Column Efficiency of Fluoride Removal Using Quaternized Palm Kernel Shell (QPKS)

By: Abu Bakar, AH (Abu Bakar, Ayu Haslilija1,2), Abdulllah, LC (Abdullah, Luqman Chua1,3), Zahri, NAM (Zahri, Nur Amriah Mohd1,4), Alkhatib, M (Alkhatib, Ma’an)1,3

INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING
Article Number: 5743530
DOI: 10.1155/2019/5743530
Published: 2019
Document Type: Article

Abstract
In this research, the adsorption potential of quaternized palm kernel shell (QPKS) to remove F- from aqueous solution was investigated using fixed-bed adsorption column. Raw palm kernel shell waste was reacted with 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHMAC) in order to modify the surface charge. The effects of inlet F- concentrations (2-12mg/l) and QPKS bed height (2-10cm) with optimum pH (pH=3) on the breakthrough characteristics of the adsorption system were determined. In the fixed-bed column, breakthrough time increases with increasing bed height due to increasing amount of active site on adsorbents to adsorb the fluoride ion. Decreasing trend of breakthrough values was obtained with increasing initial fluoride concentration due to greater driving force for the transfer process to overcome the mass transfer resistance in the column. The adsorptions were fitted to three well established fixed-bed adsorption models, namely, Thomas, Yoon-Nelson, and Adams-Bohart models. The results fitted well to the Thomas and Yoon-Nelson models with correlation coefficient, R² >= 0.96.

Keywords
Keywords Plus: AQUEOUS-SOLUTIONS; ADSORPTION

Author Information
Reprint Address: Abu Bakar, AH (reprint author)
Univ Putra Malaysia, Dept Chem & Environment Engng, Fac Engr, Upm Serdang 43400, Selangor De, Malaysia.

Reprint Address: Abu Bakar, AH (reprint author)
UCSI Univ, Fac Engr Technol & Built Environment, Dept Chem & Petr Engr, Kuala Lumpur 56000, Malaysia.

Addresses:
[1] Univ Putra Malaysia, Dept Chem & Environment Engng, Fac Engr, Upm Serdang 43400, Selangor De, Malaysia
[2] UCSI Univ, Fac Engr Technol & Built Environment, Dept Chem & Petr Engr, Kuala Lumpur 56000, Malaysia
[3] Univ Putra Malaysia, Inst Trop Forestry & Forest Prod INTROP, Upm Serdang 43400, Selangor De, Malaysia
[4] Univ Malaya, Dept Mech Engr, Fac Engr, Kuala Lumpur 50603, Malaysia
[5] IIUM, Kulliyyah Engng, Biotechnol Engng Dept, Jalan Gombak, Kuala Lumpur 53100, Malaysia

E-mail Addresses: chik_jjf@yahoo.com; luqmanchua@gmail.com; amirahhzahri@yahoo.com; maan@uum.edu.my

Funding

Funding Agency	Grant Number
Chemical and Environmental Engineering Department of University Putra Malaysia	
Faculty of Engineering, Technology and Built Environment, UCSI University	

View funding text

Publisher
HINDAWI LTD, ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 6HF, ENGLAND

Categories / Classification

Citation Network
In Web of Science Core Collection

0

Times Cited

Create Citation Alert

42

Cited References

View Related Records

Use in Web of Science
Web of Science Usage Count

0

Last 180 Days Since 2013

Learn more
Cited References: 42

Showing 30 of 42 View All in Cited References page

1. Carbonized green mussel shell as heavy metal removal
By: Affiah, N.; Rahman, A.; Ismail, M.; et al.
Malaysian Journal of Civil Engineering Volume: 29 Issue: 1 Pages: S6-S8 Published: 2017

2. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns
By: Ataei-Germi, Taher; Nematoollahzadeh, Ali
JOURNAL OF COLLOID AND INTERFACE SCIENCE Volume: 470 Pages: 172-182 Published: MAY 15 2016

3. Removal of fluoride using quaternized palm kernel shell as adsorbents: equilibrium isotherms and kinetic studies
By: Ayu Haslija Bt. A. B.; Koay, Y. S.; Ching, Y. C.
BioResources Volume: 11 Issue: 2 Pages: 4485-4511 Published: 2016

4. Determination of the Point of Zero Charge for Electrocoagulation Precipitates from an Iron Anode
By: Cardenas-Pena, Arielle M.; Ibanez, Jorge G.; Vasquez-Medrano, Ruben
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE Volume: 7 Issue: 7 Pages: 6142-6153 Published: JUL 2012

5. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics
By: Chandra, Thia Christine; Mima, M. M.; Sudaryanto, Y.; et al.
CHEMICAL ENGINEERING JOURNAL Volume: 127 Issue: 1-3 Pages: 121-129 Published: MAR 2007

6. Investigations on the batch and fixed-bed column performance of fluoride adsorption by Kanuma mud
By: Chen, Nan; Zhang, Zhenya; Feng, Chuaping; et al.
DESALINATION Volume: 268 Issue: 1-3 Pages: 76-82 Published: MAR 2011

7. BATCH AND FIXED BED ADSORPTION STUDIES OF LEAD (II) CATIONS FROM AQUEOUS SOLUTIONS ONTO GRANULAR ACTIVATED CARBON DERIVED FROM MANGOSTANA GARCINIA SHELL
By: Chowdhury, Zairi Zaman; Zain, Shanfuiddin Mohd.; Khan, Rashid Att; et al.
BIORESOURCES Volume: 7 Issue: 3 Pages: 2895-2915 Published: 2012

8. Modified coconut shell fibers: A green and economical sorbent for the removal of anions from aqueous solutions
By: de Lima, An Cecilia A.; Nascimento, Ronaldo F.; de Sousa, Francisco F.; et al.
CHEMICAL ENGINEERING JOURNAL Volume: 185 Pages: 274-284 Published: MAR 2012

9. Removal of fluoride ions from drinking water and fluoride solutions by aluminum modified iron oxides in a column system
By: Garcia-Sanchez, J. J.; Solache-Ros, M.; Martinez-Miranda, V.; et al.
JOURNAL OF COLLOID AND INTERFACE SCIENCE Volume: 407 Pages: 410-415 Published: OCT 2013

10. Title: [not available]
By: Geankoplis, C. J.
Transport Processes and Separation Process Principles: Includes Unit Operations Published: 2003
Publisher: Prentice-Hall, NJ, USA

11. A low-cost and environment friendly chitosan/aluminum hydroxide bead adsorbent for fluoride removal from aqueous solutions
By: Hu, Haili; Wang, Y.; Lin, Zhen; et al.
IRANIAN POLYMER JOURNAL Volume: 27 Issue: 4 Pages: 253-261 Published: APR 2018