The guidelines for secondary prevention of myocardial infarction (MI) in Japan were developed by the Joint Working Groups consisting of representatives of various academic societies in the field of cardiovascular diseases including the Japanese Circulation Society (JCS) and the Japanese College of Cardiology. The first edition of the guidelines were published in 2000 under the title of “Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (1998–1999 Joint Working Groups Report): Guidelines for Secondary Prevention of Myocardial Infarction (Chair: Masahiko Kinoshita)”. Later, the first update, “Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2004–2005 Joint Working Groups Report): Guidelines for Secondary Prevention of Myocardial Infarction (JCS 2006) (Chair: Kinji Ishikawa)”, was prepared.2 The present version is the second update. We prepared this 2011 update to include evidences obtained in Japan as much as possible and to fit the current situation in Japan, where coronary intervention is a common procedure. We hope that these guidelines will be used widely in the clinical setting in Japan to improve the prognosis of patients with MI.
This document is a summary (Digest Version) of the Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2010 Joint Working Groups Report): Guidelines for Secondary Prevention of Myocardial Infarction (JCS 2011). Please refer to the full-text guidelines for more details, and make correct use of them.

1. Purpose of These Guidelines

These guidelines are meant to provide specific measures for secondary prevention of MI based on a broad range of evidence collected by Joint Working Groups to contribute to secondary prevention of MI in Japan.

2. Definition of Secondary Prevention for Myocardial Infarction

Secondary prevention of MI generally means prevention of cardiovascular accidents in post-MI patients. Cardiac accidents denote cardiac death (i.e., fatal MI, sudden cardiac death, and death from heart failure) and nonfatal MI, whereas cardiovascular accidents include drug-resistant angina, hospitalization due to heart failure, and stroke. All-cause death (i.e., cardiac death and non-cardiac death) and coronary revascularization may be used as endpoints of studies.

3. Scope of the Guidelines

The present guidelines are applied mainly to patients with old MI. For patients who recently experienced MI or those who have unstable angina, the corresponding guidelines should be referred to.

4. Classification of Recommendations and Level of Evidence

In the present guidelines, recommendations on secondary prevention of MI are described using the following classification of recommendations on the basis of the level of evidence associated with each recommendation.

I. General Treatment

1. Diet Therapy

1. Blood Pressure Control4–9

Class I

1. Salt intake should be reduced to less than 6 g per day. (Level of Evidence: A)
2. Alcohol consumption should be restricted to less than 30 mL of pure alcohol per day. (Level of Evidence: A)
3. Regular moderate physical activity (at least 30 minutes per day) is useful for the treatment and prevention of hypertension. (Level of Evidence: A)

2. Lipid Management10–16

Class I

1. Body weight should be maintained within a body mass index (BMI) range of 18.5 to 24.9 kg/m². (Level of Evidence: B)
2. Potassium (K) and other minerals should be taken adequately. (Level of Evidence: B)
3. Fat intake should be limited to 25% or less of total calories. (Level of Evidence: A)
Table 1. Risk Associated With Exercise Therapy in Patients With Coronary Artery Disease

Risk level	Clinical states
Low	- No significant left ventricular dysfunction (EF: 50% or more).
	- No resting or exercise-induced myocardial ischemia.*
	- No resting or exercise-induced complex arrhythmias.
	- Uncomplicated myocardial infarction, coronary artery bypass surgery, coronary intervention.*
	- Functional capacity of 6 METs or more on graded exercise test 3 or more weeks after clinical event.
Intermediate	- Mild to moderately depressed left ventricular function (EF: 31 to 49%).
	- Functional capacity of less than 5 or 6 METs or more on graded exercise test 3 or more weeks after clinical event.
	- Failure to comply with exercise intensity prescription.
	- Exercise-induced myocardial ischemia (0.1 to 0.2 mV ST-segment depression, echocardiogram or scintigram).*
High	- Severely depressed left ventricular function (EF: 30% or less).
	- Complex ventricular arrhythmias at rest or appearing or increasing with exercise.
	- Decrease in systolic blood pressure of 15 mmHg or more during exercise or failure to rise with increasing exercise workloads.
	- Survivors after cardiopulmonary resuscitation.*
	- Myocardial infarction complicated by congestive heart failure, cardiogenic shock and/or complex ventricular arrhythmias.
	- Severe coronary artery disease and marked exercise-induced myocardial ischemia (ST-segment depression of 0.2 mV or more).*

EF, ejection fraction; METs, metabolic equivalents.
Adapted from U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, National Heart, Lung and Blood Institute, Clinical Practice Guidelines No. 17: Cardiac Rehabilitation as Secondary Prevention. Rockville, MD, 1995. *Modified to fit the circumstances in Japan.

3. Saturated fatty acid intake should be limited to 7% or less of total calories. (Level of Evidence: A)
4. Intake of polyunsaturated fatty acids, particularly n-3 polyunsaturated fatty acids, should be increased. (Level of Evidence: A)
5. Cholesterol intake should be limited to 300 mg or less per day. (Level of Evidence: A)

3. Weight Management17–20

Class IIa
Patients should be instructed to maintain their body weight within a BMI range of 18.5 to 24.9 kg/m², taking into account the balance between calorie intake and energy consumption. (Level of Evidence: B)

4. Diabetes Management21–25

Class IIa
For patients with diabetes, healthcare professionals should determine appropriate calorie intake based on body size, activity level and other factors and should instruct them to keep the calorie intake within the recommended limit with a goal of hemoglobin A1c (HbA1c) less than 7.0% (international standard; less than 6.6% in Japan Diabetes Society [JDS] value). (Level of Evidence: B)

2. Exercise Therapy (Cardiac Rehabilitation)26–34

Class I
1. Based on the results of exercise test, patients should perform at least 30 minutes of aerobic exercise such as walking, running, and cycling, 3 or 4 times a week (every day, if possible). (Level of Evidence: A)
2. Patients should increase physical activities in daily living (e.g., walking to work, and doing household or outside work). (Level of Evidence: B)
3. Patients should perform rhythmic resistance exercise of about 10 to 15 repetition maximum (RM: 10 RM means the intensity that allows 10 repeated movements) in a frequency similar to that of aerobic exercise. (Level of Evidence: A)

4. Institutional exercise therapy is recommended for intermediate- and high-risk patients (Table 135). (Level of Evidence: B)

Class IIa
Non-supervised home exercise therapy is recommended for low-risk patients (Table 13) or those who have completed institutional exercise therapy. (Level of Evidence: C)

3. Smoking Cessation Counseling35–42

Class I
1. Patients should be asked about tobacco use status. (Level of Evidence: A)
2. Smoking patients (current, former) should be informed of the harmful effects of smoking and given smoking cessation counseling and support. The harmful effects of passive smoking should also be explained, and lifestyle modifications and behavioral therapy should be instructed. (Level of Evidence: B)

4. Positive Pressure Ventilation Therapy43–48

Class I
Continuous positive airway pressure (CPAP) therapy is effective for post-MI patients with sleep apnea syndrome. (Level of Evidence: B)

Class IIa
1. Home oxygen therapy (HOT) is recommended for the treatment of sleep apnea syndrome in patients with heart failure. (Level of Evidence: B)
2. Adaptive servo ventilator is useful for MI patients with heart failure, regardless of whether or not they have sleep apnea syndrome. (Level of Evidence: B)

5. Management of Alcohol Use

Class I
Heavy drinking should be avoided. (Level of Evidence: B)

6. Measures Against Depression, Anxiety Disorder, and Insomnia

Class I
Post-MI patients should be counseled about depression, anxiety disorder, and insomnia, and assessed for possible effects of their social and family environments. (Level of Evidence: B)

II Pharmacotherapy

1. Antiplatelet Agents and Anticoagulants

Class I
1. Aspirin (81 to 162 mg) should be administered indefinitely, if not contraindicated. (Level of Evidence: A)
2. Trapidil (300 mg) should be administered when aspirin is contraindicated. (Level of Evidence: B)
3. Warfarin (300 mg) should be administered when aspirin is contraindicated. (Level of Evidence: B)
4. Low-dose aspirin and thienopyridine antiplatelet agents should be used concomitantly in patients who have received coronary stents. (Level of Evidence: A)

Class IIa
1. Low-dose aspirin (81 mg) should be used concomitantly with either dipyridamole (150 mg) or ticlopidine (200 mg). (Level of Evidence: B)
2. Clopidogrel monotherapy should be used in patients with MI complicated by arteriosclerosis obliterans or cerebral infarction. (Level of Evidence: B)
3. Cilostazol should be used concomitantly in patients with MI complicated by arteriosclerosis obliterans. (Level of Evidence: B)
4. Clopidogrel should be administered when aspirin is contraindicated. (Level of Evidence: B)

Class IIb
1. Ticlopidine should be administered when aspirin is contraindicated. (Level of Evidence: C)
2. Cilostazol and sarpogrelate should be administered when aspirin and ticlopidine are contraindicated. (Level of Evidence: B)
3. Warfarin (international normalized ratio of prothrombin time [PT-INR]: 2.0 to 3.0) should be administered when aspirin is contraindicated or difficult to use. (Level of Evidence: B)

Class III
Dipyridamole monotherapy should be used. (Level of Evidence: B)

2. β-Blockers

Class I
1. β-blockers should be administered to patients who are not at low risk (Low-risk patients are defined as those in whom reperfusion therapy has been successful, and left ventricular function is normal or near-normal, and who do not have serious ventricular arrhythmia.) if not contraindicated. (Level of Evidence: A)
2. β-blockers should be administered to patients with moderate or severe left ventricular dysfunction, with gradual increments in dose. (Level of Evidence: B)

Class IIa
β-blockers should be administered to low-risk (Low-risk patients are defined as those in whom reperfusion therapy has been successful, and left ventricular function is normal or near-normal, and who do not have serious ventricular arrhythmia.) patients. (Level of Evidence: A)

Class III
β-blocker monotherapy should be used to patients in whom coronary spasm was considered responsible for MI. (Level of Evidence: B)

3. Lipid Metabolism-Improving Agents

Class I
1. Statins should be administered to patients with hyper-low density lipoprotein (LDL) cholesterolemia. (Level of Evidence: A)
2. The use of high-purity ethyl icosapentate (EPA) preparation in addition to statins should be considered in patients with hyper-LDL cholesterolemia. (Level of Evidence: B)

Class IIa
1. Statins should be administered to patients who have average LDL cholesterol levels. (Level of Evidence: A)
2. Fibrates should also be considered for patients with hypertriglyceridemia, particularly those complicated by hypo-high density lipoprotein (HDL) cholesterolemia. (Level of Evidence: B)
4. Anti-Diabetic Drugs

Class I
Adequate control of blood pressure and lipid levels should be aimed in diabetic patients with MI. (Level of Evidence A)

Class IIa
1. It should be ensured from the early stage that HbA1c be reduced to and maintained at a goal value of less than 7.0% (international standard; less than 6.6% in JDS). (Level of Evidence: B)
2. α-glucosidase inhibitors should be administered to patients with glucose intolerance. (Level of Evidence: B)
3. Pioglitazone therapy should be used in patients without heart failure whenever possible. (Level of Evidence: B)

Class IIb
Metformin should be administered to obese diabetic patients. (Level of Evidence: B)

5. Nitrates

Class I
Fast-acting nitrates such as nitroglycerin (i.e., sublingual tablet, nebulized spray or intravenous one-shot injection) should be used to treat anginal attacks. (Level of Evidence: C)

Class IIa
1. For patients with extensive infarction complicated by congestive heart failure, nitrates should be used for the purpose of treating heart failure. (Level of Evidence: B)
2. For patients with myocardial ischemia, long-acting nitrates should be used for the purpose of preventing anginal attacks. (Level of Evidence: C)

Class III
1. Nitrates should be administered to patients with serious hypotension or cardiogenic shock. (Level of Evidence: C)
2. Nitrates should be administered to patients receiving phosphodiesterase (PDE) 5 inhibitors. (Level of Evidence: C)

6. Nicorandil

Class I
1. Long-term administration of nicorandil should be used for patients with old MI complicated by stable angina. (Level of Evidence: B)
2. Nicorandil should be administered to improve the symptoms of post-infarction angina and myocardial ischemia. (Level of Evidence: B)

7. Calcium Channel Blockers

Class I
Long-acting calcium channel blockers should be used for MI patients with coronary spastic angina or those in whom coronary spasm was definitely considered to be the cause of MI, to prevent ischemic attacks. (Level of Evidence: C)

Class IIa
1. Long-acting dihydropyridine calcium channel blockers should be used for MI patients with angina or hypertension that is not adequately controlled by other drugs. (Level of Evidence: B)
2. Verapamil or diltiazem should be used for patients without left ventricular dysfunction, congestive heart failure, or atrioventricular block in whom β-blockers are contraindicated or poorly tolerated, to improve myocardial ischemia in post-MI or for pulse control of atrial fibrillation with tachycardia. (Level of Evidence: B)

Class III
1. Use of short-acting nifedipine in the early post-MI phase or routine use of short-acting nifedipine in MI patients should be given. (Level of Evidence: A)
2. Diltiazem or verapamil should be used in patients with acute MI complicated by left ventricular dysfunction, congestive heart failure, or atrioventricular block. (Level of Evidence: B)

8. Renin-Angiotensin-Aldosterone System Inhibitors

1. Angiotensin Converting Enzyme Inhibitors
Class I
1. Angiotensin converting enzyme (ACE) inhibitors should be administered within 24 hours after the onset of acute MI to high-risk patients who have left ventricular dysfunction (left ventricular ejection fraction [LVEF] of less than 40%) or heart failure. (Level of Evidence: A)
2. ACE inhibitors should be administered to patients with post-MI left ventricular dysfunction. (Level of Evidence: A)
3. ACE inhibitors should be administered to MI patients who do not have left ventricular dysfunction but have hypertension, diabetes, or moderate to high risk of cardiovascular accidents. (Level of Evidence: A)

Class IIa
1. ACE inhibitors should be administered within 24 hours after the onset of acute MI in all patients. (Level of Evidence: A)
2. ACE inhibitors should be administered to MI patients without cardiac dysfunction who have low risk of cardiovascular accidents. (Level of Evidence: B)

2. Angiotensin II Receptor Blockers

Class I
Angiotensin II receptor blocker (ARB) therapy should be initiated to patients in an acute phase of MI who have intolerance to ACE inhibitors and who have signs of heart failure or LVEF of 40% or less. (Level of Evidence: A)

Class IIb
1. ARBs should be used in combination with ACE inhibitors for MI patients who have left ventricular systolic dysfunction, but are unlikely to have deterioration of renal function. (Level of Evidence: B)
2. Administration of ARBs should be considered in patients with MI, regardless of whether or not they have signs of heart failure. (Level of Evidence: B)

3. Aldosterone Blockers

Class I
None.
Class IIa
Aldosterone blockers should be used in patients with moderate to severe heart failure without renal dysfunction or hyperkalemia. (Level of Evidence: A)

Class IIb
None.

Class III
None.

4. Direct Renin Inhibitors

Class I
None.

Class IIa
None.

Class IIb
1. Concomitant use of direct renin inhibitors with ACE inhibitors or ARBs during an acute phase should be used in all patients with acute MI. (Level of Evidence: B)
2. Monotherapy with direct renin inhibitors as alternatives to ACE inhibitors or ARBs during an acute phase should be used in all patients with acute MI. (Level of Evidence: B)

9. Antiarrhythmic Medications

1. Supraventricular Arrhythmia

Class I
1. Heart rate control by monotherapy or combination therapy with β-blockers, non-dihydropyridine calcium channel blockers, and/or digoxin should be performed in patients with atrial fibrillation not complicated by heart failure. (Level of Evidence: B)
2. Heart rate control by β-blockers with or without digoxin should be performed in patients with atrial fibrillation complicated by heart failure due to systolic dysfunction. (Level of Evidence: B)
3. Heart rate control by amiodarone should be performed in patients with atrial fibrillation complicated by heart failure due to systolic dysfunction in whom β-blockers are unusable. (Level of Evidence: C)

Class IIa
1. Administration of amiodarone to maintain sinus rhythm should be used in patients who have unstable hemodynamics due to episodes of atrial fibrillation or in whom heart rate control is difficult. (Level of Evidence: C)
2. Administration of amiodarone to maintain sinus rhythm should be used when there are severe symptoms during atrial fibrillation attacks in patients who have LVEF of 35% or less and a history of heart failure symptoms or hospitalization due to heart failure within the past 6 months. (Level of Evidence: C)

Class IIb
Administration of amiodarone to maintain sinus rhythm should be used in patients with atrial fibrillation. (Level of Evidence: B)

2. Ventricular Arrhythmia

Class I
β-blockers should be used for patients with premature ventricular contraction (PVC), nonsustained ventricular tachycardia, sustained ventricular tachycardia, or ventricular fibrillation (whenever possible, if not contraindicated). (Level of Evidence: A)

Class IIa
1. Amiodarone should be used for patients with symptomatic PVCs (more than 10 beats/hr for single PVCs or more than 2 runs/day for short-coupled PVCs) and patients with non-sustained ventricular tachycardia (LVEF of 40% or more). (Level of Evidence: B)
2. Amiodarone or dl-sotalol should be used for patients with sustained ventricular tachycardia with stable hemodynamics. (Level of Evidence: B)
3. Amiodarone should be used for patients in whom implantable cardioverter-defibrillator (ICD) therapy cannot be performed and who have sustained ventricular tachycardia resulting in ventricular fibrillation or hemodynamic collapse. (Level of Evidence: C)

Class IIb
Amiodarone or dl-sotalol should be used for patients with sustained ventricular tachycardia resulting in ventricular fibrillation or hemodynamic collapse. (Level of Evidence: B)

Class III
Class I drugs (not applicable to class Ib drugs) and class III drugs (excluding amiodarone and dl-sotalol) should be used for patients with PVC or nonsustained ventricular tachycardia. (Level of Evidence: A)

10. Digitalis

Class I
Digitalis should be administered to patients with heart failure complicated by atrial fibrillation with tachycardia. (Level of Evidence: B)

Class IIa
Digitalis should be administered to patients with heart failure and sinus rhythm (maintain the blood concentration at 0.8 ng/mL or less). (Level of Evidence: B)

11. Phosphodiesterase Inhibitors

Class I
None.

Class IIa
None.

Class IIb
None.

Class III
Long-term administration of PDE inhibitors should be given to asymptomatic patients. (Level of Evidence: C)
12. Influenza Vaccine\(^{189,190}\)

Class IIa
Inactivated influenza vaccine should be given to post-MI patients. \((\text{Level of Evidence: B})\)

III Invasive Procedure

1. Coronary Revascularization\(^{191–197}\)

1. Coronary Intervention for the Culprit Lesions of Acute Myocardial Infarction During the Period Between 24 Hours After Onset and Discharge

Class I
Patients with myocardial ischemia refractory to pharmacotherapy (including asymptomatic myocardial ischemia). \((\text{Level of Evidence: A})\)

Class IIa
Patients with significant stenosis (70% or more) who have demonstrable ischemia and viable myocardium in the infarcted area. \((\text{Level of Evidence: A})\)

Class IIb
Patients with significant stenosis (70% or more) who have no demonstrable ischemia and viable myocardium in the infarcted area. \((\text{Level of Evidence: C})\)

Class III
Patients with moderate stenosis (less than 70%) who have no demonstrable myocardial ischemia. \((\text{Level of Evidence: C})\)

2. Coronary Intervention for Non-Culprit Lesions of Acute Myocardial Infarction During the Period Between 24 Hours After Onset and Discharge\(^{198–204}\)

Class I
1. Patients with myocardial ischemia refractory to pharmacotherapy. \((\text{Level of Evidence: A})\)
2. Patients with significant cardiac dysfunction due to myocardial ischemia. \((\text{Level of Evidence: A})\)

Class IIa
1. Patients with significant stenosis (more than 70%) on coronary angiography and demonstrable myocardial ischemia. \((\text{Level of Evidence: B})\)
2. Patients with three-vessel disease or significant stenosis of the left main coronary artery. \((\text{Level of Evidence: C})\) (Revascularization by coronary artery bypass grafting should also be considered.)

Class IIb
Patients with significant stenosis (more than 70%) on coronary angiography without demonstrable myocardial ischemia. \((\text{Level of Evidence: C})\)

Class III
Patients with moderate stenosis (less than 70%) without demonstrable myocardial ischemia. \((\text{Level of Evidence: C})\)

2. Non-Pharmacotherapy of Arrhythmia

1. Catheter Ablation
Premature Ventricular Contraction/Ventricular Tachycardia
Refer to the Guidelines for Non-Pharmacotherapy of Cardiac Arrhythmias (JCS 2011)\(^{205}\) for more details.

Class I
1. Patients with unifocal PVC triggering ventricular tachycardia or ventricular fibrillation in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)
2. Patients with frequent PVCs associated with significant decrease in quality of life (QOL) or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)
3. Patients in whom cardiac resynchronization therapy (CRT) is not effective due to ineffective pacing caused by frequent PVCs and pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)
4. Patients with monomorphic ventricular tachycardia complicated by cardiac dysfunction or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)
5. Patients with frequent ICD discharges and in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)
6. Patients in whom CRT is not effective due to ineffective pacing caused by monomorphic ventricular tachycardia and pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions. \((\text{Level of Evidence: C})\)

Class IIa
Patients with frequent PVCs originating from ventricular outflow tract due to organic heart disease or complicated by cardiac dysfunction. \((\text{Level of Evidence: C})\)

2. Implantable Cardioverter-Defibrillator\(^{206–228}\)

Class I
1. Patients with clinically documented ventricular fibrillation. \((\text{Level of Evidence: A})\)
2. Patients with sustained ventricular tachycardia leading to hemodynamic collapse who meet one or more of the following conditions: \((\text{Level of Evidence: A})\)
 1) Patients with syncope during ventricular tachycardia.
 2) Patients with a blood pressure of 80 mmHg or less, symptoms of cerebral ischemia or chest pain during tachycardia.
 3) Patients with polymorphic ventricular tachycardia.
 4) Patients with hemodynamically stable monomorphic ventricular tachycardia in whom pharmacotherapy is ineffective, or cannot be continued due to adverse drug reac-
tions, or cannot be assessed for drug efficacy, or in whom catheter ablation is ineffective or impossible.

3. Patients with nonsustained ventricular tachycardia complicated by left ventricular dysfunction (LVEF of 35% or less) in whom sustained ventricular tachycardia/ventricular fibrillation leading to hemodynamic collapse is induced during electrophysiological study. (Level of Evidence: B)

4. Patients with New York Heart Association (NYHA) Class II or III symptoms of chronic heart failure despite appropriate pharmacotherapy, a LVEF of 35% or less, and nonsustained ventricular tachycardia. (Level of Evidence: B)

5. Patients with NYHA Class II or III symptoms of chronic heart failure despite appropriate pharmacotherapy, a LVEF of 35% or less, and syncope of unknown etiology. (Level of Evidence: B)

Class IIa

1. Patients whom sustained ventricular tachycardia is no longer induced after catheter ablation. (Level of Evidence: C)

2. Patients with sustained ventricular tachycardia for whom effective pharmacotherapy was established through the observation of clinical course and drug efficacy evaluation. (Level of Evidence: B)

3. Patients with chronic heart failure who are at least 40 days post-MI who have NYHA Class II or III symptoms despite sufficient pharmacotherapy and a LVEF of 35% or less. (Level of Evidence: A)

4. Patients with syncope of unknown etiology and moderate cardiac dysfunction (LVEF of 36 to 50% and NYHA Class I symptoms) in whom ventricular tachycardia/fibrillation is induced during electrophysiological study. (Level of Evidence: B)

Class IIb

1. Patients with NYHA Class I symptoms and severe left ventricular dysfunction (LVEF of 30% or less) who are at least 1 month after onset of MI or at least 3 months after coronary revascularization. (Level of Evidence: A)

2. Patients with ventricular tachycardia/fibrillation that is highly likely due to reversible causes (e.g., acute ischemia, electrolyte imbalance, and drugs) in whom there is a high risk of re-exposure to the cause despite sufficient treatment (e.g., ventricular fibrillation due to drug-resistant coronary spasm). (Level of Evidence: C)

Class III

1. Patients with ventricular tachycardia/fibrillation due to reversible causes (e.g., acute ischemia, electrolyte imbalance, and drugs) in whom recurrent ventricular tachycardia/fibrillation may be prevented by eliminating the cause. (Level of Evidence: C)

2. Patients with frequent ventricular tachycardia/fibrillation that cannot be controlled with antiarrhythmic drugs and/or catheter ablation. (Level of Evidence: C)

3. Patients whose life expectancy is less than 12 months. (Level of Evidence: C)

4. Patients who cannot express consent or cooperate with treatment due to mental disorder or other reasons. (Level of Evidence: C)

5. Patients with severe drug-resistant congestive heart failure and NYHA Class IV symptoms who are not indicated for heart transplantation or CRT. (Level of Evidence: C)

3. Cardiac Resynchronization Therapy229–231

1) Cardiac Resynchronization Therapy-Pacemaker; CRT-P229,230,232,233

Class I

Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and sinus rhythm. (Level of Evidence: A)

Class IIa

1. Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and atrial fibrillation. (Level of Evidence: B)

2. Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, and who have received or are planned to receive permanent pacemaker implantation, and have depended on or are expected to require ventricular pacing frequently. (Level of Evidence: C)

Class IIb

Patients with NYHA Class II symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, and who are planned to receive permanent pacemaker implantation and are expected to require ventricular pacing frequently. (Level of Evidence: C)

Class III

1. Asymptomatic patients with low LVEF who are not indicated for permanent pacing or ICD. (Level of Evidence: C)

2. Patients whose physical function is limited by chronic conditions other than heart failure, or patients whose life expectancy is less than 12 months. (Level of Evidence: C)

2) Cardiac Resynchronization Therapy Device That Incorporates Both Pacing and Defibrillation Capabilities; CRT-D234–237

Class I

Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and sinus rhythm, and who are indicated for ICD therapy. (Level of Evidence: A)

Class IIa

1. Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and atrial fibrillation, and who are indicated for ICD therapy. (Level of Evidence: B)

2. Patients with NYHA Class II symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 30% or less, a QRS duration of 150 msec or more, and sinus rhythm, and who are indicated for ICD therapy. (Level of Evidence: B)

3. Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, and who have received or are planned to receive ICD therapy, and have depended on or are expected to require ventricular pacing frequently. (Level of Evidence: B)

Class IIb

Patients with NYHA Class II symptoms of chronic heart fail-
General treatment

Diet therapy
1. Blood pressure control
 - Salt intake should be reduced to less than 6 g per day.
 - Alcohol consumption should be restricted to less than 30 mL of pure alcohol per day.
 - Regular moderate physical activity (at least 30 minutes per day) is useful for the treatment and prevention of hypertension.

2. Lipid management
 - Body weight should be maintained at an appropriate level (standard body weight = height [m] × height [m] × 22).
 - Fat intake should be limited to 25% or less of total calories.
 - Saturated fatty acid intake should be limited to 7% or less of total calories.
 - Intake of polyunsaturated fatty acids, particularly n-3 polyunsaturated fatty acids, should be increased.
 - Cholesterol intake should be limited to 300 mg or less per day.

3. Weight management
 - Patients should be instructed to maintain their body weight within a BMI range of 18.5 to 24.9 kg/m².

4. Diabetes management
 - For patients with diabetes, healthcare professionals should determine appropriate calorie intake based on body size, activity level and other factors and should instruct them to keep the calorie intake within the recommended limit with a goal of HbA1c less than 7.0% (international standard; less than 6.6% in JDS value). [IIa]

Exercise therapy (Cardiac rehabilitation)
- Based on the results of exercise test, patients should perform at least 30 minutes of aerobic exercise such as walking, running, and cycling, 3 or 4 times a week (every day, if possible).
- Patients should increase physical activities in daily living (e.g., walking to work, and doing household or outside work).
- Patients should perform rhythmic resistance exercise of about 10 to 15 RM in a frequency similar to that of aerobic exercise.
- Institutional exercise therapy is recommended for intermediate- and high-risk patients.

Smoking cessation counseling
- Patients should be asked about tobacco use status.
- Smoking patients (current, former) should be informed of the harmful effects of smoking and given smoking cessation counseling and support. The harmful effects of passive smoking should also be explained, and lifestyle modification and behavioral therapy should be instructed.

Pharmacotherapy

Antiplatelet agents and anticoagulants
- Aspirin (81 to 162 mg) should be administered indefinitely, if not contraindicated.
- Trapidil (300 mg) should be administered when aspirin is contraindicated.
- Warfarin should be used concomitantly in MI patients with left ventricular or atrial thrombus, severe heart failure, left ventricular aneurysm, paroxysmal or chronic atrial fibrillation, pulmonary artery thromboembolism, or prosthetic heart valve.
- Low-dose aspirin and thienopyridine antiplatelet agents should be used concomitantly in patients who have received coronary stents.

β-blockers
- β-blockers should be administered to patients who are not at low risk, if not contraindicated.
- β-blockers should be administered to patients with moderate or severe left ventricular dysfunction, with gradual increments in dose.

Lipid metabolism-improving agents
- Statins should be administered to patients with hyper-LDL cholesterolemia.
- The use of high-purity EPA preparation in addition to statins should be considered in patients with hyper-LDL cholesterolemia.

Anti-diabetic drugs
- Adequate control of blood pressure and lipid levels should be aimed in diabetic patients with MI.

Nitrates
- Fast-acting nitrates such as nitroglycerin (i.e., sublingual tablet, nebulized spray or intravenous one-shot injection) should be used to treat anginal attacks.

Nicorandil
- Long-term administration of nicorandil should be used for patients with old MI complicated by stable angina.
- Nicorandil should be administered to improve the symptoms of post-infarction angina and myocardial ischemia.

Calcium channel blockers
- Long-acting calcium channel blockers should be used for MI patients with coronary spastic angina or those in whom coronary spasm was definitely considered to be the cause of MI, to prevent ischemic attacks.

Renin-angiotensin-aldosterone system inhibitors
1. ACE inhibitors
 - ACE inhibitors should be administered within 24 hours after the onset of acute MI to high-risk patients who have left ventricular dysfunction (LVEF of less than 40%) or heart failure.

(Table 2 continued on the next page.)
2. ARBs
- ARB therapy should be initiated to patients in an acute phase of MI who have intolerance to ACE inhibitors and who have signs of heart failure or LVEF of 40% or less.

3. Aldosterone blockers
- Aldosterone blockers should be used in patients with moderate to severe heart failure without renal dysfunction or hyperkalemia. [IIa]

4. Direct renin inhibitors
- None.

Antiarrhythmic medications

Supraventricular arrhythmia	Ventricular arrhythmia
- Heart rate control by monotherapy or combination therapy with β-blockers, non-dihydropyridine calcium channel blockers, and/or digoxin should be performed in patients with atrial fibrillation not complicated by heart failure.	- β-blockers should be used for patients with PVC, nonsustained ventricular tachycardia, sustained ventricular tachycardia, or ventricular fibrillation (whenever possible, if not contraindicated).
- Heart rate control by β-blockers with or without digoxin should be performed in patients with atrial fibrillation complicated by heart failure due to systolic dysfunction.	- Patients with significant cardiac dysfunction due to myocardial ischemia.
- Heart rate control by amiodarone should be performed in patients with atrial fibrillation complicated by heart failure due to systolic dysfunction in whom β-blockers are unusable.	- Patients with myocardial ischemia refractory to pharmacotherapy (including asymptomatic myocardial ischemia).

Digitalis
- Digitalis should be administered to patients with heart failure complicated by atrial fibrillation with tachycardia.

PDE Inhibitors
- None.

Influenza vaccine
- Inactivated influenza vaccine should be given to post-MI patients. [IIa]

Coronary intervention (during the period between 24 hours after onset and discharge)

Indications for coronary intervention for culprit lesions of acute MI	Indications for coronary intervention for non-culprit lesions of acute MI
- Patients with myocardial ischemia refractory to pharmacotherapy.	- Patients with multiple risk factors.
- Patients with frequent PVCs associated with significant decrease in QOL or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with significant cardiac dysfunction due to myocardial ischemia.
- Patients in whom CRT is not effective due to ineffective pacing caused by frequent PVCs and pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with sustained ventricular tachycardia leading to hemodynamic collapse who meet one or more of the following conditions;
- Patients with monomorphic ventricular tachycardia complicated by cardiac dysfunction or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with syncope during ventricular tachycardia.
- Patients with frequent ICD discharges and in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with a blood pressure of 60 mmHg or less, symptoms of cerebral ischemia or chest pain during tachycardia.

Non-pharmacotherapy of arrhythmia

Catheter ablation (PVC/Ventricular tachycardia)	ICD
- Patients with unifocal PVC triggering ventricular tachycardia or ventricular fibrillation in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with sustained ventricular tachycardia leading to hemodynamic collapse who meet one or more of the following conditions;
- Patients with frequent PVCs associated with significant decrease in QOL or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with syncope during ventricular tachycardia.
- Patients in whom CRT is not effective due to ineffective pacing caused by frequent PVCs and pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	- Patients with a blood pressure of 60 mmHg or less, symptoms of cerebral ischemia or chest pain during tachycardia.
- Patients with monomorphic ventricular tachycardia complicated by cardiac dysfunction or heart failure in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	Patients with polymorphic ventricular tachycardia.
- Patients with frequent ICD discharges and in whom pharmacotherapy is ineffective or cannot be continued due to adverse drug reactions.	Patients with hemodynamically stable monomorphic ventricular tachycardia in whom pharmacotherapy is ineffective, or cannot be continued due to adverse drug reactions, or cannot be assessed for drug efficacy, or in whom catheter ablation is ineffective or impossible.
- Patients with unifocal PVC triggering ventricular tachycardia.	Patients with nonsustained ventricular tachycardia complicated by left ventricular dysfunction (LVEF of 35% or less) in whom sustained ventricular tachycardia/ventricular fibrillation leading to hemodynamic collapse is induced due to electrophysiological study.
- Patients with low cardiac output and heart failure.	Patients with NYHA Class II or III symptoms of chronic heart failure despite appropriate pharmacotherapy, a LVEF of 35% or less, and nonsustained ventricular tachycardia.
- Patients with syncope associated with ventricular tachycardia.	Patients with NYHA Class II or III symptoms of chronic heart failure despite appropriate pharmacotherapy, a LVEF of 35% or less, and syncope of unknown etiology.
- Patients with hemodynamically stable monomorphic ventricular tachycardia in whom pharmacotherapy is ineffective, or cannot be continued due to adverse drug reactions, or cannot be assessed for drug efficacy, or in whom catheter ablation is ineffective or impossible.	Patients with NYHA Class II or III symptoms of chronic heart failure despite appropriate pharmacotherapy, a LVEF of 35% or less, and syncope of unknown etiology.
- Patients with nonsustained ventricular tachycardia complicated by left ventricular dysfunction (LVEF of 35% or less) in whom sustained ventricular tachycardia/ventricular fibrillation leading to hemodynamic collapse is induced due to electrophysiological study.	Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and sinus rhythm.
- Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and sinus rhythm, and who are indicated for ICD therapy.	Patients with NYHA Class III or ambulatory Class IV symptoms of chronic heart failure despite optimal pharmacotherapy, a LVEF of 35% or less, a QRS duration of 120 msec or more, and sinus rhythm.

(Table 2’s footnote is on the next page.)
ure despite optimal pharmacotherapy, a LVEF of 35% or less, and who are planned to receive ICD therapy and are expected to require ventricular pacing frequently. (Level of Evidence: B)

Class III
1. Asymptomatic patients with low LVEF who are not indicated for ICD therapy. (Level of Evidence: C)
2. Patients whose physical function is limited by chronic conditions other than heart failure, or patients whose life expectancy is less than 12 months. (Level of Evidence: C)

Table 2 summarizes Class I recommendations (plus some Class IIa recommendations) that are frequently used in the clinical setting.

[Note]
The present guidelines provide standard practices developed on the basis of substantial evidence. Since each patient has his or her unique characteristics, physicians should use these guidelines with sufficient attention given to individual circumstances, and treatment plan should always be at physician’s discretion and according to clinical symptoms. The present guidelines provide no grounds for argument in case of legal prosecution and this guideline document is not provided as a peer-reviewed article or research report.

References
1. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (1998–1999 Joint Working Groups Report). Guidelines for Secondary Prevention of Myocardial Infarction. Jpn Circ J 2000; 64 (Suppl IV): 1081–1127 (in Japanese).
2. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2004–2005 Joint Working Groups Report). Guidelines for Secondary Prevention of Myocardial Infarction (JCS 2006). http://www. j-circ.or.jp/guideline/pdf/JCS2006_ishikawa_h.pdf (in Japanese).
3. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2010 Joint Working Groups Report). Guidelines for Secondary Prevention of Myocardial Infarction (JCS 2011). http://www. j-circ.or.jp/guideline/pdf/JCS2011_ogawah_h.pdf (in Japanese).
4. The Japanese Society of Hypertension. Hypertension Treatment Guidelines (JSH 2009). Tokyo: Life Science Publishing Co., LTD., 2009 (in Japanese).
5. Whitworth JA; World Health Organization, International Society of Hypertension Writing Group. 2003 World Health Organization (WHO)/International Society of Hypertension (ISH) statement on management of hypertension. J Hypertens 2003; 21: 1983–1992.
6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al; Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute; National High Blood Pressure Education Program Coordinating Committee: Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.
7. Kiyohara Y, Kato I, Iwamoto H, Nakayama K, Fushima M. The impact of alcohol and hypertension on stroke incidence in a general Japanese population: The Hisayama Study. Stroke 1995; 26: 368 – 372.
8. Matsuzawa Y, Inoue S, Ikeda Y, Sakata T, Saito Y, Sato Y, et al. The new diagnostic criteria of obesity. J Jpn Soc Stud Obes 2000; 6: 18 – 28 (in Japanese).
9. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al; American Heart Association Strategic Planning Task Force and Statistics Committee. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010; 121: 586–613.
10. Stamler J, Elliott P, Appel L, Chan Q, Buzzard M, Dennis B, et al. Higher blood pressure in middle-aged American adults with less education-role of multiple dietary factors: The INTERMAP study. J Hum Hypertens 2003; 17: 655–775.
11. National Institute of Health and Nutrition, The National Nutrition Survey in Japan, 2002. Ministry of Health, Labour and Welfare, Japan. Tokyo: DAI-ICHI SHUPPAN Co., Ltd., 2004 (in Japanese).
12. Ueshima H, Okayama A, Saitoh S, Nakagawa H, Rodriguez B, Sakata K, et al; INTERLIPID Research Group. Differences in cardiovascular disease risk factors between Japanese in Japan and Japanese-Americans in Hawaii: The INTERLIPID study. J Hum Hypertens 2003; 17: 631–639.
13. Ornish D, Scherwitz LW, Billings JH, Brown SE, Gould KL, Merrit TA, et al. Intensive lifestyle changes for reversal of coronary heart disease. JAMA 1998; 280: 2001–2007.
14. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2007. Tokyo: Japan Atherosclerosis Society, 2007 (in Japanese).
15. Japan Atherosclerosis Society. Dyslipidemia treatment guide for prevention of atherosclerotic cardiovascular diseases, 2008 edition. Tokyo: Kyowa Kikaku, Inc., 2008 (in Japanese).
16. Okuda N, Ueshima H, Okayama A, Saitoh S, Nakagawa H, Rodriguez BL, et al; INTERLIPID Research Group. Relation of long chain n-3 polyunsaturated fatty acid intake to serum high density lipoprotein-cholesterol among Japanese men in Japan and Japanese-American men in Hawaii: The INTERLIPID study. Atherosclerosis 2005; 178: 371–379.
17. Rao SV, Donahue M, Pi-Sunyer FX, Fuster V. Results of Expert Meetings: Obesity and Cardiovascular Disease: Obesity as a risk factor in coronary artery disease. Am Heart J 2001; 142: 1102–1107.
18. Calle EE, Thun MJ, Petrelli JM, Rodriguez C, Heath CW Jr. Body-mass index and mortality in a prospective cohort of U.S. adults. N Engl J Med 1999; 341: 1097–1105.
19. Kasisi T, Miyayuchi K, Kurata T, Ohta H, Okazaki S, Miyazaki T, et al. Prognostic value of the metabolic syndrome for long-term outcomes in patients undergoing percutaneous coronary intervention. Circ J 2006; 70: 1531–1537.
20. Gregg EW, Gerzoff RB, Thompson TJ, Williamson DF. Intentional weight loss and death in overweight and obese U.S. adults 35 years of age and older. Ann Intern Med 2003; 138: 383–389.
21. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33): UK Prospective Diabete Study (UKPDS) Group. Lancet 1998; 352: 837–853.
22. Dormandy JA, Cruickshank B, Eckland DJ, Erdmann E, Massi Benedetti M, Moules IK, et al; PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomized controlled trial. Lancet 2005; 366: 1279–1289.
23. Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, Buse JB, et al; Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545–2559.
24. Ray KK, Seshasai SR, Wijesuriya S, Sivakumar R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: A meta-analysis of randomized controlled trials. Lancet 2009; 373: 1765–1772.
25. Currie CJ, Peters JR, Tynan A, Evans M, Heine RJ, Bracco OL, et al. Survival as a function of HbA1c in people with type 2 diabe-
A retrospective cohort study. *Lancet* 2010; 375: 481–489.

26. Balady GJ, Williams MA, Ades PA, Bittner V, Comoss P, Foody JM, et al; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physical Activity, and Metabolism; American Association of Cardiovascular and Pulmonary Rehabilitation. Core components of cardiac rehabilitation/secondary prevention programs: 2007 update: A scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. *Circulation* 2007; 115: 2675–2682.

27. Van de Werf F, Bax J, Betriu A, Blömström-Lundqvist C, Crea F, Falk V, et al; ESC Committee for Practice Guidelines (CPG). Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: The Task Force on the Management of ST-Elevation Acute Myocardial Infarction of the European Society of Cardiology. *Eur Heart J* 2008; 29: 2909–2945.

28. Taylor RS, Brown A, Ebrahim S, Jolliffe J, Norrison H, Rees K, et al. Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized controlled trials. *Am J Med* 2004; 116: 682–692.

29. Antman EM, Ante DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction–executive summary: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). *Circulation* 2004; 110: 588–636.

30. DeBusk RF, McGuire MH, Superko HR, Dennis CA, Thomas RJ, Liew HT, et al. A case-management system for coronary risk factor modification after acute myocardial infarction. *Am Intern Med 1994; 120*: 721–729.

31. Nakada I, Ohmura N, Katsuki T, Yasu T, Fuji M, Kudo N, et al. Prediction of exercise capacity in the chronic phase of myocardial infarction by non-supervised home exercise therapy: Consideration of physical and psychosocial factors at discharge. *Japanese Journal of Applied Physiology* 1994; 24: 401–409 (in Japanese).

32. Wengen NK, Froelicher ES, Smith JK, Philip A, Ades PA, Berra K, et al. Clinical Practice Guidelines No. 12: Cardiac Rehabilitation/Secondary Prevention. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, National Heart, Lung and Blood Institute, 1995: 135–138. AHCPR Publication 96-0672.

33. Pollock ML, Franklin BA, Balady GJ, Chatman BL, Fleg JL, Fletcher B, et al. American College of Sports Medicine. Exercise, Rehabilitation, and Prevention, Council on Clinical Cardiology, American Heart Association; Position paper endorsed by the American College of Sports Medicine. *Circulation* 2000; 101: 828–833.

34. Benjamini Y, Rubinstein JF, Fagenbaum AD, Lichtenstein AH, Crim MC, High-intensity strength training of patients enrolled in an out-patient cardiac rehabilitation program. *J Cardiopulm Rehabil 1999; 19*: 5–17.

35. Fiore MC, Bailey WC, Cohen SJ, Dorfman SF, Fox BJ, Goldstein MG, et al. Treating Tobacco Use and Dependence. Clinical Practice Guideline. Rockville, MD: U.S. Department of Health and Human Services, Public Health Service. June 2000.

36. Rosenberg L, Kaufman DW, Helmrich SP, Shapiro S. The risk of myocardial infarction after quitting smoking in men under 55 years of age. *N Engl J Med* 1985; 313: 1511–1514.

37. Willett WC, Green A, Stamper MJ, Spiezer FE, Colditz GA, Rosner B, et al. Relative and excess risks of coronary heart disease among women who smoke cigarettes. *N Engl J Med* 1987; 317: 1303–1309.

38. Rosenberg L, Palmer JR, Shapiro S. Decline in the risk of myocardial infarction among women who stop smoking. *N Engl J Med* 1990; 322: 213–217.

39. Kawachi I, Colditz GA, Stamper MJ, Willett WC, Manson JE, Rosner B, et al. Smoking cessation and time course of decreased risks of coronary heart disease in middle-aged women. *Arch Intern Med* 1994; 154: 1: 93–100.

40. Steenland K, Than M, Lalley C, Heath C Jr. Environmental tobacco smoke and coronary heart disease in the American Cancer Society CPS-II cohort. *Circulation* 1996; 94: 622–628.

41. Kawachi I, Colditz GA, Speizer FE, Manson JE, Stamper MJ, Willett WC, et al. A prospective study of passive smoking and coronary heart disease. *Am J Public Health* 1997; 95: 1273–1279.

42. He J, Vupputuri S, Rimer BK, Mensah GA, Neaton JD, Wilson PW. Passive smoking and the risk of coronary heart disease–a meta-analysis of epidemiologic studies. *N Engl J Med* 1999; 340: 920–926.

43. Schäfer H, Koehler U, Ewig S, Hasper E, Tasci S, Lüderitz B. Obstructive sleep apnea as a risk marker in coronary artery disease. *Cardiology* 1999; 92: 79–84.

44. Peker Y, Hedder J, Kraiczi H, Lüth S. Respiratory disturbance index: An independent predictor of mortality in coronary artery disease. *Am J Respir Crit Care Med* 2000; 162: 81–86.

45. Peled N, Abinader EG, Pillar G, Sharif D, Lavi P. Nocturnal ischemic events in patients with obstructive sleep apnea syndrome and ischemic heart disease: Effects of continuous positive air pressure treatment. *J Am Coll Cardiol* 1999; 34: 1744–1749.

46. Polyhronis, C, Stoca-herman M, Drouot X, Raffestin B, Escourrou P, Hittinger L, et al. Compliance with and effectiveness of adaptive servo-ventilation with continuous positive airway pressure in the treatment of Cheyne-Stokes respiration in heart failure over a six month period. *Heart* 2006; 92: 337–342.

47. Muller Y, Hennensens CH, Buring JE, Gazzano JM. Mortality and light to moderate alcohol consumption after myocardial infarction. *Lancet* 1994; 343: 1882–1885.

48. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, et al. Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. *N Engl J Med* 2003; 348: 109–118.

49. Shaper AG, Wannamethee G, Walker M. Alcohol and coronary heart disease: A perspective from the British Regional Heart Study. *Int J Epidemiol 1994; 23*: 482–494.

50. Camargo CA Jr, Stamper MJ, Glynn RJ, Grodstein F, Gazzano JM, Manson JE, et al. Moderate alcohol consumption and risk of anginapectoris or myocardial infarction in U.S. male physicians. *Arch Intern Med* 1997; 126: 372–375.

51. Schleifer SJ, Macari-hinson MM, Coyle DA, Slater WR, Kahn M, Gorlin R, et al. The nature and course of depression following myocardial infarction. *Arch Intern Med* 1989; 149: 1785–1789.

52. Frasure-Smith N, Lespérance F, Talajic M. Depression following myocardial infarction. Impact on 6-month survival. JAMA 1993; 270: 1819–1825.

53. Glassman AH, O’Connor CM, Califir RM, Swedberg K, Schwartz P, Bigge JR Jr, et al; Sertraline Antidepressant Heart Attack Randomized Trial (SADHEART) Group. Sertraline treatment of major depression in patients with acute MI or unstable angina. *JAMA* 2002; 288: 701–709.

54. Bush DE, Ziegelstein RC, Tyaback M, Richter D, Stevens S, Zahalsky H, et al. Even minimal symptoms of depression increase mortality risk after acute myocardial infarction. *Am J Cardiol* 2001; 88: 337–341.

55. Frasure-Smith N, Lespérance F. Depression and other psychological risks following myocardial infarction. *Arch Gen Psychiatry* 2003; 60: 627–636.

56. Saab PG, Bang H, Williams RB, Powell LH, Schneiderman N, Thorensen C, et al; ENRICHD Investigators. The impact of cognitive behavioral group training on event-free survival in patients with myocardial infarction: The ENRICHD experience. *J Psychosom Res 2009; 67*: 45–56.

57. Ueshima H, Okayama A, editors. Cholesterol education program among Japanese. Tokyo: HOKENDOJINSHA Inc., 1994 (in Japanese).

58. The multiple risk factor intervention trial (MRFIT). A national study of primary prevention of coronary heart disease. *JAMA* 1976; 235: 825–827.

59. Sone H, Katagiri A, Ishibashi S, Abe R, Saito Y, Murase T, et al; JD Study Group. Effects of lifestyle modifications on patients with
type 2 diabetes: The Japan Diabetes Complications Study (JDCS) study design, baseline analysis and three year-interim report. *Horm Metab Res* 2000; 32: 409–415.

62. Kadotani T, Watanabe M, Okamaaya A, Hishida K, Ueshima H. Effectiveness of smoking-cessation intervention in all of the smokers at a worksite in Japan. *Ind Health* 2000; 38: 396–403.

63. Okuda N, Okamura T, Kadotani T, Tanaka T, Ueshima H. Weight-control intervention in overweight subjects at high risk of cardiovascular disease: A trial of a public health practical training program in a medical school. *Japanese Journal of Public Health 2004; 51: 552–560 (in Japanese).

64. Tamakita J, Kikuchi Y, Yonshita K, Takebayashi T, Chiba N, Tanaka T, et al.; HIPPO-OHP Research Group. Stages of change for salt intake and urinary salt excretion: Baseline results from the High-Risk and Population Strategy for Occupational Health Promotion (HIPPO-OHP) study. *Hypertens Res* 2004; 27: 157–166.

65. Baigent C, Blackwell L, Collins R, Godwin J, Peto R, et al. Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. *Lancet* 2009; 373: 1849–1860.

66. Yasue H, Ogawa H, Tanaka H, Miyazaki S, Hattori R, Saito M, et al.; JELIS Investigators. Incremental effects of eicosapentaenoic acid on progression of coronary atherosclerosis in patients with serum total cholesterol levels from 160 to 220 mg/dl and angiographically documented coronary artery disease: Coronary Artery Regression Study (CARS). *Am J Cardiol* 1997; 79: 893–896.

67. Nakagawa T, Kobayashi T, Asata N, Sato S, Reiber JH, Nakajima H, et al. Randomized trial of pravastatin in patients with coronary artery disease (results from the Japan Multicenter Investigation for Cardiovascular Diseases-Mochida Investigation Group). *J Clin Invest* 2003; 109: 2912–2917.

68. Ishikawa K, Kanamasa K, Hama J, Ogawa I, Takenaka T, Naito T, et al. Aspirin plus either dipiridamole or ticlopidine ineffective in preventing recurrent myocardial infarction: Secondary Prevention Group. *Jpn Circ J 1997; 61: 38–45.

69. Suginoh T, Minimachi C, Marubini E, Fitizalis MV, Di Biase M, Rizzon P. Ticlopidine versus aspirin after myocardial infarction (STAND) trial. *Am J Cardiol* 2004; 93: 1259–1265.

70. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRINE). CAPRINE Steering Committee. *Lancet* 1996; 348: 1329–1339.

71. Bhath DL, Flather MD, Hack W, Berger PB, Black HR, Boden WE, et al.; CHARISMA Investigators. Patients with prior myocardial infarction, stroke, or symptomatic peripheral arterial disease in the CHARISMA trial. *J Am Coll Cardiol* 2007; 49: 1982–1988.

72. Schleinitz MD, Olkin I, Heidenreich PA. Cilostazol, clopidogrel or aspirin in patients with coronary artery disease (results from the Japan Multicenter Investigation for Cardiovascular Diseases-Mochida Investigation Group). *J Clin Investig* 2003; 92: 789–793.

73. Tamura A, Mikuriya Y, Nasu M. Effect of pravastatin (10mg/day) on progression of coronary atherosclerosis in patients with serum total cholesterol levels from 160 to 220 mg/dl and angiographically documented coronary artery disease: Coronary Artery Regression Study (CARS). *Am J Cardiol* 1997; 79: 893–896.

74. Nakagawa T, Kobayashi T, Asata N, Sato S, Reiber JH, Nakajima H, et al. Randomized trial of pravastatin in patients with coronary artery disease (results from the Japan Multicenter Investigation for Cardiovascular Diseases-Mochida Investigation Group). *J Clin Investig* 2003; 92: 789–793.

75. Hurlen M, Abdelnoor M, Smith P, Erikssen J, Arnesen H. Warfarin, aspirin, or both in secondary prevention of vascular disease: Collaborative meta-analysis of individual participant data from randomised trials. *Clin Ther* 2005; 27: 107–114.

76. Yokoi H, Nobuyoshi M, Mitsuoka K, Kawaguchi A, Yamamoto A; ATRIOMA Study Investigators. Three year follow-up results of an angiographic intervention trial using an HMG-CoA reductase inhibitor to evaluate retardation of obstructive multiple atheroma (ATHEROMA) study. *Circ J 2005; 69: 857–883.

77. Makuchi H, Furuse A, Endo M, Nakamura H, Daido H, Watanabe M, et al. Effect of pravastatin on progression of coronary artery disease in patients after coronary artery bypass surgery. *Circ J 2005; 69: 636–643.

78. Sakamoto T, Kojima S, Ogawa H, Shimomura H, Kimura K, Ogata Y, et al.; Multicenter Study for Aggressive Lipid-Lowering Strategy by HMG-CoA Reductase Inhibitors in Patients With Acute Myocardial Infarction Investigators. Effects of early statin treatment on symptomatic heart failure and ischemic events after acute myocardial infarction in Japanese. *Am J Cardiol* 2006; 97: 1165–1171.

79. Kojima S, Sakamoto T, Ogawa H, Kitagawa A, Matsuki K, Shimomura H, et al; Multicenter Study for Aggressive Lipid-Lowering Strategy by HMG-CoA Reductase Inhibitors Investigators. Standard-dose statin therapy provides incremental clinical benefits in normocholesterolemic diabetic patients. *Circ J 2010; 74: 779–785.

80. Okazaki T, Yokoyama S, Miyakita K, Shimada K, Kurata T, Sato H, et al. Early statin treatment in patients with acute coronary syndrome: Demonstration of the beneficial effect of early statins on clinical outcomes by serial volumetric intravascular ultrasound analysis during half a year after coronary event; the ESTABLISH study. *Circulation* 2004; 110: 1061–1068.

81. Hiro T, Kimura T, Morimoto T, Miyakita K, Nakagawa Y, Yamagishi M, et al.; JAPAN-ACS Investigators. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: A multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). *J Am Coll Cardiol* 2009; 54: 293–302.

82. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: Results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. *Lancet* 1999; 354: 447–455.

83. Ueda M, Doumei T, Takaya Y, Shinohata R, Katayama Y, Ohnishi N, et al.; Multicenter Study for Aggressive Lipid-Lowering Strategy by HMG-CoA Reductase Inhibitors Investigators. Standard-dose statin therapy provides incremental clinical benefits in normocholesterolemic diabetic patients. *Circ J 2010; 74: 779–785.

84. Yokomaki M, Yokoyama S, Kimura T, Morimoto T, Saito Y, Ishikawa Y, et al.; Japan EPA lipid intervention study (JELIS) Investigators. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. *Lancet* 2007; 369: 1090–1098.

85. Matsui S, Yoshiba Y, Oyami S, Chiba N, Takahashi S, et al.; JELIS Investigators. Incremental effects of eicosapentaenoic acid...
nocid acid on cardiovascular events in statin-treated patients with coronary artery disease. *Circ J* 2009; 73: 1283 – 1290.

99. Studer M, Biel M, Leimenterb L, Glass TR, Bucher HC. Effect of different antilipidemic agents and diets on mortality: A systematic review. *Arch Intern Med* 2005; 165: 725 – 730.

100. Smith SC Jr, Blair SN, Bowon RO, Brass LM, Cerqueira MD, Draguc K, et al. AHA/ACC Scientific Statement: AHA/ACC guide-lines for preventing heart attack and death in patients with atherosclerotic cardiovascular disease: 2001 update: A statement for health-care professionals from the American Heart Association and the American College of Cardiology. *Circulation* 2001; 104: 1577 – 1579.

101. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: The Bezafibrate Infarction Prevention (BIP) study. *Circulation* 2000; 102: 21 – 27.

102. Tenenbaum A, Motro M, Fisman EZ, Tanne D, Boyko V, Behar S. Bezafibrate for the secondary prevention of myocardial infarction in patients with metabolic syndrome. *Arch Intern Med* 2005; 165: 1154 – 1160.

103. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, et al; FIELD study investigators. Effects of long-term fenofibrate therapy on cardiovascular events in 7975 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. *Lancet* 2005; 366: 1849 – 1861.

104. Jun M, Poote C, Lv J, Neal B, Patel A, Nicholls SJ, et al. Effects of long-term fenofibrate on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): A randomized controlled trial. *Lancet* 2004; 364: 849 – 857.

105. Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghalil M, Garza D, et al; CAMELOT Investigators. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: The CAMELOT study: A randomized controlled trial. *JAMA* 2004; 291: 1808 – 1817.

106. Ambrosio G, Del Pinto M, Tritto I, Agnelli G, Bentivoglio M, Zucchini S, et al; Japanese Acute Coronary Syndrome Study (JACSS) Investigators. Long-term nitrate therapy after acute myocardial infarction does not improve or aggravate prognosis. *Circ J* 2007; 71: 301 – 307.

107. Ishii H, Toriyama T, Aoyama T, Takahashi H, Yamada S, Kasuga H, et al; JCAD Study Investigators. Effect of niconid on cardiovascular events in patients with coronary artery disease in the Japanese Acute Coronary Disease (JCAD) study. *Circ J* 2010; 74: 503 – 509.

108. Hanefeld M, Cagatay M, Petrowitsch T, Neuser D, Petzinna D, Rupp M. Effects of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): A randomized controlled trial. *Lancet* 2004; 364: 849 – 857.

109. Horinaka S, Yabe A, Yagi H, Ishimitsu T, Yamazaki T, Suzuki S, et al; CONVINCE Research Group. Principal results of the bezafibrate evaluation program (BEZEP) study. *J Cardiovasc Pharmacol* 1991; 18: S137 – S146.

110. Psaty BM, Heckbert SR, Koepsell TD, Siscovick DS, Raghunathan TE, Weiss NS, et al. The risk of myocardial infarction associated with antihypertensive drug therapies. *JAMA* 1995; 274: 620 – 625.

111. Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, et al; Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. ESC Committee for Practice Guidelines (CPG). Guidelines on the management of stable angina pectoris: Executive summary: The Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. *Eur Heart J* 2006; 27: 1341 – 1381.

112. Q nip M, Poote C, Lv J, Neal B, Patel A, Nicholls SJ, et al. Effects of long-term fenofibrate on mortality and morbidity in patients...
with left ventricular dysfunction after myocardial infarction: Results of the survival and ventricular enlargement trial: The SAVE Investigators. N Engl J Med 1992; 327: 669–677.

136. Shibata N, Watanabe J, Shinohzki T, Koski Y, Sakuma M, Kagaia Y, et al. Poor prognosis of Japanese patients with chronic heart failure following myocardial infarction: Comparison with nonischemic cardiomyopathy. Circ J 2005; 69: 143–149.

137. Domsanci M, Raji M, Borkowt CB, Teller NL, Rosenberg Y, Pfeffer MA. Effect of angiotensin converting enzyme inhibition on sudden cardiac death in patients following acute myocardial infarction: A meta-analysis of randomized clinical trials. J Am Coll Cardiol 1991; 17: 633 – 640.

138. Lee VC, Rhew DC, Dylan M, Badamgarav E, Braunstein GD, Weinarten SR. Meta-analysis: Angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann Intern Med 2004; 141: 693–704.

139. Abdulla J, Barlera S, Latini R, Kjoller-Hansen L, Sogaard P, Christensen E, et al. A systematic review: Effect of angiotensin converting enzyme inhibition on left ventricular volumes and ejection fraction in patients with a myocardial infarction and in patients with left ventricular dysfunction. Eur J Heart Fail 2007; 9: 129 – 135.

140. Baker WL, Coleman CI, Kluger J, Reinhart KM, Talati R, Quercia R, et al. Systematic review: Comparative effectiveness of angiotensin-converting enzyme inhibitors or angiotensin II-receptor blockers for ischemic heart disease. Ann Intern Med 2009; 151: 861 – 871.

141. Danchin N, Cucherat M, Thuillez C, Durand E, Kadi Z, Steg PG. Angiotensin-converting enzyme inhibitors in patients with coronary artery disease and absence of heart failure: left ventricular systolic dysfunction: An overview of long-term randomized controlled trials. Arch Intern Med 2006; 166: 787–796.

142. Dagenais GR, Pogue J, Fox K, Simonos ML, Yusuf S. Angiotensin-converting enzyme-inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: A combined analysis of three trials. Lancet 2006; 368: 581–588.

143. Al-Mallah MH, Tleyjeh IM, Abdel-Latif AA, Weaver WD. Angiotensin-converting enzyme inhibitors or angiotensin II-receptor blockers for ischemic heart disease. N Engl J Med 2009; 360: 752–760.

144. Dickstein K, Kjekshus J; OPTIMAAL Steering Committee of the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial: Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. Lancet 2002; 360: 752–760.

145. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP, et al. Systematic review: Comparative effectiveness of angiotensin-converting enzyme inhibition on left ventricular volumes and ejection fraction in patients with a myocardial infarction and in patients with left ventricular dysfunction. Eur J Heart Fail 2010; 12: 913–2005.

146. Weingarten SR. Meta-analysis: Angiotensin-receptor blockers in acute coronary syndromes. Curr Opin Cardiol 2009; 24: 1920–1924.

147. Sever PS, Gradman AH, Azizi M. Managing cardiovascular and renal risk: The potential of direct renin inhibition. J Renin Angiotensin Aldosterone Syst 2009; 10: 65–76.

148. Lee HY, Oh BH. Cardio-renal protection with aliskiren, a direct renin inhibitor, in the ASPIRE HIGHER program. Expert Rev Cardiovasc Ther 2009; 7: 251–257.

149. Scirica BM, Morrow DA, Bode C, Ryuzilo W, Ruda M, Oude Ophuis AJ, et al. Patients with acute coronary syndromes and elevated levels of natriuretic peptides: The results of the AVANT GARDE-TIMI 43 Trial. Eur Heart J 2010; 31: 1993–2005.

150. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Shtron EB, et al. Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) Investigators. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002; 347: 1825–1833.

151. Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, et al; Rate Control versus Electrical Cardioversion for Persistent Atrial Fibrillation Study Group. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. J Am Coll Cardiol 2002; 39: 1354–1361.

152. Ogawa S, Yamashita T, Yamazaki T, Aizawa Y, Atashrai H, Inoue H, et al; J-RHYTHM Investigators. Optimal treatment strategy for patients with paroxysmal atrial fibrillation: J-RHYTHM Study. Circ J 2009; 73: 242–248.

153. Preliminary report: Effect of enacaprilat and flecainide on mortality in a randomized trial of arhythmia suppression after myocardial infarction: The Cardiac Arrhythmia Suppression Trial (CAST) Investigators. N Engl J Med 1989; 321: 406–412.

154. Teo KK, Yusuf S, Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction: An overview of results from randomized controlled trials. JAMA 1993; 270: 1589–1595.

155. Sever PS, Gradman AH, Azizi M. Managing cardiovascular and renal risk: The potential of direct renin inhibition. J Renin Angiotensin Aldosterone Syst 2009; 10: 65–76.

156. Flacker GC, Blackshear JL, McBride R, Kronmal RA, Halperin JL, Hart RG. Antiarrhythmic drug therapy and cardiac mortality in atrial fibrillation: The Stroke Prevention in Atrial Fibrillation Investigators. J Am Coll Cardiol 1992; 20: 527–532.

157. Julian DG, Camm AJ, Frangin G, Janse MJ, Munoz A, Schwartz PJ, et al. Randomised trial of effect of amiodarone on mortality in patients with left ventricular dysfunction after recent myocardial infarction: Myocardial Infarction Amiodarone Trial Investigators. Lancet 1997; 349: 667–674.

158. Cairns JA, Connolly SJ, Roberts R, Gent M. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet 1997; 349: 675–680.

159. Deedwania PC, Singh BN, Ellenbogen K, Fisher S, Fletcher R, Singh SN. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: Observations from the veterans affairs congestive heart failure survival trial of antiarrhythmic therapy (CHF-STAT). The Department of Veterans Affairs CHF-STAT Investigators. Circulation 1998; 98: 2574–2579.

160. Shiga T, Wakaumi I, Imai T, Suzuki T, Hosaka F, Yamada Y, et al. Effect of low-dose amiodarone on atrial fibrillation or flutter in patients with chronic heart failure. Circ J 2002; 66: 680–684.

161. Talajic M, Khairy P, Levesque S, Connolly SJ, Dorian P, Dubuc M, et al; AF-CHF Investigators. Maintenance of sinus rhythm and survival in patients with heart failure and atrial fibrillation. J Am Coll Cardiol 2010; 55: 1796–1802.

162. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2006–2007 Joint Working Groups Report). Guidelines for Pharmacotherapy of Atrial Fibrillation (JCS 2008). Circ J 2008; 72 (Suppl IV): 1581–1638 (in Japanese).

163. Echt DS, Liebson PR, Mitchell LB, Peters RW, Obias-Manno D, Barker AH, et al. Mortality and morbidity in patients receiving eptacaine, flecainide, or placebo: The Cardiac Arrhythmia Suppression Trial N Engl J Med 1991; 324: 781–800.

164. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. The Cardiac Arrhythmia Suppression Trial Investigators. N Engl J Med 1989; 320: 1088–1096.

165. International mexiletine and placebo antiarrhythmic coronary trial.
185. The effect of digoxin on mortality in patients with heart failure: The Digitalis Investigation Group. Circulation 1997; 96: 748 – 753.

186. Ahmed A, Rich MW, Love TE, Lloyd-Jones DM, Aban IB, Colucci WS, et al. Effect of pimobendan on chronic heart failure study (the CASCADE Study). The CASCADE Investigators. Am J Cardiol 1993; 72: 280 – 287.

187. Mason JW. A comparison of seven antiarrhythmic drugs in patients with ventricular tachycardia: Electrophysiologic Study versus Electrocardiographic Monitoring Investigators. N Engl J Med 1993; 329: 452 – 458.

188. López-Sendón J, Swedberg K, McMurray J, Tamargo J, Maggioni AP, Dargie H, et al. Task Force/On Beta-Blockers of the European Society of Cardiology. Expert consensus document on beta- adrenergic receptor blockers. Eur Heart J 2004; 25: 1341 – 1362.

189. Brodine WN, Tung RT, Lee JK, Hockstadt ES, Moss AJ, Zareba W, et al; MADIT-II Research Group. Effects of beta-blockers on implantable cardioverter defibrillator therapy and survival in the patients with ischemic cardiomyopathy (from the Multicenter Automatic Defibrillator Implantation Trial-II). Am J Cardiol 2005; 96: 691 – 695.

190. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2007 – 2008 Joint Working Groups Report). Guidelines for Cardiopulmonary Resuscitation and Cardiovascular Emergency (JCS 2009). Circ J 2009; 73 (Suppl III): 1361 – 1456 (in Japanese).

191. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2008 Joint Working Groups Report). Guidelines for Drug Treatment of Arrhythmias (JCS 2009). http://www.j-circ.or.jp/guideline/pdf/JCS2009_heart.pdf (in Japanese).

192. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2004 Joint Working Groups Report). Guidelines for Treatment of Chronic Heart Failure (JCS 2005). http://www.j-circ.or.jp/guideline/pdf/JCS2005_matsuzaki_h.pdf (in Japanese).

193. Uretsky BF, Young JB, Shahidi FE, Yellen LG, Harrison MC, Jolly MK. Randomized study assessing the effect of digoxin withdrawal in patients with mild to moderate chronic congestive heart failure: Results of the PROVED trial: PROVED Investigative Group. J Am Coll Cardiol 1993; 22: 955 – 962.

194. Hacker M, Brehm J, Young JB, Costantini PJ, Adams KF, Cody RJ, et al. Withdrawal of digoxin from patients with chronic heart failure treated with angiotensin-converting-enzyme inhibitors. RADIANCE Study. N Engl J Med 1993; 329: 1 – 7.

195. The effect of digoxin on mortality in patients with heart failure: The Digitalis Investigation Group. N Engl J Med 1997; 336: 525 – 533.

196. Ahmed A, Rich MW, Love TE, Lloyd-Jones DM, Aban IB, Colucci WS, et al. Digoxin and reduction in mortality and hospitalization in heart failure: A comprehensive post hoc analysis of the DIG trial. Eur Heart J 2006; 27: 178 – 186.

197. Lubesin J, Just H, Hjalmarsson AC, La Franoisse D, Remme WJ, Heinrich-Nols J, et al. Effect of pimobendan on exercise capacity in patients with heart failure: Main results from the Pimobendan in Congestive Heart Failure (PIFCO) trial. Heart 1996; 76: 223 – 231.

198. Effects of Pimobendan on Chronic Heart Failure Study (EPOCH Study). Effects of pimobendan on adverse cardiac events and physical activity in patients with mild to moderate chronic heart failure: The effects of pimobendan on chronic heart failure study (EPOCH study). Circ J 2002; 66: 149 – 157.

199. Gurfinkel EP, de la Fuente RL, Mendiz O, Baughman KL, Becker L, et al. Prophylactic antiarrhythmic therapy of high-risk survivors of myocardial infarction: Lower mortality at 1 month but not at 1 year. Circulation 1987; 75: 792 – 799.

200. Sanborn TA, Sleeper LA, Bates ER, Jacobs AK, Boland J, French MM, et al; MADIT-II Research Group. Effects of beta-blockers on implantable cardioverter defibrillator therapy and survival in the patients with ischemic cardiomyopathy (from the Multicenter Automatic Defibrillator Implantation Trial-II). Am J Cardiol 2005; 96: 691 – 695.

201. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2007 – 2008 Joint Working Groups Report). Guidelines for Cardiopulmonary Resuscitation and Cardiovascular Emergency (JCS 2009). Circ J 2009; 73 (Suppl III): 1361 – 1456 (in Japanese).

202. Guidelines for the Diagnosis and Treatment of Cardiovascular Diseases (2008 Joint Working Groups Report). Guidelines for Drug Treatment of Arrhythmias (JCS 2009). http://www.j-circ.or.jp/guideline/pdf/JCS2009_heart.pdf (in Japanese).

203. Lee DC, Oz MC, Weinberg AD, Lin SX, Ting W. Optimal timing of prophylactic antiarrhythmic therapy of high-risk patients with ventricular tachyarrhythmias: Electrophysiologic Study versus Pharmacotherapeutic of Cardiac Arrhythmias (JCS 2011). http://www.j-circ.or.jp/guideline/pdf/JCS2011_okumura_h.pdf (in Japanese).

204. Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer JM. Temporal trends in cardiogenic shock complicating acute myocardial infarction. N Engl J Med 1999; 340: 1162 – 1168.

205. Sanborn TA, Sleeper LA, Bates ER, Jacobs AK, Boland J, French MM, et al; ALKK-Study Group. Randomized comparison of percutaneous transluminal coronary angioplasty and medical therapy in stable survivors of acute myocardial infarction with single vessel disease: A study of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte. Circulation 2003; 108: 1324 – 1328.

206. Zeymer U, Uebis R, Vogt A, Glunz HG, Vöhringer HF, Harmjanz D, et al; ALKK-Study Group. Randomized comparison of percutaneous transluminal coronary angioplasty and medical therapy in stable survivors of acute myocardial infarction with single vessel disease: A study of the Arbeitsgemeinschaft Leitende Kardiologische Krankenhausärzte. Circulation 2003; 108: 1324 – 1328.

207. Steg PG, Thuaire C, Himbert D, Carrió D, Champagne S, Coissne D, et al; DECOPI Investigators, DECOPI (Déstobrıcıon COronaríe en Post-Infarcito). A randomized multi-centre trial of occluded artery angioplasty after acute myocardial infarction. Eur Heart J 2004; 25: 2187 – 2194.
choice therapy versus conventional strategy in postinfarct sudden death survivors. Circulation 1995; 91: 2195–2203.

209. Siebels J, Kuck KH. Implantable cardioverter defibrillator compared with antiarrhythmic drug treatment in cardiac arrest survivors (the Cardiac Arrest Study Hamburg). Am Heart J 1994; 127: 1139–1144.

210. Connolly SJ, Gent M, Roberts RS, Dorian P, Roy D, Sheldon RS, et al. Canadian implantable defibrillator study (CIDS): A randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation 2000; 101: 1297–1302.

211. Kuck KH, Cappato R, Siebels J, Rüppel R. Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators in patients resuscitated from cardiac arrest: The Cardiac Arrest Study Hamburg (CASH). Circulation 2000; 102: 748–754.

212. Connolly SJ, Hallstrom AP, Cappato R, Schron EB, Kuck KH, Zipes DP, et al. Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials: AVID, CASH and CIDS studies: Antiarrhythmics vs Implantable Defibrillator study: Cardiac Arrest Study Hamburg: Canadian Implantable Defibrillator Study. Eur Heart J 2000; 21: 2071–2078.

213. Ezekowitz JA, Armstrong PW, McAlister FA. Implantable cardioverter defibrillators in primary and secondary prevention: A systematic review of randomized, controlled trials. Ann Intern Med 2003; 138: 445–452.

214. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: Derivation and validation of a clinical model. JAMA 2003; 290: 2581–2587.

215. Moss AJ, Zareba W, Hall WJ, Klein H, Wilber DJ, Cannom DS, et al; Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 2002; 346: 877–883.

216. Bardy GH, Lee KL, Mark DB, Poole JE, Packer DL, Boineau R, et al; Multicenter InSync Implantable Cardiac Defibrillator trial investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 2005; 352: 225–237.

217. Epstein AE, Ellenbogen KA, Estes NA 3rd, Freedman RA, Gettes LS, et al; American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices); American Association for Thoracic Surgery; Society of Thoracic Surgeons. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2008 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices): Developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. Circulation 2008; 117: e350–e408.

218. Böckler D, Havercamp W, Block M, Borggreve M, Hammel D, Breithardt G. Comparison of d,l-sotalol and implantable defibrillators for treatment of sustained ventricular tachycardia or fibrillation in patients with coronary artery disease. Circulation 1996; 94: 151–157.

219. Mittal S, Iwai S, Stein KM, Markowitz SM, Slotwiner DJ, Lerman BB. Long-term outcome of patients with unexplained syncpe treated with an electrophysiologically-guided approach in the implantable cardioverter-defibrillator era. J Am Coll Cardiol 1999; 34: 1082–1089.

220. Link MS, Costeas XF, Griffith JL, Colburn CD, Estes NA 3rd, Wang PJ. High incidence of appropriate implantable cardioverter-defibrillator therapy in patients with syncope of unknown etiology and near-syncope. J Am Coll Cardiol 1991; 17: 985–990.

221. Militianu A, Salacata A, Seibert K, Kehoe R, Baga JJ, Meissner MD, et al; Multicenter InSync Implantable Cardiac Defibrillator trial investigators. Prophylactic implantation of a defibrillator in patients with syncope of unknown etiology and near-syncope. J Am Coll Cardiol 1991; 17: 985–990.

222. Leitch JW, Gillis AM, Wyse DG, Yee R, Klein GI, Guiraudon G, et al. Reduction in defibrillator shocks with an implantable device combining antiarrhythmia pacing and shock therapy. J Am Coll Cardiol 1991; 18: 145–151.

223. Andrews NP, Vogel RL, Pelagomino G, Evans JJ, Prystowsky EN. Implantable defibrillator event rates in patients with unexplained syncope and inducible sustained ventricular tachyarrhythmias: A comparison with patients known to have sustained ventricular tachycardia. J Am Coll Cardiol 1999; 34: 2023–2030.

224. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al; MIRACLE Study Group. Multicenter InSync Randomized Clinical Evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002; 346: 1845–1853.

225. Cleland JG, Daubert JC, Erdmann E, Freemantele N, Gras D, Kappenberger L, et al; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005; 352: 1539–1549.

226. Cazeau S, Leclercq C, Laveigne T, Walker S, Varma C, Linde C, et al; Multisite Stimulation in Cardiomyopathies (MUSTIC) Study Investigators. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 2001; 344: 873–880.

227. Bristow MR, Saxon LA, Boehm J, Krueger S, Kass DA, De Marco T, et al; Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) Investigators. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 2004; 350: 2140–2150.

228. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, et al. Longer-term effects of cardiac resynchronisation therapy on mortality in heart failure [the Cardiac RESynchronization-Heart Failure (CARE-HF) trial extension phase]. Eur Heart J 2006; 27: 1928–1932.

229. Young JB, Abraham WT, Smith AL, Leon AR, Lieberman R, Wilkoff B, et al; Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE ICD) Trial Investigators. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. JAMA 2003; 289: 2685–2694.

230. Abraham WT, Young JB, León AR, Adler S, Bank AJ, Hall SA, et al; Multicenter InSync ICD II Study Group. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. Circulation 2004; 110: 2864–2868.

Chair:
• Hisao Ogawa, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University/National Cerebral and Cardiovascular Center.

Members:
• Hiroshi Adachi, Department of Cardiology, Gunma Prefectural Cardiovascular Center
• Takahiro Hayashi, Hayashi Medical Clinic
• Tetsuo Inoue, Department of Cardiovascular Medicine, Dokkyo Medical University
• Masaharu Ishihara, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
• Hideki Ishii, Department of Cardiology, Nagoya University Graduate

Circulation Journal Vol.77, Jan 2013

Appendix
School of Medicine
• Hiroyasu Iso, Public Health, Department of Social and Environmental Health, Osaka University Graduate School of Medicine
• Masaaki Ito, Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
• Ken Kanamasa, Department of Cardiology, Saiseikai Tondabayashi Hospital
• Kazuo Kimura, Division of Cardiology, Yokohama City University Medical Center
• Shunichi Miyazaki, Division of Cardiology, Department of Medicine, Faculty of Medicine, Kinki University
• Seiji Mizuno, Department of Medicine, Division of Cardiology, Nippon Medical School
• Ken Nagao, Department of Cardiology, Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, Surugadai Nihon University Hospital
• Yasuyuki Nakamura, Cardiovascular Epidemiology, Kyoto Women’s University
• Ryuji Nohara, Heart Center, Kitano Hospital, The Tazuke Kofukai Medical Research Institute
• Ken Okumura, Department of Cardiology, Respiratory Medicine and Nephrology, Hirosaki University Graduate School of Medicine
• Yoshihiko Saito, First Department of Internal Medicine, Nara Medical University
• Tomohiro Sakamoto, Division of Cardiology, Saiseikai Kumamoto Hospital Cardiovascular Center
• Keijiro Saku, Department of Cardiology, Fukuoka University School of Medicine
• Jun Sasaki, Graduate School of Pharmaceutical Medicine, International University of Health and Welfare Graduate School
• Keiji Tanaka, Division of Intensive and Coronary Care Unit, Nippon Medical School Hospital
• Hiroki Tsutou, Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine

Collaborators:
• Shichiro Abe, Department of Cardiovascular Medicine, Dokkyo Medical University
• Meiso Hayashi, Department of Cardiovascular Medicine, Nippon Medical School

• Takumi Higuma, Department of Advanced Cardiovascular Therapeutics, Hirosaki University Graduate School of Medicine
• Seiji Hokimoto, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
• Manabu Horii, Department of Cardiovascular Medicine, Nara City Hospital
• Atsushi Iwata, Department of Cardiology, Fukuoka University School of Medicine
• Sunao Kojima, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
• Masami Kosuge, Division of Cardiology, Yokohama City University Medical Center
• Mashiho Nakamura, Department of Clinical Cardiovascular Research, Mie University Graduate School of Medicine
• Manoru Sakakibara, Department of Clinical Cardiovascular Research, Hokkaido University Graduate School of Medicine
• Tatsuya Suga, Division of Cardiology, Department of Medicine, Faculty of Medicine, Kinki University
• Hitoshi Sumida, Division of Cardiology, Kumamoto Chuo Hospital
• Hitoshi Takano, Department of Cardiovascular Medicine, Nippon Medical School
• Shigemasa Tani, Department of Cardiology, Surugadai Nihon University Hospital
• Kenichi Tsujita, Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University

Independent Assessment Committee:
• Takashi Akasaka, Department of Cardiovascular Medicine, Wakayama Medical University
• Hiroyuki Daida, Department of Cardiology, Juntendo University School of Medicine
• Hiroki Shimokawa, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
• Masakazu Yamagishi, Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine
• Michihito Yoshimura, Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine

(The affiliations of the members are as of July 2012)