Research article

Perfusion-based co-culture model system for bone tissue engineering

Stephen W. Sawyer¹, Kairui Zhang¹, Jason A. Horton² and Pranav Soman¹,*

¹ Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, USA
² Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, NY, USA

* Correspondence: Email: psoman@syr.edu; Tel: +3154439322.

Appendix
Supplementary Figure 1: MicroCT analysis of mineral deposition within a co-culture single pipe system. HUVECs were either seeded along the perfusible channels (HC) or added in a 2:1 ratio with Saos-2 cells in the bulk GelMA matrix (HB) and the constructs were either perfused with (Flow) or left in static control wells containing (Static) osteogenic media for two weeks. After two weeks, HUVECS encapsulated in the bulk material significantly increased Saos-2 mineral deposition as compared to the constructs containing HUVEC lined channels and their static controls (*p < 0.05 as compared to HB Flow 2 Wk, n = 5).