Crystal Chemical Estimation of possible exceeding of $T_c \leq 77$ K in Diborides

L.M. Volkova, ¹ S.A. Polyshchuk, ¹ S.A. Magarill ², F.E. Herbeck ¹

¹ Institute of Chemistry, Far Eastern Branch RAS, 690022 Vladivostok, Russia
² Institute of Inorganic Chemistry, Sib. Branch RAS, 630090 Novosibirsk, Russia.

Abstract

We establish the empirical correlation between T_c of diborides (AB₂) and crystal chemical parameters of simpler structural fragment – sandwich A₂(B₂) where the superconductivity is appeared, like found in high-T_c cuprate superconductors. Our results suggest that in the absence of vacancies in B₂ plane T_c of diborides can be higher 77 K, the evaporation temperature of liquid nitrogen. We discuss critical crystal chemistry parameters controlling T_c and ways to achieve higher transition temperatures in diborides based on this correlation.

Key words: diboride; MgB₂; superconducting transition temperature; crystal chemical correlation.

1. INTRODUCTION

Attempts to exceed the temperature of transition to superconductivity (T_c) 39 K [1] in the AB₂ diborides row with the AlB₂ structure have until no success. However, the presence of some common crystal chemical characteristics in diborides and high-temperature superconductor cuprate (HTSC) cuprates allows to expect that possibility of raising T_c in these compounds still exist. Intensive study of MgB₂ had shown that as in HTSC cuprates the layered nature of MgB₂ is caused anisotropic superconducting properties [2, 3]. It was shown that T_c of MgB₂ either as in HTSC cuprates depends on the concentration of charge carriers [4, 5] and structural parameters [6, 7]. The similar ways of variation in concentration of charge carriers and structural parameters by isovalent and non-isovalent doping [7, 8-15] and by pressure [5, 16-23] also were considered. It was
established that in diborides the B₂ planes contain such carriers of charge as holes (p) and play the same role as the CuO₂ in high-T_c cuprates [4, 24, 25]. In AB₂ these planes there are between the planes of positive charged “ions” A, as the CuO₂ planes in perovskite layer $A_{n+1}(CuO_2)_n$. Note, that in the last this is reached for account of displacement or full removing the apical oxygen atoms from plane of A cations on consequence of Jan-Teller effect.

In [26] we have shown that the simplest structural fragment in HTSC cuprates is not one CuO₂ plane but $A_2(CuO_2)$ sandwich, in which the CuO₂ plane with charge carriers is situated between the planes of A-cations, and have installed the correlation of T_c with critical crystal chemical parameters of this sandwich general for all phases of HTSC cuprates. It is possible to expect that in diborides AB₂ of such structural fragment is the $A_2(B_2)$ sandwich, where the network of B atoms with charge carriers is situated between the planes of A “cations”.

In this work we consider a dependence of T_c from crystal chemical parameters of $A_2(B_2)$ sandwich in diborides like found in HTSC cuprates and discuss the possibilities and ways to rise T_c in this class of compounds.

2. METHOD

In high–T_c cuprates T_c dependence on crystal chemical parameters of the $A_2(CuO_2)$ fragment is more full expressed by combination of such values as distances $d(Cu-Cu)$ in CuO₂ plane and ones $d(CuO_2-A)$ from CuO₂ plane to adjacent plane of A cations, which have an original sense and give also an information about the hole concentration, and on the size and charge of A-cations and doping atoms too. In [26] we established the empirical dependence of T_c from the ratio (J) of distances between Cu atoms along diagonal direction of CuO₂-plane to sum “effective” distances (D_1+D_2) from CuO₂ plane to of two adjacent planes of A cations in $A_{n+1}(CuO_2)_n$ layer, taking into account the charge and the size of A-cations and doping atoms ($J = d(Cu-Cu)/(D_1+D_2)$).

For plotting the dependence of $T_c(J)$ in AB₂ where

$$J = d(B-B)/(D_1 + D_2)$$ \hspace{1cm} (1)$$

we have chosen critical parameters of $A_2(B_2)$ fragment, like found in high–T_c cuprates, such as:

1. The $d(B-B)$ distances between B atoms situated at the ends of diagonal of hexagons in B₂ plane ($d(B-B) = 2a/\sqrt{3}$), i.e., at the maximal possible distance from one another. It is supposed, that the diagonal pairing and oscillation of holes on B atoms are energetically more favourable than other configurations [27];
2. “Effective” distances \(D_1 \) and \(D_2 \) from \(B_2 \) plane to surface of two adjacent planes of \(A \) “cations”:

\[
D = 5\left[d(B_2 - A) - R_A(Z_A/2) \right]
\]

where \(d(B_2 - A) \) is the distance from \(B_2 \) plane to plane of \(A \) “cations”; \(R_A \) is radius of \(A \) “cation”, which content is maximum; \(Z_A/2 \) – undimensional coefficient to take into account of the electric field of the \(A \) “cation” charge (it is the ratio of charge \(A \) “cation” to charge of Mg cation), \(S \) is deviation coefficient of parameters of doping cations from parameters of \(A \)-cation that forms the plane:

\[
S \geq 1, \ S = \frac{R(Z/2)}{R_A(Z_A/2)} \quad \text{or} \quad S = \frac{R_A(Z_A/2)}{R(Z/2)}
\]

Here \(\overline{R(Z/2)} \) is generalized value, characterized the plane of \(A \)-cations:

\[
\overline{R(Z/2)} = m_1 R_{Z_1}(Z_{Z_1}/2) + ... m_n R_{Z_n}(Z_{Z_n}/2)
\]

where \(m_n \) is content of \(A_n \) “cation” in plane, \(R_{Z_n} \) is radius, \(Z_{Z_n}/2 \) – undimensional coefficient to take into account of the electric field of the \(A_n \) “cation” charge.

On value \(J \) an enormous influence renders a size and a charge (valence states) of \(A \) “cations”. To value these parameters in intermetal compounds is not easy. By interpretation the result on diborides practically in all works the Pauling “crystal” ion radii are used [28]. However, this system reflects inadequately the changing of a lattice parameter \(c \) by changing a radius of \(A \) “cations”. So, lattice parameter \(c \) of \(AlB_2 \) (3.26 Å) is noticeable less than \(c \) parameter of \(MgB_2 \) (3.52 Å) [29]. Pauling radii \((RP) \) Al (0.75 Å), opposite, exceeds a radius of Mg (0.65 Å). Proceeding from approximately linear correlations between \(c \) parameters of diborides and \(A \) radius the Shannon crystal radius \((RSh) \) is more suitable. In Fig. 1, lattice parameters \(c \) are plotted as a function of Shannon (a) and Pauling (b) radii of \(A \) “cations”. However, \(J \) was calculated by using both Pauling and Shannon radii systems with standard coordination 6 and valent state equal group number in Periodic system, excluding Mn, Cr, Ru and Os. The valent state of Mn and Cr was accepted as 4+ and 3+, accordingly, but Ru and Os as 6+. Moreover, Ru radius was accepted such as for Os, as there is no data about Ru radius.

Besides, for the plotting of \(T_c(J) \) it is necessary to know \(T_c \) of sample and its full structural data (atomic coordinates and occupancy positions) obtained by X-ray and neutron diffraction. It is not sufficiently the only data about unit cell parameters, as the vacancies in \(A \) plane can change a \(J \) value and, accordingly, \(T_c \) but the vacancies in \(B_2 \) plane, as in \(CuO_2 \) plane of HTSC cuprates, reduce \(T_c \) or suppress completely a superconductivity. Besides, the impurities in \(A \)-planes can be distributed
irregularly along the c axis, as that was shown in [13] for Mg\(_{1-x}\)Al\(_x\)B\(_2\) by high-resolution transmission-electron microscopy investigation. This will certainly result in a change and inequality of “effective” distances \(D_1\) and \(D_2\), accordingly, and to change \(J\) and superconducting characteristics. There isn’t now such data on doping borides.

Realistically it is installed only the following:

1. Crystal structure of diborides, lattice parameters and \(T_c\) of polycrystalline and thin films of many MgB\(_2\) samples [1, 5, 7, 31-35], and the structural data obtained by X-ray diffraction analysis on single crystal of only one MgB\(_2\) sample [36], as well as the lattice parameters and the absence of superconductivity in AlB\(_2\)[10, 12, 13];

2. Reducing of MgB\(_2\) \(T_c\) with the growing of pressure (P). Moreover the spread of \(dT_c/dP\) reported by different groups [5, 16-23] is high and is explained in [21] by various in the sample stoichiometry.

3. The substitution of Al for Mg in MgB\(_2\) decreases the \(T_c\) and leads to the loss of superconductivity in Mg\(_{1-x}\)Al\(_x\)B\(_2\) with the growing \(x\) [7, 10-13].

It has been also found the superconducting transition at \(T_c=9.5\) K for TaB\(_2\) [37, 38] and no superconducting for TiB\(_2\), HfB\(_2\), ZrB\(_2\), VB\(_2\) and NbB\(_2\). Although this result contradicts the data reported in [39], by which ZrB\(_2\) is superconducting with \(T_c=5.5\) K, and TaB\(_2\) and NbB\(_2\) are not. Further to this we have the experimental and theoretical data on superconductivity and structural properties of Mg\(_{1-x}\)A\(_x\)B\(_2\) (A = Al, Zn, Ca and Na [7-13, 40] and only structural parameters of the other members of the AB\(_2\) family (A = Ru, Os, Cr, Mn, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Sc, Y, Cu, Ag, Au, Lu, Pu and U) [29, 41-62] on superconducting properties of which not yet made final conclusions.

In this connection we have calculated two variants of \(T_c(J)\) correlation: with only real data for compounds MgB\(_2\) (single crystal) [36], AlB\(_2\) [29, 57] and disputable data on TaB\(_2\) [37] or ZrB\(_2\) [39]. The both systems of radii (\(R_{Sh}\) and \(R_P\)) were used by this calculation. As a result we have got two correlations for the variant-I (\(T_c^{Ta, R_{Sh}}(J_{R_{Sh}})\) and \(T_c^{Ta, R_P}(J_{R_P})\) (Fig. 2 a)) and two correlations for variant-II (\(T_c^{Zr, R_{Sh}}(J_{R_{Sh}})\) and \(T_c^{Zr, R_P}(J_{R_P})\) (Fig. 2 b)). The equations of second degree polynomial give the best approximation of the correlations:

\[
T_c^{Ta, R_{Sh}} = -6.05213 J_{R_{Sh}}^2 + 169.383 J_{R_{Sh}} + 95.324, \text{ there midpoint } J_0 = -1.30395, T_{c, \text{max}} = 107; \quad (5)
\]

\[
T_c^{Ta, R_P} = -9.93835 J_{R_P}^2 - 68.1881 J_{R_P} + 173.101, \text{ there midpoint } J_0 = -3.38595, T_{c, \text{max}} = 290; \quad (6)
\]

\[
T_c^{Zr, R_{Sh}} = 1.21806 J_{R_{Sh}}^2 - 51.7357 J_{R_{Sh}} + 135.714, \text{ there midpoint } J_0 = 20.8830, T_{c, \text{min}} = -413; \quad (7)
\]
\[T_c^{Zr,RP} = 11.0727 J_R^{2} - 143.304 J_R + 239.537, \text{ there midpoint } J_0 = 6.3148 \text{ } T_c, \text{min} = 224; \]

(8)

Then, for the estimation of validity of these two correlation variants \(J_{RSh} \) and \(J_{RP} \) by formula (1) and corresponding them \(T_c \) on equations (5-8) for 100 considered diborides were calculated. It was found that parabolic dependencies \(T_c^{Ta,RSh}(J_{RSh}) \) and \(T_c^{Ta,RP}(J_{RP}) \) of Eq. 5 and 6 obtained on the data for MgB\textsubscript{2}, AlB\textsubscript{2} and TaB\textsubscript{2} estimate adequately a trend of changing \(T_c \) of MgB\textsubscript{2} with the growing of pressure, and Mg\(_{1-x}\)Al\(_x\)B\textsubscript{2} with \(x \) increase, and confirm also an absence of superconductivity in ZrB\textsubscript{2} [37] (Table I). However, a velocity of linear falling \(T_c \) \((dT_c/dP \text{ and } dT_c/dx) \) calculated on these correlations is more below than experimental [7, 10-13]. Moreover, according the data, obtained by these correlations, a very small changing of lattice parameters can result in the lost of superconductivity in TaB\textsubscript{2}. So, TaB\textsubscript{2} (Table I, sample N 28) in which the authors [39] did not find a superconductivity, by calculations on correlation \(T_c^{Ta,RP}(J_{RP}) \) of Eq. 6 also is not a superconductor, but on correlation \(T_c^{Ta,RSh}(J_{RSh}) \) of Eq. (5) it must be superconductor with \(T_c = 7.4 \)K. Here and further the number of compound in Table I is parenthetically shown. The calculation of \(T_c \) for TaB\textsubscript{2} (N 29 [29, 44] and N30 [54]) with increasing parameter \(c \) points to the absence of superconductivity by both correlations.

Correlations \(T_c^{Zr,RSh}(J_{RSh}) \) and \(T_c^{Zr,RP}(J_{RP}) \) of Eqs. (7) and (8) built with of using of data on ZrB\textsubscript{2} [39], probably, have no physical sense, as fare as it is impossible to explain a sudden disappearance and appearance of superconductivity. Besides, \(T_c \) calculated on the base of these correlations disagree to experimental data this work [39], as far as indicates not on the absence but opposite on the presence of superconductivity with unrealistic high \(T_c \) for diborides Nb, Ta and W, V, Hf, Pu, U also.

Thereby, a estimation has shown that the correlations of \(T_c^{Ta,RSh}(J_{RSh}) \) and \(T_c^{Ta,RP}(J_{RP}) \) are the most reliable. However, its can show only a trend \(T_c \) change with changing of crystal chemical parameters of diborides, as for its building there was too little experimental data. The \(T_c \) calculated on these correlations are referred to the diborides of stoichiometric composition, since there was no data for the account of non-stoichiometry of compounds by \(J \) calculation, while the last studies [16, 63, 64] point to Mg-deficiency and defects even in MgB\textsubscript{2}. As a result, calculated \(T_c^{Ta,RSh} \) of MgB\textsubscript{2} are little below than \(T_c \) found experimentally \((T_c^{exp})\). However, deficit of Mg (0.8, 0.9 and 1\%) in samples, N54, 59 and 53 (Table), accordingly, raises \(T_c^{Ta,RSh} \) \((38.1 – 38.3 \)K) calculated on the Eq. (5) to the experimental values \((38.8 – 39 \)K).
3. RESULTS AND DISCUSSION

Maximal T_c values for diborides, calculated on correlation of $T_c^{Ta.RSh} (J_{RSh})$ and $T_c^{Ta.RP} (J_{RP})$ (Eqs. (5) and (6)) are 107 K at optimal value $J = J_0$ (by $J_0 = -1.304$) and 290 K (by $J_0 = -3.386$), accordingly. Increasing T_c of diborides AB_2 by nearing J to J_0 (Fig. 2 a) on the left occurs by shortening the distances $d(B-B)$ in B_2 plane and “effective” interplanar distances D_1 and D_2. (As on the given interval D_1 and D_2 have negative values the modules D_1 and D_2 must increase). This is possible from shortening the lattice parameters a and c, reducing a size of A atom and increasing its charge. Moreover, the most effect is reached when a charge of atom is increasing. So, WB$_2$ (N5) has the most high T_c (99.7 K and 290 K according to correlations $T_c^{Ta.RSh} (J_{RSh})$ and $T_c^{Ta.RP} (J_{RP})$) amongst considered diborides with $J < J_0$.

Besides, to rise T_c of diborides with $J < J_0$ is possible by increasing S coefficient to the account of introduction of vacancies in A layer or partial substitution A on the ions of smaller size or insignificantly differing from the size, but having smaller charge. For instance, T_c of WB$_2$ and MoB$_2$ raise is possible by doping of W and Mo planes with the ions Ru$^{4+}$, Os$^{4+}$, V$^{5+}$, Ti$^{4+}$ (N18), Nb$^{5+}$ (N17) or Al$^{3+}$, but for TaB$_2$ by doping of Ta plane with Al$^{3+}$ (N34), Ti$^{4+}$ (N33) or V$^{5+}$ (N31) ions. For arising a superconductivity in NbB$_2$ it is necessary to introduce Nb-vacancies or substitute part of Nb$^{5+}$ on Al$^{3+}$ (N41), Ti$^{4+}$ or V$^{5+}$ (N42). The T_c of diborides with $J < J_0$ must increase under the action of pressure, unlike MgB$_2$, where $J > J_0$.

However, superconductors with $J < J_0$, having high T_c, are hitherto not discovered. As it is mentioned above, TaB$_2$ is a superconductor at $T_c = 9.5$ K [35]. Cooper at al. [65] reported also, that in “boron-rich” NbB$_2$ compounds a superconductivity appears at $T_c = 3.87$ K, and in Zr$_{0.13}$Mo$_{0.87}$B$_2$ at $T_c = 11$ K. To our regret, the work [65] is inaccessible for us, but if expect that by substituting Mo on 13% Zr the lattice parameters a and c enlarged to 3.08 Å and 3.32 Å, accordingly, and there are no vacancies in B$_2$ plane, T_c of Zr$_{0.13}$Mo$_{0.87}$B$_2$, calculated on Eq. (6) and Eq. (5) are 11 K and 86 K, accordingly.

Probably, a boron deficit in plane B$_2$ is a reason of absence of superconductivity in the diborides with $J < J_0$. It is possible a compression of a parameter caused by reducing a size of «cation» A can rezult in arising the vacancies in plane B$_2$. Consequently, a decrease T_c of compound appears up to full suppress its superconductivity. On the contrary, substitution in
MoB$_2$ of part of Mo$^{6+}$ ions on large Zr$^{4+}$ ions with lower charge allows to obtain “boron-rich” diboride Zr$_{0.13}$Mo$_{0.87}$B$_2$ that is a superconducting properties. A problem appears to conserve a stoichiometry in B$_2$ plane in the diborides AB$_2$ with \(J < J_0 \) for the achievement of high \(T_c \). May be, this can be reached only by partial substituting A on more large “cations” with the lower charge. Such substitution reduces \(T_c \) that takes place in initial diborides but allows to obtain the superconductors with sufficiently high \(T_c \). Dopants saving stoichiometry on boron for AB$_2$ (A = W, Mo, Ru or Os) can be the following cations: Pb$^{2+}$, Mg$^{2+}$, Ag$^{2+}$, Sc$^{3+}$, Y$^{3+}$, Zr$^{4+}$, Sn$^{4+}$, Pb$^{4+}$, U$^{4+}$ and Th$^{4+}$.

In diborides with \(J > J_0 \), unlike diborides with \(J < J_0 \), \(T_c \) increase, when \(J \) nears to \(J_0 \) on the right, occurs not with reducing but with increasing “effective” interplanar distances \(D_1 \) and \(D_2 \). By this as well as in the diborides with \(J < J_0 \) the \(d(B-B) \) distances must decrease or its increase is more slow than \(D_1 \) and \(D_2 \) raising. This can be reached by increasing \(c \) lattice parameter with heightening the sizes of main or doping atoms of A plane and/or a \(S \) coefficient to the account of introducing the vacancies in A plane or partial substitution A on the ions of greater size or ones insignificantly differing from the size but with another charge. Experimentally proved [7, 10-13] that substituting Al on Mg in AlB$_2$ results in arising superconductivity and increase \(T_c \) to 39K in Al$_{1-x}$Mg$_x$B$_2$ with \(x \) growing. This substituting is accompanied with reducing \(J \) by in overtaking growing of interplanar distances \(D_1 \)and \(D_2 \) (N 80-88).

Usually inverse processes are considered, i.e. the suppress of superconductivity in MgB$_2$ by substituting Mg on Al or by pressing. Using the structural parameters from works [7, 17, 18, 40] we calculated the change of \(T_c \) of MgB$_2$ from pressure (N70-79) and Mg$_{1-x}$Al$_x$B$_2$ from \(x \) parameter (N 80-88). In both events \(J \) increasing, accompanied by \(T_c \) falling, occurs by greater reducing \(c \) parameter in contrast to the parameter \(a \). However, the linear reduction \(T_c \) calculated on equations (5) and (6) with increase \(P \) or \(x \) vastly below found in the experiment [5, 7, 10-23]. It is possible, that in this case as in the diborides with \(J < J_0 \), a reason of increasing a velocity of \(T_c \) falling is raising a loss of boron atoms by shortening \(a \) parameter with the growing of pressure or \(x \) increase.

It is shown by experiment that isovalent substitution of Mg$^{2+}$ on Zn$^{2+}$ which size is only little more (\(RSh =0.88 \AA, RP =0.74 \AA \)) than Mg (\(RSh =0.86 \AA, RP =0.65 \AA \)) can very small to rise \(T_c \) [9]. Our calculations (N 96-100) also confirm this conclusion. In work [7] it is theoretically predicted that partial substituting in MgB$_2$ of Mg$^{2+}$ on Ca$^{2+}$ or Na$^{+}$ must result in the growing \(T_c \) up to 52 K or 53 K, accordingly. Calculated by us structural parameters \(T_c \) of
these systems are close to the data of [7]: with the growing x from 0 to 0.2 $T_c^{\text{Ta.RSh}} \left(T_c^{\text{Ta.RP}} \right)$ of the systems Mg$_{1-x}$Ca$_x$B$_2$ (N 85, 89-92) and Mg$_{1-x}$Na$_x$B$_2$ (N 85, 93-95) goes up to 47 K (59 K) and 50 K (57 K), accordingly.

It follows from this that T_c raising in MgB$_2$ can be reached by conservation of stoichiometry in B$_2$ plane by means of increasing the effective interplanar distances D_1 and D_2 by partial substituting Mg$^{2+}$ on the ions of greater size with charges 1+ or 2+, such as Na$^{1+}$, K$^{1+}$, Cd$^{2+}$ or Ca$^{2+}$.

It that way, the empirical dependence of $T_c(J)$ can be useful for the prognostication of the composition of new diborides with high T_c, and also for the estimation of T_c and the correctness of determination of the structure AB$_2$ and the composition of A-cation planes. The J value is not a simple ratio of geometric structural parameters of diborides. As in HTSC cuprates [27] a value of J ratio depends on all these factors which influence on T_c found experimentally, such as $d(B-B)$ and $d(B_2-A)$, which have an original sense and give also an information about the hole concentration, and on the size and charge of A «cations” and doping atoms too.

4. CONCLUSIONS

In our work we examined a possibility of increasing T_c in AB$_2$ diborides with the structure of AlB$_2$ on the ground of empirical correlation of T_c with the crystal chemical parameters of anisotropic three-dimensional fragment – A$_2$(B$_2$)–sandwich, as there is in HTSC cuprates. By this parabolic dependence, T_c is correlated with the ratio (J) of $d(B-B)$ distances between B atoms situated at the ends of diagonal of hexagons in B$_2$ plane and sum of “effective” distances (D_1+D_2) from B$_2$ plane to two adjacent planes of A “cations”, taking into account by calculation a charge size of these cations and doping atoms ($J = d(B-B)/(D_1+D_2)$). We calculate the T_c of diborides by this correlation (Table I). It follows:

- Among the diborides considered a superconductivity can to be only in diborides W, Mo, Ru, Os and Ta, where $J<J_0$, and Mg, Cu(II), Ag(I) and Au(I), where $J>J_0$. The result obtained there suggest that the empirical absence or low-temperature superconductivity established in transition metal diborides with $J<J_0$ might be explained of presence B vacancies in B$_2$ plane. In the absence of vacancies in B$_2$ plane T_c of AB$_2$ diborides (A=W, Mo, Ru, Os) can be higher 77K, and in TaB$_2$ to reach 10K. For appearance of superconductivity and increasing
T_c in NbB$_2$ and TaB$_2$ to need introduction of Nb(Ta)-vacancies or partial substitution of
Nb$^{5+}$ (Ta$^{5+}$) on Al$^{3+}$, Ti$^{4+}$ or V$^{5+}$.

- Partial substitution of W, Mo, Ru and Os on more large cations with lower charge decreases
 T_c with respect to one in initial diborides, but allows to conserve a stoichiometry in B$_2$
 plane and to make a superconductors with enough high T_c.
- Partial substitution in MgB$_2$ of Mg on larger but with lower charge “cations” must heighten
 T_c.
- By the pressure T_c must increase in superconductors with $J\leq J_0$ and decrease in ones with
 $J > J_0$.
- Critical crystal chemical parameters controlling T_c, apart from the concentration of charge
 carriers in B$_2$ plane, are the distances between boron atoms in B$_2$ plane and the parameters
 characterised the space between of B$_2$ plane and A “cation” planes in sandwich A$_2$(B$_2$), such
 as: an interval between the surface of the planes, the inhomogeneity surface of A-cation
 planes, and also the electric fields induced by the A ”cations” and doping “cations” charges.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic research under grant 00-03-32486.

REFERENCES

1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature 410, 63
 (2001).
2. O. F. De Lima, R. A. Ribeiro, M. A. Avila, C. A. Cardoso and A. A. Coelho, cond-
 mat/0103287 (2001).
3. M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida, H. Abe, M. Matsushita and G. Koda, cond-
 mat/0105271 (2001).
4. J. E. Hirsch, cond-mat/0102115 (2001).
5. B. Lorenz, R. L. Meng and C. W. Chu, cond-mat/0102264 (2001).
6. X. Wan, J. Dong, H. Weng and D. Y. Xing, cond-mat/0104216 (2001).
7. J. B. Neaton, and A. Perali cond-mat/0104098 (2001).
8. S. M. Kazakov, M. Angst and J. Karpinski, cond-mat/0103350 (2001).
9. Y. Morimoto and Sh. Xu, cond-mat/0104568 (2001).
10. J. Y. Xiang, D. N. Zheng, J. Q. Li, L. Li, P. L. Lang, H. Chen, C. Dong, G. C. Che, Z. A. Ren,
 H. H. Qi, H. Y. Tian, Y. M. Ni and Z. X. Zhao, cond-mat/0104366 (2001).
11. G. Satta, G. Profeta, F. Bernardini, A. Continenza and S. Massidda, cond-mat/0102358 (2001).
12. J. S. Slusky, N. Rogado, K. A. Regan, M. A. Hayward, P. Khalifan, T. He, K. Inumaru, S.
 Loureiro, M. K. Haas, H. W. Zandenbergen and R. J. Cawa, cond-mat/0102262 (2001).
13. J. Q. Li, L. Li, F. M. Liu, C. Dong, J. Y. Xiang and Z. X. Zhao, cond-mat/0104320 (2001).
14. Sh. Xu, Y. Moritomo and K. Kato, cond-mat/0104534 (2001).
15. N. I. Medvedeva, A. L. Ivanovskii, J. E. Medvedeva and A. J. Freeman, cond-mat/0103157 (2001).
16. V. G. Tissen, M. V. Nefedova, N. N. Kolesnikov and cond-mat/0102262 (2001). M. P. Kulakov, cond-mat/0105475 (2001).
17. T. Vogt, G. Schneider, J. A. Hriljac, G. Yang and J. S. Abell, cond-mat/0102480 (2001).
18. K. Prassides, Y. Iwasa, T. Ito, D. H. Chi, K. Uehara, E. Nishibori, M. Takata, S. Sakata, Y. Ohishi, O. Shimomura, T. Muranaka and J. Akimitsu, cond-mat/0102507 (2001).
19. T. Tomita, J. J. Hamlin, J. S. Schilling, D. G. Hinks and J. D. Jorgensen, cond-mat/0103538 (2001).
20. E. S. Choi and W. Kang, cond-mat/0104454 (2001).
21. B. Lorenz, R. L. Meng and C. W. Chu, cond-mat/0104303 (2001).
22. S. I. Schlachter, W. H. Fietz, K. Grube and W. Goldacker, cond-mat/0107205 (2001).
23. S. Deemyad, J. S. Schilling, J. D. Jorgensen and D. G. Hinks, cond-mat/0106057 (2001).
24. J. E. Hirsch and F. Marsiglio, cond-mat/0102479 (2001).
25. R. Jin, M. Paranthaman, H. Y. Zhai, H. M. Christen, D. K. Christen and D. Mandrus, cond-mat/0104411 (2001).
26. L. M. Volkova, S. A. Polyshchuk and F. E. Herbeck, J. Supercond. 13, 583, (2000).
27. L. M. Volkova, S. A. Polyshchuk, S. A. Magarill and A. N. Sobolev, Inorganic Materials. 36, 919 (2000).
28. J. E. Huheey, E. A. Keiter and R.L. Keiter in Inorganic Chemistry: Principles of Structure and Reaktivtit, 4th edition, HarperCollins, New York, USA, 1993.
29. R. W. G. Wyckoff.Crystal Structures, Second edition, V. I, INTERSCIENCE PUBLISHERS, John Wiley & Sons, Inc., 1963.
30. R. D. Shannon, Acta Cryst. A 32, 751, (1976).
31. Y. P. Sun, W. H. Song, J. M. Dai, B. Zhao, J. J. Du, H. H. Wen and Z. X. Zhao, cond-mat/0103101 (2001).
32. A.V. Tsvyashchenko, L. M. Fomicheva, M. V. Magnitskaya, E. N. Shirani, V. B. Brudanin, D. V. Filossofof, O. I. Kochetov, N. A. Lebedev, A. F. Novgorodov, A. V. Salamatin, N. A. Korolev, A. I. Velichkov, V. V. Timkin, A. P. Menushenkov, A. V. Kuznetsov, V. M. Shabanov and Z. Z. Akselrod. cond-mat/0104560 (2001).
33. M. Paranthaman, J. R. Thompson, cond-mat/0104086 (2001).
34. J. S. Ahn and E. J. Choi, cond-mat/0103169 (2001).
35. J. Jorgensen, D. G. Hinks and S. Short, cond-mat/0103069 (2001).
36. S. Lee, H. Mori, T. Masui, Yu. Eltsev, A. Yamamoto and S. Tajima, cond-mat/0105545 (2001).
37. D. Kaczorowski, A. J. Zaleski, O. J. Zogal and J. Klamut, cond-mat/0103571 (2001).
38. D. Kaczorowski, J. Klamut and A. J. Zaleski, cond-mat/0104479 (2001).
39. V. A. Gasparov, N. S. Sidorov, I. I. Zver’kova and M. P. Kulakov, cond-mat/0104323 (2001).
40. N.V. Vekshina, L. Ya. Markovsky, Yu. D. Kondrashev and T. K. Voevodskaya, Zh. Prikladnoi Khimii, XLIV, 958 (1971).
41. V. S. Telegus and Y. B. Kuz’ma, Poroshkovaya Metallurgiya, 10, 52 (1971).
42. CRYSTAL DATA, Determinative Tables, Third Ed., V. II: Inorganic Compounds, U.S. Department of Commerce National Bureau of Standards and the Joint Committee on Powder Diffraction Standards.
43. B. Post, F. W. Glaser and D. Moskowitz, Zh. Prikladnoi Khimii, 27, 1115 (1954).
44. B. Post, F. W. Glaser and D. Moskowitz, Acta Metallurgica, 2, 20 (1954).
45. Superconducting compounds, Moscow, Nauka, 1976.
46. N. F. Chaban and Y. B. Kuz'ma, *Izvestiya Academii Nauk SSSR, Neorganicheskie Materialy*, 9, 1696 (1973).
47. E. Rudy, F. Benesovsky and L. Toth, *Monatshefe fuer Chemie*, 91, 608 (1960).
48. F. Bertaut and P. Blum, *Acta Cryst.* 4, 72 (1951).
49. H. Klesnar, T. L. Aselage, B. Morosin and G. H. Kwei et al., *J. Allous Compd.* 241, 180 (1996).
50. Y. B. Kuz'ma Y.B., *Poroshkovaya Metallurgiya*, 10, 298 (1971).
51. S. Moehr, Hk. Mueller-Buschbaum, Y. Grin Y. and H. G., Schnering, *Z. Anorg. Allgem. Chemie*, 622 1035 (1996).
52. M. I. Aivazov and I. A. Domashnev, *Z. Less-Common Metals*, 47, 273 (1976).
53. S. K. Kwon, S. J. Youn, K. S. Kim and B. I. Min, *cond-mat*/0106483 (2001).
54. K. I. Portnoi, V. M. Romashov and S. E. Salibekov S.E., *Poroshkovaya Metallurgiya*, 10, 925 (1971).
55. H. Holleck, *J. Nuclear Materials*, 21, 14 (1967).
56. W. Rieger, H. Nowotny and F. Benesovsky, *Monatshefe fuer Chemie*, 96 844 (1965).
57. A. Felten, *J.Amer. Chem. Soc.* 78, 5977 (1956).
58. L. N. Kugai, *Izv. Academii Nauk SSSR, Neorgan. Mater.*, 8, 669 (1972).
59. V. A. Epel'baum, M. A. Gurevich, *Zh. Fiz. Khimii*, 32, 2274 (1958).
60. R. M. Manelis, T. M. Telukova and L. P Grishina, *Izv. Acad. Nauk SSSR, Neorgan. Mater.*, 6, 1035 (1970).
61. J. T. Norton, H. Blumental and S. J. Sindenband, *Transact. Amer. Inst. Mining, Metallurg. And Petrol. Engin.*, 185, 749.
62. B. Aronsson, *Acta Chem. Scand.*, 14, 1414 (1960).
63. Y. G. Zhao, X. P. Zhang, P. T. Qiao, H. T. Zhang, S. L. Jia, B. S. Cao, M. H. Zhu, Z. H. Han, X. L. Wang and B. L. Gu, *cond-mat*/0105053 (2001).
64. Y. Y. Xue, R. L. Meng, B. Lorenz, J. K. Meen, Y. Y. Sun and C. W. Chu, *cond-mat*/0105478 (2001).
65. A. S. Cooper, E. Corenzwit, L. D. Longinotti, B. T. Matthias and W. H. Zachariasen, *Proc. Natl. Acad. Sci.* 67, 313 (1970).
Fig. 1. The variation of the lattice parameters c in AB$_2$ diborides as a function of Shannon crystal radii (a) and Pauling crystal ion radii (b) of A “cations”.

Fig. 2. T_c as a function of J in the diborides AB$_2$. J was calculated by using Shannon (solid symbols -•) and Pauling (open symbols -) radii systems: (a) $T_c^{Ta,RS}_{RS}$ (R_{RS}) and $T_c^{Ta,RP}_{RP}$ of Eq. 5 and Eq.6 obtained on the data for MgB$_2$, AlB$_2$ and TaB$_2$; (b) $T_c^{Zr,RS}_{RS}$ (R_{RS}) and $T_c^{Zr,RP}_{RP}$ of Eq. 7 and Eq.8 obtained on the data for MgB$_2$, AlB$_2$ and ZrB$_2$.
N	Compound	T_{c}^{exp} (K)	a (Å)	c (Å)	D_1^R + D_2^R	J_{R}	$T_{c}^{T_{c, R}}$ (K)	D_1^R + D_2^R	J_{R}	$T_{c}^{T_{c, R}}$ (K)	Refer.
1.	RuB$_2$ (6+)	-	2.852	2.855	-1.255	2.624	98.1	-	-	-	[29]
2.	OsB$_2$ (6+)	-	2.876	2.871	-1.239	2.680	97.2	-	-	-	[29]
3.	MnB$_2$ (4+)	-	3.007	3.037	0.357	9.726	Non-SC	-	-	-	[29], [62]
4.	Mn$_{0.64}$Mo$_{0.36}$B$_2$	-	3.036	3.098	0.513	6.828	Non-SC	-	-	-	[41]
5.	WB$_2$	-	3.020	3.050	-1.390	2.509	99.7	-1.030	-3.386	290.0	[42]
6.	VB$_2$	-	2.998	3.057	-0.343	10.093	Non-SC	0.107	32.353	Non-SC	[42], [61]
7.	VB$_3$	-	3.000	3.060	-0.340	10.188	Non-SC	0.110	31.492	Non-SC	[43]
8.	V$_{0.50}$Cr$_{0.50}$B$_2$	-	2.990	3.045	-0.426	-8.102	Non-SC	0.112	30.917	Non-SC	[44]
9.	Cr$_2$ (3+)	-	2.969	3.0668	0.801	4.280	Non-SC	0.996	3.442	Non-SC	[45]
10.	CrB$_2$ (3+)	-	2.970	3.070	0.805	4.260	Non-SC	1.000	3.429	Non-SC	[29]
11.	Cr$_{0.98}$Al$_{0.02}$B$_2$	-	2.992	3.106	0.851	4.057	Non-SC	1.081	3.197	Non-SC	[46]
12.	Cr$_{0.60}$Mo$_{0.40}$B$_2$	-	3.069	3.112	1.163	3.046	Non-SC	0.710	4.992	Non-SC	[44]
13.	MoB$_2$	-	3.039	3.055	-1.325	-2.648	97.7	-0.665	-5.277	256.2	[47]
14.	MoB$_2$	-	3.050	3.080	-1.300	-2.709	96.8	-0.640	-5.503	247.4	[44]
15.	MoB$_2$	-	3.050	3.113	-1.267	-2.780	95.6	-0.607	-5.802	234.2	[29], [48]
16.	MoB$_2$	-	3.005	3.173	-1.207	-2.875	94.0	-0.547	-6.344	205.7	[49]
17.	Mo$_{0.57}$Nb$_{0.28}$B$_2$	-	3.068	3.143	-1.276	-2.776	95.7	-0.587	-6.039	222.5	[50]
18.	Mo$_{0.50}$Ti$_{0.50}$B$_2$	-	3.044	3.207	-1.396	-2.518	99.6	-0.593	-5.931	227.9	[44]
19.	TiB$_2$	-	3.030	3.227	0.247	14.165	Non-SC	0.507	6.901	Non-SC	[45]
20.	TiB$_2$	-	3.030	3.230	0.250	13.995	Non-SC	0.510	6.860	Non-SC	[29]
21.	TiB$_2$	-	3.031	3.238	0.258	13.560	Non-SC	0.518	6.757	Non-SC	[51]
22.	TiB$_2$	-	3.038	3.239	0.259	13.540	Non-SC	0.519	6.759	Non-SC	[52]
23.	Ti$_{1.0}$Cr$_{0.50}$B$_2$	-	2.990	3.140	0.182	19.000	Non-SC	0.477	7.239	Non-SC	[44]
24.	CuB$_2$ (2+)	-	2.960	3.250	1.510	2.263	26.0	1.870	1.828	15.3	[53]
25.	AgB$_2$ (3+)	-	3.000	3.240	0.570	6.077	Non-SC	-	-	Non-SC	[29]
N	Compound	T_c^{exp} (K)	a (Å)	c (Å)	$D_1^{\text{Rh}} + D_2^{\text{Rh}}$	$J_{\text{Rh}}^{\text{Rh}}$ (K)	$T_c^{\text{Ta,Rh}}$ (K)	$D_1^{\text{Rh}} + D_2^{\text{Rh}}$	J_{RP}	$T_c^{\text{Ta,RP}}$ (K)	Refer.
----	-------------------	------------------------	----------	----------	-------------------------------------	-------------------------------	-------------------------------	-------------------------------------	-------------	----------------------------	--------
26.	AgB$_2$ (1+)	59*	2.980*	3.920*	2.630	1.308	62.8	2.660	1.294	68.3	[53]
27.	TaB$_2$	9.5	3.082	3.243	-0.657	-5.417	9.5	-0.407	-8.744	9.5	[37]
28.	TaB$_2$ Non-SC	-	3.087	3.247	-0.6538	-5.459	7.4	-0.403	-8.845	Non-SC	[39]
29.	TaB$_2$	-	3.080	3.270	-0.630	-5.645	Non-SC	-0.380	-9.359	Non-SC	[29], [44]
30.	TaB$_2$ -	-	3.065	3.283	-0.617	-5.736	Non-SC	-0.367	-9.643	Non-SC	[54]
31.	Ta$_{0.50}$V$_{0.50}$B$_2$	-	3.040	3.160	-0.791	-4.450	50.8	-0.542	-6.476	197.9	[55]
32.	Ta$_{0.50}$Cr$_{0.50}$B$_2$	-	3.025	3.210	-0.873	-4.000	66.2	-0.561	-6.220	212.7	[44]
33.	Ta$_{0.50}$Ti$_{0.50}$B$_2$	-	3.050	3.246	-0.741	-4.750	39.2	-0.463	-7.607	116.7	[44]
34.	Ta$_{0.77}$Al$_{0.23}$B$_2$	-	3.060	3.294	-0.681	-5.185	20.4	-0.412	-8.580	26.6	[56]
35.	NbB$_2$ Non-SC	-	3.110	3.370	-0.566	-6.341	Non-SC	-0.297	-12.105	Non-SC	[55]
36.	Nb$_{0.50}$Hf$_{0.50}$B$_2$	-	3.120	3.400	-0.531	-6.780	Non-SC	-0.266	-12.762	Non-SC	[44]
37.	AlB$_2$	-	3.005	3.257	1.232	2.816	Non-SC	1.757	1.975	Non-SC	[40]
38.	AlB$_2$ Non-SC	-	3.009	3.262	1.237	2.809	0	1.762	1.972	0	[29], [57]
39.	NbB$_2$ -	-	3.110	3.267	-0.633	-5.673	Non-SC	-0.233	-15.412	Non-SC	[39]
40.	NbB$_2$ -	-	3.090	3.300	-0.600	-5.947	Non-SC	-0.200	-17.840	Non-SC	[29]
41.	Nb$_{0.67}$Al$_{0.33}$B$_2$	-	3.068	3.334	-0.673	-5.267	16.7	-0.205	-17.319	Non-SC	[56]
42.	Nb$_{0.50}$V$_{0.50}$B$_2$	-	3.030	3.200	-0.748	-4.678	42.1	-0.326	-10.747	Non-SC	[55]
43.	Nb$_{0.50}$Zr$_{0.50}$B$_2$	-	3.128	3.420	0.510	-7.081	Non-SC	-0.084	-43.220	Non-SC	[44]
44.	HfB$_2$	-	3.140	3.470	0.070	51.797	Non-SC	0.230	15.764	Non-SC	[29]
45.	HfB$_2$ -	-	3.141	3.470	0.070	51.813	Non-SC	0.230	15.769	Non-SC	[42], [44]
46.	HfB$_2$	-	3.139	3.473	0.073	49.650	Non-SC	0.233	15.588	Non-SC	[58]
47.	Hf$_{0.50}$Ti$_{0.50}$B$_2$	-	3.085	3.368	-0.034	-104.4	Non-SC	0.139	25.595	Non-SC	[44]
48.	AuB$_2$ (3+)	-	3.140	3.510	0.540	6.714	Non-SC	-	-	-	[29]
49.	AuB$_2$ (1+)	72*	2.980*	4.050*	2.540	1.355	61.3	2.680	1.284	69.2	[53]
50.	ScB$_2$	-	3.146	3.517	0.863	4.209	Non-SC	1.087	3.342	Non-SC	[29]
51.	MgB$_2$	49.0	3.068	3.505	1.785	1.985	37.8	2.205	1.607	37.9	[31]
N	Compound	T_c^{exp} (K)	a (Å)	c (Å)	$D_1^{RSh} + D_2^{RSh}$	J_{RSh}	$T_c^{Ta,RSh}$ (K)	$D_1^{RP} + D_2^{RP}$	J_{RP}	$T_c^{Ta,RP}$ (K)	Refer.
---	----------	----------------	--------	--------	------------------------	---------	-------------------	------------------------	---------	-------------------	--------
52.	MgB$_2$	36.6	3.075	3.519	1.799	1.974	38.3	2.219	1.600	38.6	[32]
53.	MgB$_2$	39.0	3.0856	3.5199	1.800	1.979	38.1	2.220	1.605	38.1	[33]
54.	MgB$_2$	38.8	3.083	3.520	1.800	1.978	38.1	2.220	1.604	38.2	[34]
55.	MgB$_2$	-	3.085	3.520	1.800	1.979	38.1	2.220	1.605	38.1	[7]
56.	MgB$_2$	38.1	3.0851	3.5201	1.801	1.978	38.1	2.221	1.604	38.2	[36]
57.	MgB$_2$	39.0	3.0849	3.5211	1.801	1.978	38.1	2.221	1.604	38.2	[35]
58.	MgB$_2$	38.9	3.0846	3.5230	1.803	1.975	38.3	2.223	1.602	38.4	[5]
59.	MgB$_2$	39.0	3.086	3.524	1.804	1.975	38.3	2.224	1.602	38.3	[1]
60.	ZrB$_2$	-	3.169	3.523	0.083	44.084	Non-SC	0.323	11.328	Non-SC	[59]
61.	ZrB$_2$	-	3.150	3.530	0.090	40.415	Non-SC	0.330	11.022	Non-SC	[29]
62.	ZrB$_2$	5.5	3.170	3.532	0.092	39.787	Non-SC	0.332	11.025	Non-SC	[39]
63.	ZrB$_2$	-	3.166	3.535	0.095	38.482	Non-SC	0.335	10.913	Non-SC	[45]
64.	Zr$_{0.50}$Ti$_{0.50}$B$_2$	-	3.098	3.390	-0.054	-66.76	Non-SC	0.205	17.414	Non-SC	[44]
65.	LuB$_2$	-	3.246	3.704	0.702	5.339	Non-SC	0.914	4.101	Non-SC	[42]
66.	YB$_2$	-	3.290	3.835	0.715	5.313	Non-SC	1.045	3.635	Non-SC	[60]
67.	PuB$_2$ (4+)	-	3.180	3.900	-0.100	-36.72	Non-SC	-	-	-	[29]
68.	UB$_2$ (4+)	-	3.136	3.988	-0.132	27.433	Non-SC	0.108	33.529	Non-SC	[42]
69.	UB$_2$ (4+)	-	3.140	4.000	-0.120	30.215	Non-SC	0.120	30.215	Non-SC	[29]
70.	MgB$_2$	38.2	3.0859	3.5212	1.801	1.978	38.1	2.221	1.604	38.2	[17]
71.	MgB$_2$, 1.17 GPa	-	3.0802	3.5112	1.791	1.986	37.8	2.211	1.608	37.8	[17]
72.	MgB$_2$, 2.14 GPa	-	3.0715	3.4985	1.778	1.994	37.5	2.198	1.613	37.3	[17]
73.	MgB$_2$, 3.05 GPa	-	3.0671	3.4885	1.768	2.002	37.2	2.188	1.618	36.7	[17]
74.	MgB$_2$, 4.07 GPa	-	3.0635	3.4819	1.762	2.008	36.9	2.182	1.621	36.4	[17]
75.	MgB$_2$, 5.09 GPa	-	3.0545	3.4718	1.752	2.013	36.7	2.172	1.624	36.1	[17]
76.	MgB$_2$, 6.53 GPa	-	3.0497	3.4586	1.739	2.025	36.2	2.159	1.631	35.4	[17]
77.	MgB$_2$, 8.02 GPa	-	3.0484	3.4572	1.737	2.026	36.2	2.157	1.632	35.3	[17]
TABLE I. (cont.)

N	Compound	T_c^{exp} (K)	a (Å)	c (Å)	$D_1^{RSh} + D_2^{RSh}$	J_{RSh}	$T_c^{Ta,RSh}$ (K)	$D_1^{RP} + D_2^{RP}$	J_{RP}	$T_c^{Ta,RP}$ (K)	Refer.
78.	MgB$_2$	-	3.0906	3.5287	1.809	1.973	38.3	2.229	1.601	38.5	[18]
79.	MgB$_2$, 6.15 GPa	-	3.0646	3.4860	1.766	2.004	37.1	2.186	1.619	36.6	[18]
80.	MgB$_2$	-	3.085	3.523	1.803	1.976	38.2	2.223	1.602	38.4	[40]
81.	Al$_{0.39}$Mg$_{0.61}$B$_2$	-	3.047	3.369	1.763	1.996	37.4	2.193	1.604	38.1	[40]
82.	Al$_{0.50}$Mg$_{0.50}$B$_2$	-	3.047	3.366	1.450	2.426	18.6	2.000	1.759	22.4	[40]
83.	Al$_{0.67}$Mg$_{0.33}$B$_2$	-	3.037	3.331	1.374	2.552	12.8	1.915	1.831	14.9	[40]
84.	Al$_{0.75}$Mg$_{0.25}$B$_2$	-	3.030	3.302	1.327	2.637	8.6	1.864	1.877	10.1	[40]
85.	MgB$_3$	-	3.065	3.5186	1.799	1.968	38.5	2.219	1.595	39.1	[7]
86.	Mg$_{0.98}$Al$_{0.02}$B$_2$	-	3.084	3.5158	1.802	1.976	38.2	2.223	1.602	38.4	[7]
87.	Mg$_{0.96}$Al$_{0.04}$B$_2$	-	3.083	3.5115	1.804	1.974	38.3	2.225	1.600	38.6	[7]
88.	Mg$_{0.92}$Al$_{0.08}$B$_2$	-	3.081	3.4969	1.802	1.974	38.3	2.224	1.600	38.6	[7]
89.	Mg$_{0.95}$Ca$_{0.05}$B$_2$	-	3.072*	3.5451*	1.855	1.912	40.8	2.304	1.541	44.4	[7]
90.	Mg$_{0.90}$Ca$_{0.10}$B$_2$	-	3.080*	3.5728*	1.913	1.859	42.9	2.392	1.487	49.7	[7]
91.	Mg$_{0.85}$Ca$_{0.15}$B$_2$	-	3.087*	3.6025*	1.974	1.805	45.0	2.483	1.435	54.8	[7]
92.	Mg$_{0.80}$Ca$_{0.20}$B$_2$	52*	3.095*	3.6304*	2.035	1.756	46.9	2.574	1.388	59.3	[7]
93.	Mg$_{0.95}$Na$_{0.05}$B$_2$	-	3.063*	3.5592*	1.870	1.892	41.6	2.288	1.546	43.9	[7]
94.	Mg$_{0.90}$Na$_{0.10}$B$_2$	-	3.061*	3.5967*	1.940	1.822	44.4	2.356	1.500	48.4	[7]
95.	Mg$_{0.80}$Na$_{0.20}$B$_2$	53*	3.057*	3.6776*	2.094	1.686	49.6	2.505	1.409	57.3	[7]
96.	MgB$_2$	38.5	3.0787	3.5178	1.798	1.977	38.2	2.218	1.603	38.3	[8]
97.	Mg$_{0.97}$Zn$_{0.03}$B$_2$	38.4	3.0870	3.5241	1.805	1.974	38.3	2.233	1.596	38.9	[9]
98.	Mg$_{0.95}$Zn$_{0.05}$B$_2$	38	3.0803	3.5226	1.805	1.972	38.4	2.238	1.589	39.7	[8]
99.	Mg$_{0.90}$Zn$_{0.10}$B$_2$	38.3	3.0841	3.5250	1.809	1.968	38.5	2.256	1.579	40.6	[8]
100.	Mg$_{0.80}$Zn$_{0.20}$B$_2$	38.3	3.0841	3.5239	1.812	1.965	38.7	2.285	1.558	42.7	[8]

* - T_c and lattice constant are calculated.