FeNH₄(SO₄)₂·12H₂O (alum)-catalyzed preparation of 1,4-dihydropyridines: improved conditions for the Hantzsch reaction

Ali A. Mohammadi · Armin Hadadzahmatkesh · Mohammad R. Asghariganjeh

Received: 28 November 2010 / Accepted: 19 October 2011 / Published online: 17 November 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract FeNH₄(SO₄)₂·12H₂O (alum) efficiently catalyzes the one-pot three-component reaction of dimedone, aldehydes, and 3-aminocrotonate to afford 1,4-dihydropyridines. The work-up is easy, and the products are obtained in good to excellent yields and high purity.

Keywords Hantzsch reaction · 1,4-Dihydropyridines · FeNH₄(SO₄)₂·12H₂O · Multi-component reactions

Introduction

The conventional synthesis of 1,4-dihydropyridines (1,4-DHPs) introduced by Hantzsch in 1881 involves one-pot condensation of an aldehyde, ammonia, and a ketoester in acetic acid [1]. Several methods have been developed to improve the efficiency of the Hantzsch reaction for synthesis of 1,4-DHPs, for example the use of microwaves [2], ionic liquids [3], high temperature [4], and acid catalysts, for example Mg(ClO₄)₂ [5], CeCl₃·7H₂O/NaI [6], Sc(OTf)₃ [7], HY-Zeolite [8], and p-TSA [9].

1,4-Dihydropyridines have been reported to have diverse biological activity, for example anticonvulsant, antianxiety, antitumor, antidiabetic, antidepressive, analgesic, vasodilator, sedative, hypnotic, and anti-inflammatory activity [10], in addition to acting as a cerebral anti-ischemic agent in the treatment of Alzheimer’s disease [11] and as a chemosensitizer in tumor therapy [12].

In continuation of our ongoing work on multi-component reactions (MCRs) [13–16], we now wish to report a facile and rapid one-pot three component reaction for preparation of DHP derivatives 4a–4k from dimedone 1, aldehydes 2a–2k, and 3-aminocrotonates 3a, 3b using nontoxic and readily available FeNH₄(SO₄)₂·12H₂O as heterogeneous catalyst (Scheme 1).

Results and discussion

When a mixture of dimedone 1, aldehyde 2a, and 3-aminocrotonate 3a in EtOH was stirred at r.t., the reaction was complete within 5 h. Work-up of the reaction mixture showed that dimethyl 1,4-dihydropyridine 4a was prepared in 94% yield (Scheme 1).

Encouraged by this success, we extended this reaction of dimedone to a range of other aldehydes 2b–2k and 3-aminocrotonates 3a, 3b under similar conditions, and 1,4-DHPs 4b–4k were obtained in good yield [21]. The optimized results are summarized in Table 1.

In summary, we have described a successful strategy, an efficient and convenient green synthesis, for the preparation of some new 1,4-DHPs in a three-component cyclocondensation reaction of dimedone, aldehydes, and 3-aminocrotonate. The method has several advantages, including high yield of products, use of inexpensive, nontoxic, and readily available FeNH₄(SO₄)₂·12H₂O catalyst, and an easy experimental work-up procedure, that make it a useful process for synthesis of 1,4-dihydropyridines.
Experimental

Melting points were measured in open capillary tubes on an Electrothermal 9200 apparatus. Mass spectra were recorded on a Shimadzu QP 1100 BX mass spectrometer. IR spectra were recorded as KBr pellets on a Shimadzu IR-470 spectrophotometer. ¹H and ¹³C NMR spectra were determined on a Bruker 300 DRX Avance instrument at 300 and 75 MHz.

General procedure for preparation of 1,4-dihydropyridines 4a–4k

To a mixture of 1 mmol dimedone, 1 mmol aldehyde, and 1 mmol 3-aminocrotonate in 5 cm³ EtOH was added 0.1 g FeNH₄(SO₄)₂·12H₂O (20 mol%), and the reaction was stirred at r.t. for the time indicated in Table 1. After completion of the reaction (monitored by TLC, ethyl acetate–n-hexane, 1:1), water was added to the reaction mixture, and the resulting solid was separated by filtration. The crude product was recrystallized from ethanol.

The catalyst is very inexpensive and nontoxic. The catalyst in the aqueous phase can be recovered by removing the water under vacuum, then washing with acetone and ethanol and drying at room temperature. It can be recycled and used in subsequent reactions without reduction in activity.

Methyl 1,4,5,6,7,8-hexahydro-2,7,7-trimethyl-5-oxo-4-phenylquinoline-3-carboxylate (4h, C₂₀H₂₃NO₃)
White powder; m.p.: 253–254 °C; IR (KBr): ν = 3,203, 3,016, 2,918, 1,707 (C=O), 1,626 (C=O) cm⁻¹; ¹HNMR (DMSO-d₆): δ = 0.95 (s, 3H, CH₃), 1.14 (s, 3H, CH₃), 2.13 (d, 1H, J = 12.7 Hz, CH₂), 2.27 (d, 1H, J = 13.2 Hz, CH₂), 2.32 (d, 1H, J = 15.2 Hz, CH₂), 2.41 (s, 3H, CH₃), 5.13 (s, 1H, CH), 7.12 (d, 1H, J = 7.2 Hz, Ar), 7.26 (t, 2H, J = 7.5 Hz, Ar), 8.14 (s, 1H, NH) ppm; ¹³CNMR (DMSO-d₆): δ = 19.25, 27.36, 29.86, 32.85, 36.56, 40.17, 40.43, 40.72, 40.81, 41.03, 51.13, 105.21, 110.78, 126.15, 128.14, 128.19, 145.41, 147.68, 149.85, 168.43, 195.88 ppm; MS: m/z (%) = 325 (M⁺, 35), 248 (100), 77 (25), 51 (25), 39 (25).

Methyl 1,4,5,6,7,8-hexahydro-4-(3-methoxyphenyl)-2,7,7-trimethyl-5-oxoquinoline-3-carboxylate (4j, C₂₁H₂₅NO₄)
White powder; m.p.: 258–259 °C; IR (KBr): ν = 3,203, 3,022, 2,888, 1,707 (C=O), 1,621 (C=O) cm⁻¹; ¹HNMR (DMSO-d₆): δ = 0.89 (s, 3H, CH₃), 1.06 (s, 3H, CH₃), 2.01 (d, 1H, J = 7.8 Hz, CH₂), 2.07 (d, 1H, J = 15.5 Hz, CH₂), 2.12 (d, 1H, J = 7.2 Hz, CH₂), 2.29 (d, 1H, J = 8.5 Hz, CH₂), 2.94 (s, 3H, CH₃), 3.58 (s, 3H, OCH₃), 4.93 (s, 1H, CH), 6.85–7.02 (m, 4H, Ar), 8.98 (s, 1H, NH) ppm; ¹³CNMR (DMSO-d₆): δ = 19.18, 27.43, 29.93, 32.83, 35.65, 39.58, 39.85, 40.14, 40.42, 40.70, 40.98, 41.27, 51.10, 51.21, 55.40, 102.99, 109.91, 126.24, 126.44, 127.55, 130.31, 132.87, 146.38, 150.23, 150.32, 167.57, 194.86 ppm; MS: m/z (%) = 355 (M⁺, 65), 340 (25), 248 (100), 57 (40), 41 (30).
Methyl 1,4,5,6,7,8-hexahydro-2,7,7-trimethyl-4-(4-nitrophenyl)-5-oxoquinoline-3-carboxylate (4k, C_{20}H_{22}N_{2}O_{5})

White powder; m.p.: 252–253 °C; IR (KBr): ν = 3,204, 3,016, 2,963, 1,712 (C=O), 1,612 (C=O) cm⁻¹; ¹H NMR (DMSO-δ_6): δ = 1.03 (s, 3H, CH₃), 1.23 (s, 3H, CH₃), 2.11 (d, 1H, J = 9.4 Hz, CH₂), 2.34 (d, 1H, J = 16.1 Hz, CH₂), 2.50 (d, 1H, J = 14.2 Hz, CH₂), 2.56 (s, 3H, CH₃), 2.69 (d, 1H, J = 9.5 Hz, CH₂), 3.74 (s, 3H, OCH₃), 5.18 (s, 1H, CH), 7.62 (d, 2H, J = 8.4 Hz, Ar), 8.30 (d, 2H, J = 8.4 Hz, Ar), 9.51 (s, 1H, NH) ppm; ¹³C NMR (DMSO-δ_6): δ = 19.24, 27.25, 29.87, 33.02, 37.28, 50.91, 51.68, 102.93, 109.91, 124.10, 129.47, 146.51, 147.31, 151.02, 155.67, 167.78, 195.21 ppm; MS: m/z (%) = 370 (M⁺, 60), 340 (25), 248 (100), 83 (40), 55 (80), 39 (85).

Acknowledgments We gratefully acknowledge financial support from the Research Council of Islamic Azad University, Branch Sabzevar.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

1. Gupta R, Gupta R, Paul S, Loupy A (2007) Synthesis 18:2835
2. Akbari JD, Tala SD, Dhaduk MF, Joshi HS (2008) Arkivoc xii:126
3. Sridhar R, Perumal PT (2005) Tetrahedron 61:2465
4. Dondoni A, Massi A, Minghini E, Sabbatini S, Bertoasi V (2003) J Org Chem 68:6172
5. Bartoli G, Krzysztof B, Bosco M, Carlone A, Galzerano P, Melchirro P, Sambri L (2007) Synlett 2897
6. Yadav LDS, Kapoor R (2008) Synlett 2348
7. Kikuchi S, Iwai M, Murayama H, Fukuazawa SI (2008) Tetrahedron Lett 49:114
8. Das B, Ravikanth B, Ramu R, Rao BV (2006) Chem Pharm Bull 54:1044
9. Cherkupally SR, Mekala R (2008) Chem Pharm Bull 56:1002
10. Mannhold R, Jablonka B, Vogt W, Schoenafinger K, Schravan K (1992) Eur J Med Chem 27:229
11. Bretzel RG, Bollen CC, Maeser E, Federlin KF (1992) Drugs Futur 17:465
12. Boer R, Gekeler V (1995) Drugs Futur 20:499
13. Azizian J, Mohammadi AA, Karimi AR (2003) Synth Commun 33:415
14. Azizian J, Mohammadi AA, Karimi AR, Mohammadizadeh MR (2005) J Org Chem 70:350
15. Mohammadi AA, Akbarzadeh R, Rohi R (2009) Comb Chem High Throughput Screen 12:536
16. Azizian J, Mohammadi AA, Kohshari M, Karimi A, Mohammadizadeh MR (2007) J Heterocycl Chem 44:455
17. Kumar A, Maurya RA (2007) Tetrahedron 48:3887
18. Heravi MM, Bakhtiari K, Javadi NM, Bamohairam FF, Saeedi M, Oskooie HA (2007) J Mol Catal A Chem 264:50
19. Brietenbucher JG, Figliozzi G (2000) Tetrahedron Lett 41:4311
20. Kumar A, Maurya RA (2007) Tetrahedron 63:1946
21. See for mechanism: Li JJ (2002) Name reactions: a collection of detailed reaction mechanisms, Springer, Berlin