Case Report

Review of the Literature: Organ of Giraldes Epididymal Appendage Presenting as a Painless Scrotal Mass in a 19-Year-Old Male—A Rare Urologic Entity

Mohamad-Fadi Dalati, 1 Tania Oliveira-e-Silva, 2 and Kim Entezari 1

1 CHU Saint-Pierre, 1000 Brussels, Belgium
2 Department of Urology, CHU Saint-Pierre, 1000 Brussels, Belgium

Correspondence should be addressed to Mohamad-Fadi Dalati; dalati_fadi@yahoo.be

Received 30 August 2015; Accepted 4 October 2015

1. Introduction

A testicular appendage is a vestigial residual of the Wolffian (mesonephric) duct or the Mullerian (paramesonephric) duct. A Mullerian-inhibiting substance produced during fetal growth causes the degradation of the Mullerian duct, in a craniocaudal fashion [1]. There are 5 testicular/epididymal appendages described in literature. Figure 1 illustrates the anatomical position of these appendages [2]. The first and the most cranial part develops into the appendix testis, also known as the sessile hydatid of Morgagni. Next in order originating from the head of the epididymis is the appendix epididymis. The third appendage is the paradidymis, also known as the organ of Giraldes (Par), which attaches to the lower spermatic cord, and is gaining an origin from the Wolffian (mesonephric) duct, mainly from its caudal portion. Originating from the body of the epididymis is the cranial aberrant duct, also called the cranial vas aberrans of Haller (*), which also originated from the Wolffian duct. Finally at the level of the tail of the epididymis, we have the caudal vas aberrans of Haller (*). Pathologies and cases involving these appendages are quite rare and almost always involve a presentation of an acute scrotal mass.

2. Case

We describe a case of a healthy 19-year-old male patient, presenting to the urology clinic for an incidental finding of a painless left scrotal mass. Clinical history goes back to a couple of days before, where the patient first noticed a mass while taking a shower. The patient denies recent scrotal trauma, unprotected sexual intercourse, penile discharge, urinary symptoms, fever, or chills. Physical exam revealed a 3-4 cm scrotal mass, attached to the left testicle at the level of the epididymis. The mass was painless to palpation and mobile with the testicle. No inguinal hernia or inguinal lymph nodes were detected during the physical exam. Both testicles were of normal size and position. cremasteric reflex was present bilaterally. No signs of inflammation, edema, erythema, or infection were observed. Blood and urine exams were within normal ranges, including hemoglobin, Hb, hematocrit, Hct, white blood cells, WBC, C-reactive protein, CRP, negative red blood cells, RBC, and white blood cells, WBC, in urine and negative urine culture. Tumor markers (alpha fetoprotein, AFP, β-HCG, and lactate dehydrogenase, LDH) were also negative. Ultrasound of the scrotum paradoxically revealed
a swelling of the left epididymis and the testicle with hyper-
vascularization signals on Doppler ultrasound suggestive of
epididymitis.

The decision was made to treat the subclinical,
ultrasound-evident epididymitis with a course of fluoro-
quino
one (ciprofloxacin). Two weeks later, physical exam
showed similar findings to the one done two weeks ago, and
testicular ultrasound showed a 3 cm testicular swelling, with
similar Doppler findings.

This atypical presentation of a painless scrotal mass
in a young male adult, with negative tumor markers and
ultrasound suggestive of epididymitis in the absence of
any inflammatory signs or symptoms, with no signs of
improvement with a course of antibiotics, as well as the risk
of malignant lesion, put a remarkable amount of stress on
the patient and the treating team, resulting in a decision
to go for surgical testicular exploration via an inguinal
incision due to the risk of testicular malignancy. Metastatic
workup was composed of fluorine-18-fluorodeoxyglucose
positron emission tomography \(^{18}\)F-FDG PET-CT, showing a
hypermetabolic lesion of the left testicle, with iliac and para-
aortic lymphadenopathy.

During surgery, the left testicle was delivered via an
inguinal incision. Dissection of the mass off the testicle was
tried, but due to the adherent nature of the mass to the testicle
itself, increasing the risk of malignancy, the final decision was
made to undergo a total left radical orchiectomy. Patient was
discharged the following day.

Pathology report showed a normal testicle (6.5 \(\times\) 4 \(\times\)
3.7 cm), spermatic cord, and an epididymis containing an
indurated whitish lesion, measuring 3.5 \(\times\) 2 \(\times\) 1.6 cm. No
histological anomalies of the testicle were noted. A significant
inflammatory remnant of the epididymis was reported, with
microabscess in vestigial remnants (Figures 2 and 3).

A cystic structure with no obvious continuity with the
epididymis was also noted, bordered by a pseudostratified
epithelium without tumoral cellular atypia, consistent with
organ of Giraldes, with no sign of malignancy.

\(^{18}\)F-FDG PET-CT was repeated 2 months after surgery
and showed complete remission of the previously hyperme-
tabolic picture that was reported in the previous imaging.

3. Discussion

In a study by Sahni et al. [3], the incidence of epididymal
appendage in adults on autopsy was estimated to be around
20%. In another study by Favorito et al. [2], the incidence
of epididymal appendages was 14.5% in the cryptorchidism
group and 8.4% in the control one, with no statistically
significant difference between the two groups. The organ
of Giraldes as a cause of a scrotal mass is a very rare
pathologic finding, with cystic transformation and torsion
being the most common presentation. It is usually located
in the anteroinferior portion of the spermatic cord, varying
in size, with no direct relationship to the epididymis or the
testicle. Diagnosis is very challenging, almost always done
only after surgical excision. Ultrasound of the scrotum and
Doppler ultrasound for assessment of testicular perfusion fail
to confirm the diagnosis and are often inconclusive.

There are no studies indicating risk of malignancy of these
appendages, nor there were, to the best of our knowledge, any
case reports of a painless scrotal mass, which was surgically
explored, turning out to be an appendage.

Torsion of the appendages, mainly in adolescents,
remains to be a risk to consider. Van Glabeke et al. described
543 cases of acute scrotum pain in boys aged between 1 and
16 years, resulting in surgical exploration [4], of which 46%
Table 1: Summary of studies describing testicular and epididymal appendages.

| Study                        | Incidence of appendages | Incidence after surgical exploration (acute scrotum) |
|------------------------------|-------------------------|------------------------------------------------------|
| Sahni et al., 1996 [3]       |                         | 20%                                                  |
| Favorito et al., 2004 [2]    | 14.5% in cryptorchidism | 8.4% in control                                      |
| Van Glabeke et al., 1999 [4] |                         | 46% torsion of appendages                            |
| Puri and Boyd, 1976 [5]      |                         | 22 cases                                             |
| Khairi et al., 2007 [6]      |                         | 20.5% torsion of appendages                          |
| Çavuşoğlu et al., 2005 [7]   |                         | 32.3% torsion of appendages                          |

Table 1 summarizes these findings.

While the usage of $^{18}$F-FDG PET-CT is controversial in testicular cancer diagnosis according to the guidelines of the European Association of Urology, there are many studies in the literature favoring its usage. A meta-analysis done by Zhao et al. [8] examined a total of 16 studies, with a total number of patients up to 807 and 957 $^{18}$F-FDG PET exams. The meta-analysis showed sensitivity of 87% and specificity of 75%. It concluded that combining CT with FDG-PET is potentially a useful tool in diagnosis of testicular cancer, while admitting the low specificity of such imaging technique.

In our hospital, we use $^{18}$F-FDG PET-CT in the metastatic workup before surgical exploration, as well as during follow-up cycles.

Even though surgical excision is theoretically not mandatory in case of testicular and epididymal appendages, due to the benign nature of these structures, with no signs of torsion, the burden of a solid scrotal mass in young males associated with the risk of testicular malignancy, even in the absence of elevated tumor markers or suspicious features of ultrasound, challenges both patient and urologist and drives management towards surgical exploration and excision.

In our opinion, the classic approach to scrotal masses in young male population, including physical exam, scrotal ultrasound, and tumor markers (AFP, $\beta$-HGC, and LDH), cannot give a clear contribution for the diagnosis of organ of Giraldes, leaving surgical exploration and eventually orchiectomy a must-do approach. Our case represents a rare entity in the literature, of a solid scrotal mass, with no other associated symptoms, ending up with surgical exploration and orchiectomy for the suspicion of testicular cancer, with an end result of organ of Giraldes. We believe that solid masses, even in the absence of supporting diagnostic measures, should be managed by surgical exploration and confirmation of absence of malignancy by pathology.

**Disclosure**

The authors confirm that they have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, with respect to intellectual property. In doing so the authors confirm that they have followed the regulations of their institutions concerning intellectual property.

**Conflict of Interests**

The authors wish to confirm that there is no known conflict of interests associated with this work and there has been no significant financial support for this work that could have influenced its outcome.

**Authors’ Contribution**

The authors confirm that the paper has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. The authors further confirm that the order of authors listed in the paper has been approved by all of them.

**References**

[1] M. Maizels, “Normal and anomalous development of the urinary tract,” in *Campbell’s Urology*, P. C. Walsh, A. B. Retik, E. D. Vaughan Jr., and A. J. Wein, Eds., pp. 1545–1600, W.B. Saunders Company, Philadelphia, Pa, USA, 7th edition, 1998.

[2] L. A. Favorito, A. G. L. Cavalcante, and M. A. Babinski, “Study on the incidence of testicular and epididymal appendages in patients with cryptorchidism,” *The International Brazilian Journal of Urology*, vol. 30, no. 1, pp. 49–52, 2004.

[3] D. Sahni, I. Jit, K. Joshi, and Sanjeev, “Incidence and structure of the appendices of the testis and epididymis,” *Journal of Anatomy*, vol. 189, no. 2, pp. 341–348, 1996.

[4] E. Van Glabeke, A. Khairouni, M. Larroquet, G. Audry, and M. Gruner, “Acute scrotal pain in children: results of 543 surgical explorations,” *Pediatric Surgery International*, vol. 15, no. 5-6, pp. 353–357, 1999.

[5] P. Puri and E. Boyd, “Torsion of the appendix testis,” *Clinical Pediatrics*, vol. 15, no. 10, pp. 949–950, 1976.

[6] A. Khairi, N. El-Kholi, K. Ashour, M. Abd El-Azim, and M. Sami, “Acute scrotum in children; should all testes still be
explored?" *Annals of Pediatric Surgery*, vol. 3, no. 2, pp. 97–101, 2007.

[7] Y. H. Çavuşoğlu, A. Karaman, I. Karaman et al., "Acute scrotum etiology and management," *Indian Journal of Pediatrics*, vol. 72, no. 3, pp. 201–203, 2005.

[8] J.-Y. Zhao, Y.-Y. Li, B.-L. Zhang, M.-M. Li, X.-L. Ma, and L. Liu, "Diagnostic accuracy of 18F-FDG-PET in patients with testicular cancer: a meta-analysis," *Asian Pacific Journal of Cancer Prevention*, vol. 15, no. 8, pp. 3525–3531, 2014.