Laboratory Tests for Dispersive Soil Viscosity Determining

Z G Ter-Martirosyan, A Z Ter-Martirosyan, E S Sobolev
Department of Soil Mechanics and Geotechnics, Moscow State University of Civil Engineering (National Research University), 26, Yaroslavskoye Shosse, Moscow 129337, Russia

E-mail: e.s.sobolev@mail.ru

Abstract. There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.

1. Introduction
The aim of the new proposed device is the adaptation of the viscosity meter construction for examining the properties of soil and decreasing the labor intensity of special laboratory examinations as well as widening of the application area for investigating the rheological properties of dispersive soil [1-10].

2. Viscosity meter construction
Please Taking into account drawbacks of the existing devices and methods for determining soil viscosity, under the management of Prof., Eng.Sc.D. Z.G. Ter-Martirosian, Eng.Sc.D. A.Z. Ter-Martirosian, Candidate of Engineering Sciences A.Yu. Mirny and Candidate of Engineering Sciences E.S. Sobolev developed a new device for defining the soil viscosity - the viscosity meter - on the basis of the stabilometer with a cell of type B [11-15].

The experimental viscosity meter is a stabilometer cell of type B, where lateral strains are transferred on the cylindrical soil specimen through the rubber cover. The vertical force is applied to the vertical metal rod passing through the central axis of the device cell and specimen. The rod travels freely in the vertical direction and is fixed to the loading device of the loading frame.

When conducting tests the test rig UL60-4 produced by APS Antriebs- Pruf- und Steuertechnik GmbH (FRG) was used [16-20]. The rig consists of the pneumatic loading frame, triaxial compression cell, pneumatic and servo drive control unit, unit for data processing obtained from pressure and displacement sensors, air pressure control unit, phase separator, burette with volumetric deformation differential sensor and control computer.

3. Viscosity determination procedure
Let's set a task of determining the viscosity of a soil specimen, if the speed of rod vertical displacement is known. We assume that the resistance of the rod lower end is equal to zero. We assume as well that the shearing deformation mechanism of the soil surrounding the rod prevails [21-26]. In such case the speed of the soil shearing deformation will be determined taking into the account the following dependence

$$\frac{\tau}{\eta} = -\frac{d\dot{u}}{dr}$$ \hspace{1cm} (1)

The expression (1) is correct at the moment, when the rod resistance on the lateral surface is exhausted and the rod starts submerging into the soil with the constant speed.

The value of the vertical force, transferred to the rod, depends on the value of tangential stresses on the rod lateral surface which can be determined with regard to the following condition

$$\tau = \frac{F}{2\pi r l_{cm}}$$ \hspace{1cm} (2)

where r_c and l_{cm} - radius and length of the rod, m; F - vertical force transferred to the rod, kN.

Assuming that the rod material almost cannot be constricted, it is possible to define the value of settlement.

Making the substitution of the expression (1) into the expression (2) we obtain

$$\dot{u} = \frac{F}{2\pi r_c l_{cm} \eta} \ln r + C_1$$ \hspace{1cm} (3)

and taking into account boundary conditions:

with $r = r_3 \rightarrow \dot{u} = 0$, then $C_1 = -\frac{F}{2\pi r_c l_{cm} \eta} r_3$,

with $r = r_0 \rightarrow \dot{u} = \text{const}$

$$\dot{u} = \frac{F}{2\pi r_c l_{cm} \eta} (r - r_c)$$ \hspace{1cm} (4)

4. Experimental check

Mean size sands were tested for the purpose of the experimental check of obtained dependencies [27-29]. The analysis of the obtained results demonstrates that the viscosity of sand soil decreases while the rod submerge speed increases. Graphical processing of experiment results is shown on Fig. 1-2

Figure 1. Viscosity $\eta \cdot \sigma$ (Pa·s) v/s rod vertical displacement speed \dot{u} (mm/min) dependence.
5. Experimental check
Based on the conducted tests in the experimental device for determining the dispersive soil viscosity the following main conclusions can be made:

1. The viscosity of sand soil depends on the speed of vertical displacements of the rod. The soil viscosity decreases if the speed increases.
2. The viscosity of sand soil depends on the rate of lateral squeeze of soil. The soil viscosity increases if the lateral squeeze increases.
3. The presented test results allow forecasting the value of soil viscosity with any values of rod deployment speed.
4. The construction of the soil viscosity meter proposed by the authors can be used for calibrating modern rheological models which utilize the viscosity parameter

References
[1] Abramova T T 2016 Reduced vibration effects on groundwater arrays using surge plates barriers Geotechnics 4 pp 36–49
[2] Abramova T T and Voznesenskij E A 2015 Modern properties of soil management practices in the areas of high dynamic loads Geotechnics 4 pp 6–25
[3] Voznesenskij E A, Funikova V V, Kushnareva E S and Kovalenko V G 2005 Seismic liquefaction of soils: the mechanism and consequences of engineering judgment for the purposes of seismic zoning area Exploration and conservation of mineral resources 12 pp 61–65
[4] Voznesenskij E A 2013 Dynamic testing of soils Situation and standardization Engineering survey 5 pp 20–26
[5] Ivanov P L 1962 Liquefaction of sandy soils (Leningrad: Gosjenergoizdat) p 260
[6] Ivanov P L 1978 Liquefaction and compacting non-cohesive soils under dynamic loading (Leningrad: LPI im. M.I. Kalinina) p 52
[7] Il'ichev V A 1981 By the estimation of damping coefficient of foundation base, committing heave Grounds, foundations and soil mechanics 5 pp 15–18
[8] Ishihara K 2006 The behavior of soils during earthquakes: Trans. from English. Ed. AB Fadeev, MB Lisyuka (St.-Petersburg: NGO “Georeconstruction-Fundamentproject”) p 384
[9] Mirsajapov I T, Koroleva I V and Zaripova G Z 2015 Estimation of seismic stability of bases stacked clays and water-saturated sandstones Soil Mechanics and Foundation Engineering in
Geotechnical Engineering: materials of the int scientific and technical conf (Novocherkassk, YURGPSh (NPI)) pp 31–7

[10] Mirsajapov I T and Koroleva I V 2016 The strength and deformability of clay soils with different modes of triaxial loading considering cracking Grounds, foundations and soil mechanics 1 pp 5–10

[11] Mirsajapov I T and Aljushev I I 2016 Experimental studies of models of reinforced horizontal grid bases under cyclic loading Proceedings of the Kazan State Architectural University 3(37) pp 173–8

[12] Sobolev E S and Ter-Martirosjan A Z 2016 Effect of physical properties of sandy soil on the dynamic stability of the bases of buildings and structures Building - the formation of living environment (Moscow) pp 1087–90

[13] Stavnicer L R 2010 Seismic stability of the foundations (Moscow: Association building universities) p 448

[14] Stavnicer L R 2011 Calculation of nuclear power plants on the grounds seismic effects Coll of scientific works NHOISp them. N.M. Geresmanov (Moscow: Research, Design and Technology Institute of Foundations and Underground Structures) pp 352–7

[15] Stavnicer L R 2012 Consideration of seismic effects on the foundations of the tanks. Natural and technological risks Security buildings 2 pp 56–8

[16] Ter-Martirosjan A Z, Mirmj A Ju and Sobolev E S 2016 Features of determining the parameters of modern soil models in laboratory tests Geotechnic 1 pp 66–72

[17] Ter-Martirosyan Z G, Ter-Martirosjan A Z and Sobolev E S 2014 Creep and vibro-creep sandy soils Engineering survey 5-6 pp 24–8

[18] Chu J, Leong W K, Luke W L and Wanatowski D 2012 Instability of loose sand under drained conditions Journal of Geotechnical and Geoenvironmental Engineering. ASCE vol 138 pp 207–16

[19] Iwasaki T, Tokida K, Tatsuoka F, Watanabe S, Yasuda S and Sato H 1982 Microzonation for soil liquefaction potential using simplified methods Proc. 3rd Int. Conf. On Microzonation vol 3 pp 1319–30

[20] 1997 Summary report, proceedings, workshop on evaluation of liquefaction resistance NCEER-97-0022. Multidisciplinary Center for Earthquake Engineering Research pp 1–40

[21] Mirsayapov I T and Koroleva I V 2015 Clayey soils rheological model under triaxial regime loading Geotechnical engineering for infrastructure and development - Proc of the XVI European conf on soil mechanics and geotechnical engineering pp 3249–54

[22] Seed H B and Idriss I M 1971 Simplified procedures for evaluating soil liquefaction potential Journal of Soil Mechanics and Foundation Engineering vol 97 pp 1249–73

[23] Seed H B 1996 Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes Journal of Soil Mechanics and Foundation Engineering vol 105 pp 201–55

[24] Ter-Martirosyan Z, Ter-Martirosyan A and Sobolev E 2016 Vibration of Embedded Foundation at Multi-layered base taking into account non-linear and rheological properties of soils Theoretical Foundation of Civil Engineering vol 153 pp 747–53

[25] Ter-Martirosyan Z G, Ter-Martirosyan A Z and Sobolev E S 2014 Rheological properties of sandy soils Advanced Materials Research vol 1073-1076 pp 1673–9

[26] Ter-Martirosyan Z G, Sobolev E S and Ter-Martirosyan A Z 2015 Rheological models creation on the results triaxial tests of sands Geotechnical engineering for infrastructure and development pp 3365–9

[27] Yamamuro J A and Lade P V 1997 Static liquefaction of very loose sands Canadian Geotechnical Journal vol 34 6 pp 905–17

[28] Youd T L 1999 Physics and mechanics of liquefaction from field records and experience Physics and Mechanics of Soil Liquefaction p 325

[29] Zhao H F and Zhang L M 2014 Instability of saturated and unsaturated coarse granular soils Journal of Geotechnical and Geoenvironmental Engineering vol 140 pp 25–35