PIK3CB is involved in metastasis through the regulation of cell adhesion to collagen I in pancreatic cancer

Jianhua Qua,c,1, Biao Zhenga,b,1, Kenoki Ohuchidab,d,⇑, Haimin Fengb, Stephen Jun Fei Chonge,, Xianbin Zhanga, Rui Lianga, Zhong Liua, Kengo Shirahaneb, Kazuhiro Mizumotob,f, Peng Gonga,g,⇑, Masafumi Nakamurab,⇑

aDepartment of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
bDepartment of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
cDepartment of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Singapore
dAdvanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
eDepartment of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
fCancer Center of Kyushu University Hospital, Fukuoka 812-8582, Japan
gGuangdong Key Laboratory of Regional Immunity and Diseases, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, China

Highlights

- PIK3CB is highly expressed in PAAD.
- PIK3CB is involved in PAAD progression and metastasis.
- PIK3CB-depletion does not significantly affect cell viability, migration or invasion capabilities of human PAAD cells in vitro.
- PIK3CB-depletion does not significantly influence growth or hepatic colonization abilities of human PAAD cells in vivo.
- PIK3CB influences cell invasiveness via cell-to-collagen I interaction in human PAAD cells in vitro.

Abstract

Introduction: Pancreatic adenocarcinoma (PAAD) is an aggressive malignancy, with a major mortality resulting from the rapid progression of metastasis. Unfortunately, no effective treatment strategy has been developed for PAAD metastasis to date. Thus, unraveling the mechanisms involved in PAAD metastatic phenotype may facilitate the treatment for PAAD patients.

Objectives: PIK3CB is an oncogene implicated in cancer development and progression but less is known about whether PIK3CB participates in PAAD metastasis. Therefore, the objective of this study is to explore the mechanism(s) of PIK3CB in PAAD metastasis.

Methods: In our study, we examined the PIK3CB expression pattern using bioinformatic analysis and clinical material derived from patients with PAAD. Subsequently, a series of biochemical experiments were...
Introduction

Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with limited treatment options [1–3], due to its late diagnosis, and frequent early metastasis [4–7]. Therefore, an improved understanding of the underlying mechanisms of PAAD metastatic potential is required to optimize clinical therapy.

Dysregulation of PI3K signaling pathway is frequently correlated with tumorigenesis and cancer therapy resistance [8,9]. Although the framework of PI3K signaling pathway has been described in several cancers, the role of PI3K isoforms is not systematically studied in the framework of PI3K signaling pathway has been described in several cancers. PIK3C isoforms (PIK3CA, PIK3CB, PIK3CD) and p110α (PIK3CA) and p110γ (PIK3CG) are the subunits of class 1 PI3Kks [10]. In particular, PIK3CA is the most frequently mutated oncogene across human cancers [11–13]. In contrast, literature on PIK3CB has been limited. In most of these studies, PIK3CB has been shown to play critical roles in cell growth and invasion, and the PIK3CB specific inhibitors could prevent formation of integrin adhesion contacts, resulting in defective platelet thrombus generation [14–16]. In particular, the role of PIK3CB in development of PTEN-deficient PAAD cells was recently described. PIK3CB promotes PTEN-deficient PAAD progression through activating the AKT signaling pathway [17]. Most studies focus on the role of PIK3CB under PTEN-deficient condition, but its role in wild type PAAD cells remains unclear.

The tumor microenvironment (TME) is a heterogeneous and dynamic cellular milieu interacting with cancer cells [18]. Extracellular matrix (ECM) is a non-cellular network comprising of structural and functional proteins, such as fibrous proteins, glycoproteins, and proteoglycans [19]. These ECM proteins play important roles in tumor metastasis by forming a niche that influences tumor cell adhesion and migration. Importantly, interaction between PAAD cells and ECM is associated with progression and metastasis [20–22]. Tumor cells migrate through ECM and enters into the lymphatic or vascular system to initiate tumor metastasis [23]. Collagen is abundant in the tumor ECM. It facilitates tumor delivery and promotes tumor metastasis [24–27], potentially via the adhesion between collagen and cancer cells [28]. Multiple studies proposed that collagen I enhances tumor progression. Excessive deposition of collagen I in ECM could also promote the metastasis behavior in PAAD [29]. Collagen fibers can act as highways to facilitate cancer cell migration and metastasis [30–32]. Nevertheless, the mechanisms by which PAAD cells manipulate adhesion to collagen I are still not well understood.

In the present study, we explored the function of PIK3CB with clinical material derived from patients, in vitro using cell lines, as well as in vivo using murine model. We found that PIK3CB was involved in metastasis in PAAD, potentially by influencing cell invasiveness via cell-to-collagen I interaction in PAAD cells.

Material and methods

Compliance with ethics requirements

This study has received approval from the Ethics Committee of Kyushu University (#24-222, 25-117). This study conforms to the Ethical Guidelines for Human Genome/Gene Research legislated by the Japanese Government and the Declaration of Helsinki.

Clinical material derived from PAAD patients

Clinical samples were collected from 110 patients following surgical resection of PAAD at the Department of Surgery and Oncology, Graduate School of Medical Science, Kyushu University. The corresponding clinical information and clinicopathological features of patients were arranged and summarized in Supplementary Table 1.

Immunohistochemical (IHC) staining and analysis

IHC staining was carried out as previously described [33]. We incubated the tissue sections (4 μm) with p110γ (PIK3CB protein) antibody (ab151549, Abcam) for 12 h at 4 °C. Then, we stained the tissue sections with EnVision System-HRP Labeled Polymer Anti-Rabbit (#K4003; Dako). We identified tumor cells according to morphological signatures. The tumor cells were observed in twenty fields at 200× magnification per section. We evaluated the p110β protein staining [34] and assigned the patients into p110β-high group and p110β-low group according to the staining.

Cell lines

PAAD SUIT-2 cells were purchased from Japanese Cancer Resource Bank (Tokyo, Japan). PAAD AsPC-1 and CFPAC-1 cells were purchased from American Type Culture Collection (Manassas, VA, USA). Human umbilical vein endothelial cells (HUVECs, C2517A) were purchased from Lonza (Walkersville, MD, USA). SUIT-2, AsPC-1 and CFPAC-1 cells stably expressing GFP were established as previously described [35].

Plasmid transfection

Two PIK3CB shRNA vectors (SHCLNV-NM_006219) were purchased from Sigma. The luciferase expression vectors (#LVP326) were purchased from GenTarget. We prepared and transfected the vectors into SUIT-2, CFPAC-1 and AsPC-1 cells. Puromycin from Takara (#631305) and blasticidin S hydrochloride from Sigma were purchased from GenTarget. We prepared and transfected the vectors into SUIT-2, CFPAC-1 and AsPC-1 cells. Puromycin from Takara (#631305) and blasticidin S hydrochloride from Sigma were used to select stable clones, for 3 weeks cell culture. We used a non-target shRNA (SHC016V-1EA, Sigma) as a silencing negative control.

Western blotting

Western blot was carried to evaluate protein expression levels as described previously [33]. The transferred proteins were detected with primary antibodies as follows: p110β antibody (#3011), p110α antibody (#4249), p110γ antibody (#5405), akt antibody (#4691), and phospho akt antibody (#4060) were purchased from Cell Signaling Technology. The β-actin antibody
Luciferin activity was measured using the IVIS Spectrum following injection of mice. 5 min after the injection, the spleens were extirpated. PIK3CB mRNA levels were measured using ChemiDoc XRS (Bio-Rad Laboratories). (ab8227) was from Abcam. We detected the immunoblot signals obtained from a medium-containing well and subtracted.

Cell viability assay

We seeded PAAD cells in 96-well plates (1 × 10^3 cells/well) or in ultra-low attachment surface and round bottom (Product Number 7007; Corning Inc., Corning). The Cell Viability Assay Kit (CellTiter-Glo Luminescent, C7570, Promega) was used to evaluate the cell viability as described previously [36]. Background values were obtained from a medium-containing well and subtracted.

Migration and invasiveness assay

The migration capacity and invasiveness of cancer cells were assessed using uncoated or Matrigel-coated transwell chambers (8 μm pore size; Becton Dickinson, Franklin Lakes, NJ, USA) as previously described [37]. Migration capacity was examined 24 h after cell seeding, and invasiveness was examined 48 h after cell seeding. In migration and invasiveness assays, hematoxylin and eosin were used for staining of migrated or invaded PAAD cells. The Three-dimensional (3D) collagen I matrix invasion assay was performed as previously described [38].

Cell adhesion assay

HUVEC cells were cultured in 96-well plates until cells reached 70% confluency. Cells were then co-cultured with 1 × 10^5 GFP-labeled PAAD cells in minimal essential medium, supplemented with 2.5 mg/mL bovine serum albumin for 1 h. PAAD cells adhering to the HUVEC monolayer were examined after washing. Adhering cells were quantified according to fluorescence intensities measured by a microplate reader (Tecan, Männedorf, Switzerland). In addition, 2 × 10^5 PAAD cells were seeded into 24-well plates coated with Fibronectin (354408, Corning, NY, USA) or collagen I (354411, Corning, NY, USA) in minimal essential medium. After 1 h, cultured cells were gently washed three times with PBS to remove non-adherent cells and then stained with hematoxylin and eosin.

In vivo analysis of murine model

PAAD cells (1 × 10^6) were transplanted into the pancreas of nude mice (BALB/c A/Jcl nu/nu female) via injection. Pancreas or liver were resected and examined 6 weeks after orthotopic transplantation. For liver colonization model, we injected wild type or PIK3CB-depleted luciferase-expressing PAAD cells into the spleen of mice. 5 min after the injection, the spleens were excised. Luciferin activity was measured using the IVIS Spectrum following injection of 150 mg d-luciferin into the intraperitoneal cavity of mice.

Database-based bioinformatics data mining

The mRNA expression datasets and clinical data in our study were obtained from TCGA, GTEx and Arrayexpress databases. We observed that PIK3CB mRNA level was significantly increased in PAAD tumor tissues compared with normal tissues in both TCGA-GTEx conjoint database analysis and Arrayexpress database analysis (Fig. 1A, TCGA database, wilcox test, p = 0.00299e-38; Arrayexpress database, wilcox test, p = 0.0005). Meanwhile, dataset from TCGA database revealed that expression level of PIK3CB mRNA was positively correlated with advanced PAAD tumor grade. (Fig. 1B, wilcox test). To validate the reliability of in silico results, We examined PIK3CB protein (p110γ) expression in clinical tissues derived from patients using IHC staining. We observed that p110γ expression was upregulated in PAAD tumor tissues than those in normal tissues (Fig. 1C). The results revealed that PIK3CB expression was upregulated in PAAD tumor tissues compared with normal tissues at both RNA and protein levels in patients. We next assessed the association between PIK3CB mRNA and survival in ICGC database and KM-plotter database, showing that patients with higher PIK3CB mRNA expression had poorer survival than the patients with lower PIK3CB mRNA expression (Fig. 1D, ICGC, Overall Survival (OS), long-rank test, p = 0.0031; KM-plotter, OS, p = 0.0005 and Disease-Free Survival (DFS), p = 0.0017). Similar survival outcomes were recently reported by Tian et al [17]. To validate the in silico survival results, p110γ expression of 110 patients was determined by IHC staining and the corresponding clinical survival information was arranged for survival analysis. We then examined the relationship between p110γ expression level and survival status. A similar trend of survival curves was observed. The survival curves indicated that high p110γ expression phenotype exhibited a poorer survival outcome of PAAD patients (Fig. 1E, OS, long-rank test, p = 0.0032 and DFS, p = 0.0022). Altogether, our findings indicate that PIK3CB is highly expressed in PAAD tumor tissues and negatively correlated with survival of PAAD patients. Furthermore, we examined PIK3CB DNA methylation status using UALCAN database, The Beta value were used to indicated the level of DNA methylation [43]. We observed that PIK3CB DNA promoter region was hypomethylated in tumor tissues (Fig. 5A, Wilcoxon test, p = 0.0219). We also carried out Kaplan-Meier analysis for PIK3CB DNA methylation status, showing that PIK3CB DNA methylation level was positively correlated with survival of patients with PAAD (Fig. 5B, long-rank test, p = 0.0070). Our findings suggested that DNA methylation status of PIK3CB might be related to its abnormal expression in PAAD.

PIK3CB is significantly associated with metastasis of PAAD

To investigate the clinical significance of PIK3CB expression, we analyzed the association between p110γ and clinicopathological characteristics. The overall clinicopathological parameters of 110 patients with PAAD were summarized in Table S1. We quantified p110γ protein expression in tumor tissues from 110 PAAD patients using IHC staining. We then assigned the patients into p110γ expression group and p110γ expression group according to quantification of IHC staining. High p110γ expression was associ-
ated with advanced tumor grade (Table 1, chi-squared test, \(p = 0.012 \)). Notably, patients in p110\(\beta \)-high expression group had more frequent distant metastasis (Table 1, \(p = 0.005 \)) and liver metastasis (Table 1, \(p = 0.035 \)). Meanwhile, the Cox proportional hazard model analysis revealed that survival of patients with PAAD was significantly dependent on p110\(\beta \) expression (Table 2, relative risk = 1.661, \(p = 0.018 \); Table S2, \(p = 0.003 \)). To verify the correlation between p110\(\beta \) expression and PAAD metastasis, we performed IHC staining to examine p110\(\beta \) expression in tumor tissues from metastatic sites or from primary tumor. IHC staining of p110\(\beta \) in metastatic tissues from liver and lung showed a higher p110\(\beta \) protein level, whereas primary tumor tissue showed a relative lower p110\(\beta \) expression level. (Fig. 2A).

To further confirm the correlation between PIK3CB and metastasis, we also examined the expression level of PIK3CB mRNA in our previously established human PAAD cells with high metastatic potential (GEO accession: GSE144909).
or PIK3CB-depleted SUIT-2 cells were transplanted into the pancreas of nude mice. The metastatic tumors were examined 6 weeks after injection. No significant differences were seen in peritoneal metastasis (Fig. 2D, top). Notably, depletion of PIK3CB in SUIT-2 cells reduced the liver metastatic capacity compared to parental SUIT-2 cells (Fig. 2D, chi-squared test, bottom, \(p = 0.0389 \)). Depletion of PIK3CB in primary tumor tissues was also confirmed using IHC staining (Fig. 2E). The results indicate that PIK3CB depletion remarkably inhibits hepatic metastasis in vivo.

PIK3CB depletion does not significantly influence human PAAD cell viability, invasiveness and migration in vitro

Alterations of cell viability, migration and invasion abilities are often associated with the pre-metastatic stage of cancers [45,46]. To explore the precise contribution of PIK3CB in metastatic ability of PAAD, we proceeded to examine the influence of PIK3CB down-regulation on cell viability, migration and invasion. For cell viability assay, PIK3CB depletion did not significantly impact cell viability of PAAD cells (Fig. 3A). We then assessed the effect of PIK3CB depletion on invasiveness and migration of PAAD cells. As shown in Fig. 3B and 3C, PIK3CB depletion did not significantly affect PAAD cell migration and invasiveness. Overall, no significant difference was seen between PIK3CB-depleted and parental PAAD cells in cell viability, migration and invasion abilities.

PIK3CB depletion does not significantly influence growth or hepatic colonization abilities of human PAAD cells in vivo

We then examined the biological effect of PIK3CB in vivo. Parental or PIK3CB-depleted SUIT-2 cells were injected into the pancreas of nude mice. We weighed the primary tumors 6 weeks after implantation but no significant differences in the weights of primary tumor tissues were observed between the parental SUIT-2-depleted and parental PAAD (Fig. 3D). Additionally, we investigated the influence of PIK3CB depletion on hepatic colonization. We injected the GFP-labeled SUIT-2 cells (parental or PIK3CB-depleted) into the spleen of nude mice. The spleens were then removed 5 min after injection and the abdominal cavity was closed. In vivo imaging system (IVIS imaging system) was used for evaluation of GFP-labeled PAAD cells (Fig. 3E). Pancreatic tumors tissues on livers on day 21 after implantation of IVIS analysis were also showed (Fig. 3F). As shown in Fig. 3E and F, there was no obvious difference between PIK3CB-depleted SUIT-2 and parental SUIT-2 in regards to cancer cell hepatic colonization. These findings suggest that PIK3CB reduction does not significantly influence primary tumor growth or hepatic colonization abilities of PAAD cells in vivo.

PIK3CB is involved in cell adhesion potential

Next, we explored the biological significance of PIK3CB in PAAD using bioinformatic analysis. Gene ontology (GO) enrichment analysis of the PIK3CB high-correlated genes showed overrepresenta-
tion of the adhesion related GO terms, suggesting that PIK3CB might be involved in cell adhesion ability (Fig. 4A and Fig. S2A) [47]. To validate the role of PIK3CB in cell adhesion of PAAD, the cell adhesion related gene sets were specifically selected for Gene Set Enrichment Analysis (GSEA) of PIK3CB. We then conducted GSEA analysis between low and high PIK3CB expression tumor tis-

Fig. 2. Assessment of relationship between PIK3CB expression and PAAD metastasis. (A) p110β IHC staining in tumor tissues from primary tumor and paired metastatic sites. (B) Identification of PIK3CB RNA expression in parental and highly metastatic PANC-1 and SUIT-2 cells determined by microarray. (C) Western blot was performed to examine p110β expression in parental and PIK3CB-depleted PAAD cells. (D) Murine model of PAAD peritoneal and hepatic metastasis was established by transplanting parental SUIT-2 or PIK3CB-depleted SUIT-2 cells into tail of pancreas in nude mice. Metastatic tumor tissues are indicated with black arrows. (E) IHC staining of p110β in parental SUIT-2 or PIK3CB-depleted SUIT-2 cells induced primary tumor tissues.
Fig. 3. Comparison of cell viability, migration and invasion abilities between parental and PIK3CB-depleted PAAD cells. (A) Quantification of cell viability by continuous monitoring of parental and PIK3CB-depleted PAAD cells. (B) Assessment of cell migration ability in parental and PIK3CB-depleted PAAD cells. (C) Assessment of cell invasiveness in parental and PIK3CB-depleted PAAD cells. (D) Comparison of primary tumor growth (weight) between parental SUIT-2 induced tumors and PIK3CB-depleted SUIT-2 induced tumors. (E) Tumor hepatic colonization evaluation using the IVIS imaging system. (F) Tumor hepatic colonization on day 21 of IVIS examination.
sues. The result showed that PAAD tumor tissues with high PIK3CB expression enriched in cell adhesion related GO terms (Fig. 4B), which suggested a significant association between PIK3CB and cell adhesion potential. To further validate the biological activity of PIK3CB in cell adhesion, we further performed Gene Set Variation Analysis (GSVA). We observed that high PIK3CB expression was associated with increased GSVA scores of cell adhesion related pathways (Fig. 4C and Fig. S2B). To elucidate the importance of cell adhesion in PAAD metastasis, we carried out GO analysis of differential expression RNAs between parental and highly metastatic PAAD cells, which were established in our previous studies [34,44]. The signatures of differential expression genes were evaluated using Cytoscape [48]. The GO terms exhibited an enrichment of differentially expressed genes in cell adhesion (Fig. 4D), suggesting that abnormal cell adhesion might contribute to PAAD metastasis. Collectively, based on the strong correlation between PIK3CB and adhesion potential in our in silico analysis, we proposed the possibility that PIK3CB might be involved in metastasis of PAAD via PIK3CB-mediated cell adhesion.

Downregulation of PIK3CB leads to reduced cell adhesion to Collagen I

In order to elucidate the role of PIK3CB in extracellular microenvironment adhesion, we next performed cell-matrix adhesion analyses. PAAD cellular adhesion was examined using three types of extracellular matrix, fibronectin, endothelial cell and collagen I protein. There were no significant differences in cell adhesion to fibronectin or endothelial cells between PIK3CB-depleted and parental PAAD cells (Fig. 5A and B). Of note, we observed dramatically decreased cell adhesion to collagen I in PIK3CB-depleted PAAD cells (Fig. 5C) as compared to parental cells. Furthermore, PIK3CB-depleted PAAD cells exhibited decreased invasion ability in 3D culture under condition with a collagen I matrix as compared to parental PAAD cells (Fig. 5D). These results suggest that PIK3CB downregulation leads to decreased PAAD cell invasion ability specifically by decreasing cell adhesion to collagen I.

AKT pathway has been proposed to be regulated by PIK3CB in PTEN-deficient PAAD cell lines [17]. To assess whether alteration in cell-collagen I adhesion ability in wild type PAAD cell lines...
Fig. 4. Functional annotation of PIK3CB in PAAD. (A) PIK3CB-related GO terms. Spearman’s correlation analysis was used to screen PIK3CB correlated genes according to the criteria that |R| > 0.4. Expression dataset from TCGA was used for the analysis. We carried out GO analysis to explore the biological function of PIK3CB using its correlated genes. (B) Enrichment blot from GSEA. We conducted GSEA between low and high PIK3CB expression tissues. The significantly changed cell adhesion related GO terms were selected and showed. The dataset from TCGA database was used for GSEA analysis. (C) Comparison of cell adhesion related pathways using GSVA. We conducted GSVA between low and high PIK3CB expression tissues. The significantly changed cell adhesion pathways (KEGG) were selected and showed. The dataset from TCGA database was used for GSVA analysis. (D) GO analysis of differential expression RNAs between parental and highly metastatic PAAD cells. Differentially expressed genes in highly metastatic PANC-1 and SUIT-2 cells were identified as fold change cutoff > 1, p < 0.05. Venn diagram representation showed that the differentially expressed genes are enriched in the cell adhesion related GO terms.
was also working through an AKT-dependent pathway, we next investigated the effect of PIK3CB in AKT activation in wild type PAAD cell lines. We examined phosphorylation status of AKT under condition of PIK3CB knockdown. Our results revealed that PIK3CB depletion did not significantly change the total AKT protein expression or phosphorylation status of AKT protein (Fig. 6A), suggesting...
Fig. 6. Predicted functional association of PIK3CB in cell adhesion. (A) Western blot analyses of total AKT protein and phosphorylation AKT protein in parental and PIK3CB-depleted PAAD cells. (B) Identification of possible interaction proteins of PIK3CB. The interaction datasets were downloaded from ComPPI database (http://comppi.linkgroup.hu/protein_search). R language was used for visualization of interaction proteins. The colours of lines indicated the localisation of interaction proteins. COL1A1 and COL1A2. Protein-protein interaction datasets were download from Compartmentalized Protein-Protein Interaction Database. (C) Protein-protein interaction analysis. The datasets were generated by string database (https://string-db.org). Cytoscape software was used for data visualization.
that the PIK3CB-mediated cell-collagen I adhesion may not be working through an AKT-dependent pathway in wild type PAAD cells. To further evaluated the possible role of PIK3CB in regulating cell-collagen I adhesion, we performed in silicon analysis using ComPPI database to predict the possible interacting proteins of PIK3CB and collagen I (COL1A1 and COL1A2) (Fig. 6B) [49,50]. These possible interacting proteins were subsequently used for protein-protein interaction network assay using Cytoscape string-APP [51,52]. As shown in Fig. 6C, we identified an interaction between PIK3CB and collagen I linked by ITGA2, ITGA5 and ITGB1, which are the subunits of integrin. The results suggest that PIK3CB might influence cell-collagen I adhesion through its interaction with integrin.

Discussion

In this work, we set out to uncouple the specific roles of PIK3CB in PAAD metastasis. Based on our findings, we revealed that PIK3CB was involved in PAAD progression. Like in previous study that reported by Tian J et al [17], we also observed that PIK3CB overexpression was associated with worse survival which may lead to poor prognosis of PAAD. Notably, we identified the role of PIK3CB in PAAD metastasis, PIK3CB knockdown dramatically reduced hepatic metastasis in vivo. Importantly, we elucidated that PIK3CB expression is involved in metastasis specifically through cell-collagen I adhesion in wild type PAAD cells via an AKT-independent manner. Finally, we proposed the possibility that PIK3CB might regulate cell-collagen I adhesion via its interaction with integrin. Together, our results proposed that PIK3CB might be a potential target for PAAD metastasis.

PTEN-deficient tumors are dependent on PIK3CB for signaling and cell growth. PTEN-deficient cells require PIK3CB activity to sustain PI3K signaling pathway. Moreover, the PIK3CB-selective inhibitor inhibited phospho-AKT only in PTEN-deficient cells [53]. Recently, the function of PIK3CB in PTEN-deficient PAAD cells was described by Tian J et al. PIK3CB contributes the severity of PTEN-deficient PAAD through regulation of AKT signaling pathway [17]. Whereas the PIK3CB subunit is unnecessary for pancreatic tumorigenesis in a mouse model [54]. So far, the function of PIK3CB in AKT pathway was nicely described under PTEN-deficient condition, but its role in wild type PAAD cells is still unknown. Our study specifically elucidated the role of PIK3CB in wild type PAAD cells. Interestingly, PIK3CB-depletion does not affect either the AKT signaling or tumor cell malignant phenotypes such as cell viability, migration ability and invasiveness in wild type PAAD cells. We identified that PIK3CB was involved in cell-matrix adhesion through an AKT-independent manner in wild type PAAD cells. Our study fills in a gap of current studies which offers a new research direction for PIK3CB in PTEN-proficient cancers.

The ECM could function as cytoskeletal structure and serve to support cell adhesion, migration and invasion [55,56]. The dynamic interactions between tumor cells and ECM could therefore dictate tumor progression. The ECM have been shown to promote tumor metastasis via formation of a premetastatic niche, and are being increasingly studied as therapeutic targets [57–60]. In PAAD there is a dramatically increased deposition of extracellular matrix. Especially, collagens are the main structural proteins constituting PAAD extracellular matrix [61]. Studies proposed that deposition of collagen I in ECM promotes the metastasis [29], but its regulatory networks in PAAD have not been elusive so far. Our results revealed that PIK3CB-depletion specifically suppressed cell adhesion to collagen I in PAAD cells. Notably, the PIK3CB-mediated alteration of cell-collagen I adhesion could significantly influence invasion ability of PAAD cells. Our results identify a novel role of PIK3CB in regulating PAAD metastasis and suggest that PIK3CB acts in an AKT-independent manner on cell-matrix adhesion. We delineate a new regulatory network underlying tumor cell-collagen I adhesion which may provide a view to identifying potential therapeutic strategy or druggable targets for PAAD metastasis.

Integrins are a family of heterodimeric transmembrane receptors functioning in cell-matrix interactions that is crucial to cancer initiation, progression and metastasis [62,63]. In particular, the integrin family play a crucial role in mediating cancer cell interactions with collagen I. Integrin depletion in PAAD cells leads to abrogation of metastasis in mice [64]. Previous studies also showed that PIK3CB could modulate integrin-collagen affinity, influencing platelet adhesion [65]. No study to date, however, has investigated whether that PIK3CB affect cell-collagen I adhesion through integrin in PAAD. Combining with the previous studies, our protein-protein interaction results provide a possible explanation that the role of PIK3CB that we have identified in cell-collagen I adhesion might work through its interaction with integrin.

Conclusion(s)

In conclusion, we proposed that PIK3CB not only influences PAAD progression via AKT signaling under PTEN-deficient condition as described in previous studies, but also regulates metastasis in a collagen I-dependent and an AKT-independent manner in wild type PAAD cells. Our study provides a new viewpoint to explore PIK3CB function in PTEN-proficient cancers.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research study was supported by the Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (JP19K22664, JP19H03732, JP19K22663, JP20H03754), Natural Science Foundation of Shenzhen University General Hospital (SUGH2019QD017, SUGH2018QD050), Heilongjiang Postdoctoral Science Foundation (LBH-Z16157), Shenzhen Key Medical Discipline Construction Fund and the Project for Characteristic Innovation in Ordinary Higher University of Guangdong Province (2018KTSCX193).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jare.2021.02.002.

References

[1] Klein AP, Wolpin BM, Risch HA, Stolzenberg-Solomon RZ, Mocci E, Zhang M, et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun 2018;9.. doi:https://doi.org/10.1038/s41467-018-02942-5.
[2] Christenson ES, Jaffee E, Azad NS. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 2020;21:e135–45. doi: https://doi.org/10.1016/S1470-2045(19)30795-8.
[3] Rahib L, Smith BD, Altekruse SF, Roizenwarg AB, Fleshman JM, Mattison LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of
J. Qu, B. Zheng, K. Ohuchida et al. Journal of Advanced Research 33 (2021) 127–140

thyroid, liver, and pancreatic cancers in the United States. Cancer Res 2014;74:2913–21. doi: https://doi.org/10.1158/0008-5472.CAN-14-0155.

[4] Winter JM, Brennan MF, Tang LH, D’Angela MC, Dematteo RP, Fong Y, et al. Survival after resection for pancreatic adenocarcinoma: results from a single institution over three decades. Ann Surg Oncol 2012;19:169–75. doi: https://doi.org/10.1245/s10434-011-1900-3.

[5] Tsuboi L, Kawasaki K, Enoyoshi I, Fujisawa R, Kozono S, Nakamura K, et al. The pathology and genetics of metastatic pancreatic cancer. Arch Pathol Lab Med 2009;133:413–22. doi: https://doi.org/10.1043/1543-2165-133.3.413.

[6] Makohon-Moore A, Guillermet-Guibert J, Graupera M, Bilanges B. The role of PIK3CA in cancer: a review. Br J Cancer 2015;113:1045–52. doi: https://doi.org/10.1038/bjc.2015.89.

[7] Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The role of PIK3CA in cancer: a review. Br J Cancer 2015;113:1045–52. doi: https://doi.org/10.1038/bjc.2015.89.

[8] Discher DE, Smith L, Cho S, Colasurdo M, García AJ, Safran S, et al. Mechanosensing: from scaling concepts in ‘omics data to mechanisms in the cell nucleus, regeneration, and cancer. Annu Rev Biophys 2017;46:295–315. doi: https://doi.org/10.1146/annurev-biophys-062216-040011.

[9] Tsuboi L, Kawasaki K, Enoyoshi I, Fujisawa R, Kozono S, Nakamura K, et al. The pathology and genetics of metastatic pancreatic cancer. Arch Pathol Lab Med 2009;133:413–22. doi: https://doi.org/10.1043/1543-2165-133.3.413.

[10] Fujita J, Goya H, Ohuchida K, Kozono S, Mizumoto K, Akiyama T, et al. Phosphatidylinositol 3-kinase p110α promotes autophagy and invasion of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2010;70:2858–66. doi: https://doi.org/10.1158/0008-5472.CAN-09-4068.

[11] Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006;66:11745–53. doi: https://doi.org/10.1158/0008-5472.CAN-06-2677.

[12] Shields MA, Dangi-Garimella S, Redig AJ, Munshi HG. Biochemical role of the collagen-rich tumour microenvironment in pancreatic cancer progression. J Clin Invest 2012;124:4111–24. doi: https://doi.org/10.1038/jci71134.

[13] Condeelis JS, Segal JE. Intravascular饭 of cell movement in tumours. Nat Rev Cancer 2003;3:921–30. doi: https://doi.org/10.1038/nrc1231.

[14] Sun Y, Wang C, Li Y, Xu B, Liu J. PI3K/AKT pathway in pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 2017;152:1492–506.e24. doi: https://doi.org/10.1053/j.gastro.2017.01.010.

[15] Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006;66:11745–53. doi: https://doi.org/10.1158/0008-5472.CAN-06-2677.

[16] Jay S, Liu Z, Zhang S, Liu P, Zhang L, Huo L, et al. MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surg (United States) 2013;154:573–82. doi: https://doi.org/10.1016/S0039-6060(13)60752-9.

[17] Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006;66:11745–53. doi: https://doi.org/10.1158/0008-5472.CAN-06-2677.

[18] Komori A, Mochizuki H, Kato S, Shimura K, Shimizu N, Yoneda M, et al. Targeting the RAF/MEK/ERK, PI3K/AKT and P53 pathways in pancreatic cancer cells enhances the ability of collagen internalization during epithelial-mesenchymal transition. PLoS ONE 2012;7: doi: https://doi.org/10.1371/journal.pone.0039454.

[19] Kolesnikov N, Hastings E, Keays M, Melchnick O, Tang Y, Williams E, et al. ArrayExpress update—simplifying data submissions. Nucleic Acids Res 2015;43:D1113–6. doi: https://doi.org/10.1093/nar/gku1160.

[20] Tang M, Claxton KA, Slevin ML, Abriata L, Ab A, et al. ArrayExpress update – from bulk to single-cell expression data. Nucleic Acids Res 2019;47: D711–5. doi: https://doi.org/10.1093/nar/gky964.

[21] Agy Ú, Lánzczky A, Menghárt O, Györyfi B. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 2018;8:1–9. doi: https://doi.org/10.1038/s41598-018-27521-8.

[22] Goldman M, Craft B, Hastie M, Repček K, Kamath A, McDade F, et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. BioRxiv 2018;326640. doi: https://doi.org/10.1101/326640.

[23] Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVS, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (United States) 2017;19:649–58. doi: https://doi.org/10.1016/j.neo.2017.05.002.

[24] Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The role of PIK3CA in cancer: a review. Br J Cancer 2015;113:1045–52. doi: https://doi.org/10.1038/bjc.2015.89.

[25] Fujita J, Goya H, Ohuchida K, Kozono S, Mizumoto K, Akiyama T, et al. Phosphatidylinositol 3-kinase p110α promotes autophagy and invasion of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2010;70:2858–66. doi: https://doi.org/10.1158/0008-5472.CAN-09-4068.

[26] Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006;66:11745–53. doi: https://doi.org/10.1158/0008-5472.CAN-06-2677.

[27] Shintani Y, Hollingsworth MA, Wheelock MJ, Johnson KR. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH2-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res 2006;66:11745–53. doi: https://doi.org/10.1158/0008-5472.CAN-06-2677.
[52] Doncheva NT, Morris JH, Gorodkin J, Jensen LJ. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res 2019;18:623–32. doi: https://doi.org/10.1021/acs.jproteome.8b00762.

[53] Wiederschain D, Maira SM, Loo A, Miller C, Delleaumont R, et al. PTEN-deficient cancers depend on PI3KCB. Proc Natl Acad Sci U S A 2008;105:13057–62. doi: https://doi.org/10.1073/pnas.0802655105.

[54] Wu CYC, Carpenter ES, Takeuchi KK, Halbrook CJ, Peerley LV, Bien H, et al. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Gastroenterology 2014;147(1405–1416):e7. doi: https://doi.org/10.1053/j.gastro.2014.08.012.

[55] Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med 2002;8:918–21. doi: https://doi.org/10.1038/nm0902-918.

[56] Iozzo RV, Zoeller JJ, Nyström A. Basement membrane proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells 2009;27:503–13. doi: https://doi.org/10.1007/s10059-009-0069-0.

[57] Lawler J. Editorial Foreword: introduction to the tumour microenvironment Review Series. J Cell Mol Med 2009;13:1403–4. doi: https://doi.org/10.1111/j.1582-4934.2009.00843.x.

[58] Desgrosellier JS, Cheresh DA. Integrins in cancer: Biological implications and therapeutic opportunities. Nat Rev Cancer 2010;10:9–22. doi: https://doi.org/10.1038/nrc2748.

[59] Erler JT, Weaver VM. Three-dimensional context regulation of metastasis. Clin Exp Metastasis 2009;26:35–49. doi: https://doi.org/10.1007/s10585-008-9209-8.

[60] Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol 2020;17. doi: https://doi.org/10.1038/s41575-020-0300-4.

[61] Liang Y, Liu C, Djeu JY, Zhong B, Peters T, Scharffetter-Kochanek K, et al. β2 integrins separate graft-versus-host disease and graft-versus-leukemia effects. Blood 2008;111:954–62. doi: https://doi.org/10.1182/blood-2007-05-085773.

[62] Jackson SP, Schoenwaelder SM. PI 3-Kinase p110β Regulation of Platelet Integrin αIIbβ3. Curr. Top. Microbiol. Immunol., vol. 346, Curr Top Microbiol Immunol; 2010, p. 203–24. https://doi.org/10.1007/82_2010_61.