A generalised Roth’s theorem
Paolo Dolce Francesco Zucconi

0 Introduction
0.1 History 1
0.2 Results in this paper 2

1 Adelic curves 3
2 The interpolating polynomial 7
3 Integral estimates 8
4 Proof of the Main Theorem 13
Appendices 17
A Construction of the interpolating polynomial 17
References 18

Abstract
We prove a generalisation of Roth’s theorem for proper adelic curves, assuming that the logarithmic absolute values of the approximants satisfy a condition similar to the equicontinuity with respect to the places. This work extends Corvaja’s results [Cor97] for fields admitting a product formula, and Voita’s ones [Voj21] for arithmetic function fields.

0 Introduction

0.1 History

The celebrated Roth’s theorem proved in [Rot55] asserts that the approximation exponent of a real algebraic number is 2. An equivalent, but more detailed statement is the following:

Theorem 0.1 (Roth). Let \(\alpha \) be a real algebraic number and let \(\varepsilon > 0 \) be a real number. Then there exists a real constant \(C(\alpha, \varepsilon) > 0 \) such that for every pair of coprime integers \((p, q) \) with \(q > C(\alpha, \varepsilon) \), it holds that:

\[
|\alpha - \frac{p}{q}| > q^{-2-\varepsilon}
\]

The above statement can be naturally generalised in different directions: the base field \(\mathbb{Q} \) can be replaced by any number field (see [LeV02, Vol. II, chap. 4]), and moreover one can consider the simultaneous approximation of the elements \(\alpha_1, \ldots, \alpha_n \) algebraic over a number field \(K \) by an element of \(K \) with respect to different valuations (see [Lan83, Chap VII]). At the moment we don’t have an effective version of Roth theorem (i.e. a bound for the constant \(C(\alpha, \varepsilon) \), see for instance [Cor95]), but we have a quantitative version (i.e. bounds, in terms of \(\alpha \) and \(\varepsilon \), on the number of good approximants see for instance [BvdP88], [BvdP90], [Eve97]).

Let \(k \) be a field of characteristic 0 and let \(\mathcal{V}_k \) be a set in bijection with a family of absolute values of \(k \) which are not pairwise equivalent. The couple \((k, \mathcal{V}_k)\) satisfies the product formula if for any element \(a \in k^* \) the series \(\sum_{v \in \mathcal{V}_k} \log |a|_v \) converges absolutely and moreover \(\sum_{v \in \mathcal{V}_k} \log |a|_v = 0 \). In this setting one also has a natural notion of logarithmic height for \(a \in k^* \):

\[
h(a) := \sum_{v \in \mathcal{V}_k} \log^+ |a|_v,
\]

and it is customary to set \(H(a) := e^{h(a)} \). Roth’s theorem was generalised by Corvaja in [Cor97] for a couple \((k, \mathcal{V}_k)\) satisfying the product formula:
Theorem 0.2. [Corvaja 1997, Corollaire 1]. Let (k, V_k) be a field satisfying the product formula. Let $\alpha_1, \ldots, \alpha_n$ be elements algebraic on k and let $|\cdot|_v$, $v_1, \ldots, v_n \in V_k$. For every $i = 1, \ldots, n$ let's fix an appropriately normalised extension of $|\cdot|_{v_i}$ to $k(\alpha_i)$ (and by abuse of notation denote it with the same symbol $|\cdot|_v$). Then for any $\varepsilon > 0$ there exists a constant $C = C(V_k, \alpha_1, \ldots, \alpha_n, v_1, \ldots, v_n, \varepsilon) > 0$ such that for all $\beta \in k$ with $H(\beta) > C$ it holds that:

$$\sum_{i=1}^n \log |\alpha_i - \beta|_{v_i} > -(2 + \varepsilon)h(\beta).$$

Notice that there are no further assumptions on the field k, which might be for instance a function field. Therefore, Theorem 0.2 is a unifying result, as well as a generalisation of the classical Roth's theorem. Moreover, we point out that in the same paper Corvaja obtained also a quantitative version of Theorem 0.2 (see [Corvaja 1997, Corollaire 3.7]).

The natural generalisation of a number field is an arithmetic function field, which is a finitely generated field over \mathbb{Q}. Recently, Vojta in [Vojta 2021] proved a version of Roth's theorem for arithmetic function fields with a big polarisation. For obvious reasons this can be considered as a "higher dimensional" generalisation of Roth's theorem. We conclude this short historic overview by explaining the statement of Vojta's result: a big polarisation of an arithmetic function field K consists of a couple (X, L) where:

(i) $X \to \text{Spec } \mathbb{Z}$ is a normal arithmetic variety whose function field is isomorphic to K.

(ii) If we denote with d is the relative dimension of X over Spec \mathbb{Z}, then $L = \{\mathcal{L}_1, \ldots, \mathcal{L}_d\}$ is a collection of hermitian line bundles.

Now we fix an arithmetic function field K with a big polarisation; then we can define a geometric height function h for a prime divisor X as the Arakelov intersection number of the hermitian line bundles $\mathcal{L}_1, \ldots, \mathcal{L}_d$ restricted to X. We can now define a non-archimedean absolute value on K, associated to Y:

$$|a|_Y := e^{-d\mathcal{L}(Y) \cdot \text{ord}_Y(a)} \quad \forall a \in K.$$

Moreover, for any closed point $p \in X_\mathbb{C} = X \times_{\text{Spec } \mathbb{Z}} \text{Spec } \mathbb{C}$ that doesn't come from the base change of a divisor on X we have the following archimedean absolute value:

$$|a|_p := ||a(p)|| \quad \forall a \in K.$$

By putting all together, we get a set of absolute values M_K which turns out to be a measure space with a measure that we denote with μ. The notion of product formula holds true for the couple (K, M_K) in the following form:

$$\int_{M_K} \log |a|_\nu, d\mu(\nu) = 0, \quad \forall a \in K^\times.$$

Moreover there is a notion of height for any element of $a \in K^\times$:

$$h_K(a) := \int_{M_K} \log^+ |a|_\nu, d\chi(\nu).$$

We set $H_K(a) := e^{h_K(a)}$. Vojta’s generalisation of Roth’s theorem is given below. In the statement K_o denotes the algebraic closure of the completion of K with respect to the absolute value $|\cdot|_o$.

Theorem 0.3. [Vojta 2021, Theorem 4.6] Consider a couple (K, M_K) where K is an arithmetic function field with a big polarisation and M_K is a set of absolute values as explained before. Moreover let S be a subset of M_K of finite measure and let $\alpha_1, \ldots, \alpha_n$ be distinct elements of K. Choose some K-embeddings $\iota_{s, i} : K(\alpha_i) \to K_o$ for all $i = 1, \ldots, n$ and all $v \in S$ in such a way that the function $v \mapsto \log^+ |\iota_{s, i}(\beta - \alpha_i)|_v$ is measurable for all i and any $\beta \in K \setminus \{\alpha_1, \ldots, \alpha_n\}$. Assume also that $\iota_{s, i}(\alpha_i) \neq \iota_{s, i'}(\alpha_i')$ for $i \neq i'$. Then for any $\varepsilon > 0$ there exists a real constant $C > 0$ (depending on the fixed data) such that for any $\beta \in K$ with $H_K(\beta) > C$ it holds that:

$$\int_S \left(\sum_{i=1}^n \log^+ |\iota_{s, i}(\beta - \alpha_i)|_v \right) d\mu(v) > -(2 + \varepsilon)h_K(\beta).$$

0.2 Results in this paper

The goal of this paper is to generalise Roth's theorem in a wider framework which includes Corvaja’s and Vojta’s settings.

The theory of adelic curves introduced by Chen and Moriwaki in [CM 2020] provides such natural framework: an adelic curve X consists of a field K of characteristic 0 and a measure space (Ω, A, μ) endowed with a function $\phi : \omega \mapsto |\cdot|_\omega$ that maps Ω into the set of places of K and such that
\(\omega \mapsto \log |\alpha_\omega| \) is in \(L^1(\Omega, \mu) \) for any \(a \in K^\times \). On \(X \) we have a well defined notion of height \(h_x \), and moreover a “product formula” which is expressed as an integral over \(\Omega \). The adelic curves satisfying this product formula are called proper. The fields with a product formula of [Cor97] are trivially proper adelic curves when the set of places is endowed with the counting measure. Moreover in [CM20, 3.2.6] it is shown that arithmetic function fields can be endowed with a structure of proper adelic curve.

In this paper we prove Roth’s theorem for proper adelic curves satisfying a condition of \(\mu \)-equicontinuity (see definition 4.1). Roughly speaking this means that for any set of finite measure \(S \subset \Omega \) one requires for the functions \(\omega \mapsto \log |\beta_\omega| \), for any \(\beta \in K^\times \), to be “equicontinuous” on \(S \) minus a set of negligible measure. Cearly, since \(\Omega \) doesn’t have any topology, this modified notion of equicontinuity must be defined in terms of measurable sets.

Due to the full generality of our setting, the condition of \(\mu \)-equicontinuity has to be assumed in our hypotheses, but it is not too restrictive since it trivially holds in the case of [Cor97] and it is shown to be true for arithmetic function fields (see [Voj21, Proposition 8.9]). On the other hand, the \(\mu \)-equicontinuity condition doesn’t hold in certain cases, such as for \(\mathbb{Q} \) (see Example 4.6). Our Main Theorem is stated below:

Main Theorem. Let \(X = (K, \Omega, \phi) \) be a proper adelic curve such that for any finite Galois extension \(K'/K \) the adelic curve \(X = (K', \Omega', \phi') \) satisfies the \(\mu' \)-equicontinuity condition (see definition 4.1). Let \(S = S_1 \cup S_2 \cup \ldots \cup S_n \) be a measurable subset of \(\Omega \) with finite measure. Fix some distinct elements \(\alpha_1, \ldots, \alpha_n \in K \), and choose some \(K \)-embeddings \(\iota_{i, i} : K(\alpha_i) \to \mathbb{K}_\omega \) for all \(i = 1, \ldots, n \) and all \(\omega \in \Omega \) in such a way that the function \(\omega \mapsto \log^{-1} |\iota_{\omega,i}(\beta - \alpha_i)|_\omega \) is measurable for all \(i \) and any \(\beta \in K \setminus \{ \alpha_1, \ldots, \alpha_n \} \). Assume also that \(\iota_{\omega,i}(\alpha_i) \neq \iota_{\omega,i'}(\alpha_i) \) for \(i \neq i' \). Then for any \(\varepsilon > 0 \) there exists a real constant \(C > 0 \) (depending on the fixed data) such that for any \(\beta \in K \) with \(h_x(\beta) > C \) it holds that:

\[
\sum_{i=1}^n \int_{S_i} \log^{-1} |\iota_{\omega,i}(\beta - \alpha_i)|_\omega d\mu(\omega) > -(2 + \varepsilon)h_x(\beta).
\]

In the previous statement \(\mathbb{K}_\omega \) denotes the algebraic closure of the completion \(K_\omega \) (with respect to the absolute value \(| \cdot |_\omega \)).

Our proof is rather short and elementary. Most of the ideas are inspired by Corvaja’s paper [Cor97], but they have been reworked and adapted our more general situation. The very coarse overview of the proof is the following: Roth’s theorem is about the simultaneous approximation of some distinct elements \(\alpha_1, \ldots, \alpha_n \) that by simplicity (in fact it will be enough to consider this case) can be fixed in \(K \), with an element \(\beta \in K \). The existence of a very special “interpolating polynomial” \(\delta \) for such elements (section 2) allows us to write some integral estimates for measurable functions on \(\Omega \) satisfying some technical properties related to the heights of the \(\alpha_i \)'s and \(\beta \) (section 3). Then, assuming that Roth’s theorem is false, i.e. that the opposite inequality of (1) is satisfied by a sequence elements \(\beta_k \) with unbounded heights, gives a contradiction on the previously calculated integral estimates (section 4). Indeed, the main point is to construct a measurable function \(\theta : S \to \mathbb{R} \) that gives the contradiction. It is obtained in the following way: to each solution \(\beta_k \) we associate a function \(\theta_k \), which is defined in a piecewise manner by gluing a suitable scaling of the maps \(\omega \mapsto -\log^{-1} |\alpha_i - \beta_k|_\omega \); then \(\theta \) is the uniform limit, outside from a subset of small enough measure, of a subsequence of \(\{ \theta_k \} \). We stress that the crucial (and only) point where the \(\mu \)-equicontinuity is used, is when we need to extract a uniformly convergent subsequence from \(\{ \theta_k \} \). Such step of the proof is a generalisation of the classical Ascoli-Arzelà theorem.

We finally mention that section 1 is a brief review of the theory of adelic curves introduced in [CM20], and moreover that Appendix A sketches the construction of the interpolating polynomial employed in [Cor97].

Acknowledgements. Both the authors want to express their gratitude to Pietro Corvaja for introducing them to the subject and for his enlightening explanations. Moreover they want to thank Lorenzo Freddi for the very interesting discussions about functional analysis.

The first author was partially supported by the EPSRC grant EP/M024830/1 “Symmetries and correspondences: intra-disciplinary developments and applications” and partially by the research grant “Higher Arakelov geometry, Cryptography and Isogenies of Elliptic Curves” conferred by the University of Udine.

1 Adelic curves

We will use the following notations throughout the whole paper:

\[
\log^+ x := \max\{0, \log x\}, \quad \log^- x := \min\{0, \log x\}; \quad \forall x \in \mathbb{R}_{>0}
\]
In this section we closely follow [CM20, Chapter 3]. For simplicity we restrict to the characteristic 0 case, but all the definitions work also in positive characteristic.

Definition 1.1. Let K be a field of characteristic 0, let M_K be the set of all absolute values of K and let $\Omega = (\Omega, \mathcal{A}, \mu)$ be a measure space endowed with a map

$$\phi : \Omega \rightarrow M_K$$

$$\omega \mapsto | \cdot |_\omega := \phi(\omega).$$

such that for any $a \in K^\times$, the real valued function $\omega \mapsto \log |a|_\omega$ lies in $L^1(\Omega, \mu)$. The triple $X = (K, \Omega, \phi)$ is called an adelic curve; Ω and ϕ are respectively the parameter space and the parametrisation. We denote with Ω_∞, the subset of Ω made of all elements ω such that $| \cdot |_\omega$ is archimedean. We set $\Omega_0 = \Omega \setminus \Omega_\infty$.

Remark 1.2. We also recall that a more general notion of adelic curve, with the requirement that $| \cdot |_\omega$ is an absolute value only almost everywhere for $\omega \in \Omega$, had already been given in [Gub97] under the name of M-field.

It is easy to show that the set Ω_∞ is always measurable [CM20, Proposition 3.1.1].

Definition 1.3. An adelic curve $X = (K, \Omega, \phi)$ is said to be proper if for any $a \in K^\times$:

$$\int_{\Omega} \log |a|_\omega \, d\mu(\omega) = 0.$$ (2)

Let’s see examples of adelic curves:

Example 1.4. Any field (k, ν_k) satisfying the product formula in the sense of [Cor97] is a proper adelic curve. In fact in this case $\Omega = \nu_k$, ϕ is the identity and μ is the counting measure.

Example 1.5. An arithmetic function field K with a big polarisation is a proper adelic curve. A quick description of this has been already given in section 0.1. For details see [CM20, 3.2.6].

Example 1.6. A polarised algebraic function field (in $d \geq 1$ variables) over a field of characteristic 0 can be endowed with a structure of proper adelic curve. For details see [CM20, 3.2.4].

In the remaining part of this section we study the behaviour of adelic curves with respect to field extensions. In particular let’s fix an adelic curve $X = (K, \Omega_K, \phi_K)$, and let L be a finite extension of K, our goal is to endow it with a canonical structure of adelic curve “coming from K”. In other words, we have to define a parameter space Ω_L and a parametrisation ϕ_L in a canonical way by starting from Ω_K and ϕ_K. For any $\omega \in \Omega$ we denote with $M_{L,\omega}$ the set of all absolute values of L extending $| \cdot |_\omega$, so we put:

$$\Omega_L := \bigsqcup_{\omega \in \Omega_K} M_{L,\omega}$$

and we have a natural projection map $\pi_{L|K} : \Omega_L \rightarrow \Omega_K$ whose fibres are $M_{L,\omega}$, for any ω. The inclusion $M_{L,\omega} \subset M_{\omega}$ clearly induces a parametrisation $\phi_L : \Omega_L \rightarrow M_L$ and for any $\nu \in \Omega_L$ we put $| \cdot |_{\nu} := \phi_L(\nu)$. We obtain the following commutative diagram:

\[
\begin{array}{ccc}
\Omega_L & \xrightarrow{\pi_{L|K}} & \Omega_K \\
\phi_L \downarrow & & \downarrow \phi_K \\
M_L & \longrightarrow & M_K
\end{array}
\] (3)

where the bottom map is the restriction function. Note that Ω_L can be abstractly defined as the fibered product in the category of sets. Now on Ω_L we put the σ-algebra \mathcal{B} generated by $\pi_{L|K}$ and all the real maps $\Omega_L \ni \nu \mapsto |a|_\nu$, for any $a \in L^\times$ (on \mathbb{R} we put the standard Lebesgue measure). We want to define a suitable measure η on the measurable space (Ω_L, \mathcal{B}). This requires a bit of work, since in general there is no straightforward definition of pullback measure through a measurable map. Nevertheless, in the case of our $\pi_{L|K}$ we explain how it is possible to define the pullback $\eta = \pi_{L|K}^* \mu$ (actually this is a construction from measure theory which works in full generality any time we have a measure fiberwise). Consider a fiber $M_{L,\omega} \subset \Omega_L$, then for any $\nu \in M_{L,\omega}$ we can put

$$P_\nu(\nu) := \frac{\llbracket \nu \mapsto | | \cdot |_\nu \rrbracket}{\llbracket | \cdot |_\nu \rrbracket}.$$ (4)

where L_ν and K_ν denote the completions with respect to $| \cdot |_\nu$ and $| \cdot |_\omega$ respectively. Thanks to the well known equality $\prod_{\nu \in M_{L,\omega}} [L_\nu : K_\nu] = [L : K]$ (See [Neu99, Corollary 8.4]), we conclude that equation (4) induces a probability measure on the fibre $M_{L,\omega}$, with respect to the power set. Now, for any function $f : \Omega_L \rightarrow \mathbb{R}$, by using the fiberwise integral along each probabilised fiber $M_{L,\omega}$, we define the map $I_{L|K}(f) : \Omega_K \rightarrow \mathbb{R}$ as:

$$I_{L|K}(f) : \omega \mapsto \int_{M_{L,\omega}} f \, dP_\omega = \sum_{\nu \in M_{L,\omega}} P_\nu(\nu) f(\nu).$$

4
Proposition 1.7. The linear operator I_{LIK} sends B-measurable functions to A-measurable functions.

Proof. See [CM20, Theorem 3.3.4].

At this point we are ready to define the measure η. For any $E \in B$ we put:

$$\eta(E) := \int_{\Omega_L} I_{LIK}(\chi_E) \, d\mu$$

where χ_E is the characteristic function of E. Note that the integral of equation (5) makes sense because of Proposition 1.7.

Theorem 1.8. The following statements hold:

(1) The map η defined above is a measure on (Ω_L, B) such that for any B-measurable function f we have

$$\int_{\Omega_L} f \, d\eta = \int_{\Omega_L} I_{LIK}(f) \, d\mu.$$

(2) $f \in L^1(\eta)$ if and only if $I_{LIK}(f) \in L^1(\mu)$.

(3) The pushforward measure of η through π_{LIK} is μ.

(4) With the above constructions the triple $\mathcal{Y} = (\llbracket \Omega_L, \phi_L \rrbracket)$ is an adelic curve. Moreover for any $b \in \mathbb{L}^\times$

$$[L : K] \int_{\Omega_L} \log |b|, d\eta(\nu) = \int_{\Omega_L} \log |N_{LIK}(b)|, d\mu(\omega)$$

and in particular if X is proper, then also \mathcal{Y} is proper.

Proof. See [CM20, Theorem 3.3.7].

At this point we study algebraic extensions of adelic curves. Let’s fix the adelic curve $X = (K, \Omega_K, \phi_K)$ and let L an algebraic extension of K. We denote with F_{LIK} the family of finite field extensions on K contained in L. Clearly F_{LIK} is a directed set with respect to the inclusion, and for any $K', \mathbb{K}'' \in F_{LIK}$ such that $K' \subseteq \mathbb{K}''$ we have a morphism of measurable spaces

$$\pi_{\mathbb{K}''|K'} : (\Omega_{\mathbb{K}''}, B'') \rightarrow (\Omega_{K'}, B')$$

and an operator $I_{\mathbb{K}''|K'}$ sending integrable functions to integrable functions as described above in the case of finite extensions. In other words we obtain an inverse system of measure spaces, and we would like to define the adelic structure on L as “a projective limit”. Unfortunately, in the category of measure spaces we don’t have a straightforward notion of projective limit, therefore we need again a bit of extra work. We can define respectively $M_{X, \omega}$, Ω_L, and $\phi_L : \Omega_L \rightarrow M_{X, \omega}$ exactly as we did before in the case of finite extensions, but we need to construct an adequate structure of measure space on Ω_L. For any $K' \in F_{LIK}$ we have a map $\pi_{K'|K} : \Omega_K \rightarrow \Omega_{K'}$ and a square diagram like (3). It turns out that $\pi_{K'|K}$ is surjective [CM20, Proposition 3.4.5]. We endow Ω_L with the σ-algebra Σ generated by the maps $\{\pi_{K'|K} : \Omega_K \rightarrow \Omega_{K'}\}$ and it can be shown that (Ω_L, Σ) is the projective limit of the inverse system $(\{\Omega_{K'}, B'\})_{K' \in F_{LIK}}$ in the category of measurable spaces. It remains the issue of putting a canonical measure λ on (Ω_L, Σ). This process is quite technical, but similarly to the case of finite extensions, it can be done by using a fiberwise integration on each $M_{X, \omega}$; all the details are given in [CM20, 3.4.2]. We really need is the fact that we can construct an adelic curve (L, Ω_L, λ) which is proper if X is proper and such that for any $f \in L^1(\mu)$ we have that $f \circ \pi_{L|K} \in L^1(\lambda)$ with

$$\int_{\Omega_L} (f \circ \pi_{L|K}) \, d\lambda = \int_{\Omega_K} f \, d\mu.$$

Below we give the notion of height for proper adelic curves:

Definition 1.9. Let $X = (K, \Omega, \phi)$ be a proper adelic curve and let \overline{K} be an algebraic closure of K.

Then we have a proper adelic curve $\overline{X} = (\overline{K}, \overline{\Omega}, \overline{\phi})$ and the (naive) height of an element $a \in \overline{K}$ is defined as:

$$h_X(a) := \int_{\overline{\Omega}} \log^+ |a|, d\chi(\nu).$$

where ν denotes a generic element of $\overline{\Omega}$ and χ is the measure on $\overline{\Omega}$. Moreover we set $H_X := e^{h_X}$.

5
From now on we always assume that for an adelic curve $X = (\mathbb{K}, \Omega, \phi)$ we have fixed algebraic closure of \mathbb{K}, therefore also \mathbb{K} is fixed and we use the same notations of Definition 1.9. If for $\nu \in \Omega$, $\cdot|\nu$ is an archimedean absolute value, then by Ostrowski’s theorem we know that there exists a real number $\varepsilon(\nu) \in [0, 1]$ such that $|\cdot|_\nu = |\cdot|^{\varepsilon(\nu)}$ where on the right we mean the standard euclidean absolute value on \mathbb{R} or \mathbb{C}. Thus we have a map $\varepsilon: \Omega \to [0, 1]$ which can be extended to $\varepsilon: \Omega \to [0, 1]$ by putting $\varepsilon|_\nu := 0$. For instance, for an archimedean $|\cdot|_\nu$ we have $\log \log 2 = \varepsilon(\nu) \log 2$, therefore we obtain the explicit expression of the function ε on the whole Ω.

$$\varepsilon(\nu) = \frac{\log^+ |2|_\nu}{\log 2}.$$ Clearly $\varepsilon(\nu)$ is a measurable function. We can always take a scaling μ' of the measure μ on Ω so that we get a new height $h_{\mu'}$ that satisfies $h_{\mu'}(2) \leq \log 2$. Notice that if X is proper, then it remains proper after any scaling of the measure μ. From now on, when we are given an adelic curve $X = (\mathbb{K}, \Omega, \phi)$, we can always assume that we have performed the above mentioned scaling of the measure μ on Ω so that $h_{\mu}(2) \leq \log 2$.

Definition 1.10. Let $P(X_1, \ldots, X_N)$ be a polynomial over \mathbb{K}, $a \in \mathbb{K}^N$ and $i = (i_1, \ldots, i_N) \in \mathbb{N}^N$. We set:

$$\Delta^i P(a) := \frac{1}{i_1! i_2! \cdots i_N!} \frac{\partial^{i_1+\cdots+i_N} P}{\partial X_1^{i_1} \partial X_2^{i_2} \cdots \partial X_N^{i_N}} (a).$$

We can define the local height of P at $\nu \in \Omega$ in the following way:

$$h_{\nu}(P) := \log \left\{ \max_{i \in \mathbb{N}^N} \left\{ \left| \Delta^i P(0, \ldots, 0) \right|_\nu \right\} \right\}$$

and then we have also the notion of global height of P:

$$h_{\nu}(P) := \int_{\Omega} h_{\nu}(P) d\chi(\nu)$$

We put $H_\nu(P) := e^{h_{\nu}(P)}$.

We conclude the section with some rather straightforward results about heights. First of all when we want to calculate the heights of elements lying in \mathbb{K}^*, we don’t need to involve the algebraic closure \mathbb{K} in the integrals:

Proposition 1.11. Let $X = (\mathbb{K}, \Omega, \phi)$ be an adelic curve. If $a \in \mathbb{K}^*$, then:

$$h_\nu(a) = \int_{\mathbb{K}} \log^+ |a|_\nu d\mu(\omega).$$

Moreover, the same result holds for the heights of polynomials in $\mathbb{K}[X_1, \ldots, X_N]$.

Proof. It is an immediate consequence of equation (7). □

In order to simplify the notations, we often omit the subscript X attached to the heights when the adelic curve is fixed and there is no confusion.

Proposition 1.12. The height function of a proper adelic curve $(\mathbb{K}, \Omega, \phi)$ satisfies the following properties for any $a, b, a_1, \ldots, a_m \in \mathbb{K}$ and any measurable set $S \subseteq \Omega$

1. $h(a) = h(a^{-1})$
2. $-h(a) \leq \int_S \log |a|_\nu d\mu(\omega) \leq h(a)$
3. $\int_S \log^- |a|_\nu d\mu(\omega) \geq -2h(a)$
4. $h(a_1 + \cdots + a_m) \leq h(m) + h(a_1) + \cdots + h(a_m)$
5. $\int_S \log |a - b|_\nu d\mu(\omega) \geq -\log 2 - h(a) - h(b)$
6. $\int_S \log^- |a - b|_\nu d\mu(\omega) \geq -\log 4 - 2h(a) - 2h(b)$

Proof. (1) It follows from the product formula and from the fact that $\log |a|_\nu = \log^+ |a|_\nu - \log^+ |\frac{1}{2}|_\nu$.

(2) By definition $\int_S \log |a|_\nu d\mu(\omega) \leq h(a)$, so for the other inequality it is enough to use (1).

(3) By the product formula we have:

$$\int_S \log^- |a|_\nu d\mu(\omega) = -\int_{\partial S_S} \log |a|_\nu d\mu(\omega) - \int_S \log^+ |a|_\nu d\mu(\omega).$$

Then we apply (2) on the right hand side.

(4) It follows from $|a_1 + \cdots + a_m|_\nu \leq m \max |a_i|_\nu$.

(5) and (6) are direct consequences of (2)-(4) and the fact that $h(2) \leq \log(2)$. □

Here we stress that the entries (5)-(6) of Proposition 1.12 replace the classical Liouville inequality for heights.
2 The interpolating polynomial

We fix a proper adelic curve $X = (\mathcal{X}, \Omega, \phi)$ and an algebraic closure of \mathbb{K}. In this section we recall the existence of an interpolating polynomial $\delta \in \mathbb{K}[X_1, \ldots, X_N]$ associated to some elements $\alpha_1, \ldots, \alpha_n$ having some explicit bounds on: the degree, the d-index at all the α_i's and the height. The complete construction of δ can be found in [Cor97], and we will recall it in appendix A.

We fix for the whole section the following data: two natural numbers $n, N \geq 2$, and a vector $d = (d_1, \ldots, d_N) \in \mathbb{R}^N$.

Definition 2.1. The d-index of $P(X_1, \ldots, X_N)$ at $\alpha \in \mathbb{R}^N$ is the real number:

$$\text{Ind}_{\alpha, d}(P) := \min_{i \in \mathbb{N}^N} \left\{ \sum_{j=1}^{N} \frac{i_j}{d_j} \in \mathbb{R}_+ : \Delta^1 P(\alpha) \neq 0 \right\}$$

Let’s fix $t \in \mathbb{R}$ such that $0 < t < N$, the following two sets will play a central role in the theory:

$$G_t := \left\{ i \in \mathbb{N}^N : i_j \leq d_j \forall j = 1, \ldots, N, \text{ and } \sum_{j=1}^{N} \frac{i_j}{d_j} \leq t \right\},$$

$$C_t := \left\{ (x_1, \ldots, x_N) \in [0, 1]^N : \sum_{j=1}^{N} x_j \leq t \right\}.$$

The Lebesgue measure of C_t will be denoted as $V(t)$, and for simplicity of terminology we will refer to it simply as “volume”.

Lemma 2.2. The cardinality of G_t is asymptotic to $d_1 d_2 \ldots d_N V(t)$.

Proof. See [BG06, p. 157].

Now fix some vectors $\alpha_1, \ldots, \alpha_n \in \mathbb{R}^N$ where $\alpha_h = (\alpha_h^{(1)}, \ldots, \alpha_h^{(N)})$ for every $h = 1, \ldots, n$ and let $X = (X_1, \ldots, X_N)$ be a vector of variables. Moreover we say that two vectors \mathbb{R}^N are *componentwise different* if they differ component by component. For any two multi-indices $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_N)$ and $i = (i_1, i_2, \ldots, i_N)$ of \mathbb{N}^N we use the following notations:

$$\begin{pmatrix} a \\ i \end{pmatrix} := \begin{pmatrix} a_1 \\ i_1 \\ a_2 \\ i_2 \\ \vdots \\ a_N \\ i_N \end{pmatrix},$$

$$\alpha_i^l := (\alpha_h^{(1)})^{i_1}(\alpha_h^{(2)})^{i_2}\cdots(\alpha_h^{(N)})^{i_N},$$

$$X^l := X_1^{i_1} X_2^{i_2} \ldots X_N^{i_N}$$

with the convention $\binom{p}{q} = 0$ if $0 \leq p < q$ for the binomial coefficient. Now, consider $\gamma \in \mathbb{R}$ such that $0 < \gamma < \frac{1}{2 \log 2}$; we always assume that $\frac{d_j}{\gamma} \leq \gamma$ for any $j = 1, \ldots, N - 1$, which means in particular that $d_j = O(d_1)$ for any j. We also put $\eta := 2 \gamma n < \frac{1}{\gamma}$ and $d := d_1 d_2 \ldots d_N$.

We have the following result about the existence of a polynomial $\delta(X_1, \ldots, X_N) \in \mathbb{K}[X_1, \ldots, X_N]$ with some prescribed properties. In the appendix A we will sketch Corvaja’s construction of $\delta(X_1, \ldots, X_N)$ adapting it to the case of adelic curves:

Proposition 2.3. Assume that in the adelic curve X the condition $h_2(2) \leq \log 2$ is satisfied and assume that the number $\eta \in \mathbb{R}$ is chosen as explained above. Let’s fix some vectors $\alpha_1, \ldots, \alpha_n, \beta \in \mathbb{K}^N$ that are pairwise componentwise different. Moreover let’s choose some parameters $s, t_1, \ldots, t_n \in \mathbb{R}$, with $0 < s < 1$ and $0 < t_h < \frac{N}{2}$ for $h = 1, \ldots, n$ such that the following condition on volumes is verified:

$$(1 + \eta)^N < V(s) + \sum_{h=1}^{N} V(t_h) < 1 + 2N\eta \tag{8}$$

Then there exists a polynomial $\delta(X_1, \ldots, X_N) \in \mathbb{K}[X_1, \ldots, X_N]$ satisfying the following properties:

1. $\delta(\beta) \neq 0$;
2. $\text{deg}_X \delta \leq dd_1 V(s) + O(d)$, for $1 \leq j \leq N$;
3. $\text{Ind}_{\alpha_i, d}(\delta) \geq dV(s) \left(t_h - s - \frac{2N\eta}{\text{Ind}_{\alpha_i, d}(\delta)} \right)$, for $1 \leq h \leq n$;
4. $h_2(\delta) \leq d \sum_{j=1}^{N} d_j \left(\log 2 + \sum_{h=1}^{N} V(t_h) h(\alpha_h^{(j)}) \right) + O(\log d)$.

Proof. See [Cor97, Proposition 2.6].
3 Integral estimates

This technical section is “the heart” of the proof of the Main Theorem. In fact, here we will prove some integral bounds for very particular measurable functions \(\theta : S \subset \Omega \to \mathbb{R} \) which play a central role in the proof of the Main Theorem. We continue with all the notations fixed in section 2 since we want to make full use of Theorem 2.3.

Consider an adelic curve \((\mathbb{K}, \Omega, \phi)\) and a set of vectors \(\alpha_1, \ldots, \alpha_n, \beta \in \mathbb{R}^N \) which are componentwise different. We construct the following matrices \(T := T(\alpha_1, \ldots, \alpha_n) \in M(n \times N, \mathbb{K}) \) and \(T(\beta) = \in M(n + 1 \times N, \mathbb{K}) \):

\[
T := \begin{pmatrix}
\alpha_1^{(1)} & \alpha_1^{(2)} & \cdots & \alpha_1^{(N)} \\
\alpha_2^{(1)} & \alpha_2^{(2)} & \cdots & \alpha_2^{(N)} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_n^{(1)} & \alpha_n^{(2)} & \cdots & \alpha_n^{(N)}
\end{pmatrix}; \quad T(\beta) = \begin{pmatrix}
\alpha_1^{(1)} & \alpha_1^{(2)} & \cdots & \alpha_1^{(N)} \\
\alpha_2^{(1)} & \alpha_2^{(2)} & \cdots & \alpha_2^{(N)} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_n^{(1)} & \alpha_n^{(2)} & \cdots & \alpha_n^{(N)} \\
\beta^{(1)} & \beta^{(2)} & \cdots & \beta^{(N)}
\end{pmatrix}
\]

We denote by \(\alpha^{(j)} \), \(j = 1, \ldots, N \) the columns of \(T \), that is:

\[
\alpha^{(j)} = \begin{pmatrix}
\alpha_1^{(j)} \\
\alpha_2^{(j)} \\
\vdots \\
\alpha_n^{(j)}
\end{pmatrix}
\]

and by \(\alpha_h \), for \(h \in \{1, 2, \ldots, n\} \), the rows:

\[
\alpha_h = \begin{pmatrix}
\alpha_1^{(h)} \\
\alpha_2^{(h)} \\
\vdots \\
\alpha_n^{(h)}
\end{pmatrix}
\]

Note that we are asking for the matrices \(T \) and \(T(\beta) \) to have componentwise different rows.

Definition 3.1. For the matrix \(T(\beta) \), consider the following real numbers for any \(j = 1, \ldots, N \):

\[
\rho_j := 4^{2N} H(\beta^{(j)}) \prod_{h=1}^n H(\alpha_h^{(j)}) \frac{2^n}{2^n} \tag{9}
\]

\[
\rho'_j := 4^{N} H(\beta^{(j+1)}) \prod_{h=1}^n H(\alpha_h^{(j+1)}) \frac{2^n}{2^n} \tag{10}
\]

We say that \(T(\beta) \) satisfies the \(h \)-gap condition is the following inequality is satisfied:

\[
\frac{\log \rho_j}{\log \rho'_j} < \frac{1}{4N^2 N!} \quad \forall j = 1, \ldots, N
\]

Definition 3.2. Let’s fix a matrix \(T(\beta) \). Given some mutually disjoint measurable subsets \(S_1, \ldots, S_n \subset \Omega \) of finite measure, such that \(S := S_1 \sqcup S_2 \sqcup \ldots \sqcup S_n \) we define:

\[
\hat{S} := \left\{ \omega \in S_h : \left| \alpha_h^{(j)} - \beta^{(j)} \right|_\omega < 1, \forall j = 1, \ldots, N, \forall h = 1, \ldots, n \right\}.
\]

Moreover we put \(\hat{S}_h := \hat{S} \cap S_h \), so that \(\hat{S} = \hat{S}_1 \sqcup \hat{S}_2 \sqcup \ldots \sqcup \hat{S}_n \).

Note that \(\hat{S} \) can be thought as the sublocus of \(S \) where it happens that \((\beta^{(1)}, \ldots, \beta^{(N)}) \) is a good approximant for all the vectors \(\alpha_h \). The following easy lemma will be useful:

Lemma 3.3. If \(\omega \in \hat{S}_h \), then \(\log^+ |\alpha_h^{(j)}|_\omega \leq \log^+ |2|_\omega + \log^+ |\beta^{(j)}|_\omega \) for any \(j = 1, \ldots, N \).

Proof. The claim holds true for any couple of vectors \(\alpha, \beta \in \mathbb{R}^N \), so in order to ease the notations we can just drop any reference to the index \(h \). We distinguish two cases:

- \(|.|_\omega \) is ultrametric. Then
 \[
 |\alpha^{(j)}|_\omega = |\alpha^{(j)} - \beta^{(j)} + \beta^{(j)}|_\omega \leq \max \left\{ |\alpha^{(j)} - \beta^{(j)}|_\omega, |\beta^{(j)}|_\omega \right\} < \max \left\{ 1, |\beta^{(j)}|_\omega \right\}.
 \]
 If \(|\beta^{(j)}|_\omega \geq 1 \), then clearly \(\log^+ |\alpha^{(j)}|_\omega \leq \log^+ |\beta^{(j)}|_\omega \). If \(|\beta^{(j)}|_\omega < 1 \), then \(|\alpha^{(j)}|_\omega < 1 \) which means \(0 = \log^+ |\alpha^{(j)}|_\omega \leq \log^+ |2|_\omega + \log^+ |\beta^{(j)}|_\omega \).
\[| \cdot |_\omega \text{ is archimedean. By Ostrowski's theorem } | \cdot |_\omega = | \cdot |^{(\omega)}, \text{ therefore} \]
\[
|\alpha^{(j)}|^\frac{1}{\omega} - |\beta^{(j)}|^\frac{1}{\omega} \leq |\alpha^{(j)} - \beta^{(j)}|^\frac{1}{\omega} + |\beta^{(j)}|^\frac{1}{\omega} \leq 1 + |\beta^{(j)}|^\frac{1}{\omega}.
\]
This clearly means \(|\alpha^{(j)}|^\frac{1}{\omega} \leq 2 \max \left\{ 1, |\beta^{(j)}|^\frac{1}{\omega} \right\} \). After rising each side to the power of \(\varepsilon(\omega)\) and applying \(\log^+\) we get the claim. \(\square\)

Now we state some useful properties involving integrable functions \(\in L^1(S, \mu)\) where \(S = S_1 \sqcup \ldots \sqcup S_n\) is a subset of \(\Omega\) of finite measure.

Definition 3.4. We say an the integrable function \(\theta: S \to \mathbb{R}\) is a column bounding function for \(T(\beta)\) if the following inequality holds:
\[
-\frac{1}{\log \rho_j} \log |a^{(j)}(\theta)| - |\beta^{(j)}|_\omega > \theta(\omega) \quad \forall j = 1, \ldots, N, \forall h = 1, \ldots, n, \forall \omega \in \hat{S}_h
\]

Definition 3.5. For any column \(a^{(j)} \in \mathbb{K}^N\) of the matrix \(T\) and any \(b \in \mathbb{K}\) we define the following quantity:
\[
\lambda(a^{(j)}, b) := \frac{1}{V(s)} \log 4 + h(b) + \frac{1}{V(s)} \sum_{h=1}^{n} V(t_h) h(a^{(j)})
\]

Definition 3.6. We say that \(T(\beta)\) satisfies the \(\lambda\)-gap property of width \(\eta \in \mathbb{R}_+\) if
\[
\max_{1 \leq j \leq N-1} \frac{\lambda(a^{(j)}, \beta^{(j)})}{\lambda(a^{(j+1)}, \beta^{(j+1)})} \leq \frac{\eta}{2n}
\]

Definition 3.7. Fix a matrix \(T(\beta)\). An integrable function \(\theta: S \to \mathbb{R}\) is \(\lambda\)-bounding if:
\[
-\frac{1}{\lambda(a^{(j)}, \beta^{(j)})} \log |a^{(j)}(\theta)^2 - |\beta^{(j)}|_\omega > \theta(\omega) \quad \forall j = 1, \ldots, N, \forall h = 1, \ldots, n, \forall \omega \in \hat{S}_h
\]

We will need the following lemma:

Lemma 3.8. Let \((\mathbb{K}, |\cdot|_\omega)\) be a field with an absolute value. Let \(P \in \mathbb{K}[X_1, \ldots, X_N]\) such that \(N \geq 1\). Then for every \(\alpha \in \mathbb{K}^N\)
\[
\log |\Delta^1 P(\alpha)|_\omega \leq h_\omega(P) + \sum_{j=1}^{N} \log(1 + \deg_{X_j} P) + \sum_{j=1}^{N} \log^+ |2|_\omega + \log^+ |\alpha^{(j)}|_\omega) \deg_{X_j} P
\]

Proof. See [Cor97, Lemme pag 166]. \(\square\)

Now we prove the analogue of [Cor97, Proposition 3.1].

Proposition 3.9. Let \((\mathbb{K}, \Omega, \phi)\) be a proper adelic curve. Fix a matrix \(T(\beta)\). Let \(\eta, s, t_1, \ldots, t_n \in \mathbb{R}\) such that all the hypotheses of Theorem 2.3 are satisfied. Assume that \(T(\beta)\) satisfies the \(\lambda\)-gap property of width \(\eta\) (see Definition 3.6). If \(\theta: S \to \mathbb{R}\) is \(\lambda\)-bounding for \(T(\beta)\) (see Definition 3.7), then
\[
\sum_{h=1}^{n} \left(t_h - s - \frac{2nN^2}{V(s)} \right) \int_{\hat{S}_h} \theta d\mu < N
\]

Proof. Fix a real number \(D > 0\), and for every \(j = 1, \ldots, N\), we put
\[
d_j := \frac{D}{\lambda(a^{(j)}, \beta^{(j)})}
\]
and \(d := \prod_{j=1}^{N} d_j\). Note that here we use the \(\lambda\)-gap property to ensure that \(\frac{d_{j+1}}{d_j} < \gamma\). So, the hypotheses of Theorem 2.3 are all satisfied and we have the interpolation polynomial \(\delta\) such that \(\delta(\beta) \neq 0\). We start by distinguishing two cases.

First case: \(\omega \in \hat{S}_h\). Compose the polynomial \(\delta\) with the translation of \(X \mapsto X - \alpha_h\), then we have
\[
\delta(\beta) = \sum_{i \in (i_1, \ldots, i_n)} \Delta^1 \delta(\alpha_h) \prod_{j=1}^{N} (\beta^{(j)} - \alpha_h^{(j)})^{i_j} \quad \text{where } i = (i_1, \ldots, i_n)
\]
Now take the absolute value \(| \cdot |_\omega\) on both sides and notice that each term
\[
\left| \Delta^1 \delta(\alpha_h) \prod_{j=1}^{N} (\beta^{(j)} - \alpha_h^{(j)})^{i_j} \right|_\omega
\]

9
is bounded from above by:

\[
\max_i \left| \Delta^1 \delta(\alpha_h) \right|_\omega \max_i \left| \prod_{j=1}^N (\beta(j) - \alpha_h^{(j)})^i \right|_\omega,
\]

were in order to simplify the notation we put

\[
\max_i := \max_{\Delta^1 \delta(\alpha_h) \neq 0}
\]

In other words from equation (13) we get

\[
\log |\delta(\beta)|_\omega \leq \sum_{j=1}^N \log(1 + \deg_{X,j} \delta) + \max_i \log \left| \Delta^1 \delta(\alpha_h) \right|_\omega + \max_i \log \left| \prod_{j=1}^N (\beta(j) - \alpha_h^{(j)})^i \right|_\omega \tag{14}
\]

The last summand of equation (14) is bounded from above by

\[-\text{Ind}_{\alpha_h,d}(\delta) \min \left\{ d_1 \log \frac{1}{|\beta(1) - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta(N) - \alpha_h^{(N)}|_\omega} \right\} \]

We use Lemma 3.8 to give an upper bound for \(\log |\Delta^1 \delta(\alpha_h)|_\omega \) and by equation (14) we deduce:

\[
\int_{\hat{S}} \log |\delta(\beta)|_\omega d\mu(\omega) \leq \int_{\hat{S}} \left(h_\omega(\delta) + \sum_{j=1}^N \log(1 + \deg_{X,j} \delta) + \sum_{j=1}^N \left(\log^+ |2\omega + \log^+ |\alpha_h^{(j)}|_\omega \right) \deg_{X,j} \delta \right) d\mu(\omega) + \\
+ \int_{\hat{S}} \sum_{j=1}^N \log(1 + \deg_{X,j} \delta) d\mu(\omega) + \int_{\hat{S}} \left(\text{Ind}_{\alpha_h,d}(\delta) \min \left\{ d_1 \log \frac{1}{|\beta(1) - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta(N) - \alpha_h^{(N)}|_\omega} \right\} \right) d\mu(\omega)
\]

Now use the fact that \(\hat{S} \) has finite measure, and we put

\[
\tau := \sum_{j=1}^N \log(1 + \deg_{X,j} \delta) \mu(\hat{S})
\]

So, by rearranging the terms and summing over all \(h = 1, \ldots, n \) we get

\[
\sum_{h=1}^n \text{Ind}_{\alpha_h,d}(\delta) \int_{\hat{S}} \left\{ d_1 \log \frac{1}{|\beta(1) - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta(N) - \alpha_h^{(N)}|_\omega} \right\} d\mu(\omega) \leq -\int_{\hat{S}} \log |\delta(\beta)|_\omega d\mu(\omega) + \\
+ \int_{\hat{S}} h_\omega(\delta) d\mu(\omega) + \tau + \sum_{h=1}^n \int_{\hat{S}} \sum_{j=1}^N \left(\log^+ |2\omega + \log^+ |\alpha_h^{(j)}|_\omega \right) \deg_{X,j} \delta d\mu(\omega)
\]

At this point we can use Lemma 3.3 for the following bound:

\[
\sum_{h=1}^n \int_{\hat{S}} \sum_{j=1}^N \left(\log^+ |2\omega + \log^+ |\alpha_h^{(j)}|_\omega \right) \deg_{X,j} \delta d\mu(\omega) \leq \int_{\hat{S}} \sum_{j=1}^N \left(\log^+ |4\omega + \log^+ |\beta_h^{(j)}|_\omega \right) \deg_{X,j} \delta d\mu(\omega)
\]

(16)

to obtain

\[
\sum_{h=1}^n \text{Ind}_{\alpha_h,d}(\delta) \int_{\hat{S}} \min \left\{ d_1 \log \frac{1}{|\beta(1) - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta(N) - \alpha_h^{(N)}|_\omega} \right\} d\mu(\omega) \leq -\int_{\hat{S}} \log |\delta(\beta)|_\omega d\mu(\omega) + \\
+ \int_{\hat{S}} h_\omega(\delta) d\mu(\omega) + \tau + \int_{\hat{S}} \sum_{j=1}^N \left(\log^+ |4\omega + \log^+ |\beta_h^{(j)}|_\omega \right) \deg_{X,j} \delta d\mu(\omega).
\]

(17)

Second case: \(\omega \notin \hat{S} \). Consider the expression:

\[
\delta(\beta) = \sum_i \Delta^1 \delta(0) \beta^{(1)}_i \ldots \beta^{(N)}_i \quad \text{where} \quad i = (i_1, \ldots, i_n)
\]

then, similarly to equation (14) we have the bound:

\[
\log |\delta(\beta)|_\omega \leq h_\omega(\delta) + \sum_{j=1}^N \left(\log^+ |\beta_h^{(j)}|_\omega \right) \deg_{X,j} \delta + N \log d
\]
Hence
\[
\int_{\Omega \setminus \delta} \log |\delta(\beta)|_\omega d\mu(\omega) \leq \int_{\Omega \setminus \delta} h_\omega(\delta) d\mu(\omega) + \sum_{j=1}^N \int_{\Omega \setminus \delta} \left(\log^+ |\beta^{(j)}|_\omega \deg_X(\delta) \right) d\mu(\omega) + N \log d \tag{18}
\]

Since \((K, \Omega, \phi)\) is proper
\[
- \int_{\delta} \log |\delta(\beta)|_\omega d\mu(\omega) = \int_{\Omega \setminus \delta} \log |\delta(\beta)|_\omega d\mu(\omega), \tag{19}
\]

The distinction of the two cases is now finished, so by using equation (19) and estimate (18) inside (17) we get
\[
\sum_{h=1}^n \mathbf{1}_{\mathbb{C}_h, \Omega}(\delta) \int_{S_h} \min \left\{ d_1 \log \frac{1}{|\beta^{(1)}|_\omega - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta^{(n)}|_\omega - \alpha_h^{(n)}|_\omega} \right\} d\mu(\omega) \leq N \log d + \tau + \\
+ \int_{\Omega} h_\omega(\delta) d\mu(\omega) + \sum_{j=1}^N \int_{\Omega \setminus \delta} \left(\log^+ |\beta^{(j)}|_\omega \deg_X(\delta) \right) d\mu(\omega) + \int_{\delta} \sum_{j=1}^N \left(\log^+ |4|_\omega + \log^+ |\beta^{(j)}|_\omega \right) \deg_X(\delta) d\mu(\omega) \tag{20}
\]

Since we can always assume that \(\mu\) is adequately normalised, we have \(\int_{\Omega} \log^+ |4|_\omega d\mu(\omega) = h(4) \leq \log 4\), therefore:
\[
\sum_{j=1}^N \int_{\Omega \setminus \delta} \left(\log^+ |\beta^{(j)}|_\omega \deg_X(\delta) \right) d\mu(\omega) + \int_{\delta} \sum_{j=1}^N \left(\log^+ |4|_\omega + \log^+ |\beta^{(j)}|_\omega \right) \deg_X(\delta) d\mu(\omega) \leq \\
\leq \sum_{j=1}^N \left(h(\beta^{(j)}) + \log 4 \right) \deg_X(\delta) \tag{21}
\]

By plugging everything inside equation (20) we get
\[
\sum_{h=1}^n \mathbf{1}_{\mathbb{C}_h, \Omega}(\delta) \int_{S_h} \min \left\{ d_1 \log \frac{1}{|\beta^{(1)}|_\omega - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta^{(n)}|_\omega - \alpha_h^{(n)}|_\omega} \right\} d\mu(\omega) \leq N \log d + \tau + \\
+ h(\delta) + \sum_{j=1}^N \left(h(\beta^{(j)}) + \log 4 \right) \deg_X(\delta) \tag{22}
\]

By the \(\lambda\)-bounding hypothesis for \(T(\beta)\) we can write
\[
- \frac{D}{\lambda(\alpha^{(j)}, \beta^{(j)})} \log |\beta^{(j)} - \alpha_h^{(j)}|_\omega > D\theta(\omega). \tag{23}
\]

Then we use Proposition 2.3(3), so we can conclude
\[
D \sum_{h=1}^n dV(s) \left(t_h - s - \frac{2N^2 d}{V(s)} \right) \int_{S_h} \theta d\mu \leq \\
\leq \sum_{h=1}^n \mathbf{1}_{\mathbb{C}_h, \Omega}(\delta) \int_{S_h} \min \left\{ d_1 \log \frac{1}{|\beta^{(1)}|_\omega - \alpha_h^{(1)}|_\omega}, \ldots, d_N \log \frac{1}{|\beta^{(n)}|_\omega - \alpha_h^{(n)}|_\omega} \right\} d\mu(\omega) \tag{22}
\]

Now we are going to use again Proposition 2.3 to find upper bounds for the terms on the right hand side of equation (21). By Proposition 2.3(2):
\[
\sum_{j=1}^N \left(h(\beta^{(j)}) + \log 4 \right) \deg_X(\delta) \leq \sum_{j=1}^N \left(h(\beta^{(j)}) + \log 4 \right) \left(dd_j V(s) + O(d) \right). \tag{23}
\]

Proposition 2.3(4) says that,
\[
h(\delta) \leq d \sum_{j=1}^N d_j \left(\log 2 + \sum_{h=1}^N V(t_h) h(\alpha_h^{(j)}) \right) + O(d \log d) \tag{24}
\]
Therefore equation (21) can be written in the following way:

\[
D \sum_{h=1}^{n} dV(s) \left(t_h - s - \frac{2N^2 \eta}{V(s)} \right) \int_{\mathcal{H}} \theta d\mu \leq N \log d + \tau + d \sum_{j=1}^{N} d_j \left(\log 2 + \sum_{h=1}^{N} V(t_h) h(\alpha_j^{(h)}) \right) + O(d \log d) + \\
+ \sum_{j=1}^{N} \left(h(\beta_j^{(j)}) + \log 4 \right) (ddV(s) + O(d))
\]

(25)

By inequality (8) of Proposition 2.3 we have: \(V(s) \log 4 + \log 2 \leq \log 4 \). Then the term

\[
d \sum_{j=1}^{N} d_j \left(\log 2 + \sum_{h=1}^{N} V(t_h) h(\alpha_j^{(h)}) \right) + O(d \log d) + \sum_{j=1}^{N} \left(h(\beta_j^{(j)}) + \log 4 \right) (ddV(s) + O(d))
\]

is bounded by

\[
d \sum_{j=1}^{N} d_j \left(V(s) h(\beta_j^{(j)}) + \log 4 + \sum_{h=1}^{N} V(t_h) h(\alpha_j^{(h)}) \right) + O(d \log d)
\]

But by the definition of the function \(\lambda \) it holds that

\[
dV(s) \sum_{j=1}^{N} d_j \left(h(\beta_j^{(j)}) + \log 4 + \sum_{h=1}^{N} \frac{V(t_h)}{V(s)} h(\alpha_j^{(h)}) \right) = dV(s) ND .
\]

(26)

Therefore equation (25) becomes

\[
dDV(s) \sum_{h=1}^{n} \left(t_h - s - \frac{2N^2 \eta}{V(s)} \right) \int_{\mathcal{H}} \theta d\mu \leq dV(s) ND + O(d \log d)
\]

since the terms \(\tau, O(d) \), and \(N \log d \) can be put together inside \(O(d \log d) \). Finally we divide both sides for \(dDV(s) \) and we take the limit for \(D \to +\infty \) (i.e. \(d \to +\infty \)) to conclude the proof.

Theorem 3.10. Let \((K, \Omega, \phi) \) be a proper adelic curve. Assume that the matrix \(T(\beta) \in M(n \times N, \mathbb{K}) \) satisfies the \(h \)-gap property. Moreover assume \(N > \max \left\{ \frac{36}{2n \log 2n}, 9 \log 2n \right\} \). If \(\theta: S \to \mathbb{R} \) is a column-bounding function for \(T(\beta) \), then

\[
\int_{S} \theta d\mu < 2 + \frac{6 \sqrt{\log 2n}}{\sqrt{N}}
\]

Proof. The proof is based on the exact calculation of the volume \(V(s) \) of \([Sch91, \text{Chap. 2, Lemma 5A, 5B}]\). It shows that for \(N \geq 2 \), \(s, \rho \in \mathbb{R}_{>0} \) with \(0 < s \leq 1 \) and \(0 < \rho < \frac{N}{2} \), then

\[
V(s) = \frac{s^N}{N!}
\]

(27)

So, in particular

\[
\frac{N}{2} - \rho = \frac{(\frac{N}{2} - \rho)^N}{N!} < e^{-\rho^2}
\]

(28)

We take \(t_1 = t_2 = \ldots t_n = \frac{N}{2} - \rho, \eta = \frac{1}{2N^2 N!} \) where \(\rho \) is a number such that:

\[
V \left(\frac{N}{2} - \rho \right) = \frac{1 - \eta N^2}{n}
\]

Note that \(\frac{1 - \eta N^2}{n} > \frac{1}{2n} \). Now from equation (28) we get

\[
-\frac{\rho^2}{N} > \log \left(\frac{1 - \eta N^2}{n} \right)
\]

which implies easily

\[
\rho < \sqrt{N \log 2n}.
\]

Now let’s take \(s \) as a solution of:

\[
(1 + \eta)^N - 1 + \eta N^2 \leq V(s) < 2N \eta + \eta N^2
\]

(29)

Here recall that \(1 + \eta N^2 = nV(t_h) = \sum_{h=1}^{n} V(t_h) \) (compare with the condition (8)). Note that as a consequence we have \(0 < s < 1 \). From equation (29) we get the following two conditions

\[
N! < \frac{1}{V(s)} < 2N!
\]

12
By using such conditions it is easy to see that since $T(\beta)$ satisfies b-gap condition, then it satisfies the λ-gap property of width η. Moreover, since θ is a column-bounding function for $T(\beta)$, then it is λ-bounding for $T(\beta)$. It means that we can apply Proposition 3.9 to get:

$$\int \theta d\mu < \frac{N}{n} \left(\frac{N}{2} - \rho - s - \frac{2nN^2}{\sqrt{N}} \right)$$

which means

$$\int \theta d\mu < \frac{N}{2n} \left(\frac{N}{2} - \rho - s - \frac{2nN^2}{\sqrt{N}} \right)$$

(30)

Since $s < 1$, $\rho < \sqrt{N} \log 2n$ and $N^2 \eta < V(s)$, we obtain

$$\frac{N}{2} - \rho - s - \frac{2nN^2}{\sqrt{N}} = 1 - \frac{2nN^2}{\sqrt{N}} = \frac{2}{N}$$

Now since $N > \frac{6}{\log 2n}$, i.e. $\sqrt{N} \log 2n > 6$, we can continue with

$$\frac{2}{N} < \frac{2}{1 - \frac{2N \log 2n}{\sqrt{N}}} = \frac{2}{1 - \frac{2N \log 2n}{\sqrt{N}}} = \frac{2 \sqrt{N}}{\sqrt{N} - 3 \log 2n}$$

$$= \frac{2N + 6N \log 2n}{N - 9 \log 2n} = \frac{2 + 6N \log 2n}{1 - \frac{9N \log 2n}{N}}$$

At this point the assumption $N > 9 \log 2n$ ensures that the last term is bounded by $2 + \frac{6N \log 2n}{\sqrt{N}}$ as we wanted. \hfill \Box

4 Proof of the Main Theorem

Definition 4.1. We say that a proper adelic curve $\mathcal{X} = (\mathbb{K}, \Omega, \phi)$ satisfies the μ-equicontinuity condition if for any measurable set $S \subset \Omega$ of finite measure and any real numbers $\varepsilon, \delta > 0$ there exists a finite measurable cover C_1, \ldots, C_m of S satisfying the following conditions. For all $\beta \in \mathbb{K}$ there exists a measurable set $U \subset \Omega$ such that $\mu(U) < \delta$ and

$$| - \log^+ |\beta| + \log^+ |\beta|_{\omega'} | < \varepsilon h(\beta), \ \forall \omega, \omega' \in C_j \setminus U, \ \forall j = 1, \ldots, m$$

Note that the definition 4.1 resembles a condition of equicontinuity for the family of maps $\omega \mapsto - \log^+ |\beta|_{\omega}$ on $S \setminus U$ with S compact and U arbitrary small. We stress that in [Voj21, Proposition 8.9] it is shown that the adelic curves arising from arithmetic function fields satisfy the μ-equicontinuity condition.

The following lemma will be crucial in the proof of our main theorem. It is a special case of the deep result [Voj21, Lemma 8.10]. This can be seen as a generalisation of the Ascoli-Arzelà theorem for measure spaces, with the advantage that one doesn’t need to provide a uniform bound for the involved family of functions.

Lemma 4.2. Let $\mathcal{X} = (\mathbb{K}, \Omega, \phi)$ a proper adelic curve satisfying the μ-equicontinuity condition. Fix $\alpha \in \mathbb{K}$ and a measurable subset $S \subset \Omega$ of finite measure. Let $\{\beta_k\}$ be a sequence in \mathbb{K} such that $\beta_k \neq \alpha$, and $h(\beta_k) \to +\infty$. Then for any $\varepsilon > 0$ and any $\delta > 0$ there exists a subsequence $\{\beta_{k_j}\}$ together with measurable sets $U_j \subset \Omega$ satisfying $\mu(U_j) < \delta$ and such that for any $j, j' \in \mathbb{N}$ big enough the following holds:

$$| - \log^+ |\alpha - \beta_{k_j}|_{\omega} + \log^+ |\alpha - \beta_{k_{j'}}|_{\omega} | < \varepsilon h(\beta_{k_j}), \ \forall \omega \in S \setminus (U_j \cup U_{j'})$$

Proof. See [Voj21, Lemma 8.10] with the following setting: $\Xi = \{\beta_k\}$, $q = 1$, $\lambda_{\beta_k} = -\frac{1}{2} \log^+ |\alpha - \beta_k|$, $c_0 = h(\alpha) + \log 2$ and $\varepsilon_0 = \varepsilon$. Notice that hypothesis (i) of [Voj21, Lemma 8.10] in our case holds automatically true thanks to Proposition 1.12(6). Whereas hypothesis (ii) of [Voj21, Lemma 8.10] is ensured by our Definition 4.1. \hfill \Box

Remember that with $\overline{\mathbb{K}_{\omega}}$ we denote the algebraic closure the completion \mathbb{K}_{ω} (with respect to the absolute value $| \cdot |_{\omega}$). In this case $| \cdot |_{\omega}$ extends uniquely to an absolute value of $\overline{\mathbb{K}_{\omega}}$ and by an abuse of notation we will continue to denote this extension with the symbol $| \cdot |_{\omega}$. The main theorem will be equivalent to the following theorem:
Theorem 4.3. Let \(\mathcal{X} = (\mathbb{K}, \Omega, \phi) \) a proper adelic curve satisfying the \(\mu \)-equicontinuity condition. Fix some distinct elements \(\alpha_1, \ldots, \alpha_n \in \mathbb{K} \). Let \(S = S_1 \cup S_2 \cup \ldots \cup S_n \) be a measurable subset of \(\Omega \) with finite measure. Then for any \(\varepsilon > 0 \) there exists a real constant \(C > 0 \) (depending on the fixed data) such that for any \(\beta \in \mathbb{K} \) with \(h_{\mathbb{K}}(\beta) > C \) it holds that:

\[
\sum_{i=1}^{n} \int_{S_i} \log^{-1} |\beta - \alpha_i| d\mu(\omega) > -(2 + \varepsilon)h_{\mathbb{K}}(\beta)
\]

Before proving this theorem, let’s show the equivalence with the Main Theorem of this paper.

Proposition 4.4. Theorem 4.3 is equivalent to the Main Theorem.

Proof. One direction is obvious, so we only have to show that Theorem 4.3 implies the Main Theorem. First of all we can assume that the set \(\{\alpha_1, \ldots, \alpha_n\} \) is Gal(\(\mathbb{K}'/\mathbb{K} \)) invariant, since adding all conjugates to the set of \(\alpha_i's \) actually provides a stronger Roth inequality. Moreover put \(\mathbb{K}' = \mathbb{K}(\alpha_1, \ldots, \alpha_n) \) and construct the adelic curve \(\mathcal{X}' = (\mathbb{K}', \Omega', \mu') \), but note that \(\mathbb{K}' \) is now a finite Galois extension of \(\mathbb{K} \).

For any index \(i \), the embeddings \(i_{\omega,i} \) can then be glued together to an embedding \(i_{\omega} : \mathbb{K}' \hookrightarrow \mathbb{K}_{\omega} \) so that:

\[
\sum_{i=1}^{n} \log^{-1} |i_{\omega,i}(\beta - \alpha_i)|_{\omega} = \sum_{i=1}^{n} \log^{-1} |i_{\omega}(\beta - \alpha_i)|_{\omega}
\]

Now fix \(i_0 \in \{1, \ldots, n\} \) let \(S_{i_0} := \pi_{\mathbb{K}'/\mathbb{K}}^{-1}(S_{i_0}) \) and assume that Theorem 4.3 holds for the adelic curve \(\mathcal{X}' \) and the set \(\mathcal{S}' \), then the following chain of equalities show that the Main Theorem holds true. Notice that at a certain point we will use equation (6) and the fact that, since \(\mathbb{K}'/\mathbb{K} \) is finite and Galois, we have:

\[
\int_{\mathbb{K}' : \mathbb{K}} \log^{-1} (|\beta - \alpha_{i_0}|_{\omega}) d\mu'(\nu) = \left(\frac{1}{|\mathbb{K}' : \mathbb{K}|}\right) \int_{S_{i_0}} \log^{-1} (|\beta - \alpha_{i_0}|_{\omega}) d\mu(\omega) =
\]

\[
\left(\frac{1}{|\mathbb{K}' : \mathbb{K}|}\right) \int_{S_{i_0}} \log^{-1} \left(\prod_{i=1}^{n} (\beta - \alpha_i)\right) d\mu(\omega) = \left(\frac{1}{|\mathbb{K}' : \mathbb{K}|}\right) \int_{S_{i_0}} \left(\sum_{i=1}^{n} \log^{-1} (i_{\omega}(\beta - \alpha_i))\right) d\mu(\omega).
\]

\(\square \)

Proof of theorem 4.3. When \(n = 1 \), then Proposition 1.12(6) says that

\[
\int_{S} \log^{-1} |\beta - \alpha| d\mu(\omega) \geq - \log 4 - 2h(\beta) - 2h(\alpha),
\]

hence any \(\beta \) such that \(h(\beta) > \log \frac{4 + 2h(\alpha)}{2} \) satisfies Roth’s inequality.

Assume \(n \geq 2 \). We consider the following matrix of dimension \(n \times N \), where \(N > \max \left\{ \frac{36}{15 \log 2n}, 9 \log 2n \right\} \) will be a big enough fixed integer:

\[
T = \begin{pmatrix}
\alpha_1 & \alpha_1 & \alpha_1 & \ldots & \alpha_1 \\
\alpha_2 & \alpha_2 & \alpha_2 & \ldots & \alpha_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_n & \alpha_n & \alpha_n & \ldots & \alpha_n
\end{pmatrix}
\]

notice that we have repeated \(N \) times the same column vector. Assume by contradiction that the theorem is false. Namely that there exists an \(\varepsilon_0 > 0 \) such that the inequality

\[
\sum_{i=1}^{n} \int_{S_i} \log^{-1} |\beta_k - \alpha_i|_{\omega} d\mu(\omega) \leq -(2 + \varepsilon_0)h_{\mathbb{K}}(\beta_k)
\]

is satisfied by a sequence \(\{\beta_k\}_{k \in \mathbb{N}} \) in \(\mathbb{K} \) with the properties that \(h(\beta_k) \to +\infty \). Pick a constant:

\[
L > \log \left(4^{2N} \prod_{i=1}^{n} H(\alpha_i) \frac{1}{\varepsilon_0} \right)
\]

with \(N \) big enough such that \(\varepsilon_0 > \frac{2\log 2n}{L} \). Since \(h(\beta_k) \to +\infty \), by eventually passing to a subsequence, we can assume that \(\{h(\beta_k)\} \) is increasing and bounded from below by a very big value. Therefore we can assume

\[
\varepsilon_0 > \frac{2L}{h(\beta_k)} + \frac{L + h(\beta_k)}{h(\beta_k)} \frac{7\log 2n}{\sqrt{N}}, \quad \forall k \in \mathbb{N}
\]
Choose any N elements from the sequence $\{\beta_k\}$, call them $\beta^{(1)}, \ldots, \beta^{(N)}$ and consider the following matrix $T(\beta)$:

$$
T(\beta) = \begin{pmatrix}
\alpha_1 & \alpha_1 & \alpha_1 & \ldots & \alpha_1 \\
\alpha_2 & \alpha_2 & \alpha_2 & \ldots & \alpha_2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_n & \alpha_n & \alpha_n & \ldots & \alpha_n \\
\beta^{(1)} & \beta^{(2)} & \beta^{(3)} & \ldots & \beta^{(N)}
\end{pmatrix}
$$

Let \hat{S} be the subset of S associated to the above matrix $T(\beta)$ as in Definition 3.2.

We are ready to construct some functions $\theta_k \in L^1(S, \mu)$ which will give the desired contradiction. We define them as piecewise functions by putting for any ω in \hat{S}, and any $k \in \mathbb{N}$:

$$
\theta_k(\omega) = -\frac{\log^{-1}|\beta_k - \alpha_k|}{L + h(\beta_k)}
$$

We extend θ_k on the whole S by setting $\theta_k(S \setminus \hat{S}) = 0$. Now we can write

$$
\int_S \theta_k d\mu = \int_{\hat{S}} \theta_k d\mu = \sum_{i=1}^n \int_{S_i} \theta_k d\mu = \frac{-1}{L + h(\beta_k)} \sum_{i=1}^n \int_{S_i} \log^{-1}|\beta_k - \alpha_i| \omega d\mu(\omega) \geq \epsilon \frac{2}{L + h(\beta_k)}
$$

(33)

By plugging inequality (32) inside (33) and simplifying the expressions, we finally get:

$$
\int_S \theta_k d\mu = \int_{\hat{S}} \theta_k d\mu > 2 + \frac{7\sqrt{\log 2n}}{\sqrt{N}} \quad \forall k \in \mathbb{N}
$$

(34)

Thanks to Proposition 1.12(6):

$$
\int_{S_i} \theta_k < \frac{B_i + 2h(\beta_k)}{L + h(\beta_k)}
$$

for $B_i \in \mathbb{R}_{>0}$. So, if $B = \max_i \{B_i\}$ we obtain:

$$
\int_{\hat{S}} \theta_k d\mu \leq \frac{nB + 2nh(\beta_k)}{L + h(\beta_k)} \leq 2n
$$

Hence, after possibly passing to a subsequence of $\{\theta_k\}$, we can assume that $\int_{\hat{S}} \theta_k d\mu$ admits limit and by inequality (34):

$$
\lim_{k \to \infty} \int_{\hat{S}} \theta_k d\mu \geq 2 + \frac{7\sqrt{\log 2n}}{\sqrt{N}} > 2 + \frac{6\sqrt{\log 2n}}{\sqrt{N}}.
$$

(35)

Put by simplicity $\lambda_{i,k}(\omega) := -\log^{-1}|\beta_k - \alpha_i| \omega$ so that

$$
\theta_k(\omega) = \frac{\lambda_{i,k}(\omega)}{L + h(\beta_k)}.
$$

Then we have:

$$
\theta_k(\omega) = \frac{\lambda_{i,k}(\omega)}{h(\beta_k)} \cdot A_k
$$

where $A_k := 1 - \frac{\lambda_{i,k}(\omega)}{h(\beta_k)} < 1$ and $A_k \to 1$. We want to show that from the sequence $\left\{\frac{1}{A_k} \theta_k\right\}$ we can extract a subsequence uniformly convergent to a function θ on $S \setminus U$ where U is a measurable set of arbitrary small measure. We apply Lemma 4.2 on S_i, for the fixed value α_i, with $0 < \varepsilon < 1$ and $\delta = \delta_i = \frac{\varepsilon}{2}$. We denote the extracted subsequence by $R_1 := \left\{\frac{1}{A_j} \theta_j\right\}$. For $\omega \in S_i$, Now pick two natural numbers $j > j' > N_1$, for any $\omega \in S_i \setminus U_1$ where $\mu(U_1) \leq \varepsilon$:

$$
\left|\frac{1}{A_j} \theta_j(\omega) - \frac{1}{A_j} \theta_{j'}(\omega)\right| = \left|\frac{\lambda_{i,j}(\omega)}{h(\beta_j)} - \frac{\lambda_{i,j'}(\omega)}{h(\beta_{j'})}\right| < 10 \varepsilon.
$$

Now we use again Lemma 4.2 on the sequence R_1 with $\delta = \delta_2 = \frac{\varepsilon}{4}$, to find a subsequence $R_2 \subseteq R_1$ such that again for $j > j' > N_2$ we get

$$
\left|\frac{1}{A_j} \theta_j(\omega) - \frac{1}{A_j} \theta_{j'}(\omega)\right| < 10 \varepsilon.
$$

(36)

but this time on $S_i \setminus U_2$ with $\mu(U_2) \leq \frac{\varepsilon}{4}$. We can iterate this process of extracting subsequences thanks to Lemma 4.2 and we get a family of subsequences $R_1 \supseteq R_2 \supseteq \ldots \supseteq R_m \supseteq \ldots$ such that equation (36) holds for elements in R_m for two indices $j, j' > N_m$ and outside from a set U_m of
measure \(\mu(U_m) \leq \frac{1}{2m+1} \). At this point, by properly selecting one element \(\frac{1}{Am} \theta_m \) for each \(\{R_m\} \), we construct a sequence \(\left\{ \frac{1}{Am} \theta_m \right\} \), which is in fact a subsequence of the initial \(\left\{ \frac{1}{Am} \theta_k \right\} \), converging uniformly to a function \(\theta^{(i)} \) on a measurable set \(S_i \setminus U^{(i)} \) where \(U^{(i)} = \bigcup_{m \geq 1} U_m \) and

\[
\mu(U^{(i)}) \leq \sum_{m=1}^{\infty} \mu(U_m) \leq 2\varepsilon.
\]

Since \(S_i \setminus U^{(i)} \) has finite measure, by a basic argument of measure theory we know that \(\theta^{(i)} \in L^1(S_i \setminus U^{(i)}, \mu) \) and

\[
\int_{S_i \setminus U^{(i)}} \theta^{(i)} \, d\mu = \lim_{m \to \infty} \int_{S_i \setminus U^{(i)}} \frac{1}{Am} \theta_m \, d\mu = \lim_{m \to \infty} \int_{S_i \setminus U^{(i)}} \theta_m \, d\mu.
\]

(37)

Put \(U = \bigcup_{i=1}^{n} U^{(i)} \) and note that

\[
\mu(U) < 2n\varepsilon.
\]

We finally define \(\theta \in L^1(S, \mu) \) in the following way: for any \(i = 1, \ldots, n \) and any \(\omega \in S_i \setminus U^{(i)} \) we set \(\theta(\omega) = \theta^{(i)}(\omega) \) and \(\theta(U) := 0 \). Therefore we get:

\[
\int_S \theta d\mu = \int_S \theta d\mu = \sum_{i=1}^{n} \int_{S_i \setminus U^{(i)}} \theta d\mu = \sum_{i=1}^{n} \lim_{m \to \infty} \int_{S_i \setminus U^{(i)}} \theta_m \, d\mu =
\]

\[
= \sum_{i=1}^{n} \lim_{m \to \infty} \int_{S_i} \theta_m \, d\mu - \sum_{i=1}^{n} \lim_{m \to \infty} \int_{U^{(i)}} \theta_m \, d\mu = \lim_{m \to \infty} \int_S \theta_m \, d\mu - \lim_{m \to \infty} \int_U \theta_m \, d\mu
\]

where the rightmost term is finite. Now, thanks to equation (35) and the fact that \(\mu(U) \) can be taken arbitrarily small by the choice of \(\varepsilon \), we conclude that

\[
\int_S \theta d\mu > 2 + \frac{6\sqrt{2n}}{\sqrt{N}}.
\]

(38)

Now we show that since \(h(\beta_k) \to +\infty \), the elements \(\beta^{(1)}, \ldots, \beta^{(N)} \) can be chosen, along the above subsequence \(\{\beta_m\} \), in a way that the following two conditions are satisfied.

(i) \(T(\beta) \) satisfies the h-gap condition. This is obvious by choosing the \(\beta^{(i)} \) separated by big enough gaps.

(ii) The function \(\theta \) is column bounding for \(T(\beta) \). In fact for \(\varepsilon > 0 \) small enough and for infinitely many big enough indexes \(m \), thanks to the choice of the constant \(L \), we have the following inequalities for any \(i = 1, \ldots, n \) and any \(\omega \in S_i \):

\[
\theta(\omega) < \theta_m(\omega) + \varepsilon < -\frac{\log-|\alpha_i - \beta_m|}{h(\beta_m)} + \log \left(2^{2N} \prod_{n=1}^{N} H(\alpha_i) \frac{2n}{\varepsilon} \right).
\]

Therefore we can apply Theorem 3.10 to conclude that:

\[
\int_S \theta d\mu < 2 + \frac{6\sqrt{2n}}{\sqrt{N}}.
\]

which contradicts inequality (38).

\[\square\]

Remark 4.5. In general a proper adelic curve \(X \) doesn’t need to satisfy the Northcott property, so the Main Theorem doesn’t imply that for any \(\varepsilon > 0 \), the inequality:

\[
\sum_{i=1}^{n} \int_{S_i} \log^-|\beta_k - \alpha| \, d\mu(\omega) \leq -2 + \varepsilon \eta \chi_0(\beta_k)
\]

holds for finitely many \(\beta \in \mathbb{K} \). On the other hand, the adelic curves arising from arithmetic function fields like in [Voj21] satisfy the Northcott property.

Example 4.6. We give an example of a proper adelic curve that doesn’t satisfy the \(\mu \)-equicontinuity condition of definition 4.1; for such adelic curve one cannot apply our generalisation of Roth’s theorem. Consider \(\mathbb{X} = (\mathbb{Q}, \Omega, \text{id}) \) naturally obtained from the field \(\mathbb{K} = \mathbb{Q} \) as in Example (1.4), we show that the adelic curve \(\mathbb{X} = (\mathbb{Q}, \Omega, \text{id}) \) doesn’t satisfy the \(\mu \)-equicontinuity condition. The measure on \(\Omega \) is denoted by \(\chi \), whereas the measure on \(\Omega \) is \(\mu \). Consider \(S = \overline{\Omega} \), and since \(\mu = (\sigma_{\mathbb{Q}}\Omega)\chi \) we have that \(\chi(S) = \mu(\Omega) < +\infty \). Any element \(\nu \in \Omega \) is a complex absolute value \(|\sigma(\cdot)| \) where \(\sigma : \mathbb{Q} \to \mathbb{C} \) is a field embedding considered up to complex conjugation. One can be more precise and say that \(S \)
as measure space (with the restricted structure inherited by \(\prod\)) can be identified with the following profinite group endowed with a Haar measure:

\[
G = \frac{\text{Gal}(\mathbb{Q}/\mathbb{Q})}{\sim} = \lim_{\sim} \frac{\text{Gal}(K/\mathbb{Q})}{\sim},
\]

where the limit is taken over all finite Galois extensions \(K \supset \mathbb{Q}\), and \(~\) is the relation of complex conjugation. Take any measurable cover \(C_1, \ldots, C_m\) of \(S\); by rearranging the terms we can always assume that the \(C_i\)'s are pairwise disjoint and that \(\mu(C_i) > 0\) for any \(i = 1, \ldots, m\). By definition of Haar measure, since \(\mu(C_i) > 0\) there exists a normal compact (so closed and of finite index) subgroup \(H_i \subseteq G\) such that \(\mu(H_i) > 0\) and \(g_iH_i \subseteq C_i\) for an element \(g_i \in G\). Consider \(H = \cap_{i=1}^m H_i\); it has positive measure and \(g_iH \subset C_i\) for any \(i = 1, \ldots, m\). By the fundamental theorem of Galois theory, there exists a finite Galois extension \(K \supset \mathbb{Q}\) such that \(H = \text{Gal}(\mathbb{Q}/K)\); moreover we can assume that \(1 \in C_1\) so that \(g_1 = 1\). Fix a prime \(p\) such that \(\sqrt{p} \notin K\) and let \(a, b \in \mathbb{Z}\) such that \(a^2 - pb^2 = 1\) and \(a - b\sqrt{p} < 1\). At this point inside \(H \subseteq C_1\) we consider the place \(\omega\) corresponding to the identity automorphism and another place \(\omega'\) corresponding to an automorphism that exchanges \(\sqrt{p}\) and \(-\sqrt{p}\).

Therefore we have:

\[
- \log^{-1}|a + b\sqrt{p} \omega| + \log^{-1}|a + b\sqrt{p} \omega'| = - \log(a - b\sqrt{p})
\]

This shows that the \(\mu\)-equicontinuity condition doesn’t hold.

Appendices

A Construction of the interpolating polynomial

In this appendix we will sketch the construction of the interpolating polynomial \(\delta\) of section 2. For all the details the reader can check [Cor97].

We employ the same notations of section 2 and for simplicity of notations \(X\) denotes the vector of variables \((X_1, \ldots, X_N)\). We are going to construct a complicated matrix \(A(X)\) depending on the following parameters: \(s, t_1, \ldots, t_n \in \mathbb{R}\), with \(0 < s < 1\) and \(0 < t_h < \frac{s}{h}\) for \(h = 1, \ldots, n\). The columns of the matrix are indexed by \(a \in \mathcal{G}_N\); the rows are indexed by \(i_h \in \mathcal{G}_h\) (for any \(h = 1, \ldots, n\)) and moreover we put \(i_{n+1} \in \mathcal{G}_1\). The order on multi-indices is the lexicographic one:

\[
A(X) := \left(\begin{array}{c}
(a_{i_1})^{a_{i_1}} \\
(i_h) \end{array}\right)_{i_h,a}
\] (39)

Note that \(A(X)\) has \(\#(\mathcal{G}_1) + \sum_{h=1}^n \#(\mathcal{G}_h)\) rows and \(\#(\mathcal{G}_N) = \prod_{h=1}^n |d_h + 1|\) columns, and moreover the last \(\#(\mathcal{G}_h)\) rows are monomials. Clearly we can always choose the parameters \(s, t_1, \ldots, t_n \in \mathbb{R}\) in order to obtain a matrix \(A(X)\) with more rows than columns. Let’s see an explicit condition that tells us when this can be achieved: the number of rows is greater than the number of columns if

\[
\#(\mathcal{G}_1) + \sum_{h=1}^n \#(\mathcal{G}_h) > \prod_{h=1}^n (d_h + 1),
\]

therefore thanks to Lemma 2.2, for \(d_1, \ldots, d_N\) very big, it is enough to have the following conditions on volumes:

\[
V(s) + \sum_{h=1}^n V(t_h) > 1.
\] (40)

The volumes \(V(s), V(t_1), \ldots, V(t_n)\) heavily determine the algebraic properties of the matrix \(A(X)\), in fact we will now present a stronger condition on the quantity \(V(s) + \sum_{h=1}^n V(t_h)\) ensuring that \(A(X)\) has maximal rank.

Proposition A.1. Let \(d_1, \ldots, d_N\) be big enough and let \(d_1 > d_2 > \ldots > d_N\). Moreover assume that

\[
a_h^{(j)} \neq a_k^{(j)}, \quad \forall j = 1, \ldots, N, \quad \forall h, k = 1, \ldots, n, \quad h \neq k.
\]

If for \(s, t_1, \ldots, t_n \in \mathbb{R}\), with \(0 < s < 1\) and \(0 < t_h < \frac{s}{h}\) we have that

\[
V(s) + \sum_{h=1}^n V(t_h) > \prod_{j=1}^{N-1} \left(1 + (n - 1) \sum_{i=j+1}^N \frac{d_i}{d_{j+1}}\right)
\] (41)
then, for any \(\beta = (\beta^{(1)}, \beta^{(2)}, \ldots, \beta^{(N)}) \in \mathbb{R}^N \) such that
\[
\beta^{(j)} \neq \alpha^{(j)}_h, \quad \forall j = 1, \ldots, N, \quad \forall h = 1, \ldots, n,
\]
the rank of \(A(\beta) \) is maximal and equal to the number of columns.

Proof. See [Cor97, Proposition 2.1] and notice that it uses a version of Dyson’s lemma for polynomials in many variables proved in [EV84].

One can always assume that the parameter \(s, t_1, \ldots, t_n \) are chosen in a way that we always get
\[
(1 + \eta)^N < V(s) + \sum_{h=1}^n V(t_h) < 1 + 2N\eta \tag{42}
\]
It is not difficult to see (check [Cor97, page 159]) that equation (42) implies (41). Therefore thanks to Proposition A.1 we can extract from \(A(X) \) a square submatrix \(M(X) \) of dimension
\[
r := \#(G_N) = \prod_{h=1}^n \lfloor d_h + 1 \rfloor,
\]
which is the number of columns of \(A(X) \), such that \(M(X) \) has maximal rank for any \(\beta \) componentwise different from any \(\alpha_h \). Moreover one can choose \(M(X) \) in a way that it is contained in the last \(\#(G_n) \) rows of \(A(X) \), since they are linearly independent for any choice of \(\beta \in \mathbb{R}^N \). The polynomial \(\delta(X) \) is the determinant of the matrix \(M(X) \). At this point all the arguments used in [Cor97] to prove the bounds about \(\delta \) can be applied verbatim in our setting with the only difference that in order to estimate \(h_X(\delta) \) one has to take the integral over \(\Omega \) instead of the summation over all places.

References

[BG06] E. Bombieri and W. Gubler. *Heights in diophantine geometry*. Cambridge University Press, Cambridge New York, 2006.

[BvdP88] E. Bombieri and A. J. van der Poorten. Some quantitative results related to Roth’s theorem. *J. Austral. Math. Soc. Ser. A*, 45(2):233–248, 1988.

[BvdP90] E. Bombieri and A. J. van der Poorten. Corrigenda: “Some quantitative results related to Roth’s theorem”. *J. Austral. Math. Soc. Ser. A*, 48(1):154–155, 1990.

[CM20] H. Chen and A. Moriwaki. *Arakelov geometry over Adelic curves*. Springer, Singapore, 2020.

[Cor95] P. Corvaja. An explicit version of the theorem of Roth-Ridout. *Rend. Sem. Mat. Univ. Politec. Torino*, 53(3):253–260, 1995.

[Cor97] P. Corvaja. Autour du théorème de Roth. *Monatsh. Math.*, 124(2):147–175, 1997.

[EV84] H. Esnault and E. Viehweg. Dyson’s lemma for polynomials in several variables (and the theorem of Roth). *Invent. Math.*, 78(3):445–490, 1984.

[Eve97] J.-H. Evertse. The number of algebraic numbers of given degree approximating a given algebraic number. In *Analytic number theory (Kyoto, 1996)*, volume 247 of *London Math. Soc. Lecture Note Ser.*, pages 53–83. Cambridge Univ. Press, Cambridge, 1997.

[Gub97] W. Gubler. Heights of subvarieties over \(M \)-fields. In *Arithmetic geometry (Cortona, 1994)*, Sympos. Math., XXXVII, pages 190–227. Cambridge Univ. Press, Cambridge, 1997.

[Lan83] S. Lang. *Fundamentals of diophantine geometry*. Springer-Verlag, New York, 1983.

[LeV02] W. LeVeque. *Topics in number theory*. Dover Publications, Mineola, NY, 2002.

[Neu99] J. Neukirch. *Algebraic number theory*. Springer, Berlin New York, 1999.

[Rot55] K. F. Roth. Rational approximations to algebraic numbers. *Matematika*, 2(3), 1955.

[Sch91] W. Schmidt. *Diophantine approximations and diophantine equations*. Springer-Verlag, Berlin New York, 1991.

[Voj21] P. Vojta. Roth’s Theorem over arithmetic function fields. *Algebra & Number Theory*, 15(8):1943–2017, 2021.