Egg quality of quails fed low methionine diet supplemented with betaine

A Ratriyanto, R Indreswari, R Dewanti and S Wahyuningsih
Department of Animal Science, Faculty of Agriculture, Universitas Sebelas Maret, Surakarta, Indonesia
E-mail: ratriyanto@staff.uns.ac.id

Abstract. This experiment investigated the effect of betaine supplementation to low methionine diet on egg quality of quails. A total of 340 laying quails (Coturnix coturnix japonica) was divided into 4 dietary treatments with 5 replicates of 17 quails each. The experiment was assigned in a completely randomized design. The four dietary treatments were the low methionine diet (0.3% methionine) without betaine supplementation and the low methionine diet supplemented with 0.07, 0.14, and 0.21% betaine. The experimental diets were applied for 8 weeks and the egg quality traits were measured at the age of 16 and 20 weeks. The data were subjected to analysis of variance, and when the treatment indicated significant effect, it was continued to orthogonal polynomial test to determine the optimum level of betaine. Increasing dietary levels of betaine increased the fat content of the egg with the linear regression of $y = 11.0949 + 4.1914x$ ($R^2 = 0.18$). However, supplementation of betaine did not affect protein content, yolk, albumen, and eggshell percentage. It can be concluded that betaine supplementation up to 0.21% to low methionine diet only had little effect in improving the quality traits of quail eggs.

1. Introduction
Methionine and betaine are the potential feed additives as methyl group (CH$_3$) donor [1]. Methionine is an essential amino acid whose metabolites are used in a variety of fundamental biological processes including protein deposition and synthesis of S-adenosyl methionine [2]. Providing other methyl group donor (e.g. betaine) may spare methionine as methyl group donor or provide the methyl group necessary to convert homocysteine to methionine, thus the requirement for methionine in the diet can be reduced [3].

Betaine (trimethyl glycine) has two main biological functions, i.e. as a methyl group donor and an organic osmolyte. As a methyl group donor, betaine can spare the use of other methyl group donors such as methionine and choline. Thus, betaine is expected to increase the availability of methionine for protein synthesis, resulting in optimal performance [1]. As an organic osmolyte, betaine protects cells from various osmotic pressures, such as cell hydration [4].

Methyl group cannot be synthesized in the body of poultry, thus it must be supplied in the diet [1]. Previous studies showed that betaine supplementation to methionine-deficient diet increased betaine homocysteine-methyltransferase (BHMT) activity in chickens, indicating that poultry have specific requirements for methyl groups [5]. Observation in poultry revealed that betaine maintained performance of laying hens fed diets reduced in methionine and without choline chloride [6]. Supplementation of 0.1% betaine increased eggshell thickness, haugh unit and eggshell percentage but did not affect yolk percentage in laying hens [7]. Studies on the potential of betaine as a methyl group...
donor in laying poultry are still limited and the results are inconsistent [6, 8]. Betaine supplementation to low methionine diet is expected to provide methyl groups which have the potential to improve egg quality. The objective of this study was to investigate the effect and optimum level of betaine supplementation in low methionine diet egg quality of quails.

2. Methods
A total of 340 laying Japanese quails (Coturnix coturnix japonica) aged 4 weeks with an average body weight of 98.31 ± 8.67 grams was used in this study. The study was designed as a completely randomized design with 4 dietary treatments, each treatment with 5 replicates containing 17 quails. The basal diet was formulated to meet nutrient requirement of laying quails according to the recommendation of Indonesian National Standard [9] except for the amino acid methionine which was set at 0.3%, lower than the methionine requirement standard of 0.4 (Table 1).

Ingredients	Proportion (%)
Yellow corn	25.00
Rice bran	21.00
Soybean meal	25.00
Fish meal	5.50
Cassava by product meal	15.50
Dicalcium phosphate	1.75
Limestone	5.50
Premix	0.50
NaCl	0.25
Nutrient content	
Metabolizable energy (kcal/kg)	2,887.61
Crude protein (%)	18.51
Calcium (%)	3.41
Available phosphorus (%)	0.70
Lysine (%)	1.02
Methionine (%)	0.30

The diet was fed without betaine supplementation or supplemented with 0.07, 0.14, and 0.21% betaine. Betaine was supplemented at the expense of rice bran [10]. During the experiment, the quails had free access to water and feed. The experimental diets were applied for 8 weeks after the egg production has reached 10%. The egg quality traits were measured for 3 consecutive days at 16 and 20 weeks. In addition, standard managemental practice was applied during this study.

The observed variables were yolk, albumen, and eggshell percentage, and protein and fat content of the eggs. Data were subjected to variance analysis and if it showed an effect of treatment, then it was continued with orthogonal polynomial test to determine the optimum level of treatment.

3. Results and Discussion
Betaine supplementation to low methionine diet did not affect yolk, albumen, and eggshell percentage as well as protein content of the eggs (Table 2). Egg size is mostly determined by the yolk and albumen. The results of this study were in accordance with previous study in Lohmann Brown laying hens, in which supplementation of 0.035% betaine did not affect yolk and eggshell percentage [6]. Similarly, Ezzat et al. [7] did not observed any effect of 0.1% betaine supplementation on yolk, albumen, and eggshell percentage in Matrouh laying hens.
Table 2. Effect of betaine supplementation to low methionine diet on egg quality traits of quails

Variables	Betaine Levels (%)	P Value			
	0	0.07	0.14	0.21	
Yolk percentage (%)	38.94	33.21	35.05	34.46	0.10
Albumen percentage (%)	53.33	58.94	55.40	57.36	0.14
Eggshell percentage (%)	8.73	8.27	7.37	8.47	0.29
Protein content (%)	11.76	11.80	11.59	11.41	0.21
Fat content (%)	10.94	11.33	12.26	11.61	0.03

Previous studies revealed that betaine supplementation increased protein synthesis and decreased protein degradation as indicated by increased in serum protein, globulin and albumin levels [11]. However, increasing dietary betaine levels in this study could not optimize the availability of methionine for protein synthesis. Presumably methionine is used for immune systems, where the requirement of methionine for immunity is greater than for protein synthesis [1]. This results was in support with previous observation, in which betaine supplementation did not affect egg quality traits in laying hens [12]. Different to this result, Ratriyanto et al. [13] observed that supplementation of 0.06 and 0.12% betaine to methionine adequate diet enhanced egg quality traits of quails including yolk, albumen, and eggshell weight.

Furthermore, the homeostasis mechanism regulates the amount of calcium absorbed according to the requirement of mineral [14], thus the eggshell percentage was not affected by the treatment. In agreement with this study, supplementation of 0.035% betaine did not affect eggshell percentage in Lohmann Brown laying hens [6]. Meanwhile, according to Ryu et al. [15] betaine supplementation at levels of 0.05% to 0.2% increased eggshell strength in laying hens.

Increasing dietary betaine supplementation to low methionine diet increased linearly (P<0.05) fat content of the eggs, with the regression $y = 11.0949 + 4.1914x$ ($R^2 = 0.18$) (Figure 1). Betaine donates the methyl group during the transmethylation reaction to synthesize important metabolically substances such as carnitine and creatine that play an important role in fat metabolism [1]. Betaine is also a lipotropic agent and involved in the synthesis of chylomicron that play a role in fat absorption [16]. In addition, betaine donates its methyl groups to synthesis of lecithin which is required in the transportation of fat in the body, thus providing the fat for egg formation [17].

![Figure 1. Effect of betaine supplementation on fat content of the eggs](image)

4. Conclusion
Betaine supplementation to low methionine diet increased fat content but did not affect the percentage of yolk, albumen, eggshell, and protein content of quail eggs. Furthermore, increasing dietary betaine supplementation linearly increased fat content of the eggs with the regression $y = 11.0949 + 4.1914x$ ($R^2 = 0.18$).
References

[1] Ratriyanto A, Mosenthin R, Bauer E and Eklund M 2009 Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals Asian-Austral. J. Anim. Sci. 22 1461–76

[2] Finkelstein J D, Martin J J and Harris B J 1988 Methionine metabolism in mammals J. Biol. Chem. 263 11750–4

[3] Sun H, Yang W R, Yang Z B, Wang Y, Jiang S Z and Zhang G G 2008 Effects of betaine supplementation to methionine deficient diet on growth performance and carcass characteristics of broilers Am. J. Anim. Vet. Sci. 3 78–84

[4] Siljander-Rasi H, Peuranen S, Tiihonen K, Virtanen E, Kettunen H, Alaviuhkola T and Simmins P 2003 Effect of equi-molar dietary betaine and choline addition on performance, carcass quality and physiological parameters of pigs J. Anim. Sci. 76 55–62

[5] Emmert J L, Garrow T A and Baker D H 1996 Hepatic betaine-homocysteine methyltransferase activity in the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine. J. Nutr. 126 2050–8

[6] Hruby M, Ombabi A and Schlagheck A 2005 Natural betaine maintains layer performance in methionine/choline chloride reduced diets Proc. 15th Eur. Symp. on Poultry Nutrition (Balatonfured, Hungary) pp 507–9

[7] Ezzat W and Shoeib M S 2011 Impact of betaine, vitamin c and folic acid supplementations to the diet on productive and reproductive performance of Matrouh poultry Egypt. Poult. Sci. 521–37

[8] Lu J and Zou X 2006 Effects of adding betaine on laying performance and contents of serum yolk precursors VLDL and VTG in laying hen J. Zhejiang Univ. 32 287–291

[9] Indonesian National Standard 2006 Pakan puyuh bertelur (quail layer) (Jakarta: Badan Standardisasi Nasional)

[10] Ratriyanto A, Mosenthin R, Jezierny D, Sauer N and Eklund M 2009 Betaine, organic acids and inulin do not affect ileal and total tract nutrient digestibility or microbial fermentation in piglets J. Anim. Feed Sci. 18 453–64

[11] Rao R S V., Raju M V L N, Panda A K, Saharia P and Sunder S G 2011 Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine Asian-Austral. J. Anim. Sci. 24 662–9

[12] Gudev D, Popova-Ralcheva S, Yanchev I, Moneva P, Petkov E and Ignatova M 2011 Effect of betaine on egg performance and some blood constituents in laying hens reared indoor under natural summer temperatures and varying levels of air ammonia Bulg. J. Agric. Sci. 17 859–66

[13] Ratriyanto A, Indreswari R, Nuhriawangsa A, Ratriyanto A, Indreswari R and Nuhriawangsa A 2017 Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails Rev. Bras. Ciênc. Ávíc. 19 445–54

[14] Underwood E J and Suttle N F 1999 The Mineral Nutrition of Livestock (Oxon: CABI Publishing)

[15] Ryu M S, Cho K H, Shin W J and Ryu K S 2002 Influence of dietary supplemental betaine on performance and egg quality of laying hens during the heat stress Korean J. Poult. Sci. 29 117–23

[16] Yao Z and McLeod R S 1994 Synthesis and secretion of hepatic apolipoprotein B-containing lipoproteins Biochim. Biophys. Acta - Lipids Lipid Metab. 1212 152–66

[17] Sauderson C L and Mackinlay J 1990 Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br. J. Nutr. 63 339–49