Association of cytokeratin 17 expression with differentiation in oral squamous cell carcinoma

北村, 亮二
九州大学大学院歯学府

https://doi.org/10.15017/21992
Association of cytokeratin 17 expression with differentiation in oral squamous cell carcinoma

2012年

九州大学大学院歯学府口腔顎顔面病態学講座
顎顔面腫瘍制御学分野
北村 亮二

指導教官
九州大学大学院歯学研究院口腔顎顔面病態学講座
顎顔面腫瘍制御学分野
中村 誠司 教授
Association of cytokeratin 17 expression with differentiation in oral squamous cell carcinoma

Ryoji Kitamura, Takeshi Toyoshima, Hideaki Tanaka, Shintaro Kawano, Kazunari Oobu, Takahiro Kiyosue, Ryota Matsubara, Yuichi Goto, and Seiji Nakamura

Submitted to Oral Oncology
略語一覧

cDNA: complementary DNA (相補的 DNA)
CK: cytokeratin (サイトケラチン)
DAB: diaminobenzidine
DEPC: diethyl pyrocarbonate
DMEM: Dulbecco’s modified Eagle’ medium
FBS: fetal bovine serum (ウシ胎児血清)
GAPDH: glycelaldehyde-3-phosphate dehydrogenase
HE: Hematoxylin and Eosin
NOE: normal oral epithelium (正常口腔粘膜上皮)
N.S.: not significant
OSCC: oral squamous cell carcinoma (口腔扁平上皮癌)
PBS: phosphate-buffered saline (リン酸緩衝生理食塩水)
PFA: paraformaldehyde
RT PCR: reverse transcriptase polymerase chain reaction
RQ: relative quantification
目次

要旨 4

緒言 7

材料および方法 10

結果

Ⅰ .OSCCや白板症、NOEにおける CK17の発現 18

Ⅱ .OSCC の分化による CK17 の発現様式 34

考察 40

謝辞 46

参考文献 47
要旨

口腔扁平上皮癌 (oral squamous cell carcinoma: OSCC) は診断の遅れや、放射線療法および化学療法に抵抗性を持つ OSCC 細胞の存在により予後不良となることが多い。よって、OSCC を早期診断し、組織学的特徴を把握するために、より精度の高い診断方法を確立することが重要である。以前よりサイトケラチン (cytokeratin: CK) は固形癌の診断のためにその有用性が検討されているが、特に CK17 は子宮頸部や喉頭の扁平上皮癌において過剰に発現していることが報告されている。そこで本研究は、OSCC において CK17 を含む 7 種類の CK の発現様式を解析した。また、OSCC の分化に着目し、白板症や正常口腔粘膜上皮 (normal oral epithelium: NOE) における発現について検討した。

I. OSCC や白板症、NOE における CK17 の発現

病理組織学的に OSCC と診断された 105 例の生検組織材料を用い、7 種類の抗 CK 抗体（抗 CK13 抗体、抗 CK14 抗体、抗 CK16 抗体、抗 CK17 抗体、抗 CK18 抗体、抗 CK19 抗体、抗 CK20 抗体）を用いて免疫組織化学的染色を行った。また、臨床的に白板症と診断された 108 例の生検材料を用い、抗 CK17 抗体と抗 CK13 抗体を用いて免疫組織化学染色を行った。対照群として NOE 10 例を用いた。

OSCC における 7 種類の CK の発現頻度は CK13 が 3/105 例 (2.9%)、CK14 が 102/105 例 (97.1%)、CK16 が 60/105 例 (57.1%)、CK17 が 101/105 例 (96.2%)、CK18 が 21/105 例 (20.0%)、CK19 が 39/105 例 (37.1%)、CK20 が 22/105 例 (21.0%) であった。NOE における発現頻度は CK13 が 10/10 例 (100%)、CK14 が 10/10
例 (100%)、CK16 が 4/10 例 (40.0%)、CK17 が 0/10 例 (0%)、CK18 が 2/10 例 (20.0%)、CK19 が 4/10 例 (40.0%)、CK20 が 0/10 例 (0%) であった。CK17のみNOE において発現を認めず、OSCC において高発現した (p<0.01)。臨床病理学的所見と比較すると、低分化型よりも高分化型 OSCC において有意に CK17 の発現を認めた (p<0.01)。また、CK17 の発現頻度とその他の臨床病理学的所見との関連は認めなかった。白板症全体では 55/108 例 (50.9%) において CK17 の発現を認めた。上皮性過形成を伴う (hyperplasia) 症例では 36/74 例 (48.6%) において発現を認めたのに対し、上皮性異形成を伴う (dysplasia) 症例では 19/34例 (55.9%) において有意に発現頻度が高かった (p<0.01)。OSCC ではほとんど発現がみられなかった CK13 は、白板症全体では 63/108 例 (58.3%) において発現を認めた。hyperplasia 症例では 52/74 例 (70.3%) において発現を認めたのに対し、dysplasia 症例では 11/34 例 (32.4%) において有意に発現頻度が低かった (p<0.01)。

II. OSCC の分化による CK17 の発現模式

CK17 の発現と OSCC 細胞の分化との関連を検索するため、上皮幹細胞のマーカーであり、低分化 OSCC 細胞との関連が示唆される ΔNp63 を用いて免疫組織化学染色を行った。また、高分化型 OSCC 由来の HSC-2、低分化型 OSCC 由来の HSC-3 および SAS、OSCC 再発症例由来の SQUU-A、同じく再発症例で高転移能を有する SQUU-B といった 5 種類の細胞株における CK17 mRNA 発現量を real-time reverse transcriptase polymerase chain reaction (RT PCR) 法にて解析し、OSCC 細胞の分化の違いによる CK17 mRNA の発現の差異を検索した。ΔNp63 の発現頻度は 102/105 例 (97.1%) であり、核に特異的に発現していた。ΔNp63
は上皮基底層や癌胞巢の最外層に発現し、癌胞巢の内側に発現する CK17 とは相対する発現を認めた。ΔNp63 の発現様式と OSCC の臨床病理的所見との間に有意な発現はみられなかった。HSC-2 における CK17 mRNA 発現量は、HSC-3 および SAS と比較して有意に多かった（p<0.01）。また、SQUU-B より SQUU-A において発現量が有意に多かった（p<0.01）。以上から、CK17 は高分化な OSCC 細胞に発現することが示唆された。

CK17 は正常上皮と比較して異型上皮や OSCC において発現頻度が上昇し、OSCC では臨床病理的分化との関連が認められた。さらに、CK17 は高分化 OSCC 細胞株に高発現していた。以上から、CK17 は悪性度の低い高分化型 OSCC のマーカーであると考えられた。
緒言

外科的切除、放射線療法および化学療法を行う三者併用療法を用いることで口腔扁平上皮癌 (oral squamous cell carcinoma: OSCC) の 5 年生存率は 80%を超えるようになった (1-3)。しかし依然として予後不良となる症例は少なくない。その理由として、診断の遅れや放射線療法および化学療法に抵抗性を持つ OSCC 細胞の存在が挙げられる。OSCC の中でも成長が早く、放射線療法等に抵抗性を示すのが低分化 OSCC 細胞といわれている。ゆえに、OSCC 細胞の特徴を把握するマーカーを確立することが非常に重要である。

サイトケラチン (cytokeratin: CK) は上皮細胞の細胞骨格を成す中間径フィラメントである。20 数種類の CK が発見されており、上皮の分化により発現する CK も異なる (4)。重層扁平上皮の角化層では CK1 と CK10 (5)、基底細胞層では CK5 と CK14 が主に発現している (6)。さらに、正常上皮が癌化する際に重層扁平上皮の階層構造が変化することで、様々な種類の CK が発現し (7) 扁平上皮癌の分化と関連するため、その診断因子としての有用性が検討されてきた。特に、CK17 は子宮頸部において正常複合上皮の基底層に発現しているため、上皮幹細胞のマーカーといわれている (8)。また、子宮頸癌においても発現を認めており、特に高分化型扁平上皮癌において発現頻度が高い (9)。さらに、肺 (7)、喉頭 (10)、食道の扁平上皮癌 (11, 12) において、正常上皮と比較すると CK17 が過剰に発現しているという報告もある。Toyoshima らの報告では、マイクロアレイ解析により OSCC の原発巣において CK14 mRNA、CK16 mRNA、CK17 mRNA、CK18 mRNA、CK19 mRNA、CK20 mRNA の発現を検討し、CK17
mRNA が最も過剰発現していた。さらに、OSCC 患者 56 例の原発巣組織における CK17 mRNA の発現について、OSCC の診断因子としての有用性が報告されている CK19（13）、および再発との関連が報告されている CK20（14）との比較を行った。結果は、CK17 mRNA が 53/56 例（94.6%）において最も過剰発現しており、OSCC の診断因子としての有用性を示した（15）。さらに、Whipple らはマイクロアレイ解析により、OSCC 原発巣組織における CK17 と CK13 の関与に注目し、CK17 mRNA の高発現と CK13 mRNA の低発現を報告している（16）。

CK13 は正常組織では眼球角膜の周囲に発現しており、非角化重層上皮の傍基底層において粘膜特異的に発現する（17）。口腔内では、正常口腔粘膜上皮（normal oral epithelium: NOE）の傍基底層に発現し、上皮性異形成（dysplasia）を呈することで減少が認められる（18）。また、OSCC へ悪性転化することで重層扁平上皮の構造が崩れ、CK13 の発現が消失すると考えられている（19）。

前述の特徴を示す CK17 と CK13 であるが、前癌病変である白板症において両者の発現を検索することは非常に有用である。なぜなら、dysplasia は上皮性過形成（hyperplasia）よりも癌化する可能性が高いため（20）、悪性転化を起こす白板症の予測が可能となるからである。Mikami らは、白板症においては NOE と比較して CK17 の発現頻度が上昇し、CK13 の発現頻度が減少すると報告している（21）。しかし、OSCC および白板症における CK17 と CK13 の発現様式を臨床病理学的所見と比較検討した報告はない。

また、CK17 は他の CK と同様に分化関連因子と考えられているが、OSCC における発現様式は不明な点が多い。そこで、CK17 以外の分化関連因子として ΔNp63 が低分化 OSCC 細胞のマーカーの候補としてあげられる。ΔNp63 は重層
扁平上皮の発生過程において基底層に発現し、基底細胞の増殖および重層化を促進する。また、重層化により生じた有棘層や顆粒層の分化した細胞では ΔNp63 の発現が消失することが報告されている (22)。以上から、CK17 と ΔNp63 の発現様式を比較することで OSCC 組織中の分化の局在を把握できると考えられる。

本研究では、OSCC において高頻度に発現する CK を見出すために、まず CK17 と CK13 を含む 7 種類の CK の発現様式を検討した。その結果、CK17 が OSCC に特異的に高発現していることが分かった。そこで OSCC への悪性転化の指標を検討するために、白板症において CK17 と CK13 の発現様式を検索した。また、OSCC の分化と CK17 の発現との関連を検討するために、ΔNp63 の発現との比較を行い、分化の異なる OSCC 細胞株における CK17 の発現を検索した。
材料および方法

1. 対象患者
対象は、2005年1月から2010年12月に九州大学病院を受診し、病理組織学的にOSCCと診断された105例および病理組織学的所見をふまえて臨床的に白板症と診断された108例である。これらの生検材料を採取し、直ちに4%paraformaldehyde（PFA）に24〜48時間浸漬固定後、パラフィン包埋を行った。ミクロトーム（Leica Microsystems, Japan）にて5μmの切片を作製し、Hematoxylin and Eosin（HE）染色および免疫組織化学的に用いた。対照群として正常口腔粘膜上皮（normal oral epithelium: NOE）10例を用いた。OSCC 105例および白板症108例の内訳を表1および表2にそれぞれ示す。
| 項目 | 分類 | 症例数(%) |
|---------|-------|-----------|
| 性別 | 男 | 53 (50.5) |
| | 女 | 52 (49.5) |
| 年齢 | 65=> | 61 (61.0) |
| | 65< | 44 (39.0) |
| 分化度 | 高分化 | 72 (68.6) |
| | 中分化 | 31 (29.5) |
| | 低分化 | 2 (1.9) |
| T | 1 | 41 (39.0) |
| | 2 | 47 (44.8) |
| | 3 | 3 (2.9) |
| | 4 | 14 (13.3)|
| N | あり | 20 (19.0) |
| | なし | 85 (81.0) |
| YK分類 | 1 | 9 (8.6) |
| | 2 | 21 (20.0) |
| | 3 | 48 (45.7) |
| | 4C | 19 (18.1)|
| | 4D | 7 (6.7) |
| ステージ分類 | I | 42 (40.0) |
| | II | 33 (31.4) |
| | III | 8 (7.6) |
| | IV | 22 (21.0) |
| 部位 | 舌 | 63 (60.0) |
| | 舌肉 | 23 (21.9) |
| | 顱粘膜 | 8 (7.6) |
| | 口底 | 7 (6.7) |
| | 口蓋 | 4 (3.8) |
表2 口腔白板症108例の内訳

項目	分類	症例数(%)
性別	男	68 (63.2)
	女	40 (36.8)
年齢	65>	51 (48.1)
	65<	57 (53.8)
dysplasiaの程度	hyperplasia	74 (69.8)
	mild dysplasia	20 (18.9)
	moderate dysplasia	8 (7.5)
	severe dysplasia	6 (5.7)
部位	齒肉	45 (42.5)
	舌	44 (41.5)
	口盖	10 (9.4)
	頰粘膜	7 (6.6)
	口脣	1 (0.9)
	口底	1 (0.9)

2. 生検材料の病理組織学的診断

OSCCは組織学的悪性度分類として、grade分類(WHO)（23）と山本·小浜の分類(YK分類)(24)を用いた。WHOのgrade分類は腫瘍細胞の分化度に応じてgrade1(高分化型)、grade2(中分化型)、grade3(低分化型)に分類した。YK分類は腫瘍宿主境界部における浸潤様式に応じてgrade1, 2, 3, 4C, 4Dに分類した。

YK分類の基準を示す：

grade1: 腫瘍と宿主の境界線が明瞭である。

grade2: 境界線にやや乱れがある。

grade3: 境界線は不明瞭で大小の癌胞巢が散在している。

grade4C: 境界線は不明瞭で小さな癌胞巢が索状に浸潤している。
grade 4D: 境界線は不明瞭で癌細胞をworked し、浸潤性に浸潤している。

白板症においては WHO の診断基準に従って、dysplasia と hyperplasia に分類した (25)。さらに、dysplasia はその程度が低い順に応じて、軽度異形成 (mild dysplasia)、中等度異形成 (moderate dysplasia)、重度異形成 (severe dysplasia) に分類した。

3. 免疫組織学的解析

作製したパラフィン切片を xylene に 20 分間、さらに、100%、95%、85%、75% ethanol に各 5 分間浸漬させ、脱パラフィン処理および水和処理を行い、Target Retrieval Solution (DTRS; code S1700; Dako, Denmark) を用いて、抗原の賦活化処理 (121℃、5 分) を行う。切片を phosphate-buffered saline (PBS) にて洗浄後、内因性ペルオキシダーゼ除去のため、1.0% 酸化水素水を室温で 30 分反応させた。その後、抗体の非特異的吸着を防ぐために 10% ヤギ正常血清 (ヒストファインプロッキング試薬 II; Nichirei Bioscience, Japan) を室温で 1 時間反応させた。一次抗体は室温で 3 時間反応させた。使用した一次抗体を表 3 に示す。

抗体	細胞種	ディグ	購入先	動物種
CK13	KS-1A3	1:1000	Novocastra	Mouse
CK14	LL002	1:300	Abcam	Mouse
CK16	LL025	1:100	CHEMICON	Mouse
CK17	E3	1:60	Dako Cytomation	Mouse
CK18	RCK106	1:100	Millipore	Mouse
CK19	RCK108	1:50	Dako Cytomation	Mouse
CK20	Ks20.8	1:25	Dako Cytomation	Mouse
ΔNp63	4A4	1:100	Dako Cytomation	Mouse
二次抗体にはベルオキシダーゼ標識 IgG ポリクローナル抗体（Nichirei Bioscience）を用い、室温で 1 時間反応させた。PBS で 20 分間洗浄後、3,3’-diaminobenzidine・4HCl (DAB substrate kit; Nichirei Bioscience) にて可視化し、さらに、hematoxylin (Mayer’s Hematoxylin Solution; Wako, Japan) を用いて対比染色を行った。その後、75%, 85%, 95%, 100% ethanol に各 5 分間浸漬させ、脱水処理を行い、Mount-Quick (Daido Sangyo, Japan) を用いて封入した。陰性対象として一次抗体の代わりに 10% ヤギ正常血清を用いた。

二重免疫組織化学染色は、抗 CK17 モノクローナル抗体と抗 ΔNp63 モノクローナル抗体を用いて行った。抗体の非特異的吸着を防いだ後、抗 ΔNp63 モノクローナル抗体を室温にて 3 時間反応させた。二次抗体として MACH 2 Double Stain 2 (BIOCARE MEDICAL, USA) を用いて室温にて 30 分間反応させ、Perma Blue (DBS, USA) にて可視化した。さらに、抗 CK17 モノクローナル抗体を室温にて 3 時間反応させ、二次抗体として MACH 2 Double Stain 1 (BIOCARE MEDICAL) を用い室温にて 30 分間反応後、DAB Chromogen Kit (BIOCARE MEDICAL) にて可視化した。10 分間水洗し、その後 VectaMount AQ (Vector Laboratories, USA) にて封入した。陰性対象として、一次抗体の代わりに 10% ヤギ正常血清を用いた。

また、切片より 0.5 mm²の範囲を無作為に 3 か所選択して、DAB にて標識された陽性細胞数を計測し、それらを全上皮系細胞数で除したものを陽性率として算出した。評価方法は、発現細胞が 60%以上を強陽性 (+++) とし、59～30%を陽性 (++), 29～5%を弱陽性 (+), 5%未満を陰性 (-) とした。さらに、60%以上の中のあるものを高発現、60%未満を低発現とし、臨床所見との関連を統計学的に検討した。
した。

4. 細胞培養

本研究では、口腔扁平上皮癌細胞株である HSC-2 (高分化型口腔癌由来)、HSC-3 (低分化型口腔癌由来)、および SAS (低分化型口腔癌由来) 細胞、また同一症例由来の SQUU-A (非転移株) および SQUU-B (転移株) 細胞、さらに正常ヒトケラチノサイト由来細胞株である HaCaT 細胞を用いた。培地には、Dulbecco’s modified Eagle’s medium (DMEM) /F-12 (Sigma-Aldrich, USA) に 10% fetal bovine serum (FBS) (Sigma-Aldrich)、100 units/ml penicillin および 100 units/ml streptomycin (P/S) を添加したものを用い、37℃、5%CO₂ 存在下で細胞培養を行った。

5. RNA の抽出および complementary DNA (cDNA) の合成

RNA の抽出は acid guanidium-phenol-cloroform 法を用いた。まず、培養皿中の細胞に TRIzol® (Invitrogen, USA) を 1.0 ml を加え、セルスクリーパーにて粉碎した。その後、これらに 0.2 ml の chloroform (Nacalai tesque, Japan) を加えて摂拌し、4℃、14,000 rpm で 15 分間遠心分離を行った後、RNA を含む水層を採取した。これに 1 ml の isopropanol (Nacalai tesque) を加えて摂拌後、4℃、14,000 rpm で 10 分間遠心分離し、上清の除去後に得られた RNA ペレットを 75% ethanol (Nacalai tesque) にて洗浄した。さらに、4℃、14,000 rpm で 5 分間遠心分離し、再沈殿させたペレットを乾燥させ、50 µl の 0.1% diethyl pyrocarbonate (DEPC) 処理水 (Nacalai tesque) に溶解した。その後、吸光度計 (NANO DROP 1000; Thermo
Scientific, USA) にて total RNA の濃度を測定した。

cDNA の合成には、DEPC 処理水に約 2.0 µg の total RNA、25 units/µl の recombinant RNase inhibitor (Nacalai tesque) を 1.0 µl、100 mM Tris-HCl (pH 8.8)、500 mM potassium chloride および 0.8% Nonidet P40 を含む 10×Taq DNA Polymerase Buffer を 2.0 µl、25 mM magnesium chloride solution (以上、Bio Basic, Canada) 4.0 µl、2.0 mM dNTPmix (Toyobo, Japan) を 2.0 µl、50 µm Random Hexamers を 1.0 µl 加えて合計 20 µl として、42℃で 15 分間インキュベートした。

その後、99℃で 5 分間加温して酵素を失活させ、5℃で 5 分間冷却し、これを mRNA の発現解析に用いた。

6. Real-time reverse transcriptase polymerase chain reaction (RT PCR) 法による mRNA の発現解析

Real-time PCR は Brilliant® II SYBR® Green QPCR Master Mix (Stratagene, USA) を用いて行った。滅菌水に Master Mix を 10 µl、template DNA を 10 ng、プライマーを 1 µl 加え、全反応量を 20 µl とした。反応条件は、熱変性は 95℃で 1 サイクル目が 5 分、2 サイクル目以降は 10～30 秒間で行い、伸長反応は 72℃、10～30 秒間で行い、伸長反応は 72℃、10～30 秒間とし、全 45 サイクルの増幅を行った。

mRNA の発現を解析する分子は CK17[Hs KRT17 1 SG QuantiTect Primer Assay (200) (Cat. QT00001680)] である。Relative Quantification (RQ) は STRATAGENE MX3000 (Agilent Technologies, USA) にて測定した。また、mRNA の発現量を定量するため、housekeeping 遺伝子である glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) を用いて補正し、ΔΔCt 法 (26) により相対的発現量を算出した。なお、得られた PCR 産物を 2.0%アガロースゲル (Invitrogen) 上で電気泳動を行い、ethidium bromide 染色液に、紫外線により可視化した。

7. 統計

統計処理には、student の t 検定、Welch の t 検定、Mann-Whitney U 検定もしくは χ^2 検定を用い、p<0.05 の場合を有意差ありとした。
結果

I．OSCCや白板症、NOEにおけるCK17の発現

I-1. OSCCおよびNOEにおける7種類のCKの発現様式

本研究では、まずOSCCおよびNOEの生検組織材料における7種類のCKの発現を検索するため免疫組織化学的染色を行った（図1, 2）。

CKは細胞質基質に限局して発現しており、OSCCにおける発現頻度はCK13が3/105例（2.9%）、CK14が102/105例（97.1%）、CK16が60/105例（57.1%）、CK17が101/105例（96.2%）、CK18が21/105例（20.0%）、CK19が39/105例（37.1%）、CK20が22/105例（21.0%）であった。CK13はOSCCにおいてほとんど発現がみられず、一部の症例において癌真珠の角化部分に発現を認めのみであった（図1-1; e）。CK14はOSCC組織全体において発現を認めた（図1-1; f)。CK16はOSCC組織中心部に弱く発現を認めた（図1-1; g)。CK17はOSCC組織に強く発現を認めた。特に癌細胞の最外層から2、3層には発現がみられず、内側において強い発現を認めた（図1-1; h)。CK18は腺組織に発現を認めたが、OSCC組織においては発現を認めるのみであった（図1-2; d)。CK19は発現を認めるOSCC細胞が組織内に散在していた（図1-2; e)。CK20はOSCC組織全体に弱い発現を認めた（図1-2; f)。
図 1-1 OSCC における 7 種類の CK の発現
OSCC において CK17 は腫瘍の中心部に発現を認めた (h)。CK13 の発現はみられなかった (e)。CK14 は OSCC 組織全体に発現を認めた (f)。CK16 は OSCC の中心部に弱い発現を認めた (g)。 (scale bars: 100 μm)
図 1-2 OSCC における 7 種類の CK の発現
CK18 は腫瘍中心部において弱い発現を認めた (d)。CK19 は OSCC 組織全体に発現を認める細胞が散在していた (e)。CK20 は OSCC 組織の一部に弱い発現を認めた (f)。 (scale bars: 100 μm)
NOEにおける発現頻度は CK13 が 10/10 例 (100%)、CK14 が 10/10 例 (100%)、
CK16 が 4/10 例 (40%)、CK17 が 0/10 例 (0%)、CK18 が 2/10 例 (20%)、CK19
が 4/10 例 (40%)、CK20 が 0/10 例 (0%) であった。CK13 および CK16 は有棘
層に発現を認めた。CK14 および CK19 は基底層に発現を認めた。CK18 は一部
の基底層に発現を認めた。CK17 および CK20 は発現がみられなかった (図 2)。
CK17 は NOE に比較して、OSCC において有意に発現頻度が高かった (図 3; χ^2 検
定、$p<0.01$)。また、CK13 は OSCC において発現がみられず、NOE において発
現頻度が有意に高かった (図 3; χ^2 検定、$p<0.01$)。他の CK は、NOE と OSCC に
おける発現頻度の間に有意な差は認めなかった。以上より、CK17 が OSCC にお
いて特異的に発現することが分かった。
図2 NOEにおける7種類のCKの発現
NOEにおいてCK17の発現はみられなかった。CK13、CK16は有棘層において発現を認めた。CK14やCK18、CK19は基底層において発現を認めた。CK20の発現はみられなかった。(scale bars: 100 μm)
図3 OSCCとNOEにおけるCKの発現頻度の比較
CK17はNOEと比較して、OSCCにおいて有意に発現頻度が高かった。また、CK13はOSCCと比較して、NOEにおいて発現頻度が有意に高かった。その他のCKはOSCCとNOEにおける発現頻度の間に有意な差は認めなかった。統計処理にはχ²検定を用いた。
I-2. OSCCにおけるCK17の発現様式と臨床病理学的所見との比較

分化度に着目すると、CK17は高分化型OSCCにおいて癌胞巣の内側に発現を認め、最外層には発現がみられなかった(図4; d)。また中分化型OSCCにおいては全体的に発現を認めたが、高分化型OSCCと比較すると弱い発現であった(図4; e)。低分化型OSCCでは一部のOSCC細胞に発現を認めるのみで、CK17の発現はほとんどみられなかった(図4; f)。

さらに、CK17の高発現症例に着目すると、中分化型OSCCや低分化型OSCCにおいて1/33例(3.0%)のみCK17の高発現を認めたのに対し、高分化型OSCCにおいては23/73例(31.5%)と有意にCK17の高発現を認めた(表4; χ²検定、p<0.01)。また、他の臨床病理学的所見との間には有意な発現はみられなかった。

図5に中分化型OSCCの代表的症例を示すが、CK17はNOEにおいて発現がみられず、dysplasiaにおいて発現を認めた(図5; B, d)。また、癌胞巣では最外層には発現がみられなかったが、内側のOSCC細胞において発現を認め(図5; e)。さらに腫瘍の浸潤先端部に散在するOSCC細胞には発現がみられなかった(図5; f)。
図4 CK17を発現するOSCCの代表的症例
高分化型OSCCにおいてCK17は癌細胞の内側に発現を認めた(d)。中分化型OSCCにおいてCK17は全体的に発現を認めたが、高分化型OSCCと比較すると弱かった(e)。低分化型OSCCでは、CK17は一部のOSCC細胞に発現を認めるのみであった(f)。（scale bars: 100 μm）
項目	分類	症例数	OSCCにおけるCK17の発現頻度	有意差			
			-	+	++	+++	
性別	男	53	2	11	26	13	N.S.
	女	52	2	11	29	11	N.S.
年齢	65>	61	1	14	30	16	
	65<	44	3	8	25	8	N.S.
分化度	高分化	72	4	10	35	23	
	中分化	33	0	12	20	1	p<0.01
	低分化						
T	1	41	4	10	21	6	
	2	47	0	7	26	14	
	3	3	0	2	1	0	
	4	14	0	3	7	4	N.S.
N	あり	20	0	4	10	6	
	なし	85	4	18	45	18	N.S.
腫瘍浸潤様式	1	9	2	1	5	1	
	2	21	1	4	11	5	
	3	48	1	7	28	13	
	4C	19	0	6	9	4	
	4D	7	0	4	2	1	
ステージ分類	I	42	4	10	21	7	
	II	33	0	4	19	10	
	III	8	0	4	3	1	
	IV	22	0	4	12	6	N.S.
部位	舌	63	3	15	31	14	
	硬肉	23	0	3	11	9	
	頚粘膜	8	0	2	6	0	
	口底	7	1	2	3	1	
	口蓋	4	0	0	4	0	N.S.

* CK17を免疫組織化学的に検索した。発現頻度の評価方法は「材料と方法」に示している。
* 症例数を示す。
* χ²検定を行った。
* 分化度はWHO分類による。
* 腫瘍浸潤様式は山本・小渕分類による。
* ステージ分類はWHO分類による。
* N.S.: not significant
图 5. CK17 在根尖囊肿中分化型 OSCC 的镜下表现。
I -3. 白板症における CK17 および CK13 の発現様式の比較

次に、OSCC にて対称的であった CK17 および CK13 の発現を、白板症において免疫組織化学的に検索した（図 6）。

白板症において、CK17 と CK13 はともに上皮の有棘層および顆粒層に発現を認めた。白板症全体における CK17 の発現頻度は 55/108 例 (50.9%)、CK13 の発現頻度は 63/108 例 (58.3%) であった。dysplasia と hyperplasia の境界に注目すると、同一症例の連続切片にて、dysplasia の部分において CK17 の強い発現を認めたが（図 7; a）、その一方で hyperplasia の部分において CK13 の強い発現を認め、dysplasia の有無により CK17 と CK13 の発現が反転していた（図 7)。

そこで、CK17 の発現頻度を dysplasia の有無で分類すると、hyperplasia 症例において 36/74 例 (48.6%) で発現を認めたのに対して、dysplasia 症例においては 19/34 例 (55.9%) で発現を認めた。さらに、CK17 の高発現症例に着目すると、hyperplasia 症例において 3/74 例 (4.0%) のみ CK17 の高発現を認めたのに対して、dysplasia 症例においては 8/34 例 (23.5%) と有意に CK17 の高発現を認めた（表 5; χ2 検定、p<0.01)。

また、CK13 の発現頻度を dysplasia の有無で分類すると、hyperplasia 症例において 52/74 例 (70.3%) で発現を認めたのに対して、dysplasia 症例においては 11/34 例 (32.4%) で発現を認めた。また、CK13 の高発現症例に着目すると、hyperplasia 症例において 23/74 例 (31.3%) と有意に CK13 の高発現を認めたのに対して、dysplasia 症例において CK13 の高発現はみられなかった（表 5; χ2 検定、p<0.01)。

また、CK17 が高発現し CK13 が低発現している 11 症例の中で 8/11 例が
dysplasia 症例であり、CK17 が低発現し CK13 が高発現している 23 症例は全て hyperplasia 症例であった（表 6；χ² 検定、p<0.01）。

NOE において CK17 の発現頻度は 0/10 (0%) であり、CK13 の発現頻度は 10/10 (100%) であった。hyperplasia 症例において CK17 の発現頻度は 35/74 (48.6%) であり、CK13 の発現頻度は 52/74 (70.3%) であった。dysplasia 症例において CK17 の発現頻度は 18/34 (54.5%) であり、CK13 の発現頻度は 11/34 (32.4%) であった。

OSCC において CK17 の発現頻度は 102/105 (96.2%) であり、CK13 の発現頻度は 3/105 (2.9%) であった。NOE から OSCC へと悪性度の高い組織になるにつれて、CK17 は発現頻度が増加し、CK13 は発現頻度が減少した。（図 8）
図7 dysplasia の境界における CK17 と CK13 の発現
CK17 は dysplasia の部分における発現を認め (a)、一方 CK13 は hyperplasia の部分における発現を認めた (b)。CK17 と CK13 との発現により明らかな境界が確認できる。(scale bars: 100 μm)
表 5

NS, N.S., N.S.
0 0 0 1 1
0 0 1 1 1
1 1 2 4 7
2 3 3 8 10
5 10 12 20 44
19 10 14 28 45
0 1 4 6 9 19
13 17 21 29 57
11 19 22 26 74
2 7 9 20 40
6 9 13 20 68
10 14 18 24 37
1 4 7 11 15
3 6 9 12 15

注：CKI7 与肌酸激酶同工酶的比值来检测。最终由临床专科医师进行综合判断。
表 6

dysplasia の有無による CK17 および CK13 の発現の相関

	dysplasia	hyperplasia	合計	有意差b
CK17 高発現 / CK13 低発現	8	3	11	
CK17 低発現 / CK13 高発現	0	23	23	p<0.01

a 異型の程度は WHO 分類による。
b χ² 検定を行った。
c CK17 と CK13 を免疫組織化学的に検索した。発現頻度の評価方法は「材料と方法」に示している。

図 8 NOE や白板症、OSCC における CK17 と CK13 の発現頻度
CK17 は NOE において発現がみられず、悪性度が上がると発現頻度は増加した。
CK13 の発現頻度は NOE において最も高く、悪性度が上がると発現頻度は減少した。