Helminth community dynamics in a population of *Pseudopaludicola pocoto* (Leptodactylidae: Leiuperinae) from Northeast-Brazilian

C. DE S. SILVA1,2,*, R. W. ÁVILA1,2, D. H. MORAIS2,3

1Programa de Pós-Graduação em Bioprospecção Molecular, Departamento de Química Biológica, Universidade Regional do Cariri (URCA), Rua Cel. Antônio Luiz Pimenta 1161, Campus do Pimenta, CEP 63105-000, Crato, Ceará, Brazil, 2E-mail: charles.sousa.barroso@gmail.com; 3Laboratório de Herpetologia, Universidade Regional do Cariri (URCA), Rua Cel. Antônio Luiz Pimenta 1161, Campus do Pimenta, CEP 63105-000, Crato, Ceará, Brazil; 4Universidade Federal Rural da Amazônia (UFRA), PA 275, km 13, zona Rural. CEP 68515-000, Parauapebas, Pará, Brazil

Article info

Received May 14, 2018
Accepted September 13, 2018

Summary

Climatic variation in low latitudes influences the dynamics and structure of parasite communities. Environmental changes caused by dry and rainy seasons alter prevalence and abundance of endoparasite communities. In addition to providing a list of the helminth species associated with the swamp frog *Pseudopaludicola pocoto*, this study aimed to investigate the effects of rainfall and temperature on parasitological descriptors of helminths associated with *P. pocoto* in an area of the semiarid zone. A total of 817 swamp frog specimens were collected between 2013 and 2017, with four sampling expeditions during the dry season and four during the rainy season. Environmental parameters of temperature and rainfall were compared to the parasitological descriptors of prevalence, abundance and mean infection intensity of the parasite community using a multivariate linear regression. A richness of eight parasite species was identified, including Nematoda (*Rhabdias* sp., *Cosmocerca parva*, *Oxyascaris oxyascaris*, *Physaloptera* sp., *Brevimulticaecum* sp., *Spiroxys* sp. and unidentified nematode) and Acanthocephala (cystacanths). Rainfall levels had a significant effect on the infection intensity of *Rhabdias* sp. being the presence of this species higher during the rainy season, whereas no influence of temperature was observed on the helminth community.

Keywords: Anura; Caatinga; helminth fauna; Neotropical; seasonality; semiarid

Introduction

Leptodactylidae is one of the ubiquitous frog families in the Neotropics, with great richness and abundance in the Caatinga biome (Roberto et al., 2013; Ávila, 2015). Leptodactylids occur in a wide variety of habitats, becoming exposed to several degrees of helminth infections (Goldberg et al., 2007; Bursey & Brooks, 2010; Hamann & González, 2010). The genus *Pseudopaludicola* currently comprises 22 species of small swamp frogs distributed in South America (Cardozo et al., 2018). To date, only two species had their helminth fauna investigated – *Pseudopaludicola boliviana* Parker, 1927, in which a richness of ten taxa was found, including trematodes, cestodes, nematodes and acanthocephalans (Duré et al., 2004; González & Hamann, 2012), and *Pseudopaludicola falcipes* Hensel, 1867, in which only the nematode *Cosmocerca podicipinus* Baker and Vaucher, 1984 was recorded (González & Hamann, 2004; 2009). *Pseudopaludicola pocoto* Magalhães, Loebumann, Kokubum, Haddad & Garda, 2014 was recently described from Northeast-Brazilian and is widely distributed in the Caatinga biome, however, there are still no studies on its ecology, only on
its geographical distribution (Magalhães et al., 2014; Pereira et al., 2015; Silva et al., 2015; Lantye-Silva et al., 2016 and Silva et al., 2017).

Several factors contribute to the dynamics and structure of parasite communities, like seasonality, environmental heterogeneity or factors associated with the host, such as spatial distribution, population density, and body size (Aho, 1990). Climate changes can cause some effects upon biological communities, like alterations on the abundance and transmission rates of helminths and also have an influence on host-parasite relations (Altizer et al., 2006; Koprivnikar et al., 2006; King et al., 2007; Koprivnikar & Poulin, 2009; Schotthoefer et al., 2011; Pizzato et al., 2013 and Brito et al., 2014).

The prevalence and abundance of helminths are more influenced by seasonal variations in regions of median latitudes because cold seasons alter the acquisition of the parasite by the host (Pizzato et al., 2013). Meanwhile, in tropical areas, the prevalence and abundance of parasites can either increase or decrease between dry and rainy season (Choudhury & Dick, 2000). Thus, climatic factors, such as temperature, humidity, and rainfall levels can exert different effects upon parasitological descriptors of helminth infections.

Identifying what are the environmental factors that influence the helminth community can contribute towards the comprehension of how infection dynamics changes through time and space in order to unravel the mechanisms involved in host-parasite interactions. Besides providing a list of the helminths associated with P. pocoto, this study aims (I) to compare the similarity between the helminth communities associated with species of Pseudopaludicola and (II) to investigate the effects of rainfall and temperature upon the parasitological descriptors of prevalence (P), mean intensity of infection (MI), abundance, diversity, and migration of parasites between sites of infection in the helminths community associated with P. pocoto in Brazilian Northeast.

Material and Methods

This study was carried out in the Benguê Reservoir, Aiuaba, Ceará, Brazil (06°35'35"S, 40°08'31"W). Host samplings were performed from September 2013 to March 2017, with four expeditions during the dry season and four during the rainy season. This region is located in one of the driest areas of Ceará State, with mean annual rainfall levels of 560 mm (Funceme, 2016).

![Rainfall](image)

Fig. 1. Monthly rainfall levels related to the sample period of *P. pocoto* in the municipality of Aiuaba, Ceará State, Brazil.
A total of 817 specimens of *P. pocoto* (573 males, mean snout-vent length [SVL] ± SD 13.97 ± 1.56 mm, range: 10.15 – 16.5 mm, 244 females, SVL: 15, 1 ± 1.57 mm, range: 11.41 – 18.46 mm) were used for this study, being collected by hand for this parasitological and also specimens collected for other purposes and deposited in the Herpetology Collection of the Universidade Regional do Cariri - URCA-H, Crato, Ceará State were used. Specimens were euthanized with sodium thiopental, necropsied for helminths, fixed in 10 % formaldehyde and stored in 70 % ethanol.

Data on rainfall levels were gathered using monthly means from the Fundação Cearense de Meteorologia e Recursos Hídricos – FUNCEME (Foundation of Meteorology and Hydric Resources of Ceará State). For statistic analyses between rainfall and parasitological descriptors, a mean rainfall of every three months was extracted related to the period between the samplings (Figs. 1 and 2).

The following parasitological descriptors: prevalence, mean intensity of infection, and abundance were calculated following Bush et al. 1997 using standard error and range. Aggregation of parasites was calculated using the Discrepancy Index (D) by Poulin 1998 which ranges from 0 to 1, where D = 0, all hosts harboring the same number of parasites; D = 1, all parasites found in a single host. This index was calculated in the software Quantitative Parasitology 3.0 (Rózsa et al., 2000).

Nematodes were found alive, washed in saline solution (0.9 % NaCl), fixed and preserved in 70 % ethanol. The nematodes were cleared in lactophenol or lactic acid while acanthocephalans were removed from their cysts, stained in carmine, and cleared in cresote. All endoparasites were observed and identified to the lowest possible level under a light microscope DMLB (Leica) and DM 5000B with interferential phase contrast, according to the literature.

Table 1. Helminth component community associated with *Pseudopaludicola pocoto* from the municipality of Aiuaba, Ceará State, Brazil.

Helminth	P (%)	MI	MA	IS	Stage	Range
Nematoda						
Rhabdias sp. a	22.6	1.49 ± 1.7	0.34	Lungs	Adult	1 – 8
Cosmocerca parva a,b	25.5	1.35 ± 1.4	0.34	St, SI and LI	Adult	1 – 5
Oxyascaris oxyascaris a,b	12.3	1.54 ± 1.8	0.2	SI and LI	Adult	1 – 7
Physaloptera sp. a	0.1	1 ± 1	0	St	Larva	1
Spiroxys sp. a	0.1	1 ± 1	0	Cav	Larva	1
Brevimulticaecum sp. a,b	0.1	1 ± 1	0	Cav	Larva	1
Unidentified nematode	2.9	1.5 ± 2.3	0.4	St, SI and Cav	Larva	1 – 4
Acanthocephala						
Cystacanth	1.1	1.43 ± 1.79	0	Cav	Cyst	1 – 3

P (%) - prevalence; MI – mean intensity of infection; MA – mean abundance; IS – infection site; St – stomach; SI – small intestine; LI – large intestine; Cav – body cavity; a – new record; b – new locality.
ture (Yamaguti, 1961; Sprent, 1979; Vicente et al., 1991; Anderson, 2000 and Gibbons, 2010). All parasites were deposited at the Coleção Parasitológica do Laboratório de Zoologia from Universidade Regional do Cariri – LZ-URCA (Parasitological Collection of the Laboratory of Zoology).

Richness (total number of helminths) and Brillouin’s index of diversity were used to describe the parasite community. Richness was estimated using species accumulation curve, in which the number of observed species is a function of the sampling effort, measured in number of individuals using the R software packages Biodiversity R and Vegan (R core team, 2014). The Shapiro-Wilks test was applied to evaluate the normality of prevalence data, mean intensity of infection, mean abundance (MA) and diversity. Thereby, diversity between seasons was compared using Wilcoxon’s test for paired samples and differences of prevalence, mean intensity of infection, and mean abundance between seasons was tested by Student t-test.

Using a data matrix with the presence/absence variables for the parasite species related to the genus *Pseudopaludicola*, the degree of similarity among these helminth communities was calculated using the Sorensen’s index (So), with a posterior analysis of clustering using the Cluster method using the unweighted pair-group average (UPGMA).

A multivariate regression was performed to assess the influence of rainfall levels and temperature and their interaction on prevalence, mean intensity of infection and abundance of the helminth community of *P. pocoto*. To evaluate whether there were alterations of infection sites between dry and rainy seasons, a contingency table was made with data on the abundance of species infection/sites. The helminths that did not vary sites between the seasons and the ones that were not frequent were excluded from the analyses not to have influence of these values upon the species that showed greater abundance and occupied different sites. To evaluate the significance of the results, a chi-square test was performed with the data organized as a contingency table of two factors (Gotelli & Ellison, 2011). All statistical analyses were performed using the software PAST 3.0.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed according collection authorization issued by Chico Mendes’ Institute (ICMBio/ SISBio) Nº 29613 – 1; 55467 – 1 for scientific activities aims and authorized by council from Universidade Regional do Cariri-Urca nº 00260/2016.1.

Results

From the 817 hosts necropsied, 406 were parasitized with at least one helminth taxon (P = 49.7 %, MI = 1 ± 0.51, MA = 0.49 ± 0.4, range = 1 – 8). From the 405 hosts sampled in the dry season, 193 were parasitized with at least one helminth taxon (P = 47.7 %,

Fig. 3. Species accumulation curve (black line) and confidence interval (gray) for the richness of the helminths associated with *P. pocoto*, from the municipality of Auiaba, Ceará State, Brazil.
MI = 1 ± 0.52, MA = 0.48 ± 0.6, range = 1 – 5), and from the 412 hosts sampled in the rainy season, 213 were parasitized with at least one helminth taxon (P = 51.7 %, MI = 1 ± 0.48, MA = 0.52 ± 0.6, range 1 – 8).

A total of 803 helminths specimens were collected, including nematodes and acanthocephalans, showing a richness of eight taxa (Rhabdias sp., Cosmocerca parva Travassos, 1925, Oxyascaris oxyascaris Travassos, 1920, Physaloptera sp., Brevimulticaecum sp., Spiroxys sp., unidentified nematode, and cystacanths) (Table 1). The infracommunity richness varied from one to three helminth species by host. The most abundant species recorded in this study were found in adult stage: Rhabdias sp. (N = 279), C. parva (N = 285), and O. oxyascaris (N = 157).

The aggregation index of the helminths showed moderate values in the dry season ($D = 0.52±0.5$) and rainy season ($D = 0.48±0.48$).

The Brillouin's diversity index for the dry and rainy season were $i = 1.42$ and $i = 1.29$, respectively. There was no difference between seasons for prevalence ($t = -0.0439; p = 0.96$), mean intensity of infection ($t = 1.359; p = 0.27$) and mean abundance ($t = -0.824; p = 0.47$). The accumulation curve and the confidence interval showed a tendency to stabilization of richness of the helminths associated with this host in that location (Fig. 3).

The similarity between the communities of helminths of P. pocoto and P. boliviana and between P. pocoto and P. falcipes was of (So = 0), totally differing in their compositions of parasitic species. The proximity between P. boliviana and P. falcipes was of (So = 18.1 %). The distance between the communities analyzed and compared with the present study are represented in Figure 4.

There was no influence of rainfall or temperature or the interaction between both environmental variables on the community of
helminths *P. pocoto* (Table 2). However, the rainy season had a significant influence on intensity of infection of *Rhabdias* sp. (*p* = 0.0014), which was not found for the other abundant species (Table 2).

Regarding range of infection sites, Figure 5 shows the results of the most abundant species and the ones with greatest variation of sites. The chi-square test showed significant differences of the parasites migration patterns among the infection sites of the hosts between dry and rainy season for *C. parva* (*p* = 9.84e-17). *Cosmocerca parva* was more related to the stomach (n=129) in the dry season, while in the rainy season this species used both stomach (n=67) and the intestines (n=89). However, for *O. oxyascaris* (*p* = 0.0024), although significant, the test found variation in the abundance of infection of this species between dry and rainy season, but no changes in the infecting site. The values of abundance in each host’s site infection by season and total values are presented in Figure 6.

Discussion

Similar to other members of the Leptodactylidae, *P. pocoto* prefers semi-aquatic habitats (Frost, 2013), which is mirrored in the
infection routes of its helminths, since the most abundant parasite species found in this study have direct life cycle. Nematodes were the most frequent taxa in the helminth community of *P. pocoto* in this study, with representatives of six families (Rhabdiasidae, Cosmocercidae, Oxyascariidae, Physalopteridae, Gnathostomatidae, Heterocheilidae). As in the present study, cosmocercids are the most frequently nematodes found among Leptodactylidae (Duré et al., 2004; González & Hamann, 2004; 2012; Santos & Amato, 2013; Campião et al., 2014).

The genus *Rhabdias* currently includes approximately eighty species, of which fifteen are valid for the Neotropical region (Kuzmin et al., 2016). From the species that occur in Brazil, seven are found in the amphibians and reptiles: *Rhabdias androgyna* Kloss, 1971, *Rhabdias fuellleborni* Travassos, 1926, *Rhabdias hermafrodita* Kloss, 1971, *Rhabdias galactonoti* Kuzmin, Melo, Silva-Filho and Santos, 2016, *Rhabdias paraenses* Santos, Melo, Nascimento, Nascimento, Giese and Furtado, 2011, *Rhabdias breviensis* Nascimento, Gonçalves, Melo, Giese, Furtado and Santos, 2013, and *Rhabdias stenocephala* Kuzmin, Melo, Silva-Filho and Santos, 2016 (Kuzmin et al., 2016).

The morphological and morphometric characters often used for the characterization of *Rhabdias* species largely overlap (Tkach et al., 2014). Currently, the most promising morphological characters with a tendency to accompany molecular data results are the shape and structure of the apical region, which are classified into five categories: (a) absence of lips, (b) six lips uniform in size and shape (c) four submedian and two pseudolabial lips, (d) two lateral pseudolabia and four in protuberance forms, and (e) species with only two pseudolabia (Tkach et al., 2014; Kuzmin, 2013). From the specimens collected, it was possible to identify that the apical morphological characteristics are consistent with the characteristics of the neotropical species, like the presence of six lips uniform in length and shape (Tkach et al., 2014). Morphometric analyzes performed for the *Rhabdias* specimens collected in this study demonstrate morphological characters of the apical region and morphometrics different from the species recorded for Brazil, which led us to the implementation of molecular analyzes for the certification of a possible new species for the genus and a later description (Figs. 7a and 7b).

Species of the genus *Cosmocerca* are widely distributed throughout all continents. The species *Cosmocerca parva* has a large distribution throughout Central and South America, thus having morphological and morphometric variations regarding body length, width and number of plectanas (5 – 7) (Rizvi et al., 2011). According to González and Hamann 2011 these variations occur according to the host and sometimes within the same individual. Even though the specimens found in this study present the same morphological characteristics as the ones described by Travassos 1925, the phenotypic plasticity observed is wide and the morphometric characters observed are smaller than those reported in the literature (Bursey et al., 2015) (Table 3), which may be related to the size of the host (Fig. 7c).

There are currently 30 species described for *Cosmocerca*, of which 10 are described for the Neotropical region (Bursey et al., 2015). Peru, Argentina and Brazil are the countries in South America with the highest numbers of infection records of *C. parva* in amphibians, respectively (Santos & Amato, 2013). In Brazil, the records of this helminth are mainly concentrated in the South and Southeast regions, infecting species of Brachycephalidae, Leptodactylidae, Hylodidae, Hylidae, and Bufonidae (Campion et al., 2014).

Oxyascaris oxyascaris was initially described parasitizing the snake *Mastigodryas bifossatus* Raddi, 1820 (= *Drymobius bifossatus*) in Rio de Janeiro (Vicente et al., 1991). Currently, the genus is composed of four other *Oxyascaris* species: *Oxyascaris similis* Travassos, 1920 (= *Pteroxyascaris similis*), *Oxyascaris caudatus* Freitas, 1958, *Oxyascaris mediamidi* Bursey and Goldberg, 2007 (Bursey & Goldberg, 2007). In Brazil, there are records of *O. oxyascaris* infecting amphibians of the Leptodactylidae family in the South and Southeast regions (Vicente et al., 1991). In the Northeast of Brazil, the records are restricted to the states of Bahia and Pernambuco (Teles et al., 2015). This species is identified by having a mouth with three lips, muscular esophagus followed by a glandular ventricle, equal spines, and gill-wing and caudal wings absent (Vicente et al., 1991) (Figs. 7d and 7e).

Physaloptera are parasites of all classes of terrestrial vertebrates (Anderson, 2000; Gorgani et al., 2013). Currently, the following species have been registered for South America and Brazil, infecting reptiles and mammals: *Physaloptera liophis* Vicente and Santos, 1974, *Physaloptera obtusissima* (= *P. monodens*) Molin, 1860, *Physaloptera tubinambae* Pereira, Alves, Rocha, Lima and Luque,
Physaloptera praeputialis Linstow, 1889, Physaloptera lutzi Cristofaro, Guimarães and Rodrigues, 1976, Physaloptera retusa Rudolphi, 1819 and P. bainae Pereira, Alves, Rocha, Lima and Luque, 2014 (Ávila & Silva, 2010; Ávila et al., 2012; Pereira et al., 2014 and Ramos et al., 2016). As for amphibians there is a record of infection by Physalopteridae larvae in the municipality of Angicos (RN) in the host Rhinella granulosa Spix, 1824 (Madelaire et al., in press). The specimens of Physaloptera sp. found in this study present a cephalic colarette formed by the cuticle reflected on the lips and having a mouth with two large, lateral, simple, triangular lips, each provided with a variable number of apical teeth and externally with papillae (Vicente et al., 1991) (Fig. 7f).

The genus Spiroxys is widely distributed throughout the Eurasian Palearctic, North Africa, North America and Neotropical countries (Hasegawa et al., 1998; Mascarenhas & Muller, 2015). Two species of the genus are found in Brazil, Spiroxys contortus Rudolphi 1819, described for the South and Southeast and Spiroxys figureiredoi Freitas and Dobbin 1962, with records for the North-Northeast, Southeast and Central-West regions infecting species of chelonians and snakes (Vicente et al., 1993; Bernadon et al., 2013; Mascarenhas and Muller, 2015 and Viana et al., 2016). Species of the genus Spiroxys are currently divided into three groups: (a) characterized by the presence of teeth in each lobe of the pseudolabium, (b) with teeth only in the median lobe and finally Roca and García, 2008 proposed a third group (c) that are without teeth, found in the Eastern, Australian and Ethiopian zoogeographic regions (Purwaningsih, 2015). The species that occur in Brazil, S. contortus and S. figureiredoi, are included in the second group (Mascarenhas & Muller, 2015; Fig. 7g).

Brevimulticaecum species are described occurring in the continents of Africa, America and Oceania (Vieira et al., 2010). The genus is characterized by having smooth lips with winged margins and absence of dentigerous furrows, excretory pore located anterior to the nerve ring and ventricle with short appendages (González...
Fig. 7. Photomicrography of the helminth species associated with *Pseudopaludicola pocoto*.

- **a** – anterior region of *Rhabdias* sp. focusing on esophagus and lateral wing;
- **b** – view of the mouth of *Rhabdias* sp.;
- **c** – posterior view of the male *Cosmocerca parva*, spicules and plectanae;
- **d** – anterior view of the male *Oxyascaris oxyascaris*, esophagus and lateral wing;
- **e** – view of the anterior portion of the male *O. oxyascaris* with emphasis on the mouth and lateral wing;
- **f** – anterior view of *Physaloptera* sp.;
- **g** – anterior view of the larva of *Spiroxys* sp.;
- **h** – anterior view of the larva of *Brevimucaecum* sp.
Immature individuals of *Brevimulticaecum* were recorded infecting species such as the Brazilian snake *Bothrops neuwiedi* Wagler in Spix, 1824, the treefrog *Dendropsophus minutus* Peters, 1872 and in the freshwater fishes *Gymnotus carapo* Linnaeus 1758 and *Loricariichthys brunneus* Hancock 1828 (Sprent, 1979; Moravec and Kaiser, 1994; Moravec et al., 1997 and Vieira et al., 2010) (Fig. 7h).

Accumulation curve based on sampling effort proved to be satisfactory, since the sample reached the asymptote and was representative for sampling the helminth species associated with *P. pocoto*. The helminths richness in *P. pocoto* (S=8) is higher among species of *Pseudopaludicola* (Duré et al., 2004; González & Hamann, 2004; 2012). The richness of the helminth infrapopulation of *P. pocoto* varied from one to three species per host, which may be explained by the body size that is a factor influencing the richness and composition of helminth communities (Campião et al., 2015). Duré et al. 2004 studied the helminth fauna of *P. boliviana* and found a greater species diversity, with representatives of Trematoda (70 %) showing the greatest richness and intensity of infection (Table 4). The cluster analysis indicates that there is more proximity between the helminth communities of *P. boliviana* and *P. falcipes* than between *P. pocoto* and this is due to the fact that *P. boliviana* and *P. falcipes* are sympatric species, and the low similarity between them can be explained by the low sampling of helminths in *P. falcipes* (Fig. 4). In addition, we must also consider that this difference between the community of helminths of *P. pocoto* and the other species of the genus may be due to geographical and environmental differences. The Argentine province of Corrientes, where the species *P. boliviana* was studied, is characterized by wide habitat heterogeneity, many temporary and permanent water bodies, and gleyic arenosols (Duré et al., 2004; IUSS, 2015). Thus, aquatic environments can facilitate the occurrence of trematodes, considering that the life cycle of these helminths is heteroxenic, and that in at least one of the phases of parasite transmission is found free in a liquid environment (Travassos, 1950).

Pseudopaludicola pocoto showed a component community mainly composed of nematodes, which may be related to the characteristics of its habitat. The municipality of Aiuaba shows low rainfall levels, annual temperature typical of semiarid climate, and soil composed of arenosols-argilaceous matter (Ipece, 2016). Nematodes are abundant in terrestrial habitats (Ruppert & Barnes, 1996), and the occurrence of these worms in the same habitat as *P. pocoto* enable the encounter of parasites and hosts. The greater abundance of *Rhabdias* sp., *C. parva* and *O. oxyascaris* found in all samplings of this present study suggest that the larvae of these nematode species are present in the habitat throughout the year. This fact can be favored by some habitat characteristics such as high soil humidity, allowing the eggs of these parasites to remain viable in the soil throughout the year giving rise to new larval forms and thus allowing continuity to infection by penetration through the skin in the host (Anderson, 2000; Brito et al., 2014).

Although the study period is insufficient to access long-term biol-
hosts (Sprent, 1979; Vicente et al., 1993; Moravec et al., 1997; Goldberg & Bursey, 2007; Goldberg et al., 2009 and González & Hamann, 2013). The precise identification of these helminths was not possible because only one specimen of each was found. Investigating and describing the effects of environmental changes on endoparasites associated with members of the family Leptodactylidae can help to elucidate such effects on the dynamics of parasite communities. Besides, inventories of parasite fauna can contribute to studies on host-parasite relation of leptodactylids because they generate new information on the helminths associated with these hosts and provide new guides to identification (Poulin et al., 2015). The present study provides new helminth records for *Pseudopaludicola*, and also new records on the range and distribution of some helminth species in the Northeast-Brazilian. The Caatinga biome, with its habitat heterogeneity concentrated in the semiarid, encompasses a diverse fauna of amphibians (Camurugi et al., 2010; Andrade et al., 2014; Borges-Leite et al., 2014 and Cavalcanti et al., 2014). Nevertheless, there is still a scarce knowledge of diversity of helminths endoparasites associated with these amphibians.

Acknowledgements

The authors thank the FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico) for financial support. RWA thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing research fellowship (PQ # 303622/2015-6). The Laboratory of Herpetology of the Universidade Regional do Cariri for the technical support to develop this study. To Chico Mendes’ Institute (ICMBio/SISBio) for the collection authorization Nº 29613 – 1; 55467 – 1, for scientific activities aims. To Carlos Alberto de Souza Rodrigues Filho for helping with the graphics. We are also thankful to Samuel Cardozo Ribeiro and Karla Magalhães Campião for essential contribution to the manuscript.

Conflict of Interest: The authors declare that they have no conflict of interest.

References

AHO, J.M. (1990): Helminth communities of amphibians and reptiles: comparative approaches to understanding patterns and processes, Chapman and Hall, London, U. K. In: ESCH, G.W., BUSH, A.O., AHO, J.M. (Eds) *Parasite Communities: Patterns and Processes*. Volume 1. New York, Chapman & Hall, pp. 355

ANDERSON, R.C. (2000): *Nematode parasites of vertebrates, their development and transmission*. 2nd Edition, Wallingford, UK, CABI Publishing, 650pp.

ANDRADE, E.B., ALMEIDA, J.R.S.L., ANDRADE, G.V. (2014): Anurans from the municipality of Ilha Grande, Parnaíba River Delta, Piauí, Northeastern Brazil. *Herpetol. Notes*, 7: 219 – 226

ALTIZER, S., DODSON, A., HOSSEINI, P., HUDSON, P., PASCUAL, M., ROHANI, P. (2006): Seasonality and the dynamics of infectious diseases. *Ecol. Lett.*, 9: 467 – 484. DOI: 10.1111/j.1461-0248.2005.00879.x

AVILA, R.W., SILVA, R.J. (2010): Checklist of helminths from lizards and amphibaenians (Reptilia, Squamata) of South America. *J. Venom. Anim. Toxins incl. Trop. Dis.*, 16: 543 – 572. DOI: 10.1590/ S1678-91992010000400005

AVILA, R.W., ANJOS, L.A., RIBEIRO, S.C., MORais, D.M., SILVA, R.J., ALMEIDA, W.O. (2012): Nematodes of lizards (Reptilia: Squamata) from Caatinga Biome, Northeastern Brazil. *Comp. Parasitol.*, 79: 56 – 63. DOI: 10.1654/4518.1

AVILA, R.W. (2015): *Herpetofauna do sul do Ceará e sertão pernambucano* [Herpetofauna of Southern from Ceará and sertão Pernambuco]. 1st Edition, Crato, Ceará, 160pp. (in Portuguese)

BERNADON, F.F., VALENTE, A.L., MULLER, G. (2013): Gastrointestinal helminths of the Argentine side-necked turtle, *Phrynops hilarii* (Duméril & Bibron, 1835) (Testudines, Chelidae) in South Brazil. *Pan-American J. Aqua. Sci.*, 8(1): 55 – 57

BORGES-LEITE, M.J., RODRIGUES, J.F.M., BORGES-NJOUSA, D.M. (2014): Herpetofauna of a Coastal Region of Northeastern Brazil. *Herpetol. Notes*, 7: 405 – 413

BRITO, S.V., FERREIRA, F.S., RIBEIRO, S.C., ANJOS, L.A., ALMEIDA, W.O., MESQUITA, D.O., VASCONCELOS, A. (2014): Spatial-temporal variation of parasites in *Cnemidophorus ocellifer* (Teiidae) and *Tropidurus hispidus* and *Tropidurus semitaeniatus* (Tropiduridae) from Caatinga areas in Northeastern Brazil. *Parasitol. Res.*, 113: 1163 – 1169. DOI: 10.1007/s00436-014-3754-7

BURSEY, C.R., GOLDBERG, S.R. (2007): A new species of Oxyascaris (Nematoda, Cosmocercideae) in the Costa Rica brook frog, *Duellmanohyla uranochora* (Anura, Hylidae). *Acta Parasitol.*, 52(1): 58 – 61. DOI: 10.2478/s11686-007-0007-2

BURSEY, C.R., BROOKS, D.R. (2010): Nematode parasites of 41 anuran species from the area de conservación Guanacaste, Costa Rica. *Comp. Parasitol.*, 77(2): 221 – 231. DOI: 10.1654/4418.1

BURSEY, C.R., GOLDBERG, S.R., SILER, C.D., BROWN, R.M. (2015): A new species of Cosmocerca (Nematoda: Cosmocercideae) and other helminths in *Cytodactylus guibot* (Squamata: Gekkonidae) from the Philippines. *Acta Parasitol.*, 60(4): 675 – 681. DOI: 10.1515/ap-2015-0096

BUSH, A.O., LAFFERTY, K.D., LOTZ, J.M., SHOSTAK, A.W. (1997): Parasitology meets ecology on its own terms: Margolis et al. revised. *J. Parasitol.*, 83(4): 575 – 583. DOI: 10.2307/3284227

CAMPIAÓ, K.M., MORais, D.H., DIAS, O.T., AGUIAR, A., TOLEDO, G., TAVARES, L.E.R., SILVA, R.J. (2014): Checklist of helminth parasites of amphibians from South America. *Zootaxa*, 3843(1): 1 – 93. DOI: 10.11646/zootaxa.3843.1

CAMPIAÓ, K.M., REBAS, A.C.A., MORais, D.H., DIAS, O.T., SILVA, R.J., TAVARES, L.E.R. (2015): How many parasites species a frog might have? Determinants of parasite diversity in South American anurans. *PlosONE*, 10: 1 – 12. DOI: 10.1371/journal.pone.0140577

CAMURUGI, F., LIMA, T.M., MERCÉS, E.A., JUNCA, F.A. (2010): Anurans of the Reserva Ecológica da Michelin, municipality of Igrapiúna,
state of Bahia, Brazil. *Biotia neotrop.*, 10: 305 – 312. DOI: 10.1590/S1676-06032010000200032

CARDOSO, D.E., BALDO, D., PUPIN, N., GASPARINI, J.L.; HADDAD, C.F.B. (2016): A new species of *Anura* (Liuperidae) from Espírito Santo, Brazil. *Peel J.*, 6:4766. DOI: 10.7717/peerj.4766

CARVALCANTI, L.B.Q., COSTA, T.B., COLLI, G.R., COSTA, G.C., FRANÇA, F.G.R., MESQUITA, D.O., PALMERA, C.N.S., PLEGGERN, N., SOARES, A.H.B., TUCKER, D.B., GARDA, A.A. (2014): Herpetofauna of protected areas in the Caatinga II: Serra da Capivara National Park, Piauí, Brazil. *Check List*, 10 (1): 18 – 27. DOI: 10.15560/10.1.18

CHOUHURY, A., DICK, T.A. (2000): Richness and diversity of helminth communities in tropical freshwater fishes: empirical evidence. *J. Biogeogr.*, 27(4): 935 – 956. DOI: 10.1046/j.1365-2699.2000.00450.x

DURÉ, M.I., SCHAEFER, E.F., HAMANN, M.I., KEVENT, A.I. (2004): Consequences of conservation on the diet, reproduction and parasitism of Pseudopaludicola boliviana (Anura, Leptodactylidae) in Argentina. *Ecological considerations on diet, reproduction and parasitism of Bolivian Pseudopaludicola (Anura, Leptodactylidae) of Corrientes, Argentina*. *Phyllumedusa*, 3(2): 121 – 131

ESCH, G.W., SHOSTAK, A.W., MARCOGLUIESE, D.J., GOATER, T.M. (1990): Patterns and processes in helminth parasite communities: an overview. In: *ESCH, G.W., BUSH, A.O., AIX, J.M.* (Eds) *Parasite Communities: Patterns and Processes*. Volume 1. New York, Chapman & Hall, pp. 355

FROST, D.R. (2013) Amphibian species of the world: an online reference,*American Museum of Natural History, New York, USA* version 6.0. http://research.amnh.org/vz/herpetology/amphibia/index.php

FUNDAÇÃO CEARENSE DE METEOROLOGIA E RECURSOS HÍDRICOS (2016): FCE [Foundation of Meteorology and Hydric Resources of Ceará State]. In: *Zonamento Geoaontal do Ceará: Mesorregião do Sul cearense*. Retrieved December 08, 2016 from http://www.fundecme.br/ Retrieved December 08, 2016 (In Portuguese)

GIBBONS, L. (2010): Keys to the nematode parasites of vertebrates, Supplementary Volume. CABI International, Wallingford, U.K.

GOLDBERG, S.R., BURSEY, C.R., CALDWELL, J.P., VITT, L.J., COSTA, G.C. (2007): Gastrointestinal helminths from six species of frogs and three species of lizards sympatric in Pará state, Brazil. *Comp. Parasitol.*, 74(2): 327 – 342. DOI: 10.1654/4268.1

GOLDBERG, S.R., BURSEY, C.R. (2007): Helminths of two species of frogs Lithobates taylori and Lithobates vailanti (Ranidae), from Costa Rica. *Caribb. J. Sci.*, 43(1): 65 – 72. DOI: 10.18475/cjs.v43i1.a6

GOLDBERG, S.R., BURSEY, C.R., CALDWELL, J.P., SHEPARD, D.B. (2009): Gastrointestinal helminths of six sympatric species of *Leptodactylus* from Tocantins state, Brazil. *Comp. Parasitol.*, 76(2): 258 – 266. DOI: 10.1654/4368.1

GONZÁLEZ, C.E., HAMANN, M.I. (2004): Primer registro de Cosmocerca podicipinus Baker y Vaucher, 1984 (Nematoda, Cosmocercidae) en *Pseudopaludicola falcipes* (Amphibia, Leptodactylidae) en Argentina [First record of *Cosmocerca podicipinus* Baker and Vaucher, 1984 (Nematoda, Cosmocercidae) in *Pseudopaludicola falcipes* (Amphibia, Leptodactylidae) in Argentina]. *Facena*, 20: 65 – 72 (In Portuguese)

GONZÁLEZ, C.E., HAMANN, M.I. (2009): Seasonal occurrence of Cosmocerca podicipinus (Nematoda: Cosmocercidae) in *Pseudopaludicola falcipes* (Amphibia, Liuperidae) from the agricultural area in Corrientes, Argentina. *Revista. Ib.-lat. Parasitol.*, 68: 173 – 179

GONZÁLEZ, C.E., HAMANN, M.I. (2011): Cosmocercid nematodes of three species of frogs (Anura: Hylidae) from Corrientes, Argentina. *Comp. Parasitol.*, 78(1): 212 – 216. DOI: 10.1654/4470.1

GONZÁLEZ, C.E., HAMANN, M.I. (2012): Seasonal occurrence of Cosmocerca podicipinus (Nematoda: Cosmocercidae) in *Pseudopaludicola boliviana* (Anura: Liuperidae) from natural environments in Corrientes Province, Argentina and aspects of its population structure. *Parasitol. Res.*, 111: 1923 – 1928. DOI: 10.1007/s00436-012-3034-3

GONZÁLEZ, C.E., HAMANN, M.I. (2013): First record of Brevimulticaecum larvae (Nematoda, Heterocotiledidae) in amphibians from northern Argentina. *J. Biol.*, 73(2): 451 – 452. DOI: 10.1590/S1519-69842013000200031

GORGANI, T., NAEM, S., FARESH, A.A., OTRANTO, D. (2013): Scanning electron microscopy observations of the hedgehog stomach worm, *Physaloptera clausa* (Spirurida: Physalopteridae). *Parasit. vect.* 6: 87. DOI: 10.1168/1756-3305-6-87

GOTTULI, N.J., ELLISON, A.M. (2011): *Principios de estatistica em ecologia [Principles of statistic em ecology]*. 1st Edition, Porto Alegre, Brasil, Artmed, 528pp. (In Portuguese)

HAMANN, M.I., GONZÁLEZ, C.E. (2010): Helminth community structure of *Scinax nasicus* (Anura: Hylidae) from a South American subtropical area. *Dis. Aquat. Organ.*, 93: 71 – 82. DOI: 10.3354/dao02276

HASEGAWA, H., MIYATA, A., DOI, T. (1998): *Spiroxyx hanzaki* n. sp. (Nematoda: Gnathostomatidae) collected from the giant salamander, *Andrias japonicus* (Caudata: Cryptobranchidae) in Japan. *J. Parasitol.*, 84: 831 – 834

INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ (2016): IP-ECE [Institute of Research and Economic Strategy of Ceará]. In: *Perfil Básico Municipal do Município de Aiuaba. Retrieved November 05, 2016 from http://www.ipece.ce.gov.br/perfil_basico_município/2016/Aiuaba.pdf* (In Portuguese)

KING, K.C., MCLAUGHLIN, J.D., GENDRON, A.D., PAULI, B.D., GIRoux, J., RONDEAU, B., BOILY, M., JUENEAU, P., MARCOGLIESE, D.J. (2007): Impacts of agriculture on the Parasite communities of Northern leopard frogs (*Rana ppiens*) in southern Quebec, Canada. *Parasitology*, 134: 2063 – 2080. DOI: 10.1017/S0031182007003277

KOPRIVNIKAR, J., BAKER, R.L., FORBES, M.R. (2006): Environmental factors influencing trematode prevalence in grey tree frog (*Hyla versicolor*) tadpoles in Southern Ontario. *J. Parasitol.*, 92(5): 997 – 1001. DOI: 10.1645/GE-771R.1

KOPRIVNIKAR, J., POULIN, R. (2009): Effects of temperature, salinity, and water level on the emergence of marine cercariae. *Parasitol. Res.*, 105: 957 – 965. DOI: 10.1007/s00436-009-1477-y

303
tion of the nematode family Rhabdiasidae. Int. J. Parasitol., 44(5): 273 – 284. DOI: 10.1016/j.ijpara.2013.12.005

TRAVALIUS, L. (1925): Contribuições para o conhecimento da fauna helmintológica dos batrâchios do Brasil. Nematódeos intestinais [Contributions to the knowledge of the helminthofauna of the Batrâchios from Brazil. Intestinal nematodes]. Sci. Med., 3: 673 – 687 (In Portuguese)

TRAVALIUS, L. (1950): Introdução ao estudo da helmintologia [Introduction to study of helminthology], 1st Edition, Instituto Oswaldo Cruz, Rio de Janeiro, 95pp. (In Portuguese)

VIANA, D.C., RODRIGUES, J.F.M., MADEIRA, C.B., SANTOS, A.C.G., SOUSA, A.L. (2016): Nematoda of Kinosternon scorpioides (Testudines: Kinosternidae) from northeast of Brazil. The J. Parasitol., 102(1): 165 – 166. DOI: 10.1645/15-788

VICENTE, J.J., RODRIGUES, H.O., GOMES, D.C., PINTO, R.M. (1991): Nematóides do Brasil. Parte II: Nematóides de anfíbios [Nematodes of Brazil. Part II: Nematodes of amphibians]. Revta. Bras. Zool., 7: 549 – 626 (In Portuguese)

VICENTE, J.J., RODRIGUES, H.O., GOMES, D.C., PINTO, R.M. (1993): Nematóides do Brasil. Parte III: Nematóides de Répteis [Nematodes of Brazil. Part III: Nematodes of Reptiles]. Rev. Bras. Zool., 10: 19 – 168

VIEIRA, K.R.I., VICENTINA, A.W., PAIVA, F., POZO, C.F., BORGES, F.A., ADRIANO, E.A., COSTA, F.E.S., TAVARES, L.E.R. (2010): Brevimulti-caecum sp. (Nematoda: Heterocheilidae) larvae parasitic in freshwater fish in the Pantanal wetland, Brazil. Vet. Parasitol., 172(3-4): 350 – 354. DOI: 10.1016/j.vetpar.2010.05.003

World reference base for soil resources - IUSS working group WRB (2015): International soil classification system for naming soils and creating legends for soil maps. In: World soil resources reports N. 106. FAO, Rome. Retrieved March 07, 2017 from http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/

YAMAGUTI, S. (1961): Systema Helminthum – Vol. III Nematodes. Interscience (Wiley), London, 1261 pp.