Arsenic pollution assessment in surface sediment of the inner Gulf of Thailand

A Yottiam¹, P Chaikeaw² and S Sritongouthai²

¹ Interdisciplinary Program in Environmental Science, Graduate School, Chulalongkorn University, Bangkok, TH
² Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, TH
E-mail: me_ji_ar@hotmail.com

Abstract. Surface sediments of the inner Gulf of Thailand and four main river estuaries were collected for total arsenic analysis in order to assess spatial distribution pattern, contamination status, regulating factors and potential ecological risk. The study reveals that the arsenic concentrations in the surface sediment samples varied from 5.43–18.01 mg/kg dry weight. Higher arsenic concentrations were found in the Chao Phraya river estuary toward in the eastern of the inner Gulf of Thailand. Based on the sediment quality guidelines (SQGs), arsenic was investigated most unlikely to cause any adverse effects. The result of geo-accumulation index (Igeo) was found to be less than 1, which indicated "unpolluted" state. Moreover, the potential risk of individual metal (Er) values directed that arsenic at all stations posed low ecological risks.

1. Introduction
Arsenic toxicity has become a principal concern owing to the escalating contamination of air, soil, water, and food. Millions of people in developed and developing countries are being chronically exposed to elevated doses of arsenic from natural and anthropogenic sources. Arsenic has the ability to readily change its oxidation state and bonding configuration, thus showing diverse chemical behavior in the environment and forming large numbers of organic and inorganic compounds. Natural source of arsenic is in the earth’s crust as present in geothermal discharges. Arsenic sources from human activities include mining [1] burning of coal, use of arsenic compounds in production processes, use of arsenical fungicides, insecticides, and herbicides in agriculture [2]. Arsenic occurs mainly in four oxidation states or inorganic arsenic, arsenate (As⁵⁺), arsenite (As³⁺), arsenic (As⁰) and arsine (As⁻³) [3]. After accumulation in biosphere media, the arsenic contamination is discharged by runoff into the marine environments. Subsequently, sediments act as a major sink for arsenic in the marine environments. On the contrary, sediment can be a potential source of arsenic and causes the process of biotransformation and bioaccumulation in marine ecosystems.

Marine sediments comprise significant sinks of contaminants and represent potential sources of pollution to the marine environment. Sediments from estuaries and coasts receiving drainage from industries and metal-mining areas contain significantly elevated arsenic concentrations. These contaminants are the threats of the aquatic biota and have been of significant environmental concern [4,5]. The studies of arsenic pollution in sediment have increased in recent years [6-9]. According to arsenic contamination, low arsenic concentrations in water and sediments could rise to hazardous levels through food chains in aquatic organisms by effects of bioaccumulation and biomagnification [10-11].
The inner Gulf of Thailand is due mainly to a variety of sources including surface runoff (particularly major large rivers including Mae Klong, Tha Chin, Chao Phraya and Bang Pakong Rivers) and drainage from port areas, domestic and industrial effluent discharges through outfalls and various contaminants from ships. The presence of arsenic contamination can potentially affect the inner Gulf of Thailand and ultimately becomes a serious environmental issue in Thailand.

The objectives of this study were (1) to investigate heterogeneity distributions of arsenic contamination in surface sediment of the inner Gulf of Thailand, (2) to determine the relationship between regulating factors and behavior of the arsenic, and (3) to measure the status and assess ecological risk of arsenic contaminations on the inner Gulf of Thailand.

2. Materials and methods

2.1. Study area and sampling

The inner Gulf of Thailand is the coastal environment, where is the transitional area between land and sea, and located at latitude 13°20'N, longitude 100°45'E. Its total shoreline is approximately 350 km long. Concerning the width of the inner Gulf of Thailand, the east to west and north to south is around, which covering an approximate area of 90×90 km² [12] with 15 m of average depth. The inner Gulf of Thailand receives large amounts of pollutions from point sources and non–point sources. In particular, runoff from Mae Klong (MK), Tha Chin (TC), Chao Phraya (CY) and Bang Pakong (BK) River estuaries in the northern part. Surface sediment (0-1 cm) samples were collected in July 2017, from 59 locations of the inner Gulf of Thailand and estuaries including Mae Klong, Tha Chin, Chao Phraya and Bang Pakong River estuaries (Figure 1) using the Ekman or Smith-Mcintyre stainless steel grab sampler. The surface sediments were sliced off and quickly placed in acid washed 50 ml of polyethylene centrifuge tube. All samples were preserved in the dark container filled with ice (below 4 ºC). Laboratory analyses were then carried out as quickly as possible.

2.2. Chemical analysis

All apparatus were previously soaked in 20% (v/v) HNO₃ solution for 24 h and were rinsed with double-distilled water before used. Total surface sediment analyses the decomposition of the sediment sample by strong acids. Homogenized sediment samples (0.5 g) were digested in acid-cleaned Teflon vessels containing 4 ml of concentrated HF, which were allowed to react overnight at room temperature. Subsequently, 2 ml of aqua regia (HCl:HNO₃ at a ratio 3:1 v/v) were added to the sample. Samples were digested for 15 min at 200 ºC using high performance microwave digester (Milestone Series 135931, Italy). After cooling, 2.0 g of H₃BO₃ were added to dissolve the fluoride precipitates. After that, the supernatant was poured in to a PP volumetric flask and were diluted to 50 ml with De-ionized reverse osmosis water [13,14]. All digested samples were analyzed total arsenic using hydride
generation technique of Atomic Absorption Spectrophotometer (AAS: Agilent 240AA, U.S.A.). The relative accuracy for the determination of arsenic was analyzed within the National Research Council Canada (NRCC) sediment reference material MESS-4. For data validation, the accuracy and precision of the arsenic analytical method was being acceptable at 74.0%. For readily oxidizable organic matter was determined using chromic acid method [15]. The total organic carbon (TOC) and total nitrogen (TN) were determined in part of the samples after removal of carbonate with 2 N HCl (60 ºC, 24 h) using a CHN Elemental Analyzer (JM 10, J-SCIENCE LAB Co., Ltd Kyoto JAPAN). For acid volatile sulfide was analyzed using 18 N H2SO4 and measured by Gastec model 201 LH.

2.3. Data processing

Sediment quality guidelines (SQGs)

The SQGs by Canadian and Wisconsin were popularity in the world because as a result of three sets were directly applied (without normalization) in assessing possible arsenic contamination in sediment of the study area. With respect to Canadian and Wisconsin SQGs, a site is determined as contaminated the reliability of the threshold effect level (TEL) and probable effect level (PEL) [16].

Geo-accumulation Index (I_{geo})

The index of geo-accumulation was used to separate the anthropogenic effects on the sediment from the natural influences [17]. The I_{geo} is defined by the following equation:

$$I_{geo} = \log_2 \left(\frac{\text{Sample}}{1.5 \times \text{Background}} \right)$$

where sample is the concentration measured in the sediment and background is the preindustrial level as reported by Hakanson [18]. The I_{geo} has 7 classifications following: <0 is practically unpolluted, 0–1 is unpolluted to moderately polluted, 1–2 is moderately polluted, 2–3 is moderately to strongly polluted, 3–4 is strongly polluted, 4–5 is strongly to very strongly polluted, and >5 is very strongly polluted [19,20].

Ecological risk assessment

In this study, the evaluation of ecological risk for a given metal was made by adopting the potential risk of individual metal (E_r) [20].

$$E_r = T_{r1} \times C_i$$

Where E_r is potential risk of arsenic, T_{r1} is 10 of toxic-response factor for arsenic [18]. Classifications for E_r as follow: $E_r < 40$ is low potential ecological risk, $40 \leq E_r < 80$ is moderate potential ecological risk, $80 \leq E_r < 160$ is considerable potential ecological risk, $160 \leq E_r < 320$ is high potential ecological risk, and $E_r \geq 320$ is very high ecological risk.

$$C_i = \frac{c_i}{c_{r1}}$$

where C_i is contamination factor, c_{r1} is mean concentration of the metal for study and c_{r1} is 15 of preindustrial reference values in the sediment [21].

3. Results and discussion

3.1. Spatial distribution

The spatial distribution of arsenic entire the inner Gulf of Thailand is shown in Figure 2. The arsenic concentrations ranged from 5.43-18.01 mg/kg dry weight. The maximum arsenic concentration was observed in the sediment samples of the Chao Phraya River estuary. On the contrary, the Mae Klong River estuary was the site with the lowest arsenic concentration. The result from all stations, the horizontal distributions of arsenic in the surface sediment was characterized by higher concentrations, which were found in the east of inner Gulf of Thailand. According to distribution pattern of arsenic is decreasing trend toward the lower area of the western. The high concentrations zone of arsenic are shown the Chao Phraya River estuary and extending eastward. Moreover, high concentrations of arsenic increased in the middle of the Gulf. In general, mean±SD concentrations of arsenic in the surface sediment were ranked, in decreasing order as follows: CY (11.25±3.88 mg/kg) > BK (8.66±1.00 mg/kg) > TC (8.02±1.28 mg/kg) > the inner GoT (7.46±2.23 mg/kg) > MK (7.13±1.65...
mg/kg) (Figure 2). Arsenic concentrations in this study (5.43-18.01 mg/kg) were higher than Africa (0.2-2.44 mg/kg) in some aquatic environments, but lower than Asia (0.42-342 mg/kg), Australia (21.2 mg/kg), Europe (21.2 mg/kg) and South America (1-27 mg/kg) in other locations (Table 1).

![Figure 2. The map shows the spatial pattern of arsenic concentration across the inner Gulf of Thailand and four major river estuaries generated by ordinary kriging method. The box plot compares the arsenic concentrations for all sampling locations with published data. The black line represents Coastal sediment quality standards of Thailand (SQS), arsenic standard level of 7 mg/kg.](image)

Figure 2.

Table 1. Comparison of total arsenic content in sediment between this study and other studies mentioned in the literature.

Locations	Descriptive statistical parameters	Total arsenic concentrations (mg/kg)	References
Open Lagoon, Southwest Nigeria	Mean	2.44	[22]
Dar es Salaam coast, Tanzania	Range	0.2–1.3	[23]
Chabahar Bay, Iran	Range (mean±SD)	5–22 (12.2±5.23)	[24]
Southern part of Caspian Sea, Iran	Range	7.17–13.52 (9.94±1.71)	[25]
East Kalimantan, Indonesia	Mean	2.00	[26]
Arabian Gulf, Saudi Arabia	Range	53–342	[27]
Bohai Sea, China	Range	3.4–13.6	[28]
Gorgan Bay South Caspian Sea, Iran	Range	2.6–8.6	[29]
West Bengal, eastern part, India	Range (mean±SD)	4.41–11.46 (5.85±1.20)	[30]
Southern Caspian Sea, Iran	Range (mean±SD)	7–17 (10.37±2.71)	[9]
Peninsular, Malaysia	Range	21.81–59.49	[19]
Southern/ Northern Gulf of Aqaba, Saudi Arabia	Mean	15.1/12.2	[31]
Eastern Beibu Bay, China	Range (mean±SD)	2.40–23.09 (9.53±3.99)	[32]
Thale Noi/	Range (mean±SD)	5.7–10.8 (8.2±1.7)/	[33]
Inner - Middle Lake/ Outer Lake,	Range (mean±SD)	3.7–10.8 (5.9±1.5)/	[33]
Songkhla Lake System, Thailand	Range	5.1–25.7 (10.7±5.5)	
Caspian Sea, Iran	Range (mean±SD)	6.97–20.1 (12.5±3.04)	[34]
Caspian Sea, Azerbaijan	Range (mean±SD)	8.87–22.6 (14.7±4.15)	[34]
Caspian Sea, Russia	Range (mean±SD)	0.42–6.71 (2.97±1.95)	[34]
Deception Bay, Queensland, Australia	Mean±SD	21.2±1.1	[7]
Algeciras Bay, Spain	Range (mean±SD)	8–23 (11±5)	[35]
Todos os Santos Bay, BA, Brazil	Range	1–27	[6]
The inner Gulf of Thailand	Range	**5.43-18.01**	**This study**

3.2. Arsenic contamination status
The SQGs values for arsenic classification of the samples based on these guidelines are shown (Table 2). The results of classifying sediments based on the TEL and PEL values suggested that arsenic in surface sediment of all sites would rarely (<TEL, TEL-PEL and >PEL values) be expected to non-cause effects on biota. Based on the SQGs by Canadian, arsenic has a mean concentration from sampling sites in Mae Klong River estuary shows result <TEL (62.50%) and TEL-PEL (37.50%). For Tha Chin (77.78%) and Bang Pakong River estuaries (88.89%) would be classified as presenting %TEL-PEL more than <TEL, while Chao Phraya River estuary had 100% TEL-PEL. The inner Gulf of Thailand shows result <TEL (70.83%) and TEL-PEL (29.17%). In comparison to the Wisconsin SQGs, a mean arsenic concentration in Mae Klong River estuary, 87.50% was lowered than TEL, in which 12.50% of samples fall in the range between TEL and PEL. For 88.89% were lowered than TEL, 11.11% of Tha Chin and Bang Pakong River estuaries samples fall in the range between TEL and PEL. The samples of Chao Phraya River estuary shows result 55.56% were lowered than TEL, in which 44.44% of samples fall in TEL-PEL. Arsenic concentration in the inner Gulf of Thailand has 83.33% <TEL and 16.67% fall in TEL-PEL (Table 2). Thus, at concentrations of arsenic in surface sediments greater than the TEL, toxic effects from long term exposure to arsenic would be predicted to occur. While, the Igeo method was used to calculate the metal contamination levels in the surface sediment of the inner Gulf of Thailand. The Igeo values were ranged from -2.05 to -0.32, which were indicated that the surface sediments of the inner Gulf of Thailand are categorized as practically unpolluted level (Figure 3).

Table 2. Comparison between arsenic concentrations and numerical Sediment Quality Guidelines (SQGs) in mg/kg

	MK River estuary	TC River estuary	CP River estuary	BK River estuary	The inner GoT
Min	5.43	6.11	7.53	7.19	5.76
Max	10.18	10.80	18.01	10.28	14.48
Average	7.13	8.02	11.25	8.66	7.46
SD	1.65	1.28	3.88	1.00	2.23
Canadian	TEL=7.24	PEL=41.6			
	%<TEL	62.5	22.22	11.11	70.83
	%TEL-PEL	37.5	77.78	100	29.17
	%>PEL	12.5	11.11	44.44	16.67
Wisconsin	TEL=9.80	PEL=33.0			
	%<TEL	87.5	88.89	55.56	88.89
	%TEL-PEL	12.5	11.11	44.44	16.67
	%>PEL	12.5	11.11	44.44	16.67

3.3. Regulating factors of As contamination

Generally, sediment characteristics play an important role in interpreting the distribution of arsenic in marine sediments such as grain size, inorganic and organic pollutants [29,34]. The present study, OM, TOC, TN and AVS are additionally analyzed in order to determine the regulating factors of arsenic contamination in the inner Gulf of Thailand. The results showed that OM, TOC, TN and AVS contents varied in the ranges of 0.16-3.77%, 2.03-36.5 mg C/g, 0.30-4.56 mg N/g and 0.00-1.86 mg S/g, respectively (Table 3). Subsequently, Pearson correlations are performed in all data of arsenic, OM, TOC, TN and AVS (Table 3). Arsenic content did not significant related with sediment characteristics. As a result, non-significant correlations indicated that arsenic contaminations in surface sediment of the inner Gulf of Thailand are independent from OM, TOC, TN and AVS content. However, an excellent correlation exists between TOC and TN in the surface sediment of this system. A general correlation between TOC and TN has been established by many authors [36-38]. Correlation analysis gives a very high coefficient of determination (r=0.955, p<0.01), which suggested that the concentration of TN may be regulated by organic sources. Moreover, positive significant correlation based on the content of OM (r=0.497, p<0.01) and TN (r=0.503, p<0.01) with AVS was found in the surface sediment of the inner Gulf of Thailand, which was indicated that the progressive enhancement of the processes of anaerobic decomposition, with increasing organic matter and total nitrogen.
Table 3. Product moment of Pearson’s correlation between arsenic concentration and related parameters in surface sediment of the inner Gulf of Thailand.

Parameters	As (mg/kg)	OM (%)	TOC (mg C/g)	TN (mg N/g)	AVS (mg S/g)
Range	5.43-18.0	0.16-3.77	2.03-36.5	0.30-4.56	0.00-1.86
Mean±SD	8.26±5.27	1.99±0.95	12.9±6.99	1.70±0.97	0.27±0.48
As (mg/kg)	1.000	ns	ns	ns	ns
OM (%)	ns	1.000	0.559**	ns	0.503**
TOC (mg C/g)	ns	0.559**	1.000	ns	ns
TN (mg N/g)	ns	0.675**	0.955**	1.000	ns
AVS (mg S/g)	ns	0.497**	ns	ns	1.000

** is significant at the 0.01 level (2-tailed), ns is non-significant.

3.4. Ecological risk assessment
The single E_r has been used to assess the potential ecological risk in coastal ecosystems [19,39]. In comparison of the present study, lower E_r values were observed in the Mae Klong River estuary (3.62-6.78) and the inner Gulf of Thailand (3.84-9.66). While, higher E_r values were observed in Chao Phraya River (5.02-12.01) and Tha Chin River (4.07-7.02) estuaries. However, the overall E_r values were in the range of 3.62–12.01 (Figure 3), which were lower than 40 and indicated that, arsenic at all stations posed low ecological risks.

Figure 3. Comparison of the I_{geo} and the E_r of arsenic in the surface sediment of the inner Gulf of Thailand and four major river estuaries.

4. Conclusion
The present study provides a comprehensive baseline data of arsenic in the surface sediments collected from 59 sampling sites in the inner Gulf of Thailand and four important estuaries. Based on the SQGs, arsenic investigated were most unlikely to cause any adverse effects. The surface sediment from all sampling sites was not polluted by the studied values. The E_r values based on the classifications by Hakanson, arsenic in the inner Gulf of Thailand on the surface sediment was shown as low ecological risk. The result of this study suggested low ecological risk, yet, 66.10% of all sampling locations were found with exceeded national standard limit. Thus, the arsenic treatment or monitoring devices should be provided in specific locations to reduce and mitigate ecological and health risks.

5. References
[1] Posada-Ayala IH, Murillo-Jiménez JM, Shumilin E, Marmolejo-Rodriguez AJ and Nava-Sánchez EH 2016. Arsenic from gold mining in marine and stream sediments in Baja California Sur, Mexico. Environ Earth Sci 75: 996-1010
[2] Bissen M and Frimmel FH 2003. Arsenic - a Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta Hydroch Hydrob 31: 9-18
[3] Ng JC 2005. Environmental Contamination of Arsenic and its Toxicological Impact on Humans. Environ Chem 2: 146-160

[4] Edmonds JS, Shibata Y, Francesconi KA, Rippingsale§ RJ and Morita M 1997. Arsenic transformations in short marine food chains studied by HPLC–ICP MS. Appl Organomet Chem 11: 281–287

[5] Neff JM 1997. Review ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16: 917-927

[6] Hatje V, Macedo SM, de Jesus RM, Cotrim G, Garcia KS, de Queiroz AF and Ferreira SLC 2010. Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Mar Pollut Bull 60: 2225-2232

[7] Brady JP, Ayoko GA, Martens WN and Goonetilleke A 2014. Temporal trends and bioavailability assessment of heavy metals in the sediments of Deception Bay, Queensland, Australia. Mar Pollut Bull: 464-472

[8] Gao X, Zhou F and Chen CT 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environ Int 62: 12-30

[9] Bastami KD, Neyestani MR, Shemirani F, Soltani F, Haghparast S and Akbari, A 2015. Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Mar Pollut Bull 92: 237-243

[10] Castro-Gonzalez MI and Mendez-Armenta M 2008. Heavy metals: Implications associated to fish consumption. Environ Toxicol Phar 26: 263-71

[11] Qiu YW, Lin D, Liu JQ and Zeng EY 2011. Bioaccumulation of trace metals in farmed fish from South China and potential risk assessment. Ecotox Environ Safe 74: 284-293

[12] Li L, Cui J, Liu J, Gao J, Bai Y and Shi X 2016. Extensive study of potential harmful elements (Ag, As, Hg, Sb, and Se) in surface sediments of the Bohai Sea, China: Sources and environmental risks. Environ Pollut 219: 432-439

[13] Ho HH, Swennen R and Damme V 2010. Distribution and contamination status of heavy metals in estuarine sediments near Cua Ong Harbor, Ha Long Bay, Vietnam. Geol Belg 13/1-2: 37-47

[14] Sekabira K, Origa HO, Basamba TA, Mutumba and Kakudidi E 2010. Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Int J Environ Sci Te 7: 435-446.

[15] Useese A, Chukwu OL, Rahman MM, Naidu R, Islam S and Oyewo EO 2017. Enrichment, contamination and geo-accumulation factors for assessing arsenic contamination in sediment of a tropical open lagoon, Southwest Nigeria. Environmental Technology and Innovation 8: 126-131

[16] Rumisha C, Elskens M, Leermakers M and Kochzius M 2012. Trace metal pollution and its influence on the community structure of soft bottom molluses in intertidal areas of the Dar es Salaam coast, Tanzania. Mar Pollut Bull 64: 521-531
[24] Molamohyeddin N, Ghaforian H and Sadatipour SM 2017. Contamination assessment of mercury, lead, cadmium and arsenic in surface sediments of Chabahar Bay. Mar Pollut Bull 124: 521-525

[25] Bastami KD, Neyestani MR, Esmaeilzadeh M, Haghpastar S, Alavi C, Fathi S, Nourbakhsh S, Shirzadi EA and Parhizgar R 2017. Geochemical speciation, bioavailability and source identification of selected metals in surface sediments of the Southern Caspian Sea. Mar Pollut Bull 114: 1014-1023

[26] Effendi H, Kawaroe M, Mursalin and Lestari DF 2016. Ecological Risk Assessment of Heavy Metal Pollution in Surface Sediment of Mahakam Delta, East Kalimantan. Procedia Environ Sci 33: 574-582

[27] El-Sorogy AS, Youssef M, Al-Kahtany K and Al-Otaiby N 2016. Assessment of arsenic in coastal sediments, seawaters and molluscs in the Tarut Island, Arabian Gulf, Saudi Arabia. J Afr Earth Sci 113: 65-72

[28] Liu J, Yin P, Chen B, Gao F, Song H and Li M 2016. Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Mar Pollut Bull 109: 633-639

[29] Ghorbanzadeh ZSG, Machinchian MA, Mousavi NR, Sari AR and Fatemi SMR 2016. Distribution pattern of heavy metals in the surficial sediment of Gorgan Bay (South Caspian Sea, Iran). Iran J Fish Sci 15: 1144-1166

[30] Antizar-Ladislao B, Mondal P, Mitra S and Sarkar SK 2015. Assessment of trace metal contamination level and toxicity in sediments from coastal regions of West Bengal, eastern part of India. Mar Pollut Bull 101: 886-94

[31] Al-Taani AA, Batayneh A, Nazzal Y, Ghrefat H, Elawad E and Zaman H 2014. Status of trace metals in surface seawater of the Gulf of Aqaba, Saudi Arabia. Mar Pollut Bull 86: 582-590

[32] Dou Y, Li J, Zhao J, Hu B and Yang S 2013. Distribution, enrichment and source of heavy metals in surface sediments of the eastern Beibu Bay, South China Sea. Mar Pollut Bull 67: 137-145

[33] Sompongchaiyakul P and Sirinawin W 2006. Arsenic, chromium and mercury in surface sediment of Songkhla lake system, Thailand. Asian Journal of Water, Environment and Pollution 4: 17-24

[34] De Mora S, Sheikholeslami MR, Wyse E, Azemard S and Cassi R 2004. An assessment of metal contamination in coastal sediments of the Caspian Sea. Mar Pollut Bull 48: 61-77

[35] Diaz-de Alba M, Galindo-Riano MD, Casanueva-Marenco MJ, Garcia-Vargas M and Kosore C M 2011. Assessment of the metal pollution, potential toxicity and speciation of sediment from Algeciras Bay (South of Spain) using chemometric tools. J Hazard Mater 190: 177-187

[36] Carman R, Aigars J and Larsen B 1996. Carbon and nitrogen geochemistry of the surface sediments of the Gulf of Riga, Baltic Sea. Mar Geol 134: 57–76

[37] Datta DK, Gupta LP and Subramanian V 1999. Distribution of C, N and P in the sediments of the Ganges–Brahmaputra–Megha river system in the Bengal basin. Org Geochem 30: 75–82

[38] Böttcher ME, Rinna J, Warning B, Wehausen R, Howell MW, Schnetger B, Stien R, Brumsack HJ and Rullkötter 2003. Geochemistry of sediments from the connection between the western and eastern Mediterranean Sea (Strait of Sicily, ODP site 963) Palaeo 190: 165–194

[39] Zhuang W and Gao X 2015. Distributions, sources and ecological risk assessment of arsenic and mercury in the surface sediments of the southwestern coastal Laizhou Bay, Bohai Sea. Mar Pollut Bull 99: 320–327

Acknowledgements
This research was supported by Agricultural Research Development Agency (Public Organization), under the Research Program of Development of Socio-Ecological Based Effective Fishery Management Policy for Good Governance in Sustainable Fishery of the Inner Gulf of Thailand. Assoc. Prof. Dr. Shettapong Meksumpun and Assoc. Prof. Dr. Charumas Meksumpun are gratefully
acknowledged for their invaluable suggestions. We especially thank all members of marine research team for ensuring successful field operation.