Costs and health impact of delayed implementation of a national hepatitis B treatment program in China

Mehlika Toy¹, David Hutton², Jidong Jia³, Samuel So¹

¹Asian Liver Center, Department of Surgery, Stanford University School of Medicine, Palo Alto, California, USA
²Department of Health Management and Policy, University of Michigan, Ann Arbor, Michigan, USA
³Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China

Background Hepatitis B virus (HBV) infection is a leading public health problem in China. COVID-19 pandemic has interrupted the delivery of health care interventions worldwide, including HBV infection control.

Methods In this study, we used a Markov model to quantify the costs and population health impact of HBV treatment in China for the following scenarios: 1) current practice with only 17% of treatment eligible HBV infected adults receiving antiviral treatment; 2) reaching the World Health Organization (WHO) treatment target of 80% by 2030 with a steady increase in treatment rate beginning in 2022; and 3) the effect of a 1-5-year delay in meeting the 2030 WHO treatment target. A one-way as well as a probabilistic sensitivity analysis were conducted.

Results Without increasing antiviral treatment for treatment eligible HBV infected adults, the lifetime health care costs for the estimated 89.2 million adults living with HBV in China is US$1305 billion and 10.8 million (12%) will die from HBV-related liver disease. Increasing treatment to achieve the WHO 80% target by 2030 would save US$472 billion and prevent 3.3 million HBV-related deaths. We estimated that a 1-year delay beyond 2030 in reaching the WHO 80% treatment target would likely lead to US$55 billion increase in future health care costs, and an additional 334,000 future deaths from HBV-related liver disease or cancer.

Conclusions Reaching the WHO 2030 with minimal delays would have an immense health and economic benefit. Implementing a national treatment program for HBV in China should be a key priority for policymakers.

In response to the United Nations’ 2030 Sustainable Development Goal to combat viral hepatitis, in 2016 the WHO issued the first global health sector strategy on viral hepatitis to eliminate viral hepatitis as a public health problem by 2030 [1]. Endorsed by all WHO member states, including China, the strategy set important prevention and vaccination targets to reduce hepatitis B virus transmission by 90% by 2030 and increase chronic hepatitis B (CHB) diagnosis and treatment from an estimated 9% and 8%, respectively, in 2015 to 90% and 80%, respectively, with the overall goal of reducing CHB-related liver disease and liver cancer deaths in the world.

Chronic hepatitis B infection is a major public health problem and the major cause of death from cirrhosis and liver cancer in China [1]. Although the current prevalence of CHB infection in children is very low due to China’s robust national newborn and infant hepatitis B immunization program, an estimated 86 million adults in China are hepatitis B surface antigen (HBsAg) positive that put them at risk for liver disease and liver cancer if they do not receive long-term monitoring and antiviral treatment when indicated [2]. In November 2017, China announced its national comprehensive action plan for viral hepatitis, which includes a plan to lower medicine costs and make more medical services and consultation on viral hepatitis available [3].
November 2018, tenofovir and entecavir, the highly effective and low drug resistance antivirals were added to the China National essential drug list. Through collective pharmaceutical procurement, the annual drug pricing for generic tenofovir and entecavir has fallen to US$10 [4,5]. Currently, only an estimated 17% of treatment eligible HBV patients are receiving antiviral drug treatment [6].

The aim of this study was to quantify the health and economic impacts of reaching or exceeding the WHO 2030 hepatitis B treatment targets compared with the current treatment rates in China. The current COVID-19 pandemic has interrupted the routine delivery of health services worldwide [7]. Fear of COVID-19 transmission and the unknown novelty of the virus decreased inpatient and outpatient service utilization. We also modelled what the health and economic costs would be because of delays in reaching those targets due to the COVID-19 pandemic.

METHODS

We used a Markov model to estimate the impact of hepatitis B treatment on health and economic outcomes [8,9]. The Markov (Figure 1) disease model simulates long-term outcomes, such as cirrhosis, hepatocellular carcinoma, and CHB-related death as patients with CHB infection move through various health states. Health states that are eligible for antiviral treatment are HBeAg-positive CHB patients with active hepatitis, HBeAg-negative CHB patients with active hepatitis, and patients with cirrhosis as defined by the 2018 AASLD guidelines for treatment of CHB [10]. Individuals who received treatment for active CHB and cirrhosis would have a lower risk of developing liver-related complications such as hepatocellular carcinoma and cirrhosis following disease progression rates derived from cohort studies and meta-analyses of HBV mono infected patients. Transitions in the Markov model are governed by age-specific (where available) disease progression estimates and treatment-related estimates and ranges that were collected from the literature (see key input Table 1). The Markov model was calculated using a 1-year time step, and implemented with TreeAge Pro 2021 (TreeAge Software, Williamstown, MA, USA).

Cohort and definitions

Our cohort of HBsAg positive adults is based on China population census by age and the age specific prevalence of HBsAg. The age-group specific distribution of adults with HBV in China by HBeAg and liver disease status is shown in Table 2. We estimated 89.2 million adults (ages 20+) are HBsAg-positive, and 36.2 million are eligible for treatment including 12.6 million with cirrhosis and 23.6 million with active hepatitis without cirrhosis. These estimates are consistent with the report by The Polaris study [5]. Those in the inactive CHB health state (hepatitis B carriers) are those who are HBsAg-positive with normal alanine aminotransferase (ALT) levels and no cirrhosis. Those with cirrhosis or active disease would be candidates for treatment. Following the recent AASLD guidelines [10], active hepatitis where treatment is indicated is defined by an elevation of ALT > 2 upper limits of normal or evidence of significant fibrosis (≥F2) associated with ALT > upper limit of normal plus elevated HBV DNA above 2000 IU/mL for HBeAg-negative, and above 20000 IU/mL for HBeAg-positive individuals. Outcomes from the model included scenario specific lifetime treatment costs, quality-adjusted life-years (QALYs) and new cases of cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplantations, and CHB related deaths. From these per-person results, we were able to calculate population-level outcomes. Simulations were undertaken separately for the 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+ age groups, and overall estimates were made by combining the age-specific results into weighted averages for
Table 1. Key input variables

VARIABLE	BASE CASE	RANGE	DISTRIBUTIONS*	REFERENCES
Age/birth cohort	≥20 y	20-80 y		
HBsAg prevalence	8.2%	5.0%-8.9%		
Percent adults receiving antiviral treatment	17%	17%-19%	beta	Polans [6]
Percent of adults who are eligible for treatment	40%	26%-40%		See Table 2

Medical management and treatment costs:

Antiviral drug costs per year

Variable	Base Case	Range	Distributions*	References
US$ 10	10-36	gamma	WHO report 2019 [21]	
US$ 38,00	28-50	gamma	WHO report 2019 [21]	
Chronic hepatitis B	US$ 3239	US$2592-3886	gamma	Zhang et al. 2016 [20]
Cirrhosis	US$ 5082	US$4066-6098	gamma	Zhang et al. 2016 [20]
Decompensated cirrhosis	US$ 6482	US$5186-7778	gamma	Zhang et al. 2016 [20]
Hepatocellular carcinoma	US$ 8569	US$6856-10,282	gamma	Zhang et al. 2016 [20]
Liver transplantation 1st year	US$ 55,322	US$44,257-66,386	gamma	Zhang et al. 2016 [20]
Liver transplantation 2nd year	US$ 33,907	US$27,126-40,689	gamma	Zhang et al. 2016 [20]

Health state utilities:

Active CHB

Variable	Base Case	Range	Distributions*	References
0.77	0.76-0.87	beta	Zhang et al. 2021 [22]	
0.75	0.74-0.89	beta	Zhang et al. 2021 [22]	
0.99	0.95-1.0	beta	Zhang et al. 2021 [22]	
0.68	0.67-0.78	beta	Zhang et al. 2021 [22]	
0.64	0.62-0.64	beta	Zhang et al. 2021 [22]	
0.35	0.28-0.42	beta	Zhang et al. 2021 [22]	
0.99	0.95-1.0	beta	Assumption	
0.99	(0.95-1.00)	beta	Assumption	

Transition (per year):

From active CHB HBsAg-positive:

To HBsAg loss

Variable	Base Case	Range	Distributions*	References
0.60%	(0.3-0.9)	beta	Ahn et al. 2005 [27]	
1.60%	(1.3-1.9)	beta	Fattovich et al. 2008 [28]	
1.47%	(0.40-2.55)	beta	Thiele et al. 2014 [29]	
0.11%	(0.09-0.14)	beta	Thiele et al. 2014 [29]	
7%	(4.0-10.0)	beta	Kanwal et al. 2005 [30]	

From active CHB HBsAg-negative:

To HBsAg loss

Variable	Base Case	Range	Distributions*	References
0.16%	(0.08-0.24)	beta	Yang et al. 2012, Hsu 2002, Pungpagong 2007 [31-33]	
2.80%	(1.3-4.3)	beta	Fattovich et al. 2008 [28]	
0.72%	(0.21-1.23)	beta	Thiele et al. 2014 [29]	
0.11%	(0.09-0.14)	beta	Thiele et al. 2014 [29]	
1.60%	(0.0-6.0)	beta	Kanwal et al. 2005 [30]	

From compensated cirrhosis

To HBsAg loss

Variable	Base Case	Range	Distributions*	References
0.60%	(0.3-0.9)	beta	Ahn et al. 2005 [27]	
3.09%	(1.95-5.85)	beta	Lin et al. 2005 [34]	
3.16%	(2.58-3.74)	beta	Thiele et al. 2014 [29]	
4.89%	(3.16-6.63)	beta	Thiele et al. 2014 [29]	
6.30%	(3.15-9.45)	beta	Chen et al. 2010 [35]	

From decompensated cirrhosis:

To liver transplantation

Variable	Base Case	Range	Distributions*	References
12.00%	(9.6-14.4)	beta	Wang et al. 2013, Organ Transplantation Report China 2018 [36,37]	
7.10%	(3.55-10.65)	beta	Lin et al. 2005 [34]	
15%	(7.50-22.5)	beta	Lin et al. 2005 [34]	

From HCC

To liver transplantation

Variable	Base Case	Range	Distributions*	References
4.70%	(3.7-5.6)	beta	Wang et al. 2013, Organ Transplantation Report China 2018 [36,37]	
15.10%	(13.9-16.4)	beta	Thiele et al. 2014 [29]	

From viral suppression cirrhosis

To HBsAg loss

Variable	Base Case	Range	Distributions*	References
1%	(0.5-1.5)	beta	Ahn et al. 2005 [27]	
1.58%	(1.29-1.87)	beta	Thiele et al. 2014 [29]	
2.44%	(1.58-3.31)	beta	Thiele et al. 2014 [29]	

From liver transplantation decompensated cirrhosis

To HBV-related death year 1

Variable	Base Case	Range	Distributions*	References
17%	(8.5-48.0)	beta	Burra et al. 2013 [38]	
2.50%	(1.25-24.0)	beta	Burra et al. 2013 [38]	

To HBV-related death year 2+

Variable	Base Case	Range	Distributions*	References
17%	(8.5-48.0)	beta	Burra et al. 2013 [38]	
2.50%	(1.25-24.0)	beta	Burra et al. 2013 [38]	
Table 1. continued

VARIABLE	BASE CASE	RANGE	DISTRIBUTIONS*	REFERENCES	
From liver transplantation HCC					
To HBV-related death year 1	16%	(8.0-48.0)	beta	Burra et al. 2013 [38]	
To HBV-related death year 2+	2%	(2.0-25.0)	beta	Burra et al. 2013 [38]	
From inactive					
To HBsAg loss					
Age-group 40-49	1.65%	(0.82-2.47)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
Age-group 50+	1.80%	(0.91-2.74)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
To active CHB, HBcAg-negative					
Age-group 40-49	2.80%	(1.4-4.1)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
Age-group 50+	2.00%	(1.0-3.0)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
To cirrhosis					
Age-group 40-49	0.07%	(0.034-0.102)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
Age-group 50+	0.15%	(0.052-0.202)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
To HBcAg loss					
To HBsAg loss	0.17%	(0.02-0.62)	beta	Rafetti et al. 2016 [41]	
To HCC	0.28%	(0.14-0.42)	beta	Chu et al. 2007, Chu et al. 2009 [39,40]	
To HBV-related death	0.09%	(0.045-0.136)	beta	Liu et al. 2014 [42]	
Transition estimates (per year) treatment					
From active CHB HBcAg-positive					
To HBsAg loss	3%	(1.5-4.5)	beta	Terrault et al. 2018 [10]	
To cirrhosis	0	0	assumption		
To HCC	0.44%	(0.12-0.765)	beta	(70% reduction) Papatheodoridis et al. 2015, Nguyen et al. 2019 [16,17]	
To HBV-related death	0	0	assumption		
To drug resistance	0.01%	(0.0-0.01)	beta	Heathcote et al. 2011, Lok et al. 2016, Tenney et al. 2009 [16,17]	
To viral suppression	76%	(65.0-85.0)	beta	Terrault et al. 2018 [10]	
From active CHB HBcAg-negative:					
To HBsAg loss	1%	(0.5-1.5)	beta	Terrault et al. 2018 [10]	
To cirrhosis	0	0	Assumption		
To HCC	0.22%	(0.063-0.369)	beta	(70% reduction) Papatheodoridis et al. 2015, Nguyen et al. 2019 [16,17]	
To HBV-related death	0	0	assumption		
To drug resistance	0.01%	(0.0-0.01)	beta	Heathcote et al. 2011, Lok et al. 2016, Tenney et al. 2009 [14,15,18]	
To viral suppression	93%	(65.0-99.0)	beta	Terrault et al. 2018 [10]	
From compensated cirrhosis:					
To HBsAg loss	1.70%	(0.85-2.55)	beta	Buti et al. 2015 [43]	
To decompensated cirrhosis	1.80%	(0.90-2.70)	beta	(50% reduction)	
To HCC	1.60%	(1.25-1.75)	beta	(50% reduction)	
To HBV-related death	2.40%	(1.58-3.30)	beta	(50% reduction)	
To viral suppression	78%	(65.0-78.0)	beta	Wong et al. 2013 [18]	
To drug resistance	0.01%	(0.0-0.01)	Beta	Heathcote et al. 2011, Lok et al. 2016, Tenney et al. 2009 [14,15,18]	
From decompensated cirrhosis:					
To liver transplantation	12.00%	(9.6-14.4)	beta	Wang et al. 2013, Organ Transplantation Report China 2018 [36,37]	
To HCC	3.50%	(1.75-5.25)	beta	(50% reduction)	
To HBV-related death	7.50%	(3.75-11.25)	beta	(50% reduction)	
To viral suppression	78%	(65.0-78.0)	beta	Wong et al. 2013 [19]	
To drug resistance	0.01%	(0.0-0.01)	beta	Heathcote et al. 2011, Lok et al. 2016, Tenney et al. 2009 [14,15,18]	
From HCC:					
To liver transplantation	4.70%	(3.7-5.6)	beta	Wang et al. 2013, Organ Transplantation Report China 2018 [36,37]	
To HBV-related death	15.10%	(13.9-16.4)	beta	Wong et al. 2013 [19]	
From viral suppression CHB					
To HBsAg loss	1.50%	(0.07-2.2)	beta	Terrault et al. 2018 [10]	
To HCC	0.06%	(0.03-0.09)	beta	(70% reduction) Papatheodoridis et al. 2015, Nguyen et al. 2019 [16,17]	
lifetime costs and QALYs and then taking ratios of the average. We simulated CHB populations with a male to female ratio of 60:40 [11]. A 50% reduction in disease progression estimates was applied for females, based on recent sex-specific studies [11-13]. Treatment effectiveness estimates were expressed as reductions in disease progression risk [14-19]. We assumed that effective viral suppression would reduce the risk for liver cancer risk in cirrhotic and non-cirrhotic patients by 50% and 70% respectively compared with natural history [16,17,19]. We assumed that patients would be treated with the lowest-cost drug, generic tenofovir or entecavir (US$ 10/y), but we explored the impact of drug cost ranging from US$ 10-36/y (Table 1). We assume among the 36.2 million HBV infected adults who are eligible for treatment, 17% or 6.15 million people living with hepatitis B in China are currently receiving hepatitis B antiviral treatment [6].
Scenarios

We assessed the population health impact and cost-effectiveness for China in reaching or exceeding the WHO 2030 hepatitis B treatment target of 80% among adults eligible for treatment. And the costs of delay in meeting the 2030 treatment target by 1-5 years.

We evaluated several scenarios of how achieving the WHO targets might affect the economic and health outcomes related to hepatitis B. In the current practice scenario, we assume that 6.15 million or 17% of the total treatment eligible cohort is being treated and the remainder of the cohort follows the natural history of disease. In the Meet WHO 2030 scenario, we assume that the 80% treated target will be reached in 8 years (with a gradual increase of 7.9% per year between 2022 to 2030). In the Exceed WHO 2030 scenario, we assume that a 90% treated target will be reached by 2030 (with a gradual increase of 9.1% per year between 2022 to 2030). We modelled the health outcome including cases of cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplants, and hepatitis B related deaths. We combined this into overall cost and quality-adjusted life-years (QALYs).

We also evaluate scenarios of delays in meeting the WHO 2030 goals. We evaluate the health and economic impacts of a 1-year, 2-year, 3-year, or 5-year delay.

Cost and utility estimates

We used medical management costs for CHB and other related costs from a study by Zhang et al. [20] which was a nationwide survey of HBV associated economic burden in China. Since our analysis was from a third-party payer perspective, we chose to only take direct medical fees from the Zhang et al. study. The drug and monitoring costs were obtained from the WHO implementation progress of the regional action plan for viral hepatitis in the Western Pacific 2016-2018 report [21]. All costs were inflated to 2022 prices using China National Healthcare Index from National Bureau of Statistics of China and converted to US dollars. The utility estimates were obtained from a recent multicenter study [22] that measured the health-related quality of life and health utility value of patients with hepatitis B related disease in China. Costs and QALYs were discounted at a rate of 3% per year to turn future costs and QALYs into a present value equivalent.

Sensitivity analyses

Annual disease progression probabilities and ranges (high and low values) were collected from the literature. We used one-way sensitivity analysis to determine the parameters that had the greatest impact on the results. We also conducted a probabilistic sensitivity analysis varying all parameter values simultaneously (by drawing them from distributions defined in Table 1) to evaluate the impact of overall parameter uncertainty on outcomes.

RESULTS

Under the current practice scenario where only 17% of treatment eligible infected patients are receiving antiviral drug treatment for hepatitis B, we projected among the 89.2 million HBsAg positive adults in China, over their lifetime, 4.80 million will develop cirrhosis, 2.51 million will develop decompensated cirrhosis, 5.81 million will develop hepatocellular carcinoma (HCC), 268 thousand will receive liver transplant treatment and 10.77 million (12%) will die from HBV-related liver disease or liver cancer (Figure 2). The estimated life-time health care costs for current practice is US$1305 billion and will result in 457.9 million QALYs (Table 3).

Figure 2. Comparing the cumulative deaths and liver complications of current practice with meeting the WHO treatment target of 80% and at 90% by 2030.
Compared with current practice, if treatment is increased at an incremental rate of 7.9% per year between 2022 and 2030 to meet the WHO Target of 80% on treatment by 2030, it will reduce new cases of cirrhosis by 2.36 million (49.30%), new cases of decompensated cirrhosis by 959 thousand (38.2%), new cases of HCC by 1.80 million (31.0%), new liver transplant cases by 77 thousand (29.9%), and HBV-related deaths by 3.35 million (31.1%) (Table 3). Compared with current practice, meeting the 2030 WHO HBV treatment target will result in US$472 billion in health care savings and an additional 52 million QALYs gained, compared with current practice. If the treatment target were exceeded and 90% were treated by 2030, compared with current practice the savings would rise to US$559 billion with an additional 62 million QALYs gained, and 4.0 million deaths averted.

Table 4. Life-time costs and health impact (95% confidence interval) of delayed implementation of a national hepatitis B Treatment program in China to meet the WHO 80% treatment target by 2030

DELAY (YEARS)	COSTS, BILLIONS IN US$	QALYS LOST, MILLIONS	CIRRHOSIS	DC	HCC	TRANSPLANTS	HBV DEATH
1	55 (46, 63)	7 (6, 8)	180,457	118,978	174,443	9,098	334,396
			(126,719, 256,890)	(51,918, 190,856)	(121,289, 244,498)	(503,916, 120,234)	(265,413, 433,860)
2	102 (85, 118)	13 (11, 15)	345,531	271,577	328,162	17,364	626,356
			(242,680, 490,346)	(95,165, 394,867)	(206,719, 458,623)	(856,207, 263,936)	(498,787, 807,105)
3	144 (120, 165)	18 (15, 21)	496,904	300,342	464,462	23,978	881,265
			(349,138, 703,945)	(131,511, 474,611)	(316,806, 647,093)	(10,853, 409,879)	(705,561, 1,131,153)
5	211 (176, 244)	24 (22, 30)	764,171	431,185	694,844	34,520	1,313,773
			(537,699, 1,078,651)	(189,354, 675,385)	(473,330, 967,893)	(130,872, 61,054)	(1,055,395, 1,671,347)

CI – confidence interval, DC – decompensated cirrhosis, HCC – hepatocellular carcinoma, QALYs – quality adjusted life years, US$ – US dollar

We estimated that a 1-year delay in achieving the 80% treatment goal by 2030 would cost US$55 billion and lead to 7 million QALYS lost with 334 thousand additional HBV-related deaths (life-time) (Table 4 and Figure 3).

Sensitivity Analysis

The results of the one-way sensitivity analysis on the costs savings, QALYS gained, and HBV-related deaths averted by achieving the WHO goals are found in Figures S1a, S1day, and S1g in the Online Supplementary Document. These results show that the discount rate was influential when evaluating the overall impacts, however, there were no cases
where achieving the WHO targets would be bad for health or add costs. Similarly, the results of the one-way sensitivity analysis on the additional costs associated with delay are shown in Figures S1b-c, S1e-f, and S1h-I in the Online Supplementary Document. There were no cases where a delay would be beneficial in terms of saving costs, adding QALYs, or averting deaths. The Monte Carlo simulation results showed similar findings (Figures S2a-2b in the Online Supplementary Document).

DISCUSSION

We estimated that among the 89.2 million people living with hepatitis B in China, about 36.3 million or 40.7% are eligible for treatment including 12.7 million with cirrhosis and 23.6 million with active hepatitis. Assuming a gradual annual 7.9% increase in treatment rate from 2022 to 2030, our model projects it would prevent 1.8 million cases of HCC and 3.3 million HBV-related deaths at a saving of US$472 billion in future health care costs. Current WHO data shows that hepatitis B and C services, as well as HIV testing and prevention, are among the most frequently disrupted services caused by the COVID-19 pandemic [23,24]. In this study, we modelled the health and economic impact of a delay in increasing hepatitis B treatment to reach the WHO treatment target of 80% by 2030 in China. Our study suggests that a one-year delay beyond 2030 in reaching the 80% treatment target would lead to 334 thousand deaths from HBV-related liver disease and US$55 billion in future health care costs.

Apart from the disruptions that are likely caused by the COVID-19 pandemic, several factors that contributed to the delay in scaling up the national hepatitis B treatment program in China have been discussed previously [25,26]. The initial high cost of brand entecavir and tenofovir and training of health care workers in the management and treatment of hepatitis B is one barrier. Another barrier is unlike HIV, the governance system of viral hepatitis control is fragmented in China. There is no specific single department or unit within China National Health Commission (NHC) or China Centers for Disease Control and Prevention (CDC) to plan and lead the national effort to increase hepatitis B diagnosis and treatment [25]. Although recommended HBV drugs have been included in the National List of Reimbursable Medicines (NLRM) since February 2017, the actual reimbursement rates vary greatly across China due to the decentralized management and risk pooling across Chinese health insurance schemes [25]. According to a study [25] that summarized China achievements related to viral hepatitis, the policy poses challenges in achieving universal hepatitis treatment.

Although we used the best possible data that we could find for our analysis, our modelling study had several limitations. We only assessed the costs of hepatitis B management including the health care costs for longterm monitoring of HBsAg positive individuals and treatment including antiviral drug treatment and treatment of disease complications including liver cancer and liver transplantation. We did not include the costs of HBsAg screening to increase the diagnosis of those living with hepatitis B who are not aware of their infection. This study is taken from a thirdparty payer perspective and not the societal perspective. We did not include programmatic costs such as outreach and education to increase the treatment rate incrementally per year. We assume to reach the WHO 2030 target 80% of those eligible would be receiving treatment. Although there is no cure for chronic hepatitis B, the low risk for drug resistance antiviral medications, entecavir and tenofovir, are highly effective in treating liver inflammation to prevent disease progression and can even reverse fibrosis and cirrhosis to reduce the risk of liver cancer. We assume that the patients will be taking generic entecavir or tenofovir.

CONCLUSIONS

Reaching the WHO 2030 treatment target of 80% would have a huge health and economic benefit. It would mean approximately 30 million treatment eligible HBV infected patients with or without cirrhosis would receive antiviral therapy by 2030. COVID-19 pandemic has likely delayed national HBV treatment efforts. Ensuring to implement a national treatment program without a delay in China should be a key priority for policymakers.
Acknowledgements: None.

Funding: None

Authorship contributions: MT and DW developed the cost-effectiveness model and ran the economic analysis with the assistance of SS. MT coordinated the project and wrote the first draft of the manuscript with the assistance and leadership of SS, DW, and JJ. All authors contributed to editing and revising the manuscript, and approved its final version.

Competing interests: The authors completed the ICMJE Declaration of Interest Form (available upon request from the corresponding author), and declare no conflicts of interest.

Additional material
Online Supplementary Document

1 WHO. Global Health Sector Strategy on Viral Hepatitis 2016-2021. Towards Ending Viral Hepatitis. World Health Organization 2016. Available: https://apps.who.int/iris/handle/10665/246177. Accessed: 25 December 2021.
2 Sarin SK, Kumar M, Eslam M, George J, Al Mahtab M, Akbar SMF, et al. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol Hepatol. 2020;5:167-228. Medline:31852635 doi:10.1016/S2468-1253(19)30342-5
3 China releases new plan to control viral hepatitis. China. The Sate Council, The People's Republic of China. 2017. Available: http://english.www.gov.cn/state_council/ministries/2017/11/30/content_28147599327034.htm. Accessed: 27 December 2021.
4 Nayagam S, Chan P, Zhao K, Sicuri E, Wang X, Jia J, et al. Investment Case for a Comprehensive Package of Interventions Against Hepatitis B in China: Applied Modeling to Help National Strategy Planning. Clin Infect Dis. 2021;72:743-52. Medline:32255486 doi:10.1093/cid/ciaa134
5 Polaris Observatory. Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol Hepatol. 2018;3:383-403. Medline:29999078 doi:10.1016/S2468-1253(18)30056-6
6 Center for Disease Analysis. CDA Polaris Countries Dashboard, Prevalence, Diagnosis, Treated and Mortality Estimates. 2021. Available: https://cdafound.org/polaris-countries-dashboard/. Accessed: 01 December 2021.
7 Laury J, Hiebert L, Ward JW. Impact of COVID-19 Response on Hepatitis Prevention Care and Treatment: Results From Global Survey of Providers and Program Managers. Clin Liver Dis (Hoboken). 2021;17:41-6.
8 Toy M, Hutton DW, So SK. Cost-Effectiveness and Cost Thresholds of Generic and Brand Drugs in a National Chronic Hepatitis B Treatment Program in China. PLoS One. 2015;10:e0139876. doi:10.1371/journal.pone.0139876
9 Toy M, Hutton DW, So SK. Cost-Effectiveness and Cost Thresholds of Generic and Brand Drugs in a National Chronic Hepatitis B Treatment Program in China. PLoS One. 2015;10:e0139876. doi:10.1371/journal.pone.0139876
10 Terrault NA, Lok ASF, McMahon BJ, Chang KM, Hwang JP, Jonas MM, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology. 2018;67:1560-99. Medline:29405329 doi:10.1002/hep.29800
11 Le A, Toy M, Yang HI, Trinh HN, Zhang JQ, Wong C, et al. Age and gender-specific disease progression rates to cirrhosis and hepatocellular carcinoma in treated and untreated patients with chronic hepatitis B. AASLD. Washington DC. 2017.
12 Cohen E, Tran TT. Hepatitis B in the Female Population. Gastroenterol Clin North Am. 2016;45:359-70. Medline:27261904 doi:10.1016/j.gtc.2016.02.011
13 Guy J, Peters MG. Liver disease in women: the influence of gender on epidemiology, natural history, and patient outcomes. Gastroenterol Hepatol (N Y). 2013;9:633-9. Medline:24764777
14 Heathcote EJ, Marcellin P, Buti M, Gane E, De Man RA, Krastev Z, et al. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology. 2011;140:132-43.
15 Lok AS, McMahon BJ, Brown RS Jr, Wong JB, Ahmed AT, Farah W, et al. Antiviral therapy for chronic hepatitis B viral infection in adults: A systematic review and meta-analysis. Hepatology. 2016;63:284-306. Medline:26566246 doi:10.1002/hep.28280
16 Nguyen MH, Yang HI, Le A, Henry L, Nguyen N, Lee MH, et al. Reduced Incidence of Hepatocellular Carcinoma in Cirrhotic and Noncirrhotic Patients With Chronic Hepatitis B Treated With Tenofovir-A Propensity Score-Matched Study. J Infect Dis. 2019;219:10-8.
17 Heathcote EJ, Marcellin P, Buti M, Gane E, De Man RA, Krastev Z, et al. Three-year efficacy and safety of tenofovir disoproxil fumarate treatment for chronic hepatitis B. Gastroenterology. 2011;140:132-43. Medline:20955704 doi:10.1053/j.gastro.2010.10.011
18 Papatheodoridis GV, Chan HL, Hansen BE, Janssen HL, Lampertico P. Risk of hepatocellular carcinoma in treated and untreated patients with chronic hepatitis B. AASLD. Washington DC. 2017.
19 Tenney DJ, Rose RE, Baldick CJ, Pokornowski KA, Eggers BJ, Fang J, et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years of therapy. Hepatology. 2015;62:956-67. Medline:25959883 doi:10.1002/hep.28280
20 Zhang S, Ma Q, Liang S, Xiao H, Zhuang G, Zou Y, et al. Annual economic burden of hepatitis B virus-related diseases among hospitalized patients in twelve cities in China. J Viral Hepat. 2016;23:202-10. Medline:26663525 doi:10.1111/jvh.12482
21 World Health Organization. Implementation Progress of the Regional Action Plan for Viral Hepatitis in the Western Pacific 2016-2020. WHO 2019. https://www.who.int/westpacific/health-topics/hepatitis/implementation-progress-of-the-regional-action-plan-for-viral-hepatitis-in-the-western-pacific-2016-2020. Accessed: 27 December 2021.
REFERENCES

22 Zhang M, Li Y, Fan Z, Shen D, Huang X, Yu Q, et al. Assessing health-related quality of life and health utilities in patients with chronic hepatitis B-related diseases in China: a cross-sectional study. BMJ Open. 2021;11:e047475. Medline:34526336 doi:10.1136/bmjopen-2020-047475

23 World Health Organization. Global Progress Report on HIV, Viral Hepatitis and Sexually Transmitted Infections, 2021. Accountability for the Global health Sector Strategies 2016-2021: actions for impact. 2021. https://www.who.int/publications/i/item/9789240207077. Accessed: 27 December 2021.

24 Wingrove C, Ferrier L, James C, Wang S. The impact of COVID-19 on hepatitis elimination. Lancet Gastroenterol Hepatol. 2020;5:792-4. Medline:32730783 doi:10.1016/S2468-1253(20)30238-7

25 Chen S, Mao W, Guo L, Zhang J, Tang S. Combating hepatitis B and C by 2030: achievements, gaps, and options for actions in China. BMJ Glob Health. 2020;5: e002306. Medline:32605935 doi:10.1136/bmjgh-2020-002306

26 Liu J, Liang W, Jing W, Liu M. Countdown to 2030: eliminating hepatitis B disease, China. Bull World Health Organ. 2019;97:230-8. Medline:30992636 doi:10.2471/BLT.18.219469

27 Ahn SH, Park YN, Park JY, Chang HY, Lee JM, Shin JE, et al. Long-term clinical and histological outcomes in patients with spontaneous hepatitis B surface antigen seroclearance. J Hepatol. 2005;42:188-94. Medline:15664243 doi:10.1016/j.jhep.2004.10.026

28 Fattovich G, Bortolotti F, Donato F. Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J Hepatol. 2008;48:335-52. Medline:18096267 doi:10.1016/j.jhep.2007.11.011

29 Thiele M, Gluud LL, Fialla AD, Dahl EK, Krag A. Large variations in risk of hepatocellular carcinoma and mortality in treatment naive hepatitis B patients: systematic review with meta-analyses. PLoS One. 2014;9:e107177. Medline:25225801 doi:10.1371/journal.pone.0107177

30 Kanwal F, Gralnek IM, Martin P, Dulai GS, Farid M, Spiegel BM. Treatment alternatives for chronic hepatitis B virus infection: a cost-effectiveness analysis. Ann Intern Med. 2005;142:821-31. Medline:15897532 doi:10.7326/0003-4819-142-10-200505170-00007

31 Hsu YS, Chien RN, Yeh CT, Sheen IS, Chiou HY, Chu CM, et al. Long-term outcome after spontaneous HBeAg seroconversion in patients with chronic hepatitis B. Hepatology. 2002;35:1522-7. Medline:12029639 doi:10.1053/jhep.2002.33638

32 Punngopong S, Kim WR, Poterucha JJ. Natural history of hepatitis B virus infection: an update for clinicians. Mayo Clinic Proceedings; 2007: Elsevier.

33 Yang HI, Hung HL, Lee MH, Liu J, Jen CL, Su J, et al. Incidence and determinants of spontaneous seroclearance of hepatitis B e antigen and DNA in patients with chronic hepatitis B. Clin Gastroenterol Hepatol. 2012;10:527-34.e1-2. Medline:22178461 doi:10.1016/j.cgh.2011.12.019

34 Lin X, Robinson NJ, Thursz M, Rosenberg DM, Wei J, Pimenta JM, et al. Chronic hepatitis B virus infection in the Asia-Pacific region and Africa: review of disease progression. J Gastroenterol Hepatol. 2005;20:833-43. Medline:15946129 doi:10.1111/j.1440-1746.2005.03813.x

35 Chen JD, Yang HI, Iloeje UH, You SL, Lu SN, Wang LY, et al. Carriers of inactive hepatitis B virus are still at risk for hepatocellular carcinoma and liver-related death. Gastroenterology. 2010;138:1747-54. Medline:2011048 doi:10.1053/j.gastro.2010.01.042

36 Organization OP. Report on Organ Transplantation Development in China (2015-2018). 2019.

37 Wang H, Jiang W, Zhou Z, Long J, Li W, Tat Fan S. Liver Transplantation in Mainland China: the Overview of CLTR 2011 Annual Scientific Report. Hepatobiliary Surg Nutr. 2013;2:188-97.

38 Burra P, Germani G, Adam R, Karam V, Marzano A, Lampertico P, et al. Liver transplantation for HBV-related cirrhosis in Europe: an ELTR study on evolution and outcomes. J Hepatol. 2013;58:287-96. Medline:23099188 doi:10.1016/j.jhep.2012.10.016

39 Chu CM, Liaw YF. HBsAg seroclearance in asymptomatic carriers of high endemic areas: appreciably high rates during a long-term follow-up. Hepatology. 2007;45:1187-92. Medline:17465003 doi:10.1002/hep.21612

40 Chu CM, Liaw YF. Incidence and risk factors of progression to cirrhosis in inactive carriers of hepatitis B virus. Am J Gastroenterol. 2009;104:1693-9. Medline:19455130 doi:10.1038/aajg.2009.187

41 Raffetti E, Fattovich G, Donato F. Incidence of hepatocellular carcinoma in untreated subjects with chronic hepatitis B: a systematic review and meta-analysis. Liver Int. 2016;36:1239-51. Medline:27201188 doi:10.1111/liv.13142

42 Liu J, Yang HI, Lee MH, Lu SN, Jen CL, Batra-Usermann R, et al. Spontaneous seroclearance of hepatitis B seromarkers and subsequent risk of hepatocellular carcinoma. Gut. 2014;63:1648-57. Medline:24225939 doi:10.1136/gutjnl-2013-305785

43 Berti M, Fung S, Gane E, Alldhal NH, Flisiak R, Gurel S, et al. Long-term clinical outcomes in cirrhotic chronic hepatitis B patients treated with tenofovir disoproxil fumarate for up to 5 years. Hepatol Int. 2015;9:243-50. Medline:25788199 doi:10.1007/s12072-015-9614-4

44 Jang JW, Choi JY, Kim YS, Woo HY, Choi SK, Lee CH, et al. Long-term effect of antiviral therapy on disease course after decompen-sation in patients with hepatitis B virus-related cirrhosis. Hepatology. 2015;61:1809-20. Medline:25627342 doi:10.1002/hep.27723

45 Liang X, Bi S, Yang W, Wang L, Cui G, Cui F, et al. Epidemiological serosurvey of hepatitis B in China—declining HBV prevalence due to hepatitis B vaccination. Vaccine. 2009;27:6550-7. Medline:19729084 doi:10.1016/j.vaccine.2009.08.048

46 Cui F, Shen L, Li L, Wang H, Wang F, Bi S, et al. Prevention of Chronic Hepatitis B after 3 Decades of Escalating Vaccination Policy, China. Emerg Infect Dis. 2017;23:765-72. Medline:28418296 doi:10.3201/eid2305.161477

47 Toy M, Salomon JA, Jiang H, Gui H, Wang H, Wang J, et al. Population health impact and cost-effectiveness of monitoring inactive chronic hepatitis B and treating eligible patients in Shanghai, China. Hepatology. 2014;60:46-55. Medline:24990105 doi:10.1002/hep.26934