GLOBAL DIMENSION OF POLYNOMIAL RINGS IN PARTIALLY COMMUTING VARIABLES

Ahmet A. Husainov

September 26, 2008

Abstract

For any free partially commutative monoid $M(E, I)$, we compute the global dimension of the category of $M(E, I)$-objects in an Abelian category with exact coproducts. As a corollary, we generalize Hilbert’s Syzygy Theorem to polynomial rings in partially commuting variables.

Keywords: cohomology of small categories, free partially commutative monoid, trace monoid, Hochschild-Mitchell dimension, noncommutative polynomial ring

2000 Mathematics Subject Classification: 16E05, 16E10, 16E40, 18G10, 18G20

Introduction

In this paper, the global dimension of the category of objects in an Abelian category with the action of free partially commutative monoid is computed. As a corollary, a formula for the global dimension of polynomial rings in partially commuting variables is obtained.

Let \mathcal{A} be any Abelian category. By [1] Chapter XII, §4, extension groups $\text{Ext}^n(A, B)$ are consisted of congruence classes of exact sequences $0 \to B \to C_1 \to \cdots \to C_n \to A$ in \mathcal{A} for $n \geq 1$ and $\text{Ext}^0(A, B) = \text{Hom}(A, B)$. It allows us to define the global dimension of \mathcal{A} by

$$\text{gl.dim.}\mathcal{A} = \sup\{n \in \mathbb{N} : (\exists A, B \in \text{Ob}\mathcal{A}) \text{ } \text{Ext}^n(A, B) \neq 0\}.$$
Here \mathbb{N} is the set of nonnegative integers. (We set $\sup \emptyset = -1$ and $\sup \mathbb{N} = \infty$.) For a ring R with 1, $\text{gl dim } R$ is the global dimension of the category of left R-modules.

As it is well known [2, Theorem 4.3.7], for any ring R with 1,

$$\text{gl dim } R[x_1, \ldots, x_n] = n + \text{gl dim } R.$$

Moreover, by [3, Theorem 2.1], if \mathcal{A} is any Abelian category with exact coproducts and \mathcal{C} a bridge category, then $\text{gl dim } \mathcal{A}^\mathcal{C} = 1 + \text{gl dim } \mathcal{A}$. It follows that $\text{gl dim } \mathcal{A}^{\mathbb{N}^n} = n + \text{gl dim } \mathcal{A}$ for the free commutative monoid \mathbb{N}^n generated by n elements. We will get one of possible generalizations of this formula. Let $M(E, I)$ be a free partially commutative monoid with a set of variables E, where $I \subseteq E \times E$ is an irreflexive symmetric relation assigning the pairs of commuting variables. In this paper, we prove that

$$\text{gl dim } \mathcal{A}^{M(E, I)} = n + \text{gl dim } \mathcal{A}$$

for any Abelian category with exact coproducts where n is the sup of numbers of mutually commuting distinct elements of E. For example, if $R[M(E, I)]$ is the polynomial ring in variables $E = \{x_1, x_2, x_3, x_4\}$ with the commuting pairs (x_i, x_j) corresponding to adjacent vertices of the graph demonstrated in Figure 1, then for any ring R with 1 we have $\text{gl dim } R[M(E, I)] = 2 + \text{gl dim } R$.

![Figure 1: Pairs of commuting variables](attachment:image.png)

The free partially commutative monoids have numerous applications in combinatorics and computer sciences [4]. Our interest in their homology groups is concerned with the studying a topology of mathematical models for concurrency [5].

1 Cohomology of small categories

Throughout this paper let Ab the category of Abelian groups and homomorphisms, \mathbb{Z} the additive group of integers, and \mathbb{N} the set of nonnegative
integers or the free monoid with only one generator. For any category \mathcal{A} and a pair $A_1, A_2 \in \text{Ob} \, \mathcal{A}$, denote by $\mathcal{A}(A_1, A_2)$ the set of all morphisms $A_1 \to A_2$.

A diagram $\mathcal{C} \to \mathcal{A}$ is a functor from a small category \mathcal{C} to a category \mathcal{A}. Given a small category \mathcal{C} we denote by $\mathcal{A}^{\mathcal{C}}$ the category of diagrams $\mathcal{C} \to \mathcal{A}$ and natural transformations. For $A \in \text{Ob} \, \mathcal{A}$, let $\Delta_{\mathcal{C}} \, A$ (shortly ΔA) denote a diagram $\mathcal{C} \to \mathcal{A}$ with constant values A on objects and 1_A on morphisms.

In this section, we recall some results from the cohomology theory of small categories.

1.1 Homology groups of a nerve

Recall a definition of a nerve of the category and properties of homology groups of simplicial sets. We refer the reader to [1] and [6] for the proofs.

1.1.1 A nerve of the category

Let \mathcal{C} be a small category. Its nerve $N_\ast \mathcal{C}$ is the simplicial set in which $N_n \mathcal{C}$ consists of all sequences of composable morphisms $c_0 \xrightarrow{\alpha_1} c_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} c_n$ in \mathcal{C} for $n > 0$ and $N_0 \mathcal{C} = \text{Ob} \, \mathcal{C}$. For $n > 0$ and $0 \leq i \leq n$, boundary operators $d_i^n : N_n \mathcal{C} \to N_{n-1} \mathcal{C}$ acts as

$$d_i^n(c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} c_n) = c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\hat{\alpha}_i} \xrightarrow{\alpha_{i+1}} \cdots \xrightarrow{\alpha_n} c_n.$$

Here $c_0 \xrightarrow{\alpha_1} c_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_i} \xrightarrow{\alpha_{i+1}} \cdots \xrightarrow{\alpha_n} c_n \in N_{n-1} \mathcal{C}$ is the $(n-1)$-fold sequence obtained from $c_0 \xrightarrow{\alpha_1} c_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} c_n$ for $0 < i < n$ by substitution the morphisms $c_i \xrightarrow{\alpha_i} c_{i+1}$ by their composition $c_{i-1} \xrightarrow{\alpha_{i-1}} \xrightarrow{\alpha_i} c_{i+1}$. The map d_0^n removes α_1 with c_0 and d_n^n removes α_n with c_n. Degeneracy operators $s_i^n : N_n \mathcal{C} \to N_{n+1} \mathcal{C}$ insert in $c_0 \to \cdots \to c_n$ the identity morphism $c_i \to c_i$ for every $0 \leq i \leq n$.

1.1.2 Homology groups of simplicial sets

Let X be a simplicial set given by boundary operators d_i^n and degeneracy operators s_i^n for $0 \leq i \leq n$. Consider a chain complex $C_\ast(X)$ of free Abelian groups $C_n(X)$ generated by the sets X_n for $n \geq 0$. Differentials $d_n : C_n(X) \to C_{n-1}(X)$ are defined on the basis elements $x \in X_n$ by $d_n(x) = \sum_{i=0}^n (-1)^i d_i^n(x)$. Let $C_n(X) = 0$ for $n < 0$. The groups $H_n(X) = \text{Ker} \, d_n / \text{Im} \, d_{n+1}$ are called n-th homology groups of the simplicial
set X. The groups $H_n(X)$ are isomorphic to n-th singular homology groups of the geometric realization of X by the Eilenberg theorem [6, Appl. 2].

1.1.3 Cohomology of a category with coefficients in an Abelian group

For a small category \mathcal{C}, let $H_n(\mathcal{C})$ denote the n-th homology group of the nerve $N_*\mathcal{C}$. For a simplicial set X and an Abelian group A, cohomology groups $H^n(X, A)$ are defined as cohomology groups of the complex $\text{Hom}(C_*(X), A)$. Let \mathcal{C} be a small category. We introduce its cohomology groups $H^n(\mathcal{C}, A)$ with coefficients in A as $H^n(N_*(\mathcal{C}), A)$. It follows from [1, Chapter III, Theorem 4.1] that there is the following exact sequence (Universal Coefficient Theorem)

$$0 \rightarrow \text{Ext}(H_{n-1}(\mathcal{C}), A) \rightarrow H^n(\mathcal{C}, A) \rightarrow \text{Hom}(H_n(\mathcal{C}), A) \rightarrow 0$$

1.2 Cohomology of categories with coefficients in diagrams

Recall the definition and properties of right derived functors $\lim^{\leftarrow} : \text{Ab}^{\mathcal{C}} \rightarrow \text{Ab}$ of the limit functor.

1.2.1 Definition of cohomology of categories with coefficients in diagrams

Let \mathcal{C} be a small category. For every family $\{A_i\}_{i \in I}$ of Abelian groups we consider the direct product $\prod_{i \in I} A_i$ as the Abelian group of maps $\varphi : I \rightarrow \bigcup_{i \in I} A_i$ such that $\varphi(i) \in A_i$ for all $i \in I$.

For any functor $F : \mathcal{C} \rightarrow \text{Ab}$, consider the sequence of Abelian groups

$$C^0(\mathcal{C}, F) = \prod_{c_0 \in \text{Ob} \mathcal{C}} F(c_0), \ldots, C^n(\mathcal{C}, F) = \prod_{c_0, \ldots, c_n} F(c), \ldots$$
and homomorphisms $\delta^n : C^n(\mathcal{C}, F) \to C^{n+1}(\mathcal{C}, F)$ defined by

$$(\delta^n \varphi)(c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_{n+1}} c_{n+1}) = \sum_{i=0}^{n} (-1)^i \varphi(c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_i} \tilde{c}_i \xrightarrow{\alpha_{i+1}} \cdots \xrightarrow{\alpha_{n+1}} c_{n+1}) + (-1)^{n+1} F(c_n \xrightarrow{\alpha_{n+1}} c_{n+1})(\varphi(c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} c_n)).$$

Let $C^n(\mathcal{C}, F) = 0$ for $n < 0$. The equalities $\delta^{n+1} \delta^n = 0$ hold for all integer n. The obtained cochain complex will be denoted by $C^\ast(\mathcal{C}, F)$. Abelian groups $H^n(\mathcal{C}^\ast(\mathcal{C}, F)) = \ker \delta^{n+1} / \text{im} \delta^n$ are called cohomology groups of the small category \mathcal{C} with coefficients in a diagram F and denoted by $\varprojlim_n^\mathcal{C} F$.

It follows from [6, Appl. 2, Prop. 3.3] by the substitution $A = \text{Ab}^{\text{op}}$ that the functors $\varprojlim_n^\mathcal{C}$ are n-th right satellites of $\varprojlim^\mathcal{C} : \text{Ab}^\mathcal{C} \to \text{Ab}$. Since the category $\text{Ab}^\mathcal{C}$ has enough injectives, the functors $\varprojlim_n^\mathcal{C}$ are isomorphic to right derived of the limit functor.

1.2.2 Cohomology of categories without retractions

A morphism $\alpha : a \to b$ \mathcal{C} is a retraction if there exists a morphism $\beta : b \to a$ such that $\alpha \beta = 1_b$.

Proposition 1.1. [7, Prop. 2.2] If a small category \mathcal{C} does not contain nonidentity retractions, then for any diagram $F : \mathcal{C} \to \text{Ab}$, the groups $\varprojlim_n^\mathcal{C} F$ are isomorphic to the homology groups of the subcomplex $C^\ast_+(\mathcal{C}, F) \subseteq C^\ast(\mathcal{C}, F)$ composed of the products

$$C^n_+(\mathcal{C}, F) = \prod_{c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_n} c_n} F(c_n), \quad n \geq 0,$$

where indices run the sequences $c_0 \xrightarrow{\alpha_1} c_1 \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_n} c_n$ such those $\alpha_i \neq \text{id}_{c_i}$ for all $1 \leq i \leq n$.

Corollary 1.2. If a small category \mathcal{C} does not contain nonidentity retractions and the length m of every sequence of nonidentity morphisms $c_0 \xrightarrow{\alpha_1} \cdots \xrightarrow{\alpha_m} c_m$ is not greater than n, then $\varprojlim_k^\mathcal{C} F = 0$ for $k > n$.

Example 1.1. Let Θ be the category with Ob $\Theta = \{a, b\}$ and Mor $\Theta = \{1_a, 1_b, a \xrightarrow{\alpha_1} b, a \xrightarrow{\alpha_2} b\}$. It follows from Proposition [7, 2] that for any diagram $F : \Theta \to \text{Ab}$ and $n > 1$, the groups $\varprojlim_n^\Theta F$ equal 0.
For any Abelian group A, $\varprojlim_n^\Delta A \cong H^n(\mathcal{C}, A)$.

Lemma 1.3. Let Θ^n be the n-th power of the category Θ for $n \geq 1$. The functors \varprojlim_n^k equal 0 for all $k > n$. For any Abelian group A, there is an isomorphism $\varprojlim_n^\Delta A \cong A$.

Proof. The first assertion follows from Corollary [1.2]. Since the geometric realization of the nerve of Θ^n is the n-dimensional torus, $H_k(\Theta^n) \cong \mathbb{Z}^\binom{n}{k}$ for $0 \leq k \leq n$. Here $\binom{n}{k}$ is the binomial coefficients. Universal Coefficient Theorem for the cohomology groups of the nerve of Θ^n gives $H_n(\Theta^n, A) \cong A$. □

1.2.3 Strongly coinitial functors

A small category \mathcal{C} is *acyclic* if $H_n(\mathcal{C}) = 0$ for all $n > 0$ and $H_0(\mathcal{C}) = \mathbb{Z}$. Let $S : \mathcal{C} \to \mathcal{D}$ be a functor from a small category to an arbitrary category. For any $d \in \text{Ob} \mathcal{D}$, a *fibre* (or comma-category) S/d is the category whose objects are given by pairs (c, α) where $c \in \text{Ob}(\mathcal{C})$ and $\alpha \in \mathcal{D}(S(c), d)$. Morphisms $(c_1, \alpha_1) \to (c_2, \alpha_2)$ in S/d are triples (f, α_1, α_2) with $f \in \mathcal{C}(c_1, c_2)$ satisfying $\alpha_2 \circ S(f) = \alpha_1$. If S is a full embedding $\mathcal{C} \subseteq \mathcal{D}$, then S/d is denoted by \mathcal{C}/d.

Definition 1.2. A functor $S : \mathcal{C} \to \mathcal{D}$ between small categories is called strongly coinitial if S/d is acyclic for each $d \in \mathcal{D}$.

Lemma 1.4 (Oberst). Let \mathcal{C} and \mathcal{D} be small categories. If $S : \mathcal{C} \to \mathcal{D}$ be a strongly coinitial functor, then the canonical homomorphisms $\varprojlim_n^\Delta F \to \varprojlim_n^\Delta FS$ are isomorphisms for all $n \geq 0$.

Proof. It follows from the opposite assertion [8, 2.3] for the functors $S^{\text{op}} : \mathcal{C}^{\text{op}} \to \mathcal{D}^{\text{op}}$ and $F^{\text{op}} : \mathcal{D}^{\text{op}} \to \text{Ab}^{\text{op}}$. □

1.3 Cohomological dimension of a small category

Let \mathbb{N} be the set of nonnegative integer numbers. We will be consider it as the subset of $\{-1\} \cup \mathbb{N} \cup \{\infty\}$ ordered by $-1 < 0 < 1 < 2 < \cdots < \infty$.

Definition 1.3. Cohomological dimension $\text{cd} \mathcal{C}$ of a small category \mathcal{C} is the sup in $\{-1\} \cup \mathbb{N} \cup \{\infty\}$ of the set $n \in \mathbb{N}$ for which the functors $\varprojlim_n^\Delta : \text{Ab}^{\mathcal{C}} \to \text{Ab}$ are not equal 0.
It follows from Lemma 1.3 that \(\text{cd } \Theta^n = n \). Lemma 1.4 gives the following

Corollary 1.5. If there exists a strongly coinitial functor \(S : \mathcal{C} \to \mathcal{D} \) between small categories, then \(\text{cd } \mathcal{C} \geq \text{cd } \mathcal{D} \).

A subcategory \(\mathcal{D} \subseteq \mathcal{C} \) is said to be *closed* if \(\mathcal{D} \) is a full subcategory containing the domain for any morphism whose codomain is in \(\mathcal{D} \).

Corollary 1.6. Let \(\mathcal{D}_j \subseteq \mathcal{D} \) be a family of closed subcategories for all \(j \in J \). If the inclusion \(\bigcup_{j \in J} \mathcal{D}_j \subseteq \mathcal{D} \) is strongly coinitial, then \(\text{cd } \mathcal{D} = \sup_{j \in J} \{ \text{cd } \mathcal{D}_j \} \).

Proof. For \(c \in \text{Ob } \mathcal{C} \), let \(\mathcal{C}_c \subseteq \mathcal{C} \) be denote a full subcategory which consists of \(c' \in \text{Ob } \mathcal{C} \) having morphisms \(c' \to c \). It follows from [9, Corollary 7] that the equality \(\text{cd } \mathcal{C} = \sup_{c \in \text{Ob } \mathcal{C}} \text{cd } \mathcal{C}_c \) holds. Consequently \(\sup_{j \in J} \{ \text{cd } \mathcal{D}_j \} = \text{cd } \bigcup_{j \in J} \mathcal{D}_j \leq \text{cd } \mathcal{D} \). Since the inclusion \(\bigcup_{j \in J} \mathcal{D}_j \subseteq \mathcal{D} \) is strongly coinitial, the equality follows from Corollary 1.5. \(\square \)

2 Dimension of a free partially commutative monoids

We will prove the main results. We compute the Baues-Wirsching dimension of a free partially commutative monoids and show a formula for the global dimension of the category of objects with actions of a free partially commutative monoid. We prove that for any graded \(R[M(E,I)] \)-module, there exists a free resolution.

2.1 Cohomological dimension of the factorization category

We consider the category of factorization of a small category, although we apply it for the case of the small category is a monoid.

2.1.1 The category of factorizations

Let \(\mathcal{C} \) be a small category. Objects of the *category of factorizations* \(\mathcal{F} \mathcal{C} \) are all morphisms of \(\mathcal{C} \). For any \(\alpha, \beta \in \text{Ob } \mathcal{F} \mathcal{C} = \text{Mor } \mathcal{C} \), the set of morphisms \(\alpha \to \beta \) consists from all pairs \((f, g) \) of morphisms in \(\mathcal{C} \) satisfying
\(g \circ \alpha \circ f = \beta\). The composition of \(\alpha \xrightarrow{(f_1, g_1)} \beta\) and \(\beta \xrightarrow{(f_2, g_2)} \gamma\) is defined by \(\alpha \xrightarrow{(f_1 \circ f_2, g_2 \circ g_1)} \gamma\). The identity of an object \(a \rightarrow b\) of \(\mathcal{F}\mathcal{C}\) equals \(\alpha \xrightarrow{(1_a, 1_b)} \alpha\).

2.1.2 Baues-Wirsching dimension

A natural system of Abelian groups on \(\mathcal{C}\) is any functor \(F : \mathcal{F}\mathcal{C} \rightarrow \text{Ab}\). Baues and Wirsching introduce cohomology groups \(H^n(\mathcal{C}, F)\) of \(\mathcal{C}\) with coefficients in a natural system \(F\) and have proved that these groups are isomorphic to \(\varprojlim_n F\mathcal{C}\). The Baues-Wirsching dimension \(\text{Dim } \mathcal{C}\) is the cohomological dimension of \(\mathcal{F}\mathcal{C}\).

Example 2.1. Let \(\mathbb{N} = \{1, a, a^2, \ldots\}\) be the free monoid generated by one element. It easy to see that the inclusion \(\Theta_a \subseteq \mathcal{F}\mathbb{N}\) of the full subcategory with the objects \(\text{Ob } \Theta_a = \{1, a\}\) is strongly coinitial. The subcategory \(T_a\) is closed in \(\mathcal{F}\mathbb{N}\). It is isomorphic to \(\Theta\) from Example 1.1. Consequently \(\text{Dim } \mathbb{N} = 1\).

Proposition 2.1. For any integer \(n \geq 1\), \(\text{Dim } \mathbb{N}^n = n\).

Proof. Consider the full subcategory \(\Theta_a^n \subseteq \mathcal{F}\mathbb{N}^n\) with objects \((a^{\varepsilon_1}, \ldots, a^{\varepsilon_n})\) where \(\varepsilon_i \in \{0, 1\}\) for all \(1 \leq i \leq n\). It not hard to see that it is isomorphic to \(\Theta^n\) and the fibre of the inclusion over \((a^{k_1}, \ldots, a^{k_n}) \in \mathbb{N}^n\) is isomorphic to the product \(\Theta_a/a^{k_1} \times \cdots \times \Theta_a/a^{k_n}\). Since \(H_i(\Theta_a/a^k) = 0\) for \(i > 0\) and \(H_0(\Theta_a/a^k) \cong \mathbb{Z}\), it follows that the category \(\mathcal{F}\mathbb{N}^n\) contains the strongly coinitial subcategory \(\Theta_a^n\), which is isomorphic to \(\Theta^n\). It is clear that \(\Theta_a^n\) is closed in \(\mathcal{F}\mathbb{N}^n\). Hence, \(\text{Dim } \mathbb{N}^n = \text{cd } \Theta^n = n\). \(\square\)

2.2 The dimension of a free partially commutative monoid

This subsection is devoted to computing the Baues-Wirsching dimension of free partially commutative monoids.

2.2.1 The independence graph

Let \(E\) be a set and \(I \subseteq E \times E\) an irreflexive symmetric binary relation on \(E\). Monoid given by a generating set \(E\) and relations \(ab = ba\) for all \((a, b) \in I\) is called free partially commutative and denoted by \(M(E, I)\).

The pair \((E, I)\) may be considered as a simple independence graph of \(M(E, I)\) with the set of vertices \(E\) and edges \(\{a, b\}\) for all pairs \((a, b) \in I\).
Figure 2: The independence graph

It is shown in Figure 2 the independence graph of the monoid given by the generators \(E = \{a, b, c, d, e\} \) and relations \(ab = ba, \ bc = cb, \ cd = dc, \ ad = da, \ ae = ea, \ dc = ed \).

The \textit{clique number} \(\omega(E, I) \) of a simple graph with vertices \(E \) and edges \(I \) is the sup of cardinalities of its finite complete subgraphs. If \((E, I)\) contains complete graphs \(K_n \) for all \(n \in \mathbb{N} \), then \(\omega(E, I) = \infty \).

For example, the clique number of the graph in Figure 2 is equal to 3.

2.2.2 Computing the dimensions of free partially commutative monoids

Let \(V \) be the set of maximal cliques of the independence graph of \(M(E, I) \). (These cliques may be infinite.) For example, the set \(V \) for the graph in Figure 2 consists of the sets \(\{a, b\}, \ \{b, c\}, \ \{c, d\}, \ \{a, d, e\} \). Let \(E_v \) be the set of vertices belonging to a clique \(v \) and \(M(E_v) \) the submonoid of \(M(E, I) \) generated by \(E_v \). It is clear that \(M(E_v) \) are commutative monoids. The category of factorization \(\mathcal{F} M(E_v) \) is a closed subcategory of \(\mathcal{F} M(E, I) \).

Lemma 2.2. [11] The inclusion \(\bigcup_{v \in V} \mathcal{F} M(E_v) \subseteq \mathcal{F} M(E, I) \) is strongly coinitial.

Theorem 2.3. \(\text{Dim} M(E, I) = \omega(E, I) \).

Proof. For every subset of mutually commuting elements \(\{e_1, \ldots, e_n\} \subseteq E \), the full subcategory \(\mathcal{F} M(\{e_1, \ldots, e_n\}) \) is closed in \(\mathcal{F} M(E, I) \). Hence, the equality is true in the case of \(\omega(E, I) = \infty \). The subcategories \(\mathcal{F} M(E_v) \) are closed in \(\mathcal{F} M(E, I) \). It follows from Lemma 2.2 that we can use Corollary 1.6. We get \(\text{cd} \mathcal{F} M(E, I) = \sup_{v \in V} \{\text{cd} \mathcal{F} M(E_v)\} \). If \(E_v \) are finite, then we get the assertion \(\text{Dim} M(E, I) = \omega(E, I) \) by Proposition 2.1. \(\square \)
2.3 The generalized syzygy theorem

In this subsection, we prove the main theorem.

2.3.1 The global dimension of the category of \(M(E, I) \)-objects

By [12, Corollary 13.4'] for any small category \(C \) and Abelian category with exact coproducts, there exists the inequality \(\text{gl dim } \mathcal{A} \leq \text{dim } C + \text{gl dim } \mathcal{A} \). Here \(\text{dim} \) is the Hochschild-Mitchell dimension. We will show that if \(C = M(E, I) \), then the equality holds.

Theorem 2.4. Let \(\mathcal{A} \) be an Abelian category with exact coproducts. Then \(\text{gl dim } \mathcal{A}^{M(E,I)} = \omega(E, I) + \text{gl dim } \mathcal{A} \).

Proof. For any finite subset \(E' \subseteq E \), the submonoid generated by \(E' \) is cancellative [4]. It follows that \(M(E, I) \) is cancellative and \(\text{Dim } M(E, I) \) is equal to Hochschild-Mitchell dimension \(\text{dim } M(E, I) \) [7, Theorem 3.1]. Consequently \(\text{gl dim } \mathcal{A}^{M(E,I)} \leq \omega(E, I) + \text{gl dim } \mathcal{A} \). For each finite subset of mutually commuting elements \(S \subseteq E \) there exists a retraction \(M(E, I) \to M(S) \). It follows by [3, Corollary 1.4] that \(\text{gl dim } \mathcal{A}^{M(E,I)} \geq \text{gl dim } \mathcal{A}^{M(S)} = |S| + \text{gl dim } \mathcal{A} \). Since \(\text{dim } M(E, I) \) is equal to sup of cardinalities \(|S| \) of finite subsets \(S \subseteq E \) of mutually commuting elements, we get \(\text{gl dim } \mathcal{A}^{M(E,I)} \geq \omega(E, I) + \text{gl dim } \mathcal{A} \). \(\square \)

2.3.2 Graded syzygies

Let \(R \) be a ring with 1. The monoid ring has the natural graduation \(R[M(E, I)] = \bigoplus_{n \in \mathbb{Z}} R[M(E, I)]_n \) by \(R \)-modules \(R[M(E, I)]_n = \{ r\mu : r \in R, \mu \in M(E, I), \mu| = n \} \). In particular \(R[M(E, I)]_0 = R \). Let \(R[M(E, I)]_n = 0 \) for all \(n < 0 \). The ring \(R \) with 1 is called projective free if any projective \(R \)-module is free. By [13, §8.7, Corollary 2] and Theorem 2.4 we get:

Corollary 2.5. Let \(M(E, I) \) be a free partially commutative monoid and \(R \) projective free ring with \(\text{gl dim } R = n < \infty \). If there is the maximal number \(m < \infty \) of mutually commuting distinct elements of \(E \), then for each bounded below \(\mathbb{Z} \)-graded \(R[M(E, I)] \)-module \(A \), there exists an exact sequence of \(\mathbb{Z} \)-graded \(R[M(E, I)] \)-modules and \(\mathbb{Z} \)-graded homomorphisms of degree 0

\[0 \to F_{n+m} \to F_{n+m-1} \to \cdots \to F_0 \to A \to 0, \]

with free bounded below \(\mathbb{Z} \)-graded \(R[M(E, I)] \)-modules \(F_0, F_1, \ldots, F_{n+m} \).
References

[1] S. Mac Lane, *Homology*, Springer, Berlin, 1963.

[2] C. A. Weibel, *An introduction to homological algebra*, Cambridge University Press, Cambridge, 1994.

[3] B. Mitchell, “Some applications of module theory to functor categories”, *Bull. Amer. Math. Soc.*, 84:5 (1978), 867–885.

[4] V. Diekert, Y. Métivier, “Partial Commutation and Traces”, *Handbook of formal languages*, 3, Springer, New York, 1997, 457–533.

[5] A. A. Khusainov, V. E. Lopatkin, I. A. Treshchev, “Algebraic topology approach to mathematical model analysis of concurrent computational processes”, *Sib. Zh. Ind. Mat.*, 11:1 (2008), 141–152. (Russian)

[6] P. Gabriel, M. Zisman, *Calculus of fractions and homotopy theory*, Springer, Berlin, 1967.

[7] A. A. Khusainov, “Comparison of the dimensions of a small category”, *Sib. Math. J.*, 38:6 (1997), 1230-1240.

[8] U. Oberst, “Homology of categories and exactness of direct limits”, *Math. Z.*, 107 (1968), 87–115.

[9] B. Mitchell, “A Remark on Projectives in Functor Categories”, *J. Algebra*, 69 (1981), 24–31.

[10] H.-J. Baues, G. Wirsching, “Cohomology of small categories”, *J. Pure Appl. Algebra*, 38 (1985), 187–211.

[11] A. A. Husainov, “On Leech dimension of a free partially commutative monoid”, *Tbilisi Mathematical Journal*, 1 (2008), P.71-87. http://ncst.org.ge/Journals/TMJ/index.html

[12] B. Mitchell, “Rings with several objects”, *Adv. Math.*, 8 (1972), 1–161.

[13] N. Bourbaki, *Algèbre. Chapitre X. Algèbre homologique*, Masson, Paris, 1980.