Chemical Composition and Antimicrobial Activity of Essential Oils Isolated from Aerial Parts of Prangos asperula Boiss. (Apiaceae) Growing Wild in Lebanon

Mneimne M1, Baydoun S2, Nemer N1 and Apostolides NA1,2
1Faculty of Agricultural and Food Sciences, USEK, Kaslik, Lebanon
2Research Center for Environment and Development, Beirut Arab University, Lebanon

Abstract

Prangos species have been commonly used in traditional medicine in East Mediterranean and Middle Eastern countries. The hydrodistilled essential oils by HDC from different fresh aerial parts (stems and leaves, flowers and fruits) of Prangos asperula Boiss., growing wild in Lebanon were analyzed by gas chromatography-mass spectrometry. Forty two, 46 and 4 compounds representing 75.5%, 86.9% and 99.8% of the total fresh stems and leaves, flowers and fruits oils were, respectively, identified. The main compounds characterizing these oils were nerolidol (15.2%), p-meth-3-ene (13.3%), β-myrcene (9.2%) in stem and leaves; p-meth-3-ene (14.9%), nerolidol (14.7%), β-phenandrene (7.9%) in flowers; sabinene (43.5%), β-phenandrene (36.1%), α-phenandrene (11.9%) and α-terpinene (8.3%) in fruits. The antimicrobial activity of the total essential oil evaluated by growth inhibition and MIC values revealed variable levels of susceptibility in the tested bacteria and fungi. S. aureus displayed highest sensitivity (15.06 mm, MIC 5.0 µl), followed by E. coli (11.80 mm, MIC 10.0 µl), A. fumigatus (9.16 mm, MIC 10.0 µl), T. mentagrophytes (7.3 mm, MIC 25 µl), S. enteitis (3.8 mm, MIC 25 µl) and C. albicans (1.96 mm, MIC 50 µl). The oil displayed a remarkable activity against both S. aureus being more effective than the antibiotic Norfloxacine (10 µg) and T. mentagrophytes which was completely resistant to the antifungal Nystatine (100 µg). The findings confirm the traditional use and promising potential of the antibacterial properties of this plant oil. This opens the possibility for further research on other biocidal activities and investigations of individual antimicrobial and antifungal component.

Keywords: Prangos asperula; Essential oils; Nerolidol; Sabinene; Antimicrobial activity

Introduction

Prangos is a perennial genus of the Apiaceae family distinguished by its winged fruits [1]. It consists of about 30 worldwide species with a diversity center being situated in the Iran-Turanian phytogeographic region [2]. Prangos species have been commonly used in traditional medicine in East Mediterranean and Middle Eastern countries. Numerous studies have cited Prangos species as carminative, wound healing, haemostasis, antiflatulent, antihaemorrhoidal, antihemimtic, antispasmodic and antimicrobial in a wide range of diseases [3-9]. Prangos species are also indicated in the treatment of leucoplaikia and digestive disorders and to have anti-HIV and antioxidant activities [4,10,11]. Similarly to Ferula and Ferulago, the roots have aphrodisiac properties [12,13]. More recently, insecticidal properties against Mediterranean flour moth (Ephestia kuehniella) found in stored food products, such as cereals are also displayed [14].

Recent phytochemical investigations on different species have led to the isolation of coumarins, flavonoids, alkaloids, terpenoids and other compounds from the different plant parts which have attracted considerable attention due to their pharmacological properties supporting the traditional use [4,5,13,15-23].

Prangos asperula Boiss., commonly known as Farsh Al Dabe’è, is the only native Prangos species that grows wild in the upper mountainous regions of Lebanon (Tannourine, Dahr el Baydar, Ehden, Shouf, Kefraya, Rachaiya). P. asperula has been traditionally used as remedy of skin diseases, wounds infections and as carminative against aerocol and in the treatment of diabetes [24]. Studies on the plants growing wild in Lebanon have reported a remarkable antimicrobial activity of aerial parts against some Gram-positive and Gram-negative bacteria and interesting antiproliferative effects of leaves essential oil on renal adenocarcinoma cell line [25,26].

Forty-two terpenes were identified in P. asperula essential oil, representing 92.1% of total oil. Sabinene (20.6%), β-phenandrene (19.0%), γ-terpinene (9.0%), α-pinene (8.4%), and α-phenandrene (6.1%) were the most representative constituents. Other interesting oil components were δ-3-carene, p-cymene and α-bisabolol. Sabinene, α-pinene, α-phenandrene and δ-3-carene were tested for their cytotoxic activity on tumor cell in vitro models. None of the compounds was found active. It was concluded that major and minor constituents may act in synergy with the other cytotoxic components of the essential oils [24,26]. Other investigations on the fruit oil of the plant from Iran demonstrated that δ-3-carene, β-phenandrene, α-pinene, α-humulene, germacrene D and δ-cadinene were the major components of the essential oil of fruits [27], while δ-3-carene, α-terpinolene, α-pinene, limonene, 2,3,6-trimethyl benzaldehyde, bornyl acetate, osthol and cis-chrysanthenele acetate were the most representative constituents of the aerial parts essential oil [28,29]. In the latter study, investigators were also able to isolate in the hexane extract of the fruits the...
prenylated coumarin osthol recognized to be effective the prevention of atherosclerosis, suppression of hepatic lipids, antitumor and anti-inflammatory among its major bioactivities.

This study concerns a comparative analysis of essential oils composition from different aerial plant parts of *P. asperula* growing wild in Lebanon and assessment of their antimicrobial activity.

Material and Methods

Plant material

Aerial parts of the wild growing *P. asperula* were collected at random from Tannourine in the North of Lebanon in July 2014, at 1750 meters. The species identification was performed using the determination keys of the New Flora of Lebanon and Syria [30]. A voucher specimen (RCED 2015-295) was deposited at the herbarium of the Research Center for Environment and Development, Beirut, Arab University, Lebanon.

Essential oil isolation

The essential oils from fresh leaves and stems, flowers and fruits of *P. asperula* were hydrodistilled by Clevenger-type apparatus for three hours [31]. The volatile oils were dried using anhydrous sodium sulphate and then stored in sterile sealed vials in the dark at 4°C until analysis. The yield percentages of oils were calculated based on fresh weight of plant parts.

Bacterial and fungal strains

Certified bacterial and fungal strains (Medi Mark, Europe) were used. They were two pathogenic Gram+ bacteria: *Enterococcus faecalis* (ATCC 29212), *Staphylococcus aureus* (ATCC 25923); two Gram negative bacteria: *Escherichia coli* (ATCC 8739), *Salmonella enteritidis* (ATCC 13076); two fungal strains: filamentous *Aspergillus fumigatus* (ATCC 1022), dermatophyte *Trichophyton mentagrophytes* (ATCC 9533); and the yeast *Candida albicans* (ATCC 10231).

GC and GC-MS analyses

Gas chromatography with mass spectrometry (GC-MS) was used to identify essential oils compounds. The analysis was performed by Agilent Technologies 7890 gas chromatography equipped with a Flame Ionization Detector (FID) and a HP-5 MS 5% capillary column (30 m x 0.25 mm x 0.25 μm film thickness). Mass spectra were recorded at 70 eV of electron energy and a mass range of 50-550 m/z. The carrier gas was Helium at a flow of 0.8 ml/min. The initial column temperature was 60°C programmed to increase to 280°C at a rate of 4°C/min. The split ratio was 1:40. The injector temperature was set at 300°C. The purity of helium gas was 99.99%. A sample of 1 ml was injected manually in the split mode. Components identification was based on retention indices and comparison with mass spectral data of authentic standards and computer matching with Wiley 229, NIST 107, NIST 21 libraries as well as by comparing the fragmentation patterns of the mass spectra with those reported in the literature.

Antimicrobial activity by disc diffusion method

The antibacterial and antifungal activity of total essential oil was carried out by disc diffusion method using 100µl of suspension containing 10⁸ CFU/ml of bacteria spread on Mueller-Hinton agar medium (Merck). Sterile 6 mm diameter filter paper discs (Whatman No. 3) were impregnated with 10 µl of essential oil and were placed on the agar. Standard reference discs of the antibiotics Norfloxacin (10 µg) and Nystatin (10 µg) were used as standard antibacterial or antifungal agents and positive controls. Each test was run in triplicate and the mean values were considered. A blank disc was used as a negative control. The bacterial cultures were incubated at 37°C for 24 h. Whereas, *Candida albicans* and *Trichophyton mentagrophytes* were incubated at 27°C for 48 h and 5 days, respectively. The diameters (mm) of growth inhibition zones around discs were measured using a caliper.

Minimum Inhibitory Concentration (MIC) by agar dilution method

MICs were determined by agar dilution method approved by NCCLS (1997). A series of four concentrations of oil (5, 10, 25 and 50 µl) with 0.5% (v/v) Tween-20 were added to a one ml of microbial suspension containing approximately 10⁹ CFU/ml of each organism in Mueller Hinton broth, Tween-20 (Sigma) was used to enhance the solubility of essential oil in broth. 100 µl of each mixture was spread on Mueller Hinton agar plates. The plates incubated with bacteria were incubated at 37°C for 24 h. MICs determined as the lowest concentration of oil inhibiting the visible growth of each microorganism on agar plates were determined. All tests were performed in triplicates.

Results

Composition of essential oil

The yields of oils of stems and leaves, flowers and fruits were 0.09%, 0.22 % and 0.21%, respectively. 42 compounds were identified in the oil from leaves and stems representing 75.5% of the total, 46 compounds in the flowers oil representing 86.9% of total and 4 compounds in the fruits oil representing 99.8% of total (Table 1).

The main components of stems and leaves oil were nerolidol (15.2%), *p*-menth-3-ene (13.3%), β-myrcene (9.2%), β-farnesene (4.8%), cis-β-ocimene (3.5%), α-farnesene (3.4%), α-phellandrene (3.2%), α-bisabolol (3.1%), α-caryophyllene (3%), neo-allo-ocimene (1.9%), α-bergamotene (1.8%), cis-α-bisabolene (1.3%), o-cymol (1.2%), 2-thujene (1.1%) and safranal (1.1%). Hydrogenated monoterpenes dominated the chemical composition (34.1%), followed by oxygenated sesquiterpenes (19.4%) and hydrogenated sesquiterpenes (19.1%), while oxygenated monoterpenes (2.9%) formed a minor share of this oil.

The main components of flowers oil were *p*-menth-3-ene (14.9%), nerolidol (14.7%), β-phellandrene (7.9%), α-caryophyllene (5.1%), β-farnesene (5.1%), neo-allo-ocimene (5.1%), α-phellandrene (4.3%), α-farnesene (4.2%), β-trans-ocimene (3.9%), α-bisabolol (2.7%), α-terpinene (2.7%), α-bergamotene (1.6%), α-terpinolene (1.4%), IR-α-pinene (1.2%), cis-β-ocimene (1.2%), α-cedrene (1.1%) and (+)-4-carene (1.1%). Similarly to the stems and leaves, hydrogenated monoterpenes formed the major share of constituents (44.7%) followed by hydrogenated sesquiterpenes (22.3%), oxygenated sesquiterpenes (18.7%) and oxygenated monoterpenes (1.2%).

Finally the major components of fruits were sabinene (43.5%), β-phellandrene (36.1%), α-phellandrene (11.9%) and α-terpinene (8.3%). Absolute dominance of hydrogenated monoterpenes is detected forming the sole group of identified compounds (99.8%), while oxygenated monoterpenes, hydrogenated sesquiterpenes and oxygenated sesquiterpenes were completely absent in the fruits oil.

Antimicrobial activity

The antimicrobial activity of the total essential oil evaluated by the disc diffusion method revealed variable levels of susceptibility in the tested bacteria and fungi (Table 2). The results showed that *S. aureus* had the highest sensitivity (15.06 mm) which was also more effective.
Discussion

The composition of essential oils in this study strongly illustrate
that major differences exist between the compositions of essential oils from different aerial parts of P. asperula. The oil of fresh fruits appeared as a major source for both sabine (43.5%), and β-phellandrene (36.1%), while aerial parts (stems, leaves and flowers) may together be considered as moderate sources for nerolidol (15.2% and 14.7%, respectively) and p-menth-3-ene (13.3 % and 14.9%, respectively). It is interesting to note that β-myrcene (9.2%) seemed to characterize the oil of stems and leaves only.

Although, a direct comparison between the composition of combined stems and leaves oils in this study with that reported of leaves in the later study were sabine (20.6%), and β-phellandrene (19.0%) with no presence of nerolidol or p-menth-3-ene which were the major constituents of our oil (15.2%, 13.3%, respectively). Moreover, only β-phellandrene as the second dominant constituent of the fresh fruit oil herein (36.1%) was also reported among the most representative compounds of the dry fruit of the plant growing in Iran (14.7%) [29]. No presence of sabine which was the major component of our fresh fruits oil (43.5%) was noted.

In general terms, neither of our oils displayed the presence of 2,3,6-trimethyl benzaldehyde or δ-3-carene which were reported as the major constituents in the aerial parts oil of the plant from Iran (18.4% and 18.0%, respectively) [29].

Comparisons with previous studies on the essential oils of other Prangos species showed considerable quantitative and qualitative variations in yield and composition. In the oils of the flowers/umbels of several other species, the main compounds reported were: β-pinene (35.58%); α-pinene (22.13%) and β-phellandrene (12.54%) in P. pabularia [32], α-pinene (33.87%) in P. pabularia [32], epi-globulol (21.1%) and β-elemene (19.7%) in P. scabra [18], α-pinene (31.78%) and β-bourbonene (15.9%) in P. uloptera [19].

Substantial differences were even also found in three different studies on flowers/umbels oil of P. ferulacea from Iran: β-pinene (20.6%) [34], linalool (19.0%); lavandulyl acetate (16.0%); 1,8-cineole (14.5%); α-pinene (12.4%) and geranyl isobutyrate (12.2%) [35], α-pinene (42.2%) and cis-ocimene (36.3%) [8].

Thus, both the major constituents of the flowers/umbels oil of P. asperula in this present study, p-menth-3-ene (14.9%) and nerolidol (14.7%), which were not previously reported in any of the above mentioned species seem to be distinctive to our plant.

In the fruits oil, similarly to our results sabine (26.1%) was reported as a major constituent in P. denticulata [13]. On the contrary, α-pinene representing the main constituent of P. ferulacea; P. pabularia and P. uloptera (63.1%, 21.46%, 14.98%, respectively) was absent in our plant [8,19,33]. In addition, neither of the following reported major constituents was noted in our results: chrysanthenyl acetate (26.53%), limonene (19.59%), α-pinene (19.50%) in P. ferulacea [7], β-elemene (19.9%), β-farnesene (16.2%) in P. scabra [19], α-humulene (16.6%); bicyclogermacrene (16.1%); spathulenol (10.6%) in P. pabularia [17], germacrene-D-4-ol (42.8%) in P. borrnmuelleri [36], γ-terpinene (30.22% and 33.27%); α-pinene (16.71% and 12.83%) in crushed and whole fruits yielded oils of P. ferulacea, respectively [37], β-isobolabol (53.3%) and β-isobabolol (14.6%) in P. heynsiae [15], and p-cymene (10.9%) in P. uchtriitzii [16].

In conclusion, the above mentioned variability in oil composition from different species cited and P. asperula, sufficient to allow distinction of different chemotypes, are the result of an adaptive process of the plant to a particular ecological conditions (geographical regions, climatic conditions, period of collection, plant part, state of plant- dry or fresh- and extraction methods).

Further, the antimicrobial activity of the tested oil is in line with the findings of a previous study testing the oil of the plant from Lebanon against several microorganisms all of which exhibited remarkable activity supporting the traditional use of plant in the treatment of wide range of diseases and confirming its promising potential of the antibacterial properties of this plant oil [25]. Some of the main compounds are reported to possess antimicrobial activities. In particular, nerolidol, β-phellandrene, sabine are reported to possess antibacterial and antifungal activity [38-40].

The findings can further underline the importance of the ethno-botanical approach to select plants that contain new antimicrobial substances, particularly when considering the increased development of resistance of bacteria, fungi and yeast to antibiotics.

The strong inhibitory activity of the oils, particularly on S. aureus and T. mentagrophytes, may be related to hydrogenated monoterpene components which constituted 34.1%, 44.7%, 99.8% of the oil of stems and leaves, flowers and fruits, respectively. However, it is difficult to attribute the activity of a complex mixture to a single or group of constituents especially when some evidence that minor components have a critical part to play in antimicrobial activity, possibly by producing a synergistic effect with various components [24,26,41-42].

Conclusion

P. asperula is one of Lebanese indigenous plants which possess many medicinal properties. The study presents for the first time knowledge on the composition of the oils of stems and leaves, flowers and fruits which appear as unique and substantially different from previously reported oils. The antimicrobial activity suggests a potentiality for a new source of antimicrobial compounds to be applied in pharmaceutical industry. Further studies are needed for a better understanding of the biological properties of the oils and their constituents.

References

1. Davis PH (1988) Flora of Turkey and the East Aegean islands. Edinburgh University Press, 10.
2. Duran A, Sagiroglu M, Duman H (2005) Prangos tuscica (Apiaceae), a new species from South Anatolia, Turkey. Finnish Zoological and Botanical Publishing Board. In: Annales Botanici Fennici 67-72
3. Ulubelen A, Topcu G, Tan N, Oclat S, Johansson C, et al. (1995) Biological activities of a Turkish medicinal plant, Prangos platyclaena. J Ethnopharmacol 45: 193-197.
4. Shikishima Y, Takashi Y, Honda G, Ito M, Takeda Y, et al. (2001) Chemical Constituents of Prangos tischinganica; Structure Elucidation and Absolute Configuration of Coumarin and Furanoocoumarin Derivatives with Anti-HIV Activity. Chemical and Pharmaceutical Bulletin 49: 877-880
5. Tada Y, Shikishima Y, Takashi Y, Shibata H, Higuti T, et al. (2002) Coumarins and gamma-pyrone derivatives from Prangos pabularia: antibacterial activity and inhibition of cytokine release. Phytochemistry 59: 649-654.
6. Uzel A, Dirirmc T, Celik A, Arabaci T (2006) Composition and antimicrobial activity of Prangos platyclaena and P. uchtriitzii. Chemistry of Natural Compounds 42: 169-171.
7. Massumi MA, Fazeli MR, Alavi SHR, Ajani Y (2007) Chemical constituents and antibacterial activity of essential oil of Prangos ferulacea (L.) Lindl. fruits. Iranian Journal of Pharmaceutical Sciences 3: 171-176.
8. Razavi SM, Nazemiyeh H, Zarrini G, Asna-Asharii S, Dehghan G (2010) Chemical composition and antimicrobial activity of essential oil of Prangos ferulacea (L.) Lindl from Iran. Nat Prod Res 24: 530-533.
9. Sadrzai H, Shokoohinia Y, Sajjadi SE, Ghadirian B (2012) Antispasmodic effect of osthole and Prangos ferulaece extract on rat utters smooth muscle motility. Res Pharm Sci 7: 141-149.

10. Dokovic DB, Bulatovic VM, Bozic BD, Kataranovski MV, Zrakic TM, et al. (2004) 3,5-Nonadine isolated from the rhizome of Cachrys ferulaecea inhibits endogenous nitric oxide release by rat peritoneal macrophages. Chem Pharm Bull (Tokyo) 52: 853-854.

11. Coruh N, Sagdicoglu Celep AG, Ozgokce F (2007) Antioxidant properties of Prangos ferulaca (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desv. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry, 100: 1237–1242.

12. Baytov T (1999) Therapy with Medicinal Plants in Turkey-Past and Present. 2nd Ed, Nobel Tip Basimevi, Istanbul, 348-349.

13. Kilic CS, Coskun M, Duman H, Demirci B, Basier KH (2010) Comparison of the essential oils from fruits and roots of Prangos denticulata Fisch. et Mey. growing in Turkey. Journal of Essential Oil Research, 22: 170-173.

14. Ercan FS, Hatice BAS, Murat KOC, Pandir D, Oztemiz S (2013) Insecticidal activity of essential oil of Prangos ferulaca (Umibelliferae) against Ephestia kuehniella (Lepidoptera: Pyralidae) and Trichogramma embryophagum (Hymenoptera: Trichogrammatidae). Turkish Journal of Agriculture and Forestry, 37: 719-725.

15. Basier KHC, Ozek T, Demirci B, Duman H (2000) Composition of the essential oil of Prangos heyniae H. Dumanet MF Watson, a new endemic from Turkey. Flavour and Fragrance Journal, 15: 47-49.

16. Oztan M, Bagio Y, Akgiul A, Dural H, Novak J (2000) Chemical composition of the essential oil of Prangos eucnidioid Boiss. et Hausktnn fnruits from Turkey. Journal of Essential Oil Research, 12: 183-185.

17. Ozek G, Ozek T, Iscan G, Basier KHC, Hamzaoglu E, Duran A (2007) Comparison of hydrodistillation and microdistillation methods for the analysis of fruit volatiles of Prangos pbularia Lindl. and evaluation of its antimicrobial activity. South African Journal of Botany, 73: 563-569.

18. Nazemiyeh H, Razavi SM, Delazar A, Hajiboland R, Mozaffarian V, et al. (2007) Essential oil composition of the umbels and fruits of Prangos ulotopa DC. Natural Product Communications, 2: 89-91.

19. Nazemiyeh H, Razavi SM, Hajiboland R, Delazar A, Esna-Ashari S, et al. (2007) Composition of the essential oils of Prangos scabra fruits and inoffore from Iran. Chemistry of Natural Compounds, 43: 736-737.

20. Razavi SM, Nazemiyeh H, Hajiboland R, Kumaranasamy Y, Delazar A, et al. (2008) Coumarins from the aerial parts of Prangos ulotopa (Apiaceae). Revista Brasileira de Farmacognosia, 18: 1-5.

21. Sajjadi SE, Shokoohinia Y, Gholamzadeh S (2011) Chemical composition of essential oil of Prangos ferulaca (L.) Lindl. roots. Chemija, 22: 178-180.

22. Kafash-Farkhad N, Asadi-Samani M, Rafieian-Kopaei M (2013) A review on essential oil of Prangos ferulaca (Umbelliferae) against endogenous nitric oxide release by rat peritoneal macrophages. Chem Pharm Bull (Tokyo) 52: 853-854.

23. Abbas MT, Esmaeii A, Zarea AH, Saad N, Bagheri F (2010) Chemical composition and antibacterial activity of essential oil from stems and flowers of Prangos ferulaca (L.) Lindl. grown in Iran. Bulgarian Chemical Communications, 42: 36-39.

24. Sajjadi SE, Mehregan I (2003) Constituents of essential oil of Prangos asperula subsp. Hausktnkltif (Boiss.) Herrm. Heyn. DARU Journal of Pharmaceutical Sciences, 11: 2-79.

25. Mirzaei HH, Ramezani Z (2008) Volatile components of the essential oil of Prangos ferulaecea from West of Iran. Asian Journal of Chemistry, 20: 3763.

26. Sajjadi SE, Zeinivand H, Shokoohinia Y (2009) Isolation and identification of osthole from the fruits and essential oil composition of the leaves of Prangos asperula Boiss. Research in Pharmaceutical Sciences, 4: 19-23.

27. Sajjadi SE, Mehregan I (2003) Constituents of essential oil of Prangos asperula subsp. Hausktnkltif (Boiss.) Herrm. Heyn. DARU Journal of Pharmaceutical Sciences, 11: 2-79.

28. Mouterde P (1970) New Flora of Lebanon and Syria, El Mashreq. Edition de L’Imprimerie Catholique-Beyrouth, Tome I, II and III.

29. European Directorate for the Quality of Medicines (2008) 6th Edn: European Pharmacopoeia.

30. Brusotti G, Ibrahim MF, Dentamoro A, Gilardoni G, Tosi S, et al. (2013) Chemical composition and antimicrobial activity of the volatile fractions from leaves and flowers of the wild Iraqi Kurdish plant Prangos peucedanifolia Fenzl. Chemistry & Biodiversity, 10: 274-280.

31. Razavi SM (2012) Chemical and allelopathic analyses of essential oils of Prangos pabularia Lindl. from Iran. Nat Prod Res 26: 2148-2151.

32. Taherkhani M, Rustaiyan A, Masoudi S (2012) Volatile Constituents of the Aerial Parts of Ferulago subulatulina Rech. f., Ferulago stellata Boiss., Leaves and Flowers of Prangos ferulaca (L.) Lindl. and Leaves of Ferula ovina (Boiss.) Boiss.: Four Umbelliferae Herbs from Iran. Journal of Essential Oil Research, 24: 1601-1606.

33. Akbari MT, Esmaeili A, Zarea AH, Saad N, Bagheri F (2010) Chemical composition and antibacterial activity of essential oil from leaves, stems and flowers of Prangos ferulaca (L.) Lindl. grown in Iran. Bulgarian Chemical Communications, 42: 36-39.

34. Basier KHC, Kurkcuoglu M, Duman H (1999) Steam volatiles of the fruits of Prangos bornmuelleri Hub.-Mor. et Reese. Journal of Essential Oil Research, 11: 151-152.

35. Basier KHC, Ermin N, Adiguzel N, Aytac Z (1996) Composition of the essential oil of Prangos ferulaca (L.) Lindl. Journal of Essential Oil Research, 8: 297-298.

36. Togashi N, Inoue Y, Hamashima H, Takano A (2008) Effects of two terpene alcohols on the antibacterial activity and the mode of action of farnesol against Staphylococcus aureus. Molecules 13: 3069-3076.

37. Park MJ, Gwak KS, Yang I, Kim KW, Jeung EB, et al. (2009) Effect of citral, eugenol, nerolidol and α-terpinol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia, 80: 290-296.

38. Krist S, Banovac D, Tabanca N, Wedge DE, Gochev VK, et al. (2015) Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Nat Prod Commun 10: 143-148.

39. Cox SD, Mann CM, Markham JL, Bell HC, Gustafson JE, et al. (2000) The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J Appl Microbiol 88: 170-175.

40. Zouari S, Zouari N, Fahkafkh N, Bougafel A, Ayadi MA, et al. (2010) Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herbaalbaa Asso. Journal of Medicinal Plants Research, 4: 871-880.

OMICS International: Publication Benefits & Features

Unique features:

- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:

- 700 Open Access Journals
- 50,000 Editorial team
- Rapid review process
- Quality and quick editorial review and publication processing
- Indexing at PubMed (partial), Scopus, EBSCO, Index Copernicus, Google Scholar etc.
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission