The influence of different factors on acoustic emission signal in the process of monitoring steel corrosion

Fengjiao Shi¹, Junzeng Wang², Wensheng Cui² and Lei Qin¹,*
¹School of architecture and civil engineering, University of Jinan, Jinan, China
²Shandong Sanjian Construction Engineering Management Co.ltd, Jinan, China

*Corresponding author e-mail: cea_qinl@ujn.edu.cn

Abstract. Corrosion of steel reinforcement is one of the reasons affecting the durability of building structures. In this paper, acoustic emission technology is used to monitor the corrosion of steel reinforcement. The two influencing factors of concrete strength and water-cement ratio were compared and analyzed, and the influence of different factors on monitoring acoustic emission signal was summarized.

1. Introduction
Reinforced concrete is widely used in building structures. With the increase of service time, the durability problem of reinforced concrete structure, especially the problem of steel corrosion is obvious.[1,4] Acoustic emission (AE), as a kind of real-time, continuous and online nondestructive testing technology, plays an important role in the monitoring of steel corrosion.[5,8] In this paper, the acoustic emission technology is used to monitor the corrosion of steel reinforcement, and the change curve of cumulative impact number is obtained. It can be seen that the process of corrosion of steel reinforcement is divided into three stages. The influence of different factors on acoustic emission signal was observed by experiments on reinforced concrete test blocks with different concrete strength, water cement ratio.[9,13]

2. Monitoring reinforcement corrosion by using AE

2.1. Specimen preparation and accelerated corrosion process
The size of the specimen used in this experiment is 100mm × 100mm × 400mm, and the diameter and length of the embedded steel reinforcement are 10mm and 400mm respectively. The pouring and curing of concrete shall be carried out in accordance with the standards. The completed test block is shown in figure 1. The specimen was soaked in 5% NaCl solution and was accelerated corrosion by using electrochemical method.[14,15] The positive pole of the power supply was connected to the steel bar, and the negative pole of the power supply was connected to the copper bar. The corrosion current was maintained at 0.1A. The schematic diagram of accelerated corrosion and acoustic emission monitoring of reinforcement corrosion is shown in figure 2.
2.2. The results and analysis of experiment

The cumulative impact number change curve and the energy-time curve obtained through experimental monitoring are shown in figure 3.

(a) The curve of cumulative number of impacts

(b) The curve of energy-time

Figure 3. Variation curve of acoustic emission parameters
As can be seen from figure 3 (a), the slope change of the curve in stage 1 is not obvious. The slope of the curve in stage 2 increases. The slope of the stage 3 continues to change, but not as much as the slope of stage 2. It can be seen from the analysis of figure 3 (b) that the energy density is not large at stage 1. The energy density is high at stage 2, and the highest energy concentration is at the junction of stage 2 and stage 3. Therefore, the process of steel reinforcement corrosion can be divided into three stages according to the change curve of the cumulative impact number and the change curve of energy-time.

The first stage is the initial stage of steel corrosion. It can be seen from the figure that the number of impacts of ae in this stage is very small, and the energy released is also very small. The curve of cumulative number of impacts is relatively flat. The second stage is the development stage of concrete internal cracks. With the increase of electrification time, the corrosion of steel bar and the corrosion products increase continuously. Corrosion products constantly fill the interface between steel and concrete, resulting in micro-cracks. In the process of fracture development, energy will accumulate continuously and finally be released in the form of acoustic emission when blocked by cement stone and aggregate. Therefore, the second stage of steel reinforcement corrosion corresponds to the generation and development stage of concrete internal cracks. The number of ae impacts increases continuously and the energy generated is relatively high.

The third stage is the stage after concrete cracking. It can be seen from figure 3 (a) that there is a break point before the macro cracks, and the curve tends to be stable at the end of the corrosion. The break point can be regarded as the characteristic point of the appearance of cracks, providing a reference moment for damage warning.

3. The influence of different factors on acoustic emission signal

3.1. Different strength of concrete
There are many factors affecting the strength of concrete, such as aggregate, mix ratio, curing condition, water-cement ratio and so on. In this study, three types of concrete strength C30, C40 and C50 are designed, and the mix proportion of concrete is shown in table 1.

materials	Strength	C30	C40	C50
cement(kg)	5.3	4.13	4.5	
sand(kg)	5.75	7.6	6.84	
aggregate(kg)	10.79	10.9	11.11	
water(kg)	2.39	1.65	1.575	

The detected AE signals are shown in figure 4.5.6.
Figure 4. Variation curve of acoustic emission parameters of C30

(a) the change curve of cumulative impact number

(b) The change curve of energy over time

Figure 5. Variation curve of acoustic emission parameters of C40

(a) the change curve of cumulative impact number

(b) The change curve of energy over time
By comparing the change curves of the cumulative number of impacts, it can be seen that under the same experimental condition, with the continuous increase of concrete strength, the number of impacts decreases, and the time of occurrence of characteristic points increases, indicating that high-strength concrete produces less AE activity and the time of crack generation increases. However, compared with the energy-time curve, as the concrete strength increases, the acoustic emission energy generated also increases. The main reason is that the stronger the concrete is, the greater the energy absorbed and released when the concrete is damaged.

3.2. Different water cement ratios
Experiments were carried out using water-cement ratios of 0.4, 0.5, and 0.6, respectively, to observe the effects of different water-cement ratios on acoustic emission signals. The matching of materials under different water-cement ratios is shown in table 2.

Water cement ratios	Water (kg)	Cement (kg)	Aggregate (kg)	Sand (kg)
0.4	2.11	5.28	10.56	6.34
0.5	2.64	5.28	10.56	6.34
0.6	3.17	5.28	10.56	6.34

The relation curve between peak frequency and energy obtained from acoustic emission monitoring is shown in figure 7:
It can be seen from figure 7 that when the water-cement ratio is 0.4, 0.5 and 0.6, the corresponding peak frequencies are 170KHz, 140KHz and 120KHz, respectively. As the water-cement ratio increases, the corresponding peak frequencies decrease, and the energy also decreases. The reason for this phenomenon is that when the concrete water-cement ratio is small, the internal structure of the concrete is relatively compact, and the porosity is small, which makes the strength of the concrete increase, and the bond strength between the cement gel and the aggregate is also relatively high. Therefore, when the concrete is destroyed, the energy absorbed and released is high, and the peak frequency of the corresponding acoustic emission signal is also increased.

4. Conclusion
In the acoustic emission monitoring process of steel corrosion, the process of steel corrosion can be divided into three stages according to the change curve of cumulative impact number. The first stage is the initial stage of steel corrosion. The second stage is the expansion stage of internal micro cracks. The third stage is the development stage of macroscopic cracks, and the acoustic emission activity eventually flattens out. In addition, by summarizing different influencing factors, concrete strength and water-cement ratio, it can be seen that with the increase of concrete strength, the cumulative number of impacts is reduced. Meanwhile, energy and the time increases when the peak occurs, and the time of rust expansion and cracking becomes longer. With the increase of water-cement ratio, the number of acoustic emission signals which are monitored increases, the acoustic emission activity is intense, and the time of rust expansion and cracking becomes shorter.
Acknowledgments
The investigation presented in this paper was supported by National Natural Science Foundation of China (51678277) and Key R & D project of Shangdong Province (2017GGX90107).

References
[1] Rettig T W, Felsen M J. Acoustic Emission Method for Monitoring Corrosion Reactions[J]. Corrosion, 2013, 32(4):121-126.
[2] Pei Q, Guo X, Zhang M Z. A review of health monitoring and damage detection of bridge structures[J]. Earthquake Engineering and Engineering Vibration, 2003.
[3] Behnia A, Chai H K, Shiotani T. Advanced structural health monitoring of concrete structures with the aid of acoustic emission[J]. Construction and Building Materials, 2014, 65:282-302.
[4] Simmers G E, Sodano H A, Park G, et al. Detection of Corrosion Using Piezoelectric Impedance-Based Structural Health Monitoring[J]. Aiaa Journal, 2015, 44(11):2800-2803.
[5] Kundu T. Acoustic emission monitor and evaluation method of steel corrosion damage for reinforced concrete[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2011, 7984(10):79842F-79842F-7.
[6] Benedetti M D, Loreto G, Nanni A, et al. Continuous acoustic emission monitoring of reinforced concrete under accelerated corrosion[J]. Journal of Materials in Civil Engineering, 2011, 7983(8):1022-1029.
[7] Elfergani H A, Pullin R, Holford K M. Damage assessment of corrosion in prestressed concrete by acoustic emission[J]. Construction & Building Materials, 2013, 40(3):925-933.
[8] Jirarungsatian C, Prateepasen A. Pitting and uniform corrosion source recognition using acoustic emission parameters[J]. Corrosion Science, 2010, 52(1):0-197.
[9] Ramadan S, Gaillet L, Tessier C, et al. Detection of stress corrosion cracking of high-strength steel used in prestressed concrete structures by acoustic emission technique[J]. Applied Surface Science, 2008, 254(8):2255-2261.
[10] Topolar L, Libor, Misák, Petr, Kocáb, Dalibor, et al. Applying Method of Acoustic Emission for Monitoring of Different Concrete Mixture during Setting and Hardening[J]. Solid State Phenomena, 2016, 249:91-95.
[11] Topolar L, Timcakova K, Misak P, et al. Parameters of Acoustic Emission Signals Obtained During the Setting and Hardening of Concrete Mixtures with Different Water-Cement Ratio[J]. Applied Mechanics and Materials, 2016, 837:152-156.
[12] Zhang J, Fan T, Ma H, et al. Monitoring setting and hardening of concrete by active acoustic method: Effects of water-to-cement ratio and pozzolanic materials[J]. Construction and Building Materials, 2015, 88:118-125.
[13] Liang S, Zhang C, Lin W, et al. Fiber-optic intrinsic distributed acoustic emission sensor for large structure health monitoring[J]. Optics Letters, 2009, 34(12):1858-1860.
[14] Huet B, V. L hostis, Misereque F, et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution[J]. Electrochimica Acta, 2006, 51(1):172-180.
[15] Glass G K, Buenfeld N R. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete[J]. Corrosion Science, 2000, 42(2):329-344.