Supplemental Materials for:
“The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square”

Pragya Sur∗ Yuxin Chen† Emmanuel J. Candès‡

June 2017

Abstract
This document presents the proof of Lemma 6(ii) given in the paper [1]: “The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square”.

1 Proof of Lemma 6(ii)
We shall prove that \(V(\tau^2) < \tau^2 \) whenever \(\tau^2 \) is sufficiently large. Before proceeding, we recall from the main text and [2, Proposition 6.4] that

\[
V(\tau^2) := \frac{1}{\kappa} \mathbb{E} \left[\Psi^2(\tau Z; b(\tau)) \right] = \frac{1}{\kappa} \mathbb{E} \left[\left(b(\tau) \rho' \left(\text{prox}_{b(\tau)}(\tau Z) \right) \right)^2 \right],
\]

(1)

where \(b(\tau) \) obeys

\[
\kappa = \mathbb{E} \left[\Psi'(\tau Z; b(\tau)) \right] = 1 - \mathbb{E} \left[\frac{1}{1 + b(\tau) \rho'' \left(\text{prox}_{b(\tau)}(\tau Z) \right)} \right].
\]

(2)

In what follows, we study the logistic and probit models separately.

1.1 The logistic case
Consider the bivariate functions

\[
h(h, \tau) : = \mathbb{E} \left[\frac{1}{1 + b h'' \left(\text{prox}_{h \rho} (\tau Z) \right)} \right],
\]

\[
w(b, \tau) = \mathbb{E} \left[\left(\rho' \left(\text{prox}_{h \rho} (\tau Z) \right) \right)^2 \right],
\]

which plays a central role in [1] and [2]. In the sequel, we will first analyze these two functions for any \(b \) obeying

\[
b = c_0 \tau
\]

(3)

for some constant \(c_0 > 0 \). The result is this:

∗Department of Statistics, Stanford University, Stanford, CA 94305, U.S.A.
†Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, U.S.A.
‡Department of Mathematics, Stanford University, Stanford, CA 94305, U.S.A.
Lemma 1. For any constant $c_0 > 0$, one has

$$\lim_{\tau \to \infty} h(c_0 \tau, \tau) = \mathbb{P} \{ Z < 0 \text{ or } Z > c_0 \};$$

$$\lim_{\tau \to \infty} w(c_0 \tau, \tau) = \mathbb{P} \{ Z > c_0 \} + \frac{1}{c_0^2} \mathbb{E} \left[Z^2 \mathbf{1}_{\{0 < Z < c_0\}} \right].$$

Recall that $0 < \kappa < 1/2$. One can easily find two constants $c_0 > \tilde{c}_0 > 0$ such that

$$\mathbb{P} \{ Z < 0 \text{ or } Z > c_0 \} < 1 - \kappa < \mathbb{P} \{ Z < 0 \text{ or } Z > \tilde{c}_0 \}.$$

In view of Lemma 1, for any sufficiently large $\tau > 0$ one has

$$h(c_0 \tau, \tau) < 1 - \kappa = h(b(\tau), \tau) < h(\tilde{c}_0 \tau, \tau).$$

According to Lemma 5], $h(b, \tau)$ is a monotonic function in b for any given $\tau > 0$, thus implying that

$$b(\tau) \in [\tilde{c}_0 \tau, c_0 \tau];$$

that said, $b(\tau)$ scales linearly in τ as $\tau \to \infty$. Furthermore, since $b(\tau)$ is the solution to $h(b, \tau) = 1 - \kappa$, one has

$$\lim_{\tau \to \infty} \mathbb{P} \left\{ Z < 0 \text{ or } Z > \frac{b(\tau)}{\tau} \right\} = 1 - \kappa,$$

which leads to the closed-form expression

$$\lim_{\tau \to \infty} \frac{b(\tau)}{\tau} = \Phi^{-1}(\kappa + 0.5).$$

We are now ready to characterize the variance map. Note that when τ is sufficiently large,

$$\frac{\mathcal{V}(\tau^2)}{\tau^2} = \frac{b^2(\tau)}{\tau^2} \cdot \frac{\mathbb{E} \left[h' \left(\text{prox}_{b(\tau)\rho} (\tau Z) \right) \right]^2}{1 - \mathbb{E} \left[\frac{1}{1+\nu(\tau)\rho(\text{prox}_{b(\tau)\rho} (\tau Z))} \right]}$$

$$= (1 + o(1)) \frac{b^2(\tau)}{\tau^2} \left\{ \mathbb{P} \left\{ Z > \frac{b(\tau)}{\tau} \right\} + \mathbb{E} \left[\tau^2 \mathbb{P} \left\{ Z > \frac{b(\tau)}{\tau} \right\} \right] \right\}$$

$$= (1 + o(1)) \frac{\mathbb{E} \left[Z^2 \mathbf{1}_{\{0 < Z < \frac{b(\tau)}{\tau}\}} \right]}{\mathbb{P} \left\{ 0 < Z < \frac{b(\tau)}{\tau} \right\}}.$$

This together with the expression of $\frac{b(\tau)}{\tau}$ in \cite{1} gives

$$\lim_{\tau \to \infty} \frac{\mathcal{V}(\tau^2)}{\tau^2} = \frac{\mathbb{E} \left[Z^2 \mathbf{1}_{\{0 < Z < \frac{b(\tau)}{\tau}\}} \right]}{\mathbb{P} \left\{ 0 < Z < \frac{b(\tau)}{\tau} \right\}}_{x = \Phi^{-1}(\kappa + 0.5)}.$$

In order to prove that $\mathcal{V}(\tau^2) \leq \tau^2$ for large τ, it suffices to show that the function

$$g(x) := x^2 \mathbb{P} \{ Z > x \} + \mathbb{E} \left[Z^2 \mathbf{1}_{\{0 < Z < x\}} \right] - \mathbb{P} \left\{ 0 < Z < x \right\}$$

obeys $g(x) < 0$ for all $x > 0$. To this end, some algebra gives

$$g(x) = x^2 \int_x^\infty \phi(z) \, dz + \int_0^x z^2 \phi(z) \, dz - \int_0^x \phi(z) \, dz$$

$$= x^2 \int_x^\infty \phi(z) \, dz - x \phi(x) \bigg|_0^\infty + \int_0^x \phi(z) \, dz - \int_0^x \phi(z) \, dz$$

$$= x \left(x \int_x^\infty \phi(z) \, dz - \phi(x) \right) < 0,$$
where (10) comes from integration by parts, and the last inequality follows from \(\int_{x}^{\infty} \phi(z) \, dz < \frac{1}{x} \phi(x) \). This establishes that \(\mathcal{V}(\tau^2) \leq \tau^2 \) for any sufficiently large \(\tau > 0 \).

Finally, we prove Lemma 1

Proof of Lemma 1 Take \(\varepsilon > 0 \) to be an arbitrarily small constant. We study \(\frac{1}{1+b \rho''(\prox_{b \rho}(\tau Z))} \) and \((\rho' (\prox_{b \rho}(\tau Z)))^2\) in three separate cases.

- **Case 1:** \(Z \leq -\varepsilon \). Recall that \(\prox_{b \rho}(\tau Z) \) is the solution to

\[
\frac{b}{e^t} \frac{e^t}{1+e^t} + t = \tau Z, \tag{11}
\]

which implies that

\[
\prox_{b \rho}(\tau Z) = \tau Z - b \frac{e^t}{1+e^t} \bigg|_{t=\prox_{b \rho}(\tau Z)} < \tau Z \leq -\varepsilon. \tag{12}
\]

When \(\tau \to \infty \), this yields

\[
0 \leq b \rho''(\prox_{b \rho}(\tau Z)) = b \frac{e^t}{(1+e^t)^2} \bigg|_{t=\prox_{b \rho}(\tau Z)} \leq b e^t \bigg|_{t=\prox_{b \rho}(\tau Z)} \leq c_0 \varepsilon e^{-\varepsilon\tau} \to 0,
\]

or equivalently,

\[
1 - \frac{1}{1+b \rho''(\prox_{b \rho}(\tau Z))} \to 0 \quad \text{as} \quad \tau \to \infty.
\]

Similarly, one can derive

\[
(\rho' (\prox_{b \rho}(\tau Z)))^2 = \frac{e^{2t}}{(1+e^t)^2} \bigg|_{t=\prox_{b \rho}(\tau Z)} \leq e^{2\prox_{b \rho}(\tau Z)} \leq e^{-2\varepsilon\tau} \to 0,
\]

where (a) follows from (12).

- **Case 2:** \(Z \geq \frac{b}{\tau} + \varepsilon \). In this case, it holds that

\[
\prox_{b \rho}(\tau Z) = \tau Z - b \frac{e^t}{1+e^t} \bigg|_{t=\prox_{b \rho}(\tau Z)} \geq \tau \left(\frac{b}{\tau} + \varepsilon \right) - b = \varepsilon \tau.
\]

Applying a similar argument as in the previous case, we see that as \(\tau \to \infty \),

\[
1 - \frac{1}{1+b \rho''(\prox_{b \rho}(\tau Z))} \to 0 \quad \text{and} \quad (\rho' (\prox_{b \rho}(\tau Z)))^2 \to 1.
\]

- **Case 3:** \(\varepsilon < Z < \frac{b}{\tau} - \varepsilon \). We can first rule out the possibility of \(|\prox_{b \rho}(\tau Z)| \geq \tau \). In fact, if \(|\prox_{b \rho}(\tau Z)| \geq \tau \) and \(\prox_{b \rho}(\tau Z) \geq 0 \), then

\[
\frac{b}{e^t} \bigg|_{t=\prox_{b \rho}(\tau Z)} + \prox_{b \rho}(\tau Z) \geq \frac{b}{1+e^{\prox_{b \rho}(\tau Z)}} \geq \frac{b}{1+e^{\prox_{b \rho}(\tau Z)}} \geq \frac{b}{1+e^{\prox_{b \rho}(\tau Z)}} = b - \frac{b}{1+e^{\prox_{b \rho}(\tau Z)}} \geq \frac{b}{1+e^{\prox_{b \rho}(\tau Z)}} \geq \frac{b - c_0 \tau}{e^{\Theta(\tau)}} \geq b - \varepsilon \tau > \tau Z,
\]

where (b) follows from the assumptions \(b_0 = c \tau \) and \(|\prox_{b \rho}(\tau Z)| \geq \tau \), and (c) holds when \(\tau \) is sufficiently large. This violates the identity (11). Similarly, if \(|\prox_{b \rho}(\tau Z)| \geq \tau \) and \(\prox_{b \rho}(\tau Z) < 0 \), then

\[
\frac{b}{e^t} \bigg|_{t=\prox_{b \rho}(\tau Z)} + \prox_{b \rho}(\tau Z) < b \frac{e^{\prox_{b \rho}(\tau Z)}}{1+e^{\prox_{b \rho}(\tau Z)}} = c_0 \tau e^{-|\prox_{b \rho}(\tau Z)|} \leq \varepsilon \tau \leq \tau Z,
\]

(d)
where (d) follows when \(\tau \) is sufficiently large. This inequality contradicts (11) as well. As a result, we reach
\[
|\text{prox}_{b\rho}(\tau Z)| = o(\tau)
\]
in this case, which combined with (11) gives
\[
\frac{b e^t}{1 + e^t} \bigg|_{t = \text{prox}_{b\rho}(\tau Z)} = (1 + o(1)) \tau Z. \tag{13}
\]
Additionally, (13) leads to
\[
\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} = (1 + o(1)) \left(1 - \frac{\tau Z}{b}\right), \tag{14}
\]
which is bounded away from 0 in this case. Taken together, (13) and (14) yield
\[
\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} = \frac{1}{1 + (1 + o(1)) \tau Z (1 - \frac{\tau Z}{b})} \to 0
\]
and
\[
(\rho'(\text{prox}_{b\rho}(\tau Z)))^2 = \left(\frac{e^t}{1 + e^t}\right)^2 \bigg|_{t = \text{prox}_{b\rho}(\tau Z)} = (1 + o(1)) \tau^2 Z^2 \frac{b^2}{b^2}.
\]
Putting the above cases together and applying dominated convergence gives
\[
\lim_{\tau \to \infty} \left\{ E \left[\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} \right] - E \left[\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} \mathbb{1}_{\{|Z| \leq \varepsilon \text{ or } |Z - b/\tau| \leq \varepsilon\}} \right] \right\}
= \lim_{\tau \to \infty} \left\{ E \left[\mathbb{1}_{\{Z < -\varepsilon\}} + E \left[\mathbb{1}_{\{Z > b/\tau - \varepsilon\}} \right] \right] \right\} = \lim_{\tau \to \infty} \mathbb{P} \left\{ Z < -\varepsilon \text{ or } Z > \frac{b}{\tau} + \varepsilon \right\}
\]
when \(b = c_0 \tau \) for some constant \(c_0 > 0 \). Recognizing that
\[
E \left[\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} \mathbb{1}_{\{|Z| \leq \varepsilon \text{ or } |Z - b/\tau| \leq \varepsilon\}} \right] \leq E \left[\mathbb{1}_{\{|Z| \leq \varepsilon \text{ or } |Z - b/\tau| \leq \varepsilon\}} \right] \leq 4\varepsilon
\]
and
\[
\mathbb{P} \left\{ -\varepsilon \leq Z \leq 0 \text{ or } \frac{b}{\tau} \leq Z \leq \frac{b}{\tau} + \varepsilon \right\} \leq 2\varepsilon,
\]
we arrive at
\[
\lim_{\tau \to \infty} \mathbb{E} \left[\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} \right] - \lim_{\tau \to \infty} \mathbb{P} \left\{ Z < 0 \text{ or } Z > \frac{b}{\tau} \right\} \leq 6\varepsilon.
\]
Since \(\varepsilon > 0 \) can be arbitrarily small, we have
\[
\lim_{\tau \to \infty} \mathbb{E} \left[\frac{1}{1 + b\rho''(\text{prox}_{b\rho}(\tau Z))} \right] = \lim_{\tau \to \infty} \mathbb{P} \left\{ Z < 0 \text{ or } Z > \frac{b}{\tau} \right\} \tag{15}
\]
when \(b = c_0 \tau \). Similarly,
\[
\lim_{\tau \to \infty} \mathbb{E} \left[(\rho'(\text{prox}_{b\rho}(\tau Z)))^2 \right] = \lim_{\tau \to \infty} \left\{ \mathbb{P} \left\{ Z > \frac{b}{\tau} \right\} + \frac{\tau^2}{b^2} \mathbb{E} \left[Z^2 \mathbb{1}_{\{0 < Z < \frac{b}{\tau}\}} \right] \right\}.
\]
1.2 The probit case

The proof proceeds with the following 3 steps:

(i) Show that for any $b > 0$ and $\epsilon > 0$, there exist constants $c_{1,b}, c_{2,b}, c_3, c_4 > 0$, depending on ϵ, such that

\[
\begin{align*}
\sup_{z > c_{1,b}} \left| \text{prox}_{\nu b}(z) - \frac{z}{b+1} \right| & \leq \epsilon, \\
\sup_{z < -c_{2,b}} \left| \text{prox}_{\nu b}(z) - z \right| & \leq \epsilon, \\
\sup_{z > c_{3}} \left| \nu''(z) - 1 \right| & \leq \epsilon, \\
\sup_{z < -c_{4}} \left| \nu''(z) \right| & \leq \epsilon.
\end{align*}
\]

(16)

In particular, one can take

\[
c_{1,b} := \max \left\{ b\nu'(\sqrt{2}) + \sqrt{2}, \ 2\sqrt{2}b, \ \frac{4b}{\epsilon} \right\} \quad \text{and} \quad c_{2,b} := \max \left\{ 2b\nu'(0), \ \sqrt{8 \log \frac{b}{\epsilon}} \right\}.
\]

(17)

(ii) Show that for any constant $\eta > 0$, for all τ sufficiently large, one has

\[
\left| 1 - \frac{1}{1 + b(\tau) + 1} - 2\kappa \right| \leq \eta.
\]

(18)

(iii) Show that for any constant $0 < \eta < 1 - 2\kappa$ and for τ sufficiently large, one has

\[
\left| \frac{\nu(\tau^2)}{\tau^2} - 2\kappa \right| \leq \eta.
\]

(19)

In the sequel, we elaborate on each of these three steps.

Step (i). Recall that for any $x > 0$, one has $\frac{\phi(x)}{x} \left(1 - \frac{1}{x} \right) \leq 1 - \Phi(x) \leq \frac{\phi(x)}{1 - x}$, since $\nu'(x) = \frac{\phi(x)}{1 - \Phi(x)}$, this gives

\[
\left| \nu'(x) - x \right| \leq \frac{1}{x - x^2} \leq \frac{2}{x}, \quad x \geq \sqrt{2}.
\]

(20)

We start with the first inequality in (16). From the definition of $\text{prox}(\cdot)$, we have the defining relation

\[
\nu'(\text{prox}_{\nu b}(z)) + \text{prox}_{\nu b}(z) = z.
\]

(21)

Therefore, if we take $z_{b,1} := \nu'(\sqrt{2}) + \sqrt{2}$, then this identity (21) indicates that $\text{prox}_{\nu b}(z_{b,1}) = \sqrt{2}$. Moreover, $\text{prox}_{\nu b}(z)$ is monotonically increasing in z (see [2, Eqn. (56)]), which tells us that

\[
\text{prox}_{\nu b}(z) \geq \text{prox}_{\nu b}(z_{b,1}) = \sqrt{2}, \quad \forall z > z_{b,1}.
\]

(22)

Rearranging the identity (21) and combining it with (20) and (22), we obtain

\[
\left| \frac{z}{b+1} - \text{prox}_{\nu b}(z) \right| = \frac{b}{b+1} \left| \nu'(\text{prox}_{\nu b}(z)) - \text{prox}_{\nu b}(z) \right| \leq \frac{2b/(b+1)}{\nu' \left(\text{prox}_{\nu b}(z) \right)} \leq \frac{\sqrt{2b}}{b+1}, \quad \forall z > z_{b,1}.
\]

(23)

(24)

This inequality provides a lower bound on $\text{prox}_{\nu b}(z)$:

\[
\text{prox}_{\nu b}(z) \geq \frac{z - \sqrt{2b}}{b+1} \geq \frac{z}{2(b+1)}
\]

for all z obeying $z > z_{b,1}$ and $z > 2\sqrt{2}b$. Substitution into (23) once again gives

\[
\left| \frac{z}{b+1} - \text{prox}_{\nu b}(z) \right| \leq \frac{2b/(b+1)}{\nu' \left(\text{prox}_{\nu b}(z) \right)} \leq \frac{4b}{\epsilon}, \quad \forall z > \max \left\{ z_{b,1}, \ 2\sqrt{2b}, \ \frac{4b}{\epsilon} \right\}.
\]
establishing the first bound in (16).

We now turn to the second result in (16). Similarly, it is seen from (21) that $\prox_{b\rho}(z_{h,2}) = 0$ with $z_{h,2} := b\rho'(0) > 0$. The monotonicity of $\prox_{b\rho}(\cdot)$ implies that

$$\prox_{b\rho}(z) \leq \prox_{b\rho}(z_{h,2}) = 0, \quad \forall z < z_{h,2}. $$

Recognizing that $\rho'(x) > 0$ and $\rho''(x) > 0$ for any x and using the relation (21), we arrive at

$$|z - \prox_{b\rho}(z)| = b\rho'(\prox_{b\rho}(z)) \leq b\rho'(0), \quad \forall z < z_{h,2},$$

thus indicating that

$$\prox_{b\rho}(z) \leq z + b\rho'(0) \leq z/2, \quad \forall z < -2z_{h,2} < 0.$$ Substituting it into (25) and using the fact that $\rho'(x) = \frac{\phi(x)}{1 - \Phi(x)} \leq 2\phi(x) \leq e^{-x^2/2}$ for all $x < 0$, we get

$$|z - \prox_{b\rho}(z)| = b\rho'(\prox_{b\rho}(z)) \leq \rho'(z/2) \leq be^{-z^2/8}, \quad \forall z < -2z_{h,2} < 0,$$

where (a) follows since $\rho''(x) > 0$. The upper bound (26) will not exceed $\epsilon > 0$ as long as $z < -\max\left\{2z_{h,2}, \sqrt{8 \log \frac{1}{\epsilon}}\right\}$. This establishes the second bound of (16).

The remaining two inequalities regarding ρ'' are rather straightforward and the proofs are thus omitted.

Step (ii). Recognizing that $\Psi'(z;b) = \frac{b\rho'(z)}{1 + b\rho''(z)}|_{z = \prox_{b\rho}(z)}$, we see that $b(\tau)$ is the solution to

$$1 - \kappa = E[g(\tau Z, b)] \quad \text{with} \quad g(x, b) := \frac{1}{1 + b\rho''(\prox_{b\rho}(x))}. \quad (27)$$

As a result, everything boils down to quantifying $E[g(\tau Z, b)]$.

Consider any sufficiently small $\epsilon > 0$. We first obtain an approximation of $E[g(\tau Z, b)]$. Specifically, we claim that taking $c_\epsilon := \frac{1}{2} \tau^2$ leads to

$$E \left[g(\tau Z, b) 1_{|\tau Z| > c_\epsilon} \right] \leq E[g(\tau Z, b)] \leq E \left[g(\tau Z, b) 1_{|\tau Z| < c_\epsilon} \right] + \epsilon. \quad (28)$$

The lower bound is trivial since $0 \leq g(x, b) \leq 1$. To see why the upper bound holds, we invoke Cauchy-Schwarz to derive

$$E \left[g(\tau Z, b) 1_{|\tau Z| \leq c_\epsilon} \right] \leq \sqrt{E \left[g^2(\tau Z, b) \right]} \sqrt{P\left(|\tau Z| \leq \frac{c_\epsilon}{\tau}\right)} \leq \sqrt{E \left[g^2(\tau Z, b) \right]} \leq \sqrt{2} \frac{c_\epsilon}{\tau} = \epsilon, \quad (29)$$

where (b) arises since $0 \leq g(x, b) \leq 1$. This inequality (29) matches the upper bound in (28). In short, we see that $E \left[g(\tau Z, b) 1_{|\tau Z| > c_\epsilon} \right]$ is a reasonably tight approximation of $E \left[g(\tau Z, b) \right]$, and it suffices to look at

$$E \left[g(\tau Z, b) 1_{|\tau Z| < c_\epsilon} \right] = E \left[g(\tau Z, b) 1_{\{\tau Z < -c_\epsilon\}} \right] + E \left[g(\tau Z, b) 1_{\{\tau Z > c_\epsilon\}} \right]. \quad (30)$$

We first control the second term in the right-hand side of (30). Suppose for the moment that

$$c_\epsilon > \max\{c_{1, b}, (c_3 + \epsilon)(b + 1), c_{2, b}, c_4 + \epsilon\}. $$

According to (16), on the event $\{\tau Z > c_\epsilon\}$ one has

$$\frac{\tau Z}{b + 1} - \epsilon \leq \prox_{b\rho}(\tau Z) \leq \frac{\tau Z}{b + 1} + \epsilon \quad \text{and} \quad 1 - \epsilon \leq \rho''(\prox_{b\rho}(\tau Z)) \leq 1 + \epsilon,$$

where the second inequality holds since $\prox_{b\rho}(\tau Z) \geq \frac{\tau Z}{b + 1} - \epsilon > \frac{c_\epsilon}{b + 1} - \epsilon \geq c_3$. Plugging these inequalities into (27) gives

$$\frac{1}{1 + b(1 + \epsilon)} \leq g(\tau Z, b) \leq \frac{1}{1 + b(1 - \epsilon)}. $$
In addition, similar to (29) we get
\[
\frac{1}{2} \geq P(\tau Z > c_\epsilon) = P(\tau Z < -c_\epsilon) = \frac{1}{2} \left(1 - P\left(|Z| \leq \frac{c_\epsilon}{\tau} \right) \right) \geq \frac{1}{2} \left(1 - \frac{2c_\epsilon}{\tau} \right) = \frac{1}{2} (1 - \epsilon^2). \]

The above bounds taken collectively reveal that
\[
\frac{1}{1 + b(1 + \epsilon)} \cdot \frac{1}{2} (1 - \epsilon^2) \leq \mathbb{E} \left[g(\tau Z, b) 1_{\{\tau Z > c_\epsilon\}} \right] \leq \frac{1}{1 + b(1 - \epsilon)} \cdot \frac{1}{2}. \tag{31}
\]

We can employ similar arguments to control the first term in the right-hand side of (28) as well. Since \(c_\epsilon > \max\{c_{2, b}, c_4 + \epsilon\}, \) on the event \(\{\tau Z < -c_\epsilon\} \) we have
\[
\tau Z - \epsilon \leq \text{prox}_{b\rho}(\tau Z) \leq \tau Z + \epsilon \quad \text{and} \quad -\epsilon \leq \rho''(\text{prox}_{b\rho}(\tau Z)) \leq \epsilon,
\]
a direct consequence of (16). This implies that
\[
\frac{1}{1 + b \epsilon} \leq g(\tau Z, b) \leq \frac{1}{1 - b \epsilon}
\]
and, therefore,
\[
\frac{1}{1 + b \epsilon} \cdot \frac{1}{2} (1 - \epsilon^2) \leq \mathbb{E} \left[g(\tau Z, b) 1_{\{\tau Z < -c_\epsilon\}} \right] \leq \frac{1}{1 - b \epsilon} \cdot \frac{1}{2}. \tag{32}
\]
Combining (28), (31) and (32), we conclude that for any \(\epsilon > 0, \)
\[
1 - \epsilon^2 \left\{ \frac{1}{1 + b(1 + \epsilon)} + \frac{1}{1 + b \epsilon} \right\} \leq \mathbb{E} \left[g(\tau Z, b) \right] \leq \frac{1}{2} \left\{ \frac{1}{1 + b(1 - \epsilon)} + \frac{1}{1 - b \epsilon} \right\} + \epsilon,
\]
as long as \(c_\epsilon = \frac{1}{2} \tau \epsilon^2 > \max\{c_{1, b}, (c_3 + \epsilon)(b + 1), c_{2, b}, c_4 + \epsilon\}, \) or equivalently,
\[
\tau > \frac{2 \max\{c_{1, b}, (c_3 + \epsilon)(b + 1), c_{2, b}, c_4 + \epsilon\}}{\epsilon^2},
\]
where the lower bound is on the order of \(b/\epsilon^2. \) Effectively, we have established that for any given \(b \) and any sufficiently small \(\epsilon > 0 \) (so that \(b \epsilon < 1 \) and \(\epsilon < 1 \)), if \(\tau \) is sufficiently large (as specified above) one has
\[
\left| \mathbb{E} \left[g(\tau Z, b) \right] - \frac{1}{2} \left(\frac{1}{1 + b} + 1 \right) \right| \leq \tilde{c}_4 (\epsilon + b \epsilon) \tag{33}
\]
for some universal constant \(\tilde{c}_4 > 0 \) independent of \(b, \epsilon, \tau. \)

We can then combine this result (33) with the constraint (27) to derive an estimate on \(b(\tau). \) Fix any \(\eta > 0. \) Let \(b_1 \) and \(b_2 \) be two constants such that
\[
\frac{1}{2} \left(\frac{1}{1 + b_1} + 1 \right) = 1 - \kappa - \frac{\eta}{4}, \quad \frac{1}{2} \left(\frac{1}{1 + b_2} + 1 \right) = 1 - \kappa + \frac{\eta}{4}.
\]
Picking \(\epsilon > 0 \) sufficiently small so that \(\max\{\tilde{c}_4(1 + b_1)\epsilon, \tilde{c}_4(1 + b_2)\epsilon\} < \eta/4 \) and \(\tau \gg \max\{b_1, b_2\} / \epsilon^3, \) we can ensure that
\[
\mathbb{E} \left[g(\tau Z, b_1) \right] < 1 - \kappa < \mathbb{E} \left[g(\tau Z, b_2) \right].
\]
Recall that for any \(\tau > 0, \) the function \(G(b) := 1 - \mathbb{E} \left[g(\tau Z, b) \right] \) is strictly increasing in \(b \) (see [1] Lemma 5) and, hence,
\[
b_2 \leq b(\tau) \leq b_1, \quad \Rightarrow \quad \frac{1}{2(1 + b_1)} \leq \frac{1}{2(1 + b(\tau))} \leq \frac{1}{2(1 + b_2)}.
\]
Combining these together, we obtain
\[
\left\| \left(1 - \frac{1}{b(\tau) + 1} \right) - 2\kappa \right\| \leq \eta, \tag{34}
\]
for any \(\eta > 0 \) with the proviso that \(\tau \) is sufficiently large. This finishes Step (ii). In particular, this yields

\[
\lim_{\tau \to \infty} b(\tau) = \frac{2\kappa}{1 - 2\kappa}.
\]

Step (iii). Now we move on to the variance map

\[
\mathcal{V}(\tau^2) = \frac{b(\tau)^2}{\kappa} \mathbb{E} \left[\rho'(\text{prox}_{b(\tau)}(\tau Z))^2 \right].
\]

For notational convenience, we set

\[h(x) := \rho'(\text{prox}_{b(\tau)}(x))^2, \]

a key mapping in the definition (36). Before proceeding, we remark that from the properties of \(\rho' \), for any \(\epsilon > 0 \), there exist constants \(c_5, c_6 > 0 \), depending on \(\epsilon \), such that

\[
\sup_{z > c_5} |\rho'(z) - z| \leq \epsilon, \quad \sup_{z < -c_6} |\rho'(z)| \leq \epsilon.
\]

As before, we decompose the function \(\mathcal{V}(\tau^2) \) as follows:

\[
\mathcal{V}(\tau^2) - \frac{b(\tau)^2}{\kappa} \mathbb{E} \left[h(\tau Z) \mathbf{1}_{\{|\tau Z| > \alpha_e\}} \right] = \frac{b(\tau)^2}{\kappa} \mathbb{E} \left[h(\tau Z) \mathbf{1}_{\{|\tau Z| \leq \alpha_e\}} \right]
\]

for some point \(\alpha_e > 0 \) to be specified later. This gives

\[
\mathbb{E}[h(\tau Z) \mathbf{1}_{\{|\tau Z| < \alpha_e\}}] \leq \sqrt{\mathbb{E}[h^2(\tau Z) \mathbf{1}_{\{|\tau Z| < \alpha_e\}}]} \sqrt{\mathbb{P}(|\tau Z| \leq \alpha_e)} \leq C(\alpha_e, b) \sqrt{2\Phi \left(\frac{\alpha_e}{\tau} \right) - 1},
\]

where

\[C(\alpha_e, b) = \rho'(\text{prox}_{b(\alpha_e)}(\alpha_e))^2. \]

The last inequality of (38) holds since (1) \(\rho'(z) \geq 0 \) is an increasing function of \(z \); (2) \(\text{prox}_{b(\tau)}(x) \) is an increasing function of \(x \) (see [2, Eqn. (56)]). For any given \(\epsilon > 0 \), one can pick \(\tau \) sufficiently large so that the above bound \(C(\alpha_e, b) \sqrt{2\Phi \left(\frac{\alpha_e}{\tau} \right) - 1} \) is below \(\epsilon \). The particular choice of \(\tau \) will be made clear later. Under these conditions,

\[
\mathbb{E}[h(\tau Z) \mathbf{1}_{\{|\tau Z| > \alpha_e\}}] \leq \mathbb{E}[h(\tau Z)] \leq \mathbb{E}[h(\tau Z) \mathbf{1}_{\{|\tau Z| < \alpha_e\}}] + \mathbb{E}[h(\tau Z) \mathbf{1}_{\{|\tau Z| > \alpha_e\}}] + \epsilon.
\]

We first control the second term in the right-hand side of (39). To this end, we choose

\[\alpha_e > \max \{ c_1, b, c_2, (c_5 + \epsilon)(b + 1), 6c_6 + 2\epsilon \} \]

as before. Then from (10) and (37), on the event \(\{ \tau Z > \alpha_e \} \) we have

\[
\frac{\tau Z}{b + 1} - \epsilon \leq \text{prox}_{b(\tau)}(\tau Z) \leq \frac{\tau Z}{b + 1} + \epsilon \quad \text{and} \quad \frac{\tau Z}{b + 1} - 2\epsilon \leq \rho'(\text{prox}_{b(\tau)}(\tau Z)) \leq \frac{\tau Z}{b + 1} + 2\epsilon.
\]

This yields

\[
\left(\frac{\tau Z}{b + 1} - 2\epsilon \right)^2 \leq h(\tau Z) \leq \left(\frac{\tau Z}{b + 1} + 2\epsilon \right)^2
\]

on the event \(\{ \tau Z > \alpha_e \} \), and hence

\[
\mathbb{E} \left[\left(\frac{\tau Z}{b + 1} - 2\epsilon \right)^2 \mathbf{1}_{\{\tau Z > \alpha_e\}} \right] \leq \mathbb{E}[h(\tau Z) \mathbf{1}_{\{|\tau Z| > \alpha_e\}}] \leq \mathbb{E} \left[\left(\frac{\tau Z}{b + 1} + 2\epsilon \right)^2 \mathbf{1}_{\{\tau Z > \alpha_e\}} \right].
\]

Similarly for the first term in the right-hand side of (39), as \(\alpha_e > \max \{ c_2, 6c_6 + 2\epsilon \} \), on the event \(\{ \tau Z < -\alpha_e \} \), we have

\[
\tau Z - \epsilon \leq \text{prox}_{b(\tau)}(\tau Z) \leq \tau Z + \epsilon \quad \text{and} \quad -\epsilon \leq \rho'(\text{prox}_{b(\tau)}(\tau Z)) \leq \epsilon.
\]
that

\[\mathbb{P}(\tau Z > \alpha_e) = \mathbb{P}(\tau Z < -\alpha_e) = \frac{1}{2}(1 - \delta_e) \text{ for some } \delta_e \text{ small which is a function of } \epsilon \text{ and which vanishes as } \epsilon \to 0.\]

This yields

\[0 \leq \mathbb{E}[h(\tau Z)1_{\{\tau Z < -\alpha_e\}}] \leq \frac{\epsilon^2}{2} (1 - \delta_e). \quad (41)\]

Combining the relations (39), (40) and (41) we obtain that

\[\frac{b^2}{\kappa} \mathbb{E} \left[\left(\frac{\tau Z}{b+1} - 2\epsilon \right)^2 1_{\{\tau Z > \alpha_e\}} \right] \leq \mathcal{V}(\tau^2) \leq \frac{b^2}{\kappa} \left\{ \mathbb{E} \left[\left(\frac{\tau Z}{b+1} + 2\epsilon \right)^2 1_{\{\tau Z > \alpha_e\}} \right] + \frac{\epsilon^2}{2} (1 - \delta_e) + \epsilon \right\}. \quad (42)\]

We still need to evaluate \(\mathbb{E} \left[\left(\frac{\tau Z}{b+1} - 2\epsilon \right)^2 1_{\{\tau Z > \alpha_e\}} \right].\) To this end, we define two quantities

\[\alpha_1 := \mathbb{E} [Z 1_{\{\tau Z > \alpha_e\}}] \quad \text{and} \quad \alpha_2 := \mathbb{E} [Z^2 1_{\{\tau Z > \alpha_e\}}].\]

Using the properties of the normal CDF, one can show that

\[\frac{\tau}{\sqrt{2\pi}} - \alpha_e \leq \tau \alpha_1 \leq \frac{\tau}{\sqrt{2\pi}} \quad \text{and} \quad \frac{\tau^2}{2} - \frac{\alpha_1^2}{2} \leq \tau^2 \alpha_2 \leq \frac{\tau^2}{2}. \quad (43)\]

Using the above relations and rearranging, the bounds in (42) can be rewritten as

\[\mathcal{V}(\tau^2) \geq \frac{b^2}{\kappa} \left[\frac{\tau^2}{2(b+1)^2} - \frac{\alpha_1^2}{2(b+1)^2} - \frac{4\epsilon}{\sqrt{2\pi}(b+1)} + 2\epsilon^2 (1 - \delta_e) \right];\]

\[\mathcal{V}(\tau^2) \leq \frac{b^2}{\kappa} \left[\frac{\tau^2}{2(b+1)^2} + \epsilon \left(\frac{4\tau}{\sqrt{2\pi}(b+1)} + 1 \right) + \frac{5}{2} \epsilon^2 (1 - \delta_e) \right].\]

Finally, observing that \(b \geq 0,\) we arrive at

\[\left| \mathcal{V}(\tau^2) - \frac{b^2}{2\kappa (b+1)^2} \right| \leq \frac{b^2}{\kappa} \left\{ \epsilon \left(\frac{8\tau}{\sqrt{2\pi}} + 1 \right) + \frac{\delta_e \alpha_1^2}{2} + \frac{\epsilon^2}{2} (1 - \delta_e) \right\},\]

which is equivalent to

\[\left| \frac{\mathcal{V}(\tau^2)}{\tau^2} - \frac{1}{2\kappa} \left(1 - \frac{1}{b+1} \right) \right|^2 \leq \frac{b^2}{\kappa} \left\{ \epsilon \left(\frac{8\tau}{\sqrt{2\pi}} + 1 \right) + \frac{\delta_e \alpha_1^2}{2\tau^2} + \frac{\epsilon^2}{2\tau^2} (1 - \delta_e) \right\}. \quad (44)\]

Note that in the bound above \(\alpha_e\) also depends on \(b.\) Henceforth we denote \(\alpha_e \) as \(\alpha_e(b).\) Next, we invoke the result from Step (ii) to ensure that \(b(\tau)\) is bounded for all sufficiently large values of \(\tau.\)

Fix \(\eta' > 0\) such that \(0 < \eta' < 1 - 2\kappa.\) Let \(\tau_0\) be the threshold above which for all values of \(\tau\) the relation (34) holds with \(\eta = \eta'/2.\) Then \(\forall \tau \geq \tau_0,\) one has

\[b(\tau) \leq \frac{2\kappa + \eta'}{1 - 2\kappa - \eta'} =: a(\eta').\]

For all \(\tau \geq \tau_0,\) we have

\[\left| \frac{\mathcal{V}(\tau^2)}{\tau^2} - \frac{1}{2\kappa} \left(1 - \frac{1}{b+1} \right) \right|^2 \leq \frac{a(\eta')^2}{\kappa} \left\{ \epsilon \left(\frac{8\tau}{\sqrt{2\pi}} + 1 \right) + \frac{\delta_e \alpha_e(a(\eta))^2}{2\tau^2} + \frac{\epsilon^2}{2\tau^2} (1 - \delta_e) \right\},\]

where \(\alpha_e(a(\eta))\) is any constant above \(\max\{c_1 a(\eta), c_2 a(\eta), c_5 + \epsilon (a(\eta) + 1), c_6 + 2\epsilon\}.\) We choose \(\tau > \tau_0\) so that \(C(\alpha_e(a(\eta)), a(\eta)) \sqrt{2\Phi(\alpha_e)} - 1\) is below \(\epsilon,\) and the above bound in the RHS is below \(\eta = \eta'/2.\) This gives

\[\left| \frac{\mathcal{V}(\tau^2)}{\tau^2} - 2\kappa \right| \leq \left| \frac{\mathcal{V}(\tau^2)}{\tau^2} - \frac{1}{2\kappa} \left(1 - \frac{1}{b+1} \right) \right|^2 + \left| 2\kappa - \frac{1}{2\kappa} \left(1 - \frac{1}{b+1} \right) \right|^2 \leq \eta'.\]
Hence, for any such τ

$$\frac{V(\tau^2)}{\tau^2} \leq 2\kappa + \eta' < 1,$$

from the choice of η'. In particular, we have established that

$$\lim_{\tau \to \infty} \frac{V(\tau^2)}{\tau^2} = 2\kappa.$$

Remark 1. In fact, the above analysis works for a broader class of link functions beyond the probit case. Specifically, more general sufficient conditions for the above result to hold are the following: in addition to conditions mentioned in [1, Section 2.3.3].

- $\rho'(x) \to 0$ when $x \to -\infty$, and $\rho'(x)/x \to 1$, when $x \to \infty$; further, $|\rho'(x) - x| \leq f(x)$ for all x positive, where $f(x)$ is some function obeying $f(x) \to 0$ when $x \to \infty$.
- ρ'' is bounded, converges to 1 when $x \to \infty$ and converges to 0 when $x \to -\infty$. $-\infty$ are swapped.
- In addition, for any given z, $b\rho''(\text{prox}_{b\rho}(z)) \to \infty$ when $b \to \infty$.

References

[1] Pragya Sur, Yuxin Chen, and Emmanuel Candès. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square. 2017.

[2] David Donoho and Andrea Montanari. High dimensional robust M-estimation: Asymptotic variance via approximate message passing. *Probability Theory and Related Fields*, pages 1–35, 2013.