Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

Abdallah, H.; Balzer, A.; Berge, D.; Bryan, M.; Edwards, T.; Prokoph, H.; Simoni, R.; Vink, J.; H.E.S.S. Collaboration

DOI
10.1103/PhysRevLett.120.201101

Publication date
2018

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):
Abdallah, H., Balzer, A., Berge, D., Bryan, M., Edwards, T., Prokoph, H., Simoni, R., Vink, J., & H.E.S.S. Collaboration (2018). Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S. Physical Review Letters, 120(20), Article 201101. https://doi.org/10.1103/PhysRevLett.120.201101

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Search for γ-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

H. Abdallah,1 A. Abramowski,2 F. Aharonian,3,4,5 F. Ait Benkhali,3 E. O. Angüner,6 M. Arakawa,7 M. Arrieta,8 P. Aubert,9 M. Backes,10 A. Balzer,11 M. Barnard,1 Y. Becherini,12 J. Becker Tjus,13 D. Berge,11 S. Bernhard,14 K. Bernlör,3 R. Blackwell,15 M. Böttcher,1 C. Boisson,8 J. Bolmont,16 S. Bonnefoy,17 P. Bordas,3 J. Bregeon,18 F. Brun,19 P. Brun,20 M. Bryan,11 M. Büchele,21 T. Bulik,22 M. Capasso,23 S. Caroff,24 A. Carosi,3 J. Carr,23 S. Casanova,6 M. Cerruti,16 N. Chakraborty,3 R. C. G. Chaves,18 A. Chen,26 J. Chevalier,9 S. Colafrancesco,26 B. Condon,19 J. Conrad,27 I. D. Davids,10 R. de los Reyes,3 F. Rieger,3 L. Rinchiuso,20 M. Panter,3 R. D. Parsons,3 N. W. Pekeur,1 G. Pelletier,33 C. Perennes,16 P.-O. Petrucci,33 B. Peyaud,20 Q. Piel,9 S. Pita,28 G. Maurin,9 N. Maxted,15,* M. Mayer,34 P. J. Meintjes,38 M. Meyer,27 A. M. W. Mitchell,3 R. Moderski,30 M. Mohamed,32 W. Klužek,36 A. M. Taylor,17 R. Terrier,28 L. Tibaldo,3 D. Tiziani,21 M. Tluczykont,2 C. Trichard,25 M. Tsirou,18 N. Tsuji,7 R. Tuffs,3 M. Lorentz,20 R. López-Coto,35 R. M. Wagner,27 R. White,3 A. Wierzcholska,6 P. Willmann,21 A. Wörnlein,21 D. Wouters,20 R. Yang,3 D. Zaborov,24 M. Zacharias,1 R. Zanin,3 A. A. Zdziarski,30 A. Zech,8 F. Zefi,28 A. Ziegler,21 J. Zorn,1 and N. Żywucka35

(H.E.S.S. Collaboration)
Spectral lines are among the most powerful signatures for dark matter (DM) annihilation searches in very-high-energy γ rays. The central region of the Milky Way halo is one of the most promising targets given its large amount of DM and proximity to Earth. We report on a search for a monoenergetic spectral line from self-annihilations of DM particles in the energy range from 300 GeV to 70 TeV using a two-dimensional maximum likelihood method taking advantage of both the spectral and spatial features of the signal versus background. The analysis makes use of Galactic center observations accumulated over ten years (2004–2014) with the H.E.S.S. array of ground-based Cherenkov telescopes. No significant γ-ray excess above the background is found. We derive upper limits on the annihilation cross section $\sigma_{\gamma \gamma}$ for monoenergetic DM lines at the level of 4×10^{-28} cm3 s$^{-1}$ at 1 TeV, assuming an Einasto DM profile for the Milky Way halo. For a DM mass of 1 TeV, they improve over the previous ones by a factor of 6. The present constraints are the strongest obtained so far for DM particles in the mass range 300 GeV–70 TeV. Ground-based γ-ray observations have reached sufficient sensitivity to explore relevant velocity-averaged cross sections for DM annihilation into two γ-ray photons at the level expected from the thermal relic density for TeV DM particles.

DOI: 10.1103/PhysRevLett.120.201101

Introduction.—Cosmological measurements show that about 85% of the matter in the Universe is nonbaryonic cold dark matter (DM) [1]. A leading class of DM particle candidates consists of weakly interacting massive particles (WIMPs) [2–5]. Thermally produced in the early Universe, stable particles with mass and coupling strength at the electroweak scale have a relic density which is consistent with that of observed DM. In dense DM regions, the self-annihilation of WIMPs would give rise today to standard model particles, including a possible emission of very-high-energy (VHE, $E_\gamma \gtrsim 100$ GeV) γ rays in the final state.
DM self-annihilations are expected to produce a continuum spectrum of γ rays up to the DM mass m_{DM} from prompt annihilation into quarks, heavy leptons or gauge bosons (a secondary emission from inverse Compton scattering and bremsstrahlung of electrons produced in the decay chain), and γ-ray lines. While the continuum signal is nontrivial to distinguish from other standard broadband astrophysical emissions, the DM self-annihilation at rest into γX with X = γ, h, Z or a non-standard-model neutral particle would give a prominent and narrow spectral line at an energy $E_γ = m_{DM}(1 - m_X^2/4m_{DM}^2)$, limited only by the detector resolution given the low ($\sim 10^{-3} c$) relative velocity of the DM particles. When DM self-annihilates into charged particles, additional γ rays are present from final state radiation and virtual internal bremsstrahlung. This produces bumpy bremsstrahlung features, giving a wider line that peaks at an energy γ_{CM}.

Since the DM is strongly constrained to be electrically neutral, the annihilation into monoenergetic γ rays is typically loop suppressed compared to the continuum signal, and the velocity-weighted annihilation cross section into two photons is about $10^{-2} - 10^{-3}$ of the total velocity-weighted annihilation cross section $\langle \sigma v \rangle$ (see, for instance, Refs. [8–11]). For WIMPs produced in a standard thermal history of the Universe, $\langle \sigma v \rangle$ is about 3×10^{-26} cm3 s$^{-1}$ in order to reproduce the observed density of DM in the Universe [12]. VHE γ-ray lines can be detected by ground-based Cherenkov telescope arrays such as H.E.S.S. (High Energy Stereoscopic System).

The central region of the Galactic halo observed in VHE γ rays is among the most compelling targets to search for monoenergetic line signals from DM annihilations due to its proximity to Earth and predicted large DM concentration. For WIMPs in the TeV mass range, the strongest constraints so far reach $\langle \sigma v \rangle \sim 3 \times 10^{-27}$ cm3 s$^{-1}$ at 1 TeV [13] using four years of observations of the Galactic center (GC) region with H.E.S.S.

The energy differential γ-ray flux produced by the annihilation of self-conjugate DM particles of mass m_{DM} in a solid angle $\Delta \Omega$ can be written as

$$\frac{d\Phi}{dE_γ}(E_γ, \Delta \Omega) = \frac{\langle \sigma v \rangle}{8\pi m_{DM}} \frac{dN}{dE_γ}(E_γ) \times J(\Delta \Omega),$$

with

$$J(\Delta \Omega) = \int_{\Delta \Omega} \int_{\text{LOS}} ds d\Omega \rho^2(r(s, \theta)).$$

The first term includes the DM particle physics properties. $dN/dE_γ(E_γ) = 2\delta(m_{DM} - E_γ)$ is the differential γ-ray yield per annihilation into two photons. $J(\Delta \Omega)$ denotes the integral of the square of the DM density ρ along the line of sight (LOS) in a solid angle $\Delta \Omega$. It is commonly referred to as the J factor [14]. The coordinate r is defined by $r = (r_0^2 + s^2 - 2r_0s \cos \theta)^{1/2}$, where s is the distance along the line of sight and θ is the angle between the direction of observation and the GC, r_0 is the distance of the observer with respect to the GC, taken equal to 8.5 kpc [15]. In this work, we consider DM density distributions parametrized by cuspy profiles, for which archetypes are the Einasto [16] and Navarro-Frenk-White (NFW) [17] profiles (see also Ref. [18]). Cored profiles are not studied here, since they need specific data-taking and analysis procedures to be probed as shown in Ref. [19].

From ten years of observations of the GC region with the initial four telescopes of H.E.S.S., we present here a new search for DM annihilations into monoenergetic narrow γ-ray lines in the inner Galactic halo [13]. (We consider as a monoenergetic narrow line each structure that is narrow on the scale of the 10% energy resolution of H.E.S.S.) Exploiting the increased photon statistics, we perform the search in the mass range 300 GeV–70 TeV with an improved technique for γ-ray selection and reconstruction and a two-dimensional (2D) likelihood-based analysis method using the spectral and spatial features of the DM annihilation signal with respect to the background.

Data analysis.—The data set was obtained from GC observations with H.E.S.S. phase I during the years 2004–2014 as in Ref. [20] with telescope-pointing positions between 0.5° and 1.5° from the GC. Standard criteria for data quality selection are applied to the data to select γ-ray events [21]. In addition, observational zenith angles higher than 50° are excluded to minimize systematic uncertainties in the event reconstruction. The data set amounts to 254 h (live time) with a mean zenith angle of the selected observations of 19°. The γ-ray event selection and reconstruction make use of an advanced semianalytical shower model technique [22] in order to determine the direction and the energy of each event. With this technique, the energy resolution defined as the distribution of $\Delta E/E = (E_{\text{true}} - E_{\text{true}})/E_{\text{true}}$ has a rms of 10% above 300 GeV. This technique is also very well suited to mitigate the effects expected from the variations of the night sky background (NSB) in the field of view [22]. In the GC region, broad NSB variations may induce systematic effects in the event acceptance and, therefore, in the normalization of the signal and background region exposure [19,23]. A discussion on the systematic effects from NSB variations in the present analysis is given in Ref. [24].

The search for a DM signal is performed in regions of interest (ROIs) defined as annuli with inner radii of 0.3°–0.9° in radial distance from the GC, and a width of 0.1°, hereafter referred to as the on region. Following Ref. [20], a band of ±0.3° along the Galactic plane is excluded to avoid astrophysical background contamination from the VHE sources such as HESS J1745-290 coincident in position with the supermassive black hole Sagittarius A* [25,26], the supernova or pulsar wind nebula G0.9+0.1 [27], and a diffuse emission extending along the Galactic plane [28–30]. A disk with a 0.4° radius masks the supernova remnant HESS J1745-303 [31].

201101-3
The background events are selected for each observation in an off region chosen symmetrically to the on region with respect to the observational pointing position. The on and off regions are thus taken with the same acceptance and observation conditions and have the same shape and solid angle size as shown in Fig. 1 in Supplemental Material [24]. Such a measurement technique enables an accurate background determination which does not require further acceptance correction. The off regions are always sufficiently far away from the on region to obtain a significant DM gradient between the on and off regions for cuspy DM profiles. For such profiles, we consider off regions which are expected to contain always fewer DM events than the on regions. Figure 1 shows an example of J-factor values in the on and off regions for ROI 2 and two specific telescope-pointing positions. For the pointing position $P(0.89, 0.12)$, a gradient of about 3.5 is obtained between the on and off regions. See Supplemental Material [24] for more details, which includes Ref. [32].

We perform a 2D binned Poisson maximum likelihood analysis in order to exploit the spatial and spectral characteristics of the DM signal with respect to the background. The energy range is divided into 60 logarithmically spaced bins between 300 GeV and 70 TeV. Seven spatial bins corresponding to ROIs defined as the above-mentioned annuli of 0.1° width are chosen following Ref. [20]. For a given DM mass, the total likelihood function is obtained from the product of the individual Poisson likelihoods L_{ij} over the spatial bins i and the energy bins j:

$$
L_{ij} = \frac{(N_{\text{on,}ij} + N_{\text{off,}ij})^{N_{\text{on,}ij}}}{N_{\text{on,}ij}!} \times \frac{(N_{\text{on,}ij} + N_{\text{off,}ij})^{N_{\text{off,}ij}}}{N_{\text{off,}ij}!} e^{-\left(N_{\text{on,}ij} + N_{\text{off,}ij}\right)}.
$$

(2)

For each bin (i, j), N_{on} and N_{off} are the measured number of events in the on and off regions, respectively. $\alpha = \Delta \Omega_{\text{off}} / \Delta \Omega_{\text{on}}$ corresponds to the ratio of the solid angle sizes of the off and on regions. Here, $\alpha_{r} = 1$ by definition of the on and off regions. The expected number of background events N_{B} in the on region is extracted from residual background measurements in the data set. N_{S} and N_{S}^\prime stand for the number of signal events expected in the on and off regions, respectively. They are obtained by folding the theoretical number of DM events with the energy-dependent acceptance and energy resolution of H.E.S.S. for this data set. The γ-ray line signal is represented by a Gaussian function at the line energy $E_{\gamma} = m_{DM}$ with a width of σ / E_{γ}. The vectors $N_{\text{on}}, N_{\text{off}}, N_{S}, N_{S}^\prime, N_{B}$, and α represent the lists of the corresponding quantities for all bins.

In the absence of statistically significant γ-ray excess in the on region with respect to the off region, constraints on the DM line flux and velocity-weighted annihilation cross section can be obtained from the likelihood ratio test statistic given by $TS = -2 \ln \left[\frac{L(m_{\text{DM}}, \langle \sigma v \rangle) / L_{\text{max}}(m_{\text{DM}}, \langle \sigma v \rangle)}{L(m_{\text{DM}}, \langle \sigma v \rangle) / L_{\text{max}}(m_{\text{DM}}, \langle \sigma v \rangle)} \right]$. In the high statistics limit, TS follows a χ^{2} distribution with one degree of freedom [33]. Values of Φ and $\langle \sigma v \rangle$ for which the TS value is higher than 2.71 provide one-sided 95% confidence level (C.L.) upper limits on the flux and velocity-weighted annihilation cross section, respectively. Uncertainties in the energy reconstruction scale and the energy resolution affect these limits by less than 25%. The systematic uncertainty arising from NSB variations in the field of view modifies the limits up to 60%. See Ref. [24] for more details.

Results.—We find no statistically significant γ-ray excess in any of the ROIs with respect to the background. A cross-check analysis using independent event calibration and reconstruction [34] confirms the absence of any significant excess. We derive upper limits on Φ and $\langle \sigma v \rangle$ at 95% C.L. for DM masses from 300 GeV to 70 TeV. The left panel in Fig. 2 shows the observed upper limits at 95% C.L. on the flux from prompt DM self-annihilations into two photons for the Einasto profile. (Assuming a kiloparsec-sized cored DM density distribution such as the Burkert profile would weaken the limits by about 2–3 orders of magnitude.) In order to check that the observed limits are in agreement.
with random fluctuations of the expected background, we computed expected limits using the likelihood ratio TS from 1000 Poisson realizations of the expected background derived from observations of blank fields at high latitudes where no signal is expected (see Supplemental Material [24]). For each DM mass, the mean expected upper limit and the 68% and 95% containment bands are extracted from the obtained \(\Phi \) and \(h \sigma v \) distributions and are plotted in the left panel in Fig. 2. In addition to the statistical uncertainty, the containment bands include the systematic uncertainties coming from the energy scale, the energy resolution, and NSB variations in the field of view [24].

We obtain the largest improvement in the observed flux limits compared to the previous results published in Ref. [13] for a DM particle mass of 1 TeV, where the limits are stronger by a factor of 6. The improved photon statistics, the likelihood analysis method using both on and off Poisson terms, and the 2D likelihood analysis method yield an increase of sensitivity by a factor of about 1.4, 1.8, and 1.3, respectively. The remaining improvement factor comes from the improved \(\gamma \)-ray event selection and reconstruction technique used in the present analysis [22]. The 95% C.L. observed flux limit reaches \(\sim 1.6 \times 10^{-10} \, \text{cm}^{-2} \, \text{s}^{-1} \, \text{sr}^{-1} \) at 1 TeV. The right panel in Fig. 2 shows the 95% C.L. upper limits on \(\langle \sigma v \rangle \) for the Einasto profile, together with the natural scale for gamma-ray line signals. (The upper bound is expected for \(\gamma \)-ray lines from thermal Higgsinos annihilating into two photons

FIG. 2. Constraints on the flux \(\Phi \) (left panel) and on the velocity-weighted annihilation cross section \(h \sigma v \) (right panel) for the prompt annihilation into two photons derived from H.E.S.S. observations taken over ten years (254 h of live time) of the inner 300 pc of the GC region. The constraints are expressed in terms of 95% C.L. upper limits as a function of the DM mass \(m_{DM} \) for the Einasto profile. The observed limits are shown as red dots. Expected limits are computed from 1000 Poisson realizations of the expected background derived from blank-field observations at high Galactic latitudes. The mean expected limit (black solid line) together with the 68% (green band) and 95% (yellow band) C.L. containment bands are shown. The bands include the statistical and the systematic uncertainties. The observed limits derived in the analysis of four years (112 h of live time) of GC observations by H.E.S.S. [13] are shown as blue squares, together with the mean expected limit (blue solid line) and the 68% containment band (blue shaded area) in the left panel. The natural scale for monochromatic \(\gamma \)-ray line signal is highlighted as a gray-shaded area in the right panel.

FIG. 3. Comparison of constraints for prompt annihilation into two photons obtained by H.E.S.S. for the Einasto (red dots) and NFW (cyan dots) profiles, respectively, with the limits from the observations of the Milky Way halo by Fermi-LAT [35] (black triangles) as well as the limits from 157 h of MAGIC observations of the dwarf galaxy Segue 1 [36] (green triangles). The gray-shaded area shows the natural scale for a monochromatic \(\gamma \)-ray line signal.
Annihilation cross section into two photons of excess is found, and we exclude a velocity-weighted γ intrinsic line shapes are required. They include models with wider mass ranges of up to about 100 GeV, the indirect detection with γ rays carried out with the Fermi-LAT satellite and ground-based Cherenkov telescopes is the most powerful approach to probe DM in the higher mass regime, as shown from several studies developed in the framework of the effective field theory $^{[43]}$ and, more recently, using the simplified-model approaches (see, for instance, Ref. $^{[44]}$). Observations with ground-based Cherenkov telescopes such as H.E.S.S. are unique to probe multi-TeV DM through the detection of γ-ray lines.

The upcoming searches with H.E.S.S. towards the inner Galactic halo will exploit additional observations including the fifth telescope at the center of the array. Since 2014, a survey of the inner Galaxy has been carried out with the H.E.S.S. instrument focusing in the inner 5° of the GC. This survey will allow us to probe a larger source region of DM annihilations and alleviate the impact of the uncertainty of the DM distribution in the inner kiloparsec of the Milky Way on the sensitivity to DM annihilations. A limited data set (\sim15 h) of this survey using 2014 observations with the fifth telescope only was used to constrain the presence of a 130 GeV DM line in the vicinity of the GC $^{[45]}$. Observations including the fifth telescope will allow us to probe DM lines down to 100 GeV. In addition, a higher fraction of stereo events in the energy range from 100 to several hundred GeV is expected from the increased number of stereo triggers between the fifth telescope and one of the recently upgraded smaller telescopes. Beyond the sensitivity improvement expected from increased photon statistics, the inner Galaxy survey will provide a larger fraction of photons in regions devoid of known standard astrophysical emissions and, therefore, of prime interest for DM searches. Within the next few years, DM searches with H.E.S.S. will enable an even more in-depth exploration of the WIMP paradigm for DM particles in the 100 GeV–10 TeV mass range.

Summary and discussion.— We presented a new search for monoenergetic VHE γ-ray lines from ten years of observation of the GC (254 h of live time) by phase I of H.E.S.S. with a novel statistical analysis technique using a 2D maximum likelihood method. No significant γ-ray excess is found, and we exclude a velocity-weighted annihilation cross section into two photons of 4×10^{-28} cm3 s$^{-1}$ for DM particles with a mass of 1 TeV for an Einasto profile. We obtain the strongest limits so far for DM masses above 300 GeV.

The limits obtained in this work significantly improve over the strongest constraints so far from 112 h of H.E.S.S. observations towards the GC region in the TeV mass range $^{[13]}$. The new constraints cover a DM mass range from 300 GeV up to 70 TeV. They provide a significant mass range overlap with the Fermi-LAT constraints. They surpass the Fermi-LAT limits by a factor of about 4 for a DM mass of 300 GeV $^{[35]}$.

Despite the gain in sensitivity, our upper limits are still larger than the typical cross sections for thermal WIMPs at $\langle \sigma v \rangle \sim 10^{-29}$ cm3 s$^{-1}$ expected for supersymmetric neutralinos $^{[8]}$. However, there are several WIMP models which predict larger cross sections. While being not thermally produced, they still produce the right relic DM density. Among the wide class of heavy WIMP models, those with enhanced γ-ray line shapes (see, for instance, Ref. $^{[38]}$) are, in general, strongly constrained by the results presented here. The present results can be applied to models with wider lines, while dedicated analyses taking into account the intrinsic line shapes are required. They include models with γ-ray boxes $^{[39]}$ and scalar $^{[40]}$ and Dirac $^{[41]}$ DM models, as well as the canonical Majorana DM triplet fermion known as the wino in supersymmetry $^{[42]}$.

The limits obtained by H.E.S.S. in this work are complementary to the ones obtained from direct detection and collider production (i.e., LHC) searches. While the latter ones are powerful techniques to look for DM of masses of up to about 100 GeV, the indirect detection with γ
Society for the Promotion of Science and the University of Amsterdam. We appreciate the excellent work of the technical support staff in Berlin, Durham, Hamburg, Heidelberg, Palaiseau, Paris, Saclay, and Namibia in the construction and operation of the equipment. This work benefited from services provided by the H.E.S.S. Virtual Organisation, supported by the national resource providers of the EGI Federation. Part of this work was funded by EU FP7 Marie Curie Grant Agreement No. PIEF-GA-2012-332350.

1Present address: The School of Physics, The University of New South Wales, Sydney, 2052, Australia.
2Corresponding authors.
3Present address: Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400—CEP 13566-590, São Carlos, SP, Brazil.

[1] R. Adam et al. (Planck Collaboration), Astron. Astrophys. 594, A1 (2016).
[2] G. Jungman, M. Kamionkowski, and K. Griest, Phys. Rep. 267, 195 (1996).
[3] L. Bergstrom, Rep. Prog. Phys. 63, 793 (2000).
[4] G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005).
[5] J. L. Feng, Annu. Rev. Astron. Astrophys. 48, 495 (2010).
[6] L. Bergstrom, Phys. Lett. B 225, 372 (1989).
[7] T. Bringmann, L. Bergstrom, and J. Edsjo, J. High Energy Phys. 01 (2008) 049.
[8] L. Bergstrom and P. Ullio, Nucl. Phys. B504, 27 (1997).
[9] F. Ferrer, L. M. Krauss, and S. Profumo, Phys. Rev. D 74, 115007 (2006).
[10] M. Gustafsson, E. Lundstrom, L. Bergstrom, and J. Edsjo, Phys. Rev. Lett. 99, 041301 (2007).
[11] S. Profumo, Phys. Rev. D 78, 023507 (2008).
[12] G. Steigman, B. Dasgupta, and J. F. Beacom, Phys. Rev. D 86, 023506 (2012).
[13] A. Abramowski et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 110, 041301 (2013).
[14] L. Bergstrom, P. Ullio, and J. H. Buckley, Astropart. Phys. 9, 137 (1998).
[15] A. M. Ghez et al., Astrophys. J. 689, 1044 (2008).
[16] V. Springel, S. D. M. White, C. S. Frenk, J. F. Navarro, A. Jenkins, M. Vogelsberger, J. Wang, A. Ludlow, and A. Helmi, Nature (London) 456, 73 (2008).
[17] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).
[18] M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia, J. Cosmol. Astropart. Phys. 03 (2011) 051.
[19] A. Abramowski et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 114, 081301 (2015).
[20] H. Abdallah et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 117, 111301 (2016).
[21] F. Aharonian et al. (H.E.S.S. Collaboration), Astron. Astrophys. 457, 899 (2006).
[22] M. de Naurois and L. Rolland, Astropart. Phys. 32, 231 (2009).
[23] H. Dickinson and J. Conrad, Astropart. Phys. 41, 17 (2013).
[24] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.120.201101 for more details on the observational data set at the Galactic center, the signal and background measurement technique, the expected limit computation together and a study of the systematic uncertainties. In addition, the dependency of the limits for different dark matter profiles is provided.
[25] F. Aharonian et al. (H.E.S.S. Collaboration), Astron. Astrophys. 425, L13 (2004).
[26] F. Aharonian et al. (H.E.S.S. Collaboration), Astron. Astrophys. 503, 817 (2009).
[27] F. Aharonian et al. (H.E.S.S. Collaboration), Astron. Astrophys. 432, L25 (2005).
[28] F. Aharonian et al. (H.E.S.S. Collaboration), Nature (London) 439, 695 (2006).
[29] A. Abramowski et al. (H.E.S.S. Collaboration), Phys. Rev. D 90, 122007 (2014).
[30] A. Abramowski et al. (H.E.S.S. Collaboration), Nature (London) 531, 476 (2016).
[31] F. Aharonian (H.E.S.S. Collaboration), Astron. Astrophys. 483, 509 (2008).
[32] A. Abramowski et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 106, 161301 (2011).
[33] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Instrum. Methods Phys. Res., Sect. A 551, 493 (2005).
[34] R. D. Parsons and J. A. Hinton, Astropart. Phys. 56, 26 (2014).
[35] M. Ackermann et al. (Fermi-LAT Collaboration), Phys. Rev. D 91, 122002 (2015).
[36] J. Aleksic et al. (MAGIC Collaboration), J. Cosmol. Astropart. Phys. 02 (2014) 008.
[37] V. Bonnivard et al., Mon. Not. R. Astron. Soc. 453, 849 (2015).
[38] J. Hisano, S. Matsumoto, and M. M. Nojiri, Phys. Rev. Lett. 92, 031303 (2004).
[39] A. Ibarra, A. S. Lamperstorfer, S. Lpez-Gehler, M. Pato, and G. Bertone, J. Cosmol. Astropart. Phys. 07 (2017) 014.
[40] F. Giachino, A. Ibarra, L. Lopez Honorez, M. H. G. Tytgat, and S. Wild, J. Cosmol. Astropart. Phys. 02 (2016) 002.
[41] M. Duerr, P. Fileviez Perez, and J. Smirnov, Phys. Rev. D 92, 083521 (2015).
[42] M. Baumgart, T. Cohen, I. Moul, N. L. Rodd, T. R. Slayer, M. P. Solon, I. W. Stewart, and V. Vaidya, J. High Energy Phys. 03 (2018) 117.
[43] E. Charles et al. (Fermi-LAT Collaboration), Phys. Rep. 636, 1 (2016).
[44] A. M. Sirunyan et al. (CMS Collaboration), J. High Energy Phys. 07 (2017) 014.
[45] H. Abdalla et al. (H.E.S.S. Collaboration), Phys. Rev. Lett. 117, 151302 (2016).