SunPy: A Python package for Solar Physics

Stuart J. Mumford, Nabil Freij, Steven Christie, Jack Ireland, Florian Mayer, V. Keith Hughitt, Albert Y. Shih, Daniel F. Ryan, Simon Liedtke, David Pérez-Suárez, British Chakraborty, Vishnunarayan K I, Andrew Inglis, Punyasloak Pattnaik, Brigitta Sipőcz, Rishabh Sharma, Andrew Leonard, David Stansby, Russell Hewett, Alex Hamilton, Laura Hayes, Asish Panda, Matt Earnshaw, Nitin Choudhary, Ankit Kumar, Prateek Chanda, Md Akramul Haque, Michael S Kirk, Michael Mueller, Sudarshan Konge, Rajul Srivastava, Yash Jain, Samuel Bennett, Ankit Baruah, Will Barnes, Michael Charlton, Shane Maloney, Nicky Chorley, Himanshu, Sanskar Modi, James Paul Mason, James Paul Mason, Jose Ivan Campos Rozo, Larry Manley, Agneet Chatterjee, John Evans, Michael Malocha, Monica G. Bobra, Sourav Ghosh, Airmansmith, Dominik Stańczak, Ruben De Visscher, Shresth Verma, Ankit Agrawal, Dumindu Buddhika, Swapnil Sharma, Jongyeob Park, Matt Bates, Dhruv Goel, Garrison Taylor, Goran Cetusic, Jacob, Mateo Inchaurrandiera, Sally Dacie, Sanjeev Dubey, Deepankan Sharma, Erik M. Bray, Jai Ram Rideout, Serge Zahniy, Tomas Meszaros, Abhigyan Bose, André Chicrala, Ankit, Chloé Guennou, Daniel D'Avella, Daniel Williams, Jordan Ballew, Nick Murphy, Priyank Lodha, Thomas Robitaille, Yash Krishan, Andrew Hill, Arthur Eigenbrot, Benjamin Mampaey, Bernhard M. Wiedemann, Carlos Molina, Duygu Keşkek, Ishtyaq Habib, Joseph Letts, Juanjo Bazán, Quinn Arbolante, Reid Gomillion, Yash Kothari, Yash Sharma, Abigail L. Stevens, Adrian Price-Whelan, Ambar Mehrotra, Arseniy Kustov, Brandon Stone, Trung Kien Dang, Emmanuel Arias, Fionnlagh Mackenzie Dover, Freek Verstringe, Gulshan Kumar, Harsh Mathur, Igor Babuschkin, Jaylen Wimbish, Juan Camilo Buitrago-Casas, Kalpesh Krishna, Kaustubh Hiware, Manas Mangaonkar, Matthew Mendero, Mickaël Schoentgen, Norbert G Gyenge, Ole Streicher, Rajasekhar Reddy Mekala, Rishabh Mishra, Shashank Srikanth, Sarthak Jain, Tanmay Yadav, Tessa D. Wilkinson, Tiago M. D. Pereira, Yudhik Agrawal, Jamiescalixto, Yasintoda, and Sophie A. Murray.

1 SP2RC, School of Mathematics and Statistics, The University of Sheffield, UK 2 National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 3 Aperio Software Ltd., Headingley Enterprise and Arts Centre, Bennett Road, Leeds LS6 3HN 4 Institute for Environmental Analytics, University of Reading, Reading RG6 6BX 5 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 6 Aperio Software Ltd., 7 Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-9760, USA 8 American University, Washington, DC 20016, USA 9 University College London, London, UK 10 Manav Rachna University 11 Catholic University of America / NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 12 International Institute of Information
The Sun, our nearest star, is a local laboratory for studying universal physical processes. Solar physics as a discipline includes studying the Sun both as a star and as the primary driver of space weather throughout the heliosphere. Due to the Sun’s proximity, the temporal and spatial resolution of solar observations are orders of magnitude larger than those of other stars. This leads to significant differences in the data-analysis software needs of solar physicists compared with astrophysicists.

The sunpy Python package is a community-developed, free, and open-source solar data analysis environment for Python. It is managed by the SunPy Project, an organization that facilitates and promotes the use of open development and open source packages like sunpy through community engagement and tools such as GitHub, mailing lists, and matrix.

The four most significant subpackages of sunpy are described below.

The sunpy.net subpackage provides a unified interface that simplifies and homogenizes search and retrieval by querying and downloading data from many solar data sources, irrespective of the underlying data-source client. It currently supports sourcing data from 18 different space- and ground-based solar observatories.

The sunpy.map and sunpy.timeseries subpackages provide core data types (Map and Time Series, respectively) that are designed to provide a general, standard, and consistent interface
for loading and representing solar data across different instruments and missions. These classes load data which conform to solar physics standards and conventions such as FITS (Wells, Greisen, & Harten, 1981), FITS World Coordinate Systems (WCS) (Greisen & Calabretta, 2002), and solar-specific FITS headers (Thompson, 2006), while allowing customization to account for differences in specific instruments. Visualization methods are also provided to inspect and plot those data. Example visualizations of both TimeSeries and Map are shown in Figure 1.

![Figure 1: Left: An example of TimeSeries for the GOES X-ray Sensor in two broadband channels. Right: A Map of the extreme ultraviolet 171 Å channel of AIA corresponding to the time of a solar flare depicted by the vertical dashed line in the left-hand panel.](image)

The sunpy.coordinates subpackage provides support for representing and transforming coordinates used in solar physics and astrophysics. These coordinates may represent events (e.g., flares), features on or above the Sun (e.g., magnetic loops), or the position of structures traveling throughout the heliosphere (e.g., coronal mass ejections). The package currently implements the most widely used Sun-centered coordinate frames, and extends astropy.coordinates.

Other functionality provided by sunpy includes physical models of solar behavior, such as differential rotation, color maps for certain data sources, image-processing routines integrated with Map, and useful physical parameters such as constants.

The sunpy package is designed to be extensible, which means that it is easy to add support for additional instruments or data sources. It relies heavily on the astropy (The Astropy Collaboration et al., 2018) Python package as well as the scientific python stack (e.g., numpy (van der Walt, Colbert, & Varoquaux, 2011), scipy (Jones, Oliphant, Peterson, & others, n.d.), matplotlib (Hunter, 2007) and pandas (McKinney, 2010)).

A more complete description of the SunPy Project and the sunpy package, including the methodology, development model, and implementation, as well as a comparison with other commonly-used packages in solar physics, can be found in (Barnes et al., 2020).

The SunPy Project supports affiliated packages, which build upon or extend the functionality of sunpy. The current affiliated packages are drms (Glogowski, Bobra, Choudhary, Amezcua, & Mumford, 2019), ndcube, radiospectra and IRISPy. The Project is also a member of the Python in Heliophysics community (PyHC, Annex et al., 2018), whose mission is to enable interdisciplinary analysis across all sub-disciplines of heliophysics by adhering to standards for code development and interoperability.

Mumford et al., (2020). SunPy: A Python package for Solar Physics. Journal of Open Source Software, 5(46), 1832. https://doi.org/10.21105/joss.01832
Acknowledgements

SunPy is a NumFOCUS sponsored package.

References

Annex, A., Alterman, B. L., Azari, A., Barnes, W., Bobra, M., Cecconi, B., Christe, S., et al. (2018). Python in heliophysics community (pyhc) standards. doi:10.5281/zenodo.2529131

Barnes, W. T., Bobra, M. G., Christe, S. D., Freij, N., Hayes, L. A., Ireland, J., Mumford, S., et al. (2020). The sunpy project: Open source development and status of the version 1.0 core package. The Astrophysical Journal, 890(1), 68. doi:10.3847/1538-4357/ab4f7a

Glogowski, K., Bobra, M., Choudhary, N., Amezcua, A., & Mumford, S. (2019). Drms: A python package for accessing hmi and aia data. Journal of Open Source Software, 4(40), 1614. doi:10.21105/joss.01614

Greisen, E. W., & Calabretta, M. R. (2002). Representations of world coordinates in fits, 395, 1061–1075. doi:10.1051/0004-6361:20021326

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55

Jones, E., Oliphant, T., Peterson, P., & others. (n.d.). SciPy: Open source scientific tools for Python. Retrieved from http://www.scipy.org/

McKinney, W. (2010). Data structures for statistical computing in python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th python in science conference (pp. 51–56).

The Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., Günther, H. M., Lim, P. L., Crawford, S. M., Conseil, S., et al. (2018). The astropy project: Building an open-science project and status of the v2.0 core package. The Astronomical Journal, 156(3), 123. doi:10.3847/1538-3881/aabc4f

Thompson, W. T. (2006). Coordinate systems for solar image data. Astronomy and Astrophysics, 449, 791–803. doi:10.1051/0004-6361:20054262

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The numpy array: A structure for efficient numerical computation. Computing in Science Engineering, 13(2), 22–30. doi:10.1109/MCSE.2011.37

Wells, D. C., Greisen, E. W., & Harten, R. H. (1981). FITS - a Flexible Image Transport System. Astronomy and Astrophysics Supplement Series, 44, 363.