Gender gap in acute coronary heart disease: Myth or reality?

Mette Claassen, Kirsten C Sybrandy, Yolande E Appelman, Folkert W Asselbergs

Abstract

AIM: To investigate potential gender differences in the prevalence of cardiovascular risk factors, cardiovascular disease (CVD) management, and prognosis in acute coronary syndrome (ACS).

METHODS: A systematic literature search was performed through Medline using pre-specified keywords. An additional search was performed, focusing specifically on randomized controlled clinical trials in relation to therapeutic intervention and prognosis. In total, 92 relevant articles were found.

RESULTS: Women with CVD tended to have more hypertension and diabetes at the time of presentation, whereas men were more likely to smoke. Coronary angiography and revascularization by percutaneous coronary intervention were performed more often in men. Women were at a greater risk of short-term mortality and complications after revascularization. Interestingly, women under 40 years presenting with ACS were at highest risk of cardiovascular death compared with men of the same age, irrespective of risk factors. This disadvantage disappeared in older age. The long-term mortality risk of ACS was similar in men and women, and even in favor of women.

CONCLUSION: Mortality rates are higher among young women with ACS, but this difference tends to disappear with age, and long-term prognosis is even better among older women.

© 2012 Baishideng. All rights reserved.

Key words: Cardiovascular disease; Gender; Myocardial infarction; Coronary artery bypass grafting; Percutaneous coronary intervention; Postoperative complications; Mortality; Prognosis; Estrogens

INTRODUCTION

Cardiovascular disease (CVD) is an important cause of death among both men and women. In women, CVD develops 7 to 10 years later than in men, potentially because of a protective effect of estrogens. However, CVD is the main cause of death among women and its occurrence narrows women’s survival advantage over men[1]. In most parts of the world, the mortality rate has declined in the last 30 years, except for Eastern Europe and China[2]. In the
United States in 2007, 391,886 men died because of CVD, compared with 421,918 women[3], while 10 years previously the mortality rate of CVD in men was significantly higher in several countries[4]. Some studies have suggested gender differences in presentation and treatment of CVD and acute coronary syndrome (ACS), but there are many uncertainties and discrepancies between these studies[4,5]. Besides differences in presentation, women also seem to have different abnormalities with regard to electrocardiography and scintigraphy, compared with men[6]. The aim of this review is to provide an overview of what is known nowadays with respect to possible gender differences in cardiovascular risk factors, therapy and prognosis of ACS.

MATERIALS AND METHODS

A systematic literature search was performed through Medline using pre-specified keywords. The following keywords with synonyms were used for selecting relevant studies: CVD, coronary artery disease (CAD), ACS/event, ischemic heart disease, myocardial infarction (MI), gender, sex, women, men, differences, estrogen, hormone replacement therapy (HRT), coronary artery bypass surgery (CABG), percutaneous coronary intervention (PCI), revascularization, readmission, postoperative complications, outcome, and hospital mortality. Only studies that included both men and women were eligible for review. Of 2260 articles found, 199 articles appeared relevant after screening of the title and abstract. Furthermore, through a search of the references in the articles obtained by these keywords, 30 additional relevant articles were found.

A more focused exclusion of articles was then performed in relation to therapy and prognosis of ACS. Articles published before 2000 were excluded, because therapy, operative techniques and thereby prognosis have a high tendency to change over time. Selected articles included patients with ACS, unstable angina, acute MI, ST elevation MI (STEMI) and non-STEMI, and subse- following years. Selected articles included both men and women were eligible for review. Of 2260 articles found, 199 articles appeared relevant after screening of the title and abstract. Furthermore, through a search of the references in the articles obtained by these keywords, 30 additional relevant articles were found. A more focused exclusion of articles was then performed in relation to therapy and prognosis of ACS. Articles published before 2000 were excluded, because therapy, operative techniques and thereby prognosis have a high tendency to change over time. Selected articles included patients with ACS, unstable angina, acute MI, ST elevation MI (STEMI) and non-STEMI, and subse-

RESULTS

Epidemiology

The prevalence of CVD increased with age and was higher among men. The prevalence of coronary heart disease (CHD) in the United States was 37.4% in men and 35.0% in women in 2008, with a mortality rate of 48.2% and 51.8% in men and women, respectively, in 2007. The prevalence of CHD in men and women of 20 years and older was 8.3% and 6.1%, respectively. When comparing different countries, France and Japan had the lowest prevalence of CHD for both men and women (Table 1)[3]. Although the incidence of CVD remained higher in men compared with women, figures of the last 30 years showed a declining incidence of CVD in men, while the incidence in women remained relatively stable. In North America CVD is the leading cause of hospital admission for both men and women. However, in women hospital stay tended to be longer and they experienced higher levels of pain, disability and discomfort, compared with men[3]. In the United States in 2007, one out of three deaths was caused by CVD and one out of six was due to CHD. However, the risk of heart disease in women often seemed to be underestimated, with CVD the major cause of death in women older than 75 years[3].

Table 1: Mortality rates of coronary heart disease per 100,000 population by gender[3]

Country	Year	Men 35-74 yr	Women 35-74 yr
United States	2007	153.3	60.4
The Netherlands	2008	66.2	22.8
England/Wales	2007	138.3	43.4
Denmark	2006	84.8	32.4
France	2007	48.4	12.2
Germany	2006	125.3	38.2
Italy	2007	75.6	22.2
Russian Federation	2006	716.0	257.1
China	2000	108.3	71.9
Japan	2008	47.6	13.8
Australia	2006	88.9	26.8
New Zealand	2005	138.4	47.2
Argentina	1996	140.3	39.4

Most recent year available.

Risk factors

The INTERHEART study identified nine different global risk factors for an acute MI, namely smoking, history of hypertension or diabetes, waist/hip ratio, dietary patterns, physical activity, consumption of alcohol, blood apolipoproteins, and psychosocial factors. Altogether, they could predict the risk of an acute MI as 90% in men and 94% in women. Although most of these classic risk factors were of equal clinical significance in both men and women[4], women who presented with ACS more often had hypertension[7,50,51], diabetes[7,9,13-17,21,22,26,28,30,35], hypercholesterolemia[7,9,13-17,21,22,26,28,30,35,58], and a history of angina[7,58], heart failure[7,9,13-17,21,22,26,28,30,35] more often than men. On the other hand, men tended to smoke more[7,10-13,17-19,22,25,26,28,30,31,33-34,46,47,49,51,53,56,62,66] and were more likely to have a history of MI[7,9,14,16,18,19,21-23,26,28,30-36,39,41,43,45,47,51,53-65,68,69] and prior CABG[7,10,12,13-15,17,21,23,28,30,31,34,39,43,44,54,55,63,64,67] as shown in Table 2. Although women smoked less, the relative risk (RR) for developing a MI was 1.57 (95% CI: 1.25-1.97) among smoking women in comparison to smoking men and this increased risk was pronounced in women at younger age (< 55 years)[3]. The prevalence of fatal CHD was substantially higher in patients with diabetes, in comparison to patients without diabetes (5.4% vs 1.6%). Among women, this effect of diabetes on mortality was even stronger, with a RR of 3.50 (95% CI: 2.70-4.53), compared with a RR of 2.06 (95% CI: 1.81-2.34) among men with diabetes vs no diabetes[90]. Women with ACS more often had a family history of CAD[23,33,70]. However,
Author study date	Design	Study population	Patients	Age (mean, yr)	Hypertension (%)	Diabetes (%)	Smoking (%)	History of MI (%)	History of cardiac surgery (%)	
Reynolds et al. 2007	RCT MI	12498 4099	59.5 67.0 <0.001	29.7 47.3 <0.001	14.4 21.0 <0.001	49.7 34.3 <0.001	16.4 12.5 <0.001	CABG 3.7 2.2 <0.001	PCI 7.5 4.5 <0.001	
Mortiel et al. 2005	Pros cohort ACS	820 511	78 79 0.12	58 74 <0.001	33 40 0.007	13 5 <0.001	39 29 <0.001	CABG 14 7 <0.001	PCI 21 11 <0.001	
Herlitz et al. 2009	Retro cohort AMI	835 588	72.7 79.2 <0.001	46 56 0.01	24 21 NS	22 16 NS	42 33 <0.001	CABG 10 7 0.06	PCI 7 5 0.32	
Mehilli et al. 2002	Pros cohort AMI	1435 502	60.7 70.3 <0.001	61.0 72.9 <0.001	18.0 25.3 <0.001	43.1 25.9 <0.001	22.1 16.3 0.001	CABG 6.1 3.4 0.02	PCI 10.7 7.6 0.04	
Mueller et al. 2002	Pros cohort CABG	1033 417	64 68 0.01	60 72 0.01	19 23 0.15	33 21 0.01	37 24 0.01	CABG 17 6 0.01	PCI 24 21 0.20	
Touboul et al. 2006	Pros cohort CABG	2598 1162	63.2 66.2 <0.001	65.9 79.4 <0.001	28.8 45.5 <0.001	16.1 12.9 0.011	50.7 46.1 0.010	CABG 7.8 5.3 0.006	PCI 10.9 12.8 0.093	
Dallongeville et al. 2010	Pros cohort CABG	6698 2268	62.2 65.8 <0.001	80.3 87.9 <0.001	33.6 38.4 0.009	19.3 11.0 <0.001	19.1 20.6 <0.001	CABG 20.4 17.2 <0.001		
Anand et al. 2005	Trial ACS	7726 4856	62.7 66.5 0.0001	53 68.8 0.0001	20.9 24.6 0.0001	76.4 37.4 0.0001	36.9 23.9 0.0001	CABG 13.3 6.8 0.0001	PCI 11.5 7.2 0.0001	
Matsui et al. 2002	Retro cohort AMI	346 156	62.9 70.4	44 54 0.047	25 33 0.078	60 19 0.001	18 15 0.517	CABG 1 1 0.556	PCI 12 4 0.016	
Tióñ-Marcos et al. 2009	RCT PCI	1050 298	59.7 62.5	49 59 0.004	17 20 0.19	32 36 0.23	45 41 0.19	CABG 6.3 6.4 1.00	PCI Total 21 14 0.016	Total 7.2 12.0 <0.01
Reina et al. 2007	Pros cohort AMI	4641 1568	64 71 <0.01	41.0 61.1 <0.01	25.5 41.2 <0.01	53.6 15.7 <0.01	16.6 13.0 <0.01	PCI Total 21 14 0.016	Total 7.2 12.0 <0.01	
Thompson et al. 2006	Pros cohort PCI	807 359	61.7 67.7 <0.001	59.3 67.8 0.006	23.8 30.1 0.03	47.4 38.5 0.005	25.2 22.4 0.33	CABG 8.3 7.2 0.53	PCI Total 28.3 24.6 0.20	
Lee et al. 2008	Pros cohort STEMI	2954 1083	60.7 72.1 <0.001	40.2 59.7 <0.001	23.1 31.4 <0.001	58.8 47.4 0.007	3.6 2.9 0.239	CABG 0.5 0.3 0.330	PCI Total 4.3 2.8 0.023	
Jankowski et al. 2007	Pros cohort CAD + PCI	738 187	57.5 60.6 <0.001	72.6 87.8 <0.001	14.5 21.3 <0.05	13.6 6.4 <0.01	63.2 66.0 NS	CABG 1.5 0.5 NS	PCI Total 8.8 8.5 NS	
Davernoy et al. 2010	Pros cohort PCI	14848 7877	61.9 66.9 <0.001	71.0 82.5 <0.001	29.2 38.5 <0.001	27.3 21.7 <0.001	36.0 32.6 <0.001	CABG 21.5 17.4 <0.001	PCI 41.8 38.9 <0.001	
Lamsky et al. 2005	RCT AMI + PTCA	1520 562	57.0 66.0 <0.001	29.0 59.3 <0.001	14.0 25.7 <0.001	45.3 37.4 0.001	15.7 8.4 <0.001	CABG 12.7 7.1 <0.001		
Lamsky et al. 2009	RCT PCI	687 314	61.8 65.9 <0.0001	72.7 81.5 0.0026	23.7 36.3 0.0007	24.0 21.2 0.3711	21.9 13.6 0.0022	CABG 34.1 25.5 0.0066		
De Luca et al. 2004	Pros cohort STEMI	1195 353	59 66 <0.001	24 39 <0.001	8.7 15.8 <0.001	52.1 42.7 0.002	11.6 7.1 0.014	CABG 2.1 1.7 NS	PCI Total 5.3 1.7 0.0004	
De Luca et al. 2010	Pros cohort Trail STEMI	1283 379	59 67 <0.001	39.1 52.5 <0.001	15.3 22.4 <0.001	56 36.9 <0.001	9.2 7.7 0.35	Total 7.7 7.6 0.93		
Butelle et al. 2010	Pros cohort STEMI + PCI	376 124	58 65 <0.001	66 54.8 0.055	11.2 24.2 <0.001	67.3 40.3 <0.001	11.7 8.9 0.479	CABG 5.6 0.8 0.046	PCI 5.6 4.0 0.658	
Cannabba et al. 2004	Pros cohort STEMI	627 293	67.7 76.3 0.001	45.3 60.1 <0.001	22.7 25.3 0.385	34.1 14.3 <0.001	17.2 14.7 0.331	CABG 2.6 1.0 0.129	PCI 5.9 2.1 0.010	
a family history of premature CAD was not a risk factor overall for in-hospital mortality[71]. The cardiovascular risk burden tended to be higher in women aged younger than 46 years, compared with men of the same age. Of all patients younger than 46 years presenting with ACS, 78.5% and 25.3% of women, respectively, had one or more than one risk factor for ACS, compared with 71.8% and 17.2%, respectively, among men (\(P = 0.008 \) and \(P < 0.001 \), respectively)[24].

Peitera et al[23] studied differences in hypertension between men and women as an important risk factor for CVD. Apart from the fact that women received treatment more often, they also had a greater awareness of the risk of hypertension for CVD. In both developing and developed countries, awareness, control and treatment of hypertension was significantly higher in women, compared with men. On the other hand, women were categorized at high-risk of CVD in risk assessment programs if a history of diabetes, stroke or chronic kidney disease was present[28,77], and all these conditions were generally more prevalent in women, compared with men, as noted above.

Interventions

In the evaluation of CVD, coronary angiography (CAG) was less often performed in women than in men[8,19,23-25,34,43,55,66,67]. Age might be an important confounding factor in this regard, because women present with an ACS 10 years later than men, and CAGs were less likely to be performed in the elderly[28]. Age was found to be a predictor for undergoing PCI, with an odds ratio (OR) of 0.98 (95% CI: 0.97-0.98) for each additional year[28,45,47,49]. Nevertheless, even after adjustment for age[28,45,47,49] and other cardiovascular risk factors[45,47,49], women with ACS were less likely to have CAG or PCI[51,60,74] (OR, 0.70; 95% CI: 0.64-0.76)[73]. In men and women younger than 46 years, no differences were seen in the number of performed angiograms[18]. In ACS patients who underwent CAG, an equal number of men and women received a PCI afterwards[18,9,11,18,30,44,49,60]. In STEMI patients, results were inconsistent. Some studies found no significant differences in the number of CAGs and PCI[11] performed after adjustment for age[18,44,49,60]; while Radovanovic et al[18] found that women with both STEMI and non-STEMI underwent primary PCI less often (30.9% and 22.0%, respectively) compared with men (40.3% and 30.9%, respectively). This difference persisted after adjustment for cardiovascular risk factors (OR, 0.70) and after adjustment for age alone (OR, 0.71; 95% CI: 0.63-0.80)[58,74].

The mortality rate for ACS was highest among female patients who did not undergo a CAG; 12.9% vs 4.7% in those who underwent a CAG, compared with men (40.3% and 30.9%, respectively). A higher mortality rate among women compared with men was also reported in patients who suffered a STEMI. A possible explanation may be the higher rate of comorbidity in women and a greater delay between onset of complaints and arrival at the emergency department compared with men. At 6 mo follow-up, no significant differences in mortality were present[28]. Several studies compared the coronary anatomy of men and women presenting with ACS. In general, women tended to have a smaller diameter of coronary arteries, in proportion with the lower body surface area, and this was associated with a higher mortality rate[2,13,19,23,30,34,43,55,66,67]. Women more often had one-vessel disease[8,19,23-25,34,43,55,66,67] and less often three-vessel disease[8,19,23-25,34,43,55,66,67] as shown in Table 3. Multiple vessel disease was associated with a higher mortality rate[71]. In addition, women with ACS had less extensive obstructive CAD, whereas men not only had more lesions, but also lesions of greater length and complexity[55]. Nevertheless, among patients who underwent PCI no differences were seen between men and women in the number of stents placed; 69% vs 66%[18] and 77% vs 77%[18]. Furthermore, no differences were found in length or diameter of the stents placed, nor in success rate of the performed PCI[25,41,43,44,49,51,77,89,84]. It remains uncertain whether women would benefit as much as men from early invasive strategy in the case of an ACS, because the power of the different studies was limited[14,20].

Lawesson et al[54] 2010	Retro cohort	STEMI aged < 46	1748	384	40.8	40.4	0.14	13.9	21.7	< 0.001	12.4	18.5	0.002	56.0	63.9	0.04	6.6	5.2	0.30	CABG	0.8	0.3	0.25				
Berger et al[55] 2006	PCI	2953	1331	61.9	66.8	< 0.001	66	78	< 0.001	22	36	< 0.001	15	10	< 0.001	36	33	0.08	CABG	19	14	0.001					
Chiu et al[56] 2004	Pros cohort	PCI	12,738	5031	62.3	66.5	< 0.001	58	71	< 0.001	24	34	< 0.001	21	20	0.01	43	42	0.29	CABG	30	21	< 0.001				
Koch et al[57] 2000	Pros cohort	CABG	1988	460	51.7	70.2	0.001	22.5	36.3	0.001	71.5	49.6	0.0001	14.3	10.7	0.04	14.4	7.0	0.0001								
Setoguchi et al[58,59] 2008	Pros cohort	AMI	317	1308	80	82	< 0.001	71	80	0.001	33	39	0.03	15	10	0.01	52	37	< 0.001	CABG	18	13	0.03	PCI	13	9	0.02
Table 3 Extent of coronary artery disease stratified by gender

Author study/date	Design	Study population	Patients	Age (mean, yr)	P	1 vessel disease (%)	P	3 vessel disease (%)	P					
			Men	Women		Men		Women						
Lanksy et al.2005	RCT	AMI + PTCA	1520	562		57.0	66.0	< 0.001	51.1	51.6	NS	15.7	15.3	NS
Matsui et al.2002	Retro cohort	AMI	346	136		62.9	70.4	0.1	4	7	0.179	95	84	0.001
Moriel et al.2005	Pros cohort	ACS	820	511		78	79	0.12	7	6	0.47	32	28	0.06
Herlitz et al.2009	Retro cohort	AMI	835	588		72.7	79.2	< 0.0001	9	2	< 0.0001	15	7	NS
Setoguchi et al.2008	Pros cohort	AMI	317	1308		80	82	< 0.001	3	3	0.73	10	12	0.40
Tillmanns et al.2005	Pros cohort	STEMI	513	178		60	66	< 0.0001	3	2	NS	95.1	93.8	NS
Toupounovs et al.2006	Pros cohort	CABG	2598	1162		63.2	66.2	< 0.0001	4.6	7.3	0.001	73.7	69.3	0.005
Berger et al.2006	Pros cohort	PCI	2953	1331		61.9	66.8	< 0.001	0.1	0.0	0.179	100	100	0.002
Alfredsson et al.2007	Pros cohort	Unstable/NSTEMI	34020	19761		69	73	< 0.001	7	5	18	14	14	0.67
Lappan et al.2001	RCT	AMI	1708	749		64	68	< 0.001	30	24	34	28	28	NS
Selby2004	RCT	Multivessel disease	782	206		60.6	64.7	< 0.001	50.1	52.4	49.9	47.6	47.6	NS
Singh et al.2008	Retro cohort	PCI	7616	3365		64.7	69.4	0.08	0.8	0.5	0.179	100	100	0.002
Liu et al.2008	Pros cohort	STEMI + PCI	143	116		68.1	68.7	0.61	85.3	84.3	NS	15.7	15.3	NS

1More than single vessel disease. MI: Myocardial infarction; CABG: Coronary artery bypass grafting; STEMI: ST elevation MI; NS: Not significant.

Table 4 Percentage of performed revascularizations stratified by gender

Author study/date	Design	Study population	Patients	Age (mean, yr)	P	CAGB (%)	P	PCI (%)	P					
			Men	Women		Men		Women						
Reynolds et al.2007	RCT	MI	1248	4090		59.5	67.0	< 0.001	3.4	3.1	0.45	27.4	23.6	< 0.01
Matsui et al.2002	Retro cohort	AMI	346	136		62.9	70.4	0.01	4	7	0.179	95	84	0.001
Moriel et al.2005	Pros cohort	ACS	820	511		78	79	0.12	7	6	0.47	32	28	0.06
Herlitz et al.2009	Retro cohort	AMI	835	588		72.7	79.2	< 0.0001	9	2	< 0.0001	15	7	NS
Setoguchi et al.2008	Pros cohort	AMI	317	1308		80	82	< 0.001	3	3	0.73	10	12	0.40
Tillmanns et al.2005	Pros cohort	STEMI	513	178		60	66	< 0.0001	3	2	NS	95.1	93.8	NS
Toupounovs et al.2006	Pros cohort	CABG	2598	1162		63.2	66.2	< 0.0001	100	100	1.6	3.1	0.002	
Berger et al.2006	Pros cohort	PCI	2953	1331		61.9	66.8	< 0.001	0.1	0.0	0.179	100	100	0.002
Alfredsson et al.2007	Pros cohort	Unstable/NSTEMI	34020	19761		69	73	< 0.001	7	5	18	14	14	0.67
Lappan et al.2001	RCT	AMI	1708	749		64	68	< 0.001	30	24	34	28	28	NS
Selby2004	RCT	Multivessel disease	782	206		60.6	64.7	< 0.001	50.1	52.4	49.9	47.6	47.6	NS
Singh et al.2008	Retro cohort	PCI	7616	3365		64.7	69.4	0.08	0.8	0.5	0.179	100	100	0.002
Liu et al.2008	Pros cohort	STEMI + PCI	143	116		68.1	68.7	0.61	85.3	84.3	NS	15.7	15.3	NS

MI: Myocardial infarction; CABG: Coronary artery bypass grafting; PCI: Percutaneous coronary intervention; ACS: Acute coronary syndrome; STEMI: ST elevation MI; NS: Not significant.
The proportion of men and women undergoing CABG was equal\cite{12,16,20,34,36,63,75} as shown in Table 4. In women undergoing CABG, the internal mammary artery was used less often than in men. The usage of this artery was associated with a decrease in mortality after CABG\cite{14}. Furthermore, women underwent surgery more commonly on an urgent basis than men\cite{12,14,34,63,75}.

Prognosis

Many discrepancies existed between the different studies investigating the prognosis of men and women with an ACS. Some studies showed that women had more complications during hospital admission compared with men\cite{73,13,22,30,33,64,78,80}, while others showed no differences\cite{73,25,28,30,33,41,44,48,54,56,58,72} (Table 5). Particularly at younger ages, women tended to have a greater risk for cardiac events compared with men at the same age\cite{30,81}. This difference disappeared in patients older than 65 years\cite{81}.

Many discrepancies existed in the short-term mortality rate of patients with ACS. Some studies revealed...
a higher short-term mortality risk among women, with others did not (Table 6). As discussed above, older age at presentation was an important confounding factor in this regard.

An important finding was that women with ACS had an increased mortality risk at younger ages compared with men of the same age, with an OR of 1.06 (95% CI: 1.05-1.07) for each additional year; diabetes, heart failure, CAD, duration of ischemia, multiple vessel disease, history of MI, hypertension, CVA, anemia, cardiogenic shock, peripheral vascular disease, and ST-elevation. Whether female gender can be considered as an independent risk factor remains unclear. Some studies claimed it could be (20,24,31,53,77,78), but others showed no significant association after adjustment for risk factors (30,33). After adjustment for several risk factors, female gender persisted as a risk factor for in-hospital mortality in ACS only for patients aged 51-60 years (OR, 1.78; 95% CI: 1.04-3.04). For adjustment for cardiovascular risk factors, the long-term mortality rate was equal for both men and women (5,20,22-24,26-29,31,32,44-48,49,50,53,54,58,61,62,64,66,74,77,78), or even in favor of women (10,31,34,42,54,63,77,78), as shown in Table 6 and Figure 2.

In the past 20-25 years the mortality rate at 30 d after PCI or CABG has declined equally in both men and women (11,77). Data were inconsistent on the differences between men and women in the number of readmissions, and the number of second PCIs (5,10,14,21,22-24,26-28,33,35). Interestingly, differences were found in the restenosis rates after PCI. In the first 6 mo after coronary stenting, restenosis was found in 28.9% of the women, compared with 33.9% of men (P = 0.01). After adjustment of gender, age and multiple risk factors, women showed a 23% risk reduction in angiographic restenosis compared with men (OR, 0.77; 95% CI: 0.63-0.93). Diabetes and small vessel size were identified as the most important predictors of restenosis. However, despite the higher prevalence of diabetes in women and smaller vessel size, women tended to have a lower incidence of restenosis.

Whether this can be explained by the protective mechanism of estrogens in women is still unknown. Estrogens were shown to have an anti-inflammatory effect on the vessel wall and induce vasodilatation in coronary arteries. However HRT in post-menopausal women did not lower the risk of mortality from CVD after adjustment for other risk factors. HRT is therefore not recommended as primary or secondary prevention of CVD in women.

DISCUSSION

Women with CVD tended to have more cardiovascular risk factors such as diabetes, hypertension, and hypercholesterolemia when presenting with ACS. More importantly, women with an ACS at a young age had a higher mortality rate during index hospitalization and during 30 d of follow-up compared with men. A possible explanation could be that pre-menopausal women enjoyed some protection against ACS from estrogens and those women who developed ACS despite this hormonal protection were more likely to have a higher cardiovascular risk factor burden leading to a more severe clinical presentation and worse outcome. None of the discussed studies adjusted for the use of hormone therapy among women. This might lead to information bias, because hormone therapy could influence the outcome of women with ACS. In the elderly, the long-term mortality rate was equal for both men and women, and even slightly in favor of women (10,20,22-24,26-29,31,32,77,78). This small advantage in survival might possibly be due to the greater awareness and control of hypertension in women, compared with men, as hypertension is an important risk factor for CVD.

Study results were inconsistent, but it seems that an angiogram was less often performed in women than in men. This phenomenon could partly be explained by the higher average age of women as fewer diagnostic CAG...
Author study/ date	Design	Study population	Patients	Age (mean, yr)	Mortality < admission (%)	Mortality < 30 d (%)	Mortality < 1 year (%)									
Lansky et al. 2015	RCT	AMI + PTCA	Men 1520	Women 562	Men 57.0	Women 66.0	< 0.001	Men 1.0	Women 3.4	0.003	Men 1.1	Women 4.6	< 0.001	Men 3.0	Women 7.6	< 0.001
Singh et al. 2008	Retro cohort	PCI	Men 7616	Women 3365	Men 64.7	Women 69.4	0.048	Men 1.8	Women 2.5	0.38	Men 2.7	Women 3	0.25	Men 4	Women 4	0.40
Alfredsson et al. 2007	Pros cohort	Unstable/ NSTEMI	Men 34020	Women 39761	Men 69	Women 73	< 0.001	Men 5	Women 7	0.7	Men 16	Women 19	0.006			
Setoguchi et al. 2008	Pros cohort	AMI	Men 317	Women 1308	Men 80	Women 82	< 0.001	Men 14.5	Women 13.9	0.7	Men 9.8	Women 8.6	0.25	Men 21.5	Women 18.2	0.006
Matsui et al. 2002	RCT	MI	Men 346	Women 136	Men 62.9	Women 70.4	0.001	Men 4	Women 4	0.85	Men 10	Women 0.13	0.006			
Uva et al. 2009	RCT	CABG	Men 1485	Women 481	Men 64.7	Women 69.0	0.001	Men 0.8	Women 2	0.01	Men 1.2	Women 2.3	0.09	0.006		
Toumpoulis et al. 2006	Pros cohort	CABG	Men 2986	Women 1162	Men 63.2	Women 66.2	< 0.001	Men 2.7	Women 2.9	0.65	Men 3.7	Women 3.9	0.747	0.006		
Moriel et al. 2005	Pros cohort	ACS	Men 820	Women 511	Men 78	Women 76	0.12	Men 7	Women 12	0.003	19	21	0.48	0.006		
Herlitz et al. 2009	Retro cohort	AMI	Men 835	Women 588	Men 72.7	Women 79.2	< 0.0001	Men 12	Women 14	NS	18	22	0.046	0.006		
Lawesson et al. 2009	Retro cohort	STEMI aged < 46	Men 1748	Women 384	Men 40.8	Women 40.4	0.47	Men 1.0	Women 2.9	0.005	2.2	3.7	0.01	0.006		
Berger et al. 2006	Pros cohort	PCI	Men 2953	Women 1331	Men 61.9	Women 66.8	< 0.001	Men 0.5	Women 0.5	0.918	8.9	10	0.197	0.006		
Liu et al. 2008	Pros cohort	STEMI + PCI	Men 143	Women 116	Men 68.1	Women 68.6	0.61	Men 2.8	Women 5.2	0.006	0	3	0.01	0.006		
Uva et al. 2005	Trial	ACS	Men 7726	Women 4836	Men 62.7	Women 66.5	0.0001	Men 4.9	Women 4.4	0.23	11.1	9.7	0.04	0.006		
Tzoun-Manous et al. 2009	RCT	PCI	Men 1050	Women 298	Men 59.7	Women 62.5	< 0.0001	Men 0.2	Women 1.0	0.08	Men 1.0	Women 0.72	0.006			
Tillmanns et al. 2007	Pros cohort	STEMI	Men 513	Women 178	Men 60	Women 66	< 0.0001	Men 6	Women 6.2	NS	12.5	0.60	0.006			
Lansky et al. 2009	RCT	PCI	Men 687	Women 314	Men 61.8	Women 65.9	< 0.0001	Men 0	Women 0.3	0.44	12	18	0.07	0.006		
Koch et al. 2003	Pros cohort	CABG	Men 1588	Women 46	Men 2.5	Women 3.4	0.29	Men 4.2	Women 7.1	0.02	15.8	19.6	0.03	0.006		
Lagerqvist et al. 2001	RCT	AMI	Men 1708	Women 749	Men 64	Women 68	< 0.001	Men 5	Women 7	0.009	5.7	7	0.02	0.006		
Chua et al. 2004	Pros	PCI	Men 1278	Women 5301	Men 62.3	Women 66.5	< 0.001	Men 5	Women 7	< 0.001	0.006					

1 After 6 mo; 2 After 3 years; 3 After 4 years; 4 After 5 years; 5 Adjusted for age, diabetes, smoking, history of cardiovascular disease, increased cardiac enzymes, region and received therapy. MI: Myocardial infarction; CABG: Coronary artery bypass grafting; PCI: Percutaneous coronary intervention; ACS: Acute coronary syndrome; STEMI: ST elevation MI; NS: Not significant.
were performed in both male and female patients of older age. However, where a CAG was performed, women and men received the same therapy for similar vessel disease. No differences between genders were found in the number of performed CABGs.

The current review has several limitations. Most included studies were retrospective in nature and performed a post hoc analysis by stratifying by gender. Included studies were hard to compare due to different patient characteristics; some studies included patients with STEMI, while others also included non-STEMI or patients with unstable angina. Another important limitation is the large difference in mean age between the included men and women across the different studies. Consequently, a comparison between the two genders was very difficult and no firm conclusion can be drawn. In addition, women are still underrepresented in most studies (inclusion rate < 30%). Due to the relatively low incidence of outcomes (e.g. complications, death), greater statistical power is needed to reach statistical significance. Therefore, large prospective observational cohort studies are needed in the future to provide sufficient power to answer the question whether female gender is an independent risk factor for cardiovascular morbidity and mortality.

CVD is the main cause of death among women. The prevalence of CVD is higher among men, but this gap narrows after the menopause. Women present approximately 10 years later with ACS than men, and at the time of presentation have a higher cardiovascular risk factor burden. Women are less often assigned to receive a CAG and subsequently less PCIs are performed. In addition, women have more complications and a higher short-term mortality after revascularization. Finally, mortality rates are higher among young women with ACS, but this difference tends to disappear with age, and long-term prognosis is even better among older women during long-term follow-up.

COMMENTS

Background

Cardiovascular disease (CVD) is the main cause of death among women and its occurrence narrows women’s survival advantage over men. Many studies investigated gender differences in CVD, but results were inconsistent due to several limitations. Women were generally underrepresented in mainly retrospective studies and a true comparison between genders was difficult due to large differences in age at presentation between the included men and women.

Research frontiers

It is important to clarify possible differences between men and women in a large prospective cohort study, with equal numbers of male and female patients. Furthermore, as age is an important confounding factor, men and women of similar age should be compared. A systematic literature search was performed to assess the current state of knowledge on possible gender differences in CVD.

Innovations and breakthroughs

In the short-term, women with CVD seem to have a worse outcome compared with men. In particular, young women have an increased mortality risk, but this disadvantage disappears at older age. Moreover, long-term mortality is slightly better in elderly women compared with men.

Peer review

This is an interesting meta-analysis on putative gender differences in cardiovascular care.

REFERENCES

1. Maas AH, Appelman YE. Gender differences in coronary heart disease. *Neth Heart J* 2010; 18: 598-603
2. Pilote L, Daspupta K, Guru V, Humphries KH, McGrath J, Norris C, Rabi D, Tremblay J, Alamian A, Barnett T, Cox J, Ghali WA, Grace S, Hamet P, Ho T, Kirkland S, Lambert M, Libersan D, O’Loughlin J, Paradis G, Petrovich M, Tagilakis V. A comprehensive view of sex-specific issues related to cardiovascular disease. *CMAJ* 2007; 176: S1-S44
3. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ, Berry JD, Brown TM, Carnethon MR, Dai S, de Simone G, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Greenland KJ, Hailpern SM, Heit JA, Ho PM, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Macfar DB, McDonough MM, Sigs JB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Rosamond WD, Sorlie PD, Stafford RS, Turan TN, Turner MB, Wong ND, Wylie-Roset J. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. *Circulation* 2011; 123: e18-e209
4. Quyyumi AA. Women and ischemic heart disease: pathophysiologic implications from the Women’s Ischemia Syndrome Evaluation (WISE) Study and future research steps. *J Am Coll Cardiol* 2006; 47: S66-S71
5. Alexander KP, Peterson ED. Medical and surgical management of coronary artery disease in women. *Am J Manag Care* 2001; 7: 951-956
6. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet* 2004; 364: 937-952
7. Hochman JS, Tamis JE, Thompson TD, Weaver WD, White HD, Van de Werf F, Aylward P, Topol EJ, Califf RM. Sex, clinical presentation, and outcome in patients with acute coronary syndromes. Global Use of Strategies to Open Occluded Coronary Arteries in Acute Coronary Syndromes IIb Investigators. *N Engl J Med* 1999; 341: 226-232
8. Rosengren A, Wallentin L, K Gitt A, Behar S, Battler A, Hasdal D, Sex, age, and clinical presentation of acute coronary syndromes. *Eur Heart J* 2004; 25: 663-670
9. Anand SS, Xie CC, Mehta S, Franzosi MG, Joyner C, Chrolavicius S, Fox KA, Yusuf S. Differences in the management and prognosis of women and men who suffer from acute coronary syndromes. *J Am Coll Cardiol* 2005; 46: 1845-1851
10. Berger JS, Sanborn TA, Sherman W, Brown DL. Influence of sex on in-hospital outcomes and long-term survival after contemporary percutaneous coronary intervention. *Am Heart J* 2006; 151: 1026-1031
11. Alfredsson J, Stenestrand U, Wallentin L, Swahn E. Gender differences in management and outcome in non-ST-elevation acute coronary syndromes. *Heart* 2007; 93: 1337-1362
12. Bukkapatnam RN, Yeo KK, Li Z, Amsterdam EA. Operative mortality in women and men undergoing coronary artery bypass grafting (from the California Coronary Artery Bypass Grafting Outcomes Reporting Program). *Am J Cardiol* 2010; 105: 339-342
13. Chiu JH, Bhattacharjee DL, Ziaad KM, Chew DP, Whitlow PL, Lincoff AM, Ellis SG, Topol EJ. Impact of female sex on outcome after percutaneous coronary intervention. *Am Heart J* 2004; 148: 998-1002
14. Clayton TC, Pocock SJ, Henderson RA, Poole-Wilson PA, Shaw TR, Knight R, Fox KA. Do men benefit more than women from an interventional strategy in patients with unstable angina or non-STE elevation myocardial infarction? The impact of gender in the RITA 3 trial. *Eur Heart J* 2004; 25: 1641-1650
15. Dallongeville J, De Bacquer D, Heidrich J, De Backer G, Prugger C, Kotseva K, Montaye M, Amouyl P. Gender
differences in the implementation of cardiovascular prevention measures after an acute coronary event. Heart 2010; 96: 1744-1749

16 Ennker IC, Albert A, Pietrowski D, Bauer K, Ennker J, Florath I. Impact of gender on outcome after coronary artery bypass surgery. Asian Cardiovasc Thorac Ann 2009; 17: 253-258

17 Fabijanic D, Culic V, Bozic I, Miric D, Stipic SS, Radic M, Vucinic Z. Gender differences in in-hospital mortality and mechanisms of death after the first acute myocardial infarction. Ann Saudi Med 2006; 26: 455-460

18 Herlitz J, Dillborg M, Karlsson T, Evander MH, Hartford M, Perers E, Caidahl K. Treatment and outcome in acute myocardial infarction in a community in relation to gender. Int J Cardiol 2009; 135: 315-322

19 Hirakawa Y, Usuda Y, Kuzuya M, Iuchi A, Kimata T, Umemura K. Impact of gender on in-hospital mortality of patients with acute myocardial infarction undergoing percutaneous coronary intervention: an evaluation of the TAMIS-II data. Intern Med 2007; 46: 363-366

20 Koch CG, Weng YS, Zhou SX, Savino JS, Mathew JP, Hsu PH, Saltman LJ, Mangano DT. Prevalence of risk factors, and not gender per se, determines short- and long-term survival after coronary artery bypass surgery. J Cardiovasc Surg (Torino) 2003; 17: 585-593

21 Lagerqvist B, Säfström T, Stålhe B, Wallentin L, Swahn E. Is early invasive treatment of unstable coronary artery disease equally effective for both women and men? FRISC II Study Group Investigators. J Am Coll Cardiol 2001; 38: 41-48

22 Lansky AJ, Pietras C, Costa RA, Tsaturiyi Y, Brodie BR, Cox DA, Ayymon ED, Stuckey TD, Garcia E, Tcheng JE, Mehran R, Negoita M, Fahy M, Turco M, Leon MB, Grines CL, Stone GW. Gender differences in outcomes after primary angioplasty versus primary stenting with and without abciximab for acute myocardial infarction: results of the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) trial. Circulation 2005; 111: 1611-1618

23 Lansky AJ, Mehran R, Criese EA, Parise F, Ohman EM, White HD, Alexander KP, Bertrand ME, Desmet W, Hamon M, Stone GW. Impact of gender and antithrombin strategy on early and late clinical outcomes in patients with non-ST-elevation acute coronary syndromes (from the ACCUTACY trial). Am J Cardiol 2009; 103: 1196-1203

24 Lawesson SS, Stenestrand U, Lagerqvist B, Wallentin L, Swahn E. Gender perspective on risk factors, coronary lesions and long-term outcome in young patients with ST-elevation myocardial infarction. Chin Med J (Eng) 2008; 121: 2374-2378

25 Matsui K, Fukui T, Hira K, Sobashima A, Okamatsu S, Hayashida N, Tanaka S, Nobuyoshi M. Impact of sex and its interaction with age on the management of and outcome for patients with acute myocardial infarction in 4 Japanese hospitals. Am J Cardiol 2002; 144: 101-107

26 Milcent C, Dormont B, Durand-Zaleski I, Steg PG. Gender differences in hospital mortality and use of percutaneous coronary intervention in acute myocardial infarction: microsimulation analysis of the 1999 nationwide French hospitals database. Circulation 2007; 115: 833-839

27 Moriel M, Behar S, Tzivoni D, Hod H, Boyko V, Gottlieb S. Management and outcomes of elderly women and men with acute coronary syndromes in 2000 and 2002. Arch Intern Med 2005; 165: 1521-1526

28 Pearte CA, Furbeg CD, O’Meara ES, Psaty BM, Kuller L, Powe NR, Manolio T. Characteristics and baseline clinical predictors of future fatal versus nonfatal coronary heart disease events in older adults: the Cardiovascular Health Study.
Claassen M et al. Gender and coronary heart disease

tium (BMC2) percutaneous coronary intervention registry. Am Heart J 2010; 159: 677-683.e1

44 Halvorsen S, Eritsalt J, Abdelnoor M, Holst Hansen C, Risæe C, Midtbø K, Bjørnerheim R, Mangsåhu A. Gender differences in management and outcome of acute myocardial infarctions treated in 2006-2007. Cardiology 2009; 114: 83-88

45 Heer T, Schiele R, Schneider S, Gitt AK, Vogtlander T, Hauptmann KE, Wagner S, Senges J. Gender differences in acute myocardial infarction in the era of reperfusion (the MITRA registry). Am J Cardiol 2002; 89: 511-517

46 Jankowski P, Kawecka-Jaszcz K, Czarnecka D, Bryniarski L, Brzozowska-Kiszka M, Kiec-Wilk B, Dymek G, Kopacew T, Krolikowski T, Dudek D. Gender does not influence event-free survival in patients with ischaemic heart disease undergoing non-emergency coronary angiography. A single centre analysis. Kardiol Pol 2007; 65: 475-484; discussion 485

47 Jneid H, Foranow CC, Cannon CP, Hernandez AF, Palacios IF, Maree AO, Wells Q, Buskurt B, Labresh KA, Liang L, Hong Y, Newby LK, Fletcher G, Peterson E, Weckler L. Sex differences in medical care and early death after acute myocardial infarction. Circulation 2008; 118: 2803-2810

48 Kralovec P, Heier JS, LangBM, O'Laughlins G, Lang S, Kâslis Y, Longgerofe M, Dempflle CE, Sülbeck T. Sex-based differences in clinical and angiographic outcomes in patients with ST-elevation myocardial infarction treated with concomitant use of glycoprotein IIb/IIIa inhibitors. Cardiol J 2010; 17: 580-586

49 Lee LC, Poh KK, Tang TP, Tan YL, Tee HW, Tan HC. The impact of gender on the outcomes of invasive versus conservative management of patients with non-ST-segment elevation myocardial infarction. Ann Acad Med Singapore 2010; 39: 168-172

50 Park JS, Kim YJ, Shin DG, Jeong MH, Ahn YK, Chung WS, Seung KB, Kim CJ, Cho MC, Jang YS, Park SJ, Seong IW, Chae SC, Hur SH, Choi DH, Hong TJ. Gender differences in clinical features and in-hospital outcomes in ST-segment elevation acute myocardial infarction: from the Korean Acute Myocardial Infarction Registry (KAMIR) study. Clin Cardiol 2010; 33: E1-E6

51 Reina A, Colmenero M, Agugay of Hoyo E, Arós F, Martí H, Claramarote R, Ćuñat J. Gender differences in management and outcome of patients with acute cardiac infarction. Int J Cardiol 2007; 116: 389-395

52 Srinivas VS, Garg S, Negassa A, Bang JY, Monrad ES. Persistent sex difference in hospital outcome following percutaneous coronary intervention: results from the New York State reporting system. J Invasive Cardiol 2007; 19: 265-268

53 Thompson CA, Kaplan AV, Friedman BJ, Jayne JE, Gerling BR, Niles NW, Hettleman BD, Robb JP. Gender-based differences of percutaneous coronary intervention in the drug-eluting stent era. Catheter Cardiovasc Inter 2006; 67: 25-31

54 Mehilli J, Kastrati A, Dischinger J, Fache J, Seyfarth M, Blasini R, Hall D, Neumann FJ, Schömig A. Sex-based analysis of outcome in patients with acute myocardial infarction treated predominantly with percutaneous coronary intervention. JAMA 2002; 287: 210-215

55 Mueller C, Neumann FJ, Roskamm H, Buser P, Hodgson JM, Perruchoud AP, Buettner HJ. Women do have an improved long-term outcome after non-ST-elevation acute coronary syndromes treated very early and predominantly with percutaneous coronary intervention: a prospective study in 1,450 consecutive patients. J Am Coll Cardiol 2002; 40: 245-250

56 Trabattoni D, Bartorelli AL, Montorsi F, Fabbriani F, Loaldi A, Galli S, Ravagnani P, Cozzi S, Grancini L, Liverani A, Leon ME, Robertson C, Boyle P. Comparison of outcomes in women and men treated with coronary stent implantation. Catheter Cardiovasc Interv 2003; 58: 20-28

57 Vakili BA, Kaplan RC, Brown DL. Sex-based differences in early mortality of patients undergoing primary angioplasty for first acute myocardial infarction. Circulation 2001; 104: 3034-3038

58 Heer T, Gitt AK, Juenger C, Schiele R, Wienenber H, Towae F, Gottwitz M, Zahn R, Zeymer U, Senges J. Gender differences in acute non-ST-segment elevation myocardial infarction. Am J Cardiol 2006; 98: 160-166

59 Cantor WJ, Miller JM, Hellkamp AS, Kramer JM, Peterson ED, Hasselblad V, Zidar JP, Newby LK, Ohman EM. Role of target vessel size and body surface area on outcomes after percutaneous coronary interventions in women. Am Heart J 2002; 144: 297-302

60 Chang WC, Kaul P, Westerhout CM, Graham MM, Fu Y, Chowdhury T, Armstrong PW. Impact of sex on long-term mortality from acute myocardial infarction vs unstable angina. Arch Intern Med 2005; 165: 2476-2484

61 Cheng CI, Yeh KH, Chang JF, Yu YH, Chen YH, Chai HF, Yip HK. Comparison of baseline characteristics, clinical features, angiographic results, and early outcomes in men vs women with acute myocardial infarction undergoing primary coronary intervention. Chest 2004; 126: 47-53

62 Bufe A, Wolfortz J, Dinh W, Bansemir L, Koehler T, Haltern G, Guelker H, Füth R, Scheftold T, Lanksch M. Gender-based differences in long-term outcome after ST-elevation myocardial infarction in patients treated with percutaneous coronary intervention. J Womens Health (Larchmt) 2010; 19: 471-475

63 Guru V, Frenses SE, Austin PC, Blackstone EH, Tu JV. Gender differences in outcomes after hospital discharge from coronary artery bypass grafting. Circulation 2006; 113: 307-313

64 Vaccarino V, Abramson JL, Veledar E, Weintraub WS. Sex differences in hospital mortality after coronary artery bypass surgery: evidence for a higher mortality in younger women. Circulation 2002; 105: 1176-1181

65 Lansky AJ, Mehran R, Dangas G, Cristea E, Shiraí K, Costa R, Costantini C, Tsuchiya Y, Carlier S, Mintz G, Cottin Y, Stone G, Moses J, Leon MB. Comparison of differences in outcome after percutaneous coronary intervention in men versus women &. It: 40 years of age. Am J Cardiol 2004; 93: 916-919

66 Woods SE, Chandran P, Levin L. Does the patient's sex influence cardiovascular outcome after acute myocardial infarction? J Fam Pract 2002; 51: 237-240

67 Lansky AJ, Ng VG, Mutlu H, Cristea E, Guiran JB, Midei M, Newman W, Sanoz M, Sood P, Doostzadeh J, Su X, White R, Cao S, Sudhik K, Stone GW. Gender-based evaluation of the XIENCE V everolimus-eluting coronary stent system: clinical and angiographic results from the SPIRIT III randomized trial. Catheter Cardiovasc Interv 2009; 74: 719-727

68 Prescott E, Hippe M, Schnorr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: longitudinal population study. BMJ 1998; 316: 1043-1047

69 Huxley R, Barzi F, Woodward M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 2006; 332: 73-78

70 Chua TP, Saia F, Bhardwaj V, Wright C, Clarke D, Hennessy M, Fox KM. Are there gender differences in patients presenting with unstable angina? Int J Cardiol 2000; 72: 281-286

71 Shaw LJ, Shaw RE, Merz CN, Brindis RG, Klein LW, Nal-Jamotum B, Douglas JS, Krone R, McKay CR, Block PC, Hweit K, Weintraub WS, Peterson ED. Impact of ethnicity and gender differences on angiographic coronary artery disease prevalence and in-hospital mortality in the American College of Cardiology-National Cardiovascular Data Registry. Circulation 2008; 117: 1787-1801

72 Pereira M, Lunet N, Azevedo A, Barros H. Differences in prevalence, awareness, treatment and control of hypertension between developing and developed countries. J Hypertens 2009; 27: 963-975

73 Mosca L, Benjamin EJ, Berra K, Bezzant JL, Dolor RJ, Lloyd-Jones DM, Newby LK, Piña IL, Roger VL, Shaw LJ,
Zhao D, Beckie TM, Bushnell C, D’Armiento J, Kris-Etherton PM, Fang J, Ganiats TG, Gomes AS, Gracia CR, Haan CK, Jackson EA, Judelson KD, Kelepouris E, Lavi CJ, Moore A, Nussmeier NA, Ofteli E, Oparil S, Ouyang P, Pinn WV, Sherif K, Smith SC, Sopko G, Chandra-Strobos N, Urbina EM, Vaccarino V, Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. J Am Coll Cardiol 2011; 57: 1404-1423.

74 Radovanovic D, Erne P, Urban P, Bertel O, Rickli H, Gaspoz JM. Gender differences in management and outcomes in patients with acute coronary syndromes: results on 20,290 patients from the AMIS Plus Registry. Heart 2007; 93: 1369-1375.

75 Blankstein R, Ward RP, Arredondo M, Jones B, Lou YB, Pine M. Female gender is an independent predictor of operative mortality after coronary artery bypass graft surgery: contemporary analysis of 31 Midwestern hospitals. Circulation 2005; 112: 1323-1327.

76 Humphries KH, Gao M, Pu A, Lichtenstein S, Thompson CR. Significant improvement in short-term mortality in women undergoing coronary artery bypass surgery (1991 to 2004). J Am Coll Cardiol 2007; 49: 1552-1558.

77 Rasoul S, Ottervanger JP, de Boer MJ, Dambrink JH, Hoorn-v3e JC, Marcel Gosselink AT, Zijlstra F, Suryapranata H, van’t Hof AW. Predictors of 30-day and 1-year mortality after primary percutaneous coronary intervention for ST-elevation myocardial infarction. Coron Artery Dis 2009; 20: 415-421.

78 Lee KH, Jeong MH, Ahn YK, Kim JH, Chae SC, Kim YJ, Hur SH, Seong IW, Hong TJ, Choi D, Cho MC, Kim CJ, Seung KB, Bae SC, Kang D, Park SJ. Gender differences of success rate of percutaneous coronary intervention and short term cardiac events in Korea Acute Myocardial Infarction Registry. Int J Cardiol 2008; 130: 227-234.

79 Singh M, Rihal CS, Gersh BJ, Roger VL, Bell MR, Lennon RJ, Lerman A, Holmes DR. Mortality differences between men and women after percutaneous coronary interventions: A 25-year, single-center experience. J Am Coll Cardiol 2008; 51: 2313-2320.

80 Akhter N, Milford-Beland S, Roe MT, Plana RN, Kao J, Shroff A. Gender differences among patients with acute coronary syndromes undergoing percutaneous coronary intervention in the American National Cardiovascular Data Registry (ACC-NCDR). Am Heart J 2009; 157: 141-148.

81 Jibran R, Khan JA, Hoye A. Gender disparity in patients undergoing percutaneous coronary intervention for acute coronary syndrome - does it still exist in contemporary practice? Ann Acad Med Singapore 2010; 39: 173-178.

82 Cartier R, Bouchot O, El-Hamamsy I. Influence of sex and age on long-term survival in systematic off-pump coronary artery bypass surgery. Eur J Cardiothorac Surg 2008; 34: 826-832.

83 Glaser S, Selzer F, Jacobs AK, Laskey WK, Kelsey SF, Holper EM, Cohen HA, Abbott JD, Wilensky RL. Effect of gender on prognosis following percutaneous coronary intervention for stable angina pectoris and acute coronary syndromes. Am J Cardiol 2006; 98: 1446-1450.

84 Koek HL, de Bruin A, Gast F, Gevers E, Kardaun JW, Reitsma JB, Grobbee DE, Bots ML. Short- and long-term prognosis after acute myocardial infarction in men versus women. Am J Cardiol 2006; 98: 993-999.

85 Vaccarino V, Krumholz HM, Yarzebski J, Gore JM, Goldberg RJ. Sex differences in 2-year mortality after hospital discharge for myocardial infarction. Ann Intern Med 2001; 134: 173-181.

86 Hannan EL, Racj MJ, Walford G, Ryan TJ, Isom OW, Bennett E, Jones RH. Predictors of readmission for complications of coronary artery bypass graft surgery. JAMA 2003; 290: 773-780.

87 Stewart RD, Campos CT, Jennings B, Lollis SS, Levitsky S, Lahey SJ. Predictors of 30-day hospital readmission after coronary artery bypass. Ann Thorac Surg 2000; 70: 169-174.

88 Steuer J, Blomqvist P, Granath F, Rydh B, Ekstrom A, de Faire U, Stahle E. Hospital readmission after coronary artery bypass grafting: are women doing worse? Ann Thorac Surg 2002; 73: 1380-1386.

89 Mehilli J, Kastrati A, Bollwein H, Dibra A, SchuHlen H, Dirschinger J, Schömig A. Gender and restenosis after coronary artery stenting. Eur Heart J 2003; 24: 1523-1530.

90 Hulley S, Grady D, Bush T, Furberg C, Herrington D, Riggs B, Vittinghoff E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998; 280: 605-613.

91 Grady D, Herrington D, Bittner V, Blumenthal R, Davidson M, Hlatky M, Hsia J, Hulley S, Herd A, Khan S, Newlyh JK, Waters D, Vittinghoff E, Wenger N. Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study (HERS II). JAMA 2002; 288: 49-57.

92 Hsia J, Langer RD, Manson JE, Kuller L, Johnson KC, Hendrix SL, Pettinger M, Heckbert SR, Groep N, Crawford S, Eaton CB, Kostis JB, Caralis P, Prentice R. Conjugated equine estrogens and coronary heart disease: the Women’s Health Initiative. Arch Intern Med 2006; 166: 357-365.

S-Editor Cheng JX L-Editor Cant MR E-Editor Zheng XM