Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers

Feng Qi1,2,* and Bai-Ni Guo4

Abstract: In the paper, the authors find the logarithmically complete monotonicity of the Catalan–Qi function related to the Catalan numbers.

Subjects: Advanced Mathematics; Analysis - Mathematics; Integral Transforms & Equations; Mathematical Analysis; Mathematics & Statistics; Number Theory; Real Functions; Science; Sequences & Series; Special Functions

Keywords: logarithmically complete monotonicity; Catalan number; Catalan–Qi function

2010 Mathematics subject classifications: Primary 11B75; Secondary 11B83; 11Y35; 11Y55; 11Y60; 26A48; 33B15

1. Introduction

It is stated in Koshy (2009) that the Catalan numbers C_n for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?” whose solution is the Catalan number C_{n-2}. The Catalan numbers C_n can be generated by

$$
\frac{2}{1 + \sqrt{1 - 4x}} = 1 - \frac{\sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} C_n x^n
$$

$$
= 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + 429x^7 + 1430x^8 + \ldots.
$$

1. Introduction

It is stated in Koshy (2009) that the Catalan numbers C_n for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?” whose solution is the Catalan number C_{n-2}. The Catalan numbers C_n can be generated by

$$
\frac{2}{1 + \sqrt{1 - 4x}} = 1 - \frac{\sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} C_n x^n
$$

$$
= 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + 429x^7 + 1430x^8 + \ldots.
$$

1. Introduction

It is stated in Koshy (2009) that the Catalan numbers C_n for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?” whose solution is the Catalan number C_{n-2}. The Catalan numbers C_n can be generated by

$$
\frac{2}{1 + \sqrt{1 - 4x}} = 1 - \frac{\sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} C_n x^n
$$

$$
= 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + 429x^7 + 1430x^8 + \ldots.
$$

1. Introduction

It is stated in Koshy (2009) that the Catalan numbers C_n for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?” whose solution is the Catalan number C_{n-2}. The Catalan numbers C_n can be generated by

$$
\frac{2}{1 + \sqrt{1 - 4x}} = 1 - \frac{\sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} C_n x^n
$$

$$
= 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + 429x^7 + 1430x^8 + \ldots.
$$

1. Introduction

It is stated in Koshy (2009) that the Catalan numbers C_n for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as “In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?” whose solution is the Catalan number C_{n-2}. The Catalan numbers C_n can be generated by

$$
\frac{2}{1 + \sqrt{1 - 4x}} = 1 - \frac{\sqrt{1 - 4x}}{2x} = \sum_{n=0}^{\infty} C_n x^n
$$

$$
= 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + 429x^7 + 1430x^8 + \ldots.
$$
One of explicit formulas of C_n for $n \geq 0$ reads that

$$C_n = \frac{4^n \Gamma(n + 1/2)}{\sqrt{\pi} \Gamma(n + 2)},$$

where

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, dt, \quad \Re(z) > 0$$

is the classical Euler gamma function. In Graham, Knuth, and Patashnik (1994), Koshy (2009), and Vardi (1991), it was mentioned that there exists an asymptotic expansion

$$C_x \sim \frac{4^x}{\sqrt{\pi}} \left(\frac{1}{x^{3/2}} - \frac{9}{8} \frac{1}{x^{5/2}} + \frac{145}{128} \frac{1}{x^{7/2}} + \cdots \right)$$

(1)

for the Catalan function C_x.

A generalization of the Catalan numbers C_n was defined in Hilton and Pedersen (1991), Klarner (1970), and McCarthy (1992) by

$$p d_n = \frac{1}{n} \binom{pn}{n-1} = \frac{1}{(p-1)n+1} \binom{pn}{n}$$

for $n \geq 1$. The usual Catalan numbers $C_n = \frac{1}{2} d_n$ are a special case with $p = 2$.

In combinatorial mathematics and statistics, the Fuss–Catalan numbers $A_n(p, r)$ are defined (Fuss, 1791) as numbers of the form

$$A_n(p, r) = \frac{r}{np + r} \binom{np + r}{n} = \frac{\Gamma(np + r)}{\Gamma(n+1)\Gamma(n(p+1) + r + 1)}.$$

It is easy to see that

$$A_n(2, 1) = C_n, \quad n \geq 0$$

and

$$A_{n-1}(p, p) = p d_n, \quad n \geq 1.$$

There has existed some literature, such as Alexeev, Götze, and Tikhomirov (2010), Aval (2008), Bisch and Jones (1997), Gordon and Griffeth (2012), Lin (2011), Liu, Song, and Wang (2011), Młotkowski (2010), Młotkowski, Pensom, and Życzkowski (2013), Przytycki and Sikora (2000), Stump (2008, 2010), on the investigation of the Fuss–Catalan numbers $A_n(p, r)$.

In Qi, Shi, and Liu (2015a, Remark 1), an alternative and analytical generalization of the Catalan numbers C_n and the Catalan function C_x was introduced by

$$C(a, b; x) = \frac{\Gamma(b)}{\Gamma(a)} \left(\frac{b}{a} \right)^x \frac{\Gamma(z + a)}{\Gamma(z + b)}, \quad \Re(a), \Re(b) > 0, \quad \Re(z) \geq 0.$$

For the uniqueness and convenience of referring to the quantity $C(a, b; x)$, we call the quantity $C(a, b; x)$ the Catalan–Qi function and, when taking $x = n \geq 0$, call $C(a, b; n)$ the Catalan–Qi numbers. It is obvious that

$$C \left(\frac{1}{2}, 2; n \right) = C_n, \quad n \geq 0$$
and that

\[C(a, b; x) = \frac{1}{C(b, a; x)}, \quad C(a, b; x)C(b, c; x) = C(a, c; x) \]

for \(a, b, c > 0 \) and \(x \geq 0 \). In the recent papers of Liu, Shi, and Qi (2015), Mahmoud and Qi (identities), Qi (2015a, 2015c, 2015d), Qi, Mahmoud, Shi, and Liu (2015), Qi et al. (2015a), Qi, Shi, and Liu (2015b, 2015c, 2015d), Shi, Liu, and Qi (2015, among other things, some properties, including the general expression and a generalization of the asymptotic expansion (Equation 1), the monotonicity, logarithmic convexity, (logarithmically) complete monotonicity, minimality, Schur-convexity, product and determinantal inequalities, exponential representations, integral representations, a generating function, connections with the Bessel polynomials and the Bell polynomials of the second kind, and identities, of the Catalan numbers \(C_n \), the Catalan function \(C_x \), the Catalan–Qi function \(C(a, b; x) \), and the Fuss–Catalan numbers \(A_n(p, r) \) were established. Very recently, we discovered in Qi (2015d, Theorem 1.1) a relation between the Fuss–Catalan numbers \(A_n(p, r) \) and the Catalan–Qi numbers \(C(a, b; n) \), which reads that

\[A_n(p, r) = \frac{r^n}{\prod_{k=1}^{p} C\left(\frac{k+r-1}{p}, 1; n\right)} \prod_{k=1}^{p} C\left(\frac{k+r-1}{p}, 1; 1\right) \]

for integers \(n \geq 0, p > 1, \) and \(r > 0 \).

From the viewpoint of analysis, motivated by the idea in the papers of Qi and Chen (2007), Qi, Zhang, and Li (2014a, 2014b, 2014c) and closely related references cited therein, we will consider in this paper the function

\[\psi_{a,b;x}(t) = C(a + t, b + t; x), \quad t, x \geq 0, \quad a, b > 0 \]

and study its properties.

Recall from Atanassov and Tsoukrovski (1988), Qi and Chen (2004), Qi and Guo (2004), Schilling, Song, and Vondraček (2012) that an infinitely differentiable and positive function \(f \) is said to be logarithmically completely monotonic on an interval \(I \) if it satisfies

\[0 \leq (-1)^k [\ln f(x)]^{(k)} < \infty \]

on \(I \) for all \(k \in \mathbb{N} \).

The main results of this paper are the logarithmically complete monotonicity of the function \(\psi_{a,b;x}(t) \) in \(t \in [0, \infty) \) for \(a, b > 0 \) and \(x \geq 0 \), which can be stated as the following theorem.

Theorem 1.1
For \(x \geq 0 \) and \(a, b > 0 \),

1. the function \(\psi_{a,b;x}(t) \) is logarithmically completely monotonic on \([0, \infty)\) if and only if either \(0 \leq x \leq 1 \) and \(a \leq b \) or \(x \geq 1 \) and \(a \geq b \),
2. the function \(\frac{1}{\psi_{a,b;x}(t)} \) is logarithmically completely monotonic on \([0, \infty)\) if and only if either \(0 \leq x \leq 1 \) and \(a \geq b \) or \(x \geq 1 \) and \(a \leq b \).

2. Proof of Theorem 1.1

Taking the logarithm of \(\psi_{a,b;x}(t) \) and differentiating with respect to \(t \) gave

\[[\ln \psi_{a,b;x}(t)]' = \psi(t + b) - \psi(t + a) + x \left(\frac{1}{t + b} - \frac{1}{t + a} \right) \]

\[+ \psi(t + x + a) - \psi(t + x + b). \]
Making use of

\[\psi(z) = \int_0^\infty \left(\frac{e^{-u}}{u} - \frac{e^{-zu}}{1 - e^{-u}} \right) \, du, \quad \Re(z) > 0 \]

in Abramowitz and Stegun (1972, p. 259, 6.3.21) leads to

\[\ln \mathcal{G}_{a,b,x}(t)' = \int_0^\infty e^{-au} - e^{-bu} \, du + x \int_0^\infty (e^{-bu} - e^{-au}) e^{-tu} \, du \]

\[+ \int_0^\infty \frac{e^{-bu} - e^{-au}}{1 - e^{-u}} e^{-t+uxu} \, du \]

\[= \int_0^\infty [e^{-xu} - 1 + x(1 - e^{-u})] \frac{e^{-bu} - e^{-au}}{1 - e^{-u}} e^{-tu} \, du \]

\[= x \int_0^\infty \left(\frac{1-e^{-u}}{u} - \frac{1-e^{-xu}}{xu} \right) \frac{e^{-bu} - e^{-au}}{1 - e^{-u}} e^{-tu} \, du. \]

It is easy to see that the function \(e^{-u} \) is strictly decreasing on \((0, \infty)\). Hence,

\[\frac{1-e^{-u}}{u} - \frac{1-e^{-xu}}{xu} \leq 0 \]

for \(u \in (0, \infty) \) if and only if \(x \leq 1 \). It is apparent that

\[\frac{e^{-bu} - e^{-au}}{1 - e^{-u}} \leq 0 \]

for \(u \in (0, \infty) \) if and only if \(a \leq b \). Recall from Mitrinović, Pečarić, and Fink (1993, Chap. XIII), Schilling et al. (2012, Chap. 1), and Widder (1941, Chapter IV) that an infinitely differentiable function \(f \) is said to be completely monotonic on an interval \(I \) if it satisfies

\[0 \leq (-1)^k f^{[k]}(x) < \infty \]

on \(I \) for all \(k \geq 0 \). The famous Bernstein–Widder theorem (Widder, 1941, p. 160, Theorem 12a) states that a necessary and sufficient condition that \(f(x) \) should be completely monotonic in \(0 \leq x < \infty \) is that

\[f(x) = \int_0^\infty e^{-xt} \, d\alpha(t), \quad (2) \]

where \(\alpha \) is bounded and non-decreasing and the integral (Equation 2) converges for \(0 \leq x < \infty \). Consequently,

1. the function \(\ln \mathcal{G}_{a,b,x}(t)' \) is completely monotonic on \([0, \infty)\) if and only if \(x \leq 1 \) and \(a \leq b \),
2. the function \(-[\ln \mathcal{G}_{a,b,x}(t)]' \) is completely monotonic on \([0, \infty)\) if and only if \(x \leq 1 \) and \(a \leq b \).

As a result,

1. the function \(\frac{1}{\mathcal{G}_{a,b,x}(t)} \) is logarithmically completely monotonic on \([0, \infty)\) if and only if \(x \leq 1 \) and \(a \leq b \),
2. the function \(\mathcal{G}_{a,b,x}(t) \) is logarithmically completely monotonic on \([0, \infty)\) if and only if \(x \leq 1 \) and \(a \leq b \).

The proof of Theorem 1.1 is thus complete.

Remark 1 This paper is a slightly modified version of the preprint Qi (2015b).
Funding

The authors received no direct funding for this research.

Author details

Feng Qi1
E-mails: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com
ORCID ID: http://orcid.org/0000-0001-6156-2590
Bai-Ni Guo3
E-mail: bai.ni.guo@gmail.com
ORCID ID: http://orcid.org/0000-0001-6156-2590

1 Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China.
2 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region 028303, China.
3 Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City 300387, China.
4 School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province 454010, China.

Citation information

Cite this article as: Logarithmically complete monotonicity of a function related to Catalan numbers. Feng Qi & Bai-Ni Guo, Cogent Mathematics (2016), 3: 1179379.

References

Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables (National Bureau of Standards, Applied Mathematics Series 55, 10th printing). Washington, DC.
Alexeev, N., Götze, F., & Tikhomirov, A. (2010). Asymptotic distribution of singular values of powers of random matrices. Lithuanian Mathematical Journal, 50, 121–132. doi:10.1007/s10886-010-9074-4
Atanassov, R. D., & Tsoukrovski, U. V. (1988). Some properties of a class of logarithmically completely monotonic functions. Comptes Rendus de l’Academie Bulgare des Sciences, 41, 21–23.
Aval, J. C. (2008). Multivariate Fuss–Catalan numbers. Discrete Mathematics, 308, 4660–4669. doi:10.1016/j.disc.2007.08.100
Bisch, D., & Jones, V. (1997). Algebras associated to subfactors. Inventiones Mathematicae, 128, 99–157. doi:10.1007/s002220050517
Fuss, N. (1771). Solutio questionis, quot modis polygonum n laturum in polygona m laturum, per diagonales resolvit queat. Nova acta Academiae Scientiarum Imperialis Petropolitanae, 9, 243–251.
Gordon, I. G., & Griffiths, S. (2012). Catalan numbers for complex reflection groups. American Journal of Mathematics, 134, 1491–1502. doi:10.1353/ajm.2012.0047
Graham, R. L., Knuth, D. E., & Patashnik, O. (1994). Concrete Mathematics–A Foundation for Computer Science (2nd ed.). Reading, MA: Addison-Wesley.
Hilton, P., & Pedersen, J. (1991). Catalan numbers, their generalization, and their uses. Mathematical Intelligencer, 13, 64–75. doi:10.1007/BF01302409
Klarner, D. A. (1970). Correspondences between plane trees and binary sequences. Journal of Combinatorial Theory, 9, 401–411.
Koshy, T. (2009). Catalan numbers with applications. Oxford: Oxford University Press.
Lin, C.-H. (2011). Some combinatorial interpretations and applications of Fuss–Catalan numbers. JSRN Discrete Mathematics 2011, 8, Article ID 534628. doi:10.5402/2011/534628
Liu, F. F., Shi, X. T., & Qi, F. (2015). A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Global Journal of Mathematical Analysis, 3, 140–144. doi:10.14149/gjma.v3i4.5187
Liu, D. Z., Song, C. W., & Wang, Z. D. (2011). On explicit probability densities associated with Fuss–Catalan numbers. Proceedings of the American Mathematical Society, 139, 3735–3738. doi:10.1090/S0002-9939-2011-11015-3
Mahmoud, M., & Qi, F. (2015). Three identities of Catalan–Qi numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.3462.9607
McCarthy, J. (1991). Catalan numbers. Letter to the editor: “Catalan numbers, their generalization, and their uses”. In P. Hilton & J. Pedersen (Eds.), Mathematical intelligencer. (Vol. 13, pp. 64–75), Mathematical Intelligencer, 14 (1992), 5.
Mitrinović, D. S., Pečarić, J. E., & Fink, A. M. (1993). Classical and new inequalities in analysis. Dordrecht: Kluwer Academic. doi:10.1007/978-94-017-4043-5
Młotkowski, W. (2010). Fuss–Catalan numbers in noncommutative probability. Documenta Mathematica, 15, 939–955.
Młotkowski, W., Pensky, K. A., & Zyczkowski, K. (2013). Densities of the Roney distributions. Documenta Mathematica, 18, 1573–1596.
Przyłęcki, J. H., & Sikora, A. S. (2009). Polygon dissections and Euler, Fuss, Kirkman, and Cayley numbers. Journal of Combinatorial Theory, Series A, 92, 68–76. doi:10.1006/jcta.1999.3042
Qi, F. (2015a). Asymptotic expansions, complete monotonicity, and inequalities of the Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.4331.6321
Qi, F. (2015b). Logarithmically complete monotonicity of a function related to the Catalan–Qi function. ResearchGate Technical Report. doi:10.13140/RG.2.1.4324.1445
Qi, F. (2015c). Some properties and generalizations of the Catalan, Fuss, and Fuss–Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.1778.3128
Qi, F. (2015d). Two product representations and several properties of the Fuss–Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.1655.6004
Qi, F., & Chen, C. (2000). Complete monotonicity property of the gamma function. Journal of Mathematical Analysis and Applications, 296, 603–607. doi:10.1016/j.jmaa.2004.04.026
Qi, F., & Chen, S. X. (2007). Complete monotonicity of the logarithmic mean. Mathematical Inequalities & Applications, 10, 799–804. doi:10.17535/mi-2010-0073
Qi, F., & Guo, B. N. (2004). Complete monotonicities of functions involving the gamma and digamma functions. RGMIA Research Report Collection, 7, 63–72. Retrieved from http://rgmia.org/v7n1.php
Qi, F., Mahmoud, M., Shi, X.-T., & Liu, F.-F. (2015). Some properties of the Catalan–Qi function related to the Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.3810.7369
Qi, F., Shi, X.-T., & Liu, F.-F. (2015a). An exponential representation for a function involving the gamma function and originating from the Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.1086.4486
Qi, F., Shi, X.-T., & Liu, F.-F. (2015b). An integral representation, complete monotonicity, and inequalities of the Catalan numbers. ResearchGate Technical Report. doi:10.13140/RG.2.1.3754.4806
Qi, F., Shi, X.-T., & Liu, F.-F. (2015c). Several formulas for special values of the Bell polynomials of the second kind and applications. ResearchGate Technical Report. doi:10.13140/RG.2.1.3230.1927
Qi, F., Shi, X.-T., Mahmoud, M., & Liu, F.-F. (2015d). Schur-convexity of the Catalan–Qi function. ResearchGate Technical Report. doi:10.13140/RG.2.1.2343.4402
Qi, F., Zhang, X. J., & Li, W. H. (2014a). An integral representation for the weighted geometric mean and its applications. Acta Mathematica Sinica, English Series, 30, 61–68. doi:10.1007/s10114-013-2547-8
Qi, F., Zhang, X.-J., & Li, W.-H. (2014a). Lévy–Khintchine representation of the geometric mean of many positive numbers and applications. *Mathematical Inequalities & Applications, 17*, 719–729. doi:10.7153/mia-17-53

Qi, F., Zhang, X.-J., & Li, W.-H. (2014c). Lévy–Khintchine representations of the weighted geometric mean and the logarithmic mean. *Mediterranean Journal of Mathematics, 11*, 315–327. doi:10.1007/s00009-013-0311-z

Schilling, R. L., Song, R., & Vondraček, Z. (2012). Bernstein functions—theory and applications (de Gruyter Studies in Mathematics 37, 2nd ed.). Berlin: Walter de Gruyter. doi:10.1515/9783110269338

Shi, X.-T., Liu, F.-F., & Qi, F. (2015). An integral representation of the Catalan numbers. *Global Journal of Mathematical Analysis, 3*, 130–133. doi:10.14419/gjma.v3i3.5055

Qi, F., Zhang, X.-J., & Li, W.-H. (2014b). Lévy–Khintchine representation of the geometric mean of many positive numbers and applications. *Mathematical Inequalities & Applications, 17*, 719–729. doi:10.7153/mia-17-53

Qi, F., Zhang, X.-J., & Li, W.-H. (2014c). Lévy–Khintchine representations of the weighted geometric mean and the logarithmic mean. *Mediterranean Journal of Mathematics, 11*, 315–327. doi:10.1007/s00009-013-0311-z

Schilling, R. L., Song, R., & Vondraček, Z. (2012). Bernstein functions—theory and applications (de Gruyter Studies in Mathematics 37, 2nd ed.). Berlin: Walter de Gruyter. doi:10.1515/9783110269338

Shi, X.-T., Liu, F.-F., & Qi, F. (2015). An integral representation of the Catalan numbers. *Global Journal of Mathematical Analysis, 3*, 130–133. doi:10.14419/gjma.v3i3.5055

Stump, C. (2008). q, t-Fu–Catalan numbers for complex reflection groups. 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008). Discrete Mathematics & Theoretical Computer Science, 295–306.

Stump, C. (2010). q, t-Fu–Catalan numbers for finite reflection groups. *Journal of Algebraic Combinatorics, 32*, 67–97. doi:10.1007/s10801-009-0205-0

Vardi, I. (1991). Computational recreations in mathematica. Redwood City, CA: Addison-Wesley.

Widder, D. V. (1941). *The Laplace transform* (Princeton Mathematical Series 6). Princeton, NJ: Princeton University Press.