SINGULARLY CONTINUOUS SPECTRUM OF A SELF-SIMILAR LAPLACIAN ON THE HALF-LINE

JOE P. CHEN AND ALEXANDER TEPLYAEV

ABSTRACT. We investigate the spectrum of the self-similar Laplacian, which generates the so-called "pq random walk" on the integer half-line \mathbb{Z}_+. Using the method of spectral decimation, we prove that the spectral type of the Laplacian is singularly continuous whenever $p \neq \frac{1}{2}$. This serves as a toy model for generating singularly continuous spectrum, which can be generalized to more complicated settings. We hope it will provide more insight into Fibonacci-type and other weakly self-similar models.

1. Introduction

Several models of one-dimensional discrete Schrödinger operators have been proved to exhibit purely singular continuous spectrum; see for instance [7, 42, 52, 59]. In this brief paper, we consider a particular family of self-similar Laplacians Δ_p on the integer half-line \mathbb{Z}_+, parametrized by $p \in (0, 1)$. The parameter p plays the role of the transition probability of a symmetrizable random walk. From the physical point of view, changing p corresponds to changing the contrast ratio of the fractal media. From the mathematical point of view, these Laplacians arise from the study of the unit interval endowed with a fractal measure, and was first addressed by the second author in [66] in the context of spectral zeta functions; see also the related work [27]. In this context, the parameter p determines the resistance and measure scaling of the fractal space. In particular, we obtain a simple one-parameter family of models for which the spectral dimension d_s of Δ_p (see Remark 4) varies continuously:

$$d_s = \frac{\log 9}{\log \left(1 + \frac{2}{p(1-p)}\right)} \in (0, 1].$$

It will be explained that when $p = \frac{1}{2}$, we recover the classical one-dimensional Laplacian with $d_s = 1$. We can also take the direct product of any number of these fractal intervals to construct a fractal of a higher dimension. For instance, a fractal with topological dimension 4 and spectral dimension 2 can be obtained by taking the direct product of 4 one-dimensional intervals, each equipped with a fractal Laplacian Δ_p with $p(1-p) = \frac{1}{40}$, or equivalently, $d_s = \frac{1}{2}$.

The key question addressed in this paper concerns the spectral type of the fractal Laplacian Δ_p. Related questions about wave propagation on this fractal, viz. the modes of convergence of discrete wave solutions to the fractal wave solution, were studied in [6, 16]. For recent physics results, theoretical and experimental, see [1, 3, 28, 46, 64] and references therein. In general, weakly self-similar fractal systems are related to quasicrystals. Although we do not discuss this relation, the reader can find explanations in [12, 13, 19, 20, 46] and references therein. Our
long-term motivation comes from the fact that many problems of fractal nature appear in quantum gravity (e.g. 5, 30, 34, 45, 54), but the related mathematical physics (e.g. 17, 31, 32, 38–41, 49, 51, 55, 56, 62, 63) is not sufficiently developed to approach these problems, mainly because it is hard to tackle problems of fractal geometry and spectral analysis simultaneously. Hence analyzing a straightforward fractal model, such as the one described in this paper, may be of special interest.

Our result is relatively simple because of the minimality of our model, but it relies upon spectral decimation (or spectral similarity) [8, 47] and its connection with the Julia set of a rational function. Parallel ideas have also appeared in the proofs of singularly continuous spectrum for Fibonacci Hamiltonians on \(\mathbb{Z} \) (see [21–26, 48] and references therein), as well as the relation between Julia sets and Jacobi matrices (see [10, 11, 14, 15]). One of most recent articles on this topics, emphasizing the relation between self-similarity and singularly continuous spectrum, is [35, 36]. We hope that the methods outlined in this paper can be generalized to more complicated settings.

Acknowledgements. A substantial part of this work was completed and presented at the workshop “Spectral Properties of Quasicrystals via Analysis, Dynamics, and Geometric Measure Theory” at the Casa Matemática Oaxaca (CMO). We thank the Banff International Research Station for Mathematical Innovation and Discovery, and the organizers and participants for their support. We are especially grateful to D. Damanik and A. Gorodetski for many insightful remarks and suggestions.

2. Main Results

The \(pq \)-model on \(\mathbb{Z}_+ \) is defined as follows. Let \(p \in (0, 1) \) and \(q = 1 - p \). For each \(x \in \mathbb{Z}_+ \setminus \{0\} \), let \(m(x) \) be the largest natural number \(m \) such that \(3^m \) divides \(x \). Then for all functions \(f \) on \(\mathbb{Z}_+ \), we set

\[
(\Delta_p f)(x) = \begin{cases}
 f(0) - f(1), & \text{if } x = 0 \\
 f(x) - qf(x-1) - pf(x+1), & \text{if } 3^{-m(x)}x \equiv 1 \pmod{3} \\
 f(x) - pf(x-1) - qf(x+1), & \text{if } 3^{-m(x)}x \equiv 2 \pmod{3}
\end{cases}
\]

Observe that the Laplacian \(\Delta_p \) generates a nearest neighbor “pq random walk” on \(\mathbb{Z}_+ \) as shown in Figure 1.

\begin{center}
\begin{tikzpicture}
 \node at (0,0) {1};
 \node at (1,0) {\textcolor{red}{q}};
 \node at (2,0) {p};
 \node at (3,0) {p};
 \node at (4,0) {q};
 \node at (5,0) {q};
 \node at (6,0) {q};
 \node at (7,0) {p};
 \node at (8,0) {q};
 \node at (9,0) {q};
 \node at (10,0) {p};
 \node at (11,0) {q};
 \node at (12,0) {p};
 \node at (13,0) {q};
 \node at (14,0) {q};
 \node at (15,0) {p};

 \draw[->] (0,0) -- (1,0);
 \draw[->] (1,0) -- (2,0);
 \draw[->] (2,0) -- (3,0);
 \draw[->] (3,0) -- (4,0);
 \draw[->] (4,0) -- (5,0);
 \draw[->] (5,0) -- (6,0);
 \draw[->] (6,0) -- (7,0);
 \draw[->] (7,0) -- (8,0);
 \draw[->] (8,0) -- (9,0);
 \draw[->] (9,0) -- (10,0);
 \draw[->] (10,0) -- (11,0);
 \draw[->] (11,0) -- (12,0);
 \draw[->] (12,0) -- (13,0);
 \draw[->] (13,0) -- (14,0);
 \draw[->] (14,0) -- (15,0);
\end{tikzpicture}
\end{center}

Figure 1. Transition probabilities in the pq random walk. Here \(p \in (0, 1) \) and \(q = 1 - p \).

If \(p = \frac{1}{2} \), we recover the symmetric simple random walk on the half-line with reflection at the origin, and \(\Delta_{\frac{1}{2}} \), the classical one-dimensional Laplacian, is self-adjoint on \(\ell^2(\mathbb{Z}_+) \). If \(p \neq \frac{1}{2} \), \(\Delta_p \) is not self-adjoint on \(\ell^2(\mathbb{Z}_+) \). That said, we can identify the symmetrizing measure for \(\Delta_p \) using the theory of Markov chains (see e.g. [29, Ch. 1]). One can readily verify that \(\Delta_p \) generates an irreducible Markov chain on \(\mathbb{Z}_+ \) whose transition probabilities satisfy \(p(x, y) = 0 \) whenever \(|x - y| > 1 \), i.e., it is a birth-and-death chain. As a result, one can explicitly compute the invariant measure \(\pi \) by iteratively solving the equation \(\pi(y) = \sum_{x \in \mathbb{Z}_+} \pi(x)p(x, y) \). This means that the reversibility condition \(\pi(x)p(x, y) = \pi(y)p(y, x) \) holds for every \(x, y \in \mathbb{Z}_+ \),
which implies that Δ_p is symmetric with respect to π. In our example, π essentially coincides with a multiple of the discretization of the fractal measure described in $[6,66]$ (π is a σ-finite but not finite measure on \mathbb{Z}_+). Moreover, we have the relation

$$\pi(x) = \pi(3x),$$

which is easy to verify by induction for all $x \in \mathbb{Z}_+$. This last property allows us to transfer our definitions and main results from $\ell^2(\mathbb{Z}_+)$ to $L^2(\mathbb{Z}_+)$ in what follows.

Our main result is

Theorem 1. If $p \neq \frac{1}{2}$, the Laplacian Δ_p, regarded as an operator on either $\ell^2(\mathbb{Z}_+)$ or $L^2(\mathbb{Z}_+, \pi)$, has purely singularly continuous spectrum. The spectrum is the Julia set of the polynomial $R(z)$ in (3.4), which is a topological Cantor set of Lebesgue measure zero.

It is well-known that the spectrum of $\Delta_{\frac{1}{2}}$, the classical one-dimensional Laplacian on \mathbb{Z}_+, is the interval $[0,2]$, and is absolutely continuous. So in a sense, there is a “phase transition” in the spectral type of Δ_p as p varies through $\frac{1}{2}$, going from a singular spectrum to an absolutely continuous spectrum and back to a singular spectrum.

Remark 2. We note that, following now standard techniques for the so-called Sturmian potentials (see $[13,18–20]$), one can hope to extend this result to two-sided models on \mathbb{Z}. However, there is a technical difficulty in the fact that the density of the symmetrizing measure π on \mathbb{Z}_+ with respect to the counting measure is not bounded from above and below.

Remark 3. The disconnectedness of the Julia set $J(R)$ implies that the Laplacian spectrum has infinitely many (large) gaps, which is a salient feature of many symmetric finitely ramified fractals $[37]$. As a result, the summability of Fourier series is better on these fractals than that on Euclidean space $[61]$.

Remark 4. The classical notion of spectral dimension d_s is introduced in $[4]$ for discrete Laplacians on infinite graphs, and in $[44,45]$ for the corresponding continuous Laplacians on compact Dirichlet metric spaces. We note that not all authors agree with this notion of d_s; see $[60]$ for a detailed discussion.

In the context of our paper, the spectral dimension d_s is understood as follows. Take the sequence of Laplacians Δ_p restricted to the segment $[0,3^m] \cap \mathbb{Z}_+$. One can estimate the lowest non-zero eigenvalue of Δ_p by the inverse composition powers $R^{-om}(2)$, which behave, up to a constant, as $(R'(0))^{-m}$. Here $R(z)$ is the spectral decimation function given in (3.4), and $R'(0) = 1 + \frac{2}{pq}$. The spectral dimension is then given by $d_s = \frac{2 \log M}{\log R'(0)}$, where M stands for the rate of volume growth between successive fractal approximations. In our case $M = 3$, so we recover (1.1). This method of calculating the spectral dimension of a self-similar Laplacian which admits spectral decimation is discussed in $[22,33,65,66]$.

Alternatively, according to the approach of Kigami and Lapidus $[44]$, under certain assumptions that are satisfied in our case, the spectral dimension of a self-similar set with resistance scaling factors r_j and measure scaling factors m_j is defined as the unique number d_s that satisfies

$$\sum_{j=1}^{N} (r_j m_j)^{d_s/2} = 1.$$

For our fractal Laplacian Δ_p, the resistance scaling factors are $r_1 = r_3 = \frac{p}{1+p}$ and $r_2 = \frac{q}{1+p}$, and measure weights are $m_1 = m_3 = \frac{q}{1+q}$ and $m_2 = \frac{p}{1+q}$ (for more details see $[66]$). From
these it is direct to verify that d_s agrees with (1.1). A more recent work [6] also discusses the probabilistic meaning of this spectral dimension in terms of heat kernel estimates, but it is not needed for the present paper.

3. Proof of Theorem 1

Throughout the section, $\rho(A)$ and $\sigma(A)$ stands for the resolvent set and the spectrum of an operator A, respectively.

3.1. Spectral decimation. We briefly review the necessary ingredients from spectral decimation that will be used in the proof. Spectral decimation originated from [12, 53], and was implemented on the Sierpinski gasket in [33, 57, 65] and on post-critically finite fractals in [58]. Here we follow [47, Definition 2.1] (see also [8] for more information). Let \mathcal{H} and \mathcal{H}_0 be Hilbert spaces, and H (resp. H_0) be operators on \mathcal{H} (resp. \mathcal{H}_0). We say that H is spectrally similar to H_0 with functions $\varphi_0, \varphi_1 : \rho(H) \to \mathbb{C}$ if there exists a (partial) isometry $U : \mathcal{H}_0 \to \mathcal{H}$ such that

$$U^*(H - z)^{-1}U = (\varphi_0(z)H_0 - \varphi_1(z))^{-1}$$

whenever both sides are defined.

For concreteness, we will specialize spectral similarity to the case where \mathcal{H}_0 is a closed subspace of \mathcal{H}, and $U^* =: P_0$ is the orthogonal projection from \mathcal{H} to \mathcal{H}_0. Let \mathcal{H}_1 be the orthogonal complement of \mathcal{H}_0 in \mathcal{H}, and $P_1 = I - P_0$ be the orthogonal projection from \mathcal{H} to \mathcal{H}_1. Define $I_0 : \mathcal{H}_0 \to \mathcal{H}_0$, $X : \mathcal{H}_0 \to \mathcal{H}_1$, $\bar{X} : \mathcal{H}_1 \to \mathcal{H}_0$, and $Q : \mathcal{H}_1 \to \mathcal{H}_1$ by $I_0 = P_0HP_0^*$, $X = P_1HP_0^*$, $\bar{X} = P_0HP_1^*$, and $Q = P_1HP_1^*$. In other words, H has the following block structure with respect to the representation $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$:

$$H = \begin{pmatrix} I_0 & X \\ \bar{X} & Q \end{pmatrix}.$$

According to [47, Corollary 3.4], without loss of generality, we may assume that φ_0 and φ_1 are defined on $\rho(Q)$. Then by [47, Definition 3.5], we introduce the exceptional set of the spectrally similar operators H and H_0 as follows:

$$\mathcal{E}(H, H_0) = \{ z \in \mathbb{C} : z \in \sigma(Q) \text{ or } \varphi_0(z) = 0 \}.$$

Let $R(z) = \varphi_1(z)/\varphi_0(z)$ whenever $\varphi_0(z) \neq 0$.

The key result we need is

Proposition 5 ([47 Theorem 3.6]). Let H be spectrally similar to H_0 on \mathcal{H}_0, and $z \notin \mathcal{E}(H, H_0)$. Then

1. $R(z) \in \rho(H_0)$ if and only if $z \in \rho(H)$.
2. $R(z)$ is an eigenvalue of H_0 if and only if z is an eigenvalue of H. Moreover, there is a one-to-one map $f_0 \mapsto f = f_0 - (Q - z)^{-1}Xf_0$ from the eigenspace of H_0 corresponding to $R(z)$ onto the eigenspace of H corresponding to z.

3.2. Spectral decimation for Δ_p. We now apply the above framework to the operator Δ_p on $\ell^2(\mathbb{Z}_+)$. Here we put $\mathcal{H} = \ell^2(\mathbb{Z}_+)$ and $\mathcal{H}_0 = \ell^2(3\mathbb{Z}_+)$. Then

$$U^* : \ell^2(\mathbb{Z}_+) \to \ell^2(3\mathbb{Z}_+)$$

is the orthogonal projection defined by

$$(U^*f)(3x) = f(3x).$$
Moreover, following the idea of Bellissard [12, page 125], we can define a dilatation operator
\[D : \ell^2(3\mathbb{Z}_+) \rightarrow \ell^2(\mathbb{Z}_+), \]
and its co-isometric adjoint \(D^* : \ell^2(\mathbb{Z}_+) \rightarrow \ell^2(3\mathbb{Z}_+) \),
\[(Df)(3x) = f(x). \]

Then we define the operator \(\Delta^+_p \) on \(\ell^2(3\mathbb{Z}_+) \) to be
\[\Delta^+_p = D^* \Delta_p D. \]

By definition, \(\Delta^+_p \) on \(\ell^2(3\mathbb{Z}_+) \) is isometrically equivalent to \(\Delta_p \) on \(\ell^2(\mathbb{Z}_+) \). Moreover, \(\Delta^+_p \) on \(L^2(3\mathbb{Z}_+, \pi) \) is isometrically equivalent to \(\Delta_p \) on \(L^2(\mathbb{Z}_+, \pi) \) because of the relation \(\pi(x) = \pi(3x) \).

Proposition 6 (Spectral decimation for \(\Delta_p \)). The operator \(\Delta_p \) on \(\ell^2(\mathbb{Z}_+) \) is spectrally similar to \(\Delta^+_p \) on \(\ell^2(3\mathbb{Z}_+) \) with functions
\[\varphi_0(z) = \frac{pq}{(1-z)^2 - p^2}, \quad \varphi_1(z) = R(z)\varphi_0(z), \quad R(z) = \frac{z(z^2 - 3z + (2 + pq))}{pq}. \]

Proposition 5 was essentially proved in [6, 66]. It follows from taking the Schur complement of \(\Delta_p \) with respect to the block corresponding to projection of functions onto \(\mathbb{Z}_+ \setminus (3\mathbb{Z}_+) \). For the reader’s convenience, we give a self-contained proof in Appendix A.

Next, we identify the exceptional set of \(\Delta_p \) and \(\Delta^+_p \). Note that \(\varphi_0(z) \neq 0 \) for all \(z \in \mathbb{C} \). As for the operator \(Q : \mathcal{H}_1 \rightarrow \mathcal{H}_1, (2,1) \) yields
\[(Qf)(3x + 1) = f(3x + 1) - pf(3x + 2), \]
\[(Qf)(3x + 2) = f(3x + 2) - pf(3x + 1) \]
for each \(x \in \mathbb{Z}_+ \). This means that \(Q \), as a matrix with respect to the natural basis of delta functions on \(\mathbb{Z}_+ \setminus 3\mathbb{Z}_+ \), is a block diagonal matrix consisting of \(2 \times 2 \) blocks
\[\begin{pmatrix} Q(3x + 1, 3x + 1) & Q(3x + 1, 3x + 2) \\ Q(3x + 2, 3x + 1) & Q(3x + 2, 3x + 2) \end{pmatrix} = \begin{pmatrix} 1 & -p \\ -p & 1 \end{pmatrix}, \]
\(x \in \mathbb{Z}_+ \).

From this it is easy to deduce that \(\sigma(Q) = \{1 + p, 1 - p\} \). Thus \(\mathcal{E}(\Delta_p, \Delta^+_p) = \{1 + p, 1 - p\} \).

The next result is a direct consequence of Proposition 5.

Proposition 7. Suppose \(z \notin \{1 + p, 1 - p\} \). Then
1. \(R(z) \in \rho(\Delta^+_p) = \rho(\Delta_p) \) if and only if \(z \in \rho(\Delta_p) \).
2. \(R(z) \) is an eigenvalue of \(\Delta^+_p \) if and only if \(z \) is an eigenvalue of \(\Delta_p \). Furthermore, there is an injection from the eigenspace of \(\Delta^+_p \) with eigenvalue \(R(z) \) to the eigenspace of \(\Delta_p \) with eigenvalue \(z \), given by \(u^+ \mapsto u, u(x) = u^+(3x) \).

Actually we can say more. Due to the self-similarity of the Laplacian \(\Delta_p, \Delta^+_p \) has the same spectrum as \(\Delta_p \), and in fact they are isomorphic as bounded symmetrizable operators. This observation combined with Proposition 7 leads to

Corollary 8 (Spectral self-similarity of \(\Delta_p \)). Suppose \(z \notin \{1 + p, 1 - p\} \). Then
1. \(R(z) \in \rho(\Delta_p) \) if and only if \(z \in \rho(\Delta_p) \).
2. \(R(z) \) is an eigenvalue of \(\Delta_p \) if and only if \(z \) is an eigenvalue of \(\Delta_p \).

It remains to resolve the status of the exceptional points.

Proposition 9. \(1 \pm p \in \sigma(\Delta_p) \).
Proof. The operator $\Delta_p - z$ has the block structure

$$\Delta_p - z = \begin{pmatrix} I_0 - z & X \bar{X} \\ X & Q - z \end{pmatrix}$$

(3.5)

with respect to the representation $\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1$. It is direct to verify that $\Delta_p - z$ is invertible if and only if both $Q - z$ and the Schur complement $(I_0 - z - \bar{X}(Q - z)^{-1}X$ are invertible. Since $1 \pm p \in \sigma(Q)$ by the computation prior to Proposition 7, we conclude that $1 \pm p \in \sigma(\Delta_p)$. □

Remark. Figure 2 shows the graph of R. From the point of view of dynamics on the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$, the polynomial R has four fixed points, 0, 1, 2, and ∞. The first three are repulsive, since $|R'(0)| = |R'(2)| = \frac{2+pq}{pq} > 1$ and $|R'(1)| = \left|1 - \frac{1}{pq}\right| \geq 3$, while ∞ is superattracting. The spectral decimation function R in (3.4) depend on $pq = p(1-p)$ and is symmetric in p and q. So according to Corollary 8, the spectrum of Δ_{1-p}, as a compact subset of \mathbb{R}, is equal to the spectrum of Δ_p. However, the eigenfunctions of Δ_{1-p} do not coincide with the eigenfunctions of Δ_p; see [66] for details. If we assume for a moment that $p \in (0, \frac{1}{2}]$, then the preimage of $[0, 2]$ under R is

$$[0, p] \cup [q, 1 + p] \cup [1 + q, 2].$$

If $p \in (\frac{1}{2}, 1]$, then the preimage of $[0, 2]$ under R is

$$[0, q] \cup [p, 1 + q] \cup [1 + p, 2].$$

In particular, when $p = \frac{1}{2}$, $R(z)$ is the cubic Chebyshev polynomial, and the preimage of $[0, 2]$ under R is the entire interval $[0, 2]$. The graph of $R(z)$ in the case $p = \frac{1}{2}$ is illustrated by the curved dotted line in Figure 2 and the solid curved line sketches the graph of $R(z)$ when $p \neq \frac{1}{2}$.

We now recall some facts from complex dynamics (see e.g. [50, §4]). The Fatou set $\mathcal{F}(g)$ of a nonconstant holomorphic function g on the Riemann sphere $\hat{\mathbb{C}}$ is the domain in which the family of iterates $\{g^{\circ n}\}_n$ converges uniformly on compact subsets. The complement of the Fatou set in $\hat{\mathbb{C}}$ is the Julia set $\mathcal{J}(g)$. Both $\mathcal{F}(g)$ and $\mathcal{J}(g)$ are fully invariant under g: that is, $g^{-1}(\mathcal{F}(g)) = \mathcal{F}(g)$ and $g^{-1}(\mathcal{J}(g)) = \mathcal{J}(g)$. Moreover, $\mathcal{J}(g)$ is a closed subset of $\hat{\mathbb{C}}$.

For the spectral decimation function R in (3.4), we have the following characterization of the Julia set $\mathcal{J}(R)$, which is standard in complex dynamics (see [50]):

Figure 2. The graph of the cubic polynomial $R(z)$ associated with the Laplacian Δ_p.
Proposition 10. The Julia set $\mathcal{J}(R)$ of the cubic polynomial map R in (3.4) is contained in $[0, 2]$. If $p = \frac{1}{2}$, $\mathcal{J}(R) = [0, 2]$. If $p \neq \frac{1}{2}$, $\mathcal{J}(R)$ is a Cantor set of Lebesgue measure zero.

By [50] Lemma 4.6], $\{0, 1, 2\} \subset \mathcal{J}(R)$ because they are repulsive fixed points of R.

Theorem 11. $\sigma(\Delta_p) = \mathcal{J}(R)$.

Proof. We readily verify that $0 \in \sigma(\Delta_p)$ (its corresponding formal eigenfunction is $f_0 \equiv 1$) and $2 \in \sigma(\Delta_p)$ (eigenfunction is $f_2(x) = (-1)^x$, $x \in \mathbb{Z}_+$). Also, $R(1-p) = 2$ and $R(1+p) = 0$. This combined with Proposition 9 allows us to strengthen Corollary 8 to the following statement:

(3.6) For every $z \in \mathbb{C}$, $R(z) \in \rho(\Delta_p)$ if and only if $z \in \rho(\Delta_p)$.

Now we show $\mathcal{J}(R) \subset \sigma(\Delta_p)$. By (3.6), all pre-iterates of 0 under R lie in $\sigma(\Delta_p)$. Since $\sigma(\Delta_p)$ is closed,

(3.7) $\bigcup_{n=0}^{\infty} R^{\circ-n}(0) \subset \sigma(\Delta_p)$.

Meanwhile, $0 \in \mathcal{J}(R)$, and by [50] Corollary 4.13], the set of all pre-iterates of a point in the Julia set is everywhere dense in the Julia set. This implies that

(3.8) $\bigcup_{n=0}^{\infty} R^{\circ-n}(0) = \mathcal{J}(R)$.

It follows from (3.7) and (3.8) that $\mathcal{J}(R) \subset \sigma(\Delta_p)$.

Next we show $\sigma(\Delta_p) \subset \mathcal{J}(R)$. Let $z \in \sigma(\Delta_p)$. By (3.6), $R^{\circ n}(z) \in \sigma(\Delta_p)$ for all $n \in \mathbb{Z}_+$. Since $\sigma(\Delta_p)$ is compact (and hence bounded), and the only attracting fixed point of R is ∞, it follows that z cannot be in the Fatou set (which contains the basin of attraction of ∞, and is thus unbounded in \mathbb{C}). So $z \in \mathcal{J}(R)$.

Remark. It is instructive to compare the proof above with the proof of [47] Theorem 5.8, which relates the spectrum of the Laplacian on a symmetric self-similar graph to the Julia set of the corresponding spectral decimation function. We summarize the main differences between the two proofs.

In the proof above, we first took advantage of the condition $R(\mathcal{E}) \subset \sigma(\Delta_p)$, and deduced the full invariance of $\sigma(\Delta_p)$ under R. To prove $\mathcal{J}(R) \subset \sigma(\Delta_p)$, we identified a point in $\mathcal{J}(R) \cap \sigma(\Delta_p)$, and used the full invariance. To prove $\sigma(\Delta_p) \subset \mathcal{J}(R)$, we used the full invariance, and the fact that ∞ is the only attracting fixed point of R.

In the proof of [47] Theorem 5.8, the setting was more general, and in particular, it does not always hold that the spectrum $\sigma(\Delta)$ is fully invariant under the corresponding spectral decimation function R_Δ. To prove $\mathcal{J}(R_\Delta) \subset \sigma(\Delta)$, the authors used the fact that $0 \in \mathcal{J}(R_\Delta) \cap \sigma(\Delta)$, as well as the fact that 0 is not an isolated eigenvalue of Δ. The proof of the other inclusion, $\sigma(\Delta) \subset \mathcal{J}(R_\Delta) \cup \mathcal{D}_\infty$ (where \mathcal{D}_∞ is defined therein), follows from a standard argument in complex dynamics.

3.3. The main proof. We now have all the ingredients to prove Theorem 11.

Proof of Theorem 11 for Δ_p on $\ell^2(\mathbb{Z}_+)$. First of all, Proposition 10 and Theorem 11 together imply that when $p \neq \frac{1}{2}$, Δ_p has no absolutely continuous spectrum. So we turn to the point spectrum of Δ_p. Theorem 11 says that it suffices to consider points in $\mathcal{J}(R)$.
Let us assume that a formal eigenfunction f_z of Δ_p with eigenvalue z exists, that is, $\Delta_p f_z = z f_z$. We see that

$$ (3.9) \quad f_z(1) = (1 - z) f_z(0), $$

by solving the eigenvalue equation at the origin; and if $f_z(0) = 0$, then $f_z \equiv 0$, by solving the eigenvalue equation iteratively along \mathbb{Z}_+. So it is enough to consider the case $f_z(0) \neq 0$. Upon dividing f_z by $f_z(0)$, we may set $f_z(0) = 1$ without loss of generality. Let us first establish that none of the fixed points $\{0, 1, 2\}$ of R is an eigenvalue of Δ_p. By iterating the eigenvalue equation along \mathbb{Z}_+, it is easy to verify that

$$ f_0 \equiv 1; \quad |f_1(4x)| = \left(\frac{q}{p} \right)^2 \text{ for all } x \in \mathbb{Z}_+ \setminus \{0\}; \text{ and } f_2(x) = (-1)^x \text{ for all } x \in \mathbb{Z}_+. $$

Therefore $f_z \notin \ell^2(\mathbb{Z}_+)$ for $z \in \{0, 1, 2\}$, so none of the fixed points is an eigenvalue of Δ_p. By Corollary we any preimage of any fixed point under R cannot be an eigenvalue, either.

Next, if we take $z \in \mathcal{J}(R)$ which is not a preimage of a fixed point of R, then by the definition and the basic properties of the Julia set, the sequence of iterates $\{R^n(z)\}_n$ does not have a limit. From the eigenfunction statement in Proposition and (3.9), $f_z(3^n) = 1 - R^n(z)$. Hence $\sum_{n=0}^{\infty} |f_z(3^n)|^2$ is divergent, which means that $f_z \notin \ell^2(\mathbb{Z}_+)$. This proves that Δ_p has no point spectrum.

We conclude that $\sigma(\Delta_p)$ has purely singularly continuous spectrum. The rest of Theorem follows from Proposition and Theorem.

Proof of Theorem for Δ_p on $L^2(\mathbb{Z}_+, \pi)$. All the preceding arguments still hold, except that we need to check that none of the formal eigenfunctions is in $L^2(\mathbb{Z}_+, \pi)$. By the self-similarity of the invariant measure π, it is direct to verify that $\pi(3^n)$ are identical for all $n \in \mathbb{Z}_+$. Upon replacing $\sum_{n=0}^{\infty} |f_z(3^n)|^2$ in the previous proof by $\sum_{n=0}^{\infty} |f_z(3^n)|^2 \pi(3^n)$, we see that the lack of square summability of eigenfunctions in $\ell^2(\mathbb{Z}_+)$ also holds true in $L^2(\mathbb{Z}_+, \pi)$.

Remark. As a consequence of the proof, neither of the exceptional points $1 \pm p$ is an eigenvalue of Δ_p. This distinguishes the pq-model on \mathbb{Z}_+ from most of the other models which admit spectral decimation (see), such as the infinite Sierpinski gasket , where there are exceptional points which are eigenvalues of the corresponding Laplacian.

Appendix A. Proof of Proposition

Let us divide \mathbb{Z}_+ into two disjoint subspaces $3\mathbb{Z}_+$ and $\mathbb{Z}_+ \setminus 3\mathbb{Z}_+$. Then for $z \in \mathbb{C}$, the operator $\Delta_p - z$ acting on functions on \mathbb{Z}_+ can be represented in block matrix form

$$ (A.1) \quad \Delta_p - z = \begin{pmatrix} I_0 - z & \bar{X} \\ X & Q - z \end{pmatrix}, $$

where

$$ I_0 - z : \text{functions on } 3\mathbb{Z}_+ \rightarrow \text{functions on } 3\mathbb{Z}_+, $$

$$ \bar{X} : \text{functions on } \mathbb{Z}_+ \setminus 3\mathbb{Z}_+ \rightarrow \text{functions on } 3\mathbb{Z}_+, $$

$$ X : \text{functions on } 3\mathbb{Z}_+ \rightarrow \text{functions on } \mathbb{Z}_+ \setminus 3\mathbb{Z}_+, $$

$$ Q - z : \text{functions on } \mathbb{Z}_+ \setminus 3\mathbb{Z}_+ \rightarrow \text{functions on } \mathbb{Z}_+ \setminus 3\mathbb{Z}_+. $$
The Schur complement \(S(z) \) of \(\Delta_p - z \) with respect to the block corresponding to functions on \(\mathbb{Z}_+ \setminus 3\mathbb{Z}_+ \) is then given by
\[
(A.2) \quad S(z) = (I_0 - z) - \bar{X}(Q-z)^{-1}X,
\]
We claim that this equals \(\varphi_0(z)(\Delta_p^+ - R(z)) \) as an operator acting on functions on \(3\mathbb{Z}_+ \). More formally, we consider the matrices of operators with respect to the natural basis of delta functions on \(\mathbb{Z}_+ \).

To compute \(S(z) \), let us observe that \(I_0 - z \) is a diagonal matrix with all diagonal elements equal to \(1 - z \); \(\bar{X} \) has nonzero matrix elements \(\bar{X}(0,1) = -1, \bar{X}(3x, 3x-1) = -q \) (resp. \(-p\)) and \(\bar{X}(3x, 3x+1) = -p \) (resp. \(-q\)) if \(3^{-m(3x)}(3x) \equiv 1 \) (mod 3) (resp. if \(3^{-m(3x)}(3x) \equiv 2 \) (mod 3)); \(X \) has nonzero matrix elements \(X(3x, 3x \pm 1) = -q \) for all \(x \in \mathbb{Z}_+ \); and \(Q - z \) is a block diagonal matrix consisting of \(2 \times 2 \) blocks
\[
\begin{pmatrix}
(Q - z)(3x + 1, 3x + 1) & (Q - z)(3x + 1, 3x + 2) \\
(Q - z)(3x + 2, 3x + 1) & (Q - z)(3x + 2, 3x + 2)
\end{pmatrix} = \begin{pmatrix}
1 - z & -p \\
-p & 1 - z
\end{pmatrix}, \quad x \in \mathbb{Z}_+.
\]
Since \(Q - z \) is block diagonal, it is easy to see that it has an inverse \((Q - z)^{-1}\) whenever \(z \notin \{1 - p, 1 + p\} \). \((Q - z)^{-1}\) is a block diagonal matrix consisting of \(2 \times 2 \) blocks
\[
\begin{pmatrix}
(Q - z)^{-1}(3x + 1, 3x + 1) & (Q - z)^{-1}(3x + 1, 3x + 2) \\
(Q - z)^{-1}(3x + 2, 3x + 1) & (Q - z)^{-1}(3x + 2, 3x + 2)
\end{pmatrix} = \frac{1}{(1 - z)^2 - p^2} \begin{pmatrix}
1 - z & p \\
p & 1 - z
\end{pmatrix}.
\]
After some algebra, we verify that \(\bar{X}(Q - z)^{-1}X \) has all diagonal elements equal to \(\frac{q(1-z)}{(1-z)^2 - p^2} \), and off-diagonal elements
\[
(\bar{X}(Q - z)^{-1}X)(3x, 3y) = -\frac{pq}{(1 - z)^2 - p^2} \Delta_p(x, y), \quad x, y \in \mathbb{Z}_+, \quad x \neq y.
\]
Therefore \((I_0 - z) - \bar{X}(Q - z)^{-1}X\) has all diagonal elements equal to \(\varphi_0(z)[1 - R(z)] \), and off-diagonal elements \(\varphi_0(z)\Delta_p^+(x, y) \) in the \((3x, 3y)\)-entry. This proves the claim. Since \(\Delta_p - z \) is invertible if and only if both \(Q - z \) and the Schur complement \((I_0 - z) - \bar{X}(Q - z)^{-1}X\) are invertible, the claim implies Proposition 5.

References

[1] E. Akkermans, Statistical mechanics and quantum fields on fractals, Fractal geometry and dynamical systems in pure and applied mathematics. II. Fractals in applied mathematics, Contemp. Math., vol. 601, Amer. Math. Soc., Providence, RI, 2013, pp. 1–21, DOI 10.1090/conm/601/11962, (to appear in print). MR3203824

[2] E. Akkermans, G. Dunne, and A. Teplyaev, Thermodynamics of photons on fractals, Physical review letters 105 (2010), no. 23, 230407.

[3] E. Akkermans and E. Gurevich, Spontaneous emission from a fractal vacuum, EPL (Europhysics Letters) 103 (2013), no. 3, 30009.

[4] S. Alexander and R. Orbach, Density of states on fractals: fractons, Journal de Physique Lettres 43 (1982), no. 17, 625–631.

[5] J. Ambjorn, J. Jurkiewicz, and R. Loll, Reconstructing the universe, Physical Review D 72 (2005), no. 6, 064014.

[6] U. Andrews, G. Bonik, J. P. Chen, R. W. Martin, and A. Teplyaev, Wave equation on one-dimensional fractals with spectral decimation and the complex dynamics of polynomials, arXiv e-prints (2015), available at [1505.05855].

[7] A. Avila and D. Damanik, Generic singular spectrum for ergodic Schrödinger operators, Duke Math. J. 130 (2005), no. 2, 393–400, DOI 10.1215/S0012-7094-05-13035-6. MR2181094 (2006k:82083)
Laplace operators on fractals and related functional equations

[27] G. Derfel, P. J. Grabner, and F. Vogl,

[26] D. Damanik, J. Fillman, and A. Gorodetski,

[31] E. Fan, Z. Khandker, and R. S. Strichartz,

Harmonic oscillators on infinite Sierpinski gaskets

[28] G. V. Dunne,

[29] R. Durrett,

Essentials of stochastic processes

Dynamics of unitary operators

[25] D. Damanik, J. Fillman, and R. Vance,

[24] D. Damanik, M. Lukic, and W. Yessen,

Quantum dynamics of periodic and limit-periodic Jacobi and block

[23] D. Damanik, A. Gorodetski, Q.-H. Liu, and Y.-H. Qu,

Transport exponents of Sturmian Hamiltonians

Absolutely continuous convolutions of singular measures

[22] D. Damanik, A. Gorodetski, and B. Solomyak,

The fractal dimension of the spectrum

Function weighted measures and orthogonal polynomials on

[13] J. Bellissard, B. Iochum, E. Scoppola, and D. Testard,

Spectral properties of one-dimensional quasi-crystals

Spectral properties of quasi-crystals

[12] J. Bellissard,

Renormalization group analysis and quasicrystals

[6] N. Bajorin, T. Chen, A. Dagan, C. Emmons, M. Hussein, M. Khalil, P. Mody, B. Steinhurst, and A. Teplyaev

Vibration spectra of finitely ramified, symmetric fractals

Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. I. Absence of eigenvalues

Transport exponents of Sturmian Hamiltonians

Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian

One-dimensional wave equations defined by fractal Laplacians

Journal d'Analyse Mathematique

Condensed Julia sets, with an application to a fractal lattice model Hamiltonian

Mellin transforms associated with Julia sets and physical applications

One-dimensional wave equations defined by fractal Laplacians

One-dimensional wave equations defined by fractal Laplacians

Function weighted measures and orthogonal polynomials on

Function weighted measures and orthogonal polynomials on

Absolutely continuous convolutions of singular measures

Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian

Quantum dynamics of periodic and limit-periodic Jacobi and block

Quantum dynamics of periodic and limit-periodic Jacobi and block

Quantum dynamics of periodic and limit-periodic Jacobi and block

Transport exponents of Sturmian Hamiltonians

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent

Uniform spectral properties of one-dimensional quasicrystals. II. The Lyapunov exponent
[32] D. Fontaine, T. Smith, and A. Teplyaev, *Resistance of random Sierpiński gaskets*, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 121–136, DOI 10.1090/conm/415/07864, (to appear in print). MR2277612

[33] M. Fukushima and T. Shima, *On a spectral analysis for the Sierpiński gasket*, Potential Anal. 1 (1992), no. 1, 1–35, DOI 10.1007/BF00249784. MR1245223 (95b:31009)

[34] J. Ghez, Y. Y. Wang, R Rammal, B Panнетier, and J Bellissard, *Band spectrum for an electron on a Sierpinski gasket in a magnetic field*, Solid state communications 64 (1987), no. 10, 1291–1294.

[35] R. Grigorchuk, D. Lenz, and T. Nagnibeda, *Spectra of Schreier graphs of Grigorchuk’s group and Schroedinger operators with aperiodic order* (2016), available at 1412.6822.

[36] [to appear in print]. MR2277612

[37] K. E. Hare, B. A. Steinhurst, A. Teplyaev, and D. Zhou, *Disconnected Julia sets and gaps in the spectrum of Laplacians on symmetric finitely ramified fractals*, Math. Res. Lett. 19 (2012), no. 3, 537–553, DOI 10.4310/MRL.2012.v19.n3.a3. MR2998138

[38] [to appear in print]. MR2277612

[39] [to appear in print]. MR2277612

[40] [to appear in print]. MR2277612

[41] M. Ionescu and L. G. Rogers, *Complex powers of the Laplacian on affine nested fractals as Calderón-Zygmund operators*, Commun. Pure Appl. Anal. 13 (2014), no. 6, 2155–2175, DOI 10.4310/CPAA.2014.13.2155. MR3248383

[42] M. Ionescu, L. G. Rogers, and R. S. Strichartz, *Pseudo-differential operators on fractals and other metric measure spaces*, Rev. Mat. Iberoam. 29 (2013), no. 4, 1159–1190, DOI 10.4171/RMI/752. MR3148599

[43] M. Ionescu, E. P. J. Pearse, L. G. Rogers, H.-J. Ruan, and R. S. Strichartz, *The resolvent kernel for PCF self-similar fractals*, Trans. Amer. Math. Soc. 362 (2010), no. 8, 4451–4479, DOI 10.1090/S0002-9947-10-05098-1. MR2608413

[44] J. Kigami and M. L. Lapidus, *Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals*, Comm. Math. Phys. 158 (1993), no. 1, 93–125. MR1243717

[45] M. L. Lapidus and M. van Frankenhuijsen, *Fractal geometry, complex dimensions and zeta functions*, 2nd ed., Springer Monographs in Mathematics, Springer, New York, 2013. Geometry and spectra of fractal strings. MR2977849

[46] E. Levy, A. Barak, A. Fisher, and E. Akkermans, *Topological properties of Fibonacci quasicrystals: A scattering analysis of Cherno numbers*, arXiv:1509.04028 (2015).

[47] M. Malozemov and A. Teplyaev, *Self-similarity, operators and dynamics*, Math. Phys. Anal. Geom. 6 (2003), no. 3, 201–218, DOI 10.1023/A:1024931603110. MR1997913 (2004d:47012)

[48] M. Mei, *Spectra of discrete Schrödinger operators with primitive invertible substitution potentials*, J. Math. Phys. 55 (2014), no. 8, 082701, 22, DOI 10.1063/1.4886535. MR3390728

[49] R. Meyers, R. S. Strichartz, and A. Teplyaev, *Dirichlet forms on the Sierpiński gasket*, Pacific J. Math. 217 (2004), no. 1, 149–174, DOI 10.2140/pjm.2004.217.149. MR2105771

[50] J. Milnor, *Dynamics in one complex variable*, 3rd ed., Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, NJ, 2006. MR2193309 (2006g:37070)

[51] K. A. Okoudjou, L. Saloff-Coste, and A. Teplyaev, *Weak uncertainty principle for fractals, graphs and metric measure spaces*, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3857–3873, DOI 10.1090/S0002-9947-08-04472-3. MR2386249

[52] J.-F. Quint, *Harmonic analysis on the Pascal graph*, J. Funct. Anal. 256 (2009), no. 10, 3409–3460, DOI 10.1016/j.jfa.2009.01.011. MR2504530

[53] R. Rammal and G. Toulouse, *Random walks on fractal structures and percolation clusters*, Journal de Physique Letters 44 (1983), no. 1, 13–22, DOI 10.1051/jphyslet:0198300440101300.
[54] M. Reuter and F. Saueressig, *Fractal space-times under the microscope: a renormalization group view on Monte Carlo data*, Journal of High Energy Physics 2011 (2011), no. 12, 1–27.

[55] L. G. Rogers, *Estimates for the resolvent kernel of the Laplacian on p.c.f. self-similar fractals and blowups*, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1633–1685, DOI 10.1090/S0002-9947-2011-05551-0. MR2869187

[56] L. G. Rogers and R. S. Strichartz, *Distribution theory on P.C.F. fractals*, J. Anal. Math. 112 (2010), 137–191, DOI 10.1007/s11854-010-0027-y. MR2762999

[57] T. Shima, *On eigenvalue problems for the random walks on the Sierpiński pre-gaskets*, Japan J. Indust. Appl. Math. 8 (1991), no. 1, 127–141, DOI 10.1007/BF03167188. MR1093832 (92g:60094)

[58] ———, *On eigenvalue problems for Laplacians on p.c.f. self-similar sets*, Japan J. Indust. Appl. Math. 13 (1996), no. 1, 1–23, DOI 10.1007/BF03167295. MR1377456 (97f:28028)

[59] B. Simon, *Singular spectrum: recent results and open questions*, XIth International Congress of Mathematical Physics (Paris, 1994), Int. Press, Cambridge, MA, 1995, pp. 507–512. MR1370708 (96k:81038)

[60] R. S. Strichartz, *Function spaces on fractals*, J. Funct. Anal. 198 (2003), no. 1, 43–83, DOI 10.1016/S0022-1236(02)00035-6. MR1962353

[61] ———, *Laplacians on fractals with spectral gaps have nicer Fourier series*, Math. Res. Lett. 12 (2005), no. 2-3, 269–274, DOI 10.4310/MRL.2005.v12.n2.a12. MR2150883 (2006e:28013)

[62] ———, *A fractal quantum mechanical model with Coulomb potential*, Commun. Pure Appl. Anal. 8 (2009), no. 2, 743–755, DOI 10.3934/cpaa.2009.8.743. MR2461574 (2010c:81086)

[63] R. S. Strichartz and A. Teplyaev, *Spectral analysis on infinite Sierpiński fractafoolds*, J. Anal. Math. 116 (2012), 255–297, DOI 10.1007/s11854-012-0007-5. MR2892621

[64] D. Tanese, E. Gurevich, F. Baboux, T. Jacqmin, A. Lemaître, E. Galopin, I. Sagnes, A. Amo, J. Bloch, and E. Akkermans, *Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential*, Physical review letters 112 (2014), no. 14, 146404.

[65] A. Teplyaev, *Spectral analysis on infinite Sierpiński gaskets*, J. Funct. Anal. 159 (1998), no. 2, 537–567, DOI 10.1006/jfan.1998.3297. MR1658094 (99j:35153)

[66] ———, *Spectral zeta functions of fractals and the complex dynamics of polynomials*, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4339–4358 (electronic), DOI 10.1090/S0002-9947-07-04150-5. MR2309188 (2008j:11119)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CT 06269, USA

E-mail address: joe.p.chen@uconn.edu

URL: http://homepages.uconn.edu/jpchen

E-mail address: teplyaev@math.uconn.edu

URL: http://homepages.uconn.edu/teplyaev/