Radiocesium concentrations in wild boars captured within 20 km of the Fukushima Daiichi Nuclear Power Plant

Limeng Cui1,2, Makiko Orita1✉, Yasuyuki Taira1 & Noboru Takamura1

The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 released large amounts of artificial radioactive substances into the environment. In this study, we measured the concentration of radiocesium (134Cs + 137Cs) in 213 muscle samples from wild boars (Sus scrofa) captured in Tomioka town, which is located within 20 km of the FDNPP. The results showed that 210 (98.6%) muscle samples still exceeded the regulatory radiocesium limit (100 Bq/kg) for general foods. Radiocesium (134Cs + 137Cs) levels ranged from 87.1–8,120 Bq/kg fresh mass (FM), with a median concentration of 450 Bq/kg FM. The median committed effective dose was estimated to be 0.070–0.26 μSv/day for females and 0.062–0.30 μSv/day for males. The committed effective dose for one-time ingestion of wild boar meat could be considered extremely low for residents in Tomioka. The relatively high levels of radioactivity found in this study suggest that the high variability of food sources may have led to the large accumulation of radioactive substances. These results suggest that comprehensive long-term monitoring is needed to identify risk factors affecting recovery from a nuclear disaster.
Results

Radioactivity concentration. Among the 213 wild boar (Sus scrofa) samples collected, 3 (1.4%), 110 (51.6%), 55 (25.8%), and 45 (21.2%) had radiocesium (\(^{134}\text{Cs} + ^{137}\text{Cs}\)) levels of <100, 100–500, 501–1,000, and >1,000 Bq/kg fresh mass (FM), respectively (Fig. 1). The minimum and maximum radiocesium concentrations were 87.1 Bq/kg FM and 8,120 Bq/kg FM, respectively, with a median concentration of 450 Bq/kg FM (Table 1).

No significant correlation was found between radiocesium concentration and males and females (Mann–Whitney Test, \(p = 0.516\)) or between radiocesium concentration and the weight of the wild boars (Spearman correlation coefficient, \(p = 0.376\)). The average \(^{134}\text{Cs}/^{137}\text{Cs}\) activity ratios in all samples were 0.08 in January 2019 and 0.06 in December 2019.

The distribution of radiocesium concentrations in the muscle tissue of wild boars for each month is shown in Fig. 2. Radioactivity concentrations varied significantly with month (Jonckheere–Terpstra test, \(p < 0.05\)).

Committed effective dose. Among 213 samples collected that contained radiocesium, the median committed effective dose ranged from 0.070 to 0.26 μSv for females and from 0.062 to 0.30 μSv for males, considering one-time ingestion of wild boar meat as the meat source (Table 2).
of 40,200 Bq/kg FM14. The Fukushima Prefecture government also published data on the radioactivity of wild
to be one of the causes of radioactive accumulation8,21. In 2019, the local government of Tomioka town published the results of an assessment of radioce-
concentrations from 2011 and 2019 were 5,720 in 2011, 61,000 in 2012, 20,000 in 2013, 30,000 in 2014, 30,000
in other food types, such as vegetables, potatoes, oranges, and plums, were mostly

Age (y)	Female Median (Minimum-Maximum)	Male Median (Minimum-Maximum)
1–6	0.069 (0.012–1.3)	0.072 (0.012–1.4)
7–14	0.18 (0.030–3.7)	0.19 (0.031–3.8)
15–19	0.26 (0.049–4.6)	0.30 (0.058–5.4)
20–29	0.17 (0.032–3.0)	0.18 (0.035–3.3)
30–39	0.15 (0.029–2.7)	0.21 (0.040–3.7)
40–49	0.16 (0.030–2.8)	0.24 (0.046–4.3)
50–59	0.12 (0.023–2.2)	0.18 (0.035–3.3)
60–69	0.070 (0.013–1.2)	0.12 (0.024–2.2)
70+	NA*	0.062 (0.012–1.1)

Table 2. Committed effective doses for one-time ingestion of wild boar meat from Tomioka town (μSv/day). NA*: not available. Median pork consumption was 0g among women aged >70 years in Japan in 2016.

Discussion
After the FDNPP accident, Nemoto et al. reported that the 137Cs concentration of wild boar meat in Fukushima
Prefecture from 2011 to 2016 was 900 ± 2,740 Bq/kg FM (mean ± standard deviation [SD]), with a maximum
of 40,200 Bq/kg FM14. The Fukushima Prefecture government also published data on the radioactivity of wild
boars that were captured in the Sousou area of Fukushima (1,737 km2), and reported that the highest 134Cs + 137Cs
concentrations from 2011 and 2019 were 5,720 in 2011, 61,000 in 2012, 20,000 in 2013, 30,000 in 2014, 30,000
in 2015, 3,100 in 2016, 14,000 in 2017, 460 in 2018 and 5000 Bq/kg in 2019, respectively15. Our results showed a
mean ± SD radioiodine concentration of 866 ± 1,270 Bq/kg FM, with a maximum of 8,120 Bq/kg FM. Despite
the 134Cs/137Cs activity ratios in this study agreed with those predicted from physical decay because the aver-
age 134Cs/137Cs activity ratios in all samples were 0.08 in January 2019 and 0.06 in December 2019, our results
showed that the wild boar contamination level is still relatively high, even though 8–9 years had passed since the
Fukushima accident.

Previous studies in Europe and Japan have reported that about 90% of the diet of wild boars consisted of
plants, small animals, insects, and earthworms, based on the season and availability16–20, and dietary habits are
typically considered an important factor affecting radioactivity levels in wild boars21,22. At the same time, the
ingestion of soil and deer truffles in winter has also been reported to be one of the causes of radioactive accu-
SUMMARY

Age (y)	Female Median (Minimum-Maximum)	Male Median (Minimum-Maximum)
1–6	0.069 (0.012–1.3)	0.072 (0.012–1.4)
7–14	0.18 (0.030–3.7)	0.19 (0.031–3.8)
15–19	0.26 (0.049–4.6)	0.30 (0.058–5.4)
20–29	0.17 (0.032–3.0)	0.18 (0.035–3.3)
30–39	0.15 (0.029–2.7)	0.21 (0.040–3.7)
40–49	0.16 (0.030–2.8)	0.24 (0.046–4.3)
50–59	0.12 (0.023–2.2)	0.18 (0.035–3.3)
60–69	0.070 (0.013–1.2)	0.12 (0.024–2.2)
70+	NA*	0.062 (0.012–1.1)

Table 2. Committed effective doses for one-time ingestion of wild boar meat from Tomioka town (μSv/day). NA*: not available. Median pork consumption was 0g among women aged >70 years in Japan in 2016.

Discussion
After the FDNPP accident, Nemoto et al. reported that the 137Cs concentration of wild boar meat in Fukushima
Prefecture from 2011 to 2016 was 900 ± 2,740 Bq/kg FM (mean ± standard deviation [SD]), with a maximum
of 40,200 Bq/kg FM14. The Fukushima Prefecture government also published data on the radioactivity of wild
boars that were captured in the Sousou area of Fukushima (1,737 km2), and reported that the highest 134Cs + 137Cs
concentrations from 2011 and 2019 were 5,720 in 2011, 61,000 in 2012, 20,000 in 2013, 30,000 in 2014, 30,000
in 2015, 3,100 in 2016, 14,000 in 2017, 460 in 2018 and 5000 Bq/kg in 2019, respectively15. Our results showed a
mean ± SD radioiodine concentration of 866 ± 1,270 Bq/kg FM, with a maximum of 8,120 Bq/kg FM. Despite
the 134Cs/137Cs activity ratios in this study agreed with those predicted from physical decay because the aver-
age 134Cs/137Cs activity ratios in all samples were 0.08 in January 2019 and 0.06 in December 2019, our results
showed that the wild boar contamination level is still relatively high, even though 8–9 years had passed since the
Fukushima accident.

Previous studies in Europe and Japan have reported that about 90% of the diet of wild boars consisted of
plants, small animals, insects, and earthworms, based on the season and availability16–20, and dietary habits are
typically considered an important factor affecting radioactivity levels in wild boars21,22. At the same time, the
ingestion of soil and deer truffles in winter has also been reported to be one of the causes of radioactive accu-
SUMMARY

Age (y)	Female Median (Minimum-Maximum)	Male Median (Minimum-Maximum)
1–6	0.069 (0.012–1.3)	0.072 (0.012–1.4)
7–14	0.18 (0.030–3.7)	0.19 (0.031–3.8)
15–19	0.26 (0.049–4.6)	0.30 (0.058–5.4)
20–29	0.17 (0.032–3.0)	0.18 (0.035–3.3)
30–39	0.15 (0.029–2.7)	0.21 (0.040–3.7)
40–49	0.16 (0.030–2.8)	0.24 (0.046–4.3)
50–59	0.12 (0.023–2.2)	0.18 (0.035–3.3)
60–69	0.070 (0.013–1.2)	0.12 (0.024–2.2)
70+	NA*	0.062 (0.012–1.1)

Table 2. Committed effective doses for one-time ingestion of wild boar meat from Tomioka town (μSv/day). NA*: not available. Median pork consumption was 0g among women aged >70 years in Japan in 2016.

Discussion
After the FDNPP accident, Nemoto et al. reported that the 137Cs concentration of wild boar meat in Fukushima
Prefecture from 2011 to 2016 was 900 ± 2,740 Bq/kg FM (mean ± standard deviation [SD]), with a maximum
of 40,200 Bq/kg FM14. The Fukushima Prefecture government also published data on the radioactivity of wild
boars that were captured in the Sousou area of Fukushima (1,737 km2), and reported that the highest 134Cs + 137Cs
concentrations from 2011 and 2019 were 5,720 in 2011, 61,000 in 2012, 20,000 in 2013, 30,000 in 2014, 30,000
pieces of wild boar meat were collected from January to December 2019 (males: 116, females: 97; weight range: 1.1–103 kg).

Samples of fresh wild boar meat (14–108 g) were minced and then enclosed in 100 mL plastic containers made of polypropylene for the radionuclide measurements. All samples were measured fresh and analyzed with a high-purity germanium detector (ORTEC, GMX30–70, ORTEC INTERNATIONAL Inc., Oak Ridge, TN, USA) coupled with a multi-channel analyzer (MCA7600, SEIKO EG&G Co., Ltd., Chiba, Japan). Integration times were 3,600 s for the wild boar samples. The measuring time was set to detect the objective radionuclide, and the gamma-ray peaks used for the measurements were 604.66 keV for 134Cs and 661.64 keV for 137Cs. Decay corrections were made based on the sampling date, and detector efficiency calibration was performed for different measurement geometries using mixed-activity standard volume sources (Japan Radioisotope Association, Tokyo, Japan). The relative efficiency was 31%, and energy resolution of the spectrometer was 1.85 keV for 60Co. The correction factor of the sum-peak effect of 134Cs and 137Cs were almost 1, respectively. Activity concentrations of radioisocium were automatically adjusted based on the date of collection, and the data were defined as the activity concentrations at the collection date. The counting errors were ±2.9 Bq/kg for 134Cs (median) and ±9.5 Bq/kg for 137Cs (median), respectively. The 134Cs concentrations in 7 samples were lower than the detection limits, which were in the range of 4.1–9.6 Bq/kg. Sample collection, processing, and analysis were executed in accordance with standard methods of radioactivity measurement authorized by the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Effective dose. The committed effective doses from the wild boar samples were estimated from the radioactive concentration of the fresh samples using Eq. (1):

$$ H_{int} = C \cdot D_{int} \cdot e $$

where C is the activity concentration of the detected artificial radioesium (Bq/kg FM). Here, D_{int} represents the age-dependent dose conversion coefficients for 134Cs (age 1 year, 1.6E-08 Sv/Bq; age 5 years, 1.3E-08 Sv/Bq; age 10 years 1.4E-08 Sv/Bq and age 15–70 years, 1.9E-08 Sv/Bq) and 137Cs (age 1 year, 1.2E-08 Sv/Bq; age 5 years, 9.6E-09, age 10 years, 1.0E-08 Sv/Bq; and age 15–70 years, 1.3E-08 Sv/Bq) used in the assessments, which were provided by ICRP Publication 7226, and e is quoted from the mean value of daily intake for age and sex. Because wild boar is not a conventional food in Japan, the government and research institutes have not published data on the amount of wild boar consumed. Consequently, wild boar meat consumption was estimated based on the median pork consumption in Japan published by the Ministry of Health, Labour, and Welfare in 2016 (males: 10–49.5 g/day; females: 0–42 g/day).

Statistical methods. Data are expressed as medians, minimums, and maximums. Normality was checked using the Kolmogorov–Smirnov test. Because the variables were not normally distributed, non-parametric statistical tests were used. Differences in the concentrations of radioesium in wild boars at each sampling month were evaluated using the Jonckheere–Terpstra test. Relationships between body weight and the radioesium concentration in muscle tissue were evaluated using Spearman’s rank correlation analysis. Differences in the concentrations of radioesium between male and female wild boars were evaluated using the Mann–Whitney U test. P values < 0.05 were considered statistically significant. All statistical analyses were performed using SPSS Statistics 25.0 (IBM Corp., Armonk, NY, USA).

Data availability All relevant data are within the paper.

Received: 3 March 2020; Accepted: 20 May 2020;
Published online: 09 June 2020

References

1. UNSCEAR. Sources, effects and risks of ionizing radiation: United nations scientific committee on the effects of atomic radiation 2013 report Volume I (2013).
2. Orita, M. et al. Radioesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi Nuclear Power Station: Follow-up study in Kawauchi village. Sci. Rep. 7, 6744 (2017).
3. Tsuchiya, R. et al. Radioesium contamination and estimated internal exposure doses in edible wild plants in Kawauchi Village following the Fukushima nuclear disaster. PLoS ONE 12, e0189398 (2017).
4. Saito, R., Kabeya, M., Nemoto, Y. & Oomachi, H. Monitoring 137Cs concentrations in bird species occupying different ecological niches: game birds and raptors in Fukushima Prefecture. J. Environ. Radioact. 197, 67–73 (2019).
5. Ministry of Health, Labour and Welfare, Japan. Information on the Great East Japan Earthquake (Accessed 16 December, 2019).
6. https://www.mhlw.go.jp/english/topics/2011/eq/index_food.html (2019).
7. Marovic, G., Lokobauer, N. & Bauman, A. Risk estimation of radioactive contamination after the Chernobyl accident using bioindicators. Health Phys. 62, 332–337 (1992).
8. Vilic, M., Barisic, D., Kraljevic, P. & Lalic, S. 137Cs concentration in meat of wild boars ($S_{s c r o f a}$) in Croatia a decade and half after the Chernobyl accident. J. Environ. Radioact. 81, 55–62 (2005).
9. Hohmann, U. & Huckschlag, D. Investigations on the radioesium contamination of wild boar ($S_{s c r o f a}$) meat in Rhineland-Palatinate: A stomach content analysis. Eur. J. Wildl. Res. 51, 263–270 (2005).
10. INTERNATIONAL ATOMIC ENERGY AGENCY. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, IAEA, Vienna, 472 (2010).
11. Nakashita, T. & Tano, K. (Eds) Agricultural implications of the Fukushima nuclear accident The First Three Years. Springer, Tokyo (Springer Open, 2016).
12. Goulakov, A. V. Accumulation and distribution of 137Cs and 90Sr in the body of the wild boar ($S_{s c r o f a}$) found on the territory with radioactive contamination. J. Environ. Radioact. 127, 171–175 (2014).
13. Taira, Y. et al. Eight years post-Fukushima: is forest decontamination still necessary? J. Radiat. Res. 60, 705–707 (2019).
13. Matsunaga, H. et al. Intention to return to the town of Tomioka in residents 7 years after the accident at Fukushima Daiichi Nuclear Power Station: a cross-sectional study. J. Radiat. Res. 60, 51–58 (2018).
14. Nemoto, Y., Saito, R. & Oomachi, H. Seasonal variation of Cesium-137 concentration in Asian black bear (Ursus thibetanus) and wild boar (Sus scrofa) in Fukushima Prefecture. PLoS ONE. 13, e0200797 (2018).
15. The official website of Fukushima Prefecture. Radiation monitoring survey results list (in Japanese) (Accessed 2 December, 2019). https://www.pref.fukushima.lg.jp/site/portal/wildlife-radiationmonitoring1.html (2019).
16. Cuevas, M. F., Ojeda, R. A., Dacar, M. A. & Jaksic, F. M. Seasonal variation in feeding habits and diet selection by wild boars in a semi-arid environment of Argentina. Acta Theriol. (Warsz). 58, 63–72 (2013).
17. Rosvold, J. & Andersen, R. Wild boar in Norway—is climate a limiting factor? NTNU Vitenskapsmuseet Rapp (2008).
18. Asahi, M. Stomach contents of wild boars (Sus scrofa leucomystax) in winter. J. Mammal. Soc. Japan 6, 115–120 (1975).
19. Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions. 14, 2283–2300 (2012).
20. Rosell, C., Herrero Cortés, J., Arias, P. & Couto, S. Preliminary data on the diet of wild boar living in a Mediterranean coastal wetland. Galemys. 16, 115–123 (2004).
21. Semizhon, T., Putyrskaya, V., Zibold, G. & Klem, E. Time-dependency of the 137Cs contamination of wild boar from a region in Southern Germany in the years 1998 to 2008. J. Environ. Radioact. 100, 988–992 (2009).
22. Ballari, S. A. & Barrios-Garcia, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm. Rev. 44, 124–134 (2014).
23. The official website of Tomioka Town Office. Food of radioactive material inspection (Accessed 10 December, 2019). https://tomioka-radiation.jp/food/foods-hihakai.html (2019).
24. Ministry of Environment, Japan. Comparison of exposure Doses per year. https://www.env.go.jp/en/chemi/rhm/basic-info/1st/02-05-03.html (2017).
25. Tagami, K., Howard, B. J. & Uchida, S. The time-dependent transfer factor of radionuclides from soil to game animals in Japan after the Fukushima Dai-ichi nuclear accident. Environ. Sci. Technol. 50, 9424–9431 (2016).
26. ICRP. Age-dependent doses to the members of the public from intake of radionuclides—Part 5 compilation of ingestion and inhalation coefficients. ICRP Publication 72. (1996).
27. Ministry of Health, Labour and Welfare, Japan. Report on national health and Nutrition Survey (in Japanese) (Accessed 7 March, 2020). https://www.mhlw.go.jp/bunya/kenkou/kenkou_eiyou_chousa.html (2016).

Acknowledgements

We would like to thank all the study participants and the staff of Tomioka town office for their cooperation. This work was supported by the Fukushima Innovation Coast Promotion Project (Revitalization Knowledge Project) and a Japan China Sasakawa Medical Fellowship.

Author contributions

Conceived and designed the observations: N.T., M.O.; performed the observations: M.O., L.C. and Y.T.; analyzed the data: L.C. and M.O.; wrote the paper: L.C. and M.O. All authors have approved the final version of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to M.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020