A boundary element method solution to spatially variable coefficients diffusion convection equation of anisotropic media

S Suryani1, J Kusuma2, N Ilyas3, M Bahri2 and M I Azis2,*

1Department of Physics, Hasanuddin University, Makassar, Indonesia
2Department of Mathematics, Hasanuddin University, Makassar, Indonesia
3Department of Statistics, Hasanuddin University, Makassar, Indonesia
E-mail: mohivanazis@yahoo.co.id (*Corresponding author)

Abstract. The diffusion-convection equation with variable coefficients and for anisotropic media which were previously considered by other authors are discussed again in this paper to find their numerical solutions by using the boundary element method (BEM). The numerical results obtained show the consistency and accuracy of the BEM solutions. Also, the solutions exhibit the impact of the anisotropy and inhomogeneity (spatial variability) of the media.

1. Introduction

The diffusion-convection equation with variable coefficients of the form

\[
\frac{\partial}{\partial x_i} \left[d_{ij}(x) \frac{\partial c(x)}{\partial x_j} \right] - \frac{\partial}{\partial x_i} \left[v_i(x) c(x) \right] = 0
\]

will be considered. Equation (1) is used to model physical phenomena involving anisotropic diffusion and convection processes in inhomogeneous media where both the diffusion coefficient and the velocity vary spatially and continuously. Among the physical phenomena of applications include pollutant transport and heat transfer.

In the context of pollutant transport problems, equation (1) is usually used as the dimensionless governing equation in which \(d_{ij} = D_{ij}/\hat{D}, c = C/\hat{C}, x_i = X_i/l, v_i = \left(l/\hat{D} \right) V_i, D_{ij}\) is the components of dispersion/diffusion coefficients \(L^2T^{-1}\), \(C\) is dissolved concentration of the pollutant \(ML^{-3}\), \(X_i\) is the component of the point coordinates \(X\) \((L)\), \(V_i\) is the component of the seepage velocity \(LT^{-1}\), \(\hat{D}\) is a reference dispersion coefficient, \(\hat{C}\) is a reference concentration of pollutant and \(l\) is a reference length (see for example Meenal and Eldho [5]).

A number of studies had been done on the initial/boundary value problems governed by diffusion-convection equation to find either analytical or numerical solutions. The previous studies can be classified, according to the anisotropy and inhomogeneity of the considered media, into those on isotropic and homogeneous, anisotropic homogeneous and isotropic inhomogeneous media. The anisotropy and inhomogeneity of the media are indicated by the coefficients \(d_{ij}\) and \(v_i\) involved in the governing diffusion-convection equation. Specifically, the medium is
inhomogeneous if the coefficients are spatially variable. And it is anisotropic when the diffusion in one geometrical direction is different to the diffusion in another direction.

Wu et al in 2012 [6], Hernandez-Martinez et al in 2013 [7], Wang et al in 2017 [8] and Fendo˘ glu et al in 2018 [9] had been working on the isotropic diffusion and homogeneous media. Yoshida and Nagaoka in [4], Meenal and Eldho in [5], Haddade et al in [10], Azis et al in [11, 12] and Azis [13] (with Helmholtz type governing equation) considered the case of anisotropic diffusion and homogeneous media. Whereas for the case of isotropic diffusion and variable coefficients (inhomogeneous media), studies had been done by Rap et al in 2004 [14], Ravnik and Škerget in 2013 and 2014 [1, 2], Li et al in 2015 [15] and Pettres and Lacerda in 2017 [3].

Equations (1) provides a wider class of problems since it applies for anisotropic and inhomogeneous media and nonetheless cover the case of isotropic diffusion that happens when \(d_{11} = d_{22}, d_{12} = 0 \) and also for homogeneous media occurring when the coefficients \(d_{ij} \) and \(v_i \) are constant. Apparently, there exists very few studies on problems governed by diffusion-convection equation (1) for the cases of simultaneous anisotropic diffusion and spatially variable coefficients. Zoppou and Knight [16] had been working on finding the analytical solution to the unsteady orthotropic diffusion-convection equation with spatially variable coefficients. The equation considered is almost similar to equation (1) but with limitation \(d_{12} = 0 \). Recent works considering the case of anisotropic diffusion and spatially variable coefficients were reported in [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] for different class of governing equations.

Referred to the Cartesian frame \(Ox_1x_2 \) we will consider boundary value problems governed by (1) where \(x = (x_1, x_2) \). The coefficient \([d_{ij}] \) \((i,j = 1, 2)\) is a real positive definite symmetrical matrix. Also, in (1) the summation convention for repeated indices holds.

Given the coefficients \(d_{ij}(x) \) and \(v_i(x) \), a solution \(c \) to (1) is sought which is valid in a region \(\Omega \) in \(R^2 \) with boundary \(\partial \Omega \) which consists of a finite number of piecewise smooth curves. On \(\partial \Omega_1 \) the dependent variable \(c(x) \) is specified, and

\[
P = d_{ij}(\partial c/\partial x_i)n_j = l/(\hat{D}\hat{C})D_{ij}(\partial C/\partial X_i)n_j
\]

(2)
is specified on \(\partial \Omega_2 \) where \(\partial \Omega = \partial \Omega_1 \cup \partial \Omega_2 \) and \(n = (n_1, n_2) \) denotes the outward pointing normal to \(\partial \Omega \). The method of solution will be to obtain a boundary integral equation from which a BEM can be formulated by which then numerical values of the dependent variable \(c \) and its derivatives may be obtained for all points in \(\Omega \).

2. The boundary integral equation

The boundary integral equation is derived by transforming the variable coefficient equation (1) to a constant coefficient equation. We restrict the coefficients \(d_{ij} \) and \(v_i \) to be of the form

\[
d_{ij}(x) = \hat{d}_{ij}h(x)
\]
\[
v_i(x) = \hat{v}_ih(x)
\]

(3)

(4)

where \(h(x) \) is a differentiable function and \(\hat{d}_{ij} \) and \(\hat{v}_i \) are constant. Substitution of (3) and (4) into (1) gives

\[
\hat{d}_{ij}\frac{\partial}{\partial x_i}\left[h\frac{\partial c}{\partial x_j}\right] - \hat{v}_i\frac{\partial (gc)}{\partial x_i} = 0
\]

(5)

Assume

\[
c(x) = h^{-1/2}(x)\varsigma(x)
\]

(6)

therefore equation (5) can be written as

\[
\hat{d}_{ij}\frac{\partial}{\partial x_i}\left[h\frac{\partial (h^{-1/2}\varsigma)}{\partial x_j}\right] - \hat{v}_i\frac{\partial (h^{1/2}\varsigma)}{\partial x_i} = 0
\]
which can be further written as
\[
\hat{d}_{ij} \left[\left(\frac{1}{4} h^{-3/2} \frac{\partial h}{\partial x_i} \frac{\partial h}{\partial x_j} - \frac{1}{2} h^{-1/2} \frac{\partial^2 h}{\partial x_i \partial x_j} \right) \hat{\varsigma} + h^{1/2} \frac{\partial^2 \varsigma}{\partial x_i \partial x_j} \right] - \hat{v}_i \frac{\partial (h^{1/2} \hat{\varsigma})}{\partial x_i} = 0 \quad (7)
\]

Use of the identities
\[
\frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} = - \left(\frac{1}{4} h^{-3/2} \frac{\partial h}{\partial x_i} \frac{\partial h}{\partial x_j} - \frac{1}{2} h^{-1/2} \frac{\partial^2 h}{\partial x_i \partial x_j} \right)
\]
\[
\hat{h} \frac{\partial (h^{-1/2} \hat{\varsigma})}{\partial x_i} = h^{1/2} \frac{\partial \varsigma}{\partial x_i} - \hat{\varsigma} \frac{\partial h^{1/2}}{\partial x_i}
\]
allows equation (7) to be written in the form
\[
\hat{h}^{1/2} \left(\hat{d}_{ij} \frac{\partial^2 \varsigma}{\partial x_i \partial x_j} - \hat{v}_i \frac{\partial \varsigma}{\partial x_i} \right) - \varsigma \left(\hat{d}_{ij} \frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} + \hat{v}_i \frac{\partial h^{1/2}}{\partial x_i} \right) = 0 \quad (8)
\]

So that if \(h \) satisfies
\[
\hat{d}_{ij} \frac{\partial^2 h^{1/2}}{\partial x_i \partial x_j} + \hat{v}_i \frac{\partial h^{1/2}}{\partial x_i} = 0 \quad (9)
\]
then the transformation (6) brings the variable coefficients equation (1) into a constant coefficients equation
\[
\hat{d}_{ij} \frac{\partial \varsigma}{\partial x_i \partial x_j} - \hat{v}_i \frac{\partial \varsigma}{\partial x_i} = 0 \quad (10)
\]
Moreover, substitution of (3) and (6) into (2) gives
\[
P = -P_h \varsigma + P_h^{1/2} \quad (11)
\]
where \(P_h(x) = \hat{d}_{ij} \left(\frac{\partial h^{1/2}}{\partial x_j} \right) n_i \) and \(P_h(x) = \hat{d}_{ij} \left(\frac{\partial \varsigma}{\partial x_j} \right) n_i \).

One possible form of function \(h \) satisfying (9) is \(h(x) = |A \exp (\alpha_m x_m)|^2 \) with \(\hat{d}_{ij} \alpha_i \alpha_j + \hat{v}_i \alpha_i = 0 \) where \(A \) and \(\alpha_m \) are constant. When the material under consideration is a layered material consisting of several layers where each layer is a specific type of material of specific constant coefficients \(d_{ij} \) and \(v_i \) then the discrete variation of the constant coefficients from layer to layer may certainly accommodate the determination of a continuous variation of the variable coefficients \(d_{ij}(x) \) and \(v_i(x) \) by interpolation, that is to determine the parameters \(\alpha_m \) of function \(h(x) \).

By using Gauss divergence theorem equation (10) can be transformed in a boundary integral equation (see for example [30])
\[
\eta(x) \varsigma(x) = \int_{\partial \Omega} \left\{ P_v(x) \Phi(x, \chi) - [P_v(x) \Phi(x, \chi) + \Gamma(x, \chi)] \varsigma(x) \right\} ds(x) \quad (12)
\]
where \(P_v(x) = \hat{v}_i n_i(x) \) and \(\chi = (\chi_1, \chi_2) \), \(\eta = 0 \) if \((\chi_1, \chi_2) \notin \Omega \cup \partial \Omega \), \(\eta = 1 \) if \((\chi_1, \chi_2) \) lies inside the domain \(\Omega \), \(\eta = \frac{1}{2} \) if \((\chi_1, \chi_2) \) is on the boundary \(\partial \Omega \) given that \(\partial \Omega \) has a continuously turning tangent at \((\chi_1, \chi_2) \). The so called fundamental solution \(\Phi \) (see [30] for its derivation) is
\[
\Phi(x, \chi) = \frac{F}{2\pi} \exp \left(-\frac{\chi \cdot R}{2E} \right) K_0 \left(\frac{\chi \cdot R}{2E} \right) \quad (13)
\]
where $E = [\hat{d}_{11} + 2\hat{d}_{12}\hat{\sigma} + \hat{d}_{22}(\hat{\sigma}^2 + \hat{\sigma}^2)]/2$, $F = \hat{\sigma}/E$, $\hat{R} = \hat{x} - \hat{\chi}$, $\hat{x} = (x_1 + \hat{\sigma}x_2, \hat{\sigma}x_2)$,
$\hat{\chi} = (\chi_1 + \hat{\sigma}\chi_2, \hat{\sigma}\chi_2)$, $\hat{v} = (\hat{v}_1 + \hat{\sigma}\hat{v}_2, \hat{\sigma}\hat{v}_2)$, $\hat{R} = \sqrt{(x_1 + \hat{\sigma}x_2 - \chi_1 - \hat{\sigma}\chi_2)^2 + (\hat{\sigma}x_2 - \hat{\sigma}\chi_2)^2}$,
$\hat{v} = \sqrt{(\hat{v}_1 + \hat{\sigma}\hat{v}_2)^2 + (\hat{\sigma}\hat{v}_2)^2}$ where $\hat{\sigma}$ and $\hat{\sigma}$ are respectively the real and the positive imaginary parts of the complex root σ of the quadratic equation $\hat{d}_{11} + 2\hat{d}_{12}\sigma + \hat{d}_{22}\sigma^2 = 0$ and K_0 is the modified Bessel function. Use of (6) and (11) in (12) yields

$$\eta h^{1/2}c = \int_{\partial\Omega} \left\{ \left(h^{-1/2}\Phi \right) P + \left[\left(P_h - P \right) \frac{1}{h^{1/2}} \Phi - h^{1/2}\Gamma \right] c \right\} ds$$

Equation (14) provides a boundary integral equation which is the starting point of BEM construction for determining the numerical solutions of ϕ and its derivatives at all points of Ω.

3. Numerical results

In this section we will examine some problems. The aim is to justify the the analysis derived in the previous sections. For the problems, the domain is taken to a unit square as shown in Figure 1). The boundary of the square is divided into a number of elements of equal length on each side. To calculate the solutions, a FORTRAN code is constructed. A specific command for counting the elapsed CPU time is embedded in the code.

![Figure 1. The domain Ω](image)

3.1. Problem 1: Test problem

The aim of test problems is to see the accuracy, convergence and consistency of the BEM solutions. The test problems are also aimed to see the efficiency of the BEM. The constant coefficients are taken to be

$$\hat{d}_{ij} = \begin{bmatrix} 1.5 & 1 \\ 1 & 1 \end{bmatrix} \quad \hat{v}_i = (1, 1.5)$$

and the boundary conditions are (see Figure 1)

- P given on the side AB, BC, CD
- c given on the side AD
The inhomogeneity function \(h(x) \) satisfying equation (9) is

\[
h(x) = [3 \exp (0.2x_1 - 0.1484x_2)]^2
\]

The analytical solution is

\[
c(x) = \frac{1}{3} \exp (0.3x_1 + 0.5346x_2)
\]

Figure 2 shows the errors for solutions \(c(x) \), which indicate that the BEM solutions obtained are quite accurate and convergent to the analytical solutions as the number of elements increases. Whereas, Figure 3 exhibits a consistency between the scattering and the flow. After all this is to say that the FORTRAN script has been working correctly. Moreover, Table 1 shows the CPU time elapsed for obtaining solutions \(c(x) \) and its derivatives at 19×19 interior points. It is observed that the standard BEM works quite efficiently, the elapsed CPU time is no longer than 3.5 minutes time.
Table 1. CPU computation time (in seconds) for Problem 1

Elements	80 elements	160 elements	320 elements
Time	43.00	89.421875	192.375

3.2. Problems without simple analytical solutions

Now, the aim is to see the impacts of the change on the anisotropy and inhomogeneity of the medium, as well as the impact of the change on the velocity coefficient to the solutions. For problems considered in this section, the boundary conditions are

\[P = 1 \text{ on the side AB} \]
\[P = 0 \text{ on the side BC, CD} \]
\[c = 1 \text{ on the side AD} \]

and the boundary is divided into 320 identical elements.

3.2.1. Problem 2

For the following both cases of anisotropy (anisotropic and isotropic) the constant velocity coefficient is assumed to be

\[\hat{v}_i = (1, 2) \]

Case of anisotropic medium The constant diffusion coefficients are taken to be

\[\hat{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 0.75 \end{bmatrix} \]

the inhomogeneity function \(h \) satisfying equation (9) is assumed to be

\[h(x) = [\exp (0.15x_1 - 0.0892x_2)]^2 \text{ for inhomogeneous medium} \]
\[h(x) = 1 \text{ for homogeneous medium} \]

Case of isotropic medium The constant diffusion coefficients are taken to be

\[\hat{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

the inhomogeneity function \(h \) is

\[h(x) = [\exp (0.15x_1 - 0.0903x_2)]^2 \text{ for inhomogeneous medium} \]
\[h(x) = 1 \text{ for homogeneous medium} \]

Figure 4 shows a comparison of four cases of anisotropy and inhomogeneity of the medium, from which it is observed that the anisotropy and inhomogeneity of the medium give effects on the solutions, as expected.

3.2.2. Problem 3

Now, we will consider again the case of isotropic homogeneous medium, with

\[\hat{d}_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
\[h(x) = 1 \]

but with constant velocity coefficient

\[\hat{v}_i = (1, 1) \]

It is obvious from Figure 5 that the velocity also effects the solutions. These results are as expected.
Figure 4. Scattering of c for the anisotropic inhomogeneous (top left), anisotropic homogeneous (top right), isotropic inhomogeneous (bottom left) and isotropic homogeneous (bottom right) medium of Problem 2

Figure 5. Scattering of c of the isotropic homogeneous medium for Problem 2 (left) and Problem 3 (right)

4. Conclusion
Problems governed by equation (1) for inhomogeneous media have been solved by using the BEM. The BEM gives accurate and consistent solutions and elapses very efficient computation time. And this justifies the analysis for deriving the boundary integral equation in Section 2 is valid.

Acknowledgements
M. I. Azis acknowledges the research grants provided by The Ministry of Higher Education of Indonesia (KEMRISTEKDIKTI) under the contract numbered as 007/SP2H/PTNBH/DRPM/2019 and by The Hasanuddin University under the Hasanuddin
References
[1] Ravnik J and Škerget L 2013 A gradient free integral equation for diffusion-convection equation with variable coefficient and velocity Engineering Analysis with Boundary Elements 37 683
[2] Ravnik J and Škerget L 2014 Integral equation formulation of an unsteady diffusion-convection equation with variable coefficient and velocity Computers and Mathematics with Applications 66 2477
[3] Pettres R and Lacerda L A 2017 Numerical analysis of an advective diffusion equation with a diffusive heat source Engineering Analysis with Boundary Elements 84 129
[4] Yoshida H and Nagaoka M 2010 Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation Journal of Computational Physics 229 7774
[5] Meenal M and Eldho T I 2012 Two-dimensional contaminant transport modeling using mesh free point collocation method (PCM) Engineering Analysis with Boundary Elements 36 55
[6] Wu X-H, Chang Z-J, Lu Y-L, Tao W-Q and Shen S-P 2012 An analysis of the convection-diffusion problems using meshless and mesh based methods Engineering Analysis with Boundary Elements 36 1040
[7] Hernandez-Martinez E, Puebla H, Valdes-Parada F and Alvarez-Ramirez J 2013 Nonstandard finite difference schemes based on Green’s function formulations for reaction–diffusion-convection systems Chemical Engineering Science 94 245
[8] Wang F, Chen W, Tadeu A and Correia C G 2017 Singular boundary method for transient convection–diffusion problems with time-dependent fundamental solution International Journal of Heat and Mass Transfer 114 1126
[9] Fendoğlu H, Bozkaya C and Tezer-Sezgin M 2018 DBEM and DRBEM solutions to 2D transient convection-diffusion-reaction type equations Engineering Analysis with Boundary Elements 93 124
[10] Haddade A, Salam N, Khaeruddin and Azis M I 2017 A boundary element method for 2D diffusion-convection problems in anisotropic media Far East Journal of Mathematical Sciences 102(8) 1593
[11] Azis M I, Kasbawati, Haddade A and Thamrin S A 2018 On some examples of pollutant transport problems solved numerically using the boundary element method Journal of Physics: Conference Series 979 012075
[12] Azis M I, Asrul L, Khaeruddin and Paharuddin 2018 BEM solutions for unsteady transport problems in anisotropic media Journal of Heat and Mass Transfer 15(4) 915
[13] Azis M I 2019 Numerical solutions for the Helmholtz boundary value problems of anisotropic homogeneous media Journal of Computational Physics 381 42
[14] Rap A, Elliott L, Ingham D B, Lesnic D and Wen X 2004 DRBEM for Cauchy convection-diffusion problems with variable coefficients Engineering Analysis with Boundary Elements 28 1321
[15] Li Q, Chai Z and Shi B 2015 Lattice Boltzmann model for a class of convection-diffusion equations with variable coefficients Computers and Mathematics with Applications 70 548
[16] Zappou C and Knight J H 1999 Analytical solution of a spatially variable coefficient advection-diffusion equation in up to three dimensions Applied Mathematical Modelling, 23 667
[17] Salam N, Haddade A, Clements D L and Azis M I 2017 A boundary element method for a class of elliptic boundary value problems of functionally graded media Engineering Analysis with Boundary Elements 84(3) 186
[18] Azis M I 2019 Standard-BEM solutions to two types of anisotropic-diffusion convection reaction equations with variable coefficients Engineering Analysis with Boundary Elements 105 87
[19] Azis M I 2019 Numerical solutions to a class of scalar elliptic BVPs for anisotropic exponentially graded media Journal of Physics: Conference Series 1218 012001
[20] Hamzah S, Azis M I and Syamsuddin E 2019 On some examples of BEM solution to elasticity problems of isotropic functionally graded materials IOP Conference Series: Materials Science and Engineering 619 012018
[21] La Nafie N, Ilyas N, Azis M I and Amir A K 2019 A class of variable coefficient elliptic equations solved using BEM IOP Conference Series: Materials Science and Engineering 619 012025
[22] Azis M I 2019 BEM solutions to exponentially variable coefficient Helmholtz equation of anisotropic media Journal of Physics: Conference Series 1277 012036
[23] La Nafie N, Azis M I and Fahruddin 2019 Numerical solutions to BVPs governed by the anisotropic modified Helmholtz equation for trigonometically graded media IOP Conference Series: Materials Science and Engineering 619 012058
[24] Haddade A, Azis M I, Djafar Z, Jabir St N and Nurwahyu B 2019 Numerical solutions to a class of scalar elliptic BVPs for anisotropic quadratically graded media IOP Conference Series: Earth and Environmental Science 279 012007
[25] Jabir St N, Azis M I, Djafar Z and Nurwahyu B 2019 BEM solutions to a class of elliptic BVPs for anisotropic trigonometrically graded media IOP Conference Series: Materials Science and Engineering 619 012059
[26] Nurwahyu B, Abdullah B, Massinai A and Azis M I 2019 Numerical solutions for BVPs governed by a Helmholtz equation of anisotropic FGM *IOP Conference Series: Earth and Environmental Science* 279 012008

[27] Hamzah S, Azis M I and Amir A K 2019 Numerical solutions to anisotropic BVPs for quadratically graded media governed by a Helmholtz equation *IOP Conference Series: Materials Science and Engineering* 619 012060

[28] Syam R, Fahruddin, Azis M I and Hayat A 2019 Numerical solutions to anisotropic FGM BVPs governed by the modified Helmholtz type equation *IOP Conference Series: Materials Science and Engineering* 619 012061

[29] Azis M I, Syam R and Hamzah S 2019 BEM solutions to BVPs governed by the anisotropic modified Helmholtz equation for quadratically graded media *IOP Conference Series: Earth and Environmental Science* 279 012010

[30] Azis M I 2017 Fundamental solutions to two types of 2D boundary value problems of anisotropic materials *Far East Journal of Mathematical Sciences* 101(11) 2405

[31] Abramowitz M and Stegun I A 1972 *Handbook of mathematical functions: with formulas, graphs and mathematical tables*, Dover Publications, Washington