Pain in young people aged 13 to 17 years with cerebral palsy: cross-sectional, multicentre European study

Kathryn N Parkinson,1 Heather O Dickinson,1 Catherine Arnaud,2 Alan Lyons,3 Allan Colver,1 on behalf of the SPARCLE group

ABSTRACT

Objective To determine the prevalence and associations of self- and parent-reported pain in young people with cerebral palsy (CP).

Design and setting Cross-sectional questionnaire survey conducted at home visits in nine regions in seven European countries. Participants were 13 to 17-year-olds (n=667) drawn from population CP registers in eight regions and from multiple sources in one region. 429 could self-report; parent-reports were obtained for 657. Data were collected on: severity, frequency, site and circumstances of pain in previous week; severity of pain associated with therapy in previous year.

Results The estimated population prevalence of any pain in previous week was 74% (95% CI 69% to 79%) for self-reported pain and 77% (95% CI 73% to 81%) for parent-reported pain. 40% experienced leg pains, 34% reported headaches and 45% of those who received physiotherapy experienced pain during therapy. Girls reported more pain than boys (OR=2.1, 95% CI 1.5 to 3.0) and young people reported more pain if they had emotional difficulties (comparing highest and lowest quartiles: OR=3.1, 95% CI 1.7 to 5.6). Parents reported more pain in children with emotional difficulties (OR=4.2, 95% CI 2.7 to 6.6), or with more impaired walking ability.

Conclusions Pain in young people with CP is highly prevalent. Because pain causes immediate distress and is associated with lower subjective well-being and reduced participation, clinicians should routinely assess pain. Clinical interventions to reduce pain should be implemented and evaluated. The efficacy of medical and therapeutic interventions causing pain should be re-examined to establish if their benefit justifies the pain and fear of pain that accompany them.

INTRODUCTION

The literature on pain in adolescents with cerebral palsy (CP) is small but there have been two recent studies. The first1 reported pain in a population-based sample across the severity spectrum from young people’s self-reports where possible and otherwise from parents’ reports; analyses combined these as if they were equivalent. The second2 reported pain in young people who were visited again aged 13 to 17 years (SPARCLE2),3 we collected more detailed information about pain.

In this paper we report self- and parent-reported pain, and analyse these separately. We report prevalence of pain, sites and circumstances of pain, and examine the associations of pain with young people’s impairments and emotional difficulties, parenting stress and sociodemographic characteristics. We also compare self-reports of pain with parents’ reports of their child’s pain.

METHODS

The methods of the SPARCLE studies have been described in detail elsewhere3–5 and are summarised briefly below.

Participants

SPARCLE1 randomly sampled 1174 children from population-based registers of children with CP. Children were eligible if born between 31 July 1991 and 1 April 1997. The registers cover eight regions of six European countries (table 1) that share a standardised definition and classification of CP.6 One
Table 1 Distribution of impairments, sociodemographic characteristics, pain, emotional difficulties score and total stress score

	Self-reported (n=429)	Parent-reported (n=657)
	n (%)	n (%)
Impairments of young people		
Walking ability as captured by gross motor function		
I. Walks without limitation	199 (46%)	226 (34%)
II. Walks with limitation	84 (20%)	113 (17%)
III. Walks with assistive devices	58 (14%)	85 (13%)
IV. Unable to walk, limited self-mobility	50 (12%)	90 (14%)
V. Unable to walk, severely limited self-mobility	37 (9%)	143 (22%)
Information not available	1 (0%)	0 (0%)
Seizures		
No seizures, not on medication	367 (86%)	464 (71%)
No seizures, on medication	23 (5%)	73 (11%)
Seizures less than once a month	19 (4%)	46 (7%)
Seizures between once a month and once a week	9 (2%)	24 (4%)
Seizures more than once a week	6 (1%)	45 (7%)
Information not available	5 (1%)	5 (1%)
Intellectual ability		
IQ > 70	286 (67%)	300 (46%)
IQ 50–70	129 (30%)	169 (26%)
IQ < 50	13 (3%)	187 (28%)
Information not available	1 (0%)	1 (0%)
Cerebral palsy subtype		
Unilateral spastic	175 (41%)	208 (32%)
Bilateral spastic	208 (48%)	354 (54%)
Dyskinetic	28 (7%)	62 (9%)
Ataxic	13 (3%)	28 (4%)
Information not available	5 (1%)	5 (1%)
Sociodemographic characteristics		
Regions		
Southeast France	41 (10%)	61 (9%)
Southwest France	38 (9%)	57 (9%)
Southwest Ireland	52 (12%)	76 (12%)
West Sweden	40 (9%)	66 (10%)
North England	73 (17%)	107 (16%)
Northern Ireland	64 (15%)	88 (13%)
East Denmark	53 (12%)	86 (13%)
Central Italy	17 (4%)	42 (6%)
Northwest Germany	51 (12%)	74 (11%)
Gender		
Boys	249 (58%)	376 (57%)
Girls	180 (42%)	281 (43%)
Age in years		
<13	27 (6%)	45 (7%)
13	99 (23%)	137 (21%)
14	85 (20%)	135 (21%)
15	91 (21%)	131 (20%)
16	76 (18%)	114 (17%)
17	47 (11%)	83 (13%)
>17	4 (1%)	12 (2%)
Information not available	5 (1%)	9 (1%)
Pain		
Frequency of pain in previous week		
None of the time	133 (31%)	180 (27%)
Once or twice	143 (33%)	161 (25%)
A few times	79 (18%)	140 (21%)
Fairly often	29 (7%)	64 (10%)
Very often	16 (4%)	38 (6%)
Every day	29 (7%)	74 (11%)

Parkinson KN, et al. Arch Dis Child 2013;98:434–440. doi:10.1136/archdischild-2012-303482 435
further region (northwest Germany) ascertained 75 cases from multiple sources. The 818 children who entered SPARCLE1 were followed up when aged 13 to 17 years; 594 (73%) agreed to participate. In order to maintain statistical power for cross-sectional analyses, SPARCLE2 additionally sampled from young people eligible for SPARCLE1 who had not participated in it. Seventy-three agreed to participate and hence the final sample for SPARCLE2 comprised 667 young people, distributed by region as shown in table 1.

Procedure
Researchers visited families in their homes, if possible when the young people were aged 13 to 17 years. Parents were asked to report on the measures below for all the young people. Young people who could self-report were asked to report their pain.

Measures
1. Any pain, measured using the Bodily Pain and Discomfort items of the Child Health Questionnaire. The items are valid and reliable and record frequency of pain (none of the time, once or twice, a few times, fairly often, every day) and severity (none, very mild, mild, moderate, severe, very severe); we changed the timeframe to 1 week to accord with the wider SPARCLE study.
2. Site and circumstances of pain, as shown in the left hand column of table 2, recording frequency and severity in the previous week using the response categories above.
3. Severity of pain during treatment over the previous year (table 2) using the response categories above.
4. Emotional difficulties score (EDS) from the Strengths and Difficulties Questionnaire.
5. Parenting stress using the total stress score from the Parenting Stress Index Short Form.

Statistical methods
To estimate the population prevalence of any pain, we dichotomised severity of pain as none/any (from very mild to very severe) and restricted the sample to the young people aged 13 to 17 in SPARCLE2 who had participated in SPARCLE1 and for whom sampling weights were therefore available; young people in northwest Germany were excluded as this region did not sample from population-based registers.

For all other statistical analysis, pain was not dichotomised; we used proportional odds ordinal regression which retained all six categories of severity and frequency of pain. We modelled the association between pain and covariates (impairments, sociodemographic characteristics, EDS, total stress score), stratifying by region. For analysis of trend, walking ability was treated as continuous; for all other analyses, covariates were treated as categorical. Four models, corresponding to young people’s and parents’ responses were developed. We first performed univariable analyses, relating pain to each covariate in turn. We then used forwards stepwise regression, followed by backwards steps, to select covariates to include in a multivariable model. We set the p value for entry of covariates as p<0.05 and, to lessen the probability of chance findings due to multiple hypotheses testing, we set the p value for removal of covariates at 0.01. We derived p values from the likelihood ratio test statistic. We checked for an interaction between significant covariates. We performed sensitivity analyses: (a) limiting the sample to young people who had responded to SPARCLE1 and for whom

Severity of pain in previous week	Self-reported (n=429)	Parent-reported (n=657)
None	130 (30%)	180 (27%)
Very mild	94 (22%)	100 (15%)
Mild	96 (22%)	133 (20%)
Moderate	64 (15%)	176 (27%)
Severe	26 (6%)	55 (8%)
Very severe	19 (4%)	13 (2%)

Emotional difficulties score (by quartile)*	Self-reported (n=429)	Parent-reported (n=657)
0–1	98 (23%)	179 (27%)
>1–3	146 (34%)	206 (31%)
>3–5	109 (25%)	164 (25%)
>5–10	72 (17%)	106 (16%)
Information not available	4 (1%)	2 (0%)

Total stress score (by quartile)†	Self-reported (n=429)	Parent-reported (n=657)
36–64	127 (30%)	163 (25%)
65–80	118 (28%)	162 (25%)
81–97	92 (21%)	167 (25%)
98–147	81 (19%)	152 (23%)
Information not available	11 (3%)	13 (2%)

*Higher scores indicate more emotional difficulties.
†Higher scores indicate more stress.
Parkinson KN, et al 74% (95% CI 69% to 79%) and of parent-reported pain of corresponded to population prevalences of self-reported pain of parent-report. Using the prevalence sample, these proportions pain in the previous week was 70% by self-report and 73% by Based on severity, the proportion of young people with any pain during therapy (in previous year)

Site of pain (in previous week)	N	%	%	%	%	%	%	%	%	%	p Value
Headaches	423	34	39	38	36	18	19	19	0.004		
Stomach	422	26	26	30	25	24	27	27	0.49		
Back	420	27	27	24	28	22	24	41	0.12		
Arms	416	18	19	20	14	12	27	17	0.10		
Hips	421	14	13	12	14	18	10	22	0.07		
Legs	413	40	39	41	47	40	37	37	0.19		
Operation sites	411	10	5	12	14	16	17	17	<0.001		

Circumstances of pain (in previous week)	N	%	%	%	%	%	%	%	%	%	p Value
At rest from spasms	413	10	13	16	20	14	14	0.04	0.04		
At rest, from splints or restraints	410	12	8	13	21	18	6	0.03	0.03		
On swallowing or feeding	410	3	2	3	4	4	6	0.12	0.12		
On moving	414	28	19	36	35	29	42	<0.001	<0.001		
On changing or dressing	413	5	2	3	4	8	19	<0.001	<0.001		
In bed at night	415	17	16	14	11	22	32	0.02	0.02		
Short unexpected pains	413	30	27	41	28	22	33	0.25	0.25		
Pain during therapy											
During physiotherapy	339	45	38	42	50	62	50	0.002	0.002		
During other therapy	160	9	4	11	14	17	6	0.32	0.32		
During botulinum injections	142	26	22	28	35	21	36	0.42	0.42		

Table 2 Site and circumstances of pain severity in previous week, by walking ability*

(a) Self-report of pain by young people

Walking ability (GMFCS)	All	I	II	III	IV	V	p Value
N	%	%	%	%	%	%	
All	423	34	39	38	36	18	19 0.004
I	422	26	26	30	25	24	27 0.49
II	420	27	27	24	28	22	41 0.12
III	416	18	19	20	14	12	17 0.10
IV	421	14	13	12	14	18	22 0.07
V	413	40	39	41	47	40	37 0.19
Operation sites	411	10	5	12	14	16	17 <0.001

(b) Parent-report of their child’s pain

Walking ability (GMFCS)	All	I	II	III	IV	V	p Value
N	%	%	%	%	%	%	
All	629	30	33	40	40	24	31 0.002
I	634	32	24	33	23	42	44 <0.001
II	625	25	19	20	23	31	38 <0.001
III	630	14	9	17	13	22	0.20
IV	635	21	9	16	17	28	44 <0.001
V	634	43	37	48	49	48	41 0.07

p, Significance of trend of pain over levels of walking ability, estimated using ordinal regression which retained all six categories of pain.

% Percentage with severity of pain from very mild to very severe.

*Presence of pain was defined by severity in any category from very mild to very severe.

Stata V12 was used for analysis.

Ethics

Ethics approval was obtained or a statement that only registration was required as appropriate in each country. Signed consent was obtained from all parents and from young people who could give meaningful consent.

RESULTS

Of the 667 young people in SPARCLE2, 429 (64%) reported their own pain; parents’ reports of their child’s pain were available for 657 (99%). The distributions of some impairments, some sociodemographic variables, pain, EDS and parenting stress score are presented in table 1. The Spearman rank correlations between all pairs of types of impairment (except CP type) were strong (ρ=0.24 to 0.75) and statistically significant (p<0.0001). About one third of the young people reported no pain in the previous week, a third reported pain once or twice, and a third reported more frequent pain.

Prevalence of pain

Based on severity, the proportion of young people with any pain in the previous week was 70% by self-report and 73% by parent-report. Using the prevalence sample, these proportions corresponded to population prevalences of self-reported pain of 74% (95% CI 69% to 79%) and of parent-reported pain of 77% (95% CI 73% to 81%). Results based on frequency of pain were similar.

Sites and circumstances of pain

The percentages of young people reporting any pain in the previous week at specific sites and in specific circumstances are presented in table 2. The most common sites for pain were legs (40%) and head (34%). Over a quarter reported stomach or back pain, pain on moving or short unexpected pains. Those with more severe impairment of walking ability were significantly more likely to report pain on moving, changing or dressing, or at operation sites. Those with less severe impairment of walking ability tended to report more headaches.

The distribution of parent-reported pain was similar, although trends over walking ability were more marked. Parents perceived their child as experiencing more pain in the stomach, back and hips, and at operation sites, and more pain in all the circumstances considered if they had more impaired walking ability. Results based on frequency of pain were similar.

Pain during therapy

Almost half of young people who could self-report and who had received physiotherapy in the previous year reported pain during therapy; 30% reported very mild or mild pain, 9% moderate pain and 6% severe or very severe pain. Pain during physiotherapy was significantly more likely to occur if the young person had more severely impaired walking ability (table 2). Over a quarter of young people reported pain during botulinum injections; 11% reported very mild or mild pain, 4%
moderate pain and 11% severe or very severe pain. Parents’ reports confirmed these findings.

Associations of pain

In univariable analysis of any self-reported pain (as captured by the instrument described in Measures (1) in the Methods section), the severity did not vary significantly (p<0.01) with any type of impairment or with any sociodemographic characteristic except young people’s gender: girls tended to report more severe pain. Young people with a higher EDS also tended to report more severe pain. Both gender and EDS remained statistically significant in a multivariable model (table 3). Results for frequency of pain were similar. Sensitivity analyses yielded similar results.

In univariable analysis of parents’ reports of their child’s pain, pain was significantly more frequent and more severe if the parents were more stressed or if their child was more severely impaired, or was a girl, or had a higher EDS. However, these factors were correlated. Thus, in multivariable models only walking ability and EDS remained significantly associated with pain. We found no evidence of interaction between walking ability and EDS. Sensitivity analyses yielded similar results.

In order to understand better these differences between self-reported and parent-reported pain, we restricted analysis of parent-reported pain to young people who could self-report. Results in this sub-sample were similar to those in the complete sample: in particular, the relationship between parent-reported pain and walking ability remained significant.

Comparison of parents’ reports of their child’s pain and young people’s reports of pain

The relationship between parent- and young person-reports of pain, (as captured by the instrument described in Measures (1) in the Methods section), is shown in table 4. If parent- and self-report had agreed completely, the percentages in bold would be 100%. Although parent- and self-reported pain were significantly correlated (Spearman rank correlation=0.45, p<0.0001), parents tended to overestimate their child’s pain if self-reported pain was infrequent or mild and underestimate it if the self-reported pain was frequent or severe.

DISCUSSION

Main findings

About three quarters of young people aged 13 to 17 years with CP had pain in the previous week according to both self- and parent-reports. Forty per cent experienced pain in the legs and over one quarter experienced pain in the head, stomach or back, pain on moving or short unexpected pains. Almost half of the young people who had received physiotherapy had experienced pain during therapy; about a quarter of those who received botulinum injections experienced pain. Girls generally reported more pain than boys. More pain was associated with more emotional difficulties according to both the self- and parent-reports. Parents tended to report that their child had more pain if the child was more severely impaired; this trend was much less evident for self-reported pain.

Strengths and weaknesses

Participants were representative of all young people with CP across the range of severity of impairment, as they were sampled from nine geographic areas, eight of which had population based registers. Analyses of trends and associations did not dichotomise pain; they used ordinal regression based on information in all six categories of pain. Estimation of prevalence required dichotomisation and we chose the cut-point as no pain/any pain in order to allow comparison with other papers.
on CP and papers on pain in the general population. Although non-response by families was 37% in SPARCLE1, and 27% of those in SPARCLE1 dropped out in SPARCLE2, sensitivity analyses adjusting for factors associated with non-response yielded similar results. The weights, which reflected the sampling design, allowed extrapolation from the reports of pain in our sample to an estimate of the population prevalence of pain in young people with CP.

Comparison with other studies

A study of parent-reported pain in the previous week in the general population of 7 to 17-year-olds found 15% had headaches, 8% abdominal pain and 5% back pain, much lower than our rates. A study of 10 to 18-year-olds found the prevalence of self-reported pain in the previous week to be 34%, lower than the 74% we report. Thus, young people with CP generally experience more pain than those without, and this has clear clinical implications.

Studies in young people of a similar age with CP report lower prevalence of pain than we do—for example, 56% in 11 to 18-year-olds and 62% in 8 to 18-year-olds—even though they asked about pain over the previous month rather than the previous week. However, our study was larger, more representative, distinguished self- and parent-reported pain and asked about pain related to healthcare procedures. One study found, as we did, that a higher proportion of girls reported pain (64% and 50%, respectively). A similar gender difference is also found in the general population, and may be due to neurophysiological differences. The association of pain with emotional difficulties in 13 to 17-year-olds is consistent with findings in young people without disability; for example, young people with severe chronic pain reported high levels of anxiety and depression. If the association is causal, then the direction is uncertain and may indeed be in both directions.

Between childhood and adolescence, the prevalence of self-reported pain increased from 60% (95% CI 54% to 65%) to 74% (95% CI 69% to 79%).

Implications

The prevalence of pain in young people with CP is high. This is important, not only because of the unpleasantness of pain but also because of the strong association of pain in CP with lower subjective well-being and reduced participation. Given that pain is so prevalent among young people with CP, strategies to reduce it must be either absent or inadequate.

CP is often accompanied by painful secondary musculoskeletal problems such as hip subluxation or dislocation, spinal scoliosis and muscle contractures in the upper and lower limbs. Furthermore, common clinical interventions, such as gastroscopy tubes, botulinum injections, assistive devices and physiotherapy, may cause pain; we found that almost half of those receiving some form of therapy reported experiencing pain during therapy. It is difficult to justify therapy that causes pain unless good evidence indicates that it improves some aspect of a young person’s life—so clinicians should carefully consider the efficacy of therapies that have the potential to cause pain. A study of children with CP found that assisted stretching was the daily activity most frequently identified as painful. This is especially worrying in the light of recent reviews of the effectiveness of passive stretching in people with CP which conclude that stretching does not produce clinically important change in contractures, function or disability. A further review found little evidence for any benefit of postural management but evidence of disadvantages, including pain.11 We recommend that adverse effects and benefits of treatment are recorded and assessed to inform effective use of such treatments.

At consultations, clinicians should ask parents and young people directly about their pain, and should develop pain management plans incorporating preventive and responsive elements. For instance botulinum toxin may help hip pain, intrathecal baclofen may help painful spasms, and pain during physiotherapy can be minimised and cognitive behavioural therapy may help coping with pain. Emotional health and pain are associated, so clinicians should assess if emotional factors could be exacerbating pain. As most people with CP live well into adulthood, our findings are also important for adult care.

Table 4 Relationship between self-reported and parent-reported pain in previous week (n=421)

Frequency of pain	Parent-report of their child’s pain	Parent-report of their child’s pain					
None of the time	None	Very mild	Mild	Moderate	Severe	Very severe	Total
Once or twice	66 (50%)	31 (24%)	15 (12%)	13 (10%)	3 (2%)	0 (0%)	128 (100%)
A few times	42 (26%)	23 (24%)	28 (30%)	17 (18%)	2 (2%)	0 (0%)	94 (100%)
Fairly often	14 (15%)	18 (19%)	28 (30%)	24 (26%)	9 (10%)	1 (1%)	94 (100%)
Very often	9 (15%)	8 (13%)	13 (21%)	23 (37%)	8 (13%)	1 (2%)	62 (100%)
Every day	3 (12%)	2 (8%)	4 (15%)	9 (35%)	7 (27%)	1 (4%)	26 (100%)

Severity of pain	None	Very mild	Mild	Moderate	Severe	Very severe	Total
None of the time	66 (52%)	31 (24%)	15 (12%)	13 (10%)	3 (2%)	0 (0%)	128 (100%)
Once or twice	42 (26%)	23 (24%)	28 (30%)	17 (18%)	2 (2%)	0 (0%)	94 (100%)
A few times	14 (15%)	18 (19%)	28 (30%)	24 (26%)	9 (10%)	1 (1%)	94 (100%)
Fairly often	9 (15%)	8 (13%)	13 (21%)	23 (37%)	8 (13%)	1 (2%)	62 (100%)
Very often	3 (12%)	2 (8%)	4 (15%)	9 (35%)	7 (27%)	1 (4%)	26 (100%)
Every day	1 (6%)	2 (12%)	4 (24%)	4 (24%)	2 (12%)	4 (24%)	17 (100%)

If parent- and self-report had agreed completely, the percentages in bold would be 100%.
Future research

Future research should focus on identifying the type of pain experienced and the elements of therapy that appear to cause it. In particular, these studies should assess how much stretching and mobilisation is required to maintain function or range of motion and whether this can be achieved without significant pain. In order to do this, more studies will need to be undertaken in the clinical setting.

Acknowledgements

We are grateful to the families who participated in SPARCLE2 and to the study’s research associates—Alberto Furlan, Audrey Gudar, Luisa Henriksen, Caroline Joyce, Heidi Kiekka, Karin Lindh, Nichola McCullough, Laura O’Connell, Marian Rapp, Mariane Sentenac—for their enthusiasm and dedication to contacting families and collecting high quality data.

Collaborators

The SPARCLE group is: AC, KNPD and HOD, Newcastle University, Newcastle, UK; Eva Beckung, Malin Nystrand, Göteborg University, Göteborg, Sweden; Jackie Parkes, Queens University, Belfast, UK; Jérôme Fauconnier, Université Joseph Fourier, Grenoble, France; Alan Lyons, Enable Ireland, Cork, Ireland; Susan Michelsen, NIH, Copenhagen, Denmark; Marco Marcelli, ASIV, Viterbo, Italy; Catherine Arnaud, INSERM, Toulouse, France; Ute Thyen and Marion Rapp, Lübeck, Germany.

Contributors

AC is the corresponding author and guarantor of the article; participated in the planning of the study, coordinated the study and took overall responsibility for the delivery of the work; participated in writing the paper and approved the final version; had full access to all the data in the study and had final responsibility for the decision to submit for publication. KNPD was responsible for the day to day administration of the study and data collection in one centre, participated in maintaining the quality of the data, attended workshops, and drafted the paper. HOD performed all statistical analysis, participated in maintaining the quality of the data and in writing the paper; saw and approved the final version. CA participated in the planning of this study, was responsible for data collection in one centre, attended workshops and planning analysis and saw and approved the final version. AL participated in the planning of this study, was responsible for data collection in one centre, attended workshops and planning analysis and saw and approved the final version.

Funding

Wellcome Trust WT 086315 A1A (UK and Ireland); Medical Faculty of University of Lübeck E40-2009 and E26-2010 (Germany); CNSA, INSERM, MIRÉ-DREES, IRESPP (France); Ludwig and Sara Elsaes Foundation (Denmark); The Spastics Society–Værnforefunden (Denmark); Cooperativa Sociale ‘Gli Anni in Toscana’, Viterbo (Italy); Fondazione Carita, Viterbo (Italy); Göteborg University–Riksbeforunbet for Rorelsedhinde Barn och Ungdomar; Folkie Bernadotte Foundation (Sweden).

Competing interests

None.

Ethics approval

Newcastle and North Tyneside NHS Research Ethics Committee.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data sharing statement

The data from this paper and the associated dataset can be examined in more detail on request from the corresponding author, Allan Colver. The data from the wider SPARCLE study will be available for secondary analyses once the the SPARCLE collaborators have completed their planned analyses; this will be in about 18 months.

Open Access

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Dorap S, Bartlett D. The prevalence, distribution, and effect of pain among adolescents with cerebral palsy. Pediatr Phys Ther 2010;22:36–33.
2. Ramstad K, Jahnson R, Skjeldal OH, et al. Characteristics of recurrent musculoskeletal pain in children with cerebral palsy aged 8 to 18 years. Dev Med Child Neurol 2011;53:105–10.
3. Colver A. Study protocol: SPARCLE—a multi-centre European study of the relationship of environment to participation and quality of life of children with cerebral palsy. BMC Public Health 2006;6:105.
4. Parkinson KN, Gibson L, Dickinson HO, et al. Pain in children with cerebral palsy: a cross-sectional multicentre European study. Acta Paediatr 2010;99:446–51.
5. Dickinson HO, Parkinson KN, Ravens-Sieberer U, et al. Self-reported quality of life of 8–12 year-old children with cerebral palsy: a cross-sectional European study. Lancet 2007;369:2171–8.
6. Fauconnier J, Dickinson HO, Beckung E, et al. Participation in life situations of 8–12 year old children with cerebral palsy: cross sectional European study. BMJ 2009;338:b1458.
7. Colver AF, Dickinson HO. Study protocol: determinants of participation and quality of life of adolescents with cerebral palsy: a longitudinal study (SPARCLE2). BMC Public Health 2010;10:280.
8. Dickinson H, Parkinson K, McMansus V, et al. Assessment of data quality in a multi-centre cross-sectional study of participation and quality of life of children with cerebral palsy. BMC Public Health 2006;6:273.
9. Dickinson HO, Rapp M, Arnaud C, et al. Predictors of drop-out in a multi-centre longitudinal study of participation and quality of life of children with cerebral palsy. BMC Research Notes 2012;5:300.
10. SCPE. Prevalence and characteristics of children with cerebral palsy in Europe. Dev Med Child Neurol 2002;44:633–40.
11. Landgraf J, Abetz L, Ware JE. The CHQ: a user’s manual (second printing). Boston, MA: HealthAgt, 1999.
12. Pinto U, Nordholm L, Fash A. Reliability and validity of the Swedish version of child health questionnaire. Scand J Rheumatol 2003;32:101–7.
13. Raat H, Botterweck AM, Landgraf JM, et al. Reliability and validity of the short form of the child health questionnaire for parents (CHQ-PF28) in large random school based and general population samples. J Epidemiol Community Health 2005;59:75–82.
14. Goodman R. Psychometric properties of the Strengths and Difficulties Questionnaire. J Am Acad Child Adolesc Psychiatry 2001;40:1337–45.
15. Muris P, Meesters C, van den Berg F. The Strengths and Difficulties Questionnaire (SDQ)—further evidence for its reliability and validity in a community sample of Dutch children and adolescents. Eur Child Adolesc Psychiatry 2003;12:1–8.
16. Abidin R. Parenting stress index professional manual. 3rd ed. Odessa, Florida, USA: Psychological Assessment Resources Inc. 1995.
17. Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol 1997;39:214–23.
18. Bedungu, E. Hagberg G. Neuroparments, activity limitations, and participation restrictions in children with cerebral palsy. Dev Med Child Neurol 2004;46:109–16.
19. White-Koning M, Arnaud C, Bourdet-Loubere S, et al. Subjective quality of life in children with intellectual impairment—how can it be assessed? Dev Med Child Neurol 2005;47:281–5.
20. Skrondal A, Rabe-Hesketh S. Generalized latent variable modelling: multilevel, longitudinal, and structural equation models. London: Chapman & Hall, 2004.
21. Koren E, Graubard BI. Analysis of large health surveys: accounting for the sampling design. J R Stat Soc Ser A Stat Soc 1995;158:263–95.
22. Sundblad GM, Saatokt T, Engstrom LM. Prevalence and co-occurrence of self-rated pain and perceived health in school-children: age and gender differences. Eur J Pain 2007;11:171–80.
23. Groholt E, Stigum H, Nordhagen R, et al. Recurrent pain in children, socio-economic factors and accumulation in families. Eur J Epidemiol 2003;18:965–75.
24. Roth-loiegel A, Thyen U, Raspe HH, et al. Reports of pain among German children and adolescents: an epidemiological study, Acta Paediatr 2004;93:258–63.
25. Wilson JF. The pain divide between men and women. Ann Intern Med 2006;144:461–4.
26. Eccleston C, Crombez G, Scottford A, et al. Adolescent chronic pain: patterns and predictors of emotional distress in adolescents with chronic pain and their parents. Pain 2004;108:221–9.
27. Hadden KL, von Baeyer CL. Pain in children with cerebral palsy: common triggers and expressive behaviors. Pain 2002;99:281–8.
28. Katalinic O, Harvey L, Herbert R, et al. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev 2010;9:CD007455.
29. Pin T, Dyke P, Chan M. The effectiveness of passive stretching in children with cerebral palsy. Dev Med Child Neurol 2006;48:855–62.
30. Franki L, Desloovere K, De Cat J, et al. The evidence-base for basic physical therapy techniques targeting lower limb function in children with cerebral palsy: a systematic review using the International Classification of Functioning, Disability and Health as a conceptual framework. J Rehabil Med 2012;44:385–95.
31. Gough M. Continuous postural management and the prevention of deformity in children with cerebral palsy: an appraisal. Dev Med Child Neurol 2005;47:105–10.
32. Lundy CT, Doherty GM, Fairhurst CB. Botulinum toxin type A injections can be an effective treatment for pain in children with hip spasmis and cerebral palsy. Dev Med Child Neurol 2009;51:705–10.
33. Ramstad K, Jahnson R, Lofoerd B, et al. Continuous intrathecal baclofen therapy in children with cerebral palsy—when does improvement emerge? Acta Paediatr 2010;99:1661–5.
34. von Baeyer CL, Tupper SM. Procedural pain management for children receiving physiotherapy. Physiother Can 2010;62:327–37.
35. Swingum M, Hamilton ML, Gleeson P, et al. Pain in children with cerebral palsy: implications for pediatric physical therapy. Pediatr Phys Ther 2010;22:86–92.