Abstract

The Birkhoff’s theorem states that any doubly stochastic matrix lies inside a convex polytope with the permutation matrices at the corners. It can be proven that a similar theorem holds for unitary matrices with equal line sums for prime dimensions.

1 Introduction

Doubly stochastic matrices are square matrices with real entries, all belonging to the interval (0, 1), such that all row sums and all column sums equal unity [1]. Because the product of two doubly stochastic matrices is again a doubly stochastic matrix, the doubly stochastic matrices form a semigroup. They do not form a group because the inverse of a doubly stochastic matrix is not necessarily a doubly stochastic matrix. Because of their interpretation as probability distributions, doubly stochastic matrices emerge in several sections of physics, especially statistical physics. Birkhoff’s theorem [2] says that any doubly stochastic matrix can be written as a weighted sum of permutation matrices, such that all weights are real and belong to the interval (0, 1) and the sum of the weights equals unity. So, every doubly stochastic matrix is contained in a convex set, spanned by the permutation matrices at

1
the corners, thus dressing them with a geometric interpretation. The higher-dimensional solid containing the matrix is called Birkhoff’s polytope [3].

In the present paper, we aim to formulate an equivalent of Birkhoff’s theorem for unitary matrices. The importance of unitary matrices equally follows from physics, more in particular from quantum physics and quantum information. In contrast to the \(n \times n \) doubly stochastic matrices, the \(n \times n \) unitary matrices form a genuine group, called the unitary group and denoted \(U(n) \). Within this group figures a subgroup denoted \(XU(n) \): the group of \(n \times n \) unitary matrices with all row sums and all column sums equal unity [4] [5] [6]. As such, \(XU(n) \) acts as a ‘doubly stochastic’ analogon within \(U(n) \). Whereas \(U(n) \) is an \(n^2 \)-dimensional Lie group, \(XU(n) \) is only an \((n - 1)^2\)-dimensional Lie group, isomorphic to \(U(n - 1) \). Below, we will demonstrate Birkhoff-like properties for \(XU \) matrices, giving them a geometric interpretation.

2 Three theorems

Theorem 1: If a \(U(n) \) matrix can be decomposed as a weighted sum \(\sum_j m_j P_j \) of permutation matrices \(P_j \), then it is, up to a global phase, a member of the subgroup \(XU(n) \).

Indeed, let us assume that the matrix \(M \) can be written as \(\sum_j m_j P_j \). Each of the permutation matrices \(P_j \) is a matrix with all line sums equal to 1. Therefore the matrix \(m_j P_j \) is a matrix with all line sums equal to \(m_j \), and the matrix \(\sum_j m_j P_j \) is a matrix with all line sums equal to \(\sum_j m_j \). If \(M \) is member of \(U(n) \) and has constant line sum, then this constant can only be equal to a number of the form \(e^{i\alpha} \), where \(\alpha \) is an arbitrary real [7]. Hence \(M \) is of the form \(e^{i\alpha} X \) with \(X \) member of \(XU(n) \). ■

Thus \(M \) belongs to the group of constant-line-sum unitary matrices \(e^{i\alpha} X \), a group isomorphic to the direct product \(U(1) \times XU(n) \) and thus isomorphic to \(U(1) \times U(n - 1) \).

Before introducing two more theorems, we present and prove two lemmas:

Lemma 1: A circulant \(XU(n) \) matrix can be written as a weighted sum of permutation matrices with the sum of the weights equal to 1.

The proof is trivial, the decomposition consisting of the \(n \) circulant \(n \times n \) permutation matrices, each with a coefficient equal to one of the entries of the given \(XU \) matrix. ■
Lemma 2: If two matrices can both be written as a weighted sum of permutation matrices with the sum of the weights equal to 1, then also the product of the two matrices can.

We consider two $n \times n$ matrices with the Birkhoff property, i.e.

\[
a = \sum_u m_u^a \ P_u \quad \text{and} \quad b = \sum_v m_v^b \ P_v ,
\]

with

\[
\sum_u m_u^a = \sum_v m_v^b = 1 .
\]

Here, each P_j denotes an $n \times n$ permutation matrix. The product $c = ab$ is

\[
c = \sum_u \sum_v m_u^a m_v^b P_u P_v ,
\]

i.e. a matrix of the form $\sum_w m_w P_w$. Because, moreover, $\sum_w m_w = \sum_u \sum_v m_u^a m_v^b = \sum_u m_u^a \sum_v m_v^b = 1$, we conclude that the product matrix c also has the Birkhoff property.

We now are in a position to present and prove the following theorem:

Theorem 2: If a matrix belongs to XU(n), then it can be written as a weighted sum of permutation matrices with the sum of the weights equal to 1.

The proof is by induction on n: we assume that the theorem is valid for $n = N$ and consider an arbitrary matrix X from XU($N + 1$). It can be written as follows [8]:

\[
X = F \begin{pmatrix} 1 \\ U \end{pmatrix} F^{-1} , \tag{1}
\]

where F is the $(N + 1) \times (N + 1)$ discrete Fourier transform and U is a matrix from U(N). The matrix U can be written as follows [5] [9] [10]:

\[
U = a Z_1 x Z_2 ,
\]

where a is a member of U(1), i.e. a complex number with unit modulus, where x is a member of XU(N), and where both Z_1 and Z_2 are member of Zu(N). Here, Zu(n) is the $(n-1)$-dimensional subgroup of U(n), consisting of all diagonal $n \times n$ unitary matrices with upper-left entry equal to unity.
and thus isomorphic to $U(1)^{n-1}$. Because of our induction assumption, the matrix x can be written as
\[x = \sum_j m_j p_j, \]
where all p_j are $N \times N$ permutation matrices and $\sum_j m_j = 1$. We conclude that
\[X = F \left(\begin{array}{c} 1 \\ aZ_1 \sum_j m_j p_j Z_2 \end{array} \right) F^{-1}, \]
such that we have the matrix decomposition
\[X = X_1 Y X_2 \]
with
\[
\begin{align*}
X_1 &= F \left(\begin{array}{c} 1 \\ aZ_1 \end{array} \right) F^{-1}, \\
Y &= F \left(\begin{array}{c} 1 \\ \sum_j m_j p_j \end{array} \right) F^{-1}, \\
X_2 &= F \left(\begin{array}{c} 1 \\ Z_2 \end{array} \right) F^{-1}.
\end{align*}
\]
First, we note that both $\left(\begin{array}{c} 1 \\ aZ_1 \end{array} \right)$ and $\left(\begin{array}{c} 1 \\ Z_2 \end{array} \right)$ are members of $ZU(N + 1)$. For any member Z of $ZU(N + 1)$ holds the property that FZF^{-1} is a circulant $XU(N + 1)$ matrix. Thus, because of Lemma 1, both X_1 and X_2 can be written as a weighted sum of permutation matrices (i.e. obey the theorem-to-be-proved). Hence, by virtue of Lemma 2, to prove the theorem for X, it suffices to prove it for Y. For this purpose, we note that, because of $\sum_j m_j = 1$, we have
\[
\left(\begin{array}{c} 1 \\ \sum_j m_j p_j \end{array} \right) = \left(\sum_j m_j \right) \left(\begin{array}{c} 1 \\ \sum_j m_j p_j \end{array} \right) = \sum_j \left(\begin{array}{c} m_j \\ m_j p_j \end{array} \right) = \sum_j m_j \left(\begin{array}{c} 1 \\ p_j \end{array} \right).
\]
We thus have
\[Y = F \sum_j m_j \left(\begin{array}{c} 1 \\ p_j \end{array} \right) F^{-1} = \sum_j m_j F \left(\begin{array}{c} 1 \\ p_j \end{array} \right) F^{-1}. \]
One can easily verify that any product of the form $F \left(\begin{array}{c} 1 \\ p_j \end{array} \right) F^{-1}$ is a unitary matrix with upper-left entry equal to 1. Because $F \left(\begin{array}{c} 1 \\ p_j \end{array} \right) F^{-1}$ is of the form $F \left(\begin{array}{c} 1 \\ U \end{array} \right) F^{-1}$, this product is also an $XU(N + 1)$ matrix [8].
A matrix with these two properties is necessarily of the form \((\begin{pmatrix} 1 & y_j \end{pmatrix})\) with
\(y_j\) a member of \(\text{XU}(N)\). Because of the induction hypothesis, we may put
\[Y = \sum_j m_j \left(\begin{array}{c} 1 \\ \sum_k m_k^y p_k \end{array} \right). \]
Taking into account that \(1 = \sum_k m_k\), we find
\[Y = \sum_j m_j \sum_k m_k^y \left(\begin{array}{c} 1 \\ p_k \end{array} \right). \]
Hence, \(Y\) is of the Birkhoff form: a weighted sum of \((N+1) \times (N+1)\) permutation matrices with sum-of-weights equal to 1. Hence, \(X\) is. Thus the theorem holds for \(n = N + 1\).

All \(\text{XU}(2)\) matrices are of the form
\[X = \frac{1}{2} \left(\begin{array}{cc} 1 + e^{i\alpha} & 1 - e^{i\alpha} \\ 1 - e^{i\alpha} & 1 + e^{i\alpha} \end{array} \right). \]
They can be written as a weighted sum of the two \(2 \times 2\) permutation matrices:
\[X = \frac{1 + e^{i\alpha}}{2} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) + \frac{1 - e^{i\alpha}}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \tag{2} \]
and the sum of the two weights \(m_1\) and \(m_2\) equals 1.

Because the theorem holds for \(n = 2\) and the theorem holds for \(n = N+1\) as soon as it holds for \(n = N\), the proof of Theorem 2 is complete. ■

Whereas the Birkhoff decomposition (2) of an \(\text{XU}(2)\) matrix is unique, the decomposition of an \(\text{XU}(n)\) matrix with \(n > 2\) is not unique. We now investigate whether, among the many possible decompositions \(\sum_j m_j P_j\), there is one or more that satisfies not only \(\sum_j m_j = 1\) but also \(\sum_j |m_j|^2 = 1\). This is a slightly stronger formulation of the \(|m_j| < 1\) constraints of the original Birkhoff theorem on doubly stochastic matrices and again defines a convex polytope in which all \(\text{XU}(n)\) lie. We start with the case where \(n\) is a prime:

Theorem 3: If a matrix belongs to \(\text{XU}(n)\) with prime \(n\), then it can be written as a weighted sum of permutation matrices with the sum of the squared moduli of the weights equal to 1.

Before proving Theorem 3, it is interesting to investigate some low-dimensional examples. The theorem is trivial for \(n = 2\). Indeed, above,
we have shown that $m_1 = (1 + e^{i\alpha})/2$ and $m_2 = (1 - e^{i\alpha})/2$, such that $|m_1|^2 + |m_2|^2 = 1$.

The theorem is also valid for $n = 3$. In fact, there exist an infinity of decompositions of X as a weighted sum of the $n! = 6$ permutation matrices, all satisfying $\sum_{j=1}^6 |m_j|^2 = 1$. Indeed, any member X of $\text{XU}(3)$ can be written as $[\text{I}]$, with F the 3×3 discrete Fourier transform and U a 2×2 unitary matrix. Hence

$$X = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{pmatrix} \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix},$$

where ω is the primitive 3rd root of unity, i.e. $e^{i2\pi/3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$. The entries of X therefore look like

$$X_{11} = \frac{1}{3} \left(1 + U_{11} + U_{12} + U_{21} + U_{22} \right)$$

$$X_{12} = \frac{1}{3} \left(1 + \omega^2 U_{11} + \omega U_{12} + \omega^2 U_{21} + \omega U_{22} \right)$$

$$X_{13} = \frac{1}{3} \left(1 + \omega U_{11} + \omega^2 U_{12} + \omega U_{21} + \omega^2 U_{22} \right)$$

$$X_{21} = \frac{1}{3} \left(1 + \omega U_{11} + \omega U_{12} + \omega^2 U_{21} + \omega^2 U_{22} \right)$$

...

$$X_{33} = \frac{1}{3} \left(1 + U_{11} + \omega U_{12} + \omega^2 U_{21} + U_{22} \right).$$

Each product $\omega^a U_{rs}$ ($\forall a = 0, 1, 2$ and $\forall r, s = 1, 2$) appears exactly once in every row and exactly once in every column of X. Therefore it is straightforward to check that X can be written as

$$X = \frac{1}{3} \left[\left(U_{11} + U_{22} \right) P_1 + \left(U_{12} + U_{21} \right) P_2 + \left(\omega U_{12} + \omega^2 U_{21} \right) P_3 + \left(\omega^2 U_{11} + \omega U_{22} \right) P_4 + \left(\omega U_{11} + \omega^2 U_{22} \right) P_5 + \left(\omega^2 U_{12} + \omega U_{21} \right) P_6 \right] + W_3,$$

where

$$P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad P_4 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad P_5 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad P_6 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

and W_3 is the doubly stochastic matrix with all entries identical, i.e. equal to $\frac{1}{3}$. We call W_3 the 3×3 van der Waerden matrix $[\text{I}1]$. It can be written
both as a sum of the circulant matrices and as a sum of the anticirculant matrices:

\[W_3 = \frac{1}{3} (P_1 + P_4 + P_5) = \frac{1}{3} (P_2 + P_3 + P_6) . \]

Here, we apply the following decomposition:

\[W_3 = \frac{1}{3} \left[p (P_1 + P_4 + P_5) + (1-p) (P_2 + P_3 + P_6) \right] , \]

where \(p \) is an arbitrary complex number.

Writing

\[X = m_1 P_1 + m_2 P_2 + m_3 P_3 + m_4 P_4 + m_5 P_5 + m_6 P_6 , \]

straightforward computations lead to \(\sum_j m_j = 1 \) and

\[\sum_j m_j \bar{m}_j = \frac{1}{3} \left[(U_{11} \bar{U}_{11} + U_{12} \bar{U}_{12}) + (U_{21} \bar{U}_{21} + U_{22} \bar{U}_{22}) + p \bar{p} + (1-p)(1-\bar{p}) \right] . \]

Taking into account that \(U \) is a \(2 \times 2 \) unitary matrix leads to

\[\sum_j m_j \bar{m}_j = 1 + \frac{1}{3} (2p \bar{p} - p - \bar{p}) . \]

For this sum to equal 1, it suffices that

\[\left(p - \frac{1}{2} \right) \left(\bar{p} - \frac{1}{2} \right) = \frac{1}{4} , \]

i.e. that, in the complex plane, \(p \) is located on the circle with center \(\frac{1}{2} \) and radius \(\frac{1}{2} \). For the particular choice \(p = 1 \), we obtain:

\[
\begin{align*}
m_1 &= (1 + U_{11} + U_{22})/3 \\
m_2 &= (U_{12} + U_{21})/3 \\
m_3 &= (\omega U_{12} + \omega^2 U_{21})/3 \\
m_4 &= (1 + \omega^2 U_{11} + \omega U_{22})/3 \\
m_5 &= (1 + \omega U_{11} + \omega^2 U_{22})/3 \\
m_6 &= (\omega^2 U_{12} + \omega U_{21})/3 .
\end{align*}
\]

We are now in a position to prove Theorem 3 for an arbitrary prime. We will suffice by demonstrating the existence of one appropriate decomposition. Any member \(X \) of \(\text{XU}(n) \) can be written as \([1] \), where \(F \) is the \(n \times n \) discrete
Fourier transform and U is a matrix from $\text{U}(n-1)$. Hence, the matrix entries can be written

$$X_{kl} = \frac{1}{n} \left[1 + \sum_{r=1}^{n-1} \sum_{s=1}^{n-1} \omega^{(k-1)r-(l-1)s} U_{rs} \right],$$

where ω is the nth root of unity. Thus, given the numbers r and s, each number U_{rs} appears in the expression of every entry X_{kl}. Therefore, we can write X as a sum of $1 + (n - 1)^2$ matrices:

$$X = W_n + \frac{1}{n} \sum_r \sum_s U_{rs} M_{rs},$$

where W_n is the $n \times n$ van der Waerden matrix, i.e. the doubly stochastic matrix with all entries equal to $\frac{1}{n}$. We call M_{rs} the transfer factor of U_{rs}. It is an $n \times n$ matrix with all entries equal to some ω^a:

$$(M_{rs})_{kl} = \omega^{(k-1)r-(l-1)s}$$

and with all line sums equal to 0.

As n is prime, a given number ω^a appears only once in every row and only once in every column of M_{rs}. Moreover M_{rs} has the structure of a ‘supercirculant’ matrix. A square matrix A is called supercirculant if there exist two integers x and y, such that, for all $\{k, l\}$, we have both $A_{k+1,l+x} = A_{k,l}$ and $A_{k+y,l+1} = A_{k,l}$ (where sums are modulo n). The numbers x and y (with $1 \leq x \leq n - 1$ and $1 \leq y \leq n - 1$) are called the pitches. They are interdependent, as $xy = 1 \mod n$.

If $x = 1$, then $y = 1$ and A is simply called circulant; if $x = n - 1$, then $y = n - 1$ and A is called anticirculant. The matrix M_{rs} is supercirculant because the difference $l(K + 1) - l(K)$ in column number, in which ω^a (for a given a) occurs for two consecutive rows K and $K + 1$, is a constant (modulo n) independent of K. Indeed, applying $\omega^{(k-1)r-(l-1)s}$ equal to ω^a for both $k = K$ and $k = K + 1$ yields

$$(K - 1)r - [l(K) - 1] s = Kr - [l(K + 1) - 1] s \mod n$$

and thus

$$sl(K + 1) - sl(K) = r \mod n.$$
such that $l(K + 1) - l(K)$ is a constant, say x. Analogously, for a given ω^a, $k(L + 1) - k(L)$ is a constant, say y. We can summarize that the two pitches x and y follow from

$$sx = r \mod n$$

$$ry = s \mod n .$$

(3)

Because n is prime, x and n are coprime and so are y and n. Therefore, ω^a does not appear more than once in a column or row of M_{rs}. As an example, for $n = 5$, the eqns (3) yield the following functions $x(r, s)$ and $y(r, s)$:

$r \backslash s$	1	2	3	4
1	1	3	2	4
2	2	1	4	3
3	3	4	1	2
4	4	2	3	1

and

$r \backslash s$	1	2	3	4
1	1	2	3	4
2	3	1	4	2
3	2	4	1	3
4	4	3	2	1

respectively. From the table, one can read that the pitches of M_{12} for $n = 5$ are $x = 3$ and $y = 2$, respectively, leading to the explicit form

$$M_{12} = \begin{pmatrix}
1 & \omega^3 & \omega & \omega^2 \\
\omega & \omega^4 & \omega^2 & 1 \\
\omega^2 & 1 & \omega^3 & \omega \\
\omega^3 & \omega & \omega^4 & 1 \\
\omega^4 & \omega^2 & 1 & \omega^3 \\
\end{pmatrix},$$

with ω equal to the 5th root of unity, i.e. $e^{2\pi/5} = (\sqrt{5} - 1 + i \sqrt{10 + 2\sqrt{5}})/4$.

We thus can conclude that any transfer matrix can be written as

$$M_{rs} = \sum_{l=1}^{n} \omega^{-(l-1)s}C_{l,x}(r,s).$$

Here, $C_{l,x}$, with $1 \leq l \leq n$ and $1 \leq x \leq n-1$, denotes the $n \times n$ supercyclic permutation matrix\footnote{Note that C_{lx} is a permutation matrix if and only if x and n are coprime.} with a first-row unit entry in column l and a pitch equal to x. In other words: we have $(C_{l,x})_{1,l} = (C_{l,x})_{2,l+x} = 1$.

We thus obtain the following decomposition:

$$X = \frac{1}{n} \sum_{r=1}^{n-1} \sum_{s=1}^{n-1} U_{rs} \sum_{l=1}^{n} \omega^{-(l-1)s}C_{l,x(r,s)} + W_n$$

$$= \frac{1}{n} \sum_{l=1}^{n} \sum_{x=1}^{n-1} C_{lx} \sum_{s=1}^{n-1} \omega^{-(l-1)s}U_{r(s,x),s} + W_n ,$$

(4)
where we thus sum over all \(n(n - 1) \) supercirculant permutation matrices \(C_{lx} \). We note here that, because of eqns (3), different values of \(s \) in (4) give rise to different values of \(r(s, x) \).

For \(n \neq 2 \), we may apply the following decomposition of the van der Waerden matrix:

\[
W_n = \frac{1}{n} \sum_{j=1}^{n} D_j ,
\]

where the \(n \) permutation matrices \(D_j \) are chosen such that they have no 1s in common and are not supercirculant, e.g. \(D_j = Q_j - 1 D_1 \), where

\[
Q = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
\end{pmatrix}
\]

and

\[
D_1 = \begin{pmatrix}
1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 & 0 \\
\vdots \\
0 & 0 & 0 & \ldots & 1 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 1 & 0 \\
\end{pmatrix},
\]

the former being called the shift matrix. Thanks to such choice, the matrix sets \(\{C_{lx}\} \) and \(\{D_j\} \) do not overlap and the sum \(\sum_j m_j P_j \) consists of two separate parts:

\[
X = \sum_{l=1}^{n} \sum_{x=1}^{n-1} m_{lx} C_{lx} + \frac{1}{n} \sum_{j=1}^{n} D_j .
\]

These parts have the following respective properties:

- The \(n(n - 1) \) weights \(m_{lx} \) of the permutation matrices \(C_{lx} \) equal a sum of \(n - 1 \) products:

\[
m_{lx} = \frac{1}{n} \sum_{s=1}^{n-1} \omega^{-(l-1)s} U_r(x, s) ,
\]

Therefore

\[
\sum_{lx} m_{lx} \overline{m_{lx}} = \frac{1}{n^2} \sum_{l=1}^{n-1} \sum_{s=1}^{n-1} \omega^{-(l-1)s} U_r(x, s) \sum_{t=1}^{n-1} \omega^{+(l-1)t} \overline{U_r(x, t)},
\]

\[
= \frac{1}{n^2} \sum_{x=1}^{n-1} \sum_{s=1}^{n-1} \sum_{t=1}^{n-1} U_r(x, s) \overline{U_r(x, t)} \sum_{t=1}^{n-1} \omega^{(l-1)(t-s)} ,
\]
With \(\sum_{l=1}^{n} \omega^{(l-1)(t-s)} = n \delta_{st} \), we obtain

\[
\sum_{lx} \overline{m_{lx}} m_{lx} = \frac{1}{n} \sum_{x=1}^{n-1} \sum_{s=1}^{n-1} U_{r(x,s),s} \overline{U_{r(x,s),s}}.
\]

As \(U \) is an \((n-1) \times (n-1)\) unitary matrix, we have \(\sum_{s=1}^{n-1} U_{rs} \overline{U_{rs}} = 1 \). Hence

\[
\sum_{lx} \overline{m_{lx}} m_{lx} = \frac{1}{n} (n-1).
\]

- The \(n \) weights \(m_j \) of the permutation matrices \(D_j \) equal \(\frac{1}{n} \) and therefore contribute to \(\sum_j m_j \overline{m_j} \) with an amount \(n \) times \(\frac{1}{n} \) and thus \(\frac{1}{n} \).

The two parts together thus give rise to

\[
\frac{1}{n} (n-1) + \frac{1}{n} = 1 . \quad \blacksquare
\]

We note that the above construction does not work for the special case \(n = 3 \) because, for \(n = 3 \), the matrices \(D_1, D_2, \) and \(D_3 \) are, by coincidence, anticirculant. Therefore, \(D_1, D_2, \) and \(D_3 \) coincide with \(C_{12}, C_{22}, \) and \(C_{32} \), respectively, such that the above special-purpose construction for \(n = 3 \) was necessary. As a matter of fact, the proposed Birkhoff decomposition consists of \(n(n-1) \) matrices \(C_{lx} \) and \(n \) matrices \(D_j \), thus of a total of \(n^2 \) permutation matrices \(P_j \). Only for \(n > 3 \), the relation \(n^2 \leq n! \) is valid and there exist enough permutation matrices to prove Theorem 3 in the generic way.

If \(n \) is not prime, then not all transfer matrices \(M_{rs} \) are supercirculant and the key property of the decomposition, proposed in the proof, is not fulfilled. If both \(r \) and \(s \) are coprime with \(n \), then \(M_{rs} \) is supercirculant. The other transfer matrices consist of identical blocks of size \(b \times c \) with

\[
b = \frac{n}{\gcd(n,r)} \quad \text{and} \quad c = \frac{n}{\gcd(n,s)}.
\]

E.g., for \(n = 4 \), the \(4 \times 4 \) matrix \(M_{12} \) has two identical blocks of size \(b \times c = 4 \times 2 \):

\[
M_{12} = \begin{pmatrix}
1 & \omega^2 & 1 & \omega^2 \\
\omega & \omega^3 & \omega & \omega^3 \\
\omega^2 & 1 & \omega^2 & 1 \\
\omega^3 & \omega & \omega^3 & \omega
\end{pmatrix},
\]

where \(\omega \) here is the 4th root of unity, i.e. \(i \).
Whether Theorem 3 is also valid if \(n \) is a composite number, is left for further investigation. At least it is valid for the smallest non-prime, i.e. for \(n = 4 \). This can be verified by checking that the decomposition

\[
X = \sum_{j=1}^{24} m_j P_j
\]

where the weights \(m_j \) have the values as in the Appendix.

3 A consequence

As already mentioned in Section 2, any \(n \times n \) unitary matrix \(U \) can be decomposed as

\[
U = e^{i\alpha} Z_1 X Z_2 ,
\]

where \(e^{i\alpha} \) is an overall phase factor, \(X \) is an \(XU(n) \) matrix, and both \(Z_1 \) and \(Z_2 \) are \(ZU(n) \) matrices. Applying the fact that \(X \) can be written as a weighted sum of permutation matrices, we can conclude that \(U \) can be written as a weighted sum of complex permutation matrices. Here, we define a complex permutation matrix as a unitary matrix having one and only one non-zero entry in every row and every column \[12\] \[13\] \[14\].

4 Conclusion

We have demonstrated that all matrices of the group \(e^{i\alpha}XU(n) \) can be written as a weighted sum of permutation matrices and that, among the \(U(n) \) matrices they are the only ones that can be decomposed that way. The sum of the weights equals \(e^{i\alpha} \). We prove that the sum of the squared moduli of the weights can be made equal to unity whenever \(n \) is prime, giving a convex geometric interpretation to the decomposition, as in the standard Birkhoff theorem. The case of non-prime \(n \) is left for further investigation.

References

[1] L. Mirsky, Results and problems in the theory of doubly-stochastic matrices, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 1 (1963) 319–334.

[2] G. Birkhoff, Tres observaciones sobre el algebra lineal, Universidad Nacional de Tucumán: Revista Matemáticas y Física Teórica 5 (1946) 147–151.
[3] I. Bengtsson, Å. Ericsson, M. Kuś, W. Tadej, K. Życzkowski, Birkhoff’s polytope and unistochastic matrices, $N = 3$ and $N = 4$, *Communications in Mathematical Physics* 259 (2005) 307–324.

[4] A. De Vos, S. De Baerdemacker, The decomposition of $U(n)$ into $XU(n)$ and $ZU(n)$, *Proceedings of the 44th International Symposium on Multiple-Valued Logic*, Bremen, 19-21 May 2014, pp. 173–177.

[5] A. De Vos, S. De Baerdemacker, On two subgroups of $U(n)$, useful for quantum computing, *Journal of Physics: Conference Series: Proceedings of the 30th International Colloquium on Group-theoretical Methods in Physics (Gent, 14-18 July 2014)* 597 (2015), 012030.

[6] A. De Vos, S. De Baerdemacker, Matrix calculus for classical and quantum circuits, *ACM Journal on Emerging Technologies in Computing Systems* 11 (2014) 9.

[7] A. De Vos, R. Van Laer, S. Vandenbrande, The group of dyadic unitary matrices, *Open Systems & Information Dynamics* 19 (2012) 1250003.

[8] A. De Vos, S. De Baerdemacker, The NEGATOR as a basic building block for quantum circuits, *Open Systems & Information Dynamics* 20 (2013) 1350004.

[9] A. De Vos, S. De Baerdemacker, Scaling a unitary matrix, *Open Systems & Information Dynamics* 21 (2014) 1450013.

[10] M. Idel, M. Wolf, Sinkhorn normal form for unitary matrices, *Linear Algebra and its Applications* 471 (2015) 76–84.

[11] B. van der Waerden, Aufgabe 45, *Jahresberichte der Deutschen Mathematiker-Vereinigung* 35 (1926) 117.

[12] J. Barry, A. Batra, A multidimensional phase-locked loop for blind multiuser detection, *IEEE Transactions on Signal Processing* 50 (2002) 2093–2102.

[13] L. Yu, R. Griffiths, S. Cohen, Fast protocols for local implementation of bipartite nonlocal unitaries, *Physical Review A* 85 (2012) 012304.

[14] L. Chen, L. Yu, Decomposition of bipartite and multipartite unitary gates into the product of controlled unitary gates, *Physical Review A* 91 (2015) 032308.
Appendix

An arbitrary member X of $XU(4)$ may be written as $\sum_{j=1}^{24} m_j P_j$ with

\[
\begin{align*}
m_1 &= (U_{11} + U_{22} + U_{33})/4 \\
m_2 &= 1/4 \\
m_3 &= (U_{12} + U_{21} + U_{23} + U_{32} + iU_{12} - iU_{21} + iU_{23} - iU_{32})/8 \\
m_4 &= (U_{21} + U_{23} + iU_{21} - iU_{23})/8 \\
m_5 &= (U_{12} + U_{32} - iU_{12} + iU_{32})/8 \\
m_6 &= (U_{13} + U_{31})/4 \\
m_7 &= 1/4 \\
m_8 &= (iU_{13} - iU_{31})/4 \\
m_9 &= (-U_{12} - U_{32} + iU_{12} - iU_{32})/8 \\
m_{10} &= (-U_{22} - iU_{11} + iU_{33})/4 \\
m_{11} &= (-U_{12} + U_{21} + U_{23} - U_{32} - iU_{12} - iU_{21} + iU_{23} + iU_{32})/8 \\
m_{12} &= (-U_{21} - U_{23} - iU_{21} + iU_{23})/8 \\
m_{13} &= (-U_{21} + U_{23} - iU_{21} + iU_{23})/8 \\
m_{14} &= (U_{12} - U_{21} - U_{23} + U_{32} + iU_{12} + iU_{21} - iU_{23} - iU_{32})/8 \\
m_{15} &= (-U_{13} - U_{31})/4 \\
m_{16} &= (U_{12} + U_{32} - iU_{12} + iU_{32})/8 \\
m_{17} &= (-U_{11} + U_{22} - U_{33})/4 \\
m_{18} &= 1/4 \\
m_{19} &= (-U_{22} + iU_{11} - iU_{33})/4 \\
m_{20} &= (-U_{12} - U_{32} + iU_{12} - iU_{32})/8 \\
m_{21} &= (U_{21} + U_{23} + iU_{21} - iU_{23})/8 \\
m_{22} &= (-U_{12} - U_{21} - U_{23} - U_{32} - iU_{12} + iU_{21} - iU_{23} + iU_{32})/8 \\
m_{23} &= 1/4 \\
m_{24} &= (-iU_{13} + iU_{31})/4 ,
\end{align*}
\]

where the condition $\sum_j |m_j|^2 = 1$ is fulfilled. Here, the $n! = 24$ permutation matrices have been ordered ‘lexicographically’ as follows:

\[
P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \ldots
\]
$$P_{23} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, \quad P_{24} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

In this ordering, the supercirculant permutation matrices are $C_{11} = P_1$, $C_{13} = P_6$, $C_{21} = P_{10}$, $C_{23} = P_8$, $C_{31} = P_{15}$, $C_{41} = P_{19}$, and $C_{43} = P_{24}$.