New prediction equations for the estimation of maxillary mandibular canine and premolar widths from mandibular incisors and mandibular first permanent molar widths: A digital model study

Fazal Shahida
Mohammad Khursheed Alama
Mohd Fadhli Khamisb

aOrthodontic Unit, School of Dental Science, Universiti Sains Malaysia, Kota Bharu, Malaysia
bForensic Dentistry Unit, School of Dental Science, Universiti Sains Malaysia, Kota Bharu, Malaysia

Objective: The primary aim of the study was to generate new prediction equations for the estimation of maxillary and mandibular canine and premolar widths based on mandibular incisors and first permanent molar widths. Methods: A total of 2,340 calculations (768 based on the sum of mandibular incisor and first permanent molar widths, and 1,572 based on the maxillary and mandibular canine and premolar widths) were performed, and a digital stereomicroscope was used to derive the digital models and measurements. Mesiodistal widths of maxillary and mandibular teeth were measured via scanned digital models. Results: There was a strong positive correlation between the estimation of maxillary (r = 0.85994, \textit{r}^2 = 0.7395) and mandibular (r = 0.8708, \textit{r}^2 = 0.7582) canine and premolar widths. The intraclass correlation coefficients were statistically significant, and the coefficients were in the strong correlation range, with an average of 0.9. Linear regression analysis was used to establish prediction equations. Prediction equations were developed to estimate maxillary arches based on \(Y = 15.746 + 0.602 \times \text{sum of mandibular incisors and mandibular first permanent molar widths (sum of mandibular incisors [SMI] + molars),} \ Y = 18.224 + 0.540 \times (\text{SMI + molars}), \text{and} \ Y = 16.186 + 0.586 \times (\text{SMI + molars}) \) for both genders, and to estimate mandibular arches the parameters used were \(Y = 16.391 + 0.564 \times (\text{SMI + molars}), Y = 14.444 + 0.609 \times (\text{SMI + molars}), \text{and} \ Y = 19.915 + 0.481 \times (\text{SMI + molars}) \). Conclusions: These formulas will be helpful for orthodontic diagnosis and clinical treatment planning during the mixed dentition stage. [Korean J Orthod 2016;46(3):171-179]

Key words: Mixed dentition analysis, Mesiodistal tooth size, Digital dental model, Prediction equation

Received June 26, 2015; Revised November 19, 2015; Accepted December 14, 2015.

Corresponding author: Mohammad Khursheed Alam.
Senior Lecturer, Orthodontic Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kota Bharu, Kelantan, Malaysia.
Tel +6-09-7675811 e-mail dralam@gmail.com

*This work was supported by Universiti Sains Malaysia, short-term grant 304/PPSG/6131304.

The authors report no commercial, proprietary, or financial interest in the products or companies described in this article.

© 2016 The Korean Association of Orthodontists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

To accomplish good occlusion with proper interdigitation and a good vertical and horizontal relationship, there must be optimal mesiodistal (MD) dimensions with regard to the teeth and good seating of the occlusion. Dental malocclusion is a very common condition in populations worldwide. Despite the fact that the specific characteristics of malocclusion vary in specific populations, tooth size arch length discrepancy is considered to be a universally important etiological factor. If the tooth size and arch dimension is accurately estimated before the onset of malocclusion, then such estimations can be utilized to eliminate or reduce the seriousness of malocclusion; either by serial extraction, guidance of eruption, space maintenance, space gaining, or periodic observation of the patient prior to orthodontic treatment.

Various methods have been used to predict the MD widths of unerupted teeth in the planning of orthodontic treatment, including radiographic methods, dental models, and combinations of both radiographic methods and dental models. The current study is important because it utilized digital dental models, and the study population was regionally specific; in order to control for global variations in tooth size and mixed dentition investigations in orthodontics.

Population specific prediction models are required in this context. The aim of the current study was to generate new prediction equations for the estimation of maxillary and mandibular canine and premolar widths based on mandibular incisors and mandibular first permanent molar widths, via digital dental models, for the first time. To eliminate the potentially confounding effects of racial differences in the relevant parameters, this was undertaken in a Pakistani population. As well as the primary aim of generating new prediction equations for the estimation of maxillary and mandibular canine and premolar widths based on mandibular incisors and mandibular first permanent molar widths, the secondary aims of the study were:

1. To evaluate the amount of sexual dimorphism for the sum of MD crown width of maxillary canines and premolars (SMaxCPM)
2. To evaluate the amount of sexual dimorphism for the sum of MD crown width of mandibular canines and premolars (SMandCPM)
3. To evaluate the side disparities for the sum of MD crown width of maxillary and mandibular canines and premolars
4. To determine new prediction equations to estimate the MD crown width of maxillary canines and premolars in males, females, and males and females combined
5. To determine new prediction equations to estimate the MD crown width of mandibular canines and premolars in males, females, and males and females combined

MATERIALS AND METHODS

Ethical approval was granted by the Ethics Committee of the University of Science, Malaysia (USM/JEPM/140376), and informed consent was obtained from all subjects. This investigation was in accordance with the Strengthening the Reporting of Observational studies in Epidemiology (STROBE) guidelines, and we applied the STROBE specifications in this study.

Inclusion criteria
- Pakistani origin as determined via interviews, with mutual paternities and ancestors without any multi-ethnic nuptials
- Age 18 to 24 years
- Well-aligned maxillary and mandibular arches, with normal patterns of growth and development
- Had not undergone orthodontic treatment, and had sound erupted permanent teeth (except third molars)
- Ideal occlusion with Class I molar and canine relationships with the incisors according to the British Standards Institute
- No crowding, cross bite, or abnormal spacing
- A straight profile (as determined by examining their profile view)
- No craniofacial anomalies

Exclusion criteria
- Interproximal caries or restorations
- Missing or supernumerary teeth
- Abnormal size or morphology of teeth
- Tooth wear that affected the tooth size measurements
- Damage to casts

Sample size calculation
In this retrospective study, a total of 200 models from 370 archived models satisfied the inclusion and exclusion criteria. Stratified random sampling was conducted to select 128 models from these 200 models. As sampling was conducted after the application of inclusion and exclusion criteria, drop-outs were not considered when determining sample size.

The sample size for objectives 1–3 was calculated (PS software version 3.0; http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize) at a power of 80%, utilizing estimated standard deviations of 0.60 mm, a biologically meaningful mean difference of 0.3 mm, and equal sample sizes. The calculated sample size was 128
subjects (64 males and 64 females). The sample size for objectives 4 and 5 was calculated based on simple linear regression, incorporating regression of subjects’ yvar (dependent variable) values against xvar (independent variable) values. A preliminary study yielded a standard deviation of xvar of 1.12, and a standard deviation of regression errors of 2.77. Assuming a true slope of the line obtained by regressing yvar against xvar of 0.9 yielded a required sample size of 61 to be able to reject the null hypothesis that this slope equals zero with a probability (power) of 0.8. The type I error probability associated with testing this null hypothesis is 0.05. For this study we selected a higher sample size based on the sexual dimorphism objectives. As the sample size was calculated after the inclusion and exclusion criteria were applied, drop-outs were not considered when determining sample size.

Oral and dental investigations were carried out with careful selection of subjects. Cross-examination of subjects was undertaken to diminish sample bias and error; with an experienced orthodontist and dentists contributing throughout the screening sittings. Dental impressions of the upper and lower arches of each subject were obtained with alginate impression material and poured with dental stone (Type III hard plaster quick stone) in accordance with the manufacturer’s instructions. A total of 2,340 variables, 768 for the sum of mandibular incisors and first permanent molar widths (SMI + molars) and 1,572 for the maxillary and mandibular canine and premolar widths were measured.

Measurement of tooth size

Dental models of each subject’s maxillary and mandibular arches were scanned using a Hirox digital stereomicroscope (SM) (Hirox KH7700; Hirox, Tokyo, Japan), for the generation of the digital models (Figure 1A). Maxillary and mandibular tooth sizes were determined via SM scanned digital models. Stereomicroscopy is a reputable, valid, and reliable tool for such measurements, with an accuracy of 0.1×10^{-6} mm. The acquisition of measurements for tooth sizes were conducted as follows:

MD crown diameters

The MD crown diameter of the tooth was measured from the point of anatomical contact of it with another tooth on the occlusal side perpendicular to the long axis of the teeth (Figure 1B). The dependent variables...
of the study were the SMaxCPM and SMandCPM. The independent variable was the SMI + molars (Figure 1B).

Error assessment

About 20% of the digital dental casts were selected to assess intra-observer error. The time interval between the first and second readings was approximately 2 weeks. Method error (ME) was analyzed via Dahlberg’s formula: $ME = \sqrt{\frac{\sum (x_1-x_2)^2}{2(n^2-1)}}$, where x_1 is the first measurement and x_2 is the second measurement.\(^{18}\)

Statistical analyses

The data were verified and analyzed statistically using IBM SPSS version 22.0 (IBM Co., Armonk, NY, USA) with the confidence level set at 5% ($p < 0.05$) to test for statistical significance. The independent t-test was used to investigate gender differences in SMaxCPM and SMandCPM. The paired t-test was used to compare side disparities. Linear regression equations were used for the generation of prediction equations.

RESULTS

Error of the method for measurements

Dahlberg’s formula yielded a method error value of 0.006 mm for the MD crown diameter measurements. Thus, the method error was within an acceptable range.\(^{18}\)

Intraclass correlation coefficient for intra-observer reliability

The intraclass correlation coefficients were statistically significant ($p < 0.001$), and the coefficient values indicated a strong correlation, with an average range of 0.009.\(^{19}\)

Sexual disparities for SMaxCPM and SMandCPM

There were significant sexual disparities detected for SMaxCPM and SMandCPM (Table 1), and the mean for males was significantly greater than that for females ($p < 0.05$ to $p < 0.001$).

Canine and premolar side disparities

There were no side disparities for the sum of maxillary or mandibular canines and premolars in males or females (Tables 2 and 3 respectively).

Prediction equation for maxillary and mandibular arches

Tables 4 and 5 respectively show new prediction equations for the estimation of maxillary and mandibular canine and premolar widths from SMI + molars for males, females, and males and females combined.

Accuracy of prediction equations and correlations for measured and predicted values

Figures 2 and 3 respectively show the accuracy of the proposed formulas for the estimation of maxillary and mandibular canine and premolar widths from mandibular incisors and mandibular first permanent molar widths for males, females, and males and females combined. The average errors of prediction were −0.708,
Table 4. Prediction equations for the maxillary arch with correlational r and r^2 coefficients

Sex	Prediction equations	r	r^2
Male (M)	$Y = 18.224 + 0.540 \times (SMI + Molars)$	0.896	0.722
Female (F)	$Y = 16.186 + 0.586 \times (SMI + Molars)$	0.833	0.732
Combined M and F	$Y = 15.746 + 0.602 \times (SMI + Molars)$	0.856	0.739

Y, Dependent variable for canines and premolars; $SMI + Molars$, sum of mandibular incisors and molars (independent variable).

Table 5. Prediction equations for the mandibular arch with correlational r and r^2 coefficients

Gender	Prediction equations	r	r^2
Male (M)	$Y = 14.444 + 0.609 \times (SMI + Molars)$	0.866	0.716
Female (F)	$Y = 19.915 + 0.481 \times (SMI + Molars)$	0.863	0.723
Combined M and F	$Y = 16.391 + 0.564 \times (SMI + Molars)$	0.870	0.758

Y, Dependent variable for canines and premolars; $SMI + Molars$, sum of mandibular incisors and molars (independent variable).

Figure 2. Accuracy of proposed prediction equation for maxillary arch.
−1.744, and −1.290 mm in the maxillary arch for males and females combined, males, and females respectively, and they were −0.260, −2.650, and −2.136 mm in the mandibular arch. Figure 4 shows the positive correlation for the estimation of maxillary \((r = 0.85994 \text{ and } r^2 = 0.7395)\) and mandibular \((r = 0.8708 \text{ and } r^2 = 0.7582)\) canine and premolar widths. The \(r\) and \(r^2\) coefficients determined in this study are compared with those previously reported by others in Table 6.

DISCUSSION

During the mixed dentition stage, the prediction of the MD dimensions of unerupted permanent teeth is of great importance for diagnosis and treatment planning. Correct assessment of the size of an unerupted tooth facilitates an improved treatment plan for dealing with tooth size/arch length discrepancies.\(^{20}\) For mixed dentition, direct measurement methods for tooth size and arch dimensions including hand-held calipers, graphs, and scales to record dimensions and tooth sizes on dental casts have been used.\(^{21}\) Recent developments in technology have made it possible for dental casts to be reproduced in the form of digital dental models.\(^{21,22}\) These digital models are accurate and reliable tools for obtaining measurements and carrying out dental analysis.\(^{15,23}\) Moreover, they have additional benefits such as accessibility of the images produced, reduction in storage costs, and the ability to analyze images with sophisticated software.\(^{23,24}\)

For the prediction of the MD widths of unerupted canines and premolars many methods have been reported in the literature, and regression equations based on the already erupted permanent teeth in the early mixed dentition have been widely used to predict the widths of unerupted canines and premolars.\(^{7,20,25}\) Therefore, the current study investigated new prediction equations for the estimation of maxillary and mandibular canine and premolar widths from SMI + molars via digital dental models, for the first time (Tables 4 and 5). The current investigation was conducted using SM digital dental model acquisition, which is a valid and reliable tool for such measurements.\(^{15}\)

In the present study, there were sexual differences in the sum of canines and premolars for both arches. However, no significant side disparities were detected.
between them. A review of the orthodontic literature revealed that there were sexual disparities in the tooth sizes of various populations, as well as genders. Male teeth were reportedly bigger overall than those of females in one study, while other researchers did not observe any sexual disparities. However, numerous investigators have reported significant sexual disparities for the MD tooth dimensions, with males having larger teeth in this respect. This necessitates the analysis of subjects according to gender when performing such predictions in mixed dentition orthodontic analysis. As gender dimorphism in tooth widths was found in the present study, these data were analyzed separately for males and females.

Side differences have been reported by various researchers with regard to tooth sizes in the maxillary and mandibular arches. However, others have reported no significant side differences in tooth size comparisons. In the comparisons of right and left side maxillary and mandibular tooth sizes, we observed no asymmetries. However, the current study used a digital model methodology to predict the combined widths of canines and premolars in the upper and lower arches. Consequently, all the prediction equations were investigated for the prediction of canines and premolars on both sides.

Table 6. Comparisons between the correlational r and r² coefficients determined in the present study and those reported in previous studies for males, females, and both genders combined

Studies	Male	Female	Both			
	r	r²	r	r²	r	r²
Present study	0.866	0.716	0.863	0.723	0.870	0.758
Melgaço et al.	0.795	0.632	0.774	0.599	0.810	0.656
Bernabé et al.	0.710	ND	0.720	ND	0.720	0.604
Tanaka and Johnston	ND	ND	ND	ND	0.648	ND
Ballard and Wylie	ND	ND	ND	ND	0.640	ND

ND, Coefficient not determined.
The current study investigated new formulas derived via digital dental models. The accuracy of the linear regression formula, and estimation of maxillary and mandibular canine and premolar widths from SMI + molars were within a highly acceptable range (Figures 2 and 3). The new prediction equations developed for estimation in the maxillary arch were $Y = 15.746 + 0.602 \times (SMI + \text{molars})$, $Y = 18.224 + 0.540 \times (SMI + \text{molars})$, and $Y = 16.186 + 0.586 \times (SMI + \text{molars})$, and the average errors of prediction were -0.708, -1.744, and -1.290 mm respectively. The new prediction equations developed for estimation in the mandibular arch were $Y = 16.391 + 0.564 \times (SMI + \text{molars})$, $Y = 14.444 + 0.609 \times (SMI + \text{molars})$, and $Y = 19.915 + 0.481 \times (SMI + \text{molars})$, and the average errors of prediction were -0.260, -2.650, and -2.136 mm respectively. The investigation may be of high value as an adjunct for diagnosis and treatment planning for orthodontists treating patients in the mixed dentition stage.

Given the limitations of the current study, the prediction formulas generated need to be checked for clinical applicability in orthodontics. The reported norms and available databases need to be investigated in other populations, to determine possible ethnic and racial differences. Due to advances in technology in this digital era, the investigated norms and formulas need to be scrutinized via three-dimensional digital dental models. The prediction equations provided will be helpful for clinical treatment planning and diagnosis in orthodontics during the mixed dentition stage.

CONCLUSION

- Sexual disparities were detected for the SMaxCPM.
- Sexual disparities were detected for the SMandCPM.
- No side differences were detected for the sum of MD crown width of maxillary and mandibular canines and premolars.
- The new prediction equations developed for the prediction of SMaxCPM from SMI + molars were $Y = 15.746 + 0.602 \times (SMI + \text{molars})$, $Y = 18.224 + 0.540 \times (SMI + \text{molars})$, and $Y = 16.186 + 0.586 \times (SMI + \text{molars})$ for males and females combined, males, and females respectively.
- The new prediction equations developed for the prediction of SMandCPM from SMI + molars were $Y = 16.391 + 0.564 \times (SMI + \text{molars})$, $Y = 14.444 + 0.609 \times (SMI + \text{molars})$, and $Y = 19.915 + 0.481 \times (SMI + \text{molars})$ for males and females combined, males, and females respectively.

REFERENCES

1. Alam MK, Iida J. Overjet, overbite and dental midline shift as predictors of tooth size discrepancy in a Bangladeshi population and a graphical overview of global tooth size ratios. Acta Odontol Scand 2013;71:1520-31.
2. Bishara SE, Jakobsen JR, Abdallah EM, Fernandez Garcia A. Comparisons of mesiodistal and buccolingual crown dimensions of the permanent teeth in three populations from Egypt, Mexico, and the United States. Am J Orthod Dentofacial Orthop 1989;96:416-22.
3. de Paula S, Almeida MA, Lee PC. Prediction of mesiodistal diameter of unerupted lower canines and premolars using 45 degrees cephalometric radiography. Am J Orthod Dentofacial Orthop 1995;107:309-14.
4. Lima Martinelli F, Martinelli de Lima E, Rocha R, Souza Tirre-Araujo M. Prediction of lower permanent canine and premolars width by correlation methods. Angle Orthod 2005;75:805-8.
5. Ballard ML, Wylie WL. Mixed dentition case analysis, estimating size of unerupted permanent teeth. Am J Orthod 1947;33:754-9.
6. Tanaka MM, Johnston LE. The prediction of the size of unerupted canines and premolars in a contemporary orthodontic population. J Am Dent Assoc 1974;88:798-801.
7. Moyers RE, Rioiro MI. Early treatment. Handbook of orthodontics. 4th ed. Chicago, IL: Year Book Medical Publishers Inc.; 1988. p. 422-6.
8. Al-Bitar ZB, Al-Omari IK, Sonbol HN, Al-Ahmad HT, Hamdan AM. Mixed dentition analysis in a Jordanian population. Angle Orthod 2008;78:670-5.
9. Staley RN, Kerber PE. A revision of the Hixon and Oldfather mixed-dentition prediction method. Am J Orthod 1980;78:296-302.
10. Bishara SE, Staley RN. Mixed-dentition mandibular arch length analysis: a step-by-step approach using the revised Hixon-Oldfather prediction method. Am J Orthod 1984;86:130-5.
11. Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, Mulrow CD, Pocock SJ, et al; STROBE initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and
elaboration. Ann Intern Med 2007;147:W163-94.
12. Williams AC, Stephens CD. A modification to the incisor classification of malocclusion. Br J Orthod 1992;19:127-30.
13. Prabhu S, Acharya AB. Odontometric sex assessment in Indians. Forensic Sci Int 2009;192:129.e1-5.
14. Dupont WD, Plummer WD Jr. Power and sample size calculations for studies involving linear regression. Control Clin Trials 1998;19:589-601.
15. Shahid F, Khursheed Alam M, Fadhli Khamis M, Muraoka R, Nakano K, Okafuji N. Validity and reliability of digital model measurements: a digital stereomicroscopic study. J Hard Tissue Biol 2014;23:439-44.
16. Alam MK, Shahid F, Purmal K, Ahmad B, Khamis MF. Bolton tooth size ratio and its relation with arch widths, arch length and arch perimeter: a cone beam computed tomography (CBCT) study. Acta Odontol Scand 2014;72:1047-53.
17. Shahid F, Khursheed Alam M, Fadhli Khamis M, Honda Y, Sugita Y, Maeda H. Geomorphometrics of tooth size and arch dimension analysis by conventional digital caliper and digital stereomicroscope to establish standard norms for the pakistani population. J Hard Tissue Biol 2015;24:155-68.
18. Houston WJ. The analysis of errors in orthodontic measurements. Am J Orthod 1983;83:382-90.
19. Malgady RG, Krebs DB. Understanding correlation coefficients and regression. Phys Ther 1986;66:110, 112, 114.
20. Adnani IQ, Shahid F, Zaman S, Ahmed F, Saleem M. Application of Moyer’s prediction table in a sample of Karachi population. Pak Orthod J 2011;3:16-20.
21. Zilberman O, Huggare JA, Parikakis KA. Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 2003;73:301-6.
22. Bell A, Ayoub AF, Siebert P. Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 2003;30:219-23.
23. Leifert MF, Leifert MM, Efstratiadis SS, Cangialosi TJ. Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 2009;136:16.e1-4; discussion 16.
24. Stevens DR, Flores-Mir C, Nebbe B, Raboud DW, Heo G, Major PW. Validity, reliability, and reproducibility of plaster vs digital study models: comparison of peer assessment rating and Bolton analysis and their constituent measurements. Am J Orthod Dentofacial Orthop 2006;129:794-803.
25. Melgaço CA, de Sousa Araújo MT, de Oliveira Ruellas AC. Mandibular permanent first molar and incisor width as predictor of mandibular canine and premolar width. Am J Orthod Dentofacial Orthop 2007;132:340-5.
26. al-Khadra BH. Prediction of the size of unerupted canines and premolars in a Saudi Arab population. Am J Orthod Dentofacial Orthop 1993;104:369-72.
27. Legović M, Novosel A, Legović A. Regression equations for determining mesiodistal crown diameters of canines and premolars. Angle Orthod 2003;73:314-8.
28. Bharwani AK, Fida M. Development of a prediction equation for the mixed dentition in a Pakistani sample. Am J Orthod Dentofacial Orthop 2011;140:626-32.
29. Kieser JA, Groeneveld HT. Fluctuating odontometric asymmetry in an urban South African black population. J Dent Res 1988;67:1200-5.
30. Kieser JA, Groeneveld HT, Preston CB. Fluctuating odontometric asymmetry in the Lengua Indians of Paraguay. Ann Hum Biol 1986;13:489-98.
31. Alam MK, Shahid F, Purmal K, Ahmad B, Khamis MF. Tooth size and dental arch dimension measurement through cone beam computed tomography: effect of age and gender. Res J Recent Sci 2014;3:85-94.
32. Khamis MF, Taylor JA, Malik SN, Townsend GC. Odontometric sex variation in Malaysians with application to sex prediction. Forensic Sci Int 2014;234:183.e1-7.
33. Garn SM, Lewis AB, Kerewsky RS. Sexual dimorphism in the buccolingual tooth diameter. J Dent Res 1966;45:1819.
34. Lakanpal M, Gupta N, Rao NC, Vashisth S. Tooth dimension variations as a gender determinant in permanent maxillary teeth. JSM Dent 2013;1:1014.
35. Townsend G, Brown T. Tooth size characteristics of Australian Aborigines. Occas Pap Hum Biol 1979;1:17-38.
36. Alam MK, Hassan R, Mahmood Z, Haq ME. Determination and comparison of tooth size and tooth size ration in normal occlusion and different malocclusion groups. Int Med J 2013;20:462-65.
37. Bernabé E, Major PW, Flores-Mir C. Tooth width ratio discrepancies in a sample of Peruvian adolescents. Am J Orthod Dentofacial Orthop 2004;125:361-5.