using the relatively low concentration of 2 \(\mu\)M Zn, support the presence of a high-affinity transporter specific to Zn\(^{2+}\) and Cu\(^{2+}\). However, future research should evaluate the presence of multiple uptake mechanisms and ionic affinities of transporters in this germplasm.

The cause for increased Zn\(^{2+}\) uptake and shoot transport in the presence of Mg\(^{2+}\) is unclear. It may be due to apoplastic binding affinities that may have otherwise been available to bind Zn\(^{2+}\). With these binding sites occupied, Zn\(^{2+}\) transport through the apoplast was facilitated. Another possibility is that the experimental plants were in the initial stages of Mg\(^{2+}\) deficiency due to exposure to a simple CaCl\(_2\) + ZnCl\(_2\) solution for 24 h prior to the uptake experiments. With the addition of Mg\(^{2+}\) to the uptake solution, the deficiency was alleviated. In evaluating the effects of Mg\(^{2+}\) on Zn\(^{2+}\) toxicity, micromolar concentrations of Mg\(^{2+}\) were found to alleviate Zn\(^{2+}\) toxicity while simultaneously facilitating higher tissue Zn\(^{2+}\) concentrations (Pedler et al. 2004). The authors concluded that the protective effect of Mg\(^{2+}\) was not due to diminished Zn\(^{2+}\) uptake or translocation but rather, Mg\(^{2+}\) was involved in some type of internal detoxification or sequestration mechanism. However, working with isolated vesicles from tonoplasts, Verkleij et al. (1998) found that a Zn\(^{2+}\)-tolerant genotype of *Silene vulgaris* (Moench) Garcke displayed higher Zn\(^{2+}\) transport rates than the sensitive genotype and that transport required Mg-ATP. If our experimental plants did have an induced Mg\(^{2+}\) deficiency, the addition of Mg\(^{2+}\) to the uptake solution may have replenished the biologically available Mg\(^{2+}\) pool required for normal Zn\(^{2+}\) uptake. Although no clear explanation or mechanism has been determined to explain this Zn\(^{2+}\) × Mg\(^{2+}\) interaction, we accept the possibility that a tissue-specific Mg\(^{2+}\) requiring Zn\(^{2+}\) transporter may be present in *Exacum*.

Zn efficiency in *Exacum* is a composite trait involving both apoplastic (i.e., CEC) and symplastic (i.e., Zn\(^{2+}\) transporters, Mg\(^{2+}\) requirement) traits that are most likely under independent regulation. When we consider the polyploid nature of the original taxa combined with distinct edaphic conditions of their native habitats, the opportunity for gene diversification is great. Gene diversification for micronutrient uptake can be a relatively simple process in which a single amino acid replacement can significantly alter substrate specificity (Rogers et al., 2000). In their native habitats, no *Exacum* taxon was observed with Zn\(^{2+}\) deficiency symptoms despite the large range in divalent cation concentrations and ratios (Riseman, 1997). Therefore, we propose that Sri Lankan *exacum* have experienced edaphic selection where taxa have evolved unique genes, regulators, or linkage groups that allow for adequate Zn\(^{2+}\) uptake and transport under disparate nutrient conditions. With subsequent interspecific hybridization, these genes, regulators, or linkage groups have been rearranged and mismatched to the point where Zn\(^{2+}\) uptake mechanisms are less effective. These conclusions are consistent with Rengel’s generalizations (2001) concerning genotypic differences in nutrient efficiency in that 1) we identified more than one mechanism associated with the efficiency phenotype (i.e., root CEC, Zn\(^{2+}\) uptake, and Zn\(^{2+}\) × Mg\(^{2+}\) interaction), 2) our genotypic differences were based on mechanisms not present (or expressed) in the less efficient genotype (i.e., lower root CEC, reduced Zn\(^{2+}\) uptake in inefficient genotype), and 3) mechanisms identified in *exacum* operate at various levels of plant organization (i.e., genetic and physiological differences between genotypes).

This research has presented information on various physiological traits associated with Zn\(^{2+}\) efficiency and has proposed a mechanism for their development and evolution. With this information, we are better able to breed and select genotypes suitable for commercial production because we now have specific evaluation and selection criteria linked to the zinc efficiency phenotype. However, several important questions were raised that require additional research. Are multiple Zn\(^{2+}\) uptake mechanisms present in *exacum* that are analogous to the low and high affinity transporters identified in other organisms? What is the physiological basis for enhanced Zn\(^{2+}\) uptake and translocation in the presence of micromolar concentrations of Mg\(^{2+}\)? And finally, is Zn\(^{2+}\) efficiency in *Exacum* the result of several interacting mechanisms that only operate effectively when present in their original arrangement?

Literature Cited

Ambler, J.E. and J.C. Brown. 1969. Cause of differential susceptibility to zinc deficiency in two varieties of navy beans (*Phaseolus vulgaris* L.). Agron. J. 61:41–43.

Bowen, J.E. 1987. Physiology of genotypic differences in zinc and copper uptake in rice and tomato, p. 413–423. In: Proc. Second Intnl. Symp. Genet. Aspects of Plant Mineral Nutr. Madison, Wis. 16–20 June 1985.
Brown, J.C. and M.E. McDaniel. 1978. Factors associated with differential response of two oat cultivars to zinc and copper stress. Crop Sci. 18:817–820.

Chaudhry, F.M. and J.F. Loneragan. 1972. Zinc absorption by wheat seedlings and the nature of its inhibition by alkaline earth cations. J. Expt. Bot. 23:552–560.

Darlington, C.D. and A.P. Wylie. 1955. Chromosome atlas of flowering plants. Allen & Unwin, London.

Graham, R.D. and Z. Rengel. 1993. Genotypic variation in zinc uptake and utilization by plants, p. 107–114. In: D. Robson (ed.). Zinc in soils and plants. Kluwer, Dordrecht, The Netherlands.

Helmy, A.K. and M.M. Elgabaly. 1958. Exchange capacity of plant roots. II. Some factors affecting the cation exchange capacity. Plant Soil 10:93–100.

Jolley, V.D. and J.C. Brown. 1991 Factors in iron-stress response mechanism enhanced by Zn-deficiency stress in Sanilac, but not Saginaw navy bean. J. Plant Nutr. 14:257–265.

Jonson, C.M., T.C. Broyer, and A.B. Carlton. 1957. Comparative chlorine requirements of different plant species. Plant Soil. 8:333–353.

Klackenberg, J. 1985. The genus Exacum (Gentianaceae). Opera Botanica, AiO Print Ltd., Copenhagen.

Kochian, L.V. 1993. Zinc absorption from hydroponic solutions by plant roots, p. 45–57 In: A.D. Robson (ed.). Zinc in soils and plants. Kluwer, Dordrecht, The Netherlands.

Kochian, L.V. 1993. Zinc absorption from hydroponic solutions by plant roots, p. 45–57 In: A.D. Robson (ed.). Zinc in soils and plants. Kluwer, Dordrecht, The Netherlands.

Ostatek-Boczynski, Z., G.L. Kerven, and F.P.C. Blamey. 1995. Aluminum reactions with polygalacturonate and related organic ligands. Plant Soil 171:41–45.

Parker, D.R., J.J. Aguilera, and D.N. Thomason. 1992. Zinc-phosphorus interactions in two cultivars of tomato (Lycopersicon esculentum L.) grown in chelator-buffered nutrient solutions. Plant Soil. 143:163–177.

Pedler, J.F., T.B. Kinrade, and D.R. Parker. 2004. Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture. Plant Soil 259:191–199.

Rajakaruna, N., M.Y. Siddiqi, J. Whitton, B.A. Bohm, and A.D.M. Glass. 2003. Differential responses to Na+/K+ and Ca2+/Mg2+ in two edaphic races in the Lasthenia californica complex (Asteraceae). New Phytol. 157:93–103.

Reid, R.J., J.D. Brookes, M.A. Tester, and F.A. Smith. 1996. The mechanism of zinc uptake in plants. Characterization of the low affinity system. Planta 198:39–45.

Rengel, Z. 2001. Genotypic differences in micronutrient use efficiency in crops. Commun. Soil Sci. Plant Anal. 32:1163–1186.

Riseman, A. 1997. Ecology, physiology and genetics of zinc nutrition in Sri Lankan Exacum (L.) hybrids (Gentianaceae). PhD Thesis, Pennsylvania State Univ., University Park.

Riseman, A. 2005. The breeding and genetics of Exacum affine and related species. In: N.O. Anderson (ed.). Flower breeding and genetics: Issues, challenges, and opportunities for the 21st century. Kluwer, Dordrecht, The Netherlands. (In press).

Sakal, R., M.K. Verma, A.P. Singh, and M.K. Sinha. 1988. Relative tolerance of some rice varieties to zinc deficiency in calcareous soil. J. Indian Soc. Soil Sci. 36:492–495.

Schmid, W.E., H.P. Haag, and E. Epstein. 1965. Absorption of zinc by excised barley roots. Physiol. Plant. 18:860–869.

Shomer, I., A.J. Novacky, S.M. Pike, U. Yermiyahu, and T.B. Kinrade. 2003. Electrical potentials of plant cell walls in response to the ionic environment. Plant Physiol. 133:411–422.

Sumanasinghe, V.A. 1986. Electrophoretic, cytogenetic, crossability, and morphological studies of Exacum (Gentianaceae). PhD Thesis, Pennsylvania State Univ., University Park.

Verkleij, J.A.C., P.L.M. Koevoets, M.M.A. Blake-Kalff, and A.N. Char- donnens. 1998. Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgaris. J. Plant Physiol. 153:188–191.