Generation of steady entanglement via unilateral qubit driving in bad cavities

Zhao Jin¹, Shi-Lei Su², Ai-Dong Zhu³, Hong-Fu Wang³, Li-Tuo Shen⁴ & Shou Zhang¹,³

We propose a scheme for generating an entangled state for two atoms trapped in two separate cavities coupled to each other. The scheme is based on the competition between the unitary dynamics induced by the classical fields and the collective decays induced by the dissipation of two non-local bosonic modes. In this scheme, only one qubit is driven by external classical fields, whereas the other need not be manipulated via classical driving. This is meaningful for experimental implementation between separate nodes of a quantum network. The steady entanglement can be obtained regardless of the initial state, and the robustness of the scheme against parameter fluctuations is numerically demonstrated. We also give an analytical derivation of the stationary fidelity to enable a discussion of the validity of this regime. Furthermore, based on the dissipative entanglement preparation scheme, we construct a quantum state transfer setup with multiple nodes as a practical application.

Quantum entanglement is an intriguing property of composite systems. The term refers to inseparable correlations that are stronger than all classical counterparts¹,². To perform quantum communication safely and perfectly, remote parties are usually required to share a quantum channel of a maximally entangled state. Nevertheless, in real experiments, it is difficult to achieve a perfect quantum channel due to environmental noise. Therefore, in long-distance quantum communication and quantum communication networks, the generation of a steady entanglement between different nodes is significantly challenging³,⁴. The main obstacle in preserving entanglement is dissipation induced by the environment, which is inevitable in the development of quantum science and technology. Generally, entanglement purification⁵,⁶, together with the use of quantum repeaters⁷,⁸, is an efficient method for addressing environmental noise. From this perspective, it seems rather conflicting that dissipation can be used as a powerful resource to create entanglement⁹–⁴⁰ or to realize a spin squeezing state⁴¹,⁴². In 1999, Plenio et al. and Cabrillo et al. presented schemes for engineering entanglement that utilize dissipation⁹,¹⁰, which opened up a new chapter for entanglement generation based on dissipative dynamics. Afterward, several schemes were suggested for studying the entanglement in dissipative quantum systems. In particular, Kastoryano, Reiter, and Srensen considered a dissipative scheme for preparing a maximally entangled state of two Λ-type atoms in a high-finesse optical cavity¹¹. Their results were better than those obtained via unitary-dynamics-based schemes, as their schemes do not require specifying the initial state or accurately controlling the evolution time. Shen et al. generalized this scheme to prepare distributed entanglement via dissipation¹²,¹³. In addition, Reiter et al.¹⁴ proposed a dissipative scheme in which two transmon qubits can be driven into a steady state in a circuit quantum electrodynamics setup. Recently, the dissipative generation of steady entanglement between two qubits was experimentally achieved using trapped ions¹⁵,¹⁶ and superconducting qubits¹⁷. Moreover, several interesting schemes concerning the manipulation of quantum states with dissipation dynamics exist, such as the dissipation-induced geometric phase¹⁸, stimulated Raman adiabatic passage (STIRAP) via dissipative quantum dynamics¹⁹, and dissipation-assisted quantum state manipulation in cavities²⁰.

To perform large-scale quantum computing, the quantum control of separate nodes of a quantum network is indispensable. Coupled cavities are an essential aspect of distributed quantum information processing. One important step is to entangle qubits located in spatially separated resonators. To date, several theoretical²¹–²³ and experimental schemes²⁴ for generating maximally entangled states have been proposed. Most of these schemes
focus on unitary dynamical evolution, in which the inevitable noise can have only detrimental effects, and the system requires precise time control and state initialization.

In this paper, we propose a scheme for preparing and stabilizing a maximally entangled state in coupled cavities by effectively utilizing the unitary dynamics provided by microwave fields and the dissipation originating from cavity decay, where only one atom is driven by two classical fields with precisely chosen frequencies. Our present work has the following features: (i) Our scheme performs well without the need to specify the initial state nor control the evolution time accurately. (ii) This scheme applies unilateral classical driving to only one atom. This is in contrast to ref.27, in which both atoms must be driven by three optical lasers. Finally, (iii) our scheme can be generalized to multiple-coupled-cavity models to perform quantum processing tasks such as state transfer between separate nodes. With the currently achievable experiment parameters, the numerical simulation demonstrates that steady-state entanglement with high fidelity, purity, and Clauser-Horne-Shimony-Holt (CHSH) correction can be obtained55 and that the scheme is robust against parameter fluctuations. We also give an analytical form of the fidelity to demonstrate the validity of our scheme.

Results

Theoretical Model. The coupled-cavity system under consideration is shown in Fig. 1. Two identical two-level atoms 1 and 2 are trapped in two coupled cavities. Each atom has a ground state $|g\rangle$ and an excited state $|e\rangle$, with the corresponding energies 0 and ω_0. The atomic transition $|g_i\rangle \leftrightarrow |e_i\rangle$ ($i = 1, 2$) is dispersively coupled to the cavity mode with the coupling constant g and detuning Δ_0, and the first atom is driven by two off-resonance optical lasers with Rabi frequency Ω_k and detuning Δ_k ($k = 1, 2$). Photons can hop between the cavities. The Hamiltonian of the system can be written as (setting $\hbar = 1$ throughout this paper)

$$H = H_{WL} + H_{CL},$$

where

$$H_{WL} = \sum_{i=1,2} \omega_0|e_i\rangle\langle e_i| + \sum_{j=A,B} \omega_j a_j^\dagger a_j + f(a_A a_B + a_B a_A) + g(S_A^+ a_A + S_B^+ a_B) + \text{H.c.},$$

and

$$H_{CL} = \sum_{k=1,2} \Omega_k e^{-i\omega_k t} S_k^+ + \text{H.c.},$$

$$S_k^+ = |e_k\rangle\langle g_k| + |g_k\rangle\langle e_k|,$$

where S_k^+ is the annihilation operator for the optical mode of cavity k, and ω_k and Ω_k represent the frequency and Rabi frequency of the kth driving field, respectively. These two modes are not coupled with each other and are linearly related to the field modes of the two cavities. To simplify the dynamics of the system, we introduce the non-local bosonic modes

$$c_1 = \frac{\sqrt{2}}{2}(a_A + a_B),$$

$$c_2 = \frac{\sqrt{2}}{2}(a_A - a_B).$$

These two modes are not coupled with each other and are linearly related to the field modes of the two cavities. In terms of the new operators, the Hamiltonian H_{WL} can be rewritten as

$$H_{WL} = \sum_{i=1,2} \omega_0|e_i\rangle\langle e_i| + (\omega_\pm f) c_1^\dagger c_1 + (\omega_\mp f) c_2^\dagger c_2 + \frac{g}{\sqrt{2}} [S_A^+ (c_1 + c_2) + S_B^+ (c_1 - c_2)] + \text{H.c.}. $$
The Hamiltonian H_{WL} describes the coupling of the two atoms to the delocalized field modes c_1 and c_2 with frequencies $\omega_a + J$ and $\omega_a - J$. In the interaction picture with respect to $H_{ee} J c c$ $(0, 1, 2)$, we obtain the interaction Hamiltonian

$$H_{gL} = g c^\dagger_1 (\hat{c}^\dagger_1 + \hat{c}^\dagger_2) + (\hat{c}^\dagger_1 - \hat{c}^\dagger_2) S_1^+ + H.c.,$$

(5)
in which $\Delta_3 = \omega_0 - \omega_a$. Meanwhile, bosonic mode c_1 is resonant with the two qubits, and bosonic mode c_2 is largely dispersive with the two qubits under the conditions of $J = \Delta_3$ and $\Delta_3 + J \approx g$. Therefore, after discarding the rapidly oscillating terms, the interaction Hamiltonian reduces to

$$H_{WL}' = \frac{\sqrt{2}}{2} g (S_1^+ + S_2^+) c_1 + H.c.$$

(6)

The dynamics of an open dissipative system in Lindblad form is described by the master equation

$$\dot{\rho}(t) = i[H, \rho(t)] + \frac{1}{2} \sum_j \left[2\hat{L}_j \rho(t) \hat{L}_j^\dagger - (\hat{L}_j^\dagger \hat{L}_j \rho(t) + \rho(t) \hat{L}_j^\dagger \hat{L}_j) \right],$$

(7)

where H represents the original Hamiltonian of the whole system, as shown in Eqs (1) and (2), and the Lindblad superoperator is defined as \hat{L}_j. Specifically, in the current scheme, the Lindblad operators can be expressed as $\hat{L}_\eta = \sqrt{\eta} \hat{a}$ ($j = A, B$), which describes the dissipation induced by the leakage of cavity A and cavity B, and $\hat{L}_\gamma = \sqrt{\gamma} |e_j\rangle \langle e_j| (n = 1, 2)$, which describes the dissipation induced by the spontaneous emission of the two atoms. η and γ are the leakage rate of the cavities and the atomic spontaneous emission rate, respectively.

Preparation of the steady entanglement. We transform the Hamiltonian H_{WL}' in Eq. (6) back into the original picture. The spectroscopy of the system is well described by the dressed states, i.e., the eigenstates of the Hamiltonian $H_0 + H_{WL}'$, as shown in Fig. 2(a). Note that the excitation number of the total system $N_{\psi} = \sum_{i=1,2} \langle e_i | e_i + c_i^\dagger c_i \rangle$ commutes with H_0 and H_{WL}', the excitation number is thus conserved under the control of these two Hamiltonians. Nevertheless, the Hamiltonian H_{CL} and Lindblad superoperator \hat{L}_j will change the excitation number because these two operators do not commute with the excitation number operator. By choosing suitable driving field frequencies, the
transitions to the Hilbert subspaces with three or more excitations are off-resonance with the two classical fields due to the unequal spacings of the energy levels of the dressed states. When the Rabi frequencies of the classical fields are substantially smaller than the atom-cavity mode coupling strength, i.e., $\Omega_2 \ll g$, populations of the dressed states with more than two excitations can be neglected. Therefore, we can restrict our analysis to the physical mechanism of dissipative preparation in the Hilbert subspace up to two excitations. We denote the dressed state of the coupled system as $|A, B\rangle|C, D\rangle$, where the first and second ket represent the state of the two atoms and of the two delocalized bosonic modes, respectively. $A \in \{e_1, g_1\}$, $B \in \{e_2, g_2\}$ and $C(D) \in \{m\}$, with m being the positive integer used to denote the photon number. The dressed states $|\Phi_N\rangle$ with the corresponding eigenvalue E_N within the excitation subspace N_2 can be expressed as follows: the ground state $|\Phi_0\rangle = |g_1, g_2\rangle|0, 0\rangle$ ($E_0 = 0$); the one-excitation states $|\Phi_1\rangle = |\phi_1\rangle|0, 0\rangle$ ($E_1 = \omega_0$) and $|\Phi_1^e\rangle = |\phi_1^e\rangle|0, 0\rangle + \frac{1}{\sqrt{2}}|g_1, g_2\rangle|1, 0\rangle$ (where $|\phi_1\rangle = 1/\sqrt{2}(|e_1, g_2\rangle + |g_1, e_2\rangle)$) and $|\Phi_1^g\rangle$ is the maximal entanglement to be prepared for the two atoms; and the two-excitation states $|\Phi_2^L\rangle = |\phi_2\rangle|0, 0\rangle$ ($E_2^L = 2\omega_0$), and $|\Phi_2^g\rangle = |\phi_2^g\rangle|0, 0\rangle$, where $|\phi_2\rangle = 1/\sqrt{2}(|e_1, g_2\rangle + |g_1, e_2\rangle + |g_1, e_2\rangle, 0)$. These dressed states are the eigenstates of the Hamiltonian $H_0 + H_{WL}$, which can be considered as a set of approximately complete bases. Under the dressed state picture, the Hamiltonian H_{CL} can be rewritten as

$$H_{CL} = \sum_{k=1,2} \Omega_k e^{-i\phi_k}\left[\frac{1}{2}(|\Phi_1^L\rangle \langle \Phi_0| + |\Phi_0\rangle \langle \Phi_1^L|) + \frac{1}{\sqrt{2}}|\Phi_1^g\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| - |\Phi_1^g\rangle \langle \Phi_0|) + \frac{1}{\sqrt{3}}|\Phi_1^g\rangle \langle \Phi_0|
ight]$$

$$+ \frac{1}{2}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| + |\Phi_1^g\rangle \langle \Phi_0|) + \frac{1}{\sqrt{3}}|\Phi_1^g\rangle \langle \Phi_0|
ight]$$

$$+ \frac{1}{2}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| - |\Phi_1^g\rangle \langle \Phi_0|) - \frac{1}{\sqrt{6}}|\Phi_1^g\rangle \langle \Phi_0|
ight]$$

$$+ \frac{1}{2}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| + |\Phi_1^g\rangle \langle \Phi_0|) - \frac{1}{\sqrt{6}}|\Phi_1^g\rangle \langle \Phi_0|
ight]$$

$$- \frac{1}{2}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| + |\Phi_1^g\rangle \langle \Phi_0|) - \frac{1}{\sqrt{6}}|\Phi_1^g\rangle \langle \Phi_0|
ight] + \text{H.c.}$$

(8)

We proceed to the interaction picture with respect to the Hamiltonian $H_0 + H_{WL}$, expressed by the eigenvectors and eigenvalues in the zero-, one- and two-excitation subspaces. Eq. (8) can be rewritten as

$$H'_{CL} = \sum_{k=1,2} \Omega_k e^{-i\phi_k}\left[\frac{1}{2}(e^{i(\Delta_k - g)t} |\Phi_1^L\rangle \langle \Phi_0| + e^{i(\Delta_k + g)t} |\Phi_0\rangle \langle \Phi_1^L|)
ight]$$

$$+ e^{i\Delta_k}\left[\frac{1}{\sqrt{3}}(|\Phi_1^L\rangle \langle \Phi_0| + \frac{1}{\sqrt{3}}|\Phi_1^g\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k - \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| - e^{i(\Delta_k + \sqrt{3}g)t} |\Phi_2^0\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k - \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| + e^{i(\Delta_k + \sqrt{3}g)t} |\Phi_2^0\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k - \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| - \frac{1}{\sqrt{6}}|\Phi_2^0\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k + \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| - \frac{1}{\sqrt{6}}|\Phi_2^0\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k - \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| + \frac{1}{\sqrt{6}}|\Phi_2^0\rangle \langle \Phi_0|\right]$$

$$+ \frac{1}{2}\left[e^{i(\Delta_k + \sqrt{3}g)t} |\Phi_2^L\rangle \langle \Phi_0| + \frac{1}{\sqrt{6}}|\Phi_2^0\rangle \langle \Phi_0|\right] + \text{H.c.}.$$

(9)

By setting the detuning $\Delta_k = \omega_0 - \omega_1$ equals to $-\sqrt{3}g$ ($k = 1, 2$), the driving field Ω_1 resonantly drives the transitions $|\Phi_0\rangle \leftrightarrow |\Phi_1^L\rangle$, $|\Phi_1^L\rangle \leftrightarrow |\Phi_0^g\rangle$ and $|\Phi_0^g\rangle \leftrightarrow |\Phi_1^L\rangle$; Ω_2 resonantly drives $|\Phi_0\rangle \leftrightarrow |\Phi_1^L\rangle$, $|\Phi_1^L\rangle \leftrightarrow |\Phi_0^g\rangle$ and $|\Phi_0^g\rangle \leftrightarrow |\Phi_1^L\rangle$; and all other transitions between any two arbitrary dressed states are largely detuned. Under the weak excitation condition, i.e., $\Omega_k \ll g$, using the rotating wave approximation, we can adiabatically eliminate the non-resonance coupling terms. The Hamiltonian H'_{CL} reduces to
and then to, of the target (ii)

\[
\begin{align*}
H^{CL}_{\omega} & = \Omega_i \left(\frac{1}{2} \vert \Phi_0 \rangle \langle \Phi_0 \vert + \frac{1}{2} \vert \Phi_2 \rangle \langle \Phi_2 \vert - \frac{1}{\sqrt{6}} \vert \Phi_2 \rangle \langle \Phi_2 \vert \right) \\
& \times \Omega_2 \left(\frac{1}{2} \vert \Phi_0 \rangle \langle \Phi_0 \vert - \frac{1}{2} \vert \Phi_2 \rangle \langle \Phi_2 \vert - \frac{1}{\sqrt{6}} \vert \Phi_2 \rangle \langle \Phi_2 \vert \right) + H.c.
\end{align*}
\]

From the above equation, we can see that the target state \(\vert \Phi_0 \rangle \) is decoupled from the Hamiltonian \(H^{CL}_{\omega} \). Hence, we can derive \(-i[H^{CL}_{\omega}, \vert \Phi_0 \rangle \langle \Phi_0 \vert] = 0\). To generate the required Bell state, here, we require the atomic spontaneous emission to be much slower than other dynamical processes, i.e., for the initial state \(\vert \Phi_0 \rangle \) \(\otimes \vert 00 \rangle \) is a Kronecker product state of the Bell state and the two delocalized vacuum bosonic states, it is unaffected by the photon decay, i.e., \(-i\sum_i [2|\tilde{E}_{\omega i}| \Phi_0^i \rangle \langle \Phi_0^i | - (|\tilde{E}_{\omega i}| \Phi_0^i \rangle \langle \Phi_0^i | + |\Phi_0^i \rangle \langle \Phi_0^i | \tilde{E}_{\omega i} \rangle \langle \tilde{E}_{\omega i} |) = 0 (i = A, B)\). Therefore, the transitions associated with the target state \(\vert \Phi_0 \rangle \) are hardly affected by classical drivings and cavity decay, so that it is a steady state.

The processes for producing and stabilizing the Bell state \(\vert \Phi_0 \rangle \) are shown in Fig. 2(b). The initial system state \(\vert \Phi_0 \rangle \) is driven by the classical field \(\Omega_1 \) (\(\Omega_2 \)) to the one-excitation dressed state \(\vert \Phi_1 \rangle \) (\(\vert \Phi_2 \rangle \)) and then to \(\vert \Phi_1 \rangle \) (\(\vert \Phi_2 \rangle \)) by the classical field \(\Omega_1 \) (\(\Omega_2 \)). The photon loss in the cavities results in the decaying channel \(\vert \Phi_0 \rangle \rightarrow \vert \Phi_0 \rangle = \vert \phi_0 \rangle \otimes \vert 0 \rangle \otimes \vert 0 \rangle \). On the other hand, the state \(\vert \Phi_0 \rangle \) decays to the one-excitation dressed state \(\vert \Phi_1 \rangle \), being repumped by the classical fields \(\Omega_1 \) and \(\Omega_2 \) to \(\vert \Phi_0 \rangle \) and \(\vert \Phi_2 \rangle \); then, with the coherent driving and dissipation processes continuing, the population of the dressed state \(\vert \Phi_1 \rangle \) gradually declines until the entire qubit population is driven to the Bell state \(\vert \Phi_0 \rangle \).

Discussion

To demonstrate the feasibility of our Bell-state stabilization mechanism, we assess the performance of our scheme by numerically solving the Lindblad master equation. Under the condition that the atomic spontaneous emission rate is much slower than other dynamical processes, i.e., \(\gamma \ll \kappa \), \(\Omega_1 \), \(\Omega_2 \), we choose the following parameters from a recent circuit QED experiment \(\chi / 2\pi \approx 6 \text{MHz}, \kappa / 2\pi \approx 1.7 \text{MHz}, T_1 \approx 9 \mu s \), where \(T_1 \) is the qubit energy relaxation time, and \(\chi = g^2/\Delta \), with \(\Delta \) being the qubit-resonator detuning. It is reasonable to choose \(\Delta = 10 \text{g} \) in this dispersive interaction system, yielding \(\gamma / 2\pi \approx 60 \text{MHz}, \kappa \approx 2.8 \times 10^{-2} \text{g} \), and \(\gamma \approx 2.72 \times 10^{-2} \text{g} \). We have taken the optimized Rabi frequencies of the drivings \(\Omega_1 = 0.037 \text{g} \) and \(\Omega_2 = 0.0775 \text{g} \) and the cavity-cavity hopping strength \(J = 20 \text{g} \). In Fig. 3(a), we plot the evolutions of the fidelity \(F(t) = \text{Tr}([\vert \phi_0 \rangle \langle \phi_0 \vert \otimes I] \rho(t) \rightarrow \infty)] \) with experimental and optimized parameters. The results show that the desired state can be prepared with a fidelity greater than 88% when the evolution time \(t \approx 1712/\gamma \). By taking \(\gamma = 1.75 \times 10^{-3} \text{g} \) and \(\kappa = 1.6 \times 10^{-2} \text{g} \), the optimal fidelity for the target state is approximately 95.3% when the evolution time \(t \approx 1819/\gamma \). Dissipative processes generally lead to the production of mixed states; therefore, we introduce purity to characterize the mixture degree of the target state. With the above two sets of parameters, in Fig. 3(b), the purity \(P(t) = \text{Tr}([\rho(t)^2] \) of the target state is plotted as a function of the evolution time. The target state can be stabilized using an experimental purity of approximately 83% and an optimal purity of approximately 94%. Because the initial state of the system is \(\vert \Phi_0 \rangle \), the purity is precisely unity. In addition, note that the purity curve exhibits a valley in the regime \(0 < t < 500/\gamma \). This valley occurs because the coherent driving is dominant in the early stages of evolution, thus leading the system to be in a mixture of a variety of quantum states. With increasing evolution time, the competition between
the coherent driving and dissipation drives the system to a dynamic equilibrium, which is a mixture of specific dressed states.

To inspect the uniqueness of target state $|\Phi^+\rangle$ numerically, in Fig. 4, we show the behavior of the fidelity with respect to the target state for four different initial states $|g, e\rangle[0, 0]$, $|g, e\rangle[0, 0]$, $|g, e\rangle[0, 0]$, and $|e, e\rangle[0, 0]$ with the optimized parameters $\Omega_1 = 0.037\, g$, $\Omega_2 = 0.0775\, g$, $J = 20\, g$, $\gamma = 1.75 \times 10^{-3}\, g$, and $\kappa = 1.6 \times 10^{-2}\, g$. The inset in Fig. 7(a) shows that when the system is stabilized, i.e., when the evolution time is fixed at $t = 1791\, g$, the CHSH correlation versus the evolution time is plotted in Fig. 5, from which one can observe a value of approximately 2.45, clearly exceeding the maximum value of 2 allowed by local hidden variable theories. Consider the initial state $|g, e\rangle[0, 0]$ or $|g, e\rangle[0, 0]$, which can be regarded as a superposition of the one-excitation dressed states $|\Phi^+\rangle$ and $|\Phi^+\rangle$. As has been shown, due to the coherent driving and dissipation process, the populations of $|\Phi^+\rangle$ are ultimately transferred to the target steady state when the evolution time $t \simeq 1819\, g$. Therefore, the generation of the target steady state is independent of the initial state, and every choice can lead to identical population for the target state.

The CHSH correlation $S(t)$ is defined as

$$S(t) = \text{Tr}[(O_{\text{CHSH}})\rho(t)],$$

with

$$O_{\text{CHSH}} = \sigma_y \otimes -\frac{\sigma_x - \sigma_x}{\sqrt{2}} + \sigma_x \otimes -\frac{\sigma_y - \sigma_y}{\sqrt{2}}$$

$$+ \sigma_x \otimes -\frac{\sigma_y - \sigma_y}{\sqrt{2}} - \sigma_y \otimes -\frac{\sigma_x - \sigma_x}{\sqrt{2}},$$

where $\sigma_{x,y}(\sigma_{x,y})$ are the Pauli operators of atom 1(2). With the above experimental parameters, the CHSH correlation versus the evolution time is plotted in Fig. 5, from which one can observe a value of approximately 2.45, clearly exceeding the maximum value of 2 allowed by local hidden variable theories.

When referring to experimental implementation, it is possible that some system parameters may be unable to maintain their preset values as expected. In Fig. 6(a,b), the fidelity and purity are plotted as functions of the Rabi frequencies Ω_1 and Ω_2, respectively, for the given dissipative factors κ and γ. The results show that the fidelity and purity are higher than 80% and 70%, respectively, within a wide range of Rabi frequencies, demonstrating that the scheme is insensitive to deviations of the control parameters Ω_1 and Ω_2.

To clearly observe the role of each dissipative factor, we first consider the system without spontaneous emission, and then we consider it without cavity decay. In Fig. 7(a), we plot the fidelity of the target state $|\Phi^+\rangle$ by taking the atomic spontaneous emission rate as $\gamma = 0$ and the cavity decay rate as $\kappa = 2.8 \times 10^{-2}\, g$, which shows that the desired state can be prepared with a fidelity of 94.5% and that the time for the system to reach the steady state is approximately $t = 1413\, g$. This result is approximately 5% higher than that of the situation for $\gamma = 2.72 \times 10^{-4}\, g$ in Fig. 3(a). The inset in Fig. 7(a) shows that when the system is stabilized, i.e., when the evolution time is fixed at $t = 4 \times 10^9\, g$, the fidelity decreases with increasing γ. This result occurs because as γ increases, the transition rate from the target steady state to the ground state $|\Phi_0\rangle$ becomes stronger such that the fidelity decreases. This proves that the ideal entanglement generation scheme requires the atomic spontaneous emission rate $\gamma = 0$. In Fig. 7(b), we plot the fidelity of the target state by taking the cavity decay rate as $\kappa = 0$ and the atomic spontaneous emission rate as $\gamma = 2.72 \times 10^{-4}\, g$. The results show that when the values of the cavity decay rate are set to zero, the scheme

![Figure 4](https://www.nature.com/scientificreports/)
cannot succeed. In the inset of Fig. 7(b), we choose the evolution time as \(t = 4 \times 10^3 / g \) and plot the fidelity of the presented scheme with varying cavity decay rate \(\kappa \). As \(\kappa \) increases, the fidelity clearly increases. Nevertheless, further increases in the cavity decay will have an adverse effect on the unitary dynamics and thus decrease the overall performance of the scheme. Therefore, the results provide further verification that the ideal entanglement generation scheme can be achieved based on cavity decay.

Different from the atomic spontaneous emission, atoms are characterized by another dissipation factor: pure dephasing. This detrimental effect will be included in the numerical simulation. The Lindblad operator describing the dephasing of atom \(n \) can be written as \(\gamma \hat{a} \hat{a}^\dagger \) for \(n = 1, 2 \), where \(\gamma \) is the atomic dephasing rate. We choose the pure dephasing time \(T_{\gamma} \approx 36 \mu s (\gamma = 1/T_{\gamma} \approx 6.8 \times 10^{-5} g) \), based on the experimental work in \(^{37}\). We plot the fidelity and purity of the target state \(|\Phi_1\rangle \) as functions of \(\gamma \) with the initial state \(|\Phi_0\rangle \) by taking the optimized Rabi frequencies of the drivings as \(\Omega_1 = 0.037g \) and \(\Omega_2 = 0.0775g \), the cavity-cavity hopping strength as \(J = 20g \), and the experimental dissipative factors as \(\kappa = 2.8 \times 10^{-2} g \) and \(\gamma = 2.72 \times 10^{-4} g \).

To further understand the proposed dissipative entanglement preparation scheme, we derive the stationary fidelity in analytical form for the target state with some reasonable approximations. First, we adiabatically
and, plotted versus the atomic dephasing rate + . Therefore, we set | , and because both processes could drive the initial state to , i.e., arbitrary initial states can be driven to the target state |Φ⟩. The inset of (a) shows the fidelity of the steady state as a function of the atomic spontaneous rate γ for the dissipative factors κ = 2.8 × 10⁻² g. The fidelity varies from 0 to 5 × 10⁻⁴ g at time 4 × 10³/g. In (b), the selected dissipative factors are κ = 0 and γ = 2.72 × 10⁻⁴ g. The inset of (b) shows the fidelity of the steady state as a function of the cavity decay rate κ with the dissipative factor γ = 2.72 × 10⁻⁴ g. κ varies from 0 to 8 × 10⁻² g at time 4 × 10⁷/g.

Fidelity and purity of the steady state |Φ⟩ as a function of gt with the initial state |Φ⟩ when considering the effect of pure dephasing, where the selected parameters are Ω, Ω, and J = 20 g. We choose the experimental dissipative factors γ = 2.72 × 10⁻⁴ g, κ = 2.8 × 10⁻² g, and γ = 6.8 × 10⁻² g. The chosen parameters are Ω, Ω, and J = 20 g. In (a), the selected dissipative factors are γ = 0 and κ = 2.8 × 10⁻³ g. The inset of (a) shows the fidelity of the steady state as a function of the atomic spontaneous rate γ for the dissipative factors κ = 2.8 × 10⁻² g. γ varies from 0 to 5 × 10⁻⁴ g at time 4 × 10³/g. In (b), the selected dissipative factors are κ = 0 and γ = 2.72 × 10⁻⁴ g. The inset of (b) shows the fidelity of the steady state as a function of the cavity decay rate κ with the dissipative factor γ = 2.72 × 10⁻⁴ g. κ varies from 0 to 8 × 10⁻² g at time 4 × 10⁷/g.

Fidelity and purity of the steady state |Φ⟩ as a function of gt with the initial state |Φ⟩ when considering the effect of pure dephasing, where the selected parameters are Ω, Ω, and J = 20 g. In (a), the selected dissipative factors are γ = 0 and κ = 2.8 × 10⁻³ g. The inset of (a) shows the fidelity of the steady state as a function of the atomic spontaneous rate γ for the dissipative factors κ = 2.8 × 10⁻² g. γ varies from 0 to 5 × 10⁻⁴ g at time 4 × 10³/g. In (b), the selected dissipative factors are κ = 0 and γ = 2.72 × 10⁻⁴ g. The inset of (b) shows the fidelity of the steady state as a function of the cavity decay rate κ with the dissipative factor γ = 2.72 × 10⁻⁴ g. κ varies from 0 to 8 × 10⁻² g at time 4 × 10⁷/g.

Figure 7. (a,b) Fidelity of the steady state |Φ⟩ versus gt with the initial state |Φ⟩. The chosen parameters are Ω = 0.037 g, Ω = 0.0775 g, and J = 20 g. In (a), the selected dissipative factors are γ = 0 and κ = 2.8 × 10⁻³ g. The inset of (a) shows the fidelity of the steady state as a function of the atomic spontaneous rate γ for the dissipative factors κ = 2.8 × 10⁻² g. γ varies from 0 to 5 × 10⁻⁴ g at time 4 × 10³/g. In (b), the selected dissipative factors are κ = 0 and γ = 2.72 × 10⁻⁴ g. The inset of (b) shows the fidelity of the steady state as a function of the cavity decay rate κ with the dissipative factor γ = 2.72 × 10⁻⁴ g. κ varies from 0 to 8 × 10⁻² g at time 4 × 10⁷/g.

Figure 8. (a) Fidelity and purity of the steady state |Φ⟩ as a function of gt with the initial state |Φ⟩ when considering the effect of pure dephasing, where the selected parameters are Ω = 0.037 g, Ω = 0.0775 g, and J = 20 g. We choose the experimental dissipative factors γ = 2.72 × 10⁻⁴ g, κ = 2.8 × 10⁻² g, and γ = 6.8 × 10⁻² g. The inset of (a) shows the fidelity of the steady state as a function of the atomic spontaneous rate γ for the dissipative factors κ = 2.8 × 10⁻² g. γ varies from 0 to 5 × 10⁻⁴ g at time 4 × 10³/g. In (b), the selected dissipative factors are κ = 0 and γ = 2.72 × 10⁻⁴ g. The inset of (b) shows the fidelity of the steady state as a function of the cavity decay rate κ with the dissipative factor γ = 2.72 × 10⁻⁴ g. κ varies from 0 to 8 × 10⁻² g at time 4 × 10⁷/g.
the approximate analytical solution, we take the experimental parameters $\kappa = 2 \times 2.8 \times 10^{-2} \text{g}$ and $\gamma = 2.72 \times 10^{-4} \text{g}$, and the optimized Rabi frequencies of the drivings are $\Omega_1 = 0.037 \text{g}$ and $\Omega_2 = 0.0775 \text{g}$. Here, κ is the collective bosonic mode decay; it is reasonable to select a value of twice the leakage of the cavity field. In Fig. 9, we present a truth table of the steady-state density matrix constructed corresponding to the analytical results; the table indicates that the fidelity of the target steady state is approximately $\rho_{5,5} = 0.8763$. This is only slightly different from the numerical fidelity of 0.889 for the initial state $|\Phi_0\rangle$. Note that the approximation is valid under the condition that spontaneous emission is a passive source in driving the atomic qubits out of the target steady state.

In Fig. 10, the fidelity of the target steady state is plotted as a function of the atomic spontaneous emission rate γ.

The result shows that the fidelity decreases as the atomic spontaneous emission rate increases to a bearable extent; further increases in the dissipative factors will have greater negative effects on the performance of the scheme. In addition, to analytically verify the stationarity of the target entangled state $|\Phi_1\rangle$, we consider an ideal (the spontaneous emission rate $\gamma = 0$) and effective ($\Omega_\text{eff} \rightarrow \Omega_1 \rightarrow |\Phi_0\rangle \rightarrow |\Phi_1\rangle$) process. At this point, the density operator $\rho(t)$ of the system becomes 3×3. The initial state of the system is assumed to be $|\Phi_0\rangle$; thus, we can analytically give

$$
\frac{d\rho_{5,5}(t)}{dt} = \frac{16\pi^2 \Omega^2 \kappa \sinh \left(\frac{t}{\Omega} \right)^2}{\kappa^2 - 16\Omega^2},
$$

and

$$
\rho_{5,5}(t) = \frac{1}{2(Q)^{\frac{3}{2}}} \left[2e^{\frac{t}{\Omega}} e^{\frac{t}{2\sqrt{Q}}} + e^{\frac{\sqrt{Q}t}{2}} \kappa(Q - \sqrt{Q}) \right]
$$

$$
+ 32\sqrt{Q} \Omega^2 - e^{\frac{t}{2}} \kappa(\sqrt{Q} + \kappa) - 16\Omega^2 \right].
$$

Figure 9. Truth table of the steady-state density matrix. The parameters used are $\kappa = 2 \times 2.8 \times 10^{-2} \text{g}$ and $\gamma = 2.72 \times 10^{-4} \text{g}$, and the optimized Rabi frequencies of the drivings are $\Omega_1 = 0.037 \text{g}$ and $\Omega_2 = 0.0775 \text{g}$.

Figure 10. Fidelity of the target steady state as a function of the atomic spontaneous emission rate.
Figure 11. Variation rate of the probability for the target state versus \(g t \) with the initial state \(|\Phi_0\rangle \). The chosen parameter is \(\Omega = \Omega_1 + \Omega_2 \), in which \(\Omega_1 = 0.037 \, g \) and \(\Omega_2 = 0.0775 \, g \). The selected dissipative factor is \(\kappa = 2 \times 2.8 \times 10^{-2} \, g \). The inset shows the probability of the target state as a function of \(g t \).

\[Q = \kappa^2 - 16\Omega^2 \] and \(\Omega \) represents the effective Rabi frequency that directly drives the transition between \(|\Phi_0\rangle \) and \(|\Phi_1\rangle \). In Fig. 11, we plot the time evolution of \(d\rho_{5,5}(t)/dt \) with Eq. (13) by taking the parameter \(\Omega = \Omega_1 + \Omega_2 = 0.1145 \, g \) and the dissipative factor \(\kappa = 2 \times 2.8 \times 10^{-2} \, g \), which exhibits a oscillatory behavior before \(d\rho_{5,5}(t)/dt \) approaches 0 as the interaction time increases. This is the result of the competition between the coherent driving and dissipation. \(d\rho_{5,5}(t)/dt = 0 \) means that the probability of the target state reaching stabilization is time invariant. We also plot the probability of the target state versus \(g t \) in the inset of Fig. 11, which shows a very good agreement with the variance of \(d\rho_{5,5}(t)/dt \).

As a practical application of our dissipative entanglement preparation scheme in quantum communication, we construct a quantum state transfer setup with multiple nodes, as shown in Fig. 12. Suppose that each node is initially prepared in the entangled steady state \(|\phi_1\rangle \), which is shared by the sender (Alice) and the receiver (Bob). The unknown quantum state (referred to as a) to be transferred in Alice’s hands is \(|\phi_0\rangle \), and \(|\psi_0\rangle = |\Phi_0\rangle \) and \(|\psi_1\rangle = |\Phi_1\rangle \), where \(\alpha \) and \(\beta \) are unknown parameters, with \(|\alpha|^2 + |\beta|^2 = 1 \). Using a standard teleportation procedure, Bob can deterministically recover the unknown state only by applying some local operations \((I, \sigma_x, \sigma_y, \sigma_z) \) to atom 2. In the following, the atomic state at Bob’s side is an unknown quantum state, which can be subsequently transferred from the first node to the \(n \)th node by performing the same operation.

In summary, we have proposed a scheme for producing and stabilizing a Bell state in a coupled cavity system by cavity decay. The distinct feature of our scheme is that only one atom needs to be driven by classical control fields. This not only greatly simplifies the experimental implementation between separate nodes of a quantum network but also makes the scheme robust against drive amplitude fluctuations and cavity field decay. Using the presently available experimental parameters, a steady Bell state with a high fidelity and purity can be obtained from the first node to the \(n \)th node by performing the same operation.

Methods

We express the density operator \(\rho(t) \) of the system using the five basis states \(|\phi_0\rangle = |\Phi_0\rangle \), \(|\phi_1\rangle = |\Phi_1\rangle \), \(|c_0\rangle = |\phi_0\rangle \), \(|c_1\rangle = |\phi_1\rangle \), \(|c_2\rangle \), \(|c_3\rangle \), \(|c_4\rangle \), \(|c_5\rangle \), and \(|\psi_0\rangle = |\Phi_0\rangle \) and assume that the state of the system at arbitrary time \(t \) is \(|\psi(t)\rangle = c_0(t)|\phi_0\rangle + c_1(t)|\phi_1\rangle + c_2(t)|c_2\rangle + c_3(t)|c_3\rangle + c_4(t)|c_4\rangle + c_5(t)|c_5\rangle \), where \(c_i(t) \) denotes the probability amplitudes for the corresponding states. Hence, the density operator of the system in matrix form is given by

\[
\rho(t) = \begin{bmatrix}
|c_0(t)|^2 & c_0(t)c_0^*(t) & c_0(t)c_1^*(t) & c_0(t)c_2^*(t) & c_0(t)c_3^*(t) & c_0(t)c_4^*(t) & c_0(t)c_5^*(t) \\
& |c_1(t)|^2 & c_1(t)c_1^*(t) & c_1(t)c_0^*(t) & c_1(t)c_2^*(t) & c_1(t)c_3^*(t) & c_1(t)c_5^*(t) \\
& & |c_2(t)|^2 & c_2(t)c_2^*(t) & c_2(t)c_1^*(t) & c_2(t)c_3^*(t) & c_2(t)c_4^*(t) \\
& & & |c_3(t)|^2 & c_3(t)c_3^*(t) & c_3(t)c_2^*(t) & c_3(t)c_5^*(t) \\
& & & & |c_4(t)|^2 & c_4(t)c_4^*(t) & c_4(t)c_5^*(t) \\
& & & & & |c_5(t)|^2 & c_5(t)c_5^*(t)
\end{bmatrix}
\]

in which the diagonal elements represent the probability, also known as the fidelity, of the corresponding states. We define \(\rho_{j,k}(t) = c_j(t)c_k^*(t) \) (\(j, k = 1, 2, 3, 4, 5 \)). The evolution of the system is described by the following coupled differential equations for the corresponding density matrix elements:
Figure 12. Schematic diagram for the implementation of quantum state transfer using a standard teleportation procedure. The information of the unknown qubit can be transferred from the first node to the nth node. The solid box denotes the first node to teleport an unknown quantum state from Alice to Bob. The dashed box in the first panel represents two qubits that belong to the same participant. The gray box to the upper right is a quantum circuit of teleportation for the first node. Here, H represents a Hadamard operation, σ_x and σ_z are the Pauli operators representing local qubit-flip operations, and I is the identity operator.

\[
\begin{align*}
\frac{d\rho_{1,1}(t)}{dt} &= \frac{1}{2} \left[\gamma \Omega_1 (\rho_{1,2}(t) - \rho_{2,1}(t)) + \kappa \rho_{2,2}(t) + 2\gamma \rho_{3,3}(t) \right], \\
\frac{d\rho_{1,2}(t)}{dt} &= -\frac{1}{4} \kappa \rho_{1,2}(t) - \frac{1}{2} \gamma \Omega_2 \left(\rho_{1,3}(t) + \frac{\sqrt{6}}{3} \rho_{1,4}(t) \right) \\
&\quad + \frac{1}{2} \gamma \Omega_1 (\rho_{1,1}(t) - \rho_{2,2}(t)) + \frac{\sqrt{6}}{6} \kappa \rho_{2,2}(t), \\
\frac{d\rho_{1,3}(t)}{dt} &= -\frac{1}{2} \gamma \Omega_2 (\rho_{1,2}(t) - i\kappa \rho_{3,3}(t) + \Omega_1 \rho_{2,3}(t)), \\
\frac{d\rho_{1,4}(t)}{dt} &= -\frac{1}{6} \left(\sqrt{6} \Omega_2 \rho_{1,2}(t) - i\kappa \rho_{1,4}(t) + 3\Omega_1 \rho_{2,4}(t) \right), \\
\frac{d\rho_{1,5}(t)}{dt} &= -\frac{1}{2} \gamma \rho_{1,5}(t) - \frac{\sqrt{2}}{2} \kappa \rho_{2,3}(t) - \frac{1}{2} \gamma \Omega_2 \rho_{2,5}(t), \\
\frac{d\rho_{2,1}(t)}{dt} &= -\frac{1}{2} \Omega_1 (\rho_{1,2}(t) - \rho_{2,1}(t)) - \kappa (3\rho_{2,2}(t) - 2\rho_{4,4}(t)) \\
&\quad - \frac{1}{6} \Omega_2 (3\rho_{3,3}(t) + \sqrt{6} \rho_{2,4}(t) - 3\rho_{3,2}(t) - \sqrt{6} \rho_{3,2}(t)), \\
\end{align*}
\]
\begin{align*}
\frac{d\rho_{2,3}(t)}{dt} &= -\frac{1}{2} \Omega_1 \rho_{1,3}(t) - \frac{3}{4} \kappa \rho_{2,3}(t) \\
&\quad - \frac{1}{6} \Omega_2 \left(3 \rho_{2,3}(t) - 3 \rho_{3,3}(t) - \sqrt{6} \rho_{4,3}(t) \right), \\
\frac{d\rho_{2,4}(t)}{dt} &= -\frac{1}{2} \Omega_1 \rho_{1,4}(t) - \frac{5}{12} \kappa \rho_{2,4}(t) \\
&\quad - \frac{1}{6} \Omega_2 \left(\sqrt{6} \rho_{2,4}(t) - 3 \rho_{3,4}(t) - \sqrt{6} \rho_{4,4}(t) \right), \\
\frac{d\rho_{2,5}(t)}{dt} &= -\frac{1}{2} \Omega_1 \rho_{1,5}(t) - \frac{1}{6} \kappa \left(\frac{1}{4} \rho_{2,5}(t) + \frac{\sqrt{3}}{3} \rho_{3,5}(t) \right) \\
&\quad + \Omega_2 \left(\frac{1}{2} \rho_{3,5}(t) + \frac{\sqrt{6}}{6} \rho_{4,5}(t) \right), \\
\frac{d\rho_{3,3}(t)}{dt} &= \frac{1}{2} \Omega_1 (\rho_{2,3}(t) - \rho_{3,3}(t)) - \kappa \rho_{3,3}(t), \\
\frac{d\rho_{3,4}(t)}{dt} &= \Omega_2 \left(\frac{1}{2} \rho_{2,4}(t) - \frac{\sqrt{6}}{6} \rho_{3,4}(t) \right) - \frac{2}{3} \kappa \rho_{3,4}(t), \\
\frac{d\rho_{3,5}(t)}{dt} &= \frac{1}{2} \Omega_1 \rho_{2,5}(t) - \frac{1}{2} \kappa \rho_{3,5}(t), \\
\frac{d\rho_{4,4}(t)}{dt} &= \frac{\sqrt{6}}{6} \Omega_2 (\rho_{2,4}(t) - \rho_{4,4}(t)) - \frac{1}{6} \kappa \rho_{4,4}(t), \\
\frac{d\rho_{5,5}(t)}{dt} &= \frac{1}{6} \Omega_2 (\sqrt{6} \rho_{2,5}(t) - \kappa \rho_{5,5}(t)), \\
\frac{d\rho_{5,5}(t)}{dt} &= \kappa \rho_{5,5}(t) - \gamma \rho_{5,5}(t),
\end{align*}

in which we have omitted the corresponding transposed-conjugate terms because \(\frac{d\rho_{j,k}}{dt} = [\frac{d\rho_{k,j}}{dt}]^\dagger \) \((k \neq j)\). The analytical solutions for the stationary state equation \(\frac{d\rho_{j,k}}{dt} = 0 \) can be obtained as follows:

\begin{align*}
\rho_{1,1} &= \gamma \frac{M}{6} \left[288 \Omega_1^4 + 160 \kappa \Omega_1^2 \Omega_2 + 8 \Omega_2^4 (73 \kappa^2 - 9 \Omega_2^2) \\
&\quad + 8 \Omega_2 (30 \kappa^2 \Omega_2 + 37 \kappa \Omega_2^2) \\
&\quad + (\kappa^2 + 6 \Omega_2^2) (30 \kappa^4 + 169 \kappa^2 \Omega_2^2 + 198 \Omega_2^4) \\
&\quad + \Omega_1^2 (248 \kappa^4 + 682 \kappa^2 \Omega_2^2 + 984 \Omega_2^4) \right], \\
\rho_{2,2} &= \gamma \frac{M}{6} \left[4 \kappa \Omega_1^2 (30 \kappa^2 + 72 \Omega_2^2 + 109 \kappa \Omega_2^2) \\
&\quad + 60 \Omega_2 (2 \Omega_1^2 (64 \kappa^2 + 51 \Omega_2^2) \right], \\
\rho_{3,3} &= \frac{12 \gamma \Omega_1^2 \Omega_2^2}{M} \left(10 \kappa^2 + 36 \Omega_1^2 + 23 \Omega_2^2 \right), \\
\rho_{4,4} &= \frac{24 \gamma \Omega_1^2 \Omega_2^2}{M} \left(20 \kappa^2 + 20 \Omega_1^2 + 37 \Omega_2^2 \right), \\
\rho_{5,5} &= \frac{12 \kappa \Omega_1^2 \Omega_2^2}{M} \left(10 \kappa^2 + 36 \Omega_1^2 + 23 \Omega_2^2 \right),
\end{align*}

where the parameter

\begin{align*}
M &= 576 \gamma \Omega_1^6 + 160 \gamma \kappa \Omega_1^4 \Omega_2 + 8 \gamma \kappa^2 \Omega_1^2 \Omega_2 (30 \kappa^2 + 37 \Omega_2^2) \\
&\quad \times 8 \Omega_1^2 (137 \kappa^2 + 6 \Omega_2^2 (26 \gamma + 9 \kappa)) \\
&\quad + \gamma (\kappa^2 + 6 \Omega_2^2) (30 \kappa^4 + 169 \kappa \Omega_2^4 + 198 \Omega_2^2) \\
&\quad \times 2 \Omega_1^2 (184 \gamma \kappa^4 + \kappa^2 \Omega_1^2 (97 \gamma + 60 \kappa) + 6 \kappa \Omega_1^2 (199 \gamma + 23 \kappa)).
\end{align*}

References
1. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).
2. Schrödinger, E. Die gegenwärtige situation in der quantenmechanik, Naturwissenschaften 23, 823 (1935).
3. Simon, C. & Irvine, W. T. M. Robust long-distance entanglement and a loophole-free bell test with ions and photons. Phys. Rev. Lett. 91, 110405 (2003).
4. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78, 3221 (1997).
5. Deng, F. G. Efficient multiparticle entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84, 052312 (2011).
6. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).
43. Zheng, S. B. Dissipation-induced geometric phase for an atom trapped in an optical cavity. *Phys. Rev. A* **59**, 2468 (1999).
44. Wu, Q. C.
55. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. *Phys. Rev. Lett.* **59**, 1895 (1983).
45. Song, J., Di, J. Y., Yan, X., Sun, X. D. & Jiang, Y. Y. Implementation of quantum state manipulation in a dissipative cavity. *Phys. Rev. A* **84**, 022323 (2011).
46. Song, J., Xia, Y. & Song, H. S. One-step generation of cluster state by adiabatic passage in coupled cavities. *Sci. Rep.* **111**, 033606 (2013).
47. Ogden, C. D., Irish, E. K. & Kum, M. S. Dynamics in a coupled-cavity array. *Phys. Rev. A* **78**, 063805 (2008).
48. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Quantum-many-body phenomena in coupled cavity arrays. *Laser Phys. Rev.* **2**, 527 (2008).
49. Di Falco, C. & Vogel, W. Entanglement signature in the mode structure of a single photon. *Phys. Rev. A* **79**, 050303(R) (2009).
50. Cho, J., Angelakis, D. G. & Bose, S. Heralded generation of entanglement with coupled cavities. *Phys. Rev. A* **87**, 022323(R) (2008).
51. Angelakis, D. G., Santos, M. F. & Bose, S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. *Phys. Rev. A* **76**, 031805(R) (2007).
52. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. *Nat. Phys.* **9**, 849–855 (2013).
53. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. *Nat. Phys.* **2**, 856–861 (2006).
54. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. *Nature (London)* **421**, 925–928 (2003).
55. Clausner, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. *Phys. Rev. Lett.* **23**, 880 (1969).
56. Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. *Phys. Rev. Lett.* **70**, 1895 (1993).
57. Brassard, G., Braunstein, S. L. & Cleve, R. Teleportation as a quantum computation. *Physica D* **120**, 43 (1998).
Acknowledgements
This work was supported by the National Natural Science Foundations of China under Grant Nos 11564041, 11165015, 11264042, 11465020, and 61465013; the Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project under Grant No. 20160519022JH; the Young Teacher Startup Foundation of Zhengzhou University under Grant No. 32210411; and the China Postdoctoral Science Foundation under Grant No. 2017M612411; and the Education Department Foundation of Henan Province Under Grant No. 18A140009.

Author Contributions
J.Z., S.-L.S. and S.Z. designed the scheme and performed the simulations for the model. A.-D.Z. created the initial draft of the manuscript. All authors contributed to the interpretation of the work and the writing of the manuscript. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017