Manufacturing and Banking Canine Adipose-Derived Mesenchymal Stem Cells for Veterinary Clinical Application

Huina Luo  
Foshan University

Dongsheng Li  
Guangdong VetCell Bio-Tech Co.,Ltd

Zhisheng Chen  
Foshan University

Bingyun Wang (bywang63@163.com)  
Foshan University

Shengfeng Chen  
Foshan University

Research article

Keywords: canine, cell therapy, mesenchymal stem cells, adipose, banking

Posted Date: August 31st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-64097/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on March 1st, 2021. See the published version at https://doi.org/10.1186/s12917-021-02791-3.
Abstract

BACKGROUND: Mesenchymal stem cells (MSCs) have generated a great amount of interest in recent years as a novel therapeutic application for improving the quality of pet life and helping them free from painful conditions and diseases. It has now become critical to address the challenges related to the safety and efficacy of MSCs expanded in vitro. In this study, we establish a standardized process for manufacture of canine adipose-derived MSCs (AD-MSCs), including tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications.

RESULTS: After expansion, the viability of AD-MSCs manufactured under our standardized process was above 90%. Expression of surface markers and differentiation potential was consistent with ISCT standards. Sterility, mycoplasma, and endotoxin tests were consistently negative. No adverse events were noted in two cases treated with intravenously AD-MSCs.

CONCLUSION: Herein we demonstrated the establishment of a feasible bioprocess for manufacturing and banking canine AD-MSCs for veterinary clinical use.

Introduction

Mesenchymal stem cells (MSCs) which were first discovered by Friedenstein from bone marrow derived cells are a type of self-renewing cells harboring the potential to differentiate into diverse tissues, such as bone, cartilage, muscle, fat and tendon[1–5]. At present, in human clinical medicine, a variety of clinical trials with human MSCs are ongoing for the treatment of immunological diseases and degenerative diseases[6–9]. Currently, it has been reported that MSCs could be isolated from various tissues other than bone marrow[10], such as adipose[11], umbilical cord[12], dental pulp[13], placenta[14] and amniotic membrane[15]. Adipose-derived Mesenchymal stem cells (AD-MSCs) have gained in popularity due to the ease and abundance of harvesting adipose tissue, greater capacity of self-renewal multipotency and paracrine immunomodulatory[11, 16–18].

As one of the most common companion animals, some breeds of canine including beagles are also experimental animals. With the improvement of living standards, diseases of aging in canine have become more common clinically, especially chronic diseases, such as osteoarthritis, hip dysplasia, diabetes, pancreatitis and tendonopathy[19, 20]. Meanwhile, there are no particularly effective treatments for these diseases, which not only affect the quality of life of the affected animals, but also require the owners to invest a lot of energy, time and money. Currently, many related reports have confirmed that AD-MSCs therapy in a variety of canine diseases in clinical trials have shown initial results[21–25].

As one kind of superior cytotherapy, canine AD-MSCs therapy has great clinical application potential in various chronic diseases treatment[26, 27]. Although the technology of canine AD-MSCs isolation and expansion at laboratory scale is relatively mature, manufacturing a therapeutic cell-based product is and will continue to be challenging[28, 29]. In this paper, we established a standardized operating procedure...
for manufacturing canine AD-MSCs, which encompasses tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion, quality control and testing, and evaluate the safety and efficacy of those cells for clinical applications. The establishment of canine AD-MSCs bank was expected to provide an adequate source of seed cells for the cell therapy of canine diseases and the research of tissue engineering products.

Result

Cell Isolation, Culture and Cryopreservation

Approximately $2 \times 10^6$ nucleated cells were obtained from adipose tissue (n = 12, range 2–5 grams) after collagenase type I digestion and seeded into 1–2 100 mm cell-culture dishes. After 48 h of growth, the vast majority of AD-MSCs were attached to the culture plate and exhibited fibroblast-like morphology (Fig. 1). The cells grew to 80% – 90% confluence after 5–7 days and were passaged for the first time. After second passages with a 1:3 split ratio, $0.64 \times 10^7$ AD-MSCs passage 2 were harvested and cryopreserved at the end of first expansion period. Each batch of AD-MSCs must passed the in-process test and be given a unique identifier before cryopreservation. Viability of the freshly harvested cells was greater than 90% in all cases. Basic data for the MSC expansions are shown in Table 3.
Table 3
The number of harvested cells in different passages

| No.  | Size(g) | Harvested Cells of P0 $(10^6)$ | Harvested Cells of P1 $(10^6)$ | Harvested Cells of P2 $(10^6)$ |
|------|---------|-------------------------------|-------------------------------|-------------------------------|
| CAD-001 | 3.2     | 3.7                           | 10.5                          | 26.7                          |
| CAD-002 | 4.1     | 4.2                           | 12.3                          | 24.3                          |
| CAD-003 | 2.1     | 2.2                           | 4.1                           | 7.8                           |
| CAD-004 | 2.4     | 4.3                           | 8.3                           | 17.3                          |
| CAD-005 | 3.2     | 3.2                           | 4.7                           | 9.3                           |
| CAD-006 | 3.2     | 4.1                           | 9.2                           | 10.4                          |
| CAD-007 | 4.5     | 4.7                           | 12.2                          | 26.7                          |
| CAD-008 | 1.2     | 4.3                           | 8.9                           | 19.2                          |
| CAD-009 | 1.9     | 3.0                           | 6.4                           | 12.6                          |
| CAD-010 | 2.4     | 4.1                           | 9.4                           | 19.9                          |
| CAD-011 | 6.1     | 5.8                           | 10.7                          | 23.5                          |
| CAD-012 | 3.1     | 5.9                           | 12.7                          | 25.9                          |

Characterization and Quality Controls

AD-MSCs presented subsequently fibrous or fusiform shape and showed fibroblast-like adherent growth (Fig. 1).

The Cells of passage 2 and passage 5 were highly-expressed mesenchymal stem cell surface markers CD29, CD44 and CD90, while for the lowly-expressed haematopoietic stem cells surface markers CD34 and leukocyte common antigen CD45. The positive expression rate for CD29, CD44 and CD90, in was > 95%, and the positive expression rate for CD34 and CD55 was < 2% (Table 4 and Fig. 2).
Table 4
Surface marker expression of AD-MSCs

| Surface marker | Passage 2 Expression (%) | Passage 5 Expression (%) |
|----------------|--------------------------|--------------------------|
| CD 29          | 99.35 ± 0.48             | 99.25 ± 0.59             |
| CD 34          | 0.18 ± 0.06              | 0.29 ± 0.31              |
| CD 44          | 99.22 ± 0.59             | 98.27 ± 0.73             |
| CD 45          | 0.47 ± 0.38              | 0.54 ± 0.28              |
| CD 90          | 98.32 ± 0.99             | 98.08 ± 1.43             |

The ability of adipogenic and osteogenic differentiation in vitro was detected respectively by Oil red O and alizarin red staining. The adipogenic differentiated AD-MSCs were visualized by staining with Oil red-O on day 15. Calcium nodules were observed and stained red by alizarin red in osteogenic induction groups on day 17 (Fig. 3).

The population doubling time and Colony-Forming unit-fibroblasts capacity of AD-MSCs was used to assess proliferative ability. The population doubling time was 22.03 ± 2.30 hours in passage 2 and 23.62 ± 1.67 hours in passage 5. The Colony-Forming unit-fibroblasts capacity of AD-MSCs of in passage 2 and passage 5 were 15.20 ± 2.77% and 16.20 ± 3.70%, respectively (Fig. 4).

Sterility, mycoplasma, and endotoxin test were performed before cryopreservation and release of final product, as well as by random testing of culture supernatants in the course of the expansion. All the pre-cryopreservation cells and nal products were free of microbial and mycoplasma contamination. Endotoxin levels of pre-cryopreservation cells and nal products were lower than 0.5 EU/ml.

**Cell Therapy and Case Report**

**Case 1**

One week after AD-MSCs transplantation treatment, the sick dog successively showed objective improvement in mental state and eating normally. The blood creatinine and blood phosphorus levels were measured to fall within the normal range, and the urea content was significantly decreased and close to the normal range (Table 5). AD-MSCs transplantation can effectively treated leptospira-induced acute renal failure.
Table 5
The blood biochemical before and after AD-MSCs transplantation treatment

|                      | Prior Treatment | 2 d after Treatment | 3 d after Treatment | 5 d after Treatment | 7 d after Treatment | Reference Range |
|----------------------|-----------------|---------------------|---------------------|---------------------|---------------------|-----------------|
| **UREA (mmol/L)**    | 108.4           | 90.5                | 66.4                | 34.2                | 18.4                | 2.5–9.6         |
| **CREA (µmol/L)**    | 463             | 303                 | 176                 | 137                 | 106                 | 44–169          |
| **PHOS (mmol/L)**    | 8.91            | 6.22                | 2.66                | 1.6                 | 1.43                | 0.81–2.19       |

UREA, carbamide; CREA, creatinine; PHOS, blood phosphorus

Case 2

The case showed an unexpected response to stem cell therapy. After intravenous transplantation of AD-MSCs, the spirit state of the infected dog improved on the day of treatment, and the number of white blood cells increased on the second day and returned to normal on the third day (Table 6). There were no adverse reactions in response to AD-MSCs therapy.

Table 6
Hemogram levels before and after AD-MSCs transplantation treatment

|                      | Prior Treatment | 2 d after Treatment | 3 d after Treatment | Reference Range |
|----------------------|-----------------|---------------------|---------------------|-----------------|
| **WBC (10^9/L)**     | 0.9             | 1.1                 | 7.3                 | 6.0–17.0        |
| **Lym (10^9/L)**     | 0.2             | 0.4                 | 2.5                 | 5.1–10.8        |
| **Mon (10^9/L)**     | 0               | 0                   | 0.4                 | 0–1.8           |
| **Gran (10^9/L)**    | 0.7             | 0.7                 | 4.4                 | 4.0–12.6        |

WBC, white blood cell; Lym, lymphocyte; Mon, monocyte; Gran, granulocyte

Discussion

AD-MSCs are a type of adult stem cell deriving from adipose tissues with self-renewal ability and multidirectional differentiation potential[30]. As an attractive source of MSCs, adipose tissue usually contains far more MSCs than other sources contain[31]. AD-MSCs have become the focus of considerable interest in regenerative tissue engineering due to their easy access and availability in large quantities. The different methods for isolation and culture of canine AD-MSCs has also been established across different countries and different laboratories[22, 24, 26]. Currently, MSCs manufacture including isolation, culture and identification methods are labor intensive, with many time-consuming steps[3, 32].
A complex set of processes introduces the risk of microbial infection and changes in biologic properties[33]. Accordingly, all steps of cell manufacture for clinical application must be performed based on good manufacturing practice to achieve a reasonable safety and quality[34]. The establishment of canine AD-MSCs bank operating in accordance with good manufacturing practice standards will accelerates the clinical application of canine stem cell therapy and the development of stem cell industrialization in pet market.

In this study, we tried to establish a standardized operating process encompasses tissue sourcing, cell isolation and culture, cryopreservation, thawing and expansion for clinical grade canine AD-MSCs manufacturing. Adipose tissue samples were aseptically collected from abdomen fat of healthy donor canine under general anaesthesia. Donor canine peripheral blood was then taken for the examination of infectious diseases including RV, CDV, ICHV, CPV, CCV, fungi and bacteria. Subsequent process can be carried out after the qualification is confirmed, which will serve as the initial basis for the study of cell quality. Using mechanical disruption combined with collagenase type I digestion, AD-MSCs could be successfully isolated and further seeded centrifugally into cell culture dishes in our optimum culture conditions.

After thawing and expansion, AD-MSCs showed all properties characteristic for mesenchymal stem cells outlined by the International Society for Cellular Therapy (ISCT) for defining MSCs[35]. The cells were in a fibrocyte-like form and had a spindle-shape, and were arranged in a whirlpool pattern. The cells formed a monolayer of homogenous bipolar spindle-like cells with a whirl-pool-like array. The immunophenotype analysis displayed that the cells positively expressed of CD29, CD44, and CD90 and the lack of CD34, and CD45. In addition, they demonstrated the ability of osteogenic differentiation and adipogenic differentiation.

The manufacturing of AD-MSCs as cell therapy products for veterinary clinical application should be performed with corresponding controls to ensure its safety and quality[36, 37]. The AD-MSCs have undergone safety testing including sterility, and mycoplasma and results found to meet specifications. There were no bacterial, fungal, or mycoplasma contaminations observed in any of our 12 cultures. With a small number of cells and a limited number of injections, the administration of AD-MSCs was demonstrated intravenously without any immediate adverse events.

In comparison with stem cells derived from other sources, AD-MSCs have the advantages of convenient material acquisition, fewer ethical issues, low damage and abundant sources[38, 39]. Our previous study indicated that canine AD-MSCs had the highest proliferation activity vis-à-vis four other sources-derived MSCs in vitro. On average, the number of AD-MSCs doubled every day in our cell culture system [40]. The higher rates of cell proliferation help to harvest more numbers of MSCs in the same unit of time, thus saving cell production costs and times. In addition, the establishment of AD-MSCs banks may accelerate the veterinary clinical application of stem cell therapy and the development of pet stem cell businesses.

Conclusion
In summary, we successfully established a standardized process for manufacturing and banking canine AD-MSCs for clinical use and confirmed adipose tissues representing an appealing source of MSCs for cell therapy. It is hoped that the clinical experimental research and application of canine AD-MSCs in regenerative medicine will benefit the majority of sick animals and contribute to the health of pet dogs.

**Materials And Methods**

**Adipose Tissue Collection**

Adipose tissue of the canine abdomen was collected during routine clinically indicated surgery at Affiliated Animal Hospital of Foshan University. All owners agreed with the collection of tissue and signed an informed consent. A screen of the medical history was performed and a blood sample was tested for specific canine pathogens, such as rabies virus (RV), canine distemper virus (CDV), infectious canine hepatitis virus (ICHV), canine parvovirus (CPV), canine coronaviruses (CCV), fungi and bacteria. Tissue collection was approved by the Animal Ethics Committee of Foshan University, and were conducted in accordance with the ethical standards of the university. Adipose tissue immersed in DMEM (Hyclone, USA) supplemented 1% penicillin and streptomycin (Gibco, USA) immediately transported to the lab at 4–10°C.

**Cell Isolation and Culture**

MSCs were isolated from adipose tissue based on methods previously described[40]. Briefly, tissue was digested with collagenase type I. Then filtration through a 100-mesh cell strain, the filtrate was centrifuged to collect AD-MSCs. Approximately 5000 isolated suspended cells per cm$^2$ were transferred to cell culture flask (Corning, USA) in Dulbecco’s Modified Eagle’s Medium supplemented with 10% fetal bovine serum (FBS) (Biological Industries, Israel), 1% Pen-Strep (Gibco, USA), and 1% L-glutamine (Gibco, USA) and placed into the incubator at 37 °C in a humidified incubator containing 5% CO$_2$. Cells from passage 2 were harvested during the first expansion period.

**Cryopreservation**

About $3 \times 10^6$ AD-MSCs at passage 2 were suspended in 1 ml of cryoprotectant solution containing 10% dimethyl sulfoxide (Me$_2$SO)(Sigma-Aldrich, USA)and 90% FBS (Biological Industries, Israel).The cell suspension was kept in freezing tube (Corning, USA), cooled to −80 °C at a rate of −1 °C/min in freezing container (Nalgene, USA), and then transferred to nitrogen tank for long-term storage. At each freeze-thaw cycle, the stem cell characteristics of AD-MSCs were evaluated (Table 1).
| Specification                          | Expected       | Methods                          |
|---------------------------------------|----------------|----------------------------------|
| Donor virology (RV, CDV, ICHV, CPV and CCV) | Negative       | Elisa Kit                        |
| Viability                             | ≥ 90%          | Trypan blue staining             |
| Sterility                             | No growth      | Microbiology culture             |
| Mycoplasma                            | Negative       | Culture                          |
| Endotoxin                             | <0.5 EU/mL     | Limulus Amebocyte Lysate         |
| Phenotype (CD29, CD34, CD44, CD45 and CD90) | ≥ 95% CD29, CD34, CD90 | Flow cytometry                  |
|                                       | ≤ 2% CD34, CD45|                                  |
| Differentiation potential             | Osteogenesis, adipogenesis | Induction culture |

**Thawing and Expansion**

AD-MSCs was taken from nitrogen tank and rapidly thawed in water bath kettle of 37 °C and transferred to a 15 ml centrifuge tube in 10 × volume of PBS for washing twice. The thawed cells were cultivated and proliferated using the same protocol as described for primary expansion. AD-MSCs from *passage 3 to 7* were harvested for cytotherapy during this expansion period. All the cells for cytotherapy were evaluated synchronously (Table 2).
### Table 2
Final Product Release Criteria

| Specification         | Expected              | Methods                  |
|-----------------------|-----------------------|--------------------------|
| Cell counts           | $1.0 \times 10^6$ /kg | Automatic cell counter   |
| Viability             | $\geq 90\%$          | Trypan blue staining     |
| Sterility             | No growth             | Microbiology culture     |
| Mycoplasma            | Negative              | Culture                  |
| Endotoxin             | $<0.5$ EU/mL          | Limulus Amebocyte Lysate |
| Phenotype (CD29, CD34, CD44, CD45 and CD90) | $\geq 95\%$ CD29, CD34, CD90 ≤ 2% CD34, CD45 | Flow cytometry |
| Differentiation potential | Osteogenesis, adipogenesis | Induction culture |

### Characterization and Quality Control

**Cell Counts and Viability Assessment** Accurate assessment of cell count and viability of AD-MSCs by the trypan blue dye exclusion test using automatic cell counter (Countess, Invitrogen, USA). The viability was calculated using the following formula: number of trypan blue-negative cells/number of total cell cells × 100.

**Flow Cytometry Analysis** Cells were incubated with the following phycoerythrin (PE)-conjugated or fluorescein isothiocyanate (FITC)-conjugated antibodies: anti-CD29-PE (cat.no.303004; BioLegend), anti-CD34-PE (cat.no.ab23830; Abcam), anti-CD44-FITC (cat.no.MA1-10229; Invitrogen), anti-CD45-FITC (cat.no.ab27287; Abcam), and anti-CD90-PE (cat.no.11-0900-81; Invitrogen) or their respective isotype controls. Cells were analyzed using a FACSCanto flow cytometry system (Beckman, USA). Data acquisition and analysis was performed with CytExpert.

**In Vitro Differentiation Assessment** In vitro adipogenic and osteogenic differentiation were examined using MSCs Adipogenic Differentiation Kit (Cyanogen, China) and MSCs Osteogenic Differentiation Kit (Cyanogen, China) following the manufacturer’s protocol for each kit. Cells were stained with Oil Red O solution to assess adipogenic differentiation and alizarin red solution to assess osteogenic differentiation.

**Population Doubling Time (Td) Estimation** Cells were counted by automatic cell counter and cell population doubling time (Td) was calculated using the following formula: $Td = t \times \log_2 \left( \frac{N_t}{N_0} \right)$, where “No” refers to cell number after inoculation and “Nt” refers to cell number at T hour culture.
Colony-Forming unit-fibroblasts Estimation AD-MSCs were seeded in 60-mm Petri dishes (100 cells/dish) cultured for 10 days, and stained with crystal violet solution. The number of colonies was determined under a camera, and clusters of more than 50 cells were considered colonies. The Colony-Forming unit-fibroblasts(CFU-F) was calculated using the following formula: CFU-F = colony number / initial cell number x 100%.

Microbiology testing Mycoplasma, Bacterium and fungus examination were performed in accordance with methods set forth in the Chinese Veterinary Pharmacopoeia. Sterility test was performed by inoculating samples in two different sterile nutrient mediums, namely, Fluid Thioglycolate Medium and Soybean Casein Digest Medium. Mycoplasma detection was done by inoculating samples in Mycoplasma Agar Medium and Mycoplasma Broth Medium.

Endotoxin testing Endotoxin levels were determined by the gel clot limulus amebocyte lysate test in accordance with methods set forth in the Chinese Veterinary Pharmacopoeia.

Cell Therapy

Case 1 A 14-year-old male teddy dog was diagnosed with acute renal failure caused by Leptospira in March 2018. The case showed little response to sodium lactate ringer or sodium bicarbonate for regulating electrolyte balance and cephalosporin, enoxacin or doxycycline for anti-inflammatory sterilization. After 3 days of conventional treatment, the dog received stem cell therapy for $2.7 \times 10^6$ AD-MSCs (1 × $10^6$ cells per kilogram of body weight) intravenously.

Case 2 A 2-month-old male golden retriever was diagnosed with leukopenia caused by canine parvovirus in February 2019. The cases were treated with routine antiviral therapy and fluid supplementation while canine AD-MSCs were intravenously transplanted. The stem cells (1 × $10^6$ cells per kilogram of body weight) were diluted in normal saline containing 1% canine serum albumin (Blood biotech, China) and transplanted into the sick dog once a day for 3 consecutive times.

Statistical analysis

SPSS 17.0 software (SPSS, Inc.) was used for statistical analysis. Values are expressed as the means ± standard deviation. Statistical analysis was performed using one-way analysis of variance with the least-significant difference post hoc test. $P < 0.05$ was considered to indicate a statistically significant difference.

List Of Abbreviations

AD-MSCs adipose-derived Mesenchymal stem cells

CCV canine coronaviruses

CDV canine distemper virus
Declarations

Ethics approval and consent to participate

All procedures in the present study were approved by the Animal Ethics Committee of Foshan University and written informed consent was obtained from all donors.

Consent for publication

Written informed consent for publication was obtained from all participants.

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research was supported by Natural Science Foundation of Guangdong Province (grant no. 2017A030313171).
Authors' contributions

Bingyun Wang and Shengfeng Chen designed the study. Huina Luo and Dongsheng Li performed the experiments and analysed the data. Zhisheng Chen collected the samples. All authors read and approved the final manuscript.

Acknowledgements

Not applicable.

References

1. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP: Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. TRANSPLANTATION 1968, 6(2):230-247.
2. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR: Multilineage potential of adult human mesenchymal stem cells. SCIENCE 1999, 284(5411):143-147.
3. Gong W, Han Z, Zhao H, Wang Y, Wang J, Zhong J, Wang B, Wang S, Wang Y, Sun L et al: Banking human umbilical cord-derived mesenchymal stromal cells for clinical use. CELL TRANSPLANT 2012, 21(1):207-216.
4. Alfaifi M, Eom YW, Newsome PN, Baik SK: Mesenchymal stromal cell therapy for liver diseases. J HEPATOL 2018, 68(6):1272-1285.
5. Si YL, Zhao YL, Hao HJ, Fu XB, Han WD: MSCs: Biological characteristics, clinical applications and their outstanding concerns. AGEING RES REV 2011, 10(1):93-103.
6. Guess AJ, Daneault B, Wang R, Bradbury H, La Perle K, Fitch J, Hedrick SL, Hamelberg E, Astbury C, White P et al: Safety Profile of Good Manufacturing Practice Manufactured Interferon gamma-Primed Mesenchymal Stem/Stromal Cells for Clinical Trials. Stem Cells Transl Med 2017, 6(10):1868-1879.
7. Couto PS, Shatirishvili G, Bersenev A, Verter F: First decade of clinical trials and published studies with mesenchymal stromal cells from umbilical cord tissue. REGEN MED 2019, 14(4):309-319.
8. Wilson JG, Liu KD, Zhuo H, Caballero L, McMillan M, Fang X, Cosgrove K, Vojnik R, Calfee CS, Lee JW et al: Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 2015, 3(1):24-32.
9. Shakhbazau A, Potapnev M: Autologous mesenchymal stromal cells as a therapeutic in ALS and epilepsy patients: Treatment modalities and ex vivo neural differentiation. CYTOTHERAPY 2016, 18(10):1245-1255.
10. Lin HY, Fujita N, Endo K, Morita M, Takeda T, Nakagawa T, Nishimura R: Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow. STEM CELLS DEV 2017, 26(6):431-440.
11. Dragoo JL, Chang W: Arthroscopic Harvest of Adipose-Derived Mesenchymal Stem Cells From the Infrapatellar Fat Pad. Am J Sports Med 2017, 45(13):3119-3127.

12. Gokcinar-Yagci B, Ozyuncu O, Celebi-Saltik B: Isolation, characterisation and comparative analysis of human umbilical cord vein perivascular cells and cord blood mesenchymal stem cells. CELL TISSUE BANK 2016, 17(2):345-352.

13. Yamada Y, Nakamura-Yamada S, Kusano K, Baba S: Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. INT J MOL SCI 2019, 20(5).

14. Pelekanos RA, Sardesai VS, Futrega K, Lott WB, Kuhn M, Doran MR: Isolation and Expansion of Mesenchymal Stem/Stromal Cells Derived from Human Placenta Tissue. J Vis Exp 2016(112).

15. Borghesi J, Ferreira LM, Mario LC, de Almeida DAA, Silveira RA, Giancoli KCDS, Assunpcao FF, Miglino MA, Oliveira CA, Oliveira FP: Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation. TISSUE CELL 2019, 58:99-106.

16. Wang Z, Sun D: Adipose-Derived Mesenchymal Stem Cells: A New Tool for the Treatment of Renal Fibrosis. STEM CELLS DEV 2018, 27(20):1406-1411.

17. Kumar H, Ha DH, Lee EJ, Park JH, Shim JH, Ahn TK, Kim KT, Ropper AE, Sohn S, Kim CH et al: Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. STEM CELL RES THER 2017, 8(1):262.

18. Fang J, Wei Y, Teng X, Zhao S, Hua J: Immortalization of canine adipose-derived mesenchymal stem cells and their seminiferous tubule transplantation. J CELL BIOCHEM 2018, 119(4):3663-3670.

19. Gugjoo MB, Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT: Mesenchymal Stem Cell Research in Veterinary Medicine. Curr Stem Cell Res Ther 2018, 13(8):645-657.

20. Zhang BY, Wang BY, Li SC, Luo DZ, Zhan X, Chen SF, Chen ZS, Liu CY, Ji HQ, Bai YS et al: Evaluation of the Curative Effect of Umbilical Cord Mesenchymal Stem Cell Therapy for Knee Arthritis in Dogs Using Imaging Technology. STEM CELLS INT 2018, 2018:1983025.

21. Olsen A, Johnson V, Webb T, Santangelo KS, Dow S, Duerr FM: Evaluation of Intravenously Delivered Allogeneic Mesenchymal Stem Cells for Treatment of Elbow Osteoarthritis in Dogs: A Pilot Study. Vet Comp Orthop Traumatol 2019, 32(3):173-181.

22. Kim HJ, Li Q, Song WJ, Yang HM, Kim SY, Park SC, Ahn JO, Youn HY: Fibroblast growth factor-1 as a mediator of paracrine effects of canine adipose tissue-derived mesenchymal stem cells on in vitro-induced insulin resistance models. BMC VET RES 2018, 14(1):351.

23. Perez-Merino EM, Uson-Casaus JM, Duque-Carrasco J, Zaragoza-Bayle C, Marinas-Pardo L, Hermida-Prieto M, Vilafranca-Compte M, Barrera-Chacon R, Gualtieri M: Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Endoscopic and histological outcomes. VET J 2015, 206(3):391-397.

24. Villatoro AJ, Hermida-Prieto M, Fernandez V, Farinas F, Alcoholado C, Rodriguez-Garcia MI, Marinas-Pardo L, Becerra J: Allogeneic adipose-derived mesenchymal stem cell therapy in dogs with
refractory atopic dermatitis: clinical efficacy and safety. VET REC 2018, 183(21):654.
25. Guercio A, Di Marco P, Casella S, Cannella V, Russotto L, Purpari G, Di Bella S, Piccione G: Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthrosis of the humeroradial joints. CELL BIOL INT 2012, 36(2):189-194.
26. Kriston-Pal E, Czibula A, Gyuris Z, Balka G, Seregi A, Sukosd F, Suth M, Kiss-Toth E, Haracska L, Uher F et al: Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. CAN J VET RES 2017, 81(1):73-78.
27. Escalhao C, Ramos IP, Hochman-Mendez C, Brunswick T, Souza S, Gutfilen B, Dos SGR, Coelho-Sampaio T: Safety of Allogeneic Canine Adipose Tissue-Derived Mesenchymal Stem Cell Intraspinal Transplantation in Dogs with Chronic Spinal Cord Injury. STEM CELLS INT 2017, 2017:3053759.
28. Jossen V, van den Bos C, Eibl R, Eibl D: Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol 2018, 102(9):3981-3994.
29. Lechanteur C, Briquet A, Giet O, Delloye O, Baudoux E, Beguin Y: Clinical-scale expansion of mesenchymal stromal cells: a large banking experience. J TRANSL MED 2016, 14(1):145.
30. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh KS, Chang Y, Munusamy MA, Alarfajj AA, Wang HC et al: Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. BIOMATERIALS 2014, 35(14):4278-4287.
31. Gentile P, Calabrese C, De Angelis B, Pizzicannella J, Kothari A, Garcovich S: Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. INT J MOL SCI 2019, 20(21).
32. Phinney DG, Galipeau J: Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at U.S. academic centers. CYTOTHERAPY 2019, 21(7):782-792.
33. Yin JQ, Zhu J, Ankrum JA: Manufacturing of primed mesenchymal stromal cells for therapy. NAT BIOMED ENG 2019, 3(2):90-104.
34. Rojewski MT, Lotfi R, Gjerde C, Mustafa K, Veronesi E, Ahmed AB, Wiesneth M, Korper S, Sensebe L, Layrolle P et al: Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. CYTOTHERAPY 2019, 21(4):468-482.
35. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. CYTOTHERAPY 2006, 8(4):315-317.
36. Galvez P, Clares B, Bermejo M, Hmadcha A, Soria B: Standard requirement of a microbiological quality control program for the manufacture of human mesenchymal stem cells for clinical use. STEM CELLS DEV 2014, 23(10):1074-1083.
37. Van Pham P, Truong NC, Le PT, Tran TD, Vu NB, Bui KH, Phan NK: Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications. CELL TISSUE BANK
2016, 17(2):289-302.

38. Xu L, Liu Y, Sun Y, Wang B, Xiong Y, Lin W, Wei Q, Wang H, He W, Wang B et al: Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. STEM CELL RES THER 2017, 8(1):275.

39. Silva JD, Lopes-Pacheco M, Paz A, Cruz FF, Melo EB, de Oliveira MV, Xisto DG, Capelozzi VL, Morales MM, Pelosi P et al: Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome. CRIT CARE MED 2018, 46(2):e132-e140.

40. Zhan XS, El-Ashram S, Luo DZ, Luo HN, Wang BY, Chen SF, Bai YS, Chen ZS, Liu CY, Ji HQ: A Comparative Study of Biological Characteristics and Transcriptome Profiles of Mesenchymal Stem Cells from Different Canine Tissues. INT J MOL SCI 2019, 20(6).

Figures

A

B

C

D
Figure 1

Morphological observations of canine AD-MSCs in different generations. (A) Canine AD-MSCs on day 4 of primary culture. MSCs cell-cloning began to form and most of the other adipose derived stromal cells died and disappeared; (B and C) Morphology of canine AD-MSCs in passage 1 and passage 2, respectively. Cells were very pure and homogeneous with a typical long spindle-shape. (D) Morphology of thawed canine AD-MSCs in passage 4. Cell morphology and proliferation ability were maintained after cryopreservation. Scale bar, 200 μm.

Figure 2

Surface markers of canine AD-MSCs in passage 2. Based on flow cytometric analysis, surface molecule markers CD29, CD44 and CD90 were highly expressed (>95%) on canine AD-MSCs in passage 2 and passage 5, whereas the expression of hematopoietic stem cell markers CD34 and leukocyte common antigen CD45 <2%.
Adipogenic and osteogenic differentiation of canine AD-MSCs in passage 2 and passage 5. (A and B) Following adipogenic induction for 14 days, canine AD-MSCs in passage 2 and passage 5 were positive for Oil red-O staining and contained an abundance of lipid droplets. (C and D) Following osteogenic induction for 14 days, canine AD-MSCs in passage 2 and passage 5 were positive for alizarin red staining. Scale bars, 50 μm.
Figure 4

Growth characteristics of canine AD-MSCs in passage 2 and passage 5. (A) cumulative population doubling and (C) Colony-Forming unit-fibroblasts capacity in passage 2 and passage 5. *P<0.05. CFU-F, Colony-Forming unit-fibroblasts capacity. P2, passage 2; P5, passage 5.