Role of Fibrinolytic Enzymes in Anti-Thrombosis Therapy

Farwa Altaf1, Shourong Wu1,2* and Vivi Kasim1,2*

1The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China, 2The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China

Thrombosis, a major cause of deaths in this modern era responsible for 31% of all global deaths reported by WHO in 2017, is due to the aggregation of fibrin in blood vessels which leads to myocardial infarction or other cardiovascular diseases (CVDs). Classical agents such as anti-platelet, anti-coagulant drugs or other enzymes used for thrombosis treatment at present could lead to unwanted side effects including bleeding complication, hemorrhage and allergy. Furthermore, their high cost is a burden for patients, especially for those from low and middle-income countries. Hence, there is an urgent need to develop novel and low-cost drugs for thrombosis treatment. Fibrinolytic enzymes, including plasmin like proteins such as proteases, nattokinase, and lumbrokinase, as well as plasminogen activators such as urokinase plasminogen activator, and tissue-type plasminogen activator, could eliminate thrombi with high efficacy rate and do not have significant drawbacks by directly degrading the fibrin. Furthermore, they could be produced with high-yield and in a cost-effective manner from microorganisms as well as other sources. Hence, they have been considered as potential compounds for thrombosis therapy. Herein, we will discuss about natural mechanism of fibrinolysis and thrombus formation, the production of fibrinolytic enzymes from different sources and their application as drugs for thrombosis therapy.

Keywords: thrombosis therapy, thrombolytic drugs, plasminogen activators, proteases, fibrinolytic enzymes

INTRODUCTION

In 2017, cardiovascular diseases (CVDs) caused 17.7 million deaths globally (CVDs) (Yusuf et al., 2020). Thrombosis is the formation of blood clot in both artery and venous arterial or venous circulation. Arterial thrombosis is caused mainly by accumulation of platelets, fibrin, and thrombin, which could lead to the formation and spreading of atherosclerotic plaque (Boos and Lip, 2006), and is the major cause of most cases of heart attack (myocardial infarction) (Mackman, 2008).

Fibrinogen is a large soluble plasma glycoprotein produced and released by the liver, and converted into polymeric fibrin by thrombin during damage to vascular system. Initiation of the blood clotting process occurs at the wound site when platelets are aggregated and a proteolytic cascade mechanism to convert fibrinogen into fibrin is started (Doolittle, 2010; Weisel and Litvinov, 2017). Normally these clots are hydrolyzed by plasmin; however, aberrant control of the hydrolysis process could cause hyperfibrinogenemia, which, subsequently, leads to a variety of thrombotic diseases such as stroke (Danesi et al., 2005; Chelluboa and Venuganti, 2019), abdominal aortic aneurysm (Parry et al., 2009; Kapetanios et al., 2019), peripheral vascular disease (Altes et al., 2018), pulmonary embolism (Klovaite et al., 2013), and cardiovascular disease (CVD) (Tatli et al., 2009; Liu et al., 2020).
Various anti-coagulants like heparin, fondaparinux, idraparinux (Gross and Weitz, 2008), warfarin (Kneeland and Fang, 2010), and rivaroxaban have been used for treating thrombosis; however, they could also cause side effects such as bleeding, which is the major problem in all anti-coagulants, hemorrhages (Stam et al., 2002), and long term adherence. Furthermore, solving uncertainty about their dosing and expensive process are also in urgent (Bauer, 2013; Burgazli et al., 2013). Thrombolytic agents such as urokinase and plasminogen activators have been extensively used for treating thrombosis; however, in addition to their high costs, they might also caused internal hemorrhage within the intestinal tract when administered orally (Flemmig and Melzig, 2012; Kotb, 2012). Likewise, anti-platelets such as aspirin, prasugrel, and ticagrelor which are used to prevent clot formation, could also bleedings, including intracranial haemorrhage, skin bruising, and gastrointestinal bleeding (Swan et al., 2020). These draw backs have evoked researchers to look for safer and cheaper resources (Flemmig and Melzig, 2012; Kotb, 2012; Kotb et al., 2015).

Fibrinolytic enzymes are involved in the degradation of fibrin clots, by either catalyzing fibrin degradation process or by transforming the inactive plasminogen into active plasmin, thus re-establishing the normal blood vascular architecture (Krishnamurthy et al., 2018). They are largely proteases, which are involved in the total hydrolysis of proteins, and can be produced from all living cells especially bacteria. On the basis of their site of actions, proteases could be divided into two groups: endopeptidases and exopeptidases; while on the bases of the distinct functional groups located at the active site, they could be classified into five types, namely cystein proteases, serine proteases, threonine proteases, metalloproteases and aspartic proteases (Flemmig and Melzig, 2012). Fibrinolytic enzymes have been discovered from different sources such as microorganisms, plants, animals and fermented products, and among them, the most important sources are microorganisms, especially genous Bacillus from the traditional fermented foods (Mine et al., 2005). Due to their property of dissolving the thrombus by directly degrading the fibrin at high rate, microbial fibrinolytic enzymes have the potential to be used as drugs for treating thrombosis and other related diseases (Kotb, 2012). In this review, we will outline the mechanisms of fibrinolysis, thrombus formation, isolation of fibrinolytic enzymes from different sources and their role in thrombus degradation.

THROMBUS FORMATION

Injury to the wall of blood vessel and eruption of blood from the circulation triggers the onset of thrombus formation through the processes including formation of atherosclerotic plaque, activation of platelets and coagulation pathways (Furie and Furie, 2008; Asada et al., 2018). The composition of thrombi is different in arteries and veins, venous thrombi are red clots due to abundance of fibrin and red blood cells, while arterial thrombi are white clots as they mainly composed of platelets aggregates (Franchini and Mannucci, 2008).

Activation of endothelial cells upon aggregation of cholesterol containing low density lipoprotein (LDL) serves as the initiation atherosclerotic process. Endothelial cells express chemokines and leukocyte adhesion molecules that boost the recruitment of T cells and monocytes to the site. Monocytes will then differentiate into macrophages and this will upregulate the expression level of pattern recognition receptors, including scavenger and toll-like receptors (TLRs) (Lippi et al., 2011). These pattern recognition receptors will in turn enhance the uptake of lipoproteins, which subsequently lead to the generation of foam cells. Binding of ligand to TLRs transfer macrophage-activating signals that results in the discharge of cytokines, proteases and other vasoactive molecules (Hodgkinson and Ye, 2011). T lymphocytes produce proinflammatory cytokines that interact with local antigens and support T-helper-1 cell responses within the atherosclerotic lesion, which further promote the plaque growth and enhance local inflammation (Lundberg and Hansson, 2010). Prolonged local inflammation results in the disruption and proteolysis of atherosclerotic plaque, leading to plaque erosion and rupture (Lippi et al., 2011).

Atherosclerotic plaques contain foam cells, tissue factor (TF), lipid droplets, necrotic cell debris and matrix constituents as well as other platelets activating molecules such as fibrinogen, fibrin, vitronectin, thrombospondin, von Willebrand factor (VWF, a plasma protein carrier for factor VIII essential for adhesion of platelets to the vessel wall), fibronectin, stromal derived factor 1, various types of collagens, LDLcholesterol sulfate and oxidized LDL. These molecules actively stimulate adhesion and accumulation of platelets along with emission of their heavy granules. Human atherosclerotic plaques induce the formation of arterial thrombi through a complex process involving platelets aggregation and accumulation, as well as the activation of blood coagulation, which subsequently leads to the formation of thrombus (Reininger Armin et al., 2010; Lippi et al., 2011).

Platelet aggregate formation is initiated by the interaction of platelet surface receptors glycoprotein Ib-IX-V (GPIb-IX-V, cluster of adhesive receptors on platelets) and glycoprotein VI (GPVI, a collagen receptor) with collagenous plaque components such as VWF and collagen, respectively. Then a shift in the conformation of integrins on the platelets triggers the initial phase of platelet accumulation, involving various factors such as glycoprotein IIb/IIIa (GPIb/IIIa, also known as GP2b/3a), fibrinogen-receptor-Ia/Ib (GP1a/IIa also known as integrin αIβ2, glycoprotein-receptor-Ia/Ib, GP1a/IIa also known as integrin αIβ1 for collagen binding), adenosine diphosphate (ADP), and thromboxance A2 (TXA2). GPIb/IIIa is a fibrinogen receptor attaches with VWF and fibrinogen and mediates tight adhesion, spreading, coagulation activity, and accumulation of platelets; while GP1a/IIa mediates collagen–platelet binding under low-shear-rate conditions, such as those near an atherosclerotic plaque, and strengthen the connection between collagen and glycoprotein VI (GPVI). Then ADP promotes platelets to undergo shape change, leading to the release of granule contents and platelets aggregation. Furthermore, thromboxance A2 (TXA2) acts as a positive feedback regulator that activates and recruits more platelets to the main hemostatic plug (Furie and Furie, 2008; Reininger Armin et al., 2010; Lippi et al., 2011).
After activation and recruitment of platelets, blood coagulation will be initiated by binding of tissue factor to factor VIIa (FVIIa) and thrombin burst, which encompasses the transformation of inactive proenzymes to into their respective serine proteases in a sequential manner, leading to thrombin generation (Reininger Armin et al., 2010). Thrombin burst will then be formed in the presence of factor XI (FXI), factor X (FX), and factor IX (FIX), which act as a physiological amplificatory mechanism propagating thrombin generation. During this, fibrin produced by the enzymatic action of factor X on fibrinogen and TAFI (thrombin-activatable fibrinolysis inhibitor) will also downregulate fibrinolysis by weakening the plasmin mediated fibrin breakdown to promote thrombin formation (Lippi et al., 2011). Together, thrombus formation is a complex, multifactors-regulated process involving the synthesis of atherosclerotic plaques, platelets aggregation, and blood coagulation.

FIBRINOLYSIS

Fibrinolysis is the enzymatic breakdown of fibrin network of blood clots by fibrinolytic enzymes (Bannish et al., 2017). This process is regulated by two steps: first, tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) convert plasminogen into serine protease plasmin and second, fibrin is broken down into fibrin degradation products, thus restoring the blood flow by dissolving the thrombus (Gue and Gorog, 2017). These processes are regulated by the engagement of substrates, cofactors, activators, receptors and inhibitors, which work synergistically to guarantee the fluidity of blood (Cesarman-Maus and Hajjar, 2005; Bannish et al., 2017).

The major fibrinolytic protease is plasmin formed by conversion of plasminogen by both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA). Through a positive feedback mechanism, plasmin cleaves the single chain of both uPA and tPA into two more active polypeptide chains. Plasmin generation is increased by the degradation of fibrin, the major substrate of plasmin, by binding both tissue plasminogen activator and plasminogen on its surface (Cesarman-Maus and Hajjar, 2005). In the absence of fibrin, tPA acts as a weak activator of plasminogen, while the presence of fibrin significantly increases the affinity between tPA and plasminogen, and thus enhances the catalytic efficiency of tPA in activating plasminogen. After being formed, plasmin produces soluble degradation products by cleaving the fibrin. The “kringles” 1 and 4 domains of plasminogen and 2 of tPA carry lysine binding sites, which enhance its binding to fibrin, thus causing the increased plasmin production and removal of fibrin (Kolev and Machovich, 2003; Cesarman-Maus and Hajjar, 2005).

In healthy person, the regulation of fibrinolysis is achieved by certain regulators including fibrinolysis inhibitors and plasminogen activator inhibitor. Fibrinolysis inhibitors, such as thrombin activatable fibrinolysis inhibitor (TAFI), and lysin analogues including tranexamic acid and epsilon aminocaproic acid (Bridge et al., 2014). TAFI reduces the fibrinogen and fibrin binding, α2-antiplasm forms complex with plasmin, increases adsorption of PLG on fibrin and crosslinks FXIIIa, a clotting factor that produce the cross-links between fibrin strands and inhibitors such as TAFI and α2-antiplasm; while PAI-1, a plasminogen activator inhibitor whose production and binding ability to plasminogen could be enhanced by lipoprotein (a), inhibits uPA and tPA (Gue and Gorog, 2017).

Together, fibrinolysis is crucial for anti-thrombin therapy, and plasmin is the major enzyme responsible for fibrinolysis. While many fibrinolytic enzymes have been used for clinical treatment, natural sources for obtaining this enzyme as described below might be potential as sources for fibrinolytic enzyme due to their activity and low production costs.

MICROORGANISMS AS SOURCES OF FIBRINOLYTIC ENZYMES

Microorganisms are the most important and cheap source of fibrinolytic enzymes, and many of them, such as Streptokinase and Staphylokinase, which were isolated from *Streptococcus hemolyticus* and *Streptococcus aureus*, are effective in thrombolytic therapy (Collen and Lijnen, 1994). Since then, many fibrinolytic enzymes from various microbial and non-microbial sources have been discovered in succession.

Bacteria that belong to genus *bacillus* are the most important source of fibrinolytic enzymes (Table 1). Since their discovery, many studies have been performed to optimize the production conditions of fibrinolytic enzyme to increase their yield by using different methods of fermentation, including solid-state, and submerged fermentation (Vijayaraghavan et al., 2017; Al Farraj et al., 2020; Che et al., 2020), mutagenesis (Naveena et al., 2012; Raju and Divakar, 2013a), recombination (Che et al., 2020), statistical approaches (Chandramohan et al., 2019; Joji et al., 2019) and gene cloning techniques (Ngumib et al., 2014). Al Farraj *et al.* enhanced the production of fibrinolytic enzyme from a new bacterium *Bacillus flexus* obtained from marine environments by using statistical approach, two-level full factorial design 2^3 and response surface methodology, to optimize the conditions for the production of fibrinolytic enzyme using solid state fermentation process. Under this optimized condition, they improved the fibrinolytic enzyme output up to 3.5 fold (Al Farraj *et al.*, 2020). Submerged fermentation has also been chosen for the discovery of fibrinolytic enzyme and for improving the production efficacy. Anusree *et al.* optimized the production of fibrinolytic enzyme isolated from *Serratia rubidacea* KUAS001 by using submerged fermentation (Anusree *et al.*, 2020). Staphylokinase (SAK) from *Staphylococcus aureus* GH38 was also screened by using submerged fermentation (Noori and Aziz, 2020); while Pan *et al.* reported for the first time the use of non-sterile submerged-fermentation to reduce the production cost of fibrinolytic enzyme from *Bacillus subtilis* D21-8 (Pan *et al.*, 2019a). Furthermore, use of different statistical tools such as Box-Benhken design (Kumar et al., 2018), two-level full factorial design (2^3) (Vijayaraghavan *et al.*, 2016a; Vijayaraghavan *et al.*, 2016b), response surface methodology (RSM), central composite
Bacteria	Source	Name of enzyme	references
Bacillus flexus	South West coast of India	N.A.	Al Farraj et al. (2020)
Pseudomonas aeruginosa KU1	Marine sediments of Ezhara beach	*Pseudomonas aeruginosa* KU1 (PEKU1)	Kumar et al. (2020)
Serratia rubidae	Marine samples (sediments, water)	*Serratia rubidae* KJAS001	Anusree et al. (2020)
Staphylococcus aureus GH98	From a patient suffering from burns	*Staphylococcus* (SAK)	Noori and Aziz (2020)
Fictibacillus sp. strain SKA27	Through UV mutagenesis of B. subtilis HGS-3	N.A.	Joji et al. (2019)
Bacillus subtilis WF350	Through UV mutagenesis of B. subtilis HGS-3	N.A.	Wu et al. (2019)
Bacillus subtilis D21-8	From soil	Protease	Pan et al. (2019)
	Soil from slaughter houses		Pan et al. (2019)
Bacillus cereus RSA1	From soil	Protease	Sharma et al. (2020)
Alcaligenes aquatilis PJS_1	From soil		Prabhu et al. (2020)
Bacillus pseudomycoides strain MA02	From poultry slaughter house soils	Protease	Chandramohan et al. (2019)
Pseudomonas aeruginosa KU1	From marine sediments	Protease	Kumar et al. (2018)
Serratia rubidaea KUAS001	Soil samples from different habitats (dairy, garbage dump, slaughter house)		Taneja et al. (2019)
Staphylococcus aureus GH38	From soil	Protease	Khursade et al. (2019)
Fictibacillus sp. strain SKA27	From soil		Xin et al. (2018)
	From Egyptian soil		Moharam et al. (2019)
Serratia rubidaea KUAS001	Sea water		Krishnamurthy et al. (2017)
Staphylococcus aureus GH38	Garbage dump soil sample	Protease	Taneja et al. (2017)
Bacillus subtilis D21-8	Blood-laden soil of a chicken waste-dump yard	Protease	Narasimhan et al. (2018)
	N.A.		Sharma and Venkateswaran (2017)
Actinomyces	From Microbial Biotechnology Research Laboratory (MBRIL) culture collection	Serine protease	de Souza et al. (2016)
Streptomyces sp	Amazonian ichens	Serine-metalloprotease	Velumani, (2016)
Bacillus Amylolyticus UFPEDA 485	Cultures Collections of Department of Antibiotics	Metalloprotease	Vijayaraghavan et al. (2017)
N.A.	Sea water		Vijayaraghavan and Prakash Vincent (2015)
Bacillus subtilis sp.	Soil, fish, and rice	N.A.	Narasimhan et al. (2015)
Shewanella sp. IND2	From fish Sardinella longipes	N.A.	Jhample et al. (2015)
Bacillus cereus SRM-001	Blood-laden soil of a chicken dump yard	N.A.	Shukor et al. (2015)
	Soil from slaughter house waste	Protease	Majumdar et al. (2015)
Proteus penneri SP-20	Soil samples from hot Spring		
Streptomyces sp. P9	From air-dried soils	Brevthrombolase: serine protease	Silva et al. (2015)
Brevibacillus brevis strain FF02B	From blood-laden soil of a chicken dump yard		Vijayaraghavan and Vincent (2014)
Streptomyces sp. DPUA 1576	Amazon lichens	N.A.	Bajaj et al. (2014)
Pseudoalteromonas sp. IND11	Fish scales	N.A.	
Bacillus subtilis I-2	Soil from slaughter-houses, dairy, domestic garbage and compost	Protease	Raju and Divakar (2013a)
Bacillus sp. UFPEDA 485	Collection of Microorganisms	Metalloprotease	Raju and Divakar (2013b)
Bacillus subtilis GKA-28	China Center for Type Culture Collection	N.A.	
Bacillus cereus HS-3	Marine sample	Serine metalloprotease	
Bacillus subtilis NS-2	From slaughter houses, dairy and domestic garbage	Protease	
Bacillus cereus GD 55	From soils	N.A.	
B. cereus, B. circulans, P. aeruginosa, P. fluorescens, E.coli	From slaughter houses of beef, chicken and fish	Protease	
Streptomyces sp. XZNUM 00004	From rhizosphere soil of P. sibiricum	*Streptomyces fibrinolytic enzyme-1 (SFE1)	Ju et al. (2012)
Streptomyces venezuelae	From marine water	Thrombinase	Naveena et al. (2012)
B. subtilis, streptococcus, Pseudomonas sp	From soil sample, blood and biomass from infected throat, human urine respectively	Nattokinase, Streptokinase and Urokinase	Dubey et al. (2011)
Bacillus subtilis TKU007	From soil	Bacillus subtilis nattokinase-1 BSN1 (BNSES)	Wang et al. (2011)
Streptomyces sp. CS624	From tissues of Stermona japonica	FES624: chymotrypsin-like serine metalloprotease	Mander et al. (2011)
Paenibacillus polymyxa EJS-3	From tissues of Stermona japonica	*Paenibacillus polymyxa EJS-3 fibrinolytic enzyme-1 (PFFE-I)	Lu et al. (2010)
Bacillus sp. strain AS-S20-I	N.A.	Bafilibrinase: Serine protease	Mukherjee et al. (2012)

N.A., not available.
TABLE 2 | Fibrinolytic enzymes produced by algae from different sources.

Algae	Source	Name of enzyme	References
Chlorella vulgaris UTEX 1803	Culture collection of Algae	Serine metalloprotease	de Barros et al. (2020)
Chlorella Vulgaris	From University of Texas, Austin	Protease	Silva et al. (2018)
Undaria pinnatifida	Sigma (St. Louis, MO, United States)	Protease	Páblo et al. (2017)
Ulva pertusa	Coastal area	Tissue-type plasminogen activator	Min et al. (2016)
Lyophyllum shimeji	Yeodang Mushroom Co	UIV-1 activator	Kang et al. (2016)
Costaria costata	Coastal area	Liverzyme. serine protease	Moon et al. (2014)
Codium fragile	Coastal area	a chymotrypsin like serine metalloprotease	Kim et al. (2013)
		Serine protease	Choi et al. (2013)
		Codiae: serine protease	

TABLE 3 | Fibrinolytic enzymes obtained from fungi from different sources.

Fungi	Source	Name of enzyme	References
Mucor subtilissimus UCP 1262	N.A.	Protease	da Silva et al. (2019)
Cordyceps militaris	N.A.	Serine protease	Liu et al. (2017)
Xyliaria curta	Stem of plant: Catharanthus roseus	Protease	Kim et al. (2011); Meshram et al. (2017)
Mucor subtilissimus UCP 1262	Soil	Protease	Nascimento et al. (2015)
Aspergillus japonicum KSS 05	Soil	N.A.	Shukor et al. (2015)
Pleurotus ostreatus	Microbiological Culture collection Center	Metallo-endopeptidases	Liu et al. (2014)
Coprinus comatus YY-20	N.A.	N.A.	Liu et al. (2012)
Cordyceps militaris	N.A.	Chymotrypsin-like serine metalloprotease	Choi et al. (2011)
Mucor subtilissimus UCP 1262	Soil	Protease	Nascimento et al. (2016)
Xyliaria curta	Catharanthus roseus twigs	Protease	Meshram et al. (2016)
Endophytic Fungi	Hibiscus leaves	Protease	Ahmad et al. (2014)
Trichoderma, Aspergillus, Penicillus, Rhiizopus and Mucor	Alkaline soil	Protease	Palarivel et al. (2013)
Aspergillus brasiliensis AUMC 9735	Dairy products, meats, soybean powders, soil and water samples	Metalloprotease	Kottb et al. (2015)
Paecilomyces tenueipes	Culture collection of DNA Bank of Mushrooms	Paecilomyces tenueipes	Kim et al. (2011)
Bionectria sp.	Las Yungas rainforest	fibronectitic protease: PTEFP	

N.A., not available.

Table 2 shows the fibrinolytic enzymes produced by algae from different sources. **Table 3** shows the fibrinolytic enzymes obtained from fungi from different sources. Fermented foods are also known as sources for fibrinolytic enzymes (Table 4). Fermented soybeans have been consumed as traditional foods in many Asian countries, and indeed, they are sources of nattokinase and other fibrinolytic enzymes. These includes natto, a Japanese traditional fermented soybean obtained from fermentation with Bacillus subtilis G8 and Bacillus subtilis (Chang et al., 2012; Lucy et al., 2019), moromi, oncom and gambus (Indonesian traditional fermented soybean obtained from fermentation with Bacillus cereus, Bacillus subtilis, Bacillus pumilus, and Stenotrophomonas sp, respectively) (Affah et al., 2014; Nairufar et al., 2016; Stephani et al., 2017; Syahbanu et al., 2020) as well as douchi and doufuru (Chinese traditional fermented soybean obtained from fermentation with Bacillus...
TABLE 4 | Fibrinolytic enzymes from microorganisms food products.

Microorganisms	Name of enzyme	Food	References
Bacillus cereus, B. subtilis, B. cereus. Bacillus-Genus	Protease	Indonesian fermented soybean: moromi	Syahbanu et al. (2020)
N.A. Bacillus subtilis DC27	N.A.	Indonesian fermented soybean: Douchi	SolokaMabika et al. (2020)
N.A. Bacillus subtilis G8	Jp-I (Jotgal protease-I) and Jp-II	Japanese fermented food: funazushi	Ito (2020)
N.A. Bacillus. velezensis BS2	DFE27	Korean traditional fermented food: Jotgal	Kim et al. (2020)
Xanthomonas oryzae IND3	Protease	Chinese fermented soybean food: Douchi	Hu et al. (2019)
Bacillus pumilus BS15	N.A.	Japanese Fermented Natto Soybeans	Lucy et al. (2019)
Sterotrophomonas sp	Extracellular protease	Fermented rice	Yao et al. (2019)
Bacillus amyloliquefaciens	N.A.	Fermented rice	Vijayaraghavan et al. (2019)
Fungus (Neurospora sitophila) Bacillus sp. IND7	Protease	Fermented rice	Bijj et al. (2016)
Bacillus cereus IND5	N.A.	Fermented rice	Vijayaraghavan et al. (2016b)
Bacillus halodurans IND18	N.A.	Fermented rice	Bai et al. (2015)
Bacillus subtilis XZ125	N.A.	Fermented shrimp paste	Johnson et al. (2015)
N.A. Bacillus sp	N.A.	Fermented soybean meal	Anh et al. (2015)
Lactococcus lactis, Vagococcus lutrae, V. flavialis, Weissella thailandensis, B methylotrophicus Bacillus pumilus	N.A.	Fermented soybean foods of North-East India	Thokchom and Joshi (2014)
Bacillus amyloliquefaciens, Bacillus licheniformis Bacillus coagulans	Nattokinase	Indonesian fermented soybean cake: gembus	Gad et al. (2014)
Bacillus amyloliquefaciens CB1	ApECB1	Spoilt milk and soy flour	Prihanto and Firdaus (2019)
Bacillus subtilis FR-33	N.A.	Fermented soy sauce: Jeotgal	Heo et al. (2013)
Virgibacillus sp. SK37	Protinase	Chinese soy sauce doufuru	Chen et al. (2013)
Bacillus subtilis WRL101	Nattokinase WRL101	Brewery Yeast Sludge	Lapsongphon et al. (2013)
Bacillus subtilis	Subtilisin-like serine protease	Doenjang	Park et al. (2013)
Bacillus subtilis LD-8547 Aspergillus oryzae KSK-3 Bacillus amyloliquefaciens MJS-41 Bacillus amyloliquefaciens Bacillus subtilis DC33 Bacillus sp	Douchi fibrinolytic enzyme (DFE) Serine protease AprE5-41 N.A. Subtilisin-like serine protease: subtilisin FS33	Chinese soybean-fermented food: Douchi Chinese soybean-fermented food: Douchi Chinese soybean-fermented food: Meju Chinese soybean paste Chinese soybean-fermented food: Ba-bao Douchi	Chang et al. (2012) Yuan et al. (2012) Shirasaka et al. (2012) Wei et al. (2011) Wang et al. (2006)

N.A., not available.

Moreover, fibrinolytic enzymes could also be obtained from other fermented products, such as rice fermented with *Xanthomonas oryzae* IND3, *Bacillus cereus* IND5, *Bacillus halodurans* IND18, *Bacillus* sp, IND7, and *Aspergillus oryzae* KSK-3 (Shirasaka et al., 2012; Bijj et al., 2016; Vijayaraghavan et al., 2016a; Vijayaraghavan et al., 2016b; Vijayaraghavan et al., 2019), seafood fermented with Bacillus sp, *Bacillus. velezensis* BS2, *Bacillus pumilus* BS15 and *Bacillus coagulans* (Anh et al., 2015; Prihanto and Firdaus, 2019; Yao et al., 2019; Kim et al., 2020) and liquors obtained from fermentation with *Bacillus amyloliquefaciens*, *Bacillus licheniformis* and *Bacillus-Genus* (Lapsongphon et al., 2013; Johnson et al., 2015; SolokaMabika et al., 2020).

MACRO-ORGANISMS AS SOURCES OF FIBRINOLYTIC ENZYMES

While microorganisms are the main sources for fibrinolytic enzymes, they have also been isolated from non-microbial
Organisms such as plants, parasites, snake venoms and earthworms. Plants are also important sources of fibrinolytic enzymes, especially proteases (Table 5). Cysteine protease could be extracted from the leguminous *Gliricidia sepium* PBSGS using aqueous two-phase systems of sodium phosphate and PEG (da Silva et al., 2020); while serine proteases, which have the potential to degrade α, β and γ chains of fibrinogen and fibrin clots, could be extracted from different plants, including latex of *Ficus carica*, leaves of *Cnidoscolus urens* (L.), leaves of *Petasites japonicus*, latex of *Artocarpus heterophyllus*, leaves of *Aster yomena*, leaves of *Allium tuberosum* and latex of *Euphorbia hirta* (Chung et al., 2010a; Chung et al., 2010b; Patel et al., 2012; Siriapatetawee et al., 2012; Choi et al., 2014; De Menezes et al., 2014). BmCL1 comprised of two isoforms (BmCL1), which is isolated from *Bm* (*Rhipicephalus* [Boophilus] microplus) Cathepsin-L like 1; a protease Xavier et al. (2019); Dhamodharan et al. (2019); Verma and Pulicherla (2017); Fu et al. (2016); Fu et al. (2013); Girón et al. (2013); Chou et al. (2010b); Chou et al. (2013); Cintra et al. (2012).

Other sources of fibrinolytic enzymes include snake venoms, earthworms, sponge, and parasites (Cintra et al., 2012; Chou et al., 2013; Fu et al., 2013; Girón et al., 2013; Fu et al., 2016; Verma and Pulicherla, 2017; Dhamodharan et al., 2019; Xavier et al., 2019). Snake venoms contain metalloproteases, which are fibrinolytic enzymes consists of a group of multigene protein families involved in many activities of fibrinolysis, hemorrhage, apoptosis, anti-coagulant anti-platelet and pro-coagulant effects (Sanchez et al., 2017). Metalloproteases could be obtained from the venoms of *Bothrops colombiensis*, *Trimeresurus microsquamatus*, and *Bathrobin atrox* (Table 6). Snake venom metalloproteinas (SVMPs) are classified into four groups (PI to PIV) based on their domain structures. PI group snake venom metalloproteinas have molecular masses ranging from 20 to 30 kDa, contain only proteinase domain and have a weak hemorrhagic activity (Fox and Serrano, 2009). PII group contains both proteinase and disintegrin-like domains containing 30–60 kDa proteins. PIII group proteins comprised of a cysteine-rich domain, while PIV proteins include an additional lectin-like domain (Fox and Serrano, 2005). Snake venom metalloproteinas (SVMPs) are involved in fibrinolysis, in activating coagulation process through proteolytic activity, and in activating coagulation factors such as factor X and II. Furthermore, they are involved in inhibition or induction of platelet aggregation (Cintra et al., 2012). Besides serine proteases, earthworms such as *Lumbricus rubellus* and *Eisenia fetida* could produce lumbrokinase, a fibrin specific protease which could lower blood viscosity, minimizing platelet accumulation and promote thrombus dissolution by transporting them into the blood via intestinal epithelium (Fu et al., 2013; Verma and Pulicherla, 2017). Lumbrokinase exists as a complex of six serine protease isoforms, each isoform has different molecular weights ranging from 14 to 33 kDa with variety in fibrinolytic activity (Verma and Pulicherla, 2017). It has dual mechanism in clot degradation: acts on fibrin directly and activates plasminogen and convert it into plasmin, which subsequently induce plasmin-based clot dissolution (Wang et al., 2004). Another example of fibrinolytic enzyme from non-microbial organism is *Rhipicephalus* (Boophilus) microplus Cathepsin-L like 1 (BmCL1), which is isolated from *Rhipicephalus microplus*, a parasite grows on cattle and other animals. BmCL1 comprised of two isoforms with molecular weights of 26 and 22 kDa. It could degrade fibrinogen by hydrolyzing Aα- and Bβ-chains (Xavier et al., 2019).

Fibrinolytic Enzymes as Drugs for Treating Thrombin

Streptokinase

Among the plasminogen activators, streptokinase (streptokinase) is the first drug approved by FDA for thrombosis treatment since...
1950s. Streptokinase is a bacterial protein obtained from β-hemolytic streptococci of Lancefield groups A, C and G (Roohvand, 2018). The group C strain of Streptococcus equisimilis H46A (ATCC 12449 and ATCC 9542, introduced for streptokinase production in 1945 and 1992, respectively) have been widely used for production of streptokinase (Vadla et al., 2019). At present, streptokinase is available commercially under the trade names of Indikinase, Kabikinase, Varidase and Streptase (Roohvand, 2018).

Streptokinase is a single polypeptide enzyme made up of 414 amino acid residues with molecular weight of 47 kDa and performs its maximum activity at pH 7.5. It converts inactive plasminogen to plasmin through a series of protein-protein interactions that comes to an end with the formation of streptokinase-plasmin complex (Kazemi et al., 2019). Streptokinase does not contain cysteine, lipids, phosphorous and conjugated carbohydrates, and is made up from three structural domains: α domain at 1–146, β domain at 147–290 and γ domain at 291–414 amino acid positions linked by two flexible coil regions (Figure 1). There are many exosites or functional regions across the domains of streptokinase, including the Asp41–His48 region between 1-59 amino acid residues of α domain, Lys256, Lys257, and Val158-Arg219 region of β domain, as well as Leu314–Ala342 region of γ domain.

Being a microbial protein, streptokinase is immunogenic and could trigger immune response. This limits its therapeutic potential, as it cannot be re-administered after its first use. Furthermore, its half-life in the blood flow is short. To overcome these limitations, studies have been made by using various strategies, including the structural modifications, chemical modifications, liposomal entrapment or encapsulation, and domain fusion (Roohvand, 2018). Structural modifications have been done using deletions, or substitutions of the amino acids. For example, two truncated streptokinase proteins (SK60-386 and SK143-386) showed enhanced fibrin-specific activity and lower immunogenicity compared to the full length streptokinase (Arabi et al., 2011); while substitution of Lys59 and/or Lys386 for glutamine increased its half-life (Adivitiya et al., 2018). Chemical modifications have been done by site specific or homogenous PEGylation or acylation (anisoylated plasminogen-streptokinase activator complex; APSAC) (Kunadian and Gibson, 2012). For instance, cysteine-specific thiol-mediated PEGylation of streptokinase increased its stability and half-life (Sawhney et al., 2016); while acylation of a complex consisting of human plasminogen and bacterial streptokinase (anisoylated plasminogen-streptokinase activator complex; APSAC) enhanced its specificity for blood clot (Ali et al., 2014). Modification in the delivery system of streptokinase, for example using liposomal entrapment or encapsulation of streptokinase in PEG or chitosan nanoparticles as well as platelet directed liposomes have also been explored (Vaidya et al., 2011; Baharifar et al., 2020; Hasanpour et al., 2021). These modifications not only could enhance its stability and half-life, but also could reduce its immunogenicity and improves its clot penetration properties. Another effort for improving streptokinase is domain fusion to produce chimeric and conjugated streptokinase proteins. Maheshwari et al. found that fusion of streptokinase with epidermal growth factor 4, 5, and 6 domains of human thrombomodulin reduced the risk of re-occlusion and hemorrhage (Maheshwari et al., 2016). Together, these modifications improve both the activity and drug ability of streptokinase, while reducing its side-effects.

Staphylokinase

Staphylokinase is a bacterial protein that exerts its anti-thrombin activity by converting inactive plasminogen into active plasmin. It is found in the culture medium of many strains of *Staphylococcus*...
Staphylokinase does not directly degrade the fibrin. Indeed, it performs its activity in a two-step mechanism. Firstly, a complex is formed between staphylokinase and plasminogen, then the active site of this complex is accessible to transform plasminogen into plasmin. After the formation of this complex, a peptidyl bond between lysine 10 and 11 of staphylokinase is hydrolyzed, and this in turn triggers the lysis of the peptide bond between arginine 561 and valine 562 of plasminogen (Pulicherla et al., 2013). This results in the initial conversion of plasminogen to plasmin in staphylokinase-plasminogen complex. After small amount of plasmin has been synthesized, staphylokinase binds to plasmin, and finally this complex promptly and directly converts plasminogen to plasmin. The formation of these complexes, either to plasmin or plasminogen, is hampered by α2-antiplasmin in the absence of fibrin (Lijnen et al., 1992; Ram et al., 2013; Nedaenina, et al., 2020). Thus, staphylokinase is fibrin specific and give good response to clot degradation and can be used potentially for the removal and treatment of blood clots (Nedaenina, et al., 2020); however, its short half-life rendered its clinical use, and efforts are necessary to overcome this problem (Akhtar et al., 2017).

Nattokinase

Nattokinase is a serine protease produced from the traditional Japanese food natto through the process of fermentation of soybeans with the bacterium *Bacillus subtilis*, and extracted for the first time by Sumi et al. in 1980s (Sumi et al., 1987; Nagata et al., 2017). It has a single polypeptide chain comprising of 275 amino acids with molecular mass of 27.7 KDa (Figure 3), and can work at the pH of 6–12 and temperature up to 60°C (Maeda et al., 2001).

Nattokinase increases the natural ability of the body to degrade the blood clots in different ways and confer many advantages such as oral administration, efficacy, cost effective, long lasting effects, stability in the gastrointestinal tract, as well as its potential to increase the ability of body to produce plasmin and urokinase (Kotb, 2012). It works by directly degrading the fibrin and plasmin substrate, transforms pro-urokinase into uPA, hydrolyses PAI-1 and enhance the level of tPA, which facilitate fibrinolytic activity (Sumi, et al., 1987; Yatagai et al., 2007; Chen et al., 2018). Furthermore, both in vivo and in vitro toxicity experiments have provided strong evidence about the safety of nattokinase for human oral consumption, as until now, there is no toxicity detected upon its usage (Lampe and English, 2016). Thus, nattokinase is a potential enzyme for dissolving blood clot, and has been extensively studied in Korea, Japan and China (Weng et al., 2017). Furthermore, its clinical trials for atherothrombotic prevention are being held in United States (Weng et al., 2017).

Urokinase-Type Plasminogen Activator

Urokinase plasminogen activator, which is also known as urokinase, was first identified in 1947 in urine as unnamed novel fibrinolytic protein by MacFarlane and Pilling (1947) before being named as urokinase half a decade later (MacFarlane and Pilling, 1947; Sobel et al., 1952). It is produced and secreted as an inactive single polypeptide chain of 411 amino acids called pro-urokinase or pro-uPA from macrophages, endothelial cells, some tumor cells, and renal epithelial cells. Urokinase is comprised of three domains: growth factor domain (GFD, from 1 to 49 amino acids in the pro-uPA protein) and kringle domain (KD, from 50 to 131 amino acids) which are both located at the N-terminus, as well as a serine protease domain (P, from 159 to 411 amino acids) at the C-terminus of the pro-uPA protein. The N-terminal and C-terminal regions of pro-uPA are linked by a linker region (from 132 to 158 amino acids).

After being secreted, pro-uPA goes through a two-rounded proteolytic process that cleaves it between Lys158 and Ile159 at the linker region; however, the two chains formed are still linked through disulfide bond. Two chains uPA has a molecular weight of 54 kDa. A second round cleavage at the peptide bond between Lys135 and Lys 136 totally cleaves the two chain of uPA into two parts: the inactive amino-terminal fragment (ATF) that contains growth factor domain and kringle domain, and a low molecular weight (33 kDa) active form of uPA with serine protease domain (Figure 4) (Poliakov et al., 2001). Finally, due the presence of GFD and amino-terminal fragment (ATF), pro-uPA as well as the two chain forms of uPA (active serine protease domain and inactive ATF with growth factor domain and kringle domain) binds to its receptor (uPAR) with similar affinity. This binding in turn enhances the conversion of plasminogen into plasmin (Blasi and Carmeliet, 2002; Mahmood et al., 2018; Kadir and Bayraktutan, 2020). Owing to its high activity as a plasminogen activator, urokinase is a potential drug approved by FDA for clinical use for the treatment of cardiovascular diseases (Akhtar et al., 2017).

Recombinant Tissue-Type Plasminogen Activator

Tissue plasminogen activator is a serine protease with fibrin specific thrombolytic activity. It has a molecular weight of...
70 kDa and consisting of 527 amino acids. It comprises of five domains: i) a fibronectin type I domain at N-terminal with 47 amino acid residues (F, 4–50 residues), ii) an epidermal growth factor domain (EGF, residue 50–87), iii) kringle 1 (K1, 87 to 176 residues), iv) kringle 2 (K2, 176–262 residues), and v) a serine protease domain (P, residues 276–527) (Figure 5) (Lee and Im, 2010; Nedaeinia, et al., 2020). The activity of plasminogen activator is weak in the absence of fibrin; while the presence of fibrin significantly increased its activity. Furthermore, its activity is inhibited in vivo by PAI-1 and the amino acids at 296–299 are crucial for this inhibition (Ram et al., 2013). To overcome such drawbacks, different forms of recombinant tPA, including Alteplase, Reteplase, Tenecteplase, and Desmoteplase have been developed using recombinant DNA technology. Among them, Tenecteplase and Reteplase are approved for clinical use (Wander and Chhabra, 2013); however, they still have side effects of bleeding complications, fibrin specificity and allergic reactions (Ram et al., 2013). Therefore, currently, many researchers are focusing on reducing these side effects and increasing efficacy of these fibrinolytic enzymes. For example, magnetic nanoparticles-based dual targeted delivery strategy (peptide/tPA conjugated poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (PMNPs)) increased the fibrin specificity of tPA (Ram et al., 2013; Chen et al., 2020; Nedaeinia, et al., 2020); while Güner et al. used the strategy of prolonged thrombolytic therapy with low-dose and slow-infusion of tissue-type plasminogen activator. This strategy reduced the bleeding complications to a significant level (Güner et al., 2020). Taken together, if the above mentioned side effects are controlled, rtPAs could be promising drugs for thrombolytic therapy.

DISCUSSION

Since its discovery, various fibrinolytic enzymes have been discovered from different sources, and have been used for the thrombolytic therapy (Figure 6; Table 7). They are reducing the risk of morbidity and mortality rates related to stroke, myocardial infarction and cardiovascular diseases. Various kinds of
fibrinolytic enzymes, such as Streptokinase, Urokinase, Recombinant tissue plasminogen activator (rtPA), Reteplase, and Tenecteplase have been used for clinical application and are commercially available. While they exhibit benefits due to their fibrin specificity, prolonged plasma half-life, stability, resistance to PAI-1, less antigenicity, cost effectiveness and low bleeding complications, efforts are still needed to enhance their half-life, fibrin specificity, efficacy, biocompatibility and resistance to inhibition by plasma inhibitors as well as to reduce major side effects of bleeding and hemorrhage.

Among different sources, microbial fibrinolytic and thrombolytic enzymes have gathered more medical attention in previous years for their low-cost and large-scale production. Some of the microbial fibrinolytic such as Streptokinase, Urokinase, Recombinant tissue plasminogen activator (rtPA), Reteplase, and Tenecteplase have been approved for their clinical use. These drugs are potential to reduce the risk of death or recurrence of blood clots; however, their side effects, including major and minor haemorrhagic events, hemorrhagic transformation, brain edema, and stroke, have also been reported. There are also many other fibrinolytic enzymes from various sources that have been proven to be effective for thrombolytic therapy in vitro, and thus can also be used as potential drugs for anti-thrombotic therapy; however, their in vivo experimental studies and immunogenicity-based analysis are yet to be done.

In summary, utilizing fibrinolytic enzymes for anti-thrombolytic therapy is promising. However, while different approaches have been used to reduce their side effects, efforts are still needed to overcome the problems associated with bleeding, hemorrhage, and allergic reactions. Furthermore, further optimization of their production process is also needed in order to design safe and cost-effective drugs. Nevertheless, the use of fibrinolytic enzymes for thrombolytic therapy will be more promising and far better option in future.

AUTHOR CONTRIBUTIONS

FA performed investigation, wrote and edited the manuscript. SW and VK: conceived the work, revised, and edited the manuscript.
FUNDING
This work was supported by grants from the He Natural Science Foundation of Chongqing (cstc2018jcyjAX0411 and cstc2018jcyjAX0374) and the Fundamental Research Funds for the Central Universities (2019CDQYSW010).

REFERENCES
AdityaBabbalMohanty, S., and Khasa, Y. P. (2018). Engineering of Deglycosylated and Plasmin Resistant Variants of Recombinant Streptokinase in Pichia pastoris. Appl. Microbiol. Biotechnol. 102 (24), 10561–10577. doi:10.1007/s00253-018-9402-x
Affaf, D. N., Sulchan, M., Syah, D., Yanti, Y., Suhartono, M. T., and Kim, J. H. (2014). Purification and Characterization of a Fibrinolytic Enzyme from Bacillus Pumilus 2-G Isolated from Gembus, an Indonesian Fermented Food. Prev. Nutr. Food. Sci. 19 (3), 213–219. doi:10.3746/pnfs.2014.153.213
Ahmad, M. S., Noor, Z. M., and Ariffin, Z. (2014). Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam. Int. J. Biol. Vet. Agric. Food Eng. 8 (10), 1027–1030.
Ahktar, T., Hoq, M. M., and Mazid, M. A. (2017). Bacterial Proteases as Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 680397

ACKNOWLEDGMENTS
Our intention is to summarize the state of art. However, due to space limitations, we would like to apologize to authors whose works are not cited here. Their contributions should not be considered less important than those that are cited.

Bannish, B. E., Chernysh, I. N., Keener, J. P., Fogelson, A. L., and Weisel, J. W. (2017). Molecular and Physical Mechanisms of Fibrinolysis and Thrombolysis from Mathematical Modeling and Experiments. Sci. Rep. 7 (1), 1–11. doi:10.1038/s41598-017-06383-w
Bauer, K. A. (2013). Pros and Cons of New Oral Anticoagulants. Hematology 2013 (1), 464–470. doi:10.1182/asheducation-2013.1.464
Bi, H., Zhao, H., Lu, F., Zhang, C., Bie, X., and Lu, Z. (2015). Improvement of the Nutritional Quality and Fibrinolytic Enzyme Activity of Soybean Meal by Fermentation of Bacillus subtilis. J. Food Process. Pres. 39 (6), 1235–1242. doi:10.1111/jjpp.12340
Biji, G. D., Arun, A., Muthulakshmi, E., Vijayaraghavan, P., Arasu, M. V., and Al, DABabi, N. A. (2016). Bio-Prospecting of Cuttle Fish Waste and Cow Dung for the Production of Fibrinolytic Enzyme from Bacillus cereus INDS in Solid State Fermentation. 3 Biotech 6 (2), 231. doi:10.1007/s13205-016-0553-0
Blasi, F., and Carmeliet, P. (2002). uPAR: A Versatile Signalling Orchestrator. Nat. Rev. Mol. Cell Biol. 3 (12), 932–943. doi:10.1038/nrm7977
Bokarewa, M., Jin, T., and Tarkowski, A. (2006). Staphylococcus aureus: Staphylodin. Int. J. Biochem. Cell Biol. 38 (4), 504–509. doi:10.1016/j.biocel.2005.07.005
Boos, C. J., and Lip, G. (2006). Blood Clotting, Inflammation, and Thrombosis in Cardiovascular Events: Perspectives. Front. Biosci. 11, 328–336. doi:10.2741/1800
Bridge, K., Philippou, H., and Ariens, R. (2014). Clot Properties and Cardiovascular Disease. Thromb. Haemost. 112 (11), 901–908. doi:10.1160/th14-h02-0184
Burgazli, K. M., Atmaca, N., Mericliler, M., Parahuleva, M., Erdogan, A., and Daebritz, S. H. (2013). Deep Vein Thrombosis and Novel Oral Anticoagulants: A Clinical Review. Eur. Rev. Med. Pharmacol. Sci. 17 (23), 3123–3131.

Chandran, M., Yee, C. Y., Kei Beatrice, P. H., Ponniah, P., Narendrakumar, G., and Samrot, A. V. (2019). Production, Characterization and Optimization of Fibrinolytic Protease from Bacillus pseudomycoides Strain MA02 Isolated from Poultry Slaughter House Soils. Biocatal. Agric. Biotechnol. 22, 101371. doi:10.1016/j.biocab.2019.101371
Chang, C.-T., Wang, P.-M., Hung, Y.-F., and Chung, Y.-C. (2012). Purification and Biochemical Properties of a Fibrinolytic Enzyme from Bacillus subtilis: Fermented Red Bean. Food Chem. 133 (4), 1611–1617. doi:10.1016/j.foodchem.2012.02.061
Che, Z., Cao, X., Chen, G., and Liang, Z. (2020). An Effective Combination of Codon Optimization, Gene Dosage, and Process Optimization for High-Level Production of Fibrinolytic Enzyme in Komagataella phaffii (Pichia pastoris). BMC Biotechnol. 20 (1), 63. doi:10.1186/s12896-020-00654-7
Chelluboina, B., and Vemuganti, R. (2019). Chronic Kidney Disease in the Pathogenesis of Acute Ischemic Stroke. J. Cereb. Blood Flow Metab. 39 (10), 1893–1905. doi:10.1177/0271678x19866733
Chen, B., Hsiao, J., He, Z., He, Q., Hsu, Y., and Chen, Z. (2013). Isolation and Identification of an Effective Fibrinolytic Strain Bacillus Subtilis FR-33 from the Chinese Doufuru and Primary Analysis of its Fibrinolytic Enzyme. Afr. J. Microbiol. Res. 7 (19), 2001–2009. doi:10.5897/AJMR12.282
Chen, H.-A., Ma, Y.-H., Hsu, T.-Y., and Chen, J.-P. (2020). Preparation of Peptide and Recombinant Tissue Plasminogen Activator Conjugated Poly(Lactic-Co-Glycolic Acid) (PLGA) Magnetic Nanoparticles for Dual Targeted Thrombolysis Therapy. Int. J. Mol. Sci. 21 (8), 2690. doi:10.3390/ijms21082690
Chen, H., McGowan, E. M., Ren, N., Lal, S., Nassif, N., Shad-Kaneez, F., et al. (2018). Nattokinase: A Promising Alternative in Prevention and Treatment of Cardiovascular Diseases. Biomark Insights 13, 1177271918785130. doi:10.1177/1177271918785130
Dhabi, N. A. (2016). Bio-Prospecting of Cuttle Fish Waste and Cow Dung for the Production of Fibrinolytic Enzyme from Hibiscus Leaves in Shah Alam. Int. J. King Saud Univ. Sci. 32 (7), 3174–3180. doi:10.1016/j.jksus.2020.09.004
Liu, X. L., Zheng, C. Q., and Zhang, J. K. (2012). Production of a Fibrinolytic Enzyme from <i>Coprinus comatus</i> YY-20. <i>Appl. Microbiol. Biotechnol.</i> 138 (13), 1195–1201. doi:10.1007/s00253-012-4028-6

Lu, F., Lu, Z., Bie, X., Yao, Z., Wang, Y., Lu, Y., et al. (2010). Purification and Characterization of a Novel Anticoagulant and Fibrinolytic Enzyme Produced by Endophytic Bacterium <i>Pseudomonas polymyxa</i> EJS-3. <i>Thromb. Res. 126</i> (5), e349–e355. doi:10.1016/j.thromres.2010.08.003

Lucy, J., Raharjo, P. F., Elvina, E., Florencio, L., Susanti, A. I., and Pinontoan, R. (2019). Clot Lysis Activity of <i>Bacillus subtilis</i> G8 Isolated from Japanese Fermented Natto Soybeans. <i>Appl. Food Biotechnol.</i> 6 (2), 101–109. doi:10.22037/afb.v6i2.22479

Lundberg, A. M., and Hansson, G. K. (2010). Innate Immune Signals in Atherosclerosis. <i>Clin. Immunol.</i> 134 (1), 5–24. doi:10.1016/j.clim.2009.07.016

Macfarlane, R. G., and Pilling, J. (1947). Fibrinolytic Activity of Normal Urine. <i>Nature</i> 159 (4049), 779. doi:10.1038/15977940

Mackman, N. (2008). Triggers, Targets and Treatments for Thrombosis. <i>Nature</i> 451 (7181), 914–918. doi:10.1038/nature06797

Maeda, H., Mizutani, O., Yamagata, Y., Ichishima, E., and Nakajima, T. (2001). <i>Paenibacillus polymyxa</i> EJS-3. <i>Appl. Environ. Microbiol.</i> 67 (11), 4909–4914. doi:10.1128/AEM.67.11.4909-4914.2001

Moharam, M. E., El-Bendary, M. A., El-Beih, F., Hassanin Easa, S. M., Abo Elsoud, M. M., Azzam, M. I., et al. (2019). Optimization of Fibrinolytic Enzyme Production by Newly Isolated <i>Bacillus subtilis</i> WRL101 Isolated from Doenjang. <i>Afr. J. Microbiol. Res.</i> 13 (12), 1025–1033. doi:10.5897/AJMR12.041

Narasimhan, M. K., Chandrasekaran, M., and Rajesh, M. (2015). Fibrinolytic Enzyme Production by Newly Isolated <i>Bacillus cereus</i> SRM-001 with Enhanced In-Vitro Blood Clot Lysis Potential. <i>Gen. Appl. Microbiol.</i> 61 (5), 157–164. doi:10.1007/s10469-012-9153-7

Narasimhan, M. K., Ethiraj, S., Krishnamurthi, T., and Rajesh, M. (2018). Purification, Biochemical, and thermal Properties of Fibrinolytic Enzyme Secreted by <i>Bacillus cereus</i> SRM-001. <i>Purp. Biochem. Biotechnol.</i> 48 (1), 34–42. doi:10.1080/10826068.2017.1387560

Nascimento, T. P., Sales, A. E., Porto, C. S., Brandão, R. M. P., de Campos-Takaki, G. M., Teixeira, J. A. C., et al. (2016). Purification of a Fibrinolytic Protease from <i>Mucor subtilissimus</i> UCP 1262 by Aqueous Two-Phase Systems (PEG/Sulfate). <i>J. Chromatogr. B</i> 1025, 16–24. doi:10.1016/j.jchromb.2016.04.046

Nascimento, T. P., Sales, A. E., Porto, C. S., Brandão, R. M. P., Takaki, G. M. C., Teixeira, J. A. C., et al. (2015). Production and Characterization of New Fibrinolytic Protease from <i>Mucor subtilissimus</i> UCP 1262 in Solid-State Fermentation. <i>Adv. Enzyme Res. 3</i> (3), 81–91. doi:10.4236/aer.2015.33009

Naveena, B., Gopinath, K. P., Salthikeshavan, P., and Parthiv, N. (2012). Enhanced Production of Thrombolytic Enzyme from <i>Streptomyces venezuelae</i>. Kinetic Studies on Growth and Enzyme Production of Mutant Strain. <i>Bioresour. Technol. 111</i>, 417–424. doi:10.1016/j.biortech.2012.02.056

Nedaeinia, R., Faraji, H., Javanmard, S. H., Ferns, G. A., Ghayour-Mobarhan, M., Goli, M., et al. (2020). Bacterial Staphylokinase as a Promising Third-Generation Drug in the Treatment for Vascular Occlusion. <i>Mol. Biol. Rep.</i> 47 (1), 819–841. doi:10.1007/s11033-019-05167-x

Ngiumbi, E., Ahombo, G., Moyen, R., Ampa, R., Voudiabio, A., Ontsara, E., et al. (2014). Optimization of Growth, Fibrinolytic Enzyme Production and PCR Amplification of Encoding Fibrinolytic Enzyme Gene in <i>Bacillus amyloliquefaciens</i> Isolated from Neoba Mboedi at Brazzaville. <i>Int. J. Sci. Res. 3</i> (11), 2799–2803.

Ninghoffajum, D., and Thokchom, S. (2016). Screening of Fibrinolytic Enzymes from Microorganisms especially Actinomycetes from Different Biotopes in Manipur. <i>Arch. Clin. Microbiol.</i> 7, 21. doi:10.4172/1989-8436.100050

Noori, H., and Aziz, G. (2020). Purification, Characterization, and Evaluation of Fibrinolytic Activity of Staphylokinase from Locally Isolated <i>Staphylococcus aureus</i> G383. <i>Iraqi J. Agric. Sci.</i> 51 (4), 1195–1203. doi:10.5897/IJAS.v51i4.10989

Ok, M., and Choi, Y.-S. (2005). Screening of Fibrinolytic Enzyme Producing from Microorganisms in Korean Fermented Soybean Paste and Optimum Conditions of Enzyme Production. <i>Korean J. Food Res.</i> 12 (6), 643–649.

Pablo, E. C. S., de Souza, F. A. S. D., and de Barros, R. C. (2017). Enhanced Growth and Enzyme Production of Mutant Strain. <i>Front. Microbiol.</i> 8, 2203. doi:10.3389/fmicb.2017.02203

Páblo, E. C. S., de Souza, F. A. S. D., and de Barros, R. C. (2017). Enhanced Growth and Enzyme Production of Mutant Strain. <i>Bioresour. Technol. 111</i>, 417–424. doi:10.1016/j.biortech.2012.02.056

Narasimhan, M. K., Chandrasekaran, M., and Rajesh, M. (2015). Fibrinolytic Enzyme Production by Newly Isolated <i>Bacillus cereus</i> SRM-001 with Enhanced In-Vitro Blood Clot Lysis Potential. <i>Gen. Appl. Microbiol.</i> 61 (5), 157–164. doi:10.1007/s10469-012-9153-7
Velumani, S. (2016). Isolation, Screening, Characterization and Production of Fibrinolytic Enzyme from Marine Microorganism. Int. J. Adv. Res. 2 (2), 2395–4396.

Verhamme, I. M., and Bock, P. E. (2014). Rapid Binding of Plasminogen to Streptokinase in a Catalytic Complex Reveals a Three-Step Mechanism. J. Biol. Chem. 289 (40), 28006–28018. doi:10.1074/jbc.M114.589077

Verma, M. K., and Pulicherla, K. (2017). Broad Substrate Affinity and Catalytic Diversity of Fibrinolytic Enzyme from Pheretima Posthumous—Purification and Molecular Characterization Study. Int. J. Biol. Macromol. 95, 1011–1021. doi:10.1016/j.ijbiomac.2016.10.090

Vijayaraghavan, P., Arasu, M. V., Anantha Rajan, R., and Al-Dhabi, N. A. (2019). Enhanced Production of Fibrinolytic Enzyme by a New Xanthomonas Orzyae IND3 Using Low-Cost Culture Medium by Response Surface Methodology. Saudi J. Biol. Sci. 26 (2), 217–224. doi:10.1016/j.sjbs.2018.08.029

Vijayaraghavan, P., Arun, A., Vincent, S. G. P., Arasu, M. V., and Al-Dhabi, N. A. (2016a). Cow Dung is a Novel Feedstock for Fibrinolytic Enzyme Production from Newly Isolated Bacillus sp. IND7 and its Application in In Vitro Clot Lysis. Front. Microbiol. 7, 361. doi:10.3389/fmicb.2016.00361

Vijayaraghavan, P., and Prakash Vincent, S. G. (2015). A Low Cost Fermentation Medium for Potential Fibrinolytic Enzyme Production by a Newly Isolated Marine Bacterium, Shewanella sp. Ind20. Biotechnol. Rep. 7, 135–142. doi:10.1016/j.btre.2015.06.005

Vijayaraghavan, P., Prakash Vincent, S. G., Valan Arasu, M., and Al-Dhabi, N. A. (2014b). Bioconversion of Agro-Industrial Wastes for the Production of Fibrinolytic Enzyme from Bacillus halodurans IND18: Purification and Biochemical Characterization. Electron. J. Biotechnol. 20, 1–8. doi:10.1016/j.ejbt.2016.01.002

Vijayaraghavan, P., Rajendra, P., Prakash Vincent, S. G., Arun, A., Abdullah Al-Dhabi, N., Valan Arasu, M., et al. (2017). Novel Sequential Screening and Enhanced Production of Fibrinolytic Enzyme by Bacillus sp. IND12 Using Response Surface Methodology in Solid-State Fermentation. Biomed. Res. Int. 2017, 3990657. doi:10.1155/2017/3990657

Vijayaraghavan, P., and Vincent, S. G. P. (2014). Statistical Optimization of Fibrinolytic Enzyme Production by Pseudolactobacillus sp. IND11 Using Cow Dung Substrate by Response Surface Methodology. Springerplus 3, 60. doi:10.1186/2193-1801-3-60

Wander, G. S., and Chhabra, S. T. (2013). Critical Analysis of Various Drugs Used for Thrombolytic Therapy in Acute Myocardial Infarction. Med. Updat 23, 109–116.

Wang, C. T., Ji, B. P., Li, B., Nout, R., Li, P. L., Ji, H., et al. (2006). Puriﬁcation and Characterization of a Nattokinase by Conversion of Shrimp Shell with Bacillus Subtilis LD-8547. In Vitro. BMC Biotechnol. 12 (1), 36. doi:10.1186/1472-6750-12-36

Wang, C., Wang, F., Li, M., Tang, Y., Zhang, J. P., Gui, L. L., et al. (2004). Structural Basis for Broad Substrate Specificity of Earthworm Fibrinolytic Enzyme Component A. Biochem. Biophys. Res. Commun. 325 (3), 877–882. doi:10.1016/j.bbrc.2004.10.113

Wang, S.-L., Wu, Y.-Y., and Liang, T.-W. (2011). Purification and Biochemical Characterization of a Nattokinase by Conversion of Shrimp Shell with Bacillus Subtilis TKU007. New Biotechnol. 28 (2), 196–202. doi:10.1016/j.nbt.2010.09.003

Wei, X., Luo, M., Xu, L., Zhang, Y., Lin, X., Kong, P., et al. (2011). Production of Fibrinolytic Enzyme from Bacillus amyloquefaciens by Fermentation of Chickpeas, with the Evaluation of the Anticoagulant and Antioxidant Properties of Chickpeas. J. Agric. Food Chem. 59 (8), 3957–3963. doi:10.1021/jf1049535

Weisel, J. W., and Litvinov, R. I. (2017). Fibrin Formation, Structure and Properties Fibrous Proteins: Structures and Mechanisms. Cham, Switzerland: Springer, 405–456.

Weng, Y., Yao, J., Sparks, S., and Wang, K. Y. (2017). Nattokinase: an Oral Antithrombotic Agent for the Prevention of Cardiovascular Disease. Int. J. Mol. Sci. 18 (3), 523. doi:10.3390/ijms18030523

Wu, R., Chen, G., Pan, S., Zeng, J., and Liang, Z. (2019). Cost-Effective Fibrinolytic Enzyme Production by Bacillus subtilis WR350 Using Medium Supplemented with Corn Steep Powder and Sucrose. Sci. Rep. 9 (1), 1–10. doi:10.1038/s41598-019-43371-8

Xavier, M. A., Tirloni, L., Torquato, R., Tanaka, A., Pinto, A. F., Diedrich, J. K., et al. (2019). Blood Anticoagulation Activity of a Rhizopephalus Microplus Cathepsin L-Like Enzyme. Biochimie 163, 12–20. doi:10.1016/j.biochi.2019.04.025

Xin, X., Ambati, R. R., Cai, Z., and Lei, B. (2018). Purification and Characterization of Fibrinolytic Enzyme from a Bacterium Isolated from Soil. J Biotech 8 (2), 90. doi:10.1016/j.snb.2018.01.115-4

Yao, Z., Kim, J. A., and Kim, J. H. (2019). Characterization of a Fibrinolytic Enzyme Secreted by Bacillus Velezensis BS2 Isolated from Sea Squirt Jeotgal. J. Microbiol. Biotechnol. 29 (3), 347–356. doi:10.4014/jmb.1810.11053

Yao, Z., Kim, J. A., and Kim, J. H. (2018). Gene Cloning, Expression, and Properties of a Fibrinolytic Enzyme Secreted by Bacillus pumilus BS15 Isolated from Gul (Oyster) Jeotgal. Biotechnol. Bioproc. Eng. 23 (3), 293–301. doi:10.1007/s12257-018-0029-7

Yatagai, C., Maruyama, M., Kawahara, T., and Sumi, H. (2007). Nattokinase Promoted Tissue Plasminogen Activator Release from Human Cells. Pathophysiol. Haemost. Thromb. 36 (5), 227–232. doi:10.1159/000252817

Yuan, J., Yang, J., Zhuang, Z., Yang, Y., Lin, L., and Wang, S. (2012). Thrombolytic Effects of Douchi Fibrinolytic Enzyme from Bacillus subtilis LD-8547 In Vitro and In Vivo. BMC Biotechnol. 12 (1), 36. doi:10.1186/1472-6750-12-36

Yusuf, S., Joseph, P., Rangarajan, S., Islam, S., Mente, A., Hystad, P., et al. (2020). Modifiable Risk Factors, Cardiovascular Disease, and Mortality in 155 722 Individuals from 21 High-Income, Middle-Income, and Low-Income Countries (PURE): A Prospective Cohort Study. Lancet 395 (10226), 795–808. doi:10.1016/S0140-6736(19)32008-2

Zeng, W., Li, W., Shu, L., Yi, J., Chen, G., and Liang, Z. (2013). Non-Sterilized Fermentative Co-Production of Poly(γ-Glutamic Acid) and Fibrinolytic Enzyme by a Thermophilic Bacillus subtilis GXA-28. Biosens. Bioelectron. 142, 697–700. doi:10.1016/j.bios.2013.05.020

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Altaf, Wu and Kasim. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.