RESUMO: A peculiaridade da formação profissionalmente orientada de candidatos ao ensino superior com base em tecnologias STEM é a necessidade de levar em consideração as conexões interdisciplinares como manifestação de processos integrativos de penetração das disciplinas fundamentais (física), do conhecimento natural e matemático no ciclo das disciplinas da formação profissionalmente orientada dos alunos, proporcionada não apenas pelas competências físicas, matemáticas e técnicas básicas do século XXI, mas também por conhecimentos metodológicos fundamentais tendo em conta aspectos aplicados. Essas conexões desempenham um papel fundamental na melhoria da qualidade da formação profissionalmente orientada de futuros especialistas. O objetivo do artigo é determinar o impacto de tecnologias inovadoras de educação STEM na qualidade de aprendizagem do material educacional por meio de um experimento físico. O artigo comprova experimentalmente a eficácia do uso da abordagem STEM ao realizar o trabalho de laboratório para formar os conceitos físicos estudados em comparação com os métodos de ensino tradicionais. Foi demonstrado que o uso da abordagem STEM melhora o nível de assimilação dos conceitos em comparação com os métodos tradicionais de ensino. No caso do uso da abordagem STEM, o número de alunos com alto nível de assimilação de conceitos aumenta significativamente, enquanto o número de alunos com baixo nível diminui, o que prova a eficácia do uso da abordagem STEM para a formação de nível de conhecimento e habilidades. O artigo destaca as características da formação do componente STEM no ensino no ambiente educacional e científico inovador da universidade técnica, bem como as características da metodologia de ensino levando em consideração as tecnologias de aprendizagem STEM.
Concluiu-se que o uso da abordagem STEM melhora significativamente o nível de assimilação dos conceitos físicos em comparação com os métodos tradicionais de ensino.

PALAVRAS-CHAVE: Aprendizagem STEM. Tecnologias STEM. Ambiente STEM. Abordagem STEM. Física. Trabalho de laboratório. Conceitos científicos.

RESUMEN: La peculiaridad de la formación profesionalmente orientada de los aspirantes a la educación superior basada en tecnologías STEM es la necesidad de tener en cuenta las conexiones interdisciplinarias como manifestación de procesos integradores de penetración de disciplinas fundamentales (física), conocimientos naturales y matemáticos en el ciclo de asignaturas de la profesión. Formación orientada al alumnado, que se proporciona no solo por las competencias básicas físicas, matemáticas y técnicas del siglo XXI sino también por conocimientos metodológicos clave teniendo en cuenta aspectos aplicados. Estas conexiones desempeñan un papel fundamental en la mejora de la calidad de la formación profesional de los futuros especialistas. El propósito del artículo es determinar el impacto de las tecnologías innovadoras de la educación STEM en la calidad del aprendizaje del material educativo a través de un experimento físico. El artículo corrobora experimentalmente la efectividad de utilizar el enfoque STEM al realizar el trabajo de laboratorio para formar los conceptos físicos estudiados en comparación con los métodos de enseñanza tradicionales. Se ha demostrado que el uso del enfoque STEM mejora el nivel de asimilación de conceptos en comparación con los métodos de enseñanza tradicionales. En el caso de utilizar el enfoque STEM, el número de estudiantes con un alto nivel de asimilación de conceptos aumenta significativamente, mientras que el número de estudiantes con un nivel bajo disminuye, lo que demuestra la efectividad de usar el enfoque STEM para la formación de alto nivel. nivel de conocimientos y habilidades. El artículo destaca las características de la formación del componente STEM en la docencia en el entorno educativo y científico innovador de la universidad técnica, así como las características de la metodología de enseñanza teniendo en cuenta las tecnologías de aprendizaje STEM. Se ha concluido que el uso del enfoque STEM mejora significativamente el nivel de asimilación de conceptos físicos en comparación con los métodos de enseñanza tradicionales.

PALABRAS CLAVE: Aprendizaje STEM. Tecnologías STEM. Entorno STEM. Enfoque STEM. Física. Trabajo de laboratorio. Conceptos científicos.

ABSTRACT: The peculiarity of professionally oriented training of applicants for higher education based on STEM technologies is the need to take into account interdisciplinary connections as a manifestation of integrative processes of penetration of fundamental disciplines (physics), natural and mathematical knowledge into the cycle of subjects of professionally oriented training of students, which is provided not only by basic physical, mathematical and technical competencies of the 21st century but also by key methodological knowledge taking into account applied aspects. These connections play a leading role in improving the quality of professionally oriented training of future specialists. The purpose of the article is to determine the impact of innovative technologies of STEM education on the quality of learning of educational material through a physical experiment. The article experimentally substantiates the effectiveness of using the STEM approach when performing laboratory work to form the studied physical concepts in comparison with traditional teaching methods. It has been shown that the use of the STEM approach improves the level of assimilation of concepts in comparison with traditional teaching methods. In the case of using
the STEM approach, the number of students with a high level of assimilation of concepts increases significantly, while the number of students with a low level decreases, which proves the effectiveness of using the STEM approach for the formation of high-level knowledge and skills. The article highlights the features of the formation of the STEM component in teaching in the innovative educational and scientific environment of the technical university, as well as the features of the teaching methodology taking into account STEM-learning technologies. It has been concluded that the use of the STEM approach significantly improves the level of assimilation of physical concepts in comparison with traditional teaching methods.

KEYWORDS: STEM-learning. STEM-technologies. STEM-environment. STEM-approach. Physics. Laboratory work. Scientific concepts.

Introdução

Atending to the trends of the disciplines of education in the last decades (adequation of the educational process to modern trends in the educational sphere, especially due to the restrictions associated with the development of the COVID-19 pandemic, introduction of information technologies, mobile and remote; involvement of new educational equipment), the priority task of education is not only the assimilation of a certain amount of knowledge, skills and aptitudes, but the formation of competencies related to professional activity. It is the use of STEM education, according to many studies (for example, (BLACKLEY; HOWELL, 2015; LOGACHEV et al., 2021; DALGARNO et al., 2009; VINICHENKO, et al., 2020), that will expand the opportunities of professional education and high quality of future specialists, developing the ability of research, analytical work, experimentation and critical thinking.

A question urgent of the innovative development of education is the development and implementation of modern teaching methods based on the principles of STEM education (HAN et al., 2015), which will ensure the formation of specialists qualified in the technical industry (KNEZEK; CHRISTENSEN; TYLER-WOOD, 2011). The effectiveness of a didactic approach based on STEM education precedes the adaptability of the forms and methods of education in terms of its structure, design and practical application, as well as the first stage of the design of the educational process – the formulation of tasks that require being considered in the learning process.
Revisão de literatura

Segundo os pesquisadores, a educação STEM é uma série ou sequência de cursos ou programas de treinamento (BROWN et al., 2011) que preparam os candidatos para um emprego bem-sucedido, exigem habilidades diferentes e tecnicamente mais complexas (HERNANDEZ et al., 2014), em particular com o uso de conhecimentos matemáticos e conceitos científicos (BECKER; PARK, 2011).

Com base na análise da literatura científica, a Tabela 1 apresenta os objetivos e métodos de educação STEM que devem ser levados em consideração no processo de preparação de candidatos ao ensino superior.

Objetivos e métodos	Fonte
Objetivos	
A alfabetização científica e técnica dos sujeitos da formação pressupõe uma compreensão científica básica dos fenômenos estudados, a sua utilização nas tecnologias quotidianas e a alfabetização digital. Esse objetivo é alcançado por meio de aprendizado integrado, conexões interdisciplinares baseadas nos princípios da educação STEM	(LI, 2018; FREEMA; MARGINSON; TYTLER, 2015; MEYRICK, 2011)
O potencial científico e técnico das disciplinas de formação visa melhorar as competências técnicas e prevê o domínio das competências de software e hardware informatizado nas várias formas do ambiente educacional e científico STEM	(BASHAM; ISRAEL; MAYNARD, 2010; ENGLISH; KING, 2015; BREINER et al., 2012)
A modelagem e o design no campo da educação STEM incluem o desenvolvimento de habilidades especiais STEM que são formadas no processo de aprendizagem	(FREEMAN et al., 2014; MALTESE et al., 2015; ERDOGAN et al., 2016)
Métodos	
Formação STEM integrada e interdisciplinar (envolvendo duas ou mais disciplinas) para fornecer uma educação holística no campo da ciência e um ambiente STEM educacional e científico focado em tecnologias STEM. Esta é uma combinação sinérgica de muitas disciplinas que representam uma nova base para ensinar e estudar disciplinas com ênfase em pesquisa científica e resolução de problemas	(DECOITO, 2016; LI; SCHOENFELD, 2019; MOORE; SMITH, 2014).
Identificação dos componentes da educação STEM no processo de resolução de problemas e realização de trabalhos práticos focados no aspecto aplicado da indústria	(ERDURAN; OZDEM; PARK, 2015; SAMPURNO; SARI; WIJAYA, 2015; SPELT et al., 2009; TÜRK; KALAYC; YAMAK, 2018).

Fonte: Elaborado pelos autores
A hipótese do estudo: o uso da abordagem STEM melhora significativamente o nível de assimilação dos conceitos estudados em comparação com os métodos tradicionais de ensino, promove o desenvolvimento da criatividade e habilidades artísticas dos alunos.

Objetivos de pesquisa:
- selecionar alunos dos grupos experimental e controle;
- realizar formação experimental de alunos de grupos experimentais usando a abordagem STEM na realização de trabalhos laboratoriais em física;
- realizar o processamento quantitativo e interpretação de dados experimentais;
- formular conclusões e perspectivas para novas pesquisas.

O artigo consiste em uma introdução, revisão de literatura, métodos, resultados, discussão e conclusão.

Métodos

Modelo de pesquisa

Independentemente do método de cognição, que é a base do processo de ensino de física, um experimento físico educacional é seu elemento obrigatório e, ao mesmo tempo, um componente integrante da metodologia de ensino de física como disciplina científica que pode garantir a assimilação efetiva de conhecimento por disciplinas de formação no contexto da educação STEM.

A importância dos experimentos físicos no processo educacional no contexto do desenvolvimento da educação STEM decorre do fato de que a atividade humana fundamental é prática. Especial atenção é dada ao trabalho de laboratório no sistema do experimento físico educacional, que fornece treinamento prático para os alunos no processo de estudo da física como ciência fundamental. O principal objetivo da realização de trabalhos de laboratório é familiarizar os alunos com o método experimental de estudo dos fenômenos físicos, formar uma compreensão dos princípios de medição de grandezas físicas, dominar os métodos e técnicas de medição, bem como os métodos de análise de erros.

Nesse sentido, foi realizado um estudo experimental da influência do uso da abordagem STEM no ensino de alunos no processo de realização de trabalhos laboratoriais no curso de física por alunos do 1º e 2º anos.

Os dispositivos dos laboratórios digitais Phywe foram usados para testar a hipótese e implementar a abordagem STEM no ensino dos alunos. Os principais módulos STEM da
empresa alemã "Phywe" incluem robótica, programação, elementos de mecânica e estática, programas matemáticos, produção.

Recrutamos também quatro turmas de alunos que cursavam o primeiro e segundo anos do bacharelado, totalizando 151 pessoas. Alunos dos grupos experimentais do primeiro e segundo anos (GE1, 40 pessoas; EG2, 37 pessoas) estavam estudando conceitos físicos durante estudos laboratoriais desenvolvidos com base na abordagem STEM e tiveram a oportunidade de usar os dispositivos dos laboratórios digitais "Phywe", incluindo o conjunto de codificação Arduino Brick'R'knowledge, projetado para familiarizar os alunos com eletrônica digital e programação; um conjunto de robótica (TÜRK; KALAYC; YAMAK, 2018), com o qual é possível iniciar facilmente a programação e determinar os princípios básicos dos robôs; um conjunto de Eletrônica Básico, projetado para familiarizar os alunos com as variáveis e capacidades funcionais mais importantes dos circuitos eletrônicos.

Os alunos das turmas de controle do primeiro e segundo anos (GC1, 39 pessoas; GC2, 35 pessoas) dominaram os fenômenos e conceitos estudados pelo método tradicional de ensino, baseado em conversa heurística e trabalho de laboratório frontal.

Métodos empíricos

Alunos dos grupos experimental e controle foram testados (experiência de verificação) para verificar o nível de assimilação dos fenômenos e conceitos estudados. O experimento formativo consistiu em verificar o nível de assimilação dos fenômenos e conceitos estudados após o trabalho de laboratório. A prova incluiu 10 questões fechadas refletindo tanto os principais fundamentos teóricos dos fenômenos e conceitos estudados como os seus aspectos práticos.

Além disso, os resultados das realizações educacionais dos alunos no domínio de fenômenos e conceitos foram considerados de acordo com os critérios da formação de conceitos científicos. As características dos níveis de formação de conceitos científicos são determinadas pelos níveis correspondentes de atividades mentais e cognitivas: inicial (reprodutivo), médio (intelectual e lógico), alto (criativo).

A estrutura geral de critérios para os níveis de formação de conceitos científicos entre os alunos, que se propõe a ser utilizada no curso de avaliação pedagógica, é apresentada na Tabela 2.
Tabela 2 – Critérios para a formação de conceitos científicos

Níveis de formação de conceitos científicos	A principal característica dos critérios para os níveis de formação de conceitos científicos
1. Inicial	A ideia inicial dos objetos do fenômeno, a posse de termos que denotam o conceito, a posse de signos individuais de conceitos
2. Médio	Livre uso de terminologia para denotar conceitos, posse de objetos de conceitos, compreensão da essência dos fenômenos, leis, relações entre conceitos; operando com ações lógicas sequenciais para explicar a essência dos fenômenos
3. Alto	A presença de pensamento criativo produtivo, a capacidade de prever eventos, fenômenos; fluência em conceitos e termos científicos básicos, a capacidade de aplicar o conhecimento para resolver problemas ideológicos, a capacidade de estabelecer independentemente relações de causa e efeito entre os principais conceitos científicos, a capacidade de fazer generalizações e conclusões ideológicas com base na posse de um sistema de conceitos científicos básicos

Fonte: Elaborado pelos autores

Processamento matemático dos resultados da pesquisa

O coeficiente de assimilação de conhecimento k foi usado para o processamento matemático dos dados obtidos:

\[k = \left(\frac{\sum I_a}{N I_a} \right) \times 100\% \]

onde \(a \) é o número total de elementos de conhecimento a serem testados, \(\sum I_a \) é a soma dos elementos de conhecimento aprendidos pelos alunos do grupo selecionado, \(I_a \) é o número de elementos do conhecimento aprendido que correspondem a um certo nível de formação e assimilação de fenômenos e conceitos científicos, \(N \) é o número total de alunos do grupo selecionado.

Resultados

Os resultados do nível de assimilação dos fenômenos e conceitos estudados nos grupos controle e experimental são apresentados na Fig. 1 e Tabela 3.

Tabela 3 – Resultados comparativos do nível de assimilação dos fenômenos e conceitos estudados nos grupos controle e experimental

Método de formação tradicional (GC1, GC2)	Abordagem STEM GE1, GE2	
Const. experimento	Form. experimento	
Const. experimento	Form. experimento	
1º ano	35%	41%
	37%	70%
2º ano	44%	51%
	43%	68%

Fonte: Elaborado pelos autores
De acordo com os resultados da experiência, o nível de formação dos fenômenos e conceitos estudados (experiência afirmativa) os alunos do 1º ano têm menos em comparação com os alunos do 2º ano. Os resultados do experimento formativo sugerem que o nível de assimilação dos fenômenos e conceitos estudados entre os alunos do 1º ano tradicionalmente os dominavam aumentou em 6% e com a ajuda da abordagem STEM em 33%. Os indicadores correspondentes foram 7% (tecnologia tradicional) e 25% (abordagem STEM) entre os alunos do 2º ano. Assim, a eficiência de domínio de fenômenos e conceitos usando a abordagem STEM é maior para alunos de 1º-2º anos em comparação com a tecnologia tradicional.

A avaliação da eficácia da abordagem STEM em comparação com os métodos tradicionais de ensino de acordo com os critérios de realizações educacionais é apresentada na Tabela 4.
Tabela 4 – Avaliação baseada em critérios da assimilação pelos alunos dos fenômenos e conceitos estudados usando a abordagem STEM e métodos tradicionais de ensino

	Método de formação tradicional (GC1, GC2)	Abordagem STEM (GE1, GE2)						
	Const. experiment	Form. experiment	Const. experiment	Form. experiment				
	Nível	quant., %						
1º ano								
baixo	26	baixo	16	baixo	20	baixo	10	
médio	70	médio	66	médio	71	médio	58	
alto	4	alto	18	alto	9	alto	32	
2º ano								
baixo	24	baixo	12	baixo	21	baixo	9	
médio	68	médio	68	médio	69	médio	49	
alto	8	alto	20	alto	10	alto	42	

Fonte: Elaborado pelos autores

De acordo com os resultados do estudo, o uso de métodos tradicionais provoca uma diminuição do número de alunos com baixo nível de conhecimento em cerca de 10-12% em ambos os cursos, um aumento no número de alunos com alto nível de conhecimento em 12-14%, enquanto o número de alunos com um nível médio de conhecimento permanece quase inalterado.

A utilização da abordagem STEM aumenta significativamente o número de alunos com alto nível de conhecimento, respectivamente, em 23% entre os alunos do 1º ano e em 32% entre os alunos do 2º ano; o número de alunos com baixo nível de conhecimento diminui, mas dentro de 10%, o que também foi registrado durante o uso de métodos tradicionais. Paralelamente, verifica-se uma diminuição do número de alunos com nível médio de conhecimento, respectivamente de 13% para os alunos do 1º ano e de 20% para os alunos do 2º ano, mas estas alterações podem ser explicadas por um aumento significativo o número de alunos com alto nível de conhecimento.

Discussão

Os resultados do estudo mostraram que para que os alunos assimilem os fenômenos e conceitos estudados, formem ideias convincentes em física, é necessário criar e trabalhar uma metodologia adequada para o ensino de física e disciplinas profissionalmente orientadas baseadas em tecnologias STEM, o que melhoraria o nível de conhecimento e habilidades, bem como estimularia os alunos à pesquisa cognitiva ativa e ao trabalho independente durante o estudo da física nas condições de desenvolvimento da aprendizagem STEM.

A transição para o ensino STEM exige o aprimoramento dos métodos de ensino de física, que prevê o seguinte: o uso de novos métodos, técnicas, ferramentas de ensino que
ajudem a resolver diversos problemas metodológicos das seções de física; a aplicação e introdução de conquistas científicas interessantes e importantes no processo educacional em física (WILLIAMS, 2011), bem como o fortalecimento daqueles aspectos que estimulam e ativam a atividade cognitiva independente dos alunos (MARGOT; KETTLER, 2019).

A análise de trabalhos científicos sobre o problema do ensino de física no contexto do desenvolvimento da educação STEM permite identificar as seguintes características da formação do componente STEM no ensino de física e no ambiente educacional e científico inovador da universidade técnica:

1) foco na educação STEM, especialmente na formação orientada para a personalidade e na introdução generalizada de disciplinas acadêmicas integradas nas universidades técnicas. Essa direção prevê o fortalecimento da atividade cognitiva e de busca independente dos alunos e a criação de condições no ambiente educacional e de aprendizagem para o autodesenvolvimento e autorrealização de cada aluno (BROWN et al., 2011; INGLÊS, 2016);

2) alcançar uma proporção e combinação adequadas dos componentes humanitário e técnico-natural da universidade na educação STEM, a combinação ideal de seus componentes teóricos e práticos, que, respectivamente, diz respeito ao ensino de física (BECKER; PARK, 2011; FREEMAN; MARGINSON; TYTLER, 2015; BRANCO, 2014);

3) o rápido desenvolvimento e a ampla introdução de tecnologias digitais de aprendizagem que levam a educação física a um novo patamar superior, pois a introdução de TIC, modelagem 3D, kits robóticos, tecnologias de jogos ajudam os alunos a assimilar melhor os conhecimentos em física com a alocação de elementos de engenharia de educação STEM (FREEMAN et al., 2014; DECOITO, 2016);

4) os diferentes conteúdos do material didático em física em termos de volume e complexidade de sua apresentação, levando em conta a abordagem integrada, devem chamar a atenção de metodólogos e especialistas da ciência pedagógica para o fato de que o conhecimento em física é necessária para todos os alunos de Instituições de ensino superior, levando em consideração o conceito de desenvolver a educação STEM e popularizar o componente técnico e de engenharia, independentemente de qual perfil e programa de física foram ensinados (ERDURAN; OZDEM; PARK, 2015; STOHLMANN; MOORE; ROEHRIG, 2012).

Ao mesmo tempo, confirmando a inadmissibilidade da complicação excessiva do material didático com conteúdo teórico e cálculos matemáticos, é impossível descartar igualmente todos os exemplos possíveis de estudo experimental de tal conteúdo, pois é a atividade de pesquisa cognitiva e pesquisa independente de o aluno que fundamenta a cognição
ativa, que realiza seu desejo de conhecer o ambiente e suas capacidades no campo técnico de formação.

Junto com isso, na metodologia de ensino de física, levando em consideração as tecnologias de aprendizagem STEM, é necessário o seguinte:

- não excluir a possibilidade de uso daqueles meios e equipamentos educacionais em física que se justificaram e foram testados pela prática educacional (KNEZEK; CHRISTENSEN; TYLER-WOOD, 2011); novas ferramentas de ensino devem complementar as já existentes e oportunizar a ampliação de suas funções seguindo o novo paradigma da educação, em que o aluno é considerado um sujeito ativo, o resultado final do processo educacional depende em grande parte de atividade educativa consciente (PETERS-BURTON et al., 2014);

- proporcionar um aumento do nível de atividade de pesquisa cognitiva independente dos alunos em diferentes estágios da formação do conhecimento físico, que pode ser fornecido pelos conjuntos de equipamentos criados, onde todos os elementos e componentes são coordenados entre si, atendem aos requisitos ergonômicos, permitem obter bons resultados e atingir um nível adequado de educação física (HERNANDEZ et al., 2014; TÜRK; KALAYC; YAMAK, 2018);

- proporcionar aos alunos a oportunidade de formar a capacidade de utilização de meios modernos de equipamentos digitais, TIC e informática, orientando-os para uma maior utilização das ferramentas de informação tanto nas atividades educativas como na futura esfera profissional (LI, 2018; BASHAM; ISRAEL; MAYNARD, 2010);

- centrar-se no desenvolvimento de ferramentas de ensino de física multifuncionais, que devem visar a implementação de relações intradisciplinares e interdisciplinares e a integração dos conteúdos das disciplinas do ciclo de ciências naturais no contexto do desenvolvimento da educação STEM (MALTESE et al., 2015; WANG et al., 2011);

- o conjunto educacional de ferramentas de ensino criado e seu suporte metodológico devem formar um ambiente educacional STEM eficaz em que tanto a atividade do professor quanto o trabalho do aluno no processo de estudar física sejam igualmente eficazes (ERDOGAN et al., 2016; DECOITO, 2016);

- levando em conta as peculiaridades da organização do trabalho independente e as especificidades da realização de pesquisas físicas, os conjuntos de equipamentos em física devem ser projetados para o trabalho independente dos alunos, formar a capacidade de ajustar os parâmetros físicos, antecipar o resultado esperado, experimentar de forma independente,
realizar várias medições e cálculos, avaliar fenômenos físicos, bem como generalizar os resultados obtidos (LI; SCHOENFELD, 2019; SHEFFIELD et al., 2018);

- o sistema de experimentos físicos educacionais em combinação com os meios de experimentação em física devem ser orientados para uma base tecnológica moderna, atender aos modernos requisitos psicológicos e pedagógicos, sanitários e ergonômicos (MOORE; SMITH, 2014). Com isso, deve-se supor que esses requisitos não são inalterados, estão sendo aprimorados e estão em constante desenvolvimento como uma indústria separada.

Conclusão

A introdução do sistema de formação STEM nas universidades técnicas contribuirá para a modernização do sistema de formação psicológica, pedagógica, metodológica e prática dos futuros candidatos ao ensino superior sobre os princípios da educação STEM; o estabelecimento da produção de equipamentos STEM educacionais e meios didáticos de STEM para o ensino de física; a aplicação da abordagem STEM ao processo educacional, que envolve o desenvolvimento pessoal visando a entrada ativa e construtiva em processos inovadores modernos e a obtenção de um alto nível de autorrealização no estudo das disciplinas físicas e técnicas.

Está provado experimentalmente que o uso da abordagem STEM melhora significativamente o nível de assimilação de conceitos físicos em comparação com os métodos tradicionais de ensino. Maior eficiência foi demonstrada ao usar a abordagem STEM para alunos do 2º ano em comparação com os alunos do 1º ano. Ao usar a abordagem STEM, o número de alunos com alto nível de domínio de conceitos aumenta significativamente, enquanto o número de alunos com baixo nível diminui, o que comprova a eficácia do uso da abordagem STEM para a formação de conhecimentos e habilidades de alto nível. Os resultados obtidos indicam que o uso da abordagem STEM contribui para o desenvolvimento da criatividade e das habilidades criativas dos alunos.

Vemos a perspectiva de mais pesquisas para estabelecer exatamente como o uso da abordagem STEM contribui para o desenvolvimento da criatividade e das habilidades criativas dos alunos.

AGRADECIMENTOS: Este documento foi apoiado pelo Programa de Liderança Estratégica da Universidade RUDN.
REFERENCES

BASHAM, J. D.; ISRAEL, M.; MAYNARD, K. An ecological model of STEM education: Operationalizing STEM for all. *Journal of Special Education Technology*, v. 25, n. 3, p. 9-19, 2010.

BECKER, K.; PARK, K. Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students' learning: A preliminary meta-analysis. *Journal of STEM Education: Innovations and Research*, v. 12, n. 5/6, p. 23-37, 2011.

BLACKLEY, S.; HOWELL, J. A STEM narrative: 15 years in the making. *Australian Journal of Teacher Education*, v. 40, n. 7, p. 102–112, 2015.

BREINER, J. M. *et al.* What is STEM? A discussion about conceptions of STEM in education and partnerships. *School Science and Mathematics*, v. 112, n. 1, p. 3-11. 2012.

BROWN, R. *et al.* Understanding STEM: Current perceptions. *Technology and Engineering Teacher*, v. 70, n. 6, p. 5-9, 2011.

DALGARNO, B. *et al.* Effectiveness of a Virtual Laboratory as a preparatory resource for Distance Education chemistry students. *Computers & Education*, v. 53, p. 853-865. 2009. DOI: 10.1016/j.compedu.2009.05.005.

DECOITO, I. STEM education in Canada: A knowledge synthesis. *Canadian Journal of Science, Mathematics and Technology Education*, v. 16, n. 2, p. 114-128, 2016.

ENGLISH, L. D. STEM education K-12: Perspectives on integration. *International Journal of STEM Education*, v. 3, n. 3, 2016. DOI: 10.1186/s40594-016-0036-1

ENGLISH, L. D.; KING, D. T. STEM learning through engineering design: fourth-grade students’ investigations in aerospace. *International Journal of STEM Education*, v. 2, n. 14, 2015. DOI: 10.1186/s40594-015-0027-7

ERDOGAN, N. *et al.* Viewing how STEM projects-based learning influences students’ science achievement through the implementation lens: A latent growth modeling. *Eurasia Journal of Mathematics, Science and Technology Education*, v. 12, n. 8, p. 2139-2154, 2016.

ERDURAN, S.; OZDEM, Y.; PARK, J.-Y. Research trends on argumentation in science education: A journal content analysis from 1998-2014. *International Journal of STEM Education*, v. 2, n. 5, 2015. DOI: 10.1186/s40594-015-0020-1

FREEMAN, B.; MARGINSON, S.; TYTLER, R. (Ed). Widening and deepening the STEM effect. *In: The age of STEM*. Oxon: Routledge, 2015. p. 23-43.

FREEMAN, S. *et al.* Active learning increases student performance in science, engineering, and mathematics. *Proceedings of the National Academy of Sciences*, v. 111, n. 23, p. 8410-8415, 2015.
HAN, S. et al. In-service teachers' implementation and understanding of STEM project-based learning. Eurasia Journal of Mathematics, Science and Technology Education, v. 11, n. 1, p. 63-76, 2015.

HERNANDEZ, P. R. et al. Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention. International Journal of Technology and Design Education, v. 24, n. 1, p. 107-120, 2014.

KNEZEK, G.; CHRISTENSEN, R.; TYLER-WOOD, T. Contrasting perceptions of STEM content and careers. Contemporary Issues in Technology and Teacher Education, v. 11, n. 1, p. 92-117, 2011.

LI, Y. Journal for STEM education research - promoting the development of interdisciplinary research in STEM education. Journal for STEM Education Research, v. 1, n. 1-2, p. 1-6, 2018.

LI, Y.; SCHOENFELD, A. H. Problematizing teaching and learning mathematics as 'given' in STEM education. International Journal of STEM Education, v. 6, n. 44, 2019. DOI: 10.1186/s40594-019-0197-9

LOGACHEV, M. S. et al. Information System for Monitoring and Managing the Quality of Educational Programs. Journal of Open Innovation: Technology, Market, and Complexity, v. 7, n. 1, p. 93, 2021. DOI: 10.3390/joitmc7010093

MALTESE, A. V. et al. STEM and STEM education in the United States. In: FREEMAN, B.; MARGINSON, S.; TYTLER, R. (eds.). The age of STEM. Oxon: Routledge, 2015. p. 102-133.

MARGOT, K. C.; KETTLER, T. Teachers' perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, v. 6, n. 2, 2019. DOI: 10.1186/s40594-018-0151-2

MEYRICK, K. M. How STEM education improves student learning. Meridian K-12. School Computer Technologies Journal, v. 14, n. 1, p. 1-6, 2011.

MOORE, T. J.; SMITH, K. A. Advancing the state of the art of STEM integration. Journal of STEM Education, v. 15, n. 1, p. 5-10, 2014.

PETERS-BURTON, E. et al. Inclusive STEM high school design: 10 critical components. Theory Into Practice, v. 53, n. 1, p. 67-71, 2014.

SAMPURNO, P. J.; SARI, Y. A.; WIJAYA, A. D. Integrating STEM (Science, Technology, Engineering, Mathematics) and Disaster (STEM-D) education for building students’ disaster literacy. International Journal of Learning and Teaching, v. 1, n. 1, p. 73–76, 2015.

SHEFFIELD, R. et al. Transnational Examination of STEM Education. International Journal of Innovation in Science and Mathematics Education, v. 26, n. 8, p. 67-80, 2018.

SPELT, E. J. H. et al. Teaching and learning in interdisciplinary higher education: A systematic review. Educational Psychology Review, v. 21, p. 365-378, 2009.
STOHLMANN, M.; MOORE, T.; ROEHRIG, G. Considerations for teaching integrated STEM education. *Journal of Pre-College Engineering Education Research*, v. 2, n. 1, p. 28-34, 2012.

TÜRK, N.; KALAYC, N.; YAMAK, H. New Trends in Higher Education in the Globalizing World: STEM in Teacher Education. *Universal Journal of Educational Research*, v. 6, n. 6, p. 1286-1304, 2018.

VINICHENKO, M. V. *et al*. The Effect of Digital Economy and Artificial Intelligence on The Participants of The School Educational Process. *Propósitos y Representaciones*, v. 8, n. SPE2, e694, 2020. DOI: 10.20511/pyr2020.v8nSPE2.694

WANG, H-H. *et al*. STEM integration: Teacher perceptions and practice. *Journal of Pre-College Engineering Education Research*, v. 1, n. 2, p. 1-13, 2011.

WHITE, D. W. What is STEM education and why is it important? *Florida Association of Teacher Educators Journal*, v. 1, n. 14, p. 1-8, 2014.

WILLIAMS, J. STEM education: Proceed with caution. *Design and Technology Education*, v. 16, n. 1, p. 26-35, 2011.
Como referenciar este artigo

GRUNINA, Y. A.; MALENKOVA, A. A.; GASANBEKOV, S. K.; MASLENNIKOVA, E. G.; SOLOVYANENKO, N. I. O impacto das tecnologias de educação de tronco inovadoras na qualidade de aprendizagem do material educacional. Revista on line de Política e Gestão Educacional, Araraquara, v. 25, n. esp. 5, p. 3306-3321, dez. 2021. e-ISSN:1519-9029. DOI: https://doi.org/10.22633/rpge.v25iesp.5.16018

Submetido em: 13/03/2021
Revisões requeridas em: 23/07/2021
Aprovado em: 19/11/2021
Publicado em: 30/12/2021

Processamento e edição: Editoria Ibero-Americana de Educação.
Revisão, formatação, padronização e tradução.