Microhabitat preference of the Banggai Cardinalfish (Pterapogon kauderni): a behavioural experimental approach

A M Moore¹, I Yasir¹, R Ambo-Rappe¹, S Ndobe², and J Jompa¹

¹ Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar 90245, Indonesia
² Faculty of Animal Husbandry and Fisheries, Universitas Tadulako, Palu 94118, Indonesia

Email: abigail@pasca.unhas.ac.id

Abstract. The Banggai cardinalfish Pterapogon kauderni is an endangered endemic species with an exceptionally small native distribution and an unusual life history. A paternal mouthbrooder with direct development, symbiosis with benthic organisms (referred to as microhabitat), is crucial to its survival. This is especially so for postflexion larvae (recruits), after their release from the male parent’s buccal cavity. Microhabitat preference in P. kauderni has been studied empirically based on a survey of wild populations. This study adopted an ex-situ experimental approach to P. kauderni microhabitat preference using two well established behavioural trial methods: choice flume and choice tank. The experimental animals were sourced from the introduced P. kauderni population in Palu Bay, Central Sulawesi, Indonesia. The choice flume method was applied at the Central Sulawesi Marine and Fisheries Service Hatchery in Mamboro, Palu, with microhabitats Diadema setosum and D. savignyi. The choice box method was applied at the Universitas Hasanuddin Centre for Research and Development in Makassar, South Sulawesi, Indonesia, with microhabitats Heteractis crispa, Entacmaea quadricolor, D. savignyi and D. setosum. The results indicate the most to least preferred preference hierarchy of D. savignyi, D. setosum, H. crispa, E. quadricolor. While the preference for the sea anemone H. crispa compared to E. quadricolor is consonant with empirical in situ studies on P. kauderni, the observed preference for D. savignyi over D. setosum was unexpected, and points to the need for further research. Observations made during the trials also raise the possibility that imprinting may occur and influence subsequent microhabitat preference.

1. Introduction
The Banggai cardinalfish Pterapogon kauderni is a small marine fish popular in the marine aquarium trade and considered at risk of extinction across its exceptionally restricted endemic range [1–3]. A paternal mouthbrooder with direct development, P. kauderni is an obligate commensalism species [4] associated with protective microhabitat (mostly benthic invertebrates) in shallow (0-5m, mostly less than 3m depth) coastal waters including coral reefs and reef flats, seagrass meadows, and lagoons [4–13], in particular diadematid sea urchins and sea anemones [4,10,14,15]. All P. kauderni size classes are commonly observed associated with sea urchins. However, empirical data indicate an ontogenetic shift in P. kauderni microhabitat use [4,7,10,12,16]. While P. kauderni observed in sea anemones are strongly dominated by recruits (standard length SL < 18mm) and smaller juveniles (SL 18-25 mm), most P. kauderni in hard coral microhabitat are sub-adults or adults (SL > 35 mm). Association of
recruits with hard (scleractinian) corals other than the anemone-like *Heliofungia actiniformis* is extremely rare. It is not known whether the observed association patterns are due to innate preference, availability, ontogenetic changes (e.g., differential levels of immunity to sea anemone predation during ontogeny), stochastic, or other factors.

Previous studies have quantified the relative prevalence of *P. kauderni* associations with sea urchin and sea anemone species in the wild [14,15,17,18]. The two most common sea urchin *P. kauderni* microhabitat species are *Diadema setosum* and *D. savignyi* [14,17], while in recent studies the most frequently observed sea anemone microhabitats were (in descending order) *Actinodendron* sp., *Heteractis crispa*, *Entacmaea quadricolor*, *Stichodactyla gigantea*, *S. haddoni* and *H. aurora* [18]. Although one experimental study found no apparent preference between *D. savignyi* and *D. setosum* in sub-adult and adult *P. kauderni* [14], there is a lack of experimental studies on microhabitat preference in *P. kauderni*. One major threat to the endemic *P. kauderni* populations is the widespread decline in *Diadema* and sea anemone abundance, due mainly to heavy exploitation, predominantly for human consumption [3,18–21].

Behavioural experiments can be used to test hypotheses developed based on empirical (e.g. survey) data; choice flumes and choice tanks are well-established methods in behavioural studies on preference in aquatic animals, including marine fishes [22–29]. The choice tank method (e.g. [27]) and choice flume method (e.g. [28,29]) both present trialled organisms with a choice of attractants within a confined space. Behavioural experiments on *P. kauderni* microhabitat type preference could provide important information to guide conservation, including habitat and microhabitat rehabilitation. This is particularly relevant within the context of the BCF Gardens concept [30], in which microhabitat protection and, where necessary rehabilitation, are advocated as crucial to the recovery and sustainable management of *P. kauderni* populations.

This research studied the Banggai cardinalfish - microhabitat symbiosis, in particular the between-species preference of *P. kauderni* for particular sea anemones and *Diadema* species, as well as the preference of *P. kauderni* for sea anemones compared to *Diadema* urchins. The aim of the experimental behavioural trials was to test for significant preference between microhabitat types in *P. kauderni* of different age/size classes.

2. Materials and methods

Experimental animals obtained for the experimental research were *Pterapogon kauderni*, sea anemones, and *Diadema* sea urchins (Table 1). All animals were collected, transported, and handled in compliance with existing regulations and protocols.

Table 1. Experimental animals used in *P. kauderni* microhabitat preference trials.

Taxon	Source	Experimental method	Experimental method
Pterapogon kauderni	Mamboro\(^a\)	Choice tank	Choice flume
(various life-stages)	On-site (re-released to wild post-trial)	--	90
	Airfreighted to Makassar	48	--
Diadema setosum and	Mamboro (re-released to wild post trial)		
Diadema savignyi	Spermonde Archipelago\(^b\)		
Sea anemones:	Spermonde Archipelago		
Heteractis crispa	(obtained from ornamental fishermen/traders on Barrang Lompo Island)	2	--
Entacmaea quadricolor			

\(^a\) Introduced *P. kauderni* population site in Palu Bay, Central Sulawesi [31]; this population appeared to have been extirpated by the 28 September 2018 tsunami in Palu Bay [17]

\(^b\) Barrang Lompo Island (*D. setosum*) and Badi Island (*D. savignyi*)

In addition to the animals listed in Table 1, specimens of *Actinodendron* sp. collected in the Spermonde Archipelago were also obtained from ornamental fishermen/traders. However, these highly venomous anemones [32] proved hard to keep in captivity [18] and could not be used in the trials.
Separate holding tanks were provided for trialled and untrialled organisms to prevent the same individual from being used more than once during the same trial. These tanks were provided with aeration. Diadema urchins were given seaweed (Ulva sp.) and Enhalus acoroides leaves (collected at the same time as the sea urchins) as feed (ad libitum). P. kauderni were fed on Artemia sp. (cultivated on-site) and/or small mysid shrimp (purchased from an aquarium shop) both before and after the trials and, for the choice tank experiments, during the trials. The anemones were also fed frozen mysid shrimp, delivered close to the oral disc with a pipette. It was noted that the Diadema urchins also consumed mysid shrimp, which settled on the test or accessible areas of the tank floor.

The P. kauderni microhabitat preference trials were carried out from June to August 2018, using two experimental approaches, a choice tank, and a choice flume. Pterapogon kauderni at different life-stages (based on the standard length – SL) were used in the experiments. Based on biological characters, the main life stage classes are recruits (SL ≤ 18 mm, skeleton lacking some elements [33]), juveniles (18 mm < SL < 35 mm), and adults (SL > 40 mm, largest recorded 61 mm) [13]. Fish in the 35-40 mm range may be juveniles, sub-adults with developing gonads, or fully matured adults [13], but in this study were categorized as sub-adults. The microhabitat pairings and number/size classes of P. kauderni trialled using both methods are shown in Table 2.

Trial set	Microhabitat Organisms	No. of trials	P. kauderni size (SL) Mean	SD	Class
Choice Box	Heteractis crispa vs. Entacmaea quadricolor	3	53.6	4.2	A + SA
1	Diadema setosum vs. D. savignyi	4	34.8	2.2	J + SA
2	H. crispa vs. D. setosum	4	49.8	5.6	A + SA
3	H. crispa vs. D. savignyi	4	34.5	2.7	J + SA
Choice Flume					
5	Diadema setosum vs. D. savignyi	30	11.49	4.48	R
6	Diadema setosum vs. D. savignyi	29	36.18	4.09	J + SA
7	Diadema setosum vs. D. savignyi	30	49.18	3.10	A
8	Diadema setosum vs. none	10	46.8	2.6	A
9	Diadema savignyi vs. none	10	47.6	4.8	A

SD = standard deviation; R = recruits; J = juveniles; SA = sub-adults; A = adults

The choice tank design was adapted from [27], and was constructed and deployed in the Medaka Centre and Water Quality Laboratory, Centre for Research and Development, Hasanuddin University, Makassar, South Sulawesi. The choice tank (Figure 1) was constructed by dividing a polystyrene tank (approximately 45 x 80 cm, internal width around 36 cm) into three sections using movable grids. Microhabitat organisms were placed at either end, with no microhabitat in the central section into which the trialled fish were released.

The placement of the two microhabitat types was exchanged after each replicate to avoid possible end bias, with four replicates per microhabitat pair. Although the microhabitat organisms were confined to their ends by the grids, the grid mesh size was large enough to enable P. kauderni (3 fish per trial replicate) to move freely to all sections of the tank. Observations of P. kauderni microhabitat association were made at intervals over 24 hours (minimum 30 observations per replicate). Water condition and aeration were maintained through intermittent use of a protein skimmer in the centre compartment.
In essence, the choice flume method allows large numbers (sufficient to be considered statistically valid, typically around 30) of the organism being tested for preference to be exposed to water flowing past two alternative attractors or repellents to which the tested individual might be expected to respond. While vision may be a factor (depending on flume design), olfaction is usually the main clue [23,34]. Examples of attractors/repellents could be predators [24,35,36], conspecifics [23,26,28], habitat cues [23,28,29,34,37], or microhabitat (e.g. type or condition) [22,24,25,38]. Methods of “infusing” the two water sources with the desired attractant/repellent vary, as do the ways in which water is supplied to and flows out of the flume. In the test chamber, where individuals will be tested for preference, there is no physical barrier to movement; however, the water flow must be laminar (as turbulence would promote mixing) and carry each of the desired signals on just one side of the tank.

The choice flume design was adapted from [23] and trialled at the Hasanuddin University Marine Station Hatchery on Barrang Lompo Island. The flume was deployed at the Mamboro Marine and Fisheries Service Hatchery in Palu, Central Sulawesi, in June 2018. The choice flume (Figure 2) was constructed using simple and inexpensive materials available locally. A polystyrene box (approximately 45 x 80 cm, internal width around 36 cm) formed the body of the flume. A two-chamber cage was constructed from semi-transparent laminated plastic and polystyrene, purpose-built to fit snugly at one end of the flume (dimensions approximately 25 cm high and 24 cm fore-aft, with two 18 cm wide compartments. Plastic mesh was fitted over the open front of the compartments, enabling the flow of water but preventing the passage of experimental animals, either fish or microhabitat. The mesh also helped to maintain laminar flow conditions. A series of holes were made along a horizontal line at the other end of the flume, enabling through flow and maintaining water height at around 15cm. A black line denoted the centre of the flume.

A clay pot with a hole about halfway up one side was used for transferring the fish from the holding tanks and releasing them into the choice flume and was fitted with a removable mesh cover. The cover was removed to release the fish after an acclimation period of 1 minute. A stand was constructed of polypropylene piping and fitted with a holder for attaching the GoPro (Hero4) camera. The rate of flow was adjusted to maintain laminar flow without posing a significant challenge or stress to the fish being tested (e.g. well within the range of local tidal currents). Prior to operating the choice flume, the laminar flow was tested using coloured non-toxic (food) dyes, which were fully flushed from the system before trials were commenced.

After acclimation and release, each fish was filmed for 2 minutes (120 seconds). The observer viewed the resulting videos and for each trial noted the time spent by the fish in each of four behaviour categories: POT = fish remaining in or close to the pot; MH1 = fish approaching or remaining close to microhabitat 1 (left of the centreline); MH2 = fish approaching or remaining close to microhabitat 2 (right of the centreline); OT = other (e.g. fish swimming around at the outflow end of the flume). MH1 and MH2 could be D. setosum, D. savignyi, or none, depending on the trial.
Figure 2. Choice flume deployed at the Mamboro Hatchery, Palu City. A. Overview of the setup. B. Screenshot taken from the GoPro camera used to film each trial when fixed in place with microhabitat organisms (in this case, Diadema setosum left and D. savignyi right) confined to compartments at the upstream end. Trialled fish were placed in the pot (initially covered for 1-minute acclimation) and filmed for 2 minutes (120 seconds) once the cover was removed.

The choice tank and choice flume data were tabulated in Microsoft Excel 2010. For each set of trials, Pearson’s chi-square test (chisq.test) in R version 3.4.2 [39], implemented in RStudio version 1.1.456 [40], was applied to test the null hypothesis of no preference between microhabitat types.

3. Results and discussion

3.1. Choice tank trials

The preferences recorded in the choice tank experiments (Table 3) were mostly conducted with subadult/adult P. kauderni. The results indicate a significant preference for microhabitats compared to no microhabitat, and most fish moved several times between microhabitats. Diadema savignyi was significantly preferred to Diadema setosum, in contrast to [14], who found no significant preference. With regards to H. crispa versus either of the two Diadema species, despite an overall preference for Diadema, H. crispa was preferred to D. savignyi in a trial replicate with juvenile fish (SL < 35 mm). Of the four trials, preference between the two anemone species had the lowest p-value (p < 0.05); however, some preference for H. crispa to E. quadricolor is consonant with field survey results [18].

Table 3. P. kauderni microhabitat preference choice tank trial results.

Mean fish in microhabitat	Significant differences	
D. savignyi	** significantly different from both, p < 0.001	
1.569**	0.634	0.805
H. crispa	** significantly different from both, p < 0.001	
0.721*	0.555	1.724**
D. savignyi	** significantly different from both, p < 0.001	
1.938**	0.436	0.625*
H. crispa	** significantly different from both, p < 0.001	
1.105*	1.003	0.9
E. quadricolor	* significantly different from both, p < 0.05	

3.2. Choice flume trials

The results of the choice flume experiments carried out at Mamboro (Table 4, Figure 3) indicate a significant preference in P. kauderni of all size classes for sea urchins over no microhabitat and for D. savignyi over D. setosum. However, it was remarkable that the seven P. kauderni recruits collected
from sea anemones (*Heteractis crispa* and *Stichodactyla gigantea*) showed little or no interest in the sea urchins, and seemed to prefer the pot, remaining in or very close to the pot for most (mean 70%) of the trial. Conversely, when the net cap was lifted, almost all recruits collected from *Diadema* microhabitat swam towards one or other of the urchins immediately or after a very short time interval. These very strong demarcations indicate the possibility of imprinting in *P. kauderni*, as has been reported for clownfishes (*Amphiprion* species) [38,41–43].

Table 4. The proportion of time (%) spent near each microhabitat by trialled *Pterapogon kauderni* during choice flume trials.

No	Microhabitat 1 Type	Microhabitat 2 Type	Pot %	Other %	*P. kauderni* life stage	All %	MH 1-2	DD-N
1	*D. setosum* 25.26	*D. savignyi* 46.14	21.88	6.72	*R*	***	*	***
2	*D. setosum* 19.78	*D. savignyi* 51.83	18.99	9.40	J + SA	***	***	***
3	*D. setosum* 22.36	*D. savignyi* 58.86	15.53	3.25	A	***	***	NA
4	*D. setosum* 63.67	none	10.58	9.33	A	***	***	NA
5	*D. savignyi* 73.25	none	7.33	5.92	A	***	***	NA

*a R = recruits; J = juveniles; SA = sub-adults; A = adults
b Pearson’s chi-square test on the difference between means; All = all four behaviours; MH 1-2 = microhabitat 1 and microhabitat 2; DD-N = (*Diadema setosum* + *D. savignyi*) and (pot + other); *** = *p* < 0.001; ** = *p* < 0.01; * = *p* < 0.05; ns = not significant at 95% confidence level (*p* ≥ 0.05)

Figure 3. Box plot of behaviour indicating preference of *P. kauderni* recruits (A), juveniles/sub-adults (B), and adults (C) based on time spent close to sea urchin microhabitat.
D. setosum = close to Diadema setosum
D. savignyi = close to Diadema savignyi
Pot = remaining in/around the release pot
Other = exhibiting other behaviour
Urchin = time close to either urchin species
Not Urchin = time close to pot + other

3.3. Implications for conservation management

In contrast with the results in Tables 3 and 4, an earlier behavioural experiment using different methods [14] found no significant difference in sub-adult/adult P. kauderni association with (equal numbers) of D. savignyi and D. setosum. These contradictory results call for further investigation. With respect to the P. kauderni size class, the fish in [14] were sub-adult to adult P. kauderni (35–42 mm TL). Collectively, the choice flume and choice box trials cover a full range of P. kauderni size classes, with recruits, small juveniles, and adults in the choice flume trials, and larger juvenile and sub-adult P. kauderni in the choice tank trial of D. setosum vs. D. savignyi. One possible explanation is that in the large concrete tanks used by [14], any preference was confounded by the tendency of the sea urchins to congregate in mixed-species groups, while in this study, the two Diadema species were kept separate. Conversely, despite the high statistical significance of the observed preference for D. savignyi in this study, it is still possible that our results could be due to chance.

Diadema savignyi and D. setosum appear to have overlapping, but significant distributions across habitat types, and thus together may enlarge the potential habitat for P. kauderni [17]. While increased exploitation of Diadema spp., mostly for human consumption, is the main driver of declining urchin populations across much of the P. kauderni endemic range [3,18–21], it is not known whether collection affects both species proportionally or not. Captive breeding has not been developed for either Diadema species. In addition, analysis of mitochondrial DNA (mtDNA) has shown that Diadema clarki mtDNA is also present in the Banggai Archipelago, possibly as a full species, in hybrids or through introgression [17]. It is clear that there is still much to learn about the P. kauderni - Diadema symbiosis; however, the study results support the view that D. savignyi is important as a P. kauderni microhabitat and that efforts to rehabilitate Diadema microhabitat should aim to maintain both species rather than concentrating on the generally more abundant D. setosum.

To some extent, the frequency of P. kauderni association with different sea anemone species recorded during a field survey in 2017 [18] may have been due to availability as much as preference. For example, the host sea anemone Stichodactyla gigantea (fourth most common host) was rare or absent from most sites [18]. Visual records (Moore and Ndobe unpublished data, 2004-2006) indicate that this anemone was once more prevalent, both in terms of absolute abundance and as a P. kauderni microhabitat. In the Banggai Archipelago, this large and fleshy anemone has been more heavily collected (mostly for human consumption) than any other anemone, especially since 2007 [3,7]. This species is also collected for the marine ornamental trade. For example, in the Spermonde Archipelago, Indonesia [44] and the Philippines [45], and collection may well extend to the Banggai Archipelago.

By comparison, both H. crispa and E. quadricolor are still relatively abundant in the Banggai Archipelago. Heteractis crispa is both easier to propagate asexually than E. quadricolor [18] and appears to be preferred as a microhabitat in the wild [18] and under experimental conditions (Table 3). These findings indicate that H. crispa could be a primary target species for microhabitat rehabilitation to promote P. kauderni population recovery, as proposed in the BCF Garden concept [2,30].

The results indicate that there may be factors other than ontogeny influencing microhabitat preference. For example, as is thought to occur in clownfishes of the genus Amphiprion [38,41–43], imprinting may play a significant role in P. kauderni microhabitat preference. In addition, it has been postulated that imprinting may affect the choice of egg-laying sites in clownfishes [42]. The ambiguous (and in some cases conflicting) data on microhabitat preference point to a possible role of imprinting in P. kauderni microhabitat choice. It is not impossible that imprinting of recruits could affect microhabitat choice at later life stages, in particular the choice of recruit release sites selected by
brooding male \textit{P. kauderni}. This is just one of the questions still unanswered regarding the \textit{P. kauderni} symbiosis with its various microhabitats, including sea anemones.

4. Conclusion

The choice tank results indicate a descending preference hierarchy of \textit{D. savignyi}, \textit{D. setosum}, \textit{H. crispa}, \textit{E. quadricolor}. The preference for the sea anemone \textit{H. crispa} compared to \textit{E. quadricolor} is consonant with empirical \textit{in situ} studies on \textit{P. kauderni}, and supports the use of \textit{H. crispa} in particular in efforts to promote the recovery of \textit{P. kauderni} stocks through microhabitat rehabilitation. The unexpected preference for \textit{D. savignyi} over \textit{D. setosum} in both choice tank and choice flume trials calls for attention to fine-scale \textit{Diadema} species structure in conservation management. The findings point to the need for further research on \textit{P. kauderni} – \textit{Diadema} symbiosis as well as on aspects of \textit{Diadema} biology, ecology, biogeography, and exploitation. Observations made during the trials raise the possibility that imprinting may occur in \textit{P. kauderni} and could influence subsequent microhabitat preference.

Acknowledgments

The authors gratefully acknowledge partial support for this research under the Indonesian Ministry of Research and Higher Education Pascadoktor scheme with Grant Numbers 703.b/UN28.2/PL/2017 and 285.a/UN28.2/PL/2018. Equipment provided under a USAID PEER Grant was used with the kind permission of Dr. Nita Rukminasari and Pak Suharto. We thank The Central Sulawesi Marine and Fisheries Service for the use of facilities at the Mamboro Hatchery. Muhammad Yusuf Yusuf and Nurputri Andira Faradhiba Kosse (Makassar) and Habibullah S. Manangka (Palu) provided invaluable assistance during the research.

References

[1] Allen G R and Donaldson T J 2007 \textit{Pterapogon kauderni} IUCN Red List Threat. Species 2007 e.T63572A12692964 17 pages

[2] Ndobe S, Yasir I, Moore A M, Biondo M V and Foster S J 2018 A study to assess the impact of international trade on the conservation status of \textit{Pterapogon kauderni} (Banggai cardinalfish) (Gland, International Union for Conservation of Nature)

[3] Ndobe S, Moore A, Yasir I, and Jompa J 2019 Banggai cardinalfish conservation: Priorities, opportunities, and risks \textit{IOP Conf. Ser. Earth Environ. Sci.} \textbf{253} 012033

[4] Vagelli A A 2011 \textit{The Banggai Cardinalfish: Natural History, Conservation, and Culture of \textit{Pterapogon kauderni}} (Chichester, UK: John Wiley & Sons, Ltd.)

[5] Vagelli A A and Erdmann M V 2002 First comprehensive ecological survey of the Banggai cardinalfish, \textit{Pterapogon kauderni} \textit{Environ. Biol. Fishes} \textbf{63} 1–8

[6] Ndobe S, Moore A and Supu A 2005 Sulawesi Case Study - Banggai Kepulauan \textit{The Indonesian Ornamental Fish Trade: Case Studies and Options for Improving Livelihoods while Promoting Sustainability in Banggai and Banyuwangi} (Bangkok: The International Seafood Trade: Supporting Sustainable Livelihoods Among Poor Aquatic Resource Users in Asia (EC Prep Project EP/RO3/R14). Poseidon and Network of Aquaculture Centres in Asia (NACA) STREAM) pp 5–143 & 165–229

[7] Ndobe S, Madinawati and Moore A 2008 Pengkajian \textit{Ontogenetic Shift} pada Ikan Endemik \textit{Pterapogon kauderni} \textit{J. Mitra Bahari} \textbf{2} 32–55

[8] Moore A, Ndobe S and Zamrud M 2011 Monitoring the Banggai Cardinalfish, an Endangered Restricted Range Endemic Species \textit{J. Indones. Coral Reefs} \textbf{1} 99–113

[9] Moore A, Ndobe S, Salanggon A-I, Ederyan and Rahman A 2012 Banggai Cardinalfish Ornamental Fishery: The Importance of Microhabitat \textit{Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia}, 9-13 July 2012 (International Society for Reef Studies (ISRS)) p 13C

[10] Ndobe S, Widiaestuti I and Moore A 2013 Sex Ratio dan Pemangsaa terhadap Rekrut pada Ikan
Hias Banggai Cardinalfish (*Pterapogon kauderni*) *Prosiding Konferensi Akuakultur Indonesia* pp 9–20

[11] Ndobe S, Moore A, Nasmia, Madinawati and Serdiati N 2013 The Banggai cardinalfish: an overview of local research (2007–2009) *Galaxea, J. Coral Reef Stud.* 15 243–52

[12] Ndobe S, Moore A, Salanggon A I M, Muslihuddin, Setyohadi D, Herawati E Y and Soemarno 2013 Pengelolaan Banggai cardinalfish (*Pterapogon kauderni*) melalui konsep Ecosystem-Based Approach *Mar. Fish.* 4 115–26

[13] Ndobe S, Soemarno, Herawati E Y, Setyohadi D, Moore A, Palomares M L D and Pauly D 2013 Life History of Banggai Cardinalfish, *Pterapogon kauderni* (Actinopterygii: Perciformes: Apogonidae), from Banggai Islands and Palu Bay, Sulawesi, Indonesia *Acta Ichthyol. Piscat.* 43 237–50

[14] Ndobe S, Moore A and Jompa J 2018 A Tale of Two Urchins - Implications for In-Situ Breeding of the Endangered Banggai Cardinalfish (*Pterapogon kauderni*) *Aquac. Indones.* 19 65–75

[15] Moore A M, Ndobe S, Yasir I, Ambo-rappe R and Jompa J 2019 Banggai cardinalfish and its microhabitats in a warming world: A preliminary study *IOP Conf. Ser. Earth Environ. Sci.* 253 012021

[16] Vagelli A A 2004 Ontogenetic Shift in Habitat Preference by *Pterapogon kauderni*, a Shallow Water Coral Reef Apogonid, with Direct Development *Copeia* 2004 364–9

[17] Moore A M, Tassakka A C M, Ambo-rappe R, Yasir I, Smith D J and Jompa J 2019 Unexpected discovery of *Diadema clarkii* in the Coral Triangle *Mar. Biodivers.* 49 1–19

[18] Moore A M, Yasir I, Ambo-Rappe R, Ndobe S and Jompa J 2020 Asexual propagation of two sea anemone taxa for Banggai cardinalfish microhabitat enhancement *IOP Conf. Ser. Earth Environ. Sci.* 473 012011

[19] Moore A M, Ndobe S, Yasir I and Jompa J 2019 Disasters and biodiversity: A case study on the endangered endemic marine ornamental Banggai cardinalfish *IOP Conf. Ser. Earth Environ. Sci.* 253 012036

[20] Wiadnyana N N, Suharti SR, Ndobe S, Triharyuni S, Reksodihardjo-Lilley G, Risuana S, and Moore A 2020 Population trends of Banggai cardinalfish in the Banggai Islands, Central Sulawesi, Indonesia *IOP Conf. Ser. Earth Environ. Sci.* 420 012033

[21] Ndobe S, Moore A M and Jompa J 2017 Status of and threats to microhabitats of the endangered endemic Banggai Cardinalfish (*Pterapogon kauderni*) *Coast. Ocean J.* 1 73–82

[22] Scott A and Dixson DL 2016 Reef fishes can recognize bleached habitat during settlement: sea anemone bleaching alters anemonefish host selection *Proc. R. Soc. London B, Biol. Sci.* 283 1–7

[23] Coppock A G, Gardiner N M and Jones G P 2013 Olfactory discrimination in juvenile coral reef fishes: Response to conspecífics and corals *J. Exp. Mar. Bio. Ecol.* 443 21–6

[24] Dixson DL 2011 Predation risk assessment by larval reef fishes during settlement-site selection *Coral Reefs* 31 255–61

[25] Karplus I 2014 *Symbiosis in Fishes: The Biology of Interspecific Partnerships* (Chichester, UK: John Wiley & Sons, Ltd)

[26] Johnston N K and Dixson DL 2017 Anemonefishes rely on visual and chemical cues to correctly identify conspecifics *Coral Reefs* 36 903–12

[27] Binoy V V., Kasturirangan R and Sinha A 2015 Sensory cues employed for the acquisition of familiarity-dependent recognition of a shoal of conspecifics by climbing perch (*Anabas testudineus* Bloch)* J. Biosci.* 40 225–32

[28] Gould A L, Harii S and Dunlap P V 2015 Cues from the reef: olfactory preferences of a symbiotically luminous cardinalfish *Coral Reefs* 34 673–7

[29] Gerlach G, Atema J, Kingsford M J, Black K P, and Miller-Sims V 2007 Smelling home can prevent dispersal of reef fish larvae *Proc. Natl. Acad. Sci.* 104 858–63

[30] Moore A M, Ndobe S and Jompa J 2017 A site-based conservation approach to promoting the recovery of Banggai cardinalfish (*Pterapogon kauderni*) endemic populations *Coast. Ocean J.*
[31] Moore A and Ndobe S 2007 Discovery of an introduced Banggai Cardinalfish population in Palu Bay, Central Sulawesi, Indonesia Coral Reefs 26 569
[32] Mizuno M 2016 Envenomation by Cnidarians and Renal Injuries The Cnidaria, Past, Present, and Future: The world of Medusa and her sisters ed S Goff and Z Dubinsky (Springer Nature) pp 623–36
[33] Vagelli A A 1999 The Reproductive biology and the early ontogeny of the mouthbrooding Banggai Cardinalfish, Pterapogon kauderni (Perciformes, Apogonidae) Environ. Biol. Fishes 56 79–92
[34] Gould A L, Harii S and Dunlap P V. 2015 Cues from the reef: olfactory preferences of a symbiotically luminous cardinalfish Coral Reefs 34 673–7
[35] Nilsson G E, Dixson DL, Domenici P, McCormick M I, Sørensen C, Watson S and Munday P L 2012 Near-future carbon dioxide levels alter fish behavior by interfering with neurotransmitter function Nat. Clim. Chang. 2 201–4
[36] Gouraguine A, Díaz-Gil C, Reñones O, Simón D, Palmer M, Hinz H, Catalán I A, Smith D J and Moranta J 2017 Behavioural response to detection of chemical stimuli of predation, feeding, and schooling in a temperate juvenile fish J. Exp. Mar. Bio. Ecol. 486 140–7
[37] Coppock A G, Gardiner N M and Jones G P 2016 Olfactory responses of coral-reef fishes to coral degradation and crown-of-thorns (Acanthaster planci) Mar. Freshw. Res. 67 605–11
[38] Dixon DL, Jones G P, Munday P L, Planes S, Pratchett M S and Thorrold SR 2014 Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish Oecologia 174 99–107
[39] R Core Team 2017 R: A language and environment for statistical computing
[40] RStudio Team 2016 RStudio: Integrated Development for R
[41] Arvedlund M, McCormick M I, Fautin D G and Bilsdoe M 1999 Host recognition and possible imprinting in the anemonefish Amphiprion melanopus (Pisces: Pomacentridae) Mar. Ecol. Prog. Ser. 188 207–18
[42] Arvedlund M, Bundgaard I, and Nielsen L E 2000 Host imprinting in anemonefishes (Pisces: Pomacentridae): does it dictate spawning site preferences? Environ. Biol. Fishes 58 203–13
[43] Arvedlund M and Nielsen L E 1996 Do the Anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) Imprint Themselves to Their Host Sea Anemone Heteractis magnifica (Anthozoa: Actiniidae)? Ethology 102 197–211
[44] Madduppa HH, von Juterzenka K, Syakir M and Kochzius M 2014 Socio-economy of marine ornamental fishery and its impact on the population structure of the clown anemonefish Amphiprion ocellaris and its host anemones in Spermonde Archipelago, Indonesia Ocean Coast. Manag. 100 41–50
[45] Shuman C S, Hodgson G and Ambrose RF 2005 Population impacts of collecting sea anemones and anemonefish for the marine aquarium trade in the Philippines Coral Reefs 24 564–73