Occurrence of ectoparasitic arthropods (Siphonaptera, Acarina, and Anoplura) on rodents of Khorasan Razavi Province, northeast of Iran

Gholamhossein Moravvej1*, Kordiyeh Hamidi2, Leila Nourani2, Hamed Bannazade1

1Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
2Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

ARTICLE INFO

Objective: To determine distribution of rodents’ arthropods and estimate infestation parameters of fleas, mites, ticks, and lice associated with wild rodents in Mashhad and its vicinity, Iran.

Methods: The rodents were captured using live trap from April 2013 to December 2014 in Mashhad and vicinity, Khorasan Razavi, Iran. The ectoparasites were collected from body surface of rodents using brushing, combing or forceps and preserved in 70% ethanol. The samples were examined by stereomicroscope and classified into four groups including fleas, mites, ticks, and lice. Dark specimens were made more transparent by soaking in potassium hydroxide or Nesbitt’s fluid (where appropriate). The specimens were mounted on glass slides using Hoyer’s medium. Ectoparasitic identification was done based on the available keys and confirmed by qualified taxonomists.

Results: A total of 197 rodents were trapped representing 11 species which belong to the family Muridae (7 species), Cricetidae (3 species) and Sciuridae (1 species). The most common captured rodent species was Mus musculus (13.19%) and the least was Apodemus witherbeyi (6.59%). In total 783 ectoparasites related to 3 orders, 8 families, 10 genera and 15 species were collected. The infestation rates by fleas, mites, ticks, and lice on the rodents were 18.78%, 22.84%, 18.78% and 10.15 %, respectively.

Conclusions: Overall infestation rate was 42.13 % (83 out of 197 rodents). The most and least frequency of ectoparasites belonged to mites (50.44%) and lice (14.04%), respectively. The results suggested that the prevalence of ectoparasites could be influenced by rodent host species. Monitoring the rodent population and their ectoparasites is recommended to facilitate arthropod-borne disease control programs.

1. Introduction

Rodents as the most frequent mammals around the world have the ability to bring about public health problems because of their close association with humans and being economic pests[1]. Rodents with different families have close association by ectoparasites which act as zoonotic reservoirs. Due to ecological role of ectoparasites in the regulation of their host populations, estimating the richness of ectoparasitic species will supply valuable insights for scientists[2,3], but rodents’ ectoparasites are less investigated mostly because of their small size.

More than 40 zoonotic diseases are transmitted by rodents’ host including plague, leptospirosis, salmonellosis, rat-bite fever, leishmaniasis, Chagas’ disease, Omsk hemorrhagic fever, bubonic plague, tularemia or Lyme disease, Lassa fever and murine typhus[4,5]. As many suitable conditions in rural and urban places cause the wild rodents to be infested by arthropods, research on distribution of rodents’ ectoparasite is necessary for prevention of zoonotic diseases threatening humans.

Several studies have been managed on ectoparasites of rodents and other small mammals in some parts of Iran[6-13], most of which have been directed only to economically important species or disease vectors. The objective of the present work was to determine distribution of rodents’ arthropods and estimate infestation parameters of fleas, mites, ticks, and lice associated with wild rodents from Mashhad and its vicinity located in Khorasan Razavi Province, northeast of Iran.
2. Materials and methods

The study area was 15 different localities including farms and public places in Mashhad and vicinity (from 35°60' N–59°15' E to 36°35' N–60°25' E), Khorasan Razavi Province, northeast of Iran (Figure 1). The rodents were trapped from April 2013 to December 2014 with live trap baited with cheese, cucumber and sunflower seeds. The rodents were identified using taxonomic keys based on morphological traits[14]. Captured rodents were transported to the laboratory and euthanized with chloroform. A range of examination methods were done for detection of ectoparasites. Removal of ticks and lice required searching the fur while looking through a magnifier. Fur mites could only be detected using a binocular microscope. The rodents were then placed over a white tray and their ectoparasites were collected using brushing, combing or fine-tipped forceps and stored in 70% ethanol for their preservation and identification. Further inspection was performed using a magnifier around different parts of rodent’s body such as anus, head, behind ears, face, thorax, abdomen, armpits and fur, especially near their ectoparasites. Removal of ectoparasites leaving their host were also picked up. Animal experiments were approved by the Ethics Committee for Animal Experiments of Ferdowsi University of Mashhad, Iran. After the removal of ectoparasites, the animals were also used for further biosystematics projects of which the results did not reported in the present study. The ectoparasite specimens were classified into four groups including fleas, mites, ticks, and lice. Dark specimens were made more transparent by soaking in potassium hydroxide (for fleas) or Nesbitt’s fluid (for ticks and lice). Then, the specimens were mounted on glass slides using Hoyer’s medium. Ectoparasitic identification was done based on the valid keys which are available for Siphonaptera[16], Ixodidae[17], and Anoplura[18].

3. Results

During the study period, a total of 197 rodents were trapped representing 11 species which belong to the family Muridae: Meriones libycus (M. libycus), Meriones persicus (M. persicus), Apodemus witherbeyi (A. witherbey), Mus musculus (M. musculus), Nesokia indica (N. indica), Rattus norvegicus, Tatera indica (T. indica); Cricetidae: Cricetulus migratorius (C. migratorius), Ellobius fuscocapillus (E. fuscocapillus), Microtus transcaspicus (M. transcaspicus); Sciuridae: Spermophilus fulvus (S. fulvus). The most and least collected species were M. musculus and A. witherbey, respectively (Table 1).

A total of 783 ectoparasites related to 3 orders, 8 families, 10 genera and 15 species were collected as follows (Figure 2): Siphonaptera: from Pulicidae, Ctenophthalmus sp. on Rattus norvegicus (R. norvegicus); Xenopsylla cheopis (X. cheopis) on N. indica and M. persicus; and Xenopsylla sp. on N. indica; from Ceratophyllidae, Nosopsyllus fasciatus (N. fasciatus) on S. fulvus, M. persicus and N. indica, also Nosopsyllus sp. on N. indica and M. persicus; from Ixodidae (Acari), Haemaphysalis punctate (H. punctate) on M. persicus and N. indica, and Haemaphysalis sp. on A. witherbey; Ixodes trianguliceps (I. trianguliceps) on M. persicus, and Ixodes sp. on A. witherbey; from Laelapidae (Acarina), Laelaps sp. on M. musculus, Haemolaelaps sp. on M. musculus, and M. persicus; from Hirstionyssidae, Hirstionyssus sp. on M. libycus; from Polyplacidae (Anoplura), Polyplax asiatica (P. asiatica) on M. persicus, S. fulvus and N. indica, and Polyplax paradoxus on M. persicus; from Hoplopleuridae (Anoplura), Hoplopleura captiosa (H. captiosa) on N. indica and M. musculus.

The infestation rates by fleas, mites, ticks, and lice on the rodents were 18.78%, 22.84%, 18.78% and 10.15%, respectively. Overall infestation rate was 42.13% (83 infested out of 197 rodents) (Table 1). The most and least frequency of ectoparasites belonged to mites
witherbeyi either for the region or country [19]. The maximum and minimum frequency in Khorram Abad district, Iran[6]. reported that mites (64.67%) and lice (3.21%) showed the same Anoplura (14.04%), respectively. Similarly, Shayan and Rafinejad frequencies belonged to mites, Acarina (50.44%) and sucking lice, (50.44%) and lice (14.04%), respectively (Figure 2).

An ectoparasite species infesting wild small mammals in Mashhad vicinities, Khorasan Razavi Province located present study reported 15 ectoparasitic species infesting wild small mammals in Mashhad, Iran during 2013-2014.

Host species	Host family	Total No. of hosts	Ticks	Mites	Fleas	Lice	
M. transcaucasicus	Cricetidae	20	8	6 (75.00%)	4 (50.00%)	1 (12.50%)	
C. migratorius	Cricetidae	17	3	0	3 (100.00%)	1 (33.33%)	
E. fuscoguttatus	Cricetidae	16	4	0	4 (100.00%)	0	
M. libycus	Muridae	14	4	0	2 (50.00%)	4 (100.00%)	
M. persicus	Muridae	19	10	8 (80.00%)	6 (60.00%)	7 (70.00%)	4 (40.00%)
A. witherbeyi	Muridae	13	7	3 (42.85%)	5 (71.42%)	5 (71.42%)	0
M. musculus	Muridae	26	12	(63.33%)	7 (58.33%)	0	5 (41.66%)
N. indica	Muridae	16	12	4 (33.33%)	0	8 (66.66%)	6 (50.00%)
R. norvegicus	Muridae	19	9	3 (33.33%)	5 (55.55%)	4 (44.44%)	4 (44.44%)
T. indica	Muridae	14	4	0	3 (75.00%)	0	0
S. fulvus	Sciuridae	23	10	3 (30.00%)	6 (60.00%)	7 (70.00%)	0
Total		197	83	37 (44.57%)	45 (54.21%)	37 (44.57%)	20 (24.09%)

*: Calculated as the number of rodents infested by each ectoparasite group divided by number of rodents infested by all groups multiply 100.

(50.44%) and lice (14.04%), respectively (Figure 2).

4. Discussion

The synanthropic rodents as the most important reservoirs of zoonotic diseases transmit various parasitic infections. The present study reported 15 ectoparasitic species infesting wild small mammals in Mashhad, Khorasan Razavi Province located in the northeast of Iran. In our samplings, the most common captured rodent species was M. musculus (13.19%) and the least was A. witherbeyi (6.59%). Some ectoparasite species were reported newly either for the region or country[19]. The maximum and minimum frequencies belonged to mites, Acarina (50.44%) and sucking lice, Anoplura (14.04%), respectively. Similarly, Shayan and Rafinejad reported that mites (64.67%) and lice (3.21%) showed the same order in frequency in Khorram Abad district, Iran[6].

From Siphonaptera, we found five species in the families of Pulicidae and Ceratophyllidae. The scurid, S. fulvus (62.96%) showed the highest percentage of infestation to fleas. Furthermore, the fleas were found in the highest frequency in Behesht Reza area – as a cemetery – compared to other sampling locations. Two flea species including N. fasciatus and Nosopsyllus iranianus on M. musculus have been reported from Lorestan Province located in the west of Iran(6). The flea N. fasciatus was detected on R. norvegicus with the frequency of 3.8% while no fleas’ infestation on M. musculus, as reported in a survey on rodent’s ectoparasites in north district of Tehran, Iran[12]. In our study, we found that M. persicus and S. fulvus were infested by N. fasciatus. Other studies reported X. cheopis and Xenopsylla ramesis from Egypt[20], and Xenopsylla sp. on Mastomys nasutus awashensis, Arvicanthis dembeensis and Acomys sp. from Tigray, Northern Ethiopia[21]. X. cheopis was also reported as the predominant flea species on rodents in many studies[22,23]. A survey on the rodents R. norvegicus, Rattus rattus (R. rattus) and M. musculus, in Iran demonstrated that 40.3% of the rodents were infested with X. cheopis and Xenopsylla astia[23]. In our study, X. cheopis was found on the common rodents, M. persicus and N. indica. The flea species of X. cheopis has been regarded as an important vector of Yersinia pestis – the causative agent of plague and murine typhus and as a possible intermediate host of the tapeworm, Hymenolepis diminuta[24-26].

From Ixodida, the species Haemaphysalis sp., H. punctate and Ixodes sp. and I. trianguliceps were detected. Moreover, Haemaphysalis sp. and Ixodes sp. were collected in both nymphal and adult stages. In other surveys, the larval stages of these tick species were also reported[27,28] mainly as pests of livestock[29]. The tick species of H. punctate has been recently collected on Calomyscus bailwardi, Meriones persicus, Microtus socialis and R. rattus in Iran[6], and M. musculus and R. norvegicus in Nigeria[30]. In the present study, N. indica was found to be an alternative host for this tick species. The tick species of I. trianguliceps has been reported on Apodemus flavicollis, R. norvegicus and R. rattus[26,31]. We found that I. trianguliceps could be harbored by M. persicus. The highest percentage of tick’s infestation was on M. musculus (47.88%).

Furthermore, from mite group, we found Laelaps sp., Haemolaelaps sp. and Hirstionyssus sp. In other surveys, various species of mites have been reported on different host including Laelaps nuttalli on R. norvegicus and T. indica[7,24,25,32], Laelaps echininus on R. rattus[8], and Laelaps paulistanensis, Laelaps echininus and Laelaps manguinii on Scapteromys...
the first records on crowded social place. Some other studies reported of lice was on species of ticks and mites. The rodents in the district Khaje Morad, as a populated place infestation (77.14%) was regarded as the most common host for mites. The rodents in the district K haje M orad, as a populated place with numerous passengers, showed the highest rate of infestation to ticks and mites. From Anoplura, three ectoparasite species P. asiatica, Polyplex paradoxa and H. captiosa were detected. The maximum frequency of lice was on N. indica (47.5%). We reported the highest abundance of lice on the rodents of Ghdair camp which is regarded as a crowded social place. Some other studies reported H. captiosa on R. norvegicus[7], P. asiatica on R. norvegicus[9,26] and Sciurus anomalus[12]. From Baluchistan area, southeast of Iran, lice (68.4%) were the most prevalent ectoparasites[35]. In a study on the ectoparasites of rodents in Bandar Abbas, Iran, the ectoparasites of Rhipicephalus spp., Polyplex gerbil and H. captiosa were collected on R. norvegicus, R. rattus and T. indica after application of a control program[7]. Our investigation declared that M. persicus, S. fulvus and N. indica could be harbored by P. asiatica. Furthermore, H. captiosa was regarded as a common louse on N. indica and M. musculus.

The overall frequency of the ectoparasites and their abundance could be affected by rodent hosts and their microhabitats diversity[36]. Fleas, ticks, mites and lice are considered as the most important vectors of pathogens in human, domestic and wild animal[37-40].

Many species of rodents threaten human health, especially in densely populated areas. Therefore, understanding the richness of their ectoparasite species would provide valuable insights into their roles in the control of host populations[41,42]. During the European epidemic, R. rattus of Muridae, and squinrels and chipmunks (Sciuridae) were recorded as the major rodent hosts of plague in California, generally endangering humans in rural areas. Lyme disease as a bacterial infection transmitted indirectly from rodent reservoirs to humans through tick bites. Disease as a bacterial infection transmitted indirectly from rodent reservoirs to humans through tick bites. Lyme disease as a bacterial infection transmitted indirectly from rodent reservoirs to humans through tick bites.

Due to high prevalence of ectoparasites on rodents and their serious zoonotic importance, further epidemiological and zoonotic investigations are recommended to ascertain the role of rodents in the lifecycle of emerging new infestations in Iran.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This research was funded by a grant (2/30555) provided by Ferdowsi University of Mashhad. Special thanks go to Dr. Lance Durden, Dr. Rahul Marathe, Dr. Tanasak Changbunjong and Dr. Shahrooz Kazemi for the species confirmation of lice, ticks, fleas and mites, respectively. We also thank H. Mozaffari and A. Hamidi for their help in field investigation.

References

[1] West BC, Messemer A. Commensal rodents. Logan: Utah State University; 1998. [Online] Available from: http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1995&context=extension_histall [Accessed on 15th July, 2015]

[2] Aisy KA, Fetoh BA. Occurrence of ectoparasitic arthropods associated with rodents in Hail region northern Saudi Arabia. Environ Sci Pollut Res Int 2014; 21(17): 10120-8.

[3] Porta D, Goncalves DD, Gerôncimo E, Dias EH, de Almeida Martins L, Ribeiro LVP, et al. Parasites in synanthropic rodents in municipality of the northwest region of the State of Parana, Brazil. Afr J Microbiol Res 2014; 8(16): 1684-9.

[4] Hill WA, Brown JP. Zoonoses of rabbits and rodents. Vet Clin North Am Exot Anim Pract 2011; 14(3): 519-31.

[5] Sharma Ak. Entomological surveillance for rodent and their ectoparasites in scrub typhus affected areas of Meghalaya, (India). J Entomol Zool Stud 2013; 1(6): 27-9.

[6] Shayan A, Rafinejad J. Arthropod parasites of rodents in Khorram Abbad district, Lorestan Province of Iran. Iran J Public Health 2006; 35(3): 70-6.

[7] Hanafi-Bojd AA, Shafi M, Baghiali M, Shayeghi M, Razmand N, Pakari A. A study on rodent ectoparasites in Bandar Abbas: the main economic southern seaport of Iran. Iran J Environ Health Sci Eng 2007; 4(3): 173-6.

[8] Paramasvaran S, Sani RA, Hassan L, Krishnasamy M, Jeffery J, Oothuman P, et al. Ectoparasite fauna of rodents and shrews from four habitats in Kuala Lumpur and the states of Selangor and Negeri Sembilan, Malaysia and its public health significance. Trop Biomed 2009; 26: 303-11.

[9] Rasouli S, Tehran A, Hifian H, Athayi M, Ghafarzadeh S, Pirbudaghi H, et al. A report over the infection with the louse Polyplax spinulosa in typical rats belonging to the wistar strain kept in the laboratory animal breeding and keeping Center of Urmia University. Global Veterinaria 2011; 6: 547-50.

[10] Allymehr M, Tavassoli M, Manoochehri MH, Ardavan D. Ectoparasites and gastrointestinal helminths of house mice (Mus musculus) from poultry houses in Northwest Iran. Comp Parasitol 2012; 79(2): 283-7.

[11] Pakdad K, Ahmadi NA, Aminalroaya R, Piazzak N, Shahmehri M. A
study on rodent ectoparasites in the north district of Tehran, Iran during 2007-2009. J. Paramec Sci 2012; 3: 42-46.
[12] Shirazi Sh, Bahadori F, Mostafaei T, Ronaghi H. First report of Polyplax sp. in a Persian squirrel (Sciurus anomalus) in Tabriz, northwest of Iran. TerciyoParasitol Derg 2013; 37: 299-301.
[13] Madinah A, Fatimah A, Mariana A, Abdullah MT. Ectoparasites of small mammals in four localities of wildlife reserves in Peninsular Malaysia. Southeast Asian J Trop Med Public Health 2011; 42(4): 803-13.
[14] Corbet GB. The mammals of the Palaearctic region: a taxonomic review. London: British Museum (Natural History); 1978.
[15] Xie BQ, Zeng JF. [The Siphonaptera of Yunnan]. Kunming: Yunnan Science and Technology Press 2000; p. 29-41. Chinese.
[16] Acosta R, Morrone JJ. [Illustrated key to identifying specific taxa supra Siphonaptera of Mexico]. Acta Zool Mex 2003; 89: 39-53. Spanish.
[17] Baker AS. Mites and ticks of domestic animals. London: Natural History Museum; 1999, p. 240.
[18] Durden LA, Musser GG. The sucking lice (Insecta, Anoplura) of the world: a taxonomic checklist with records of mammalian hosts and geographic distributions. Bull Am Museum Nat History 1994; 218: 1-90.
[19] Moravvej G, Hamidi K, Nourani L. New rodent hosts of sucking lice (Anoplura), hard ticks (Ixodidae) and fleas (Siphonaptera) from Iran. J Vector Dis Forthcoming 2015.
[20] Bajghat IM. Monthly abundance of rodent and their ectoparasites in newly settled areas, east of the lakes, Ismailia Governorate, Egypt. J Egypt Soc Parasitol 2013; 43(2): 387-98.
[21] Yonas M, Welegerima K, Laudivolet A, Bauer H, Gebrehiwot K, Deckers S, et al. Preliminary investigation on rodent-ectoparasite associations in the highlands of Tigray, Northern Ethiopia: implications for potential zoonoses. Integr Zool 2011; 6: 366-74.
[22] Durden LA, Page BF. Ectoparasites of commensal rodents in Sulawesi Utara, Indonesia, with notes on species of medical importance. Med Vet Entomol 1999; 8(1): 1-7.
[23] Kria EB, Mohguddas-Sani H, Hassannpoor H, Vatandoost H, Zahabiun F, Akhavan AA, et al. Ectoparasites of rodents captured in Bandar Abbas, southern Iran. Iran J Arthropod Borne Dis 2009; 3(2): 44-9.
[24] Frye MJ, Firth C, Bhat M, Firth MA, Che X, Lee D, et al. Preliminary survey of ectoparasites and associated pathogens from Norway rats in New York City. J Med Entomol 2015; 52(2): 253-9.
[25] Yang P, Oshiro S, Warashina W. Ectoparasitic arthropods occurring on Rattus norvegicus and Rattus rattus collected from two properties on the Island of Oahu, Hawaii (Aracina, Siphonaptera, and Anoplura). Proc Hawaiian Entomol Soc 2009; 41: 53-6.
[26] Solanki SK, Chauhan R, Rahman A, Solanki K. Prevalence of ectoparasites in commensal rats in Dehradun, India. Int J Curr Microbiol App Sci 2013; 2(4): 38-41.
[27] Clark LK, Durden AL. Parasitoid arthropods of small mammals in Mississippi. J Mammal 2002; 83(4): 1039-48.
[28] Moniriz V, Sahabi Z, Vatandoost H, Askari H, Azizkhani E, Piazak N. Ectoparasites of Nesokia indica and Meriones spp. in Ardestan, The 14th Iranian Plant Protection congress; Isfahan University of Technology, Iran. 2000, p. 306.
[29] Vatandoost H, Hanafi Bojad AA. Ectoparasites of medical and veterinary importance. Tehran: Tehran University of Medical Science publications; 2002, p. 386.
[30] Omudou EA, Ati TT. A survey of rats trapped in residential apartments and their ectoparasites in Makurdi, Nigeria. Res J Agric Biol Sci 2010; 6(2): 144-9.
[31] Benedek AM, Sirbu I, Lazar AM, Cheoca D. Ecological aspects of ectoparasites’ infestation in the yellow-necked mouse (Apodemus flavicollis: Rodentia, Muridae) from Transylvania (Romania). Greece: WSEA’s Press; 2013.
[32] Wen-Ge D, Xian-Guo G, Xing-Yuan M, Ti-jun Q, Dian W. Ectoparasite communities of Rattus norvegicus (Rodentia: Muridae) in the surrounding areas of Erfai Lake in Yunnan, China. Acta Entomol Sin 2009; 52(3): 290-5.
[33] Larecki M. The relationship of sex and ectoparasite infestation in the water rat Scapteromys aquaticus (Rodentia: Cricetidae) in La Plata, Argentina. Rev Biol Trop 2006; 54(2): 673-9.
[34] Rynkiewicz EC, Hawlena H, Durden LA, Hasirter MW, Demas G, Clay K. Associations between innate immune function and ectoparasites in wild rodent hosts. Parasitol Res 2013; 112: 1763-70.
[35] Nateghpour M, Akhavan AA, Hanafi-Bojad AA, Telmadarraiy Z, Ayazian-Mavi S, Hosseini-Vasoukolaie N, et al. Wild rodents and their ectoparasites in Baluchistan area, southeast of Iran. Trop Biomed 2013; 30(1): 72-7.
[36] Pollitzer R. Plague. WHO monograph series 22. Geneva: World Health Organization; 1954.
[37] Jongejan F, Uilenberg G. The global importance of ticks. Parasitology 2004; 129: 53-14.
[38] Jamshidi S, Maazi N, Ranjbar-Bahadore S, Rezaei M, Morakabsaz P, Hosseininejad M. A survey of ectoparasite infestation in dogs in Tehran, Iran. Rev Bras Parasitol Vet 2012; 21(3): 326-9.
[39] Hornok S, Földvári G, Rigó K, Meli ML, Gönczi E, Répási A, et al. Synanthropic rodents and their ectoparasites as carriers of a novel haemoplasma and vector-borne, zoonotic pathogens indoors. Parasit Vectors 2015; 8: 27.
[40] Helhazar M, Leitão J, Duarte A, Tavares L, da Fonseca IP. Natural infection of synanthropic rodent species Mus musculus and Rattus norvegicus by Leishmania infantum in Sesimbra and Sintra-Portugal. Parasit Vectors 2013; 6: 88.
[41] Stanko M, Miklisova D, de Bellocq JG, Morand S. Mammal density and patterns of ectoparasite species richness and abundance. Oecologica 2002; 131: 289-95.
[42] Krasnov BR, Shenbrot GI, Khokhlova IS, Degen AA. Flea species richness and parameters of host body, host geography and host ‘milieu’. J Anim Ecol 2004; 73(6): 1121-8.
[43] Hutchins M, Kleinman DG, Geist V, McDade MC. Grzimek’s animal life encyclopedia. 2nd ed. Farmington Hills: Gale Group; 2003.
[44] Hobbs RP, Thompson A RC, Lymbery AJ. Parasitology. Perth: Murdoch University; 1999.
[45] Bowman DD, Lynn RC, Eberhard ML. George’s parasitology for veterinarians. St Louis: WB Saunders Co; 2003.