Introduction

The recycling of plastics is encouraged worldwide and new products made from recycled plastics have been developed under governmental policies giving incentives for recycling plastics. However, engineering processes in recycling and products from recycled plastics may cause other environmental problems such as the release of contaminants during recycling processes or from the recycled products. Chemical additives or residual catalysts in recycled plastics may migrate to the environment.

For example, a few studies have shown that the release of antimony and other metals from recycled polyethylene terephthalate plastic bottles may cause health concerns [1-3]. However, the effects of chemicals from recycled plastic products on human and ecosystem health are rarely investigated.

It is generally believed that recycled plastic products contain more impurities and potentially more chemical contaminants such as metals than those manufactured from plastic pellets without recycling [1,4]. Under the Korean act on the promotion of saving and recycling of resources [5], it is required to

Keywords: Cadmium, Leachate, Lead, Phthalate esters, Recycled plastics
evaluate the usage and methodology of plastic recycling before the recycling process and the resulting product is approved by the Ministry of Environment. However, this regulatory process experiences difficulties in implementation due to the lack of standardized methods for evaluating the environmental impact caused by recycling processes and products. The current guideline for environmental risk assessment of chemicals in Korea does not specify the method of estimating predicted environmental concentration by using recycled products.

In this study, we propose a methodology for environmental risk assessment of hazardous chemicals that might be released to the environment from recycled plastic products. Slope protection blocks were chosen as the model recycled plastic products and four chemicals, di-(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), cadmium (Cd), and lead (Pb), were chosen as model contaminants, because phthalate esters are normally included in polyvinyl chloride plastics as plasticizers [6-8] and cadmium and lead are typical heavy metal elements found in many plastic products [9-11]. Two exposure models were built for the soil compartment under the blocks and a hypothetic stream nearby receiving runoff water. Based on the predicted no-effect concentrations for the selected chemicals and exposure scenarios, the maximum allowable emission rates from the recycled plastic blocks were also derived.

Materials and Methods

Exposure Models

Chemicals released from slope protection blocks may affect both soil and water environments. In order to evaluate the potential environmental impact of chemical contaminants from slope protection blocks, two exposure models – soil and stream models – were built.

Soil Model

Figure 1A shows a schematic diagram of the chemical transport processes in the soil model. Because the chemicals released from slope protection blocks are mobilized by water, infiltration and leaching are considered the most important processes determining the fate of chemicals in the soil. Assuming phase equilibrium between soil and pore water, for a given box of the soil compartment below the slope protection blocks, a simple mass-balance equation is as follows:

\[
\rho_{soil} V_{soil} \frac{dC_{soil}}{dt} = f_{leaching} A(C_{leaching} - C_{sw}) + k \rho_{soil} V_{soil} C_{soil} \tag{1}
\]

where \(\rho_{soil} \) is the density of soil (kg/m\(^3\)), \(V_{soil} \) is the volume of the soil compartment (m\(^3\)), \(C_{soil} \) is the concentration of a chemical in the soil (mg/kg\(_{soil}\)), \(t \) is time (sec), \(r_{leaching} \) is the vertical leaching rate of water (m/sec), \(A \) is the area of the soil compartment (m\(^2\)), \(C_{leaching} \) is the concentration of the chemical in the leachate (mg/m\(^3\)), \(K_{sw} \) is the equilibrium partition coefficient of the chemical between the soil and pore water (m\(^3\)/kg), and \(k \) is the pseudo-first-order degradation rate constant of the chemical (sec\(^{-1}\)). Assuming steady-state and negligible degradation of the chemical in the soil compartment, equation (1) was simplified and \(C_{soil} \) was calculated as follows:

\[
C_{soil} = K_{sw} C_{leaching} \tag{2}
\]

Stream Model

Slope protection blocks are usually built on the cut slope near a small stream. Figure 1B shows a conceptual diagram of the runoff water flowing into the stream over the slope protection blocks. For a stream segment receiving the runoff water, a simple mass-balance equation for the concentration of a chemical in the water (C\(_{water}\)) is as follows:

\[
V_{water} \frac{dC_{water}}{dt} = r_{runoff} + Q(C_{stream} - C_{water}) \tag{3}
\]

where \(V_{water} \) is the volume of water in the stream segment (m\(^3\)), \(r_{runoff} \) is the loading rate of the chemical to the stream segment due to the chemical leaching from the slope protection blocks (mg/sec), \(Q \) is the volumetric flow rate of water in the stream segment (m\(^3\)/sec), and \(C_{stream} \) is the background concentration of the chemical in water flowing into the segment (mg/m\(^3\)). Assuming steady-state and that \(C_{stream} \) is negligibly smaller than \(C_{water} \), the predicted no-effect concentration for the selected chemicals and exposure scenarios, the maximum allowable emission rates from the recycled plastic blocks were also derived.

![Schematic diagram of the exposure model for the risk assessment of chemicals released from slope protection blocks in the (A) soil compartment and (B) stream segment.](http://e-eht.org/)

Figure 1.
is calculated as follows:
\[C_{\text{runoff}} = \frac{Q_{\text{runoff}}}{Q} \quad (4) \]

In order to estimate \(Q_{\text{runoff}} \) conservatively, assumptions were made. The chemical loading rate to the stream (in mg/sec) can be calculated by multiplying the precipitation rate over the area of the slope protection blocks (\(Q_{\text{precip}} \), m³/sec), runoff coefficient (\(K \), dimensionless), and the concentration of a contaminant in the leachate (\(C_{\text{leaching}} \) (equation 5)).

\[Q_{\text{runoff}} = Q_{\text{precip}} K C_{\text{leaching}} \quad (5) \]

Derivation of the Allowable \(C_{\text{leaching}} \) Based on Risk Assessment

For the four model chemicals, predicted no effect concentrations (PNECs) were taken from the European Union risk assessment reports on existing chemicals [7,8,12,13]. An environmental risk quotient is calculated by dividing predicted environmental concentration (PEC) by the PNEC. In this study, \(C_{\text{soil}} \) and \(C_{\text{runoff}} \) were used for the PEC. However, these values could not be calculated due to the limited information about \(C_{\text{leaching}} \) and \(Q_{\text{runoff}} \). Values of \(C_{\text{leaching}} \) or \(Q_{\text{runoff}} \) could be obtained by laboratory leaching tests or field measurements. Without experimentally measured values, we used the PNECs in the soil or in stream water to derive the allowable concentration in the leachate (equations 6 and 7).

\[C_{\text{leaching, allowed}} = \frac{PNEC_{\text{soil}}}{K_{oc}} \quad \text{(for the soil model)} \quad (6) \]

\[C_{\text{leaching, allowed}} = \frac{Q_{\text{precip}} K_{\text{PNEC,water}}}{{\text{Q}}_{\text{PNEC}}} \quad \text{(for the stream model)} \quad (7) \]

Results

Assessment of Model Parameters

Soil Model

Although various parameters are included in equation (1), the only required parameter for the assessment of the allowable leaching concentration is \(K_{oc} \). For cadmium and lead, \(K_{oc} \) values were taken from the literature [14,15], as shown in Table 1. The values of \(K_{oc} \) for two phthalate esters were estimated using the hydrophobic sorption hypothesis, in which the sorption of hydrophobic organic chemicals to soil phase is dominated by soil organic carbon [16]:

\[K_{oc} = 1000 f_{oc} K_{sw} \quad (8) \]

where \(f_{oc} \) is the fraction of organic carbon and \(K_{sw} \) is the partition coefficient between organic carbon and water (L/kg). The value of \(f_{oc} \) was assumed to be 0.01, as suggested by Chiou and Kile [17]; the values of \(K_{sw} \) were estimated from \(K_{ow} \) values [6,18] using the following relationship [19]:

\[K_{sw} = 0.41 K_{ow} \quad (9) \]

Stream Model

As described in equation (4), two parameters (\(Q_{\text{runoff}} \) and \(Q \)) need to be evaluated in the hypothetic stream. Because there are large variations in precipitation rate and volumetric flow rate of a stream in Korea [20,21], the annual average and peak values for the two parameters were used. For this purpose, we estimated the model parameters using small tributary streams of Gapyeong Stream, one of the biggest tributary streams to the North Han River, as model streams. Gapyeong main stream is a typical local river containing 13 branch streams. We collected basic data to calculate average values of \(Q \) under annual average and peak conditions in the Report of Basic Plan for the Gapyeong Stream (Table 2) [22] and deducted one main stream and four branches according to “Article 2 of the enforcement decree of the Small River Maintenance Act” [23].

\(Q_{\text{precip}} \) was identified based on the rainfall intensity over the past 30 years, from 1981 to 2010 [21,24]. The annual average and maximum precipitation rates were approximated to be 1300 mm/yr and 70 mm/hr, respectively. The land area covered by slope protection blocks was assumed to be 3000 m². Because the runoff coefficient for stiff slopes is 0.4 to 0.6 [24], 0.6 was used for conservative assessment. Because \(Q_{\text{precip}} \) can be calculated by multiplying the precipitation rate, covered area, and runoff coefficient, the values of \(Q_{\text{precip}} \) were obtained under the annual average and intensive rain conditions (Table 2).

Allowable \(C_{\text{leaching}} \) Based on Screening Risk Assessment

Table 3 shows the PNEC values for the soil compartment and the hypothetic stream and calculated allowable \(C_{\text{leaching}} \) values. The allowable levels of the four selected contaminants ranged

Chemical	Parameter	References
Cadmium	log \(K_{oc} \) = 0.12	[13]
Lead	log \(K_{sw} \) = 4.0	[14]
Di-(2-ethylhexyl) phthalate	log \(K_{oc} \) = 7.5	[5]
Diisononyl phthalate	log \(K_{sw} \) = 8.8	[17]
N/A, non-applicable.		

Table 2. Evaluation of the stream flow rate (Q) and the runoff flow rate (Q_{runoff}).

	Annual average	Maximum
Stream flow rate (Q)	5.697×10³ (m³/sec)	3.126×10⁴ (m³/sec)
Runoff flow rate (Q_{precip})	1.30×10² (mm/hr)	70 (mm/hr)

Table 3. Predicted no-effect concentrations (PNECs) and the allowable leaching concentrations of the selected chemical contaminants

Chemical contaminant	DEHP (mg/kg)	DINP (mg/kg)	Cd (µg/L)	Pb (µg/L)
PNECleach (mg/kg)	13	1.0×10⁻⁴	1.6×10⁻⁴	5.4×10⁻⁴
PNECleach (µg/L)	0.097	3.4	0.19	0.04

The refined assessment with measured concentration of a contaminant in a laboratory leaching test at an environmentally relevant pH. If the experimental leaching concentrations of the selected chemical contaminants are lower than the PNECs, the use of the recycled product should not be allowed at this screening level assessment, and requires further refined assessment.

The migration of metals and other additives such as plasticizers from manufactured plastic products is of significant concern and the rate of migration strongly depends on the properties of the plastic because the diffusion coefficients of small chemicals in the plastic phase varies by more than a few orders of magnitude [25-27]. Thus, the approach exemplified in this study to deduce the allowable content of contaminants in the manufactured products should be used with great care.

In conclusion, the systematic ecological risk assessment approach used in this study for slope protection blocks as example recycled plastic products would be useful for regulatory decisions for setting the allowable emission rates or the content of chemical contaminants in a recycled product, although the method needs refinement and assumptions need to be validated further.

Acknowledgements

This work was supported by the National Institute of Environmental Research (NIER).

Conflict of Interest

The authors have no conflicts of interest with material presented in this paper.

References

1. Cheng X, Shi H, Adams CD, Ma Y. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. Environ Sci Pollut Res Int 2010;17(7):1323-1330.
2. Shotyk W, Krachler M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ Sci Technol 2007;41(5):1560-1563.
3. Shotyk W, Krachler M, Chen B. Contamination of Canadian and European bottled waters with antimony from PET containers. J Environ Monit 2006;8(2):288-292.
4. Kim MS, Kim WI, Shin SK, Kang YY, Cho YA, Jeong SK, et al.
Heavy metal exposure assessment of recycled plastic buckets. Anal Sci Technol 2013;26(1):67-72 (Korean).

5. Korea Ministry of Government Legislation. Act on the Promotion of Saving and Recycling of Resources, 2013 [cited 2013 Jul 13]. Available from: http://www.law.go.kr/lSc.do?menuId=0&subMenu=1&query=%EC%9E%90%EC%9B%90%EC%9D%98+%EC%A0%88%EC%95%BD%EA%B3%BC+%EC%9E%AC%ED%99%9C%EC%9A%A9%EC%B4%89%EC%A7%84%EC%97%90+%EA%B4%80%ED%95%9C+%EB%B2%95%EB%A5%A0&x=49&y=11#liBgcolor2 (Korean).

6. Stales CA, Peterson DR, Parkerton TF, Adams WJ. The environmental fate of phthalate esters: a literature review. Chemosphere 1997;35(4):667-749.

7. European Chemicals Bureau. European Union risk assessment report: 1,2-benzenedicarboxylic acid, di-C8-10-branched alkyl esters, C9-rich and di-“isononyl” phthalate (DINP) [cited 2013 Aug 1]. Available from: http://echa.europa.eu/documents/10162/8fa0a07f-ec2a-4da6-bbe8-5b5e071b5c16.

8. European Chemicals Bureau. European Union risk assessment report: bis (2-ethylhexyl) phthalate (DEHP) [cited 2013 Aug 1]. Available from: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/5648/1/dehpreport042.pdf.

9. Fowles GW. The leaching of cadmium from plastic toys. Sci Total Environ 1977;7(3):207-216.

10. Chen ZS. Cadmium and lead contamination of soils near plastic stabilizing materials producing plants in Northern Taiwan. Water Air Soil Pollut 1991;57-58(1):745-754.

11. Wilson DC, Young PJ, Hudson BC, Baldwin G. Leaching of cadmium from pigmented plastics in a landfill site. Environ Sci Technol 1982;16(9):560-566.

12. Lead Development Association International. European Union risk assessment report: lead metal, lead oxide, lead tetraoxide, and lead stabiliser compounds, voluntary risk assessment report appendices to the classification and effect assessment section. London: Lead Development Association International; 2008, p. 130-137.

13. European Chemicals Bureau. European Union risk assessment report: cadmium metal. Luxemburg: Office for Official Publications of the European Communities; 2007, p. 333-430.

14. United States Environmental Protection Agency. Understanding variation in partition coefficient, volume II: review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium. Washington, DC: United States Environmental Protection Agency; 1999, p. C2-C16.

15. Anderson PR, Christensen TH. Distribution coefficients of Cd, Co, Ni, and Zn in soils. J Soil Sci 1988;39(1):15-22.

16. Gerritse RG, Vriesema R, Dalenberg JW, de Roos HP. Effect of sewage sludge on trace element mobility in soils. J Environ Qual 1982;11(3):359-364.

17. Chiu CT, Kile DE. Deviations from sorption linearity on soils of polar and nonpolar organic compounds at low relative concentrations. Environ Sci Technol 1998;32(3):338-343.

18. Syracuse Research Corporation. KOWWin v. 1.68, 2010.

19. Karickhoff SW. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere 1981;10(4):833-846.

20. Korea Meteorological Administration. Climate information [cited 2013 Jul 26]. Available from: http://www.kma.go.kr/weather/climate/average_south.jsp (Korean).

21. Ministry of Land, Infrastructure and Transport. Water management information system (WAMIS) [cited 2013 Jul 26]. Available from: http://www.wamis.go.kr/wkw/wkw_fsrsrs_lst.aspx (Korean).

22. Ministry of Land, Transport and Maritime Affairs. Report of basic plan for the Gapyeong stream. Gwacheon: Ministry of Land; 2009, p. 3-48-3-69 (Korean).

23. Ministry of Government Legislation. Small River Maintenance Act 2009 [cited 2013 Jul 26]. Available from: http://www.law.go.kr/lSc.do?menuId=0&subMenu=1&query=%EC%86%8C%ED%95%98%20%EC%A0%95%EB%B9%84%EB%B2%95#liBgcolor0 (Korean).

24. Ministry of Environment. A handbook for management of non-point pollutant source. Gwacheon: Ministry of Environment.; 2005, p. 53-54 (Korean).

25. Rusina TP, Smedes F, Klanova J. Diffusion coefficients of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in polydimethylsiloxane and low-density polyethylene polymers. J Appl Polym Sci 2010;116(3):1803-1810.

26. Cox SS, Little JC, Hodgson AT. Predicting the emission rate of volatile organic compounds from vinyl flooring. Environ Sci Technol 2002;36(4):709-714.

27. Fries E, Zarfl C. Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res Int 2012;19(4):1296-1304.