ON THE SPECTRAL SET OF A
SOLVABLE LIE ALGEBRA OF OPERATORS

ENRICO BOASSO

Abstract. Given \(L \) a complex solvable finite dimensional Lie Algebra of operators acting on a Banach space \(E \) and \(\{x_i\}_{1 \leq i \leq n} \) a Jordan-Hölder basis of \(L \), we study the relation between \(\text{Sp}(L, E) \) and \(\prod \text{Sp}(x_i) \).

1. Introduction

J. L. Taylor developed in [4] a notion of joint spectrum for a \(n \)-tuple \(a = (a_1, ..., a_n) \) of mutually commuting operators acting on a Banach space \(E \), i. e., \(a_i \in \mathcal{L}(E) \) \((1 \leq i \leq n) \), the algebra of all bounded linear operators acting on \(E \), and \([a_i, a_j] = 0, 1 \leq i, j \leq n \). This interesting notion depends on the action of the bounded and linear maps \(a_i \) on \(E \) \((1 \leq i \leq n) \) and extends in a natural way the classical definition of spectrum of a single operator. Taylor’s joint spectrum, which we denote by \(\text{Sp}(a, E) \), has many remarkable properties, among then the projection property and the fact that \(\text{Sp}(a, E) \) is a compact non empty subset of \(\mathbb{C}^n \). Another property, in which we are specially interested, is a well known fact about Taylor’s joint spectrum, the relation between \(\text{Sp}(a, E) \) and \(\text{Sp}(a_i), 1 \leq i \leq n \):

\[
\text{Sp}(a, E) \subseteq \prod_{i=1}^{n} \text{Sp}(a_i),
\]

where \(\text{Sp}(a_i) \) denotes the spectral set of \(a_i \).

In [1] we developed a spectral theory for complex solvable finite dimensional Lie algebras acting on a Banach space \(E \). If \(L \) is such an algebra and \(\text{Sp}(L, E) \) denotes its spectrum, then \(\text{Sp}(L, E) \) is a compact non empty subset of \(L^* \) which also satisfies the projection property for ideals, see [1]. Besides, when \(L \) is a commutative algebra, \(\text{Sp}(L, E) \) reduces to Taylor joint spectrum in the following sense. If \(\text{dim} \ L = n \) and if \(\{a_i\}_{1 \leq i \leq n} \) is a basis of \(L \), we consider the \(n \)-tuple \(a = (a_1, ..., a_n) \), then \(\{(f(a_1), ..., f(a_n)) : f \in \text{Sp}(L, E)\} = \text{Sp}(a, E) \); i. e., \(\text{Sp}(L, E) \), in terms of the basis of \(L^* \) dual of \(\{a_i\}_{1 \leq i \leq n} \), coincides with the Taylor joint spectrum of the \(n \)-tuple \(a \). Then, the following question arises naturally: if \(\{x_i\}_{1 \leq i \leq n} \) is a basis of \(L \), and if we consider, as above, \(\text{Sp}(L, E) \) in terms of the basis of \(L^* \) dual of \(\{x_i\}_{1 \leq i \leq n} \), i. e., if we identify \(\text{Sp}(L, E) \) with its coordinate expresion \(\{(f(x_1), ..., f(x_n)) : f \in \text{Sp}(L, E)\} \), does \(\text{Sp}(L, E) \) satisfy the relation:

\[
\{(f(x_1), ..., f(x_n)) : f \in \text{Sp}(L, E)\} \subseteq \prod_{i=1}^{n} \text{Sp}(x_i)?
\]

The answer, even if \(\{x_i\}_{1 \leq i \leq n} \) is a Jordan-Hölder basis of \(L \) (Section 2), is in general negative.
In this paper we study this problem, i.e., the relation between $Sp(L, E)$ and $\prod_{i=1}^{n} Sp(x_i)$. Refining an idea of [1], we describe this relation by means of the structure of L in a way that generalizes the well known result of the commutative case. Furthermore, when L is a nilpotent Lie algebra, in particular when L is a commutative algebra, we reobtain the previous inclusion and, when L is a solvable non nilpotent Lie algebra, we give an example in order to show that our characterization can not be improved.

The paper is organized as follows. In Section 2 we review several definitions and results that we need for our work. In Section 3 we prove our main theorems for solvable and nilpotent Lie algebras. Finally, in Section 4 we give an example in order to show that our characterization can not be improved.

2. Preliminaries

We briefly recall several definitions and results related to the spectrum of solvable Lie algebras of operators, see [1]. From now on, L denotes a complex solvable finite dimensional Lie algebra and E a Banach space on which L acts as right continuous linear operators, i.e., L is a Lie subalgebra of $\mathcal{L}(E)$ with the opposite product. If dim (L) = n and f is a character of L, i.e., $f \in L^*$ and $f(L^2) = 0$, where $L^2 = \{[x, y] : x, y \in L\}$, then we consider the following chain complex, $(E \otimes \wedge L, d(f))$, where $\wedge L$ denotes the exterior algebra of L and $d_{p-1}(f)$ is such that:

$$d_{p-1}(f): E \otimes \wedge^p L \to E \otimes \wedge^{p-1} L,$$

$$d_{p-1}(f)e(x_1 \wedge \ldots \wedge x_p) = \sum_{k=1}^{p} (-1)^{k+1} e(x_k - f(x_k))(x_1 \wedge \ldots \wedge \hat{x}_k \wedge \ldots \wedge x_p) + \sum_{1 \leq k < l \leq p} (-1)^{k+l} e([x_k, x_l] \wedge x_1 \wedge \ldots \wedge \hat{x}_k \wedge \ldots \wedge \hat{x}_l \wedge \ldots \wedge x_p),$$

(1)

where $\hat{\cdot}$ means deletion, and $e(x_1 \wedge \ldots \wedge x_p)$ denotes an element of $E \otimes \wedge^p L$. If $p \leq 0$ or $p > n$, then we also define $d_p(f) \equiv 0$.

Let $H_*(E \otimes \wedge L, d(f))$ denote the homology of the complex $(E \otimes \wedge L, d(f))$. We now state our first definition.

Definition 2.1. With L and f as above, the set $\{f \in L^* : f(L^2) = 0, H_*(E \otimes \wedge L, d(f)) \neq 0\}$ is the joint spectrum of L acting on E and it is denoted by $Sp(L, E)$.

As we have said, in [1] we proved that $Sp(L, E)$ is a compact non empty subset of L^*, which reduces to Taylor joint spectrum, in the sense of the Introduction, when L is a commutative algebra. Besides, if I is an ideal of L and π denotes the projection map from L^* to I^*, then:

$$Sp(I, E) = \pi(Sp(L, E)),$$
i.e., the projection property for ideals still holds. With regard to this property, I ought to mention the paper [3] of C. Ott, who pointed out a gap in the proof of this result, and gave another proof of it. In any case, the projection property remains true.

Next we recall several results which we need for our main theorem. First, as in [1], we consider an \(n - 1 \) dimensional ideal, \(L' \), of \(L \) and we decompose \(E \otimes \wedge^p L \) in the following way:

\[
E \otimes \wedge^p L = (E \otimes \wedge^p L') \oplus (E \otimes \wedge^{p-1} L') \wedge \langle x \rangle,
\]

where \(x \in L \) and is such that \(L' \oplus \langle x \rangle = L \) and \(\langle x \rangle \) denotes the one dimensional subspace of \(L \) generated by the vector \(x \). If \(\tilde{f} \) denotes the restriction of \(f \) to \(L' \), then we may consider the complex \((E \otimes \wedge^p L', \tilde{d}(\tilde{f})) \) and, as \(L' \) is an ideal of codimension 1 of \(L \), we may decompose the operator \(d_p(f) \) as follows:

\[
d_{p-1}(f): E \otimes \wedge^p L' \rightarrow E \otimes \wedge^{p-1} L', \quad d_{p-1}(f) = d_{p-1}(\tilde{f}),
\]

(2)

\[
d_{p-1}(f): (E \otimes \wedge^{p-1} L') \wedge \langle x \rangle \rightarrow E \otimes \wedge^{p-1} L' \oplus (E \otimes \wedge^{p-2} L') \wedge \langle x \rangle,
\]

(3)

where \(a \in E \otimes \wedge^{p-1} L' \), and \(L_{p-1} \) is the bounded linear endomorphism defined on \(E \otimes \wedge^{p-1} L' \) by:

\[
L_{p-1}e(x_1 \wedge \ldots \wedge x_{p-1}) = e(x - f(x))(x_1 \wedge \ldots \wedge x_{p-1})
+ \sum_{1 \leq k \leq p-1} (-1)^k e([x, x_k] \wedge x_1 \ldots \wedge \hat{x}_k \wedge \ldots \wedge x_{p-1}),
\]

(4)

where \(\hat{x} \) means deletion and \(\{x_i\}_{1 \leq i \leq p-1} \) belongs to \(L' \).

We use the map \(\theta \) defined in [2]. We recall the main facts which we need for our work. Let \(ad(x) \), \(x \in L \), be the derivation of \(L \) defined by:

\[
ad(x)(y) = [x, y], \quad (y \in L),
\]

then \(\theta(x) \) is the derivation of \(\wedge L \) which extends \(ad(x) \), and is defined by:

\[
\theta(x)(x_1 \wedge \ldots \wedge x_p) = \sum_{i=1}^p (x_1 \wedge \ldots \wedge ad(x)(x_i) \wedge \ldots \wedge x_p).
\]

(5)

Observe that if we consider the map \(1_E \otimes \theta(x) \), which we still denote by \(\theta(x) \), then

\[
L_{p-1}e(x_1 \wedge \ldots \wedge x_{p-1}) = e(x - f(x))(x_1 \wedge \ldots \wedge x_{p-1})
- \theta(x)e(x_1 \wedge \ldots \wedge x_{p-1}).
\]

(6)
Finally, as L is a complex solvable finite dimensional Lie algebra, it is well known that there is a Jordan-Hölder sequence of ideals such that:

(i) $\{0\} = L_0 \subseteq L_1 \subseteq L_n = L$,

(ii) $\dim L_i = i$,

(iii) there is a k, $0 \leq k \leq n$, such that $L_k = L^2 = [L, L]$.

As a consequence, if we consider a basis of L, $\{x_j\}_{1 \leq j \leq n}$, such that $\{x_j\}_{1 \leq j \leq i}$ is a basis of L_i, then we have:

$$[x_i, x_j] = \sum_{h=1}^{i} c_{ij}^h x_h \quad (i < j).$$

(7)

Such a basis is a Jordan-Hölder basis of L.

In addition, if L is a nilpotent Lie algebra, we may add the condition: (iv) $[L, L]_i \subseteq L_{i-1}$.

Then, in terms of the previous basis, we have:

$$[x_i, x_j] = \sum_{h=1}^{i-1} c_{ij}^h x_h \quad (i < j).$$

(8)

3. The Spectral Set

First we give a definition that we need for our main theorems. We consider for p such that $0 \leq p \leq n - 1$, the set of p-tuples of $[1, n - 1]$, I_p, defined as follows. If $p = 0$,

$$I_0 = \{1\},$$

and for p such that $1 \leq p \leq n - 1$,

$$I_p = \{(i_1, \ldots, i_p): 1 \leq i_1 < \ldots < i_j < \ldots < i_p \leq n - 1\}.$$

We observe that I_p has a natural order.

If $\alpha = (i_1, \ldots, i_p)$ and $\beta = (j_1, \ldots, j_p)$ belong to I_p, let $k = \min\{l: i_l \neq j_l\}$, then:

(i) $i_l = j_l$, $1 \leq l \leq k - 1$,

(ii) $i_k \neq j_k$.

If $i_k < j_k$ (respectively $j_k < i_k$) we put $\alpha < \beta$ (respectively $\beta < \alpha$).

Now, given L, L', x, and E are as in Section 2, let us consider a sequence $\{x_i\}_{1 \leq i \leq n-1}$ of elements of L'. If $\alpha = (i_1, \ldots, i_p)$ belongs to I_p, then we denote $(x_{i_1} \land \ldots \land x_{i_p})$ by (x_α), i.e.,

$$(x_\alpha) = (x_{i_1} \land \ldots \land x_{i_p}).$$

In particular, when $p = 0$, we denote (x_0) by (1), i.e., $(x_0) = (1)$.

In addition, as L' is an ideal of L, $\theta(x)(\land L') \subseteq \land L'$. Thus, we have a well defined map, which we still denote by $\theta(x)$:

$$\theta(x): E \otimes \land L' \rightarrow E \otimes \land L'.$$

Now, if $(L_i)_{0 \leq i \leq n}$ is a Jordan-Hölder sequence of L and $\{x_i\}_{1 \leq i \leq n}$ is a Jordan-Hölder basis of L associated to $(L_i)_{0 \leq i \leq n}$, then we set $L' = L_{n-1}$ and $x = x_n$.

In order to prove the following proposition we need to associate to each $\alpha \in I_p$, $0 \leq p \leq n - 1$, a number r_α. If α belongs to I_p, $\alpha = (i_1, \ldots, i_p)$, and
In the commutative case, let us compute \(Sp \) of a natural way, where 1 denotes the identity map of the corresponding spaces.

Proposition 3.1. Let \(L \) be a complex solvable finite dimensional Lie algebra, acting as right continuous linear operators on a Banach space \(E \). Let \((L_i)_{0 \leq i \leq n} \) be a Jordan-Hölder sequence of \(L \) and consider \(\{x_i\}_{1 \leq i \leq n} \), a basis associated to this sequence. Then, if \(f \) is a character of \(L \) such that

\[
 f(x_n) \notin Sp(\mathfrak{p}, E \otimes \wedge L_{n-1}),
\]

\(f \) does not belong to \(Sp(L, E) \).

Proof. First we decompose \(E \otimes \wedge^p L \) as in Section 2:

\[
 E \otimes \wedge^p L = (E \otimes \wedge^p L_{n-1}) \oplus (E \otimes \wedge^{p-1} L_{n-1}) \wedge \langle x_n \rangle.
\]

As \(L_{n-1} \) is an ideal of \(L \), \(\text{ad}(x_n)(L_{n-1}) \subseteq L_{n-1} \) and

\[
 \theta(x_n)(E \otimes \wedge^{p-1} L_{n-1}) \subseteq E \otimes \wedge^{p-1} L_{n-1}.
\]

Then, by (4) and (5),

\[
 L_{p-1} = (x_n - \theta(x_n)) - f(x_n).
\]

Moreover, if we decompose \(E \otimes \wedge^{p-1} L_{n-1} \) by means of \(E(x_\alpha) \), it is obvious that:

\[
 E \otimes \wedge^{p-1} L_{n-1} = \bigoplus_{\alpha \in I_{p-1}} E(\alpha).
\]

Then, by the previous considerations and the above formula, \(L_{p-1} \) is an upper triangular matrix with diagonal entries \((x_n - r_\alpha) - f(x_n)\) associated to \(\alpha = (i_1, \ldots, i_{p-1}) \in I_{p-1} \). Thus, if \(f \) satisfies the hypothesis, \(L_p \) is an invertible operator for each \(p, 0 \leq p \leq n - 1 \).

We now construct a homotopy operator, \((S_p)_{p \in \mathbb{Z}} \), for the complex \((E \otimes \wedge L, d(f))\), in order to show that \(H_p(E \otimes \wedge L, d(f)) = 0 \), which is equivalent to \(f \notin Sp(L, E) \).
S_p is a map from $E \otimes \wedge^p L$ to $E \otimes \wedge^{p+1} L$; we define it as follows:

$$S_p: E \otimes \wedge^p L \to E \otimes \wedge^{p+1} L,$$

if $p < 0$ or $p > n - 1$, we define $S_p \equiv 0$, if p is such that $0 \leq p \leq n - 1$, we consider the decomposition of $E \otimes \wedge^p L$ set at the beginning of the proof, and we define

$$S_p(E \otimes \wedge^{p-1} L_{n-1} \wedge \langle x \rangle) = 0,$$

and S_p restricted to $E \otimes \wedge^p L_{n-1}$ satisfies:

$$S_p(E \otimes \wedge^p L_{n-1}) \subseteq E \otimes \wedge^p L_{n-1} \wedge \langle x \rangle,$$

$$S_p = (-1)^p L_p^{-1} \wedge (x_n).$$

In order to verify that S_p is a homotopy operator we prove the following formula:

$$S_p d_p L_{p+1} = (-1)^p d_p \wedge (x_n).$$

By (2) and (3), we have

$$d_p L_{p+1} = d_p((d_{p+1} - d_p \wedge (x_n))(-1)^{p+3})$$

$$= (-1)^p d_p(d_p \wedge (x_n))$$

$$= (-1)^p (-1)^{p+2} L_p d_p$$

$$= L_p d_p.$$

Then,

$$d_p L_{p+1} = L_p d_p.$$

Thus,

$$S_p d_p L_{p+1} = S_p L_p d_p = (-1)^p d_p \wedge (x_n).$$

Now, by means of formulas (9), (10) and (11), an easy calculation shows that

$$d_p S_p + S_{p-1} d_{p-1} = I,$$

for $p \in Z$, i. e., $(S_p)_{p \in Z}$ is a homotopy operator.

In order to state our main theorem, we consider the basis $\{x_i\}_{(1 \leq i \leq n)}$ of (7), and we apply the definition of the beginning of the paragraph to L_j, the ideal generated by $\{x_i\}_{(1 \leq i \leq j)}$, $1 \leq j \leq n$. We denote by I^j_p, $0 \leq p \leq j - 1$, $1 \leq j \leq n$, the set of p-tuples associated to L_j and the ideal L_{j-1}, and if α belongs to I^j_p we denote by r^j_α the complex number associated to α. In addition, we observe that in Theorem 1 and 2 below, we consider the set $Sp(L, E)$ in terms of the basis of L^* dual of $\{x_i\}_{(1 \leq i \leq n)}$, i.e., we identify $Sp(L, E)$ with its coordinate expression in the mentioned basis: $\{(f(x_1), ..., f(x_n)): f \in Sp(L, E)\}$.

Now we state our main theorem.
Theorem 3.2. Let L be a complex solvable finite dimensional Lie algebra, acting as right continuous linear operators on a Banach space E. Let $(L_i)_{0 \leq i \leq n}$ be a Jordan-Hölder sequence of L and consider $\{x_i\}_{1 \leq i \leq n}$, a basis associated to this sequence. Then, in terms of the basis of L^* dual of $\{x_i\}_{1 \leq i \leq n}$,

$$Sp(L, E) \subseteq \prod_{1 \leq j \leq n} Sp(x_j, E \otimes L_{j-1}).$$

Proof. By means of an induction argument, the proof is a consequence of Proposition 1 and Theorem 3 of [1]. □

In the case of a nilpotent Lie algebra, Theorem 2 extends directly the commutative case.

Theorem 3.3. Let L be a complex nilpotent finite dimensional Lie algebra, acting as right continuous linear operators on a Banach space E. Let $(L_i)_{0 \leq i \leq n}$ be a Jordan-Hölder sequence of L and consider $\{x_i\}_{1 \leq i \leq n}$, a basis associated to this sequence. Then in terms of the basis of L^* dual of $\{x_i\}_{1 \leq i \leq n}$,

$$Sp(L, E) \subseteq \prod_{i=1}^{n} Sp(x_i).$$

In particular,

$$Sp(L, E) \subseteq \{ f \in L^*: f(L^2) = 0, \| f(x) \| \leq \| x \|_{L(E)}, \forall x \in L \}.$$

Proof. □

As L is a nilpotent Lie algebra, we may consider a Jordan-Hölder sequence of L, $(L_j)_{0 \leq j \leq n}$, such that $[L, L_j] \subseteq L_{j-1}$. Then for each $\alpha \in I_p^j$, $1 \leq j \leq n$, $0 \leq p \leq j - 1$, we have:

$$r^j_\alpha = 0,$$

which implies that $Sp(x_i) = Sp(x_i, E \otimes L_{i-1})$. Thus, by means of Theorem 1 we conclude the proof.

4. An Example

We give an example in order to see that Theorem 1 can not be, in general, improved. We consider the solvable Lie algebra G_2 on two generators,

$$G_2 = \langle y \rangle \oplus \langle x \rangle,$$

with relations $[x, y] = y$. Then, by Theorem 1,

$$Sp(G_2, E) \subseteq Sp(y) \times (Sp(x) \cup Sp(x) - 1).$$

Now, if $E = \mathbb{C}^2$, and y and x are the following matrices:

$$y = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad x = \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix},$$

then, $L = \langle y \rangle \oplus \langle x \rangle$ defines a Lie subalgebra of $\mathcal{L}(\mathbb{C}^2)$ isomorphic to G_2, and an easy calculation shows that
\[Sp(G_2, \mathbb{C}^2) = \{0\} \times \{1/2, -3/2\}. \]

However, as \(Sp(x) = \{1/2, -1/2\} \), and \(Sp(y) = 0 \), Theorem 1 cannot be, in general, improved.

References

1. E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math., 158 (1993), 15-22.
2. J. L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), 65-127.
3. C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math., 173 (1996), 173-179.
4. J. F. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1976), 172-191.

Enrico Boasso
E-mail address: enrico_odisseo@yahoo.it