Discrete-Constrained Regression for Local Counting Models

Haipeng Xiong and Angela Yao
National University of Singapore, Singapore
{haipeng,ayao}@comp.nus.edu.sg

Abstract. Local counts, or the number of objects in a local area, is a continuous value by nature. Yet recent state-of-the-art methods show that formulating counting as a classification task performs better than regression. Through a series of experiments on carefully controlled synthetic data, we show that this counter-intuitive result is caused by imprecise ground truth local counts. Factors such as biased dot annotations and incorrectly matched Gaussian kernels used to generate ground truth counts introduce deviations from the true local counts. Standard continuous regression is highly sensitive to these errors, explaining the performance gap between classification and regression. To mitigate the sensitivity, we loosen the regression formulation from a continuous scale to a discrete ordering and propose a novel discrete-constrained (DC) regression. Applied to crowd counting, DC-regression is more accurate than both classification and standard regression on three public benchmarks. A similar advantage also holds for the age estimation task, verifying the overall effectiveness of DC-regression. Code is available at https://github.com/xhp-hust-2018-2011/dcreg.

Keywords: Deep Regression, Constrained Regression, Local Count Models, Crowd Counting, Age Estimation

1 Introduction

Image-based counting of objects such as people [28,5], vehicles [11] and cells [3] can be modelled either as a classification or a regression problem. Since local counts or local densities are continuous, ordered values, they should naturally be regressed. Yet surprisingly, recent works have shown that formulating local count prediction as a classification problem is more accurate [27,6].

The preference for using classification to solve regression problems arises in several areas of computer vision, ranging from depth estimation [4] to human pose estimation [10,25]. The underlying reason is usually task-specific. For depth estimation, classification helps to handle the extreme dynamic range of depth that may occur; this is especially prominent in mixed indoor and outdoor scenes [4]. For pose estimation, classification allows for dense spatial supervision, which is believed to be more beneficial for learning [1].
For counting tasks, classification outperforms regression when counting in a closed set range [27]. To find out why classification performs better than regression in certain counting tasks, we conduct a series of experiments on synthetic data. In this paper, we focus on local counting models that predict local counts, i.e., the number of objects within the local image patches. Through careful investigation, we trace the advantages of classification back to the imprecise generation of ground truth local count.

In object counting, annotators mark each object of interest with a single dot (see Fig. 1). The local count, or the number of objects within a specified area, can simply be defined as the number of dot annotations within that area if all the objects are wholly contained. However, fractional local counts arise when there are partial objects. The estimate of fraction local counts can be imprecise, especially if the dot annotations are not aligned with the object in the image. The imprecision is worsened by the use of an intermediate density map estimated by convolving the dot annotations with Gaussian kernels. An accurate density estimate requires the Gaussian kernels’ standard deviation to match the true object size. Yet, size information is often not annotated or known in advance. Given that current methods generate ground truth counts by integrating over local areas in the density map, it becomes clear that many factors of imprecision are at play and that the ground truth local counts will deviate from the true local counts.

In this work, we investigate the effects of partial objects, dot annotation position and Gaussian kernel size on the classification versus regression task setting. To that end, we create a synthetic dataset containing images of cells to carefully control and study these properties. Our findings show that regression performance is comparable to classification under ideal settings, i.e., objects are wholly contained within a local area, dot annotations are centered on the objects and Gaussian kernels are correctly matched. The lower accuracy arises only when the ground truth labels deviate from the true local count.
Based on these findings, we speculate that the poor performance of regression can be attributed to the naive formulation as a continuous regression problem. Enforcing a standard L1 loss penalizes models that do not (over-) fit to the errors present in the ground truth counts. By constraining the regression to only discrete counts, however, we can buffer against some of the imprecision in the ground truth as classification does. As such, we propose a discrete-constrained (DC) regression model for crowd counting. Similar to classification, DC-regression benefits from discretizing the target space while retaining an ordered output space of numerical counts rather than an order-agnostic class index. The numeric output enables a comparison between summed local counts and a global count. We also propose a global count loss regularizer, which mitigates some of the discretization errors when converting the target space from continuous to discrete.

DC-regression is more accurate than both classification and standard regression in crowd counting. It is also applicable to other discrete regression tasks such as age estimation, and we verified its effectiveness in our experiments. In summary, the contributions of this paper are:

1. A novel discrete-constrained (DC) regression model that benefits from the discretization of classification while retaining the ordering and numerical output space of regression.
2. A series of experiments on controlled synthetic data indicated that the imprecise local counts emerged during the annotation and ground truth generation process account for the advantage of classification over regression.
3. DC-regression, coupled with a global count loss, outperforms both classification and regression on three crowd-counting datasets. It has significant improvements over state-of-the-art approaches when inserted into an advanced local count model like S-DCNet [27].
4. Verified that DC-regression is also applicable to the age estimation task.

2 Related Work

Counting By Regression. The goal of object counting is to predict the number of visually present objects in images. Given that counts have an ordering, it is naturally modelled as a regression problem. Two commonly adopted regression targets are density maps [29,16,14] and local object counts [12,26,7]. Density maps were first proposed by [3]; they are a dense target proportional to the spatial distribution of the objects. Zhang et al. [28] first adopted a deep network to regress density maps and most regression methods [29,16,14] followed a similar approach. Local count is another learning target of deep regression networks. Local count methods [12,26,7] first divide images into local patches, then predict object numbers of each local patch separately.

However, both learning targets could be imprecise if only dot annotations are provided for object counting. Specifically, ground truth density maps could be affected by biased dot annotations and mismatched Gaussian kernels (as shown
in Fig 1). Local counts can be even more imprecise as they are obtained by integrating over local areas in the density map. Optimum transport [13] has been adopted [22,21,9] to account for possible errors in ground truth density maps with extra optimization procedures. Different from them, we tackle errors in ground truth count maps using discrete constraints.

Counting By Classification. Instead of regressing local counts, counting by classification methods model local counts as different classes [27,6,23]. Liu et al. [6] first divided the count ranges into discrete intervals and then predicted the interval index with a classifier. The final count value was chosen as the median value of the predicted interval. Xiong et al. [27] adopted a classifier to model a closed-set range of counts, and generalized it to the open-set range via spatial divide-and-conquer. Based on these works [27,6,23], it appears that classification works better than regression for object counting.

Classification vs. Regression. Other than object counting, classification has also shown to perform better than regression for specific tasks in depth estimation [4], human pose estimation [10,25] and age estimation [30]. In this work, we show experimentally that classification is better than regression when ground truth count maps are imperfect. We also find that regression could be improved by adopting discrete constraints of local counts similar to classification.

3 Method

3.1 Preliminaries

Suppose we are given an image \(I \in \mathbb{R}^{H \times W} \) with \(T \) dot annotations \((x_t, y_t), t = \{1, \ldots, T\}\). Using the dot annotation map \(D^0 = \sum_{t=1}^{T} \delta(x_t, y_t) \), where \(\delta(x_t, y_t) \) denotes a Dirac function centered at \((x_t, y_t)\), we can generate a density map \(D \) by convolving \(D^0 \) with a Gaussian kernel \(G_\sigma \), with a standard deviation of \(\sigma \):

\[
D = \sum_{t=1}^{T} \delta(x_t, y_t) * G_\sigma
\]

(1)

Summing the local density in the \(P_h \times P_w \) non-overlapping window, the ground truth count maps \(C \in \mathbb{R}^{H_c \times W_c} \), where \(H_c = H/P_h \) and \(W_c = W/P_w \) is defined as:

\[
C(j, k) = \sum_{h=j \times P_h}^{(j+1) \times P_h} \sum_{w=k \times P_w}^{(k+1) \times P_w} D(h, w).
\]

(2)

A local count model predicts a corresponding local count map \(\hat{C} \in \mathbb{R}^{H_c \times W_c} \). In practice, \(C \) is imprecise when dot annotations \((x_t, y_t)\) are biased or Gaussian kernels \(G_\sigma \) are mismatched. Consider an object near the border of the local count

\footnote{This work assumes a kernel size of \(4\sigma \) and use the terms 'size' and '\(\sigma \)' interchangeably.}
area, if the dot annotations are off-center or Gaussian kernels have too large a standard deviation, then some portions of the density may shift to other nearby local areas, leading to imprecision in Eqs. (1) and (2).

The ground truth and estimated count for image I can be estimated by summing the respective local count maps:

$$c = \sum_{j,k} C(j,k), \quad \hat{c} = \sum_{j,k} \hat{C}(j,k),$$

where j and k are row and column-wise indices of the count map. The error of the local count is defined as the difference between the ground truth and predicted local counts. The error of local count $E \in \mathbb{R}^{H_c \times W_c}$ and global count e is computed as:

$$e = c - \hat{c} = \sum_{j,k} E(j,k), \quad \text{where} \quad E = C - \hat{C}. \quad (4)$$

A typical regression-based local count model would use a CNN backbone and add a dedicated regression head. The final model would take image I as input, output the local count map \hat{C} and be trained with an L1 loss:

$$L_{reg} = \frac{1}{H_c W_c} \sum_{j,k} |E(j,k)|. \quad (5)$$

Note that eq. (5) denotes the loss for one image; this loss is averaged over all images in the batch during training.

3.2 Discrete-Constrained Regression

But as we argue that ground truth count maps are imprecise and may contain error ϵ, i.e. $C = C_{true} + \epsilon$, where C_{true} is the count map generated with ideal density map. The regression loss in Eq. (5) then becomes

$$L_{reg} = \frac{1}{H_c W_c} \sum_{j,k} |E_{true}(j,k) + \epsilon(j,k)|, \quad \text{where} \quad E_{true} = C_{true} - \hat{C}. \quad (6)$$

When $|E(j,k)| \geq |\epsilon(j,k)|$, the sign of the observed error and true error remains the same, i.e. $\text{sgn}(E_{i}(j,k)) = \text{sgn}(E_{true}(j,k))$, where “sgn(·)” denotes the sign function. As such, the gradient will also be the same, i.e.

$$\frac{\partial |E(j,k)|}{\partial \hat{C}(j,k)} = \frac{\partial |E_{true}(j,k)|}{\partial \hat{C}(j,k)} = -\text{sgn}(E(j,k)). \quad (7)$$

To account for the ϵ, we opt to partition the target space into discrete intervals. Specifically, we follow a classification setup and a range $[V_{min}, V_{max}]$
into $N + 1$ intervals $\{V_0\}, (V_0, V_1], (V_1, V_2], \ldots, (V_{N-1}, V_N]$, where $V_0 = V_{\text{min}}$ and $V_N = V_{\text{max}}$. In counting datasets, $V_{\text{min}} = 0$ and V_{max} is the maximum count value in the training set. A count value c that falls into $[V_{i-1}, V_i]$, where $(i = 1, 2, \ldots, N)$, would be associated with the i-th interval. As such, the loss is considered to be correct when the prediction $\hat{C}(j, k)$ is outside the range $[V_G(j, k), V_G(j, k)+1)$, where $G(j, k)$ is the index of $C(j, k)$.

We formulate the discrete-constrained loss L_{dc} as:

$$L_{dc} = \frac{\sum_{j,k}^H_{e,Wc} S(j, k) \times |E(j, k)|}{\sum_{j,k}^H_{e,Wc} S(j, k)}$$

(8)

where the mask $S = 1 - \mathbb{1}\{V_G < \hat{C} \leq V_{G+1}\}$, $\mathbb{1}\{}$ is the indicator function and G is the index of C. S only selects the samples that are predicted outside the intervals to compute loss, which ensures the gradient directions to be correct.

3.3 Global Count Loss L_{ge}

The overall aim of counting is to estimate a global count from summing all the local counts. Even if all the local counts are correctly predicted, i.e. $L_{dc} = 0$, there may still be a gap between their sum and the GT global count, precisely due to the quantization. We could use a global count loss L_{ge} to decrease the quantization errors. Naively, an L_1 loss could be applied to the global count, i.e.

$$L_c = \frac{|e|}{H_e W_c}.\text{ (9)}$$

However, L_c is problematic as it produces the same gradient for all the local counts, regardless of over- or under-estimation. We therefore improve L_c to L_{bias}^0 by selecting local patches that have the same trend as global error, i.e., considering only over-estimated patches if the global count is an over-estimate and same for under-estimation. This prevents the wrong gradient for patches with the opposite sign of global error e. L_{bias}^0 can be defined as

$$L_{bias}^0 = \frac{\sum_{j,k}^H_{e,Wc} S^0(j, k) \times |E|}{\sum_{j,k}^H_{e,Wc} S^0(j, k)},\text{ (10)}$$

where $S^0 = \mathbb{1}\{\text{sgn}(e) \times E(j, k) > 0\}$, and $\text{sgn}()$ denotes the sign function. Among patches with $S^0 = 1$, we further discard those patches with smaller errors that compensate the error of patches with $S^0 = 0$. We achieve this by introducing a threshold λ, which satisfies

$$\sum_{j,k}^H_{e,Wc} S^0(j, k) \times \mathbb{1}\{\text{sgn}(e) \times E(j, k) \geq \lambda\} \times |E(j, k)| = \sum_{j,k}^H_{e,Wc} |E(j, k)| \text{ (11)}$$

and select patches via $S^m(j, k) = S^0(j, k) \times \mathbb{1}\{\text{sgn}(e) \times E(j, k) \geq \lambda\}$. Now, an adjusted loss L_{bias}^λ can be computed as

$$L_{bias}^\lambda = \frac{\sum_{j,k}^H_{e,Wc} S^m(j, k) \times |E(j, k)|}{\sum_{j,k}^H_{e,Wc} S^m(j, k)}.$$

(12)
A related work \cite{8} introduced the Bayesian loss L_{BL} to constrain the integration of density map to be equal to the annotated point numbers. It also serves as a type of global count loss. We compare these variants of global count losses in the ablation studies.

4 A Synthetic Dataset Investigation on Local Counting

4.1 Data Preparation

Inspired by \cite{3,27}, we create a synthetic dataset of cells to study counting-related factors in a controlled setting. Each synthetic image was fixed to 128×128, which could be further subdivided into a 4×4 array of 32×32 local image patches. Each local image patch had 0 to 20 oval cells, where the major and minor axis of the oval were randomly sampled from $[2, 4]$ pixels. Each of the training and test sets contained 1000 such synthetic images.

Presence of Partial Objects

We synthesized two complete datasets. Both had the same local count distribution, but the presence of partial objects in the local 32×32 patches was controlled. A comparison of the two data variants is shown in Fig. 2 (a). When there are no partial objects, the ground truth local counts corresponds exactly to the number of dots. With partial objects, the ground truth local count can be estimated either (i) with integer counts, based on the number of dots within the local patch, or (ii) with fractional counts by integrating (summing) the Gaussian-convolved density map using a Gaussian kernel with the same size as the cell.

Biased Dot Annotations

Typical real-world counting datasets \cite{29,2} have dot annotations. The dots are not necessarily centered on the object and may sit anywhere within the border of the object as shown in Fig. 1. The imprecise locations of the dots propagate as errors on the density maps when convolved with Gaussian kernels, which in turn creates biases in the ground truth local counts. To simulate this effect, we randomly moved the dot annotations Δ pixels in h and w directions, where Δ was uniformly sampled from $\{-a, +a\}$, where $a = \{0, 1, 2, 4\}$.

Mismatched Gaussian Kernels

In most counting datasets \cite{29,2}, the sizes of the objects are not known. This makes the Gaussian-convolved density map an imprecise estimate since a fixed-sized Gaussian kernel is applied when it should be a function of the object size. We investigate the effect of Gaussian kernel size on local counting models. We adopt 0, 3, 6 as the deviations of Gaussian kernels to generate density maps and then integrated density maps to obtain local count maps. A deviation of 0 means using the dot annotations directly. We also add a baseline where the Gaussian kernel sizes were selected according to the actual cell sizes, denoted by “GT Size”.

Model / Implementation Details

For our local count models, we adopt all the convolutional layers in VGG16 \cite{15} to extract feature maps, then used a regression head consisting of two 3×3 convolutional layers (512 and 1 output channels) to map local features to local counts. The size P_h, P_w of the local
patch is 32×32. An Adam optimizer was adopted for training, with a learning rate of 10^{-3} and a batch size of 6. For the discrete models, we choose 20/40 linear intervals, with an interval length of $1/0.5$, and 40 logarithm intervals. To evaluate, we consider the Mean Absolute Error (MAE), where lower MAE indicates better counting performance.

4.2 Partial Objects

When no partial objects are present, the plot in Fig. 2 shows that regression outperforms classification. When the class number increases from 20 to 40, counting error slightly increases for classification. This is because the local count is an integer value and increases with a step size of 1, so half of the intervals contain no samples when there are 40 instead of 20 intervals. DC-regression shows the best performance. Even when the interval is 0.5 and 40 intervals are used, the performance only drops slightly.

When partial objects are present, considering fractional counts for partial objects yields better performance. Classification shows comparable performance with regression. If fractional counts are considered for partial objects, increasing the number of intervals from 20 to 40 decreases the counting error. DC-regression shows better performance than standard regression and classification.

4.3 Incorrect Local Counts

The impact of biased point annotations is shown in Fig. 3 (a). When the ground truth of local counts is imprecise, performance is highly dependent on the extent of the incorrect class label or interval. When the annotation bias is small, e.g. 1, the ground truth error is bounded by the interval of the discrete model, but when the bias becomes large, e.g. 2 or 4, the ground truth error may exceed the interval length. This results in the wrong classification label being assigned. One way to handle this is to use log-based instead of linear
Fig. 3. Left: Counting results under various degrees of point annotation bias. Here L_{bias} is adopted as L_{gc}. Middle: The bias of local count value caused by point annotation bias. Right: Counting error distribution w.r.t. local count value when dot deviation is 2. Linear/log denotes linear and log-spaced intervals respectively, while 20/40 denotes the number of intervals.

intervals. In fact, the MAE increases monotonically with respect to the ground truth local count (see Fig. 3(b)). This result directly implies that dense areas have higher ground truth error than sparse areas and using log-spaced intervals will outperform linearly spaced intervals. Plots of the error with respect to the ground truth local count (see Fig. 3(c)) show that classification performs better than regression in sparse areas (0 ~ 5 cells per patch) but worse in denser patches (6 ~ 20 cells per patch). Similarly, DC-regression shows much higher error than regression in highly dense areas (16 ~ 20 cells per patch), where log intervals have higher discretization error. However, the error of dense patches (11 ~ 20 cells per patch) decreases significantly if we add the global constraint regularizer L_{gc} to the DC-regression.

Mismatched Gaussian kernels add errors to the ground truth local counts. Fig. 4 shows that the error is monotonically increasing with respect to C. Classification and DC-regression are more robust than regression under varied Gaussian kernel sizes. Log intervals are better than linear intervals for classification when using a kernel of size 6, since the error of the ground truth is much larger than the linear interval length of 0.5. Finally, adding a global count loss L_{bias}^c into DC-regression decreases the count error in dense patches (16 ~ 20) where log intervals become too large.

4.4 Study Findings

We draw the following conclusions about local count models based on the observations from above:

1. Partial objects make local counting harder. All local count models (regression, classification and DC-regression) perform worse when partial objects are present in local image patches even if the ground truth local counts are perfectly generated according to object size.

2. The ground truth local counts are not precise when partial objects are present and may contain error ϵ. Both the bias of point annotation (x_t, y_t)
Fig. 4. Left: Counting results under various Gaussian kernel sizes. Here, L_{bias}^λ is adopted as L_{gc}. Middle: The bias of local count value caused by various Gaussian kernel sizes. Right: Counting error distribution w.r.t. local count value with 6 as Gaussian kernel size. Linear/log denotes linear and log-spaced intervals respectively, while 20/40 denotes the number of intervals.

and Gaussian kernel G_{σ} increase ϵ in local counts C. The error ϵ is monotonically increasing with respect to local count value C. As such, log-spaced intervals are more suitable than linear intervals, which use increasing interval length to handle increasing ϵ.

3. Classification and DC-regression perform much better than regression when ϵ is present, which suggests that it is beneficial to adopt discrete constraints in regression with imprecise ground truth.

4. Adding L_{gc} into DC-regression effectively decreases discretization error in dense areas and improves the performance of DC-regression.

5 Experiment on Real-World Datasets

5.1 Datasets & Implementation Details

We verified the effectiveness of DC-regression on real-world counting and age estimation datasets. We evaluated DC-regression on three challenging crowd counting datasets (SHTech [29], JHU [17] and QNRF [2]). Due to the varied size of images in counting datasets, we randomly cropped fixed-sized sub-images as training samples. The crop size for SHTech was 320×320, and 512×512 for JHU and QNRF datasets. For generating density maps, we followed the same settings as [29,27]. To show the generality of DC-regression, we also evaluated it on two age estimation datasets, MegaAge (Mega) and MegaAsian (MegaA) datasets [30].

We followed the same architecture as specified in Sec. 4.1. We adopted the Adam optimizer, with a batch size of 8 for crowd counting and 32 for age estimation. The initial learning rate of 10^{-4} was decreased by 0.1 whenever training error plateaued. More implementation details are provided in the Supplementary. For evaluation, we used MAE to indicate counting accuracy and the Root Mean Squared Error (MSE) to reflect counting stability. Lower MAE and MSE indicate better counting performance.
Fig. 5. The Effect of Number of Intervals (N) on on SHTech PartA dataset [29]. Left: Counting error with respect to N. Right: MAE with classification probabilities (p_c and p_f) with respect to N. The discretization error (green bars) denotes the counting error of classification when all the class indexes are correctly predicted. p_c and p_f denotes the average probability of correctly or falsely predicted samples, respectively. L_{bias} is adopted as L_{gc}.

5.2 Ablation Study

Number of Intervals We adopted log-spaced intervals for both classification and DC-regression, varying the number of intervals N from 2 to 1000. When $N = 2$, there were only background {0} and foreground classes (0, V_{max}]. For classification, we adopted the median value of the training samples within interval (V_{i-1}, V_i] to map the index back to a count.

From Fig. 5, we observe that regression sets a baseline performance indicated by the dashed line. With the right selection of N, all the discrete models surpass the regression baseline, but a poor selection of N hurts the performance. For classification, when N is small, discretization error of the intervals increases the MAE. When N is large, MAE increases again as the classes are no longer distinguishable. DC-regression also shows poor performance when $N <= 5$ as it is similarly affected by discretization errors like classification. However, it has stable performance when $N > 5$ as it converges to standard regression when $N \to \infty$. The global loss L_{gc} mitigates the discretization errors of DC-regression when $N <= 5$, making this the optimal combination. As classification showed the best performance when $N = 100$, we keep $N = 100$ for the remaining experiments.

Interval Spacing We compared linear, log-spaced and ucp [23] intervals for classification and DC-regression. L_{bias} from Eq. (12) is chosen as L_{gc}. Table 1 shows that log-spaced intervals, in line with the synthetic experiments, are better than linear intervals for both classification and DC-regression. After adding the global count loss L_{gc} to DC-regression, counting performance improves and all three types of intervals perform similarly. This confirms that L_{gc} mitigates discretization errors and makes DC-regression less sensitive to interval spacing.

Choice of Global Count Loss L_{gc} Table 2 compares the different global count loss terms. When adding global count losses L_{BL} from [8] and L_{bias} to regres-
Table 1. Comparison different kind of interval partitions in discrete counting models

Method	Interval Partition	SHA	SHB		
		MAE	MSE	MAE	MSE
classification	linear	65.6	115.4	8.6	14.6
	log	64.6	112.3	8.7	17.2
	uep [23]	63.9	112.8	7.9	15.1
DC-regression	linear	62.5	106.0	7.5	12.2
	log	61.6	96.7	7.1	11.1
	uep [23]	61.9	104.2	7.4	12.2
DC-regression+Lgc	linear	**60.3**	**95.5**	**6.6**	**11.0**
	log	**60.3**	103.7	6.7	10.6
	uep [23]	61.3	97.5	6.7	**10.2**

Table 2. Comparison of different L_{gc}. L_{cls} denotes the standard cross-entropy loss used in classification.

Loss	main loss	L_{gc}	SHA	SHB	
		MAE	MSE	MAE	MSE
regression	L_1	65.4	103.3	10.7	19.5
classification	L_{cls}	64.6	106.7	8.7	17.2
regression + L_{gc}	L_{BL}	62.1	103.4	7.4	10.8
	L_{bias}	62.9	108.5	7.8	12.0
DC-regression	L_{dc}	61.6	**96.7**	7.1	11.1
	L_c	63.5	104.4	7.5	13.2
	L_{bias}	61.6	105.3	7.1	11.9
	L_{lambda}^{bias}	60.3	103.7	**6.7**	**10.6**
	L_{BL}	60.7	101.0	7.1	11.0

The performance surpasses standard regression and classification with L_1 or cross entropy loss L_{cls}. However, it does not surpass standard DC-regression, suggesting that local count supervision is still more effective than global count supervision under discrete constraints. When looking at DC-regression specifically, the naive global count L_c from Eq. (9) harms DC-regression, as explained in Sec. 3.3. However, being selective on the local patch for the global count rectifies this error, with L_{bias}^{lambda} being more effective than L_{bias}^0, which shows no improvement. We refer the reader to the Supplementary for a detailed comparison and discussion between L_{bias}^0 and L_{bias}^{lambda}. We further observe that L_{BL} is also helpful for discrete regression and shows comparable results as L_{bias}^{lambda}.

5.3 Adding DC-Regression to State-of-the-Art

S-DCNet, proposed by Xiong et al. [27], is a classification-based state-of-the-art local counting model. As it was proposed to tackle open-set counting, it features two loss functions: L_c for supervising closed-set counters and L_m for supervising local counts outside the closed set. We replaced these losses by adopting DC-regression’s L_{dc} from Eq. (8) for L_c and $L_{dc} + L_{gc}$ for L_m. Note that we do not
Table 3. Applying DC-regression in S-DCNet \[27\]

Model	L_c	L_m	SHA MAE	SHA MSE	SHB MAE	SHB MSE	JHU MAE	JHU MSE	QNRF MAE	QNRF MSE
S-DCNet (cls)	L_{cls}	L_1	58.3	95.0	6.7	10.7	65.2	272.8	104.4	176.1
S-DCNet (reg)	L_1	L_1+L_{BL}	61.1	94.2	7.4	12.5	66.1	272.1	92.3	158.8
S-DCNet (dcreg)	L_{dc}	L_1+L_{BL}	59.7	91.4	7.0	11.6	60.0	269.9	86.9	159.3
S-DCNet (dcreg)**	L_{dc}	$L_1+L^{\lambda}_{bias}$	59.8	100.0	6.8	11.5	62.1	268.9	84.8	142.3

Consider the global count loss for closed set counting as the closed counters only predict truncated counts outside the closed set range.

We also added a standard S-DCNet regression baseline (‘reg’) for comparison. Table 3 shows that S-DCNet (reg) performs worse than the classification variant of S-DCNet (‘cls’) and is consistent with the conclusion in \[27\]. The DC-Regression variant of S-DCNet (‘dcreg’), however, is comparable or better than S-DCNet (cls), verifying the effectiveness of DC-regression.

5.4 Comparison on Crowd Counting Datasets

We compare DC-regression with other state-of-the-art counting methods on three crowd counting datasets in Table 4. DC-regression outperforms local count regression and classification on all the datasets. Adding global count loss such as L_{BL} or L_{bias}^λ further improves the results, suggesting that a global constraint is helpful for local count models. In particular, DC-regression and S-DCNet (dcreg) show comparable performance with state-of-the-art approaches. Specifically, our methods are better than or comparable with density regression methods \[22,9,21\], which adopt optimum transportation \[13\] to model the imperfect ground truth of density maps.

5.5 Comparison on Age Estimation Datasets

Unlike local counts, human age is modelled as integer counts in standard age-estimation datasets \[30\]. As such, we postulate that applying our discrete constraint to regress age may also be suitable. We verify the effectiveness of DC-regression on age estimation datasets Mega and MegaA \[30\], adopting a linearly spaced interval of length 1 as age increases with step 1. To evaluate, we use MAE, MSE and CAi ($i=3,5,7$), where CAi denotes the proportion of samples with MAE less than i. Table 5 shows that DC-regression is better than regression, which suggests that it is better to use discrete constraints for age prediction. Similar to the analysis of counting, we should ignore the loss of age when the prediction is within the class intervals, in order to provide the correct gradient to benefit the training process.
Table 4. Comparison with State-of-the-art method on Crowd Counting Datasets. Methods are grouped as density map regression, local count regression, classification and DC-Regression approaches

Method	Backbone	SHA MAE	SHA MSE	SHB MAE	SHB MSE	JHU MAE	JHU MSE	QNRF MAE	QNRF MSE
CSRNet [5]	VGG16	68.2	115.0	10.6	16.0	85.9	309.2	108.2	181.3
DRCN [17]	VGG16	64.0	98.4	8.5	14.4	82.3	328.0	112.2	176.3
BL [8]	VGG19	62.8	101.8	7.7	12.7	75.0	299.9	88.7	154.8
PaDNet [18]	VGG16	59.2	98.1	8.1	12.2	—	—	96.5	170.2
MNA [20]	VGG19	61.9	99.6	7.4	11.3	67.7	258.5	85.8	150.6
OT [22]	VGG19	59.7	95.7	7.4	11.8	68.4	283.3	85.6	148.3
UOT [9]	VGG19	58.1	95.9	6.5	10.2	60.5	252.7	83.3	142.3
Generalized Loss [21]	VGG19	61.3	95.4	7.3	11.7	59.9	259.5	84.3	147.5

Table 5. Comparison on age prediction datasets

Method	MAE	RMSE	CA3	CA5	CA7	Mega MAE	RMSE	CA3	CA5	CA7
Posterior	—	—	38.69	57.90	73.15	62.08	80.43	90.42		
Xia et al. [24]	—	—	42.19	60.0	72.70	64.80	83.20	91.40		
Yu et al. [19]	—	—	42.19	60.0	72.70	64.80	83.20	91.40		

6 Conclusion

In this paper, we experimentally showed that ground truth local counts are error-prone, and classification outperforms regression when local counts are imprecise. The disadvantage of regression could be mitigated by adopting discrete constraints. We proposed DC-regression to handle the ground truth error in local count models. DC-regression showed superior results in counting tasks compared to classification and regression, and it is also suitable for age estimation tasks.

Acknowledgments This research is supported by the Ministry of Education, Singapore, under its MOE Academic Research Fund Tier 2 (STEM RIE2025 MOE-T2EP20220-0015).
References

1. Gu, K., Yang, L., Yao, A.: Dive deeper into integral pose regression. In: International Conference on Learning Representations (ICLR) (2022)
2. Idrees, H., Tayyab, M., Athrey, K., Zhang, D., Al-Maadeed, S., Rajpoot, N., Shah, M.: Composition loss for counting, density map estimation and localization in dense crowds. In: The European Conference on Computer Vision (ECCV). pp. 532–546 (2018)
3. Lempitsky, V., Zisserman, A.: Learning to count objects in images. Advances in neural information processing systems 23 (2010)
4. Li, R., Xian, K., Shen, C., Cao, Z., Lu, H., Hang, L.: Deep attention-based classification network for robust depth prediction. In: Proc. Asian Conference on Computer Vision (ACCV) (2018)
5. Li, Y., Zhang, X., Chen, D.: Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 1091–1100 (2018)
6. Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., Shen, C.: Counting objects by block-wise classification. IEEE Trans. on Circuits and Systems for Video Technology 30(10), 3513–3527 (2019)
7. Liu, X., Yang, J., Ding, W., Wang, T., Wang, Z., Xiong, J.: Adaptive mixture regression network with local counting map for crowd counting. In: European Conference on Computer Vision. pp. 241–257. Springer (2020)
8. Ma, Z., Wei, X., Hong, X., Gong, Y.: Bayesian loss for crowd count estimation with point supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 6142–6151 (2019)
9. Ma, Z., Wei, X., Hong, X., Lin, H., Qiu, Y., Gong, Y.: Learning to count via unbalanced optimal transport. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 2319–2327 (2021)
10. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision (ECCV) (2016)
11. Onoro-Rubio, D., López-Sastre, R.J.: Towards perspective-free object counting with deep learning. In: European conference on computer vision. pp. 615–629. Springer (2016)
12. Paul Cohen, J., Boucher, G., Glastonbury, C.A., Lo, H.Z., Bengio, Y.: Countception: Counting by fully convolutional redundant counting. In: Proceedings of the IEEE International conference on computer vision workshops. pp. 18–26 (2017)
13. Peyré, G., Cuturi, M., et al.: Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning 11(5-6), 355–607 (2019)
14. Shi, Z., Mettes, P., Snoek, C.G.: Counting with focus for free. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 4200–4209 (2019)
15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)
16. Sindagi, V.A., Patel, V.M.: Multi-level bottom-top and top-bottom feature fusion for crowd counting. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1002–1012 (2019)
17. Sindagi, V.A., Yasarlal, R., Patel, V.M.: Jhu-crowd++: Large-scale crowd counting dataset and a benchmark method. Technical Report (2020)
18. Tian, Y., Lei, Y., Zhang, J., Wang, J.Z.: Padnet: Pan-density crowd counting. IEEE Transactions on Image Processing 29, 2714–2727 (2019)
19. Tingting, Y., Junqian, W., Lintai, W., Yong, X.: Three-stage network for age estimation. CAAI Transactions on Intelligence Technology 4(2), 122–126 (2019)
20. Wan, J., Chan, A.: Modeling noisy annotations for crowd counting. Advances in Neural Information Processing Systems 33 (2020)
21. Wan, J., Liu, Z., Chan, A.B.: A generalized loss function for crowd counting and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1974–1983 (2021)
22. Wang, B., Liu, H., Samara, D., Hoai, M.: Distribution matching for crowd counting. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)
23. Wang, C., Song, Q., Zhang, B., Wang, Y., Tai, Y., Hu, X., Wang, C., Li, J., Ma, J., Wu, Y.: Uniformity in heterogeneity: Diving deep into count interval partition for crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 3234–3242 (2021)
24. Xia, M., Zhang, X., Weng, L., Xu, Y., et al.: Multi-stage feature constraints learning for age estimation. IEEE Transactions on Information Forensics and Security 15, 2417–2428 (2020)
25. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: European Conference on Computer Vision. pp. 466–481 (2018)
26. Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., Shen, C.: Tasselnetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods 15(1), 1–14 (2019)
27. Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.: From open set to closed set: Counting objects by spatial divide-and-conquer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8362–8371 (2019)
28. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional neural networks. In: CVPR (2015)
29. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 589–597 (2016)
30. Zhang, Y., Liu, L., Li, C., et al.: Quantifying facial age by posterior of age comparisons. arXiv preprint arXiv:1708.09687 (2017)