Efa6 regulates axon growth, branching and maintenance by eliminating off-track microtubules at the cortex

Yue Qu*, Ines Hahn*, Meredith Lees1, Jill Parkin1, André Voelzmann1, Karel Dorey1, Alex Rathbone2, Claire Friel2, Viki Allan1, Pilar Okenve Ramos3, Natalia Sanchez-Soriano3, Andreas Prokop1,

1) The University of Manchester, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, Manchester, UK
2) The University of Nottingham, School of Life Sciences, Faculty of Medicine & Health Sciences, Nottingham, UK
3) Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom

Running title: The role of Efa6 in axon maintenance

Key words: *Drosophila*, neurodegeneration, axons, actin, cytoskeleton, microtubules

* authors contributed equally

authors for correspondence:
The University of Manchester
Faculty of Life Sciences
Oxford Road
Manchester M13 9PT
Tel: +44-(0)161-27-51556
Fax: +44-(0)161-27-51505
Andreas.Prokop@manchester.ac.uk
Ines.Hahn@manchester.ac.uk

Abstract

Axons are the enormously long, cable-like neuronal extensions that wire our nervous system. The formation and plastic maintenance of these delicate structures requires parallel bundles of microtubules (MTs), which form the structural backbones and highways for life-sustaining transport in axons. In ageing and certain axonopathies, axonal MTs lose their bundled appearances forming areas of disorganisation. We use *Drosophila* to study various mechanisms that promote axonal MT bundle organisation and dynamics during development and maintenance. Here we report important roles of the membrane-associated protein Efa6 in axonal MT regulation relevant for axonal growth, branching and MT bundle maintenance. Efa6 acts as a typical cortical MT collapse factor by eliminating MTs that approach the axonal plasma membrane. This action abolishes MTs that have left the axon bundle, thus providing a
quality control mechanism that prevents MT disorganisation during the formation and
maintenance of axons. Furthermore, we find this action to reduce axonal growth and branch
formation in cultured neurons and in vivo. Using structure-function analyses, we show that
cytoplasmic localisation of a small N-terminal peptide motif alone is sufficient to eliminate
entire MT networks in mouse fibroblasts, and loss of whole axons in Drosophila primary
neurons. This highly destructive activity becomes meaningful when restricted to the cell
plasma membrane via the plekstrin homology domain present in the Efa6 C-terminus. Our
data provide a paradigm for the fundamental and disease-relevant role of cortical collapse
factors in neurons.

Introduction

Axons are the cable-like neuronal extensions that wire the nervous system. They are typically
0.5-10 μm in diameter, but can be up to a meter long in humans (Debanne et al., 2011;
Prokop, 2013a). It is a fascinating challenge to understand how axons can extend over these
enormous distances and branch in orderly manners, but also how these delicate structures
can be maintained for a lifetime, i.e. many decades in humans. It is not surprising that we
gradually lose about half of our axons towards old age (Adalbert and Coleman, 2012; Medana
and Esiri, 2003) and that axon decay is a prominent neurodegenerative phenomenon (Fang
and Bonini, 2012; Wang et al., 2012).

The morphology and structural dynamics of axons essentially depends on continuous
parallel bundles of microtubules (MTs) running along their entire length to provide structural
support. During early stages of axon growth, amoeboid structures at axon tips, called growth
cones, navigate along pre-defined paths. They constantly elongate the axonal MT bundle
through a process where single MTs projecting into the periphery of growth cones get
stabilised and serve as a guide for elongation of the entire MT bundle (Dent et al., 2011;
Lowery and van Vactor, 2009; Prokop et al., 2013). If such events occur in parallel, the growth
cone can split and bifurcate into two branches (Acebes and Ferrus, 2000). Also interstitial
branching along the axon can occur. It depends on MT bundles in the shaft becoming
disorganised so that off-track MTs can extend into the periphery to seed new collateral
branches (Kalil and Dent, 2014; Lewis et al., 2013; Yu et al., 2008).

Axon maintenance depends on these MT bundles as well; they drive the dynamic
morphogenetic changes underlying neuronal plasticity, and also to form the tracks required for
life-sustaining cargo transport between cell bodies and synaptic endings (Prokop, 2013a). For
this, MTs have to maintain their proper bundled confirmation. MTs that become unbundled
and disorganised in axon swellings of ageing neurons are potential predictors of axon decay
(Adalbert and Coleman, 2012; Fiala et al., 2007). MT bundle maintenance is expected to
require constant renewal through polymerisation to prevent senescence (Voelzmann et al.,
2016a), but also other classes of MT regulatory proteins seem to play important roles. This is
strongly suggested by mouse models of neurodegeneration which display axonal MT
disorganisation and link to MT regulators; reported examples are spastin-associated spastic
paraplegia (SPG4; Online Mendelian Inheritance in Man®/OMIM reference #182601) or
spectraplakin-linked hereditary sensory and autonomic neuropathy (HSAN type VI; #614653)
(Bernier and Kothary, 1998; Dalpe et al., 1998; Fassier et al., 2013; Fiala et al., 2007; Tarrade
et al., 2006).

We study the mechanisms underlying the formation, maintenance and decay of axonal
MT bundles and use neurons of the fruit fly *Drosophila melanogaster* as an efficient model to this end (Prokop et al., 2013). Our studies of over 40 cytoskeletal regulators performed in this system led us to propose the model of "local axon homeostasis" (Prokop, 2016; Voelzmann et al., 2016a). It proposes that the force-enriched environment of axons promotes MT disorganisation, requiring therefore the action of MT regulating factors to tame MTs into bundles. One example is the MT guidance mechanism of the spectraplakin Short stop (Shot) (Alves-Silva et al., 2012). It binds simultaneously to cortical actin via its N-terminus and to the tips of polymerising MTs through its C-terminus, thus guiding extending MTs in parallel to the axonal cortex and laying them out into bundles; in the absence of Shot function, MTs leave their bundled arrangements and go off-track (Alves-Silva et al., 2012), and Shot might therefore serve as a paradigm for MT disorganisation observed in spectraplakin-linked HSAN type VI (see above) (Voelzmann et al., 2017).

Here we show that Efa6 (Exchange factor for Arf6) acts as a complementary factor to Shot in MT bundle maintenance. Like its *C. elegans* homologue (CeEfa6) (O’Rourke et al., 2010), it acts as a cortical collapse factor, in that it eliminates MTs at the plasma membrane of fly neurons and mouse fibroblasts. Through this action, Efa6 maintains MT bundles (through eliminating accidental off-track MTs) and negatively regulates axon growth and branch formation (through preventing MT entry into filopodia). Since the morphological phenotypes we describe resemble those of disease-relevant neuronal collapse factors in mammals, our findings provide conceptual explanations for how cortical collapse factors contribute to the growth and maintenance of neurons.

Methods

Fly stocks

Loss-of-function mutant stocks used in this study were the two deficiencies uncovering the Efa6 locus *Df(3R)Exel6273* (94B2-94B11 or 3R:22,530,780..22,530,780) and *Df(3R)ED6091i* (94B5-94C4 or 3R:22,587,681..22,587,681), *shot* (the strongest available allele of short stop) (Kolodziej et al., 1995; Sánchez-Soriano et al., 2009), and the null mutant alleles *Efa6KO#1*, *Efa6GX6[w+]*, *Efa6GX6[w-]* and *Arf51F11G16[w-]* (all genomically engineered precise deletions) (Huang et al., 2009). Gal4 driver lines used were the pan-neuronal lines *sca-Gal4* (strongest in embryos) (Sánchez-Soriano et al., 2010a) and *elav-Gal4* (1st and 3rd chromosomal, both expressing at all stages) (Luo et al., 1994), as well as the *ato-Gal4* line expressing in a subset of neurons in the adult brain (Hassan et al., 2000; Voelzmann et al., 2016b) and *GMR31F10-Gal4* (Bloomington #49685) expressing in a subset of lamina neurons. Lines for targeted gene expression were *UAS-Efa6RNAI* (VDRC #42321), *UAS-Gal80s* (Zeidler et al., 2004), *UAS-Eb1-GFP* (Alves-Silva et al., 2012), *UAS-α-tubulin84B* (Grieder et al., 2000) and *UAS-tdTomato* (Zschätzsch et al., 2014). Efa6 expression was detected via the genomically engineered *Efa6-GFP* allele, where a GFP was inserted after the last amino acid in exon 14 (Huang et al., 2009).

Drosophila primary cell culture

Drosophila primary neuron cultures were performed as published previously (Prokop et al., 2012; Qu et al., 2017). In brief, stage 11 embryos were treated for 1 min with bleach to remove the chorion, sterilized for ~30 s in 70% ethanol, washed in sterile Schneider’s/FCS,
and eventually homogenized with micro-pestles in 1.5 centrifuge tubes containing 21 embryos per 100 µl dispersion medium (Prokop et al., 2012) and left to incubated for 5 min at 37°C. Cells are washed with Schneider’s medium (Gibco), spun down for 4 mins at 650 g, supernatant was removed and cells re-suspended in 90 µl of Schneider’s medium containing 20% fetal calf serum (Gibco). 30 µl drops were placed on cover slips. Cells were allowed to adhere for 90-120 min either directly on glass or on cover slips coated with a 5 µg/ml solution of concanavalin A, and then grown as a hanging drop culture for hours or days at 26°C as indicated.

To abolish maternal rescue of mutants, i.e. masking of the mutant phenotype caused by deposition of normal gene product from the healthy gene copy of the heterozygous mothers in the oocyte (Prokop, 2013b), we used a pre-culture strategy (Prokop et al., 2012; Sánchez-Soriano et al., 2010b) where cells were kept for 5 days in a tube before they were plated on a coverslip.

For the transfection of *Drosophila* primary neurons, a quantity of 70-75 embryos per 100 µl dispersion medium was used. After the washing step and centrifugation, cells were re-suspended in 100 µl transfection medium [final media containing 0.1-0.5 µg DNA and 2 µl Lipofectamine 2000 (L2000)]. To generate this media, dilutions of 0.1-0.5 µg DNA in 50 µl Schneider’s medium and 2 µl L2000 in 50 µl Schneider’s medium were prepared, then mixed together and incubated at room temperature for 5-30 mins, before being added to the cells in centrifuge tubes where they were kept for 24 hrs at 26°C. Cells were then treated again with dispersion medium, re-suspended in culture medium and plated out as described above.

For temporally controlled knock-down experiments we used flies carrying the driver construct elav-Gal4, the knock-down construct UAS-Efa6-RNAi, and the temperature-sensitive Gal4 inhibitor UAS-Gal80ts, all in parallel. At the restrictive temperature of 19°C, Gal80ts blocks Gal4-induced expression of Efa6-RNAi, and this repressive action is removed at the permissive temperature of 27°C where Gal80ts is non-functional. Control neurons were from flies carrying only the Gal4/Gal80 (control 1 in Fig. 4K) or only the Efa6-RNAi transgene (control 2).

Fibroblast cell culture

NIH/3T3 fibroblasts were grown in DMEM supplemented with 1% glutamine (Invitrogen), 1% penicillin/streptomycin (Invitrogen) and 10% FCS in culture dishes (100 mm with vents; Fisher Scientific UK Ltd) at 37°C in a humidified incubator at 5% CO2. Cells were split every 2-3 d, washed with pre-warmed PBS, incubated with 4 ml of Trypsin-EDTA (T-E) at 37°C for 5 min, then suspended in 7 ml of fresh culture medium and eventually diluted (1/3-1/20 dilution) in a culture dish containing 10 ml culture media.

For transfection of NIH/3T3 cells, 2 ml cell solution (~10^5 cells per ml) were first transferred to 6-well plates, and grown overnight to double cell density. 2 µg of DNA and 2 µl Plus reagent (Invitrogen) were added to 1 ml serum-free media in a centrifuge tube, incubated for 5 mins at RT, then 6 µl Lipofectamine (Invitrogen) were added, and incubated at RT for 25 mins. Cells in the 6-well plate were washed with serum-free medium and 25 mins later DNA/Lipofectamine was mixed into the medium (1/1 dilution). Plates were incubated for 3 hrs at 37°C, washed with 2 ml PBS, 400 µl trypsin were added for 5 mins (37°C), then 3 ml complete medium; cells were suspended and added in 1 ml aliquots to 35 mm glass-bottom dishes (MatTek) coated with fibronectin [300 µl of 5 µg/ml fibronectin (Sigma-Aldrich) placed in the center of a MatTek dish for 1 hr at 37°C, then washed with PBS]; 1 ml of medium was
added and cells grown for 6 hrs or 24 hrs at 37°C in a CO₂ incubator. For live imaging, the medium was replaced with 2 ml Ham’s F-12 medium + 4% FCS.

Dissection of adult heads

To analyse the function of Efa6 in MT bundle integrity in medulla axons in vivo, flies were aged at 29°C. Flies were maintain in groups of up to 20 flies of the same gender (Stefana et al., 2017) and changed into new tubes every 3-4 days. Brain dissections were performed in Dulbecco’s PBS (Sigma, RNBF2227) after briefly sedating them on ice. Dissected brains with their laminas and eyes attached were placed into a drop of Dulbecco’s PBS on MatTek glass bottom dishes (P35G1.5-14C), covered by coverslips and immediately imaged with a 3i Marianas Spinning Disk Confocal Microscope.

To measure branching in ato-Gal4 Drosophila neurons, adult brains were dissected in Dulbecco’s PBS and fixed with 4% PFA for 15 min. Antibody staining and washes were performed with PBS supplemented with 0.3% Triton X-100. Specimens were embedded in Vectashield (VectorLabs).

Immunohistochemistry

Primary fly neurons and fibroblasts were fixed in 4% paraformaldehyde (PFA) in 0.05 M phosphate buffer (PB; pH 7–7.2) for 30 min at room temperature (RT); for anti-Eb1 staining, ice-cold +TIP fix (90% methanol, 3% formaldehyde, 5 mM sodium carbonate, pH 9; stored at -80°C and added to the cells) (Rogers et al., 2002) was added for 10 mins. Adult brains were dissected out of their head case in PBS and fixed with 4% PFA in PBS for 1 hr, followed by a 1 hr wash in PBT.

Antibody staining and washes were performed with PBT. Staining reagents: anti-tubulin (clone DM1A, mouse, 1:1000, Sigma; alternatively, clone YL1/2, rat, 1:500, Millipore Bioscience Research Reagents); anti-DmEb1 (gift from H. Ohkura; rabbit, 1:2000) (Elliott et al., 2005); anti-Elav (mouse, 1:1000, DHB); anti-GFP (goat, 1:500, Abcam); Cy3-conjugated anti-HRP (goat, 1:100, Jackson ImmunoResearch); F-actin was stained with Phalloidin conjugated with TRITC/Alexa647, FITC or Atto647N (1:100 or 1:500; Invitrogen and Sigma). Specimens were embedded in ProLong Gold Antifade Mountant.

Microscopy and data analysis

Standard documentation was performed with AxioCam monochrome digital cameras (Carl Zeiss Ltd.) mounted on BX50WI or BX51 Olympus compound fluorescent microscopes. For the analysis of Drosophila primary neurons, we used two well established parameters (Alves-Silva et al., 2012; Sánchez-Soriano et al., 2010a): axon length (from cell body to growth cone tip; measured using the segmented line tool of ImageJ) and the degree of MT disorganisation in axons which was either measured as binary score or ratio (percentage of neurons showing obvious MT disorganisation in their axons) or as “MT disorganisation index” (MDI) (Qu et al., 2017): the area of disorganisation was measured using the freehand selection in ImageJ; this value was then divided by axon length (see above) multiplied by 0.5 μm (typical axon diameter, thus approximating the expected area of the axon if it were not disorganised). For Eb1::GFP comet counts, neurons were subdivided into axon shaft and growth cones (GC): the proximal GC border was set where the axon widens up (broader GCs) or where filopodia density
increases significantly (narrow GCs). MT loss in fibroblasts was assessed on randomly
chosen images of successfully transfected, GFP-expressing fibroblasts, stained for tubulin
and actin. Images were derived from at least 2 independent experimental repeats performed
on different days, for each of which at least 3 independent culture wells were analysed by
taking a minimum of 20 images per well. Due to major differences in plasma membrane
versus cytoplasmic localisation of constructs, their expression strengths could not be
standardised. Assuming a comparable expression strength distribution, we therefore analyse
all transfected cells in the images and assigned them to three categories: MTs intact,
damaged or gone (Fig. 8). To avoid bias, image analyses were performed blindly, i.e. the
genotype or treatment of specimens was masked. To analyse ruffle formation in fibroblasts,
cells were stained with actin and classified (with or without ruffles).

To measure the degree of branching, we measured axonal projections of dorsal cluster
neurons in the medulla, which is part of the optic lobe in the adult brain (Hassan et al., 2000;
Voelzmann et al., 2016b). These neurons were labelled by expressing UAS-myristeodTomato via
the a.to-Gal4 driver either alone (control), together with UAS-Efa6RNAI or together with UAS-
Efa6-FL-GFP. We analysed them in young brains (2-5 d after eclosure of flies from their pupal
case) or old brains (15-18 d). Z-stacks of adult fly brains (optic lobe area) were taken with a
Leica DM6000 B microscope and extracted with Leica AF Premier software. They were
imaged from anterior and the number of branches was quantified manually. Branches were
defined as the protrusions from the DC neuron axons in the medulla. Branches in fly primary
neurons at 5DIV were also counted manually and defined as MT protrusions from main axon.

To measure MT disorganisation in the optic lobe of adult flies, GMR31F10-Gal4
(Bloomington #49685) was used to express UAS-α-tubulin84B-GFP (Grieder et al., 2000) in a
subset of lamina axons which projects within well-ordered medulla columns (Prokop and
Meinertzhagen, 2006). Flies were left to age for 26-27 days (about half their life expectancy)
and then their brains were dissected out. A section of the medulla columns comprising the 4
most proximal axonal terminals was used to quantify the number of swellings and regions with
disorganised MTs.

Time lapse imaging of cultured primary neurons (in Schneider’s/FCS) and fibroblasts
(in Ham’s F-12/FCS) was performed on a Delta Vision Core (Applied Precision) restoration
microscope using a [100x/1.40 UPlan SAPO (Oil)] objective and the Sedat Quad filter set
(Chroma #89000). Images were collected using a Coolscan HQ2 (Photometrics) camera. The
temperature was set to 26°C for fly neurons and 37°C for fibroblasts. Time lapse movies were
constructed from images taken every 2 s for 2 mins. To analyse MT dynamics, Eb1::GFP
comets were tracked manually using the “manual tracking” plug-in of ImageJ.

For statistical analyses, Kruskal–Wallis one-way ANOVA with post hoc Dunn’s test or
Mann–Whitney Rank Sum Tests (indicated as P_{MW}) were used to compare groups, and χ2
tests (indicated as P_{χ2}) were used to compare percentages. All raw data of our analyses are
provided as supplementary Excel/Prism files.

Molecular biology
EGFP tags are based on pcDNA3-EGFP or pUAST-EGFP. All Drosophila melanogaster efa6
constructs are based on cDNA cloneIP15395 (UniProt isofrom C, intron removed).
Caenorhabditis elegans efa-6 (Y55D9A.1a) constructs are derived from pCZGY1125-efa-6-
pcr8 (kindly provided by Andrew Chisholm). Homo sapiens PSD(1) (ENST00000406432.5,
isoform 202) constructs were PCR-amplified from pLC32-hu-psd1-pcr8 vector (kindly provided
by Andrew Chisholm). *Homo sapiens* PSD2 (ENST00000274710.3, isoform 201, 771aa) constructs were PCR-amplified from pLC33-hu-psd2-pcr8 vector (kindly provided by Andrew Chisholm). *Homo sapiens* PSD3 was PCR-amplified from pLC34 hu-psd3-pcr8 vector (kindly provided Andrew Chisholm). Note that the PSD3 cDNA clone is most closely related to isoform 201 (ENST00000286485.12; 513aa) and therefore lacks the putative N-terminus found in isoform 202 (ENST00000327040.12). However, the putative MTED core sequence is encoded in the C-terminal PH domain (Fig.8C), not the potential N-terminus. *Homo sapiens* PSD4 (ENST00000441564.7, isoform 205) was PCR-amplified from pLC35-hu-psd4-pcr8 vector (kindly provided by Andrew Chisholm). The CAAAX motif is derived from human KRAS.

The *DmEfa6*-NtermΔSxiP::EGFP (aa1-410) insert was synthesised by GeneArt Express (ThermoFisher). All constructs were cloned using standard (SOE) PCR/ligation based methods, and constructs and inserts are detailed in Table T1. To generate transgenic fly lines, *P[acman]M-6-attB-UAS-1-3-4* constructs were integrated into PBac[yellow[+]-attP-3B]VK00031 (Bloomington line #9748) via PhiC31 mediated recombination (outsourced to Bestgene Inc.).

final vector	Source	Insert
pcDNA3-EGFP	Addgene	Xhol-EGFP-Xbal
pUAST-Ascl-Pacl-EGFP	this study	Kpnl, Ascl, Pacl-EGFP-Xbal
pUAST-DmEfa6FL-EGFP (aa1-1387)	this study	Kpnl, Ascl-kozak-DmEfa6 (aa1-1387)-GSGSGS-EGFP-Pacl, Xbal
P[acman]M-6-attB-UAS-1-3-4-DmEfa6FL-EGFP (aa1-1387)	this study	Ascl-kozak-DmEfa6 (aa1-1387)-GSGSGS-EGFP-Pacl
pcDNA3.1-DmEfa6FL-EGFP (aa1-1387)	this study	Kpnl, Ascl-kozak-DmEfa6 (aa1-1387)-GSGSGS-EGFP-Pacl, Xbal
pUAST-DmEfa6-Cterm-EGFP (aa1-894)	this study	Kpnl, Ascl-kozak-DmEfa6-Cterm (aa1-894)-GSGSGS-EGFP-Pacl, Xbal
P[acman]M-6-attB-UAS-1-3-4-DmEfa6Cterm-EGFP (aa1-894)	this study	Ascl-kozak-DmEfa6-Cterm (aa1-894)-GSGSGS-EGFP-Pacl
pcDNA3.1-DmEfa6Cterm-EGFP (aa1-894)	this study	Kpnl, Ascl-kozak-DmEfa6-Cterm (aa1-894)-GSGSGS-EGFP-Pacl, Xbal
pUAST-DmEfa6-Nterm-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-Pacl, Xbal
P[acman]M-6-attB-UAS-1-3-4-DmEfa6Nterm-EGFP (aa1-410)	this study	Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-Pacl
pcDNA3.1-DmEfa6-Nterm-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-Pacl, Xbal
pUAST-DmEfa6-Nterm-CAAX-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-CAAX[KRAS]-Pacl, Xbal
P[acman]M-6-attB-UAS-1-3-4-DmEfa6Nterm-CAAX-EGFP (aa1-410)	this study	Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-CAAX[KRAS]-Pacl
pcDNA3.1-DmEfa6-Nterm-CAAX-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-CAAX[KRAS]-Pacl, Xbal
pUAST-DmEfa6-Nterm-ΔSxiP-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-NtermΔSxiP (aa1-410)-SQIP>AAAA; SRIP>AAAA)-GSGSGS-EGFP-Pacl, Xbal
pcDNA3.1-DmEfa6-Nterm-ΔSxiP-EGFP (aa1-410)	this study	Kpnl, Ascl-kozak-DmEfa6-NtermΔSxiP (aa1-410)-SQIP>AAAA; SRIP>AAAA)-GSGSGS-EGFP-Pacl, Xbal
pUAST-DmEfa6-Nterm-ΔMTED-EGFP (aa1-300)	this study	Kpnl, Ascl-kozak-DmEfa6-NtermΔMTED (aa1-300)-GSGSGS-EGFP-Pacl, Xbal
pcDNA3.1-DmEfa6-Nterm-ΔMTED-EGFP (aa1-300)	this study	Kpnl, Ascl-kozak-DmEfa6-NtermΔMTED (aa1-300)-GSGSGS-EGFP-Pacl, Xbal
To generate the phylogenetic tree of Efa6/PSD full length isoforms and N-terms of different species (see Fig. S3), their amino acid sequences were aligned using Muscle or ClustalO (Goujon et al., 2010; McWilliam et al., 2013; Sievers et al., 2011). ProtTest (Abascal et al., 2005; Darriba et al., 2011) was used to determine amino acid frequencies in the protein datasets and to identify the optimal amino acid substitution model to be used for the Bayesian inference (VT+I+G+F). CUDA-Beagle-optimised MrBayes (Ronquist et al., 2012) was run using the VT+I+G+F model [preset statefreqpr=fixed(empirical); lset rates=invgamma] using 5 chains (1 heated) and 9 parallel runs until the runs converged and standard deviation of split frequencies were below 0.015 (0.06 for N-terms); PSRF+ was 1.000 and min ESS was >1300 for the TL, alpha and pinvar parameters. The Drosophila melanogaster Sec7-PH domain-containing protein Steppke was used as outgroup in the full length tree. Archaeopteryx (Han and Zmasek, 2009) was used to depict the MrBayes consensus tree showing branch lengths

pUAST-DmEfa6ΔNerm-EGFP (aa851-1387)	this study	KpnI, Ascl-kozak-DmEfa6ΔNerm (aa851-1387)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-DmEfa6ΔNerm-EGFP (aa851-1387)	this study	KpnI, Ascl-kozak-DmEfa6ΔNerm (aa851-1387)-GSGSGS-EGFP-Pacl, XbaI
pUAST-DmEfa6-MTED-EGFP (aa322-341)	this study	KpnI, Ascl-kozak-DmEfa6-MTED (aa322-341)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-DmEfa6-MTED-EGFP (aa322-341)	this study	KpnI, Ascl-kozak-DmEfa6-MTED (aa322-341)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-CeEfa6-FL-EGFP (aa1-816)	this study	KpnI, Ascl-kozak-CeEfa6 (aa1-816)-GSGGS-EGFP-Pacl, XbaI
pcDNA3.1-CeEfa6-Nterm-EGFP (aa1-152)	this study	KpnI, Ascl-kozak-CeEfa6-Nterm (aa1-152)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-CeEfa6-MTED-EGFP (aa24-42)	this study	KpnI, Ascl-kozak-CeEfa6-MTED (aa24-42)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD(1)-FL-EGFP (aa1-1024)	this study	KpnI, Ascl-kozak-HsPSD(1) (aa1-1024)-GSGSGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD(1)-Nterm-EGFP (aa1-280)	this study	KpnI, Ascl-kozak-HsPSD(1)-Nterm (aa1-280)-GSGSGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD(1)-MTED-EGFP (aa31-49)	this study	KpnI, Ascl-kozak-HsPSD(1)-MTED (aa31-49)-GSGSGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD2-FL-EGFP (aa1-771)	this study	KpnI, Ascl-kozak-HsPSD2 (aa1-771)-GSGGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD3-EGFP (aa515-1047)	this study	KpnI, Ascl-kozak-HsPSD3 (aa515-1047)-GSGSGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-HsPSD4-FL-EGFP (aa1-1027)	this study	KpnI, Ascl-kozak-HsPSD4 (aa1-1027)-GSGSGS-NotI-EGFP-Pacl, XbaI
pcDNA3.1-co-HsPSD(1)-MTED-EGFP (aa31-49)	this study	KpnI, Ascl-kozak-HsPSD(1)-MTED (aa31-49)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-co-CeEfa6-MTED-EGFP (aa24-42)	this study	KpnI, Ascl-kozak-CeEfa6-MTED (aa24-42)-GSGSGS-EGFP-Pacl, XbaI
pcDNA3.1-co-DmEfa6-MTED-EGFP (aa322-341)	this study	KpnI, Ascl-kozak-DmEfa6-MTED (aa322-341)-GSGSGS-EGFP-Pacl, XbaI
pCS107-DmEfa6-Nterm-EGFP	this study	NotI-kozak-DmEfa6-Nterm (aa1-410)-GSGSGS-EGFP-Stul
RFP (Xenopus injection)	tba	tba
pFastBac-His6-MCAK-EGFP-Strepl	tba	His6-MCAK::EGFP-Strepl
pFastBac-His6-DmEfa6ΔCterm-EGFP-Strepl (aa1-694)	this study	His6-DmEfa6ΔCterm::EGFP-Strepl (aa1-894)

Tab. T1. co=codon optimised; Dm=Drosophila melanogaster; Ce=Caenorhabditis elegans; Hs=Homo sapiens.

In silico analyses

To generate the phylogenetic tree of Efa6/PSD full length isoforms and N-terms of different species (see Fig. S3), their amino acid sequences were aligned using Muscle or ClustalO (Goujon et al., 2010; McWilliam et al., 2013; Sievers et al., 2011). ProtTest (Abascal et al., 2005; Darriba et al., 2011) was used to determine amino acid frequencies in the protein datasets and to identify the optimal amino acid substitution model to be used for the Bayesian inference (VT+I+G+F). CUDA-Beagle-optimised MrBayes (Ronquist et al., 2012) was run using the VT+I+G+F model [preset statefreqpr=fixed(empirical); lset rates=invgamma] using 5 chains (1 heated) and 9 parallel runs until the runs converged and standard deviation of split frequencies were below 0.015 (0.06 for N-terms); PSRF+ was 1.000 and min ESS was >1300 for the TL, alpha and pinvar parameters. The Drosophila melanogaster Sec7-PH domain-containing protein Steppke was used as outgroup in the full length tree. Archaeopteryx (Han and Zmasek, 2009) was used to depict the MrBayes consensus tree showing branch lengths.
To identify a potential MTED in PSD(1), previously identified Efa6 MTED motifs (O’Rourke et al., 2010) of 18 orthologues were aligned to derive an amino acid logo (Suppl. Tab. not available here). Further orthologues were identified and used to refine the logo. Invariant sites and sites with restricted amino acid substitutions were determined (most prominently MxG-stretch). Stretches containing the invariant MxG stretch were aligned among vertebrate species to identify potential candidates. Berkley’s Weblogo server (Crooks et al., 2004) was used to generate amino acid sequence logos for each phylum using MTED (ExxxMxGE/D) and MTED-like (MxGE/D) amino acid stretches.

In vitro analyses

Protein Expression and Purification: *Drosophila* Efa6-ΔCterm was cloned into a modified pFastBac vector containing an N-terminal His6 tag and C-terminal eGFP and StrepII tags. Recombinant protein was expressed in Sf9 insect cells for 72 hours using a Baculovirus system. The protein was purified via a two-step protocol. Cleared lysate was loaded onto a 1 ml HisTrap column (GE Healthcare) in Ni-Affinity buffer [50 mM Tris pH 7.5, 300 mM NaCl, 10 % (v/v) glycerol, 1 mM mercaptoethanol, 4 mM glucose, 40 mg/ml glucose oxidase, 16 mg/ml catalase, 0.05% Tween 20, 0.1 mg/ml BSA, 1% 2-mercaptoethanol, 40 mM glucose, 40 mg/ml glucose oxidase, 16 mg/ml catalase], 20 nM MCAK::GFP (in the same buffer plus 1 mM ATP and 1 mM taxol) was introduced to the MT-containing channel. Images were recorded using a Zeiss Observer.Z1 microscope equipped with a Zeiss Laser TIRF 3 module, QuantEM 512SC EMCCD camera (Photometrics) and 100x objective (Zeiss, alphaPlanApo/1.46NA oil). Images of rhodamine-labeled MTs using a lamp as the excitation source and GFP fluorescence using TIRF illumination via a 488 nm laser were collected as described earlier (Patel et al., 2016). For both rhodamine and GFP imaging an exposure time of 100 ms was used. The mean GFP intensity on individual MTs was determined from the mean pixel intensity of lines drawn along the long-axis of individual microtubules in Fiji (Schindelin et al., 2012). The rhodamine signal was used to locate the position of MTs in the GFP images. Intensity from a region of background was subtracted.

MT depolymerisation assays: Single-cycled, rhodamine-labeled, GMPCPP-stabilised MTs were adhered to the surface of flow chambers as described earlier (Helenius et al., 2006). 20 nM Efa6-ΔCterm::GFP (in BRB20 pH 6.9, 75mM KCl, 0.05% Tween20, 0.1 mg/ml BSA, 1% 2-mercaptoethanol, 40 mM glucose, 40 mg/ml glucose oxidase, 16 mg/ml catalase), 20 nM MCAK::GFP (in the same buffer plus 1 mM ATP and 1 mM taxol) were adhered to the surface of flow chambers as described earlier (Helenius et al., 2006). 20 nM Efa6-ΔCterm::GFP (14 nM), MCAK (40 nM) in solution (BRB20 pH 6.9, 75mM KCl, 1 mM ATP, 0.05% Tween 20, 0.1 mg/ml BSA, 1% 2-mercaptoethanol, 40 mM glucose, 40 mg/ml glucose oxidase, 16 mg/ml catalase) were added to the channel 1 min after acquisition had commenced. De-polymerisation rates were determined from plots of the length of individual microtubules versus time, obtained by thresholding and particle analysis of images using Fiji (Schindelin et al., 2012).

Xenopus oocyte assays: cytosol extracts from *Xenopus* oocytes were obtained as described in (Allan and Vale, 1991). MT depolymerisation was assessed in a microscopic flow chamber (Vale and Toyoshima, 1988) where *Xenopus* cytosol (1 µl cytosol diluted with 20 µl acetate buffer) was incubated for 20 min to allow MTs to polymerise. Then cytosol was...
exchanged by flow through with Efa6-ΔCterm::GFP, MCAK or synthetic MTED peptide (all 20 nM in acetate buffer pH 7.4: 100 mM K-Acetate, 3 mM Mg-Acetate, 5 mM EGTA, 10 mM HEPES), and MT length changes observed by recording 10 random fields via VE-DIC microscopy (Allan, 1993; Allan and Vale, 1991). MT polymerisation was analysed in a microscope flow cell containing 9 μl diluted Xenopus cytosol (see above) to which 1 μl acetate buffer was added, either alone or containing 20nM MTED. After 10 min, 20 random fields were recorded via VE-DIC microscopy for each condition and the numbers of MTs per field counted.

For the in vivo assay, Xenopus embryos were injected in one blastomere at the 4-cell stage with 200 ng of mRNA encoding Efa6-Nterm::GFP or mCherry alone. The embryos were imaged at stage 10.25 (Heasman, 2006) with a Leica fluorescent stereoscope.

Results

Efa6 is a negative regulator of axonal growth and branching in cultured neurons and in vivo

To evaluate the function of Efa6 in regulating axonal microtubules (MTs) we first determined its expression in the nervous system. We used a genomically engineered fly line in which the endogenous Efa6 gene was GFP-tagged (Efa6-GFP) (Huang et al., 2009). These animals express Efa6-GFP throughout the CNS at larval and adult stages, likely in most or even all neurons (Fig. 1F-I). We cultured primary neurons from this fly line to analyse the subcellular distribution of Efa6. In young neurons (6 hrs in vitro; 6 HIV) as well as mature neurons (5 days in vitro; 5DIV), Efa6 was expressed throughout cell bodies and axons (Fig. 1A-E).

To determine the importance of Efa6 for axonal morphogenesis, we manipulated Efa6 expression levels and analysed axon growth and collateral branching. We used several fly lines with decreased or abolished Efa6 expression: Efa6 knock-down (Efa6-RNAi), overlapping deficiencies uncovering the entire Efa6 gene locus (Efa6 homozygous mutant neurons showed almost two times more collateral branches than wildtype neurons (Fig.2F,I). Conversely, branching was reduced by 21% in neurons expressing Efa6-FL::GFP (Fig.2G,I). These results are consistent with Efa6 acting as a negative regulator of axon growth and branching.

To extend these studies to neurons in vivo, we measured a myr-tdTomato labelled subset of axonal projections in the optic lobe of adult brains (Fig.3, see Methods) (Hassan et al., 2000; Voelzmann et al., 2016b). We compared axon branching in young (2-5 d after eclosure of flies from their pupal case) and old brains (15-18 d; Figs.3, S1) of wildtype, Efa6-RNAi and Efa6-GFP overexpressing flies. We found that Efa6 knock-down in dorsal cluster neurons caused a significant increase in branch numbers both in young (29%) and in old brains (38%). In contrast, over-expression of Efa6::GFP strongly decreased branch numbers by 33% in young and 28% in old brains, respectively (Fig.3G).

In these experiments, Efa6-FL::GFP had an intriguing further effect: Only 57% of young brains had any axon protrusion in the medulla region, compared to 88% in controls (Figs.3C,H, S1B).
Since axons are eventually present in old brains of Efa6-FL::GFP expressing flies (Fig.3F,H, S1D), we concluded that this phenotype reflects delayed outgrowth and is likely the in vivo equivalent to short axon growth observed upon Efa6 over-expression in primary neurons (green bars in Fig.2D).

These data obtained from neurons in culture and in the adult brain, clearly demonstrate that the presence of Efa6 in neurons is relevant for their morphology by acting as a negative regulator of axonal growth and branching.

Efa6 helps maintain axonal MT bundle integrity in cultured neurons

Our analyses revealed a further phenotype: In neurons depleted of Efa6, we found regions where axonal MTs were not arranged into bundles but were curled up and criss-crossing each other, especially in mature neurons at 5 DIV (curved arrow in Fig. 2F).

We analysed various Efa6-depleted conditions at 6 HIV and found that the relative amount of neurons showing regions of MT disorganisation was increased 1.5 to 2.5 fold when normalised to wild-type controls (Fig. S2). Although many neurons showed some degree of visible MT disorganisation already at early stages, the extent of MT disorganisation in individual neurons tended to be fairly mild. To quantify the strength of this phenotype we used a more refined readout by measuring the area of MT disorganisation per axon area (referred to as 'MT disorganisation index', MDI) (Qu et al., 2017). MDI measurements in Efa6 mutants revealed a mild 1.3 fold increase in MT disorganisation in young neurons which gradually worsened from 2.3 fold at 5 DIV to ~4 fold at 10 DIV (Fig.4A-F,I; all normalised to controls). To test whether this gradual increase might be due to wild-type Efa6 gene product deposited in the Efa6 mutant embryos by their heterozygous mothers (Prokop, 2013b), we used a pre-culture strategy to remove potential maternal Efa6 contributions (see Methods) (Prokop et al., 2012; Sánchez-Soriano et al., 2010b). After 5 days in pre-culture, we still found a low amount of MT disorganisation in young neurons and a subsequent gradual increase to severe phenotypes over the following days (Fig.4J).

This finding argues for a continued role of Efa6 in preventing MT disorganisation during development as well as in mature neurons. To test whether Efa6 regulates MT organisation in mature neurons, we used a temperature-based conditional knock-down technique (GAL80ts; see Methods) to induce Efa6 knock-down after 3 DIV when neurons have long undergone synaptic differentiation (Küppers-Munther et al., 2004; Prokop et al., 2012). Following this delayed onset, cells were kept for 4 further days under Efa6 knock-down conditions and fixed at day 7. We found a significant increase in MT disorganisation in the experimental neurons, much stronger than in parallel control neurons without knock-down (Fig. 4K). In contrast, at 3DIV (i.e. before onset of knock-down) there was no difference in MT disorganisation between experimental and control neurons. This clearly indicates that MT disorganisation upon Efa6 deficiency occurs even in fully differentiated neurons and is not restricted to developmental stages.

In contrast to increased MT disorganisation upon Efa6 loss of function, over-expression of Efa6-FL::GFP for 5 days in wild-type neurons caused a reduction below the baseline levels measured in control cells (cultured in parallel without the expression construct; Fig.4I). Our various findings support therefore a role of Efa6 in preventing MT disorganisation in developing and mature neurons.
Efa6 helps maintain axonal MT bundle integrity in vivo

We then assessed whether a role of Efa6 in MT bundle maintenance is relevant in vivo. We labelled MTs in a subset of lamina neurons in the adult optic lobe (Prokop and Meinertzhagen, 2006) by expressing α-tubulin84B-GFP either alone (GMR-tub controls), or together with Efa6RNAi to knock down Efa6 specifically in these neurons (GMR-tub-Efa6IR; see Methods for details).

We analysed 26-27 day old flies and found that Efa6 knock-down caused a doubling in the occurrence of axonal swellings with disorganised axonal MTs: the average of total swellings per column section was increased from 0.3 in controls to 0.65 swellings upon Efa6 knock-down, and about a third of these contained disorganised MTs (GMR-tub-Efa6IR: 0.23 per column section; GMR-tub: 0.13; Fig.5). These data suggested that our findings in cultured neurons are relevant in vivo.

Taken together, we identified three different morphological features of axons that are regulated by Efa6: their growth, branching and MT bundle organisation. To study the underlying mechanisms we first performed subcellular analyses.

Efa6 eliminates MTs in growth cones

Based on the literature, Efa6 may cause these morphological effects through changes in the actin cytoskeleton, either as a potential activator of small Arf GTPases via its central Sec7 domain (D’Souza-Schorey and Chavrier, 2006; Huang et al., 2009), or through its other C-terminal domains (see below) (Derrien et al., 2002; Franco et al., 1999; Macia et al., 2008). Alternatively, it could act directly on MTs, as was suggested by studies of CeEfa6 in oocytes where it eliminates MTs at the plasma membrane and therefore acts as a cortical collapse factor (O’Rourke et al., 2010). We focussed on the latter possibility and studied potential effects of Efa6 on MT behaviours.

For this, we distinguished between different subcellular compartments of neurons, known to display very different behaviours: in the dynamically shaped, amoeboid growth cones (GCs) at the tips of growing axons, MTs splay out towards the membrane in the GC periphery (Prokop et al., 2013). In contrast, in the cable-like axon shafts, most MTs extend within bundles and are kept away from the membrane (Prokop, 2013a). If Efa6 eliminates MT at the membrane, manipulations of its functions should therefore affect MTs in GCs and axon shafts differently. We therefore analysed these two sub-neuronal compartments separately, starting with GCs.

In GCs of Efa6 mutant neurons at 6 HIV, we found an increase in MT polymerisation events: the total number of Eb1 comets was increased compared to wild-type controls (Fig. 6I).

Eb1::GFP comet velocity was unaffected (wildtype: 0.27μm/s ± 0.2SEM; Efa6: 0.30μm/s ± 0.2SEM), but their lifetime was ~1.4 times longer in mutant GCs (Fig. 6M). Compared to control neurons, Eb1::GFP comets in Efa6 mutant neurons appeared to vanish less often when reaching the GC periphery, where they could occasionally be observed to undergo persistent curved extensions along the periphery (Suppl. Movies not available here).

We reasoned that, if there are more polymerising MTs in GCs of Efa6-depleted neurons, this should increase their chances of entering into filopodia. In agreement with this prediction, we found considerably more Efa6 mutant than control neurons with at least one Eb1 comet or tubulin-stained MT in GC filopodia (Fig.6J, K). Also per GC, the average number of filopodia containing comets or MTs was increased, whilst the total number of filopodia per GC was comparable (~11 per neuron in wild-type and ~10 in Efa6). Consistent with this finding, the
lifetime of Eb1 comets persisting at the tip of filopodia was increased from ~2 s in wildtype to
~6 s in Efa6 mutant neurons (Fig. 6M). Upon live-imaging we even observed highly unusual
cases where comets at the tip of filopodia moved backwards, seemingly pushed back by the
retracting filopodial tip (Suppl. Movies not available here).

Whilst Efa6 depletion clearly favoured MT polymerisation events at the cortex and in filopodia
of GCs, pan-neuronal expression of Efa6-FL::GFP in wildtype background had the opposite
effect. We found that transgenically expressed Efa6-FL::GFP localised to cell bodies, axons
and growth cones, as observed with the endogenous protein (Figs.1B,C). But increased levels
upon over-expression caused a reduction in the number of neurons containing Eb1 comets or
MTs in GC filopodia, and also the number of such filopodia per GC was reduced (green bars
in Fig.6).

Therefore, Efa6 negatively regulates the entry of MTs into GC filopodia likely by eliminating
the overall number of polymerising MTs and reducing their dwell time in filopodia, as would be
in agreement with a role of Efa6 in eliminating MTs at the cell membrane. As detailed in the
discussion, the increased extension of MTs into filopodia in Efa6 mutant neurons matches the
observed morphological phenotypes: filopodial entry of MTs is considered an important
prerequisite for axon growth and can explain the observed increase in axon length (Prokop et
al., 2013); it could also contribute to increase in branch numbers by promoting GC splitting
events (Acebes and Ferrus, 2000).

Efa6 eliminates MTs in axonal shaft filopodia

We applied the same subcellular readouts to axon shafts where MTs are highly bundled and
expected to be kept away from the membrane. Accordingly, we found that Eb1 comet
numbers and lifetimes in axon shafts were not at all or only moderately affected by loss or
gain of Efa6 (Fig. 7A,B), a behaviour very different from that found in GCs (Fig.6). Other
parameters were comparable: like in GCs, Eb1 comet velocities were not changed in axon
shafts (Fig.7C) and also antero- versus retrograde movement was unaffected (~75% versus
~25%; Fig. 7D). Also similar to GCs, axon shafts displayed a strong increase in MTs entering
filopodia: the percentage of neurons containing at least one Eb1 comet or MT in shaft filopodia
was increased (Fig. 7E,F), as was the number of shaft filopodia per neuron that contained Eb1
comets or tubulin-stained MTs (~15-fold in Efa6 mutant neurons, even when normalised to
axon length; Fig. 7G,H). In contrast, Efa6-FL::GFP caused a strong reduction of these
parameters relative to control neurons (Fig. 7E-H).

Taken together, also in axon shafts our data are consistent with a model in which Efa6
eliminates MTs at the cortex. It seems that Efa6 does not influence MTs which are kept in
axonal bundles, but negatively impacts on the few MTs which leave the axon bundle towards
the cell membrane. By eliminating only MTs that have escaped axonal bundles, Efa6 would
provide a quality control mechanism that prevents MT disorganisation. This is consistent with
the slow onset and gradual increase of MT disorganisation we observed upon Efa6 deficiency
(Fig.4I,J). A condition where off-track MTs are favoured is also expected to promote interstitial
branch formation (Kalil and Dent, 2014; Lewis et al., 2013) and could therefore contribute to
the branching phenotypes we observed (Figs.2 and 3).

The N-terminus of Efa6 can eliminate whole axons in neurons

We next established which region of the Efa6 protein carries MT eliminating capabilities. For
this, we first compared the domain structure and phylogenetic relationship of Efa6 proteins from 30 species. These analyses revealed that all chordate proteins are rather distant from invertebrates, and arthropods form a clear subgroup within the invertebrates (Fig. S3A). When aligning the Efa6 proteins, the C-terminal halves appear relatively consistent, in most species containing a putative pleckstrin homology (PH; potential membrane association) (Macia et al., 2008), Sec7 (potential activation of ARF GTPases) and coiled-coil (CC) domain (Franco et al., 1999) (Fig.8A, S4). In contrast, the N-termini are mainly unstructured and reveals enormous length differences among species (see more details below); notably, phylogenetic relationship analyses with the N-terminus alone reveal a very similar tree as the full length comparison (Fig. S3A,B). We therefore generated two complementary constructs which reflect these two very different parts of Efa6: Efa6-ΔCterm-GFP encoding the entire N-terminal half upstream of the Sec7 domain, and Efa6-ΔNterm-GFP encoding all C-terminal domains from Sec7 onwards.

To functionally assess these Efa6 variants, we developed a transfection method for Drosophila primary neurons (see Methods) and validated it by transfecting Efa6-FL-GFP. When analysing these transfected primary neurons, we found that they had the same subcellular localisation of Efa6-FL::GFP, reminiscent of neurons expressing the same protein from transgenic constructs (Fig.1B,C). Axon length upon transfection was even further decreased than in the transgenic constellation, likely due to higher copy numbers of the expression construct (Figs. S5B, 2C,D).

We then transfected Efa6-ΔCterm-GFP or Efa6-ΔNterm-GFP. Both variants localised throughout neurons (Fig.S5C,H), but only expression of the N-terminus (Efa6-ΔCterm::GFP) caused phenotypes where axons were severely reduced or frequently even absent. Notably, Efa6-ΔCterm::GFP induced considerably stronger phenotypes than observed with Efa6-FL::GFP. To quantify potential axon loss, we labelled neurons with the pan-neuronal marker Elav (Robinow and White, 1991) and found that only ~36% had an axon when expressing Efa6-ΔCterm::GFP, as compared to ~57% with Efa6-FL::GFP, and ~74% with either GFP or Efa6-ΔNterm::GFP (Fig.8B).

These results clearly indicated that the N-terminus is responsible for the axon growth-inhibiting function of Efa6. The C-terminus which includes the Arf6 activating Sec7 domain (Huang et al., 2009) appears dispensable for this. Accordingly, also functional deficiency of its potential effector protein Arf6 in primary neurons (Arf51F^{Gx16[w]} null mutant allele) had no obvious effects on axon morphology (data not shown).

Membrane association lowers the effects of N-terminal MT elimination in neurons

As described above, the power of Efa6-ΔCterm::GFP in eliminating axons is considerably greater than observed with EFA6-FL::GFP. This is likely due to the fact that Efa6-ΔCterm::GFP lacks the membrane-associating PH domain, so that it can diffuse into the core area of axons and eliminate MTs that are usually out of reach for the full length Efa6 protein.

To test this possibility, we generated two constructs: one encoding a shorter N-terminal variant of Efa6 (Efa6-Nterm-GFP; Fig.8B), and another where a membrane-associating CAAX domain was fused to this short N-terminus version (Hancock et al., 1991) (Efa6-Nterm-GFP-CAAX; Fig.8B). Both variants localised throughout neurons (Fig.S5D,I). However, whereas Efa6-Nterm::GFP showed the same strong axon-abolishing effects as observed with Efa6-ΔCterm::GFP, the phenotypes induced by the Efa6-Nterm::GFP::CAAX variant were much
weaker and comparable to Efa6-FL::GFP (Fig.8B). Similarly, at 5 DIV, the transgenically
expressed full length and CAAX versions show levels in axonal side branch reductions (Fig.
2H,I). These findings suggest that membrane tethering of the Efa6 N-terminus lowers the
harmful effects it has in axons, with important implications for axon morphology.

Membrane association lowers the effects of N-terminal MT elimination also in fibroblasts
To complement these studies and achieve a higher subcellular resolution, we used NIH3T3
mouse fibroblasts as well-established heterologous cellular models for the study of MT
regulating Drosophila proteins (Alves-Silva et al., 2012).

24 hrs after transfection, fibroblasts with moderate Efa6-FL::GFP expression showed strong
GFP staining along the circumference and in areas of membrane folds, indicative of
membrane association (open arrow heads and curved arrow in Figs.S6B and S7B).
Membrane association was further suggested by a strong membrane ruffle phenotype (curved
arrows in Figs.S8B), which was similarly observed when expressing the human Efa6
homologues PSD(1) (Fig. S8E) and reported from other studies with human PSDs (Derrien et
al., 2002; Franco et al., 1999; Macia et al., 2008).

As already observed in neurons, Efa6 was able to eliminate MTs also in fibroblasts: in cells
expressing moderate levels of Efa6-FL::GFP, MTs show a strong tendency to vanish along
the cell fringes (Figs.8B, S9B), consistent with predominantly membrane-based MT
elimination. However, with increasing expression levels, Efa6-FL::GFP was also found in the
cytoplasm, suggesting that membrane association might become saturated (Fig.S7C). In
these cases, we found a concentration-dependent MT depletion effect, with higher Efa6-FL
expression levels leading to more severe MT loss, and 16% of transfected cells lacking MTs
completely (Fig. S7D).

When transfecting Efa6-ΔNterm-GFP or Efa6-Nterm-GFP expression constructs, MT
depletion was more than doubled, likewise corroborating our findings in neurons (Fig. 8B). As
expected, the expressed protein failed to localise to membranes; even at low expression
levels, it was found exclusively in the cytoplasm and the nucleus (double chevrons in
Fig.S6C,D) - of which the nuclear localisation is a known phenomenon for GFP-tagged
proteins and not necessarily caused by the N-terminal sequence (Alves-Silva et al., 2012;
Seibel et al., 2007). We next used the N-terminal construct fused to the membrane-
associating CAAX domain and found it to be present at cell edges and absent from the
nucleus (as observed with Efa6-FL::GFP; Figs. S6B,I). Notably, the MT depletion phenotype
was much milder with Efa6-Nterm::GFP::CAAX than with Efa6-Nterm::GFP (Fig. 8B). This
again reproduced our findings in neurons and further supported the conclusion that
membrane localisation of the Efa6 N-terminus correlates with milder MT phenotypes.

The Efa6 C-terminus regulates cortical actin in fibroblasts but does not cause MT elimination
In further agreement with our findings in neurons, we found that the C-terminal construct does
not affect MTs in fibroblasts but has a conserved role in cortical actin regulation instead: Efa6-
ΔNterm::GFP localises to the plasma membrane in fibroblasts and was found in the cytoplasm
only upon increased expression levels (Fig.S6H). But even at high levels, it had no obvious
effects on MT networks, and cells were indistinguishable from GFP-transfected controls
(Fig.8B). Notably, we observed that Efa6-ΔNterm::GFP induced strong membrane ruffling, as
we had similarly observed with the full length construct of Efa6 and human PSD(1) (Fig.
S8B,D,E). This suggests conserved roles of the C-terminus in cortical actin regulation,
because also the human Efa6 homologues PSD(1) and PSD4 use their C-terminal PH and
CC domains to induce actin cytoskeletal re-organisation and membrane ruffle formation, as
observed in TRVb-1 and baby hamster kidney cells (Derrien et al., 2002; Franco et al., 1999;
Macia et al., 2008).

To sum up, our fibroblast studies confirm the expected membrane-tethered nature of the
CAAX and full length variants of Efa6, whereas the the ΔCterm or Nterm versions clearly
localise to the cytoplasm (and nucleus). Studies in both fibroblasts and neurons consistently
reveal that the membrane-tethered versions cause far milder MT-eliminating effects. Since we
found no MT-eliminating activity in the C-terminus, all our findings are in agreement with a
model where endogenous Efa6 displays MT-eliminating functionality in its N-terminus which is
restricted to the cortex via its C-terminus.

The putative PDZ domain and functional SxIP motifs are not required for MT elimination

We next aimed to identify the motifs in the N-terminus required for MT elimination. The N-
terminus half of the Drosophila Efa6 protein is mostly unstructured and comprises almost 900
amino acids (aa), which is unusually long compared to most other species (Figs. 8A,C and
S4A). Our CAAX-related experiments with the 410 aa long Efa6-Nterm::GFP variant had
already shown that most if not all MT-eliminating function localises to this stretch of the protein
which contains three different domains/motifs (Fig.8A,B): a putative PDZ domain (aa16-88),
two SxIP motifs surrounded by positive charges (aa 233-6 and 262-5), and a motif of 18aa
displaying 89% similarity with a motif in the N-terminus of CeEfa6 (O'Rourke et al., 2010).

Of these, PDZ domains usually provide anchorage to transmembrane proteins (Ponting et al.,
1997), but might not do so in Efa6 because the N-terminus seems to fail to attach to
membranes in neurons and fibroblasts (Fig.S6C,D). Furthermore, detailed phylogenetic
analyses of the N-terminus, revealed that the PDZ-like domain seems to be a feature mainly
of insect versions of Efa6 (Fig.S4A). We therefore did not analyse it further.

SxIP motifs tend to mediate binding to Eb1 if surrounded by positive charges (Honnappa et
al., 2009), and such a function could potentially aid in capturing MTs for elimination. The SxIP
sites of Efa6 seem indeed to be functional, since we found that fibroblasts expressing Efa6-
Nterm::GFP displayed clear cases of MT tip tracking behaviour, but only in some very rare
cases where MTs had not yet been abolished by the construct (Suppl. Movies not available
here).

To test whether these SxIP motifs are relevant for MT-eliminating functions of Efa6, we
generated an Efa6-NtermΔSxIP::GFP variant in which the two motifs were replaced by four
alanines, respectively. Live imaging of fibroblasts transfected with this construct never
revealed any tip tracking, but all other properties of this construct were comparable to Efa6-
Nterm::GFP: it showed the same cytoplasmic and nuclear localisation in fibroblasts and was
found in all compartments of primary Drosophila neurons; in both systems it had the same
drastic MT-eliminating effects (Figs.8B, S5E, S6E).

Therefore, Eb1 interaction does not appear to be a major requirement for Efa6-mediated MT
elimination. In agreement with this finding, SxIP motifs are also not widely conserved in other
species, and we could only identify them in a subset of insects (primarily flies) and molluscs,
and a derived SxLP motif in a number of vertebrate/mammalian species (Fig. S4A).
A conserved N-terminal motif is crucial for MT-elimination

We next analysed the conserved 18aa motif, because its worm homologue is known to display MT-eliminating properties (O’Rourke et al., 2010). To assess potential roles of this putative MT-eliminating domain (MTED) in the Drosophila Efa6 N-terminus, we generated two further expression constructs (Fig. 8B): Efa6-Nterm\(^{\text{MTED-GFP}}\) (truncated immediately before the MTED-encoding sequence) and Efa6-MTED-GFP (encoding only the MTED).

Similar to Efa6-Nterm::GFP, both proteins localised throughout cell bodies and axons when transfected into neurons (Fig.S5D,F,G), and to the cytoplasm and nucleus when expressed in fibroblasts (Fig.S6D,F,G). However, the phenotypes they induced were very different from each other - but consistent between neurons and fibroblasts (Fig.8B): Efa6-Nterm\(^{\text{MTED-GFP}}\) caused no obvious phenotypes (Figs.S5F, S9G), whereas MTED::GFP alone was sufficient to cause severe loss of axons and entire MT networks in fibroblast, although these effects were slightly milder than with Efa6-Nterm::GFP (Figs.S5D, 8B and S9D). Notably, transfection rates with Efa6-MTED-GFP in fibroblasts were consistently very low and cell densities were reduced compared to controls, suggesting that MTED induces cell lethality through an unknown mechanism. Notwithstanding, our data clearly indicated MTED as a key motif required for Efa6-induced MT elimination.

Surprisingly, our phylogenetic analyses revealed that also the MTED domain was not well conserved across the animal kingdom; it was predicted primarily for nematodes, arthropods and molluscs (Fig. S4A). To test, whether the presence of a MTED motif correlates with MT-eliminating capabilities, we used a whole range of different constructs: full length versions of CeEfa6, Drosophila Efa6 and all four human PSDs (Fig. 8C), as well as Nterm versions of CeEfa6, fly Efa6 and human PSD(1) (Fig. 8D). Furthermore, we deduced a MTED consensus sequence from 39 Efa6 genes (details in Fig.S4B, Suppl. Tab. not available here), identified the most likely human MTED-like sequence [position 31-49aa of PSD(1); Fig. 8A] and synthesised codon optimised versions of the human as well as the fly and worm MTEDs (Fig. 8E).

When transfected into fibroblasts, we found a clear correlation: all three fly and all three worm constructs had strong MT eliminating properties, whereas none of the 6 human constructs (PSD1-4 full length, PSD(1)-Nterm, PSD(1)-MTED) showed any such effect (Fig.8C-E).

Therefore, the presence of a well conserved canonical MTED seems to be a good predictor for MT eliminating capabilities of Efa6 proteins.

We next aimed to unravel the mechanism through which MTEDs act, and carried out a series of experiments. However, experiments with purified Efa6-Nterm::GFP as well as synthetically generated MTED were not able to reproduce MT-destabilising functions in two independent in vitro assays. Firstly, we observed that Efa6-\(\Delta\)cterm::GFP and the positive control protein MCAK::GFP (a MT-destabilising kinesin) both bound to GMPCPP-stabilised MTs, but only MCAK caused MT destabilisation (Fig.S10A,B). Secondly, also in Xenopus oocyte extracts only MCAK caused destabilisation (Fig.S10C,D); this was surprising because mRNA injections of Efa6-Nterm-GFP mRNA into Xenopus eggs generated cell division defects (Fig.S1F). Therefore, MT defects seem to occur when the construct is expressed in Xenopus oocytes in vivo (as is true for Drosophila neurons and mouse fibroblasts), but cannot be reproduced when using purified proteins in the context of the same cytoplasm (or using GMPCPP-stabilised MTs).

Taken together, Efa6-mediated MT elimination is driven solely or primarily by the MTED motif, through a mechanism that remains elusive at present. Although this motif and its functions are
restricted to invertebrates, the morphological and sub-cellular phenotypes associated with
Efa6-mediated MT elimination in Drosophila neurons provide conceptual understanding that
can serve as a paradigm for mammalian cortical collapse factors and their contributions to
disease-relevant aspects of axon morphology and maintenance (e.g. Kif21A; see Discussion).

Efa6 and Shot cooperate in MT bundle formation and maintenance
As a fundamental conceptual model for axonal MTs, we recently introduced the hypothesis of
"local axon homeostasis". It proposes that the high-force environment inside axons causes
MTs to become disorganised by default, and that MT regulators are required to 'tame' them
into bundles (Prokop, 2016; Voelzmann et al., 2016a). In this model, the cortical MT-
elimination function of Efa6 could serve as a quality control mechanism, eliminating off-track
MTs that have accidentally left the bundle.

To test this possibility, we made use of spectraplakins, which are the most prominent neuronal
factors required for the bundled organisation of axonal MTs in mammals and fly (Bernier and
Kothary, 1998; Dalpe et al., 1998; Sánchez-Soriano et al., 2009; Voelzmann et al., 2017). In
Drosophila, spectraplakins are represented by the single short stop (shot) gene, and its
functional loss in Drosophila primary neurons was shown to cause a severe increase in axonal
off-track MTs (Alves-Silva et al., 2012). Accordingly, we found that the MDI value of shot0
mutant neurons was rather high (239% ± 14SEM normalised to wild-type controls) compared
to the Efa6Gx6[w3] mutant phenotype at that same stage (155% ± 14SEM ; Fig. 4M). When
combining both mutations in shot0 Efa6Gx6[w3] double mutant neurons (416% ± 24SEM), MT
disorganisation was even further increased. This suggests complementary functions of both
proteins, consistent with our hypothesis that Efa6 can ameliorate shot mutant phenotypes by
eliminating a substantial fraction of the aberrant off-track MTs caused by loss of Shot; the fact
that Shot deficiency alone shows MT disorganisation, might indicate that the cortical
elimination function of Efa6 becomes saturated by the sheer amount of off-track MTs in these
neurons (Fig. 9; see Discussion).

In a complementary strategy, we expressed Efa6-RNAi in a shot0/+ heterozygous mutant
background, and found that the MDI was clearly enhanced at both 6 HIV and 5 DIV when
compared to knock-down in wild-type background (Fig. 4L). This enhancement was also
observed in vivo in our optic lobe model where MTs are labelled with α-tubulin84B-GFP in a
subset of lamina neurons (Fig.4L). In our original experiment, we knocked down Efa6
specifically in these neurons and found an increase in axons with unbundled MTs (Fig.5B, E).
Here we combined Efa6 knock down in those neurons with a heterozygous shot mutant
background and found a strong enhancement in axon swellings with MT disorganisation, as
compared to Efa6 knock-down or shot0/+ heterozygous condition alone (Fig.5). These data
suggest that Efa6 and Shot perform complementary functions that contribute to axonal MT
bundle maintenance also in vivo.

Discussion

Efa6 is an essential component of the machinery that regulates MT behaviours underpinning
axon morphology

Axons are the structures that wire the brain, fundamental to nervous system function. To
understand how axons are formed during development, maintained in a plastic state thereafter but also pushed into degeneration by pathological conditions, we need more profound knowledge of the dynamics of the MT bundles at their core, and how they are regulated by MT-binding proteins (Voelzmann et al., 2016a). Here we show that the cortical collapse factor Efa6 is required for these bundled MT arrangements. We propose that Efa6 acts as a quality control factor which eliminates off-track MTs that extend away from the MT bundle towards the axonal plasma membrane. We propose this function to impact on axon growth, branching and axonal MT bundle maintenance.

Various complementary observations support our conclusions: (1) In neurons, loss of Efa6 causes an increase in Eb1 comet numbers specifically in GCs, and a rise in MTs entering filopodia throughout axons. (2) Upon loss of Efa6, MTs have longer half-lives and gradually arrange into winding trajectories instead of parallel ones. (3) Over-expression of Efa6-FL::GFP fundamentally inverts the above phenotypes. (4) Speed and antero- versus retrograde directionality of MT polymerisation events are unaffected in Efa6-deficient neurons, indicating that Efa6 is not an instructive regulator of these events. (5) Structure-function analyses of Efa6 in neurons and fibroblasts demonstrate that its MT-elimination function occurs compartmentalised at the membrane.

Figure 10 demonstrates how all these findings can be integrated into a consistent model, based on our current knowledge of MT behaviours in GCs (Dent and Gertler, 2003; Prokop et al., 2013) and in axon shafts (Fig.9A) (Prokop, 2016; Voelzmann et al., 2016a). We propose that Efa6-mediated cortical MT elimination exists in a well-balanced equilibrium, sufficient to eliminate occasional off-track MTs (thus preventing MT disorganisation), but still permitting intended morphogenetic changes, such as axon growth or branching. Both these morphogenetic events are enhanced upon loss of Efa6 and reduced upon Efa6 over-expression, further illustrating the balanced nature of the system. Such a model where active mechanisms maintaining MTs in bundles protect them against cortical collapse would also solve the long known conundrum of how axonal MTs extend hundreds of micrometres in the immediate vicinity of the cell cortex in axons, whereas they tend to interact with the cortex in non-neuronal cells by being either eliminated or captured (Fukata et al., 2002; Kaverina et al., 1998).

Roles of Efa6 during axonal growth, branching and MT bundle maintenance

In the case of axon growth, MTs constantly polymerise towards the periphery of GCs and a fraction of them overcomes elimination and enters filopodia; such events may also be actively regulated by guidance mechanisms, such as actin-MT cross-linkage mediated by spectraplakins or drebrin-Eb3 (Alves-Silva et al., 2012; Geraldo et al., 2008). MTs entering filopodia have the chance of actively contributing to axon extension; this is consistent with the widely accepted protrusion-engorgement-consolidation model of axon growth which proposes that stabilised MTs in filopodia can seed axon elongation events (Aletta and Greene, 1988; Goldberg and Burmeister, 1986; Prokop et al., 2013). Loss of Efa6 would favour this mode of growth (and thus explain increased axon lengths observed in these neurons) in two ways: firstly through allowing more MTs to enter filopodia and, secondly, by allowing them to dwell in filopodia for longer thus enhancing the likelihood of their stabilisation (yellow arrows in Fig.9C). This scenario could also explain why loss of Efa6 in C. elegans improves axon re-growth after injury and growth overshoot during development (Chen et al., 2015; Chen et al., 2011). Furthermore, it provides a potential mechanism for enhanced branching of Efa6-deficient neurons, since entry of multiple MTs in different filopodia at the same time may
cause simultaneous growth events in the same GC, thus leading to GC splitting as one mode of branch formation (yellow arrows in Fig.9C) (Acebes and Ferrus, 2000).

Axon branching can also occur along axon shafts, although inhibitory mechanisms at the shaft's cortex (including Efa6) as well as MT bundling mechanisms seem to prevent this from happening randomly (Fig.9A). Accordingly, current models propose that collateral branching requires the active generation (e.g. through MT severing) and then stabilisation of off-track MTs that can enter shaft filopodia (Kalil and Dent, 2014; Lewis et al., 2013; Yu et al., 2008). This scenario bears reminiscence with our observations in Efa6 deficient neurons: we find greater numbers of MTs in shaft filopodia at 6 HIV, which then correlate with enhanced axonal branch numbers in mature neurons - both in culture and in vivo in the adult brain (red arrow in Fig.9C); this effect was inverted upon Efa6 over-expression. Therefore, also interstitial branch formation may contribute to the observed Efa6 mutant phenotypes. It remains to be seen whether branching events require active regulation of Efa6, for example through signalling events triggering sub-cellular re-localisation of Efa6 away from this site (Chen et al., 2015), or the functional inactivation of Efa6. But the simplest mode would be that Efa6 is homogeneously distributed at well-balanced concentrations, so that the sheer increase in off-track MTs can outnumber Efa6-mediated elimination (Fig.9D).

This latter model view is supported by increased off-track MTs in shot mutant neurons: Efa6 can eliminate many but not all of these, as is indicated by strong MT disorganisation in single shot mutant conditions which becomes enhanced when Efa6 is taken out in addition (shot Efa6 double-mutant neurons). Such a scenario would also explain the shortened lifetime of MT comets observed in shot mutant neurons (Alves-Silva et al., 2012), potentially caused by the MT-eliminating functions of Efa6. In this scenario, it makes sense that loss of Shot causes substantial MT disorganisation from early development onwards. In contrast, off-track MTs are rare events in the presence of Shot so that Efa6-deficient phenotypes are initially modest; but off-track MTs are given the chance to persist and accumulate over time, thus leading to gradual increase in MT disorganisation (Fig.4L,J). We therefore propose that Efa6 plays a continued role in MT quality control, from developmental stages onwards right through into the late adult stage. Persistent quality control is required because MT polymerisation continues in mature neurons as a mechanism to prevent senescence of axonal MT bundles (Qu et al., 2017; Voelzmann et al., 2016a). Such a model of continued quality control is supported by our finding that Efa6 is expressed at all these stages on the one hand (Fig. 1), and by the late onset of MT disorganisation upon delayed knock-down in mature neurons on the other (Fig. 4K).

Clearly, the MT disorganisation phenotypes are far less pronounced in vivo than in culture, but this is expected when considering that axons in vivo tend to be arranged into closely adhered nerve tracts and surrounded by glial cells, i.e. have a much more rigid plasma membrane and cortex, able to resist MTs pushing out to form swellings and areas of disorganisation.

Evolutionary and mechanistic considerations of Efa6 function

We found that the mammalian Efa6 proteins encoded by four PSD genes, do not contain a canonical MTED and lack any MT collapse function. However, we propose that comparable functional contributions are taken over by different types of cortical MT collapse factors. For example, the kinesin-4 family member Kif21A was shown to act as a cortical collapse factor and is expressed throughout neurons in mammals (van der Vaart et al., 2013). The R954W mutation of Kif21A links to the eye movement disorder 'congenital fibrosis of extraocular
muscles' (OMIM reference #135700) (Tiab et al., 2004) and was shown to cause a shift of the protein's localisation in cultured hippocampal neurons from axons towards GCs, expected to cause a loss-of-function condition in the axon and gain-of-function in GCs (van der Vaart et al., 2013). Increased protein levels in GCs correlate with reduced axon growth (as similarly observed with Efa6 over-expression); decreased levels in proximal axons correlate with a local increase in side branches (as similarly observed upon Efa6 loss-of-function). Therefore, our findings with Efa6 can serve as a paradigm to guide research into the disease-relevant roles of cortical collapse factors in higher organisms.

Our studies together with previous work on CeEfa6 (O'Rourke et al., 2010) clearly indicate a central role for the MTED in MT elimination, but the molecular mechanisms through which they perform this function remain unfortunately elusive for now. In principle, MT elimination can occur from their ends (like kinesin-8 or the kinesin-13 Kif2/MCAK) (Brouhard and Rice, 2014) or by destroying MTs along their shafts (like katanin or spastin) (Sharp and Ross, 2012). It can be achieved by depolymerisation, severing, buckling and breaking, or extrusion of tubulins along their shafts. Since the MTED is only a very short peptide, it would not be surprising if it acted indirectly through activating MT destabilisers or inhibiting MT polymerisers, which is why we complemented our in vitro analyses with studies in Xenopus oocyte extracts (Fig. S10C). But it could also block MT polymerisation processes by binding tubulins directly. In any case, the small size of MTEDs might come in handy as experimental tools to eliminate MTs, with potentially complementary properties to existing factors such as kinesin-13s (Moore et al., 2005; Schimizzi et al., 2010), Statmin (Marklund et al., 1996), Spastin or Katanin (Eckert et al., 2012; Trolta et al., 2004).

In contrast, other regions of the Efa6 N-terminus are poorly conserved even among invertebrates and seem not to contribute to MT elimination in prominent ways. For example, SxIP sites of Efa6 mediate plus end tracking (Fig.5), and MT plus end capture seemed an attractive candidate mechanism to facilitate cortical MT collapse. However, we found the SxIP sites to be dispensable for MT elimination (Fig.8B), and our in silico analyses of Efa6 proteins failed to reveal any other Eb1-binding motifs, such as CAP-Gly or LxxPTPh sites (Akhmanova and Steinmetz, 2008; Kumar et al., 2017). The scenario for Efa6 appears therefore comparable to that of MCAK which is a prominent tip-tracker but does not require this property for its MT depolymerising activity (Moore et al., 2005).

However, the C-terminal domains of Efa6 seem to display some degree of functional conservation. So far, work on mammalian PSDs has revealed functions for C-terminal domains in regulating ARF6, ARF1 or ARL14 during actin cytoskeletal reorganisation and membrane ruffling, tumour formation and immune regulation (Derrien et al., 2002; Paul et al., 2011; Pilis et al., 2005). Our finding that PSD(1) and C-terminal Efa6 constructs cause similar membrane ruffling phenotypes in fibroblasts (Figs.S6 and S8) suggests that some conserved functions reside in this region and might contribute, together with N-terminally mediated MT collapse, to the neuronal or non-neuronal defects that cause semi-lethality displayed by Efa6 mutant flies (data not shown).

Main conclusions and future perspectives

We propose Efa6 to act as a cortical collapse factor which is important for the regulation of axonal MTs and, in turn, axon growth, maintenance and branching. Although this function is evolutionarily not widely conserved, our findings provide a helpful paradigm for studies on other classes of cortical collapse factors also in mammalian neurons. Further important
research avenues will be to identify the mechanism of Efa6-mediated MT elimination, not only to better understand how it can be regulated in axons but also to explore potential roles for MTEDs as molecular tools in cell biological research.

Acknowledgements

This work was made possible through funding by the BBSRC (BB/I002448/1, BB/P020151/1, BB/L000717/1, BB/M007553/1) to A.P., by parents as well as the Faculty of Life Sciences to Y.Q., by the Leverhulme Trust to I.H. (ECF-2017-247), by the German Research Council (DFG) to A.V. (VO 2071/1-1), and by the BBSRC to N.S.S. (BB/M007456/1) and KD (BB/J005983/1). The Manchester Bioimaging Facility microscopes used in this study were purchased with grants from the BBSRC, The Wellcome Trust and The University of Manchester Strategic Fund. The Fly Facility has been supported by funds from The University of Manchester and the Wellcome Trust (087742/Z/08/Z). We thank Tom Millard and Marvin Bentley for very helpful comments on the manuscript, Simon Lowell for advice on the phylogenetic analyses, Hiro Ohkura for kindly providing DmEb1 antibody and Andrew Chisholm for the C.elegans Efa6 and human PSD constructs. Stocks obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) were used in this study.

References

Abascal, F., Zardoya, R., and Posada, D. (2005). ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104-2105.
Acebes, A., and Ferrus, A. (2000). Cellular and molecular features of axon collaterals and dendrites. Trends Neurosci 23, 557-565.
Adalbert, R., and Coleman, M.P. (2012). Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 39, 90–108.
Akhmanova, A., and Steinmetz, M.O. (2008). Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 9, 309-322.
Aletta, J.M., and Greene, L.A. (1988). Growth cone configuration and advance: a time-lapse study using video-enhanced differential interference contrast microscopy. J Neurosci 8, 1425-1435.
Allan, V.J. (1993). Assay of membrane motility in interphase and metaphase Xenopus extracts. Methods Cell Biol 39, 203-226.
Allan, V.J., and Vale, R.D. (1991). Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J Cell Biol 113, 347-359.
Alves-Silva, J., Sánchez-Soriano, N., Beaven, R., Klein, M., Parkin, J., Millard, T., Bellen, H., Venken, K.J.T., Ballester, C., Kammerer, R.A., et al. (2012). Spectraplakins promote microtubule-mediated axonal growth by functioning as structural microtubule-associated proteins and EB1-dependent +TIPs (Tip Interacting Proteins). J Neurosci 32, 9143-9158.
Bernier, G., and Kothary, R. (1998). Prenatal onset of axonopathy in Dystonia musculorum mice. Dev Genet 22, 160-168.
Bettencourt da Cruz, A., Schwarzel, M., Schulze, S., Niyiati, M., Heisenberg, M., and Kretzschmar, D. (2005). Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila. Mol Biol Cell 16, 2433-2442.
Brouhard, G.J., and Rice, L.M. (2014). The contribution of aß-tubulin curvature to microtubule dynamics. J Cell Biol 207, 323-334.
Chen, L., Chuang, M., Koorman, T., Boxem, M., Jin, Y., and Chisholm, A.D. (2015). Axon injury triggers EFA-6 mediated destabilization of axonal microtubules via TACC and doublecortin like kinase. eLife 4, e08695.

Chen, L., Wang, Z., Ghosh-Roy, A., Hubert, T., Yan, D., O’Rourke, S., Bowerman, B., Wu, Z., Jin, Y., and Chisholm, A.D. (2011). Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71, 1043-1057.

Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res 14, 1188-1190.

D’Souza-Schorey, C., and Chavrier, P. (2006). ARF proteins: roles in membrane traffic and beyond. Nature Rev Molec Cell Biol 7, 347.

Dalpe, G., Leclerc, N., Vallee, A., Messer, A., Mathieu, M., De Repentigny, Y., and Kothary, R. (1998). Dystonin is essential for maintaining neuronal cytoskeleton organization. Mol Cell Neurosci 10, 243-257.

Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164-1165.

Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G. (2011). Axon physiology. Physiol Rev 91, 555-602.

Eckert, T., Le, D.T.-V., Link, S., Friedmann, L., and Woehlke, G. (2012). Spastin's microtubule-binding properties and comparison to katanin. PLoS One 7, e50161.

Elliott, S.L., Cullen, C.F., Wrobel, N., Kernan, M.J., and Ohkura, H. (2005). EB1 is essential during growth cone motility and axon guidance. Neuron 40, 209-227.

Dent, E.W., and Gertler, F.B. (2003). Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Cold Spring Harb Perspect Biol 3, a001800.

Dent, E.W., Gupton, S.L., and Gertler, F.B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 3, 555-597.

Derrien, V., Couillault, C., Franco, M., Martineau, S., Montcourrier, P., Houlgatte, R., and Chavrier, P. (2002). A conserved C-terminal domain of EFA6-family ARF6-guanine nucleotide exchange factors induces lengthening of microvilli-like membrane protrusions. Journal of cell science 115, 2867-2879.

Eckert, T., Le, D.T.-V., Link, S., Friedmann, L., and Woehlke, G. (2012). Spastin's microtubule-binding proteins and comparison to katanin. PLoS One 7, e50161.

Elliott, S.L., Cullen, C.F., Wrobel, N., Kernan, M.J., and Ohkura, H. (2005). EB1 is essential during Drosophila development and plays a crucial role in the integrity of chordotonal mechanosensory organs. Mol Biol Cell 16, 891-901.

Fang, Y., and Bonini, N.M. (2012). Axon degeneration and regeneration: insights from Drosophila models of nerve injury. Annu Rev Cell Dev Biol 28, 575-597.

Fassier, C., Tarrade, A., Peris, L., Courageot, S., Mailly, P., Dalard, C., Delga, S., Roblot, N., Lefevre, J., Job, D., et al. (2013). Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech 6, 72-83.

Fiala, J.C., Feinberg, M., Peters, A., and Barbas, H. (2007). Mitochondrial degeneration in dystrophic neurites of senile plaques may lead to extracellular deposition of fine filaments. Brain Struct Funct 212, 195-207.

Franco, M., Peters, P.J., Boretto, J., van Donselaar, E., Neri, A., D’Souza-Schorey, C., and Chavrier, P. (1999). EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 18, 1480-1491.

Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885.

Geraldo, S., Khanzada, U.K., Parsons, M., Chilton, J.K., and Gordon-Weeks, P.R. (2008). Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol 10, 1181-1189.

Goldberg, D.J., and Burmeister, D.W. (1986). Stages in axon formation: observations of growth of Aplysia axons in culture using video-enhanced contrast-differential interference contrast microscopy. J Cell Biol 103, 1921-1931.

Goujon, M., McWilliam, H., Li, W., Valentijn, F., Squizzato, S., Paern, J., and Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38, W695-699.

Grieder, N.C., de Cuevas, M., and Spradling, A.C. (2000). The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253-4264.

Han, M.V., and Zmasek, C.M. (2009). phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10, 356.
Hancock, J.F., Cadwaller, K., Paterson, H., and Marshall, C.J. (1991). A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10, 4033-4039.

Hassan, B.A., Bermingham, N.A., He, Y., Sun, Y., Jan, Y.N., Zoghi, H.Y., and Bellen, H.J. (2000). atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 25, 549-561.

Heasman, J. (2006). Patternning the early Xenopus embryo. Development 133, 1205-1217.

Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., and Howard, J. (2006). The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends. Nature 441, 115-119.

Hinrichs, M.H., Jalal, A., Brenner, B., Mandelkow, E., Kumar, S., and Scholz, T. (2012). Tau protein diffuses along the microtubule lattice. J Biol Chem 287, 38559-38568.

Honnappa, S., Gouveia, S.M., Weisbrich, A., Damberger, F.F., Bhavesh, N.S., Jawhari, H., Grigoriev, I., van Rijssel, F.J., Buey, R.M., Lawera, A., et al. (2009). An EB1-binding motif acts as a microtubule tip localization signal. Cell 138, 366-376.

Huang, J., Zhou, W., Dong, W., Watson, A.M., and Hong, Y. (2009). From the Cover: Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc Natl Acad Sci U S A 106, 8284-8289.

Kalil, K., and Dent, E.W. (2014). Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci 15, 7-18.

Kaverina, I., Rottner, K., and Small, J.V. (1998). Targeting, capture, and stabilization of microtubules at early focal adhesions. J Cell Biol 142, 181-190.

Kolodziej, P.A., Jan, L.Y., and Jan, Y.N. (1995). Mutations that affect the length, fasciculation, or ventral orientation of specific sensory axons in the Drosophila embryo. Neuron 15, 273-286.

Krieg, M., Stühmer, J., Cueva, J.G., Fetter, R., Spilker, K., Cremers, D., Shen, K., Dunn, A.R., and Goodman, M.B. (2017). Genetic defects in β-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling. Elife 6, e20172.

Kumar, A., Manatschal, C., Rai, A., Grigoriev, I., Degen, M.S., Jaussi, R., Kretzschmar, I., Prota, A.E., Volkmer, R., Kammerer, R.A., et al. (2017). Short Linear Sequence Motif LxxPTPh Targets Diverse Proteins to Growing Microtubule Ends. Structure 25, 924-932 e924.

Küppers-Munther, B., Letzkus, J., Lüer, K., Technau, G., Schmidt, H., and Prokop, A. (2004). A new culturing strategy optimises Drosophila primary cell cultures for structural and functional analyses. Dev Biol 269, 459-478.

Lewis, T.L., Jr., Courchet, J., and Polleux, F. (2013). Cell biology in neuroscience: Cellular and molecular mechanisms underlying axon formation, growth, and branching. J Cell Biol 202, 837-848.

Lowery, L.A., and van Vactor, D. (2009). The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10, 322-343.

Luo, L., Liao, Y.J., Jan, L.Y., and Jan, Y.N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787-1802.

Macia, E., Partisani, M., Favard, C., Mortier, E., Zimmermann, P., Carlier, M.F., Gounon, P., Luton, F., and Franco, M. (2008). The pleckstrin homology domain of the Arf6-specific exchange factor EFA6 localizes to the plasma membrane by interacting with phosphatidylinositol 4,5-bisphosphate and F-actin. J Biol Chem 283, 19836-19844.

Marklund, U., Larsson, N., Gradin, H.M., Brattsand, G., and Gullberg, M. (1996). Oncoprotein 18 is a phosphorylation-responsive regulator of microtubule dynamics. EMBO J 15, 5290-5298.

McWilliam, H., Li, W., Uludag, M., Squirizzato, S., Park, Y.M., Buso, N., Cowley, A.P., and Lopez, R. (2013). Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res 41, W597-600.

Medana, I.M., and Esiri, M.M. (2003). Axonal damage: a key predictor of outcome in human CNS diseases. Brain 126, 515-530.

Moore, A.T., Rankin, K.E., von Dassow, G., Peris, L., Wagenbach, M., Ovechkina, Y., Andrieux, A., Job, D., and Wordeman, L. (2005). MCAK associates with the tips of polymerizing microtubules. J Cell Biol 169, 391-397.

O'Rourke, S.M., Christensen, S.N., and Bowerman, B. (2010). Caenorhabditis elegans EFA-6 limits microtubule growth at the cell cortex. Nat Cell Biol 12, 1235-1241.

Patel, J.T., Belsham, H.R., Rathbone, A.J., Wickstead, B., Gell, C., and Friel, C.T. (2016). The familiespecific alpha4-helix of the kinesin-13, MCAK, is critical to microtubule end recognition. Open Biol 6.
Paul, P., van den Hoor, T., Jongsm, Marlieke L.M., Bakker, Mark J., Hengeveld, R., Janssen, L., Cresswell, P., Egan, David A., van Ham, M., ten Brinke, A., et al. (2011). A Genome-wide Multidimensional RNAi Screen Reveals Pathways Controlling MHC Class II Antigen Presentation. Cell 145, 268-283.

Pils, D., Horák, P., Gleiss, A., Sax, C., Fabjani, G., Moebus, V.J., Zielinski, C., Reinhall, A., Zeilinger, R., and Krainer, M. (2005). Five genes from chromosomal band 8p22 are significantly down-regulated in ovarian carcinoma. Cancer 104, 2417-2429.

Ponting, C.P., Phillips, C., Davies, K.E., and Blake, D.J. (1997). PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19, 469-479.

Prokop, A. (2013a). The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neur Dev 8, 17.

Prokop, A. (2013b). A rough guide to Drosophila mating schemes. figshare, dx.doi.org/10.6084/m6089.figshare.106631.

Prokop, A. (2016). Fruit flies in biological research. Biological Sciences Review 28, 10-14.

Prokop, A., Beaven, R., Qu, Y., and Sánchez-Soriano, N. (2013). Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 126, 2331-2341.

Prokop, A., Küppers-Munther, B., and Sánchez-Soriano, N. (2012). Using primary neuron cultures of Drosophila to analyse neuronal circuit formation and function. In The making and un-making of neuronal circuits in Drosophila, B.A. Hassan, ed. (New York, Humana Press), pp. 225-247.

Prokop, A., and Meinertzhagen, I.A. (2006). Development and structure of synaptic contacts in Drosophila. Semin Cell Dev Biol 17, 20-30.

Qu, Y., Hahn, I., Webb, S.E.D., Pearce, S.P., and Prokop, A. (2017). Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 28 296-308.

Robinow, S., and White, K. (1991). Characterization and spatial distribution of the Elav protein during Drosophila melanogaster development. J Neurobiol 22, 443-461.

Rogers, S.L., Rogers, G.C., Sharp, D.J., and Vale, R.D. (2002). Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol 158, 873-884.

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., and Huelsenbeck, J.P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61, 539-542.

Sánchez-Soriano, N., Gonçalves-Pimentel, C., Beaven, R., Haessler, U., Ofner, L., Ballestrem, C., and Prokop, A. (2010a). Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Neuron 2009 (Bristol).

Sánchez-Soriano, N., Gonçalves-Pimentel, C., Beaven, R., and Prokop, A. (2010b). Using Drosophila growth cones to dissect F-actin network regulation at the cellular level. Paper presented at: Actin assembly, dynamics and positioning during neuronal organisation during neuronal growth. Journal of cell science 122, 2534-2542.

Schimid, G.V., Currie, J.D., and Rogers, S.L. (2010). Expression levels of a kinesin-13 microtubule depolymerase modulates the effectiveness of anti-microtubule agents. PLoS One 5, e11381.

Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9. 676-682.

Seibel, N.M., Eljouni, J., Nalaskowski, M.M., and Hampe, W. (2007). Nuclear localization of enhanced green fluorescent protein homomultimers. Analytical Biochemistry 368, 95-99.

Sharp, D.J., and Ross, J.L. (2012). Microtubule-severing enzymes at the cutting edge. Journal of cell science 125, 2561-2569.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539.

Stefana, M.I., Driscoll, P.C., Obata, F., Pengelly, A.R., Newell, C.L., MacRae, J.I., and Gould, A.P. (2017). Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 8, 1384.

Tarrade, A., Fassier, C., Courageot, S., Charvin, D., Vitte, J., Peris, L., Thorel, A., Mouisel, E., Fonknechten, N., Roblot, N., et al. (2006). A mutation of spastin is responsible for swellings and
impairment of transport in a region of axon characterized by changes in microtubule composition. Hum Mol Genet 15, 3544-3558.

Tiab, L., Manzi, V.d.A., Bornrat, F.-X., Munier, F., and Schorderet, D. (2004). Mutation analysis of KIF21A in congenital fibrosis of the extraocular muscles (CFEOM) patients. Ophthalmic Genetics 25, 241-246.

Trotta, N., Orso, G., Rossetto, M.G., Daga, A., and Broaddie, K. (2004). The hereditary spastic paraplegia gene, spastin, regulates microtubule stability to modulate synaptic structure and function. Current Biology 14, 1135-1147.

Vale, R.D., and Toyoshima, Y.Y. (1988). Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459-469.

van der Vaart, B., van Riel, Wilhelmina E., Doodhi, H., Kevenaar, Josta T., Katrukha, Eugene A., Gumy, L., Bouchet, Benjamin P., Grigoriev, I., Spangler, Samantha A., Yu, Ka L., et al. (2013). CFEOM1-associated kinesin KIF21A is a cortical microtubule growth inhibitor. Developmental Cell 27, 145-160.

Voelzmann, A., Hahn, I., Pearce, S., Sánchez-Soriano, N.P., and Prokop, A. (2016a). A conceptual view at microtubule plus end dynamics in neuronal axons. Brain Res Bulletin 126, 222-237.

Voelzmann, A., Liew, Y.-T., Qu, Y., Hahn, I., Melero, C., Sánchez-Soriano, N., and Prokop, A. (2017). Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Sem Cell Dev Biol 69, 40-57.

Voelzmann, A., Okene-Ramos, P., Qu, Y., Chojnowska-Monga, M., del Caño-Espinel, M., Prokop, A., and Sánchez-Soriano, N. (2016b). Tau and spectraplakins promote synapse formation and maintenance through Jun kinase and neuronal trafficking. eLife 5, e14694.

Wang, J.T., Medress, Z.A., and Barres, B.A. (2012). Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196, 7-18.

Yu, W., Qiang, L., Solowska, J.M., Karabay, A., Korulu, S., and Baas, P.W. (2008). The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol Biol Cell 19, 1485-1498.

Zeidler, M.P., Tan, C., Bellaiche, Y., Cherry, S., Hader, S., Gayko, U., and Perrimon, N. (2004). Temperature-sensitive control of protein activity by conditionally splicing inteins. Nat Biotech 22, 871-876.

Zschätzsch, M., Oliva, C., Langen, M., De Geest, N., Ozel, M.N., Williamson, W.R., Lemon, W.C., Soldano, A., Munck, S., Hiesinger, P.R., et al. (2014). Regulation of branching dynamics by axon-intrinsic asymmetries in Tyrosine Kinase Receptor signaling. Elife 3, e01699.

Figures

Fig. 1 Efa6 is expressed throughout neurons at all developmental stages

A-E) Images of primary Drosophila neurons at 6HIV or 5DIV (at indicated bottom right), stained for tubulin (magenta) and GFP (green); control neurons are wild-type (wt) or express elav-Gal4-driven nuclear GFP (elav / nl-GFP), whereas further neurons are either derived from the endogenously tagged Efa6::GFP line or express Efa6-FL::GFP under the control of sca-Gal4 (sca / Efa6-FL::GFP); asterisks indicate cell bodies and arrow the axon tips. F-I)

Late larval CNSs at about 4d of development from egg lay (L3; F,G) and adult CNSs at over 10d of development (H,I) derived from control wild-type animals (wt) or the Efa6::GFP line (Efa6::GFP), stained for GFP and actin (Phalloidin, only larval preparations); OL, optic lobe; Br, central brain; vNC, ventral nerve cord. Scale bar in A represent 15µm in A-C, 25µm in D and E, 75µm in F and G, 130µm in H and I.

Fig. 2. Efa6 regulates axonal length and branch numbers in primary Drosophila neurons.

Examples of primary Drosophila neurons at 6HIV (A-C) or at 5DIV (E-H), all stained for actin
Efa6 regulates axon branching in the adult fly brain. A-F) Brains (medulla region of the optic lobe in oblique view) of young (2-5 d after eclosure; top) and old flies (15-18 d; bottom) driving UAS-‐myr-‐tdTomato via the ato-‐Gal4 driver in dorsal cluster neurons (example neurons are traced in magenta for axons and green for side branches); flies are either wild-‐type controls (left) or display ato-‐Gal4-‐driven knock-‐down of Efa6 (middle) or over-‐expression of Efa6-‐FL::GFP (right). G-H) Quantification of data for wild-‐type (wt; grey), Efa6 knock-‐down (blue) and Efa6-‐FL::GFP over-‐expression (green), displaying the number of primary branches per axon (G), all representing fold-‐change relative to wild-‐type controls (indicated as horizontal dashed "ctrl" line); data are shown as bars indicating mean ± SEM in G accompanied by single data point and binary score normalised to wt in H.; P values from Mann-‐Whitney or Chi² tests are respectively given above each column, sample numbers at the bottom of each bar.

Fig. 3. Efa6 helps to maintain axonal MT bundles in Drosophila neurons. A-H) Images of primary neurons at 6HIV (left), 5DIV (middle) and 10DIV (right), stained for tubulin (green) and actin (magenta), derived from embryos that were either wildtype (wt, A-C), Efa6 null mutant (D-F), homozygous for shotΔ (G) or shotΔ Efa6ΔNterm-‐CAAX::GFP double-‐mutant (shot Efa6) (H); arrows point at axon tip, arrow heads at areas of MT disorganisation, and asterisks indicate the cell bodies; the scale bar in A represents 10µm for 6HIV neurons and 25µm for 5DIV and 10DIV neurons. I-M) Quantitative analyses of MT disorganisation (measured as MT disorganisation index, MDI) in different experimental contexts (as indicated above graphs); different genotypes are colour-‐coded: grey, wild-‐type controls; blue, Efa6 loss-‐of-‐function; light/dark orange, shotΔ in hetero-‐/homozygosis; green, neurons over-‐expressing Efa-‐FL::GFP; data are shown as single data points and a bar indicating mean ± SEM, all representing fold-‐change relative to wild-‐type controls (indicated as horizontal dashed "ctrl" line); P values from Mann-‐Whitney tests in I, J) and Kruskal-‐Wallis one-‐way ANOVA with post hoc Dunn’s test in K-M) are given above each column, sample numbers at the bottom of each bar.

Fig. 5 Efa6 is required for axonal MT bundle maintenance in adult fly brains. A-C) Medulla region of adult brains at 26-‐27 days after eclosure, all carrying the GMR31F10-‐Gal4 driver and UAS-‐α-‐tubulin84B-‐GFP (GMR-‐tub) which together stain MTs in a subset of lamina neuron axons that terminate in the medulla; the other specimens co-‐express Efa6-‐RNAi either alone (GMR-‐tub-‐Efa6ΔR in B) or combined with a shotΔ heterozygous mutant background (GMR-‐tub-‐Efa6ΔR shotΔ in C); white/black arrows indicate axonal swellings without/with MT
disorganisation; rectangles outlined by red dashed lines are shown as 2.5 fold magnified insets where white arrow heads point at disorganised MTs; the scale bar in A represents 15μm in all images. D, E) Quantitative analyses of all axonal swelling (D) or swellings with MT disorganisation (E); different genotypes are colour-coded as indicated; bars show mean ± SEM, all representing fold-change relative to wild-type controls (indicated as horizontal dashed line); P values from Kruskal–Wallis one-way tests are given above each column, sample numbers at the bottom of each bar.

Fig. 6. Efa6 regulates MT behaviours in GCs. A-H) Examples of primary neurons at 6HIV which are either wild-type controls (top), Efa6-deficient (middle) or expressing Efa6-FL::GFP (bottom); neurons were either imaged live for Eb1::GFP (green in A,D) or fixed and labelled for Eb1 and tubulin (B,E,G; as colour-coded) or actin and tubulin (C,F,H; as colour coded; tubulin shown as single channel image on the right); asterisks indicate cell bodies, white arrows the tips of GCs, open arrows the tips of MT bundles and arrow heads MTs or Eb1 comets in filopodial processes; the GC in G is outlined with a white dashed line; scale bar in D represents 5μm in all images. I-M) Quantitative analyses of MT behaviours in GCs of such neurons as indicated above each graph (for axon shaft analyses see Fig. 7). Different genotypes are colour-coded: grey, wild-type controls; blue, different Efa6 loss-of-function conditions; green, neurons over-expressing Efa-FL; data are shown as single data points and a bar indicating mean ± SEM, all representing fold-increase relative to wild-type controls (indicated as horizontal dashed "ctrl" line); P values from Mann-Whitney tests are given above each column, sample numbers at the bottom of each bar. The graph in L shows percentages of neurons with (light shade) or without (dark shade) any MTs in GC filopodia; numbers above bars indicate P values from Chi² tests. Throughout the figure, data obtained from live analyses with Eb1::GFP are framed in red.

Fig. 7. Loss of Efa6 promotes MT entry into shaft filopodia. Quantitative analyses of MT behaviours in axon shafts, as indicated above each graph; bars are colour-coded: grey, controls; blue, different Efa6 mutant alleles; green, neurons over-expressing Efa-FL::GFP; red outlines indicate live imaging data, all others were obtained from fixed specimens. A-C,G,H) data all represent fold-change relative to wild-type controls (indicated as horizontal dashed "ctrl" line) and are shown as single data points and a bar indicating mean ± SEM; P values from Mann-Whitney tests are given above each column, sample numbers at the bottom of each bar. D-F) Percentages of antero- / retrograde comet movements (D), percentage of neurons harbouring at least one filopodium containing / lacking Eb1 comets (E) or containing / lacking tubulin-stained MTs (F); fractions indicated by light / dark shades as indicated; G) number of tubulin-stained MTs in shaft filopodia relative to axon length normalised to wildtype controls; H) number of axon shaft filopodia containing MTs (values relative to ctrl); numbers on top or at the upper limit of the bars indicate P values from Chi² tests.

Fig. 8. Efa6 domain and motif requirements for MT elimination in neurons and fibroblasts. A) Schematics of *Drosophila melanogaster* (*Dm*) Efa6 (isoform C, CG31158), *Caenorhabditis elegans* (*Ce*) Efa6 (isoform Y55D9A.1a) and *Homo sapiens* (human) PSD(1) (isoform 201/202, NP_002770.3), illustrating the positions (numbers indicate first and last residues) of the putative PSD95-Dlg1-ZO1 domain (PDZ), SxIP/SxLP motifs (SRIP, SQIP, SALP, SSLP), the MT-binding domain (MTED), SEC7 domain, plekstrin homology (PH) domain and coiled-
coil domain (CC). B) Schematics on the left follow the same colour code and show the *D.m.*
Efa6 constructs used in this study (dashed red lines indicate the last/first residue
before/behind the truncation). Bar graphs on the right show the impact that transfection of
these constructs had on axon loss in primary *Drosophila* neurons (dark grey in left graph) and
on MT loss in fibroblasts (dark grey or black as indicated); for respective images see F and G
and Fig. S9) Analogous fibroblast experiments as performed with *Drosophila* constructs were
performed with full length constructs of *C. elegans* Efa6 and human PSDs (C), with N-terminal
constructs (D) or synthetic MTEDs (E) of *Dm* and *CeEfa6* and of human PSD(1). Throughout
this figure, construct names are highlighted in red for *Drosophila*, light blue for *C. elegans* and
yellow for *Homo sapiens*; all graph bars indicate percentages of neurons with/without axons
(light/dark grey) and of fibroblasts with normal, reduced or absent MTs (light, medium, dark
grey, respectively); numbers in the left end of each bar indicate sample numbers, on the right
end the P values from Chi² tests relative to GFP controls; numbers on the right of bars in B
compare some constructs to Efa6-FL::GFP, as indicated by black lines. Primary neurons
expressing Efa6-FL::GFP transgenically and stained for tubulin (asterisks, cell bodies; white
arrows, axon tips; open arrow, absent axon). G-G") Fibroblasts expressing Efa6-FL::GFP and
stained for tubulin; curved arrows indicate areas where MTs are retracted from the cell
periphery; grey dots in F-G" indicate the phenotypic categories for each neuron and
fibroblasts, as used for quantitative analyses in the graphs above. Scale bar at bottom of F
refers to 10µm in F and 25µm in G.

Fig. 9. A model of the suggested roles of Efa6. A) The model of local axon homeostasis
(Prokop, 2016; Voelzmann et al., 2016a) states that axonal MTs (green bars) are actively kept
in bundles; for example, their continued polymerisation (1) mediated by plus end machinery
(blue circle) is guided by spectraplakins (here Shot) along cortical actin into parallel bundles
(2), or MTs are kept together through cross-linkage (brown “L”; 4) (Bettencourt da Cruz et al.,
2005; Krieg et al., 2017); here we propose that MTs accidentally leaving the bundle become
vulnerable (orange circles) through elimination (red “T”) by cortically anchored Efa6. B) In
normal neurons, polymerising MTs in bundles (dark blue circles) are protected by Shot
(marine lines) and MT-MT cross-linkers (brown rectangles), whereas MTs approaches the
membrane (orange arrow heads) either by splaying out in GCs or leaving the bundle in the
shaft (orange arrow heads) become vulnerable (orange circles) to elimination by Efa6 (light
green/red dashes) both along the cortex and in filopodia C) Upon Efa6 deficiency, MTs
leaving bundles or entering GCs are no longer subjected to Efa6-mediated cortical elimination
(blue arrow heads) and can cause gradual build-up of MT disorganisation; when entering shaft
filopodia they can promote interstitial branch formation (red arrow), when entering GC
filopodia they can promote axon growth or even branching through GC splitting (yellow
arrows). D) Far more MTs leave the bundles in *shot* mutant neurons, but a good fraction of
them is eliminated by Efa6 (increased number of orange arrow heads). E) In the absence of
both Shot and Efa6, more MTs leave the bundles, but there is no compensating cortical
elimination (increased number of blue arrow heads), so that the MT disorganisation phenotype
worsens.

Supplementary materials

Fig.S1 *ato-Gal4*-driven Efa-FL::GFP expression in adult brains. Brains (region of the optic
lobe in oblique view; white dashed line indicating the lower edge of the medulla) of young (2-5
d after eclosure; top) and old flies (15-18 d; bottom) which are either from wild-type controls or from flies driving UAS-myr-tomato and UAS-Efa6-FL-GFP via the ato-Gal4 driver in dorsal cluster neurons; specimens are stained for GFP and arrows point at stained; for myr-dTomato staining of brains from these experiments see Fig. 3. Scale bar in D represents 60μm in all images.

Fig. S2. Efa6 mutant primary neurons show MT disorganisation. Quantitative analyses of MT disorganisation measured as binary score (percentage of neurons showing obvious MT disorganisation in their axons) in different Efa6 mutant alleles (control value indicated as horizontal dashed "ctrl" line); P values from Chi² tests are given above the bars.

Fig. S3 Phylogenetic tree analysis of Efa6. Bayesian phylogenetic analysis of full length (A) or N-termini (B) of Efa6 orthologues. Sequences were aligned using Muscle or ClustalO and posterior probabilities and branch lengths calculated using MrBayes. Branch length scale is indicated; blue numbers show posterior probabilities of each branch split. For the full length tree, Drosophila steppke (step) was used as outgroup. In both full length and N-terminus analyses, chordates (cream colour) split off very early from Efa6 versions of other species, in line with an early speciation event separating both groups before the vertebrate multiplication events took place. Phyla are highlighted in different colours, gene symbols and/or accession numbers are given after the species names.

Fig. S4. Efa6 N-terminal domains vary amongst different phyla. A) Domain annotations in 56 Efa6 orthologues via EMBL SMART and Uniprot. Phyla are colour-coded as in Fig. S3. Note that there is a strong variation of lengths and domain composition in particular of the N-terminus. The putative PDZ domain is not present in any analysed chordate orthologue, and MTED and MTED-like sequences cannot be consistently identified in all Efa6 orthologues and are very divergent in chordate Efa6/Psd versions. Only a subset of nematode (e.g. C. elegans) and insect (e.g. D. melanogaster) Efa6 versions, and even fewer chordate Efa6/PSD proteins, contain SxIP/SxLP sites flanked by positive charges (as would be expected of functional sites) (Honnappa et al., 2009) in the N-terminal half of the protein; in mouse, alpaca and cat SxIP/SxLP sites are flanked by negative charges. B) To determine a potential MTED consensus sequence, 37 sequences of molluscs, nematodes, arthropods and putative MTED sequences of mammalian PSD1-4 were grouped according to phylum; consensus sequences were depicted using Berkley’s Weblogo online server (default colour scheme). Conserved amino acid positions are highlighted (faint yellow).

Fig. S5. Localisation of Efa6 constructs in primary neurons. Images show transfected primary Drosophila neurons at 18HIV stained for tubulin (magenta) and GFP (green and in greyscale below the colour image). Cell bodies are indicated by asterisks, axon tips by arrows. The transfected constructs are indicated top right following the nomenclature explained in Fig. 8. Scale bar in A represents 10μm for all figures shown.

Fig. S6. Efa6 constructs localisations in fibroblasts. Images show fibroblasts which are all stained for GFP (green) and either for actin or MTs (magenta); GFP and actin/MTs shown as
single channels in greyscale below the colour image, 24hrs after transfection with control (GFP) or Efa6-derived constructs (nomenclature as explained in Fig. 8, but leaving out the “Efa6"-prefix and “::GFP"-postfix, as indicated top right. Double chevrons indicate nuclear localisation, arrow heads membrane localisation apparent at cell edges and curved arrows membrane ruffles. Scale bar in A represents 10µm in all images.

Fig. S7. MT elimination by Efa6-FL is concentration-dependent in fibroblasts. A-C)
Representative images of fibroblasts stained for GFP and tubulin (green and magenta, respectively; both shown as single channels in greyscale below the colour image). Images were taken 24hrs after transfection with Efa6-FL::GFP, assessed for GFP intensity (plotted on the ordinate in D; examples for low, moderate and high expression are given in the left, middle and right columns, respectively) and then grouped with respect to their MT phenotypes into “MTs intact” (light grey), “mild MT defects” (medium grey) or “MTs gone” (black), as indicated by greyscale circles in the lowest row of A-C and the abscissa of D. Arrow heads point at GFP accumulation at membrane edges, white arrows indicate areas of the cell from where MTs have retracted, open arrows point at retraction fibres and the double chevron indicates the nucleus position and signs of nuclear GFP localisation. Scale bar in A represents 10µm in all images.

Fig. S8. Conserved functions of the Efa6 C-terminus in membrane ruffle formation. A-E)
Representative images of fibroblasts stained for GFP and actin (green and magenta, respectively; both shown as single channels in greyscale below the colour image). Images were taken 24hrs after transfection with different constructs (indicated top right): control vector (GFP; A), Efa6-derived constructs (B-D; nomenclature as explained in Fig. 8, but leaving out the "Efa6"-prefix and "::GFP"-postfix) or PSD(1)-FL::GFP (E). To the right of each image, a selected area is displayed with 2.5-fold magnification, showing dotted actin- and GFP-stained ruffles in B, D and E, but not A and C; ruffle formation has been quantified and is shown as a bar graph in F. All graph bars indicate percentages of fibroblasts with/without membrane ruffles (dark/light grey); P values on top of bars are from Chi² tests relative to GFP controls;.
Scale bar in the top image of A represents 10 µM for all fibroblasts shown.

Fig. S9. Representative MT phenotypes induced by the different constructs in transfected fibroblasts. Fibroblasts 24hrs after transfection with different control (GFP) or Efa6-derived constructs as indicated top right in each image (nomenclature as explained in Fig. 8, but leaving out the "Efa6"-prefix and "::GFP"-postfix). Cells were stained for tubulin (black; images shown as inverted greyscale) and classified as “no MT defects” (light grey), “mild MT defects” (medium grey) or “MTs gone” (black), as indicated by greyscale boxes bottom left of each image. Each image represents the most prominent phenotype for each respective construct.
Scale bar at the bottom right in H represents 25µm in all images.

Fig. S10. *In vitro* attempts to resolve the MT elimination mechanism of Efa6. A) To determine whether Efa6 directly affects MT stability, we recombinantly expressed Efa6-ΔCterm::GFP in S9 cells, purified the protein and observed its interaction with MTs using total internal reflection fluorescence (TIRF) microscopy in a low ionic strength buffer (BRB20, 75mM KCl); images on the left show three examples of kymographs of MT lattices decorated with Efa6-
ΔCterm::GFP, which displays a mixture of stationary molecules and diffusive interactions
typical of non-translocating MT-associated proteins (Helenius et al., 2006; Hinrichs et al.,
2012); bar charts (right) show quantification of the amount of interacting protein: background
signal from MTs alone, Efa6-ΔCterm::GFP (20nM) and the non-translocating kinesin
MCAK::GFP (20nM) as positive control; at the same protein concentration, over 2-fold more
molecules of MKAC typically interact with MTs; all graphs in this figure show individual data
points and bars representing mean ± SEM; numbers above bars show P values obtained from
Mann–Whitney Rank Sum statistical analyses, numbers in bars the respective sample
numbers. B) Kymographs (left) show individual fluorescently-labelled GMPCPP-stabilised MTs
in vitro (Patel et al., 2016), either alone (MTs only; basal depolymerisation rate, n=7) or in the
presence of 14 nM Efa6-ΔCterm::GFP (n=8) or 40nM MCAK::GFP (n=18); the bar chart (right)
quantifies the induced depolymerisation rates; using two different purifications of Efa6-
ΔCterm::GFP on three separate occasions, we saw no evidence of MT depolymerisation
above the basal level of depolymerisation typically observed in these assays, whereas parallel
control experiments with mitotic centromere-associated kinesin/MCAK showed MT
depolymerisation rates typical of this kinesin. C) To assess whether MT destabilisation might
require additional cytoplasmic factors, we used Xenopus oocyte extracts: phase contrast
images show MTs in Xenopus oocyte extracts (after they had been allowed to polymerise for
20 min) and then showing stills from before, 10s after and 120s after washing in 20nM
MCAK::GFP (as positive control), 20nM Efa6-ΔCterm::GFP or 40nM synthetic MTED (to
overcome potential mis-folding of the purified ΔCterm protein); squares outlined by dashed
white lines are shown magnified in insets revealing MTs; MTs clearly vanish upon treatment
with MCAK, but counts of MTs did not reveal any obvious effects on MTs with either of the
Efa6 peptides. D) Finally, interference with MT polymerisation was analysed by adding 20nM
MTED to diluted Xenopus cytosol, and 20 random fields were recorded 10 min later via VE-
DIC microscopy and the numbers of MTs per field counted; data plots show that MTED does
not interfere with MT polymerisation. E,F) RFP controls and Efa6-Nterm::GFP expression
constructs were injected into Xenopus embryos at the 4-cell stage and analysed 24 hrs later;
only the Efa6 construct caused a strong suppression of cell division, as indicated by the
presence of very large cells (arrows) and pigmentation defects (curved arrows) at the site of
injection, suggesting that Efa6-Nterm::GFP is functional when expressed in the Xenopus
context. Taken together, the very different data obtained in Xenopus cytosol in vitro or
embryos in vivo, suggest that either the effect of Efa6 requires a factor absent from Xenopus
extract or that Efa6-ΔCterm::GFP and MTED are non-functional due to mis-folding. The latter
is suggested by the observation of many aggregates of Efa6-ΔCterm::GFP in A. Scale bar (in
top left image) represents 3 µm in C (2.5 fold magnified insets), and 1400 µm / 350 µm / 140
µm in left / middle / right images of E and F, respectively.
Fig. 1 Qu et al.
Fig. 3 Qu et al.
Fig. 4 Qu et al.
Fig. 5 Qu et al.
Fig. 7 Qu et al.
Fig. 8 Qu et al.
Fig. 9 Qu et al.
Fig. S1 Qu et al.
MT disorganisation in *Efa6* mutants (binary data)

![Bar chart showing MT disorganisation in different conditions](image)

Fig. S2 Qu et al.
Fig. S3 Qu et al.
Fig. S4 Qu et al.
Fig. S6 Qu et al.
Fig. S7 Qu et al.
Fig. S9 Qu et al.
A *In vitro* MT binding assay (TIRF)

Efa6-ΔCterm-GFP

Mean GFP intensity x 10^3

<0.001

<0.001

MT only

Efa6-ΔCterm

MCAK

![Graph showing mean GFP intensity](image)

B *In vitro* MT depolymerisation assay

3min

6μm

![Graph showing MT depolymerisation rate](image)

MCAK

MTBD

C MT depolymerisation assay on *Xenopus* extract

before wash

10s after wash

120s after wash

MT assembly

![Images showing MT assembly](image)

E control

normal light

fluorescence

![Images showing normal light and fluorescence](image)

F Efa6-Nterm

![Images showing Efa6-Nterm](image)

Fig. S10 Qu et al.