LETTER

GI infections are associated with an increased risk of Parkinson’s disease

We have read with interest the recent publication of Perez-Pardo and colleagues reporting the role of the TLR4 in the gut–brain axis in Parkinson’s disease (PD). These findings prompted us to investigate the role of common GI infections (GIs) in the pathogenesis of PD. In this prospective cohort study, we assessed the risk of PD in patients who previously suffered from GIs compared with the control group not exposed to GIs (Table 1). At study entry (1 January 2005), the analysis sample from health claims data of the largest German health insurer consisted of 228,485 individuals aged 50 years and older, which were followed for a mean time of 8.6 years (median = 11.0 years; IQR = 7.6 years). PD and GIs were defined by ICD-10 codes as described in the supplementary material. Overall, 6195 individuals (2.7%) developed PD and 50,492 individuals (22.1%) were affected by any GI during the observation period between 2005 and 2015.

The most frequent GIs were those that caused infectious gastroenteritis and colitis of unspecified origin (IGCUs; 39,093 individuals, 17.1%), followed by viral intestinal infections (VIIs; 9328 individuals, 4.1%) and bacterial intestinal infections (BIIs; 9298 individuals, 4.1%). The cumulative incidence of PD was significantly higher among individuals with GIs (p < 0.001, online supplementary figure S1). Multivariable analyses (Table 2) using Cox regression to compute HRs revealed an increased risk of PD in patients with GIs when compared with the control group (HR = 1.42; 95% CI 1.33 to 1.52). Subgroup analyses (Table 2) revealed positive associations of GIs for men (HR = 1.48; 95% CI 1.34 to 1.63), women (HR = 1.38; 95% CI 1.27 to 1.50), individuals aged 70 years or older (HR = 1.25; 95% CI 1.04 to 1.49) and individuals with (HR = 1.40; 95% CI 1.23 to 1.59) or without chronic obstructive pulmonary disease (HR = 1.43; 95% CI 1.33 to 1.54). To solidify our results, we performed sensitivity analyses and found no remarkable changes compared with our primary analysis (online supplementary table S1).

Our findings suggest that GIs are associated with an increased risk of PD. In sporadic PD, Lewy pathology defined by aggregated alpha-synuclein is first observed in the olfactory bulb and the enteric plexuses from where it propagates via the vagus nerve to the dorsal motor

Table 1

Characteristics	Not exposed to GIs; n=177,993 (77.9)	Exposed to GIs; n=50,492 (22.1)
Age (SD)§	67.5 (10.7)	68.6 (12.0)
Men	77,355 (43.5)	19,184 (38.0)
Women	100,638 (56.6)	31,308 (62.0)
Diabetes mellitus	72,574 (40.8)	24,629 (48.8)
Cerebrovascular diseases	64,749 (36.4)	24,176 (47.9)
Hypertension	147,078 (82.6)	45,612 (90.3)
Ischaemic heart diseases	78,948 (44.4)	28,347 (56.1)
Hypercholesterolaemia	67,242 (37.8)	22,590 (44.7)
Chronic obstructive pulmonary disease	40,208 (22.6)	15,159 (30.0)
Smoking-related cancers	19,839 (11.2)	6,831 (13.5)
Intracranial injury	7,835 (4.4)	3,422 (6.8)
n=228,485		

*Mean age in years at 1 January 2005. GIs, GI infections.

Table 2

Types of Analysis	Not exposed to GIs	Exposed to GIs	Cox regression (ref.: not exposed to GIs)
	Events Person years IR	Events Person years IR	Cr. HR 95% CI Adj. HR 95% CI
Overall§	5020 1 704 049 2.95	1175 250 573 4.69	1.42 1.33 to 1.52 1.42 1.33 to 1.52
Men	2327 724 388 3.21	493 93 896 5.25	1.48 1.34 to 1.63 1.48 1.34 to 1.63
Women	2693 979 661 2.75	682 156 677 4.35	1.38 1.27 to 1.50 1.38 1.27 to 1.50
Age <70 years§	1062 862 501 1.23	162 114 127 1.42	1.17 0.99 to 1.38 1.17 0.99 to 1.38
Age ≥70 years§	3958 841 548 4.70	1013 136 446 7.42	1.25 1.04 to 1.49 1.25 1.04 to 1.49
Without COPD¶	4051 1 438 104 2.82	858 191 598 4.48	1.65 1.53 to 1.78 1.43 1.33 to 1.54
With COPD¶	969 265 945 3.64	317 58 975 5.38	1.51 1.33 to 1.72 1.40 1.23 to 1.59
Without SRC¶	4650 1 613 378 2.88	1065 230 044 4.63	1.66 1.55 to 1.78 1.40 1.35 to 1.55
With SRC¶	370 90 671 4.08	110 20 529 5.36	1.93 1.59 to 2.33 1.20 0.96 to 1.48

N=228,485; PD cases=6195.

*Per 1000 person years.

HRs were adjusted for gender, age, diabetes mellitus, cerebrovascular diseases, hypertension, ischaemic heart diseases, hypercholesterolaemia, chronic obstructive pulmonary disease and intracranial injury.

HRs were adjusted for gender, age, diabetes mellitus, cerebrovascular diseases, hypertension, ischaemic heart diseases, hypercholesterolaemia, chronic obstructive pulmonary disease and intracranial injury.

HRs were adjusted for gender, diabetes mellitus, cerebrovascular diseases, hypertension, ischaemic heart diseases, hypercholesterolaemia, chronic obstructive pulmonary disease and intracranial injury.

HRs were adjusted for gender, age, diabetes mellitus, cerebrovascular diseases, hypertension, ischaemic heart diseases, hypercholesterolaemia and intracranial injury, Adj. HR, adjusted HR; COPD, chronic obstructive pulmonary disease; Cr. HR, crude HR; GII, GI infections; IR, incidence rate; PD, Parkinson’s disease; SRC, smoking-related cancers.

Gut Month 2019 Vol 0 No 0
nucleus in the central nervous system (CNS). This prion-like ability of pathological alpha-synuclein to retrogradely spread from the periphery to the CNS is supported by a growing body of experimental work in rodents. In the light of these findings, our results point to the missing link of what may cause alpha-synuclein pathology in the enteric nervous system (ENS): bacterial and viral pathogens, which breach the mucosal lining of the GI tract during GLIs, may trigger aggregation of alpha-synuclein in enteric neurons and initiate its retrograde transport to the CNS. Several species of gut bacteria express amyloid proteins, which could potentially cross-seed aggregation of alpha-synuclein. In line with this, oral challenge of rats with a wild-type Escherichia coli strain expressing the oral challenge of rats with a wild-type Escherichia coli strain expressing the alpha-synuclein to retrogradely deposit to the CNS. Several species of gut bacteria express amyloid curli led to deposition of pathological alpha-synuclein in their ENS and subsequently CNS. Another study in patients showed that expression of alpha-synuclein in enteric neurites of the GI tract was elevated in response to GLIs and VIIs. Also, biopsy samples from intestinal allograft subjects after a norovirus infection showed elevated alpha-synuclein expression in enteric neurons that persisted months after the virus was no longer detected. Overall, our findings are consistent with the concept that in some patients PD may start in the GI tract.

Michael Nerius, Gabriele Dobilhammer, Gültekin Tamgüney

1Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Nordrhein-Westfalen, Germany
2Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Nordrhein-Westfalen, Germany
3Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, Jülich, Nordrhein-Westfalen, Germany

Correspondence to Dr Gültekin Tamgüney, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; tamguney@gmail.com

Acknowledgements We are grateful to Jürgen-Bernhard Adler and Christian Günster of the of the Allgemeine Ortskrankenkasse Research Institute (WIdO) for providing the data. We would like to thank Renée Liskow for English language editing.

Contributors MN performed the statistical analysis and contributed to the writing of the manuscript. GD and GT conceived the study, participated in the statistical analysis and contributed to the writing of the manuscript. All authors were involved in the critical revision of the manuscript.

Funding The authors have received funding only through their employer the German Center for Neurodegenerative Diseases and the Heinrich-Heine-Universität Düsseldorf.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement The scientific research institute of the AOK (WIdO) has strict rules regarding data sharing because of the fact that health claims data are a sensible data source and have ethical restrictions imposed due to concerns regarding privacy. Anonymised data are available to all interested researchers on request. Interested individuals or institutions that wish to request access to the health claims data of the AOK should contact the WIdO (http://www.wido.de/, mail: wido@wido.bv.aok.de).

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Additional material is published online only. To view please visit the journal online (http://dx.doi.org/10.1136/gutjnl-2019-318822).

To cite Nerius M, Dobilhammer G, Tamgüney G. Gut Epub ahead of print: [please include Day Month Year]. doi:10.1136/gutjnl-2019-318822

Received 1 April 2019
Revised 17 May 2019
Accepted 29 May 2019

Gut 2019;0:1–2. doi:10.1136/gutjnl-2019-318822

REFERENCES
1 Perez-Pardo P, Dodiya HB, Engen PA, et al. Role of TL1A in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019;68:829–43.
2 Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease. Ann N Y Acad Sci 2009;1170:615–22.
3 Holmquist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014;128:805–20.
4 Breid S, Bernis ME, Babila JT, et al. Neuroinvasion of α-synuclein prionoids after intraperitoneal and intragastric inoculation. J Virol 2016;90:9182–93.
5 Peelaerts W, Bousset L, Van der Perren A, et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 2015;522:340–4.
6 Schwartz K, Boles BR. Microbial amyloid-functions and interactions within the host. Curr Opin Microbiol 2013;16:93–9.
7 Chen SG, Stibbinskis V, Rane ML, et al. Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caeonobabditis elegans. Sci Rep 2016;6:34477.
8 Stolzenberg E, Berry D, Yang D, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun 2017;9:452–63.