Interaction between microbiota and immunity in health and disease

Danping Zheng1,2, Timur Liwinski1,3 and Eran Elinav1,4

The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.

Cell Research (2020) 30:492–506; https://doi.org/10.1038/s41422-020-0332-7

INTRODUCTION
The human body, including the gut, skin and other mucosal environments, is colonized by a tremendous number of microorganisms, collectively termed the microbiome. The collective genomes of bacteria and other microorganisms in this ecosystem, including fungi, viruses, parasites, have been increasingly investigated during the past two decades, facilitated by a rapid development of culture-independent genomic techniques. Recent advances in microbiome research revealed that the gut microbiome is not just a passive bystander, but actively impacts multiple host functions, including circadian rhythmicity, nutritional responses, metabolism and immunity.

The mammalian immune system encompasses a complex network of innate and adaptive components in all tissues, and plays a vital role in host defense against various potentially harmful external agents and endogenous perturbations of homeostasis. From an ecological perspective, mammals and their commensal microorganisms co-evolved toward mutualism and hemostasis. Such intimate relationship requires the proper functioning of host immunity to prevent commensals from over-exploitation of host resources while maintaining immune tolerance to innocuous stimuli. However, perturbation of the gut microbiome by environmental incursions (such as antibiotic use, diet changes in geography), impairment of host-microbiome interfaces, or alterations of the immune system can result in systemic dissemination of commensal microorganism, susceptibility to pathogenic invasion, and aberrant immune responses. In addition to regulation of infection and commensal spread, microbiome-immune interactions are implicated in a variety of ‘non-communicable’ gastrointestinal diseases including inflammatory bowel disease (IBD) and celiac diseases, as well as extra-intestinal disorders ranging from rheumatic arthritis, metabolic syndrome, neurodegenerative disorder to malignancy. The interactions between the gut microbiota and host immunity are complex, dynamic and context-dependent. Here, we review and exemplify important current knowledge and key concepts linking the microbiome to development and function of the immune system. We highlight some of the existing mechanistic dissections of multifaceted microbiome-immunity dialogs in both homeostatic and diseased states. Moreover, we discuss the challenges and perspectives of microbiome-targeted strategies in studying disease pathogenesis and developing new microbiome-related treatments. As the large body of evidence related to host immune-microbiome interactions cannot be summarized by a single review, we aim to provide key concepts and examples of such interactions and their potential effects on human health and disease risk, while referring throughout the review to multiple recent reviews focusing on distinct aspects of these emerging interactions.

THE ROLE OF THE MICROBIOME IN IMMUNE SYSTEM DEVELOPMENT
Early-life colonization of the mammalian host’s mucosal surfaces plays a pivotal role in maturation of the host’s immune system. Most critical events in education of host immunity may take place during the first years of life, in which microbiota composition displays the highest intra- and inter-individual variability before

1Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel; 2Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; 31st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany and 4Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120 Heidelberg, Germany

Correspondence: Eran Elinav (eran.elinav@weizmann.ac.il)

These authors contributed equally: Danping Zheng, Timur Liwinski

Received: 19 February 2020 Accepted: 20 April 2020
Published online: 20 May 2020
reaching a more stable adult-like configuration at the age of ~3 years. However, the ‘window of opportunity’ thus created, may also render infants more susceptible to environmental incursions to the microbiota, with potentially long-lasting harmful impacts on immunity. The immaturity of the immune system in newborns and infants is highlighted by an increased susceptibility to various infectious pathogens, rendering infectious diseases the leading cause for mortality in children. On the other hand, an increased propensity towards excessive inflammation is also frequently encountered in prematurely born infants, as exemplified by the potentially devastating disorder necrotizing enterocolitis. Most studies to date have not noted a reproducible microbial colonization already occurring in utero, and it is generally believed that the largest share of colonization occurs after birth, mainly originating from the maternal microbiota. Multiple modulators impact this initial colonization, including delivery mode that impacts on the composition of the initial microbiota across multiple body habitats. It is well established that in neonates maternal antibodies delivered via breastmilk offer crucial passive protection against pathogens. Interestingly, a recent work showed that the commensal microbiota of pregnant mice drives antibody-mediated protective immunity through breastfeeding. The study of mechanistic causal relationships between commensal microbiota and host immunity is strongly informed by the use of germ-free (GF) animal models. Early studies on GF animals demonstrated that absence of commensal microbes is associated with profound intestinal defects of lymphoid tissue architecture and immune functions. As and y6 intra-epithelial lymphocytes (IELs) are significantly reduced in GF mice compared to conventional colonized animals, and can be strongly induced upon new colonization. IgA antibodies are a mainstay of protective humoral mucosal immunity and show substantial reduction in newborns and GF animals, which is rapidly restored by microbial colonization. Gestational maternal colonization increases intestinal group 3 innate lymphoid cells (ILC3s) and F4/80+CD11c+ mononuclear cells in the offspring. The lamina propria of the small intestine contains a large number of IL-17+CD4+ T (Th17) cells, which represent a class of potent immunomodulatory effector cells. Th17 cells are absent in GF mice and are inducible upon microbial colonization, most notably with segmented filamentous bacteria (SFB). but also other commensal bacteria. Induction of Th17 cells by SFB is enabled by their adhesion to epithelial cells. A bacterial polysaccharide derived from the ubiquitous commensal Bacteroides fragilis directs the maturation of the developing immune system in mice, including correction of systemic T cell deficiencies and Th1/Th2 imbalances in lymphoid tissues. An early B cell lineage in the intestinal mucosa is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires. Intestinal microbial diversity during early-life colonization is critical to establish an immunoregulatory network that protects from induction of mucosal IgE, which is linked to allergy susceptibility. The innate immune receptor Toll-like receptor 5 (TLR5) serves as a sensor for bacterial flagellin. Although in mice TLR5-mediated counter-selection of colonizing flagellated bacteria is constrained to the neonatal period, this critical process shapes gut microbiota composition and thus impacts on immune homeostasis and health in adult life.

To summarize, it is increasingly recognized that critical host immune-microbiota interactions operate during a critical time window in early life, which may have long-lasting impacts on multiple immune arms contributing to immune homeostasis and susceptibility to infectious and inflammatory diseases later in life. However, the mechanisms of these interactions are still relatively poorly defined, and the long-term impacts of subtle dysbiosis states during the neonatal period on adult immunity and risk of immune-mediated diseases merit future studies in human. More detailed insights into such modulatory effects, if present, may bear impact on understanding, prevention and treatment of immune-related disorders.

INTERACTION BETWEEN MICROBIOTA AND IMMUNE SYSTEM IN HOMEOSTASIS

Host-induced compartmentalization of intestinal microbiota

The best-studied interface for host-microbiota interactions is the intestinal mucosa. A remarkable feature of the intestinal immune system is its ability to establish immune tolerance towards an enormous and constantly changing wealth of harmless microorganisms while concomitantly preserving immune responses against pathogenic infection or commensal intrusion into the sterile body milieu. In a healthy state, the host’s immune response to the intestinal microbiota is strictly compartmentalized to the mucosal surface. A single layer of epithelium separates the intestinal lumen from underlying tissues. Many mechanisms are employed to achieve microbiota compartmentalization. A dense mucus layer separates the intestinal epithelium from resident microbes. The mucus barrier is organized around the hyperglycosylated mucin MUC2. However, MUC2 not only offers protection by static shielding, but also constrains the immunogenicity of intestinal antigens by imprinting enteric dendritic cells (DCs) towards an anti-inflammatory state. Tight junctions are a critical structure in restricting trans-epithelial permeability. Microbial signals, e.g., via the metabolite indole, promote fortification of the epithelial barrier through upregulation of tight junctions and associated cytoskeletal proteins. In addition, secretory IgA antibodies and antimicrobial peptides (AMPs) maintain the mucosal barrier function (see below). Intestinal DCs are believed to play a critical role in compartmentalizing enteric microbiota, through mechanisms involving sampling of gut bacteria for antigen presentation. Crosstalk between the innate immune system and the microbiota

Microbiota and innate immunity engage in an extensive bidirectional communication (Fig. 1). One of the phylogenetically oldest systems of innate immunity is represented by AMPs. The majority of intestinal AMPs is produced by Paneth cells, which represent specialized secretory cells of the small intestinal mucosa. Intestinal AMPs exhibit manifold interactions with the microbiota and are an essential component in shaping its configuration. Adding to the complexity of intestinal AMPs, antimicrobial secretion from pancreatic acini seems to be critical for maintenance of intestinal homeostasis, as mice featuring reduced secretion of pancreas-derived cathelicidin-related AMP secondary to lack of the potassium channel Oral1 demonstrate a dramatically increased mortality due to increased systemic microbial translocation and inflammation. Pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), were initially described to sense microbial signals during infection to elicit a protective immune response. However, ligands for PRRs are not exclusive to pathogens and are abundantly produced by commensal microbiota during healthy colonization (reviewed in). TLRs are involved in host defense against pathogens, regulate the abundance of commensal microbes and maintain tissue integrity. TLR expression in the intestinal epithelium is characterized by a high diversity in terms of spatial, cell type-specific, and temporal patterns. TLR5 is of particular importance in shaping the gut microbiota, which might be confined to a critical time window during neonatal life. Polysaccharide A (PSA) produced by the commensal Bacteroides fragilis is another well-studied example of a single molecule promoting symbiosis and host immune system education. PSA is recognized by the TLR2/TLR1 heterodimer in cooperation with Dectin-1, a C-type lectin PRR. Downstream to TLR1/TLR2 and Dectin-1 signaling, the phosphoinositide 3-kinase (PI3K) pathway is activated leading to inactivation of glycogen synthase.
kinase β (GSK3β), which in turn induces cAMP response element-binding protein (CREB)-dependent expression of anti-inflammatory genes. Moreover, Dectin-1 may regulate intestinal immunity by controlling Treg cell differentiation through modification of microbiota configuration. Additional PRRs suggested to shape the gut microbiota composition are NOD-like receptors (NLRs). Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) serves as an innate sensor assisting generation of adaptive lymphoid tissues and maintenance of intestinal homeostasis. The bacterial sensor NOD2 prevents inflammation of the small intestine by restricting the growth of the commensal *Bacteroides vulgatus*. Stimulation of NOD2 by commensal bacteria promotes gut epithelial stem cell survival and epithelial regeneration.

MyD88 is an adapter for multiple innate immune receptors that recognize microbial signals, and of the signaling pathways induced by the effector molecules interleukin-1 (IL-1) and IL-18 through their respective receptors. Mice deficient in MyD88 display an altered microbiota composition. MyD88 controls the epithelial expression of several AMPs, including RegIIIγ, which restricts the number of surface-associated gram-positive bacteria and limits activation of adaptive immunity. Moreover, MyD88 regulates T cell differentiation, promotes microbiota homeostasis through stimulation of IgA and controls the expansion of Th17 cells by restricting growth of SFB in mice.

Some NLRs assemble into multiprotein complexes abundant in many different cell types termed inflammasomes, whose pleiotropic immune functions are reviewed extensively elsewhere. Inflammasomes activate inflammatory caspases, which promote the maturation of IL-1β and IL-18, and induce a lytic type of cell death termed pyroptosis. NOα, LRR (leucine-rich repeat)- and pyrin domain-containing 6 (NLRP6) is such protein assembling...
inflammasome in the intestinal mucosa. The NLRP6 inflammasome has been linked with regulation of microbiome composition and maintenance of intestinal homeostasis.70 NLRP6 inflammasome signaling is co-modulated by microbiota-derived metabolites, which regulates epithelial IL-1β secretion and AMP expression profiles.71 Moreover, the NLRP6 inflammasome governs intestinal ‘sentinel’ goblet cell mucus secretion, which offers critical protection against pathogens.72,73 Beyond its role with cytokine signatures. However, an in-depth single-cell analysis of NLRP3- and reactive oxygen species-dependent production of the pro-inflammatory cytokine IL-1β.74 Upon intestinal injury, certain members of the microbiota such as \textit{Proteus mirabilis} stimulate monocytes to induce NLRP3-dependent IL-1β release, which elicits intestinal inflammation.75 Moreover, sensing of intact bacterial peptidoglycan and peptidoglycan fragments by the innate immune system through numerous PRRs is necessary for proper development of immune cells and other tissues (reviewed in76). Another crucial PRR interacting with the microbiota through inflammasome signaling is the absent in melanoma 2 (AIM2). The AIM2 inflammasome was described to regulate intestinal homeostasis through the IL-18/IL-22/STAT3 pathway.77 Mammalian peptidoglycan recognition proteins (PGRPs) protect the host from colitis through numerous PRRs is necessary for proper development of the innate immune system, recent research also uncovered mechanisms governing mutualism between the microbiome and the adaptive immune system (Fig. 1). One example involves B cells, crucial mediators of gut homeostasis by producing a large array of secretory IgA antibodies responsive to commensals.46 Several grams of IgA are secreted every day in the human intestines.99 Secretory IgA can be produced either in a T cell-independent or a T cell-dependent manner. IgA produced in a T cell-dependent way plays a more important role in shaping gut microbial communities.100 The relationship between intestinal IgA and microbiota is mutualistic, in that a diversified and selected IgA repertoire contributes to maintenance of a diversified and balanced microbiome, which facilitates the expansion of Foxp3+ regulatory T cells sustaining homeostatic IgA responses in a regulatory loop.101 Interestingly, intestinal secretory IgA antibodies preferentially coat colitogenic bacteria, thereby preventing perturbation of enteric homeostasis and inflammation.102 In the absence of B cells, or of IgA, intestinal epithelia upregulate epithelium-inherent immune defense mechanisms mediated by interferon-inducible response pathways, which are associated with subsequent changes in microbiome composition. Interestingly, the simultaneous repression of Gata4-related metabolic functions in this scenario results in impaired intestinal absorption and metabolic alterations.103 Recently, a new subset of subepithelial mesenchymal cells expressing the cytokine RANKL were identified to serve as intestinal M cell inducers, thereby fostering IgA production and gut microbiota diversification.104 Studies conducted during the past decade provided a more detailed picture of the crosstalk between the gut microbiome and CD4+ regulatory T cells. A subset of colonic regulatory CD4+ T cells lack differentiation in GF mice resulting from the absence of bacterial consortia capable of fermenting dietary fiber into short-chain fatty acids (SCFAs).105-107 Reactivity to intestinal bacteria seems to be a ‘healthy’ property of both intestinal and systemic human CD4+ T cells, which may support homeostasis by providing a large pool of immune cells protective against pathogens.108 Of these cells, the Th17 subset is intensely studied because of its ambiguous roles in both host protection and inflammatory disorders.109 The intestine harbors functionally distinct Th17 cell populations and their inflammatory propensity is largely determined by distinct bacterial eliciting their differentiation. Th17 cells elicited by SFB are non-inflammatory, while Th17 cells induced by \textit{Citrobacter} are a potent source of inflammatory cytokines.110 Interactions between the adaptive immune system and the microbiota In addition to the impacts of host-microbiota interactions on innate immune function, recent research also uncovered mechanisms governing mutualism between the microbiome and the adaptive immune system (Fig. 1). One example involves B cells, crucial mediators of gut homeostasis by producing a large array of secretory IgA antibodies responsive to commensals.46 Several grams of IgA are secreted every day in the human intestines.99 Secretory IgA can be produced either in a T cell-independent or a T cell-dependent manner. IgA produced in a T cell-dependent way plays a more important role in shaping gut microbial communities.100 The relationship between intestinal IgA and microbiota is mutualistic, in that a diversified and selected IgA repertoire contributes to maintenance of a diversified and balanced microbiome, which facilitates the expansion of Foxp3+ regulatory T cells sustaining homeostatic IgA responses in a regulatory loop.101 Interestingly, intestinal secretory IgA antibodies preferentially coat colitogenic bacteria, thereby preventing perturbation of enteric homeostasis and inflammation.102 In the absence of B cells, or of IgA, intestinal epithelia upregulate epithelium-inherent immune defense mechanisms mediated by interferon-inducible response pathways, which are associated with subsequent changes in microbiome composition. Interestingly, the simultaneous repression of Gata4-related metabolic functions in this scenario results in impaired intestinal absorption and metabolic alterations.103 Recently, a new subset of subepithelial mesenchymal cells expressing the cytokine RANKL were identified to serve as intestinal M cell inducers, thereby fostering IgA production and gut microbiota diversification.104 Studies conducted during the past decade provided a more detailed picture of the crosstalk between the gut microbiome and CD4+ regulatory T cells. A subset of colonic regulatory CD4+ T cells lack differentiation in GF mice resulting from the absence of bacterial consortia capable of fermenting dietary fiber into short-chain fatty acids (SCFAs).105-107 Reactivity to intestinal bacteria seems to be a ‘healthy’ property of both intestinal and systemic human CD4+ T cells, which may support homeostasis by providing a large pool of immune cells protective against pathogens.108 Of these cells, the Th17 subset is intensely studied because of its ambiguous roles in both host protection and inflammatory disorders.109 The intestine harbors functionally distinct Th17 cell populations and their inflammatory propensity is largely determined by distinct bacterial eliciting their differentiation. Th17 cells elicited by SFB are non-inflammatory, while Th17 cells induced by \textit{Citrobacter} are a potent source of inflammatory cytokines.110
While it is well established that microbiota is involved in Th17 differentiation in the intestine and the skin, oral barrier Th17 cell development seems to be largely independent from microbial colonization. Another example of microbiome regulation of adaptive T cell responses involves CD8+ (cytotoxic) T cells, whose effector functions are paramount in elimination of intracellular pathogens and cancer cells. While these cells require priming by professional antigen-presenting cells (APCs) and are amplified by CD4+ T cell signaling, antigen-activated CD8+ T cells show no transition into memory cells in GF mice, as microbiota-derived SCFAs are required to promote their memory potential. A fraction of primary bile acids secreted into the intestine escape with the commensal cell numbers in GF mice and to protect the animals from B. fragilis sphingolipid originating from cells. Tfh cells are implicated in maintenance of microbiota generation of high-affinity antibody responses and memory B cells. Tfh cells are implicated in maintenance of microbiota homeostasis as highlighted by studies showing that impairment of Tfh cells resulting from lack of expression of co-receptor programmed cell death 1 (PD-1) or ATP-gated ionotropic P2RX7 receptor can alter gut microbiota composition. The relationship between Tfh cells and the microbiota is reciprocal, as Tfh cell differentiation is impaired in GF mice and can be restored by administration of Toll-like receptor 2 (TLR2) agonists that activate T cell-intrinsic MyD88 signaling. In mice, SFB can induce Tfh cell differentiation in Peyer’s patches by limiting the access of IL-2 to CD4+ T cells, thereby amplifying the master regulator Bcl-6 of Tfh cells. The microbiota-Tfh axis may also be relevant in autoimmune diseases, as in mice SFB-induced Tfh cell differentiation can boost autoantibody production and thus exacerbate arthritis.

Additionally, recent studies began to uncover the relationships between the microbiota and tissue-resident DCs, which represent an important class of APCs shaping immune responses. DCs are able to send their dendrites outside the epithelium to directly capture bacteria. Recently, a Syk kinase-coupled signaling pathway in DCs was described to be critical for microbiota-induced production of IL-17 and IL-22 by CD4+ T cells. Moreover, a noncanonical NF-kB-inducing kinase (NIK) was recently reported to be a crucial mediator of mucosal DC function. In the same study, DC-specific NIK altered enteric IgA secretion and microbiota homeostasis, rendering mice vulnerable to enteric pathogens.

A relatively unexplored set of immune cells with crucial relationship to the commensal microbiota is represented by invariant natural killer T cells (iNKTs). The gut microbiota affects the phenotypes and functions of iNKTs in mice, with iNKTs from GF animals showing a less mature phenotype and decreased activation by antigens. Mono-colonization of neonatal GF mice with the commensal Bacteroides fragilis or exposure to a purified sphingolipid originating from B. fragilis was able to restore iNKT cell numbers in GF mice and to protect the animals from oxazolone-induced colitis.

Antibiotic-induced microbiome disturbances
Antibiotics are an indispensable treatment against infectious diseases and their introduction has dramatically changed healthcare and human life expectancy. However, evidence suggests that antibiotic use during childhood is associated with the development of a range of immune-mediated diseases, including allergies and IBD. Intake of antibiotics profoundly affects the composition and function of the gut microbiota, and may introduce long-lasting adverse effects on the host. Different immune cell subsets and functions can be altered by antibiotic-driven gut microbial dysbiosis. In rats, administration of antibiotics inhibits intestinal mucosal mast cell activation and suppresses dietary lipid uptake. Broad-spectrum antibiotic-mediated microbial perturbation and depletion of microbiota-derived SCFAs causes hyperactivation of intestinal macrophages and expansion of proinflammatory T helper cells and increases susceptibility to infection. Furthermore, antibiotic treatment permits overgrowth of enteric fungi, thereby promoting pulmonary M2 macrophage polarization, which in turn promotes allergic airway inflammation. Microbiota disruption by antibiotics results in enhanced pathogen-specific Th1 cell responses and tissue pathology in an CX3CR1+ MNP-dependent manner. Significantly, reduced RORyt+ Tregs in GF or antibiotic-treated mice promote Th2 type-associated immune responses and inflammation upon helminth infection. In humans with pre-existing immune system impairment, microbiome depletion through broad-spectrum antibiotics not only results in a diminished antibody response to seasonal influenza vaccination, but also leads to augmented circulating inflammatory signatures and altered plasma metabolite profiles. The long-term health consequences of antibiotic-induced microbiome alterations in humans merit more long-term observational studies and clinical trials.

Diet-induced microbiome alterations
Recent studies began to unravel the links between dietary microbiota modulation and host immunity. Western style diets profoundly affect gut microbiome configuration and adversely impact on host immunity. For example, a diet high in saturated fats increases the levels of taurocholic acid, a secondary bile acid, and in turn fosters the expansion of Bilophila wadsworthia. This pathobiont promotes Th1 type immune responses and increases susceptibility to colitis in IL10−/− mice. High-fat diet can also aggravate disease severity in chemically induced murine colitis by disturbing the homeostasis of intestinal DCs, possibly by reducing butyrate and retinoic acid levels. Dietary long-chain fatty acids may exacerbate autoimmunity in the central nervous system (CNS) by modulating the gut microbiome and metabolome. In mice, intake of dietary carbohydrates, certain probiotics, and emulsifiers can modulate host immunity and inflammation, in part mediated by compositional changes of the gut microbiome. In humans, individuals with higher fecal abundance of the bacterial genus Dialister and lower levels of Coriobacteriaceae family members show reduced serum levels of the pro-inflammatory cytokine IL-6 after short-term consumption of whole grains.

In addition to dietary quantity and content, the timing of dietary intake has been recently shown to affect microbiome composition and in turn immunity. Intermittent fasting ameliorates disease severity in a murine model of autoimmune encephalomyelitis and in patients with multiple sclerosis by microbiota-mediated balancing of IL-17-producing and regulatory T cells. In a murine colitis model, a fasting-mimicking diet exerted a protective effect through modulation of the gut microbiome including an increase of Lactobacillus. In contrast, mistimed dietary intake accelerates alcohol-associated colonic carcinogenesis by reducing the number of butyrate- and SCFA-producing bacteria, which causes mucosal Th17/regulatory T cell imbalance.
Of note, the impact of the microbiome on immunity in laboratory mice can be vastly divergent from that in humans, which is in part explained by differences in microbiota between mice raised in laboratory versus wild environments. Mice with a natural wild microbiota are more resilient to environmental challenges and show responses to immunotherapy that are more resemblant of humans. Therefore, it is important to study the impact of environmental exposures on the host immune system in a context of such human-like microbiota configuration, which may promote better understanding of immune system-microbiota interactions and their translation into clinical applications.

DYSREGULATION OF MICROBIOME-IMMUNITY INTERACTION IN DISEASE

Aberrant interactions between the microbiome and the host’s immune system in genetically susceptible individuals may contribute to the development of complex immune-mediated diseases (Fig. 2). Among these, the most extensively studied examples include IBD, systemic autoimmune diseases, cardiometabolic diseases and cancer. Additionally, the microbiome-immunity link has been suggested to modulate other ‘multifactorial’ diseases (e.g., neurodegenerative diseases) but requires further human studies. More importantly, the causal effect of the microbiome on immune dysregulation in most human disorders listed above remains to be proven.

Inflammatory bowel disease

IBD, mainly encompassing Crohn’s disease (CD) and ulcerative colitis, is a chronic, recurrent inflammatory disorder of the gastrointestinal tract, characterized by a growing global prevalence. Multiple lines of evidence point towards central roles of gut microbiome perturbations in the pathogenesis of IBD. These include a reduced bacterial diversity and marked shifts in abundance of certain bacterial taxa, including decreased abundance of *Bacteroides*, *Firmicutes*, Clostridia, *Lactobacillus*, *Ruminococcaceae* and increased abundance of *Gammaproteobacteria* and *Enterobacteriaceae*,149,150 coupled with altered microbiome-associated metabolite profiles.151,152 The breakdown of the tightly regulated intestinal barrier leads to translocation of bacterial symbionts into the mucosal layer, fueling aberrant host immune responses and tissue injury.153 As such, disruptions of gut barrier integrity, including the mucus layer, epithelial cell junctions, and AMP secretion are all believed to be involved in IBD pathogenesis.154 For example, mice deficient in Muc2 may develop spontaneous colitis,155 and mucus layer defects due to Muc2 mutation drive early gut dysbiosis in colitis-prone mice.156 Genome-wide association studies revealed so far more than 200 susceptibility loci for IBD, many of which encode proteins involved in innate and adaptive immune sensing and response to bacterial signals. Among these, mutation in the NOD2 gene was the first to be confirmed to be strongly associated with susceptibility to CD.157,158 NOD2 is an intracellular PRR capable of recognizing bacterial peptidoglycan-conserved motifs. NOD2 acts as a critical regulator of the intestinal commensal microbiota, by controlling the expression and secretion of AMPs (see above) and suppressing the expansion of certain proinflammatory bacterial species such as *Bacteroides vulgatus*.159 The dysregulated microbiome-immunity interaction in the context of NOD2 mutation is assumed to play important roles in CD pathogenesis.
Likewise, mutations in autophagy-related 16-like 1 (ATG16L1), another CD-associated risk allele, not only result in impaired exocytosis in Paneth cells,160 but also potentiate inflammatory responses and necrosis of intestinal epithelial cells through modulation of IL-22 signaling.61 The role of inflammasome signaling in regulating the crosstalk between the microbiome and immunity is likewise implicated in pre-clinical IBD models. For example, perturbation of the NLRP6 inflammasome pathway results in susceptibility to murine colitis through expansion of members of the Prevotellaceae family in some vivaria,70 and promotes intestinal inflammation in IL10−/− mice by enhancing colonization with Akkermansia muciniphila.162 The contribution of adaptive immune responses to the expansion of IBD-associated pathobiots, including aberrant roles of effector T cells, regulatory T cells and antibody-mediated, humoral immunity, has been reviewed extensively elsewhere.153

Notwithstanding all of these data, whether microbiome alterations represent the cause or consequence of intestinal inflammation remains unclarified to date. Some emerging evidence supports a causal role of gut dysbiosis in IBD, since transfer of disease-associated microbiota triggers CD-like inflammation in genetically susceptible GF recipient mice.163 Microbiota from IBD patients transplanted to GF mice likewise induces imbalances in intestinal Th17 and RORgt+ regulatory T cells.54 More strikingly, one single pathobiont, Mucispirillum schaedleri, was demonstrated to be sufficient to trigger a Th1 cell-driven intestinal inflammation in mice deficient in both NOD2 and CYBB.164 Similarly, ectopic colonization of oral Klebsiella spp. derived from IBD patients, induces Th1-type intestinal inflammation in IL10−/− mice.166 Furthermore, abnormal T cell and B cell adaptive immunity can be transmitted to GF mice from infant-harbored microbiome born to IBD-prone mothers.167 Increasing knowledge on molecular impacts of distinct commensals and their small-molecule products on the clinical features of IBD may enable the development of future targeted interventions.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disorder mainly involving the joints, characterized by synovial inflammation and bone cartilage destruction. The pathogenesis of this highly debilitating disease is currently unclear. Genetic (e.g., HLA-DRB1), microbiome and environmental factors have been implicated in the pathogenesis of RA. An increased abundance of Prevotella copri was reported in treatment-naive new-onset RA patients168,169 and in individuals at high risk for RA.170 Another study identified a strong link between three rare genera (Collinsella, Eggerthella and Faecalibacterium) and RA, among which Collinsella is associated with proinflammatory IL-17A production.171 In a Chinese cohort, RA patients displayed an over-representation of Lactobacillus salivarius and reduced levels of Haemophilus spp. in intestinal, dental and saliva specimens.172 Microbiome-derived metabolites, most notably SCFAs, interact with a variety of immune pathways implicated in RA.173 Spontaneous development of T cell-mediated autoimmune arthritis in IL17r−/− mice requires the activation of TLR2 and TLR4 by microbial ligands.174 Dysbiotic microbiota from IL17r−/− mice elicits a IL17 response by intestinal lymphocytes.75 Moreover, genetically susceptible mice colonized with dysbiotic microbiota from RA patients show an enhanced Th17 type response.176 Similarly, inoculation of SFB into GF mice is sufficient to induce Th17 activation and to instigate autoimmune arthritis.176 In addition to the enteric bacteria, the periodontal pathobiont Porphyromonas gingivalis can induce a TLR2- and IL-1-mediated Th17 response and thereby exacerbate autoimmune arthritis.177 Future studies are required to determine the influence of RA treatment on the microbiome and the causal role of microbiome alterations potentially modulating human RA.

Cardiometabolic disease
Chronic low-grade inflammation is considered a hallmark of metabolic disorders, including diabetes mellitus, obesity, atherosclerosis and non-alcoholic fatty liver disease (NAFLD). In metabolically highly active organs such as the liver or adipose tissue, the crosstalk between immune cells and parenchymal cells plays a critical role in the pathogenesis of metabolic diseases.178 Growing evidence shows that gut microbiome-derived metabolites can reach systemic circulation through the gut barrier and fuel metabolic inflammation.179 Various TLRs in the liver recognize bacterial ligands and trigger downstream inflammatory cascades. Activation of these TLRs can contribute to the development of NAFLD and nonalcoholic steatohepatitis (NASH), with the most extensively studied pathway being LPS-TLR4 signaling.180 In addition to TLRs, the NLRP6 and NLRP3 inflammasomes may exert protective effects against NAFLD/NASH through modulation of the gut microbiota.181 Multiple interactions between the host’s immune system and the gut microbiota were reported to be involved in type 1 diabetes (T1D). For example, GF non-obese diabetic mice lacking MyD88 signaling robustly develop T1D, while microbiol colonization of these mice attenuates the disease.56 Depletion of Akkermansia muciniphila causes systemic translocation of endotoxin-activated CCR2+ monocytes. These in turn activate innate pancreatic B1a cells, resulting in increased insulin resistance.182 Furthermore, the crosstalk between the microbiome and immunity plays a crucial role in obesity. For example, microbiome-derived tryptophan metabolites modulate white adipose tissue inflammation in obesity, mediated through the miR-181 family of microRNAs.183 Recently, the innate immune sensor NLRP12 was shown to decrease high fat diet-induced obesity in mice by preserving SCFA-producing members of the Lachnospiraceae family.184 One of the most perilous common sequelae of cardiometabolic disease is atherosclerosis and its complications. The gut microbiota-derived metabolite TMAO has been linked to atherosclerotic heart disease in both mice and humans.185 Interestingly, TMAO augments artherosclerosis by upregulating the macrophage scavenger receptors CD36 and SR-A1, and by reinforcing cholesterol accumulation in macrophages and foam cell formation.186

Cancer
Interactions between the gut microbiota and the immune system are believed to impact on cancer immune surveillance. In the context of colon cancer, NK cell killing of tumors is directly inhibited by the presence of Fusobacterium nucleatum in the tumor microenvironment. This is in part mediated by binding of the bacterium’s Fap2 protein to the human TIGIT receptor.187 Higher amounts of F. nucleatum in human colorectal cancer tissue are furthermore associated with a lower density of CD3+ T cells, a population associated with a more favorable clinical outcome.188 In remote tissues such as the liver, the intestinal commensal Clostridium species utilize bile acids as messengers to enhance the antitumoral effect of hepatic CXCRI+ NKT cells, affecting both primary and metastatic liver tumors.189 The microbiome has been recently suggested to also modulate anticancer immunotherapy responses. For example, higher abundances of the commensals Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium stimulate a more favorable T cell-mediated response to anti-PD-1 therapy in both preclinical models and patients suffering from metastasized melanoma.190,192 Another study revealed a positive correlation between fecal Akkermansia muciniphila abundance and PD-1 blockade efficacy in patients with epithelial tumors, potentially dependent on CCR9+ CXCR3+CD4+ T lymphocyte recruitment and IL-12 secretion.193 Immune responses to other anticancer treatments, including CTLA-4 blockade194 and cyclophosphamide,195 were also associated with distinct gut microbiome configurations. Unraveling the role of the gut...
After the gut microbiome, most recent research begins to explore the role of intra-tumor tissue microbiome in regulating cancer immunity. For example, intra-tumor microbiota in pancreatic adenocarcinoma (PDAC) in mice and humans promotes carcinogenesis through induction of a tolerogenic immune program, including suppressive differentiation in monocytes via selective TLRs and T cell anergy. In addition, the presence of GammaProteobacteria in murine colon cancer and human PDAC contributes to resistance against therapy with gemcitabine. Interestingly, the intra-tumor microbiome in long-term survivors of PDAC patients exhibits higher microbial diversity, which may induce potent immune infiltration and antitumor immunity. These studies indicate the potential of tumor tissue-resident microbiota as a therapeutic target, which warrants further mechanistic studies.

CROSSTALK BETWEEN MICROBIOTA AND EXTRA-INTESTINAL ORGAN IMMUNITY

Although most studies in the field to date focused on the interplay of microbiota and mucosal immunity in the intestine, interactions of both the gut microbiota and extra-intestinal microbiota communities with extra-intestinal organ immunity have been gaining increased attention (Fig. 3). Emerging evidence highlights that the local microbiomes of extra-intestinal mucosal surfaces provide niche-specific functions, including modulation of organ-specific immune responses.

Skin

Alike the intestine, the skin (the body's largest organ) represents a dynamic and complex ecosystem, harboring and interacting with a plethora of locally-entrenched commensal microorganisms. High-throughput sequencing-based studies revealed a diversity of site-specific but temporally stable microbial communities in the healthy human skin featuring inter-individual variability. The skin microbiota induces protective and regulatory immunity that contributes to host-microbe mutualism. Skin-resident commensals not only effectively control the equilibrium of T effector and regulatory T cells in the tissue, dependent of IL-1 and MyD88 signaling, but also regulate components of the cutaneous complement system as well as the expression of various cutaneous AMPs. Certain aspects of the regulation of cutaneous innate and adaptive immunity by the skin microbiome feature strain specificity. One of the most highly abundant skin commensals, *Propionibacterium acnes*, can specifically induce homing of CD8+ T cells primed by CD103+ DCs into the epidermis and can promote skin antimicrobial responses in an IL17-dependent manner. Furthermore, the *S. epidermidis*-specific CD8+ T cell response is restricted to non-classical MHC class I molecules, which also promote tissue repair. During skin injury, TLR2 recognition of *S. epidermidis* cell wall component lipoteichoic acid suppresses skin inflammation and inhibits release of inflammatory cytokines, thereby promoting wound healing. It should be noted that colonization with skin commensal during the neonatal period is crucial for establishing immune tolerance through massive accumulation of active T regulatory cells in the neonatal skin, collaboratively driven by hair follicle morphogenesis. Moreover, epidermal keratinocytes also actively participate in cutaneous immune defenses. Microbial metabolites, such as SCFAs produced by the commensal skin bacterium *Propionibacterium acnes*, can modulate keratinocyte inflammatory activity through inhibition of the keratinocytes' histone deacetylases. Furthermore, cutaneous commensals such as coagulase-negative *Staphylococcus* strains produce anti-microbials that protect from pathobionts such as *Staphylococcus aureus*.

Skin dysbiosis has been associated with different inflammatory skin disorders, including atopic dermatitis and psoriasis.
Whether skin dysbiosis is the cause or consequence of these disorders is not yet clarified, but it has been proposed that locally amplified immune responses to particular skin microbes, or increased microbial load, in the setting of impaired skin barrier and genetic predisposition, might contribute to pathology. For example, skin colonization with *Staphylococcus aureus* promotes skin allergy in a mouse model of atopic dermatitis through *δ*-Toxin-induced mast cell activation. Furthermore, epidermal JunB is critical for immune-microbiota interactions, as mice lacking JunB expression in skin epithelial cells are characterized by augmented Th2 and Th17 type immune responses, accompanied by increased *S. aureus* colonization. However, many open questions remain to be explored, including the molecular basis of cutaneous microbiota-immune interactions and mechanisms by which the cutaneous immune system discriminates between skin commensals and pathogens.

Lung

Emerging evidence highlights an important crosstalk between the gut microbiome and the lung (‘gut-lung axis’). Alterations in the gut microbiome or microbiome-derived metabolites may impact on lung immunity in the context of pulmonary diseases. Gut commensals regulate antiviral immunity at the respiratory mucosa through inflammasome activation upon influenza A virus infection. Accordingly, GF mice show an impaired pulmonary pathogen clearance. Microbiome-derived SCFAs promote bone marrow hematopoiesis, and the primed myeloid cells subsequently migrate to the lung, shaping the lung’s immunological landscape and conferring protection against airway inflammation. Desaminotyrosine, a product derived from the gut commensal *Clostridium orbiscindens*, exerts distal effects on the lung to protect against influenza through modulation of type I IFN signaling. Additionally, recent evidence points towards a potential of a locally entrenched lung microbiota possibly impacting pulmonary immunity. In mice, the rapid formation of an airway microbiome within the first 2 postnatal weeks is critical for immune tolerance to inhaled allergens through PD-L1-related mechanisms. The human microbiome in the lower respiratory tract forms within the first 2 postnatal months, alongside lung immune maturation. Alterations of the lung microbiota has been implicated in exacerbation of chronic pulmonary diseases, including chronic obstructive pulmonary disease, asthma and cystic fibrosis. Notably, exposure to different lung microbes is associated with different cellular immune responses. For example, enrichment of *Pseudomonas* and *Lactobacillus* in mouse models of chronic lung inflammation, or pneumotype SPT derived from a diseased human bronchoalveolar system, is related to an enhanced Th17 type response. Pathobionts such as members of *Proteobacteria* induce severe TLR2-independent airway inflammation and lung immunopathology. More recent evidence suggests that certain lung commensals may instigate the development of pulmonary adenocarcinoma by activating *γδ T* cells that produce IL17. This highlights the putative role of a lung microbiome-immunity crosstalk in lung cancer. However, the study of the lung microbiome and the interplay between commensal microbial communities and pulmonary immunity is only in its infancy, with many more mechanistic insights expected to be revealed in future studies.

Liver

The liver features direct anatomical connection to the gastrointestinal tract via the portal venous circulation and bile duct system, thereby being constantly exposed to bacterial products of gut microbiome origin (‘gut-liver axis’). Intestinal commensals and their products were repeatedly reported to translocate from the intestinal lumen to the liver in certain contexts, in which they may impact hepatic immune responses. For example, microbial-associated molecular patterns (MAMPs) from gut bacteria can directly influence the number, function and maturation of hepatic Kupffer cells (KCs), a critical component of the hepatic innate immune system. Intestinal pathogens may exacerbate immunological hepatic injury by activating DCs and NKT cells in the liver. Similarly, glycolipid antigen-containing probiotics were reported to stimulate hepatic NKT cells in a strain- and dose-dependent manner. Hepatic stellate cells, the main fibrosis-inducing cell line in the liver, can also be directly stimulated by bacterial lipopolysaccharide (LPS), mainly through induction of TLR4 signaling. This results in an upregulation of multiple chemokines and adhesion molecules. Innate immune sensing of gut-derived microbial products by different TLRs, including TLR4, TLR9, TLR5, and their downstream impacts on liver inflammation in the context of NALFD/NASH have been recently reviewed elsewhere. Liver inflammation impacted by gut microbiota was also described in primary sclerosing cholangitis (PSC), a chronic inflammatory and cholestatic liver disease. The enteric pathobiont *Klebsiella pneumoniae* cultured from PSC patient specimens was demonstrated to damage the intestinal epithelial barrier, thereby inducing bacterial translocation that promotes Th17 cell responses in the murine liver. Interestingly, a recent study showed alterations of the bile microbiota in PSC patients, characterized by reduced biodiversity, higher abundance of the pathobiont *Enterococcus faecalis*, and increased levels of the noxious secondary bile acid tauroliothocholic acid. However, it remains unclear whether these alterations are causally involved in PSC or are merely a consequence of biliary disease. Recent studies also demonstrated carcinogenic effects of microbiome-derived small molecules via regulation of immune responses in liver malignancy, including secondary bile acid mediating upregulation of hepatic NKT cells. Deoxycholic acid modulating the inflammatory secretome, lipoteichoic acid regulating prostaglandin E2 expression and LPS signaling through TLR4.

Central nervous system

The development of a healthy brain and balanced neuroimmunity relies on integration of numerous endogenous and environmental cues. Among these, molecular signals originating from the gut microbiome may play prominent roles in modulating brain cell function. Microglia are among the primary innate immune cells in the CNS, and are instrumental in CNS immune defense and contribute to brain development and homeostasis. The microbiota contributes to microglia homeostasis, potentially mediated by signaling through SCFAs. GF mice display marked defects in microglia structure and function and hence feature impaired CNS innate immune responses. Interestingly, the maternal microbiome impacts on microglial development during prenatal stages, and microglial perturbations associated with the absence of microbiota manifest in a sex-dimorphic manner. Both microbial dysbiosis and microglial dysfunction have been described in several neurological diseases, including behavioral, inflammatory and neurodegenerative disorders. Whether microbiota-microglia interactions contribute to the pathogenesis of these disorders merits further studies. Moreover, diet-derived SCFAs were reported to promote regulatory T cells to counter-regulate autoimmunity in the CNS, and the intestinal microbiota modulates meningeal IL-17+ *γδ T* cells, which impact on the pathogenesis of ischemic brain injury. Despite tremendous recent advances, the study of the interplay between the microbiome and neuro-immunity in health and disease is still in its infancy. Some studies shed light on possible mechanisms driving such putative ‘gut-brain axis’ in the context of neuro-immunity. For example, depletion of gut commensal bacteria by antibiotic treatment dampens the progression of experimental autoimmune encephalomyelitis.
mice, which is suggested to be mediated by induction of IL-10-producing regulatory T cells. Offsprings of pregnant female mice that harbor certain gut bacteria with a propensity to induce T helper 17 response are at increased risk of developing neurodevelopmental disorders. Interestingly in a murine maternal immune activation model, IL-17a-mediated inflammatory responses were shown to exert beneficial roles in improving social behaviors in offsprings of adult mice. Potential microbiota involvement in these mechanisms merits further studies. Continued research efforts in this direction may hold great therapeutic promise in uncovering new regulatory pathways impacting a variety of inflammatory, developmental and degenerative neurological diseases.

Intra-organ low-biomass microbiomes

There is growing recent interest in utilizing next-genera-
tion sequencing to characterize sparsely populated low-biomass microbiomes in seemingly ‘sterile’ organs, such as the skin, lungs, reproductive organs and bile ducts. However, caution is required in interpreting such findings, as many studies that attempt to investigate low-biomass microbiome samples are challenged by high false positive signals resulting from contamination and sequencing-related challenges and artefacts. Contaminating microbial DNA may originate from multiple environmental sources, such as laboratory extraction, amplification and library preparation kits. Notably, the notion of the existence of a placental microbiome and its link to reproductive health was recently challenged by a thorough comparison of results using different kits, blank controls and complementary approaches of microbial detection not exclusively relying on sequencing. In order to avoid fallacious conclusions, strategies to control contamination must be considered when working with low microbial biomass tissues, including experimental and computational measures. Although promising, these strategies largely still await proof that signals uncovered from low-biomass microbiomes reliably translate into verifiable mechanistic biological insights.

CHALLENGES AND PITFALLS IN IMMUNE-MICROBIOME RESEARCH

Recent research has greatly enhanced our understandings of the intimate but complicated crosstalk between the microbiome and the immune system. Nevertheless, many unknowns and challenges remain, in disentangling microbiome-immunity interactions in homeostasis and disease. Exploring the roles of the commensal microbiome in impacting immunity in health and in disease requires more mechanistic studies. Indeed, current evidence from animal models indicates a bidirectional relationship to exist between microbiome perturbation and immune dysregulation. As such, distinct microbiota and metabolites drive immune activation, and chronic inflammation conversely may shape the dysbiotic configuration and functions of microbial communities. However, a direct causal relationship between the microbiome and immunity before the onset or during early stages of disease has not been established in most medical conditions. Moreover, the role of other previously underappreciated microorganisms, including viruses, fungi, parasites and their impact on the host immunity, emerges as an important but challenging subject to be explored in future studies. As an example, while recent research begins to uncover the role of fungi and viruses in IBD pathogenesis, the interplay between the mycobacteria, virome and microbiome adds a layer of complexity in mining their impacts on innate and adaptive immune responses. Furthermore, many diseases of unknown etiology, including IBD, autoimmune arthritis and cancer, are influenced by both genetic and environmental factors (e.g., diet, smoking, etc.). It is imperative to investigate how the microbiome and the immune system interact in a context of environmental triggers and host genetics. Integration of multi-omics data sets, including metagenomics, single-cell transcriptomics, epigenomics, proteomics and metabolomics, will aid in elucidating how the gut microbiome and the immune system are cross-regulated in these differing and complex contexts. Importantly in all of these efforts, the microbiome research community massively uses laboratory mice that harbor a divergent microbiota from ‘wild’ animals and humans, thereby featuring a limited translational potential and reproducibility as compared to ‘real-life’ settings. The newly created ‘wilding mice’ with low genetic variability but a highly natural and resilient microbiota, may enable better mechanistic dissection of host-microbiome interactions and provide a valuable preclinical tool to phenocopy human immune responses. Indeed, a recent study has shown that the gut microbiota in wild mice can better recapitulate the natural phenotypes in humans, as laboratory mice receiving wild microbiota exhibit less susceptibility to influenza virus infection and colitis-induced tumorigenesis, which is associated with less infiltration of immune cells and enhanced anti-inflammatory responses. Future studies should consider incorporating similar approaches to better resemble natural microbiome-immune interplay in order to increase the translational potential of such studies.

In addition, many studies focusing on microbiome-immunity interaction have utilized 16S rRNA sequencing to characterize the microbiome, but this modality is limited by its genus-level and purely compositional resolution. Given that strain level resolution and functional insights are better served by shotgun metagenomic sequencing, the field is expected to increasingly rely on this more sophisticated methodology (in addition to metatranscriptomics, metabolomics, metaproteomics and culturomics) in decoding immune-microbiota interactions. Finally, the microbiome configuration and immune responses are both increasingly appreciated to be highly variable among human individuals, with more variances typically explained by inter-individual variation than by disease state. This inherent inter-individual variability and associated complexity constitutes a major experimental challenge but also presents an opportunity for microbiome research by enabling utilization of artificial intelligence and machine learning in decoding individualized patterns in the microbiome impacting on human health. As such, it will be intriguing to predict the ‘personalized’ host immune responses based on gut microbiome profiles, which will ultimately facilitate the development of personalized microbiome-targeted treatments for immunological diseases.

PERSPECTIVES

A massive effort during the past decade in studying microbiome-immune interactions has led to better understanding of their molecular basis, while pointing to the importance of these interactions in impacting a variety of human immune-related diseases. Such insights are already spurring the development of microbiome-targeted therapeutic strategies in immune-mediated diseases. For example, in an aim to restore a healthy microbiome configuration in patients suffering from dysbiosis linked to immune-mediated disease, fecal microbiome transplantation (FMT), which has so far been widely used in Clostridium difficile infections, is considered also as potential treatment in this clinical context. However, there is still no general consensus on which features constitute a ‘healthy’ microbiome. The efficacy of FMT in diseases such as IBD, is therefore still under evaluation and many challenges remain to be overcome, including optimization of fecal processing and patient safety. Given that the prophylactic and therapeutic efficacy of traditional individual probiotics in promoting human health is limited, the use of ‘next-generation probiotics’, or rationally defined microbial consortia, potentially
may provide a promising alternative. In addition to modalities aimed at replacing an entire microbiome, new techniques are aimed at editing the microbiome in a more precise way. For example, selective and precise depletion of certain pathobionts by bacteriophage therapy is being actively pursued. Diet-based alteration in nutrient availability may constitute another feasible microbiome-modulating approach, given the strong influence of diet on gut microbiome composition and function. It may be intriguing to determine the efficacy of personalized diets, selective diets or manipulation of dietary timing in treating immunological disease, and to investigate how these diets influence host immune responses. Additionally, the large wealth of microbiome-derived metabolites found in high concentration throughout the gut and in the systemic circulation may offer an opportunity to modulate these potentially bioactive molecules (also called ‘postbiotics’). Their supplementation or signaling blockade in defined immune contexts may offer new avenues of microbiome-directed treatments. Chemical genetic screening of gut microbiome metabolites might facilitate identification of bioactive metabolites that are important for host physiology or are implicated in immune-mediated diseases. Collectively, development of these microbiome-based therapies necessitates an enhanced understanding of the complex and intricate interactions between the microbiome and immunity. A successful translation of microbiome-based treatments into clinical practice requires standardized, stringent and unbiased preclinical and clinical intervention studies.

ACKNOWLEDGEMENTS

We thank the members of the Elinav lab for discussions and apologize for authors whose work was not cited because of space constraints. D.Z. is the recipient of the European Castron’s and Colitis Organization (ECCO) Fellowship, and is supported by the Ke Lin Program of the First Affiliated Hospital, Sun Yat-sen University. T.L. is funded as postdoctoral fellow by the German Research Foundation (DFG, 420945833). It is the incumbent of the Sir Marc and Lady Tania Feldmann Professorial Chair, a senior fellow at the Canadian Institute of Advanced Research (CIFAR) and an international scholar at the Bill & Melinda Gates Foundation and the Howard Hughes Medical Institute (HHMI).

AUTHOR CONTRIBUTIONS

All authors researched data for the article, made substantial contribution to discussion of content, and wrote, reviewed and edited the manuscript before submission.

ADDITIONAL INFORMATION

Competing interests: E.E. is a salaried scientific consultant for DayTwo and BiomX. D.Z. and T.L. have nothing to declare.

REFERENCES

1. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).
2. Integrative HMP (IHPM) Research Network Consortium. The integrative human microbiome project. Nature 569, 641–648 (2019).
3. Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).
4. Lynch, J. B. & Hsiao, E. Y. Microbiomes as sources of emergent host phenotypes. Science 365, 1405–1409 (2019).
5. Dethlefsen, L., McFall-Ngai, M. & Relman, D. A. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449, 811–818 (2007).
6. Macpherson, A. J., Geuken, M. B. & McCoy, K. D. Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115, 153–162 (2005).
7. Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14, 668–675 (2013).
8. Zhang, M. et al. Interactions between intestinal microbiota and host immune response in inflammatory bowel disease. Front. Immunol. 8, 942 (2017).
9. Valitutti, F., Cucchiara, S. & Fasano, A. Celiac disease and the microbiome. Nutrients 11, 2403 (2019).
10. Maeda, Y. & Takeda, K. Host-microbiota interactions in rheumatoid arthritis. Exp. Mol. Med. 51, 150 (2019).
11. Bellizario, J. E., Faithjuch, J. & Garay-Malpartida, M. Gut microbiome dysbiosis and immunometabolism: New frontiers for treatment of metabolic diseases. Mediators Inflamm. 2018, 2037838 (2018).
12. Main, B. S. & Minter, M. R. Microbial immuno-communication in neurodegenerative diseases. Front. Neurosci. 11, 151 (2017).
13. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A. & Wargo, J. A. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33, 570–580 (2018).
14. Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489, 231–241 (2012).
15. Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).
16. Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
17. Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).
18. Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).
19. Koniegi, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. USA 108(Suppl 1), 4578–4585 (2011).
20. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
21. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).
22. Zhang, X., Zhivaki, D. & Lo-Man, R. Unique aspects of the perinatal immune system. Nat. Rev. Immunol. 17, 495–507 (2017).
23. Bhatta, Z. A. & Black, R. E. Global maternal, newborn, and child health - So near and yet so far. N. Engl. J. Med. 369, 2226–2235 (2013).
24. Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 254–264 (2011).
25. Wang, J. et al. Dysbiosis of maternal and neonatal microbiota associated with gestational diabetes mellitus. Gut 67, 1614–1625 (2018).
26. Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).
27. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).
28. Caballerro-Flores, G. et al. Maternal immunization confers protection to the offspring against an attacking and effacing pathway through delivery of IgG in breast milk. Cell Host Microbe 25, 313–323 (2019).
29. Zheng, W. et al. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature 577, 543–548 (2020).
30. Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).
31. Umesaki, Y., Setoyama, H., Matsumoto, S. & Okada, Y. Expansion of alpha beta T-cell receptor-bearing intestinal intraepithelial lymphocytes after microbial colonization in germ-free mice and its independence from thymus. Immunology 79, 32–37 (1993).
32. Hafelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).
33. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).
34. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).
35. Tan, T. G. et al. Identifying species of symbiotic bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc. Natl. Acad. Sci. USA 113, E8141–E8150 (2016).
36. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015).
37. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).
38. Wiesemann, D. R. et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501, 112–115 (2013).
39. Cahenzli, J., Koller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgA levels. Cell Host Microbe 14, 559–570 (2013).
40. Fulde, M. et al. Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 560, 489–493 (2018).
Nigro, G., Rossi, R., Commere, P. H., Jay, P. & Sansonetti, P. J. The cytosolic

Shan, M. et al. Mucus enhances gut homeostasis and oral tolerance by deli-

Belkaid, Y. & Naik, S. Compartmentalized and systemic control of tissue immu-

Mowat, A. M. To respond or not to respond - a personal perspective of intestinal

Bansal, T., Alaniz, R. C., Wood, T. K. & Jayaraman, A. The bacterial signal indole

Price, A. E. et al. A map of Toll-like receptor expression in the intestinal epi-

Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice

Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor

Wen, L. et al. Innate immunity and intestinal microbiota in the development of

Carvalho, F. A. et al. Transient inability to manage proteobacteria promotes chronic gut inflammation in TLR5-deficient mice. Cell Host Microbe 12, 139–152 (2012).

Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012).

Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

Lee, Y. K. et al. The protective role of Bacteroides fragilis in a murine model of colitis-associated colorectal cancer. mSphere 3, e00587–18 (2018).

Ramakrishna, C. et al. Bacteroides fragilis polysaccharide A induces IL-10 secreting B and T cells that prevent viral encephalitis. Nat. Commun. 10, 2153 (2019).

Erulk-Hasdemir, D. et al. Symbiotes exploit complex signaling to educate the immune system. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1915978116 (2019).

Brown, G. D. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43 (2006).

Tang, C. et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

Bousra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41, 311–324 (2014).

Nigro, G., Rossi, R., Commere, P. H., Jay, P. & Sansonetti, P. J. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15, 792–798 (2014).

Janeway, C. A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

Vaishnava, S. et al. The antibacterial lectin Regllgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

Wang, S. et al. MyD88 adaptor-dependent microbial sensing by regulatory T cells promotes mucosal tolerance and enforces commensalism. Immunity 43, 289–303 (2015).

Broz, P. & Dixit, V. M. Inflammasomes: Mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science 331, 334–337 (2011).

Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

Hegazy, A. N. et al. Circulating and tissue-resident CD4+ T cells with reactivity to intestinal microbiota are abundant in healthy individuals and function is altered during inflammation. Gastroenterology 153, 1320–1337 (2017).

Mosspec, P. & Kolls, J. K. Targeting IL-17 and Th17 cells in chronic inflammation. Nat. Rev. Drug Discov. 11, 763–776 (2012).

Bedoui, S., Heath, W. R. & Mueller, S. N. CD4(+) T-cell immunity by perturbing macrophage homeostasis. Immunity 49, 151–163 (2018).

Marto, J. A. et al. Gut microbiota-derived short-chain fatty acids promote the homeostatic Th17 cell responses at the oral barrier. Immunity 41, 463–466 (2019).

Vojdani, A. A potential link between environmental triggers and autoimmunity. Autoimmun. Rev. 10, 51–56 (2011).

Wingender, G. et al. Neutrophilic granulocytes modulate invariant NKT cell function in mice and humans. J. Exp. Med. 215, 2704–2719 (2018).

Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

Martinez, I. et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 7, 269–280 (2013).

Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235 (2018).

Rangan, P. et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep. 26, 2704–2719 (2019).

Biheshari, F. et al. Abnormal eating patterns cause circadian disruption and promote alcohol-associated colonic carcinogenesis. Cell Mol. Gastroenterol. Hepatol. 9, 219–237 (2020).

Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

Kostic, A. D. et al. Interactions between the microbiome and the host in inflammatory bowel disease. Cell 178, 1322–1338 (2019).

Saito, H. et al. Antibiotics suppress activation of intestinal mucosal mast cells and reduce dietary lipid absorption in Sprague-Dawley rats. Gastroenterology 151, 923–932 (2016).

Scott, N. A. et al. Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Sci. Transl. Med. 10, eaao4755 (2018).

Kim, Y. G. et al. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15, 95–102 (2014).

Kawamoto, S. et al. Critical Role for the microbiota in CX3CR1(+/-) intestinal mono-nuclear phagocyte regulation of intestinal T cell responses. Immunity 49, 151–163 (2018).

Ohmacht, C. et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science 349, 989–993 (2015).

Hagan, T. et al. Antibiotics-driven gut microbiome perturbation alters immunity to vaccines in humans. Cell 178, 1333–1348 (2019).

Christ, A., Lauterbach, M. & Latz, E. Western diet and the immune system: An inflammatory connection. Immunity 51, 794–811 (2019).

Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in NOD−/− mice. Nature 487, 104–108 (2012).

Cheng, L. et al. High-fat diet exacerbates dextran sulfate sodium induced colitis through disturbing mucosal dendritic cell homeostasis. Int. Immunopharmacol. 40, 1–10 (2016).

Haghioka, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

He, B. et al. Resolving microbiota by Lactobacillus reuteri inhibits T reg deficiency-induced autoimmunity via adenosine A2A receptors. J. Exp. Med. 214, 107–123 (2017).

Rodriguez-Palacios, A. et al. The artificial sweetener splenda promotes gut Proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm. Bowel Dis. 24, 1005–1020 (2018).

Vennios, E., Merlin, D., Gewirtz, A. T. & Chassaing, B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res. 77, 27–40 (2017).

Martinez, I. et al. Gut microbiome composition is linked to whole grain–induced immunological improvements. ISME J. 7, 269–280 (2013).

Cignarella, F. et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 27, 1222–1235 (2018).

Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

Govers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

de Souza, H. S. & Fischl, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 12, 720–727 (2015).

Kostic, A. D., Xavier, R. J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489–1499 (2014).

Govers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).

Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).

Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

Ismail, M. et al. A specific mutation in Mu2c2deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 151, 117–129 (2006).

Liso, M. et al. A specific mutation in Mu2c2deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 151, 117–129 (2006).

Liso, M. et al. A specific mutation in Mu2c2deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 151, 117–129 (2006).

Liso, M. et al. A specific mutation in Mu2c2deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 151, 117–129 (2006).

Liso, M. et al. A specific mutation in Mu2c2deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 151, 117–129 (2006).
Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammapelta T cells. Cell 176, 998–1013 (2019).

Corbitt, N. et al. Gut bacteria drive Kupffer cell expansion via MAMP-mediated ICAM-1 induction on sinusoidal endothelium and influence preservation-reperfusion injury after orthotopic liver transplantation. Am. J. Pathol. 182, 180–191 (2013).

Chen, J. et al. Natural killer T cells play a necessary role in modulating of immune-mediated liver injury by gut microbiota. Sci. Rep. 4, 7259 (2014).

Liang, S. Webb, T. & Li, Z. Probiotic antigens stimulate hepatic natural killer T cells. Immunology 141, 203–210 (2014).

Paik, Y. H. et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37, 1043–1055 (2003).

Nakamoto, N. et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nature Microbiol. 4, 492–503 (2019).

Liu, W. et al. Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 69, 665–672 (2020).

Yoshimoto, S. et al. Obesity-induced gut microbial metabolites promote liver cancer through senescence secretome. Nature 499, 97–101 (2013).

Loo, T. M. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov. 7, 522–538 (2017).

Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 913–932 (2016).

Butovsky, O. & Weiner, H. L. Microglial signatures and their role in health and disease. Nat. Rev. Neurosci. 19, 622–635 (2018).

Emry, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).

Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670 (2016).

Thion, M. S. et al. Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172, 500–516 (2018).

Abdel-Haq, R., Schlachetzki, J. C. M., Glass, C. K. & Mazmanian, S. K. Microbiome-microglia connections via the gut-brain axis. J. Exp. Med. 216, 41–59 (2019).

Benakis, C. et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammapelta T cells. Nat. Med. 22, 516–523 (2016).

Ochoa-Reparaz, J. et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J. Immunol. 183, 6041–6050 (2009).

Kim, S. et al. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature 549, 528–532 (2017).

Reed, M. D. et al. IL-17a promotes sociability in mouse models of neurodevelomental disorders. Nature 577, 249–253 (2020).

Yang, D. et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity 50, 692–706 (2019).

O’Callaghan, J. L. et al. Re-assessing microbiomes in the low-biomass reproductive niche. BJOG 127, 147–158 (2020).

Munich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218–17 (2018).

Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).

Kupperman, A. A. et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BioRxiv 12, 159–169 (2020).

Krastens, L. et al. Controlling for contaminants in low-biomass rRNA gene sequencing experiments. mSystems 4, e00290–19 (2019).

Burnham, P. et al. Separating the signal from the noise in metagenomic cell-free DNA sequencing. Microbiome 8, 18 (2020).

Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

Limon, J. et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe 25, 377–388 (2019).

Sokol, H. et al. Fungal microbiota dysbiosis in IBD. Gut 66, 1039–1048 (2017).

Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).

Zuo, T. et al. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).

Liu, T. C. & Stappenbeck, T. S. Genetics and pathogenesis of inflammatory bowel disease. Annu. Rev. Pathol. 11, 127–148 (2016).

Rosshart, S. P. et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171, 1015–1028 (2017).

Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).

Zhu, W. et al. Precision editing of the gut microbiota ameliorates colitis. Nature 553, 208–211 (2018).

Van Belleghem, J. D., Dabrowska, K., Vanechouette, M., Barr, J. R. & Bollyky, P. L. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 11, E10 (2018).

Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

Levy, M., Thaiss, C. A. & Elinav, E. Metabolites: messengers between the microbiota and the immune system. Genes Dev. 30, 1589–1597 (2016).

Chen, H. et al. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 177, 1217–1231 (2019).