Digital maps of mechanical geotechnical parameters using GIS

Asad H. Aldefae, Jareer Mohammed and Hiba D. Saleem

Cogent Engineering (2020), 7: 1779563
Digital maps of mechanical geotechnical parameters using GIS
Asad H. Aldefae1*, Jareer Mohammed1 and Hiba D. Saleem1

Abstract: Geographical Information System (GIS) is a powerful tool for representing huge data and producing an actual visualization of subsurface information and parameters in the form of 3D scenes that can be used by the geotechnical engineers in the design of footing and foundation. This paper focuses on producing digital geotechnical maps for the main geotechnical parameters that can be used in the preliminary design stage. Considerable data of 164 borehole logs presenting a 17,000 km² (i.e. Wasit province, south of Baghdad, Iraq) are collected, analyzed, tabulated in an excel sheet, and used as input data to create the digital maps. The studied parameters are bearing capacity, shear strength, coefficient of consolidation, compressibility parameters, and groundwater levels. The results show that the GIS technique is a great tool to visualize the geotechnical parameters that can be easily used directly in the assessment of the site investigation reports and even in the foundation design. The digital values of the bearing capacities, shear strength, and compressibility parameters are clearly visualized and accurately replicate the soil layers of the study area. However, other geotechnical parameters are needed to further consider it in more digital maps.

Subjects: Earth Sciences; Computer Graphics & Visualization; Soil Mechanics

© 2020 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Received: 12 March 2020
Accepted: 01 June 2020

*Corresponding author: Asad H. Aldefae, College of Engineering, Civil Engineering Department, University of Wasit, Kut, Iraq
E-mail: asadaldefae@uowasit.edu.iq

Reviewing editor: Anil Kumar Choudhary, National Institute of Technology Jamshedpur, India

Additional information is available at the end of the article
Keywords: GIS; bearing capacity; compressibility; shear strength; water table

1. Introduction

The soil site investigation is one of the main important steps before the construction of infrastructures. It includes a collection of disturbed and undisturbed specimens at different depth levels under the ground surface and many geotechnical tests are performed to these specimens to determine different parameters that are widely and commonly used by a geotechnical designer to select proper footing and foundation design.

In geotechnical practice, the traditional procedure for data collection in situ can be a laborious job. Existing historical data sources in the form of hard, electronic and paper copy, such as maps, site investigation reports, manuals and even photos which can be integrated with Less time may be spent using GIS digital mapping platform as a tool to improve the efficiency and effectiveness (Player, 2006).

Geological and geographical engineers produced a new technique to collect, store, manage, retrieve, visualize, and analyze all types of site investigation data. Digital maps and other graphic information can be displayed using the GIS for analyzing, presenting, and producing the right vision for the designer.

This type of technique was used widely around the world for the last two decades. In Faisalabad, the second-largest in the eastern province of Punjab, 200 km south of Pakistan capital, Islamabad, the GIS technique is proved by investigating the allowable bearing capacity and the foundation information simply regarding the foundation types for different structures (Kamal et al., 2016). In Toshka city, new valley governorate, south of Egypt, the expansive soil and the swelling characteristics of the clays for the soil strata have been considered and different digital GIS maps were created (Labib & Nashed, 2013).

Data of 464 boreholes are collected and tabulated using an excel sheet and the GIS software is used to investigate the allowable bearing capacity of Al-Najaf and Al-Kufa city, southwest of Baghdad, Iraq (Al-Maliki et al., 2018). Geo-hazard warning system including the rainfall prediction is modeled and tested using the functions of the GIS system (Al-Maliki et al., 2018).

The hazard warning system is implemented using GIS technology to determine the warning dissemination due to disaster and risk assessment is also evaluated (Ghosh et al., 2015). The functionality is to be modular in architecture having GIS-graphical user interface (GUI), input, understanding, rainfall prediction, expert, output, and warning modules (Bhattacharya et al., 2014). The variability of the quality and depth of the groundwater in Delhi City is investigated using the GIS technique (Gupta & Sarma, 2016). A digital terrain map is prepared and analyzed in the north of Thailand that was integrated from different data of existing maps (Liengsakul et al., 1993). Many other studies are implemented to produce digital maps for different soil properties in the south of Iraq (i.e. Kadhim & Al-Abody, 2015; Al-Baghdadi, 2016; Camera et al., 2017 & Al-Shukriji & Al-Khuzaie, 2011). Hellawell et al. (2001) concluded that the GIS-enabled creation and visualization of site investigation data and search procedures quickly became the tool of choice. Subsequently, this gives opportunities for analysing data and enhancing the engineers’ capabilities of the project.

The GIS is used for the preparation of a terrain mapping unit (TMU) map which integrates data from existing maps and data interpreted from satellite images.

However, utilizing big data and dealing with a large area has never been done to cover all the geotechnical characteristics of soil (i.e. the physical and mechanical properties). Such a large amount of data will give greater accuracy to the engineers at the preliminary design stage to
select the proper foundation for the project. Such a digital map will help the geotechnical engineers to get an indication and obtain significant information about the soil layers and decide the kind of footing in preliminary studies and even in feasibility studies.

In this paper, extensive site investigation data results of tens of boreholes (i.e. 146 boreholes) are collected, classified, and analyzed. These data represented around 17,000 km² (i.e. from the north of Wasit governorate to the south; and from the east to the west) and covered depth is approximately 12 m under the ground level. These data were collected from many directories of different ministries in this area and most of the site investigations and reports are done at Al-Kut construction laboratory and college of engineering geotechnical laboratories by known consultants and geotechnical engineers.

Using ArcGIS (10.5) environment facilities, a digital database was made for the physical and mechanical soil properties for the whole investigated area. The used technique here in this paper (i.e. 3D GIS mapping software) can be used later to cover all soil properties in the south of Iraq, which helped the engineers in re-cyclization, treatment, and analysis easily which subsequently makes the designing and planning of any engineering project easier (National Center for Construction Laboratories & Research [NCCLR], 2016 & Al-Maliki et al., 2018).

2. The study area

The Wasit governorate is located in southeast of the Baghdad, Capital of the republic of Iraq (about 180 km) and it has an international border with Islamic republic of Iran (see Figure 1). It has also local borders with five governorates (i.e. Diyala, Babil, Al-Qadisiya, Dhi Qar, and Maisan).

Plain Sedimentary soil layers are predominate geological formation except for north-east of governorate (i.e. Badrah City, 60 km) which is aligned the borderline with Iran and which are considered mountainous terrain. It has an area of approximately (17,000) km² which represents (4) % of Iraq’s total area (437,072 km²). The governorate includes 16 districts and collected data of the soil investigations are the outputs of tens of boreholes at different depths.

This paper included producing a digital map for different physical and mechanical properties of soil layers representing all the area of the governorate which is mathematically located between the coordinate (44°30′E,31°45′N) (lower-left corner) and (46°45′E,33°30′N)(upper right
The Tigris River passes through the center of the governorate and divides the governorate into two parts from the north of the province to its south.

3. Methodology

The procedure and the methodology was followed in this paper by collecting huge data and results of site investigation (i.e. bearing capacity, settlement, and soil strength parameters of soil strata) over a wide range of area. Then, these data are used as input data to create digital maps using 3D GIS mapping software.
3.1. The GIS software platform
GIS is an abbreviation for the Geographic Information System which is a framework for data collection, managing, and analyzing. As results of fast development of engineering technologies, the modern sciences of geography are merged with engineering and produced new hybrid technique (i.e. GIS) to integrate many types of data. It is also used in analyzing different locations and organizing soil layer information and visualize these information using digital maps and 3D scenes. With this unique facility, deeper insights into soil strata data can be revealed using GIS, such as patterns of soil formation, mechanical relationships, and situations helping the decision-makers (i.e. geotechnical engineers and designers) to take the right decision.

3.2. The collected data
The used data in this paper were collected, classified, and analyzed before utilizing it as input data into the GIS environment. The information in this paper represents the data collected from (146) boreholes covering all the study area and the range of the depth is (0–10) meters. The Whole data that were used in this paper are used under the authorization from the school buildings department in the province of Wasit, ministry of water resources, directorate of municipalities of Wasit. Whereas the soil investigation reports are used with permission from the laboratory of Al-Kut construction and Andrea laboratories. Table 1 shows the re-arranged data with all the physical and mechanical properties at the desired depth of the different sites.

4. The analyzed parameters
The main important geotechnical parameters that have to be considered by any geotechnical engineers and the designer are tabulated, analyzed, and prepared in an excel sheet and then used as an input into the GIS environment. The bearing capacity for soil strata for the whole study area is the main parameter which is used directly in the selection decision of the type of the footing and foundation and even in the preliminary assessment for the soil layers. Furthermore, it is intuitive for an engineer in the design requirements of the foundation for any project to investigate the bearing resistance of the soil strata to ensure that no bearing failure for the structure in the future may occur.

Other assessments should be considered during the design of the foundation related to the settlement limits of the structure; thus, the settlement parameters (i.e. consolidation index, C_c, and rebound index, C_r, as well as the consolidation coefficient, C_v) are digitally presented.

Another geotechnical parameter that is widely used by geotechnical engineers is to assess the designed footing and how the shear resistance of the soil strata resists the expected load from the structure to prevent shear failure. These parameters are the soil shear parameters (i.e. cohesion, c, and the angle of internal friction, ϕ).

The water level in the borehole is measured during the site investigation (24 h) after the drilling process. These data (i.e. water table level, WT) were derived from the collected data and the explanatory digital map for this parameter is achieved as well. The next section will explain the results in detail for all the geotechnical maps produced in this paper.

5. The results and discussion
This section focuses on the explanation of the obtained results that are explained briefly above.

5.1. Bearing capacity
The bearing capacity data in Table 1 are used to produce a digital geotechnical map. Figure 2 shows the distribution of the bearing capacity, BC, from the north to the south and from the east to the west.

It can be seen from the figure that the minimum bearing capacity (30–50 kPa, 3–5 T/m2) is located at the center of the province (i.e. Al-Kut City), west of the center and just the center and
Table 1. The collected data of 164 borehole logs

Sample	Year	Depth (m)	B-value (m)	D-value (m)	L-value (m)
			US	US	US
			1.3	1.3	1.3
			2013	2013	2013
			6	6	6
			0	0	0
			15.2-20	15.2-20	15.2-20
			US	US	US
			1	1	1
			3	3	3
			2014	2014	2014
			23.863	23.841	23.841
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			1.5-20	1.5-20	1.5-20
			US	US	US
			1	1	1
			3	3	3
			2013	2013	2013
			6	6	6
			0	0	0
			15.2-20	15.2-20	15.2-20
			US	US	US
			1	1	1
			3	3	3
			2014	2014	2014
			23.841	23.841	23.841
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			0.0	0.0	0.0
			1.5-20	1.5-20	1.5-20

(Continued)
Long	Lat	year	month	B.H.	Depth (m)	Sample Type	BC (T/mm)	LL	PL	PR	Y (kN/m²)	W	Ga	ε (deg.)	Swelling	TSS	Cl	OM	PH	WT	PHH						
44.793	33.036	2014	4	3	1.5–2.0	US	5.5	0	0	0	14.9	25.3	2.69	46	3	0.708	105	0.16	0.018	7	3.71	1.14	8.77	8.1	0.55	8.1	
44.785	33.039	2013	10	3	1.5–2.0	US	7.5	33	0	0	0	22.77	0	0	0	0	0	0	0	0	0	0	0	0	7.25	0.6	7.25
45.927	33.102	2014	1	3	1.5–2.0	US	10.5	40	19	21	16	19.7	2.7	0	0	0.695	120	0.15	0.028	0	0	0	0	7.6			
45.867	32.961	2014	2	3	1.5–2.0	US	5.5	0	0	0	20.7	25.2	0	0	0	0.654	130	0.135	0.021	0	0	0	0	0	7.39	1.4	7.39
46.448	32.527	2014	2	3	1.5–2.0	US	7	38	26	12	14.6	23.2	2.69	0	0	0.739	80	0.17	0.024	6	0	0	0	0	1.1		
45.428	32.503	2014	4	3	1.5–2.0	DS	7	37	26	11	0	23.3	0	0	0	0	0	0	0	0	0	0	0	0	0.9		
45.493	32.302	2013	10	3	1.5–2.0	US	8	0	0	0	14.6	26.1	2.7	0	0	0.701	120	0.2	0.032	0	0	0	0	0	0	0.2	
45.821	32.504	2013	9	3	1.5–2.0	US	5.5	48	32	16	14	29.3	2.69	0	0	0	0	0	0	0	0	0	0	0	0	2.05	
46.298	32.783	2013	10	3	1.5–2.0	US	6.5	0	0	0	15	20.9	2.69	0	0	0.729	90	0.18	0.028	7	0	0	0	0	0	0.45	
45.851	32.940	2013	11	3	1.5–2.0	US	4.5	0	0	0	13.7	28.2	2.68	16	0	0.932	95	0.19	0.028	0	6.11	158	892	7.9	1.6	7.9	
45.845	32.566	2013	3	3	1.5–2.0	US	6	0	0	0	14	28.8	2.7	0	0	0.809	80	0.15	0.026	4	0	0	0	0	1.5		
45.861	32.482	2013	11	3	1.5–2.0	US	8	48	23	25	15.1	21.9	2.71	0	0	0.692	100	0.19	0.028	6	0	0	0	0	0	0.1	
45.834	32.503	2013	4	3	1.5–2.0	US	5	0	0	0	14	27.3	2.69	0	0	0.776	90	0.16	0.023	4	0	0	0	0	0	0.8	
45.821	32.525	2014	2	3	1.5–2.0	US	5.5	0	0	0	19.9	29.73	0	0	0	0.796	100	0.15	0.037	0	0	0	0	0	7.41	1.4	7.41
45.816	32.530	2014	1	3	1.5–2.0	US	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
45.818	32.522	2014	4	3	1.5–2.0	DS	7	46	30	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5		
45.913	32.487	2014	1	3	1.5–2.0	US	4	0	0	0	22.1	21.95	0	0	0	0.563	84	0.104	0.013	0	0	0	0	0	7.72	1.1	7.72
45.832	32.530	2007	7	3	1.5–2.0	US	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.65		
45.831	32.503	2007	7	3	1.5–2.0	US	4.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.75
Long	Lat	year	month	B.H.	Depth (m)	Sample type	BC (T/m)	LL	PL	P1	W	Ga	C (kPa)	ϕ (deg.)	e’	PC (kPa)	Cc	Cr	Swelling	TSS	Cl	OM	pH	WT	PHH		
------	-------	------	-------	------	-----------	-------------	----------	----	----	----	----	----	--------	----------	----	--------	----	----	----------	-----	----	-----	----	----	-----		
45.811	32.474	2007	7	3	1.5-2.0	45.5	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.7		
45.843	32.511	2007	7	3	1.5-2.0	44.4	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.5		
45.851	32.689	2007	7	3	1.5-2.0	51.1	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.75		
45.807	32.522	2007	7	3	1.5-2.0	53.3	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	2		
45.868	32.501	2007	7	3	1.5-2.0	42.0	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	2.2		
45.819	32.477	2007	7	3	1.5-2.0	4.0	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.6		
45.833	32.502	2007	7	3	1.5-2.0	5.7	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.7		
45.828	32.549	2007	7	3	1.5-2.0	7.0	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	2		
45.852	32.685	2007	7	3	1.5-2.0	6.0	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.9		
45.884	32.671	2007	7	3	1.5-2.0	4.75	0.00	0	0	0	0	0	0.00	0.00	0	0.00	0	0	0.00	0	0	0	0	0	1.6		
45.995	32.237	2013	10	3	1.5-2.0	US	6.0	0	0	0	14.6	24.7	2.7	0	0.756	95	0.19	0.029	6	0	0	0	0	0.9			
45.873	32.638	2014	1	3	1.5-2.0	US	6.0	34	19	15	15.5	24.8	2.69	0	0.748	90	0.14	0.025	4	0	0	0	0	1.2			
46.067	32.637	2014	2	3	1.5-2.0	US	6.0	38	26	12	0	26.7	0	0	0	0	0	0	0	0	0	0	0	0	1		
45.916	32.632	2014	2	3	1.5-2.0	US	4.5	43	29	14	0	31.5	2.71	21	0.911	70	0.26	0.024	3	0	0	0	0	0.5			
44.800	32.909	2014	6	3	1.5-2.0	US	4.0	0	0	0	20.3	26.34	0	0	0	0	0	0	0	0	0	0	0	0	1.5		
45.829	32.538	2014	2	3	1.5-2.0	US	4.0	0	0	0	28.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2		
45.370	32.689	2014	4	3	1.5-2.0	US	7.5	0	0	0	15.4	28.3	2.71	0	0.673	100	0.19	0.024	7	6.75	1.24	7.71	8.2	1.05	8.2		
45.093	32.839	2013	10	3	1.5-2.0	US	8.5	0	0	0	15.2	24.3	0	45	0	0	0	0	0	0	0	0	0	0	1.45		
44.791	32.912	2013	9	3	1.5-2.0	US	5.0	34	19	15	13.5	29.6	2.68	0	0	0.963	80	0.26	0.023	0	0	0	0	0	1.1		

(Continued)
Sample	P (kPa)	C (kPa)	LL	PL	Cc	Gs	PH	OM	TSS	Long
1	0.938	32.519	17	24.8	0	0	8	0	19	21
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0
19	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0	0	0	0
37	0	0	0	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0
Table 1. (Continued)

Method	Type	φ (deg.)	Swelling	ρ (g/cm³)	λ (W/m·K)	Pt	Pp	LL	BC (T/m)	Depth (m)	Year	Longitude	Latitude
HH	Long	45.918	220.891	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
HH	Short	45.918	220.891	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
FF	Long	45.860	220.851	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
FF	Short	45.860	220.851	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
CC	Long	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
CC	Short	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
TC	Long	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
TC	Short	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
TSS	Long	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020
TSS	Short	45.833	220.820	32.481	7	5	3	0	0	45.844	2014	15.20	12.020

(Continued)
Table 1. (Continued)

Logn	Lat	Year	month	B.H.	Depth (m)	Sample Type	BC (Tm²)	LL	PL	PL	Y (kN/m²)	W	Gs	C (kPa)	ø (deg.)	ε	Pc (kPa)	Cc	Cr	Swelling	TSS	Cl	OM	PH	WT	PHH
45.810	32.473	2007	7	1	1.5-2.0		5.5	56	31	25	0	0	0	0	0	0	0	0	0	0	1.7	0				
45.841	32.510	2007	7	1	1.5-2.0		4.4	57	30	27	0	0	0	0	0	0	0	0	0	0	1.5	0				
45.850	32.688	2007	7	1	1.5-2.0		5.1	55	30	25	0	0	0	0	0	0	0	0	0	0	1.7	0				
45.805	32.521	2007	7	1	1.5-2.0		5.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2				
45.866	32.699	2007	7	1	1.5-2.0		4.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
45.817	32.675	2007	7	1	1.5-2.0		4.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2				
45.831	32.501	2007	7	1	1.5-2.0		5.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
45.826	32.548	2007	7	1	1.5-2.0		7.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2				
45.851	32.684	2007	7	1	1.5-2.0		6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
45.883	32.669	2007	7	1	1.5-2.0		4.75	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1				
45.993	32.235	2013	10	1	1.5-2.0	US	6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	8.1	7.6				
45.871	32.637	2014	1	1	1.5-2.0	US	10.0	35	19	16	15.3	25.7	27	58	3.5	0.789	85	0.15	0.021	4	0	0	0	0	0.95	
46.066	32.636	2014	2	1	1.5-2.0	US	5.5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0				
45.912	32.631	2014	2	1	1.5-2.0	US	4.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
44.799	32.908	2014	6	1	1.5-2.0		4.0	55	28	25	0	18.32	2.75	0	0	0	0	0	0	0	0	1.5				
45.828	32.537	2014	2	1	1.5-2.0		6.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
45.368	32.688	2014	4	1	1.5-2.0	DS	7.5	52	30	22	0	0	0	0	0	0	0	0	0	0	0	0				
45.092	32.837	2013	10	1	1.5-2.0	US	8.5	0	0	0	0	14.7	24.9	2.69	47	3	0	0	0	0	642	1.84				
44.789	32.911	2013	9	1	1.5-2.0	DS	5.0	0	0	0	13.9	29.2	2.7	0	0	0.781	90	0.32	0.029	7	7.12	1.46	7.54	7.6		

(Continued)
Table 1. (Continued)

Loc	Lat	year	month	B.H.	Depth (m)	Sample type	BC (T/m)	LL	PL	PL	Y (kN/m²)	W	Gs	C (kPa)	ø (deg)	e	Po (kPa)	CC	Cr	Swelling	TS	CI	OM	PH	VI	PHH	
45.767	32.153	2014	1	3	1.5-2.0	US	8.5	0	0	0	15.4	25.7	2.71	0	0	0.752	90	0.18	0.028	0	0	0	0	1.1			
46.048	32.171	2014	3	3	1.5-2.0	US	5	42	15	14.3	28.7	2.89	0	0	0.789	80	0.14	0.022	0	8.37	1.38	8.81	0.3				
46.039	32.179	2014	1	3	1.5-2.0		5.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
45.995	32.237	2013	10	3	1.5-2.0	US	6	0	0	0	14.6	24.7	2.7	0	0.756	95	0.19	0.029	6	0	0	0	0.9				
46.046	32.169	2014	3	1	1.5-2.0	US	5	45	15	14.1	28.8	0	27	0	0.815	75	0.21	0.038	9	0	0	0	1.3				
46.038	32.178	2014	1	1	1.5-2.0	US	5.5	38	13	0	27.24	0	0	0	0.806	100	0.185	0.017	0	0	0	0	0.9				
45.765	32.152	2014	1	1	1.5-2.0	US	8.5	37	20	17	15.2	26.1	2.69	0	0.776	85	0.14	0.024	4	0	0	0	1.3				
45.993	32.235	2013	10	1	1.5-2.0	US	6	0	0	0	14.6	22.8	2.7	0	0	0	0	0	0	0	0	7.81	1.19	8.18	7.6	0.85	7.6
45.767	32.153	2014	1	3	1.5-2.0	US	8.5	0	0	0	15.4	25.7	2.71	0	0.752	90	0.18	0.028	0	0	0	0	1.1				
45.778	31.815	2014	1	3	1.5-2.0	US	8.5	0	0	0	15.4	25.7	2.71	0	0.752	90	0.18	0.028	0	0	0	0	1.1				
45.776	31.815	2014	1	3	1.5-2.0	US	8.5	0	0	0	15.4	25.7	2.71	0	0.752	90	0.18	0.028	0	0	0	0	1.1				
46.056	31.833	2014	3	3	1.5-2.0	US	5	42	17	14.3	28.7	2.89	0	0	0.789	80	0.14	0.022	0	8.37	1.38	8.81	0.3				
46.056	31.833	2014	3	3	1.5-2.0	US	5	42	17	14.3	28.7	2.89	0	0	0.789	80	0.14	0.022	0	8.37	1.38	8.81	0.3				
46.054	31.831	2014	3	1	1.5-2.0	US	5	45	15	14.1	28.8	0	27	0	0.815	75	0.21	0.038	9	0	0	0	1.3				
46.047	31.841	2014	1	3	1.5-2.0	US	5.5	0	0	0	0	0	0	0	0.806	100	0.185	0.017	0	0	0	0	0.9				
46.045	31.840	2014	1	1	1.5-2.0	US	5.5	38	13	0	27.24	0	0	0	0.806	100	0.185	0.017	0	0	0	0	0.9				
46.047	31.841	2014	1	3	1.5-2.0	US	5.5	0	0	0	0	0	0	0	0.806	100	0.185	0.017	0	0	0	0	0.9				
46.045	31.840	2014	1	1	1.5-2.0	US	5.5	38	13	0	27.24	0	0	0	0.806	100	0.185	0.017	0	0	0	0	0.9				
Sample	Weight (g)	PH	Alkalinity (mg/L)	CaCO₃	pH	Conductivity (µS/cm)	Turbidity (NTU)	Temperature (°C)	Long (m)	Depth (m)	Year	RH (%)	Month	Year													
--------	------------	----	-------------------	--------	----	---------------------	----------------	----------------	----------	-----------	------	---------	-------	-------													
45.774	31.841	1	1	1	1	1	1	1	1	1	1	1	1	1													
46.654	38.631	3	1	1	1	1	1	1	1	1	1	1	1	1													
45.828	38.640	2	1	1	1	1	1	1	1	1	1	1	1	1													
45.776	33.774	1	1	1	1	1	1	1	1	1	1	1	1	1													
45.712	34.795	1	1	1	1	1	1	1	1	1	1	1	1	1													
45.711	38.474	1	1	1	1	1	1	1	1	1	1	1	1	1													
45.786	33.724	2	1	1	1	1	1	1	1	1	1	1	1	1													
45.750	38.333	2	1	1	1	1	1	1	1	1	1	1	1	1													
44.486	33.847	10	3	1	1	1	1	1	1	1	1	1	1	1													
44.494	32.948	11	3	1	1	1	1	1	1	1	1	1	1	1													
44.486	32.817	11	3	1	1	1	1	1	1	1	1	1	1	1													
44.494	33.945	11	3	1	1	1	1	1	1	1	1	1	1	1													
44.494	32.817	11	3	1	1	1	1	1	1	1	1	1	1	1													
44.494	33.945	11	3	1	1	1	1	1	1	1	1	1	1	1													

Page 14 of 22
Long	Lat	year	month	B.H.	Depth (m)	Sample type	ΔC (kN/m²)	Y (kPa)	W	Gs	φ (deg.)	e	Ps (kPa)	Cs	Cr	Swelling	TSS	Cl	OM	PH	WT	PHH				
44482	32.943	2014	1	1	1.5–2.0	4	47	24	23	0	0	274	0	0	0.808	90	0.166	0.021	0	0	0	0	6.54	1	6.54	
44494	32.920	2013	9	3	1.5–2.0	US	5	19	15	13.5	29.6	268	0	0	0.963	80	0.26	0.023	0	0	0	0	1.1			
44496	32.044	2014	4	3	1.5–2.0	US	5.5	0	0	14.9	25.3	269	46	3	0.708	105	0.16	0.018	7	3.71	1.14	8.77	8.1	0.55	8.1	
44502	32.915	2014	6	1	1.5–2.0	4	53	28	25	0	18.32	275	0	0	0	0	0	0	0	0	0	0	0	1.5	0	
44494	32.044	2014	4	1	1.5–2.0	US	5.5	0	0	14.2	27.3	2.7	0	0	0.753	115	0.26	0.027	8	0	0	0	0	0.5	0	
45630	32.033	2014	1	1	1.5–2.0	US	8.5	37	20	17	15.2	26.1	269	0	0	0.776	85	0.14	0.024	4	0	0	0	1.3	0	
45357	32.183	2014	10	3	1.5–2.0	US	8	0	0	0	14.6	26.1	2.7	0	0	0.701	120	0.2	0.032	0	0	0	0	2		
45631	32.034	2014	1	3	1.5–2.0	US	8.5	0	0	0	15.4	25.7	271	0	0	0.752	90	0.18	0.028	0	0	0	0	1.1		
45630	32.033	2014	1	1	1.5–2.0	US	8.5	37	20	17	15.2	26.1	269	0	0	0.776	85	0.14	0.024	4	0	0	0	0	1.3	0
45631	32.034	2014	1	3	1.5–2.0	US	8.5	0	0	0	15.4	25.7	271	0	0	0.752	90	0.18	0.028	0	0	0	0	1.1		
45356	32.182	2013	10	1	1.5–2.0	US	8	0	0	0	14.9	23	2.7	41	3	0.735	110	0.19	0.028	8	7.42	1.47	9.45	8	1.9	8
45114	32.606	2014	1	3	1.5–2.0		5.5	0	0	0	21.2	27.81	0	0	0.931	155	0.19	0.019	0	0	0	0	1.5			
44895	32.624	2014	1	3	1.5–2.0	US	7.5	0	0	0	14.7	23.9	269	0	0	0.809	75	0.19	0.025	4	8.81	1.93	8.47	7.9	1.1	7.9
44893	32.622	2014	1	1	1.5–2.0	US	7.5	0	0	0	14.6	24	268	0	0	0.821	75	0.15	0.021	0	0	0	0	1.1	0	
46690	32.544	2014	2	3	1.5–2.0	US	7	38	26	12	14.6	23.2	269	0	0	0.739	80	0.17	0.024	6	0	0	0	1.1		
around of Al-Sweera city at the north-west. This is not surprising because the weak to moderate stiff silty sandy soil is the predominant formation in this region. On the other hand, it is clearly shown that the north-east of the province (i.e. close to the Iranian borders) has stiff to very stiff soil layer characteristics and the bearing capacity ranges between (110–150 kPa, 11–15 T/m²). The geological formation of this region is mostly mountain rocky soil strata (close to the Zagros mountains between Iraq and Iran) and its elevation about 95 m above the sea level.

5.2. Compressibility (consolidation) parameters

The compressibility parameters include the consolidation parameter or coefficient of consolidation, \(C_v \), in m²/year; Compression index, \(C_c \), and rebound (swelling) index, \(C_r \).

5.2.1. Coefficient of consolidation, \(C_v \)

The coefficient of consolidation is very important for geotechnical engineers in the calculations of the final settlement's time and even the settlement to assess the limit of consolidation at each time (the degree of consolidation). The measured coefficients of the values of consolidation from all the obtained samples from borehole logs (i.e. whole the study area) are tabulated in an excel sheet and used as input data in the GIS software. Figure 3 explains the ranges of the coefficient of consolidation for whole the study area.

It is clearly shown from the Figure 3 that the moderate value of the measured coefficient of consolidation (i.e. 0.7–1.2 m²/year) is the dominant values (i.e. more than 80% of the studied area). However, only west of Al-Kut district and east of Al-Sweera district have very low values (i.e. less than 0.3 m²/year). Moreover, the center of Al-Dejeela and Al-Numaniya townships has very high values of coefficient of consolidation (i.e. more than 1.5 m²/year).

Figure 3. Coefficient of consolidation distribution, \(C_v \).
5.2.2. Compression index, C_c, and rebound index, C_r

Compression index and swelling index are the characteristics of the soil settlement under loads. Basically, in consolidation experiments (i.e. the results of the one-dimensional compression test), the value of the swelling index ranges between 0.1 and 0.2 times the compression index (Das & Sivakugan, 2016). The elastic and plastic strain can be seen easily from the smooth consolidation curve and the version compression line. The obtained values of the parameters from the collected data reflect this behavior and small values of the swelling index rely on the plastic strain and showed that the soil does not suffer from high swelling characteristics though the soil is fine-grained silty-clayey soil.

Figure 4a and b show the geotechnical map for both the compression index and swelling index.

Clearly, it is noticeable from Figure 4(a, b) that the changing in both the minimum values has a similar trend (i.e. minimum values for both parameter concentrated in west Al-Kut district and Al-Azeziya district and around), whereas the maximum values concentrated north of Al-Kut district for the compression index and south of Al-Azeziya district for swelling index. The moderate values for both parameters are predominant for most of the study area (i.e. green color). This means that the characteristics of the log-stress relationships have smooth compression (loading) curve with the small plastic strain (re-loading).

5.3. Shear strength characteristics

The soil can resist the shear stress governed from the applied load from the structures. The shear strength parameters of any soil are terms that refer to this resistance. The friction between particle interlocks is described by the angle of internal friction (ϕ) whereas the bonding or the cementation characteristic is described by the cohesion (c). The strength of any soil decreases when shear strain and expansion or contraction may occur (i.e. increasing or decreasing of soil density, respectively) due to applied loads. Once the shear stress and the density trend to be constant during increasing of the shear strain, the shear strength will decrease and this case called critical or residual state. The shear strength parameters are commonly used by the different common equation in the design of foundation particularly in the empirical equations.

Many methods can be followed to determine the shear strength parameters, triaxial test, and direct shear torsional direct shear test (Thermann et al., 2006). The simplest method to calculate the shear strength parameters is by performing the direct shear test. The collected and used shear strength parameters as input data in the GIS software in this paper are determined from the direct shear test methods.

Figure 5 shows the digital geotechnical map for the distributed values of shear strength parameters for Wasit province. From Figure 4(a), it should be noticed that the determined values of the cohesion parameter (i.e. c) are predominantly small values (ranged between 0 and 16 kPa) and this gave an indication that the soil layers of the studied area are sandy silty soil with few very fine grain particles (clay). This is not surprising as the bearing capacities as described above are low values. In contrast, high values of cohesion parameters are noticed in the north of the province particularly at Badra district and around.

The angle of internal friction is measured as a peak state (ϕ_p). It can be seen from Figure 4(b) that the angle of friction values is small for the whole studied area and this refers to the fact that the geological formation for the soil layers of the province is predominantly sandy silty soil with few cementation action for few clayey soil.

5.4. Water table level

Once the soil layer is found under the water level, it will obviously be fully saturated. The water table is the upper level of the water in the soil layer for the saturated zone. As described earlier in this paper, the water level is measured from the borehole (24 h) after the end of the drilling.
process to permit the water to be at a static state due to suction and filtration from the walls of the borehole. These measurements have been taken at different seasonal times during the year.

Figure 6 shows the groundwater level as a geotechnical map for Wasit province. It can be seen that the measured water table level has shallow depth under the ground surface (not exceeding 1.5 m) for most of the study area. In contrast, only the north of the study area (Badra, Zurbatiya) and the north-east Iranian borders are going to be deeper (i.e. up to 8 m for Badra district center).
Actually, this is intuitive because the elevation of this region increases and reaches to 95 m at some places due to geological formation and close to the Zagros Mountains.

6. Conclusions

This paper focuses on producing digital geotechnical maps for main important geotechnical properties that are commonly used by geotechnical engineers in footing and foundation design. The main conclusion can be summarized as follows:
GIS is an effective tool that can be used by engineers to assess preliminary geotechnical site exploration. The obtained information concerned with the main geotechnical properties and parameters of 164 boreholes are collected, analyzed, and used as input data utilizing the GIS environment to produce significant many geotechnical maps.

The accomplished digital geotechnical maps for the bearing capacity, compressibility characteristics, and shear strength parameters can be used by the designer as a visual display powerful tool at the preliminary design stage simply by using the digital values of these parameters for the proposed region and appropriate decision can be taken.

Preliminary Assessment of the site investigation report can be accomplished for any project based on the digital maps. The considerable advantages of using these techniques are low cost, the ease of data using and quick update of data, and the ability to produce the right, care should be taken preceding the footing design.

Moderate bearing capacities are noticed for most of the study area (i.e. 40–60 kN/m2) while only the north of the province has a large bearing capacity (i.e. around 150 kN/m2).

From the shear strength digital map of the parameter, the sandy silty soil is the predominant formation for the soil layers (maximum angle of friction is 8° and with predominant cohesion around 16 kPa).

Shallow water table level is noticed for 80% of the study area and the rest of the area (i.e. the north) has a water table level up to 8 m below the ground surface.

Acknowledgements
The authors would like to express their truthful thanks to the technical staff of the GIS laboratory at the University of Wasit for their assistance in performing all the digital geotechnical maps. The first author would also like to acknowledge the Ministry of education/schools building directorate for their assistance in providing us with all the site investigation borehole data.

Author details
Asad H. Aldefae1
E-mail: asadaldefae@uowasit.edu.iq
ORCID ID: http://orcid.org/0000-0002-8725-4470

Jareer Mohammed1
Hiba D. Saleem1
E-mail: eccikut@yahoo.com
1 College of Engineering, Civil Engineering Department, University of Wasit, Kut, Iraq.

Funding
The authors received no direct funding for this research.

Cover image
Source: Author.
Citation information
Cite this article as: Digital maps of mechanical geotechnical parameters using GIS, Asad H. Aldefae, Jareer Mohammed & Hiba D. Saleem, Cogent Engineering (2020), 7: 1779563.

References
Al-Baghdadi, N. H. (2016). Geotechnical mapping of An-Najaf City, Iraq. Journal of University of Babylon, 24(4), 962–979. https://www.iasj.net/iasj?func=article&id=116301.

Al-Maliki, L. A. J., Al-Mamoori, S. K., El-Tawel, K., Hussain, H. M., Al-Ansari, N., & Al Ali, M. J. (2018). Bearing capacity map for An-Najaf and Kufa cities using GIS. Engineering, 10(5), 262. https://doi.org/10.4236/eng.2018.105018

Al-Shukriji, Y. J., & Al-Khuzaie, M. A. (2011). The geotechnical maps for the governorates Baghdad, Diyala, Wasit and Babylon. Journal of Engineering, 17(3), 87–104. https://www.iasj.net/iasj?func=search&query=au%22%2D%8A7%D9%84%D8%AF%D9%83%D8%AA%D9%88%D8%B1%20%D9%8A%D9%88%D8%B3%D9%81%20%D8%AC%D9%88%D8%A7%D8%AF%20%D8%A7%D9%84%D9%83%D8%B1%D8%AC%D9%8A%20%22&uiLanguage=en

Bhattacharyya, D., Ghosh, J. K., Komarkova, J., Banerjee, S., & Kutoglu, H. (2014). Distributed GIS for automated natural hazard zonation mapping Internet-SMS warning towards sustainable society. Cogent Engineering, 1(1), 961346. doi: 10.1080/23311916.2014.961346

Camera, C., Zomeni, Z., Noller, J. S., Zissimos, A. M., Christoforou, I. C., & Bruggeman, A. (2017). A high resolution map of soil types and physical properties for Cyprus: A digital soil mapping optimization. Geoderma, 285(1), 35–49. https://doi.org/10.1016/j.geoderma.2016.09.019

Das, B. M., & Sivakugan, N. (2016). Fundamentals of geotechnical engineering. Cengage Learning.

Ghosh, J. K., Bhattacharyya, D., Boccardo, P., & Samadhiya, N. K. (2015). Automated geo-spatial hazard warning system GEOWARNS: Italian case study. Journal of Computing in Civil Engineering, 29(5), 04014065. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000372

Gupta, P., & Sarma, K. (2016). Spatial distribution of various parameters in groundwater of Delhi, India. Cogent Engineering, 3(1), 1138596. https://doi.org/10.1080/23311916.2016.1138596

Hollowell, E. E., Lamont-Black, J., Kemp, A. C., & Hughes, S. J. (2001). GIS as a tool in geotechnical engineering. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 149(2), 85–93. https://doi.org/10.1680/geng.2001.149.2.85

Kadhim, K. N., & Al-Abody, A. A. M. (2015). The geotechnical maps for bearing capacity by using GIS and quality of ground water for Al-Imam District (Babil-Iraq). International Journal of Civil Engineering and Technology, 6(10), 176–184. https://www.researchgate.net/publication/298788473_THE_GEOTECHNICAL_MAPS_FOR_BEARING_CAPACITY_BY_USING_GIS_AND_QUALITY_OF_GROUND_WATER_FOR_AL-%D8%AC%D9%8A-%D8%AF%D9%83%D8%A7%D9%84%D8%A7%D8%AF%20%D8%A7%D9%84%D9%83%D8%B1%D8%AC%D9%8A%20%22&uiLanguage=en

Kamal, M. A., Arshad, M. U., Khan, S. A., & Zaid, B. A. (2018). Appraisal of geotechnical characteristics of soil for different zones of Faisalabad (Pakistan). Pakistan Journal of Engineering and Applied Sciences, 17(6), 1–10. https://www.researchgate.net/publication/283316143_Appraisal_of_Geotechnical_Characteristics_of_Soil_for_Different_Zones_of_Faisalabad_Pakistan

Labib, M., & Nashed, A. (2013). GIS and geotechnical mapping of expansive soil in Tasha region. Ain Shams Engineering Journal, 4(3), 423–433. https://doi.org/10.1016/j.asej.2012.11.005

Liengsakul, M., Mekpaiboonwatana, S., Pramojanee, P., Bronsveld, K., & Huizing, H. (1993). Use of GIS and remote sensing for soil mapping and for locating new sites for permanent cropland—A case study in the “highlands” of northern Thailand. Geoderma, 60(1–4), 293–307. https://doi.org/10.1016/0016-7061(93)90032-G

National Center for Construction Laboratories & Research, NCCLR. (2016). Investigation Reports. Governorate of Najaf.

Player, R. S. V. (2006). Geographic information system (GIS) use in geotechnical engineering. In GeoCongress 2006: Geotechnical engineering in the information technology age (pp. 1–6). https://doi.org/10.1680/gcon.2006(187)123

Shubber, S. (2009). Appendix 1. The Iraqi investment law 2006. In The Law of Investment in Iraq (pp. 168–189). https://doi.org/10.1163/9789004172869-i-247.78

Thermann, K., Gau, C., & Tiedemann, J. (2006). Shear strength parameters from direct shear tests–influencing factors and their significance. The Geological Society of London, 484, 1–12. https://www.researchgate.net/publication/237718044_Shear_strength_parameters_from_direct_shear_tests_influencing_factors_and_their_significance.
