Deep Sea Actinomycetes and Their Secondary Metabolites

Manita Kamjam, Periyasamy Sivalingam, Zinxin Deng and Kui Hong*

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China

Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.

Keywords: deep sea, actinomycetes, bioactive natural products, biosynthesis, novel species

INTRODUCTION

The search and discovery of novel microbes that produce new secondary metabolites can be expected to remain significant in the race against new and emerging diseases and antibiotic resistant pathogens (Berdy, 2012; Manivasagan et al., 2013). Actinomycetes are widely distributed in various marine habitats, ranging from sea sand (Hong et al., 2008), mangrove sediments (Hong et al., 2009; Hong, 2013; Azman et al., 2015), sea water (Zhang L. et al., 2012), coastal sediments (Yu et al., 2015), and deep sea sediments (Zhang et al., 2015; Chen et al., 2016). The increasing number of literature on marine actinomycetes strongly supported the view that marine environments including deep sea are significant sources for search and discovery of both diverse actinomycetes resources and secondary metabolites (Skropeta and Wei, 2014; Xu et al., 2014). With the breakthrough of technological barriers associated with deep sea actinobacteria isolation strategies, such as sample collection and cultivation under standard laboratory conditions, more and more deep sea actinobacteria and their natural products have been identified. Here we review the recent progress on deep sea actinomycetes and their metabolites from literature during year 2006–2016.
DEEP SEA ENVIRONMENT AND BIODIVERSITY

The vast oceans cover 70% of the world's surface, with 95% greater than 1,000 m deep. Deep sea environments are divided into the bathyal zone (depths between 200 and 2,000 m), the abyssal (depths between 2,000 and 6,000 m) and the hadal zone (depths below 6,000 m) (Harino et al., 2009). Below sea level pressure is increased by depth, thereby in the deepest part of the trenches, the pressure varying from 10 atm at the shelf-slope interface to >1,000 atm. At bathyal depths temperatures taper off rapidly with increasing depth to 2°C. Deep-sea species must adjust their biochemical processes to survive in low temperatures, because the cold reduces chemical reaction rates. Oxygen concentration drops along with the depth, oxygen-minimum layer in mid-water, usually between 300 and 1,000 m depth. Light intensity decreases exponentially with depth in the water column. No photosynthetically useful light reaches the sea floor below about 250 m (Thistle, 2003).

Start at about 200 m depth, the deep sea is characterized by high pressure, low temperature, lack of light and variable salinity and oxygen concentration (Das et al., 2006), at the shelf break, where a clear change of fauna from shallow to deep water is observed (Thistle, 2003). According to Haefner (2003), in cold deep sea mud the diversity of life can be remarkably high with species richness rivaling that of tropical rain forest. Studying the species level of microbial diversity, finding a large number of rare species which more than half of them considered as new species and more than 95% is unidentified, furthermore the expanding of biodiversity reach to the 5,000 m in depth to abyssal which the peak amount of species at the depths of 3,000 m and beyond (Skropeta, 2008). On earth abyssal hills are the most abundant of biomass, but on wider abyss the ecological impact of the habitat heterogeneity is largely unexplored (Durden et al., 2015).

DEEP SEA ACTINOMYCETES CULTIVATION

However, so far only a few actinomycetes have been isolated from deep sea. It is because of technological barriers associated with isolation strategies. Therefore, we are in the pace to develop efficient cultivation methods to recover the actinobacteria population from extreme deep sea habitats. To achieve the task, firstly collection of samples from deep sea plays a pivotal role. In recent years several advancements have been developed in the context of sample collection from deep sea such as modified sediment grab and designer-built bounce corer (Fenical and Jensen, 2006), remote-operated submarine vehicle (Pathom-aree et al., 2006d), neuston sampling devices (Hakvåg et al., 2008), multi-core sampler (Xu et al., 2009), gravity or piston cores (D’Hondt et al., 2009), and untethered coring device (Prieto-Davó et al., 2013).

It is crucial to cultivate deep sea actinomyetes under standard laboratory conditions. There are several factors that influence the isolation, such as pre-treatment of dry heat (Shin et al., 2008), media composition (Luo et al., 2011; Pan et al., 2013; Song et al., 2015), dilution factor (Pathom-aree et al., 2006a), seawater requirement (Song et al., 2015), artificial seawater (Pan et al., 2013; Pesic et al., 2013) and incubation time (Song et al., 2015). It has also shown the addition of different antibiotics on selective media can inhibit the growth of fungal and bacterial contamination in order to enhance the actinomycetes growth similar to those used in isolation of actinomycetes from terrestrial sample. Long term freeze storage of deep sea sediment samples at −80°C has shown to prevent the growth of fast-growing bacteria which in results enhance the actinomycetes population (Ulanova and Goo, 2015). For the initial isolation of Streptomyces, cultivation temperatures have also influenced the recovery from deep sea sediment samples. Optimal growth temperature generally ranging from 25 to 30°C for successful cultivation of deep sea actinomycetes (Jeong et al., 2006; Luo et al., 2011; Pesic et al., 2013).

Heat pre-treatment procedures have been used effectively for the selective isolation of members of several actinomycete taxa and also inhibited growth of bacterial and fungal colonies. Moreover, actinomycete spores and hyphae are more sensitive to wet than dry heat hence relatively low temperature regimes are used to pretreat water and soil suspensions. Although heat pretreatment procedures decrease the ratio of bacteria to actinomycetes on isolation plates, the numbers of actinomycetes may also be reduced (Williams et al., 1972; Pathom-aree et al., 2006a,b,c,d). Pathom-aree et al., isolated actinomycetes from Norwegian fjord sediments support that the numbers of actinomycetes were reduced when used heat pretreatment for isolation; fewer actinomycetes were isolated on selective media inoculated with suspensions treated at 55°C as opposed to 50°C. Similarly, higher counts were generally recorded on isolation plates seeded with non-heat pretreated suspensions (Pathom-aree et al., 2006d).

For the other method, Jensen et al., 2005 used dry and stamp method for isolation actinomycetes from tropical Pacific Ocean and found that using this method for isolation of actinomycetes showed good recovery of 44%. In addition, Ulanova and Goo (2015) found that the majority of actinomycete-like colonies were also isolated using dry stamping technique from subseafloor sediments at the Nankai and Okinawa Troughs.

NOVEL ACTINOMYCETE SPECIES

Novel actinomycete species isolated from deep sea environment between 2006 and 2016, have yielded an impressive array of novel species with the highest number found at depths of abyssal zone and deeper. Different media has been used by researchers (Table 1). It is worth to be noticed that long time culturing and low temperature were employed for some of the novel isolates (Table 1). Only one novel Microbacterium marinum was obtained by pretreatment at 55°C, 6 min, others were from none heat pretreated samples (Table 1). The novel deep sea actinomycete species including 21 species under 13 genera with the maximum number from Microbacterium (n = 4), followed by Dermacoccus (n = 3), Streptomyces (n = 3) and Verrucosispora (n = 2), and one novel species for each of the other 9 genera (Table 1).
Species	Region	Depth (m)	Extraction of actobacteria propogules/pretreatment procedure	Media	Incubation temperature and time	References
Amycolatopsis marina sp. nov.	South China Sea	Not specified	Not specified	SM1 with cycloheximide, neomycin sulfate and nystatin	28°C for 4 weeks	Tian et al., 2013
Brevibacterium oceani sp. nov.	Chagos Trench, Indian Ocean	5,904	Vortex sediment suspension in 2% NaCl for 1 min	Yeast extract/peptone (YP) agar	28°C for 1 week	Zhang L. et al., 2012
Dermacoccus abyssi sp. nov.	Mariana Trench (Challenger Deep)	10,898	Shaking sediment suspension for 30 min at 150 rpm	Raffinose-histidine agar with cycloheximide and nystatin	28°C for 12 weeks	Pathom-aree et al., 2006a
Dermacoccus barathri sp. nov.	Mariana Trench (Challenger Deep)	10,898	Shaking sediment suspension for 30 min at 150 rpm	Raffinose-histidine agar with cycloheximide and nystatin	28°C for 12 weeks	Pathom-aree et al., 2006b
Dermacoccus profundi sp. nov.	Mariana Trench (Challenger Deep)	10,898	Shaking sediment suspension for 30 min at 150 rpm	Raffinose-histidine agar with cycloheximide and nystatin	28°C for 12 weeks	Pathom-aree et al., 2006b
Microbacterium indicum sp. nov.	Chagos Trench, Indian Ocean	5,904	Vortex sediment suspension in 2% NaCl for 1 min	Yeast extract/peptone (YP) agar	15°C for 15 days	Shivaji et al., 2007
Microbacterium marium sp. nov.	South-west Indian Ocean	2,800	Heated sediment suspension in a water bath at 55°C for 6 min	Modified DNS- seawater medium with nalidixic acid and nystatin	28°C for 1 week	Zhang L. et al., 2012
Microbacterium profundum sp. nov.	East Pacific polymetallic nodule region	5,280	Vortex sediment suspension in sterile seawater for 15 min	Modified ZoBell medium	25°C for 2 weeks	Wu et al., 2008
Mycobacterium marinum sp. nov.	South-west Indian Ocean	2,327	Vortex sediment suspension in sterile seawater	FJ sea water (50%) agar with rifampicin and potassium dichromate	28°C	Yu et al., 2013
Mycobacterium sediminis sp. nov.	Atlantic Ocean	2,983	Not specified	Not specified	Not specified	Xiao et al., 2011b
Mycoligenes cantabricum sp. nov.	Avile's Canyon in the Cantabrian Sea, Asturias, Spain	1,500	Not specified	1/3 tryptic soy agar and 1/6 M-BLEB sea water agar with cycloheximide and nystatin	28°C for 2 weeks	Vizcaino et al., 2015
Nesterenkonia alkaliphila sp. nov.	Western Pacific Ocean	7,118	Not specified	Modified ISP 1- seawater	28°C for 3 weeks	Zhang et al., 2015
Pseudonocardia antitumoralis sp. nov.	South China Sea	3,258	Not specified	ISP 5- seawater medium	28°C for 3 weeks	Tan et al., 2013
Sciscionella marina gen. nov., sp. nov.	Northern South China Sea	516	Not specified	Gauze No. 1 -seawater medium	28°C for 3 weeks	Tian et al., 2009
Seriicoccus profundi sp. nov.	Indian Ocean	5,368	Not specified	Oligotrophic- seawater medium	Not specified	Xiao et al., 2011a
Streptomyces indicus sp. nov.	Indian Ocean	2,434	Not specified	Modified HV- sea water (75%) medium	25°C	Luo et al., 2011
Streptomyces nanhaiensis sp. nov.	South China Sea	1,632	Not specified	Humic acid-vitamin- sea water (70%) medium	28°C for 3 weeks	Tan et al., 2012a
Streptomyces oceani sp. nov.	Northern South China Sea	578	Not specified	10 % Nutrient seawater agar	28°C for 3 weeks	Tan et al., 2012b

(Continued)
NATURAL PRODUCTS SYNTHESIZED BY DEEP SEA ACTINOMYCETES

The numbers of novel microbial metabolites from deep sea sediment samples have been increasing, especially from deep sea streptomycetes. Eight genera of actinomycetes were reported to produce secondary metabolites, among which *Streptomyces* is the richest producer (Table 2). Earlier culture dependent studies strongly suggested that *Streptomyces* species are present in considerable number in deep sea sediment samples (Jensen et al., 2005; Pathom-aree et al., 2006). In addition several novel species of deep sea derived *Streptomyces* strains with distinct metabolites have been reported which indicates deep sea *Streptomyces* are really worth in the context of novel natural products discovery (Pan et al., 2015; Song et al., 2015).

The deepest sea sediment samples from the Mariana Trench have been shown to possess great biosynthetic capacities. Seven dermacozines A–G were reported from the actinobacteria *Dermacoccus abyssi* sp. nov., strains MT1.1 and MT1.2 isolated from Mariana Trench sediment collected at a depth of 10 898 m. Dermacozines F and G displayed moderate cytotoxic activity against the leukemia cell line K562 with IC$_{50}$ values of 9 and 7 mM, respectively, whereas dermacozine C also exhibited high radical scavenger activity with an IC$_{50}$ value of 8.4 mM (Abdel-Mageed et al., 2010).

In recent years, South China Sea has been emerging as a potentially abundant source of novel species/genera of marine actinomycetes. Some bioactive compounds, such as pseudonocardians A–C, grincamycins B–F, and abyssomicins J–L were reported. Natural products derived from deep sea actinomycetes discovery have displayed a wide range of bioactivities, such as antitumor, antimicrobial, antifouling, and anti-fibrotic activities (Table 2).

BIOSYNTHESIS PATHWAYS FOR DEEP SEA STREPTOMYCETES NATURAL PRODUCTS

Lobophorins H and I together with three known analogs, O-β-kijanosyl-(1\rightarrow17)-kijanolide, lobophorins B and F were yielded by *Streptomyces* sp. 12A35, isolated from a deep sea sediment sample collected at a depth of 2,134 m in South China Sea (Pan et al., 2013). While, lobophorins E and F, along with two known analogs lobophorins A and B were discovered from the products of the deep sea *Streptomyces* sp. SCSIO 01127, was isolated from sample collected at a depth of 1,350 m in the South China Sea (Niu et al., 2011). The gene cluster involved in biosynthesis of lobophorin was the first type I PKS gene cluster identified from the deep sea derived *Streptomyces*. Three glycosyltransferases (GTs) LobG1-LobG3 genes-inactivation mutants yielded five different glycosylated metabolites, and the result suggested that LobG3 as an iterative GT to attach two L-digitoxoses (Li et al., 2013). Desotamides B, C and D together with a known desotamine A were obtained from deep sea derived *Streptomyces scopoliridis* SCSIO ZJ46, recovered from sediment sample collected at a depth of 3,536 m in the South China Sea.
TABLE 2 | Natural products synthesized by deep sea actinomycetes.

Strain	Compounds	Region	Depth (m)	Bioactivity	References
Dermacoccus abyssi	Dermacozines A–G	Mariana Trench	10,898	Moderate cytotoxic activity against the leukemia cell line K562	Abdel-Mageed et al., 2010
		(Challenger Deep)			Wagner et al., 2014
*Marinactinospora	Marinacarbolines A–D, Indolactam	South China Sea	3,865	Strong antiproliferative activity	Huang et al., 2011
thermotolerans sp. nov.	alkaloids				
Microbacterium sediminis	Microbacterins A and B	South-west Indian	2,327	Significant inhibitory effects against a panel of human tumor cell	Liu D. et al., 2015
sp. nov.		Ocean			
Micromonospora sp.	Levantilides A and B	Mediterranean	4,400	Anticancer	Gärtnert et al., 2011
Nocardiopsis alba	Methoxynehumicin	Indian Ocean	Not specified		Zhang et al., 2013
SCSIO 00039					
Nocardiopsis sp.	Nocardiosins A and B	Coast of Brisbane,	55	No activity	Raju et al., 2010
		Australia			
Pseudonocardia sp.	Pseudonocardians A–C	South China Sea	3,258	Anticancer, antibacterial activity	Li et al., 2011
Serinicoccus profund sp.	Indole alkaloid	Indian Sea	5,368	Antibacterial activity	Yang et al., 2013b
nov.					
Streptomyces cavourens	Baftormycins B1 and C1	South China Sea	1,464	Antifungal Substances	Pan et al., 2015
NA4					
Streptomyces drozdowiczii	Marformycins	South China Sea	1,396	Anti-infective	Zhou et al., 2014
SCSIO 10141					
Streptomyces fungicidicus	Diketopiperazines	Western Pacific	5,000	Antifouling products	Li et al., 2006
Streptomyces lutanus	Grincamycins B–F	South China Sea	3,370	Anticancer	Huang et al., 2012
Streptomyces niveus	Marfuracuminocins	South Sea	3,536	Cytotoxic, antibacterial activity	Song et al., 2013
SCSIO 3406					
Streptomyces olivaceus	Tetroazolemycins A and B	South West Indian	Not specified	Metal ion-binding activity	Liu et al., 2013
FXJ8.012		Ocean			
Streptomyces scopuliridis	D sotamides B–D	South China Sea	3,536	Antibacterial activity	Song et al., 2014
SCSIO ZJ46					
Streptomyces sp.	Ammosamides A and B	Bahamas	1,618	Anticancer	Gaudêncio et al., 2008
sp.					Nachtigall et al., 2011
Streptomyces sp.	Benzoxacyclol	Atlantic	3,814	Inhibitory activity against the enzyme glycogen synthase kinase-3b	Hohmann et al., 2009
sp.				Inhibitory activity against gram-positive bacteria, anticancer	
Streptomyces sp.	Caboxymycin	Atlantic	3,814		
sp.					
Streptomyces sp.	Spiroindimicins A–D	Indian Ocean	3,412	Anticancer	Zhang W. J. et al., 2012
sp.					Jeong et al., 2006
Streptomyces sp.	Streptokardin	Ayu Trough	Not specified	Anti-angiogenesis activity	Shin et al., 2008
sp.					
Streptomyces sp.	Streptopyrrolidine	Ayu Trough	Not specified		
sp.					
Streptomyces sp.	Ahtatin	Sagami Bay	1, 174	Aspartic protease inhibitors	Sun et al., 2014
ACT232					
Streptomyces sp.	Lobophorins E and F	South China Sea	1, 350	Antibacterial activity, cytotoxicity	Niu et al., 2011
SCSIO 01127					
Streptomyces sp.	Heronamides D–F	Indian Ocean	3,412	No activity	Zhang W. et al., 2014
SCSIO 03032					
Streptomyces sp.	Indimicins	Indian Ocean	3,412	Cytotoxic	Zhang W. J. et al., 2014
sp.					
Streptomyces sp.	(6R,3Z)-3-benzylidene-6-isobuty1-1-methylpiperazine-2,5-dione	South China Sea	3,536	No activity	Luo et al., 2015
SCSIO 04496					
Streptomyces sp.	Strepsesquitol	Indian Ocean	3,412	Inhibitory activity against lipopolysaccharides-induced TNFα production	Yang et al., 2013a
sp. 10355					
Streptomyces sp.	Dehydroxyaquayamycin	South China Sea	2,403	Antibacterial activity	Song et al., 2015
SCSIO 11594					
Streptomyces sp.	Marangucycline B	South China Sea	2,403	Anticancer	Song et al., 2015
SCSIO 11594					

(Continued)
Sea (Song et al., 2014). A 39 kb gene cluster governing the biosynthesis of the anti-infective desotamides has been isolated from the strain. Desotamides A and B and a new desotamide G have been obtained by heterologous expression of desotamide gene cluster in *Streptomyces coelicolor* M1152 (Li et al., 2015).

Heronamides D, E, and F were discovered from the products of *Streptomyces* sp. SCSIO 03032, which was isolated from deep sea sediment sample collected at a depth of 3,412 m in the Bay of Bengal, Indian Ocean (Zhang W. et al., 2014). The gene cluster governing the biosynthesis of heronamide has been isolated from strain SCSIO 03032. The gene inactivation study confirmed that P450 enzyme encode HerO as an 8-hydroxylase for tailoring heronamide biosynthesis. Feeding experiments with labeled small carboxylic acid molecules confirmed the migrated double bonds in the conjugated diene-containing side chain of heronamides (Zhu et al., 2015).

Marformycins A-F were obtained from fermentation broth of deep sea sediment-derived *Streptomyces drozdowiczii* SCSIO 1014, which was isolated from sample collected at a depth of 1,396 m in South China Sea. All compounds exerted selective anti-microbial activity against *Micrococcus luteus*, *Propionibacterium acnes*, and *P. granulosum*. Marformycins A-E displayed inhibitory activity against *M. luteus* with MICs of 0.25, 4.0, 0.25, 0.063, and 4.0 µg/mL, respectively, while they did not displayed any cytotoxicity (Liu D. et al., 2015). It is suggested that these compounds may be used as promising candidates for anti-infective drug leads. The gene cluster that responsible for the biosynthesis of marformycin is about 45 kb in size and has been identified from strain SCSIO 10141. The gene inactivation studies indicated that three NRPS proteins MfnC, MfnD, MfnE, a free adenylation (A) enzyme MfnK, and a free peptidyl carrier protein (PCP) MfnL were essential for the generation of the marformycin core scaffold. Further, MfnN was found to use an intact cyclodepsipeptide intermediate as its substrate (Liu J. et al., 2015).

PERSPECTIVE

The discovery of novel actinomycete taxa with unique metabolic activity from deep sea samples, and novel compounds with the greatest biogenic, metabolic diversity and biological activities clearly illustrate that indigenous deep sea actinomycetes indeed exist in the oceans and are an important source of novel secondary metabolites. Other function of deep sea actinobacteria is also interesting such as oil degradation and biosurfactant production (Wang et al., 2014). It is worth to be noticed that no heat pretreatment, dry and stamp method and low temperature incubation were more productive for actinomycetes isolation from some deep sea samples. With the development of culture independent techniques, more productive strategy of strain isolation guided by the deep sea actinomycetes distribution or direct cloning and heterologous express the functional genes could be approached.

AUTHOR CONTRIBUTIONS

MK contribute the introduction, deep sea environment and biodiversity, actinomyce cultivation, novel taxa, and Table 1. PS contribute sample collection, Table 2 and biosynthesis of secondary metabolites from deep sea streptomycetes. KH and ZD conceived the idea and revised the whole manuscript.

ACKNOWLEDGMENTS

The work described here was partially supported by the EU FP7 project PharmaSea (312184).

REFERENCES

Abdel-Mageed, W. M., Milne, B. F., Wagner, M., Schumacher, M., Sandor, P., Patham-aree, W., et al. (2010). Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. *Org. Biomol. Chem.* 8, 2352–2362. doi: 10.1039/c001445a

Azman, A. S., Othman, I., Velu, S. S., Cha, K. G., and Lee, L. H. (2015). Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity. *Front. Microbiol.* 6:856. doi: 10.3389/fmicb.2015.00856

Berdy, J. (2012). Thoughts and facts about antibiotics: where we are now and where we are heading. *J. Antimicrob. Chem.* 65, 385–395. doi: 10.1038/ja.2012.27

Kamjam et al. Deep Sea Actinomycetes
Pan, H. Q., Zhang, S. Y., Wang, N., Li, Z. L., Hua, H. M., Hu, J. C., et al. (2013). New spirotetronate antibiotics lobophorins H and I from a South China sea derived Streptomyces sp. 12A35. Mar. Drugs 11, 3891–3901. doi: 10.3390/md1103891

Pathom-aree, W., Nogi, Y., Sutcliffe, L. C., Ward, A. C., Horikoshi, K., Bull, A. T., et al. (2006a). Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int. J. Syst. Evol. Microbiol. 56, 1233–1237. doi: 10.1099/ijs.0.64133-0

Pathom-aree, W., Nogi, Y., Sutcliffe, L. C., Ward, A. C., Horikoshi, K., Bull, A. T., et al. (2006b). Dermacoccus barathri sp. nov. and Dermacoccus profundus sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int. J. Syst. Evol. Microbiol. 56, 2303–2307. doi: 10.1099/ijs.0.64250-0

Pathom-aree, W., Nogi, Y., Sutcliffe, L. C., Ward, A. C., Horikoshi, K., Bull, A. T., et al. (2006c). Williamsia mariannensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int. J. Syst. Evol. Microbiol. 56, 1123–1126. doi: 10.1099/ijs.0.64132-0

Pathom-aree, W., Stach, J. E., Ward, A. C., Horikoshi, K., Bull, A. T., and Goodfellow, M. (2006d). Diversity of actinomycetes isolated from Challenger deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10, 181–189. doi: 10.1007/s00792-005-0482-x

Pasic, A., Baumann, H. L., Kleinschmidt, K., Ensle, P., Wiese, J., Süssmuth, R. D., et al. (2013). Chlamyphycin, a new cyclic octapeptide from Streptomyces strain C42 isolated from the Baltic Sea. Mar Drugs 11, 4834–4857. doi: 10.3390/md11124834

Prieto-Davó, A., Villarreal-Gómez, L. J., Forschner-Dancause, S., Bull, A. T., Stach, J. E., Smith, C., et al. (2013). Targeted search for actinomycetes from nearshore and deep sea marine sediments. FEMS Microbiol. Ecol. 84, 510–518. doi: 10.1111/1574-6941.12082

Raju, R., Piggott, A. M., Conte, M., Tnimov, Z., Alexandrov, K., and Capon, R. J. (2010). Nocardiopsins: new FKBPI2-binding macrolide polyketides from an Australian marinenederived actinomycete, Nocardipsis sp. Chem. Eur. J. 16, 3191–3200. doi: 10.1002/chem.200902993

Shin, H. J., Kim, T. S., Lee, H. S., Park, J. Y., Choi, I. K., and Kwon, H. J. (2008). Streptopyrrolidine, an angiogenesis inhibitor from a marine-derived Streptomyces sp. KORDI-3973. Phytochemistry 69, 2363–2366. doi: 10.1016/j.phytochem.2008.05.020

Shivaji, S., Bhadra, B., Rao, R. S., Chaturvedi, P., Pindi, P. K., and Raghukumar, C. (2007). Microbacterium indicum sp. nov., isolated from a deep-sea sediment sample from the Chagos Trench, Indian Ocean. Int. J. Syst. Evol. Microbiol. 57, 1819–1822. doi: 10.1099/ijs.0.06782-0

Skropea, D. (2008). Deep-sea natural products. Nat. Prod. Rep. 25, 1113–1166. doi: 10.1039/b808743a

Skropea, D., and Wei, L. (2014). Recent advances in deep-sea natural products. Nat. Prod. Rep. 31, 999–1025. doi: 10.1039/C3NP07118B

Song, Y., Huang, B. H., Chen, Y. C., Ding, J. C., Zhang, Y. S., Sun, A., et al. (2013). Cytotoxic and antibacterial Marfuraquinocins from the deep South China sea-derived Streptomyces niveus SSCH10 3406. J. Nat. Prod. 76, 2263–2268. doi: 10.1021/np4006025

Song, Y., Li, Q., Liu, X., Chen, Y., Zhang, Y., Sun, A., et al. (2014). Cyclic hexapeptides from the deep south China sea-derived Streptomyces scopuliridis SSCH10 3464 active against pathogenic gram-positive bacteria. J. Nat. Prod. 77, 1937–1941. doi: 10.1021/np500399v

Song, Y., Liu, G., Li, J., Huang, H., Zhang, X., Zhang, H., et al. (2015). Cytotoxic and antibacterial Angucycline- and Prodigiosin- analogues from the deep-sea derived Streptomyces sp. SSCH10 31594. Mar. Drugs 13, 1304–1316. doi: 10.3390/md13031304

Stach, J. E. M., and Bull, A. T. (2005). Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 87, 3–9. doi: 10.1007/s10482-004-6524-1

Sun, Y., Takada, K., Nogii, Y., Okada, S., and Matsunaga, S. (2014). Lower homologues of alaptatin, aspartic protease inhibitors, from a marine Streptomyces sp. J. Nat. Prod. 77, 1749–1752. doi: 10.1021/np500373m

Thistle, D. (2003). “The deep-sea floor: an overview,” in Ecosystems of the Deep Ocean, ed P. A. Tyler (Amsterdam: Elsevier), 3–39.

Tian, X. P., Long, L. J., Li, S. M., Zhang, J., Xu, Y., He, J., et al. (2013). Pseudonocardia antitumoralis sp. nov., a deoxyxynobiquinone-producing actinomycete isolated from a deep-sea sediment. Int. J. Syst. Evol. Microbiol. 63, 893–899. doi: 10.1099/ijs.0.037135-0
M1-94P that originated from deep-sea sediments. *Mar. Drugs* 11, 4035–4049. doi: 10.3390/md11104035
Yu, J., Zhang, L., Liu, Q., Qi, X. H., Ji, Y., and Kim, B. S. (2015). Isolation and characterization of actinobacteria from Yalujiang coastal wetland, North China. *Asian Pac. J. Trop. Biomed.* 5, 555–560. doi: 10.1016/j.apjtb.2015.04.007
Yu, L., Lai, Q., Yi, Z., Zhang, L., Huang, Y., Gu, L., et al. (2013). Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant and alkalitolerant actinomycete isolated from deep-sea sediment. *Int. J. Syst. Evol. Microbiol.* 63, 25–30. doi: 10.1099/ijs.0.029652-0
Zhang, G., Zhang, Y., Yin, X., and Wang, S. (2015). Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the western Pacific Ocean. *Int. J. Syst. Evol. Microbiol.* 65, 516–521. doi: 10.1099/ijs.0.065623-0
Zhang, L., Xi, L., Ruan, J., and Huang, Y. (2012). Microbacterium marinum sp. nov., isolated from deep-sea water. *Syst. Appl. Microbiol.* 35, 81–85. doi: 10.1016/j.syapm.2011.11.004
Zhang, Q., Li, S., Chen, Y., Tian, X., Zhang, X., Zhang, G., et al. (2013). New diketopiperazine derivatives from a deep-sea-derived *Nocardiopsis alba* SCSIO 03039. *J. Antibiot.* 66, 31–36. doi: 10.1038/ja.2012.88
Zhang, W., Li, S., Zhu, Y., Chen, Y., Chen, Y., Zhang, H., et al. (2014). Heronamides D-E, polyketide macrolactams from the deep-sea-derived *Streptomyces* sp. SCSIO 03032. *J. Nat. Prod.* 77, 388–391. doi: 10.1021/np400665a
Zhou, X., Huang, H. B., Li, J., Song, Y. X., Jiang, R. W., Liu, J., et al. (2014). New antiinfective cyclopeptide peptide congeners and absolute stereochemistry from the deep sea-derived *Streptomyces drozdowiczii* SCSIO 10141. *Tetrahedron* 70, 7795–7801. doi: 10.1016/j.tet.2014.02.007
Zhu, Y., Zhang, W., Chen, Y., Yuan, C., Zhang, H., Zhang, G., et al. (2015). Characterization of heronamide biosynthesis reveals a tailoring hydroxylase and indicates migrated double bonds. *ChemBioChem* 16, 2086–2093. doi: 10.1002/cbic.201500281

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Kamjam, Sivalingam, Deng and Hong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.