Resumo

Fundamento: O papel da função do músculo papilar na regurgitação mitral grave com fração de ejeção do ventrículo esquerdo preservada e reduzida e o método de escolha para avaliar PM ainda são objetos de controvésia.

Objetivos: Avaliar e comparar a função dos músculos papilares entre pacientes com insuficiência mitral funcional e degenerativa pelo método free strain.

Métodos: 64 pacientes com insuficiência mitral grave - 39 pacientes com insuficiência mitral degenerativa grave (grupo IMD) e 25 com insuficiência mitral funcional grave (grupo IMF) – e 30 indivíduos controle (grupo controle) foram incluídos no estudo. A função dos músculos papilares foi avaliada pelo método free strain a partir de imagens apicais quatro-câmaras do músculo papilar anterolateral (MPA) e imagens apicais três-câmaras do músculo papilar posteromedial (MPP). Strains circunferenciais e longitudinais globais do ventrículo esquerdo foram avaliados por meio de imagens bidimensionais a partir do rastreamento de conjunto de pontos de cinza (speckle tracking).

Resultados: O strain longitudinal global do ventrículo esquerdo (grupo IMD, –17 [-14.2/-20]; grupo IMF, –9 [-7/-10.7]; grupo controle, –20 [-18/-21] p < 0.001); strain circunferencial global do ventrículo esquerdo (grupo IMD, –10 [-7.7/-12]; grupo IMF, –23 [-21/-27.5] p < 0.001) e strain de músculos papilares (MP; grupo IMD, –30.5 [-24/-46.7]; grupo IMF, –18 [-12/-30]; grupo controle, –43 [-34.5/-39.5] p < 0.001; MPA; grupo IMD, –35 [-23.5/-43]; grupo IMF, –20 [-13.5/-26]; grupo controle, –40 [-32.5/-48] p < 0.001) mostraram-se significativamente diferentes nos grupos. MPA e MPP mostraram-se altamente correlacionados com a FEVE (p < 0,001, p < 0,00; respectivamente), SLG (p < 0,001, p < 0,001; respectivamente) e SCG (p < 0,001, p < 0,001; respectivamente) do VE entre todos os grupos. Não foi encontrada correlação entre os strain de músculos papilares e área eficaz do orifício (AEO) nos grupos de insuficiência mitral grave.

Conclusões: A medição do strain como método de avaliação de músculos papilares pelo método free strain é prática e aplicável. A disfunção de músculos papilares tem um papel pequeno em IM grave devido a causas degenerativas e funcionais, e a função dos músculos papilares, em geral, parece seguir a função ventricular esquerda. O MPP é o MP mais afetado na insuficiência mitral em ambos os grupos, IMD e IMF (Arq Bras Cardiol. 2017; 108(4):339-346).

Palavras-chave: Insuficiência da Valva Mitral / diagnóstico; Insuficiência da Valva Mitral / fisiopatologia; Músculos Papilares / fisiopatologia; Diagnóstico por Imagem; Echocardiografia / métodos; Função Ventricular; Remodelação Ventricular.

Abstract

Fundamento: The role of papillary muscle function in severe mitral regurgitation with preserved and reduced left ventricular ejection fraction and the method of choice to evaluate PM have still been the subjects of controversy.

Objectives: To evaluate and compare papillary muscle function in and between patients with severe degenerative and functional mitral regurgitation using the free strain method.

Methods: 64 patients with severe mitral regurgitation - 39 patients with degenerative mitral regurgitation (DMR group) and 25 patients with severe functional mitral regurgitation (FMR group) - and 30 control subjects (control group) were included in the study. Papillary muscle function was evaluated through the free strain method from apical four chamber images of the anterolateral papillary muscle (APM) and from apical three chamber images of the posteromedial papillary muscle (PPM). Global left ventricular longitudinal and circumferential strains were evaluated by applying 2D speckle tracking imaging.

Results: Global left ventricular longitudinal strain (DMR group, –17 [-14.2/-20]; FMR group, –9 [-7/-10.7]; control group, –20 [-18/-21] p < 0.001), global left ventricular circumferential strain (DMR group, –10 [-7.7/-12]; FMR group, –23 [-21/-27.5] p < 0.001) and papillary muscle strains (PPMs; DMR group, –30.5 [-24/-46.7]; FMR group, –18 [-12/-30]; control group, –43 [-34.5/-39.5] p < 0.001; APM; DMR group, –35 [-23.5/-43]; FMR group, –20 [-13.5/-26]; control group, –40 [-32.5/-48] p < 0.001) were significantly different among all groups. APMs and PPMs showed a good correlation with EF (p < 0.001, p < 0.001; respectively), GLS (p < 0.001, p < 0.001; respectively) and GCS (p < 0.001, p < 0.001; respectively) of LV among all groups. No correlation was found between papillary muscle strain and effective orifice area (EOA) in both groups of severe mitral regurgitation.

Conclusions: Measuring papillary muscle longitudinal strain by the free strain method is practical and applicable. Papillary muscle dysfunction plays a small role in severe MR due to degenerative or functional causes and papillary muscle functions in general seems to follow left ventricular function. PPM is the most affected PM in severe mitral regurgitation in both groups of DMR and FMR (Arq Bras Cardiol. 2017; 108(4):339-346).

Keywords: Mitral Valve Insufficiency / diagnostic; Mitral Valve Insufficiency / physiopathology; Papillary Muscles / physiopathology; Diagnostic Imaging; Echocardiography / methods; Ventricular Function; Ventricular Remodeling.
Introdução

A insuficiência mitral (IM) é uma das doenças valvares mais comuns em países desenvolvidos. As principais etiologias de IM são classificadas como degenerativa, dilatada e isquérmica. 1 A IM grave compromete a função ventricular esquerda e piora o prognóstico dos pacientes. 2 O aparelho subvalvar mitral contribui significativamente para a função ventricular esquerda e a ocorrência de insuficiência mitral. Danos no aparelho subvalvar é prejudicial à função sistólica ventricular esquerda e à insuficiência mitral. 3,4 A disfunção dos músculos papilares já foi, em alguns estudos, apontada como causa mecânica de insuficiência mitral em pacientes com insuficiência mitral valvar funcional (IMV); mas, em outros, não foi encontrada correlação entre insuficiência mitral e disfunção dos músculos papilares, e até mesmo um efeito atenuante da disfunção dos músculos papilares foi relatada na maioria dos estudos. 2,3,5-8 Em estudos experimentais, sob o intervalo de carga normal e condições inotrópicas, a contracção dos músculos papilares normalmente segue as características gerais da contracção ventricular esquerda, mas uma isquemia ou atordoamento podem interferir nesse curso. É relatado que na insuficiência mitral isquémica, a diminuição do encurtamento dos músculos papilares, chamado disfunção dos músculos papilares, diminui paradoxalmente o grau de IM. 5,7 Em pacientes com função do VE normal e IMV, um encurtamento fracional é normal, da mesma forma que em pacientes com IM leve ou mais grave. 3 Em pacientes com insuficiência mitral valvar degenerativa (IMVD), não há conhecimento suficiente sobre o papel da disfunção dos músculos papilares (MP). O papel da função dos músculos papilares na IM grave e o método para avaliar os MP ainda são controversos. 3,5 O objetivo desse estudo é avaliar e comparar as funções dos músculos papilares entre pacientes com IMVD e IM grave pelo método free strain.

Métodos

População do estudo

Trata-se de um estudo prospectivo em que foram incluídos 64 pacientes com IM grave, encaminhados para exames ecocardiográficos no hospital Kartal Kosuyolu Heart Education and Research Hospital entre janeiro de 2014 e abril de 2015. Um total de 39 pacientes apresentaram IM degenerativa grave (grupo IMD), e 25 tinham IMV funcional grave (grupo IMF). O grupo IMD foi composto por 30 indivíduos sem IMV e fração de ejeção normal. Os pacientes com IMV (prolapse da válvula mitral, ruptura das cordas tendíneas) e fração de ejeção < 40% foram inscritos no estudo prospectivamente. No grupo IMF, seis pacientes apresentavam prolapse do folheto anterior, 26 tinham prolapse posterior (18 pacientes com prolapse do segmento P2, 4 pacientes com prolapse do segmento P1 e 4 pacientes com prolapse do segmento P3) e 6 pacientes com síndrome de Barlow. No grupo IMF, 21 pacientes apresentavam doença cardíaca isquémica sem necessidade de revascularização, e 4 pacientes tinham doença cardíaca dilatada não isquémica. Pacientes com IM orgânica advinda de outras causas, incluindo doença reumática ou doença valvar cardíaca degenerativa, calciificação anular mitral e endocardite infecciosa e pacientes com fração de ejeção reduzida foram excluídos do estudo. Apenas pacientes com imagens ecocardiográficas apropriadas foram incluídos no estudo. O estudo foi aprovado pelo Comitê de Ética local.

Ecocardiografia padrão

Avaliações padrão de ecocardiografia foram feitas com transdutor de 1 a 5 MHz X5-1 (E33, Philips Healthcare Inc., Andover, MA, EUA). Os pacientes foram examinados na posição lateral esquerda. As medições foram feitas em média durante 3 ciclos cardíacos consecutivos. Todas as imagens transtorácicas, bem como as funções dos músculos papilares, foram obtidas com um transdutor de 7,5 MHz. As funções dos músculos papilares foram analisadas com um software de processamento de imagem, o 3D ViewStation (Philips). O encurtamento fracional dos músculos papilares foi calculado por meio de imagens bidimensionais, todos os pacientes com IMV grave foram considerados IM grave.

O aparelho subvalvar mitral subvalvar é prejudicial à função sistólica ventricular esquerda e à ocorrência de insuficiência mitral. Danos no aparelho subvalvar é prejudicial à função sistólica ventricular esquerda e à insuficiência mitral. 3,4 A disfunção dos músculos papilares já foi, em alguns estudos, apontada como causa mecânica de insuficiência mitral em pacientes com insuficiência mitral valvar funcional (IMV); mas, em outros, não foi encontrada correlação entre insuficiência mitral e disfunção dos músculos papilares, e até mesmo um efeito atenuante da disfunção dos músculos papilares foi relatada na maioria dos estudos. 2,3,5-8 Em estudos experimentais, sob o intervalo de carga normal e condições inotrópicas, a contracção dos músculos papilares normalmente segue as características gerais da contracção ventricular esquerda, mas uma isquemia ou atordoamento podem interferir nesse curso. É relatado que na insuficiência mitral isquémica, a diminuição do encurtamento dos músculos papilares, chamado disfunção dos músculos papilares, diminui paradoxalmente o grau de IM. 5,7 Em pacientes com função do VE normal e IMV, um encurtamento fracional é normal, da mesma forma que em pacientes com IM leve ou mais grave. 3 Em pacientes com insuficiência mitral valvar degenerativa (IMVD), não há conhecimento suficiente sobre o papel da disfunção dos músculos papilares (MP). O papel da função dos músculos papilares na IM grave e o método para avaliar os MP ainda são controversos. 3,5 O objetivo desse estudo é avaliar e comparar as funções dos músculos papilares entre pacientes com IMVD e IMV graves pelo método free strain.
O free strain é uma aplicação do software comercialmente disponível da Philips (CMQ Q-app). Esse método possibilita a medição de velocidades, deslocamentos e deformações locais definidas pelo usuário com o uso de técnicas ilimitadas de exibição direcional de cordas. Esse fluxo mede strains dentro da região miocárdica, sem limitações de localização ou direção das medições, que podem ser radiais, longitudinais e circunferenciais. Acredita-se que o free strain é um método fácil, rápido e prático de medir deformação miocárdica. Esse método pode ser especialmente bom na medição de deformações dos MPs, já que essas estruturas estão relativamente separadas do miocárdio ventricular esquerdo e não estão incluídas nos modelos de strain do VE disponíveis no mercado.

Para medir o strain longitudinal pelo método free strain, deve-se selecionar uma região de interesse, clicando manualmente em dois pontos. O primeiro ponto foi selecionado da base do MP no local em que este está conectado à parede do VE. O segundo ponto foi selecionado da ponta do MP com atenção especial para manter uma distância de 3-5 mm das cordas para evitar artefatos. Todas as STEs foram feitas em frequência de quadros entre 50-70 Hz quadros por segundo. O valor médio do strain foi obtido de três batimentos consecutivos. Os valores de pico sistólico foram registrados para SCG, SLG e S longitudinal do MPA e MPP.

Os detalhes da medição do strain longitudinal com o método free strain para ambos os MPs estão apresentados na Figura 1.

Análise estatística
O gerenciamento e análise dos dados foram feitos com o software IBM SPSS Statistics 16.0 (SPSS, Chicago, IL, EUA). Variáveis contínuas estão expressas como média (DP) ou mediana (intervalo interquartil 25 a 75 [IR]) dependendo da distribuição da variável. A distribuição normal foi analisada pelo teste de Kolmogorov-Smirnov. Variáveis categóricas estão apresentadas em números absolutos e porcentagens e foram comparadas pelo teste do qui-quadrado ou teste exato de Fisher, conforme apropriado. A ANOVA de uma via foi usada com o post hoc de Tukey para comparar variáveis contínuas entre os grupos; quando não havia homogeneidade de variância, o teste de Kruskal-Wallis foi usado para amostras independentes não-paramétricas. O teste de Mann-Whitney para amostras independentes não-paramétricas para comparações inter-grupos foi feito para confirmar significância. As correlações foram testadas pela correlação de Pearson ou Spearman, conforme apropriado. Significância estatística foi considerada quando p < 0,05.

Resultados
As características demográficas da população do estudo estão na Tabela 1. Idade e gênero eram similares em todos os grupos. Características de ecocardiografia padrão e STE estão apresentadas nas Tabelas 2 e 3. Os diâmetros do AE e VE mostraram-se estatisticamente diferentes entre todos os grupos. O raio de fibrilação atrial mostrou-se estatisticamente diferente entre os grupos IMD e IMF, porém isso não pareceu afetar significativamente os resultados do estudo.

O strain longitudinal ventricular esquerdo global e o strain longitudinal dos MPs mostraram-se significativamente diferentes entre todos os grupos. O strain do MP posteromedial (SMPP) do grupo controle foi melhor do o SMPP dos grupos IMD e IMF. Não foi encontrada diferença significativa no strain do MP anterolateral (SMPA) entre os grupos IMD e controle, e ambos os strains do grupo IMF estavam significativamente mais baixos do que os strains longitudinais dos MPs dos grupos.
IMD e controle. O SMPP teve os menores valores em ambos os grupos com IM. Os strains longitudinais e circunferenciais ventriculares esquerdos globais dos três grupos seguiram a mesma ordem que o SMPP e mostraram-se melhores no grupo controle do que no grupo IMD, e o grupo IMD teve melhor resultado do que o grupo IMF (Figura 2).

O SMPP mostrou-se altamente correlacionados à FEVE (ambos p < 0,001), SLG (ambos p < 0,001) e SCG (ambos p < 0,001) do ventrículo esquerdo entre todos os grupos. Não foi encontrada correlação entre strains dos MPs e AEO em nenhum dos grupos com IM grave.
No grupo IMD, não houve correlação estatística entre strains longitudinais de MPs e AEO. Qualquer prolapso em segmento do folheto esquerdo versus o folheto posterior foi correlacionado a SMPA (p = 0,04). Além disso, houve correlação moderada entre o diâmetro diastólico final do ventrículo esquerdo (DDVE) e AEO (r = 0,38, p = 0,02). O SMPA e SMPP não se mostraram correlacionados com a FEVE (p = 0,55, p = 0,13; respectivamente), SLG (p = 0,62, p = 0,54; respectivamente) e SCG (p = 0,77, p = 0,38; respectivamente).

No grupo IMF, também não houve correlação entre AEO e strains longitudinais de MPs. O MAbic mostrou-se negativamente correlacionado com o SMPA (r = –0,76, p = 0,03). O comprimento do folheto posterior estava correlacionado com o SMPP (r = 0,88, p = 0,01). SMPA e SMPP não se mostraram correlacionados à FEVE (p = 0,18, p = 0,09; respectivamente), SLG (p = 0,33, p = 0,33; respectivamente) e SCG (p = 0,83, p = 0,93; respectivamente).

Ademais, no grupo controle, SMPA e SMPP não estavam correlacionados à FEVE (p = 0,80, p = 0,65; respectivamente), SLG (p = 0,25, p = 0,43; respectivamente) e SCG (p = 0,63, p = 0,85; respectivamente).

Discussão

Nosso estudo demonstrou que as funções dos MPs agem de maneira similar à do ventrículo esquerdo e são reduzidas na presença de IM degenerativa e funcional, da mesma forma que o strain ventricular global. O SMPP do grupo controle mostrou-se melhor do que no grupo IMD e o SMPP do grupo IMD mostrou-se melhor do que no grupo IMF. O SMPA do grupo mostrou-se similar ao do grupo IMD e melhor do que o do grupo IMF. Apesar de os pacientes do grupo IMD apresentarem fração de ejeção normal, os valores do strain longitudinal dos MPs seguiram o SLG e SCG, que apareceram diminuídos quando comparados ao grupo controle, refletindo uma disfunção sistólica latente no grupo IMD. Além disso, no grupo IMF, os valores do strain longitudinal dos MPs estavam em acordo com o strain circunferencial e longitudinal global reduzido do VE comprometido. Não foi encontrada correlação entre os free strains dos MPs e AEO em nenhum dos grupos com IM grave. Kisanuki et al. mostraram que a ocorrência de IM moderada à grave foi significativamente mais frequente em pacientes com uma combinação de disfunção dos MPs.
artigo anterior e posterior do que naqueles com disfunção isolada do MP ou função dos MPs normal. Todavia, os autores supuseram que a disfunção dos MPs isolada ou combinada não foi a única causa para a IM, ao menos que acompanhada com anormalidades no movimento da parede ventricular esquerda.11 Já foi demonstrado em estudos experimentais que a paresia seletiva dos MPs não afeta a competência da válvula mitral e não causa IM em ventrículo com contração normal.11,12 O principal mecanismo da IM na IMF são as forças de amarração aumentadas e coaptação reduzida dos folhetos da válvula mitral pelo deslocamento medial/lateral e apical dos MPs.13,14 Tigen et al.6 demonstraram que a dessincronia dos MPs é preditora independente de IM moderada ou moderada à grave em pacientes com cardiomiopatia dilatada não-isquêmica. Porém, em outro estudo que incluíu pacientes com cardiomiopatia isquêmica e não isquêmica, o strain circunferencial dos MP foi avaliado, e uma estreita relação entre a dessincronia dos MP e o grau de IM não foi encontrada. Contudo, uma relação inversa entre o strain longitudinal dos MP e o grau de IM foi encontrada em pacientes com remodelação de VE inferior basal.2 Há diversos estudos que sustentam a diminuição paradoxal em IM isquêmica por disfunção dos MP.13 Tal fato é atribuído a um encurtamento diminuído dos MP, resultando na redução da amarração e IM por disfunção dos MP. Embora alguns estudos mostrem melhoria aguda da IM com terapia de ressincronização cardíaca, o principal mecanismo é ambíguo e considera-se que se há dessincronia dos MP com dessincronia ventricular esquerda, a melhoria da coordenação da contração dos MP pode resultar em melhoria aguda da IM.15,16 Além disso, em pacientes com fração de ejeção normal, é relatado que a disfunção dos MP não tinha papel significativo na ocorrência de IM.1

Nosso estudo demonstrou que no grupo IMD, o SMPA mostrou-se similar ao do grupo controle e melhor que o SMPP. Na doença da válvula mitral degenerativa, a fibrose ventricular perivalvular e fibrose do MP foram demonstradas em alguns estudos patológicos e estudos de ressonância magnética.17 Focos de necrose também são comuns em pacientes com regurgitação valvar grave recente e, em nosso estudo, a maioria dos pacientes apresentava ruptura cordal com prolapse. A necrose ou fibrose podem ser focais ou difusas e podem envolver apenas um MP, ou os dois. O MPA é levemente maior e tem fornecimento de sangue mais rico do que o MPP. Portanto, se apenas um dos MPs contem focos de fibrose, é quase sempre o MPP.18 Ademais, a disfunção combinada dos dois MPs é frequentemente vista em pacientes com IMF, ao contrário de pacientes com prolapse da válvula mitral aparente, em que a disfunção dos dois MPs foi notada em um pequeno número de pacientes.8

Além disso, em nosso estudo, qualquer prolapse em um segmento do folheto anterior estava associado a um valor reduzido de SMDPA em comparação a um prolapse no folheto posterior. Isto se deve ao fato de que o folheto anterior é maior, mais comprido e geralmente mais grosso do que o folheto posterior. O folheto posterior tem formato de lua crescente com comprimento radial curto e uma longa base circunferencial.19,20 Portanto, IM grave pode causar encerramento do músculo papilar na sístole causado pelo movimento redundante do folheto anterior em direção ao átrio esquerdo pela força do jato regurgitante mitral. Além disso, o anel mitral é uma estrutura em forma de sela não planar. A porção anterior do anel mitral é contínua com o anel aórtico rígido e é elevada em direção ao átrio como um “chifre”. Todavia, o anel mitral posterior é mais flexível, possibilitando a curvatura apical sistólica ao longo de um eixo comissural. Isto ajuda a reduzir o estresse tecidual.19,21 O prolapse no folheto anterior pode estar mais associado ao aumento do estresse tecidual do que ao prolapse posterior. No grupo IMF, um aumento MAbic mostrou-se associado ao SMPA reduzido. Quando ocorre a dilatação do VE, o anel mitral também dilata e aplana, perde seu formato de sela e contração anular sistólica. Isto causa a má coaptação dos folhetos mitrais,21,22 o aumento da força de amarração, resultando num menor encerramento dos MPs. Além disso, vimos que o comprimento do folheto posterior estava associado ao SMPP. Na IMF, a amarração dos folhetos mitrais aparece frequentemente no folheto posterior e, particularmente, no segmento posteromedial.24 De acordo com esse achado, à medida que o comprimento do folheto posterior aumenta, a amarração do folheto mitral diminui, e a função do MP melhora.

Até onde sabemos, nosso estudo é o único que compara a função dos MPs em pacientes com IMD e IMF graves pelo método free strain. Em estudos prévios, métodos de strains longitudinais e circunferenciais foram usados para avaliar a função dos MPs. Utilizamos o método free strain para medir o strain longitudinal de dois pontos nos MPs, o que parece mais fácil e prático no uso clínico, embora ainda não haja diretizes padrão sobre o free strain para a avaliação da função dos MPs.

Alguns estudos com animais mostraram que dentro da carga normal e condições inotrópicas, a dinâmica dos MPs segue de forma próxima à dinâmica do VE como um todo. Há o encerramento durante a ejeção da mesma forma que no VE, e seu comprimento muda apenas levemente durante períodos isovolumétricos. Durante a contração isovolumétrica, há um leve encerramento, e durante o relaxamento isovolumétrico, há um leve alongamento. Em condições inotrópicas, o comportamento dinâmico dos MPs é inverso durante a contração isovolumétrica e o relaxamento isovolumétrico.4,25,26 No estudo de Kisanuki et al.,11 um encerramento fracional dos MPs foi calculado, utilizando-se os comprimentos sistólico final e diastólico final dos MPs no TEE bidimensional. Em nosso estudo, os valores do strain longitudinal dos MPs foram correlacionados, pelo método free strain, a seus valores de encerramento fracional dos MPs.

Limitações

Apenas pacientes com IM grave foram incluídos no estudo. Pacientes com IM leve ou moderada foram excluídos. Avaliamos a função dos músculos papilares em pacientes com IM grave, comparando e associando-a a CEM em pacientes com IMD e IMF. O comportamento dos padrões de free strain nos pacientes com IM leve ou moderada é desconhecido. Utilizamos o método free strain para avaliar a função dos músculos papilares, mas não há padrão de uso nem de valores para tal método. Considerando-se que este é um estudo com uma população pequena, os resultados devem ser confirmados em outros estudos com um número maior de pacientes.

Arq Bras Cardiol. 2017; 108(4):339-346
Conclusão
Nosso estudo, da mesma forma que estudos prévios, demonstrou que a disfunção dos MPs tem um papel pequeno na IM degenerativa ou funcional grave, e a função dos músculos papilares, em geral, parece seguir a função do VE. O MPP é o mais afetado MP e tem os valores de strain longitudinal mais baixos em ambos os grupos (IMD e IMF). O método free strain é uma opção prática e aplicável para a medição do strain longitudinal dos MPs.

Contribuição dos autores
Concepção e desenho da pesquisa: Kilicgedik A, Kahveci G; Obtenção de dados: Kilicgedik A, Gurbuz AS, Karabay CY, Guler A, Efe SC, Aung SM, Arslantas U, Demir S; Análise e interpretação dos dados: Kilicgedik A, Kahveci G, Gurbuz AS, Karabay CY, Guler A, Efe SC, Aung SM, Arslantas U, Demir S, Izgi IA, Kirm 4a; Análise estatística: Kilicgedik A, Kahveci G, Gurbuz AS, Karabay CY, Efe SC, Kirm4a; Contribuição intelectual importante: Kilicgedik A, Kahveci G, Gurbuz AS, Karabay CY, Efe SC, Aung SM, Arslantas U, Demir S, Izgi IA, Kirm4a; Vinculação acadêmica
O presente estudo não teve vinculação acadêmica.

Referências
1. Schmitto JD, Lee LS, Mokashi SA, Bolman RM 3a, Cohn LH, Chen FY. Functional mitral regurgitation. Cardiol Rev. 2010;18(6):285-91.
2. Kordybach M, Kowalski M, Kowalik E, Hoffman P. Papillary muscle dysssynchrony in patients with systolic left ventricular dysfunction. Scand Cardiovasc J. 2012;46(1):16-22.
3. Madu EC, Baugh DS, Tulloch-Reid E, Potu C. Papillary muscle function does not predict mitral regurgitation in patients with normal left ventricular systolic function: a transesophageal echocardiographic study. Int J Clin Med. 2011;2:176-83.
4. Rayhill SC, Daughters GT, Castro LJ, Niczyporuk MA, Moon MR, Ingels NB Jr, et al. Dynamics of normal and ischemic canine papillary muscles. Circ Res. 1994;74(6):1179-87.
5. Uemura T, Otsuji Y, Nakashiki K, Yoshifuku S, Maki Y, Yu B, et al. Papillary muscle dysfunction attenuates ischemic mitral regurgitation in patients with localized basal inferior left ventricular remodeling: insights from tissue Doppler strain imaging. J Am Coll Cardiol. 2005;46(1):113-9.
6. Tigen K, Karamhmet T, Dundar C, Guler A, Cevik C, Basaran O, et al. The importance of papillary muscle dysssynchrony in predicting the severity of functional mitral regurgitation in patients with non-ischemic dilated cardiomyopathy: a two-dimensional speckle-tracking echocardiography study. Eur J Echocardiogr. 2010;11(8):671-6.
7. Messas E, Guerrero JJ, Handschumacher MD, Chow CM, Sullivan S, Schwammenthal E, et al. Paradox decrease in ischemic mitral regurgitation with papillary muscle dysfunction: insights from three-dimensional and contrast echocardiography with strain rate measurement. Circulation. 2001;104(16):1952-7.
8. Madu EC, D’Cruz IA. The vital role of papillary muscles in mitral and ventricular function: echocardiographic insights. Clin Cardiol. 1997;20(2):93-8.
9. Lancellotti P, Tribouilloy C, Hagendorf A, Popescu BA, Edwardsen T, Pierard LA, et al; Scientific Document Committee of the European Association of Cardiovascular Imaging. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14(7):611-44.
10. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Barrón-ésquivias G, Baumgartner H, et al; Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC); European Association for Cardio-Thoracic Surgery (EACTS). Guidelines on the management of valvular heart disease (version 2012). Eur Heart J. 2012;33(19):2451-96.
11. Kisanuki A, Otsuji Y, Kuroiwa R, Murayama T, Matsuishi T, Shibata K, et al. Two-dimensional echocardiographic assessment of papillary muscle contractility in patients with prior myocardial infarction. J Am Coll Cardiol. 1993;21(4):932-8.
12. Mittal AK, Langston M Jr, Cohn KE, Selzer A, Kerth WI. Combined papillary muscle and left ventricular wall dysfunction as a cause of mitral regurgitation. An experimental study. Circulation. 1971;44(2):174-80.
13. Rim Y, McPherson DD, Kim H. Mitral valve function following ischemic cardiomyopathy: a biomechanical perspective. Biome Mater Eng. 2014;24(1):7-13.
14. Di Mauro M, Gallina S, D’Amico MA, Izzicora P, Lanuti P, Bascelli A, et al; Italian Group of Study for Heart Valve Disease (Italian Society of Cardiology). Functional mitral regurgitation: from normal to pathological anatomy of mitral valve. Int J Cardiol. 2013;163(3):242-8.
15. Asgar AW, Mack MJ, Stone GW. Secondary mitral regurgitation in heart failure: pathophysiology, prognosis, and therapeutic considerations. J Am Coll Cardiol. 2015;65(12):1231-48. Erratum in: J Am Coll Cardiol. 2015;65(20):2265.
16. Ypenburg C, Lancellotti P, Tops LF, Bleeker GB, Holman ER, Piérard LA, et al. Acute effects of initiation and withdrawal of cardiac resynchronization therapy on papillary muscle dysssynchrony and mitral regurgitation. J Am Coll Cardiol. 2007;50(21):2071-7.
17. Han Y, Peters DC, Salton CJ, Byznzek D, Nezafat R, Goddu B, et al. Cardiovascular magnetic resonance: characterization of mitral valve prolapse. JACC Cardiovasc Imaging. 2008;1(3):294-303.
18. Roberts WC, Cohen LS. Left ventricular papillary muscles. Description of the normal and a survey of conditions causing them to be abnormal. Circulation. 1972;46(1):138-54.
19. Dal-Bianco JP, Beaudoin J, Handschumacher MD, Levine RA. Basic mechanisms of mitral regurgitation. Can J Cardiol. 2014;30(9):971-81.

20. Yoganathan AP, Lemmon JD, Ellis JT. Hard tissue replacement. In: Bronzino JD. The biomedical engineering handbook. 2nd ed. Boca Raton (FL): CRC Press LLC; 2000.

21. Dal-Bianco JP, Levine RA. Anatomy of the mitral valve apparatus: role of 2D and 3D echocardiography. Cardiol Clin. 2013;31(2):151-64.

22. Ducas RA, White CW, Wassel AW, Farag A, Bhagirath KM, Freed DH, et al. Functional mitral regurgitation: current understanding and approach to management. Can J Cardiol. 2014;30(2):173-80.

23. Khoo NS, Smallhorn JF. Mechanism of valvular regurgitation. Curr Opin Pediatr. 2011;23(5):512-7.

24. Benjamin MM, Smith RL, Grayburn PA. Ischemic and functional mitral regurgitation in heart failure: natural history and treatment. Curr Cardiol Rep. 2014;16(8):517.

25. Arts T, Reneman RS. Dynamics of left ventricular wall and mitral valve mechanics—a model study. J Biomech. 1989;22(3):261-71.

26. Mellors LJ, Barclay CJ. The energetics of rat papillary muscles undergoing realistic strain patterns. J Exp Biol. 2001;204(Pt 21):3765-77.