Sirolimus-induced drug fever and ciclosporin-induced leukencephalopathy with seizures in one liver transplant recipient

Doris Schacherer, Martina Zeitoun, Roland Büttner, Cornelia Gelbmann, Aiman Obed, Hans-Jürgen Schlitt, Jürgen Schölmerich, Gabi I Kirchner

Abstract

We describe the first case of sirolimus-induced drug fever in a female liver transplant recipient, with a history of hepatitis C-induced end-stage liver cirrhosis in 1999. In 2005, six years after transplantation, she developed calcineurin inhibitor-induced renal function impairment. Immunosuppression was switched from tacrolimus to sirolimus. Two days after the intake of sirolimus, she developed daily fever spikes, but no infectious focus was found. Antibiotic therapy had no influence on the fever. After fourteen days, sirolimus was switched back to tacrolimus and the fever disappeared. In history, the patient developed ciclosporin-induced generalized seizures eleven days after liver transplantation, followed by the development of a motoric speech disorder. Magnetic resonance imaging (MRI) findings were consistent with leucoencephalopathy, therefore immunosuppressive therapy was changed from ciclosporin to tacrolimus and the neurologic symptoms improved significantly. Our case is the first reported case of sirolimus-induced drug fever. In addition, the patient showed the rare occurrence of ciclosporin-induced leukencephalopathy with seizures.

© 2007 WJG. All rights reserved.

Key words: Liver transplantation; Immunosuppression; Side effects

Schacherer D, Zeitoun M, Büttner R, Gelbmann C, Obed A, Schlitt HJ, Schölmerich J, Kirchner GI. Sirolimus-induced drug fever and ciclosporin-induced leukencephalopathy with seizures in one liver transplant recipient. World J Gastroenterol 2007; 13(45): 6090-6093
histopathological liver examination was performed for the first time and showed inflammation grade IV, as well as fibrosis grade III (Ishaak-Score). Therefore, interferon monotherapy was given for one year (relapse after end of treatment). Six months later, she presented with decompensated liver cirrhosis and esophageal bleeding due to varices grade III. After re-compensation she was listed for liver transplantation in January 1999. Neurologic status was normal prior to liver transplantation. Liver transplantation was successfully performed in August 1999. The explanted liver demonstrated complete cirrhosis (716 g). The liver graft showed no histological damage and normal perfusion as judged by duplex sonography. Immunosuppressive therapy was started with a combination therapy of ciclosporin, azathioprine and steroids. Eleven days after the start of immunosuppressive therapy, she developed a generalized seizure, which could be stopped with diazepam. Several focal and generalized epileptic fits followed and the patient developed a motoring speech disorder which finally resulted in dysarthria and complete aphasia. The patient showed no other neurologic symptoms. A magnetic resonance imaging (MRI) of the head showed periventricular white matter lesions consistent with leukoencephalopathy and a beginning encephalitis (FLAIR TR 8000 ms, TE 110 ms).

DISCUSSION

The clinical and radiological features demonstrated in this patient are consistent with those of leukoencephalopathy, a rare condition previously described in patients treated with ciclosporin and tacrolimus\(^8\)\(^-\)\(^7\). In our patient as in most patients previously described, leukoencephalopathy associated with immunosuppression occurred early during therapy and was reversible with good recovery. One case of late-onset leukoencephalopathy with a fatal outcome has been reported\(^8\). In the reported case, the symptoms due to leukoencephalopathy improved after withdrawal of ciclosporin, but unfortunately, did not completely disappear. The patient also suffered from seizures, which disappeared after withdrawal of ciclosporin and initiation of antiepileptic therapy with gabapentin.

Neurologic symptoms represent serious complications following orthotopic liver transplantation and may be caused by various perioperative factors or may develop due to drug-specific toxicity of immunosuppression. The incidence of neurotoxicity seems to be higher in patients treated with tacrolimus than in patients treated with ciclosporin in the early postoperative period, after retransplantation as well as in the late phase\(^8\). Watson \textit{et al.}\(^6\) described two patients who suffered from neurological events, one with encephalopathy and the other with recurrent seizures. Both patients were on sirolimus and ciclosporin after orthotopic liver transplantation and stabilized after withdrawal of ciclosporin. Choi \textit{et al.}\(^1\) reported that of the 367 patients who received OLT, 48 suffered from neurological complications, 17
developed seizures (status epilepticus occurred in two patients, generalized tonic-clonic seizures in five patients). Although neurotoxicity is not a frequent side effect of ciclosporin medication, the described cases in the reports are in accordance with our patient’s symptoms (seizures and consecutive motoric speech disorder) which could be interpreted as side effects of ciclosporin medication. The motoric dysarthric disorder improved significantly after a change of the immunosuppressive regimen, but residuals still existed.

Idilman et al described two cases of reversible posterior leukoencephalopathy manifested as headache, nausea and seizures associated with the use of immunosuppressive drugs following liver transplantation. One case of a 29-year old patient treated with ciclosporin after a liver transplant for primary sclerosing cholangitis showed late-onset progressive leukoencephalopathy due to immunosuppressive therapy and died three years later. These reports suggest that neurological side effects should be cautiously observed when alteration of immunosuppressive therapy is considered.

Although ciclosporin is an immunosuppressive agent widely used in the management of liver transplant recipients, neurological complications have been described in only few cases. The two different neurological side effects found in our patient are probably associated with ciclosporin medication. Side effects of sirolimus include delayed wound healing, oral ulcers, hypertension, interstitial pneumonitis, infections, and most importantly, hyperlipidemia and myelosuppression. Concerning the central nervous system, it has been shown that sirolimus can alter cell metabolism of primary astrocytes, thus resulting in similar neurotoxicity as experienced by tacrolimus and ciclosporin. Perhaps the greatest potential benefit of sirolimus for liver transplant recipients is its lack of nephrotoxicity as compared to calcineurin inhibitors.

At present, no single immunosuppressive regimen can offer a clear advantage over another with regard to prevention of cellular rejection, graft survival, and patient survival. In our patient, immunosuppression was switched from ciclosporin to sirolimus due to nephrotoxicity of ciclosporin. We clearly could show that the fever in our patient was not related to infection, but most likely to sirolimus. Two days after starting immunosuppression with sirolimus, our patient developed fever with no infectious focus found in blood cultures, urine tests or in radiologic examinations. Even the antibiotic therapy did not show any improvement of the daily spikes of fever in the evening. Due to the diagnosis of sirolimus-induced drug fever, the immunosuppressive medication was changed back to tacrolimus in combination with mycophenolate mofetil and no more fever spikes occured. To our knowledge, this is the first reported case of drug-fever obviously related to sirolimus. Two years ago, Dorschner et al described a 2-year drug-related fever caused by everolimus, a sirolimus-derived immunosuppressant (Certican®). Their patient was 66 years old and received a cardiac transplant due to dilatative cardiomyopathy. The immunosuppressive regimen consisted of steroids, ciclosporin, and everolimus. Two weeks after the replacement of everolimus with azathioprine, all the patient’s symptoms disappeared.

This is the first report of a liver transplant recipient with rare immunosuppressant-induced side effects. Until now, we could not unravel the mechanism(s) responsible for these side effects. A mutation in cytochrome P450 3A or FK-binding protein 12 (FK-BP12) seems to be unlikely, because our patient had no side effects under medication with tacrolimus, which is also metabolised by cytochrome P450 3A and bound to FK-BP12. Since ciclosporin, tacrolimus and sirolimus are substrates of the ATP-binding efflux pump P-glycoprotein, located in several organs like bowel and liver, it seems to be impossible that this protein might cause the several drug-side effects in our
patient. Therefore, we speculate that immunosuppressant drugs may have some influence on proteins in the central nervous system.

In conclusion, ciclosporin is an immunosuppressive agent widely used in the management of solid organ transplantation. Sirolimus is a powerful immunosuppressant used to prevent acute rejection episodes in patients who have undergone transplantation, particularly when nephrotoxic effects of calcineurin inhibitors become problematic.

REFERENCES

1 Lemahieu WP, Maes BD, Verbeke K, Vanrenterghem Y. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. *Am J Transplant* 2004; 4: 1514-1522
2 Henry ML. Cyclosporine and tacrolimus (FK506): a comparison of efficacy and safety profiles. *Clin Transplant* 1999; 13: 209-220
3 Kahan BD. Sirolimus: a comprehensive review. *Expert Opin Pharmacother* 2001; 2: 1903-1917
4 Chen H, Wu J, Luo H, Daloze P. Synergistic effect of rapamycin and cyclosporine in pancreatectoduodenal transplantation in the rat. *Transplant Proc* 1992; 24: 892-893
5 Bestetti R, Theodoropoulos TA, Burdmann EA, Filho MA, Cordeiro JA, Villafañha D. Switch from calcineurin inhibitors to sirolimus-induced renal recovery in heart transplant recipients in the midterm follow-up. *Transplantation* 2006; 81: 692-696
6 Hinchey J, Chaves C, Appignani B, Breen J, Pao L, Wang A, Pessin MS, Lamy C, Mas JL, Caplan LR. A reversible posterior leukoencephalopathy syndrome. *N Engl J Med* 1996; 334: 494-500
7 Boon AP. Adams DH, Carey MP, Williams A, McMaster P, Elias E. Cyclosporin-associated cerebral lesions in liver transplantation. *Lancet* 1988; 1: 1457
8 Fisher NC, Ruban E, Carey M, Heafield MT, West RJ, Adams DH. Late-onset fatal acute leukoencephalopathy in liver transplant recipient. *Lancet* 1997; 349: 1884-1885
9 Mueller AR, Platz KP, Bechstein WO, Schattenfroh N, Stoltenburg-Diding G, Blumhardt G, Christie W, Neuhaus P. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. *Transplantation* 1994; 58: 155-170
10 Watson CJ, Friend PJ, Jamieson NV, Frick TW, Alexander G, Gimson AE, Calne R. Sirolimus: a potent new immunosuppressant for liver transplantation. *Transplantation* 1999; 67: 505-509
11 Choi EJ, Kang JK, Lee SA, Kim KH, Lee SG, Andermann F. New-onset seizures after liver transplantation: clinical implications and prognosis in survivors. *Eur Neurol* 2004; 52: 230-236
12 Idilman R, De Maria N, Kugelmans M, Colantoni A, Van Thiel DH. Immunosuppressive drug-induced leukoencephalopathy in patients with liver transplant. *Eur J Gastroenterol Hepatol* 1998; 10: 433-436
13 Morelon E, Stern M, Israel-Biet D, Correas JM, Danel C, Mamzer-Bruneel MF, Feraldi MN, Kreis H. Characteristics of sirolimus-associated interstitial pneumonitis in renal transplant patients. *Transplantation* 2001; 72: 787-790
14 Hodges CB, Maxwell H, Beattie TJ, Murphy AV, Jindal RM. Use of rapamycin in a transplant patient who developed cyclosporin neurotoxicity. *Pediatr Nephrol* 2001; 16: 777-778
15 McAlister VC, Pellekian KM, Malatjalian DA, Colohan S, MacDonald S, Bitter-Suermann H, MacDonald AS. Orthotopic liver transplantation using low-dose tacrolimus and sirolimus. *Liver Transpl* 2001; 7: 701-708
16 Dominguez J, Mahalati K, Kiberd B, McAlister VC, MacDonald AS. Conversion to rapamycin immunosuppression in renal transplant recipients: report of an initial experience. *Transplantation* 2000; 70: 1244-1247
17 Trotter JF. Sirolimus in liver transplantation. *Transplant Proc* 2003; 35: 1935-2005
18 Dorschner L, Speich R, Ruschitzka F, Seebach JD, Gallino A. Everolimus-induced drug fever after heart transplantation. *Transplantation* 2004; 78: 303-304

S- Editor Liu Y L- Editor Wang XL E- Editor Wang HF

www.wjgnet.com