War of the microbial world: *Acanthamoeba* spp. interactions with microorganisms

Mohammad Ridwane Mungroo1 · Ruqaiyyah Siddiqui2 · Naveed Ahmed Khan1,3

Received: 15 December 2020 / Accepted: 9 June 2021 / Published online: 18 June 2021
© Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2021

Abstract
Acanthamoeba is known to interact with a plethora of microorganisms such as bacteria, fungi and viruses. In these interactions, the amoebae can be predatory in nature, transmission vehicle or an incubator. Amoebae consume microorganisms, especially bacteria, as food source to fulfil their nutritional needs by taking up bacteria through phagocytosis and lysing them in phagolysosomes and hence play an eminent role in the regulation of bacterial density in the nature and accountable for eradication of around 60% of the bacterial population in the environment. *Acanthamoeba* can also act as a “Trojan horse” for microbial transmission in the environment. Additionally, *Acanthamoeba* may serve as an incubator-like reservoir for microorganisms, including those that are pathogenic to humans, where the microorganisms use amoebae’s defences to resist harsh environment and evade host defences and drugs, whilst growing in numbers inside the amoebae. Furthermore, amoebae can also be used as a “genetic melting pot” where exchange of genes as well as adaptation of microorganisms, leading to higher pathogenicity, may arise. Here, we describe bacteria, fungi and viruses that are known to interact with *Acanthamoeba* spp.

Introduction
Acanthamoeba castellanii is known to interact with bacteria and viruses as well as fungi (Table 1) (Mella et al. 2016; Siddiqui and Khan 2012). The ability of bacteria to infect and lyse *Acanthamoeba* has been recorded since 1954, whilst the ability of bacteria to act as an endosymbiont was reported in 1975, and the potential of *Acanthamoeba* as a reservoir for pathogenic bacteria was suggested in 1978 (Drozanski 1956; Prasad and Gupta 1978; Proca-Ciobanu et al. 1975). Behaviour of the endosymbionts may vary depending on conditions, such as temperature, pH, osmolarity and availability of food (Scheid 2014). It is also known that amoebae can serve as genetic “melting pot”, that allows exchange of genes (Moreira and Brochier-Armant 2008; Grillot-Courvalin et al. 1998). Intracellular growth of bacteria in amoebae is suggested to be essential for adaptation of bacteria to higher eukaryotic cells, leading to increased pathogenicity of the bacteria and resistance to destruction by macrophages (Harb et al. 2000; Molmeret et al. 2005; Albert-Weissenberger et al. 2007; Greub and Raoul 2004; Thomas et al. 2006). The community of bacteria associated with amoebae is very large and diverse and can be classified in 155 different taxa (Delafont et al. 2016). Whilst it is known that *Acanthamoeba* can feed on bacteria, little is known about the mechanisms through which the amoebae locate the bacteria. Comparing it with an amoeba that uses chemotaxis, *Dictyostelium*, it was revealed that *Acanthamoeba* do not use chemotaxis as the primary mechanism to find bacterial food sources (Kuburich et al. 2016). Interestingly, in an experiment comparing the ability of ciliates and *Acanthamoeba*, it was revealed that the competition was asymmetric in favour of the ciliates, but *Acanthamoeba* had better long-term negative effect, both in the open-water phase as well as in biofilm, on bacterial biomass (Zhang et al. 2014). A large number of bacterial and viral species that have been shown to interact with *Acanthamoeba* (Balczun and Scheid 2017). Here, we describe some of the interactions of *Acanthamoeba* with microorganisms (Fig. 1).
Table 1 Microorganism that interacts with Acanthamoeba. Several bacteria, fungi and viruses that interact with Acanthamoeba as well as changes that occur following the interaction are described

Organism	Changes	References
Bacteria		
Amoebophilus asiaticus	Intracellular multiplication	Horn et al. (2001)
Arcobacter butzleri	Not described	Medina et al. (2014)
Bacillus anthracis	Intracellular multiplication	Dey et al. (2012)
Burkholderia cepacia	Intracellular growth	Landers et al. (2000)
Burkholderia pickettii	Intracellular multiplication	Michel and Hauröder (1997)
Campylobacter jejuni	Increase in bacterial resistance to disinfection	Snelling et al. (2005)
Candidatus Paracaeidibacter symbiosus	Not described	Horn et al. (1999)
Chlamydia pneumoniae	Intracellular growth	Essig et al. (1997)
Chlamydiales	Increase in amoebae pathogenicity	Fritsche et al. (1998)
Citrobacter freundii	Increase in bacterial resistance to chlorine	King et al. (1988)
Coxiella burnetii	Not described	La Scola and Raoult (2001)
Cytophaga johnsonae	Intracellular multiplication	Hoffmann and Michel (2001)
Enterobacter agglomerans	Increase in bacterial resistance to chlorine	King et al. (1988)
Enterobacter cloacae	Increase in bacterial resistance to chlorine	King et al. (1988)
Escherichia coli	Intracellular growth and increase in bacterial resistance to chlorine and antibiotics	Barker et al. (1999)
Flavobacterium indologines	Intracellular multiplication	Hoffmann and Michel (2001)
Flavobacterium johnsoniae	Not described	Horn et al. (2001)
Flavobacterium succinicans	Not described	Horn et al. (2001)
Francisella tularensis	Intracellular growth	Abd et al. (2003)
Helicobacter pylori	Intracellular growth	Winiecka-Krusnell et al. (2002)
Klebsiella oxytoca	Increase in bacterial resistance to chlorine	King et al. (1988)
Klebsiella pneumoniae	Increase in bacterial resistance to chlorine	King et al. (1988)
Legionella pneumophila	Intracellular growth	Rowbotham (1980)
	Increase in invasiveness	Cirillo et al. (1994)
Legionella sp.	Not described	Michel et al. (1997)
Listeria monocytogenes	Intracellular multiplication	Ly and Müller (1990)
Mobiluncus curtisi	Intracellular multiplication	Tomov et al. (1999)
Mycobacterium avium	Intracellular multiplication, increase in bacterial virulence	Cirillo et al. (1997)
Mycobacterium xenopi	Intracellular multiplication	Drancourt et al. (2007)
Porphyromonas gingivalis	Intracellular multiplication	Wagner et al. (2006)
Prevotella intermedia	Intracellular multiplication	Wagner et al. (2006)
Procabacter acanthamoebae	Not described	Horn et al. (2002)
Pseudomonas saccharophila	Intracellular multiplication	Hoffmann and Michel (2001)
Pseudomonas stutzeri	Intracellular multiplication	Hoffmann and Michel (2001)
Rickettsiales	Increase in amoebae pathogenicity	Fritsche et al. (1998)
Staphylococcus aureus	Intracellular multiplication	Huws et al. (2008)
Salmonella enterica	Intracellular multiplication	Tezcan-Merdol et al. (2004)
Salmonella typhimurium	Intracellular multiplication	Gaze et al. (2003)
Simkania negevensis	Intracellular growth	Kahane et al. (2001)
Stenotrophomonas maltophilia	Intracellular multiplication	(Hoffmann and Michel 2001; Corsaro et al. 2013)
Streptococcus pneumoniae	Intracellular multiplication	Siddiqui et al. (2017)
Streptococcus pyogenes	Intracellular multiplication	Siddiqui et al. (2017)
Waddlia chondrophila	Intracellular growth	Michel et al. (2004)
Yersinia enterocolitica	Intracellular survival	Lambrecht et al. (2013)
Acanthamoeba as predator

Amoebae consume bacteria, mostly non-pathogens, as food source to fulfill their nutritional needs by taking up bacteria through phagocytosis and lysing them in phagolysosomes (Khan and Siddiqui 2014). Due to their consumption of bacteria, amoebae play an eminent role in the regulation of bacterial density in the nature by being accountable for eradication of around 60% of the bacterial population in the environment (Rosenberg et al. 2009). Whilst both

![Diagram of Acanthamoeba and bacteria interaction](image)

Fig. 1 Interaction of *Acanthamoeba* with bacteria. The figure describes how *Acanthamoeba* and bacteria interact, which may lead to the amoebae acting as predator, Trojan horse or reservoir. On the left-hand side, *Acanthamoeba* in a bacteria-rich environment following which selected bacteria are taken up by the amoeba can be observed. In the middle section, the two main options following intake of bacteria are depicted, namely, digestion or survival of the bacteria. On the right-hand side, bacteria surviving internalization into *Acanthamoeba*, namely, using the amoeba as a transmission vehicle or replication site, can be observed.

Table 1 (continued)

Organism	Changes	References
Candida albicans	Increase in fungal virulence	Gonçalves et al. (2019)
Cryptococcus neoformans	Intracellular replication, increase in fungal virulence	(Steenbergen et al. 2001; Gonçalves et al. 2019)
Cryptosporidium parvum	Not described	Scheid and Schwarzenberger (2011)
Paracoccidioides brasiliiensis	Increase in fungal virulence	Gonçalves et al. (2019)
Sporothrix brasiliensis	Increase in fungal virulence	Gonçalves et al. (2019)
Virus		
Adenoviruses	No multiplication observed	Scheid and Schwarzenberger (2012)
Coxsackieviruses	Not described	Mattana et al. (2006)
Marseillevirus	Not described	Boyer et al. (2009)
Mimivirus	Not described	Arslan et al. (2011)
Pandoraviruses	Not described	Philippe et al. (2013)
Mollivirus sibericum	Not described	Legendre et al. (2015)
neuropathogenic *Escherichia coli* K1 and the non-invasive *E. coli* K-12 have been shown to be present intracellularly in amoebae, K1 survived whilst K-12 were lysed by the amoebae, indicating K-12 as bacterial prey (Alsam et al. 2006). Even as a bacterial predator, it has been shown that *Acanthamoeba* is selective in its phagocytic uptake, since a study on the effects of *Acanthamoeba* on the composition of bacterial communities revealed that *Betaproteobacteria* and *Firmicutes* showed the most decrease in numbers, whilst *Betaproteobacterial* ammonia oxidizers and *Gammaproteobacteria* numbers did not change, and an increase was observed in the number of *Actinobacteria*, *Nitrospira*, *Verrucomicrobia* and *Planctomycetes* (Rosenberg et al. 2009). The selective intake of bacteria by *Acanthamoeba* suggests underlying mechanisms and conditions that allow selection of bacteria. As such, it has been reported that the intake of particles by *Acanthamoeba* is dependent on size, where latex beads of sizes between 1.035 and 2.68 µm were taken up whilst bead of sizes between 0.126 to 0.557 µm accumulated at the surface of the amoebae (Korn and Weisman 1967). The uptake of beads was also shown to be higher in larger cells as compared to smaller cells and was affected by the culture age and agitation of cell culture (Avery et al. 1995). Another reason for selective uptake of bacteria might be their ability to achieve high motility and escape from amoebae grazing (Jürgens and Matz 2002). It has been indicated that the amoebic vacuoles containing food are retained, and those containing non-nutrient particles are exocytosed, upon presentation of new particles, and phagocytic vesicles that are retained have been reported to fuse with each other as well as digestive vesicles (Bowers and Olszewski 1983; Wetzl and Korn 1969). It is known that surface elements, such as lipopolysaccharide, peptidoglycan, capsule and β-(1–4)-N-acetylMuramic acid, play an important role in the selection of bacteria by amoebae, and it has been reported that the phagocytosis of *Acanthamoeba* might be mediated by tyrosine kinase (Alsam et al. 2005, 2006; Humann and Lenz 2009). It has also been reported that actin polymerization and cytoskeletal rearrangement are processes that are involved in the phagocytic uptake of bacteria by *Acanthamoeba* where killing and degradation of bacteria are caused by acidification and phagosomal–lysosomal fusion (Akya et al. 2009). Moreover, it has been noted that mannose-binding proteins and membrane-associated amoebae receptors are essential for the phagocytic intake of bacteria by *Acanthamoeba* and that tyrosine kinase-induced actin polymerization, as well as PI3K and Rhoa pathways, play important roles in the uptake (Medina et al. 2014). Furthermore, it was shown that the conditioned media from *Acanthamoeba* culture possess bactericidal activities against selected bacteria, since the medium eliminated all methicillin-resistant *Staphylococcus aureus* whilst showing limited effects against *Acinetobacter* sp., vancomycin-resistant *Enterococcus faecalis* and *Pseudomonas aeruginosa* (Iqbal et al. 2014). Also, it was recently reported that *Acanthamoeba* produces a metabolite that inhibits the growth of methicillin-resistant *Staphylococcus aureus* (de Souza et al. 2017). Interestingly, it has been shown that *Acanthamoeba* may interfere with bacterial toxin production, such as 2,4-diacetylphloroglucinol and monoacetyl–phloroglucinol in *Pseudomonas fluorescens* (Jouset and Bonkowski 2010), which may enhance its predatory capabilities. Interestingly, *Acanthamoeba* has the ability to produce protein toxins, such as the pore-forming acanthaporin, which possesses anti-bacterial activities against a variety of bacteria (Michalek et al. 2013) and hence may also promote its predatory capabilities.

Recently, a thermodimorphic fungi, *Paracoccidioides brasiliensis*, was reported to be efficiently ingested, killed and digested by *Acanthamoeba* leading to 90% decrease in fungal colony-forming units in 24 h, and electron microscopy revealed internalized fungal cell debris and cell wall debris inside amoeba vacuoles (Albuquerque et al. 2019). These findings indicate that the predatory characteristics of *Acanthamoeba* are not limited to bacteria but also affect fungi and viruses.

Acanthamoeba as transmission vehicles

Acanthamoeba can act as a “Trojan horse” for microorganisms which force their entry into amoebae, resist amoeba-mediated killing, and are hence protected by *Acanthamoeba*’s ability to resist extreme temperatures, pH and osmolarity (Khan and Siddiqui 2014). The resistance of *Acanthamoeba* cysts to chlorine is especially beneficial to the microorganisms since elimination of intracellular microorganisms from water supplies can prove challenging (Khan 2009). Additionally, *Acanthamoeba* cysts are air-borne and can travel through ventilation systems/ducts, as well as long distance such as during strong winds and dust storms, that can lead to bacterial transmission to the wider community. *Burkholderia cepacia* and *Chlamydophila pneumoniae* are examples of bacteria that have been shown to use *Acanthamoeba* as “Trojan horse”, whereby they remain viable in the amoebae without growing in numbers (Khan and Siddiqui 2014). This indicates that some bacteria possess mechanisms that allow them to protect themselves from *Acanthamoeba* killing. As such, the Dot/Icm type IV secretion system genes encode for protein, secreted by bacteria such as *Legionella*, that inhibit lysosome adhesion, phagosome maturation and acidification of vesicles, protecting bacteria from attack (Molmeret et al. 2005; Taylor et al. 2009; Rubenina et al. 2017).

Fungi have been shown to interact with *Acanthamoeba*, and the interaction has been shown to increase the virulence of the fungi that have been shown to survive due to expression of capsular polysaccharides and melanin (Steenbergen and Casadevall 2003; Chrisman 2011; Gonçalves et al. 2019). Survival of fungi within amoebae resulted in more virulent fungi since the “surviving” fungi
were more pathogenic when tested using in vivo models (Fuchs et al. 2010; Mylonakis 2008; Thomaz et al. 2013; Rizzo et al. 2017). Moreover, instance of fungi, namely, Cryptococcus neoformans, taken up by amoebae and then released without notable genetic or pharmacological changes have been recently reported (Watkins et al. 2018).

The cultivation of adenoviruses in the presence of Acanthamoeba was used as a model for studying their relationship, and it was revealed that Acanthamoeba is used as a carrier or a paratenic host by the virus, whereby the viruses did not proliferate or multiply inside the amoebae (Scheid and Schwarzenberger 2012). Acanthamoeba also serve as transmission vehicle for coxsackie B viruses, whereby the virus maintains its infectivity when internalized in the amoebae but does not replicate and is released during interaction between amoebae and human macrophages (Mattana et al. 2006).

In addition, the interactions of Cryptosporidium spp., a protozoan parasite that infects a wide range of vertebrate hosts, and Acanthamoeba was investigated. It was revealed that the amoebae likely act as s carriers of Cryptosporidium oocysts since the amoebae internalized several oocysts which did not show any changes in morphology (Gómez-Couso et al. 2007).

Acanthamoeba as reservoir

Acanthamoeba may also serve as an incubator-like reservoir for bacteria that are pathogenic to humans, where the bacteria can use the amoebae’s defences to resist harsh environment and evade host defences and drugs, whilst growing in numbers inside the amoebae (Khan and Siddiqui 2014; Scheid 2014; Lim et al. 2020). Moreover, the ability of bacteria to survive in amoebae cysts has also been reported, indicating that the cysts might protect bacteria from chemical disinfection (Khan 2006; Thomas et al. 2010; Youssf et al. 2013). In contrast to Acanthamoeba as a “Trojan horse” whereby bacteria remain viable in the amoebae without growing in numbers, when Acanthamoeba are used as reservoir, the bacteria multiply inside the amoebae. In addition to being used as a safe heaven, genetic transfer between bacteria whilst inside amoebae has been reported, indicating that the amoebae may lead to drug resistance due to transfer of genetic information related to multiple drug resistance between several bacterial species using the amoebae as a reservoir (McCuddin et al. 2006; Mella et al. 2016). Exchange of genetic material between intracellular bacteria lead to the development of virulence traits using amoebae as evolutionary crib to adapt for survival within macrophages (Harb et al. 2000; Huws et al. 2008; Kebbi-Beghdadi and Greub 2014). The genome of intra-amoeba microorganisms is significantly larger than that of their relatives, further confirming the role of Acanthamoeba as a gene melting pot, whilst also suggesting gene transfer from Acanthamoeba to their endosymbionts (Moliner et al. 2010). Moreover, several markers of horizontal gene transfer between genomes of intra-amoebal bacteria and between the bacterial genomes and the genomes of their amoebal hosts are additional evidence that Acanthamoeba functions as a gene melting pot (Moliner et al. 2010). One bacterium that has been extensively studied is Legionella pneumophila that has been shown to grow and multiply intracellularly of Acanthamoeba trophozoites and survive from harsh treatment, such as 50 mg/L free chlorine, inside Acanthamoeba cysts (Kilvington and Price 1990). It has also been shown that L. pneumophila uses the same genes to grow intracellularly in both human macrophages and amoebae since all the genes that were absolutely required for growth in human macrophages were also required for growth in Acanthamoeba (Segal and Shuman 1999). Moreover, a study comparing L. pneumophila grown in standard laboratory conditions to those grown intracellularly in Acanthamoeba revealed that bacteria grown in Acanthamoeba was 100-fold more invasive to macrophages via coiling phagoctosis at a higher frequency (Cirillo et al. 1994). Light and electron microscopy revealed differences in the structure and morphology between amoebae-grown and agar-grown L. pneumophila, and analysis of protein expression suggested that amoeba-grown L. pneumophila expressed new proteins leading to phenotypic differences (Cirillo et al. 1994).

Recently, it was shown that several types of fungi can survive as well as replicate intracellularly of Acanthamoeba, indicating that Acanthamoeba also acts as a reservoir for fungi, such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides and Sporothrix schenckii (Gonçalves et al. 2019). Mannose-binding proteins have been linked to the recognition of fungi by Acanthamoeba, whereby interaction of Acanthamoeba with H. capsulatum, C. neoformans, Candida albicans, Saccharomyces cerevisiae and Paracoccidioides brasiliensis was inhibited by mannose (Gonçalves et al. 2019). The importance of mannose-binding protein was shown to be specific to the uptake of fungi, as mannose inhibited uptake of fungi but not latex beads (Allen and Dawidowicz 1990). It was further shown that the fungi that were taken up by Acanthamoeba were used to infect Galleria mellonella, and it was revealed that they killed the larvae faster than control yeasts in all cases (Gonçalves et al. 2019).

The first known Mimivirus, Acanthamoeba polyphaga mimivirus, was isolated from an amoebal co-culture in a water sample collected from a cooling tower of a hospital in England, following which over a dozen viruses have been identified (Abrahão et al. 2014). This virus was shown to use Acanthamoeba as a viral factory whereby viral entry and viral membrane fusion are followed by release of viral seed into amoeba cytoplasm where, within few hours, the
viral factory grew and orchestrated the morphogenesis of the viral progeny which were subsequently released by cell lysis (Abrahão et al. 2014). Also, Faustoviruses are viruses that can use Acanthamoeba as virus factories where, 20 h after infection, complete viral particles are released (Reteno et al. 2015). More recently, a novel virus, Yaravirus brasilensis, was discovered inside Acanthamoeba castellanii and was found to use the amoebae as a viral factory to create new virus following which the virus causes lysis of the amoebae (Boratto et al. 2020).

Miscellaneous interactions of Acanthamoeba

Other than Acanthamoeba acting as predator, transmission vehicles and reservoirs, other types of interactions have also been described. One such case is when Acanthamoeba internalizes Aspergillus fumigatus conidia, where part of the ingested fungi escapes the vacuole, resulting in fungal intracellular germination and subsequently causing structural changes in amoebae that causes amoebal permeabilization (Van Waeyenberghe et al. 2013). In other cases, it has been shown that fungi such as Histoplasma capsulatum, can be phagocytosed by Acanthamoeba and convert into filamentous form, causing the death of the amoebae, whilst more virulent phenotypes of the fungi are selected or induced (Steenbergen et al. 2004).

Moreover, viruses are known to survive inside Acanthamoeba, without noticeable changes in infectivity even after 6 months, whilst the viral deoxyribonucleic acid (DNA) of numerous viruses has been detected inside the amoebae, indicating that Acanthamoeba plays a role as vector, reservoir or carrier for the viruses (Lorenzo-Morales et al. 2007; Mattana et al. 2006; Scheid and Schwarzenberger 2012). Additionally, “giant viruses” Mimiviridae were initially discovered as an intracellular endocytobiont of Acanthamoeba further indicating that there is association of great importance between Acanthamoeba and viruses (La Scola et al. 2003). Later virus of the Iridoviridae family was identified as endocytobiont of Acanthamoeba and led to the discovery of new giant viruses in amoebae (Aherfi et al. 2016; Colson et al. 2012, 2013). Another group of viruses, known as Pandoraviruses, was identified from Acanthamoeba, and it was revealed that the viruses were unique, since they did not share genetic or morphological similarities to known viruses (Philippe et al. 2013; Scheid 2015, 2016; Scheid et al. 2008). There is also evidence of horizontal gene transfer between viruses and Acanthamoeba where 10% of protein encoded by the virus is homologous to Acanthamoeba protein (Legendre et al. 2015).

Interestingly, Pseudomonas chlororaphis strain PA23 is a bacterium that can produce compounds including pyrrolnitrin, phenazine and hydrogen cyanide that have been recently shown to possess both toxic and repellent effects on Acanthamoeba (Ghergab et al. 2021). Co-culture of P. chlororaphis and amoebae led to changes in gene expression and secondary metabolite production of bacteria, suggesting that they can sense the presence of Acanthamoeba and adjust its physiology in response (Ghergab et al. 2021).

Acanthamoeba is known to interact with bacteria, viruses as well as fungi (Mella et al. 2016). A recent study on humans with stromal keratitis has shown that Acanthamoeba infections occurred in around 10% of cases and co-infections with fungi occurred in around 5% of cases whilst co-infections with bacteria were also noted (Raghavan et al. 2019). Depending on conditions and pathogenicity of the microorganisms and the amoebae, the interactions vary leading to lysis of the microorganisms or amoebae, intake of microorganisms without any changes, incubation and growth of the microorganisms within the amoebae or increase in virulence of the microorganisms. Acanthamoeba cysts have been shown to be resistant to extreme conditions including freezing, pH 2.0, γ and ultraviolet irradiation, moist heat, heavy metals, desiccation for over 20 years and storage at 4 °C for over 20 years (Sriram et al. 2008). Acanthamoeba cyst has also been shown to be resistant to biocides, chlorination and antibiotics (Marciano-Cabral and Cabral 2003). Hence, whilst acting as a reservoir or a “Trojan horse”, Acanthamoeba can hence protect the endocytobionts against virtually most extreme conditions that they would encounter in the environment as well as treatments such as antibiotics and biocides. Hence, the role of Acanthamoeba as a sanctuary for pathogens and a training ground for their virulence, whilst assisting their transmission to susceptible hosts, is of huge concern to public health. As such, it has been recently suggested that amoebae might also harbour coronaviruses, responsible for COVID-19 pandemic (Siddiqi and Khan 2020a, b). The ability of Acanthamoeba to work as reservoirs or “Trojan horses” renders the connection between exposures with a pathogen, and the resulting infection more complicated as the amoebae might allow the pathogen to evade several of the host responses and defences and even allow the pathogen entry into the central nervous system of the host (Siddiqi and Khan 2020a, b). SARS-CoV-2 as an endosymbiont of Acanthamoeba might also allow it to persist in the environment, especially in the air-conditioning systems (Siddiqi and Khan 2020a). Moreover, Acanthamoeba cysts have been isolated from the brain tissue (Marciano-Cabral and Cabral 2003), indicating that some cysts might remain dormant in the host and hence may lead to recurrence of infection caused by pathogens released from the cysts. However, despite knowing that Acanthamoeba plays an essential role in the survival, evolution and transmission of a vast repertoire of microorganisms, many of which are pathogenic to humans, studies on the mechanisms behind the interaction of the amoebae with the endocytobionts...
remain scarce. Understanding the mechanisms of action involved in the uptake and release of microorganisms might allow researchers to use Acanthamoeba for the culture of obligate intracellular microorganisms that cannot be cultured in axenic media. Furthermore, if the mechanisms are revealed, it might be possible to introduce targeted antimicrobials into the amoebae to kill the endocytobionts. Recently, a study investigated the effects of Acanthamoeba in a complex microbial community in an experimental aquatic model, using 16S rRNA sequencing, and it was revealed that the amoebae did not drastically change the bacterial community but, by reducing certain oxygen-consuming bacteria, such as Cyanobacteria, affected the dissolved oxygen concentrations (Tsai et al. 2020). This indicates that due to the complex ecological processes, it is still too complex to understand the exact mechanisms of interaction between Acanthamoeba and microorganisms in a complex microbial community. Despite all the studies performed on the interaction of Acanthamoeba with microorganisms, important factors in the interactions remain unelucidated. The selection process of food by both the amoebae and the microorganisms, in other words, in the presence of Acanthamoeba, varying species of microorganisms and other food sources (such as axenic media and nutrient agar/broth) questions such as (i) what microorganisms would be taken up and protected by the amoebae, (ii) would the amoebae take up the microorganisms species by species or several species at one time, (iii) what is the mechanism behind the selection process of food source by the amoebae, (iv) what microorganisms would be used as food source by the amoebae despite the axenic media, (v) what microorganisms would force their way into the amoebae despite being in a nutritionally rich environment, (vi) what microorganisms would use the amoebae as food source despite the presence of other food sources, and (vii) what microorganisms would escape or be released from the amoebae due to the availability of nutritious environment and the mechanisms involved are areas for further investigations.

Conclusion

In general, interaction of pathogens with Acanthamoeba might cause an evolutionary pressure leading to increase in virulence, whilst, in other cases, microorganisms can be used as food source by the amoebae or the amoebae can be used as a “Trojan horse” or reservoir by the microorganisms. Understanding the molecular basis of the interactions between microorganisms and Acanthamoeba, such as receptors used by the amoeba and change in gene expressions, would give insight on how pathogenicity could be modulated and drive knowledge on the role of amoebae in diseases caused by microorganisms distributed in the environment.

Author contribution NAK and RS conceived the concept. MRM reviewed literature under the supervision of RS. MRM and RS wrote the first draft. NAK corrected and finalized the manuscript.

Declarations

Conflict of interest The authors declare no competing interests.

References

Abd H, Johansson T, Golovilov I, Sandström G, Forsman M (2003) Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol 69(1):600–606. https://doi.org/10.1128/aem.69.1.600-606.2003
Abrahao JS, Dornas FP, Silva LC, Almeida GM, Barotto PV, Colson P, La Scola B, Kroon EG (2014) Acanthamoeba polyphaga mimivirus and other giant viruses: an open field to outstanding discoveries. Virol J 11(1):1–12. https://doi.org/10.1186/1743-422x-11-120
Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of Acanthamoeba castellanii: I. A distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA 113(8):21748–21753. https://doi.org/10.1073/pnas.1604341113
Akya A, Pointon A, Thomas C (2009) Mechanism involved in phagocytosis and killing of Listeria monocytogenes by Acanthamoeba polyphaga. Parasitol Res 105(5):1375. https://doi.org/10.1007/s00436-009-1565-z
Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64(4):432. https://doi.org/10.1007/s00018-006-6391-1
Albuquerque P, Nicolai AM, Magnabosco DAG, Derengowski LDS, Crisóstomo LS, Xavier LCG, Frazão SO, Guilhelmielli F, de Olivevira MA, Dias JDN, Hurtado FA, Teixeira MM, Guimarães AJ, Paes HC, Bagagli E, Felipe MSS, Casadevall A, Silva-Pereira I (2019) A hidden battle in the dirt: soil amoebae interactions with Paracoccidioides spp. Plos Negl Trop Dis 13(10)
Allen PG, Dawidowicz EA (1990) Phagocytosis in Acanthamoeba: I. A mannose receptor is responsible for the binding and phagocytosis of yeast. J Cell Physiol 145(3):508–513. https://doi.org/10.1002/jcp.1041450317
Alders S, Jeong SR, Sissons J, Dudley R, Kim KS, Khan NA (2006) Escherichia coli interactions with Acanthamoeba: a symbiosis with environmental and clinical implications. J Med Microbiol 55(6):689–694. https://doi.org/10.1099/jmm.0.46497-0
Alders S, Sissons J, Dudley R, Khan NA (2005) Mechanisms associated with Acanthamoeba castellanii (T4) phagocytosis. Parasitol Res 96(6):402–409. https://doi.org/10.1007/s00436-005-1401-z
Arslan D, Legendre M, Seltzer V, Abergel C, Claverie JM (2011) Distant Mimivirus relative with a larger genome highlights the fundamental features of Megaviridae. Proc Natl Acad Sci USA 108(42):17486–17491. https://doi.org/10.1073/pnas.110889108
Avery SV, Harwood JL, Lloyd D (1995) Quantification and characterisation of phagocytosis in the soil amoeba Acanthamoeba castellanii by flow cytometry. Appl Environ Microbiol 61(3):1124–1132. https://doi.org/10.1128/aem.61.3.1124-1132.1995
Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Barker J, Humphrey TJ, Brown MW (1999) Survival of Escherichia coli 0157 in a soil protozoan: implications for disease. FEMS Microbiol Lett 173(2):291–295. https://doi.org/10.1111/j.1574-6968.1999.tb13516.x

Boratto PVM, Oliveira GP, Machado TB, Andrade ACSP, Baudoin JP, Klose T, Schulz F, Azza S, Decloquey P, Chabrière E, Colson P, Levasseur A, La Scola B, Abrahão JS (2020) Yaravirus: a novel 80-nm virus infecting Acanthamoeba castellanii. Proc Natl Acad Sci USA 117(28):16579–16586. https://doi.org/10.1073/pnas.2001637117

Bowers B, Olszewski TE (1983) Acanthamoeba discriminates internally between digestible and indigestible particles. J Cell Biol 97(2):317–322. https://doi.org/10.1083/jcb.97.2.317

Boyer M, Yutin N, Pagnier I, Barrassi L, Fournous G, Espinosa L, Robert C, Azza S, Sun S, Rossmann MG, Suzan-Monti M, La Scola B, Koonin EV, Raoult D (2009) Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc Natl Acad Sci USA 106(51):21848–21853. https://doi.org/10.1073/pnas.1109315106

Chrisman C, Albuquerque P, Guimaraes AJ, Nieves E, Casadevall A (2011) Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog 7(5):e1002047. https://doi.org/10.1371/journal.ppat.1002047

Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62(8):3254–3261. https://doi.org/10.1128/iai.62.8.3254-3261.1994

Cirillo JD, Falkow S, Tompkins LS, Bermudez LE (1997) Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun 65(9):3759–3767. https://doi.org/10.1128/iai.65.9.3759-3767.1997

Colson P, de Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life. Arch Virol 158(4):915–920. https://doi.org/10.1007/s00705-012-1537-y

Corsi D, Müller KD, Michel R (2013) Molecular characterization and ultrastructure of a new amoeba endosymbiote belonging to the Stenotrophomonas maltophilia complex. Exp Parasitol 133(4):383–390. https://doi.org/10.1016/j.exppara.2012.12.016

de Souza TK, Soares SS, Benitez LB, Rott MB (2017) Interaction between methicillin-resistant Staphylococcus aureus (MRSA) and Acanthamoeba polyphaga. Curr Microbiol 74(5):541–549. https://doi.org/10.1007/s00284-017-1196-z

Delafont V, Bouchon D, Héchard Y, Moulin L (2016) Environmental factors shaping cultured free-living amoebae and their associated bacterial community within drinking water network. Water Res 100:382–392. https://doi.org/10.1016/j.watres.2016.05.044

Dey R, Hoffman PS, Glomski IJ (2012) Germination and amplification of anthrax spores by soil-dwelling amoebae. Appl Environ Microbiol 78(22):8075–8081. https://doi.org/10.1128/aem.02034-12

Drancourt M, Adékambi T, Raoult D (2007) Interactions between Mycobacterium xenopi, amoeba and human cells. J Hosp Infect 65(2):138–142. https://doi.org/10.1016/j.jhin.2006.10.006

Drozanski W (1956) Fatal bacterial infection in soil amoebae. Acta Microbiol Pol 5(3–4):315–317

Essig A, Heinemann M, Simnacher U, Marre R (1997) Infection of Acanthamoeba castellanii by Chlamydia pneumoniae. Appl Environ Microbiol 63(4):1396–1399. https://doi.org/10.1128/aem.63.4.1396-1399.1997

Fritsche TR, Sobek D, Gautom RK (1998) Enhancement of in vitro cytotoxicity of Acanthamoeba spp. following acquisition of bacterial endosymbiotic. FEMS Microbiol Lett 166(2):231–236. https://doi.org/10.1111/j.1574-6968.1998.tb13895.x

Fuchs BB, O’Brien E, Khoury JB, Mylonakis E (2010) Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1(6):475–482. https://doi.org/10.4161/viru.1.6.12985

Gazv WH, Burroughs N, Gallagher MP, Wellington EM (2003) Interactions between Salmonella typhimurium and Acanthamoeba polyphaga, and observation of a new mode of intracellular growth within contractile vacuoles. Microb Ecol 46(3):358–369. https://doi.org/10.1007/s00248-003-1001-3

Gherab A, Selin C, Tanner J, Brassinga AK, Dekievit T (2019) Pseudomonas chlororaphis PA23 metabolites protect against protozoan grazing by the predator Acanthamoeba castellanii. PeerJ 9:e10756. https://doi.org/10.7717/peerj.10756

Gómez-Couso H, Panagua-Crespo E, Ares-Mázas E (2007) Acanthamoeba as a temporal vehicle of Cryptosporidium. Parasitol Res 100(5):1151–1154. https://doi.org/10.1007/s00436-006-0377-7

Gonçalves DS, Ferreira MDS, Gomes KK, Rodríguez-de La Noel C, Liedke SC, da Costa GCC, Albuquerque P, Cortines JR, Saramago Peralta RH, Peralta JM, Casadevall A, Guimarães AJ (2019) Unravelling the interactions of the environmental host Acanthamoeba castellanii with fungi through the recognition by mannose-binding proteins. Cell Microbiol 21(10):e13066. https://doi.org/10.1111/cmi.13066

Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17(2):413–433. https://doi.org/10.1128/cmrl.17.2.413-433.2004

Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P (1998) Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 16(9):862–866. https://doi.org/10.1038/nbt0998-862

Harb OS, Gao LY, Abu Kwaik Y (2000) From protozoa to mammalian cells: a new paradigm in the life cycle of intracellular bacterial pathogens: Minireview. Environ Microbiol 2(3):251–265. https://doi.org/10.1046/j.1462-2920.2000.00112.x

Hoffmann R, Michel R (2001) Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Environ Health 203(3):215–219. https://doi.org/10.1078/s1438-4639(04)70031-0

Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M (1999) Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter carphylus. Environ Microbiol 1(4):357–367. https://doi.org/10.1111/j.1462-2920.1999.00045.x

Horn M, Fritsche TR, Linser T, Gautom RK, Harzenetter MD, Wagner M (2002) Obligate bacterial endosymbionts of Acanthamoeba spp. related to the beta-Proteobacteria: proposal of ‘Candidatus Prochlorobacter acanthamoebae’ gen. nov., sp. nov. Int J Syst Evol Microbiol 52(2):599–605. https://doi.org/10.1099/00112.1-462-2920.2000.00112.x

Horn M, Harzenetter MD, Linser T, Schmid EN, Müller KD, Michel R, Wagner M (2001) Members of the Cytophaga–Flavobacterium–Bacteroides phylum as intracellular bacteria of acanthamoebae: proposal of ‘Candidatus Ameobophilus asiaticus’. Environ Microbiol 3(7):440–449. https://doi.org/10.1111/j.1462-2920.2001.00210.x

Humann J, Lenz LL (2009) Bacterial peptidoglycan-degrading enzymes and their impact on host muropeptide detection. J Innate Immun 1(2):88–97. https://doi.org/10.1159/000181181

Huws SA, Morley RJ, Jones MV, Brown MR, Smith AW (2008) Interactions of some common pathogenic bacteria with Acan-
Mylonakis E (2008) Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165(1):1–3. https://doi.org/10.1007/s11046-007-9082-z

Philippe N, Legendre M, Douste G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341(6143):281–286. https://doi.org/10.1126/science.1239181

Prasad BK, Gupta SK (1978) Preliminary report on the engagement and retention of Mycobacteria by trophozoites of exenically grown Acanthamoeba castellanii douglas. Curr Sci 47(7):245–247

Proca-Ciobanu M, Lupascu GH, Al P, Ionescu MD (1975) Electron microscopic study of Acanthamoeba castellanii. Fungal Biol 47(1):49–56. https://doi.org/10.1016/0043-6166(75)90097-1

Raghavan A, Baidwal S, Venkatapathy N, Rammohan R (2019) The Acanthamoeba-Fungal Keratitis Study. Am J Ophthalmol 201:31–36. https://doi.org/10.1016/j.ajo.2019.01.024

Reteno DG, Benamar S, Khalil JB, Andreani J, Armstrong N, Klose T, Rossmann M, Colson P, Raoult D, La Scola B (2015) Biodiversity of amoeba-resisting bacteria in a hospital water network of novel coronavirus. Pathog Glob Health 114(5):228–229. https://doi.org/10.1080/20477242.2020.1765655

Scheid P, Zöller L, Pressmar S, Richard G, Michel R (2008) An endocytobiont revealed as largest virus. Science 320(5877):1116–1118. https://doi.org/10.1126/science.1159812

Scheid P, Zöller L, Pressmar S, Richard G, Michel R (2008) An extraordinary endocytobiont in Acanthamoeba sp. isolated from a patient with keratitis. Parasitol Res 102(5):945–950. https://doi.org/10.1007/s00436-007-0858-3

Scheid PL (2014) Relevance of free-living amoebae as hosts for phytogenetically diverse microorganisms. Parasitol Res 113(7):2407–2414. https://doi.org/10.1007/s00436-014-3932-7

Scheid PL (2015) Viruses in close associations with free-living amoebae. Parasitol Res 114(11):3959–3967. https://doi.org/10.1007/s00436-015-4731-5

Scheid PL (2016) A strange endocytobiont revealed as largest virus. Curr Opin Microbiol 31:58–62. https://doi.org/10.1016/j.mib.2016.02.005

Scheid PL, Schwarzenberger R (2011) Free-living amoebae as vectors of cryptocosporidias. Parasitol Res 109(2):499–504. https://doi.org/10.1007/s00436-011-2287-6

Scheid PL, Schwarzenberger R (2012) Acanthamoeba spp. as vehicle and reservoir of adenoviruses. Parasitol Res 111(1):479–485. https://doi.org/10.1007/s00436-012-2828-7

Segal G, Shuman HA (1999) Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun 67(5):2117–2124. https://doi.org/10.1128/iai.67.5.2117-2124.1999

Siddiqui R, Khan NA (2012) War of the microbial worlds: who is the beneficiary in Acanthamoeba–bacterial interactions? Exp Parasitol 130(4):311–313. https://doi.org/10.1016/j.exppara.2012.01.021

Siddiqui R, Khan NA (2020a) War on terror cells: strategies to eradicate “novel coronavirus” effectively. ACS Chem Neurosci 11(9):1198–1199. https://doi.org/10.1021/acschemneuro.0c00162

Siddiqui R, Khan NA (2020b) Centralized air-conditioning and transmission of novel coronavirus. Pathog Glob Health 114(5):228–229. https://doi.org/10.1080/20477242.2020.1765655

Scheid PL, Yee Ong TY, Jung SY, Khan NA (2017) Acanthamoeba castellanii interactions with Streptococcus pneumoniae and Streptococcus pyogenes. Exp Parasitol 183:128–132. https://doi.org/10.1016/j.exppara.2017.08.005

Snelling WJ, McKenna JP, Lecky DM, Dooley JS (2005) Survival of Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol 71(9):5560–5571. https://doi.org/10.1128/aem.71.9.5560-5571.2005

Sriram R, Shoff M, Booton G, Fuerst P, Visvesvara GS (2008) Survival of Acanthamoeba cysts after desiccation for more than 20 years. J Clin Microbiol 46(12):4045–4048. https://doi.org/10.1128/jcm.01903-08

Steenbergen JN, Casadevall A (2003) The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect 5(7):667–675. https://doi.org/10.1016/s1286-4579(03)00092-3

Steenbergen JN, Nosanchuk JD, Malliaris SD, Casadevall A (2004) Interaction of Blastomyces dermatitidis, Sporothrix schenckii, and Histoplasma capsulatum with Acanthamoeba castellanii. Infect Immun 72(6):3478–3488. https://doi.org/10.1128/iai.72.6.3478-3488.2004

Steenbergen JN, Shuman HA, Casadevall A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98(26):15245–15250. https://doi.org/10.1073/pnas.261418798

Taylor M, Ross K, Benthum R (2009) Legionella, protozoa, and biofilms: interactions within complex microbial systems. Microb Ecol 58(3):338–47. https://doi.org/10.1007/s00248-009-9514-2

Tezcan-Merdol D, Ljungström M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70(6):3706–3714. https://doi.org/10.1128/aeim.70.6.3706-3714.2004

Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoeba and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72(4):2428–2438. https://doi.org/10.1128/aem.72.4.2428-2438.2006

Thomas V, McDonnell G, Denyer SP, Maillard JY (2010) Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol Rev 34(3):231–259. https://doi.org/10.1111/j.1574-6976.2009.00190.x

Thomaz L, Garcia-Rodas R, Guimarães AJ, Taborda CP, Zaragoza O, Nosanchuk JD (2013) Galleria mellonella as a model host to study Paracoccidioides lutzii and Histoplasma capsulatum. Virulence 4(2):139–146. https://doi.org/10.4161/viru.23047

Tomov AT, Tsvetkova ED, Tomova IA, Michaelova LI, Kassovski VK (1999) Persistence and multiplication of obligate anaerobe bacteria in amebae under aerobic conditions. Anaerobe 5(1):19–23. https://doi.org/10.1006/anae.1999.0182

Tsai CM, Chen JW, Lin WC (2020) Effects of Acanthamoeba castellanii on the dissolved oxygen and the microbial community under the experimental aquatic model. Exp Parasitol 218:107985. https://doi.org/10.1016/j.exppara.2020.107985
Van Waeyenberghe L, Baré J, Pasmans F, Claeys M, Bert W, Haesebrouck F, Houf K, Martel A (2013) Interaction of Aspergillus fumigatus conidia with Acanthamoeba castellanii parallels macrophage–fungus interactions. Environ Microbiol Rep 5(6):819–824. https://doi.org/10.1111/1758-2229.12082

Wagner Y, Noack B, Hoffmann T, Jacobs E, Lück CP (2006) Periodontopathogenic bacteria multiply in the environmental amoeba Acanthamoeba castellanii. Int J Hyg Environ Health 209(6):535–539. https://doi.org/10.1016/j.ijheh.2006.05.006

Watkins RA, Andrews A, Wynn C, Barisch C, King JS, Johnston SA (2018) Cryptococcus neoformans escape from Dictyostelium amoeba by both WASH-mediated constitutive exocytosis and vomocytosis. Front Cell Infect Microbiol 8:108. https://doi.org/10.3389/fcimb.2018.00108

Wetzel MG, Korn ED (1969) Phagocytosis of latex beads by Acanthamoeba castellanii (Neff) III. Isolation of the phagocytic vesicles and their membranes. J Cell Biol 43(1):90–104. https://doi.org/10.1083/jcb.43.1.90

Winiecka-Krusnell J, Wreiber K, von Euler A, Engstrand L, Linder E (2002) Free-living amoebae promote growth and survival of Helicobacter pylori. Scand J Infect Dis 34(4):253–256. https://doi.org/10.1080/00365540110080052

Yousuf FA, Siddiqui R, Khan NA (2013) Acanthamoeba castellanii of the T4 genotype is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasit Vectors 6(1):169. https://doi.org/10.1186/1756-3305-6-169

Zhang J, Ormälä-Odegrip AM, Mappes J, Laakso J (2014) Top-down effects of a lytic bacteriophage and protozoa on bacteria in aqueous and biofilm phases. Ecol Evol 4(23):4444–4453. https://doi.org/10.1002/ece3.1302

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.