The NOX toolbox: validating the role of NADPH oxidases in physiology and disease

Sebastian Altenhöfer · Pamela W. M. Kleikers · Kim A. Radermacher · Peter Scheurer · J. J. Rob Hermans · Paul Schiffer · Heidi Ho · Kirstin Wingler · Harald H. H. W. Schmidt

Received: 18 April 2012 / Revised: 18 April 2012 / Accepted: 20 April 2012 / Published online: 31 May 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.

Keywords siRNA · Antibodies · NADPH oxidase inhibitor · NOX4 · VAS2870 · NOX4 knock-out

Oxidative stress: the need for validated targets and therapeutic specificity

Reactive oxygen species (ROS) have long been suspected as being ‘bad guys’. They are frequently associated with the development and progression of chronic, degenerative, cancerous and inflammatory diseases. Indeed an excess of ROS, i.e. oxidative stress, caused by an imbalance between ROS production and their removal by antioxidant systems, may be a common underlying pathogenic mechanism in these diseases. With the recent additional description of possible roles of ROS in diverse physiological signaling processes another form of imbalance deserves attention, i.e. reductive stress—the excess of reducing agents in a cell that leads to shortage of ROS. These and other phenomena may explain the poor outcomes of antioxidant therapies in clinical studies where even deleterious effects of untargeted antioxidant treatment have been reported [2–10]. Rather than attempting to systemically scavenge ROS, it may be more effective to specifically target the different enzymatic sources of pathophysiologically relevant ROS. Nevertheless, until this has resulted in clinical benefits, the oxidative stress hypothesis remains unproven.

Several ROS producing enzyme systems exist, including xanthine oxidase [11], the mitochondrial respiratory chain [12], lipid peroxidases [13], cytochrome P450 enzymes [14], and uncoupled endothelial NO synthase [15]. However, these enzymes produce ROS secondary to their damage, which can be proteolysis but is often caused by oxidative stress itself [11, 15]. Thus, there would still be
the need to identify this primary source of oxidative stress. The only enzyme family known to produce ROS as their primary and sole function are NADPH oxidases. These multi-protein complexes are comprised of a catalytic, transmembrane-spanning subunit (NOX), as well as several structural and regulatory proteins localized in both the membrane and the cytosol.

The NADPH oxidase family

We are only beginning to understand the enzyme family of NADPH oxidases, their players and their interaction. The NOX family consists of seven members, NOX1–5, and two dual oxidases (Duox), Duox1 and Duox2. Of those, NOX1, 2, 4, and 5 have been implicated in vascular diseases, on which we focus in this review. All NOX isoforms have six trans-membrane spanning alpha helices with cytosolic N- and C-termini. They are differentially expressed and regulated in various tissues and have different subcellular localizations, and even different ROS products, i.e. superoxide versus hydrogen peroxide (reviewed in [16]). NOX1, NOX2, and NOX5 appear to produce mainly superoxide NOX4, mainly H2O2 [17]. All NOX isoforms have been reported to bind to one or more membrane and/or cytosolic proteins. p22phox appears to be a general binding partner for NOX1-4 in the membrane. NOX1 and 2 also bind the small GTPase, Rac. Moreover, NOX1 binds the cytosolic subunits, NOX organizer 1 (NOXO1) and NOX activator 1 (NOXA1), and NOX2 binds the respective homologues, p47phox and p67phox, and also the cytosolic protein, p40phox [18, 19]. NOX4 was reported to bind to the polymerase (DNA-directed) delta-interacting protein 2 (PolDip2) [20]. In addition to these established NOX binding partners, the tyrosine kinase substrate with 4/5 SH3 domains (Tks4/5) [21, 22], and protein disulfide isomerase (PDI) were recently suggested to bind to both NOX1 and 4 [23]. Upon overexpression in cells, the C-terminus of NOX5 was shown to interact with Hsp90, which may also bind to NOX1 and 2 [24]. However, the physiologic relevance of

![Fig. 1](https://example.com/fig1.png)

Fig. 1 The vascular NOX isoform-based NADPH oxidase complexes. Cell or subcellular compartment membranes are shown in gray, core proteins in yellow, activator binding proteins in green and organizer binding proteins in blue. All the NOX isoforms shown are membrane proteins and are localized in the plasma membrane (PM). Additionally, NOX1 was found at the plasma membrane in caveolae [147], NOX2 in membranes of phagosomes, and NOX4 in mitochondrial [182] and ER-membranes [191], as well as in the nucleus [97]. Little is known about subcellular localization of NOX5 other than the plasma membrane, but a localization at the ER membrane has been reported [29, 192]. NOX1, NOX2, and NOX4 are associated with p22phox, but only NOX1 and NOX2 are regulated by the small GTPase Rac. For its activation, the NOX1 enzyme complex requires the assembly of NOX organizer 1 (NOXO1) and NOX activator 1 (NOXA1), but also forms complexes with p47phox and p67phox (not shown). The NOX2 enzyme complex requires binding of p47phox, p67phox, and optionally p40phox that can further support the activity. In contrast to NOX1 and NOX2, NOX4 and NOX5 do not depend on any of the ‘classical’ cytosolic NADPH oxidase subunits. Recently, the protein polymerase (DNA-directed) delta-interacting protein 2 (PolDip2) was identified to bind and to increase the activity of NOX4. Further, protein disulfide isomerase (PDI) [23] and a p47phox analogue tyrosine kinase substrate with 4/5 SH3 domains (Tks4/5) have been reported to bind and activate NOX1 and NOX4 [21, 22]. NOX4 is the only isoform that produces hydrogen peroxide instead of superoxide [17]. The NOX5 protein contains four N-terminal calcium-binding sites that regulate activation of the enzyme. Activity of NOX5 can be further supported by the binding of Hsp90 or Calmodulin to the C-terminus of the protein [24].
NOX isoform	Species	Sequence	Degree of NOX4 down-regulation (% of ctr.)	Ref./source	Comment
NOX4	Bovine	5'-AAGACCTGGCCAGTATATATT-3'	n.q. (protein)	[94]	
NOX4	Human	5'-GAGAACAGACCUGACUAUG-3'	75–85 % (protein), ~ 10 % (mRNA)	[95, 96]	Tested vs. NOX1 and NOX2
NOX4	Human	5'-GUUCUUAACCUCAGAUGUGATT-3' (sense); 5'-UGCAUGGAGGCUUAAAGAATT-3' (antisense)	n.q. (protein, mRNA)	[97]	Base error according to database sequence
NOX4	Human	5'-UUAAUUGAUAUGAAGAGCUUGAU-3' (sense); 5'AUCACAGCCUCUCAUAUGCAUA-3' (antisense)	n.q. (mRNA)	[98]	
NOX4	Human	5'-GUCAACACCGCUUGACCGCdtdt-3' (sense); 5'-GUCAACACCGCUUGACCGCdtdt-3' (antisense)	20 % (mRNA)	[99]	
NOX4	Human	Target sequence 5'-CAG TGA ACT ATA GTG AAC ATT TCC T-3'	40 % (mRNA)	[100]	vs. NOX2
NOX4	Human	Pool of 4: (1) ACUAGAUUACUUCUGGA; (2) GAAAUUAACCCAAAGCUGUA; (3) GGCUAGGAUUGUGUCUA; (4) GAUCACAGCCUCUCAAU	n.q. (mRNA)	Dharmacon [101]	
NOX4	Human	Targets exon2	40 % (mRNA and protein)	Ambion [102, 48]	ID #118807
NOX4	Human	5'-XCCACCAACCACACCACATT-3'; 5'-AAUGUGGUUG GUGGGUGUGTT-3'	n.s.	[103]	
NOX4	Human	n.s.	n.q. (protein)	Qiagen [104]	Hs_NOX4_1 and Hs_NOX4_2 predesigned
NOX4	Human	5'-CAAGAACATTCCTCATATT-3' & 5'-ACTTTGTGGAACTGAAATG-3'	n.q. (mRNA)	[105]	
NOX4	Human	Mixture of: (1) 5'-AAAGCAGGACUCU UCAUGGA GAGCCA-3' (sense); 5'-UGGCUCUCCAUGAUGGUC UGGCUUU-3' (antisense); (2) 5'- GCAUCUGUUUCUAAACCUCA-3' (sense); 5'-UGAGGUUAAGAGCAAGAUCG-3' (antisense); (3) 5'-CCAGGAGAUUGUGGUAA-3' (sense); 5'- UUAUCCAACAAUCCUG-3' (antisense); (4) 5'-CAGUAAGACUUUGGUGGAACUAU-3' (sense); 5'- AUUCAGGAUCAAACAAACUUACUG-3' (antisense)	~ 40 % (mRNA)	[106]	Sequences not present in NOX1, NOX2, NOX3, and NOX5
NOX4	Human	5'-AGACCUGGCCAGUAUUA-3'	~ 30 % (mRNA)	[107]	
NOX4	Human	n.s.	~ 38 % (mRNA) n.q. (protein)	[108]	Tested vs. NOX1, NOX2, NOX3
NOX4	Human	NOX4, 5_-CCU CUU CUU UGU CUU CUA C dTdT-3_ corresponding to nucleotides 585–603	~ 33 % (mRNA)	[109]	
NOX4	Human	5'-CGAGAUGAGAAGUCCUAGAAAdCdtdt-3' (sense); 5'-UUCAUGGAAUCCUAUCUGCdtdt-3' (antisense)	~ 25 % (mRNA)	[90]	
NOX isoform	Species	Sequence	Degree of NOX4 down-regulation (% of ctr.)	Ref./source	Comment
------------	---------	----------	--	-------------	---------
NOX4	Human	5'-GGUACAGCUGGAUGUUGAC-3'	50 % (mRNA) n.q. (protein)	[92]	
NOX4	Human	5'-AAACGGGGCAAGGUAUCCCAG-3'	~45 % (protein) n.q. mRNA	[110, 111]	
NOX4	Human	5'-GTCAACACATCCAGCTGACCdTdT-3'	n.q. (mRNA)	[112, 113]	
NOX4	Human	(1) 5'-GATCCGAGACACTTCCATATTACTICAAGAGAATTAATA	n.q. (mRNA and protein)	[114]	
NOX4	Human	(2) 5'-GATTCCGAATTCGTTGGAAACCCAG-3'	n.q. (protein)	[93]	(1) and (2) not efficient, (4) most efficient
NOX4	Human	(3) 5'-GAAUUACAGUGAAGACUUU-3'	50 % (mRNA) n.q. (protein)	[115, 116]	NOX5 not affected
NOX4	Mouse	5'-GAC CUG ACU UUG UGA ACA UTT-3' (sense); 5'-AUG UUC ACA AAG UCA GGU CTT-3' (antisense)	30 % (NOX activity, protein, mRNA)	[47, 117]	Tested vs. NOX1 recommended
NOX4	Mouse	5'-GGCCAACGAAGGGGUUAAAACACCUC-3'	n.q. (mRNA)	[118, 119]	
NOX4	Mouse	5'-GGGUAAGAAGCAAGCUCACACAC-3'	(mRNA)	[119]	
NOX4	Mouse	Mix of 3 siRNAs: 5'-CCAUUUGCAUCGAUACUAAU-3'; 5'-CAGACUCUCUCUAAGGUGU-3'; 5'-GUAGGUAGGAGGCUGUGAUC-3'	40 % (mRNA)	Santa Cruz [120]	
NOX4	Mouse	Target sequence: 5'-CAGGAGAAATAATTAAAGCTTTA-3'	n.s.	[121]	
NOX4	Mouse	28-kDa NOX4 (5'-AATTTGTTGGGCTGCTACTGA-3' (sense); UGUUGGCCUCUGUACUGAdTdT (antisense), UCAGUAGGACAGCCCAACAdTdT and full-length 65 kDa and 28 kDa (5'-AACGAAGGGGTGTTAACACCTC-3' and 5'-AAAAGCAAGACTCTACATAC-3')	80 % (mRNA), 60 % (protein)	[43]	
NOX4	Mouse	n.s.	18 % (mRNA)	Santa Cruz [122]	vs. NOX2
NOX4	Mouse	n.s.	n.q. (protein)	Ambion [123, 124]	ID #184259 and #184261
NOX4	Mouse	Pool of 3–5 siRNAs	n.q. (mRNA and protein)	Santa Cruz [125]	# sc-41587
NOX4	Mouse	(1) 5'-AACGAAGGGGTGTTAACACCTC-3'; (2) 5'-AAAAGCAAGACTCTACATAC-3'	n.q. (protein)	[126]	
NOX4	Mouse	5'-GGUUACAGCUCUACCAUCUAC-3' (sense); 5'-GUAGGUAGGAGGCUAGUACC-3' (antisense)	n.q. (protein and mRNA)	Dharmacon [93]	In vivo treatment
NOX4	Pig	n.s.	50-60% (protein)	Dharmacon [127]	Tested vs. NOX2
these new potential binding partners for NOX function needs to be further analyzed (Fig. 1).

With respect to activity regulation, there are fundamental differences between the individual NOX catalytic subunits. Most seem to be dynamically switched on and off by either regulatory subunits (NOXA1 for NOX1 [25–27], p67phox for NOX2 [28], and calmodulin for NOX5 [29, 30]) or intramolecularly by the N-terminal EF hands that bind free intracellular calcium (NOX5 and Duox1/2 [31]). In contrast, NOX4 is constitutively active, and modulation of its expression may thus be a major activity regulator.

The tools to validate the role of NADPH oxidase in health and disease

During the validation of the involvement of a protein in a biological process or disease mechanism pharmacological
inhibition or genetic deletion are frequently applied. In addition, specific antibodies are required to confirm the expressional regulation of NOX in a given cell or subcellular compartment. With respect to NOX biology these tools include genetic knock-out [32–35] and transgenic animals [32, 36, 37], pharmacological inhibitors, and siRNAs (see Table 1).

NOX knock-out mouse models

NOX2 knock-out (KO) mice in which exons 2 and 3 are deleted are commercially available [38], and no other NOX2 KO model has been published. Two identical NOX1 KO mice carrying a deletion of exons 3–6 have been published showing a mild hypotensive phenotype and attenuated angiotensin II-induced hypertension [39, 40]. Unfortunately, no western blot data using tissues of these mice to confirm the absence or size of a possibly residual NOX1 protein have been published. An N-terminally truncated or alternatively spliced NOX1 protein may still be expressed [41]. However, it is unlikely that NOX1 splice variants lacking the binding sites for regulatory subunits have any ROS-producing activity. With respect to NOX4, there is more variety, and four NOX4 KO mouse models have been published to date (Fig. 2). All differ in the genetic strategy that was applied to generate them, i.e., different exons were deleted (exons 1/2, exon 4, exon 9, or exons 14/15) and constitutive, cell-specific or inducible cre/lox systems were used. In future, this may also help to elucidate the role of alternative splicing in mouse NOX4 biology [32–35]. Indeed, the possibility exists that, at least in some tissues, the deletion of an early exon may lead to truncated but active NOX4 variants and thus residual NOX4 activity. Interestingly, an analogue to the human NOX4 splice variant D [42] lacking exons 3–11 of murine NOX4 has been found in kidney and colon. Importantly, this 28-kDa NOX4 isoform (Fig. 2c) was still capable of producing ROS, and the authors could blunt this activity by selective siRNA silencing of this particular isoform [43]. This observation is supported by the findings that the isolated NOX4 dehydrogenase domain is still able to reduce substrates like certain artificial dyes [44]. Although not shown directly for NADPH oxidases, it is known that flavin-binding domains are able to reduce oxygen, thus forming superoxide [45, 46]. Accordingly, the residual NADPH- and flavin-containing protein seems to be sufficient to catalyze ROS formation. Only in mice containing a deletion of either exon 9 (FAD binding site) or 14/15 (NADPH binding site) is it unlikely that any residual NOX4 protein could still produce ROS. It is discussed in the field that potential shortened inactive NOX4 proteins present in exon 9 or exons 14/15 deletions exert dominant negative or positive effects on other NOX isoforms (e.g., NOX1 and NOX2) or NOX binding proteins. For example, in the absence of NOX4, more free p22phox may be available to interact with NOX1/2. Such mechanisms could affect both the expression and activity of other NOX isoforms. However, protein levels of other NOX isoforms have not been reported to be altered in NOX4 KO mice [33]. Further, if the activity of other NOX isoforms would be influenced these mice would then be expected to show a mixed phenotype of NOX4 and NOX1 and/or NOX2 KO mice, e.g., reduced blood pressure and angiotensin II-induced pressure response (NOX1; [39, 40]) or impaired oxidative burst activity of circulating neutrophils (NOX2; [38]). The neutrophil phenotype remains to be analyzed. A dominant negative regulation of other NOX isoforms in other cell-types of NOX4 KO cannot be completely ruled out unless studied. The lack of an effect on blood pressure by NOX4 deletion in mice [33] argues against such a hypothetical mixed NOX1/4 phenotype.

Transgenic NOX4 overexpressing mouse models

Parallel to the NOX4 KO mice, three different transgenic NOX4 (tgNOX4) overexpressing mice have been published, two of a cardiomyocyte-specific manner [32, 36] and the most recent in an endothelial-specific manner [37]. Surprisingly, the endothelial tgNOX4 mouse had a lower systemic blood pressure compared to littermate wild-type mice, which does not match the vascular phenotype of any of the NOX4 KO mice, which are all reported to have unchanged blood pressures [32–34]. Similar to the discussion above on bystander effects on other NOX isoforms in NOX4 KO mice, NOX4 overexpression may also affect both expression and activity of NOX1/2. For example, less p22phox may be available to interact with NOX1/2. However, NOX1 was below detection limits in aortae from both wild-type and tgNOX4 animals, and NOX2 levels were unchanged [37]. Thus, dominant negative effects of a transgenic expression of NOX4 on other NOX isoforms cannot be excluded, but based on all available data are unlikely. The discrepancy in blood pressure might be due to non-physiologically high levels or different subcellular localization of the overexpressed NOX4 compared to endogenous NOX4, a general problem of transgenic overexpression models. A similar subcellular localization of tgNOX4 and endogenous NOX4 was shown in cardiomyocytes [32], but no immunofluorescence data in the endothelium have been published up to date.

siRNA mediated knock-down of NOX4

There are an increasing number of reports using siRNAs approaches directed against NOX4 (Table 1). Unfortunately, only a few of those siRNAs have been properly
Table 2 Antibodies: a selection of published antibodies raised against NOX proteins and their main characteristics (if known)

NOX isoform	Species	Antigen	Type	Size of detected protein in WB (kDa)	Ref./source	Comment
NOX1	Human	aa 480–493	pAb rabbit	n.s.	[132]	
NOX1	Human	aa 544–556	pAb rabbit	63	[133, 134]	
NOX1	Human, rat, mouse	aa 545–561	pAb rabbit	134	[33, 52, 87, 135–138]	Recommended
NOX1	Human, rat, mouse	Various	pAbs	Commercial	Not recommended	
NOX1	Rat	aa 543–558	pAb rabbit	75	[130]	
NOX2	Human, rat, mouse	aa 548–560	pAb rabbit	53, 91	Upstate Technologies, BD Biosciences	Ab from upstate recommended for WB, Ab from BD for IF
NOX4	Human	aa 84–101	pAb rabbit	65	[5, 52, 138]	
NOX4	Human	aa 88–102	pAb rabbit	~ 70	[110, 139–142]	
NOX4	Human	aa 139–154 and 564–578	pAb rabbit	62	[95]	
NOX4	Human	aa 140–153	pAb rabbit	~ 70	[143]	
NOX4	Human	aa 222–241	mAb	~ 58 and 65	[17, 50]	
NOX4	Human	aa 251–266	pAb rabbit	~ 65 and 90	[78, 144]	
NOX4	Human	aa 256–273	pAb rabbit	65	[145, 146]	
NOX4	Human	aa 320–428 (recombinant peptide)	pAb rabbit	65, 80	[20, 93, 103, 105, 108, 115, 126, 136, 147–170]	
NOX4	Human	aa 389–416	mAb	~ 58 and 65	[50]	
NOX4	Human	aa 392–398	mAb	~ 58 and 65	[50]	
NOX4	Human	aa 406–578	pAb rabbit	n.s.	[97]	
NOX4	Human	aa 499–511	pAb rabbit	66 and 72	[97, 171]	
NOX4	Human	aa 500–550	mAb rabbit	66	[53]	
NOX4	Human	aa 553–573	pAb rabbit	70	[172]	
NOX4	Human	aa 556–568	pAb rabbit	65	[17, 32, 33, 47, 51, 87, 125, 173]	Recommended
NOX4	Human	aa 556–569	pAb rabbit	64	[42, 92]	
NOX4	Human	aa 558–578	pAb rabbit	n.s.	[105]	
NOX4	Human	aa 559–578	pAb rabbit	66 + 2 bands >94	[97, 98, 101, 174, 175]	
NOX4	Human	aa 564–578	pAb rabbit	n.s.	[176, 177]	
NOX4	Human	n.s.	pAb rabbit	~ 62	[178, 179]	
NOX4	Mouse	aa 88–103	pAb rabbit	55 and 60	[180, 181]	
NOX4	Mouse	aa 299–515	pAb rabbit	70–75	[131, 182–188]	
NOX4	Mouse	aa 307–578	mAb mouse	~ 65	[36]	
NOX4	Mouse	aa 553–572	pAb rabbit	n.s.	[189]	
NOX4	Rat	aa 81–95 and 566–578	pAb rabbit	62	[190]	

The table is not necessarily complete. Recommendations are based on self-assessed observations of the authors. No comment does not necessarily mean that the respective antibody is not recommended by the authors, as they have not tested all of them.

WB western blot, IF immunofluorescence, n.s. not specified, aa amino acid, pAb polyclonal antibody, mAb monoclonal antibody
validated regarding their overall and NOX isoform specificity. The necessity for confirming specificity was impressively underlined in a recent study [47], which showed that out of nine tested NOX4-directed siRNAs only six down-regulated murine NOX4 mRNA levels. Moreover, five of those six also down-regulated NOX1 mRNA levels. Another problem with investigating the role of NOX4 using siRNAs is the lack of specific antibodies against NOX4. Many if not all publications thus rely primarily on the down-regulation of NOX4 mRNA (see Table 1). These reports may need to be re-evaluated, as it was also recently shown that NOX4 is highly regulated at the post-transcriptional level, and therefore mRNA levels may not necessarily reflect protein levels and ROS formation [48, 49].

Antibodies against NOX

The lack of specific, freely available and validated antibodies against NOX1 and NOX4 represents one of the biggest roadblocks in the field. As described above, the validation of both siRNA-mediated down-regulation and genetic NOX1 and NOX4 KO models depends on the quality of the antibodies used for the characterization. Furthermore, as long as the tissue distribution of NOX1 and NOX4 remains unclear, it is very difficult to predict or estimate specific versus off-target effects of potential therapeutic interventions. Several groups and companies have attempted to generate polyclonal antibodies directed against different NOX1 and NOX4 peptides or recombinant proteins (Table 2). As these are polyclonal rabbit antibodies, the access and the amount were always limited. Also, several different protein sizes have been detected for NOX4 by different antibodies in the same tissues. This may be due to unspecificity of some antibodies, but also caused by the high sensitivity of the NOX4 protein to lysis conditions that may result in degradation and dephosphorylation [50]. So far, the polyclonal NOX4 antibodies by the Lambeth and Shah groups are the most frequently used. Of those antibodies which we have tested for isoform specificity, we recommend to use the NOX4 antibody from the Shah laboratory [51] and our NOX1 antibody [52]. In 2010, the successful generation of the first monoclonal mouse antibodies against human NOX4 was reported [50]; they were used to analyze the tissue distribution, subcellular localization, and structural features of NOX4 [17, 50]. Two of these antibodies (6B11 and 5F9) moderately block constitutive NOX4 activity in cell-free activity assays [50]. Another monoclonal antibody derived from rabbit is already commercially available, but no data have been published using this antibody in tissues and cells other than monocytes and macrophages [53]. These new antibodies may be promising and freely available tools for the validation of NOX1 and NOX4 as a therapeutic target. For NOX2, the commercially available antibody from Upstate Technologies (now Millipore, USA) is reliable in our hands.
several criteria: it should be active in cell-free conditions, an inhibitor [61]. An ideal NOX-inhibitor would have to fulfill calcium pump [60]. AEBSF is primarily a serine protease and eNOS [54, 58, 59], as well as cholinesterases and a inhibitor, also inhibiting, for example, xanthine oxidase and a compound have no intrinsic antioxidant activity, not inhibit other sources of ROS, and ideally be NOX isoform selective. To be applied as a tool for target validation, it should be effective in cells and tissues. For the development into a therapeutic drug, ADME must permit in vivo application and toxicity at an acceptable risk-to-benefit ratio. Recently, several NADPH oxidase-specific and even isoform-specific NOX inhibitors [62–66] have been published; we focus here on the first NADPH oxidase, but not isoform selective inhibitor, VAS2870 and its analogue VAS3947. For a detailed overview of the other interesting compounds, including the highly promising GKT136901, we refer to other publications [1, 64, 67, 68].

Fig. 4 The role of NOX1, NOX2, and NOX4 in disease models. NO, generated by NO-synthases (NOS), activates soluble guanylate cyclase (sGC) by binding to its reduced (Fe^{2+}) heme moiety leading to the formation of cGMP from GTP. cGMP mediates protective effects, e.g. vasodilatation and anti-inflammation. This signaling pathway is most likely disturbed by NOX1-derived superoxide (O_2^{-}) as shown in Angiotensin II-induced hypertension and spontaneous hypertensive rats (SHR). Superoxide can either directly interact with NO to form peroxynitrite or oxidize the essential NOS cofactor tetrahydrobiopterin (BH_4) and thus uncouple NOS. Uncoupled NOS forms superoxide itself (not shown). Further, superoxide can oxidize the Fe^{2+} heme of sGC. Thereby, sGC becomes insensitive to NO. These mechanisms most likely account, at least in part, for the acute effects of increased NOX1 activity mediating endothelial dysfunction and the chronic effects that are discussed to cause hypertension. NOX2-derived superoxide is a major signaling molecule in innate immunity mediating host defense. NOX4 is unlikely to directly interfere with the NO/cGMP-signaling pathway as it releases hydrogen peroxide (H_2O_2) and not superoxide. However, in high concentrations, H_2O_2 causes acute cytotoxicity. This mechanism is suggested to be involved in NOX4-mediated effects after acute ischemic stroke, acute effects of pressure overload in heart, and bleomycin-induced cytotoxicity. The lower chronic activity of NOX4 seems to be involved in angiogenesis and wound healing, and thus rather protective.

Pharmacological NOX inhibitors

An important tool for the validation of potential therapeutic targets and proof of principle studies is the pharmacological inhibition by small chemical compounds. Several compounds have been used for many years, including apocynin, diphenylene iodonium (DPI), and 4-(2-aminoethyl)-benzensulfonylfluorid (AEBSF). However, it has become apparent that these inhibitors are not specific for NOX [1]. Apocynin cannot be used as selective NADPH oxidase inhibitor due to its direct antioxidant and several off-target effects [54–57]. DPI is a general flavoprotein oxidase inhibitor due to its direct antioxidant and several NADPH oxidase inhibition by VAS2870 and VAS3947 was observed in different cell-free assays including whole cell homogenates of A7r5 (mainly expressing NOX4, VAS3947 IC_50 of 13 μM) and CaCo-2 (mainly expressing NOX1, VAS3947 IC_50 of 12 μM) cell lines [59]. The ability to inhibit NOX2 can be concluded from experiments using either intact HL-60 cells (VAS2870 IC_50 of 1–2 μM) or isolated membranes of human neutrophils containing NADPH oxidase complexes formed from recombinant cytosolic subunits and NOX2 in the presence of SDS (VAS2870 IC_50 of 10.6 μM) [70, 71]. Furthermore, NADPH oxidase inhibition by VAS inhibitors could be detected in various native, i.e. non-overexpressing, cells expressing different NOX isoforms, including PMA-stimulated human granulocytes (expressing NOX2) [72] and DMSO-differentiated HL60 cells (mainly expressing NOX2) [59], several liver carcinoma cell lines [73], ox-LDL-treated human umbilical vein endothelial cells (HUVEC) [74], and PDGF-stimulated primary murine vascular smooth muscle cells [70]. In tissue samples, VAS2870 inhibits ROS release from aortas of aged spontaneous hypertensive rats (SHR) [59]. Also in endothelium-denuded rat tail arteries [75] and in hypoxic mouse brain...
slices [33], a significant decrease in ROS production was observed after VAS2870 treatment. In a mouse brain ischemia reperfusion model, NADPH oxidase activity was inhibited by in vivo treatment with VAS2870 [33], and in a zebrafish model of wound healing, DUOX was inhibited by VAS2870 [76]. In summary, VAS2870 is a well-validated NADPH oxidase inhibitor, as it shows no intrinsic antioxidant activity, does not inhibit other flavoproteins, inhibits NADPH oxidase-mediated ROS production in cell free systems, cells, tissues and in vivo, but it is not NOX isoform-specific. Very recently thioalkylation of cysteine residues of the ryanodine receptor Ca$^{2+}$ channel (RyR1) was discovered as a potential off-target effect of VAS2870 in sarcoplasmic reticulum vesicles isolated in glutathione (GSH) free buffer [193]. The authors also show binding of VAS2870 to low concentrations of GSH in vitro (10 μM). It will be interesting to know to which extent thioalkylation contributes in vivo to the mechanism of action of VAS2870 in the presence of physiological (mM) concentrations of GSH. However, for further development of the compound into a drug more extended off-target effects, ADME and safety data are required, including acute and chronic toxicity determination. So far, it has only been shown that VAS2870 does not inhibit ligand-induced platelet-derived-growth factor receptor (PDGFR)-tyrosine phosphorylation or PDGF-dependent phosphorylation of Erk1/2 or Akt [70].

Mechanism of action

In a cell-free system (membranes plus cytosol) VAS2870 only inhibited NOX2 activity when added prior to stimulation of the active complex formation between NOX2 and its cytosolic partners [71], whereas it showed no effect on NOX2 activity when added after stimulation of the complex formation with SDS (Fig. 3). This suggests that VAS2870 inhibits NADPH oxidase complex formation and can interfere with the association of NOX and its binding proteins. Surprisingly, the activities of NOX4 and NOX5, that are believed to be independent of cytosolic binding proteins, were also inhibited by VAS2870 when tested in native, mainly NOX4-expressing, A7r5 cells and NOX4 or NOX5 overexpressing HEK-293 cells, respectively (Fig. 3). Also, in vivo data suggest that VAS2870 does inhibit NOX4 in native systems: in a mouse ischemic stroke model, we observed the same protective effect of VAS2870 in the wild-type as by deletion of NOX4. VAS2870 exerted no additional protective effect in NOX4 KO mice [33]. Additionally, in endothelial cells from wild-type mice, pharmacological inhibition with VAS2870 or siRNA against NOX4 inhibited laminar shear stress-induced p38 MAPK activation mediated by hydrogen peroxide [77], and the effect was the same in endothelial cells from NOX4 KO mice (Santiago Lamas, personal communication). Recent data suggest an intramolecular interaction between unique motifs in C-terminus and cytosolic B-loop of NOX4 that forms a tertiary structure and activates H$_2$O$_2$ production [78, 79]. An intramolecular conformational change may also mediate the calcium-induced activation of NOX5 [31]. Thus, for all NOX isoforms, it is possible that inhibition of inter- or intramolecular conformational changes is a common mechanism of action of VAS2870. Thioalkylation of critical cysteine residues of NOX enzymes by VAS2870 was recently, e.g. the cytosolic B-loop, suggested [193], but the molecular details and binding sites of this remain to be elucidated.

Applying the tools: validated targets and possible indications

It is still early days in NOX research, and certainly with respect to translation. Nevertheless, what can already be said about validated roles of NOX and NADPH oxidase in disease? And which of these roles may be translated into therapeutic indications? Different NOX subunits have been suggested to be implicated in cancer, hypertension, lung fibrosis, stroke, heart failure, diabetes, and neurodegenerative diseases [18]. Several principal ways may be differentiated by which an excess of ROS leads to pathology: spatially confined levels of ROS (e.g., in caveolae) that interfere with nitric oxide’s (NO) vasoprotective signaling, and high levels (local or systemic) that act, at least in part, independently of NO and are directly cytotoxic, cause apoptosis (Fig. 4), or disturb redox-sensitive signaling pathways.

Roles of NOX1, NOX2, and NOX4

NOX2 appears to be relevant in almost every disease model tested. This may be connected to the role of NOX2 in the innate immune response [80], including to fungal infections [81, 82] and adaptive immune response at the level of both T cells and antigen-presenting cells [83, 84]. Thus, in an animal model involving a significant inflammatory response, NOX2 inhibition may lead to an improvement. Whether this can be exploited in light of the essential immune functions of NOX2 is an important question. Importantly, even a small residual NOX2 activity in X-linked chronic granulomatous disease (CGD) is sufficient for a functional innate immune system [85]. However, it is unknown whether a partial pharmacological inhibition of NOX2 will sufficiently suppress NOX2’s non-CGD disease-related activity. In addition, chronic NOX2 inhibition might lead to paradoxical autoimmune responses [86]. Rather, one may want to optimize any NOX inhibition approach by leaving NOX2 unaffected.

With respect to low and spatially confined ROS overproduction, NOX1 is a good candidate to migrate into
caveolae and there cause eNOS uncoupling and endothelial
dysfunction, which is often associated with increased blood
pressure and enhanced platelet aggregation. Moreover, it
may be an early step in the development of atherosclerosis.
Indeed, basal blood pressure [39], angiotensin-induced
hypertension [39, 40], and endothelium-dependent relaxation
in spontaneously hypertensive rats [87] depends—to some degree—on NOX1. However, whether such chronic
disease indications would ever become realistic for NOX
inhibition is highly questionable unless sophisticated
patient stratification biomarkers would become available.
Phosphorylation of vasodilator-stimulated phosphoprotein
(P-VASP) could become such a marker [88].

With respect to higher levels of ROS that act, at least in part,
independently of NO and are directly cytotoxic or cause apoptosis, NOX4 is well validated. NOX4 is induced
in ischemic stroke, in pressure overload of the heart, and in
a bleomycin model of lung epithelial toxicity resulting in
lung fibrosis. Whilst the interpretation of the stroke data obtained with NOX4 KO mice is straightforward and was
recently confirmed in a tgNOX4 model of brain ischemia
showing larger infarct sizes [194], the pressure overload
and lung data are less so. In pressure overload, two models
have been applied, proximal aortic or thoracic aortic constriction (TAC), and abdominal aortic banding. Both
models differ in the time course by which they affect the heart. The latter, less acute model allows for angiogenesis
to occur. NOX4 appears to play a double role by contributing to the cardiomyocyte damage (particularly in the
acute TAC model [32]) and by facilitating subacute angiogenesis and promoting cardiac function (only observable
in the subacute abdominal aortic banding). This may explain why opposing phenotypes were observed in both
NOX4 KO mouse models and different disease models. In
particular, the TAC model was tested in a cardiomyocyte-specific KO and therefore leaves vascular cell-dependent
angiogenesis by definition unaffected. Thus, NOX4 might both acutely damage the cardiomyocyte and subacutely
protect the heart by promoting angiogenesis. NOX4 also
promotes angiogenesis in vitro as shown using HUVEC
[89, 90] and ovarian cancer cells [91]. Whether these
effects may be exploited by defining an optimal time
window for NOX4 inhibition in situations of acute heart
failure or by interfering with tumor angiogenesis remains
to be seen, and it needs to be tested by TAC or cancer
models in a global KO animal and by applying NOX
inhibitors. The situation in the lung is similarly compli-
cated. Here, a role of NOX4 in the pathogenesis of hypoxic
pulmonary hypertension was suggested [92], but not con-
firmed in NOX4 KO mice [33]. Recent data showed that
NOX4 deficiency mediated either by NOX4 siRNA [93],
NOX4 inhibition, or NOX4 deletion [35] prevents lung
fibrosis. However, this observation may be model-
dependent as no protection from lung fibrosis was observed
in another NOX4 KO mouse using the same model
(Weissmann N. and Schmidt H.H.H.W., unpublished
observation). Bleomycin induces apoptosis and inflamma-
tion in mouse lung epithelial cells [35]. Thus, NOX4 may
be relevant in the bleomycin model, but this model may not
reflect the wide spectrum of human lung fibrosis (idiop-
atric, radiation, silicosis, systemic lupus erythematosus,
dermatomyositis, scleroderma, rheumatoid arthritis,
pneumoconiosis, acute respiratory distress syndrome,
chronic heart failure, drug-induced). Thus, a model-inde-
pendent role of NOX4 in lung fibrosis needs to be tested in
different models of the disease. Even then, the clinical chal-
lenge of a life-long therapy with a NOX4 inhibitor would
remain. Importantly, all published NOX4 KO models lack a
basal phenotype. This is an important observation for the
caracterization of NOX4 as a therapeutic target, as it indi-
cates that NOX4 inhibition would probably not cause severe
complications. The situation may be different when co-mor-
bidities occur and protective roles of NOX4 may well cause
da side effects. From the current state of knowledge, such
potential side effects of sub-chronic and chronic NOX4
inhibition could arise from decreased angiogenesis.

In conclusion, according to the current knowledge, acute
ischemic stroke appears to be one of the most promising
and safest targets for NOX inhibition. It evades the risk of
chronic therapy and the rather double-edged role of NOX4
in heart failure and angiogenesis. Nevertheless, specific,
isoform-selective NOX inhibitors and reliable, freely
available antibodies will be key in elucidating the full
therapeutic potential of NOX in species other than mouse
and in different disease models.

Acknowledgments H.H.H.W.S. declares that he holds shares in
vasopharm GmbH (Würzburg, Germany), which pharmaceutically
develops NADPH oxidase inhibitors. H.H.H.W.S. and K.W. are
inventors of a patent on VAS2870 and VAS3947, which is owned by
vasopharm GmbH (Würzburg, Germany). K.W. is a former, P.S. is
currently an employee of vasopharm GmbH (Würzburg, Germany).

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.

References
1. Wingerl K, Hermans J, Schiffer S, Moens A, Paul M, Schmidt
H (2011) NOX 1, 2, 4, 5: counting out oxidative stress. Br J
Pharmacol 164:866–883
2. Bjelakovic G, Nikolova D, Gluud LL, Simonetti R, Gluud C
(2007) Mortality in randomized trials of antioxidant supple-
ments for primary and secondary prevention: systematic review
and meta-analysis. JAMA 297:842–857
3. Vivekananthan DP, Penn MS, Sapp SK, Hsu A, Topol EJ (2003) Use of antioxidant vitamins for the prevention of cardiovascular disease: meta-analysis of randomised trials. Lancet 361:2017–2023

4. Kris-Etherton PM, Lichtenstein AH, Howard BV, Steinberg D, Witztum JL (2004) Antioxidant vitamin supplements and cardiovascular disease. Circulation 110:637–641

5. Miller AA, Drummond GR, Schmidt HH, Sobey CG (2005) NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 97:1055–1062

6. Shekelle PG, Morton SC, Jungvig LK, Udani J, Spar M, Tu W et al (2004) Effect of supplemental vitamin E for the prevention and treatment of cardiovascular disease. J Gen Intern Med 19:380–389

7. Bjelakovic G, Nikolova D, Simonetti RG, Gluud C (2004) Antioxidant supplements for prevention of gastrointestinal cancers: a systematic review and meta-analysis. Lancet 364:1219–1228

8. Eidelman RS, Hollar D, Hebert PR, Lamas GA, Hennekens CH (2004) Randomized trials of vitamin E in the treatment and prevention of cardiovascular disease. Arch Intern Med 164:1552–1556

9. Dotan Y, Pinchuk I, Lichtenberg D, Leshno M (2009) Decision analysis supports the paradigm that indiscriminate supplementation of vitamin E does more harm than good. Arterioscler Thromb Vasc Biol 29:1304–1309

10. Gallicchio L, Boyd K, Matanouski G, Tao XG, Chen L, Lam TK et al (2008) Carotenoids and the risk of developing lung cancer: a systematic review. Am J Clin Nutr 88:372–383

11. McNally JS, Davis ME, Giddens DP, Saha A, Hwang J, Dikalov S et al (2003) Role of xanthine oxidoreductase and NAD(P)H oxidase in endothelial superoxide production in response to oscillatory shear stress. Am J Physiol Heart Circ Physiol 285:H2290–H2297

12. Skulachev VP (1996) Role of uncoupled and non-coupled oxidation in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

13. Zhang R, Brennan ML, Shen Z, MacPherson JC, Schmitt D, Molenda CE et al (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J Biol Chem 277:46116–46122

14. Fleming I, Michaeels UR, Bredenekotte D, Fisslthaler B, Dehghan F, Gandes RP et al (2001) Endothelium-derived factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88:44–51

15. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karou H et al (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Nat Acad Sci USA 95:9220–9225

16. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

17. Taulet N, Drummond GR, Selemidis S, Meurer S, Schmidt HH et al (2010) Poldip2, a novel regulator of NOX4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105:249–259

18. Geiszt M, Lekstrom K, Witta J, Leto TL (2003) Proteins Homologous to p47(phox) and p67(phox) support superoxide production by NAD(P)H Oxidase 1 in colon epithelial cells. J Biol Chem 278:20006–20012

19. Takeya R, Ueno N, Kami K, Taura M, Kohjima M, Izaki T et al (2003) Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J Biol Chem 278:25234–25246

20. Sumimoto H (2008) Structure, regulation and evolution of NOX-family NADPH oxidases that produce reactive oxygen species. FEBS J 275:3249–3277

21. Girard JP, Clark RA, Steger K, Krause KH (2003) Two novel proteins activate superoxide generation by the NADPH oxidase NOX1. J Biol Chem 278:3510–3513

22. Geiszt M, Kopp G, Ritter J, Leto TL (2003) Proteins Homologous to p47(phox) and p67(phox) support superoxide production by NAD(P)H Oxidase 1 in colon epithelial cells. J Biol Chem 278:25234–25246
38. Pollock JD, Williams DA, Gifford MA, Li LL, Du X, Fisherman J et al (1995) Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet 9:202–209
39. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F et al (2006) Decreased blood pressure in NOX1-deficient mice. FEBS Lett 580:497–504
40. Matsuno K, Yamada H, Iwata K, Jin D, Katsuyama M, Matsu M et al (2005) NOX1 is involved in angiogenesis II-mediated hypertension: a study in NOX1-deficient mice. Circulation 112:2677–2685
41. Arakawa N, Katsuyama M, Matsuno K, Urao N, Tabuchi Y, Okigaki M et al (2006) Novel transcripts of NOX1 are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells. Biochem J 398:303–310
42. Goyal P, Weissmann N, Rose F, Grimminger F, Schafer JS, Seeger W et al (2005) Identification of novel NOX4 splice variants with impact on ROS levels in A549 cells. Biochem Biophys Res Commun 329:32–39
43. Ben Mkaddem S, Pedruzzi E, Werts C, Coant N, Bens M, Cluzeaud F et al (2010) Heat shock protein gp96 and NAD(P)H oxidase 4 play key roles in Toll-like receptor 4-activated apoptosis during renal ischemia/reperfusion injury. Cell Death Differ 17:1474–1485
44. Nisimoto Y, Jackson HM, Ogawa H, Kawahara T, Lambeth JD (2006) The mechanism of superoxide production by NOXH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Nat Acad Sci USA 103:7607–7612
45. Xia Y, Roman L, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273:22635–22639
46. Schroder K, Wondioch K, Helmecke I, Brandes RP (2009) NOX4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245
47. Peshavariya H, Jiang F, Taylor CJ, Selemidis S, Chang CW, Dusting GJ (2009) Translation-linked mRNA destabilization in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245
48. Arakawa N, Katsuyama M, Matsuno K, Urao N, Tabuchi Y, Okigaki M et al (2006) Novel transcripts of NOX1 are regulated by alternative promoters and expressed under phenotypic modulation of vascular smooth muscle cells. Biochem J 398:303–310
49. Kussmaul L, Hirst J (2006) The mechanism of superoxide production by NOXH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Nat Acad Sci USA 103:7607–7612
50. Xia Y, Roman L, Masters BS, Zweier JL (1998) Inducible nitric-oxide synthase generates superoxide from the reductase domain. J Biol Chem 273:22635–22639
51. Schroder K, Wondioch K, Helmecke I, Brandes RP (2009) NOX4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245
52. Peshavariya H, Jiang F, Taylor CJ, Selemidis S, Chang CW, Dusting GJ (2009) Translation-linked mRNA destabilization in preadipocytes. Arterioscler Thromb Vasc Biol 29:239–245
53. Lee CF, Qiao M, Schroder K, Zhou Q, Asmis R (2010) NOX4 is a novel inducible source of reactive oxygen species in monocytes and macrophages and mediates oxidized low density lipoprotein-induced macrophage death. Circ Res 106:1489–1497
54. Aldieri E, Riganti C, Polimeni M, Gazzano E, Lussiana C, Campia I et al (2008) Classical inhibitors of NOX NAD(P)H oxidases are not specific. Curr Drug Metab 9:686–696
55. Yu J, Weiwer M, Linhardt RJ, Dordick JS (2008) The role of the methoxyphenol apocynin, a vascular NADPH oxidase inhibitor, as a chemopreventative agent in the potential treatment of cardiovascular diseases. Curr Vasc Pharmacol 6:204–217
56. Mora-Pale M, WeOer M, Yu J, Linhardt RJ, Dordick JS (2009) Inhibition of human vascular NADPH oxidase by apocynin derived oligophenols. Bioorg Med Chem 17:5146–5152
57. Heumuller S, Wind S, Barbosa-Sicard E, Schmidt HH, Busse R, Schroder K et al (2008) Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant. Hypertension 51:211–217
58. O’Donnell BV, Tew DG, Jones OT, England PJ (1993) Studies on the inhibitory mechanism of iodonium compounds with special reference to neutrophil NADPH oxidase. Biochem J 290:41–49
59. Wind S, Beuerlein K, Eucker T, Muller H, Scheurer P, Armitage ME et al (2010) Comparative pharmacology of chemically distinct NADPH oxidase inhibitors. Br J Pharmacol 161:885–898
60. Tazzeo T, Worek F, Janssen L (2009) The NADPH oxidase inhibitor diphenylelenediones is also a potent inhibitor of cholesteresterases and the internal Ca(2+)-pump. Br J Pharmacol 158:790–796
61. Diatchuk V, Lotan O, Koshkin V, Wikstroem P, Pick E (1997) Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. J Biol Chem 272:13292–13301
62. Gianni D, Tautel N, Zhang H, DerMardirossian C, Kister J, Martinez L et al (2010) A novel and specific NADPH oxidase-1 (NOX1) small-molecule inhibitor blocks the formation of functional invadopodia in human colon cancer cells. ACS Chem Biol 5:981–993
63. Brown SJ, Gianni D, Bokoch G, Mercer BA, Hodder P, Rosen HR (2011) Probe report for NOX1 inhibitors. In: Probe Reports from the Molecular Libraries Program, Bethesda
64. Laleu B, Gagni F, Orchard M, Fioraso-Cartier L, Cagnon L, Houngrinou-Molango S et al (2010) First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (NOX4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J Med Chem 53:7715–7730
65. Bhandarkar SS (2009) Fulvene-5 potently inhibits NADPH oxidase 4 and blocks the growth of endothelial tumors in mice. J Clin Invest 119:2359–2365
66. Jaquet V, Marcoux J, Forest E, Leidal KG, McCormick S, Westermaier Y et al (2011) NOX NADPH oxidase isoforms are inhibited by celastrol with a dual mode of action. Br J Pharmacol 164:507–520
67. Sedeek M, Callera G, Montezano A, Gutsol A, Heitz F, Szondralewicz C et al (2010) Critical role of NOX4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299:F1348–F1358
68. Gavardo-Urbani S, Jemelin S, Deffert C, Carnesecchi S, Basset O, Szondralewicz C et al (2011) Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARalpha-mediated mechanism. PLoS ONE 6:e14665
69. Tegtmeyer F, Walter U, Schinzel R, Wingler K, Scheurer P, Schmidt H (2005) Compounds containing a N-heteroaryl moiety linked to fused ring moieties for the inhibition of NAD(P)H oxidases and platelet activation. European Patent 1 598 354 A1
70. ten Freyhaus H, Huntgeburth M, Wingler K, Schnitker J, Bau- meir AT, Vantler M et al (2006) Novel NOX inhibitor VAS2870 attenuates PDGF-dependent smooth muscle cell chemotaxis, but not proliferation. Cardiovasc Res 71:331–341
72. Schluter T, Steinbach AC, Steffen A, Rettig R, Grisk O (2008) Apocynin-induced vasodilation involves Rho kinase inhibition but not NADPH oxidase inhibition. Cardiovasc Res 80:271–279

73. Sancho P, Fabregat I (2011) The NADPH oxidase inhibitor VAS2870 impairs cell growth and enhances TGF-beta-induced apoptosis of liver tumor cells. Biochem Pharmacol 81:917–924

74. Stielow C, Catar RA, Muller G, Wingler K, Scheurer P, Schmidt HH et al (2006) Novel NOX inhibitor of oxLDL-induced reactive oxygen species formation in human endothelial cells. Biochem Biophys Res Commun 344:200–205

75. Tsai M-H, Jiang MJ (2010) Reactive oxygen species are involved in regulating alphal-adrenoceptor-activated vascular smooth muscle contraction. J Biomed Sci 17:67

76. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999

77. Breton-Romero R, de Orduna CG, Romero N, Sanchez FJ, de Alvaro C, Porras A et al (2012) Critical role of hydrogen peroxide signaling in the sequential activation of p38 MAPK and eNOS in laminar shear stress. Free Radic Biol Med 52:1093–1100

78. von Lohneysen K, Noack D, Wood MR, Friedman JS, Knaus UG (2010) Structural insights into NOX4 and NOX2: motifs involved in function and cellular localization. Mol Cell Biol 30:961–975

79. von Lohneysen K, Noack D, Hayes P, Friedman JS, Knaus UG (2012) Constitutive NADPH oxidase 4 activity resides in the composition of the B-loop and the penultimate C-terminus. J Biol Chem

80. Lam GY, Huang J, Brumell JH (2010) The many roles of NOX2. Nature 464:1464–1476

81. Casimir C, Chetty M, Bohler MC, Garcia R, Fischer A, Griscelli C et al (1992) Identification of the defective NADPH-oxidase component in chronic granulomatous disease: a study of 57 European families. Eur J Clin Invest 22:403–406

82. Williams M, Shatynski K, Chen H (2010) The phagocyte NADPH oxidase (NOX2) regulates adaptive immune response at the level of both T cells and APs. J Immunol 184(13):137

83. Jackson SH, Devadas S, Kwon J, Pinto LA, Williams MS (2004) T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol 5:818–827

84. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. New Engl J Med 363:2600–2610

85. Sarela O, Kelkka T, Pizzolla A, Hultqvist M, Holmdahl R (2011) NOX2 complex-derived ROS as immune regulators. Antioxid Redox Signal 15:2197–2208

86. Wind S, Beuerlein K, Armitage ME, Taya A, Kumar AHS, Janowitz D et al (2010) Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension 56:490–497

87. Ibarra-Alvarado C, Galle J, Melichar VO, Nameghani A, Schmidt HH (2002) Phosphorylation of blood vessel vasodilator-stimulated phosphoprotein at serine 239 as a functional biochemical marker of endothelial nitric oxide/cyclic GMP signaling. Mol Pharmacol 61:312–319

88. Datla SR, Peshavariya H, Dusting GJ, Mahadev K, Goldstein BJ, Jiang F (2007) Important role of NOX4 type NADPH oxidase in angiogenic responses in human microvascular endothelial cells in vitro. Arterioscler Thromb Vasc Biol 27:2319–2324

89. Xu H, Goettsch C, Xia N, Horke S, Morawietz H, Forstermann U et al (2008) Differential roles of PKCalpha and PKCepsilon in controlling the gene expression of NOX4 in human endothelial cells. Free Radical Biol Med 44:1656–1667

90. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

91. Mittal M, Roth M, Konig P, Hofmann S, Dony E, Goyal P et al (2007) Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res 101:258–267

92. Jaulmes A, Sansilvestri-Morel P, Rolland-Valognes G, Bernier A, Weyemi U, Caillou B, Talbot M, Ameziane-El-Hassani R, Weyemi U et al (2008) Differential roles of PKCalpha and PKCepsilon in mediating lipopolysaccharide-induced reactive oxygen species formation in human endothelial cells. Free Radical Biol Med 44:1656–1667

93. Maranchie JK, Zhan Y (2005) NOX4 is critical for hypoxia-inducible factor-2-alpha transcriptional activity in von Hippel-Lindau-deficient renal cell carcinoma. Cancer Res 65:9190–9193

94. Simon F, Fernandez R (2009) Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens 27:1202–1216

95. Zhuang J, Nakagawa K, Yamashita T, Nakamura K, Takeya R, Kuribayashi F et al (2005) The superoxide-producing NADPH oxidase NOX4 in the nucleus of human vascular endothelial cells. Genes Cells 10:1139–1151

96. Shono T, Yokoyama N, Uesaka T, Kuroda J, Takeya R, Yamashita T et al (2008) Enhanced expression of NADPH oxidase NOX4 in human gliomas and its roles in cell proliferation and survival. Int J Cancer Int Dan Cancer 123:787–792

97. Wang Z, Wei X, Zhang Y, Ma X, Li B, Zhang S et al (2009) NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 24:619–626

98. Ueyemi U, Caillou B, Talbot M, Ameziane-El-Hassani R, Lacroix L, Lagent-Chevallier O et al (2010) Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr Relat Cancer 17:27–37

99. Saulmes A, Sansivestri-Morel P, Rolland-Dalognes G, Bernhardt F, Gaertner R, Lockhart B et al (2009) NOX4 mediates the expression of plasminogen activator inhibitor-1 via p38 MAPK pathway in cultured human endothelial cells. Thromb Res 124:439–446

100. Cutz E, Pan J, Yeger H (2009) The role of NOX2 and “novel oxidases” in airway chemoceptor O2 sensing. Adv Exp Med Biol 648:427–438

101. Lee S, Gharavi NM, Honda H, Chang I, Kim B, Jen N et al (2009) NOX4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic Biol Med 49:227–236

102. Kuroda J, Nakagawa K, Nakamura K, Takeya R, Kuribayashi F et al (2005) The superoxide-producing NADPH oxidase NOX4 in the nucleus of human vascular endothelial cells. Genes Cells 10:1139–1151

103. Xia C, Meng Q, Liu LZ, Rojanasakul Y, Wang XR, Jiang BH (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67:10823–10830

104. Lee S, Gharavi NM, Honda H, Chang I, Kim B, Jen N et al (2009) NOX4 mediates reactive oxygen species induction of CD146 dimerization in VEGF signal transduction. Free Radic Biol Med 49:227–236
106. Li B, Bedard K, Sorce S, Hinz B, Dubois-Dauphin M, Krause KH (2009) NOX4 expression in human microglia leads to constitutive generation of reactive oxygen species and to constitutive IL-6 expression. J Innate Immun 1:570–581

107. Sancho P, Bertran E, Caja L, Carmona-Cuenca I, Murillo MM, Fabregat I (2009) The inhibition of the epidermal growth factor (EGF) pathway enhances TGF-beta-induced apoptosis in rat hepatoma cells through inducing oxidative stress coincident with a change in the expression pattern of the NADPH oxidases (NOX) isoforms. Biochim Biophys Acta 1793:253–263

108. Pendyala S, Gorshkova IA, Usatuy PV, He D, Pennathur A, Lambeth JD et al (2009) Role of NOX4 and NOX2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells. Antioxid Redox Signal 11: 747–764

109. Li S, Tabar SS, Malec V, Eul BG, Klepetko W, Weissmann N et al (2008) NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal 10:1687–1698

110. Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Brunet C et al (2004) NADPH oxidase NOX-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol 24:10703–10717

111. Palozza P, Serini S, Verdecchia S, Ameruso M, Trombino S, Picci N et al (2007) Redox regulation of 7-ketocholesterol-induced apoptosis by beta-carotene in human macrophages. Free Radic Biol Med 42:1579–1590

112. Lee YM, Kim BJ, Chun YS, So I, Choi H, Kim MS et al (2006) NOX4 as an oxygen sensor to regulate TASK-1 activity. Cell Signal 18:499–507

113. Park HS, Chun JN, Jung HY, Choi C, Bae YS (2006) Role of NADPH oxidase 4 in lipopolysaccharide-induced proinflammatory responses by human aortic endothelial cells. Cardiovasc Res 72:447–455

114. Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M, Yokoo Y et al (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25:3699–3707

115. Clempus RE, Sorescu D, Dikalova AE, Pounkova L, Jo P, Sorescu GP et al (2007) NOX4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Arte-rioscler Thromb Vasc Biol 27:42–48

116. Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassegue B et al (2011) NADPH oxidase 4 mediates TGF-beta-induced smooth muscle alpha-actin via p38MAPK and serum response factor. J Biol Chem 286:24061–24076

117. Tong X, Schroder K (2009) NADPH oxidases are responsible for the failure of nitric oxide to inhibit migration of smooth muscle cells exposed to high glucose. Free Radic Biol Med 50:354–362

118. Ha JS, Lim HM, Park SS (2010) Extracellular hydrogen peroxide contributes to oxidative glutamate toxicity. Brain Res 1359:291–297

119. Ha JS, Lee JE, Lee JR, Lee CS, Maeng JS, Bae YS et al (2010) NOX4-dependent H2O2 production contributes to chronic glutamate toxicity in primary cortical neurons. Exp Cell Res 316:1651–1661

120. Sedee M, Callera GE, Montezano A, Gutsol A, Heitz F, Szyndralewicz C et al (2010) Critical role of NOX4-based NADPH oxidase in glucose-induced oxidative stress in the kidney—inclusions in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 299(6):F1348–F1358

121. Pietrowski E, Bender B, Huppert J, White R, Luhmann HJ, Kuhlmann CR (2011) Pro-inflammatory effects of interleukin-17A on vascular smooth muscle cells involve NAD(P)H-oxidase derived reactive oxygen species. J Vase Res 48:52–58

122. Fu Y, Zhang R, Lu D, Liu H, Chandrashekar K, Juncos LA et al (2010) NOX2 is the primary source of angiotensin II-induced superoxide in the macula densa. Am J Physiol Regul Integr Comp Physiol 298:R707–R712

123. Groeger G, Mackey AM, Pettigrew CA, Bhatt L, Cotter TG (2009) Stress-induced activation of NOX contributes to cell survival signalling via production of hydrogen peroxide. J Neurochem 109:1544–1554

124. Naughton R, Quiney C, Turner SD, Cotter TG (2009) Bcr-Abl-mediated redox regulation of the PI3 K/AKT pathway. Leukemia Off J Leukemia Soc Am Leukemia Res Fund UK 23:1432–1440

125. Xiao Q, Luo Z, Pepe AE, Margariti A, Zeng L, Xu Q (2009) Embryonic stem cell differentiation into smooth muscle cells is mediated by NOX4-produced H2O2. Am J Physiol Cell Physiol 296:C711–C723

126. Mahadev K, Motoshima H, Wu X, Ruddy JM, Arnold RS, Cheng G et al (2004) The NAD(P)H oxidase homolog NOX4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24:1844–1854

127. Basuroy S, Bhattacharya S, Leffler CW, Parfenova H (2009) NOX4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-alpha in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 296:C422–C432

128. Meng D, Lv DD, Fang J (2008) Insulin-like growth factor-I induces reactive oxygen species production and cell migration through NOX4 and Rac1 in vascular smooth muscle cells. Cardiovasc Res 80:299–308

129. Block K, Eid A, Griending KK, Lee DY, Witrant Y, Gorin Y (2008) NOX4 NAD(P)H oxidase mediates Src-dependent tyrosine phosphorylation of PDK-1 in response to angiotenisin II: role in mesangial cell hypertrophy and fibronectin expression. J Biol Chem 283:24061–24076

130. Pleskova M, Beck FK, Behrens MH, Huwiler A, Fichtlscherer B, Wingertner O et al (2006) Nitric oxide down-regulates the expression of the catalytic NADPH oxidase subunit NOX1 in rat renal mesangial cells. FASEB J Off Publ Fed Am Soc Exp Biol 20:139–141

131. Colston JT, de la Rosa SD, Strader JR, Anderson MA, Freeman GL (2005) H2O2 activates NOX4 through PLA2-dependent proinflammatory responses. J Biol Chem 280:2523–2530

132. Kawahara T, Kuwano Y, Teshima-Kondo S, Takeya R, Sumimoto H, Kishi K et al (2004) Role of nicotinamide adenine dinucleotide phosphate oxidase 1 in oxidative burst response to Toll-like receptor 5 signaling in large intestinal epithelial cells. J Immunol 172:3051–3058

133. Yoshida L, Nishida S, Shimoyama T, Kawahara T, Rakutan K, Tsunawaki S (2002) Expression of a p67(phox) homolog in Caco-2 cells giving O2(-)-reconstituting ability to cytochrome b(558) together with recombinant p47(phox). Biochem Biophys Res Commun 296:1322–1328

134. Chamulitrat W, Schmidt R, Tomakidi P, Stremlen W, Chunglok W, Kawahara T et al (2003) Association of g91phox homolog NOX1 with anchorage-independent growth and MAP kinase-activation of transformed human keratocytes. Oncogene 22:6045–6053

135. Dikalov S, Clempus R, Lassegue B, Cheng G, McCoy J, Dikalov S et al (2005) NOX1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle cell hypertrophy in transgenic mice. Circulation 112:2668–2676

136. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harri-son DG, Griending KK (2008) Distinct roles of NOX1 and
NOX4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45:1340–1351.

137. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP (2004) Direct interaction of the novel NOX proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 279:45935–45941.

138. Miller AA, Drummond GR, Mast AE, Schmidt HH, Sobey CG (2007) Effect of gender on NADPH-oxidase activity, expression, and function in the cerebral circulation: role of estrogen. Stroke 38:2142–2149.

139. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F et al (2005) Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience 132:233–238.

140. Li J, Stouffs M, Serretander L, Banfi B, Bettiol E, Charnay Y et al (2006) The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988.

141. Amara N, Bachoual R, Desmard M, Golda S, Guichard C, La none S et al (2007) Diesel exhaust particles induce matrix metalloproteinase-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 293:L170–L181.

142. Mouche S, Mikaddem SB, Wang W, Katic M, Tseng YH, Cars nesecchi S et al (2007) Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochim Biophys Acta 1773:1015–1027.

143. Wendt MC, Daiber A, Kleschyov AL, Mulsch A, Sydow K, Schulz E et al (2005) Differential effects of diabetes on the expression of the gp91phox homologues NOX1 and NOX4. Free Radic Biol Med 39:381–391.

144. von Lohneysen K, Noack D, Jesaitis AJ, Dinauer MC, Knaus UG (2006) Functional analysis of NOX4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal 18:69–82.

145. Kondo S, Shimizu M, Urasuhara M, Tsuchiya K, Yoshizumi M, Tamaki T et al (2006) Addition of the antioxidant probucol to angiotensin II type I receptor antagonist arrests progressive mesangiproliferative glomerulonephritis in the rat. J Am Soc Nephrol JASN 17:783–794.

146. Liu RM, Choi J, Wu JH, Gaston Pravia KA, Lewis KM, Brand JD et al (2010) Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor beta1-induced expression of plasminogen activator inhibitor 1 in fibroblasts. J Biol Chem 285:16239–16247.

147. Helmcke I, Heumüller S, Tikkakas R, Schröder K, Brandes RP (2009) Identification of Structural Elements in NOX1 and NOX4 Controlling Localization and Activity. Antioxid Redox Signal 11:1279–1287.

148. Touyz RM, Mercure C, He Y, Javeshghani D, Yao G, Callera GE et al (2005) Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase. Hypertension 45:530–537.

149. Lu X, Murphy TC, Nanes MS, Hart CM (2010) PPARgamma regulates hypoxia-induced NOX4 expression in human pulmonary artery smooth muscle cells through NF-kappaB. Am J Physiol Lung Cell Mol Physiol 299:L559–L566.

150. Kawahara T, Ritsick D, Cheng G, Lambeth JD (2005) Point mutations in the proline-rich region of p22phox are dominant inhibitors of NOX1- and NOX2-dependent reactive oxygen generation. J Biol Chem 280:31859–31869.

151. Sosrescu D, Weiss D, Lassegue B, Clemmps RE, Szocs K, Sosrescu GP et al (2002) Superoxide production and expression of NOX family proteins in human atherosclerosis. Circulation 105:1429–1435.

152. Hwang J, Kleinhenz DJ, Lassegue B, Griendling KK, Dikalov S, Hart CM (2005) Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol 288:C899–C905.

153. Lee MY, Martin AS, Mehta PK, Dikalov AE, Garrido AM, Datla SR et al (2009) Mechanisms of vascular smooth muscle NADPH oxidase 1 (NOX1) contribution to injury-induced neointimal formation. Arterioscler Thromb Vasc Biol 29:480–487.

154. Cucoranu I, Clemmps R, Dikalov A, Phelan PJ, Ariyan S, Dikalov S et al (2005) NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts. Circ Res 97:900–907.

155. Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pandyla S et al (2009) NADPH oxidase is required for the sensory plastcity of the carotid body by chronic intermittent hypoxia. J Neurosci Off J Soc Neurosci 29:4903–4910.

156. Spurmy CF, Knoblach S, Pistilli EE, Nagaraju K, Martin GR, Hoffman EP (2008) Dystrophin-deficient cardiomyopathy in mouse: expression of NOX4 and Lox are associated with fibrosis and altered functional parameters in the heart. Neuromusc Disord 18:371–381.

157. de Mochel NS, Seronello S, Wang SH, Ito C, Zheng JX, Liang TJ et al (2010) Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology 52:47–59.

158. Hsiai TK, Hwang J, Barr ML, Correa A, Hamilton R, Alavi M et al (2007) Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-B-100 nitration. Free Radic Biol Med 42:519–529.

159. Wilder JD, Gzik TJ, Mueller CF, Clemmps RE, Schmidt HH, Dikalov SI et al (2007) Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler Thromb Vasc Biol 27:762–768.

160. Van Buul JD, Fernandez-Borja M, Anthony EC, Hoodkijk PL (2005) Expression and localization of NOX2 and NOX4 in primary human endothelial cells. Antioxid Redox Signal 7:308–317.

161. Edderkaoui M, Hong P, Vaquero EC, Lee JK, Fischer L, Friess H et al (2005) Extracellular matrix stimulates reactive oxygen
species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. Am J Physiol Gastrointest Liver Physiol 289:G1137–G1147
168. Vaquero EC, Edderkaoui M, Pandol SJ, Gukovskaya I, Gukovskaya AS (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279:34643–34654
169. Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A et al (2007) NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 133:1637–1648
170. Byrne JA, Grieve DJ, Bendall JK, Li JM, Gove C, Lambeth JD et al (2003) Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy. Circ Res 93:802–805
171. Yoshida LS, Tsuchiawaki S (2008) Expression of NADPH oxidases and enhanced H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha. Int Immunopharmacol 8:1377–1385
172. Wagner B, Ricofo JM, Gorin Y, Block K, Arar M, Riley D et al (2007) Mitogenesis via platelet-derived growth factor beta in metanephric mesenchymal cells. J Am Soc Nephrol JASN 18:2903–2911
173. Spencer NY, Yan Z, Boudreau RL, Zhang Y, Luo M, Li Q et al (2011) Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4. J Biol Chem 286:8977–8987
174. Shibose A, Kuroda J, Tsuruya K, Hirai M, Hirakata H, Naito S et al (2003) A novel superoxide-producing NAD(P)H oxidase in kidney. J Biol Chem 276:1417–1423
175. Etoh T, Inoguchi T, Kakimoto M, Sonoda N, Kobayashi K, Kuroda J et al (2003) Increased expression of NAD(P)H oxidase subunits, NOX4 and p22phox, in the kidney of streptozotocin-induced diabetic rats and its reversibility by intermittent insulin treatment. Diabetologia 46:1428–1437
176. Diebold I, Flugel D, Becht S, Belaiba RS, Bonello S, Hess J et al (2010) The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid Redox Signal 13:425–436
177. Diebold I, Petry A, Hess J, Gorlach A (2010) The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell 21:2087–2096
178. Goettch C, Goettch W, Muller G, Seebach J, Schnittert HJ, Morawietz H (2009) NOX4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun 380:355–360
179. Goettch C, Goettch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H (2009) Long-term cyclic strain downregulates endothelial NOX4. Antioxid Redox Signal 11:2385–2397
180. Wang Z, Armando I, Asico LD, Escano C, Wang X, Lu Q et al (2007) The elevated blood pressure of human GRK4gamma A142 V transgenic mice is not associated with increased ROS production. Am J Physiol Heart Circ Physiol 292:H2083–H2092
181. Li H, Han W, Villar VA, Kever LB, Lu Q, Hopfer U et al (2009) D1-like receptors regulate NADPH oxidase activity and subunit expression in lipid raft microdomains of renal proximal tubule cells. Hypertension 53:1054–1061
182. Block K, Gorin Y, Abboud HE (2009) Subcellular localization of NOX4 and regulation in diabetes. Proc Nat Acad Sci USA 106:14385–14390
183. Mandal CC, Ganapathy S, Gorin Y, Mahadev K, Block K, Abboud HE et al (2010) Reactive oxygen species derived from NOX4 mediate BMP2 gene transcription and osteoblast differentiation. Biochem J 433:393–402
184. Bondi CD, Manickam N, Lee DY, Block K, Gorin Y, Abboud HE et al (2010) NAD(P)H oxidase mediates TGF-beta1-induced activation of kidney myofibroblasts. J Am Soc Nephrol JASN 21:930–932
185. Block K, Gorin Y, New DD, Eid A, Chelmicki T, Reed A et al (2010) The NADPH oxidase subunit p22phox inhibits the function of the tumor suppressor protein tuberin. Am J Pathol 176:2447–2455
186. Gorin Y, Block K, Hernandez J, Bhandari B, Wagner B, Barnes JL et al (2005) NOX4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626
187. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA et al (2007) NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem 282:8019–8026
188. Ribaldo PD, Souza DS, Biswas SK, Block K, Lopes de Faria JM, Lopes de Faria JB (2009) Green tea (Camellia sinensis) attenuates nephropathy by downregulating NOX4 NADPH oxidase in diabetic spontaneously hypertensive rats. J Nutr 139:96–100
189. Yang S, Madypastha B, Bingel S, Ries W, Key L (2001) A new superoxide-generating oxidase in murine osteoclasts. J Biol Chem 276:5452–5458
190. Djordjevic T, BelAlba RS, Bonello S, Pfeilschifter J, Hess J, Gorlach A (2005) Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells. Arterioscler Thromb Vasc Biol 25:519–525
191. Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A (2006) NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 8:1473–1484
192. Banfi B, Tirone F, Durussel I, Knisz J, Moskwa P, Molnar GZ et al (2004) Mechanism of Ca2+ activation of the NADPH oxidase 5 (NOX5). J Biol Chem 279:18583–18591
193. Sun QA, Hess DT, Wang B, Miyagi M, Stamler JS (2012) Off-target thiol alkylation by the NADPH oxidase inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870). Free Rad Biol Med 52:1897–1902
194. Arimura K, Ago T, Kuroda J, Ishitsuka K, Nishimura A, Naito S, Kuroda J, Ishitsuka K, Nishimura A, Naito S, Kuroda J et al (2010) The NADPH oxidase subunit p22phox inhibits the function of the tumor suppressor protein tuberin. Am J Pathol 176:2447–2455