FDA approves Ruxolitinib (Opzelura) for Vitiligo Therapy: A breakthrough in the field of dermatology

Ayesha Sheikh, Warisha Rafique, Rabia Owais, Farheen Malik, Eman Ali *

Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan

ARTICLE INFO

Keywords:
FDA-Approved
Ruxolitinib (Opzelura)
Vitiligo

ABSTRACT

The Food and Drug Administration (FDA) has authorized Ruxolitinib (Opzelura), as first at-home treatment for non-segmental vitiligo, an autoimmune condition that causes spots and patches of paler skin. Previously, it was used to treat atopic dermatitis, myelofibrosis, essential thrombocythemia, and polycythemia vera. It functions by lowering an individual’s enhanced immune response, gradually promoting the development of new, healthy skin cells, and ultimately reintroducing pigment to the afflicted area. Using this topical lotion twice daily can not only produce even skin tones but also boost patients’ self-esteem because vitiligo can be physically and psychologically upsetting. It is comparatively more efficacious and has a better safety profile than the oral forms of this medicine, although adverse effects such as acne, redness, and itching at the application site, inflammation of the throat and nasal passages, headaches and fever have been observed, necessitating the need for observational studies and randomized controlled trials to demonstrate its efficacy and safety.

On July 18, the US Food and Drug Administration (FDA) based on clinical trials approved topical Ruxolitinib (Opzelura) 1.5% in patients 12 years of age or older for the treatment of non-segmental vitiligo [1]. Vitiligo is a chronic autoimmune condition that causes white macules of the skin due to an acquired lack of functional melanocytes with highly obvious, disfiguring lesions [2]. It affects 0.5–2% of the world population, with prevalence varying geographically. India (8.8%) and Mexico have the highest recorded incidences (2.6–4%) [3]. It is a complex disorder with both inherited and environmental factors that impact all skin types and affects both men and women equally. It may appear ill-defined and hypo-pigmented at first or during the disease’s rapid spread. The lesions may itch and are prone to sunburn [3,4]. It can occur everywhere on the body, particularly on the face (most common), hands, genital and periorificial areas [5].

There are numerous theories as to how melanocytes are destroyed in vitiligo. The primary cause could involve the release and accumulation of reactive oxygen species (ROS) from melanocytes in response to oxidative stress [2]. Studies revealed that patient’s skin exhibits abnormal activation of innate immune cells, which may locally produce cytokines that attract and activate cytotoxic auto-reactive T-cells that are directed towards specific antigens such melanoma antigen recognized by T-cells (MART1), tyrosinase, gp100 and tyrosinase-related proteins 1 and 2 in the blood and skin, subsequently killing the melanocytes [6,7]. Among the various cytokines produced by CD8+ T-lymphocytes from lesions are interferon-y (IFN-y) and tumor necrosis factor. IFN-y is required for disease progression and boosts the production of skin-reactive CD8+ T-lymphocytes [8]. The JAK1 and JAK2 kinases are recruited by the IFN-γ-bound receptor complex, which then phosphorylates STAT and translocates it to the nucleus, where it activates IFN-γ-inducible genes such as T cell chemokine receptor (CXCR3) and its many ligands CXC chemokine ligand 9 (CXCL9), CXCL10, and CXCL11 to be significantly expressed in the depigmented skin lesions [9,10]. Latest studies implicated that keratinocytes are also crucial for T-cell recruitment since they also produce cytokines [11]. Some have proposed the “neural hypothesis”, which contends that the nervous system contributes to the pathophysiology of the condition [12]. It is diagnosed clinically using a Wood’s lamp, a handheld ultraviolet (UV) irradiation equipment releasing ultraviolet A (UVA) photons [13]. Common conditions with comparable symptoms include tinea versicolor, nevus depigmentosus, and idiopathic guttate hypomelanosis. Histopathology can assist in confirming a diagnosis by demonstrating the absence of the melanocytes with a little infiltration of inflammatory cells [3]. It can be physically disfiguring, psychologically uncomfortable, and socially stigmatizing due to conspicuous spots, having a considerable detrimental influence on the sufferer’s life. Psychological research on patients’ conditions also revealed thoughts of deformity, stress,

* Corresponding author. Department of Internal Medicine, Dow University of Health Sciences, Baba-e-Urdu Road, Saddar, Karachi, Pakistan.
E-mail address: Eman.Ali21@dmc.duhs.edu.pk (E. Ali).

https://doi.org/10.1016/j.amsu.2022.104499
Received 18 August 2022; Accepted 19 August 2022
Available online 28 August 2022
2049-0801/© 2022 The Authors. Published by Elsevier Ltd on behalf of LJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
depression, low self-esteem, sleeping and sexual problems [14]. Treating it is one of the most challenging dermatological problems. Combining phototherapy, topical and systemic immunosuppressants, and surgical techniques may aid to some degree to stabilize depigmented regions, encourage repigmentation and delay the course of the illness [2]. Although phototherapy lessens autoimmune melanocyte destruction, acute side effects such as itching, erythema, and xerosis may occur [15]. A few JAK inhibitors with some therapeutic potential include tofacitinib, baricitinib, rritelcitinib, and cerdulatinib; however, no authorized clinical trials have yet been conducted to examine their usage. To nib, baricitinib, ritelcitinib, and cerdulatinib; however, no authorized

Author contribution

Ayesha Sheikh: conception of the study, drafting of the work, final approval and agreeing to the accuracy of the work. Warisha Rafique: conception of the study, drafting of the work, final approval and agreeing to the accuracy of the work. Rabia Owais: conception of the study, drafting of the work, final approval and agreeing to the accuracy of the work. Farheen Malik: conception of the study, drafting of the work, final approval and agreeing to the accuracy of the work. Eman Ali: conception of the study, drafting of the work, final approval and agreeing to the accuracy of the work.

Registration of research studies

1 Name of the registry: Not applicable.
2 Unique Identifying number or registration ID: Not applicable.
3 Hyperlink to your specific registration (must be publicly accessible and will be checked): Not applicable.

Guarantor

Ayesha Sheikh, Warisha Rafique, Rabia Owais, Farheen Malik, Eman Ali.

Declaration of competing interest

The authors declare that there is no conflict of interest.

References

[1] B. Upham, FDA Approves New Vitiligo Treatment, Ruxolitinib (Opzelura): Everyday Health, 2022 [Available from: https://www.everydayhealth.com/vitiligo/fda-approves-new-vitiligo-treatment-ruxolitinib-opzelura/.
[2] C. Bergqvist, K. Ezzedine, Vitiligo: a review, Dermatology 236 (6) (2020) 571–592.
[3] A. Alikhan, L.M. Felsten, M. Daly, V. Petronic-Rosic, Vitiligo: a comprehensive overview Part I. Introduction, epidemiology, quality of life, diagnosis, differential diagnosis, associations, histopathology, etiology, and work-up, J. Am. Acad. Dermatol. 65 (3) (2011) 473–491.
[4] C. Bergqvist, K. Ezzedine, Vitiligo: a focus on pathogenesis and its therapeutic implications, J. Dermatol. 48 (3) (2021) 252–270.
[5] E.M. Shahji, S. Chatterjee, D. Agrawal, T. Bagchi, R. Begum, Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes, Indian J. Exp. Biol. 44 (7) (2006) 526–539.
[6] J.G. van den Boorn, D. Konijnjen, T.A. Delemijn, J.P. van der Veen, J.D. Bos, C. J. Melief, et al., Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients, J. Invest. Dermatol. 129 (9) (2009) 2220–2222.
[7] M. Rodrigues, K. Ezzedine, I. Hamzavi, A.G. Pandya, J.E. Harris, New discoveries in the pathogenesis and classification of vitiligo, J. Am. Acad. Dermatol. 77 (1) (2017) 1–12.
[8] J.E. Harris, T.H. Harris, W. Wening, E.J. Wherry, C.A. Hunter, L.A. Turka, A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8+ T-cell accumulation in the skin, J. Invest. Dermatol. 132 (7) (2012) 1869–1876.
[9] M. Rashighi, P. Agarwal, J.M. Richmond, T.H. Harris, K. Dresser, M.W. Su, et al., CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo, Sci. Transl. Med. 6 (223) (2014) 223ra22.
[10] J.M. Richmond, D.S. Bangari, K.I. Esten, S.D. Currumbinby, J.R. Groom, A. G. Pandya, et al., Keratinocyte-derived chemokines orchestrate T-cell positionning in the epidermis during vitiligo and may serve as biomarkers of disease, J. Invest. Dermatol. 137 (2) (2017) 350–358.
[11] H.R. Nada, D.A. El Sharakawy, M.F. Elmansy, L.A. Rashad, S. Mamdouh, Expression of Janus Kinase 1 in vitiligo & pioriasis before and after narrow band UVB: a case-control study, Arch. Dermatol. Res. 310 (1) (2018) 39–46.
[12] R. Elherif, W.A. Mahnoud, R.R. Mohamed, Melanocytes and keratinocytes morphological changes in vitiligo patients. A histological, immunohistochemical and ultrastructural analysis, Ultrastruct. Pathol. 46 (2) (2022) 217–235.
[13] D.J. Gawrkodger, A.D. Ormerod, L. Shaw, I. Mauri-Sole, M.E. Whitton, M.J. Watts, et al., Guidelines for the diagnosis and management of vitiligo, Br. J. Dermatol. 159 (5) (2008) 1051–1076.
[14] A.K. Repecki, B.N. McElhan, N. Elbaluk, Beyond traditional treatment: the importance of psychosocial therapy in vitiligo, J. Drugs Dermatol. JDD 17 (6) (2018) 688–691.
[15] R. Zabair, I.H. Hamzavi, Phototherapy for vitiligo, Dermatol. Clin. 38 (1) (2020) 55–62.
[16] F. Qi, F. Liu, L. Gao, Janus kinase inhibitors in the treatment of vitiligo: a review, Front. Immunol. 12 (2021), 790125.
[17] J.J. Emer, W. Claire, Rituximab: a review of dermatological applications, J. Clin. Aesthet. Dermatol. 2 (5) (2009) 29–37.

[18] I. Hamzavi, D. Rosmarin, J.E. Harris, A.G. Pandya, M. Lebwohl, A.B. Gottlieb, et al., Efficacy of ruxolitinib cream in vitiligo by patient characteristics and affected body areas: descriptive subgroup analyses from a phase 2, randomized, double-blind trial, J. Am. Acad. Dermatol. 86 (6) (2022) 1398–1401.

[19] John P. Cunha, FACOEP. Opzelura RxList; [updated 7/29/2022. Available from: https://www.rxlist.com/opzelura-drug.htm#side_effects.

[20] K. Papp, J.C. Szepietowski, L. Kirick, B. Toth, L.F. Eichenfield, D.Y.M. Leung, et al., Efficacy and safety of ruxolitinib cream for the treatment of atopic dermatitis: results from 2 phase 3, randomized, double-blind studies, J. Am. Acad. Dermatol. 85 (4) (2021) 863–872.