Review of flow regime in CFB standpipe and circulation rate measurement

Zhao Yang 1,2, Xuemin Liu 2*, Guoli Qi 2, Yong Dong 1*
1Shandong University, Jinan, Shandong Province, 250000, China
2China Special Equipment Inspection and Research Institute, Beijing, 100029, China
*liuxuemin@csei.org.cn
*dongy@sdu.edu.cn

Abstract. The classification and characteristics of flow regimes in a circulating fluidized bed standpipe were briefly described. Based on the flow characteristics, several measuring methods of circulating flow rate in standpipe were introduced, including accumulation method, time-of-descent measurements, particle motion detection method, flowmeter method, and correlation method. Advantages and disadvantages of these methods were compared. It can be seen that at present, all measurement methods have some defects, which need to be further studied and improved.

1. Introduction
Circulating flow rate is one of the most important design parameters of circulating fluidized bed (CFB) boiler, which can reflect the gas-solid flow state in the furnace, and has an important influence on the mass and heat transfer characteristics, so it is necessary to measure the circulating flow rate. The measurement of circulating flow rate is mostly carried out in the standpipe. It is the basis of realizing the measurement of circulating flow rate to clarify the flow regime and flow characteristics in the standpipe. As an important part of CFB, the flow characteristics and stability of gas-solid two-phase flow in the standpipe are very important to the operation of CFB. The reverse pressure gradient flow of granular material in the CFB standpipe leads to the complexity of gas-solid two-phase flow. There are a large number of possible flow states in the standpipe, and each of them has different characteristics. This paper briefly describes the classification and characteristics of flow regimes in the CFB standpipe, and compares and analyzes the commonly used measurement methods of circulating flow rate.

2. Flow regime classification
In order to study the flow characteristics in CFB standpipe, the researchers classified the flow regimes in standpipe according to different criteria.

The first qualitatively phase regime diagram was proposed by Zenz [1]. Later, Kojabashian [2] made a quantitative analysis of the flow regime in the standpipe and proposed the flow pattern assuming a linear relationship between void fraction and gas-solid slip velocity, and he used the gas-solid slip velocity and \(\frac{u_{mf}}{\varepsilon_{mf}} \) to divide the gas-solid flow regime into fluidized solid flow and non-fluidized solid flow.

- Fluidized solid flow, \(u_{sl} > \frac{u_{mf}}{\varepsilon_{mf}}, \varepsilon > \varepsilon_{mf} \), and the particle is suspended;
• Non-fluidized solid flow, \(u_{sl} \approx u_{mf}/\varepsilon_{mf} \), and the particles move as a whole, with little relative motion. Non-fluidized solid flow is also called packed bed flow, moving bed flow or slip-stick flow.

Kojabashian divided the fluidized flow into three regions according to the direction of gas flow in the standpipe and the positive and negative of \((\partial \varepsilon / \partial P)_{W_s, W_g} \), and further divided each region into two subgroups according to the existence of bubbles; non-fluidized flow is subdivided into the transition packed bed flow where voidage increases with slip velocity and the packed bed flow where voidage is not affected by slip velocity.

Flow regime classification by Kojabashian.
Flow regimes
Non-fluidized solid flow
Packed bed flow
Fluidized solid flow
The gas is flowing upwards
Flow area II \(\varepsilon \approx \varepsilon_{p} \), \(\varepsilon \) is constant
The gas is flowing downwards
Flow area III \(\varepsilon \approx \varepsilon_{p} \), \(\varepsilon \) is constant
The gas is flowing downwards

Leung and Jones [3] proposed the flow pattern based on a more realistic relationship between slip velocity and voidage, and the flow pattern is similar to that proposed by Kojabashian. As for Kojabashian's classification of fluidized flow in the standpipe, Leung et al. [4] thought that area I was very rare in reality; the voidage of area I and III decreased along the standpipe, while the voidage of area II increased along the standpipe; therefore, area I and III were uniformly classified as Dense Phase Fluidized Solid Flow (DENFLO), and area II was classified as Lean Phase Fluidized Solid Flow (LEANFLO).

Leung et al. [5] modified and simplified the flow pattern classification of Kojabashian and proposed their own classification method.

Flow regime classification by Leung et al.
Flow regimes
Non-Fluidized Regime
Packed Bed Flow \((PACFLO) \)
Fluidized Regime
3. Flow regime in CFB standpipe

Depending on the amount and direction of air intake at the bottom of the standpipe, the material in the standpipe may be in a moving bed or a fluidized bed [9-10].

At present, most models in literature assume that the flow state in standpipe is moving bed [11], moving packed bed [19], minimum fluidization [20-21] or minimum fluidization/moving bed [22-23].

In fact, there may be many different flow systems in the standpipe, and it is even possible to coexist two different flow systems in the same standpipe. Therefore, the judgment of the flow state in the standpipe has always been controversial in the academic circle.

Kunii and Levenspiel [24] described a coexistence of LEANFLO in the top and PACFLO (or TRANPACFLO) in the bottom of standpipe. Leung and Wilson [25] described a coexistence of DENFLO in the top and PACFLO (or TRANPACFLO) in the bottom of standpipe. Judd and Rowe [26] described a coexistence of LEANFLO in the top and DENFLO in the bottom of standpipe.

Geldart et al. [27] observed the pressure profile of the standpipe and found that the apparent density increased from top to bottom. Wang et al. [28] found that flow in the standpipe can be divided into three regions, namely inlet, dilute and dense flow, through observation of the axial pressure profile. The inlet region is characterized by that pressure gradient is nearly zero, and the dense phase flow can be divided into fluidized (preferred) or packed.

Ji et al. [29] carried out experiments on the gas-solid two-phase flow rule in the standpipe under different working conditions in a large-scale cold mold. It was found that the flow regime is a coexistence of the upper dilute phase fluidization and the lower dense phase fluidization. When the gas volume continued to rise, the gas node would appear in the standpipe. When the gas volume decreased, the flow pattern in dense phase tended to be non-fluidized.

Li et al. [30] thought that the direction of net gas flow in the standpipe varies with the solid circulation rate according to his experimental results, and there is a critical solid circulation rate. Wei et al. [9] confirmed that the flow state in the standpipe is related to the particle mass flow rate G_s through establishment of the calculation model and experimental research. There is a critical particle mass flow rate (G_{sc}). When the particle mass flow rate G_s is lower than G_{sc}, the flow pattern in the standpipe is composed of dilute phase flow in the upper zone and dense phase flow in the lower zone. With the increase of G_s, the dilute-dense phase interface moves down; until $G_s>G_{sc}$, the dilute-dense phase interface disappears, and the flow pattern changes into a single concentrated phase transport regime, namely DENFLO.
4. Circulation rate measurement method
Circulating flow rate is one of the most important design parameters of CFB boiler. By associating gas velocity u_r with circulation rate G, Yue et al. [31] proposed Fluidization State Specification (FSS) block diagram for the design of CFB boiler. It is necessary to measure the circulating flow rate, as it can reflect the gas-solid flow state in the furnace. At present, the main methods to measure the circulation rate include accumulation method, time-of-descent method, particle motion detection method, flowmeter method and correlation method, etc.

4.1. Accumulation method
The accumulation method is a method of measuring the accumulation rate of solid particles by stopping the flow. The principle is to close the permeation valve and form a fixed bed with a continuous accumulation of height. Solid particles accumulate in a short enough time (assuming that accumulation and consumption of solids in different parts of the system do not affect the overall behavior). Then the circulation rate can be obtained by measuring the solid accumulation rate at the butterfly valve and linking it with the pressure change.

Previous researchers have used porous butterfly valves [32-33], a purged slide valve [34] or diversion into a collecting vessel [35] to accumulate solids over times. Harris et al. [36] collected solid particles by using a slot flow meter (SFM), which was calibrated by an in situ technique, and this technique was based on the dynamic response to change of input flow. Bodelin et al. [37] installed a weighing funnel on the standpipe, allowing solids to accumulate in the funnel by shutting down mechanical valves. Kreuzeder et al. [38] measured the circulation rate by tracking the rate of solid accumulation height change per unit time in the L-shaped section of the transmission pipe under closed fluidized air condition.

Although, the technique is highly intrusive and can cause variations in standpipe operation. The system pressure and fluid flow will change as the solid particles no longer return to the standpipe, which will result in system errors. It was found that the pressure drop of the riser changed during the experiment process when using this method [40]. In addition, the accumulation method can only be used under a stable operating condition, and is not suitable for high temperature environment.

4.2. Time-of-descent measurement
The principle of time-of-descent measurement is to determine the circulation rate by measuring the falling time of an identifiable particle in the standpipe.

Patience et al. [41] measured the circulating flow rate by time-of-descent measurement, and studied the relationship between the riser pressure drop and circulating flow rate. Muir et al. [42] installed a settler in the standpipe, which was dragged down by the solid particles. The circulating flow rate was calculated by measuring the time that the settler took to move a specified distance.

Although time-of-descent measurement has no interference to the circulation system, it is greatly affected by the accuracy of the timing device and the material of the measuring section.

4.3. Particle motion detection method
In addition to the time-of-descent measurements, there are some other particle motion detection methods, such as optics, tracers, acoustics, electricity and so on.

4.3.1. Optical method. Oki et al. [43] developed a method for measuring the velocity of solid particles by using a fiber optic probe. Dong et al. [44] used an optical fiber probe to measure the radial distribution of particle velocity and the circulation rate of particles. Song et al. [45] measured the circulating flow rate at room temperature with a special high-temperature fiber optic probe. Using optical techniques, differential pressure techniques and particle extraction techniques, Medrano et al. [46] measured the circulating flow rate between the air reactor and the membrane assisted fuel reactor in a two-dimensional interconnected reactor system.
4.3.2. **Tracer method.** Kuramoto et al. [47] added fluorescent dye-coated tracers into the circulating system and detected their movement with two fiber-optic probes at different heights in the standpipe. Both Wei et al. [48] and Li et al. [49] used gas tracers, the difference is that Wei connected the bottom of the standpipe to the dense phase zone of the riser, while Li artificially isolated the standpipe from the overall system[50]. Bhusarapu et al. [51] tracked the movement of one radioactive tracer particle in the CFB standpipe operated at ambient pressure and temperature. Guio-Perez et al. [52] used ferromagnetic particles as tracers and used inductive coils to track them.

4.3.3. **Acoustic method.** The dynamic system of particles produces acoustic interference due to its own nature, which can be used to provide information of process monitoring and control. The particles also respond positively to acoustic signals applied to them.

Davies et al. [53] tried to use sound pressure wave to obtain the solid flow rate, and the results showed that this method was relatively accurate for the prediction of large particles, while the prediction of small particles was quite different from the reality. Ellis et al. [54] used acoustic emission sensors to measure the solid flow rate at room temperature. Chorpening et al. [55] used a microwave Doppler system to detect sliding or intermittent flows of particles.

4.3.4. **Electrical method.** Spenik et al. [56] used a piezoelectric pressure sensor to measure the size and density of particles to obtain the mass flow rate in the riser, which can be referred to in the measurement of the standpipe.

4.4. **Flowmeter method**

4.4.1. **Impacting flowmeter.** In many cases, flow in standpipe is non-fluidized bed flow, also known as plug flow[57]. The solid-phase velocity of the plug flow is considered uniform throughout the standpipe. The bulk density of solids changes little with solid phase velocity, and the average velocity of solids in the standpipe is approximately equal to the local velocity[58]. The gas-solid mixture in the standpipe can be regarded as a quasi-fluid[59]. The impacting flowmeter is more effective for particles in the state of free fall or non-pneumatic transport. The principle of impacting flowmeter method is to calculate the circulating flow rate by measuring the force of falling particles on the target.

Judd and Bernhardt [60] placed a cylinder perpendicular to the flow direction in the dense phase of the standpipe and obtained the particle flow rate by measuring the drag force on the cylinder. Wu et al. [61] installed a double-ended wire mesh baffle with a rotating shaft on the top of the standpipe.

Wu et al. [62] developed a kind of flowmeter which worked by measuring the torque of a hinged plate when falling solids impacted the plate. Similarly, Hu et al. [63] designed an impacting flowmeter to measure the impact force of solid particles by means of bending moment and strain, and realized online measurement.

4.4.2. **Turbine flowmeter.** Compared with impacting flowmeter, turbine flowmeter is favored by many researchers because of its high sensitivity and less interference to particle flow.

Liu et al. [64] placed an impeller flowmeter in the dense phase section of the standpipe. The special impeller would rotate under the push of materials, and the volume flow rate of particles through the standpipe could be obtained by measuring the rotating speed of the impeller. Ludlow et al. [65] installed a rotating spiral blade made of glass fiber in the standpipe, determined the average velocity of solid flow by recording the solid accumulation rate under the condition of stopping the solid circulation, and measured the rate of pressure drop change to determine the solid cycle rate.

4.5. **Correlation method**

It is difficult to measure the flow state of the standpipe directly, so some researchers have shifted the direction to such easily measurable parameters as pressure, and obtained the circulating flow rate through correlation method.
Based on the related literature and experimental data of a cold dual fluidized bed, Lim et al. [66] established an correlation relationship by using four dimensionless numbers $Fr, Re, u_0/u_t, \rho_s/\rho_g$ as the key parameters to estimate the solid circulation rate under high solid-gas density ratio. The correlation was verified by the literature data of a dual fluidized bed steam gasifier at high temperature, and the results show that the maximum deviation of the estimate is 25%.

In a circulating fluidized bed, control of the solid circulation rate can be achieved by changing the opening of the mechanical valve at the bottom of the standpipe. Grieco and Marmo [67] modified the predictive equation proposed by Jones and Davidson [68] and Cheng [69] and established the relationship between the pressure drop of the mechanical valve and the flow of solids through the control valve at room temperature.

Monazam and Shadle [70] adopted a transient method: stopping the solid phase flow into the standpipe when the standpipe was in the state of full dense transportation, then analyzing the derivative of the transient pressure drop of the standpipe with respect to time, and correlating the solid circulation rate with the axial pressure distribution and the solid holdup of the riser.

4.6. Others
In addition, Burkell et al. 366] also studied the modified orifice meter and calorimetric method, and conducted comparative analysis with the permeable valve accumulation method, time-of-descent measurement and impacting meter mentioned above. The results showed that the pressure drop obtained by the modified orifice meter was too small to be recorded under low circulation rate, and it was also difficult to measure under high circulation rate because of the great fluctuation of pressure drop. The problem of calorimetric method was that the pipe had radial temperature gradient and the heat loss in the test section could not be accurately determined, so the accuracy was low, and the measurement would cause additional heat loss. These two methods have many defects and are difficult to be widely used.

4.7. Summary
In general, the accumulation method is simple to operate, but it has a great disturbance to the system, and the changing conditions cannot be measured. Time-of-descent measurement has no interference to the flow in the tube, but it requires more experimental equipment and measuring equipment, and cannot be measured online. Optics, tracers, acoustics, electricity and other methods for particle motion detection use relatively advanced technologies, the specific accuracy of which remains to be studied. The flowmeter method has the characteristics of online measurement and low interference to flow. However, the friction resistance brought by the rotating elements in the turbine flowmeter may influence the experiment and the impacting flowmeter has a slightly insufficient measuring capacity under high circulation rate and high temperature. And it is inevitable that the correlation method has errors.

Therefore, the measurement method and technology of circulating flow rate still need to be further studied and improved.

5. Conclusion
The flow pattern in CFB standpipe is generally divided into fluidized flow and non-fluidized flow. Fluidized flow can be divided into dense phase fluidized solids flow and lean phase fluidized solids flow, or bubbling fluidized flow and non-bubbling fluidized flow. Non-fluidized flow can be divided into transition packed bed flow and packed bed flow.

The gas-solid two-phase flow in the standpipe presents a variety of flow state superposition, and it is generally assumed to be moving bed flow in the simulation.

An ideal measurement technology of circulating flow rate in standpipe should have the characteristics of online measurement, no interference to the steady flow in standpipe, large range and applicable to high temperature operation. The main methods to measure the circulation rate include accumulation method, time-of-descent measurement, particle motion detection method, flowmeter
method and correlation method, etc. However, all of these measurement methods have some defects at present. Therefore, the measurement methods and techniques need to be further studied and improved.

Acknowledgments
This study was supported by the National Key R&D Program of China (No. 2018YFF0216000).

References
[1] Zenz, F. A. (1953) Pet. Refiner, 32 123.
[2] Kojabashian, C. (1958). Properties of dense-phase fluidized solids in vertical downflow (Doctoral dissertation, Massachusetts Institute of Technology, Department of Mechanical Engineering).
[3] Leung, L. S., & Jones, P. J. (1978). Coexistence of fluidized solids flow and packed bed flow in standpipes. In Fluidization: Proceedings of the Second Engineering Foundation Conference, Trinity College, Cambridge, England 2-6 April 1978 (Vol. 2, p. 115). CUP Archive.
[4] Leung, L. S., & Jones, P. J. (1978). Flow of gas—Solid mixtures in standpipes. A review. Powder Technology, 20(2), 145-160.
[5] Jones, P.J., Leung, L.S. (1985) Down flow of Solids through Pipes and Valves [M]. London: Academic Press p. 293-329
[6] Knowlton, (1986) T.M. “Standpipes,” in D. Geldart. Gas Fluidization Technology.Chichester, New York: John Wiley and Sons Ltd.
[7] Sarra, A. M. (2001). Particle-wall shear stress measurements within the standpipe of a circulating fluidized bed.
[8] Geldart, D., & Radtke, A. L. (1986). The effect of particle properties on the behaviour of equilibrium cracking catalysts in standpipe flow. Powder technology, 47(2), 157-165.
[9] Wei, Y.D., Liu, R.H., Shi, M.X. (2006) A model of the Axial Voidage Distribution of Gas-solid Two-phase Flow in the Standpipe under Negative Pressure Gradient[C]. In: Dept. Chem. Eng. University of Petroleum, Beijing 102200, China.
[10] Li, H., Kwauk, M. (1989) Vertical Pneumatic Moving-bed Transport: II. Experimental Findings [J]. Chem. Eng. Sci., 44(2): 261-271.
[11] Rhodes, M. J., & Geldart, D. (1987). A model for the circulating fluidized bed. Powder Technology, 53(3), 155-162.
[12] Yang, W. C. (1988). A model for the dynamics of a circulating fluidized bed loop. In Circulating Fluidized Bed Technology (pp. 181-191). Pergamon.
[13] Breault, R. W., & Mathur, V. K. (1989). High-velocity fluidized-bed hydrodynamic modeling. 1. Fundamental studies of pressure drop. Industrial & engineering chemistry research, 28(6), 684-688.
[14] Hannes, Svoboda, J., Renz, K., Bleek, U., & D, C. M. V. . (1993). Mathematical modelling of CFBC - an overall modular programming frame using a 1. International Conference on Fluidized Bed Combustion. ASME.
[15] Basu, P., & Cheng, L. (2000). An analysis of loop seal operations in a circulating fluidized bed. Chemical Engineering Research and Design, 78(7), 991-998.
[16] Dutta, A., & Basu, P. (2003). An investigation on heat transfer to the standpipe of a circulating fluidized bed boiler. Chemical Engineering Research and Design, 81(8), 1003-1014.
[17] Ludlow, J. C., Panday, R., & Shadle, L. J. (2013). Standpipe models for diagnostics and control of a circulating fluidized bed. Powder technology, 242, 51-64.
[18] Heng, F., N. G., Qinghui, L. I., Chao, G. A. N., & Aihong, M. E. N. G. (2015). One-dimensional hydrodynamic model of the recycling valve in a circulating fluidized bed. Journal of Tsinghua University (Science and Technology), 54(2), 229-234.
[19] Yang, X. P. (2009) Research on characteristics of gas-solid flow in air nozzle area in the furnace and U-valve in CFB boiler[D]. Shanghai: Shanghai Jiao Tong University.
[20] Mori, S., Yan, Y., Kato, K., Matubara, K. and Liu, D. (1991). Hydrodynamics of Circulating
Fluidized Bed. In Circulating Fluidized Bed Technology III; Basu, P., Horio, M., Hasatani, M., Eds.; Pergamon Press: Oxford, England; p 113.

[21] Kim, S. W., Kim, S. D., & Lee, D. H. (2002). Pressure balance model for circulating fluidized beds with a loop-seal. Industrial & engineering chemistry research, 41(20), 4949-4956.

[22] Lei, H., & Horio, M. (1998). A comprehensive pressure balance model of circulating fluidized beds. Journal of chemical engineering of Japan, 31(1), 83-94.

[23] Lim, K. S., & Peeler, P. R. (1999). Estimation of solids circulation rate in CFB from Pressure Loop Profiles.

[24] Kunii, D., & Levenspiel, O. (1969). Fluidization Engineering, Wiley, New York, p. 372.

[25] Leung, L.S., and Wilson, L.A. (1973). Powder Technol. vol. 7 343-349.

[26] Judd, M.R. and Rowe, D.N. (1978). Dense phase flow of a powder down a standpipe. In J.F. Davidson (Ed.), Proc. International Fluidization Conference, Cambridge Univ.

[27] Geldart, D., Broodryk, N., & Kerdoncuff, A. (1993). Studies on the flow of solids down cyclone diplegs. Powder technology, 76(2), 175-183.

[28] Wang, J., Bouma, J. H., & Dries, H. (2000). An experimental study of cyclone dipleg flow in fluidized catalytic cracking. Powder technology, 112(3), 221-228.

[29] Ji, H., & Shi, M. (1997). Study on Gas-Solid Flow in Constrained Dipleg of Cyclone Separator in Fluidized Beds. PETROLEUM REFINERY ENGINEERING, 27, 35-38.

[30] Li, Y., Lu, Y., Wang, F., Han, K., Mi, W., Chen, X., & Wang, P. (1997). Behavior of gas-solid flow in the downcomer of a circulating fluidized bed reactor with a V-valve. Powder technology, 91(1), 11-16.

[31] Yue, G., Lu, J., Zhang, H., Yang, H., Zhang, J., Liu, Q., ... & Jaud, P. (2005). Design theory of circulating fluidized bed boilers. In 18th International Fluidized Bed Combustion Conference (pp. 18-21).

[32] Yerushalmi, J., D.H. Turner and A.M. Squires (1976). Ind. Eng. Chem. Proc. Des. Dev., 15, 47-53.

[33] Hartge, E.U., Y. Li and J. Werther (1986). In Circulating Fluidized Bed Technology, P. Basu (Ed.), Pergamon, Toronto, pp. 153-160.

[34] Fusey, I., C.J. Lim and J.R. Grace (1986). In Circulating Fluidized Bed Technology, P. Basu (Ed.), Pergamon Press, Toronto, pp. 409-416.

[35] Arena, U., A. Cammarota and L. Pistone (1986). In Circulating Fluidized Bed Technology, P. Basu (Ed.), Pergamon, Toronto, pp. 119-125.

[36] Burkell, J.J., Grace, J.R., Zhao, J., et al. (1988). Circulating fluidized bed technology : vol. II[M]. Oxford: Pergamon Press, 501-509.

[37] Harris, B. J., Davies, C. E., & Davidson, J. F. (1997). The slot flow meter: a new device for continuous solids flow measurement. Chemical Engineering Science, 52(24), 4637-4648.

[38] Bodelin, P., Malodtsof, F., & Delebarre, A. (1994). Flow structure investigations in a CFB In circulating fluidized bed technology IV A. Aviden (Eds), AIChE NY, 151.

[39] Kreuzeder, A., Pfeifer, C., & Hofbauer, H. (2007). Fluid-dynamic investigations in a scaled cold model for a dual fluidized bed biomass steam gasification process: Solid flux measurements and optimization of the cyclone. International Journal of Chemical Reactor Engineering, 5(1).

[40] Lim, K.S. Peeler, P., Joyce, T., Zakhari, A., Close, R. (2002) 7th Int'l CFB Conference, Niagara Falls, New York, p. 169

[41] Pateence, G. S., Chaouki, J., & Grandjean, B. P. A. (1990). Solids flow metering from pressure drop measurement in circulating fluidized beds. Powder Technology, 61(1), 95-99.

[42] Muir, J. R., Breereton, C. M. H., Grace, J. R., & Lim, C. J. (2004). Line-and sinker measurement of solids circulation rate in a CFB combustor. In Fluid. XI, Engineering Conferences International, New York (pp. 315-322).

[43] Oki, K. T., Akehata, T., & Shirai, T. (1973). A method for measuring the velocity of solid particles with fiber optic probe. Kagaku Kogaku, 37, 965.
[44] Dong, Z.B. (1992). Experimental Study on Gas-Solid Downflow in a CFB: [Master Degree Thesis]. ICCCAS.
[45] Song, X., Bi, H., Lim, C. J., Grace, J. R., Chan, E., Knapper, B., & McKnight, C. (2004). Hydrodynamics of the reactor section in fluid cokers. Powder technology, 147(1-3), 126-136.
[46] Medrano, J. A., Nordio, M., Manzolini, G., van Sint Annaland, M., & Gallucci, F. (2016). On the measurement of solids circulation rates in interconnected fluidized beds: Comparison of different experimental techniques. Powder Technology, 302, 81-89.
[47] Kuramoto, M., Kunii, D., & Furusawa, T. (1986). Flow of dense fluidized particles through an opening in a circulation system. Powder Technol. 47 (2) 141–149.
[48] Wei, Y.D., Liu, R.H., Sun, G. G., et al. (2003). Fluidization Behaviors of Gas-Solid Two-phase Flow in the Standpipe under Negative Pressure Gradient[J]. Chin J Proc Eng, 3(5):385-389.
[49] Li, Y., Lu, Y., Wang, F., Han, K., Mi, W., Chen, X., & Wang, P. (1997). Behavior of gas-solid flow in the downcomer of a circulating fluidized bed reactor with a V-valve. Powder technology, 91(1), 11-16.
[50] Yao, X. (2010). Study on Hydrodynamic and Particles Segregation in the Loop of Circulating Fluidized Bed[D]. Tsinghua University.
[51] Bhusarapu, S., Fongarland, P., Al-Dahhan, M. H., & Duduković, M. P. (2004). Measurement of overall solids mass flux in a gas–solid circulating fluidized bed. Powder technology, 148(2-3), 158-171.
[52] Guo-Pérez, D. C., Dietrich, F., Cala, J. N. F., Pröll, T., & Hofbauer, H. (2017). Estimation of solids circulation rate through magnetic tracer tests. Powder technology, 316, 650-657.
[53] Davies, C. E., Tallon, S. J., & Webster, E. S. (2010). Applications of active acoustics in particle technology. Particuology, 8(6), 568-571.
[54] N. Ellis, C.J. Lim, P.A. Reyes, J.I. Soletti, J.R. Grace.(2012). Acoustic emissions method for solids mass flux measurements, in: 21st Int. Conf. Fluid. Bed Combust., Naples, 2012: pp. 681–688.
[55] B.T. Chorpening, M. Spencer, J. Charley, R.C. Stehle, D.W. Greve.(2016). Microwave Doppler Sensing of Sliding or Intermittent Particle Flows, 2016 Multiph. Flow Sci. Work.
[56] Spenik, J. L., & Ludlow, J. C. (2010). Use of piezoelectric pressure transducers to determine local solids mass flux in the riser of a cold flow circulating fluidized bed. Powder Technology, 203(1), 86-90.
[57] Jones, P.J., Leung, L.S., Davidson, J.F. Clift, R. and Harrison, D. (1985) Fluidization, Academic Press, London, 2nd edn., p. 294.
[58] Liu, J., & Huan, B. (1995). Turbine meter for the measurement of bulk solids flowrate. Powder technology, 82(2), 145-151.
[59] Wei, W., & Youchu, L. (2000). Progress of the simulation of particle-fluid two-phase flow. PROGRESS IN CHEMISTRY-BEIJING., 12(2), 208-217.
[60] Judd, M.R. and Bernhardt, H.W.(1990).Circulating fluidized bed technology:vols.III[M].Oxford:Pergamon Press,621.
[66] Lim, M. T., Saw, W. L., & Pang, S. (2015). Estimation of solids circulation rate from risers at high solids-to-gas density ratios. Chemical Engineering Communications, 202(3), 356-360.

[67] Grieco, E., & Marmo, L. (2006). Predicting the pressure drop across the solids flow rate control device of a circulating fluidized bed. Powder technology, 161(2), 89-97.

[68] Jones, D. R. M., & Davidson, J. F. (1965). The flow of particles from a fluidised bed through an orifice. Rheologica Acta, 4(3), 180-192.

[69] Cheng, L., Basu, P., & Cen, K. (1998). Solids circulation rate prediction in a pressurized loop-seal. Chemical Engineering Research & Design, 76(6), 761-763. Monazam, E. R., & Shadle, L. J. (2004). A transient method for characterizing flow regimes in a circulating fluid bed. Powder technology, 139(1), 89-97.

[70] Monazam, E. R., & Shadle, L. J. (2004). A transient method for characterizing flow regimes in a circulating fluid bed. Powder technology, 139(1), 89-97.