Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1

Jacob N. Miller, MD, PhD, Ellen van der Plas, PhD, Mark Hamilton, PhD, Timothy R. Kosick, PhD, Laurie Guttmann, MD, Sarah A. Cumming, PhD, Darren G. Monckton, PhD, and Peggy C. Nopoulos, MD

Neurol Genet 2020;6:e504. doi:10.1212/NXG.0000000000000504

Abstract

Objective
We tested the hypothesis that variant repeat interruptions (RIs) within the DMPK CTG repeat tract lead to milder symptoms compared with pure repeats (PRs) in myotonic dystrophy type 1 (DM1).

Methods
We evaluated motor, neurocognitive, and behavioral outcomes in a group of 6 participants with DM1 with RI compared with a case-matched sample of 12 participants with DM1 with PR and a case-matched sample of 12 unaffected healthy comparison participants (UA).

Results
In every measure, the RI participants were intermediate between UA and PR participants. For muscle strength, the RI group was significantly less impaired than the PR group. For measures of Full Scale IQ, depression, and sleepiness, all 3 groups were significantly different from each other with UA > RI > PR in order of impairment. The RI group was different from unaffected, but not significantly different from PR (UA = RI = PR) in apathy and working memory. Finally, in finger tapping and processing speed, RI did not differ from UA comparisons, but PR had significantly lower scores than the UA comparisons (UA = RI > PR).

Conclusions
Our results support the notion that patients affected by DM1 with RI demonstrate a milder phenotype with the same pattern of deficits as those with PR indicating a similar disease process.
Myotonic dystrophy type 1 (DM1; OMIM 160900) is an autosomal dominant, progressive, multisystem disorder caused by expansion of a CTG repeat in the 3′-untranslated region of DMPK.1–4 DM1 affects many organ systems, including skeletal muscle, heart, gastrointestinal, integumentary, endocrine, and CNS.3,5,6 Although the primary symptoms of DM1 are myotonia and muscle weakness, some of the most disabling symptoms of the disease are those arising from CNS involvement.7,8 These include progressive cognitive and behavioral changes, as well as fatigue and excessive daytime sleepiness, which greatly affect overall quality of life.9–11

In 3%–5% of patients with DM1, the CTG repeat tract is interrupted by naturally occurring variant sequences, such as CCG, CTC, or GGC motifs.12,13 Variant repeats most commonly occur at the 3′-end of the DMPK CTG repeat tract.14,15 These are referred to as variant repeat interruptions (RIs). Increasing evidence from case reports suggests that patients with DM1 who carry RI alleles exhibit a later age at symptom onset, milder muscle symptoms, and atypical patterns of symptoms (smaller proportion of cataracts, cardiac problems, and muscle weakness) compared with those with pure repeats (PRs).12–14,16,17 These effects have now been confirmed in 2 large independent DM1 cohorts.18,19 The attenuation of symptoms is hypothesized to result, at least in part, from a stabilizing effect of RI that reduces expansion-biased instability in somatic cells.13,20,21 In this context, we set out to compare motor, neurocognitive, and behavioral outcome measures of participants with adult-onset DM1 with RIs matched to participants with DM1 with PRs, as well as comparison of both groups to participants unaffected by DM1.

Methods
Recruitment of participants
Participants with adult-onset DM1 were recruited to the University of Iowa “DM1 Brain Study” from across the United States by advertisements through the Myotonic Dystrophy Foundation or word of mouth, as described previously.22 Recruitment was targeted to adult-onset DM1 only, with symptom onset at age 18 years or older. Unaffected participants were primarily recruited from the local community through advertisements. Recruitment for baseline assessments took place between September 2014 and July 2017. Inclusion criteria were as follows: (1) between ages 21 and 65 years; (2) clinical diagnosis of DM1 after age 21 years; (3) committed to completing annual evaluations for 2 years following intake; and (4) commitment of an informant to accompany the participant to study visits. Exclusion criteria included (1) unstable psychiatric illness (including current substance abuse) and (2) history of major head trauma with loss of consciousness for longer than a few minutes and including clinically significant sequelae.

Standard protocol approvals, registrations, and patient consents
All participants gave written informed consent before enrolling in the protocol in accordance with the Declaration of Helsinki. The study was approved by the University of Iowa’s Institutional Review Board.

Data availability
Anonymized data will be shared by request from any qualified investigator.

Measurement of CTG repeat length and variant repeat identification
For genotyping of CTG repeats in participants with DM1, we used the same methodology as the one used in previous studies.22,23 For variant repeat identification, small-pool PCR products underwent AciI enzyme digestion (New England Biolabs UK Ltd.; restriction site 5′CCGC-3′) and Southern blotting to indicate the presence of CCG interruptions within the CTG repeat array in the expanded allele as previously described.13

Motor testing
Motor, neurocognitive, and behavioral outcome measures of interest were selected a priori to reduce the number of comparisons. Severity of muscle weakness was measured using the Muscle Impairment Rating Scale (MIRS) during examination by a neuromuscular specialist experienced in DM1, blinded to the participants’ genetic status.24 This scale evaluates muscular impairment severity according to an ordinal 5-point scale as follows: (1) no muscular impairment, (2) minimal signs, (3) distal weakness, (4) mild to moderate proximal weakness, and (5) severe proximal weakness.

Grip strength was measured using a Lafayette Instruments dynamometer. The stirrup of the dynamometer was adjusted to comfortably fit the participant’s hand size, after which they were instructed to squeeze as hard as they possibly could. Strong motivational encouragement was provided by the examiner during each of the 6 trials (3 for the dominant hand and 3 for the nondominant hand) to elicit the participant’s maximal effort. Ultimate scores were the means of 3 trials for each hand.
Neurocognitive and behavioral testing

Neurocognitive and behavioral assessments included the Wechsler Adult Intelligence Scale—Fourth Edition (WAIS-IV), Beck Depression Inventory-II (BDI-II), Apathy Evaluation Scale (AES) self-assessment, and Scales for Outcomes in Parkinson’s Disease (SCOPA). These measures were administered by a trained examiner experienced in DM1 who was blinded to the patient’s clinical condition (CTG expansion length and muscular impairment).

Statistical analysis

All statistical analyses were performed using R (version 3.6.2). Each participant who was determined to have variant repeats was matched by age, sex, and CTG repeat length to 2 participants with pure CTG repeats and 2 unaffected participants. Mixed-effects multivariable linear regression models were used to examine the impact of group, age, sex, and a subject-matching variable on the dependent variables (motor, neurocognitive, and behavioral outcome measures). The coefficient of determination (R^2) for the model, semi-partial R^2 for each fixed effect (group, age, and sex), and 95% confidence intervals (CIs) were calculated using the Nakagawa & Schielzeth approach.25 Effect sizes were considered very weak ($R^2 < 0.1$), weak ($0.1 < R^2 < 0.3$), moderate ($0.3 < R^2 < 0.5$), and strong ($0.5 < R^2$). Post hoc least-squares means tests were used for pairwise comparisons between UA, RI, and PR groups. All outcome measures of interest were selected a priori to minimize multiple testing considerations.

Results

Sample

From a cohort of 57 adults affected by DM1, 6 participants (11%) were identified as positive for variant RIs by Acil enzyme digest. Each RI participant was equivalently matched to 2 PR participants and 2 unaffected healthy comparison participants (UA) by age, sex, and CTG repeat length for a total sample of 125 participants (6 RI, 12 PR, and 12 UA) (table 1). There was an equal proportion of men (66%) and women (33%) within each group ($\chi^2 = 0.0, df = 2, p = 1.0$). Mean age at evaluation was 42.27 years (SD = 11.89) for the UA group, 42.25 years (SD = 12.52) for the RI group, and 40.42 years (SD = 11.03) for the PR group, with no significant group effect ($\chi^2 = 1.96, 16.25$, $df = 1, p = 0.027$) with a higher proportion of PR participants scoring 3 and 4 (mild to moderate proximal weakness) (mean = 2.92; SD = 1.08) than the RI group (mean = 2.00; SD = 0.63). The PR group had 5 participants with a score of 4 (moderate proximal weakness) and no participants with a score of 5 (severe proximal weakness), whereas the RI group had no participants with a score of 4 or 5.

Table 1 Demographics of the study sample

Sample, n	Control (UA)	Variant (RI)	Pure (PR)
Males	8	4	8
Females	4	2	4
Age at evaluation, mean (SD)	42.27 (11.89)	42.25 (12.52)	40.42 (11.03)
Age at disease onset, mean (SD)	n/a	31.75 (5.76)	24.14 (9.48)
CTG			
Range	12–22	157–625	125–750
Median	13	375	285

Abbreviations: PR = pure repeat; RI = repeat interruption.

Motor performance

Detailed statistics for each outcome measure from the mixed-effects multivariable linear regression model with post hoc least-squares means tests are shown in table 2 and table 3. The figure summarizes group differences for all outcome measures, which show that the RI group is always intermediate between the UA and PR groups.

As shown in figure A, there was a significant difference between the RI and PR groups in MIRS scores ($t(25) = -2.2, 95\%\ CI [-1.95, -0.003]$) with an overall moderate effect size of the model ($R^2 = 0.308, 95\%\ CI [0.090, 0.668]$) and a significant group effect ($\chi^2 = 4.87, df = 1, p = 0.027$) with a higher proportion of PR participants scoring 3 and 4 (mild to moderate proximal weakness) (mean = 2.92; SD = 1.08) than the RI group (mean = 2.00; SD = 0.63). The PR group had 5 participants with a score of 4 (moderate proximal weakness) and no participants with a score of 5 (severe proximal weakness), whereas the RI group had no participants with a score of 4 or 5.

Finger tapping test results for the dominant hand are shown in figure, B. The mean scores were 43.98 (SD = 8.98) for the UA group; 36.83 (SD = 5.54) for the RI group; and 29.16 (SD = 11.78) for the PR group. There was an overall moderate effect size ($R^2 = 0.459, 95\%\ CI [0.264, 0.694]$) and significant group effect in the model ($\chi^2 = 16.84, df = 2, p < 0.001$), with no significant difference between the UA and RI groups ($t(25) = 1.61, 95\%\ CI [-1.96, 16.25]$), a significant difference between the UA and PR groups ($t(25) = 4.10, 95\%\ CI [7.41, 22.34]$), and

\[
\chi^2 < 0.001. \]

As expected for CTG length, there were significant differences between the UA group and the RI ($t(17.9) = -5.10, 95\%\ CI [-545.39, -227.07]$) and PR ($t(18.3) = -5.01, 95\%\ CI [-468.87, -192.23]$) groups and no significant difference between the RI and PR groups ($t(17.5) = 0.82, 95\%\ CI [-86.25, 197.62]$) (table 1).
no significant difference between the RI and PR groups ($t(25) = 1.74$, 95% CI $[-1.40, 16.86]$).

As shown in figure, C, for grip strength (dominant hand), the mean was 41.08 (SD = 11.12) for the UA group, 29.19 (SD = 15.7) for the RI group, and 19.25 (SD = 14.42) for the PR group. The group effect was significant in the model ($\chi^2 = 22.01, df = 2, p < 0.001$) with a strong overall effect size ($R^2 = 0.505$, 95% CI $[0.312, 0.722]$), no significant difference between the UA and RI groups ($t(22) = 2.03, 95\%$ CI $[-0.25, 24.02]$), a significant difference between the UA and PR groups ($t(22) = 4.69, 95\%$ CI $[12.56, 32.45]$), and no significant difference between the RI and PR groups ($t(22) = 1.81, 95\%$ CI $[-1.54, 22.79]$).

Neurocognitive functioning

As shown in figure, D through F shows group differences on the WAIS-IV Full Scale IQ, Working Memory Index (WMI), and Processing Speed Index (PSI), respectively. The mean Full Scale IQ was 120.08 (SD = 13.52) for the UA group; 107.17 (SD = 8.77) for the RI group; and 94.67 (SD = 7.67) for the PR group. There was a significant group effect in the model for Full Scale IQ ($\chi^2 = 33.39, df = 2, p < 0.001$), with a strong overall effect size ($R^2 = 0.537$, 95% CI $[0.346, 0.741]$), a significant difference between the UA and RI groups ($t(25) = 2.37, 95\%$ CI $[1.72, 24.11]$), a significant difference between the UA and PR groups ($t(25) = 5.78, 95\%$ CI $[16.55, 34.90]$), and a significant difference between the RI and PR groups ($t(25) = 2.35, 95\%$ CI $[1.59, 24.02]$).

Table 2 Outcome comparisons between groups

Variable	Group 1	Group 2	Estimate	Estimate 95% CI [LL, UL]
MIRS	Variant	Pure	-0.97	[-1.95, -0.003]
Tapping	Controls	Variant	7.15	[-1.96, 16.25]
	Controls	Pure	14.88	[7.41, 22.34]
	Variant	Pure	7.73	[-1.40, 16.86]
Grip strength	Controls	Variant	11.89	[-0.25, 24.03]
	Controls	Pure	22.51	[12.57, 32.46]
	Variant	Pure	10.62	[-1.54, 22.79]
WAIS Full Scale IQ	Controls	Variant	12.92	[1.73, 24.11]
	Controls	Pure	25.73	[16.56, 34.90]
	Variant	Pure	12.81	[1.59, 24.03]
WAIS working memory	Controls	Variant	18.34	[4.84, 31.84]
	Controls	Pure	25.88	[14.82, 36.95]
	Variant	Pure	7.54	[-5.99, 21.08]
WAIS processing speed	Controls	Variant	8.51	[-5.19, 22.20]
	Controls	Pure	26.84	[15.62, 38.06]
	Variant	Pure	18.33	[4.61, 32.06]
Beck Depression Inventory	Controls	Variant	-5.25	[-10.33, -0.18]
	Controls	Pure	-10.50	[-14.66, -6.34]
	Variant	Pure	-5.25	[-10.34, -0.16]
Apathy Evaluation Scale	Controls	Variant	-8.51	[-16.30, -0.71]
	Controls	Pure	-11.65	[-18.04, -5.26]
	Variant	Pure	-3.14	[-10.96, 4.68]
SCOPA daytime	Controls	Variant	-2.75	[-4.93, -0.57]
	Controls	Pure	-5.56	[-7.35, -3.77]
	Variant	Pure	-2.81	[-4.99, -0.62]

Abbreviations: CI = confidence interval; MIRS = Muscle Impairment Rating Scale; SCOPA = Scales for Outcomes in Parkinson’s Disease; WAIS = Wechsler Adult Intelligence Scale.

All regression coefficients (estimate) and 95% CIs were calculated in the linear mixed-effects regression model with least-squares means post hoc tests, using group, age, sex, and a matching variable as predictors. LL and UL represent the lower limit and upper limit of the regression coefficient, respectively.
For WMI, the mean score was 120.17 (SD = 11.57) for the control group, 101.83 (SD = 11.55) for the RI group, and 94.75 (SD = 14.59) for the PR group, with a significant group effect in the model ($\chi^2 = 24.06$, $df = 2$, $p < 0.001$) and moderate overall effect size ($R^2 = 0.458$, 95% CI [0.262, 0.694]). There was a significant difference between the UA and RI groups ($t_{(25)} = 2.79$, 95% CI [4.84, 31.84]), a significant difference between the UA and PR groups ($t_{(25)} = 4.82$, 95% CI [14.82, 36.95]), and no significant difference between the RI and PR groups ($t_{(25)} = 1.14$, 95% CI [−5.99, 21.08]).

PSI exhibited a similar pattern as WMI, with the UA group having a mean score of 114.5 (SD = 16.71), the RI group having a mean score of 106.00 (SD = 12.88), and the PR group having a mean score of 88.08 (SD = 8.15). There was a significant group effect in the model ($\chi^2 = 24.90$, $df = 2$, $p < 0.001$) and moderate

| Table 3 Mixed-effects multivariate model resultsa |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| Variable | Predictor | χ^2 | df | p Value | Model R^2 95% CI [LL, UL] | Semi-partial R^2 | Semi-partial R^2 95% CI [LL, UL] |
| MIRS | Group | 4.87 | 1 | 0.027 | 0.308 [0.090, 0.668] | 0.206b | [0.004, 0.559]b |
| | Age | 1.75 | 1 | 0.185 | | 0.108 | [0.000, 0.460] |
| | Sex | 0.14 | 1 | 0.703 | | 0.010 | [0.000, 0.293] |
| Tapping | Group | 16.84 | 2 | 0.000 | 0.459 [0.264, 0.694] | 0.367/0.083c | [0.131, 0.611]/(0.000, 0.336)c |
| | Age | 0.02 | 1 | 0.863 | | 0.001 | [0.000, 0.166] |
| | Sex | 5.44 | 1 | 0.019 | | 0.158 | [0.006, 0.428] |
| Grip strength | Group | 22.01 | 2 | 0.000 | 0.505 [0.312, 0.722] | 0.422/0.085c | [0.184, 0.651]/(0.002, 0.385)c |
| | Age | 2.34 | 1 | 0.126 | | 0.085 | [0.001, 0.340] |
| | Sex | 1.85 | 1 | 0.173 | | 0.069 | [0.000, 0.316] |
| WAIS Full Scale IQ | Group | 33.39 | 2 | 0.000 | 0.537 [0.346, 0.741] | 0.535/0.163c | [0.313, 0.727]/(0.007, 0.433)c |
| | Age | 0.67 | 1 | 0.411 | | 0.023 | [0.000, 0.231] |
| | Sex | 0.02 | 1 | 0.881 | | 0.001 | [0.000, 0.165] |
| WAIS working memory | Group | 24.06 | 2 | 0.000 | 0.458 [0.262, 0.694] | 0.667/0.482c | [0.208, 0.667]/(0.024, 0.482)c |
| | Age | 1.02 | 1 | 0.310 | | 0.034 | [0.000, 0.256] |
| | Sex | 0.09 | 1 | 0.753 | | 0.003 | [0.000, 0.174] |
| WAIS processing speed | Group | 24.90 | 2 | 0.000 | 0.468 [0.272, 0.700] | 0.456/0.053c | [0.220, 0.674]/(0.000, 0.292)c |
| | Age | 0.819 | 1 | 0.365 | | 0.033 | [0.000, 0.254] |
| | Sex | 0.994 | 1 | 0.319 | | 0.027 | [0.000, 0.242] |
| Beck Depression Inventory | Group | 27.04 | 2 | 0.000 | 0.523 [0.331, 0.733] | 0.483/0.135c | [0.250, 0.693]/(0.003, 0.403)c |
| | Age | 5.93 | 1 | 0.014 | | 0.170 | [0.009, 0.440] |
| | Sex | 3.83 | 1 | 0.051 | | 0.117 | [0.002, 0.381] |
| Apathy Evaluation Scale | Group | 14.71 | 2 | 0.000 | 0.400 [0.208, 0.658] | 0.327/0.148c | [0.096, 0.580]/(0.004, 0.417)c |
| | Age | 5.93 | 1 | 0.014 | | 0.170 | [0.009, 0.440] |
| | Sex | 1.28 | 1 | 0.257 | | 0.042 | [0.000, 0.272] |
| SCOPA daytime | Group | 41.13 | 2 | 0.000 | 0.598 [0.419, 0.777] | 0.587/0.189c | [0.379, 0.760]/(0.014, 0.460)c |
| | Age | 3.76 | 1 | 0.052 | | 0.115 | [0.001, 0.379] |
| | Sex | 0.92 | 1 | 0.336 | | 0.031 | [0.000, 0.249] |

Abbreviations: CI = confidence interval; DM1 = myotonic dystrophy type 1; MIRS = Muscle Impairment Rating Scale; SCOPA = Scales for Outcomes in Parkinson’s Disease; WAIS = Wechsler Adult Intelligence Scale.

a Chi-square, degrees of freedom (df), and p values were calculated in the mixed-effects multivariate regression model with type III (Wald) χ^2 tests, using group, age, sex, and a matching variable as predictors. Coefficient of determination (R^2) for the model, semi-partial coefficient of determination (semi-partial R^2) for fixed effects (group, age, and sex), and 95% CIs were calculated using the Nakagawa & Schielzeth approach on the linear mixed-effects model. LL and UL represent the lower limit and upper limit, respectively.

b Variant vs DM1 only.

c Control vs variant/control vs DM1.
overall effect size ($R^2 = 0.468, 95\% \text{ CI} [0.272, 0.700]$), with no significant difference between the UA and RI groups ($t_{(25)} = 1.27, 95\% \text{ CI} [-5.19, 22.20]$), a significant difference between the UA and PR groups ($t_{(25)} = 4.93, 95\% \text{ CI} [15.62, 38.06]$), and a significant difference between the RI and PR groups ($t_{(25)} = 2.75, 95\% \text{ CI} [4.61, 32.06]$).

Behavioral outcomes

Figure, G shows scores for the BDI across groups. The mean score was 1.92 (SD = 1.83) for the UA group, 7.17 (SD = 7.05) for the RI group, and 12.00 (SD = 6.63) for the PR group, with a significant difference between the RI and PR groups ($t_{(25)} = 2.75, 95\% \text{ CI} [4.61, 32.06]$).

Results for the AES are shown in figure, H. The mean score for the UA group was 22.33 (SD = 3.73), 31.83 (SD = 6.31) for the RI group, and 34.33 (SD = 11.37) for the PR group, with a significant group effect ($\chi^2 = 14.71, df = 2, p < 0.001$) and moderate overall effect size ($R^2 = 0.400, 95\% \text{ CI} [0.208, 0.658]$). Age also had a significant effect ($\chi^2 = 5.93, df = 1, p = 0.014$) with weak effect size ($R^2 = 0.170, 95\% \text{ CI} [0.009, 0.440]$), and sex had a significant effect on the model ($\chi^2 = 3.83, df = 1, p = 0.051$) with weak effect size ($R^2 = 0.117, 95\% \text{ CI} [0.002, 0.381]$). There were significant differences between the UA and RI groups ($t_{(25)} = -2.13, 95\% \text{ CI} [-10.33, -0.18]$), the UA and PR groups ($t_{(25)} = -5.20, 95\% \text{ CI} [-14.66, -6.34]$), and the RI and PR groups ($t_{(25)} = -2.12, 95\% \text{ CI} [-10.34, -0.16]$).
A limitation of this present study is small sample size, with only 6 participants with variant repeats, 12 participants with PRs, and 12 unaffected participants. This decreased the statistical power with which we could possibly detect significant differences in additional motor, neurocognitive, and behavioral domains. Another limitation is the overall mild nature of symptoms of the study cohort. A lower age at disease onset could have possibly revealed more evident changes between groups. In addition, although the mean age at disease onset for the variant repeat group was greater than 7 years than the PR group (31.75 years vs 24.1 years), it was not statistically significant. However, in larger cohorts, AciI sites are statistically significantly associated with later onset. A follow-up neuroimaging study in a larger sample could possibly help increased risk for weight loss and aspiration. Consistent with recent findings from the OPTIMISTIC and Saguenay cohorts, our data confirm a significant difference in muscle power between PR and RI participants, detectable clinically by MIRS assessment,
under study conditions in which the evaluating clinician is blinded to the participants' genetic status.
elucidate the specific brain changes behind this pattern of deficits. Nonetheless, motor, cognitive, and behavioral measures were significantly better in the presence of variant repeats. Our group has demonstrated that cognitive deficits in DM1 are associated with altered brain structure.41 We would expect that the RI group will exhibit a milder neuroanatomic phenotype than their PR counterparts.

Our study supports the hypothesis that variant RIs within the CTG repeat tract of the DMPK gene have a protective effect in multiple systems in DM1, including the CNS. Further exploration of the mechanisms underlying this effect is required to improve prognostic information available to affected patients and may reveal potential targets for novel therapy.

Acknowledgment
The authors are grateful to the participants and their families for their cooperation with the study and also to the team of research assistants who collected the data.

Study funding
This work was supported by a grant from the NINDS (Ref: SR01NS094387-02) and the Wyck Foundation. The funders did not have any role in the study design, data collection, analysis, or in preparing this manuscript.

Disclosure
J.N. Miller, M.J. Hamilton, E. van der Plas, T.R. Koscik, L. Gutmann, and S.J. Cumming report no disclosures. D.G. Monckton in the last 3 years has been a scientific consultant and/or received an honoraria or stock options from AMO Pharma, Charles River, Vertex Pharmaceuticals, Triplet Therapeutics, LoQus23, and Small Molecule RNA; is on the Scientific Advisory Board of the Myotonic Dystrophy Foundation; is a scientific advisor to the Myotonic Dystrophy Support Group; and is a vice president of Muscular Dystrophy UK. P.C. Nopoulos reports no disclosures. Go to Neurology.org/NG for full disclosures.

Publication history
Received by Neurology: Genetics March 19, 2020. Accepted in final form July 9, 2020.

Appendix

Name	Location	Contribution
Mark Hamilton, PhD	West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, United Kingdom; Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom	Designed and conceptualized the study and revised the manuscript for intellectual content
Timothy R. Koscik, PhD	University of Iowa Hospitals and Clinics	Designed and conceptualized the study; interpreted the data; and revised the manuscript for intellectual content
Laurie Gutmann, MD	University of Iowa Hospitals and Clinics	Major role in the acquisition of data; interpreted the data; and revised the manuscript for intellectual content
Sarah A. Cumming, PhD	Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom	Major role in the acquisition of data and revised the manuscript for intellectual content
Darren G. Monckton, PhD	Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom	Major role in the acquisition of data and revised the manuscript for intellectual content
Peggy C. Nopoulos, MD	University of Iowa Hospitals and Clinics	Interpreted the data and revised the manuscript for intellectual content

References
1. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell 1992;69:385.
2. Harper PS. Myotonic Dystrophy. Kent, UK: Bailliere Tindall; 2001.
3. Smith CA, Gutmann L. Myotonic dystrophy type 1 management and therapeutics. Curr Treat Options Neurol 2016;18:52.
4. Mahadevan MS, Amemiya C, Jansen G. Structure and genomic sequence of the myotonic dystrophy (DM kinase) gene. Hum Mol Genet 1993;2:299–304.
5. Thornton CA. Myotonic dystrophy. Neurol Clin 2014;32:705–719, viiii.
6. Turner C, Hilton-Jones D. Myotonic dystrophy: diagnosis, management and new therapies. Curr Opin Neurol 2014;27:599–606.
7. Bosco G, Diamanti S, Meola G; DM-CNS Group. Workshop Report: consensus on biomarkers of cerebral involvement in myotonic dystrophy, 2–3 December 2014, Milan, Italy. Neuromuscul Disord 2015;25:813–823.
8. Bugiardini E, Meola G; DM-CNS Group. Consensus on cerebral involvement in myotonic dystrophy: workshop report. May 24–27, 2013, Ferriere (AT), Italy. Neuromuscul Disord 2014;24:445–452.
9. Antonioini G, Soschia F, Giubilei F, et al. Health-related quality of life in myotonic dystrophy type 1 and its relationship with cognitive and emotional functioning [online]. J Rehabil Med 2006;38:181–185. doi:10.1080/16501970500477967.
10. Axford MM, Pearson CE. Elminating CNS and cognitive issues in myotonic dystrophy: workshop report. Neuromuscul Disord 2013;23:370–374.
11. Rakovecic-Stojanovic V, Peric S, Madzarevic R, et al. Significant impact of behavioral and cognitive impairment on quality of life in patients with myotonic dystrophy type 1. Clin Neurol Neurosurg 2014;126:76–81.
12. Musova Z, Maxanc R, Krepelova A, et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am J Med Genet A 2009;149A: 1365–1374.
13. Braila C, Stefanatos RKA, Adam B, et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute to ward unusual symptoms in some myotonic dystrophy type 1 patients. Hum Mol Genet 2010;19:1399–1412.
14. Botta A, Rossi G, Marcaurelio M, et al. Identification and characterization of 5’ CCG interruptions in complex DMPK expanded alleles. Eur J Hum Genet 2017;25: 257–261.

15. Dryland PA, Doherty E, Love JM, Love DB. Simple repeat-primed PCR analysis of the myotonic dystrophy type 1 gene in a clinical diagnostics environment [online]. J Neurodegener Dis 2013;2013:857564. doi:10.1155/2013/857564.

16. Santoro M, Masciullo M, Silvestri G, Novelli G, Botta A. Myotonic dystrophy type 1: role of CCG, CTC and CAG interruptions within DMPK alleles in the pathogenesis and molecular diagnosis. Clin Genet 2017;92:355–364.

17. Santoro M, Masciullo M, Pietrobono R, et al. Molecular, clinical, and muscle studies in myotonic dystrophy type 1 (DM1) associated with novel variant CCG expansions. J Neurol 2013;260:1245–1257.

18. Cumming SA, Jimenez-Moreno C, Otkersken K, et al. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology 2019;93: e995–e1009.

19. Overend G, Légaré C, Mathieu J, Bouchard L, Gagnon C, Monckton DG. Allele length of the DMPK CTG repeat is a predictor of progressive myotonic dystrophy type 1 phenotypes. Hum Mol Genet 2019;28:2245–2254.

20. Cumming SA, Hamilton MJ, Robb Y, et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur J Hum Genet 2018;26:1635–1647.

21. Pelsović J, Perić S, Brkušanin M, Brajušković G, Rakovečki-Stojanović V, Savić-Pavičević D. Repeat interruptions modify age at onset in myotonic dystrophy type 1 by stabilizing DMPK expansions in somatic cells. Front Genet 2018;9:601.

22. van der Plas E, Hamilton MJ, Miller JN, et al. Brain structural features of myotonic dystrophy type 1 and their relationship with CTG repeats. J Neuromuscul Dis 2019;6:321–332. doi:10.3233/JND-190397.

23. Gomes-Pereira M, Bidichandani SI, Monckton DG. Analysis of unstable triplet repeats using small-pool polymerase chain reaction. Methods Mol Biol 2004;277: 61–76.

24. Mathieu J, Boivin H, Meunier D, Gaudreault M, Bégin P. Assessment of a disease-specific muscular impairment rating scale in myotonic dystrophy. Neurology 2001;56: 336–340.

25. Nakagawa S, Schielth H, A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 2013;4:133–142.

26. Morales F, Couto JM, Higham CF, et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity [online]. Hum Mol Genet 2012;21:3558–3567. doi:10.1093/hmg/ddr185.

27. Gomes-Pereira M, Monckton DG. Chemical modifiers of unstable expanded simple sequence repeats: what goes up, could come down. Mutat Res 2006;598:15–34.

28. Gomes-Pereira M, Hillyer JD, Morales F, Adam B, James HE, Monckton DG. Disease-associated CAG-CTG triplet repeats expand rapidly in non-dividing mouse cells, but cell cycle arrest is insufficient to drive expansion. Nucleic Acids Res 2014;42: 7047–7056.

29. Schmidt MMH, Pearson CE. Disease-associated repeat instability and mismatch repair. DNA Repair 2016;38:117–126.

30. Eichler EE, Holden JJ, Popovich BW, et al. Length of uninterrupted CCG repeats determines instability in the FMR1 gene. Nat Genet 1994;8:88–94.

31. Chong SS, McCaff AE, Cota J, et al. Genomic and somatic tissue-specific heterogeneity of the expanded SCA1 CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1995;10:344–350.

32. Choudhry S, Mukerji M, Srivastava AK, Jain S, Brahmachari SK. CAG repeat instability at SCA2 locus: anchoring CAA interruptions and linked single nucleotide polymorphisms. Hum Mol Genet 2001;10:2437–2446.

33. Gao R, Matsuura T, Coolbaugh M, et al. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur J Hum Genet 2008;16:215–222.

34. Pelsović J, Perić S, Brkušanin M, Brajušković G, Rakovečki-Stojanović V, Savić-Pavičević D. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 2017;18:207–218.

35. Cailler-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buer L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets splicedopathy and RNAopathy. Front Mol Neurosci 2014;6:57.

36. Jinna K, Mitani M, Futamura N, Kawamoto K, Funakawa I, Itoh K. Somatic instability of CAG repeats in the cerebellum of myotonic dystrophy type 1. Muscle Nerve 2013;48:105–108.

37. Otkersken K, Jimenez-Moreno C, Wenninger S, et al. OPTIMISTIC consortium. Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial. Lancet Neurol 2018;17:642–646.

38. Laberge L, Bégin P, Daouillas Y, et al. A polysomnographic study of daytime sleepiness in myotonic dystrophy type 1. J Neurol Neurosurg Psychiatry 2009;80: 642–646.

39. O’Donoghue FJ, Borel JC, Daouillas Y, Levy P, Tamsizer B, Pépin JL. Effects of 1-month withdrawal of ventilatory support in hypercapnic myotonic dystrophy type 1: NIV in myotonic dystrophy type 1. Respir Med 2017;22:1416–1422.

40. Baldanzi S, Bevilacqua F, Lorio R, et al. Disease awareness in myotonic dystrophy type 1. J Neurol Sci 2013;325:126–129.

41. Langbehn KE, van der Plas E, Moser DJ, Long JD, Gutmann L, Nopoulos PC. Cognitive function and its relationship with brain structure in myotonic dystrophy type 1. J Neurosci Res Epub 2020 Feb 13. doi:10.1002/jnr.24595.
Variant repeats within the *DMPK* CTG expansion protect function in myotonic dystrophy type 1
Jacob N. Miller, Ellen van der Plas, Mark Hamilton, et al.
Neurol Genet 2020;6;
DOI 10.1212/NXG.0000000000000504

This information is current as of August 12, 2020
Updated Information & Services	including high resolution figures, can be found at: http://ng.neurology.org/content/6/5/e504.full.html
References	This article cites 39 articles, 1 of which you can access for free at: http://ng.neurology.org/content/6/5/e504.full.html##ref-list-1
Citations	This article has been cited by 3 HighWire-hosted articles: http://ng.neurology.org/content/6/5/e504.full.html##otherarticles
Subspecialty Collections	This article, along with others on similar topics, appears in the following collection(s):
	All Clinical Neurology http://ng.neurology.org//cgi/collection/all_clinical_neurology
	Neuropsychological assessment http://ng.neurology.org//cgi/collection/neuropsychological_assessment
	Trinucleotide repeat diseases http://ng.neurology.org//cgi/collection/trinucleotide_repeat_diseases
Permissions & Licensing	Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://ng.neurology.org/misc/addir.xhtml#reprintsus
Reprints	Information about ordering reprints can be found online: http://ng.neurology.org/misc/addir.xhtml#reprintsus

"Neurol Genet" is an official journal of the American Academy of Neurology. Published since April 2015, it is an open-access, online-only, continuous publication journal. Copyright Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. All rights reserved. Online ISSN: 2376-7839.