New insights into Epstein-Barr virus-associated tumors: Exosomes (Review)

WEI CHEN*, YAO XIE*, TINGTING WANG and LIN WANG

Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China

Received August 17, 2021; Accepted October 29, 2021

DOI: 10.3892/or.2021.8224

Abstract. Epstein-Barr virus (EBV) is endemic worldwide and is associated with a number of human tumors. EBV-associated tumors have unique mechanisms of tumorigenesis. EBV encodes multiple oncogenic molecules that can be loaded into exosomes released by EBV+ tumor cells to mediate intercellular communication. Moreover, different EBV+ tumor cells secrete exosomes that act on various target cells with various biological functions. In addition to oncogenicity, EBV+ exosomes have potential immunosuppressive effects. Investigating EBV+ exosomes could identify the role of EBV in tumorigenesis and progression. The present review summarized advances in studies focusing on exosomes and the functions of EBV+ exosomes derived from different EBV-associated tumors. EBV+ exosomes are expected to become a new biomarker for disease diagnosis and prognosis. Therefore, exosome-targeted therapy displays potential.

Contents

1. Introduction
2. Exosomes
3. EBV expresses multiple oncogenic molecules
4. Different EBV+ tumor cells secrete exosomes acting on various target cells
5. Circulating EBV+ exosomes act as a biomarker for EBV-associated tumor diagnosis
6. Future perspectives: Exosomes could be utilized as a new therapeutic method
7. Conclusion

Correspondence to: Professor Lin Wang, Department of Dermatology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, P.R. China
E-mail: lkzw1@126.com

*Contributed equally

Key words: Epstein-Barr virus, exosome, immunosuppressive, microRNAs, biomarker
tumor therapy (18). EBV+ exosomes are expected to become a new biomarker or therapeutic target for EBV-associated tumors. The present review summarizes the important roles of exosomes in EBV-associated tumors to provide insight into the biomechanisms of these diseases from a new perspective.

2. Exosomes

Loading, release and uptake of exosomes. The formation of exosomes is a complex process, and numerous studies have described it in detail. The term exosome describes 40-100 nm-diameter vesicles that contain complex RNA and proteins. Exosomes form via the following axis: endosome-multivesicular body (MVB)-intraluminal vesicle (ILV). When MVBs fuse with the cell membrane, exosomes are released from parental cells (11). The formation of ILVs is the main process by which cargo, including proteins, lipids and nucleic acids, is loaded into vesicles. The endosomal sorting complex required for transport (ESCRT) machinery serves a critical role in the sorting of proteins into exosomes in parental cells (19). The RNA cargo of exosomes is enriched in small RNAs, especially microRNAs (miRNAs/miRs) (20). There are some other essential mechanisms of miRNA cargo loading in addition to the ESCRT machinery. Neutral sphingomyelinase 2 is the rate-limiting enzyme in the synthesis of ceramides, which could influence the loading of miRNAs into exosomes (21). Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of conserved nuclear proteins that bind to nascent RNA polymerase II transcripts to produce hnRNP granules. Several hnRNPs, especially hnRNP A2B1 and hnRNP Q, are implicated in miRNA packaging into exosomes (22). hnRNP A2B1 can recognize and bind to specific motifs in the 3′ untranslated regions (3′UTRs) of miRNAs and then transport miRNAs into exosomes (23).

The intracellular movement of MVBs involves the microtubule network, and localization of MVBs to the plasma membrane requires kinesin-dependent movement toward microtubule plus ends (24). The release of exosomes depends on the forward motion of MVBs to fuse with the plasma membrane (25). Rab GTPases, a subfamily of proteins in the Ras superfamily of GTPases (26), and soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor proteins can interact to induce exosome release (27).

Previous studies indicate that there are three main mechanisms underlying exosome uptake by recipient cells: i) Direct interaction (28); ii) fusion with the plasma membrane (29); and iii) internalization (30). In immune cells, major histocompatibility complex (MHC)-T cell receptor interactions can also facilitate the uptake of mutual exosomes (28). Once exosomes enter recipient cells, they trigger a series of biological effects through multiple pathways, including Erk1/2, Jak/STAT, NF-κB and PI3K/Akt signaling pathways (31).

Role of EBV in the biogenesis of exosomes. The mechanisms of exosome formation are briefly summarized in Fig. 1. Notably, some molecules encoded by EBV can participate in the loading processes. In B cell-derived exosomes, the 3′ ends of miRNAs are uridylated, and miRNAs from the parental cells share adenyalted 3′ ends, suggesting that 3′ end modification of miRNAs may be another mechanism for sorting miRNAs into exosomes (32). Nkosi et al. (33) revealed that the viral protein latent membrane protein 1 (LMP1) can interact with the ESCRT pathway and associated proteins, including CD63, Syntenin-1, programmed cell death 6 interacting protein, tumor susceptibility 101, human growth factor-regulated tyrosine kinase substrate (Hrs) and charged multivesicular body proteins (CHMPs). Moreover, the study demonstrated that the LMP1-interacting proteins Hrs and Syntenin-1 serve major roles in directing LMP1 into EVs for packaging and secretion (33).

Exosomes in the TME. The TME is a complex interactome between tumor cells, adjacent cells (including adipocytes, fibroblasts, lymphocytes and dendritic cells) and the intercellular matrix. Cancer progression and metastasis are closely related to alterations in the TME; in particular, the characteristics of tumors, such as sustained proliferation, avoidance of immune surveillance, and activation of invasion and metastatic cascades, are influenced by the TME (34). In turn, cancer cells synthesize and secrete biomolecules to reprogram the surrounding cells and remodel the TME to be suitable for survival (35). The TME modulates numerous types of cell-cell communication through diverse signaling networks, including juxtacrine and paracrine interactions. Regarding paracrine signaling interactions, exosomes are an important and emerging mechanism of cell-cell communication (36). The TME also regulates the secretion of exosomes (37), and interactions of exosomes with the TME benefit the growth of the tumor. For example, exosomes derived from leukemia cells have been shown to accelerate cancer-associated fibroblast activation to remodel the TME to a more cancer-permissive state (38). Stress conditions, such as extracellular acidity and hypoxia, are common in the TME. On the one hand, the accumulation of lactic acid or H+ ions is a common characteristic of the TME, but TME acidity increases the release of tumor-derived exosomes (TEXs) (39). On the other hand, under hypoxic stress, tumor cells remodel the TME and facilitate angiogenesis by inducing the secretion of exosome-containing proteins associated with vascular endothelial growth factor (VEGF) signaling (40). Hypoxia can enhance miR-23a loading into lung cancer-derived exosomes. Endothelial cells take up exosomal miR-23a, which targets prolyl hydroxylase 1/2, resulting in the induction of hypoxia-inducible factor-1α (HIF1α) accumulation. Through this pathway, lung cancer cells remodel the TME and enhance tumor angiogenesis (41). Moreover, hypoxia-mediated enhancement of TEX release has also been observed in breast (42), bladder (43), prostate (44) and ovarian cancer (45) through multiple pathways, such as TGF-β, TGFβ, IL-6, tumor susceptibility 101, Akt, integrin linked kinase 1 and β-catenin pathways.

3. EBV expresses multiple oncogenic molecules

EBV infection is gradually being recognized as endemic worldwide. It has taken several years to gain a clear understanding of the relationship between EBV and different types of human cancer, including Burkitt lymphoma, EBV+ diffuse large B cell lymphomas (DLBCLs), Hodgkin lymphoma (HL), NPC, EBV+ GC, post-transplant lymphoproliferative disease (PTLD), natural killer (NK)/T cell lymphoproliferative disease (NK/T-LPD) and lymphoma (2-4).
EBV has a relatively large double-stranded DNA genome and expresses ~80 proteins and 46 functional small untranslated RNAs (46). EBV was the first human virus known to encode miRNAs (47), and EBV-miRNAs have recently become a research hotspot. As small non-coding RNAs that are 19-25 nucleotides in length and display partial homology to sequences in their target mRNAs, miRNAs can modulate gene expression in numerous species. Loading of an miRNA onto the 3'UTR of its target mRNA by the RNA-induced silencing complex results in either translational repression or degradation of the mRNA, ultimately leading to reduced protein synthesis (48). EBV expresses 25 different pre-miRNAs and at least 44 mature miRNAs. As one of the eight known human herpesviruses, EBV has two life cycle phases. Primary EBV infection occurs primarily in the epithelial cells of the host pharynx and is followed by infection of B lymphocytes (49). Primary infection usually occurs in the first years of life and does not produce symptoms. Subsequently, the virus is transmitted in saliva, and if primary infection is delayed until later in life, infectious mononucleosis may occur (50). As B lymphocytes carrying EBV enter the blood circulation, systemic EBV infection can occur (51,52). The virus then enters the second life cycle phase, known as latency. According to the latent genes expressed by EBV in host cells, latent infection in hosts can be classified into four types: 0, I, II and III) (53,54). The latency patterns of EBV gene expression in different infections are summarized in Table I.

The EBV genome has been confirmed to encode viral proteins and nucleic acids associated with a variety of tumors. Moreover, the EBV-DNA load could be a prognostic factor in NPC (55,56), HL (57) and PTLD-DLBCL (58). However, some studies have indicated that in hydroa vacciniforme-like
Gene	Function	Host cell	(Refs.)
EBER	Promote cell proliferation, inhibit apoptosis and transform cells.	Infected dormant memory B cells	(122)
B. Type I			
EBNA1	Ensure the persistence of the viral genome in cells as they multiply.	BL cells	(5, 7, 8, 99, 123-126)
EBNA1	Ensure the persistence of the viral genome in cells as they multiply.	BL cells	
EBV-miR-BART (BamHI-A rightward transcripts)	Tumorigenesis: Promote angiogenesis, suppress apoptosis and promote host cell survival. Tumor metastasis: EMT.		
EBER	Promote cell proliferation, inhibit apoptosis and transform cells.		
C. Type II			
EBNA1	Ensure the persistence of the viral genome in cells as they multiply.	HL, NPC, DLBCL, EBVaGC and chronic lymphocytic leukemia cells	(127-131)
EBER	Promote cell proliferation, inhibit apoptosis and transform cells.		
EBNA2	Act as a transcription factor that leads to the expression of viral LMP genes and ~300 host cell genes.		
EBNA3			
EBNA3B			
EBNA3C			
EBNA-LP			
LMP			
LMP1	Act as a strongly oncogenic protein that can interact with numerous signaling molecules.		
LMP2A			
C. Type II			
EBNA1	Ensure the persistence of the viral genome in cells as they multiply.	Immunoblastic lymphoma cells, DBCL cells and EBV-LCLs	(128, 132-134)
EBNA2	Act as a transcription factor that leads to the expression of viral LMP genes and ~300 host cell genes.		
EBNA3			
EBNA3B			
EBNA3C			
EBNA-LP			
LMP			
LMP1	Act as a strongly oncogenic protein that can interact with numerous signaling molecules.		
LMP2A			
EBV+ tumors are summarized in this chapter. The functions of exosomes derived from cells of different origins due to their different parental cells and target cells (46). Exosomes from different tumor sources have different functions, exhibit different latency patterns and TMEs. Therefore, the most exosomes (13). In addition, EBV-associated tumors require further investigation. In addition, as aforementioned, the high prevalence of EBV does not match the incidence of EBV-associated tumors. Thus, EBV infection may not be the key mechanism underlying EBV-associated tumorigenesis. The proteins or nucleic acids encoded by EBV may serve pivotal roles in tumorigenesis and tumor development as tumor regulators. In addition, exosomes serve essential roles in the transfer of oncogenic molecules, as well as in the tumorigenesis and tumor metastasis of EBV-associated tumors (62,63).

4. Different EBV+ tumor cells secrete exosomes acting on various target cells

The type of latent infection varies among individuals, although type 0 is the most widespread, resulting in the expression of various genes corresponding to latency types. Interestingly, the amount of exosomes secreted by EBV+ cells differs among the latency patterns, and cells with type III latency secrete the most exosomes (13). In addition, EBV-associated tumors exhibit different latency patterns and TMEs. Therefore, exosomes from different tumor sources have different functions due to their different parental cells and target cells (46). The functions of exosomes derived from cells of different EBV+ tumors are summarized in this chapter.

Functions of exosomes derived from EBV+ B cells. Once EBV infection occurs, the viral genome is disassembled and integrated into the host genome. Thus, even in latency, EBV+ B cells could persistently express viral proteins and nucleic acids (64). LMP1 is a major oncoprotein of EBV, and numerous studies have demonstrated that it can be loaded on the membrane of exosomes (14,33,65,66). LMP1 also exists in exosomes derived from LMP1-transfected DG75 cells (a Burkitt lymphoma cell line). DG75 exosomes can be taken up by isolated B cells within the peripheral blood mononuclear cell population, which leads to enhanced proliferation and induces B cell differentiation toward a plasmablast-like phenotype via induction of activation-induced cytidine deaminase and the production of circle and germline transcripts for IgGl in B cells (62). In vitro, after infection of B cells, LMP1 induces immortalization and aberrant proliferation, leading to the development of lymphoblastoid cell lines (LCLs) (67). The N-terminus and transmembrane domain 1 are sufficient for targeting LMP1 to extracellular vesicles (EVs) (68). Kobayashi et al (14) reported that ubiquitin C-terminal hydrolase-L1 and C-terminal farnesylation, a post-translational lipid modification, contribute to the direction of LMP1 to exosomes. Moreover, Rialland et al (69) found that the B cell receptor can modulate the protein content of exosomes upon stimulation and target its bound antigen to these vesicles. On the other hand, exosomes derived from LCLs carry an EBV glycoprotein, gp350, and preferentially target B cells via the interaction of this glycoprotein with its ligand, CD21 (70). In addition, these exosomes contain high levels of MHC-II molecules, which induce homogeneous antigen-specific T cell responses (66). The transmembrane freedom of exosomes is important for cellular interactions and this property might become the basis of exosome-targeted therapy.

Exosomes released from EBV+ B cells are internalized by recipient cells primarily via caveolin-dependent endocytosis (71). When exosomes derived from EBV+ B cells enter the TME, they can create an immunosuppressive microenvironment that affects T cell immune responses to ensure the proliferation of tumor cells. Cells with latent EBV infection can continuously produce EBV-encoded RNAs (EBERs), which elicit proinflammatory responses after sensing by pathogen recognition receptors (72,73). Lupus antigen (La) is an abundant RNA binding protein in the nucleus of latently infected B cells that binds nascent viral Pol III transcripts, protecting the 3’ ends from degradation by exonucleases (74). EBERs are transported from the nucleus to the cytoplasm and shed in exosomes by binding to La (16). Based on these studies, Baglio et al (75) proposed that by interacting with La and loading into exosomes, EBV nuclear 5’pppEBER1 escapes cytosolic detection in cells with established latent infection. Then, the viral cargo loads are internalized by
plasmacytoid dendritic cells (pDCs), triggering antiviral immunity through exosomes. Another study showed that exosomes secreted from P3HR1 cells (an EBV+ Burkitt lymphoma B cell line) can increase the production of indoleamine 2,3-dioxygenase (IDO), TNF-α and interleukin (IL)-6 in human monocyte-derived macrophages (MDMs) via the retinoic acid-inducible gene I pathway. Moreover, EBER-1-activated IDO in MDMs suppresses the proliferation of T lymphocytes and diminishes the cytolytic activity of CD8+ T cells (76). Thus, EBER1+ exosomes derived from EBV+ B cells might promote tumorigenesis by inhibiting cellular immunity in the TME.

EBV-miRNAs are loaded into exosomes to induce a series of downstream effects (77). Higuchi et al (78) showed that exosomes derived from EBV+ lymphoma cells can regulate the activity of macrophages and induce the immunoregulatory phenotype in vitro. In this process, the expression levels of TNF-α, IL-10 and ARG1 are partially regulated by EBV-BamHI A rightward transcripts (BART)-miRNAs. Ito et al (63) observed that a phosphatidylserine-exposing subset of EVs secreted from lymphoma cells transformed with the EBV strain Akata converted surrounding phagocytes into tumor-associated macrophages (TAMs) by inducing an inflammatory response partially mediated by EBV-miRNAs. Using mass spectrometric analysis, the study indicated that several immunomodulatory proteins, especially integrin αLβ2 and fibroblast growth factor 2 (FGF2), are key factors in the TAM-inducing ability of EVs. Moreover, in the clinic, higher loads of BART miRNAs correlate with worse outcomes in elderly patients with EBV+ DLBCL. Furthermore, EBV-BART-miRNAs might be the link between EBV+ B cells and uninfected T cells or NK cells. Haneklaus et al (79) showed that exosomal EBV-miR-BART15 released from EBV+ B cells can enter uninfected T cells, targeting the miR-223 binding site in the NLR family pyrin domain containing protein 3, which is able to induce apoptosis in mature Th1 lymphocytes, weakening immunological surveillance (87). A previous study demonstrated that LMP1 can target the epidermal growth factor receptor (EGFR), inducing cell proliferation (88). Moreover, LMP1 increases the loading of EGFR into exosomes secreted by NPC cells, and exosomes containing LMP1 and EGFR are taken up by epithelial cells, endothelial cells and fibroblasts, which activates the ERK and PI3K/Akt pathways to affect cell proliferation (89). On the other hand, HIF1α regulates numerous key aspects of tumor development and progression by promoting increases in proliferation, invasiveness and neoangiogenesis (90). Yonsei et al (91) demonstrated that LMP1+ exosomes secreted by NPC cells line contain HIF1α. Furthermore, LMP1+ exosomes and HIF1α can counterbalance the levels of E-cadherin and N-cadherin in recipient cells, consistent with EMT-associated changes. FGF-2, a member of the FGF family, is active in embryogenesis and morphogenesis, and serves a key role as an angiogenic factor involved in tumor progression and invasion (92). Ceccarelli et al (93) demonstrated that FGF-2 is packaged into exosomes and LMP1 selectively promotes this secretory process. LMP1 can interact with nucleic acids in addition to human proteins. For instance, miR-203 functions as a tumor suppressor in NPC and can be downregulated by LMP1 (94). A further study demonstrated that aspirin can reverse EMT and exosomal LMP1 might serve a pivotal role in this process. Exosomal LMP1 exhibited potential EMT-inducing ability, aspirin suppressed exosomal LMP1 secretion from EBV+ cells by influencing NF-κB, and a decrease in exosomal LMP1 uptake alleviated the inhibition of miR-203 by LMP1. The aforementioned results were further confirmed in an in vivo study; thus, aspirin could inhibit NPC lung metastasis by reversing the LMP1/NF-κB/exosomal LMP1/miR-203 axis in nude mice (17).

Weakening or evading the immune surveillance function of lymphocytes is beneficial to the proliferation of tumor cells. Mrizak et al (95) showed that NPC cell-derived exosomes (NPC-Exos) express CCL20 on their surface, which prioritizes the infiltration of regulatory T cells (Tregs) into the tumor. In addition, NPC-Exos recruit CD4+ T cells and induce their conversion into suppressive Tregs. Under induction by NPC-Exos, Tregs change their phenotype and their functions of exosomes derived from nasopharyngeal epithelial cells. NPC is a malignant tumor derived from nasopharyngeal epithelial cells that has a high incidence in southern China, Mediterranean Africa and some regions of the Middle East (85). The role of EBV in NPC has been studied for decades. Virtually all NPCs are EBV+ (64); however, the complete mechanisms of EBV in the development and progression of NPC remain unclear. Viral proteins or nucleic acids might be involved in these processes. In recent years, researchers have focused on the roles of exosomes, and these studies are summarized to highlight the role of EBV in NPC.

Although the oncogenicity of LMP1 is known, there are no effective strategies to target this oncoprotein. With further studies, researchers have begun to focus on EBV+ exosomes. In 2006, Keryer-Bibens et al (86) first demonstrated that NPC cells can release HLA class II+ exosomes containing gaelectin 9 and/or LMP1. Gaelectin-9 is a ligand of the membrane receptor T cell immunoglogulin and mucin domain-containing protein 3, which is able to induce apoptosis in mature Th1 lymphocytes, weakening immunological surveillance (87). A previous study demonstrated that LMP1 can target the epidermal growth factor receptor (EGFR), inducing cell proliferation (88). Moreover, LMP1 increases the loading of EGFR into exosomes secreted by NPC cells, and exosomes containing LMP1 and EGFR are taken up by epithelial cells, endothelial cells and fibroblasts, which activates the ERK and PI3K/Akt pathways to affect cell proliferation (89). On the other hand, HIF1α regulates numerous key aspects of tumor development and progression by promoting increases in proliferation, invasiveness and neoangiogenesis (90). Aga et al (91) demonstrated that LMP1+ exosomes secreted by NPC cell lines contain HIF1α. Furthermore, LMP1+ exosomes and HIF1α can counterbalance the levels of E-cadherin and N-cadherin in recipient cells, consistent with EMT-associated changes. FGF-2, a member of the FGF family, is active in embryogenesis and morphogenesis, and serves a key role as an angiogenic factor involved in tumor progression and invasion (92). Ceccarelli et al (93) demonstrated that FGF-2 is packaged into exosomes and LMP1 selectively promotes this secretory process. LMP1 can interact with nucleic acids in addition to human proteins. For instance, miR-203 functions as a tumor suppressor in NPC and can be downregulated by LMP1 (94). A further study demonstrated that aspirin can reverse EMT and exosomal LMP1 might serve a pivotal role in this process. Exosomal LMP1 exhibited potential EMT-inducing ability, aspirin suppressed exosomal LMP1 secretion from EBV+ cells by influencing NF-κB, and a decrease in exosomal LMP1 uptake alleviated the inhibition of miR-203 by LMP1. The aforementioned results were further confirmed in an in vivo study; thus, aspirin could inhibit NPC lung metastasis by reversing the LMP1/NF-κB/exosomal LMP1/miR-203 axis in nude mice (17).

Weakening or evading the immune surveillance function of lymphocytes is beneficial to the proliferation of tumor cells. Mrizak et al (95) showed that NPC cell-derived exosomes (NPC-Exos) express CCL20 on their surface, which prioritizes the infiltration of regulatory T cells (Tregs) into the tumor. In addition, NPC-Exos recruit CD4+ T cells and induce their conversion into suppressive Tregs. Under induction by NPC-Exos, Tregs change their phenotype and their functions of exosomes derived from nasopharyngeal epithelial cells. NPC is a malignant tumor derived from nasopharyngeal epithelial cells that has a high incidence in southern China, Mediterranean Africa and some regions of the Middle East (85). The role of EBV in NPC has been studied for decades. Virtually all NPCs are EBV+ (64); however, the complete mechanisms of EBV in the development and progression of NPC remain unclear. Viral proteins or nucleic acids might be involved in these processes. In recent years, researchers have focused on the roles of exosomes, and these studies are summarized to highlight the role of EBV in NPC.

Although the oncogenicity of LMP1 is known, there are no effective strategies to target this oncoprotein. With further studies, researchers have begun to focus on EBV+ exosomes. In 2006, Keryer-Bibens et al (86) first demonstrated that NPC cells can release HLA class II+ exosomes containing gaelectin 9 and/or LMP1. Gaelectin-9 is a ligand of the membrane receptor T cell immunoglogulin and mucin domain-containing protein 3, which is able to induce apoptosis in mature Th1 lymphocytes, weakening immunological surveillance (87). A previous study demonstrated that LMP1 can target the epidermal growth factor receptor (EGFR), inducing cell proliferation (88). Moreover, LMP1 increases the loading of EGFR into exosomes secreted by NPC cells, and exosomes containing LMP1 and EGFR are taken up by epithelial cells, endothelial cells and fibroblasts, which activates the ERK and PI3K/Akt pathways to affect cell proliferation (89). On the other hand, HIF1α regulates numerous key aspects of tumor development and progression by promoting increases in proliferation, invasiveness and neoangiogenesis (90). Aga et al (91) demonstrated that LMP1+ exosomes secreted by NPC cell lines contain HIF1α. Furthermore, LMP1+ exosomes and HIF1α can counterbalance the levels of E-cadherin and N-cadherin in recipient cells, consistent with EMT-associated changes. FGF-2, a member of the FGF family, is active in embryogenesis and morphogenesis, and serves a key role as an angiogenic factor involved in tumor progression and invasion (92). Ceccarelli et al (93) demonstrated that FGF-2 is packaged into exosomes and LMP1 selectively promotes this secretory process. LMP1 can interact with nucleic acids in addition to human proteins. For instance, miR-203 functions as a tumor suppressor in NPC and can be downregulated by LMP1 (94). A further study demonstrated that aspirin can reverse EMT and exosomal LMP1 might serve a pivotal role in this process. Exosomal LMP1 exhibited potential EMT-inducing ability, aspirin suppressed exosomal LMP1 secretion from EBV+ cells by influencing NF-κB, and a decrease in exosomal LMP1 uptake alleviated the inhibition of miR-203 by LMP1. The aforementioned results were further confirmed in an in vivo study; thus, aspirin could inhibit NPC lung metastasis by reversing the LMP1/NF-κB/exosomal LMP1/miR-203 axis in nude mice (17).
EBV+ NPC cells. These viral miRNAs have been found to (including miR-BART-1, 4, 5, 7, 9, 11, 12, 13, and 16) are the inhibition of a number of different factors. As the functions of EBV+miRNAs can affect mitochondrial respiration in exosome recipient cells to modify the TME to support the growth of infected cells, thereby contributing to viral fitness (96). In another report, Meckes et al (89) showed that EBV-BART-miRNAs (including miR-BART-1, 4, 5, 7, 9, 11, 12, 13, and 16) are also selectively loaded into exosomes secreted from cultured EBV+ NPC cells. These viral miRNAs have been found to have biological functions and to be involved in molecular mechanisms associated with tumor immune evasion, proliferation, apoptosis resistance, invasion and metastasis (97). EBV-miR-BART3 can target the tumor suppressor integrator complex subunit 6 to promote cell proliferation and transformation in NPC (98). In a nude mouse model, EBV-BART3-3p was found to directly target the tumor suppressor gene tumor protein 53, which led to inhibition of senescence in GC cells, suppression of NK cells and macrophage infiltration into tumors (99), which are post-transcriptional regulation processes independent of genetic mutations. However, few studies have addressed whether EBV-miRNAs can mediate these changes through exosomes, and the specific mechanism remains unclear. Tumor occurrence results from the accumulation of a number of different factors. As the functions of EBV+ exosomes in NPC have been gradually explored, it can be speculated that viral oncogenic cargo might be transferred to uninfected cells through exosomes, resulting in the occurrence or progression of NPC.

Similarly, exosomes derived from NPC cells share analogous immunosuppressive functions like those of exosomes from EBV+ B cells. Importantly, exosomes from NPC cells could also induce the angiogenesis, EMT and metastasis of tumors (17,95). Therefore, we speculate that targeting EBV+ exosomes is of significance for the treatment of NPC, and might be able to reverse the progression of tumors by blocking tumor cell immune escape and inhibiting tumor angiogenesis and EMT at the same time.

Exosomes derived from EBV-associated gastric cancer cells. EBVaGC accounts for ~10% of GC cases worldwide, with variable frequencies among geographic regions (100). In 1990, a possible association with EBV was first reported in a case of gastric carcinoma (101). To date, studies investigating EBV+ exosomes in EBVaGC are limited. In 2013, Choi et al (102) reported that miR-BART15-3p is enriched in exosomes derived from EBVaGC cells and can induce apoptosis partially by inhibiting the translation of the apoptosis inhibitor baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme. However, DCs are pivotal to tumor immunity (103), and Hinata et al (104) found that the maturation of DCs is suppressed by exosomes derived from EBV+ epithelial cells, which weakens tumor immunity. The aforementioned studies show the paradoxical functions of EBV+ exosomes, including inhibition of host immunity while promoting EBV+ cell apoptosis, which might explain why the prognosis of EBVaGC is favorable compared with that of other types of GC (105).

Although there are a number of different kinds of EBV-associated tumors, they primarily include B cell lymphoma, NPC and EBVaGC. These three different tumors have different TMEs but share an analogous immunosuppressive characteristic, which might be induced by EBV+ exosomes (63,95,104). The known mechanisms of different EBV+ tumor cell exosomes acting on various target cells are summarized in Fig. 2.

5. Circulating EBV+ exosomes act as a biomarker for EBV-associated tumor diagnosis

As viral oncoproteins and nucleic acids are contained in exosomes, these EBV+ exosome-derived targets could be helpful diagnostic markers. Moreover, exosomes are present and can be detected in almost all biological fluids, including serum, plasma, semen, breast milk, cerebrospinal fluid, urine, saliva, ascites, amniotic fluid and bronchoalveolar lavage fluid (10), which may overcome the limitations of the specificity of classical EBV infection detection methods. For example, EBER in situ hybridization is performed primarily with biopsy tissues, whereas enzyme immunoassays used to determine EBV antibody titers and polymerase chain reaction used to determine EBV-DNA loads are usually performed with plasma (10). Moreover, as the gold standard, the sensitivity of EBER ISH varies across tissues.

In 2005, Caby et al (106) first identified exosomes in blood, indicating that exosomes could travel throughout the body and modulate targeted cells via the circulatory system. Subsequently, Houali et al (107) detected LMP1 and EBV BamHI-A Rightward Frame 1 in serum and saliva from North African and Chinese patients with NPC. Other studies have further suggested that EBV+ exosomes could be used as biomarkers not only for the diagnosis of EBV infection, but also for predicting the prognosis of patients with EBV-associated tumors. A previous study on ENKTCL showed elevated expression levels of LMP1 and LMP2A in tumor cells. High LMP1 expression was associated with positive B symptoms, and the expression of both LMP1 and LMP2A showed a significant correlation with overall patient survival (108). Due to the noninvasiveness of obtaining exosomes from body fluids, LMP1+ and LMP2A+ exosomes might be promising biomarkers of ENKTCL in the clinic. Cyclophilin A (CYP) is a member of the immunophilin family (109). Liu et al (110) demonstrated that both the serum and exosomal CYP levels of patients with NPC were significantly higher compared with those of normal cases. Moreover, the level of CYP was positively correlated with LMP1 in NPC exosomes. Therefore, the authors hypothesized that CYPA combined with EBV-viral capsid antigen-IgA may be a more discriminatory biomarker panel in the diagnosis of NPC. However, whether LMP1+ and LMP2A+ exosomes have prognostic value requires further investigation.

In addition to viral proteins, EBV-miRs have been shown to be potential diagnostic biomarkers for EBV-associated cancer. Zhang et al (111) demonstrated that EBV-miR-BART7 and EBV-miR-BART13 can serve as important biomarkers for NPC diagnosis and the prediction of treatment efficacy. Similarly, Wardana et al (112) found that overexpression of circulating EBV miR-BART7 correlated with positive regional...
lymph node status, highlighting the diagnostic and prognostic values of circulating miR-BART7 for patients with NPC. A number of the 49 EBV-encoded miRNAs have been proven to serve key roles in the development of NPC (113). miRNAs encapsulated in exosomes are protected from degradation by RNases. Thus, exosome encapsulation is more conducive to the detection of viral miRNAs and can reduce the number of false negatives caused by degradation during specimen transportation (114). In the early years, the separation technology of exosomes was immature and the extraction cost was high, which hindered the study of exosomes (115). With the development of separation technologies for isolating exosomes from body fluids, the detection of exosomes as biomarkers for diseases may become a mainstream approach.

6. Future perspectives: Exosomes could be utilized as a new therapeutic method

As aforementioned, exosomes synthesized by different parental cells load different molecules and target different cells. Specifically, exosomes are ideal tools for miRNA-based interactions between tumor cells. In turn, tumor cells persistently secrete exosomes and act on peritumoral cells, remodeling the TME to facilitate the growth of tumor cells. Therefore, modification of exosomes, especially the loaded miRNAs, may serve as a novel therapeutic strategy for cancer. For example, loss or downregulation of miR-122 is closely related to poor prognosis and metastasis in hepatocellular carcinoma (HCC) (116). Based on this finding, Lou et al (117) constructed an miR-122 expression plasmid, which was transfected into adipose tissue-derived mesenchymal stem cells (AMSCs). Then, AMSC-derived exosomes were harvested and added to recipient HCC cells. Interestingly, miR-122-transfected AMSCs effectively packaged miR-122 into secreted exosomes and provided HCC cells with sensitivity to chemotherapeutic agents through altering miR-122-target gene expression. Moreover, Wang et al (118) overexpressed EBV-miR-BART10-5p and hsa-miR-18a, which strongly induced angiogenesis in vitro and in vivo. Mechanistically, the association of viral miRNAs with human miRNAs was found to promote cancer angiogenesis and to involve the concordant downregulation of sprouty RTK signaling antagonist 3 (Spry3; a tumor suppressor) expression, activating Spry3/MEK/Erk-dependent pathways.
and regulating the expression of VEGF and HIF1a in a Spry3-dependent manner. Moreover, iRGD-tagged exosomes containing antagoniR-BART10-5p and antagoniR-18a were utilized to suppress the angiogenesis and growth of NPC.

An immunosuppressive TME exists in most EBV-associated tumors, which impedes the efficacy of immunotherapies (119). The majority of previous studies have confirmed that exosomes derived from EBV+ tumor cells serve a role in inhibiting body immunity and promoting tumor cell immune evasion in the process of tumor progression (63,95,104). Therefore, targeting EBV+ exosomes is considered as a promising new treatment for EBV+ tumors. Wang et al (120) found that exosomes derived from phosphoantigen-expanded V82-T (V82-T-Exos) cells could promotes EBV antigen-specific CD4 and CD8 T cell expansion and kill EBV-associated tumor cells through FasL/TNF-related apoptosis-inducing ligand pathways. These findings suggested a strategy for the treatment of EBV-associated tumors using V82-T-Exos.

The application of targeting EBV+ exosomes for antitumor therapy requires further investigation. However, the aforementioned findings warrant future studies to investigate the potential of exosomes as anti-EBV-associated tumor-specific therapeutic targets. For example, preventing EBV-encoded molecules from loading into exosomes or inhibiting the release of EBV+ exosomes might be serve as novel strategies. Given the recent increased interest in the use of exosomes as vectors for targeted therapy with nanomaterials (121), this therapeutic approach may offer clinical potential.

7. Conclusion

EBV has been studied for decades. EBV is closely related to numerous kinds of tumors in terms of both epidemiology and molecular biology. However, the key pathogenic mechanisms of the virus may not be the viral particles themselves but instead the molecules encoded by the virus, indicating that antiviral drugs may not be useful. Exosomes act as perfect carriers for these viral molecules to protect them from degradation by host enzymes and transport them to other cells with the continuous influence of target cells. In different TMEs, EBV+ tumor exosomes target different cells but share similar immunosuppressive functions. We speculated that the viral molecules loaded in the exosomes served a pivotal role. To date, therapies for EBV+ tumors have displayed limited effectiveness, and a vaccine for EBV has not yet been produced. In the future, the treatment and prevention of EBV+ tumors may focus on EBV+ exosomes, and exosome-based disease monitoring and treatment, as well as viral vaccines may have potential, but these approaches require further exploration.

Acknowledgements

Not applicable.

Funding

The present study was supported by the Department of Science and Technology of Sichuan Province (grant no. 2019YFS0250 and 2018SZ0162).

Availability of data and materials

Not applicable.

Authors' contributions

WC drafted, proofread and revised the manuscript. YX edited and revised the manuscript. TW edited the manuscript. TW and LW provided the project financial support. LW supervised and oversaw the production of this review. All authors have read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Epstein MA, Achong BG and Barr YM: Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1: 702-703, 1964.

2. Vockeodt M, Yap LF, Shannon-Lowe C, Curley H, Wei W, Vrzalkova K and Murray PG: The Epstein-Barr virus and the pathogenesis of lymphoma. J Pathol 235: 312-322, 2015.

3. Tsoa SW, Tsang CM, To KF and Lo KW: The role of Epstein-Barr virus in epithelial malignancies. J Pathol 235: 323-333, 2015.

4. Nilfer HH, Banati F, Salamon D and Minarovits J: Epigenetic alterations in Epstein-Barr virus-associated diseases. Adv Exp Med Biol 879: 39-60, 2016.

5. Luyu X, Wang J, Guo X, Wu G, Jiao Y, Faleti OD, Liu P, Liu T, Long Y, Chong T, et al: EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner. Aging (Albany NY) 12: 340-358, 2020.

6. Hulse M, Johnson SM, Boyle S, Caruso LB and Tempera I: Epstein-Barr virus-encoded latent membrane protein 1 and B-cell growth transformation induce lipogenesis through fatty acid synthase. J Virol 95: e01857-20, 2021.

7. Huang J, Qin Y, Yang C, Wan C, Dai X, Sun Y, Meng J, Lu Y, Li Y, Zhang Z, et al: Downregulation of ABI2 expression by EBV-miR-BART13-3p induces epithelial-mesenchymal transition of nasopharyngeal carcinoma cells through upregulation of c-JUN/SLUG signaling. Aging (Albany NY) 12: 340-358, 2020.

8. Cai L, Ye Y, Jiang Q, Chen Y, Lyu X, Li J, Wang S, Liu T, Cai H, Yao K, et al: Epstein-Barr virus-encoded microRNA BART1 induces tumour metastasis by regulating PTEN-dependent pathways in nasopharyngeal carcinoma. Nat Commun 6: 7353, 2015.

9. Wong Y, Meehan MT, Burrows SR, Doolan DL and Miles JJ: Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol: Oct 27, 2021 (Epub ahead of print).

10. AbuSalah MAH, Gan SH, Al-Hatamleh MAI, Irekeola AA, Shueb RH and Yean C: Recent advances in diagnostic approaches for Epstein-Barr virus. Pathogens 9: 226, 2020.

11. Thiery C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol 2: 569-579, 2002.

12. Raposo G and Stoorvogel W: Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 200: 373-383, 2013.

13. Nanbo A, Katano H, Kakuda M, Hoshina S, Sekizuka T, Kuroda M and Obha Y: Infection of Epstein-Barr virus in type III latency modulates biogenesis of exosomes and the expression profile of exosomal miRNAs in the Burkitt lymphoma mutu cell lines. Cancers (Basel) 10: 237, 2018.
14. Kobayashi E, Ama M, Kondo S, Whitehurst C, Yoshizaki T, Pagano JS and Shackelford J: C-terminal farnesylation of UCH-L1 plays a role in transport of Epstein-Barr virus primary lytic product, LP5. mBio 5: e00300-18, 2018.

15. Villarroya-Beltri C, Baixauli F, Gutiérrez-Vázquez C, Sánchez-Madrid F and Mittelbrunn M: Sorting it out: Regulation of exosome loading. Semin Cancer Biol 28: 3-13, 2014.

16. Ahmed W, Tariq S and Khan G: Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Front Cell Dev Biol 9: 751079, 2021.

17. Henne WM, Buchkovich NJ and Emr SD: The ESCRT pathway. Dev Cell 21: 77-91, 2011.

18. Pettel DM, Cosmopoulos K, Thorley-Lawson DA, von Eijndhoven MA, Hopmans ES, Lindenberg JL, de Grijs TD, Würdinger T and Middeldorp JM: Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA 107: 6328-6333, 2010.

19. Kosaka N, Iguchi H, Hagiwara K, Yoshioka Y, Takeshita F and Sánchez-Madrid F: Murray‑induced extracellular vesicle formation for its own RNA content of endothelial cell‑derived exosomes. J Extracell Vesicles 1, 2012.

20. Chou ET, Li T, Xie X, Zhang Y, Peng X and Zhou Y: Exosomes, a new star for targeted delivery. Front Cell Dev Biol 9: 751079, 2021.

21. Martin-Cofreces N, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Meckes DG Jr: Epstein-Barr virus LMP1 promotes syntenin-1-exosome release in human middle-ear epithelial cells. FASEB J 32: 1855-1867, 2018.

22. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martínez-Herrera DJ, Pasquali-Montano A, Mittelbrunn M and Sánchez-Madrid F: Sumoylated hRNRPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4: 2980, 2013.

23. Martin-Cofreces NB, Baixauli F and Sánchez-Madrid F: Immune synapse: Conductor of orchestrated organelle movement. Trends Cell Biol 24: 61-72, 2014.

24. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Blanc L and Vidal M: New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 9: 95-106, 2018.

25. Blanc L and Vidal M: New insights into the function of Rab GTPases in the context of exosomal secretion. Small GTPases 9: 95-106, 2018.

26. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, Wu CY and Kuo PL: Hypoxic lung cancer‑secreted exosomal miR‑23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO‑1. Oncogene 36: 4929-4942, 2017.

27. Seviour EG, San Lucas FA, Cohn DE and Selvendiran K: Hypoxia‑induced exosomes contribute to a more aggressive and chemoresistant ovarian cancer phenotype: A novel mechanism linking STAT3/Rab proteins. Oncogene 37: 3806-3821, 2018.

28. Val S, Krueger A, Poley M, Cohen A, Brown K, Panigrahi A and Patel N: Targeting exosomal EBV‑LMP1 transfer and miR‑203 expression via the NF‑κB pathway: The therapeutic role of aspirin in NPC. Mol Ther Nucleic Acids 17: 175-184, 2019.

29. Tang LQ, Chen QY and Mai HQ: Subdivision of de‑novo metastasis: A new hypothesis. Cancer 16: 888-899, 2021.

30. Qin JQ, Yin H, Wu JZ, Chen RX, Xie Y, Wang L, Zhu HY, Pan L, Li YJ, Liang JH and Xu W: Pretreatment whole blood Epstein-Barr virus DNA predicts prognosis in Hodgkin lymphoma. Leuk Res 107: 106607, 2021.

31. Kim JH, Cho H, Sung H, Jung AR, Lee YS, Lee SW, Ryu JS, Chae EJ, Kim KW, Huh JI et al: Reappraisal of the prognostic value of Epstein-Barr virus status in monomorphon post-transplantation lymphoproliferative disorders-diffuse large B-cell lymphoma. Sci Rep 11: 2880, 2021.
59. Xie Y, Wang T and Wang L: Hydroa vacciniforme-like lymphoproliferative disorder: A study of clinicopathology and whole-exome sequencing in Chinese patients. J Dermatol Sci 99: 128‑9, 2019.
60. Miyake T, Yamamoto T, Hirai Y, Otsuka M, Hamaeda T, Tsuji K, Morizane S, Suzuki D, Aoyama Y and Iwatsuki K: Survival rates and prognostic factors of Epstein‑Barr virus-associated hydroa vacciniforme and hypertensitivity to mosquito bites. Br J Dermatol 172: 56‑63, 2015.
61. Thorley‑Lawson DA: EBV persistence‑introducing the virus. Curr Top Microbiol Immunol 35: e21505, 2011.

62. Young LS and Rickinson AB: Epstein‑Barr virus: 40 Years on.
63. Ito M, Kudo K, Higuchi H, Otsuka H, Tanaka M, Fukunishi N, Thorley‑Lawson DA: EBV persistence‑introducing the virus.
64. Miyake T, Yamamoto T, Hirai Y, Otsuka M, Hamada T, Tsuji K, Morizane S, Suzuki D, Aoyama Y and Iwatsuki K: Survival rates and prognostic factors of Epstein‑Barr virus-associated hydroa vacciniforme and hypertensitivity to mosquito bites. Br J Dermatol 172: 56‑63, 2015.
65. Hurwitz SN, Nkosi D, Conlon MM, York SB, Liu X, Young LS and Rickinson AB: Epstein‑Barr virus: 40 Years on.

66. Miller WE and Raab‑Traub N: The EGFR as a target for viral oncoproteins. Trends Microbiol 7: 453‑458, 1999.
67. Nkosi D, Howell LA, Cheerathodi MR, Hurwitz SN, Tremblay DC and Meckes DG Jr: Transmembrane domains mediate intra‑and extracellular trafficking of Epstein‑Barr virus latent membrane protein 1. J Virol 92: e00280‑18, 2018.

68. Baglio SR, van Eijndhoven MA, Koppers‑Lalic D, Berenguer J, Nkosi D, Howell LA, Cheerathodi MR, Hurwitz SN, Tremblay DC and Meckes DG Jr: EBV‑infected B cells selectively target B cells through BCR‑bound antigen is targeted to exosomes in human follicular lymphoma B‑cells. Cell Biol 98: 491‑501, 2006.

69. Lei T, Yuen KS, Xu R, Tsao SW, Chen H, Li M, Kok KH and Heo DS: CD21‑independent Epstein‑Barr virus‑encoded miR‑BART3 into nasopharyngeal carcinoma cancer cells. Oncol Lett 12: 3563‑3568, 2016.
70. Nkosi D, Howell LA, Cheerathodi MR, Hurwitz SN, Tremblay DC and Meckes DG Jr: CD63 regulates Epstein‑Barr virus‑infected B cells and elicits macrophages of oral squamous‑cell carcinomas and treating macrophages of oral squamous‑cell carcinomas and suppressing T‑cell activity by activating RIG‑I/IL‑6/TNF‑α signaling to induce type I IFN. EMBO J 25: 4207‑4214, 2006.

71. Geppert C, van Eijndhoven MA, Koppers‑Lalic D, Berenguer J, Nkosi D, Howell LA, Cheerathodi MR, Hurwitz SN, Tremblay DC and Meckes DG Jr: EBV‑infected B cells selectively target B cells through BCR‑bound antigen is targeted to exosomes in human follicular lymphoma B‑cells. Cell Biol 98: 491‑501, 2006.

72. Samanta M, Iwakiri D, Kanda T, Imaizumi T and Takada K: Epstein‑Barr virus latent membrane protein 1 is essential for B‑lymphocyte growth transformation by EBV‑transformed B cells selectively targeting B cells via caveola‑dependent endocytosis and promote phenotypic modulation in target cells. J Virol 87: 10334‑10347, 2013.

73. Nkosi D, Howell LA, Cheerathodi MR, Hurwitz SN, Tremblay DC and Meckes DG Jr: Transmembrane domains mediate intra‑and extracellular trafficking of Epstein‑Barr virus latent membrane protein 1. J Virol 92: e00280‑18, 2018.

74. Higuchi H, Yamakawa N, Imadome KI, Yahata T, Kotaki K, Ogata J, Imura K, Fujita N and Yu Z: Role of exosomes as a proinflammatory mediator in the development of EBV‑associated lymphoma. Blood 131: 2552‑2567, 2018.

75. Haneklaus M, Gerlic M, Kurowska‑Stolarska M, Rainey AA, Pich D, McNees IB, Hammerschmidt W, O'Neill LA and Masters SL: Cutting edge: miR‑223 and EBV miR‑BART15 regulate the NLRP3 inflammasome and IL‑1β production. J Immunol 189: 3759‑3762, 2012.

76. Yogev O, Henderson S, Hayes MJ, Marelli SS, Ofir‑Birin Y, Rayovych E, Fitzgibbon KA, Luo Z, Puga I, Klein E, Gabrielsson S, Cerutti A and Scheynius A: Effect of EBV‑infected B cells on human follicular lymphoma B‑cells. J Clin Pathol 68: 29‑35, 2015.

77. Araki T, Takamatsu M, Ino Y, Kimura Y and Kotani A: Proteome and phospholipidomic characterization of extracellular vesicles induced tumor microenvironment in Epstein‑Barr virus‑infected lymphoma. FEBS J 35: e21505, 2021.

78. Young LS and Rickinson AB: Epstein‑Barr virus: 40 Years on.
Exosomes are small membrane vesicles that are released by cells of epithelial, hematopoietic, and mesenchymal origin. In recent years, exosomes have received considerable attention as potential diagnostic and therapeutic tools in various diseases, including cancers, due to their unique characteristics and functional properties.

Diagnostic Applications

Exosomes can be used as biomarkers in various diseases. They have been shown to be promising markers for cancer diagnosis and prognosis. For instance, exosomal miR-122 expression levels have been found to correlate with the hepatocellular carcinoma (HCC) disease stage. Additionally, exosomal CD63 expression has been linked to the progression of prostate cancer.

Therapeutic Applications

Exosomes have been explored for numerous therapeutic applications. For example, exosomes derived from Epstein-Barr virus (EBV)-infected cells have been investigated for their potential in delivering therapeutic cargos to cancer cells. They can carry siRNA, miRNA, or proteins that target specific cancer cells, serving as nanocarriers for gene silencing or protein delivery.

Exosome-Based Technologies

The use of exosomes in clinical settings is rapidly evolving. Technologies based on exosomes include exosome isolation methods, exosome characterization, and exosome delivery systems. These technologies are crucial for the development of exosome-based diagnostic and therapeutic tools.

Exosome-Based Nanotherapeutics

Exosomal biomarkers and therapeutic agents can be used in combination with other treatments. For example, exosomes carrying therapeutic miRNAs or siRNAs can be used in conjunction with immunotherapy or chemotherapy to enhance treatment efficacy.

Conclusion

Exosomes are emerging as a versatile platform for diagnostic and therapeutic applications in various diseases, including cancers. Further research is needed to fully realize their potential in clinical settings. The development of standardized methods for exosome isolation, characterization, and delivery will be essential for the successful translation of exosome-based technologies into clinical practice.