Detection and characterization of *Wolbachia* infections in laboratory and natural populations of different species of tsetse flies (genus *Glossina*)

Vangelis Doudoumis, George Tsiamis, Florence Wamwiri, Corey Brelsfoard, Uzma Alam, Emre Aksoy, Stelios Dalaperas, Adly Abd-Alla, Johnson Ouma, Peter Takac, Serap Aksoy, Kostas Bourtzis

Abstract

Background: *Wolbachia* is a genus of endosymbiotic α-Proteobacteria infecting a wide range of arthropods and filarial nematodes. *Wolbachia* is able to induce reproductive abnormalities such as cytoplasmic incompatibility (CI), thelytokous parthenogenesis, feminization and male killing, thus affecting biology, ecology and evolution of its hosts. The bacterial group has prompted research regarding its potential for the control of agricultural and medical disease vectors, including *Glossina* spp., which transmits African trypanosomes, the causative agents of sleeping sickness in humans and nagana in animals.

Results: In the present study, we employed a *Wolbachia* specific 16S rRNA PCR assay to investigate the presence of *Wolbachia* in six different laboratory stocks as well as in natural populations of nine different *Glossina* species originating from 10 African countries. *Wolbachia* was prevalent in *G. morsitans morsitans*, *G. morsitans centralis* and *G. austeni* populations. It was also detected in *G. brevipalpis*, and, for the first time, in *G. pallidipes* and *G. palpalis gambiensis*. On the other hand, *Wolbachia* was not found in *G. p. palpalis*, *G. fuscipes fuscipes* and *G. tachinoides*. *Wolbachia* infections of different laboratory and natural populations of *Glossina* species were characterized using 16S rRNA, the *wsp* (*Wolbachia* Surface Protein) gene and MLST (Multi Locus Sequence Typing) gene markers. This analysis led to the detection of horizontal gene transfer events, in which *Wobachia* genes were inserted into the tsetse flies fly nuclear genome.

Conclusions: *Wolbachia* infections were detected in both laboratory and natural populations of several different *Glossina* species. The characterization of these *Wolbachia* strains promises to lead to a deeper insight in tsetse flies-*Wolbachia* interactions, which is essential for the development and use of *Wolbachia*-based biological control methods.

Background

Wolbachia are a highly diverse group of intracellular, maternally inherited endosymbionts belonging to the α-Proteobacteria [1]. The bacteria infect a wide range of arthropods, including at least 65% of insect species [2-4], as well as filarial nematodes [5]. *Wolbachia* induce a range of reproductive abnormalities in their arthropod hosts, such as cytoplasmic incompatibility (CI), parthenogenesis, male-killing and feminization [1,6-11], while they have developed mutualistic associations with filarial nematodes [12-14]. The ability of *Wolbachia* to cause these reproductive phenotypes allows them to spread efficiently and rapidly into host populations [4,9]. *Wolbachia* has attracted much interest for its role in biological, ecological and evolutionary processes, as well as for its potential for the development of novel and environment friendly strategies for the control of insect pests and disease vectors [15-22].

Tsetse flies, the sole vectors of pathogenic trypanosomes in tropical Africa, infect many vertebrates, causing sleeping sickness in humans and nagana in animals [23]. It is estimated by the World Health Organization (WHO) that 60 million people in Africa are at risk of contracting sleeping sickness (about 40% of the...
continent’s population). The loss of local livestock from nagana amounts to 4.5 billion U.S. dollars annually [24,25]. Thanks to a vigorous campaign led by the WHO and various NGOs, the infected population has declined to an estimated 10,000, following epidemiics that killed thousands of Africans [26]. Given that the disease affects remote areas, it is, however, likely that many cases may remain unreported. Should active case finding and treatment be discontinued, it would be prudent to maintain vector surveillance and control measures to prevent (re)emergence of the disease as was witnessed in the early 1990’s in various parts of the continent [26,27].

Wolbachia-induced cytoplasmic incompatibility has been suggested as a potential tool to suppress agricultural pests and disease vectors [8,21,22,28-30]. Another potential control approach is based on a replacement strategy, where parasite-susceptible fly populations would be replaced with genetically modified strains that are unable to transmit the pathogenic parasites. Towards this end, a paratransgenic modification approach has been developed for tsetse flies. It has been possible to culture and genetically transform a tsetse flies symbiont, the commensal bacterium Sodalis glossinidius. The expression of biological anti-parasitic in G. morsitans including G. m. morsitans, fertile females were maintained on blood meals supplemented with 10% (w/v) yeast extract (Becton Dickinson) and 20 µg/ml of tetracycline. Flies were fed every 48h for the duration of their life span. The resulting progeny are aposymbiotic (GmmApv) in that they lack their natural endosymbionts, Wigglesworthia and Wolbachia (Alam and Aksoy, personal communication). Aposymbiotic progeny were used for detection of nuclear Wolbachia DNA.

Methods
Sample collection and DNA isolation
Glossina specimens were collected in ten countries in Africa (Tanzania, South Africa, Zambia, Zimbabwe, Kenya, Senegal, Guinea, Ethiopia, Uganda, and Democratic Republic of Congo - Zaire). Upon their arrival in the lab, all tsetse flies specimens have been immediately used for DNA extraction. DNA samples were stored at -20°C until their use. Laboratory strains from FAO/IAEA (Seibersdorf), Yale University (EPH), Slovak Academy of Sciences (SAS-Bratislava), Kenya (KARI-TRC), Burkina Faso (CIRDES) and Antwerp were also included in the analysis. DNA from adult flies was isolated according to Abd-Alla et al. 2007 [53], using the Qiagen DNeasy kit (Qiagen, Valencia, CA), following the manufacturers’ instructions, except for the samples from Antwerp and Bratislava, to which the CTAB (Cetyl trimethylammonium bromide) DNA isolation method was applied [54]. G. m. morsitans fertile females were maintained on blood meals supplemented with 10% (w/v) yeast extract (Becton Dickinson) and 20 µg/ml of tetracycline. Flies were fed every 48h for the duration of their life span. The resulting progeny are aposymbiotic (GmmApv) in that they lack their natural endosymbionts, Wigglesworthia and Wolbachia (Alam and Aksoy, personal communication). Aposymbiotic progeny were used for detection of nuclear Wolbachia DNA.

PCR screen and MLST
A total of 3750 specimens of nine Glossina species (G. m. morsitans, G. m. centralis, G. austeni, G. brevipalpis, G. pallidipes, G. p. palpalis, G. p. gambiensis, G. fuscipes fuscipes and G. tachinoides) were screened for the presence of Wolbachia strains. The detection is based on the Wolbachia 16S rRNA gene and results in the amplification of an about 438 base pairs long DNA fragment with the Wolbachia specific primers wspF and wspR (see Additional file 1- Supplementary Table 1). The mitochondrial gene 12S rRNA was used as positive control for amplification; the primers 12SCFR (5’primer) 5’-
GAG AGT GAC GGG CGA TAT G-3’ and 12SCRR

(3’ primer) 5’-AAA CCA GGA TTA GAT ACC CTA TTA-T-3’ were used, which amplify a 377 bp fragment of the gene [55]. PCR amplifications were performed in 20 μl reaction mixtures containing 4 μl 5x reaction buffer (Promega), 1.6 μl MgCl2 (25mM), 0.1 μl deoxynucleotide triphosphate mixture (25 mM each), 0.5 μl of each primer (25 μM), 0.1 μl of Taq (Promega 1U/μl), 12.2 μl water and 1 μl of template DNA. The PCR protocol was: 35 cycles of 30 sec at 95°C, 30 sec at 54°C and 1 min at 72 °C.

The Wolbachia strains present in eleven selected Wolbachia-infected Glossina specimens from different areas and species were genotyped with MLST- and wsp-based approaches. The wsp and MLST genes (gatB, coxA, hcpA, fbpA and ftsZ) were amplified using the respective primers reported in [41] (see Additional file 1- Supplementary Table 1). Gene fragments were amplified using the following PCR mixes: 4 μl of 5x reaction buffer (Promega), 1.6 μl MgCl2 (25mM), 0.1 μl deoxynucleotide triphosphate mixture (25 mM each), 0.5 μl of each primer (25 μM), 0.1 μl of Taq (Promega 1U/μl), 12.2 μl water and 1 μl of template. PCR reactions were performed using the following program: 5 min of denaturation at 95 °C, followed by 35 cycles of 30 sec at 95°C, 30 sec at the appropriate temperature for each primer pair (52°C for ftsZ, 54°C for gatB, 55°C for coxA, 56°C for hcpA, 58°C for fbpA and wsp) and 1 min at 72 °C. All reactions were followed by a final extension step of 10 min at 72°C.

Given the presence of products of unpredicted size, all PCR products of genes 16S rRNA, wsp and MLST from the eleven selected populations were ligated into a vector (pGEM-T Easy Vector System) according to the manufacturer’s instructions and then transformed into competent DH5α cells, which were plated on ampicillin/X-gal selection plates (the exception being G. m. centralis, for which direct sequencing of PCR products was employed). Three to six clones were directly subjected to PCR using the primers T7 and SP6. For each sample, a majority-rule consensus sequence was created. The colony PCR products were purified using a PEG (Polyethylene glycol) - NaCl method [56]. Both strands of the products were sequenced using the universal primers T7 and SP6. A dye terminator-labelled cycle sequencing reaction was conducted with the BigDye Terminator v3.1 Cycle Sequencing Kit (PE Applied Biosystems). Reaction products were analysed using an ABI PRISM 310 Genetic Analyzer (PE Applied Biosystems).

Tissue specific detection of cytoplasmic and nuclear Wolbachia DNA
To detect the presence of cytoplasmic or nuclear Wolbachia genes in different tissues, DNA extracts were prepared from gut, ovary, testes, and carcasses (remaining fly tissues after organ extraction) of Wolbachia-infected and tetracycline-treated (Wolbachia-free) ten-

eval two-day old G. m. morsitans female and male adult flies from the Yale University laboratory colony. Dissec-

tions were performed in 1X PBST (3.2 mM Na2HPO4, 0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, 0.05% TWEEN 20, pH 7.4), and dissected tissues were placed in 200 μl of lysis buffer (Qiagen, Valencia, CA). The DNA was isolated using a Qiagen DNeasy kit (Qiagen, Valencia, CA) following the manufacturer’s instructions. PCR amplification of 16S rRNA, fbpA, and wsp were performed using the primers wspecF/wspecR, fbpA_F1 / fbpA_R1 and 81F / 691R, respectively [2,41,57] (see Additional file 1- Supplementary Table 1). PCR mixes of 25 μl contained 5 μl of 5x reaction buffer (Promega, Madison, WI), 3 μl MgCl2 (25mM), 0.5 μl deoxynucleotide triphosphate mixture (25 mM each), 0.5 μl of each primer (10 μM), 0.125 μl of Taq (Promega, Valencia, CA) (1U/μl), 14.375 μl water and 1 μl of template DNA. The PCR protocol was: 35 cycles of 30 sec at 95°C, 30 sec at 54°C and 1 min at 72 °C.

Phylogenetic analysis
All Wolbachia gene sequences generated in this study were manually edited with SeqManII by DNASTar and aligned using MUSCLE [58] and ClustalW [59], as implemented in Geneious 5.3.4 [60], and adjusted by eye. Phylogenetic analyses were performed using Bayesian Inference (BI) and Maximum-Likelihood (ML) estimation for a concatenated data set of the protein-coding genes (gatB, fbpA, hcpA, ftsZ and coxA) and for wsp separately. For the Bayesian inference of phylogy, PAUP version 4.0b10 [61] was used to select the optimal evolution model by critically evaluating the selected parameters using the Akaike Information Criterion [62]. For the concatenated data and the wsp set, the submodel GTR+I+G was selected. Bayesian analyses were performed as implemented in MrBayes 3.1 [63]. Analyses were initiated from random starting trees. Four separate runs, each composed of four chains, were run for 6,000,000 generations. The cold chain was sampled every 100 generations, and the first 20,000 generations were discarded. Posterior probabilities were computed for the remaining trees. ML trees were constructed using MEGA 5.0 [64], with gamma distributed rates with 1000 bootstrap replications, and the method of Jukes and Cantor in our distance model.

Nucleotide sequence accession numbers. All MLST, wsp and 16S rRNA gene sequences generated in this study have been deposited into GenBank under accession numbers JF494842 to JF494922 and JF906102 to JF906107.
Results

Wolbachia infection prevalence in different populations

The presence of *Wolbachia* was investigated in nine species within the three subgenera of *Glossina*. A total of 551 laboratory and 3199 field-collected adult flies, originating from 10 African countries, were tested using a *Wolbachia* specific 16S rRNA-based PCR assay (Table 1). The prevalence of *Wolbachia* infections differed significantly between the various populations of *Glossina* (Table 1). *Wolbachia* infections were detected in multiple species of the *morsitans* complex: *G. m. morsitans*, *G. m. centralis*, *G. pallidipes* and *G. austeni*, in the fusca complex in *G. brevipalpis*, while it was absent in the analysed species from the palpalis complex: *G. p. palpalis*, *G. fuscipes* and *G. tachinoides*. *Wolbachia* was also detected in just two out of 644 individuals of *G. p. gambiensis*.

Despite the heterogenous infections found in field populations, *Wolbachia* infection was fixed in the laboratory colonies of *G. m. morsitans*, and *G. m. centralis*. On the other hand, the infection was not fixed in laboratory colonies of *G. brevipalpis* and *G. pallidipes* and was completely absent from the laboratory colonies of the palpalis group species: *G. p. palpalis*, *G. p. gambiensis*, *G. f. fuscipes* and *G. tachinoides*.

Wolbachia prevalence ranged from 9.5 to 100% in natural populations of *G. m. morsitans*, from 52 to 100% in *G. austeni*, while it was only 2% in *G. brevipalpis*. Interestingly, previous studies on *G. pallidipes* and *G. p. gambiensis* natural populations did not observe any *Wolbachia* infection in these species. Our study did not find any evidence for *Wolbachia* infections in the screened natural populations of *G. p. palpalis* and *G. f. fuscipes*.

It is also interesting to note that the prevalence of *Wolbachia* infection was not homogenous and varied in different geographic populations for the same species. For example, the infection was fixed in natural populations of *G. m. morsitans* in Zambia and Tanzania while in Zimbabwe, two different sites exhibited 9.5% (Gokwe) and 100% (Kemukura) prevalence respectively.

Genotyping tsetse flies *Wolbachia* strains

The bacterial strains present in each of the eleven *Wolbachia*-infected *Glossina* populations (seven natural and four laboratory), representing six species, were genotyped using MLST analysis (Table 2). A total of nine allelic profiles or Sequence Types (ST) was found in tsetse flies *Wolbachia* strains. All of them were new STs, based on the available data in the *Wolbachia* MLST database. The STs of the *Wolbachia* strains infecting the laboratory population of *G. m. centralis* and two out of the four natural populations of *G. m. morsitans* (12.3A, 32.3D) were identical. All *Wolbachia* strains infecting *G. m. morsitans* (except 24.4A) and *G. m. centralis* populations belong to the same sequencing complex, since they share at least three alleles. The MLST analysis showed the presence of seven *gatB*, seven *coxA*, four *hcpA*, seven *fsZ* and four *fbpA* alleles. This analysis also revealed the presence of new alleles for all loci: five for *gatB*, four for *coxA*, two for *hcpA*, five for *fsZ* and two for *fbpA* (Table 2).

The same eleven samples were also genotyped using the *wsp* gene: nine alleles were detected. For all tsetse flies *Wolbachia* strains, the WSP HVR profile, a combination of the four HVR amino acid haplotypes, was determined as described previously [41] (Table 3). A total of eight WSP HVR profiles were identified; six of them were new in the *Wolbachia* WSP database. The WSP HVR profile of the *Wolbachia* strains infecting (a) the natural population (12.3A) and the Yale lab colony (GmmY) of *G. m. morsitans*, (b) two natural populations of *G. m. morsitans* (32.3D and 30.9D) and (c) two natural populations of *G. austeni* (GauK and 05.2B) were identical. On the other hand, the *Wolbachia* strains infecting the KARI lab colony of *G. m. morsitans* (24.4A) as well as *G. m. centralis* (GmcY), *G. pallidipes* (15.5B), *G. brevipalpis* (09.7G) and *G. p. gambiensis* (405.11F) had unique WSP profiles. It is also interesting to note that three *Wolbachia* strains infecting *G. m. morsitans* (32.3D, 30.9D) and *G. brevipalpis* (09.7G) shared three HVR haplotypes (HVR2-4). Another triplet of strains infecting *G. m. morsitans* (32.3D, 30.9D and 24.4A) also shared three HVR haplotypes (HVR1 and 2 and 4). The overall number of unique haplotypes per HVR varied. The WSP profile analysis showed the presence of seven HVR1, four HVR2, six HVR3 and five HVR4 haplotypes. The analysis also revealed the presence of new haplotypes: four for HVR1, two for HVR2, four HVR3 and one for HVR4 (Table 3).

Phylogenetic analysis

Phylogenetic analysis based on a concatenated dataset of all MLST loci revealed that the *Wolbachia* strains infecting *G. m. morsitans*, *G. m. centralis*, *G. brevipalpis*, *G. pallidipes* and *G. austeni* belong to supergroup A, while the *Wolbachia* strain infecting *G. p. gambiensis* fell into supergroup B (Fig. 1). The respective phylogenetic analysis based on the *wsp* gene dataset confirmed these results (Fig. 2). Phylogenetic reconstructions for concatenated alignments of MLST loci and *wsp* sequences showed similar results by both Bayesian inference and Maximum Likelihood methods. The Bayesian phylogenetic trees are presented in Figures 1 and 2 (Additional Files 2 and 3). The tsetse flies *Wolbachia* strains within the supergroup
Glossina species	Country (area, collection date)	Prevalence
G. m. morsitans	Zambia (MFWE, Eastern Zambia, 2007)	100.0%
KARI-TRC lab-colony (2008)	(89/89)	100.0%
Tanzania (Ruma, 2005)	(100/100)	100.0%
Zimbabwe (Gokwe, 2006)	(7/74)	9.5%
Zimbabwe (Kemukura, 2006)	(26/26)	100.0%
Zimbabwe (M.Chiyu, 1994)	(33/36)	91.7%
Zimbabwe (Makuti, 2006)	(95/99)	96.0%
Zimbabwe (Mukond, 1994)	(35/36)	97.2%
Zimbabwe (Mushumb, 2006)	(3/8)	37.5%
Zimbabwe (Rukomeshi, 2006)	(98/100)	98.0%
Yale lab-colony (2008)	(5/5)	100.0%
Antwerp lab-colony (2010)	(10/10)	100.0%
Bratislava lab-colony (2010)	(5/5)	100.0%
G. pallidipes	Zambia (MFWE, Eastern Zambia, 2007)	2.5%
KARI-TRC lab-colony (2008)	(3/99)	3.0%
Kenya (Mewa, Katotoi and Meru national park, 2007)	(0/470)	0.0%
Ethiopia (Arba Minch, 2007)	(2/454)	0.4%
Seibersdorf lab-colony (2008)	(0/138)	0.0%
Tanzania (Ruma, 2005)	(3/83)	3.6%
Tanzania (Mlembuli and Tunguli, 2009)	(0/94)	0.0%
Zimbabwe (Mushumb, 2006)	(0/50)	0.0%
Zimbabwe (Gokwe, 2006)	(0/150)	0.0%
Zimbabwe (Rukomeshi, 2006)	(5/59)	8.5%
Zimbabwe (Makuti, 2006)	(4/96)	4.2%
G. austeni	Tanzania (Uozani, 1997)	52.4%
Tanzania (Zanzibar, 1995)	(75/78)	96.2%
South Africa (Zululand, 1999)	(79/83)	95.2%
Kenya (Shimba Hills, 2010)	(30/30)	100.0%
G. p. palpalis	Seibersdorf lab-colony (1995)	0.0%
Democratic Republic of Congo (Zaire, 1995)	(0/36)	0.0%
G. p. gambiensis	CIRDES lab-colony (1995)	0.0%
CIRDES lab-colony (2005; this colony is now also established at Seibersdorf)	(0/57)	0.0%
Senegal (Diacksao Peul and Pout, 2009)	(1/188)	0.5%
Guinea (Kansaba, Mini Pontda, Kindoya and Ghada Oundou, 2009)	(0/180)	0.0%
Guinea (Alahine, 2009)	(0/29)	0.0%
Guinea (Boureya Kolonko, 2009)	(0/36)	0.0%
Guinea (Fefe, 2009)	(0/29)	0.0%
Guinea (Kansaba, 2009)	(0/19)	0.0%
Guinea (Kindoya, 2009)	(1/12)	8.3%
Guinea (Lemonako, 2009)	(0/30)	0.0%
Guinea (Togoue, 2009)	(0/32)	0.0%
G. brevipalpis	Seibersdorf lab-colony (1995)	41.2%
South Africa (Zululand, 1995)	(1/50)	2.0%
G. f. fuscipes	Seibersdorf lab-colony (1995)	0.0%
Uganda (Buvuma island, 1994)	(0/36)	0.0%
G. m. centralis	Yale lab-colony (2008; this colony no longer exists at Yale)	100.0%
A form three different clusters. The first cluster includes the Wolbachia strains present in *G. m. morisitans*, *G. m. centralis* and *G. brevipalpis*. This cluster is closely related to Wolbachia strains infecting the fruit fly *Drosophila bifasciata*. The second cluster includes the Wolbachia strains infecting *G. austeni* populations and is distantly related to the strain present in *Pheidole micala*. The third cluster contains only the Wolbachia strain present in *G. pallidipes* and is closely related to Wolbachia strains present in Dipteran host species. The B-supergroup Wolbachia strain infecting *G. p. gambiensis* clusters with strains present in *Tribolium confusum* and *Teleogryllus taiwaneus* (Figs 1 and 2).

Horizontal transfer of Wolbachia genes to the G. m. morisitans genome

During the Wolbachia-specific 16S rRNA-based PCR screening of laboratory and natural *G. m. morisitans* populations, the presence of two distinct PCR amplification products was observed: one compatible with the expected size of 438 bp and a second smaller product of about 300 bp (Fig. 3a). Both PCR products were sequenced and confirmed to be of Wolbachia origin. The 438 bp product corresponded to the expected 16S rRNA gene fragment, while the shorter product contained a deletion of 142 bp (Fig. 3b). The 296 bp shorter version of the 16S rRNA gene was detected in all five individuals analyzed from *G. m. morisitans* colony individuals, as well as in DNA prepared from the tetracycline-treated (Wolbachia-free) *G. m. morisitans* samples, suggesting that it is of nuclear, and not cytoplasmic origin. This finding implies that the 16S rRNA gene segment was most likely transferred from the cytoplasmic Wolbachia to the *G. m. morisitans* genome, where it was pseudogenized through a deletion event. During the MLST analysis of the Wolbachia strain infecting *G. m. morisitans*, a similar phenomenon was observed for gene *fbpA*. PCR analysis showed the presence of two distinct amplicons (Fig. 3a). Sequence analysis revealed that the larger 509 bp fragment was of the expected size, while the smaller fragment (453 bp in size) contained two deletions of 47 bp and 9 bp, respectively (Fig. 3b). The

Table 1 Wolbachia prevalence in laboratory lines and natural populations of different Glossina species. (Continued)

Species	Colony	Presence in Laboratory lines (%)
G. m. morisitans	KARI-TRC	0.0%
G. m. morsitans	Yale lab-colony	0.0%
G. m. morsitans	Seibersdorf lab-colony	0.0%
G. m. morsitans	Yale lab-colony	0.0%
G. m. morsitans	Seibersdorf lab-colony	0.0%
G. p. gambiensis	Antwerp lab-colony	0.0%
G. p. gambiensis	KARI-TRC	0.0%

Table 2 Wolbachia MLST allelic profiles for 11 populations of Glossina

Code	Species	Country (area, collection date)	ST	gatB	coxA	hcpA	ftsZ	fbpA
123A	*G. m. morisitans*	Zambia (MFWE, Eastern Zambia, 2007)	226	141	127	23	114	15
323D	*G. m. morisitans*	Zimbabwe (Makuti, 2006)	226	141	127	23	114	15
GmcY	*G. m. centralis*	Yale lab-colony (2008)	226	141	127	23	114	15
309D	*G. m. morisitans*	Zimbabwe (Rukomeshi, 2006)	227	141	127	23	115	15
GmmY	*G. m. morisitans*	Yale lab-colony (2008)	228	8	127	23	113	15
244A	*G. m. morisitans*	KARI-TRC lab-colony (2008)	229	142	128	23	113	15
097G	*G. brevipalpis*	Seibersdorf lab-colony (1995)	230	143	129	23	56	15
052B	*G. austeni*	South Africa (Zululand, 1999)	231	128	109	127	98	20
GauK	*G. austeni*	Kenya (Shimba Hills, 2010)	197	128	108	127	98	20
155B	*G. pallidipes*	Ethiopia (Arba Minch, 2007)	232	144	47	149	116	202
405.11F	*G. p. gambiensis*	Guinea (Kindoya, 2009)	233	145	130	150	117	203

Identical nucleotide sequences at a given locus for different strain were assigned the same arbitrary allele number. Each strain was then identified by the combination of the five MLST allele numbers, representing its allelic profile. Each unique allelic profile was assigned an ST (Sequence Type), which ultimately characterizes a strain [41].
Wolbachia-free *G. m. morsitans* line contained only the smaller 453 bp version of the *fbpA* gene, suggesting again that this gene fragment is the result of a horizontal gene transfer event to the host chromosome.

Tissue specific detection of cytoplasmic and nuclear Wolbachia markers

The tissue specific distribution of the Wolbachia markers in *G. m. morsitans* were tested in ovary, salivary gland, midgut and carcass in normal and tetracycline-treated (*Wolbachia*-cured) flies. Two 16S rRNA PCR products (438 and 296 bp as described in Figure 3, corresponding to cytoplasmic and nuclear Wolbachia markers) could be amplified from ovary and testes tissues of uncured flies, while only the truncated 296 bp product that corresponds to the nuclear Wolbachia marker was amplified from all of the tissues (Figure 4). In contrast, the fragment that corresponds to the cytoplasmic 16S rRNA marker could not be

![Figure 1 Bayesian inference phylogeny based on the concatenated MLST data (2,079 bp). The topology resulting from the Maximum Likelihood method was similar. The 11 Wolbachia strains present in Glossina are indicated in bold letters, and the other strains represent superfamilies A, B, D, F and H. Strains are characterized by the names of their host species and ST number from the MLST database. Wolbachia superfamilies are shown to the right of the host species names. Bayesian posterior probabilities (top numbers) and ML bootstrap values based on 1000 replicates (bottom numbers) are given (only values >50% are indicated).](image)

Table 3 Wolbachia WSP HVR profiles for 11 populations of Glossina

Code	Species	Country (area, collection date)	wsp	HVR1	HVR2	HVR3	HVR4
12.3A	*G. m. morsitans*	Zambia (MFWE, Eastern Zambia, 2007)	548	192	9	12	202
32.3D	*G. m. morsitans*	Zimbabwe (Makuti, 2006)	356	142	9	12	9
GmCY	*G. m. centralis*	Yale lab-colony (2008)	550	193	9	221	202
30.9D	*G. m. morsitans*	Zimbabwe (Rukomeshi, 2006)	356	142	9	12	9
GmmY	*G. m. morsitans*	Yale lab-colony (2008)	548	192	9	12	202
24.4A	*G. m. morsitans*	KARI-TRC lab-colony (2008)	549	142	9	223	9
09.7G	*G. brevipalpis*	Seibersdorf lab-colony (1995)	11	9	9	12	9
05.2B	*G. austeni*	South Africa (Zululand, 1999)	551	180	40	210	18
GauK	*G. austeni*	Kenya (Shamba Hills, 2010)	507	180	40	210	18
15.5B	*G. pallidipes*	Ethiopia (Arba Minch, 2007)	552	195	224	224	63
405.11F	*G. p. gambiensis*	Guinea (Kindoya, 2009)	553	194	223	222	220

WSP profiles of Wolbachia for 11 populations of Glossina, defined as the combination of the four HVR amino acid haplotypes. Each WSP amino acid sequence (corresponding to residues 52 to 222 of the wMel sequences) was partitioned into four consecutive sections, whose breakpoints fall within conserved regions between the hypervariable regions, as follows: HVR1 (amino acids 52 to 84), HVR2 (amino acids 85 to 134), HVR3 (amino acids 135 to 185), and HVR4 (amino acids 186 to 222) [41].
amplified from any of the tissues of Wolbachia cured tetracycline-treated flies, including the reproductive organs (ovary and testes) (Fig. 4). The amplification of the larger product that corresponds to the cytoplasmic Wolbachia only from testes and ovary tissues of adults suggests that Wolbachia is restricted to the gonadal tissues in this species. Unlike for the 16S rRNA, a single wsp PCR product was observed in all tissues of Wolbachia infected and cured adults (Fig. 4). While it was not possible to differentiate between amplifications of cytoplasmic and nuclear Wolbachia, amplification from tetracycline treated adults suggests a horizontal transfer event also for the wsp gene.

The size heterogeneity was also observed for fbpA. The larger 509 bp amplification which corresponds to the cytoplasmic marker was restricted to the reproductive tissues of the tsetse flies while the smaller derived 453 bp product corresponding to the nuclear marker was present in all tissues of infected and cured adults, suggesting horizontal transfer of fbpA to the G. m. morsitans genome (Fig. 4).

Discussion

Prevalence of Wolbachia in Glossina species

Our study suggests that Wolbachia infections are present in multiple species of the genus Glossina; however, the prevalence of infections in laboratory colonies versus natural populations and the Wolbachia strain harboured in the different species varies. The infection seems to be prevalent to the morsitans (savannah) group, which includes the species G. m. morsitans, G. m. centralis and G. austeni. In addition, uncured laboratory colonies largely show fixation, suggestive of active cytoplasmic incompatibility (Alam and Aksoy, personal communication). Wolbachia was also detected in the fusca (forest) group, which includes G. brevipalpis. In contrast, Wolbachia infection seems to be largely absent from the palpalis (riverine) group, which includes G. f. fuscipes, G. tachinoides and G. p. palpalis. It should be mentioned, however, that our results depend on the PCR-amplification conditions employed in this study and the presence of low density Wolbachia infections in these species, as has been reported for other insect species [66-68], cannot be excluded. Given that our screen was based on specimens collected during 1994-2010 (see Table 1), new screens should provide information on the dynamics of infection and the expression of cytoplasmic incompatibility.

The abovementioned data are in accordance with previous reports that detected Wolbachia in G. m. morsitans, G. m. centralis, G. brevipalpis and G. austeni [42,43]. For the first time our study reports the presence...
of *Wolbachia*, albeit at very low prevalence, in *G. pallidipes* (morsitans group) and in *G. p. gambiensis* (palpalis group). The infection was only detected in 22 out of 1896 *G. pallidipes* individuals; in both species, the infection was present in different populations, as shown in Table 1. Whether the presence of *Wolbachia* in these two species is a result of horizontal transfer, hybrid introgression or co-divergence in the *morsitans* and *palpalis* species complexes, as has recently been shown in other species complexes, has to await investigation [69-71].

The prevalence of *Wolbachia* was not homogenous among the different natural populations of *G. m. morsitans*. For example, in the area Gokwe (Zimbabwe), the infection prevalence was almost nine times lower than the average of the other areas. *Glossina* populations have been shown to exhibit extensive genetic structuring; of which the observed *Wolbachia* infection dynamics may be a result [72,73]. Similar observations were made in *G. austeni* natural populations, where the *Wolbachia* infection was 98% in a South African population while the infection was 48% in a Kenyan population sampled in 1998 [42]. These data suggest that geography may influence *Wolbachia* prevalence as reported previously for field populations of spider *Hylyphantes graminicola* [74]. Further research on the heterogeneous distribution of *Wolbachia* infection in field populations could shed more light on the functional role of this endosymbiont in tsetse flies biology, ecology and evolution.

Genotyping - phylogeny

The MLST- and *wsp*-based sequence analysis indicates that all but one of the *Wolbachia* strains infecting...
Glossina species belong to supergroup A; the exception being the bacterial strain infecting G. p. gambiensis, which belongs to supergroup B. The supergroup A tsetse flies Wolbachia strains are members of three separate and distantly related groups. Our results are in accordance with two previous studies that relied on just the wsp phylogeny but indicated a similar topology [42,44]. The phylogenetic analyses strongly suggest the presence of distantly related Wolbachia strains in tsetse flies species and support the hypothesis that horizontal transmission of Wolbachia between insect species from unrelated taxa has extensively occurred, as has been reported in the spider genus Agelenopsis [70], in the wasp genus Nasonia [71], in the acari genus Bryobia [40] and in the termites of genus Odontotermes [75]. On the other hand, the sibling species G. m. morsitans and G. m. centralis carry closely related Wolbachia strains, which have identical ST and differ only in the sequence of the fast evolving wsp gene, which suggests host-symbiont co-divergence. In addition, field populations of G. m. morsitans from different locations of Africa harbor very closely related Wolbachia strains, suggesting that the geographical origin of their hosts did not impact significantly Wolbachia strain divergence. Our findings are in agreement with reports on dipteran hosts associated with mushrooms [76] and on the spider Hylyphantes graminicola [74]. On the other hand, studies on fig wasps [77] and ants [78] showed considerable association between biogeography and strain similarity.

Horizontal gene transfer

The evolutionary fate of any host-bacterial symbiotic association depends on the modes of transmission of the bacterial partner, vertical, horizontal or both. Additionally, horizontal gene (or genome) transfer events may also be important. Our data suggest that at least three genes (16S rRNA, fbpA and wsp) of the Wolbachia strain infecting G. m. morsitans have been transferred to the host genome (Figures 3 and 4). This transfer is supported by the amplification of derivative copies of fbpA and 16S rRNA, and of wsp in tissues from tetracycline-treated G. m. morsitans (Figure 4). The results suggest that fbpA and 16S rRNA have been pseudogenized through the accumulation of deletions, consistent with previous studies [45,46,51]. The transfer events were detected both in laboratory and natural populations, suggesting that they are the result of the long co-evolution of the host-Wolbachia associations. Interestingly, neither cytoplasmic Wolbachia infections nor chromosomal insertions were detected in the sibling species G. m. centralis, suggesting that the horizontal transfer event took place after the divergence of these two species. Our preliminary and ongoing studies indicate that chromosomal insertions with Wolbachia sequences may be more extensive than reported here (Aksoy and Bourtzis, unpublished observations). Similar horizontal transfer events have been reported for other Wolbachia-infected hosts [45-52]. It is worth noting that in some cases, horizontally transferred Wolbachia genes are expressed from the host genome, as reported in the mosquito Aedes aegypti and in the pea aphid Acyrthosiphon pisum, where the Wolbachia-like genes are expressed in salivary glands and in the bacteriocyte, respectively [48-50]. The release of the G. morsitans morsitans genome will allow us to further examine, by both in silico and molecular analysis, the extent of the transfer of Wolbachia genes to the host genome.
horizontal gene transfer of the Wolbachia sequences into the tsetse fly nuclear genome and whether these genes are expressed.

Conclusions
Wolbachia is present in both laboratory and natural populations of Glossina species. Tsetse flies Wolbachia strains were characterized based on 16S rRNA, wsp and MLST gene markers. In addition, horizontal gene transfer events of Wolbachia genes into tsetse fly chromosomes were detected and characterized. The detailed characterization of Wolbachia infections is a crucial step towards an adequate understanding of tsetse flies-Wolbachia interactions, which is essential for the development and implementation of Wolbachia-based biological control approaches.

Additional material

- Additional file 1: Supplementary Table 1: Primers used in the present study.
- Additional file 2: Supplementary Figure 1: Maximum likelihood inference phylogeny based on the concatenated MLST data, 2,079 bp. (Please note that tree has been rooted to the supergroup D sequences).
- Additional file 3: Supplementary Figure 2: Maximum likelihood inference phylogeny based on the wsp sequence. (Please note that tree has been rooted to the supergroup D sequences).

Acknowledgements and funding
This work was co-funded by the European Community’s Seventh Framework Programme CSA-SA_REGPOT-2007-1 under grant agreement no 203590 and CSA-SA REGPOT-2008-2 under grant agreement 245746. We are also grateful to FAO/IAEA Coordinated Research Program “Improving Sit for Tsetse Flies through Research on their Symbionts” and to EU COST Action FA0701 “Arthropod Symbiosis: From Fundamental Studies to Pest and Disease Management.” This study also received support from National Institutes of Health grants AI06892, D3T007391, R03TW008413 and Monell Foundation awarded to SA. We also thank Drs. Jan Van Den Abbeele, Andrew Chatmis, Antony Chupe, Berisha Kapitano, Karen Kappmeier-Green, Stephen Kiliisa, K.DeepEqualmale, Sadou Miga, Alan Robinson, Loyce Okedi and Hasang Tana cp for providing tsetse flies samples and Gisele Oudrugou and Abdul Asim Mohamed for their technical help with DNA extraction. This article has been published as part of BMC Microbiology Volume 11 Supplement 1, 2012: Arthropod Symbiosis: From Fundamental Studies to Pest and Disease Management. The full contents of the supplement are available online at http://www.biomedcentral.com/1471-2180/12/S1#S1.

Author details
1. Department of Environmental and Natural Resources Management, University of Ioannina, 2 Seferi St, 30100 Agrinio, Greece. 2. Yale University School of Public Health, 60 College St., 811 LEPH, New Haven, CT 06520, USA. 3. Current address: Department of Entomology, University of Kentucky, S-225 Ag, Science Center North, Lexington, KY 40546, USA. 4. *Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria. 5. *Tripanosomiasis Research Centre, Kenya Agricultural Research Institute, P.O. Box 362, Kikuyu 00902, Kenya. 6. *Institute of Zoology, Section of Molecular and Applied Zoology, Slovak Academy of Science, Dubravska cesta 9, 845 06 Bratislava, Slovakia. 7. *Biomedical Sciences Research Center Al. Fleming, 16672 Vri, Greece. 8. Present Address: Department of Environmental and Natural Resources Management, University of Western Greece, 2 Seferi St, 30100 Agrinio, Greece.

Authors’ contributions
Conceived and designed experiments: Abd-Alla Adly, Serap Aksoy, Kostas Bourtzis. Experimental work: Vangelis Dououdoumis, George Tsiarasis, Florence Wamwiri, Corey Breiltoft, Gizma Alenu, Emre Aksoy, Stelios Dalaperas, Abd-Alla Adly. Data analysis: Vangelis Dououdoumis, George Tsiarasis, Corey Breiltoft, Aksoy Serap, Kostas Bourtzis. Contributed reagents/materials/analysis tools: Johnson Ouma, Petro Takac. Manuscript writing and editing: Vangelis Dououdoumis, George Tsiarasis, Corey Breiltoft, Abd-Alla Adly, Aksoy Serap, Kostas Bourtzis.

Competing interests
The authors declare that they have no competing interests.

Published: 18 January 2012

References
1. Werren JH. Biology of Wolbachia. Annu Rev Entomol 1997, 42:587-609.
2. Werren JH, Windsor DM. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc Biol Sci 2000, 267(1450):1277-1285.
3. Jeyaprakash A, Hoy MA. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 2000, 9(4):393-405.
4. Hilgenboecker K, Hammann P, Schallmatt P, Telschow A, Werren JH. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 2008, 281(2):215-220.
5. Bandi C, Anderson TJ, Genci C, Blaxter ML. Phylogeny of Wolbachia in filarial nematodes. Proc Biol Sci 1998, 265(1413):2407-2413.
6. Bourtzis K, O'Neill S. Wolbachia infections and arthropod reproduction - Wolbachia can cause cytoplasmic incompatibility, parthenogenesis, and feminization in many arthropods. BioScience 1998, 48(4):287-293.
7. Werren JH, Baldo L, Clark ME. Wolbachia - A bacterial manipulator of arthropod reproduction - the hidden players of insect evolution? In Insect Symbiosis. Florida: CRC Press;Bourtzis K, Miller TA 2003:177-197.
8. Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 2005, 60:245-284.
9. Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008, 6(10):741-751.
10. Stouthamer R, Breeuwer JA, Hurst GD. Wolbachia endosymbionts: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 1999, 53:71-102.
11. Bourtzis K, Miller TA. Insect Symbiosis, Florida, USA: CRC Press; 2003.
12. Saridaki A, Bourtzis K. Wolbachia: more than just a bug in insects genitals. Cur Opin Microbial 2010, 13(1):167-72.
13. Hurst G, Jiggins F, Majerus M. Inherited microorganisms that selectively kill male hosts: the hidden players of insect evolution? In Insect Symbiosis. Florida: CRC Press;Bourtzis K,Miller TA 2003:177-197.
14. Bourtzis K, Miller TA 2003:177-197.
15. Kambris Z, Cook PE, Pruc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009, 326(5949):134-136.
16. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Le G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Regier M, et al. A Wolbachia symbiont in Ae des aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 2009, 139(1):1268-1278.
17. Pfarr K, Hoerauf A. The annotated genome of Wolbachia from the filarial nematode Brugia malayi: what it means for progress in antifilarial medicine. PLoS Med 2005, 2(4):e110.
18. Zabalo S, Regier M, Theodorakopoulou M, Stufter C, Savakis C, Bourtzis K. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci U S A 2004, 101(42):15042-15045.
19. Beard CB, Durvasula RV, Richards FF. Bacterial symbiosis in arthropods and the control of disease transmission. Emerg Infect Dis 1998, 4(4):581-591.
20. McLennan CJ, Lane RV, Caix BN, Fong AW, Sithu M, Wang YF, O'Neill S: Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 2009, 323(5910):141-144.
21. X I, Khoo CC, Dobson SL. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 2005, 310(5746):326-328.
22. Bourzis K. Wolbachia-based technologies for insect pest population control. Adv Exp Med Biol 2008, 627:104-113.
23. Welburn SC, Fevre EM, Coleman PG, Odit M, Maudlin I: Sleeping sickness: a tale of two diseases. Trends Parasitol 2001, 17(1):19-24.
24. Cattand P. The scourge of human African trypanosomiasis. Afr Health 1995, 17(5):9-11.
25. Kisy D, Jannin J, Mattrock N: Human African trypanosomiasis. Nat Rev Microbiol 2004, 2(3):186-187.
26. Simarro PP, Kioy D, Jannin JG: Incompatible insect technique: incompatible males from a Ceratitiscapitata genetic sexing strain. Entomol Experimentalis Et Applicata 2009, 132(3):232-240.
27. Bourzis K, Robinson AS: Insect pest control using Wolbachia and/or radiation. In Insect Symbiosis 2. Florida, USA: CRC Press, Talylor and Francis Group, LLC;Bourzis K, Miller TA 2006:225-246.
28. Apostolaki A, Saridakis A, Livadaras I, Zacharoulis S, Apostolaki A, Livadaras I, Saridakis A, Bourzis K: Transfection of the olive fruit fly with a Wolbachia CI inducing strain: a promising symbiont-based population control strategy? Journal of Applied Entomology 2011, 10.1111/j.1439-0418.2011.01614.x.
29. Cheng Q, Aksoy S: Tissue tropism, transmission and expression of foreign genes in vivo in midgut symbions of tsetse flies. Insect Mol Biol 1999, 8(1):125-132.
30. Rie R, Hu Y, Aksoy S: Strategies of the home-room: symbioses exploited for vector-borne disease control. Trends Microbiology, 2004, 12(7):325-336.
31. Cheng Q, Aksoy S: Wolbachia and trypanosomes. In Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Int J Syst Evol Microbiol 2007, 57(9):654-657.
32. Rowley SM, Raven RJ, McCraw EA: Wolbachia pipientis in Australian spiders. Curr Microbiol 2004, 49(3):208-214.
33. Bordenstein S, Rosengaus RB: Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 2005, 51(6):399-398.
34. Casiraghi M, Bordenstein SR, Bandi C: Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005, 151(Pt 12):4015-422.
35. Gorham CH, Fang QG, Durden LA: Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 2003, 89(2):263-269.
36. Ra SN, Fleming VM, Fei EL, Breeuwer JA: How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acarac: Tetanychidae). Appl Environ Microbiol 2009, 75(8):2674-2679.
37. Bordenstein S, Rosengaus RB: Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 2005, 51(6):399-398.
38. Casiraghi M, Bordenstein SR, Baldo L, No L, Beninati T, Werren JH, Bandi C: Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005, 151(Pt 12):4015-422.
39. Gorham CH, Fang QG, Durden LA: Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 2003, 89(2):263-269.
40. Ra SN, Fleming VM, Fei EL, Breeuwer JA: How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acarac: Tetanychidae). Appl Environ Microbiol 2009, 75(8):2674-2679.
41. Bordenstein S, Rosengaus RB: Discovery of a novel Wolbachia supergroup in Isoptera. Curr Microbiol 2005, 51(6):399-398.
42. Casiraghi M, Bordenstein SR, Baldo L, No L, Beninati T, Werren JH, Bandi C: Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology 2005, 151(Pt 12):4015-422.
43. Gorham CH, Fang QG, Durden LA: Wolbachia endosymbionts in fleas (Siphonaptera). J Parasitol 2003, 89(2):263-269.
44. Ra SN, Fleming VM, Fei EL, Breeuwer JA: How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acarac: Tetanychidae). Appl Environ Microbiol 2009, 75(8):2674-2679.
71. Raychoudhury R, Baldo L, Oliveira DC, Werren JH: Modes of acquisition of Wolbachia: horizontal transfer, hybrid introgression, and codivergence in the Nasonia species complex. Evolution 2009, 63(1):165-183.

72. Ouma JO, Marquez JS, Krafsur ES: Patterns of genetic diversity and differentiation in the tsetse fly Glossina morsitans morsitans Westwood populations in East and southern Africa. Genetica 2007, 130(2):139-151.

73. Krafsur ES: Tsetse flies: genetics, evolution, and role as vectors. Infect Genet Evol 2009, 9(1):124-141.

74. Yun Y, Lei C, Peng Y, Liu F, Chen J, Chen L: Wolbachia strains typing in different geographic population spider, Hylyphantes graminicola (Linyphiidae). Curr Microbiol 2010, 62(1):139-145.

75. Salunke BK, Salunkhe RC, Dhotre DP, Khandagale AB, Walujkar SA, Kirwale GS, Ghate HV, Patole MS, Shouche YS: Diversity of Wolbachia in Odontotermes spp. (Termitidae) and Coptotermes heimi (Rhinotermitidae) using the multigene approach. FEMS Microb. Lett 2010, 307(1):55-64.

76. Stahlhut JK, Desjardins CA, Clark ME, Baldo L, Russell JA, Werren JH, Jaenike J: The mushroom habitat as an ecological arena for global exchange of Wolbachia. Mol Ecol 2010, 19(9):1940-1952.

77. Haine ER, Cook JM: Convergent incidences of Wolbachia infection in fig wasp communities from two continents. Proc Biol Sci 2005, 272(1561):421-429.

78. Russell JA, Goldman-Huertas B, Moreau CS, Baldo L, Stahlhut JK, Werren JH, Pierce NE: Specialization and geographic isolation among Wolbachia symbionts from ants and lycaenid butterflies. Evolution 2009, 63(3):624-640.

doi:10.1186/1471-2180-12-S1-S3

Cite this article as: Doudoumis et al: Detection and characterization of Wolbachia infections in laboratory and natural populations of different species of tsetse flies (genus Glossina). BMC Microbiology 2012 12(Suppl 1):S3.