The effects of conjugated linoleic acid supplementation on lipid profile in adults: A systematic review and dose–response meta-analysis

Omid Asbaghi1,2, Damoon Ashtary-larky3, Kaveh Naseri4, Saeede Saadati5, Mohammad Zamani6, Mahnaz Rezaei Kelishadi7, Maryam Nadery8, Saeid Doaei9* and Neda Haghighat10*

1Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 2Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 3Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 4Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran, 5Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia, 6Department of Clinical Nutrition, School of Nutritional sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran, 7Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran, 8Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States, 9Reproductive Health Research Center, Department of Obstetrics and Gynecology, Al-Zahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran, 10Laparoscopy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

Background: The findings of trials investigating the effect of conjugated linoleic acid (CLA) administration on lipid profile are controversial. This meta-analysis of randomized controlled trials (RCTs) was performed to explore the effects of CLA supplementation on lipid profile.

Methods: Two authors independently searched electronic databases including PubMed, Web of Science, and Scopus until March 2022, in order to find relevant RCTs. The random effects model was used to evaluate the mean and standard deviation.

Results: In total, 56 RCTs with 73 effect sizes met the inclusion criteria and were eligible for the meta-analysis. CLA supplementation significantly alter triglycerides (TG) (WMD: 1.76, 95% CI: −1.65, 5.19), total cholesterol (TC) (WMD: 0.86, 95% CI: −0.42, 2.26), low-density lipoprotein cholesterol (LDL-C) (WMD: 0.49, 95% CI: −0.75, 2.74), apolipoprotein A (WMD: −3.15, 95% CI: −16.12, 9.81), and apolipoprotein B (WMD: −0.73, 95% CI: −9.87, 8.41) concentrations. However, CLA supplementation significantly increased the density lipoprotein cholesterol (HDL-C) (WMD: −0.40, 95% CI: −0.72, −0.07) concentrations.
Introduction

Dyslipidemia has been shown to be a major predictor of cardiovascular disease (CVD), atherosclerosis, and type 2 diabetes mellitus (T2DM) (1–3), characterized by either one or a combination of the elevated serum concentration of total cholesterol (TC), total triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and the reduced serum concentration of high-density lipoprotein cholesterol (HDL-C) (1, 4). An imbalance between LDL-C and HDL-C can lead to increasing the incidence rate of myocardial infarction (MI) and stroke (5). Additionally, as result of the accumulation of plaque within the arteries, atherosclerotic CVD can be raised when LDL-C level is higher than normal (5). However, HDL-C has a protective role against atherosclerotic CVD (6).

Hypercholesterolemia is the most prevalent form of dyslipidemia, being the 15th leading cause of death in 1990, growing to 11th in 2007 and 8th in 2019 (7). According to the latest reports, the prevalence of hypercholesterolemia among adults was as follows: in Europe (53.7%), America (47.7%), South East Asia (30.3%), and Africa (23.1%) (8). The worldwide burden of dyslipidemia has raised over the previous 30 years (7), accounting for more than 4 million deaths annually (4). Accordingly, CVD as one of the primary outcomes of dyslipidemia presents a tremendous economic burden on the healthcare system (9), and T2DM has also been demonstrated to raise health care costs (10).

The major risk factors related to the development of dyslipidemia are poor dietary habits and sedentary lifestyle, overweight and obesity (11, 12), and alcohol consumption and cigarette smoking (13, 14). Over the past few years, although dietary interventions have been carried out to control dyslipidemia, adherence to strict long-term dietary restrictions can be challenging. Thus, dietary supplements can be an efficient approach in addition to lifestyle interventions (15–19).

Conjugated linoleic acid (CLA) is a collective term that refers to a heterogeneous group of geometric isomers of linoleic acid; up to 28 isomer forms are detected, of them “c9,t11” and “t10,c12” are especially important (20). CLA is naturally found in the fat, milk, and meat of ruminant animals such as cow, sheep, and goat (20, 21). Accumulating studies have shown the effects of CLA on the management of lipid abnormalities related to CVD and T2DM (22). The underlying mechanisms of action of CLA are through lipid metabolism, modifying enzyme activity, and hormonal profile (23). CLA can increase lipolysis in adipocytes, diminish fatty acids synthesis, and reduce lipogenesis. Moreover, CLA can increase beta-oxidation of mitochondrial fatty acids and as a result decreases triacylglycerol synthesis (23–25).

Apolipoprotein A (Apo A) is considered as a major structural protein of high-density lipoprotein, and Apolipoprotein B (Apo B) is the primary protein constituted of low-density lipoprotein (26). Apo B is an independent risk predictor for the severity of coronary artery disease (CAD) (26). In a study on the effect of CLA supplementation on serum level of Apo A and Apo B, there were no changes in these factors in healthy female young individuals (27). A review and meta-analysis study, included 23 randomized controlled trial (RCT), showed that CLA supplements caused a significant reduction in LDL-C level (28). In line with this study, Santurino et al. demonstrated that the consumption of PUFA n-3 and CLA naturally enriched goat cheese on 68 overweight and obese subjects for 12 weeks significantly increase the HDL-C (29). However, in a double-blind, randomized, placebo-controlled trial on 401 overweight or obese participants investigating the effect of 6-month CLA supplementation (2.5 g/day c9, t11 CLA + 0.6 g/day c12 t10 CLA) on the clinical parameters related to atherosclerosis like plasma lipids, there were no significant effects of CLA on serum concentrations of TG, TC, LDL-C, and HDL-C (30). In another small trial, 2-month of 3 g/day mixed CLA supplementation on patients with coronary artery disease (CAD) had no effect on the plasma TG, LDL-C, or HDL-C (31). Also, Fouladi et al. showed that a 12-week CLA plus exercise intervention among overweight adults has no effects on serum concentration of TG and LDL-C (32). Thus, a large number of human trials have failed to demonstrate a protective effect of CLA against CVD risk factors focusing on lipid profile.

According to previous findings, the general impact of CLA on lipid profile is equivocal, thereby demonstrating the need for a comprehensive systematic review and

Conclusion: CLA supplementation significantly improved HDL-C concentrations, however, increased concentrations of TG, TC, LDL-C, apolipoprotein A, and apolipoprotein B.

Systematic review registration: https://www.crd.york.ac.uk/prospero/#recordDetails, identifier: CRD42022331100.

KEYWORDS

conjugated linoleic acid, lipid profile, systematic review, meta-analysis, CLA
TABLE 1 Risk of bias assessment.

Studies	Random sequence generation	Allocation concealment	Selective reporting	Other sources of bias	Blinding (participants and personnel)	Blinding (outcome assessment)	Incomplete outcome data	General quality
Blankson et al. (35)	L	L	H	H	L	U	L	Moderate
Berven et al. (36)	L	H	H	H	L	U	L	Low
Benito et al. (37)	L	H	H	L	H	L	L	Low
Mougios et al. (38)	L	H	H	H	L	U	L	Moderate
Risérs et al. (39)	L	H	H	H	L	U	L	Low
Noone et al. (40)	L	H	H	H	L	U	L	Moderate
Risérs et al. (41)	L	H	H	H	L	U	H	Low
Kamphuis et al. (42)	L	H	H	H	L	U	L	Low
Whitham et al. (43)	L	H	H	L	U	L	Moderate	
Moloney et al. (44)	L	H	H	L	L	U	L	Moderate
Gaulier et al. (45)	U	H	H	H	L	U	L	Low
Riserus et al. (46)	L	H	H	H	L	U	H	Low
Song et al. (47)	L	H	H	H	L	U	L	Low
Desroches et al. (48)	L	H	H	L	H	H	L	Low
Gaulier et al. (45)	L	L	H	L	L	U	L	High
Triccon et al. (49)	L	H	H	H	L	L	U	Moderate
Naumann et al. (50)	L	H	H	H	L	L	U	Moderate
Colakoglu et al. (27)	L	H	L	H	H	H	L	Low
Schmitt et al. (51)	L	H	H	L	L	U	L	Moderate
Taylor et al. (52)	L	H	H	H	L	U	H	Low
Attar-Bashi et al. (53)	L	L	H	L	L	U	L	High
Nazare et al. (54)	L	H	H	H	L	U	L	Low
Gaulier et al. (55)	L	L	H	H	L	U	L	Moderate
Steck et al. (56)	L	H	H	H	L	U	L	Low
Watras et al. (57)	L	L	H	H	L	U	H	Low
Lambert et al. (58)	L	H	H	H	L	U	L	Low
Iwata et al. (59)	L	H	H	L	L	U	L	Moderate
Park et al. (60)	L	H	H	H	L	U	L	Low
Aryasian et al. (61)	L	H	H	H	L	U	L	Low
Raff et al. (62)	L	H	H	L	L	U	L	Moderate
Kim et al. (63)	L	H	H	L	L	U	L	Moderate
Son et al. (64)	L	L	H	L	L	U	L	High
Zhao et al. (65)	L	H	H	H	L	U	L	Low
Shadman et al. (66)	L	H	H	H	L	L	L	Low
Sofi et al. (67)	L	H	H	H	H	H	L	Low
Wanders et al. (68)	L	H	H	L	H	L	L	Low
Michishita et al. (69)	L	L	H	H	L	U	L	Moderate
Shuijs et al. (70)	L	L	H	L	L	U	L	High
Venkataraman et al. (70)	L	H	H	L	H	H	L	Low
Brown et al. (71)	L	H	H	L	H	H	H	Low
Sato et al. (72)	L	H	H	L	L	U	L	Moderate
Joseph et al. (73)	L	H	H	H	L	U	H	Low
Pleuffer et al. (74)	L	H	H	H	L	U	H	Low
Rubin et al. (75)	L	L	H	H	L	U	L	Moderate
Chen et al. (76)	L	L	H	L	L	U	L	High

(Continued)
TABLE 1 (Continued)

studies	Random sequence generation	Allocation concealment	Selective reporting	Other sources of bias	Blinding (participants and personnel)	Blinding (outcome assessment)	Incomplete outcome data	General quality
Carvalho et al. (77)	L	H	H	H	L	U	L	Low
Lopez-Plaza et al. (78)	L	L	H	L	L	U	L	High
Bulut et al. (79)	L	H	L	H	L	U	L	Moderate
Shadman et al. (80)	L	H	L	H	L	U	L	Moderate
Jenkins et al. (81)	L	L	H	L	L	U	L	High
Eftekhari et al. (82)	L	H	L	H	H	L	L	Low
Baghi et al. (82)	L	H	L	L	U	L	L	High
Ebrahimi-Mameghani et al. (83)	L	L	H	L	L	L	L	High
Ribeiro et al. (84)	L	L	H	L	L	U	L	High
Fouladi et al. (82)	L	L	H	L	H	L	L	Low
Chang et al. (21)	L	L	H	H	L	U	L	Moderate

General Low quality > 2 high risk, General moderate quality = 2 high risk, General high quality < 2 high risk.

meta-analysis of clinical trials on this topic. Therefore, given the unclear impact of CLA on plasma lipid concentration, the aim of the current meta-analysis was to investigate the effects of CLA on lipid profile in adults.

Methods and materials

This study was carried out according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol for reporting systematic reviews and meta-analysis (33). And also, the research question of the systematic review is clearly defined in terms of populations (adults), interventions (CLA), comparators (control-group), outcomes (lipid profile), and study designs (RCTs) (PICOS).

Search strategy

We conducted a comprehensive literature search in the online databases of PubMed/MEDLINE, Scopus, Web of Science, and Cochrane library up to 22 March. We applied the following MeSH and non-MeSH terms in the search strategy:

("Conjugated linoleic acid" OR "conjugated fatty acid" OR "bovic acid" OR "rumenic acid" OR "CLA") AND (Intervention OR "Intervention Study" OR "Intervention Studies" OR "controlled trial" OR randomized OR randomized OR random OR randomly OR placebo OR "clinical trial" OR Trial OR "randomized controlled trial" OR "randomized clinical trial" OR RCT OR blinded OR "double blind" OR "double blinded" OR trial OR "clinical trial" OR trials OR "Pragmatic Clinical Trial" OR "Cross-Over Studies" OR "Cross-Over" OR "Cross-Over Study" OR parallel OR "parallel study" OR "parallel trial").

There were no restrictions on time and language of publications. Additionally, to prevent missing any publications, all the references of the related papers were checked. All searched studies were included in the Endnote software for screening; consequently, duplicate citations and unpublished manuscripts were removed.

Inclusion criteria and exclusion criteria

The inclusion criteria for the current study were: (1) randomized controlled clinical trials, (2) studies on adult population (age > 18 y), (3) studies that administered CLA in different forms including "c9, t11" and "t10,c12" isomers supplement and food enriched CLA, (4) RCTs with at least 1 week's duration of trial, and (5) controlled trials that reported mean changes and their standard deviations (SDs) of lipid profile throughout the trial for both intervention and control groups or presented required information for calculation of those effect sizes. If there was more than 1 published article for one dataset, the more complete set was included. Clinical trials with an extra intervention group were considered as 2 separate studies. The exclusion criteria in the current meta-analysis were experimental studies, those with a cohort, cross-sectional, and case–control design, review articles, and ecological studies. Also, trials without a placebo or control group and those which were
not randomized, and/or performed on children and adolescents, were excluded.

Data extraction

Two independent reviewers (MR and DA) completed data extraction from each qualified RCTs. Extracted data contain the name of the first author; publication year; location of the study; study design; sample size in each group; individuals' characteristics such as mean age, sex, and BMI; the CLA dose used for intervention; duration of intervention; mean changes; and SDs of lipid profile markers throughout the trial for both intervention and control groups, and the confounding variables adjusted in the analysis. If data were reported in different units, we converted them to the most frequently used unit.
Studies	Country	Study design	Participant	Sex	Sample size	Trial duration (week)	Means age	Means BMI	CLA dose	Control group
Blankson et al. (35)	Norway	Parallell, R, PC, DB	Overweight and obese human	M/F (F: 15, M: 6)	11 10 12	44.3 ± 12.7 44.4 ± 13.2	30.3 ± 2.9 28 ± 2.4	6.8	Placebo	
Blankson et al. (35)	Norway	Parallell, R, PC, DB	Overweight and obese human	M/F (F: 16, M: 6)	12 10 12	47.2 ± 13.5 44.4 ± 13.2	29.7 ± 2.5 28 ± 2.4	1.7	Placebo	
Blankson et al. (35)	Norway	Parallell, R, PC, DB	Overweight and obese human	M/F (F: 13, M: 5)	8 10 12	42.8 ± 10.4 44.4 ± 13.2	27.7 ± 2.1 28 ± 2.4	3.4	Placebo	
Blankson et al. (35)	Norway	Parallell, R, PC, DB	Overweight and obese human	M/F (F: 15, M: 6)	11 10 12	47.7 ± 11.3 44.4 ± 13.2	29.4 ± 2.8 28 ± 2.4	5.1	Placebo	
Berven et al. (36)	Norway	Parallell, R, PC, DB	Obese human volunteers	M/F (F: 17, M: 30)	25 22 12	47.6 ± 7.1 46.5 ± 7	29.4 ± 2.6 30.1 ± 2.2	3.4	Placebo	
Benito et al. (37)	USA	Parallell, R, PC, SB	Healthy	F: 17	7 10 8	27 ± 5.6 29.3 ± 6.8	23.6 ± 1.5 21.9 ± 3.1	3.9	Control diet	
Mougios et al. (38)	Greece	Parallell, R, PC, DB	Healthy	M/F (F: 10, M: 14)	10 12 8	22.4 ± 1.7 22 ± 1.3	23.8 ± 2.7 22.7 ± 3.3	1.4	Placebo	
Noone et al. (39)	Ireland	Parallell, R, PC, DB	Obese middle-aged men	M: 24	14 10 4	54 ± 5.7 52 ± 7.8	32.2 ± 3.4 31.7 ± 1.9	4.2	Placebo	
Risérus et al. (40)	Sweden	Parallell, R, PC, DB	Healthy human subjects	M/F (F: 18, M: 17)	17 18 8	28.58 ± 6.08 32.31 ± 10.86	24.08 ± 7.08 23.35 ± 3.35	3	Control diet	
Risérus et al. (41)	Sweden	Parallell, R, PC, DB	Obese men with the metabolic syndrome	M: 38	19 19 12	51 ± 7.1 53 ± 10.1	30.1 ± 1.8 30.2 ± 1.8	3.4	Placebo	
Risérus et al. (41)	Sweden	Parallell, R, PC, DB	Obese men with the metabolic syndrome	M: 38	19 19 12	55 ± 7.1 53 ± 10.1	31.2 ± 2.5 30.2 ± 1.8	3.4	Placebo	
Kamphuis et al. (42)	Netherlands	Parallell, R, PC, DB	Overweight subjects	M/F (F: 14, M: 13)	13 14 13	36.2 ± 7.6 34 ± 9.1	26.2 ± 1.7 25.7 ± 1.4	3.6	Placebo	
Kamphuis et al. (42)	Netherlands	Parallell, R, PC, DB	Overweight subjects	M/F (F: 14, M: 13)	14 13 13	40.9 ± 5 39.5 ± 7.7	25.6 ± 1.1 26.1 ± 1.4	1.8	Placebo	
Whigham et al. (43)	USA	Parallell, R, PC, DB	Obese humans	M/F (F: 35, M: 15)	27 23 52	43.4 ± 4.8 41.2 ± 5.9	32 ± 2.1 31.4 ± 2.3	6	Placebo	
Moloney et al. (44)	United Kingdom	Parallell, R, PC, DB	Type 2 diabetes mellitus	M/F: 32	16 16 8	63.8 ± 8.8 58.1 ± 10.8	29.1 ± 4 30.7 ± 4.8	3	Control diet	
Gaullier et al. (45)	Norway	Parallell, R, PC, DB	Healthy overweight humans	M/F (F: 98, M: 21)	60 59 52	48 ± 10.7 45 ± 9.5	28.3 ± 1.6 27.7 ± 1.7	4.5	Placebo	
Gaullier et al. (45)	Norway	Parallell, R, PC, DB	Healthy overweight humans	M/F (F: 98, M: 22)	61 59 52	44.5 ± 10.7 45 ± 9.5	28.1 ± 1.5 27.7 ± 1.7	4.5	Placebo	
Risérus et al. (46)	Sweden	Parallell, R, PC, DB	Obese men	M: 25	13 12 12	54 ± 5.5 56 ± 6	30.6 ± 2 30.4 ± 2.5	3	Placebo	
Gaullier et al. (45)	Norway	Parallell, R, PC, DB	Healthy overweight humans	M/F (F: 74, M: 14)	47 41 104	48.6 ± 10.6 45.1 ± 8.8	28.3 ± 1.5 27.4 ± 1.7	3.4	Placebo	
Song et al. (47)	United Kingdom	Parallell, R, PC, DB	Young healthy volunteers	M/F: 20, M: 8	14 12 14	31.8 ± 6.88 30.9 ± 7.14	24.3 ± 3.8 24.23 ± 3.69	3	Control diet	
Desroches et al. (48)	Canada	Crossover, R, PC, B	Overweight and obese	M: 17	17 17 4	36.6 ± 12.4 36.6 ± 12.4	31.2 ± 4.4 31.4 ± 4.4	4.22	Control diet	
Gaulier et al. (45)	Norway	Parallell, R, PC, DB	Healthy overweight humans	M/F (F: 69, M: 18)	46 41 104	45.1 ± 10.5 45.1 ± 8.8	28.1 ± 1.4 27.4 ± 1.7	3.4	Placebo	
Tricon et al. (49)	United Kingdom	Crossover, R, PC, DB	Healthy middle-aged men	M: 32	32 32 6	45.5 ± 8.7 45.5 ± 8.7	25 ± 3.4 25 ± 3.4	1.4	Control diet	
Naumann et al. (50)	Netherlands	Parallell, R, PC, DB	Overweight subjects with LDL phenotype B	M/F: 53	19 34 13	55 ± 7 51 ± 9	29.3 ± 2.4 28 ± 2.2	3	Control diet	
Naumann et al. (50)	Netherlands	Parallell, R, PC, DB	Overweight subjects with LDL phenotype B	M/F: 68	34 34 13	51 ± 7 51 ± 9	28.6 ± 2.3 28 ± 2.2	3	Control diet	

(Continued)
Studies	Country	Study design	Participant	Sex	Sample size	Trial duration (week)	Means age	Means BMI	Intervention			
(Continued)												
Colakoglu et al. (27)	Turkey	Paralell, R, PC, SB	Healthy	F: 18	11	7	6	20.4 ± 1.7	21.9 ± 2	23.3 ± 1.2	20.8 ± 1.6	3.6 Control diet
Colakoglu et al. (27)	Turkey	Paralell, R, PC, SB	Healthy	F: 26	12	14	6	21.7 ± 2	20.4 ± 2.5	22.5 ± 1.7	21.6 ± 1.6	3.6 Control diet
Schmitt et al. (51)	France	Paralell, R, PC, DB	Type 2 diabetes	M/F	13	13	12	54.38 ± 8.96	61.62 ± 9.27	32.07 ± 5.37	31.81 ± 4.16	4.5 Control diet
Taylor et al. (52)	United Kingdom	Paralell, R, PC, DB	Healthy	M/F	21	19	12	45 ± 6	47 ± 8	33 ± 3	33 ± 3	4.5 Control diet
Attar-Bashi et al. (53)	Australia	Paralell, R, PC	Healthy	M/F	8	8	8	33.1 ± 8.2	37.4 ± 12.2	24 ± 4.3	25 ± 3.8	3.2 Placebo
Lambert et al. (58)	South Africa	Paralell, R, PC, DB	Regularly exercising	F: 37	14	13	12	32 ± 7	32 ± 7	24.2 ± 2.1	24.2 ± 2.1	3.9 Control diet
Nazare et al. (54)	France	Paralell, R, PC, DB	Healthy subjects	M/F	21	23	14	29.4 ± 6.75	28.5 ± 5.7	25.2 ± 1.45	25.1 ± 1.48	3.76 Placebo
Gualler et al. (55)	Norway	Paralell, R, PC, DB	Overweight and obese	M/F	55	50	24	45.8 ± 10	48.7 ± 9.2	30.5 ± 10.4	30.2 ± 10.4	3.4 Placebo
Iwata et al. (59)	japan	Paralell, R, PC, DB	Overweight	M: 40	20	20	12	40.5 ± 8.8	42.5 ± 10.4	28.1 ± 2.1	27.8 ± 1.9	10.8 Placebo
Steck et al. (56)	United Kingdom	Paralell, R, PC, DB	Healthy obese humans	M/F	16	16	12	36.3 ± 8.9	34.9 ± 8	32.7 ± 1.8	32.7 ± 1.9	3.2 Placebo
Steck et al. (56)	United Kingdom	Paralell, R, PC, DB	Healthy obese humans	M/F	16	16	12	34.1 ± 8.9	34.9 ± 8	32.7 ± 1.7	32.7 ± 1.9	6.4 Placebo
Watras et al. (57)	Canada	Paralell, R, PC, DB	Healthy	M/F	22	18	24	34 ± 8	32 ± 7	27.6 ± 1.8	28 ± 2.2	3.2 Placebo
Lambert et al. (58)	South Africa	Paralell, R, PC, DB	Regularly exercising	M: 25	13	12	12	32 ± 7	32 ± 7	22.5 ± 2.5	22.5 ± 2.5	3.9 Control diet
Iwata et al. (59)	Japan	Paralell, R, PC, DB	Overweight	M: 40	20	20	12	44.3 ± 10.2	42.5 ± 10.4	27.4 ± 2	27.8 ± 1.9	5.4 Placebo
Park et al. (60)	Korea	Paralell, R, PC, DB	Overweight and obese human	M/F	15	15	8	38.7 ± 4.2	40.7 ± 4	25.5 ± 2	26.3 ± 2.5	2.4 Placebo
Aryaeian et al. (61)	Iran	Paralell, R, PC, DB	Rheumatoid arthritis	M/F	22	22	12	46.23 ± 13.07	47.95 ± 11.14	27.18 ± 0.99	28.48 ± 0.84	2.5 Placebo
Raff et al. (62)	Denmark	Paralell, R, PC, DB	Healthy young men	M: 38	18	20	5	25.7 ± 4.2	26.1 ± 3.6	22 ± 1.9	22.5 ± 2.1	5.5 Control diet
Kim et al. (63)	Korea	Paralell, R, PC, DB	Healthy overweight women	F: 27	15	12	12	26.33 ± 9.4	29.5 ± 10.8	25.23 ± 2.16	26.47 ± 1.8	3 Control diet
Sen et al. (64)	China	Paralell, R, PC, DB	Women with high body fat mass	F: 32	16	16	12	21.9 ± 2.7	21.9 ± 2.7	21.8 ± 1.1	22.5 ± 1.7	4.5 Placebo
Zhao et al. (65)	China	Paralell, R, PC, DB	Obesity-related hypertension	M/F	40	40	8	62.3 ± 3.5	59.4 ± 2.4	32.3 ± 2.3	31.2 ± 1.4	4.5 Control diet
Shadman et al. (66)	Iran	Paralell, R, PC, DB	Type 2 diabetic patients	M/F	21	19	20	45.14 ± 5.77	46.53 ± 4.38	27.4 ± 0.5	27.1 ± 1.8	3 Placebo
Sofi et al. (67)	Italy	Crossover, R, PC	Healthy middle-aged	M/F	10	10	8	45.6	45.6	25 ± 4	25 ± 4	3 Control diet
Wanders et al. (68)	Netherlands	Crossover, R, PC, SB	Healthy human subjects	M/F	61	61	3	30.9 ± 13.7	30.9 ± 13.7	22.8 ± 3.2	22.8 ± 3.2	28.9 Control diet
Michishita et al. (69)	Japan	Paralell, R, PC, DB	Healthy Overweight Humans	M/F	30	15	15	34.9 ± 1.4	39.4 ± 3.2	26.1 ± 1.6	25.6 ± 2	1.6 Amino acids

(Continued)
TABLE 2 (Continued)

Studies	Country	Study design	Participant	Sex	Sample size	Trial duration (week)	Means age	Means BMI	Intervention		
Sluijs et al. (30)	Netherlands	Parallel, R, PC, DB	Overweight and obese adults	M/F (F: 179, M: 167)	173 173	24	58 ± 0.4	58.8 ± 0.5	28 ± 9.45	27.7 ± 12.75	4 Placebo
Venkatramanan et al. (70)	Canada	Crossover, R, PC, SB	Overweight, borderline hyperlipidemic individuals	M/F (F: 5, M: 10)	15 15	8	46.6 ± 2	46.6 ± 2	NR	NR	1.3 Control diet
Brown et al. (71)	USA	Parallel, R, PC	Health in young women	F: 18	9 9	8	20–40	20–40	NR	NR	2 Placebo
Sato et al. (72)	Japan	Parallel, R, PC, DB	Overweight, hyperlipidemic	M: 27	27 27	8	18–60	18–60	31.4 ± 4	31.3 ± 4	3.5 Placebo
Joseph et al. (73)	Canada	Crossover, R, PC, DB	Overweight, borderline hyperlipidemic	M: 40	21 19	4	45–68	45–68	28.3 ± 2	27.8 ± 1.3	4.5 Control diet
Rubin et al. (75)	USA	Parallel, R, PC, DB	Overweight, hyperlipidemic	M: 35	35 35	4	45–68	45–68	26 ± 5.5	26 ± 1.3	4.25 Control diet
Ribeiro et al. (84)	Brazil	Parallel, R, PC, DB	Obese fatty liver disease	F: 28	15 13	8	23.1 ± 2.8	23.2 ± 2.6	28.9 ± 2.6	30.1 ± 3.2	3.2 Placebo
Fouladi et al. (32)	Iran	Parallel, R, PC	Overweight	F: 62, M: 51	57 56	12	35 ± 30	35 ± 29	27.6 ± 2.74	27.7 ± 2.98	3.0 Control diet
Chang et al. (21)	China	Parallel, R, PC, DB	Healthy adults	M/F (F: 40, M: 25)	32 33	12	25.3 ± 4.3	25.2 ± 4.4	26.4 ± 4.1	26.4 ± 3.2	3.2 Placebo
Quality assessment

The quality of qualified studies was measured by two independent researchers (OA and DA) by using the Cochrane Collaboration modified risk of bias tool, in which the risk of bias in RCTs is assessed in seven domains, including random sequence generation, allocation concealment, reporting bias, performance bias, detection bias, attrition bias, and other sources of bias (34). As a result, terms as “Low,” “High,” or “Unclear” were used to evaluate each domain (Table 1).

Statistical analysis

For obtaining the overall effect sizes, mean changes and their SDs of each variable in the CLA and control groups were applied. In case mean changes were not reported, we calculated them by considering changes in each outcome’s values during the intervention. We also converted standard errors (SEs), 95% confidence intervals (CIs), and interquartile ranges (IQRs) to SDs using the method of Hozo et al. (85) to acquire the overall effect sizes, we used a random-effects model that takes between-study variations into account. Heterogeneity was determined by the I^2 statistic and Cochrane’s Q test. I^2 value >50% or $p <0.05$ for the Q-test was characterized as significant between-study heterogeneity (86, 87). Subgroup analyses were carried out to find probable sources of heterogeneity based on the predefined variables including duration of intervention (≥ 12 vs. <12 weeks), intervention dose (≥ 3 vs. <3 g/day), participants’ health condition (healthy and unhealthy), baseline serum levels of TG (≥ 150 vs. <150 mg/dl), TC (≥ 200 vs. <200 mg/dl), LDL-C (≥ 100 vs. <100 mg/dl), and baseline levels of BMI (normal, overweight, and obese). To determine the non-linear effects of CLA dosage (g/day) on each variable concentration, fractional polynomial modeling was used. Sensitivity analysis was applied to detect the dependency of the overall effect size on a specific study. The possibility of publication bias was investigated by Egger’s regression test.
and the formal test of Begg. The meta-analysis was conducted by the use of the STATA® version 14.0 (StataCorp., College Station, Lakeway, TX, USA). *P*-value < 0.05 was considered as significant level.

Certainty assessment

The overall certainty of evidence across the studies was graded based on the guidelines of the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) Working Group. The quality of evidence was classified into four categories, according to the corresponding evaluation criteria: high, moderate, low, and very low (88).

Results

Study selection

We found a total of 632 studies from our initial search in databases. After duplicate publications removal, 327 records remained, out of which 253 articles were identified as unrelated when screening based on title and abstract. Next, 74 suitable articles were candidate for full-text assessment. Out of these, 11 records due to not-reported lipid profile components, 4 records for not having control group, and 3 co-supplementation records were excluded. Finally, 56 eligible RCTs were included in our systematic review and meta-analysis. Figure 1 illustrates a summary of the study selection.
Characteristics of the included studies

The characteristics of 56 RCTs included in the current systematic review and meta-analysis are shown in Table 2. In total, 73 effect sizes were extracted from 56 RCTs, including a total of 3,262 participants (1,773 participants in the CLA group and 1,738 ones in the placebo group). These RCTs were published between 2000 and 2020, from Asia ($n = 18$) ($21, 27, 31, 32, 39-61, 63-66, 69, 72, 76, 79, 80, 82, 83$), Europe ($n = 26$) ($30, 35, 36, 38-42, 44-47, 49-52, 54-56, 62, 67, 68, 74, 75, 78, 89$), America ($n = 10$) ($37, 43, 48, 57, 70, 71, 73, 77, 81, 84$), Africa ($n = 1$) ($58$), and Oceania ($n = 1$) ($53$). All RCTs enrolled both genders except 13 studies that were conducted exclusively on male ($39, 41, 46, 48, 49, 59, 62, 73-75, 79, 81, 82$) and 7 studies were performed on female ($27, 37, 63, 64, 71, 77, 84$). The mean age of individuals was between 18 and 68 years old with BMI range of 19–35.27 kg/m2. The dosage of CLA varied from 1.17 to 28.9 g/day and duration of intervention differed from 2 to 104 weeks across included RCTs. These studies were conducted in T2DM ($44, 51, 66, 80$), hypertension (65), metabolic syndrome ($41, 77$), hyperlipidemia ($70, 73$), rheumatoid arthritis (61), atherosclerosis (31), and others in healthy individuals. All studies employed a parallel design except 7 studies that applied cross-over design ($48, 49, 67, 68, 70, 73, 75$).

Meta-analysis results

Effects of CLA supplementation on TG concentration

Overall, 73 effect sizes with a total sample size of 3,511 participants (1,773 cases and 1,738 control subjects) were included in the analysis. After combining effect sizes, we found that there was no significant effect of CLA supplementation on TG levels (WMD: 1.76, 95% CI: $-1.65, 5.19$ mg/dL, $p = 0.312$) (Figure 2A). However, there was a high between-study heterogeneity (I^2: 99.8%, $p < 0.001$).
To detect the sources of between-study heterogeneity, we performed subgroup analyses according to baseline levels of TG (≥150 vs. <150 mg/dL), length of intervention (≥8 vs. <8 weeks), health status of participants (healthy, unhealthy), supplementation dose (≥3 vs. <3 g/day), and baseline BMI (normal, overweight, and obese) (Table 3). Subgroup analysis showed that CLA supplementation did not significantly reduce TG concentrations across none of the subgroups.

Effects of CLA supplementation on TC concentration

Sixty-seven arms of RCTs (1,561 cases and 1,529 control subjects) reported the effects of CLA supplementation on TC levels, and combining effect sizes from these studies showed a non-significant effect of CLA intake on TC concentrations (WMD: 0.86, 95% CI: −0.53, 2.26 mg/dL, p = 0.225), with a considerable between-study heterogeneity (I²: 89.5%, p < 0.001) (Figure 2B). To find the probable source of heterogeneity, subgroup analysis was applied. All of the abovementioned subgroup analysis indicated that health status subgroups could explain study heterogeneity (Table 3).

Effects of CLA supplementation on LDL-C concentration

Considering 66 effect sizes that included 3,217 participants (1,627 cases and 1,590 control subjects), no significant effect of CLA supplementation on serum concentrations of LDL-C was found (WMD: 0.49, 95% CI: −1.75, 2.74 mg/dL, p = 0.668). However, there was a considerable between-study heterogeneity (I²: 96.3%, p < 0.001) (Figure 2C). Subgroup analysis also revealed that CLA supplementation significantly increased serum LDL-C level across the individuals with normal BMI (p < 0.001) (Table 3).
FIGURE 2
Forest plot presenting mean difference (MD) and 95% confidence intervals for the impact of CLA supplementation on (A) TG (mg/dl), (B) TC (mg/dl), (C) LDL-C (mg/dl), (D) HDL-C (mg/dl), (E) Apo A (mg/dl), and (F) Apo B (mg/dl).
TABLE 3 Subgroup analyses of CLA supplementation on lipid profile in adults.

Subgroup analyses of CLA supplementation on TG	Number of studies	WMD (95%CI)	P-value	Heterogeneity	
Overall effect	73	1.76 (−1.65, 5.19)	0.312	<0.001	99.8%
Baseline TG (mg/dL) < 150	51	1.34 (−4.40, 7.08)	0.648	<0.001	99.8%
≥ 150	18	3.57 (−8.01, 15.15)	0.546	<0.001	79.0%
Trial duration (week) ≥ 12	41	3.49 (−0.98, 7.98)	0.126	<0.001	99.9%
< 12	32	−0.73 (−6.34, 4.87)	0.798	<0.001	87.4%
Health status					
Healthy	60	1.84 (−1.84, 5.53)	0.328	<0.001	98.9%
Unhealthy	13	1.64 (−8.87, 12.15)	0.759	<0.001	82.9%
Supplementation dose (g/day) ≥ 3	44	2.69 (−1.62, 7.00)	0.221	<0.001	99.7%
< 3	29	0.16 (−5.44, 5.76)	0.955	<0.001	99.7%
Baseline BMI (kg/m²)					
Normal (18.5–24.9)	18	1.85 (−7.82, 11.52)	0.707	<0.001	79.2%
Overweight (25–29.9)	36	2.71 (−2.42, 7.84)	0.301	<0.001	99.9%
Obese (>30)	17	0.05 (−7.02, 7.13)	0.988	<0.001	86.9%
Subgroup analyses of CLA supplementation on TC					
Overall effect	67	0.86 (−0.53, 2.26)	0.225	<0.001	89.5%
Baseline TC (mg/dL) ≥ 200	27	2.22 (−0.36, 4.81)	0.093	<0.001	77.9%
< 200	36	0.11 (−1.95, 2.17)	0.914	<0.001	93.1%
Trial duration (week) ≥ 12	37	1.06 (−0.44, 2.58)	0.168	<0.001	78.9%
< 12	30	−0.24 (−2.68, 2.18)	0.841	<0.001	86.3%
Health status					
Healthy	54	2.25 (0.61, 3.88)	0.007	<0.001	91.1%
Unhealthy	13	−3.26 (−5.88, −0.65)	0.014	0.003	60.2%
Supplementation dose (g/day) ≥ 3	41	−0.10 (−1.43, 1.21)	0.872	<0.001	84.7%
< 3	26	1.54 (−1.64, 4.74)	0.341	<0.001	71.8%
Baseline BMI (kg/m²)					
Normal (18.5–24.9)	18	1.69 (−0.52, 3.92)	0.931	0.003	55.1%
Overweight (25–29.9)	30	0.08 (−1.84, 2.01)	0.135	<0.001	92.6%
Obese (>30)	17	0.12 (−3.46, 3.72)	0.944	<0.001	77.4%
Subgroup analyses of CLA supplementation on LDL-C					
Overall effect	66	0.49 (−1.75, 2.74)	0.668	<0.001	96.3%
Baseline LDL (mg/dL) ≥ 100	49	0.92 (−2.30, 4.14)	0.576	<0.001	94.1%
< 100	13	0.07 (−0.75, 0.90)	0.858	0.389	5.8%
Trial duration (week) ≥ 12	38	1.55 (−1.44, 4.55)	0.310	<0.001	97.5%
< 12	28	−1.32 (−5.64, 2.99)	0.547	<0.001	90.3%

(Continued)
TABLE 3 (Continued)

Health status	Number of studies	WMD (95%CI)	P-value	Heterogeneity	
				P heterogeneity	I^2
Healthy	53	1.61 (−0.93, 4.16)	0.214	<0.001	96.6%
Unhealthy	12	−3.59 (−9.00, 1.82)	0.193	<0.001	90.2%
Supplementation dose (g/day)					
≥3	39	0.32 (−2.80, 3.46)	0.838	<0.001	97.6%
<3	27	0.91 (−2.25, 4.09)	0.571	<0.001	83.1%
Baseline BMI (kg/m²)					
Normal (18.5–24.9)	17	3.39 (1.56, 5.22)	<0.001	0.586	0.0%
Overweight (25–29.9)	31	0.14 (−3.09, 3.38)	0.929	<0.001	98.1%
Obese (>30)	17	−0.15 (−5.71, 5.40)	0.956	<0.001	87.3%
Subgroup analyses of CLA supplementation on HDL-C					
Overall effect	67	−0.40 (−0.72, −0.07)	0.015	<0.001	63.0%
Baseline HDL (mg/dL)					
≥50	39	−0.19 (−0.60, 0.22)	0.361	<0.001	69.4%
<50	24	−0.66 (−1.37, 0.03)	0.063	0.007	46.2%
Trial duration (week)					
≥12	38	−0.06 (−0.30, 0.17)	0.586	0.010	38.2%
<12	29	−0.81 (−2.01, 0.39)	0.186	0.007	73.9%
Health status					
Healthy	54	−0.24 (−0.55, 0.05)	0.108	<0.001	50.2%
Unhealthy	13	−0.66 (−2.23, 0.89)	0.403	<0.001	82.2%
Supplementation dose (g/day)					
≥3	40	−0.07 (−0.41, 0.27)	0.691	<0.001	59.2%
<3	27	−0.98 (−1.95, −0.01)	0.048	<0.001	62.5%
Baseline BMI (kg/m²)					
Normal (18.5–24.9)	18	−1.68 (−3.17, −0.19)	0.026	0.114	29.7%
Overweight (25–29.9)	31	−0.19 (−0.47, 0.08)	0.175	<0.001	56.1%
Obese (>30)	17	−0.58 (−2.17, 1.01)	0.476	<0.001	76.2%
Subgroup analyses of CLA supplementation on Apo A					
Overall effect	4	−3.15 (−16.12, 9.81)	0.634	0.050	61.6%
Subgroup analyses of CLA supplementation on Apo B					
Overall effect	5	−0.73 (−9.87, 8.41)	0.875	0.019	65.9%

CI, confidence interval; WMD, weighted mean differences. *Bold value: significant effect (p < 0.05).

Effects of CLA supplementation on HDL-C concentration

Totally, 67 effect sizes with a sample size of 3,283 participants (1,658 cases and 1,625 control subjects) were included in the analysis. Combining these effect sizes, a significant reduction was seen in serum concentrations of HDL-C following CLA supplementation (WMD: −0.40, 95% CI: −0.72, −0.07 mg/dL, p = 0.015) (Figure 2D). There was evidence of moderate between-study heterogeneity (I^2: 63%, p < 0.001). In the subgroup analysis, we found that the effect of CLA supplementation on serum HDL-C concentrations strengthened in studies performed on individuals with normal BMI and when the supplementation dose of CLA is <3 g/day (Table 3).

Effects of CLA supplementation on Apo A

Four effect sizes including 79 participants (39 cases and 40 control subjects) provided information on Apo A as an outcome measure. Pooled results showed that CLA
intake did not significantly affect Apo A (WMD: -3.15, 95% CI: $-16.12, 9.81$, $p = 0.634$) (Figure 2E), with a moderate heterogeneity among studies ($I^2: 61.6\%$, $p = 0.050$) (Table 3).

Effects of CLA supplementation on Apo B

Five effect sizes including a total of 118 participants (58 cases and 60 control subjects) indicated the effects of CLA intake on Apo B. CLA supplementation did not significantly decrease Apo B (WMD: -0.73, 95% CI: $-9.87, 8.41$, $p = 0.875$), without significant heterogeneity between studies ($I^2: 65.9\%$, $p = 0.019$) (Figure 2F and Table 3).

Publication bias

Publication bias assessment was performed based on visual inspection of funnel plot, Begg’s and Egger’s linear regression test. Results revealed no publication bias for TG ($p = 0.646$), LDL-C ($p = 0.578$), Apo A ($p = 0.148$), and Apo B ($p = 0.340$) based on Egger’s test. However, there was publication bias for TC ($p = 0.001$, Begg’s test) ($p = 0.002$, Egger’s test). Furthermore, there was no evidence of a substantial publication bias for HDL-C ($p = 0.858$) based on Begg’s test (Figure 3).

Linear and non-linear dose-responses between dose and duration of CLA supplementation and lipid profile components

Meta-regression using the random-effects model was undertaken to investigate the potential association between a change in lipid profile and dose of CLA (g/day) and duration of intervention. Meta-regression analysis indicated that there was not a linear association between absolute changes in all the factors and duration and dose (Figures 4, 5).

Dose–response analysis showed that CLA supplementation changed TC significantly based on duration ($r = -0.006$, P-non-linearity $= 0.009$) in non-linear fashion. Additionally, significant associations were not observed for other outcomes in non-linear dose–responses (Figures 6, 7).

Grading of evidence

The GRADE protocol was applied for the assessment of the certainty of the evidence (Table 4) and determined the evidence regarding HDL-C to be of moderate quality, owing to serious inconsistency and TG, LDL-C, Apo A, and Apo B to be of low quality for a serious imprecision and inconsistency reason. However, the evidence relating to TC was downgraded to very low quality, because of the serious inconsistency, imprecision, and publication bias.
Asbaghi et al.

Sensitivity analysis

The sensitivity analysis was also carried out to examine the impact of each individual study on the pooled effect size by removing each study in turn. The sensitivity analysis showed that the result was not significantly influenced by any of the studies assessing the TG, TC, and LDL-C levels. However, the effect of CLA on HDL-C was significantly changed after removing studies by Risérus et al. (41) (WMD: -0.31, 95% CI: -0.63, 0.00) (41), Sofi et al. (67) (WMD: -0.22, 95% CI: -0.52, 0.06) (67), and Eftekhari et al. (31) (WMD: -0.30, 95% CI: -0.63, 0.02) (31).

Discussion

In this systematic review and meta-analysis, we aimed to evaluate the effects of CLA supplementation on lipid profile. The results derived from this study suggest that the administration of CLA has non-significant effects on serum levels of TG, TC, LDL, Apo A, and Apo B. However, CLA supplementation decreases HDL statistically but not clinically.

Initial animal studies suggested that CLA promotes significant changes to lipid metabolism in vivo. In mice, it has been reported that CLA decreases cholesterol levels (90–93) and increases HDL levels (92, 94, 95), suggesting that CLA could impact cholesterol efflux. It should be noted that mice inherently have a much different lipoprotein profile than humans, where the majority of the cholesterol is carried on HDL rather than both LDL and HDL (96). However, the proven effects of CLA administration on lipid profile are unclear, as clinical studies on this topic have produced inconsistent results. A meta-analysis of 23 studies by Derakhshande-Rishehri et al. showed that CLA supplementation has favorable effects on LDL cholesterol levels without any changes in TC, TG, and HDL (28). They also reported that consumption of foods enriched with CLA has similar effects. In a more recent meta-analysis of 13 studies by Moreno et al. they showed that CLA was associated with a reduction in HDL-C levels and an increase in triglyceride levels (97). However, our results of 56 studies CLA supplementation not only cannot improve LDL but also it can decrease HDL,
in inconsistence with their findings. Differences in the different number of studies, the use of different doses and type of supplementation can be the explanations for inconsistencies between our findings and Derakhshande-Rishehri et al. findings. HDL-lowering effects of CLA are in contrast with the previously mentioned findings from mechanistic studies. Therefore, the possible mechanisms underlying the negative effects of CLA supplementation on HDL concentrations remain unclear. Because low HDL levels are an independent risk factor for cardiovascular events (98), the current reduction of 0.4 mg/dl with CLA is of clinical concern. Riserus et al. hypothesized that HDL-lowering effect of CLA may be related to its leptin-lowering effect (41). According to their findings, the decrease in HDL cholesterol following CLA supplementation was correlated with a change in leptin. Because of the importance of HDL-decrement which is reported in our study as well as some previous studies, further mechanistic studies are needed to the possible mechanism underlying the effects of CLA supplementation on lipid profile.

The present meta-analysis contains some strengths and limitations. The main strength of this study is the relatively acceptable number of studies (N = 56) and high sample size compared with previous meta-analyses (N = 13 and 23). Moreover, we analyzed a wider range of lipid profile biomarkers (TC, TG, LDL, HDL, and apo A and apo B). Another advantage is the lack of publication bias in almost all analyses (all except for TC). Furthermore, we performed a dose–response analysis to evaluate the association between pooled effect size, dosage, and duration of CLA supplementation.

Another strength of this study relates to the inclusion of several long-term studies, which certainly has the advantage of documenting the long-term effects of CLA administration on lipid profile and allowing comparisons to shorter duration designs. Finally, we graded the overall certainty of evidence across the studies according to the GRADE guidelines. Regarding limitations, statistical heterogeneity is apparent in our analysis. This may be attributed to
methodological diversity (different study designs) and/or differences in treatment regimens (doses/durations) or the intervention type. In addition, the quality of evidence regarding all markers was identified as very low to moderate quality.

Overall, the results of the current systematic review and meta-analysis demonstrate that supplementation of CLA statistically decreases HDL but not clinically. However, CLA may not affect serum levels of TG, TC, LDL, apo-A, and apo-B. However, given the low quality of some of the included studies, further studies are needed to support the veracity of our findings.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

Author contributions

OA contributed in conception and design of the study, data analysis, and supervised the study. DA-l and KN contributed to data extraction. MZ contribute to correct the proof of manuscript. SS and MR screened articles for inclusion criteria. SD and NH contributed in manuscript drafting. MN contributed to edit English language. All authors approved the final version of the manuscript.

Funding

This work was supported by Shiraz University of Medical Sciences (grant number: 26331).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

FIGURE 6
Non-linear dose-respons plots based on dose (g/d) of intervention for (A) TG (mg/dl), (B) TC (mg/dl), (C) LDL-C (mg/dl), and (D) HDL-C (mg/dl).
Non-linear dose-response plots based on duration (week) of intervention for (A) TG (mg/dl), (B) TC (mg/dl), (C) LDL-C (mg/dl), and (D) HDL-C (mg/dl).

TABLE 4 GRADE profile of CLA supplementation for on lipid profile.

Outcomes	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Number of intervention/control	Quality of evidence
TG	No serious	Serious	No serious	Serious	No serious	3,511	Low
	limitation	limitation^a	limitation^a	limitation^a	limitation^a	(1,773/1,738)	Low
TC	No serious	Serious	No serious	Serious	Serious	3,090	Very Low
	limitation	limitation^a	limitation^a	limitation^a	limitation^a	(1,561/1,529)	Low
LDL-C	No serious	No serious	No serious	No serious	No serious	3,217	Low
	limitation	limitation^a	limitation^a	limitation^a	limitation^a	(1,627/1,590)	Low
HDL-C	No serious	No serious	No serious	No serious	No serious	3,283	Moderate
	limitation	limitation^a	limitation^a	limitation^a	limitation^a	(1,658/1,625)	Moderate
Apo A	No serious	No serious	No serious	No serious	No serious	79 (39/40)	Low
	limitation	limitation^a	limitation^a	limitation^a	limitation^a	(1,658/1,625)	Low
Apo B	No serious	No serious	No serious	No serious	No serious	118 (58/60)	Low

^There is significant heterogeneity for TG (I^2 = 99.8%), TC (I^2 = 89.5%), LDL-C (I^2 = 96.3%), HDL-C (I^2 = 63.0%), Apo A (I^2 = 61.6%), and Apo B (I^2 = 65.9%).

^There is no evidence of significant effects of CLA supplementation on TG, TC, LDL-C, Apo A, and Apo B.

^There is significant publication bias for TC (p = 0.001).
1. Cheng Y-C, Sheen J-M, Hu WL, Hung Y-C. (2017). Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell Longevity. (2017) 2017:8526438. doi: 10.1155/2017/8526438

2. Narinderaranagkura P, Boul W, Rangsir, Hattabhoto P. Prevalence of dyslipidemia associated with complications in diabetic patients: a nationwide study in Thailand. Lipids Health Dis. (2019) 18:1-8. doi: 10.1186/s12944-019-1034-3

3. Beverly JK, Budoff MJ. Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation. J Diabetes. (2020) 12:102-4. doi: 10.1111/1753-4407.12970

4. Gebreregziabher H, Belachew T, Mehari K, Tamiru D. Prevalence of dyslipidemia and associated risk factors among adult residents of Mekelle City, Northern Ethiopia. PLoS ONE. (2021) 16:e0243103. doi: 10.1371/journal.pone.0243103

5. Cooney M, Dudina A, De Bacquer D, Wilhelmsen L, Sans S, Menotti A, et al. HDL cholesterol protects against cardiovascular disease in both genders, at all ages and at all levels of risk. Atherosclerosis. (2009) 206:611–6. doi: 10.1016/j.atherosclerosis.2009.02.041

6. Natarajan P, Ray KK, Cannon CP. High-density lipoprotein and coronary heart disease: current and future therapies. J Am Coll Cardiol. (2010) 55:1283–99. doi: 10.1016/j.jacc.2010.01.008

7. Pirillo A, Casula M, Olmstroni E, Norata GD, Catapano AL. Global epidemiology of dyslipidemias. Nat Rev Cardiol. (2018) 15:689–700. doi: 10.1038/s41569-016-00541-4

8. Mohamed-Yassin M-S, Baharudin N, Abdul-Razak S, Ramli AS, Lai NM. Global prevalence of dyslipidemia in adult populations: a systematic review protocol. BMJ Open. (2021) 11:e049662. doi: 10.1136/bmjopen-2021-049662

9. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. (2015) 131:e29–322. doi: 10.1161/CIR.0000000000000152

10. Bansal V, Mottalib A, Pawar TK, Abbasakoor N, Chuang E, Chaudhry HO, et al. Inpatient diabetes management by specialized diabetes team versus primary service team in non-critical care units: impact on 30-day readmission. Inpatient diabetes management by specialized diabetes team versus primary service team in non-critical care units: impact on 30-day readmission. J Diabetes. (2019) 10:5267025. doi: 10.1155/2019/5267025

11. Cheng Y-C, Sheen J-M, Hu WL, Hung Y-C. (2017) 2017:8526438. doi: 10.1155/2017/8526438

12. Enani S, Bahijri S, Malibary M, Jambi H, Eldakhakhny B, Al-Ahmadi J, et al. Association between dyslipidemia and blood lipids concentration with smoking and dyslipidemia in western Chinese elderly males. Atherosclerosis. (2008) 206:611–6. doi: 10.1016/j.atherosclerosis.2009.02.041

13. Lertoith D. Dyslipidemia and glucose dysregulation in overweight and obese patients. Clin Cornerstone. (2007) 8:38–52. doi: 10.1089/hispp.2007.0057

14. Enani S, Bahijri S, Malibary M, Jambi H, Eldakhakhny B, Al-Ahmadi J, et al. Association between dyslipidemia, dietary habits and other lifestyle indicators among non-diabetic attendees of primary health care centers in Jeddah, Saudi Arabia. Nutrients. (2020) 12:2441. doi: 10.3390/nu12082441

15. Tan X, Jiao G, Ren Y, Gao X, Ding Y, Wang X, et al. Relationship between smoking and dyslipidemia in western Chinese elderly males. J Clin Lab Anal. (2008) 22:159–63. doi: 10.1002/jcla.20235

16. Moradimanar M, Fozdar Y, Najafi F, Shabaseri S, Shabaki E, Hamzeb B, et al. Association between dyslipidemia and blood lipids concentration with smoking and dyslipidemia in the Kurdish population of Iran. Adv Biomed Res. (2015) 4:77. doi: 10.3390/antiox10071015

17. Santurino C, López-Plaza B, Fonchea J, Calvo MV, Bermejo LM, Gómez-Andrés D, et al. Consumption of goat cheese naturally rich in omega-3 and conjugated linoleic acid (CLA) improves the cardiovascular and inflammatory biomarkers of overweight and obese subjects: a randomized controlled trial. Nutrients. (2020) 12:1315. doi: 10.3390/nu12051315

18. Sluis I, Plantinga Y, De Roos B, Mennin JT, Bots ML. Dietary supplementation with cis-9, trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am J Clin Nutr. (2010) 91:175–83. doi: 10.3945/ajcn.2009.28192

19. Eftekharzadeh M, Aliashgari F, Beigi MAB, Hasanzadeh I. The effect of conjugated linoleic acids and omega-3 fatty acids supplementation on lipid profile in atherosclerosis. Adv Biomed Res. (2014) 3:15. doi: 10.4103/2277-9175.124644

20. Fouad H, Peng LS, Mohagheghi A. Effects of conjugated linoleic acid supplementation and exercise on body fat mass and blood lipid profiles among overweight Iranians. Malays J Nutr. (2018) 24:203–13. Available online at: https://nutriweb.org.my/mjn/publication/24-2/79.pdf
Conjugated linoleic acid (CLA) do not affect the plasma lipoprotein profile in moderately overweight subjects with LDL phenotype B.

6. Berven G, Bye A, Hals O, Blankson H, Fagertun H, Thom E, et al. Safety of conjugated linoleic acid (CLA) in overweight or obese human volunteers. Eur J Lipid Sci Technol. (2000) 102:455–62. doi: 10.1002/1099-3912(200008)102:4<455::AID-EJLT455>3.0.CO;2-V

7. Benzo P, Nelson GJ, Kelso DS, Bartolini G, Schmidt PC, Simon V. The effect of conjugated linoleic acid on plasma lipoproteins and tissue fatty acid composition in humans. Lipids. (2001) 36:229–36. doi: 10.1007/s11745-001-0712-x

8. Mougas V, Matsakas A, Petridou A, Ring S, Sagredos A, Melissopoulou A, et al. Effect of supplementation with conjugated linoleic acid on human serum lipids and body fat. J Nutr Biochem. (2001) 12:585–94. doi: 10.1016/S0955-2863(01)00177-2

9. Risérus U, Berglund I, Vesby B. Conjugated linoleic acid (CLA) reduced abdominal adipose tissue in obese middle-aged men with signs of the metabolic syndrome: a randomised controlled trial. Int J Obes Relat Metab Disord. (2001) 25:1129–35. doi: 10.1038/sj.ijo.0801659

10. Noone EI, Roche HM, Nugent AP, Gibney MJ. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br J Nutr. (2002) 88:243–51. doi: 10.1079/BJN2002615

11. Risérus U, Arner P, Brismar K, Vesby B. Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome. Diabetes Care. (2002) 25:1516–21. doi: 10.2337/diacare.25.8.1516

12. Kamphuis MM, Lejeune MP, Saris WH, Westerterp-Plantenga MS. The effect of conjugated linoleic acid supplementation after weight loss on body weight regain, body composition, and resting metabolic rate in overweight subjects. Int J Obes Relat Metab Disord. (2003) 27:840–7. doi: 10.1038/sj.ijo.0802304

13. Whigham LD, Oshea M, Mohebe IC, Walaski HP, Atkinson RL. Safety profile of conjugated linoleic acid in a 12-month trial in obese humans. Food Chem Toxicol. (2004) 42:2170–9. doi: 10.1016/j.fct.2004.06.008

14. Moloney F, Yeow TP, Mullen A, Nolan J, Roche HM. Conjugated linoleic acid supplementation, insulin sensitivity, and lipoprotein metabolism in patients with type 2 diabetes mellitus. Am J Clin Nutr. (2004) 80:887–95. doi: 10.1093/ajcn/80.4.887

15. Gauiller JM, Halse J, Høye K, Kristiansen K, Fagertun H, Vik H, et al. Conjugated linoleic acid supplementation for 1 year reduces body fat mass in healthy overweight humans. Am J Clin Nutr. (2004) 79:1118–25. doi: 10.1093/ajcn/79.6.1118

16. Risérus U, Vesby B, Arnlöv J, Bausi S. Effects of cis-9, trans-11 conjugated linoleic acid supplementation on insulin sensitivity, lipid peroxidation, and proinflammatory markers in obese men. Am J Clin Nutr. (2004) 80:279–83. doi: 10.1093/ajcn/80.2.279

17. Song HJ, Grant I, Rotondo D, Mohede I, Sattar N, Heys SD, et al. Effect of conjugated linoleic acid, vitamin E and their combination on lipid profiles and blood pressure of Iranian adults with active rheumatoid arthritis. Vasc Health Risk Manag. (2008) 4:1423–8. doi: 10.2147/VHRM.S8382

18. Raff M, Tholstrup T, Basu S, Nonboe P, Sørensen MT, Straarup EM. A diet rich in conjugated linoleic acid and butter increases lipid peroxidation but does not affect atherothrombotic, inflammatory, or diabetic risk markers in healthy young men. J Nutr. (2008) 138:509–14. doi: 10.1093/jn/138.3.509

19. Kim J-H, Kim O-H, Ha Y-L, Kim J-O. Supplementation of conjugated linoleic acid with γ-oryzanol for 12 weeks effectively reduces body fat in healthy overweight Korean women. Prev Nutr Food Sci. (2008) 13:146–55. doi: 10.2147/VHRM.S3822

20. Son S-J, Lee J-E, Park E-K, Paik E-Y, Lee J-E, Kim Y-L, et al. The effects of conjugated linoleic acid and/or exercise on body weight and body composition in college women with high body fat mass. Am J Physiol. (2009) 298:E81–8. doi: 10.1152/ajpendo.908223.90818.902

21. Shadman Z, Rastmehran R, Taleban F, Hedayati M. Effects of conjugated linoleic acid on serum Apo B and MDA in type II diabetic patients. Iran J Endocrinol Metab. (2009) 11:377–83.

22. Sofi F, Baccioni A, Cesari F, Gori AM, Minieri S, Mannini L, et al. Effects of a dairy product (pecorino cheese) naturally rich in cis-9, trans-11 conjugated linoleic acid on lipid, inflammatory and haemorrhological variables: a dietary intervention study. Nutr Metab Cardiovasc Dis. (2010) 20:117–24. doi: 10.1016/j.numecd.2009.03.004

23. Wanders AJ, Brouwer IA, Siebelink E, Katan MB. Effect of a high intake of conjugated linoleic acid on lipoprotein levels in healthy human volunteers. PLoS ONE. (2010) 5:e9000. doi: 10.1371/journal.pone.0009000

24. Michishita T, Kobayashi S, Katsuya T, Oghara T, Kobawuchi K. Evaluation of the antiobesity effects of an amino acid mixture and conjugated linoleic acid on exercising healthy overweight humans: a randomized,
Nutrition frontiersonline.org/two.tnum/three.tnum

(2011) 31:33–41. doi: 10.1016/j.nutres.2010.12.003

PJ. Milk enriched with conjugated linoleic acid fails to alter blood lipids or body composition in overweight, hyperlipidemic men. J Nutr Sci Vitaminol. (2011) 57:364–71. doi: 10.3177/jnsv.57.364

Josef SV, Jacques H, Plourde M, Mitchell PL, Mcleod RS, Jones Pj. Conjugated linoleic acid supplementation for 8 weeks in a fatty acid-supplemented, lipoprotein phenotype, and body fat composition, in overweight type2 diabetics. Nutrients (2013) 5:378–84. doi: 10.3390/nu5030378

Pfeiffer M, Fielitz K, Laue C, Winkler P, Rubin D, Helweg U, et al. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J Am Coll Nutr. (2011) 30:19–28. doi: 10.1080/07315727.2011.1079940

Rubin D, Herrmann J, Much D, Pfeiffer M, Laue C, Winkler P, et al. Influence of different CLA isomers on insulin resistance and adipocyte cytokines in pre-diabetic, middle-aged men with PPARG 2 Pro12Ala polymorphism. Gen Nutr. (2012) 7:499–509. doi: 10.1007/s12263-012-0289-3

Chen SC, Lin YH, Huang HP, Huo WL, Huang JY, Huang CK. Effect of conjugated linoleic acid supplementation on weight loss and body fat composition in a Chinese population. Nutrition. (2012) 28:559–65. doi: 10.1016/j.nut.2012.02.003

Carvalho R, Uehara SK, Rosa G. Microencapsulated conjugated linoleic acid associated with hypocaloric diet reduces body fat in sedentary women with metabolic syndrome. Vasc Health Risk Manag. (2012) 8:661–7. doi: 10.2147/VHRM.S37385

López-Plaza R, Bermejo LM, Koester Weber T, Parra P, Serra F, Hernández M, et al. Effects of milk supplementation with conjugated linoleic acid on weight control and body composition in healthy overweight people. Nutr Hosp. (2015) 28:2099–10. doi: 10.3087/1692-2744.2013.28.6.2013

Buft S, Bodur E, Colak R, Turnagol H, Djalalinia S, Sadeghi O, Asayesh H, Noroozi M, Gorabi AM, et al. Dietary inflammatory potential score and risk of breast cancer: systematic review and meta-analysis. Clin Breast Cancer. (2018) 18:e65–70. doi: 10.1016/j.clbc.2018.01.007

Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. (2008) 336:924–6. doi: 10.1136/bmj.39489.470347.AD

Gauthier JM, Hely J, Herit K, Kristiansen K, Fugertun H, Vå, et al. Supplementation with conjugated linoleic acid for 24 months is well tolerated by and reduces body fat mass in healthy, overweight humans. J Nutr. (2005) 135:778–84. doi: 10.1093/jn/135.4.778

Franczyk-Zarów M, Kostgrys RB, Szymczyk B, Jawień J, Gajda M, Cichocki T, et al. Functional effects of eggs, naturally enriched with conjugated linoleic acid, on the blood lipid profile, development of atherosclerosis and composition of atherosclerotic plaque in apolipoprotein E and low-density lipoprotein receptor double-knockout mice (apoE/ldlr−/−). Br J Nutr. (2008) 99:49–58. doi: 10.1017/s0007114507739893

Moon HS, Lee H-G, Seo J-H, Chung CS, Kim TG, Choi YJ, et al. Antiobesity effect of PEGylated conjugated linoleic acid on high-fat diet-induced obese C57BL/6j (ob/ob) mice: attenuation of insulin resistance and enhancement of antioxidant defenses. J Nutr Biochem. (2009) 20:187–94. doi: 10.1016/j.jnutbio.2008.02.001

Baraldi F, Dalalo F, Teodoro B, Prado I, Curtis C, Alberici L. Body energy metabolism and oxidative stress in mice supplemented with conjugated linoleic acid (CLA) associated to oleic acid. Free Red Biol Med. (2014) 75:521. doi: 10.1016/j.freeradbiomed.2014.10.073

Kanter JE, Goodspeed L, Wang S, Kramer F, Wietecha T, Gomes-Kjerulf D, et al. 10,12 conjugated linoleic acid-driven weight loss is protective against attherosclerosis in mice and is associated with alternative macrophage enrichment in perivascular adipose tissue. Nutrients. (2018) 10:1416. doi: 10.3390/nu10111416

Arbonès-Mainar JM, Navarro MAA, Acín S, Guzmán MA, Arnal C, Surra JC, et al. Trans-10, cis-12 and cis-9, trans-11 conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J Nutri. (2006) 136:553–9. doi: 10.1093/jn/136.2.553

Nestel P, Fujiy A, Allen TJA. The cis-9, trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic attherosclerosis in diabetic apolipoprotein E deficient mice. Atherosclerosis. (2006) 189:282–7. doi: 10.1016/j.atherosclerosis.2005.12.020

Gaullier JM, Høye K, Kristiansen K, Fugertun H, Vå, et al. Butyrate induced obese C57BL/6J (ob/ob) mice: attenuation of insulin resistance and enhancement of antioxidant defenses. J Nutr Biochem. (2009) 20:187–94. doi: 10.1016/j.jnutbio.2008.02.001

Gordon DJ, Rifkind BM. J Nutrition. (2008) 321:331–6. doi: 10.1093/jn/199811093211907