KNOTS AND LINKS WITHOUT PARALLEL TANGENTS

YING-QING WU

Steinhaus conjectured that every closed oriented C^1-curve has a pair of anti-parallel tangents. The conjecture is not true. Porter [Po] showed that there exists an unknotted curve which has no anti-parallel tangents. Colin Adams raised the question of whether there exists a nontrivial knot in \mathbb{R}^3 which has no parallel or antiparallel tangents. In this paper we will solve this problem, showing that any (smooth or polygonal) link L in \mathbb{R}^3 is isotopic to a smooth link \hat{L} which has no parallel or antiparallel tangents. If $S(L)$ is the set of all smooth links isotopic to L, then the subset $\hat{L}(L)$ of all \hat{L} which has no parallel or antiparallel tangents is not dense in $S(L)$ if it is endowed with C^∞ topology. However, $\hat{L}(L)$ is dense in $S(L)$ under C^0 topology. We will show that any neighborhood of L contains such a link \hat{L}. See Theorem 7 below. The result has some impact on studying supercrossing numbers, see the recent work of Pahk [Pa].

We refer the readers to [Ro] for concepts about knots and links. Throughout this paper, we will use I to denote a closed interval on \mathbb{R}. Denote by S^2 the unit sphere in \mathbb{R}^3, and by S_1 the circle $S^2 \cap \mathbb{R}_{xy}$ on S^2, where \mathbb{R}_{xy} denotes the xy-plane in \mathbb{R}^3. Denote by $Z[z_1, z_2]$ the set $\{v = (x, y, z) \in \mathbb{R}^3 \mid z_1 \leq z \leq z_2\}$. Similarly for $Y[y_1, \infty)$ etc. A curve $\beta : I \rightarrow \mathbb{R}^3$ is an unknotted curve in $Z[z_1, z_2]$, with endpoints on different components of $\partial Z[z_1, z_2]$, and (ii) β is rel ∂ isotopic in $Z[z_1, z_2]$ to a straight arc.

Given a curve $\alpha : I = [a, b] \rightarrow S^2$ and a positive function $f : I \rightarrow \mathbb{R}_+ = \{x \in \mathbb{R} \mid x > 0\}$, we use $\beta = \beta(f, \alpha, t_0, v_0)$ to denote the integral curve of $f\alpha$ with $\beta(t_0) = v_0$, where $t \in I$. More explicitly, define

$$\beta(t) = \beta(f, \alpha, t_0, v_0)(t) = v_0 + \int_{t_0}^t f(t)\alpha(t) \, dt.$$

When $t_0 = a$ and $v_0 = 0$, simply denote it by $\beta(f, \alpha)$.

1 Partially supported by NSF grant #DMS 9802558
If $\gamma : [a, b] \to \mathbb{R}^3$ is a map and $[c, d]$ is a subinterval of $[a, b]$, denote by $\gamma[a, b]$ the restriction of γ on $[c, d]$. If u, v are points in \mathbb{R}^3, denote by $e(u, v)$ the line segment with endpoints at u and v, oriented from u to v. Denote by $d(u, v)$ the distance between u and v. Denote by $||e||$ the length of e if e is a line segment or a vector in \mathbb{R}^3. Thus $d(u, v) = ||e(u, v)|| = ||u - v||$.

Given n points $v_1, ..., v_n$ in \mathbb{R}^3, let $e_i = e(v_i, v_{i+1})$. The subscripts are always mod n numbers. Thus $e_n = e(v_n, v_1)$. In generic case, the union of these edges forms a knot, denoted by $K(v_1, ..., v_n)$. To avoid trivial case, we will always assume $n \geq 4$.

Lemma 1. Let $K = K(v_1, ..., v_n)$ be a polygonal knot, and let N be a regular neighborhood of K. Then there is a number $r > 0$ such that

(i) N contains the r-neighborhood $N(K)$ of K;

(ii) $K' = K(v'_1, v_1, ..., v'_n, v_n)$ is isotopic to K in N if $d(v_i, v'_i) < r$; and

(iii) $K'' = K(v'_1, ..., v'_n)$ is isotopic to K in N if $d(v_i, v'_i) < r$.

Proof. Choose $r > 0$ to satisfy (i) and $r < d/4$, where d is the minimal distance between non-adjacent edges of K. The knot K' is contained in $N(K)$. Let D_i be the meridian disk of the r-neighborhood $N(e_i)$ of the i-th edge $e_i = e(v_i, v_{i+1})$ of K, intersecting e_i perpendicularly at its middle point m_i. It is easy to check that the distance from m_i to any edge e_j ($j \neq i$) is at least $d/2 = 2r$, hence D_i is a meridian disk of $N(K)$. The edge $e(v'_i, v_i)$ is contained in an r-neighborhood of v_i, hence is disjoint from all D_j. Thus D_i intersects K' at a single point on the edge $e(v_i, v'_{i+1})$, so the disks $D_1, ..., D_n$ cut $N(K)$ into balls $B_1, ..., B_n$, each intersecting K' in an arc consisting of three edges, hence unknotted. Therefore K' is isotopic to K in $N(K)$. This proves (ii).

By (ii), both K and $K(v'_1, ..., v'_n)$ are isotopic to $K(v_1, v'_1, ..., v_n, v'_n)$ in N. Therefore, they are isotopic to each other, and (iii) follows. \(\square\)

Denote by $C(\theta, u, v)$ the solid cone based at u (the vertex of the cone), open in the direction of v, with angle θ. More explicitly, if we set up the coordinate system with u the origin and v in the direction of $(0, 0, 1)$, then

$$C(\theta, u, v) = \{(x, y, z) \in \mathbb{R}^3 \mid z \geq \cot \theta \sqrt{x^2 + y^2}\}.$$

A smooth curve $\beta : [a, b] \to B$ in a ball B is θ-allowable if (i) β is properly embedded and unknotted in B, (ii) the cones $C_a = C(\theta, \beta(a), -\beta'(a))$ and $C_b = C(\theta, \beta(b), \beta'(b))$ are mutually disjoint, each intersecting B only at its cone point.
A smooth arc $\beta : [a, b] \rightarrow \mathbb{R}^3$ is called an ϵ-suspension if it is an embedding into an equilateral triangle Δ in \mathbb{R}^3 with base the line segment $e = e(\beta(a), \beta(b))$ and height ϵ. It is called a round ϵ-suspension if furthermore it is a subarc of a round circle in \mathbb{R}^3, and $||\beta'(t)||$ is a constant function. The line segment e is called the base arc of β, and the disk bounded by β and e is called the suspension disk. Put $\theta = 2\epsilon/||e||$. Then the two angles of Δ adjacent to e is at most $\arctan(2\epsilon/||e||) < \theta$. Therefore Δ, hence the curve β, is contained in the cones $C(\theta, \beta(a), \beta'(a))$ and $C(\theta, \beta(b), -\beta'(b))$.

Let K be a polygonal knot, with edges e_1, \ldots, e_n. A smooth curve $\beta : S^1 \rightarrow \mathbb{R}^3$ is an allowable ϵ-approximation of K if it is a union of arcs $\beta_1, \ldots, \beta_{2n}$, such that

(i) each β_{2k} is an ϵ-allowable arc in some ball B_k of radius at most ϵ;

(ii) each β_{2k-1} is an ϵ-suspension, such that its base arc E_k is parallel to e_k, and the difference between the lengths of e_k and E_k is at most ϵ.

Lemma 2. Given any polygonal knot $K = K(v_1, \ldots, v_n)$ and a regular neighborhood N of K, there is an $\epsilon > 0$ such that any allowable ϵ-approximation γ of K with the same initial point is a knot, which is isotopic to K in N.

Proof. Rescaling \mathbb{R}^3 if necessary, we may assume that the length of each edge of K is at least 3. Let $e_i = e(v_i, v_{i+1})$. Denote by m the minimum distance between nonadjacent edges, and by r the number given in Lemma 1.

Let ϵ be a very small positive number (for example, $\epsilon < \min(1, m/10n, r/10n)$). Let $\beta_1, \ldots, \beta_{2n}$ be the arcs of γ, and B_i the ball containing β_{2i}, as in the definition of allowable ϵ-approximation. Let Δ_i be the equilateral triangles containing β_{2i-1}, as in the definition of ϵ-suspension arcs. Denote by v_i', v_{i+1}' the initial and ending points of β_{2i-1}, respectively. Consider the union of all Δ_i and B_i.

CLAIM. The triangles Δ_i are mutually disjoint, the balls B_i are mutually disjoint, and Δ_i intersects B_j only if $j = i$ or $i - 1 \mod n$, in which case they intersects at a single point.

Since the base arc $E_i = e(v_i', v_{i+1}')$ of β_{2i-1} is parallel to e_i with length difference at most ϵ, and since $d(v_i', v_{i+1}')$ is at most 2ϵ (the upper bound of diameters of B_i), one can show by induction that $d(v_i, v_i') \leq (3i - 2)\epsilon$, and $d(v_i, v_{i+1}') \leq 3i\epsilon$. Put $\delta = 4n\epsilon < m/2$. Then β_{2i-1} is in the δ-neighborhood of e_i, and B_i is in the δ-neighborhood of v_{i+1}. Since the distance between two vertices or nonadjacent edges of K is bounded below by m, it follows that the balls B_i are mutually disjoint, Δ_i is disjoint from Δ_j when i and j are not adjacent mod n, and disjoint from B_j if j is not equal or adjacent to $i \mod n$. Since $||E_i|| > 3 - \epsilon$ and the height of Δ_i is at most ϵ, the two angles of
\(\Delta_i \) adjacent to \(E_i \) is at most \(2\epsilon/(3-\epsilon) > \epsilon \). Thus for each endpoint \(v \) of \(E_i \), \(\Delta_i \) is contained in a cone of angle \(\epsilon \) based at \(v \) in the direction of the tangent or negative tangent of \(\beta \) at \(v \). Since \(\beta_{2i} \) is an \(\epsilon \)-allowable arc, it follows from definition that \(\Delta_i \) is disjoint from \(\Delta_{i+1} \), and they each intersect \(B_i \) only at a single point. This completes the proof of the claim.

Since each \(\beta_i \) is an embedding, it follows from the claim that \(\gamma : S^1 \to \mathbb{R}^3 \) is an embedding, hence is a knot. We can isotope \(\beta_{2i-1} \) via the suspension disk to the edge \(E_i \). Since \(\beta_{2i} \) is unknotted in \(B_i \), it can be rel \(\partial \) isotoped to a straight arc \(E_i' \) in \(B_i \). By the claim these isotopies form an isotopy of \(\gamma \) to the polygonal knot \(K_2 = E_1 \cup E_1' \cup ... \cup E_n \cup E_n' = K(v_1', v_1'', ..., v_n', v_n'') \). Since \(d(v_i', v_i'') \) is very small, by Lemma 1(ii) \(K_2 \) is isotopic to the knot \(K(v_1'', ..., v_n'') \), which is isotopic to \(K \) by Lemma 1(iii). \(\square \)

Let \(A \) be a compact 1-manifold. A smooth map \(\alpha : A \to S^2 \) is \textit{admissible} if (i) \(\alpha \) is an embedding, and (ii) it has no antipodal points, i.e., \(\alpha(t) \neq -\alpha(s) \) for all \(t \neq s \). Denote by \(\eta : S^2 \to S^2 \) the antipodal map, and by \(\rho : S^2 \to \mathbb{P}^2 \) the standard double covering map onto the projective plane \(\mathbb{P}^2 \). Then \(\alpha \) is admissible if and only if \(\rho \circ \alpha : A \to \mathbb{P}^2 \) is a smooth embedding.

Lemma 3. Suppose \(Y \) is the disjoint union of finitely many circles, and suppose \(A \) is a compact submanifold of \(Y \). Let \(\alpha : A \to S^2 \) be an admissible map such that each circle component of \(\alpha(A) \) bounds a disk \(\Delta \) with interior disjoint from \(\alpha(A) \) and \(\eta(\Delta) \). Then \(\alpha \) extends to an admissible map \(\tilde{\alpha} : Y \to S^2 \).

Proof. Let \(I \) be the closures of components of \(Y - A \). We need to extend \(\alpha \) to an admissible map \(\tilde{\alpha} : A \cup I \to S^2 \) which still satisfies the assumption of the lemma. The result would then follow by induction. If \(I \) is a circle, define \(\tilde{\alpha} : I \to S^2 \) to be a smooth map embedding \(I \) into a small disk \(D \) of \(S^2 \) such that \(D, \rho(D) \) and \(\alpha(A) \) are mutually disjoint. So suppose \(I \) is an interval with endpoints \(u_1, u_2 \) on a component \(Y_0 \) of \(Y \). Denote by \(\tilde{\alpha} = \rho \circ \alpha \).

If \(J = Y_0 - \text{Int} I \) is connected, then by assumption \(\tilde{\alpha} \) is an embedding, so there is a small disk neighborhood \(D \) of \(\tilde{\alpha}(J) \) which is disjoint from \(\tilde{\alpha}(A - J) \). Let \(D_1 \) be the component of \(\rho^{-1}(D) \) containing \(\alpha(J) \), and extend \(\alpha \) to a smooth embedding \(\tilde{\alpha} : A \cup I \to S^2 \) so that \(\tilde{\alpha}(I) \subset D \).

Now suppose \(J \) is disconnected. Let \(J_1, J_2 \) be the components of \(J \) containing \(u_1, u_2 \) respectively. Let \(K_1, ..., K_r \) be the circle components of \(A \), and let \(D_i \) be the disk on \(\mathbb{P}^2 \) bounded by \(K_i \). By assumption \(\tilde{\alpha}(J_i) \) are in \(\mathbb{P}^2 - \cup D_i \), so there are two
non-homotopic arcs $\tilde{\gamma}_1, \tilde{\gamma}_2 : I \to P^2$ such that $\tilde{\gamma}_i \cup \tilde{\alpha} : I \cup A \to P^2$ is a smooth embedding. One of the $\tilde{\gamma}_i$ lifts to a path $\gamma : I \to S^2$ connecting u_1 to u_2. It follows that $\gamma \cup \alpha : I \cup A \to S^2$ is the required extension. □

Lemma 4. Suppose $\alpha = (\alpha_1, \alpha_2, \alpha_3) : I = [a, b] \to S^2$ is an admissible curve intersecting S_1 transversely at two points in the interior, and $\alpha_3(a) > 0$. Then there is a function $f : I \to \mathbb{R}_+$ such that (i) $f(t) = 1$ in a neighborhood of ∂I, and (ii) the integral curve β is unknotted in $Z[z_1, z_2]$, where $z_1 = \beta_3(a)$ and $z_2 = \beta_3(b)$.

Proof. By assumption α_3 has exactly two zeroes $u, v \in I$, $(u < v)$, so $a_3(t) < 0$ if and only if $t \in (u, v)$. Since α is admissible, $\alpha(u) \neq \pm \alpha(v)$, so by a rotation along the z-axis if necessary we may assume that $\alpha_1(u), \alpha_1(v) > 0$, and $\alpha_2(u), \alpha_2(v)$ have different signs. Without loss of generality we may assume that $\alpha_1(t), \alpha_2(t) > 0$ when t is in an ϵ-neighborhood of u, and $\alpha_1(t) > 0, \alpha_2(t) < 0$ when t is in an ϵ-neighborhood of v, where $0 < \epsilon < \min(u - a, b - v)$.

We start with the constant function $f(t) = 1$ on I, and proceed to modify $f(t)$ so that $f(t)$ and the integral curve $\beta = \beta(f, \alpha, t_0, v_0)$ satisfy the conclusion of the lemma. Put $\beta = (\beta_1(t), \beta_2(t), \beta_3(t))$, and choose the base point v_0 so that $\beta(u) = 0$. Thus

$$\beta_1(t) = \int_u^t f(t)\alpha_1(t) \, dt.$$

Since $\alpha_1(u), \alpha_2(u) > 0$, and $\beta_1(u) = \beta_2(u) = 0$, by enlarging $f(t)$ in a small ϵ-neighborhood of u, we may assume that $\beta_1(t), \beta_2(t) > 0$ for all $t \in (u, v)$. Since $\alpha_2(t) < 0$ in a neighborhood of v, we may then enlarge $f(t)$ near v so that $\beta_2(v) = \beta_2(u) = 0$. This does not affect the fact that $\beta_1(t) > 0$ for $t \in (u, v)$, and $\beta_2(t) > 0$ for $t \in (u, v)$.

The function β_3 is descending in $[u, v]$ because $\alpha_3(t)$ is negative in this interval. Thus $\beta_3(v) < \beta_3(u)$. Since α_3 is positive in $[a, u]$ and $[v, b]$, β_3 is increasing in these intervals. We may now enlarge $f(t)$ in $(u - \epsilon, u)$ and $(v, v + \epsilon)$, so that $z_3 = \beta_3(u - \epsilon) < \beta_3(v)$ and $z_4 = \beta_3(v + \epsilon) > b_3(u)$. Thus the curve β on $[u - \epsilon, v + \epsilon]$ is a proper arc in $Z[z_3, z_4]$. We want to show that it is unknotted.

By the above, the curve $\beta[u, v]$ lies in $Z[z_3, z_4] \cap Y[0, \infty)$, with endpoints on the xz-plane. Since β_3 is descending on $[u, v]$, β is rel ∂ isotopic in $Z[z_3, z_4] \cap Y[0, \infty)$ to a straight arc $\hat{\beta}[u, v]$ on the xz-plane. Since $\alpha_2(t) > 0$ for $t \in [u - \epsilon, u]$, and $\beta_2(u) = 0$, we have $\beta_2(t) < 0$ for $t \in [u - \epsilon, u]$. Similarly, since $\alpha_2(t) < 0$ near v, we have $\beta_2(t) < 0$ for $t \in [v, v + \epsilon]$. Therefore, the above isotopy is disjoint from the arcs $\beta[u - \epsilon, u]$ and
\(\beta[v, v+\epsilon] \), hence extends trivially to an isotopy of \(\beta[u-\epsilon, v+\epsilon] \), deforming \(\beta[u-\epsilon, v+\epsilon] \) to the curve \(\hat{\beta} = \beta[u-\epsilon, u] \cup \hat{\beta}[u, v] \cup \beta[v, v+\epsilon] \).

Since \(\alpha_1(t) \) is positive near \(u, v \), \(\beta_1 \) is increasing in \([u-\epsilon, u]\) and \([v, v+\epsilon]\). Since \(\hat{\beta} \) is a straight arc connecting \(\beta(u) \) and \(\beta(v) \), and \(\beta_1(v) > \beta_1(u) \) by the above, the first coordinate function of \(\hat{\beta} \) is also increasing in \([u, v]\). It follows that the first coordinate of \(\hat{\beta} \) is increasing in \([u-\epsilon, v+\epsilon]\), therefore, \(\hat{\beta} \) is unknotted in \(Z[z_3, z_4] \), hence is rel \(\partial \) isotopic to a straight arc \(\hat{\beta} \) in \(Z[z_3, z_4] \).

Since \(\beta_3(t) \) is increasing on \([a, u-\epsilon] \cup [v + \epsilon, b]\), the above isotopy extends trivially to an isotopy deforming \(\beta : I \to \mathbb{R}^3 \) to the curve \(\beta[a, u-\epsilon] \cup \hat{\beta} \cup \beta[v + \epsilon, b] \). Since the third coordinate of this curve is always increasing, it is unknotted in \(Z[z_1, z_2] \), where \(z_1 = \beta_3(a) \) and \(z_2 = \beta_3(b) \). Therefore, \(\beta \) is also unknotted in \(Z[z_1, z_2] \).

\[\square \]

Given \(a \in \mathbb{R} \) and \(\delta > 0 \), let \(\varphi = \varphi[a, \delta](x) \) be a smooth function on \(\mathbb{R}^1 \) which is symmetric about \(a \), \(\varphi(a) = 1 \), \(\varphi(x) = 0 \) for \(|x - a| \geq \delta \), and \(0 \leq \varphi(x) \leq 1 \) for all \(x \). Given \(a, b \in \mathbb{R} \) with \(a < b \), let \(\psi(x) = \psi[a, b](x) \) be a smooth monotonic function such that \(\psi(x) = 0 \) for \(x \leq a \), and \(\psi(x) = 1 \) for \(x \geq b \). Such functions exist, see for example [GP, Page 7].

For any point \(p \in S^2 \), denote by \(U(p, \epsilon) \) the \(\epsilon \)-neighborhood of \(p \) on \(S^2 \), measured in spherical distance. Thus for any \(q \in U(p, \epsilon) \), the angle between \(p, q \) (considered as vectors in \(\mathbb{R}^3 \)) is less than \(\epsilon \).

Lemma 5. Let \(0 < \epsilon < \pi/8 \), and let \(\alpha = (\alpha_1, \alpha_2, \alpha_3) : I = [a_1, a_2] \to S^2 \) be an admissible arc transverse to \(S_1 \), such that \(\alpha_3(a_i) > \epsilon \). Let \(\mu > 0 \). Then there is a smooth positive function \(f(t) \) such that (i) \(f(t) = 1 \) near \(a_i \), and (ii) the integral curve \(\beta = \beta(f, \alpha, t_0, v_0) \) is an \(\epsilon \)-allowable arc in a ball of radius \(\mu \) in \(\mathbb{R}^3 \).

Proof. Notice that \(U(\alpha(a_i), \epsilon) \) are on the upper half sphere \(S^2_+ \). Choose \(0.1 > \delta > 0 \) sufficiently small, so that \(\alpha(t) \in U(\alpha(a_i), \epsilon) \) for \(t \) in a \(\delta \)-neighborhood of \(a_i \). Choose \(c_0 = a_1 + \delta, c_1, \ldots, c_p = a_2 - \delta \) so that the curve \(\alpha(I_j) \) intersects \(S_1 \) exactly twice in the interior of \(I_j = [c_{j-1}, c_j], j = 1, \ldots, p \).

By Lemma 4 applied to each \(I_j \), we see that there is a function \(f_1(t) \) on \(I \), such that \(f_1(t) = 1 \) near \(c_i \) and on \([a_1, c_0] \cup [c_p, a_2]\), and the part \(\beta_1[c_0, c_p] \) of the integral curve \(\beta_1 = \beta(f_1, \alpha, t_0, v_0) \) is unknotted in \(Z[z_0, z_p] \), where \(z_i = \beta(c_i) \). Without loss of generality we may choose \(t_0 = c_0 \) and \(v_0 = 0 \). Since the curve is compact, the isotopy is within a ball, so there is a disk \(D \) in \(\mathbb{R}^2 \), such that \(\beta_1[c_0, c_n] \) is unknotted in \(D \times [z_0, z_p] \). Choose \(N \) large enough, so that the ball \(B(N) \) of radius \(N \) centered at the origin contains both \(D \times [z_0, z_p] \) and the curve \(\beta_1 \) in its interior. We want to
modify \(f_1(t) \) on \([a_1, c_0] \cup (c_p, a_2]\) to a function \(f_3(t) \), so that \(\beta_3 = \beta(f_3, \alpha, c_0, 0) \) is an \(\epsilon \)-admissible curve in \(B(10N) \), and \(f_3(t) = 10N/\mu \) near \(\partial I \).

First, consider the function

\[
f_2 = f_1 + \left(\frac{10N}{\mu} - 1 \right)(1 - \psi[a_1, a_1 + \epsilon_1] + \psi[a_2 - \epsilon_1, a_2]),
\]

where \(\epsilon_1 \) is a very small positive number, say \(\epsilon_1 < \min(\delta, \mu/10) \). By the property of the \(\psi \) functions, we have \(f_2(t) = f_1(t) \) for \(t \in [c_0, c_p] \), and \(f_2(t) = 10N/\mu \) near \(a, b \).

Let \(\beta_2 = \beta(f_2, \alpha, z_0, 0) \). Since \(\epsilon_1 \) is very small, one can show that \(||\beta_2(t)|| < 2N \) for all \(t \in [a, b] \). Let \(b_1, b_2 \) be positive real numbers. Define

\[
f_3(t) = f_2(t) + b_1 \varphi[a_1 + \delta/2, \delta/4](t) + b_2 \varphi[a_2 - \delta/2, \delta/4](t).
\]

Let \(\beta_3 \) be the integral curve \(\beta_3(f_3, \alpha, z_0, 0) \). Since \(L \) is a polygonal knot, \(\sum e_j = 0 \), so we have

\[
\beta_3(a_2) = \beta_2(a_2) + b_2 \int_{z_p}^b \varphi(a_2 - \delta/2, \delta/4)(t) \alpha(t) \, dt = \beta_2(a_2) + b_2 \nu_2.
\]

Since \(\alpha(t) \in U(\alpha(a_2), \epsilon) \) and \(\epsilon < \pi/8 \), the vector \(\nu_2 \) above is nonzero. Since \(||\beta_2(a_2)|| < 2N \), we may choose \(b_2 > 0 \) so that \(||\beta_3(a_2)|| = 10N \). Similarly, choose \(b_1 > 0 \) so that \(\beta_3(a_1) = 10N \).

Consider a point \(t \in [c_p, a_2] \) such that \(||\beta_3(t)|| \geq 10N \). Let \(\theta(t) \) be the angle between \(\beta_3(t) \) and \(\beta'_3(t) \). Put \(u_0 = \beta_3(c_p) \), and notice that \(||u_0|| < N \). Since \(\alpha(t) \in U(\alpha(a_2), \epsilon) \), the curve \(\beta_3[c_p, b] \) lies in the cone \(C(\epsilon, u_0, \alpha(a_2)) \), so the angle between \((\beta_3(t) - u_0) \) and \(\alpha(t) \) is at most \(2\epsilon \). We have

\[
\cos \theta(t) = \frac{\beta_3(t) \cdot \alpha(t)}{||\beta_3(t)||} = \frac{(\beta_3(t) - u_0) \cdot \alpha(t) + u_0 \cdot \alpha(t)}{||\beta_3(t)||} \\
\geq \frac{(10N - N) \cos(2\epsilon) - N}{10N} = 0.9 \cos(2\epsilon) - 0.1 \\
> \frac{1}{2}
\]

Therefore, \(\theta(t) < \pi/3 \). In particular, this implies that the norm of \(\beta_3(t) \) is increasing if it is at least \(10N \) and \(t \in [c_p, a_2] \); but since \(||\beta_3(a_2)|| = 10N \), it follows that \(\beta_3(t) \in B(10N) \) for \(t \in [c_p, a_2] \). Similarly, one can show that this is true for \(t \in [a_1, c_0] \).

Therefore, \(\beta_3 \) is a proper arc in \(B(10N) \). It is unknotted because its third coordinate is increasing on \([a_1, c_0] \cup [c_p, a_2]\) and the curve \(\beta_3[c_0, c_p] = \beta_1[c_0, c_p] \) is unknotted in \(D \times [z_0, z_p] \), with \(\beta_3(c_0) \) on \(D \times z_0 \).
We need to show that the cone $C(\epsilon, \beta_3(a_2), \beta'_3(a_2))$ intersects $B(10N)$ only at the cone point, but this is true because $\epsilon + \theta(a_2) < \pi/8 + \pi/3 < \pi/2$. Similarly for $C(\epsilon, \beta_3(a_1), -\beta'_3(a_1))$. Also, notice that the cone $C(\epsilon, \beta_3(a_2), \beta'_3(a_2))$ lies above the xy-plane, while $C(\epsilon, \beta_3(a_1), -\beta'_3(a_1))$ lies below the xy-plane, so they are disjoint. It follows that β_3 is an ϵ-allowable curve in $B(10N)$.

Finally, rescale the curve by defining $f(t) = f_3(t)\mu/10N$, and $\beta = \beta(f, \alpha, c_0, 0)$. Then β is an ϵ-allowable curve in a ball of radius μ, and $f(t) = 1$ near ∂I. \[\Box\]

Lemma 6. Suppose the integral curve $\beta = \beta(f, \alpha, a, 0)$ is a round ϵ-suspension. Then for any $k \in \left[\frac{1}{2}, \frac{3}{2}\right]$, there is a positive function $g(t)$ such that (i) $g(t) = f(t)$ near a, b, and (ii) the integral curve $\gamma = \beta(g, \alpha, a, 0)$ is a $(k\epsilon)$-suspension with $\gamma(b) - \gamma(a) = k(\beta(b) - \beta(a))$.

Proof. Without loss of generality we may assume $[a, b] = [-1, 1]$. Set up the coordinate system so that β lies in the triangle with vertices $\beta(a) = (0, 0, 0)$, $\beta(b) = (2u, 0, 0)$ and $(u, \epsilon, 0)$, where $2u = ||\beta(b) - \beta(a)||$. Put $\alpha = (\alpha_1, \alpha_2, \alpha_3)$. Then $\alpha_3(t) = 0$, and $\alpha_2(-t) = -\alpha_2(t)$. Consider the smooth function $\phi = \psi[-1+\delta, -1+2\delta] - \psi[1-2\delta, 1-\delta]$. It is an even function with $\phi(t) = 1$ when $|t| \leq 1 - 2\delta$, and $\phi(t) = 0$ when $|t| \geq 1 - \delta$. Let $g(t) = c + p\phi(t)$, where $p > -c$ is a constant. Since $|\phi(t)| \leq 1$, $g(t)$ is a positive function. We have

$$
\gamma(1) = \int_{-1}^{1} g(t)\alpha(t) \, dt = \beta(1) + p \int_{-1}^{1} \phi(t)\alpha(t) \, dt.
$$

Since $\phi(t)$ is even and α_2 is odd, $\gamma_2(1) = \gamma_3(1) = 0$. When δ approaches 0, the integral

$$
c \int_{-1}^{1} \phi(t)\alpha_1(t) \, dt
$$

approaches $\beta_1(1) = 2u$. Hence for any $s \in [u, 3u]$, we may choose δ small and $p \in (-c, c)$ so that $\gamma(1) = (s, 0, 0)$. Note that $\gamma_1'(t) = (c - p)\alpha_1(t) > 0$, so γ is an embedding.

Consider γ and β as curves on the xy-plane. Then The tangent of γ at t is given by

$$
\frac{\gamma'(t)}{\gamma_1'(t)} = \frac{g(t)\alpha_2(t)}{g(t)\alpha_1(t)} = \frac{\alpha_2(t)}{\alpha_1(t)},
$$

which is the same as the tangent slope of β at t, and hence is bounded above by ϵ. Thus γ is below the line $y = \epsilon x$ on the xy-plane. Similarly, it is below the line $y = -\epsilon(x - \gamma_1(1))$. It follows that γ is a $k\epsilon$-suspension, where $k = \gamma_1(1)/\beta_1(1) < 2$. \[\Box\]
Theorem 7. Given any tame link L in S^3 and any neighborhood $\eta(L)$ of L, there is a smooth link in $\eta(L)$ which is isotopic to L in $\eta(L)$, and has no parallel or antiparallel tangents.

Proof. Without loss of generality we may assume that $L = K_1 \cup ... \cup K_r$ is an oriented polygonal link in general position, with oriented edges $e_1, ..., e_m$, which are also considered as vectors in \mathbb{R}^3. Let d be the minimum distance between nonadjacent edges. We may assume each K_i has at least four edges, so d is also an upper bound on the length of e_i. For any $\epsilon_1 \in (0, d/3)$ the ϵ_1-neighborhoods of K_i, denoted by $N(K_i)$, are mutually disjoint. Choosing ϵ_1 small enough, we may assume that $N(K_i)$ are contained in $\eta(L)$. By Lemma 2 there is an $\epsilon > 0$, such that any allowable ϵ-approximation of K_i is contained in $N(K_i)$ and is isotopic to K_i in $N(K_i)$. Note that $\epsilon \leq d/3$. We will construct such an approximation \hat{K}_i for each K_i, with the property that $\hat{L} = \hat{K}_1 \cup ... \cup \hat{K}_r$ has no parallel or antiparallel tangents. Since $N(K_i)$ are mutually disjoint, the union of the isotopies from \hat{K}_i to K_i will be an isotopy from \hat{L} to L in $N(L)$.

Consider the unit tangent vector of e_i as a point p_i on S^2, which projects to \hat{p}_i on P^2. Since L is in general position, $\hat{p}_1, ..., \hat{p}_n$ are mutually distinct, so by choosing ϵ smaller if necessary we may assume that they have mutually disjoint ϵ-neighborhoods $\hat{D}_1, ..., \hat{D}_n$, which then lifts to ϵ-neighborhoods $D_1, ..., D_n$ of $p_1, ..., p_n$. Adding some edges near vertices of L if necessary, we may assume that the angle between the unit tangent vectors of two adjacent edges e_i, e_{i+1} of L (i.e. the spherical distance between p_i and p_{i+1}), is small (say $\leq \pi/2$).

Bend each edge e_j a little bit to obtain a round $(\epsilon/2)$-suspension $\hat{e}_j : I_j \to \mathbb{R}^3$ with $||\hat{e}_j(t)|| = 1$ (so the length of I_j equals the length of the curve \hat{e}_j). Then its derivative \hat{e}_j' is a map $I_j \to S^2$ with image in D_j because D_j has radius ϵ. Let $Y = \cup S^1_i$ be a disjoint union of r copies of S^1, and let $A = \cup I_j$ be the disjoint union of I_j. Embed A into Y by a map η according to the order of e_i in L. More precisely, if e_j and e_k are edges of L such that the ending point of e_j equals the initial point of e_k then the ending point of $\eta(I_j)$ and the initial point of $\eta(I_k)$ cobounds a component of $Y - \eta(A)$. The union of the maps $\hat{e}_j' \circ \eta^{-1}$ defines a map $\eta(A) \to S^2$, which is admissible because the disks \hat{D}_j on P^2 are mutually disjoint. By Lemma 3, it extends to an admissible map $\hat{\alpha} : Y \to S^2$. It now suffices to show that each \hat{K}_i has an allowable ϵ-approximation $\hat{K}_i : S^1_i \to \mathbb{R}^3$, with $\hat{\alpha}|_{S^1_i}$ as its unit tangent map.

The construction of \hat{K}_i is independent of the other components, so for simplicity we may assume that $L = K(v_1, ..., v_n)$ is a knot, with edges $e_i = e_i(v_i, v_{i+1})$. Since
L is in general position, the three unit vectors \(p_1, p_2, p_3 \) of the edges \(e_1, e_2, e_3 \) are linearly independent, so there is a positive number \(\delta < \epsilon \), such that the ball of radius \(\delta \) centered at the origin is contained in the set \(\{ \sum u_i p_i \mid \epsilon > |u_i| \} \).

We may assume that the intervals \(I_j = [a_j, b_j] \) are sub-intervals of \(I = [0, a_{n+1}] \), with \(a_1 = 0 \) and \(b_j < a_{j+1} \). Put \(\hat{I}_j = [b_j, a_{j+1}] \). Without loss of generality we may assume that the function \(\eta : A \to S^1 \) defined above is the restriction of the function \(\eta : I \to S^1 \) defined by \(\eta(t) = \exp(2\pi it/a_{2n}) \). Put \(\alpha = \hat{\alpha} \circ \eta : I \to S^2 \). Thus \(\alpha(t) = \hat{e}'(t) \) on \(I_j \).

Consider the restriction of \(\alpha \) on \(\hat{I}_j = [b_j, a_{j+1}] \). We have assumed that the spherical distance between \(p_j \) and \(p_{j+1} \) is at most \(\pi/2 \). Since \(\alpha(b_j) \in D_j \) and \(\alpha(b_{j+1}) \in D_{j+1} \), the spherical distance between \(\alpha(b_j) \) and \(\alpha(a_{j+1}) \) is at most \(\pi/2 + 2\epsilon \). As \(\epsilon \) is very small, we may choose a coordinate system for \(\mathbb{R}^3 \) so that the third coordinate \(\alpha_3 \) of \(\alpha \) is greater than \(\epsilon \) at \(b_j \) and \(a_{j+1} \), and by transversality theorem we may further assume that \(\alpha \) is transverse to the circle \(S_1 = S^2 \cap \mathbb{R}_{xy} \) in this coordinate system. Now we can apply Lemma 5 to get a function \(f_j(t) \) on \(\hat{I}_j \) such that \(f_j(t) = 1 \) near \(\partial \hat{I}_j \), and the integral curve \(\gamma_j = \beta(f_j, \alpha|_{\hat{I}_j}) \) is an \(\epsilon \)-allowable curve in a ball of radius \(\delta/2n \). Extend these \(f_j \) to a smooth map on \(I \) by defining \(f(t) = 1 \) on \(I_j \).

Consider the integral curve \(\beta = \beta(f, \alpha) \). It is the union of \(2n \) curves \(\beta_i, \hat{\beta}_i \) defined on \(I_i \) and \(\hat{I}_i \), where \(\beta_i = \beta(f|_{I_i}, \alpha|_{I_i}, a_i, \beta(a_i)) \) is a translation of \(\hat{e}_j \) because \(f|_{I_i} \equiv 1 \); and \(\hat{\beta}_i = \beta(f|_{\hat{I}_i}, \alpha|_{\hat{I}_i}, b_i, \beta(b_i)) \) is a translation of \(\gamma_i \) because \(f|_{\hat{I}_i} = f_i \). We have

\[
||\beta(a_{n+1}) - \beta(a_0)|| \leq \sum_{1}^{n} ||\beta(a_{j+1}) - \beta(b_j)|| + ||\sum_{1}^{n} (\beta(b_j) - \beta(a_j))||
\leq \sum_{1}^{n} 2(\delta/2n) + ||\sum_{j} e_j|| = \delta.
\]

By the definition of \(\delta \), there are numbers \(u_i \in [-\epsilon, \epsilon] \), such that \(\beta(2n) - \beta(0) = \sum_{i=1}^{3} u_i p_i \). Notice that \(|u_i| < \epsilon < ||e_j||/2 \), so by Lemma 6, we can modify \(f(t) \) on \([a_j + \epsilon_1, \beta_j - \epsilon_1] \) for \(j = 1, 2, 3 \) and some \(\epsilon_1 > 0 \), to a function \(g(t) \), so that the integral curve \(\gamma = \beta(g, \alpha) \) on \(I_j \) is an \(\epsilon \)-suspension with base arc the vector \(e_j + u_j p_j \). Now we have \(\gamma(a_{n+1}) = \gamma(0) \), so \(\gamma \) is a closed curve. Since \(\gamma'(t) = \alpha(t) \) near 0 and 2n and \(\alpha \) induces a smooth map \(\hat{\alpha} : S^1 \to S^2 \), it follows that \(\gamma \) induces a smooth map \(\hat{\gamma} : S^1 \to \mathbb{R}^3 \).

From the definition we see that \(\hat{\gamma} \) is an allowable \(\epsilon \)-approximation of \(K \). This completes the proof of the theorem. \(\square \)

ACKNOWLEDGEMENT. I would like to thank Colin Adams for raising the problem, and for some helpful conversations.
References

[GP] Guillemin, V. and Pollack, A., Differential Topology, Prentice-Hall, 1974.

[Pa] Pahk, S., Supercrossing number for knots and links, Preprint.

[Po] Porter, J., A note on regular closed curves in E^3, Bull. Acad. Polon. Sci. Sir. Sci. Math. Astronom. Phys. 18 (1970), 209–212.

[Ro] Rolfsen, D., Knots and Links, Publish or Perish, 1990.