A Genetic Algorithm to Optimize a Tweet for Retweetability

Ronald Hochreiter Christoph Waldhauser

May 2013

Abstract

Twitter is a popular microblogging platform. When users send out messages, other users have the ability to forward these messages to their own subgraph. Most research focuses on increasing retweetability from a node’s perspective. Here, we center on improving message style to increase the chance of a message being forwarded. To this end, we simulate an artificial Twitter-like network with nodes deciding deterministically on retweeting a message or not. A genetic algorithm is used to optimize message composition, so that the reach of a message is increased. When analyzing the algorithm’s runtime behavior across a set of different node types, we find that the algorithm consistently succeeds in significantly improving the retweetability of a message.

Keywords: Twitter, social network, message style, genetic algorithm, deterministic optimization.

1 Introduction

Twitter is a popular microblogging platform, that has been frequently at the focal point of research. Of special interest has been the complex network structure that characterizes Twitter networks and the specifics that govern the propagation of information within Twitter networks. But how can Twitter users style their messages, so that they reach furthest?

In this paper we aim at making use of that research by building a simulation framework to enable researchers to investigate more closely the propagation of information on Twitter. The simulation framework is being put to the test by tasking a genetic algorithm with composing a tweet that reaches furthest in different metrics. In that, we differ from seminal contribution by optimizing message contents instead of optimizing target audience. The latter approach in only of limited use in the online scenario, as Twitter authors cannot influence who will follow them.

This paper is structured as follows. First relevant research regarding Twitter’s networking structure and information diffusion is being reviewed. We then
introduce the simulation framework and describe the algorithm that was used to obtain optimal tweets. Finally we present the results and offer some conclusions.

2 Message diffusion in Twitter networks

When communicating an actor seeks to get her message across [10]. A central aspect of this process is to ensure that a message is not only received by the original audience, but also that this audience spreads that message further on their own accounts [8]. This process has been researched rather thoroughly from very different aspects: medical epidemiology [4] and system dynamics [3] to name but a few approaches fielded to tackle this complex problem. While findings and insights differ, a common denominator is that message recipients will resend a message if it passes a recipient’s filter, i.e. is to her liking [9]. These filters are domain specific but the common principle of message diffusion remains true for very diverse domains.

The advent of micro-blogging has greatly simplified access to message diffusion data. By looking at e.g. Twitter data, connection structure as well as message contents and meta data are readily available in a machine readable format. This has produced a wealth of studies relating to message diffusion on Twitter. In the following, we will survey recent contributions to the field to distill key factors that influence message diffusion on Twitter.

In Twitter, users post short messages that are publicly viewable online and that get pushed to other users following the original author. It is common practice to cite (retweet) messages of other users and thus spread them within ones own part of the network. Messages can contain up to 140 characters including free text, URL hyperlinks and marked identifiers (hashtags) that show that a tweet relates to a certain topic. Metadata associated with each tweet is the point of origin, i.e. the user that posted the tweet, the time it was posted and the user agent or interface used to post it. On top of that, the tweets relation to other tweets is available. For each user, additional meta data is available like the age of the account, the number of followers, a description and the location.

Twitter networks are typical for the networks of human communication. They are more complex (i.e. structured and scale-free) than randomly linked networks with certain users functioning as hubs with many more connections than would be expected under uniform or normal distributions. It is useful to think of Twitter networks as directed graphs with nodes being Twitter users and the following of a user being mapped to the edges [7]. A tweet then travels from the original author to all directly connected nodes. If one of the nodes chooses to retweet the message, it is propagated further down the network.

For average users, Twitter networks’ degree distribution follows a power law and [7, 5] report the distribution’s exponent to be 2.3 and 2.4 respectively, therefore well within the range of typical human communication networks. However, there are extremely popular Twitter authors (celebrities, mass media sites) that have many more followers than would be expected even under a power-law distribution.
A distinguishing feature of Twitter is its small-world property. Most users are connected to any other user using only a small number of nodes in between. See [7] for an overview of Twitter’s small world properties. Despite their findings that for popular users, the power-law distribution is being violated and average path lengths between users being shorter than expected, they underscore that homophily (i.e., similar users are more likely to be in contact) can be indeed observed and that geographically close users are more likely to be connected.

Following the notion of message filtering introduced above, it is clear that Twitter users are selecting messages for propagating them further according to specific preferences. Applying these preferences for filtering purposes, they can make use of the message contents available as listed above. Besides the number of URLs [13, 12] and hashtags [12] contained, also the free text contents are of importance. According to [11, 2], a key aspect in filtering free text is the polarity and the emotionality of the message. [11] also point to the length of tweet being an important predictor for its retweetability.

Beside message specific filtering criteria, also author specific filtering can occur. For instance, a Twitter user that has a past record of being retweeted often, will be more likely to be retweeted in the future [13, 14]. However, when styling a single tweet for maximum retweetability, factors like past popularity or even number of followers [12] cannot be influenced and are therefore not represented in the model used.

Shifting the focus from the message recipient to the message sender, spreading a message as far as possible is a key goal. The success of a message can be measured using different metrics. In their seminal work, [13] list three possibilities: One is the (average) speed a tweet achieves in traversing a network. Another popularity metric is the scale, that is total number of retweets achieved. Finally, range can be considered a popularity metric as well. Here range is the number of edges it takes to travel from the original author to the furthest retweeter.

In this section we reviewed the latest research related to message diffusion on Twitter. Key factors influencing the probability of a tweet being retweeted are the polarity and emotionality of a tweet, its number of included hyperlinks and hashtags as well as the time of day it was originally posted. There are other factors influencing retweet probability, however they are beyond the control of a message sender and therefore do not apply to the problem at hand. In the next section we will introduce a simulation framework that can be used to establish a Twitter-like network to analyze the diffusion principles of messages governing them.

3 Simulation framework

This paper uses the concept of message filtering to simulate the diffusion of messages in networks and Twitter serves as an example for this. As detailed above, Twitter users are considered nodes, their following relationships edges in the network graph. Messages they send travel from node to node along the
graph’s edges. The topographical features of this network, i.e. the distribution of edges, follow the specifics of scale-free, small-world networks as described above. The nodes have individual preferences that govern if a message is being passed on or ignored. In the following we will describe the simulator used to simulate this kind of network.

Twitter networks exhibit a number of characteristics that we discussed above. The simulator uses these properties to generate an artificial network that very similar to Twitter networks. To this end, the number of connections a node has is drawn from a power-law distribution. In accordance with the findings reported above, the distribution’s exponent is fixed 2.4. From these figures, an adjacency matrix is constructed. As Twitter’s following relations are not required to be reciprocal, the resulting graph is directed. As Twitter contains many isolated nodes, the resulting graph based on a Twitter-like power-law distribution also contains a number of isolated nodes. However, these nodes are irrelevant for the problem at hand, and are thus removed.

Every node is then initialized with a set of uniform random message passing preferences. The dimensions and their domains are given in Table 1.

Table 1: Message and node preferences.

Parameter	Domain
Polarity	$-1; 1$
Emotionality	$-1; 1$
Length	$1; 140$
Time	morning, afternoon, night
# URLs	$0; 10$
# Hashtags	$0; 10$

When a message is sent out from the original authoring node, it is passed on initially to all first-degree followers of that node. Each follower is then evaluated, if she will pass on the message or not. This process is repeated until all nodes that have received the message have been evaluated.

A node’s decision on passing the message or not is based on the preferences of that node. In this model, this decision is purely deterministic. A node computes the differences between its own preferences and the properties of the message in all six dimensions. If the mean of this differences is lower than some threshold value ϵ, the message is being forwarded. Otherwise, it is discarded.

The simulation framework described above was used to generate an artificial Twitter-like network for use in this simulation study. To focus on the principles of message propagation, only a small network with initially 250 nodes was generated. After removing isolated nodes, 245 nodes with at least 1 connection remained. The average path length of that network was 4.3. The maximum of first degree connections was observed to be at 170 nodes. This is much larger than median and mean observed to be at 2 and 3.5, respectively.

In this section we described how an artificial Twitter-like network was built.
using a power-law distribution. This network was paired with node preferences with respect to the passing on of messages. Using a deterministic function, each node uses its own preferences and a message’s properties to decide on whether to pass it on or not. In the following we will describe a genetic algorithm that was used to craft a message that will reach a maximum number of nodes within that network.

4 Algorithm

In the simulated network, nodes pass on any message they encounter according to the message properties and their own preferences regarding these properties. If a sender now wants to maximize the effect a message has, i.e. to maximize the retweets a tweet will experience, she has to write a message that meets the expectations of the right, i.e. highly connected nodes. While topical choices are obviously important as well, also the right choices regarding message style influence the probability of a message being retweeted. In this section we present a genetic algorithm that styles messages so that a maximum number of nodes retweet it.

The algorithm’s chromosome are the message properties as described in Table 1. An initial population of size 50 was initialized with random chromosomes. Using the standard genetic operators of mutations and crossover, the algorithm was tasked to maximize the number of nodes that received the message. In the terms introduced above, this relates to the scale of a message spreading.

To ensure that successful solutions are carried over from one generation to the next, the top 3 solutions were cloned into the next generation. This approach of elitism was shown by [1] to positively impact a genetic algorithm’s runtime behavior. Ten percent of every generation was reseeded with random values to ensure enough fresh material in the gene pool. The remaining 85 percent of a generation was created by crossing over the chromosomes of two solutions. To identify solutions eligible for reproduction, tournament selection using a tournament size of 5 was implemented. Children’s genes were mutated at random. The probability of a child being mutated was set to be at 0.05.

In this section we described a genetic algorithm that can maximize the retweetability of a tweet. Using state of the art genetic operators and selection mechanisms, a message is being styled so that it will reach a maximum number of nodes. In the following we describe the success the algorithm had in fulfilling its task using sender nodes with a high, medium and low number of first-degree connections.

5 Results

The genetic algorithm as described above was used to find optimal message composition with respect to retweetability for three different sender nodes. The sender nodes differed in the number of first degree connections they had. The
The genetic algorithm described above was allowed to search for an optimum for 250 generations. Each optimization run was replicated 50 times with random start values. The reported result are averages and standard errors across those 50 replications.

To evaluate the algorithm’s performance, two factors are key: the number of generations it takes to arrive at markedly more successful messages and the stability of the discovered solutions. While the former is important to gauge the algorithm’s runtime behavior and suitability for real-world deployment, the latter can reveal insights on how easy findings can be generalized across different networks. In the following, these the results relating to these two factors across all three node types are being described.

Irrespective of the number of first degree connections a node has, optimization quickly succeeds in improving the initially random message styles. Figure 1 depicts the clearly visible trend.

Figure 1: Mean fitness as improving over generations for four different kinds of sender nodes. Shaded area is a 95% confidence interval derived from replicating the optimization 50 times.

Turning the attention towards stability, the last generation’s best solution should be similar across all 50 replications. Table 2 gives the means and their standard errors for all three kinds of nodes.

We will discuss these results in the next section and offer some concluding remarks.
Table 2: Solution stability. Mean and Standard Error (in parentheses).

Parameter	5 nodes	10 nodes	170 nodes
Polarity	-0.08 (0.14)	0.38 (0.17)	0.32 (0.15)
Emotionality	-0.01 (0.17)	-0.02 (0.22)	0.06 (0.23)
Length	82.26 (15.43)	104.28 (9.80)	72.18 (14.59)
Time	2.00 (0.00)	2.00 (0.00)	1.60 (0.49)
# URLs	5.60 (1.01)	5.76 (0.98)	4.00 (0.97)
# Hashtags	3.14 (1.05)	6.06 (0.98)	6.84 (0.71)

6 Discussion

The evaluation results provided in the previous section exhibit a number of peculiarities. Most striking is perhaps, that for high and medium first degree connections, the algorithm quickly improves the styling of a message so that many more nodes will retweet it. While the highly connected sender node has only little room to improve, a sender with a modest number of connections benefits greatly from applying the algorithm. For both node types, the algorithm almost reaches its optimum after 50 generations. For a node with very few first-degree connections, the optimization process takes much longer to complete. However, in a subsequent simulation, the algorithm eventually reached into similar heights, given enough generations. On average, with only five connected nodes to start from, the algorithm required 720 generations to reach an optimum beyond 200 nodes.

Another interesting observation is, that the variance in the obtained solutions increases steadily as the number of first-degree connection decreases.

In many applications of genetic algorithms, the stability of identified optimal solutions across replications is a decisive factor. For the problem at hand, stability is of lesser importance. When styling a message, apparently different methods lead to nearly equal performance of the message.

7 Conclusion

In this paper we introduced a genetic algorithm to optimize the retweetability of tweets. To do this, we simulated a Twitter-like network and associated each node with a set of preferences regarding message retweeting behavior. The node’s decision is purely deterministic, based on message properties coming close to a node’s own preferences. The genetic algorithm succeeded in styling messages so that they became retweeted more widely. Dependent on the number first-degree connections of the sender node, the fitness of the algorithm’s terminal solution varied.

This contribution is but a first step in an endeavor to understand the precise mechanics of message propagation on Twitter. Previous work was focused on sender node properties. By taking message properties in account when assessing
retweetability, we not only ventured into uncharted territory, we also discovered new insights regarding the feasibility of message optimization.

Our model has a number of limitations, that need to be resolved in future research. Most prominently, this is the deterministic decision function. While reasonable for a first model, it would be naive to assume that nodes’ retweet behavior is purely mechanistic. Rather, it is plausible that the decision to retweet is being influenced to no small part by chance. Therefore, a stochastic decision function would be required. We are confident, however, that the genetic algorithm presented can also optimize a stochastic problem.

Another extension is the calibration of the used Twitter network with real-life empirical data. This would allow to initialize the nodes not with uniform random values, but rather with empirically observed ones.

References

[1] D. Bhandari, C. A. Murthy, and S. K. Pal. Genetic algorithm with elitist model and its convergence. *International Journal of Pattern Recognition and Artificial Intelligence*, 10(6):731–747, 1996.

[2] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user influence in Twitter: The million follower fallacy. In *Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010*. The AAAI Press, 2010.

[3] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A complex systems look at the underlying process of word-of-mouth. *Marketing Letters*, 12(3):211–223, 2001.

[4] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In *Proceedings of the 13th International Conference on World Wide Web, WWW 2004*, pages 491–501. ACM, 2004.

[5] A. Java, X. Song, T. Finin, and B. L. Tseng. Why we twitter: An analysis of a microblogging community. In *Advances in Web Mining and Web Usage Analysis, 9th International Workshop on Knowledge Discovery on the Web, WebKDD 2007*, volume 5439 of *Lecture Notes in Computer Science*, pages 118–138. Springer, 2009.

[6] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In *Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003*, pages 137–146. ACM, 2003.

[7] H. Kwak, C. Lee, H. Park, and S. B. Moon. What is Twitter, a social network or a news media? In *Proceedings of the 19th International Conference on World Wide Web, WWW 2010*, pages 591–600. ACM, 2010.

[8] B. McNair. *An Introduction to Political Communication*. Routledge, 2011.
[9] E. M. Rogers. *Diffusion of Innovations*. Free Press, 2010.

[10] C. Shannon and W. Weaver. *The Mathematical Theory of Communication*. University of Illinois Press, 2002.

[11] S. Stieglitz and L. Dang-Xuan. Political communication and influence through microblogging—an empirical analysis of sentiment in Twitter messages and retweet behavior. In *45th Hawaii International International Conference on Systems Science (HICSS-45 2012)*, pages 3500–3509. IEEE Computer Society, 2012.

[12] B. Suh, L. Hong, P. Pirolli, and E. H. Chi. Want to be retweeted? Large scale analytics on factors impacting retweet in Twitter network. In *Proceedings of the 2010 IEEE Second International Conference on Social Computing, SocialCom / IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2010*, pages 177–184. IEEE Computer Society, 2010.

[13] J. Yang and S. Counts. Predicting the speed, scale, and range of information diffusion in Twitter. In *Proceedings of the Fourth International Conference on Weblogs and Social Media, ICWSM 2010*. The AAAI Press, 2010.

[14] T. R. Zaman, R. Herbrich, J. Van Gael, and D. Stern. Predicting information spreading in Twitter. In *Workshop on Computational Social Science and the Wisdom of Crowds, NIPS 2010*, 2010.