Abstract. New results for the double beta decay of 76Ge are presented. They are extracted from data obtained with the Heidelberg-Moscow experiment, which operates five enriched 76Ge detectors in an extreme low-level environment in the Gran Sasso underground laboratory. The two neutrino accompanied double beta decay is evaluated for the first time for all five detectors with a statistical significance of 47.7 kg y resulting in a half life of $T_{2\nu}^{1/2} = [1.55 \pm 0.01 \text{ (stat)} \pm 0.19 \text{ (syst)}] \times 10^{21}$ years. The lower limit on the half-life of the $0\nu\beta\beta$ decay obtained with pulse shape analysis is $T_{0\nu}^{1/2} > 1.9 \times 10^{25}$ (3.1$ \times 10^{25}$) years with 90% C.L. (68% C.L.) (with 35.5 kg y). This results in an upper limit of the effective Majorana neutrino mass of 0.35 eV (0.27 eV). No evidence for a Majoron emitting decay mode or for the neutrinoless mode is observed.

1 Double Beta Decay

There seems to be a general consensus over the neutrino oscillation interpretation of the atmospheric and solar neutrino data, delivering a strong indication for a non-vanishing neutrino mass. While such kind of experiments yields information on the difference of squared neutrino mass eigenvalues and on mixing angles, the absolute scale of the neutrino mass is still unknown. Information from double beta decay experiments is indispensable to solve these questions. Another important problem is that of the fundamental character of the neutrino, whether it is a Dirac or a Majorana particle. Neutrinoless double beta decay could answer also this question. The HEIDELBERG-MOSCOW experiment is giving since almost eight years now, the most sensitive limit of all $\beta\beta$-experiments worldwide. Double beta decay, the rarest known nuclear decay process, can occur in different modes:

* Talk presented by A. Dietz at the Third International Conference DARK2000, Heidelberg, GERMANY, July 10-15, 2000
The two-neutrino decay mode (1) is a conventional second order weak process, allowed in the Standard Model of particle physics. So far it has been observed for about 10 different nuclei \[2,3,4,5\]. An accurate measurement of the half-life of the decay is of importance, since it provides a cross-check on the reliability of matrix element calculations. The Majoron emitting decay mode (2) could reveal the existence of light or massless bosons, so called Majorons, with a non-zero coupling to neutrinos. The neutrinoless mode (3) is by far the most exciting one due to the violation of the lepton number by two units. It can not only probe a Majorana neutrino mass, but various new physics scenarios beyond the Standard Model, such as R-parity violating supersymmetric models \[6\], R-parity conserving SUSY models \[7\], leptoquarks \[8\], violation of Lorentz-invariance \[9\] and compositeness \[10\] (for a review see \[4,11,12,13\]). Any theory containing lepton number violating interactions can in principle lead to this process allowing to obtain information on the specific underlying theory. The experimental signature of the neutrinoless mode is a peak at the Q-value of the decay, whereas for the two-neutrino and Majoron-accompanied decay modes well defined continuous energy spectra are expected. They are identified by their spectral index \(n\), defined as the power of the energy in the phase space integral (see \[14\]). The Majoron emitting modes are characterized by \(n=1,3,7\), while for the \(2\nu\beta\beta\) decay, \(n=5\).

2 The Heidelberg-Moscow experiment

The Heidelberg-Moscow experiment operates five p-type HPGe detectors in the Gran Sasso underground laboratory which were originally grown from 19.2 kg of enriched \(^{76}\text{Ge}\). The total active mass of the detectors is 10.96 kg, corresponding to 125.5 mol of \(^{76}\text{Ge}\), the presently largest source strength of all double beta experiments. The enrichment of the used Germanium is 86%. A detailed description of the experiment is given in \[15\].

To check the stability of the experiment, a couple of parameters such as temperature, nitrogen flow, leakage current of the detectors, overall and individual trigger rates are monitored daily. An energy calibration is done weekly with a \(^{228}\text{Th}\) and a \(^{152}\text{Eu-228Th}\) source. The energy resolution of the detectors at 2614 keV ranges from 3–3.7 keV. The energy thresholds for data recording are set to about 70 keV (with exception of the second detector, which is used for dark matter measurements in addition, see \[16\]).

Figure 1 shows the combined sum spectrum of all five enriched detectors of the Heidelberg-Moscow experiment with a statistical significance of 47.4 kg y (see \[22\]). The large peak-to-Compton ratio of the detectors facilitates the identification of \(\gamma\) activities. The easily identified background components consist
of primordial activities of the natural decay chains from ^{238}U and ^{232}Th from ^{40}K, anthropogenic radio nuclides, like ^{137}Cs, ^{134}Cs, ^{125}Sb and ^{207}Bi and cosmogenic isotopes, such as ^{54}Mn, ^{57}Co, ^{58}Co, ^{60}Co and ^{65}Zn. Hidden in the continuous background are the contributions of the bremsstrahlung spectrum of ^{210}Bi (daughter of ^{210}Pb), elastic and inelastic neutron scattering and direct muon induced events.

3 Background model

The evaluation of the spectra caused by the $2\nu\beta\beta$ decay and the Majoron-emitting decay modes requires a detailed knowledge of the composition of the background on which they are superimposed. To unfold the background, a Monte Carlo simulation was performed. It is based on the CERN code Geant3.21, modified for simulating radioactive decays with the complete implemented decay schemes taken from [17]. Five parts of the experimental setup have been identified to represent the main locations of the radioactive impurities: the LC2-Pb shield,
the copper shield, the copper and plastic parts of the cryostats and the Ge crystals themselves. Other materials or locations in the detector array are negligible due to their small masses and low activities. The following background components were simulated: the natural decay chains of ^{238}U and ^{232}Th, ^{40}K, cosmogenic and anthropogenic isotopes, muon showers and neutron induced interactions. It was assumed that the ^{238}U and ^{232}Th decay chains are in secular equilibrium and that the radioactive isotopes in the respective materials are uniformly distributed. Muon-induced showers were simulated based on the measured flux and energy distribution of muons in the Gran Sasso underground laboratory [18]. Not considered were muon-induced neutrons in the detector shielding materials, due to still large uncertainties in the absolute n-flux determinations in Geant3.21. This component belongs to the non-identified background which will be discussed below. The measured neutron flux in the Gran Sasso underground laboratory [19] was simulated using the MICAP implementation in GEANT [20]. The activities of ^{40}K and ^{210}Pb in the LC2-Pb shield were determined in separate activity measurements [21]. In order to extract the best fit values for each activity, a least-squares method has been used. The location of the radioactive impurities was determined by comparing the peak intensities of multiline isotopes with the simulation. The error of a possible misplacement is part of the systematic error of the background model. The influence of each radioactive impurity located in one detector on all other detectors was considered. We identified a total number of 142 lines in the spectra of the five enriched Ge detectors. Their measured intensities were used to normalize the simulated components of the background model. Table 1 shows the identified background components, their estimated activities and their most probable locations in the experimental setup. The main background sources (natural decay chains, cosmogenics and anthropogenic radionuclides) were located in the copper parts of the cryostats. In the Ge crystals themselves, only cosmogenic radionuclides were identified. There is no intrinsic U/Th contamination of the crystals, due to the absence of α-peaks in their high energy spectra (the single α-line at 5.3 MeV detected in two of the five detectors originates most likely from surface contaminations at the inner contact). External α and β activities are shielded by the about 0.7 mm inactive zone of the p-type detectors on the outer crystal surface. Figure 2 shows the contribution of the simulated background components on the original measured sum spectrum of the Ge detectors (for details of the simulations see [22]).

4 Results for the $2\nu\beta\beta$ and the $0\nu(\chi)\chi\beta\beta$ decays

In Fig. 3 the summed data of the five detectors are shown together with the result after subtracting the identified background components. A bin width of 20 keV is chosen in order to avoid statistical fluctuations when subtracting the simulated γ lines from the measured spectrum. The contribution of the $2\nu\beta\beta$ decay to the residual spectrum is clearly visible. Its half-life was determined under the assumption that the entire residual spectrum is composed of the $2\nu\beta\beta$ -signal. Due to non-identified background in the energy region below 700 keV, the fit
interval for the $2\nu\beta\beta$-signal is chosen between 700–2040 keV. With the above assumption, this region contains 64553 $2\nu\beta\beta$ events, corresponding to 51.7% of the total $2\nu\beta\beta$ -signal.

The theoretically expected $2\nu\beta\beta$ spectrum was fitted to the data in a maximum-likelihood-fit with $T_{1/2}$ as free parameter, resulting in the following half-life for the $2\nu\beta\beta$-decay at 68% C.L. (combined result for the five detectors):

$$T_{1/2}^{2\nu} = (1.55 \pm 0.01 \text{ (stat)} \pm 0.19 \text{ (syst})) \times 10^{21} \text{ y} \quad (4)$$

The statistical error is evaluated from the parabolic behaviour of the logarithmic likelihood ratio which corresponds to a χ^2 function. The systematic error includes the error of the simulated detector response, the error made by the misplacement of background activities and the normalization error due to the statistical error of the measured γ-lines (see [22]).

The inferred value for the half-life is consistent with earlier results of this experiment [15,23] and with the result of [24], as well as with the range of theoretical predictions, which lie between 1.5×10^{20} – 2.99×10^{21} y [25,26,27,28,43]. The prediction of [25,43] for the $2\nu\beta\beta$ matrix element agrees within a factor of $\sqrt{2}$ with the experimental value.

The half-life limits of the Majoron-emitting decay-modes were determined from the same data set by fitting the $2\nu\beta\beta$ and the $0\nu\chi\beta\beta$ spectra simultaneously. The considered Majoron models are described in [22]. Since the selected energy interval starts at 700 keV, an analysis of the decay-mode with the spectral

Isotope	Average for all 5 detectors	Isotope	Average for all 5 detectors		
Localisation	Activity $[\mu Bq/kg]$	Localisation	Activity $[\mu Bq/kg]$		
^{238}U	Cu cryostat	85.0	^{65}Zn	Ge crystal	20.2 (no. 2-4)
^{238}U	Pb shield	<11.3	^{54}Mn	Cu cryostat	17.1
^{232}Th	Cu cryostat	62.5	^{57}Co	Cu cryostat	32.4
^{232}Th	Pb shield	<0.9	^{58}Co	Cu cryostat	23.4 (only no. 3-5)
^{40}K	Cu cryostat	480.3	^{60}Co	Cu cryostat	65.2
^{40}K	LC2-Pb	310 (ext. meas.)	^{125}Sb	Cu cryostat	36.2
^{210}Pb	LC2-Pb	3.6×10^5 (ext. meas.)	^{134}Cs	Cu cryostat	5.1
^{54}Mn	Ge crystal	4.2	^{137}Cs	Cu cryostat	67.8 (no.5: 463.9)
^{57}Co	Ge crystal	2.6	^{207}Bi	Cu cryostat	7.2
^{58}Co	Ge crystal	3.4 (only no. 3 & 5)			

Table 1. Identified background components (primordial, cosmogenic, anthropogenic), their estimated activities and most probable locations in the full setup of the Heidelberg-Moscow experiment.
Fig. 2. The simulated background components (shaded areas) compared with the original measured sum spectrum for all five detectors.

| Modus | Model | n | $T^{0
\nu\chi}_{1/2}$ (90% C.L.) | $\langle g_{\nu\chi} \rangle$ (90% C.L.) |
|-------------|-------|---|-------------------------------|--|
| $\chi^{0}\beta\beta$ | $[24]$ | 1 | 6.4×10^{22} y | 8.1×10^{-7} |
| $1\chi^{0}\beta\beta$ | $[20, 32]$ | 3 | 1.4×10^{22} y | $0.11 \ (0.04)$ |

Table 2. Half-life limits for the Majoron-emitting decay-modes and derived coupling constants using the matrix elements from $[32]$ for different majoron models (n is the spectral index of the decay mode).

index n=7 (maximum at about 500 keV) was not possible. The results of the fits for n=1 and n=3 are shown in Table 2. The $2\nu\beta\beta$ half-lifes extracted in the two-parameter fits are consistent within 1σ with the exclusive double beta decay evaluation. In Table 2 a comparison of the effective Majoron neutrino couplings extracted for different double beta nuclei is made.
Latest results from the Heidelberg-Moscow experiment

Fig. 3. Summed spectra of all five detectors after 47.7 kg y of measurement together with the residual spectrum after subtracting all identified background components. The thick line shows the fitted 2νββ-signal.

Nucleus	Ref.	$T_{1/2}^{0νX}$	$\langle g_{0ν} \rangle$	C.L. [%]
76Ge	this work	6.4×10^{22} y	8.1×10^{-5}	90
82Se	[33]	2.4×10^{21} y	2.3×10^{-4}	90
96Zr	[34]	3.5×10^{20} y	2.6×10^{-4}	90
100Mo	[35]	5.4×10^{21} y	7.3×10^{-5}	68
116Cd	[36]	3.7×10^{21} y	1.2×10^{-4}	90
128Te	[37]	7.7×10^{21} y	3.0×10^{-5}	90
136Xe	[38]	7.2×10^{21} y	2.0×10^{-4}	90
150Nd	[39]	2.8×10^{20} y	9.9×10^{-5}	90

Table 3. Half-life limits on the Majoron-emitting decay-mode $0νχββ$ extracted from different nuclei and the derived limits on the effective Majoron-neutrino coupling for $n=1$.

5 Results for the $0νββ$ decay

For the evaluation of the $0νββ$ decay we consider the raw data of all five detectors as well as data with pulse shape analysis. The pulse shape analysis method used here is described elsewhere [33]. No further data manipulation is
done, e.g. the previously established background model is not subtracted. We see in none of the two data sets an indication for a peak at the Q-value of 2038.56±0.32 keV [34] of the $0\nu\beta\beta$ decay.

The total spectrum of the five detectors with a statistical significance of 53.9 kg y contains all the data with the exception of the first 200 d of measurement of each detector, because of possible interference with the cosmogenic 56Co. The interpolated energy resolution at the energy at the hypothetical $0\nu\beta\beta$ peak is $(4.23±0.14)$ keV. The expected background in the $0\nu\beta\beta$ region is estimated from the energy interval 2000–2080 keV. In this range the background is $(0.19±0.01)$ counts/(kg y keV). The expected background in the 3σ peak interval, centered at 2038.56 keV interpolated from the adjacent energy regions, is $(110.3±3.9)$ events. The number of measured events in the same peak region is 112. To extract a half-life limit for the $0\nu\beta\beta$-decay we follow the conservative procedure recommended in [42].

With the achieved energy resolution, the number of excluded events in the 3σ peak region is 19.8 (12) with 90% C.L. (68% C.L.), resulting in a half-life limit of (for the $0^+ \rightarrow 0^+$ transition):

$$T_{1/2}^{0\nu} \geq 1.3 \times 10^{25} \text{ y \ 90\% C.L.}$$
$$T_{1/2}^{0\nu} \geq 2.2 \times 10^{25} \text{ y \ 68\% C.L.}$$

We consider now the data for which the pulse shape of each interaction of the detectors was recorded and analyzed. The total statistical significance is 35.5 kg y and the background index in the energy region between 2000–2080 keV is $(0.06±0.01)$ events/(kg y keV), about a factor 3 lower than for the full data set. This is due to the large fraction of multiple Compton scattered events in this energy region, which are effectively suppressed by the pulse shape discrimination method. The expected number of events from the background left and right of the peak region is $(20.4±1.6)$ events, the measured number of events in the 3σ peak region is 21. Following again the method proposed by [42], we can exclude 9.3 (5.5) events with 90% C.L. (68 % C.L.). The limit on the half-life is:

$$T_{1/2}^{0\nu} \geq 1.9 \times 10^{25} \text{ y \ 90\% C.L.}$$
$$T_{1/2}^{0\nu} \geq 3.1 \times 10^{25} \text{ y \ 68\% C.L.}$$

To examine the dependence of the half-life limit on the position of the 3σ peak interval (12.7 keV) in the spectrum, we shifted the peak interval between 2028 keV and 2048 keV. It results in a variation of the half-life limit between 2.5×10^{25} y and 1.2×10^{25} y at 90% C.L. (for the data with pulse-shape analysis). This demonstrates a rather smooth background in the considered energy region. Figure 4 shows the combined spectrum of the five detectors after 53.93 kg y and the spectrum of point-like interactions, corrected for the detection efficiency, after 35.5 kg y. The solid lines represent the exclusion limits for the two spectra at the 90% C.L. Using the matrix elements of [43] and neglecting right-handed currents, we can convert the lower half-life limit into an upper limit on the effective Majorana neutrino mass, which are listed in Table 4.
Latest results from the Heidelberg-Moscow experiment

Fig. 4. Sum spectrum of all five detectors with 53.9 kg y and SSE spectrum with 35.5 kg y in the region of interest for the $0\nu\beta\beta$-decay. The curves correspond to the excluded signals with $T_{1/2}^{0\nu} \geq 1.3 \times 10^{25}$ y (90% C.L.) and $T_{1/2}^{0\nu} \geq 1.9 \times 10^{25}$ y (90% C.L.), respectively.

	$T_{1/2}^{0\nu}$	(m)	C.L. [%]
Full data set	1.3×10^{25} y	0.42 eV	90
	2.2×10^{25} y	0.33 eV	68
SSE data	1.9×10^{25} y	0.35 eV	90
	3.1×10^{25} y	0.27 eV	68

Table 4. Limits on the effective Majorana neutrino mass from the $0\nu\beta\beta$-decay of 76Ge calculated with the matrix elements from [43].

The HEIDELBERG-MOSCOW experiment is presently giving the most stringent upper limit on the Majorana neutrino mass, of 0.35 eV at 90% C.L. (0.27 eV at 68% C.L.). The values quoted in a previous paper [44], with a statistical significance of 24.2 kg y of data with pulse shape analysis, were 0.2 eV for the mass limit and 0.38 eV for the sensitivity of the experiment (both at 90% C.L.), after the recommendation of [45]. Thus, not unexpected, after additional 11.3 kg y of statistics, the limit on the effective neutrino mass approached the experimental
sensitivity, as defined in [46]. The mass limit varies within a factor of less than two for different matrix element calculations (see the discussion in [4]).

6 Summary and Discussion

We performed an analysis of the most recent data of the Heidelberg-Moscow double beta decay experiment. The data of the complete setup with five enriched ^{76}Ge-detectors, with a total statistical significance of 47.4 kg.y, were analyzed with respect to the two-neutrino and Majoron emitting decay modes for the first time. A Monte Carlo simulation based on a modified version of Geant3.21 was performed in order to identify the most significant background sources and to establish a quantitative background model. The theoretical shapes of the $2\nu\beta\beta$ and $0\nu\chi\beta\beta$ decay spectra were fitted in a maximum-likelihood fit to the resulting spectrum after subtraction of the background model from the measured, summed spectrum of all detectors. The low-energy background of the HEIDELBERG-MOSCOW experiment requires further investigation. A possible background source not taken into account so far could be surface contaminations of the crystal and/or copper parts of the cryostats with ^{210}Pb, which is produced and accumulated by the decay of ^{222}Rn. This and other potential background sources will be implemented in a new Monte Carlo simulation using Geant4 [47]. A more complete background model will allow to determine the half-life of the $2\nu\beta\beta$ decay with still higher precision.
The resulting half-life for the $2
\nu\beta\beta$ decay confirms our previous measurement and confirms theoretical expectations \([2,4,43]\) within a factor of two (a factor of $\sqrt{2}$ in the matrix element). No evidence for a Majoron-accompanied decay or for the neutrinoless decay was observed. The upper limit on the effective Majorana neutrino mass of $0.35\,\text{eV}$ ($0.27\,\text{eV}$) (using the matrix elements of \([43]\)) is the worldwide most stringent limit up to now. In Fig. 6 this value from the HEIDELBERG-MOSCOW experiment is compared with limits of the most sensitive other $\beta\beta$-experiments. With this result for the limit of the effective Majorana neutrino mass double beta experiments start to enter into the range to give a serious contribution to the neutrino mass matrix (Fig. 6).

In degenerate models we can conclude from the experimental bound an upper limit on the mass of the heaviest neutrino. For the Large Mixing Angle (LMA) MSW solution of the solar neutrino problem we obtain $m_{1,2,3} < 1.1\,\text{eV}$, implying $\sum i m_i < 3.2\,\text{eV}$ \([12,48]\). This first number is sharper than what has recently been obtained from tritium ($m < 2.2\,\text{eV}$), and the second is sharper than the limit $\sum i m_i < 5.5\,\text{eV}$ still compatible with most recent fits of Cosmic Microwave Background radiation and Large Scale Structure data (see e.g. \([49]\)). The present sensitivity of the HEIDELBERG-MOSCOW experiment probes cosmological models including hot dark matter already now on a level of future satellite experiments MAP and PLANCK (see \([12]\)). It is of interest also for new Z-burst-
models recently discussed as explanation for super-high energy cosmic ray events beyond the GZK cutoff [4,5].

The result for $<m>$ from the HEIDELBERG-MOSCOW experiment has found large resonance, and it has been shown that it excludes for example the Small Mixing Angle MSW solution of the solar neutrino problem in degenerate scenarios, if neutrinos are considered as hot dark matter in the universe [2,3,4]. This conclusion has been drawn, before the Superkamiokande collaboration presented their evidence for exclusion of SMA MSW solution, in June 2000.

If future searches will show, that $m_\nu > 0.1$ eV, then the three-neutrino mass schemes, which will survive, are those with neutrino mass degeneracy, or four-neutrino schemes with inverse mass hierarchy (see Fig. 5 and [1,2,48]). A substantial increase in sensitivity of double beta experiments beyond this level, requires new experimental approaches, making use of much higher source strength and drastically reduced background. This could be accomplished by our proposed GENIUS project [55] which, operating 0.1-10 tonnes of enriched 76Ge directly in ultrapure liquid nitrogen, could test the effective Majorana neutrino mass down to 0.01 or even 0.002 eV.

References

1. H.V. Klapdor-Kleingrothaus, H. Päis and A.Y. Smirnov, hep-ph/0003219, (2000), in press Phys. Rev. D (2001)
2. H.V. Klapdor-Kleingrothaus, H. Päis and A.Y. Smirnov in DARK2000, these Proceedings
3. H.V. Klapdor-Kleingrothaus in “Neutrino Physics”, ed. K. Winter, Cambridge University Press, 2000, pp. 113-127
4. H.V. Klapdor-Kleingrothaus, “60 Years of Double Beta Decay - From Nuclear Physics to Beyond the Standard Model”, World Scientific, Singapore, 2001
5. P. Vogel, nucl-th/0005020, 2000, published in “Current Aspects of Neutrino Physics”, D. O. Caldwell, editor.
6. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Rev. D 53 (1996) 1329
7. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Rev. D 57 (1998) 2020
8. M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, Phys. Lett. B 378 (1996) 17
9. H.V. Klapdor-Kleingrothaus, H. Päis and U. Sarkar, Eur. Phys. J. A 5 (1999) 3
10. O. Panella et. al., Phys. Rev. D 62 (2000) 015013, hep-ph/9903253
11. H.V. Klapdor-Kleingrothaus, Int. J. Mod. Phys. A 13 (1998) 3953
12. H.V. Klapdor-Kleingrothaus in Proc. of the First International Symposium on Lepton and Baryon Number Violation (LEPTON-BARYON 1998), Trento, Italy, April 1998, Ed. H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, IOP, Bristol & Philadelphia, 1999, pp. 251-301
13. H.V. Klapdor-Kleingrothaus, Springer tracts in modern physics 163 (2000) 69
14. P. Bamert, C.P. Burgess and R.N. Mohapatra, Nucl. Phys. B 449 (1995) 25
15. HEIDELBERG-MOSCOW Collaboration, Phys. Rev. D 55 (1997) 54
16. HEIDELBERG-MOSCOW Collaboration, Phys. Rev. D 59 (1998) 022001-1.
17. Nuclear Data Sheets (Academic Press, Duluth, MN).
18. MACRO collaboration, C. deMarzo, Nucl. Instr. Meth. A 314 (1992) 380
19. P. Belli et al., Il Nuovo Cimento 101 A (1989) 959
20. C. Zeitnitz and T.A. Gabriel, The GEANT-Calor Interface, in Proc. of the 3rd Int. Conf. on Calorimetry in High Energy Physics, World Scientific (1993) 394
21. E. Pernicka, private communication, 1993
22. A. Dietz, Diploma thesis, University of Heidelberg 1999, unpublished
23. HEIDELBERG-MOSCOW Collaboration, Phys. Lett. B 322 (1994) 176
24. A. Morales, Nucl. Phys. 77 (proc. suppl.) (1999) 335
25. K. Muto, E. Bender and H.V. Klapdor, Z. Phys. A 334 (1989) 177
26. E. Caumier et al., Phys. Rev. Lett. 77 (1996) 1954
27. J. Engel et al., Phys. Rev. C 37 (1988) 731
28. X.R. Wu et al., Phys. Lett. B 272 (1991) 169 and B 276 (1992) 274
29. Y. Chikashige, R.N. Mohapatra and R.D. Peccei, Phys. Rev. Lett. 45 (1980) 1926, Phys. Lett. B 98 (1981) 265
30. C.P. Burgess and J.M. Cline, Phys. Lett. B 298 (1993) 141, Phys. Rev. D 49 (1994) 5925
31. C.D. Carone, Phys. Lett. B 308 (1993) 85
32. M. Hirsch, H.V. Klapdor-Kleingrothaus, S. Kovalenko and H. Päs, Phys. Lett. B 372 (1996) 8
33. J. Hellmig and H.V. Klapdor-Kleingrothaus, Nucl. Inst. Meth. A 445 (2000) 638
34. J.G. Hykawy et al., Phys. Rev. Lett. 67 (1991) 1708
35. R. Arnold et al., (NEMO Collaboration), Nucl. Phys. A 636 (1998) 209
36. R. Arnold et al., (NEMO Collaboration), Nucl. Phys. A 658 (1999) 299
37. H. Ejiri et al., Nucl. Phys. A 611 (1996) 85
38. F.A. Danevich et al., nucl-ex/0003001, 2000, Phys. Rev. C 62 (2000) 045501
39. T. Bernatowicz et al., Phys. Rev. Lett. 69 (1992) 2341
40. R. Luescher (Caltech-PSI-Neuchatel Collaboration), Nucl. Phys. B 66 (proc. suppl.) (1998) 195
41. A. De Silva et al., Phys. Rev. C 56 (1997) 2451
42. R.M. Barnett et al. (PDG 96), Physical Review D54 (1996) 1
43. A. Staudt, K. Muto and H.V. Klapdor-Kleingrothaus, Europhys. Lett. 13 (1990) 31
44. HEIDELBERG-MOSCOW collaboration, Phys. Rev. Lett. 83 (1999) 41
45. C. Caso et al. (PDG 98), European Physical Journal, C3 (1998) 1
46. G.J. Feldman and R.D. Cousins, Physical Review D57 (1998) 3873
47. http://wwwinfo.cern.ch/asd/geant4/geant4.html
48. H.V. Klapdor-Kleingrothaus in Proc. of NANPino 2000, International conference on NON-Accelerator New Physics in neutrino observations, Dubna, Russia, July 2000, hep-ph/010319 and http://www.mpi-hd.mpg.de/non_acc/Talks.html
49. M. Tegmark et al., hep-ph/0008145
50. T.J. Weiler, Astropart. Phys. 11 (1999) 303-316, Proc. BEYOND THE DESERT 1999, Second Internat. Conf. on Particle Physics Beyond the Standard Model, Castle Ringberg, Germany, June 1999, edited by H.V. Klapdor-Kleingrothaus and I.V. Krivosheina, IOP Bristol, (2000) p. 1085 hep-ph/9910316
51. H. Päs and T.J. Weiler, hep-ph/0101091
52. G. Georgi and S.L. Glashow, Phys. Rev. D 61 (2000) 097301
53. H. Minaikata and O. Yasuda, Phys. Rev. D 56 (1997) 1632
54. H. Minakata, hep-ph/0004249
55. H.V. Klapdor–Kleingrothaus in Proc. of BEYOND THE DESERT 1997, First Internat. Conf. on Particle Physics Beyond the Standard Model, Castle Ringberg, Germany, June 1997, edited by H.V. Klapdor–Kleingrothaus and H. Päss, IOP Bristol, (1998) pp. 485–531,
H.V. Klapdor–Kleingrothaus, J. Hellmig and M. Hirsch, J. Phys. G 24 (1998) 483-516,
H.V. Klapdor-Kleingrothaus et al., hep-ph/9910205
and in Proc. of BEYOND THE DESERT 1999, Second Internat. Conf. on Particle Physics Beyond the Standard Model, Castle Ringberg, Germany, June 1999, edited by H.V. Klapdor–Kleingrothaus and I.V. Krivosheina, IOP Bristol, (2000) pp. 915-1014