Genetic causes and neonatal diagnosis of congenital isolated central hypothyroidism

Heinen, C.A.

Citation for published version (APA):
Heinen, C. A. (2018). Genetic causes and neonatal diagnosis of congenital isolated central hypothyroidism.
Appendix

Summary
Nederlandse samenvatting
Author affiliations
List of publications
Portfolio
Dankwoord
About the Author
Summary

Congenital hypothyroidism is the most common cause of preventable mental retardation. While congenital hypothyroidism is usually caused by a developmental disorder of the thyroid gland, it may also be caused by congenital abnormalities of the hypothalamus or pituitary. Congenital central hypothyroidism is now thought to be more prevalent than previously estimated. In this thesis, we aimed to determine the genetic aetiology of this condition in patients with unexplained isolated congenital central hypothyroidism. Furthermore, we performed additional studies on the clinical characteristics of earlier described phenotypes, and to establish reference intervals for thyroid hormone concentrations in the neonatal period to aid in diagnosing congenital central hypothyroidism.

While mutations in three genes are known to cause congenital isolated central hypothyroidism, the majority of patients do not have a genetic diagnosis. We used X-exome sequencing in an affected family and found mutations in a gene called Transducin β-like protein 1, X-linked (TBLIX) (chapter 2). Sanger sequencing yielded mutations in five additional unrelated families. Although this gene lies on the X-chromosome, women may be affected, while men may be unaffected. TBL1X is an essential subunit of the NCoR/SMRT corepressor complex, which associates with several nuclear receptors to mediate histone (de)acetylation. One of these nuclear receptors is the thyroid hormone receptor, that recruits NCoR/SMRT to regulate gene transcription of triiodothyronine (T3) target genes. Most peripheral genes are positively regulated, meaning their transcription increases in the presence of T3. The NCoR/SMRT corepressor complex decreases transcription of these genes in absence of T3. However, important central genes such as TSHB and TRH are negatively regulated, meaning that their transcription is increased in the absence of T3. Although the mechanism is still unknown, the NCoR/SMRT corepressor complex plays a role in the regulation of transcription of these genes in the absence of T3. The phenotype of our patients suggests that a mutation in TBLIX hinders the increase in transcription of TRH and TSHB in absence of T3, thereby downregulating the hypothalamic-pituitary-thyroid (HPT)-axis and resulting in central hypothyroidism. Supporting this hypothesis, studies on the protein level showed that all mutations were located in the WD40 domain of the protein, resulting in impairment of its folding and stability. Although the mutated protein was built into the NCoR/SMRT-corepressor complex, we speculate that the mutations impair interaction with its partner proteins or with chromatin. Another essential subunit of this corepressor complex is a very close homologue of TBLIX, Transducin β-like protein 1, X-linked receptor 1 (TBLIXR1) (chapter 3). Although, to date, TBLIX and TBLIXR1 were assumed to have the same function, patients with mutations in TBLIXR1 do not exhibit central hypothyroidism. Our study found a specific missense mutation in all six known patients with Pierpont syndrome, which is a severe syndrome involving developmental delay, specific facial characteristics, hearing loss, and abnormal fat distribution in the distal limbs. Earlier studies implicated mutations in TBLIXR1 in autism. However, autism is not present in individuals with Pierpont syndrome. These unexpected findings suggest that TBLIXR1 is involved in as yet unknown molecular pathways. Next, we performed whole exome sequencing in two of the remaining families with congenital isolated central hypothyroidism and found mutations
in yet another gene; Insulin Receptor Substrate 4 (IRS4) (chapter 4). Subsequently, we found six unrelated families with congenital isolated central hypothyroidism carrying mutations in IRS4. Like TBL1X, IRS4 lies on the X-chromosome, but in these families all men carrying mutations are affected, while all women are unaffected. Although the specific function of IRS4 is still unknown, the IRS family acts as interface between tyrosine kinase receptors, and their intracellular pathways. These receptors include the IGF-1, the insulin, and the leptin receptors. We performed 24-hour thyroid-stimulating hormone (TSH) secretion measurements and found both a suppressed basal TSH secretion and an absent nocturnal TSH surge, suggesting a downregulation of the HPT-axis. This pattern of TSH secretion is strikingly similar to that seen in healthy men who had fasted for 72 hours. Leptin is a well-known stimulant of hypothalamic TRH secretion. During fasting, leptin plasma levels decrease, leading to a subsequent decrease in TRH secretion via increased hypothalamic neuropeptide Y signalling, and thus a downregulation of the HPT-axis and basal metabolic rate. Possibly, mutations in IRS4 cause an impairment of signalling by the hypothalamic leptin receptor, thereby mimicking a constant fasting state in the afferent input to hypothalamic TRH neurons. Surprisingly, both GH and IGF-1 measurements, and HOMA and oral glucose tolerance tests showed no abnormalities, suggesting that the insulin and IGF-1 receptors remain unaffected. This may be due to the dependence of these receptors of other IRS family members, such as IRS1 and IRS2. Surprisingly, the only indication of central hypothyroidism in IRS4 knockout mice was decreased expression of TSHβ in the pituitarys of female mice.

Next, we further explored the clinical characteristics of patients with a phenotype due to mutations in a gene described previously; the immunoglobulin superfamily, member 1 (IGSF1). We performed studies in the majority of currently known individuals with mutations in IGSF1, resulting in a case series including 69 male patients, and 56 female carriers (chapter 5). The main clinical features in male patients include central hypothyroidism, adult macroorchidism, a delayed and disharmoniously progressing puberty and prolactin deficiency. Female mutation carriers were hypothyroid in 18% of cases, while a delayed menarche was seen in 41%. The findings of this study were the basis for recommendations regarding the endocrine diagnostic workup, treatment and long-term follow-up of IGSF1 mutation carriers. We describe an interesting case of a boy with an IGSF1 mutation in chapter 6. This boy presented with constitutional delay of growth and puberty and familial hypercholesterolemia in Israel. Although hypothyroidism was suspected, only TSH was measured, which was within the reference interval. He was diagnosed with congenital central hypothyroidism in the Netherlands. After treatment with levothyroxine, his cholesterol levels decreased to within reference interval. This case illustrates the necessity of measuring both TSH and free thyroxine (FT4) when central hypothyroidism is suspected and suggests that the presence of childhood hypercholesterolemia may be an indication of undiagnosed hypothyroidism. One puzzling aspect of the phenotype is the pathophysiology of the marked macroorchidism in men with IGSF1 mutations. We set out to evaluate semen quality in men with this disease, and to determine whether the macroorchidism had consequences for spermatogenesis (chapter 7). Fertility was studied in five men with IGSF1 mutations by performing semen analysis, which showed no abnormalities in volume, concentration and motility. This
Summary

suggests that despite the marked macroorchidism, spermatogenesis is not affected. The aetiology of the macroorchidism remains unclear.

Finally, we performed a systematic review and meta-analysis to study FT4 and TSH concentrations in neonates aged between the third and 28th days of life (chapter 8). While the diagnosis of both primary and central congenital hypothyroidism relies on serum measurements of thyroid hormones and TSH, precise and age-appropriate reference intervals in this dynamic period of life are unavailable. This makes it difficult to definitively diagnose disease in neonates, even leading to misdiagnosis. Using an independent data meta analysis, we combined raw data from original studies to establish day-to-day reference intervals for this period. We found that commonly used cut-offs for TSH are adequate, while FT4 cut-offs are generally too low to detect congenital central hypothyroidism. Based on our findings, FT4 cut-offs during the first two to three weeks of life should be increased to allow for more sensitive testing.
Nederlandse samenvatting

Onbehandelde congenitale hypothyreoidie was en is wereldwijd een veel voorkomende oorzaak van mentale retardatie. Congenitale hypothyreoidie wordt meestal veroorzaakt door een afwijkende schildklier (thyroidale hypothyreoidie), maar kan ook worden veroorzaakt door afwijkingen aan de hypothalamus en/of hypofyse (centrale hypothyreoidie). Congenitale centrale hypothyreoidie lijkt veel vaker voor te komen dan voorheen werd gedacht. Het doel van de studies beschreven in dit proefschrift is om de genetische oorzaak van congenitale geïsoleerde centrale hypothyreoidie vast te stellen. Daarnaast zijn de klinische karakteristieken van eerder beschreven fenotypen onderzocht, en zijn nieuwe referentie intervallen voor vrij thyroxine (free thyroxine, FT4) en schildklier stimulerend hormoon (TSH) in de neonatale periode vastgesteld, welke noodzakelijk zijn voor het adequaat diagnosticeren van congenitale centrale hypothyreoidie.

Op dit moment zijn er drie genen bekend waarin mutaties leiden tot congenitale geïsoleerde centrale hypothyreoidie. De meeste patiënten hebben echter nog geen genetische diagnose. We maakten gebruik van X-exome sequencing in een familie met centrale hypothyreoidie en vonden een mutatie in het Transducin β-like protein 1, X-linked (TBLIX) gen (hoofdstuk 2). Met Sanger sequencing vonden we nog vijf nieuwe mutaties in niet-verwante families. Hoewel het gen op het X-chromosoom ligt, kunnen vrouwen klinische symptomen hebben terwijl er ook mannen zijn met de mutatie zonder klinische verschijnselen. TBLIX is een essentieel onderdeel van het NCoR/SMRT corepressor complex. Dit complex regelt het acetyleren en deacetyleren van histonen en daarmee de transcriptie van triiodothyronine (T3)-gereguleerde genen. De meeste perifere genen worden positief gereguleerd door T3, waarbij hogere hoeveelheden T3 meer gen-transcriptie veroorzaken. Het NCoR/SMRT corepressor complex verminder het transcriptie van deze genen als T3 afwezig is. Echter, enkele belangrijke centrale genen, zoals TSHB en TRH, zijn negatief gereguleerd, wat betekent dat transcriptie van het gen toeneemt wanneer T3 afwezig is. Hoewel het mechanisme nog onduidelijk is, is bekend dat het NCoR/SMRT corepressor complex betrokken is bij de toename van transcriptie van genen in de afwezigheid van T3. Het fenotype van onze patiënten suggereert dat een mutatie in TBLIX de toename van transcriptie van TRH en TSHB vermindert in afwezigheid van T3, waardoor de hypothalamus-hypofyse-schildklier (HPT)-as minder actief wordt, en centrale hypothyreoidie ontstaat. Deze hypothese wordt ondersteund door eiwit-studies, waaruit bleek dat alle mutaties zich in het WD40 domein van het eiwit bevinden, waardoor de stabiliteit en vouwing van het eiwit belemmerd worden. Hoewel het afwijkende TBLIX wel in het NCoR/SMRT corepressor complex ingebouwd wordt, lijkt het alsof de interactie tussen het complex en chromatin belemmerd wordt. Een ander essentieel onderdeel van dit corepressor complex is een homoloog van TBLIX, Transducin β-like protein 1, X-linked receptor 1 (TBLIXR1) (hoofdstuk 3). Hoewel verwacht werd dat TBLIX en TBLIXR1 identieke functies zouden hebben, hebben patiënten met mutaties in TBLIXR1 geen centrale hypothyreoidie. In onze studie vonden we een specifieke mutatie in TBLIXR1 die voorkwam in alle zes bekende patiënten met Pierpont syndroom, een ernstig syndroom met een ontwikkelingsachterstand, dysmorfe kenmerken aan het gezicht, gehoorverlies, en een abnormale vetverdeling in...
Nederlandse samenvatting

de perifere ledematen. Eerdere studies impliceerden een rol van TBL1XR1 in autisme. Autisme is echter niet aanwezig in patiënten met Pierpont syndroom. Deze onverwachte bevindingen suggereren dat TBL1XR1 betrokken is in tot nu toe onbekende moleculaire netwerken. Aansluitend verrichtten we whole exome sequencing in twee overgebleven families met congenitale geïsoleerde centrale hypothyreoidie, waarbij we mutaties in nog een gen vonden; Insulin Receptor Substrate 4 (IR54) (hoofdstuk 4). We vonden mutaties in IR54 in zes niet-verwante families met congenitale geïsoleerde centrale hypothyreoidie. Net als TBL1X, ligt IR54 op het X-chromosoom, en alle mannen met mutaties in dit gen zijn aangedaan, terwijl vrouwen niet aangedaan zijn. Hoewel de specifieke functie van IR54 nog onbekend is, is bekend dat de groep IR5 genen als koppeling werkt tussen tyrosine kinase receptoren en de intracellulaire cascades. Onder deze receptoren vallen de IGF-1, de insuline en de leptine receptoren. We voerden 24-uur TSH-secretie studies uit en vonden een onderdrukte basale TSH secretie en een afwezige nachtelijke TSH piek, wat suggereert dat de HPT-as onvoldoende gestimuleerd wordt. Dit patroon van TSH-secretie is opvallend vergelijkbaar met dat van gezonde mannen die 72 uur gevat hebben. Leptine is een bekende stimulus van hypothalamus TRH secretie. Tijdens vasten nemen de leptine concentraties af, dat leidt tot een afnemende TRH secretie via toegenomen hypothalamus neuropeptide Y signalering, en daarmee een verminderde activiteit van de HPT-as en de basale metabolische activiteit. We denken dat mutaties in IR54 de hypothalamus leptine signalering remmen, waardoor een constant stand van vasten wordt nagebootst in de hypothalamus TRH neuronen. Verrassend genoeg zijn groeihormoon en IGF-1 concentraties, HOMA en orale glucose tolerantie tests compleet normaal. Dit wordt waarschijnlijk veroorzaakt doordat de hierbij betrokken receptoren samenwerken met andere IR5 familieleden, zoals IR51 en IR52.

Daarnaast onderzochten we de klinische karakteristieken van patiënten met een phenotype door mutaties in een eerder beschreven gen; het immunoglobulin superfamily, member 1 (IGSF1). We hebben een studie uitgevoerd in bijna de complete Nederlandse patiëntengroep met mutaties in IGSF1 (69 mannelijke patiënten en 56 vrouwelijke dragers) (hoofdstuk 5). De belangrijkste klinische verschijnselen in mannelijke patiënten zijn centrale hypothyreoidie, macro-orchidie, een vertraagde en disharmonieuze puberteit, en een prolactine deficiëntie. Achtien procent van de vrouwelijke mutatiedragers had hypothyreoidie, terwijl 41% van deze groep een late menarche had doorgemaakt. De bevindingen van deze studie waren de basis voor aanbevelingen over de endocriene diagnostische aanpak, behandeling en follow-up op langere termijn voor IGSF1 mutatiedragers. We beschrijven een jongen met een IGSF1 mutatie in hoofdstuk 6. Deze jongen presenteerde zich in Israël met een familiair vertraagde groei en puberteit, en familiaire hypercholesterolemie. Hoewel zijn behandeling arts dacht aan hypothyreoidie, werd alleen TSH gemeten, welke binnen het referentie interval was. Hij werd later in Nederland gediagnosticeerd met congenitale centrale hypothyreoidie. Na behandeling met levothyroxine daalden zijn cholesterolconcentraties tot binnen het referentie interval. Zijn verhaal illustreert de noodzaak om TSH en FT4 te meten wanneer gedacht wordt aan centrale hypothyreoidie, en suggereert dat de aanwezigheid van hypercholesterolemie bij kinderen een indicatie kan zijn van (nog) niet gediagnosticeerde hypothyreoidie. Een onopgehelderd aspect van het phenotype is de pathofysiologie van de opvallende macro-orchidie in mannen met IGSF1 mutaties. We evalueren de
Nederlandse samenvatting

Kwaliteit van het sperma van mannen met deze aandoening, om vast te stellen of de macro-orchidie consequenties heeft op de spermatogenese (hoofdstuk 7). Fertiliteit werd onderzocht in vijf mannen met IGSF1 mutaties door sperma-analyse uit te voeren, welke geen afwijkingen toonde in volume, concentratie en motilititeit. Dit suggereert dat ondanks de macro-orchidie, de spermatogenese niet wordt beïnvloed. De etiologie van de marcoorchidie blijft onduidelijk.

Als laatste onderdeel van dit proefschrift voerden we een systematische review en meta-analyse uit om TSH en FT4 concentraties in neonaten tussen de derde en 28de dag van het leven te bestuderen (hoofdstuk 8). Hoewel de diagnoses primaire en centrale congenitale hypothyreoidie afhangen van de gemeten FT4 en TSH concentraties, zijn betrouwbare en leeftijdsspecifieke referentie intervallen voor de neonatale periode niet beschikbaar. Dit maakt het moeilijk om in deze periode een definitieve diagnose te stellen. Met een onafhankelijke data-analyse combineerden we de ruwe data van de in de systematische review geïncludeerde originele studies waarin referentie intervallen voor deze periode zijn vastgesteld. We concludeerden dat de meest voorkomende afkapwaarde voor TSH juist is, terwijl de gebruikelijke FT4 afkapwaarde te laag is om congenitale centrale hypothyreoidie te detecteren. Gebaseerd op deze bevindingen stellen wij voor om de afkapwaarde van FT4 in de neonatale periode te verhogen, zodat patiënten met milde centrale hypothyreoidie niet gemist worden.
Author affiliations

Dr. Erica L.T. van den Akker
Department of Paediatric Endocrinology,
Erasmus MC, Rotterdam, the Netherlands

Dr. Marielle Alders
Department of Clinical Genetics,
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Dr. Boudewijn Bakker
Department of Paediatrics,
Reinier de Graaf Hospital, Delft, The Netherlands

Dr. ir. Bart E.B.P. Ballieux
Department of Clinical Chemistry and Laboratory Medicine,
Leiden University Medical Center, Leiden, The Netherlands

Prof. Daniel J. Bernard
Department of Pharmacology and Therapeutics,
McGill University, Montréal, Québec, Canada

Dr. Nienke R. Biermasz
Department of Endocrinology and Metabolism,
Leiden University Medical Center, Leiden, the Netherlands

Dr. Hennie Bikker
Department of Clinical Genetics,
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Dr. Anita Boelen
Department of Endocrinology and Metabolism,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Prof. Marco Bonomi
Division of Endocrine and Metabolic Disorders,
Istituto di Ricovero e Cura a Curettere Scientifico, Instituto Auxologica Italiano, Milan, Italy
Department of Clinical Sciences and Community Health,
Università degli Studi di Milano, Milan, Italy

Emilie Brûlé
Department of Anatomy and Cell Biology,
McGill University, Montréal, Québec, Canada
Prof. dr. ir. Wouter A. Dreschler
Department of Clinical and Experimental Audiology,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Dr. Louise Fairall
Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology,
University of Leicester, Leicester, the United Kingdom

Prof. dr. Eric Fliers
Department of Endocrinology and Metabolism,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Francesca Forzano
Medical Genetics Unit,
Ospedali Galliera, Genova, Italy

Annika W.M. Goorsenberg
Department of Endocrinology and Metabolism,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Prof. dr. Raoul C. Hennekam
Department of Paediatrics,
Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Dr. Michel H.P. Hof
Department of Clinical Epidemiology, Bioinformatics, and Biostatistics,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Dr. Gera Hoorweg-Nijman
Department of Paediatrics,
St. Antonius Hospital, Nieuwegein, The Netherlands

Roel Hordijk
Department of Genetics,
University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

Aldo Jongejan
Department of Clinical Epidemiology, Biostatistics and Bioinformatics,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Author affiliations

Dr. Sjoerd D. Joustra
Department of Paediatrics,
Leiden University Medical Center, Leiden, the Netherlands
Department of Endocrinology and Metabolism,
Leiden University Medical Center, Leiden, the Netherlands

Yining Li
Department of Pharmacology and Therapeutics,
McGill University, Montréal, Québec, Canada

C.E. Jacqueline M. Limpens
Medical Library,
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Dr. Monique Losekoot
Department of Clinical Genetics,
Leiden University Medical Center, Leiden, the Netherlands

Dr. Richard I. Kelley
Division of Metabolism,
Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, USA

Ann H. Olney
Munroe-Meyer Institute for Genetics and Rehabilitation,
University of Nebraska Medical Center, Omaha, NE, USA

Dr. Wilma Oostdijk
Department of Paediatrics,
Leiden University Medical Center, Leiden, the Netherlands

Prof. Luca Persani
Department of Clinical Sciences and Community Health,
Università degli Studi di Milano, Milan, Italy

Prof. Alberto M. Pereira
Department of Medicine,
Leiden University Medical Center, Leiden, The Netherlands

Dr. Mary Ella Pierpont
Division of Genetics, Children’s Hospitals and Clinics of Minnesota,
University of Minnesota, Minneapolis, MN, USA

Dr. Bert Redeker
Department of Clinical Epidemiology, Biostatistics and Bioinformatics,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Author affiliations

Prof. dr. Sjoerd Repping
Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Prof. dr. Rick R. van Rijn
Department of Radiology, Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Prof. dr. Ferdinand Roelfsema
Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands

Dr. Gijs W.E. Santen
Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands

G. Bradley Schaefer
Division of Medical Genetics, Arkansas Children’s Hospital, Little Rock, AR, USA

Gauthier Schang
Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada

Dr. Nadia Schoenmakers
University of Cambridge Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, United Kingdom

Prof. John W.R. Schwabe
Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, the United Kingdom

Dr. Fiona Stewart
Division of Medical Genetics, Belfast City Hospital, Belfast, Ireland

Dr. Yu Sun
Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
Author affiliations

Olga V. Surovtseva
Department of Endocrinology and Metabolism,
Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands

Prof. dr. A.S. Paul van Trotsenburg
Department of Paediatric Endocrinology,
Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Marc-Olivier Turgeon
Department of Pharmacology and Therapeutics,
McGill University, Montréal, Québec, Canada

Dr. Emmely M. de Vries
Department of Endocrinology and Metabolism,
Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Ying Wang
Department of Pharmacology and Therapeutics,
McGill University, Montréal, Québec, Canada

Dr. Peter J. Watson
Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology,
University of Leicester, Leicester, the United Kingdom

Prof. dr. Jan M. Wit
Department of Paediatrics,
Leiden University Medical Center, Leiden, the Netherlands

Nitash Zwaveling-Soonawala
Department of Paediatric Endocrinology,
Emma Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
List of publications

Publications included in this thesis
Joustra SD, Heinen CA, Schoenmakers N, Bonomi M, Ballieux BE, Turgeon MO, Bernard DJ, Fliers E, van Trotsenburg AS, Losekoot M, Persani L, Wit JM, Biermasz NR, Pereira AM, Oostdijk W; IGSF1 Clinical Care Group. IGSF1 deficiency: lessons from an extensive case series and recommendations for clinical management. J Clin Endocrinol Metab. 2016 Apr;101(4):1627-36. doi: 10.1210/jc.2015-3880.

Heinen CA, Jongejan A, Watson PJ, Redeker B, Boelen A, Boudzovitch-Surovtseva O, Forzano F, Hordijk R, Kelley R, Olney AH, Pierpont ME, Schaefer GB, Stewart F, van Trotsenburg AS, Fliers E, Schwabe JW, Hennekam RC. A specific mutation in TBL1XR1 causes Pierpont syndrome. J Med Genet. 2016 May;53(5):330-7. doi: 10.1136/jmedgenet-2015-103233.

Heinen CA, Losekoot M, Sun Y, Watson PJ, Fairall L, Joustra SD, Zwaveling-Soonawala N, Oostdijk W, van den Akker EL, Alders M, Santen GW, van Rijn RR, Dreschler WA, Surovtseva OV, Biermasz NR, Hennekam RC, Wit JM, Schwabe JW, Boelen A, Fliers E, van Trotsenburg AS. Mutations in TBL1X Are Associated With Central Hypothyroidism. J Clin Endocrinol Metab. 2016 Dec;101(12):4564-4573.

Heinen CA, Zwaveling-Soonawala N, Fliers E, Turgeon MO, Bernard DJ, van Trotsenburg ASP. A novel IGSF1 mutation in a boy with short stature and hypercholesterolemia: a case report. J Endocr Soc. 2017 May 2;1(6):731-736. doi: 10.1210/js.2017-00107. eCollection 2017 Jun 1.

Heinen CA, de Vries EM, Alders M, Bikker H, Zwaveling-Soonawala N, van den Akker ELT, Bakker B, Hoorweg-Nijman G, Roelfsema F, Hennekam RC, Boelen A, van Trotsenburg ASP, Fliers E. Mutations in IRS4 are associated with central hypothyroidism. J Med Genet. 2018 Jul 30. pii: jmedgenet-2017-105113. doi: 10.1136/jmedgenet-2017-105113.

Publications not included in this thesis
Joustra SD, Schoenmakers N, Persani L, Campi I, Bonomi M, Radetti G, Beck-Pecco P, Zhu H, Davis TM, Sun Y, Corssmit EP, Appelman-Dijkstra NM, Heinen CA, Pereira AM, Varewijk AJ, Janssen JA, Endert E, Hennekam RC, Lombardi MP, Mannens MM, Bak B, Bernard DJ, Breuning MH, Chatterjee K, Dattani MT, Oostdijk W, Biermasz NR, Wit JM, van Trotsenburg AS. The IGSF1 deficiency syndrome: characteristics of male and female patients. J Clin Endocrinol Metab. 2013 Dec;98(12):4942-52. doi: 10.1210/jc.2013-2743.
List of Publications

Joustra SD, Meijer OC, Heinen CA, Mol IM, Laghmani eH, Sengers RM, Carreno G, van Trotsenburg AS, Biermasz NR, Bernard DJ, Wit JM, Oostdijk W, van Pelt AM, Hamer G, Wagenaar GT. Spatial and temporal expression of immunoglobulin superfamily member 1 (IGSF1) in the rat. J Endocrinol. 2015 Sep;226(3):181-91. doi: 10.1530/JEO-15-0204.

Heinen CA, Zhang Z, Klieverik LP, de Wit TC, Poel E, Yaqub M, Boelen A, Kalsbeek A, Bisschop PH, van Trotsenburg P, Verberne H, Booij J, Fliers E. Effects of Intravenous Thyrotropin Releasing Hormone on 18F-Fluorodeoxyglucose Uptake in Human Brown Adipose Tissue: A Randomized Controlled Trial. Eur J Endocrinol. 2018 Jul;179(1):31-38. doi: 10.1530/EJE-17-0966.
Portfolio

PhD period: February 2013 – February 2017
PhD supervisor: Prof E. Fliers; Prof A.S.P. van Trotsenburg
PhD co-supervisors: Dr A. Boelen; Prof R.C.M. Hennekam

1. PhD Training

General courses	Year	ECTS
BROK	2013	0.90
Clinical Epidemiology	2014	0.60
Advanced topics in Clinical Epidemiology	2014	1.10
Clinical Epidemiology: Systematic Review	2015	0.70
Oral presentation	2015	0.80
Practical Biostatistics	2015	1.10
Computing R	2015	0.40
Project management	2015	0.60

Specific courses	Year	ECTS
Basic Endocrinology Course	2014	0.70
Radiation Protection 5B	2014	1.70
Genetic Epidemiology	2015	1.10

Seminars, workshops and master classes	Year	ECTS
Research meetings Endocrinology & Metabolism	2013-2017	0.25 (1.0)
Masterclass Paediatric Endocrinology Ferring BV,	2015	0.25
Utrecht, the Netherlands		
Presentations

Presentations	Year	ECTS
Poster presentation: Fondation Ipsen Congress "Brain crosstalk in puberty and adolescence", Paris, France	2013	0.50
Oral presentation: The Dutch Thyroid Club Annual Meeting, Amsterdam, the Netherlands (invited)	2016	0.50
Oral presentation: The European Thyroid Association (ETA) Annual Meeting, Copenhagen, Denmark	2016	0.50
Oral presentation: The European Society for Paediatric Endocrinology (ESPE) Annual Meeting, Paris, France	2016	0.50
Oral presentation: Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek (SKML), section Endocrinology, Utrecht, the Netherlands (invited)	2016	0.50
Poster pitch: the Annual Dutch Endocrine Meeting, Noordwijkerhout, the Netherlands	2017	0.50
Oral presentation: the Annual Amsterdam Kindersymposium, Amsterdam, the Netherlands	2017, 2018	0.50 (1.00)
Oral presentation: the ENDO Annual Meeting, Orlando, Florida, USA	2017	0.50
Oral presentation: the Annual Dutch Endocrine Meeting, Noordwijkerhout, the Netherlands (invited)	2018	0.50
(Inter)national conferences	**Year**	**ECTS**
-------------------------------	---------	---------
The Dutch Thyroid Club Annual Meeting, Amsterdam, the Netherlands	2013-2016	0.25 (1.00)
37th European Thyroid Association (ETA) Annual Meeting, Leiden, the Netherlands	2013	0.25
Nutrition, Metabolism and the Brain (NMB) symposium, Amsterdam, the Netherlands	2013	0.25
Investigators mini-symposium IGSF1 trials, LUMC, Leiden, the Netherlands	2013	0.20
IPSEN conference “Brain crosstalk in puberty and adolescence”, Paris, France	2013	0.20
The Young Dutch Society for Endocrinology (INVE) Annual Meeting	2014-2016	0.25 (0.75)
Jonge Onderzoekersdag (JOD) TULIPS, Veldhoven, the Netherlands	2014	0.25
39th European Thyroid Association (ETA) Annual Meeting, Copenhagen, Denmark	2016	0.25
55th European Society for Paediatric Endocrinology (ESPE) Annual Meeting, Paris, France	2016	0.25
Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek (SKML), Annual Meeting section Endocrinology, Utrecht, the Netherlands	2016	0.25
The Annual Dutch Endocrine Meeting, Noordwijkerhout, the Netherlands	2017, 2018	0.25 (0.50)
The Annual Amsterdam Kindersymposium, Amsterdam, the Netherlands	2017, 2018	0.25 (0.50)
The ENDO 2017 Annual Meeting, Orlando, Florida, USA	2017	0.25
10th International Meeting of Pediatric Endocrinology	2017	0.25
Portfolio

Other	Year	ECTS
Vice-president Education Committee Graduate School AMC	2016-2017	0.50
Board member The Young Dutch Society for Endocrinology (INVE), secretary	2016-current	0.50

2. Teaching

Lecturing

Student working groups ‘Thyroid diseases’ and ‘Pituitary/Hypothalamus’ diseases in the Endocrinology course of the Faculty of Medicine University of Amsterdam

Supervising

Annika Goorsenberg, medical student

2015-2017

3. Parameters of esteem

Grants

Stichting AMC Foundation; “Unravelling genetic background of and improving neonatal screening for congenital hypothyroidism of central origin (CH-C)”

Travel Grant European Thyroid Association (ETA) (€500)

Travel Grant European Society of Paediatric Endocrinology (ESPE) (€500)

Nederlandse Vereniging Endocrinologie Goodlife Healthcare Travel Grant (€1500)

Travel Grant European Society of Paediatric Endocrinology (ESPE) (€750)

2016

2016

2016

2017

Awards

International Award for Publishing Excellence in *The Journal of Clinical Endocrinology & Metabolism*

The Endocrine Society Outstanding Abstract Award ENDO 2017 (§750)
Dankwoord

Dit proefschrift is tot stand gekomen door de hulp, adviezen en enorme inzet van vele betrokkenen. Onderstaand zou ik graag een aantal persoonlijk willen noemen.

Mijn dank gaat uit naar de familie die mijn promotietraject heeft gesponsornd. U heeft een hele bijzondere keus gemaakt, waar ik nog elke dag onder de indruk van en dankbaar voor ben. Daarnaast alle patiënten en gezonde vrijwilligers die hebben toegezegd mee te werken aan de verschillende studies van dit promotietraject. Juliëlle interesse, medelevens en bereidheid allerlei medisch-wetenschappelijke ontberingen te doorstaan hebben mij getroffen.

Prof. dr. A.S.P. van Trotsenburg – Beste Paul, wat ben ik blij dat je me voor dit avontuur hebt uitgenodigd. In het begin van mijn promotie gaf je aan dat ik mijn eigen richting in het onderzoek moest zoeken, en dat heb je tot mijn grote consternatie altijd vastgehouden. Dat maakt dit een bijzonder persoonlijk promotieboekje. Gedurende mijn onderzoek heb ik genoten van je onuitputtelijke enthusiasme, kennis en out-of-the-box manier van denken, en het vertrouwen dat je in me toonde, juist als ik het zelf even kwijt was. Ik ben je dankbaar voor je luisterend oor en adviezen, of het werk-gerelateerd is of niet, en voor je bereidheid dit zelfs door te zetten nu ik het AMC heb verlaten.

Prof. dr. E. Fliers – Beste Eric, toen ik net mijn onderzoek begon, zei je dat je deur altijd open stond. Ik vraag me wel eens af of je ooit spijt hebt gehad van die uitspraak, toen ik er schamtelooos dagelijks gebruik van maakte. Je begeleidt promovendil met enorme kennis en ervaring, voorziet ieder schrijfseizoen direct van scherp commentaar, en hebt me onherroepelijk besmet met fascinatie voor de schildklier. Daarbij lukt het je ook nog om bewonderingswaardige rust uit te stralen, na bijvoorbeeld een pittig reviewronde, maar ook nadat we meerdere keren bijna strandden onderweg naar Amerika. Toch fijn dat die bijnieren het goed doen!

Dr. A. Boelen – Beste Anita, ik heb zelden iemand ontmoet die zo acuut to the point kan komen als jij. Jouw nuchtere en bondige adviezen hebben me veel stress gescheept wanneer ik eindeloos elk detail nog eens wilde overwegen. Waarvoor dank! Prof. dr. R.C.M. Hennekkam – Beste Raoul, wat heb ik genoten van onze overlegges op je kamer. Naast je enorme kennis over alles genetica en publiceren, ben je een expert in het schrappen van tekst, waar ik veelvuldig dankbaar gebruik van heb gemaakt. Dank voor je steun en prachtige verhalen!

De overige leden van de promotiecommissie, Prof. dr. J.A. Romijn, Prof. dr. A. Kalsbeek, Prof. dr. M.M.A.M. Mannens, Dr. A.C. Heijboer, Prof. dr. T.P. Links en Dr. H.M. van Santen, hartelijk dank voor het zitting nemen in de promotiecommissie en het kritisch bestuderen van dit proefschrift.

Prof. dr. J. Booij en Dr. H.J. Verberne - beste Jan en Hein, zo ontzettend hard en lang gewerkt aan een draak van een manuscript, en het mooie resultaat komt niet eens in m'n
boekje. De grote tragedie van mijn promotie! Ontzettend bedankt voor jullie vertrouwen, optimisme, bereidheid me de afdeling om te laten bouwen, en bovenal, jullie geduld.

Alle collega’s van F5 en F2, dank voor het kritisch meedenken, het bijspringen wanneer mogelijk, de adviezen en het natuurlijk de lunches en borrels! Mijn kamergenoten Martine, Ruth, Marieke, Sam, Pim, Kasper, Maarten, Simon, Katy, Emma en Annemieke, ik voelde me de volledig geaccepteerde grumpy cat in jullie midden. Special mention voor Yvonne, voor de crash-course in promotie-afronde. Reddende engelen op F5 Birgit en Martine en op H7 Hester en Brenda – jullie stonden onvoorwaardelijk met raad en daad voor me klaar wanneer ik het nodig had. Mijn dank is enorm! Ik hoop dat nog veel promovendi van jullie steun mogen genieten.

Collega’s van H7, met name Nitash, Hanneke, Vera en Christiaan, wat een warm bad om in terecht te komen, en wat een voorrecht dat ik wekelijks welkom was in jullie klinisch overleg. Jullie hebben ondanks eigen drukke kliniek en onderzoek veelvuldig uitgebreid de tijd genomen om me (endocrinologische) principes uit te leggen, me te adviseren en te ondersteunen. Dank voor jullie steun, interesse en gezelligheid!

Uiteraard mijn dank aan Sjoerd Joustra, Jan Maarten Wit, Wilma Oostdijk, Monique Losekoot, Ferdinand Roelfsema, Sjoerd Repping, Ans van der Pelt en Geert Hamer, voor het delen van jullie tijd, kennis en adviezen.

Erik Endert, wat ben ik blij dat ik je nog heb kunnen vertellen hoeveel ik van je heb geleerd. Ik hoor je nog altijd in m’n achterhoofd (referentieintervallen!) als iemand het over normaalwaarden heeft. Alle medewerkers en analisten op het endocrinologie laboratorium, jullie hebben bergen verzet, waarvan een aanzienlijk deel voor dit promotieschrift. Ik ben jullie zeer dankbaar.

Mijn paranimfren Tessel en Jolanda. Jullie zijn echt m’n maatjes geweest tijdens mijn promotie (en daarnaal), ook al moest ik even op jullie wachten. Ik heb genoten van onze gezamenlijke congressen, koffiemomentjes en uitstapjes in binnen- en buitenland. Tessel, ons Londen avontuur vergeet ik nooit meer! Nooit gedacht dat we even manisch enthousiast over een boek konden zijn. Je bent er bijna – zet ‘m op! Jolanda, wat een geluk dat jij m’n hoofdpijndossier-baby wilde adopteren. Ik ben enorm onder de indruk van hoe je er een ontzettend goed lopende studie van hebt weten te maken. Ik kijk uit naar onze toekomstige prikrontjes!

Lieve Roel, ik ben klaar! Ik heb lang gedreigd je uit dit lijstje te knikkeren, maar zonder jou had ik nooit de moed en het vertrouwen gehad door te zetten. Met je relativeringsvermogen, rust en eindeloze geduld ben je m’n thuis in de chaos. Je bent nog steeds de liefste, ook al geef je me uitsluitend gênante bijnamen.
About the Author

Charlotte Aleida Heinen was born in Heerhugowaard in September 1988. She graduated from OSG Huygenwaard in 2006, and subsequently started medical school at the Academic Medical Center (AMC), University of Amsterdam, in Amsterdam. During medical school, Charlotte developed an interest in research, and approached Prof A.S.P. van Trottenburg to investigate fertility and puberty in Klinefelter syndrome. Although this did not result in a publication, it led to a lasting interest in endocrinology.

In 2013, she obtained her medical degree after finishing an internship Pediatric Endocrinology. Directly following, she started as PhD candidate under supervision of Prof E. Fliers and Prof van Trottenburg at the departments of Endocrinology and Metabolism, and Pediatric Endocrinology in the AMC. Her research was focused on the genetics and diagnosis of congenital isolated central hypothyroidism.

Since 2016, Charlotte is a board member of the Young Dutch Association of Endocrinology (JNVE), aiming to improve collaboration and interaction between young professionals within the field of Endocrinology. In 2017, she finished her Master’s programme Medical History at the Vrije Universiteit Amsterdam after writing her thesis about the 1980 introduction of synthetic levothyroxine (Thyrax, Organon) in the Netherlands.

After working as senior house officer at the paediatrics department of the Spaarne Gasthuis for six months, she currently works at the paediatrics department of the OLVG, location West.
