Data Article

Data of de novo genome assembly of the Chlamydia psittaci strain isolated from the livestock in Volga Region, Russian Federation

Valentina A. Feodorova a, *, Sergey S. Zaitsev a, Mariya A. Khizhnyakova a, Yury V. Saltykov a, Vitaliy V. Evstifeev b, Fidail M. Khusainov b, Sergey I. Yakovlev b, Olga S. Larionova c, Vladimir L. Motin d, **

a Laboratory for Molecular Biology and NanoBiotechnology, Federal Research Center for Virology and Microbiology (FRCVIM), Branch in Saratov, 410028, Saratov, Russia
b Laboratory of Viral and Chlamydial Infections, Federal Center for Toxicological, Radiation and Biological Safety, 420074, Kazan, Republic of Tatarstan, Russia
c Department for Microbiology, Biotechnology and Chemistry, Saratov State Agrarian University, 410003, Saratov, Russia
d Department of Pathology, Department of Microbiology & Immunology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA

Article history:
Received 9 January 2020
Accepted 21 January 2020
Available online 27 January 2020

Keywords:
Chlamydia psittaci
Genome assembly
de novo genome
Rostinovo-70
Illumina HiSeq 2500 platform
Oxford Nanopore MinION

Abstract

Chlamydiae are obligate intracellular bacteria globally widespread across humans, wildlife, and domesticated animals. Chlamydia psittaci is a primarily zoonotic pathogen with multiple hosts, which can be transmitted to humans, resulting in psittacosis or ornithosis. Since this pathogen is a well-recognized threat to human and animal health, it is critical to unravel in detail the genetic make-up of this microorganism. Though many genomes of C. psittaci have been studied to date, little is known about the variants of chlamydial organisms causing infection in Russian livestock. This research is the first de novo genome assembly of the C. psittaci strain Rostinovo-70 of zoonotic origin that was isolated in Russian Federation. The results were obtained by using standard protocols of sequencing with the Illumina HiSeq 2500 and Oxford Nanopore MinION technology that generated 3.88 GB and 3.08 GB of raw data, respectively. The data obtained are available in NCBI.
DataBase (GenBank accession numbers are CP041038.1 & CP041039.1). The Multi-Locus Sequence Typing (MLST) showed that the strain Rostinovo-70 together with C. psittaci GR9 and C. psittaci WS/RT/E30 belong to the sequence type (ST)28 that could be further separated into two different clades. Despite C. psittaci Rostinovo-70 and C. psittaci GR9 formed a single clade, the latter strain did not contain a cryptic plasmid characteristic to Rostinovo-70. Moreover, the genomes of two strains differed significantly in the cluster of 30 genes that in Rostinovo-70 were closer to Chlamydia abortus rather than C. psittaci. The alignment of the genomes of C. psittaci and C. abortus in this area revealed the exact boarders of homologous recombination that occurred between two Chlamydia species. These findings provide evidence for the first time of genetic exchange between closely related Chlamydia species.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject	Molecular Biology, Veterinary Science
Specific subject area	Genome sequencing
Type of data	Table
	Graph
	Figure

How data were acquired	Illumina HiSeq 2500 platform, Oxford Nanopore MinION
Data format	Raw
	Filtered

| Parameters for data collection | Data obtained by using standard protocols of sequencing with the Illumina HiSeq 2500 and Oxford Nanopore MinION technology. Protocols are available on official websites of the companies. Data processing was performed with the use of bioinformatic tools. A PC equipped with Intel Core i7 and 16 GB RAM was used for de novo assembly. |

| Description of data collection | Total DNA of the C. psittaci strain Rostinovo-70 isolated from the livestock in Volga Region, Russian Federation was used in the study. Chlamydia bacteria were grown in infected chicken embryo, enriched by gradient density centrifugation followed by DNA extraction with the Qiagen DNeasy Blood & Tissue Kit, and then sequenced on the Illumina HiSeq 2500 platform and Oxford Nanopore MinION. Assembler Unicycler was used for de novo hybrid assembly with Oxford Nanopore (2.5 GB, 271,098 total sequences) and Illumina (945 Mb, 1,831,776 total sequences) of the filtered reads. Comparative analysis of the Rostinovo-70 chromosome was performed against the plasmidless C. psittaci GR9 (GenBank # CP003791.1) using the Mauve software. |

| Data source location | Federal Center for Toxicological, Radiation and Biological Safety, Kazan, Republic of Tatarstan, Russia, 55° 49′ 49.5516″ N, 49° 3′ 57.8916″ E; Federal Research Center for Virology and Microbiology, Branch in Saratov, Saratov, Russia, 55° 44′ 34.055″ N, 37° 36′ 55.443″ E |

Data accessibility	Repository name: GenBank
	Data identification number: CP041038.1
	Direct URL to data: https://www.ncbi.nlm.nih.gov/nuccore/CP041038.1
	Repository name: GenBank
	Data identification number: CP041039.1
	Direct URL to data: https://www.ncbi.nlm.nih.gov/nuccore/CP041039.1

| Related research article | Valentina A. Feodorova, Sergey S. Zaitsev, Yury V. Saltykov, Vitaliy V Evstifeev, Fidail M. Khusainov, Sergey I. Yakovlev, Olga S. Larionova, Onega V. Ulyanova, Vladimir L. Motin. The molecular characteristics of Chlamydia psittaci strain from cattle isolated in the Southeastern European Region of Russia (Volga Region), FEBS Open Bio. 9 (Suppl. 1) (2019) P-02-016. P. 97. https://doi.org/10.1002/2211-5436.12675. |
1. Data

In this study, we report for the first time a complete genome assembly for the *C. psittaci* wild-type strain Rostinovo-70 sequenced by both the Illumina HiSeq 2500 and Oxford Nanopore MinION platforms. Fig. 1 describes a notable polymorphism with a number of single and multiple single nucleotide polymorphisms (SNPs) in both the coding sequences (CDS) and intergenic spaces in comparison between the *C. psittaci* Rostinovo-70 and the reference genome of *C. psittaci* GR9 strain, isolated from wild ducks in Germany [1]. Fig. 2 demonstrates the phylogenetic structure of 12 homologous reference *C. psittaci* strains and *C. psittaci* Rostinovo-70 strain, which was constructed and visualized by NDtree 1.2 and phylogenetic tree newick viewer, respectively. Fig. 3 demonstrates a phylogenetical separation of the *C. psittaci* Rostinovo-70 and reference *C. psittaci* WS/RT/E30 into two different clades while *C. psittaci* Rostinovo-70 and *C. psittaci* GR9 formed a single clade. Table 1 provides a summary of genome statistical characteristics for the hybrid assembly of the *C. psittaci* Rostinovo-70 by QUAST. Table 2 lists the bioinformatic tools used to analyze the genome of *C. psittaci* Rostinovo-70 strain. Table 3 describes the list of the whole genome *C. psittaci* strains and plasmids used for comparative analysis. Table 4 demonstrates a marked difference in 50 genes between the *C. psittaci* Rostinovo-70 and *C. psittaci* GR9 and the presence of a cluster of 30 genes in the *C. psittaci* Rostinovo-70 that were homologous to *Chlamydia abortus* rather than *C. psittaci*.

2. Experimental design, materials, and methods

2.1. DNA extraction, Illumina and nanopore sequencing, and assembly

Total DNA was extracted from the lyophilized chicken embryo tissue that was infected with *C. psittaci* strain Rostinovo-70 followed by density gradient centrifugation. For this purpose the DNeasy Blood & Tissue Kit (250) QIAGEN (Qiagen, Hilden, Germany) was applied. The final DNA concentration was measured using a spectrophotometer from BioRad (Bio-Rad Laboratories, Redmond, WA, USA).

Fig. 1. Distribution of all SNPs identified in *C. psittaci* Rostinovo-70 versus *C. psittaci* GR9 strains.
Preparation of the DNA library for sequencing was performed using 1D Genomic DNA by ligation SQK-LSK108 (Oxford Nanopore Technologies, Oxford, UK). DNA end repair and dA-tailing steps was performed using NEB repair modules (New England Biolabs, Ipswich, MA, USA). All clean-up steps of DNA preparation were performed using Agencourt AMPure XP beads (Beckman Coulter Life Sciences, USA).

Fig. 2. GrapeTree view showing the MLST phylogenetic relationships among C. psittaci strains calculated based on the concatenated sequence diversity of seven housekeeping genes (gatA, oppA, hpx, gita, enoA, hemN, and fumC). The ST28 circle consists of four strains such as C. psittaci WS/RT/E30, C. psittaci GR9, C. psittaci GR9(GD), and C. psittaci Rostinovo-70 sequenced in this study.

Fig. 3. Whole-genome multiple sequence alignments of 12 C. psittaci references strains and C. psittaci Rostinovo-70 generated into phylogenetic tree calculated using The Reference sequence Alignment based Phylogeny Builder (REALPHY) 1.12 online service, as described in the text.
Indianapolis, IN, USA). The final volume of prepared DNA was 75 µl. A FLO-MIN-106 R9.4 Flow cell (Oxford Nanopore Technologies, Oxford, UK) was used to perform sequencing with the MinION and software the MinKNOW. In parallel, the extracted DNA was sequenced with the Illumina HiSeq 2500 platform (Genoanalytica, Moscow, Russia, https://www.genoanalytica.ru/).

The sequencing runs generated a total of 3.88 GB (7,493,423 total sequences) of single-end reads by the Illumina platform in FASTQ format and 3.08 GB (1,24 M reads) by the Oxford Nanopore in fast5 format. After filtering out chicken embryo tissue reads, the C. psittaci DNA used for de novo hybrid assembly was composed with the clean reads for both Illumina (945 Mb, 1,831,776 total sequences) and Oxford Nanopore (2.5 GB, 271,098 total sequences). Assembly analysis showed an availability of the entire chromosome in a single contig (1,171,768 bp length, the GenBank accession number is CP041038.1). Additionally, the presence of C. psittaci cryptic plasmid (7678 bp length) was identified as the extrachromosomal replicon (the GenBank accession number is CP041039.1).

In contrast to the plasmidless C. psittaci GR9, a cryptic plasmid (7659 bp) was detected in the C. psittaci Rostinovo-70. In fact, four SNPs and quadruple-SNP combinations (AGAA/TTCT) were found in the C. psittaci Rostinovo-70 cryptic plasmid in comparison with the reference C. psittaci CP3 plasmid (GenBank Accession number CP003813.1). The consecutive comparative analysis of several target genes of the C. psittaci Rostinovo-70 strain after Sanger sequencing by another group [2], namely the omp1, omp2, 16S rRNA, 23S rRNA and plasmid pCp putative genes (GenBank Accession numbers DQ177459.1, DQ177460.1, DQ663788.1, DQ663789.1 and DQ663790.1, respectively), with the relevant genes of the whole genome sequence of the Rostinovo-70 strain deposited by us demonstrated their complete identity (100%). The only exception was omp2 (GenBank Accession number DQ177460.1), which showed an identity of 99.83% due to the SNP at position 534 displayed a T→A substitution.

Table 1
Genome statistical characteristics for the hybrid assembly of the C. psittaci Rostinovo-70 by QUAST.

Summary	Assembling results
contigs	2
contigs (≥ 5000 bp)	2
contigs (≥ 10,000 bp)	1
contigs (≥ 25,000 bp)	1
contigs (≥ 50,000 bp)	1
Largest contig (bp)	1,152,559
Total length (bp)	1,160,112
N50 (bp)	1,152,559
N75 (bp)	1,152,559
L50 (bp)	1
L75 (bp)	1
GC (%)	39.08

Table 2
The bioinformatic tools used to analyze the genome of C. psittaci Rostinovo-70 strain.

Software/Program	Website	Reference
Metagenomics Analysis	https://www.mg-rast.org/	[3]
Server MG-RUST		
FASTQCv0.11.8	https://www.bioinformatics.babraham.ac.uk/projects/fastqc/	[4]
AfterQC	https://github.com/OpenGene/AfterQC	[5]
Porechop	https://github.com/rrwick/Porechop	[6]
Filtlong	https://github.com/rrwick/Filtlong	[7]
Bowtie2 v. 2.3.5.1	http://bowtie-bio.sourceforge.net/bowtie2/index.shtml	[8]
QUAST	http://quast.bioinf.spbau.ru	[9]
Unicycler	https://github.com/rrwick/Unicycler	[10]
Mauve v. 2.4.0	http://darlinglab.org/mauve/download.html	[11]
Program and scripts for bioinformatics

Brieﬂy, taxonomic analysis of the raw reads was performed by Metagenomics Analysis Server MG-RUST [3]. Quality assessment of the reads was performed using FASTQCv0.11.8 [4]. Removal of low-quality reads with ambiguous base (N) and the adapter sequences from the Illumina data was made by AfterQC [5]. The Porechop [6] was used to find and remove adapters from Oxford Nanopore reads. The Filtlong software [7] was used to ﬁlter short Nanopore reads smaller than 2000 bp. Single-end Illumina reads were ﬁltered using Bowtie2 v. 2.3.5.1 [8]. The reference strains mapping was performed by Bowtie2 v. 2.3.5.1. with 20 reference C. psittaci genomes (Table 3) and ﬁve C. psittaci plasmids deposited in GenBank, which had more than 95% homology to Rostinovo-70. Genome statistical data analysis of the hybrid assembly of the C. psittaci Rostinovo-70 was generated with Quality Assessment Tool for Genome Assemblies (QUAST) [9]. Hybrid de novo assembly was carried out by using Unicycler assembly pipeline for bacterial genomes [10]. A search of local changes, such as nucleotide substitutions in individual genes, alignment, as well as comparison with the reference genomes were performed by software Mauve v. 2.4.0. [11] allowing more accurate determination of the positions of mutations in coding and non-coding regions.

Phylogenetic analysis

Table 3
The list of the whole genome C. psittaci strains and plasmids used in this study.

Species	Strain	GenBank No.	Reference
C. psittaci	Rostinovo-70 chromosome	CP041038.1	This study
	Rostinovo-70 cryptic plasmid	CP041039.1	This study
GR9 chromosome	CP033791.1	[1]	
CP3 plasmid pcp CP3	CP03813.1	Unpublished	
Rostinovo-70 omp1	DQ177459.1	[2]	
Rostinovo-70 omp2	DQ177460.1	[2]	
Rostinovo-70 16S rRNA	DQ663788.1	[2]	
Rostinovo-70 23S rRNA	DQ663789.1	[2]	
Rostinovo-70 plasmid pCp hypothetical protein genes	DQ663790.1	[2]	
WS/RT/E30 chromosome	NC_018622.1	Unpublished	
6BC chromosome	CP002549.1	[12,13]	
RD1 chromosome	FQ482149.1	[14]	
GIMC 2003:Cps255M chromosome	NZ_CP024453.1	Unpublished	
GIMC 2004:CpsAP23 chromosome	NZ_CP024455.1	Unpublished	
GIMC 2005:CpsCP1 chromosome	NZ_CP024451.1	Unpublished	
VS225 chromosome	NC_018621.1	[1]	
Full127 chromosome	NZ_CP033059.1	Unpublished	
WC chromosome	NC_018624.1	[1]	
Mat116 chromosome	CP002744.1	Unpublished	
WS/RT/E30 chromosome	NC_018622.1	[1]	
NJ1	CP003798.1	[1]	

The MLST based on the concatenated sequences of seven housekeeping genes with the use of a DataBase hosted at http://pubmlst.org/chlamydial/ assigned the C. psittaci Rostinovo-70 to sequence type (ST)28. In fact, C. psittaci Rostinovo-70, C. psittaci GR9, and C. psittaci WS/RT/E30 belong to the same ST28 indicating their origination from a single progenitor. Nevertheless, the strains C. psittaci Rostinovo-70 and C. psittaci WS/RT/E30 (GenBank Accession number NC_018622.1) were separated phylogenetically into two different clades (Fig. 3). In contrast, C. psittaci Rostinovo-70 and C. psittaci GR9 formed a single clade, despite that they demonstrated a marked difference in 50 genes (Table 4). Further analysis revealed the presence of a cluster of 30 genes that were closer to C. abortus rather than C. psittaci (Table 4). The alignment of the genomes of C. psittaci Rostinovo-70, C. psittaci GR9, and C. abortus LLG in this area determined the exact borders of the homologous recombination that occurred between two Chlamydia species, such as C. psittaci and C. abortus. One region of recombination was located within the gene encoding putative 3-methyladenine DNA glycosylase resulting in the
Table 4
Gene polymorphisms between the *C. psittaci* Rostinovo-70 and the reference strains *C. psittaci* GR9 and *C. abortus* strains.

SNPs group	Species & Strain	GenBank No.	Product	Position reference strain	Locus tag reference strain	Locus tag Rostinovo-70	Identity,%
1	*C. psittaci* GR9	CP003791.1	DnaK DNA-3-methyladenine glycosylase family protein	253,092..253,664	B598_0269	F1836_03950	95.29
2			vacB and RNase II 3'-5' exoribonucleases family protein	253,664..255,709	B598_0270	F1836_03955	93.40
3			chaperone protein	255,866..257,845	B598_0271	F1836_03960	95.30
4			grpE family protein	257,871..258,446	B598_0272	F1836_03965	93.40
5			heat-inducible transcription repressor HrcA	258,443..259,603	B598_0273	F1836_03970	93.36
6			proS prolyl-tRNA synthetase	259,712..261,445	B598_0274	F1836_03975	91.82
7			hypothetical protein	261,710..262,906	B598_0275	F1836_03980	86.80
8			putative lipoprotein	263,013..263,957	B598_0276	F1836_03985	92.28
9			hypothetical protein	263,962..264,240	B598_0277	F1836_03990	92.45
10			ABC transporter substrate binding family protein	263,962..264,240	B598_0278	F1836_03995	93.77
11			L-l-3-diaminopimelate aminotransferase	265,277..266,473	B598_0279	F1836_04000	91.31
12			hypothetical protein	266,738..267,508	B598_0280	F1836_04005	84.77
13			hypothetical protein	267,942..268,177	B598_0281	F1836_04010	92.79
14			hypothetical protein	269,178..271,262	B598_0282	F1836_04015	92.82
15			hypothetical protein	271,402..272,007	B598_0283	F1836_04020	96.03
16			hypothetical protein	271,983..272,279	B598_0284	F1836_04025	98.30
17			HIT domain protein	272,276..272,608	B598_0285	F1836_04030	97.00
18			hypothetical protein	272,652..274,268	B598_0286	F1836_04035	92.70
19			hypothetical protein	274,257..274,520	B598_0287	F1836_04040	82.20
20			solute symporter family protein	274,870..276,204	B598_0288	F1836_04045	91.09
21	*C. abortus* LLG	CP018296.1	putative 3-methyladenine DNA glycosylase	253,058..253,630	CAB1_0249	F1836_03950	97.91
22			putative ribonuclease	253,630..255,678	CAB1_0250	F1836_03955	
23			putative 3-methyladenine DNA glycosylase	253,058..253,630	CAB1_0249	F1836_03950	99.12
24			putative ribonuclease	253,630..255,678	CAB1_0250	F1836_03950	
25			heat shock chaperone protein	255,832..257,811	CAB1_0251	F1836_03960	99.29
26			heat shock protein GrpE(hsp-70 cofactor)	257,837..258,412	CAB1_0252	F1836_03965	98.36
27			heat-inducible transcription repressor	258,409..259,569	CAB1_0253	F1836_03970	
28			prolyl-tRNA synthetase	259,678..261,411	CAB1_0254	F1836_03975	98.73
29			hypothetical protein	267,895..269,139	CAB1_0261	F1836_04010	98.95
30			hypothetical protein	271,371..272,240	CAB1_0263	F1836_04025	98.30

(continued on next page)
SNPs group	Species & Strain	GenBank No.	Product	Position reference strain	Locus tag reference strain	Locus tag Rostinovo-70	Identity,%
31					CAB1_0265	FJ836_04035	98.82
32					CAB1_0265	FJ836_04035	96.59
33					CAB1_0267	FJ836_04045	96.55
34	C. abortus GIMC 2006: Cab8577	CP024084.1			CHAB577_0257	FJ836_03965	98.78
35					CHAB577_0258	FJ836_03970	
36					CHAB577_0260	FJ836_03980	97.16
37					CHAB577_0262	FJ836_03990	99.43
38					CHAB577_0263	FJ836_03995	
39					CHAB577_0264	FJ836_04000	99.33
40					CHAB577_0263	FJ836_03995	
41					CHAB577_0264	FJ836_04000	
42					CHAB577_0265	FJ836_04000	
43					CHAB577_0266	FJ836_04005	97.64
44					CHAB577_0268	FJ836_04015	98.94
45					CHAB577_0269	FJ836_04020	99.01
46					CHAB577_0269	FJ836_04020	97.00
47					CHAB577_0270	FJ836_04030	99.68
48	C. abortus GN6	CP021996.1			CEF07_01315	FJ836_03985	
49					CEF07_01320	FJ836_03990	98.92
50					CEF07_01325	FJ836_03995	
frameshift within the FI836_03950 in Rostinovo-70. The consequence of the alteration of this gene to pseudogene on virulence of this strain will be part of a future investigation. Another region of recombination was localized within the FI836_04045 encoding putative sodium symporter family protein resulting in formation of a hybrid protein between two Chlamydia species. Overall, the comparative genomics appears to reveal the first evidence of homologous recombination between two organisms.

Acknowledgments

This work was supported by the Russian Science Foundation [Project # 17-16-01099].

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2020.105190.

References

[1] S. Van Lent, J.R. Piet, D. Beeckman, A. van der Ende, F. Van Nieuwerburgh, P. Bavoil, G. Myers, D. Vanrompay, Y. Pannekoek, Full genome sequences of all nine Chlamydia psittaci genotype reference strains, J. Bacteriol. 194 (2012) 6930–6931, https://doi.org/10.1128/JB.01828-12.
[2] R.R. Vafin, R.Kh. Ravilov, Kh.Z. Gaffarov, A.Z. Ravilov, G.M. Ishkhakov, I.Kh. Bakirov, V.N. Kashov, R.R. Vafin, A contribution to the nomenclature and classification of chlamydiae, Mol. Gen. Microbiol. Virusol. 4 (2007) 17–25.
[3] F. Meyer, D. Paarmann, M. D’Souza, R. Olson, E.M. Glass, M. Kubal, T. Paczian, A. Rodriguez, R. Stevens, A. Wilke, J. Wilkening, R.A. Edwards, The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes, BMC Bioinf. 9 (2008) 1–8, https://doi.org/10.1186/1471-2105-9-386.
[4] B. Bioinformatics, FastQC: A Quality Control Tool for High Throughput Sequence Data, Babraham Institute, Cambridge, UK, 2018. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, (Accessed 4 October 2018). Version 0.11.8.
[5] S. Chen, T. Huang, Y. Zhou, Y. Han, M. Xu, J. Gu, AfterQC: automatic filtering, trimming, error removing and quality control for fastq data, BMC Bioinf. 18 (2017) 91–100, https://doi.org/10.1186/s12859-017-1469-3.
[6] Porechop, v0.2.1. https://github.com/rrwick/Porechop.
[7] Filtlong, v0.2.0. https://github.com/rrwick/Filtlong.
[8] B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol. 10 (2009) R25, https://doi.org/10.1186/gb-2009-10-3-r25.
[9] A. Gurevich, V. Saveliev, N. Vyahhi, G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics 29 (2013) 1072–1075, https://doi.org/10.1093/bioinformatics/btt086.
[10] R.R. Wick, L.M. Judd, C.L. Gorrie, K.E. Holt, Unicycler: resolving bacterial genome assemblies from short and long sequencing reads, PLoS Comput. Biol. 13 (2017) e1005595, https://doi.org/10.1186/s12859-017-1469-3.
[11] A.E. Darling, B. Mau, N.T. Perna, Progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement, PLoS One 5 (2010) e11147, https://doi.org/10.1371/journal.pone.0011147.
[12] A. Voigt, G. Schoff, A. Heidrich, K. Sachse, H.P. Saluz, The Chlamydia psittaci genome: a comparative analysis of intracellular pathogens, PLoS One 7 (2012) e35097, https://doi.org/10.1371/journal.pone.0035097.
[13] H.M. Seth-Smith, S.R. Harris, R. Rance, A.P. West, J.A. Severin, J.M. Ossewaarde, L.T. Cateciffe, R.J. Skilton, P. Marsh, J. Parkhill, N.R. Thomson, Genome sequence of the zoonotic pathogen Chlamydia psittaci, J. Bacteriol. 193 (2011) 1282–1283, https://doi.org/10.1128/JB.01435-10.