Magnetoresistance through spin polarized p-states

Nikos Papanikolaou

Institute of Materials Science, NCSR "Demokritos",
GR-15310 Ag. Paraskevi Attiki, Greece

(Dated: November 14, 2018)

Abstract

We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic electronic-structure calculations. In particular we investigate the role of defects in the contact region in order to explain the recently observed spectacular magnetoresistance ratio. Our results predict that possible presence of spin polarized oxygen in the contact region, could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone.

PACS numbers: 73.22.-f, 73.40.-c, 73.63.-b
Understanding spin transport in order to use it in electronics devices is an intensively pursued goal over the last years. Towards this direction spectacular effects were reported in electrodeposited Ni nanocontacts where resistance changes by two to three orders of magnitude when applying a small magnetic field at room temperature. This has followed after effort was focused on the magnetoresistance effect of electrodeposited nanocontacts. Smaller magnetoresistance ratios, up to few hundred percent, were reported in ballistic Ni, Co, and Fe nanoconstrictions and Fe_3O_4 nanocontacts. There have been several attempts to explain the experimental data. One possibility considered is the scattering of the electrons in a domain wall. The width of a domain wall in a nanocontact is predicted to be of the order of the nanocontact size, and such a reduction of the domain wall width increases the magnetoresistance. Magnetostriction effects could also lead to an increased magnetoresistance, but most probably cannot explain the experiments. Alternatively, a thin domain wall pinned in a magnetic dead layer together with the possibility of 100% polarization of the Ni d electrons was also proposed as a possible explanation. Moreover the effect of several ballistic nanocontacts in parallel requires further study as pointed out in the most recent work of Ref. 1.

There is some experimental effort to measure the magnetoresistance due to a domain wall in a constriction, but all studies found magnetoresistance values of the order of 1% or less. This result is not far from theoretical predictions of Levy and Zhang, who reported values between 2% and 11%. Ab initio calculations for the ballistic conductance through an atomically sharp domain wall predict MR ratios up to 60-70%, which is at least one order of magnitude lower than the experimental values on the electrodeposited Ni nanocontacts. On the other hand, phenomenological models seem to account for magnetoresistance values up to a few hundred percent, by assuming domain wall scattering. However it is difficult to assign a realistic spin polarization in order to explain magnetoconductance (MC) values of the order of thousands of per cent.

Since the big effects appear on electrodeposited Ni, nanocontacts the electrodeposition process should play a decisive role for the nanocontact properties. The chemistry and structure of the contacts is not yet clear, while there is some indication that the diameter of the nanocontacts is not the crucial factor to obtain big magnetoresistance. Generally, different conductance values are attributed to different diameters of the contact area, however the transport mechanism is still not clear.
In this work we propose a new mechanism, based on the presence of spin-polarized oxygen in the contact region, that could explain rather high magnetoresistance values in Ni contacts. We considered Cl, S, O, and C in the contact region, and studied the influence of the nanocontact chemistry on the magnetotransport properties by means of electronic structure calculations. Only oxygen was found to have a magnetic moment in the structures we studied, while a presence of a magnetic dead layer cannot explain the observed effect since it reduces the magnetoresistance ratio and this is confirmed by our calculations.

We model the nanocontacts by two semiinfinite Ni (001) ideal leads covered with a full monolayer (ML) of Cl, S, C and O, and bring them close together. We use the experimental lattice constant of Ni: \(a_0=6.65\) au. The distance of the defect layer from the Ni surface is \(a_0/2\) and the defect layers are separated by \(a_0\). We do not intend to model an O overlayer on the Ni (001) surface, the structure and magnetic properties of O on Ni is studied well in the past both theoretically and experimentally, and is not relevant to the structure of electrodeposited Ni nanocontacts. Our aim is to use a simple model structure in order to achieve the minimum requirements that would demonstrate the effect of spin polarized transport through p-states. The experimental structure in the nanocontacts where the high magnetoresistance is observed is not well known, but spin polarization on the O atoms can occur for example if a thin NiO layer is present in the contact. Moreover we assume that the electronic transport is ballistic.

The electronic structure is calculated using the Screened Korringa-Kohn-Rostoker (KKR) Green’s function method, details of which can be found elsewhere. The potential is assumed to be spherically symmetric around each atom. We considered an angular momentum cutoff \(l_{\text{max}} = 3\) for the wavefunctions and the Green’s function, and \(l_{\text{max}} = 6\) in the multipole expansion of the charge density. The screening transformation of the KKR method allows for the description of semi-infinite geometries using the decimation method. Exchange and correlation effects are taken into account within the local density approximation of the density functional theory using the parameterization of Vosko, Wilk, and Nusair. The conductance \(g\) is calculated within the Kubo linear response theory as formulated by Baranger and Stone. We consider a sample connected to two semi-infinite leads. Two surfaces \(C_n\) and \(C_m\) separate the leads from the sample. Following Ref. the conductance between the two
leads at energy E and at zero temperature is given by

$$g = \frac{-e^2 \hbar^3}{8\pi M^2} \int_{C_{n}} dS \int_{C_{m}} dS' G^+(r, r'; E) \leftrightarrow \nabla \leftrightarrow G^-(r', r; E)$$

(1)

where $f(r) \leftrightarrow g(r) = f(r)\nabla g(r) - g(r)\nabla f(r)$, and G^+, G^- are the advanced and retarded Green’s functions, respectively. The systems under consideration have a two-dimensional (2D) periodicity parallel to the interfaces, and the surface integrals in Eq. (1) are performed using a Fourier transform. A detailed presentation will be reported elsewhere. The Green’s function for the conductance calculation was evaluated using a small imaginary part to the energy $\text{Im}E=0.02$ mRy.

In Fig. 1 we present the local density of states (LDOS) of O at the interface and of Ni at the neighboring layer. The magnetic moment of Ni is 0.85 μ_B compared to the bulk value of 0.61 μ_B; this value is very close to the clean Ni (001) surface moment. The oxygen in our structure has a rather big moment of 1.4 μ_B. We note that the difference of the LDOS at the Fermi level is larger for the Ni (d) states compared with the (p) states of O as can seen in Fig. 1. However, the induced p magnetization is the key factor to achieve high magnetoconductance ratios. In Fig. 2 we present the conductance for each spin channel, for parallel (P) and antiparallel (AP) orientation of the magnetic moments in the Ni leads, together with the MC ratio, defined as $MC = \frac{g_P - g_{AP}}{g_{AP}}$. The magnetic profile changes only little in the antiparallel configuration and O remains highly spin polarized. As we can see in the bottom panel of Fig. 2 the MC ratio was found to be about 450% at the Fermi level and increases up to almost 700% at 0.3 eV above E_F. The conductance and MC ratio peaks are closely related to the LDOS at the O site. Comparing Fig. 1 with Fig. 2 we can see that since the majority-spin states are occupied (they are below E_F), the variation of the MC ratio above E_F reflects the variation of the minority LDOS. The p polarization leads to a large contrast in the conductance between majority and minority channels. Although the spin polarization of Ni at E_F is almost twice larger than the O one, it is the relatively small spin polarization of the oxygen p states which is responsible for the spectacular MC ratio. Indeed, our calculations show that in a pure Ni contact where two Ni (001) leads are separated by one vacuum layer the MC ratio has a maximum value of only $\approx 70\%$, which is similar to the values reported previously for the magnetoresistance of abrupt, atomically sharp domain walls in the ballistic regime. The question of spin polarization and its relevance to the observed current spin polarization has been discussed before. Our results introduce another
factor, the character of the polarization, which is missing from the models used previously
to explain the observed effects. Spin polarization of p orbitals is more difficult to occur
but, once this is achieved, highly spin-polarized currents are possible. In the present work
this was demonstrated with O but other substances might lead to similar effects as well.

In order to exclude the possibility that the big MC values are an artifact of the 2D
periodicity we used a c(2x2) structure for the O on the surface of Ni (001) and recalculated
the transport properties. Despite the fact that c(2x2) structure is close to the experimental
structure for an O overlayer on Ni (001) the distance between Ni and O we used is almost
double compared with the experimental structure in order to achieve polarized O. Since
transport is mainly determined by the contact region we are interested just on the effect of
spin-polarized O on a magnetic substrate.

Our results for the LDOS close to the Fermi level together with the MC ratio are shown
in Fig. 3. The magnetic moment on the O atoms is now reduced to 0.95 μ_B, while the
Ni moment is less affected. This is also seen in the LDOS of O where the minority-spin
p states are lower in energy compared to the case of one ML oxygen coverage. As we can
see the large MC effect survives also in this configuration. The MC ratio is rather small
at E_F but increases rapidly just 0.5 eV above E_F. The largest MC values, of about 500%,
are obtained at the oxygen p peak position. In other words, p orbitals can build highly
conducting channels and, if they are spin polarized, conductance in one spin channel can
be even two orders of magnitude higher than that in the other spin channel. However in
the systems we studied the MC ratios are limited to 700% since conductance is not so
drastically reduced in the antiparallel configuration. We note that the proposed mechanism:
high current when a bond is formed, vanishingly small current when the bond is broken, in
the antiparallel configuration, cannot exclude even higher MC ratios depending on the exact
structure chosen. However it is important that the O-O bond energy should be smaller than
exchange energy so that the bond can break and reform by applying a magnetic field. The
interaction between the two magnetic leads should be weak enough so that the domain wall
is pined at the contact region.

Despite the fact that the proposed mechanism can explain high magnetoconductance val-
ues it cannot fully account for the experimental findings. In particular experimentally both
positive and negative magnetoresistance is observed, moreover conductance is generally
big at zero magnetic field and becomes much smaller when applying a magnetic field.
influence of an antiferromagnetic NiO layer at the contact region requires further study, but as the present work shows large changes in conductance can result from spin polarized O-O bonds.

It is important that a big magnetic moment on the O atoms is not a necessary condition to obtain big MC ratio. Only a big difference in the LDOS between minority- and majority-spin electrons at the Fermi level is required. Moreover Ni itself is not a necessary ingredient; any magnetic material that could support O at the contact region and induce spin polarization to the O atoms would have similar properties.

Finally we would like to make a clear distinction between the phenomena presented here and the effect of hot spots in the conductance studied previously in ferromagnet/vacuum/ferromagnet tunnel junctions. In that case tunneling coexists with transport through interface states, which have a transmission coefficient close to unity and are localized in a very small region of the surface Brillouin zone. However the hot spots depend sensitively on the symmetry of the junction and require flat, ideal interfaces. Any small disorder would suppress the effect. On the contrary, the big MC ratios reported here are related to spin-dependent transport through O-O bonds. The 2D structure is not a crucial factor and this is also clear from the $k_{||}$-dependent conductance where the variation is relatively smooth and a big part of the surface Brillouin zone gives significant contributions.

Summarizing, our results show that high MC ratios in Ni nanocontacts, could be explained by spin-dependent defect scattering at the nanocontact. This is in agreement with the conclusion of Ref. 14 that defect scattering can enhance the magnetoresistance in a domain wall; however the role of spin-polarized p orbitals has not been pointed out up to now, to our knowledge. We have demonstrated that if oxygen at the contact region is spin polarized, this gives rise to high MC ratios. This idea is not in contradiction with the idea of scattering in an atomically sharp domain wall. However ab-initio ballistic transport calculations cannot explain magnetoresistances of few hundred percent, assuming a defect-free atomically sharp domain wall. On the contrary, the transport mechanism proposed in this work can justify spin polarization close to 100% that is required to explain the spectacular MC ratios in electrodeposited nanocontacts. We hope that our theoretical prediction will stimulate further experimental studies to clarify the role of chemistry and in particular of NiO on the magnetotransport properties of nanocontacts.
Acknowledgments

I would like to thank O. Cespedeo for useful correspondence.

1 H.D. Chopra, S.Z. Hua, Phys. Rev. B 66 020403(R) (2002); S.Z. Hua, H.D. Chopra, Phys. Rev. B 67 060401(R) (2003)
2 H. Wang, H. Cheng, and N. Garcia, arXiv:cond-mat/0207516
3 N. Garcia, M. Munoz, V.V. Osipov, E.V. Ponzivoskaya, G.G. Qian, I.G. Saveliev, Y.-W. Zhao, J. Magn. Magn. Mater. 240, 92 (2002)
4 N. Garcia, H. Rohrer, I.G. Saveliev, Y.-W. Zhao, Phys. Rev. Lett. 85, 3053 (2000); N. Garcia, M. Munoz, G.G. Qian, H. Rohrer, I.G. Savaliev, and Y.-W. Zhao. Appl. Phys. Lett. 79, 4550 (2001)
5 G. Tatara, Y.-W. Zhao, M. Munoz, and N. Garcia, Phys. Rev. Lett. 83 2030 (1999); N. Garcia, M. Munoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999); N. Garcia, M. Munoz, and Y.-W. Zhao, Appl. Phys. Lett. 76, 2586 (2000)
6 J.J. Versluijs, M.A. Bari, and J.M.D. Coey, Phys. Rev. Lett. 87 026601 (2001)
7 S.H. Chung, M. Munoz, N. Garcia, W.F. Egelhoff, and R.D. Gomez, Phys. Rev. Lett. 89, 287203 (2002)
8 L.R. Tagirov, B.P. Vodopyanov, and K.B. Efetov, Phys. Rev. B 63, 104428 (2001)
9 P. Bruno, Phys. Rev. Lett. 83, 2425 (1999); V.A Molyneux, V.V. Osipov, and E.V. Ponzivoskaya, Phys. Rev. B 65, 184425 (2002).
10 U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983 (2000).
11 U. Rüdiger, J. Yu, L. Thomas, S.S.P. Parkin, A.D. Kent, Phys. Rev. B 59, 11914 (1999).
12 T. Taniyama, I. Nakatani, T. Namikawa and Y. Yamazaki, Phys. Rev. Lett. 82, 2780 (1999)
13 K. Miyake, K. Shigeto, K. Mibu, T. Shinjo, T. Ono, J. Appl. Phys. 91, 3468 (2002)
14 P.M. Levy, S. Zhang, Phys. Rev. Lett. 79, 5110 (1997)
15 J.B.A.N. van Hoof, K.M. Schep, A. Brataas, G.E.W. Bauer, P.J. Kelly, Phys. Rev B 59 138 (1999)
16 R.W. Godby, G.A. Benesh, R. Haydock, and V. Heine, Phys. Rev. B 32, 655 (1985)
17 J.T. Stuckless, C.E. Wartnaby, N. Al-Sarraf, S.J.B. Dixon-Warren, M. Kovar, D.A. King, J.
Chem. Phys. 106 2012 (1997)

18 N. Erdman, O. Warschkow, D.E. Ellis, L.D. Marks, Surf. Sci. 470, 1 (2000)

19 N. Papanikolaou, R. Zeller, P.H. Dederichs, J. Phys. Condens. Matter 14, 2799 (2002)

20 P. Hohenberg, and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn, and L.J. Sham, Phys. Rev. 140, A1133 (1965)

21 S.H. Vosko, L. Wilk, and N. Nusair, Can. J. Phys. 58, 1200 (1980)

22 H.U. Baranger, and A.D. Stone, Phys. Rev. B 40, 8169 (1989)

23 P. Mavropoulos, N. Papanikolaou, P.H. Dederichs (unpublished)

24 I. I. Mazin Phys. Rev. Lett. 83, 1427 (1999)

25 O. Wunnicke, N. Papanikolaou, R. Zeller, P.H. Dederichs, V. Drchal, J. Kudrnovsky, Phys. Rev. B 65, 064425 (2002)
FIG. 1: Spin resolved density of states for the interface O and first Ni layers for the 1 ML oxygen on fcc Ni (001) junction.
FIG. 2: Top panel: Conductance variation with energy for the 1ML oxygen on Ni (001) junction, for majority (full line) and minority (dashed line) spin channels in the parallel spin configuration together with the antiparallel spin configuration (dotted line). Conductance in arbitrary units. Bottom panel: the magnetoconductance ratio for the same junction.
FIG. 3: Spin resolved density of states on the O site for two Ni (001) leads covered with 0.5 ML of oxygen on a c(2x2) structure and separated with one vacuum layer. The magnetoconductance ratio as a function of energy close to the Fermi level is also shown (full line).