RESEARCH ARTICLE
10.1029/2019EA000836

Key Points:
• Summer hot drought events over northeastern China are observed to increase in recent decades
• Effects of anthropogenic activity emerge as an important factor to increase the summer hot drought events over northeastern China
• The frequency and the intensity of summer hot drought events over northeastern China will be further strengthened in the future

Supporting Information:
• Supporting Information S1

Correspondence to:
H. Chen,
chenhuopo@mail.iap.ac.cn

Citation:
Li, H., Chen, H., Sun, B., Wang, H., & Sun, J. (2020). A Detectable Anthropogenic Shift Toward Intensiﬁed Summer Hot Drought Events Over Northeastern China. Earth and Space Science, 7, e2019EA000836. https://doi.org/10.1029/2019EA000836

Received 9 AUG 2019
Accepted 11 DEC 2019
Accepted article online 3 JAN 2020

Abstract This study investigates the influence of external forcings on the various summer hot drought events (SHDEs) over northeastern China (NEC). SHDEs are represented by the probability-based index (PI), which considers precipitation and temperature anomalies. The results show that SHDEs over NEC increased from 1961 to 2005, and the experiments for historical forcing (ALL), increased greenhouse gases emission forcing (GHG), and anthropogenic forcing (ANT) can largely reproduce the spatial and temporal features of the trends of SHDEs over NEC. Based on the optimal ﬁngerprinting method, the impact of increased anthropogenic activities can be detected at the 90% conﬁdence level. In addition, the attributable changes of PI in response to GHG and ANT forcings resemble the observation, implying that the increasing trends of SHDEs over NEC are primarily attributed to the increased anthropogenic activity. Furthermore, the occurrence probability of SHDEs over NEC will be further increased under different Representative Concentration Pathways in the future. Additional strict control regulations on GHG emissions are thus suggested to mitigate its impact on regional climate changes.

1. Introduction

Extreme climate and weather (extreme precipitation, ﬂood, heat waves, drought, etc.) have great impacts on the economy, agriculture, and human lives and are of great concern to the public and the government (Chen et al., 2012; Qiu et al., 2017; Wang et al., 2016; Wang et al., 2018). Because northeastern China (NEC) is the granary of the country, droughts often lead to a serious deﬁciency in water supply and a severe reduction in crop production, which have further inﬂuences on the quality of human life and result in numerous economic losses. For example, the extreme summer hot drought event that occurred in 2016 over NEC led to severe yield reductions and economic losses reaching up to CNY15.61 billion (Li, Chen, Wang, Sun, & Ma, 2018). Thus, it is highly important to understand the changing characteristics of summer hot drought events (SHDEs) over NEC and its associated possible mechanisms.

In general, the SHDEs over NEC are characterized by higher temperature and less precipitation. To date, numerous studies have focused on the changing features of the summer precipitation and surface air temperature (SAT) over NEC on different timescales. In terms of the interannual variations, changes of the sea ice concentration over the Arctic Ocean and Greenland (Wu et al., 2009), the north Atlantic SST (Chen et al., 2018; Wu et al., 2011; Zhao et al., 2019), the Indian subcontinent (Zhang, Chen, & Zhao 2019) and the Indian Ocean (Gao et al., 2014; Sun et al., 2019), the Tibetan heating (Zhang et al., 2018), the Paciﬁc Ocean (Zhu et al., 2019), and the weakened East Asian summer monsoon (Sun et al., 2017) may be linked to the variations of summer precipitation and SAT over NEC. On the interdecadal timescale, summer precipitation is observed to signiﬁcantly decrease since the end of the 1970s (Ding et al., 2008; Liu et al., 2011; Sun & Wang, 2015), which might be partially linked to the abrupt decrease of preceding winter and spring snows over the Tibetan Plateau (Ding et al., 2009). In addition, the summer precipitation over NEC also experienced an interdecadal decrease after the end of the 1990s (Zhao et al., 2018). Similar to changes in precipitation, the summer SAT over NEC experienced a shift toward a warm phase in the early 1990s (Chen & Lu, 2014). Additionally, Zhang, Chen, and Zhang (2019) suggested that the Eurasian warming may cause the extreme drought in NEC in the recent two decades. For the long-term trend, many studies have suggested that the summer precipitation over NEC has a decreasing trend (Qian & Lin, 2005; Zhai et al.,...
2005) while SAT presents an increasing trend (Feng et al., 2015) over the past half-century. Hence, previous studies have deeply investigated the features and causal factors of changes in summer precipitation and SAT over NEC on different timescales from the perspective of the internal climate system (Wang & Zeng, 2018).

In terms of the changes in drought events over NEC, Yang et al. (2016) indicated that drought (represented by the Standardized Precipitation Index) over NEC has become increasingly severe, mainly resulting from the decreased precipitation. When considering the impact of precipitation and temperature simultaneously, Zou et al. (2005) suggested that the drying trend over NEC was significant during the period from 1951 to 2003 based on the Palmer Drought Severity Index. Yu et al. (2014) also indicated that the persistent drought event over NEC became increasingly severe during the period from 1951 to 2010 based on the Standardized Precipitation Evapotranspiration Index (SPEI). In addition, Chen and Sun (2015a) suggested that the drought events have increased over NEC on the centennial scale, and the severe drought events were closely related to higher air temperature based on the results of SPEI. In general, all of these indices coincidently presented an increasing trend in summer drought events over NEC. In addition to these drought indices, another index based the concept of the multivariate copula is introduced (AghaKouchak et al., 2014; Cheng et al., 2016; Michele et al., 2005; Salvadori & De Michele, 2010). This drought index uses a probability-based index that considers the joint effect of precipitation deficiency and high SAT, which is easier to identify the severity of hot drought event and has been used to investigate the influence of the internal natural forcing (Barents Sea ice decline in March) on the variations of SHDEs over NEC on the interannual scale (Li, Chen, Wang, Sun, & Ma, 2018). Therefore, this probability-based index could be further applied to investigate the long-term changes in SHDEs over NEC as well as the potential contributions of the strengthened human activities.

Human influence has been detected in the changes in drought events over different regions around the world, such as central and eastern China (Ma, Zhou, Stone, et al., 2017), the Tibetan Plateau (Ma, Angélil, & Shiogama, 2017), southern China (Chen & Sun, 2017b), East Africa (Lott et al., 2013), and California (Diffenbaugh et al., 2015; Seager et al., 2017; Williams et al., 2015). However, the role of anthropogenic activity in the increased summer hot droughts over NEC remains unclear. Therefore, the focuses of this study are listed as follows: What is the changing characteristic of summer hot droughts over NEC? Whether human activities have imposed detectable impacts on the increased SHDEs over NEC? How severe the SHDEs over NEC will be in the future?

The outline of this study is listed as follows. Section 2.1 shows the data sets used in this study. Section 2.2 describes the methods, including the multivariate copula method, the ensemble empirical mode decomposition (EEMD) method, and the optimal fingerprinting analyses. Section 3 first presents the analyses regarding the performance of different external forcing simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) models to reproduce SHDEs over NEC. After that, the detection and attribution analyses of changes in NEC in response to different external forcings are conducted. Besides, the future changes of SHDEs under different Representative Concentration Pathways (RCP) are further discussed. Section 4 provides detailed discussions concerning anthropogenic activity to influence the increased SHDEs over NEC, and Section 5 finally presents a brief conclusion.

2. Data and Methods

2.1. Data

An observational gridded monthly precipitation and SAT data set (referred to as CN05.1) developed by Wu and Gao (2013) is applied in this study. CN05.1 was produced by interpolation of data from 2416 stations across China during the period from 1961 to 2016 using the “anomaly approach” method (Wu & Gao, 2013; Xu et al., 2009), which has a horizontal resolution of 1° × 1°.

To conduct optimal fingerprinting analyses, the monthly precipitation and SAT data sets from CMIP5 are also used and are obtained from the website of https://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html. To investigate the influences of external forcings on the variations of SHDEs over NEC, multi-model simulations from different external forcings during the period from 1961 to 2005 are used, including historical anthropogenic plus natural forcing (ALL), natural forcing (NAT), and greenhouse gases forcing (GHG). In this study, the anthropogenic impact (ANT) is calculated as ALL minus NAT (Zhang et al.,
and that the other anthropogenic forcing (OA) such as aerosol emissions and land use can be obtained as ANT minus GHG (Li et al., 2017). For the purpose of detection and attribution analyses, the preindustrial unforced control (CTL) simulations are also selected. Here, five chunks of nonoverlapping 45-year data sets (225 years in total) of precipitation and SAT are selected for each model. In addition, the simulations under the RCP4.5 and the RCP8.5 scenarios are used to investigate future changes in SHDEs over NEC. In summary, 14 climate models that include the simulations of ALL, GHG, NAT, CTL, and future scenarios are selected. The detailed information on these models is listed in Table 1. To give equivalent weight to each model, the ensemble means for each model is obtained and then the multi-model ensemble median (MME) of the chosen models are calculated when needed (Li et al., 2017). For convenience, all of the data sets derived from CMIP5 are bilinearly interpolated onto 1° × 1° grids as CN05.1, and then the seasonal mean (June, July, and August) of those data sets is calculated.

2.2. Methods

2.2.1. Multivariate Copula Method

In our study, the multivariate copula method is used to identify the SHDEs over NEC. The traditional copula method is proposed by Salvadori and De Michele (2010), in which the joint cumulative distribution function of precipitation (X_1) and temperature (X_2) can be defined as

$$F(x_1, x_2) = C(F_1(x_1), F_2(x_2)), \tag{1}$$

where $F_1(x_1) = P(X_1 \leq x_1)$ and $F_2(x_2) = P(X_2 \leq x_2)$ are the relevant cumulative distribution functions. Here, x_1 and x_2 represent the thresholds of precipitation and temperature and the value of $F(x_1, x_2)$ can be understood as the case that precipitation and temperature are higher bounded (corresponding to low precipitation and low temperature).

Further, Salvadori et al. (2013) proposed the joint survival method to better calculate the return period. Based on this method, the condition of precipitation deficiency and high temperature can be considered simultaneously. This joint survival function is defined as

$$PI = C(F_1(x_1), F_2(x_2)) = P(X_1 > x_1, X_2 > x_2), \tag{2}$$

where $F_1 = 1 - F_i = P(X_i > x_i)$. In the case of low precipitation and high temperature, X_i represents the original precipitation time series multiplied by -1, and x_i represents the threshold of precipitation...
During 1961–2005, the pentagram indicates the year of 2000. The blue dots are for historical observations, and the isolines are for return period levels of 10–10–60 from left to right. Units for temperature (°C) and precipitation (mm). The severity of hot drought events is easily identified as a certain probability level of \(PI \) (Salvadori et al., 2013), where a large return period suggests a severe small probability hot drought event. Given a certain pair of \(X_1 \) and \(X_2 \), there exists a unique isoline that shares the same probability \(t (t \in PI, t \in [0,1]; \text{see the isolines in Figure 1}) \). The corresponding survival Kendall’s return period \((\kappa_c) \) is defined as

\[
\kappa_c = \frac{1}{1 - \bar{R}(t)},
\]

where \(t \) is a certain probability level of \(PI \), and \(\bar{R}(t) \) is obtained by

\[
\bar{R}(t) = P(F(X_1, X_2) \geq t) = P\left(\hat{C}(F_1(X_1), F_2(X_2)) \geq t\right) = P(PI \geq t).
\]

Therefore, the probability level of \(PI \) is negatively correlated with \(\kappa_c \), and a small value of \(PI \) corresponds to a severe hot drought event (longer return period, see the pentagram in Figure 1). Figure 1 shows an illustration of the concurrent return periods of precipitation deficiency and high temperature over NEC in JJA during 1961–2005. Here, the blue dots give the anomalous precipitation and temperature for each year, and the isolines represent the corresponding survival Kendall’s return period. For example, the hot drought event occurred in 2000 is the severest year (with the highest temperature level and the second lowest precipitation level) during the period of 1961–2005, which has the lowest \(PI \) value (0.015; Figure S1) with a corresponding survival Kendall’s return period of 60 years (Figure 1). The severity of hot drought events is easily identified based on \(PI \). Thus, the \(PI \) is used to analyze the hot drought event in the following sections.

2.2.2. Ensemble Empirical Mode Decomposition Method

In this study, the EEMD method (Wu & Huang, 2009) is employed to analyze the changes in \(PI \) at different timescales. Based on this method, the components with truly physical meaning can be extracted from the signal. The steps to obtain different components of \(c_j(t) \) is summarized as follows: (1) Add a random white noise signal to the original series; (2) decompose the series into several intrinsic mode functions (IMFs); (3) repeat steps (1) and (2) with different white noise series; and (4) obtain the IMF components (Wu and Wang, 2009). According to equation (5), the MME of the \(PI \) series can be divided into six IMF components from a high frequency to a low frequency of \(c_j(t) \) in this study

\[
x(t) = \sum_{j=1}^{n} c_j(t) + r_n(t),
\]

where \(r_n(t) \) is the residual term and \(n \) denotes the total number of IMF components (\(n = 6 \)). Here, the IMFs are oscillatory functions with varying amplitude and frequency, and the number of extrema and zero-crossings must either be equal or differ at most by one for a single IMF. Based on the EEMD method, the variability part of \(PI \) is obtained by summing the first five components (e.g., high-frequency signals, annual signals, and interdecadal signals), while the last component is recognized as the trend part.
2.2.3. Optimal Fingerprinting Method

To detect and attribute changes in hot drought events over NEC (represented by PI), the optimal fingerprinting method is introduced (Zhang et al., 2013). The optimal fingerprinting method is based on the concept of the total least square method (Min et al., 2011; Ribes et al., 2013). In equation (6), \(y \) represents the observational historical PI values, \(x \) is the climate response to the external forcing considered (the PI values simulated by the MME of a certain external forcing including ALL, GHG, NAT, ANT, and OA), \(\beta \) is the scaling factor that adjusts the magnitudes of the fingerprints to best match the observation, and \(\epsilon \) is the Gaussian random residual term relevant to the internal variability. To conduct the fingerprinting analysis, the CTL simulations with 30 segments of 45-year nonoverlapping PI data sets are divided into two samples (six models with five chunks, respectively, which are chosen based on the criteria in Section 3.1). Half of these segments are used to prewhitening the data, and the other half segments are used to calculate the 5–95% uncertainty of regression coefficient relating to \(\beta \) by regressing the observational PI onto model simulated PI series \(x \) based on the MME of ALL, GHG, NAT, ANT, and OA. More detailed information can be found in Allen and Stott (2003).

\[
y = \beta x + \epsilon.
\]

To investigate the attributable changes in PI, trends for the MME of PI are first multiplied by the corresponding scaling factors (5–95% marginal of \(\beta \)), and then they are further multiplied by 45 (corresponding to the 45-year period) for each individual external forcings. The observed changes in PI are calculated by multiplying the trend of the observed PI (the 90% uncertainty range of trend is estimated by the total least square method) by 45 (corresponding to the 45-year period).

3. Results

3.1. Performance Evaluations in the Simulation of SHDEs

Before detecting and attributing historical changes in SHDEs over NEC, the model capability in reproducing trends of summer precipitation and SAT over NEC is evaluated. Figure 2 shows the observational trends of...
Figure 3. Plots of linear trends of the summer mean (a) surface air temperature (°C/year) and (b) precipitation (mm/year) over NEC from 1961 to 2005 for historical simulations (ALL forcings). Results from the multi-model ensemble median (MME) of the 15 models and the individual model are both shown. The dotted regions suggest that the trend is significant at 90% confidence level based on the Mann-Kendall nonparametric test.
SAT (Figure 2a) and precipitation (Figure 2b) from 1961 to 2005 over NEC based on CN05.1. Generally, the trend of SAT increased significantly over NEC, while the trend of precipitation decreased over most regions of NEC during the period from 1961 to 2005. Figure 3a shows the trends of SAT from 1961 to 2005 for the individual historical simulations as well as the MME. There is an increasing trend of SAT for most of the models (except for MIROC-ESM-CHEM, MIROC-ESM, and MRI-CGCM3). For precipitation, only eight out of 14 models have a similar decreasing trend over most regions of NEC from 1961 to 2005 (Figure 3b).

It seems that there exists large diversity in the long-term trend of the SAT and precipitation over NEC among different models, and these biases might be influenced by the internal climate variability (Santiago et al., 2016), the internal model variability (Giorgi & Bi, 2000), the choices of the model schemes (Wang & Sun, 2018), and so on. Thus, six models (bcc-csm1-1, CNRM-CM5, CSIRO-Mk3-6-0, GFDL-CM3, GFDL-ESM2M, and HadGEM2-ES) that simultaneously well reproduce the trend of SAT and precipitation over NEC (see the bold lettering models in Table 1) are chosen for further analyses.

Figure 4 shows the observation and the historical simulations for the trends of PI from 1961 to 2005 over NEC. SHDEs over NEC tended to increase significantly (corresponding to decreasing PI). The increasing trend of SHDEs over NEC is significant at the 90% confidence level based on the Mann-Kendall nonparametric test, largely affected by the increasing trend of surface temperature (Figure 2a) rather than precipitation (the trend of summer precipitation over most parts of NEC is statistically insignificant, which cannot pass the 90% confidence level). Given that SHDEs over NEC often cause great economic and agricultural losses, the features of SHDEs over NEC and the possible influences from different external forcings are further examined in the following analysis. Overall, the decreasing trend of PI over NEC (corresponding to an increase in SHDEs) can be captured by most of the models (significant at the 90% confidence level based on the Mann-Kendall nonparametric test). The spatial pattern correlations between the observation and the individual ALL experiment are larger than 0.83. In addition, the spatial correlation for the trend of PI between MME and the observation reaches 0.95, which is higher than most of the models.
Figure 5. Linear trends of the probability-based index (P) for (a–g) anthropogenic forcings and (h–n) greenhouse gas emissions during the summer season (June, July, and August) over NEC from 1961 to 2005. The results from the MME of the six chosen models and the individual six model are both shown. The numerical values in each panel show the spatial correlation between the observation and models. The dotted regions for observation and individual models indicate that the trend is significant at 90% confidence level based on the Mann-Kendall nonparametric test, and the dotted regions in MME indicate that more than 70% of the six individual models share the same sign as the MME.
Similar to the ALL forcing, the results based on the ANT forcing simulate well the decreasing trend of \(PI \) over NEC (Figures 5a–5g). In particular, the spatial correlations between observation and individual models are all greater than 0.65. Additionally, the spatial correlation between MME and observation reaches 0.93, largely resembling the observation. Consistent with historical simulation and the ANT forcing, the GHG forcing also presents a good resemblance to observation in terms of the trends of \(PI \) over NEC (Figures 5h–5n). The spatial correlation between individual models and observation are greater than 0.73, with a spatial correlation between MME and observation reaches 0.95. Unlike the ALL, GHG, and ANT forcings, the results based on the NAT (Figure S2) and OA forcings (Figure S3) show less similarity to the observation. For the NAT forcing, most of the individual models and the corresponding MME present an increasing trend of \(PI \), which is opposite to the observation. For the OA forcing, almost none of the individual models and MME show a spatial pattern similar to the observation, except for CSIRO-Mk3-6-0, which has a decreasing trend of \(PI \) with a spatial correlation of 0.89 with observation.

In addition to the spatial patterns of \(PI \) trends during the period from 1961 to 2005, we also investigate the spatially averaged temporal variations of \(PI \) over NEC using the cosine of latitudes as weight. Based on the EEMD method, the original temporal series (Figure 6a) can be divided into two components, including the trend part (Figure 6b) and the variability part (Figure 6c). The results suggest that the \(PI \) over NEC has interannual and interdecadal variations (Figures 6a and 6c) and a decreasing trend (Figure 6b) during the period from 1961 to 2005. The decreasing trend of \(PI \) can be satisfactorily captured by the MMEs from simulations of the ALL, GHG, and ANT forcings. However, increasing trends of \(PI \) occur for the MME of the NAT and OA forcings, which are opposite to the observation (Figure 6b). These results are consistent with the above findings concerning the spatial distribution of trends in \(PI \). In terms of the interannual and interdecadal variations of SHDEs over NEC, all of the simulations fail to reproduce these observed changing characteristics (Figure 6c). Thus, the possible impacts of these external forcings on the long-term changes of SHDEs over NEC are further explored in the following analyses.

The above evidences indicate that the region of NEC has experienced increased SHDEs during the period from 1961 to 2005. The historical simulation and external forcings such as GHG and ANT can reproduce
the change features of SHDEs over NEC, whereas the other external forcings, including NAT and OA, fail to reproduce these features. In the following section, the optimal fingerprinting method is applied to explore the extent to which these external forcings can exert influences on the changes of SHDEs over NEC.

3.2. Detection and Attribution of SHDEs Over NEC

In the following, the optimal fingerprinting method is used to investigate the influence of the given external forcings on changes in SHDEs over NEC. According to Section 2.2.3, the observational PI series averaged over NEC are regressed onto the MME of the six chosen models with respect to individual external forcings (ALL, GHG, ANT, NAT, and OA).

Figure 7a shows the best estimations and the 90% uncertainty ranges of scaling factors for the trend component of PI series in response to different external forcings. For detection, the 90% (5–95%) uncertainty range of the scaling factors should exclude zero, and its best estimation should be close to unity (Allen & Stott, 2003). The 90% uncertainty ranges of the ALL, GHG, and ANT forcings are larger than zero, suggesting that these signals are detectable according to the above principles. The p values for them are larger than 0.1 based on the residual consistency test (significant at 90% confidence level), suggesting a good fit of these regression models compared with the observation (Ribes et al., 2013). Best estimates for the ALL and ANT forcings are close to unity, indicating that they have good resemblances to the observed PI trends. However, the signals of the NAT and OA forcings fail to be detected, and their negative scaling factors suggest the opposite effect on the changes in SHDEs over NEC, which are consistent with the above analyses in Section 3.1. Both the NAT forcing and the OA forcing lack a primary component to be a predictor; thus, these two regression models are invalid (Li et al., 2017; Zhang et al., 2013).

Figure 7b further shows the fingerprints of PI variations in response to external forcings. Results suggest that none of these external forcings can be detected according to the above principles. Similar results can also be found for the original time series (Figure S4). Consequently, the influence of human activities (GHG and ANT) and historical simulation are detectable in terms of the increasing trend of SHDEs over NEC. However, the interannual and interdecadal variations of SHDEs over NEC are not detected by external forcings, which indeed might be linked to internal variability (e.g., Li, Chen, Wang, Sun, & Ma, 2018).

To estimate the increased SHDEs attributed to different forcings, we further calculate the attributable PI changes based on the method suggested in Section 2.2.3. Figure 7c shows the results of the attributable changes in the trend part of PI. In this study, PI is observed to decrease by -0.21 (-0.33 to -0.09), indicating that the SHDEs over NEC increased over the past half-century. Similar changes can also be found for the GHG, ANT, and ALL simulations. PI is estimated to decrease by -0.16 (-0.31 to -0.01) for the GHG forcing, by -0.15 (-0.30 to -0.01) for the ANT forcing, and by -0.17 (-0.34 to -0.01) for the ALL forcing. These attributable changes in PI are consistent with the observation. However, the median attributable changes in PI for the NAT and OA forcings are quite small, with values of -0.04 and -0.08, respectively. In addition, the 90% confidence intervals for the NAT and OA forcings are not consistent with the observation. Therefore, the effects of the NAT and OA forcings with respect to influence on changes in PI trend are rather small, but the attributable changes in PI trend with the inclusion of human activity (ALL, GHG, and ANT) well resemble the observation, suggesting that the human influence could noticeably increase the occurrences of SHDEs over NEC.
The black dashed line represents the value of 0.1. The colored solid lines indicate the MME of the six models, and the corresponding shadings indicate the model spreads. RCP4.5 (blue) and RCP8.5 (red). The colored solid lines indicate the MME during the historical period (black) and during the future period based on RCP4.5 and RCP8.5 scenario. Specifically, the severe SHDEs (with PI less than 0.1, see the dashed line in Figure 8) are predicted to occur once every 6–7 years by the end of the 21st century (2080–2099) based on the MME of the six chosen models in the RCP4.5 scenario, while it will constantly occur (all of the PI values will be less than 0.1) in the RCP8.5 scenario by the end of the 21st century (2080–2099). Further analyses suggest that the historical 20-year return period events during 1961–2005 (with 45-year period) will occur once every seven years in the RCP4.5 scenario during 2055–2099 (with 45-year period), and it will occur once every 3 years in the RCP8.5 scenario during 2055–2099 (with 45-year period) calculated by equations (3) and (4).

3.3. Future Changes in Summer SHDEs Over NEC
The above analyses suggest that anthropogenic activity may increase the occurrences of SHDEs over NEC. Besides, previous studies also indicated that there might be more extreme events (Sun et al., 2018) and more drought events across China in the future (Chen & Sun, 2017a; Dai & Zhao, 2017; Li, Chen, Wang, & Yu, 2018), which have great impacts on the security of socioeconomic systems (Yu et al., 2018). The issue of how the severity and the occurrence probability of SHDEs over NEC change due to the continuous GHG emissions in the future is thus investigated under different emission scenarios of RCP4.5 and RCP8.5.

Figure 8 shows the temporal series of the spatially averaged PI series over NEC during the period from 1961 to 2100. Here, we combine the historical data sets (from 1961 to 2005) and the future data sets (from 2006 to 2100) under RCP4.5 and RCP8.5 scenarios together. The results based on the MME of six chosen models show an evident decreasing trend of PI in the future, suggesting an increasing occurrence of SHDEs over NEC (corresponding to the lower value of PI) in the future. The occurrence probability for SHDEs over NEC mainly presents a higher value in the RCP8.5 scenario than that in the RCP4.5 scenario. Specifically, the severe SHDEs (with PI less than 0.1) are predicted to occur once every 6–7 years by the end of the 21st century (2080–2099) based on the MME of the six chosen models in the RCP4.5 scenario, while it will constantly occur (all of the PI values will be less than 0.1) in the RCP8.5 scenario by the end of the 21st century (2080–2099). Further analyses suggest that the historical 20-year return period events during 1961–2005 (with 45-year period) will occur once every seven years in the RCP4.5 scenario during 2055–2099 (with 45-year period), and it will occur once every 3 years in the RCP8.5 scenario during 2055–2099 (with 45-year period) calculated by equations (3) and (4).

4. Discussion
To verify our results further, another popular drought index known as SPEI (Vicente-Serrano et al., 2010) is also used in this study. SPEI shows a good capability to monitor drought events over China and is also a type of probability-based index (Chen & Sun, 2015b). Based on the observational temporal series of SPEI, a decreasing trend of summer drought events over NEC (Figure S5b) is evident, accompanied by interdecadal and interannual variability (Figures S5a and S5c). The decreasing trend of SPEI (corresponding to an increasing trend of drought events over NEC) can be captured by the ALL, GHG, and ANT forcings, while no significant trends are shown for NAT and OA (Figure S5b). These results are similar to those based on PI (Figure 6). Based on the optimal fingerprinting method, we observed that the ALL, GHG, and ANT forcings can be detected in terms of the trend of SPEI (Figure S6a), with all of the p values greater than 0.1 based on the residual consistency test. However, the NAT and OA forcings still are not detected in terms of the series of SPEI (Figure S6a). Besides, the variability part fails to be detected (Figure S6b) in response to external forcings, for that all of the corresponding p values are smaller than 0.1 based on the residual consistency test. These findings are also consistent with the results of the PI (Figure 7). In terms of the attributable changes in SPEI (Figure S7), the results also suggest that the ALL, GHG, and ANT forcings satisfactorily reproduce the observational changes in SPEI, whereas the other two forcings fail. Thus, the increased SHDEs over NEC are a robust response to the strengthened anthropogenic activities.

5. Conclusion
In summary, the SHDEs over NEC increased significantly during the past century, and the historical simulation and the external forcings, including GHG, ANT, and ALL, can reproduce this feature from both spatial distribution and temporal variations. Based on the optimal fingerprinting method, the ALL, ANT, and GHG forcings can be detected. Additionally, the attributable changes in PI trend for the ALL, ANT, and GHG forcings well capture the observational changes in PI. On the other hand, the results suggest that the NAT and OA forcings have almost no contribution to the observational changes in PI trend. Therefore, the anthropogenic activity may be an important factor that influences the increased SHDEs over NEC where greenhouse
Acknowledgments
We sincerely acknowledge the China Meteorological Administration for providing the gridded observations over China that were shared in the website at http://data.cma.cn/site/index.html. We also appreciate the World Climate Research Programme’s Working Group on Coupled Modelling, and the simulations used in this study from CMIP5 are available at http://www.ipcc-cmip5.org/. The China Meteorological Administration for providing data. The National Key R&D Program of China (Grants 41922034 and 41421004), the Natural Science Foundation of China (Grants 11675184, 41722010, and 41705028), the National Key R&D Program, and the Talent Start-Up Funding of Nanjing University of Information Science and Technology. We also thank the editor and reviewers for their thorough review and constructive suggestions.

References
AghaKouchak, A., Cheng, L. Y., Mzadilyaani, O., & Farahmand, A. (2014). Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought. Geophysical Research Letters, 41(24), 8847–8852. https://doi.org/10.1002/2014GL062308
Allen, M. R., & Stott, P. A. (2003). Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dynamics, 21(5), 477–491. https://doi.org/10.1007/s00382-003-0313-9
Chen, H. P., & Sun, J. Q. (2015a). Drought response to air temperature change over China on the centennial scale. Atmospheric and Oceanic Science Letters, 8(3), 113–119. https://doi.org/10.3878/AOSL20140089
Chen, H. P., & Sun, J. Q. (2015b). Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Journal of Climate, 28(13), 5430–5447. https://doi.org/10.1175/JCLI-D-14-00707.1
Chen, H. P., & Sun, J. Q. (2017a). Characterizing present and future drought changes over eastern China. International Journal of Climatology, 37(1), 138–156. https://doi.org/10.1002/joc.4987
Chen, H. P., & Sun, J. Q. (2017b). Anthropogenic warming has caused hot droughts more frequently in China. Journal of Climate, 30, 306–318. https://doi.org/10.1175/Jcli-D-16-01144
Chen, H. P., Sun, J. Q., Chen, X. L., & Zhou, W. (2017). Attribution of the July ed extreme precipitation over China. Atmospheric and Oceanic Science Letters, 20(7), 127–133. https://doi.org/10.7009/AOSL-D-17-01425
Dai, A. G., & Zhao, T. B. (2017). Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. Climatic Change, 144(3), 519–533. https://doi.org/10.1007/s10584-016-1705-2
Dawson, N. A., Swain, D. L., & Touma, D. (2015). Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences of the United States of America, 112(3), 3931–3936. https://doi.org/10.1073/pnas.1422385112
Ding, Y. H., Sun, Y., Wang, Z. Y., Zhu, Y. X., & Song, Y. F. (2009). Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon. Part II: Possible causes. International Journal of Climatology, 29(13), 1926–1944. https://doi.org/10.1002/joc.1759
Ding, Y. H., Wang, Z. Y., & Sun, Y. (2018). Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28(9), 1139–1161. https://doi.org/10.1002/joc.1615
Feng, J. M., Liu, Y. H., & Yan, Z. W. (2015). Analysis of surface air temperature warming rate of China in the last 50 years (1962–2011) using k-means clustering. Theoretical and Applied Climatology, 120(3–4), 785–796. https://doi.org/10.1007/s00382-014-1706-6
Gao, Z. T., Hu, Z. Z., Zhu, J. S., Yang, S., Zhang, R. H., Xiao, Z. N., & Iha, R. (2014). Variability of summer rainfall in northeast China and its connection with spring rainfall variability in the Huang-Huai region and Indian Ocean SST. Journal of Climate, 27, 7086–7101. https://doi.org/10.1175/JCLI-D-14-00217.1
Giorgi, F., & Bi, X. (2000). A study of internal variability of a regional model. Journal of Geophysical Research, 105(D24), 29,503–29,521. https://doi.org/10.1029/2000JD900269
Li, H. X., Chen, H. P., & Wang, H. J. (2017). Effects of anthropogenic activity emerging as intensified extreme precipitation over China. Journal of Geophysical Research: Atmospheres, 122, 6899–6918. https://doi.org/10.1002/2016JD026251
Li, H. X., Chen, H. P., Wang, H. J., Sun, J. Q., & Ma, J. H. (2018). Can Barents Sea ice decline in spring enhance summer hot drought events over northeastern China? Journal of Climate, 31(12), 4705–4725. https://doi.org/10.1175/JCLI-D-17-0429.1
Li, H. X., Chen, H. P., Wang, H. J., & Yu, E. T. (2018). Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models. Science of the Total Environment, 640–641, 543–554. https://doi.org/10.1016/j.scitotenv.2018.05.324
Liu, Y., Huang, G., & Huang, R. H. (2011). Inter-decadal variability of summer rainfall in eastern China detected by the Lepage test. Theoretical and Applied Climatology, 106(3–4), 481–488. https://doi.org/10.1007/s00382-011-0442-8
Lott, F. C., Christidis, N., & Stott, P. A. (2013). Can the 2011 East African drought be attributed to human-induced climate change? Geophysical Research Letters, 40(6), 1177–1181. https://doi.org/10.1002/2012GL052335
Ma, S. M., Zhou, T. J., Angélil, O., & Shigoma, H. (2017). Increased chances of drought in southeastern periphery of the Tibetan Plateau induced by anthropogenic warming. Journal of Climate, 30(16), 6543–6560. https://doi.org/10.1175/JCLI-D-16-0636.1
Ma, S. M., Zhou, T. J., Stone, D. A., Angélil, O., & Shigoma, H. (2017). Attribution of the July–August 2013 heat event in central and eastern China to anthropogenic greenhouse gas emissions. Environmental Research Letters, 12, 054020. https://doi.org/10.1088/1748-9326/aaf9d2
Michele, C. D., Salvadori, G., Canossi, M., Petaccia, A., & Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 50–57. https://doi.org/10.1061/(ASCE)1084-0699(2005)10:1(50)
Min, S. K., Zhang, X. B., Zwieers, F. W., & Hegerl, G. C. (2011). Human contribution to more intense precipitation extremes. Nature, 470(7344), 378–381. https://doi.org/10.1038/nature09763
Qian, W., & Lin, X. (2005). Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 90(3–4), 193–207. https://doi.org/10.1007/s11064-004-0101-2
Qiu, S., Zhou, W., Leung, Y., & Li, X. (2017). Regional moisture budget associated with drought/flood events over China. Progress in Earth and Planetary Science, 4(1), 1–13. https://doi.org/10.1186/s40645-017-0148-3
Ribas, A., Planton, S., & Terray, L. (2013). Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dynamics, 41(11–12), 2817–2836. https://doi.org/10.1007/s00382-013-1735-7
Salvadori, G., & De Michele, C. (2010). Multivariate multivariate extreme value models and return periods: A copula approach. Water Resources Research, 46(10), 219–233. https://doi.org/10.1029/2009WR009040
Salvadori, G., Durante, F., & Michele, C. (2013). Multivariate return period calculation via survival functions. Water Resources Research, 49(4), 2308–2311. https://doi.org/10.1002/wrcr.20204

Santiago, B., Sergio, M., Miquel, T., & Marco, M. (2016). Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. International Journal of Climatology, 36, 3413–3422.

Seager, R., Henderson, N., Cane, M. A., Liu, H., & Nakamura, J. (2017). Is there a role for human-induced climate change in the precipitation decline that drove the California drought? Journal of Climate, 30(24), 10,237–10,258. https://doi.org/10.1175/JCLI-D-14-00860.1

Sun, B., Li, H. X., & Zhou, B. T. (2019). Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL085019

Sun, B., & Wang, H. J. (2015). Interdecadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Climate Dynamics, 44, 2703–2722.

Sun, L., Shen, B. Z., Sui, B., & Huang, B. H. (2017). The influences of East Asian monsoon on summer precipitation in northeast China. Climate Dynamics, 48(5–6), 1647–1659. https://doi.org/10.1007/s00382-016-3165-9

Sun, Y., Hu, T., & Zhang, X. (2018). Substantial increase in heat wave risks in China in a future warmer world. Earth’s Future, 6(11), 1528–1538. https://doi.org/10.1029/2018EF000963

Vicente-Serrano, S. M., Begueria, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Wang, A. H., & Zeng, X. B. (2018). Impacts of internal climate variability on meteorological drought changes in China. Atmospheric and Oceanic Science Letters, 11(1), 78–85. https://doi.org/10.1080/16742834.2017.1379865

Wang, G. C., Zhang, Q., & Xu, J. J. (2018). Introducing a drought index to a crop model can help to reduce the gap between the simulated and statistical yield. Atmospheric and Oceanic Sciences Transactions, 11(4), 307–313. https://doi.org/10.1002/2017EO483659

Wang, S., & Sun, B. (2018). The impacts of different land surface parameterization schemes on Northeast China snowfall simulation. Meteorology and Atmospheric Physics, 130, 583–590.

Wang, S. Y., Hippis, L., Gillies, R. R., & Yoon, J. H. (2014). Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: Enso precursor and anthropogenic warming footprint. Geophysical Research Letters, 41(9), 3220–3226. https://doi.org/10.1002/2014GL059748

Wang, W., Zhou, W., Ng, E., & Xu, Y. (2016). Urban heat islands in Hong Kong: Statistical modeling and trend detection. Natural Hazards, 83, 885–907.

Williams, A. P., Seager, R., Abatzoglou, J. T., Cook, R. B., Smerdon, J. E., & Cook, E. (2015). Contribution of anthropogenic warming to California drought during 2012–2014. Geophysical Research Letters, 42(16), 6819–6828. https://doi.org/10.1002/2015GL064924

Wu, B. Y., Zhang, R. H., Wang, B., & D’Arigo, R. (2009). On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study. Advances in Atmospheric Sciences, 26(4), 666–678. https://doi.org/10.1007/s00372-009-9202-0

Wu, J., & Gao, X. J. (2013). A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56(4), 1102–1111. (in Chinese)

Wu, R. G., Yang, S., Liu, S., Sun, L., Lian, Y., & Gao, Z. T. (2011). Northeast China summer temperature and North Atlantic SST. Journal of Geophysical Research, 116, D16116. https://doi.org/10.1029/2011JD015779

Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: A noise assisted data analysis method. Advances in Adaptive Data Analysis, 1, 1–41. https://doi.org/10.1142/S1793536909000047

Xu, Y., Gao, X. J., Yan, S., Chenghui, C. U., Ying, S., & Giorgi, F. (2009). A daily temperature dataset over China and its application in validating a RCM simulation. Advances in Atmospheric Sciences, 26(4), 763–772. https://doi.org/10.1007/s00376-009-9029-z

Yang, G., Shao, W. W., Wang, H., & Han, D. M. (2016). Drought evolution characteristics and attribution analysis in northeast China. Procedia Engineering, 154, 749–756.

Yu, C., Huang, X., Chen, H., Huang, G., Ni, S., Wright, J. S., et al. (2018). Assessing the impacts of extreme agricultural droughts in China under climate and socioeconomic changes. Earth’s Future, 6, 689–703. https://doi.org/10.1002/2017EF000768

Yu, M. X., Li, Q. F., Hayes, M. J., Svoboda, M. D., & Heim, R. R. (2014). Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? International Journal of Climatology, 34(3), 545–558. https://doi.org/10.1002/joc.3701

Zhai, P. M., Zhang, X. B., Wan, H., & Pan, X. H. (2005). Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate, 18(7), 1096–1108.

Zhang, J., Chen, H., & Wu, Z. (2018). Double-mode adjustment of Tibetan Plateau heating to the summer circumpolar teleconnection in the Northern Hemisphere. International Journal of Climatology, 38, 663–676.

Zhang, J., Chen, H., & Zhang, Q. (2019). Extreme drought in the recent two decades in northern China resulting from Eurasian warming. Climate Dynamics, 52, 2885–2902.

Zhang, J., Chen, H., & Zhao, S. (2019). A tripole pattern of summertime rainfall and the teleconnections linking northern China to the Indian subcontinent. Journal of Climate, 32, 3637–3652.

Zhang, X. B., Wan, H., Zwiers, F. W., Hegerl, G. C., & Min, S. K. (2013). Attributing intensification of precipitation extremes to human influence. Geophysical Research Letters, 40(40), 2522–2527.

Zhao, J., Zhou, J., Yang, L., Hou, W., & Feng, G. (2018). Inter-annual and inter-decadal variability of early- and late-summer precipitation over northeast China and their background circulation. International Journal of Climatology, 38(6), 2880–2888. https://doi.org/10.1002/joc.5470

Zhao, W., Chen, S., Chen, W., Yao, S., Nath, D., & Yu, B. (2019). Interannual variations of the rainy season withdrawal of the monsoon transitional zone in China. Climate Dynamics, 53, 2031–2046.

Zhu, B. Y., Sun, B., & Wang, H. J. (2019). Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. International Journal of Climatology, 39(9), 353–368. https://doi.org/10.1002/joc.6242

Zou, X. K., Zhai, P. M., & Zhang, Q. (2005). Variations in droughts over China: 1951–2003. Geophysical Research Letters, 32(4), 353–368. https://doi.org/10.1029/2004GL021853