NEW BINARY PARTICLE SWARM OPTIMIZATION WITH IMMUNITY-CLONAL ALGORITHM

Dina EL-Gammal, Amr Badr and Mostafa Abd El Azeim

1Department of Computer Science, Faculty of Information Technology, MISR University for Science and Technology, Egypt
2Department of Computer Science, Faculty of Computers and Information, Cairo University, Giza, Egypt
3Department of Software Engineering, Faculty of Computing and Information Technology, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt

Received 2013-09-16, Revised 2013-09-21; Accepted 2013-09-30

ABSTRACT

Particle Swarm Optimization used to solve a continuous problem and has been shown to perform well however, binary version still has some problems. In order to solve these problems a new technique called New Binary Particle Swarm Optimization using Immunity-Clonal Algorithm (NPSOCLA) is proposed. This Algorithm proposes a new updating strategy to update the position vector in Binary Particle Swarm Optimization (BPSO), which further combined with Immunity-Clonal Algorithm to improve the optimization ability. To investigate the performance of the new algorithm, the multidimensional 0/1 knapsack problems are used as a test benchmarks. The experiment results demonstrate that the New Binary Particle Swarm Optimization with Immunity Clonal Algorithm, found the optimum solution for 53 of the 58 multidimensional 0/1 knapsack problems.

Keywords: Immunity-Clonal Algorithm, Particle Swarm Optimization, Binary Particle Swarm Optimization

1. INTRODUCTION

This James Kennedy and Russell Eberhart introduced a Particle Swarm Optimization (PSO) in 1995 (Eberhart and Kennedy, 1995; Kennedy et al., 2001) by simulating a bird swarm. PSO depending on three steps which are repeated until some stopping condition is met, the first step is to evaluate the fitness of each particle then specify the individual best position and global position ending with update velocity and position of each particle using the following equations:

\[v_i(t+1) = \omega v_i(t) + c_1 r_1 (p_{best,i}(t) - p_i(t)) + c_2 r_2 (g_{best}(t) - p_i(t)), \]

(1)

\[p_i(t+1) = p_i(t) + v_i(t+1) \]

(2)

where, \(i \) is the index of the particle and \(t \) is the time. In Equation (1), the velocity \(v_i(t) \) of particle \(i \) at a time \(t \) is calculated by using three terms.

The first term \((\omega v_i(t)) \) called inertia effect which is responsible for keeping the particle to fly in the same direction, where \((\omega) \) is the inertia factor usually decreases linearly during run (Shi and Eberhart, 1998), the higher value of \((\omega) \) encourages the exploration while the lower value encourages the exploitation. \(v_i(t) \) is the velocity of particle \(i \) at time \(t \).

The second term \((c_1 r_1(p_{best,i}(t) - p_i(t))) \) called cognitive effect. It allows the particle to return to the best position achieved by itself by calculating the distance between the current position \((P_i(t)) \) and the best position pbest, \((t) \) where, \((c_1) \) is a cognitive coefficient that usually close to 2 and affects the size of step the particle takes toward the (pbest) and \((r_1) \) is a random value between 0 and 1 cause the particle to move in semi direction toward (pbest) (Eberhart and Kennedy, 1995; Kennedy et al., 2001).

Corresponding Author: Dina EL-Gammal, Department of Computer Science, Faculty of Information Technology, MISR University for Science and Technology, Egypt
The third term \((c_2 \alpha (G_{\text{best}}(t) - p_i(t)))\) called social effect; it is responsible for allowing the particle to follow \((G_{\text{best}})\) the best position the swarm has found so far where \((c_2)\) is a social coefficient that usually close to 2 and affects the size of step the particle takes toward \((G_{\text{best}})\) and \((r_2)\) is a random value between 0 and 1 cause the particle to move in semi direction toward \((G_{\text{best}})\) once the velocity is calculated, the position updated by Equation (2).

1.1 Related Work

PSO was designed for continuous problem, but can’t deal with discrete problems. A new version of PSO Called Binary Particle Swarm Optimization is introduced by Kennedy and Eberhart (1997) to be applied to discrete Binary Variables, because there are many optimization problems occur in a space featuring discrete. The Position in BPSO is represented as a binary vector and the velocity is still floating-point vector however; velocity is used to determine the probability to change the velocity is still floating-point vector however; velocity is used to determine the probability to change from 0 to 1 or from 1 to 0 when updating the position of particle.

There are some differences between PSO and BPSO, which may lead to the following problems.

Firstly, the behavior of velocity clamping in BPSO differ from it in PSO. The velocity in PSO is responsible for exploration where the velocity in BPSO encourages the exploitation (Engelbrecht, 2005). This problem lead to the phenomenon of premature convergence in which the search process will likely trapped in region containing a non-global optimum simply its mean loss of diversity.

Secondly, the value of \((\omega)\) in PSO usually decreases linearly however; In BPSO there are some difficulties to choose a proper value for \((\omega)\) to control the exploration and exploitation as discuss in (Engelbrecht, 2005).

Thirdly, the position in BPSO is updated using velocity, so the new position seems to be independent from current position but the position in PSO is updated using current position and the velocity determines only the movement of particle in the space (Khanesar et al., 2007). Because of these difficulties, many researches have been devoted to solve these problems (Khanesar et al., 2007; Mohamad et al., 2011; Gherboudj et al., 2012; Gherboudj and Chikhi, 2011).

Ye et al. (2006) introduced a new technique of binary Particle Swarm Optimization in (Ye et al., 2006) by introducing some new operators to be used in updating velocity and position equations.

In this technique, each potential solution (particle) is represented with position and velocity of n-bit binary string and updating according to the following equations:

\[
\begin{align*}
\alpha v_i(t + 1) &= w \alpha v_i(t) \text{or } \alpha (p_{\text{best}}_i(t) \text{xor } p_i(t)) \\
\beta (G_{\text{best}}(t) \text{ xor } p_i(t)) \\
p_i(t + 1) &= p_i(t) \text{ xor } v_i(t + 1)
\end{align*}
\]

A particle moves to nearer or farther corners of hypercube Depending on the perspective of flipping bits in the position vector. The cognitive term in Equation (1) is exchanged by \((p_{\text{best}}_i(t) \text{ xor } p_i(t))\) where \((\text{xor})\) operator is used to set 1 when the bits in \((p_i)\) and \((p_{\text{best}})\) are different otherwise set to 0; for example if \(p_i = 10011\) and \(p_{\text{best}} = 00011\) the distance between \((p_i)\) and \((p_{\text{best}})\) will look like that 10000. The social term in velocity equation and the equation of updating position are calculated in the same way. In Equation (3), the three terms: inertia term, cognitive term and social term are combined together using or operator to be united in one vector and the parameters \((\alpha)\) and \((\beta)\) are used to control the convergence speed of the algorithm.

In this approach the velocity and position for each particle are generated randomly at first iteration as n-bit binary string then the best position of each particle and the global best position are obtained by evaluating the fitness of each one, after that the particle velocity and position update using Equation (3) and (4). As it is obvious it does not clear how \((\omega)\), \((\alpha)\) and \((\beta)\) in Equation (3) actually work as they represented in (Ye et al., 2006) as a parameters where the value of \((\omega)\) is generally set to less than 1.0 and the value of \((\alpha)\) equal the value of \((\beta)\) equal 1.94.

As mentioned above the (or) operator is used to combine the three terms of Equation (3) in one vector. One of these term is the inertia effect which essentially depending on the value of the velocity. For example if the velocity value at iteration \((t)\) has ones more than zeros it may lead to make the new value of velocity has only ones and thus make the velocity has a constant value in all coming iteration and has no effect. For example:

\[
\begin{align*}
\text{Let } v &= a + b + c, \quad a = 1110, \quad b = 1010 \quad \text{and } c = 1001 \\
\text{Then } v(t + 1) &= 1111 \\
\text{Also, let } p(t) &= 0001 \\
\text{Then } p(t + 1) &= 0001 \text{ xor } 1111 = 1110
\end{align*}
\]

When calculating \(v(t + 2)\) it remains equal to 1111 because of (or) operator, So \(p(t + 2) = 1110 \text{ xor } 1111 = 0001\) that is mean the new value of the new position has two choices only if to be 0001 or to be 1110 simply it
means loss of diversity and the new position doesn’t actually depending on all terms in the velocity equation.

1.2 Immune Clonal Selection

Artificial Immune System inspired by natural immune system in which the human beings and animals are protected (using antibodies) from intrusions by substance (antigens). Clonal Selection is a type of adaptive immune system which is directed against specific antigen and consists of two major types of lymphocytes; B-cells (white blood cells which are responsible for producing antibodies) and T-cells (white blood cells also called cells-receptors, they are responsible for detecting antigens) which are involved in process of identify and removing antigen. The basic idea of Clonal Selection as shown in Fig. (1) (De Castro and Timmis, 2002) based on the proliferation of activated B-cells that have better matching with specific antigen. Those B-cells can be changed in order to achieve a better matching. Clonal selection algorithm take into consideration, the memory set maintenance, death of cells that can’t recognize antigen or have a bad matching and the ratio between re-selection of the clones and their affinity. The main features of the Clonal Selection theory are (Burnet, 1978):

- The new cells are copies of their parents exposed to a mutation mechanism of high rates
- Newly differentiated lymphocytes which carry self-reactive receptors are selected
- When the mature cells contact with antigens, Proliferation and differentiation occurs

2. NEW PARTICLE SWARM OPTIMIZATION WITH IMMUNITY CLONAL SELECTION ALGORITHM

This section presents the new Binary Particle Swarm Optimization with immunity Clonal Algorithm (NPSOCLA). The algorithm combines a modified Binary Particle Swarm Optimization algorithm, the clonal selection algorithm and subset of random population in the aim to achieve a balance between exploration and exploitation. The proposed algorithm is explained in two parts as follows.

2.1. New Binary Particle Swarm Optimization (NBPSO)

In the NBPSO, the Position is updated without using the velocity. The particle’s step size toward the best position and the global best position is controlled by using logical operators. The NBPSO works as follows.

2.2. Representation

The population is initialized randomly where each particle \((p_i) \) in it represented as a binary position vector.

2.3. Position Update Equation

Particle’s position is updating by following equation:

\[
p_i(t + 1) = c_1 \cdot r_1(\text{diff1}) \text{ or } / \text{ and } c_2 \cdot r_2(\text{diff2})
\]

Where:

- \(\text{diff1}(\text{pbest}_i \text{ xor } p_i) \) = The different bits between the particle’s best position and particle’s position that obtained by xor operator.
- \(\text{diff1}(\text{gbest}_i \text{ xor } p_i) \) = The different bits between the global best position and particle’s position that obtained by xor operator.
- \(r_1 \) = A random number generated between zero and one. \(r_1 \) is used to apply a single point mutation to \(\text{diff1} \).
- \(r_2 \) = a random number generated between zero and one. \(r_2 \) is used to apply a single point mutation to \(\text{diff2} \).
- \(c_1 \) (No of ones in \(\text{diff1}/n1 \)) = The step size the particle takes toward its best position. \(n1 \) is the number between zero and no of ones in \(\text{diff1} \).
or/and = A logical operator used to combine the two terms of Equation (5) in one binary vector (new position). Choosing between use (or) or (and) depends on the type of the problem.

Pseudo Code of new binary particle swarm algorithm:

1. Initialize the position for each particle in the swarm
2. While stopping criteria not met do
3. [
4. For i=1 to n
5. [
6. Calculate fitness value
7. If ((i - particle) fitness > best position)
8. [
9. best position=i-particle
10.]
11.]
12. Choose the best of all best positions as gbest
13. For i=1 to n
14. [
15. Update particle position according to Equation 5 as follows:
16. Set temp position1 to position
17. Set diff1 to the result of (position xor Pbest)
18. Set c1 to the result of dividing the number of ones in diff1 by n1
19. For j=0 to C1
20. [
21. If (diff1 current bit==1 and tempposition1 current bit==0)
22. [
23. Set temp position current bit to 1
24.]
25.]
26.]
27. If (r1>0.5)
28. [
29. Flip the value of temp position1 [random bit index]
30.]
31.]
32. Repeat the same steps from 17 to 29 with diff2 by set temp position 2 to position
33. Set new position to the result of (tempposition1 xor tempposition2)
34.]
35.]

2.4. Clonal Selection Algorithms

In the new proposed Binary Particle Swarm Optimization with immunity Clonal Algorithm in this study, Clonal Selection Algorithm (CSA) is applied on the best-fit particles when the global best position does not change for (m) times. If the initial population size is P then CSA is applied on N = 10*p/100 best fit particles (Pbests). The number of clones generated is given by the following Equation (6):

\[N_c = \text{floor}(\alpha \beta) \]

Where:

\[N_c = \text{Total number of particles to be cloned from the current particle} \]

\[\alpha = \text{Fitness ratio of each particle} \]

\[\beta = \text{Cloning index} \]

By varying this parameter, number of Clones can be regulated.

The new set C of \(N_c \) number of cloned particles are then put through a mutation process in such a way that the best fit clone will have least mutation. This is done by the following Equation (7):

\[M = \text{floor}(1-\alpha)*C \]

Where:

\[M = \text{Number of bits to be flipped in the cloned particle} \]

\[\alpha = \text{Fitness ratio of each particle} \]

\[C = \text{Mutating index} \]

By varying this parameter, number of Mutates can be regulated.

The cloning and mutation applied on the best-fit particles of NBPSO to increase the exploration potential of the algorithm near the vicinity of the fittest particles and distant regions from the less fit particles in the search space.

Pseudo Code of Clonal Selection Algorithm:
1. Create a population of the best pbests (best particles) in the swarm population.
2. Create n clones from each particle, where n is proportional to the fitness of the particle.
3. Mutate each clone inversely proportionally to its fitness.
4. Calculate the fitness of the cloned particles.
5. Sort.
6. Pick the best of them to be nominated in the next generation without redundancy.

2.5. New Particle Swarm Optimization with Clonal Selection Algorithm Outline (NPSOCLA)

This section shows how new particle swarm optimization, clonal selection algorithm and a subset of new random population are combined together.

Pseudo Code of NPSOCLA:

1. Initialize each particle with random position (Initialize population of P size)
2. Initialize max-n iterations
3. While n<max-n iterations
 4. {
 5. For i=1: population size
 6. {
 7. Calculate fitness value
 8. }
 9. Obtain pbests and gbest
 10. If gbest doesn’t change for n times
 11. {
 12. Go to clonal selection algorithm with the best pbests in the swarm population without redundancy
 13. New population(P size) = select the best individuals from (swarm population + New random generating population + the clonal selection population)
 14. Go to the new binary particle swarm algorithm
 }
 15. } Else
 16. Updating each particle position according to equation (5)
 17. }

3. EXPERIMENTAL RESULTS

To validate the feasibility and effectiveness of the proposed approach, the proposed algorithm was applied on several instances of 0/1 Multidimensional Knapsack Problem (0/1MKP) found in (Beasley, 2012). The 0/1 Multidimensional Knapsack Problem is an NP-Hard problem (Garey and Johnson, 1979). It can be defined as follows: there are m knapsacks with maximum C_m capacities. All Knapsacks have to be filled with the same x objects. Each object has P profit and w weight. The weight of the object differs from one knapsack to another. The goal is to maximize the profit without violating constraints. The 0/1 MKP can be formulated as Equation (8 and 9):

$$\text{Maximize} \sum_{i=0}^{n} p_i x_i$$ \hspace{1cm} (8)

Subject $\sum_{i=0}^{n} w_j x_i \leq C_j, j=1..m, x_i \in \{0,1\}$ \hspace{1cm} (9)

The solutions to the 0/1 MKP that are represented as binary vectors may be infeasible because one of the knapsack constraints may be violated in the following two cases:

- When initializing the population with random solutions (Random positions)
- When updating the solutions with Equation (5)

So, each solution must verify the m constrained of the knapsack to be accepted as a feasible solution. In our new algorithm, the following technique is used to convert the infeasible solution to feasible solution based on some ideas from greedy algorithm (Kohli et al., 2004) and Check and Repair Operator (CRO) (Labed et al., 2011) as follows:

1. Calculate the profit ratio $R_{ij} = \frac{P_i}{W_{ij}}$ for every item in every knapsack.
2. Compute the max value of the profit ratio $R_i = \max \{R_{ij}\}$ for every item.
3. Sort items according to the ascending order of R_i
4. Remove the corresponding item with lowest values of R_i from the item set. (i.e., the value of corresponding bit which is 1 becomes 0).
5. Repeat Step 4 until a feasible solution is achieved.

The Proposed algorithm was implemented using Visual studio 2010 (.NET4) with the following parameters: 100 particles, 100 iterations, $n_1 = n_2 = 2$, cloning index (β) is equal to either 55 or 22 and Mutating index (C) is equal to either 22 or 7 respectively with the values of (β).
Table 1. Comparison of results obtained by proposed algorithm and the optimal known solution-using or operator

Problem	M	N	Optimal	NPSOCLA	Optimal%	AVG
pet2	10	10	87061	87061	100	87061.00
weing1	2	28	141278	141278	100	141278.00
weish01	5	30	4554	4554	100	4554.00
weish04	5	30	4561	4561	100	4561.00
weish05	5	30	4514	4514	100	4514.00
weish07	5	40	5567	5567	100	5567.00
Knap15	10	15	4015	4015	96	4013.70
pet3	10	15	4015	4015	92	4014.20
weish03	5	30	4115	4115	80	4105.52
weing2	2	28	130883	130883	79	130849.40
weing4	2	28	119337	119337	79	119010.19
weish09	5	40	5246	5246	72	5232.21
Knap20	10	20	6120	6120	72	6105.95
weish5	5	30	12400	12400	71	12362.50
weish02	5	30	4536	4536	69	4531.75
weing5	2	28	98796	98796	66	97901.44
pet4	10	20	6120	6120	65	6110.00
Knap28	10	28	12400	12400	63	12384.65
weish13	5	50	6159	6159	55	6123.25
weish21	5	70	9074	9074	52	9048.30
weing6	2	28	130623	130623	38	130381.20
weish11	5	50	5643	5643	35	5574.83
weish27	5	90	9819	9819	32	9681.06
weish10	5	50	6339	6339	24	6305.34
weish12	5	50	6339	6339	21	6297.97
weish17	5	60	8633	8633	20	8609.03
weish16	5	60	7289	7289	19	7273.01
weish14	5	60	6954	6954	19	6892.65
weish06	5	40	5577	5577	17	5538.36
hp1	4	28	3418	3418	16	3382.82
weing3	2	28	95677	95677	16	95353.66
weish08	5	40	5605	5605	15	5602.51
pb1	4	27	3090	3090	13	3055.44
weish15	5	60	7486	7486	12	7446.30
Sento1	30	60	7772	7772	12	7731.14
pb6	30	40	776	776	12	774.01
pb7	30	37	1035	1035	10	1016.35
pb4	2	29	95168	95168	10	92635.55
pb2	10	10	3186	3186	9	3111.90
weish29	5	90	9410	9410	9	9272.05
weish19	5	70	7698	7698	8	7602.98
weish26	5	90	9584	9584	7	9470.67
weish28	5	90	9492	9492	7	9348.21
pb5	10	20	2139	2139	6	2079.53
Flei	10	20	2139	2139	4	2080.19
weish24	5	80	10220	10220	4	10160.70
hp2	4	35	3186	3186	4	3104.05
weish18	5	70	9580	9580	2	9539.78
weish25	5	80	9939	9939	2	9865.51
weish20	5	70	9450	9450	1	9404.53
weish30	5	90	11191	11173	0	11113.81
weish23	5	80	8344	8341	0	8227.13
Sento2	30	60	8722	8722	0	8615.91
weing7	2	105	1095445	1094917	0	1091330.72
Knap50	5	50	16537	16524	0	16410.78
Knap39	5	39	10618	10605	0	10480.46
weish22	5	80	8947	8929	0	8853.98
weing8	2	105	624319	616345	0	553836.44
Table 2. Comparison of results obtained by proposed algorithm and the optimal known solution using and operator

Problem	M	N	Optimal	NPSOCLA	Optimal%	AVG
pet2	10	10	87061	87061	100	87061
weing1	2	28	141278	141278	100	141278
weish01	5	30	4554	4554	100	4554
weish04	5	30	4561	4561	100	4561
weish05	5	30	4514	4514	100	4514
Knap15	10	15	4015	4015	100	4015
pet3	10	15	4015	4015	96	4014.6
weing4	2	28	119337	119337	93	119182.74
weish07	5	40	5567	5567	91	5564.52
pet4	10	20	6120	6120	87	6118.7
Knap20	10	20	6120	6120	81	6118.1
weish03	5	30	4115	4115	79	4103.15
weish09	5	40	5246	5246	74	5235.96
weing5	2	28	98796	98796	66	97788.37
weing2	2	28	130883	130883	65	130827
pet5	10	28	12400	12400	63	12387.7
Knap28	10	28	12400	12400	59	12391.9
weish21	5	70	9074	9074	50	9049.64
pb4	2	29	95168	95168	43	93846.58
weish02	5	30	4536	4536	41	4516.38
weing6	2	28	130623	130623	39	130385.1
weish11	5	50	5643	5643	38	5586.98
weish27	5	90	9819	9819	35	9705.25
weish12	5	50	6339	6339	33	6303.34
weish13	5	50	6159	6159	30	6106.59
sent01	30	60	7772	7772	29	7743.44
weish10	5	50	6339	6339	28	6299.95
hp1	4	28	3418	3418	26	3391.26
weish08	5	40	5605	5605	23	5603.2
pb1	4	27	3090	3090	23	3061.14
hp2	4	35	3186	3186	13	3113.47
weish06	5	40	5557	5557	12	5537.23
weish16	5	60	7289	7289	12	7269.19
weish17	5	60	8633	8633	11	8610.87
weish14	5	60	6954	6954	11	6885.69
pb2	4	34	3186	3186	9	3120.99
weish19	5	70	7698	7698	9	7568.47
weing3	2	28	95677	95677	8	95447.08
weish15	5	60	7486	7486	7	7441.1
flei	10	20	2139	2139	5	2080.52
pb5	10	20	2139	2139	5	2079.66
weish28	5	90	9492	9492	5	9318.59
weish29	5	90	9410	9410	4	9283.94
pb7	30	37	1035	1035	3	1006.36
weish24	5	80	10220	10220	3	10155.12
Knap39	5	39	10618	10618	3	10486.25
weish20	5	70	9450	9450	2	9404.21
pb6	30	40	776	776	2	729.98
weish25	5	80	9939	9939	2	9889.73
weish18	5	70	9580	9580	2	9530.55
weish26	5	90	9584	9584	2	9484.47
weish30	5	90	11191	11191	1	11136.7
weish23	5	80	8344	8344	1	8211.11
weish22	5	80	8947	8929	0	8871.3
Knap50	5	50	16537	16524	0	16426.5
Sento2	30	60	8722	8711	0	8632.16
weing7	2	105	1095445	1090160	0	1082188.63
weing8	2	105	624319	614510	0	565434.86
Table 3. Comparative results between PSO and NPSOCLA

Problem	M	N	Optimal	Best solution by PSO	Best solution by NPSOCLA
Senot1	30	60	7772	7725	7772
Senot2	30	60	8722	8716	8721
weing1	2	28	141278	138927	141278
weing2	2	28	130883	125453	130883
weing3	2	28	95677	92297	95677
weing4	2	28	119337	116622	119337
weing5	2	28	98796	93678	98796
weing6	2	28	130623	128093	130623
weing7	2	105	1095445	1094917	1094917
weing8	2	105	624319	492347	616345

Table 4. Comparative results between PSO and NPSOCLA

Problem instance	GA	NPSOCLA			
	Optimum Average	#Max	Average #Max		
knap15	4015	4012.70	83	4015.00	100
knap20	6120	6102.30	33	6118.10	81
knap28	12400	12374.70	33	12384.65	63
knap39	10618	10536.90	4	10486.25	3
knap50	16537	16378.00	1	16426.50	0

Fig. 2. A comparison between PSO and NPSOCLA explains the percent of finding the optimal solution.

We can deduce from Table 1 and 2 that, the NPSOCLA found the optimum solution for 53 of the 58 test cases. It should be noted that there are five problems (sento2, knap50, wein22, weing7, weing8) that do not reach the optimum solution but are very close to it.

Table 3 and Fig. 2 show a comparison in terms of best solution between the exact solutions (optimal), proposed algorithm and PSO algorithm (Hembecker et al., 2007). It is show that the NPSOCLA outperforms the PSO algorithm.

Table 4 shows a comparison between a GA in (Khuri et al., 1994) and the New Particle Swarm Optimization with Clonal Selection Algorithm (NPSOCLA). The first two columns (problem instance) report the name of the problem and the maximum obtainable benefit. The following groups of columns report the results archived by GA in (Khuri et al., 1994) and by NPSOCLA, respectively. We show the average profit obtained over all 100 runs and, in the column #max, the number of times the best solution is reached. It is show that the NPSOCLA outperforms the GA in knap15, knap20 and, knap28. The GA outperforms the proposed algorithm in knap39. In knap50 the GA reach the optimal solution one time but its average is less than the NPSOCLA’s average, which doesn’t reach the optimal solution.

4. CONCLUSION

In this study, a new binary particle swarm optimization method using a clonal selection algorithm is proposed. The performance of the proposed algorithm is evaluated and compared with PSO and GA on a number of the benchmark multidimensional knapsack problem instances. The experimental result shows that the proposed algorithm
(NPSOCLA) has a good performance; on the other hand the difficult task in the proposed algorithm is to choose the proper parameters because the best setting for parameters can be different from problem to another. So, our fundamental outlook moving towards design a self-adaptive method to control parameters setting.

5. REFERENCES

Beasley, J.E., 2012. OR-Library-Operations Research Library.
Burnet, F.M., 1978. Clonal Selection and After. In: Theoretical Immunology, Bell, G.I., A.S. Perelson and G.H. Pimbley (Eds.), Marcel Dekker Inc., pp: 63-85.
De Castro, L.N. and J. Timmis, 2002. Artificial immune systems: A new computational intelligence approach. Springer, 1: 57-58.
Eberhart, R. and J. Kennedy, 1995. A new optimizer using particle swarm theory. Proceedings of the 6th International Symposium on Micro Machine and Human Science, Oct. 4-6, IEEE Xplore Press, Nagoya., pp: 39-43. DOI: 10.1109/MHS.1995.494215
Engelbrecht, A.P., 2005. Fundamentals of Computational Swarm Intelligence. 1st Edn., John Wiley and Sons, Chichester, ISBN-10: 0470091916, pp: 672.
Garey, M.R. and D.S. Johnson, 1979. Computers and Intractability: A Guide to the Theory of NP-Completeness. 10th Edn., W. H. Freeman, New York, pp: 338.
Gherboudj, A. and S. Chikhi, 2011. BPSO algorithms for knapsack problem. Proceedings of the 3rd International Conference on Recent Trends in Wireless and Mobile Networks, Jun. 26-28, Springer Berlin Heidelberg, Ankara, Turkey, pp: 217-227. DOI: 10.1007/978-3-642-21937-5_20
Gherboudj, A., S. Labed and S. Chikhi, 2012. A new hybrid binary particle swarm optimization algorithm for multidimensional knapsack problem. Proceedings of the 2nd International Conference on Computer Science, Engineering and Applications, May 25-27, Springer Berlin Heidelberg, New Delhi, India, pp: 489-498. DOI: 10.1007/978-3-642-30157-5_49
Hem Becker, F., H.S. Lopes and W. Godoy Jr., 2007. Particle swarm optimization for the multidimensional knapsack problem. Proceedings of 8th International Conference on Particle Swarm Optimization for the Multidimensional Knapsack Problem, Apr. 11-14, Heidelberg Springer-Verlag, Warsaw, Poland, pp: 358-365. DOI: 10.1007/978-3-540-71618-1_40

Kennedy, J. and R.C. Eberhart, 1997. A discrete binary version of the particle swarm algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Oct. 12-15, IEEE Xplore Press, Orlando, FL., pp: 4104-4108. DOI: 10.1109/ICSMC.1997.637339
Kennedy, J., R.C. Eberhart and Y. Shi, 2001. Swarm Intelligence. 1st Edm., Morgan Kaufmann, San Francisco, Calif, USA.
Khanesar, M.A., M. Teshnehlab and M.A. Shoorehdeli, 2007. A novel binary particle swarm optimization. Proceedings of the 15th Mediterranean Conference on Control and Automation, Jun. 27-29, IEEE Xplore Press, Athens, pp: 1-6. DOI: 10.1109/MED.2007.4433821
Khuri, S., T. Back and J. Heitkotter, 1994. The zero/one multiple knapsack problem and genetic algorithms. Proceedings of the ACM Symposium on Applied Computing, (SAC’ 94), ACM Press, Phoenix, Arizona., USA., pp: 578-582. DOI: 10.1145/326619.326694
Kohli, R., R. Krishnamurti and P. Mirchandani, 2004. Average performance of greedy heuristics for the integer knapsack problem. Eur. J. Operat. Res., 154: 36–45. DOI: 10.1016/S0377-2217(02)00810-X
Labed, S., A. Gherboudj and S. Chikhi, 2011. A modified hybrid particle swarm optimization algorithm for multidimensional knapsack problem. Int. J. Comput. Applic., 34: 11-16. DOI: 10.5120/4070-5586
Mohamad, M.S., S. Omatu, S. Deris and M. Yoshioka, 2011. A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data. IEEE Trans. Inform. Technol. Biomed., 15: 813-822. DOI: 10.1109/TITB.2011.2167756
Shi, Y. and R. Eberhart, 1998. A modified particle swarm optimizer. Proceedings of the IEEE International Conference on Evolutionary Computation, May 4-9, IEEE Xplore Press, Anchorage, AK., pp: 69-73. DOI: 10.1109/ITSC.1998.699146
Ye, B., J. Sun and W.B. Xu, 2006. Solving the hard knapsack problems with a binary particle swarm approach. Proceedings of the International Conference on Intelligent Computing, Computational Intelligence and Bioinformatics, Aug. 16-19, Springer Berlin Heidelberg, Kunming, China, pp: 155-163. DOI: 10.1007/11816102_17