Original article

β-Galactoside-mediated tissue organization during islet reconstitution

Sae Kamitori, Yasuhiro Ozeki, Nobuhiko Kojima*

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan

A R T I C L E I N F O

Article history:
Received 30 November 2015
Received in revised form
5 January 2016
Accepted 20 January 2016

Keywords:
Sugar chain
β-Galactoside
Lectin
Islet reconstitution
Islet-like structure

A B S T R A C T

We have previously reported that multi-cellular heteroaggregates comprising murine pancreatic α (zTC1.6) and β (MIN6-m9) cell lines spontaneously acquired islet-like architecture and displayed higher insulin secretion rates. However, the mechanisms of self-organization remain unclear. The objective of this study is to examine the possibility that a sugar chain participates in the mutual recognition of the cells during reconstitution of the islet-like structure in vitro. Using a lectin-binding assay, we identified Erythrina cristagalli agglutinin (ECA), which particularly recognizes the β-galactoside structure on the surfaces of MIN6-m9 cells. The self-organization of zTC1.6 and MIN6-m9 was obstructed using ECA-bound MIN6-m9 cells. Lactose neutralized the ECA’s inhibitory effect on the autonomous rearrangement of zTC1.6 and MIN6-m9 cells, indicating that the inhibition of cell arrangement by ECA was mediated via β-galactoside. We concluded that a β-galactoside sugar chain was central to the reconstitution of the pancreatic islet-like architecture in vitro.

© 2016, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the pancreas, the islets of Langerhans play a pivotal role in glycemic homeostasis. Type 1 diabetes mellitus is a disease associated with hyperglycemia, which develops through the loss of insulin-producing β cells from the islets. Effective treatments of the disorder include pancreas transplantation and islet transplantation [1–5]. However, a rate-limiting factor is the donor shortage. Insulin-secreting cells derived from stem/progenitor cells have also been suggested as alternative resources of islets [6]. However, for the precise tuning of normal β cell function [7], it is essential to understand the mechanisms of mutual interactions between β and other islet cells such as α cells.

In previous studies, we reported a rapid aggregation system using a 3% methylcellulose medium to form islet-like tissues comprising both a murine α cell line (zTC1.6) and a murine β cell line (MIN6-m9) [8]. These aggregated tissues rebuild a specific architecture, which resembles the mouse pancreatic islet by self-organization of cells. Interestingly, insulin secretion ability was upregulated about three-fold when α cells and β cells were mixed at the ratio of 1:8, suggesting that cell-to-cell association in specific tissue structures affects cellular functions. It is obvious that cell surface molecules engaged in the association.

Sugar chains can be particularly recognized by lectins, and these are one of the most important factors for morphogenesis in a number of species [9–15]. However, the role of the sugar-chain in islet development or regeneration remains unclear. In this study, we attempted to identify a specific sugar chain that is involved in tissue self-organization and to reveal the effect of the islet-like structure on insulin secretion activity.

2. Materials and methods

2.1. Cell culture

The mouse pancreatic α cell line zTC1.6 was obtained from the American Type Culture Collection. The mouse pancreatic β cell line MIN6-m9 was a gift from Prof Seino [16]. The cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; 041-29775, Wako, Osaka, Japan) supplemented with 10% fetal bovine serum (Cellgro, 35-010-CV, CORNING, Corning, NY, USA), 100 U/mL penicillin, and
100 μg/ml streptomycin (168-23191, Wako). Cells were maintained at a subconfluent density, allowing recovery every 2 or 3 days. zTC1.6 and MIN6-m9 cells were stained with fluorescent cell membrane markers, PKH26 or PKH67 (Sigma–Aldrich, St. Louis, MO, USA), as required.

2.3. Self-organization of islet-like tissues

We employed a rapid cell aggregation system using a 3% methylcellulose (MC; M0512, Sigma) that was used to detect sugar chains, concanavalin A (ConA) for α-D-mannosyl and α-D-glucosyl groups; Lens culinaris agglutinin (LCA) for α-D-mannosyl group; wheat germ agglutinin (WGA) for N-acetyl-D-glucosamine and sialic acid residues; Maackia amurensis agglutinin (MAA) and Sambucus sieboldiana agglutinin (SSA) for sialic acid residues; Ulex europaeus agglutinin (UEA) for α-D-fucosyl residues; and Ricinus communis agglutinin (RCA) and Erythrina cristagalli agglutinin (ECA) for β-D-galactoside. We incubated MIN6-m9 cells in DMEM with 10 μg/ml of lactose (Kanto Industry, Tokyo, Japan) was added to the MC medium, and the cells were observed using fluorescent microscopy (LAS AF with DM16000B, Leica microsystems, Wetzlar, Germany) and the intensities of the FITC were evaluated as no (−), weak (+), or strong (++). Lectin toxicity was evaluated in two ways. One was whether the lectin treated cells formed aggregates or not. The lectin treated cells were centrifuged, resuspended with culture medium and put on a culture dish. The other was whether the lectin treated cells adhered to a culture dish and grow or not. The lectin treated cells were plated and the loss of adhesion was evaluated as toxicity at 24 h later. The cell growth was also observed.

2.2. Evaluation of lectin-binding ability and lectin toxicity

Fluorescein isothiocyanate (FITC)-conjugated plant lectin library (INCJ106, J-OIL MILLS, Osaka, Japan) was diluted with DMEM and used to detect sugar chains, concanavalin A (ConA) for α-D-mannosyl and α-D-glucosyl groups; Lens culinaris agglutinin (LCA) for α-D-mannosyl group; wheat germ agglutinin (WGA) for N-acetyl-D-glucosamine and sialic acid residues; Maackia amurensis agglutinin (MAA) and Sambucus sieboldiana agglutinin (SSA) for sialic acid residues; Ulex europaeus agglutinin (UEA) for α-D-fucosyl residues; and Ricinus communis agglutinin (RCA) and Erythrina cristagalli agglutinin (ECA) for β-D-galactoside. We incubated MIN6-m9 cells in DMEM with 10 μg/ml of a lectin at room temperature for 10 min. The cells were observed using fluorescent microscopy (LAS AF with DM16000B, Leica microsystems, Wetzlar, Germany) and the intensities of the FITC were evaluated as no (−), weak (+), or strong (++). Lectin toxicity was evaluated in two ways. One was whether the lectin treated cells formed aggregates or not. The lectin treated cells were centrifuged, resuspended with culture medium and put on a culture dish. If there were many aggregated cells instead of intact MIN6-m9 cells, it is easy to predict that surface molecules of both cells play an important role in tissue self-organization. We identified that β-galactoside is one such sugar chain, and we also found that the neutralization of β-galactoside by ECA was sufficient to inhibit self-organization. These results are conjugated with FITC. Several lectins bound to the cell surfaces (Table 1). WGA bound both zTC1.6 and MIN6-m9 cells. There was no lectin it was able to bind only zTC1.6 cells, whereas both RCA and ECA lectins strongly bound to only MIN6-m9 cells. This fact suggested that β-galactoside was particularly expressed on the surfaces of MIN6-m9 cells.

3.2. Verification of the lectin concentration for toxicity avoidance

To understand the role of β-galactoside in the self-organization of islet-like tissues, we tried to use RCA- or ECA-binding ability to neutralize the function of the molecule harboring β-galactoside. It is known that lectin binding is often a cause of cell toxicity as well as unexpected cell aggregation. Therefore, we carefully checked the concentration of lectin during the binding step of MIN6-m9 cells (Table 2). When the RCA lectin was used at a concentration of 1.0 μg/ml, cells were aggregated and cell adhesion to the dish was prevented. Unexpected cell aggregation was disappeared at the concentration of 0.1 μg/ml, but the prevention of cell adhesion was maintained even when RCA lectin was diluted to 0.001 μg/ml. In contrast, ECA lectin did not block cell adhesion at 10 μg/ml, and cell growth was normal. We decided to use 10 μg/ml ECA lectin to mask the β-galactoside on the surfaces of MIN6-m9 cells (ECA-treated MIN6-m9) in subsequent experiments.

3.3. Inhibition of islet-like structures by lectin binding

As we reported previously, zTC1.6 and MIN6-m9 cells autonomously migrate and form an islet-like structure when they are aggregated and cultured for 2 days in the MC medium [8]. To confirm whether β-galactoside is involved in the autonomous pattern formation, ECA-treated MIN6-m9 cells were utilized instead of intact MIN6-m9 cells. Fig. 1 shows that the autonomous remodeling was not observed when MIN6-m9 cells were coupled with ECA lectin, whereas remodeling did occur when intact MIN6-m9 cells were used. The use of the lectin was aborted when lectin binding was performed with lactose-absorbed ECA because lactose has a β-galactoside structure. This confirmed that the effect of lectin was particularly mediated by the β-galactoside structure of the sugar chain.

4. Discussion

The self-organization of tissue aggregates comprising α and β cells (and also other types of islet component cells) is a well-known phenomenon [18,19]. We found that the same type of event occurred when we composed a heteroaggregate of zTC1.6 and MIN6-m9 [8]. It is easy to predict that surface molecules of both zTC1.6 and MIN6-m9 should be involved in the mechanism. In this study, we hypothesized that some sugar chains that are bound to cell surface molecules play an important role in tissue self-organization. We identified that β-galactoside is one such sugar chain, and we also found that the neutralization of β-galactoside by ECA was sufficient to inhibit self-organization. These results are

Table 1

	ConA	LCA	WGA	MAA	SSA	UEA	RCA	ECA
zTC1.6	−	−	++	−	−	−	−	−
MIN6	−	++	++	−	−	−	++	++

zTC1.6 and MIN6-m9 cells were incubated in a medium with FITC-labeled lectin and the binding property was evaluated as no binding (−), weak binding (+), or strong binding (++).
valuable in understanding the tissue engineering aspects of islet architecture.

Sugar chains are very prevalent on the surfaces of cells because they are conjugated to various cell surface proteins and lipids, and they can regulate the association of cell surface molecules [20]. There are cell types displaying different sets of sugar chain even in the same organ. For example, in the developing kidney, metanephric mesenchyme cells and ureteric bud cells display specific sugar chains, and therefore, we can discriminate these two parts using the lectins, peanut agglutinin and Dolichos biflorus agglutinin, respectively [21,22]. In our system, β-galactoside was detected only on the surfaces of MIN6-m9 cells; however, it was not clear whether β-galactoside bound to a single type of molecule or various types of molecules. We have not yet confirmed the existence of β-galactoside on the β cells in mouse or human islets in the pancreas. Although the expression of β-galactoside in vivo might be different from that of in vitro, the sugar chain approach can be useful to identify and isolate islet component cells, including the β cell.

ECA and RCA lectins were used to detect β-galactoside structure. In this study, we tried to use these lectins as a method of neutralization of the sugar chain-binding molecule. Unfortunately, RCA has strong toxicity in this study; MIN6-m9 covered with this lectin failed to adhere to the culture dish even at a very low concentration. In contrast, ECA was easy to use because of its low toxicity. This is an appropriate example to use because the plant lectin can neutralize cellular alignment without notable toxicity. Considering that plant lectins are relatively cheap compared with antibodies, their usage is an appropriate example to use because the plant lectin can neutralize cellular alignment without notable toxicity. Considering that plant lectins are relatively cheap compared with antibodies, their usage might result in reduced costs for research and development as well as medical expenses.

In previous study, we found heteroaggregates of αTC1.6 and MIN6-m9 cells showed self-organization and formed islet-like structures [5]. ECA-binding to MIN6-m9 cells inhibited the self-organization. In addition, the adsorption of ECA by an excessive amount of lactose neutralized the inhibition. These results clearly show that an autonomous migration of αTC1.6 and MIN6-m9 cells was mediated by the β-galactoside structure on MIN6-m9 cell surfaces. Using the ECA-binding activity, we might identify the molecule that is displaying β-galactoside on the cell surfaces and plays an important role in the interaction between αTC1.6 and MIN6-m9 cells. This method is limited because it is an artificial system using cell lines. However, similar mechanisms may exist in intact islets, which help to maintain its architecture as well as morphogenesis potential in pancreatic development. The molecules related with the mechanisms may be potential therapeutic targets in pancreatic disorders, because dysfunction of the molecules leads the loss or abnormality of the islet architecture.

5. Conclusion

MIN6-m9 cells expressed cell surface molecules conjugating with a β-galactoside structure. The acquisition of islet-like architecture in the heteroaggregates comprising αTC1.6 and MIN6-m9 cells is controlled through a β-galactoside sugar chain. Such type of sugar chain is a potential therapeutic target in pancreatic disorders.

Conflict of interest

The authors have no conflict of interest to declare.

Acknowledgments

This work was partly supported by Grant-in-Aid for Scientific Research on Innovative Areas “Bio Assembler” Grant number 26106722 from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The work was also supported by Grant-in-Aid for Scientific Research (C) Grant number 26390038 from the Japan Society for the Promotion of Science, Grant-in-Aid from the Inamori Foundation, and Grant-in-Aid from the Yokohama Academy Foundation Grant number 450.

References

[1] Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000;343: 230–8.
[2] Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes 2001;50:710–9.
[3] Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol 2004;4:259–68.
4 Ludwig B, Ludwig S, Steffen A, Sæger HD, Bornstein SR. Islet versus pancreas transplantation in type 1 diabetes: competitive or complementary? Curr Diabetes Rep 2010;10:506–11.
5 Vardanyan M, Parkin E, Gruessner C, Rodriguez Riolo HL. Pancreas vs. islet transplantation: a call on the future. Curr Diabetes Rep 2010;15:124–30.
6 Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell 2014;159:428–39.
7 Rodríguez-Diaz R, Dando R, Jacques-Silva MC, Fachado A, Molina J, Abdulreda MH, et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med 2011;17:888–92.
8 Kojima N, Takeuchi S, Sakai Y. Engineering of pseudoislets: effect on insulin secretion activity by cell number, cell population, and microchannel networks. Transpl Proc 2014;46:1161–5.
9 Welply JK, Lau JT, Lennarz WJ. Developmental regulation of glycosyltransferases involved in synthesis of N-linked glycoproteins in sea urchin embryos. Dev Biol 1985;107:252–8.
10 Sanders EJ. Embryonic cell invasiveness: an in vitro study of chick gastrulation. J Cell Sci 1991;98:403–7.
11 Zagris N, Panagopoulou M. N-glycosylated proteins interfere with the first cellular migrations in early chick embryo. Int J Dev Biol 1992;36:439–43.
12 Kingsley PD, Hagen KG, Maltby KM, Zara J, Tabak LA. Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology 2000;10:1317–23.
13 Billington Jr CJ, Fiebig JE, Forrsmann CL, Pham L, Burbach N, Sun M, et al. Glycosylation of twisted gastrulation is required for BMP binding and activity during craniofacial development. Front Physiol 2011;2:59.
14 Zhang Y, Kong D, Reichl L, Vogt N, Wolf F, Grosshans J. The glucosyltransferase Xiantuan of the endoplasmic reticulum specifically affects E-cadherin expression and is required for gastrulation movements in Drosophila. Dev Biol 2014;390:208–20.
15 Huntley R, Davydova J, Petryk A, Billington Jr CJ, Jensen ED, Mansky KC, et al. The function of twisted gastrulation in regulating osteoclast differentiation is dependent on BMP binding. J Cell Biochem 2015;116:2239–46.
16 Minami K, Yano H, Miki T, Nagashima K, Wang CZ, Tanaka H, et al. Insulin secretion and differential gene expression in glucose-responsive and -unresponsive MIN6 sublines. Am J Physiol Endocrinol Metab 2000;279:E773–81.
17 Kojima N, Takeuchi S, Sakai Y. Rapid aggregation of heterogeneous cells and multiple-sized microspheres in methylcellulose medium. Biomaterials 2012;33:4508–14.
18 Scharp DW, Downing R, Merrell RC, Greider M. Isolating the elusive islet. Diabetes 1980;29(Suppl. 1):19–30.
19 Britt LD, Stojka PC, Scharp CR, Greider MH, Scharp DW. Neonatal pig pseudoislets. A product of selective aggregation. Diabetes 1981;30:580–3.
20 Boscher C, Dennis JW, Nabi IR. Glycosylation, galectins and cellular signaling. Curr Opin Cell Biol 2011;23:383–92.
21 Laitinen I, Virtanen I, Saxen L. Changes in the glycosylation pattern during embryonic development of mouse kidney as revealed with lectin conjugates. J Histochem Cytochem 1987;35:55–65.
22 Qiao J, Sakurai H, Nigam SK. Branching morphogenesis independent of mesenchymo–epithelial contact in the developing kidney. Proc Natl Acad Sci U S A 1999;96:7330–5.