Reliability Analysis of VOC Data for Opinion Mining

Kim, Dongwon
Shipping Management, Korea Maritime & Ocean University
(sucher1472@daum.net)

Yu, Song Jin
Shipping Management, Korea Maritime & Ocean University
(coppers@kmou.ac.kr)

The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negatvity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only positive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

Key Words: Auto-correlation, PCA, Sentiment Analysis, Linear Regression Analysis

Received : August 17, 2016 Revised : October 18, 2016 Accepted : October 25, 2016
Publication Type : Regular Paper Corresponding Author : Yu, Song Jin

1. Introduction

In today’s challenging business world, companies want to differentiate themselves by providing a superior customer experience. Nowadays, there is no doubt that the key to success lies in the ability to better understand and act upon customers’ requirements. Leading companies build competitive strategies based on insights from VOC data. Voice of the customer (VOC) is a term that describes customers’ feedback about their experiences with products or services. The definition of VOC varies across authors. The definition of VOC originated with a paper in 1993 by Griffin and Hauser, who defined VOC as "a complete set of customer wants and needs; expressed in the customer’s own language; organized the way the customer thinks about, uses
and interacts with the product and service; and prioritized by the customer in terms of both importance and performance”. According to Gerald M. Katz (2001), the VOC was first used to improve product development, though eventually referencing "any type of market research with customers".

Normally, vehicle companies discover problems through vehicle tests, inspection procedures, or information gathering. They may, for instance, review warranty claims or dealership service records, or consult consolidated insurance industry data. We believe, however, there are a lot of useful and hidden vehicle quality data embedded in social media that are largely untapped into by organizations. Recently, automotive companies like Chrysler have begun to employ “Twitter teams” to reply to whining tweets; but, detecting “whispers of useful information in a howling hurricane of noise” is a huge challenge and better filters are needed to extract meaning from the “blizzard of buzz” (A. Woolridge, 2011).

As the advent of various e-community, such as social networks or websites, is actualized, the interaction among e-community users contributes to the transition and diffusion of emotions (B. Kujawski et al, 2007). Customers regard the community as a resource to offer their opinions associated with products and services. Furthermore, it has been utilized as a medium that car companies can acquire customers' feedback. Thus, in this study, we empirically analyzed VOC sentiment from car e-community, constructed the sentiment lexicon and extracted 7 sentiment domains by our own process.

This study consists of three phases. In phase I, we constructed the sentiment lexicon and 7 sentiment domains by analyzing sentiment of VOC on 26 auto companies. In phase II, in order to retain the reliability of sentiment VOC data for experiment, we examined using the auto-correlation analysis and PCA. We analyzed how correlated they are through the auto-correlation analysis and what predictable information is included in the emotion through the principal component analysis. Through this empirical study, we verified the reliability of sentimental data and would apply the data to the sustained study. In phase III, we investigated how 7 domains impact on the performance of organizations, which is market share of four major auto companies by using linear regression analysis.

2. VOC Analysis

2.1 Importance of VOC

The purpose of VOC management in each organization is to specifically understand customers by figuring out whether customers are satisfied with the products or services provided from the company or not. It has built the structure of VOC system in order to grasp the changing needs and expectations of them from market.

VOC provides;
- a delicate understanding of the customer’s needs
a common, but useful language for the company carrying out
key input for the setting of appropriate specifications for the product and service
a practical medium for product and service innovation

VOC analysis makes organizations be able to develop products and services to continuously reflect the needs of customers that frequently change by utilizing the VOC data. That is, by integrating VOC data collected from various routes, companies collect the changing needs of the customers in accordance with situation or local, analyze them, convert them into information required for the development of products and services and provide the solutions.

As reviewing the precedent studies related to VOC, L. Venkata Subramaniam et. al. (2009) developed a system called BIVOC (Business Intelligence from Voice of Customer) where a significant portion of the VOC analysis and integration of VOC with structured information, but it has a limitation that it only dealt with the structured data. Although there were a study about how VOC with negative contents affect the interactions within an online brand community such as MyStarbucksIdea (Lee et al., 2014), it just focused on the negative sentiment. On the other hand, there is also a study that intend to induce efficient use of VOC system by utilizing the concept recognition of VOC systems, satisfaction, and the recognition of influence and analyzing the differences in recognition between the customers and employees (Choi et al., 2011). Takeuchi et al. (2009) stressed out the necessity for business-oriented dialogue with our customers, beyond the marketing strategy, in order to improve the quality of products and services of the enterprises and the operational efficiency by using a text mining to analyze the telephone VOC data of the car rental help desk. it referred to the importance of the VOC.

However, the majority of the previous researches are dealing with the VOC importance and integrated system, even though we recognize that VOC has a significantly large impact on customer satisfaction and corporate performance. Furthermore, a study of the contents of VOC data is even more sparse and lacking. That is why the actual VOC data have traits that it is difficult to be presented due to their attributes composed of complaints and protests. Lately, in addition, as internet and smart services are developing, although VOC warehouse a accumulate more VOC data, it is not easy to properly analyze and utilize because they consist of unstructured text data.

From this point of view, opinion mining, which is one field of text mining methods to analyze large amounts of VOC data, can be a useful alternative. Opinion Mining means a process of extracting, classifying, understanding and capitalizing the opinions that are exposed to the outside through a variety of contents such as online news and social media, and is carried out by utilizing a variety of techniques sentiment analysis (Liu, 2010). It is also easily able to be applied to determine the ranking to review data in order to enhance the search efficiency of
customers’ reviews for potential buyers in on-line shopping mall (Yune et al, 2010), and evaluate a movie by analyzing positivity and negativity after summarizing the movie reviews (Zhuang, 2006).

2.2 Sentiment Analysis

Sentiment analysis (also known as opinion mining) refers to the use of natural language processing, text analysis and computational linguistics to identify and extract subjective information in source materials. A basic task in sentiment analysis is classifying the polarity of a given text at the document, sentence, or feature/aspect level—whether the expressed opinion in a document, a sentence or an entity feature/aspect is positive, negative, or neutral. Advanced, "beyond polarity" sentiment classification looks, for instance, at emotional states such as "angry", "sad", and "happy".

"Sentiment analysis" or "Opinion Mining" is traditionally used to classify the positive or negative emotions composed of text comments and extract an object representing the writer's opinion (L. Zhuang et al, 2007 ; J. S. Lerner at al, 2000).

The study of sentiment analysis has been started from the late 1990s has been fixed in the increasingly important field of research since 2000s (M. Thelwall, 2011 ; S. Argamon, 1998 ; B. Kessler ; E. Spertus, 1997 ; N. Li, 2010). Studies, which has been progressing until now, mainly has focused on the classification of positive or negative opinions such as movie and product purchase reviews (L. Zhuang, 2006 ; B. Pang, 2002 ; C. Whitelaw 2005). However, recent studies tend to regard feeling as precisely subdivided units overcoming a simple classification of it (J. Bollen ; M. Thelwall, 2011). Thus, these classification methods play a crucial role in providing the research domain of sentiment analysis with deeper understandings and suggestions (T. Wilson, 2009 ; A. Esuli, 2006). We classified emotions into 7 domains (Sadness, Shame, Anger, Fear, Frustration, Delight and Satisfaction) by using Sentiwordnet.

Table 1 shows negative and positive emotion domain and subdivided basic sentimental words, which utilize a standard for classification of emotion (E. Diener, 2006 ; B. Tronvoll, 2011).

Domain	Basic Sentimental Words
Sadness	sadness, loneliness, unhappiness, depression
Shame	shame, guilt, regret, embarrassment
Anger	anger, irritation, disgust, rage
Fear	fear, worry, anxiety, nervousness
Frustration	frustration, resignation, powerlessness, despair
Delight	delight, pleasure, joy, happiness
Satisfaction	Satisfaction, gratification, fulfillment
Table 2 Text Analysis Studies via Social Media

Study	Medium	Domain	Competitive intelligence perspective
Coussement and van den Poel, 2008	Email	Customer complaints	Customer
Spangler and Kreulen, 2008	Email	Customer complaints	Customer
Romano et al., 2003	Product reviews	Movie	Customer
Duan, Gu, and Whinston, 2008	Product reviews	Movie	Product
Schumaker and Chen, 2009	News	Stock	Market
Tetlock et al., 2008	News	Stock	Market
Li and Wu, 2010	Blog	Sports	Market
Finch, 1999	News	Power tools	Product

In the sentiment analysis literature, it is presumed that heavily negative and positive postings will be indicative of pros and cons of the product. However, whether this presumption is true for automotive sales has not been tested in prior research. There is some evidence that generic sentiment analysis fails when applied across domains. Loughran and McDonald (2011) found that sentiment-indicative words differ across domains: specifically, in the field of finance, sentiment indicators were different from sentiment marker words previously thought to be generally applicable to all fields. O'Leary (2011) found that generic positive and negative dictionaries had some limitations in describing negative behavior in the stock market, and suggested that domain specific terms be accounted for to improve the quality of the analysis. In the vehicle domain, therefore, generic sentiment polarity analysis may be insufficient. A thread poster may be more aggrieved by a malfunctioning air conditioner than with a sticky accelerator pedal, yet the latter is almost certainly a more serious defect. For instance, to enable proper investigation, the defect must be associated with the troublesome component, so hazard analysis can be performed (P.H. Jesty et. al., 2000 ; D. Ward et.al, 2009). Table 2 summarizes previous research on the organizational use of text analysis of traditional internet and social media, for competitive intelligence, in various application domains. For each study, table 2 shows the medium, domain, and competitive intelligence perspective, for the study. We classified competitive intelligence perspectives using Vedder et al.,(1999). Table 2 highlights the research gap, which we aim to address in this paper: the application of text mining to vehicle market analysis in the on-line car community.

As the precedent studies on construction of sentiment lexicon, Turney P. D., and M. L. Littman (2002) constructed semantic orientation
from a hundred-billion words using corpus. Lately, in addition to the research predicting the direction of the stock Index by utilizing a domain-specific sentiment dictionary (Yu et al., 2013), An and Kim (2015) built a Korean sentiment lexicon by using collective intelligence, and Jo and Choi (2015) established sentiment lexicon based on OAR (Opinion Antonym Rule) algorithm. Besides, the study using LP (Label Propagation) extract the sensibility dictionary through the proximity between the words. In particular, Song and Lee (2013) proposed a study, which verified that the accuracy of sentiment analysis had improved when using a specialized lexicon rather than a generic sentiment dictionary. Although this study is promoted based on the generic lexicon, we constructed the sentiment lexicon by extracting the terminologies related to vehicle in order to compensate the defect of generic lexicon.

3. Methology

3.1 Research Flow

In this study, we extract the key words of emotions in voice data that had been posted on car-related on-line community from 2013 to 2015, and intend to analyze the correlation between negative and positive keywords and contribution to market share. This study is performed following the research flowchart as figure 1. Schematic contents are as follows. We build the database, crawling customers’ opinion information from the car-related online community and identify the part of speech (POS) information about words in the customers’ opinion by using a part-of-speech tagging function provided by TextAnalysisOnline. We construct the negative and positive emotional vocabulary group; that is, sentiment lexicon. Based on the data, we measure the polarity. As we investigate the previous studies, regardless of the domestic or international, there are only a few empirical analysis about the correlation between the data on consumers’ sentiment and the market on social networks because it is difficult to extract the key factors with sentiment and prediction associated with each industry. Therefore, we perform the empirical analysis on the 7 sentiment domains that have already been extracted via the previous research as a measurement tool. In case of literature research, while a few research analyzed the opinion such as customer complaints, prediction of stock index, and sales and image of the product, taking advantage of the data, in the present study, we grasped and analyzed how correlated they are through the correlation analysis and which predictable information is included in the 7 sentiment domains through the principal component analysis.

Specifically, at first, we grasped auto-correlation of 7 sentiment domains that contain sales information, and checked whether it contains information that can predict the future. At this time, the 7 domains which are the main variables are composed of a combination of words that contains the feeling of the car market. In other words, after collecting information from the car
Reliability Analysis of VOC Data for Opinion Mining

Figure 1: Research Flow

In this study, the subjects for analysis are consumers' opinions, which are extracted the VOC of companies from "CarGurus" web site (www.cargurus.com) related to brand new and used vehicles in the U.S. from 2013 to 2015. In this site, for the purpose of this present study, 45,447 pieces of customers' reviews on 26 car manufacturing companies had been collected including titles and status information. The community, we removed the buzz data, such as unwanted spam and noise and classified 7 sentiment domains of the auto sales market (sadness, shame, anger, fear, frustration, delight and satisfaction). It is possible to forecast the actual market share, if they have the auto-correlation of sentiment, because it contains information of sale in the emotion itself.

Secondly, we checked which main factors 7 domains have by using PCA. We precisely analyzed the auto-correlation of each emotion and proposed a methodology to test the reliability of the information of the car community. In Phase III, based on the data, we built the two kinds of linear regression model and verified how the sentiments such as positivity, negativity and neurality have an influence on the performance of organizations, which is auto market share in this paper.

3.2 The Subject of Analysis & Crawling Data

In this study, the subjects for analysis are consumers' opinions, which are extracted the VOC of companies from "CarGurus" web site (www.cargurus.com) related to brand new and used vehicles in the U.S. from 2013 to 2015. In this site, for the purpose of this present study, 45,447 pieces of customers' reviews on 26 car manufacturing companies had been collected including titles and status information. The
Kim, Dongwon · Yu, Song Jin

Company	2013	2014	2015	Total
GM	2303	2155	2203	6661
FCA	1624	1394	1666	4684
Ford	1145	1140	1484	3769
Honda	1912	1708	1835	5455
Volkswagen	964	690	656	2310
Others	7258	7546	7764	22568
Total	15206	14633	15608	45447

3.3 Extracting POS Information

It is possible that a word has a variety of meanings depending on POS (Part-of-Speech) in the text. For instance, as the word "good" when it is used as an adjective and when used as a noun, the polarity of the respective positive or negative meaning is also altered. Therefore, it is necessary to extract the POS information in order to analyze the positive or negative polarity with respect to customers' feedbacks. In this study, we took advantage of POS tagging at "www.TextAnalysisOnline.com" to extract the POS information of each word. TextAnalysis API (Application
Programming Interface) provides customized Text Analysis or Text Mining Services like Word Tokenize, POS Tagging, Stemmer, Lemmatizer, Chunker, Parser, Key Phrase Extraction (Noun Phrase Extraction), Sentence Segmentation (Sentence Boundary Detection), Grammar Checker, Sentiment Analysis, Text Summarizer, Text Classifier and other Text Analysis Tasks. It stands on the giant shoulders of NLP Tools, such as NLTK, TextBlob, Pattern, MBSP and etc. TextAnalysisOnline displays the extracted the POS information as a format of XML. Figure 3 shows an example of extracting a POS information from words extracted by using Antconc 3.4.1w from the opinions posted by actual customers.

Through this POS tagging, we could classify POS of words, and extract noun and adjective vocabulary presented NN and JJ in the midst of these words arranged.

3.4 Review Extracting POS Information

We, at first, established lexicons of negative and positive emotions based on customers’ feedbacks. By applying POS information extracted from VOC and extracting synonyms of words with WordNet, which offers the relation between words such as synonym and antonym, we expanded seed words. As the next step, we collected the polarity of the expended seed words from SentiWordnet and computed the sentimental intensity of each word. Thus, we could build the sentiment lexicon by selecting 4,815 negative and 2,021 positive sentiment words. Figure 4 shows how the process of the lexicon for negative and positive emotions was constructed. In this study, utilizing information related to synonyms, we expanded the seed words into lexicons as shown in table 4.
Based on this sentiment lexicon, we expanded lexicon and classified negative and positive words into 7 sentiment domains; Sadness, Shame, Anger, Fear, Frustration, Delight, and Satisfaction. As we mentioned, the basic seed words including negative and positive emotions were extracted from the existing literature, but expanded the negative and positive sentiment words by applying to vehicle related words in table 4.

Even though they are categorized into the same range of emotion, the sentimental polarity of each word is different from one another. For instance, although "irritating", "angry" and "furious" are classified into the same domain of Anger, respective sentimental polarity differs from one another. This aspect means that words can have
the intensity of a variety of emotions according to individual vocabulary, usage, context, POS, or even in the same POS. In short, a word can have multiple meanings. SentiWordNet offers the polarity information indicating the emotional intensity for each word depending on the POS and usage, and also provides an index information indicating the frequency of use (E. Diener et al., 1995). The index represents the rank in accordance with the frequency of use. In this study, we calculated the sentimental intensity more accurately and precisely taking into account the index information. For example, as the word "sad" used as an adjective is shown from SentiWordNet (Table 5), figure 5 shows classifying polarity of the word "sad" into three aspects based on the frequency of use.

To begin with, we respectively calculated difference between positivity and negativity of each meaning, and then multiplied the reciprocal of the index values given to its meaning. The higher the index value becomes, the greater weight is assigned. Once for all, we normalized their total sums. That is, in the case of "sad", the negativity value was extracted using this example of formula (Jung, 2013).

\[
\frac{(0.75-0.125)*1+(-0.25)\times(1/2)+(-1)\times(1/3)}{(1 + (1/2) + (1/3))}
\]

Through text matching both the extracted negativity and positivity values and lexicon constructed by the process above, intensity of sentiment of each VOC are measured. Based on these procedure, we built the lexicon and the 7 sentiment domains. It is meaningful to construct the sentiment lexicon related to automotive industry.

In this present study, we constructed the sentiment lexicon selecting 4,815 negative and 2,021 positive sentiment words. Based on this sentiment lexicon, we combined these extracted and classified negative and positive words with words related to the automobile industry, and analyzed a total of 45,447 pieces of customers' opinions of 26 car manufacturing companies had been crawled from Jan. 1. 2013 to Dec. 31. 2015. In the middle of 45,447 threads in data set from 26 brands, we selected three major organizations (GM Group, FCA and VOLKSWAGEN). The threads were discussed 92 unique vehicle models about their products and services. The average
thread contained 23 sentences with a total 502 words (min 5 words; max 1,272 words). In the table 6, it demonstrates basic descriptive statistics on the amount of 1-month sentiment change during 3 years. The amount of 1-month sentiment change(Et) is measured according to this following formula (D.E. O’Leary, 2011).

\[E_t = \ln(S_t/S_{t-1}) \]

"ln" is natural logarithm. \(S_t \) is the frequency of this month sentiments and \(S_{t-1} \) is the frequency of the previous month's sentiments. The reason why we use the amount of sentiment change as variable is that, basically, the distribution of sentiment shows a similar aspect (Jung and Nah, 2007). The similar distribution of emotion responds the varied change such as sales or market share. In addition, since the number of posting shows a large difference depending on product or brand, the rate of emotion, that is, the amount of sentiment change is appropriate for variable.

The average of Sadness, Shame, Anger, Fear, and Frustration, indicating the negativity of the market, is having a positive value, while that of Delight and Satisfaction, presenting the positivity of it, has a negative value. We can ascertain that the domains of sentiment properly divided as the average of emotion of other propensity simultaneously have the opposite sign to each other.

4. Experiment & Analysis (Phase II & III)

4.1 Auto-correlation Analysis of Sentiment

In this study, we conducted the auto-correlation analysis to determine whether the sentiment of the auto sales market includes predictable information. As dealing with time-series data, It is always likely that the continuous error terms are correlated to each other. In some particular time point, the error term at that time includes not only the impact of that time, but the influence transferred from the impact from the past. Because of these transferred influence, the impact at that time are correlated
with the impact from the past and this situation produces correlation the error terms. In this case, auto-correlation exists and auto-correlation of both positives and negative (negative) could exist. At first, we empirically analyzed whether the change of each emotion has the features of auto-correlation. If the auto-correlation is identified, it suggests that sentiment containing information about the auto sales market may actually have an influence on the market. Table 7 is presenting the result of analyzing the auto-correlation of 20 months in the midst of 36 months, the 20 months were randomly selected arranged in order of month as lags and it is a summary on the auto-correlation coefficient of 7 sentiment domains shown in the car community. AC denotes an auto-correlation coefficient, and Q-Stat. means Ljung-box statistics. Value is the value of Ljung-box statistics can confirm accompanying P-value (Sig.). We omitted the p-value (<0.01) under Q-stat in the table 7 as it is respectively significant in the each sentiment domain (0.0000*). The Ljung-Box test (named for Greta M. Ljung and George E. P. Box) known as

Lag	Sadness AC	Q-stat. value	Shame AC	Q-stat. value	Anger AC	Q-stat. value	Fear AC	Q-stat. value	Frustration AC	Q-stat. value	Delight AC	Q-stat. value	Satisfaction AC	Q-stat. value
1	-0.238	41.748	-0.212	33.226	-0.221	35.665	-0.123	11.765	-0.224	37.103	-0.182	24.174	-0.175	22.644
2	-0.127	53.697	-0.137	43.564	-0.143	50.925	-0.212	33.665	-0.147	52.769	-0.179	43.572	-0.161	41.456
3	-0.044	55.155	-0.054	49.433	-0.072	53.697	-0.084	39.736	-0.064	55.155	-0.039	47.515	-0.099	48.155
4	-0.046	56.732	-0.045	52.497	-0.066	57.732	-0.033	46.701	-0.077	56.732	0.004	61.732	-0.006	63.343
5	0.148	67.792	0.072	62.754	0.235	87.721	0.168	64.219	0.186	77.761	0.242	96.779	0.268	102.424
6	0.018	67.991	-0.013	67.098	-0.031	89.959	0.022	68.442	0.008	79.265	-0.081	107.271	0.023	104.931
7	-0.016	74.209	-0.006	72.272	-0.025	94.214	0.002	72.529	-0.046	81.233	-0.048	112.742	-0.021	124.331
8	-0.034	75.052	-0.039	75.452	-0.084	95.873	-0.054	78.108	-0.023	85.052	-0.024	115.156	-0.029	125.398
9	-0.038	75.113	-0.058	76.738	-0.011	95.298	-0.048	79.073	-0.061	87.511	-0.045	117.411	-0.041	125.882
10	-0.005	76.128	-0.075	77.309	-0.114	106.185	-0.017	79.643	-0.075	92.128	-0.062	117.612	-0.201	127.318
11	-0.005	76.147	-0.029	77.647	-0.142	108.429	0.001	88.292	-0.005	96.153	-0.012	123.761	-0.027	136.539
12	-0.068	79.566	-0.055	82.069	-0.032	109.786	-0.062	92.433	-0.048	99.426	-0.084	133.795	-0.071	139.245
13	-0.044	79.727	-0.022	83.732	-0.067	110.732	-0.041	99.749	-0.091	102.325	-0.047	137.977	-0.049	141.778
14	-0.046	79.929	-0.036	89.425	0.026	117.492	-0.006	102.11	-0.024	109.467	-0.001	139.232	-0.051	142.929
15	0.097	82.132	0.121	96.774	0.239	122.479	0.147	114.54	0.176	122.352	0.209	149.509	0.113	172.236
16	-0.002	82.821	0.003	97.672	-0.012	123.217	0.009	122.8	0.011	125.284	0.002	152.828	-0.102	178.821
17	-0.041	83.242	-0.071	103.002	-0.056	125.739	-0.052	124.4	-0.033	128.257	-0.013	158.322	-0.081	182.134
18	-0.029	83.544	-0.113	104.396	-0.042	133.692	-0.094	124.61	-0.039	128.954	-0.032	161.201	-0.089	183.418
19	-0.056	84.272	-0.042	107.465	-0.071	147.431	-0.049	128.43	-0.075	133.842	-0.055	164.423	-0.097	189.412
20	-0.102	88.798	-0.054	108.175	-0.111	168.524	-0.032	128.99	-0.009	138.751	-0.072	168.336	-0.102	192.067

| Table 7 | The Result of Auto-correlation |
the Ljung-Box Q test is a type of statistical test of whether any of a group of auto-correlations of a time series are different from zero. Instead of testing randomness at each distinct lag, it tests the "overall" randomness based on a number of lags (G. M. Ljung, G. E. P. Box, 1978). In table 7, we can grasp from this results that the sentiment data of VOC have a serial pattern. Although there are slight differences in respective sentiment domain, the present sentiment has a significant amount of AC (auto-correlation coefficient) on a cycle of 10 month. We also can recognize that the time difference exceeding the confidence limit(-0.05<ACF<0.05) exists in sentiment domain. This aspect shows that the current sensibility can be used to predict the future and the relationship between the past values and the current is significant. In other words, it implies that 7 emotions on the automotive market are not meaningless values to be produced at random, but have features of information with the predictability and the period.

4.2 Principal Component Analysis of Sentiment

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components. The number of principal components is less than or equal to the number of original variables. This transformation is defined in such a way that the first principal component has the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set. PCA is sensitive to the relative scaling of the original variables (Pearson, K, 1901). PCA is mostly used as a tool in exploratory data analysis and for making predictive models. PCA can be done by eigenvalue decomposition of a data covariance (or correlation) matrix or singular value decomposition of a data matrix, usually after mean centering (and normalizing or using Z-scores) the data matrix for each attribute (Abdi. H., & Williams, L.J., 2010). PCA is performed to extract the component, which is representative of the variables. The purpose of this analysis is to extract some main factors to be able to account for most of the variance of the total of samples. As the method of component extraction, it is possible to standardize the value of more than Eigen-value 1, the sum of factor loading squared. However, in this study, we fixed the number of factors into 3 in advance in order to evaluate the sentiment on market by separating the three aspects; positivity, negativity and neutrality. As the factor rotation was conducted with Varimax 20times repeatedly to extract principal component vector, which is most commonly used in the orthogonal factor rotation system and maximizes the sum of the variances of the squared loadings (squared correlations between variables and factors).
The rotated component matrix of 7 sentiment domains is shown in Table 8. Sadness, Anger, and Fear have been divided into a principal component 1. Shame and Frustration have been divided into the principal component 2. Delight and Satisfaction is connected to the principal component 3. The principal component 1 represents the negativity on the auto market such as Sadness, Anger, and Fear. The principal component 2 includes neutrality. The principal component 3 including Delight and Satisfaction mainly shows the positivity on the market. In this way, Being combined similar sentiment with the one component domain in accordance with the nature of the sentiment supports the results of auto-correlation analysis of sentiment. The market asymmetrically responds depending on customer's feedback, whether it is negative or positive. The negative and positive data on vehicles classified in this study will be able to have a different impact on the market performance. In other words, It suggests that the emotion plays a role in the information to predict the change of the car sales in the auto market through the negativity and positivity on cars. In particular, Shame and Frustration are classified with the negative emotion in our own lexicon. However, as a result of the PCA, Shame and Frustration have not been included in any group of the negative or the positive. Thus, it contains the neutral information or is regarded as the noise regardless of the plus (+) or minus (-) on the auto sales. In case of Delight, although it includes the neutrality and the positivity, as the main component is the positivity, it is included in the positive domain. Technically, it is difficult to extract exactly the information we want in the internet space with a lot of information through a combination of words. We reckon that it is necessary to analyze additionally the sentiment on the respective domain of Shame and Frustration mechanically classified.

Table 9 shows the total explained variance of the 3 principal components separated. The number of factors was fixed to 3 in advance and explanation power (% variance) shows how much of the total each factor describes. It means that the

![Table 8: Rotated Component matrix](image)

Domain	PC1	PC2	PC3
Sadness	0.672	0.294	0.223
Shame	0.197	0.742	0.049
Anger	0.781	0.382	0.012
Fear	0.645	0.227	0.307
Frustration	0.201	0.798	0.154
Delight	0.077	0.559	0.726
Satisfaction	0.059	0.329	0.851
Kim, Dongwan - Yu, Song Jin

(Table 9) Total Variance Explained

Factor	Initial Eigenvalues	Extraction Sums of Squared Loadings	Rotation Sums of Squared Loadings						
	Total	% of Var.	Cumul.%	Total	% of Var.	Cumul.%	Total	% of Var.	Cumul.%
1	4.712	52.344	52.344	4.712	52.344	52.344	2.729	29.861	29.861
2	0.921	10.249	62.593	0.921	10.249	62.593	2.209	24.613	54.474
3	0.827	9.431	72.024	0.827	9.431	72.024	1.661	17.550	72.024

larger variance is, the more the factor has significantly an influence on. That is, a variable whose variance is large makes it easier to comprehensively grasp the data. In table 9, among the extracted 3 principal components, the first component explains 52.344% of the entire components. This means that the first component can be the greatest representative of overall sentiment. The second and third component respectively explains 10.249% and 9.431% of the total. According to the results, the negative factor has a significant influence on explaining the data.

4.3 Linear Regression Analysis Model

In the research model, we examined how VOC, which is consumer review on the products of the car manufacturing companies to target the online community, one of the social media channels, has an impact on the automotive market share. VOC on the products of automobile manufacturing companies is posted in a format of text. The independent variables of this study were converted to the quantified sentiment domains of texts by applying the opinion mining techniques. In the community for these products, we graphically represent two models to explain the ups and downs of the market share on VOC digitizing sensibility by applying the opinion mining as follows.

In linear regression analysis model 1, we fixed five variables, the amounts of change the positive and the negative, as independent variables. According to PCA, the sentiment domains inclining to the principal component of positivity are "Delight" and "Satisfaction" and those of negativity are "Sadness", "Anger", and "Fear". The amounts of the change of these two positive domains and three negative domains become independent variables (Figure 6).
In Model 2, we added the amounts of change of the neutral as independent variables in order to investigate what the neutrality of sentiment effects on the market share of the company. As a result of PCA, two domains, "Shame" and "Frustration", are independent variables including the neutrality. In addition, even though the domain "Delight" belongs to the positive domain, it simultaneously is inclined to both neutrality and positivity. It is necessary to focus on the result of analysis of "Delight".

As shown in table 10, we inquired into the monthly vehicle market share from 2013 to 2015 through Automakers & ANDC, and collected 4 companies of 26 car manufacturing companies, which are presenting the meaningful changes in market share. We fixed each market share of each company into dependent variables and their changes.

(Table 10) Monthly Vehicle Market Share in the U.S.

Month	GM	FCA	VOLKSWAGEN
Jan-2013	0.187	0.113	0.041
Feb-2013	0.188	0.117	0.038
Mar-2013	0.169	0.118	0.037
Apr-2013	0.185	0.122	0.040
May-2013	0.175	0.115	0.038
Jun-2013	0.189	0.112	0.039
Jul-2013	0.178	0.107	0.040
Aug-2013	0.184	0.110	0.039
Sep-2013	0.165	0.126	0.042
Oct-2013	0.188	0.116	0.037
Nov-2013	0.170	0.114	0.039
Dec-2013	0.169	0.118	0.040
Jan-2014	0.170	0.126	0.036
Feb-2014	0.186	0.130	0.035
Mar-2014	0.167	0.126	0.036
Apr-2014	0.183	0.128	0.036
May-2014	0.177	0.121	0.033
Jun-2014	0.188	0.120	0.035
Jul-2014	0.178	0.117	0.035
Aug-2014	0.172	0.125	0.036
Sep-2014	0.179	0.136	0.036
Oct-2014	0.177	0.133	0.038
Nov-2014	0.173	0.131	0.041
Dec-2014	0.182	0.128	0.038
Jan-2015	0.176	0.126	0.034
Feb-2015	0.184	0.130	0.032
Mar-2015	0.162	0.128	0.037
Apr-2015	0.185	0.130	0.036
May-2015	0.179	0.124	0.035
Jun-2015	0.176	0.125	0.036
Jul-2015	0.180	0.118	0.036
Aug-2015	0.171	0.128	0.036
Sep-2015	0.174	0.134	0.033
Oct-2015	0.181	0.134	0.035
Nov-2015	0.173	0.131	0.041
Dec-2015	0.177	0.132	0.032

Source: Automakers & ANDC
4.4 The Result of Linear Regression Analysis

4.4.1 GM group

In GM's case, it had been the top auto manufacturing organization during this period (2013-2015) according to Automakers & ANDC. Although, in March, 2013 (16.9%), September, 2013 (16.5%), March, 2014 (16.7%) and March, 2015 (16.2%), the radical fluctuations of market share were shown, it had maintained the top of market share in the US. The results of regression investigating the impact on the market share in accordance with the change of sentiment in VOC are stated as follows.

R² means statistics, which describes how much the independent variables explain the dependent variable. In table 11, since R² is 0.363, 5 sentiment domains can explain the market share approximately 36.3%. As adjusted R² is 0.357, it shows similar level to R². As Durbin-Watson (DW) value shows from 1 to 3, it is unproblematic to independency of residual. Since the DW value is 1.56, we reason that the condition of the independency of residual is met. In ANOVA, investigating P-value (significant probability) on F-value, as P-value is 0.015, it is appropriate for the regression model 1. As the result of coefficients, generally, if VIF is less than 10, it is unproblematic to multi-collinearity. VIF represents the level between 1 and 3 in the table 11.

As the result of significance of each variable, in domain Sadness, Anger, and Delight, P-value is shown to respectively 0.022, 0.067, and 0.058. It represents that Sadness, Anger, and Delight of 5 domains to be measured have an significant influence on the GM's performance. In addition, as we see the standardized coefficient, Sadness (-0.492) and Anger (-0.466) have negative (-) influence on market share and Delight has a positive (+) impact on the market share of GM, but it is a little meager level (0.159).

In table 12, since R² is 0.403, 7 sentiment domains can explain the market share approximately 40.3%.

Model	R²	R² Adjusted	Durbin-Watson	ANOVA F	Variables	Unstd. Coefficient B	Std. Error	Std. Coeff. B	T	sig.	Collinearity Stat. VIF
1	0.363	0.357	1.560	3.416	0.015	(constant) 0.215	0.017	12.819	0.000	1.937	
						Sadness -0.211	0.087	-0.492	-2.425	0.022	1.367
						Anger -0.004	0.010	-0.466	-2.430	0.067	1.120
						Fear -0.078	0.132	-0.593	-2.425	0.058	1.985
						Delight 0.181	0.324	0.159	2.557	0.000	1.820
						Satisfaction 0.014	0.241	0.017	-0.059	0.353	2.667
As adjusted R^2 is 0.354, it shows similar level to R^2. Since the DW value is 1.64, we can evaluate that the condition of the independency of residual is met. In ANOVA, investigating P-value on F-value, as P-value is 0.029, it is suitable for the regression model 2. As the result of coefficients, generally, it is unproblematic to multi-collinearity as VIF represents below 10 in the table 12.

As the result of significance of each variable, P-value of domain Sadness (0.041) has only an significant influence on the GM's performance. In addition, as we see the standardized coefficient, Sadness (-0.555) has an negative (-) influence on market share of GM. Domains Shame and Frustration, evaluated possessing neutrality by PCA, are not significant. In case of GM, we could reason that Sadness of sentiment domains on customer reviews had negatively impacted on the business performance on a significantly high level (-0.492 in model 1 and -0.555 in model 2), compared to the market share from January, 2013 to December, 2015 (from max 18.9% to min 17.7%).

4.4.2 FCA

FCA's market share had inclined approximately 2% point from 11.3% to 13.2% during this period (2013-2015) according to Automakers & ANDC. In the middle of 2013, it had dropped to 10.7% (July). After that, however, it steadily had upturned and retained the range of 13% at the end of 2015. The results of regression investigating the impact on the market share in accordance with the change of sentiment in VOC are stated as follows.

In table 13, as R^2 is 0.279, 5 sentiment domains can explain the market share approximately 27.9%. DW value (1.911) meets the condition of the independency of residual. In ANOVA, P-value (0.038) measured on F-value is suitable for the
regression model 1. In parameter estimates, VIF is unproblematic to multi-collinearity.

As the result of significance of each variable, P-value of domains Sadness (0.017), Delight (0.061) and Satisfaction (0.034) have significant influence on the FCA's market share. As seeing the standardized coefficient, Sadness (-0.225) has a negative (-) influence on market share of FCA (0.154) and Delight (0.354) and Satisfaction (0.328) do positively (+).

According to analysis on Model 2 (FCA), 7 sentiment domains can explain the market share approximately 35.1% through. In ANOVA, P-value (0.03) measured on F-value is appropriate for the regression model 2. In parameter estimates, considering VIF, it is unproblematic to multi-collinearity.

As the result of significance of each variable, it

Table 13: The result of Model 1 (FCA)

Model	R^2	R^2 Adjusted	Durbin-Watson	ANOVA F	P-V.	Variables	Unstrdzed. Coefficient	Strdzd. Coeffi.	T	sig.	Collinearity Stat. VIF
1	0.279	0.259	1.911	2.322	0.038	(constant)	0.124	0.022	5.675	0.000	
						Sadness	-0.389	0.153	-2.536	0.017	1.993
						Anger	0.046	0.183	0.254	0.402	2.230
						Fear	0.229	0.153	1.492	0.146	1.688
						Delight	0.105	0.238	2.442	0.061	2.041
						Satisfaction	0.022	0.268	3.483	0.034	1.646

Table 14: The result of Model 2 (FCA)

Model	R^2	R^2 Adjusted	Durbin-Watson	ANOVA F	P	Variables	Unstrdzed. Coefficient	Strdzd. Coeffi.	T	sig.	Collinearity Stat. VIF
2	0.351	0.228	1.159	2.159	0.030	(Constant)	0.140	0.023	5.985	0.000	
						Sadness	-0.363	0.152	-2.392	0.024	2.015
						Anger	0.036	0.180	0.202	0.342	2.233
						Fear	0.387	0.176	2.197	0.036	2.304
						Delight	0.112	0.242	2.462	0.038	5.408
						Satisfaction	0.011	0.274	0.939	0.169	5.022
						Shame	-0.030	0.196	-1.155	0.178	1.897
						Frustration	-0.361	0.274	-1.318	0.198	2.551
assumes a different aspect from the result of model 1. P-value of domains Sadness (0.024), Fear (0.036) and Delight (0.038) have significant influence on the FCA’s market share. We are able to infer that some positive and negative factors of Shame and Frustration impact on other sentiment domains. As seen the standardized coefficient, Sadness (-0.417) and Fear (-0.508) have negative (-) influence on market share of FCA and Delight (0.364) does positively (+).

Compared to between the development of market share and the sentiment from 2013 to 2015, the market share had increased 2.1% point from 11.3% to 13.4%. In case of FCA, even though negativity and positivity had coexisted during the period, we are able to infer that the positive sentiment factors such as Delight and Satisfaction in VOC had impacted on the business performance of FCA.

4.4.3 VOLKSWAGEN

In VOLKSWAGEN’s case, it had retained the range of market share between about 3% and 4% during this period (2013-2015) according to Automakers & ANDC. Except for the radical decrease (-0.009) of market share in December 2019 (0.032), it shows steady rise and fall without dramatic fluctuation in spite of "Diesel gate", which is the event of exhaust fabrication. The results of regression investigating the impact on the market share in accordance with the change of sentiment in VOC are stated as follows.

In table 15, as R^2 is 0.33, 5 sentiment domains can explain the market share approximately 33%. DW value (1.541) meets the condition of the independency of residual. In ANOVA, P-value (0.043) measured on F-value is suitable for the regression model 1. In parameter estimates, VIF, below 10, is unproblematic to multi-collinearity.

As the result of significance of each variable, P-value of domain Anger (0.059) has a significant influence on the performance of VOLKSWAGEN. As observing the standardized coefficient, Anger (-0.343) has a negative (-) influence on market share of VOLKSWAGEN.

(Table 15) The result of Model 1 (VOLKSWAGEN)

Model	R²	R² Adjusted	Durbin-Watson	ANOVA	Variables	Unstdz. Coefficient	Stdzd. Coeff.	t	sig.	Collinearity Stat.	VIF
						B	Std. Error				
1	0.330	0.309	1.541	3.735	0.043						
	(constant)	0.051	0.013	3.975	0.000						
	Sadness	-0.003	0.035	-0.018	-0.099	0.222	1.065				
	Anger	-0.110	0.200	-0.343	-2.551	0.059	2.250				
	Fear	-0.109	0.061	-0.326	-1.797	0.082	1.107				
	Delight	0.018	0.092	0.053	0.191	0.250	2.557				
	Satisfaction	0.031	0.072	0.110	0.432	0.269	2.189				
In table 16, we can realize that 7 sentiment domains can explain the market share approximately 55.1% through R^2. Since DW value is 2.136, we are able to evaluate that the independency of residual meets the condition. In ANOVA, investigating P-value (0.039) on F-value is suitable for the regression model 2. As the result of parameter estimates, VIF represents that multi-collinearity is stable between 1 and 3.

As the result of significancy of each variable, it assumes different aspect from the result of model 1. P-value of domains Anger (0.038) and Frustration (0.058) have significant influence on the VOLKSWAGEN's market share. We focus on the result. Frustration had been evaluated that it had been divided into the factor of neutrality from PCA in Phase II. However, as seeing the standardized coefficient, Frustration (-0.504) has a negative (-) influence on market share of VOLKSWAGEN. At this point, we are able to infer that Frustration works as a negative factor on it.

In case of VOLKSWAGEN, the findings of "Dieselgate" were provided to the California Air Resources Board (CARB) in May 2014 and erupted on 18 September 2015, when the United States Environmental Protection Agency (EPA) issued a notice of violation of the Clean Air Act to German automaker VOLKSWAGEN Group after it was found that VOLKSWAGEN had intentionally programmed turbo-charged direct injection (TDI) diesel engines to activate certain emissions controls only during laboratory emissions testing. In spite of the event, the market share had risen rather than fallen from 3.3% to 4.1%. However, according to the result from linear regression analysis, it suggests that the negative factors of Anger and Frustration had presented in VOC.
5. Conclusion

In this present study, we verified that 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. This research consists of three phases. At the phase I, we constructed the sentiment lexicon and 7 sentiment domains by analyzing VOC on 26 auto companies through sentiment analysis technique.

In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments. We could notice that, although there are slight differences in each respective sentiment domain, it generally has a significant amount of the auto-correlation coefficient every 10 months. In addition, the results from PCA reported that the 7 sentiment domains are connected with positivity, negativity and neutrality. Sadness, Anger, and Fear has been divided into a principal component 1. Shame and Frustration has been divided into the principal component 2. Delight and Satisfaction are connected to the principal component 3. The principal component 1 represents the negativity on the auto market. The principal component 2 includes neutrality. The principal component 3 including Delight and Satisfaction mainly shows the positivity on the market, but the principal component 1, negative factor, explains 52.344% of the entire components. Furthermore, we focused on the fact that Shame and Frustration have not been included in any group of the negative or the positive. Thus, it contains the neutral information or is regarded as the noise regardless of the plus (+) or minus (-) on the auto sales.

In phase III, we investigated how 7 domains impact on the market share of four major auto companies such as GM, FCA, and VOLKSWAGEN by using linear regression analysis. The results indicated that the sentimental factors have a significant influence on the actual market share. In case of GM, we could reason that Sadness of sentiment domains on customer reviews had negatively impacted on the business performance on a significantly high level (-0.492 in model 1 and -0.555 in model 2), compared to the market share from January, 2013 to December, 2015 (from 18.7% to 17.7%). In case of FCA, the market share had increased 2.1% point from 11.3% to 13.4%. Even though negativity and positivity had coexisted during the period, we are able to infer that the positive sentiment factors such as Delight and Satisfaction in VOC had positively impacted on the business performance of FCA. In case of VOLKSWAGEN, Anger and Frustration have significant influence on the VOLKSWAGEN's market share. In particular, Frustration had been evaluated that it had been divided into the component of neutrality from PCA in Phase II. However, as seeing the standardized coefficient, Frustration (-0.504) has a negative (-) influence on market share of VOLKSWAGEN. At this point, we are able to infer that Frustration works as a negative factor on it. In spite of "Dieselgate", the market share had even risen

239
rather than fallen from 3.3% to 4.1%. However, according to the result from linear regression analysis, it suggests that the negative factors of Anger and Frustration had presented in VOC.

As the contribution of this study, we provide three aspects as follows.

- Construction of sentiment lexicon

The process of lexicon can be a standardized procedure for opinion mining. Based on the sentiment lexicon, it is possible for the sentiment analysis to be applied to not only automotive industry, but also in variety of industry fields such as finance, marketing, CRM, etc.

- Embodiment of reliability on data

Researchers can assure reliability on data for experiment by suggesting the methods; auto-correlation analysis and PCA. We can grasp the pattern of sentiment through auto-correlation analysis and grouping by respective sentiment through PCA.

- The study of neutrality

Generally, although researchers tend to regard neutral sentiment as useless “buzz”, through the empirical experiment based on two regression models, we intended to investigate hidden factors of neutral emotion. It is necessary to study additionally about neutrality and we intend to suggest a study of neutrality as the next research project.

As limitation of the present research, we extracted and utilized the only vocabulary in the middle of process selecting sentiment words. We need to expand the boundary of study into not just vocabulary, but the chunk of words considering context, nuances and emoticons or symbols representing various emotions. In addition, it is necessary to classify more detailed and specific emotional domains without the limitation to 7 sentiment domains.

As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, we expect that the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

References

Abdi. H., & Williams, L.J, "Principal Component Analysis". Wiley Interdisciplinary Reviews: Computational Statistics, Vol.2, No.4(2010), 433–459.

A. Esuli and F. Sebastiani, "Sentiwordnet: A Publicly Available Lexical Resource for Opinion Mining," LREC (2006), 417–422.

An J. K. and H. W. Kim, "Building a Korean Sentiment Lexicon Using Collective Intelligence," Journal of Intelligent Information Systems, Vol.21, No.2(2015), 49–67.

A. Woolridge, "Social media provides huge opportunities, but will bring huge problems," Economist, (2011), 50.

B.J. Finch, "Internet Discussions as a Source for Consumer Product Customer Involvement and Quality Information: an Exploratory Study," Journal of Operations Management, Vol.17,
Reliability Analysis of VOC Data for Opinion Mining

No.5(1999), 535–556.
B. Kessler, G. Numberg, and H. Schütze, "Automatic Detection of Text Genre," *Meeting of the Association for Computational Linguistics* (1997), 32–38.

B. Kujawski, J. Holyst, and G. J. Rodgers, "Growing Trees in Internet News Groups and Forums," *Physical Review*, Vol.76 (2007), 103.

B. Tronvoll, "Negative Emotions and Their Effect on Customer Complaint Behavior," *Journal of Service Management*, Vol.22 (2011), 111–134.

Choi, Y.-J. and H. Choi, "A Study on the Customer Satisfaction Strategies of the Online Company Using VOC," *Journal of Korean Industrial Economics and Business*, Vol.3, No.1(2011), 73–93.

C. Whitelaw, N. Garg, and S. Argamon, "Using Appraisal Groups for Sentiment Analysis," *The 14th ACM International Conference on Information and Knowledge Management*, (2005), 625–631.

David A. Freedman. *Statistical Models: Theory and Practice*. Cambridge University Press, 2009, 26.

D.E. O’Leary, "Blog Mining-Review and Extensions: from Each according to His Opinion," *Decision Support Systems*, Vol.51, No.4(2011), 821–830.

D. Ward, P.H. Jesty, R.S. Rivett. "Decomposition Scheme in Automotive Hazard Analysis," *SAE International Journal of Passenger Cars- Mechanical Systems*, Vol.2, No.1(2009), 803–813.

E. Diener, H. Smith, and F. Fujita, "The Personality Structure of Affect," *Journal of Personality and Social Psychology*, Vol.69(1995), 130.

E. Spertus, "Smokey: Automatic Recognition of Hostile Messages," *The National Conference on Artificial Intelligence*, (1997), 1058–1065.

G. A. Miller, "WordNet: a Lexical Database for English," *Communications of the ACM*, Vol.38 (1995).

Gerald M. Katz, "One Right Way to Gather the Voice of the Customer," *PDMA Visions Magazine*, (2001).

G. M. Ljung; G. E. P. Box, "On a Measure of a Lack of Fit in Time Series Models," *Biometrika*, Vol.65, No.2(1978), 297–303.

Hanjun Lee, JinYoung Han, Yongmoo Suh, "Gift or Threat? An Examination of Voice of the Customer: The Case of MyStarbucksIdea.com," *Electronic Commerce Research and Applications*, Vol.13 (2014), 205–219.

Hilary L. Seal."The Historical Development of the Gauss Linear Model", *Biometrika*, Vol.54, No.1/2(1967), 1–24.

Hyun Won Jung, Ken Nah, A Study on the Meaning of Sensibility and Vocabulary System for Sensibility Evaluation, *Journal of the Ergonomics Society of Korea*, Vol.26, No.3(2007), 17–25.

J. Bollen, H. Mao, and X. Zeng, "Twitter Mood Predicts the Stock Market," *Journal of
J. S. Lerner and D. Keltner, "Beyond valence: Toward a Model of Emotion-specific Influences on Judgment and Choice," *Cognition & Emotion*, Vol.14 (2000), 473–493.

Jo H. J., J. H. Seo and J. T. Choi, "OAR Algorithm Technology Based on Opinion Mining Utilizing Stock News Contents," *Journal of Korean Institute of Information Technology*, Vol.13, No.2(2015), 111–119.

Jung, "The Influence of Negative Emotions on Customer Contribution to Organizational Innovation in an Online Brand Community," *Journal of Korean Society for Internet Information*, Vol.14, No.4(2013), 91–100.

K. Coussment, D. Van den Poel, "Improving Customer Complaint Management by Automatic Email Classification using Linguistic style Features as Predictors," *Decision Support Systems*, Vol.44, No.4 (2008), 870–882.

Kim, Y., N. Kim, and S. R. Jeong, "Stock-index Invest Model Using News Big Data Opinion Mining," *Journal of Intelligence and Information Systems*, Vol.18, No.2(2012), 143–156.

Liu, Bing, "Sentiment Analysis and Subjectivity," Handbook of Natural Language Processing 2, (2010), 627–666.

L. Venkata Subramaniam, Tanveer A. Faruquie, Shajith Ikbal, Shantanu Godbole, Mukesh K. Mohania, "Business Intelligence from Voice of Customer," *IEEE International Conference on Data Engineering* (2009).

L. Zhuang, F. Jing, X. Y. Zhu, and L. Zhang, "Movie Review Mining and Summarization," *Conference on Information and Knowledge Management: Proceedings of the 15th ACM International Conference on Information and Knowledge Management*, (2006), 43–50.

M. Thelwall, K. Buckley, and G. Paltoglou, "Sentiment in Twitter Events," *Journal of the American Society for Information Science and Technology*, Vol.62 (2011), 406–418.

N.C. Romano, C. Donovan, H. Chen, J. Nunamaker, "A Methodology for Analyzing Web-based Qualitative Data," *Journal of Management Information Systems*, Vol.19(4) (2003), 213–246.

N. Li and D. D. Wu, "Using Text Mining and Sentiment Analysis for Online Forums Hotspot Detection and Forecast," *Decision Support Systems*, Vol.48 (2010), 354–368.

P.C. Tetlock, M. Saar-Tsechansky, S. Macskassy, "More than Words: Quantifying Language to Measure Firms' Fundamentals," *Journal of Finance*, Vol.63, No.3(2008), 1437–1467.

P.H. Jesty, K.M. Hobley, R. Evans, I. Kendall, Safety Analysis of Vehicle-based Systems, in: F. Redmill, T. Anderson (Eds.). "Lessons in System Safety, Proceedings of the 8th Safety-Critical Systems Symposium (SCSS)," Springer, London, 2000.

Pearson, K, "Onlines and Planes of Closest Fit to Systems of Points in Space," *Philosophical Magazine*, Vol.2, No.11(1901), 559–572.

R.G. Vedder, M.T. Vanecck, C.S. Guynes, J.J. Cappel. "CEO and CIO Perspectives on Competitive Intelligence," *Communications of the ACM*, Vol.42, No.8(1999), 108–116.

R.P. Schumaker, H. Chen, "Textual Analysis of Stockmarket Prediction Using Breaking Financial News: the AZFin Text System,"
Reliability Analysis of VOC Data for Opinion Mining

ACM Transactions on Information Systems, Vol.27, No.2(2009).

S. Argamon, M. Koppel, and G. Avneri, "Routing Documents according to Style," First International Workshop on Innovative Information Systems, (1998), 85–92.

Song J. S., and S. W. Lee, "Automatic Construction of Positive/Negative FeaturePredicate Dictionary for Polarity Classification of Product Reviews," Journal of KIIESE: Software and Applications, Vol.38, No.3(2013), 157–168.

S. Spangler, J. Kreulen, "Mining the Talk: Unlocking the Business Value in Unstructured Information," IBM Press, 2008.

Takeuchi, H., L. V. Subramaniam, T. Nasukawa, S. Roy, "Getting Insights from the Voices of Customers: Conversation Mining at a Contact Center," Information Science, Vol.179, No.11(2009), 1584–1591.

Turney P. D. and M.L. Littman, "Unsupervised Learning of Semantic Orientation from a Hundred-Billion-word Corpus," National Research Council, Institute for Information Technology, Technical Report (2002), ERB-1094.

T. Loughran, B. McDonald, "When is a Liability not a Liability? Textual Analysis Dictionaries, and 10-Ks," Journal of Finance, Vol.661, No.1(2011), 35–65.

T. Nasukawa and J. Yi, "Sentiment Analysis: Capturing Favorability Using Natural Language Processing," The 2nd International Conference on Knowledge Capture, (2003), 70–77.

T. Wilson, J. Wiebe, and P. Hoffmann, "Recognizing Contextual Polarity: An Exploration of Features for Phrase-level Sentiment Analysis," Computational Linguistics, Vol.35 (2009), 399–433.

W. Duan, B. Gu, A.B. Whinston, "Do online reviews matter? — An Epirical Investigation of Panel Data," Decision Support Systems, Vol.45, No.4(2008), 1007–1016.

Yu E. J., Y. S. Kim, N. Y. Kim and S. R. Jeong, "Predicting the Direction of the Stock Index by Using a Domain-specific Sentiment Dictionary," Journal of Intelligent Information Systems, Vol.19, No.1(2013), 95–10

Yune, H., H.-J. Kim, J.-Y. Chang, "An Efficient Search Method of Product Review Using Opinion Mining Techniques," Journal of KIIESE : Computing Practices and Letters, Vol.16, No.2(2010), 222–226.

Zhuang, L., F. Jing, and X. Y. Zhu, "Movie Review Mining and Summarization," Proceedings of the 15th ACM International Conference on Information and Knowledge Management, (2006), 43–50.
국문요약

오피니언 마이닝을 위한 VOC 데이터의 신뢰성 분석

김동원* · 유성진**

이 연구의 목적은 소셜 미디어에서 추출된 7개의 감성 도메인이 기업의 성과에 대한 영향 분석실험을 위한 데이터로서 적합한지에 대해 신뢰성을 확인하고, 실제 고객감성이 자동차 시장점유율에 어떠한 영향을 미치는지에 대하여 확인하기 위한 것이다. 본 연구는 총 3단계 구성으로서, 단계 1은 감성 사전 구축 단계로서 미국 내 26개의 자동차 제조 회사의 고객의 소리 (VOC: Voice of Customer) 총 45,447개를 자동차 커뮤니티로부터 crawling하여 POS 정보 추출 후 감성사전을 구축하였고, 7개의 감성도메인을 만들었다. 단계 2는 신뢰성분석의 단계로서 자기상관관계분석과 주성분 분석 (PCA)를 통해 데이터의 심화 적합성을 검증하였다. 단계 3에서는 PCA를 근거로 2개의 선형회귀분석 모델을 구축하였고 GM, FCA, VOLKSWAGEN 등 3개의 기업을 선정, 2013년부터 2015년까지 7개 감성영역의 자동차 시장점유율에 대한 영향을 실험하였다. 실험 결과, 자기상관관계분석에 의해서 감성 데이터에 자기상관성과 시계열적 패턴이 관찰되었다. PCA 결과, 감성영역이 부정성, 긍정성, 중립성을 주성분으로 연결되어 있음을 확인하였다. VOC 감성 데이터에 대한 신뢰성을 바탕으로 한 2개 Model의 선형회귀 분석 결과, 기업마다 시장점유율에 유의미한 영향을 미치는 감성들이 존재하며 Model 1과, 2의 감성 영향력이 차이가 있고 중립성의 영향을 발전하였다. 본 연구를 통해, 데이터 상에 나타난 정보를 가진 감성이 과거 값에 기초하여 자동차 시장에서 변화를 수반할 수 있다는 것을 나타내고 있음을 확인하였 다. 또한, 우리가 시장 데이터의 가용성을 적용하려고 할 때, 자동차 시장 관련 정보나 감성의 자기상관성을 잘 활용할 수 있다면, 감성 분석에 대한 연구에 큰 기여를 할 수 있을 뿐만 아니라, 실제 시장에서의 비지니스 성과에도 다양한 방법으로 기여할 수 있을 것으로 기대된다.

주제어 : 자기상관관계분석, 주성분분석, 감성분석, 선형회귀분석

논문접수일 : 2016년 8월 17일 논문수정일 : 2016년 10월 18일 게재확정일 : 2016년 10월 25일
원고유형 : 일반논문 교신저자 : 유성진

* 한국해양대학교 해운경영학부 박사과정 수료
** 교신저자 : 유성진
한국해양대학교 해운경영학부 교수
A2-430, 727 Taejong-ro(Dongsam-dong), Yeongdo-gu, Busan 49112, Korea
Tel: +82-51-410-4383, Fax: +82-51-404-3987, E-mail: coppers@kmou.ac.kr

244 Bibliographic info: J Intell Inform Syst 2016 December: 22(4): 217–245
저 자 소개

Kim, Dongwon (1974, S. Korea).
He received the M.S. in International Logistics in 2012, and is in the process of Ph.D. degrees course in shipping management, Korea Maritime & Ocean University. He is currently the president of “Rich & Jacob Education”. He is interested in analytics utilizing data mining and opinion mining (sentiment analysis) involved in big data. Furthermore, His current interests include the strategic SCM on global business circumstance, inventory management, and SCM education. He has expanded his domain of study into forecasting using system dynamics and neural network methodology.

Yu, Song Jin (1972, S. Korea).
He received the B.S. in management policy, M.S. in industrial management and Ph.D. degrees in industrial engineering from Korea Advanced Institute of Science and Technology (KAIST), Daejon, in 1994, 1997 and 2002, respectively. He is currently associate professor at division of shipping management, Korea Maritime University. His current interests include the application of artificial intelligence, especially machine learning or neural network methodologies, to the design of knowledge-based systems for various management principles. He has expanded his research domain into SCM, B2B EC, CRM, and Security. He has published in the areas of data mining, SCM, B2B EC, and financial engineering.