I. ERGODIC HYPOTHESIS

Giving up a detailed description of microscopic motion led to a statistical theory of macroscopic systems and to a deep understanding of their equilibrium properties. At the same time a far less successful (even for steady states theory) approach to nonequilibrium systems began.

It is clear today, as it was already to Boltzmann and many others, that some of the assumptions and guiding ideas used in building up the theory were not really necessary or, at least, could be greatly weakened or just avoided.

A typical example is the ergodic hypothesis. It is interesting for us a very short history of it (as I see it). Early in his works Boltzmann started publishing the first versions of the heat theorem. The theorem says that one can define in terms of time averages of total or kinetic energy, of density, and of average momentum transfer to the container walls, quantities that one could call specific internal energy U, temperature T, specific volume V, pressure p and when two of them varied, say the specific energy and volume by du and dv, they verify:

$$\frac{du + pdv}{T} = \text{exact} \quad (1)$$

At the beginning this was discussed in very special cases (like free gases). But about fifteen years later Helmholtz noted in a series of four ponderous papers that for a class of very special systems, that he called monocyclic, in which all motions were periodic and in a sense non-degenerate, one could give appropriate names, familiar in macroscopic thermodynamics, to various mechanical averages and then check that they verified the relations that would be expected between thermodynamic quantities with the same name.

Helmoltz’ assumptions about monocyclicity are very strong and I do not see them satisfied other than in confined one dimensional Hamiltonian systems. Here is an example of Helmholtz’ reasoning (as reported by Boltzmann).

Consider a 1–dimensional system with potential $\varphi(x)$ such that $|\varphi'(x)| > 0$ for $|x| > 0$, $\varphi''(0) > 0$ and $\varphi(x) \xrightarrow{x \to \infty} +\infty$ (in other words a 1–dimensional system in a confining potential). There is only one motion per energy value (up to a shift of the initial datum along its trajectory) and all motions are periodic so that the system is monocyclic. We suppose that the potential $\varphi(x)$ depends on a parameter V.

One defines state a motion with given energy E and given V. And:

$$U = \text{total energy of the system} \equiv K + \varphi$$
$$T = \text{time average of the kinetic energy}$$
$$V = \text{the parameter on which } \varphi \text{ is supposed to depend}$$
$$p = -\text{time average of } \frac{\partial \varphi}{\partial \varphi}$$

A state is parameterized by U, V and if such parameters change by dU, dV respectively we define:

$$dL = -pdV, \quad dQ = dU + pdV \quad (2)$$

then:

Theorem (Helmoltz): the differential $(dU + pdV)/T$ is exact.

In fact let:

$$S = 2 \log \int_{x_0(U,V)}^{x_1(U,V)} \sqrt{K(x;U,V)} dx =$$
$$= 2 \log \int_{x_0(U,V)}^{x_1(U,V)} \sqrt{U - \varphi(x)} dx \quad (3)$$

($\frac{1}{2}S$ is the logarithm of the action), so that:

$$dS = \frac{\int (dU - \partial_{\varphi} \varphi(x) dV) \frac{d\varphi}{\sqrt{K}}}{\int K \frac{d\varphi}{\sqrt{K}}} \quad (4)$$

and, noting that $\frac{d\varphi}{\sqrt{K}} = \sqrt{\frac{2}{m}} dt$, we see that the time averages are given by integrating with respect to $\frac{d\varphi}{\sqrt{K}}$ and dividing by the integral of $\frac{1}{\sqrt{K}}$. We find therefore:

$$dS = \frac{dU + pdV}{T} \quad (5)$$

Boltzmann saw that this was not a simple coincidence: his interesting (and healthy) view of the continuum (which he probably never really considered more than a convenient artifact, useful for computing quantities describing a discrete world) led him to think that in some sense monocyclicity was not a strong assumption.

Motions tend to recur (and they do in systems with a discrete phase space) and in this light monocyclicity would simply mean that, waiting long enough, the system would come back to its initial state. Thus its motion
would be monocyclic and one could try to apply Helmholtz’ ideas (in turn based on his own previous work) and perhaps deduce the heat theorem in great generality. The nondegeneracy of monocyclic systems becomes the condition that for each energy there is just one cycle and the motion visits successively all (discrete) phase space points.

Taking this viewpoint one had the possibility of checking that in all mechanical systems one could define quantities that one could name with “thermodynamic names” and that would verify properties coinciding with those that Thermodynamics would predict for quantities with the same name.

He then considered the two body problem, showing that the thermodynamic analogies of Helmoltz could be extended to systems which were degenerate, but still with all motions periodic. This led to somewhat obscure considerations that seemed to play an important role for him, given the importance he gave them. They certainly do not help in encouraging reading his work: the breakthrough paper of 1884 starts with associating quantities with a thermodynamic name to Saturn rings (regarded as rigid rotating rings) and checking that they verify the right relations (like the second principle, see Eq.(6)).

In general one can call monocyclic a system with the property that there is a curve $\ell \rightarrow x(\ell)$, parameterized by its curvilinear abscissa ℓ, varying in an interval $0 < \ell < L(E)$, closed and such that $x(\ell)$ covers all the positions compatible with the given energy E.

Let $x = x(\ell)$ be the parametric equations so that the energy conservation can be written:

$$\frac{1}{2} m \dot{\ell}^2 + \varphi(x(\ell)) = E$$

(6)

then if we suppose that the potential energy φ depends on a parameter V and if T is the average kinetic energy, $p = -\langle \partial V \varphi \rangle$ it is, for some S:

$$dS = \frac{dE + pdV}{T}, \quad p = -\langle \partial V \varphi \rangle, \quad T = \langle K \rangle$$

(7)

where $\langle \cdot \rangle$ denotes time average.

A typical case to which the above can be applied is the case in which the whole space of configurations is covered by the projection of a single periodic motion and the whole energy surface consists of just one periodic orbit, or at least only the phase space points that are on such orbit are observable. Such systems provide, therefore, natural models of thermodynamic behaviour.

Noting that a chaotic system like a gas in a container of volume V, which can be regarded as a parameter on which the potential φ (which includes interaction with the container walls) depends, will verify “for practical purposes” the above property, we see that we should be able to find a quantity p such that $dE + pdV$ admits the average kinetic energy as an integrating factor.

On the other hand the distribution generated on the surface of constant energy by the time averages over the trajectory should be an invariant distribution and therefore a natural candidate for it is the uniform distribution, Liouville’s distribution, on the surface of constant energy. The only one if we accept the viewpoint, probably Boltzmann’s, that phase space is discrete and motion on the energy surface is a monocyclic permutation of its finitely many cells (ergodic hypothesis). It follows that if μ is the Liouville distribution and T is the average kinetic energy with respect to μ then there should exist a function p such that T^{-1} is the integrating factor of $dE + pdV$.

Boltzmann shows that this is the case and, in fact, p is the average momentum transfer to the walls per unit time and unit surface, ie it is the physical pressure.

Clearly this is not a proof that the equilibria are described by the microcanonical ensemble. However it shows that for most systems, independently of the number of degrees of freedom, one can define a mechanical model of thermodynamics.

Thermodynamic relations are very general and simple consequences of the structure of the equations of motion. They hold for small and large systems, from 1 degree of freedom to 10^{23} degrees. The above arguments, based on a discrete view of phase space, suggest that they hold in some approximate sense (as we have no idea on the precise nature of the discrete phase space). But they may hold exactly even for small systems if suitably formulated: for instance in the 1884 paper Boltzmann shows that in the canonical ensemble the relation Eq.(6) (ie the second principle) holds without corrections even if the system is small.

Thus the ergodic hypothesis does help in finding out why there are mechanical “models” of thermodynamics: they are ubiquitous in small and large systems. But such relations are of interest in large systems and not really in small ones.

For large systems any theory claiming to rest on the ergodic hypothesis may seem bound to fail because if it is true that a system is ergodic, it is also true that the time the system takes to go through one of its cycles is simply too long to be of any interest and relevance: this was pointed out very clearly by Boltzmann and earlier by Thomson.

The reason we observe approach to equilibrium over time scales far shorter than the recurrence times is due to the property that the microcanonical ensemble is such that on most of phase space the actual values of the observables, whose averages yield the pressure and temperature and the few remaining thermodynamic quantities, assume the same value. This implies that such value coincides with the average and therefore verifies the heat theorem if p is the pressure (defined as the average momentum transfer to the walls per unit time and unit surface).

The ergodic hypothesis loses it importance and fundamental nature and it appears simply as a tool used in understanding that some of the relations that we call “macroscopic laws” hold in some form for all systems, whether small or large.
II. THE CHAOTIC HYPOTHESIS

A natural question is whether something similar to the above development can be achieved in systems out of equilibrium. Here I am not thinking of systems evolving in time: rather I refer to properties of systems that reach a stationary state under the influence of external non conservative forces acting on them. For instance I think of an electric circuit in which a current flows (stationarily) under the influence of an electromotive field. Or of a metal bar with two different temperatures fixed at the extremes. Or of a Navier–Stokes fluid in a Couette flow.

The first two systems, regarded as microscopic systems (ie as mechanical systems of particles), do certainly have a very chaotic microscopic motions even in absence of external driving (while macroscopically they are in a stationary state and nothing happens, besides a continuous, sometimes desired, heat transfer from the system to the surroundings). The third system also behaves, as a macroscopic system, very chaotically at least when the Reynolds number is large.

Can one do something similar to what Boltzmann did?
The first problem is that the situation is quite different: there is no established nonequilibrium Thermodynamics to guide us. The great progresses of the theory of stationary nonequilibrium that took place in the past century (I mean the XX), at least the ones that are unanimously recognized as such, only concern properties of incipient non equilibrium: ie transport properties at vanishing external fields (I think here of Onsager’s reciprocity and its quantitative form given by Green–Kubo’s transport theory). So it is by no means clear that there is any general non equilibrium thermodynamics.

Nevertheless in 1973 a first suggestion that a general theory might be possible for non equilibrium systems in stationary and chaotic states was made by Ruelle in talks and eventually written down in paper [2].

The proposal is very ambitious as it suggests a general and essentially unrestricted answer to which should be the ensemble that describes stationary states of a system, whether in equilibrium or not.

The ergodic hypothesis led Boltzmann to the general theory of ensembles (as acknowledged by Gibbs, whose work has been perhaps the main channel through which the allegedly obscure works of Boltzmann reached us): besides giving the second law, Eq.[3], it also prescribed the microcanonical ensemble for describing equilibrium statistics.

The reasoning of Ruelle was that from the theory of simple chaotic systems one knew that such systems, for the simple fact that they are chaotic, will reach a “unique” stationary state. Therefore simply assuming chaoticity would be tantamount to assuming that there is a uniquely defined ensemble which should be used to compute the statistical properties of a system out of equilibrium.

Therefore one is, in a very theoretical way, in a position to inquire whether such unique ensemble has universal properties valid for small and large systems alike: of course we cannot expect too many of them to hold. In fact in equilibrium theory the only one I know is precisely the heat theorem, besides a few general (related) inequalities (eg positivity of the specific heat or of compressibility). The theorem leads, indirectly as we have seen, to the microcanonical ensemble and then, after one century of work, to a rather satisfactory theory of phenomena like phase transitions, phase coexistence, universality.

In the end the role of the ergodic hypothesis emerges, at least in my view, as greatly enhanced: and the idea of Ruelle seems to be its natural (and I feel unique) extension out of equilibrium.

Of course this would suffer from the same objections that are continuously raised about the ergodic hypothesis: namely “there is the time scale problem”.

To such objections I do not see why the answer given by Boltzmann should not apply unchanged: large systems have the extra property that the interesting observables take the same value in the whole (or virtually whole) phase space. Therefore they verify any relation that is true no matter whether the system is large or small: such relations (whose very existence is, in fact, surprising) might be of no interest whatsoever in small systems (like in the above mentioned Boltzmann’s rigid Saturn ring, or in his other similar example of the Moon regarded as a rigid ring rotating about the Earth).

Ruelle’s proposal was formulated in the case of fluid mechanics: but it is so clearly more general that the reason why it was not explicitly proposed for statistical systems is probably due to the fact that, as a principle, it required some “check” if formulated for Statistical MEchanics: as originally stated and without any further check it would have been analogous, in my view, to the ergodic hypothesis without the heat theorem (or other consequences drawn from the theory of statistical ensembles).

Evidence for the non trivial applicability of the hypothesis built up quite rapidly and it was repeatedly hinted in various papers dealing with numerical experiments, mostly on very small particle systems (< 100 to give an indication). In attempting at understanding one such experiment the following “formal” interpretation of the Ruelle’s principle was formulated for statistical mechanics (as well as for fluid mechanics, replacing “many particles system” with “turbulent fluid”)) in the form:

Chaotic hypothesis: A many particle system in a stationary state can be regarded as a transitive Anosov system (see below) for the purpose of computing the macroscopic properties of the system.

The hypothesis was made first in the context of reversible systems (which were the subject of the experimental work that we were attempting to explain theoretically). The assumption that the system is Anosov (see below) has to be interpreted when the system has an at-
tractor strictly smaller than the available phase space (i.e., not dense in it), as saying that the attractor itself can be regarded as a smooth Anosov systems (see below).

The latter interpretation rules out fractal attractors and, to include them, it could be replaced by changing “Anosov” into “Axiom A”, but I prefer to wait if there is real need of such an extension. It is certainly an essential extension for small systems, but it is not clear to me how relevant could fractality be when the system has 10^{23} particles.

A transitive Anosov system is a smooth system with a dense orbit (the latter condition is to exclude trivial cases, like when the system consists of two chaotic but noninteracting subsystems) and such that around every point \(x \) one can set up a local coordinate system that a) depends continuously on \(x \) and is covariant (i.e., it follows \(x \) in its evolution) and b) is hyperbolic (i.e., transversally to the phase space velocity of any chosen point \(x \) the motion of nearby points looks, when seen from the coordinate frame covariant with \(x \), as a hyperbolic motion near a fixed point.

This means that on (each) plane transversal to the phase space velocity of \(x \) there will be a “stable coordinate surface”, the stable manifold through \(x \), whose points trajectories get close to the trajectory of \(x \) at exponential speed as the time tends to +\(\infty \) and an “unstable coordinate surface”, the unstable manifold, whose trajectories get close to the trajectory of \(x \) at exponential speed as the time tends to -\(\infty \). The direction parallel to the velocity can be regarded as a neutral direction where, in the average, no expansion or contraction occurs.

Anosov systems are the paradigm of chaotic systems: they are the analogues of the harmonic oscillators for ordered motions. Their simple but surprising and deep property are by and large very well understood; particularly in the discrete time cases that we consider below. Unfortunately they are not as well known as they should among physicists, who seem confused by the language in which they are usually presented: however it is a fact that such a remarkable mathematical object has been introduced by mathematicians and the physicists must therefore make an effort at understanding the new notion and its physical significance.

In particular, if a system is Anosov: for all observables \(F \) (i.e., continuous functions on phase space) and for almost all initial data \(x \) the time average of \(F \) exists and can be computed by a phase space integral with respect to a distribution \(\mu \) uniquely determined on phase space \(F \):

\[
\lim_{T \to \infty} \frac{1}{T} \int_0^T F(S_t x) \, dt = \int_F F(y) \, \mu(dy) \quad (8)
\]

“almost all” means apart from a set of zero volume in phase space. The distribution is called the SRB distribution: it was proven to exist by Sinai for Anosov systems and the result was extended to the much more general Axiom A attractors by Ruelle and Bowen. Natural distributions were, independently, discussed and shown to exist for other (related and simpler) dynamical systems.

Clearly the chaotic hypothesis solves in general (i.e., for systems that can be regarded as “chaotic”) the problem of determining which is the ensemble to use to study the statistics of stationary systems in or out of equilibrium (it clearly implies the ergodic hypothesis in equilibrium), in the same sense in which the ergodic hypothesis solves the equilibrium case.

Therefore the first problem with such an hypothesis is that it will be very hard to prove it in a mathematical sense: the same can be said about the ergodic hypothesis which is not only unproved for most cases, but it will remain such, in systems of statistical mechanical interest, for long if not forever, aside from some very special cases (like the hard core gas). The chaotic hypothesis might turn out to be false in interesting cases, like the ergodic hypothesis which does not hold for the simplest systems studied in statistical mechanics, like the free gas, the harmonic chain and the black body radiation. Worse: it is known to be false for trivial reasons in some systems in equilibrium (like the hard core gas): simply because the Anosov definition requires smoothness of the evolution and systems with collisions are not smooth systems (in the sense that the trajectories are not differentiable as functions of the initial data).

However, interestingly enough, the case of hard core systems is perhaps the system closest to an Anosov system that can be thought of and that is also of statistical mechanical relevance. To an extent that there seem to be no known properties that such system does not share with an Anosov system. Aside from the trivial fact that it is not a smooth system, the hard core system behaves, for Statistical Mechanics purposes, as if it was a Anosov system. Hence it is the prototype system to study in looking for applications of the chaotic hypothesis.

The problem that remains is whether the chaotic hypothesis has any power to tell us something about nonequilibrium statistical mechanics. This is the real, deep, question for anyone who is willing to consider it. One consequence is the ergodic hypothesis, hence the heat theorem: but this is too little even though it is a very important property for a theory with the ambition of being a general extension of the theory of equilibrium ensembles.

I conclude this section with a comment useful in the following. As is well known by who has ever attempted a numerical (or real) experiment, one often does not observe systems in continuous time: but rather one records a numerical (or real) experiment, one often does not observe systems in continuous time: but rather one records the state of the system at times when some event that is considered interesting or characteristic happens. Calling such events “timing events” the system then appears as having a phase space of dimension one unit lower: because the set of timing events has to be thought of as a surface in phase space transversal to the phase space velocity of the trajectories \(t \to S_t x \).

If \(x \) is a timing event and \(\theta(x) \) is the time that one has to wait until the next timing event happens, the time evolution becomes a map \(x \to S_x(x) \equiv S_{\theta(x)} x \) of \(x \) into the following timing event. For instance one could record
the configuration of a system of hard balls every time that a collision takes place, and S will map a collision configuration into the next one.

The chaotic hypothesis can be formulated for such “Poincaré’s sections” of the continuous time flow in exactly the same way: and this is in fact a simpler notion as there will be no “neutral direction” and the covariant local system of coordinates will be simply based on a stable and an unstable manifold through every point x.

In the following section we take the point of view that time evolution has been discretized in the above sense (ie via a Poincaré’s section on a surface of timing events): this simplifies a discussion, but in a minor way.

III. FLUCTUATION THEOREM FOR REVERSIBLY DISSIPATING SYSTEMS.

The key to find applications is that the apparently in consequential hypothesis that the system is Anosov provides us not only with an existence theorem of the SRB distribution μ but also with an explicit expression for it. How explicit? as we shall see not too far from what we are used to in equilibrium statistical mechanics (eg $\mu = e^{-\beta H}$): where apparently unmanageable expressions and hopeless integrals have important and beautiful applications in spite of their obvious non computability.

The expression is the following: there is a partition of phase space into cells E_1, E_2, \ldots which in a sense that I do not specify here, is “covariant” with respect to time evolution and to the other symmetries of the system (if any; think of parity or time reversal) such that the average value of an observable can be computed as:

$$\langle F \rangle = \int_\mathcal{F} F(y) \mu(dy) = \sum_{E_i} \frac{\Lambda^{-1}_{u,T}(x_i) F(x_i)}{\sum_{E_i} \Lambda_{w,T}^{-1}(x_i)} \tag{9}$$

where $x_i \in E_i$ is a point suitably chosen in E_i (quite, but not completely, arbitrarily for technical, trivial, reasons) and $\Lambda_{u,T}(x)$ is the expansion of a surface element lying on the unstable manifold of $S_{\frac{1}{\tau}T} x$ and mapped by S_T into a surface element around $S_{\frac{1}{\tau}T} x$.

Of course Eq. requires that the cells be so small that F has negligible variations inside them: if this is not the case then one simply has to refine the partitioning into smaller cells, until they become so small that F is a constant inside them (for practical purposes). This can be done simply by applying the time evolution map and its inverse to the partition that we already imagine to have, but which has large cells, and then intersecting the elements of the new partitions obtained to get a finer partition. The hyperbolicity of the evolution implies that the partition into cells can be made as fine as desired.

Another reason why we need small cells is to insure that the weights themselves do not depend too much on which point x_i is chosen to evaluate them: the precise condition is somewhat delicate.

An example of an application of the above formula is obtained by studying the phase space volume contraction rate $\sigma(x)$: this is defined as the logarithm of the Jacobian determinant $\Lambda(x)$ of the time evolution map (recall that we are now considering a discrete time evolution S, as explained at the end of the preceding section). Suppose that we ask for the fluctuations of the average of the “dimensionless contraction” $\sigma(x)/\sigma_+$ where σ_+ is the (infinite) time average $\sigma_+ = \int \sigma(y) \mu(dy)$, that is assumed strictly positive (it could be zero, for instance in a equilibrium system where the evolution is Hamiltonian and conserves volume in phase space; but it cannot be <0). The positivity of the time average of σ can be taken as the very definition of “dissipative” motions.

This is the quantity: $p = \frac{1}{\tau \sigma_+} \sum_{k=-\infty}^{\infty} \sigma(S^k x)$. It will have a probability distribution, in the stationary state, that we write $\pi_T(p)$. We now compare $\pi_T(p)$ to $\pi_T(-p)$, which is clearly a ratio of probabilities of two events one of which will have an extremely small probability (the expected value of p being 1).

Suppose that the system is time reversible: ie that there is an isometry of phase space I that anticommutes with the evolution: $IS = S^{-1} I$. Then:

$$\frac{\pi_T(p)}{\pi_T(-p)} = \sum_{E_i \ni \pi} \Lambda^{-1}_{u,T}(x_i) \sum_{E_i \ni -p} \Lambda_{w,T}^{-1}(x_i) \tag{10}$$

where the sum in the numerator extends over the cells E_i in which the total dimensionless volume contraction rate is p anf the sum in the denominator over those with contraction rate $-p$.

Here we take $T = \tau$ for the purpose of a partial illustration: this is not allowed and in a sense it is the only difficulty in the discussion. But taking $T = \tau$ conveys some of the main ideas. If this “interchange of limits” is done then one simply remarks that the sum in the denominator of Eq. can be performed over the same cells as that in the numerator, provided we evaluate the weight in the denominator at the point $I x_i$, ie provided we use the denominator the weight $\Lambda^{-1}_{u,T}(I x_i)$: this is so because time reversal maps a cell in which the dimensionless rate of volume contraction is p into one in which it is $-p$ and vice versa. But time reversal also interchanges expansion and contraction so that $\Lambda^{-1}_{u,T}(I x_i) = \Lambda_{u,T}(x_i)$, if the contraction rate along the stable manifold $\Lambda_{u,T}$ is defined in the same way as $\Lambda_{u,T}$ by exchanging stable and unstable manifolds. This means that the ratio between corresponding terms is now $\Lambda_{u,T}^{-1}(x_i)\Lambda_{u,T}^{-1}(x_i)$.

Since the latter quantity is essentially the total contraction rate up to a factor bounded independently of the value of T (because the angle between the stable and unstable manifolds is bounded away from zero by the continuity property of Anosov systems) it follows that the ratio Eq. in this (rather uncontrolled) approximation $T = \tau$, is $\tau \rho \sigma_+$ ie simply the contraction rate which has the same value for all cells considered, by construction. Conclusion:

5
\[
\lim_{\tau \to \infty} \frac{1}{\tau p \sigma_{+}} \log \frac{\pi_{\tau}(p)}{\pi_{\tau}(-p)} = 1
\]

(11)

which is the fluctuation theorem if \(\pi_{\tau}\) are evaluated with respect to the SRB distribution of the system.

The above “proof” is missing a key point: namely the interchange of limits. Fixing \(\tau = T\) means that we are not computing the probabilities in the SRB distribution but, at best, in some approximation of it. In experimental tests one need the theorem to hold when the limits are taken in the proper order (ie first \(T \to \infty\) and then \(\tau \to \infty\)). The latter theoretical aspects have been discussed in the original papers \cite{9} where it is shown that the limit is approached as \(\tau^{-1}\); and formal proofs are also available.\cite{9, 10}

That this is not a fine point of rigor can be seen from the fact that if one disregards it then other proofs of the “same” result but with \(\tau = T\) become possible. In other words the result has a “tendency” to be general but it can be proved in the right form of Eq(11) only under strong chaoticity assumptions. It is very interesting that in weaker forms a result closely related to the fluctuation theorem can be obtained for completely different dynamical systems ie for stochastic evolution.\cite{9}

It is possible that for the stochastic evolution the result could be extended to become a closer analogue of the above, solving the mentioned problem of the interchange of limits: one would, in fact, think that the noise makes the system as chaotic as one may possibly hope.

The result Eq.(11), has to be tested because in all applications we do not know whether the system is Anosov and to what extent it can be assumed such. And its verification provides a form of test of the chaotic hypothesis.

Other equivalent formulations of the fluctuation theorem are in terms of the “free energy” of the observable \(p\): \(\zeta(p) = \lim_{\tau \to \infty} \frac{1}{\tau} \log \pi_{\tau}(p)\); it becomes:

\[
\frac{\zeta(p) - \zeta(-p)}{p \sigma_{+}} = 1
\]

(12)

which says that the odd part of \(\zeta(p)\) is linear in \(p\) with a determined and parameter free, slope: note that without reversibility one could only expect that \(\zeta(p)\) had a quadratic maximum at \(p = 1\) (central limit theorem for the observable \(\sigma(x)\) which stays quadratic as long as \(|p - 1| = O(\sqrt{\tau})\). The fluctuation theorem instead gives informations concerning huge deviations \(|p - 1| = O(2)\) it is a large deviation theorem.

The main interest, so far, of the above theorem is that it has shown that Ruelle’s principle has some power of prediction. In fact the result has been checked in various small systems.\cite{9, 11}. The first of which was its experimental discovery \cite{9} preceding the chaotic hypothesis and fluctuation theorem formulations.

It is also interesting because of its universal validity: it is system independent (provided reversible), hence it is a general law that should be satisfied if the chaotic hypothesis is the correct mathematical translation of our intuitive notion of chaos, and Anosov systems catch it fully.

The question whether the above results can also be obtained from the chaotic hypothesis formulated in terms of the continuous time flow on phase space (rather than for a map between timing events, see the last comments in the previous section) would leave us unhappy if it did not have a positive answer: it does have a positive answer.\cite{9, 10}

IV. ONSAGER’S RECIPROCITY AND GREEN–KUBO’S FORMULA.

The fluctuation theorem degenerates in the limit in which \(\sigma_{+}\) tends to zero, ie when the external forces vanish and dissipation disappears (and the stationary state becomes the equilibrium state).

Since the theorem deals with systems that are time reversible at and outside equilibrium Onsager’s hypotheses are certainly verified and the system should obey reciprocal response relations at vanishing forcing. This led to the idea that there might be a connection between fluctuation theorem and Onsager’s reciprocity and also to the related (stronger) Green–Kubo’s formula.

This is in fact true: if we define the microscopic thermodynamic flux \(j(x)\) associated with the thermodynamic force \(E\) that generates it, ie the parameter that measures the strength of the forcing (which makes the system not Hamiltonian), via the relation:

\[
j(x) = \frac{\partial \sigma(x)}{\partial E}
\]

(13)

(not necessarily at \(E = 0\)) then in [G2] a heuristic proof shows that the limit as \(E \to 0\) of the fluctuation theorem becomes simply (in the continuous time case) a property of the average, or “macroscopic”: flux \(J = \langle j \rangle_{\mu_{E}}\):

\[
\frac{\partial J}{\partial E} \bigg|_{E=0} = \frac{1}{2} \int_{-\infty}^{\infty} \langle j(S_{t}x)j(x) \rangle_{\mu_{E}} \bigg|_{E=0} \, dt
\]

(14)

where \(\langle \cdot \rangle_{\mu_{E}}\) denotes average in the stationary state \(\mu_{E}\) (ie the SRB distribution which, at \(E = 0\), is simply the microcanonical ensemble).

If there are several fields \(E_{1}, E_{2}, \ldots\) acting on the system we can define several thermodynamic fluxes \(j_{k}(x) = \partial E_{k}\sigma(x)\) and their averages \(\langle j_{k} \rangle_{\mu}^{}\): a simple extension of the fluctuation theorem\cite{9, 11} is shown to reduce, in the limit in which all forces \(E_{k}\) vanish, to:

\[
L_{hk} = \frac{\partial J_{h}}{\partial E_{k}} \bigg|_{E=0} = \frac{1}{2} \int_{-\infty}^{\infty} \langle j_{h}(S_{t}x)j_{k}(x) \rangle_{E=0} \, dt = L_{kh}
\]

(15)

therefore we see that the fluctuation theorem can be regarded as an extension to non zero forcing of Onsager’s reciprocity and, actually, of Green–Kubo’s formula.
Certainly assuming reversibility in a system out of equilibrium can be disturbing: therefore one can inquire if there is a more general connection between the chaotic hypothesis and Onsager’s reciprocity and Green–Kubo’s formula. This is indeed the case and provides us with a second application of the chaotic hypothesis valid, however, only in zero field. It can be shown that the relations Eq. (15) follow from the sole assumption that at $E = 0$ the system is time reversible and that it verifies the chaotic hypothesis at $E ≠ 0$ it cannot be, as in Onsager’s theory, not reversible.

It is not difficult to see, technically, how the fluctuation theorem, in the limit in which the driving forces tend to 0, formally yields Green–Kubo’s formula.

We consider time evolution in continuous time and simply note that Eq. (14) implies that, for all E (for which the system is chaotic):

$$
\lim_{\tau \to \infty} \frac{1}{\tau} \log \langle e^{IE} \rangle_{\mu_E} = 0
$$

(16)

where $I_E \equiv \int \sigma(S_t x) dt$ with $\sigma(x)$ being the divergence of the equations of motion (ie the phase space contraction rate, in the case of continuous time). This remark (that says that essentially $\langle e^{IE} \rangle_{\mu_E} \equiv 1$ or more precisely it is not too far from 1 so that Eq. (15) holds) can be used to simplify the analysis introduced as follows.

Differentiating both sides with respect to E, not worrying about interchanging derivatives and limits and the like, one finds that the second derivative with respect to E is a sum of six terms. Supposing that for $E = 0$ the system is Hamiltonian and (hence) $I_0 \equiv 0$, the six terms are, when evaluated at $E = 0$:

$$
\frac{1}{\tau} (\partial^2 E I_E)_{\mu_E} |_{E=0} - \frac{1}{\tau} (\langle \partial E I_E \rangle^2)_{\mu_E} |_{E=0} + \\
\frac{1}{\tau} \int \partial E I_E(x) \partial \mu_E(x) |_{E=0} + \\
- \frac{1}{\tau} \left((\langle \partial E I_E \rangle^2)_{\mu_E} \cdot \int 1 \partial E \mu_E \right) |_{E=0} + \\
\frac{1}{\tau} \int \partial E I_E(x) \partial \mu_E(x) |_{E=0} + \frac{1}{\tau} \int 1 \cdot \partial^2_E \mu_E |_{E=0}
$$

(17)

and we see that the fourth and sixth terms vanish being derivatives of $\int \mu_E(dx) = 1$, the first vanishes (by integration by parts) because I_E is a divergence and μ_0 is the Liouville distribution (by the assumption that the system is Hamiltonian at $E = 0$ and chaotic). Hence we are left with:

$$
\left(\frac{1}{\tau} (\partial^2 E I_E)_{\mu_E} + \frac{2}{\tau} \int \partial E I_E(x) \partial \mu_E(x) \right) |_{E=0} = 0
$$

(18)

where the second term is, since the distribution μ_E is stationary, $2\tau^{-1} \partial E (\langle \partial E I_E \rangle_{\mu_E}) |_{E=0} \equiv 2 \partial E I_E |_{E=0}$; and the first term tends to $\int_{-\infty}^{\infty} \langle \sigma(S_t x) \rangle |_{E=0} dt$ as $\tau \to \infty$. Hence we get Green–Kubo’s formula in the case of only one forcing parameter.

The argument should be extended to the case in which E is a vector describing the strength of various driving forces acting on the system, but one needs a generalization of Eq. (4.4). The latter is a consequence of the fluctuation theorem, but the theorem had to be extended to derive also Green–Kubo’s formula (hence reciprocity) when there were several independent forces acting on the system.

The above analysis is unsatisfactory because we interchange limits and derivatives quite freely and we even take derivatives of μ_E, which seems to require some imagination as μ_E is concentrated on a set of zero volume. On the other hand, under the strong hypotheses which we suppose to be (that the system is Anosov), we should not need extra assumptions. Indeed the above mentioned non heuristic analysis is based on the study on the differentiability of SRB distributions with respect to parameters.

A third application of the chaotic hypothesis, still limited to reversible systems, is the following: consider the probability that certain observables O_1, O_2, \ldots are measured during a time interval $[-\frac{1}{2}, \frac{1}{2}]$ during which the system evolves between the point $S_{-\frac{1}{2}} x$ and $S_{\frac{1}{2}} x$. And suppose that we see the path or pattern ω given by $t \to O_1(S_t x), O_2(S_t x), \ldots$.

Assuming, for simplicity, that O_j are even under time reversal the “time reversed” pattern $I \omega$ will be $t \to O_1(S_{-t} x), O_2(S_{-t} x)$ and it will be clearly very unlikely. Suppose that we look at the relative probabilities of various patterns conditioned to an average (over the time interval $[-\frac{1}{2}, \frac{1}{2}]$) dimensionless volume contraction rate p. Then one can prove, under the chaotic hypothesis, that the relative probabilities of patterns in presence of rate p is the same as that of the time reversed patterns in presence of rate $-p$.

Since the contraction rate of volume in phase space can be interpreted as entropy creation rate, as suggested for instance by the above use, Eq. (15) of the phase space contraction to define the thermodynamic fluxes, as “conjugate” observables to the external thermodynamic forces, the latter statement has some interest as it can be read as saying that “it costs no extra effort to realize events normally regarded as impossible once one succeeds in the enterprise of reversing the sign of entropy creation rate”.

The interpretation of phase space contraction rate as entropy creation rate meets opposition, fierce at times: however it seems to me a very reasonable proposal for a concept that we should not forget has not yet received a universally accepted definition and therefore its definition should at least be considered as an open problem.

V. REVERSIBLE VERSUS IRREVERSIBLE DISSIPATION. NONEQUILIBRIUM ENSEMBLES?

A system driven out of equilibrium can reach a stationary state (and not stream out of sight) only if enough dissipation is present. This means that any mechanical
model of a system reaching a stationary state out of equilibrium must be a model with non conservative equations of motion in which forces representing the action of the thermostats, that keep the system from heating up, are present.

Thus a generic model of a system stationarily driven out of equilibrium will be obtained by adding to Hamilton’s equations (corresponding to the non driven system) other terms representing forces due to the thermostat action.

Here one should avoid attributing a fundamental role to special assumptions about such forces. One has to realize that there is no privileged thermostat. One can consider many of them and they simply describe various ways to take out energy from the system.

Thus one can use stochastic thermostats, and there are many types considered in the literature; or one can consider deterministic thermostats and, among them, reversible ones or irreversible ones.

Each thermostat requires its own theory. However the same system may behave in the same way under the action of different thermostatting mechanisms: if the only action we make on a gas tube is to keep the extremes temperatures fixed by taking in or out heat from them the difference may be irrelevant, at least in the limit in which the tube becomes long enough and as far as what happens in the middle of it is concerned.

But of course the form of the stationary state may be very different in the various cases, even when we think that the differences are only minor boundary effects. For instance, in the case of the gas tube, if our model is of deterministic dissipation we expect that the SRB state be concentrated on a set of zero phase space volume (because phase space will in the average contract, when \(\sigma_x > 0 \), so that any stationary state has to be concentrated on a set of zero volume, which however could still be dense and usually will be). While if the model is stochastic then the stationary state will be described by a density on phase space. Nothing could seem more different.

Nevertheless it might be still true that in the limit of an infinite tube the two models give the same result: in the same sense as the canonical and microcanonical ensembles describe the same state even though the microcanonical ensemble is supported on the energy surface, which has zero volume if measured by using the canonical ensemble (which is given by a density over the whole available phase space).

Therefore we see that out of equilibrium we have in fact much more freedom to define equivalent ensembles. Not only we have (very likely) the same freedom that we have in equilibrium (like fixing the total energy or not, or fixing the number of particles or not, passing from microcanonical to grand canonical etc) but we can also change the equations of motion and obtain different stationary states, i.e., different SRB distributions, which will however become the same in the thermodynamic limit.

Being able to prove the mathematical equivalence of two thermostats will amount at proving their physical equivalence. This again will be a difficult task, in any concrete case.

What I find fascinating is that the above remarks provide us with the possibility that a reversible thermostat can be equivalent in the thermodynamic limit to an irreversible one. I conclude by reformulating a conjecture, that I have already stated many times in talks and in writings, which clarifies the latter statement.

Consider the following two models describing a system of hard balls in a periodic (large) box in which there is a lattice of obstacles that forbid collisionless paths (by their arrangement and size): the laws of motion will be Newton’s laws (elastic collisions with the obstacles as well as between particles) plus a constant force \(E \) along the \(x \)-axis plus a thermostating force.

In the first model the thermostating force is simply a constant times the momentum of the particles: it acts on the \(i \)-th particle as \(-\nu p_i \), if \(\nu \) is a “friction” constant. Another model is a force proportional to the momentum but via a proportionality factor that is not constant and depends on the system configuration: it has the form \(-\alpha(x)p_i \) with \(\alpha(x) = E \cdot \sum_i p_i / \sum_i p_i^2 \).

The first model is essentially the model used by Drude in his theory of conduction in metals. The second model has been used very often in recent years for theoretical studies and has thus acquired a respected status and a special importance: it was among the first models used in the experiments and theoretical ideas that led to the connection between Ruelle’s ideas for turbulent motion in fluids and nonequilibrium statistical mechanics. I think that the importance of such works cannot be underestimated: without them the recent theoretical developments would have been simply unthinkable, in spite of the fact that \(a \ posteriori \) they seem quite independent and one could claim (unreasonably in my view) that everything could have been done much earlier.

Furthermore the second model can be seen as derived from Gauss’ least constraint principle. It keeps the total (kinetic) energy exactly constant over time (taking in and out energy, as needed) and is called Gaussian thermostat. Unlike the first model it is reversible, with time reversal being the usual velocity inversion. Thus the above theory and results based on the chaotic hypothesis apply.

My conjecture was (and is) that:

1) compute the average energy per particle that the system has in the constant friction case and call it \(E(\nu) \) calling also \(\mu_\nu \) the corresponding SRB distribution.

2) call \(\tilde{\mu}_E \) the SRB distribution for the Gaussian thermostat system when the total (kinetic) energy is fixed to the value \(E \)

3) then \(\mu_\nu = \tilde{\mu}_E(\nu) \) in the thermodynamic limit (in which the box size tends to become infinitely large but with the number of particles and the total energy correspondingly growing so that one keeps the density and the energy density constant) and for local observables, i.e., for observables that depend only on the particles of the system localized in a fixed finite region of the container.
This means that the equality takes place in the usual sense of the theory of ensembles.

This opens the way to several speculations as it shows that the reversibility assumption might be not so strong after all. And results for reversible systems may carry through to irreversible ones.

I have attempted to extend the above ideas also to cases of turbulent motions but I can only give here references.

Acknowledgements: this work has been supported also by Rutgers University and by the European Network # ERBCHRXCT940460 on: “Stability and Universality in Classical Mechanics”. I am indebted to F. Bonetto for several enlightening discussions.

References

1 Boltzmann, L.: Über die Eigenschaften monzyklischer und anderer damit verwandter Systeme, in "Wissenschaftliche Abhandlungen" ed. F.P. Hasenöhrl, vol. III, Chelsea, New York, 1968, (reprint).

2 Boltzmann, L.: Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo, engl. transl.: S. Brush, "Kinetic Theory", vol. 2, 218, Pergamon Press. Boltzmann, L.: Zu Hrn. Zermelo’s Abhandlung "Über die mechanische Erklärung irreversibler Vorgänge", engl. trans. in S. Brush, "Kinetic Theory", 2, 238. Boltzmann, L.: Lectures on gas theory, english edition annotated by S. Brush, University of California Press, Berkeley, 1964.

3 Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow, Physics Today, 32–38, 1993. And Microscopic Reversibility and Macroscopic Behavior: Physical Explanations and Mathematical Derivations, in 25 years of nonequilibrium statistical mechanics, ed. J. Brey, J. Marro, J. Rubi, M. San Miguel, Lecture Notes in Physics, Springer, 1995.

4 Ruelle, D.: A measure associated with Azim A attractors, American Journal of Mathematics, 98, 619–654, 1976. Ruelle, D.: Measures describing a turbulent flow, Annals of the New York Academy of Sciences, 357, 1–9, 1980. R.Bowen, D.Ruelle. Ergodic theory of Azim A flows, Inventiones Math. 2,181-202(1975). See also Ruelle, D.: Chaotic motions and strange attractors, Lecizion Lincee, notes by S. Isola, Accademia Nazionale dei Lincei, Cambridge University Press, 1989.

5 It is here impossible to account here, analytically, for the vast literature on the subject. The following papers are highlights and contain detailed references to related papers: Holian, B.L., Hoover, W.G., Posch. H.A.: Resolution of Loschmidt’s paradox: the origin of irreversible behavior in reversible atomic dynamics, Physical Review Letters, 59, 10–13, 1987. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium fluids, Academic Press, New York, 1990. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Viscosity of a simple fluid from its maximal Lyapunov exponents, Physical Review, 42A, 5990-5997, 1990. Dellago, C., Posch, H., Hoover, W.: Lyapunov instability in systems of hard disks in equilibrium and non-equilibrium steady states, Physical Review, 53E, 1485–1501, 1996.

6 Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady flows, Phys. Rev. Letters, 71, 2401–2404, 1993.

7 Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics, Physical Review Letters, 74, 2694–2697, 1995. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states, Journal of Statistical Physics, 80, 931–970, 1995.

8 Sinai, Y.G.: Gibbs measures in ergodic theory. Russian Math. Surveys, 27, 21–69, 1972. Also: Introduction to ergodic theory, Princeton U. Press, 1977.

9 Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations, Transactions American Mathematical Society, 183, 481, 1973.

10 Gentile, G: Large deviation rule for Anosov flows, mp_arc@ math. utexas. edu #96-79, in print in Forum Mathematicum.

11 Gallavotti, G. New methods in nonequilibrium gases and fluids, Maribor meeting lectures, june 1996-5 july 1996, mp_arc@ math. utexas. edu #96-533, in print in Open Systems & Information Dynamics. And Gallavotti, G.: Topics in chaotic dynamics, Lectures at the Granada school 1994, Ed. P. Garrido, J. Marro, in Lect. Notes in Phys., Springer Verlag, 448, p. 271–311, 1995.

12 Gentile, G. New methods in nonequilibrium gases and fluids, Maribor meeting lectures, june 1996-5 july 1996, mp_arc@ math. utexas. edu #96-533, in print in Open Systems & Information Dynamics. And Gallavotti, G.: Topics in chaotic dynamics, Lectures at the Granada school 1994, Ed. P. Garrido, J. Marro, in Lect. Notes in Phys., Springer Verlag, 448, p. 271–311, 1995.

13 The reason can be easily understood by analogy with a statistical mechanics case. Imagine a 1-dimensional nearest neighbour Ising spin system and that μ is the infinite volume zero field Gibbs state with coupling J. Then we can use a formula like Eq. where E_i are the spin configurations which have a specific form (one among the 2^T possible ones) in the box $[-\frac{T}{2}, \frac{T}{2}]$ and are arbitrary outside: clearly to get $\langle F \rangle_{\mu}$ right the function F has to depend only on few “centrally located spins”, which means that F has to be essentially constant in each of the E_i’s; hence, as said, the E_i have to be small enough, ie T large enough. But we also need that the boundaries have no influence on the expectation values that we compute. A choice of $x_i \in E_i$ means selecting a spin configuration inside the box $[-\frac{T}{2}, \frac{T}{2}]$ and outside it: hence the weight $\langle i \in T \rangle$ if H is the energy) depends on the form of the spin configuration x_i outside the box. This means that the relative weights of the possible configurations inside the box (corresponding to the possible choices of x_i) do depend on x_i and change by order $O(J)$, not small as $T \rightarrow \infty$, by changing x_i keeping it inside E_i, ie keeping the same spin configuration in the box. Therefore care has to be paid in the choice of x_i so that the relative weights are “right”. However there are always “pathological” choices of x_i for which something “goes wrong” for some F unless some care is exercised in choosing x_i. Think of F as being the value of the spin σ_0 located at the origin and of choosing x_i so that the first spins out of the box, σ_{T+1} (the same as the one, σ_0, at the center of the box: this amounts, if such a x_i is chosen, at computing the distribution of σ_0 in a model with an external field $2J$ acting on the spin at site 0: this is obviously going to give the wrong expectation value for $F = \sigma_0$ although in the average we produce the same state as the correct one. In fact the only wrong averages concern those of spins located...
near the origin (note that the analogue of this this would be false in 2-dimensions, in the phase transitions region). An example of a “correct” choice of \(x_i \), in this analogy, would be simply to take \(x_i \) with \(\sigma \left(\frac{k}{T+1} \right) = \sigma \left(\frac{1}{T+1} \right) \) and arbitrary elsewhere outside the box (using that the range is nearest neighbour). Finally the analogy is not accidental: the theory of the SRB states is done precisely by showing that they can be thought of as Gibbs states for a one dimensional short range Ising model.

13 Ruelle, D.: *Positivity of entropy production in nonequilibrium statistical mechanics*, Journal of Statistical Physics, 85, 1–25, 1996.
14 Gallavotti, G.: *Reversible Anosov maps and large deviations*, Mathematical Physics Electronic Journal, MPEJ, (http://mpej.unige.ch), 1, 1–12, 1995.
15 Ruelle, D.: *New theoretical ideas in nonequilibrium statistical mechanics*, Lecture notes at Rutgers University, fall 1997.
16 Morriss, G.P., Rondoni, L.: *Applications of periodic orbit theory to N–particle systems*, Journal of Statistical Physics, 86, 991, 1997.
17 Kurchan, J.: *Fluctuation Theorem for stochastic dynamics*, preprint chao-dyn@xyz.lanl.gov, #9709304.
18 Bonetto, F., Gallavotti, G., Garrido, P.: *Chaotic principle: an experimental test*, Physica D, 105, 226–252, 1997.
19 Gallavotti, G.: *Extension of Onsager’s’s reciprocity to large fields and the chaotic hypothesis*, Physical Review Letters, 77, 4334–4337, 1996.
20 Gallavotti, G., Ruelle, D.: *SRB states and nonequilibrium statistical mechanics close to equilibrium*, Communications in Mathematical Physics, in print.
21 The Eq(12) as a rewriting the fluctuation theorem Eq(11) is remarkable and was pointed out by F. Bonetto.
22 Ruelle, D.: *Differentiation of SRB states*, Communications in Mathematical Physics, 188, 1997.
23 Gallavotti, G.: *Fluctuation patterns and conditional reversibility in nonequilibrium systems*, in print on Annales de l’ Institut H. Poincaré, chao-dyn@xyz.lanl.gov #9703007.
24 Gallavotti, G.: *New methods in nonequilibrium gases and fluids*, Proceedings of the conference Let’s face chaos through nonlinear dynamics, U. of Maribor, 24 june–5 July 1996, ed. M. Robnik.
25 Ruelle, D.: *Statistical Mechanics*, Benjamin, 1969.
26 Gallavotti, G.: *Equivalence of dynamical ensembles and Navier Stokes equations*, Physics Letters, 223A, 91–95, 1996. And *Dynamical ensembles equivalence in fluid mechanics*, Physica D, 105, 163–184, 1997.

Internet access: The author’s quoted preprints can be downloaded (latest revision) at:

http://chimera.roma1.infn.it

in the Mathematical Physics Preprints page.
Author’s e-mail: giovanni@ipparco.roma1.infn.it

Typeset using REVTeX