Concentration-dependent activity of antibiotics in natural environments

Steve P Berrier1 and Michael G. Surette2, 1
1 Farncombe Family Digestive Health Research Institute, Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
2 Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada

INTRODUCTION

Antibiotics are bioactive small molecules naturally produced by secondary metabolism of microorganisms such as bacteria and fungi (Davies, 2006; Aminov, 2010; Davies and Davies, 2010). Their discovery as antimicrobial drugs has revolutionized the management and treatment of infectious diseases. Many easily treated infectious diseases today had high mortality rates in the pre-antibiotic era. However, due to the increasing prevalence of resistance, the in vivo efficacy of antibiotics is reduced or abolished, and the spread of antibiotic-resistant microorganisms is now threatening the treatment of otherwise manageable infections.

Antibiotic resistance in microbes is widespread and it has been demonstrated that soil bacteria are rich in resistance determinants to both natural and synthetic antibiotics commonly used in clinics (D’Costa et al., 2006). The collective genes that contribute to antibiotic resistance are referred to as the antibiotic resistome (D’Costa et al., 2007; Wright, 2007). Interestingly, antibiotic resistance genes extracted from the soil resistome were shown to be identical or highly similar to those found in clinically relevant drug-resistant human pathogens (Forsberg et al., 2012) demonstrating that lateral gene transfer likely plays a role in the rise of multidrug-resistant pathogens. In addition to the environment, the human microbiome is also a niche rich in antibiotic resistance determinants where exchange of resistance genes can lead to the generation of drug-resistant bacteria with potential pathogenic traits (Sommer et al., 2009, 2010; Sommer and Dantas, 2011). Altogether, these recent studies showed that the spread of antibiotic resistance from non-pathogenic environmental bacterial is an ongoing threat to the clinical use of antibiotics, even for new synthetic compounds, and the emergence of new drug-resistant pathogens is a constant threat.

Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.

Keywords: antibiotic, resistance, tolerance, interaction, signal, stress, cue, community

Bacterial responses to antibiotics are concentration-dependent. At high concentrations, antibiotics exhibit antimicrobial activities on susceptible cells, while subinhibitory concentrations induce diverse biological responses in bacteria. At non-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses, which may include an altered antibiotic resistance/tolerance profile. In natural settings, microbes are typically in polymicrobial communities and antibiotic-mediated interactions between species may play a significant role in bacterial community structure and function. However, these aspects have not yet fully been explored at the community level. Here we discuss the different types of interactions mediated by antibiotics and non-antibiotic metabolites as a function of their concentrations and speculate on how these may amplify the overall antibiotic resistance/tolerance and the spread of antibiotic resistance determinants in a context of polymicrobial community.

Keywords: antibiotic, resistance, tolerance, interaction, signal, stress, cue, community
genes involved in a variety of bacterial functions like metabolism, regulation, virulence, DNA repair, and stress response (Gosh et al., 2002; Tsai et al., 2004; Davies et al., 2006; Yim et al., 2006, 2007, 2011; Blázquez et al., 2012). Subinhibitory antibiotics can also modify cellular behaviors in bacteria with the formation of biofilms (Hoffman et al., 2005; Frank et al., 2007; Haddadin et al., 2010; Mirani and Jamil, 2011; Subrt et al., 2011; Kaplan et al., 2012) and persistor cells (Dorr et al., 2010). Altogether, these observations strongly suggested that antibiotics induce responses other than those associated to their antimicrobial activities and it is now accepted that they might be used as “signaling” molecules with regulatory functions (Yim et al., 2007; Aminov, 2009; Allen et al., 2010).

Antibiotics are, like other bioactive small molecules, low molecular weight metabolites produced by secondary metabolism of microorganisms, i.e., are not considered essential for growth and viability. Microorganisms such as bacteria and fungi produce a wealth of small molecules that has been called the parvome (Davies, 2009; Davies and Ryan, 2012). Secondary metabolites are responsible for most of the interactions taking place in natural microbial communities (Espin and Muir, 2003; Keller and Surette, 2006; Duan et al., 2009; Rath and Dorrestein, 2012) and as extracellular metabolites antibiotics have the potential to exhibit similar functions. Bacteria in natural environments are mostly part of complex poly microbial communities in which all members share nutrient resources as well as chemicals including primary metabolic end products and secondary metabolites, which have the potential to induce antibiotic resistance/tolerance mechanisms.

Natural communities also include host-associated communities such as the human microbiome. The role(s) of antibiotics in mediating non-lethal interactions between bacterial cells, may in fact, play a much bigger role than previously anticipated in the global antibiotic resistance threat that we are currently facing. Naturally occurring antibiotics, and other related secondary metabolites in bacterial communities, may dictate the spread of antibiotic resistance in a concentration-dependent manner. Therefore improving our current knowledge of antibiotic-mediated interactions in bacteria may facilitate the development of new therapeutic strategies for the treatment of drug-resistant pathogens. Here we review the current knowledge of antibiotic responsive activities as a function of their concentrations and speculate on how these antibiotic-mediated interactions may overall influence antibiotic resistance/tolerance and community composition in heterogeneous poly microbial communities.

CHEMICAL INTERACTIONS

The explosion of research in cell-cell interactions mediated by bioactive small molecules in microbiology has led to the general assumption that most interspecies cell-cell interactions could be labeled as “communication” or “signaling.” However, it is important to note that the demonstration of a biological response upon exposure to a chemical does not necessarily imply communication. The improper use of terms like signal, signaling, or communication in microbiology has created confusion since most interspecies metabolite-mediated interactions labeled as “signaling/communication” are often in conflict with evolutionary theories. A detailed analysis of the appropriate terminology is beyond the scope of this review; therefore we refer the reader to recent reviews that have thoroughly discussed the topic (Keller and Surette, 2006; Duggie et al., 2007; Stacy et al., 2012). A chemical mediating intra- or interspecies interactions can be defined as a signal, cue, or coercion (chemical manipulation). For a chemical interaction to occur, emitting bacteria must first produce a molecule that can be perceived by other individuals, and second, the receiver must alter its behavior in response to the signal.

To determine whether an interaction is mediated by a signal, a cue, or coercion the overall benefit of the reaction is used as primary criteria. As shown in Table 1, a signal is defined when both partners take advantage of the interaction (bidirectional), while cues or coercions have unidirectional benefits for receivers or emitters, respectively. In true signaling interactions, the production and detection of the signal have co-evolved specifically for that purpose and from an evolutionary perspective these events will only be maintained when both partners benefit from the information conveyed by the signal for which they evolved (Maynard Smith and Harper, 2003; Keller and Surette, 2006). On the other hand, a cue provides information to a receiver for which a response is triggered (Keller and Surette, 2006; Duggie et al., 2007; Stacy et al., 2012). Although not mediated by single molecules, environmental conditions can also be considered as cues by bacteria and they include pH, osmolarity, temperature, oxidative stress/oxygen, and nutrient limitation. The main distinction with a signal is that the biological response did not evolve for that purpose, which benefits only the receiver (Keller and Surette, 2006; Duggie et al., 2007; Stacy et al., 2012).

Figure 1 illustrates the different ways by which a single chemical can be perceived by bacterial cells of different species within a poly microbial community. Although interactions mediated by signals, cues, or coercions can all occur in these communities, the majority of these dynamic interactions fall in the category of cue, because they do not require stability over time, for which only receiver cells evolve. The modulation of Pseudomonas aeruginosa virulence factors by autoinducer-2 (AI-2) from the oropharyngeal microbiota (Duan et al., 2003) and alteration of the antibiotic tolerance profile by volatile ammonia (Bernier and Surette, 2006) are examples of interspecies interactions mediated by cues.

Interestingly, intraspecies diversity may in some cases challenge the concept of true communication by the rise of cheaters through

Table 1 | Simplified description of chemical-mediated interactions1,2

Benefits the emitter	Benefits the receiver
Signal	++
Cue	–
Coercion	+

1The overall benefit is used as the main determinant for the classification of the different types of bacteria-bacteria interactions and are either beneficial (++) or costly (+).

2Adapted from Duggie et al. (2007) and Stacy et al. (2012).
Antibiotics are generally known for their antimicrobial properties, having been demonstrated in both in vivo and in vitro settings. These properties allow them to respond accordingly. Although their antimicrobial properties have co-evolved to the benefit of both microorganisms, in the case of competitive inhibition or toxic interactions such as those exhibited by antibiotics, only the producer benefits from the interaction. When the producer itself detects the signal, this would be a case of quorum sensing or cell–cell signaling. In the case of antibiotics, the producer usually co-expresses resistance pathways and these can be co-expressed without a sensing circuit but often, as with many antibiotics, they are detected by the cell and respond in a classical quorum sensing feedback loop. Genetic mutations. The inability of cheaters to either produce and/or perceive a signal may abolish the bidirectional cooperative interaction. In a situation where the response toward a signal leads to the production of a protease allowing the degradation of a particular substrate for nutritional purposes, cheaters impaired in this ability would lose this benefit positively (blue) or negatively (brown) from the different interaction and/or perceive a signal may abolish the bidirectional cooperative interaction. In fact, cheaters get a direct competitive advantage by avoiding the metabolic cost of producing a signal or responding to it and their selfish behavior allows them to benefit without being cooperative. However, some systems may have co-regulated pathways that help to control cheaters (Dandekar et al., 2012).

Biological responses induced by lethal and sublethal antibiotic concentrations

There is a significant body of research investigating the biological responses induced by lethal and sublethal antibiotic concentrations. These responses include cell death, biofilm formation, oxidative stress, and biofilm dispersal. Antibiotics can act as either toxins, stress inducers, or as cues/coercions, respectively. Among interactions mediated by subinhibitory antibiotics, receiver bacteria can interestingly induce mechanisms leading to antibiotic resistance or tolerance (Figure 2).

At concentrations superior to or near the minimal inhibitory concentration (MIC), antibiotics behave like toxins on susceptible bacterial cells. However, although the understanding of resistance mechanisms is well-characterized, molecular mechanisms induced by lethal concentrations of antibiotics is an area of research where our fundamental understanding is still very limited (Kohanski et al., 2010). Recent studies suggested that antibiotic-induced cell death was associated with increased production of radical oxygen species (ROS) such as hydroxyl radicals, superoxide, and hydrogen peroxide for bactericidal antibiotics belonging to the families of quinolones, β-lactams, and aminoglycosides (Dwyer et al., 2007, 2009; Kohanski et al., 2007, 2008, 2010). Although antibiotic ROS-mediated killing is highly possible in aerobic conditions, the proposed model is however, oxygen-dependent (Hassett and Imlay, 2007) and other mechanisms must operate in oxygen-poor environments such as those found in biofilm populations (Stewart and Franklin, 2008).

Antibiotic resistance mechanisms and the antimicrobial nature of antibiotics

Antibiotic resistance mechanisms and the antimicrobial nature of antibiotics are often associated as a cause and effect phenomenon. The presence of resistance genes in bacteria with antibiotic biosynthesis genetic loci (Benveniste and Davies, 1973; Walker and Skorvaga, 1973; Davies and Benveniste, 1974) is an obvious self-protective strategy (Martinez, 2009a,b; Davies and Ryan, 2012; Wright and Poinar, 2012). It has therefore been widely accepted that antibiotic resistance determinants have specifically evolved to tolerate the lethal activity of antibiotics (Martinez, 2009a,b), but experimental data to fully support this thesis are still lacking (Davies and Ryan, 2012). Antibiotics are mainly present at non-lethal concentrations in the environment (Martinez, 2009a,b), therefore antibiotic resistance determinants are likely involved in response mechanisms other than those required when receiver bacteria are exposed to lethal concentrations. Similar to the antibiotic concentration-dependent response (Figure 2), antibiotic resistance would also impact receiver bacteria in an antibiotic dose-dependent manner. The presence of an antibiotic resistance mechanism would shift the spectrum of responses to an antibiotic to higher concentrations. The resistance would lower the effective concentration of antibiotics at the target site (Figure 3A). Exceptions to this would occur if there were secondary target sites for the antibiotics that mediate other responses. At toxic concentrations, resistance would function in the conventional protective role and allow receiver bacteria to avoid the antibiotic toxicity by blocking death or growth arrest. At subinhibitory concentrations, antibiotic resistance genes would shift the effective antibiotic concentration required for inducing the biological responses (stress inducers, coercion, and cues) of receiver bacteria’s perspective on a large concentration spectrum (Figure 2). From high to low concentrations, antibiotics act as either toxins, stress inducers, or as cues/coercions, respectively. Among interactions mediated by subinhibitory antibiotics, receiver bacteria can interestingly induce mechanisms leading to antibiotic resistance or tolerance (Figure 2). How antibiotics become stress inducers or cues/coercions will further be discussed in the following sections, but before we will briefly describe the toxin-like behavior of antibiotics and the impact of antibiotic resistance on the biological response exhibited by bacteria upon antibiotic exposure.
Bernier and Surette: Antibiotics in natural communities

FIGURE 2 | Biological responses toward antibiotics are concentration-dependent. Bacterial interactions mediated by antibiotics induce biological responses in receiver bacteria in a dose-dependent manner. The antimicrobial behavior (toxin) of antibiotics occurs when their concentrations is high leading to bacterial death or growth arrest in susceptible receiver cells. At lower concentrations, subinhibitory, antibiotics can act as stress inducers, coercions or be sensed as cues. Biological responses induced in receiver bacteria when antibiotics are at subinhibitory concentrations can affect various cellular responses or alter gene expression leading to different adaptive responses impacting antibiotic resistance/tolerance.

Toxins	Stress Inducers	Coercions/Cues
[Antibiotic]	Death	Cellular Response / Gene Expression
		Increased mutation rate/Horizontal Gene Transfer/Including phage
		Altered Cellular States
		Inducible Antibiotic Resistance
		Antibiotic Tolerance
		Adaptation
		Antibiotic Resistance

In natural environments, antibiotics are likely present in a gradient of concentrations while receiver organisms may also be heterogeneous. Even in a homogeneous clonal population, cells may be present in different physiological states and the presence of antibiotic tolerance and resistance mechanisms will shift the response curves for individual cells within the population (Figure 3B). In the context of chemical interactions within natural communities, antibiotics released by emitter bacteria at lethal concentrations, subinhibitory, antibiotics can act as stress inducers, coercions or be sensed as cues. Biological responses induced in receiver bacteria when antibiotics are at subinhibitory concentrations can affect various cellular responses or alter gene expression leading to different adaptive responses impacting antibiotic resistance/tolerance.

ANTIBIOTICS AS STRESS INDUCERS

Antibiotics at subinhibitory concentrations can act as stress inducers or cues/coercion on receiver bacteria (Figure 2). When behaving as stress inducers, antibiotics often induce the SOS stress response, which is also associated with various antibiotic resistance mechanisms. The following section will mainly...
The induction of the SOS response in bacteria upon antibiotic exposure.

Bacteria possess multiple survival mechanisms to cope with exogenous stresses and the SOS response is the main general stress response induced by bacteria in these situations (Ehrhardt et al., 2007; Blazquez et al., 2012; Poole, 2012b). The SOS stress response is typically induced upon DNA damage caused by extracellular stresses such as bacterial cell exposure to UV light or antibiotics (Ehrill et al., 2007; Janion, 2008; Butala et al., 2009). It is characterized by a well-coordinated global response initiating inhibition of cell division and induction of DNA repair, recombination, and mutation (Ehrill et al., 2007; Janion, 2008; Butala et al., 2009). In most bacterial species, the RecA and LexA proteins govern the response, which is conserved across bacterial phyla with a few exceptions where the LexA repressor protein homolog is absent, such as in Strepotococcus species (Ehrill et al., 2007). Upon DNA damage, RecA stimulates cleavage of the LexA repressor leading to the global response involving more than 40 SOS-regulated genes (Courcelle et al., 2001; Ehrill et al., 2007; Janion, 2008; Butala et al., 2009). For a more comprehensive description of the SOS stress response, we refer the reader to consult some of these reviews that have thoroughly discussed the topic (Ehrill et al., 2007; Janion, 2008; Butala et al., 2009).

Fluoroquinolones and quinolones are broad spectrum antibiotics, for which resistant mechanisms have quickly emerged (Ruiz, 2003). They inhibit DNA gyrase leading to double-stranded DNA breaks and consequently induction of the SOS stress response (Uros et al., 1991; Deyer et al., 2007; Yim et al., 2011). This induction usually occurs within a particular window of antibiotic concentrations (Piddock and Wise, 1987). In addition to fluoroquinolones or quinolones, bactericidal β-lactam and aminoglycoside antibiotics mediate bacterial killing by stimulating the production of ROS (Deyer et al., 2007, 2009; Kohanski et al., 2007, 2008, 2010), which are themselves potent DNA damaging molecules (Farr and Kogoma, 1991). Consequently, all antibiotics mediating the production of ROS would therefore have the potential to induce the SOS stress response. Interestingly, fluoroquinolone and β-lactam antibiotics were shown in multiple studies to induce the SOS stress response in Escherichia coli while aminoglycosides failed (Yim et al., 1990; Miller et al., 2004; Baharoglu and Mazel, 2011; Poole, 2012b). The intimate relationship between ROS-mediated killing and SOS-induction by bactericidal antibiotics requires more investigations to explain these discrepancies, but it does suggest that the stimulation of ROS production upon antibiotic exposure may be an indirect effect. Parallel mechanisms to the SOS response may exist for aminoglycosides to kill bacteria in a ROS-dependent manner or concentrations must be lethal to induce the SOS response and not subinhibitory. Other antibiotic classes represented by trimethoprim, cefazidine, and sulfamethoxazole are also strong inducers of the SOS stress response in E. coli (Blazquez et al., 2012).

The SOS stress response is widespread among bacteria (Erill et al., 2007), but differences in the antibiotic SOS-induction profiles have been observed between species. For example, subinhibitory concentrations of tetracycline, chloramphenicol, and aminoglycosides induce the SOS response of Vibrio cholerae, while these antibiotics have no impact in E. coli (Baharoglu and Mazel, 2011). Despite the strong similarities between SOS systems across Gram-negative bacteria and the genetic relatedness of E. coli and V. cholera, these disparities suggest that antibiotics may not necessarily induce the SOS response directly from DNA damage, but rather via upstream pathways or targets of the SOS response (Aerts et al., 2013) that could potentially differ between bacterial species. These differences between bacterial species may reflect the evolutionary selective pressure on the different bacteria with specific features reflecting conditions of their natural environments.

The induction of the SOS response is often essential for bacterial survival in stressful environments and associated with genetic responses that indirectly alter antibiotic resistance by increasing mutation rate, horizontal gene transfer, and prophage induction (Erill et al., 2007; Janion, 2008; Butala et al., 2009; Deyer et al., 2009). Several studies have shown that induction of the SOS response by various antibiotics like fluoroquinolones, β-lactams, trimethoprim, tetracycline, chloramphenicol, rifampicin, and aminoglycosides increased the mutation frequency in different bacterial species (Yim et al., 1990; Gillespie et al., 2005; Henderson-Begg et al., 2006; Cortes et al., 2008; Mesak and Davies, 2009; Baharoglu and Mazel, 2011; Yim et al., 2011). Induction of competency by fluoroquinolones leading to horizontal gene transfer with the potential to acquire new antibiotic resistance determinants has recently been reviewed (Charpentier et al., 2012). Furthermore, antibiotics inducing the SOS response can promote
bacterial genetic diversity via homologous recombination, phage release, and transfer of integrons or conjugative elements (Matic et al., 1995; Beaber et al., 2004; Cirz et al., 2007; Hocquet et al., 2012) all involved in the movement of mobile DNA like antibiotic resistance genes.

The induction of the SOS response is critical and relevant to our understanding of antibiotic-mediated interactions on the overall impact of antibiotic resistance in bacterial populations. Bacteria in most environments including those affected during therapeutic treatments can potentially encounter subinhibitory concentrations of antibiotics inducing the SOS stress response. Therefore, a better understanding of SOS-associated behaviors linked to antibiotic resistance traits may result in alternative approaches to control their spread.

ANTIBIOTICS AS CUES

Various antibiotics at subinhibitory concentrations induce biological responses on receiver bacteria that are non-stress-related and frequently affect pathways of primary metabolism (Goh et al., 2002; Toui et al., 2004; Davies et al., 2006; Yin et al., 2006, 2007, 2011; Blazquez et al., 2012). Here we highlight examples demonstrating bacterial interactions mediated by antibiotics sensed as cues, which can subsequently impact the antibiotic resistance profile of receiver bacteria. These inducible responses can directly target mechanisms leading to specific antibiotic resistance or indirectly impact tolerance toward various antibiotics.

Many bacteria can sense specific antibiotics in their environment and subsequently induce the corresponding resistance mechanisms. Tetracycline and vancomycin are the two best-studied examples. Tetracycline resistance has been attributed to classical resistance mechanisms including efflux strategies, target site access (TetM and TetO), and chemical inactivation (TetX; Nelson and Levy, 2011). The regulation of some tetracycline resistance determinants is under the control of tetracycline repressor protein (TetR), which has been thoroughly reviewed elsewhere (Hillen and Berens, 1994; Berens and Hillen, 2003; Ramos et al., 2005; Nelson and Levy, 2011). Briefly, TetR has DNA binding domains targeting operators of tetracycline resistance genes. Once bound to the operator region of a target gene, TetR acts as a transcriptional repressor for which the repression can be relieved by the interaction of tetracycline with TetR (Hillen and Berens, 1994; Berens and Hillen, 2003; Ramos et al., 2005). Therefore, when tetracycline is present, the repressive function of TetR is abolished and transcription of the tetracycline resistance gene can occur normally.

In the case of vancomycin, modification of the target (peptidoglycan – D-Ala-D-Ala C-terminus) is the primary mechanism of resistance (Courvalin, 2006). Six types of resistance to vancomycin (VanA, B, C, D, E, and G) were reported in Enterococcus species (Courvalin, 2006). Interestingly, four of these operons involved in vancomycin resistance (VanA, B, E, and G) are directly inducible by vancomycin, while VanC and G types are constitutive (Courvalin, 2006). Vancomycin is sensed by a two-component regulatory system that positively activates expression of resistance genes in response to vancomycin. Although the basic regulation differs between tetracycline and vancomycin resistance genes, the inducible nature of their specific resistance pathways demonstrate that antibiotics have the ability to directly induce targeted and specific resistance mechanisms.

Although subinhibitory concentrations of antibiotics like tetracycline and vancomycin can induce their own resistance mechanisms, other biological responses have the potential to indirectly impact antibiotic tolerance as well. It was recently demonstrated that subinhibitory concentrations of β-lactam antibiotics induce the autolysin-dependent release of extracellular DNA (eDNA) by Staphylococcus aureus. This affects biofilm formation and autoaggregation (Kaplan et al., 2012), two growth protective mechanisms that will be discussed in the following section. Interestingly, eDNA that is part of the extracellular matrix of P. aeruginosa biofilms induces tolerance against aminoglycosides by chelating cations (Mulcahy et al., 2008). Additionally, subinhibitory concentrations of antibiotics like vancomycin, tetracycline, azithromycin, and ampicillin induce the expression of P. aeruginosa virulence-associated genes leading to increased secretion of phenazines and rhamnolipids (Shen et al., 2008). Pyocyanin, one of the four P. aeruginosa phenazines (Price-Whelan et al., 2006) was recently showed to induce eDNA release in P. aeruginosa biofilms through hydrogen peroxide (H2O2) mediating cell lysis (Das and Manefield, 2012). These examples provide evidence that in multispecies communities, subinhibitory antibiotics can lead to a series of sequential responses leading to antibiotic tolerance (Figure 4).

These are a few examples demonstrating that sensing of subinhibitory concentrations of antibiotics as cues can trigger direct or indirect mechanisms, for which receiver bacteria will subsequently have the ability to resist or tolerate lethal concentrations of antibiotics. In microbial communities, the response of one organism may lead to induction of antibiotic resistance/tolerance in other bacteria.
A significant portion of the antibiotic resistome is made of mobile resistance genes that are horizontally transferable between bacterial cells (D’Costa et al., 2007; Wright, 2007; Allen et al., 2010). Mobile resistance determinants as well as efflux pumps account for the majority of antibiotic resistance mechanisms, however, bacteria have evolved non-inherited and transient mechanisms to resist otherwise lethal antibiotic concentrations (Levin and Rozen, 2006). Environmental conditions can trigger various stress responses making bacterial cells transiently refractory to antibiotics. Bacterial stress responses as determinants of antibiotic resistance have become an emerging area of research. For a more comprehensive description of these we refer the reader to recent reviews that have thoroughly addressed the topic (Poole, 2012a,b).

Briefly, bacterial exposures to environmental-related stresses like nutrient starvation/limitation (nutrient stress), ROS and reactive nitrogen species (oxidative/nitrosative stress), membrane damage (envelope stress), temperature (heat/cold stress), and ribosone disruption (ribosomal stress) have the potential to initiate bacterial responses leading to modified or enhanced tolerance toward the lethal action of antibiotics (Poole, 2012a,b).

Non-inherited and transient mechanisms are mainly attributed to two distinct processes: persistence and drug indifference (Levin and Rozen, 2006). While persistence occurs in subpopulations of slow or non-growing bacteria, drug indifference can be exhibited by the entire population (Levin and Rozen, 2006). Persisters are cells that are generally considered to be responsible for bacterial survival following antibiotic treatments although heterogeneity within bacterial populations and reduced accessibility of the drug to some target cells also contribute. A comprehensive description of persister cells is beyond the scope of this review; therefore we refer the reader to recent reviews that have thoroughly discussed the topic (Lewis, 2007, 2010, 2012; Gerdes and Maisonneuve, 2012; Kint et al., 2012).

Persisters are phenotypic variants within an isogenic bacterial population that can tolerate high concentrations of antibiotics. In contrast to drug-resistant cells, persisters can switch back to the wild-type antibiotic sensitive phenotype when reactivated (Lewis, 2007, 2010, 2012; Gerdes and Maisonneuve, 2012; Kint et al., 2012).

This persister cell behavior has been directly observed (Balaban et al., 2004). Persisters are present both in planktonic bacteria and antibiotic-tolerant biofilms (Spoering and Lewis, 2001). Research emphasis in the field has largely focused on mechanisms involved in persister formation and mechanisms leading to their formation have been proposed such as stochastic processes (passive) to active inducible regulation (Kint et al., 2012). Stochastic switching has been proposed as an effective strategy for survival in unpredictable environments (Kussell and Leibler, 2005; Kussell et al., 2005). Dormancy is a passive mechanism involved in persister formation resulting from stochastic endogenous stress leading to growth arrest and the shutdown of bacterial antibiotic targets making persisters multidrug-tolerant cells (Lewis, 2007, 2010, 2012). Experimental evidence to support the dormancy theory came from transcriptome analysis showing that genes involved in primary metabolism and energy production were down-regulated in persister cells (Keren et al., 2004; Shah et al., 2006). However, the dormancy model was challenged when persisters of *E. coli* were demonstrated to display some level of protein translation (Gefen et al., 2008).

Active mechanisms leading to the induction of persisters in bacterial populations differ in terms of target. After the identification of *hipA*, as the first persistence gene and coding for the toxin of the hipB toxin-antitoxin module (TA; Moyer and Bertrand, 1993), many studies have shown that different TA modules were involved in bacterial persistence (Lewis, 2010, 2012; Gerdes and Maisonneuve, 2012; Kint et al., 2012).

The induction of toxin genes in persister cells (Keren et al., 2004; Shah et al., 2006; Harrison et al., 2009; Maisonneuve et al., 2011) supported the role of TA modules in bacterial persistence. Interestingly, the fluoroquinolone ciprofloxacin was shown to induce bacteria persistence via the TA module *TisAB* upon activation of the SOS response (Dorr et al., 2010). Consistently, lethal concentrations of ampicillin or ofloxacin induce the SOS stress response in persister cells (Kaldalu et al., 2004) while the SOS response confers persistence to fluoroquinolones (Dorr et al., 2009). Unrelated to TA modules, the extracellular chemical induole was recently shown as mechanism inducing persisters in *E. coli* populations (Vega et al., 2012). Interestingly, the latter represents a non-antibiotic mediated interaction leading to antibiotic tolerance; a topic that will be discussed in the following section.

Beside unicellular growth, bacteria can also adopt various types of multicellular growth that exhibit phenotypes different than their planktonic counterparts including antibiotic tolerance. Multicellular behaviors in bacteria include growth as biofilms, aggregates, and swarming. Biofilms are sessile bacterial cells encased within an extracellular matrix that are usually attached to a surface (Stewart and Franklin, 2008; Monds and O’Toole, 2009). Bacterial aggregates are described as unattached biofilm-like structures with the ability to move (Albede et al., 2011; Haaber et al., 2012; Thornton et al., 2012) while swarming represents a type of motility exhibited by bacteria over semi-solid surfaces (Keren et al., 2010). These multicellular behaviors are all associated with elevated tolerance to lethal concentrations of antibiotics when compared to their planktonic counterparts (Stewart and Costerton, 2001; Kim et al., 2003; Lewis, 2007; Overhage et al., 2008; Lai et al., 2009; Albede et al., 2011; Haaber et al., 2012; Thornton et al., 2012). These studies demonstrate that multicellular assemblies in bacteria confer an advantage when facing antibiotics compared to planktonic cells. However, the growth phase of planktonic cells (i.e., logarithmic or stationary) can have a significant impact on their antibiotic tolerance profiles. For example, planktonic *P. aeruginosa* and *E. coli* cells were previously shown to exhibit greater levels of tolerance against bactericidal antibiotics (Evans et al., 1991; Spoering and Lewis, 2001; Bernier et al., 2013). In *Salmonella typhimurium* shifts in primary metabolic pathways have been associated with the induced antibiotic tolerance in swarm cells (Kim and Surette, 2003, 2004; Turnbull and Surette, 2008, 2010) and aggregates (Whitm et al., 2010).

Antibiotic-mediated interactions impact multicellular behaviors and indirectly the antibiotic tolerance profile of these...
populations. Several studies have shown that subinhibitory antibiotics induce biofilm formation (Hoffman et al., 2005; Frank et al., 2007; Haddadin et al., 2010; Mirani and Jamil, 2011; Subir et al., 2010; Kaplan et al., 2012; and autoggregation (Kaplan et al., 2012). Bacterial response to extracellular stresses (Poole, 2011a,b) may also be an important trigger of multicellular behaviors in bacteria (Kaplan, 2011), which are better adapted as a group due to their physiology to tolerate lethal antibiotics (Stewart and Franklin, 2008). In support of this hypothesis, a recent study showed that non-starving planktonic cells were generally more tolerant to bactericidal antibiotics than biofilms, but when these same bacterial cells were starved, therefore stressed, biofilm bacteria were significantly more resilient to antibiotics than their planktonic counterparts (Bernier et al., 2013). As one of the first responses to stress, the SOS response is significantly more induced in biofilm cells compared to their planktonic counterparts (Beloin et al., 2004; Bernier et al., 2013). The higher intrinsic level of SOS in biofilms may explain their increased mutation frequency compared to planktonic cells (Conibear et al., 2009). Altogether, the increased SOS-dependent mutation rate observed in biofilms may well explain the high level of genetic variants arising in biofilm populations in a ReCa-dependent manner (Boles et al., 2004; van der Veen and Abee, 2011) with the potential to impact antibiotic resistance (Boles and Singh, 2008).

The unique physiology of multicellular behaviors such as biofilms and swarming bacteria may render these cells better adapted to respond and tolerate extracellular stresses such as otherwise lethal antibiotic concentrations; these states may be induced directly by subinhibitory antibiotics.

NON-ANTIBIOTIC SMALL MOLECULES AS MODULATORS OF ANTIBIOTIC TOLERANCE

We have highlighted previous studies demonstrating that bacteria can sense antibiotics as cues to mediate bacteria–bacteria interactions with the potential to induce resistance/tolerance when lethal concentrations are subsequently reached. These can induce antibiotic specific mechanisms (e.g., tetracycline, vancomycin) or more general mechanisms like biofilms induction. However, the induction of antibiotic resistance/tolerance via cues is not limited to antibiotics. Within natural communities, bacteria are continuously exposed to a variety of small molecules other than antibiotics. Among these bioactive metabolites, some have been shown to induce biological responses in bacteria leading to a change in the overall antibiotic tolerance profile. Biofilm-derived extracellular metabolites such as indole, hydrogen sulfide (H2S), and volatile ammonia were recently shown to impact the antibiotic tolerance profile of recipient bacteria (Lee et al., 2010; Bernier et al., 2011; Shatalin et al., 2011; Vega et al., 2012). Briefly, under antibiotic stress, a few drug-resistant mutants arise and then release the metabolite indole that is sensed by the entire population allowing other less resistant isolates to survive (Lee et al., 2010). In this particular case, the overall population MIC is totally biased by a few resistant clones since the majority of isolates are sensitive (Lee et al., 2010). The altruistic behavior of drug-resistant isolates comes with a fitness cost, associated with the production of indole, that benefits the entire population (Lee et al., 2010). Increased antibiotic tolerance mediated by indole is proposed to result from induction of efflux pumps and oxidative stress protective mechanisms (Lee et al., 2010). In a different study, indole is proposed to directly induce persistence through the generation of persistor cells (Vega et al., 2012). The generation of persisters by indole exposure is dependent on the phage-shock (Pop) and OxyR pathways (Vega et al., 2012). In other studies, indole was shown to promote the establishment of *E. coli* in dual-species cultures with *P. aeruginosa* by inhibiting production of pyocyanin and other *P. aeruginosa* virulence factors regulated by quorum sensing (Chu et al., 2012). This example represents an example of coercion in which *E. coli*-derived indole manipulates *P. aeruginosa* as a strategy to colonize and share a polyparticulate community. Conversely, over production of indole through the induction of ROS production by subinhibitory concentrations of antibiotics was shown to impair *E. coli* biofilm formation (Kuczyńska-Wiunik et al., 2010).

Until recently, the production of extracellular H2S by bacteria has mainly been considered as a toxic by-product of metabolism. However, bacterial-derived H2S is protective against the lethal action of antibiotics in a ROS-dependent manner (Shatalin et al., 2011). It was also demonstrated that endogenous nitric oxide (NO) of Gram-positive bacteria was protective against oxidative stress-mediated killing by macrophages (Shatalin et al., 2008) and antibiotics (Gusarov et al., 2009). Interestingly, NO and H2S act synergistically since the absence of one can be compensated for by the increased production of the other one upon antibiotic exposure (Shatalin et al., 2011). These studies demonstrate the biological relevance of bacterial genes in mediating bacterial interactions and their indirect impact on antibiotic resistance.

Ammonia, a general by-product of amino acid catabolism, was recently shown to modulate the antibiotic tolerance of neighboring bacterial cells (Bernier et al., 2011). Briefly, both Gram-negative and Gram-positive bacterial species were able to tolerate otherwise lethal concentrations of ampicillin and tetracycline upon exposure to biogenic volatile ammonia (Bernier et al., 2011). Conversely, sensitivity toward aminoglycoside antibiotics was increased in bacterial cells exposed to volatile ammonia (Bernier et al., 2011). Ammonia-mediated interactions between bacterial cells were shown to induce the intracellular levels of polyamines (Bernier et al., 2011). Consistently, addition of polyamines (putrescine and spermidine) could recapitulate the ammonia-mediated phenotype demonstrating that the modified antibiotic tolerance profile of recovered bacteria was fully dependent on the polyamine modulon upon ammonia exposure (Bernier et al., 2011). Interestingly, it was demonstrated in *Bacillus spp* that biofilm formation could also be induced upon exposure to biogenic ammonia and polyamines were critical for normal biofilm development (Burrell et al., 2010; Nijland and Burgess, 2010).
The close relationship between ammonia sensing, polyamine induction, and biofilm formation demonstrate that bacterial interactions mediated by non-antibiotic molecules can modulate antibiotic tolerance not only locally, but also at a distance when ammonia is under its gaseous phase. Altogether, non-antibiotic-mediated interactions clearly demonstrate the complexity of dealing with antibiotic resistance/tolerance when bacteria are part of complex communities, making antibiotic treatments unpredictable.

METABOLITE-MEDIATED INTERACTIONS IN BACTERIAL COMMUNITIES AS MECHANISMS OF ANTIBIOTIC RESISTANCE EVOLUTION

Many infections are polymicrobial and as presented above, antibiotics and non-antibiotic metabolites can mediate interactions between organisms that may impact their efficacy as antimicrobials. The following describes a hypothetical scenario demonstrating how metabolite-mediated interactions may have the potential to alter the antibiotic resistance profile of an entire population and possibly leading to the spread of antibiotic resistance.

For this exercise, we chose a simple polymicrobial community including the pathogens *P. aeruginosa* and *S. aureus* as well as *Streptococcus* species belonging to the normal oropharyngeal microbiota. These bacterial species can simultaneously co-infect the lungs of cystic fibrosis (CF) patients (Sibley et al., 2008b, 2009, 2011) and dynamic interactions between these organisms have previously been demonstrated to alter *P. aeruginosa* virulence (Duan et al., 2005; Sibley et al., 2008a). In the scenario described below, we suggest that a single antibiotic therapy may affect the overall community structure and subsequently the antibiotic resistance of the community by initiating a cascade of interspecies interactions mediated by antibiotics and non-antibiotic metabolites (Figure 5).

Following an antibiotic treatment, many of the bacterial cells in the community will lyse releasing their intracellular content including eDNA and NO that could potentially induce antibiotic tolerance (Mulcahy et al., 2008; Gusarov et al., 2009). However, because of the population heterogeneity in terms of susceptibility and resistance/tolerance (persisters, stationary phase cells, aggregates, and biofilms) a large number of cells will die while some will survive. Over the course of the treatment, antibiotics will be present at different concentrations at different times and sites and therefore mediating different types of interactions with viable bacterial cells. At subinhibitory concentrations, antibiotics will induce different biological responses, for which antibiotic resistance/tolerance will subsequently be affected. In this particular polymicrobial community, β-lactams will induce the release of eDNA from *S. aureus* in an autolysin-dependent manner and subsequently lyse upon antibiotic exposure, unless cells harbor the corresponding antibiotic resistance determinant (capped cells; red, blue, or orange corresponding to the respective antibiotic) or are part of multicellular structures (biofilms, aggregates). Subinhibitory antibiotics and non-antibiotic metabolites within the community can subsequently induce different antibiotic tolerance mechanisms leading to an altered community in terms of composition and antibiotic resistance/tolerance.

FIGURE 5 | Metabolite-mediated interactions modulating antibiotic resistance or tolerance in polymicrobial communities. Following an antibiotic treatment, natural communities will respond, adapt, and evolve through the establishment of dynamic interactions mediated by antibiotics and non-antibiotic metabolites. A simple polymicrobial community comprising *P. aeruginosa* (green), *S. aureus* (purple), and *Streptococcus* spp. (brown) is used to illustrate this hypothetical scenario. A proportion of the established community, made of multispecies biofilms and planktonic cells, will die and subsequently lyse upon antibiotic exposure, unless cells harbor the corresponding antibiotic resistance determinant (capped cells; red, blue, or orange corresponding to the respective antibiotic) or are part of multicellular structures (biofilms, aggregates). Subinhibitory antibiotics and non-antibiotic metabolites within the community can subsequently induce different antibiotic tolerance mechanisms leading to an altered community in terms of composition and antibiotic resistance/tolerance.
triggering biofilm formation as a growth protective mechanism (Kaplan et al., 2012). At the same time, subinhibitory concentrations of other antibiotics will induce the production of pyocyanin in P. aeruginosa (Shen et al., 2008) resulting in the generation of H2O2, cell lysis, and subsequent release of more eDNA (Das and Manefield, 2012). Streptococci bacteria are known to generate H2O2, causing cell lysis and the release of eDNA (Shen et al., 2008). The accumulation of eDNA, through antibiotic and non-antibiotic interactions, will chelate cations and primarily the reduced cation concentrations that are directly sensed by the cells leading to antibiotic tolerance (Malczyk et al., 2008). In addition, the community would favor biofilms and aggregates as modes of growth (Kaplan et al., 2012), which are generally more tolerant to antibiotics.

The concentration of antibiotics will gradually decrease over time allowing the remaining viable bacterial cells to grow back. The CF lung is rich in amino acids (Palmer et al., 2007) and actively growing bacteria will release ammonia as a by-product of amino acid catabolism. Ammonia sensing by bacteria within the community will induce the synthesis of polyamines leading to increased tolerance against aminoglycosides and tetracycline (Bernier et al., 2011) and oxidative stress (Bernier et al., 2011; Johnson et al., 2012). Further, the CF lung itself is rich in extracellular polyamines (Grasemann et al., 2012), which could directly affect the antibiotic tolerance profile of the community (El-Halfawy and Várnava, 2012) independently of ammonia sensing. Further, the consequences of these responses may impact syntrophic and other metabolite-mediated interactions that can further alter community composition.

For bacterial species that are naturally competent, the abundance of eDNA may also represent an excellent source of antibiotic resistance genes. Subinhibitory antibiotics induce the SOS response and competence systems (Charpentier et al., 2012) in Streptococcus leading to horizontal gene transfer and the acquisition of resistance genes. Thereafter, the newly acquired resistance gene will be transferred vertically through bacterial division resulting in a new drug-resistant Streptococci strain. Further, mutation rates are also increased in all bacteria upon antibiotic exposure leading to the generation of potential new drug-resistant mutants. Resistance mechanisms that chemically inactivate antibiotics also have the potential to reduce the concentration to subinhibitory levels for susceptible cells in the community.

Through various inducible mechanisms mediated by antibiotics and non-antibiotic metabolites, the overall composition of the community may change over time. This complex network of interactions is not reflected in standard antibacterial susceptibility and these processes likely contribute to the frequent failure of antibiotics to restrict the population of susceptible organisms in patients. This will be more likely to occur in polymicrobial infections or when pathogens are part of a normal host community such as in upper respiratory or gastrointestinal infections.

CONCLUSIONS AND PERSPECTIVES

The increase of antibiotic-resistant pathogens represents a very significant threat and challenge in the fight against infectious diseases. The complexity of the antibiotic resistome demonstrates that antibiotic resistance will always be a menace even for synthetic antibiotics. Fluoroquinolones represent a good example of synthetic drugs against which bacteria have quickly evolved resistance (Ruiz, 2003; D’Costa et al., 2006, 2007). More judicious use of antibiotics clinically and restricting non-medical applications may slow down the spread of drug-resistant bacteria and the emergence of new antibiotic-resistant pathogens, but the breadth of the antibiotic resistome and the capacity of microbes to rapidly evolve will make this an ongoing struggle. The chemical warfare that has been going on in microbial communities for hundreds of millions of years is something of a double-edged sword. Most antibiotics in use today have a microbial origin. Microbial secondary metabolites have also been a valuable source of drugs not restricted to just antibiotics. At the same time these communities have evolved complex resistance mechanisms that can rapidly spread from natural environments to the clinic.

Since most antibiotics are natural molecules involved in chemical interactions between bacteria in communities, it has become important to expand our understanding of the effects of these interactions on bacterial behaviors including antibiotic resistance. Because the presence of subinhibitory antibiotics can result in a phenotype, the responses are subject to evolution and natural selection, the same as toxic interactions. In this review, we have discussed and presented various scenarios on how antibiotics at subinhibitory concentrations have the potential to induce different biological responses leading to a general modification in the antibiotic resistance profiles of both environmental and host-associated bacteria. These non-lethal interactions can act as stress inducers or be sensed as cues by recrrent bacteria. Activation of the SOS stress response by antibiotics appears to reduce the efficacy of antibiotic treatments and facilitate the evolution of resistance. Therefore, new therapeutic strategies targeting the SOS response may in return increase antibiotic efficacy. Blocking the LexA cleavage, therefore the SOS response, reduces the ability of E. coli to develop resistance toward ciprofloxacin and rifampicin both in vitro and in vivo, through mutations (Cisz et al., 2009). This suggests that suppressing the SOS response would inhibit mutation rate, which is an important downstream SOS-associated phenotype involved in bacterial evolution and antibiotic resistance.

Manipulating cellular physiology has the potential to enhance the efficacy of antibiotics even in resistant strains. A recent study explored this possibility and reported that an engineered bacteriophage targeting the SOS response network enhanced the killing efficacy of bactericidal antibiotics and survival in mice (Yu and Collins, 2009). The enhanced antibiotic killing by SOS-targeting phages was also effective against persister and biofilm bacteria (Yu and Collins, 2009).

The nature of the effect of volatile ammonia on antibiotic resistance is dependent on the class of antibiotic. While bacterial exposure to volatile ammonia induces tolerance against β-lactam and tetracycline antibiotics it increases the efficacy of aminoglycosides (Bernier et al., 2011). Interestingly, reactivation of the metabolism of E. coli persisters by the addition of various metabolites (glucose, mannitol, fructose, pyruvate) restored their sensitivity to aminoglycosides to a level comparable to non-persister cells (Allison et al., 2011). These two studies demonstrate the proof of concept that bacterial interactions occurring in natural communities via non-antibiotic molecules have the ability...
Although significant findings have been made in this emerging area, therapeutic potentials (Ejim et al., 2011). Furthering our understanding of bacterial interactions mediated by antibiotics and non-antibiotic molecules will be valuable in the development of new strategies to combat antibiotic resistance. Although significant findings have been made in this emerging area of research, we need to further expand our views of these dynamic interactions in microbial communities. The conventional approach of determining in vitro susceptibilities to isolated organisms has many limitations clinically and in polymicrobial infections, many community interactions can reduce antibiotic efficacy in addition to traditional resistance mechanisms. Understanding chemical interactions within microbial communities should include the role of antibiotics in these communities and mechanisms of resistance. This will provide new opportunities and strategies to accelerate the discovery of new drug development programs in order to control and adequately manage the spread of antibiotic resistance in the future.

ACKNOWLEDGMENTS

We would like to acknowledge Carolyn Southward for critical reading of the manuscript and helpful discussions. S. F. B. is a recipient of a postdoctoral fellowship from Cystic Fibrosis Canada. Michael G. Surette is supported by grants from Cystic Fibrosis Canada and the Canadian Institutes of Health Research. Michael G. Surette is supported by grants from Cystic Fibrosis Canada and the Canadian Institutes of Health Research. Michael G. Surette is supported by grants from Cystic Fibrosis Canada and the Canadian Institutes of Health Research. Michael G. Surette is supported by grants from Cystic Fibrosis Canada and the Canadian Institutes of Health Research.

REFERENCES

Aerenson, A., and Michael, C. W. (2016). Upstream of the SOS response figure out the trigger. Trends Microbiol. 14, 421–423.

Ahmed, M., Kupoh, K. N., Quyweer, K., Allen-Fleming, M., Van Gennip, M., Christiansen, L. D., et al. (2011). Phenotypes of non-attached Pseudoalteromonas aeruginosa aggregate resemble surface attached biofilm. PLoS ONE 6(10), e27943. doi: 10.1371/journal.pone.0027943

Allan, H. K., Donato, J., Wang, H., H., Clust-Hammon, A., Davin, J., and Handelman, J. (2010). Call of the wild: antibiotic resistance genes in diverse environments. Nat. Rev. Microbiol. 8, 251–259.

Allison, K. R., Brynildsen, M. P., and Collins, J. J. (2011). Unpredictable environmental stressors drive bacterial metabolic diversity. Nature 473, 216–220.

Amir, E. L. (2009). The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11, 2976–2988.

Amir, E. L. (2010). A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 1:134. doi: 10.3389/fmicb.2010.00134

Andersson, D. I., and Hughes, D. (2012). Evolution of antibiotic resistance at non-lethal drug concentrations. Drug Resist. Today 15, 162–172.

Bakerma, Z., and Mand, D. (2011). Vibrio cholerae triggers SOS and autogenus in response to a wide range of antibiotics: a route towards multidrug resistance. Antimicrob Agents Chemother. 55, 2439–2441.

Balaban, N. Q., Lobkovitz, A., Christensen, L. D., Conibear, T. C., Collins, S. L., and Handelsman, J. (2004). Global impact of marine biofilm lifestyle on Escherichia coli K-12 gene expression. Mol. Microbiol. 51, 659–674.

Bercovier, R., and Dumas, J. (1975). Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those in 1971-1973: clinical isolation of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. U.S.A. 72, 2278–2280.

Bhullar, K., Waglechner, N., Pawlowski, S. J. (2009). The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93.

Boles, B. R., Thoendel, M., and Singh, P. O., and Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in diverse environments. Nat. Rev. Microbiol. 8, 251–259.

Boles, B. R., Waglechner, N., and Singh, P. O. (2008). Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl. Acad. Sci. U.S.A. 105, 12513–12518.

Booth, B. B., Siers, B. D., and Singh, P. O. (2012). Induction of competence by inhibiting mutation and combating antibiotic resistance in Bacillus subtilis. J. Bacteriol. 194, 3427–3436.

Borgonovi, B., and Dumas, J. (1975). Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those in 1971-1973: clinical isolation of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. U.S.A. 72, 2278–2280.

Bordal, V., and Surette, M. (2013). Starvation and biofilm formation. J. Bacteriol. 195, 3292–3297.

Burrows, M., Hunter, C. C., Furie, E., Stanley-Wall, N. R., and Michael, A. J. (2015). Evolution and multiplicity of arginine deiminases in polymyositis and essential role in Bacillus subtilis biofilm formation. J. Bacteriol. 203, 39224–39228.

Calvin, M., Zgar-Biskov, D., and Bushby, S. J. (2009). The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82–93.

Charpentier, X., Pohard, P., and Clavero, F. (2012). Induction of competence for genetic transformation by antibiotic: convergent evolution of stress responses in diverse bacterial species lacking SOS. Curr. Opin. Microbiol. 15, 570–576.

Chen, W., Zou, T. B., Wobus, M., Wood, T. K., Whiseney, M., Halape, M., and Gobbi, M. J. (2011). Bacterial ammonia modulates antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81, 705–716.

Chenal, S., Wague, I., Pavlovski, A., Koteras, K., Banda, E. D., Johnston, M. D., et al. (2012). Antibiotic resistance is prevalent in an isolated cave microbe. PLoS ONE 7(4), e34955. doi: 10.1371/journal.pone.0034955

Chan, R. T., Chan, J. K., Anson, B. D., De Courcy-Lindsay, V., Craig, W. A., and Rosenberg, E. F. (2003). Inhibition of mutation and combating the evolution of antibiotic resistance. PLoS Biol. 1(3), 176. doi: 10.1371/journal.pbio.0030176

Cirino, R. E., Jones, M. B., Dingkas, N. A., Minogue, T. D., Jarrah, B., Peterson, S. N., et al. (2007). Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. J. Bacteriol. 189, 531–539.

Coimbra, T. C., Collins, S. L., and Webb, I. S. (2009). Role of mutation in the emergence of antibiotic resistance. PLoS ONE 4(2), e4289. doi: 10.1371/journal.pone.0004289

Cortes, P. R., Pinas, G. E., Albaracco, Otto, A. G., and Ezpeleta, J. R. (2008). Subinhibitory concentrations of penicillin increase the mutation rate to oxitocin resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 63, 973–977.

Costallat, J., Kholoeber, A., Pepe, B., Bron, P. O., and Hanshaw, P. C. (2001). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–54.

Coursin, P. (2006). Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 42(Suppl. 1), S52–S55.

D’Costa, V. M., Griffiths, E., and Wright, G. D. (2007). Expanding the soil antibiotic resistance: exploring environmental diversity. Curr. Opin. Microbiol. 10, 481–489.

D’Costa, V. M., King, C. E., Kilen, L., Mor, M., Zhang, W., Schwartz, C., et al. (2011). Antibiotic resistance is ancient. Nature 477, 457–461.

D’Costa, V. M., Migrane, K. M., Hughes, D. W., and Wright, G. D. (2006). Sampling the antibiotic resistance. Science 313, 274–277.

Dandapani, A. A., Chauhan, S., and Gromley, E. P. (2012). Bacterial
Duan, K., Dammel, C., Stein, J., Dantas, G., Sommer, M. O., Oluwase-Davies, J. (2006). Where have all the
Dorr, T., Lewis, K., and Vulic, M. (2009). Diggle, S. P ., Gardner, A., West, S. A., and

ericincent to cooperate.

Bacteria subsisting on antibiotics in natural communities
microbial interactions between organisms
and resistance.

Investigating the parvome: bioactive
si in t rasmit to their tar-
gist of soil bacteria and human
In vitro effects of clinical drug resistant
metabolic differentiation in actively
eevasion and in terventions using evolutionary perspective.

Dwyer, D. J., Kohanski, M. A.,

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylococcus aureus

M. R., and Gilbert, P . (1991). Sus-

Kim, W., Killian, T., Sood, V., and Surette, M. G. (2006). Spread of drug resistance in

Staphylo
J. (2007). A common mechanism of cellular death induced by bacterial antibiotics. Cell 128, 797–810.
Kohtanski, M. A., Deyo, D. J., Wierzbowski, J., Cotterell, G., and Collins, J. J. (2008). Mistransla-
tion of mammalian proteins and their component system activation triggers antibiotic-modulated cell death. Cell 137, 679–690.
Kuczynska-Wokin, D., Matunovska, E., Pavarnik-Blažek, R., Lebczy-
ska, D., Gidazeva, A., Struncova, P., et al. (2010). Antibiotics promoting oxidative stress induce forma-
tion of Escherichia coli biofilm via indole signalling. Biochem. Biophys. Acta 1805, 847–853.
Kussell, E., Kishony, R., Balaban, N. Q., and Leibler, S. (2005). Bacterial persistence: a model of survival in changing environments. Genes Dev. 19, 1007–1017.
Kussell, E., and Leibler, S. (2005). Phenotypic diversity and population growth, and information in fluctuating envi-
ronments. Science 309, 2075–2078.
Lai, S., Tremblay, J., and Deziel, E. (2010). Persister cells. Annu. Rev. Microbiol. 64, 487–508.
Levin, B. R., and Rozen, D. E. (2006). Competition of membrane proteins and two-
component systems in prokaryotes. Trends Microbiol. 14, 157–161.
Levy, S. D., and Hancock, R. E. (2008). Swarming motility: a multi-
ple role for phenazine antibiotics. Nat. Rev. Microbiol. 6, 467–476.
Levi, B. M., and Levy, S. B. (2011). Food animals and antimicrobials: the role of murein synthesis. Vet. Microbiol. 155, 157–161.
Lewenza, S. (2008). Extra-
cellular DNA during biofilm development of Pseudomonas aeruginosa. BMC Microbiol. 8, 169, 1009–1013.
Liu, T. K., and Collins, J. J. (2009). Environmental persistence of antibiotic resistance traits in pathogenic bacteria. J. Bacteriol. 191, 5974–5987.
Maynard-Smith, J., and Harper, D. (1994). Animal signals. New York, NY: Oxford University Press.
McKenna, M., Irvin, C. B., Bortz, D. M., Solomon, M. J., and Younger, J. (2011). Production of virulence factors and antibiotic resistance. J. Bacteriol. 193, 2671–2679.
McKenna, M., Ap, I. M., and Whittam, T. S. (2007). Nutritional cues control Pseudomonas aeruginosa multicella-
lar behavior in cystic fibrosis sputum. J. Bacteriol. 189, 6879–6887.
Mikolajczyk, L. J., and Wiss, R. (1987). Induction of the SOS response in Escherichia coli by 4-quinoline ammonium salts. FEMS Micro-
biol. Lett. 41, 289–294.
Morris, M. D., Storey, D. G., Rubin, H. R., Duane, K., Norgard, J. C., and Surette, M. G. (2008). A polymicro-
bial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. U.S.A. 105, 15070–
15075.
Moss, K. D., Griffiths, M. E., Field, T. R., Frasch, C. S., Paria, M. M., Dowel, S. E., et al. (2011). Culture enriched molecular profiling of the cystic fibrosis airway microbi-
ome. PLoS ONE 6:e22702. doi: 10.1371/journal.pone.0022702.
Price-Whelan, A., Dietrich, L. E., and Noveman, D. K. (2006). Rethinking the ‘secondary’ metabolism: physiolog-
ical roles for phenazine antibiotics. Nat. Rev. Microbiol. 4, 71–78.
Porfiri, A. L., and Lewis, K. (2001). Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 679–671.
Q., and Leibler, S. (2005). Bacte-
rial cell death induced by bactericidal antibiotics. Science 309, 986–989.
Ruiz, J. (2013). Mechanisms of resis-
tance to quinolones: target alter-
ations, decreased accumulation and DNA gyrase protection. J. Antimi-
crop. Chemother. 58, 1099–1117.
Shah, D., Zhang, Z., Khodursky, A. B., Khalak, N., Kurg, K., and Lorenz, K. (2006). Possible function of transcriptional repressors. Microbes. Mol. Biol. Rev. 70, 326–390.
Shatalin, K., Khodursky, A., Mironov, A., and Egorov, A. I. (2003). The TnFl family of transpositional repressors. Microbes. Mol. Biol. Rev. 67, 507–515.
Stahl, D. A., and Dworkin, C. P. (2002). The bacterial chemical response to multifac-
torial cellular and environmental stimuli. Proc. Natl. Acad. Sci. U.S.A. 99, 169, 1807–1814.
Stewart, P. S., and Costerton, J. W. (2001). Antibacterial resistance of bacteria in biofilms. Lancet 357, 135–138.
Stewart, P. S., and Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 593–605.
Sun, N., Zhou, Y., Zhang, D., Wei, J., Surette, M. G., and Duan, K. (2008). Modulation of secreted vir-
ulence factor gene by subinhibitory concentrations of antibiotics in Pseu-
domonas aeruginosa. J. Bacteriol. 190, 441–444.
Thornton, M. J., Chang-Eski, H. M., Irvin, C. B., Forst, D. M., Solomon, M. J., and Younger, J. (2006). Discerning the complexity of community interactions using a Drewesia model of polymicrobial infections. PLoS Pathog. 2:e1000184. doi: 10.1371/journal.ppat.1000184.
Tanner, J. H., Parkins, M. D., Rubin, H. R., Duane, K., Norgard, J. C., and Surette, M. G. (2008). A polymicro-
bial perspective of pulmonary infection exposes an enigmatic pathogen in cystic fibrosis patients. Proc. Natl. Acad. Sci. U.S.A. 105, 15070–
15075.
van der Veen, S., and Abou, T. (2011). Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS ONE 6:e20790. doi: 10.1371/journal.pone.0020790.

Walker, J. R., and Skovgaard, M. (1973). Phosphorylation of streptomycin and dihydrostreptomycin by Streptomyces. Enzymatic synthesis of different diphosphorylated derivatives. J. Biol. Chem. 248, 2435–2440.

White, A. P., Weljie, A. M., Apel, D., Zhang, P., Shaykhutdinov, R., Vogel, H. J., et al. (2010). A global metabolic shift is linked to Salmonella multicellular development. PLoS ONE 5:e11814. doi: 10.1371/journal.pone.0011814.

Wright, G. D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186.

Wright, G. D., and Prinz, H. (2012). Antibiotic resistance is ancient implications for drug discovery. Trends Microbiol. 20, 157–159.

Yim, G., Mcclure, J., Surette, M. G., and Davies, J. (2007). Induction of SOS genes in Salmonella typhimurium by fluoroquinolones. Antimicrob. Agents Chemother. 51, 65–66.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 04 November 2012; accepted: 28 January 2013; published online: 13 February 2013.

Citation: Bernier SP and Surette MG (2013) Concentration-dependent activity of antibiotics in natural environments. Front. Microbiol. 4:20. doi: 10.3389/fmicb.2013.00020

This article was submitted to Frontiers in Antimicrobials, Resistance and Chemotherapy, a specialty of Frontiers in Microbiology.

Copyright © 2013 Bernier and Surette. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.