PLANE MODEL-FIELDS OF DEFINITION, FIELDS OF DEFINITION, THE FIELD OF MODULI OF SMOOTH PLANE CURVES

ESLAM BADR AND FRANCESC BARS

Abstract. Given a smooth plane curve C of genus $g \geq 3$ over an algebraically closed field \mathbb{k}, a field $L \subseteq \mathbb{k}$ is said to be a plane model-field of definition for C if L is a field of definition for C, i.e. \exists a smooth curve C' defined over L where $C' \times_L \mathbb{k} \cong C$, and such that C' is L-isomorphic to a non-singular plane model $F(X,Y,Z) = 0$ in \mathbb{P}^2_L.

In this short note, we construct a smooth plane curve C over \mathbb{k}, such that the field of moduli of C is not a field of definition for C, and also fields of definition do not coincide with plane model-fields of definition for C. As far as we know, this is the first example in the literature with the above property, since this phenomenon does not occur for hyperelliptic curves, replacing plane model-fields of definition with the so-called hyperelliptic model-fields of definition.

1. Introduction

Consider F the base field for an algebraically closed field \mathbb{k}. Let $F \subseteq L \subseteq \mathbb{k}$ be fields, given a smooth projective curve C over \mathbb{k}, then C is defined over L if and only if there is a curve C' over L such that C' is \mathbb{k}-isomorphic to C, i.e. $C' \times_L \mathbb{k} \cong C$. In such case, L is called a field of definition of C. We say that C is definable over L if there is a curve C'/L such that C and $C' \times_L \mathbb{k}$ are \mathbb{k}-isomorphic.

Definition 1.1. The field of moduli of a smooth projective curve C defined over \mathbb{k}, denoted by $K_{\bar{C}}$, is the intersection of all fields of definition of C.

It becomes very natural to ask when the field of moduli of a smooth projective curve C is also a field of definition. A necessary and sufficient condition (Weil’s cocycle criterion of descent) for the field of moduli to be a field of definition was provided by Weil [12]. If $\text{Aut}(\bar{C})$ is trivial, then this condition becomes trivially true and so the field of moduli needs to be a field of definition. It is also quite well known that a smooth curve C of genus $g = 0$ or 1 can be defined over its field of moduli, where g is the geometric genus of C. However, if $g > 1$ and $\text{Aut}(\bar{C})$ is non-trivial, then Weil’s conditions are difficult to be checked and so there is no guarantee that the field of moduli is a field of definition for \bar{C}. This was first pointed out by Earle [4] and Shimura [11]. More precisely, in page 177 of [11], the first examples not definable over their field of moduli are introduced, which are hyperelliptic curves over \mathbb{k} with two automorphisms. There are also examples of non-hyperelliptic curves not definable over their field of moduli given in [2][3]. B. Huggins [6] studied this problem for hyperelliptic curves over a field \mathbb{k} of characteristic $p \neq 2$, proving that a hyperelliptic curve \bar{C} of genus $g \geq 2$ with hyperelliptic involution i can be defined over $K_{\bar{C}}$ when $\text{Aut}(\bar{C})/\langle i \rangle$ is not cyclic or is cyclic of order divisible by p

On the other hand, one may define fields of definition of models of the same concrete type for a smooth projective curve \bar{C}. For example, if \bar{C} is hyperelliptic, a field M is called a hyperelliptic model-field of definition for \bar{C} if M, as a field of definition for \bar{C}, satisfies that \bar{C} is M-isomorphic to a hyperelliptic model of the form $y^2 = f(x)$, for some polynomial $f(x)$ of degree $2g + 1$ or $2g + 2$.

By the work of Mestre [10], Huggins [5][6], Lercier-Ritzenthaler [7], Lercier-Ritzenthaler-Sijsling [8] and Lombardo-Lorenzo in [9], one gets fair-enough characterizations for the interrelations between the three fields: the field of moduli, fields of definition and hyperelliptic model-fields of definition. For instance, if \bar{C} is hyperelliptic, then there are always two of these fields, which are equal. Summing up, one obtains the next table issued from Lercier-Ritzenthaler-Sijsling [8], where $k = F$ is a perfect field of characteristic $\text{char}(F) \neq 2$:

E. Badr and F. Bars are supported by MTM2016-75980-P.
$H = \text{Aut}(\overline{C})/(i)$	Conditions	Fields of definition =	The field of moduli=
Not tamely cyclic		Yes	Yes
Tamely cyclic with $\#H > 1$	$g \text{ odd, } \#H \text{ odd}$	No	Yes
	$g \text{ even or } \#H \text{ even}$	Yes	No
Tamely cyclic with $\#H = 1$	$g \text{ odd}$	No	Yes
	$g \text{ even}$	Yes	No

By **tamely cyclic**, we mean that the group is cyclic of order not divisible by the $\text{char}(F)$.

Now, consider a smooth plane curve \overline{C}, i.e. \overline{C} viewed as a smooth curve over \mathbb{k} admits a non-singular plane model defined by an equation of the form $F(X,Y,Z) = 0$ in $\mathbb{P}^2_{\mathbb{k}}$, where $F(X,Y,Z)$ is a homogenous polynomial of degree $d \geq 4$ over \mathbb{k} with $g = \frac{1}{2}(d-1)(d-2) \geq 3$. Similarly, we define a so-called **plane model-fields of definition for** C:

Definition 1.2. Given a smooth plane curve \overline{C} over $\overline{\mathbb{k}}$, a subfield $\mathbb{M} \subset \overline{\mathbb{k}}$ is said to be a **plane model-field of definition for** C if and only if the following conditions holds

(i) \mathbb{M} is a field of definition for \overline{C}.

(ii) \exists a smooth curve C' defined over \mathbb{M}, which is $\overline{\mathbb{k}}$-isomorphic to \overline{C}, and $\overline{\mathbb{k}}$-isomorphic to a non-singular plane model $F(X,Y,Z) = 0$, for some homogenous polynomial $F(X,Y,Z) \in M[X,Y,Z]$ of degree $d \geq 3$.

In this short note, we start with a smooth plane curve \overline{C} over $\overline{\mathbb{k}}$ where the field of moduli is not a field of definition by the work of B. Huggins in [5]. Next, we go further, following the techniques developed in [1], to construct a twist of \overline{C}, for which there is a field of definition for \overline{C}, which is not a plane model-field of definition.

Acknowledgments. We would like to thank Elisa Lorenzo and Christophe Ritzenthaler for bringing this problem to our attention, as a consequence of our discussion with them in BGSMath-Barcelona Graduate School in March 2017.

2. The example

Consider the **Hessian group of order** 18, denoted by Hess_{18}, which is $\text{PGL}_3(\overline{\mathbb{k}})$-conjugate to the group generated by

$$S := \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta_3 & 0 \\ 0 & 0 & \zeta_3^2 \end{pmatrix}, \quad T := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad \text{and} \quad R := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}. $$

First, we reproduce an example, by B. Huggins in [5] Chp. 7, §2], of a smooth $\overline{\mathbb{k}}$-plane curve of genus 10 not definable over its field of moduli, and with full automorphism groups Hess_{18}.

Definition 2.1. A quaternion extension of a field K is a Galois extension K'/K such that $\text{Gal}(K'/K)$ is isomorphic to the quaternion group to order 8.

Definition 2.2. ([5] Lemma 7.2.3]) A field K is of level 2 if -1 is not a square in K, but it is a sum of two squares in K.

Lemma 2.3. ([5] Lemma 7.2.3]) Let K be a field of level 2. Then, for $u, v \in K^* \setminus (K^*)^2$ such that $uv \notin (K^*)^2$, $K(\sqrt{u}, \sqrt{v})$ is embeddable into a quaternion extension of K if and only if $-u$ is a norm from $K(\sqrt{-v})$ to K (i.e. $-u = x^2 + vy^2$ for some $x, y \in K$).

For instance, the field $K := \mathbb{Q}(\zeta_3)$ is of level 2, since $(\zeta_3^2)^2 + \zeta_3^2 = -1$ and $\sqrt{-1} \notin K$. It is easily shown that ± 2 are not norms from $K(\sqrt{-13})$ to K. So neither $K(\sqrt{2}, \sqrt{13})$ nor $K(\sqrt{-2}, \sqrt{13})$ are embeddable into a quaternion extension of K.

Now fix K to be the field $\mathbb{Q}(\zeta_3)$, and define the following:

$$\phi := XYZ, $$

$$\psi := X^3 + Y^3 + Z^3, $$

$$\chi := (XY)^3 + (YZ)^3 + (XZ)^3.$$
Suppose that \(u, v \in \mathbb{Q}^* \), such that \(L := K(\sqrt{u}, \sqrt{v}) \) is a \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) extension of \(K \) that can not be embedded into a quaternion extension of \(K \). Let

\[
\begin{align*}
\phi_\varphi & := \zeta_3 \sqrt{u} + \sqrt{v} + c_\varphi \sqrt{uv}, \\
\phi_\psi & := \zeta_3 \sqrt{u} + \sqrt{v} + \zeta_3 \sqrt{uv}, \\
\psi_\varphi & := \sqrt{u} + \sqrt{v} + \frac{c_\psi}{12}.
\end{align*}
\]

Fix an algebraic closure \(\overline{\mathbb{Q}} \) of \(\mathbb{Q} \) containing \(L \) as above.

Theorem 2.4. (B. Huggins, [Lemma 7.2.5 and Proposition 7.2.6]) Following the above notations, let

\[
F_{\sqrt{u}, \sqrt{v}}(X, Y, Z) := c_{\varphi \varphi} \phi^2 - 6c_{\varphi \psi} \phi \psi - 18c_{\psi \psi} \psi^2 + \chi.
\]

Then the equation \(F_{\sqrt{u}, \sqrt{v}}(X, Y, Z) = 0 \) such that \(F_{\sqrt{u}, \sqrt{v}}(X, 1, 1) \) is square free, defines a smooth \(\overline{\mathbb{Q}} \)-plane curve \(\overline{C} \) over \(\overline{\mathbb{Q}} \), with automorphism group \(\text{Hess}_{18} \). The field of moduli \(K_{\overline{C}} \) is \(K = \mathbb{Q}(\zeta_3) \), but it is not a field of definition.

Remark 2.5. The condition that \(F_{\sqrt{u}, \sqrt{v}}(X, 1, 1) \) is square free is possible. For example, with \(u = 2 \) and \(v = 13 \), the resultant of \(F_{\sqrt{u}, \sqrt{v}}(X, 1, 1) \) and \(\frac{F_{\sqrt{u}, \sqrt{v}}}{\sqrt{u}}(X, 1, 1) \) is not zero.

Lemma 2.6. Let \(\overline{C} \) be a smooth curve defined over an algebraically closed field \(\overline{\mathbb{F}} \), with \(F = k \) and \(k \) perfect. An \(\mathbb{F} \)-isomorphism \(\phi : \overline{C} \to \overline{C} \) does not change the field of moduli or fields of definition, that is both \(\overline{C} \) and \(\overline{C}' \) have the same fields of moduli and fields of definitions.

Proof. A field \(L \subseteq \overline{\mathbb{F}} \) is a field of definition for \(\overline{C} \) if and only if there exists a smooth curve \(C'' \) over \(L \), such that \(C'' \times_L \overline{\mathbb{F}} \) is \(\mathbb{F} \)-isomorphic to \(\overline{C} \) through some \(\psi : C'' \times_L \overline{\mathbb{F}} \to \overline{C} \). Hence \(\phi^{-1} \circ \psi : C'' \times_L \overline{\mathbb{F}} \) is a \(\mathbb{F} \)-isomorphism, and \(L \) is a field of definition for \(\overline{C} \). The converse is true by a similar discussion. Consequently, the field of moduli for \(\overline{C} \) and \(\overline{C}' \) coincides, being the intersection of all fields of definition. \(\square \)

Corollary 2.7. Consider a smooth \(\overline{\mathbb{Q}} \)-plane curve \(\overline{C} \) defined by an equation of the form

\[
\frac{c_{\varphi \varphi}}{p^2}(XYZ)^2 - \frac{6c_{\varphi \psi}}{p}(XYZ)(X^3 + \frac{1}{p} Y^3 + \frac{1}{p^2} Z^3) - 18c_{\psi \psi}(X^3 + \frac{1}{p} Y^3 + \frac{1}{p^2} Z^3)^2 + \frac{1}{p} X^3 Y^3 + \frac{1}{p^3} Y^3 Z^3 + \frac{1}{p^3} X^3 Z^3 = 0,
\]

where \(p \in \mathbb{Q} \), in particular \(\overline{C} \) admits \(\mathbb{Q}(\sqrt{u}, \sqrt{v}, \zeta_3) \) as a plane model-field of definition for \(\overline{C} \). Then \(\text{Aut}(\overline{C}) \) is isomorphic to \(\text{Hess}_{18} \). Moreover, the field of moduli \(K_{\overline{C}} \) is \(K = \mathbb{Q}(\zeta_3) \), but it is not a field of definition. \(\square \)

Theorem 2.8. Consider the family \(C_p \) of smooth plane curves over the plane model-field of definition \(L = \mathbb{Q}(\sqrt{u}, \sqrt{v}, \zeta_3) \) given by an equation of the form

\[
\frac{c_{\varphi \varphi}}{p^2}(XYZ)^2 - \frac{6c_{\varphi \psi}}{p}(XYZ)(X^3 + \frac{1}{p} Y^3 + \frac{1}{p^2} Z^3) - 18c_{\psi \psi}(X^3 + \frac{1}{p} Y^3 + \frac{1}{p^2} Z^3)^2 + \frac{1}{p} X^3 Y^3 + \frac{1}{p^3} Y^3 Z^3 + \frac{1}{p^3} X^3 Z^3 = 0,
\]

where \(p \) is a prime integer such that \(p \equiv 3 \) or \(5 \mod 7 \). Given a smooth plane curve \(C' \) over \(L \) in \(C_p \), then there exists a twist \(C'' \) of \(C \) over \(L \) which does not have \(L \) as a plane model-field of definition. Moreover, the field of moduli of \(C'' \) is \(\mathbb{Q}(\zeta_3) \), and it is not a field of definition for \(C'' \).

Proof. Consider the Galois extension \(M'/L \) with \(M' = L(\cos(2\pi/7), \sqrt[p]{u}) \), where all the automorphisms of \(\overline{C} := C \times_L \overline{\mathbb{Q}} \) are defined. Let \(\sigma \) be a generator of the cyclic Galois group \(\text{Gal}(L(\cos(2\pi/7)))/L) \). We define a 1-cocycle on \(\text{Gal}(M'/L) \cong \text{Gal}(L(\cos(2\pi/7))/L) \times \text{Gal}(L(\sqrt[u]{u})/L) \) by mapping \((\sigma, id) \mapsto [Y : pX] \) and \((id, \tau) \mapsto id \). This defines an element of \(\text{H}^1(\text{Gal}(M'/L), \text{Aut}(\overline{C})) \), coming from the inflation of an element in \(\text{H}^1(\text{Gal}(L(\cos(2\pi/7))/L), \text{Aut}(\overline{C})) \).

This 1-cocycle is trivial if and only if \(p \) is a norm of an element of \(L(\cos(2\pi/7)) \) over \(L \). However, this is not the case, since \(\mathbb{Q}(\cos(2\pi/7)) \) and \(L \) are disjoint with \([L : \mathbb{Q}] = 2 \) and \([\mathbb{Q}(\cos(2\pi/7)) : \mathbb{Q}] = 7 \) coprime, and moreover \(p \) is...
not a norm of an element of $\mathbb{Q}(\cos(2\pi/7))$ over \mathbb{Q} being inert by our assumption. Consequently, the twist C' is not L-isomorphic to a non-singular plane model in \mathbb{P}^2_L by [1] Theorem 4.1. That is, L is not a plane model-field of definition for C'. The last sentence in the theorem follows by Lemma 2.6 and Corollary 2.7. □

Remark 2.9. By our work in [7], we know that a non-singular plane model of C' exists over at least a degree 3 extension of L.

References

[1] E. Badr, F. Bars, E. Lorenzo García, *On twists of smooth plane curves*, arXiv:1603.08711v1.
[2] R. Hidalgo, *Non-hyperelliptic Riemann surfaces with real field of moduli but not definable over the reals*, Arch. Math. 93 (2009), 219-224.
[3] B. Huggins; *Fields of moduli and fields of definition of curves*. PhD thesis, Berkeley (2005), see http://arxiv.org/abs/math/0610247v1.
[4] C. J. Earle, *On the moduli of closed Riemann surfaces with symmetries*, Advances in the Theory of Riemann Surfaces. Ann. Math. Studies 66 (1971), 119-130.
[5] B. Huggins, *Fields of moduli and fields of definition of curves*. PhD thesis, Berkeley (2005), arxiv.org/abs/math/0610247v1.
[6] B. Huggins; *Fields of moduli of hyperelliptic curves*. Math. Res. Lett. 14 (2007), 249-262.
[7] R. Lercier and C. Ritzenthaler, *Hyperelliptic curves and their invariants: geometric, arithmetic and algorithmic aspects*. J. Algebra, 372:595636, 2012.
[8] R. Lercier, C. Ritzenthaler, and J. Sijsling, *Explicit galois obstruction and descent for hyperelliptic curves with tamely cyclic reduced automorphism group*. Math. Comp. To appear.
[9] D. Lombardo, E. Lorenzo García; *Computing twists of hyperelliptic curves*, arXiv:1611.04866 November 2016.
[10] J.-F. Mestre. *Construction de courbes de genre 2 a partir de leurs modules*. In Effective methods in algebraic geometry (Castiglioncello, 1990) , volume 94 of Progr. Math. , pages 313-334. Birkhäuser Boston, Boston, MA, 1991.
[11] G. Shimura, *On the field of rationality for an abelian variety*, Nagoya Math. J. 45 (1971), 167-178.
[12] A. Weil, *The field of definition of a variety*, American J. of Math. vol. 78, n17 (1956), 509-524.

Eslam Essam Ebrahim Farag Badr
Departament Matemàtiques, Edif. C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
E-mail address: eslam@mat.uab.cat

Francesc Bars Cortina
Departament Matemàtiques, Edif. C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia
E-mail address: francesc@mat.uab.cat