Supplemental Information

Sugar-Induced Obesity and Insulin Resistance Are Uncoupled from Shortened Survival in *Drosophila*

Esther van Dam, Lucie A.G. van Leeuwen, Eliano dos Santos, Joel James, Lena Best, Claudia Lennicke, Alec J. Vincent, Georgios Marinos, Andrea Foley, Marcela Buricova, Joao B. Mokochinski, Holger B. Kramer, Wolfgang Lieb, Matthias Laudes, Andre Franke, Christoph Kaleta, and Helena M. Cochemé
Figure S1. A High-Sucrose Diet that Induces Thirst, Dehydration and Shortens Lifespan in Adult Drosophila Is Rescued by Water Supplementation (Related to Figure 1)

(A and B) Drinking assays to quantify the thirst of WT (w^Dah^) flies in response to a high-sugar diet. Females were pre-treated for 7 days on 5%S or 20%S ± H_2O. Data (n = 10 replicates per condition, each with 15 flies) are presented as box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; ***p < 0.001). (A) Blue dye drinking assay, with flies provided agar colored by blue dye and incubated for 1.5 h. The amount of dye ingested was then analyzed spectrophotometrically from fly homogenates to estimate the volume of water consumed from the agar tips. (B) Capillary drinking assay of flies incubated for 24 h. The drinking volume was corrected for an evaporation control, consisting of a capillary inserted into an empty vial (n = 8).

(C) Summary of median survival for n = 4 independent lifespan experiments of WT females on 5%S and 20%S ± H_2O. Data were analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; ***p < 0.001).

(D and E) Feeding assays of WT flies pre-treated for 7 days on 5%S or 20%S ± H_2O. (D) Behavioral proboscis extension assay (n = 10 vials per condition, each with 5 females), with the proportion of flies feeding in each vial observed every ~2 min over a 90 min time course. Data are the average of n = 46 time points over the full experiment, presented as box-and-whisker plots (min–max error bars) and analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; ***p < 0.001). (E) Quantification of fly feeding based on the excretion of food containing a blue tracer dye. WT females (n = 10 vials per condition, each with 15 flies) and males (n = 10 vials per condition, each with 20 flies) were pre-treated for 7 days on 5%S or 20%S ± H_2O, then exposed to the same food supplemented with 1% blue dye ± H_2O for 24 h at 25°C. Excreta from the vials were then solubilised, and the amount of blue dye was assayed spectrophotometrically. Data are presented as box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p >0.05; ***p < 0.001).

(F) Lifespan of w^Dah^ females, negative for the endosymbiont Wolbachia, on 5%S and 20%S ± H_2O (n ~ 150 flies per condition).

(G) Lifespan of Dahomey females on 5%S and 20%S ± H_2O (n ~ 90–105 flies per condition).

(H) Lifespan of w^111^ males on 5%S and 20%S ± H_2O (n ~ 200 flies per condition).

(I) Lifespan of sterile ovo^DT^ mutant females on 5%S and 20%S ± H_2O (n ~ 200 flies per condition).

(J) Fecundity (eggs laid/female/24 h) of WT females pre-treated for 7 days on 5%S or 20%S ± H_2O. Supplementation of the agar tips with a cocktail of essential amino acids (EAA) did not increase fecundity of females pre-treated on a 20%S diet for 7 days (n = 10 vials per condition, each with 15 flies). Data are presented as box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; ***p < 0.001).

(K) Lifespan of WT females ± H_2O on a control diet (5%S) supplemented with 15% d-glucose (n ~ 150 flies per condition).

(L) Summary of median survival ± H_2O for n = 2 independent lifespan experiments on excess 15% d-glucose or d-fructose, compared to the 20%S high-sucrose diet. Statistical analysis of survival curves (F,G,H,I,K) was performed by log-rank test (n/s, p > 0.05; ***p < 0.001). See Table S3 for exact n numbers and p values.
Figure S2. Metabolic Effects of a High-Sucrose Diet and Water Supplementation in WT Adults (Related to Figure 2)

(A) Glycation damage in whole body WT (wDah) females fed for 28 days on 5%S or 20%S ± H$_2$O. Full anti-AGE western blot and stain-free gel image of total protein relating to the quantification in Figure 2C. (B and C) Protein carbonylation levels in whole body WT females fed for 28 days on 5%S or 20%S ± H$_2$O, assessed by oxyblot (B), and quantification by densitometry (C). Data are means ± SEM of n = 3 experiments (with n = 5 flies per sample), analyzed by one-way ANOVA (n/s, p > 0.05).

(D) Insulin resistance of WT females fed for 28 days on 5%S or 20%S ± H$_2$O, assessed by AKT phosphorylation. Full western blots relating to Figures 2E,F. Dissected fat bodies (n = 5 per sample) were incubated ± insulin for 15 min, then homogenized in Laemmli buffer. Samples were run in parallel on two SDS-PAGE gels. The blots were cut horizontally, and the upper portion was probed against phospho-AKT and total AKT respectively (~65 kDa), while both lower portions were probed against actin as a loading control (~42 kDa).
Figure S3. Δfoxo Mutants are Hypersensitive to Dietary Sugar (Related to Figure 3)
(A) Lifespan of w^Dah and Δfoxo females on 5%S and 20%S ± H_2O from a simultaneous experiment (n ~ 135–150 flies per condition). The grey dotted lines indicate median survival.
(B and C) Drinking assays of Δfoxo females pre-treated for 7 days on 2.5%S, 5%S or 20%S ± H_2O: (B) FlyPAD (n = 14–19 individual flies per condition), and (C) blue-dyed agar tips (n = 10 vials per condition, each with n = 15 flies). Box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; **p < 0.01; ***p < 0.001).
(D) Lifespan of Δfoxo females on 0%S and 1%S ± H_2O (n ~ 150 flies per condition). Statistical analysis was performed by log-rank test (n/s, p > 0.05). See Table S3 for exact n numbers and p values.
(E) Summary of median survival for 2 independent Δfoxo lifespan experiments on 0%S, 1%S, 2.5%S and 5%S ± H_2O. Data were analyzed by one-way ANOVA (n/s, p > 0.05; **p < 0.01).
(F) Quantification of fly feeding based on behavioral proboscis extension. Δfoxo females (n = 10 vials per condition, each with 5 flies) were pre-treated for 7 days on 1%S, 2.5%S or 5%S ± H_2O. The proportion of flies feeding in each vial was observed every ~3 min over a 90 min time course. Data are the average of n = 31 time points over the full experiment, presented as box-and-whisker plots (min–max error bars) and analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05).
(G) Fecundity of Δfoxo females pre-treated for 7 days on 5%S or 20%S ± H_2O (n = 10 vials per condition, each with 15 flies). Box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; ***p < 0.001).
Supplemental Figure 4

A. Median survival (d) for w^{Dah} ♀ (d7) under different conditions:
- n/s
- 5% S
- 20% S

B. Survival curve for w^{Dah} ♀ (d7) under Paraquat and Starvation conditions:
- H_2O
- 5% S
- 20% S

C. Survival curve for Starvation conditions:
- H_2O
- 5% S
- 20% S

D. Pie charts showing the distribution of different conditions:
- 5% S
- H_2O
- 20% S

*** n/s
Figure S4. Effects of a High-Sugar Diet on Stress Responses and Gut Physiology (Related to Figure 4)

(A) Summary of median survival for 3 independent stress assays on 500 mM NaCl (see Figure 4B). Data were analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; *p < 0.05; ***p < 0.001).

(B and C) Stress response of WT (w^{Dah}) females pre-treated for 7 days on 5%S or 20%S ± H2O, then exposed to: oxidative stress consisting of 20 mM paraquat in 5%S food (B, n ~ 160 per condition), and starvation stress consisting of 1.5% agar (C, n ~ 150 flies per condition).

(D) Experimental setup and typical scans for the analysis of fly excreta. Food was supplemented with 2.5% w/v blue dye, while the agar for the water supplementation was undyed. Statistical analysis of survival curves (B,C) was performed by log-rank test (n/s, p > 0.05; ***p < 0.001). See Table S3 for exact n numbers and p values.
Figure S5. A High-Sugar Diet Induces Uric Acid Deposition and Tubule Dysfunction (Related to Figure 5)

(A) Scoring of the tubule stone phenotype based on light microscopy imaging of dissected tubules, arranged from the ureter (left) to the distal tip (right). Scale bar = 500 µm. Scoring: 0 = clear (~0%), 1 = mild (< 25%), 2 = moderate (25–50%), 3 = strong (50–75%), 4 = severe (> 75%).

(B) Uric acid content of dissected tubules from WT (w^Dah) females fed for 28 days on 5%S or 20%S ± H2O. Data are means ± SEM of n = 3 replicates (each with n = 6 pairs of tubules per sample), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05; **p < 0.01; ***p < 0.001).

(C) Tubule phenotype scoring according to the scale in (A) of WT females maintained for 28 days ± H2O on excess 15% D-glucose or D-fructose, compared to the 5%S and 20%S sucrose diets (n = 100 flies per condition). Data are box-and-whisker plots (min–max error bars), analyzed by Kruskal-Wallis test with Dunn correction (n/s, p >0.05; ***p < 0.001).

(D) Tubule phenotype scoring according to the scale in (A) of ∆foxo females maintained for 21 days on 2.5%S and 5%S ± H2O. Box-and-whisker plots with min–max error bars (n = 57–70 flies per condition), analyzed by Kruskal-Wallis test with Dunn correction (n/s, p > 0.05; *p < 0.05; ***p < 0.001).

(E) Scheme of the tubule secretion assay. One arm of the tubule is bathed in a drop of saline with blue food dye, while the other is secured with a pin. Drops secreted from the ureter are measured over time.

(F) Uric acid levels in the hemolymph of flies fed for 7 days on 5%S or 20%S ± H2O (n = 12 replicates per condition, each with 12 flies per sample). Box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05).

(G) Hemolymph pH of WT females treated for 28 days on 5%S or 20%S ± H2O (n = 9–17 samples, with 12 flies per sample). Box-and-whisker plots with min–max error bars, analyzed by one-way ANOVA with Tukey correction (n/s, p > 0.05).

(H) Typical scanned plates for the analysis of excreta pH using media supplemented with bromocresol purple (see Figure 5L).
Supplemental Figure 6

(A) Survival curve showing lifespan in days for w^Dah females with (1 mM) AP, 5% S, 20% S. *** indicates a significant difference.

(B) Dissected ampulla score images with labeled scores.

(C) Additional dissected ampulla images.

(D) Area ratio comparison for different compounds: Uric acid, Allantoin, Hypoxanthine, Xanthine, Allopurinol. Symbols represent different conditions: 20% S, 5% S + purine, 5% S + purine. *** indicates statistical significance.

(E) Purine metabolite comparison: Hypoxanthine, Xanthine, AP. w^Dah females (d28) and 20% S + AP conditions are shown. Differences are indicated by ***.

(F) Survival curve for different conditions: (100 µM) AP, 5% S, 20% S. *** indicates a significant difference.

(G) Feeding excreted/flies/24 h for different conditions: 5% S, 20% S. n/s indicates not significant.

(H) Fecundity (eggs/female/24 h) comparison for different conditions: 5% S, 20% S. n/s indicates not significant. *** indicates statistical significance.

(I, J, K) Additional survival curve comparisons for different conditions: (10 µM) AP, (10 µM) AP with 30% S, H2O, H2O + purine. n/s indicates not significant.
Figure S6. Pharmacological Treatments and Dietary Interventions Targeting Purine Metabolism Impact on Lifespan (Related to Figure 6)

(A) Chronic high allopurinol (1 mM AP) shortens the lifespan of WT \(w^{Dah} \) females on both the control (5%S ± AP) and high-sugar (20%S ± AP) diets \((n \sim 135-150 \text{ flies per condition}) \).

(B) Scoring of the rectal ampulla stone phenotype based on light microscopy imaging of dissected hindguts. Scale bar = 100 µm. Scoring: 0 = clear, 1 = mild, 2 = moderate, 3 = strong, 4 = severe.

(C) Light microscopy images showing concretions in the anterior hindgut (arrowheads), apparent upon allopurinol treatment.

(D) Metabolomics analysis of dissected rectal ampulla stones from WT females fed high-sugar (20%S), allopurinol-treated (20%S + AP, 1 mM), or high-purine (5%S + purine, 10 mM) diets for 28 days. \(n = 4 \) samples per condition, each with 25 units of stones as determined by the scoring scale in (B). Peak area ratios for the metabolite relative to the internal standard (IS) are presented as box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, \(p > 0.05; ***p < 0.001 \)).

(E) Quantification of hypoxanthine, xanthine and allopurinol levels in dissected rectal ampulla stones formed on the 20%S + AP condition \((n = 4 \text{ per condition}) \). Peak area data from (D) were converted to ng/sample based on calibration curves for each metabolite, and presented as box-and-whisker plots (min–max error bars).

(F) Independent biological repeat of the lifespan on 5%S and 20%S ± 100 µM AP in Figure 6C \((n \sim 150 \text{ flies per condition}) \).

(G and H) Dietary AP (100 µM) pre-treatment of WT females for 7 days does not affect feeding assessed by the blue dye excretion method (G) or fecundity (H) on each respective diet. Data \((n = 10 \text{ replicates per condition, each with 15 flies per vial}) \) are presented as box-and-whisker plots (min–max error bars), analyzed by one-way ANOVA with Tukey correction (n/s, \(p > 0.05; ***p < 0.001 \)).

(I and J) Supplementation with 10 µM AP extends the lifespan of WT females on the 20%S (I) or 30%S (J) high-sugar diets, without affecting survival on control food 5%S ± AP \((n \sim 150 \text{ flies per condition}) \).

(K) Independent biological repeat of the lifespan on high-purine (10 mM) ± \(H_2O \) in Figure 6F \((n \sim 135–150 \text{ flies per condition}) \).

Statistical analysis of survival curves (A,F,I,J,K) was performed by log-rank test (n/s, \(p > 0.05; ***p < 0.001 \)). See Table S3 for exact \(n \) numbers and \(p \) values.
Supplemental Figure 7

(A) Guanosine, Xanthosine, Inosine, Adenosine, Fructose, Maltose, Xylose, Lactose, Galactose, Ribose, Maltotriose, Adenine, Deoxyadenosine, Deoxyguanosine, Xanthine, Xanthine, Guanosine, Uric acid, Sucrose, Deoxyguanosine, Xanthine, Hypoxanthine, Circulating fatty acids, Circulating purines, Dietary food groups, Sugars, Purines.

(B) Relative serum uric acid explained variance (%).

(C) Dietary sugars (%).

(D) Dietary metabolites, Sugars, Purines, Circulating fatty acids, Clinical parameters, Dietary food groups.

(E) Circulating fatty acids explained variance (%).

(F) Circulating purines (females) explained variance (%).

(G) Circulating purines (males) explained variance (%).

(H) Dietary glucose (%).

(I) Dietary metabolism correlations, Sugars, Purines.

(J) Regression analysis, positive, negative, Circulating purines, Xanthosine, Hypoxanthine, Guanosine, Inosine, Xanthine, Uric acid.

(K) Relative serum uric acid explained variance (%), BMI (kg/m²).
Figure S7. Human Metabolomics Analysis Links Dietary Sugar Intake with Renal Function and Circulating Purine Levels (Related to Figure 7)

(A) Scheme of the purine catabolism pathway, with metabolites measured by LC-MS from human blood serum color-coded in green. Nucleotide monophosphates (NMPs; i.e., GMP, XMP, IMP and AMP) are converted by various 5’-nucleotidases (NT5) into their respective nucleosides. The next steps are catalyzed by purine nucleoside phosphorylase (PNP), and guanine or adenine deaminase (GDA and ADA, respectively). The conversion of hypoxanthine to xanthine and finally to uric acid is catalyzed by the enzyme xanthine oxidase (XO)/xanthine dehydrogenase (XDH).

(B) Scatter plot of estimated glomerular filtration rate (eGFR) against circulating uric acid levels for the full cohort of n = 650 participants. A linear model predicting serum uric acid levels from eGFR, without any further independent terms, was overlaid as a regression line.

(C) Relative contribution of each food group to an individual’s total dietary sugar intake (summed mono- and disaccharides). Data for the full cohort of n = 650 participants are displayed as box-and-whisker plots of the interquartile range (IQR), with the line corresponding to median and whiskers to 1.5x IQR.

(D-G) PERMANOVA analysis of circulating metabolites against dietary food groups or dietary metabolites (*p < 0.1; *p < 0.05; **p < 0.01). Clinical parameters are separated for visual clarity. Explained variance of dietary food groups (D) or dietary metabolites (E), color-coded in orange for sugars and green for purines, on the concentrations of circulating fatty acids. Analysis of variance of dietary metabolites against circulating purines in only female (F) or male (G) participants.

(H) Relative contribution of each food group to an individual’s total dietary glucose intake. Fruit consumption accounted for more than 33.4% of total glucose intake in half of the cohort. Soft drinks showed a broad distribution as apparent from the dots corresponding to outliers, with some participants receiving up to 93.8% of their total glucose intake from soft drinks, while others hardly consuming any soft drinks at all (minimum = 0.33% of total glucose intake). Data for the full cohort of n = 650 participants are displayed as box-and-whisker plots of the interquartile range (IQR), with the line corresponding to median and whiskers to 1.5x IQR.

(I) Correlations between dietary metabolites imputed from food items in the food questionnaire. Spearman’s rank-order correlation coefficient (rho; range –1 to 1) plotted as a heatmap (blue = positive, red = negative correlation). Darker colours are indicative of stronger correlations. Amongst dietary sugars, the only clear pattern is a very strong positive correlation between the dietary intake of glucose and fructose (rho > 0.937).

(J) Linear model of BMI predicting serum levels of individual purines (same analysis as for eGFR, shown in Figure 7B). Logarithmic FDRs are plotted as bars and color-coded for positive (light green) or negative (dark green) regressions.

(K) Scatter plot of BMI against circulating uric acid levels for the full cohort of n = 650 participants. A linear model predicting serum uric acid levels from BMI, without any further independent terms, was overlaid as a regression line.
Table S1. *Drosophila* Diet Recipes (Related to STAR Methods)

Sucrose Diets (per L of Media)

Ingredient	Source	Low sucrose diets	Control diet	High sucrose diets				
		%S	1%S	2.5%S	5%S	20%S	30%S	40%S
Sucrose (% w/v)	Tate & Lyle, Granulated sugar	0 g	10 g	25 g	50 g	200 g	300 g	400 g
Yeast (10% w/v)	MP Biomedicals, #903312	100 g						
Agar (1.5% w/v)	Sigma, A7002	15 g						
Nipagin	Sigma, H5501	30 mL of 10% w/v nipagin in 95% EtOH						
Propionic acid (0.3% v/v)	Sigma, P1386	3 mL						
H₂O		up to 1 L						

Other High Sugar Diets (per L of Media)

Ingredient	Source	5%S	5%S +15%G	5%S +15%F
Sucrose (5% w/v)	Tate & Lyle, Granulated sugar	50 g		
D-Glucose (15% w/v)	Sigma G8270	-	150 g	-
D-Fructose (15% w/v)	Sigma F0127	-		150 g
Yeast (10% w/v)	MP Biomedicals, #903312	100 g		
Agar (1.5% w/v)	Sigma, A7002	15 g		
Nipagin	Sigma, H5501	30 mL of 10% w/v nipagin in 95% EtOH		
Propionic acid (0.3% v/v)	Sigma, P1386	3 mL		
H₂O		up to 1 L		

Allopurinol (AP) Treatment (per L of Media)

Ingredient	Source	5%S ±AP	20%S ±AP				
		+10 µM	+100 µM	+1 mM	+10 µM	+100 µM	+1 mM
Sucrose (% w/v)							
Yeast (10% w/v)		50 g			200 g		
Agar (1.5% w/v)							
Nipagin							
Propionic acid (0.3% v/v)							
Allopurinol		1.361 mg	13.61 mg	136.11 mg	1.361 mg	13.61 mg	136.11 mg
H₂O		up to 1 L					

High Purine Diet (per L of Media)

Ingredient	Source	5%S	5%S +10 mM purine
			5% S +10 mM purine
Sucrose (% w/v)	Tate & Lyle, Granulated sugar	50 g	
Yeast (10% w/v)	MP Biomedicals, #903312	100 g	
Agar (1.5% w/v)	Sigma, A7002	15 g	
Nipagin	Sigma, H5501	30 mL of 10% w/v nipagin in 95% EtOH	
Propionic acid (0.3% v/v)	Sigma, P1386	3 mL	
Adenine (5 mM)	Sigma, A8626	-	675.65 mg
Guanine (5 mM)	Sigma, G11950	-	755.65 mg
H₂O			up to 1 L
Table S2. Drosophila Survival Data (Related to Figures 1, 3, 4, 6)

Experiment	Genotype	Condition	Files per vial	# vials	Total flies (set-up)	Deaths	Censors	Total flies (actual)	Median (d)	P-value (Log-Rank test)
Fig. 1E	*w* females	Lifespan	5% S – H₂O	15 10	150 129 9	138 66.3	0.9347	4.4E-37 0.0585		
			5% S + H₂O	15 10	150 110 32	142 66.4	3.8E-34 0.0689			
			20% S – H₂O	15 10	150 141 7	148 51.0	5.5E-31			
			20% S + H₂O	15 10	150 137 5	142 66.0				
Fig. 1F	*w* females	Lifespan	5% S – H₂O	15 11	165 157 9	166 75.2	0.6184	3.1E-59 0.1403		
			5% S + H₂O	15 11	165 162 4	166 59.5	4.6E-58 0.0345			
			20% S – H₂O	15 11	165 161 3	164 76.9	1.9E-63			
Fig. 1G	*w* females	Lifespan	5% S – H₂O	15 10	150 145 2	147 68.1	0.2099	1.3E-51 0.7720		
			5% S + H₂O	15 10	150 142 8	150 71.3	5.8E-52 0.2466			
			20% S – H₂O	15 10	150 144 2	146 49.4	6.3E-35			
			20% S + H₂O	15 10	150 132 14	146 69.2				
Fig. 1H	*w* females	Lifespan	5% S – H₂O	15 9	135 130 6	136 60.7	0.6042	2.5E-37 0.0130 1.0E-49 0.0004		
			5% S + H₂O	15 9	135 123 11	134 63.7	5.1E-38 0.0014 1.6E-51 2.1E-05			
			30% S – H₂O	15 8	120 113 3	116 42.6	2.3E-38 2.5E-11 1.7E-28			
			30% S + H₂O	15 8	120 118 0	118 60.7	9.1E-55 0.1975			
			40% S – H₂O	15 8	120 114 2	116 26.1	7.6E-47			
			40% S + H₂O	15 8	120 115 3	118 60.2				
Fig. 3A	*foxo* females	Lifespan	5% S – H₂O	15 13	195 176 15	191 39.5	8.0E-07 2.8E-21 0.0329			
			5% S + H₂O	15 13	195 173 20	193 45.7	2.4E-46 5.9E-13			
			20% S – H₂O	15 13	195 160 14	194 26.7	5.9E-17			
			20% S + H₂O	15 13	195 185 6	191 38.0				
Fig. 3D	*foxo* females	Lifespan	2.5% S – H₂O	15 10	150 146 4	150 49.4	0.4767			
			2.5% S + H₂O	15 10	150 136 9	145 46.9				
Fig. 4A	*foxo* females	Desiccation stress	5% S – H₂O	15 7	105 95 0	105 0.446	0.0784	1.4E-09 0.1027		
			5% S + H₂O	15 7	105 103 0	103 0.418	8.5E-07 0.7036			
			20% S – H₂O	15 7	105 95 0	95 0.350	3.3E-05			
			20% S + H₂O	15 7	105 94 0	94 0.417				
Fig. 4B	*foxo* females	Salt stress (500 mM NaCl)	5% S – H₂O	20 6	120 115 0	115 0.51	1.0993	1.8E-27 6.5E-13		
			5% S + H₂O	20 6	120 113 0	113 0.50	3.5E-31 1.9E-12			
			20% S – H₂O	20 5	100 96 0	96 1.9	3.7E-08			
			20% S + H₂O	20 7	105 94 0	94 2.7				
Fig. 6C	*foxo* females	Lifespan	5% S – AP	15 10	150 140 6	146 64.7	1.1E-04 2.7E-40 5.3E-24			
			5% S + AP	15 10	150 147 0	147 61.0	7.0E-30 5.3E-13			
			20% S – AP	15 10	150 149 0	149 47.5	5.7E-06			
			20% S + AP	15 10	150 145 3	148 51.4				
Fig. 6F	*foxo* females	Lifespan	5% S – H₂O	15 8	120 118 1	119 72.8	0.1633	4.9E-39 0.6651		
			5% S + H₂O	15 8	120 115 3	118 75.0	8.9E-18 0.4106			
			20% S – H₂O	15 8	120 120 0	120 64.3	5.8E-14			
			20% S + H₂O	15 8	120 114 4	118 73.9				
Table S3. *Drosophila* Survival Data (Related to Figures 1, 3, 4, 6 and S1, S3, S4, S6)

Experiment	Genotype	Condition	Files per vial	# vials	Total flies (set-up)	Deaths	Censors	Total flies (actual)	Median (d)	P-value (Log-Rank test)	
Fig. S1F	100%	Wobachal females	5% S + H₂O	15 10	150 144	4	148	62.8	a	0.3706 8.0E-06 0.1777	
			5% S + H₂O	15 10	150 127	14	141	63.3	b	1.1E-40 0.0627 4.4E-43	
			20% S + H₂O	15 10	150 145	2	147	47.0	c	7.4E-16	
			20% S + H₂O	15 10	150 129	8	137	65.2	d		
Fig. S1G	100%	Dahomey females	5% S – H₂O	15 7	105 92	0	92	72.8	a	0.7744 2.1E-14 0.18286	
			5% S + H₂O	15 10	150 94	3	97	73.0	b	1.9E-14 0.71191	
			20% S + H₂O	15 6	98 84	1	85	56.3	c	7.4E-16	
			20% S + H₂O	15 7	105 98	9	98	71.2	d		
Fig. S1H	100%	Dahomey females	5% S – H₂O	20 10	200 185	13	198	78.3	a	0.0133 5.8E-48 0.1633	
			5% S + H₂O	20 10	200 179	12	191	79.3	b	1.1E-40 0.1998	
			20% S + H₂O	20 10	200 198	2	200	66.7	c	2.9E-48	
			20% S + H₂O	20 10	200 187	9	196	70.0	d		
Fig. S1I	100%	Dahomey females	5% S – H₂O	20 10	200 193	6	199	67.6	a	0.0031 2.3E-16 0.0709	
			5% S + H₂O	20 10	200 179	4	197	68.3	b	3.6E-64 0.5894	
			20% S + H₂O	20 10	200 197	1	198	52.6	c	4.7E-65	
			20% S + H₂O	20 10	200 193	2	195	70.0	d		
Fig. S1K	100%	Dahomey females	5% S – H₂O	20 10	200 193	3	139	66.5	a	0.4259 1.3E-25 0.9382	
			5% S + H₂O	20 10	200 179	12	191	79.3	b	3.6E-28 0.4137	
			20% S + H₂O	20 10	200 197	9	196	70.0	c	5.6E-23	
			20% S + H₂O	20 10	200 187	2	195	70.0	d		
Fig. S3A	100%	Wobachal females	5% S – H₂O	15 9	135 130	6	136	62.7	a	0.9042 1.1E-29 0.601	
			5% S + H₂O	15 9	135 123	11	134	63.7	b	3.8E-31 0.66-05	
			20% S + H₂O	15 9	135 153	1	154	44.5	c	0.96-24	
			20% S + H₂O	15 9	135 143	5	149	60.4	d		
Fig. S3B	100%	Micro females	5% S – H₂O	15 9	135 130	6	136	38.1	a	2.0E-08 3.2E-14 0.8524	
			5% S + H₂O	15 9	135 121	10	131	45.6	b	2.9E-01 7.8E-09	
			20% S + H₂O	15 9	135 124	13	137	35.4	c	2.1E-13	
			20% S + H₂O	15 9	135 124	13	137	35.4	d		
Fig. S3C	100%	Micro females	5% S – H₂O	15 10	150 149	0	149	40.2	a	3.0E-07 1.0E-03 8.2E-06	
			5% S + H₂O	15 10	150 147	3	150	37.9	b	1.9E-05 3.5E-08	
			1% S + H₂O	15 10	150 146	2	148	44.7	c	0.2079	
			1% S + H₂O	15 10	150 151	1	152	45.7	d		
Fig. S4B	100%	Wobachal females	Oxidative stress (20 mM paraquat)	5% S – H₂O	8 10	150 158	0	158	12.9	a	0.1702 9.0E-01 0.4543
			5% S + H₂O	20 8	160 161	0	161	12.2	b	0.0578 0.5040	
			20% S + H₂O	20 8	160 159	0	159	13.0	c	0.2292	
			20% S + H₂O	20 8	160 160	0	160	12.5	d		
Fig. S4C	100%	Wobachal females	Starvation stress (1.5% agar)	5% S – H₂O	15 10	150 146	0	146	10.2	a	0.8907 4.3E-13 3.2E-17
			5% S + H₂O	15 10	150 132	0	132	10.2	b	3.4E-11 8.5E-15	
			20% S + H₂O	15 10	150 143	0	143	11.4	c	0.1624	
			20% S + H₂O	15 10	150 145	0	145	11.7	d		
Table S3. Drosophila Survival Data (Related to Figures 1, 3, 4, 6 and S1, S3, S4, S6) - continued

Experiment	Genotype	Condition	Files per vial	# vials	Total flies (set-up)	Deaths	Censors	Total flies (actual)	Median (d)	P-value (Log-Rank test)					
Lifespan (1 mM allopurinol)	w^151 females	9%S - AP	15	10	150	146	1	147	68.4	a	4.8E-19	2.4E-28	1.5E-55		
		9%S + AP	15	10	150	145	1	146	58.2	b	9.0E-04	7.5E-41	9.7E-27		
		20%S - AP	15	10	150	143	6	149	56.5	c					
		20%S + AP	15	9	135	133	2	135	46.9	d					
Lifespan (10 and 100 µM allopurinol)	w^151 females	9%S - AP	15	10	150	143	5	148	63.6	a	0.2670	1.2E-05	1.4E-53	4.6E-33	1.2E-28
		9%S + AP (10 µM)	15	10	150	149	1	150	63.2	b	1.7E-04	3.0E-48	3.8E-29	4.5E-25	
		9%S + AP (100 µM)	15	10	150	148	1	149	61.2	c		1.5E-36	4.1E-18	3.2E-15	
		20%S - AP	15	10	150	148	0	148	46.7	d					
		20%S + AP (10 µM)	15	10	150	139	9	148	51.9	e					
		20%S + AP (100 µM)	15	10	150	144	2	146	49.2	f					
Lifespan (10 µM allopurinol)	w^151 females	9%S - AP	15	10	150	146	1	147	68.4	a	0.0228	1.9E-09	3.3E-52		
		5%S - AP	15	10	150	149	1	150	58.3	b		3.7E-65	1.0E-57		
		30%S - AP	15	10	150	148	2	150	44.7	c			5.0E-56		
		30%S + AP	15	10	150	144	3	147	48.1	d			1.9E-48		
Lifespan (10 mM purine)	w^151 females	9%S - H_2O	15	9	135	122	12	134	65.9	a	0.2718	3.3E-14	3.0E-46		
		9%S + H_2O	15	9	135	113	18	131	68.1	b		1.2E-17	1.0E-45		
		9%S - purine - H_2O	15	9	135	148	1	149	58.4	c			3.8E-21		
		9%S + purine - H_2O	15	10	150	132	17	149	69.4	d			8.0E-36		
Table S4. Compounds Analysed by HILIC UPLC-HRMS Metabolomics in the *Drosophila* Rectal Ampulla Stones (Related to STAR Methods)

Compound	Mass (m/z)	Retention Time (min)	Formula	Polarity
Allopurinol	135.03123	2.06	C₅H₄N₄O	Negative
[¹³C₅]-Hypoxanthine	140.04801	3.16	[¹³C]₅H₄N₄O	Negative
Hypoxanthine	135.03123	3.16	C₅H₄N₄O	Negative
Xanthine	151.02615	3.90	C₅H₄N₄O₂	Negative
Allantoin	157.03671	3.94	C₄H₆N₄O₃	Negative
Uric acid	167.02106	10.98	C₅H₄N₄O₃	Negative
Table S5. Clinical Information on the Human Cohort (Related to STAR Methods)

Number of Participants	Age (years)	BMI (kg/m²)	eGFR (mg/mL per 1.73 m²)	Blood Glucose (mg/dL)
Total	650 (51 - 69)	26.5 (24.0 - 29.2)	85 (77 - 96)	96 (91 - 102)
Males	367 (52 - 68)	26.8 (24.8 - 29.3)	86 (78 - 97)	98 (93 - 103.5)
Females	283 (51 - 70)	25.9 (22.5 - 29.1)	83 (75 - 95)	94 (89 - 100)

Age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and blood glucose levels are given as median with range from lower (25%) to upper quartile (75%).