ON A CONJECTURE OF POLYNOMIALS WITH PRESCRIBED RANGE

AMELA MURATOVIC-RIBIĆ AND QIANG WANG

Abstract. We show that, for any integer \(\ell \) with \(q - \sqrt{p} - 1 \leq \ell < q - 3 \) where \(q = p^n \) and \(p > 9 \), there exists a multiset \(M \) satisfying that \(0 \in M \) has the highest multiplicity \(\ell \) and \(\sum_{b \in M} b = 0 \) such that every polynomial over finite fields \(\mathbb{F}_q \) with the prescribed range \(M \) has degree greater than \(\ell \). This implies that Conjecture 5.1. in [1] is false over finite field \(\mathbb{F}_q \) for \(p > 9 \) and \(k := q - \ell - 1 \geq 3 \).

1. Introduction

Let \(\mathbb{F}_q \) be a finite field of \(q = p^n \) elements and \(\mathbb{F}_q^* \) be the set of all nonzero elements. Any mapping from \(\mathbb{F}_q \) to itself can be uniquely represented by a polynomial of degree at most \(q - 1 \). The degree of such a polynomial is called the reduced degree. A multiset \(M \) of size \(q \) of field elements is called the range of the polynomial \(f(x) \in \mathbb{F}_q[x] \) if \(M = \{ f(x) : x \in \mathbb{F}_q \} \) as a multiset (that is, not only values, but also multiplicities need to be the same). Here we use the set notation for multisets as well. We refer the readers to [1] for more details. In the study of polynomials with prescribed range, Gac's et al. recently proposed the following conjecture.

Conjecture 1 (Conjecture 5.1, [1]). Suppose \(M = \{ a_1, a_2, \ldots, a_q \} \) is a multiset of \(\mathbb{F}_q \) with \(a_1 + \ldots + a_q = 0 \), where \(q = p^n \), \(p \) prime. Let \(k < \sqrt{p} \). If there is no polynomial with range \(M \) of degree less than \(q - k \), then \(M \) contains an element of multiplicity at least \(q - k \).

We note that Conjecture 1 is equivalent to

Conjecture 2. Suppose \(M = \{ a_1, a_2, \ldots, a_q \} \) is a multiset of \(\mathbb{F}_q \) with \(a_1 + \ldots + a_q = 0 \), where \(q = p^n \), \(p \) prime. Let \(k < \sqrt{p} \). If multiplicities of all elements in \(M \) are less than \(q - k \), then there exist a polynomial with range \(M \) of the degree less than \(q - k \).

In the case \(k = 2 \), Conjecture 1 holds by Theorem 2.2. in [1]. In particular, Theorem 2.2 in [1] gives a complete description of \(M \) so that there is no polynomial with range \(M \) of reduced degree less than \(q - 2 \). In this paper, we study the above conjecture for \(k \geq 3 \).

Suppose we take a prescribed range \(M \) such that the highest multiplicity in \(M \) is \(\ell = q - k - 1 \), if the above conjecture were true then it follows that there exist a polynomial, say \(g(x) \), with range \(M \) and the degree of \(g(x) \) is less than \(q - k \). On the other hand, If \(a \in M \) is the element with multiplicity \(\ell \) then polynomial \(g(x) - a \) has \(\ell \) roots and thus the degree of \(g(x) \) is at least equal to the highest multiplicity \(\ell \) in \(M \). Therefore the degree of \(g(x) \) must be \(\ell = q - k - 1 \). This

Research is partially supported by NSERC of Canada.
means that, if Conjecture 2 were true, then for every multiset M with the highest multiplicity $\ell = q - k - 1$ where $1 \leq k < \sqrt{p}$ there exists a polynomial with range M of the degree ℓ. Note that $k < \sqrt{p}$ implies $\ell = q - k - 1 > q - \sqrt{p} - 1 \geq \frac{q}{2}$ when $q > 5$. Also $3 \leq k \leq \sqrt{p}$ implies $p > 9$.

Let $M = \{a_1, a_2, \ldots, a_q\}$ be a given multiset. We consider polynomials $f(x) : \mathbb{F}_q \to M$, with the least degree. Denote by ℓ the highest multiplicity in M and let $\ell + m = q$. If $a \in M$ is an element with multiplicity ℓ then the polynomial $f(x) - a$ has the same degree as $f(x)$ and 0 is in the range of $f(x) - a$ such that 0 has the same highest multiplicity ℓ. Therefore, we only consider multisets M where 0 has the highest multiplicity for the rest of paper.

In particular, we prove the following theorem.

Theorem 1. Let \mathbb{F}_q be a finite field of $q = p^n$ elements with $p > 9$. For every ℓ with $q - \sqrt{p} - 1 \leq \ell < q - 3$ there exists a multiset M with $\sum_{b \in M} b = 0$ and the highest multiplicity ℓ achieved at $0 \in M$ such that every polynomial over the finite field \mathbb{F}_q with the prescribed range M has degree greater than ℓ.

In particular, for any $p > 9$, if we take $\ell = q - k - 1 \leq q - 4$, i.e., $k \geq 3$, then Theorem 1 implies that Conjecture 2 fails.

2. **Proof of Theorem 1**

In this section, we prove Theorem 1. Let ℓ be fixed and $q - \sqrt{p} - 1 \leq \ell < q - 3$. Because $p > 9$, $\sqrt{p} > 3$ and such ℓ exists. Let M be a multiset such that 0 is in M and the highest multiplicity ℓ and $\sum_{b \in M} b = 0$. Note that $\ell \geq \frac{q}{2}$ implies that multiplicity of any nonzero element in M is less than $m := q - \ell \leq \frac{q}{2}$ (indeed the highest multiplicity is achieved at 0). Let $f : \mathbb{F}_q \to M$. Let $U \subseteq \mathbb{F}_q$ such that $f(U) = \{0^{\ell}\}$ (the multiset of ℓ zeros) and $T = \mathbb{F}_q \setminus U$, i.e., $x \in T$ implies $f(x) \neq 0$. Then $|U| = \ell$ and $|T| = m$ and $M = f(U) \cup f(T)$. Then polynomial $f : \mathbb{F}_q \to M$ can be written in the form $f(x) = h(x)P(x)$ where $P(x) = \prod_{s \in U} (x - s)$ and $h(x) \neq 0$ has no zeros in T. Then $\deg(f) \geq \deg(P) = \ell$. We note that there is a bijection between polynomials with range $M = \{a_1, \ldots, a_q\}$ and the ordered sets (b_1, \ldots, b_q) (that is, permutations) of \mathbb{F}_q: a permutation corresponds to the function $f(b_i) = a_i$. For each U, there are many different $h(x)$’s corresponding to different ordered sets (b_1, \ldots, b_q) such that $f(b_i) = 0$ for all $b_i \in U$. However, if $h(x) = \lambda \in \mathbb{F}_q^*$ then $f(x)$ is a polynomial of the least degree and each polynomial $f(x)$ is uniquely determined by a set T and a nonzero scalar λ. Thus we denote $f(x)$ by

\[
(1) \quad f(\lambda, T)(x) = \lambda \prod_{s \in \mathbb{F}_q \setminus T} (x - s).
\]

Therefore its range M is also uniquely determined by T and λ. Denote by \mathcal{T} the family of all subsets of \mathbb{F}_q of cardinality m, i.e.,

$\mathcal{T} = \{T \mid T \subseteq \mathbb{F}_q, |T| = m\}$.

Denote by \mathcal{M} the family of all multisets M of order q containing 0, having the highest multiplicity ℓ achieved at 0 and whose sum of elements in M is equal to the 0, i.e.,

$\mathcal{M} = \{M \mid 0 \in M, \text{ multiplicity}(0) = \ell, \sum_{b \in M} b = 0\}$.
Lemma 1. Let \(f : \mathbb{F}_q^* \times T \to M \)

where

\[
(\lambda, T) \mapsto \text{range}(f_{\lambda,T}(x)).
\]

Now by Equation (1) it follows that for every \(\hat{s} \in T \) we have

\[
(2) \quad f_{\lambda,T}(\hat{s}) = \lambda P(\hat{s}) = \lambda \prod_{s \in \mathbb{F}_q, s \neq \hat{s}} (\hat{s} - s) \left(\prod_{s \in T, s \neq \hat{s}} (\hat{s} - s) \right)^{-1} = -\lambda \left(\prod_{s \in T, s \neq \hat{s}} (\hat{s} - s) \right)^{-1}.
\]

(Note that this equation does not hold for \(x \in \mathbb{F}_q \setminus T \). In the following we find an upper bound of \(|\text{range}(F)|\) and a lower bound of \(|M|\) and show that \(|M| > |\text{range}(F)|\). This implies that Theorem holds.

First of all we observe

Lemma 1. Let \(\lambda \) and \(T \) be given. For any \(c \in \mathbb{F}_q^* \) and any \(b \in \mathbb{F}_q \), we have

\[
f(\lambda,T)(\hat{s}) = f(c^{m-1}\lambda,cT+b)(c\hat{s}+b), \quad \text{for} \ \hat{s} \in T
\]
i.e.,

\[
F(\lambda,T) = F(c^{m-1}\lambda,cT+b).
\]

Proof. We use notation \(cT+b = \{cs+b \mid s \in T\} \). Substituting in (2), we obtain

\[
f(c^{m-1}\lambda,cT+b)(c\hat{s}+b) = -c^{m-1}\lambda(\prod_{s \in T, s \neq \hat{s}} ((c\hat{s}+b) - (cs+b)))^{-1} = -\lambda(\prod_{s \in T, s \neq \hat{s}} (\hat{s} - s))^{-1} = f(\lambda,T)(\hat{s}).
\]

Now we use Burnside’s Lemma to find an upper bound of the cardinality of \(\text{range}(F) \).

Lemma 2. Let \(m < \sqrt{T}+1 \) and let \(d = \gcd(q-1,m-1) \). Then

\[
|\text{range}(F)| \leq \frac{(q-1)(q-2)\ldots(q-m+1)}{m!} + \sum_{i \mid d} \phi(i) \left(\frac{q-1}{i^2} \right).
\]

Proof. Let \(G \) be group of all (nonzero) linear polynomials in \(\mathbb{F}_q[x] \) with the composition operation. Indeed, \(G \) is a subgroup of the group of all permutation polynomials because the composition of two linear polynomials is again a linear polynomial, the identity mapping is a linear polynomial, and the inverse of a linear polynomial is again a linear polynomial. We use notation \(cT+b = \{cs+b \mid s \in T\} \) again. Then \(G \) acts on the set \(\mathbb{F}_q^* \times T \) with \(\Phi : G \times (\mathbb{F}_q^* \times T) \to \mathbb{F}_q^* \times T \), where

\[
\Phi : (cx+b, (\lambda,T)) \mapsto (c^{m-1}\lambda,cT+b).
\]

The elements of the same orbit

\[
G(\lambda,T) = \{(c^{m-1}\lambda,cT+b) \mid cx+b \in G\}
\]
are all mapped to the same element \(M \in M \) by Lemma 1. By Burnside’s Lemma the number of orbits \(N \) is given by

\[
N = \frac{1}{|G|} \sum_{g \in G} |(\mathbb{F}_q^* \times T)_g|,
\]

where \(g(x) = cx+b \), and

\[
(\mathbb{F}_q^* \times T)_g = \{(\lambda,T) \mid (\lambda,T) \in \mathbb{F}_q^* \times T, (c^{m-1}\lambda,cT+b) = (\lambda,T)\}.
\]
The equation $cx + b = x$ over \mathbb{F}_q is equivalent to $(c - 1)x = -b$, which has exactly one solution if $c \neq 1$; no solutions if $c = 1$ and $b \neq 0$; q solutions if $c = 1$ and $b = 0$. If $c \neq 1$ and $i := \text{ord}(c) \mid q - 1$, then this linear polynomial has one fixed element and $\frac{q - 1}{i}$ cycles of length i. If $c = 1$ and $b \neq 0$ then $g^b(x) = x + pb = x$ and thus $g(x)$ has cycles of length p where $p = \text{char}(\mathbb{F}_q)$.

Assume $T = cT + b$. Let $s \in T$. Then $g(s) \in cT + b = T$. So the cycle $s, g(s), g^2(s), \ldots, g^i(s) = s$ is contained in T.

This means that, under the assumptions of $c \neq 1$ and $T = cT + b$, either T has one fixed element and $\frac{m - 1}{i}$ cycles of the length i which are defined by permutation $g(x)$, or T has $\frac{m - 1}{i}$ cycles length i which are defined by permutation $g(x)$. In the latter case, the fixed element of $g(x)$ is in $\mathbb{F}_q \setminus T$.

In the former case, if $c \in \mathbb{F}_q^* \setminus \{1\}$ satisfies $i = \text{ord}(c) \mid d = \text{gcd}(q - 1, m - 1)$ then there are $\frac{m - 1}{i}$ sets fixed by $g(x)$. Moreover, $c^{m - 1} = (c^i)^{\frac{m - 1}{i}} = 1$. Hence, for each set T fixed by $g(x)$ and any $\lambda \in \mathbb{F}_q^*$ we must have $(c^{m - 1}\lambda, cT + b) = (\lambda, T)$. This implies that

$$|\{x \in T \mid g(x) = x\}| = (q - 1)\left(\frac{q - 1}{m - 1}\right).$$

If $c \in \mathbb{F}_q^*$ satisfies $i = \text{ord}(c) \mid \text{gcd}(q - 1, m)$ then there are $\frac{m - 1}{i}$ sets T fixed by $g(x)$. But for each T fixed by $g(x)$, $c^{m - 1} = c^{-1} \neq 1$ and thus $(c^{m - 1}\lambda, cT + b) \neq (\lambda, T)$. Therefore

$$|\{x \in T \mid g(x) = x\}| = 0.$$

If $c = 1$ and $b = 0$ then $g(x) = x$. So $|\{x \in T \mid g(x) = x\}| = (q - 1)\left(\frac{m}{m - 1}\right)$. If $c = 1$ and $b \neq 0$ then $cT + b \neq T$. Otherwise, it implies that T contains elements of the cycles of the length p which contradicts to $m < \sqrt{p} + 1$.

Since $d = \text{gcd}(q - 1, m - 1)$, we obtain

$$N = \frac{1}{|G|} \sum_{g \in G} |\{x \in T \mid g(x) = x\}|$$

$$= \frac{1}{q(q - 1)}\left(1 - \left(\frac{q}{m}\right)_d\right) + \sum_{c \in \mathbb{F}_q^* \setminus \{1\}, i = \text{ord}(c) \mid d, b \in \mathbb{F}_q} (q - 1)\left(\frac{q - 1}{m - 1}\right),$$

$$= \frac{1}{q(q - 1)}\left(1 - \left(\frac{q}{m}\right)_d\right) + q(q - 1)\sum_{c \in \mathbb{F}_q^* \setminus \{1\}, i = \text{ord}(c) \mid d} \left(\frac{q - 1}{m - 1}\right),$$

$$= \frac{(q - 1)(q - 2) \ldots (q - m + 1)}{m!} + \sum_{i \mid d} \phi(i)\left(\frac{q - 1}{m - 1}\right),$$

where $\phi(i)$ is the number of c’s such that the order of c is $i > 1$.

Since two orbits could possibly be mapped to the same multiset \(M \in \mathcal{M} \) we finally have an inequality

\[
|\text{range}(F)| \leq \frac{(q-1)(q-2)\ldots(q-m+1)}{m!} + \sum_{i \mid d} \phi(i) \left(\frac{q-1}{i} \right).
\]

Now we find a lower bound of the cardinality of \(M = \{0,0\ldots,0,b_1,b_2,\ldots,b_m\} \) such that \(b_i \neq 0 \) for \(i = 1,\ldots,m \) and

\[
b_1 + b_2 + \ldots + b_m = 0.
\]

Although we can find a simpler exact formula for the number of solutions to Equation (4), we prefer the following lower bound for \(|M| \) which has the same format as the upper bound of \(|\text{range}(F)| \) in order to compare them directly.

Lemma 3. Let \(A = 1 \) if \(m-1 \mid q-1 \) and \(A = 0 \) otherwise. If \(m \geq 6 \) then

\[
|\mathcal{M}| \geq \frac{(q-1)(q-2)\ldots(q-m+2)(q-2)}{m!} + \sum_{\substack{1 \leq i \leq m-1 \mid \text{gcd}(q-1,m-1) \neq 1}} \left[\frac{(q-1)\ldots(q-m+1+2)}{m-i} \right] (q-m-i-1) + A(q-1).
\]

If \(m = 4 \) and \(3 \mid q-1 \) then

\[
|\mathcal{M}| \geq \frac{(q-1)(q-2)^2}{4!}.
\]

If \(m = 5 \) then

\[
|\mathcal{M}| \geq \frac{(q-1)(q-2)^2(q-3)}{5!} + A(q-1).
\]

Proof. In order to give a lower bound of \(|\mathcal{M}| \), we count two different classes of families of multisets \(M \). The first class contains families of those multisets \(M \) such that almost all nonzero elements \(b_i \)'s have the same multiplicities greater than one except the last element \(b_m \). And the second family class contains those multisets \(M \) such that almost all nonzero elements \(b_i \)'s have multiplicities one except that the last two elements \(b_{m-1} \) and \(b_m \).

First, we count those multisets \(M \) such that almost all nonzero elements \(b_i \)'s have the same multiplicities greater than one except the last element \(b_m \). That is, for any \(i \) such that \(1 < i < m-1 \) and \(i \mid \text{gcd}(q-1,m-1) \), we want to choose \(\frac{m-1}{i} \) pairwise distinct nonzero elements each of multiplicity \(i \) so that \(\sum_{j=1}^{\frac{m-1}{i}} ib_j \neq 0 \) (the sum being equal to zero would imply \(b_m = 0 \), a contradiction). For each such \(i \), we denote the family of these multisets by \(\mathcal{M}_i \).

We note that each multiset \(M \in \mathcal{M}_i \) can be written as

\[
M = \{0,0\ldots,0,b_1,b_2,\ldots,b_{m-1},b_m\}.
\]
Obviously each multiset is invariant to the ordering. However, let us first consider the ordered tuples \((b_1, \ldots, b_{\frac{m-1}{i}})\) satisfying that \(b_i\)'s are nonzero and pairwise distinct. Out of a total of \((q - 1) \ldots (q - \frac{m-1}{i} + 2)\) choices such that \(- \sum_{j=1}^{\frac{m-1}{i}-1} b_j \in \{0, b_1, \ldots, b_{\frac{m-1}{i}-1}\}\)

\(\text{and } (q - 1) \ldots (q - \frac{m-1}{i} + 2)(q - 2\frac{m-1}{i} + 1)\) ordered tuples such that \(- \sum_{j=1}^{\frac{m-1}{i}-1} b_j \notin \{0, b_1, \ldots, b_{\frac{m-1}{i}-1}\}\). If \(- \sum_{j=1}^{\frac{m-1}{i}-1} b_j \in \{0, b_1, \ldots, b_{\frac{m-1}{i}-1}\}\) then \(b_{\frac{m-1}{i}}\) can be chosen in \(q - \frac{m-1}{i}\) ways and otherwise it can be chosen in \(q - \frac{m-1}{i} - 1\) way. Because the element \(b_m\) is uniquely determined by \(\sum_{j=1}^{\frac{m-1}{i}} b_j\), we have in total

\[
(q - 1) \ldots (q - \frac{m-1}{i} + 2)\left(q - 2\frac{m-1}{i} + 1\right)(q - 1 - \frac{m-1}{i})
\]

\[
+ (q - 1) \ldots (q - \frac{m-1}{i} + 2)(q - 2\frac{m-1}{i} + 1)\left(q - \frac{m-1}{i} - 1\right) + \frac{m-1}{i}
\]

\[
\left((q - 1) \ldots (q - \frac{m-1}{i} + 2)\right)\left((q - \frac{m-1}{i} + 1)\left(q - \frac{m-1}{i} - 1\right) + \frac{m-1}{i}\right)
\]

ordered tuple \((b_1, \ldots, b_{\frac{m-1}{i}})\) satisfying Equation (4) and that \(b_i \neq 0\) for \(i = 1, \ldots, m\) and each element is of multiplicity \(i\) except that last element.

Since there are \(\left(\frac{m-1}{i}\right)!\) permutations of the ordered tuples \((b_1, \ldots, b_{\frac{m-1}{i}})\), there are

\[
\frac{(q - 1) \ldots (q - \frac{m-1}{i} + 2)}{\left(q - \frac{m-1}{i} + 1\right)\left(q - \frac{m-1}{i} - 1\right) + \frac{m-1}{i}} \left(\frac{m-1}{i}\right)!
\]

elements in \(M_i\).

Similarly, if \(m - 1 \mid q - 1\), we denote by \(M_{m-1}\) the set of multisets \(M\) such that all \(b_i\)'s are the same nonzero element for \(i = 1, \ldots, m - 1\) and their sum together with \(b_m\) is zero. It is easy to see that there are \(q - 1\) such \(M\)'s, i.e., \(|M_{m-1}| = q - 1\).

Now we show that \(M_i \cap M_j = \emptyset\) for \(1 < i \neq j \leq m - 1\). We prove this by contradiction and we use heavily the fact that, for each \(i\), there are \(\frac{m-1}{i} + 1\) distinct elements in \(M \in M_i\) if \(b_m \neq b_k\) for \(1 \leq k \leq \frac{m-1}{i}\) and there are \(\frac{m-1}{i}\) distinct elements in \(M\) if \(b_m = b_k\) for some \(k\). Assume that \(M_i \cap M_j \neq \emptyset\). Obviously, \(\frac{m-1}{i} \neq \frac{m-1}{j}\) because \(i \neq j\). Hence either \(\frac{m-1}{i} + 1 = \frac{m-1}{j}\) or \(\frac{m-1}{j} + 1 = \frac{m-1}{i}\).

Without loss of generality, we assume now \(\frac{m-1}{i} + 1 = \frac{m-1}{j}\) and \(M \in M_i \cap M_j\). Then in the multiset \(M\), we have \(\frac{m-1}{i}\) elements of multiplicity \(i\) and one element of multiplicity \(1\) since \(M \in M_i\). Moreover, the number of elements of multiplicity \(j\) is \(\frac{m-1}{j} - 1\) and there is one element of multiplicity \(j+1\) since \(M \in M_j\). Because \(i > j\), we must have \(i = j + 1\) and \(j = 1\) by comparing the multiplicities. However, this implies we must have \(\frac{m-1}{i} = 1\) and \(\frac{m-1}{j} - 1 = 1\). Hence \(i = m - 1\) and \(j = \frac{m-1}{2}\), contradicts to \(i = j + 1\) when \(m > 3\).
Therefore $\mathcal{M}_i \cap \mathcal{M}_j \neq \emptyset$ for all $1 < i \neq j \leq m - 1$. Now for $m \geq 4$ we have

$$| \bigcup_{1 < i \leq m - 1} \mathcal{M}_i | = A(q - 1) +$$

$$\sum_{1 < i \leq m - 1 \atop \text{gcd}(q - 1, m - 1)} [(q - 1) \ldots (q - \frac{m-1}{m} + 2)][(q - \frac{m-1}{m} + 1)(q - \frac{m-1}{m} - 1) + \frac{m-1}{m}].$$

Next we count those multisets M such that almost all nonzero elements b_i's have multiplicities one except that the last two elements b_{m-1}, b_m. That is, b_1, \ldots, b_{m-2} are pairwise distinct nonzero elements, $b_{m-1} \neq 0$ is chosen in a way such that $\sum_{j=1}^{m-1} b_j \neq 0$, and b_m is uniquely determined by $\sum_{j=1}^{m} b_j = 0$. The family of such multisets is denoted by \mathcal{M}_0. We note that b_{m-1} and b_m could be same as one of b_j's where $j = 1, \ldots, m - 2$. So the highest multiplicity is at most 3.

Consider all $(q - 1) \ldots (q - m + 2)$ different ordered tuples (b_1, \ldots, b_{m-2}). If $- \sum_{j=1}^{m-2} b_j \neq 0$ we can choose b_{m-1} in $q - 2$ ways and otherwise there are $q - 1$ choices for b_{m-1}. Thus in total there are at least $(q - 1) \ldots (q - m + 2)(q - 2)$ ordered tuples (b_1, \ldots, b_m).

Let S_1 be the number of such ordered tuples without repetition, S_2 be the number of ordered tuples with exactly one repeated element, S_3 be the number of arrays with exactly two pairs of repeated elements, and S_4 be the number of tuples with exactly one element repeated 3 times. Because multisets are invariant to the ordering, there are at least

$$\frac{S_1}{m!} + \frac{S_2}{(m-1)!} + \frac{S_3}{(m-2)!} + \frac{S_4}{(m-2)!} \geq \frac{(q - 1) \ldots (q - m + 2)(q - 2)}{m!}$$

such multisets in \mathcal{M}_0, i.e.,

$$|\mathcal{M}_0| \geq \frac{(q - 1) \ldots (q - m + 2)(q - 2)}{m!}.$$

We note that each multiset from \mathcal{M}_0 contains at least $m - 2$ distinct elements and each multiset from \mathcal{M}_i with $i > 1$ contains at most $\frac{m-1}{m} + 1 \leq \frac{m-1}{m} + 1$ distinct elements. Since $\frac{m-1}{m} + 1 < m - 2$ for $m \geq 6$ we have that $\mathcal{M}_0 \cap \mathcal{M}_i = \emptyset$ as long as $m \geq 6$. Therefore we can conclude that for $m \geq 6$ we have

$$|\mathcal{M}| \geq |\mathcal{M}_0| + | \bigcup_{1 < i \leq m - 1 \atop \text{gcd}(q - 1, m - 1)} \mathcal{M}_i | \geq \frac{(q - 1) \ldots (q - m + 2)(q - 2)}{m!} +$$

$$\sum_{1 < i \leq m - 1 \atop \text{gcd}(q - 1, m - 1)} [(q - 1) \ldots (q - \frac{m-1}{m} + 2)][(q - \frac{m-1}{m} + 1)(q - \frac{m-1}{m} - 1) + \frac{m-1}{m}] + A(q-1).$$
Let \(m = 4 \). If \(i > 1 \) and \(i \mid \gcd(m - 1, q - 1) \) then \(i = 3 \). Thus in this case \(M_5 \cap M_0 = \{\{a, a, a, b\} \mid a \in \mathbb{F}_q^*, b = -3a \neq a\} \) since \(p > 9 \). By the principle of
the inclusion-exclusion we obtain
\[
|M| \geq \frac{(q-1)(q-2)(q-2)}{4!} + (q-1) - (q-1) = \frac{(q-1)(q-2)(q-2)}{4!}.
\]

If \(m = 5 \), then \(i > 1 \) and \(i \mid \gcd(4, q - 1) \) imply \(i = 2 \) or \(i = 4 \). Obviously \(M_0 \cap M_4 = \emptyset \) because each element in a multiset of \(M_0 \) has multiplicity at most 3. Similarly, any multiset in both \(M_0 \) and \(M_2 \) must contain \(\frac{m-1}{i} + 1 = m - 2 = 3 \) distinct elements, two of them come in pairs. That is,
\[
M_0 \cap M_2 = \left\{\{a, a, b, b\} \mid a, b \in \mathbb{F}_q^*, a \neq b, a \neq c, b \neq c\right\}.
\]

If \(a \) is chosen in \(q - 1 \) ways then \(b \notin \{0, a, -a\} \) and we can choose \(b \) in \(q - 3 \) ways. Since multisets are invariant to the ordering we have
\[
|M_0 \cap M_2| = \frac{(q-1)(q-3)}{2!}.
\]

Again the principle of inclusion-exclusion implies
\[
|M| \geq |M_0| + |M_2| + |M_4| - |M_0 \cap M_2| = \frac{(q-1)(q-2)(q-3)(q-2)}{5!} + \frac{(q-1)(q-3)}{2!} + A(q-1) - \frac{(q-1)(q-3)}{2!} = \frac{(q-1)(q-2)(q-3)(q-2)}{5!} + A(q-1).
\]

We need the following simple result to compare the bounds of \(M \) and \(|\text{range}(F)|\) in order to complete the proof of Theorem \[\text{[1]}\]

Lemma 4. (i) For \(m \geq 4 \), we have
\[
\frac{(q-1)(q-2) \ldots (q-m+1)}{m!} < \frac{(q-1) \ldots (q-m+2)(q-2)}{m!}.
\]

(ii) If \(1 < i < m - 1 \) and \(i \mid \gcd(q-1, m-1) \) then
\[
\phi(i) \left(\frac{q-1}{m-1} \right) < \frac{(q-1) \ldots (q-1 - \frac{m-1}{i} + 2)(q-\frac{m-1}{i} + 1)(q-\frac{m-1}{i} - 1) + \frac{m-1}{i}}{(m-1)!}.
\]

(iii) If \(i = m - 1 \mid q - 1 \) then
\[
\phi(m-1) \left(\frac{q-1}{m-1} \right) < q - 1.
\]

Proof. (i) Clearly, \(q-m+1 < q-2 \) for \(m \geq 4 \).

(ii) The inequality
\[
\phi(i) \left(\frac{q-1}{m-1} \right) < \frac{(q-1) \ldots (q-1 - \frac{m-1}{i} + 2)(q-\frac{m-1}{i} + 1)(q-\frac{m-1}{i} - 1) + \frac{m-1}{i}}{(m-1)!}
\]
is equivalent to
\[
\phi(i) \left(\frac{q-1}{i} (q-1) (q-\frac{m-1}{i} + 1) \ldots (q-\frac{m-1}{i} - 1 + 1) \right)
\]
\[
< (q-1)(q-2) \ldots (q-\frac{m-1}{i} + 2) (q-\frac{m-1}{i} + 1)(q-\frac{m-1}{i} - 1) + \frac{m-1}{i}).
\]
Using \(\phi(i) \frac{q-1}{i} < q - 1 \), \(\frac{q-1}{i} - j < \frac{q-1}{i} \) for \(j = 1, \ldots, \frac{m-1}{i} - 2 \) and \(\frac{q-1}{i} - \frac{m-1}{i} + 1 < q - 1 - \frac{m-1}{i} \) (since \(i > 1 \)), we have

\[
\phi(i) \frac{q-1}{i} \left(\frac{q-1}{i} - 1 \right) \ldots \left(\frac{q-1}{i} - \frac{m-1}{i} + 1 \right)
< (q - 1) \left(\frac{q-1}{i} - 1 \right) \ldots \left(\frac{q-1}{i} - \frac{m-1}{i} + 1 \right)
< (q - 1)(q - 2) \ldots \left(q - \frac{m-1}{i} + 2 \right)(q - \frac{m-1}{i} + 1)\left(\frac{q-1}{i} - 1 + \frac{m-1}{i} \right)
< (q - 1)(q - 2) \ldots \left(q - \frac{m-1}{i} + 2 \right)\left(q - \frac{m-1}{i} + 1 \right)(q - 1 - \frac{m-1}{i})
< (q - 1)(q - 2) \ldots \left(q - \frac{m-1}{i} + 2 \right)\left(q - \frac{m-1}{i} + 1 \right)(q - 1 - 1) + \frac{m-1}{i}.
\]

(iii) If \(i = m - 1 \mid q - 1 \) then \(\phi(m - 1) \frac{q-1}{m-1} < q - 1 \). □

Proof of Theorem 1 If \(m \geq 6 \) it follows directly from Lemmas 2 and 3. Note that \(m \leq \sqrt{p} + 1 \). If \(m = 5 \) then \(5 \leq \sqrt{p} + 1 \) implies that \(p > 16 \). Hence we have

\[
|\text{range}(\mathcal{F})| \leq \frac{(q - 1)(q - 2)(q - 3)(q - 4)}{5!} + \phi(2) \left(\frac{q - 1}{2} \right) + A \phi(4) \frac{q - 1}{4}
= \frac{(q - 1)(q - 2)(q - 3)(q - 4)}{5!} + \frac{(q - 1)(q - 3)}{8} + A \frac{q - 1}{2}
< \frac{(q - 1)(q - 2)(q - 3)(q - 4)}{5!} + \frac{2(q - 2)(q - 1)(q - 3)}{8} + A \frac{q - 1}{2}
\leq \frac{(q - 1)(q - 2)(q - 3)(q - 2)}{5!} + A(q - 1)
\leq |\mathcal{M}|.
\]

If \(m = 4 \) and \(3 \mid q - 1 \) then the result follows directly from Lemmas 2 and 3 (i). If \(3 \mid q - 1 \) then

\[
|\text{range}(\mathcal{F})| \leq \frac{(q - 1)(q - 2)(q - 3)}{4!} + \phi(3) \frac{q - 1}{3} < \frac{(q - 1)(q - 2)^2}{4!} < |\mathcal{M}|
\]
holds for \(q > 18 \). Note that \(m \leq \sqrt{p} + 1 \) implies \(p \geq 9 \). By the assumption of \(p > 9 \), we must have \(p \geq 11 \). The only possible prime power \(q \leq 18 \) such that \(p \geq 11 \) and \(3 \mid q - 1 \) is \(q = 13 \). It is easy to compute that the number of all the possible solutions to Equation (4) with desired properties over \(\mathbb{F}_13 \) is \(|\mathcal{M}| = 105 \) by a computer program. For \(q = 13 \), then \(\gcd(q - 1, m - 1) = 3 \) and thus \(|\text{range}(\mathcal{F})| \leq 63 < 105 = |\mathcal{M}| \). Hence the proof is complete. □

If \(m = 2 \) and \(m = 3 \) these polynomials satisfying the conjecture do exist. Indeed, if \(m = 2 \) and \(b_2 = -b_1 \), then we can construct the minimum degree polynomial \(f(x) = \lambda \prod_{s \in \mathbb{F}_2 \setminus T} (x - s) \) with the prescribed range \(M = \{0, \ldots, 0, b_1, -b_1\} \) by letting \(T = \{b_1, -1\} \) and \(\lambda = 1 \).

For the case \(m = 3 \), for any multiset \(M = \{0, \ldots, 0, b_1, b_2, b_3\} \) with \(b_1 + b_2 + b_3 = 0 \) such that \(b_1, b_2, b_3 \) are all nonzero there exists a polynomial \(f(x) = \lambda \prod_{s \in \mathbb{F}_3 \setminus T} (x - s) \) of the least degree with range \(M \). Indeed, let \(T = \{b_2, -b_1, 0\} \) and \(\lambda = b_1b_2b_3 \). Then using \(b_3 = -(b_1 + b_2) \) we obtain

\[
f(b_2) = b_1b_2b_3 \frac{-1}{(b_2 + b_1)b_2} = b_1;
\]
\[f(-b_1) = b_1 b_2 b_3 \frac{-1}{(-b_1 - b_2)(-b_1)} = b_2; \]
\[f(0) = b_1 b_2 b_3 \frac{-1}{(-b_1)(b_2)} = b_3. \]

References

[1] A. Gács, T. Héger, Z. L. Nagy, D. Pálvölgyi, Permutations, hyperplanes and polynomials over finite fields, *Finite Field Appl.*, 16 (2010), 301-314.