Self-consistent calculations of the electric giant dipole resonances in light and heavy mass nuclei.

N. Lyutorovich and V. Tselyaev
V. A. Fock Institute of Physics, St. Petersburg State University, RU-198504 St. Petersburg, Russia

J. Speth, S. Krewald, and F. Grümmer
Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany

P.-G. Reinhard
Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany

(Dated: May 2, 2014)

While bulk properties of stable nuclei are successfully reproduced by mean-field theories employing effective interactions, the dependence of the centroid energy of the electric giant dipole resonance on the nucleon number \(A \) is not. This problem is cured by considering many-particle correlations beyond mean-field theory, which we do within the Quasiparticle Time Blocking Approximation. The electric giant dipole resonances in \(^{16}\text{O}\), \(^{40}\text{Ca}\), and \(^{208}\text{Pb}\) are calculated using two new Skyrme interactions.

PACS numbers: 21.30.Fe, 21.60.-n, 24.30.Cz, 21.10.-k

The electric giant dipole resonance (GDR) is a well-known nuclear excitation mode which is related to bulk properties of nuclei, such as the Thomas-Reiche-Kuhn (TRK) sum rule and the nuclear symmetry energy \([1]\). One might assume that theories which describe both bulk properties of nuclei and shell effects rather well, such as self-consistent mean-field theories based on effective nucleon interactions \([2,3]\), should have no problem in systematically reproducing the centroid energies of the GDR as a function of the nucleon number \(A \). This is not the case, however, as has been discussed in detail in several recent reviews on mean-field theories which include strength functions obtained within the quasi-particle random-phase approximation (QRPA) \([4,5]\). It was impossible so far to describe ground-state properties and the centroid energy of the GDR both in light and heavy nuclei with the same effective interaction. The problem is more serious than might appear at a first glance because the physics of the GDR is intimately related to the neutron skin thickness and the pygmy dipole strength \([10,12]\), presently investigated experimentally because of an impact on the isotope abundance produced in supernova explosions \([13]\). There are two hints suggesting that the mean-field approach by itself is at the origin of the problem. Complex configurations play a well-known role in the damping of nuclear excitations \([14]\). Even when effective interactions are fitted to the effective isoscalar mass, the symmetry energy, and the TRK sum rule enhancement factor \(\kappa \), the problem remains unsolved \([9]\).

We employ the Quasiparticle Time Blocking Approximation (QTBA), developed and applied in \([15,21]\), to study the GDR. The QTBA is a method to calculate nuclear response functions which generalizes the QRPA. It includes explicitly the coupling of one-particle one-hole(1p1h) configuration with phonons, but omits the simultaneous excitation of two-phonon states in the presence of a 1p1h-excitation. In the limit of vanishing phonon-nucleon coupling, the QTBA corresponds to the QRPA, a standard mean field approach. Originally, the QTBA was used in the framework of Landau-Migdal theory, but has been generalized recently to effective interactions of the Skyrme family in order to make possible self-consistent calculations \([18,19,22]\). The Skyrme interactions are defined by a set of momentum- and density-dependent contact interactions; different parameterizations may be distinguished by some set of theoretical quantities, such as nuclear matter properties or the effective mass, which are not directly observable. The momentum dependence of the Skyrme interaction leads to an effective mass, with values \(m^*/m < 1 \) found by many investigations. Mean-field approaches which employ effective masses smaller than unity generate single-particle energies which systematically deviate from the separation energies, mainly by a too small level density. Larger level densities can be obtained by taking into account the energy dependence of the nucleon self-energy, as is shown in Refs. \([23,24]\). The energy dependence of the self-energy is due to complex configurations, such as the coupling of phonons to the single particle degrees of freedom. In this communication we show that if these effects are considered, both centroid energies and spreading widths of the giant resonances are reproduced. As we know that Skyrme forces cannot reproduce simultaneously the GDR in \(^{16}\text{O}\) and \(^{208}\text{Pb}\) \([8]\), we have adjusted new Skyrme parameterizations for the purpose of this study concentrating on tuning the GDR in \(^{16}\text{O}\) within the mean-field approach (RPA). Since there are only few collective nuclear vibrations in light nuclei, the inclusion of phonons within the QTBA is expected to produce results close to the ones...
obtained in the mean field approach for 16O. On the other hand, in heavy nuclei, the number of collective modes increases, which leads to major differences between the mean-field approach and the QTBA. We follow exactly the same fitting strategy and data as used for the systematic variation of forces in [6].

As a result we obtain two new forces, SV-m56-O with effective mass $m^*/m = 0.56$ and SV-m64-O with $m^*/m = 0.64$. Both forces have a rather low symmetry energy $a_{\text{sym}} = 27$ MeV, and high sum-rule enhancement factor $\kappa_{\text{TRK}} = 0.6$. The parameters are listed in Table I.

TABLE I. Skyrme force parameters (upper block), adjusted nuclear matter properties (middle block), and dipole polarizability α (lower block)

Force	t_0	t_1	t_2	t_3	t_4	x_0	x_1	x_2	x_3	b_4	α	κ_{TRK}^2	κ_{TRK}^2
SV-m56-O	-1905.403	571.187	1594.803	8439.036	133.268	0.644020	-2.973738	-1.255261	1.796625	52.97011	0.2	20.74982	20.74982
SV-m64-O	-2983.859	484.604	1134.345	10720.663	113.973	0.619768	-2.332678	-1.305938	1.210109	62.92567	0.2	20.72126	20.72126

Property	m^*/m	a_{sym}/MeV	κ_{TRK}	σ_{D}/fm3	n-skin [fm]
SV-m56-O	0.56	27	0.6	20.2	0.156
SV-m64-O	0.64	27	0.6	19.4	0.134

Of course, the new fits maintain the good ground state properties of all the systematically varied forces in [6]. Additionally, the low effective mass and low symmetry energy $a_{\text{sym}}=27$ MeV together with a rather high sum-rule enhancement factor κ_{TRK} of the two parameterizations delivers a high GDR energy. This is beneficial for 16O but leads to its overestimate in 208Pb. However the inclusion of complex configurations brings the GDR in 208Pb down to the correct value. Similar effects are seen for the single-particle energies. The parameterizations SV-m56-O and SV-m64-O reproduce these energies in 16O reasonably well, but the single-particle spectrum in 208Pb is spread out too much and deviates strongly from the experimental one. The coupling to the phonons will improve the spectrum [20]. Being built on RPA, QTBA follows basically the same trends with varying Skyrme force as RPA (see [6]), though the absolute value of the effect is different in light and heavy mass nuclei.

Let us outline some technical details of our numerical scheme. In our RPA and QTBA calculations of the GDR, the single-particle continuum is treated exactly according to the scheme described in Ref. [19]. The phonons were calculated within the so-called discretized RPA (DRPA). Here the results depend on the single particle basis and on details of the discretization e.g. the size of the box one chooses. In the present investigation, such ambiguities are small, as we control them by comparing the DRPA results with a full continuum RPA.

In self-consistent calculations the pb-interaction is given by the second derivative of the energy functional. In the DRPA calculations of phonons the matrix elements of the ph-interaction were calculated exactly except for the spin-orbit and Coulomb contributions which were omitted. In the RPA and QTBA calculations of the GDR we used additional (local-exchange) approximations for the velocity-dependent part of the interaction derived from Skyrme energy functional. In the case of the GDR this approximation gives results which are close to the exact RPA results. It will be described in a forthcoming publication. In our investigation we did not study spin-dependent properties of new Skyrme forces. It is well-known that spin-spin part of the residual interaction (except for J^2-generating terms) does not contribute to the ground-state structure for spherical even-even nuclei. So one can omit this part in the calculations of the excited states in these nuclei without breaking self-consistency. On the other hand, inclusion of the spin-spin part of the residual ph-interaction leads to an instability in the DRPA calculations of the phonon’s characteristics with given Skyrme forces. In fact, as for most other Skyrme forces, the instability is driven by the term $\alpha (\nabla \sigma)^2$ in the functional. For this reason we exclude this part of the interaction in our calculations.

The number of solutions of the RPA equations depends on the size of the configuration space. However, the majority of the RPA wave functions are dominated by one particle-hole configuration. In principle, one has to subtract the second order contributions to complex (ph-phonon) configurations in order to avoid double counting [27]. For simplicity, the present calculations consider only a small number of phonons, defined by having transition probabilities of at least 1/5 of the strongest state of each multipolarity. For these phonons, the second-order corrections are small and have been neglected.

In Fig.1 we show the sensitivity of the photo absorption cross sections, obtained in the framework of RPA, on small variations of the effective mass. We used two different values $m^*/m=0.56$ and 0.64. The higher effective mass gives lower GDR energies in all three nuclei. As we are interested in a Skyrme parametrization which reproduces the GDR in 16O we present here only results for the lower effective mass. Note that the present calculations improve the description of the GDR in 16O.
FIG. 1. (Color online) Photo absorption cross-section in 16O calculated self-consistently in RPA, using two different Skyrme parameterizations with effective mass 0.56 (dashed(blue)) line) and 0.64 (dashed-dotted(green) line). The experimental cross section are given by the (brown) dots connected by a solid line [28].

TABLE II. Comparison of theoretical and experimental [28–30] Lorentzian parameters. The energies considered range from 8-25 [MeV] for 208Pb and from 10-32 [MeV] for 40Ca and 16O.

Nucleus	Force	\bar{E} [MeV]	Γ [MeV]	σ_0 [mb]
208Pb	SV-m56-O (RPA)	14.30	4.96	624
	SV-m56-O (QTBA)	13.37	5.99	495
	Experiment	13.43	5.08	481
40Ca	SV-m56-O (RPA)	21.61	5.90	104
	SV-m56-O (QTBA)	21.14	5.92	99
	Experiment	20.00	5.00	95
16O	SV-m56-O (RPA)	25.31	8.95	25.7
	SV-m56-O (QTBA)	24.49	8.85	24.8
	Experiment	23.76	7.17	24.8

in comparison with other self-consistent approaches. As only a few collective states exists in 16O, we do not expect strong modifications of the RPA results due to the phonons. This is indeed the case and is demonstrated in Fig. 2 where we compare the RPA and QTBA results. The Lorentzian parameters of the photo absorption cross-section [1] derived from the data of Refs. [28–30], are summarized in Table II for 208Pb, 40Ca, and 16O. The data shown here and in the subsequent figures are also available electronically [31]. In Fig. 3 we present the dipole photo absorption cross-section in 208Pb calculated with the Skyrme parameterization SV-m56-O and compare them with the data [28]. The result of the conventional RPA is compared with the QTBA where the phonons are included. In RPA the mean energy of the GDR $\bar{E} = 14.30$ MeV is too high. The rather large width $\Gamma = 4.96$ MeV in the RPA is explained by a strong peak in the cross-section at 20.4 MeV, i.e. in the high-energy tail of the GDR. The phonons shift the GDR to lower energies, where the mean energy $\bar{E} = 13.37$ MeV and the width $\Gamma = 5.99$ MeV are now in good agreement with the experimental data. We investigated the photo absorption cross section in 40Ca with the same Skyrme force SV-m56-O as an example for an intermediate mass nucleus which is shown in Fig. 4. The RPA result is about 1.6 MeV higher compared to the data. The cross-section calculated within the QTBA is shifted by 0.5 MeV to lower energies and agrees better with experiment.

FIG. 2. (Color online) Comparison of the experimental photo absorption cross-section in 16O with theoretical ones calculated in RPA (dashed(blue) line) and QTBA (solid(red) line) using the SV-m56-O Skyrme parameters. The experimental data are given by the (brown) dots connected by a solid line [28].

FIG. 3. (Color online) Comparison of the experimental photo absorption cross-section in 208Pb ((brown) dots with bars), with theoretical ones calculated in RPA (dashed(blue) line) and QTBA (solid(red) line). The Skyrme parameterization SV-m56-O was used.
able quantitative agreement with the experimental dipole employing two new Skyrme interactions show a reason-

ation for damping and energy shift. First calculations of the giant dipole resonance. As the phonon contribu-

mean-field theories in reproducing the centroid energies of the giant dipole resonance. As the phonon contribu-

quasiparticle-phonon coupling may solve the problem of the giant dipole resonance. As the phonon contribu-

The data are taken from Ref. [30].

RFBR (Grant no. 09-02-91352-DFG-a).

In summary, we show that the explicit inclusion of quasiparticle-phonon coupling may solve the problem of mean-field theories in reproducing the centroid energies of the giant dipole resonance. As the phonon contribution is small in light nuclei, but large in heavy mass nu-

[1] B. Berman and S. Fultz, Rev.Mod.Phys. 47, 713 (1975)

[2] T. Nikšić, D. Vretenar, and P. Ring, Prog.Part.Nucl.Phys. 66, 519 (2011) arXiv:1102.4193 [nucl-th]

[3] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev.Mod.Phys. 75, 121 (2003)

[4] S. Goriely, M. Samyn, P.-H. Heenen, J. Pearson, and F. Tondeur, Phys.Rev. C66, 024326 (2002)

[5] M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, et al., Phys.Rev. C82, 024313 (2010) arXiv:1005.5145 [nucl-th]

[6] P. Klüpfel, P.-G. Reinhard, T. Bürvenich, and J. Maruhn, Phys.Rev. C79, 034310 (2009) arXiv:0804.3385 [nucl-th]

[7] J. Erler, P. Klüpfel, and P.-G. Reinhard, Journal of Physics G: Nuclear and Particle Physics 38, 033101 (2011)

[8] J. Erler, P. Klüpfel, and P.-G. Reinhard, J.Phys.G 37, 064001 (2010) arXiv:1002.0027 [nucl-th]

[9] M. Dutra, O. Lourenco, J. Sá Martins, A. Delfino, J. Stone, and P. Stevenson, Phys.Rev. C85, 035201 (2012) arXiv:1202.3902 [nucl-th]

[10] S. Abramyan, Z. Ahmed, et al. (PREX Collaboration), Phys. Rev. Lett. 108, 112502 (2012)

[11] A. Tamii, I. Poltoratska, P. von Neumann-Cosel, Y. Fujita, T. Adachi, et al., Phys.Rev.Lett. 107, 062502 (2011) arXiv:1104.5431 [nucl-ex]

[12] D. Savran, M. Elvers, J. Endres, M. Fritzsche, B. Löher, et al., Phys.Rev. C84, 024326 (2011)

[13] C. Horowitz and J. Piekarewicz, Phys.Rev.Lett. 86, 5647 (2001) arXiv:astro-ph/0010227 [astro-ph]

[14] G. Bertsch, P. Bortignon, and R. Broglia, Rev.Mod.Phys. 55, 287 (1983)

[15] V. Tselyaev, Yad.Fiz.; Soviet Journal of Nuclear Physics (English translation) 50, 1252 (1989).

[16] V. Tselyaev, Phys.Rev. C75, 024306 (2007) arXiv:nuc-th/0505031 [nucl-th]

[17] S. Kamerdzhiev, J. Speth, G. Tertychny, and V. Tselyaev, Nuclear Physics A 555, 90 (1993)

[18] A. Avdeenkov, F. Grümmer, S. Kamerdzhiev, S. Krewald, N. Lyutorovich, and J. Speth, Physics Letters B 653, 196 (2007)

[19] N. Lyutorovich, J. Speth, A. Avdeenkov, F. Grümmer, S. Kamerdzhiev, et al., Eur.Phys.J. A37, 391 (2008) arXiv:0806.2813 [nucl-th]

[20] V. Tselyaev, J. Speth, F. Grümmer, S. Krewald, A. Avdeenkov, E. Litvinova, and G. Tertychny, Phys. Rev. C 75, 014315 (2007)

[21] S. Kamerdzhiev, J. Speth, and G. Tertychny, Phys.Rept. 393, 1 (2004) arXiv:nuc-th/0311058 [nucl-th]

[22] V. Tselyaev, J. Speth, F. Grümmer, S. Krewald, A. Avdeenkov, E. Litvinova, and A. Lyutorovich, Phys. Rev. C 79, 034309 (2009)

[23] G. Brown, J. Gunn, and P. Gould, Nuclear Physics A 46, 598 (1983)

[24] G. Bertsch and T. Kuo, Nuclear Physics A 112, 204 (1968)

[25] P. Ring and E. Werner, Nuclear Physics A 211, 198 (1973)

[26] J. Jeukenne, A. Lejeune, and C. Maixaux, Phys.Rept. 25, 83 (1976)

[27] A. Lejeune and C. Maixaux, “Proceedings Enrico Fermi School LXXVII,1979,” (North-Holland, 1981) p. 418.

[28] B. Ishkhanov, I. Kapitonov, E. Lileeva, E. Shirokov, V. Erokhova, M. Elkin, and A. Izotova, preprint MSU-INP-25/2002-27/711 (2002).

[29] V. Erokhova, M. Elkin, A. Izotova, B. Ishkhanov, L. Kapitonov, E. Lileeva, and E. Shirokov, Izv.Ross.Akad.Nauk.Ser.Fiz.. 67, 1479 (2003).

[30] http://www.nndc.bnl.gov/exfor/exfor00.htm.