Development of EST-SSR markers in Saxifraga sinomontana (Saxifragaceae) and cross-amplification in three related species

Yan Li1,2, Liu-Kun Jia1,2, Fa-Qi Zhang1,3, Zhi-Hua Wang1,2, Shi-Long Chen1, and Qing-Bo Gao1,3,4

PREMISE: Saxifraga sinomontana (Saxifragaceae) is a widespread alpine species in the Qinghai–Tibetan Plateau and its flanking mountains. We developed a set of expressed sequence tag–simple sequence repeat (EST-SSR) markers to investigate the genetic diversity and evolutionary history of the species.

METHODS AND RESULTS: We initially designed 50 EST-SSR markers based on transcriptome data of S. sinomontana. Nineteen of 50 loci (38%) were successfully amplified, 13 of which were polymorphic. These were tested on 71 individuals from four populations. Three to 18 alleles per locus were detected, and the levels of observed and expected heterozygosity ranged from 0.2817 to 0.9155 and 0.2585 to 0.8495, respectively. In addition, cross-amplification was successful for all 13 loci in three congeneric species, S. tangutica, S. heleonastes, and S. congestiflora.

CONCLUSIONS: These EST-SSR markers will be useful for studying the genetic diversity of S. sinomontana and disentangling the phylogenetic relationships of related species.

KEYWORDS: EST-SSR markers; Saxifraga congestiflora; Saxifraga heleonastes; Saxifraga sinomontana; Saxifraga tangutica; transcriptome.

The genus Saxifraga L. (Saxifragaceae) consists of approximately 500 species that are mainly distributed in the mountainous regions of Europe and Asia (Pan et al., 2001; Gao et al., 2015; Tkach et al., 2015), including the Qinghai–Tibetan Plateau (QTP) and Hengduan Mountains region (HDM), which is a biodiversity hotspot of Saxifraga (Pan et al., 2001). Saxifraga sinomontana J. T. Pan & Gornall is a widespread perennial herb in the QTP and its peripheral regions. It prefers scrub, alpine/marshy meadows, or calcareous crevices at elevations of 2700–5300 m (Pan et al., 2001). Diagnostic features of the species are pedicels with sparsely brown crisped villi and erect sepals that are covered by crisped villi marginally and abaxially (Pan et al., 2001). However, S. sinomontana is an extraordinarily variable species in morphology, as described in the Flora of China (Pan et al., 2001), as well as according to our long-term field surveys, which have demonstrated that gradations in traits are common in the species (e.g., plant height, number of flowers). Saxifraga sinomontana has been the focus of recent systematics research (Gao et al., 2015; Tkach et al., 2015), and Li et al. (2018) revealed that this species possesses a high level of genetic diversity, which may be the result of Quaternary climatic oscillations.

Microsatellite markers for S. sinomontana and its closely related species are not available at present, which limits the development of genetic studies. Due to the advantages of codominance, high polymorphism, and widespread distribution throughout the genome (Bouck and Vision, 2007), expressed sequence tag–simple sequence repeat (EST-SSR) markers are widely applied in genetic diversity research. Moreover, EST-SSR markers are relatively easy and inexpensive to develop, and more transferable among closely related species than genomic SSRs (Bouck and Vision, 2007; Ellis and Burke, 2007). In this study, we developed 13 EST-SSR markers for further population genetic studies of S. sinomontana. Additionally, we evaluated the transferability of these markers in the three sympatric and congeneric species S. tangutica Engl., S. heleonastes Harry Sm., and S. congestiflora Engl. & Irmsch.

METHODS AND RESULTS

Fresh leaf tissue of S. sinomontana was collected from Yushu, Qinghai Province, China (Appendix 1), and was frozen in liquid nitrogen before storage at −80°C. Total RNA was extracted using
TABLE 1. Characteristics of the 19 EST-SSR markers developed for Saxifraga sinomontana.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T_a (°C)	Fluorescent label	GenBank accession no.	BLASTX top hit description	E-value	GenBank accession no. of BLASTX top hit
SS1	F: CGGAATCTGATGGCTGCTCT	(GA)₆	244–298	53.5	FAM	MK348907	No significant similarity found		
	R: AAAAACCTCTCCACAACGACA								
SS2	F: TCCACCCATAGGACAACAA	(AG)₆	264–294	62	FAM	MK348908	No significant similarity found		
	R: GATCTGCAAGGGAATATGA								
SS8	F: TTTTCTGCTTGCGTCGTCGCT	(TC)₆	245–263	52	FAM	MK348910	Transcription factor TCP20 [Cucumis sativus]	5E-12	XP_004148022.1
	R: GTGAGCCAATTCTCTCTCTGA								
SS9	F: CCTCGTCTATAGGCTCCTGC	(TTG)₆	189–198	53.5	FAM	MK348911	Trihelix transcription factor ASIL1-like [Lupinus angustifolius]	8E-05	XP_019455555.1
	R: GTGCCGCCATTGTCAGAGA								
SS10	F: CCGAGAATGCGTTACGAAA	(TTT)₆	264–275	53.5	HEX	MK348912	No significant similarity found		
	R: TTGTTCGCAAAACGATGCT								
SS11	F: TGAATAGGGGCGAGATGCT	(GTG)₆	92–125	53.5	HEX	MK348913	No significant similarity found		
	R: AGAAGTTGGGGCTGTTACGT								
SS16	F: AGCCAAAGGTAGGAGGAGTG	(AAT)₆	244–286	53.5	HEX	MK348914	Cyclin P/U [Corchorus capsularis]	3E-12	OMO60173.1
	R: AGTCCATTTCCTAGAGTGGTG								
SS32	F: TCTCAGCTTTGGAAATAGGCT	(GTG)₆	170–185	53.5	HEX	MK348920	No significant similarity found		
	R: GCTCCGCCCGCTCTAAATTA								
SS35	F: GGGGAAAGGAAATGCGTGGC	(ATT)_G	250–339	56.5	ROX	MK348921	Hypothetical protein	3.9	XP_021878789.1
	R: AGGAGGCTCCGAAACACATT								
SS40	F: TCGGATAGGCCCATGGGGG	(AAGCC)₃	221–241	53.5	ROX	MK348922	No significant similarity found		
	R: ATCGGGGTGTAAGTCCAGCCCT								
SS44	F: CCGCTATGCTGGGCAACTAT	(CAAGA)₂	109–130	53.5	ROX	MK348923	No significant similarity found		
	R: TGTCTCTACACAAACCACAGGT								
SS46	F: ACAATGCGGCGACTGTGGA	(TTGCC)₆	328–402	56.5	ROX	MK348924	Phosphoglycerate mutase family protein [Artemisia annua]	2E-16	PWA00260.1
	R: AGGCTTCTCTCACATCGTCTTG								
SS47	F: CCACCTCGTCGGGAGAAAC	(GACCA)₂	187–251	53.5	FAM	MK348925	No significant similarity found		
	R: TTTGATCCTGCTGCTGCTAGG								
SS56	F: AGCTCACTCCATGCAATGCTCA	(TA)₆	233	53.5	—	MK348909	No significant similarity found		
	R: CCAAGACGGTTGCTCCTCCTCT								
SS24	F: AGTCCCTGCTCCAAAAGTACTA								
	R: TCCCGGACCTCCATTTCACTTACG								
SS27	F: AGCAATGTCCGTCTGGCATATCC								
	R: GCCAGAGATTGGTCTTCAGATCC								
SS28	F: ACATTTTCTACATCTACAGGTTG	(CAGT)₆	215	56.5	—	MK348917	No significant similarity found		
	R: TGGAGATGTAGGTAGATTGTAG								
SS29	F: CTGCTGCTGCTGGATAGGGA	(TTG)_G	114	53.5	—	MK348918	60S ribosomal protein like [Actinidia chinensis var. chinensis]	0.001	PSS30694.1
	R: TCCAGGAAACGAAATGTGCTG								
SS31	F: TCGAGGCTGTGAACTGCCGAGT	(GACA)₆	140	56.5	—	MK348919	DUF4153 domain-containing protein [Stenotrophomonas maltophilia]	5.7	WP_100463508.1

Note: T_a = annealing temperature.

Monomorphic loci.
the protocol described by Kumar and Singh (2012). The mRNA was then purified from total RNA using poly-T oligo-attached magnetic beads and fragmented into short fragments. cDNA libraries were prepared for 150–200 bp paired-end sequencing following the Illumina protocol (Illumina version 3, San Diego, California, USA). Sequencing was performed by Novogene Biotechnology Company (Tianjin, China) on an Illumina HiSeq 2000 platform (Illumina), yielding 94,855,756 raw reads. All raw reads have been deposited into the National Center for Biotechnology Information’s (NCBI) Sequence Read Archive (SRA; BioProject accession number: SRR8365238). Total genomic DNA was extracted from silica-dried leaves using the modified cetyltrimethylammonium bromide (CTAB) method of Doyle and Doyle (1987). PCR reactions were carried out in a total volume of 25 μL containing 2.0 μL of total genomic DNA (10–20 ng), 0.3 μL of each primer (10 μM), 0.3 μL of 10× PCR buffer (with Mg++), and 2.5 μL of 10 mM dNTPs. The PCR profile included an initial pretreatment of 10 min at 94°C; followed by 35 cycles of 1 min denaturation at 94°C, 50 s at locus-specific annealing temperatures (Table 1), and 1 min elongation at 72°C; and a final extension at 72°C for 10 min. The PCR products were screened using 1% agarose electrophoresis to determine whether amplifications were successful for the expected sizes and then separated on 6% polyacrylamide gels. Overall, 19 of 50 (38%) EST-SSR primer pairs produced clear, unique amplification products of the expected size. Of these, 13 loci were polymorphic across populations. Characteristics of all 19 loci are listed in Table 1. For all 13 polymorphic SSR loci, the 5′ end of each forward primer was labeled with one of three fluorescent dyes (FAM, HEX, or ROX; Table 1). PCR amplifications were then performed using 71 individuals from four populations of S. sinomontana with the same protocol described above (Table 2). The fluorescently tagged PCR products were analyzed on an ABI 3730xl DNA Analyzer (Applied Biosystems, Foster City, California, USA) with a GeneScan 500 LIZ Size Standard (Applied Biosystems), and allele sizes were scored with GeneMapper version 3.2 (Applied Biosystems). Number of alleles per locus (A), observed heterozygosity, and expected heterozygosity were calculated with POPGENE version 1.32 (Yeh et al., 1999). Hardy–Weinberg equilibrium was tested for each population using GENEPOP version 4.2 (Rousset, 2008). Using MICRO-CHECKER version 2.2 (van Oosterhout et al., 2004), we found no evidence of null alleles across all loci.

Among the 13 polymorphic loci, A ranged from three to 18 (mean = 8). The Dingri population had the lowest mean values (A = 2) among the four populations. Levels of observed and expected heterozygosity varied from 0.2817 to 0.9155 and 0.2585 to 0.8495, respectively, which indicates that genetic diversity is relatively high in this species. Additionally, a few loci showed significant deviations from Hardy–Weinberg equilibrium: three in the Aba population, two in the Changdu population, and seven in the Dingri population (P < 0.05; Table 2).

All 13 EST-SSR markers also amplified successfully in S. tanguitica, S. heleonastes, and S. congestiflora, using the same PCR protocol as for S. sinomontana (Table 3).

TABLE 2. Genetic diversity of the 13 polymorphic loci across four Saxifraga sinomontana populations.

Locus	Aba (n = 8)	Changdu (n = 28)	Chengdu (n = 18)	Dingri (n = 17)	Total (n = 71)							
	A	H_e	H_o									
S51	5	0.6250	0.6083	5	0.7500	0.7110	7	0.8333	0.6984*	2	1.0000	0.5152*
S52	5	0.6250	0.7667	8	0.7500	0.8247	10	0.7222	0.8571	2	0.1176	0.1141
S55	5	0.8750	0.7750*	6	0.7500	0.6117	5	0.8899	0.7444	2	1.0000	0.5152*
S59	3	0.3750	0.4917	3	0.4643	0.4643	4	0.6111	0.5603	3	1.0000	0.6078*
S510	2	0.1250	0.3250	2	0.3214	0.2747	3	0.7222	0.5222	1	0.0000	0.0000
S511	7	0.6250	0.7417	5	0.6429	0.7188	4	0.5556	0.4968	3	0.1176	0.1159
S516	3	0.5000	0.4250	2	0.2143	0.2494	5	0.7778	0.5841	3	1.0000	0.5473*
S532	3	0.2500	0.5667*	4	0.4643	0.5591	2	0.6111	0.6270	2	1.0000	0.5152*
S535	4	1.0000	0.6417	3	0.2500	0.2305	3	0.2778	0.2524	1	0.0000	0.0000
S540	3	0.6250	0.7570	4	0.3571	0.4227	2	0.4444	0.3556	2	0.2353	0.2139
S544	3	1.0000	0.5917*	3	0.7857	0.6370	3	1.0000	0.6413*	3	1.0000	0.6505*
S546	13	0.8750	0.9750	5	0.7500	0.7221	8	0.8333	0.7413	2	0.0588	0.0588
S547	7	0.7500	0.8417	8	0.8929	0.8587	6	0.7778	0.7365	2	1.0000	0.5152*
Mean	5	0.6363	0.6932	5	0.6587	0.5586	6	0.6966	0.5889	2	0.5792	0.8034

Note: A = total number of alleles per locus; H_e = expected heterozygosity; H_o = observed heterozygosity; n = number of individuals sampled.

*Population and voucher information are provided in Appendix 1.

*Significant departure from Hardy–Weinberg equilibrium at P < 0.05.
TABLE 3. Genetic diversity in three congeneric species based on the 13 polymorphic microsatellite loci developed for Saxifraga sinomontana.*

Locus	Cuona (n = 8)	Xinghai (n = 15)	Chengdu (n = 7)	Luozha (n = 4)	Dege (n = 7)	Shiqu (n = 6)
	H_1	H_2	H_1	H_2	H_1	H_2
S51	5.0000	0.6667	6.0000	0.9333	4.0000	0.8214
S52	4.6250	0.6583	6.0000	0.8299	4.0000	0.7500
S58	4.0000	1.0000	3.0000	0.5770*	2.0000	0.5385*
S59	5.7500	0.6083	3.0000	0.6897	2.0000	0.7149
S510	12.0000	0.9583	7.0000	0.5103	1.0000	0.2637
S511	5.3750	0.6083*	4.0000	0.5973*	2.0000	0.4945
S516	2.1250	0.1250	2.0000	0.5149*	3.0000	0.5824
S532	3.3750	0.3417	4.0000	0.6345	10.0000	0.9333
S555	2.0000	0.2333	4.0000	0.3954	2.0000	0.1429
S540	2.8750	0.5250	3.0000	0.4759	3.0000	0.5714
S544	1.0000	0.0000	5.0000	0.3333	7.0000	0.4115*
S546	3.3333	0.6000	9.0000	0.4167	2.0000	0.5000
S547	7.0000	0.8833	10.0000	0.8529	3.0000	0.7143

Note: A = total number of alleles per locus; H_1 = expected heterozygosity; H_2 = observed heterozygosity; n = number of individuals sampled.

*Significant departure from Hardy–Weinberg equilibrium at P < 0.05.

CONCLUSIONS

The 13 EST-SSR markers developed here showed high polymorphism in S. sinomontana and high cross-species amplification success. Hence, these are valuable loci for investigating genetic diversity, population structure, and evolutionary history in S. sinomontana and throughout Saxifraga.

ACKNOWLEDGMENTS

This study was supported by the Chinese Academy of Sciences Light of West China Program, the Youth Innovation Promotion Association of the Chinese Academy of Sciences (grant no. 20163787), the National Natural Science Foundation of China (grant no. 31110103911), the Open Project of Qinghai Provincial Key Laboratory of Crop Molecular Breeding (grant no. 2017-ZJY14), the Science and Technology Basic Work Project of the Ministry of Science and Technology, China (2015FY11050014), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA2002030302).

DATA ACCESSIBILITY

Raw sequencing reads were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (BioProject SRX8365238). Sequence information for the developed primers has been deposited in NCBI’s GenBank, and accession numbers are provided in Table 1.

LITERATURE CITED

Bouck, A., and T. Vision. 2007. The molecular ecologist’s guide to expressed sequence tags. Molecular Ecology 16: 907–924.

Doyle, J. J., and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Ellis, J. R., and J. M. Burke. 2007. EST-SSRs as a resource for population genetic analyses. Heredity 99: 125–132.

Gao, Q. B., Y. H. Li, R. J. Gornall, Z. X. Zhang, F. Q. Zhang, R. Xing, P. C. Fu, et al. 2015. Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon 64: 703–713.

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29: 644–652.

Kumar, A., and K. Singh. 2012. Isolation of high quality RNA from Phyllanthus emblica and its evaluation by downstream applications. Molecular Biotechnology 52: 269–275.

Li, Y., Q. B. Gao, Z. M. Gengji, L. K. Jia, Z. H. Wang, and S. L. Chen. 2018. Rapid intraspecific diversification of the alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas. Frontiers in Genetics 9: 381.

Pan, J. T., R. J. Gornall, and H. Obha. 2001. Saxifraga. In Z. Y. Wu and P. H. Raven [eds.], Flora of China, vol. 8: 280–334. Science Press, Beijing, China, and Missouri Botanical Garden Press, St. Louis, Missouri, USA.

Pertea, G., X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamycheva, Y. Lee, et al. 2003. TIGR Gene Indices clustering tools (TGICL): A software system for fast clustering of large EST datasets. Bioinformatics (Oxford, England) 19: 651–652.

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

Rozen, S., and H. Skaletsky. 1999. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA.

Thiel, T., W. Michalek, R. K. Varshney, and A. Graner. 2003. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 106: 411–422.

Tkach, N., M. Röser, G. Miehe, A. N. Muellner-Riehl, J. Ebersbach, A. Favre, and M. H. Hoffmann. 2015. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon 64: 1159–1187.

van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.

Yeh, F. C., R. C. Yang, and T. Boyle. 1999. POPGENE version 1.31: Microsoft Windows–based freeware for population genetic analysis, quick user guide. Centre for International Forestry Research, University of Alberta, Edmonton, Alberta, Canada.
APPENDIX 1. Locality and voucher information for the populations of *Saxifraga* used in this study.

Species	Voucher no.	Collection locality	Geographic coordinates	Elevation (m)	n
Saxifraga sinomontana J. T. Pan & Gornall	Chen 2014558	Yushu, Qinghai	32°34′20.7″N, 97°12′41.6″E	4880	1
	Chen 2012317	Aba, Sichuan	32°46′02″N, 101°40′01″E	3450	8
	Chen 2014282	Changdu, Tibet	31°04′48″N, 96°56′59″E	4610	28
	Chen 2012347	Chengduo, Qinghai	33°12′02″N, 97°28′13″E	4450	18
	Chen 2007078	Dingri, Tibet	28°55′58″N, 87°26′24″E	5160	17
Saxifraga tangutica Engl.	Chen 2014409	Cuona, Tibet	28°19′23.4″N, 91°55′08.5″E	4770	8
	Chen 2007004	Xinghai, Qinghai	35°36′50″N, 99°32′05″E	3980	15
Saxifraga heleonastes Harry Sm.	Chen 2006024	Chengduo, Qinghai	34°07.457′N, 97°39.411′E	4850	7
	Chen 2014483	Luozha, Tibet	28°24′39.2″N, 90°34′31.4″E	5110	4
Saxifraga congestiflora Engl. & Irmsch.	Chen 2007226	Dege, Sichuan	31°57′25″N, 98°52′43″E	4180	7
	Chen 2007250	Shiqu, Sichuan	32°29′33″N, 98°27′17″E	4380	6

Note: n = number of individuals sampled.
Voucher specimens deposited at the herbarium of the Northwest Institute of Plateau Biology (HNWP), Xining, Qinghai, China.