Tropical coamoeba and torus-equivariant homological mirror symmetry for the projective space

Masahiro Futaki and Kazushi Ueda

Abstract
We introduce the notion of a tropical coamoeba which gives a combinatorial description of the Fukaya category of the mirror of a toric Fano stack. We show that the polyhedral decomposition of a real n-torus into $n+1$ permutohedra gives a tropical coamoeba for the mirror of the projective space \mathbb{P}^n, and prove a torus-equivariant version of homological mirror symmetry for the projective space. As a corollary, we obtain homological mirror symmetry for toric orbifolds of the projective space.

1 Introduction

Let n be a natural number and Δ be a convex lattice polytope in \mathbb{R}^n, i.e., the convex hull of a finite subset of \mathbb{Z}^n. We assume that the origin is in the interior of Δ. Homological mirror symmetry for toric Fano stacks, conjectured by Kontsevich [19], states that there is an equivalence

$$D^b \text{coh} X \cong D^b \text{Fuk} W$$

of two triangulated categories of geometric origins associated with Δ.

The category on the left hand side is the derived category of coherent sheaves on a toric Fano stack X, defined as follows: Let $\{v_i\}_{i=1}^r$ be the set of vertices of Δ and take a simplicial stacky fan Σ such that the set of generators of one-dimensional cones is given by $\{v_i\}_{i=1}^r$. The associated toric stack is the quotient stack

$$X = [(C^r \setminus \text{SR}(\Sigma))/K],$$

where the Stanley-Reisner locus $\text{SR}(\Sigma)$ consists of points (z_1, \ldots, z_r) such that there is no cone in Σ which contains all v_i for which $z_i = 0$, and

$$K = \text{Ker}(\phi \otimes \mathbb{C}^\times)$$

is the kernel of the tensor product with \mathbb{C}^\times of the map $\phi : Z^r \to \mathbb{Z}^n$ sending the i-th coordinate vector to v_i for $i = 1, \ldots, r$. Although X depends not only on Δ but also on Σ, the derived category $D^b \text{coh} X$ is independent of this choice [16] and depends only on Δ.

On the right hand side, one takes a sufficiently general Laurent polynomial

$$W = \sum_{\omega \in \Delta^\vee \cap \mathbb{Z}^n} a_\omega x^\omega$$

1
whose Newton polytope coincides with Δ as in [15]. This defines an exact Lefschetz fibration
\[W : (\mathbb{C}^\times)^n \to \mathbb{C} \]
with respect to the standard cylindrical Kähler structure on $(\mathbb{C}^\times)^n$, and $\mathfrak{F}uk W$ is the directed Fukaya category whose set of objects is a distinguished basis of vanishing cycles and whose spaces of morphisms are Lagrangian intersection Floer complexes [20, 21]. The equivalence (1.1) is proved for \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ by Seidel [20], weighted projective planes and Hirzebruch surfaces by Auroux, Katzarkov and Orlov [4], toric del Pezzo surfaces by Ueda [22], and toric orbifolds of toric del Pezzo surfaces by Ueda and Yamazaki [25]. See also Auroux, Katzarkov and Orlov [3] for homological mirror symmetry for not necessarily toric del Pezzo surfaces, Abouzaid [11, 2] for an application of tropical geometry to homological mirror symmetry, Kerr [17] for the behavior of homological mirror symmetry under weighted blowup of toric surfaces. Slightly different versions of homological mirror symmetry for toric stacks are proved by Fang, Liu, Treumann and Zaslow [8, 9, 10] and Futaki and Ueda [14].

In this paper, we pass to the universal cover
\[\exp : \mathbb{C}^n \to (\mathbb{C}^\times)^n \]
of the torus and replace the Lefschetz fibration W with its pull-back
\[\widetilde{W} = W \circ \exp : \mathbb{C}^n \to \mathbb{C}. \]
The fact that \widetilde{W} has countably many critical points does not cause any problem, and one can formulate a torus-equivariant version of homological mirror symmetry for toric Fano stacks:

Conjecture 1.1. For a convex lattice polytope Δ containing the origin in its interior, there is an equivalence
\[D^b \text{coh}^T X \cong D^b \mathfrak{F}uk \widetilde{W} \]
of triangulated categories.

Here T is the n-dimensional torus acting on X and $D^b \text{coh}^T X$ is the derived category of T-equivariant coherent sheaves on X. Our first main result is the proof of Conjecture 1.1 for the projective space:

Theorem 1.2. Conjecture 1.1 holds when X is the projective space.

Torus-equivariant homological mirror symmetry for X implies the ordinary homological mirror symmetry, not only for X but also for the quotient stack $[X/A]$ for any finite subgroup A of the torus T acting on X.

Corollary 1.3. For a convex lattice polytope Δ which can be obtained from the polytope for \mathbb{P}^n by an integral linear transformation, one has an equivalence
\[D^b \text{coh} X \cong D^b \mathfrak{F}uk W \]
of triangulated categories.
As an example, the quotient stack $[\mathbb{P}^n/A]$ of the projective space by the group

$$A = \{ \text{diag}(a_0, \ldots, a_n) \in \text{PSL}(n+1) \mid a_0^{n+1} = \cdots = a_n^{n+1} = a_0 \cdots a_n = 1 \}$$

isomorphic to $(\mathbb{Z}/(n+1)\mathbb{Z})^{n-1}$ is covered by Corollary 1.3. This is important since the mirror of a Calabi-Yau hypersurface in \mathbb{P}^n is a hypersurface in $[\mathbb{P}^n/A]$.

The structure of $\mathfrak{fut} \tilde{W}$ can be encoded in a tropical coamoeba of W, which consists of a decomposition

$$T = \bigcup_{i=1}^{m} P_i$$

of a real n-torus $T = \mathbb{R}^n / \mathbb{Z}^n$ into the union of an ordered set of polytopes, together with a map

$$\text{deg} : F_1 \to \mathbb{Z}$$

from the set F_1 of facets of P_i to \mathbb{Z} called the degree, and a map

$$\text{sgn} : F_2 \to \{1, -1\}$$

from the set F_2 of codimension two faces of P_i called the sign, satisfying conditions in Definition 6.1. One can associate a directed A_∞-category with a tropical coamoeba, and the conditions in Definition 6.1 ensure that this A_∞-category is equivalent to $\mathfrak{fut} \tilde{W}$. This enables us to divide Conjecture 1.1 into two steps:

Conjecture 1.4. Let Δ be a convex lattice polytope in \mathbb{R}^n containing the origin in its interior. Then the following hold:

- There is a Laurent polynomial $W : (\mathbb{C}^\times)^n \to \mathbb{C}$ whose Newton polytope coincides with Δ and a tropical coamoeba G of W, so that the A_∞-category $A_G \tilde{\to} \mathfrak{fut} \tilde{W}$;

 $$A_G \tilde{\to} \mathfrak{fut} \tilde{W}.$$

- The derived category of the A_∞-category $A_G \tilde{\to} \mathfrak{fut} \tilde{W}$ is equivalent to the derived category of \mathbb{T}-equivariant coherent sheaves on the toric Fano stack X associated with Δ;

 $$D^b A_G \tilde{\to} D^b \text{coh}^{\mathbb{T}} X.$$

Our second main result is the proof of Conjecture 1.4 for the projective space:

Theorem 1.5. Conjecture 1.4 holds when X is the projective space. The tropical coamoeba in this case comes from a decomposition of a real n-torus into the union of $n+1$ permutohedra of order $n+1$.

A tropical coamoeba is a generalization of a dimer model to higher dimensions. The importance of dimer models in mirror symmetry is pointed out by Feng, He, Kennaway and Vafa [11] and elaborated in [23, 24, 25]. The works of Bondal and Ruan [7] and Fang, Liu, Treumann and Zaslow [8, 9, 10] use constructible sheaves on a real torus and its universal cover to study equivariant homological mirror symmetry for toric stacks, and it is an interesting problem to explore relationship between their approach and ours.
The organization of this paper is as follows: We collect basic definitions on Fukaya categories in Section 2. Symplectic Picard-Lefschetz theory developed by Seidel is recalled in Section 3, which is used in Section 4 to prove homological mirror symmetry for \mathbb{P}^3. The Fukaya category of the mirror of \mathbb{P}^n for general n is computed in Section 5 by an induction on n. In Section 6, we define a tropical coamoeba as a combinatorial object which encode the information of the Fukaya category, and show that it allows one to summarize the result in Section 5 in a nice way.

Acknowledgment: K. U. thanks Alexander Esterov, Akira Ishii and Dominic Joyce for useful discussions and remarks. M. F. is supported by Grant-in-Aid for Young Scientists (No.19.8083). K. U. is supported by Grant-in-Aid for Young Scientists (No.18840029). This work has been done while K. U. is visiting the University of Oxford, and he thanks the Mathematical Institute for hospitality and Engineering and Physical Sciences Research Council for financial support.

2 Fukaya categories

For a \mathbb{Z}-graded vector space $N = \oplus_{j \in \mathbb{Z}} N^j$ and an integer i, the i-th shift of N to the left will be denoted by $N[i]$; $(N[i])^j = N^i + j$.

Definition 2.1. An A_∞-category \mathcal{A} consists of

- the set $\mathfrak{Ob}(\mathcal{A})$ of objects,
- for c_1, $c_2 \in \mathfrak{Ob}(\mathcal{A})$, a \mathbb{Z}-graded vector space $\text{hom}_\mathcal{A}(c_1, c_2)$ called the space of morphisms, and
- operations

 \[m_l : \text{hom}_\mathcal{A}(c_{l-1}, c_l) \otimes \cdots \otimes \text{hom}_\mathcal{A}(c_0, c_1) \to \text{hom}_\mathcal{A}(c_0, c_l) \]

 of degree $2 - l$ for $l = 1, 2, \ldots$ and $c_i \in \mathfrak{Ob}(\mathcal{A})$, $i = 0, \ldots, l$, satisfying the A_∞-relations

 \[\sum_{i=0}^{l-1} \sum_{j=i+1}^l (-1)^{\deg a_{i+1} + \cdots + \deg a_l - i} m_{l+i-j+1}(a_l \otimes \cdots \otimes a_{j+1} \otimes m_{l+i-j+1}(a_j \otimes \cdots \otimes a_{i+1}) \]

 \[\otimes a_i \otimes \cdots \otimes a_1) = 0, \quad (2.1) \]

 for any positive integer l, any sequence c_0, \ldots, c_l of objects of \mathcal{A}, and any sequence of morphisms $a_m \in \text{hom}_\mathcal{A}(c_{m-1}, c_m)$ for $m = 1, \ldots, l$.

The A_∞-relations (2.1) for $l = 1, 2$, and 3 show that m_1 squares to zero and m_2 defines an associative operation on the cohomology of m_1. The resulting ordinary category is called the cohomological category of \mathcal{A}. An A_∞-category satisfying $m_k = 0$ for $k \geq 3$ corresponds to a differential graded category (i.e. a category whose spaces of morphisms are complexes such that the differential d satisfies the Leibniz rule with respect to the composition) by

\[d(a) = (-1)^{\deg a} m_1(a), \quad a_2 \circ a_1 = (-1)^{\deg a_1} m_2(a_2, a_1). \]
The derived category of an A_∞-category is defined using twisted complexes, which are introduced by Bondal and Kapranov [6] for differential graded categories and generalized to A_∞-categories by Kontsevich [18]. Here we follow the exposition of Seidel [21] closely. For an A_∞-category \mathcal{A}, its additive enlargement $\Sigma \mathcal{A}$ is the A_∞-category whose set of object consists of formal direct sums

$$X = \bigoplus_{i \in I} V^i \otimes X^i$$

where I is a finite set, $\{X^i\}_{i \in I}$ is a family of objects of \mathcal{A}, and $\{V^i\}_{i \in I}$ is a family of graded vector spaces. The space of morphisms is given by

$$\text{hom}_{\Sigma \mathcal{A}} \left(\bigoplus_{i \in I_0} V^i_0 \otimes X^i_0, \bigoplus_{i \in I_1} V^i_1 \otimes X^i_1 \right) = \bigoplus_{i,j} \text{hom}_C(V^i_0, V^j_1) \otimes \text{hom}_\mathcal{A}(X^i_0, X^j_1)$$

and the A_∞-operations are

$$m^\Sigma_\mathcal{A}(a_d, \ldots, a_1)_{i_d \cdots i_0} = \sum_{i_1, \ldots, i_d} (-1)^{\hat{\dagger}} \phi_{i_d, i_d-1} \circ \cdots \circ \phi_{i_1, i_0} \otimes \mu^\mathcal{A}(a_{i_d, i_d-1}, \ldots, a_{i_1, i_0}),$$

where $\hat{\dagger} = \sum_{p < q} \deg \phi_{i p, i p-1} \cdot (\deg x_{i q, i q-1} - 1)$ and $a_k = (a_k^{ij} \otimes x_k^{ij}).$

A twisted complex is a pair

$$\left(X = \bigoplus_{i \in I} V^i \otimes X^i, \delta_X = (\delta_X^{ij}) \right)$$

of an object X of $\Sigma \mathcal{A}$ and a morphism $\delta \in \text{hom}_{\Sigma \mathcal{A}}^1(X, X)$, satisfying the Maurer-Cartan equation

$$\sum_{i=1}^{\infty} m^\Sigma_\mathcal{A} (\delta_X, \ldots, \delta_X) = 0.$$

Twisted complexes constitute an A_∞-category $Tw \mathcal{A}$, whose A_∞-operations are given by

$$m^{Tw \mathcal{A}}(a_d, \ldots, a_1)_{i_d} = \sum_{i_0, \ldots, i_d} m^\Sigma_\mathcal{A}(\delta_X_{i_0} \delta_X_{i_d} \ldots, \delta_X_{i_d} \delta_X_{i_0} a_d, a_d, \ldots, a_0)$$

where the sum is over all $i_0, \ldots, i_d \geq 0$. The A_∞-relations in $Tw \mathcal{A}$ comes from that of \mathcal{A} and the Maurer-Cartan equation. The cohomological category $D^b \mathcal{A}$ of $Tw \mathcal{A}$ is triangulated, and the mapping cone of a closed morphism $c \in \text{hom}^0_{Tw \mathcal{A}}(X_0, X_1)$ is defined by

$$\left(C = \mathbb{C}[1] \otimes X_0 \oplus \mathbb{C} \otimes X_1, \delta_C = \begin{pmatrix} 1_{1,1} \otimes \delta_{X_0} & 0 \\ -1_{1,0} \otimes c & 1_{0,0} \otimes \delta_{X_1} \end{pmatrix} \right)$$

where $1_{i,j} \in \text{hom}_\mathbb{C}(\mathbb{C}[i], \mathbb{C}[j])$ is the identity morphism of degree $i - j$.
The Fukaya category $\mathfrak{Fuk} M$ of a symplectic manifold (M, ω) is an A_{∞}-category whose objects are Lagrangian submanifolds of M (together with additional structures such as gradings, spin structures and flat $U(1)$ bundles on them) and whose spaces of morphisms are Lagrangian intersection Floer complexes [12, 13, 21]: For two objects L_1 and L_2 intersecting transversely, $\text{hom}(L_1, L_2)$ is a graded vector space spanned by intersection points $L_1 \cap L_2$. For a positive integer k, a sequence (L_0, \ldots, L_k) of objects, and morphisms $p_l \in L_{\ell-1} \cap L_{\ell}$ for $\ell = 1, \ldots, k$, the A_{∞}-operation m_k is given by counting the virtual number of holomorphic disks with Lagrangian boundary conditions;

$$m_k(p_k, \ldots, p_1) = \sum_{p_0 \in L_0 \cap L_k} \# \mathcal{M}_{k+1}(L_0, \ldots, L_k; p_0, \ldots, p_k) p_0.$$

Here, $\overline{\mathcal{M}}_{k+1}(L_0, \ldots, L_k; p_0, \ldots, p_k)$ is the stable compactification of the moduli space of holomorphic maps $\phi : D^2 \to M$ from the unit disk D^2 with $k+1$ marked points (z_0, \ldots, z_k) on the boundary respecting the cyclic order, with the following boundary condition: Let $\partial_\ell D^2 \subset \partial D^2$ be the interval between z_ℓ and $z_{\ell+1}$, where we set $z_{k+1} = z_0$. Then $\phi(\partial_\ell D^2) \subset L_\ell$ and $\phi(z_\ell) = p_\ell$ for $\ell = 0, \ldots, k$.

Let M be a symplectic manifold and $p : \widetilde{M} \to M$ be a regular covering with the covering transformation group G, so that there is an exact sequence

$$1 \to \pi_1(\widetilde{M}) \xrightarrow{p_*} \pi_1(M) \to G \to 1$$

of groups. Let $i : L \hookrightarrow M$ be a Lagrangian submanifold. If the image of $i_* : \pi_1(L) \to \pi_1(M)$ is contained in the image of p_*, then the set of connected components of $\widetilde{L} = p^{-1}(L)$ forms a torsor over G, so that one has

$$\widetilde{L} = \coprod_{g \in G} \widetilde{L}_g$$

for a choice of a connected component $\widetilde{L}_e \subset \widetilde{L}$. Given a pair (L, L') of such Lagrangian submanifolds, one has an isomorphism

$$\text{hom}_{\mathfrak{Fuk} M}(L, L') \cong \bigoplus_{g \in G} \text{hom}_{\mathfrak{Fuk} \widetilde{M}}(\widetilde{L}_e, \widetilde{L}'_g),$$

which is compatible with the A_{∞}-operations.

3 Symplectic Picard-Lefschetz theory

A holomorphic function

$$\pi : E \to \mathbb{C}$$

on an exact Kähler manifold E with a reasonable behavior at infinity is an *exact Lefschetz fibration* if all the critical points of π are non-degenerate. This means that for any critical point $p \in E$, one can choose a holomorphic local coordinate (x_1, \ldots, x_n) of E around p such that

$$\pi(x_1, \ldots, x_n) = x_1^2 + \cdots + x_n^2 + w,$$ \hspace{1cm} (3.1)
where w is the critical value of π. For the moment, we assume that all the critical values are distinct and 0 is a regular value of π. We choose the origin as the base point and write

$$E_0 = \pi^{-1}(0).$$

A vanishing path is an embedded path $\gamma : [0, 1] \to \mathbb{C}$ such that

- $\gamma(0) = 0$,
- $\gamma(1)$ is a critical value of π, and
- $\gamma(t)$ is not a critical value of π for $t \in (0, 1)$.

A distinguished set of vanishing paths is an ordered set $(\gamma_i)_{i=1}^m$ of vanishing paths $\gamma_i : [0, 1] \to \mathbb{C}$ such that

- $\{\gamma_i(1)\}_{i=1}^m$ is the set of critical values of π,
- images of γ_i and γ_j for $i \neq j$ intersect only at the origin,
- $\gamma_i'(0) \neq 0$ for $i = 1, \ldots, m$, and
- $\arg \gamma_1'(0) > \cdots > \arg \gamma_m'(0)$ for a suitable choice of a branch of the argument map.

Let γ be a vanishing path and y be the critical point of π above $\gamma(1)$. The vanishing cycle along γ is the cycle of E_0 which collapses to the critical point y by the symplectic parallel transport along γ;

$$V_\gamma = \left\{ x \in E_0 \left| \lim_{t \to 1} \tilde{\gamma}_x(t) = y \right. \right\}.$$

Here, the horizontal lift $\tilde{\gamma}_x : [0, 1) \to E$ of $\gamma : [0, 1] \to \mathbb{C}$ starting from $x \in E_0$ is defined by the condition that the tangent vector of the curve $\tilde{\gamma}$ is orthogonal to the tangent space of the fiber with respect to the Kähler form.

The vanishing cycle V_γ is a Lagrangian $(n - 1)$-sphere E_0. The trajectory

$$\Delta_\gamma = \bigcup_{x \in V_\gamma} \text{Im} \tilde{\gamma}_x$$

of the vanishing cycle is called the Lefschetz thimble. It is a Lagrangian ball in E whose boundary is the corresponding vanishing cycle;

$$\partial \Delta_\gamma = V_\gamma.$$

For a distinguished set $(\gamma_i)_{i=1}^m$ of vanishing paths, the ordered set

$$V = (V_{\gamma_1}, \ldots, V_{\gamma_m})$$

is called the distinguished basis of vanishing cycles.

To define the Fukaya category of the Lefschetz fibration, let

$$\beta : \tilde{E} = \{(x, y) \in E \times \mathbb{C} \mid \pi(x) = y^2\} \to E$$
be the double cover of E branched along the fiber $E_0 = \pi^{-1}(0)$ over the origin. Then the covering transformation $\iota : (x, y) \mapsto (x, -y)$ defines a $\mathbb{Z}/2\mathbb{Z}$-action on \tilde{E}, which induces a $\mathbb{Z}/2\mathbb{Z}$-action on the Fukaya category $\mathfrak{Fuk} \tilde{E}$ of \tilde{E}. Roughly speaking, the Fukaya category $\mathfrak{F}(\pi)$ of the Lefschetz fibration π is defined as the ι-invariant part of $\mathfrak{Fuk} \tilde{E}$; objects of $\mathfrak{F}(\pi)$ are ι-invariant Lagrangian submanifolds of \tilde{E}, and the space of morphisms in $\mathfrak{F}(\pi)$ are ι-invariant part of morphisms in $\mathfrak{Fuk} \tilde{E}$. The precise definition is given in [21, Section 18].

There are two important classes of ι-invariant Lagrangian submanifolds in \tilde{E}. One of them, called of type (U), is the inverse image

$$\tilde{L} = \beta^{-1}(L) = \tilde{L}_+ \bigsqcup \tilde{L}_-$$

of a Lagrangian submanifold L whose image by π is contained in a simply-connected domain inside \mathbb{C}^\times (i.e., \mathbb{C} minus the base point). It is the disjoint union of two connected components \tilde{L}_+ and \tilde{L}_-. The other, called of type (B), is the inverse image $\tilde{\Delta}_\gamma = \beta^{-1}(\Delta_\gamma)$ of the Lefschetz thimble Δ_γ for a vanishing path γ. It is a Lagrangian n-sphere in \tilde{E}.

For type (U) Lagrangian submanifolds \tilde{L}_0 and \tilde{L}_1 of \tilde{E}, their intersections are two disjoint copies of intersections between L_0 and L_1 in E. By taking ι-invariant, one can show that there is a natural isomorphism

$$\text{hom}_{\mathfrak{F}(\pi)}(\tilde{L}_0, \tilde{L}_1) \cong \text{hom}_{\mathfrak{Fuk} \tilde{E}}(L_0, L_1)$$

of vector spaces, which lifts to a cohomologically full and faithful A_∞-functor

$$\mathfrak{Fuk} E \to \mathfrak{F}(\pi).$$

For type (B) Lagrangian submanifolds, the situation is a little more complicated, but the conclusion is that the full A_∞-subcategory of $\mathfrak{F}(\pi)$ consisting of $\Delta = (\tilde{\Delta}_\gamma_1, \ldots, \tilde{\Delta}_\gamma_m)$ for a distinguished set $(\gamma_i)_{i=1}^m$ of vanishing paths is quasi-isomorphic to the directed subcategory $\mathfrak{Fuk}^\to(V)$ of $\mathfrak{Fuk} E_0$, whose set of objects is the distinguished basis $V = (V_{\gamma_1}, \ldots, V_{\gamma_m})$ of vanishing cycles, whose spaces of morphisms are given by

$$\text{hom}_{\mathfrak{Fuk}^\to(V)}(V_{\gamma_i}, V_{\gamma_j}) = \begin{cases} \mathbb{C} \cdot \text{id}_{V_{\gamma_i}} & i = j, \\ \text{hom}_{\mathfrak{Fuk} E_0}(V_{\gamma_i}, V_{\gamma_j}) & i < j, \\ 0 & \text{otherwise}, \end{cases}$$

and non-trivial A_∞-operations coincide with those in $\mathfrak{Fuk} E_0$. We write this A_∞-category as $\mathfrak{Fuk} \pi$. Although $\mathfrak{Fuk} \pi$ depends on the choice of a distinguished set of vanishing paths, the derived category $D^b \mathfrak{Fuk} \pi$ is independent of this choice and gives an invariant of the Lefschetz fibration π.

Let $\mu : [-1, 1]$ be an embedded path in \mathbb{C} such that $\mu^{-1}(\text{Crit}_v(\pi)) = \{-1, 1\}$. One can deform μ and split it into two pieces $\mu_+(t) = \mu(\pm t)$ to obtain a pair of vanishing paths as shown in Figure 3.1. If the vanishing cycles V_{μ_-} and V_{μ_+} are isotopic as exact framed
Lagrangian \((n - 1)-\)spheres in \(E_0\), then \(\mu\) is called a matching path. In this case, one can perturb \(\Delta_{\mu_+} \cup \Delta_{\mu_-}\) to obtain a Lagrangian \(n\)-sphere \(\Sigma_{\mu}\) in \(E\) called the matching cycle.

Symplectic Picard-Lefschetz theory describes the action of the symplectic Dehn-twist along a Lagrangian sphere on the derived Fukaya category. It follows that the type (U) Lagrangian submanifold \(\tilde{\Sigma}_{\mu} = \beta^{-1}(\Sigma_{\mu})\) of \(\tilde{E}\) coming from a matching path \(\mu\) is isomorphic to the mapping cone over the (unique up to scalar) non-trivial morphism from \(\tilde{\Delta}_{\mu_-}\) to \(\tilde{\Delta}_{\mu_+}\) in the derived Fukaya category \(D^b\mathfrak{F}^{\pi}\) of the Lefschetz fibration;

\[
\tilde{\Sigma}_{\mu} \cong \text{Cone}(\tilde{\Delta}_{\mu_-} \to \tilde{\Delta}_{\mu_+}).
\]

This is important since it allows one to reduce Floer-theoretic computation for matching cycles in \(\mathfrak{F}\) to that for vanishing cycles in \(\mathfrak{F}_0\). By iterating this process, one ends up with the case of symplectic 2-manifolds, where Lagrangian submanifolds are simple closed curves and the problem of counting holomorphic disks is purely combinatorial.

A natural source of matching paths is a Lefschetz bifibration. It is a diagram

\[
\Psi = \psi \circ \varpi
\]

with certain genericity conditions, which implies that for any critical point of \(\Psi\), there are local holomorphic coordinates of \(E\) and \(\mathbb{C}^2\) such that

\[
\varpi(x_1, \ldots, x_{2n}) = (x_1^2 + x_2^2 + \cdots + x_{2n}, x_1), \quad \psi(y_1, y_2) = y_1.
\]

Then the map

\[
\mathcal{E}_w \xrightarrow{\varpi_w} \mathcal{S}_w
\]

from \(\mathcal{E}_w = \Psi^{-1}(w)\) to \(\mathcal{S}_w = \psi^{-1}(w)\) for a general \(w \in \mathbb{C}\) is a Lefschetz fibration, and by chasing the trajectory of critical values of \(\varpi_w\) as \(w\) varies along a vanishing path \(\gamma\), one obtains a matching path \(\mu\) in \(\mathcal{S}_0\) such that the matching cycle \(\Sigma_{\mu}\) is Hamiltonian isotopic to the vanishing cycle \(V_{\gamma}\).

4 Homological mirror symmetry for \(\mathbb{P}^3\)

The mirror of the projective space \(\mathbb{P}^3\) is given by the Laurent polynomial

\[
W(x, y, z) = x + y + z + \frac{1}{xyz}
\]

with critical points \(x = y = z = \pm 1, \pm \sqrt{-1}\) and critical values \(\pm 4, \pm 4\sqrt{-1}\). Choose a distinguished set of vanishing paths \((\gamma_i)_{i=1}^4\) as the straight line segments from the origin.
to the critical values as shown in Figure 4.1 and let \((C_i)_{i=1}^4\) be the corresponding distinguished basis of vanishing cycles. To use Picard-Lefschetz theory, consider the Lefschetz bifibration

\[
W = \psi \circ \varpi
\]

where

\[
\varpi(x, y, z) = \left(x + y + z + \frac{1}{xyz}, z\right)
\]

and

\[
\psi(u, v) = u.
\]

The critical points of

\[
\varpi_t : W^{-1}(t) \rightarrow \psi^{-1}(t) \cong \text{Spec } \mathbb{C}[z, z^{-1}]
\]

are given by

\[
x = y, \quad 3x + \frac{1}{x^3} = t,
\]

with critical values

\[
z = \frac{1}{x^3}.
\]

The critical values are given by \(z = (-3)^{3/4}\) at \(t = 0\), which moves as shown in Figure 4.2 along the vanishing paths \((c_i)_{i=1}^4\). These trajectories \((\mu_i)_{i=1}^4\) are matching paths corresponding to \((C_i)_{i=1}^4\). Take \(z = 1\) as a base point and choose a distinguished set \((\delta_i)_{i=1}^4\) of vanishing paths for \(\varpi_0\) as straight line segments from the base point as shown in Figure 4.3. The fiber \(\varpi_0^{-1}(z)\) is a branched double cover of \(\mathbb{C}^\times\) by the \(y\)-projection

\[
\pi_z : \varpi_0^{-1}(z) \rightarrow \mathbb{C}^\times
\]

\[
(x, y, z) \mapsto y.
\]

Figure 4.4 shows the behavior of these branch points along vanishing paths \((\delta_i)_{i=1}^4\), which can be considered as matching paths coming from the Lefschetz bifibration

\[
W^{-1}(0) = \varpi \circ \pi
\]

where \(\pi(x, y, z) = (z, y)\) and \(\phi(z, y) = z\).

One can see that the number of intersection points of \(C_i\) and \(C_j\) for \(i < j\) is equal to the dimension of \(\wedge^{j-i}V\), where \(V\) is a vector space of dimension four. As an example, consider the intersection of \(C_1\) and \(C_2\). The matching paths \(\mu_1\) and \(\mu_2\) intersect at one critical value of \(\varpi_0\) and one regular value of \(\varpi_0\), and the intersection of \(C_1\) and \(C_2\) over them consist of one point and three points respectively. As for the intersection of \(C_1\) and \(C_3\), the corresponding matching paths intersect at two regular points of \(\varpi_0\), and the intersection over each of them consists of three points.
Figure 4.1: A distinguished set of vanishing paths

Figure 4.2: Matching paths on the z-plane

Figure 4.3: A distinguished set of vanishing paths

Figure 4.4: Matching paths on the y-plane

Figure 4.5: A loop in the z-plane

Figure 4.6: The behavior of branch points of π_z
To use Picard-Lefschetz theory to do computations in the Fukaya category of W, consider the pull-back
\[
W^{-1}(0) \xrightarrow{\sim} \tilde{\varpi}_0 \xrightarrow{\exp} \mathbb{C}^\times
\]
of ϖ_0 by the universal cover of the algebraic torus. The existence of infinitely many critical points for a given critical value does not cause any problem, since the corresponding vanishing cycles do not intersect. The passage from $W^{-1}(0)$ to $W^{-1}(0)^\sim$ can be taken into account by noting that as one goes counterclockwise around the origin in the z-plane as shown in Figure 4.5, the branch points of π_z rotates clockwise by $2\pi/3$ as in Figure 4.6.

The universal cover of the z-plane is obtained by cutting the z-plane along the dashed line in Figure 4.3 and gluing infinitely-many copies of it. We set the point $z = 1$ on the zero-th sheet as the base point \ast and take a distinguished set of vanishing paths for $\tilde{\varpi}_0$ as in Figure 4.7.

Let Σ_1, Σ_2, and Σ_3 be the vanishing cycles of ϖ_0 along the vanishing paths δ_1, δ_2 and δ_3 respectively. We write the vanishing cycles of $\tilde{\varpi}_0$ along the vanishing paths δ_i in Figure 4.7 as Δ_i for $i \in \mathbb{Z}$. Let further \mathcal{B} be the Fukaya category of $\varpi_0^{-1}(1)$ consisting of $\{\Sigma_i\}_{i=1}^3$ and $\tilde{\mathcal{B}}$ be the Fukaya category of $\tilde{\varpi}_0^{-1}(\ast)$ consisting of $\{\Delta_i\}_{i \in \mathbb{Z}}$. Then one has a quasi-equivalence
\[
\tilde{\mathcal{B}} \xrightarrow{\sim} \mathcal{B}
\]
of A_∞-categories sending Δ_i to $\Sigma_{i \mod 3}$, where r is i modulo 3. We write the directed subcat-
egory of \mathcal{B} with respect to the order

$$\Delta_i < \Delta_j, \quad i < j$$

as \tilde{A}. The spaces of morphisms between Δ_i can be written as

$$\text{hom}_\mathcal{A}(\Delta_i, \Delta_j) = \begin{cases}
\mathbb{C} \cdot \text{id}_i & i = j, \\
\mathbb{C} \cdot \text{id}_{i,j} \oplus \mathbb{C} \cdot \text{id}_{i,j} & i < j \text{ and } j \equiv i \mod 3, \\
\bigwedge^2 \mathcal{V} & i < j \text{ and } j \equiv i + 1 \mod 3,
\end{cases}$$

where id_i is the unit and

$$\mathcal{V} = \text{span} \{e_1, e_2, e_3\}$$

is a vector space of dimension three. The A_∞-operation m_2 on the spaces of morphisms is given by the wedge product, where $\text{id}_{i,j}$ and $\text{id}_{i,j} \vee$ are identified with the elements $1 \in \bigwedge^0 \mathcal{V}$ and $e_1 \wedge e_2 \wedge e_3 \in \bigwedge^3 \mathcal{V}$ respectively. Higher A_∞-operations on \tilde{A} are irrelevant for the argument below.

Let C_i for $i \in \mathbb{Z}$ be the lift to $W^{-1}(0)\sim$ of a vanishing cycle on $W^{-1}(0)$, which corresponds to the matching path μ_i obtained by concatenating δ_i and δ_{i+3} as in Figure 4.8. Let further $\mathfrak{Fuk} W^{-1}(0)\sim$ be the Fukaya category of $W^{-1}(0)\sim$ consisting of $\{C_i\}_{i \in \mathbb{Z}}$ and $\mathfrak{Fuk} W^{-1}(0)\sim$ be its directed subcategory with respect to the order $C_i < C_j$ for $i < j$. By symplectic Picard-Lefschetz theory recalled in Section 3, there is a cohomologically full and faithful functor

$$\mathfrak{Fuk} W^{-1}(0)\sim \to D^b \tilde{A},$$

which maps the objects as

$$C_i \mapsto \text{Cone} \left(\Delta_i \xrightarrow{\text{id}_{i,i+3}} \Delta_{i+3} \right).$$

On the mirror side, the passage to the universal cover of the z-plane corresponds to working equivariantly with respect to the subgroup

$$\mathbb{T}_3 = \{ (\alpha, \beta, \gamma) \in \mathbb{T} \mid \alpha = \beta = 1 \}$$

of the torus $\mathbb{T} \cong (\mathbb{C}^\times)^3$ acting on \mathbb{P}^3 by

$$\mathbb{T} \ni (\alpha, \beta, \gamma) : \begin{array}{ccc} \mathbb{P}^3 & \to & \mathbb{P}^3 \\ \cup & & \cup \\ [x_0 : x_1 : x_2 : x_3] & \mapsto & [x_0 : \alpha x_1 : \beta x_2 : \gamma x_3]. \end{array}$$

The full exceptional collection

$$(E_1, E_2, E_3, E_4) = (\Omega_{\mathbb{P}^3}^3(3)[3], \Omega_{\mathbb{P}^3}^2(2)[2], \Omega_{\mathbb{P}^3}^1(1)[1], \mathcal{O}_{\mathbb{P}^3})$$

admits a natural \mathbb{T}-linearization, so that the endomorphism algebra is given by

$$\text{hom}(E_i, E_j) = \begin{cases} \bigwedge^{j-i} \mathcal{V} & i \leq j, \\
0 & \text{otherwise,} \end{cases}$$
with the natural \mathbb{T}-action. Moreover, this endomorphism algebra is formal as an A_{∞}-algebra with respect to a standard enhancement of $D^b \text{coh}^T \mathbb{P}^3$. Now it is easy to see that there is an A_{∞}-functor
\[\mathfrak{Fuk} \to W^{-1}(0) \sim \to D^b \text{coh}^{T^3} \mathbb{P}^3 \]
sending C_{i+j} to $E_i \otimes \rho_j$, where $\rho_j : T^3 \to \mathbb{C}^\times$ for $j \in \mathbb{Z}$ is the one-dimensional representation sending $(1, 1, \gamma) \in T^3$ to γ^j; for example, one has
\[
\text{hom}(E_1 \otimes \rho_i, E_2 \otimes \rho_j) = \begin{cases}
\mathbb{C} \cdot e_4 & j = i - 1, \\
\mathbb{V} & j = i, \\
0 & \text{otherwise},
\end{cases}
\]
\[
\text{hom}(E_1 \otimes \rho_i, E_3 \otimes \rho_j) = \begin{cases}
\mathbb{V} \wedge e_4 & j = i - 1, \\
\mathbb{V} \wedge e_4 & j = i, \\
0 & \text{otherwise},
\end{cases}
\]
\[
\text{hom}(E_1 \otimes \rho_i, E_4 \otimes \rho_j) = \begin{cases}
(\mathbb{V} \wedge e_4) \wedge e_4 & j = i - 1, \\
(\mathbb{V} \wedge e_4) \wedge e_4 & j = i, \\
0 & \text{otherwise},
\end{cases}
\]
which exactly matches the computation in the Fukaya category, as we show for general n in Section 5. This suffices to show the equivalence
\[D^b \mathfrak{Fuk} \to W^{-1}(0) \sim \cong D^b \text{coh}^{T^3} \mathbb{P}^3, \]
which induces the equivalence
\[D^b \mathfrak{Fuk} W \cong D^b \text{coh} \mathbb{P}^3 \]
by passing to the non-equivariant situation.

5 Inductive description of the Fukaya category

The mirror of the projective space \mathbb{P}^n is given by the Laurent polynomial
\[
W(x_1, \ldots, x_n) = x_1 + \cdots + x_n + \frac{1}{x_1 \cdots x_n}, \quad (5.1)
\]
with critical points
\[x_1 = \cdots = x_n = \zeta^{1-i}, \quad \zeta = \exp(2\pi \sqrt{-1}/(n + 1)), \quad i = 1, \ldots, n + 1 \]
and critical values $(n + 1)\zeta^{1-i}$. Choose a distinguished set of vanishing paths $(\gamma_i)_{i=1}^{n+1}$ as the straight line segments from the origin to the critical values, so that $\gamma_i(1) = \zeta^{1-i}$. The Fukaya category of W consisting of vanishing cycles C_i along γ_i for $i = 1, \ldots, n + 1$ will be denoted by $\mathfrak{Fuk} W$.

14
Theorem 5.1. The spaces of morphisms in $\text{Fuk} W$ are given by

$$\text{hom}(C_i, C_j) = \begin{cases} C \cdot \text{id}_{C_i} & i = j, \\ \wedge^{i-j} V & i < j, \\ 0 & \text{otherwise,} \end{cases}$$

where V is an $(n+1)$-dimensional vector space and an element of $\wedge^i V$ has degree i. The A_∞-operations m_k are given by the wedge product for $k = 2$, and vanish for $k \neq 2$.

Proof. Consider the Lefschetz bifibration

$$W = \psi \circ \varpi$$

(5.2)

where

$$\varpi(x_1, \ldots, x_n) = \left(x_1 + \cdots + x_n + \frac{1}{x_1 \cdots x_n}, x_n \right)$$

and

$$\psi(u, v) = u.$$

The critical points of

$$\varpi_t: W^{-1}(t) \to \psi^{-1}(t) \cong \text{Spec} \mathbb{C}[x_n, x_n^{-1}]$$

are given by

$$x_1 = \cdots = x_{n-1}, \quad nx_1^{n+1} - tx_1^n + 1 = 0$$

with critical values

$$x_n = \frac{1}{x_1^n}.$$

As one varies t along the vanishing path γ_1 from $t = 0$ to $t = n + 1$, two points $x = \exp(\pm \pi/(n + 1)\sqrt{-1})/\sqrt{n}$ from the set of solutions of

$$nx^{n+1} - tx^n + 1 = 0$$

(5.3)

at $t = 0$ collide at $x = 1$ and $t = n + 1$, while the absolute values of other points remains to be smaller than these two points, so that their behavior is as shown in Figure 5.1. Here and below, all figures are for $n = 4$, but the general case is completely parallel. The corresponding trajectory of the critical values of ϖ_t is shown in Figure 5.2.

Now consider the Lefschetz bifibration

$$W^{-1}(0) \xrightarrow{\pi} \mathbb{C} \xrightarrow{\psi} \mathbb{C}$$

(5.4)

where $\pi(x_1, \ldots, x_n) = (x_n, x_{n-1})$ and $\psi(x_n, x_{n-1}) = x_n$. Take $x_n = 1$ as a base point and choose a distinguished set $(\delta_i)_{i=1}^{n+1}$ of vanishing paths for ϖ_0 as the straight line segments from the base point as shown in Figure 5.3. Consider the pull-back

$$W^{-1}(0) \xrightarrow{\varpi_0} \mathbb{C} \xrightarrow{\exp} \mathbb{C} \xrightarrow{\psi} \mathbb{C}$$

(5.5)
of ϖ_0 by the universal cover of the x_n-plane. The j-th lift of the vanishing cycle $C_i \subset W^{-1}(0)$ to $W^{-1}(0)$ will be denoted by $C_{i+\langle n+1 \rangle j}$ for $i = 1, \ldots, n+1$ and $j \in \mathbb{Z}$. We write the Fukaya category of $W^{-1}(0)$ consisting of $\{C_i\}_{i \in \mathbb{Z}}$ as \mathcal{F}.

The universal cover of the x_n-plane is obtained by gluing infinitely many copy of the x_n-plane cut along the negative real axis. We take the point $x_n = 1$ on the zeroth sheet as the base point $*$ and take a distinguished set $(\delta_i)_i \in \mathbb{Z}$ of vanishing paths as in Figure 5.5. The vanishing cycle along δ_i will be denoted by Δ_i. We write the Fukaya category of ϖ_0 consisting of $\{\Delta_i\}_{i \in \mathbb{Z}}$ as \mathcal{A}. The matching path corresponding to Δ_i for $i \in \mathbb{Z}$ is obtained by concatenating δ_i and δ_{i+n} as in Figure 5.6.

Note that the fiber of ϖ_0 is isomorphic to the fiber of $W : (C^\times)^{n-1} \rightarrow \mathbb{C}$

$$\begin{align*}
(x_1, \ldots, x_{n-1}) &\mapsto x_1 + \cdots + x_{n-1} + \frac{1}{x_1 \cdots x_{n-1}} \\
\varpi_0^{-1}(x_n) &\mapsto W^{-1}(x_n) \\
(x_1, \ldots, x_n) &\mapsto x_n^{1/n} (x_1, \ldots, x_{n-1}).
\end{align*}$$

As x_n varies along the vanishing paths in Figure 5.3, its image by the map $x \mapsto -x^{(n+1)/n}$ behaves as in Figure 5.4, which are homotopic to the vanishing paths for W. The fiber of $\pi_1 : \varpi_0^{-1}(1) \rightarrow C^\times$ at $x_n = 1$ can be identified with the fiber of W at $t = -1$, which in turn can be identified with the fiber of W at the origin by symplectic parallel transport. Under this identification, the vanishing paths δ_i in Figure 5.4 can be identified with the vanishing paths γ_τ for W, where τ is i modulo n. It follows that the vanishing cycle Δ_i along δ_i corresponds to the vanishing cycle γ_{τ} along γ_{τ}.

Assume that the assertion of Theorem 5.1 holds for W, so that one has

$$\hom_{\mathcal{F}(W)}(C_i, C_j) = \begin{cases}
\mathbb{C} \cdot \text{id}_{\tau} & i = j \\
\wedge^i \mathbb{V} & i < j, \\
0 & \text{otherwise},
\end{cases}$$

where $\mathbb{V} = \text{span}\{e_1, \ldots, e_n\}$ is an n-dimensional vector space, an element of $\wedge^k \mathbb{V}$ has degree k, and the A_∞-operation is given by the wedge product. Then one has

$$\hom_{\mathcal{A}}(\Delta_i, \Delta_j) = \begin{cases}
\mathbb{C} \cdot \text{id}_{\tau} & i = j \\
\wedge^0 \tau^0 \mathbb{V} \oplus \wedge^n \mathbb{V} & i < j \text{ and } j \equiv i \mod n, \\
\wedge^{j-i} \mathbb{V} & i < j \text{ and } j \not\equiv i \mod n, \\
0 & \text{otherwise},
\end{cases}$$

as a vector space, where $0 \leq j-i < n$ is a representative of $[j-i] \in \mathbb{Z}/n\mathbb{Z}$. The gradings of Δ_i are chosen so that an element of $\wedge^k \mathbb{V}$ has degree k. The A_∞-operations m_0 and m_1 vanish, and m_2 is given by the wedge product as

$$m_2(\sigma, \tau) = (-1)^{\deg \tau} \sigma \wedge \tau.$$
Figure 5.1: The behavior of solutions of \(\delta_1 \) \(\delta_2 \) \(\delta_3 \) \(\delta_4 \) \(\delta_5 \)

Figure 5.2: Matching paths on the \(x_n \)-plane

Figure 5.3: Vanishing paths for \(\varpi_0 \)

Figure 5.4: Vanishing paths for \(\overline{W} \)

Figure 5.5: Vanishing paths on the universal cover

Figure 5.6: Matching paths on the universal cover
We write the elements of $\text{hom}(\Delta_i, \Delta_{i+n})$ corresponding to $1 \in \wedge^0 V$ and $e_1 \wedge \cdots \wedge e_n$ as $\text{id}_{i,i+n}$ and $\text{id}_{i,i+n}^\vee$ respectively.

By symplectic Picard-Lefschetz theory recalled in Section 3, there is a cohomologically full and faithful functor

$$\text{Fuk} W^{-1}(0) \rightarrow D^b \mathcal{A},$$

which maps the objects as

$$C_i \mapsto \left\{ \Delta_i \xrightarrow{\text{id}_{i,i+n}} \Delta_{i+n} \right\}.$$

Then one has

$$\text{hom}(C_i, C_j) = \text{hom} \left(\left\{ \Delta_i \xrightarrow{\text{id}_{i,i+n}} \Delta_{i+n} \right\}, \left\{ \Delta_j \xrightarrow{\text{id}_{j,j+n}} \Delta_{j+n} \right\} \right)$$

$$= \left\{ \begin{array}{ll}
\text{hom}(\Delta_{i+n}, \Delta_j) & \xrightarrow{(-1)^{\text{deg} \Delta_j} \cdot \text{id}_{\Delta_j,j+n}} \xrightarrow{-m_2(\text{id}_{i,i+n}, \bullet)} \text{hom}(\Delta_i, \Delta_j) \\
\text{hom}(\Delta_{i+n}, \Delta_{j+n}) & \xrightarrow{(-1)^{\text{deg} \Delta_{j+n}} \cdot \text{id}_{\Delta_j,j+n}} \text{hom}(\Delta_i, \Delta_{j+n})
\end{array} \right\},$$

where the last line denotes the total complex of the double complex. If $j < i - 3$, then every term in the last line of the right hand side is trivial. If $i - n \leq j \leq i - 1$, then the right hand side is given by

$$\left\{ \begin{array}{cccc}
0 & \rightarrow & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \rightarrow & \wedge^{j-i+n} V
\end{array} \right\}$$

which is spanned by

$$\left(\begin{array}{c}
\{ \Delta_i \rightarrow \Delta_{i+n} \} \\
\tau \\
\{ \Delta_j \rightarrow \Delta_{j+n} \}
\end{array} \right) \in \text{hom}^1(C_i, C_j)$$

for $\tau \in \wedge^{j-i+n} V$. If $i = j$, then the complex on the right hand side is given by

$$\left\{ \begin{array}{cccc}
0 & \rightarrow & \mathbb{C} \cdot \text{id}_{\Delta_i} \\
\downarrow & \downarrow & \downarrow \\
\mathbb{C} \cdot \text{id}_{\Delta_{i+n}} & \rightarrow & \mathbb{C} \cdot \text{id}_{i,i+n} \oplus \mathbb{C} \cdot \text{id}_{i,i+n}^\vee
\end{array} \right\}$$

whose cohomology group is spanned by

$$\left(\begin{array}{c}
\{ \Delta_i \rightarrow \Delta_{i+n} \} \\
\text{id}_{\Delta_i} \\
\{ \Delta_i \rightarrow \Delta_{i+n} \}
\end{array} \right) \in \text{hom}^0(C_i, C_j)$$

and

$$\left(\begin{array}{c}
\{ \Delta_i \rightarrow \Delta_{i+n} \} \\
\text{id}_{i,i+n}^\vee \\
\{ \Delta_i \rightarrow \Delta_{i+n} \}
\end{array} \right) \in \text{hom}^1(C_i, C_j).$$
If \(i + 1 \leq j \leq i + n - 1 \), then the complex on the right hand side is given by
\[
\begin{cases}
0 \longrightarrow \wedge^{j-i}V \\
\downarrow \\
\wedge^{j-i}V \longrightarrow \wedge^{j-i}V
\end{cases}
\]
whose cohomology group is spanned by
\[
\{ \Delta_i \longrightarrow \Delta_{i+n} \}
\]
for \(\tau \in \wedge^{j-i}V \). If \(j = i + n \), then the complex on the right hand side is given by
\[
\begin{cases}
\mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \longrightarrow \mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \oplus \mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \\
\downarrow \\
\mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \oplus \mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \longrightarrow \mathbb{C} \cdot \text{id}_{\Delta_{i+n}} \oplus \mathbb{C} \cdot \text{id}_{\Delta_{i+n}}
\end{cases}
\]
whose cohomology group is spanned by
\[
\{ \Delta_i \longrightarrow \Delta_{i+n} \}
\]
for \(\tau \in \wedge^{j-i}V \). If \(j > i + n \), then the complex on the right hand side is acyclic.

If we write
\[
C_{i,j} = C_{i+(n+1)j}, \quad i = 1, \ldots, n + 1 \text{ and } j \in \mathbb{Z},
\]
then the above calculation can be summarized as
\[
\text{hom}(C_{i,j}, C_{i',j'}) = \begin{cases}
\mathbb{C} \cdot \text{id}^{j-i}V_{i>j} \oplus \mathbb{C} \cdot \text{id}^{j-i}V_{i<j}, & i < i' \leq n + 1,
0, & \text{otherwise}
\end{cases}
\]
where \(T_n = \mathbb{C}^\times \) is an algebraic torus,
\[
\rho_i : T_n \rightarrow \mathbb{C}^\times
\]
\[
\alpha \mapsto \alpha^i
\]
is an irreducible representation of \(T_n \),
\[
V = \rho_0 \oplus \cdots \oplus \rho_0 \oplus \rho_1,
\]
is an \((n + 1)\)-dimensional representation of \(T_n \), and \(\bullet T_n \) denotes the subspace of \(T_n \)-invariants.

By descending from \(W^{-1}(0) \) to \(W^{-1}(0) \) and taking the directed subcategory, one obtains
\[
\text{hom}_{\text{tot}} W(C_i, C_j) = \begin{cases}
\mathbb{C} \cdot \text{id}_{C_i} & i = j, \\
\wedge^{j-i}V & i > j, \\
0 & \text{otherwise}
\end{cases}
\]
It is straightforward to see that the \(A_\infty \)-operation \(m_2 \) on \(\mathfrak{fr} W \) is given by wedge product. One can also show, either by direct calculation or for degree reasons, that \(A_\infty \)-operations \(m_k \) for \(k \neq 2 \) on \(\mathfrak{fr} W \) vanishes, and Theorem 5.1 is proved.

In the proof of Theorem 5.1 we have thrown away the extra information obtained by lifting from \(W^{-1}(0) \) to its \(\mathbb{Z} \)-cover \(W^{-1}(0) \) at each step of the induction. One can also keep this information, and the resulting category can be described as follows:

Theorem 5.2. Let

\[
\widehat{W} = W \circ \exp : \mathbb{C}^n \to \mathbb{C}
\]

be the pull-back of the mirror \(W \) of \(\mathbb{P}^n \) by the \(\mathbb{Z}^n \)-covering given by the exponential map

\[\exp : \mathbb{C}^n \to (\mathbb{C}^\times)^n.\]

Let \(C_{i,j} \) denote the \(j \)-th lift of \(C_i \) for \(i = 1, \ldots, n+1 \) and \(j \in \mathbb{Z}^n \). Then one has

\[
\text{hom}(C_{i,j}, C'_{i',j'}) = \begin{cases}
\mathbb{C} \cdot \text{id}_{C_{i,j}} & i = i' \text{ and } j = j', \\
(\wedge^{i'-i}V \otimes \rho_{j'-j})^T & i < i', \\
0 & \text{otherwise},
\end{cases}
\]

where \(V \) is an \((n+1)\)-dimensional vector space with an action of an algebraic torus \(T = (\mathbb{C}^\times)^n \) given by

\[T \ni (\alpha_1, \ldots, \alpha_n) : \mathbb{C}^{n+1} \sslash \mathbb{Z}^n \to \mathbb{C}^{n+1} \sslash \mathbb{Z}^n \]

\[(x_0, x_1, \ldots, x_n) \mapsto (x_0, \alpha_1 x_1, \ldots, \alpha_n x_n),\]

and

\[\rho_j : T \sslash \mathbb{Z}^n \to \mathbb{C}^\times \]

\[(\alpha_1, \ldots, \alpha_n) \mapsto (\alpha_1^{j_1}, \ldots, \alpha_n^{j_n})\]

is a one-dimensional representation of \(T \) for \(j = (j_1, \ldots, j_n) \).

The proof of Theorem 5.2 is completely parallel to that of Theorem 5.1.

6 Tropical coamoeba

We introduce the notion of a tropical coamoeba and prove Theorem 1.5 in this section. A tropical coamoeba is a generalization of a pair of a dimer model and an internal perfect matching on it to higher dimensions. See [23, 24, 25, 14] and references therein for dimer models and its application to homological mirror symmetry.

Definition 6.1. A **tropical coamoeba** \(G = (\{P_i\}_{i=1}^m, \text{deg}, \text{sgn}) \) of a Laurent polynomial \(W : (\mathbb{C}^\times)^n \to \mathbb{C} \) consists of

- a polyhedral decomposition
 \[T = \bigcup_{i=1}^m P_i,\]
 of a real \(n \)-torus \(T = \mathbb{R}^n / \mathbb{Z}^n \) into an ordered set \((P_i)_{i=1}^m \) of polytopes,
• a map \(\text{deg} : F_1 \to \mathbb{Z} \)
 from the set \(F_1 \) of facets to \(\mathbb{Z} \) called the degree, and
• a map \(\text{sgn} : F_2 \to \{1, -1\} \)
 from the set \(F_2 \) of codimension two faces called the sign,
satisfying the following:
• There is a CW complex \(Y \) in \(W^{-1}(0) \) and a deformation retraction
 \[F : W^{-1}(0) \times [0, 1] \to W^{-1}(0), \]
 \[F(\bullet, 0) = \text{id}_{W^{-1}(0)}, \quad \text{Im} F(\bullet, 1) = Y, \quad F(\bullet, 1)|_Y = \text{id}_Y, \]
such that the restriction of \(F(\bullet, 1) \) to the union of a distinguished basis \((C_i)_{i=1}^m\) of vanishing cycles is a surjection onto \(Y \).
• The argument map \(\text{Arg} : (\mathbb{C}^\times)^n \to T \) induces a homeomorphism \(Y \cong \bigcup_{f \in F_1} f \) into the union of facets.
• The boundary of the polytope \(P_i \) is the image of the vanishing cycle \(C_i \);
 \[\text{Arg}(F(C_i, 1)) = \partial P_i, \quad i = 1, \ldots, m. \]
• There is a natural one-to-one correspondence between the set of common facets of \(P_i \) and \(P_j \) and intersection points of \(C_i \) and \(C_j \), and the degree function is given by the Maslov index of the intersection with respect to a suitable grading of \(W^{-1}(0) \)
 and \((C_i)_{i=1}^m\).
• For each codimension two face \(e \in F_2 \), one has an \(A_\infty \)-operation
 \[m_k(f_1, \ldots, f_k) = \text{sgn}(e)f_0 \] (6.1)
in the Fukaya category \(\text{Fuk} \hat{W} \), where \((f_0, f_1, \ldots, f_k)\) is the set of facets around \(e \), identified with intersections of vanishing cycles as above. Moreover, any non-trivial \(A_\infty \)-operation in \(\text{Fuk} \hat{W} \) comes from a codimension two face of \(P_i \) in this way.
• Let \(\tilde{W} \) be the pull-back of \(W \) to the universal cover \(\mathbb{C}^n \to (\mathbb{C}^\times)^n \). Then the pull-back \(\tilde{G} \) of \(G \) to the universal cover \(\mathbb{R}^n \to T \) gives a tessellation of \(\mathbb{R}^n \), which encodes the information of \(\text{Fuk} \hat{W} \) in just the same way as above, so that polytopes, facets, and codimension two faces correspond to vanishing cycles of \(\hat{W} \), their intersection points, and \(A_\infty \)-operations respectively.

It follows from the definition that if \(G \) is a tropical coamoeba of \(W \), then one can associate a directed \(A_\infty \)-categories \(\mathcal{A}_G \) whose set of objects, a basis of the space of morphisms, and non-trivial \(A_\infty \)-operations on this basis are given by the set of polytopes, the set of facets, and the set of codimension two faces respectively, which satisfies
\[\text{Fuk} \hat{W} \cong \mathcal{A}_G. \]
Moreover, the directed A_∞-category $A_\tilde{G}$ associated with the pull-back \tilde{G} of G to the universal cover is equivalent to the Fukaya category associated with \tilde{W}:

$$\text{Fuk} \tilde{W} \cong A_\tilde{G}.$$

Now we prove Theorem 1.5. We first discuss the case of \mathbb{P}^2 along the lines of [25]. The mirror of \mathbb{P}^2 is given by

$$W(x, y) = x + y + \frac{1}{xy},$$

which has three critical values $3, 3\omega$ and $3\omega^2$. Choose a distinguished set $\{c_i\}_{i=1}^3$ of vanishing paths as the straight line segments from the origin to each critical values as in Figure 6.1. The y-projection

$$\varpi_t : W^{-1}(t) \rightarrow \mathbb{C}^\times$$

has three branch points, which moves as shown in Figure 6.2 along the vanishing paths. The trajectories of these branch points are images of vanishing cycles by $\varpi = \varpi_0$. There are six disks in $W^{-1}(0)$ bounded by these vanishing cycles, which are projected onto three triangles in Figure 6.2. By contracting these six disks, one obtains a graph on $W^{-1}(0)$ whose π projection is shown in Figure 6.3. Figure 6.4 shows a schematic picture of the image of this graph by the argument map: The horizontal and the vertical axes in Figure 6.4 correspond to $\text{arg} y$ and $\text{arg} x$ respectively. The inverse image of the circle on the y-plane in Figure 6.3 by ϖ_0 is a non-trivial double cover of it, which maps to a cycle in the class $(2, -1) \in H_1(T, \mathbb{Z}) \cong \mathbb{Z}^2$ in Figure 6.4. Three legs in Figure 6.3 connect two branches of the double cover ϖ_0, which map to vertical line segments in Figure 6.4. As a result, one obtains the division of T into three hexagons as shown in Figure 6.5. It is easy to see that the set of edges in Figure 6.5 corresponds to the set of intersection points of vanishing cycles, and the set of nodes corresponds to holomorphic disks bounded by vanishing cycles. The colors of the nodes correspond to the signs of the A_∞-operations.

Now we discuss the case of \mathbb{P}^3. By contracting the matching paths in Figure 4.2 one obtains a circle with four legs shown in Figure 6.6. The fiber of ϖ_0 over a point on this circle is symplectomorphic to $W^{-1}(0)$, which can be contracted to the honeycomb graph in Figure 6.3 as explained above. As one goes around the circle, this honeycomb graph undergoes a monodromy

$$D_1 \mapsto D_2 \mapsto D_3 \mapsto D_1$$

of order three, where D_i is the face in the honeycomb graph corresponding to the i-th vanishing cycle of ϖ_0 as in Figure 6.7. The image by the argument map of this honeycomb graph bundle over the circle on the z-plane divides the 3-torus T into an obliquely-embedded hexagonal cylinder. Four legs in Figure 6.6 give four faces perpendicular to the $\text{arg} z$-axis, which cut this hexagonal cylinder into four truncated octahedra $(P_i)_{i=1}^4$.

A truncated octahedron is a polytope with fourteen faces, thirty-six edges and twenty-four vertices, which is obtained by truncating an octahedron at its six vertices. One of the four truncated octahedra in T is shown in Figure 6.8 where we have chosen to draw $\text{arg} x$ and $\text{arg} y$ horizontally, and $\text{arg} z$ vertically. By pulling back this division of T into
Figure 6.1: A distinguished set of vanishing paths

Figure 6.2: The trajectories of the branch points

Figure 6.3: Contracting $W^{-1}(0)$

Figure 6.4: Image of the contraction by the argument map

Figure 6.5: The honeycomb tiling
Figure 6.6: Contraction on the z-plane

Figure 6.7: The monodromy around the origin

Figure 6.8: A truncated octahedron

Figure 6.9: Contractions of the matching paths

Figure 6.10: Intersections of contracted matching paths
Figure 6.11: The facets of P_1 adjacent to P_2

Figure 6.12: The facets of P_1 adjacent to P_3

Figure 6.13: The facets of P_1 adjacent to P_4

Figure 6.14: The edges of P_1 adjacent to P_2 and P_3
four truncated octahedra to the universal cover $\mathbb{R}^3 \to T$, one obtains the *bitruncated cubic honeycomb*, which is the Voronoi tessellation for the body-centered cubic lattice.

It is straightforward to see that intersections of vanishing cycles and A_∞-operations in Fukaya category correspond to faces and edges of truncated octahedra respectively, so that the decomposition of T into four truncated octahedra, together with a suitable choice of the functions μ and sgn, gives a tropical coamoeba of W. Matching paths are contracted as in Figure 6.9 and Figure 6.10 shows the intersections of the matching path μ_1 for C_1 with three other matching paths. These intersections correspond to faces of T shown in Figures 6.11, 6.12, and 6.13 which can be seen to be in natural bijection with intersection points of C_1 with C_2, C_3 and C_4 by comparing with the discussion in Section 4. It is also straightforward to see that the edges of P_i correspond to A_∞-operations in $\tilde{\mathfrak{fuk}} W$; for example, twelve edges corresponding to $m_2 : \text{hom}^1(C_2, C_3) \otimes \text{hom}^1(C_1, C_2) \to \text{hom}^2(C_1, C_3)$ are shown in Figure 6.14.

Now we discuss the general case. The permutohedron of order $n+1$ is an n-dimensional polytope lying on the hyperplane

$$H = \left\{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_1 + \cdots + x_{n+1} = \frac{n(n+1)}{2} \right\},$$

defined as the convex hull of the orbit of $(1, 2, \ldots, n+1) \in \mathbb{R}^{n+1}$ under the action of the symmetric group \mathfrak{S}_{n+1} by permutations of coordinates. Note that the permutohedron of order three is a hexagon, and the permutohedron of order four is a truncated octahedron. A facet of a permutohedron of order $n+1$ corresponds to a division $B_1 \sqcup B_2 = \{1, 2, \ldots, n+1\}$ of the set $\{1, 2, \ldots, n+1\}$ into the disjoint union of two subsets, and a codimension two face corresponds to a division $B_1 \sqcup B_2 \sqcup B_3 = \{1, 2, \ldots, n+1\}$ into the disjoint union of three subsets. The facet corresponding to the division $B_1 \sqcup B_2$ is given by

$$\sum_{i \in B_1} x_i = 1 + 2 + \cdots + \#B_1,$$

and the codimension two face corresponding to the division $B_1 \sqcup B_2 \sqcup B_3$ is given by

$$\sum_{i \in B_1} x_i = 1 + 2 + \cdots + \#B_1,$$
$$\sum_{i \in B_1 \sqcup B_2} x_i = 1 + 2 + \cdots + \#(B_1 \sqcup B_2),$$

so that the inclusion of a face into a facet corresponds to a subdivision of a division of length two into a division of length three. The translations of the permutohedron of order $n+1$ by the lattice of rank n generated by

$$\ell_i = (n+1)e_i - (e_1 + \cdots + e_{n+1}), \quad i = 1, \ldots, n+1,$$
where e_i is the i-th coordinate vector, tessellates the hyperplane H. The polytope adjacent to the permutohedron through the facet corresponding to the division $B_1 \sqcup B_2$ is the translate of the permutohedron by
$$\sum_{i \in B_2} \ell_i.$$
Every codimension two face of this tessellation is adjacent to three facets, corresponding to $B_1 \sqcup B_2$, $B'_1 \sqcup B'_2$ and $B''_1 \sqcup B''_2$ such that $B''_2 = B_2 \sqcup B'_2$.

The set of facets of the permutohedron of order $n+1$ maps bijectively to a basis of $\wedge^\bullet V/(\wedge^0 V \oplus \wedge^{n+1} V)$ by
$$B_1 \sqcup B_2 \mapsto \wedge_{i \in B_2} e_i.$$
Under this correspondence, the translates of three facets share a codimension two face if and only if they correspond to u, v and w in $\wedge^\bullet V/(\wedge^0 V \oplus \wedge^{n+1} V)$ such that $w = \pm u \wedge v$.

Now we inductively show that the quotient of the above tessellation by the lattice $\Lambda \cong \mathbb{Z}^n$ generated by
$$\ell_i + (\ell_1 + \cdots + \ell_n), \quad i = 1, \ldots, n$$
is a tropical coamoeba for the mirror of \mathbb{P}^n. By contracting the union of the matching paths for ω_0 on the x_n-plane, one obtains a circle S with $n+1$ legs $\{l_1, \ldots, l_{n+1}\}$, numbered clockwise. The fiber over a point on S can be contracted to the union of n permutohedra $\{P_i\}_{i=1}^{n+1}$ of order n by induction hypothesis, which undergoes the cyclic monodromy
$$P_i \mapsto P_{i+1}, \quad i = 1, \ldots, n$$
as one goes around the circle. Its image by the argument map gives a division of T^n into an oblique cylinder over P_1, which is divided into $n+1$ permutohedra $\{P_i\}_{i=1}^{n+1}$ of order $n+1$ by the $n+1$ facets coming from $n+1$ legs: Let us call the direction of $\arg x_n$ vertical and other directions horizontal. The x_n-projection of the contracted vanishing cycle consists of two legs l_i, l_{i+n} and the part of the circumference between them. The horizontal facets corresponding to l_i and l_{i+n} corresponds to e_{n+1} and $e_1 \wedge \cdots \wedge e_n$ respectively. There are $2^n - 2$ vertical facets of the cylinder, and the one corresponding to
$$e_{i_1} \wedge \cdots \wedge e_{i_r}$$
is divided into two, one corresponding to
$$e_{i_1} \wedge \cdots \wedge e_{i_r}$$
and the other corresponding to
$$e_{i_1} \wedge \cdots \wedge e_{i_r} \wedge e_{n+1}.$$
As a whole, one obtains $2^{n+1} - 2$ facets, and P_1 can be identified with the permutohedron of order $n+1$. Under this identification, P_i can be identified with the translation of P_1 by $(i-1)\ell_{n+1}$, and the union $\bigcup_{i=1}^{n+1} P_i$ is a fundamental region of the lattice Λ. The degree function takes the value $|B_2|$ on the facet corresponding to the division $B_1 \sqcup B_2$, and the value $\text{sgn}(B'_2, B_2)$ of the sign function on the codimension two face f of P_i, where the
facet of P_i corresponding to $B_1 \cup B_2$ intersects P_j and the facet of P_j corresponding to the division $B'_1 \cup B'_2$ intersects P_k for $i < j < k$, is given by

$$\land_{i \in B_2 \cup B' \cup B_2} e_i = \sgn(B'_2, B_2) \cdot (-1)^{|B_2|} (\land_{i \in B_2} e_i) \land (\land_{i \in B_2} e_i).$$

The A_∞-category A_G associated with the tropical coamoeba

$$G = ((P_i)_{i=1}^{n+1}, \text{deg}, \text{sgn})$$

defined above is quasi-equivalent to the full subcategory of a standard differential graded enhancement of $D^b \text{coh } \mathbb{P}^n$ consisting of

$$(E_1, E_2, \ldots, E_{n+1}) = (\Omega^n_{\mathbb{P}^n}(n)[n], \Omega^{n-1}_{\mathbb{P}^n}(n-1)[n-1], \ldots, \mathcal{O}_{\mathbb{P}^n}).$$

This implies the equivalence

$$D^b A_G \cong D^b \text{coh } \mathbb{P}^n$$

of triangulated categories, since (E_1, \ldots, E_{n+1}) is a full exceptional collection by Beilinson [5]. It is clear that this equivalence lifts to the equivalence

$$D^b \tilde{A}_G \cong D^b \text{coh } \tilde{\mathbb{P}}^n$$

by sending the object of \tilde{A}_G corresponding to the j-th lift of P_i for $j \in \Lambda \cong \mathbb{Z}^n$ to $E_i \otimes \rho_j$, and Theorem 1.5 is proved. Theorem 1.2 is an immediate consequence of Theorem 1.5, which in turn implies Corollary 1.3 just as in the two-dimensional case [25].

References

[1] Mohammed Abouzaid. Homogeneous coordinate rings and mirror symmetry for toric varieties. *Geom. Topol.*, 10:1097–1157 (electronic), 2006.

[2] Mohammed Abouzaid. Morse homology, tropical geometry, and homological mirror symmetry for toric varieties. *Selecta Math. (N.S.),* 15(2):189–270, 2009.

[3] Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov. Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. *Invent. Math.*, 166(3):537–582, 2006.

[4] Denis Auroux, Ludmil Katzarkov, and Dmitri Orlov. Mirror symmetry for weighted projective planes and their noncommutative deformations. *Ann. of Math. (2),* 167(3):867–943, 2008.

[5] A. A. Be˘ılinson. Coherent sheaves on \mathbb{P}^n and problems in linear algebra. *Funktsional. Anal. i Prilozhen.*, 12(3):68–69, 1978.

[6] A. I. Bondal and M. M. Kapranov. Enhanced triangulated categories. *Mat. Sb.*, 181(5):669–683, 1990.

[7] Alexey Bondal. Derived categories of toric varieties. *Oberwolfach reports*, 3(1):284–286, 2006.
[8] Bohan Fang. Homological mirror symmetry is T-duality for \mathbb{P}^n. *Commun. Number Theory Phys.*, 2(4):719–742, 2008.

[9] Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, and Eric Zaslow. The coherent-constructible correspondence and homological mirror symmetry for toric varieties. arXiv:0901.4276.

[10] Bohan Fang, Chiu-Chu Melissa Liu, David Treumann, and Eric Zaslow. The coherent-constructible correspondence for toric orbifolds. arXiv:0911.4711.

[11] Bo Feng, Yang-Hui He, Kristian D. Kennaway, and Cumrun Vafa. Dimer models from mirror symmetry and quivering amoebae. *Adv. Theor. Math. Phys.*, 12(3):489–545, 2008.

[12] Kenji Fukaya. Morse homotopy, A^∞-category, and Floer homologies. In *Proceedings of GARC Workshop on Geometry and Topology ’93 (Seoul, 1993)*, volume 18 of *Lecture Notes Ser.*, pages 1–102, Seoul, 1993. Seoul Nat. Univ.

[13] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono. *Lagrangian intersection Floer theory: anomaly and obstruction*, volume 46 of *AMS/IP Studies in Advanced Mathematics*. American Mathematical Society, Providence, RI, 2009.

[14] Masahiro Futaki and Kazushi Ueda. Exact Lefschetz fibrations associated with dimer models. arXiv:0912.1656.

[15] Alexander B. Givental. Homological geometry and mirror symmetry. In *Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)*, pages 472–480, Basel, 1995. Birkhäuser.

[16] Yujiro Kawamata. Francia’s flip and derived categories. In *Algebraic geometry*, pages 197–215. de Gruyter, Berlin, 2002.

[17] Gabriel Kerr. Weighted blowups and mirror symmetry for toric surfaces. *Adv. Math.*, 219(1):199–250, 2008.

[18] Maxim Kontsevich. Homological algebra of mirror symmetry. In *Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)*, pages 120–139, Basel, 1995. Birkhäuser.

[19] Maxim Kontsevich. Lectures at ENS Paris, spring 1998. set of notes taken by J. Bellaiche, J.-F. Dat, I. Martin, G. Rachinet and H. Randriambololona, 1998.

[20] Paul Seidel. More about vanishing cycles and mutation. In *Symplectic geometry and mirror symmetry (Seoul, 2000)*, pages 429–465. World Sci. Publishing, River Edge, NJ, 2001.

[21] Paul Seidel. *Fukaya categories and Picard-Lefschetz theory*. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008.

[22] Kazushi Ueda. Homological mirror symmetry for toric del Pezzo surfaces. *Comm. Math. Phys.*, 264(1):71–85, 2006.
[23] Kazushi Ueda and Masahito Yamazaki. A note on dimer models and McKay quivers. math.AG/0605780.

[24] Kazushi Ueda and Masahito Yamazaki. Dimer models for parallelograms. math.AG/0606548.

[25] Kazushi Ueda and Masahito Yamazaki. Homological mirror symmetry for toric orbifolds of toric del Pezzo surfaces. math.AG/0703267.

Masahiro Futaki
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba Meguro-ku Tokyo 153-8914, Japan
e-mail address: futaki@ms.u-tokyo.ac.jp

Kazushi Ueda
Department of Mathematics, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka, 560-0043, Japan.
e-mail address: kazushi@math.sci.osaka-u.ac.jp