Effects of Transgenic Cry1Ac + CpTI Cotton on Non-Target Mealybug Pest *Ferrisia virgata* and Its Predator *Cryptolaemus montrouzieri*

Hongsheng Wu1,2, Yuhong Zhang1, Ping Liu1, Jiaqin Xie1, Yunyu He1, Congshuang Deng1, Patrick De Clercq2*, Hong Pang1*

1 State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 2Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium

Abstract

Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, *Ferrisia virgata* (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator *Cryptolaemus montrouzieri* Mulsant (Coleoptera: Coccinellidae) was assessed when fed *F. virgata* maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that *F. virgata* could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator *C. montrouzieri* offered *F. virgata* reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid *C. montrouzieri* via its prey, the mealybug *F. virgata*.

Citation: Wu H, Zhang Y, Liu P, Xie J, He Y, et al. (2014) Effects of Transgenic Cry1Ac + CpTI Cotton on Non-Target Mealybug Pest *Ferrisia virgata* and Its Predator *Cryptolaemus montrouzieri*. PLoS ONE 9(4): e95537. doi:10.1371/journal.pone.0095537

Editor: Nicolas Desneux, French National Institute for Agricultural Research (INRA), France

Received June 25, 2013; Accepted March 28, 2014; Published April 21, 2014

Copyright: © 2014 Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by grants from National Basic Research Program of China (973) (2013CB127605), National Natural Science Foundation of China (Grant No. 31171899) and the Youth Scientific Research Foundation of Guangdong Academy of Sciences (No. qnjj201206). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lsshpang@mail.sysu.edu.cn (HP); patrick.declercq@ugent.be (PDC)

Introduction

Genetically modified (GM) crops hold great promise for pest control [1–4]. Most popular GM crops express one or more toxin genes from bacteria such as *Bacillus thuringiensis* (Bt), trypsin inhibitors such as cowpea trypsin inhibitor (CpTI), plant lectins, ribosome-inactivating proteins, secondary plant metabolites, vegetative insecticidal proteins and small RNA viruses [5–7]. So far Bt-cotton has been commercialized in the United States (1996), Mexico (1996), Australia (1996), China (1997), Argentina (1998), South Africa (1998), Colombia (2002), India (2002), Brazil (2005), and Burkina Faso (2008) and occupies 49% of the total global cotton area [8,9]. To delay the development of pesticide resistance in the major cotton pests [7], the bivalent transgenic cotton cultivar (CCRI41) expressing Cry1Ac and CpTI, has been commercially available since 2002 in China [10]. Currently, the cotton cultivar CCRI41 is planted at a large scale in the Yellow river cotton area in China [11]. However, with the rapid expansion in the commercial use of GM plants, there is an increasing need to understand their possible impact on non-target organisms [12–14]. Non-target effects of several cultivars (Cry1Ac + CpTI cotton) on beneficial arthropods including pollinator insects have been recently studied [11,15–21].

Most studies on the potential ecological impacts of transgenic plants on phloem-feeding insects have focused on aphids or whiteflies [4,22–27]. Studies on the interactions between mealybugs and GM crops have not been previously reported. Like aphids and whiteflies, mealybugs are obligate phloem feeders. Several species of mealybugs have caused considerable economic damage to agricultural and horticultural plants in the tropics in the last few decades [28]. They also have the potential to become major cotton pests which is evident from the severe damage reported in different parts of Asia [29–31]. Particularly, *Phenacoccus solenopsis* Tinsley (Hemiptera: Pseudococcidae) has attracted much attention worldwide because of its harmful effects on cotton [30,32–35]. Indeed, this pest can successfully thrive on both Bt-cotton and non-Bt cultivars of cotton [36]. However, *P. solenopsis* is not the only mealybug species that infests cotton in Asia. Also *Maconellicoccus hirsutus* (Green) has increasingly been reported...
inesting cotton in India and Pakistan [37,38]. Mealybugs are attacked by a range of specialist predators and parasitoids. These non-target species can thus be exposed to GM toxins by feeding on or parasitizing their prey or host [39–41] and there may be side effects on the behavior of these natural enemies [12,42]. Therefore, there is a need to evaluate the potential effects of transgenic cotton on mealybugs and their key natural enemies.

The striped mealybug, *Ferrisia virgata* (Cockerell) (Hemiptera: Pseudococcidae), is also a cosmopolitan and polyphagous species that attacks a wide variety of crops including cotton [34,43,44]. The adult female is wingless, and has an elongated body covered by a powdery white wax, with a pair of dark longitudinal stripes on the dorsum and white wax threads extending from the posterior end resembling tails [34]. In cotton, *F. virgata* occurs in patches and feeds on all parts of a plant, particularly on growing tips or on leaves [33]. The species has been found infesting colored fiber cotton and has emerged as a serious pest in the Northeast of Brazil [34]. Given that mealybugs like *P. solenopsis*, *M. hirsutus* and *F. virgata* are aggressive invasive pests that seriously threaten cotton production, significant concern over their potential effects on transgenic cotton should be raised. At present, only the cotton mealybug *P. solenopsis* has been reported to damage Bt cotton. However, whether other mealybug species can infest transgenic cotton is yet to be determined.

The mealybug destroyer, *Cryptolaemus montrouzieri* Mulsant (Coleoptera: Coccinellidae), is a ladybird native to Australia and has been used in many biological control programs as one of the most efficient natural enemies to suppress mealybug outbreaks has been used in many biological control programs as one of the most efficient natural enemies to suppress mealybug outbreaks [45–47]. Both the adults and larvae of the ladybird prey on a variety of mealybugs [47]. *C. montrouzieri* has also been used as a biological control agent in areas where outbreaks of *F. virgata* and *P. solenopsis* occur [30,48–50]. These predators can encounter transgene products expressed by plants (Bt toxins) when feeding on plant material such as pollen, nectar, or leaf exudates and when preying on organisms that have consumed transgenic plant tissue or toxin-loaded prey [51–53]. In the present study, bioassays were performed to assess the development, reproduction and feeding choices of *C. montrouzieri* presented with mealybugs reared on the cotton cultivar CCRI41 versus its near-isogenic non-transgenic line. To study whether Cry1Ac and CpTI proteins can pass through the trophic chain up to a natural enemy, quantification of Cry1Ac and CpTI proteins in leaves, mealybugs and ladybirds was also done.

This study is the first report on tritrophic relationships involving a non-target pest mealybug (*F. virgata*), its predator (*C. montrouzieri*) and a transgenic cotton cultivar expressing Cry1Ac (Bt toxin) and CpTI (Cowpea Trypsin Inhibitor).

Materials and Methods

Plants

Bivalent transgenic cotton cultivar CCRI 41 (Bt+CpTI cotton) and non-transgenic cotton cultivar CCRI 23 (control) were used as the host plants in all experiments. CCRI 41 was bred by introducing the synthetic Cry1Ac gene and modified CpTI (cowpea trypsin inhibitor) gene into the elite cotton cultivar CCRI 25 by way of the pollen tube pathway technique [34]. Seeds of transgenic Cry1Ac and CpTI cotton cultivar CCRI 41 and its near-isogenic CCRI 23 were obtained from the Institute of Cotton Research, Chinese Academy of Agricultural Sciences. Both cultivars were planted singly in plastic pots (16×13 cm) with the same soil. All plants were individually grown from seeds in climate chambers (25±1°C, 75±5% RH, 16:8 h (L: D)) and they were five weeks old (about five to eight true leaves) at the start of experiments.

Insects

Stock cultures of *C. montrouzieri* and *F. virgata* were originally obtained from the State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China. Cultures of *C. montrouzieri* were reared on *Planococcus citri* Risso (Hemiptera: Pseudococcidae) and *F. virgata*, which were both produced on pumpkin fruits (*Cucurbita moschata* Duch ex Lam.) Duch. ex Poiretand in metal frame cages (45×36×33 cm) covered with fine-mesh nylon gauze. The colony of *F. virgata* was maintained on plastic trays (40×30 cm) containing pumpkins as food. Environmental conditions at the insectarium were 26±2°C, 50±10% RH and a photoperiod of 16:8 h (L:D). Both *C. montrouzieri* and *F. virgata* cultures used in these experiments had been maintained at our facilities for at least six years.

Bioassay with *F. Virgata*

Effects of transgenic Cry1Ac and CpTI cotton on development and survival of *F. virgata*

Development and survival of *F. virgata* on the leaves of transgenic and non-transgenic cotton plants was studied in climate chambers (25±1°C, 75±5% RH, 16:8 h (L:D)). The experiment was subdivided into two stages: crawlers (first instars) of the mealybug were reared for the first 5 days in 6-cm diameter plastic containers to preclude escape, whereas in a second stage larger plastic bags were used to accommodate the later instars. In the first stage of the experiment 20 newly emerged first-instar nymphs (<24 h) springing from the same female were placed in a plastic container (6.0×1.5 cm) covered with a fine-mesh nylon gauze using a soft paintbrush. Each plastic container had a small hole in it allowing a leaf to be inserted. A piece of cotton wool was wrapped around the petiole to prevent *F. virgata* from escaping through the hole in the container. To encourage crawlers to settle, the environmental chamber was maintained in complete darkness for 24 h [55,56]. All plastic containers were fixed on live cotton plants by small brackets. Mealybugs on each cotton plant represented a cohort or a replicate. A total of 15 cohorts (replicates) were prepared for both the treatments with transgenic and control cotton plants.

In the second stage of the experiment the mealybugs were kept in transparent plastic bags (15×10 cm) with several small holes for ventilation. The transparent plastic bag together with cotton wool wrapped around the petiole could also prevent mealybugs from escaping or dropping off. The mealybug cohorts on each leaf (still attached to the plant) were examined every 12 h, and the development and survival of each nymphal instar were recorded. Successful development from one instar to the next was determined by the presence of exuviae. Survival rate of each nymphal instar was calculated as the percentage of individuals that successfully developed to the next stage in a cohort [56]. The sex of individual mealybugs could not be determined at the crawler stage. Therefore, sex was determined during the latter part of the second instar when males change their color from yellow to dark. At this point, the developmental times of males and females were recorded separately [55].

Effects of transgenic Cry1Ac and CpTI cotton on body weight of *F. virgata*

To assess the body weights of *F. virgata*, 200 second-instar nymphs were collected at the same time from stock cultures reared on pumpkin. Ten mealybugs per cotton plant were placed as a cohort on the leaves of 10 non-transgenic or transgenic cotton plants using a soft paintbrush. Thus, a total of 10 cohorts (replicates) were prepared for both the treatments with transgenic and control cotton plants. To prevent mealybugs from escaping or dropping off, each leaf infested with *F. virgata* was
placed in a transparent plastic bag (15×10 cm) with several small holes for ventilation. To encourage the nymphs to settle, the environmental chamber was maintained in complete darkness for 24 h. Thereafter, the plants were kept in an environmental chamber as described above. Surviving mealybugs from the initial 10 individuals on each plant were weighed individually after 10 and 20 days using an electronic balance (Sartorius BSA124S, Germany) with a precision of 0.1 mg.

Tritrophic Bioassay with *C. Montrouzieri*

Effects of transgenic Cry1Ac and CpTI cotton on the development and survival of immature *C. montrouzieri.* Two plastic boxes (12.0×5.0×4.0 cm, covered with fine-mesh nylon gauze for ventilation) each containing 50 *C. montrouzieri* eggs (<12 h old) collected from the stock colony were placed in a climate chamber (25±1°C, 75±5% RH, 14:10 h (L:D) photoperiod). The eggs were observed carefully every 12 h and numbers of larvae that hatched were recorded. Newly hatched first-instar larvae from 50 *C. montrouzieri* eggs (<12 h old) were individually transferred to the leaves of non-transgenic (45 larvae) or transgenic cotton (46 larvae), which were previously infested with *F. virgata* (~60–100 mealybugs per leaf). Each cotton plant received two or three *C. montrouzieri* larvae which were distributed on different leaves. Pieces of cotton wool were wrapped around the stem or petiole to prevent the larvae from leaving the cotton leaves. Predator larvae were randomly moved to newly infested plants when mealybug prey was depleted. In total, about 60 non-leaves. Predator larvae were randomly moved to newly infested plants. The experiment continued for 9 days and the numbers of consumed mealybugs were recorded every day.

Quantification of Toxins in Leaves, *F. Virgata* and *C. Montrouzieri*

To confirm Cry1Ac and CpTI expression of the transgenic cotton plants (β-leaf stage) used in both bioassays, five leaf samples were collected from five different cotton plants. Each sample was obtained from a middle-upper leaf of a transgenic or control plant [57]. Approximately 100 mg fresh weight (f.w.) of the transgenic or control cotton leaves was collected.

To quantify the level of Cry1Ac and CpTI in *F. virgata*, a group of approximately sixty gravid females from the laboratory culture were allowed to settle on cotton leaves and reproduce. After 24 h, about 100 newborn nymphs were brushed carefully onto one transgenic or control cotton leaf and the leaf was covered with a transparent plastic bag (15×10 cm) with several small holes for ventilation. A piece of cotton wool was wrapped around the petiole to prevent *F. virgata* from escaping from the leaf. To encourage crawlers to settle, the environmental chamber was maintained in complete darkness for 24 h. Three weeks later, five samples of *F. virgata* larvae (with a total fresh weight of 60–100 mg) were collected from plants of either variety.

To assess the potential transfer of Cry1Ac and CpTI proteins via the food chain, a transgenic or control cotton leaf (still attached to the plant) which was previously infested with *F. virgata* as described above and a newly molted 2nd instar larva or an adult (<1 month old) of *C. montrouzieri* were transferred to a ventilated plastic bag (15×10 cm). Ten transgenic or control cotton plants were used. After 3 days, five samples of individual *C. montrouzieri* larvae or adults were collected for analysis.

All experiments described above were conducted in a growth chamber at 25±1°C, 75±5% RH and a photoperiod of 16:8 h (L:D). All samples were weighed and transferred to 1.5 ml centrifuge tubes. Samples were kept at –20°C until quantification of Cry1Ac and CpTI proteins.

The amount of Cry1Ac protein in the leaf and insect material was measured using an enzyme linked immuno-sorbent assay (ELISA). Envirologix Qualiplate Kits (EnviroLogix Quantiplate Kit, Portland, ME, USA) were used to estimate Cry1Ac quantities. The quantitative detection limit of the Cry1Ac kit was 0.1 ng ml⁻¹. The ELISA polyclonal kits used to detect CpTI protein were obtained from the Center for Crop Chemical Control, China Agricultural University (Beijing, China). The method has been validated [58] and the limit of detection and working range of the assay were 0.21 and 1–100 ng ml⁻¹, respectively [59]. Prior to analysis, all insects were washed in phosphate buffered saline with Tween-20 (PBST) buffer to remove any Cry1Ac and CpTI toxin from their outer surface. After adding PBST to the samples at a ratio of about 1:10 (mg sample: ml buffer) in 1.5 ml centrifuge tubes, the samples were fully ground by hand using a plastic pestle. To detect Cry1Ac protein, samples were centrifuged for 5 min at 13,000×g and leaf samples were diluted to 1:10 with PBST (insect samples were not diluted). For analysis of CpTI protein, the tubes were centrifuged at 10,000×g for 15 min. The supernatants were used to detect targeted proteins. ELISA was performed based on the manufacturer’s instructions.
ODs were calibrated by a range of concentrations of Cry1Ac or CpTI made from purified toxin solution.

Data Analysis

For the studied parameters in the bioassay with *F. virgata*, the average values of each cohort were used as replicates for the data analyses. The duration of the immature stages, survival and weight on transgenic and non-transgenic cotton were compared using independent t-tests. For the tritrophic bioassay with *C. montrouzieri*, a Mann–Whitney U test was performed for the duration of the immature stages and preoviposition period. Weights, fecundity, oviposition period, and adult longevity were analyzed using independent t-tests. The percentages of total survival and egg hatch were compared by logistic regression, which is a generalized linear model using a probit (log odds) link and a binomial error function [60]. Each test consists of a regression coefficient that is calculated and tested for being significantly different from zero, for which P-values are presented [61]. Consumption rates in the feeding performance test were compared using a general linear model for repeated measures analysis of variance (ANOVA) followed by a LSD test. All datasets were first tested for normality and homogeneity of variances using a Kolmogorov–Smirnov test and Levene test, respectively, and transformed if necessary. SPSS software (IBM SPSS Statistics, Ver. 20) was used for all statistical analyses. For all tests, the significance level was set at $P \leq 0.05$.

Results

Bioassay with *F. Virgata*

Effects of transgenic Cry1Ac and CpTI cotton on the developmental duration of *F. virgata*. *F. virgata* nymphs completed their development when reared on non-transgenic cotton CCRI 23 and its near-isogenic transgenic cotton CCRI 41 (Table 1). However, there was no significant difference in the developmental duration of female or male *F. virgata* larvae reared on transgenic or non-transgenic cotton except during the first and fourth instars. The duration of first instar development was longer on transgenic cotton. In contrast, fourth instar males reared on transgenic cotton had shorter development compared to those reared on non-transgenic cotton. No significant differences were observed in the developmental durations of the second instar, third instar and cumulative developmental time.

Effects of transgenic Cry1Ac and CpTI cotton on nymphal survival of *F. virgata*. No significant difference was observed in the survival rate of female or male *F. virgata* nymphs reared on transgenic or non-transgenic cotton except in the first instar (Table 2). The survival rate of the first instars was lower when reared on transgenic cotton. No significant differences in the survival rates of the second instar, third instar, fourth instar of male and in cumulative survival rate were observed.

Effects of transgenic Cry1Ac and CpTI cotton on body weight of *F. virgata*. The weight of all *F. virgata* nymphs increased when reared on transgenic or non-transgenic cotton leaves for 10 or 20 days. However, nymphal weights were not significantly influenced by cotton variety ($P > 0.05$, independent t-tests). Mean weights (\pm SE) of adult *F. virgata* reared on non-transgenic cotton (77 and 52, respectively) and transgenic cotton (87 and 48, respectively) leaves for 10 days were 1.29\pm0.15 mg and 1.30\pm0.10 mg ($t = -0.991; df = 18; P = 0.392$), and for 20 days were 2.30\pm0.22 mg and 2.06\pm0.21 mg ($t = 0.799; df = 18; P = 0.434$), respectively.

Table 1. Mean number of days (\pmSE) for each developmental stage of *F. virgata* reared non-transgenic or transgenic cotton leaves.

Developmental Stage	Female	Male
First		
Non-transgenic	2.28\pm0.16a	2.30\pm0.20a
Transgenic	2.30\pm0.19a	2.31\pm0.18a
Second		
Non-transgenic	5.10\pm0.16a	5.20\pm0.14a
Transgenic	5.16\pm0.19a	5.26\pm0.14b
Third		
Non-transgenic	6.62\pm0.13a	6.76\pm0.14b
Transgenic	6.68\pm0.13a	6.76\pm0.14b
Fourth*		
Female	19.01\pm1.07a	19.06\pm1.07a
Male	22.70\pm1.07a	22.68\pm1.07a

Means \pm SE within a column followed by the same letter are not significantly different ($P > 0.05$, independent t-test). The experiment was started with 15 cohorts (replicates) per treatment.
Tritrophic Bioassay with *C. Montrouzieri*

Effects of transgenic Cry1Ac and CpTI cotton on development and survival of immature *C. montrouzieri*. The developmental time of all immature stages and total survival did not differ when reared on transgenic or its near-isogenic non-transgenic cotton (Table 3). There was no significant difference in immature stages and survival.

Effects of transgenic Cry1Ac and CpTI cotton on body weight of *C. montrouzieri*. When reared on transgenic cotton, first instar ($t = -1.579$; $df = 8$; $P = 0.153$), second instar ($t = 1.941$; $df = 98$; $P = 0.055$), third instar ($t = -0.343$; $df = 97$; $P = 0.733$) and fourth instar larva ($t = 0.782$; $df = 95$; $P = 0.436$), pupae ($t = 0.659$; $df = 90$; $P = 0.512$), and male ($t = -1.795$; $df = 39$; $P = 0.080$) and female ($t = -0.421$; $df = 34$; $P = 0.677$) adults showed no significant difference in their body weight upon emergence compared with their counterparts reared on non-transgenic cotton (Figure 1).

Reproduction and longevity of *C. montrouzieri* reared on non-transgenic or transgenic cotton leaves. Precopulation period ($U = 68$; $df = 1$; $P = 0.906$), fecundity ($t = 0.990$; $df = 21$; $P = 0.700$), number of eggs laid per female per day ($t = 1.581$; $df = 21$; $P = 0.129$), egg hatch ($z^2 = 1.753$; $df = 1$; $P = 0.185$), male longevity ($t = 0.148$; $df = 26$; $P = 0.883$) and female longevity ($t = -1.183$; $df = 26$; $P = 0.247$) were not significantly affected by treatment (Table 4).

Feeding performance of *C. montrouzieri* on mealybugs reared on non-transgenic versus transgenic cotton leaves. Daily consumption of mealybugs by *C. montrouzieri* adults on non-transgenic cotton was not different from that on transgenic cotton during the entire 9-day test period ($F = 0.111$; $df = 1$; $P = 0.748$) (Figure 2). The interaction between the factors cotton type and time was also not significant, meaning that differential consumption of mealybugs between transgenic cotton and non-transgenic cotton was not a function of time ($F = 0.692$; $df = 8$; $P = 0.697$). However, *C. montrouzieri* consumed a decreasing number of mealybugs on both cotton varieties over the course of the experiment ($F = 5.090$; $df = 8$; $P < 0.001$).

Quantification of Toxins in Leaves, *F. Virgata* and *C. Montrouzieri*

Expressed levels of the Cry1Ac and CpTI proteins in CCRH1 cotton leaves averaged $5.76 \pm 0.33 \mu g$ Cry1Ac/g f.w. and 14.28 ± 1.70 ng CpTI/g f.w. [means ± SE], respectively. ELISA revealed that *F. virgata* maintained on transgenic cotton did not contain detectable amounts of the Cry1Ac and CpTI proteins. Similarly, no Cry1Ac or CpTI protein was detected in *C. montrouzieri* larvae and adults. None of the non-transgenic cotton leaves, or of the mealybug and ladybird samples reared on control plants were found to contain any Cry1Ac or CpTI protein.

Discussion

F. virgata is a widely spread mealybug and is reported in more than 100 countries around the world, including the USA, Argentina, Canada, India, China, Brazil, and Pakistan [44], where transgenic cotton is being cultivated. Our results demonstrate that *F. virgata* nymphs completed their development when reared on leaves of both non-transgenic and transgenic cotton. Overall, no significant differences were detected in the total survival, cumulative developmental duration and body weight of the immature stages of *F. virgata* reared on transgenic and non-transgenic cotton. Higher mortality was observed during the first instar on transgenic cotton but the difference was small and total mortality from first instar to adult did not differ between treatments. These results indicate that the transgenic Bt+CpTI cotton had negligible adverse effects on the development of *F. virgata*, which is consistent with previous reports by Dutt [36] and Zhao et al. [18] stating that the mealybug *P. solenopsis* was able to infest Bt and Bt+CpTI transgenic cotton without negative effects on its fitness.

Further, ELISA analyses revealed that none of the mealybug samples from the Bt+CpTI cotton contained detectable Bt protein despite high expression levels in leaves. Like aphids and whiteflies, mealybugs are obligate phloem sap feeding insects. We postulate that *F. virgata* was not exposed to the Bt endotoxins expressed in the cotton plants given its phloem feeding habit. In previous studies on transgenic maize, Bt toxins were not detected or only in negligible amounts in the phloem sap, or in aphids that had fed on the maize [62,63]. In transgenic Bt cotton fields the density of sap-feeding insects, such as whiteflies, aphids and leafhoppers, has been reported to be higher than in non-transgenic cotton fields [64,65]. Lawo et al. [26] noted that Indian Bt cotton varieties had no effect on aphids, leading them to conclude that Bt cotton poses a negligible risk for aphid antagonists and that the aphids should remain under natural control in Bt cotton fields.

On the other hand, it was expected that any impact of transgenic Bt+CpTI cotton on mealybugs may be largely attributed to the CpTI gene encoding the cowpea trypsin inhibitor, which acts on insect gut digestive enzymes and inhibits protease activity [66]. The cysteine protease inhibitor, oryzacystatin I (OC-I), was detected in both leaves and phloem sap of...
Table 3. Developmental time (days) and total survival rate (%) of the immature stages of *C. montrouzieri* reared non-transgenic or transgenic cotton leaves.

Cotton cultivar	Developmental stage	Development time per stage (days)*	Total survival (%)																																		
	1st instar	2nd instar	3rd instar	4th instar	Pupa	Total immature																															
Non-transgenic cotton	3.12	6	6	0.05	3.22	6	6	0.06	5.50	6	0.07	8.71	6	0.07	23.40	6	0.13	8.00	0.05	3.22	6	0.06	5.50	6	0.07	8.71	6	0.07	23.40	6	0.13	8.00					
Transgenic cotton	3.11	6	0.03	2.81	6	0.04	3.27	6	0.05	5.49	6	0.07	8.66	6	0.09	23.31	6	0.09	86.96	6	0.05	2.94	2	94.2	776.0	820.0	878.0	640.5	672.5	0.798	0.793	0.293	0.538	0.973	0.610	0.610	0.372

No significant difference was observed between the control and treated groups within the same column (means SE) (P < 0.05; * Mann-Whitney U test or 2 test); 45 and 46 larvae were initially tested for non-transgenic and transgenic cotton plants, respectively.

Interaction of Mealybug, Ladybird, Transgenic Cotton

Several possible mechanisms can explain the observed results. Firstly, *C. montrouzieri* might not be sensitive to Cry1Ac proteins. Porcar et al. [76] reported no statistical differences in mortality of *C. montrouzieri* adults and *Adalia bipunctata* L. larvae fed on artificial diets with or without Cry1Ab and Cry3Aa toxins. Duan et al. [77] and Lundgren and Wiedenmann [78] found no significant adverse effects when Bt maize pollen were fed to larvae of the ladybird *Coleomegilla maculata* DeGeer. The same ladybird species was also found to be unaffected by Bt cotton or higher amounts of Cry2Ab and Cry1Ac proteins indicating that Bt cotton poses a negligible...
risk to \(C. \text{maculata} \) \[57\]. In addition, no negative effects of Bt-transgenic plants were observed on the development, survival, and reproduction of the ladybirds \(\text{Hippodamia convergens} \) (Guérin-Méneville) and \(\text{Propylea japonica} \) (Thunberg) through their aphid prey that fed on the Bt plants \[25,79\].

In the field, no significant differences were observed in the abundance of coccinellid beetles on Bt-transgenic and non-transgenic cottons \[80\]. Pollen from Cry1Ac+CpTI transgenic cotton (CCRI41) did not affect the pollinating beetle \(\text{Haptoncus luteolus} \) (Erichson) in the field and in the laboratory \[19\]. Xu et al. \[81\] found that CCRI41 cotton did not affect the population dynamics of non-target pests and predators including ladybirds and spiders in Xinjiang, China. Zhang et al. \[82\] observed negative effects on the ladybird \(\text{P. japonica} \) when offered young \(\text{Spodoptera litura} \) (F.) larvae reared on Bt-transgenic cotton expressing Cry1Ac toxin; however, adverse effects on the ladybird were attributed to poor prey quality. Lumbierres et al. \[83\] investigated the effects of Bt maize on aphid parasitism and the aphid–parasitoid complex in field conditions on three transgenic varieties and found that Bt maize did not alter the aphid–parasitoid associations and had no effect on aphid parasitism and hyperparasitism rates.

Ramirez-Romero et al. \[84\] concluded that Bt-maize did not affect the development of the non-target aphid \(\text{Sitobion avenae} \) (F.) and Cry1Ab toxin quantities detected in these aphids were nil, indicating that none or negligible amounts of Cry1Ac are passed on from the aphids to higher trophic levels. Probably, the amount of Cry1Ac/CpTI proteins ingested by the mealybugs in our study was too low to be effective. Indeed, ELISA measurements indicated that Bt+CpTI cotton-reared \(\text{F. virgata} \) and its predator did not contain detectable amounts of the Cry1Ac and CpTI protein. Because the commercial ELISA kit for determining CpTI expression was not available \[19\] or the amount of CpTI proteins was lower than the lowest limit of quantification \[11,21\] there are few earlier reports on tritrophic interactions involving CpTI protein. On the contrary, many studies related to the transfer of Bt toxic proteins to higher trophic levels have been carried out. For example, ELISA analyses revealed no or only trace amounts of Bt protein in sap-sucking insects of the order Hemiptera after feeding on different Bt plants, including maize \[63,84–86\] and cotton \[26,87\]. Trace amounts of Bt toxins were detected in \(\text{A. gossypii} \) feeding on Bt cotton cultivars and ladybirds preying on Bt-fed aphids \[41\]. Another possible reason for the weak effect of Cry1Ac/CpTI proteins is that ladybirds may digest or excrete the

Table 4. Reproduction and longevity of \(C. \text{montrouzieri} \) females reared on non-transgenic or transgenic cotton leaves.

Cotton cultivar	Preoviposition period (days)*	Fecundity (eggs/♀)*	Oviposition rate (eggs/♀/day)*	Egg hatch (%)*	Longevity (days)*
Non-transgenic cotton	7.00±0.93	823.80±84.25	7.21±0.83	90.60±0.01	160.96±17.36
Transgenic cotton	7.18±0.58	766.46±110.99	5.44±0.74	90.80±0.11	157.88±11.62

No significant difference was observed between the control and treated groups within the same column \((\text{Means ± SE}) (P>0.05); \ast\text{independent t-test}, \ast\text{Mann-Whitney U test or} \chi^2 \text{ test}); 12 and 16 pairs of \(C. \text{montrouzieri} \) were used for non-transgenic and transgenic cotton plants, respectively.

doi:10.1371/journal.pone.0095537.t004
toxins taken up via their prey. For example, Li and Romeis [88] fed the ladybird Stethorus punctillum (Weise) with spider mites, Tetranychus urticae (Koch), reared on Cry3Bb1-expressing Bt maize. Subsequent bioassays revealed that the Cry protein concentrations in the ladybird beetle larvae and adults were 6- and 20-fold lower, respectively, than the levels in the spider mite prey. Cry1 proteins were also detected in C. maculata when offered Trichoplusia ni (Hubner) larvae reared on Bt-cotton, but the Bt protein levels were 21-fold lower for Cry2Ab and 6-fold lower for Cry1Ac compared to the concentrations in the prey [57].

In summary, our study indicates that F. virgata can successfully develop on bivalent transgenic cotton CCRI41 expressing Cry1Ac+CpTI and thus can pose a risk for this crop. The finding that not only P. solenopsis but also other mealybugs like F. virgata can easily infest transgenic cotton plants has important implications for pest management in this cropping system. Further, our study demonstrates that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its mealybug prey.

However, further field studies assessing the impact of transgenic cotton on the mealybug pest and its key natural enemies are needed.

Acknowledgments

We wish to thank our colleagues of Sun Yat-sen University for support and input during all stages of the work. Dr. Fenglong Jia, Dandan Zhang and Binglan Zhang provided useful suggestions on an earlier design of the experiment. Ruixin Jiang helped with the statistical analysis and Lijun Ma is thanked for assistance with insect rearing and cotton planting.

Author Contributions

Conceived and designed the experiments: HW HP PDC. Performed the experiment: Ruixin Jiang helped with the statistical analysis and Lijun Ma provided useful suggestions on an earlier design of the experiment. Binglan Zhang provided useful suggestions on an earlier design of the experiment. We wish to thank our colleagues of Sun Yat-sen University for support and input during all stages of the work. Dr. Fenglong Jia, Dandan Zhang and Binglan Zhang provided useful suggestions on an earlier design of the experiment. Ruixin Jiang helped with the statistical analysis and Lijun Ma is thanked for assistance with insect rearing and cotton planting.

References

1. Kos M, van Loon JJ, Dicke M, Vet LE (2009) Transgenic plants as vital components of integrated pest management. Trends in biotechnology 27: 621–627.
2. Ferry N, Edwards M, Gatehouse J, Capell T, Christou P, et al. (2006) Transgenic plants for insect pest control: a forward looking scientific perspective. Transgenic Research 15: 13–19.
3. Poppy GM, Sutherland JP (2004) Can biological control benefit from genetically-modified crops? Trophic interactions in insect-resistant transgenic plants. Physiological Entomology 29: 257–268.
4. Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 467: 362–365.
5. Hilder VA, Boulter D (1999) Genetic engineering of crop plants for insect resistance - a critical review. Crop Protection 18: 177–191.
6. Sharma H, Ortiz R (2000) Transgenic, pest management, and the environment. Current Science 79: 421-437.
7. Lundgren JG, Gassmann AJ, Bernal J, Duan JF, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Protection 28: 1017–1030.
8. James C (2009) Global status of commercialized biotech/GM crops: 2009. ISAAA Brief No. 39 (International Service for the Acquisition of Agri-Biotech Applications, Ithaca, NY, USA).
9. Dhillon M, Sharma H (2015) Comparative studies on the effects of Bt-transgenic and non-transgenic cotton on arthropod diversity, seed cotton yield and bollworms control. Journal of Environmental Biology 36: 67–73.
10. Cui JJ (2003) Effects and mechanisms of the transgenic Cry1Ac plus CpTI (cowpea trypsin inhibitor) cotton on insect communities. Dissertation, Chinese Academy of Agricultural Sciences.
11. Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Quantification of toxins in a Cry1Ac + CpTI cotton cultivar and its potential effects on the honey bee, Apis mellifera L. Ecotoxicology 19: 1452–1459.
12. Faria CA, Wackers FI, Pritchard J, Barrett DA, Turlings TC (2007) High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. PLoS One 2: e600.
13. Romeis J, Bartsch D, Bigler F, Candolfi MP, Gielkens MM, et al. (2008) Assessment of risk of insect-resistant transgenic crops to non-target arthropods. Nature biotechnology 26: 203–208.
14. Desneux N, Bernal JS (2010) Genetically modified crops deserve greater ecotoxicological scrutiny. Ecotoxicology 19: 1642–1644.
15. Liu XX, Sun CG, Zhang QW (2005) Effects of transgenic Cry1A+Ct cotton and Cry1Ac toxin on the parasitoid, Campodeus chloridenum (Hymenoptera:Ichneumonidae). Insect Science 12: 101–107.
16. Liu B, Shu C, Xue K, Zhou K, Li X, et al. (2009) The oral toxicity of the transgenic Bt+ CpTI cotton pollen to honeybees (Apis mellifera). Ecotoxicology and Environmental Safety 72: 1163–1169.
17. Xu Y, Wu KM, Li HB, Liu J, Ding RF, et al. (2012) Effects of Transgenic Bt + CpTI Cotton on Field Abundance of Non-Target Pests and Predators in Xinjiang, China. Journal of Integrative Agriculture 11: 1493–1499.
18. Zhao XX, Cui XH, Chen L, Hung W, Zheng D, et al. (2012) Ontogenesis and Adaptability of Mealybug Phenacoccus solenopsis Tinney (Hemiptera:Pseudococcidae) on Different Varieties of Cotton. Cotton Science 24: 496–502.
19. Chen L, Cui J, Ma W, Niu C, Lei C (2011) Pollen from Cry1Ac/CpTI-transgenic cotton does not affect the pollinating beetle Hamptocoris lutrei. Journal of Pest Science 84: 9–14.
20. Han P, Niu CY, Lei CL, Cui JJ, Desneux N (2010) Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects...
of GM products and pesticides on learning capacity of the honey bee *Apis mellifera* L. Ecotoxicology 19: 1612–1619.

21. Han P, Niu CY, Biondi A, Desneux N (2012) Does transgenic Cry1Ac + CppTi cotton pollen affect hypopharyngeal gland development and midgut proteolytic enzyme activity in the honey bee *Apis mellifera* L.? *Hymenoptera, Apidae*. Ecotoxicology 21: 2244–2241.

22. Ashour I, Michaud D, Cloutier C (2003) Unexpected effects of different potato resistance factors to the Colorado potato beetle (*Coleoptera: Chrysomelidae*) on the potato aphid (*Homoptera: Aphididae*). Environmental entomology 30: 532–542.

23. Liu XD, Zhai BP, Zhang XX, Zong JM (2005) Impact of transgenic cotton plants on a non-target pest, *Aphis gossypii* Glover. Ecological Entomology 30: 307–315.

24. Zhou FC, Du YZ, Ren SX (2005) Effects of transgenic cotton on population of the piercing-sucking mouthparts insects. Entomological Journal of East China 14: 132–135.

25. Zhu S, Su J, Liu X, Yu SY, Chen BN, et al. (2006) Development and reproduction of *Phytomyza injicella* (Coleoptera: Coccinellidae) raised on *Aphi* *gossypii* (Homoptera: Aphididae) fed transgenic cotton. Zoological Studies 45: 98–103.

26. Luvee NC, Wackers FL, Romeis J (2009) Inland Bt cotton varieties do not affect the performance of cotton aphids. *PLoS One* 4: e4804.

27. Beltraán A, Soto A, Germain J, Matile-Ferrero D, Mazzeo G, et al. (2010) The *Bougainvillea* mealybug *Phenacoccus solenopsis* (Hemiptera: Pseudococcidae), a rapid invader from South America to Europe. *Entomol Hord* 19: 137–143.

28. N_LENG-G, MALE G, OUD FC (2008) Presence and abundance of different insect predators against sucking insect pest of cotton. *Journal of Entomology 5* 31–37.

29. Wang YP, Watson GW, Zhang RZ (2010) The potential distribution of an invasive meadowlark, *Phenacoccus solenopsis* Tinsley, and its threat to cotton in Asia. Agricultural and Forest Entomology 12: 403–416.

30. Khuhro S, Lohar M, Abro G, Talpur M, Khuhro R (2012) Feeding potential of *Cryptolaemus montrouzieri* Mulsant and it’s natural enemies on Bt cotton. PLoS *One* 7: e34295.

31. Decourtye A, Mader E, Desneux N (2010) Landscape enhancement of floral resources for honey bees in agro-ecosystems. *Apidologie* 41: 264–277.

32. Beltraán A, Soto A, Germain J, Matile-Ferrero D, Mazzeo G, et al. (2010) The *Bougainvillea* mealybug *Phenacoccus solenopsis* (Hemiptera: Pseudococcidae), a rapid invader from South America to Europe. *Entomol Hord* 19: 137–143.

33. Lawo NC, Wa¨ckers FL, Romeis J (2009) Indian Bt cotton varieties do not affect the performance of cotton aphids. *PLoS One* 4: e4804.

34. Porcar M, Grenier A-M, Federici B, Rabbé Y (2009) Effects of *Bacillus thuringiensis* δ-Endotoxins on the pea Aphid (*Aphthypalpus pismen*). Applied and environmental microbiology 75: 4897–4900.

35. Beltraán A, Soto A, Germain J, Matile-Ferrero D, Mazzeo G, et al. (2010) The *Bougainvillea* mealybug *Phenacoccus solenopsis* (Hemiptera: Pseudococcidae), a rapid invader from South America to Europe. *Entomol Hord* 19: 137–143.

36. N_LENG-G, MALE G, OUD FC (2008) Presence and abundance of different insect predators against sucking insect pest of cotton. *Journal of Entomology 5* 31–37.

37. Hanchinal S, Patil B, Basavanagoud K, Nagangoud A, Biradar D, et al. (2011) Effects of transgenic cotton on population of the piercing-sucking mouthparts insects. Entomological Journal of East China 14: 132–135.

38. Azzouz H, Cherqui A, Campan EDM, Rahbe Y, Duport G, et al. (2005) Effects of *Bacillus thuringiensis* subsp. *suis* and its resistance. *Scientia Agricultura Sinica* 33: 46–52.

39. Amarasekare KG, Mannon CM, Osborne LS, Epsky ND (2008) Life history of *Propylaea marginatus* (Hemiptera: Pseudococcidae) on four host plant species under laboratory conditions. *Environmental entomology* 37: 630–635.

40. Azzouz H, Cherqui A, Campan EDM, Rahbe Y, Duport G, et al. (2005) Effects of *Bacillus thuringiensis* subsp. *suis* and its resistance. *Scientia Agricultura Sinica* 33: 46–52.
74. Lu Y, Xue L, Zhou ZT, Dong JJ, Guo XW, et al. (2011) Effects of Transgenic Bt Plus CpTI cotton on Predating Function Response of Coccinella septempunctata to Aphis gossypii Glover. Acta Agriculturae Boreali-Sinica 26: 163–167.
75. Geng JH, Shen ZR, Song K, Zheng L (2006) Effect of pollen of regular cotton and transgenic Bt+ CpTI cotton on the survival and reproduction of the parasitoid wasp Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in the laboratory. Environmental entomology 35: 1661–1668.
76. Porcar M, García-Robles I, Domínguez-Escribá L, Lanorre A (2010) Effects of Bacillus thuringiensis Cry1Ab and Cry3Aa endotoxins on predatory Coleoptera tested through artificial diet-incorporation bioassays. Bulletin of entomological research 100: 297.
77. Duan JJ, Head G, McKee MJ, Nickson TE, Martin JW, et al. (2002) Evaluation of dietary effects of transgenic corn pollen expressing Cry3Bb1 protein on a non-target ladybird beetle, Coleomegilla maculata. Entomologia experimentalis et applicata 104: 271–280.
78. Lundgren JG, Wiedenmann RN (2002) Coleopteran-specific Cry3Bb Toxin from Transgenic Corn Pollen Does Not Affect The Fitness of a Nontarget Species, Coleomegilla maculata DeGeer (Coleoptera: Coccinellidae). Environmental entomology 31: 1213–1218.
79. Dogan E, Berry R, Reed G, Rossignol P (1996) Biological parameters of convergent lady beetle (Coleoptera: Coccinellidae) feeding on aphids (Homoptera: Aphididae) on transgenic potato. Journal of Economic Entomology 89: 1105–1108.
80. Sharma HC, Arora R, Pampanapathy G (2007) Influence of transgenic cottons with Bacillus thuringiensis cry1Ac gene on the natural enemies of Helicoverpa armigera. BioControl 52: 469–489.
81. Xu Y, Wu KM, Li HB, Liu J, Ding RF, et al. (2012) Effects of Transgenic Bt+ CpTI Cotton on Field Abundance of Non-Target Pests and Predators in Xinjiang, China. Journal of Integrative Agriculture 11: 1495–1499.
82. Zhang GF, Wan FH, Wan XL, Guo JY (2006) Early Instar Response to Plant Derived Bt-Toxin in a Herbivore (Spodoptera litura) and a Predator (Pothynia japonica). Crop Protection 25: 527–533.
83. Lumbierres B, Stary P, Pons X (2011) Effect of Bt maize on the plant-aphid-parasitoid tritrophic relationships. BioControl 56: 133–143.
84. Ramirez-Romero R, Desneux N, Chauvaux J, Kaiser L (2008) Bt-maize effects on biological parameters of the non-target aphid Sitobion avenae (Homoptera: Aphididae) and Cry1Ab toxin detection. Pesticide Biochemistry and Physiology 91: 110–115.
85. Head G, Brown CR, Groth ME, Duan JJ (2001) Cry1Ab protein levels in phytophagous insects feeding on transgenic corn: implications for secondary exposure risk assessment. Entomologia experimentalis et applicata 99: 37–45.
86. Obrist L, Dutton A, Albajes R, Bigler F (2006) Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields. Ecological Entomology 31: 143–154.
87. Torres JI, Rubercson JR, Adang MJ (2006) Expression of Bacillus thuringensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agricultural and Forest Entomology 8: 191–202.
88. Lu Y, Romet J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetramychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biological Control 53: 337–344.