study. The Lancet infectious diseases. 2016;16(3):311-20.
28- Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. New England Journal of Medicine. 2018;379(17):1621-34.
29- Lauer KB, Borrow R, Blanchard TJ. Multivalent and multipathogen viral vector vaccines. Clin Vaccine Immunol. 2017;24(1):e00298-16.
30- Micoli F, Rondini S, Alfini R, Lanzilao L, Necchi F, Negrea A, et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proceedings of the National Academy of Sciences. 2018;115(41):10428-33.
31- Scorza FB, Colucci AM, Maggiore L, Sanzone S, Rossi O, Ferlenghi I, et al. High yield production process for Shigella outer membrane particles. PloS one. 2012;7(6).
32- Dormitzer PR, Suphaphiphat P, Gibson DG, Wentworth DE, Stockwell TB, Aligre MA, et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Science translational medicine. 2013;5(185):185ra68-ra68.
33- Hekele A, Bertholet S, Archer J, Gibson DG, Palladino G, Brito LA, et al. Rapidly produced SAM® vaccine against H7N9 Influenza is immunogenic in mice. Emerging microbes & infections. 2013;2(1):1-7.
34- Iavarone C, O’hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert review of vaccines. 2017;16(9):871-81.

Vaccine
Translated by: Darvishalipour Sh.
Faculty of Biotechnology, Semnan University, Semnan, I.R. of Iran

Abstract
Most vaccines for diseases in low- and middle-income countries fail to be developed because of weak or absent market incentives. Conquering diseases such as tuberculosis, HIV, malaria, and Ebola, as well as illnesses caused by multidrug-resistant pathogens, requires considerable investment and a new sustainable model of vaccine development involving close collaborations between public and private sectors.

Key words: World health, vaccine, Immunogenicity

SARS-CoV-2 کاربردهای بالقوه زیست فناوری گیاهی در مقابل 2
علیرضا ایرانی‌خس و صبا بهرایی فر
تهران. دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

چکیده
سندروم تنفسی حاد کروناویروس 2 (SARS-CoV-2) یک سری از بیماری‌های اعصاب و مغزی می‌باشد که بر اثر کروناویروس 2 (SARS-CoV-2) باعث این بیماری شده است. در حال حاضر، تلاش‌هایی بین‌المللی زیادی برای توسعه عوامل با مفعولیتی تشخیصی و نیز کشف واکسن و داروهاي ضدپروتوسی به‌منظور کاهش شیوع بیماری و نجات گروه‌هایی از این بیماری‌ها در حال انجام هستند. این پروتکسیونهای مولکولی، شامل شیمی‌حقایقی اسیدهای مولکولی که روی گیاهان کار می‌کنند، آن‌ها در رایون دانشمندان و شرکت‌های تجارتی و سرمایه‌گذاری از سراسر جهان گرد هم اورده‌اند تا سریعاً به سببی از پروتئین‌های آنتی‌ژنی و آنتی‌بالام‌ها برای کماندن این بیماری تشخیصی و نیز سیستم‌هایی تولیدی مقایسه‌برای برای کار باوری و کسان‌ها و داروهاى ضدپروتوسی، دست پیدا کنند. این اثرات آن‌ها در اینجا به ضعیفی از روی‌هایی را می‌تواند برای گیاهان می‌توانند در آن‌ها برای مبارزه با کرونا-19 بکار گرفته شود یا می‌شوند.

کلیدواژگان: گیاهی، کرونا-19، زیست فناوری، سندروم تنفسی حاد کروناویروس

*Iranbaksh@iau.ac.ir

کووید-19: جگنن زیست فناوری گیاهی
می‌تواند در این زمینه کمک کند و منفی واقع شود؟
2- چیمریک سرکت‌های IgA/G
3- گلوکربروسیداز
4- تالیگلوراز آلfa
5- نازداری گیاهان
6- آمکتیک گیاهان
7- ORF
8- دیمانتیز
1- مولکول‌سازی مولکولی
2- واکسن مولکولی
3- مولکول‌سازی مولکولی
1- مولکول‌سازی مولکولی
2- واکسن مولکولی
3- مولکول‌سازی مولکولی
1- مولکول‌سازی مولکولی
2- واکسن مولکولی
3- مولکول‌سازی مولکولی
شیوع و بروز این بیماری در این منطقه

ویروس SARS-CoV-2 با استفاده از RT-PCR تشخیص می‌شود. در این روش، DNA بندی از سلول‌های مبتلا به ویروس از طریق واکسن‌های سنتزی گرفته می‌شود. این واکسن‌ها می‌توانند به طور کلی در سنجش تشخیص‌های نیازمند استفاده کنند. به‌طور کلی، این روش‌ها می‌توانند در تشخیص ویروس SARS-CoV-2 کمک کنند. در این روش، DNA بندی از سلول‌های مبتلا به ویروس از طریق واکسن‌های سنتزی گرفته می‌شود. این واکسن‌ها می‌توانند به طور کلی در سنجش تشخیص‌های نیازمند استفاده کنند. به‌طور کلی، این روش‌ها می‌توانند در تشخیص ویروس SARS-CoV-2 کمک کنند. در این روش، DNA بندی از سلول‌های مبتلا به ویروس از طریق واکسن‌های سنتزی گرفته می‌شود. این واکسن‌ها می‌توانند به طور کلی در سنجش تشخیص‌های نیازمند استفاده کنند. به‌طور کلی، این روش‌ها می‌توانند در تشخیص ویروس SARS-CoV-2 کمک کنند. در این روش، DNA بندی از سلول‌های مبتلا به ویروس از طریق واکسن‌های سنتزی گرفته می‌شود. این واکسن‌ها می‌توانند به طور کلی در سنجش تشخیص‌های نیازمند استفاده کنند. به‌طور کلی، این روش‌ها می‌توانند در تشخیص ویروس SARS-CoV-2 کمک کنند.
شرط، زمان زیادی لازم است. از طرف دیگر، عوارض جانبی و عوارض زیادی خواهد داشت، مثل خطر ابتلا به ویروس. یکی از جایگزین‌های این روش به‌صورت گروهی یا واسطه‌ریزی فیبری است که می‌تواند برای بسیاری از بیماران و در صورت لزوم به‌صورت آنلاین استفاده شود.

SARS-CoV-2 شناسایی است از گیاهان، سیلیس، و سایر ایجاد گشایش توسط آنتی‌ژن. در حالت هر دو استراتژی به‌عنوان ابزار برای مبارزه با همه‌گیری کووید-۱۹ استفاده می‌شود. هر چه طرح‌های مناسب‌تر کردن یک ترکیب کمکی ساخته شود، به‌صورت یک SARS-CoV-2 که روزی یک سطح، مرتب و رفیقی شده‌اند. در حال حاضر، در دو همکاری با اسپرین، آنتی‌ژن‌ها یا نوآوری‌های جدید در مقیاس عظیم و یک‌پایه برای توسعه برای آنتی‌ژن‌ها در مقیاسٔ اقتصادی، سپس این کار را برای توزیع در مرکز آزمایشگاه‌ها، تولید و ذخیره کرده و در مکال، اگر بتوان دلایل متعارف را با استفاده از رده‌های سیلوئید کمین، چند ماه طول می‌کشد. از طرف دیگر برای یک دیگر مصرف‌پذیر نیز استفاده می‌شود. یک سناریو دیگر، این سیلیس با استفاده از گیاهان تاریخچه کشاورزی مولکولی، بیش از ۳۰ سال پیش با انتشار مقاله‌ای درباره تولید آنتی‌ژن‌های در نیکوتیانا تاباکوم (Nicotiana tabacum) 

1. Prime-boost schedule
2. neutralizing antibodies
3. Angiotensin-converting enzyme-2

شیرین و واکسن، براساس سویه‌های غیرفعال با ضعیف‌شده ۲ است اما برای این که یک روش‌گیری نیز به تولید واکسن به‌مدت کافی
TGEV VLPs prepared by a US company, Kentucky Bioprocessing, were used in the study to determine their potential as a vaccine candidate.

The VLPs were designed to mimic the structure of the SARS-CoV-2 spike protein (S), which is the protein that allows the virus to enter human cells.

The VLPs were coated with antibodies against the S protein, which are produced by the human immune system in response to infection with the SARS-CoV-2 virus.

The VLPs were then used to test the immune response in mice and humans.

The results showed that the VLPs were able to stimulate a strong immune response in both mice and humans, which suggests that they could be used as a vaccine against TGEV.

Further studies will be needed to determine the safety and effectiveness of the VLPs as a vaccine candidate.
بسیاری از موارد شدید و کشنده، مهار می‌کند.
در آن‌بازی که می‌تواند با یا هدف برای درمان کورونا – Sarilumab/Kevzara و tocilizumab/Actemra
و ۱۹ مورد استفاده قرار گرفتند. یکی از مهم‌ترین محصولات
هستند که هردوی آنها به گیرنده IL-6R (IL-6 Receptor) وصل می‌شوند و برای درمان آرتریت روماتوئید مورد استفاده قرار می‌گیرند. هردوی آنها
در مرحله کارآزمایی بالینی برای کورونا-۱۹ هستند.

ضد‌بروسها

دازه‌های ضد‌بروسین سرعت عفونت را کاهش می‌دهند و به
سیستم ایمنی دن، زمان پیشی برای پاسخگویی می‌دهند.
بسیاری از داروهای ضد‌بروسی، احتمالی کوچک
شیمیایی هستند که با استفاده هوشیاری درآمدها تنها
و نیمه‌مثابه تولید شده‌اند و به دلیل تغییر روش را
سمت کمیابی که یک بیانی، قدرت با حثی علمی باید به
این حال، برخی از بروتپتین‌های می‌تواند به تولید ضد‌بروس
مورد استفاده قرار گیرد، مثل بروتیپ‌های عاملی مقدارشده
بین کروبی‌های‌های (کتین‌ها) حاصل از آنها. لکنتین‌های
عفونت عاملی شناخته شده‌اند که به طرف‌گسترده‌ای
ویروس‌ها وصل می‌شوند و با بلوک کردن ساختارهای
گلیکانی موضوع سطوح ویروس‌ها، آنها را غیرفعال می‌کنند (۴۴).
مثلاً، گریفیسینت، یک لکنتین ۲۱۱ آنیمونوسید
است که توسط یک چکیده قرار از جنس
گریفیسینت به‌عنوان مهارکننده بروتپاتی‌های متعادل و
HIV می‌کند که هیچ‌کسی برای آنها و وجود ندارد: شامل
۳۸ (۴۸) و Burotectod (۴۸) و گروه‌های سطح شیوع
SARS-CoV (۴۹) و شیوع بندی آن، یعنی
SARS-CoV-CoV (۵۰). گریفیسینت
ست‌داره نشان دهنده (MERS-CoV) دارای علایم قدرت‌مندی در مقابل این ویروس‌هاست
سمت کم آن سلول‌های آنسانی، یک دیدگاه درمانی
گسترده و مفید را به ما ارائه می‌دهد.
هنوز معلوم نیست که آیا گریفیسینت، ۲۰ سال قبل و ۴۳ سال قبل یا همکاری با سایر گروه‌های سطحی
SARS-CoV و SARS-CoV-۲ و سیستم حفاظت شده‌است و دارای برخی
موفقیتها گلیکانی منحصر به فرد و سیستم حفاظت‌شده
است (۶۵).

نگاه‌داری مبهم:

آنتی‌بادی‌های خود را ترشح کنند. این استراتژی توسعه
مجموعه ای از پاسخ‌های مکانیکی که اخیراً شدید شده،
پشتیبانی و تایید می‌شود. این باعث که انتظار از سرم
پیامدهای بهبودی و دلیل مورد استفاده بیماری کاهش شدت
بیماری و سرعت بیشترین به دوه بهبود مورد استفاده
قرار گرفت. (۴۳) و (۴۵) و با توجه به تولید
آن‌بازی که، هن تناها باعث عفونت محوری‌شدن یکی
بله یک خون‌گرفتن قدرتی می‌تواند در Mapp
قرار گیرد. طرح این روش‌ها توسعه شرکت (Biopharmaceuticals
Sanitary and Pharmaceutical، آمریکا) و بازی
تجاری آن، بیان گذاری که می‌تواند در غرب آفریقا، بیان گردی شد. (۴۶)
رای خودی که به دلیل تکنیک‌های (حقح نیاز).
وپروز گریسیئه، دیگر، برای استفاده ای اسان‌دولسانه
تأیید شد (۴۷) در ۳۷۹ (۳) برای این منظره، دوره‌ها بالای (بایا
۱۰ میلی‌گرم هر بیماری) آنتی‌بادی مورد نیاز است، این
بدین شکا که تناها گریسیئه تراوریتی رشدداری دارد.
مقایسه‌های سگ‌ردی می‌تواند برای بی‌پایی محدود، یک
ضرف اقتصادی داشته باشد. بطور مشابه، پتانسیل تولید
یک سه‌گرمسی از آنتی‌بادی‌های احتمالی احتمالی (HIV)
که نیاز
گستردگی خصوص خنثی کنندی دارد، مثل ۲G12
در گیاهان تراوریتی تناکو (۴۹) ذرات (۴۰) و برنج
(۴۲) تاکتیسم (Oryza sativa)
۲D12
Doolt Alam، به شرکت
در تیان نیاز کارآزمایی بالینی فاز اول اساسی، نوعی
لیسانس پیان ساخته و نام (GMP1) (آzugماشین ساخت)
نحوه آن‌بازی به یک یا به یک دستگاه
پی‌پردازی (سپرویسی) استفاده شده، که می‌تواند
زین که، که دو تولید ۲G12 به همراه در لکنتین
پذیر و هم‌پیمانه با تولید ۲G12 با همراه به نیاز
داده شده، که می‌تواند
زین که، که دو تولید ۲G12 به همراه به نیاز
2G12
Fraunhofer IME

1-goods manufacturing practice
آنثی بادی های خلخالی کننده ۲

درمانی باید مورد پذیرش قرار گیرد تا باعث بهبود این افراد گردد. بیماران مبتلا به کووید-۱۹ به درمان درمانی باید دقت شود.

شکل ۱: گیاهان پایین تولید معرفه‌ها تشخیصی، واکسن‌های کاندید و پروتئین‌های ضدپروپوسی برای هدف قراردادن همگرگ کورونا-۱۹. فلش‌های آبی، نشان‌دهنده سیر‌های بالقوه برای معرفه‌های تشخیصی هستند. فلش‌های سایر نشان‌دهنده سیر‌های اضافی برای واکسن‌ها و عوامل درمانی پایین کاربردهای مختلفی دارند. یک گیاه نقش به نشان داده شده که نشان‌دهنده که از چیزی است: بیان کننده و گیاهان درمانی که به شکل ساختار گرینچین منفصل به پایداری به پایداری‌های تولید، تدوین شده‌اند. این شکل شامل نکات‌هایی از بازی این بازی از Biorender است (http://biorender.com).

شکل ۲: ساختار گلیکان SARS-CoV-2. در بیماری کووید-19 همبستگی بین نکات و پروتئین‌های SARS-CoV-2 و پروتئین‌های لوکالوکسید بهبود دارد.
پس احتمال واکنش‌های حداقلی وجود دارد. به طور مشابه، استیوکرپین، یک لکیسی ایمنوسیدی از سیتیومارکتی به نام ۹۵ Sclerotinia varium، که در مطالعه SARS-CoV-2، در بالا استفاده می‌گردند، و برونس فعال است. در حال حاضر، این اکسیون با کرایون‌های درمانی برای تغذیه عضلات سلولی و جلوگیری از درد، مواردی بوده که در طول زمان مطالعات ما انجام گرفته است. در مقدمه سه، نشان داده شده است که در ۱۶۹۹ مصرف SARS-CoV-2 در دامنه تولید موثر و همچنین در طول زمان کاهش می‌یابد. این اکسیون با کرایون‌های درمانی برای تغذیه عضلات سلولی و جلوگیری از درد، مواردی بوده که در طول زمان مطالعات ما انجام گرفته است.
Potential applications of Plant Biotechnology against SARS-CoV-2, Teresa Capell, Richard M. Twyman, Victoria Armario-Najera, Julian K.-C. Ma, Stefan Schillberg and Paul Christou, Trends in Plant Science, 2020.
Potential applications of Plant Biotechnology against SARS-CoV-2

Translated by: Iranbakhsh A.R. and Mehrbani far S.

Research and Science Branch, Islamic Azad University, Tehran, I.R. of Iran

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus responsible for an ongoing human pandemic (COVID-19). There is a massive international effort underway to develop diagnostic reagents, vaccines, and antiviral drugs in a bid to slow down the spread of the disease and save lives. One part of that international effort involves the research community working with plants, bringing researchers from all over the world together with commercial enterprises to achieve the rapid supply of protein antigens and antibodies for diagnostic kits, and scalable production systems for the emergency manufacturing of vaccines and antiviral drugs. Here, we look at some of the ways in which plants can and are being used in the fight against COVID-19.

Key words: Plant, COVID-19, Biotechnology, SARS-CoV-2