With the rapid development of mobile Internet information technology, automated search text has occupied a leading position in many industries. This article not only makes a detailed case study on the basic working principles of text feature extraction and classification methods but also makes in-depth case analysis on the extraction algorithm and its basic concepts as well as some problems that may be encountered in text feature classification and explained their advantages and disadvantages in detail. Aiming at the shortcomings of various algorithms, a sparse Bayesian probability model is proposed, so that it can better meet the requirements of database and text classification and further improve related technologies. Nowadays, the evaluation of China’s goodwill value, whether in theory or in practice, usually simply adopts traditional fixed asset evaluation methods. However, traditional methods have the disadvantages of ignoring comparisons with the same industry and failing to take into account different factors that affect corporate goodwill. This article adopts a new method that combines traditional methods to evaluate goodwill and tries to improve the results obtained by this traditional method to make the evaluation results more accurate. Then, by studying the adaptability of traditional Chinese risk assessment and forecasting models, a comprehensive comparison is made. Aiming at the embarrassing situation that the current methods of corporate excess asset return risk assessment difficult to predict in practice, the new gray factors evaluation models are creatively studied.

1. Introduction

Due to the development of China’s supply-side structural reforms, a series of incidents have been directly caused, such as mergers and reorganizations between enterprises have become more and more common [1]. Under normal circumstances, a company’s mergers and acquisitions have the opportunity to directly cause the impairment of its goodwill but often after a company’s mergers and acquisitions have been completed, its performance “changes its face,” which directly leads to the company that it could have expected. The value will undergo important changes, so the goodwill and impairment of enterprises have become the “severe disaster zone” that affects the capital market [2]. Therefore, how to help companies build a complete evaluation system model that can truly reflect the value of corporate credit and goodwill, so as to broaden the coverage of asset evaluation to a certain extent, and protect the rights and interests of shareholders has become China’s current critical issue in the field of asset appraisal that needs to be solved urgently [3]. Based on the characteristics of this era, this article studies the method of combining gray neural network and Markov chain method to predict the rate of return, thereby improving the accuracy and precision of the future excess profit forecast to a certain extent [4]. The gray predictor can predict a single variable in the short term; while the traditional neural network model can directly simulate the factors affecting goodwill and asset value; while the Markov chain method corrects the difference in goodwill [5]. With the rapid progress of China’s modern information science and technology and the rapid development of the mobile Internet, more and more data are generated and collected, and
people are becoming more and more urgent in the comprehensive processing and analysis of data. As an effective means of analyzing complex and high-dimensional data, data mining system is the most basic technical feature of comprehensive analysis and calculation processing of existing data resources, and the emergence of huge amounts of complex, nonlinear high-dimensional data day by day provides severe challenges to traditional methods [6]. The accuracy and robustness of prediction and the prediction of sparse features are important indicators for algorithm performance evaluation. Therefore, it is of historical and practical significance to design an algorithm that is safe, reliable, accurate, and fast and has higher prediction accuracy [7]. Neural network algorithms have strong fault tolerance, but they have the disadvantages of slow convergence and easy formation of local maximums, and because they follow the principle of minimizing empirical risk rather than expected risk, they are prone to overfitting, and its application ability is obviously weakened, which limits their wide application in practice [8].

2. Related Work

The first in the literature to propose the Naive Bayes algorithm is a theory from classical mathematics. Its basic theoretical guiding ideology is to integrate a priori judgment probability with the judgment probability of the condition category through the training set, so that we can directly realize the probability judgment of the condition category of the prior [9]. At the same time, we also much hope that the text can be regarded as an independent and integrated vocabulary, and a Bayesian model can be derived. It is proposed in the literature that the K nearest neighbor method is effective for small-scale sample libraries. For an unknown and nonnormal distributor, they can obtain high classification accuracy, and similar texts are distributed in the same area. On the contrary, different types of text are located in different areas [10]. The recursive neural network method was first proposed in the literature, and it has been widely used in the analysis and prediction of Deutsche Mark currency exchange rate futures, and it has also achieved good results. This method is obtained by designing and optimizing on the basis of traditional artificial neural network model technology [11]. Based on the number of input nodes, the number of hidden nodes, and the training performance of each node inside and outside the sample, the literature predicts the changes in the exchange rate of British pound against the US dollar. Research shows that the neural network model is far superior to the traditional linear model. The literature clearly summarizes the “Triple Theory,” that is, the calculation theory of favorability account value, the calculation theory of excess profit account value, and the account value theory based on total profit value [12]. The first typical point of view can explain that goodwill comes from a company’s excellent external customer image and its external customer consumer groups’ satisfaction with a certain brand of a company. This type of goodwill for people mainly depends on whether a company It should start with the good professional working environment and the resulting superiority and reputation. Therefore, the operability of good customer perception and value evaluation theory in the process of enterprise evaluation of customer service is relatively weak. The regression analysis method in the literature is used as a method for comprehensive analysis of various data types in modern statistics [13]. The main research purpose is to accurately discover the possible interrelationships between various types of data. From the perspective of modern statistics, it is a statistical model of the mutual influence of independent variables and dependent variables. The literature has clearly pointed out that goodwill itself is a typical intangible asset, which was generally regarded as the most “intangible” kind of intangible assets by people at that time, and it was highly inaccurate [14]. The literature proposes that the intangible economic value created by corporate goodwill for its company is called excess investment income, which mainly refers to the far-reaching value that a private enterprise can directly obtain based on the value of various intangible assets that can be widely identified. It is much higher than the value of return on investment of normal assets [15]. It is mainly due to the fact that the company has excellent business management personnel, so that it can make its operation and management work properly, achieve high comprehensive benefits of enterprise production and sales operations, and master the production of enterprises. An intangible economic value formed by basic know-how, under the same economic conditions as other industries in the same industry, can obtain more corporate profits and better economic benefits in sufficient time [16].

3. Research on Sparse Bayesian Model

3.1. Model Overview. It is assumed that a set of input sample data and its corresponding target value should follow the knowledge closely related to standard probability theory, and this assumed target value can be expressed mathematically as:

\[t_n = y(x_n; \omega) + \varepsilon_n. \]

Among them, \(\varepsilon_n \) is the target value, \(t_n \) is a certain error when acquiring, and \(\omega \) is an adjustable parameter.

\[y(x_n; \omega) = \sum_{i=1}^{M} \omega_i \Phi_i(x) = \omega^T \Phi(x). \]

This formula is a set of non-linear basis functions:

\[\Phi(x) = [\Phi_1(x), \Phi_2(x), \ldots, \Phi_M(x)]. \]

In the sparse Bayesian model, assuming that the error term \(\varepsilon_n \) is independent and identically distributed and obeys \(N(0, \sigma^2) \), then \(P \) satisfies the Gaussian distribution:

\[P(t_n|x_n, \omega, \sigma^2) = N(t_n|y(x_n; \omega), \sigma^2). \]

The variance value is \(\sigma^2 \). Usually, it is said that it needs to be calculated by estimating the variance. The basis function of the required kernel defined on the subdata of a data input, the definition of the required kernel here does not
necessarily fully satisfy the Mercer condition, because it does not necessarily require that the kernel functions of the basis must be completely positive definite. Therefore, we can conclude that the function expression of the sparse Bayesian model is defined as the function expression given in equation (4). Assuming that all data input to each program must be an independent and equal likelihood distribution, the likelihood distribution function of all input data can also be simply expressed as

\[P(t|\omega, \sigma^2) = \prod_{i=1}^{N} P(t_i|\omega, \sigma^2) = (2\pi\sigma^2)^{-N/2} \exp \left\{ -\frac{1}{2\sigma^2}||t - \Phi \omega||^2 \right\}. \]

(5)

Generally, assuming that a parameter \(\omega_i\) obeys the probability distribution of Gauss condition, the average value of the probability distribution defines the zero variance as \(\alpha_i^{-1}\), then the probability prior distribution of the parameter \(\omega_i\) is defined as

\[P(\omega|\alpha) = \prod_{i=0}^{N} N(\omega_i|0, \alpha_i^{-1}) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left\{ -\frac{1}{2} \left(\frac{\omega^2}{\sigma^2} - 2\sigma_\omega \right) \right\}. \]

(6)

In the formula, \(\alpha\) is a hyperparameter vector that determines the prior distribution of weights \(\omega\) in \(N+1\) dimension. In order to better determine the superprior parameter \(\alpha\), and to better complete the final determination of the model, the distribution of the superprior parameter \(\alpha\) and the noise variance \(\sigma^2\) must also be defined. The hypotheses \(\alpha_i\) and \(\sigma^{-2}\) can be obtained as follows:

\[P(\alpha) = \prod_{i=0}^{N} \text{Gamma}(\alpha_i|a, b), \]

\[P(\sigma^{-2}) = \prod_{i=0}^{N} \text{Gamma}(\sigma^2|c, d). \]

(7)

Since there is no prior knowledge, we can take small values for the parameters, for example, let \(a = b = c = d = 10^{-4}\). However, assuming \(a = b = c = d = 0\), we can obtain a consistent superprior, so we can get

\[p(\alpha_i) = \int_0^\infty N(\alpha_i|0, \alpha^{-1}) \text{Gamma}(\alpha_i|a, b) d\alpha^{-1}. \]

(8)

One of the most prominent and important features of the sparse Bayesian model is to set independent hyperparameters for odd functions, which directly leads to the sparseness of the Bayesian model. This prior distribution method is a prior distribution of autocorrelation judgment. Then, after a large number of update iterations, most of the \(\alpha_i\) will gradually tend to infinity.

3.2. Parameter Estimation. According to Bayesian inference, if the prior probability distribution of a known model parameter is \(P(\omega, \alpha, \sigma^2)\), then the posterior probability after inputting a sample of data is expressed as follows:

\[P(\omega, \alpha, \sigma^2|t) = \frac{P(t|\omega, \alpha, \sigma^2) P(\omega, \alpha, \sigma^2)}{P(t)}. \]

(9)

Given a new input sample data \(x^*\), the corresponding target value is \(t^*\), then the predictive distribution formula of \(t^*\) is

\[p(t, t) = \int p(t^*|\omega, \alpha, \sigma^2)p(\omega, \alpha, \sigma^2|t) d\omega d\sigma^2. \]

(10)

Since the posterior distribution \(P(\omega, \alpha, \sigma^2|t)\) of the model parameters cannot be obtained directly through integration, then it is decomposed.

\[p(\omega, \alpha, \sigma^2|t) = p(\omega|t, \alpha, \sigma^2) p(\alpha, \sigma^2|t). \]

(11)

The posterior distribution of the weight vector \(\omega\) can be expressed as

\[p(t|\omega, \alpha, \sigma^2) = \frac{P(t|\omega, \alpha, \sigma^2) P(\omega|t, \alpha, \sigma^2)}{P(t)}, \]

\[= (2\pi)^{-\frac{(N+1)\sigma^2}{2}} \exp \left\{ -\frac{1}{2} (\omega - \mu)^T \Sigma^{-1} (\omega - \mu) \right\}. \]

(12)

Under the premise of a uniform superprior result distribution, the problem of maximizing \(P\) can be expressed as

\[\log(p(t|\alpha, \sigma^2)) \]

\[= \log\left(\int p(t|\omega, \sigma^2) p(\omega|\alpha) d\omega \right), \]

\[= -\frac{1}{2} \left(N \log(2\pi) + \log|\Sigma| + t^T \Sigma^{-1} t \right). \]

(13)

In a theory of the Bayesian model, \(P\) is simply scanned as a new edge likelihood function. We can use a type of maximum edge likelihood function in the Bayesian model theory to use \(P\) as an estimate of \(a\) and the main method of \(\sigma^2\), in which the maximum edge likelihood parameter of the second function type is used as the estimation method.

If the estimated values of the maximum likelihood parameters of the II sample type are \(a_{MP}\) and \(\sigma_{MP}^2\), respectively, then the formula on the estimated value parameter distribution of the maximum predicted estimated value \(t^*\) of the sample type \(x^*\) to be measured is defined as

\[p(t^*|t, a_{MP}, \sigma_{MP}^2) \]

\[= \int p(t^*|\omega, \sigma_{MP}^2) p(\omega|t, a_{MP}, \sigma_{MP}^2) d\omega. \]

(14)

If the predicted value is set to \(t^*\), it can be regarded as obeying a Gauss normal to be integrated, namely:

\[p(t^*|t, a_{MP}, \sigma_{MP}^2) = N(t^*|t, \sigma_{MP}^2). \]

(15)

Then, the average value of the predicted value \(t^*\) of the sample \(x^*\) is \(y(x^*, u)\). The average \(u\) of the posterior probability is the weight vector of the basis function, and the weight vector of the basis function has many zero elements.
Therefore, the sparse Bayesian model has high sparsity in design.

4. Application of Artificial Intelligence in Corporate Goodwill Assessment and Dynamic Management

4.1. Corporate Goodwill Assessment and Dynamic Management Framework. Generally speaking, we call certain intangible assets that are not clearly stated in the company’s assets as corporate goodwill. Only when a company invests a large amount of production elements or assets, can goodwill be truly preserved and generated. On the other hand, goodwill is the external manifestation of the excessive income brought by the production factors or assets of this part of personnel. Because an enterprise often has its own exclusive production factors and assets, or the performance of the above production factors and assets is far lower than other social benchmarks, it has formed its excess profitability. The huge profits brought by goodwill are conceived in every link of the production and operation of the enterprise and the operation of the system. Over the years, the market economy of the whole society has been developing and progressing at a high speed, and the status of the concept of goodwill among enterprises has been greatly improved. However, the traditional definition of corporate goodwill has fallen behind. Therefore, companies seem to be unable to fully refer to this definition of corporate goodwill in the past to bring changes to the business development of the entire Chinese enterprise now or in the future. However, the rapid development of the socialist market economy and social progress will never allow companies to really stop the pace they want to go up. Now China’s goodwill is included in the project as a single intangible asset listed in the corporate financial report to represent the core. Although people now have a new understanding of the specific definition of goodwill, we may still encounter many new problems in our daily operations, which are urgently needed to be discovered and resolved in the future.

If you want to conduct a comprehensive assessment of the company’s goodwill, you must first seek a professional assessment staff, then you need to set up special assessment items, and then follow the various rules established by national laws and where there is no violation of various principles and standards, establish an appropriate time point for the evaluation project and use the fixed asset management level of the evaluated project company at a certain time point as the benchmark value of the evaluation. And establish corresponding workflow for the evaluation of corporate goodwill and credit value. However, we have clearly mentioned above that goodwill is actually subject to great uncertainty. Therefore, this is exactly the difference between our judgment of goodwill and our evaluation of other assets. For the value of goodwill, we should first determine the various preconditions before we evaluate the value. This is mainly because we cannot truly achieve a high degree of consistency throughout the evaluation process. If we do the preconditions before the evaluation, the result of the evaluation is likely to be affected by the uncertain factors brought to us by other variables.

When it comes to the evaluation of intangible assets, you will immediately think of three evaluation methods: cost method, market method, and income method. The evaluation method that needs to be adopted when implementing risk evaluation of an enterprise’s intangible assets, if purely as a theoretical evaluation method, can also be widely used to evaluate the goodwill of an enterprise. However, among the above three methods, the income method should be the best.

4.1.1. Excess Income Method. In the theory of excess return on goodwill, it believes that the value of a company’s goodwill represents the average excess return of an enterprise. In other words, it means that the company’s annual profit can be greatly reduced.

4.1.2. Difference Method. When evaluating the goodwill value of an enterprise, there is another good method, that is, the method of dividing the difference, also called the method of cutting difference. It is based on the premise that the value of goodwill is derived from the additional amount of various identifiable assets. In other words, the method of adopting this model is equivalent to an important precondition that goodwill cannot directly bring profit to an enterprise itself. Both goodwill and the enterprise must complement each other and survive together.

4.1.3. Analysis of the Advantages and Disadvantages of the Excess Income Method and the Margin Separation Method. There is no doubt that the gap method still has many advantages. The method is simple and reliable, but its operability is not high. Only a certain percentage of the determined acquisition value is used to deduct the fair acquisition value of the state-owned asset value of the determined acquisition target. When we use the difference algorithm in the transaction process, we use the final price of all the goods to be traded as a reference transaction certificate, then the transaction result calculated by the evaluation will fully possess the objectivity and transaction and the authenticity of the information.

If the gray prediction model and BP neural network model are designed using MATLAB software, it will be possible to solve these problems. But we must know that when making accurate estimates of the actual situation in the future, we cannot immediately assert that a certain simulation scheme will be superior to another. Even if the simulation method has better simulation similarity in the short term, we cannot recognize that the simulation method will have higher superiority in the future. Each different model design method already contains a lot of valuable invisible data. If only one model design method is used, errors and deficiencies will inevitably occur. Therefore, if we use a certain combined forecasting model method to make predictions, and then make Markov correction corrections to their results, this method is more valuable than just using a similar model. Under normal circumstances, the combined
forecasting method is more convincing than the data that the single forecasting method needs to reflect. However, this also requires us to use both suitable models to combine in order to play a predictive role.

4.2. Corporate Goodwill Evaluation and Dynamic Management Model. First of all, the overall design of the software design model must strictly follow the basic design principles of fairness, objectivity, reasonableness, independent operation, and close integration of forward-looking, adaptability, reliability, and system operability. The overall information and credit value system of a large-scale enterprise's goodwill may change significantly at any time with changes in the market economy development environment or changes in the development of production and operation, in order to avoid causing specific users of the enterprise's goodwill. For all kinds of misleading and undesirable interference, we should conduct a regular credit assessment of corporate goodwill every year, so that we can effectively ensure that it reflects and highlights the overall reality of a large-scale enterprise's goodwill in a timely manner. On the basis of further in-depth consideration of the various characteristics of the group's influence on corporate goodwill, various factors affecting corporate goodwill, and other important factors affecting corporate goodwill management and operational risks, this article calculates the decision-making of multiple groups of goodwill with different attributes. The method, the uncertainty interval decision matrix that affects the economic value of the market, and the practical application of its value solution are introduced into the subject research to construct a dynamic risk assessment decision model that affects the goodwill interval and economic value. The main content of the specific subject research is brief description:

\[V = E \times SYD \times R. \]

(16)

In formula (16), \(V \) is the value of goodwill; \(E \) is goodwill, the value of the evaluation of goodwill; \(SYD \) is the company's goodwill; \(R \) is a factor that affects the financial risk of the company, reflecting the business operation and poor management risks such as abnormal loss of corporate assets and corporate bankruptcy. Goodwill is mainly determined on all assets of an enterprise, and the risks faced by an enterprise are the risks faced by goodwill. The value of \(R \) is between 0 and 1, and it is determined in a qualitative way.

\[E_{\text{Goodwill}} = V_{\text{Enterprise}} - V_{\text{Tangible assets}} - V_{\text{Undetermined refers to intangible assets}}. \]

(17)

In formula (17), \(V \) enterprise as a whole is the appraised value of an enterprise's overall assets; \(V \) tangible assets means to increase the value of all equity and tangible assets owned by the enterprise; \(V \) can mean that intangible assets have an appraisal that can be identified value.

\[SYD = \frac{Y}{100} \times 100\%. \]

(18)

In (18), \(Y \) is the goodwill status factor. Since there are many main factors that affect the value of corporate goodwill, there is no fully recognized measurement standard. By fully understanding the research, results of predecessors, experts, corporate management, professional appraisers, and other personnel, respectively, give the effect of each factor. The influence interval and weight of goodwill value are determined by fuzzy comprehensive evaluation method to determine the interval value of the state factor of goodwill.

Due to the complexity of objective things in modern Chinese society and the limitations of modern society on people's knowledge and understanding, especially in the process of economic and social development, the understanding of things is always from shallow to deep and is often subject to various conditions restricted. Therefore, in the actual decision-making work, the information of the decision maker is often vague. Generally, due to the inaccuracy of these judgment methods, the comparison judgments between the two are generally scaled by the interval size, and the corresponding judgment matrices are given in the form of interval function judgment matrices:

When \(C_j \) is a benefit attribute,

\[
\begin{align*}
&\begin{cases}
 b^L_{ij} = \frac{a^{L}_{ij}}{\sum_{k=1}^{m} a^{L}_{kj}}, \\
 b^U_{ij} = \frac{a^{U}_{ij}}{\sum_{k=1}^{m} a^{U}_{kj}}
\end{cases}
\end{align*}
\]

(19)

When \(C_j \) is a cost attribute,

\[
\begin{align*}
&\begin{cases}
 b^L_{ij} = \frac{1}{a^{L}_{ij}} \sum_{k=1}^{m} \frac{1}{a^{L}_{ij}}, \\
 b^U_{ij} = \frac{1}{a^{U}_{ij}} \sum_{k=1}^{m} \frac{1}{a^{U}_{ij}}
\end{cases}
\end{align*}
\]

(20)

The following multiobjective optimization model needs to be solved to determine the optimal weight vector,

\[
\min z = \sum_{i=1}^{m} p_i u^* + \sum_{i=1}^{m} q_i u^-,
\]

s.t.

\[
\begin{align*}
\sum_{j=1}^{m} a^{L}_{ij} \omega_j u^+ & = \sum_{j=1}^{m} a^{L}_{ij} \omega_j u^-, i = 1, \ldots, m, \quad (21) \\
\sum_{j=1}^{m} a^{U}_{ij} \omega_j u^+ & = \sum_{j=1}^{m} a^{U}_{ij} \omega_j u^-, i = 1, \ldots, m, \\
\omega^L_j & \leq \omega_j \leq \omega^U_j, j = 1, \ldots, n, \\
\sum_{j=1}^{n} \omega_j & = 1.
\end{align*}
\]
In (21), \(u_i^+ \) represents a positive deviation variable, and \(u_i^- \) represents a negative deviation variable; \(p_i \) and \(q_i \) are the coefficients of the objective function.

4.3. Application of Artificial Intelligence Grey Neural Network

In the above paragraphs, we have made a detailed and in-depth exploration of some related risk assessment measures and methods for goodwill, which will bring great practicality and guiding significance to it. In the first chapter of this article, we not only need to analyze in detail the problems of the two theoretical components of the gray forecasting model and the neural network model but also learn how to effectively analyze the potential of these methods in the process of goodwill risk assessment.

The most important part of the gray system, and arguably the most critical cheap way, is to use the gray forecasting system model. After we can use these logical methods to quickly establish the collected data model library, and perform comprehensive calculations for all the collected and obtained original data types, it is simple and effective to extract a bunch of primitives that seem tedious and messy in nature. The in-depth logic rules inside these original data can be quickly found in the statistical data. In this paper on the nature of the research, we only need to simply make a comprehensive prediction of a certain factor that may affect it, so we only simply reuse a GM (1, 1).

By accumulating once, you can get

\[
X^{(1)} = (X^{(1)}(1), X^{(1)}(2), \ldots, X^{(1)}(n)).
\]

Make

\[
Z^{(i)}(k) = \frac{1}{2}(X^{(1)}(k) + X^{(1)}(k - 1)).
\]

Then

\[
x^{(0)}(k) + aZ^{(1)}(k) = b.
\]

b is the initial mode of GM (1, 1). The parameters a and b are estimated through the calculated \(Z^{(i)}(k) \), so that the model and time response can be established, and then \(x^{(1)} \) is calculated through the time response, and finally, the restoration value \(x(k + 1) \) is fine.

Only when we have first established the three main comprehensive data indicators of excess profit, discount rate and earnings term value, can we really learn how to use earnings calculations. However, in the process of evaluating an enterprise’s excess profitability and profitability, the evaluators have no way to obtain or fully grasp the secret data possessed by many enterprises. All they can obtain is data on the books of some companies. So in this regard, it is impossible to accurately estimate the future investment and profitability of the evaluated company. It is precisely because of this that everyone can judge and evaluate the company’s excess profits by using gray forecasting technology.

Artificial neural network is a mathematical model based on intelligent algorithms, which can prompt hNNs to make corresponding adjustments to data nodes and finally complete the function of transmitting information. Not only that hNNs must also have the ability to learn independently and regulate themselves. It is an emerging neural network model with fruitful theoretical results and a wide range of practical applications. Its basic working principle is a multilevel, prefeedback system network trained according to the error back propagation algorithm, which can master, learn, analyze, and store a large number of mapping models of the relationship between inputs and outputs, without having to learn before being studied. Obtain or accurately reveal the mapping relationship between them. Generally speaking, the BP neural network is often considered to be subdivided into three network layers, which are called the network input and output layer, the middle layer, and the input and output middle layer. Only need to have these three input layers, it can be used as a one-way mapping that can be directly used to complete the input to at least output from multiple layers, as shown in Figure 1.

From Figure 1, we can easily observe that the neurons at each level are connected to each other, so that the relationship between input data and output data can be expressed. BP neural network also has many advantages. It has its own powerful self-learning ability. The conclusions obtained from the research are considered to be applicable to scientific research and continue to develop creatively. Although this method has many technical advantages, it also has some shortcomings. The biggest main problem is that all its models require gradient descent methods. This calculation method makes its calculation speed slow. If the original data we need to select are particularly large, the calculation method will take a lot of time.

In the above analysis, we can easily know that the BP neural network can accurately reflect a nonmapping characteristic between the two kinds of information. At the same time, we are also clear that in the process of daily management of the company’s asset risk assessment, many factors that affect the company’s value are indirect. Although this method has been explored and studied in many fields, it is still new in the enterprise’s goodwill risk assessment. The value of goodwill will be affected by many factors, and its influence mechanism is also complicated, so it is inevitable for us to use a so-called linear expression to reflect the loss of goodwill caused by these factors. However, BP neural network is suitable for processing this kind of complex information data due to its own learning ability and certain self-regulation ability.

4.4. Model Effect Experiment Based on Artificial Intelligence Optimization

Suppose that a survey questionnaire involving nine main aspects of the company’s goodwill is distributed to 1,000 staff including administrative department experts, consumers, appraisers, and corporate management, and positive feedback is obtained. After data analysis, a comprehensive evaluation report form (Table 1) on the actual operating status of all the company’s goodwill was obtained.

The business risk impact factor of an enterprise is also an evaluation and judgment team composed of experts, professional evaluators, and various departments in the...
management stage of the enterprise. It independently provides the leadership and operational capabilities of the enterprise, the degree of standardization of enterprise management, and the quality of all employees of the enterprise. The five main indicators of corporate crisis management mechanism and corporate external comprehensive risk are scored and weighted. We have already analyzed the gray forecast model in detail. If we use this method, we only need to simulate a single variable based on some influencing factors that may cause losses. The specific content mainly includes the net sales income of the liquor commodity industry rate, asset turnover rate, and equity multiplier. We have already introduced the gray forecasting method for you before predicting the net sales margin. Therefore, according to the theoretical reasons, you only need to add MATLAB tools in Table 2 to directly obtain the results shown in Table 2.

Through the related Figure 2 of MATLAB, it is not difficult to find that the predicted value is hovering in the middle of the historical value.

From Table 2 and Figure 2, it is easy to find that the industry’s net profit value has never declined in the past ten years. Seven years ago, due to the implementation of relevant national laws and regulations, it was also due to discounts in the Chinese liquor industry. A series of vicious competition has occurred, which has directly led to a substantial narrowing and decline of its net sales margin. However, this time from 2017 to 2019, it has reached the bottom, and since then net profit began to pick up gradually. In the past two
years, people’s living and consumption levels have improved faster and faster, which has restored the net profit margin of this industry to a higher level. Therefore, the calculation results of the model are used. As shown, it is expected to continue to stabilize at around 16%. The forecast of asset turnover rate has already introduced the gray forecasting method for everyone. Therefore, according to its theory, only need to choose some novel methods in MATLAB tools and add them to the relevant initial data of asset turnover rate in the liquor industry. Historical value and forecast value of asset turnover rate in liquor industry results shown in Table 3.

Through MATLAB’s related Figure 3, it is not difficult to find that the predicted value is hovering in the middle of the historical value.

From Table 3 and Figure 3, it is easy to find that since about ten years ago, the asset turnover rate of the liquor product industry has been maintained at a high level. In the past ten years, and the data have been maintained at 40–60%. This may be because since that period, China's market economy development environment has begun to improve, and the economic growth rate has also become faster and faster. At the same time, laws and regulations have not been officially promulgated and promulgated, so their sales status is particularly special. Great. However, since the implementation of new laws and regulations, the main business income of liquor companies has decreased a lot, and the fixed asset turnover rate of other liquor industries has been maintained at a low level of 53% for a long time. Therefore, according to the calculation results of the model, it is expected that it will stabilize at about 48%. The prediction of equity multiplier has already introduced the gray prediction method to everyone. Therefore, according to its actual theoretical principles, it is only necessary to selectively add the MATLAB method to the relevant initial data for the prediction of the asset turnover rate of the liquor industry in the tool. It is possible to obtain the results shown in Table 4.

Through MATLAB’s related Figure 4, it is not difficult to find that the predicted value is hovering in the middle of the historical value.

From Table 4 and Figure 4, we can clearly see that due to the inherent and unique characteristics of the current Chinese modern liquor industry, it has long been the development of self-owned enterprises without direct
financing. In fact, it is in the first few years. When the market conditions were particularly severe, the investment equity value multiplier of the liquor industry did not really reach 1.8. This shows that even if the management and financing of liquor enterprises are difficult, they may not directly consider external loan application. Therefore, according to the actual calculation results of the calculation model, it is expected that it will be basically stable at 1.5. You only need to directly add the MATLAB tool file and import it into the expected equity rate and net interest rate of the liquor industry and related initial income statistics to obtain the results shown in Table 5.

Although the model using BP neural network will have many advantages, we often need to fully consider many factors such as interference in reality. As we mentioned before, not only the number of impact factors that need to be screened but also in many cases will directly affect the speed and slowness of the calculation in the model, and we also need to carefully consider that there are some other impact factors we currently have. There is no way to describe and express in the form of data. Due to the above factors, if you want to accurately predict the current equity net interest rate of the liquor industry, you must screen and identify the influencing factors. Figure 5 summarizes the statistical data of the net interest rate of shareholders’ equity in the national liquor product industry predicted from MATLAB calculations:

The gray prediction model is similar to the prediction sequence and method in the previous article. According to the same calculation scheme, the statistical data of the next 5 years are predicted and evaluated: through the relevant results of MATLAB as shown in Figure 6, it is not difficult to see that the predicted value has been hovering at the middle of the historical value.

From Figure 6, we can clearly see that the overall sales and net profit margin of the listed company have maintained a steady growth trend in recent years. Compared with the industry average ratio level in the same period, the ratio this year is even higher.

5. Conclusion

The Bayesian method can not only effectively realize the use of a priori data and analyze the posttest judgment
information, avoid the subjective misunderstanding of using various prior data alone to judge, but also overcome the use of various sample data. The subjective blindness of the prior information analysis and learning, and the full use of prior data and materials for posttest judgments, which can enable Bayesian method technology to obtain more in-depth research and popularization and application in modern machine learning. The main purpose of this paper is to address the common shortcomings of Bayesian methods and is deeply influenced and inspired by the theory of three-dimensional vector space machine theory. Based on the research of Bayesian theory, a sparse Bayes model is proposed. It is widely used in text classification and regression related issues, and a more in-depth theoretical study is carried out on this issue. Based on the research method of FMLM optimization, this paper proposes a Bayesian learning optimization algorithm that effectively makes full use of the sparse correlation optimization properties. At the same time, a general optimization learning algorithm for sparse signal reconstruction in three-dimensional space is proposed. From the beginning, this article briefly introduces the basic theoretical viewpoints of goodwill evaluation and the basic concepts proposed in the traditional model of goodwill evaluation. Then, it introduces an analytic hierarchy process in detail and conducts a specific feasibility study on whether the scheme is reasonable in practical application. The marketing technology capability is divided into six dimensions of the company’s brand awareness, consumer loyalty, after-sales service, market promotion, market expansion speed, and market share. Divide a company’s management capabilities into five types: corporate culture and management capabilities, corporate planning, organization and management capabilities, corporate quality and cost control capabilities, corporate teamwork and communication capabilities, and corporate labor and personnel management ability. Then, use the questionnaire survey method to test the weights and scores of the measured influencing factors and calculate the comprehensive adjustment coefficient based on the fuzzy comprehensive evaluation method, which is the degree of goodwill G. Finally, goodwill G is used to revise the original conclusion drawn from the traditional rate of return assessment. On this basis, the main purpose of improving the evaluation results is achieved.

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work in this article was supported by Anhui University of Finance and Economics.

References

[1] M. S. Hossain, “Merger & Acquisitions (M&As) as an important strategic vehicle in business: thematic areas, research avenues & possible suggestions,” Journal of Economics and Business, vol. 116, Article ID 106004, 2021.

[2] A. B. Chui and W. Ip, “Improving merger and acquisition decision-making using fuzzy logic and simulation,” International Journal of Engineering Business Management, vol. 9, Article ID 184797901771152, 2017.

[3] J. Kwon, C. Kim, and K. C. Lee, “Moderating effect of the continental factor on the business strategy and M&A performance in the pharmaceutical industry for sustainable international business,” Sustainability, vol. 12, no. 12, p. 4985, 2020.

[4] J. J. Hunter, “Coupling and mixing times in a Markov chains,” Research Letters in Information and Mathematical Science, vol. 11, pp. 1–22, 2007.

[5] J. J. Hunter, “Mixing times with applications to perturbed Markov chains,” Linear Algebra and its Applications, vol. 417, no. 1, pp. 108–123, 2006.

[6] A. Mahmood, K. Shi, S. Khatoon, and M. Xiao, “Data mining techniques for wireless sensor networks: a survey,” International Journal of Distributed Sensor Networks, vol. 9, no. 7, Article ID 406316, 2013.

[7] E. Luo, G. Wang, and C. Li, “Research on clustering algorithm for multi-dimensional data deduplication in big data environment,” Mini-Micro Systems, vol. 37, no. 03, pp. 40–44, 2016.

[8] D. K. Pratihar, Soft Computing, Narosa Publishing House, New Delhi, India, 2nd edition, 2008.

[9] R. K. Sivagaminathan and S. Ramakrishnan, “A hybrid approach for feature subset selection using neural networks and ant colony optimization,” Expert Systems with Applications, vol. 33, no. 1, pp. 49–60, 2007.

[10] M. A. Tahir, A. Bouridane, and F. Kurugollu, “Simultaneous feature selection and feature weighting using Hybrid Tabu Search/K-nearest neighbor classifier,” Pattern Recognition Letters, vol. 28, no. 4, pp. 438–446, 2007.

[11] S. Liu, Z. Du, J. Tao et al., “Cambricon: an instruction set architecture for neural networks,” ACM SIGARCH - Computer Architecture News, vol. 44, no. 3, pp. 393–405, 2016.

[12] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay, “Neurocube: a programmable digital neuromorphic architecture with high-density 3D memory,” in Proceedings of the International Symposium on Computer Architecture, Seoul, Republic of Korea, June 2016.

[13] N. L. Leech, J. A. Gliner, G. A. Morgan, and R. J. Harmon, “Use and interpretation of multiple regression,” Journal of the American Academy of Child & Adolescent Psychiatry, vol. 42, no. 6, pp. 738–740, 2003.

[14] J. Wei, Z. Ouyang, and H. A. Chen, “Well known or well liked? The effects of corporate reputation on firm value at the onset of a corporate crisis,” Strategic Management Journal, vol. 38, no. 10, pp. 2103–2120, 2017.

[15] C. J. Fombrun, The Building Blocks of Corporate Reputation: Definitions, Antecedents, Consequences, Oxford Handbooks, The New York Public Library, 2012.

[16] A. Babic Rosario, F. Sotgiu, K. De Valck, and T. H. A. Bjimolt, “The effect of electronic word of mouth on sales: a meta-analytic review of platform, product, and metric factors,” Journal of Marketing Research, vol. 53, no. 3, pp. 297–318, 2016.