Influence of quark masses and strangeness degrees of freedom on inhomogeneous chiral phases

Michael Buballa

Theoriezentrum, Institut für Kernphysik, TU Darmstadt

XIIIth Quark Confinement and the Hadron Spectrum, Maynooth University, Ireland, August 1-6, 2018
Introduction

QCD phase diagram (standard picture):

$\langle \bar{q}q \rangle$, $\langle q\bar{q} \rangle$ constant in space

How about non-uniform phases?
Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle \bar{q}q \rangle, \langle qq \rangle$ constant in space
Introduction

- QCD phase diagram (standard picture):

- assumption: $\langle \bar{q}q \rangle$, $\langle qq \rangle$ constant in space

- How about non-uniform phases?
Introducing

NJL model, homogeneous phases only

\[\langle \bar{q}q \rangle = 0 \]

\[\langle \bar{q}q \rangle = \text{const.} \]

[D. Nickel, PRD (2009)]

Inhomogeneous phase rather robust under model extensions and variations

[D. Nickel, PRL (2009)]

This talk: Influence of strange quarks and bare quark masses

August 3, 2018 | Michael Buballa | 3
Introduction

NJL model, including inhomogeneous phase

\[\langle \bar{q}q \rangle = 0 \]

\[\langle \bar{q}q \rangle = \text{const.} \]

inhom.

[D. Nickel, PRD (2009)]

[1st-order phase boundary completely covered by the inhomogeneous phase!]

Critical point \(\rightarrow \) Lifshitz point

[D. Nickel, PRL (2009)]

Inhomogeneous phase rather robust under model extensions and variations

[MB, S. Carignano, PPNP (2015)]

This talk: Influence of strange quarks and bare quark masses

August 3, 2018 | Michael Buballa | 3
Introduction

NJL model, including inhomogeneous phase

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point
 [D. Nickel, PRL (2009)]

\[\langle \bar{q} q \rangle = 0 \]

\[\langle \bar{q} q \rangle = const. \]

inhom.

[D. Nickel, PRD (2009)]
Introduction

NJL model, including inhomogeneous phase

\[\langle \bar{q}q \rangle = 0 \]

\[\langle \bar{q}q \rangle = \text{const.} \]

inhom.

1st-order phase boundary completely covered by the inhomogeneous phase!

Critical point → Lifshitz point
[D. Nickel, PRL (2009)]

Inhomogeneous phase rather robust under model extensions and variations
[MB, S. Carignano, PPNP (2015)]
Introduction

- 1st-order phase boundary completely covered by the inhomogeneous phase!
- Critical point \rightarrow Lifshitz point
 [D. Nickel, PRL (2009)]
- Inhomogeneous phase rather robust under model extensions and variations
 [MB, S. Carignano, PPNP (2015)]
- This talk: Influence of strange quarks and bare quark masses
1st-order phase boundary completely covered by the inhomogeneous phase!

Critical point \rightarrow Lifshitz point
[D. Nickel, PRL (2009)]

Inhomogeneous phase rather robust under model extensions and variations
[MB, S. Carignano, PPNP (2015)]

This talk:
Influence of strange quarks (and bare quark masses)
Digression: Localized quark matter

- Particular 1D modulation (most favored solution known so far):

\[
\langle \bar{q}q \rangle(z) \propto \sqrt{\nu} \Delta \text{sn}(\Delta z|\nu) \rightarrow \begin{cases}
\sqrt{\nu} \Delta \sin(\Delta z) & \text{for } \nu \rightarrow 0 \\
\Delta \tanh(\Delta z) & \text{for } \nu \rightarrow 1
\end{cases}
\]

\[\mu = 345 \text{ MeV}\]

If it was 3D (but it isn’t yet):

Smooth transition from uniform quark matter to localized “baryons”!

- Revisit chiral solitons! [Alkofer, Reinhardt, Weigel; Goeke et al.; Ripka; ...]
Including strange quarks

2-flavor NJL: CP \rightarrow LP

Is this also true in QCD?

No proof yet, but similar picture from QCD Dyson-Schwinger studies

If true, would it still hold for 3 flavors?

3-flavor QCD with very small quark masses:

CP reaches T-axis?

\Rightarrow LP reaches T-axis

chance to be studied on the lattice!

Here: Ginzburg-Landau study of CP and LP for 3-flavor NJL
Motivation

- 2-flavor NJL: CP \rightarrow LP

[D. Nickel, PRD (2009)]
Motivation

- 2-flavor NJL: CP → LP
- Is this also true in QCD?

[D. Nickel, PRD (2009)]
Motivation

- 2-flavor NJL: CP → LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies

[D. Müller et al. PLB (2013)]
Motivation

- 2-flavor NJL: CP → LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?

[D. Müller et al. PLB (2013)]
2-flavor NJL: CP \rightarrow LP

Is this also true in QCD?

No proof yet, but similar picture from QCD Dyson-Schwinger studies

If true, would it still hold for 3 flavors?

3-flavor QCD with very small quark masses:

- CP reaches T-axis

\Rightarrow LP reaches T-axis

- chance to be studied on the lattice!

[from de Forcrand et al., POSLAT 2007]
Motivation

- 2-flavor NJL: CP → LP
- Is this also true in QCD?
- No proof yet, but similar picture from QCD Dyson-Schwinger studies
- If true, would it still hold for 3 flavors?
- 3-flavor QCD with very small quark masses:
 - CP reaches T-axis
 - LP reaches T-axis
 - chance to be studied on the lattice!

- Here: Ginzburg-Landau study of CP and LP for 3-flavor NJL

[Diagram from de Forcrand et al., POSLAT 2007]
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[
\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3 x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b}|\nabla \Delta(\vec{x})|^2 + \ldots \right\}
\]

- \(\Delta(\vec{x})\): order parameter function, \(a_n = a_n(T, \mu)\): GL parameters
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x}) |\Delta|^4 + a_{4,b} |\nabla\Delta(\vec{x})|^2 + \ldots \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- case 1: \(a_{4,a}, a_{4,b} > 0 \)
 - \(a_2 > 0 \) \(\Rightarrow \) restored phase
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b}|\vec{\nabla}\Delta(\vec{x})|^2 + \ldots \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- **case 1:** \(a_{4,a}, a_{4,b} > 0 \)
 - \(a_2 < 0 \) \(\Rightarrow \) hom. broken phase

- **case 2:** \(a_{4,a} < 0, a_{4,b} > 0 \)
 - 1st-order phase transition at \(a_2 > 0 \)

- **case 3:** \(a_{4,a}, b < 0 \)
 - inhomogeneous phase possible

- Tricritical point (CP): \(a_2 = a_{4,a} = 0 \)
- Lifshitz point (CP): \(a_2 = a_{4,a} = b = 0 \)
- 2-flavor NJL: \(a_{4,a} = a_{4,b} \Rightarrow \text{CP} = \text{LP} \) [Nickel, PRL (2009)]
Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b}|\vec{\nabla}\Delta(\vec{x})|^2 + \ldots \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- **case 1:** \(a_{4,a}, a_{4,b} > 0 \)
 - 2nd-order p.t. at \(a_2 = 0 \)
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[
\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3 x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b}|\nabla \Delta(\vec{x})|^2 + \ldots \right\}
\]

- \(\Delta(\vec{x})\): order parameter function, \(a_n = a_n(T, \mu)\): GL parameters

- case 1: \(a_{4,a}, a_{4,b} > 0\)
 - 2nd-order p.t. at \(a_2 = 0\)

- case 2: \(a_{4,a} < 0, a_{4,b} > 0\)
 - 1st-order phase trans. at \(a_2 > 0\)
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[
\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3 x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b} |\nabla \Delta(\vec{x})|^2 + \ldots \right\}
\]

- \(\Delta(\vec{x})\): order parameter function, \(a_n = a_n(T, \mu)\): GL parameters

- **case 1**: \(a_{4,a}, a_{4,b} > 0\)
 - 2nd-order p.t. at \(a_2 = 0\)

- **case 2**: \(a_{4,a} < 0, a_{4,b} > 0\)
 - 1st-order phase trans. at \(a_2 > 0\)
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[
\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b} |\vec{\nabla}\Delta(\vec{x})|^2 + \ldots \right\}
\]

- \(\Delta(\vec{x})\): order parameter function, \(a_n = a_n(T, \mu)\): GL parameters

- **case 1**: \(a_{4,a}, a_{4,b} > 0\)
 - 2nd-order p.t. at \(a_2 = 0\)

- **case 2**: \(a_{4,a} < 0, a_{4,b} > 0\)
 - 1st-order phase trans. at \(a_2 > 0\)

\[\Rightarrow \text{tricritical point (CP): } a_2 = a_{4,a} = 0\]
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b}|\vec{\nabla}\Delta(\vec{x})|^2 + ... \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- **case 1:** \(a_{4,a}, a_{4,b} > 0 \)
 - 2nd-order p.t. at \(a_2 = 0 \)
 \[\Rightarrow \text{tricritical point (CP): } a_2 = a_{4,a} = 0 \]

- **case 2:** \(a_{4,a} < 0, a_{4,b} > 0 \)
 - 1st-order phase trans. at \(a_2 > 0 \)

- **case 3:** \(a_{4,b} < 0 \)
 - inhomogeneous phase possible
Ginzburg-Landau analysis

- Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3 x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x})|\Delta|^4 + a_{4,b} |\vec{\nabla}\Delta(\vec{x})|^2 + \ldots \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- **case 1:** \(a_{4,a}, a_{4,b} > 0 \)
 - 2nd-order p.t. at \(a_2 = 0 \) \(\Rightarrow \) tricritical point (CP): \(a_2 = a_{4,a} = 0 \)

- **case 2:** \(a_{4,a} < 0, a_{4,b} > 0 \)
 - 1st-order phase trans. at \(a_2 > 0 \)

- **case 3:** \(a_{4,b} < 0 \) \(\Rightarrow \) Lifshitz point (CP): \(a_2 = a_{4,b} = 0 \)
Ginzburg-Landau analysis

Expansion of the thermodynamic potential:

\[\Omega[\Delta] = \Omega[0] + \frac{1}{V} \int d^3x \left\{ a_2 |\Delta(\vec{x})|^2 + a_{4,a}(\vec{x}) |\Delta|^4 + a_{4,b} |\nabla \Delta(\vec{x})|^2 + \ldots \right\} \]

- \(\Delta(\vec{x}) \): order parameter function, \(a_n = a_n(T, \mu) \): GL parameters

- case 1: \(a_{4,a}, a_{4,b} > 0 \)
 - 2nd-order p.t. at \(a_2 = 0 \)
 \[\Rightarrow \text{tricritical point (CP): } a_2 = a_{4,a} = 0 \]

- case 2: \(a_{4,a} < 0, \ a_{4,b} > 0 \)
 - 1st-order phase trans. at \(a_2 > 0 \)

- case 3: \(a_{4,b} < 0 \)
 - inhomogeneous phase possible

- 2-flavor NJL: \(a_{4,a} = a_{4,b} \) \[\Rightarrow \text{CP} = \text{LP} ! \]
 [Nickel, PRL (2009)]
3-flavor NJL model

- **Lagrangian:** \(\mathcal{L} = \bar{\psi} (i \partial - \hat{m}) \psi + \mathcal{L}_4 + \mathcal{L}_6 \)
 - fields and bare masses: \(\psi = (u, d, s)^T \), \(\hat{m} = \text{diag}_f(0, 0, m_s) \)
 - 4-point interaction: \(\mathcal{L}_4 = G \sum_{a=0}^{8} \left[(\bar{\psi} \tau_a \psi)^2 + (\bar{\psi} i \gamma_5 \tau_a \psi)^2 \right] \)
 - 6-point ('t Hooft) interaction: \(\mathcal{L}_6 = -K \left[\det_f \bar{\psi} (1 + \gamma_5) \psi + \det_f \bar{\psi} (1 - \gamma_5) \psi \right] \)
3-flavor NJL model

- Lagrangian: \(\mathcal{L} = \bar{\psi}(i\hat{\partial} - \hat{m})\psi + \mathcal{L}_4 + \mathcal{L}_6 \)
 - fields and bare masses: \(\psi = (u, d, s)^T \), \(\hat{m} = \text{diag}_f(0, 0, m_s) \)
 - 4-point interaction: \(\mathcal{L}_4 = G \sum_{a=0}^{8} \left[(\bar{\psi}\tau_a\psi)^2 + (\bar{\psi}\gamma_5\tau_a\psi)^2 \right] \)
 - 6-point (‘t Hooft) interaction: \(\mathcal{L}_6 = -K \left[\text{det}_f\bar{\psi}(1 + \gamma_5)\psi + \text{det}_f\bar{\psi}(1 - \gamma_5)\psi \right] \)

- Mean fields:
 - light sector: \(\langle \bar{u}u \rangle = \langle \bar{d}d \rangle \equiv \frac{S}{2}, \quad \langle \bar{u}i\gamma_5u \rangle = -\langle \bar{d}i\gamma_5d \rangle \equiv \frac{P}{2} \)
 \(\Rightarrow \langle \bar{\psi}_e\psi_e \rangle \equiv \langle \bar{u}u \rangle + \langle \bar{d}d \rangle = S, \quad \langle \bar{\psi}_e\gamma_5\tau_3\psi_e \rangle \equiv \langle \bar{u}i\gamma_5u \rangle - \langle \bar{d}i\gamma_5d \rangle = P \)
 - strange sector: \(\langle \bar{s}s \rangle \equiv S_s, \quad \langle \bar{s}i\gamma_5s \rangle = 0 \)
 - no flavor-nondiagonal mean fields
 - allow for inhomogeneities: \(S = S(\vec{x}), \quad P = P(\vec{x}), \quad S_s = S_s(\vec{x}) \)
Mean-field Thermodynamic Potential

\[\Omega_{MF}(T, \mu) = -\frac{T}{V} \text{Tr} \log (i\partial + \mu \gamma^0 - \hat{M}) + \frac{1}{V} \int d^3x \, \mathcal{V}(\vec{x}) \]

- dressed “masses”: \[\hat{M}_{u,d}(\vec{x}) = -(2G - KS_s(\vec{x})) \left(S(\vec{x}) \pm i\gamma_5 P(\vec{x}) \right) \]

\[\hat{M}_s(\vec{x}) = m_s - 4GS_s(\vec{x}) + \frac{1}{2} K \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]

- “potential field”: \[\mathcal{V}(\vec{x}) = G \left(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x}) \right) - KS_s(\vec{x}) \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]
Mean-field Thermodynamic Potential

\[\Omega_{\text{MF}}(T, \mu) = -\frac{T}{V} \text{Tr} \log \left(i \hat{\mathcal{D}} + \mu \gamma^0 - \hat{M} \right) + \frac{1}{V} \int d^3 x \mathcal{V}(\vec{x}) \]

- dressed “masses”:
 \[\hat{M}_{u,d}(\vec{x}) = -(2G - KS_s(\vec{x}))(S(\vec{x}) \pm i\gamma^5 P(\vec{x})) \]
 \[\hat{M}_s(\vec{x}) = m_s - 4GS_s(\vec{x}) + \frac{1}{2} K \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]

- “potential field”:
 \[\mathcal{V}(\vec{x}) = G \left(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x}) \right) - KS_s(\vec{x}) \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]

- \(K = 0 \): light and strange sectors decouple!

\[\hat{M}_{u,d} = -2G \left(S \pm i\gamma^5 P \right), \quad \hat{M}_s(\vec{x}) = m_s - 4GS_s; \quad \mathcal{V} = G \left(S^2 + P^2 \right) + 2GS_s \]
Mean-field Thermodynamic Potential

\[\Omega_{MF}(T, \mu) = -\frac{T}{V} \text{Tr} \log \left(i\hat{\theta} + \mu \gamma^0 - \hat{M} \right) + \frac{1}{V} \int d^3x \, V(\vec{x}) \]

- dressed “masses”:
 \[\hat{M}_{u,d}(\vec{x}) = -(2G - K S_s(\vec{x})) \left(S(\vec{x}) \pm i\gamma_5 P(\vec{x}) \right) \]

\[\hat{M}_s(\vec{x}) = m_s - 4GS_s(\vec{x}) + \frac{1}{2} K \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]

- “potential field”:
 \[V(\vec{x}) = G \left(S^2(\vec{x}) + P^2(\vec{x}) + 2S_s(\vec{x}) \right) - KS_s(\vec{x}) \left(S^2(\vec{x}) + P^2(\vec{x}) \right) \]

\[K = 0: \quad \text{light and strange sectors decouple!} \]

\[\hat{M}_{u,d} = -2G \left(S \pm i\gamma_5 P \right), \quad \hat{M}_s(\vec{x}) = m_s - 4GS_s; \quad V = G \left(S^2 + P^2 \right) + 2GS_s \]

- Chiral density wave ansatz for the light sector:
 \[S(\vec{x}) = \phi_0 \cos(\vec{q} \cdot \vec{x}), \quad P(\vec{x}) = \phi_0 \sin(\vec{q} \cdot \vec{x}), \quad S_s = \phi_s = \text{const} \]

\[\Rightarrow \quad \hat{M}_{u,d} = \Delta e^{\pm i\gamma_5 \vec{q} \cdot \vec{x}}, \quad \Delta \equiv -(2G - K\phi_s)\phi_0, \]

\[M_s = \text{const}., \quad V = \text{const}. \]

consistent with the literature [Moreira et al., PRD (2014)]
Ginzburg-Landau expansion

- Difficulty at $m_s \neq 0$: No $SU(3)_L \times SU(3)_R$ restored solution
- $m_u = m_d = 0$
 \Rightarrow Expand about two-flavor restored solution $S = P = 0$:

\[
\Omega_{MF}[S, P, S_s] = \Omega_{MF}[0, 0, S_s^{(0)}] + \frac{1}{V} \int d^3x \Omega_{GL}[S(\vec{x}), P(\vec{x}), X(\vec{x})]
\]

- strange condensate: $S_s(\vec{x}) = S_s^{(0)} + X(\vec{x})$
- $S_s^{(0)}$: homogeneous solution of the gap equation for $S = P = 0$ at given T and μ
- Expand Ω_{GL} in S, P and X, and their gradients.
Ginzburg-Landau potential

Define: \(\Delta_\ell = -2G(S + iP) \), \(\Delta_s = -4GX \)

\([\Delta_i] = \text{(mass)} \rightarrow \) counting scheme: \(\mathcal{O}(\vec{V}) = \mathcal{O}(\Delta_i) \)
Define: \[\Delta_\ell = -2G(S + iP), \quad \Delta_s = -4GX \]

\[[\Delta_i] = \text{(mass)} \quad \rightarrow \quad \text{counting scheme: } O(\vec{\nabla}) = O(\Delta_i) \]

Resulting structure:

\[
\Omega_{GL} = a_2 |\Delta_\ell|^2 + a_{4,a} |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2 \\
+ b_1 \Delta_s + b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2 \\
+ c_3 |\Delta_\ell|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_\ell|^2 (\vec{\nabla} \Delta_s)^2 \\
+ O(\Delta_i^5)
\]
Define: \(\Delta_\ell = -2G(S + iP), \quad \Delta_s = -4GX \)

\[[\Delta_i] = \text{(mass)} \quad \Rightarrow \quad \text{counting scheme: } O(\vec{\nabla}) = O(\Delta_i) \]

Resulting structure:

\[
\Omega_{GL} = a_2 |\Delta_\ell|^2 + a_{4,a} |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2
\]
\[
+ b_1 \Delta_s + b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\vec{\nabla} \Delta_s)^2
\]
\[
+ c_3 |\Delta_\ell|^2 \Delta_s + c_4 |\vec{\nabla} \Delta_\ell|^2 (\vec{\nabla} \Delta_s)^2 + O(\Delta_i^5)
\]

Stationarity condition:

\[
\frac{\partial \Omega_{GL}}{\partial \Delta_s} \bigg|_{\Delta_\ell=\Delta_s=0} = 0 \quad \Leftrightarrow \quad b_1 = 0
\]
Ginzburg-Landau potential

Define: $\Delta_\ell = -2G(S + iP)$, $\Delta_s = -4GX$

$[\Delta_i] = \text{(mass)}$ → counting scheme: $O(\vec{\nabla}) = O(\Delta_i)$

Resulting structure:

$$\Omega_{GL} = a_2|\Delta_\ell|^2 + a_{4,a}|\Delta_\ell|^4 + a_{4,b}|\vec{\nabla}\Delta_\ell|^2 + b_2\Delta_s^2 + b_3\Delta_s^3 + b_{4,a}\Delta_s^4 + b_{4,b}(\vec{\nabla}\Delta_s)^2$$

$$+ c_3|\Delta_\ell|^2\Delta_s + c_4|\vec{\nabla}\Delta_\ell|^2(\vec{\nabla}\Delta_s)^2 + O(\Delta_i^5)$$

Stationarity condition: $\frac{\partial\Omega_{GL}}{\partial\Delta_s}|_{\Delta_\ell=\Delta_s=0} = 0 \iff b_1 = 0$
Ginzburg-Landau potential

- Define: \(\Delta_\ell = -2G(S + iP), \quad \Delta_s = -4GX \)

 \([\Delta_i] = \text{(mass)} \rightarrow \text{counting scheme: } O(\bar{\nabla}) = O(\Delta_i)\)

- Resulting structure:

 \[
 \Omega_{GL} = a_2 |\Delta_\ell|^2 + a_{4,a} |\Delta_\ell|^4 + a_{4,b} |\bar{\nabla}\Delta_\ell|^2 \\
 + b_2 \Delta_s^2 + b_3 \Delta_s^3 + b_{4,a} \Delta_s^4 + b_{4,b} (\bar{\nabla}\Delta_s)^2 \\
 + c_3 |\Delta_\ell|^2 \Delta_s + c_4 |\bar{\nabla}\Delta_\ell|^2 (\bar{\nabla}\Delta_s)^2 + O(\Delta_i^5)
 \]

- Stationarity condition:

 \[
 \frac{\partial \Omega_{GL}}{\partial \Delta_s} \bigg|_{\Delta_\ell=\Delta_s=0} = 0 \iff b_1 = 0
 \]

 \[
 \Rightarrow \quad M_s^{(0)} = m_s - 16N_c G T \sum_n \int \frac{d^3p}{(2\pi)^3} \frac{M_s^{(0)}}{(i\omega_n + \mu)^2 - \bar{p}^2 - M_s^{(0)}^2}
 \]

 \[
 (= \text{gap equation for } M_s^{(0)} \equiv \hat{M}_s|_{S=P=X=0} = m_s - 4GS_S^{(0)})
 \]
Eliminating the strange condensate

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\bar{x})$
 - \[\text{Euler-Lagrange equation} \quad \frac{\partial \Omega_{GL}}{\partial \Delta_s} - \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0 \]
 - $\Delta_s = -\frac{c_3}{2b_2} |\Delta_\ell|^2 + O(|\Delta_\ell|^4)$
Eliminating the strange condensate

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$

 \rightarrow Euler-Lagrange equation

 $$\frac{\partial \Omega_{GL}}{\partial \Delta_s} - \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0$$

 \Leftrightarrow $\Delta_s = -\frac{c_3^2}{2b_2} |\Delta_\ell|^2 + O(|\Delta_\ell|^4)$

- Insert into Ω_{GL}:

 $$\Omega_{GL} = a_2 |\Delta_\ell|^2 + (a_{4,a} - \frac{c_3^2}{4b_2}) |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2 + O(\Delta_\ell^6)$$

Eliminating the strange condensate

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$

 \rightarrow Euler-Lagrange equation
 \[
 \frac{\partial \Omega_{GL}}{\partial \Delta_s} - \partial_i \frac{\partial \Omega_{GL}}{\partial \partial_i \Delta_s} = 0
 \]

 \Leftrightarrow \[
 \Delta_s = - \frac{c_3}{2b_2} |\Delta_\ell|^2 + O(|\Delta_\ell|^4)
 \]

- Insert into Ω_{GL}:

 \[
 \Omega_{GL} = a_2 |\Delta_\ell|^2 + \left(a_{4,a} - \frac{c_3^2}{4b_2} \right) |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2 + O(\Delta_\ell^6)
 \]

- Critical and Lifshitz points:
 - CP: $a_2 = a_{4,a} - \frac{c_3^2}{4b_2} = 0$
 - LP: $a_2 = a_{4,b} = 0$
Eliminating the strange condensate

- Extremizing Ω_{MF} w.r.t. $\Delta_s(\vec{x})$
 \[\Delta_s = -\frac{c_3}{2b_2} |\Delta_\ell|^2 + \mathcal{O}(|\Delta_\ell|^4) \]

- Insert into Ω_{GL}:
 \[\Omega_{GL} = a_2 |\Delta_\ell|^2 + \left(a_{4,a} - \frac{c_3^2}{4b_2} \right) |\Delta_\ell|^4 + a_{4,b} |\vec{\nabla} \Delta_\ell|^2 + \mathcal{O}(\Delta_\ell^6) \]

- Critical and Lifshitz points:
 - CP: $a_2 = a_{4,a} - \frac{c_3^2}{4b_2} = 0$
 - LP: $a_2 = a_{4,b} = 0$

CP and LP don’t coincide anymore!
Relevant GL coefficients (no guarantee yet!):

\[
\begin{align*}
a_2 &= \frac{1}{4G} (1 + 2\delta) + (1 + \delta)^2 \quad 4N_c \frac{1}{V_4} \sum \frac{1}{p^2} + \frac{K}{2G^2} \quad N_c \frac{1}{V_4} \sum \frac{M_s^{(0)}}{p^2 - M_s^{(0)}^2} \\
a_{4,a} &= (1 + \delta)^4 \quad 2N_c \frac{1}{V_4} \sum \frac{1}{p^4} + \frac{K^2}{32G^4} \quad N_c \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2} \\
a_{4,b} &= (1 + \delta)^2 \quad 2N_c \frac{1}{V_4} \sum \frac{1}{p^4} \\
c_3 &= \frac{K}{2G^2} \left[\frac{1}{8G} + (1 + \delta) \quad 2N_c \frac{1}{V_4} \sum \frac{1}{p^2} + N_c \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2} \right] \\
\delta &\equiv -\frac{K}{2G} S_s^{(0)}, \quad \frac{1}{V_4} \sum \equiv T \sum_n \int \frac{d^3p}{(2\pi)^3}
\end{align*}
\]

Abbreviations:

\[
\begin{align*}
\delta &\equiv -\frac{K}{2G} S_s^{(0)}, \\
\frac{1}{V_4} \sum &\equiv T \sum_n \int \frac{d^3p}{(2\pi)^3}
\end{align*}
\]
Relevant GL coefficients (no guarantee yet!):

\[
a_2 = \frac{1}{4G} (1 + 2\delta) + (1 + \delta)^2 4N_c \frac{1}{V_4} \sum \frac{1}{p^2} + \frac{K}{2G^2} N_c \frac{1}{V_4} \sum \frac{M_s^{(0)}}{p^2 - M_s^{(0)} - 2}
\]

\[
a_{4,a} = (1 + \delta)^4 2N_c \frac{1}{V_4} \sum \frac{1}{p^4} + \frac{K^2}{32G^4} N_c \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)2}}{\left[p^2 - M_s^{(0)2}\right]^2}
\]

\[
a_{4,b} = (1 + \delta)^2 2N_c \frac{1}{V_4} \sum \frac{1}{p^4}
\]

\[
c_3 = \frac{K}{2G^2} \left[\frac{1}{8G} + (1 + \delta) 2N_c \frac{1}{V_4} \sum \frac{1}{p^2} + N_c \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)2}}{\left[p^2 - M_s^{(0)2}\right]^2}\right]
\]

Abbreviations:
\[
\delta \equiv -\frac{K}{2G} S_s^{(0)}, \quad \frac{1}{V_4} \sum \equiv T \sum_n \int \frac{d^3p}{(2\pi)^3}
\]

Interesting limits:

\[
K = 0 \quad \Rightarrow \quad \delta = 0 \quad \Rightarrow \quad CP = LP
\]
Discussion

- Relevant GL coefficients (no guarantee yet!):

\[
a_2 = \frac{1}{4G}(1 + 2\delta) + (1 + \delta)^2 \, 4N_c \, \frac{1}{V_4} \sum \frac{1}{p^2} + \frac{K}{2G^2} \, N_c \, \frac{1}{V_4} \sum \frac{M_s^{(0)}}{p^2 - M_s^{(0)}^2}
\]

\[
a_{4,a} = (1 + \delta)^4 \, 2N_c \, \frac{1}{V_4} \sum \frac{1}{p^4} + \frac{K^2}{32G^4} \, N_c \, \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2}
\]

\[
a_{4,b} = (1 + \delta)^2 \, 2N_c \, \frac{1}{V_4} \sum \frac{1}{p^4}
\]

\[
c_3 = \frac{K}{2G^2} \left[\frac{1}{8G} + (1 + \delta) \, 2N_c \, \frac{1}{V_4} \sum \frac{1}{p^2} + N_c \, \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2} \right]
\]

- abbreviations: \(\delta \equiv -\frac{K}{2G}S_s^{(0)} \), \(\frac{1}{V_4} \sum \equiv T \sum_n \int \frac{d^3p}{(2\pi)^3} \)

- Interesting limits:

- \(K = 0 \quad \Rightarrow \quad \delta = 0 \quad \Rightarrow \quad \text{CP=LP} \)

- \(m_s \to 0 \quad \Rightarrow \quad M_s^{(0)}, S_s^{(0)}, \delta \to 0 \quad \Rightarrow \quad \text{LP} \to \text{LP}(K=0) \neq \text{CP} \)
Discussion

- Relevant GL coefficients (no guarantee yet!):

\[
a_2 = \frac{1}{4G}(1 + 2\delta) + (1 + \delta)^2 \quad 4Nc \quad \frac{1}{V_4} \sum \frac{1}{p^2} + \frac{K}{2G^2} \quad Nc \quad \frac{1}{V_4} \sum \frac{M_s^{(0)}}{p^2 - M_s^{(0)}^2}
\]

\[
a_{4,a} = (1 + \delta)^4 \quad 2Nc \quad \frac{1}{V_4} \sum \frac{1}{p^4} + \frac{K^2}{32G^4} \quad Nc \quad \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2}
\]

\[
a_{4,b} = (1 + \delta)^2 \quad 2Nc \quad \frac{1}{V_4} \sum \frac{1}{p^4}
\]

\[
c_3 = \frac{K}{2G^2} \left[\frac{1}{8G} + (1 + \delta) \quad 2Nc \quad \frac{1}{V_4} \sum \frac{1}{p^2} + Nc \quad \frac{1}{V_4} \sum \frac{p^2 + M_s^{(0)}^2}{[p^2 - M_s^{(0)}^2]^2} \right]
\]

- abbreviations: \(\delta \equiv -\frac{K}{2G} S_s^{(0)}, \quad \frac{1}{V_4} \sum \equiv T \sum_n \int \frac{d^3p}{(2\pi)^3} \)

- Interesting limits:

- \(K = 0 \quad \Rightarrow \quad \delta = 0 \quad \Rightarrow \quad \text{CP} = \text{LP} \)

- \(m_s \to 0 \quad \Rightarrow \quad M_s^{(0)}, S_s^{(0)}, \delta \to 0 \quad \Rightarrow \quad \text{LP} \to \text{LP}(K=0) \neq \text{CP} \)

- Numerical survey of the general case still to be done.
Finite bare quark masses

- What is the effect of nonzero m_u and m_d?
Finite bare quark masses

- What is the effect of nonzero m_u and m_d?
- Andersen, Kneschke, PRD (2018):
 No inhomogeneous phase in the 2-flavor quark-meson model for $m_\pi > 37.1$ MeV
Finite bare quark masses

- What is the effect of nonzero m_u and m_d?

- Andersen, Kneschke, PRD (2018):
 No inhomogeneous phase in the 2-flavor quark-meson model for $m_\pi > 37.1$ MeV

- Nickel, PRD (2009):
 Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

$m_{u,d} = 0, 5$ MeV, 10 MeV
Finite bare quark masses

- What is the effect of nonzero m_u and m_d?
- Andersen, Kneschke, PRD (2018):
 No inhomogeneous phase in the 2-flavor quark-meson model for $m_\pi > 37.1$ MeV

 $m_{u,d} = 0, 5$ MeV, 10 MeV

- Nickel, PRD (2009):
 Inhomogeneous phase in 2-flavor NJL gets smaller but still reaches the CEP

- Can we investigate this more systematically within GL?
Ginzburg-Landau analysis with nonzero bare masses

- No restored phase \Rightarrow Expand about arbitrary homogeneous Δ_0:

 $\Omega_{GL} = a_1(\Delta - \Delta_0) + a_2(\Delta - \Delta_0)^2 + a_3(\Delta - \Delta_0)^3 + a_4,\Delta_0(\Delta - \Delta_0)^4 + a_4,\Delta(\nabla \Delta)^2 + \ldots$

 - Extremum \Rightarrow gap equation: $a_1(T, \mu) = 0$ (partially fixes $\Delta_0(T, \mu)$)
Ginzburg-Landau analysis with nonzero bare masses

- No restored phase ⇒ Expand about arbitrary homogeneous Δ_0:
 $$\Omega_{GL} = a_1(\Delta - \Delta_0) + a_2(\Delta - \Delta_0)^2 + a_3(\Delta - \Delta_0)^3 + a_4, a(\Delta - \Delta_0)^4 + a_4, b(\vec{\nabla}\Delta)^2 + ...$$
 - Extremum ⇒ gap equation: $a_1(T, \mu) = 0$ (partially fixes $\Delta_0(T, \mu)$)

- Critical endpoint
 - left spinodal: $a_2 = 0, a_3 < 0$
 - right spinodal: $a_2 = 0, a_3 > 0$

 ⇒ CEP: $a_2 = a_3 = 0$
Ginzburg-Landau analysis with nonzero bare masses

No restored phase \(\Rightarrow \) Expand about arbitrary homogeneous \(\Delta_0 \):
\[
\Omega_{GL} = a_1 (\Delta - \Delta_0) + a_2 (\Delta - \Delta_0)^2 + a_3 (\Delta - \Delta_0)^3 + a_4,a (\Delta - \Delta_0)^4 + a_4,b (\vec{\nabla} \Delta)^2 + ... \\
\]

- Extremum \(\Rightarrow \) gap equation: \(a_1 (T, \mu) = 0 \) (partially fixes \(\Delta_0 (T, \mu) \))

Critical endpoint

- left spinodal: \(a_2 = 0, \ a_3 < 0 \)
- right spinodal: \(a_2 = 0, \ a_3 > 0 \)

\(\Rightarrow \) CEP: \(a_2 = a_3 = 0 \)

“Lifshitz point” = upper corner of the inhomogeneous phase?

- @ CEP: We find \(a_{4,b} < 0 \) \(\Rightarrow \) The CEP is inside the inhomogeneous phase.
- No point with \(a_2 = a_{4,b} = 0 \) \(\Rightarrow \) No point with \(\vec{\nabla} \Delta = 0 \) at the phase boundary

\(\Rightarrow \) Further investigations necessary
Ginzburg-Landau analysis with nonzero bare masses

- No restored phase ⇒ Expand about arbitrary homogeneous Δ_0:
 \[\Omega_{GL} = a_1(\Delta - \Delta_0) + a_2(\Delta - \Delta_0)^2 + a_3(\Delta - \Delta_0)^3 + a_4,a(\Delta - \Delta_0)^4 + a_4,b(\vec{\nabla} \Delta)^2 + \ldots \]
 - Extremum ⇒ gap equation: $a_1(T, \mu) = 0$ (partially fixes $\Delta_0(T, \mu)$)

- Critical endpoint
 - left spinodal: $a_2 = 0$, $a_3 < 0$
 - right spinodal: $a_2 = 0$, $a_3 > 0$

 ⇒ CEP: $a_2 = a_3 = 0$

- “Lifshitz point” = upper corner of the inhomogeneous phase?
 - @ CEP: We find $a_4,b < 0$ ⇒ The CEP is inside the inhomogeneous phase.
 - No point with $a_2 = a_4,b = 0$ ⇒ No point with $\vec{\nabla} \Delta = 0$ at the phase boundary

 ⇒ Further investigations necessary

Ongoing work: Determine phase boundary via $1 - \Pi_{\sigma, \pi}(\omega = 0, \vec{q}) = 0$
Conclusions

- Ginzburg-Landau analysis of the effect of strangeness and bare quark masses on the inhomogeneous chiral phase in NJL

- strange quarks: CP and LP no longer agree

- nonzero $m_{u,d}$ (very preliminary):
 - CEP inside the inhomogeneous phase
 - No LP-like point with $\vec{\nabla} \Delta = 0$

- Detailed numerical study to be done.