RAPIDNN: In-Memory Deep Neural Network Acceleration Framework

Mohsen Imani*, Mohammad Samragh†, Yeseong Kim*, Saransh Gupta*, Farinaz Koushanfar‡ and Tajana Rosing*

*Computer Science and Engineering Department, UC San Diego, La Jolla, CA 92093, USA
‡Department of Electrical and Computer Engineering, UC San Diego, La Jolla, CA 92093, USA

Abstract—Deep neural networks (DNN) have demonstrated effectiveness for various applications such as image processing, video segmentation, and speech recognition. Running state-of-the-art DNNs on current systems mostly relies on either general-purpose processors, ASIC designs, or FPGA accelerators, all of which suffer from data movements due to the limited on-chip memory and data transfer bandwidth. In this work, we propose a novel framework, called RAPIDNN, which processes all DNN operations within the memory to minimize the cost of data movement. To enable in-memory processing, RAPIDNN reinterprets a DNN model and maps it into a specialized accelerator, which is designed using non-volatile memory blocks that model four fundamental DNN operations, i.e., multiplication, addition, activation functions, and pooling. The framework extracts representative operands of a DNN model, e.g., weights and input values, using clustering methods to optimize the model for in-memory processing. Then, it maps the extracted operands and their pre-computed results into the accelerator memory blocks. At runtime, the accelerator identifies computation results based on efficient in-memory search capability which also provides tunability of the accelerator identifies computation results based on efficient approximation to further improve computation efficiency. Our evaluation shows that RAPIDNN achieves 68.4×, 49.5× energy efficiency improvement and 48.1×, 10.9× speedup as compared to ISAAC and PipeLayer, the state-of-the-art DNN accelerators, while ensuring less than 0.3% of quality loss.

I. INTRODUCTION

The emergence of Internet of Things (IoT) significantly increases sizes of application datasets required to be processed [1]. As a solution which automatically extracts useful information from the largely generated data, artificial neural networks have been actively investigated. In particular, deep neural networks (DNNs) demonstrate superior effectiveness for diverse classification problems, image processing, video segmentation, speech recognition, computer vision and gaming [2]–[5]. Although many DNN models are implemented on high-performance computing architectures such as GPGPUs by parallelizing tasks, running neural networks on the general purpose processors is still slow, energy hungry, and prohibitively expensive [6].

Earlier work proposed several FPGAs [7]–[11] and ASIC designs [12]–[16] to accelerate neural networks. However, these techniques pose a critical technical challenge due to data movement cost, since they require dedicated memory blocks, e.g., SRAM, to store the large size of network weights and input signals. In the context of efficient DNN implementation, prior works employ a variety of techniques to optimize the enormous computation cost, yet the memory still takes up to 90% of the total energy consumption to perform DNN inference tasks even in highly optimized ASIC designs [13].

Processing in-memory (PIM) is a promising solution to address the data movement issue by implementing logics within a memory [17]–[21]. Instead of sending a large amount of data to the processing cores for computation, PIM performs a part of computation tasks, e.g., bit-wise computations, inside the memory, thus the application performance can be accelerated significantly by avoiding the memory access bottleneck. Several existing works have proposed PIM-based neural network accelerators which keep the input data and trained weights inside memory [22], [23]. For example, the work in [22] showed that memristor devices can model the input-weight multiplications of each neuron in a crossbar memory. These approaches store the trained DNN weights as device resistance values, and then pass input values as analog voltage to these devices [24]. Although these approaches are the first pace towards employing PIM for DNN acceleration, they have three major downsides: (i) They utilize Analog to Digital Converters (ADCs) and Digital to Analog Converters (DACs) which take the majority of the chip area and power consumption, e.g., 61% of chip power in [23]. In addition, the mixed-signal ADC/DAC blocks do not scale as fast as the memory device technology does. (ii) The existing PIM approaches use multi-level memristor devices that are not sufficiently reliable for commercialization unlike commonly-used single-level NVMs, e.g., Intel 3D Xpoint [25]. (iii) Finally, they only support matrix multiplication in analog memory while other operations such as activation functions are implemented using CMOS-based digital logics. This makes the design non-generic and increases the expense of fabrication.

In this paper, we propose a novel DNN acceleration framework, called RAPIDNN, which supports all the DNN functionalities in a digital-based memory design. To realize the digital-based computation, our framework first analyzes computation flows of a DNN model and encodes key DNN operations for a specialized PIM-enabled accelerator. Our framework identifies representative parameters processed in each neuron, i.e., weights and input values, using clustering algorithms. The other key operations, e.g., activation functions, are also approximately modeled to enable in-memory processing. Based on these techniques, we create a new DNN model which is compatible to the proposed memory-based accelerator.

The key finding underlying this procedure is that, even though the operations of a DNN model, e.g., multiplications and activation functions, are continuous functions, they can be approximated as step-wise functions without losing the quality
of inference. Once a step-wise approximation is developed, we can create computation tables which store the finite pre-computed values, and map them into specialized memory blocks capable of in-memory computations. The naive solution for step-wise approximation would employ linear quantization to represent the inputs (operands) and outputs of pertinent functions [25]. To ensure maximum accuracy of the step-wise approximation, we propose to employ a non-linear quantization which takes account of statistical properties of each operand and output within the DNN, thus improving the accuracy. For example, although we quantize the Rectified Linear Unit (ReLU) activation function with 64 pairs for inputs and outputs, the inference accuracy can be maintained in the same level.

The proposed RAPIDNN framework supports three layers popularly used for designing a DNN model: fully-connected, convolution, and pooling layer. We group the computation tasks of the networks by four operations, multiplication, addition, activation function, and pooling. Our accelerator supports the multiplication and addition operations inside a crossbar memory, and other operations, activation function and pooling, are modeled with associative memory (AM) blocks which are a form of a lookup table. The main contribution of the paper is listed as follows:

- To the best of our knowledge, RAPIDNN is the first neural network accelerator which processes all functionalities inside the memory. Using direct digital-based computation without any analog-to-digital conversion ensures a scalable design approach for our accelerator. In addition, we remove the necessity of using unreliable multi-level memristors by implementing RAPIDNN using commonly used single-level memristor devices.
- We present a software support for RAPIDNN along with novel algorithms which reinterpret DNN models to enable in-memory processing with minimal accuracy loss of DNN inference.
- Providing adjustable DNN reinterpretation mechanisms that allow users to optimally configure RAPIDNN for different DNN applications. We explore how different memory sizes impact the inference accuracy.
- Proof-of-concept evaluations on six DNN applications demonstrate that using small-sized memory blocks, e.g., around 5 KBytes for each neuron, RAPIDNN can provide a same level of the prediction quality. For instance, we achieve 68.4×, 49.5× energy efficiency improvement and 48.1×, 10.9× speedup on average as compared to ISAAC [23] and PipeLayer [27] (state-of-the-art PIM-based DNN accelerators), respectively, while ensuring less than 0.3% of quality loss.

II. BACKGROUND AND RELATED WORK
A. Processing In-Memory

Non-volatile Memory: High density, low-power consumption, and CMOS-compatibility of emerging non-volatile memories (NVMs), in particular memristor devices, make them appropriate candidates for both storage and computing purposes [28]–[30]. Many logic families have been proposed for computation inside memristive crossbar. Some of these logic implementations such as stateful implication logic [31], [32] and Memristor Aided loGIC (MAGIC) [33] are purely realized within memory. The direct application of these schemes in data intensive applications such as DNNs is highly limited due to the linear dependency of execution latency on the size of the data. While [34] presents a very fast adder, the area overhead involved in arrayed addition grows significantly for data intensive workloads. We use MAGIC NOR [33] to execute logic functions in memory due to its simplicity and independence of execution from data in memory. An execution voltage, \(V_0 \), is applied to the bitlines of the inputs (in case of NOR in a row) or wordlines of the outputs (in case of NOR in a column) in order to evaluate NOR, while the bitlines of the outputs (NOR in a row) or wordlines of the inputs (NOR in a column) are grounded. The work in [35], [36] extend this idea to implement adder in a crossbar.

Content addressable memory (CAM): is a memory block that has search capability, making it the key building block to construct associative memory (AM) in the form of a lookup table. CAMs have been used for several applications, e.g., networking, database, and recently computing acceleration [37], [38] as well. Since memristor devices show superior performance due to their large ON-to-OFF resistance ratio, several works have explored to design CAM blocks based on memristor devices [39]–[41]. In the GPU architecture, CAMs are used for computational reuse [39], [42], approximation [43], and also accelerating neural network [44], [45]. All these works utilize CAMs to process a part of the workload and assist the existing cores of GPUs rather than using them as a stand-alone computing unit which processes the data in main memory.

Our proposed accelerator exploits CAMs and in-memory addition to process all DNN computations inside memory without using any processing core, thus significantly reducing the data movement and computation costs.

B. Neural Network

Modern neural network algorithms are executed on diverse types of processors such as GPU [46], FPGAs [7]–[10] and ASIC chips [12], [14], [47], [48]. Prior works attempt to fully utilize existing cores to accelerate neural networks. For example, for a neural network-based image classification, GPU showed high performance improvement by up to two orders of magnitudes over CPU-based implementation. Several research work showed that hardware-based accelerations can further improve the efficiency of neural networks [11], [14]–[16]. However, the main computation still relies on CMOS-based cores, thus suffering from the data movement issue.

To address data movement issue, prior works accelerate neural network by enabling analog-based PIM operations [22], [23], [27], [49]–[51]. These designs utilize multi-level memristor devices to perform matrix multiplication in an analog way. The main computation of these designs performs by converting digital values to analog signals. However, these approaches have potential design issues. For example, their designs require to use analog and digital-mixed circuits, e.g., ADC and DAC, which do not scale as CMOS technology. In addition, they use multi-level memristor devices that are not sufficiently reliable for commercialization unlike commonly-used single-level NVMs, e.g., Intel 3D Xpoint [25]. In contrast, in this paper we design RAPIDNN, a fully digital PIM-based DNN accelerator based on single-level memristor devices. RAPIDNN removes necessity
III. RAPIDNN DESIGN

A. Overview of RAPIDNN

Figure 1 illustrates a high-level overview of the proposed RAPIDNN framework. It consists of two interconnected blocks: a software module, DNN composer and a hardware module, accelerator. The role of the DNN composer is to convert each neural network operation to a table that can be stored in the accelerator memory blocks which process all neural network computations inside memory. The entries of these tables are operands (inputs) and outputs of pertinent operations, e.g., multiplication and activation functions, that are employed to construct neural networks. We adopt the idea of step-wise function approximation to form input-output tables that can replace CMOS-based logic units of current processors. By statistically analyzing the input and outputs of the corresponding functions in an offline stage, starting with a given DNN model, the DNN composer analyzes weights and inputs of each neuron and generates a new DNN model which is compatible to the proposed PIM-based accelerator. Particularly, the output of the DNN composer module is a neural network whose operations can be efficiently implemented using finite tables inside the memory. The newly constructed DNN model is repeatedly revised through multiple retraining procedures. After generating the final model though the iterations, it is stored into the accelerator so that it can perform the online inference.

The proposed RAPIDNN accelerator supports both memory and computing functionalities by using two different memories, data blocks and RNA blocks. The data block is a typical crossbar memory which stores an input dataset processed by the DNN model. The resistive neural acceleration (RNA) blocks designed with multiple memory banks are in charge of processing the DNN. In the execution phase, each input data is applied to all RNA blocks in parallel using a memory buffer which keeps them in a FIFO. Then, the RNA blocks, which are the main cores of the RAPIDNN accelerator, process the sequence of the input data. A single RNA block computes the output for one neuron using multiple internal memories which model fundamental neural network operations, i.e., multiplication, activation function, and pooling. Once the inference is completed, the accelerator writes the computed results back to the crossbar memory. In the next few sections, we describe our strategies to map the DNN to the RAPIDNN accelerator.

B. Preliminary of DNN Reinterpretation

A DNN model consists of multiple layers which have multiple neurons. These layers are stacked on top of each other in a hierarchical formation, that is, the output of each layer is forwarded to the next layer. The outputs of the last layer are used for inference. In this paper, we focus on three types of layers that are most commonly utilized in designing practical neural networks: (i) convolution layers, (ii) fully connected layers, and (iii) pooling layers. RAPIDNN is inherently capable of applying pooling layers without any modification of the neural network. For convolution and fully connected layers, the framework reinterprets the layers in an offline process to ensure compatibility with the memory-based accelerator.

Figure 2 depicts the layers in an offline process to make the DNN compatible with the proposed accelerator. We describe each operation below in details.

Weighted accumulation: There are two basic operations required for weighted accumulation: multiplication and addition. Here we consider the multiplication operation, while we address additions in Section V-A. Consider the two operands of a multiplication, a and b, where each operand belongs to a finite set. For instance, in a 32-bit floating-point representation, each input can take one of 2^{32} different possibilities. If we could store all pairwise multiplications (i.e., $2^{32} \times 2^{32} = 2^{64}$ possibilities) in an array beforehand, we could fetch the correct result from the array instead of performing actual multiplication using CMOS logics. Obviously, in this naive approach, the size of pairwise results would be unacceptably huge to create an array in real-world systems. Thus, the key technical challenge is how to reduce the size of two input sets.

We propose to reduce the input span by carefully selecting a subset from the input spaces, called “best representatives,” and approximating every input operand by its closest representative. In our design, the DNN composer selects the best representatives by analyzing the weights and input values given to the networks (Section IV-A). For instance, we may find 4 values to account for each input operand, in which case we would have $4 \times 4 = 16$ different possible output values. In practice, our experiments show that using a maximum number of 64 representatives (4096 possible outputs) can fully recover the DNN accuracy.
We also model the activation function, which entry in the table is the closest value. Each input table generates an index to the corresponding closest representative. The approximate multiplication result can therefore be fetched from the output table according to the indices generated by the two input tables. This design requires two lookup tables for the input operands; however, below we describe how we can completely remove the input tables and simply replace them with wires.

Note that the operands and the outputs can be mapped into the set of best representatives using fewer bits, e.g., 2-bits for inputs (2^2 = 4 possibilities) based on one-to-one correspondences. We call elements of the mapped set as encoded values. In particular, for every weight value \(W_i \) and neuron value \(X_i \), we denote the encoded values by \(\tilde{W}_i \) and \(\tilde{X}_i \). Figure 3 shows how encoded operands can facilitate the in-memory multiplication: there is no need to search for the closest value in the input tables as the inputs themselves represent the indices, thus, the input tables can simply be replaced by wires. The first operand \((\tilde{W}_i) \) is simply encoded offline and stored in the weight matrix. The second operand \((\tilde{X}_i) \) is encoded during DNN execution after the neuron output is computed in the preceding layer.

Activation function: We also model the activation function for enabling PIM. Neural networks use different types of activation functions. For example, “sigmoid” has been used as one of the basic activation functions, and there are other activation functions which recently gain popularity due to the better inference accuracy for some applications, e.g., “Rectified linear unit” (ReLU) and “Softsign”. One way to support different activation functions is to exploit different CMOS-based logics, but they may be expensive to fabricate and could not support other activation functions. In our design, we approximately model an activation function using a small lookup table. Using this approach, we can represent any activation function. Figure 2d shows this procedure for the sigmoid function as an example. A lookup table stores multiple \((y,z) \) coordinates of the activation function. For a given input value, (i.e. the output of the weighted accumulation \(Y \)), the table identifies a stored coordinate whose value is closest to the input, and generates the corresponding output \(z \). We will elaborate on the definition of “closeness” and the hardware implementation of the table in Section V-B2.

Since a typical activation function is saturated for either very large or small input values, we can effectively limit the domain using two upper and lower points (A and B in Figure 2) with a minimal quality change. We can equally or non-equally quantize the range from A and B to select the intermediate values. Intuitively, the accuracy of the approximated function mainly depends on the number of values in the lookup table. For provide better accuracy, Non-linear quantization allows putting more points on the regions that activation function has sharper changes, thus improves the quality of approximation. Note that the proposed technique ensures the generality of the algorithm. However, for easy activation functions such as ReLU, our design can replace the lookup table with a simple comparator block.

Encoding block: Since the neurons of our reinterpreted model operate on encoded values, we need to convert the output of the activation function into an encoded value. For this purpose, we utilize a lookup table with a similar structure to the one used for activation function modeling. Figure 2b presents an example of encoding into 2-bits (4 representatives). Since the encoded value for the activation units, \(Z \), is used as the input of the neurons of the next layer, say \(X_j \), we encode the outputs based on their similarity to the representatives corresponding
to the next DNN layer. In the case of the input layer, to encode each raw input data, we add one more virtual layer as an initial layer of the DNN. The neuron of this layer does not perform any computation tasks, i.e., the weighted accumulation and activation function, but only encodes the input values to pass them to the first computation layer, e.g., fully connected or convolution layer.

IV. DNN COMPOSER

Figure 4 shows the overall procedure of the DNN composer. The DNN composer preforms the DNN reinterpretation in an offline stage in four main steps: parameter clustering, quality management, network retraining, and RNA configuring.

The parameter clustering module uses the pre-trained DNN model and the training data to find the best representatives for each layer’s inputs and weights. It particular, we use the k-means algorithm [55] and interpret the resulting centers of clusters as the representative values. Once the multiplication, activation function, and encoding tables are generated for each DNN layer, the error estimation module evaluates the reinterpreted memory-based DNN on the validation data. If an error criterion is not satisfied, the model is retrained under the modified condition, so that the model is more fitted with the clustered weights. We proceed the same procedure until an error rate, ε, is satisfied or a pre-defined number of iterations is repeated. After the iterations, the new model compatible to the proposed accelerator is stored into the accelerator for real-time inference.

A. Multiplication Operand Clustering

As discussed in Section III-B, the proposed RAPIDNN framework converts key arithmetic computations to memory-based computations to reduce the cost of data movement. The first key procedure is to identify the best representatives for multiplication based on k-means clustering. Assuming that the actual numerical values belong to the set θ, the objective of the clustering algorithm is to find a set of k cluster centroids $\{c_1, c_2, \ldots, c_k\}$ that can best represent the values within θ. Formally, the objective is to reduce the Within Cluster Sum of Squares (WCSS):

$$\min_{c_1, c_2, \ldots, c_k} \left(\text{WCSS} = \sum_{i=1}^{k} \sum_{j \in c_i} \| \theta_i - c_j \|^2 \right)$$

where θ_i is the i^{th} sample drawn from θ and k is the number of clusters. In the rest of this paper, we refer to the set of these representatives found in the clustering procedure as a codebook. We use the k-means clustering algorithm to solve the minimization objective for each neural network layer separately, as the distribution of weights and inputs can vary across different layers. The weights and inputs are clustered differently as follows:

- **Weights**: The weights of each layer are fixed in the inference phase; therefore, in order to form the codebook for the fixed parameters, the clustering algorithm is applied on the fixed weights. Assuming that a fully-connected layer maps N neurons into M outputs, the corresponding matrix $W_{M \times N}$ is clustered once and a single codebook is generated for the whole matrix. For convolution layers, the weights corresponding to different output channels are clustered separately: a convolution layer mapping N channels into M channels using a weight tensor $W_{h \times h \times N \times M}$ is divided into M different tensors and each tensor is clustered separately, resulting in M different codebooks.

- **Inputs**: The input of each layer is determined by its preceding layer, hence, the inputs of all layers depend on the raw data given to the network; therefore, we execute the feed-forward procedure with the training dataset to form θ for each DNN layer, then apply k-means on this θ to find the corresponding codebook. In our implementation, we run the network with a set of inputs randomly sampled from the training dataset. The sampling technique significantly reduces the overhead of computing the codebook as our experiments show that sampling as low as 2% of the data is sufficient to achieve reasonable accuracy.

Multi-level clustering: The codebook size determines the multiplications precision with the lookup table-based approach: the more cluster centroids are chosen, the more the precision will be. Note that this is the numerical precision and the classification accuracy (the objective of the neural network) depends on the application too. Some applications would require more fine-grained clusters in order to deliver reasonable...
classification accuracy, while other applications might show high classification accuracy with smaller numerical precision.

To offer a flexibility for configuring the accelerator, we propose a multi-level clustering method which creates the codebook as a tree. Figure 5a shows an example of the tree-based codebook. The first level includes 2 cluster centroids: \{-2.1, 1.9\}; in the second level, each cluster is again partitioned into 2 separate clusters that more accurately represent the data. For instance, the cluster representing 1.9 in the first level is partitioned into \{0.9, 2.3\} in the second level to provide more precision.

The tree is created by recursively calling the k-means clustering module. First, the k-means module clusters the whole \(\theta\) into two clusters: \(\theta_1\) and \(\theta_2\) represented by codebook values -2.1 and 1.9, respectively. Next, \(\theta_1\) and \(\theta_2\) are separately partitioned to two different clusters, so that each sub-cluster itself is represented using a codebook of 2 values. This recursive process is continued to create the last level of the tree (three levels in this example), and then all codebook values are computed.

Figure 5b shows the encoding tree for the same hierarchical codebook. Deeper layers’ encodings are formed by appending extra bits to those of their parent nodes in the tree. Deeper levels provide higher multiplication precision, whereas shallower levels deliver less precision but reduce the area overhead and power consumption. As such, the accuracy can be dynamically tuned for different applications. Note that the codebook values in each level are sorted before encoding, thus, comparison over the encoded values has the same output as comparison over the original codebook values. This property enables RNA to perform max-pooling over the encoded data. We explain how the hardware accelerator implements the pooling functionality in Section VI-B1.

B. Quality Estimation and Model Retraining

We retrain the model with the reinterpretation condition to ensure the better accuracy. This procedure is done by two steps, weight retraining and error estimation described below. **Weight Retraining:** Consider the distribution of the parameters within a layer shown in Figure 6a. Weight clustering essentially finds the best matches that can represent this distribution, and replaces all parameters with their closest centroids (Figure 6b).

C. RNA Configuration

After retraining the networks sufficiently, we configure the reinterpreted model into the accelerator. To write the neurons of either the fully-connected or convolution layers, an adjustable parameter is utilized to select the level of the codebook tree, i.e., the number of encoding bits. Based on the encoding bits, we store pairwise multiplication results extracted from all possible pairs of codebook values into a crossbar memory. The lookup tables for the quantized activation function and the encoding table are stored in two AM blocks. As explained in Section III-B, the virtual layer responsible for encoding the raw inputs is also stored into a AM block. For the neurons of the pooling layer, we allocate a set of RNA blocks. In the next section, we explain how the RNA memory blocks are designed.
to perform the computation tasks of each neuron in different types of layers.

V. RNA ACCELERATOR

Figure 7 illustrates the structure of a RNA block which performs the computation tasks of a single neuron in the reinterpreted model. An RNA block consists of three major memristor memory blocks, (a) weighted accumulation, (b) activation function, and (c) encoding/ pooling blocks, each corresponding to one of the fundamental operations discussed in Section III-B. The weighted accumulation sub block is a crossbar memory capable of processing addition in-memory. The other two sub blocks are designed using AM structures that implement a lookup table like functionality and have the capability of searching for the most similar value in the memory.

A. RNA Weighted Accumulation

Since all the weights and inputs are passed to the RNA block as encoded values, we can directly fetch the multiplication results from the crossbar memory as discussed in Section III-B. Although our design significantly reduces the cost of multiplication, serially accumulating the values in the neuron can be a bottleneck. Weight and input clustering significantly reduces the number of possible results of multiplications. For instance, in a neuron with 1024 incoming branches, there are $w \times u$ different pre-computed values, where w and u are the number of codebook values for weights and inputs. Our design replaces each incoming edge of the neuron with one of the pre-computed multiplication values. As $w \times u$ is usually smaller than the number of incoming edges to the neuron, we do not need to really accumulate 1024 numbers together. Instead, using counter blocks, we record the number of times that each pre-stored value repeats. Finally, the pre-stored values are added together based on the number of times that each value occurs. This improves the performance and energy efficiency of accumulation.

1) Parallel Counting: The system introduced above can be easily implemented by having a FIFO at the input of each layer and having an increment by 1 counter corresponding to each pre-stored value. Each output of this buffer increments the corresponding counter by 1. This procedure is highly serialized and may bottleneck the entire process. Hence, it would be beneficial to take in multiple inputs at a time and increment counters in parallel. The problem arises when two or more of these inputs correspond to the same pre-stored value. In this case, the counter would increment by just 1, resulting in erroneous results. We address this issue by exploiting the fact that each input-weight combination corresponds to a unique pre-stored value. We implement a hardware such that only one input-weight pair is selected per weight at a time.

Our design assigns w buffers for w distinct weights. These buffers store the input indexes which use the same weight. For example, buffer corresponding to W_0 weight stores the indexes of all inputs to the neuron which use W_0 weight. The buffer size is determined by the size of the largest layer in neural network, as this number determines the maximum incoming edges to a neuron. Our design picks one index from each weight buffer in one cycle and increments the corresponding counter. Since the input-weight combinations selected in one cycle have different weights, no two of these combinations increment the same counter.

The output of this procedure are the values of counter which show the number of times each pre-stored value is accessed. Now, instead of repeatedly adding the numbers together, our design first shifts each pre-stored value depending upon the number of times it repeats. For instance, if the first pre-stored value repeats 4 times, our design shifts that value by two bits. The values with counters equal to 8 and 16 shift by three and four bits respectively. If the counter value is not a power of two, our design breaks the number into multiple powers of two. For example, when counter is 9, our design breaks it to $8+1$, thus the value is shifted by three bits and then added to itself. To further improve the efficiency of the process, our design tracks the longest sequence of 1s in the value of counter and changes it to a power of 2 followed by subtraction of 1. For example, when the counter is 15 (b:1111), our design changes it to 16-1.

2) In-Memory Addition: We break down the addition operation into a series of NOR operations, where each NOR operation in the crossbar memory is executed with a latency of 1 cycle [35]. To accelerate addition, our design supports addition operation in a tree structure [36]. As in-memory computation is slow in propagating delay, our design uses the idea of carry save adder to add multiple numbers together in tree structure. This in-memory implementation can add multiple numbers in parallel while delaying the propagation to the final stage in the
tree. For \(w \times u \) inputs in a crossbar memory, our design can handle addition in \(\log_{3/2}(w \times u) \) stages. Each stage takes 13 cycles to complete the addition operation. Finally, the last stage requires 13\(M \) cycles to perform addition while propagating carry \((N\) is the size of numbers to be added).

B. RNA AM-Based Computation

1) **Activation Function, Encoding / Pooling:** The two sub blocks which implement the activation function and encoding/pooling are designed as AM blocks, i.e., lookup tables. As shown in Figure [7] and c, an AM block has two memories, a nearest distance table designed by a CAM structure, and a crossbar memory which stores data associated with the each row of the nearest distance table. Since the activation function and encoding are approximately modeled by the DNN composer and stored in the AM blocks, they can be computed by activating the corresponding AM block. In other words, the AM block for the activation function first activates its nearest distance CAM. Then, this CAM finds the row with the data most similar to the value computed by the weighted accumulation. The crossbar memory stores the result of the activation function which is sent to the next AM block for encoding. Similarly, the encoding AM block produces the encoded value.

The neurons of pooling layers are implemented by reusing the last AM block which was used for the encoding task. Since the pooling layer does not have the computation functionality, it bypasses the encoded input data, \(X_i \), to the last AM block which is then written in its CAM block. Then we find the largest (smallest) value in the AM block if the pooling layer implements max (min) pooling. Note that our design can also support average pooling using the weighted accumulation block. As explained in Section [V-A2], the crossbar memory can perform in-memory addition without the need of external circuits. The division required in average pooling is implemented by normalizing the weights in the offline stage. In the following subsection, we explain how we design the nearest distance table using a CAM, called NDCAM.

2) **Nearest Distance CAM:** A conventional CAM design finds the exact same data as a given input data. As discussed in Section [II] there are some NVM-based designs that allow the search for a “similar” data. To quantify this “similarity”, there exist different metrics such as hamming distance and absolute distance. The hamming distance (HD) is one of the simplest distance metrics which can be implemented in the memory in a relatively easy way. However, this metric ignores the impact of the bit indices on the computation. For example, 11111 has the same HD to 11110 and 01111, while the absolute distances in numeric values are significantly different. In this work, we first show how to design a CAM with the capability of searching for the nearest HD value. Then, we present how to make a modification on lookup circuits to enable a precise search operation in NDCAM which identifies the value with the smallest absolute distance for real numbers.

NDCAM Search Functionality: Figure [8] shows the structure of our NDCAM design. Before the search operation, the input data is stored in the buffer, and the buffer strengthens the input signals to ensure every row can receive the input signals at the same time. A typical way to differentiate the HDs of stored values to the input signal is to exploit a timing characteristic of the discharging current for each row [38], [56]. In this approach, for the search operation, match lines (ML) of all rows are precharged to \(V_{dd} \). Then, if the bit stored in each cell is different from the input signal, the corresponding ML starts discharging. For a large number of mismatched bits, the rows discharge \(ML \) voltage with higher current and at a faster rate compared to other rows with smaller mismatched bits. Thus, a sense amplifier can detect the CAM row which lastly discharges, i.e., the value with the nearest HD, by keeping track of \(ML \) voltages in all rows. However, this approach makes the sense amplifier complicated due to the additional circuity such as counters. In addition, it needs to wait for a long time to determine the row lastly discharged.

To address these design issues, the CAM cells in our proposed NDCAM work inversely compared to the typical HD. The table shown in Figure [8] presents the functionality of NDCAM cells storing inverse resistance values in the match and mismatch cases. In contrast to the conventional cells, NDCAM cell discharges the \(ML \) in case of matching, while a mismatch \(ML \) stays charged. Therefore, a row which has more matched bits creates a faster discharging current than other rows. The inverse mode simplifies the sense amplifier design to detect the nearest HD row, since we only need to find the row which discharges the \(ML \) fastest. On the top of the inverse scheme, we modify the CAM design to support the precise search operation which identifies the row with the smallest absolute distance. To this end, each CAM for different bit indices is designed using different access transistor sizes. Based on the binary weight of an unsigned integer value, each cell in a \(i^{th} \) position has access transistors which are \(2 \times \) larger than the cell in the \(i-1^{th} \) adjacent bit. This results in \(2 \times \) higher \(ML \) discharging current in each match cell than its adjacent least significant bit (LSB).

In fact, the number of bits of each block and the size of transistors and capacitors affect the timing characteristic. Thus, we identified viable configurations so that they can guarantee the correct functionality even for the worst case. In our HSPICE evaluation of 5000 Monte Carlo simulations considering 10% of process variation, the discharging speed is sufficiently distinguishable when an ML has 8 subsequent bits. Thus, we divide 32 bits into 4 pipeline stages, which find the closest row by enabling each stage sequentially from most
significant bits (MSBs) to LSBs. A CAM block only includes 8 bits, and thus the access transistors can be a reasonable size even for the MSB of a stage. To support floating point data, we put the exponent and fraction parts in different stages.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed RAPIDNN framework has been implemented with the two co-designed modules, DNN composer for software and accelerator for hardware. We designed the DNN composer, which re trains DNN models for the accelerator configuration, in C++ while exploiting two backends, Scikit-learn library [57] for clustering and Tensorflow [58], [59] for the model training and verification. For the accelerator design, we exploit HSPICE design tool for circuit-level simulations and calculate energy consumption and performance of all the RAPIDNN memory blocks. The energy consumption and performance is also cross-validated using NVSIM [60]. The RAPIDNN controller has been designed using System Verilog and synthesised using Synopsys Design compiler in 45nm TSMC technology. One major advantage of RAPIDNN is that it can work with any bipolar resistive technology which are the most commonly used in existing NVMs. Here, we adopt memristor device with a large OFF/ON resistance [61] for the memory devices. The robustness of all proposed circuits has been verified by considering 10% process variations on the size and threshold voltage of transistors using 5000 Monte Carlo simulations. We compare the proposed RAPIDNN accelerator with GPU-based DNN implementations, running on AMD Radeon R390 GPU. All DNN applications are realized using OpenCL, an industry-standard programming model for heterogeneous computing, and the GPU power is measured using AMD CodeXL profiler.

B. Benchmarks and DNN Models

We evaluate the efficiency of the proposed RAPIDNN over six popular neural network applications shown in Table I. The table also presents the DNN topologies and baseline error rates for the original models before reinterpretation. As for well-known applications such as CIFAR, we have used the architecture suggested by the Keras library. The pretrained baseline for Imagenet, which is a VGG-16 architecture, is taken from the Keras library as well. For other applications, we chose the network architecture that achieves fairly high baseline accuracy (e.g. standard 98.4% for MNIST without convolutions). The error rate is defined by the ratio of the number of misclassified data to the total number of a testing dataset. Each DNN model is trained using stochastic gradient descent with momentum [63]. In order to avoid overfitting, Dropout [64] is applied to fully-connected (FC) layers with a drop rate of 0.5. In all the DNN topologies, the activation functions are set to “Rectified Linear Unit” (ReLU) for hidden layers, and a “Softmax” function is applied to the output layer.

Table I: DNN models and baseline error rates (Input - IN. Fully connected - FC, Convolution- CV, and Pooling layers - PL.)

Dataset	Network Topology	Error
MNIST	IN : 64, FC : 512, FC : 512, FC : 10	1.7%
ISOLET	IN : 611, FC : 512, FC : 512, FC : 26	2.0%
HAR	IN : 561, FC : 512, FC : 512, FC : 19	1.7%
CIFAR-10	IN : 32×32 × 3, CV : 32×3 × 3, PL : 2×2	14.4%
CIFAR-100	CV : 64×3 × 3, CV : 64×3 × 3, FC : 512, FC : 10 (100)	22.7%
ImageNet	VGG-16 [62]	28.5%

Handwriting classification (MNIST) [65]: MNIST includes images of handwritten digits. The objective is to classify an input image to one of ten digits, 0 . . . 9.

Voice Recognition (ISOLET) [66]: ISOLET consists of speech signals collected from 150 speakers. The goal is to classify the vocal signal to one of 26 English letters.

Activity Recognition (HAR) [67]: The dataset includes signals collected from motion sensors for 8 subjects performing 19 different activities. The objective is to recognize the class of human activities.

Object Recognition (CIFAR) [68]: CIFAR-10 and CIFAR-100 are two datasets each of which includes 50000 training and 10000 testing images belonging to 10 and 100 classes, respectively.

ILSVRC2012 Image Classification (ImageNet) [69]: This dataset contains about 1200000 training samples and 50000 validation samples. The objective is to classify each image to one of 1000 categories.

C. Accuracy of Reinterpreted DNN Models

As we discussed previously in Section IV-B, the accuracy of the model increases for higher number of retraining epochs. Although the runtime overhead of model reinterpretation amortizes across all future executions of RAPIDNN, one might question the relative cost of reinterpretation compared to the initial training phase. As such, we deliberately limit the number of retraining epochs to 1 for Imagenet and 5 for the other datasets to ensure that the reinterpretation overhead is negligible compared to the actual training.

As for the hardware accelerator, the accuracy of the reinterpreted model is affected by three major configurable factors: (i) the number of quantized values for an activation function (q), (ii) the number of clustered weights (w), and (iii) the number of clustered inputs (u). They also decide memory sizes and consequent power/performance efficiency of the accelerator. Since we use the same lookup table for the activation functions over all RNNs, we first show accuracy changes for different q to select a proper configuration. To evaluate the accuracy of our reinterpreted models, we exploit the Δε accuracy loss metric defined in Section IV-B i.e., how much the error is changed over the baseline error rate. Our evaluation shows that for all benchmarks, using lookup table with 64 rows to modify activation function (Sigmoid) results in the same accuracy level to the baseline models which exactly compute the activation function results. Note that for ReLU function, it is simpler and more efficient to design it using a single CMOS comparator.

Figure I shows the impact of w and u (i.e., the number of the representative weights and inputs obtained from the clustering respectively) on the inference accuracy of the six benchmarks. We changed the numbers by selecting a tree level for each codebook. The results show that exploiting more clusters provides better accuracy in general. When clustering with 16 and 64 for the weights and inputs, the reinterpreted models achieve the same accuracy level, i.e., Δε ≈ 0%, for most of applications. We observe that different benchmarks require different cluster numbers to provide acceptable quality. For example, the DNN model for MNIST is performed with Δε = 0.
when \(w = 64 \) and \(u = 16 \). In contrast, the CIFAR-100 and ImageNet, which are known as a more complex classification task, requires 64 clustered weights and 64 clustered inputs to provide the similar quality to the baseline (less than 0.3% quality loss for ImageNet). Note that the \(w \) and \(u \) determine the size of i) the crossbar array storing pre-computed multiplication results and ii) the encoding AM block for each RNA. In the following subsection, we discuss how we can optimize the efficiency of the proposed design based on this finding.

D. Accuracy-Efficiency Trade-off

Figure 10 shows energy improvement and performance speedup of the six applications running on the proposed RAPIDNN accelerator, compared to GPU-based DNN implementations running on AMD Radeon R390 GPU. We consider the efficiency for 9 combinations of different cluster sizes, where either input or weight are encoded (clustered) with 4, 16 and 64 values. The results show that the RAPIDNN accelerator improves the energy and performance efficiency significantly compared to the GPU-based implementation. This implies that the proposed design which significantly reduces the data movement overhead based on in-memory processing is an effective solution to perform the DNN task. The energy and performance efficiency is mainly related to two factors: i) the size of the multiplication crossbar memory affected by both the \(w \) and \(u \), and ii) the size of the encoding AM block affected by \(u \). Since \(u \) affects the two different memory blocks, the number of the encoded inputs has higher impact on the energy consumption than the number of the encoded weights. In addition, the number of the encoded weights has negligible impacts on performance as we can extract a multiplication result by directly referring a row of the crossbar memory. We report the speedup for different \(u \) values in Figure 10. The efficiency improvement depends on the combination, that is, using smaller encoded input and weight sets results in more energy-efficient and faster computation. For example, we achieve 253.2× energy efficiency improvement and 422.5× speedup for \(w = 4 \) and \(u = 4 \), whereas 161.9× and 386.25× for energy and performance when \(w = 64 \) and \(u = 64 \).

The memory sizes also affect the model accuracy as well as the accelerator efficiency. To evaluate the relationship, we chose four accuracy loss values, i.e., \(\Delta e \), from minimum to 4%, and selected a combination whose energy-delay product (EDP) is minimal for each accuracy loss over all applications. Figure 11 summarizes the EDP normalized to the case with minimum \(\Delta e \) along with its memory usage for different accuracy levels. The results show that by allowing small accuracy loss, we could achieve better EDP efficiency. For example, for the \(\Delta e = 2\% \) and 4% cases, the RAPIDNN acceleration can save EDP by 11% and 15% respectively, as compared to minimum \(\Delta e \) case. This also allows to use less memory of the accelerator, e.g., 77% and 87% for \(\Delta e = 2\% \) and 4% cases.

Note that our reinterpreted model effectively enables PIM-based computing with a relatively small amount of memory usage while completely removing the need for ADC and DAC on the PIM-based DNN acceleration. The largest memory usage is observed for ImageNet and CIFAR-100, by 837MB and 318MB with minimal lose of the inference quality of 0.3% and 0.1% respectively. In addition, since each application requires different memory sizes for the best configuration, a system designer may configure the accelerator depending on the running application by choosing the level of the codebook which decides the number of encoded weights and inputs.

1) Energy/Performance Breakdown: To further analyze how the proposed accelerator consumes energy and performance, we classified the energy consumption and execution time for the three major memory blocks, i.e., weight accumulation, activation function, encoding/ pooling, and other hardware blocks, when \(w = u = 64 \). According to the model topology, we defined two groups for the six applications, (i) Type 1, whose models consist of fully connected layers (MNIST, ISOLET, and HAR), and (ii) Type 2, whose models consist of fully connected, pooling, and convolution layers (CIFAR-10, CIFAR-100 and ImageNet). Figure 12 shows the breakdown for the two application groups. The results show that the memory block for the weighted accumulation consumes a dominant portion of the energy and execution time for the two types, 77.1% and 81.4%, respectively, as the multiplication and addition are the most frequent operations in the neural networks. In contrast, the two memory blocks for the activation function and encoding takes less portion since the AM blocks that support nearest distance searches can efficiently identify the desired data. The pooling neuron are used only in Type 2 models to process the outputs of convolution layers. This block consumes 3.2% of the energy and 1.9% of the execution time. The other hardware blocks, including a broadcast buffer and a memory controller, MUXs, and address decoders, take about 11.2% and 14.8% for the energy and execution time, respectively, while the majority is consumed by the broadcast buffer (69% and 75% within the sub portion).

2) RAPIDNN Area Analysis: RAPIDNN provides significant improvement in area efficiency as compared to prior accelerators because: (i) RAPIDNN does not need to store all weights but just the multiplication results of clustered

![Fig. 9. Accuracy loss of the model reinterpretation for different sets of input and weight sizes.](image-url)
inputs/weights in a small memory. (ii) RAPIDNN works in a digital domain using binary representation and does not require ADC/DAC blocks which take the majority of the area in other in-memory accelerators such as ISAAC. Our evaluations show that RAPIDNN with $w = 16$ and $u = 32$ consumes 34% less area as compared to ISAAC. We have also analyzed how different blocks utilize the area of the RAPIDNN accelerator. Figure 13 shows that the RNA and memory blocks take 56.7% and 38.2% of the total area, respectively. The rest of 5.1% area corresponds to the buffer and controller block. The area of an RNA block is divided into four parts, (i) a crossbar memory for storing multiplication results, (ii) an AM block for activation function, (iii) another AM block for encoding, and (iv) other circuits, e.g., MUX. This analysis shows that, since the area overhead to implement the lookup table functionality in NDCAM is negligible, thus the two AM blocks take small portion, i.e., 10.8%, over the entire area of the RNA.

3) RAPIDNN Scalability:: The evaluation results of this paper (i.e. area, energy and runtime) are reported for fully-parallel execution in each layer. In the fully-connected layers, for instance, each output neuron has its own hardware RNA block. This approach increases the throughput at the cost of higher power, energy, and area. In a resource-constrained setting, however, such extreme parallelism might not be feasible due to physical hardware limitations. We argue that RAPIDNN can address this issue by sharing a single RNA block across multiple output neurons. Particularly, all output neurons of a fully connected layer have lookup tables with the exact same entries; therefore, a single RNA block can be reused to compute the output of all neurons of the same layer. In convolution layers, all neurons of a single output channel have the same lookup table. As a result, RAPIDNN offers a tradeoff between runtime and hardware implementation costs such as power, area, and energy consumption.

E. Comparison with Existing Techniques

The idea of weight sharing was originally proposed by [70], [71], where the retraining phase directly trains the shared weights by gradient averaging. Our proposal is different in that it does not use gradient averaging during the retraining, which allows us to maintain accuracy with fewer iterations (e.g. 1 epoch for ImageNet). In addition, previous works do not provide dynamic reconfigurable codebooks, for which we propose the hierarchical tree structure in Section IV-A. Finally, existing compression methods only encode the weight...
parameters which are stationary during the training. Our proposal also addresses the dynamic encoding of activation functions during execution. Note that, without encoding the activation functions, the idea of computing with lookup tables cannot be implemented. Another major advantage of RAPIDNN over prior PIM-based accelerators is its easy integration using reliable single-level memristor devices, e.g., Intel 3D Xpoint. RAPIDNN exploits crossbar memory capable of in-memory addition and CAM blocks, which have been already fabricated by several works from the industry/academia [39], [72].

Here, we compare the energy and performance efficiency of RAPIDNN with the state-of-the-art DNN accelerators: DaDianNao [15], ISAAC [23], and PipeLayer [27]. For these accelerators, we select the best configuration reported in the papers [15], [23], [27]. DaDianNao works at 600MHz, with 36MB eDRAM size (4 per tile), 16 neural functional units, and 128-bit global bus. ISAAC design works at 1.2GHz and uses 8-bits ADC, 1-bit DAC, 128×128 array size where each memristor cell stores 2 bits. PipeLayer works with the same configuration as ISAAC, but uses spike-based approach for the analog matrix multiplication (λ = 4). Here, we consider RAPIDNN in two configurations. The RAPIDNN with 73K RNA units is sufficient to model all the six tested benchmarks. RAPIDNN with 73K RNA blocks and 10.3mm² chip area while RAPIDNN with 512K RNA blocks provides the similar chip area as ISAAC and PipeLayer accelerators (82.5mm²). For each application, we set the lookup table size to ensure RAPIDNN works with near-zero accuracy loss (maximum Δe = 0.3% for ImageNet).

Figure 14 shows the speedup and energy efficiency improvement of different accelerators normalized to the GPU-based implementation. Our evaluation shows that at the similar level of accuracy, the proposed RAPIDNN-73K can achieve 24.3×, 5.6× and 1.5× speedup and 40.3×, 13.4× and 49.6× energy efficiency improvement as compared to DaDianNao, ISAAC, and PipeLayer accelerators respectively, by hiding the data movement completely and significantly decreasing the NN computation cost. RAPIDNN-512K can further improve the computation speedup by increasing the number of RNA blocks. Our evaluation shows that RAPIDNN-512K provides 48.1×, 10.9× speedup and 68.4×, 49.6× energy efficiency improvement as compared to ISAAC and PipeLayer while providing the similar chip area and classification accuracy.

In terms of computation efficiency, RAPIDNN can provide 1,904.6GOPS/mm² which is higher than ISAAC (479.0GOPS/mm²) and PipeLayer (1,485.1GOPS/mm²). The RAPIDNN efficiency comes from its higher density which enables more number of computations happen in the same memory area. For example, ISAAC uses large ADC and DAC blocks which take a large portion of memory area. In addition, PipeLayer still requires to generate spike which results in lower computation efficiency. RAPIDNN also can provide 839.1GOPS/W power efficiency which is higher than both ISAAC (380.7 GOPS/W) and PipeLayer (142.9 GOPS/W). RAPIDNN removes the necessity of the costly internal data movement between the RAPIDNN blocks by using the same memory block for both storage and computing.

VII. CONCLUSION

In this paper, we propose RAPIDNN, a DNN acceleration framework for fully digital in-memory computation. RAPIDNN framework approximately models all the fundamental DNN operations using crossbar memory and associative memory capable of searching nearest distance values. We show that the reinterpreted model retains sufficient accuracy of inference quality, and enables the digital-based PIM computations. Our evaluation shows that RAPIDNN achieves 68.4×, 49.5× energy efficiency improvement and 48.1×, 10.9× speedup as compared to ISAAC and PipeLayer, the state-of-the-art DNN accelerators, while ensuring less than 0.3% of quality loss.

ACKNOWLEDGMENTS

This work was partially supported by CRISP, one of six centers in JUMP, an SRC program sponsored by DARPA, and also NSF grants #1730158 and #1527034.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.
[2] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level image representations using convolutional neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1717–1724, 2014.
[3] Y. LeCun, K. Kavukcuoglu, C. Farabet, et al., “Convolutional networks and applications in vision,” in ISCAS, pp. 253–256, 2010.
[4] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.
[5] C. Clark and A. Storkey, “Teaching deep convolutional neural networks to play go,” arXiv preprint arXiv:1412.3409, 2014.
[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.
[7] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning with limited numerical precision,” in ICML, pp. 1737–1746, 2015.
[8] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models to fpgas,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pp. 1–12, IEEE, 2016.
[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing fpga-based accelerator design for deep convolutional neural networks,” in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 161–170, ACM, 2015.
[10] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and dataflow in fpga acceleration of deep convolutional neural networks,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 45–54, ACM, 2017.
[11] M. Nazemi, G. Pasandi, and M. Pedram, “Nullanet: Training deep neural networks for reduced-memory-access inference,” arXiv preprint arXiv:1609.07061, 2016.

[12] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, and Y. Chen, “Dianianno: A neural network supercomputer,” IEEE Transactions on Computers, vol. 66, no. 1, pp. 73–88, 2017.

[13] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hennessy, L. Doboli, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate deep neural network accelerators,” in Proceedings of the 43rd International Symposium on Computer Architecture, pp. 267–278, IEEE Press, 2016.

[14] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diana: A small-footprint high-throughput accelerator for ubiquitous machine-learning,” ACM Sigplan Notices, vol. 49, no. 4, pp. 269–284, 2014.

[15] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, et al., “Dianianno: A machine-learning supercomputer,” in Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 609–622, IEEE Computer Society, 2014.

[16] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W. Fletcher, “Ucnn: Exploiting computational reuse in deep neural networks via weight repetition,” arXiv preprint arXiv:1804.05608, 2018.

[17] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The terasys massively parallel pin array,” Computer, vol. 28, no. 4, pp. 23–31, 1995.

[18] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: A scalable processing-in-memory accelerator for parallel graph processing,” in Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pp. 336–348, IEEE, 2015.

[19] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-in-memory accelerator for parallel graph processing,” in Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Symposium on, pp. 105–117, IEEE, 2015.

[20] S.-L. C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-in-memory architecture for bulk bitwise operations in emerging non-volatile memories,” in Design Automation Conference (DAC), 2016 53nd ACM/EDAC/IEEE, pp. 1–6, IEEE, 2016.

[21] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and O. Mutlu, “Zazypim: An efficient coherence mechanism for processing-in-memory,” in Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 278–287, IEEE Press, 2016.

[22] S. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel processing-in-memory architecture for neural network computation in ram-based main memory,” in Proceedings of the 44th International Symposium on Computer Architecture, pp. 27–39, IEEE Press, 2016.

[23] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars,” in Proceedings of the 43rd International Symposium on Computer Architecture, pp. 14–26, IEEE Press, 2016.

[24] T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, “Stdp and stdp variations with memristors for spiking neuromorphic learning systems,” Frontiers in neuroscience, vol. 7, p. 2, 2013.

[25] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyriess: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2017.

[26] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, “Time: A training-in-memory architecture for memristor-based deep neural networks,” in Proceedings of the 54th Annual Design Automation Conference 2017, p. 6, ACM, 2017.

[27] Y. Cai, Y. Lin, L. Xia, X. Chen, S. Han, Y. Wang, and H. Yang, “Long live time: improving lifetime for training-in-memory engines by structured gradient sparsification,” in Proceedings of the 55th Annual Design Automation Conference, p. 107, ACM, 2018.

[28] L. K. Hansen and P. Salamon, “Neural network ensembles,” IEEE transactions on pattern analysis and machine intelligence, vol. 12, no. 10, pp. 993–1001, 1990.
[53] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814, 2010.

[54] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Aistats, vol. 9, pp. 249–256, 2010.

[55] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information theory, vol. 28, no. 2, pp. 129–137, 1982.

[56] Q. Guo, X. Guo, Y. Bai, R. Patel, E. Ipek, and E. G. Friedman, “Resistive ternary content addressable memory systems for data-intensive computing,” IEEE Micro, vol. 35, no. 5, pp. 62–71, 2015.

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., “Scikit-learn: Machine learning in python,” Journal of Machine Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[58] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015.

[59] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[60] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “Nvsim: A circuit-level performance, energy, and area model for emerging non-volatile memory,” in Emerging Memory Technologies, pp. 15–50, Springer, 2014.

[61] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam: A general model for voltage-controlled memristors,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[63] I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton, “On the importance of initialization and momentum in deep learning,” ICML (3), vol. 28, pp. 1139–1147, 2013.

[64] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[65] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,” 1998.

[66] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.

[67] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+and+Sports+Activities.

[68] “The cifar dataset.” https://www.cs.toronto.edu/~kriz/cifar.html

[69] “Uci machine learning repository.” http://image-net.org/challenges/LSVRC/2012.

[70] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[71] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compressing neural networks with the hashing trick,” in International Conference on Machine Learning, pp. 2285–2294, 2015.

[72] B. C. Jang, Y. Nam, B. J. Koo, J. Choi, S. G. Im, S.-H. K. Park, and S.-Y. Choi, “Memristive logic-in-memory integrated circuits for energy-efficient flexible electronics,” Advanced Functional Materials, vol. 28, no. 2, 2018.