Dynamic Combined Economic Emission Dispatch Including Wind Generators by Real Coded Genetic Algorithm

Madhumita Kumari, Gautam Buddha University, India*
Kirti Pal, Gautam Buddha University, India

ABSTRACT

With the growing environmental depletion, the shift in the focus towards minimizing the emissions of gases released in the conventional generators and further incorporation of a cleaner alternate renewable source of energy such as wind or solar to the existing system is of utmost importance. The research paper aims to build an environmentally resilient electric power system. Real coded genetic algorithm powerful optimization technique is employed to solve the dynamic combined economic emission dispatch (i.e., DCEED) strategy for two proposed algorithms. The first proposed DCEED algorithm includes fuel cost of only conventional generators while in the second algorithm along with conventional generators, wind powered generators with varying power output characteristic are added. A comparative analysis of both the algorithms in terms of total combined cost, emission level, and fuel cost is taken into account, and it is observed that in spite of wind uncertainty, the proposed method is more economical.

KEYWORDS

Polynomial Mutation, Price Penalty Factor, SBX Crossover, Valve Point Loading, Wind Power Overestimation Cost, Wind Power Uncertainty, Wind Power Underestimation Cost

1. INTRODUCTION

The ever-increasing population, rapid expansion in economy, growing development and prosperity across the globe, has resulted humongous electricity consumption. Under such circumstances, electric power sector has hit various milestones in terms of advancement in order to cope up with the growing energy demand. But, contrary to the development, the reality of reliance on the traditional fossil fuel based electricity generation is still not completely eliminated. Fossil fuel includes—coal, natural gas, oil etc, and are primarily exhausstible in nature. The conventional system of electricity generation which depends upon these fossil fuels tends to release harmful gases such as carbon dioxide, NOx, SOx etc into the environment, causing serious environmental issues like climate change, air pollution, and further global warming which causes serious impacts on the lives of human and various other forms of life. A major portion of global carbon dioxide emission is contributed by the energy and power sectors (IEA, 2020). Such serious environmental detritions are a matter of utmost concern and
hence a balance between the rate of global development and environmental security has become an essential goal. In order to mitigate the environmental challenges, there is a huge call for the electric power industry to undergo a transition towards cleaner energy system with minimum or net zero carbon-dioxide emission along with the enhanced efficiency, reliability and higher degree of economy.

The classical Economic load dispatch (ELD) aims to allocate power outputs to the committed generator units with the objective of minimizing generation cost in compliance with all constraints of the network satisfied. However, to alleviate the environmental crisis and to make the entire system more resilient, incorporation of environmental factors to electric power system becomes crucial and thus the traditional economic load dispatch problem needs to be modified. The reshaping of the existing economic dispatch problem to match up with the environmental concerns in various forms has been a remarkable area of interest of many research studies (Sharifi et al., 2017) (Mustafa et al., 2018). Mandal et al., (2015) and Sayah et al. (2014) included the pollution level as constraint to the ELD problem, popularly known as ECED, emission constrained economic load dispatch. The objectives of minimizing the fuel cost as well as emission levels are conflicting in nature i.e. minimization of one leads to the, maximization of the other and thus inclusion of both the objectives leads to complexity (Edwin Selva Rex et al., 2019). So, in order to make an equity between fuel cost and emission level, some researchers such as Gherbi et al. (2016) and Ryu et al.(2020) proposed methods which simultaneously takes consideration of both cost of generation and environmental pollution termed as Combined economic emission dispatch (CEED) using price penalty factor. In CEED, the multi-objective optimization is converted into single objective optimization problem and hence reduces the complexity in handling multiple objectives. Modification of the existing dispatch strategy by these approaches resulted in various advantages, however, to make our system more resilient, newer approaches needs to be employed.

The recent trend of inclusion of renewable sources of energy to the traditional energy sector is promising considering today’s scenario to strengthen the environmental security. Renewable sources of energy being environment friendly, inexhaustible in nature, having lesser operation and maintenance cost proves to be an efficient alternative sources of electricity having high potential discussed by Nassar et al., (2019). Among various renewable energy sources, the wind energy and solar energy are vital sources of electricity. They are characterized to have many distinctive features like they are inexhaustible in nature, have low or zero fuel cost, and are zero emission releasing sources of electricity. And thus, the integration of these renewable into the traditional power sector can lead to various advantages including emission control, fuel saving, cost reduction etc (Jin et al., 2014)(Aghaei et al.,2013)(Chenghui et al., 2016) (Elattar, 2018)(Jadoun et., 2018)(Santillán-Lemus et al., 2019) (Chinnadurai et.,2020) (Tariq et al., 2020)

Researchers such as Roy et al., (2014) and Zhou et al., (2011) analyzed economic dispatch of composite power system including traditional fossil fuel and wind based power system. However, along with the various perks that these alternative sources of electricity offers, their integration into the power system encompasses major pitfalls such as high intermittency rate due to its dependence on the nature. To address the problem of uncertainty, various researchers have used different approaches to obtain realistic solutions with these sources. Reddy et al., (2015) considered variation of solar and wind power and evaluated best fit participation factors. Khan et al., (2015) used the solar photovoltaic cost model for incorporating solar photovoltaic into conventional system. Hu et al., (2017) have used wind power uncertainty cost model based on the unbalance between the actual wind power available and the scheduled wind power.

For solving the optimization problem, researchers have used wide range of optimization algorithms. Earlier approaches involved methods like lagrangian relaxation method, dynamic programming, gradient search method, and chance constrained programming. (Senthil et al., 2010) (Dieu et al., 2013) (Bhattacharya et al., 2014)(Cheng et al., 2015). But due to various drawbacks such as approximation used in these techniques and early convergence to local minima, these algorithms proved to be computationally inefficient. To have better solutions to the optimization problem,
algorithms such as differential evolution (Peng et al., 2012), genetic algorithm (Sahay et al., 2018) (Nadakuditi et al., 2019), artificial bee colony (He, et al., 2013) (Jadav et al., 2013), particle swarm optimization (Yao et al., 2012) (Gupta et al., 2020) (Mason et al., 2017) (Chen et al., 2019), gravitational search algorithm (Mondal et al., 2013) (Sarkar et al., 2018), and artificial neural networks has been used by various scholars.

This paper proposes, a short term 24 hr dynamic combined economic emission dispatch (DCEED) for generating units which is implemented via two approaches. The first approach proposes a DCEED model for only conventional generating units with valve point loading and various network constraints. In the second approach DCEED is applied on a composite generating system including both wind powered generators and the conventional generators. A 24 hr varying load demand has been taken for the dispatch with a time interval of 1 hour. The wind power cost model for addressing the uncertainty associated with the wind powered generators is used. A bio–inspired intelligent heuristic optimization algorithm –real coded genetic algorithm (RCGA) has been used for the solving the DCEED problem. In the proposed work a comparative analysis on the DCEED with only conventional generating units and DCEED including conventional and wind powered generators is done based on percentage of fuel saving, emission level reduction, total combined economic cost.

The rest of the paper is organized as: Section 2 deals with the mathematical problem formulation of DCCED for conventional generating units as well as including the wind powered generators. The optimization methodology RCGA and stepwise procedure for the implementation of RCGA for DCEED with conventional generating units as well as including wind powered generators is described in Section 3. Section 4 illustrates the analysis of result obtained through the implementation of RCGA on the test data. And finally Section 5 outlines the conclusion drawn.

2. PROBLEM FORMULATION

2.1. Mathematical Formulation for Dynamic Combined Economic Emission Problem (Only Conventional Generators)

2.1.1 Fuel Cost of Conventional Generators

The cost of operation of generators is predominately given by the fuel cost of the generators. The fuel cost of ith generator is approximated by a quadratic function of the active power output of the generators expressed as:

\[F_i(P_i) = a_i + b_i P_i + c_i P_i^2 \]

(1)

To have a practical interpretation of the fuel cost of generating units, the valve point effect needs to be included which arises due to the phenomena of sequential process of opening of valve in the multi-valve steam turbine and makes the cost curve non linear and non smooth. Hence, considering the valve point effect (Rahmat et al., 2014), the fuel cost of generators can be formulated as:

\[F_i(P_i) = a_i + b_i P_i + c_i P_i^2 + d_i \sin \left(e_i \left(P_i^{\text{min}} - P_i \right) \right) \]

(2)

\[FC = \sum_{i=1}^{n} F_i(P_i) \]

(3)
Where $F_i(P_i)$ denotes fuel cost function, P_i, P_i^{min} is the output power and minimum power capacity of i^{th} generating unit respectively. a_i, b_i, c_i are the cost coefficient, d_i, e_i are the coefficients of generating unit due valve point effects, FC is the total fuel cost of generating units in Rs/hr, and N_c is the total no. of conventional generators.

2.1.2 Emission Cost of Generating Units

The major emissions from conventional generating units are the oxides of sulphur, nitrogen and carbon. The sulphur oxide emission cost is expressed by a quadratic equation similar to the fuel cost function of generating units as it is proportional to the fuel consumed while nitrogen oxide emissions are described by linear and exponential equation. So, the overall cost associated with the emissions of generating units is formulated as the sum of quadratic and exponential terms expressed as:

$$E_i(P_i) = p_i + q_i P_i + r_i P_i^2 + \eta_i \exp(\delta_i * P_i)$$ \hspace{1cm} (4)

$$EC = \sum_{i=1}^{N_c} E_i(P_i)$$ \hspace{1cm} (5)

Where, $E_i(P_i)$ denotes the emission level from i^{th} generating unit, $p_i, q_i, r_i, \delta_i, \eta_i$ are the coefficients associated with the pollution level. EC is the total emission level released from generating units in kg/hr, and N_c is the total no. of conventional generators.

2.1.3 Dynamic Combined Emission Economic Dispatch (DCEED) Objective Function

Since, the fuel cost and the emission cost are incompatible in nature. The best approach towards obtaining a unbiased solution is by finding a pareto optimal solution. Hence, DCEED dynamic combined economic emission dispatch is adopted which deals with the allocation of output power to the committed generating units, aiming towards the minimisation of fuel cost and emission levels simultaneously over a time span in the scheduled horizon expressed as

\[\text{Min} \left(TC \right) = \sum_{t=1}^{T} f \left(FC, EC \right) \] \hspace{1cm} (6)

where, $TC =$ total cost of generation of generators, $FC=$total fuel cost of units, $EC=$total emission cost units, $T=$total time span in the scheduled horizon. To obtain the solution for the problem, dual objective function is converted into single objective function by inserting an equivalent price penalty factor (PPF) and a weight coefficient λ (Jiang et al., 2019). The range of variation of the weight coefficient is from 0 to 1. Therefore, the DCEED objective function is thus formulated as:

\[\text{Min} \left(TC \right) = \lambda * FC + (1 - \lambda) * PPF * EC \] \hspace{1cm} (7)

For finding the value of price penalty factor (PPF) for a particular load demand following steps is taken into account:

Step no.1: Firstly, the fuel cost and the emission level of each generating units are calculated at maximum power capacities i.e. $F_i(P_i^{\text{max}})$ and $E_i(P_i^{\text{max}})$.

Step no. 2: $F_i(P_i^{\text{max}})$ and $E_i(P_i^{\text{max}})$ is divided and h_i is obtained for all for each generating unit.

Step no.3: All h_i of generating units obtained in step ii are sorted in increasing order.
Step no.4: Maximum power capacity of generating units i.e. \(P_i^{\text{max}} \) is added one at a time according to the increasing order of \(h_i \) till the sum of \(P_i^{\text{max}} \) is greater than or equal to load demand.

Step no.5: The value of \(h_i \) associated with the generating unit in the process till the condition satisfies is the equivalent PPF for the particular load demand.

2.1.4 Constraints

i. Generator power capacity constraint:

The power output of each generating unit must lie between the maximum and minimum generating capacities:

\[
P_i^{\text{min}} \leq P_i \leq P_i^{\text{max}}
\]

(8)

Where, \(P_i^{\text{min}} \) and \(P_i^{\text{max}} \) represents the maximum and minimum generating capacity.

ii. Power balance constraint:

The total power generation must be equal to the sum of load demand and the total power loss. The total power loss is given by the transmission loss which is the function of output power of the generating units and loss coefficient.

\[
\sum_{i=1}^{N_i} P_i = P_D + P_L
\]

(9)

Where, \(P_i \), \(P_D \), \(P_L \) represents the output power of \(i^{th} \) generating unit, power demand and total power loss respectively. Using Kron’s reduction formula, \(P_L \) can be calculated as:

\[
P_L = \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} B_{ij} P_j + \sum_{i=1}^{N_i} B_{io} P_j + B_{oo}
\]

(10)

\(B_{ij}, B_{io}, B_{oo} \) are the loss coefficients.

2.2. Mathematical Formulation for Dynamic Combined Economic Emission Problem Including Wind Generating Systems

2.2.1 Wind Power Cost

Wind energy conversion system is a renewable source of energy with significant features such as there is no fuel cost associated with the wind conversion energy system, no harmful emission released into the environment and thus it is a clean energy source (Sumathi et al., 2015). However, while dealing with the wind power generating system, the main problem lies in its intermittent nature as it depends upon wind speed, wind direction, relative humidity, temperature etc which are highly variable in nature for a particular site and thus wind power output is also random in nature. To address the problem of wind power uncertainty for dispatch problem, penalty cost function associated wind power overestimation and underestimation is considered (Padhi, et al., 2020).

Total cost associated with wind powered generator comprises of three components:
i. Direct wind power cost.

It is fixed cost which any grid operator has to pay for taking wind power from a wind farm. This factor exists only if the wind farm is not owned by the grid operator.

Mathematically represented as,

\[C_d(w_i) = d_i w_i \]

Where, \(C_d(w_i) \) represents the direct wind power cost, \(d_i \) is direct cost coefficient of \(i^{th} \) wind power generating unit, \(w_i \) scheduled is the wind power of the \(i^{th} \) wind powered generating unit.

ii. Cost associated with overestimation of available wind power.

This wind power cost component is also known as reserve cost. If at a particular time interval the actual wind power output available of a particular wind powered generator is less than the scheduled wind power, then the overestimated wind power cost needs to accounted. To deal with this scenario, either power needs to be purchased from alternative power sources or load shedding to be exercised. The Cost associated with overestimation is expressed as:

\[C_{oe}(w_i) = K_{oe}(W_{av} - w_i) \]

Where, \(C_{oe}(w_i) \) represents the cost associated with overestimation of available wind power, \(K_{oe} \) is the overestimation cost coefficient, \(w_i \) scheduled is the wind power, \(W_{av} \) is the actual available wind power of \(i^{th} \) wind powered generating unit.

iii. Cost associated with underestimation of available wind power.

If at a particular time interval the actual wind power output available of a particular wind powered generator is more than the scheduled wind power, then the grid operator needs to pay a penalty cost for not utilising the actual wind power available mathematically expressed as:

\[C_{ue}(w_i) = K_{ue}(w_i - W_{av}) \]

where, \(C_{ue}(w_i) \) represents the cost associated with underestimation of available wind power, \(K_{ue} \) is the overestimation cost coefficient, \(w_i \) scheduled is the wind power, \(W_{av} \) is the actual available wind power of \(i^{th} \) wind powered generating unit.

This extra wind power generated is either wasted, or used in purposes like charging the batteries or selling to other deficit utilities.

2.2.2 Objective Function Formulation for DCEED Including Wind Powered Generating Units

If \(N_c \) and \(N_w \) is the total no. of conventional and total no. of wind powered generators respectively then total objective function for DCEED can be formulated as:

\[
\text{Min} \{TC\} = \lambda \left[s + fp + c \sin \left(\epsilon \left(P^n - P \right) \right) + \left(1 - \lambda \right) \left(PP + \epsilon P^n + \eta \exp \left(\lambda \cdot P \right) \right) + \sum_{i=1}^{N_c} d_i w_i + \sum_{i=1}^{N_w} K_{oe}(W_{av} - w_i) + \sum_{i=1}^{N_w} K_{ue}(w_i - W_{av}) \right]^{41}
\]

2.2.3 Constraints

i. Generator power capacity constraint:
The output power must lie between the maximum and minimum generating capacities of both type generators conventional as well as wind powered generators.

\[P_i^{\text{min}} \leq P_i \leq P_i^{\text{max}} \]
(15)

\[w_i^{\text{min}} \leq w_i \leq w_i^{r} \]
(16)

Where, \(P_i^{\text{min}} \) and \(P_i^{\text{max}} \) represents the maximum and minimum generating capacity of conventional generators, \(w_i^{\text{min}} \) and \(w_i^{\text{max}} \) represents the minimum and rated capacity of wind powered generators.

ii. Power balance constraints:

The total power generation (conventional plus wind power generation) must be equal to the sum of load demand and the total power loss given following expression:

\[\sum_{i=1}^{N_c} P_i + \sum_{i=1}^{N_w} w_i = P_D + P_L \]
(17)

Where, \(P_c, w_p, P_{Dp}, P_{Lp} \) represents the output power of \(i^{\text{th}} \) generating unit, \(i^{\text{th}} \) wind power generators, load demand and total power losss respectively.

3. OPTIMISATION METHODOLOGY

3.1. Real Coded Genetic Algorithm (RCGA)

Genetic algorithm (GA) is a modern heuristic intelligent optimisation computational technique which as the name suggests is inspired by the biological evolutionary concept of genetics. The basic ideology of GA is derived from Darwin’s theory of biological evolution through natural selection known as “Survival of the fittest”; according to which the fittest individuals survive better and dominate over the weaker ones or in other words the characteristics or variations in the genotype inherited from genes of parents which increases the organisms chance of survival i.e. have higher fitness, are preserved and is multiplied from the generations to generations and thus become dominant whereas the characteristics which have less survival factor becomes extinct and does not passed on to successive generations. It begins the search for the solution to the problem from a random population which is a set of potential solution (represented by a set of chromosome) to the optimisation problem and uses bio inspired operators like selection schemes, crossover mutation, and survivor operators to evolve from one generation to other and finally an optimal or near optimal population of solution is obtained. Easy programmability and faster computation of real coded genetic algorithm (RCGA) has made it supremely acceptable over binary coded genetic algorithm (BCGA) for real world problems having wider search space.

The basic steps of RCGA are as follows:

a. Initialisation of population:
 In the first step, an initial population of a particular population size \(N_p \) is created via the process of randomisation.

b. Evaluation of fitness value:
Here, the fitness of each decision variable in a population is found out through the fitness function which is the objective function of the optimisation.

c. Selection of parents for mating pool

After evaluation of fitness values of each individual, based on “survival of fittest” theory parents are to be selected for mating pool using suitable selection schemes. In the proposed work, tournament selection method is used.

d. Reproduction

In this step, parents selected in the mating pool are crossed and new population of offspring of size N_p is produced. In the proposed work via suitable crossover operators. Here, in this present work, simulated binary crossover (SBX) operator has been used.

Algorithm for SBX operator is described below:

Let P_1 and P_2 be the parents in the mating pool, and if O_1 and O_2 is the offspring generated, following steps are used for SBX operator.

i. In the first step, a random number u is to be generated between 0 to 1 for each decision variable.

ii. Distance between the offspring i.e. spread of the offspring is proportional to the spread of parents i.e.

$$O_1 - O_2 = \delta(P_1 - P_2)$$ (18)

iii. The value β_j is computed for the decision variable j through the following relations:

$$\beta_j = \begin{cases} \left(2u_j\right)^{1/(\eta_c+1)}, & \text{if } u_j \leq 0.5 \\ \frac{1}{2\left(1-u_j\right)} & \text{otherwise} \end{cases}$$ (19)

Where, η_c is the distribution index for crossover, whose value is non-negative.

iv. The offspring for each decision variable j is given by:

$$O_{1j} = 0.5\left[(1 + \beta_j)P_{1j} + (1 - \beta_j)P_{2j}\right]$$ (20)

$$O_{2j} = 0.5\left[(1 - \beta_j)P_{1j} + (1 + \beta_j)P_{2j}\right]$$ (21)

e. Mutation.

After the crossover operation is completed, each new individual undergoes mutation i.e. a random change is made to the values of some locations in the chromosomes to maintain the diversity.
Polynomial mutation has been used in the present work. In polynomial mutation, to create changes in the newly generated offspring near to the parents, a polynomial probability distribution is used (Deb, et al., 2014).

Algorithm for polynomial mutation operator is described below:

i. In the first step, a random number r is to be generated between 0 to 1 for each decision variable.

ii. η_m distribution index for mutation is to defined and then δ_j is calculated for each decision variable using the following equation:

\[
\delta_j = \begin{cases}
\left(2r\right)^{\frac{1}{\eta_m+1}}, & r < 0.5 \\
1-\left[2\left(1-r\right)\right]^{\frac{1}{\eta_m+1}}, & r \geq 0.5
\end{cases} \tag{22}
\]

iii. The mutated offspring thus obtained by:

\[
O_{\text{mutated}} = O_j + \left(ub_j - lb_j\right)\delta_j \tag{23}
\]

where ub, lb are upper and lower bounds for a particular decision variable j.

f. Combining and sorting:

The population of offspring and the parent population is combined, and the total size becomes $2N_p$ and the combined population are sorted in ascending order and the best fit solutions are taken out and is used as initial population for next generation.

g. Termination

The above steps from 2-6 are repeated till the termination criteria such as fixed no. of generation is reached, maximum iteration limits is reached or if no improvisation in the average fitness of solutions between consequent generations is observed.

h. Attainment of solution

After the termination condition satisfied the solutions in the last generation just before the termination conditions are met, is considered as the solutions to the problem.

3.2. Pseudo-Code

Input: Objective function $f(\text{TC})$, maximum and minimum limits of both type of generators, ($P_{i\text{min}}$ and $P_{i\text{max}}$, $w_{i\text{min}}$ and $w_{i\text{max}}$), population size (N_p), tournament size (p), crossover probability and mutation probability (p_c, p_m), distribution index for crossover and mutation (η_c, η_m), iteration count (iter), maximum iteration limit (iter_{max}), random number (u and r)

1. Initialise a random population (N_p)
2. Obtain fitness function value of N_p
3. for \(\text{iter} = 1 \) to \(\text{iter}_{\text{max}} \)

- selection of parents using tournament selection of tournament size, \(p \)
 for \(i = 1 \) to \(N_p/2 \)
 if \(u < p_c \)
 produce offspring using SBX-crossover.
 else
 Copy selected parents as offspring
 end
for \(i = 1 \) to \(N_p \)
 if \(r < p_m \)
 perform mutation using polynomial mutation at selected sites
 else
 No change in offspring
 end
end
evaluate fitness of newly generated offspring
combine and sort
end

3.3. Implementation

3.3.1. RCGA Applied to DCEED with Only Conventional Generators

Step no. 1: The input test data comprising of No. of conventional generators \(N_c \), fuel cost coefficients \((a_i, b_i, c_i, d_i, e_i) \) and emission cost coefficient \((p_i, q_i, r_i, \delta_i, \eta_i) \), \(P_i^{\text{min}} \) and \(P_i^{\text{max}} \) of each generating units, loss coefficients, and Power demand \(P_d \) is read.

Step no.2: Price penalty factor (PPF) for a particular load demand is evaluated for combining the fuel cost and emission level objectives.

Step no.3: RCGA parameters including population size \(N_p \), crossover probability \((p_c) \), mutation probability \((p_m) \), distribution index for crossover and mutation \((\eta_c, \eta_m) \), iteration count \((\text{iter}) \) is set.

Step no.4: The termination condition i.e. the maximum limit of iterations, \(\text{iter}_{\text{max}} \) is set.

Step no.5: A initial random population of \(N_p \) size is created.

Step no.6: Iteration count, \(\text{iter} = 1 \) is set.

Step no.7: Fitness of the population of \(N_p \) size is evaluated using the DCEED objective function.

Step no.8: Parents for the mating pool are selected through tournament selection and mating pool is formed.

Step no.9: A random no. \((u) \) is generated.

Step no.10: Condition \(u < p_c \) is checked, if the condition comes out to be true new offspring using SBX crossover operator using the selected parents is obtained otherwise the selected parents is copied as the offspring.

Step no. 11: The offspring produced using SBX crossover is bounded within the maximum and minimum power capacity limits.

Step no.11: A random no. \((r) \) is generated.

Step no. 10: Condition \(r < p_m \) is checked, if the condition comes out to be true, then new offspring is mutated using polynomial mutation operator, otherwise the no mutation is done.

Step no.11: Mutated off springs are bounded and evaluated for fitness.
Step no. 12: The parent population and the newly generated mutated offspring are combined and are sorted according to their decreasing fitness.

Step no. 13: The best fit individuals from the sorted list is taken out and used for successive iterations.

Step no. 14: Step no. 3 to step no. 13 are repeated till the maximum iteration limit is reached and the individuals at the last iteration before the termination conditions is met gives the solution for DCEED problem.

3.3.2. RCGA Applied to DCEED Including Wind Farm

Step no. 1: The input test data comprising of no. of conventional generators N_c, fuel cost coefficients $(a_i, b_i, c_i, d_i, e_i)$ and emission cost coefficient $(p_i, q_i, r_i, \delta_i, \eta_i) P_i^{\text{min}}$ and P_i^{max} loss coefficients of each conventional generating units and wind powered generators N_w overestimation, underestimation
and direct cost coefficients of wind generators, available wind generated power, maximum and minimum capacity of wind generators, power demand is read.

Step no.2: Combine objective function including conventional generating units with fuel cost and emission level function and wind power generator uncertainty cost model is framed along with the various constraints associated with the combined system are

Step no.3: Steps no.3 to step no. 14 in section 3.2 is repeated and optimal power allocation of DCCED including wind powered generators are obtained.

4. RESULT AND DISCUSSION

The computational methodology RCGA is applied to solve the dynamic combined economic emission dispatch for a 6 generating unit test system. The dispatching process of generating units for total duration of 24 hrs with a time span of 1 hr for a time varying load demand has been investigated. The figure 2 presents the load curve for 24 hrs. Results for the two cases has been obtained . The first case dealt with dispatch of only conventional generating units considering the combined fuel and emission cost, while the second case dealt with the inclusion of wind powered generators to the conventional generating system units. Available wind power for a entire dispatch period is used for the wind power cost model estimation. The most expensive conventional generator is replaced with the wind powered generator and optimal allocation of power among the composite system of generators is obtained. A comparison analysis for the two cases based on the percentage of fuel saving, reduction of emission levels and percentage saving of combined economic emission cost with the inclusion of wind powered generators is analyzed. The RCGA parameters are varied for obtaining the best solution for both the cases. The population size is varied from 20,50, 100,200, maximum iteration limit is varied from 100, 200, 300, 500, while a variation ranging from 0.5 -0.9 and 0.01-0.05 for crossover and mutation probability respectively is done for obtaining the best possible dispatch among the generating units with optimal cost, best convergence, and faster computation time. All the results are obtained using compact programming in MATLAB R2013.

4.1 Case 1 (Only Conventional Generating Units)

In this case, a conventional generating unit system is taken as the test case and dynamic economic emission dispatch of the conventional generating units is performed for variable load for 24 hrs. Effects caused due to valve –point loading is considered. For the analysis the data i.e. fuel cost coefficient, emission cost coefficient and transmission loss coefficients of a six conventional generating units is used (Liao, 2011). The combined fuel cost and emission dispatch for the generators are obtained through proper evaluation of penalty factor for each load in the 24 hr dispatch time duration. To have an equal dominance in optimizing the two non-compatible objectives of minimum fuel cost and emission cost simultaneously, the weight factor λ is taken as 0.5. Total of 30 trial runs of the proposed algorithm is done for each load in every time interval for 24 hrs with various combinations in RCGA parameters. Out of the trial runs, the best dispatch solution is taken as the DCEED solution for the particular load demand for a time interval. The converging plot for the total combined generation cost with only conventional generating units in the 9th time interval for the load demand 830 MW is shown in Figure3.

Crossover probability, mutation probability and population size of 0.85, 0.01 and 20 respectively is obtained as a result of tuning RCGA parameters for obtaining the best possible results for this time interval. The total fuel cost, the emission level in the 9th time interval comes out to be 58342 Rs/hr, 915.543 kg/hr respectively while the total combined economic emission cost is 5561408.131 Rs/hr. Table 1 presents the best dispatch solution for DCEED considering only conventional generating units for a time varying 24 hr load demand . Figure 4 shows the curve for the dispatched active power outputs of each generating units for the entire dispatch duration .The average fuel cost, emission level
and the total combined economic emission cost of conventional generating units for entire 24 hrs dispatch period comes out to be 52891.226 Rs/hr, 819.3036 kg/hr and 4253519 Rs/hr respectively.

4.2 Case 2 (Including Wind Powered Generators)

In this case, the most expensive conventional generating unit obtained for each hour in case 1 is replaced by wind powered generators. A wind farm consisting of 50 identical wind turbines each of 2 MW power capacity is considered, therefore making a total wind farm installed capacity as 100 MW. The maximum and minimum power capacity of the wind farm is 15 MW and 100MW. Figure 5 shows the available wind power output characteristics for 24 hrs. For simplicity, it is considered that the wind farm is owned by the grid operator; hence the direct cost coefficient is assumed to be 0. The coefficient associated with wind power uncertainty i.e. coefficient of underestimation and overestimation is taken to be 5 and 30 respectively. The data for load and conventional generator is same as in case 1 for this The converging plot for the total combined generation cost with conventional generating units and wind powered generating units in the 9th time interval for the load demand 830 MW is shown in Figure 6. In the 9th time interval the total fuel cost, emission level is found to be 48195 Rs/hr and 746.871 kg/hr respectively while the total combined cost obtained is 3612073.195Rs/hr. The crossover probability and the mutation probability of 0.7 and 0.01 respectively and the population
Table 1. DCEED of six conventional generating units for time varying load demand within 24 hrs

Time period (hr)	Load (MW)	Only conventional generating units (No wind)	Combined converging cost in (Rs/hr)	Total power generated in (MW)	PG1 (MW)	PG2 (MW)	PG3 (MW)	PG4 (MW)	PG5 (MW)	PG6 (MW)
1	425	Fuel cost in (Rs/hr)	31195	448	28	48	41	76	145	110
2	476	Emission level in (kg/hr)	34661.1	599.268	36	65	74	89	108	126
3	530	Combined converging cost in (Rs/hr)	44433	692.725	34	68	70	119	127	142
4	580	Total power generated in (MW)	45830	713.67	42	67	79	100	166	140
5	610	Fuel cost in (Rs/hr)	48485	800.885	30	79	88	120	130	166
6	665	Emission level in (kg/hr)	52709	819.455	70	82	89	132	195	155
7	735	Combined converging cost in (Rs/hr)	56992	889.276	80	94	166	179	137	132
8	756	Total power generated in (MW)	57350	895.113	80	97	187	166	130	146
9	830	Fuel cost in (Rs/hr)	58342	915.543	85	123	196	187	134	150
10	875	Emission level in (kg/hr)	58926	923.67	96	130	199	215	136	146
11	900	Combined converging cost in (Rs/hr)	61298.453	940.523	114	155	210	225	136	146
12	910	Total power generated in (MW)	62100.671	945.674	100	158	210	225	136	146
13	895	Fuel cost in (Rs/hr)	61023.753	937.663	98	155	210	225	136	146
14	850	Emission level in (kg/hr)	58789	915.988	91	127	197	225	133	150
15	770	Combined converging cost in (Rs/hr)	57776	902.543	82	105	187	182	137	132
16	730	Total power generated in (MW)	56618	845.234	72	95	155	200	145	120
17	690	Fuel cost in (Rs/hr)	53197	824.701	71	85	92	144	200	140
18	700	Emission level in (kg/hr)	54651	827.642	72	95	125	150	123	170
19	745	Combined converging cost in (Rs/hr)	56999	892.452	79	95	169	176	134	145
20	800	Total power generated in (MW)	58000	900.113	84	114	189	186	143	132
21	875	Fuel cost in (Rs/hr)	58926	923.67	94	130	199	215	136	155
22	890	Emission level in (kg/hr)	59011.457	937.22	95	110	190	220	150	140
23	500	Combined converging cost in (Rs/hr)	43358	632.175	52	59	68	80	110	166
24	460	Total power generated in (MW)	38718	556.795	50	40	67	80	122	144

Figure 4. Plot of dispatched active power outputs of each generating units for the entire dispatch duration.
size of 20 gave the best possible solution for DCEED for this time interval. Table 2 presents the best
dispatch solution for DCEED considering conventional generating units and wind generators. Figure
7 shows the curve for the dispatched active power outputs of each generating units for the entire
dispatch duration. The average fuel cost, emission level and the total combined economic emission
cost of conventional and wind powered generating units for entire 24 hrs dispatch period comes out
to be 44092.54173 Rs/hr, 637.7165 kg/hr and 2992536 Rs/hr respectively.
4.3 Comparison of Case 1 And Case 2

On comparing the two test cases it was observed that there was a significant reduction in cost of fuel, emission level, and total combined economic emission dispatch cost in case 2 in comparison in case 1. On an average, for over 24 hrs dispatch time period the fuel cost saving in test case 2 was 8798.6842688 Rs/hr (16.6354326%), reduction in emission level was 181.5871 kg/hr (22.1636%) and reduction in total combined economic emission cost was 1260983 Rs/hr (29.6456%). A saving of 17.39227% in fuel cost, 18.42317% in emission level and 33.8618% in the total combined economic emission cost was observed in the 9th time interval. Table 3 presents the reduction in cost of fuel, emission level, and total combined economic emission dispatch cost for each time period within 24 hrs dispatch duration. Figure 8, 10, 12 and shows the comparison of both the cases in terms of the total combined economic emission cost, total fuel cost and emission level for entire dispatch duration, while figure 9, 11, 13 shows the percentage of the saving in the combined economic emission cost, total

Table 2. DCEED including wind powered generators for time varying load demand within 24 hr

Time period (hr)	Available wind power	Fuel cost in (Rs/hr)	Emission level in (kg/hr)	Cost Associated with Wind	Combined converging cost in (Rs/hr)	Total power generated in (MW)	PG1 (MW)	PG2 (MW)	PG3 (MW)	PG4 (MW)	PG5 (MW)	PG6 (MW)
1	55	26500.8	369.4769	350	1374311.953	483	24	69	82	84	136	41
2	50	27691.80	523.627	475	1423684.936	436	46	81	60	105	160	31
3	65	37048	546.1718	425	1641376.774	623	49	66	111	144	82	94
4	48	37079	635.09	425	2332605.963	597	42	89	60	187	154	65
5	55	43222	733.1211	725	2478708.394	626	42	85	98	177	84	140
6	48	44616	745.5486	800	3094363.382	755	55	95	179	197	140	87
7	55	47957	807.2878	800	3293469.156	797	59	97	185	198	87	149
8	60	48166	821.562	675	3293469.156	942	124	143	220	222	100	133
9	32	48195	876.871	842	4381127.195	942	124	143	220	222	100	146
10	20	48932	859.67	850	3823986.853	898	97	159	215	223	54	150
11	40	49982	900.3612	942	4378119.504	942	124	143	220	222	100	133
12	50	51000	900.799	675	4646657.738	964	125	158	220	223	77	161
13	65	49135	889.643	962	4207724.276	925	112	162	217	225	100	146
14	72	48911	842.132	250	3786550.694	866	96	131	197	210	82	150
15	90	48110	795.344	150	3331484.139	798	56	115	186	210	147	84
16	100	47898	772.675	771	2912163.892	751	63	85	187	179	150	87
17	68	46615	765.891	710	2721419.106	700	59	95	135	179	165	77
18	68	47110	759.5611	150	2885921.247	713	57	97	178	210	52	119
19	60	47994	810.99	450	3133142.248	762	58	97	184	196	149	78
20	70	48176	822.342	100	3412606.156	800	82	123	186	212	145	74
21	20	48932	859.97	850	3823986.853	898	97	159	215	223	54	150
22	90	48976	872	850	3997990.053	936	110	160	200	220	146	100
23	80	33468	552.173	625	1564620.676	540	34	85	98	126	135	31
24	75	32506.4	431.8894	325	1378468.568	476	25	41	35	121	59	195
fuel cost and emission level duration, observed in case 2 for entire dispatch duration. The maximum saving in the fuel cost and emission level for the entire dispatch duration was found to be 22.8106% (in the 23rd time interval) and 35.014% (in the 3rd time interval) respectively while the maximum in the total combined economic emission cost was 34.779751%, occurred (in the 19th time interval).

Table 3. Percentage of saving with inclusion of wind powered generators

Time period (hr)	Most expensive generator obtained from case 2	Load (MW)	% of saving with wind generators		
			Fuel saving	Emission level reduction	Combined cost saving
1	G6	425	15.047	14.332	16.5499
2	G6	476	20.106	12.62203	26.152
3	G5	530	16.62053	21.156	30.67
4	G6	580	19.0944	11.431	14.7912
5	G5	610	10.8549	10.957	18.082
6	G6	665	15.354988	9.01899	25.886425
7	G6	735	15.8531	9.21965	25.48749
8	G5	756	16.3452	8.29266	32.5421
9	G5	830	17.39227	12.2556	33.8618
10	G5	875	16.960255	6.92888	30.06
11	G5	900	18.46123	5.4367	29.43976
12	G5	910	17.87532	4.2	26.488
13	G5	895	19.481179	5.12124	30.2528
14	G6	850	16.80246	8.06298	31.7585
15	G6	770	16.73	11.8774	33.8052
16	G6	730	15.22484	8.5865344	29.54388
17	G6	690	12.372878	9.32723	29.75864
18	G5	700	13.732594	8.22586	27.815539
19	G6	745	15.79852	9.12788	29
20	G6	800	16.93793	8.64013	34.7001
21	G5	875	16.960255	6.92888	30.06
22	G6	890	17.0059	7	33.285
23	G6	500	16.6205	24.677	29.4023
24	G5	460	16.0431	22.432	24.2823
Figure 8. Comparison of case 1 and case 2 in terms of total combined economic emission.

Figure 9. Percentage of saving of total combined cost in case 2.

Figure 10. Comparison of case 1 and case 2 in terms of total fuel cost.
5 CONCLUSION

The proposed work aimed to mitigate the problem associated with environmental degradation due to harmful emissions from conventional generation by two approaches. The first approach dealt with the modification of the existing dispatch strategy in which dynamic combined economic emission dispatch model was framed using suitable price penalty factors. In the second approach, to have a greater environmental security, the introduction of wind generator characteristics was added to the system.
The entire dispatch duration of 24 hrs was investigated taking consideration of wind uncertainty as well as load uncertainty in load. To deal with the uncertainty related to wind power availability, wind uncertainty cost model was used where the cost due to wind power uncertainty was addressed using various reserve cost and penalty cost coefficients.

To solve the combined optimisation of fuel cost and emission level in the problem an efficient optimization algorithm – real coded genetic algorithm (RCGA) was successfully implemented. Its ease in programming, multi-point searching feature makes it extraordinarily powerful. RCGA parameters such as crossover and mutation probability were carefully selected for the problem via sensitivity analysis test. Numerous trial runs were performed to obtain the best possible result with the greater optimality and faster convergence.

A comparative analysis of both the cases was done in terms of fuel cost saving, emission reduction and reduction in combined economic emission cost for each period of time. From the analysis, it can be concluded that inclusion of wind powered generators to the system can have excellent optimal impacts in terms of fuel saving, emission control as well as on the total combined cost of generation compared to existing conventional system.
REFERENCES

Aghaei, J., Niknam, T., Azizipanah-Abarghoee, R., & Arroyo, J. M. (2013). Scenario-based dynamic economic emission dispatch considering load and wind power uncertainties. *International Journal of Electrical Power & Energy Systems*, 47, 351–367. doi:10.1016/j.jepes.2012.10.069

Bhattacharya, R., & Panigrahi, C. K. (2014). Dynamic economic load dispatch using classical and soft computing techniques. *2014 International Conference on Green Computing Communication and Electrical Engineering (ICGCCEE)*. doi:10.1109/ICGCCEE.2014.6921409

Chen, K., Han, L., Wang, S., Lu, J., & Shi, L. (2019). Modified Antipredatory Particle Swarm Optimization for Dynamic Economic Dispatch with Wind Power. *Mathematical Problems in Engineering*, 2019, 1–17. doi:10.1155/2019/5831362

Cheng, W., & Zhang, H. (2015). A Dynamic Economic Dispatch Model Incorporating Wind Power Based on Chance Constrained Programming. *Energies*, 8(1), 233–256. doi:10.3390/en8010233

Chenghui, T., Xu, J., Sun, Y., Ting, C., Haiyan, J., Bao, W., Yibo, J., & Yi, B. (2016). Real-time dynamic economic load dispatch with wind power participation. *IEEE Power and Energy Society General Meeting (PESGM)*, 1–5. doi:10.1109/PESGM.2016.7741283

Chinnadurrai, C., Victoire, T., & Aruldoss, A. (2020). Dynamic Economic Emission Dispatch Considering Wind Uncertainty Using Non-Dominated Sorting Crisscross Optimization. *IEEE Access*, 8, 94678–94696. doi:10.1109/ACCESS.2020.2995213

Deb, K., & Deb, . (2014). Analysing mutation schemes for real-parameter genetic algorithms. *International Journal of Artificial Intelligence and Soft Computing*, 4(1), 1–28. doi:10.1504/IJAISC.2014.059280

Dieu, V. N., & Schegner, P. (2013). Augmented Lagrange Hopfield network initialized by quadratic programming for economic dispatch with piecewise quadratic cost functions and prohibited zones. *Applied Soft Computing*, 13(1), 292–301. doi:10.1016/j.asoc.2012.08.026

Edwin Selva Rex, C. R., Marsaline Beno, M., & Annrose, J. (2019). A Solution for Combined Economic and Emission Dispatch Problem using Hybrid Optimization Techniques. *Journal of Electrical Engineering & Technology*. Advance online publication. doi:10.1007/s42835-019-00192-z

Elattar, E. E. (2018). Modified harmony search algorithm for combined economic emission dispatch of microgrid incorporating renewable sources. *Energy*. 10.1016/j.energy.2018.06.137

Gherbi, Y.A., Bouzeboudja, H., & Gherbi, F.Z. (2016). The combined economic environmental dispatch using new hybrid metaheuristic. *Energy*, 115, 468–477. doi:10.1016/j.energy.2016.08.079

Gupta, G. K., Goyal, S., & Yadav, I. (2020). A comparative study of Dynamic Economic Load Dispatch (DELD) problem using PSO and IPSO for 24 hours Load Patterns. *2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and Its Control (PARC)*. doi:10.1109/PARC49193.2020.236590

He, X., & Wang, G. X. (2013). Artificial Bee Colony Algorithm to Solve Dynamic Economic Dispatch Considering Wind Power Penetration. *Applied Mechanics and Materials*, 416–417, 2092–2096. doi:10.4028/www.scientific.net/AMM.416-417.2092

Hu, F., Hughes, K. J., Ma, L., & Pourkashanian, M. (2017). Combined economic and emission dispatch considering conventional and wind power generating units. *International Transactions on Electrical Energy Systems*. 10.1002/etep.2424

IEA. (2020). *Energy Technology Perspectives*. IEA. https://www.iea.org/reports/energy-technology-perspectives-2020

Jadav, H. T., & Roy, R. (2014). Gbest guided artificial bee colony algorithm for environmental/economic dispatch considering wind power. *Expert Systems with Applications*, 40(16), 6385–6399. doi:10.1016/j.eswa.2013.05.048

Jadoun, V. K., Pandey, V., Gupta, N., Niazi, K. R., & Swarnkar, A. (2018). Integration of renewable energy sources in dynamic economic load dispatch problem using an improved fireworks algorithm. *IET Renewable Power Generation*, 12(9), 1004–1011. doi:10.1049/iet-rpg.2017.0744
Jiang, S., Zhang, C., Wu, W., & Chen, S. (2019). Combined Economic and Emission Dispatch Problem of Wind-Thermal Power System Using Gravitational Particle Swarm Optimization Algorithm. *Mathematical Problems in Engineering*, 2019, 1–19. doi:10.1155/2019/5679361

Jin, J., Zhou, D., Zhou, P., & Miao, Z. (2014). Environmental/economic power dispatch with wind power. *Renewable Energy*, 71, 234–242. doi:10.1016/j.renene.2014.05.045

Khan, N. A., Awan, A. B., Mahmood, A., Razzaq, S., Zafar, A., & Sidhu, G. A. S. (2015). Combined emission economic dispatch of power system including solar photo voltaic generation. *Energy Conversion and Management*, 92, 82–91. doi:10.1016/j.enconman.2014.12.029

Liao, G. C. (2011). A novel evolutionary algorithm for dynamic economic dispatch with energy saving and emission reduction in power system integrated wind power. *Energy*, 36(2), 1018–1029. doi:10.1016/j.energy.2010.12.006

Liu, X., Xu, W., & Huang, C. (2010). Economic load dispatch with stochastic wind power: Model and solutions. *IEEE PES T&D*, 1-7. doi:10.1109/TDC.2010.5484550

Mandal, K.K., Mandal, S., Bhattacharya, B., & Chakraborty, N. (2015). Non-convex emission constrained economic dispatch using a new self-adaptive particle swarm optimization technique. *Applied Soft Computing*, 28, 188–195. doi:10.1016/j.asoc.2014.11.033

Mason, K., Duggan, J., & Howley, E. (2017). Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants. *Neurocomputing*, 188–197. Advance online publication. doi:10.1016/j.neucom.2017.03.086

Mondal, S., Bhattacharya, A., & nee Dey, S. H. (2013). Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration. *International Journal of Electrical Power & Energy Systems*, 44(1), 282–292. doi:10.1016/j.ijepes.2012.06.049

Mustafa, N., & Vennila, H. (2018). A meta-heuristic, moth inspired algorithm for combined economic and environmental power dispatch. *International Journal of Enterprise Network Management*, 9(1), 47. doi:10.1504/IJENM.2018.092060

Nadakuditi, G., Mohan Rao, U., Bathina, V., & Pandi, S. (2018). Economic Load Dispatch in Microgrids Using Real-Coded Genetic Algorithm. *Advances in Intelligent System and Computing*, 377, 377-366. doi:10.1007/978-981-13-0514-6_38

Nassar, I. A., Hossam, K., & Abdella, M. M. (2019). Economic and environmental benefits of increasing the renewable energy sources in the power system. *Energy Reports*, 5, 1082–1088. v10.1016/j.egyr.2019.08.006

Padhi, S., Panigrahi, B. P., & Dash, D. (2020). *Solving Dynamic Economic Emission Dispatch Problem with Uncertainty of Wind and Load Using Whale Optimization Algorithm*. Journal of The Institution of Engineers. Series B. doi:10.1007/s40031-020-00435-y

Peng, C., Sun, H., Guo, J., & Liu, G. (2012). Dynamic economic dispatch for wind-thermal power system using a novel bipopulation chaotic differential evolution algorithm. *International Journal of Electrical Power & Energy Systems*, 42(1), 119–126. doi:10.1016/j.ijepes.2012.03.012

Rahmat, N. A., Musirin, I., Abidin, A. F., & Ahmad, M. R. (2014). Economic load dispatch with valve-point loading effect by using Differential Evolution Immunized Ant Colony optimization technique. *Australasian Universities Power Engineering Conference (AUPEC)*, 1-6. doi:10.1109/AUPEC.2014.6966560

Reddy, S., & Bijwe, P.R. (2015). Real time economic dispatch considering renewable energy resources. *Renewable Energy*, 83, 1215–1226. doi:10.1016/j.renene.2015.06.011

Roy, P. K., & Hazra, S. (2014). Economic emission dispatch for wind-fossil-fuel-based power system using chemical reaction optimisation. *International Transactions on Electrical Energy Systems.*, 25(12), 3248–3274. doi:10.1002/etep.2033
Ryu, H.-S., & Kim, M.-K. (2020). Combined Economic Emission Dispatch with Environment-Based Demand Response Using WU-ABC Algorithm. *Energies, 13*(23), 6450. 10.3390/en13236450

Sahay, K. B., Sonkar, A., & Kumar, A. (2018). Economic Load Dispatch Using Genetic Algorithm Optimization Technique. *International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE)*, 1-5. doi:10.23919/ICUE-GESD.2018.8635729

Santillán-Lemus, F. D., Minor-Popocatl, H., Aguilar-Mejía, O., & Tapia-Olvera, R. (2019). Optimal Economic Dispatch in Microgrids with Renewable Energy Sources. *Energies, 12*(1), 181. 10.3390/en12010181

Sarker, K., Roy, B., Sarker, J., & Santra, D. (2018). A solution procedure to the economic load dispatch problem through the gravitational search technique. *International Journal of Engineering, Science and Technology, 11*(1), 10. 10.4314/ijest.v11i1.2

Sayah, S., Hamouda, A., & Bekrar, A. (2014). Efficient hybrid optimization approach for emission constrained economic dispatch with nonsmooth cost curves. *International Journal of Electrical Power & Energy Systems, 56*, 127–139. 10.1016/j.ijepes.2013.11.001

Senthil, K., & Manikandana, K. (2010). Economic thermal power dispatch with emission constraint and valve point effect loading using improved tabu search algorithm. *International Journal of Computers and Applications, 3*(9), 6–11. doi:10.5120/770-1080

Sharifi, S., Sedaghat, M., Farhadi, P., Ghadimi, N., & Taheri, B. (2017). Environmental economic dispatch using improved artificial bee colony algorithm. *Evolving Systems, 8*(3), 233–242. doi:10.1007/s12530-017-9189-5

Sumathi, S., Ashok Kumar, L., & Surekha, P. (2015). Wind Energy Conversion Systems. *Green Energy and Technology, 247*-307. 10.1007/978-3-319-14941-7_4

Tariq, F., Alelyani, S., Abbas, G., Qahmash, A., & Hussain, M. R. (2020). Solving Renewables-Integrated Economic Load Dispatch Problem by Variant of Metaheuristic Bat-Inspired Algorithm. *Energies, 13*(23), 6225. 10.3390/en13236225

Yao, F., Dong, Z.Y., Meng, K., Xu, Z., Iu, H. H-C., & Wong, K.P. (2012). Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia. *IEEE Transactions on Industrial Informatics, 8*(4), 880–888. 10.1109/TII.2012.2210431

Zhou, W., Peng, Y., & Sun, H. (2010). Optimal wind-thermal coordination dispatch based on risk reserve constraints. *European Transactions on Electrical Power, 21*(1), 740–756. 10.1002/etep.474