Spectral Softening due to Winds in Accretion Disks

Sandip K. Chakrabarti
S.N. Bose National Centre for Basic Sciences
JD-Block, Sector-III, Salt Lake, Calcutta 700091, INDIA

March 21, 2022

Abstract

Accretion flows may produce profuse winds when they have positive specific energy. Winds deplete matter from the inner region of the disk and makes the inner region thinner, optically. Since there are fewer electrons in this region, it becomes easier to Comptonize this part by the soft photons which are intercepted from the Keplerian disk farther out. We present a self-consistent picture of winds from an accretion disk and show how the spectra of the disk is softened due to the outflowing wind.

Indian Journal of Physics, v. 72B (6), 565-569, 1998.

1 Introduction

Outflows are common in many astrophysical systems which contain black holes and neutron stars. Difference between stellar outflows and outflows from these systems is that the outflows in these systems have to form out of the inflowing material only, whereas in stars outflows are ‘extensions’ of the stellar atmosphere. Although a black hole does not have a hard surface, the centrifugal barrier due to angular momentum behaves like one, and therefore mass loss associated with this barrier could be computed in the same way as
the mass loss from a stellar surface. For a detailed review on accretion disks and associated outflow, see Chakrabarti [1,2].

Chakrabarti [3] classified all possible solutions of a black hole accretion and winds and showed that a large region of the parameter space (spanned by specific energy E and angular momentum λ) with positive E, winds would form. Such solutions (both accretion and winds) have been amply verified by numerical simulations [4]. Winds have been observed by earlier numerical simulations from Keplerian accretion disks [5], although generalized self-similar wind solution of Königl [6] by Chakrabarti & Bhaskaran [7] show that the outflows are more favourable if the disk itself is sub-Keplerian. Chakrabarti & D'Silva [8] and D'Silva & Chakrabarti [9] showed that magnetized flares close to the funnel wall in the accretion disk could produce winds similar to that of the Sun. This is because, energetically, it is equally easy or difficult for an ordinary star or compact object to produce winds. Molteni, Lanzafame & Chakrabarti [10] showed through numerical simulation that up to about 15 to 20 percent of mass loss is common in the case of weakly viscous, and thick accretion flows. Chakrabarti [11] and Das & Chakrabarti [12] gave a formulation of the global inflow-outflow solutions [GIOS] and estimated the mass outflow rate as a function of the inflow parameters of the accretion flow. Particularly, it was shown [12] that in the case of isothermal outflow the mass loss rate is anti-correlated with the mass accretion rate in the Keplerian component. This was due to the fact that when the accretion rate in the Keplerian disk is low, the inner, advective region remains hotter and therefore drives more mass loss.

This phenomenon has an interesting consequence which we explore in this Rapid Communication. As more fraction of matter is expelled, it becomes easier for the soft photons from the Keplerian disk surrounding the advective region to cool this region due to Comptonization (see, Chakrabarti & Titarchuk [13] and Chakrabarti [14] for details). In other words, the presence of winds would soften the spectra of the power-law component for the same multicolour blackbody component. Such an observation would point to profuse mass loss from the hot advective region.

The model we use here is the two component accretion flow which has the centrifugal pressure supported boundary layer [CENBOL]. We assume a weakly viscous flow of constant specific angular momentum $\lambda = 1.75$ (in units of $2GM/c$) for the sake of concreteness. The Keplerian component close to the equatorial plane has a low accretion rate ($\dot{M}_{in} \sim 0.05 - 0.3$ in
units of the Eddington rate) and the sub-Keplerian halo surrounding it has a higher rate ($\dot{M}_h \sim 1$ in units of Eddington rate). Before the accreting matter hits the inner advective region, both the rates are constant, but as Das & Chakrabarti [12] has shown, winds, produced from CENBOL will deplete the disk matter at the rate determined by the temperature of the CENBOL, when other parameters, such as the specific angular momentum and specific energy are kept fixed. In particular, it was shown that in some cases, high entropy matter from CENBOL may be completely bounced back as winds and produce quiescence states or black hole candidates with very low luminosity such as the Sgr A* in our Galactic Center and V404 Cyg.

In Fig. 1 we schematically draw a global picture of the accretion and outflow around the black hole. As matter accretes on a black hole, Keplerian flows tends to stay at the higher viscosity region, namely on the equatorial plane. The low viscosity region away from the plane has positive specific energy and forms an advective inflow which may or may not form a shock wave closer to the centrifugal barrier. Keplerian disks emit soft blackbody photons which are intercepted and reprocessed in CENBOL and its surrounding sub-Keplerian region. Radiation out of this region through Comptonization and bremsstrahlung processes come out carrying the information about the optical depth and temperature of this region. Thus a proper prediction of the power-law spectra in hard X-rays would be valuable to understand black hole accretion and wind processes.

Figures 2 and 3 show the outcome of our calculation of the spectra for different accretion rate of the Keplerian component \dot{M}_m. The mass of the central black hole is chosen to be $M = 10M_\odot$. The location of the CENBOL is assumed to be at $r = 10r_g$ (where r_g is the Schwarzschild radius), a typical location for the sub-Keplerian flow of average specific angular momentum $\lambda = 1.75$ and specific energy $\mathcal{E} = 0.003$. Following [12], we first compute the mass outflow rate from the advective region. The long dashed curve in Fig. 2 shows the variation of the percentage of mass loss (vertical axis on the right) as a function of the inflow accretion rate. The dotted curve and the solid curve denote the variation of the energy spectral index $\alpha (F_\nu \propto \nu^{-\alpha})$ with and without winds taken into account. Note that the spectra is overall softened (α increased) when winds are present. For higher Keplerian rates, the mass loss through winds is negligible and therefore there is virtually no change in the spectral index. For lower inflow rates, on the other hand, mass loss rate is more than twenty percent. It is easier to Comptonize the
depleted matter by the same number of incoming soft photons and therefore the spectra is softened.

In Fig. 3, we show the resulting spectral change. As in Fig. 2, solid curves represent solutions without winds and the dotted curves represent solutions with winds. Solid curves are drawn for $\dot{M}_{in} = 0.3$ (uppermost at the bump), 0.15 (middle at the bump) and 0.07 (lowermost at the bump) respectively. For $\dot{M}_{in} = 0.3$ both curves are identical. Note the crossing of the solid curves at around $10^{18.6} Hz$ (15 keV) when winds are absent. This is regularly observed in black hole candidates. If this is shifted to higher energies, the presence of winds may be indicated.

Strong winds are suspected to be present in Sgr A^* at our Galactic Center (see, Genzel et al [15] for a review, and Eckart & Genzel [16]). Chakrabarti [1] suggested that the inflow could be of almost constant energy transonic flow, so that the emission is inefficient. However, from global inflow-outflow solutions [GIOS], Das & Chakrabarti [12] showed that when the inflow rate itself is low (as is the case for Sgr A^*; $\sim 10^{-3}$ to $10^{-4}\dot{M}_{Eddington}$) the mass outflow rate is very high, almost to the point of evacuating the disk. This prompted them to speculate that spectral properties of our Galactic Center could be explained by inclusion of winds. This will be done in near future. Not only our Galactic Center, the consideration should be valid for all the black hole candidates (e.g., V404 Cyg) which are seen in quiescence.

Earlier, Chakrabarti & Titarchuk [13] suggested that the iron Kα line as well as the so called ‘reflection component’ could be due to outflows off the advective region. Combined with the present work, we may conclude that simultaneous enhancement of the ‘reflection component’ and/or iron Kα line intensity with the softening of the spectra in hard X-rays would be a sure signature of the presence of significant winds in the advective region of the disk.
References

[1] S.K. Chakrabarti *Physics Reports* **266** No 5 & 6 229 (1996)

[2] S.K. Chakrabarti, Ind. J. Phys. 72B, No. 3, 183 (1998), astro-ph/9803227

[3] S.K. Chakrabarti *Astrophys. J.* **347** 365 (1989)

[4] S.K. Chakrabarti & Molteni D. 1993 *Astrophys. J.* **417** 671 (1993)

[5] G.E. Eggum, F.V. Coroniti & J.I. Katz, Astrophys. J. 323, 634 (1987)

[6] A. Königl, Astrophys. J. 342, 208 (1989)

[7] S.K. Chakrabarti & P. Bhaskaran, 1992, *Mon. Not. R. Astron. Soc.* **255** 255 (1992)

[8] S.K. Chakrabarti & S. D’Silva, Astrophys. J. 424, 138 (1994)

[9] S. D’Silva & S.K. Chakrabarti, Astrophys. J. 424, 149 (1994)

[10] D. Molteni, G. Lanzafame & S.K. Chakrabarti 1994 *Astrophys. J.* **425** 161 (1994)

[11] S.K. Chakrabarti, in ‘Observational Evidence for Black Holes in the Universe’, ed. S.K. Chakrabarti (Kluwar Academic Publishers: Dordrecht), 19 (1998) astro-ph/9807104

[12] T. Das & S.K. Chakrabarti 1997 *Astrophys. J.* astro-ph/9809109

[13] S.K. Chakrabarti & L.G. Titarchuk 1995 *Astrophys. J.* **455** 623 (1995)

[14] S.K. Chakrabarti *Astrophys. J.* **484** 313 (1997)

[15] R. Genzel, D. Hollenbach & C.H. Townes, Rep. Prog. Phys. 57 478 (1994)

[16] A. Eckart & R. Genzel, MNRAS 284, 576. (1997)
Figure Captions

Fig. 1: Cartoon diagram of a very general inflow-outflow configuration of non-magnetized matter around a compact object. Keplerian and sub-Keplerian matter accretes along the equatorial plane. Centrifugally and thermally driven outflows preferentially emerge between the centrifugal barrier and the funnel wall. \(X_s, X_{K1} \) and \(X_{K2} \) are the boundaries of the (possible) shock, between Keplerian and sub-Keplerian flow of high viscosity component, and between Keplerian and sub-Keplerian flow of very weak viscosity components respectively.

Fig. 2: Variation of the percentage of mass loss (long dashed curve and right axis) and the energy spectral index \(\alpha \) \((F_\nu \propto \nu^{-\alpha})\) (solid and dotted curves and left axis) with the accretion rate (in units of Eddington rate) of the Keplerian component. Solid curve is drawn when winds are neglected from the advective region and dotted curve includes effect of winds. Overall spectra is softened when the inflow rate is reduced.

Fig. 3: Spectra of emitted radiation from the accretion disk with (dotted) and without (solid) effects of winds. Hard X-ray component is softened while keeping soft X-ray bump unchanged.
Centrifugally and Thermally driven outflows

- CENBOL
- Keplerian disk
- Compact object
- Quasi-spherical Sub-Keplerian Flow
- Funnel wall
- Centrifugal barrier

$X_S \quad X_{K1} \quad X_{K2}$
