Two New Additions to Turkish Tulostoma

Ilgaz AKATA1, Ergin Şahin2, Deniz ALTUNTAŞ3, Şanlı KABAKTEPE4

1- Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey, 2-Ankara University Graduate School of Natural and Applied Sciences, Ankara, Turkey, 3-Malatya Turgut Ozal University, Battalgazi Vocat Sch., Battalgazi, Malatya, Turkey

INTRODUCTION

Tulostoma Pers., commonly known as stalked puffballs, is a large gasteroid genus containing approximately one hundred and seventy currently existing species (www.indexfungorum.org; accessed 20 November 2020). Members of the genus are characterized by globose and stalked spore-sac opened by an apical mouth, double peridium, pulverulant gleba, globose to ovoid, smooth or ornamented basidiospores, simple or branched capillitium with septa. Members of the genus are cosmopolitan, which prefer primarily sandy and calcareous soil in temperate and tropical regions (Pegler et al.,1995: Calonge, 1998).

The genus was ascertained by Persoon (1794, 1801) to compile puffball species having “peridium pedicellatum”, a small hole with an “ore cylindraceo cartilagineo”. Two species (T. squamosum (J.F. Gmel.) Pers. and T. brumale Pers.) were accommodated in the genus by Persoon. While Tournefort (1700) formerly illustrated T. brumale as Lycoperdon parisienne, Linnaeus (1753) described T. squamosum as Lycoperdon pedunculatum. Four species T. fimbriatum, T. laceratum (syn. Schizostoma laceratum), T. tortuosum, and viz. T. mamossum (including T. squamosum) were described by Fries (1829). However, Fries (1829) subsequently renamed Tulostoma with Tulasnodea, for the honor of the Tulasne brothers, who were his mycologist colleagues from France. However, considering the nomenclature rules, “Tulostoma” coined by Persoon should be regarded as the legitimate name for this typical genus (Persoon, 1801). In older literature, sometimes an orthographic variant, Tylostoma, is encountered. The knowledge of Tulostoma was developed by the early works of some researchers. Schroeter (1876) described the development of basidia and capillitium, parts of basidiomata, in this genus. Later Wright (1955) elucidated the unique morphological characters of the

ABSTRACT

The purpose of the present work is to identify Tulostoma samples collected from Ankara and Kırıkkale provinces (Turkey). Both traditional methods and ITS rDNA-based molecular phylogeny were implemented to identify the specimens. When the high sequence similarities were taken into account, the collected specimens ANK Akata & Altuntaş 647 and ANK Akata & Altuntaş 675 were identified as T. similans and T. subsquamosum respectively; and the morphological data further supported these findings. Short descriptions of the species are given together with their macro-and micromorphology and spore images taken by a scanning electron microscope (SEM).
genus. In his work entitled “The Genus Tulostoma/Gasteromycetes: A World Monograph” Wright (1987), included 139 species. Wright’s species concept mostly relied on studies of type specimens and various herbarium samples. With the advancements in scanning electron microscopy (SEM), fine spore morphology could be employed as a guide for the taxonomic revisions and appendance of new species.

The inclusion of the molecular analysis resulted in fundamental changes in the fungus systematics and taxonomy. The order Agaricales was established to include basidiomycetous gasteroid fungi including the puffball genus Tulostoma by Hibbett et al. (1997) although a considerable amount of morphological data concerning the genus Tulostoma have been accumulated, relatively less molecular phylogenetic studies related to this genus have been reported. These published studies mostly focus on a low number of species and they are geographically restricted (Jeppson et al., 2017).

Considering the literature on Turkish Tulostoma (Gücin and Öner, 1982; Sesli, 1995; Ayfon, 1996: 1997; Solak et al., 1999; Ayfon et al., 2000; Kaşık et al., 2000; Sesli et al., 2000; İşlioğlu, 2001; Solak et al., 2002; Aktaş et al., 2003; Türkekul and Sesli, 2003; Kaya, 2005; 2006; Doğan and Öztürk, 2006; Doğan and Türkoglu, 2006; Ali et al., 2007; Doğan et al., 2007; Türkoglu et al., 2007; Yağız et al., 2007; Doğan et al., 2011; Kiriş et al., 2012; Akata et al., 2014), so far 5 species (T. brunale, T. fimbriatum Fr., T. squamosum, T. pluriosteum Long & S. Ahmad and T. wightii Berk.) which were identified based on morphological features have been listed for Turkish mycobionta. However, there was not any report of Tulostoma simulans Lloyd and Tulostoma subsquamosum Long & S. Ahmad in Turkey. The aim of the present paper is to contribute new species for Turkish Tulostoma.

MATERIAL and METHOD

Morphological study

Tulostoma samples were collected from Ankara and Kırıkkale provinces (Turkey) in 2019. At their site of collection, the macroscopic and ecological features of the samples were recorded. At the laboratory, microscopic features were scrutinized using both simple light microscope (LM) and scanning electron microscope (SEM). In light microscopy, measurements were repeated roughly 30 times under a light microscope (Euromex Oxion Trinocular microscope). Each microscopic structure was examined with 100X magnification rates and the compiled data were assessed statistically. For SEM, pieces of mass inside the gleba were fixed on stubs using double-sided sticky tape, coated with gold particles, and visualized using an EVO 40XVP (LEO Ltd., Cambridge, UK) scanning electron microscope with an accelerating voltage of 20 kV. Sample identification was performed in light of the relevant literature (Pegler et al., 1995; Calonge, 1998; Jeppson et al., 2017; Rusevska et al., 2019). Fungarium materials were prepared from the identified specimens and deposited into Fungarium of Ankara University Faculty of Science, Department of Biology.

Determination of the ITS rDNA Sequences

For the genomic DNA extraction from ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675, CTAB method was implemented as described previously (Rogers and Bendich, 1994). For the quality and quantity measurements, the isolated genomic DNA was spectrophotometrically (Nanodrop Lite Thermo Scientific) analyzed, and later it was utilized as the template in order to amplify the Internal Transcribed Spacer (ITS) rDNA regions via the polymerase chain reaction (PCR) method. By using the ITS1 forward and ITS4 reverse universal oligonucleotides, PCR amplification of the ITS rDNA regions was implemented as described elsewhere (Stielow et al., 2015). The presence of the amplification products was electrophoretically verified on an agarose gel and then they were purified with Expin Gel, PCR, and CleanUp SV Kit (GeneAll) and sequenced with Sanger dideoxy sequencing method. For the sequencing PCR conducted using the BigDye™ Direct Cycle Sequencing Kit (Thermo Fisher Scientific), the same ITS1 and ITS4 oligonucleotides were employed and the fragment analyses were carried out by using ABI Prism 3130 Genetic Analyzer. Agarose gel electrophoresis and the Sanger sequencing were conducted as described previously (Chen et al., 2014).

Molecular Phylogeny Study

DNAMAN Version 10 sequence assembly software (Lynnon Corporation) was used to assemble the sanger reads obtained from ITS1 and ITS4 primers were assembled and BLASTn search was conducted with the assembled sequence for the identity index analysis. Based on the results of the BLAST search, the in-group and out-group sequences were retrieved from NCBI GenBank and used in the phylogenetic analysis (Table 1) (Pawlik et al., 2015; Jeppson et al., 2017). The ClustalW algorithm of MEGAX software was used to align the assembled sequences and the nucleotide sequences of the retrieved in-group and out-group members (Kumar et al., 2018). The phylogenetic tree exhibiting the evolutionary history of ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675 was predicted using the Maximum Likelihood method and GTR+G+I nucleotide substitution model (Nei and Kumar, 2000). The bootstrap method was selected for improving the accuracy of the estimation using 1000 bootstrap replicates (Felsenstein, 1985).
Table 1. GenBank accession numbers of the ITS sequences belonging to the 16 fungi specimens used in this study

Tulostoma Species	GenBank number (ITS)	Geographical origin	References
ANK Akata & Altuntaş 647 (Tulostoma simulans)	MT798590.1	Turkey	Current study
Tulostoma simulans	KU519053.1	Hungary	Jeppson et al., 2017
Tulostoma simulans	KU519046.1	Spain	Jeppson et al., 2017
Tulostoma brumale	KU519061.1	Slovakia	Jeppson et al., 2017
Tulostoma grandisporum	KU519004.1	Hungary	Jeppson et al., 2017
Tulostoma striatum	KU518959.1	Spain	Jeppson et al., 2017
Tulostoma fimbriatum	KU518981.1	Spain	Jeppson et al., 2017
Tulostoma berkeleyi	MK578704.1	USA	Jeppson et al., 2017
Tulostoma winterhoffii	KU518977.1	Sweden	Jeppson et al., 2017
Tulostoma squamosum	KU519097.1	France	Jeppson et al., 2017
Tulostoma rufum	KU519107.1	USA	Jeppson et al., 2017
Tulostoma calcareum	KU519088.1	Hungary	Jeppson et al., 2017
Tulostoma subsquamosum	KU519092.1	Spain	Jeppson et al., 2017
ANK Akata & Altuntaş 675 (Tulostoma subsquamosum)	MT798591.1	Turkey	Current study
Tulostoma subsquamosum	KU519093.1	Hungary	Jeppson et al., 2017
Coprinus comatus	JQ901445.1	Poland	Pawlik et al., 2015

RESULTS and DISCUSSION

The systematics of the newly reported Tulostoma species was in accordance with Index Fungorum (www.indexfungorum.org; accessed 20 November 2020). Short descriptions were provided together with collection dates, localities, notes on habitats, geographical positions, herbarium numbers, and images of their macro- and micromorphology, and spores viewed by a scanning electron microscope (SEM).

1. **Tulostoma simulans** Lloyd (1906), (Figure 1).

 Syn.: *Tulostoma mammosum* var. *simulans* (Lloyd) Sacc. & Trotter (1912).

 Macroscopic and microscopic features

 Spore-sac 6-10 mm diam., globose. **Mouth** circular. **Exoperidium** membranous. **Endoperidium** papery, smooth, yellowish to light brown. **Stipe** 15-30 × 2-3 mm, yellow to light brown, cylindrical. **Gleba** light yellow to light brown. **Basidia** not seen. **Basidiospores** 4-5 µm diam, globose, verrucose-echinate under LM, with conical or cylindrical warts under SEM. **Capillitium** up to 8 µm diam, branched and septate.

 Ecology: Fall to winter, in sandy soil (Rusevska et al., 2019).

 Distribution: Asia, Europe, North, and South America (Jeppson et al., 2017).

 Material examined: TURKEY—Kırıkkale: Bahşili, near road, 710 m, 39°44' N, 33°27'E, 10.10.2019, ANK Akata & Altuntaş 675.

 Remarks: Although it is difficult to distinguish *T. simulans* and *T. brumale* in detail by conventional methods, the exoperidial characteristic, spore dimensions, and the presence of crystals may help to separate these species (Jeppson et al., 2017; Rusevska et al., 2019).

2. **Tulostoma subsquamosum** Long & S. Ahmad (1947), (Figure 2).

 Macroscopic and microscopic features

 Spore-sac 10-15 mm diam., globose. **Mouth** tubular or circular. **Exoperidium** membranous. **Endoperidium** papery, smooth, whitish, ochraceous to light brown. **Stipe** 25-40 × 2-3 mm, brownish squamules on a white background, slightly woody. **Gleba** light yellow to brownish. **Basidia** not seen. **Basidiospores** 4-5 µm diam, globose, verrucose-echinate under LM, with conical or cylindrical warts Anastomosed in ridges under SEM. **Capillitium** up to 8 µm diam, branched and septate.

 Ecology: Fall, in sandy soil (Rusevska et al., 2019).

 Distribution: Asia, Europe, North, and South America (Jeppson et al., 2017).

 Material examined: TURKEY—Kırıkkale: Bahşili, near road, 710 m, 39°44', N, 33°27'E, 10.10.2019, ANK Akata & Altuntaş 675.

 Remarks: *T. subsquamosum* can be distinguished from other *Tulostoma* members by its verrucose-echinate spores (under LM) and hyphal exoperidium with scattered sphaerocyst-like cells (Rusevska et al., 2019). The nuclear ITS rDNA sequences of ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675 obtained from Sanger dyeoxy sequencing were
deposited into NCBI GenBank with the accession numbers MT798590.1 and MT798591.1 respectively. In phylogenetic analyses of ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675, 13 different nuclear ITS rDNA sequences belonging to 11 different Tulostoma species were retrieved from NCBI GenBank database and used as in-group sequences in the phylogenetic analysis. As the out-group sequence, nuclear ITS rDNA sequences of Coprinus comatus (O.F. Müll.) Pers. was selected.

As a result of the phylogenetic analysis, the specimens ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675 were clustered with species of T. simulans and T. subsquamosum respectively. On the other side, Coprinus comatus fell into a distinct branch separate from the Tulostoma species and formed an out-group as expected. The BLAST analysis implemented with the nuclear ITS rDNA sequence of ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675 revealed as high as 100% similarity rates between these specimens and different isolates of T. simulans and T. subsquamosum. The phylogenetic analyses conducted herein further solidified the close identity relationship of the specimens ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675.
Altuntaş 647 and ANK Akata and Altuntaş 675 with *T. simulans* and *T. subsquamosum* respectively (Figure 3).

For the reliable identification of fungal taxa, conventional methods employing morphological data may not always sufficient per se. Hence, conserved regions of genomic DNA including nrITS, nrSSU, and nrLSU as well as sequences of protein-coding genes are benefited for molecular taxonomic studies for decades (Raja et al., 2017). Furthermore, ITS is the most generally used DNA barcoding marker for fungi and this reason endows valuable information for molecular phylogenetic studies. Thus, we benefited from nuclear ITS rDNA sequences for the molecular identification of the specimens ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675.

Figure 3. The Maximum Likelihood tree demonstrating the phylogenetic relationships of 39 fungi predicted from the nuclear ITS rDNA region. Percentage bootstrap values that are more than 50 were stated for each branch. All of the sequences included in the phylogenetic analysis were retrieved from GenBank except for specimens ANK Akata and Altuntaş 647 and ANK Akata and Altuntaş 675. Nuclear ITS rDNA sequences of *Coprinus comatus* was included as the outgroup sequence in the phylogenetic analysis. GenBank accession numbers are also stated. The scale bar at the lower left shows a genetic distance of 0.02.

ACKNOWLEDGEMENTS

The authors thank the Ankara University Research Fund (Project no: 18B0430001) for its financial support.

Author’s Contributions

The contribution of the authors is equal.

Statement of Conflict of Interest

Authors have declared no conflict of interest.
REFERENCES

Afyon A 1996. Konya (Meram-Selçuklu) cиварında belirlenen bazı makroskobik mantarlar. Turkish Journal of Botany 20: 259-262.
Afyon A 1997. Mycoflora of Derbent District (Konya). Turkish Journal of Botany 21: 217-220.
Afyon A, Konuk M, Yaşız D 2000. Bartın yöresi makrofungusları üzerine bir araştırma. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 8(2): 77-86.
Akata I, Uzun Y, Kaya A 2014. Macromycetes determined in Yomra (Trabzon) district. Turkish Journal of Botany 38: 999-1012.
Aktaş S, Öztürk C, Kaşgîk G, Sabahlâr Ş, Doğan HH 2003. Macrofungi Flora of Bozkır District (Konya). Turkish Journal of Botany 27: 37-43.
Alli H, İşılşlü M, Solak MH 2007. Macrofungii of Aydın Province, Turkey. Mycotaxon 99: 163-165.
Calonge FD 1998. Gasteromycetes, I. Lycoperdales, Nidulariales, Phallales, Sclerodermatales, Tulostomatales. Volume 3., Real Jardin Botanico, Stuttgart, 272 pp.
Chen L, Cai Y, Zhou G, Shi X, Su J, Chen G, Lin K 2014. Rapid Sanger sequencing of the 16S rRNA gene for identification of some common pathogens. PLoS one 9(2): e88886.
Doğan HH, Öztürk C 2006. Macrofungi and Their Distribution in Karaman Province, Turkey. Turkish Journal of Botany 30: 193-207.
Doğan HH, Türkoğlu A 2006. Macrofungal diversity of Hasandağı Mountain and Göreme District in Turkey. Mycologicala Balcanica 3: 173-178.
Doğan HH, Öztürk C, Kaşgîk G, Aktaş S 2007. Macrofungi Distribution of Mut Province in Turkey. Pakistan Journal of Botany 38(1): 293-308.
Doğan HH, Karadelev M, İşılşlü M 2011. Macrofungal diversity associated with the scale-leaf juniper trees, Juniperus excelsa and J. foetidissima, distributed in Turkey. Turkish Journal of Botany 35(2): 219-237.
Felsenstein J 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791.
Gücin F, Öner M 1982. Manisa ili dahilinde yetişi makrofunguslar. Doğa Bilimleri Dergisi 6(3): 91-96.
Fries EM 1829. Systema Mycologicum III. Gryphiswaldae, 210 pp.
Hibbett DS, Pine EM, Langer E, Langer G, Donaghue MJ 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proceedings of the National Academy of Sciences of the United States of America 94(22): 12002–12006.
Index fungorum: www.indexfungorum.org; accessed 20.11.2020.
İşılşlü M 2001. Sandras Dağı (Muğla) Makrofungusları. Selçuk Üniversitesi Eğitim Fakültesi Fen Bilimleri Dergisi 9: 127-136.
Jeppson M, Altès A, Moreno G, Nilsson RH, Loeare Y, de Busto A, Larsson, E 2017. Unexpected high species diversity among European stalked puffballs – a contribution to the phylogeny and taxonomy of the genus Tulostoma (Agaricales). Mycokeys 21: 33-88.
Kaşgîk G, Öztürk C, Doğan HH 2000. Ermenek (Karaman) yöresinin makrofungusları. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 1(16): 61-65.
Kaya A 2005. Macrofungi Determined in Gölbâşı (Adıyaman) District. Turkish Journal of Botany 29: 45-50.
Kaya A 2006. Macrofungi from Andırın (Kahramanmaraş) District. Turkish Journal of Botany 30: 85-93.
Kırş Z, Halıcı MG, Akata I, Allh H 2012. Macrofungi of Akdağmadeni (Yozgat/Turkey) and Gemerek (Sivas/Turkey). Biodiversity and Conservation 5(2): 53-58.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35: 1547-1549.
Linnaeus C 1753. Species plantarum. Holmiae, 560 pp.
Nei M, Kumar S 2000. Molecular evolution and phylogenetics, Oxford university press, New york, 333 pp.
Pawlik A, Malinowska A, Siwulski M, Frač M, Rogalski J, Janusz G 2015. Determination of biodiversity of Coprinus comatus using genotyping and metabolic profiling tools. Acta Biochimica Polonica 62(4): 683-689.
Pegler DN, Læssøe T, Spooner BM 1995. British Puffballs, Earthstars, and Stinkhorns. An Account of the British Gastierd Fungi. Kew: Royal Botanic Gardens, Kew, 255 pp.
Persoon CH 1794. Neuer Versuch einer systematischen Eintheilung der Schwämme. Neues Magazin für die Botanik, 1: 63-128.
Persoon CH 1801. Synopsis Methodica Fungorum. Gottingae, 708 pp.
Raja HA, Miller AN, Pearce CJ, Oberlies NH 2017. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products 80(3): 756-770.
Rogers SO, Bendich AJ 1994. Extraction of total cellular DNA from plants, algae and fungi (Plant molecular biology manual. Springer Science and Business Media, Springer, Dordrecht) 183-190.
Rusevska K, Calonge F, Karadelev M, Martin MP 2019. Fungal DNA barcode (ITS nrDNA) reveals more diversity than expected in Tulostoma from Macedonia. Turkish Journal of Botany 43(1): 102-115.
Schroeter J 1876. Ueber die Entwicklung und die systematische Stellung von Tulostoma Pers. In: Cohn’s Beiträge zur Biologie d. Pflanzen 2: 65–71.
Sesli E 1995. *Tulostoma brumale* Pers.:Pers. Gasteromycetes’ lerden Türkiye için yeni bir kayıt. Turkish Journal of Botany 19: 599-600.

Sesli E, Wright JE, Türkekul İ 2000. The Genus *Tulostoma* Pers.:Pers. (Gasteromycetes) in Turkey. Turkish Journal of Botany 24: 269-272.

Solak MH, İşloğlu M, Gücin F, Gökler İ 1999. Macrofungi of İzmir Province. Turkish Journal of Botany 23: 383-390.

Solak MH, Yılmaz-Ersel F, Gücin F, İşloğlu, M 2002. Macrofungi of Bafıhesir Province from Turkey. Bio-Science Research Bulletin 18(2): 137-149.

Stielow JB, Levesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D, Lomascoło A, Werti S, Lesage-Meessen L, Favel A, Al-Hatmi AMS, Damm U, Yılmaz N, Houbraken J, Lombard L, Quaedvlieg W, Binder M, Vaas LAI, Vu D, Yurkov A, Begerow D, Roehl O, Guerreiro M, Fonseca A, Samerpitak K, van Diepeningen AD, Dolatabadi S, Moreno LF, Casaregola S, Mallet S, Jacques N, Rocsoni L, Egidi E, Bizet C, Garcia-Hermoso D, Martín MP, Deng S, Groenewald JZ, Boekhout T, de Beer, ZW, Barnes I, Duong TA, Wingfield MJ, de Hoog GS, Crous, PW, Lewis CT, Hambleton S, Moussa TAA, Al-Zahrani HS, Almaghrabi OA, Louis-Seize G, Assabgui R, McCormick W, Omer G, Dukik K, Cardinali G, Eberhardt U, de Vries, M, Robert V 2015. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia: Molecular Phylogeny and Evolution of Fungi 35: 242–263.

Tournefort JP 1700. Institutiones rei herbariae. Parisis, 697 pp.

Türkekul İ, Sesli E 2003. Macrofungi of Gümenek Picnic Area of Tokat Province. Bio-Science Research Bulletin 19(2): 117-120.

Türkoğlu A, Kanlık A, Gezer K 2007. Macrofungi of Çameli District (Denizli). Turkish Journal of Botany 31: 551-557.

Wright JE 1955. Evaluation of specific characters in the genus *Tulostoma* Pers. Papers of the Michigan Academy of Science, Arts and Letters 40: 79–87.

Wright JE 1987. The genus *Tulostoma* (Gasteromycetes) – A world monograph. Bibliotheca Mycologica 113. Berlin, Stuttgart, 338 pp.

Yağız D, Afyon A, Konuk M, Helfer S 2007. Contributions to the macrofungi of Kastamonu province. Turkey Mycotaxon, 98: 177-180.