Merging safety and cybersecurity analysis in product design

Dajiang Suo1†, Joshua E. Siegel1†, Sanjay E. Sarma1†
1Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, USA
2E-mail: djsuo@mit.edu

Abstract: When developing cyber-physical systems such as automated vehicles, safety and cybersecurity analyses are often conducted separately. However, unlike in the IT world, safety hazards and cybersecurity threats converge in cyber-physical systems; a malicious party can exploit cyber-threats to create extremely hazardous situations, whether in autonomous vehicles or nuclear plants. The authors propose a framework for integrated system-level analyses for functional safety and cyber security. They present a generic model named Threat Identification and Refinement for Cyber-Physical Systems (TIRCPS) extending Microsoft’s six classes of threat modelling including Spoofing, Tampering, Repudiation, Information Disclosure, Denial-of-Service and Elevation Privilege. TIRCPS introduces three benefits of developing complex systems: first, it allows the refinement of abstract threats into specific ones as physical design information becomes available. Second, the approach provides support for constructing attack trees with traceability from high-level goals and hazardous events (HEs) to threats. Third, TIRCPS formalises the definition of threats such that intelligent tools can be built to automatically detect most of a system’s vulnerable components requiring protection. They present a case study on an automated-driving system to illustrate the proposed approach. The analysis results of a hierarchical attack tree with cyber-threats traceable to high-level HEs are used to design mitigation solutions.

1 Introduction

The analyses of safety hazards (which we will sometimes refer to as ‘hazards’) and cybersecurity threats (which we will refer to as ‘threats’) are usually conducted separately when developing cyber-physical systems such as autonomous vehicles (AVs). The urgent need for a combined safety and cybersecurity analyses and processes in the product life cycle is recognised not only in the automobile industry but also in other safety-critical areas such as railway, airline, nuclear and industrial control systems and so on [1–3]. In the automotive domain, although original equipment manufacturers have been trying to improve the coordination between functional safety and cyber-security activities [4] due to the impact of increases in the level of connectivity and automation, simultaneously ensuring system safety and security is challenging because of the large number of causal relations between hazards and threats. As Parkinson et al. [5] suggest, for complex systems such as AVs, ‘the full extent of which sensors might be compromised and their effect on a vehicle’s function is not known.’ This complicates the design of safety-critical systems because the impact of threats on system functionality must be characterised to design effective mitigation strategies. Sun et al. [6] suggest that safety and cybersecurity teams are often isolated when developing complex systems. They also propose a formalism to identify contradictory requirements of safety and cybersecurity. However, this formalism does not include a structured process, which is necessary for maintaining traceability among safety and cybersecurity requirements and mitigation solutions for design changes.

In addition to the gap between functional safety and cybersecurity activities, threat identification is often conducted in an ad-hoc way with little guidance [5, 7]. Although multiple approaches for threat modelling have been adapted from IT systems, such as STRIDE [8], OCTAVE [9], Attack Trees [10] and so on, they provide little support on finding threats. For example, although tree structures are widely used in the decomposing complex system and there have been efforts of combining fault trees used in safety and attack trees in cybersecurity analyses [11–13], identifying off-nominal attack scenarios where one hazard can result from more than one threat is still an open question. The generic model based on STRIDE and control structure of cyber-physical systems described in this paper bridge this gap.

We propose a structured framework that combines safety and cybersecurity analyses. In this framework, we present a generic model named TIRCPS, which extends the STRIDE category of threat modelling for cyber-physical systems. We claim TIRCPS presents three benefits for product development: first, it provides guidance for engineers to refine abstract threats identified during concept stages into specific ones depending on actual designs of the systems; second, the approach enables safety and security engineers to construct attack trees that provide traceability among system-level goals, hazardous events (HEs) and threats; and third, TIRCPS formalises threat definitions such that automated tools can be built to detect most of a system’s vulnerable components in need of protection. We present a case study applying TIRCPS to an automated-driving system to illustrate the proposed approach.

2 Background

2.1 Motivation and previous work

For integrated hazard and threat analyses, there is no industry standard that accounts for safety and cyber-security simultaneously throughout the product life cycle. Although it has been suggested that safety processes can be tailored to support cyber-security analyses in the automotive cyber-security guidance – J3061 [4], the how and the when of communication between the safety and security processes has not been broadly investigated.

Parkinson et al. [5] summarise the knowledge gap between existing approaches for ensuring cyber security and potential threats for AVs. The authors suggest that the causal relations between hazards and threats, and the severity of threats in terms of injury or losses due to incidents, are unknown. For example, the effect of applying the emergency brake unexpectedly when an AV is moving on a highway – because of, say, spoofed on-board vehicle sensors – differs from the effect of the same action when the AV is approaching an intersection in city streets. In addition, the physical architecture must adapt to design changes. For example, adding vehicle-to-vehicle (V2V) and vehicle-to-
infrastructure (V2I) capabilities to a car introduces new attack methods such as the Sybil attack [14], in which an adversary spoofs multiple vehicle identities to fool other nearby vehicles and roadside units [15]. This threat cannot be mitigated by sensor fusion defences. For threat identification of AVs, Petit and Shladover [7] provide a summary of perception and localisation threats for AVs and infrastructure. Yan et al. [16] demonstrate wireless attacks on perception modules in the Tesla S model, and Petit et al. [17] successfully spoof camera and Light Detection and Ranging (LIDAR) modules used by AVs for object detection and classification. Miller and Valasek [18] investigate the security of the CAN (controller area network) and control units in existing vehicle module in the market. For general threat identification, Humayed et al. [19] provide a survey of cyber-physical approaches. Based on a control-based hazard analysis technique System-Theoretic Process Analysis (STPA), Young and Leveson [20] describe a method for identifying system vulnerabilities to cyberattacks [21] named STPA-Sec. However, his method focuses on concept development and does not provide guidance on threats identification of physical components. Siegel proposes a model on generic cyber-physical security [22].

2.2 Our contributions

Although there are previous works considering the interdependency between safety and cybersecurity and graphical methods such as fault trees and attack trees are used to combine hazards and threats in a single model, to the best of our knowledge, little work has been done to support safety and cybersecurity co-engineering to meet two critical requirements, i.e., providing guidance of deriving threat scenarios for constructing attack trees and maintaining traceability between safety and cybersecurity in the product life cycle. Specifically, this paper contributes to the following aspects.

The STRIDE-based model (Fig. 1) and template (Table 1) provide guidance for constructing and refine threats and attack scenarios for constructing attack trees. Although the solution in [11] suggests the use of STRIDE for identifying threats, it does not provide any structured processes to guide engineers. In addition, our method is focused on cyber-physical systems, as illustrated in the control structure in Fig. 1.

In addition, the derived attack tree maintains traceability between safety and cybersecurity. In Section 3, we define HEs and threats formally to achieve this goal. Maintaining traceability is critical to dealing with new threats and designing mitigation solutions to resolve conflicts among hazards and threats. We provide an example of mitigating digital scenery attacks in the case study (Section 4) to illustrate how an intelligent tool built on our formal framework can support engineers in these tasks.

3 Framework for threat identification and secure architecture design

We present the TIRPCS approach for threat identification of cyber-physical systems. TIRPCS builds on Microsoft's STRIDE model and is based on a control-based structure used in safety [21] and human performance analyses [23]. Similar to the STPA-SEC and STPA hazard and security analyses techniques for concept development, TIRPCS threat identification starts from the concept phase. However, the focus of TIRPCS is system-level design, in which detailed information about physical components is available. Fig. 2 summarises this approach.

The proposed framework (see Fig. 2) starts by initiating safety and security life cycles from features defined by system goals and stakeholder needs. For example, a high-level safety goal can be

![Fig. 1 Generic model for threat identification of cyber-physical systems based on STRIDE](image1)

STRIDE category	Threat HEs	Related feedback	Environment	Receivers/sensors	Information storage and analysis	Decision – making
spoofing	fake objects/scenery	relay/replay signals	misclassification, lack of context	risk behaviours operational or other types of losses		
tampering	modified objects	man-in-the-middle modification	misclassification, lack of context			
repudiation	• Any spoofing, tampering and DoS cannot be traced back to the adversary					
information disclosure	• Disclosure of credentials for the V2X application • Disclosure of passenger data e.g., routing information					
denial of service	jamming or corrupting	sensor flooding				
privilege	access to critical data or network					
that the vehicle must avoid collisions by automatically applying longitudinal and lateral control, while a goal for the normal operation of transportation systems is that autonomous manoeuvring should not hinder the traffic flow in any type of roads unless there is an emergency situation.

Based on system functionalities supporting these tasks, engineers can perform hazard analyses to identify HEs with ASIL ratings [24] and derive corresponding functional threats. For example, for a hazard that involves unexpected emergency braking when an AV is moving on the highway, one of the corresponding threats in the functional level can be that the range of obstacles or vehicles in front was manipulated without authorisation.

During system-level design, the high-level threats identified during concept development can be refined to finer granularity accounting for decisions on actual design choices (e.g. choosing LIDAR or a camera for object detection and tracking). We present a STRIDE-based generic model (see Fig. 1 and Table 1) that provides guidance for identifying and refining threats to create risk scenarios, presenting details in the next section. In this section, we define HEs and threats formally such that the analysis results are compatible with Attack Trees, a threat model approach proposed by Schneier [10] and included in industrial guidance for automotive cybersecurity [4]. This allows intelligent algorithms and tools to be built to automatically detect the component that is most vulnerable to cyber-attacks.

An attack tree is a collection of nodes in which a root corresponds to an HE and each node has a reference to child nodes. There are three types of child nodes: an ‘and’ node indicating that an HE or an abstract threat becomes true only if all of its child nodes are true; an ‘or’ node indicating that an HE or an abstract threat can result from any of its child nodes; and a ‘threat’ node which represents behaviours of an adversary and its risk level. Since we adopt Microsoft's STRIDE model to classify threats into six categories, a tree's threat node can have six types.

Definition 1: A HE is a four-tuple \(\{F, F^T, Co, AI\} \) where \(F \) is system functionality; \(F^T \) is a four-tuple \(\{PR, NPR, EL, NT\} \) where \(PR, NPR, EL, \) and \(NT \) represent ways that a function can be provided undesirably including provided, not provided, too early or too late or too much or not enough, guidewords that often used in hazard analysis [21, 24]; \(Co \) corresponds to the context under which a hazard occurs; \(AI \) is a three-tuple \(\{Se, C, E\} \) representing severity, controllability and exposure of the HE, respectively. Each HE identified at this step is related to high-level goals. For example, the HE wherein the AV provides a deceleration command unexpectedly when moving on the highway with high speed can not only cause collisions but also hinder the traffic flow, both of which violate the AV's high-level goals.

Definition 2: A Threat \((T) \) is a five-tuple \(\{Tc, Fb, Fa, P, S\} \) where \(Tc \) is the threat category corresponding to six categories in the STRIDE model; \(Fb \) represents feedback information that a given threat refers to; \(Fa \) is the parent node that can be a HE or a threat; \(P \) is the attack potential; \(S \) is a ChildNode that is a three-tuple \(\{T, A, O\} \) where \(T \) is a Threat, \(A \) is an AND node and \(O \) is an OR node [10]. HEs identified in the functional safety analysis become the starting point of threat identification during concept development. Consider threats that result in HEs related to a deceleration command. If the range or range-rate of the vehicle in front were spoofed or position of a given vehicle is tampered with by an adversary when an AV is approaching an intersection at a low speed or moving at rapid speed on a highway, the automated-driving controller may issue a deceleration command unexpectedly. The same attack can cause moderate injury to people and moderate damage to vehicles or persons and is difficult but possible to control in the low-speed context, while potentially fatal and very difficult to control in the latter. The determination of severity and controllability of a given threat is based on risk assessment of corresponding HEs in the functional safety process.

3.1 Generic model of threat identification for cyber-physical systems

A cyber-physical system [25] often consists of computers and networks (i.e. controllers) that monitor and control physical processes through actuators based on feedback from sensors' signals. Threat modelling for cyber-physical systems differs IT-based solutions in that threats influence each element in the control loop in different ways and thus need to be treated independently. In other words, the threat model must be customised based on the unique features of and the influence of cyber-physical systems, as suggested by Myagmar et al. [26]. Fig. 1 depicts a generic model that extends the STRIDE model to adapt it to cyber-physical systems. Table 1 is the corresponding template that provides guidance for identifying threats on physical components such as LIDAR, cameras and so on.

Consider AV threat identification based on STRIDE. A vehicle takes inputs from environment (e.g. scenery) or feedback from onboard sensors (e.g. LIDAR, camera, inertial measurement units...
etc.) and stores information in memory chips for perception and localisation and so on. Then, the automated controller can make safety-critical decisions based on contextual information including route information, vehicle's current location and detected objects in surrounding environments. It also plans trajectories and generates low-level control commands for propulsion, steering and braking systems and so on. Each element in the control loop above is subject to different threats in STRIDE.

Spoofing: An adversary can spoof the environment or sensory inputs by creating fake objects that are recognised as real ones by AV's perception systems. For example, he or she can replay laser pulses from a transmitter to jam a LIDAR or falsify the presence of an object [27]. He or she can also spoof vehicle identities or those of high-importance controllers (e.g. traffic lights or service or dispatch centres) in V2X communication, which can be disastrous for decision-making. For example, an adversary who spoofs vehicle identity in an intersection can send false position data, causing other vehicles to execute emergency stop manoeuvres.

Tampering: Similar to spoofing, an adversary can take advantage of vulnerabilities in the perception systems and tamper with environmental or sensory inputs to AV's. Consider the computer-vision systems that take image data from on-board cameras to detect and classify objects. Researchers have shown that these perception systems built on deep learning techniques such as convolutional neural network (CNN), even small perturbations on 2D image [28] or 3D printed objects [29] can cause a misclassification.

Repudiation: Repudiation involves ‘users who deny performing an action without other parties having any way to prove otherwise’ [8]. This category can help engineers decide what information or behaviours need to be documented and projected for future reference. For example, any signals that trigger a minimum risk condition [Minimum Risks condition refers to a low-risk motor vehicle operating condition to which an automated driving system automatically resorts upon either a system failure or a failure of the human driver to respond appropriately to a request to take over the dynamic driving task [30],] such as emergency stopping should be securely recorded in a log that can be traced back afterwards if any incident occurs. In the event that an adversary spoofs multiple identities to send ‘fake’ vehicle position to other vehicles through V2X channels, ‘watch-dog’ modules (i.e. cameras) can be installed on the traffic lights at intersections or within the maintenance factory to monitor adversarial behaviours.

Information disclosure: The impact of information disclosure threats on cyber-physical systems goes beyond privacy issues (e.g. leakage of customers’ confidential information). For example, design information may be disclosed. Therefore, vehicle credentials for V2X applications or authentication key exchange systems must be protected throughout the product life cycle including design, production, deployment and maintenance. An adversary who accesses valid credentials can not only send false messages to other vehicles to cause chaos [31].

Denial-of-service: This type of attack may focus on the sensory inputs, receivers, or networks. For example, an adversary can jam signals from/to the infrared encoder installed on wheels such that wheel speed or rotation is unavailable [32]. The charge-coupled devices (CCDs) within a digital camera can be damaged by high-energy neutrons created by laser systems that are 3 m from the target camera [27]. If this happens, computer-vision systems will be (partially) disabled. In addition to damaging, an adversary can also explore the physical properties of on-board sensors to disrupt their normal operation. For example, the camera might experience overexposure when facing strong intensity LED light [17] or fail to detect objects under bright background. Moreover, an adversary with a valid key for V2X communication can fake multiple identities to overload vehicular networks and reduce the availability of network infrastructure.

Elevation privilege: This type of threats refers to the privileged access gained by unauthorised users or malwares. An adversary who gets passengers’ routing information can track their vehicle and thus more easily initiate cyber-attacks, while a malware installed on on-board units (OBUs) may access to critical messages sent over the CAN bus [18].

3.2 Change management

Changes occurring from concept development and system-level design to post launch have a significant implication on hazard and threat analyses. Three types of changes deserve attention.

Changes in system components or communication channels: Adding components into existing systems to support new functionalities can introduce new attack surfaces utilised by adversaries. For example, adding communication modules to support V2V and V2I application can lead to ‘Sybil’ attacks [14] where an adversary ‘sends false safety messages using valid security credentials’ such as position and speed of other vehicles on the road.

Context change: Contextual information is critical for hazard and threat analyses. As mentioned before, an attack on sensors that detect obstacles and other vehicles can change environmental perception and has a higher level of severity and less controllability for AV's moving on a highway than those moving through a city at low speed.

Technology evolution: As technologies evolve, original assumptions made during threat modelling may become obsolete. For example, LIDAR advances can make it more spoof-proof [27] and thus decrease the attack potential of related threats.

Since system changes can introduce new threats or change risk levels of existing threats (controllability, severity etc.), existing mitigation solutions should be re-evaluated to account for newly identified threats with a higher risk level. Coming up with mitigation solutions are out of the scope of our discussion. This paper only gives an algorithm based on breadth-first search (BFS) strategy for iterating threat nodes in the attack tree to create a priority list based on the risk level of each node (Fig. 3). A visualisation tool is being developed at MIT Auto-ID lab that automatically constructs and searches attack trees. This tool can also provide information about vulnerable components — components whose related threats have the highest system-level risks.

4 Case study on an automated driving system

The system used in the case study is a fully AV that implements SAE Level-4 automation [30] and provides support for V2X safety applications such as collision avoidance at intersections [33] or platooning by an automatic vehicle following in a fleet [31]. Multiple goals are defined to support driving tasks under different environmental conditions, including the two appearing below:

 Goal-1: the vehicle should avoid collisions by automatically applying longitudinal and lateral control.

 Goal-2: the manoeuvring of AVs should not hinder the traffic flow in all types of roads unless there is an emergency situation.

AV functionality supporting driving tasks includes deceleration, acceleration, driver warning, and steering and so on, as shown in the top-left of Fig. 4. As can be seen in the control diagram, the automated systems estimate vehicle dynamics and perceive objects in the surrounding environment from feedback information given by on-board sensors. Based on estimated vehicle states, perceived objects and environmental conditions, the automated controller plans motion and sends reference signals to low-level platforms that interact with physical modules such as the propulsion, braking subsystems.

HEs involving vehicle's deceleration function can then be derived, as shown in Fig. 5. While HE-1, and -2 can lead to collisions thus violating Goal-1, HE-3 and -4 are related to both goals and can also hinder traffic flow if any happens.

 HE-1: The automated driving system not providing deceleration command, providing it too late or insufficiently can cause rear-end collisions when AV is approaching an intersection.

 HE-2: The automated driving system not providing deceleration command, providing it too late or insufficiently can cause rear-end collisions when AV is moving in a platoon on a highway and leading vehicles apply emergency braking.
• HE-3: Providing deceleration command unexpectedly when the vehicle is moving in a city street (<TBD mph) and approaching an intersection.
• HE-4: Providing deceleration command unexpectedly when the vehicle is moving in a platoon on a highway with an average speed of (> TBD mph).

Based on the feedback information that the automated driving controller uses for decision-making, threats can be derived at the concept level. For example, since a given vehicle decelerates based on range or position of the vehicle in front and speed of itself, four related threats at different severity levels include:

• Threat-1. {{Spoofing/Tampering: control signals such as traffic lights at the intersection are manipulated without authorisation}, {Traffic light, stop sign}, HE-1, depend on specific designs}.
• Threat-2. {{Spoofing/Tampering: The range of obstacles or vehicles in front was manipulated without authorisation}, {Range, Position}, HE-2, depend on specific designs}.
• Threat-3. {{Spoofing/Tampering: The range of obstacles or vehicles in front was manipulated without authorisation}, {Range, Position}, HE-3, Moderate Attack Potential}.
• Threat-4. {{Spoofing/Tampering: The range of obstacles or vehicles in front was manipulated without authorisation}, {Range, Position}, HE-4, Enhanced-Basic Attack Potential}.

Note that at the early stage of concept development, physical designs often have not become available. Therefore, each threat node above will have no child nodes until system-level design begins. In addition, since physical sensors or communication modules used to detect objects and decide their position are not known, engineers can only estimate the attack potential of each threat based on assumed specific contexts. For example, Threat-3 is assigned with a moderate potential [4] because it refers to the context where vehicles moving in a city street, while Threat-4 has a potential of ‘enhanced-basic’ (<moderate) as the vehicle is moving on a highway and requires more efforts from an adversary although the latter is more severe and uncontrollable than the former.

It should be noted that other types of causal factors such as design flaws could also lead to the same HEs although the process for deriving other types of causal factors is not covered in this paper. For instance, a design flaw that causes HE-3 could be that the stopping distance for collision avoidance is miscalculated due to a mismatch between true and simulated vehicle dynamics.

BFS(currentNode){
 if currentNode is a leaf node
 risk_level = risk_level(currentNode)
 // Lookup table based on controllability, severity and probability
 Add(currentNode, Threat Priority List)
 else if currentNode is an And node
 node_AND_Comined= getCombinedNode(currentNode)
 //Engineers should evaluate the potential that all child threats of
 // an AND node occur simultaneously
 Add(node_AND_Comined, Threat Priority List)
 else if currentNode is an OR node
 node_OR_MaxRisk= findMaxRiskNode(currentNode)
 // It is assumed that an adversary will choose attack with max risk level
 Add(nodeMaxRisk, Threat Priority List)
 else
 childNodeList-> getchildnode(currentNode)
 for each childNode in childNodeList
 childNode.controllability = currentNode.controllability
 childNode.severity = currentNode.severity
 BFS(childNode)
}

Fig. 3 BFS for creating a priority list of cyber threats

Fig. 4 Functional architecture compared with (zoom-in) physical architecture
Detailed threats in system-level are then refined from abstract ones with the guidance by generic threat model (Fig. 1 and Table 1), as shown in Table 2. Consider Threat-4 that causes unexpected deceleration of an AV when moving on a single lane highway or road. As suggested by the generic STRIDE-based model in Fig. 1, in addition to spoofing/tempering attacks on LIDAR, on-board camera, or signals from nearby vehicles, roadside units or traffic lights at intersections, this high-level threat can result from spoofing digital objects or scenery to fool the perception system of the target vehicle. Fig. 6 gives an example in which a ‘video wall’ consisting of monitors mounts at the back of a truck to display the scenery of oncoming traffic for safe overtaking [34]. However, since the monitors are connected to the wireless camera attached to the front of the truck, an adversary will be capable of injecting fake images if he or she can jam the connection between the camera and the monitor or even gets full control over the digital monitors as an insider. If the target vehicle recognises the faked 2D vehicle image as a real one, it may issue an unexpected deceleration command during overtaking. A refined threat corresponds to this scenario is described in Threat-4.1 in Table 2.

All refined threats are shown in Fig. 5 that provides an example of attack trees for threats on deceleration function provided by the automated controller. The tree structure maintains traceable links among HEs, high-level threats identified during concept development and leaf nodes corresponding to refined threats at a more detailed level. Each leaf node corresponds to a sensor or communication channel used for providing position and speed of other vehicles on the road or vehicle dynamics in the zoom-in view of Fig. 4 (left), including LIDAR, wheel encoders, cameras, inertia measurement unit (IMU) and DSRC module.

The attack tree with threats linking to hazards can provide decision support when designing mitigation solutions. Although the implementation of this function in software tools is left as...
future, the tool can leverage the priority list based on the algorithm in Fig. 3 to help engineers make trade-offs. For example, to mitigate threats for unintended deceleration shown in Fig. 6, engineers need to make trade-offs between redundancies of information source used for deciding vehicle identity and position and the overall cost. Threat-4.1 can be mitigated by conducting a cross-checking of digital objects with messages of oncoming vehicles’ position received from DSRC module (mitigation solution-1 in Fig. 6). However, this solution has dependencies with Threat-3.5 in that both of them can lead to the same high-level Threat-4, as indicated by the red dotted line in Fig. 5. Such dependencies raise two questions. First, engineers need to consider the priority of mitigation solution for each threat, i.e., which threat has higher risk-level? Specifically, if an adversary is an insider and has full control over the truck, he or she may dissuade the oncoming vehicle from broadcasting positioning information to the target vehicle because it is in a relatively ‘better’ position [35]. Therefore, the mitigation solution for Threat-3.5 needs to be decided before considering Threat-4.1. Second, which information or feedback channel should have a higher confidence level or is more trustable? Another modified solution (i.e. mitigation solution-2) can be built by augmenting the road with magnetic sensors that detect vehicle occupancy and put roadside units to broadcast vehicle positions to nearby vehicles. However, this solution only becomes economically viable if it can bring other benefits such as supporting vehicle platooning.

5 Conclusion

This paper proposes a structured framework that combines safety and cybersecurity analyses. The framework includes a generic model, named TIRCPS that is developed based on the STRIDE model. It provides guidance on identifying and deriving detailed threats of cyber-physical systems. The formal definitions of HEs and threats in TIRCPS based on formal logic provide support for constructing an attack tree that maintains traceability among high-level hazards, low-level threats and mitigation solutions. A BFS-based algorithm is also developed to construct a priority list from the attack trees. This priority list can help engineers make trade-offs when designing mitigation solutions.

6 References

[1] Schoetisch, E., Schmitter, C., Ma, Z., et al.: ‘The need for safety and cyber-security co-engineering and standardization for highly automated automotive vehicles’, Advanced Microsystems for Automotive Applications, 2016 pp. 251-261
[2] Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., et al.: ‘A survey of approaches combining safety and security for industrial control systems’, Reliab. Eng. Syst. Saf., 2015, 159, pp. 156-178
[3] Suo, D., Yako, S., Boesch, M., et al.: ‘Integrating STPA into ISO 26262 process for requirement development’. SAE Technical Paper, 2017, No. 2017-01-0058
[4] J3061: ‘Cybersecurity guidebook for cyber-physical systems’, 2016
[5] Parkinson, S., Ward, P., Wilson, K., et al.: ‘Cyber threats facing autonomous and connected vehicles: future challenges’, IEEE Trans. Intell. Transp. Syst., 2017, 18, (11)
[6] Sun, M., Mohan, S., Sha, L., et al.: ‘Addressing safety and security contradictions in cyber-physical systems’. Proc. of the Ist Workshop on Future Directions in Cyber-Physical Systems Security (CPSSSW’09), Newark, NJ, USA, 2009
[7] Petit, J., Shladover, S.E.: ‘Potential cyberattacks on automated vehicles’, IEEE Trans. Intell. Transp. Syst., 2015, 16, (2), pp. 546-556
[8] The STRIDE Threat Model, available at http://msdn.microsoft.com/en-us/library/ee823878(v=vs.20).aspx, accessed 14 December 2017
[9] Caralli, R., Stevens, J., Young, L., et al.: ‘Introducing OCTAVE allegro: improving the information security risk assessment process’. Technical Report CMU/SEI-2007-TR-012, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, 2007. Available at http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9419
[10] Schneider, B.: ‘Attack trees’, Dr. Dobbs J., 2009, 24, (12), pp. 21-29
[11] Steiner, M., Liggemeys, P.: ‘Combination of safety and security analysis-finding security problems that threaten the safety of a system’, SAFECOMP 2013 – Workshop on DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-Physical Systems) of the 32nd International Conference on Computer Safety, Reliability and Security, Toulouse, France, Sep 2013
[12] Fuxino, J.N., Masen, M., De Cian, A.: ‘Integrating cyber-attacks within fault trees’, Reliab. Eng. Syst. Saf., 2009, 94, (9), pp. 1394-1402
[13] Sabaliauskaite, G., Mathur, A.P.: ‘Aligning cyber-physical system safety and security’, Complex Systems Design & Management Asia, Singapore, 2015, pp. 41-53
[14] Douceur, J.R.: ‘The sybil attack’. Int. Workshop on Peer-to-Peer Systems, Cambridge, MA, USA, March 2002, pp. 251-260
[15] Delgrossi, L., Zhang, T.: ‘Vehicle safety communications: protocols, security, and privacy’ (John Wiley & Sons, Inc, Hoboken, NJ, USA, 2012), pp. 152–153
[16] Yan, C., Xu, W., Liu, J.: ‘Can you trust autonomous vehicles: contactless attacks against sensors of self-driving vehicle’. DEF CON, 24, Las Vegas, NV, USA, 2016
[17] Petit, J., Stottelaar, B., Feiri, M., et al.: ‘Remote attacks on automated vehicles sensors: experiments on camera and LiDAR’. Black Hat Europe, Amsterdam, Netherlands, November 2015, p. 2015
[18] Miller, C., Valasek, C.: ‘Adventures in automotive networks and control units’. DEF CON 21, Las Vegas, Nevada, USA, 2013, pp. 260-264
[19] Hamayed, A., Lin, J., Li, F., et al.: ‘Cyber-physical systems security—a survey’, IEEE Internet Things J., 2017, 4, (6)
[20] Young, W., Leveson, N.G.: ‘An integrated approach to safety and security based on systems theory’. Cyber. Syst. ACM, 57, (2), pp. 31-35
[21] Leveson, N.: ‘Engineering a safer world: systems thinking applied to safety’ (MIT press, Cambridge, MA, USA, 2011)
[22] Siegel, J.: ‘Data provenance and application locality: enablers of cloud-connected vehicles and next-generation Internet of Things’. PhD Thesis, MIT, 2016
[23] Rasmussen, J.: ‘Skills, rules, and knowledge: signals, signs, and symbols, and other distinctions in human performance models’, IEEE Trans. Syst. Man Cybern., 1983, SMC-13, (3), pp. 257-266
[24] ISO 26262: ‘Road vehicles – functional safety’, 2011
[25] Lee, E.A.: ‘Cyber-physical systems-are computing foundations adequate’. Proc. of the 2014 ACM on Asia Conf. on Computer and Communications Security, Abu Dhabi, United Arab Emirates, April 2017, pp. 506-519
[26] ‘Fooling Neural Networks in the Physical World with 3D Adversarial Objects’, available at http://www.labnix.org/physical-objects-that-fool-neural-networks/
[27] J3061: ‘Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems’, 2014
[28] Ali, A.A.: ‘CPSS security: vehicle platooning system identifying & modelling cyber-attacks’. Master Thesis, Newcastle University, 2016
[29] Shoukr, Y., Martin, P., Tabuada, P., et al.: ‘Non-invasive spoofing attacks for anti-lock braking systems’. Int. Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, August 2013, pp. 55-72
[30] Savic, V., Schiller, E.M., Papapantaliouf, M.: ‘Distributed algorithm for collision avoidance at road intersections in the presence of communication failures’, arXiv preprint arXiv:1701.02641, 2017
[31] https://news.samsung.com/global/the-safety-truck-could-revolutionize-road-safety, accessed 18 June 2018
[32] Raya, M., Hubaux, J.P.: ‘Securing vehicular ad hoc networks’, J. Comput. Secur., 2007, 15, (1), pp. 39-68