Identification of Prognostic miRNAs Targeting EZH2 in Hepatocellular Carcinoma Using The Cancer Genome Atlas Database

Tianyu Lin (linty@zju.edu.cn)
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Xinli Guo
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Qian Du
Zhejiang University School of Medicine

Wei Liu
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Xin Zhong
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Suihan Wang
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Liping Cao
Zhejiang University School of Medicine Sir Run Run Shaw Hospital

Research Article

Keywords: Enhancer of zeste homolog 2, hepatocellular carcinoma development, hsa-let-7c-5p, overall survival, The Cancer Genome Atlas Program

DOI: https://doi.org/10.21203/rs.3.rs-372998/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Enhancer of zeste homolog 2 (EZH2) gene have a prognostic role in hepatocellular carcinoma (HCC). This study aimed to identify the prognostic microRNAs (miRNAs) targeting EZH2 in HCC.

Methods and Results: We downloaded the gene and miRNA RNA-seq data from The Cancer Genome Atlas (TCGA) database. Differences in EZH2 expression between tumor and control samples and those between tumors with different clinical variables were analyzed using the Mann-Whitney U test. Association of EZH2 expression with prognosis in HCC patients was detected using Cox regression analysis. We also identified miRNAs targeting EZH2 with negative correlations, compared the miRNA expression profiles between tumor and control tissues, and identified pathways and protein-protein interaction pairs related to EZH2. The miRNA-EZH2-pathway network was constructed accordingly. EZH2 was significantly upregulated in HCC tumors compared with control samples (p<0.0001) and in tumors with advanced T classifications (3/4 vs. 1/2, p=0.0039) and stages (III/IV vs. I/II, p=0.0028). The Cox regression analysis showed that TCGA HCC patients who had high EZH2 expression levels showed a short survival time (HR=1.677, 95% CI 1.316-2.137; p<0.0001). Among miRNAs targeting EZH2, seven miRNAs, including hsa-let-7c-5p, were negatively correlated with EZH2 expression and were significantly downregulated in HCC tumor samples compared with controls (p<0.0001). The miRNA-EZH2-pathway network included seven downregulated miRNAs and four pathways, including hsa00310: Lysine degradation. Hsa-let-7c-5p was associated with prognosis in HCC (HR=0.849 95% CI 0.739-0.975; p=0.021).

Conclusions: EZH2-hsa-let-7c-5p has a significant association with HCC prognosis and the mechanism worth investigating.

Introduction

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer (comprising 75%-85% of cases) and has a high global incidence and mortality rate globally. HCC-related death is estimated to approximately 662,000 annually [1] and is approximately 781,000 in 2018 [2]. HCC is the second or third most common cause of cancer-related death worldwide [2]. The main risk factors for HCC are infections of hepatitis B virus (HBV), hepatitis C virus (HCV), heavy alcohol intake, smoking, and obesity [2, 3]. However, the clinical prognosis of advanced HCC remains poor and had high incidence rates of tumor recurrence and metastasis. Accordingly, identification of diagnostic and prognostic factors for HCC remains necessary.

The enhancer of zeste homolog 2 (EZH2) gene is a negative prognostic biomarker in HCC [4]. EZH2 is a core component of the polycomb-repressive complex 2 (PRC2) and an essential element for histone methyltransferase activity [5]. EZH2 is an important epigenetic regulator repressing transcription [6, 7]. Interplay between EZH2 and other PRC2 components, including DNA methyltransferase 1 (DNMT1),
embryonic ectoderm development (EED), and suppressor of zeste 12 (SUZ12), results in gene transcriptional repression and DNA hypermethylation [6, 7]. EZH2, interplaying with PRC2 complex, drives hypermethylation of Lys-27 in histone 3 (H3K27me3) and promotes tumorigenesis, metastasis, and progression of many cancers, including breast cancer and HCC [8–11]. Also, the EZH2 gene has been associated with poor prognosis in several human malignancies and might be a novel target for cancer treatment [12–14].

Genetic factors, including microRNAs (miRNAs), genes, circular RNAs, and long non-coding RNAs (lncRNAs), have been associated with tumorigenesis, drug resistance, invasion, and metastasis of human tumors. The interactions between non-coding RNAs and the EZH2 gene in cancers have been identified [5]. Non-coding RNAs, including hsa-miR-26a, hsa-let-7b, hsa-miR-101, hsa-miR-26a, IncRNA MEG3, and hsa_circ_0008450, regulate EZH2 and the proliferation, invasion, and tumor growth of HCC [5, 11, 12, 15, 16]. There have been too many EZH2- and HCC-related non-coding RNAs associated with tumor cell proliferation, invasion, and migration up to now [17–22], but the ones that are actually associated with HCC prognosis have yet to be carefully considered.

The aim of this study was to identify prognostic miRNAs interplaying with EZH2 in HCC. Association of EZH2 expression with prognosis in HCC patients was investigated. MiRNAs targeting EZH2 were screened from online databases and prognostic miRNAs negatively correlated with EZH2 in HCC patients were then identified using integrated bioinformatics analysis. This study provided a novel and important molecular mechanism of HCC development and prognosis.

Materials And Methods

Data materials

The Cancer Genome Atlas Program (TCGA) hepatocellular carcinoma (HCC) gene and miRNA expression profiles (in log2[RPM + 1] format) by RNA-seq (Illumina HiSeq 2000 RNA Sequencing platform) were downloaded from the University of California, Santa Cruz (UCSC) Xena (https://xenabrowser.net/datapages/) on Dec 20, 2020. Clinical information was extracted from the TCGA (https://portal.gdc.cancer.gov/). The gene expression profiles (in log2[x + 1] transformed RSEM normalized count) were extracted from 371 tumor biospecimens with vital status information and 50 control samples. The miRNA expression profiles (in log2[RPM + 1]) were extracted from 366 tumors and 49 control samples. Clinical variables, including survival time, pathologic stage, gender, age, race, vital status (dead or alive), prior malignancy and treatment history, were extracted and used for further analyses.

Analysis of EZH2 expression

Differences in EZH2 expression levels between tumor samples and controls, as well as between samples had different pathologic stages (I/II vs. III/IV), pathologic T classifications (1/2 vs. 3/4), ages (< 65 yrs vs.
≥ 65 yrs), genders (male vs. female), races (Asian, White, or Black), without and with prior malignancy were analyzed using the non-parametric Mann-Whitney U test or the Kruskal-Wallis H test.

Cox regression analysis for EZH2 expression

The association of *EZH2* expression with prognosis in TCGA HCC patients was analyzed using the Cox regression analysis. Also, associations of *EZH2* expression profile and clinical factors (including pathologic stage, pathologic T classification, age, gender, race, and prior malignancy) with prognosis in TCGA HCC patients were analyzed using univariate and multivariate Cox regression analysis. We also performed the Cox regression survival analysis to investigate the difference in survival percent between patients with high and low *EZH2* expression levels, which were divided using the median expression value.

Validation of the association of *EZH2* with HCC prognosis

Association of *EZH2* expression with prognosis in HCC patients was validated using three online public databases: Oncolnc (http://www.oncolnc.org/), Gene Expression Profiling Interactive Analysis (GEPIA; http://gepia.cancer-pku.cn/index.html), and University of Alabama Cancer Database (UALCAN; http://ualcan.path.uab.edu/index.html). All databases performed the log-rank test of Kaplan-Meier (KM) analysis.

Identification of miRNAs targeting *EZH2*

MiRNAs targeting *EZH2* were identified from three databases: miRTarbase (2019 update; http://mirtarbase.cuhk.edu.cn/php/index.php), starBase (http://starbase.sysu.edu.cn/panCancer.php), and TargetScanHuman 7.2 (http://www.targetscan.org/vert_72/). Predicted miRNA-*EZH2* pairs in at least two databases were retained and used to screen miRNAs correlated with *EZH2* negatively. Spearman correlation coefficient (r) was used for screening miRNAs, with the criteria of r < 0 and p < 0.05. Negative miRNA-*EZH2* pairs were used to construct the miRNA-*EZH2* regulatory network.

Expression of miRNAs in HCC tumor samples

Differences in miRNA expression levels between tumor and control samples were analyzed using the non-parametric Mann-Whitney U test. We also analyzed the correlations of miRNAs with HCC prognosis using Cox regression analysis.

Construction of the miRNA-*EZH2*-pathway network

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with EZH2 were identified from the KEGG database (https://www.kegg.jp/) and the Comparative Toxicogenomics Database (CTD, 2020 update; http://ctdbase.org/). We identified protein-protein interaction (PPI) pairs of *EZH2* (score > 0.4) from the STRING database (version 11.0; https://string-db.org/cgi/input?sessionId=btC19KpbQESh&input_page_show_search=on). The miRNA-*EZH2*-pathway consisting of miRNA-*EZH2* pairs, PPI pairs of *EZH2*, and *EZH2*-associated pathways was constructed using the Cytoscape (version 3.8.0; http://apps.cytoscape.org/).
Statistical analysis

All the statistical analyses were performed in the SPSS 22.0 software (IBM, Chicago, USA). Differences in patients’ age, male ratio, and race were analyzed using the t-test, Chi-square test, and Wilcoxon rank sum test, respectively. Differences in miRNA and EZH2 expression levels between groups were analyzed using the non-parametric Mann-Whitney U test, and those across more than three groups were analyzed using the non-parametric Kruskal-Wallis H test, respectively. We used the Cox regression analysis to identify the association of miRNAs, EZH2, and clinical variables with prognosis in HCC patients. Spearman correlation analysis was conducted to identify miRNAs negatively correlated with EZH2 expression. Hazard ratio (HR) and 95% confident interval (CI) were calculated following Cox regression and KM survival analyses. For all analyses, the significant criterion was set at p = 0.05.

Results

Demographics of TCGA HCC patients

The demographics of TCGA HCC patients (n = 371) and controls (n = 50) are shown in Table 1. The average age of HCC patients and controls were 59.44 ± 13.51 and 61.68 ± 16.12 years (p = 0.284). Most individuals were male (67.39 vs. 56.00%, p = 0.115). Most HCC patients were Asian and White (342, 92.18%), the ratio was high than controls (80.00%, p < 0.0001; Table 1). Among tumor samples, most were at early T, N, and M classifications, without prior treatment (n = 369) and malignancy (n = 336). The median overall survival time was 598.5 (6.00-3675.0) days.
Table 1
Demographics of The Cancer Genome Atlas hepatocellular carcinoma patients.

Variables	HCC (n = 371)	Control (n = 50)	P value
Age (year)	59.44 ± 13.51	61.68 ± 16.12	0.284
Male ratio	250 (67.39%)	28 (56.00%)	0.115
Race (Asian/White/Black/NR)	158/184/19/8	6/34/7/3	<0.0001
Vital status (Live/Dead)	241/130		
Pathologic_M (0/1/NR)	266/4/101		
Pathologic_N (0/1/NR)	251/4/115		
Pathologic_T (1/2/3/4/NR)	181/94/80/13/3		
Pathologic_stage (I/II/III/IV/NR)	171/86/85/5/24		
Overall survival (days)	598.5 (6.00-3675.0)		
Prior_malignancy (Yes/No)	35/336		
Prior_treatment (Yes/No)	2/369		

¶ for t-test. † for Chi-square test. ‡ for Wilcoxon rank sum test. NR, not reported.

EZH2 is upregulated in HCC tumors

Comparative analysis showed that HCC tumors had a significantly higher level of *EZH2* compared with controls (p < 0.0001; Fig. 1A). We also observed a significantly higher level of EZH2 in tumors with advanced T classifications (3/4 vs. 1/2, p = 0.0039; Fig. 1B) and pathologic stages (III/IV vs. I/II, p = 0.0028, Fig. 1C) compared with corresponding controls.

Different EZH2 expression levels in HCC tumors from older and Asian patients

We also investigated the expression level of *EZH2* in tumors from HCC patients of different ages, races, and genders. Results showed that *EZH2* had a higher expression level in tumors from patients aged < 65 years compared with patients > 65 years (p = 0.0277; Fig. 2A) and from Asian patients compared with White/Black patients (p = 0.0059; Fig. 2C). There was no difference in *EZH2* expression level between patients with and without prior malignancy (p = 0.1931; Fig. 2C) and between female and male patients (p = 0.4084; Fig. 2D). These results might indicate that *EZH2* expression is related to age and race in HCC patients.

EZH2 associates with prognosis in HCC patients
We analyzed the association of \textit{EZH2} with prognosis in TCGA HCC patients using the stepwise Cox regression analysis. Univariate Cox regression analysis showed that pathologic T, pathologic stage, and \textit{EZH2} expression were associated with overall survival in HCC patients (p < 0.0001; Table 2) after adjusting for patient's age, prior malignancy, and race. Multivariate Cox regression analysis indicated that \textit{EZH2} expression level was the only variable contributing to a poor prognosis in HCC patients (HR = 1.677, 95% CI 1.316–2.137; p < 0.0001; Table 2). Cox regression survival analysis showed that HCC patients with a high level of \textit{EZH2} had a lower survival percent compared with patients who had a low level of \textit{EZH2} (Fig. 3). We also observed the association of \textit{EZH2} with HCC prognosis in online databases: GEPIA (logrank p = 5.6e-05; Fig. 4A), UALCAN (logrank p < 0.0001; Fig. 4B), and Oncolnc (logrank p = 5.87e-05; Fig. 4C). The results indicated that a high level of \textit{EZH2} was correlated with a poor prognosis in HCC patients.

Variables	Univariate HR (95% CI)	Univariate P	Multivariate HR (95% CI)	Multivariate P
Age	1.013 (0.999–1.027)	0.073		
Gender (Male/female)	0.815 (0.572–1.161)	0.258		
Race (Asian/White/Black)	0.884 (0.384–2.036)	0.772		
Prior malignancy (Yes/No)	0.869 (0.489–1.545)	0.633		
Pathologic T (1/2/3/4)	1.626 (0.170–1.929)	< 0.0001	1.357 (0.685–2.686)	0.381
Pathologic stage (I/II/III/IV)	1.555 (1.308–1.848)	< 0.0001	1.097 (0.571–2.107)	0.780
\textit{EZH2} expression	1.814 (1.445–2.277)	< 0.0001	1.677 (1.316–2.137)	< 0.0001

HR, Hazard ratio. CI, 95% confident interval.

Identification of miRNAs related to \textit{EZH2}

We identified 24 miRNAs targeting \textit{EZH2} in miRTarbase, starBase, and TargetScanHuman 7.2 (Table 3). Spearman correlation analysis showed that seven miRNAs had significant and negative correlations with \textit{EZH2} (r < 0 and p < 0.05), including \textit{hsa-let-7b-5p} (r = -0.172, p < 0.0001), \textit{hsa-let-7c-5p} (r = -0.514, p < 0.0001), \textit{hsa-miR-101-3p} (r = -0.360, p < 0.0001), \textit{hsa-miR-144-3p} (r = -0.306, p < 0.0001), \textit{hsa-miR-150-5p} (r = -0.098, p = 0.046), \textit{hsa-miR-26a-5p} (r = -0.213, p < 0.0001), and \textit{hsa-miR-26b-5p} (r = -0.312, p < 0.0001; Table 3). Seven miRNAs were significantly downregulated in HCC tumor tissues compared with controls (Fig. 5; p < 0.0001 for all miRNAs, by Mann-Whitney U test). The seven miRNAs were retained and used for the construction of the miRNA-EZH2-pathway regulatory network.
Table 3
Correlation of miRNAs with EZH2 expression in hepatocellular carcinoma samples.

miRNAs	Databases	r	P
hsa-let-7a-5p	miRTarbase; starBase	-0.044	0.376
hsa-let-7b-5p	miRTarbase; starBase	-0.172	<0.0001
hsa-let-7c-5p	miRTarbase; starBase	-0.514	<0.0001
hsa-let-7e-5p	miRTarbase; starBase	0.134	0.006
hsa-miR-101-3p	miRTarbase; starBase; TargetScan 7.2	-0.360	<0.0001
hsa-miR-144-3p	miRTarbase; starBase; TargetScan 7.2	-0.306	<0.0001
hsa-miR-150-5p	miRTarbase; starBase	-0.098	0.046
hsa-miR-217	miRTarbase; starBase; TargetScan 7.2	0.085	0.082
hsa-miR-26a-5p	miRTarbase; starBase; TargetScan 7.2	-0.213	<0.0001
hsa-miR-26b-5p	miRTarbase; starBase; TargetScan 7.2	-0.312	<0.0001
hsa-miR-27a-3p	miRTarbase; starBase	0.007	0.883
hsa-miR-32-5p	starBase; TargetScan 7.2	0.047	0.338
hsa-miR-363-3p	starBase; TargetScan 7.2	0.078	0.113
hsa-miR-92a-3p	starBase; TargetScan 7.2	0.244	<0.0001
hsa-miR-92b-3p	miRTarbase; starBase; TargetScan 7.2	0.234	<0.0001
hsa-miR-93-5p	miRTarbase; starBase	0.620	<0.0001
hsa-miR-98-5p	miRTarbase; starBase	0.066	0.178
hsa-miR-25-3p	miRTarbase; starBase; TargetScan 7.2	0.346	<0.0001
hsa-miR-367-3p	starBase; TargetScan 7.2	/	/
hsa-miR-4465	starBase; TargetScan 7.2	0.564	0.090
hsa-miR-506-3p	starBase; TargetScan 7.2	0.071	0.448
hsa-miR-124-3p	miRTarbase; starBase	0.619	0.102
hsa-miR-137	miRTarbase; starBase; TargetScan 7.2	0.420	<0.0001
hsa-miR-138-5p	miRTarbase; starBase; TargetScan 7.2	0.120	0.088

r, the Spearman correlation coefficient.
Construction of the miRNA-EZH2-pathway regulatory network

Before the construction of the miRNA-EZH2-pathway regulatory network, we firstly identified 10 genes related to EZH2 from STRING (including DNMT1; EED; SUZ12; RB binding protein 4, chromatin remodeling factor, RBBP4; PBBP7; histone deacetylase 1, HDAC1; and HDAC2) and three EZH2-associated pathways overlapping between KEGG and CTD databases, including microRNAs in cancer (hsa05206), metabolic pathways (hsa01100), and Lysine degradation (hsa00310; Table 4). The miRNA-EZH2-pathway regulatory network composed 11 genes, seven miRNAs, and three pathways (Fig. 6).

Gene symbol	Description	Resource
AEBP2	AE binding protein 2	STRING
DNMT1	DNA methyltransferase 1	STRING
EED	embryonic ectoderm development	STRING
HDAC1	histone deacetylase 1	STRING
HDAC2	histone deacetylase 2	STRING
PHF19	PHD finger protein 19	STRING
RBBP4	RB binding protein 4, chromatin remodeling factor	STRING
RBBP7	RB binding protein 7, chromatin remodeling factor	STRING
SUZ12	SUZ12 polycomb repressive complex 2 subunit	STRING
YY1	YY1 transcription factor	STRING

Pathway ID	Description	Resource
hsa00310	Lysine degradation	CTD, KEGG
hsa01100	Metabolic pathways	CTD, KEGG
hsa05206	MicroRNAs in cancer	CTD, KEGG

CTD, Comparative Toxicogenomics Database. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Screening of miRNAs associated with HCC prognosis

At last, we screened out HCC prognosis-associated miRNAs among the seven downregulated miRNAs using Cox regression analysis. Univariate Cox regression analysis identified that only hsa-let-7c-5p was associated with prognosis in HCC patients (HR = 0.849, 95% CI 0.739–0.975; p = 0.021; Table 5). These results showed that hsa-let-7c-5p-EZH2 might be an important miRNA-mRNA axis in HCC.
Table 5
Univariate Cox regression survival analysis of miRNAs in hepatocellular carcinoma.

miRNAs	Univariate	
	HR (95% CI)	P
hsa-let-7b-5p	1.057 (0.872–1.280)	0.572
hsa-let-7c-5p	0.849 (0.739–0.975)	**0.021**
hsa-miR-101-3p	0.961 (0.756–1.221)	0.746
hsa-miR-144-3p	0.943 (0.843–1.055)	0.303
hsa-miR-150-5p	0.913 (0.819–1.019)	0.105
hsa-miR-26a-5p	1.188 (0.909–1.552)	0.208
hsa-miR-26b-5p	1.188 (0.942–1.499)	0.146

HR, hazard ratio. CI, 95% confidence interval.

Discussion

Our present study confirmed that the \textit{EZH2} gene had a higher expression level in tumors compared with controls and in advanced tumors compared with early-stage tumors. \textit{Hsa-let-7c-5p} was upregulated in HCC tumors compared with controls and its expression was associated with a good prognosis in HCC patients. These results showed that the \textit{hsa-let-7c-5p-EZH2} axis might have a crucial role in the progression of HCC.

\textit{EZH2} is a core component of the PRC2 and trimethylates H3K27. Deregulation of \textit{EZH2} is associated with gene expression repression, tumorigenesis, development, and tumor cell radiosensitivity [5, 23–25]. \textit{EZH2} regulates downstream genes and signalings in a PRC2-independent manner [13]. \textit{EZH2} functions as both an oncogenic gene or as a tumor suppressor gene by activating its downstream target genes and signalings through a PRC2-independent way [13]. For instance, \textit{EZH2} directly binds to the promoter of the large tumor suppressor 2 (\textit{LATS2}) gene and induces its H3K27me3 in gallbladder cancer cells [26]. \textit{EZH2} also decreases forkhead box C1 (\textit{FOXC1}) expression by promoting H3K27me3 in breast cancers [27]. \textit{LATS2} is a member of the large tumor suppressor family [28, 29] and the \textit{FOXC1} transcription factor also as an oncogenic gene by regulating cell proliferation, senescence, angiogenesis, and metastasis [30, 31]. This evidence reveals the important role of \textit{EZH2} in human cancers.

Recent evidence shows that \textit{EZH2} regulates immune responses in human cancers, including HCC [4, 13, 32, 33]. Elevated \textit{EZH2} level was positively correlated with immunosuppression in HCC and was negatively correlated with the contents of Class I major histocompatibility complex molecules [4]. However, loss or knockdown of \textit{EZH2} in regulatory T cells and natural killer cells enhance their
recruitment and anti-tumor immunity [34, 32]. Therefore, many efforts have been made to inhibit EZH2 methyltransferase activity, break PRC2’ structure, suppress EZH2 expression, or develop EZH2 inhibitors with low toxicity, high efficiency, and high selectivity in cancer treatment.

EZH2 and H3K27me3 levels could be regulated by non-coding RNAs [5, 35]. Many EZH2-related miRNAs, including tumor suppressor miRNAs hsa-let-7b, hsa-miR-101, and hsa-miR-26a have been identified [5, 36]. These miRNAs have tumor suppressive roles by inhibiting EZH2 and H3K27me3 levels and then abrogating the aggressive type of cancers [37, 5]. Xu et al [38] showed that hsa-miR-101 inhibited human HCC progression and promoted cytosomatic drug sensitivity by suppressing EZH2. Also, miR-101-3p induces autophagy by targeting EZH2 [39]. We observed that EZH2 was negatively targeted by seven downregulated miRNAs in HCC, including hsa-let-7b-5p, hsa-let-7c-5p, hsa-miR-101-3p, hsa-miR-144-3p, hsa-miR-150-5p, hsa-miR-26a-5p, and hsa-miR-26b-5p. All miRNAs are associated with the proliferation and metastasis in HCC cells and prognosis in HCC patients [40–45]. Although the regulation of other miRNAs could regulate HCC cell proliferation, migration, and metastasis, only hsa-let-7c-5p was associated with prognosis in HCC patients in the TCGA database, showing that the role of the hsa-let-7c-5p-EZH2 axis in the HCC might be very important. Also, the involvement of EZH2 in microRNAs in cancer (hsa05206) showing miRNA-mediated EZH2 might play important roles in HCC development.

Song et al [46] confirmed the downregulation of hsa-let-7c-5p in HCC tumor tissues. They showed that a high level of hsa-let-7c-5p was correlated with a long overall survival period. Li et al. [47] confirmed that hsa-let-7c-5p and EZH2 were downregulated and upregulated in breast cancer tissues compared with controls, respectively. They also showed that the inhibition of hsa-let-7c-5p increased EZH2 expression in MDA-MB-231 breast cancer cells. However, there is poor information on the regulation of hsa-let-7c-5p on EZH2 and the axis in HCC. Therefore, identification of the hsa-let-7c-5p-EZH2 axis might provide a novel and reference to HCC mechanism. Also, the strategy focusing on inhibiting EZH2 might provide a reference for the treatment of HCC.

Conclusions

Our study showed that the EZH2 gene was upregulated in HCC tumor samples and its level was correlated with prognosis in HCC patients negatively. Also, EZH2 was negatively targeted by hsa-let-7c-5p, which had a lower level in HCC tumors compared with control and a positive correlation with overall survival in HCC patients. However, important roles of the hsa-let-7c-5p-EZH2 axis in HCC development and prognosis should be validated by experiments.

Abbreviations

CI, confident interval; CTD, the Comparative Toxicogenomics Database; DNMT1, DNA methyltransferase 1; EED, embryonic ectoderm development; EZH2, enhancer of zeste homolog 2; FoxO1, forkhead box O1; GEPIA, Gene Expression Profiling Interactive Analysis; HCC, hepatocellular carcinoma; H3K27me3, Lys-27 in histone 3; HBV, hepatitis B virus; HCV, hepatitis C virus; HR, Hazard ratio; KEGG, Kyoto Encyclopedia of
Genes and Genomes; KM, Kaplan-Meier; LATS2, Large Tumor Suppressor 2; IncRNAs, long non-coding RNAs; miRNAs, microRNAs; PPI, protein-protein interaction; PRC2, polycomb-repressive complex 2; STAT3, signal transducer and activator of transcription 3; SUZ12, suppressor of zeste 12; TCGA, The Cancer Genome Atlas; UCSC, University of California, Santa Cruz. UALCAN, University of Alabama Cancer Database.

Declarations

Acknowledgments

Not applicable.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Consent for publication

Not applicable.

Availability of data and material

All data generated or analyzed during this study are included in this published article. The original miRNA and gene expression profiles were downloaded from the UCSC Xena (https://xenabrowser.net/datapages/).

Competing interests

The authors declare that they have no competing interests.

Funding

None.

References

1. Mcguire S (2016) World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Advances in Nutrition 7 (2):418–419
2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68(6):394–424
3. Hu B, Huang W, Wang R, Zang W, Su M, Li H, Wang H, Cao B, Deng D, Li QQ (2020) High Rate of Detection of Human ESPL1-HBV S Fusion Gene in Patients With HBV-related Liver Cancer: A Chinese Case-Control Study. Anticancer research 40(1):245–252
4. Guo B, Tan X, Cen H (2020) EZH2 is a negative prognostic biomarker associated with immunosuppression in hepatocellular carcinoma. Plos One 15(11):e0242191

5. Benetatos L, Voulgaris E, Vartholomatos G, Hatzimichael E (2013) Non-coding RNAs and EZH2 interactions in cancer: long and short tales from the transcriptome. Int J Cancer 133(2):267–274

6. Cyrus S, Burkardt D, Weaver DD, Gibson WT PRC2-complex related dysfunction in overgrowth syndromes: A review of EZH2, EED, and SUZ12 and their syndromic phenotypes. In: American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 2019. Wiley Online Library, pp 519–531

7. Pasini D, Bracken AP, Jensen MR, Denchi EL, Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. EMBO J 23(20):4061–4071

8. Wasenang W, Puapairoj A, Settasatian C, Proungvitaya S, Limpaiboon T (2019) Overexpression of polycomb repressive complex 2 key components EZH2/SUZ12/EED as an unfavorable prognostic marker in cholangiocarcinoma. Pathology-Research Practice 215(7):152451

9. Hsu JH-R, Rasmussen T, Robinson J, Pachl F, Read J, Kawatkar S, O'Donovan DH, Bagal S, Code E, Rawlins P (2020) EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chemical Biology 27(1):41–46. e17

10. Yin H, Wang Y, Wu Y, Zhang X, Zhang X, Liu J, Wang T, Fan J, Sun J, Yang A (2020) EZH2-mediated epigenetic silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis, and immune microenvironment Remodeling in breast cancer. Thranostics 10(19):8494

11. Xu K, Zhang Z, Qian J, Wang S, Yin S, Xie H, Zhou L, Zheng S (2019) LncRNA FOXD2-AS1 plays an oncogenic role in hepatocellular carcinoma through epigenetically silencing CDKN1B (p27) via EZH2. Experimental cell research 380(2):198–204

12. Harms KL, Chubb H, Zhao L, Fullen DR, Bichakjian CK, Johnson TM, Carskadon S, Palanisamy N, Harms PW (2017) Increased expression of EZH2 in Merkel cell carcinoma is associated with disease progression and poorer prognosis. Human pathology 67:78–84

13. Duan R, Du W, Guo W (2020) EZH2: a novel target for cancer treatment. J Hematol Oncol 13:1–12

14. Shankar E, Franco D, Iqbal O, Moreton S, Kanwal R, Gupta S (2020) Dual targeting of EZH2 and androgen receptor as a novel therapy for castration-resistant prostate cancer. Toxicol Appl Pharmacol 404:115200

15. Zhang X, Zhang X, Wang T, Wang L, Tan Z, Wei W, Yan B, Zhao J, Wu K, Yang A (2018) MicroRNA-26a is a key regulon that inhibits progression and metastasis of c-Myc/EZH2 double high advanced hepatocellular carcinoma. Cancer letters 426:98–108

16. Lin T, Dai Y, Guo X, Chen W, Zhao J, Cao L, Wu Z (2019) Silencing of hsa_circ_0008450 represses hepatocellular carcinoma progression through regulation of microRNA-214-3p/EZH2 axis. Cancer management research 11:9133

17. Yu Q-J, Liang Y-Z, Mei X-P, Fang T-Y (2020) Tumor mutation burden associated with miRNA-gene interaction outcome mediates the survival of patients with liver hepatocellular carcinoma. EXCLI J 19:861
18. Nagy Á, Lánczky A, Menyhárt O, Győrffy B (2018) Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8(1):1–9

19. Li S, Yao J, Xie M, Liu Y, Zheng M (2018) Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol 11(1):54

20. Mai H, Zhou B, Liu L, Yang F, Conran C, Ji Y, Hou J, Jiang D (2019) Molecular pattern of IncRNAs in hepatocellular carcinoma. Journal of Experimental Clinical Cancer Research 38(1):1–15

21. Huang X, Zhang W, Shao Z (2019) Prognostic and diagnostic significance of circRNAs expression in hepatocellular carcinoma patients: A meta-analysis. Cancer Med 8(3):1148–1156

22. Matboli M, Shafei AE, Ali MA, Ashry AM, Kamal KM, Agag MA, Reda I, Tash EF, Ali M (2019) circRNAs (hsa_circ_00156, hsa_circ_000224, and hsa_circ_000520) are novel potential biomarkers in hepatocellular carcinoma. Journal of cellular biochemistry 120(5):7711–7724

23. Pekmezci M, Cuevas-Ocampo AK, Perry A, Horvai AE (2017) Significance of H3K27me3 loss in the diagnosis of malignant peripheral nerve sheath tumors. Mod Pathol 30(12):1710–1719

24. Otsuka H, Kohashi K, Yoshimoto M, Ishihara S, Toda Y, Yamada Y, Yamamoto H, Nakashima Y, Oda Y (2018) Immunohistochemical evaluation of H3K27 trimethylation in malignant peripheral nerve sheath tumors. Pathology-Research Practice 214(3):417–425

25. Rath BH, Waung I, Camphausen K, Tofilon PJ (2018) Inhibition of the histone H3K27 demethylase UTX enhances tumor cell radiosensitivity. Mol Cancer Ther 17(5):1070–1078

26. Jin L, Cai Q, Wang S, Wang S, Mondal T, Wang J, Quan Z (2018) Long noncoding RNA MEG3 regulates LATS2 by promoting the ubiquitination of EZH2 and inhibits proliferation and invasion in gallbladder cancer. Cell death disease 9(10):1–14

27. Zheng X-j, Li W, Yi J, Liu J-y, Ren L-w, Zhu X-m, Liu S-w, Wang J-h, Du G-h (2020) EZH2 regulates expression of FOXC1 by mediating H3K27me3 in breast cancers. Acta Pharmacologica Sinica:1–9

28. Furth N, Pateras IS, Rotkopf R, Vlachou V, Rivkin I, Schmitt I, Bakaev D, Gershoni A, Ainbinder E, Leshkowitz D (2018) LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life science alliance 1 (5)

29. Furth N, Aylon Y (2017) The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differentiation 24(9):1488–1501

30. Hsu H-H, Kuo W-W, Shih H-N, Cheng S-F, Yang C-K, Chen M-C, Tu C-C, Viswanadha VP, Liao P-H, Huang C-Y (2019) FOXC1 regulation of miR-31-5p confers oxaliplatin resistance by targeting LATS2 in colorectal cancer. Cancers 11(10):1576

31. Subramani R, Camacho FA, Levin CI, Flores K, Clift A, Galvez A, Terres M, Rivera S, Kolli SN, Dodderer J (2018) FOXC1 plays a crucial role in the growth of pancreatic cancer. Oncogenesis 7(7):1–11

32. Wang D, Quiros J, Mahuron K, Pai C-C, Ranzani V, Young A, Silveria S, Harwin T, Abnousian A, Pagani M (2018) Targeting EZH2 reprograms intratumoral regulatory T cells to enhance cancer immunity. Cell reports 23(11):3262–3274
33. Chen Yn H, Sq, Jiang R, Sun Jl C, Cd Q Zr (2021) EZH2 is a potential prognostic predictor of glioma. J Cell Mol Med 25(2):925–936

34. Yin J, Leavenworth JW, Li Y, Luo Q, Xie H, Liu X, Huang S, Yan H, Fu Z, Zhang LY (2015) Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences 112 (52):15988–15993

35. Shen Q, Bae HJ, Eun JW, Kim HS, Park SJ, Shin WC, Lee EK, Park S, Park WS, Lee JY (2014) MiR-101 functions as a tumor suppressor by directly targeting nemo-like kinase in liver cancer. Cancer letters 344(2):204–211

36. Siddeek B, Lakhdari N, Inoubli L, Paul-Bellon R, Isnard V, Thibault E, Bongain A, Chevallier D, Repetto E, Trabucchi M (2016) Developmental epigenetic programming of adult germ cell death disease: Polycomb protein EZH2–miR-101 pathway. Epigenomics 8(11):1459–1479

37. Konno Y, Dong P, Xiong Y, Suzuki F, Lu J, Cai M, Watari H, Mitamura T, Hosaka M, Hanley SJ (2014) MicroRNA-101 targets EZH2, MCL-1 and FOS to suppress proliferation, invasion and stem cell-like phenotype of aggressive endometrial cancer cells. Oncotarget 5(15):6049

38. Xu L, Beckebaum S, Iacob S, Wu G, Kaiser GM, Radtke A, Liu C, Kabar I, Schmidt HH, Zhang X (2014) MicroRNA-101 inhibits human hepatocellular carcinoma progression through EZH2 downregulation and increased cytostatic drug sensitivity. Journal of hepatology 60(3):590–598

39. Wang C, Liu B (2018) miR-101-3p induces autophagy in endometrial carcinoma cells by targeting EZH2. Archives of gynecology obstetrics 297(6):1539–1548

40. Liang H-w, Ye Z-h, Yin S-y, Mo W-j, Wang H-i, Zhao J-c, Liang G-m, Feng Z-b, Chen G, Luo D-z (2017) A comprehensive insight into the clinicopathologic significance of miR-144-3p in hepatocellular carcinoma. OncoTargets therapy 10:3405

41. Yan S, Shan X, Chen K, Liu Y, Yu G, Chen Q, Zeng T, Zhu L, Dang H, Chen F (2018) LINC00052/miR-101-3p axis inhibits cell proliferation and metastasis by targeting SOX9 in hepatocellular carcinoma. Gene 679:138–149

42. Li Y, Li P, Wang N (2021) Effect of let–7c on the PI3K/Akt/FoxO signaling pathway in hepatocellular carcinoma. Oncology Letters 21(2):96

43. Sathipati SY, Ho S-Y (2020) Novel miRNA signature for predicting the stage of hepatocellular carcinoma. Sci Rep 10(1):1–12

44. Shaheen NMH, Zayed N, Riad NM, Tamim HH, Shahin RMH, Labib DA, ELsheikh SM, Moneim RA, Yosry A (2018) Role of circulating miR-182 and miR-150 as biomarkers for cirrhosis and hepatocellular carcinoma post HCV infection in Egyptian patients. Virus Res 255:77–84

45. Cui XW, Qian ZL, Li C, Cui SC (2018) Identification of miRNA and mRNA expression profiles by PCR microarray in hepatitis B virus–associated hepatocellular carcinoma. Mol Med Rep 18(6):5123–5132

46. Song M, Zhong A, Yang J, He J, Cheng S, Zeng J, Huang Y, Pan Q, Zhao J, Zhou Z (2019) Large-scale analyses identify a cluster of novel long noncoding RNAs as potential competitive endogenous RNAs in progression of hepatocellular carcinoma. Aging 11(22):10422
47. Li Z, Huang J, Zhang S, He Y, Lu J, Liu M (2019) Expression and clinical significance of microRNA and its target gene EZH2 in breast cancer. Journal of Medical Postgraduates 32(28):833–839

Figures

Figure 1

The expression profile of EZH2 in hepatocellular carcinoma tumors. A, difference in EZH2 level between tumor and normal control tissues. B-C, differences in EZH2 levels between tumor tissues with different pathologic T classifications and stages, respectively. Differences were analyzed using the non-parametric Mann-Whitney U test.
Figure 2

Expression profile of EZH2 in hepatocellular carcinoma tumors from patients with different clinical variables. The difference in EZH2 expression level tumors samples from patients aged over and younger 65 years (A), with and without prior malignancy (B), Asian, White, and Black (C), and male and female (D). Differences were analyzed using non-parametric Mann-Whitney U test (in figure A, B and D) and the Kruskal-Wallis H test (in figure C).
Figure 3

Cox regression survival analysis for EZH2 expression in hepatocellular carcinoma. The TCGA cohort (n=371) was used for this analysis. HR, Hazard ratio. CI, 95% confident interval.
Figure 4

The correlation of EZH2 with hepatocellular carcinoma overall survival in the online databases. A, B, and C, the survival analysis in GEPIA, UALCAN, and Oncolnc database, respectively. All databases performed the log-rank test of Kaplan-Meier (KM) analysis.
Figure 5

Expression profiles of seven miRNAs in hepatocellular carcinoma tumor and normal control tissues. The dataset was downloaded from The Cancer Genome Atlas database. Differences in EZH2 expression levels between two groups were analyzed using the non-parametric Mann-Whitney U test.
Figure 6

The miRNA-EZH2-pathway network in hepatocellular carcinoma. Upregulated EZH2 is shown by red node and downregulated miRNAs are indicated by green diamonds. Pathways and EZH2-associated genes are presented by empty squares and circles, respectively.