INTRODUCTION: Diabetes mellitus is a highly prevalent chronic disease. Type 1 diabetes mellitus usually develops during infancy and adolescence and may affect the quality of life of adolescents.

OBJECTIVE: To evaluate the quality of life of adolescents with type 1 diabetes mellitus in a metropolitan region of western central Brazil.

METHODS: Adolescents aged 10–19 years who had been diagnosed with type 1 diabetes mellitus at least 1 year previously were included. Patients with verbal communication difficulties, severe disease, and symptomatic hypo- or hyperglycemic crisis as well as those without an adult companion and who were <18 years of age were excluded. The self-administered Diabetes Quality of Life for Youths instrument was applied.

RESULTS: Among 96 adolescents (57% females; 47% white, and 53% nonwhite), 81% had an HbA1c level of ≥7%. In general, the adolescents consistently reported having a good quality of life. The median scores for the domains of the instrument were as follows: “satisfaction”: 35; “impact”: 51; and “worries”: 26. The total score for all domains was 112. Bivariate analysis showed significant associations among a lower family income, public health assistance, and insulin type in the “satisfaction” domain; and a lower family income, public health assistance, public school attendance, and a low parental education level in the “worries” domain and for the total score. A longer time since diagnosis was associated with a lower total score. Multivariable analysis confirmed the association of a worse quality of life with public health assistance, time since diagnosis, and sedentary lifestyle in the “satisfaction” domain; female gender in the “worries” domain; and public health assistance for the total score.

CONCLUSIONS: Overall, the adolescents evaluated in this study viewed their quality of life as good. Specific factors that led to the deterioration of quality of life, including public assistance, time since diagnosis, sedentary lifestyle, and female gender, were identified.

KEYWORDS: Quality of Life; Type 1 Diabetes; Adolescent.

In Brazil, epidemiological data on diabetes are scarce. Some studies have indicated a prevalence of 7.6–13.5% (3,4). It has been estimated that by 2030, Brazil will advance from the eighth to the sixth position in terms of the worldwide prevalence of diabetes due to an increase from 4.6 to 11.3% (5).

Type 1 diabetes mellitus (T1DM) usually develops during infancy and adolescence and results from the progressive destruction of pancreatic beta cells and reduced insulin production (6). The prevalence of T1DM varies between 0.05% and 0.3% in children 15 years of age in most European and North American populations (1,7). A prevalence of 0.2% has been estimated for the same age group in Brazil (8), and recent data have demonstrated an increasing incidence that is similar to those of European countries (9). T1DM and its complications may affect adolescents’ living conditions over the years and may also influence their quality of life (QOL) (10). Hormonal alterations, immaturity, difficulties in acquiring autonomous control, and a low rate of disease acceptance may hinder the daily control of blood glucose levels. In general, adolescents are more resistant to accepting the disease than...
Quality of life of type 1 diabetics
Costa LM et al.

METHODS

A cross-sectional study of adolescents with T1DM assisted from March 2012 to February 2014 was performed at the outpatient endocrinology clinics of the Júlio Müller University Hospital and the General Hospital of the University of Cuiabá, both of which are reference/public services for treating children and adolescents with DM of the Medical Specialties Centers of Cuiabá and Várzea Grande and of private endocrinologists in the metropolitan region of Cuiabá. This case study included patients assisted by the public health system and private health insurance plans.

The adolescents included in the study ranged in age from 10 to 19 years (according to the World Health Organization [WHO] definition) and had been diagnosed with T1DM more than 1 year previously. Patients with verbal communication difficulties, severe disease, and symptomatic hypoglycaemia and/or hyperglycaemic crisis as well as those under 18 years of age without an adult companion were excluded.

The required sample size of 95 adolescents was obtained with a confidence interval of 95% and a sampling error of 0.009, taking into account the population of adolescents in the state of Mato Grosso (13) and the T1DM prevalence of 0.2% (8) in the country.

Demographic, socio-economic, and clinical data were obtained by interviews and a standardized questionnaire. The patients’ weights, heights, and exam results were collected from their medical records. The body mass indices (BMIs) and classifications of the nutritional states of the participants were obtained using WHO AnthroPlus software (14). The participants reported their race according to the Brazilian Institute of Geographic and Statistics classification system (13) as white, brown, black, indigenous or yellow. For comparative analyses, the different races were divided in two groups (white and nonwhite) because of the small numbers of black and yellow people in this population.

To collect data regarding QOL, we used the instrument Diabetes Quality of Life for Youths (DQOLY), which is a specific instrument to evaluate the QOL of adolescents with diabetes (15). The DQOLY was adapted and validated for the Portuguese language and for Brazilian culture (16). This instrument evaluates the domains of satisfaction (17 items), impact (22 items), and worries (11 items). Responses are given on a Likert scale. Each question is answered using a scale ranging from 1 to 5 (very satisfied to very unsatisfied, respectively, for the satisfaction domain and never to

Table 1 - Sociodemographic, clinical and treatment characteristics of 96 adolescents with type 1 diabetes.

Characteristics	Category	Number	%
Gender	Female	55	57.29
	Male	41	42.71
Age in years	10 — 14	55	57.29
	15 — 19	41	42.71
Race	White	45	46.88
	Nonwhite	51	53.12
Family income a	> 8	38	39.58
	3 — 4	28	29.17
	1 — 2	30	31.25
Years of schooling	= 8	58	60.42
	> 8	38	39.58
Occupation	Study + work	10	10.42
	Study only	86	89.58
Type of school	Public	62	64.58
	Private	34	35.42
Maternal education in years	= 8	19	19.79
	> 8	77	80.21
Paternal education in years	= 8	35	36.46
	> 8	61	63.54
Type of health service	Public	43	44.79
	Private	53	55.21
Time of diagnosis in years	= 3	59	61.46
	> 3	37	38.54
Insulin injections - times per day	= 3	60	63.16
	> 2	35	36.84
Type of insulin used b	R	2	2.11
	R/I	5	5.26
	S/S+R	52	54.74
	I/R+H/I+UR	29	30.52
	UR (pump)	7	7.37
Self-monitoring of glycemia	Yes	90	93.75
	No	6	6.25
Hypoglycaemia	Yes	71	73.96
	No	25	26.04
Chronic complications of DM	Yes	1	1.04
	No	95	98.96
Hypo- and/or hyperglycaemia in the last month	Yes	93	96.88
	No	3	3.13
Hospitalization due to T1DM or complications	Yes	67	70.21
Carbohydrate counting	No	29	69.79
	Yes	27	71.88
Time since the last HbA1c measurement in months	Yes	86	89.58
	No	10	10.42
Value of the last HbA1c measurement	Yes	78	81.25
Physical activities	Yes	86	89.58
Frequency of physical activities per week	None	10	10.42
Nutritional status	Thin	79	82.29
	Eutrophic	4	4.17
	Overweight	10	10.42
	Overweight	3	3.13

aBrazilian minimum monthly wage; bR = rapid-acting, S = slow-acting; UR = ultra-rapid-acting; and I = intermediate-acting.
always for the worries and impact domains). The total score is the sum of the domain scores. There is no cutoff score for this instrument; thus, the lowest value corresponds to a better QOL. In addition to the DQOLY items, the participants were asked to self-evaluate the state of their health compared with the states of health of other young people from the same age group. The responses included the following four options: 1 = excellent; 2 = good; 3 = satisfactory; and 4 = bad. This question has been used together with the DQOLY internationally (15,17).

All data were collected by the author LMFCC. Interviews were performed to present the DQOLY for its self-administration. The adolescents were interviewed as outpatients and in private medical offices during routine health-care visits. The interviews were pre-scheduled by telephone and were conducted at home. The adolescents were instructed to respond to the instrument autonomously. The researcher was available to read and clarify questions for those adolescents ≤ 14 years of age because of their potential difficulties with understanding some of them. The collected data were entered twice to minimize processing mistakes. Statistical analysis was performed using the Stata V13.0 software (StataCorp, College Station, TX) (18). The prevalence ratios and their 95% confidence intervals were calculated using Pearson’s chi square test to analyze the association between the scores above and below the median and between the demographic and clinical variables. This test was also used for bivariate analysis of the association between health status and the studied variables. A 5% significance level was adopted. Multivariate analysis was performed using the Poisson multiple regression model. This model included the variables with a significance level of greater than 20% (p > 0.20), as shown by bivariate analysis. A significance level of 5% and a 95% confidence interval were adopted for the final regression model.

ETHICS

All included patients or their guardians for those under 18 years of age were sufficiently informed about this study. The patients and guardians signed informed consent forms. The Research Ethics Committee of the Faculty of Medicine of the University of São Paulo approved this study.

RESULTS

Ninety-nine adolescents were included in this study. Three adolescents were excluded because they refused to participate. The socio-demographic and clinical characteristics of the 96 analyzed adolescents are shown in Table 1. Before being divided into two large groups (white and nonwhite), 45 adolescents reported being of white color, 46 of brown color, 4 of black color, and 1 of yellow color.

Characteristics	Satisfaction Above the median	Satisfaction Below the median	Impact Above the median	Impact Below the median								
	n	%	PR	CI 95%	p	n	%	PR	CI 95%	p		
Gender												
Female	29	52.73	26	47.27	1.44 [0.90; 2.32]	0.116	26	57.73	1.02 [0.66; 1.57]	0.928		
Male	15	36.59	26	63.41	1.00	19	46.34	22	53.66	1.00		
Age 10 – 14 years	23	41.82	32	58.18	0.82 [0.53; 1.26]	0.360	24	43.64	31	56.36	0.85 [0.56; 1.30]	0.461
Age 15 – 19 years	21	51.22	20	48.78	1.00	21	51.22	20	48.78	1.00		
Race												
Nonwhite	23	50.00	23	50.00	1.32 [0.82; 2.16]	0.240	21	45.65	25	54.35	0.98 [0.63; 1.52]	0.923
White	17	37.78	28	62.22	1.00	17	46.67	24	53.33	1.00		
Family income^												
1 – 2	18	60.00	12	40.00	1.90 [1.09; 3.30]	0.019	18	60.00	12	40.00	1.42 [0.89; 2.29]	0.143
3 – 4	14	50.00	14	50.00	1.58 [0.87; 2.88]	0.130	11	39.29	17	60.71	0.93 [0.52; 1.69]	0.818
≥ 5	12	31.58	26	68.42	1.00	12	42.10	22	57.90	1.00		
Schooling												
≤ 8 years	25	43.10	33	56.90	0.86 [0.56; 1.33]	0.507	26	44.83	32	55.17	0.90 [0.59; 1.38]	0.619
> 8 years	19	50.00	19	50.00	1.00	19	50.00	19	50.00	1.00		
Occupation												
Study + work	7	70.00	3	30.00	1.63 [0.97; 2.61]	0.178	5	50.00	5	50.00	1.08 [0.56; 2.08]	1.00*
Study only	37	43.02	49	56.98	1.00	40	46.51	46	53.49	1.00		
Type of school												
Public	32	51.61	30	48.39	1.46 [0.87; 2.45]	0.125	31	50.00	31	50.00	1.21 [0.76; 1.95]	0.407
Private	12	35.29	22	64.71	1.00	14	41.18	20	58.82	1.00		
Maternal education												
≤ 8 years	11	57.90	8	42.10	1.35 [0.85; 2.14]	0.239	10	52.63	9	47.37	1.16 [0.71; 1.89]	0.574
> 8 years	33	42.86	44	57.14	1.00	35	45.45	42	54.55	1.00		
Paternal education												
≤ 8 years	19	54.29	16	45.71	1.32 [0.86; 2.03]	0.208	20	57.14	15	42.86	1.39 [0.92; 2.11]	0.127
> 8 years	25	40.98	36	59.02	1.00	25	40.98	36	59.02	1.00		
Type of health service												
Public	27	62.79	16	37.21	1.96 [1.24; 3.08]	0.003	22	51.16	21	48.84	1.18 [0.77; 1.80]	0.448
Private	17	32.08	36	67.92	1.00	23	43.40	30	56.60	1.00		

^ = Brazilian minimum monthly wage.
The mean value of the last glycated hemoglobin (HbA\(_{1c}\)) level was 9.59% ± 2.82%. The mean BMI was 20.01 ± 3.09 kg/m\(^2\).

Analysis of the DQOLY scores showed a normal distribution (Shapiro test p > 0.10), which allowed for a comparison of the percentages of scores above/equal to the median with those below the median for each domain. The median (minimum-maximum) total DQOLY score and domain scores were as follows: total DQOLY value, 111 (59–165); satisfaction, 35 (17–62); impact, 50 (26–73); and worries, 26 (11–44). The distribution of percentages of scores above and below the median according to the domain and bivariate analyses are shown in Tables 2A, 2B, 3A and 3B.

The variables with a p > 0.20 were selected for analyses using logistic regression models, as shown in Table 4.

In response to the specific question regarding their perception of their own health, 29% reported it as excellent, 48% as good, 17% as satisfactory, and 6% as bad.

Participants who were only students and those who frequently participated in physical activities were more likely to declare their health state as excellent or good compared with those who were students with sedentary habits (prevalence ratio [PR] = 2.53; p = 0.046). The association between the best declared health state and being a student who exercised regularly remained significant after adjusting for family income, type of insulin, the self-monitoring of blood glucose, the time since the last HbA\(_{1c}\) measurement, the frequency of exercise, and the nutritional status (PR = 2.54; p = 0.011).

DISCUSSION

The assisted adolescents with T1DM from the metropolitan region of Cuiabá were mostly female and reported similar proportions of white and nonwhite races, corresponding with the demographic characteristics of the region (13). The active search for cases included regional hospitals and private practices to ensure for the inclusion of a representative sample of adolescents that was independent of socioeconomic class and that allowed for a comparison of the HRQOL according to this specific parameter.

Table 2B - Bivariate analysis of associations between sociodemographic characteristics and the domains "Concerns" and "Total score".

Characteristics	CONCERNS Above the median	CONCERNS Below the median	TOTAL IQVJD Above the median	TOTAL IQVJD Below the median	PR CI 95% p						
n	%	n	%	PR b CI 95%	p	n	%	n	%	PR CI 95%	p
---	---	---	---	-------------	---	---	---	---	---	-------------	---
Gender Female	31 56.36	24 43.64	1.54 [0.97; 2.45]	0.05	29 52.73	26 47.27	1.20 [0.78; 1.84]	0.392			
Male	15 36.59	26 63.41	1.00		18 43.90	23 56.10	1.00				
Age 10 – 14 years	29 52.73	26 47.27	1.27 [0.82; 1.98]	0.27	25 45.45	30 54.55	0.85 [0.57; 1.27]	0.436			
15 – 19 years	17 41.46	24 58.54	1.00		22 53.66	19 46.34	1.00				
Race Nonwhite	23 50.00	23 50.00	1.12 [0.73; 1.74]	0.60	22 47.83	24 52.17	1.02 [0.66; 1.58]	0.912			
White	20 44.44	25 55.56	1.00		21 46.67	24 53.33	1.00				
Family income\(\text{b}\)	21 70.00	9 30.00	2.42 [1.40;4.19]	0.001	20 66.67	10 33.33	1.81 [1.11; 2.94]	0.015			
1 — 2	14 50.00	14 50.00	1.73 [0.93; 3.21]	0.08	13 46.43	15 53.57	1.26 [0.71; 2.24]	0.434			
3 — 4	11 28.95	27 71.05	1.00		14 36.84	24 63.16	1.00				
≥ 5	30 51.72	28 48.28	1.23 [0.79; 1.92]	0.36	27 46.55	31 53.45	0.88 [0.59; 1.33]	0.560			
Schooling ≤ 8 years	16 42.10	22 57.89	1.00		20 52.63	18 47.37	1.00				
> 8 years	2 20.00	8 80.00	0.39 [0.11; 1.37]	0.09*	6 60.00	4 40.00	1.26 [0.72; 2.19]	0.520*			
Occupation Study + work	2 20.00	8 80.00	0.39 [0.11; 1.37]	0.09*	6 60.00	4 40.00	1.26 [0.72; 2.19]	0.520*			
Study only	44 51.16	42 48.83	1.00		41 47.67	45 52.33	1.00				
School Public	35 56.45	27 43.55	1.74 [1.02;2.97]	0.024	35 56.45	27 43.55	1.60 [1.01; 2.65]	0.047			
Private	11 32.35	23 67.65	1.00		12 35.29	22 64.71	1.00				
Maternal education ≤ 8 years	11 57.90	8 42.10	1.27 [0.81; 2.01]	0.331	11 57.90	8 42.10	1.24 [0.79; 1.94]	0.384			
> 8 years	35 45.45	42 54.55	1.00		36 46.75	41 53.25	1.00				
Paternal education ≤ 8 years	24 68.57	11 31.43	1.90 [1.27;2.84]	0.002	23 65.71	12 34.29	1.67 [1.13; 2.47]	0.013			
> 8 years	22 36.07	39 63.93	1.00		24 39.34	37 60.66	1.00				
Health service Public	27 62.79	16 37.21	1.75 [1.14;2.69]	0.009	27 62.79	16 37.21	1.66 [1.10; 2.52]	0.015			
Private	19 35.85	34 64.15	1.00		20 37.74	33 62.26	1.00				

\(\text{b}\) = Brazilian minimum monthly wage.
controlling of HbA1c in the past months), they did not have ideal control of their DM. Most had at least one episode of hypoglycemia in the past month (93%), and more than one half (67%) reported a previous hospitalization due to DM. In addition, the mean value for metabolic control, as evaluated by HbA1c, measurements, was 9.6%, confirming the absence of good control of the disease in these patients.

Despite signs of uncontrolled chronic disease, most of the evaluation results were consistent with a good perception of the health state by the adolescents. A likely explanation is that these patients were still in the initial phase of this chronic disease, which does not yet involve any irreversible repercussions, and they were young (mean age of 14 years), which contributed to more favorable evaluations of their health. A recent systematic (19) review has also noted the similarities in the QOL reported by young people with and without diabetes; however, the affected individuals observed specific impacts of the disease in their daily lives.

Metabolic control has been a target of the treatment DM to ensure for not only the improved organic evolution of the disease but also a better QOL. A trend of the deterioration of metabolic control in adolescents is due to hormonal alterations in addition to psychological and behavioral aspects (20) that are characteristic of this phase of life. A recent cohort study (21) of 2,602 diabetic patients with a mean age of 13 years has found that poor metabolic control, as assessed by HbA1c measurements, was associated with worse QOL. However, other studies (15,17) either have not found an association between HbA1c and QOL or have detected a negative association.

In the present study, the adolescents with longer-established DM diagnoses had a worse HRQOL. The correlation of the lower satisfaction of the adolescents with a longer time since diagnosis suggests that the course of the disease is an important factor in the deterioration of QOL. Multivariable-adjusted analysis of select treatment characteristics, such as the type of insulin used and the time since the last laboratory measurement, was 9.6%, confirming the absence of good control of the disease in these patients.

Despite signs of uncontrolled chronic disease, most of the evaluation results were consistent with a good perception of the health state by the adolescents. A likely explanation is that these patients were still in the initial phase of this chronic disease, which does not yet involve any irreversible repercussions, and they were young (mean age of 14 years), which contributed to more favorable evaluations of their health. A recent systematic (19) review has also noted the similarities in the QOL reported by young people with and without diabetes; however, the affected individuals observed specific impacts of the disease in their daily lives.

Metabolic control has been a target of the treatment DM to ensure for not only the improved organic evolution of the disease but also a better QOL. A trend of the deterioration of metabolic control in adolescents is due to hormonal alterations in addition to psychological and behavioral aspects (20) that are characteristic of this phase of life. A recent cohort study (21) of 2,602 diabetic patients with a mean age of 13 years has found that poor metabolic control, as assessed by HbA1c measurements, was associated with worse QOL. However, other studies (15,17) either have not found an association between HbA1c and QOL or have detected a negative association.

In the present study, the adolescents with longer-established DM diagnoses had a worse HRQOL. The correlation of the lower satisfaction of the adolescents with a longer time since diagnosis suggests that the course of the disease is an important factor in the deterioration of QOL. Multivariable-adjusted analysis of select treatment characteristics, such as the type of insulin used and the time since the last laboratory measurement, was 9.6%, confirming the absence of good control of the disease in these patients.
may have impacted their satisfaction regarding their HRQOL. However, other studies (22) using different methods of monitoring have indicated that the time since diagnosis may have a lesser impact. Stahl et al. did not identify alterations in QOL in diabetic adolescents with at least 7 years since diagnosis compared with non-diabetic controls. A cohort study (21) also did not detect an influence of the time since diagnosis on the QOL of adolescents.

A predominant factor influencing the deterioration of QOL identified in the present study was public service assistance. Although most of the adolescents, even those being monitored by private clinics, obtained their medication through public service assistance, the results suggested that the quality of this assistance was unsatisfactory. These findings may have been due to factors that were not evaluated in this study, such as the time required to schedule medical appointments, the emergency services available, and the individualization and broadening of mental health services and services integrated with the sociocultural characteristics of the communities where these adolescents live. Therefore, services to diabetic adolescents are improved if they are organized in a multidisciplinary manner. Lawrence et al. have also reported that the type of service used by patients influences QOL. American adolescents receiving Medicare and Medicaid services have reported a worse QOL compared with those assisted through private services (21).

The lower education levels of parents as well as female gender directly reflected a worse QOL as measured by the DQOLY worries domain. This domain addresses the concerns of adolescents regarding not only their health and appearance but also their future and expectations from affective relationships. The lower education levels of parents, which indicate a lower socioeconomic status, may be associated with the insecurity of adolescents due to a lack of information and the anticipation of socioeconomic difficulties in the future. The association between the lower education levels of parents and the deterioration of the QOL of diabetic children has been a recurrent theme in the literature (21,23).

Physical activity is an important factor in the evaluation of QOL along with the health state of adolescents. A clinical trial (24) evaluating young patients with diabetes randomized

Table 3B - Bivariate analysis of associations between clinical characteristics and the domain “Worries” and the total score.

Characteristics	Above median	Below median	PR	CI 95%	p	Above median	Below median	PR	CI 95%	p
Time with DM										
≥ 3 years	29 (49.15)	30 (50.85)	1.07	[0.69; 1.65]	0.760	34 (57.63)	25 (42.37)	1.64	[1.01; 2.68]	0.032
> 1 – < 3 years	17 (45.95)	20 (54.05)	1.00			13 (35.14)	24 (64.86)	1.00		
Insulin/day										
≥ 3 injections	29 (48.33)	31 (51.67)	1.00	[0.65; 1.53]	0.982	31 (51.66)	29 (48.33)	1.13	[0.73; 1.75]	0.576
≤ 2 injections	17 (48.57)	18 (51.43)	1.64	[1.01; 2.68]	0.032	16 (45.71)	19 (54.29)	1.00		
Type of insulin										
UR	1 (14.29)	6 (85.71)	0.73	[0.33; 1.49]	0.016*	1 (14.29)	6 (85.71)	0.27	[0.04; 1.69]	0.105
*R/UR 2+UR	17 (58.62)	12 (41.38)	1.19	[0.80; 1.79]	0.404	16 (55.17)	13 (44.83)	1.05	[0.70; 1.58]	0.823
Self-monitoring of										
glycaemia										
No	45 (50.00)	45 (50.00)	1.00			44 (48.89)	46 (51.11)	1.00		
Yes	16 (69.57)	7 (30.43)	1.00	[0.65; 1.53]	0.982	16 (55.17)	13 (44.83)	1.05	[0.70; 1.58]	0.823
Hypoglycaemia										
Yes	31 (43.66)	20 (56.34)	1.00	[0.31; 1.62]	0.060	45 (48.39)	48 (51.61)	0.73	[0.32; 1.66]	0.613
No	14 (41.18)	21 (58.82)	1.00			2 (60.00)	1 (40.00)	1.29	[0.74; 2.25]	0.001*
Physical activity										
Never	6 (60.00)	4 (40.00)	1.29	[0.74; 2.25]	0.513	4 (60.00)	6 (40.00)	0.80	[0.36; 1.76]	0.741*
≤ 2 times/week	13 (65.00)	7 (35.00)	1.59	[0.99; 2.45]	0.508	13 (50.00)	13 (50.00)	1.00	[0.61; 1.65]	1.000
≥ 3 times/week	27 (65.00)	14 (35.00)	1.00			32 (50.00)	32 (50.00)	1.00		
Nutritional status										
Thin	0 (0.00)	4 (100.00)	0.00	-	0.017	2 (60.00)	2 (40.00)	1.01	[0.37; 2.77]	1.000*
Eutrophic	41 (51.90)	38 (48.10)	1.00			39 (49.37)	40 (50.63)	1.00		
Overweight	5 (38.46)	7 (61.54)	0.74	[0.36; 1.52]	0.369	6 (46.15)	7 (53.85)	0.94	[0.50; 1.75]	0.830
Value of last Hb1Ac level										
> 7%	41 (52.56)	37 (47.44)	1.89	[0.87; 4.10]	0.058	43 (55.14)	35 (44.87)	2.48	[1.02; 6.02]	0.012
≤ 7%	5 (27.78)	13 (72.22)	1.00			4 (22.22)	14 (77.78)	1.00		

178
Table 4 - Sociodemographic and clinical characteristics associated with scores above the medians in the “Satisfaction” and “Worries” domains and the total score.

Characteristics	Satisfaction domain	PR	CI 95%	p
Type of health service				
Public	1.84	1.19-2.85	0.006	
Private	1.00			
Time since diagnosis				
> 3 years	1.71	1.03-2.86	0.039	
1 - 3 years	1.00			
Physical activity				
No	2.02	1.06-3.84	0.032	
Yes	1.00			
Worries domain				
Gender				
Female	1.56	1.01-2.42	0.048	
Male	1.00			
Total score				
Type of health service				
Public	1.57	1.05-2.34	0.029	
Private	1.00			

PR = Adjusted prevalence ratio in the Poisson regression model with variable selection; and CI = confidence interval.

these subjects into either physical activity or no physical activity groups and found an improvement in the clinical control of disease and QOL in the physical activity group.

To the best of our knowledge, the present study is the first to evaluate HRQOL in diabetic adolescents living in the metropolitan region of Cuiabá. By applying the DQOLY, it was possible to identify the influences of social aspects, such as the type of medical services used and the education levels of parents, on the self-evaluation of QOL. The impacts of characteristic factors of the disease, such as evolution time and exercise, on QOL were also identified. A limitation of this study is its cross-sectional design, which made it impossible to establish causal links. Another limitation is the absence of a control group. However, the results may contribute to new treatment evaluation and monitoring procedures for adolescents with diabetes and possibly to the broadening of multidisciplinary approaches in the face of this complex and chronic disease, which originates during infancy and adolescence.

ACKNOWLEDGMENTS

This study was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

AUTHOR CONTRIBUTIONS

Costa LM planned the study, conducted the survey and contributed to the interpretation of the results. Vieira SE planned the study, contributed to the interpretation of the results, wrote the paper and submitted the study.

REFERENCES

1. International Diabetes Federation, 2013 Sixth edition, 2013. Available at: www.idf.org/diabetesatlas. (Accessed on Mar 28, 2014).
2. World Health Organization – Diabetes Programme – Available at: http://www.who.int/diabetes/en/. (Accessed on Jan 20, 2014).
3. Malerba DA, Franco LJ. Multicenter study of the prevalence of diabetes mellitus and impaired glucose tolerance in the urban Brazilian population aged 30-69 years. Brazilian Cooperative Group on the Study of Diabetes Prevalence. Diabetes Care. 1992;15(11):1509-16.
4. Bosi PL, Carvalho AM, Contrera D, Casale G, Pereira MA, Gronner M, et al. Prevalence of diabetes mellitus and tolerance to alimentary glucose in the population urban of 30 to 79 years of the city of Sao Carlos, Sao Paulo. Arq Bras Endocrinol Metab. 2009;53(6):726-32, http://dx.doi.org/10.1590/S0004-27302009000600006.
5. Brasil. Ministério da Saúde. Secretaria de Atenção Saúde. Departamento de Atenção Básica. Strategies for the care of the person with chronic use of Diabetes Mellitus. Caderno de Atenção Básica n 36 – Brasília – 2013. Available at: http://189.28.128.100/dbc/docs/portaldab/publicacoes/caderno_36.pdf (Accessed on Jun 20, 2014).
6. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90, http://dx.doi.org/10.2337/dci14-5081.
7. Pettiti DJ, Talton J, Dabelea D, Jervis I, Imperatore G, Lawrence JM, et al. Prevalence of diabetes in U.S. youth in 2009: the SEARCH for diabetes in youth study. Diabetes Care. 2014;37(2):402-8, http://dx.doi.org/10.2337/dc13-1838.
8. Sociedade Brasileira de Diabetes. Atualização brasileira sobre diabetes. Rio de Janeiro: Diagrapic; 2006. Available at: http://brasnet.rj.gov.br/Arq/PDFs/Diabetes_mellittus_int.pdf (Accessed on Jan 20, 2014).
9. Patterson NCC, Dahliquist GG, Gyrus E Green A, Soltész G, , EURODIAB Study Group. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2007-2025: a multicentre prospective registration study. Lancet. 2009;373(9680):2027-35, http://dx.doi.org/10.1016/S0140-6736(09)64658-7.
10. Sawyer MG, Reynolds KE, Couper JJ, French DJ, Kennedy D, Martin J, Stansfield S, et al. Health-related quality of life of children and adolescents with chronic illness - a two year prospective study. Qual Life Res. 2004;13(7):1309-19, http://dx.doi.org/10.1023/B:QURE.0000037499.41344.b2.
11. Coates VE, Boore JR. The influence of psychological factors on the self-management of insulin-dependent diabetes mellitus. J Adv Nurs. 1998;27(3):526-37, http://dx.doi.org/10.1046/j.1365-2648.1998.00546.x.
12. da Mota Falcão D, Ciconelli RM, Ferraz MB. Translation and cultural adaptation of quality of life questionnaires: an evaluation of methodol- ogy. J Rheumatol. 2003;30(2):379-85.
13. IBGE. Instituto Brasileiro de Geografia e Estatística 2010. Demographic Census. Available at: www.ibge.gov.br/estadosat/perfil.php?sigla=mt. (accessed on Apr 23, 2011).
14. WHO AnthroPlus 1.0.4.WHO. 2007. Available at: http://www.who.int/growthref/tools/en/. (Accessed on Mar 15, 2014).
15. Ingersoll GM, Marrero DG. A modified quality-of-life measure for youths: psychometric properties. Diabetes Educ. 1991;17(2):114-8, http://dx.doi.org/10.1177/014572179101700219.
16. Novato TS, Grossi SA, Kimura M. Cultural adaptation and validation of the “Diabetes Quality for Youths” measure of Ingersoll and Marrero into Brazilian Culture. Rev Lat Am Enfermagem. 2008;16(2):224-30, http://dx.doi.org/10.1590/S0104-16962008000200009.
17. Faulkner MS, Chang LJ. Family influence on self-care, quality of life, and metabolic control in school-age children and adolescents with type 1 diabetes. J Pediatr Nurs. 2007;22(1):59-68, http://dx.doi.org/10.1016/j.j pedn.2006.02.008.
18. STATA Corp LP. STATA Statistical Software: Release 13.0. Stata corpora- tion: College Station, Texas; 2014. TX USA.
19. Nieuwsteeg A, Pouwer F, van der Kamp R, van Bakel H, Aanstoet HJ, Hartman E. Quality of life of children with type 1 diabetes: a systematic review. Curr Diabetes Rev. 2012;8(6):434-43, http://dx.doi.org/10.2174/2073399128033529850.
20. Court JM, Cameron FJ, Berg-Kelly K, Swift PG. Diabetes in adolescence. Pediatric Diabetes. 2009;10(Suppl. 12):185-94, http://dx.doi.org/10.1111/j.1399-3448.2009.00586.x.
21. Lawrence JM, Yi-Frazier JP, Black MH, Anderson A, Hood K, Imperatore G, et al. Demographic and clinical correlates of the diabetes-related quality of life among youth with type 1 diabetes. J Pediatr. 2012;161(2):207-12.e2, http://dx.doi.org/10.1016/j.jpeds.2012.01.016.
22. Stah1 A, Straßburger, Lange KS, Traubburger K, Lange K, Bäche C, Holl RW, et al. Health-related quality of life among German youths with early-onset and long-duration Type 1 Diabetes. Diabetes Care. 2012;35(8):1736-42, http://dx.doi.org/10.2337/dci11-2438.
23. Hassan K, Loar R, Anderson BJ, Heptulla RA. The role of socioeconomic status, depression, quality of life, and glycemic control in type 1 diabetes mellitus. J Pediatr. 2006;149(4):526-31, http://dx.doi.org/10.1016/j.jpeds.2006.05.039.
24. D’Hooge R, Helinckx T, Van Laere C, Steegen S, De Schepper J, Van Aken S, et al. Influence of combined aerobic and resistance training on metabolic control, cardiovascular fitness and quality of life in adolescents with type 1 diabetes: a randomized controlled trial. Clin Reabil 2011;25(4):349-59.