STRONGLY GAUDUCHON SPACES

LINGXU MENG AND WEI XIA

ABSTRACT. We define strongly Gauduchon spaces and the class \(\mathcal{J} \) which are generalizations of strongly Gauduchon manifolds in complex spaces. Comparing with the case of Kählerian, the strongly Gauduchon space and the class \(\mathcal{J} \) are similar to the Kähler space and the Fujiki class \(\mathcal{C} \) respectively. Some properties about these complex spaces are obtained, and the relations between the strongly Gauduchon spaces and the class \(\mathcal{J} \) are studied.

Keywords: strongly Gauduchon metric, strongly Gauduchon space, class \(\mathcal{J} \), topologically essential map.

AMSC: 32C15, 32C10, 53C55,

1. Introduction

The complex manifold with a strongly Gauduchon metric is an important object in non-Kähler geometry. In [14], D. Popovici first defined the strongly Gauduchon metric in the study of limits of projective manifolds under deformations. A *strongly Gauduchon* metric on a complex \(n \)-dimensional manifold is a hermitian metric \(\omega \) such that \(\partial \omega \) is \(\overline{\partial} \)-exact. A compact complex manifold is called a *strongly Gauduchon manifold*, if there exists a strongly Gauduchon metric on it.

Proposition 1.1. Let \(M \) be a compact complex manifold of dimension \(n \). Then the following is equivalent.

1. \(M \) is a strongly Gauduchon manifold.
2. There exists a strictly positive \((n-1, n-1) \)-form \(\Omega \), such that \(\partial \Omega \) is \(\overline{\partial} \)-exact.
3. There exists a real closed \((2n-2) \)-form \(\Omega \) whose \((n-1, n-1) \)-component \(\Omega^{n-1,n-1} \) is strictly positive.

In [14], D. Popovici observed (1) and (3) are equivalent. “(1) \(\Rightarrow \) (2)” is obvious by the definition of strongly Gauduchon manifolds. Conversely, for any strictly positive \((n-1, n-1) \)-form \(\Omega \), there exists a unique strictly positive \((1, 1) \)-form \(\omega \), such that \(\omega^{n-1} = \Omega \) (see [13], page 280). So we have “(2) \(\Rightarrow \) (1)”. D. Popovici proved following two important theorems.
Theorem 1.2 ([14], Proposition 3.3). Let M be a compact complex manifold. Then M is a strongly Gauduchon manifold if and only if there is no nonzero positive current T of bidegree $(1,1)$ on M which is d-exact on M.

Theorem 1.3 ([15], Theorem 1.3). Let $f : M \to N$ be a modification of compact complex manifolds. Then M is a strongly Gauduchon manifold if and only if N is a strongly Gauduchon manifold.

On the other hand, in [9], A. Fujiki generalized the concept “Kähler” to general complex spaces. A kind of generalization is the Kähler space which is a complex space admitting a strictly positive closed $(1,1)$-form and the other kind is the Fujiki class \mathcal{C} consisting of the reduced compact complex spaces which are the meromorphic images of a compact Kähler spaces. In [19] and [20], J. Varouchas proved that any reduced complex space in the Fujiki class \mathcal{C} has a proper modification which is a compact Kähler manifold. Now, many authors use it as the definition of the Fujiki class \mathcal{C}. Inspired by the method of A. Fujiki and the theorem of J. Varouchas, we give two kinds of generalization of strongly Gauduchon manifolds to complex spaces: the strongly Gauduchon spaces and class \mathcal{SG}. In view of definitions of them, the strongly Gauduchon spaces (see Definition 2.2) is similar to the Kähler spaces and the class \mathcal{SG} (see Definition 3.1) is similar to the Fujiki class \mathcal{C}.

In section 2, we study the properties of strongly Gauduchon spaces and give a method of constructing examples which are singular strongly Gauduchon spaces, but not in \mathcal{B}, where \mathcal{B} is the set of reduced compact complex spaces which are bimeromorphomorphic to compact balanced manifolds.

In section 3, we study the class \mathcal{SG} and propose a conjecture on the relation between strongly Gauduchon spaces and the class \mathcal{SG} as follows.

Conjecture 1.4. Any strongly Gauduchon space belongs to class \mathcal{SG}.

We prove it in some special cases (see Theorem 3.9, 3.11, 3.12).

In section 4, we study a family of reduced complex spaces over a nonsingular curve and give a theorem on the total space being in \mathcal{SG}.

2. STRONGLY GAUDUCHON SPACES

First, we give a proposition about strongly Gauduchon manifolds which is similar to the case of balanced manifolds.

Proposition 2.1. Let M and N be compact complex manifolds of pure dimension.

(1) If $f : M \to N$ is a holomorphic submersion and M is a strongly Gauduchon manifold, then N is a strongly Gauduchon manifold.
(2) $M \times N$ is a strongly Gauduchon manifold, if and only if, M and N are both strongly Gauduchon manifolds.

Proof. Set $\dim M = m$, $\dim N = n$.

(1) Let Ω_M be a strictly positive $(m - 1, m - 1)$-form, such that $\partial \Omega_M = \bar{\partial} \alpha$, where α is a $(2m - 2)$-form on M. Define

$$\Omega_N := f^* \Omega_M.$$

By the proof of Proposition 1.9(ii) in [13], we know Ω_N is a strictly positive $(n - 1, n - 1)$-form. Obviously, $\partial \Omega_N = \bar{\partial} (f^* \alpha)$ is $\bar{\partial}$-exact. So N is a strongly Gauduchon manifold.

(2) If $M \times N$ is a strongly Gauduchon manifold, then M and N are both strongly Gauduchon manifolds by (i).

Conversely, let M and N be both strongly Gauduchon manifolds. Suppose ω_M and ω_N are strongly Gauduchon metrics on M and N respectively, such that $\partial \omega_M^{m-1} = \bar{\partial} \alpha$ and $\partial \omega_N^{n-1} = \bar{\partial} \beta$, where α and β are $(2m - 2)$ and $(2n - 2)$-form on M and N respectively. We define a metric on $M \times N$

$$\omega := \omega_M + \omega_N$$

then

$$\omega^{m+n-1} := C_1 \omega_M^{m-1} \wedge \omega_N^n + C_2 \omega_M^m \wedge \omega_N^{n-1},$$

where C_1, C_2 are constants. So

$$\partial \omega^{m+n-1} = C_1 \partial \omega_M^{m-1} \wedge \omega_N^n + C_2 \omega_M^m \wedge \partial \omega_N^{n-1} = \bar{\partial} (C_1 \alpha \wedge \omega_N^n + C_2 \omega_M^m \wedge \beta)$$

is $\bar{\partial}$-exact on $M \times N$. Hence ω is a strongly Gauduchon metric on $M \times N$. □

We recall the definitions of forms and currents on complex spaces, following [12].

Let X be a reduced complex space and X_{reg} the set of nonsingular points on X. Obviously, X_{reg} is a complex manifold.

Suppose that X is an analytic subset of a complex manifold M. Set $I^{p,q}_X(M) = \{ \alpha \in A^{p,q}(M) \mid i^* \alpha = 0 \}$, where $i : X_{\text{reg}} \to M$ is the inclusion. Define $A^{p,q}(X) := A^{p,q}(M)/I^{p,q}_X(M)$. It can be easily shown that $A^{p,q}(X)$ does not depend on the embedding of X into M. Hence, for any complex space X, we can define $A^{p,q}(X)$ through the local embeddings in \mathbb{C}^N. More precisely, we define a sheaf of germs $A^{p,q}_X$ of (p, q)-forms on X and $A^{p,q}(X)$ as the group of its global sections. Similarly, we can also define $A^{p,q}_c(X)$ (the space of (p, q)-forms with compact supports), $A^k(X)$ and $A^k_c(X)$.

We can naturally define $\partial : A^{p,q}(X) \to A^{p+1,q}(X)$, $\bar{\partial} : A^{p,q}(X) \to A^{p,q+1}(X)$ and $d : A^k(X) \to A^{k+1}(X)$.
If \(f : X \to Y \) is a holomorphic map between reduced complex spaces, then we can naturally define \(f^* : A^{p,q}(Y) \to A^{p,q}(X) \) such that \(f^* \) commutes with \(\partial, \bar{\partial}, d \).

When \(X \) is a subvariety of a complex manifold \(M \), we define the space of currents on \(X \)
\[
D^r(X) := \{ T \in D^r(M) \mid T(u) = 0, \forall u \in I_{X,c}^{2n-r}(M) \},
\]
where \(D^r(M) \) is the space of currents on \(M \) and \(I_{X,c}^{2n-r}(M) = \{ \alpha \in A^{2n-r}_c(M) \mid i^*\alpha = 0 \} \). We can define a space \(D^r(X) \) of the currents on any reduced complex space \(X \) as the case of \(A^r(X) \). Define
\[
D^{p,q}(X) := \{ T \in D^{p+q}(X) \mid T(u) = 0, \forall u \in A^{r,s}_c(M), (r, s) \neq (n-p, n-q) \}.
\]
A current \(T \) is called a \((p, q)\)-current on \(X \), if \(T \in D^{p,q}(X) \). If \(T \in D^r(X) \), we call \(r \) the degree. If \(T \in D^{p,q}(X) \), we call \((p, q)\) the bidegree. We also denote \(D^r_r(X) = D^{2n-r}_r(X) \) and \(D^r_{p,q}(X) = D^{p+n-r-n,q}(X) \). A current \(T \in D^{p,q}(X) \) is called real if for every \(\alpha \in A^{2n-2p}_c(X) \), \(T(\pi) = \overline{T(\alpha)} \).

If \(f : X \to Y \) is a holomorphic map of reduced compact complex spaces, we define \(f_* : D^r_r(X) \to D^r_r(Y) \) as \(f_*T(u) := T(f^*u) \) for any \(u \in A^r_r(Y) \).

A real \((p,p)\)-form \(\omega \) on \(X \) is called strictly positive, if there exist an open covering \(U = \{U_{\alpha}\} \) of \(X \) with an embedding \(i_{\alpha} : U_{\alpha} \to V_{\alpha} \) of \(U_{\alpha} \) into a domain \(V_{\alpha} \) in \(\mathbb{C}^{n_{\alpha}} \) and a strictly positive \((p,p)\)-form \(\omega_{\alpha} \) on \(V_{\alpha} \), such that \(\omega|_{U_{\alpha}} = i_{\alpha}^*\omega_{\alpha} \), for each \(\alpha \).

Now, we give a kind of generalization of strongly Gauduchon manifolds.

Definition 2.2. A purely \(n \)-dimensional reduced compact complex space \(X \) is called a strongly Gauduchon space, if there exists a strictly positive \((n-1, n-1)\)-form \(\Omega \), such that \(\partial \Omega \) is \(\bar{\partial} \)-exact.

By its definition, it is easy to see that \(X \) is a strongly Gauduchon space, if and only if, there exists a real closed \((2n-2)\)-form \(\Omega' \) on \(X \) whose \((n-1, n-1)\)-component \(\Omega'^{n-1,n-1} \) is strictly positive. Indeed, if \(\Omega \) is a strictly positive \((n-1, n-1)\)-form, such that \(\partial \Omega = \bar{\partial} \alpha \), where \(\alpha \) is a \((n, n-2)\)-form, then
\[
\Omega' := \Omega - \alpha - \bar{\alpha}
\]
is the desired form. Conversely, since \(\Omega' \) is real and \(d \)-closed, \(\partial \Omega'^{n-1,n-1} = -\bar{\partial} \Omega'^{n,n-2} \). Hence, \(\Omega := \Omega'^{n-1,n-1} \) is the desired form.

Obviously, strongly Gauduchon manifolds and compact balanced spaces are strongly Gauduchon spaces.

Proposition 2.3. Let \(X \) be a reduced compact complex space of pure dimension and \(M \) a compact complex manifold of pure dimension. If \(X \times M \) is a strongly Gauduchon space, then \(M \) is a strongly Gauduchon manifold.
Proof. Let X_{reg} be the set of nonsingular points on X and Ω a strictly positive $(n + m - 1, n + m - 1)$-form on $X \times M$, such that $\partial \Omega$ is $\overline{\partial}$-exact, where $n = \dim X$ and $m = \dim M$. Suppose $\pi : X_{\text{reg}} \times M \to M$ is the second projection. By the proof of Proposition 1.9(ii) in [13], we know $\pi^*(\Omega_{|X_{\text{reg}} \times M})$ is a strictly positive $(m - 1, m - 1)$-form on M. Obviously, $\partial \pi^*(\Omega_{|X_{\text{reg}} \times M})$ is ∂-exact. So M is a strongly Gauduchon manifold. □

We know that, on a compact balanced manifold M, the fundamental class $[V]$ of any hypersurface V is not zero in $H^2(M, \mathbb{R})$ (see [13], Corollary 1.7). It is equivalent to that, the current $[V]$ on M defined by any hypersurface V is not d-exact. For strongly Gauduchon spaces, we have following proposition.

Proposition 2.4. If X is a strongly Gauduchon space, then the current $[V]$ defined by any hypersurface V of X is not $\partial \overline{\partial}$-exact.

Proof. Suppose $\dim X = n$. Let Ω be a strictly positive $(n - 1, n - 1)$-form on X such that $\partial \Omega = \overline{\partial} \alpha$, where α is a $(2n - 2)$-form on X. If $[V] = \partial \overline{\partial} Q$ for some current Q on X, then

$$[V](\Omega) = \int_V \Omega > 0.$$

On the other hand,

$$[V](\Omega) = (\partial \overline{\partial} Q)(\Omega) = - Q(\overline{\partial} \partial \Omega) = - Q(\overline{\partial} \partial \alpha) = 0.$$

It is a contradiction. □

Proposition 2.5. If $f : X \to Y$ is a finite holomorphic unramified covering map of reduced compact complex spaces of pure dimension, then X is a strongly Gauduchon space if and only if Y is a strongly Gauduchon space.

Proof. Set $n = \dim X = \dim Y$ and $d = \deg f$.

Let X be a strongly Gauduchon space and Ω_X a strictly positive $(n - 1, n - 1)$-form on X such that $\partial \Omega_X = \overline{\partial} \alpha_X$, where α_X is a $2(n - 1)$-form on X. For every $y \in Y$, we set $f^{-1}(y) = \{x_1, ..., x_d\}$, then there exists an open neighbourhood $V \subseteq Y$ of y, and open neighbourhoods $U_1, ..., U_d$ of $x_1, ..., x_d$ in X respectively, which do not intersect with each other, such that $f^{-1}(V) = \bigcup_{i=1}^d U_i$ and the restriction $f|_{U_i} : U_i \to V$ is an isomorphism for $i = 1, ..., d$. We define two forms on V as

$$\Omega_V := \Sigma_{i=1}^d (f|_{U_i})^*(\Omega_X|_{U_i})$$

$$\alpha_V := \Sigma_{i=1}^d (f|_{U_i})^*(\alpha_X|_{U_i})$$

If V and V' are two open subsets in Y as above (possible for different points in Y) and $V \cap V' \neq \emptyset$, we can easily check $\Omega_V = \Omega_{V'}$ on $V \cap V'$. Hence we can construct a global $(n - 1, n - 1)$-form Ω_Y on Y such that $\Omega_Y|_V = \Omega_V$.

Proof. Let X_{reg} be the set of nonsingular points on X and Ω a strictly positive $(n + m - 1, n + m - 1)$-form on $X \times M$, such that $\partial \Omega$ is $\overline{\partial}$-exact, where $n = \dim X$ and $m = \dim M$. Suppose $\pi : X_{\text{reg}} \times M \to M$ is the second projection. By the proof of Proposition 1.9(ii) in [13], we know $\pi^*(\Omega_{|X_{\text{reg}} \times M})$ is a strictly positive $(m - 1, m - 1)$-form on M. Obviously, $\partial \pi^*(\Omega_{|X_{\text{reg}} \times M})$ is ∂-exact. So M is a strongly Gauduchon manifold. □
By the same reason, we can define a global \(2(n-1)\)-form \(\alpha_Y\) on \(Y\) such that \(\alpha_Y\|_V = \alpha_Y\). Obviously, \(\Omega_Y\) is strictly positive and \(\partial\Omega_Y = \overline{\partial}\alpha_Y\). Therefore, \(Y\) is a strongly Gauduchon space.

Conversely, suppose \(\Omega_Y\) is a strictly positive \((n-1, n-1)\)-form on \(Y\), such that \(\partial\Omega_Y\) is \(\overline{\partial}\)-exact on \(Y\). For all \(x \in X\), there is an open neighbourhood \(U\) of \(x\) in \(X\), an open neighbourhood \(V\) of \(f(x)\) in \(Y\), such that \(f|_U: U \to V\) is an isomorphism. \((f^*\Omega_Y)|_U = (f|_U)^*(\Omega_Y|_V)\) is obviously strictly positive on \(U\), so is \(f^*\Omega_Y\) on \(X\). Obviously, \(f^*\Omega_Y\) is \(\overline{\partial}\)-exact on \(X\). Therefore, \(X\) is a strongly Gauduchon space. \(\square\)

3. The class \(\mathcal{IG}\)

Now, we give the other generalization of strongly Gauduchon manifolds.

Definition 3.1. A reduced compact complex space \(X\) of pure dimension is called in class \(\mathcal{IG}\), if it has a desingularization \(\tilde{X}\) which is a strongly Gauduchon manifold.

If one desingularization of \(X\) is a strongly Gauduchon manifold, then every desingularization of \(X\) is a strongly Gauduchon manifold. Indeed, if \(X_1 \to X\) and \(X_2 \to X\) are two desingularizations of \(X\), then there exists a bimeromorphic map \(f: X_1 \to X_2\). Let \(\Gamma \subseteq X_1 \times X_2\) be the graph of \(f\), and \(p_1: \Gamma \to X_1, p_2: \Gamma \to X_2\) the two projections on \(X_1, X_2\), respectively. Then \(p_1, p_2\) are modifications. If \(\tilde{\Gamma}\) is a desingularization of \(\Gamma\), then \(\tilde{\Gamma} \to X_1\) and \(\tilde{\Gamma} \to X_2\) are modifications of compact complex manifolds. By Theorem \([13]\) we know that \(X_1\) is a strongly Gauduchon manifold if and only if \(\tilde{\Gamma}\) is a strongly Gauduchon manifold, and then if and only if \(X_2\) is a strongly Gauduchon manifold. Hence Definition 2.1 is not dependent on the choice of the desingularization of \(X\). So, if \(X \in \mathcal{IG}\) is nonsingular, then \(X\) is a strongly Gauduchon manifold.

Using the same method as above, we can prove the following proposition.

Proposition 3.2. The class \(\mathcal{IG}\) is invariant under bimeromorphic maps.

Obviously, strongly Gauduchon manifolds and the normalizations of complex spaces in class \(\mathcal{IG}\) are in class \(\mathcal{IG}\). Recall that a reduced compact complex space \(X\) is called in class \(\mathcal{B}\), if it has a desingularization \(\tilde{X}\) which is a balanced manifold, referring to \([8]\). Then complex spaces in class \(\mathcal{B}\) are in class \(\mathcal{IG}\).

Proposition 3.3. If \(X\) and \(Y\) are reduced compact complex spaces, then \(X \times Y\) is in the class \(\mathcal{IG}\) if and only if \(X\) and \(Y\) are both in the class \(\mathcal{IG}\).

Proof. If \(f: \tilde{X} \to X\) and \(g: \tilde{Y} \to Y\) are desingularizations, then \(f \times g: \tilde{X} \times \tilde{Y} \to X \times Y\) is a desingularization of \(X \times Y\). By Proposition \([24]\)(ii),
we know that $\tilde{X} \times \tilde{Y}$ is a strongly Gauduchon manifold if and only if \tilde{X} and \tilde{Y} are both strongly Gauduchon manifolds. So we get this proposition easily.

Using this proposition, we can construct some examples of complex spaces in \mathcal{I} which are neither strongly Gauduchon manifolds nor in class \mathcal{B}. If Y is a singular reduced compact complex space in class \mathcal{B} and Z is a compact strongly Gauduchon manifold but not a balanced manifold, then $Y \times Z$ is in \mathcal{I}, but it is neither a strongly Gauduchon manifold nor in \mathcal{B}. Indeed, $Y \times Z$ is singular, so it is not a strongly Gauduchon manifold. By Proposition 3.3, $Y \times Z \in \mathcal{I}$. Assume $Y \times Z \in \mathcal{B}$, by [8], Proposition 2.3, we know $Z \in \mathcal{B}$. Since Z is nonsingular, Z is balanced, which contradicts the choice of Z. Hence we get the following relations

$$C \subseteq B \subseteq S_G,$$

where C is the Fujiki class and the first "\subseteq" is proved in [8], Section 2.

If X is a reduced compact complex space of pure dimension, then $X \in \mathcal{I}$ if and only if every irreducible component of X is in \mathcal{I}. Indeed, if let $\tilde{X}_1, \ldots,\tilde{X}_r$ be the desingularizations of X_1, \ldots, X_r, all the irreducible components of X, then the disjoint union $\tilde{X} := \tilde{X}_1 \sqcup \ldots \sqcup \tilde{X}_r$ is a desingularization of X. Hence the conclusion follows since \tilde{X} is a strongly Gauduchon manifold if and only if $\tilde{X}_1, \ldots, \tilde{X}_r$ are all strongly Gauduchon manifolds.

In the following, we need the definition of a smooth morphism, referring to [5], (0.4). A surjective holomorphic map $f : X \to Y$ between reduced complex spaces is called a smooth morphism, if for all $x \in X$, there is an open neighbourhood W of x in X, an open neighbourhood U of $f(x)$ in Y, such that $f(W) = U$ and there is a commutative diagram

$$\begin{array}{ccc}
W & \xrightarrow{f|_W} & U \\
g \downarrow & & \\
\Delta^r \times U & \xrightarrow{pr_2} & \\
\end{array}$$

where $r = \dim X - \dim Y$, g is an isomorphism (i.e., biholomorphic map), pr_2 is the second projection, and Δ^r is a small polydisc. Moreover, if $\dim X = \dim Y$, a smooth morphism is exactly a surjective local isomorphism.

Obviously, if $f : X \to Y$ is a smooth morphism and Y is a complex manifold, then X must also be a complex manifold and f is a submersion between complex manifolds.

Proposition 3.4. Let $f : X \to Y$ be a smooth morphism of reduced compact complex spaces. If $X \in \mathcal{I}$, then $Y \in \mathcal{I}$.
Proof. Suppose \(p : \tilde{Y} \to Y \) is a desingularization. Consider the following Cartesian diagram

\[
\begin{array}{ccc}
\tilde{X} := X \times_Y \tilde{Y} & \xrightarrow{\tilde{f}} & \tilde{Y} \\
q \downarrow & & \downarrow p \\
X & \xrightarrow{f} & Y
\end{array}
\]

where \(X \times_Y \tilde{Y} = \{(x, \tilde{y}) \in X \times \tilde{Y} | f(x) = p(\tilde{y})\} \), \(q \) is the projection to \(X \), and \(\tilde{f} \) is the projection to \(\tilde{Y} \). We can prove that \(\tilde{f} \) is a submersion of complex manifolds and \(q \) is a modification, referring to [8], Claim 1 and 2 in the proof of Proposition 2.4. Since \(X \in \mathcal{G} \), \(\tilde{X} \) is a strongly Gauduchon manifold, so is \(\tilde{Y} \) by Proposition 2.1(i), hence \(Y \in \mathcal{G} \). \(\square \)

Proposition 3.5. If \(f : X \to Y \) is a finite unramified covering map of reduced compact complex spaces, then \(X \in \mathcal{G} \) if and only if \(Y \in \mathcal{G} \).

Proof. Suppose \(p : \tilde{Y} \to Y \) is a desingularization. Consider the Cartesian diagram (1). We know that \(\tilde{f} \) is a surjective local isomorphism and \(q \) is a modification. Since \(\tilde{Y} \) is locally compact, by [11], Lemma 2, \(\tilde{f} \) is a finite covering map in topological sense. Moreover, since \(\tilde{f} \) is a local isomorphism (in analytic sense), \(\tilde{f} \) is a finite unramified covering map (in analytic sense). By Proposition 2.5 we know \(\tilde{X} \) is a strongly Gauduchon manifold if and only if \(\tilde{Y} \) is a strongly Gauduchon manifold. Hence \(X \in \mathcal{G} \) if and only if \(Y \in \mathcal{G} \). \(\square \)

We generalize Theorem 3.5 (2) and Theorem 3.9 (2) in \([1]\) as follows.

Proposition 3.6. Let \(f : X \to Y \) be a smooth morphism of reduced compact complex spaces, and \(n = \text{dim } X > m = \text{dim } Y \geq 2 \). If \(Y \in \mathcal{B} \) and there exists a point \(y_0 \) in \(Y \) such that the current \([f^{-1}(y_0)] \) is not d-exact on \(X \), then \(X \in \mathcal{G} \).

Proof. Choose a desingularization \(p : \tilde{Y} \to Y \) such that \(\tilde{Y} \) is a compact balanced manifold. Considering the Cartesian diagram (1), we know that \(\tilde{f} \) is a surjective local isomorphism and \(q \) is a modification.

For every \(\tilde{y} \in p^{-1}(y_0) \), the current \([\tilde{f}^{-1}(\tilde{y})] \) can not be written as \(dQ \) for any current \(Q \) of degree \(2m - 1 \) on \(\tilde{X} \). If not, since \(\tilde{f}^{-1}(\tilde{y}) = f^{-1}(y_0) \times \{\tilde{y}\} \), we have

\[
[f^{-1}(y_0)] = q_*[\tilde{f}^{-1}(\tilde{y})] = q_*(dQ) = dq_*Q,
\]

which contradicts the assumption.

Now suppose \(\tilde{y}' \) is any point in \(\tilde{Y} \). Then the fundamental classes \([\tilde{y}] = [\tilde{y}'] \) in \(H^{2m}(\tilde{Y}, \mathbb{R}) \). Since \(\tilde{f} \) is smooth,

\[
[\tilde{f}^{-1}(\tilde{y}')] = \tilde{f}^*[\tilde{y}'] = \tilde{f}^*[\tilde{y}] = [\tilde{f}^{-1}(\tilde{y})]
\]
in $H^{2m}(\tilde{X}, \mathbb{R})$, where $\tilde{y} \in p^{-1}(y_0)$ and $\tilde{f}^* : H^{2m}(\tilde{Y}, \mathbb{R}) \to H^{2m}(\tilde{X}, \mathbb{R})$ is the pull back of \tilde{f}. Hence for every $\tilde{y} \in \tilde{Y}$, the current $[\tilde{f}^{-1}(\tilde{y})]$ is not d-exact on \tilde{X}. By [1], Theorem 3.5 (2) and Theorem 3.9 (2), X is a strongly Gauduchon manifold, hence $X \in \mathcal{SG}$. □

Next we consider the relation between strongly Gauduchon spaces and class \mathcal{SG}. From definitions of them, the relation between strongly Gauduchon spaces and class \mathcal{SG} is similar to that of Kähler spaces and Fujiki class \mathcal{C}. Moreover, in the nonsingular case, we know that a modification of a strongly Gauduchon manifold is also a strongly Gauduchon manifold, by Theorem 1.3. So we think the following also hold.

Conjecture 3.7. Any strongly Gauduchon space belongs to class \mathcal{SG}.

We can prove it in some extra conditions. First, we recall a theorem and several notations.

Theorem 3.8 ([2], Theorem 1.5). Let M be a complex manifold of dimension n, E a compact analytic subset and $\{E_i\}_{i=1, \ldots, s}$ all the p-dimensional irreducible components of E. If T is a $\partial \bar{\partial}$-closed positive $(n-p, n-p)$-current on M such that $\text{supp} T \subseteq E$, then there exist constants $c_i \geq 0$ such that $T - \sum_{i=1}^s c_i [E_i]$ is supported on the union of the irreducible components of E of dimension greater than p.

For a compact complex manifold M, the *Bott-Chern cohomology group* of degree (p, q) is defined as

$$H^{p,q}_{BC}(M) := \text{Ker} \left(\frac{d : A^{p,q}(M) \to A^{p+q+1}(M)}{\partial \bar{\partial} A^{p-1,q-1}(M)} \right),$$

and the *Aeppli cohomology group* of degree (p, q) is defined as

$$H^{p,q}_{A}(M) := \frac{\text{Ker} \left(\partial \bar{\partial} : A^{p,q}(M) \to A^{p+1,q+1}(M) \right)}{\partial A^{p-1,q}(M) + \bar{\partial} A^{p,q-1}(M)}.$$

It is well known that all these groups can also be defined by means of currents of corresponding degree. For every $(p, q) \in \mathbb{N}^2$, the identity induces a natural map

$$i : H^{p,q}_{BC}(M) \to H^{p,q}_{A}(M).$$

In general, the map i is neither injective nor surjective. If M satisfies $\partial \bar{\partial}$-lemma, then for every $(p, q) \in \mathbb{N}^2$, i is an isomorphism, referring to [6], Lemma 5.15, Remarks 5.16, 5.21.

Theorem 3.9. Let X be a strongly Gauduchon space. If it has a desingularization \tilde{X} such that $i : H^{1,1}_{BC}(\tilde{X}) \to H^{1,1}_{A}(\tilde{X})$ is injective, then $X \in \mathcal{SG}$.
Proof. Set dim \(X = n \). Suppose \(\pi : \tilde{X} \to X \) is the desingularization. We need to prove that \(\tilde{X} \) is a strongly Gauduchon manifold. By Theorem 1.2, it suffices to prove that if \(T \) is a positive \((1, 1)\)-current on \(\tilde{X} \) which is \(d \)-exact, then \(T = 0 \).

Let \(E \subseteq \tilde{X} \) be the exceptional set of \(\pi \), \(\Omega \) the real closed \((2n - 2)\)-form on \(X \) whose \((n - 1, n - 1)\)-part \(\Omega^{n-1,n-1} \) is strictly positive. Since \(T \) is \(d \)-exact, we have \(T(\pi^{*}\Omega) = 0 \). On the other hand, since \(T \) is a \((1, 1)\)-current, we have \(T(\pi^{*}\Omega) = T(\pi^{*}\Omega^{n-1,n-1}) = \int_{\tilde{X}} T \wedge \pi^{*}\Omega^{n-1,n-1} \) and \(\pi^{*}\Omega^{n-1,n-1} \) is strictly positive on \(\tilde{X} - E \), so we obtain \(\text{supp}T \subseteq E \).

By Theorem 3.8 for \(p = n - 1 \), we obtain \(T = \sum c_{i}[E_{i}] \), where \(c_{i} \geq 0 \) and \(E_{i} \) are the \((n - 1)\)-dimensional irreducible components of \(E \). Since \(T \) is \(d \)-exact, \(\sum c_{i}[E_{i}] = [T]_{\tilde{X}} = 0 \) in \(H_{2n-2}(\tilde{X}, \mathbb{R}) \). Beacuse \(i \) is injective, we know \([T]_{BC} = 0 \) in \(H_{2n-2}^{1}(\tilde{X}) \). So, there is a real 0-current \(Q \) on \(\tilde{X} \), such that \(T = i\partial\bar{\partial}Q \). Since \(T \geq 0 \), \(Q \) is plurisubhamonic. By maximum principle, \(Q \) is a constant, hence \(T = 0 \). \(\square \)

Lemma 3.10 (\cite{8}, Lemma 3.6). Let \(f : X \to Y \) be a modification between reduced compact complex spaces of dimension \(n \). If \(Y \) is normal and the betti number \(b_{2n-1}(Y) = 0 \), then there is a exact sequence

\[
0 \longrightarrow H_{2n-2}(E, \mathbb{R}) \overset{i^{*}}{\longrightarrow} H_{2n-2}(X, \mathbb{R}) \overset{f_{*}}{\longrightarrow} H_{2n-2}(Y, \mathbb{R})
\]

where \(E \) is the exceptional set of \(f \), \(i : E \to X \) is the inclusion. Moreover, \(H_{2n-2}(E, \mathbb{R}) = \oplus j \mathbb{R}[E_{j}] \), where \(\{E_{j}\}_{j} \) are all the \((n - 1)\)-dimensional irreducible components of \(E \) (possibly there exist some other components of dimension \(< n - 1 \) in \(E \)).

Theorem 3.11. If \(X \) is a normal strongly Gauduchon space of dimension \(n \) with the betti number \(b_{2n-1}(X) = 0 \), then \(X \in \mathcal{G} \).

Proof. Suppose \(T \) is a positive \((1, 1)\)-current on \(\tilde{X} \) which is \(d \)-exact. As the proof in Theorem 3.9 we obtain

\[
T = \sum c_{i}[E_{i}]
\]

where \(c_{i} \geq 0 \), \(E_{i} \) are the \((n - 1)\)-dimensional irreducible components of \(E \). Since \(T \) is \(d \)-exact, \(\sum c_{i}[E_{i}] = [T]_{\tilde{X}} = 0 \) in \(H_{2n-2}(\tilde{X}, \mathbb{R}) \). By Lemma 3.10 we get \(c_{i} = 0 \) for all \(i \). \(\square \)
Theorem 3.12. Let X be a compact strongly Gauduchon space. If it has a desingularization \tilde{X} whose exceptional set has codimension ≥ 2, then $X \in S_G$.

Proof. Suppose $\dim X = n$ and T is a positive $(1,1)$-current on \tilde{X} which is d-exact. As the proof in Theorem 3.9, we obtain $\text{supp} T \subseteq E$. By Theorem 3.8 for $p = n - 1$, we get $T = 0$ immediately. \hfill \square

4. Families of complex spaces over a nonsingular curve

In this section, we study families of complex spaces over a curve. It should be useful in the study of deformations and moduli spaces of complex spaces. The following definition is a generalization of the corresponding notion defined in [13].

Definition 4.1. Let X be a reduced compact complex space of pure dimension n, and $f : X \to C$ a holomorphic map onto a nonsingular compact complex curve C. f is called topologically essential, if for every $p \in C$, no linear combination $\sum_j c_j [F_j]$ is zero in $H_{2n-2}(X,\mathbb{R})$, where the F_j’s are all the irreducible components of the fibre $f^{-1}(p)$, $c_j \geq 0$ and at least one of the c_j’s is positive.

Note that, for any reduced compact complex space X of pure dimension n and the holomorphic map $f : X \to C$ onto a nonsingular compact complex curve C, f is an open map by the open mapping theorem ([10], page 109). Hence for every $p \in C$, every irreducible component of $f^{-1}(p)$ has dimension $n - 1$ ([7], §3.10, Theorem).

Now, we can generalize [18], Theorem 4.1 as follows.

Theorem 4.2. Suppose X is a purely n-dimensional compact normal complex space which admits a topologically essential holomorphic map $f : X \to C$ onto a nonsingular compact complex curve C, and X has a desingularization $\pi : \tilde{X} \to X$, such that no nonzero nonnegative linear combination of hypersurfaces contained in the exceptional set of π is zero in $H_{2n-2}(\tilde{X},\mathbb{R})$. If every nonsingular fiber of f is a strongly Gauduchon manifold, then $X \in S_G$.

Proof. Set $\tilde{f} := f \circ \pi$. For every $p \in C$, set $f^{-1}(p) = \bigcup_i V_i$, where V_i are all the irreducible components of $f^{-1}(p)$ which have dimension $n - 1$. Since X is normal, $\text{codim} X_s \geq 2$, where X_s is the set of singular points of X. So

$$\pi^{-1}(V_i) = \tilde{V}_i \cup \bigcup_j E_{ij},$$

where $\tilde{V}_i = \pi^{-1}(V_i - X_s)$ is the strict transform of V_i, and E_{ij} are all irreducible components of $\pi^{-1}(V_i)$ contained in the exceptional set of π. It is
possible that some E_{ij} are contained in other E_{kl} or \tilde{V}_k. We denote any E_{ij}, which is not properly contained in other E_{kl} or \tilde{V}_k, by E_{ij}' and we denote any E_{ij}, which is properly contained in other E_{kl} or \tilde{V}_k, by E_{ij}'' (i.e. there exists other E_{kl} or \tilde{V}_k, such that $E_{ij}'' \subsetneq E_{kl}$ or \tilde{V}_k), then
\[
\tilde{f}^{-1}(p) = \bigcup_i (\tilde{V}_i \cup \bigcup_j E_{ij}')
\]
is the irreducible decomposition of $\tilde{f}^{-1}(p)$, hence $\text{codim}E_{ij}' = 1$.

We need the following two claims.

Claim 1. \tilde{f} is topologically essential.

Proof. If not, we have
\[
\Sigma_i a_i[\tilde{V}_i] + \Sigma_{ij} b_{ij}[E_{ij}'] = 0,
\]
in $H_{2n-2}(\tilde{X}, \mathbb{R})$, for some $a_i, b_{ij} \geq 0$ and at least one of the a_i's, b_{ij}'s is positive. Since $\pi(E_{ij}') \subseteq X_s$ has codimension ≥ 2, $\pi_*[E_{ij}'] = 0$ in $H_{2n-2}(X, \mathbb{R})$. In $H_{2n-2}(X, \mathbb{R})$, $\pi_*[\tilde{V}_i] = [V_i]$, hence
\[
\Sigma_i a_i[\tilde{V}_i] = 0
\]
through π_*. Since f is topologically essential, $a_i = 0$ for all i. So
\[
\Sigma_{ij} b_{ij}[E_{ij}'] = 0,
\]
in $H_{2n-2}(\tilde{X}, \mathbb{R})$, where $b_{ij} \geq 0$ and at least one of the b_{ij}'s is positive. It contradicts the assumption on \tilde{X}.

Claim 2. For every $p \in C$, if $\tilde{f}^{-1}(p)$ is nonsingular, then it is a strongly Gauduchon manifold.

Proof. Since $\tilde{f}^{-1}(p) = \bigcup_i (\tilde{V}_i \cup \bigcup_j E_{ij}')$ is nonsingular, we have
\[
\tilde{V}_i \cap \tilde{V}_k = \emptyset, \quad \forall i \neq k;
\]
\[
\tilde{V}_i \cap E_{kl'} = \emptyset, \quad \forall i, k, l'.
\]
Since for any i, j, E_{ij} is contained in some $E_{kl'}$ or \tilde{V}_k, we have $\tilde{V}_i \cap E_{ij} = \emptyset$. On the other hand, if $V_i \cap X_s \neq \emptyset$, then the intersection of \tilde{V}_i and $\bigcup_j E_{ij}$ is not empty, which contradicts with $\tilde{V}_i \cap E_{ij} = \emptyset$. So for all i, $V_i \cap X_s = \emptyset$. Hence, the map
\[
\pi |_{\tilde{f}^{-1}(p)}: \tilde{f}^{-1}(p) \to f^{-1}(p)
\]
is an isomorphism. Since every nonsingular fiber of f is a strongly Gauduchon manifold and $\tilde{f}^{-1}(p)$ is nonsingular, $\tilde{f}^{-1}(p)$ is a strongly Gauduchon manifold.

Now, by the Claim 1 and 2, \tilde{X} is a strongly Gauduchon manifold according to [15], Theorem 4.1. Hence, $X \in \mathcal{G}$.
By the above theorem, we have the following corollary immediately.

Corollary 4.3. Suppose X is a purely dimensional compact normal complex space which admits a topologically essential holomorphic map $f : X \rightarrow C$ onto a nonsingular compact complex curve C, and X has a desingularization \tilde{X} whose exceptional set has codimension ≥ 2. If every nonsingular fiber of f is a strongly Gauduchon manifold, then $X \in \mathcal{G}$.

Corollary 4.4. Let X be a purely n-dimensional normal compact complex space which admits a topologically essential holomorphic map onto a nonsingular compact complex curve. If the betti number $b_{2n-1}(X) = 0$, then $X \in \mathcal{G}$.

Proof. By Lemma 3.10, we know that, for any desingularization $\pi : \tilde{X} \rightarrow X$, $\{[E_j]\}_j$ are linearly independent in $H_{2n-2}(\tilde{X}, \mathbb{R})$, where $\{E_j\}_j$ are all the $(n-1)$-dimensional irreducible components of the exceptional set of π. Using Theorem 4.2, we get this corollary immediately. \square

Acknowledgements. We would like to thank our supervisor Prof. Jixiang Fu for his constant encouragement and many helpful discussions.

References

[1] L. Alessandrini, Holomorphic submersions onto Kähler or balanced manifold, arXiv:1410.2396v1.
[2] L. Alessandrini and M. Andreatta, Closed transverse (p, p)-forms on compact complex manifolds, *Compositio Math.* 61 (1987), 181-200. Erratum ibid. 61 (1987), 143.
[3] L. Alessandrini and G. Bassanelli, Positive $\partial\bar{\partial}$-closed currents and non-Kähler Geometry, *J. Geom. Anal.* 2 (1992), 291-316.
[4] A. Borel and A. Haefliger, La classe d’homolgie fondamentale d’un espace analytique, *Bull. Soc. Math. France* 89 (1961), 461-513.
[5] P. Deligne, *Équations différentielles à points singuliers réguliers*, Lecture Notes in Math. 163, Springer-Verlag, Berlin-New York, 1970.
[6] P. Deligne; P. Griffiths; J. Morgan; D. Sullivan, Real homotopy theory of Kähler manifolds, *Invent. Math.* 29 (1975), no. 3, 245-274.
[7] G. Fischer, *Complex analytic geometry*, Lecture Notes in Math. 538, Berlin-Heidelberg-New York, Springer, 1976.
[8] J. Fu and L. Meng and W. Xia, Complex balanced spaces, *Internat. J. Math.* 26 (2015), no. 12, 1550105, 15 pp.
[9] A. Fujiki, Closedness of the Douady spaces of compact Kähler spaces, *Publ. RIMS, Kyoto Univ.* 14 (1978), 1-52.
[10] H. Grauert and R. Remmert, *Coherent analytic sheaves*, Grundlehren der math. Wiss. 265, Springer-Verlag, Berlin, 1984.
[11] Chung-Wu Ho, A note on proper maps, *Proc. Amer. Math. Soc.* 51 (1975), 237-241.
[12] J. King, The currents defined by analytic varieties, *Acta Math.* 127 (1971), 185-220.
[13] M. L. Michelsohn, On the existence of special metrics in complex geometry, *Acta Math.* 149 (1982), 261-295.
[14] D. Popovici, Limits of Projective Manifolds under Holomorphic Deformations, arXiv:0910.2032v1.

[15] D. Popovici, Stability of Strongly Gauduchon Manifolds under Modifications, J. Geom. Anal. 23 (2013), 653-659.

[16] D. Popovici, Deformation limits of projective manifolds: Hodge numbers and strongly Gauduchon metrics, Invent. Math. 194 (2013), 515-534.

[17] D. Popovici, Deformation openness and closedness of various classes of compact complex manifolds; examples, Ann.Sc. Norm. Super. Pisa Cl. Sci.(5) 13 (2014), 255-305.

[18] J. Xiao, On Strongly Gauduchon Metrics of Compact Complex Manifolds, J. Geom. Anal. 25 (2015), 2011-2027.

[19] J. Varouchas, Stabilité de la classe des variétés Kähleriennes par certains morphismes propres, Invent. Math. 77 (1984), 117-127.

[20] J. Varouchas, Kähler Spaces and Proper Open Morphisms, Math. Ann. 283 (1989), 13-52.

DEPARTMENT OF MATHEMATICS, NORTH UNIVERSITY OF CHINA, TAIYUAN, SHANXI 030051, P.R. CHINA
E-mail address: 20160012@nuc.edu.cn

INSTITUTE OF MATHEMATICS, FUDAN UNIVERSITY, SHANGHAI 200433, P.R. CHINA
E-mail address: 11110180005@fudan.edu.cn