Supersymmetric Grand Unification: the quest for the theory *

Alejandra Melfo(1), Goran Senjanović(2)
(1) Centro de Física Fundamental, Universidad de Los Andes, Mérida, Venezuela and
(2) International Centre for Theoretical Physics, 34100 Trieste, Italy

With the advent of neutrino masses, it has become more and more acknowledged that SO(10) is a more suitable theory than SU(5): it leads naturally to small neutrino masses via the see-saw mechanism, it has a simpler and more predictive Yukawa sector. There is however a rather strong disagreement on what the minimal consistent SO(10) theory is, i.e. what the Higgs sector is. The issue is particularly sensitive in the context of low-energy supersymmetry.

I. INTRODUCTION

Supersymmetric Grand Unification has been one of the main extensions of the Standard Model (SM) for now more than two decades. Today, however, it is in search of a universally accepted minimal, consistent model. With the growing evidence for neutrino masses [1], it is becoming more and more clear that the SU(5) theory is not good enough: it contains too many parameters in the Yukawa sector. The situation is much more appealing in the SO(10) scenario, which is custom fit to explain small neutrino masses in a simple and fairly predictive manner. The main dispute lies in the breaking of SO(10) down to the Minimal Supersymmetric Standard Model (MSSM), in the delicate question of the choice of the Higgs superfields.

Roughly speaking, there are two schools of thought: one that sticks to the small representations, which guarantees asymptotic freedom above M_{GUT}, but must make use of higher dimensional operators, suppressed by M_{Pl}; one that argues in favor of the renormalizable theory only, even at the price of becoming strong between M_{GUT} and the Planck scale. Each program has its pros and cons. The first one in a sense goes beyond grand unification by appealing to the string picture in order to provide additional horizontal symmetries needed to simplify the theory plagued by many couplings. The second one is based on pure grand unification, with the hope that the Planck scale physics plays a negligible role. It is the second one that we discuss at length in this talk.

II. WHY GRAND UNIFICATION AND WHY SUPERSYMMETRY?

No excuse needs to be offered for the natural wish to unify the strong and electro-weak interactions. This appealing idea has two important generic features: proton decay and the existence of magnetic monopoles. They are by themselves sufficient reason to pursue the unification scenario.

There are three important reasons to incorporate low-energy supersymmetry in this program: i) the hierarchy problem of the Higgs mass, ii) the gauge coupling unification, and iii) the Higgs mechanism in the form of radiative symmetry breaking. Let us briefly discuss them.

- Supersymmetry per se says nothing about the smallness of the Higgs mass (the hierarchy problem), it just keeps the perturbative effect small, the way that chiral symmetries protect small Yukawa couplings. The old feelings that this might not be such a big deal, since the cosmological constant does not get protected in a similar way, are becoming more widespread today.

- Gauge coupling unification of the MSSM [2] is a rather remarkable phenomenon, but its meaning is not completely clear. Namely, if one believes in a desert between M_W and M_{GUT}, then this becomes a crucial ingredient. The desert is a property of the minimal gauge group, SU(5), which is not a good theory of neutrino masses. In SO(10), on the other hand, supersymmetry is not essential at all; the theory works even better without supersymmetry since then it predicts intermediate scales in the range $10^{10} - 10^{14} \text{GeV}$, ideal for neutrino masses via the see-saw mechanism [2], and for leptogenesis [3]. It is worth stressing though that supersymmetric grand unification was anticipated already in 1981, and it gave a rationale for a heavy top quark with a mass around 200GeV (needed to increase the ρ parameter and help change $\sin^2 \theta_W$ from its then accepted value of 0.2 to the current 0.23, see e.g. last paper in Ref. [2]).

- Radiative symmetry breaking and the Higgs mechanism [3]. The tachyonic property of the Higgs mass term has bothered people for a long time. It is of course purely a question of taste, for either sign of M_H^2 is equally probable. Since the charged sfermion mass terms are definitely not tachyonic, in supersymmetry one could ask why is the Higgs scalar so special. The answer is rather simple: if the nature of the scalar mass terms is determined by some large scale, and if all $m^2 > 0$, it turns out that

*Based on talks given in BW2003 Workshop on Mathematical, Theoretical and Phenomenological Challenges Beyond the Standard Model: Perspectives of Balkans Collaboration, Vrnjačka Banja, Serbia, 29 Aug - 2 Sep 2003.
the Higgs doublet coupled to the top quark rather
naturally becomes tachyonic at low scales due to
the large top Yukawa coupling. This was kind of
prophetic more than twenty years ago, and it could
be a rationale for such a heavy top quark. Admit-
tedly a little fine-tuning is still needed between the
so-called μ term and the stop mass, but wether
this is a small or a large problem is still disputable.

Suppose we accept low energy supersymmetry as nat-
ural in grand unification. We then face the task of identi-
fying the minimal consistent supersymmetric grand uni-
fied theory and then hope that it will be confirmed by
experiment. Due to the miraculous gauge coupling unifi-
cation in the MSSM, we are then tempted to accept the
idea of SU(5), it is not surprising that SU(5) was considered
for a long time the main candidate for a supersymmetric
GUT. Why not stick to this idea?

The point is that SU(5), at least in its simplest form,
can only provide small neutrino masses, not large enough
to explain Δm^2_{\odot} can only provide small neutrino masses, not large enough
neutrinos are massless, and thus λ is studied. Now, if W_H were to be small, these terms
would become important. But λ is a Yukawa type coupling, i.e. it is self-renormalizable, so it can be naturally
small. This point is worth discussing further.

At the renormalizable tree level, one gets the same
masses for the color octet and the $SU(2)_L$ triplet in 24_H: $m_8 = m_3$. This is almost always assumed when the
running from M_{GUT} to M_W is studied. Now, if λ is small, the c_i terms in ΔW_H can dominate; so, one gets $m_3 = 4m_8$. This fact alone suffices to increase M_{GUT}
by an order of magnitude above the usually quoted value
$M_{GUT} \simeq 10^{16} GeV$ (calculated with $c_i = 0$). Similarly, the masses of the colored triplets T and \tilde{T} in 5_H and $\tilde{5}_H$ would get increased by a factor of about 30, and the
d = 5-induced proton life-time by about 10^3. More preci-
sely, one obtains

$$ m_T = m_T^0 \left(\frac{m_3}{m_8} \right)^{5/2}, \quad (6) $$

and if the coupling λ in ΔW_H were to be small, these terms
would become important. But λ is a Yukawa type coupling, i.e. it is self-renormalizable, so it can be naturally
small. This point is worth discussing further.

At the renormalizable tree level, one gets the same
masses for the color octet and the $SU(2)_L$ triplet in 24_H: $m_8 = m_3$. This is almost always assumed when the
running from M_{GUT} to M_W is studied. Now, if λ is small, the c_i terms in ΔW_H can dominate; so, one gets $m_3 = 4m_8$. This fact alone suffices to increase M_{GUT}
by an order of magnitude above the usually quoted value
$M_{GUT} \simeq 10^{16} GeV$ (calculated with $c_i = 0$). Similarly, the masses of the colored triplets T and \tilde{T} in 5_H and $\tilde{5}_H$ would get increased by a factor of about 30, and the
d = 5-induced proton life-time by about 10^3. More pre-
cisely, one obtains $\Delta W_H = c_1 \frac{Tr 24H^4}{M_{Pl}} + c_2 \frac{(Tr 24H^2)^2}{M_{Pl}} \quad (5)$

III. SUPERSYMMETRIC SU(5)

The minimal Higgs sector needed to break the sym-
metry completely down to $U(1)_{em} \times SU(3)_C$ consists of
the adjoint 24_H and two fundamentals 5_H and $\tilde{5}_H$. The
Higgs superpotential is quite simple

$$ W_H = m(24_H) + \lambda (24_H)^3 + \mu \tilde{5}_H 5_H + \alpha 5_H 24_H \tilde{5}_H \quad (1) $$

and so is the Yukawa one

$$ W_Y = y_d 10_F \tilde{5}_F 5_H + y_u 10_F 10_F 5_H \quad (2) $$

since the charged fermions belong to 5_F and 10_F.

The above theory is usually called the minimal super-
symmetric SU(5) theory. It apparently has a small num-
er of parameters:

- 3 real y_d (after diagonalization)
- 2 x 6 = 12 real y_u (y_u is a symmetric matrix in
generation space)
- 2 real μ, m (after rotations)
- 2 x 2 = 4 real λ, α

In total, 21 real parameters. The trouble is that the
theory fails badly $\Delta W_H = c_1 \frac{Tr 24H^4}{M_{Pl}} + c_2 \frac{(Tr 24H^2)^2}{M_{Pl}} \quad (5)$

fall, except for the third generation. The most conserva-
tive approach would be to blame the failure in the ab-
}
where the superscript 0 denotes the tree-level value $m_3 = m_8$. In this case

$$m_8 \simeq \frac{M_{\text{GUT}}^2}{M_{\text{Pl}}^4}$$

so that

$$M_{\text{GUT}}^4 \simeq (M_{\text{GUT}}^0)^3 M_{\text{Pl}}^4$$

With $M_{\text{GUT}}^0 \simeq 10^{16} \text{GeV}$, this means

$$M_{\text{GUT}} \simeq 10 M_{\text{GUT}}^0, \quad m_T \simeq 32 m_T^0$$

It should be stressed that λ small is naturally technical, as much as a small electron Yukawa coupling. Taking $\lambda \sim O(1)$ and ruling out the theory would be equivalent to finding that the SM does not work with all the Yukawa couplings being of order one.

Taking into account non-renormalizable interactions can thus save the theory. It is important to recall that without them, the minimal SU(5) does not make sense anyway, predicting as it does $m_\nu = 0$ and $m_d = m_e$; once this is corrected the theory is still valid.

Of course, if one prefers the renormalizable theory, one needs new states such as 45_H (in order to correct $m_\nu = m_e$), or 15_H to give neutrino masses, or three (at least two) singlet right-handed neutrinos. This introduces even more uncertainties in the computations of M_{GUT} and τ_P. In short, the minimal realistic supersymmetric SU(5) theory is not yet ruled out. It is indispensable to improve the experimental limit on τ_P by two-three orders of magnitude. Grand unification needs desperately a new generation of proton decay experiments.

In the supersymmetric version of SU(5), there is yet another drawback. As much as the MSSM, it allows for the $d = 4$ proton decay through terms like

$$\Delta W = m' \lambda' \bar{F}_L \lambda' F_L$$

which contains both

$$\lambda' (\nu^c D^c D^c + QLD^c)$$

This is a disaster (unless $\lambda' \lesssim 10^{-12}$). A way out is assumed through the imposition of R-parity, or equivalently matter parity $M : F \rightarrow -F, H \rightarrow H$, where F stands for the fermionic (matter) superfields and H for the Higgs ones. Grand unification ought to do better than this, and SO(10) does it as we shall see.

In any case, SU(5) does a poor job in the neutrino sector and in the charged fermion sector it is either incomplete or it has too many parameters. One would have to include extra horizontal symmetries, and this route is in some sense beyond grand unification and often needs strings attached. If we stick to the pure grand unification, we better move on to SO(10).

IV. TOWARDS UNIFICATION: PATI-SALAM SYMMETRY

Quark-Lepton unification can be considered a first step towards the complete SO(10) unification of a family of fermions in a single representation. Many interesting features of SO(10) GUTs, such as a renormalizable see-saw and R-parity conservation, are already present in partial unification based on the Pati-Salam group $G_{\text{PS}} = SU(4)_c \times SU(2)_L \times SU(2)_R$, so it is instructive to review the situation there. Later, when we turn to SO(10), decomposition of representation under the Pati-Salam subgroup will prove to be the most useful.

To simplify the discussion, imagine a two-step breaking of the PS symmetry down to the MSSM

$$SU(2)_L \times SU(2)_R \times SU(4)_c$$

$$\rightarrow SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times SU(3)_c$$

$$\rightarrow SU(2)_L \times U(1)_Y \times SU(3)_c$$

The first steps breaks G_{PS} down to its maximal subgroup, the LR (Left-Right) group \[11\], and it is simply achieved through the vev of and adjoint representation (the numbers in parenthesis indicate the G_{PS} representations)

$$A = (1, 1, 15)$$

In turn, the breaking of the LR group can be achieved by having $SU(2)_R$ triplets fields, with $B - L = 2$, acquiring a vev. Triplets will couple to fermions and give a mass to right-handed neutrino, providing the see-saw mechanism at the renormalizable level. Right-handed doublets could also do the job, but then non-renormalizable operators have to be invoked, which means effective operators resulting from a new theory at a higher scale, but this theory we will discuss explicitly in the next section.

There is a more profound reason for preferring the triplets. They have an even $B - L$ number, and thus preserve matter parity as we defined above. This in turn means R-parity is not broken at a high scale. But then it can be easily shown that it cannot be broken afterwards, at the low energy supersymmetry breaking or electroweak scale. More precisely, a spontaneous breakdown of R-parity through the sneutrino VEV (the only candidate) would result in the existence of a pseudo-Majoron with its mass inversely proportional to the right-handed neutrino mass. This is ruled out by the Z decay width \[12, 13\]. This fact is completely analogous to the impossibility of breaking R-parity spontaneously in the MSSM, where the Majoron is strictly massless.

In terms of PS representations, the LR triplets are contained in the fields

$$\Sigma(3, 1, 10), \Sigma(3, 1, 10), \Sigma_c(1, 3, 10), \Sigma_c(1, 3, 10)$$

The matter supermultiplets are

$$\psi(2, 1, 4), \psi_c(1, 2, 4)$$
and the minimal light Higgs multiplet is

$$\phi(2, 2, 1)$$ \hspace{1cm} (17)

The most general superpotential for the fields is

$$W = mTrA^2 + MTr(\Sigma \bar{\Sigma} + \Sigma_c \bar{\Sigma}_c) + Tr(\Sigma A\bar{\Sigma} - \Sigma_c A\bar{\Sigma}_c)$$ \hspace{1cm} (18)

where we assume the following transformation properties under Parity

$$\Sigma \rightarrow \Sigma_c, \quad \bar{\Sigma} \rightarrow \bar{\Sigma}_c, \quad A \rightarrow -A$$ \hspace{1cm} (19)

We choose A to be a parity-odd field in order to avoid flat directions connecting left- and right-breaking minima.

It is straightforward to show that the SM singlets in A, \(\Sigma_c\) and \(\bar{\Sigma}_c\) take vevs in the required directions to achieve the (in principle two-step) symmetry breaking

$$A < = M_c \quad \Sigma_c < = M_R \quad \bar{\Sigma}_c < = M_R$$ \hspace{1cm} (20)

with

$$M_c \simeq M, \quad M_R \simeq \sqrt{Mm}$$ \hspace{1cm} (21)

As discussed in detail in [14, 15], the \(SU(2)_R\)-breaking vev lies in a flat direction that connect them with charge-breaking vacua. It can be eliminated if the soft breaking terms break also \(SU(2)_R\). If not, one would have to appeal to operators coming from a more complete theory as studied in the next section. The interesting point here is that the breaking in the minimal model leaves a number of fields potentially light [14]. There is a larger, accidental \(SU(3)\) symmetry broken down to \(SU(2)\) by the right-handed triplet fields, hence five Nambu-Goldstone bosons. But the gauge symmetry \(SU(2)_R \times U(1)_{B-L}\) is broken down to \(U(1)_Y\), so that three of them are eaten, leaving us with states \(\delta^+_c, \bar{\delta}^+_c\) that acquire a mass only at the scale of supersymmetry breaking. These states are common in supersymmetric theories that include the Left-Right group, and have been subject of experimental search [14]. In a similar way, a color octet in A has a mass of order \(M^2_R/M_c\), and could in principle be light.

The unification constraints give the interesting possibility

$$10^3 GeV \leq M_R \leq 10^7 GeV \quad 10^{12} GeV \leq M_c \leq 10^{14} GeV$$

opening up the possibility of the LHC discovering them at the TeV scale. For larger \(M_R\), which would be necessary if one wants to fit neutrino masses without additional fine-tuning, these particles become less accessible to experiment. However, the large number of fields in this theory implies the loss of perturbativity at a scale around \(10M_c\), and non-renormalizable effects suppressed by this new fundamental scale can be shown to guarantee that they have comparable masses [15]. Namely, if these effects are included, the only consistent possibility is the single-step breaking

$$M_R \simeq M_c \simeq 10^{10} GeV$$ \hspace{1cm} (22)

Surely the most interesting feature of a low scale of PS symmetry breaking is the possibility of having \(U(1)_{B-L}\) monopoles, with mass \(m_M \simeq 10M_c\). If produced in a phase transition via the Kibble mechanism, the requirement that their density be less than the critical density then implies \(M_c \leq 10^{12} GeV\). We see that the single-step breaking at \(M_c \sim M_R \sim 10^{10} GeV\) (in a theory including non-renormalizable terms) offers the interesting possibility of potentially detectable intermediate mass monopoles, as long as one manages to get rid of the false vacuum problem of supersymmetric theories.

One final note about PS symmetry and neutrino masses. In LR theories the see-saw mechanism is in general non-canonical, or type II. That is, there is a direct left-handed neutrino mass from the induced vev of the left-handed triplet fields in \(\Sigma\) (which we shall call \(\Delta\))

$$\propto \Delta > \simeq \frac{M^2_W}{M_R}$$

Namely, in non-supersymmetric theories the symmetry allows for a coupling in the potential

$$\Delta V = \lambda \Delta \phi^2 \Delta^c + M^2 \Delta^2$$ \hspace{1cm} (23)

resulting in

$$\Delta > = \lambda < \phi >^2 \frac{M_R}{M^2} \simeq \lambda \frac{M^2_W}{M_R}$$ \hspace{1cm} (24)

In supersymmetry such terms are of course not present, but one could have interactions with, for example, a heavy field \(S\) transforming as \((1, 1, 3)\) under \(G_{PS}\)

$$W = \phi^2 S + \Delta \Delta^c S + MS^2$$ \hspace{1cm} (25)

Integrating out \(S\) would then give a contribution

$$\Delta W = \frac{1}{M} \Delta \phi^2 \Delta^c$$ \hspace{1cm} (26)

producing the required small vev. Or one could have a couple of heavy fields \(X = (2, 2, 10)\) and \(\bar{X} = (2, 2, 10)\), which through terms like

$$W = \phi \Delta \bar{X} + \phi \Delta^c \bar{X} + MX\bar{X}$$ \hspace{1cm} (27)

would give the same effect. These representations in fact are the ones appearing in the minimal SO(10) theory of the next section.

The absence of the \(S, X, \bar{X}\) fields in the minimal PS theory guarantees a type I see-saw at the supersymmetric level. Breaking of supersymmetry can generate a nonvanishing but negligible vev for \(\Delta\) [13]:

$$\Delta > \simeq \left(\frac{m_{3/2}}{M_c}\right)^2 \frac{m^2_D}{M_R}$$ \hspace{1cm} (28)

which contributes by a tiny factor \((m_{3/2}/M_c)^2 \leq 10^{-14}\) to the usual see-saw mass term \(m_\nu \simeq m_D^2/m_{3/2}\). In short, the minimal PS model has a clean, type I see-saw.
In spite of providing only a partial unification, PS theory has interesting features, namely potentially light states and the possibility of intermediate monopoles, that could be a way of differentiating it from other theories at a high scale. We are however interested in grand unification, so let us move on.

V. SO(10) GRAND UNIFIED THEORY

If not for anything else, but for the fact that matter parity is a finite gauge rotation, SO(10) would be a better candidate for a supersymmetric GUT. But, as is well known, it also unifies a family of fermions, has charge conjugation as a gauge transformation, has right-handed neutrinos and through the see-saw mechanism leads naturally to small neutrino masses. And, most important, at the renormalizable level, if one is willing to accept large representations, it has fewer parameters than SU(5). We will elaborate on this point as we go along.

The issue here, and the main source of dispute among the experts in the field, is the choice of the Higgs sector. Before deciding on this, a comment on $d = 4$ proton decay in the MSSM is in order. The basic problem is the impossibility of distinguishing the leptonic and the Higgs doublets, both being superfields. This persists in SU(5) where you have both \tilde{F}_F and \tilde{F}_H superfields. In SO(10) fermions belong to 16_F and the "light" Higgs to 10_H. This difference should be taken seriously, and all efforts should be made to maintain it.

Not all researchers agree on this. Certainly not the people who pursue minimality by choosing small representations, like the set $(45_H, 16_H, 16_H)$, in order to break SO(10) down to $SU(3)_c \times SU(2)_L \times U(1)_Y$. This way, through $\langle 16_H \rangle = \langle 16_H \rangle \neq 0$, matter parity will be broken at M_{GUT}; hence the catastrophic $d = 4$ proton decay. One is then forced to postulate extra discrete symmetries in order to save the theory. In any case, more flavor symmetries are needed, since both the symmetry breaking and the fermion masses need higher-dimensional, Planck suppressed operators whose number is rather large (at least thirteen complex couplings in W_H, the Higgs superpotential). The Yukawa superpotential takes the form

$$W_Y = y_{16_F} \Gamma 16_F 10_H$$

$$+ \frac{1}{M_{Pl}} [c_1(16_F \Gamma 16_F)(16_H \Gamma 16_H)$$

$$+ c_2(16_F \Gamma 16_F)(10_H \Gamma 10_H)$$

$$+ c_3(16_F \Gamma 16_F 45_H 10_H)$$

$$+ c_4(16_F \Gamma 16_F 10_H \Gamma 10_H)]$$

At M_{GUT}, one arrives at the prediction

$$m_b = m_t \left(1 + c \frac{M_{GUT}}{M_{Pl}} \right)$$

which works very well as we know.

Also, the see-saw takes the so-called type I form. From [20],

$$m_{\nu_R} \simeq c_4 \frac{M_{GUT}^2}{M_{Pl}} \simeq 10^{12} - 10^{14} \text{GeV}$$

which fits nicely the light neutrino masses. The type II contribution, obtained when 16_H gets a small vev $\sim M_W$,

$$M_{\nu}^{II} \simeq \frac{M_{GUT}^2}{M_{Pl}} \simeq 10^{-5} - 10^{-6} \text{eV}$$

is too small to explain either atmospheric or solar ν data (maybe relevant for small mass splits in the case of degenerate neutrinos).

Once flavor symmetries are added, one can do the texture exercise and look for the most appealing model. But this program goes beyond the scope of grand unification. We ought to try to construct the minimal realistic supersymmetric GUT without invoking any new physics.

A. The pure renormalizable supersymmetric SO(10)

Such a theory is easily built with large representations in the Higgs sector

$$210_H, \ 126_H + \bar{126}_H, \ 10_H$$

with this content the theory is not asymptotically free any more above M_{GUT}, and the SO(10) gauge couplings becomes strong at the scale $\Lambda_F \lesssim 10 M_{GUT}$. The Higgs superpotential is surprisingly simple

$$W_H = m_{210}(210_H)^2 + m_{126}(126_H)^2 126_H + m_{10}(10_H)^2$$

$$+ \lambda(210_H)^3 + \eta 126_H 126_H 210_H$$

$$+ \alpha 10_H 126_H 126_H + \beta 126_H 210_H$$

With $\langle 210_H \rangle \neq 0$ and $\langle 126_H \rangle = \langle 126_H \rangle \neq 0$, SO(10) gets broken down to the MSSM, and then $\langle 10_H \rangle$ completes the job in the usual manner.

The Yukawa sector is even more simple

$$W_Y = y_{10} 16_F 10_H + y_{126} 126_H 16_F$$

with only 3 real (say) y_{10} couplings after diagonalization, and $6 \times 2 = 12$ symmetric y_{126} couplings, 15 in total. From the α and β terms one gets

$$W_H = ... + \alpha(2, 2, 1)_{10} (2, 2, 15)_{126} (1, 1, 15)_{210} + \frac{\beta}{10} (2, 2, 1)_{10} (2, 2, 15)_{126} (1, 1, 15)_{210} + ...$$

Now, the success of gauge coupling unification in the MSSM favors a single step breaking of SO(10), so that $\langle (1, 1, 15)_{210} \rangle \simeq M_{GUT}$. In other words, the light Higgs is a mixture of (at least) $(2, 2, 1)_{10}$ and $(2, 2, 15)_{126}$, equivalently

$$\langle (2, 2, 15)_{126} \rangle \simeq \langle (2, 2, 1)_{10} \rangle$$

Since $(2, 2, 15)^{126}$ is an adjoint of $SU(4)_c$, being traceless it give $m_t = -3m_d$, unlike $(2, 2, 1)_{10}$, which implies $m_t = m_d$. In other words, the (10_H) must be responsible for the $m_{12} \simeq m_\tau$ relation at M_{GUT}, and the $\langle \overline{126}_H \rangle$ for the $m_{12} \simeq 3m_\tau$ relation at M_{GUT}. In this theory, the Georgi-Jarlskog program becomes automatic.

Of course, we don’t know anymore why $m_b \simeq m_\tau$, or why 10_H dominates; admittedly a loss. But not all is lost. Since $(10_H) = \langle (2, 2, 1) \rangle$ is a Pati-Salam singlet, the difference between down quark and charged lepton mass matrices must come purely from $\langle \overline{126}_H \rangle$

$$M_d - M_e \propto y_{126}$$

Suppose the see-saw mechanism is dominated by the so-called type II: this is equivalent to neutrino masses being due to the triplet $(3, 1, \overline{10})_{126}$, with

$$\langle (3, 1, \overline{10})_{126} \rangle_{126} \simeq \frac{M_W^2}{M_{GUT}}$$

In other words

$$M_\nu = M_\nu^{II} \simeq y_{126} \langle (3, 1, \overline{10})_{126} \rangle$$

or

$$M_\nu \propto M_d - M_e$$

In order to illustrate the point, consider only the 2nd and 3rd generations. In the basis of diagonal M_e we have

$$M_\nu \propto \begin{pmatrix} m_\mu - m_\tau & \epsilon_{de} \\ \epsilon_{de} & m_\tau - m_\nu \end{pmatrix}$$

With a small mixing ϵ_{de}, we see that a large atmospheric mixing is only possible $m_\theta \simeq m_\nu$ [27]. In other words, the experimental fact of $m_b \simeq m_\tau$ at M_{GUT}, and large θ_{atm} seem to favor the type II see-saw.

On the other hand, it can be shown, in the same approximation of 2nd and 3rd generations only, that if type I dominates it gives a small θ_{atm} 28. This is a very interesting point, for it may make it possible to determine the nature of the see-saw in this theory, in fact, it can be shown 28 that the two types are really inequivalent.

The complete picture requires detailed studies of the three-generation case, and numerical studies have been performed. A type II see-saw is still supported 29, with the interesting prediction of a large θ_{13} and a hierarchical neutrino mass spectrum. A small contribution of 120H 30 or higher dimensional operators 31 allow for better fits. Adding CP phases still may give room for type I 32 (for earlier work on type I see 33).

B. Unification constraints

It is certainly appealing to have an intermediate see-saw mass scale M_R, between $10^{12} - 10^{13}$GeV or so. In the non-renormalizable case, with 16H and $\overline{126}_H$, this is precisely what happens: $M_R \simeq cM_{GUT}^2/M_{Pl} \simeq c(10^{13} - 10^{14})$GeV. In the renormalizable case, with 126H and $\overline{126}_H$, one needs to perform a renormalization group study using unification constraints. While this is in principle possible, in practice it is hard due to the large number of fields. The stage has recently been set, for all the particle masses were computed 34, and the preliminary studies show that the situation may be under control 35. It is interesting that the existence of intermediate mass scales lowers the GUT scale 36, (as was found before in models with 54H and 45H 38), allowing for a possibly observable $d = 6$ proton decay.

Notice that a complete study is basically impossible. In order to perform the running, you need to know particle masses precisely. Now, suppose you stick to the principle of minimal fine-tuning. As an example, you fine-tune the mass of the W and Z in the SM, then you know that the Higgs mass and the fermion masses are at the same scale

$$m_H = \frac{\sqrt{\lambda}}{g} m_W, \quad m_f = \frac{y_f}{g} m_W$$

where λ is a ϕ^4 coupling, and y_f an appropriate fermionic Yukawa coupling. Of course, you know the fermion masses in the SM model, and you know $m_{h} \simeq m_W$.

In an analogous manner, at some large scale M_G a group G is broken and there are usually a number of states that lie at m_G, with masses

$$m_i = \alpha_i m_G$$

where α_i is an approximate dimensionless coupling. Most renormalization group studies typically argue that $\alpha_i \simeq O(1)$ is natural, and rely on that heavily. In the SM, you could then take $m_H \simeq m_W, m_f \simeq m_W$; while reasonable for the Higgs, it is nonsense for the fermions (except for the top quark). In supersymmetry all the couplings are of Yukawa type, i.e. self-renormalizable, and thus taking $\alpha_i \simeq O(1)$ may be as wrong as taking all $y_f \simeq O(1)$.

While a possibly reasonable approach when trying to get a qualitative idea of a theory, it is clearly unacceptable when a high-precision study of M_{GUT} is called for.

C. Proton decay

As you know, $d = 6$ proton decay gives $\tau_p(d = 6) \propto M_{GUT}^4$, while $d = 5$ gives $\tau_p(d = 5) \propto M_{GUT}^2$. In view of the discussion above, the high-precision determination of τ_p appears almost impossible in SO(10) (and even in SU(5)). Preliminary studies 39 indicate fast $d = 5$ decay as expected.

We are ignoring the higher dimensional operators of order $M_{GUT}/M_{Pl} \simeq 10^{-2} - 10^{-3}$. If they are present with the coefficients of order one, we can forget almost everything we said about the predictions, especially in the Yukawa sector. However, we actually know that the presence of $1/M_{Pl}$ operators is not automatic (at least
not with the coefficients of order 1). Operators of the type (in symbolic notation)
\[O_5^\nu = \frac{c}{M_{Pl}} 16^F \]
are allowed by SO(10) and they give
\[O_5^\nu = \frac{c}{M_{Pl}} \left[(QQL) + (Q^cQ^cP^cL^c) \right] \]
These are the well-known \(d = 5 \) proton decay operators, and for \(c \approx O(1) \) they give \(\tau_p \approx 10^{23} \text{yr} \). Agreement with experiment requires
\[c \leq 10^{-6} \]
Could this be a signal that \(1/M_{Pl} \) operators are small in general? Alternatively, you need to understand why just this one is to be so small. It is appealing to assume that this may be generic; if so, neglecting \(1/M_{Pl} \) contributions in the study of fermion masses and mixings is fully justified.

D. Leptogenesis

The see-saw mechanism provides a natural framework for baryogenesis through leptogenesis, obtained by the out-of-equilibrium decay of heavy right-handed neutrinos\[4\]. This works nicely for large \(M_R \), in a sense too nicely. Already type I see-saw works by itself, but the presence of the type II term makes things more complicated. One cannot be a priori sure whether the decay of right-handed neutrinos or the heavy Higgs triplets is responsible for the asymmetry, although the hierarchy of Yukawa couplings points towards \(\nu_R \) decay. In the type II see-saw, the most natural scenario is the \(\nu_R \) decay, but with the triplets running in the loops \[10\]. It appears that the sign of the asymmetry gets correctly predicted for the type II seesaw, an impressive result \[41\].

VI. SUMMARY AND OUTLOOK

We have argued in favor of SO(10) as the minimal consistent supersymmetric grand unified theory. It includes all the interesting features of Left-Right and Pati-Salam symmetries, it is the ideal setting for a see-saw mechanism, and has the MSSM with automatic R-parity as the low energy limit. It can give connections with low energy phenomenology, such as the one relating \(\lambda_{\nu} \) to the Planck scale and choose small representations, using then \(1/M_{Pl} \) operators to generate the physically acceptable superpotential; it is then necessary to use textures to simplify the theory. In this sense, this programme appeals to physics beyond grand unification.

The other approach is to stick to the pure SO(10) theory, at the expense of using very large representations. The couplings then become strong at \(\lambda_{\nu} = 10 M_{GUT} \), but the theory has the advantage of requiring only a small number of couplings, and is a complete theory of matter and non-gravitational interactions.

The important question is rather if these versions of the theory can be tested in the near future. Work is in progress by several groups on the possibility of establishing testable constraints on neutrino masses and mixings, proton decay, and the implementation of the leptogenesis scenario. In the pure SO(10) approach, with less parameters, proving the theory wrong might be just a question of time.

VII. ACKNOWLEDGEMENTS

We wish to acknowledge many discussions and enjoyable collaboration in the subjects of these talks with Charan Aulakh, Borut Bajc, Thomas Hambye, Pavel Fileviez-Pérez, Andrija Rašin and Francesco Vissani. The work of G.S. was supported in part by European Commission under the RTN contract MRTN-CT-2004-503369; the work of A.M. by CDCHT-ULA project No. C-1244-04-05-B. And we thank the organizers of BW2003, in particular Goran Djordjevic, for a stimulating conference and a good time in Vrnjačka Banja. A. M. wishes to say hvala, bre.

Added note:

There has been a lot of activity in the subject of supersymmetric SO(10) since these talks were presented. In particular, two groups made numerical studies in favor of the minimal theory discussed here \([12,13]\). The complete study of proton decay and leptogenesis remain an important challenge. Meanwhile, the search for the minimal predictive SO(10) theories carried on to the split-supersymmetric and non-supersymmetric (or even supersplit-supersymmetric \[47\]) versions, since the gauge coupling unification allows for both. For example, one could get rid of \(126_H \) in favor of \(16_H \) and the two-loop radiative mechanism for the right-handed neutrino mass. There are no loops for the superpotential in supersymmetry, and in this case the ideal scenario becomes split supersymmetry, with light gauginos and higgsinos and heavy fermions as close to \(M_{GUT} \) as allowed by phenomenological constraints \[45,46\]. This implies giving up completely on naturalness, and then one can as well resort to the ordinary, non-supersymmetric SO(10). For the construction of minimal predictive models in this scenario, see \[47\].
[1] For some recent reviews see e.g. B. Bajc, F. Nesti, G. Senjanović and F. Vissani, “Perspectives in neutrino physics,” Proceedings of 17th Rencontres de Physique de la Vallée d’Aoste, La Thuile, 9-15 Mar 2003, M. Greco ed., page 103-143; S. M. Bilenky, C. Giunti, J. A. Grifols and E. Maso, Phys. Rept. 379 (2003) 69; V. Barger, D. Marfatia and K. Whisnant, Int. J. Mod. Phys. E 12 (2003) 569. A. Y. Smirnov, Int. J. Mod. Phys. A 19 (2004) 1180.

[2] S. Dimopoulos, S. Raby, F. Wilezek, Phys. Rev. D 24 (1981) 1681. L.E. Ibáñez, G.G. Ross, Phys. Lett. B 105 (1981) 439. M.B. Einhorn, D.R. Jones, Nucl. Phys. B 196 (1982) 475. W. Marciano, G. Senjanović, Phys.Rev.D 25 (1982) 3092.

[3] P. Minkowski, Phys. Lett. B 67 (1977) 421. T. Yanagida, proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, Tsukuba, 1979, eds. A. Sawada, A. Sugamoto, KEK Report No. 79-18, Tsukuba.

[4] G. Senjanović, in Quarks and Leptons, Cargèse 1979, eds. M. Lévy, et al., (Plenum, 1980, New York).

[5] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 48 (1993) 1417. D. G. Lee and R. N. Mohapatra, Phys. Rev. D 51 (1995) 1353.

[6] C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Phys. Lett. B 588, 196 (2004).

[7] C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Phys. Lett. B 588, 196 (2004).

[8] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70, 2845 (1993)

[9] B. Bajc, G. Senjanović and F. Vissani, Phys. Rev. Lett. 90 (2003) 051802.

[10] B. Bajc, G. Senjanović and F. Vissani, Phys. Rev. D 70, 093002 (2004), arXiv:hep-ph/0402140.

[11] H. S. Goh, R. N. Mohapatra and S. P. Ng, Phys. Lett. B 570 (2003) 215. H. S. Goh, R. N. Mohapatra and S. P. Ng, Phys. Rev. D 68 (2003) 115008.

[12] B. Dutta, Y. Mimura and R. N. Mohapatra, Phys. Rev. D 70, 095002 (2004), arXiv:hep-ph/0406117. W. M. Yang and Z. G. Wang, Nucl. Phys. B 707, 87 (2005) arXiv:hep-ph/0406221.

[13] B. Dutta, Y. Mimura and R. N. Mohapatra, Phys. Rev. D 69 (2004) 115014.

[14] K. Matsuda, Y. Koide and T. Fukuyama, Phys. Rev. D 64 (2001) 053015. T. Fukuyama and N. Okada, JHEP 0211 (2002) 011.

[15] L. Lavoura, Phys. Rev. D 48 (1993) 5440. B. Brahmachari and R. N. Mohapatra, Phys. Rev. D 58 (1998) 015001. K. y. Oda, E. Takasugi, M. Tanaka and M. Yoshimura, Phys. Rev. D 59 (1999) 055001.

[16] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Phys. Rev. D 70 (2004) 035007, arXiv:hep-ph/0402122.

[17] T. Fukuyama, A. Iakovenko, M. Matsumoto, S. Nasri and S. P. Ng, Phys. Rev. D 70, 075022 (2004), arXiv:hep-ph/0408139.

[18] C. S. Aulakh, B. Bajc, A. Melfo, A. Rašin and G. Senjanović, Nucl. Phys. B 597 (2001) 89.

[19] H. S. Goh, R. N. Mohapatra, S. Nasri and S. P. Ng, Phys. Lett. B 587 (2004) 105. T. Fukuyama, A. Iakovo-
vac, T. Kikuchi, S. Meljanac and N. Okada, JHEP 0409 (2004) 052.

[40] T. Hambye and G. Senjanović, Phys. Lett. B 582 (2004) 73. S. Antusch and S. F. King, Phys. Lett. B 597 (2004) 199. P. J. O’Donnell and U. Sarkar, Phys. Rev. D 49 (1994) 2118. E. Ma and U. Sarkar, Phys. Rev. Lett. 80 (1998) 5716. G. Lazarides and Q. Shafi, Phys. Rev. D 58 (1998) 071702.

[41] K.S. Babu, talk at the “Eight European Meeting: Planck05, From the Planck Scale to the Electroweak Scale”, May 23-28 2005, Miramare, Trieste, Italy.

[42] K. S. Babu and C. Macesanu, arXiv:hep-ph/0505200
[43] S. Bertolini and M. Malinsky, arXiv:hep-ph/0504241
[44] P. J. Fox et al., arXiv:hep-th/0503249
[45] B. Bajc and G. Senjanović, Phys. Lett. B 610 (2005) 80 arXiv:hep-ph/0411193.
[46] B. Bajc and G. Senjanović, arXiv:hep-ph/0507169
[47] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, arXiv:hep-ph/0510139