Mieszany częściowo nieprawidłowy spływ żył płucnych współistniejący z wadą zastawki aortalnej – studium diagnostyki ultrasonograficznej 10-letniej pacjentki z zespołem Turnera

Mixed partial anomalous pulmonary venous drainage coexistent with an aortic valve abnormality – analysis of ultrasound diagnostics in a 10-year-old girl with Turner syndrome

Wojciech Mądry¹, Maciej A. Karolczak¹, Justyna Komarnicka², Małgorzata Mirecka¹

¹ Klinika Kardiochirurgii i Chirurgii Ogólnej Dzieci, Warszawski Uniwersytet Medyczny, Warszawa, Polska
² Zakład Radiologii Pediatricznej, Warszawski Uniwersytet Medyczny, Warszawa, Polska

Correspondence: Dr n. med. Wojciech Mądry, Klinika Kardiochirurgii i Chirurgii Ogólnej Dzieci, Warszawski Uniwersytet Medyczny, ul. Dziedzicowa 1, 01-184 Warszawa, e-mail: madwoj1@onet.eu

Streszczenie
Autorzy prezentują przypadek echokardiograficznego rozpoznania rzadkiej wrodzonej anomalii układu sercowo-naczyniowego pod postacią mieszanej częściowo nieprawidłowego spływu żył płucnych u 10-letniej dziewczynki z zespołem Turnera oraz wrodzonym zwięzeniem dwupłatkowej, niedomykalnej zastawki aorty; dokonanego w trakcie diagnostyki prowadzonej w celu ustalenia przyczyny krwawienia z przewodu pokarmowego. Omówiono trudności diagnostyczne prowadzące do opóźnionego ustalenia właściwego rozpoznania, wynikające z braku objawów niewydolności krążenia we wczesnym okresie choroby oraz występowania nasiłonych i dominujących zjawisk osłuchowych związanych z wadą zastawki aorty, skutecznie maskujących syndromy zwiększonego przepływu płucnego. Poruszyli rolę wpływu cech fetotopowych zespołu Turnera, a w szczególności krótkiej, pletwiastej szyi, ograniczającej dostęp nadmostkowy, oraz obecności czynników psychologicznych wątpiących się z długotrwałą chorobą. Wskazano na pośrednie objawy echokardiograficzne nasuwające podejrzenie częściowo nieprawidłowego spływu żył płucnych i nakażające rozszerzenie zakresu badania, takie jak powiększenie prawego przediniona i prawej komory serca oraz paradoksalny ruch przepływu międzykomorowej u osoby bez ASD, cech naciski przepływu płuczne, wady zastawki trójściennej lub płucznej. Przedstawiono metodę badania echokardiograficznego, umożliwiającą bezpośrednią wizualizację nieprawidłowych struktur naczyniowych, podkreślając znaczenie projekcji echokardiograficznych wykazujących najwyższą czułość: wysokich projekcji przyskótkowych prawostronnej i lewostronnej – w płaszczynach strzałkowych i poprzecznych, w ułożeniu pacjentki na boku, z zastosowaniem prezentacji dwuwymiarowej oraz kolorowego dopplera. Wskazano na ograniczenia badania echokardiograficznego, wynikające z konieczności uwidocznienia i przesłania się względem struktur naczyniowych przeszłościowych tkankami nieprzewodzącymi ultradźwięków, a w związku z tym także na rolę innych metod wizualizacji, takich jak tomografia komputerowa i/lub magnetyczny rezonans jądrowy.
Introduction

Partial anomalous pulmonary venous drainage (PAPVD) is a developmental anomaly of the cardiovascular system, the cause of which can be sought both in the abnormal gene structure, as well as in environmental factors. The essence of the defect seems to be the persistence of the early-stage embryo connections between the systemic venous circulation (major celiac venous plexus) and pulmonary circulation in the absence of a proper connection between the pulmonary veins and the left atrium of the heart, probably as a result of abnormal growth process of mesenchymal tissue located behind the heart (dorsal mesocardial protrusion, DMP), in the area of so-called second heart field (rear field) toward the venous/alluvial pole of the heart. The lack of blood inflow from one or more pulmonary veins into the short, single common pulmonary vein which leads blood to the left atrium is visible at approximately the 8th week of the embryo’s age; this results in excessive angiogenesis of the celiac plexus and the emergence of their numerous connections with the cardinal venous system and lung parenchyma. As a result, during the diagnosis of PAPVD a correct connection of two or three pulmonary veins with the left atrium is found, while the other pulmonary veins lack internal lumen (no lumenization) or undergo atresia. The part of pulmonary parenchyma affected by the vascular anomaly drains venous blood to the venous system drainage area via the system of main and vertical veins or through the coronary sinus. The aim of this paper is to trace the applied strategy and diagnostic test technique on the example of a patient with Turner syndrome, concomitant aortic valve anomaly and a very rare form of mixed partial anomalous pulmonary venous connection.

Key words

- echocardiography
- cardiovascular abnormalities
- congenital
- Turner syndrome

Abstract

The authors present a case of echocardiographic diagnosis of a rare congenital cardiovascular anomaly in the form of mixed partial anomalous pulmonary veins connection in a 10-year-old girl with Turner syndrome and congenital mild stenosis of insufficient bicuspid aortic valve, made while diagnosing the causes of intestinal tract bleeding. The article presents various diagnostic difficulties leading to the delayed determination of a correct diagnosis, resulting from the absence of symptoms of circulatory failure in the early stage of the disease and the occurrence of severe and dominant auscultatory phenomena typical for congenital aortic valve defect which effectively masked the syndromes of increased pulmonary flow. The authors discuss the role of the impact of phenotypic characteristics of the Turner syndrome, in particular a short webbed neck restricting the suprasternal echocardiographic access and the presence of psychological factors associated with a long-term illness. The importance of indirect echocardiographic symptoms suggesting partial anomalous pulmonary veins connection in the presence of bicuspid aortic valve, e.g. enlargement of the right atrium and right ventricle, and paradoxical interventricular septum motion were emphasized in patients lacking ASD, pulmonary hypertension or tricuspid and pulmonary valve abnormalities. The methodology of echocardiographic examination enabling direct visualization of the abnormal vascular structures was presented. Special attention was paid to the significance of highly sensitive echocardiographic projections: high right and left parasternal views in sagittal and transverse planes with patient lying on the side, with the use of two-dimensional imaging and color Doppler. Finally, the limitations of echocardiography resulting from the visualization and tracking of abnormal vascular structures hidden behind ultrasound non-conductive tissues were indicated, as was the role of other diagnostic modalities, such as angio-CT and/or nuclear magnetic resonance.

Wprowadzenie

Częściowo nieprawidłowy spływ żyl płucnych (partial anomalous pulmonary veins connection, PAPVD) jest anomalią rozwojową układu sercowo-naczyniowego, której przyczyną można poszukiwać zarówno w nieprawidłowej strukturze genowej, jak i w czynnikach środowiskowych. Istotą wady wydaje się przetrwanie wczesnozarodkowych połączeń między żylnym krążeniem systemowym (większy żylny spłat trzewnny) i płucnym(1) przy równoczesnym braku prawidłowego połączenia żylami płucnymi oraz lewym przedsięwzięciem serca, prawdopodobnie w następstwie zaburzenia procesu wzrastania tkanki mezenchymalnej, leżącej za sercem (dorsal mesocardial protrusion, DMP), w okolicy tzw. drugiego pola sercowego (pole tylne), w kierunku żylnej/napłynowym biegun wiercenia serca(2,3). Brak spływu krwi z jednej lub kilku żyl płucnych do krótkiej, pojedynczej wspólnej żyl płucnej – prowadzącej krew do lewego przedsięwzięcia serca jest widoczny już około 8. tygodnia życia zarodka; skutkuje to nadmiernym rozwojem naczyń spłotu trzewnego i powstaniem ich licznych połączeń z układem żyl kardi-nalnych oraz z mięśniami płuc(4). W efekcie, rozpoznając PAPVD, znajdujemy prawidłowe połączenie dwóch lub trzech żyl płucnych z lewym przedsięwzięciem, podczas gdy pozostałe żylne naczynia nie posiadają światła wewnętrznego (brak lumenizacji) lub ulegają atresji(4). Dotknięty anomalia naczyniową obszar znacznie drenaż krwi żylnej do zewnątrz żyl systemowych drogą układu żyl głównych, żyl pionowych albo poprzez zatokę wieczową. Celem pracy jest przesłanie stosowanej przez nas strategii i techniki badania diagnostycznego na przykładzie pacjentki z zespołem Turnera, współistniejącą wadą zastawki aortalnej oraz niezwykle rzadką postacią mieszanej częściowo nieprawidłowego spływu żyl płucnych.
Opis przypadku

Dziecięcioletnia dziewczynka z zespołem Turnera, obserwowana od okresu niemowlęcego z powodu umiarkowanej niedomykalności i niewielkiego stopnia zwężenia dwupłatkowej zastawki aorty, została przyjęta do kliniki gastroenterologii z powodu nawracających krwawień z przewodu pokarmowego, a następnie skierowana na kontrolne badanie echokardiograficzne do pracowni echokardiograficznej Kliniki Kardiochirurgii Dzieci WUM przed planowaną kolonoskopią w znieszczeniu ogólnym.

W przekłatkowym badaniu echokardiograficznym potwierdzono opisaną powyżej patologię aortalną, stwierdzając równocześnie, że zarówno wielkość jak lewej przedsionka i lewej komory, jak i grubość oraz kurczliwość wolnej ściany lewej komory mieściły się w zakresie normy odpowiednianej dla wieku dziecka. Uwagę badającego (WM) zwróciła jednak zaznaczona asynchronia skurczu przegrody międzykomorowej i powiększenie prawej komory serca. Jej wymiary rejestrowane w prezentacji M (w projekcji obrazującej długą oś LV) przekraczały górną granicę normy; graniczne były także wymiary prawego przedsionka i pnia płucnego, co skłaniało do podjęcia próby identyfikacji przyczyny tego stanu (ryc. 1).

Powiększenie prawej komory z towarzyszącym paradoksalnym ruchem przegrody międzykomorowej należy do obrazu objętościowego i/lub ciśnieniowego przypadku prawej komory, natomiast nie jest typowe dla przeciwdziałania lewej komory. Przyczyną powyższego stanu mogą być: zwężenie przegrody przedsionkowej, zwężenie zastawki prostokątnego oraz niewielkie stopnie zwężenia bocznych płucnych tętnic. Czołowe powody należą: istotna hemodynamicznie niedomykalność zastawki aortalnej, nieprawidłowości przegrody przedsionkowej i/lub przyczyny płucne (ART, pulmonalno-systemicznego szustu).

Case report

A 10-year-old girl with Turner syndrome, remaining under observation since infancy due to moderate insufficiency and mild stenosis of bicuspid aortic valve, was admitted to the Clinic of Gastroenterology owing to recurrent gastrointestinal bleeding, and then referred to a follow-up echocardiography examination to the echocardiographic laboratory at the Department of Children’s Cardiac Surgery of the Medical University of Warsaw before a scheduled colonoscopy under general anesthesia.

Transthoracic echocardiography confirmed the aortic pathology described above and it was stated at the same time that the size of the cavities of the left atrium and the left ventricle as well as the thickness and contractility of the left ventricular free wall were within the normal range appropriate for the child’s age. However, what attracted the examiner’s (WM) attention was paradoxical motion of the interventricular septum and enlargement of the right ventricle. It’s diameter measured in LV long axis view exceeded upper normal limits; the dimensions of the right atrium and the pulmonary trunk were also borderline, what prompted the examiner to attempt to identify the cause of this condition (fig. 1).

Right ventricular enlargement accompanied by paradoxical motion of the interventricular septum is characteristic feature of the right ventricular volume and/or pressure overload but not the left ventricular one in the course of aortic defect. Today, in spite of the widespread echocardiography, the detection of right heart enlargement caused by atrial septal defects and/or partially abnormal pulmonary venous drainage still may be delayed. Less common reasons include: hemodynamically significant tricuspid and/or pulmonary valve...
trójścielną i/lub płucnej (np. w łagodniejszych postaciach anomali Ebsteinina), nadciśnienie płucne itp.

W omawianym przypadku wykluczone strukturalne nieprawidłowości zastawek prawego serca oraz obecność ubytków w przegrodzie międzyprzedmiotkowej – także położonych brzegiźnie (np. typu sinus venosus); nie stwierdzono też echokardiograficznych cech nadciśnienia płucnego (niskie prędkości małych fal zwołanych przez zastawkę trójścielną i płucną). W trakcie analizy obrazu części przegrody międzyprzedmiotkowej położonej w sąsiedztwie ujścia żyły głównej górnej (prawidłowej, bez ubytku typu sinus venosus) wykazano poszerzenie przysercowego odcińca tej żyły oraz wyraźnie turbulentny napływ krwi do prawego przedsiomka. Nie uwidoczniło ujścia prawej górnej żyły płucnej do lewego przedsiomka, udało się natomiast zaobserwować prawą dolną oraz obydwie lewe (ryc. 2). Średnice lewych żył płucnych w prezentacji dwuwymiarowej były mniejsze niż żyły płucnej prawej dolnej, podobnie notowano mniejsze wyscignienie koloru obrazującego napływ z tych żył. Precyzyjne uwidocznienie żył płucnych i systemowych utrudniały niekorzystne warunki anatomiczne u niechętnie poddającego się badaniu dziecka z zespołem Turnera (krótki szyja, ograniczająca dostęp nadmostkowy, wdechowo ustawiona klatka piersiowa, dolegliwości brzuszne).

Zadowalającą wizualizację żyły głównej górnej uzyskano, stosując prawe projekcje przymostkowe, przy ułożeniu pacjentki na prawym boku, szczególnie w trakcie maksymalnego wydechu. Około 3 cm powyżej prawego przedsiomka uwidoczniowano w płaszczyźnie poprzecznej dość szeroką, horyzontalnie biegnącą żyłę wylaniającą się z tkanki płucnej, uchodzącą do wyraźnie poszerzającej się żyły głównej górnej w jej bliskim sąsiedztwie znajdowało się także ujście żyły nieparzystej, biegnącej w płaszczyźnie strzałkowej (ryc. 3–5). Uwagę badającego zwrócił obraz insufficiency (e.g., in milder forms of Ebstein’s anomaly), pulmonary hypertension, etc.

Structural abnormalities of the right heart valves and the presence of atrial septal defects were excluded in the described case, including those located marginally (e.g. of sinus venosus type). Also no echocardiographic features of pulmonary hypertension were found (low tricuspid and pulmonary valve regurgitant flow velocities). The image analysis of a part of the atrial septum located in the vicinity of the mouth of the superior vena cava (normal, without a sinus venosus defect) revealed a widening of the paracardiac section of the vein and clearly turbulent flow of blood into the right atrium. No entry of the right upper pulmonary vein into the left atrium was visualized, but lower right and both left pulmonary veins joining the left atrium were shown (fig. 2). In a two-dimensional presentation the diameters of the left pulmonary veins were smaller than that of the right lower pulmonary vein. Lower saturation of the color inflow from these veins was noted. Precise visualization of pulmonary and systemic veins was hampered by adverse anatomical conditions in a child with Turner syndrome (short neck restricting suprasternal access, inspiratory position of the thorax, abdominal discomfort) who reluctantly engaged in the examination.

Satisfactory visualization of the superior vena cava was achieved by using right parasternal projections with the patient positioned laterally on the right side, especially during maximal exhalation. About 3 cm above the right atrium a rather wide, horizontally extending vein was revealed in the transverse plane. It emerged from the lung tissue and ran to the superior vena cava which expanded visibly at that level. Located in its close proximity was the opening of the aygos vein which ran in the sagittal plane (figs. 3–5). The examining physician’s attention was drawn to the
lewej żyły ramiennowo-głowowej, również poszerzonej, ze zwiększonym przepływem. Poszukując przyczyn, z wykorzystaniem wysokich lewych projekcji przymostkowych, w pozycji pacjentki na lewym boku, zaobserwowano pionową żyłę o średnicy około 8 mm, z turbulentnym przepływem, uchodzącą od dołu do lewej żyły ramiennowo-głowowej. Nie udało się uwidocznić początkowego odcinka tego naczynia – był przesłonięty tkanką płucną (ryc. 6, 7).

Rozpoznano wstępnie rzadki wariant mieszanego częściowo nieprawidłowego spływu żyl płucnych: górnej prawej, uchodzącą do żyły głównej górnej, oraz górnej lewej (left upper pulmonary vein, LUPV), uchodzącej poprzez przetwarzaną pionową do lewej żyły ramiennowo-głowowej. Nieprawidłowości po stronie prawej nie budziły wątpliwości, natomiast niejasne pozostawały szczegóły anatomiczne lewych żył płucnych, ponieważ w pierwszej fazie badania uwidoczniło ujście dwóch żył do lewego przedścianka, co sugerowało prawidłowy obraz lewych żył płucnych. Obecność dodatkowego kanału żylnego po lewej stronie mogła być wyjaśniona nietypowym drenażem z lewego płuca (większa liczba żył płucnych, z których górne uchodzą dalej od prawidłowo), obecnością nietypowo przebiegającej, większej niż zazwyczaj żyły systemowej (np. żyła nieparzysta dodatkowa, żyła międzyżebrowa górna lewa) image of the left brachiocephalic vein, also enlarged and showing increased flow. During the search for the cause with the use of high left parasternal projections with the patient positioned laterally on the left side, a vertical vein of ca. 8 mm diameter and with a turbulent flow, running from the bottom to the left brachiocephalic vein was observed. The initial segment of the vessel not revealed due to being obstructed by pulmonary tissue (figs. 6, 7).

The presumptive diagnosis of a rare variety of mixed partial abnormal pulmonary venous drainage was made: the right upper pulmonary vein into the superior vena cava, and the left upper pulmonary vein (LUPV) through persistent vertical vein to the left brachiocephalic vein. The right sided anomalies did not raise any doubts. However, what remained vague were anatomical details of left pulmonary veins, as in the first phase of the examination the opening of two veins to the left atrium was revealed, which suggested that the image of the left pulmonary veins was correct. The fact that the additional venous channel on the left side could be explained by an unusual drainage from the left lung (a greater number of pulmonary veins from which the upper ones exit incorrectly), the presence of an abnormally running and larger than usual systemic vein (for example, accessory azygos vein, top left intercostal

Ryc. 5. Projekcja przymostkowa prawa wysoko podłużna. Żyła główna górna uwidoczniiona w osi długiej. W odległości około 3 cm od ujścia do prawego przedścianka (RA) żyła główna górna (SVC) jest wyraźnie poszerzona (#), natomiast odcinek w bezpośrednim sąsiedztwie ujścia do prawego przedścianka ma prawidłową średnicę. Oznaczenia dodatkowe: LA – lewy przedścianek, RPA – prawa tętnica płucna

Fig. 5. High right longitudinal parasternal projection. Superior vena cava visualized in the long axis. At a distance of about 3 cm from the exit to the right atrium (RA) superior vena cava (SVC) is significantly widened (#), and the section in the immediate vicinity of the exit to the right atrium has a normal diameter. Additional markings: LA – left atrium, RPA – right pulmonary artery

Ryc. 6. Projekcja przymostkowa lewa wysoko. Kolorem niebieskim kodowany jest przepływ w aorcie zstępującej (AoD), kolorom czerwonym – skierowany ku górze przepływ w znajdującej się na lewo od aorty żyły uchodzącej do lewego kąta żylnego (V). Oznaczenie dodatkowe: LB – lewa żyła ramiennowo-głowowa

Fig. 6. High left parasternal projection. Blue color is used to mark the flow in the descending aorta (AoD), red color to mark the upward movement in the vein located leftward from the aorta which drains into the left venous angle (V). Additional markings: LB – left brachiocephalic vein

Ryc. 7. Niewielkie odchylenie głowicy na lewo uwidoczniła bardziej obwodowy odcinek żyły pionowej (V); biegnie ona z głębi tkanki płucnej, powyżej lewej gałęzi tętnicy płucnej (LPA). Oznaczenie dodatkowe: LA – lewy przedścianek serca

Fig. 7. A slight deviation of the transducer to the left reveals a more peripheral section of the vertical vein (V) which runs from the depths of the lung tissue, above the left pulmonary artery (LPA). Additional marking: LA – left atrium
Mixed partial anomalous pulmonary venous drainage coexistent with an aortic valve abnormality –
an analysis of ultrasound diagnostics in a 10-year-old girl with Turner syndrome

albo istnieniem żylnego połączenia pomiędzy układem żył
plucnych i systemowych (levoatrial cardinal vein lub żyłne
naczynie łącące LUPV z lewą żyłą ramienno-głowową). Rozstrzygnięcie wątpliwości było ważne dla ustalenia dalszego postępowania, a przede wszystkim wskazania do korekcji chirurgicznej.

Cześciowo nieprawidłowy spływ żył płucnych, obejmujący stosunkowo niewielką część miąższu płuc (zwykle jedna nieprawidłowo uchodzącą żyłą lub większa liczba żył małych), nie powoduje znaczących następstw hemodynamicznych wymagających leczenia operacyjnego; w przypadku nieprawidłowego spływu z bardziej rozległych obszarów przeciek staje się istotny hemodynamicznie i wymaga operacji naprawczej. Ze względu na nieprawidłową funkcję zastawki aortalnej nie było możliwe echokardiograficzne obliczenie stosunku przepływów Qp:Qs – ważnego w ustalaniu wskazań kardiochirurgicznych. Należy podkreślić, że następstwa przeciężenia objętościowego prawej komory mogą być częściowo maskowane przez niedomykalność aortalną, powodującą dodatkowe obciążenie objętościowe lewej komory. Zatem także nasilenie zaburzeń kinetyki przegród międzykomorowej nie mogło być wystarczającym wskaźnikiem wielkości przecieku.

Maloinwazyjna angiotomografia komputerowa (computed
tomography angiography, angio-CT), a także reo-
rzony magneticzny (magnetic resonance, MR) układu ser-cowo-naczyniowego są wolne od ograniczeń związanych z obecnością powietrznej tkanki płucnej oraz odbijających ultradźwięki struktur kostnych; ponadto umożliwiają precyzyjną trójwymiarową rekonstrukcję struktur naczyniowych i serca, a także obliczenie wzajemnego stosunku przepływów płucnego oraz systemowego.

W opisywanym przypadku wykonane badanie angio-CT (ryc. 8, 9) potwierdziło nieprawidłowe ujście prawej górnej żyły płucnej do żyły głównej górnej. Rozstrzygnęło także wątpliwości dotyczące anatomii lewych żył płucnych (ryc. 10). Okazało się, że spływ żylny z lewego płucu odbywa się trzema żyłami: dolna i środkowa uchodzą prawidłowo do lewego przedsonika, podczas gdy górna, wyraźnie mniejsza od pozostałych, drenaż poprzez żyłę pionową do lewego kąta żylnego. Warto zwrócić uwagę, że na zdjęciu przeglądowym klaki pierświołkowej wykonanym w celu właściwego ustalenia obszaru, który miał być obiekt badaniem, uwidoczniło zarówno nieprawidłowe unaczezenie prawego płucu sugerujące ujście prawej górnej żyły płucnej do żyły głównej górnej, jak i cień odpowiadający pionowo biegającej żyłce uchodzącą do lewej żyły ramienno-głowowej.

Oceniono, że niewielki rozmiar nieprawidłowo uchodzącej lewej żyły płucnej klasyfikuje przeciek systemowo-plucny jako nieistotny hemodynamicznie i uzasadnia pristine postępowania wyckującego. Istotnymi argumentami za odstąpieniem od operacji chirurgicznej były również świadomość dużych trudności technicznych, które napałkali próbę korekcji wady, a także realne prawdopodobieństwo pogorszenia funkcji zastawki aorty w przyszłości. Esencjonalna konieczność leczenia operacyjnego tej zastawki musiałaby się wiązać z koniecznością ponownego otwarcia

Partial anomalous pulmonary venous drainage, comprising a relatively small part of the lung parenchyma (usually one incorrectly connecting vein or a larger number of small veins) does not cause significant hemodynamic consequences that require surgery. In case of anomalous drainage from more extensive areas, the shunt becomes hemodynamically significant and requires a corrective surgery. Due to the abnormal function of the aortic valve it was impossible to carry out echocardiographic calculation of Qp:Qs flow ratio which is important in making indications for cardiac surgery. It should be emphasized that the implications of right ventricular volume overload may be partially masked by aortic regurgitation, resulting in an additional volume burden on the left ventricle. Thus, the severity of kinetic disorders of the interventricular septum could not be a sufficient indicator of the size of the leak.

Minimally invasive computed tomography angiography
(angio-CT) and magnetic resonance (MR) of the cardiovascular system are free from the constraints associated with the presence of aerated lung tissue and bone structures reflecting ultrasound. Moreover, they allow precise three-dimensional reconstruction of the heart and vascular structures, and the calculation of the mutual relationship of pulmonary and systemic flows.

In the described case, the angio-CT examination (figs. 8, 9) confirmed the abnormal connection of the right upper pulmonary vein to the superior vena cava. It also resolved the doubts concerning the anatomy of the left pulmonary veins (fig. 10). It turned out that the venous drainage from the left lung occurred through three veins: the bottom and middle ones running correctly into the left atrium while the upper, considerably smaller than the others, drained via a vertical vein into the left venous angle. It is worth noting that the review of the chest X-ray taken for the purpose of correct determination of the area to be examined, revealed both abnormal vascularity of the right lung, which suggested that the right upper pulmonary vein was connected to the superior vena cava. It also revealed a shade corresponding to the vertically extending vein that connected to the left brachiocephalic vein.

It was estimated that the small size of the abnormally connecting left pulmonary vein classified the systemic-pulmonary shunt as hemodynamically insignificant and justified the adoption of the watchful waiting approach. Important arguments for relinquishing the surgery included also the awareness of major technical difficulties that would occur in any attempt to correct the defect, as well as a possibility of the deterioration of the aortic valve function in the future. A potential necessity for surgical treatment of the valve would be associated with reopening the chest in the
Omówienie

Częściowo nieprawidłowy spływ żyl płucnych należy do rzadkich anomalii wrodzonych, stwierdzanych w 0,2–0,7% badań autopsjowych[7,8]. Częściej dotyczy płuc prawego (85–88%), rzadziej lewego (9–10%), sporadycznie obu płuc (2–2,5%). W przeważającej liczbie przypadków wadzie towarzyszy ubytek w przegrodzie międzyprzedsionkowej typu sinus venosus (60–65%) lub ASD2/PFO (20%)[9–15]. U 15–20% pacjentów nie stwierdza się komunikacji międzyprzedsionkowej. W grupie chorych z zespołem Turnera PAPVD odnotowywany jest z częstością do 13% – najczęściej ma postać mieszaną bez ubytku w przegrodzie międzyprzedsionkowej[16–22].

Przedstawiony przypadek stanowi nasz kolejny[23,24] dobry przykład licznych trudności mogących się pojawić zarówno w diagnostyce, jak i w postępowaniu z pacjentami, u których stwierdzono anomalie żyl płucnych. W sytuacji, gdy stosunkowo niewielka część spływu płucnego drenaż nieprawidłowo, objawy krążeniowe są niemilarne, a więc trudne do future if the patient was operated on at present. In the absence of significant symptoms that could be attributed to abnormal drainage of pulmonary veins, the child was stated eligible for further observation.

Discussion

Partial anomalous pulmonary venous drainage is among rare congenital anomalies found in 0.2–0.7% of autopsy studies[7,8]. It affects the right lung (85-88%) rather than the left one (9-10%), and occasionally affects both lungs (2-2.5%). In the majority of cases the defect is accompanied by a sinus venosus defect of the septum (60-65%) or ASD2/PFO (20%)[9-15]. 15-20% of patients show no evidence of interseptal communication. PAPVD is diagnosed in up to 13% of patients with Turner syndrome – most commonly it takes a mixed form without the atrial septal defect[16-22].

The presented case is another[23,24] good example of many difficulties which may arise both in diagnostics and the management of patients diagnosed with pulmonary venous anomalies. In a situation where a relatively small part of the pulmonary connection drains abnormally, the circulatory symptoms are not intensified and therefore are hard to
wychwycenia w badaniu klinicznym. Typowe zjawiska osuchove: tętnienie i zniekształcenie okolicy przedsercowej, szmer wyrzutowy nad tętnicą płucną, sztymowe rozdwojenie II tonu serca nad tętnicą płucną pojawiają się dopiero przy dużym przecieku. W naszej pacjentce stwierdzano szmer wyrzutowy u podstawy serca poprzedzony klikiem wczesnoskurczowym oraz cichy szmer rozkurczowy promieniujący do koniuszka. Obecność tych objawów wyjaśniano dotychczas dwupalatkową zastawkę aorty, rozpoznana echokardiograficznie już we wczesnym dzieciństwie. Nieprawidłowości wykazane w badaniu radiologicznym klątki piersiowej i elektrokardiogramie, związane z przeciением objętośćowym prawej komory i zwiększonym przepływem płucnym, także zależą od stopnia nasilenia przecieku, w łagodniejszych postaciach nie są zatem uchwytne. Analizując dokumentację medyczną, nie natrafiliśmy na informację o wykonaniu badania radiologicznego klątki piersiowej ani elektrokardiogramu.

Echokardiografia transtorakalna to podstawowa metoda diagnostyki strukturalnych wad serca, ale rozpoznanie anomalii żył płucnych u małego, niespokojnego dziecka jest bardzo trudne. Główną przeszkodą stanowi obecność nadmiernie powietrznej tlątki płucnej, zazwyczaj uniemożliwiającej przesłuchanie żyły głównej górnej na całym przebiegu i utrudniającej uwidocznienie ujść żył płucnych do lewego przedsionka. Dodatkowo u dziecka z zespołem Turnera i krótką, pletwiającą szyją ograniczony jest dostęp nadmostkowy, pozwalający na dobry wgląd w struktury naczyńowe śródpierścia górnego. W ocenie przegrody międzyprzedściennej, żyły głównej górnej i prawych żył płucnych bardzo przydatny jest dostęp prawy przymostkowy, przy ułożeniu pacjenta na prawym boku, szczególnie w trakcie głębokiego wydechu, jednak takie warunki można uzyskać jedynie u starszych pacjentów, zdolnych do spełniania poleceń i akceptujących niedogodności związane z długotrwałym badaniem. W omawianym przypadku trudno było nawiązać optymalną współpracę z cierpiącym (z powodu bólu brzucha) dzieckiem, zmęczonym kolejnymi uciążliwymi badaniami.

W przeważającej większości przypadków nieprawidłowy spływ prawych górnych żył płucnych współistnieje z ubytkiem w przegrodzie międzyprzedściennej typu sinus venosus. Izolowane ujście wyłącznie prawej górnej żyły płucnej do żyły głównej górnej jest znacznie rzadsze. detect in a clinical examination. Typical auscultatory phenomena, such as overactive, deformed precordium, ejection murmur above the pulmonary artery, rigid split of the second heart sound above the pulmonary artery, are present only in case of the large shunt. In the examined patient the ejection murmur was diagnosed at the base of the heart and it was preceded by a protosystolic click and quiet diastolic murmur radiating towards the apex. The presence of these symptoms has been explained so far with the bicuspid aortic valve, diagnosed by echocardiography already in early childhood. Abnormalities revealed in the chest X-ray and electrocardiogram, which are associated with the right ventricular volume overload and increased pulmonary blood flow, also depend on the severity of the shunt and thus are not perceptible in benign forms. No information on a conducted radiological examination of the chest or electrocardiogram was found during the analysis of medical records.

Transthoracic echocardiography is a primary diagnostic method of structural heart defects, but the diagnosis of pulmonary vein anomalies in a young, uncooperative, often crying and agitated child is very difficult. The main obstacle is the presence of exceedingly aerated lung tissue, usually making it impossible to trace the superior vena cava throughout its entire course and impeding the visibility of the entries of the pulmonary veins into the left atrium. Moreover, in a child with Turner syndrome and a short, webbed neck, there is limited suprasternal access which normally enables a good insight into the vascular structures of the upper mediastinum. What is very useful in the assessment of the atrial septum, the superior vena cava and right pulmonary vein is the right parasternal access with the patient positioned on the right side and exhaling deeply, but such conditions can be obtained only in older patients, able to follow commands and accepting the inconvenience of the long duration of the examination. In the described case, it was difficult to establish the optimal cooperation with the suffering (because of abdominal pain) child, tired with successive burdensome examinations.

In most cases the abnormal flow of right upper pulmonary vein coexists with sinus venosus atrial septal defect. An isolated connection of the upper right pulmonary vein to the superior vena cava occurs much more rarely.

Ryc. 10. Uproszczony schemat anatomii żył płucnych (autor MAK). Oznaczenia: LA – lewy przedściennek, RA – prawy przedściennek serca, RIPV – prawa dolna żyła płucna, RUPV – prawa górna żyła płucna, LAPV – lewa dodatkowa żyła płucna, V – żyła pionowa, VBC – żyła ramienno-głowowa, SVC – żyła główna górna, LUPV – lewa górna żyła płucna, LIPV – lewa dolna żyła płucna

Fig. 10. A simplified diagram of the pulmonary veins anatomy (author: MAK). Markings: LA – left atrium, RA – right atrium, RIPV – right inferior pulmonary vein, RUPV – right upper pulmonary vein, LAPV – left additional pulmonary vein, V – vertical vein, VBC – brachiocephalic vein, SVC – superior vena cava upper, LUPV – left upper pulmonary vein, LIPV – left inferior pulmonary vein
In the absence of significant features of right ventricular volume overload, a visualization of the normal morphology of the atrial septum and particularly its upper part may encourage the abandonment of direct visualization of the course and connection of each pulmonary vein. In the described case, an additional diagnostic trap was the presence of two left pulmonary veins running into the left atrium. Coming across such an image is usually an indication to identify a correct drainage of left pulmonary veins. This observation of a vertical venous channel directly adjacent to the left lung and running into the left venous angle usually requires an extremely careful analysis of the images obtained from the zygomatic indentation and/or high left parasternal accesses. In the described case, because of the patient’s neck anatomy and her negative attitude towards the examination, the suprasternal access was greatly limited, which significantly reduced the chance to visualize abnormal veins.

Another factor which may influence the delay in the PAPVD diagnosis is a gradual, slow build-up of the right ventricle volume overload symptoms. The authors did not have descriptions or pictorial documentation of the previously performed echocardiograms. The medical history revealed that no size abnormalities of the right atrium, right ventricle or pulmonary artery had been reported to date, and there were also no anomalies of the ventricular septum kinetics. It is highly probable that in the earlier period the severity of overload irregularities was much smaller, so they were not perceptible in echocardiography. It is worth noting that it was the finding of the features of anatomically unexplained volume overload of the pulmonary circulation that became the reason for a more in-depth image analysis which determined the cause of this condition.

Finally, it should be noted that the correct interpretation of the echocardiographic image could be hindered by the examiner’s focus on the previously identified irregularities associated with the bicuspid, non-closing aortic valve. Some features of this anomaly, such as the left ventricular volume overload associated with aortic regurgitation, which can prevent the paradoxical motion of the ventricular septum, and the widening of the ascending aorta, causing the displacement of the superior vena cava, could have a masking effect on the PAPVD symptoms.

In conclusion, the authors would like to emphasize that the currently widely available ultrasound diagnostics combined with the examining physician’s thoroughness may be considered a valuable tool for the initial detection of systemic and pulmonary venous anomalies in the mediastinal area in children.

Conflict of interest

Authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.
Piśmiennictwo/References

1. van den Berg G, Moorman AF: Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview. PLoS One 2011; 6: e22055.

2. Bleyl SB, Saijoh Y, Bax NA, Gittenberger-de Groot AC, Wisse LJ, Chap-
3. Anderson RH, Brown NA, Moorman AFM: Development and structures of the venous pole of the heart. Dev Dyn 2006; 235: 2–9.

4. Douglas YL, Jongbloed MR, Deruiter MC, Gittenberger-de Groot AC:
5. Festa P, Ait-Ali L, Cerillo AG, De Marchi D, Murzi B: Magnetic resonance di-

6. Uçar T, Fitoz S, Tutar E, Atalay S, Uysalel A: Diagnostic tools in the pre-

7. Brown DW: Pulmonary venous anomalies. In: Lai WW, Mertens LL, Co-

8. Healey JE Jr: An anatomic survey of anomalous pulmonary veins: their clinical significance. J Thorac Surg 1952; 23: 433–444.

9. Hijii T, Fukushima H, Hara T: Diagnosis and management of partial anom-

10. Ammash NM, Seward JB, Warnes CA, Connolly HM, O’Leary PW, Dan-

11. Kafta H, Mohiaddin RH: Cardiac MRI and pulmonary MR angiography of sinus venous defect and partial anomalous pulmonary venous return in cause of right undiagnosed ventricular enlargement. AJR Am J Roentgenol 2009; 192: 259–266.

12. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS: Ultrafast three-di-

13. Alsoufi B, Cai S, Van Arsdell GS, Williams WG, Caldarone CA, Coles JG: Outcomes after surgical treatment of children with partial anomalous pulmonary venous connection. Ann Thorac Surg 2007; 84: 2020–2026.

14. Misawa Y, Hasegawa T, Horimi H, Kuramatsu T, Shiraishi H, Yanagi-

15. Sakurai H, Tamaki S, Hara S, Nishizawa T, Murayama H, Katoh N et al.: [An operative case of bilateral partial anomalous pulmonary venous re-

16. Moore JW, Kirby WC, Rogers WM, Poth MA: Partial anomalous pulmo-

17. van Wassenaer AG, Lubbers LJ, Losekoot G: Partial abnormal pulmonary venous return in Turner’s syndrome. Eur J Pediatr 1998; 148: 101–103.

18. Ho VB, Bakalov VK, Cooley M, Van PL, Hood MN, Burklow TR et al.: Major vascular anomalies in Turner syndrome: prevalence and magnetic resonance angiographic features. Circulation 2004; 110: 1694–1700.

19. Haramati LB, Moche IE, Rivera VF, Patel PV, Heyneman L, McAdams HP et al.: Computed tomography of partial anomalous pulmonary venous connection in adults. J Comput Assist Tomogr 2003; 27: 743–749.

20. Prandstraller D, Mazzanti L, Picchio FM, Magnani C, Bergamaschi R, Perri A et al.: Turner’s syndrome: cardiologic profile according to the different chromosomal patterns and long-term clinical follow-up of 136 nonpreselected patients. Pediatr Cardiol 1999; 20: 108–112.

21. Mazzanti L, Lovato L, Prandstraller D, Scarrano E, Tamburrino F, Montanari F et al.: Turner syndrome strategies to improve care outcomes – cardiac evaluation using new imaging techniques. Pediatr Endocrinol Rev 2012; 9 Suppl 2: 701–709.

22. Bechtold SM, Dalla Pozza R, Becker A, Meidert A, Döhlemann C, Schwarz HP: Partial anomalous pulmonary vein connection: an underes-

23. Mądry W, Karolczak MA: Totally anomalous pulmonary venous drain-

24. Mądry W, Karolczak MA: Ultrasound diagnosis of pulmonary sling with proximal stenosis of left pulmonary artery and patent arterial duct. J Ultron-

25. J Ultrason 2014; 14: 94–103

103