Chronic Anticoagulation is not Associated with a Reduced Risk of Acute Kidney Injury in Hospitalised Covid-19 Patients

Kathrine Parker (kathrine.parker@postgrad.manchester.ac.uk)
University of Manchester

Patrick Hamilton
Manchester Royal Infirmary

Prasanna Hanumapura
Manchester Royal Infirmary

Laveena Castelino
Manchester Royal Infirmary

Michelle Murphy
Manchester Royal Infirmary

Rachael Challiner
Manchester Royal Infirmary

Jecko Thachil
Manchester Royal Infirmary

Leonard Ebah
Manchester Royal Infirmary

Research Article

Keywords: Acute kidney injury, acute renal failure, COVID-19, anticoagulation, renal replacement therapy, SARS-CoV2

DOI: https://doi.org/10.21203/rs.3.rs-135198/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Coronavirus-19 (COVID-19) has been declared a global pandemic by the World Health Organisation. Severe disease typically presents with respiratory failure but Acute Kidney Injury (AKI) and a hypercoagulable state can also occur. Early reports suggest that thrombosis may be linked with AKI. We studied the development of AKI and outcomes of patients with COVID-19 taking chronic anticoagulation therapy.

Methods

Electronic records were reviewed for all adult patients admitted to Manchester University Foundation Trust Hospitals between March 10 and April 30 2020 with a diagnosis of COVID-19. Patients with end-stage kidney disease were excluded. AKI was classified as per KDIGO criteria.

Results

Of the 1032 patients with COVID-19 studied,164 (15.9%) were taking anticoagulant therapy prior to admission. There were similar rates of AKI between those on anticoagulants and those not anticoagulated (23.8% versus 19.7%) with no difference in the severity of AKI or requirement of renal replacement therapy between groups (1.2% versus 3.5%). Risk factors for AKI included hypertension, pre-existing renal disease and male sex. There was a higher mortality in those taking anticoagulant therapy (40.2% versus 30%). Patients taking anticoagulants were less likely to be admitted to the Intensive Care Unit (8.5% versus 17.4%) and to receive mechanical ventilation (42.9% versus 78.1%).

Conclusions

Patients on chronic anticoagulant therapy did not have a reduced incidence or severity of AKI suggesting that AKI is unlikely to be thrombotic in nature. Therapeutic anticoagulation is currently still under investigation in randomised controlled studies to determine whether it has a potential role in COVID-19 treatment.

Background

The World Health Organisation (WHO) declared the novel coronavirus 19 disease (COVID-19) a global pandemic in March 2020 [1]. The majority of patients with COVID-19 suffer mild symptoms and do not require hospital admission. More severe disease typically presents with dyspnoea and acute respiratory failure. In addition to respiratory issues, severe COVID-19 has been linked to cardiovascular complications such as myocardial infarction and acute stroke as well as acute kidney injury (AKI) [2, 3]. A hypercoagulable state is characteristic of severe COVID-19, with marked elevations of fibrinogen, factor VIII, and D-dimer [4, 5], and high rates of venous thromboembolism (including pulmonary embolism). Patients critically ill due to COVID-19 have been reported to have thrombotic event rates in the range of 20–30% in studies from the Netherlands, Italy and France, despite the use of venous thromboembolism (VTE) prophylaxis [6, 7, 8]. These are somewhat higher than seen in non-COVID critically ill patients where VTE rates are reported around 6% despite prophylaxis [7, 9]. The thrombotic process has been suggested to start prior to hospitalization, with Lodigiani et al identifying 50% of VTE events within 24 hours of admission [8].

Although original reports from Wuhan suggested rates of AKI were relatively low at around 5% [10] further analyses showed much higher rates of AKI associated with severe COVID-19, reported in 40–75% of intensive care unit (ICU) patients in Europe and the USA [11, 12, 13]. AKI is also considered a negative prognostic factor for survival [10, 14, 15]. Multiple mechanisms have been proposed for AKI including ischaemic acute tubular necrosis secondary to vascular collapse, endothelial damage, casts secondary to rhabdomyolysis and coagulopathy [16, 17, 18]. Post-mortem studies from Wuhan support renovascular thrombosis as a potential cause of AKI [19].

If AKI is related to COVID-19 thrombosis and the thrombotic process has begun prior to hospitalisation it may be conceived that patients on chronic anticoagulant therapy would have a reduced risk of developing AKI. With AKI associated with both poorer survival and ICU requirement for renal replacement therapy (RRT) [10, 11, 12, 17] chronic anticoagulation may also provide additional benefits. This study identified all COVID-19 positive patients admitted to Manchester University NHS Foundation trust, one of the
largest hospitals trusts in the North West of England, who were receiving anticoagulant therapy at least 1 month prior to admission to identify the incidence and severity of AKI.

Methods

This study is a retrospective review of all hospital admissions with laboratory confirmed COVID-19 across a large NHS trust from 1st March 2020 to 30th April 2020 inclusive. All adult patients admitted to Manchester University NHS Foundation trust, aged > 18 years, were included if they had a positive polymerase chain reaction test of the nasopharyngeal or lower respiratory tract for COVID-19. All day cases and known haemodialysis patients were excluded.

The setting for this study was in the leading provider of tertiary and specialist healthcare services in Greater Manchester, Manchester University NHS Foundation Trust (MFT) Hospitals. It comprises ten hospitals/managed clinical services across six separate sites, providing a wide range of services from comprehensive local general hospital care through to highly specialised regional and national services.

Electronic hospital records were used to collect demographic and co-morbidity data. Patients were followed up for 30 days following COVID-19 diagnosis. Anticoagulant status on admission was determined using hospital records including letters, discharge summaries and General Practitioner (GP) records. Patients were included if they had been taking the anticoagulant for more than 1 month and this was confirmed manually with medication issues.

Serum creatinine values were used to identify AKI defined according to Kidney Disease Improving Global Outcomes (KDIGO)-15 criteria as follows: stage 1—increase in serum creatinine by 26.5micromol/L within 48 hours or a 1.5 to 1.9 times increase in serum creatinine from baseline within 7 days; stage 2—2.9 times increase in serum creatinine within 7 days; stage 3—3 times or more increase in serum creatinine within seven days or initiation of RRT. Although an electronic AKI detection and alerting system has already been in place within the trust since March 2016 (Think Kidneys/NPSA Safety Alert NHS/PSA/RE/2016/007), manual confirmation of each AKI case was still carried out, to ensure a valid baseline creatinine result was utilised. All in-patients who had AKI from seven days prior to COVID positive date and any date after the positive result date were included. Any patients who had developed AKI and recovered seven days prior to the COVID positive date were excluded. Urine output criteria to define AKI were not utilised due to documentation being unreliable. Patientrack™ by Alcidion is an electronic clinical observation system which is used to collect the observations at the bedside of patients across MFT. Observation data (temperature, blood pressure, mean arterial pressure (MAP), respiratory rate, oxygen saturations and early warning score (EWS)) for the patient cohort was collected and the set of observations closest to the COVID-19 positive date was considered.

Primary outcome

The primary outcome was incidence of AKI in patients receiving chronic anticoagulant therapy anticoagulated versus those not anticoagulated prior to admission.

Other information collected included information on mortality, admission to critical care and requirement of mechanical ventilation.

Statistical Analysis

Categorical variables presented as number and percentage. Normality assessed using Shapiro-Wilk normality test and non-parametric continuous variables presented throughout as median and interquartile range. Logistic regression used to assess factors predicting the development of AKI. Multivariable model adjusted for demographics and parameters showing significance at univariable analysis. A p-value less than 0.05 was considered statistically significant. All analysis carried out using R version 3.6.122.

Results

Demographics

From March 1, 2020 to April 30, 2020, a total of 11,721 patients were admitted to MFT hospitals with 1166 of these having a diagnosis of COVID-19. After excluding the 35 dialysis patients and 99 day cases, there were a total of 1032 COVID-19 positive
patients included in the analysis. Of these there were 164 patients (15.9%) taking anticoagulants for a minimum of 1 month prior to admission. Overall the anticoagulated patients were significantly older 80 versus 68 years \((p < 0.001) \), had a higher Charlson Comorbidity Index (CCI) 2 versus 1 \((p < 0.001) \) and were more likely to have hypertension (HTN) \((p = 0.042) \), renal impairment \((p = 0.009) \), cancer \((p = 0.004) \) and heart failure \((p < 0.001) \) (Table 1). Patients taking anticoagulants were more likely to be of white race, 139 (84.8%) versus 586 (67.6%) of those not anticoagulated \((p < 0.001) \).
Overall	Anticoagulation
N	1032
	868
	164
Age	71 (56–83)
	68 (54–82)
	80 (70–85)
	< 0.001
Sex	Male
	569 (55.1)
	485 (55.9)
	84 (51.2)
	0.311
Ethnicity	White
	725 (70.3)
	586 (67.6)
	139 (84.8)
	< 0.001
	Asian
	116 (11.3)
	106 (12.2)
	10 (6.1)
	Black
	94 (9.1)
	88 (10.1)
	6 (3.7)
	Mixed
	14 (1.4)
	14 (1.6)
	0 (0.0)
	Other
	28 (2.7)
	28 (3.2)
	0 (0.0)
	Unknown
	54 (5.2)
	45 (5.2)
	9 (5.5)
CCI Score	1 (0–2)
	1 (0–2)
	2 (1–3)
	< 0.001
Myocardial Infarction	83 (8.9)
	61 (7.8)
	22 (14.3)
	0.015
Congestive Heart Failure	129 (13.8)
	77 (9.9)
	52 (33.8)
	< 0.001
Peripheral Vascular Disease	64 (6.9)
	50 (6.4)
	14 (9.1)
	0.304
Cerebrovascular disease	45 (4.8)
	38 (4.9)
	7 (4.5)
	1.000
Dementia	157 (16.8)
	128 (16.4)
	29 (18.8)
	0.538
COPD	259 (27.7)
	212 (27.2)
	47 (30.5)
	0.455
Rheumatoid Disease	23 (2.5)
	16 (2.1)
	7 (4.5)
	0.123
Peptic Ulcer Disease	9 (1.0)
	8 (1.0)
	1 (0.6)
	1.000
Mild Liver Disease	30 (3.2)
	30 (3.8)
	0 (0.0)
	0.026
Diabetes without complications	237 (25.4)
	191 (24.5)
	46 (29.9)
	0.193
Diabetes with complications	36 (3.9)
	29 (3.7)
	7 (4.5)
	0.796
Hemi or Paraplegia	17 (1.8)
	12 (1.5)
	5 (3.2)
	0.263
Renal Disease	144 (15.4)
	109 (14.0)
	35 (22.7)
	0.009
Mod/Severe Liver Disease	12 (1.3)
	12 (1.5)
	0 (0.0)
	0.247
Cancer	72 (7.7)
	51 (6.5)
	21 (13.6)
	0.004
Metastatic cancer	24 (2.6)
	14 (1.8)
	10 (6.5)
	0.002
AIDS	1 (0.1)
	1 (0.1)
	0 (0.0)
	1.000
Hypertension	457 (44.3)
	372 (42.9)
	85 (51.8)
	0.042

Anticoagulant therapy

The most common anticoagulant therapy was the Direct Acting Oral Anticoagulants (DOACs), accounting for 115 (70.1%) prescriptions. Atrial fibrillation (AF) was the most frequent indication in 119 patients (72.5%), Table 2. For those taking Vitamin K antagonists (VKAs), the mean International normalised ratio (INR) on admission was 4.0 (SD 3.21). All patients admitted to the ICU
on anticoagulants were switched to low molecular weight heparin (LMWH) therapy. At discharge, five patients previously on warfarin were switched to either a DOAC or LMWH.

Anticoagulant (%)	DOAC	115 (70.1)
VKA	44	(26.8)
LMWH	3	(1.8)
Fondaparinux	2	(1.2)

Table 2
– Anticoagulant on admission and indication. VKA- vitamin K antagonist, DOAC- Direct acting oral anticoagulant, LMWH- Low molecular weight heparin, AF- Atrial Fibrillation, VTE- venous thromboembolism, LV – left ventricular

Acute kidney injury

AKI was seen in 39 patients (23.8%) who were on anticoagulation which was higher than those not taking anticoagulants 171 (19.7%) but this difference was not statistically significant (p = 0.278), Table 3. There was no difference in severity of AKI between the groups with a similar proportion of those who developed AKI experiencing stage 3 AKI; 19 (48.7%) of those on anticoagulation and 73 (42.7%) of those not (p = 0.783). 46% of patients on anticoagulants had AKI on admission as did 52% of those not anticoagulated. The median time to development of AKI from COVID positive PCR result was 0 days (IQR 5) in the anticoagulated group and ~ 1 days (IQR 2) in the non-anticoagulated cohort. Renal replacement therapy requirement was not different between groups with 2 (1.2%) patients on anticoagulants versus 30 (3.5%) (p = 0.204).
Table 3
Outcomes of all patients and stratified for those who were taking anticoagulation or not anticoagulated. Values reported as n (%) or median (IQR). RRT = renal replacement therapy

	Overall	No	Yes	p-value	
N	1032	868	164		
Died (%)	326 (31.6)	260 (30.0)	66 (40.2)	0.012	
30-day mortality (%)	278 (26.9)	221 (25.5)	57 (34.8)	0.018	
Readmit within 30 days (%)	86 (8.3)	69 (7.9)	17 (10.4)	0.383	
Acute Kidney Injury (AKI)	210 (20.3)	171 (19.7)	39 (23.8)	0.278	
Time to AKI from admission, days	0 (4)	0 (4)	1 (4)	0.966	
Time to AKI from COVID diagnosis, days	-1 (3)	-1 (2)	0 (5)	0.977	
Initial AKI stage	1	123 (58.6)	99 (57.9)	24 (61.5)	0.380
	2	37 (17.6)	33 (19.3)	4 (10.3)	
	3	50 (23.8)	39 (22.8)	11 (28.2)	
Peak AKI stage	1	75 (35.7)	62 (36.3)	13 (33.3)	0.783
	2	43 (20.5)	36 (21.1)	7 (17.9)	
	3	92 (43.8)	73 (42.7)	19 (48.7)	
Peak	*Urea*	8.30 (5.40–13.70)	8.10 (5.27–13.40)	9.30 (6.80–15.53)	0.002
	Creatinine	91 (69–131)	89 (68–127)	100 (75–149.25)	0.012
	CRP	115(48.25–215)	116 (48-230.5)	104 (49.5–180)	0.222
Minimum	*Haemoglobin*	112 (94–128)	113 (94.5–129)	106(93–127)	0.104
	Lymphocytes	0.76 (0.51–1.10)	0.77 (0.52–1.13)	0.73 (0.49–0.98)	0.071
RRT (%)	32 (3.1)	30 (3.5)	2 (1.2)	0.204	
Went to Critical care (%)	165 (16.0)	151 (17.4)	14 (8.5)	0.006	
Died (%)	63 (38.2)	54 (35.8)	9 (64.3)	0.070	
Died in Critical care (%)	59 (35.8)	50 (33.1)	9 (64.3)	0.042	
Ventilation (%)	124 (75.2)	118 (78.1)	6 (42.9)	0.009	

Anticoagulation was not found to be a factor associated with AKI in multivariate analysis 1.13 (0.66–1.89, p = 0.658). Factors that were linked with AKI were pre-existing renal disease (OR 2.48 (1.50–4.09, p < 0.001)), HTN (OR 1.71 (1.12–2.63, p = 0.014)) and male sex (OR1.66 (1.11–2.52, p = 0.015)), Table 4.
Dependent: AKI	OR (univariable)	OR (multivariable)	
Age	1.00 (0.99–1.01, p = 0.439)	1.00 (0.99–1.02, p = 0.684)	
Sex	M	1.45 (1.07–1.99, p = 0.018)	1.66 (1.11–2.52, p = 0.015)
Ethnicity	Asian	0.93 (0.55–1.52, p = 0.785)	0.88 (0.40–1.82, p = 0.740)
	Black	2.07 (1.29–3.29, p = 0.002)	1.60 (0.83–3.00, p = 0.153)
	Mixed	0.70 (0.11–2.61, p = 0.647)	0.60 (0.03–3.99, p = 0.652)
	Other	0.32 (0.05–1.10, p = 0.128)	0.33 (0.02–1.77, p = 0.298)
	Unknown	1.48 (0.76–2.73, p = 0.231)	1.19 (0.41–3.00, p = 0.729)
Anticoagulation		1.27 (0.85–1.88, p = 0.235)	1.13 (0.66–1.89, p = 0.658)
Hypertension		1.37 (1.01–1.85, p = 0.043)	1.71 (1.12–2.63, p = 0.014)
CCI score		1.13 (1.00–1.28, p = 0.047)	
Congestive Heart Failure		0.92 (0.55–1.46, p = 0.726)	0.70 (0.37–1.25, p = 0.240)
Peripheral Vascular Disease		1.75 (0.97–3.05, p = 0.055)	1.85 (0.93–3.55, p = 0.070)
Diabetes without complications		0.97 (0.66–1.40, p = 0.861)	
Diabetes with complications		3.25 (1.61–6.39, p = 0.001)	
Diabetes Mellitus		1.09 (0.77–1.53, p = 0.616)	0.86 (0.55–1.32, p = 0.485)
Renal disease		2.36 (1.58–3.50, p < 0.001)	2.48 (1.50–4.09, p < 0.001)
Day zero^a	Sodium	1.04 (1.02–1.06, p < 0.001)	1.03 (1.00–1.06, p = 0.051)
	Urea	1.16 (1.13–1.19, p < 0.001)	
	Creatinine	1.01 (1.01–1.01, p < 0.001)	
	Haemoglobin	0.99 (0.99–1.00, p = 0.090)	1.00 (0.99–1.01, p = 0.915)
	Lymphocytes	1.02 (0.88–1.16, p = 0.719)	1.01 (0.84–1.18, p = 0.854)
	CRP	1.01 (1.00–1.01, p < 0.001)	1.00 (1.00–1.01, p = 0.003)
EWS	mmHg	1.18 (1.09–1.28, p < 0.001)	
Temperature	Celsius	0.78 (0.62–0.97, p = 0.030)	0.83 (0.63–1.08, p = 0.177)
Blood pressure	Systolic	1.00 (0.99–1.00, p = 0.317)	1.09 (0.86–1.39, p = 0.472)
	Diastolic	1.00 (0.98–1.01, p = 0.488)	1.20 (0.74–1.96, p = 0.454)
MAP		0.99 (0.98–1.01, p = 0.347)	0.75 (0.36–1.56, p = 0.446)
Oxygen saturations	Percentage	0.94 (0.90–0.98, p = 0.005)	0.97 (0.93–1.02, p = 0.313)
Respiratory rate	Breaths/min	1.04 (1.02–1.07, p = 0.002)	1.02 (0.99–1.06, p = 0.183)

Survival

Overall 326 (31.6%) patients with a diagnosis of COVID-19 died following hospital admission, 36 of these deaths occurred following admission in the community. Mortality was higher in the anticoagulant therapy cohort with 66 (40.2%) of patients dying compared to 260 (30%; p = 0.012). The 30 day mortality was also higher in those taking anticoagulants 34.8% versus those not previously taking them 25.5% (p = 0.018), Table 3.
Compared to those not taking anticoagulants significantly fewer patients on anticoagulants went to ICU 14 (8.5%) versus 151 (17.4%) \((p = 0.006) \), Table 3. Of those that were admitted to ICU, a much smaller proportion of anticoagulated patients received mechanical ventilation \((p = 0.009) \). Patients on anticoagulants who were admitted to the ITU had a higher mortality than those who weren’t previously anticoagulated \((p = 0.042) \).

Across the whole study population, a multivariate cox proportional hazards regression did not find anticoagulation to have any impact upon overall survival HR 0.84 \((CI 0.63–1.12, p = 0.283) \), supplementary Fig. 1, and in univariate analysis it was not an independent factor for mortality HR 1.27 \((CI 0.97–1.67; p = 0.081) \), supplementary table 1. Factors from this analysis that were associated with mortality included AKI, age, diabetes, cancer and heart failure, supplementary Fig. 1.

Discussion

This retrospective, single-centre study found that pre-existing therapeutic anticoagulation had no impact on the risk of developing AKI or reducing its severity in hospitalised patients with COVID-19. AKI was likely to be present on admission. This is the first study we are aware of to examine the effects of chronic anticoagulation on COVID-19 related AKI.

The findings of this study would suggest that renovascular thrombosis is unlikely to play a significant role in COVID-19 related AKI. Early histopathological analysis from Wuhan, China identified segmental fibrin thrombi in glomerular loops associated with endothelial injury and this was proposed as a contributing factor to COVID-19 related AKI [19]. However, in this analysis, not all patients displayed signs of kidney injury evidenced by raised creatinine. There have also been suggestions that the intricate link between the immune system and coagulation pathways with microvascular endothelial injury and hypercoagulability may exacerbate the risk of developing acute tubular necrosis (ATN) [16]. A group looking at 12 renal biopsies with some degree of ATN showed no evidence of thrombotic microangiopathy or vascular/capillary thrombi [20]. As more biopsy studies have been published various pathologies have been seen including collapsing glomerulopathy [21] and acute tubular injury (ATI) which is the predominant finding in numerous case series [19, 20, 22, 23]. ATI is likely multifactorial due to sepsis, hypoxia, multiorgan complications and rhabdomyolysis [23, 24]. The kidney has also been identified as being a target for SARS-CoV-2 via its ACE2 protein expressed on cells of the proximal tubule supporting the potential for direct virus-mediated injury [16]. Standard AKI risk factors are still implicated [16, 24, 25] and we found this in our population with significantly more patients developing AKI that had pre-existing renal disease, hypertension, diabetes and peripheral vascular disease which was also seen in another publication [17]. Consideration of these risk factors need to be undertaken to identify those patients susceptible to AKI early in the disease course to try and minimise the risk of developing AKI or its progression [24].

Stage 3 AKI was seen in 12% of all patients taking anticoagulation and this finding is important to highlight the need to review the suitability of the anticoagulant depending on the patient’s condition [24]. In patients with COVID-19 and AKI stage 3, LMWH dosed as per local protocols for renal impairment with anti-Xa monitoring should be preferred due to the DOACs’ reliance on renal excretion and the variability of INR seen with vitamin K antagonists (VKAs) [26, 27]. Supratherapeutic INRs were seen in our patients at admission similar to a study from Kings College, London which also noted high INRs (INR > 8) mostly relating to the antimicrobial therapy used to treat COVID-19 pneumonia [28]. Patients chronically anticoagulated have been recommended to switch to DOACs, if appropriate, during the pandemic with less monitoring required than VKAs and this was seen in a proportion of our patients at discharge [29]. However a recent MHRA alert has highlighted an increase in reported major bleeding episodes with DOACs [30]. Due to potential interactions with the COVID-19 trial medication lopinavir/ritonavir [31] or macrolide antimicrobial therapy used for pneumonia, along with high rates of AKI associated with COVID-19 extra vigilance is required when using these drugs to ensure the dose is appropriate and any additional therapies are suitable in combination.

We found that significantly fewer patients taking anticoagulant therapy were admitted to the ICU and they were less likely to receive mechanical ventilation than those not anticoagulated. Our findings could be explained by agreed limitations of care in the anticoagulated population due to pre-existing co-morbidities, including metastatic cancer, and advanced age. Both of these are also likely to impact on ICU survival. All of our anticoagulated patients who became critically ill and were admitted to ICU were switched to therapeutic LMWH [32]. Additional benefits of LMWH in severe COVID-19 disease have been described with a systematic review concluding that heparin can decrease levels of inflammatory biomarkers [33]. Numerous mechanisms of how heparins do this are described in the literature to include binding to and neutralisation of chemokines & cytokines, interference with leukocyte trafficking, reducing viral cellular entry, and neutralisation of extracellular cytotoxic histones which can cause endothelial damage [34].
The patients chronically anticoagulated had a higher co-morbid burden with an increased prevalence of heart failure, renal disease and hypertension compared to those not taking anticoagulation on admission ($p < 0.05$). Anticoagulated individuals were also of advanced age (80 vs 68 years) which makes it difficult to draw conclusions on overall survival between the groups. These are known risk factors for COVID-19 related mortality [35]. Recently a study carried out across the UK by the International Severe Acute Respiratory and emerging Infections Consortium Coronavirus Clinical Characterisation Consortium (ISARIC-4C) developed a risk stratification score for COVID-19 mortality where increasing age, multiple co-morbidities and urea > 14 mmol/L are some of the major contributing factors to mortality [36]. Other studies looking at the impact of anticoagulation on survival such as Tremblay et al did not find any improvements in overall survival of those therapeutically anticoagulated [37]. This continues to support current recommendations that therapeutic LMWH should not be used for primary prophylaxis of VTE events without further supporting evidence [38]. In contrast to these findings, a study by Paranjpe et al found patients initiated on therapeutic dose anticoagulation in the hospital had improved survival from COVID-19 compared to those receiving prophylactic or none [39], although this study lacked information on patient demographics and reasons for initiating anticoagulation. Another study found that pre-existing anticoagulation was protective against the development of embolic events in COVID-19 patients [40] and this would seem logical given the finding that the thrombotic process had started prior to admission with 50% of patients being diagnosed with VTE within 24 hours of hospitalisation [8]. The observational nature of these studies re-iterates the need for randomised controlled trials. The international REMAP-CAP trial is currently assessing the impact of therapeutic anticoagulation on survival of patients with severe COVID-19 disease admitted to the ICU [41].

There are limitations to this single-centre observational study which include the inability to collect data on major bleeding and VTE events. With the high mortality in this study, especially in those already taking anticoagulant therapy, and low ICU admission rates this suggests that a high number of patients had limitations of care in place which may have excluded investigations for VTE. Also, if patients in this group were critically-ill, imaging studies may not have been performed. Early on in the course of COVID-19, the relevance of D-dimer was not well defined [4] and was not routine in our practice. Therefore, we do not have a complete dataset for comparison of those anticoagulated and not. We did not include data on interventions of those hospitalised which may have had an impact on outcomes (e.g. those on the RECOVERY trial randomised to dexamethasone). It has not been possible to determine the cause of death for patients aside from that patients died whilst being treated for COVID-19.

Conclusion

This study shows that chronic anticoagulation does not reduce the risk of developing AKI with COVID-19 or reduce the severity of AKI including requirement for RRT. These findings would suggest that AKI in COVID-19 is unlikely to be thrombotic in aetiology. COVID-19 related AKI is likely to be multifactorial and early detection and management is essential. RCTs are currently underway to assess whether there is a specific group of patients that therapeutic anticoagulation may provide benefit. For patients on chronic anticoagulation the choice of therapy must depend on the patients’ current condition and may need to be adjusted based on development of AKI or initiation of interacting drugs.

Declarations

Ethics approval and consent to participate

The Health Research Authority (HRA) and Medical Research Council decision tool (http://www.hra-decisiontools.org.uk/research/) does not deem this work as research so no formal NHS ethical approval was required. After consultation with the Manchester University NHS Foundation Trust research and development department this work was classed a retrospective audit.

All patients’ information was anonymised for analysis and reporting.

Consent for publication

As this work was classed as a retrospective audit no formal consent was required. All data is anonymised for publication.

Availability of data and materials
Data cannot be shared publicly because of patient confidentiality but can be requested from lead author directly.

Competing interests

None of the authors have relevant conflicts for present work.

Within the last 3 years K Parker has received honoraria from Bayer. J Thachil has received honoraria from Bayer, Boehringer Ingelheim, BMS-Pfizer, Daichi-Sankyo, Octapharma, Leo Pharma.

Funding

None

Authors' contributions

J Thachil and L Ebah conceived the idea. K Parker, P Hanumapura, P Hamilton, L Ebah and J Thachil were involved in study design. K Parker, P Hanumapura, L Castellino, M Murphy, R Challinor collected the data. K Parker drafted the paper. P Hamilton undertook data analysis. All authors were involved in revising the paper.

Acknowledgements

Peter Hoyle - Data Manager
Rachel Royston - Clinical Data Warehouse Manager
Dusia Romaniuk - Information Team Lead
Helen Shackelton - Information Team leader
Dr Katharine Hayden - Consultant Clinical Biochemist

References

1. World Health Organisation. [Online] https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen. Accessed on 02/09/2020
2. Katz JM, Libman RB, Wang JJ et al. Cerebrovascular Complications of COVID-19. Stroke 2020; 51(9): e227–e231.
3. Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020: 5(7); 811–818.
4. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020: 18(4); 844–847.
5. Lippi G, Favaloro EJ. D-dimer is associated with severity of coronavirus disease 2019 (COVID-19): a pooled analysis. Thromb Haemost 2020: 120(5); 876–878.
6. Klok FA, Kruij MJHA, van der Meer NJM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res 2020:191; 148–150.
7. Poissy J, Goutay J, Caplan M et al. Pulmonary Embolism in COVID-19 Patients: Awareness of an Increased Prevalence. Circulation 2020:142; 184–186.
8. Lodigiani C, Iapichino G, Carenzo L, Sandri MT, Barco S. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Venous and arterial thromboembolic. Thromb Res 2020: 191; 9–14.
9. Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020: 46; 1089–1098.
10. Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020: 97(5); 829–838.

11. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020: 323(20); 2052–2059.

12. Fominsky EV, Scandroglio AM, Monti G, et al. Prevalence, Characteristics, Risk Factors, and Outcomes of Invasively Ventilated COVID-19 Patients with Acute Kidney Injury and Renal Replacement Therapy. Blood Purif 2020.

13. Wilbers T, Koning M. Renal replacement therapy in critically ill patients with COVID-19: A retrospective study investigating mortality, renal recovery and filter lifetime. J Crit Care 2020; 60: 103–105.

14. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020: 395(10229); 1054–62.

15. Hamilton P, Hanumapura P, Castelino L, Henney R, Parker K, et al. (2020) Characteristics and outcomes of hospitalised patients with acute kidney injury and COVID-19. PLOS ONE 15(11): e0241544.

16. Batlle D, Soler MJ, Sparks MA et al. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. JASN 2020: 31(7); 1380–1383.

17. Hirsch JS, Ng JH, Ross DW et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney International 2020: 98(1); 209–218.

18. Kant, S., Menez, S.P., Hanouneh, M. et al. The COVID-19 nephrology compendium: AKI, CKD, ESKD and transplantation. BMC Nephrol 21, 449 (2020).

19. Su H, Yang M, Wan C et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney International 2020; 98(1); 219–227.

20. Golmai P, Larsen CP, DeVita MP et al. Histopathologic and Ultrastructural Findings in Postmortem Kidney Biopsy Material in 12 Patients with AKI and COVID-19. JASN 2020: 31(9); 1944–1947.

21. Wu H, Larsen CP, Hernandez-Arroyo CF, et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL1 High-Risk Genotype. JASN 2020: 31(8); 1688–1695.

22. Kudose S, Batal I, Santoriello D, et al. Kidney Biopsy Findings in Patients with COVID-19. JASN 2020; 31(9); 1959–1968.

23. Sharma P, Uppal NN, Wanchoo R, et al. COVID-19–Associated Kidney Injury: A Case Series of Kidney Biopsy Findings. J Am Soc Nephrol 2020: 31(9):1948–1958.

24. NICE Covid-19 rapid guideline acute kidney injury in hospital. NICE [Online] April 2020. https://www.nice.org.uk/guidance/ng175/resources/covid19-rapid-guideline-acute-kidney-injury-in-hospital-pdf-66141962895301.

25. Selby NM, Forni LG, Laing CM et al. Covid-19 and acute kidney injury in hospital: summary of NICE guidelines. BMJ 2020;369:m1963.

26. Faculty of Intensive care medicine (ICM), Royal college of anaesthetists (RCoA), Association of Anaesthetists, Intensive care society, Royal college of physicians. Clinical guide for the prevention, detection and management of thromboembolic disease in patients with COVID-19. [Online] June 2020. https://icmanaesthesiacovid-19.org/clinical-guide-prevention-detection-and-management-of-vte-in-patients-with-covid-19.

27. www.thinkkidneys.nhs.uk. [Online] 2015. https://www.thinkkidneys.nhs.uk/aki/wp-content/uploads/sites/2/2015/06/Medicines-optimisation-toolkit-for-AKI-FINAL.pdf.

28. Speed V, Patel RK, Byrne R, Roberts LN, Ayra R. A perfect storm: Root cause analysis of supra-therapeutic anticoagulation with vitamin K antagonists during the COVID-19 pandemic. Thromb Res 2020; 192; 73–74.

29. Williams, H & Akor, F. Management of patients currently on warfarin during Covid-19. Specialist Pharmacy Services. [Online] April 2020. https://www.sps.nhs.uk/articles/management-of-patients-currently-on-warfarin-during-covid-19/.

30. MHRA. www.gov.uk. [Online] June 2020. https://www.gov.uk/drug-safety-update/direct-acting-oral-anticoagulants-doacs-reminder-of-bleeding-risk-including-availability-of-reversal-agents#table-1—recommendations-for-use-of-doacs-in-patients-with-renal-impairment.

31. Bikdeli B, Madhavan MV, Jimenez D et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. J Am Coll Cardiol 2020; 75(23); 2950–2973.
32. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033–2040.
33. Mousavi S, Moradi M, Khoshidahmad T, Motamedi M. Antiinflammatory effects of heparin and its derivatives: a systematic review. Adv Pharmacol Sci 2015; 2015: 507151.
34. Thachil J. The versatile heparin in COVID-19. J Thromb Haemost 2020; 18(5): 1020–1022.
35. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol 2020; 146(1): 110–118.
36. Knight SR, Ho A, Pius R, et al. Risk stratification of patients admitted to hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: development and validation of the 4C Mortality Score. BMJ 2020;370:m3339
37. Tremblay D, van Gerwen M, Alsen M, et al. Impact of anticoagulation prior to COVID-19 infection: a propensity score–matched cohort study. Blood 2020; 138(1): 144–147.
38. Spyropoulos AC, Levy JH, Ageno W et al. Scientific and Standardization Committee Communication: Clinical Guidance on the Diagnosis, Prevention and Treatment of Venous Thromboembolism in Hospitalized Patients with COVID-19. JTH 2020; 18(8): 1859–1865.
39. Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol 2020; 76(1): 122–124.
40. Lachant DJ, Lachant NA, Kouides P, Rappaport S, Prasad P, White RJ, Chronic Therapeutic Anticoagulation is Associated with Decreased Thrombotic Complications in SARS-CoV-2 Infection. JTH 2020; 18(10): 2640–2645.
41. REMAP-CAP. https://www.remapcap.org/protocol-documents. [Online] 2020.
https://static1.squarespace.com/static/5cde3c7d9a69340001d79ffe/t/5f1bb9b667aaaae35bba3f21a/1595652546193/REMAP-CAP++Therapeutic+Anticoagulation++V2++24+June+2020_WM.pdf.