On the Reidemeister torsion of rational homology spheres

Liviu I. Nicolaescu
University of Notre Dame
Notre Dame, IN 46556

http://www.nd.edu/~lnicolae/

June 2000

Introduction

In the paper [3] V. Turaev has proved a certain identity involving the Reidemeister torsion of a rational homology sphere. In this very short note we will suitably interpret this identity as a second order finite difference equation satisfied by the torsion which will allow us to prove a general structure result for the \(\mod Z \) reduction of the torsion. More precisely we prove that the mod \(Z \) reduction of the torsion is completely determined by three data.

- a certain canonical spin\(^c\) structure,
- the linking form of the rational homology sphere and
- a constant \(c \in \mathbb{Q}/\mathbb{Z} \).

As a consequence, the constant \(c \) is a \(\mathbb{Q}/\mathbb{Z} \)-valued invariant of the rational homology sphere. Experimentations with lens spaces suggest this invariant is as powerful as the torsion itself.

Contents

1 The Reidemeister torsion 1
2 A second order “differential equation” 2
3 Examples 5
Bibliography 6

1 The Reidemeister torsion

We review briefly a few basic facts about the Reidemeister torsion a rational homology 3-sphere. For more details and examples we refer to [1, 2].

Suppose \(M \) is a rational homology sphere. We set \(H := H_1(M, \mathbb{Z}) \) and use the multiplicative notation to denote the group operation on \(H \). Denote \(\text{Spin}^c(M) \) the \(H \)-torsor of
isomorphism classes of spin c structure on M. We denote by \mathcal{F} the space of functions

$$\phi : H \to \mathbb{Q}.$$

The group H acts on \mathcal{F}_M by

$$H \times \mathcal{F} \ni (g, \phi) \mapsto g \cdot \phi$$

where

$$(g \cdot \phi)(h) = \phi(hg).$$

We denote by \int_H the augmentation map

$$\mathcal{F}_M \to \mathbb{Q}, \quad \int_H \phi = \sum_{h \in H} \phi(h).$$

According to [3] Reidemeister torsion is a H-equivariant map

$$\tau : \text{Spin}^c(M) \to \mathcal{F}_M, \quad \text{Spin}^c(M) \sigma \mapsto \tau_\sigma \in \mathcal{F}_M$$

such that

$$\int_H \tau_\sigma = 0$$

Denote by lk_M the linking form of M,

$$\text{lk}_M : H \times H \to \mathbb{Q}/\mathbb{Z}.$$

V. Turaev has proved in [3] that τ_σ satisfies the identity

$$\tau_\sigma(g_1g_2h) - \tau_\sigma(g_1h) - \tau_\sigma(g_2h) + \tau_\sigma(h) = -\text{lk}_M(g_1, g_2) \mod \mathbb{Z} \quad (1.1)$$

$$\forall g_1, g_2, h \in H, \sigma \in \text{Spin}^c(M).$$

2 A second order “differential equation”

The identity (1.1) admits a more suggestive interpretation. To describe it we need a few more notation.

Denote by \mathcal{S} the space of functions $H \to \mathbb{Q}/\mathbb{Z}$. Each $g \in H$ defines a first order differential operator

$$\Delta_g : \mathcal{S} \to \mathcal{S}, \quad (\Delta_g u)(h) := u(gh) - u(h), \quad \forall u \in \mathcal{S}, \quad h \in H.$$

If $\Xi = \Xi_\sigma$ denotes the mod \mathbb{Z} reduction of τ_σ then we can rewrite (1.1) as

$$(\Delta_{g_1}\Delta_{g_2}\Xi)(h) = -\text{lk}_M(g_1, g_2) \quad (2.1)$$

We will prove uniqueness and existence results for this equation. We begin with the (almost) uniqueness part.
Lemma 2.1. The second order linear differential equation (2.1) determines Ξ up to an “affine” function.

Proof Suppose Ξ_1, Ξ_2 are two solutions of the above equation. Set $\Psi := \Xi_1 - \Xi_2$. Ψ satisfies the equation

$$\Delta_{g_1} \Delta_{g_2} \Psi = 0.$$

Now observe that any function $F \in \mathcal{S}$ satisfying the second order equation

$$\Delta_u \Delta_v F = 0, \ \forall u, v \in H$$

is affine, i.e. it has the form

$$F = c + \lambda$$

where $c \in \mathbb{Q}/\mathbb{H}$ is a constant and $\lambda : H \to \mathbb{Q}/\mathbb{Z}$ is a character. Indeed, the condition

$$\Delta_u(\Delta_v F) = 0, \ \forall u$$

implies $\Delta_v F$ is a constant depending on $v, c(v)$. Thus

$$F(vh) - F(h) = c(v), \ \forall h.$$

The function $G = F - F(1)$ satisfies the same differential equation

$$G(vh) - G(h) = c(v)$$

and the additional condition $G(1) = 0$. If we set $h = 1$ in the above equation we deduce

$$G(v) = c(v).$$

Hence

$$G(vh) = G(h) + G(v), \ \forall v, h$$

so that G is a character and $F = F(1) + G$. Thus, the differential equation (2.1) determines Ξ up to a constant and a character. ■

Lemma 2.2. Suppose $b : H \times H \to \mathbb{Q}/\mathbb{Z}$ is a nonsingular, symmetric bilinear form on H. Then there exists a quadratic form $q : H \to \mathbb{Q}/\mathbb{Z}$ such that

$$\Delta q = b$$

where

$$(\Delta q)(uv) := q(uv) - q(u) - q(v).$$
Proof. Let us briefly recall the terminology in this lemma. \(b \) is nonsingular if the induced map \(G \to G^\# \) is an isomorphism. A quadratic map form is a function \(q : H \to \mathbb{Q}/\mathbb{Z} \) such that
\[
q(0) = 0, \quad q(u^k) = k^2 q(u), \quad \forall u \in H, \; k \in \mathbb{Z}
\]
and \(\Delta q \) is a bilinear form.

Suppose \(b \) is a nonsingular, symmetric, bilinear form \(H \times H \to \mathbb{Q}/\mathbb{Z} \). Then, according to [4, §7], \(b \) admits a resolution. This is a nondegenerate, symmetric, bilinear form
\[
B : \Lambda \times \Lambda \to \mathbb{Z}
\]
on a free abelian group \(\Lambda \) such that, the induced monomorphism \(J_B \Lambda \to \mathbb{Z} \)
\[
0 \hookrightarrow \Lambda \xrightarrow{J_B} \Lambda^* \xrightarrow{\pi} H \to 0
\]
and \(b \) coincides with the induced bilinear form on \(\Lambda^*/(J_B\Lambda) \) \((n := \#H)\)
\[
b(\pi(u), \pi(v)) = \frac{1}{n^2} B(J_B^{-1}(nu), J_B^{-1}(nv)) \mod \mathbb{Z}, \; \forall u, v \in \Lambda^*.
\]
Now set
\[
q(\pi(u)) = \frac{1}{2n^2} B(J_B^{-1}(nu), J_B^{-1}(nu)) \mod \mathbb{Z}
\]
It is clear that this quantity is well defined i.e.
\[
\frac{1}{2n^2} B(J_B^{-1}(nu), J_B^{-1}(nu)) = \frac{1}{2n^2} B(J_B^{-1}(nv), J_B^{-1}(nv)) \mod \mathbb{Z}
\]
if \(v = u + J_B\lambda, \; \lambda \in \Lambda \). Clearly
\[
\Delta q = b. \; \blacksquare
\]

We deduce that there exists a constant \(c \), a character \(\lambda : H \to \mathbb{Q}/\mathbb{Z} \) and a quadratic form \(q \) such that
\[
\Xi(h) = \Xi_\sigma(h) = c + \lambda(h) + q(h), \quad \Delta q = \text{lk}_M.
\]
In the above discussion the choice of the \(\text{spin}^c \) structure \(\sigma \) is tantamount to a choice of an origin of \(H \) which allowed us to identify the torsion of \(M \) as a function \(H \to \mathbb{Q} \). Once we make such a non-canonical choice, we have to replace \(\Xi \) with the family of translates
\[
\{ \Xi_g(\bullet) := \Xi(g\bullet); \; g \in H \}
\]
In particular
\[
\Xi_g(h) := \Xi(gh) = c + \lambda(gh) + q(gh) = \left(c + \lambda(g) + q(g) \right) + \left(\lambda(h) + (\Delta q)(g, h) \right) + q(h)
\]
where \(\lambda_g(\bullet) = \lambda(\bullet) + \text{lk}_M(g, \bullet) \). Since the linking form is nondegenerate we can find an unique \(g \) such that \(\lambda_g = 0 \).

We have proved the following result.

\footnote{We are indebted to Andrew Ranicki for suggesting this approach.}
Proposition 2.3. Suppose M is a rational homology sphere. Then there exists an unique spinc-structure σ on M so that, with respect to this choice the mod \mathbb{Z} reduction of $\tau_{M,\sigma}$

$$\Xi(h) := \tau_{\sigma}(h) \mod \mathbb{Z}$$

has the form

$$\Xi(h) = c + q(h)$$

where $c \in \mathbb{Q}/\mathbb{Z}$ is a constant while $q(u)$ is the unique quadratic form such that

$$\Delta q = -\text{lk}_M.$$

In particular,

$$\Xi(h) = \Xi(h^{-1}) \mod \mathbb{Z},$$

and the constant $c \in \mathbb{Q}/\mathbb{Z}$ is a topological invariant of M.

3 Examples

We want to show on some simple examples that the invariant c is nontrivial.

(a) Suppose $M = L(8,3)$. Then its torsion is (see [2])

$$T_{8,3} \sim -\frac{9}{32}x_7 - \frac{3}{32}x_6 - \frac{9}{32}x_5 + \frac{5}{32}x_4 + \frac{7}{32}x_3 - \frac{3}{32}x_2 + \frac{7}{32}x_1 + \frac{5}{32}$$

where $x_8 = 1$ is a generator of \mathbb{Z}_8. Then

$$q(x^n) = -\frac{3k^2n^2}{16}$$

The set of possible values $-\frac{3k^2n^2}{16}$ mod \mathbb{Z} is

$$A := \{0, \frac{-3}{16}, \frac{4}{16}, \frac{5}{16}\}$$

The set possible values of $\Xi(h)$ is

$$B := \{-\frac{9}{32}, -\frac{3}{32}, \frac{5}{32}, \frac{7}{32}\}.$$

We need to find a constant $c \in \mathbb{Q}/\mathbb{Z}$ such that

$$B - c = A.$$

Equivalently, we need to figure out orderings $\{a_1, a_2, a_3, a_4\}$ and $\{b_1, b_2, b_3, b_4\}$ of A and B such that $b_i - a_i \mod \mathbb{Z}$ is a constant independent of i. A little trial and error shows that

$$\vec{A} = (0, -\frac{3}{16}, \frac{4}{16}, \frac{5}{16}), \quad \vec{B} = (-\frac{3}{32}, -\frac{9}{32}, \frac{5}{32}, \frac{7}{32})$$
and the constant is \(c = -\frac{3}{32} \). This is the coefficient of \(x^2 \). We deduce that (modulo \(\mathbb{Z} \))

\[
F := T_{8,3}(x) + \frac{3}{32} \sim -\frac{3}{16}x^7 - 0 \cdot x^6 - \frac{3}{16}x^5 + \frac{1}{4}x^4 + \frac{1}{4}x^3 - 0 \cdot x^2 + \frac{1}{4}x + \frac{1}{4}
\]

The translation of \(F \) by \(x^{-2} \) is

\[
x^{-2}(T_{8,3} + \frac{3}{32}) = \frac{1}{4}x^7 + \frac{1}{4}x^6 - \frac{3}{16}x^5 - \frac{3}{16}x^3 + \frac{1}{4}x^2 + \frac{1}{4}x.
\]

(b) Suppose \(M = L(7, 2) \). Then, its torsion is (see [2])

\[
T_{7,2} \sim -\frac{2}{7}x^6 + \frac{1}{7}x^5 + \frac{2}{7}x^3 + \frac{1}{7}x - \frac{2}{7}
\]

where \(x^7 = 1 \) is a generator of \(\mathbb{Z}_7 \). We see that in this form \(T_{7,2} \) is symmetric, i.e. the coefficient of \(x^k \) is equal to the coefficient of \(x^{6-k} \). The constant \(c \) in this case must be the coefficient of the middle monomial \(x^3 \), which is \(\frac{2}{7} \).

(c) Suppose \(M = L(7, 1) \). Then

\[
T_{7,1} \sim \frac{2}{7}x^6 + \frac{1}{7}x^5 - \frac{1}{7}x^4 - \frac{4}{7}x^3 - \frac{1}{7}x^2 + \frac{1}{7}x + \frac{2}{7}
\]

This is again a symmetric polynomial and the coefficient of the middle monomial is \(-4/7\). We see that this invariant distinguishes the lens spaces \(L(7, 1) \), \(L(7, 2) \).

(d) For \(M = L(9, 2) \) we have

\[
T_{9,2} \sim -\frac{10}{27}x^8 + \frac{2}{27}x^7 - \frac{1}{27}x^6 + \frac{8}{27}x^5 + \frac{2}{27}x^4 + \frac{8}{27}x^3 - \frac{1}{27}x^2 + \frac{2}{27}x - \frac{10}{27}
\]

Again, this is a symmetric function, i.e the coefficient of \(x^k \) is equal to the coefficient of \(x^{8-k} \), \(x^9 = 1 \). The constant is the coefficient of \(x^5 \), which is \(2/27 \). We deduce that, mod \(\mathbb{Z} \), we have

\[
T_{9,2} = -\frac{2}{3}x^8 - \frac{2}{9}x^7 - \frac{1}{3}x^6 - \frac{2}{9}x^7
\]

(e) Finally when \(M = L(9, 7) \) we have

\[
T_{9,7} \sim -\frac{8}{27}x^8 - \frac{2}{27}x^7 + \frac{10}{27}x^6 + \frac{1}{27}x^5 - \frac{2}{27}x^4 + \frac{1}{27}x^3 + \frac{10}{27}x^2 - \frac{2}{27}x - \frac{8}{27}
\]

the polynomial is again symmetric so that the constant \(c \) is the coefficient of \(x^4 \) which is \(-2/7\).

It would be very interesting to know whether the invariant \(c \) satisfies any surgery properties. This is not a trivial issue because we cannot relate the potential surgery properties of \(c \) to the surgery properties of the torsion. In the case of torsion the surgery formula involve finite difference operators which kill the constants so \(c \) will not appear in any of them.

6
References

[1] L.I. Nicolaescu: *Reidemeister Torsion*, notes available at http://www.nd.edu/~lnicolae/

[2] L.I. Nicolaescu: *Seiberg-Witten invariants of lens spaces*, math.DG/9901071.

[3] V.G. Turaev: *Torsion invariants of Spin^c-structures on 3-manifolds*, Math. Res. Letters, 4(1997), 679-695.

[4] C.T.C. Wall: *Quadratic forms on finite groups, and related topics*, Topology, 2(1964), 281-298.