Determination of HER2 Amplification Status on Tumour DNA by Digital PCR

Isaac Garcia-Murillas1, Maryou Lambros3, Nicholas C. Turner1,2*

1 The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, United Kingdom, 2 Breast Unit, Royal Marsden Hospital, London, United Kingdom

Abstract

Determination of the presence of HER2 amplification by quantitative PCR has been challenging, in part due to chromosomal instability and identification of a robust a reference region. We assessed the potential of digital PCR for highly accurate assessment of DNA concentration with EFUD2 as chromosome 17 reference probe. We assessed a HER2:EFUD2 ratio by digital PCR assay in the microdissected DNA from 18 HER2 amplified and 58 HER2 non-amplified cancers. The HER2:EFUD2 ratio had high concordance with conventionally defined HER2 status with a sensitivity of 100% (18/18) and a specificity of 98% (57/58). The HER2:EFUD2 digital PCR assay has potential to accurately assess HER2 amplification status.

Introduction

Treatments directed at HER2 have transformed the outcome of HER2 amplified cancers [1]. Determination of the presence of HER2 amplification in clinical practice uses both immunohistochemistry, such as the Herceptin® test, to detect HER2 over-expression or in situ hybridization to assess HER2 gene copy number [2]. The somatic genetic events that drive breast cancer have now been well described [3], with multiple clinical trials underway directed against somatic genetic events such as mutation of PIK3CA. Testing for such mutations is likely to become part of routine practice, which will require routine extraction of DNA, and this emphasizes the potential utility of robust DNA based gene copy number assessment, and developed a digital PCR assay to accurately assess HER2 amplification status from extracted DNA.

Here we show that this assay has very high accuracy in defining HER2 amplification status from tumour DNA samples.

Materials and Methods

Patient Cohort

Tumour samples were from two previously published series of breast cancers [11,12,13]. Tumour samples were from fresh frozen material, microdissected to achieve at least 70% tumour cell content under a stereomicroscope prior to DNA extraction. DNA was extracted using Qiagen DNeasy Blood and Tissue Kit as per manufacturer’s instruction, and quality and quantity was assessed using Life Technologies Quant-iT™ PicoGreen® dsDNA Assay Kit as per manufacturer instructions. Clinicopathological details of the samples included in this study are listed in Table 1. HER2 status was defined according to ASCO-CAP guidelines, and was blinded to analysis of samples by digital PCR.

Identification of Reference Region on Chromosome 17

We utilised microarray comparative genomic hybridisation data from 311 invasive breast cancers, 65 HER2 amplified and 246 HER2 non-amplified [14], to identify an optimal chromosome 17 copy number reference region [15]. The copy number ratio between the mean of probes covering HER2 and every possible reference probe on chromosome 17 was assessed for each cancer. For each possible reference probe the sensitivity for comparing amplified and non-amplified cancers was calculated, as was the statistical difference between HER2 amplified and non-amplified cancers with the Student’s T test. The sensitivity was modeled as the proportion of HER2 amplified cancers that had a copy number ratio higher than the maximum ratio of the HER2 non-amplified
Digital PCR

Digital PCR was performed as previously described [15] on a QX100 droplet digital PCR system (Bio-Rad) with HER2 primers (HER2F: ACAAACAACTGAGGCAAGGT, HER2R: GTATTGTTACACGGTCTCC, HER2 MGB probe: FAM-CCCAAGCTTCTTTGAGGACAAC) at a final concentration of 900 nM primers and 250 nM probe, EFTUD2 primers (EFTUD2F: GGTCTTGCCAGACGACACAAAG, EFTUD2R: TGAGGAGCACACGGCAAAAC, EFTUD2 MGB probe: VIC-GGACATGCTTTTGCTTTTGGA) at a final concentration of 900 nM primers and 250 nM probe. Primers and probes were designed bioinformatically using Primer3 (http://frodo.wi.mit.edu/). Individual primer sets were assayed by PCR and gel-electrophoresis to test for primer-dimers and non-specific product amplification. The melting temperature for digital PCR was optimized by gradient both in singleplex and multiplex. The rate of droplets positive for both PCR was optimized by gradient both in singleplex and multiplex. The melting temperature for digital PCR assay for HER2:EFTUD2 and HER2:TUD2 was calculated from the above equation using methods previously described [16]. We aimed for at least 400 droplets positive for EFTUD2 to accurately assess the ratio, as at this DNA concentration a sample with a HER2:EFTUD2 ratio of 2.2 would have a lower 95% confidence interval of 2.0 [2].

Statistical Analysis

All other statistical analysis was two sided and performed with GraphPad Prism version 5.0 or Microsoft Excel.

Results

We previously described the bioinformatic development of a digital PCR assay for HER2 copy number. In order to accurately report HER2 status without false positive results due to loss of the control region or gain of the 17q chromosomal arm, we identified an optimal control region on chromosome 17 [15]. We identified EFTUD2 on chromosome 17q21.31 as a robust copy number comparator (Figure S1). This region was very rarely co-amplified with HER2 in amplified cancers, yet in non-amplified cancers robustly had the same copy number as HER2. We optimized HER2 and EFTUD2 primer-probes with TaqMan chemistry labeled with FAM and VIC respectively, and optimized conditions for droplet digital PCR (Figure 1).

We assessed the potential of the HER2 digital PCR assay to differentiate HER2 amplified and non-amplified breast cancers. We firstly analysed 11 samples in replicate during two different experiments to check for the ability of our assay to differentiate HER2 status and also to check for reproducibility (Table S1). We then assessed a series of 70 primary breast cancers described in Table 1. DNA was extracted from fresh frozen material following microdissection under a stereomicroscope to achieve >70% tumour cell content. Digital PCR was performed for each sample blinded to HER2 status. The median HER2:EFTUD2 copy number ratio in HER2 amplified cancers (7.0, range 2.04–26.5) was significantly higher than in HER2 non-amplified (1.07, range 0.53–2.00, p<0.0001 Mann Whitney U test), with the receiver operator curve area under the curve of 1.0 (95% CI undefinable).

We analysed the data with a threshold for the HER2:EFTUD2 ratio of 2.0 to define HER2 amplification consistent with ASCO-CAP guidelines for HER2/CEP17 ratio [2]. The HER2 digital PCR assay had 100% Sensitivity (18/18) and 90% Specificity (57/59). The accuracy of 99% reflected a single HER2 non-amplified cancer by FISH that was assigned as HER2 positive by digital PCR.

| Table 1. Clinicopathological details of tumours included in the study. |
|------------------|-----------------|
| | All Patients |
| n | 76 |
| median age | 61.08 (33-89) |
| ER positive | 55 |
| PR positive | 50 |
| HER2 positive | 18 |
| ck 5/6 positive | 10 |
| Stage | |
| I | 31 |
| II | 25 |
| III | 5 |
| IV | 13 |
| N/A | 2 |
| Grading | |
| Ductal | 53 |
| Lobular | 14 |
| Other | 9 |
| Pathology | |

The concentration of HER2 DNA (copies of HER2 DNA per droplet) was estimated from the Poisson distribution. Number of HER2 copies per droplet $M_{HER2} = \ln \left(1 - \frac{\text{n}_{HER2}}{\text{n}}\right)$, where n_{HER2} = number of droplets positive for HER2-FAM probe and n = total number of droplets. Similarly, number of reference probe copies per droplet $M_{EFTUD2} = \ln \left(1 - \frac{\text{n}_{EFTUD2}}{\text{n}}\right)$, where n_{EFTUD2} = number of droplets positive for EFTUD2-VIC probe. The HER2:EFTUD2 copy number ratio was calculated from the above equation using methods previously described [16]. We aimed for at least 400 droplets positive for EFTUD2 to accurately assess the ratio, as at this DNA concentration a sample with a HER2:EFTUD2 ratio of 2.2 would have a lower 95% confidence interval of 2.0 [2].
Discussion

We demonstrate that digital PCR with HER2:EFTUD2 ratio assessed on microdissected tumour DNA has high concordance with conventionally defined HER2 status (Figure 2), and presents a potential option to define HER2 status. The accuracy of the approach exploits both the accuracy of digital PCR for quantification of DNA concentration and the identification of a robust control region for copy number assessment [15].

We identified EFTUD2 as an optimal control region for HER2 copy number assessment. EFTUD2, being approximately 5 Mb telomeric to HER2, is sufficiently close to HER2 in non-amplified cancers to have robustly the same copy number as HER2. Therefore, the specificity is not compromised by chromosomal instability, which potentially complicates assessment based on reference probes on chromosomes other than 17, or on more distal probes such as peri-centromeric probes. The extent and size of amplicons are not entirely random, driven both by co-amplification of genes that contribute to the oncogenicity of the amplicon and the less studied effects of genome structure on the extent of the amplicon boundaries. The HER2 amplicon does not extend to the EFTUD2 locus, and this therefore maintains the sensitivity of the assay (Figure S1 and Figure S2). Further enhancing the accuracy of the approach, the EFTUD2 locus is frequently subject to heterozygous loss in HER2 amplified cancers (Figure 1), which therefore enhances the HER2:EFTUD2 ratio in amplified cancers. As such it must be emphasised that the HER2:EFTUD2 ratio does not necessarily reflect an assessment of absolute copy number of the HER2 locus, but is a potential diagnostic test for the presence of the amplification.

The DNA samples assessed in this study were microdissected to achieve >70% tumour DNA content. Our results suggest that the digital PCR assay has the potential to be used with less strict microdissection, and this could be assessed in future studies. The HER2:EFTUD2 ratio range was narrow in non-amplified cancers, with only one of 58 cancers having a HER2:EFTUD2 ratio >1.38 (Table S2). This suggests that to maintain sensitivity for HER2 amplification in samples with a higher contamination with normal cells/DNA, a lower ratio than 2.0 could be utilized. A ratio of 1.5 would maintain the same degree of specificity, whilst potentially allowing for normal DNA contamination.

Many of the common, and rare, mutations of breast cancer have now all been defined [3,17]. We are entering an era of molecular characterization, based on the assessment of somatic mutations [18]. As such, extraction of DNA from tumour specimens will become routine, and this may allow digital PCR based assessments of HER2 status to enter routine practice. In this manuscript we provide proof-of-principle that a digital PCR assay has sufficient diagnostic accuracy.

Supporting Information

Figure S1 HER2:EFTUD2 copy number concordance in aCGH data. Publically available microCGH data from 311 primary breast cancers, for the genomic region on chromosome 17q from 30 Mb–50 Mb (with whole chromosome data in Supplementary Figure 2). Displayed on the left are the profiles from 65 HER2 amplified cancers and on the right 246 HER2 non-amplified cancers. The genomic positions of ERBB2 (HER2) and EFTUD2 are marked. HER2 amplification does not extend to EFTUD2, with EFTUD2 stable in copy number with HER2 in non-amplified cancers. (TIF)

Figure S2 Whole chromosome aCGH data for 311 primary breast cancers. Publically available whole chromo-
some data from 65 HER2 amplified cancers (left) and 246 HER2 non-amplified cancers (right). The genomic positions of ERBB2 (HER2), EFTUD2 and the centromere are marked. (TIF)

Table S1 DNA analysis of 11 tumours by two different ddPCR assays to check for reproducibility. (XLS)

Table S2 ddPCR raw data obtained for all the samples employed in this study. (XLS)

Author Contributions

Conceived and designed the experiments: IGM NCT. Performed the experiments: IGM. Analyzed the data: IGM NCT. Contributed reagents/materials/analysis tools: ML. Wrote the paper: IGM NCT.

References

1. Hurvitz SA, Hu Y, O’Brien N, Finn RS (2013) Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treat Rev 39: 219–229.
2. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, et al. (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 25: 118–145.
3. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J et al. (2012) Comprehensive molecular portraits of human breast tumours. Nature 490: 61–70.
4. Lehmann-Che J, Amiro-Boudhidi F, Turpin E, Antoine M, Soliman H, et al. (2011) Immunohistochemical and molecular analyses of HER2 status in breast cancers are highly concordant and complementary approaches. Br J Cancer 104: 1739–1746.
5. Moelans CB, de Weger RA, Eerdenman C, van Diest PJ (2009) HER-2/neu amplification testing in breast cancer by Multiplex Ligation-dependent Probe Amplification: influence of manual- and laser microdissection. BMC Cancer 9: 4.
6. Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, et al. (2012) Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 40: e12.
7. Heredia NJ, Belgrader P, Wang S, Koehler R, Regan J, et al. (2013) Droplet Digital PCR quantitation of HER2 expression in FFPE breast cancer samples. Methods 59: S20–23.
8. Muller BM, Kronenwett R, Hennig G, Euting H, Weber K, et al. (2011) Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue—a new option for predictive biomarker assessment in breast cancer. Diag Mol Pathol 20: 1–10.
9. Barhner FL, Achacoso N, Maddala T, Shah S, Quesenberry Jr CP, et al. (2010) Human epidermal growth factor receptor 2 assessment in a case-control study: comparison of fluorescence in situ hybridization and quantitative reverse transcription polymerase chain reaction performed by central laboratories. J Clin Oncol 28: 4300–4306.
10. Dahib D, Klein ME, Mohsin SK, Tahbs RR, Shuai Y, et al. (2011) High false-negative rate of HER2 quantitative reverse transcription polymerase chain reaction of the Oncotype DX test: an independent quality assurance study. J Clin Oncol 29: 4279–4283.
11. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, et al. (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast—evidence of multiple genetic pathways. J Pathol 187: 396–402.
12. Turner NC, Reis-Filho J, Russell AM, Springall RJ, Ryder K, et al. (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26: 2126–2132.
13. Buerger H, Schmidt H, Beckmann A, Zanker KS, Boecker W, et al. (2001) Genetic characterization of invasive breast cancer: a comparison of CGH and PCR based multiplex microsatellite analysis. J Clin Pathol 54: 836–840.
14. Natrajan R, Mackay A, Willerson PM, Lambros MB, Wetterskog D, et al. (2012) Functional characterization of the 19q12 amplon in grade III breast cancers. Breast Cancer Res 14: R53.
15. Grevensteven H, Garcia-Murillas I, Graeser MK, Schiavon G, Osin P, et al. (2013) Non-invasive detection of HER2 amplification with plasma DNA Digital PCR. Clin Cancer Res. 19 (12): 3276–84.
16. Dube S, Qin J, Ramakrishnan R (2008) Mathematical Analysis of Copy Number Variation in a DNA Sample Using Digital PCR on a Nanofluidic Device. PLoS ONE 3 (8): e25517.
17. Curtis C, Shah SF, Chin SF, Turashvili G, Rueda OM, et al. (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486: 346–352.
18. Garraway LA (2013) Genomics-Driven Oncology: Framework for an Emerging Paradigm. J Clin Oncol. 31 (15): 1006–14.