REPORTE DE CASO

Infección por Candida auris en el catéter central de un paciente sin síntomas de sepsis

Candida auris infection in the central catheter of a patient without sepsis symptoms

Luz Ángela Castro1, María Inés Álvarez2, Florencia Rojas3, Gustavo Giusiano3, Ernesto Martínez4
luz.castro@correounivalle.edu.co

1 Universidad del Valle, Facultad de Salud, Escuela de Bacteriología y Laboratorio Clínico, Cali, Colombia. 2 Universidad del Valle, Facultad de Salud, Departamento de Microbiología, Cali, Colombia. 3 Universidad Nacional del Nordeste, Departamento de Micología, Instituto de Medicina Regional, CONICET, Resistencia, Argentina. 4 Universidad del Valle, Facultad de Salud, Departamento de Medicina Interna, Cali, Colombia

RESUMEN

Antecedentes:
Candida auris es una levadura emergente, informada con frecuencia como resistente a diversos antifúngicos usados comúnmente para tratar infecciones por Candida. Esta especie puede colonizar la piel y tiene gran capacidad de producir brotes en ambientes hospitalarios. Está filogenéticamente relacionada con otras especies de Candida, es mal identificada por los métodos bioquímicos o comerciales, y requiere tecnología específica para su identificación.

Reporte de caso:
Se informa el primer aislamiento de C. auris en Cali, Colombia en un paciente de 37 años con artritis reumatoide y endocarditis, sin síntomas de sepsis, a partir de la punta de catéter venoso central. La levadura inicialmente se identificó como C. haemulonii por el sistema Phoenix® y posteriormente como C. auris por espectrometría de masas desorción/ionización láser asistida por una matriz con detección de masas por tiempo de vuelo (MALDI-TOF MS). Se determinó la concentración inhibitoria mínima por el método de microdilución en caldo que mostró un aislamiento sensible a fluconazol, itraconazol, voriconazol y anfotericina B.

Conclusión:
Este informe contribuye al conocimiento de la epidemiología de las infecciones por C. auris en individuos con enfermedad subyacente y describe un aislamiento con un comportamiento diferente a lo indicado en otros estudios.
Abstract

Background:

Candida auris es una levadura emergente a menudo reportada como resistente a múltiples fármacos antifúngicos comúnmente utilizados para tratar infecciones *Candida*. Esta especie puede colonizar la piel del paciente y tiene gran capacidad para producir brotes en hospitales. *C. auris* es filogenéticamente relacionado con otras especies de *Candida*, puede ser mal identificada usando métodos bioquímicos convencionales o métodos comerciales de *Candida* y requiere tecnología específica para su identificación.

Case report:

Describimos el primer aislado de *C. auris* en Cali, Colombia, de un catéter venoso central en un paciente de 37 años con artritis reumatoide y endocarditis que no presentaron síntomas de sépsis. El hongo fue inicialmente mal identificado como *C. haemulonii* usando el sistema Phoenix y luego identificado como *C. auris* por medio de la espectrometría de masas de deriva por tiempo de vuelo (MALDI-TOF MS). El método de microdilución en brota fue utilizado para determinar la concentración inhibidora mínima; el aislado fue susceptible a fluconazol, itraconazol, voriconazol y amfotericina B.

Conclusions:

Este informe contribuye al conocimiento de las infecciones de *C. auris* en individuos con enfermedad subyacente y describe un aislado con un comportamiento diferente a lo que se informa usualmente.
Introducción

Candida auris es una levadura emergente con resistencia a múltiples antimicóticos comúnmente utilizados en el tratamiento de infecciones por *Candida* 1,2.

Esta especie fue descrita en 2009 por Satoh *et al* 3 luego de ser aislada del conducto auditivo externo de un paciente japonés. Desde entonces, se ha encontrado en muestras de sangre y otros materiales clínicos en India, Sudáfrica, Kenia, Kuwait, Reino Unido, Estados Unidos, Israel, Colombia, Venezuela, Panamá, Pakistán, España, Alemania, Noruega, Omán, Corea del Sur, Canadá, Emiratos Árabes Unidos, Arabia Saudita, Irán, Singapur, Tailandia, Malasia, Suiza, Países Bajos, Rusia, China, Francia, Austria y Bélgica 1,4,5.

Este hongo es un agente intrahospitalario y causante de candidemia y otras enfermedades invasoras como pericarditis, infecciones del tracto respiratorio y urinario, especialmente en pacientes inmunocomprometidos sometidos a hospitalización por largo tiempo 1,2.

Candida auris puede colonizar piel y otros sitios anatómicos y también ha sido aislada de ambientes hospitalarios y equipos. Esto puede llevar a la propagación de *C. auris* entre los pacientes en las instituciones de salud y causar brotes epidémicos 1,6.

Los métodos convencionales basados en pruebas bioquímicas o comerciales utilizados en los laboratorios de microbiología no son capaces de diferenciar *C. auris* de otras especies del género *Candida* e incluso de otros géneros de levaduras. Hasta el momento, no se encuentra en la base de datos de los sistemas comerciales disponibles; Phoenix (BD, Diagnostics, USA) la informa como *C. haemulonii* o *C. catenulata*; Vitek 2 (bioMérieux, Marcy l’Etoile, France) como *C. haemulonii* o *C. catenulata*; MicroScan (Beckman Coulter) como *C. famata*, *C. lusitaniae*, *C. guilliermondii* o *C. parapsilosis* y API 20 C AUX (bioMérieux, Marcy l’Etoile, France) como *Rhodotorula glutinis* o *C. sake* 1. Probablemente, su relación filogenética cercana de estas especies con *C. auris* sea una explicación para este problema 1.

Actualmente, organizaciones de control de enfermedades como el Center for Disease Control and Prevention (CDC), el European Centre for Disease Control (ECDC) and Public Health England (PHE) recomiendan considerar cualquiera de los aislamientos antes mencionados como probable *C. auris* 7. La identificación definitiva debe realizarse por spectrometría de masa desorción/ionización láser asistida por una matriz con detección de masas por tiempo de vuelo (MALDI-TOF MS) o por métodos moleculares basados en la secuenciación de locus genéticos como DI/D2 del DNA ribosómico o la región de los espaciadores de transcriptos internos (ITS) 8.

Reporte de Caso

Paciente de 37 años de edad, con historia médica de epilepsia, artritis reumatoide desde hace dos años y uveítis en ojo izquierdo, sin seguimiento por varios meses ni tomar ningún medicamento incluso la prednisona prescrita. Ingresó al hospital por un dolor agudo severo en la extremidad inferior izquierda y con función limitada del movimiento. En el examen físico se encontró monoparesia en la extremidad inferior izquierda y un absceso en la región axilar izquierda. Con el diagnóstico inicial de artritis reumatoide recidivante se descartó la mononeuropatía inferior, y con la presencia de un absceso axilar, se inició tratamiento con prednisona, vancomicina y cefepime; luego estos antibióticos se cambiaron a cefazolina hasta resolución clínica de la lesión. Se solicitó hemocultivos en los días 1 y 2 de hospitalización, con resultados negativos.

En el día 4, con un diagnóstico de síndrome de Rhapsus modificado por el servicio de reumatología, se adicionó al tratamiento metotrexato, cloroquina y leflunomida, medicación con la que continuó hasta su egreso del hospital. El paciente permaneció hospitalizado para estudio de su enfermedad reumatológica y durante la hospitalización se confirmó el diagnóstico de uveítis en ojo izquierdo y fue tratado con prednisolona, 1 gota cada 6 horas, hasta la mejoría.
A los 13 días de hospitalización, refirió dolor precordial y una ecocardiografía transtorácica sugirió vegetación de la válvula mitral, por lo tanto, se realizó al día siguiente un estudio ecocardiográfico transesofágico que confirmó el diagnóstico de endocarditis con hallazgo de vegetación en la válvula mitral de 50 x 14 mm e insuficiencia leve de la válvula mitral y moderada a severa de la aórtica. Se inició tratamiento empírico con meropenem y vancomicina y después del remplazo quirúrgico de las dos válvulas en el día 25, se continuó con daptomicina y cefepime por 28 días más. Los hemocultivos realizados antes de iniciar los antibióticos y cultivo de la válvula extraída fueron negativos.

En el día 52, dos días antes de finalizar el tratamiento antibiótico, se observó filtración externa del sitio de inserción de catéter central subclavio sin signos locales de infección ni presencia de fiebre u otro signo de respuesta inflamatoria sistémica. El catéter se retiró tres días después y la punta de catéter se envió para cultivo microbiológico, sin toma de hemocultivos periféricos simultáneos. En la punta de catéter se aisló una levadura que fue identificada por el sistema Phoenix (BD, Diagnostics, USA) como *C. haemulonii*.

En el día 62, siete días después de la solicitud del cultivo, al paciente se le dio salida por encontrarse en condiciones estables sin síntomas o signos de infección sistémica. El resultado microbiológico no se consideró relevante por los médicos tratantes. El paciente continuó con monitoreo ambulatorio y rehabilitación cardíaca por otros médicos tratantes de acuerdo a su plan de salud. No hubo más datos clínicos disponibles para este paciente.

De acuerdo a las recomendaciones de organizaciones de control de enfermedades para los aislamientos identificados como *C. haemulonii*, se procesó la levadura mediante el sistema MALDI-TOF (Bruker Daltonik, Bremen, Germany) en otro hospital y fue identificada como *C. auris* (score >2).

Para su estudio de sensibilidad antifúngica la levadura fue remitida al Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina. Se determinó la concentración inhibitoria mínima (CIM) para fluconazol, itraconazol, voriconazol y anfotericina B por el método de microdilución en caldo estandarizado por el *Clinical and Laboratory Standards Institute* (CLSI). Los resultados fueron 8 μg/mL, 0.06 μg/mL, 0.06 μg/mL y 1 μg/mL, respectivamente. No se realizó CIM para equinocandinas. Actualmente, no existen puntos de corte de sensibilidad específicos para *C. auris* por el CLSI, el CDC recomienda interpretar con cautela los valores de CIM de *C. auris* basados en los establecidos para especies de *Candida* estrechamente relacionadas. De acuerdo a lo anterior, *C. auris* con CIM de fluconazol <32 μg/mL y anfotericina B <2 μg/mL pueden considerarse como sensibles.

Es de destacar que el paciente fue dado de alta antes de que se obtuviera la identificación final de *C. auris*, el comité de control de infección institucional fue informado del hallazgo y se realizó una estrecha vigilancia epidemiológica después de esta notificación sin encontrar nuevos casos en los siguientes meses.

Discusión

La identificación correcta y rápida de *C. auris* así como la comunicación oportuna de un aislamiento en un paciente hospitalizado son importantes para implementar estrategias de prevención de brotes causados por esta especie y establecer un tratamiento antifúngico apropiado. Tal como ocurrió en este caso, muchas publicaciones sobre *C. auris* destacan que la levadura se identifica con frecuencia de forma errónea. El tiempo requerido de remisión del aislamiento a otra institución para la identificación definitiva puede llevar a decisiones como no considerar importante el aislamiento incluso dar de alta al paciente sin establecer medidas de control. Aunque las estrategias recomendadas por el CDC no fueron implementadas en el hospital, se han presentado nuevos aislamientos de *C. auris*. Los reportes de diferentes países, incluida Colombia, informan aislamientos de esta especie resistentes a múltiples antifúngicos causante de brotes. La levadura aislada de nuestro paciente tiene un comportamiento diferente y no se ha vuelto a detectar.
Candida auris con frecuencia es mal identificada con otras especies de *Candida* estrechamente relacionadas como *C. haemulonii* por sistemas de identificación comercial, como se presentó con la cepa aislada en este paciente y similar a lo informado en otros casos. Actualmente la identificación precisa de *C. auris* debe confirmarse por métodos aceptados como MALDI-TOF MS o técnicas de identificación molecular entre ellas secuenciación, reacción en cadena de polimerasa (PCR), PCR en tiempo real y polimorfismos en la longitud de los fragmentos amplificados (AFLP). De acuerdo con otras publicaciones, la cepa aislada fue identificada correctamente por MALDI-TOF MS por ser un método adecuado para identificar *C. auris*.

Actualmente, no existen puntos de corte de sensibilidad específicos para *C. auris*; sin embargo, el CDC ha propuesto valores de CIM tentativos frente a determinados antifúngicos; aquellas cepas con CIM de fluconazol ≥32 μg/mL y anfotericina B ≥2 μg/mL pueden considerarse como cepas con resistencia microbiológica a estos fármacos, para voriconazol y otros triazoles de segunda generación, se puede considerar que la resistencia a fluconazol es un marcador para los otros triazoles. La cepa del presente estudio para el fluconazol, presentó una CIM igual a 8 (g/ml, que está por debajo del punto de corte propuesto por el CDC (≥32), pero dentro de los rangos informados en las otras publicaciones (4 y >256 μg/mL). El aislamiento del presente estudio mostró valores de CIM más bajos que los encontrados en un estudio multicéntrico realizado en el norte de Colombia, donde 58.8% de las levaduras presentaron una CIM elevada para el fluconazol y todas fueron resistentes a la anfotericina B. También se ha registrado en el centro del país, multiresistencia en uno de los tres aislados de *C. auris* estudiados. Por otro lado, *C. auris* se ha reportado resistente a polienos (aproximadamente 50%), equinocandinas (5-10%) y casi el 50% resistencia simultánea a dos clases de antimicóticos (azoles y polienos).

Los estudios de sensibilidad de los aislamientos de *C. auris* de diferentes regiones de Colombia, mostraron resultados variables en la sensibilidad, de CIM bajo a alto con diferentes antifúngicos. Con estos resultados, se podría suponer que en Colombia posiblemente circulan cepas de diferentes clados de *C. auris*.

El paciente de este caso se encontraba inmunocomprometido, con hospitalización prolongada en la UCI, tratado con un ciclo prolongado de antibióticos de amplio espectro y varios agentes inmunosupresores, endocarditis de la válvula mitral que fue sometido a cirugía cardíaca mayor con remplazo de doble válvula y la colocación de catéter venoso central durante varias semanas. Todas estas condiciones se consideran factores de riesgo clásicos para infecciones por *Candida* invasora y candidemia y algunas de ellas para *C. auris*. En este caso, sin embargo, no hubo evidencia de infección asociada a *C. auris*, solo colonización, con un posible riesgo adicional de impacto clínico y alerta epidemiológica para diseminación y brote hospitalario.

Conclusión

Este reporte contribuye al conocimiento de la epidemiología de las infecciones por *C. auris* en individuos con enfermedad subyacente y describe un aislamiento con un comportamiento diferente al que generalmente se informa. Este caso es un ejemplo de la importancia de confirmar la identificación, ya que las técnicas de laboratorio convencionales pueden conducir a una identificación errónea y, en consecuencia, a un manejo inapropiado.

Referencias

1. Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, et al. *Candida auris*: a review of the literature. Clin Microbiol Rev. 2018;31(1): e00029-17. doi: 10.1128/CMR.00029-17.

2. Center for Disease Control and Prevention. Clinical alert to U.S. healthcare facilities. Global emergence of invasive infections caused by the multidrug-resistant yeast Candida auris Atlanta: 2016. Fungal diseases. Available from: https://www.cdc.gov/fungal/diseases/candidiasis/candida-auris-alert.html
Infección por *Candida auris* en el catéter central de un paciente sin síntomas de sepsis

3. Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. *Candida auris* sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41-4. doi: 10.1111/j.1348-0421.2008.00083.x

4. Lone SA, Ahmad A. *Candida auris*-the growing menace to global health. Mycoses. 2019;62:620-637. doi: 10.1111/myc.12904

5. Araúz AB, Caceres DH, Santiago E, Armstrong P, Arosemena S, Ramos C, et al. Isolation of *Candida auris* from 9 patients in Central America: Importance of accurate diagnosis and susceptibility testing. Mycoses. 2018;61(1):44-7. doi: 10.1111/myc.12709

6. Escandón P, Chow NA, Caceres DH, Gade L, Berkow EL, Armstrong P, et al. Molecular epidemiology of *Candida auris* in Colombia reveals a highly related, country wide colonization with regional patterns in amphotericin B resistance. Clin Infect Dis. 2019;68(1):15-21. doi: 10.1093/cid/ciy411

7. Arendrup MC, Prakash A, Meletiadis J, Sharma C, Chowdhary A. Comparison of EUCAST and CLSI Reference microdilution MICs of eight antifungal compounds for *Candida auris* and associated tentative epidemiological cutoff values. Antimicrob Agents Chemother. 2017;61(6): e00485-17. doi: 10.1128/AAC.00485-17

8. Center for Disease Control and Prevention. Recommendations for identification of *Candida auris* Atlanta; 2017. Fungal diseases. Available from: https://www.cdc.gov/fungal/diseases/candidiasis/recommendations.html

9. CLSI. Reference Method for Broth Dilution Antifungal susceptibility testing of yeasts; Fourth informational Supplement. CLSI document M27-S4. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.

10. Morales-López SE, Parra-Giraldo CM, Ceballos-Garzón A, Martínez HP, Rodríguez GJ, Álvarez-Moreno CA, et al. Invasive infections with multidrug-resistant yeast *Candida auris*, Colombia. Emerging Infectious Diseases. 2017;23(1):162-4. doi: 10.3201/eid2301.161497

11. Parra-Giraldo CM, Valderrama SL, Cortes-Fraile G, Garzón JR, Morio F, et al First report of sporadic cases of *Candida auris* in Colombia. Int J Infect Dis. 2018;69:63-7. doi: 10.1016/j.ijid.2018.01.034

12. Center for Disease Control and Prevention. Recommendations for infection prevention and control for *Candida auris* Atlanta; 2018. Fungal diseases. Available from: https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html

13. Hata DJ, Humphries R, Lockhart SR. *Candida auris*: an emerging yeast pathogen posing distinct challenges for laboratory, diagnostics, treatment and infection prevention. Arch Pathol Lab Med. 2020;144:107-14. doi: 10.5858/arpa.2018-0508-RA

14. Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant *Candida auris* on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64(2):134-40. doi: 10.1093/cid/ciw691

15. Rozwadowski F, McAteer J, Chow NA, Skobarceck K, Forsberg K, Barrett PM, et al. Prevalence and risk factors for *Candida auris* colonization among patients in a long-term acute care hospital-New Jersey, 2017. Open Forum Infect Dis. 2018;5(Suppl 1): S14. doi: 10.1093/ofid/ofy209.031

16. Sarma S, Upadhyay S. Current perspective on emergence, diagnosis and drug resistance in *Candida auris*. Infect Drug Resist. 2017;10:155-165. doi: 10.2147/IDR.S116229.

17. Cortegiani A, Misseri G, Fasciana T, Giannmanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by *Candida auris*. J Intensive Care. 2018; 29(6):69. doi: 10.1186/s40560-018-0342-4