Inheritance and Variability of Boll Weight in F₁-F₂ Plants of Fine-Fiber Cotton Varieties

Abstract: This paper deals with the results of conducted research on the issues of the inheritance and variability of boll weight in F₁-F₂ plants of fine-fiber local cotton varieties. According to the experiments, we have made that generation hybrids in F₁, the trait of boll weight were inherited basically positive superdominance. Additionally, the determination of the general combining ability of fine-fiber cotton varieties of morpho-agronomic traits, and genetic-selection were further conducted the possibility of using Duru Gavkhar and Bukhara-7 varieties as a valuable primary source of cotton weight of boll. Furthermore, selection work in the population of the family O-449, depended on the basis of a combination of F₂ Surkhan-9 x Termez-32 hybrids. Moreover, a new cotton variety "Marvarid" was created.

Key words: fine-fiber cotton varieties, hybrids, heterosis, combining ability, inheritance, variability, boll weight.

Language: English

Citation: Chorshanbiev, N. E. (2020). Inheritance and Variability of Boll Weight in F₁-F₂ Plants of Fine-Fiber Cotton Varieties. ISIJ Theoretical & Applied Science, 07(87), 180-185.

Soi: http://s-o-i-i.org/1.1/TAS-07-87-41
Doi: https://dx.doi.org/10.15863/TAS.2020.07.87.41
Scopus ASCC: 1301.

Introduction

Currently, scientific research on fine-fiber cotton varieties around the world is aimed at studying the genetics of valuable economic traits in geographically remote hybrids of cotton varieties, lines and forms and exporting excess fiber while meeting domestic demand based on increasing yield and fiber quality. Fine-fiber cotton varieties are characterized by high fiber quality, resistant to verticillium wilt, other diseases and pests, as well as adverse environmental factors, which is the main disease of *G. hirsutum* L. fiber varieties. Therefore, the creation of competitive fine-fiber cotton varieties is one of the most important scientific and practical directions. Some scholars in the field of agriculture made some contributions, they were I.E.El-Beialy and G.I.Mohamed (2008), S.H.Abd-El-Haleem, and others (2010) found that quantitative traits are inherited in F₁ hybrids with different levels of dominance or super dominance of the parent species. A.M.El-Zanaty et al (2012) identified phenotypic variability in quantitative characteristics in fine-fiber Egyptian cotton varieties, M.M.Abd El-Maksoud (2003), A.M.Abdal El-Bary (2013) identified combining abilities some of foreign cotton varieties and lines. Also, recently, scientific and practical research on the genetics and selection of *G. barbadense* L. varieties in our country carried out by M.I.Iksanov (2011), K.O.Khudaranov, S.A.Usmanov (2015), Vik.A.Avtonomov and others. Vik.A.Avtonomov, R.R.Egamberdiev, M.H.Kimsanboev (2009) carried out geographical far hybridization and selection work on fine-fiber cotton varieties.

It is known that the weight of boll is one of the main components of plant productivity. Therefore, in genetic-selection research, special attention is paid to the study of the manifestation, inheritance and variability of this trait. According to S.A.Usmanov, S.S.Alikhodjaeva and others (2007), in some fine-fiber donors the weight of boll can reach 5.0-6.0 grams. R.R.Egamberdiev and others (2007) reported that it was advisable to start the selection work on weight of boll and yield per plant from F₂ generation in geographically far hybrids of *G.barbadense* L. type.
In F1 combinations were further conducted a research by K.O. Khudargonov, S.A. Usmanov (2015), mean medium of both parent was observed on the indicator boll weight. The intergenerational rate of boll weight of Surkhan-16 and Surkhan-101 varieties was $h^2 = 0.50$ and higher.

Research methods

The **aim of the research** was to determine the inheritance and variability characteristics of boll weight in F1-F2 hybrids of local cotton varieties belonging to species of *G.barbadense* L. Local Surkhan-9, Termez-32, Duru Gavkhar, Bukhara-7, Surkhan-10 cotton varieties of *G.barbadense* L. species and their diallel F1-F2 generation plants were used as the **object of research**.

In our experiment, the primary source was the local fine-fiber cotton varieties Surkhan-9, Termez-32, Duru Gavkhar, Bukhara-7, Surkhan-10 and their interspecific plants F1, F2. In the study, combinations of each variety and F1 hybrid were placed in three turns, 4 rows, and 25 in each row using the randomization method. Planting scheme 90x20x1. In the course of the experiment, the inheritance and variability of important morphobiological and valuable-economic traits in F1 plants, the scale of variability of some valuable-economic traits in F2 combinations were studied in comparison with parental forms. Varieties and 30 plants in each of their F1 combinations and 150 plants in each of the F2 combinations were studied.

The dominance coefficient (hp) in F1 plants were determine by formula S.Wright given in the works of G.E. Beil and R.E. Atkins [1965].

$$hp = \frac{F_1 - MP}{P - MP} \quad (2.1)$$

hp - coefficient of dominance; F_1 - the medium arithmetic mean of the hybrid F1; MP - the arithmetic mean of both parents; P - the arithmetic mean of the best parent.

hp = 0 - no dominance;
0 < hp < ± 1.0 - intermediate dominance;
hp = ± 1.0 - complete dominance;
hp > ± 1.0 - extreme dominance

The results of the applied research carried out by statistical processes in the method of B.A. Dospexov [1985]. In this case, the parameters obtained for each character were analyzed by variance, namely, the differences between varieties and hybrids were determined by the Fisher criterion (F), the total error of the experiment $S \bar{x}$, the error of the mean differences Sd and the smallest difference (EKF) 95%, and each of the data obtained on one character were statistically analyzed using a modern variance (ANOVA) program.

Litun P.P., Proskurin N.V. [1976] suggests that the Griffing 4 method (model 1) is widely used in determining combining ability in the field of practical selection. Therefore, in our study, the combining ability of varieties Griffing (B.I. Griffing) [1956] was determined using the following formula based on method 4.

The sum of the squares of the General combining ability: (2.2)

$$S_g = \frac{1}{P(P-2)} \sum x^2_{i.} - \frac{4}{P(P-2)} x^2$$

The sum of squares of special combining ability: (2.3)

$$S_s = \sum \sum x_{ij}^2 - \frac{1}{P(P-2)} \sum x^2_{i.} + \frac{2}{(P-1)(P-2)} X^2$$

GCA (General combining ability) of each variety: (2.4)

$$g_i = \frac{1}{P(P-2)} (px_i - 2x_\ldots)$$

GCA variance: (2.5)

$$\sigma^2_{g_i} = \frac{P-1}{P(P-2)} y^2$$

The SCA (specific combining ability) constant of each hybrid combination: (2.6)

$$s_{ij} = x_{ij} - \frac{1}{P-2} (x_i + x_j) + \frac{2}{(P-1)(P-2)} X_\ldots$$

SCA variance (2.7)

$$\sigma^2_{s_{ij}} = \frac{P-3}{P-1} y^2$$

The ratio of genotypic variance to total phenotypic variance determined by the rate of transmission of the trait from generation to generation (h2) by the formula R.W. Allard [1956]: (2.10)

$$h^2 = \frac{\sigma^2 F_2 - \sigma^2 F_1 + \sigma^2 P_1 + \sigma^2 P_2}{3 \sigma^2 F_2}$$

$$h^2 = F_2$$ the transmission of the mark from generation to generation in hybrids;

$$\sigma^2 F_1$$ - first generation dispersion;

$$\sigma^2 P_1$$ - second generation dispersion;

$$\sigma^2 P_2$$ - second parental dispersion;

Results of research: Bukhara-7 and Duru Gavkhar (2.97g and 2.89g, respectively) have the highest boll weight, while Termez-32 and Surkhan-9 have the lowest (2.52g and 2.62g, respectively). was shown (Table 1).

The highest values of this trait in F1 plants of varieties are Duru Gavkhar x Bukhara-7 (3.25g), Surkhan-9 x Bukhara-7 (3.10g), Termez-32 x Bukhara-7 (3.05g), Bukhara-7 x In the combinations of Surkhan-10 (3.00g), and relatively low performance Termez-32 x Surkhan-10 (2.62g), Surkhan-10 x Surkhan-9 (2.65g), Surkhan-9 x
Table 1. Inheritance of boll weight in F₁ plants of fine-fiber local cotton varieties.

	Surkhon-9	Termiz-32	Duru Gavxar	Bukhara-7	Surkhon-10
Surkhon-9	2.62*	2.84	2.82	3.10	2.73
		5.40	0.48	1.74	1.20
Termiz-32	2.84	2.52	2.99	3.05	2.62
		5.40	1.54	1.36	0.10
Duru Gavxar	2.77	2.92	2.89	3.25	2.85
		0.11	1.16	8.00	0.53
Bukhara-7	2.77	2.92	2.82	2.97	3.00
		0.14	0.78	2.75	1.24
Surkhon-10	2.65	2.94	2.97	2.82	2.72
		0.40	3.20	1.94	-0.20

Note: * - the average value of the character in F₁ plants

The boll weight inherited in 11 of the 20 F₁ combinations with a positive super-predominance, 5 with an incomplete dominance of the high-yielding variety, 3 combinations with an incomplete dominance of the low-yielding variety, and 1 with a negative super-dominance. When Surkhon-9 and Termiz-32 varieties, which are close to each other in terms of same size, were cross-bred, the trait was inherited in a positive extreme dominance (hp = 5.40) in reciprocal combinations. When mixing Bukhara-7 and Termiz-32 varieties, which differ in character, F₁ Bukhara-7 x Termiz-32 combination was incomplete (hp = 0.78), however in the combination F₁ Termiz-32 x Bukhara-7 there were cases of positive overdose (hp = 1.36). Thus, the boll weight inherited in the F₁ plants of the studied varieties mainly in the case of positive super-predominance and incomplete predominance of high-yielding variety, negative super-predominance in one combination and incomplete dominance of low-yielding variety in 3 combinations.

When analyzing the boll weight according to EKF₀ᵦ, the effect of heterosis observed only in 4 combinations – F₁ Duru Gavkhar x Bukhara-7 - 109.4%, F₁Surkhon-10 x Termiz-32 - 108.1%, Surkhon-9 and Termez. It was found that 108 varieties accounted for 108.4% in reciprocal combinations.
In the parent cotton varieties, the variability of the boll weight in one was 4 classes in all varieties except Bukhara-7, and 3 classes in Bukhara-7. In F2 hybrids of varieties the most classes are in correct combinations of Termez-32 variety with Bukhara-7 and Surkhan-10 varieties (9 classes). Surkhan-9 x Bukhara-7, Surkhan-10 x Bukhara-7 combinations and Bukhara-7 and recorded in reciprocal hybrids of Duru Gavhar varieties (8 classes) (Table 3).

The lowest classes of character, namely the relatively narrow range of variability are in the reciprocal hybrids of Termez-32 and Surkhan-9 varieties, Termez-32 x Duru Gavkhar, Duru Gavkhar x Surkhan-10, Bukhara-7 x Termez-32 and Bukhara-7 Surkhan-10 combinations (6 classes). The highest percentage of plants in the varieties Surkhan-9, Surkhan-10 and Termez-32 belongs to the modal class with an index of 2.5-2.7g (40.0; 46.6; 50.0%, respectively), Duru Gavkhar and Bukhara-7 in varieties it corresponded to modal classes with an index of 2.8-3.0g (40.0 and 50.0%, respectively). The highest percentage of plants is in the right combinations of Surkhan-10 with Surkhan-9 and Termez-32 in the modal class of 1.9-2.1g, in F2 Duru Gavkhar x Surkhan-9 and Bukhara-7 x Surkhan-10, together with the class belonged to the modal classes with indicators of 2.2-2.4g and 2.5-2.7g. Also, the maximum percentage of plants is 2.2-2.4g in 11 combinations, 2.5-2.7g in 3 combinations, 2.8-3.0g in 1 combination, 2.5-2.7g in 5 combinations and in 2 combinations belonged to the modal classes with an index of 2.8-3.0g. In all the F2 combinations studied, a left-sided negative transgressive variability in one boll weight, namely, a shift from the lowest-performing edge classes of the parent varieties to grades 2-3, was noted. In 10 of the 20 hybrid combinations, a right-sided transgressive variability occurred, resulting in large-bolled plants relative to the parent varieties. The shift to the right to class 2 was observed in the correct combinations of F2:Bukhara-7 x Duru Gavkhar, as well as Termez-32 mixed with Bukhara-7 and Surkhan-10 (Figure 1). In the remaining F2 combinations, a shift to class 1 to the right was noted.

As having analyzed the coefficient of variation on the bollweight, it was found that it had a small variability (V = 7.7–11.4%) in the parent varieties. The average variability in most F2 combinations (V = 13.9-20.5%), in only 2 combinations, the large variability (V = 27.7% and V = 29%) in hybrids of Termez-32 mixed with Duru Gavkhar and Bukhara-7 varieties, (5%) were observed.

In all the F2 combinations studied, the coefficient of intergenerational transmission of the bollweight averaged 0.30–0.63. Only in the Termez-32 x Duru Gavkhar combination it found was that the transmission of the mark from generation to generation was very low (h2=0.24).

CONCLUSION

1. In the first generation hybrids of local cotton varieties belonging to the genus *G. barbadense* L., the boll weight was mainly in a state of positive super-predominance.

2. The presence of statistical differences in morphological characteristics of some reciprocal combinations of fine-fiber cotton varieties of F1 indicates that genetic control of these traits involves not only nuclear genes, but also cytoplasmic genes.

3. Duru Gavkhar and Bukhara-7 varieties can be used as a valuable starting source for the bollweight in a in genetic-selection research on the basis of determining the general combining ability of fine-fiber cotton varieties on economic characteristics.

4. In the F2 generation of fine-fiber local cotton varieties, the coefficient of variation was average and high in terms of boll weight.
Table 3. Variability scale and intergenerational transmission of boll weight in F_2 generation of varieties

T/p	Varieties and F_2 combinations	The percentage of the plants	\bar{x} ± Sx	G	V%	h^2
1	Surkhan-9	20.0, 40.0, 30.0, 10.0	2.62±0.04	0.24	9.2	-
2	Termiz-32	36.6, 50.0, 10.0, 3.3	2.52±0.04	0.22	8.7	-
3	Duru Gavxar	10.0, 20.0, 40.0, 30.0	2.89±0.06	0.33	11.4	-
4	Bukhara-7	20.0, 50.0, 30.0	2.97±0.04	0.23	7.7	-
5	Surkhan-10	13.3, 46.6, 26.6, 13.3	2.72±0.04	0.25	9.2	-
6	Surkhan-9x Termiz-32	1.3, 13.0, 20.8, 39.0, 16.8, 9.1	2.35±0.03	0.41	15.2	0.46
7	Surkhan-9xDuru Gavxar	8.3, 8.3, 13.9, 25.0, 25.0, 13.9, 5.6	2.33±0.06	0.76	20.5	0.50
8	Surkhan-9xBukhara-7	1.3, 2.6, 29.0, 34.2, 19.7, 6.6, 5.3, 1.3	2.35±0.03	0.38	16.6	0.39
9	Surkhan-9xSurkhan-10	6.2, 12.3, 29.2, 27.7, 16.9, 4.6, 3.1	2.49±0.03	0.41	15.7	0.44
10	Termiz-32xSurkhan-9	10.4, 28.1, 38.5, 11.5, 8.3, 3.1	2.34±0.03	0.36	14.1	0.44
11	Termiz-32x Duru Gavxar	5.9, 25.0, 40.5, 16.7, 10.7, 1.2	2.31±0.03	0.33	27.7	0.24
12	Termiz-32x Bukhara-7	7.6, 13.6, 19.7, 16.7, 21.2, 10.6, 6.1, 3.0, 1.5	2.86±0.05	0.56	29.5	0.63
13	Termiz-32xSurkhan-10	1.3, 6.5, 20.8, 14.3, 23.4, 22.0, 6.5, 3.9, 1.3	2.66±0.06	0.48	19.1	0.59
14	Duru Gavxar x Surkhan-9	12.2, 31.7, 26.8, 9.9, 14.6, 2.4, 2.4, 2.4	2.29±0.03	0.42	15.2	0.50
15	Duru Gavxar x Termiz-32	2.4, 12.9, 24.7, 18.8, 28.2, 11.8, 1.2	3.21±0.03	0.41	20.2	0.34
16	Duru Gavxar x Bukhara-7	2.1, 5.2, 21.9, 31.2, 12.5, 12.5, 9.4, 5.2	2.77±0.04	0.47	15.1	0.49
17	Duru Gavxar x Surkhan-10	3.0, 10.6, 22.7, 24.2, 25.8, 13.7, 3.2±0.03	0.40	14.5	0.39	
18	Bukhara-7x Surkhan-9	1.4, 6.9, 23.6, 32.0, 23.6, 9.7, 2.8	2.63±0.06	0.67	14.9	0.58
19	Bukhara-7x Termiz-32	2.0, 28.1, 17.5, 34.9, 13.6, 3.9	2.80±0.03	0.33	20.0	0.39
20	Bukhara-7x Duru Gavxar	12.8, 20.5, 26.9, 15.4, 14.1, 7.7, 1.3, 1.3	2.40±0.04	0.48	17.8	0.58
21	Bukhara-7x Surkhan-10	7.1, 28.6, 10.7, 28.6, 17.9, 7.1	2.48±0.03	0.39	17.8	0.56
22	Surkhan-10x Surkhan-9	4.2, 11.6, 32.6, 25.3, 17.9, 5.3, 3.1	2.21±0.03	0.39	17.9	0.56
23	Surkhan-10x Termiz-32	2.4, 7.0, 29.4, 21.2, 20.0, 17.6, 2.4	2.34±0.03	0.42	17.9	0.55
24	Surkhan-10x Duru Gavxar	1.2, 1.2, 25.3, 38.6, 22.9, 8.4, 2.4	2.34±0.03	0.36	13.9	0.30
25	Surkhan-10x Bukhara-7	3.1, 9.4, 11.0, 23.4, 23.4, 17.2, 9.4, 3.1	3.09±0.04	0.49	18.4	0.50

Note: the number of selections in varieties - 30, in combinations F_2 - 150 plants

5. The emergence of valuable F_2 recombinants with high performance traits has been at different levels depending on the mixing components, namely, the parent varieties and their combining ability.

6. As a result of selection work in the population of the family O-449, obtained on the basis of a hybrid combination F_2 Surkhan-9 x Termiz-32, a variety of cotton “Marvarid” was created. This variety successfully passed the Ground Control of the State.
Variety Test in 2017 and in 2018 was accepted to the varietal testing outlets of the DNS.

References:

1. (2016). Resolution of the Cabinet of Ministers of Uzbekistan No. 378 of 1 November 2016 “On measures to further improvement of the structure of crop areas in the Surkhandarya region”. (pp.1-2). Tashkent.
2. Abdurakhmanov, I.Yu. (2008). Structure and function of cotton: compilation of markers, genetic mapping, cloning and research functions of useful genes of the genus Gossypium L. Author's abstract. On sos. Scientist. step. Doctor of biological sciences, (p.51). Tashkent.
3. Avtonomov, V. A. (2008). Selection of long fibrous varieties of cotton. Mater. Intl. Scientific-practical conf. “Actual problems of molecular biology of plants”, (pp.123-125). Tashkent.
4. Iksanov, M.I. (2009). Potential of the Republic of Uzbekistan in the production of fine-fibrous cotton. In the collection “Selection and seed-growing of cotton and alfalfa”, (pp.255-260). Tashkent.
5. Kimsanbaev, M.H., Avtonomov, V. A., & Kimsanbaev, O.H. (2009). Variability and heritability of the productivity of raw cotton from a single plant in inter-geographical geographically remote hybrids F1:F3 of cotton G.barbadense L. In the collection “Selection and seed production of cotton and alfalfa”. (pp.132-137). Tashkent.
6. El-Beially, I.E., & Mohamed, G.I.A (2008). Estimates of genetic parameters using six populations in Egyptian cotton (G barbadense L.). Al- Azhar J. Agric. Res., 2008:4: pp. 305-329.
7. Abd-El-Haleem, S.H.M., Ehab, M.R., Metwali & Ali, M.M. (2010). Al-Felay. Genetic Analysis of Yield and its Components of Some Egyptian Cotton (G. barbadense L.) Varieties. World Journal of Agricultural Sciences, 6 (5): pp. 615-621.
8. El-Zanaty, A.M., Salem, K.F.M., & Esmail, R.M. (2012). Detection of Genetic Diversity in Egyptian cotton (G.barbadense L.) varieties using RAPD markers and morphological traits. Nature and Science, 10(1), p.123. http://www.sciencepub.net
9. Abd El-Maksoud, M.M., Awad, A.A., & Abd El-Bary, A.M.R. (2003). Triallel analysis of some quantitatively inherited traits in G.barbadense L. J.Agric.Sci.Mansoura Univ., Vol.28(10), pp.7307-7318.
10. Abdal El-Bary, A.M.R. (2013). Improving Egyptian cotton using Ftriallel crosses. J.Plant Production, Mansoura Univ., vol.4(6), pp.943-956.
11. Allard, R.W. (1956). The analysis of genetic – environmental interactions by means of diallel crosses. Genetics, V.41, №3, p.786.
12. Beil, G.E., & Atkins, R.E. (1965). Inheritance of quantitative characters sorgum. Jow State Journal of Science, Vol.39, №3, pp.35-37.
13. Griffing, B.I. (1956). Concept of general and specific combining ability in relation to diallel crossing systems. Austr. Journ. Biol Sci., vol.9, pp.463-493.