Haplotype Diversity of Swamp Buffalo and River Buffalo Based on Cytochrome B Gene: A Study of Meta-Analysis

F. Saputra*, A. Anggraeni†, A. B. L. Ishak‡, A. Hafid†, M. Rusdin*, & C. Sumantri*†
*Indonesian Research Institute for Animal Production
Jalan Veteran III, Bogor 16720, Indonesia
†Department of Animal Science, Faculty of Animal Science, Halu Oleo University
Kampus Hijau Bumi Tridharma, Jalan H.E.A. Mokodompit, Anduonohu, Kendari, Sulawesi Tenggara 93232, Indonesia
‡Department of Animal Production and Technology, Faculty of Animal Science, IPB University
Jalan Aqatis, Kampus IPB Darmaga Bogor 16680, Indonesia
*Corresponding author: fer dysaputra@pertanian.go.id; ferdy44saputra@gmail.com
(Received 03-10-2020; Revised 17-04-2021; Accepted 03-05-2021)

ABSTRACT

Buffalo (Bubalus bubalis) is well known as a domesticated buffalo in Asia. The genetic diversity of buffaloes in Asia needs to be studied to ensure a proper breeding program. A meta-analysis study on the cytochrome b gene of the mitochondrial genome from various published data was conducted to evaluate genetic variation and haplo-geography of Asian buffaloes. A meta-analysis is used to provide a comprehensive view of the data. A total of 1369 swamp buffaloes Cytochrome B sequences (from Indonesia (79), Bangladesh (98), China (909), India (4), Laos (96), Taiwan (29), Thailand (54), and Vietnam (100)) and 91 river buffaloes (from China (42), Nepal (42), and Pakistan (7)) were used in this study. Cytochrome B sequences (678 bp) of Syncerus caffer, Bubalus arnee, Bubalus depressicornis, Bubalus quarlesi, Bubalus mindorensis, swamp buffalo, and river buffalo were determined for their haplotypes using DnSP v6 program. Haplotypes were analyzed by Principal Coordinate Analysis (PCoA) using Adegenet Package and Hierarchical Clustering on Principal Components (HCPC) methods using Factoextra and FactoMineR Package in R-4.0.0 program. Bayesian analysis of genetic differentiation was implemented in BAPS 6.0. Furthermore, we found 56 haplotypes for swamp buffaloes in eight Asian countries and 5 haplotypes for river buffaloes in Pakistan. We also found 5 haplotypes for outgroup (B. arnee, S. caffer, B. depressicornis, B. quarlesi, B. mindorensis). Therefore, we found 66 haplotypes in total with outgroup sequences. Based on the PCoA results, three clusters were found. However, the HCPC found eight clusters. Based on HCPC, countries in East and South Asia have four maternal lineages. This is evidence that buffalo domestication has first occurred in East-South Asia. In conclusion, we found four maternal lineages of swamp buffalo and two maternal lineages of river buffalo from ten countries. We also found one maternal lineage for Syncerus caffer and one maternal lineage for B. depressicornis, B. quarlesi, and B. mindorensis.

Keywords: haplotype diversity; swamp buffalo; cytochrome b; meta-analysis

INTRODUCTION

Buffaloes are commonly used as livestock for producing meat and milk. However, buffaloes are still used as draught animals and have not been kept intensively like cattle and chickens. In Indonesia, swamp and river buffaloes get less concern than cows and chickens, which are strengthened by better research funding. Genetic diversity studies are needed to determine a good breeding program for buffaloes in the future. Evaluation of genetic variability and genetic association in populations is essential to control the loss of genetic diversity for selective breeding (Mastrochiricofilho et al., 2019). Breeding programs can be implemented if genetic diversity is observed and maintained. In the same way, genomics tools will allow breeding strategies to ensure the improvement of performance and preserve genetic diversity (Taberlet et al., 2011).

Genetic diversity in livestock is also useful for distinguishing between populations. To find out genetic differences between populations, phenotypic traits are generally used or based on gene diversity. Sequence data have been widely known to observe relationships between organisms (Konishi et al., 2019). To identify variations in the maternal lineage, the mitochondrial genomes are usually explored. In the mitochondrial genome, there are D-loop, Cytochrome b gene (Cyt B), and Cytochrome Oxidase I (COI) gene markers that are often used to evaluate kinship (Kumar et al., 2007; Saputra et al. 2013; Paraguas et al., 2018). Research conducted by Tobe et al. (2010) has shown that the diversity of Cyt B is higher than that of COI. Meta-analysis might contribute...
to a better understanding of the domestication history of animals (Guangxin et al., 2016). A recent study of cytochrome b in swamp buffalo by Sun et al. (2020) showed 5 maternal lineages of swamp buffalo using neighboring in six countries (China, Thailand, Vietnam, Laos, India, and Bangladesh). Kumar et al. (2007) suggested that swamp and river buffaloes were domesticated independently and the classification of swamp and river buffaloes as two related subspecies is more suitable. The evaluation of the genetic diversity of cytochrome B in swamp and river buffaloes has been widely carried out. However, a meta-analysis study has never been carried out to analyze the genetic diversity of swamp buffalo in Asia. Therefore, we identified cytochrome B variation in swamp and river buffaloes from various published data in this meta-analysis study.

MATERIALS AND METHODS

A total of 1369 swamp buffalo sequences (originating from Bangladesh, China, India, Indonesia, Laos, Taiwan, Thailand, Vietnam), 91 river buffalo sequences (originating from China, Nepal, and Pakistan), and five outgroup sequences (Bubalus arnee, Bubalus depressicornis, Bubalus quadrlesi, Bubalus mindorensis, and Syncerus caffer) were used in this study. The data used in this study are published data (Table 1). The data used were base positions 70 to 747 (678 bp) of Cytochrome B gene based on GenBank reference (D82894). We used those base positions to accommodate the length of cytochrome B gene sequence of swamp buffalo from Indonesia based on the result reported by Rusdin et al. (2020). Sequences data were analyzed using the DnaSP v6 program to determine the haplotypes and haplotype diversity (Rozas et al., 2017). The haplotype data were further analyzed using the Principal Coordinate Analysis (PCoA) using the Adegenet Package (Jombart, 2008) in the R-4.0.0 program (R Core, 2020). Furthermore, Hierarchical Clustering on Principal Components (HCPC) was drawn using Factoextra (Kassambara & Mundt, 2020) and FactoMineR (Husson et al., 2015) packages from p-distance data in MEGA 7.0.26 (Kumar et al., 2016). Bayesian analysis of genetic differentiation was implemented in BAPS 6.0 (Cheng et al., 2013).

RESULTS

Based on sequences used in this study, Indonesian buffaloes with 80 sequences have a diversity of haplotypes of 0.6503 (Table 2). In 10 countries, we found

Table 1. Number of sequences from public database

Accession number	Organism	Country	Total (n)	References
D32193	Bubalus arnee bubalis	-	1	(Chikuni et al., 1995)
D82888	Syncerus caffer		1	(Tanaka et al., 1996)
D82890	Bubalus depressicornis	Indonesia	1	(Tanaka et al., 1996)
D82891	Bubalus quadrlesi	Indonesia	1	(Tanaka et al., 1996)
D82895	Bubalus mindorensis	Philippines	1	(Tanaka et al., 1996)
D82894	Bubalus bubalis	Indonesia	1	(Tanaka et al., 1996)
JF946519, JF946520, JF946521, JF946522, JF946523, JF946524, JF946525	Bubalus bubalis (River buffalo)	Pakistan	7	(Saii et al., 2012)
FJ467648 - FJ467917	Bubalus bubalis	China	270	(Lei et al., 2011)
EF409939, EF409940, EF409941, EF409942	Bubalus bubalis	India	4	(Kumar et al., 2007)
KR010069-KR010168	Bubalus bubalis	Vietnam	100	(Zhang et al., 2016)
KR010040-KR010068	Bubalus bubalis	Taiwan	29	(Zhang et al., 2016)
KR009986-KR010039	Bubalus bubalis	Thailand	54	(Zhang et al., 2016)
KR009944-KR009985	Bubalus bubalis (River buffalo)	Nepal	42	(Zhang et al., 2016)
KR009848-KR009943	Bubalus bubalis	Laos	96	(Zhang et al., 2016)
KR009167-KR009644, KR009687-KR009847	Bubalus bubalis	China	639	(Zhang et al., 2016)
KR009645-KR009666	Bubalus bubalis (Murrhu)	China	22	(Zhang et al., 2016)
KR009667-KR009686	Bubalus bubalis (River buffalo) (Nili Ravi)	China	20	(Zhang et al., 2016)
KR0090969-KR009166	Bubalus bubalis	Bangladesh	98	(Rusdin et al., 2020)
BK6, BK7, BK8, BK9, BK12, BK14, BK15, BK18, BK21, BK24, BK28, BD1, BD4, BD7, BD9, BD11, BD13, BD14, BD15, BD19, BD25, KL1, KL2, KL3 KL4, KL5, KL6, KL7, KL8, KL9, KL10, KL11, KLB1, KLB2, KN1, KN2, KN3, KN4, KN5, KN6, KN7, KN8, KN9, KN10, KN11, KN12, KN13, KN14, TRB1, TRB2, TRB3, TRB4, TRB5, TRP6, TRP8, TRL13, TRT14, TRT15, NBT1, NBT2, NBT3, NBT5, NBT6, NBT7, NBT8, NBT9, NBT10, NBT11, BTN1, BTN2, BTN3, BTN4, BTN5, NAD1, NAD2, NAD3, NAD9, NAD10				
61 haplotypes, and the haplotype diversity was 0.7020 with 62 polymorphic sites. The smallest haplotype diversity was found in Taiwan (0.1970), and the highest was found in India (1.0000). The highest number of haplotypes was located in China (36 haplotypes), and the lowest number of haplotypes was found in Nepal (3 haplotypes) and Taiwan (3 haplotypes). By using data of \textit{S. caffer}, \textit{B. arnee}, \textit{B. quarlesi}, \textit{B. mindorensis}, and \textit{B. depressicornis}, we found 66 haplotypes (Table 3). Haplotype 16 was the most common with large samples, i.e., 73.50% in China, 7.31% in Vietnam, 5.85% in Laos, 5.05% in Indonesia, 3.47% in Taiwan, 3.47% in Thailand, and 1.45% in Bangladesh (Table 4). We also found unique haplotypes in Bangladesh (6), China (24), India (1), Indonesia (8), Laos (1), Thailand (3), Pakistan (5), and Vietnam (1). Based on PCoA results, we found three clusters (Figure 1). The first cluster consisted of buffaloes from \textit{B. depressicornis}, Bangladesh, China, India, Nepal, and Pakistan. The second cluster included buffaloes from \textit{B. arnee}, \textit{B. quarlesi}, and \textit{B. mindorensis}, Bangladesh, China, Indonesia, Laos, Nepal, Taiwan, Thailand, and Vietnam. On the other hand, \textit{S. caffer} was very far from the other clusters.

HCPC showed eight clusters (Figure 2), i.e., cluster I: consisted of buffaloes from \textit{B. arnee}, Bangladesh China, Indonesia, Laos, Nepal, Taiwan, Thailand, and Vietnam; cluster II: consisted of buffaloes from Bangladesh, China, India, Indonesia, Laos, Nepal, Taiwan, Thailand, and Vietnam; cluster III: consisted of buffaloes from Bangladesh, China, India, Nepal, and Pakistan; cluster IV: consisted of buffaloes from Bangladesh, China, India, Nepal, and Pakistan; cluster V: consisted of buffaloes from Pakistan; cluster VI: consisted of buffaloes from Pakistan; cluster VII: consisted of buffaloes from \textit{B. mindorensis}, \textit{B. quarlesi}, and \textit{B. depressicornis}; cluster VIII: consisted of buffaloes from \textit{S. caffer}. According to HCPC results, swamp buffaloes in Asia have four maternal lineages. Interestingly, haplotypes from Pakistan form separate clusters (cluster V and VI) for river buffalo. Indonesia, Laos, Taiwan, Thailand, and Vietnam only have two maternal lineages. Indian buffalo has three maternal lineages. On the other hand, Bangladesh, China, Nepal, and Pakistan have four maternal lineages. What is interesting is that the four maternal lineages are found in East and South Asian countries. Bayesian analysis showed 3 clusters (Figure 3) that were very similar to the results shown by the principal coordinate analysis. Interestingly, we found sequences of river buffaloes from Nepal and China in haplotypes 22 and 23 along with sequences from swamp buffaloes. This result is possible because we only took 678 bp to observe the genetic diversity of the buffalo in this study.

DISCUSSION

Haplotype diversity based on the mtDNA of Egyptian and Indian buffaloes ranged from 0.8236 ± 0.0488 to 0.9428 ± 0.0088 (Nagarajan et al., 2015). Lei et al. (2011) found that the haplotype diversity of Chinese buffaloes ranged from 0.469 ± 0.039 to 0.815 ± 0.033. Based on this haplotype diversity, Taiwan buffalo has lower haplotype diversity than buffaloes in the other countries. However, the gene diversity based on Cytochrome B in Indonesian buffalo is more diverse than the other studies on GH, GHR, GHRH, Pit1, COL, and microsatellite (Andreas et al., 2010; Mirsianti et al., 2010; Saputra et al., 2013, 2020; Sumantri et al., 2010). The results we found with the HCPC showed that the haplotypes of \textit{B. depressicornis} (Lowland Anoa), \textit{B. quarlesi} (Mountain Anoa), and \textit{B. mindorensis} (Tamaraw) were self-clustered, and our findings are different from result reported by Tanaka et al. (1996) that \textit{B. mindorensis} is genetically closer to swamp buffalo than to anoa.

Data of \textit{B. arnee} (Wild water buffalo) were obtained from Chikuni et al. (1995), showing a genetic closeness with swamp buffalo. Zhang et al. (2020) suggest the swamp and river buffaloes are descended from distinct populations of wild water buffalo (\textit{B. arnee}). The river buffaloes originating from Pakistan have different haplotypes from the river buffaloes originating from China. Of the seven haplotypes of the Pakistani river buffalo (Saif et al., 2012), only five haplotypes are unique in this meta-analysis. Most likely, the domestication of river buffalo occurs in South Asia. Youssef et al. (2021) found three maternal lineages for river buffaloes in five countries (Bangladesh, China, Egypt, India, and Italy) based on the mitochondrial genome. The study also found that Indian river buffaloes had more maternal lineage. Nagarajan et al. (2015) suggested that the river buffalo was first domesticated in the Northwestern region of India and spread to other parts of the world. In other

Population	N	Number of haplotypes	Variable sites	Haplotype diversity
Pakistan	7	6	5	0.9524
Indonesia	79	10	8	0.6537
Bangladesh	98	12	24	0.6714
China	951	36	40	0.6336
India	4	4	2	1.0000
Laos	96	7	8	0.6583
Nepal	42	3	2	0.3821
Taiwan	29	3	6	0.1970
Thailand	54	9	10	0.7121
Vietnam	100	8	9	0.6541
All	1460	61	62	0.7020
Haplotype	Sequence			
-----------	----------			
Haplotype 1	Syncerus caffer (D82888)			
Haplotype 2	Babalus arnee (D32193)			
Haplotype 3	Babalus mindorensis (D82895)			
Haplotype 4	Babalus quaresi (D82891)			
Haplotype 5	Babalus depressicornis (D82889)			
Haplotype 6	JP465265, JP465265, EF40940, KR090802, KR090805-KR090808, KR090901-KR090903, KR090919, KR090925, KR0909130, KR0909133, KR0909135, KR090914, KR090915, KR0909155, KR0909157, KR0909159, KR0909161, KR0909162, KR0909195, KR0909207, KR0909208, KR0909233, KR0909235, KR0909238, KR090947, KR090948, KR090954, KR090965, KR090966, KR090972-KR090974, KR090985			
Haplotype 7	JP465263			
Haplotype 8	JP465262			
Haplotype 9	JP465261			
Haplotype 10	JP465260			
Haplotype 11	JP465169			
Haplotype 12	D82894, FJ467720, KR009887, KR009889, KR009900			
Haplotype 13	BK6, BK7, BK8, BK9, BK14, BK15, BK21, BK24, BK28, BD1, BD4, BD7, BD9, BD11, BD13, BD14, BD15, BD19, BD25, KL4, KL5, KL6, KL9, KL10, KL11, KN2, KN11			
Haplotype 14	BK12			
Haplotype 15	BK18			
Haplotype 16	KL1, KL2, KL7, KL8, KL11, KL2, KN8, KN9, KN10, KN13, TRB1, TRB2, TRB3, TRB4, TRB5, TRP6, TRP7, TRT13, TRT14, TKT5, NBT1, NBT2, NBT5, NBT5, NBT8, NTB8, NTB10, NTB11, BNT1, BNT2, BNT3, BNT4, BNT5, NAD1, NAD2, NAD3, FJ467715-FJ467719, FJ467721, FJ467725, FJ467727, FJ467729, FJ467761-FJ467767, FJ467781-FJ467789, KR090879, KR090881, KR090891, KR090896, KR090899, KR090910, KR090913, KR090915, KR0909155, KR0909157, KR0909159, KR0909161, KR0909162, KR0909195, KR0909207, KR0909208, KR0909233, KR0909235, KR0909238, KR090947, KR090948, KR090954, KR090965, KR090966, KR090972-KR090974, KR090985			
Haplotype 17	KL3			
Haplotype 18	KN1, KN4, KN6			
Haplotype 19	KN3, KN5, KN7, KN12, KN14			
Haplotype 20	NAD9			
Haplotype 21	NAD10			
Haplotype 22	FJ467648, EF409942, KR090200, KR090231, KR090650, KR090653, KR090667, KR090671, KR090955			
Haplotype 23	FJ467649-FJ467657, EF409941, KR090069-KR090077, KR090800, KR090803, KR090808, KR090809, KR090910, KR090914, KR090914, KR0909130, KR0909133, KR0909135, KR090914, KR090915, KR0909155, KR0909157, KR0909159, KR0909161, KR0909162, KR0909195, KR0909207, KR0909208, KR0909233, KR0909235, KR0909238, KR090947, KR090948, KR090954, KR090965, KR090966, KR090972-KR090974, KR090985			
Haplotype 24	FJ467658, FJ467659, FJ467667-FJ467699, FJ467703-FJ467707, KR090170, KR090171, KR090175, KR090179, KR090180, KR090187, KR090191, KR090206, KR090232, KR090299, KR090301, KR090321, KR090353, KR090355, KR090365, KR090378, KR090380, KR090382, KR090386, KR090412, KR090413, KR090478, KR090503, KR090508, KR090512, KR090527, KR090538, KR090551, KR090555, KR090564-KR090566, KR090573, KR090576, KR090608, KR090626, KR090627, KR090630, KR090635, KR090697, KR090728, KR090731, KR090732, KR090749, KR090871, KR090963, KR090966, KR090972-KR090974, KR090985			

Table 3. Haplotype information based on sequence.
Haplotype	Sequence
Haplotype 25	FJ467660-FJ467685, KR009188, KR009216, KR009248, KR009255, KR009258, KR009268, KR009270, KR009275, KR009281, KR009283, KR009284, KR009287, KR009295, KR009294, KR009300, KR009374, KR009377, KR009414, KR009417, KR009422, KR009456, KR009458, KR009462, KR009464, KR009479, KR009482, KR009487, KR009489, KR009519, KR009523, KR009576, KR009578, KR009582, KR009584, KR009588, KR009595, KR009610, KR009625, KR009628, KR009687, KR009691, KR009711, KR009718, KR009744, KR009759, KR009816, KR009837, KR009840, KR009841, KR009845, KR009912, KR0100127, KR010127, KR010164
Haplotype 26	FJ467678-FJ467680, KR009213, KR009217, KR009306, KR009349, KR009373, KR009409, KR009499, KR009577, KR009613, KR009614, KR009619, KR009709, KR009794, KR010085, KR010122
Haplotype 27	FJ467686, KR009930, KR009931, KR009938, KR009992, KR010002, KR010009, KR010127, KR010137, KR010160
Haplotype 28	FJ467700, FJ467708, KR009097, KR009113, KR009221, KR009222, KR009312, KR009315, KR009332, KR009334, KR009347, KR009390, KR009481, KR009482, KR009487, KR009489, KR009519, KR009576, KR009578, KR009582, KR009584, KR009588, KR009595, KR009610, KR009625, KR009628, KR009687, KR009691, KR009711, KR009718, KR009744, KR009759, KR009816, KR009837, KR009840, KR009841, KR009845, KR0100057, KR010083, KR010087, KR010093, KR010119, KR010127, KR010164
Haplotype 29	FJ467701, FJ467702
Haplotype 30	FJ467709
Haplotype 31	FJ467710, FJ467711
Haplotype 32	FJ467712
Haplotype 33	FJ467713
Haplotype 34	FJ467714
Haplotype 35	FJ467722, FJ467723
Haplotype 36	FJ467724
Haplotype 37	FJ467726
Haplotype 38	FJ467728, FJ467731-FJ467760, KR009116, KR009173, KR009197, KR009218, KR009220, KR009237, KR009242, KR009247, KR009250, KR009256, KR009257, KR009260, KR009261, KR009266, KR009269, KR009271, KR009276, KR009286, KR009289, KR009302, KR009311, KR009313, KR009317, KR009322, KR009323, KR009325-KR009327, KR009336-KR009338, KR009340, KR009354, KR009368, KR009395, KR009415, KR009419, KR009420, KR009423, KR009425-KR009427, KR009432, KR009434, KR009436, KR009441, KR009531, KR009540, KR009559, KR009572, KR009574, KR009600-KR009602, KR009631, KR009713, KR009727, KR009734, KR009735, KR009739, KR009751, KR009753, KR009767, KR009774-KR009776, KR009778, KR009799, KR009802, KR009804, KR009809, KR009813, KR009814, KR009825, KR009836, KR009852-KR009855, KR009857, KR009862-KR009864, KR009866, KR009869, KR009873, KR009875-KR009877, KR009880, KR009882, KR009883, KR009885, KR009886, KR009891, KR009892, KR009895, KR009896, KR009899, KR009908, KR009909, KR009916-KR009923, KR009942, KR009988, KR009991, KR009993, KR009997, KR010010, KR010011, KR010016, KR010024-KR010026, KR010033, KR010045, KR010059, KR010080, KR010084, KR010092, KR010103, KR010105, KR010107, KR010111, KR010130, KR010138, KR010140-KR010143, KR010151, KR010155, KR010162, KR010166, KR010167
Haplotype 39	FJ467730
Haplotype 40	EF409939
Haplotype 41	KR009078
Haplotype 42	KR009095, KR009098, KR009114, KR009335, KR010015
Haplotype 43	KR009100, KR009110, KR009115
Haplotype 44	KR009109
Haplotype 45	KR009120, KR009140, KR009146
Haplotype 46	KR009128
Haplotype 47	KR009145
Haplotype 48	KR009211
Haplotype 49	KR009297
Haplotype 50	KR009305
Haplotype 51	KR009339
Haplotype 52	KR009490, KR009634, KR009724, KR009779
Haplotype 53	KR009553
Haplotype 54	KR009690
Haplotype 55	KR009755
Haplotype 56	KR009756
Haplotype 57	KR009760
Haplotype 58	KR009763
Haplotype 59	KR009766
Haplotype 60	KR009827, KR009828, KR009832, KR009835
Haplotype 61	KR009846
Haplotype 62	KR009894
Haplotype 63	KR009999
Haplotype 64	KR010017
Haplotype 65	KR010035
Haplotype 66	KR010097, KR010104
Haplotype	Pakistan
-----------	----------
6	5.41% (2)
7	100% (1)
8	100% (1)
9	100% (1)
10	100% (1)
11	100% (1)
12	20% (1)
13	100% (27)
14	100% (1)
15	100% (1)
16	5.05% (38)
17	100% (1)
18	100% (3)
19	100% (5)
20	100% (1)
21	100% (1)
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
Figure 1. Principal coordinate analysis of haplotype based on cytochrome B

Figure 2. Hierarchical clustering on principal components of haplotype based on cytochrome B

Figure 3. Bayesian analysis of cytochrome B gene haplotypes by BAPS software. Number represent haplotype and color represent cluster (blue= cluster 1, red= cluster 2, and green= cluster 3).
words, the domestication of wild water buffalo occurred on the border of South and East Asia. Rusdin et al. (2020) found 10 haplotypes and 9 polymorphic sites for swamp buffalo in Indonesia. Based on this meta-analysis study, we found 8 unique haplotypes of Indonesian swamp buffalo.

Lei et al. (2007) found two maternal lineages in Chinese Native Swamp Buffaloes. We got different results because we added sequences carried out by Zhang et al. (2016) so that we found four maternal lineages of swamp buffalo in China and Bangladesh. Based on the complete mitochondrial genome of swamp buffalo revealed eight maternal lineages and this evidence supported initial major domestication of swamp buffalo, probably between southern China and Vietnam (Wang et al., 2017). River and swamp buffaloes were domesticated independently based on these findings. Using the whole genome sequencing, Luo et al. (2020) found swamp and river buffaloes shared a common ancestor 1.1-3.5 million years ago. Based on the results of this meta-analysis, it is possible that the domestication of swamp buffalo occurred in East-South Asia.

CONCLUSION

Based on this study, we found four maternal lineages and unique haplotypes for swamp buffaloes, also two maternal lineages for river buffaloes as an outgroup in this study. Based on this research, we suggested that domestication of swamp buffalo occurred in East-South Asia, and domestication of river buffalo occurred in South Asia. Further research with a large sample size in Asian countries is needed to determine the exact number of maternal lineages. Meta-analysis can contribute to a good understanding of the overall data that has been studied to provide comprehensive conclusions.

CONFLICT OF INTEREST

Cece Sumantri serves as an editor of the Tropical Animal Science Journal, but has no role in the decision to publish this article. The authors declare that there is no conflict of interest with any financial, personal, or other relationships with other people or organizations related to the material discussed in the manuscript.

REFERENCES

Andreas, E., C. Sumantri, H. Nuraini, A. Farajallah, & A. Angraeeni. 2010. Identification of GH1ALU1 and GHR1ALU1 genes polymorphisms in Indonesian Buffalo. J. Indonesian Trop. Anim. Agric. 35:215–221. https://doi.org/10.14710/jita.35.4.215-221

Cheng, L., T. R. Connor, J. Sirén, D. M. Aanensen, & J. Corander. 2013. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30:1224–1228. https://doi.org/10.1093/molbev/msr028

Chikuni, K., Y. Mori, T. Tabata, M. Saito, M. Monna, & M. Kosugiyma. 1995. Molecular phylogeny based on the κ-casein and cytobchrome b sequences in the mammalian suborder Ruminantia. J. Mol. Evol. 41:859–866. https://doi.org/10.1007/BF00173165

Guangxin, E., Z. Yong-Ju, N. Ri-Su, M. Yue-Hui, Z. Jia-Hua, C. LiPeng, Q. Xiao-Yu, Z. Zhong-Quan, S. Ya-Wang, W. Xin, & H. Yong-Fu. 2016. Meta-analysis evidence of maternal lineages in Chinese Tibetan sheep using mtDNA D-loop panel. Mitochondrial DNA Part A. https://doi.org/10.3109/14703946.2016.1143409

Husson, F., J. Josse, S. Le, & J. Mazet. 2015. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. R Package Version 1.3.14. 24:1–18.

Jombart, T. 2008. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinform. 11:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

Kassambara, A., & F. Mundt. 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R package version 1.0.7). https://cran.r-project.org/package=factoextra

Kumar, S., M. Nagarajan, J. S. Sandhuk, N. Kumar, V. Behl, & G. Nishanth. 2007. Mitochondrial DNA analyses of Indian water buffalo support a distinct genetic origin of river and swamp buffalo. Anim. Genet. 38:227–232. https://doi.org/10.1111/j.1365-2052.2007.01602.x

Kumar, S., G. Stecher, & K. Tamura. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data-sets. Mol. Biol. Evol. 33:1870–1874. https://doi.org/10.1093/molbev/msw054

Lei, C. Z., C. M. Zhang, S. Weinling, M. G. Campana, M. A. Bower, X. M. Zhang, L. Liu, X. Y. Lan, & H. Chen. 2011. Genetic diversity of mitochondrial cytochrome b gene in Chinese native buffalo. Anim. Genet. 42:432–436. https://doi.org/10.1111/j.1365-2052.2011.02174.x

Lei, C. Z., W. Zhang, H. Chen, F. Lu, Q. L. Ge, R. Y. Liu, R. H. Dang, Y. Y. Yao, L. B. Yao, Z. F. Lu, & Z. L. Zhao. 2007. Two maternal lineages revealed by mitochondrial DMD-loop sequences in Chinese native water buffaloes (bubalis bubalis). Asian-Australas. J. Anim. Sci. 20:471–476. https://doi.org/10.5713/ajas.2007.471

Luo, X., Y. Zhou, B. Zhang, Y. Zhang, X. Wang, T. Feng, Z. Li, K. Cui, Z. Wang, C. Luo, H. Li, Y. Deng, F. Lu, J. Han, Y. Miao, H. Mao, X. Yi, C. Ai, S. Wu, A. Li, Z. Wu, Z. Zhuo, D. D. Giang, B. Mitra, M. F. Vahidi, S. Mansoor, S. Ahmed Al-Bayatti, Eka Meutia Sari, N. A. Gorkhali, S. Prastowo, L. Shafique, G. Ye, Q. Qian, B. Chen, D. Shi, J. Ruan, & Q. Liu. 2020. Understanding divergent domestication traits from the whole-genome sequencing of swamp and river-buffalo populations. Natl. Sci. Rev. 7:686–701. https://doi.org/10.1093/nsr/nwaa024

Mastrochirico-Filho, V. A., F. Pazo. M. E. Del Hata, G. V. Villanova, F. Foresti, M. Vera, P. Martinez, F. Porto-Foresti, & D. T. Hashimoto. 2019. Assessing genetic diversity for a pre-breeding program in piaractus mesopotamicus by snps and sssr. Genes. 10:668. https://doi.org/10.3390/genes10090668

Misiranti, R. C. Sumantri, & A. Farajallah. 2010. Polymorphism identification of pitl gene in indonesian buffaloes (Bubalus bubalis) and holstein-friesian cows. Media Peternakan. 33:131–136. https://doi.org/10.5398/medpet.2010.33.3.131

Nagarajan, M., K. Nimbhasha, & S. Kumar. 2015. Mitochondrial DNA variability of domestic River buffalo (Bubalus bubalis) populations: Genetic evidence for domestication of River buffalo in Indian subcontinent. Genome. Biol. Evol. 7:1252–1259. https://doi.org/10.1093/gbe/evv067

Paraguas, A. M., T. P. C. Callipan, E. B. Flores, & L. P. Villamor. 2018. Morphology and phylogeny of swamp buffaloes (Bubalus bubalis) in Calayan Island, Cagayan. Philipp. J. Vet. Anim. Sci. 44:59-67.

R Core, T. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/

Rozas, J., A. Ferrer-Mata, J. C. Sanchez-Del Barrio, S. Guirao-Rico, P. Librado, S. E. Ramos-Onsins, & A.
Sanchez-Gracia. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34:3299–3302. https://doi.org/10.1093/molbev/msx248

Rusdin, M., D. D. Solihin, A. Gunawan, C. Talib, & C. Sumantri. 2020. Genetic variation of eight Indonesian swamp-buffalo populations based on cytochrome b gene marker. Trop. Anim. Sci. J. 3:1–10. https://doi.org/10.5398/tasj.2020.43.1.1

Saif, R., M. Wasim, & M. E. Babar. 2012. Molecular phylogeny of Pakistani riverine buffalo based on genetic variability of Mitochondrial cytochrome b gene. Mol. Biol. Rep. 39:9707–9714. https://doi.org/10.1007/s11033-012-1835-1

Saputra, F., Jakaria, A. Anggraeni, & C. Sumantri. 2013. Genetic variation of mtDNA cytochrome oxidase subunit I (COI) in Local swamp buffaloes in Indonesia. Med. Pet. 36:165–170. https://doi.org/10.5398/medpet.2013.36.3.165

Sun, T., S. Wang, Q. Hanif, N. Chen, H. Chen, & C. Lei. 2020. Genetic diversity of mitochondrial cytochrome b gene in swamp buffalo. Anim. Genet. 51:977-981. https://doi.org/10.1111/age.12997

Taberlet, P., E. Coissac, J. Pansu, & F. Pompanon. 2011 Conservation genetics of cattle, sheep, and goats. C. S. Biologies. 334:247-254. https://doi.org/10.1016/j.crvi.2010.12.007

Tanaka, K., C. D. Solís, J. S. Masangkay, K. I. Maeda, Y. Kawamoto, & T. Namikawa. 1996. Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem. Genet. 34:443–452. https://doi.org/10.1007/BF00570125

Tobe, S. S., A. C. Kitchener, & A. M. T. Linacre. 2010. Reconstructing mammalian phylogenies: A detailed comparison of the cytochrome b and cytochrome oxidase subunit i mitochondrial genes. PLoS ONE. 5:e14156. https://doi.org/10.1371/journal.pone.0014156

Wang, S., N. Chen, M. R. Capodiferro, T. Zhang, H. Lancia, H. Zhang, Y. Miao, V. Chanthakhoun, M. Wanapat, M. Yindee, Y. Zhang, H. Lu, L. Caporali, R. Dang, Y. Huang, X. Lan, M. Plath, H. Chen, J. A. Lenstra, A. Achilli & C. Lei. 2017. Whole mitogenomes reveal the history of swamp buffalo: initially shaped by glacial periods and eventually modelled by domestication. Sci Rep 7:4708 (2017). https://doi.org/10.1038/s41598-017-048

K. A., M. Curaudeau, S. M. El Nahas, A. A. M. Hassan & A. Hassanin. 2021. Haplotype diversity in the mitochondrial genome of the Egyptian river buffalo (Bubalus bubalis). Mitochondrial DNA B Resour. 6:145-147. https://doi.org/10.1080/23802359.2020.1852622

Zhang, Yi, Y. Lu, M. Yindee, K-Y. Li, H-Y. Kuo, Y-T. Ju, S. Ye, M. O. Fariqou, Q. Li, Y. Wang, V. C. Cuong, L. D. Pham, B. Bouahom, B. Yang, X. Liang, Z. Cai, D. Vankan, W. Manatchaiworakul, N. Kowlim, S. Duangchantrasiri, W. Wajjwalku, B. Colenbrander, Y. Zhang, P. Beerli, J. A. Lenstra, & J. F. S. Barker. 2016. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region. Mol. Ecol. 25:1530–1550. https://doi.org/10.1111/mec.13518

Zhang, Y., L. Colli, & J. F. S. Barker. 2020. Asian water buffalo: domestication, history and genetics. Anim. Genet. 51:177–191. https://doi.org/10.1111/age.12911