Recurrent Network Models for Kinematic Tracking

Katerina Fragkiadaki Sergey Levine Jitendra Malik
University of California, Berkeley
Berkeley, CA
{katef,svlevine@eecs,malik@eecs}.berkeley.edu

Abstract

We propose the Encoder-Recurrent-Decoder (ERD) model for recognition and prediction of human body pose in videos and motion capture. The ERD model is a recurrent neural network that incorporates nonlinear encoder and decoder networks before and after recurrent layers. We test instantiations of ERD architectures in the tasks of motion capture (mocap) generation, body pose labeling and body pose forecasting in videos. Our model handles mocap training data across multiple subjects and activity domains, and synthesizes novel motions while avoiding drifting for long periods of time. For human pose labeling, ERD outperforms a per-frame body part detector by resolving left-right body part confusions. For video pose forecasting, ERD predicts body joint displacements across a temporal horizon of 400ms and outperforms a first order motion model based on optical flow. ERDs extend previous Long Short Term Memory (LSTM) models in the literature to jointly learn representations and their dynamics. Our experiments show such representation learning is crucial for both labeling and prediction in space-time. We find this is a distinguishing feature between the spatio-temporal visual domain in comparison to 1D text, speech or handwriting, where straightforward hard coded representations have shown excellent results when directly combined with recurrent units [31].

1. Introduction

Humans have a remarkable ability to make accurate short-term predictions about the world around them conditioned on prior events [41]. Predicting the movements of other humans is an important facet of these predictions. Although the number of possible movements is enormous, conditioning on visual history can reduce the range of probable outcomes to a manageable degree of variation. For example, a walking pedestrian will most likely continue walking, and will probably not begin dancing spontaneously. Short term predictions of human kinematics allows people to adjust their behavior, plan their actions, and properly direct their attention when interacting with others. Similarly, for Computer Vision algorithms, predicting human motion is important for timely human-computer interaction [17], obstacle avoidance [22], and people tracking [8]. While simpler physical phenomena, such as the motion of inanimate objects, can be predicted using known physical laws, there is no simple equation that governs the conscious movements of a person. Predicting the motion of humans instead calls for a statistical approach that can model the range of variation of future behavior, and presents a tremendous challenge for machine learning algorithms.

We address this challenge by introducing Encoder-Recurrent-Decoder (ERD) networks, a type of Recurrent Neural Network (RNN) model [49, 24] that combines representation learning with learning temporal dynamics. We apply this model to generation, labeling, and forecasting of human kinematics. We consider two data domains: motion capture (“mocap”) and video sequences. For mocap, conditioning on a mocap sequence so far, we learn a distribution over mocap feature vectors in the subsequent frame. At test time, by supplying mocap samples as input back to the model, long sequences are synthesized. For video, conditioning on a person bounding box sequence, we predict the body joint locations in the current frame or, for the task of body pose forecasting, at a specific point in the future. In the mocap case, the input and output domains coincide (3D body joint angles). In the video case, the input and output domains differ (raw video pixels versus body joint locations).

RNNs are network models that process sequential data using recurrent connections between their neural activations at consecutive time steps. They have been successfully applied in the language domain for text and handwriting generation [16, 30, 9], image captioning [43], action recognition [6]. Ranzato et al. [23] applies RNNs for visual prediction by quantizing the visual signal into a vocabulary of visual words, and predicts a distribution over those words in the next frame, given the visual word sequence observed at a particular pixel location.

We advocate a visual predictive model that is “La-
Motion generation

Generation of naturalistic human motion using probabilistic models trained on motion capture data has previously been addressed in the context of computer graphics and machine learning. Prior work has tackled synthesis of stylized human motion using bilinear spatiotemporal basis models [1], Hidden Markov Models [3], linear dynamical systems [21], and Gaussian process latent variable models [46, 40], as well as multilinear variants thereof [12, 45]. Unlike methods based on Gaussian processes, we use a parametric representation and a simple, scalable supervised training method that makes it practical to train on large datasets.

Dynamical models based on Restricted Boltzmann Machines (RBMs) have been proposed for synthesis and infilling of motion data [34, 29, 33, 35]. While such approaches have the advantage of learning probabilistic models, this also results in a substantially more complex training algorithm and, when multilayer models are used, requires sampling for approximate inference. In contrast, our RNN-based models can be trained with a simple stochastic gradient descent method, and can be evaluated very efficiently at test time with simple feedforward operations.

Video pose labeling and forecasting

Temporal context has been exploited in kinematic tracking using dynamic programming over multiple per frame body pose hypotheses [20, 2], where unary potential encoder detectors’ confidence and pairwise potentials encode temporal smoothness. Optical flow has been used in [26, 27] to adjust the temporal smoothness penalty across consecutive frames. Optical flow can only estimate the motion of body joints that do not move too fast and do not get occluded or dis-occluded. Moreover, the temporal coupling is again pairwise, not long range. ERDs keep track of body parts as they become occluded and disoccluded by aggregating information in time across multiple frames, rather than the last frame.

Parametric temporal filters such as Kalman filtering [47], HMMs or Gaussian processes for activity specific dynamics [39, 19, 28] generally use simple, linear dynamics models for so prediction. Such simple dynamics are only valid within very short temporal horizons, making it difficult to incorporate long range temporal information. Switching dynamic systems or HMMs [21, 7] detect activity transitioning explicitly. In contrast, in ERD action transitioning is transparent to the engineer, and also more effective. Moreover, HMM capacity increases linearly with increasing numbers of hidden states, but its parameter count increases quadratically. This makes it difficult to scale such models to large and diverse datasets. ERDs scale better than previous parametric methods in capturing human dynamics. RNNs use distributed representations: each world “state” is represented with the ensemble of hidden activations in the recurrent layer, rather than a single one. Thus, adding a neural unit quadratically increases the number parameters yet doubles the representation power - assuming binary units.

Standard temporal smoothers or filters are disconnected from the pose detector and operate on its output, such as the space of body joint locations. This representation discards context information that may be present in the original

2. Related work

Motion generation

Generation of naturalistic human motion using probabilistic models trained on motion capture data has previously been addressed in the context of computer graphics and machine learning. Prior work has tackled synthesis of stylized human motion using bilinear spatiotemporal basis models [1], Hidden Markov Models [3], linear dynamical systems [21], and Gaussian process latent variable models [46, 40], as well as multilinear variants thereof [12, 45]. Unlike methods based on Gaussian processes, we use a parametric representation and a simple, scalable supervised training method that makes it practical to train on large datasets.

Dynamical models based on Restricted Boltzmann Machines (RBMs) have been proposed for synthesis and infilling of motion data [34, 29, 33, 35]. While such approaches have the advantage of learning probabilistic models, this also results in a substantially more complex training algorithm and, when multilayer models are used, requires sampling for approximate inference. In contrast, our RNN-based models can be trained with a simple stochastic gradient descent method, and can be evaluated very efficiently at test time with simple feedforward operations.

Video pose labeling and forecasting

Temporal context has been exploited in kinematic tracking using dynamic programming over multiple per frame body pose hypotheses [20, 2], where unary potential encoder detectors’ confidence and pairwise potentials encode temporal smoothness. Optical flow has been used in [26, 27] to adjust the temporal smoothness penalty across consecutive frames. Optical flow can only estimate the motion of body joints that do not move too fast and do not get occluded or dis-occluded. Moreover, the temporal coupling is again pairwise, not long range. ERDs keep track of body parts as they become occluded and disoccluded by aggregating information in time across multiple frames, rather than the last frame.

Parametric temporal filters such as Kalman filtering [47], HMMs or Gaussian processes for activity specific dynamics [39, 19, 28] generally use simple, linear dynamics models for so prediction. Such simple dynamics are only valid within very short temporal horizons, making it difficult to incorporate long range temporal information. Switching dynamic systems or HMMs [21, 7] detect activity transitioning explicitly. In contrast, in ERD action transitioning is transparent to the engineer, and also more effective. Moreover, HMM capacity increases linearly with increasing numbers of hidden states, but its parameter count increases quadratically. This makes it difficult to scale such models to large and diverse datasets. ERDs scale better than previous parametric methods in capturing human dynamics. RNNs use distributed representations: each world “state” is represented with the ensemble of hidden activations in the recurrent layer, rather than a single one. Thus, adding a neural unit quadratically increases the number parameters yet doubles the representation power - assuming binary units.

Standard temporal smoothers or filters are disconnected from the pose detector and operate on its output, such as the space of body joint locations. This representation discards context information that may be present in the original
video. In contrast, ERDs learn the representation suitable for temporal reasoning and can take advantage of visual appearance and context.

3. ERDs for recurrent kinematic tracking and forecasting

Figure 1 illustrates ERD models for recurrent kinematic tracking and forecasting. At each time step t, vector x_t of a sequence $x = (x_1, \cdots, x_T)$ passes through the encoder, the recurrent layers, and the decoder network, producing the output y_t. In general, we are interested in estimating some function $f(x)$ of the input x at the current time step, or at some time in the future. For example, in the case of motion capture, we are interested in estimating the mocap vector at the next frame. Since both the input and output consists of mocap vectors, f is the identity transformation, and the desired output at step t is $f(x_{t+1})$. In case of video pose labeling and forecasting, $f(x)$ denotes body joint locations corresponding to the image in the current bounding box x. At step t, we are interested in estimating either $f(x_t)$ in the case of labeling, or $f(x_{t+H})$ in the case of forecasting, where H is the forecast horizon.

The architecture of the recurrent component of our model is similar to the one proposed in [9]. The two recurrent layers shown in the 2nd column of Figure 1 both receive inputs from the encoder and are directly connected to the decoder. For video pose labeling and forecasting (shown in the 3rd and 4th columns), the recurrent network has only one layer. The units in each recurrent layer implement the Long Short Term Memory functions [11], where writing, resetting, and reading a value from each recurrent hidden unit is explicitly controlled via gating units, as described by Graves [9]. Although LSTMs have four times more parameters than regular RNNs, they facilitate long term storage of task-relevant data. In Computer Vision, LSTMs have been used so far for image captioning [43] and action classification in videos [6].

Our ERD architecture extends prior work on LSTMs by augmenting the model with encoder and decoder networks. Omitting the encoder and decoder networks and instead using linear mappings between the input, recurrent state, and output caused severe underfitting on all three of our tasks. This can be explained by the complexity of the mocap and video input in comparison to the words or pen stroke 2D locations considered in prior work [9]. For example, word embeddings were not crucial for RNNs to do well in text generation or machine translation, and the standard one hot encoding vocabulary representation also showed excellent results [31].

3.1. Generating Motion Capture

Our goal is to predict the mocap vector in the next frame, given a mocap sequence so far. Since the output y_t has the same format as the input x_{t+1}, if we can predict x_{t+1}, we can “play” the motion forward in time to generate a novel mocap sequence by feeding the output at the preceding time step as the input to the current one.

Each mocap vector consists of a set of 3D body joint angles in a kinematic tree representation. We represent the orientation of each joint by an exponential map in the co-
ordinate frame of its parent, corresponding to 3 degrees of freedom per joint. The global position of the body in the x-y plane and the global orientation about the vertical z axis are predicted relative to the previous frame, since each clip has an arbitrary global position. This is similar to the approach taken in previous work [34]. We standardize our input by mean subtraction and division by the standard deviation along each dimension.

We consider both deterministic and probabilistic predictions. In the deterministic case, the decoder’s output y_t is a single mocap prediction. In this case, we train our model by minimizing the Euclidean loss between target and predicted body joint angles. In the probabilistic case, y_t parametrizes a Gaussian Mixture Model (GMM) distribution over mocap vectors in the next frame. We then minimize the negative log-likelihood:

$$
\mathcal{L}(x) = -\sum_{t=1}^{T} \log \Pr(x_{t+1} | y_T)
$$

We use GMMs with five mixtures components and diagonal covariances for simplicity. The variances are outputs of exponentials to ensure positivity, and the mixture component probabilities are outputs of a softmax layer, similar to [9].

We train our ERD model with stochastic gradient descent and backpropagation through time [50] with momentum and gradient clipping at 25, using the publicly available Caffe [15] deep learning package. For the GMM output parametrization, we pad the variances in each iteration by a fixed amount to ensure they do not collapse around the mixture means. Weights are initialized randomly. We experimented with initializing the encoder and decoder networks of the mocap ERD from the (first two layers of) encoder and (last two layers of) decoder of a) a ten layer autoencoder trained for dimensionality reduction of mocap vectors [10], b) a “skip” autoencoder trained to reconstruct the mocap vector in few frames in the future given the current one. In both cases, we did not observe improvement over random weight initialization.

We regularize our mocap ERD by providing noisy mocap vectors corrupted with zero mean Gaussian noise [42] and asking the model to predict the correct, uncorrupted mocap vector in the next frame. We found it valuable to progressively increase the noise standard deviation, learning from non-corrupted examples first. This corresponds to a type of curriculum learning. At test time, we can run the model forward by feeding the predictions as input to the following time step. Without this denoising procedure, this kind of synthesis method can suffer from drift and quickly fall into unnatural regions of the state space. The errors caused by this drift can accumulate, producing poses that the model has not seen during training and resulting in unnatural predictions. Denoising ensures that corrupted mocap data are shown to the network during training so that it learns to correct small amounts of drift and stay close to the manifold of natural poses.

3.2. Labeling and forecasting video pose

In the previous section, we described how the ERD model can be used to synthesize naturalistic human motion by training on motion capture datasets. In this section, we extend this model to identify human poses directly from pixels in a video. We consider a pose labeling task and a pose forecasting task. In the labeling task, given a bounding box sequence depicting a person, we want to estimate body joint locations for the current frame, given the sequence so far. In the forecasting task, we want to estimate body joint locations for a specific future time instance instead.

We represent K body joint locations as a set of $K \times N \times N$ heat maps over the person’s bounding box, that represent likelihood for each joint to appear in each of the N^2 grid locations, similar to [38]. Heat maps naturally incorporate uncertainty over body joint locations, as opposed to body joint pixel locations.

Figure 1(right) illustrates our ERD architecture for video pose labeling and forecasting. The encoder is a five layer convolutional network with architecture similar to Krizhevsky et al. [18]. Our decoder is a two layer network with fully connected layers interleaved with rectified linear unit layers. The output of the decoder is body joint heat maps over the person bounding box in the current frame for the labeling task, or body joint heat maps at a specified future time instance for the forecasting task.

We train both our pose labeler and forecaster ERDs under a Euclidean loss between estimated and target heat maps. We initialize the weights of the encoder from a six layer convolutional network trained for per frame body part detection, in which the final CONV6 layer corresponds to the body joint heat maps. Such weight initialization is crucial for performance, as shown in the experimental section.

Empirically, we found it valuable to input to the recurrent layer not the per frame estimated heat maps (CONV6), but rather the preceding CONV5 feature maps. These feature maps capture rich appearance information, rather than merely body joint likelihood maps. Rich feature representations assist the network in discriminating between different actions and pose dynamics without explicit switching across activity domains, as previous switching dynamical linear systems or HMMs [21].

We use two scale networks for our per frame pose detector and ERD: one where the output layer resolution is 6×6 and one that works on double image size and has output resolution of 12×12. The heat maps of the coarser scale are upsampled and added to the finer scale to provide the final combined 12×12 heat maps. Multiple scales have shown to be beneficial for static pose estimation in [38, 36, 37].
4. Experiments

We test our method on the H3.6M dataset of Ionescu et al. [13], which is currently the largest video pose dataset. It consists of 15 activity scenarios, performed by seven different professional actors and recorded from four static cameras. For each activity scenario, subject, and camera viewpoint, there are two video sequences, each between 3000 and 5000 frames. Each activity scenario features rich gestures, pose variations and interesting subactions performed by the actors. For example, the walking activity includes holding hands, carrying a heavy load, putting hands in the pockets, looking around etc. The activities are recorded using a Vicon motion capture system that tracks markers on actors’ body joints and provides high quality 3D body joint locations. 2D body joints locations are obtained by projecting the 3D positions onto the image plane using the known camera calibration and viewpoint. For all our experiments, we treat subject 5 as the test subject and all others as our training subjects.

Motion capture generation We compare our ERD mocap generator with Conditional Restricted Boltzmann Machines (CRBMs) of Taylor et al. [34], Gaussian Process Dynamic Model (GPDM) of Wang et al. [44] and a nearest neighbor N-gram model (NGRAM). For CRBM and GPDM, we used the code made publicly available by the authors. For the nearest neighbor N-gram model, we used a frame window of length $N = 6$ and Euclidean distance on 3D angles between the conditioning prefix and our training set, and copy-past the subsequent frames of the best matching training subsequence. We also compare with an obvious baseline of an LSTM recurrent neural network without nonlinear encoder and decoders. By searching over number of layers and number of hidden units per layer, we found 3 layer LSTM of 1000 LSTM units per layer (LSTM-3LR) to outperform 2 layer LSTMs or LSTMs with fewer hidden units. We used skip layer connections from the input to each recurrent layer, and from each recurrent layer to the output, same as in ERD. We applied denoising during training to regularize both the ERD and the LSTM-3LR. For all models, the mocap frame sequences were subsampled by two. ERD, LSTM-3LR and CRBM are trained on multiple activity scenarios (Walking, Eating and Smoking). GPDM is trained on Walking activity only, because its cubic complexity prohibits its training on a large number of sequences. Our comparison focuses on motion forecasting (prediction) and synthesis, conditioning on motion prefixes of our test subject. Mocap in-filling and denoising are nontrivial with our current model but developing this functionality is an interesting avenue for future work.

We show qualitative motion synthesis results in Figure 2 and quantitative motion prediction errors in Table 1. In Figure 2, the conditioning motion prefix from our test subject is shown in green and the generated motion is shown in blue.

![Figure 2. Motion completion. LSTM-3LR and CRBM provide smooth short-term motion completions (for up to 600ms), mimicking well novel styles of motion, (e.g., here, walking with upright back). However, ERD generates realistic motion for longer periods of time while LSTM-3LR soon converges to the mean pose and CRBM diverges to implausible motion. NGRAM has a non-smooth transition from conditioning to generation. Per frame GPDM mocap vectors look plausible, but their temporal evolution is far from realistic. For video results that much better convey the comparisons, please see the online motion completion video.](image-url)
man motion prevents a metric evaluation for longer temporal horizons, thus all comparisons in previous literature are qualitative. You can watch video comparisons here: online motion completion video. LSTM-3LR dominates the short-term motion generation, yet soon converges to the mean pose, as shown in Figure 2. CRBM also provides smooth short term motion completions, yet quickly drifts to unrealistic motions. ERD provides slightly less smooth completions, yet can generate realistic motion for long periods of time. N-gram model exhibits a sudden change of style during transitioning from the conditioning prefix to the first generated frame, and cannot generate anything outside of the training set. Due to low-dimensional embedding, GPDM cannot adequately handle the breadth of styles in the training data, and produces unrealistic temporal evolution.

The quantitative and qualitative motion generation results of ERD and LSTM-3LR suggest an interesting trade-off between smoothness of motion completion (interesting motion extrapolations) and stable long-term motion generation. Generating short-term motion that mimics the style of the test subject is possible with LSTM-3LR, yet, since the network has not encountered similar examples during training, it is unable to correctly generate motion for longer periods of time. In contrast, ERD gears the generated motion towards similarly moving training examples. ERD though cannot really extrapolate, but rather interpolate among the training subjects and provides much smoother motion completions than the N-gram nearest neighbor motion completion model. Both setups are interesting and useful in different applications, and in between architectures potentially lie somewhere between the two sides of that spectrum. Finally, it is surprising that LSTM-3LR outperforms CRBM given its simplicity during training and testing, not requiring inference over latent variables.

	80	160	240	320	400	480	560
ERD	0.89	1.39	1.93	2.38	2.76	3.09	3.41
LSTM-3LR	**0.41**	**0.67**	**1.15**	**1.50**	**1.78**	**2.02**	**2.26**
CRBM [34]	0.68	1.13	1.55	2.00	2.45	2.90	3.34
6GRAM	1.67	2.36	2.94	3.43	3.83	4.19	4.53
GPDM [44]	1.76	2.5	3.04	3.52	3.92	4.28	4.61

Table 1. Motion prediction error during 80, 160, 240, 320, 400, 480 and 560 msecs past the conditioning prefix for our test subject 5 during Walking activity. We show Euclidean norm of the 3D angle error averaged across 8 motion completion examples. LSTM-3LR is the most competitive model. For ERD, the smallest error was always produced by the most probable GMM sample, which was similar to the output of an ERD trained under a standard Euclidean loss. Quantitative evaluation for longer temporal horizons is not possible due to stochasticity of human motion.

Video pose labeling. Given a person bounding box sequence, we want to label 2D pixel locations of the person’s body joint locations. Both occluded and non-occluded body joints are required to be detected correctly: the occluder’s appearance often times contains useful information regarding the location of an occluded body joint [5]. Further, for transcribing 2D to 3D pose, all body joints are required [32].

We compare our ERD video labeller against two baselines: a per frame CNN pose detector (PF) used as the encoder part of our ERD model, and a dynamic programming approach over multiple body pose hypotheses per frame (VITERBI) similar in spirit to [20, 2]. For our VITERBI baseline, we consider for each body joint in each frame all possible grid locations and encode temporal smoothness as the negative exponential of the Euclidean distance between the locations of the same body joint across consecutive frames. The intuition behind VITERBI is that temporal smoothness will help rule out isolated, bad pose estimates, by promoting ones that have lower per frame scores, yet are more temporally coherent.

We evaluate our model and baselines by recording the highest scoring pixel location for each frame and body joint. We compute the percentage of detected joints within a tolerance radius of a circle centered at the ground-truth body joint locations, for various tolerance thresholds. We normalize the tolerance radii with the distance between left hip and right shoulder. This is the standard evaluation metric for static image pose labeling [25]. We show pose labeling performance curves in Figure 4. For a video comparison between ERD and the per frame CNN detector, please see online video labelling video.

Our ERD pose labeller outperforms by a margin both the per frame pose estimator (that has access to a single frame), as well as the non-learning based dynamic programming of [20, 2]. This shows the importance of discriminatively learning to integrate temporal information for body joint tracking, instead of employing generic motion smoothness priors. ERD’s performance boost stems from correcting left and right confusions of the per frame part detector, as Fig.

![Figure 3. Pretraining. Initialization of the CNN encoder with the weights of a body pose detector leads to a much better solution than random weight initialization. For motion generation, we did not observe this performance gap between pertaining and random initialization, potentially due to much shallower encoder and low dimensionality of the mocap data.](image-url)
Figure 4. Video pose labeling in H3.6M. Quantitative comparison of a per frame CNN body part detector of [38] (PF), dynamic programming for temporal coherence of the body pose sequence in the spirit of [20, 2] (VITERBI), and ERD video pose labeller. ERD outperforms the per frame detector as well as the dynamic programming baseline. While motion coherence proved important in the era of shallow and inaccurate per frame body pose detectors, it does not improve much upon our per frame multilayer CNN. Oracle curve shows the performance upper-bound imposed by our grid resolution of 12x12.

Figure 5. Left-right disambiguation. ERD corrects left-right confusions of the per frame CNN detector by aggregating appearance features (CONV5) across long temporal horizons.

Figure 6. Video pose labeling in FlicMotion. While the VITERBI baseline has similar performance as in H3.6M (marginally exceeding the per frame CNN detector), ERD does not succeed in learning effectively from the small set of 170 videos of about 50 frames each. Large training sets, such as those provided in H3.6M, are necessary for ERD video labelled to outperform generic motion smoothness priors.

Figure 7. Video pose forecasting. We predict 2D body joint locations at 400ms ahead of the current frame. Figure 6 shows pose prediction performance curves for our ERD model, a model that assumes zero object and camera motion (NoMotion-NM), and a model that assumes constant optical flow within the prediction horizon (OF). ERD carries out more accurate predictions than the zero order and first order motion baselines, as also shown qualitatively in Figure 8. Optical flow based motion models cannot make
Figure 6. Video pose forecasting. Quantitative comparison between the ERD model, a zero motion (NM), and constant velocity (OF) models. ERD outperforms the baselines for the lower body limbs, which are frequently occluded and thus their per frame motion is not frequently observed using optical flow.

Figure 8. Video pose forecasting 400ms in the future. Left: the prediction of the body part detector 400ms before superimosed on the frame to predict pose for (zero motion model). MiddleLeft: Predictions of the ERD. The body joints have been moved towards their correct location. MiddleRight: The current and 400ms ahead frame superimposed. Right: Ground-truth body joint location (discretized in a $N \times N$ heat map grid). In all cases we show the highest scoring heat map grid location.

reasonable predictions for occluded body joints, since their frame to frame displacements are not observed. Further, standard motion models suffer from separation of the observation model (part detector) and temporal aggregation, which ERD combines into a single network.

5. Conclusion

We have presented end-to-end discriminatively trained encoder-recurrent-decoder models for tracking and forecasting human kinematics in videos and motion capture. ERDs learn the representation for recurrent prediction or labeling, as well as its dynamics, by jointly training encoder recurrent and decoder networks. Such expressive models of human dynamics come at a cost of increased need for training examples. In future work, we plan to explore semi-supervised models in this direction, as well forecasting human dynamics in multi-person interaction scenarios.

Acknowledgements We gratefully acknowledge NVIDIA corporation for the donation of K40 GPUs for this research. This research was funded by ONR MURI N00014-10-1-0933.

References

[1] I. Akhter, T. Simon, S. Khan, I. Matthews, and Y. Sheikh. Bilinear spatiotemporal basis models. ACM Transactions on Graphics, 31, 2012. 2
[2] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse “m”-best solutions in markov random fields. In ECCV, 2012. 2, 6, 7
[3] M. Brand and A. Hertzmann. Style machines. SIGGRAPH, 2000. 2
[4] L. Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Handwritten digit recognition with a back-propagation network. In NIPS, 1990. 2
[5] C. Desai and D. Ramanan. Detecting actions, poses, and objects with relational phraselets. In ECCV, 2012. 6
[6] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. CoRR, 2014. 1, 3
[7] E. Fox, E. Sudderth, M. Jordan, and A. Willsky. Bayesian nonparametric methods for learning Markov switching processes. Signal Processing Magazine, IEEE, 27(6):43–54, 2010. 2
[8] H. Gong, J. Simy, M. Likhachev, and J. Shi. Multi-hypothesis motion planning for visual object tracking. In ICCV, 2011. 1
[9] A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013. 1, 2, 3, 4
[10] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural Networks. Science, 313(5786):504–507, July 2006. 4
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative density propagation for 3D human motion. In IJCV, 2014.

I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks. In ICML, 2011.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent neural network transformer. In NeurIPS, 2014.

Y. Jia. Caffe: An open source convolutional architecture for fast feature embedding. In CVPR, 2013.

S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget. Recurrent neural network based language modeling in meeting recognition. In INTERSPEECH, 2011.

H. S. Koppula and A. Saxena. Anticipating human activities for reactive robotic response. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, November 3-7, 2013, page 2071, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.

X. Lan and D. Huttonlocher. A unified spatio-temporal articulated model for tracking. In CVPR, volume 1, 2004.

D. Park and D. Ramanan. N-best maximal decoders for part models. In ICCV, pages 2627–2634, 2011.

V. Pavlovic, J. M. Rehg, and J. MacCormick. Learning switching linear models of human motion. In NIPS, 2000.

S. Pellegrini, A. Ess, K. Schindler, and L. J. V. Gool. You’ll never walk alone: Modeling social behavior for multi-target tracking. In ICCV, 2009.

M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: a baseline for generative models of natural videos. CoRR, abs/1412.6604, 2014.

P. Rodriguez, J. Wiles, and J. Elman. A recurrent neural network that learns to count. Connection Science, 1, 1999.

B. Sapp and B. Taskar. Modec:multimodal decomposable models for human pose estimation. In CVPR, 2013.

B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In CVPR, 2011.

L. Sigal, M. Isard, H. Haussecker, and M. J. Black. Loose-limbed people: Estimating 3D human pose and motion using non-parametric belief propagation. IJCV, 98, 2012.

C. Sminchisescu, A. Kanaujia, Z. Li, and D. Metaxas. Discriminative density propagation for 3D human motion estimation. In In CVPR, 2005.

I. Sutskever, G. E. Hinton, and G. W. Taylor. The recurrent temporal restricted boltzmann machine. In NIPS, 2008.

I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent neural networks. In ICML, 2011.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.