Optimization of Load Forecasting in Smartgrid using Artificial Neural Network based NFTOOL and NNTOOL

Sthitprajna Mishra1, Bibhu Prasad Ganthia2*, Abel Sridharan3, Rajakumar. P4, D. Padmapriya5, Dr. S. Kaliappan6

1Department of Electrical Engineering, IGIT, Sarang, Dhenkanal, Odisha, India.
2Department of Electrical Engineering, IGIT, Sarang, Dhenkanal, Odisha, India.
3Digital Engineering, Cognizant, Chennai, Tamilnadu, India.
4Department of Electrical and Electronics Engineering, Sri Sairam Engineering College, Chennai, Tamilnadu, India.
5Department of Electrical and Electronics Engineering, Panimalar Engineering College, Chennai, Tamilnadu, India.
6Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, Tamilnadu, India.

sthitprajnamishra26@gmail.com1, jb.bibhu@gmail.com2*, abel.sridharan@gmail.com3, rajakumar.eee@sairam.edu.in4, dpadmapriya.ece@gmail.com5, kalies.me@gmail.com6

Abstract. The motivation behind the research is the requirement of error-free load prediction for the power industries in India to assist the planners for making important decisions on unit commitments, energy trading, system security & reliability and optimal reserve capacity. The objective is to produce a desktop version of personal computer based complete expert system which can be used to forecast the future load of a smart grid. Using MATLAB, we can provide adequate user interfaces in graphical user interfaces. This paper devotes study of load forecasting in smart grid, detailed study of architecture and configuration of Artificial Neural Network(ANN), Mathematical modeling and implementation of ANN using MATLAB and Detailed study of load forecasting using back propagation algorithm.

1. Introduction
The two variables on which the economic prosperity of developing countries like India is constantly dependent are the reliability and quality of electric power supply. Load forecast is a technique of predicting future loads for a power system. [1] Power companies use this methodology to forecast the amount of power required to balance supply and demand. Demand forecasting is used to determine generating, transmission, and distribution capacity. [2] The type of generation proficiency required is determined by the energy prediction. In the design and operation of power systems, accuracy in electrical load forecasting is critical. [3] It can assist market participants in lowering operating costs and building a more reliable energy supply system. Long-term load forecasting is utilized in expansion planning, intertie tariff fixing, and long-term capital investment planning that spans one to ten years. In order to schedule fuel supply for a few weeks, the medium term load forecast is used. [4] For unit commitment, maintenance & economic dispatch difficulties, a short-term load forecast is used.
2. Load Forecasting In Smart Grid
Prediction of electricity necessary to satisfy the short or medium-term & long-term load demand is known as “load forecasting”. The forecasting methodology is used by utility companies to aid in the operations and management of their customers' supplies. [5][14] Electricity load forecasting is an important procedure that helps electricity generating and distributing businesses improve their efficiency and income. It can be used to manage their capacity and operations so that they can reliably supply all of their customers with the energy they need. [6][15] The smart grid is a combination of electrical and digital technology, as well as information and communication technology that allows for the integration of business operations and the system to produce actual, measurable value across the power distribution chain. [7][18] Through a communication system, an intelligent future electrical system connects all supply grids and demand elements. The Smart grid uses two-way digital technology to transmit electricity to consumers, allowing for effective consumer management and grid use to notice and correct supply-demand imbalances. [8][17] Load forecasting has an impact on fuel resource planning and strategic decisions to balance power supply and demand. [16] When the energy market underwent a revolution, load forecasting became increasingly important, spreading across other business areas such as energy trading, financial planning, and so on. [9][19] Exact load projections serve as the foundation for the system's spot price initiation in order to obtain the lowest possible power purchasing cost in the market. It is also advantageous for electricity customers to comprehend the relationship between demand and price, as well as to adjust their electricity usage patterns in response to the price. In the Smart Grid scenario, grid components are responsible for variations in the consumer's electricity demand at different intervals of time at the utility level. [20]

3. Expert System
It is a computer program shown in figure 1, which is used to simulate the abilities of a human expert to make decisions. It’s a computer program that helps people solve problems by simulating human decision-making. Typically, it accomplishes this by extracting knowledge from its knowledge base and applying reasoning and inference rules to the questions raised by the user. The first commercial system to utilize knowledge-based architecture was the Expert System. The knowledge base and the inference engine are two subsystems that make up a knowledge-based system. The facts about the world are represented by the knowledge base. [9][10]

![Figure 1. Block diagram of Expert System](image)

An inference engine is a computerized reasoning system which is used to evaluate the condition of the knowledge base at the moment. After that in most cases, it applies appropriate rules before asserting new knowledge into the knowledge base. [8][11][22] An inference engine can be used to provide the ability for explanation, allowing it to describe the chain of reasoning to a user that led towards a certain conclusion by tracing back the rules that were fired as a result of the assertion. [21] Because the system has no memory constraints, it can be utilized to store as much data as needed and remember it during its applications. Because of the high efficiency feature, a highly efficient output is obtained if the knowledge base is updated with appropriate knowledge, which may not be possible with a human.
4. Artificial Neural Networks
An ANN-artificial neural network is a data processing system composed of a large number of high qualities interconnected processing components called artificial neurons which are inspired by the cerebral cortex’s structure. [7][12] It is known as the foundation of Artificial Intelligence (AI) which usually used to solve the problem that would prove to be impossible by human or statistical standards. [13] ANN is having self learning capability that can enable them to produce a better result. It is a mathematical model inspired from the working principle of human brain. ANNs are made up of three layers given as input layer, hidden layer, and output layer. The hidden layer is made up of nodes that aim to functionally link model inputs to model outputs during optimization. A specific activation function is used after each neuron to limit its output in a specific required range. With different activation functions and different synaptic weight adjustments, it is possible to solve numerous amounts of problems in artificial neural networks. The network usually gets information from the input & output data, using training techniques and transfer functions. [11][27] Back propagation is one of the supervised learning programs that utilize the universal function approximate to make use of a quadratic error function's gradient descent. The gradient descent methodology is used during the learning phase to reduce total error of the network's results and output generated. The weighted connections multiply the activation functions of the input nodes. The simple architecture diagram of ANN is given below figure no. 2.

![Figure 2. Simple architecture diagram of ANN](image)

Three layers make up a neural network given as input layer, hidden layer and output layer. Temperature, wind speed, rainfall, humidity, previous load data, and actual load data are among the six inputs employed in this study results optimized ANN design. [6][25] It is used in training with Levenberg-Marquardt back propagation algorithm. A four-layered feed forward network with sigmoid activation function in the hidden layer and a linear output neuron make up the neural network.

5. Mathematical Modeling of ANN
Biological neural network existing in human brain works swiftly as the network is massively parallel in nature. The biological network consists of biological neurons which are connected to other neurons forming a network which helps the brain to solve problems. [23] The connections in human neural networks are called as synapses. The strength of these connections is an important parameter as it will determine the overall output from the network. The connections transfer activation potentials from one neuron to the other with the help of neurotransmitters. In ANN-Artificial Neural Network, same strategy is used and the connections that represent synapses in biological networks are replaced by synaptic weights. A synaptic weight of a connection in artificial neural network determines the overall output of the networks. [5][26][28]
4

Figure 3. Modeling of ANN

A specific activation functions are used after each neuron to limit its output in a specific required range. With different activation functions and different synaptic weight adjustments it is possible to solve numerous amounts of problems in Artificial Neural Networks. [4][24]

6. Results Comparison Between NFTOOL & NNTOOL
They should only be used for brief remarks that do not fit within the text if they are necessary. When at all possible, avoid using footnotes.

6.1 Results using NFTOOL
NFTOOL guides you through a data fitting challenge and solves it using a two-layer feed forward network with Levenberg Marquardt training.

Figure 4. Regression plot-1 using nftool

Figure 5. Regression plot-2 using nftool
Figure 6. Error histogram plot-1 using nftool

Figure 7. Error histogram plot-2 using nftool

6.2 Results using NNTOOL

NNTOOL launches the network/data management window, which allows us to import, create, utilize, and export neural networks and data.

Figure 8. Regression plot-1 using nntool
Figure 9. Regression plot-2 using nntool

Figure 10. Training parameters-1 using nntool

Figure 11. Training parameters-2 using nntool
7. Result Analysis Using Neural Network Toolbox
The predicted value of load using the neural network toolbox in MATLAB can be represented as given below.

![Figure 12. Performance plot-1 using nntool](image1)

![Figure 13. Performance plot-2 using nntool](image2)

![Figure 14. Target value ~ predicted value](image3)

Table 1. Output data from the neural network toolbox
Month	Target value	Predicted value	Network output value	Error value
JAN	1325	1325.0007	1325.0007	-0.0007
FEB	1367	1366.9998	1366.9998	0.0001
MAR	1450	1449.9997	1449.9998	0.0002
APR	1469	1432.4791	1432.4791	36.5208
MAY	1435	1434.9999	1434.9999	7.0058
JUN	1444	1443.9999	1443.9999	3.1258
JUL	1441	1440.9999	1440.9999	1.7182
AUG	1489	1488.9998	1488.9998	0.0001
SEP	1469	1439.2015	1439.2015	29.7984
OCT	1507	1506.9986	1506.9985	0.0014
NOV	1451	1506.1408	1506.1408	55.1408
DEC	1463	1463.6278	1463.6278	-0.6278

Figure 15. Output predicted using neural network toolbox in MATLAB

8. Implementation Results Using MATLAB Code Result

Figure 16. Error histogram output using MATLAB simulink
Figure 17. Training parameters using MATLAB simulink

Figure 18. Regression plot formed using MATLAB simulink

Performance = 577.8535
Train performance = 591.3847
Val performance = 30.0030
Test performance = 1.0716e+03

Figure 19. Performance plot formed by MATLAB simulink

9. Conclusion
This is research work to present a desktop version of personal computer based expert system, which is used in smart grid for load forecasting. It studied the potential of various ANN training algorithms, transfer functions, learning rate, and momentum in order to find a suitable ANN model for developing an accurate and reliable load forecasting system in the smart grid, which could help to economically
optimize power system operations. Using MATLAB SIMULINK an adequate user interface could be provided in graphical user interfaces. The working and functionality of the overall process has also been described. Different learning algorithms have been studied along with the different types of neural networks. The mathematical modeling of ANN-Artificial Neural Network has been studied. The input and output vector composition, as well as the network design, are typically significant variables in a neural network's performance. Because normalization methods impact Back Propagation's prediction performance, normalization of input and output vectors is required.

10. References

[1] Pragati A., Ganthia B.P., Panigrahi B.P. (2021) Genetic Algorithm Optimized Direct Torque Control of Mathematically Modeled Induction Motor Drive Using PI and Sliding Mode Controller. In: Kumar J., Jena P. (eds) Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, vol 707. Springer, Singapore. https://doi.org/10.1007/978-981-15-8586-9_32.

[2] Ganthia, B.P., Barik, S.K. (2020), Steady-State and Dynamic Comparative Analysis of PI and Fuzzy Logic Controller in Stator Voltage Oriented Controlled DFIG Fed Wind Energy Conversion System. J. Inst. Eng. India Ser. B 101, 273–286. https://doi.org/10.1007/s40031-020-00455-8.

[3] Ganthia, Bibhu Prasad and Monalisa Mohanty, and Jai Kumar Mahendar, and Jai Kumar Mahendar. (2022) "Power Analysis Using Various Types of Wind Turbines." In Modeling and Control of Static Converters for Hybrid Storage Systems. edited by Fekik, Arezki, and Nacereddine Benamrouche, 271-286. Hershey, PA: IGI Global. http://doi:10.4018/978-1-7998-7447-8.ch010.

[4] Bimal K. Bose (2017) “Artificial Intelligence Techniques in Smart grids and Renewable Energy Systems-Some Example Applications”, proceedings of the IEEE, VOL.105, No.11, November, DOI:0.1109/JPROC.2017.2756596.

[5] Ganthia, B.P., Barik, S.K. (2021) Fault Analysis of PI and Fuzzy-Logic-Controlled DFIG-based Grid-Connected Wind Energy Conversion System. J. Inst. Eng. India Ser. B. https://doi.org/10.1007/s40031-021-00664-9.

[6] Ganthia, Bibhu Prasad and Subrat Kumar Barik, and Byamakesh Nayak. (2022) "Comparative Analysis of Various Types of Control Techniques for Wind Energy Conversion System." In Modeling and Control of Static Converters for Hybrid Storage Systems. edited by Fekik, Arezki, and Nacereddine Benamrouche, 143-174. Hershey, PA: IGI Global. http://doi:10.4018/978-1-7998-7447-8.ch006.

[7] B.P. Ganthia, K. Rout, (2016) Deregulated power system based study of age using pid and fuzzy logic controller Int. J. of Adv. Res. 4, 847–855. www.journalajar.co.

[8] Satpathy S.R., Pradhan S., Pradhan R., Sahu R., Biswal A.P., Ganthia B.P. (2021) Direct Torque Control of Mathematically Modeled Induction Motor Drive Using PI-Type-I Fuzzy Logic Controller and Sliding Mode Controller. In: Udgata S.K., Sethi S., Srirama S.N. (eds) Intelligent Systems. Lecture Notes in Networks and Systems, vol 185. Springer, Singapore. https://doi.org/10.1007/978-981-33-6081-5_2.

[9] Saurabh Karsoliya (2012) “Approximating Number of Hidden layer neurons in Multiple Hidden layers BPNN Architecture” International journal of Engineering Trends and Technology-Volume Issue 6.
[10] Subash Ranjan Kabat, Chinmoy Kumar Panigrahi, Bibhu Prasad Ganthia, (2021) Fuzzy Logic Based Fault Current Prediction in Double Fed Induction Generator Based Wind Turbine System, Materials Today: Proceedings, 2021, ISSN 2214-7853, https://doi.org/10.1016/j.matpr.2021.06.403.

[11] Christopher A. Moturi, Francis K. Kioko , (2013) “Use Of Artificial Neural Networks For Short-term Electricity Load Forecasting Of Kenya Nation Grid Power System ” International Journal of Computer Applications (0975-8887) Volume 63, NO . 2, FEBRUARY.

[12] Ganthia B.P., Pradhan R., Sahu R., Pati A.K. (2021) Artificial Ant Colony Optimized Direct Torque Control of Mathematically Modeled Induction Motor Drive Using PI and Sliding Mode Controller. In: Kumar J., Jena P. (eds) Recent Advances in Power Electronics and Drives. Lecture Notes in Electrical Engineering, vol 707. Springer, Singapore. https://doi.org/10.1007/978-981-15-8586-9_35

[13] Hao-Tian Zhang, Fang-Yuan Xu, Long Zhou, (2010) “Artificial Neural Network For Load Forecasting In Smart Grid” proceedings of the Ninth International Conference on Machine Learning and Cybernetics, Qingdao, 11-14 July.

[14] B. P. Ganthia, S. Mohanty, P. K. Rana and P. K. Sahu, (2016) "Compensation of voltage sag using DVR with PI controller," International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 2138-2142, doi: 10.1109/ICCEEOT.2016.7755068.

[15] Lemuel Clark P. Velasco, Christelle R. Villezas, Prinz Nikko C. Palahang, Jerald Aldin A. Dagaang, (2015) “Next Day Electric Load Forecasting Using Artificial Neural Networks”, 8th IEEE International Conference Humanoid, Nanotechnology, Information Technology Communication and Control, Environment and Management (HNICEM), The Institute of Electrical and Electronics Engineers Inc.(IEEE)-Philippine Section 9-12 December.

[16] B. P. Ganthia, V. Agarwal, K. Rout and M. K. Pardhe, (2017) "Optimal control study in DFIG based wind energy conversion system using PI & GA," 2017 International Conference on Power and Embedded Drive Control (ICPDEC), Chennai, pp. 343-347.

[17] O.F.Oyediran and A.B.Adeyemo. (2013) “Performancee Evaluation Of Neural Network MLP and ANFIS models for weather forecasting studies”, 6(1):147-164.

[18] Ganthia, B. P., Barik, S. K., Nayak, B., (2021) “Hardware in Loop (THIL 402) Validated Type-I Fuzzy Logic Controller of Type-III Wind Turbine System under Transients”. J. Electrical Systems, 17-1, 28-51. journal/esrgroups.org/ges

[19] N.Cetinkaya, (2013). “Long-term Electrical Load Forecasting based on economic and demographic data for Turkey”. 2013 IEEE, 14th Int. symp.comput.Intell.Informatics.pp.219-223.

[20] Ganthia B.P., Barik S.K., Nayak B. (2021) Wind Turbines in Energy Conversion System: Types & Techniques. In: Singh V.K., Bhoi A.K., Saxena A., Zoba A.F., Biswal S. (eds) Renewable Energy and Future Power Systems. Energy Systems in Electrical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-33-6753-1_9.

[21] Adepoju, G.A., Ogunjuyigbe, S.O.A and Alawode, K.O. (2007), "Application of neural network to load forecasting in Nigerian Electrical Power System", The pacific journal of science and technology, VOL 8, pp 68-72.

[22] B.P. Ganthia, P.K. Rana, T. Patra, R. Pradhan and R. Sahu, (2018) "Design and Analysis of Gravitational Search Algorithm Based TCSC Controller in Power System", Materials Today: Proceedings, vol. 5, no. 1, pp. 841-847.
[23] Islam, B.U. (2011), “Comparision of conventional and modern Load Forecasting Techniques based on Artificial Intelligence and Expert Systems” International Journal of computer science Issues, VOL.8, Issue 5, NO.3, pp 504-513.

[24] B. P. Ganthia, S. Mohanty, P. K. Rana and P. K. Sahu, (2016) "Compensation of voltage sag using DVR with PI controller," International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 2138-2142, doi: 10.1109/ICEEOT.2016.7755068.

[25] Daiw, Wang P, (2010) "Application Of Pattern Recognition and Artificial Neural Network to Load Forecasting in Electric Power System"; Third International Conference on Natural Computation: IEEE: 2007.P.381-5.

[26] Bibhu Prasad Ganthia, (2019) “Application of Hybrid Facts Devices in DFIG Based Wind Energy System for LVRT Capability Enhancements”. Journal of Mechanics of Continua and Mathematical Sciences. 15. 10.26782/jmcms.2020.06.00019.

[27] Gross, G. and Galiana, F. D., (1987), "Short-term load forecasting," in Proceedings of the IEEE, vol. 75, no. 12, pp. 1558-1573, Dec., doi: 10.1109/PROC.1987.13927.

[28] Ganthia, B. P., Barik, S. K., Nayak, B., (2020), “Shunt Connected FACTS Devices for LVRT Capability Enhancement in WECS”, Engineering, Technology & Applied Science Research, 10(3), pp. 5819-5823.