Parameterization of the characteristics of the melt pool using the video diagnostics of the laser metal deposition process

Yu N Zavalov, A V Dubrov and E S Makarova

Institute on Laser and Information Technologies – Branch of the Federal Scientific Research Centre "Crystallography and Photonics" of Russian academy of Sciences, Svyatoozerskaya 1, 140700, Shatura, Moscow Region, Russia

E-mail: 09645@mail.ru

Abstract. The dependences of the geometric characteristics of the melt bath on the scanning velocity and radiation power during laser metal deposition (LMD) are shown. The data were obtained experimentally at different values of the intensity I_s up to 60 kW/cm² in the range of changes in the specific energy per unit surface area E_s (20...60) j/mm² using the high-speed video camera installed in coaxial scheme. A powder (40...100) microns of PR-Kh18N9 austenitic steel with a mass flow rate of 8.4 g/min was used. It is found that the length of the melt pool L increases with the growth of I_s and practically does not depend on the scanning velocity in the range (5...10) mm/s. The melt volume is estimated taking into account the measured track height. At the same velocity, the volume of the melt increases with the value of the I_s exceeding the threshold. The value of threshold increases with increasing velocity. The volume of the melt increases with the specific energy E_s. The relationship between the geometric characteristics of the melt bath and the shape of the track formed in the LMD process is shown.

1. Introduction

In additive laser metal deposition (LMD) technology for multi-layer material deposition, it is important to know the geometric characteristics of a single track in order to calculate the step between adjacent tracks or the distance between layers. The track is formed during the crystallization of the melt at the interphase boundary of the bath formed by the thermal action of laser radiation during scanning of the substrate or the previous deposited layer. In this regard, the article presents the dependences of the geometric characteristics of the melt bath on the scanning velocity and radiation power in the LMD process. The dependences of the size of the melt bath on the power P and velocity V are presented in [1], but in this work, when the mass flow rate of the G_0 powder is less than 3 g/min (tool steel 32CrMoV 12-28), the size of the melt pool (MP) it was determined by the size of the laser spot and the length of the MP approximately coincided with the width. In [2], the length and width dependences on P and V of the 431L steel powder with G_0 of about 12 g/min are presented. However, the paper does not provide the geometric characteristics of the formed tracks. Earlier in [3], such data were presented in a wide range of changes in P, V, and G_0. In [4], the dependences of the depth of penetration of the substrate under these conditions are also presented, which is important for estimating the associated necessary heat costs in addition to the energy costs for forming the track. In particular, it is shown that the mass productivity increases as $E_s^{1/3}$ when the mass flow rate of the powder is constant, where E_s is the specific energy per unit
surface of the irradiated substrate [3]. The depth of penetration of the substrate is largely determined by the intensity of the \(I_s\) radiation of the substrate [4]. This paper presents data on the parameters of the melt bath and the geometric characteristics of the track formed in the LMD process.

2. Experimental setup

The experiments were carried out on the additive technology unit developed at ILIT RAS (figure 1). Experimental samples of single tracks with the length of 40 mm each were made using LMD technology. The fiber ytterbium laser LK-400-V (NTO “IRE-Polyus”) was used. The laser radiation passes through the coaxial stream of the gas-powder mixture and focused in Precitec YC52 laser head near the substrate.

![Figure 1. The photo of the LMD experimental setup: a) General view, b) inside view.](image)

The KR10 900-2 manipulator (KUKA Roboter GmbH) provides laser scanning of the substrate. Powder PR-Kh18N9 with the granulometric composition (40...100) microns was deposited on the substrates made of St 3 steel with the mass flow rate of 8.4 g/min. Each track was formed in the quasi-stationary mode with constant values of the scanning velocity \(V\), laser power \(P\), distance from the nozzle to the substrate, and the position of the beam focus relative to the substrate. Velocity ranges (5...12.5) mm/s and power (180...410) W. To diagnose processes on the melt surface of the formed track, data was recorded with the high-speed video camera Mikrotron 3010, installed according on the coaxial scheme.

![Figure 2. The sequence of frames (n, n+1... n+3) of the melt bath, scale 800 microns.](image)

The use of video diagnostics of thermal radiation allows you to register the horizontal projection of the MP surface. An overview of diagnostic methods is given in [5]. The magnification of the optical scheme was x1.33 when using the telescopic nozzle with the scattering lens x2.2. Thus, the spatial resolution of the system was about 10 microns with the time resolution of 300 µs. Consecutive frames of the MP image are shown in figure 2 at \(P = 210\) W and \(V = 8\) mm/s, the frame repeat rate is 650 Hz.
MP is separated, figure 2, from the solid phase of the track by a clearly visible boundary, the position of which is slightly shifted in time relative to the laser heating region. The area of increased glow of the melt is observed in the anterior region of the MP in the direction of movement. The melt has the increased temperature relative to the main part of the MP, which leads to the increased glow. Overheating is due to the fact that there is no convection in this region of the thin layer of the melt, and heat removal is determined by thermal conductivity. In the main volume of MP, the depth is significantly higher, and the convection that occurs in the melt reduces the surface temperature.

3. Experimental results
The obtained dependences of the length L and width D of the melt bath on the intensity I_s of the substrate radiation are shown in figure 3 for different velocity values. The average value of the radiation intensity of the substrate I_s was calculated taking into account the Gaussian distribution in the far zone of the defocused laser beam as:

$$I_s = \frac{P}{\pi \omega^2},$$

where $\omega = 0.63$ mm – characteristic size of the beam radius. The maximum intensity value on the beam axis is twice the average value of I_s and reaches a value of 60 kW/cm2. The length of the melt region L increases with the growth of I_s and practically does not depend on the scanning velocity in the range (5...10) mm/s. When the scanning velocity is increased to 12.5 mm/s, L is noticeably reduced. The width of MP increases with increasing I_s. The Width decreases with increasing velocity in the range (8...12.5) mm/s.

Measurements of the height H_0 were made for each track formed under the conditions described above. Dependencies of H_0 are shown on I_s in figure 4(a). The track height in the velocity range of (5...8) mm/s increases firstly with increasing laser intensity in proportion to I_s from 18 kW/cm2 to 25 kW/cm2, and then increases slightly with increasing I_s to 33 kW/cm2. The track height is almost unchanged in the velocity range above 8 mm/s for I_s from 18 kW/cm2 to 25 kW/cm2, and then increases distinctly.

4. Results of the processing of experimental data and discussion
To scale the LMD process, it is important to know the influence of various factors on the shape and height of the track. Figure 5(a) shows the height data H_0, figure 4(a), as a function of E_S for different values of the velocity V. As follows from the data obtained, figure 5, the track height is determined primarily by the E_S parameter. In the case of a constant E_S value, the H_0 value increases with P in the studied power range in the limit (20...30) %. The dependence of the form factor $F = H_0/H_0$ on the velocity V is shown in figure 5(b) for I_s values over 25 kW/cm2. For these I_s values, the Form factor
depends more on the velocity V over a wide range of E_S changes. It is found that up to $V=8$ mm/min, F changes slightly, and with further growth of the velocity, F increases linearly.

![Figure 4](image1)

Figure 4. Dependencies of H_0 (a) and D_0 (b) on P for different velocity V, [mm/s].

The result of measuring the height and form factor of tracks obtained by the CVD method using powder, steel 09CrNi2MoCu, for I_S values up to 60 kW/cm2 in the range of E_S (25, 100) J/mm2 are presented in [6]. The same result was obtained as for us: the form factor practically does not change when the I_S is varied over 30 kW/cm2. The form factor increases linearly with F within $(2...3)$ in the studied velocity range of $(20...50)$ mm/s.

![Figure 5](image2)

Figure 5. The dependence of height H_0 on ES for different velocity V [mm/s] (a); the dependence of form factor on the velocity V (b).

Thus, if I_S increases at a constant velocity, that is, E_S increases accordingly, and, consequently, the volume of MP will increase, but primarily due to the length of the melt bath, figure 4(a). The height and width of the track will increase slightly while maintaining the shape of the track. As previously mentioned, the mass productivity, determined primarily by the mass flow rate of the powder, increases approximately as $E_S^{1/3}$. If the scanning velocity increases with an increase in I_S over 25 kW/cm2 ($E_S = \text{const}$), the volume of the melt will not change its value, Fig.4(b), but the length of the MP will
increase, figure 3(a), at the same time the height and, accordingly, the form factor of the track will decrease with increasing velocity (figure 5).

5. Conclusion
At the LMD setup, designed at ILIT RAS, the geometrical characteristics of the melt bath were measured at different values of the technological parameters: scanning velocity and radiation power. Experimentally data was obtained with mounted on the coaxial scheme high-speed cameras. Obtained dependences of the width D and length L_{MP} were presented. The height of the received tracks with different values of intensity I_s up to 60 kW/cm2 in the range of E_s from 20 to 60 J/mm2 are shown. The powder (40...100) microns of austenitic steel PR-Kh18N9 with a mass flow rate of 8.4 g/min was used. The length of the melt region L increases with the growth of I_s and practically does not depend on the scanning velocity in the range (5...10) mm/s. The melt volume is estimated taking into account the measured track height. At the same velocity, the volume of the melt increases with the value of the I_s exceeding the threshold, the value of which increases with increasing velocity. The volume of the melt increases with the specific energy E_s.

The relationship between the geometric characteristics of the melt bath and the shape of the track formed in the LMD process is shown. The dependence of the form factor on V in the range of variation (5...12.5) mm/min was obtained. When the speed changes (5...8) mm/ min, F will change slightly, with further velocity growth, F increases linearly to 3.

Acknowledgments
This work was supported by the Ministry of Science and Higher Education within the State assignment of the FSRC “Crystallography and Photonics” RAS in part of the developed methodology of optical diagnostic, and under grant assistance of Russian Foundation for Basic Research (Project No. 18-29-03249) in part of experimental results.

References
[1] Ocylok S, Alexeev E, Mann S, Weisheit A, Wissenbach K and Kelbassa I 2014 Physics Procedia 56 228
[2] Ding Y, Warton J and Kovacevic R 2016 Addit. Manuf. 10 24
[3] Zavalov Y N, Dubrov A V, Ivanov I M and Dubrov V D 2019 J. Phys. Conf. Ser. 1396 012046
[4] Zavalov Y N, Dubrov A V, Makarova E S and Dubrov V D 2019 J. Phys. Conf. Ser. 1396 012045
[5] Tang Z J, Liu W W, Wang Y W, Saleheen K M, Liu Z C, Peng S T, Zhang Z and Zhang H C 2020 The Internat. J. of Advanced Manufacturing Technology 108 3437
[6] Zadykyan G G, Korsmik R S, Mendagaliev R V and Turichin G A 2020 Solid State Phenomena 299 345–50