Parasite community analysis of the gray snapper Lutjanus griseus (Perciformes, Lutjanidae) in a tropical region of the Southern Gulf of Mexico

M. A. RODRÍGUEZ-SANTIAGO1,2,*, L. RAMOS-COLORADO3, L. GARCÍA-MAGAÑA3, M. I. GRANO-MALDONADO4, J. IANNACONE5, 6, A. VÁZQUEZ-CABALLERO7

1Consejo Nacional de Ciencia y Tecnología (CONACYT), Ciudad de México, México, *E-mail: arodriguez@pampano.unacar.mx; 2Centro de Investigaciones en Ciencias Ambientales, Facultad de Ciencias Naturales, Universidad Autónoma del Carmen, C.P. 24155 Ciudad del Carmen, Campeche, México; 3Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Villahermosa, Tabasco, México; 4Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Mazatlán, Sinaloa, México; 5Universidad Nacional Federico Villarreal (UNFV), Facultad de Ciencias Naturales y Matemática, Laboratorio de Ecología y Biodiversidad Animal, Grupo de Investigación y Sostenibilidad Ambiental, Escuela Universitaria de Post Grado, Lima, Perú; 6Universidad Científica del Sur (UCSUR), Facultad de Ciencias Ambientales, Lima, Perú; 7Centro de Investigación Científica de Yucatán, A.C. (CICY), Mérida, Yucatán, México

Article info
Received October 13, 2020
Accepted December 9, 2021

Summary
The gray snapper Lutjanus griseus is a commercially important fish species along its distribution range in the western Atlantic Ocean. However, despite its importance, there is still little knowledge about its parasitic fauna for the Mexican coasts of the Gulf of Mexico. The aims of this research were to generate a list of the parasitic fauna present in juvenile gray snapper L. griseus from a coastal lagoon located in southeastern Mexico, to evaluate the infection levels of parasites and to determine the relationship between the abundance of parasites and the fish size and condition factor. Samples of L. griseus (12 – 29.2 mm) were obtained in two periods of the year (dry and rainy seasons) to examine the intra-annual variability of its parasitic fauna. A total of 17 parasite species were recorded belonging to six taxonomic groups (Myxozoa, Monogenea, Digenea, Cestoda, Nematoda and Acanthocephala). The highest levels of infection (abundance, prevalence and intensity of infection) were found for the monogeneans Euryhaliotrema griseus and Euryhaliotrema fastigatum. There were no significant correlations between the total abundance of parasites and the fish condition and size (total length) in not any of the two seasons studied, suggesting that the body size and the biological condition index of the host did not directly influence the abundance of parasites in early life stages of L. griseus. Moreover, the species of parasites found that could be zoonotic for humans through the consumption of raw or inadequately cooked fish were the nematodes Contracaecum sp. type 1, Contracaecum sp. type 2, Cucullanus pargi and Pseudoterranova sp. The presence of the monogeneans E. griseus and E. fastigatum was also highlighted because these ectoparasite species are known to cause harm to fish under culture systems. All the parasite species found in this study, except nematodes, were new records of geographic distribution.

Keywords: coastal lagoon; intra annual variability; Lutjanus griseus; parasites; southeast of Mexico

Introduction
Parasites can play a fundamental role in the life of fish, as they can alter their biological effectiveness, affect their behavior, growth, fecundity, migratory patterns, and mortality (Barber & Poulin, 2002; Marcogliese 2004; Luque & Poulin 2007; Raissy & Ansari, 2012).
In the case of the snappers (Family Lutjanidae), this fish group is commonly associated with the seabed where feed mainly on benthic organisms such as nocturnal fish, crustaceans (crabs, shrimp, stomatopods), molluscs (gastropods and cephalopods) and plankton from shallow waters to bottoms located between 400 and 500 m deep (Anderson, 2002; Brulé, 2004; Guevara et al., 2007). These organisms on which they feed can include intermediate hosts of helminths, which in addition to infecting the snapper, can cause negative impacts on their commercialization, on the farming of the species and generate public health problems (e.g., in the case of have nematode species that cause anisakiasis or gnathostomiasis) (Emmel et al., 2006; Shamsi et al., 2013; Alda et al., 2015; Mattucci et al., 2017; Drietrich et al., 2018; Ikuno et al., 2018; Yuan et al., 2018; Juárez-Camargo et al., 2020).

In the case of the commercially important snapper species on the coasts of the Mexican Atlantic (Gulf of Mexico and Caribbean), there is relatively little knowledge about their parasitic fauna (González-Solis et al., 2002; González-Solis et al., 2007a, b; Argáez-García et al., 2010; Montoya-Mendoza et al., 2014; Mendoza-Franco et al., 2018). This may be because marine fish from this region (southeast of Mexico) have been relatively less studied (from a parasitological point of view) than freshwater fish (Saigado-Maldonado, 2006).

The gray snapper, *Lutjanus griseus* (Linnaeus, 1758), is a commercial important fish that distributes from Massachusetts USA to Brazil, including the Gulf of Mexico and Caribbean, and characterize by feeds on fish and large invertebrates (Guevara et al., 2007; Juárez-Camargo et al. 2020), which, as mentioned above,
are possible intermediate hosts and / or vectors of parasitic helminths and crustaceans. However, despite the high commercial value of this fish in the Mexican coasts and that has been consid-
erate a candidate for aquaculture in this region (Riley et al.,
2008), there are still few parasitological studies on this species (e.g., Salgado-Maldonado, 1979; Lamothe-Argumedo et al., 1997; Argáez-Garcia et al., 2010). Therefore, knowing the diversity of species of parasites that infect this fish species as well as their prevalence and intensities is relevant, since these organisms can negatively affect the host populations. For example, recent helminthological examinations of specimens of the grey snapper in the northern Gulf of Mexico (Florida, USA) described a myxozoan infection causing high mortalities in juvenile of this fish species, which was associated with increases in seawater temperature (Holzer et al., 2013).

In the Mecoacán lagoon system in the southern Gulf of Mexico (Tabasco, Mexico) the gray snapper \textit{L. griseus} is a highly con-
sumed fish notable for its size and abundant catch by artisanal fishing throughout the year (Hernández-Ojendi et al., 2020). How-
ever, for this region there are no parasitological records on this fish species. Therefore, the aims of this research were: (1) to gen-
erate a taxonomic list of the parasitic fauna present in \textit{L. griseus} in the Mecoacán lagoon system, (2) to evaluate infection levels (prevalence, intensity and abundance) for each parasite species found, (3) to determine the relationship between the fish size and condition factor with the abundance of parasites in two periods of the year and (4) to determine whether any of the parasite species found can be pathogenic for human or cause negative effects to aquaculture rearing systems.

Materials and Methods

The Mecoacán lagoon system is in the Tabasco state in south-
eastern Mexico (between 18° 16' N and 18° 26' N - 93° 04' W and
93° 14' W) (Fig. 1). Through commercial catches the specimens were collected in two seasons of the year (dry and rain seasons). Thirty fish were collected for each season. The fish were kept in coolers with ice and transported to the Laboratory which conduct-
ed a parasitological examination. For each fish general measure-
ments were taken; total length (cm) and weight (g). Examination of eyes, fins, skin, gill cavity and internal organs; intestinal caeca and coelomic cavity, stomach wall, stomach, intestine, spleen, gall bladder, liver, kidneys and heart were carefully examined for ectoparasites and endoparasites under a stereoscopic microscope (LEICA-DMBL 10), and all parasites were removed. Monogeneans and digeneans were fixed in AFA (acetic acid-formaldehyde-alco-
hol) solution for 24 h, then preserved in ethylic alcohol (70 %), and stained with Gomori’s trichromic stain (Lamothe-Argumedo, 1997; Eiras et al., 2003; Guzman-Cornejo et al., 2012). Nematodes were fixed in Berland’s liquid, preserved in ethylic alcohol (70 %), cleared with a solution of phenol-potassium (Lent’s solution), and mounted on slides covered with glycerin-gelatin (Moravec, 1992).

For the generic and specific description of the parasites, the keys proposed by the following authors were used (Amin, 1985; An-
derson et al., 1974 – 1983; Blend & Dronen, 1997; Gibson, 2002; Fuentes et al., 2003; Gibbons, 2010; Kritsky, 2012; Al-Zubaidy & Mhaisen, 2012). The parasitological material was deposited in the Helminthological Collection in the Academic Division of Bio-
logical Sciences of the Universidad Juárez Autónoma de Tabasco (Mexico). Species richness, prevalence (%), abundance (parasite

Table 1. Parasite species found in \textit{Lutjanus griseus} (n = 60).

Parasites Species	Organ preference	Location in the body of the host	GC - gill cavity	IC - intestinal cecum	Me - mesentery	CC - coelomic cavity	Stw - stomach wall	S - stomach	I - intestine	L - liver	Levels of infection in prevalence (%P), mean abundance (MA) (± standard deviation), intensity (M) in dry and rain seasons.		
Dry season											**Wet season**		
Site of Infection	**I**	**%P**	**MA**	**I**	**%P**	**MA**							
Myxozoo sp.	I, R	0	0	0	17	33.33	5.7 ± 3.4						
Euryhalotrema griseus	S, GC, D, R	10.65	96.66	10.3 ± 2.1	15.46	100	15.46 ± 1.2						
Euryhalotrema fastigatum	S, CG, R	7.21	93.33	6.73 ± 1.6	19.63	100	19.63 ± 1.9						
Helicometra sp.	I, D	1.16	20	0.23 ± 0.09	1	3.33	0.033 ± 0.33						
Siphodera vinaledwardsi	IC, D, R	1	3.33	0.03 ± 0.03	0	0	0						
Pseudophyllidea gen. sp.	IC, D	3	3.33	0.1 ± 0.07	0	0	0						
Tetraphyllidea gen. sp.	IC, D	10	3.33	0.33 ± 0.33	0	0	0						
Contracaecum sp. type 1*	I, Me, CC, D, R	1	3.33	0.03 ± 0.18	0.2	16.66	0.03 ± 0.18						
Contracaecum sp. type 2*	I, Me, CC, D, R	3	3.33	0.1 ± 0.1	3	23.33	0.7 ± 0.3						
Cucullanus parii*	I, Me, CC, D, R	1.5	6.66	0.1 ± 0.74	1	3.33	0.03 ± 0.18						
Pseudoterranova sp.*	Me, R	0	0	0	1	3.33	0.03 ± 0.18						
Rhadinorhynchus sp.	M, D	1	3.33	0.03 ± 0.03	0	0	0						
Gorgorhynchoides sp.	Me, S, D	1	3.33	0.03 ± 0.18	0.2	16.66	0.03 ± 0.18						
Cysthacanth sp.1	I, Me, CC, D, R	1	3.33	0.03 ± 0.03	0	0	0						
Cysthacanth sp. 2	I, Me, CC, D, R	1	3.33	0.03 ± 0.03	0	0	0						
Gorgorhynchus sp.	Ly Me, Stw, R	1.16	20	0.23 ± 0.093	1	6.66	0.01 ± 0.25						
Neoechinorhynchus sp.	Ly Me, Stw	0	0	0	4.28	23.33	1 ± 2.6						
Fig. 2. Intensity (no. of parasites/host infected) and prevalence (%) of parasite species of gray snapper *Lutjanus griseus* in the dry season in the Meccoacán Lagoon system, Tabasco. Number of hosts (*n* = 30).

Fig. 3. Mean abundance (individuals per host ± standard deviation) of parasite species of gray snapper *Lutjanus griseus* in the dry season in the Meccoacán Lagoon system, Tabasco. Number of hosts (*n* = 30).
number / host), and intensity (parasite number / infected hosts) of parasites were determined according to Bush et al. (1997). The status of parasite species as core, secondary, satellite or rare species, was described by abundance: > 2 individuals / host = core species; 0.6 – 2 = secondary species; 0.2 – 0.6 = satellite species; < 0.2 = rare species (Zander et al., 2000; Zander, 2003).

For the seasons sampled (dry and rainy seasons) a Spearman correlation analysis was made between the total length of the fish and the abundance of parasites, and for the condition of the fish and the abundance of parasites. The condition of the fish was determined by means of the Fulton Condition Factor Index (Fulton, 2002).

Ethical Approval and/or Informed Consent

For this study formal consent is not required.

Results

Species composition and organ specificity on Lutjanus griseus
A total of 60 specimens of L. griseus were examined, for the dry season, 30 fish were examined (TL sizes 12 – 29.2 mm, weight 201.9 – 356 g) and in the rain season, 30 other fish were examined (TL sizes 23.5 – 28 mm, weight 201.9 – 356 g). A total number of 1,831 parasites, belonging to 17 species were identified (Table 1).

The digestive tract was the most infested organ with 15 species; 0.6 – 2 = secondary species; 0.2 – 0.6 = satellite species; < 0.2 = rare species (Zander et al., 2000; Zander, 2003). The greatest infections were for the monogeneans for the two climatic seasons, followed by the acanthocephala and nematodes but only for the rainy season. Table 1 shows the levels of infection for each of the parasite species, for the dry and rain seasons. The monogenean species E. fastigatum and E. griseus had the highest abundances (Figs. 2 and 3), prevalences and intensities (Figs. 4 and 5) for both the dry season and the rainy season and were considered as core species. Likewise, based on the abundance data, the species Contracaecum sp. type 2 and Neoechinorhynchus sp. were considered as secondary species, Helicometra sp., Tetraphyllidea and Gorgorhynchus sp. as satellite species and the rest of them as rare species. Satellite species are found in few infracommunities and with low abundances. Bush and Holmes (1986a) called “secondary species” those species with intermediate characteristics in the community.

The species of monogenean Euryhalitrema fastigatum (Zhkov, 1976) Kritsky & Boeger, 2002 and Euryhalitrema griseus Fuentes-Zambrano & Silva Rojas, 2006 showed the highest prevalence (dry season = 96.66 % and 93.33 %, respectively and 100 % during the rainy season in both cases). The species Cucullanus parigi González-Solís, Tuz-Paredes and Quintal-Loria (6 %) and Siphodera vinaledwardsii Linton (1901), Pseudophyllidea (Cestoda), Tetraphyllidea (Cestoda), Contracaecum sp. type 1, Contracaecum sp. type 2, Rhadinorhynchus sp., Gorgorhynchoides sp., Cystocanthisp. 1, Cystocanthisp. 2 had the lowest prevalences (<10 %) (Table 1).

As for the number of species and parasites per season (Table 2), we found an average for the dry season of 2.7 ± 1.23 species/host with an average of 18.33 ± 16.53 parasites/host. For the rainy season an average of 3.16 ± 0.74 species/host examined was recorded with an average of 42.7 ± 23.47 parasites/host. For the rainy season it increases the average number of parasites and species per host.

Table 2 shows the parameters of the L. griseus parasite communities in the component community. There was a greater number of individuals of parasites in the rainy season than in the dry season, with a greater species richness in the dry season. Also, the diversity of species tended to be greater during the rainy season, however, it was not statistically different from that recorded in the dry season. The dominant species for the dry season was E. griseus and for the rainy season was E. fastigatum.

Moreover, some parasite species registered in this study may
Fig. 4. Intensity (number of parasites / infected host) and prevalence (%) of parasite species of gray snapper *Lutjanus griseus* in the rainy season in the Mecoacán Lagoon system, Tabasco. Number of hosts (n = 30).

Fig. 5. Mean abundance (individuals per host ± standard deviation) of parasite species of gray snapper *Lutjanus griseus* in the rainy season in the Mecoacán Lagoon system, Tabasco. Number of hosts (n = 30).
cause health risks for humans. These parasites belong to the group of nematodes and were the following: *Contracaeum* sp. type 1, *Contracaeum* type sp. 2, *C. pargi* and *Pseudoterranova* sp. Two species of the genus *Euryhaliotrema* (*E. griseus* and *E. fastigatum*) were also identified, which, according to previous reports, could represent a potential risk for juvenile of *L. griseus* under farming conditions.

Discussion

This is the first study of parasite communities in the gray snapper (*L. griseus*) in the lagoon of Mecoacán Tabasco, Mexico. Therefore, the 17 recorded parasite species comprise new records of geographic distribution. The most diverse groups of parasites were that of the acanthocephalans (six species) and nematodes (four species). A factor that can influence the presence of these species are the host’s eating habits (Shamsi, 2013). Guevara et al. (2007) conducted a study on feeding habits and trophic ecology of *L. griseus* where they mention that they have preference for areas of submerged vegetation, as well as an increase in their abundance during the night. They also found that macrocrustaceans are the main component in the diet of this fish species (Guevara et al., 2007). This could explain that a greater number of acanthocephalans and nematode species are present and, since these groups present an indirect life cycle where their first intermediate host is generally a crustacean or other invertebrate.

It’s important to recognized valuable research concerning helminthological examinations of specimens of the grey snapper in the Gulf of Mexico (González-Solís et al., 2002; González-Solís & Tuz-Paredes, 2007), earlier Argáez-García et al. (2010) elaborated a detailed contribution list of just internal (intestinal) parasites of *Lutjanus griseus* at the Yucatán region. In our study 17 parasite species were found and Argáez-García et al. (2010) reported 20 helminth species at the Yucatán Peninsula, therefore both of the community parasite composition are similar, nevertheless, our present study in Mecocacan, Tabasco reports new taxonomical groups, such as: *Myxozan* in the wet season (33.3 %), and ecto-parasites *Euryhaliotrema griseus* and *E. fastigatum* in both seasons both with the highest prevalence in the wet seasons (100 %).

Our study has increased the knowledge of parasites presence with new records for *Lutjanus griseus* in the the Gulf of Mexico. The monogenean species *E. fastigatum* and *E. griseus* showed high levels of infection and are dominant, both for the dry season and the rainy season. This is because monogeneans are highly host-specific and have a direct life cycle where one free swimming larva called oncomiracidium must infect a host to complete its life-cycle. It is so that when the fish move in the middle, it can acquire a large quantity of these parasites, as they have specialized hooks that they use to adhere and survive in their host. It is worth mentioning that temperature is considered as the main abiotic factor that regulates the dynamics of monogeneans (Tinsley & Jackson, 2002; Soler-Jiménez & Fajer-Ávila, 2012; Ogawa, 2014). In the lagoon, warm waters are maintained (24 ° to 32 ° C) with an average of 26 ° C (García-Cubas et al., 1990). In the present study, the average condition factors were 1.34 in dry and 1.55 in rain season, which indicate that, on average, they presented healthy condition. Bashirullah (1975) determined that the average condition factor of *L. griseus* is 1.51 in males and 1.48 in females. In this study the fish presented good condition, it is a factor that statistically had no relationship with the parasitic load. Muñoz and Delorme (2011) pointed out that there is a relationship between the size of the fish and the parasite load, and that larger fish provide a greater contact surface for the parasites, and this is how the probability of encounter between the parasites increases. However, in the present study there was no correlation between the total length of the fish and the abundance of parasites. One factor that could influence these results are the total length of the fish that were reviewed in this study (12 – 29.2 mm) and that they can reach sizes greater than 40 cm (Castro-Aguirre et al., 1999). On the other hand, Samano-Zapata et al. (1998) studied that snappers increase in size, and also increasing diversity and volume of food in the coastal lagoons. This condition may explain the similarity in prevalence and mean abundance values for parasite species in specimens from other previous report in coastal lagoons (González-Solis et al., 2007; Argáez-García et al., 2010) as well as the increase in parasite species richness for specimens.

In the Acanthocephala group, the adults of *Neoechinorhynchus* are usually found in the intestine of freshwater and brackish water

Dominant species	Dry season	Wet season
Euryhaliotrema griseus	0.45	0.45
Euryhaliotrema fastigatum	0.45	0.34

Table 3. Characterization of the diversity of the component community of the *Lutjanus griseus* parasites in the Mecoacan Lagoon system for the dry and rainy season.

Examined hosts	Dry season	Wet season
N° of species	30	30
N° of individuals	14	11
Shannon Index	1.03	1.18
Margalef’s Index	2.06	1.39
Berger-Parker Index	0.56	0.45
Numerical dominance 1/D	0.45	0.34

It’s important to recognized valuable research concerning helminthological examinations of specimens of the grey snapper in the Gulf of Mexico (González-Solís et al., 2002; González-Solís & Tuz-Paredes, 2007), earlier Argáez-García et al. (2010) elaborated a detailed contribution list of just internal (intestinal) parasites of *Lutjanus griseus* at the Yucatán region. In our study 17 parasite species were found and Argáez-García et al. (2010) reported 20 helminth species at the Yucatán Peninsula, therefore both of the community parasite composition are similar, nevertheless, our present study in Mecocacan, Tabasco reports new taxonomical groups, such as: *Myxozan* in the wet season (33.3 %), and ecto-parasites *Euryhaliotrema griseus* and *E. fastigatum* in both seasons both with the highest prevalence in the wet seasons (100 %).
fish (Pinacho-Pinacho et al., 2014). These authors also reported low prevalence indicating probably an accidental infection of the specimens from electrified fishes in coastal lagoons across the Gulf of Mexico. In the comparison with intestinal parasites the prevalence is similar with our results and in the particular case of the acanthocephala and cestoda group the prevalence was very low (3 %) in the dry season and non-existing in the wet season. Argáez-García et al. (2010) also reported the presence of only of Tetraphyllididae organisms, in our study we reported the presence also the Pseudophyllidea individuals (3 %). The low prevalence may be an indicator of an accidental infection; these results justify further research.

Although, the latest authors mentioned that the helmith fauna of the gray snapper is replaced by new species after fish leave coastal lagoons, in our results show an addition of species for specimens from this lagoon in the same way, nematodes species found in fish from the Mecoacán lagoon system in Tabasco, Mexico were also present in specimens from others coastal lagoon in Quintana Roo according with Argáez-García et al. (2010). Perhaps the most reasonable hypothesis according these authors is that the gray snapper specimens sampled offshore are subject to rather slow replacement process of parasite species.

The parasite transmitted to humans by animals is known as zoonosis (Beaver et al., 1984). In particular, those infected by the intake of raw fish meat are called ichthyozoönosis. In the present work, it was found that species representing the group of nematodes may generate public health problems, particularly the species: Contracaecum sp. type 1 and 2, and Pseudoterranova sp., which belong to the Anisakidae family, among these parasites are known to have zoonotic importance. Rojas-Sánchez et al. (2014) point out that of the almost 100 known ichthyozoönosis worldwide, 12 have been recorded in Mexico that could affect humans. Anisakiasis, caused by members of the Anisakidae family to which Contracaecum sp. type 1 and 2 reported in this study and gnathostomiasis, caused by members of the genus Gnathostoma sp, are the two most frequent cases. Therefore, the habit of eating raw fish, such as ceviche and sushi, or insufficiently cooked fish should be avoided. Monogeneans are ectoparasites that cause problems in aquaculture (Whittington, 2005). This study recorded two species of genus Euryhalitremata (E. griseus and E. fastigatum), with the highest values of intensity, prevalence, and mean abundance, which is consistent with that previously reported for this fish species from the Venezuela coasts (Zambrano et al., 2003). In that study, a species of Euryhalitremata with relatively high values of prevalence, intensity, and mean intensity was also reported, and it was suggested that due to the fragility of the parasitized organ (gills) these ectoparasites could eventually represent a serious problem for L. griseus in captivity (Zambrano et al., 2003).

Conflict of Interest

Authors declare no conflict of interest.

Acknowledgments

The authors thank the fishermen of the Mecoacán Lagoon system who offered their support to obtain fishes. Also to Nicolás Álvarez Pliego of the UJAT for his support for the identification of L. griseus. In the same way, Belén Rodríguez Guadarrama of the UJAT is thanked for the support she gave us for the preparation of the map of the study area. As well as CONACyT for financing the post-graduate scholarship during this project. Special thanks to Amy Kathryn Lowe to provide editorial comments. Special thanks to the anonymous reviewers for their comments to improve this article.

References

Alda, P., Boniel, N., Panei, C.J., Cazzaniga, N.J., Martorelli, S.R. (2015). First molecular identification of Asascocotyle (Phagicola) longa in its first intermediate host the mud snail Heleobia australis. Acta Parasitol, 60(4): 791 – 795. DOI: 10.1515/AP-2015-0112
Al-Zubaidy, A.B., Mhaisen, F.T. (2012): A record of two species of Acanthocephala (Echinorhynchida: Rhadinorhynchidae) from Red Sea fishes, Yemeni coastal waters. Mesop J Mar Sci, 27(1): 15 – 28.
Amin, O.M. (1985): Classification. In: Crompton, D.W.T., Nickol, B.B. (Eds) Biology of the Acanthocephala. Cambridge University Press, England, 345pp.
Anderson, W. (2002): Lutjanidae. In: Carpenter, K. (Eds) The living marine resources of the western central Atlantic. FAO, Roma.
Argáez-García, W., Guillén-Hernández, S., Aguirre-Macedo, M. (2010): Intestinal helmiths of Lutjanus griseus (Perciformes: Lutjanidae) collected in three environments of Yucatan (Mexico), with a list of their parasites in the Gulf of Mexico and Caribbean regions. Rev Mex Biodivers, 81: 903 – 912. DOI: 10.22201/bib.20078706e.2010.003.660 (In Spanish)
Barber, I., Poulin, R. (2002): Interactions between fish, parasites and disease. In: Hart, P.J.B., Reynolds, J.D. (Eds) Handbook of fish biology and fisheries. Blackwell Publishing, Oxford, UK. 650pp.
Bashirullah, A.K.M. (1975): Biology of Lutjanus griseus of the CUBagua Island Venezuela. Length-weight, body length-gut length relationships and condition factor. Bol Inst Oceanogr Venez, Ori-ente Cumaná, 14(1): 101 – 107
Beaver, P.C., Jung, R.C., Cupp, E.W. (1984): Clinical Parasitology. Lea & Febiger, Philadelphia, USA, 536 pp.
Bend, C.K., Droney, N.O. (2015): A review of the genus Helicometra Odhner, 1902 (Digenaea: Opecoelidae: Plagiopomorpa) with a key to species including Helicometra overstreit n. sp. from the cusk-eel Luciobrotula corethromyrcter Cohen, 1964 (Ophidiiformes: Ophidiidae) from the Gulf of Mexico. Mar Biol, 45 (2): 183 – 270. DOI: 10.1007/S12526-014-0250-3
Brule, T., Colas, T., Pérez, E., Deniel, C. (2004): Biology and exploitation of groupers (Serranidae, Epinephelinae, Epinephelini) and snappers (Lutjanidae, Lutjaninae, Lutjanus) from the Gulf of
MATTUCCI, S., PAOLETTI, M., COLANTONI, A., CARBONE, A., GAETA, R., PROIETTI, A., FRATTAROLI, S., FAZII, P., BRUSCHI, F., NASCETTI, G. (2017): Invasive anisakiasis by the parasite *Anisakis pegreffii* (Nematoda: Anisakidae): diagnosis by real-time PCR hybridisation probe system and immunoblotting assay. *BMC Infect Dis*, 17(1): 530. DOI: 10.1186/S12879-017-2633-0

MORAVEC, F., NASINCORDI, V., SCHOLZ, T. (1992): *Training Course on Fish Parasites: Methods of Investigation of Endoparasitic Helminths*. Institute of Parasitology, Czechoslovak Academy of Science, 230pp.

MUÑOZ, G., DELORME, N. (2011): Temporal variations of parasite communities in intertidal fishes of central Chile: resident vs temporary hosts. *Rev Biol Mar Ocean*, 46(3): 313 – 327. DOI: 10.4067/S0718-19572011000300003 (In Spanish)

OGAWA, K. (2014): Diseases of cultured marine fishes caused by Platyhelminthes (Monogenea, Digenea, Cestoda). J Parasitol, 142: 178 – 195. DOI: 10.1017/S0031182014000808

PINACHO-PINACHO, C.D., SERENO-URIBE, A.L. GARCÍA-VARELA, M. (2014): Morphological and molecular data reveal a new species of Neoechinorhynchus (Acanthocephala: Neoechinorhynchidae) from *Dormitator maculatus* in the Gulf of Mexico. *Parasitol Int*, 63(6): 763 – 771. DOI: 10.1016/j.parint.2014.07.003

RASSY, M., ANSARI, M. (2012): Parasites of some Freshwater Fish from Armand River, Chaharmahal va Bahktiary Province. *Iran J Parasitol*, 7(1): 73 – 79

RILEY, K. L., CHERNEY, E. J., TERSCH, T. R. (2008): Field collection, handling, and refrigerated storage of sperm of red snapper and gray snapper. *N Am J Aquac*, 70: (3) 356 – 364. DOI: 10.1577/A07-061.1

ROJAS-SANCHEZ, A., LAMOTHE-ARGUEDO, M. R., GARCÍA-PRIETO, L. (2014): Parasitosis transmitidas por el consumo de peces en México. *Ciencia*, 65: 83 – 81

SALGADO-MALDONADO, G. (1979): Acanthocephalan fish VI. Finding of *Gorgorychnoides bullocki* Cable and Mafarachis 1970 (Acanthocephala: Artyrhynchacanthidae) and description of some of its juvenile stages. *An Inst Biol Univ Nac Autón México*, Zool, 50: 35 – 50 (In Spanish)

SALGADO-MALDONADO, G. (2006): Checklist of helminth parasites of freshwater fishes from Mexico. *Zootaxa*, 1324: 1 – 357. DOI: 10.11646/zootaxa.1324.1.1

SÁMANO-ZAPATA, J. C., VEGA-CENDEJAS, M. E., HERNÁNDEZ-DE SANTILLANA, M.J. (1998): Alimentary ecology and trophic interactions of juveniles “pargo mulato” (*Lutjanus griseus* Lineaus, 1758) and “rubia” (*L. sinagris* Lineaus, 1958) from the noroccidental coast of the Yucatán Peninsula, México. *Proc Gulf Carib Fish Inst*, 50: 804 – 826

SÁNCHEZ, A.J. (1994): Feeding habits of *Lutjanus apodus* (Osteichthyes: Lutjanidae) in Laguna de Términos, Southwest Gulf of Mexico. *Rev Inv Mar*, 15(2): 125 – 134

SHAMS, S., HALAJIAN, A., TAVAKOLB, S., MORTAZAVI, P., BOULTONA, J. (2013): Pathogenicity of *Clistostomum complanatum* (Digenea: Clistostomidae) in piscivorous birds. *Res Vet Sci*, 95(2): 537 – 539. DOI: 10.1016/j.resvetsc.2013.06.018

SCHOLZ, T., EIZET, L., MORAVEC, F. (1998): Taxonomic status of *Pelichnibothrium speciosum* Monticelli, 1889 (Cestoda: Tetraphyllidea), a mysterious parasite of *Alepisaurus ferox* Lowe (Teleostei: Alepisauridae) and *Prionace glauca* (L.) (Euselachii: Carchariniidae). *Syst Parasitol*, 41: 1 – 8. DOI: 10.1023/A:1006091102174

SOLER-JIMÉNEZ, L.C., FAJER-ÁVILA, E.J. (2012): The microecology of dactylogyrids (Monogenea: Dactylogyridae) on the gills of wild spotted rose snapper *Lutjanus guttatus* (Lutjanidae) from Mazatlan Bay, Mexico. *Folia Parasitol*, 59(1): 53 – 58. DOI: 10.14411/fp.2012.008

TINSLEY, R.C., JACKSON, J.A. (2002): Host factors limiting monogenean infections: a case study. *Int J Parasitol*, 32: 353 – 365. DOI: 10.1016/S0020-7519(01)00336-8

WHITTINGTON, I. (2005): Monogenea, Monopisthocotylea (ectoparasitic flukes). In: RODHE, K. (Ed) *Marine Parasitology*. CSIRO Publishing, Australia

YUAN, R., HUANG, J., ZHANG, X., RUAN, S. (2018): Modeling the transmission dynamics of clonorchiasis in Foshan, China. *Sci Rep*, 8(1): 1 – 9. DOI: 10.1038/S41598-018-33431-W

ZAMBRANO, J.L.F., ROJAS, C.S., LEÓN, R. (2003): Parasites in juveniles of *Lutjanus griseus* (Pisces: Lutjanidae) at La Restinga Lagoon, Margarita Island, Venezuela. *Eutrophication*, 28: 463 – 468.

ZANDER, C.D. (2003): Four-year monitoring of parasite communities in gobid fishes of the south-western Baltic. *Parasitol Res*, 90: 502 – 511. DOI: 10.1007/S00436-003-0887-5

ZANDER, C.D., REIMER, L.W., BARZ, K., DIETEL, G., STROHBACH, U. (2000): Parasite communities of the Salzhaﬀ (northwest Mecklenburg, Baltic Sea). II. Guild communities, with special regard to snails, benthic crustaceans, and small-sized fish. *Parasitol Res*, 86: 359 – 372. DOI: 10.1007/S004360050681