Association of *Fusobacterium nucleatum* with immunity and molecular alterations in colorectal cancer

Katsuhiko Nosho, Yasutaka Sukawa, Yasushi Adachi, Miki Ito, Kei Mitsuhashi, Hiroyoshi Kurihara, Shinichi Kanno, Itaru Yamamoto, Keisuke Ishigami, Hisayoshi Igarashi, Reo Maruyama, Kohzoh Imai, Hiroyuki Yamamoto, Yasuhisa Shinomura

Katsuhiko Nosho, Yasutaka Sukawa, Yasushi Adachi, Miki Ito, Kei Mitsuhashi, Hiroyoshi Kurihara, Shinichi Kanno, Itaru Yamamoto, Keisuke Ishigami, Hisayoshi Igarashi, Yasuhisa Shinomura, Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan

Reo Maruyama, Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo 060-8543, Japan

Kohzoh Imai, Division of Cancer Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan

Hiroyuki Yamamoto, Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan

Author contributions: Nosho K designed the report, analyzed the data and wrote the manuscript; Adachi Y and Maruyama R analyzed the data; Ito M, Mitsuhashi K, Kurihara H, Kanno S, Yamamoto I, Ishigami K and Igarashi H performed experiments; Sukawa Y, Adachi Y, Imai K, Yamamoto H and Shinomura Y edited the manuscript.

Supported by Japanese Society of Gastroenterology Research Foundation (to Nosho K); Pancreas Research Foundation of Japan (to Nosho K); Medical Research Encouragement Prize of The Japan Medical Association (to Nosho K); The Japan Society for the Promotion of Science Challenging Exploratory Research, grant No. 25670371 (to Shinomura Y); and Ono Cancer Research Foundation (to Ito M).

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Katsuhiko Nosho, MD, PhD, Department of Gastroenterology, Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Japan. nosho@sapmed.ac.jp Telephone: +81-11-6112111 Fax: +81-11-6112282

Received: June 30, 2015 Peer-review started: July 4, 2015 First decision: September 11, 2015 Revised: September 25, 2015 Accepted: November 13, 2015 Article in press: November 13, 2015 Published online: January 14, 2016

Abstract

The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. *Fusobacterium* species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of *Fusobacterium nucleatum* (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of *F. nucleatum*. Our results showed that the frequency of *F. nucleatum* positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, *F. nucleatum* positivity
INTRODUCTION

The human intestinal microbiome encompasses at least 100 trillion (10^{12}) microorganisms and plays a major role in human health and diseases, including colorectal cancer[1-3]. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity[4,5]. Fusobacterium species (a group of non-spore-forming, anaerobic gram-negative bacteria) are a part of the normal human oral and intestinal microbiota. The species of the Fusobacterium genera are highly heterogeneous, and some of them have been recognized as opportunistic pathogens implicated not only in periodontitis[6-8], but also in inflammatory bowel disease (IBD)[9-11], pancreatic abscess[12,13], and hepatic abscesses[14,15]. Regarding gastrointestinal cancer, metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue, which has been confirmed by quantitative PCR for the 16S ribosomal RNA gene DNA sequence of F. nucleatum[16,17]. Studies have shown that a greater amount of F. nucleatum in colorectal carcinoma tissue is associated with high degrees of microsatellite instability (MSI-high) and CpG island methylator phenotype (CIMP)[18].

Accumulating evidence indicates that innate and adaptive immunity influences tumor evolution[19]. Attesting to an important role of T-cell-mediated adaptive immunity in inhibiting tumor progression, therapeutic antibodies against immune checkpoint molecules, including CTLA4, PD1 (programmed cell death 1; PD-1), and CD274 (programmed cell death 1 ligand 1; PD-L1), can effectively enhance antitumor T-cell activity in various malignancies[20,21]. Emerging evidence indicates that tumor genetic alterations and tumor-host interactions have complex roles in the effectiveness of T-cell-based immunotherapies[22-25]. Although these immunotherapies appeared to be less effective for colorectal cancer, high-level infiltrates of T-cells in colorectal cancer tissue have been associated with better patient survival[26-28], and a recent study has suggested a potential role for the immune checkpoint pathway in suppressing the antitumor immune response in a subset of colorectal cancers[29].

Regarding the association between the gut microbiome and immunity, a number of studies have shown that F. nucleatum has immunosuppressive activities via inhibiting human T-cell responses to mitogens and antigens[30-35]. Additionally, F. nucleatum inhibitory protein has been shown to arrest human T-cells in the G1 phase of the cell cycle[32]. Furthermore, F. nucleatum can induce apoptotic cell death in peripheral blood mononuclear cells and Jurkat T-cells[31]. This F. nucleatum-induced cell death is mediated through the aggregation of the immune cells, which might have important implications for the...
pathogenesis of this bacterial species[35] These findings indicate that \textit{F. nucleatum} suppressively modulates the tumor-immune microenvironment.

Thus, the results of these studies suggest a complex link between the gut microbiome, immunity, and molecular alterations in colorectal tumorigenesis. A better understanding of the relationship between microorganisms and immune cells in the tumor microenvironment is needed in order to effectively target the microbiota and immunity for colorectal cancer prevention and therapy.

AMOUNT OF \textit{F. nucleatum} IN COLORECTAL CARCINOMA TISSUE AND THE ASSOCIATION WITH MSI

Using quantitative PCR, Mima \textit{et al.}[36] have reported that \textit{F. nucleatum} was detected in 76 (13\%) of 598 colorectal carcinomas (stages I - IV) within the well-known United States cohort studies (the Nurses’ Health Study and the Health Professionals Follow-up Study) and in adjacent non-tumor tissue in 19 (3.4\%) of 558 cases analyzed. In the 558 pairs of colorectal carcinoma and adjacent non-tumor tissues, the amount of \textit{F. nucleatum} was higher in colorectal carcinoma tissue than in paired adjacent non-tumor tissue[36].

We also collected 511 colorectal carcinoma tissues (stages I - IV) from Japanese patients who underwent endoscopic resection or other surgical treatment and assessed the presence of \textit{F. nucleatum} via gene expression analysis. Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissues. The amount of \textit{F. nucleatum} in colorectal carcinoma tissue was measured by quantitative PCR assay as previously described[36].

Considering the influence of contaminating stromal cells, we performed microdissection only in cases with \textit{F. nucleatum} positivity and conducted quantitative PCR again using the DNA extracted from the carcinoma component. Our current data demonstrated that \textit{F. nucleatum} positivity was detected in 44 (8.6\%) of the 511 Japanese patients with colorectal cancer (Table 1). The frequency of \textit{F. nucleatum} positivity in the Japanese patients was significantly lower than that in the United States cohort study[36].

Some cohort studies observed associations of highly enriched \textit{Fusobacterium} in colorectal cancer tissues with CIMP-high, MSI-high, and MLH1 methylation in patients with colorectal cancer[18,36,37] Consistent with these reports, our current data using Japanese populations showed that high expression of \textit{F. nucleatum} in colorectal cancers was significantly associated with MSI-high status (Table 1). We also examined the relationship between the amount of \textit{F. nucleatum} and patient mortality; however \textit{F. nucleatum} status in colorectal cancers was not associated with cancer-specific survival. The role of \textit{F. nucleatum} in colorectal carcinogenesis remains uncertain. Recent studies showed that \textit{F. nucleatum} increases the production of reactive oxygen species (ROS) and inflammatory cytokines (\textit{e.g.,} IL-6 and TNF) in colorectal cancer[38] Inflammation and ROS can reduce the enzymatic activity of mismatch repair (MMR) proteins and cause epigenetic silencing of the mismatch repair protein MLH1 leading to MSI[39].

ASSOCIATION BETWEEN IMMUNE CELL AND CLINICAL OUTCOME IN COLORECTAL CANCER

The abundance of tumor-infiltrating T-cells has been associated with improved clinical outcomes in colorectal cancer patients[18,46,47] Although the exact mechanism remains uncertain, the adaptive immune system may play an important role in suppressing tumor progression[27,41] Tumor-infiltrating T-cells may be an indicator of a host immune response to tumors and are attractive targets for immunotherapy[42-45] Tumor-infiltrating lymphocytes may also reflect specific molecular alterations associated with indolent tumor behavior. Previous studies have shown that lymphocytic infiltration is associated with MSI in colorectal cancer[40,46-48] Truncated peptides produced by frame-shift mutations due to MSI may be immunogenic and contribute to host immune response[41,43,49] However, little is known about the relationship between tumor-infiltrating T-cells and other tumor molecular features, including the CIMP status, and KRAS, BRAF and PIK3CA mutations.

We previously utilized a database of clinically and molecularly annotated colorectal carcinoma cases (\textit{n} = 768; stages I - IV) in the United States cohort studies[38] Using tissue microarray and automated Ariol image analysis system, we quantified densities of CD3+, CD8+, CD45RO+, and FOXP3+ T-cells within neoplastic epithelial areas. Our data demonstrated that tumor-infiltrating CD45RO+ T-cell density is significantly associated with longer survival of colorectal cancer patients, independent of clinical, pathological, and molecular features (\textit{i.e.,} MSI, CIMP, and KRAS, BRAF and PIK3CA mutations). In addition, MSI-high is an independent predictor of CD45RO+ T-cell density. The strong association between MSI and CD45RO+ T-cell density supports the hypothesis that truncated peptides produced by MSI and frameshift mutations may elicit a host immune response and recruit CD45RO+ T-cells[41,49]

In most studies, MSI in colon cancer has been associated with improved survival[27,41,50,51] although the mechanism underlying this association is largely unknown. Similar to these reports from United States and Western countries[27,41,50,51], our current Japanese population-based study showed a significantly lower
Table 1 Clinical and molecular features in Japanese patients with colorectal cancer according to *Fusobacterium nucleatum* status

Clinical and molecular features	Total (n)	*F. nucleatum* expression		
		Negative (n)	Positive (n)	P-value
All cases	511	467 (91)	44 (8.6)	
Gender				
Male	286 (56)	267 (57)	19 (43)	0.075
Female	225 (44)	200 (43)	25 (57)	
Age (mean ± SD)	67.1 ± 11.8	67.3 ± 11.7	65.0 ± 12.1	0.220
Tumor size (mm) (mean ± SD)	49.8 ± 24.1	49.2 ± 24.5	56.4 ± 19.6	0.063
Tumor location				
Rectum	207 (41)	194 (42)	13 (30)	
Distal colon	133 (26)	121 (26)	12 (27)	0.240
(Sigmoid colon to splenic flexure)				
Proximal colon	171 (33)	152 (33)	19 (43)	
Disease stage				
I	56 (11)	53 (11)	3 (6.8)	0.470
II	160 (31)	142 (30)	18 (41)	
III	235 (46)	216 (46)	19 (43)	
IV	60 (12)	56 (12)	4 (9.0)	
KRAS mutation (codon 12/13/61/146)				
Wild-type	354 (69)	324 (69)	30 (68)	0.870
Mutant	157 (31)	143 (31)	14 (32)	
BRAF mutation (codon 600)				
Wild-type	483 (95)	445 (95)	38 (86)	0.031
Mutant	28 (5.5)	22 (4.7)	6 (14)	
PIK3CA mutation (exon 9/20)				
Wild-type	451 (88)	414 (89)	37 (84)	0.390
Mutant	60 (12)	53 (11)	7 (16)	
MSI status				
MSS/MSI-low	470 (92)	435 (93)	35 (80)	0.0059
MSI-high	41 (8.0)	32 (6.9)	9 (20)	

Percentage (%) indicates the proportion of cases with a specific clinical or molecular feature within a given category of *F. nucleatum* detection by quantitative PCR. The P-values were calculated using t-test for age and tumor size and by means of the χ² test or Fisher’s exact test for all other variables. *F. nucleatum*: *Fusobacterium nucleatum*; MSI: Microsatellite instability; MSS: Microsatellite stable.

Mortality rate (log-rank test: P = 0.048) in the MSI-high group than in the MSS/MSI-low group using the Kaplan-Meier method (data not shown). These results suggest one explanation that a host immune is stimulated in response to MSI-high colorectal cancer.

ASSOCIATION BETWEEN *F. NUCLEATUM* AND IMMUNE RESPONSE IN COLORECTAL CANCER

Myeloid-derived immune cells can inhibit T-cell proliferation and induce T-cell apoptosis⁵². Recently, Kostic et al.⁶ reported that *F. nucleatum* selectively expands myeloid-derived immune cells in colorectal cancer. In particular, myeloid-derived immune cells were enriched in *F. nucleatum*-fed mice vs controls. Myeloid-derived immune cells have been proposed to be myeloid cells present in the bone marrow, spleen, or tumor microenvironment that are able to suppress T-cell responses⁵³. During tumor progression, reactive myeloid cells might mediate immunosuppression either by the self-limiting mechanism of T helper type (Th)1 inflammation resolution, such as ROS and IL-10 production, or by switching to a wound repair and angiogenic protumor Th2 inflammation with the expression of arginase, TGF-β, and IL-10⁵⁴. These results indicate that *F. nucleatum* suppressively modulates the tumor-immune microenvironment because T-cell-mediated adaptive immunity plays an important role in preventing the development of tumors and inhibiting tumor progression⁵⁵. Thus, immunosuppression by *F. nucleatum* may affect patient mortality in colorectal cancer. Additionally, the data in the United States cohort studies along with these lines of experimental evidence revealed that the amount of tissue *F. nucleatum* is inversely associated with CD3+ T-cell density in colorectal carcinoma tissue⁵⁶.

ASSOCIATION BETWEEN MICRONORNA EXPRESSION AND IMMUNITY IN COLORECTAL CANCER

MicroRNAs constitute a class of small non-coding RNA molecules that function as post-transcriptional gene regulators and have been increasingly recognized as biomarkers of various human cancers⁵⁶–⁷¹. Regarding colorectal cancer, we recently discovered...
that microRNA-31 (miR-31) expression is significantly up-regulated in BRAF-mutated cancers compared with that in wild-type cancers using microRNA array analysis. Moreover, associations were identified between miR-31 expression and poor prognosis for colorectal cancers.

Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. In addition, pathogens themselves may regulate microRNA expression. Among the various microRNAs, microRNA-21 (miR-21) has been shown to play roles in immunity and colorectal carcinogenesis. In fact, high-level miR-21 expression in colorectal cancer tissue has been associated with worse clinical outcome, suggesting that miR-21 could act as a prognostic tumor biomarker. Studies have shown that miR-21 increases the levels of IL-10 and PGE2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation and through the recruitment of myeloid-derived suppressor cells into the tumor microenvironment.

CONCLUSION
The association between highly enriched F. nucleatum in colorectal carcinoma tissues and MSI-high status was observed in both the United States cohort studies and Japanese population-based study. Previous studies have reported that the frequency of colorectal cancers with MSI-high status in Japan (less than 10%) tend to be lower than those in the United States and Western countries (approximately 15%). Therefore, the low rate of MSI-high colorectal cancer in Japan might be due to the amount of F. nucleatum in carcinoma tissues because our current data showed that the rate of F. nucleatum positivity in Japanese patients was significantly lower than that in the United States cohorts. MSI-high status in colorectal cancer has been associated with high levels of infiltrating T-cells, as mismatch repair defects in MSI-high tumors cause numerous frameshift mutations and truncated proteins, which elicit antitumor T-cell-mediated adaptive immunity. However, MSI status is not the sole determinant of the immune response to colorectal cancer because the amounts of tumor-infiltrating T-cells considerably overlap between MSI-high and microsatellite stable (MSS) colorectal tumors. Hence, there must be other factors that influence the antitumor immune response to colorectal cancer.

T-cell-mediated adaptive immunity plays an important role in regulating tumor evolution and in inhibiting tumor progression. The immunity includes multiple steps involving the clonal selection of antigen-specific cells, their activation and proliferation in secondary lymphoid tissues, and their recruitment into the tumor microenvironment. In a mouse model, F. nucleatum recruits myeloid-derived suppressor cells into the tumor microenvironment. Myeloid-derived suppressor cells can inhibit T-cell proliferation and...
induce T-cell apoptosis[52], Virulence factors derived from \textit{F. nucleatum} also inhibit T-cell proliferation[33,94]. The experimental evidence may be consistent with a recent finding that a higher abundance of \textit{F. nucleatum} in colorectal carcinoma tissue was associated with a lower density of T-cells, as measured by CD3 in the tumor microenvironment[36]. These findings support a role of \textit{F. nucleatum} in down-regulating antitumor T-cell-mediated adaptive immunity.

Both tumor molecular and immunity analyses are increasingly important in cancer research and clinical practice. MicroRNAs play roles in carcinogenesis and immunity and can be potential biomarkers or therapeutic targets. MicroRNA-targeting therapies for human disease, including cancer, are currently being investigated[69,95,96]. Accumulating evidence suggest miR-21 increases the levels of IL-10 and PGE2 in the tumor microenvironment, which can lead to the suppression of antitumor T-cell-mediated adaptive immunity[84-86]. In light of these findings, it would be intriguing for future research to explore a potential strategy for inhibiting miR-21 and its immunosuppressive effect in immunotherapy and immunoprevention for colorectal cancer. In contrast, no study has reported whether \textit{F. nucleatum} regulates microRNA expressions, including miR-21. Therefore, functional analysis and/or human population-based study are expected to identify the association between \textit{F. nucleatum} and miR-21 expression in colorectal cancer.

We have summarized the hypothesis of the potential mechanism underlying the association of \textit{F. nucleatum} in colorectal cancer with immune cells and molecular alterations in Figure 1. \textit{F. nucleatum} increases the production of ROS and inflammatory cytokines in colorectal cancer. Inflammation and ROS can cause epigenetic silencing of the mismatch repair protein MLH1 leading to MSI. \textit{F. nucleatum} possesses immunosuppressive activities by inhibiting human T-cell responses and modulates tumor-immune microenvironment suppressively. miR-21 increases the levels of IL-10 and PGE2, which suppress antitumor T-cell-mediated adaptive immunity in the tumor microenvironment.

Thus, emerging evidence may provide insights for strategies to target microbiota, immune cells, and tumor molecular alterations for colorectal cancer prevention and treatment. Further investigation is needed to clarify the association of \textit{Fusobacterium} with T-cells and microRNA expressions in colorectal cancer.

REFERENCES

1. Schwabe RF, Jobin C. The microbiome and cancer. \textit{Nat Rev Cancer} 2013; 13: 800-812 [PMID: 24132111 DOI: 10.1038/nrc3610]

2. Dickson RP, Martinez FJ, Huffnagle GB. The role of the microbiome in exacerbations of chronic lung diseases. \textit{Lancet} 2014; 384: 691-702 [PMID: 25152271 DOI: 10.1016/S0140-6736(14)61136-3]

3. Kahan SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. \textit{Lancet} 2014; 383: 1068-1083 [PMID: 24315620 DOI: 10.1016/S0140-6736(13)62154-6]

4. Ogino S, Galon J, Fuchs CS, Dranoff G. Cancer immunology—analysis of host and tumor factors for personalized medicine. \textit{Nat Rev Clin Oncol} 2011; 8: 711-719 [PMID: 21826083 DOI: 10.1038/nrclinonc.2011.122]

5. Tjalma H, Boleaj A, Marchesi JR, Duthie BE. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. \textit{Nat Rev Microbiol} 2012; 10. 575-582 [PMID: 22728587 DOI: 10.1038/nrmicro2819]

6. Signat B, Roques C, Pouplet P, Duffaut D. Fusobacterium nucleatum in periodontal health and disease. \textit{Curr Issues Mol Biol} 2011; 13: 25-36 [PMID: 21220789]

7. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjonneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Bountron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foaerter J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Hurama JM, Molina-Montes E, Duronsoro M, Qiuros JR, Duell EW, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. \textit{Gut} 2013; 62: 1764-1770 [PMID: 22990306 DOI: 10.1136/gutjnl-2012-303006]

8. Michaud DS. Role of bacterial infections in pancreatic cancer. \textit{Carcinogenesis} 2013; 34: 2193-2197 [PMID: 23843038 DOI: 10.1093/carcin/bgt249]

9. Okusai T, Okayasu I, Ogihara T, Morita K, Ogawa M, Sato N. Induction of experimental ulcerative colitis by Fusobacterium varium isolated from colonic mucosa of patients with ulcerative colitis. \textit{Gut} 2003; 52: 79-83 [PMID: 12477765]

10. Minami M, Ando T, Okamoto A, Sasaki N, Okhura T, Torii K, Hasegawa T, Ohta M, Goto H. Seroprevalence of Fusobacterium varium in ulcerative colitis patients in Japan. \textit{FEMS Immunol Med Microbiol} 2009; 56: 67-72 [PMID: 19484811]

11. Strauss J, Kaplan GG, Beck PL, Rioux K, Panaccione R, Deviney R, Lynch T, Allen-Vercoe E. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. \textit{Inflamm Bowel Dis} 2011; 17: 1971-1978 [PMID: 21830275 DOI: 10.1002/ibd.21606]

12. Shahani I, Khardori N. Fusobacterium nucleatum—beyond L.

13. Brook I, Frazier EH. Microbiological analysis of pancreatic abcess. \textit{Clin Infect Dis} 1996; 22: 384-385 [PMID: 8838210]

14. Yoneda M, Kato S, Mawatari H, Kimikoshi H, Imao K, Fujita K, Endo H, Takahashi H, Inamori M, Kobayashi K, Kubota K, Sanjo S, Tohnae I, Watanuki K, Wada K, Maeda S, Nakajima A. Liver abscess caused by periodontal bacterial infection with \textit{Fusobacterium} nucleatum. \textit{Hepatol Res} 2011; 41: 194-196 [PMID: 21269389 DOI: 10.1111/j.1877-0514.2011.00527.x]

15. Athavale NV, Leitch DG, Cowling P. Liver abscesses due to \textit{Fusobacterium} sp that mimick malignant metastatic liver disease. \textit{Eur J Clin Microbiol Infect Dis} 2002; 21: 884-886 [PMID: 12525925 DOI: 10.1007/s10096-002-0844-8]

16. Kostic AD, Gevers D, Pedamullu CS, Michaud M, Duke F, Earl AM, Ojjesen AI, Jung J, Bass AJ, Tabernero J, Baserga L, Liu C, Sacerdote C, Gargouri E, Wu W, Hutterer C, Garrett WS, Meysner M. Genomic analysis identifies association of \textit{Fusobacterium} with colorectal carcinoma. \textit{Genome Res} 2013; 22: 292-298 [PMID: 22009990 DOI: 10.1101/gr.126573.112]

17. Castellanin M, Warren RL, Freedman JD, Dreolini L, Krywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. \textit{Genome Res} 2012; 22: 299-306 [PMID: 22009898 DOI: 10.1101/gr.126516.111]
Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, Jelinek J, Yamano HO, Sugai T, An B, Shureiqi I, Toyota M, Kondo Y, Estévez MR, Issa JP. Fusobacterium in colorectal flora and molecular features of colorectal carcinoma. *Cancer Res* 2014; 74: 1311-1318 [PMID: 24385213 DOI: 10.1158/0008-5472.CAN-13-1865]

Schreiber RD, Old LJ, Smyth MJ. Cancer immunoeediting: integrating immunity's roles in cancer suppression and promotion. *Science* 2011; 331: 1565-1570 [PMID: 21436444 DOI: 10.1126/science.1203486]

Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Arriyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Szolol M. Nivolumab plus ipilimumab in advanced melanoma. *N Engl J Med* 2013; 369: 122-133 [PMID: 23724867 DOI: 10.1056/NEJMoa1302369]

Goede V, Fischer K, Busch R, Engelske A, Eichhorst B, Wendtner CM, Chagora T, de la Serna J, Dilhudy MS, Illner T, Opal S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Döhner H, Langerak AW, Ritgen M, Kneba M, Asikanius E, Humphrey K, Wenger M, Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. *N Engl J Med* 2014; 370: 911-112 [PMID: 24401022 DOI: 10.1056/NEJMoa1313984]

Snyder A, Makarov V, Merghouth T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hoffmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA. Genetic basis for clinical response to CTLA-4 blockade in melanoma. *N Engl J Med* 2014; 371: 2189-2199 [PMID: 25409260 DOI: 10.1056/NEJMoa1404698]

Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powery JD, Gettner SG, Khojhe H, Horn L, Lawrence DP, Rost S, Lebman M, Xiao Y, Mokatrin A, Koeppen H, Hegde PS, Mellman I, Chen DS, Hodi FS. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. *Nature* 2014; 515: 563-567 [PMID: 25428504 DOI: 10.1038/nature14011]

Powles T, Eder JP, Fine GD, Briate KS, Lorig J, Cruz C, Bellmunt J, Burris HA, Petrylak DP, Teng SL, Shen X, Boyd Z, Hegde PS, Chen DS, Vogelzang NJ. MPDL3280A (anti-PD-L1) blockade induces responses by inhibiting adaptive immune resistance. *Nature* 2014; 515: 568-571 [PMID: 25428505 DOI: 10.1038/nature13904]

Tumeh PC, Harvick CW, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Ogino S, Kostic AD, Chan E, Robertson L, Glickman JN, Gallini CA, Michaud A, Clancy TE, Chung DC, Lochhead P, Hold GI, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. *JAMA Oncol* 2015; 1: 653-661 [PMID: 26181352 DOI: 10.1001/jamaoncol.2015.1377]

Flanagan L, Schmid J, Ebert M, Soucek P, Kunicka T, Liska V, Brua J, Neary P, Dezuvez N, Tommasino M, Jenab M, Prehn JH, Hughes DJ. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. *Eur J Clin Microbiol Infect Dis* 2014; 33: 1381-1390 [PMID: 24599704 DOI: 10.1007/s10095-014-2081-31]

Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud A, Clancy TE, Chung DC, Lochhead P, Hold GI, El-Omar EM, Brenner D, Fuchs CS, Meyerson M, Garrett WS. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. *Cell Host Microbe* 2013; 14: 207-215 [PMID: 23954159 DOI: 10.1016/j.chom.2013.07.007]

Schechter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. *Carcinogenesis* 2010; 31: 37-49 [PMID: 19955394 DOI: 10.1093/carcin/bgp272]

Ogino S, Nosho K, Inahara N, Meyerhardt JA, Baba Y, Shimada K, Glickman JN, Ferrone CR, Minokudou M, Tanaka N, Dragano N, Gavrieliu, Ivanovski, Fuchs CS. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. *Clin Cancer Res* 2009; 15: 6412-6420 [PMID: 19825961 DOI: 10.1158/1078-0432.CCR-09-1438]

Schwitalle Y, Kloor M, Eiermann S, Linnebacher M, Kienle P, Knaebel HP, Tariverdian M, Benner A, von Knobel Dobertz M. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. *Gastroenterology* 2008; 134: 988-997 [PMID: 18395080 DOI: 10.1053/j.gastro.2008.01.015]

Zou W. Regulatory T cells, tumour immunity and immunotherapy. *Nat Rev Immunol* 2006; 6: 295-307 [PMID: 16557261 DOI: 10.1038/nri1783]
MicroRNA-21. decorin controls inflammation and cancer through PDCD4 and J, Tralhão JG, Lemarchand P, Pfeilschifter J, Schaefer RM, Blondal T, Lindebjerg J, Sørensen FB, Jakobsen A. Redefining the pathological and molecular features of serrated lesions. N Engl J Med 2010; 362: 141-147 [PMID: 18832519 DOI: 10.1038/nejm201002.133]

Shukla SA, Getz G, Hacohen N. Molecular signatures of tumor-infiltrating lymphocytes: immune cell interactions in human cancer. J Clin Invest 2010; 120: 2326-2337 [PMID: 20682317 DOI: 10.1172/jci41246]

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252-264 [PMID: 22437870 DOI: 10.1038/nrc3323]

Kaplan CW, Ma X, Paranjpe A, Jewett A, Lux R, Kinder-Haake S, Shi W. Fusobacterium nucleatum outer membrane proteins Fap2 and RaD induce cell death in human lymphocytes. Infect Immun 2010; 78: 4773-4778 [PMID: 20823215 DOI: 10.1128/IAI.00567-10]

Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, van der Meer AJ, Patick AK, Chen A, Zhou Y, Persson R, King BD, Kauppinen S, Levin AA, Hodges MR. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368: 1665-1694 [PMID: 23534432 DOI: 10.1056/NEJMoa1209026]

Cheng CJ, Bahal R, Babar IA, Pincus Z, Barrera F, Liu C,
Svoronos A, Braddock DT, Glazer PM, Engelman DM, Saltzman WM, Slack FJ. MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. *Nature* 2015; 518: 107-110 [PMID: 25409146 DOI: 10.1038/nature13905]

P- Reviewer: Soucek P, Tsimogiannis K, Wang JY
S- Editor: Ma YJ
L- Editor: A
E- Editor: Liu XM

Nosho K *et al.* *Fusobacterium*, immunity, molecular alterations in colorectal cancer
