A novel approach for pathogen reduction in wastewater treatment

Dhevagi Periasamy* and Anusuya Sundaram

Abstract

Many sewage waste treatment systems are aiming for complete pathogen removal which necessitates search for novel approaches that does not harm the environment. One such novel approach is exploring the possibilities of bacteriophages for pathogen removal. Hospital wastewater was collected from different locations of Tamil Nadu and used for the study. The total heterotroph and total coliform population ranged from 1.6×10^5 to 8.3×10^6 per mL and from 1.2×10^3 to 1.6×10^3/100 mL of sample respectively. Higher frequency of antibiotic resistant E. coli, Pseudomonas sp. Streptococcus sp and Bacillus spp were observed in all the places, which clearly indicated the extent of pollution. All the samples had specific phages against E. coli and none of the samples had phages against MTCC culture. E. coli specific phage was isolated and the population of phage required for effective killing of E. coli has been standardized as 3×10^4 pfu/mL of lysate. The inoculation resulted in 100% removal of pathogen from sewage water within 14 hours of incubation.

Keywords: Hospital wastewater, Pathogen reduction, Specific phage, Wastewater treatment

Introduction

From the early 1970 to about 1990s, wastewater treatment objectives were based primarily on aesthetic and environmental concerns. At present the earlier objectives of reduction and removal of BOD, suspended solids, and pathogenic microorganisms continued, but at higher levels. Several developed and developing countries embarked on programmes to reduce waterborne multidrug resistant bugs (MDR). Presently R-plasmid carrying bacteria are a major cause of hospital borne infections. Indiscriminate release of hospital wastewater in the sewage system paves way for the entry of Multidrug Resistant bacteria in the sewage.

The greatest fear was the transfer of resistance to pathogens like S. typhi, which came true in 1972 resulting in an epidemic of chloramphenicol - resistant S. typhi and in 1992 another epidemic with simultaneous resistance for chloramphenicol, co-trimoxazole and ampicillin [1]. The main cause for the emerging MDR in sewage is heavy use of antibiotics and indiscriminate release of hospital wastewater into public sewage [2,3].

The dangers of infectious hospital waste received a great deal of attention in the last decade and main emphasis was given to hospital solid waste; but liquid waste released into the sewage has not received much attention. Mandatory monitoring of water quality and suitable disinfection measures should be done on a regular basis and not as an ad hoc practice.

Very recently the ability of phages to control bacterial population has extended from the fields of medicine, agriculture, aquaculture, food industry into wastewater treatment also. Commercial production of a phage to kill E. coli O157: H7 in manure and to remove pathogen from carcasses and food preparation areas is already underway [4]. So there is the potential application of phages in wastewater treatment system to improve effluent quality and sludge disposal into the environment. Hence the following study has been initiated to explore the possibilities of utilizing the specific phages as biocontrol agents against the potential pathogens in hospital wastewater.

Materials and methods

Characterization of wastewater

Hospital wastewater samples were collected from eight locations of Tamil Nadu and subjected to characterization to see the magnitude of pollution. The samples were collected from the following places viz., Kovai Medical Centre & Hospital, Coimbatore; Government Hospital, Coimbatore; Government Hospital, Erode; Government Hospital, Salem;
Bacteriophages were maintained as stock.

...added to lyse the remaining cells. Thus prepared bacteria were recovered, to one drop of chloroform was spun at 4000 rpm for 10 min at 4°C, and the supernatant was transferred to sterile centrifuge tube. Tubes were of SM buffer was added to the plate and gently scrape the soft agarose into sterile centrifuge tube. Tubes were also plated in specific media to isolate the potentially dreadful pathogens [6] and subjected to further characterization to identify the organisms as per the standard procedures [7,8].

The antibiotic resistance of the strains was tested using disk diffusion test [9]. For the estimation of the MDR bacteria, 100 μl diluted samples were spread over MacConkey agar plates supplemented with 30 μg/mL of chloramphenicol and 20 μg/mL of gentamycin.

Isolation of specific bacteriophages against the target pathogens

Enumeration was done to increase the number of phage virions in hospital waste water using phage decca double strength broth using *E. coli* as host cells. Phages in the filtrate were determined by seeding - agar overlay method [10]. When confluent lysis has occurred, 5 mL of SM buffer was added to the plate and gently scrape the soft agarose into sterile centrifuge tube. Tubes were spun at 4000 rpm for 10 min at 4°C, and the supernatant was recovered, to that one drop of chloroform was added to lyse the remaining cells. Thus prepared bacteriophages were maintained as stock.

Characterization of the identified bacteriophages

Bacteriophages were titrated with their respective dilutions to know the number of plaques formed for their respective host and results were observed. Multiplicity of infection test is essential for fixing the time of treatment, dose of the phage dilutions to be used for wastewater disinfection [10]. Bacteriophages are highly specific and to check the specificity of the phages, few cultures were obtained from MTCC, Chandigarh and tested against the phages isolated from sewage (Table 1).

Utilization of the bacteriophages as biocontrol agents against potential pathogen in sewage water

Enumerated bacteriophages were tested for the biocontrol efficacy in controlling the target pathogens. The test organism selected for the study was *E. coli*. The target pathogens were inoculated separately as well with specific bacteriophages and time course study was done to know about the survival rate of pathogens.

The selected organisms were inoculated into Lactose broth and sewage water. Since hospital wastewater is going to end up with sewage system, sewage water collected from Ukkadam in Coimbatore was used for the study. Sewage water is sterilized before introducing the target organism which helps to know the influence of other native organisms during the phage treatment. The following are the treatments used for the study:

- T1 - (Control) LB with *E. coli*
- T2 - Sewage water with *E. coli*
- T3 - Sterile sewage water with *E. coli*
- T4 - T1 and *E. coli* specific bacteriophages
- T5 - T2 and *E. coli* specific bacteriophages
- T6 - T3 and *E. coli* specific bacteriophages

Sewage water was collected and filtered, then sterilized in an autoclave to free the native organism. Sewage sample (100 mL) was taken in Din thread screw bottles, sterilised and inoculated with *E. coli* at @ 10^8 / ml. After inoculation, cell count of the inoculated pathogen was assessed to test the phage efficacy. This helps to fix the phage concentration during the scale up process. If the colony forming units exceeded 300; it is denoted as uncountable numbers (UC).

MTCC code	Name of the organism
86	*Serratia marcescentis*
98	*S. typhimurium*
3917	*Salmonella typhi*
740	*Staphylococcus aureus*
1302	*Escherichia coli K-12*
1303	*Escherichia coli B*
1588	*Escherichia coli CSh 57*
1650	*Escherichia coli KL 16*
1652	*Escherichia coli DH5 a*
1748	*P. fluorescens*
310	*S. cerevisiae*
7299	*Proteus vulgaris*
7664	*E. aerogenes*
Serial dilutions were carried up to 10 dilutions. From the serially diluted samples, 0.1 mL of pathogenic cultures were added to sterile plates containing LB (with sewage extract and without sewage extract) and incubated at 37°C for 24 hours. The pathogen survival was studied at every 1 hour interval and upto 14 hours the survival was assessed.

Developing an eco-friendly bioconsortium for augmenting the pathogen in sewage water

The \textit{E. coli} and \textit{Salmonella typhi} organisms were inoculated into sewage water. Sewage water collected from Ukkadam was used for the study. The following are the treatments

- **T1** - Sewage water inoculated with \textit{E. coli} and \textit{E. coli} specific bacteriophages
- **T2** - Sewage water inoculated with \textit{S. typhi} and \textit{S. typhi} specific bacteriophages
- **T3** - Sewage water inoculated with \textit{E. coli} and \textit{Salmonella typhi} specific bacteriophages
- **T4** - Control

After filtration 100 ml of sewage sample was taken in Din thread screw bottles and sterilized. After cooling it was inoculated with \textit{E. coli} at 10^9 / ml and \textit{Salmonella typhi} at 10^3 / ml. After inoculation the pathogen survival was assessed at 14 hours.

Results and discussion

Samples were collected from various Hospital wastewater and target microorganisms were isolated and identified.

Characterization of wastewater

Physico chemical characteristics of the collected samples were analyzed and the results are presented in Table 2. All the samples collected had acceptable level of pH, but high COD level and very low dissolved oxygen ranging from 2.14 to 4.82 mg/L was recorded.

Physiochemical parameters studied revealed that the hospital wastewater though show some parameters within the WHO standards, other parameter, whose values are higher than the WHO acceptable limits. Therefore, contamination of the receiving environment (water, soil and air) due to the discharged hospital wastewater, which could probably be hazardous to human health. In our country 70% of the water is seriously polluted and 75% of illness and 80% of the child mortality is attributed to water pollution [11,12]. The improper management of water systems may cause serious problems in availability and quality of water [13]. The healthy nature of underground water has also been altered [14-16]. Aluyi \textit{et al.} [17] investigated the bacteriological and physiochemical qualities of hospital wastewater and observed the same results as that of the present study.

Table 2 Physicochemical characterization of hospital wastewater

S.No	Name of the hospital	pH	TSS (mg/L)	DO (mg/L)	BOD (mg/L)	COD (mg/L)
1	Kovai medical centre & hospital, Coimbatore	6.89	147.0	2.40	56.47	658.74
2	Government hospital, Coimbatore	6.48	138.2	4.82	124.4	724.82
3	Government hospital, Erode	7.40	85.6	2.42	132.8	623.47
4	Government hospital, Salem	6.42	148.4	3.68	146.4	542.21
5	Government hospital, Theni	8.12	65.8	4.22	84.6	548.32
6	Government hospital, Trichy	7.98	104.9	3.87	92.8	627.81
7	Government hospital, Chennai	8.25	198.8	2.14	248.3	849.92
8	CMC hospital, Vellore	8.45	124.3	4.62	148.9	728.24
The samples were also plated in specific media to isolate the potentially dreadful pathogens using the following separation outline (Figure 1).

The bacterial isolates were isolated and characterized *Klebsiella, Pseudomonas, Escherichia, Serratia, Staphylococcus, Streptococcus, Proteus* and *Bacillus*. *Klebsiella, Pseudomonas* and *Serratia* were the most frequently distributed isolates in the hospital wastewater (Table 4).

The MDR problem encountered in hospitals is mainly due to Gram-negative bacteria. Hence for the estimation of the MDR bacteria, 100 μl diluted samples were spread over MacConkey agar plates supplemented with 30 μg/mL of chloramphenicol and 20 μg/mL of gentamicin. Chloramphenicol and gentamicin were selected because they represent two of the commonly used antibiotics over the last thirty years and also have greater *invitro* stability. Differentiation as lactose fermenter and non-lactose fermenter could be made on MacConkey agar for MDR isolates. A minimum of three colonies with similar morphology were selected individually and subjected to identification by

S.No	Name of the hospital	Total heterotrophic bacterial count (SPC/TPC)	Total coliform count(TCC)	Fecal coliform count (FCC)
1	Kovai medical centre and hospital, Coimbatore	6.7 × 10⁵	1.6 × 10³	16.06 × 10¹
2	Government hospital, Coimbatore	8.3 × 10⁶	0.92 × 10³	24.28 × 10¹
3	Government hospital, Erode	2.6 × 10⁵	1.6 × 10³	2.51 × 10⁴
4	Government hospital, Salem	8.8 × 10⁴	0.92 × 10³	2.56 × 10⁴
5	Government hospital, Thanjai	1.9 × 10³	1.2 × 10³	1.1 × 10⁴
6	Government hospital, Trichy	3.6 × 10⁵	1.6 × 10³	3.2 × 10⁴
7	Government hospital, Chennai	8.6 × 10⁵	> 2.4 × 10³	26.06 × 10¹
8	CMC hospital, Vellore	1.6 × 10⁵	1.6 × 10³	1.8 × 10⁴

Value represents mean of three replications.

Figure 1 Separation outline of target pathogens.
standard biochemical methods and also subjected to drug susceptibility by the disk diffusion technique [21].

Simultaneous resistance to Ciprofloxacin, Tetracycline, Streptomycin, Kanamycin, Ampicillin, Erythromycin, Penicillin, Cephalosporin and Rifampicin formed the common MDR pattern (Table 5).

Some hospital wastewater samples especially, government hospital, Coimbatore showed very high percentage of MDR bacteria. The antimicrobial selective pressure through indiscriminate use of antibiotics has played a significant role in enriching the MDR R+ strains in the hospital wastewater. A sizeable number of hospital strains have become resistant simultaneously to most of the available antibiotics [22,23]. Low loads of liquid waste generated due to scarcity of water may also be one of the reason for increased population. The worst fear apprehended is the transfer of such resistance to bacterial pathogens causing infections in the community. The present observations suggest that hospital effluents can be a potential health hazard by adding MDR bacteria to a city sewage pool.

Isolation of specific bacteriophages for target pathogens
Host specificity is central to selection of suitable phages for wastewater treatment applications [24]. Success would depend on accurate identification of problem, effective isolation and unbiased enrichment of phage and ability of phage to penetrate flocs and remain infective in insitu condition. The target bacteria used is E. coli (Table 6) and phages specific to E. coli was selected by agar overlay method.

To determine the plaque formation, double layer agar plates were prepared as it is essential for the differentiation between formation of clear plaques and turbid plaques. Many bacteriophages require divalent cations such as Mg++ and Ca++ for attachment to bacterial host cells. Hence it is essential to grow in bacterial growth medium with 10 mM MgSO4 and 0.2% Maltose. During the transport of these ions and carbons into the cells through Porin, phage particles also can enter the cells. Magnesium and Maltose facilitates the entry of phage particles into the cell [25].

Plaque formation was observed due to the inhibition of growth and lyses of the phage infected cells in the bacterial Lawn. Based on the ability of bacteriophages to lyse bacterial cells, phages were grouped into host sensitive/ resistant phages. If specific phages infected and lysed the host cells, a spontaneous clear plaque variant was formed. The clear plaque variant was purified several times and on further infection of the host cells [26].

Table 4 Isolation of microorganisms using specific media

S.No	Samples	Colony forming units X 10^2 /mL of sample										
		E. coli	S. sp	Ps. sp	K. sp	Staph. sp	Strep. sp	Proteus sp	Bacillus spp	Azotobacter x 10^2	Yeast x 10^2	
1	KMCH, Cbe-3	84	32	1	-	-	-	-	28	24	-	4
2	GH, Cbe-3	102	14	4	-	-	-	-	48	4	-	-
3	GH, Erode	12	-	-	-	-	-	-	36	24	42	8
4	GH, Salem	44	4	2	2	-	1	1	107	-	-	4
5	GH, Theni	30	ND	ND	ND	-	-	-	28	-	-	-
6	GH, Trichy	32	7	ND	ND	-	-	-	94	8	-	-
7	GH, Chennai	160	8	2	1	4	2	-	92	4	-	12
8	CMCH, Vellore	174	2	-	ND	-	-	4	49	2	4	-

Table 5 Resistance patterns of MDR bacteria isolated from hospital wastewater

S. No	Antibiotics	KMCH, Cbe	GH, Cbe	GH, Erode	GH, Salem	GH, Theni	GH, Trichy	CMCH, Vellore	GH, Chennai
1	Ciprofloxacin (10 mcg)	I	I	R	S	R	R	R	S
2	Tetracycline (30 mcg)	R	R	R	S	S	I	R	I
3	Streptomycin (10 mcg)	S	R	I	S	I	R	I	S
4	Kanamycin (10 mcg)	S	R	S	R	I	S	I	R
5	Ampicillin (10 mcg)	I	R	R	I	R	R	I	S
6	Erythromycin (15 mcg)	R	R	S	S	R	I	R	R
7	Penicillin (10 mcg)	I	R	S	R	S	S	R	S
8	Cephalosporin (30 mcg)	R	R	R	R	R	R	R	S
9	Rifampicin (5 mcg)	S	S	I	R	I	R	I	S

R Resistant, S Sensitive, I Intermediate resistant.
Characterization of the identified bacteriophages

Titration of Bacteriophages

Bacteriophages were titrated to know the number of plaques formed for the respective host (*E. coli*). The phages were serially diluted up to 10^6 in LB broth and from the serially diluted phages, 0.1 mL was mixed with 0.2 mL of *E. coli* in separate tubes up to 10^6 dilutions. Meantime soft agar was sterilized and maintained at 42-45°C in a water bath. The soft agar was added to the consecutive dilutions and plated on solid LB agar. The plates were allowed to solidify. The solidified plates were incubated at 37°C. After incubation the plates were observed for plaque forming units and titration was tabulated (Table 7).

Isolation of specific phages for MTCC cultures

Bacteriophages are highly specific and to check the specificity of the phages, cultures were obtained from MTCC (Table 1), Chandigarh and tested against the phages isolated from sewage. The results indicated that none of the samples had bacteriophages against MTCC cultures and shows the specificity [27,28].

| Table 6 Morphological and biochemical characteristics of *E. coli* |
|------------------------|------------------|
| S. No | Tests performed | Results |
| 1 | Shape | Rods |
| 2 | Gram staining | Gram negative |
| 3 | Motility | Motile |
| 4 | Gelatin utilization test | Negative |
| 5 | Citrate utilization test | Positive |
| 6 | Methyl red | Negative |
| 7 | Voges proskeur test | Positive |
| 8 | Acid from glucose | Positive |
| 9 | Gas from glucose | Negative |
| 10 | Triple sugar iron test | Acid was produced |
| 11 | Urease test | Positive |
| 12 | Indole production | Negative |

Values in parenthesis indicate the drug concentration in mcg/disc.

Utilization of bacteriophages as biocontrol agents against potential pathogen in sewage water

Biological hazard in water resources in the form of pathogenic organisms are responsible for major outbreak in most of the developing countries. In this situation, every effort leading to reduction in sewage pollution and pathogenic microbes has to be promoted and implemented. This will not only safeguard the interest of the people but also help to maintain healthy and sustainable environment. Entry of antibiotic resistant pathogens into the sewage is inevitable as survival is the key for existence. Development of multidrug resistant bacteria and exit of many antibiotic companies necessitates to search for novel approaches to tackle the multidrug resistant bacteria. Phage therapy is an alternate to overcome these menacing organisms.

It is essential for the success of any phage therapy; suitable phage should be isolated, enriched to produce sufficient numbers for the application. The number of bacteriophages to be inoculated should be 3 to 10 times greater than bacteria [29]. Payne and Jansen [30] observed that insufficient host cell concentration may also contribute for phage decline. Phage enrichment normally involves the inoculation of mixed environmental samples

| Table 7 No. of plaque forming units per mL of the *E. coli* lysate |
|-----------------------|------------------|
| S. No | Dilution factor | pfu/ mL of sample |
| 1 | 10^2 | TNC |
| 2 | 10^3 | 175×10^3 |
| 3 | 10^4 | 116×10^4 |
| 4 | 10^5 | 83×10^5 |
| 5 | 10^6 | 74×10^6 |

Values represent mean of three replications. TNC Too Numerous to Count

| Table 8 Cell count of *E. coli* (cfu/mL) in sewage water at 1 hour |
|----------------------|------------------|
| S. No | Dilution factor | T1 | T2 | T3 | T4 | T5 | T6 |
| 1 | 10^4 | 10^5 | 10^6 | 10^7 | 10^8 | 10^9 |
| 2 | UC | 249 | 98 | 76 | 43 | 6 | - |
| 3 | 198 | 98 | 76 | 43 | 6 | - | - |
| 4 | 126 | 48 | 16 | - | - | - | - |
| 5 | 194 | 108 | 82 | 54 | 36 | - | - |
| 6 | 186 | 83 | 80 | 28 | - | - | - |

Values represent mean of 3 replications.

| Table 9 Cell count of *E. coli* (cfu/mL) in sewage water at 2 hours |
|----------------------|------------------|
| S. No | Dilution factor | T1 | T2 | T3 | T4 | T5 | T6 |
| 1 | 10^4 | 10^5 | 10^6 | 10^7 | 10^8 | 10^9 |
| 2 | UC | UC | 220 | 195 | 142 | 85 | - |
| 3 | 260 | 147 | 138 | 56 | 12 | - | - |
| 4 | 134 | 86 | 42 | 4 | - | - | - |
| 5 | UC | 186 | 110 | 68 | 47 | 24 | - |
| 6 | UC | 198 | 102 | 94 | 82 | 41 | - |

Values represent mean of 3 replications.
and growth media with single host strain. Repeated phage purification using just one host strain may increase the specificity for that strain [31-33].

In order to fix the dose of host cells, E. coli broth was diluted to assess the cell count. In case of E. coli, up to 10^{-4} dilutions there are uncountable numbers. Countable numbers were observed only in 10^{-8} and 10^{-9} dilutions. Upto 10^{-3} dilutions, colonies formed were too numerous to count (TNC). Sewage water inoculated with E. coli (T2) and sterile sewage (T3) also had less population, which shows the native environmental influence as well as limited availability of nutrients. After phage inoculation not much change was observed up to 2 hr of incubation (Tables 8 and 9).

There was steady increase in the host population in T1, T2 and T3 treatments after 4 hours of inoculation. In case of treatments inoculated with phages, the host population was maintained without increase in the population (Table 10). After 6 hours, in uninoculated treatments, there was steady increase in the population, whereas in phage treated samples slight reduction in host population was observed (Table 11). The effect was more pronounced in treatment 4 and 6. This shows the specificity and T5 has non specific E. coli also. In treatments T1 – T3, there was steady increase in the host population, whereas phage inoculated treatment (T4 – T6) drastic reduction in population was observed after 8 and 10 hours of inoculation (Tables 12 and 13). After 12 hours of inoculation itself, the reduction was so high (Table 14) and after 14 hours the host population is completely vanished (Table 15).

As the time of incubation increases the host population was also increased in lactose and sewage water samples, whereas in other treatments not much increase was observed. The target population increased, but in phage treated samples not that much increase was observed and this may be due to adsorption of phage particles and it may change the metabolic rate of the target pathogens. In uninoculated treatments there was steady increase in the target population. This shows that phage reduced the target population. Based on the single step growth experiment, within 7 to 8 hours, the phage population reached the maximum level. So the incubation time in this experiment was maintained up to 14 hours.

Developing an eco-friendly bioconsortium for augmenting the pathogen in sewage wastewater treatment

Phage mediated bacterial mortality has the capacity to influence treatment performance by controlling the population.
abundance of key functional groups. As a preliminary study the developed bacteriophage preparations were tested in sample collected at Coimbatore Corporation Ukkadam sewage treatment plant. The characteristics of the wastewater from the outlet of sewage treatment plant are given in Table 16.

The lysate of *E. coli* and *Salmonella typhi* phages were mixed and used for the treatment. After 14 hours of incubation, there was no *E. coli* and *Salmonella typhi* population in the wastewater (Table 17). Hantula et al. [34] found that approximately 10% of phages isolated from activated sludge were polyvalent in nature.

Multiple host range isolation technique may be more effective at isolating polyvalent phages by avoiding the selection bias of single host methods [35-38]. Tanji et al. [39] also reported that viral decay and loss of infectivity may reduce the efficacy of phage treatment of wastewater. Reduction in phage population may occur due to adsorption of phage particles to sludge flocs. (Eg). 97% of coliphage may be associated with suspended particles which are transferred to sludge during settlement. Poor penetration in the sludge flocs may reduce the efficacy of phage treatment. Kim and Unno [40] showed Ingestion of viral particles by bacteria, protozoa and metazoan may contribute to phage loss should be addressed. In addition, radiation also reduces the numbers. So the host and phage ration should be maintained for the success of the treatment.

Conclusion

Based on our data and thorough scanning of previous studies, It was observed that hospital wastes have negative influence on the microbiological and physicochemical parameters on the environment, suggests that the activities of hospital wastes in the environment is a major health and environmental threat. Even though all unit operations (physical, chemical and biological) were carried out in sewage treatment, chlorination is normally used to disinfect the treated sewage, but this may not kill all the pathogens.

This study highlights the potential to develop phage treatments for generalized control of bacterial populations and the role of non host cells in determining the success of phage treatment in wastewater treatment. Pathogen specific phage isolated from sewage had the potential to eliminate the dreadful pathogens. Thus indicating that phage based biocontrol could be a viable method of controlling pathogens in sewage water. Despite some of the potential hindrances to the phage treatment, the current awareness regarding phages indicates that phage application to wastewater treatment deserves attention.

| Table 14 Cell count of *E. coli* (cfu/mL) in sewage water at 12 hours |
|------------------|------------------|------------------|------------------|------------------|
| 12 hours | 10⁻¹ | 10⁻² | 10⁻³ | 10⁻⁴ | 10⁻⁵ | 10⁻⁶ |
| T1 | UC | UC | UC | UC | UC | UC |
| T2 | UC | UC | UC | UC | UC | UC |
| T3 | UC | UC | UC | UC | UC | UC |
| T4 | 48 | 23 | 4 | - | - | - |
| T5 | 112 | 64 | 18 | 4 | - | - |
| T6 | 116 | 94 | 28 | 12 | - | - |

Values represent mean of 3 replications.

Table 16 Quality of water treated at Ukkadam STP
Parameter
BOD
COD
Total nitrogen
Total phosphorus
Fecal Coliform
pH

Table 17 Effect of phage consortium on pathogens
S.no.
T1
T2
T3
T4

Values represent mean of 3 replications.
Competing interest
I would also like to share the following information with Editor-in-Chief. The concept of this project is that conventional disinfection process kills all organisms including those involved in degradation, nitrification etc, where as phages kills only the specific organism. Since bacteriophages are highly specific, ability to kill antibiotic resistant pathogens there is the potential application of phages in waste water treatment system to improve effluent quality and sludge disposal into the environment. More than eighty years of research on phage - human and phage - animal interaction, has shown no evidence for negative impact of application of specific phage to the human. In addition, the effectiveness of phage treatment increases exponentially until the host is eliminated. Phages are omnipresent and have no adverse effect on human and animals.

The technology developed is highly useful to the City corporations and Panchayats which use common sewage treatment system. The Ukkadam sewage treatment plant at Coimbatore corporation has been supplied with phage for controlling the Salmonella typhi pathogen. Based on the success of the treatment process it will be extended for adoption to other Corporations and municipalities.

Despite some of the potential hindrances to the phage treatment, the current awareness regarding phages indicates that phage application to wastewater treatment deserves attention. Hence this is the right time to publish this paper to create wide awareness.

Authors’ contribution
Dr. PD: Principal investigator, Proposed, and presented the project before the ministry for financial support, carried out most of the work, Ms. SA: Worked as Senior Research Fellow for one year. She was involved in applying the phages in the Ukkadam sewage treatment. Both authors read and approved the final manuscript.

Acknowledgements
We would like to extend our gratitude to the Ministry of Environment and forest, Government of India for the funding and support to carry out the above study.

Received: 21 September 2012 Accepted: 19 June 2013
Published: 28 June 2013

References
1. Saha MR, Dutta P, Bhattacharya SK, Rasaily R, Mitra U, Dutta D, Bhattacharya MK, Pal SC. Multidrug resistant bacteria, Indian J Med Res 1992, 95:179–180.
2. Chitnis V, Chitnis D, Patil S, Ravi K. Effect of hospital effluent: a source of multiple drug resistant bacteria, Curr Sci 2002, 79:899–901.
3. Bhaihose FO, Omawaya BP. Influence of hospital wastewater discharged from University Benin Teaching Hospital (UBTH), Benin City on its receiving environment. J Agric and Environ Sci 2008, 4:484–488.
4. Thiel K. Old Dogma, New tricks – 21st Century phage therapy, Nat Biotechnol 2004, 22:31–36.
5. APHA: Standard methods for estimation of water and wastewater, 16th edition. Washington DC: American Public Health Association; 1989.
6. Cappuccino JS, Sherman N. Microbiology: a Laboratory Manual, Sixth edition. Singapore: Pvt. Ltd. Indian Branch: 2002.
7. Holt CJ, Krieg RN, Sneath AHP, Staley TJ, Williams ST. Bergey’s manual of Determinative Bacteriology, 9th edition. Lippincott, 1994.
8. Johnson TR, Case CL: Laboratory Experiments in Microbiology, New Jersey: TheBenjamin / Cummings publishing company, Inc; 1995:125–129.
9. Bradshaw LJ: Laboratory Microbiology. Thirdith edition. USA: W. B. Saunders company Press; 1979:343.
10. Sambrook J, Russell RD: Molecular cloning, In A laboratory manual. Cold spring harbor, NY: Cold spring harbor laboratory press; 1991:225–233.
11. Zoeterman BCG: Sensory assessment of water quality. UK: U.K: Oxford pergman press; 1980.
12. Sangu RPS, Sharma SK: An assessment of water quality of river Ganga at special Garmukeshwar. Ind J Ecol 1987, 14:202–287.
13. Subba Rao C, Subba Rao NV: Ground water quality in residential colony, Ind J Environ Hlth 1995, 37(4):295–300.
14. Yanggen DA, Born SM: Protecting ground water quality by managing local land use. J Soil Water Consor 1990, 45(2):207–210.
15. Tyagi P, Buddi D, Chowdary R, Sawhney R: Physicochemicalquality of ground water in industrial areas of India. Pollut Res 2000, 19:443–445.
16. Dasgupta A, Purohit KM: Status of the surface water quality of Mandialukadur. Pollut Res 2001, 20(1):103–110.
17. Aiju ASA, Ehfo OE, Adeluif MD: Effect of human activities and oil pollution on the microbiological and physiological quality of Udu River, Wari Nigeria. J Appl Sci 2006, 6(5):1214–1219.
18. Rajurkar RS, Nongbi N: Pseudomonas spp. Physicochemical and microbial analysis of Umiam(Bspaan) lake water. Int J Environ Protec 2003, 236.
19. Joshi VA, Manivel V, Ravindra R, Kelkar PS: Water quality assessment in Ramanathapuram district. Int J Environ Protec 2002, 22(9):970–977.
20. Mohair A, Ramteke DS, Moghe CA, Water SR, Sain R: Surface and ground water quality assessment in Bina region. Int J Environ Protec 2002, 22(9):961–969.
21. Bauer AW, Perry DM, Kirby WM. Single-disk antibiotic-sensitivity testing of staphylococci; an analysis of technique and results. AMJ Arch Intern Med 1959, 104(2):208–216.
22. Neema S, Premchandani P, Asolkar MV, Chitnis DS, Indian J Med Sci 1997, 51:275–280.
23. Rangekar VM, Mukerji S, Gadve SV, Chitnis DS: Prevalence of multidrug resistant coliforms in human gut: Effect of antibiotic therapy. Bull Hoffkin inst 1981, 98:9–14.
24. Sulak Velidize AD, Alavidze MD: Bacteriophage therapy. Antimicrob Agents Chemother 2001, 45(3):649–659.
25. Marks T: Bacteriophages and biotechnology: a review. J Chem tech Biotechnol 2000, 756–17.
26. Maloy SR, Cronania JE, David F: Genetics of phage T4. In Microbial Genetics. New Delhi: Narosa Publishing House; 2008:346–370.
27. Shurtle CA: Theoretical, evolutionary and geochemical consequences of viral infection of cyanobacteria and eukaryotic algae. In Viral Ecology. Edited by Horst CJ. USA: Academic; 2000.
28. Alonso MD, Rodriguez J, Borrego JI: Characterization of marine bacteriophages isolated from Alboran sea (Western Mediterranean).
J Plankton Res 2002, 24:1079–1087.
29. Hennes KP, Simon M: Significance of bacteriophages for controlling bacterioplankton growth in a mesotrophic lake. Appl Environ Microb 2005, 61:333–340.
30. Payne RIH, Jansen VAA: Understanding phage therapy as a density dependent kinetic process. J Theor Biol 2001, 208:37–48.
31. Connon SA, Giovannoni SJ: High – throughput methods for culturing microorganisms in very low nutrient media yield diverse new marine isolates, Appl Environ Microb 2002, 68:3878–3885.
32. Rappe MS, Connon SA, Verling KL, Giovannoni SJ: Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 2002, 418:633–639.
33. Sullivan OLA, Fuller KE, Thomas EM, Turley CM, Fry JC, Weightman AJ: Distribution and cultural diversity of the uncultivated ‘AGG58 cluster’ of the Bacteriodes phylum in aquatic environments, FEMS Microbial Ecol 2004, 47:359–370.
34. Hantula J, Kurki A, Vuorianta P, Bamford E: Ecology of bacteriophages infecting activated sludge bacteria. Appl Environ Microb 1991, 57:2147–2151.
35. Jensen EC, Sehrader HS, Rieland B, Thompson TL, Lee KW, Nickers KW, Kokkon T: Prevalence of broad host range lytic bacteriophages of Spharyllotus natans, Escherichia coli and Pseusdomonas aeruginosa. Appl Environ Microb 1998, 64:575–580.
36. Harlies DL: Reduction of Salmonella by bacteriophage treatment. USA: Research Report by National Park Board, 2000.
37. Thomas L, Jungschaffer G, Sprossler B: Improved sludge dewatering by enzymatic treatment. Water Sci Tech 1993, 28:189–192.
38. Wolf A, Wiese J, Jost G, Wittel K: Wide geographic distributions of bacteriophages that lyse the same indigenous fresh water isolate (Sphingomonas sp.Strain B18). Appl Environ Microb 2003, 69:2395–2398.
39. Tanji Y, Miozuchi K, Yoichi M, Morita M, Hori K, Unno H: Fate of coliphage in a wastewater treatment. J Biosci Bioeng 2002, 94:172–174.
40. Kim TD, Unno H: The role of microbes in the removal and inactivation of viruses in a biological wastewater treatment system. Water Sci Tech 1996, 33:243–250.

doi:10.1186/2052-336X-11-12

Cite this article as: Periasamy and Sundaram: A novel approach for pathogen reduction in wastewater treatment. Journal of Environmental Health Science and Engineering 2013 11:12.