On linearization problems in the plane
Cremona group

Arman Sarikyan

Abstract

We study finite non-linearizable subgroups of the plane Cremona group which potentially could be stably linearizable.

1 Introduction

Let k be an algebraically closed field of characteristic 0. Recall that by definition the Cremona group $\text{Cr}_n(k)$ is the group of birational transformations of the projective space \mathbb{P}^n over k. This group is isomorphic to the k-linear automorphism group of the field $k(x_1, \ldots, x_n)$. Also note that for $n \leq N$ there is an embedding $\text{Cr}_n(k) \subset \text{Cr}_N(k)$ which is induced by a birational map $\mathbb{P}^N \dashrightarrow \mathbb{P}^n \times \mathbb{P}^{N-n}$. This leads us to the following definition.

Definition 1.1. Finite subgroups $G_1 \subset \text{Cr}_n(k)$ and $G_2 \subset \text{Cr}_m(k)$ are **stably conjugate** if there exists an integer $N \geq n, m$ such that G_1 and G_2 are conjugate in $\text{Cr}_N(k)$ under the embedding described above.

Recall that any embedding of a finite subgroup $G \subset \text{Cr}_n(k)$ is induced by a biregular action on a rational variety X.

Definition 1.2. The group G is **linearizable** if the embedding $G \subset \text{Cr}_n(k)$ is induced by a linear action on \mathbb{P}^n.

Definition 1.3. The group G is **stably linearizable** if G is stably conjugate to a linear action on \mathbb{P}^N for some N. Equivalently, there exist a linear action of G on \mathbb{P}^N, integers n, m and a G-equivariant birational map

$$X \times \mathbb{P}^n \dashrightarrow \mathbb{P}^N \times \mathbb{P}^m$$

such that G acts trivially on \mathbb{P}^n and \mathbb{P}^m.
Remark 1.4. There are no generally accepted agreements about the definition of stable linearization and one can define it in several ways. We refer to [Pro15, Remark 2.3.3] for more definitions and details.

If G is linearizable, then it is stably linearizable. However, the converse is not true, which shows the following example suggested by V. Popov.

Example 1.5. Let $G_1 \cong \mathfrak{S}_3 \times \mathfrak{C}_2$ act on a surface $X \subset \mathbb{P}^1 \times \mathbb{P}^1$ which is defined by the equation

$$x_0y_0z_0 = x_1y_1z_1,$$

where x_i, y_i, z_i are homogeneous coordinates of each \mathbb{P}^1 respectively. Let the subgroup \mathfrak{S}_3 permute \mathbb{P}^1’s and the subgroup \mathfrak{C}_2 permute homogeneous coordinates of each \mathbb{P}^1. On the other hand, let $G_2 \cong \mathfrak{S}_3 \times \mathfrak{C}_2 \subset \text{PGL}(3, \mathbb{C})$ act linearly on $Y = \mathbb{P}^2$. V. Iskovskikh showed [Isk08] that there are no equivariant birational maps between X and Y, thus the group $\mathfrak{S}_3 \times \mathfrak{C}_2$ has a non-linearizable embedding into $\text{Cr}_2(\mathbb{C})$. However, in [LPR06] it is proved that the varieties $X \times \mathbb{P}^2$ and $Y \times \mathbb{P}^2$ are equivariantly birationally equivalent. The question remains open whether it is possible to multiply only by \mathbb{P}^1. Moreover, other examples are currently unknown.

Recall that a smooth projective algebraic surface X is called a del Pezzo surface if its anticanonical sheaf is ample.

In this paper we classify up to conjugation non-linearizable finite subgroups G of $\text{Cr}_2(\mathbb{k})$ which potentially could be stably linearizable assuming that the embedding $G \subset \text{Cr}_2(\mathbb{k})$ is induced by a biregular action on a del Pezzo surface X such that the invariant Picard number $\rho(X)^G = 1$. This work also contributes to the open questions from [DI09, Section 9]. Without loss of generality, we assume that \mathbb{k} is the field of complex numbers \mathbb{C}. The main result is the following.

Theorem. Let X be a del Pezzo surface and G be a finite group acting biregularly on X such that $\rho(X)^G = 1$. Then the group G is non-linearizable if and only if the pair (X, G) satisfies one of the following conditions:

1. X is a del Pezzo surface of degree ≤ 3. ([Pro15, Theorem 1.2]);
2. X is a del Pezzo surface of degree 4 and $G \cong \mathfrak{C}_3 \times \mathfrak{C}_4$ (Proposition 3.18);
3. X is a del Pezzo surface of degree 5 and $G \cong \mathfrak{C}_5 \times \mathfrak{A}_5$, \mathfrak{S}_5 (Theorem 3.20).
(4) X is a del Pezzo surface of degree 6. Then either $G \cap (\mathbb{C}^*)^2 \neq 0$ or $\psi(G) \cong \mathfrak{S}_3 \times \mathfrak{C}_2$, where ψ: Aut$(X) \rightarrow \mathfrak{S}_3 \times \mathfrak{C}_2$ is a projection homomorphism to the discrete part of Aut(X) (Theorem 3.31);

(5) $X \cong \mathbb{P}^1 \times \mathbb{P}^1$. Then the following sequence is exact:

$$1 \longrightarrow A \times_D A \longrightarrow G \longrightarrow \mathfrak{C}_2 \longrightarrow 1,$$

where $A \cong \text{G}_n, \text{A}_4, \text{A}_5$ and D is some group (Theorem 3.25).

Remark 1.6. Actually if X is the del Pezzo surface of degree 3, then G is not even stably linearizable by [Pro15, Theorem 1.2].

Acknowledgments. I am grateful to Yu. Prokhorov for introducing me to this topic and for invaluable support in studying algebraic geometry. I am also grateful to C. Shramov, A. Trepalin for useful conversations and to K. Loginov for reviewing the first draft of the paper and for constructive criticism.

2 Preliminaries

Notation.

- $\rho(X) := \text{rk Pic}(X)$ is the Picard number of an algebraic variety X;
- Aut(X) is the automorphism group of X;
- Bir(X) is the group of birational transformations of X;
- \mathfrak{C}_n is the cyclic group of order n;
- \mathfrak{S}_n is the symmetric group on n elements;
- \mathfrak{A}_n is the alternating group on n elements;
- \mathfrak{D}_n is the dihedral group of order $2n$;
- $G \times_D H$ is the fiber product of groups G and H over a group D, i.e.

$$G \times_D H := \{ (g, h) \in G \times H \mid \phi(g) = \psi(h) \},$$

where $\phi: G \rightarrow D$ and $\psi: H \rightarrow D$ are epimorphisms.
2.1 \(G\)-varieties

Definition 2.7. Let \(X\) be an algebraic variety and \(G\) be a group. According to Yu. Manin [Man67] we will say that \(X\) is a \(G\)-variety if \(G\) is finite and its action on \(X\) is defined by the homomorphism \(\theta: G \to \text{Aut}(X)\).

Usually \(G\)-variety are denoted as \((X,\theta)\), \((X,G)\) or simply \(X\) when it does not cause confusion.

Definition 2.8. Let \((X,\theta)\), \((X',\theta')\) be \(G\)-varieties. A morphism \(f: X \to X'\) (resp. a rational map \(f: X \dashrightarrow X'\)) is a \(G\)-morphism (resp. a \(G\)-rational map) between the \(G\)-varieties if \(\theta'(g) \circ f = f \circ \theta(g)\) for all \(g \in G\).

Definition 2.9. We say that the \(G\)-varieties \((X,\theta)\) and \((X',\theta')\) are \(G\)-stably birationally equivalent if there exist integers \(n, m\) and a \(G\)-birational map \(X \times \mathbb{P}^n \to X' \times \mathbb{P}^m\), where \(G\) acts trivially on \(\mathbb{P}^n\) and \(\mathbb{P}^m\).

One can easily see that two subgroups \(G\) and \(G' \cong G\) of \(\text{Aut}(X)\) define isomorphic (resp. birationally equivalent) \(G\)-varieties, if and only if these subgroups are conjugate in \(\text{Aut}(X)\) (resp. in \(\text{Bir}(X)\)).

Definition 2.10. Let \(X\) and \(X_{\min}\) be \(G\)-varieties. We say that \(X_{\min}\) is a \(G\)-minimal model of \(X\) if there is a \(G\)-birational morphism \(X \to X_{\min}\) and any \(G\)-birational morphism \(X_{\min} \to Y\) is a \(G\)-isomorphism.

Let \(G \subset \text{Cr}_2(\mathbb{C})\) be a finite subgroup. After a \(G\)-equivariant resolution of indeterminacy we may assume that \(G\) acts biregularly on some rational smooth projective surface \(X\).

Theorem 2.11 ([Isk79]). Let \(X\) be a rational smooth projective \(G\)-surface and let \(X_{\min}\) be its \(G\)-minimal model. Then \(X_{\min}\) is one of the following:

1. \(X_{\min}\) is a del Pezzo surface with \(\rho(X_{\min})^G = 1\);
2. \(X_{\min}\) admits a structure of \(G\)-conic bundle, i.e. there exists a surjective \(G\)-equivariant morphism \(f: X_{\min} \to \mathbb{P}^1\) such that \(f_*\mathcal{O}_{X_{\min}} = \mathcal{O}_{\mathbb{P}^1}\), the divisor \(-K_{X_{\min}}\) is \(f\)-ample and \(\rho(X_{\min})^G = 2\).

We will call the surfaces with the described conditions above as \(G\)-minimal or just minimal if the group is clear from the context.

As was mentioned above, the pair \((X,G)\) up to a \(G\)-birational equivalence corresponds to a conjugacy class of \(G\) in \(\text{Cr}_2(\mathbb{C})\). By Theorem 2.11 we may assume that \((X,G)\) is the \(G\)-minimal del Pezzo surface or the \(G\)-minimal conic bundle. In this paper we will study the case of \(G\)-minimal del Pezzo surfaces only, i.e. the case when \(\rho(X)^G = 1\).
2.2 G-Sarkisov links

From now on, let (X, G) be a smooth projective G-variety and the action of the group G is faithful. Our main tool in this paper will be G-Sarkisov links. Recall that the G-Sarkisov links or the G-links are elementary G-birational transformations of four types. Any G-link from the G-minimal surface X is defined by its center which is a 0-dimensional G-orbit of length $d < K_X^2$. We refer to [Isk96] for more details. Also note that all the G-Sarkisov links are classified [Isk96, Theorem 2.6]. We will use the following important result.

Theorem 2.12 ([Isk96, Theorem 2.5]). Any G-birational map between rational G-minimal projective surfaces can be factorized in a sequence of the G-Sarkisov links.

2.3 G-stable birational invariants

2.3.1 Amitsur subgroup

Let \mathcal{L} be a line bundle on X with total space L and $\pi: L \to X$ be a structure morphism.

Definition 2.13. A G-linearization of \mathcal{L} is an action of G on L such that:

1. the structure morphism π is G-equivariant;
2. the action is linear on its fibers, i.e. for any $g \in G$ and $x \in X$ the map on the fibers $L_x \to L_{g\cdot x}$ is linear.

Denote by Pic (X, G) the group of the G-linearized line bundles on X up to isomorphism. Then one has the following exact sequence (see [BCDP18, Section 6] for more details):

$$1 \longrightarrow \text{Hom}(G, \mathbb{C}^*) \longrightarrow \text{Pic}(X, G) \longrightarrow \text{Pic}(X)^G \longrightarrow H^2(G, \mathbb{C}^*) \longrightarrow 0.$$

According [BCDP18] we define the *Amitsur subgroup* of X as follows

$$\text{Am}(X, G) := \text{im} \left(\delta: \text{Pic}(X)^G \to H^2(G, \mathbb{C}^*) \right).$$

The Amitsur subgroup is a G-birational invariant [BCDP18, Theorem 6.1]. Using this fact it is easy to prove that $\text{Am}(X, G)$ is actually a G-stable birational invariant.

Theorem 2.14. Let X, Y be smooth projective G-stably birationally equivalent G-varieties. Then

$$\text{Am}(X, G) \cong \text{Am}(Y, G).$$
Proof. By assumption, there exist integers \(n, m \) and a \(G \)-birational map \(X \times \mathbb{P}^n \to Y \times \mathbb{P}^m \). So, \(\text{Am}(X \times \mathbb{P}^n, G) \cong \text{Am}(Y \times \mathbb{P}^m, G) \). Also,
\[
\text{Pic}(X \times \mathbb{P}^n)^G \cong \text{Pic}(X)^G \oplus \mathbb{Z}[\mathcal{O}_{\mathbb{P}^n}(1)]^G.
\]
Consequently, \(\text{Am}(X \times \mathbb{P}^n, G) \cong \text{Am}(Y \times \mathbb{P}^m, G) \). Since the action of \(G \) is trivial on \(\mathbb{P}^n \) by assumption, we have \(\delta([\mathcal{O}_{\mathbb{P}^n}(1)]) = 0 \). Therefore, \(\text{Am}(X,G \times \mathbb{P}^n) \cong \text{Am}(Y,G) \).

2.3.2 The \(H^1(G, \text{Pic}(X)) \) group

The action of \(G \) on \(X \) induces an action on \(\text{Pic}(X) \). Hence, one can consider the first cohomology group \(H^1(G, \text{Pic}(X)) \). As in the arithmetic case, it is an obstruction to the stable linearization.

Proposition 2.15 ([BP13, Proposition 2.5]). Let \(X, Y \) be smooth projective \(G \)-stably birational \(G \)-varieties. Then there exist permutation \(G \)-modules \(\Pi_1, \Pi_2 \) such that the following isomorphism of \(G \)-modules holds
\[
\text{Pic}(X)^G \oplus \Pi_1 \cong \text{Pic}(Y)^G \oplus \Pi_2.
\]
Consequently,
\[
H^1(G, \text{Pic}(X)) \cong H^1(G, \text{Pic}(Y)).
\]

Corollary 2.16 ([BP13, Corollary 2.5.2]). In the above notation if \(G \) is stably linearizable, then \(H^1(G', \text{Pic}(X)) = 0 \) for any subgroup \(G' \subseteq G \).

Theorem 2.17 ([Pro15, Theorem 1.2]). Let \((X,G)\) be a minimal del Pezzo surface. Then the following are equivalent:

1. \(H^1(G', \text{Pic}(X)) = 0 \) for any subgroup \(G' \subseteq G \);
2. any nontrivial element of \(G \) does not fix a curve of positive genus;
3. either
 a. \(K_X^2 \geq 5 \), or
 b. \(X \subseteq \mathbb{P}^4 \) is a quartic del Pezzo surface given by
 \[
 x_0^2 + \zeta_3 x_1^2 + \zeta_3^2 x_2^2 + x_3^2 = x_0^2 + \zeta_3^2 x_1^2 + \zeta_3 x_2^2 + x_4^2 = 0,
 \]
 where \(\zeta_3 = \exp(2\pi i/3) \) and \(G \cong \mathbb{C}_3 \rtimes \mathbb{C}_4 \) is generated by
 \[
 \gamma: (x_0 : x_1 : x_2 : x_3 : x_4) \mapsto (x_1 : x_2 : x_0 : \zeta_3 x_3 : \zeta_3^2 x_4);
 \]
 \[
 \beta: (x_0 : x_1 : x_2 : x_3 : x_4) \mapsto (x_0 : x_2 : x_1 : -x_4 : x_3).
 \]
3 \textbf{G-minimal del Pezzo surfaces}

Let us start to prove the main result. The proof will be divided into four parts. We will discuss the \(G\)-minimal del Pezzo surfaces of each degree separately. Due to a proof’s structure the cases will be considered in the following order: degree 4, degree 5, degree 8 and degree 6.

As was noted, if the group \(G\) admits regularization on a del Pezzo surface of degree \(\leq 3\), then \(G\) is not stably linearizable by Theorem 2.17. Also, a del Pezzo surface of degree 7 and the blowup of a point on \(\mathbb{P}^2\) are never \(G\)-minimal.

3.1 \textbf{Del Pezzo surface of degree 4}

Let \(X \subset \mathbb{P}^4\) be the quartic del Pezzo surface from Theorem 2.17 and the group \(G \cong \mathfrak{C}_3 \rtimes \mathfrak{C}_4\).

\textbf{Proposition 3.18.} In the above notation \(G\) is non-linearizable.

\textit{Proof.} We will describe all \(G\)-birational models of \(X\) using the \(G\)-links. Firstly, we find the \(G\)-orbits of length \(< 4\).

There is a unique \(G\)-fixed point \((1 : 1 : 1 : 0 : 0)\), the blowup of which is a cubic surface with a \(G\)-minimal conic bundle structure. Then there exist only the inverse \(G\)-link to \(X\) and birational transformations of the conic bundle structure which preserve the degree of the surface by [Isk96, Theorem 2.6]. Consequently, the \(G\)-link from the \(G\)-fixed point does not yield a \(G\)-birational map from \(X\) to \(\mathbb{P}^2\).

There are no orbits of length 2. An orbit of length 3 does exist, it is unique and has the following form:

\[
\{(-1 : 1 : 1 : 0 : 0), \ (1 : 1 : -1 : 0 : 0) \ (1 : -1 : 1 : 0 : 0)\}.
\]

The \(G\)-link corresponding to this orbit is the Bertini involution, which brings us again to the del Pezzo surfaces of degree 4.

Thus, any sequence of \(G\)-links from \(X\) leads us either to the \(G\)-minimal del Pezzo surface of degree 4 or to the \(G\)-minimal conic bundle of degree 3. Hence, the group \(G\) is non-linearizable. \(\square\)

3.2 \textbf{Del Pezzo surface of degree 5}

Let \(X\) be a del Pezzo surface of degree 5. Recall that points \(x_1, \ldots, x_k\) are in a \textit{general position} on a del Pezzo surface \(S\) if the blowup of \(x_1, \ldots, x_k\) is also a del Pezzo surface.
Theorem 3.19 ([DI09, Theorem 6.4]). Let (X, G) be minimal. Then
\[G \cong C_5, D_5, C_5 \times C_4, A_5, S_5. \]

Theorem 3.20. Let (X, G) be minimal. Then G is non-linearizable if and only if $G \cong C_5 \times C_4, A_5, S_5$.

Proof. The groups $C_5 \times C_4, S_5$ do not act linearly on \mathbb{P}^2, consequently they are non-linearizable.

Let $G \cong A_5$. The action of G has no fixed points on X, otherwise A_5 would act faithfully on the tangent space at the G-fixed point, which is impossible since A_5 does not have a 2-dimensional faithful representations. Also, there are no orbits of length ≤ 4, since A_5 has no subgroups of index ≤ 4. Thus, there are no G-Sarkisov links from X. Hence, A_5 is non-linearizable.

Let $G \cong D_5$. We will construct a G-birational map from \mathbb{P}^2 to X. Recall that $D_5 \cong C_5 \times C_2$. Let us consider such action of G on \mathbb{P}^2 that a C_5-orbit of a C_2-fixed point is a set of five points in a general position. The blowup of these five points is a del Pezzo surface X_4 of degree 4 with $\rho(X_4)^G = 2$.

Notice that a proper transform of a conic passing through the C_5-orbit of the C_2-fixed point is a G-invariant (-1)-curve. So, it can be G-equivariantly contracted and as a result we get X with $\rho(X)^G = 1$. Since all subgroups which are isomorphic to D_5 are conjugated in $\text{Aut}(X) \cong S_5$, we are done. Similar arguments show that C_5 is linearizable too. \Box

3.3 Del Pezzo surfaces of degree 8

Let us consider $\mathbb{P}^1 \times \mathbb{P}^1$ with an action of G such that $\rho(\mathbb{P}^1 \times \mathbb{P}^1)^G = 1$. It is well known that
\[\text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1) \cong (\text{PGL}(2, \mathbb{C}) \times \text{PGL}(2, \mathbb{C})) \times C_2, \]
where two copies of PGL(2, \mathbb{C}) act on each \mathbb{P}^1 and C_2 swaps factors in $\mathbb{P}^1 \times \mathbb{P}^1$.

Denote by π a projection homomorphism:
\[\pi: \text{Aut}(\mathbb{P}^1 \times \mathbb{P}^1) \to C_2. \]

We will use the following result from the group theory.

Theorem 3.21 (Goursat’s Lemma). Let A_1, A_2, B be finite groups such that $B \subseteq A_1 \times A_2$ and projection maps to each A_i are surjective. Then
\[B \cong A_1 \times_D A_2, \]
for some group D.

8
According to we prove the following.

Theorem 3.22. Let \((\mathbb{P}^1 \times \mathbb{P}^1, G)\) be minimal. Then the following sequence is exact:

\[1 \longrightarrow A \times_D A \longrightarrow G \longrightarrow \mathcal{C}_2 \longrightarrow \pi \longrightarrow 1,\]

where \(A \cong \mathcal{C}_n, \mathcal{D}_n, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5\) and \(D\) is some group.

Proof. Consider a subgroup

\[G_0 = G \cap (\text{PGL}(2, \mathbb{C}) \times \text{PGL}(2, \mathbb{C})).\]

It acts naturally on \(\mathbb{P}^1 \times \mathbb{P}^1\) and does not swap the factors. Let \(A_i\) be an image of \(G\) under the projection of \(\text{PGL}(2, \mathbb{C}) \times \text{PGL}(2, \mathbb{C})\) on the \(i\)-th factor. If the groups \(A_1\) and \(A_2\) are not isomorphic, then \(G = G_0\) and \(\rho(\mathbb{P}^1 \times \mathbb{P}^1)^G = 2\); a contradiction with minimality. So, \(A_1 \cong A_2 \cong A\), where \(A\) is a finite subgroup of \(\text{PGL}(2, \mathbb{C})\), i.e. \(A \cong \mathcal{C}_n, \mathcal{D}_n, \mathfrak{A}_4, \mathfrak{S}_4, \mathfrak{A}_5\). Now we are done by Goursat’s Lemma.

One can easily see that \(\text{Am}(\mathbb{P}^2, G)\) is either \(\mathcal{C}_3\) or trivial [BCDP18, Proposition 6.7].

Lemma 3.23. In the above notation if \(A\) has no 2-dimensional faithful representations, then \(G\) is non-linearizable.

Proof. Notice that \(G\) has a subgroup

\[\{ (a, a) \in A \times_D A \mid a \in A \} \cong A.\]

Consider \(\mathbb{P}^1 \times \mathbb{P}^1\) with a diagonal action of \(A\). Since \(A\) has no 2-dimensional faithful representations, then \(\text{Am}(\mathbb{P}^1 \times \mathbb{P}^1, A) \cong \mathcal{C}_2\). Consequently, \(A\) is non-linearizable by Theorem 2.14, so \(G\) too.

Therefore, it remains to consider only cases when \(A\) is isomorphic either to \(\mathcal{C}_n\) or \(\mathcal{D}_n\). Let us first discuss which \(G\)-links exist from \(\mathbb{P}^1 \times \mathbb{P}^1\).

Any \(G\)-link with center at \(d \neq 1, 3, 5\) points is either a \(G\)-birational self-map of \(\mathbb{P}^1 \times \mathbb{P}^1\) or a transformation of \(\mathbb{P}^1 \times \mathbb{P}^1\) to a \(G\)-minimal conic bundle by [Isk96, Theorem 2.6]. If the \(G\)-link transforms \(\mathbb{P}^1 \times \mathbb{P}^1\) to the \(G\)-minimal conic bundle, then all the following \(G\)-links are either the transformations of the \(G\)-minimal conic bundle structure, i.e. do not change the degree of the surface, or bring us back to \(\mathbb{P}^1 \times \mathbb{P}^1\) with \(\rho(X)^G = 1\). Thus, the \(G\)-links with such centers do not lead us to a \(G\)-birational map to \(\mathbb{P}^2\).

The \(G\)-link with center at one point is a \(G\)-birational map to \(\mathbb{P}^2\). Indeed, it is a composition the blowup of the \(G\)-fixed point and a \(G\)-contraction of \((-1)\)-curves.
The G-link with center at three points determines a G-birational map to a del Pezzo surface X_6 of degree 6. More precisely, let $C \in |\mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(1, 1)|$ be a curve passing through the G-orbit of length 3. We blow up this G-orbit and G-contract a proper transform of C. Thereby we get a G-birational map from $\mathbb{P}^1 \times \mathbb{P}^1$ to X_6. But the G-links from X_6 are either G-birational selfmaps or bring us back to $\mathbb{P}^1 \times \mathbb{P}^1$ by [Isk96, Theorem 2.6]. Thus, the G-link with center at three point does not lead us to a G-birational map to \mathbb{P}^2.

Finally, the G-link with center at five points is a G-birational map to the del Pezzo surface of degree 5. Thus, for linearizability of G it is necessary either the G-fixed point or the orbit of length five.

Lemma 3.24. Let $(\mathbb{P}^1 \times \mathbb{P}^1, G)$ be minimal. Then G is linearizable if and only if $A \cong \mathcal{C}_n$.

Proof. Consider two cases.

Let $A \cong \mathcal{C}_n$. Choose $\tau \in G \setminus (\mathcal{C}_n \times_D \mathcal{C}_n)$. By definition τ swaps projection morphisms

$$\pi_i : \mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)} \to \mathbb{P}^1_{(i)};$$

i.e.

$$\pi_2 \circ \tau = F \circ \pi_1,$$

where $F : \mathbb{P}^1_{(1)} \to \mathbb{P}^1_{(2)}$ is an isomorphism. Then

$$\pi_1 \circ \tau = F^{-1} \circ \pi_2 \circ \tau^2.$$

Notice that $\tau^2 \in \mathcal{C}_n \times_D \mathcal{C}_n$, i.e. $\tau^2(x, y) = (\xi_1(x), \xi_2(y))$, where $\xi_i \in \mathcal{C}_n$ is an automorphism of $\mathbb{P}^1_{(i)}$. Consequently,

$$\tau(x, y) = \left(F^{-1} \circ \xi_2(y), F(x) \right).$$

Thereby,

$$\tau^2(x, y) = \left(F^{-1} \circ \xi_2 \circ F(x), \xi_2(y) \right);$$

$$\xi_1 = F^{-1} \circ \xi_2 \circ F.$$

Identify $\mathbb{P}^1_{(1)}$ and $\mathbb{P}^1_{(2)}$ by F. Then $\xi_1 = \xi_2 = \xi$, so $\tau(x, y) = (\xi(y), x)$. By the Lefschetz fixed-point theorem there exist a \mathcal{C}_n-fixed point $\alpha \in \mathbb{P}^1$. Therefore, the point $(\alpha, \alpha) \in \mathbb{P}^1 \times \mathbb{P}^1$ is fixed by τ. Consequently, (α, α) is a G-fixed point and the G-link with center at this point yields the G-birational map between $\mathbb{P}^1 \times \mathbb{P}^1$ and \mathbb{P}^2. Thus, G is linearizable.

Let $A \cong \mathcal{D}_n$. Since the action of \mathcal{D}_n has no fixed points on \mathbb{P}^1, the action of G on $\mathbb{P}^1 \times \mathbb{P}^1$ has no too. Hence, for linearizability of G it is necessary to have the orbit of length 5 which defines the G-link to the del Pezzo surface.
of degree 5. So, \(G \) is isomorphic either to \(C_5 \) or \(D_5 \) by Theorem 3.20. But the group \(G \) is non-abelian, consequently \(G \) is not isomorphic to \(C_5 \).

We claim that \(G \) is also not isomorphic to \(D_5 \). Indeed, by Theorem 3.22 the following sequence is exact:

\[
1 \longrightarrow D_n \times_D D_n \longrightarrow G \longrightarrow C_2 \longrightarrow 1.
\]

We see that \(D_n \times_D D_n \) must be isomorphic to \(C_5 \). However, it is impossible, since \(D_n \times_D D_n \) contains a diagonal subgroup \(D_n \).

Finally, combining Theorem 3.22, Lemma 3.23 and Lemma 3.24, we obtain the following theorem.

Theorem 3.25. Let \((\mathbb{P}^1 \times \mathbb{P}^1, G)\) be minimal. Then the following sequence is exact:

\[
1 \longrightarrow A \times_D A \longrightarrow G \longrightarrow C_2 \longrightarrow 1,
\]

where \(A \cong C_n, D_n, A_4, S_4, A_5 \) and \(D \) is some group. Moreover, \(G \) is non-linearizable if and only if \(A \cong D_n, A_4, S_4, A_5 \).

3.4 Del Pezzo surface of degree 6

Let \(X \) be a del Pezzo surface of degree 6. Without loss of generality, we regard \(X \) as the blowup of \(\mathbb{P}^2 \) in points

\[
p_1 = (1 : 0 : 0), \quad p_2 = (0 : 1 : 0), \quad p_3 = (0 : 0 : 1).
\]

Exceptional curves and proper transforms of lines passing through pairs of the blowup points combinatorially form a hexagon. These are exactly all the lines on \(X \). Recall that \(X \) can be defined in \(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \) by the equation

\[
x_0y_0z_0 = x_1y_1z_1,
\]

where \(x_i, y_i, z_i \) are homogeneous coordinates of each \(\mathbb{P}^1 \) respectively.

Let \(W \cong S_3 \times C_2 \) be a subgroup of \(\text{Aut} \ (X) \), where \(S_3 \) acts as a lift of permutations of coordinates on \(\mathbb{P}^2 \) and \(C_2 \) acts as a lift of the standard quadratic involution on \(\mathbb{P}^2 \) which is defined as follows

\[
[x_0 : x_1 : x_2] \rightarrow [x_1x_2 : x_0x_2 : x_0x_1].
\]

Theorem 3.26 ([Dol12, Theorem 6.4.2]). In the above notation \(\text{Aut} \ (X) \cong (\mathbb{C}^*)^2 \rtimes W \).
Denote by ψ a projection homomorphism:

$$
\psi: \text{Aut} (X) \rightarrow W.
$$

A straightforward computation yields the following.

Proposition 3.27. Let (X, G) be minimal. Then

$$
\psi (G) \cong C_6, \ G_3^{tw}, G_3 \times C_2,
$$

where G_3^{tw} is G_3 twisted by the standard quadratic involution in W.

Lemma 3.28. Let $G \subset \text{Aut} (X)$ be a subgroup such that $\psi (G) \cong C_6$ and $G \cap (\mathbb{C}^*)^2 = 0$. Then G is linearizable.

Proof. We will construct a G-birational map between X and \mathbb{P}^2 as a composition of two G-links. By the holomorphic Lefschetz fixed-point formula the action of G has a fixed point on X. We claim that this fixed point is in a general position. Indeed, if not, then the G-fixed point must lie on an intersection of all (-1)-curves on X, since C_6 cyclically permutes the hexagon of the (-1)-curves. However, this intersection is empty. Contradiction. Then denote by x an image of the G-fixed point on \mathbb{P}^2 under the blowup $X \rightarrow \mathbb{P}^2$.

The blowup of the point x and a G-contraction of proper transforms of each line passing through x and p_i for $i = 1, 2, 3$ yield a G-link from X to $\mathbb{P}^1 \times \mathbb{P}^1$.

Again by the holomorphic Lefschetz fixed-point formula we there exists a G-fixed point on $\mathbb{P}^1 \times \mathbb{P}^1$. However, the G-link from $\mathbb{P}^1 \times \mathbb{P}^1$ with center at the point gives a G-birational map to \mathbb{P}^2 as we discussed earlier. Thus, the composition of two built G-links gives the G-birational map from X to \mathbb{P}^2. So, G is linearizable. \qed

Lemma 3.29. Let $G \subset \text{Aut} (X)$ be a subgroup such that $\psi (G) \cong G_3^{tw}$ and $G \cap (\mathbb{C}^*)^2 = 0$. Then the following holds:

1) all such the subgroups are conjugate in $\text{Aut} (X)$;

2) G is linearizable.

Proof. 1) It is sufficient to consider the action of G on the torus $xyz = 1$. Denote by c_2 and c_3 generators of G of orders 2 and 3 respectively. Firstly, conjugating G we can consider that c_3 is as follows

$$
c_3: (x; y) \mapsto \left(y; \frac{1}{xy} \right)
$$
Since $c_3^{-1} = c_2 c_3 c_2^{-1}$ holds, c_2 is as follows
\[c_2: (x; y) \mapsto \left(\frac{\zeta_3}{y}; \frac{\zeta_4}{x} \right), \]
where ζ_3 is a cubic root of unity. Then we are done by conjugating G by
\[(x; y) \mapsto \left(\sqrt{\zeta_3 x}; \sqrt{\zeta_3 y} \right). \]

2) Now we can consider that up to conjugation the action of G on X is generated by the lift from \mathbb{P}^2 of the following birational transformations
\[
\begin{align*}
[x_0 : x_1 : x_2] & \to [x_0 x_2 : x_1 x_2 : x_0 x_1]; \\
[x_0 : x_1 : x_2] & \to [x_1 : x_2 : x_0].
\end{align*}
\]
Thus, a preimage of the point $[1 : 1 : 1]$ on \mathbb{P}^2 under the blowup $X \to \mathbb{P}^2$ is a G-fixed point on X. Thereby, the G-link started at this G-fixed point determines the G-birational map to $\mathbb{P}^1 \times \mathbb{P}^1$ as we saw in Lemma 3.28. Then one can easily see that by Theorem 3.22 the following sequence is exact:
\[
1 \longrightarrow C_3 \times \epsilon_3 C_3 \longrightarrow G \overset{\pi}{\longrightarrow} C_2 \longrightarrow 1.
\]
So, G is linearizable by Theorem 3.25.

Lemma 3.30. Let $G \subset \text{Aut}(X)$ be a group such that $\psi(G) \cong W$ and $G \cap (\mathbb{C}^*)^2 = 0$. Then there exists a G-fixed point in a general position on X if and only if G is conjugate to W in $\text{Aut}(X)$.

Proof. As above, we can assume that up to conjugation an action of G on the torus is generated by
\[
\begin{align*}
c_2: & \quad (x; y) \mapsto (y; x); \\
c_3: & \quad (x; y) \mapsto \left(y; \frac{1}{xy} \right); \\
\tau: & \quad (x; y) \mapsto \left(\frac{\alpha}{x}; \frac{\beta}{y} \right),
\end{align*}
\]
where $\alpha, \beta \in (\mathbb{C}^*)^2$. Then a straightforward computation shows that the action of G has the fixed point if and only if $\alpha = \beta = \zeta_3$. Thus again, we are done by conjugating G by
\[(x; y) \mapsto \left(\sqrt{\zeta_3 x}; \sqrt{\zeta_3 y} \right). \]
Now we are ready to prove the main theorem of this section. As was noted in Example 1.5 the group W is non-linearizable.

Theorem 3.31. Let (X, G) be minimal. Then G is non-linearizable if and only if either $G \cap (\mathbb{C}^*)^2 \neq 0$ or $\psi(G) \cong S_3 \times \mathbb{C}_2$.

Proof. As we discussed earlier any G-link with center at more than one point on X is the G-birational selfmap [Isk96 Theorem 2.6], but the G-link with center at one point gives the G-birational map to $\mathbb{P}^1 \times \mathbb{P}^1$ which was constructed in Lemma 3.28. Hence, for the linearizability of G it is necessary to have a G-fixed point in a general position.

Let $G_0 = G \cap (\mathbb{C}^*)^2$. For each G the following sequence is exact:

$$1 \longrightarrow G_0 \longrightarrow G \overset{\psi}{\longrightarrow} H \longrightarrow 1,$$

where $H \cong \mathbb{C}_6, S_3^{tw}, S_3 \times \mathbb{C}_2$. Any nontrivial element of $(\mathbb{C}^*)^2$ can have the fixed points only on the exceptional set. But such points are not in the general position, so we cannot start the G-links in such centers. Thus, $G_0 = 0$ and consequently $G \cong H$.

If $H \cong \mathbb{C}_6$, then G is linearizable by Lemma 3.28. If $G \cong S_3^{tw}$, then G is linearizable by Lemma 3.29. If $H \cong S_3 \times \mathbb{C}_2$, then G is non-linearizable by Lemma 3.30 and Example 1.5.

References

[BCDP18] Jérémie Blanc, Ivan Cheltsov, Alexander Duncan, and Yuri Prokhorov. Finite quasisimple groups acting on rationally connected threefolds. *arXiv preprint*, 1809.09226, 2018.

[BP13] Fedor Bogomolov and Yuri Prokhorov. On stable conjugacy of finite subgroups of the plane Cremona group, I. *Cent. Eur. J. Math.*, 11(12):2099–2105, 2013.

[DI09] Igor V Dolgachev and Vasily A. Iskovskikh. Finite subgroups of the plane Cremona group. In *Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I*, volume 269 of *Progr. Math.*, pages 443–548. Birkhäuser Boston Inc., Boston, MA, 2009.

[Dol12] Igor V Dolgachev. *Classical algebraic geometry: a modern view*. Cambridge University Press, 2012.

[Isk79] V. A. Iskovskikh. Minimal models of rational surfaces over arbitrary fields. *Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya*, 43(1):19–43, 1979.

14
[Isk96] V. A. Iskovskikh. Factorization of birational maps of rational surfaces from the viewpoint of Mori theory. *Russian Mathematical Surveys*, 51(4):585, 1996.

[Isk08] V. A. Iskovskikh. Two non-conjugate embeddings of $S_3 \times \mathbb{Z}_2$ into the Cremona group. II. In *Algebraic geometry in East Asia–Hanoi 2005*, volume 50 of *Adv. Stud. Pure Math.*, pages 251–267. Math. Soc. Japan, Tokyo, 2008.

[LPR06] Nicole Lemire, Vladimir L. Popov, and Zinovy Reichstein. Cayley groups. *J. Amer. Math. Soc.*, 19(4):921–967, 2006.

[Man67] J. I. Manin. Rational surfaces over perfect fields. II. *Mathematics of the USSR-Sbornik*, 1(2):141, 1967.

[Pro15] Yuri Prokhorov. On stable conjugacy of finite subgroups of the plane Cremona group, II. *Michigan Math. J.*, 64(2):293–318, 2015.

[Tre18] Andrey Trepalin. Quotients of del Pezzo surfaces of high degree. *Trans. Amer. Math. Soc.*, 370(9):6097–6124, 2018.

School of Mathematics, The University of Edinburgh, Edinburgh, Scotland

E-mail address: a.sarikyan@ed.ac.uk