A numerical treatment for the system of singularly perturbed convection-reaction-diffusion two point boundary value problems with non-smooth data

T Prabha 1* and V Shanthi 2
1, 2 Department of Mathematics, National Institute of Technology, Tiruchirappalli-620 015, Tamilnadu, INDIA
* Corresponding Author
E-mail: prabha.thevaraj@gmail.com

Abstract. Two point Singularly Perturbed Weakly Coupled System of Convection-Reaction-Diffusion Problems (WCSCRPDS), having small parameters ($\varepsilon_1, \varepsilon_2$) multiplying the highest derivative (diffusion) and the next highest derivative (convection) term with discontinuity over the source term is studied. Generally, for adequately small values of the perturbation parameters, the exact solution involves boundary and interior layers. Hence, the analysis of the problem splits into two cases, in accordance with the ratio of the convection and diffusion parameters. The continuous bounds of the solution and its derivatives are derived. A numerical method which is parameter uniform is constructed, on a suitably fitted piecewise uniform Shishkin mesh. The error estimation analysis is discussed and the numerical method applied here exhibits almost first order convergence. Numerical examples and the corresponding tables and figures demonstrate the efficiency of the numerical scheme.

1. Introduction
The Singular Perturbation Problems (SPPs) generally occur in many branches of science and engineering. For example skin layers in electrical applications, edge and shock layers in solid mechanics, boundary layers in fluid mechanics, surfaces and Stokes lines in mathematics and not the last to refer transition points in quantum mechanics. Perturbations affect these types of problems around a very confined domain where the solution undergoes a swift change which is not measurable. These narrow regions very often adjoin the interior or the boundary points of the region of interest. The only possible reason for this is the augmentation of the parameters with the highest derivatives. The formulation and analysis of best chosen numerical methods for Singularly Perturbed Differential Equations (SPDE) is a huge area of significance. Despite a large amount of work being done in the research field of SPPs for smooth [1, 2, 3, 4, 5] and non-smooth data [6, 7, 8, 9, 10, 11], there is a platform for more relevant research to explore. Recently, a numerical scheme is discussed for a Singularly Perturbed Boundary Value Problem (SPBVP), with smooth data in [12] to arrive at first order convergence. All the study discussed so far relate to SPPs in which a small parameter affects the highest derivative term. Authors in [13, 14] considered Convection-Reaction-Diffusion Problem (CRDP) with smooth data. Zahara [15] constructed a new non-polynomial cubic spline method to solve a similar type of problem in which the computational results presented confirm a higher order accuracy of order two to the nu-
merical scheme considered. Two parameter (SPBVP) with non-smooth data is considered by
the authors in [16, 17, 18]. Moreover, the solution of the linear system of SPPs for convection-
reaction-diffusion type is a wide region to examine. This type of problems can be modeled as
turbulence flow owing to the interactions of waves with the steady current[5]. Similar equations
are also found in the applications while experimenting with the diffusion process intricate by
chemical reactions in the field of electroanalytical chemistry. The diffusion coefficients of the
substances are the parameter that augment the highest derivatives. Motivated by the works of
[10, 19], in this study we have considered a numerical technique to solve a WCSCRDPs involving
discontinuous source terms in the unit interval $\bar\Upsilon = (0, 1)$. is defined as follows:
Find $\bar{u} = u_1, u_2 \in C^0(\bar{\Upsilon}) \cap C^1(\Upsilon) \cap C^2(\Upsilon^- \cup \Upsilon^+)$ such that

$$
\begin{align}
L_1 \bar{u}(s) &\equiv \varepsilon_1 u_1''(s) + \varepsilon_2 a_1(s) u_1'(s) - p_{11}(s) u_1(s) - p_{12}(s) u_2(s) = q_1(s) \quad (1) \\
L_2 \bar{u}(s) &\equiv \varepsilon_1 u_2''(s) + \varepsilon_2 a_2(s) u_2'(s) - p_{21}(s) u_1(s) - p_{22}(s) u_2(s) = q_2(s) \quad (2)
\end{align}
$$

$$
\forall x \in (\Upsilon^- \cup \Upsilon^+)
$$

$$
\begin{align}
\bar{u}_1(0) = q_1, \bar{u}_2(0) = q_2, \bar{u}_1(1) = r_1, \bar{u}_2(1) = r_2, \quad |\tilde{g}_i| \leq C.
\end{align}
$$

where $0 < \varepsilon_1 << 1, 0 < \varepsilon_2 \leq 1$, are the two perturbation parameters with

$$
a_1(s) > \alpha_1 > 0, a_2(s) > \alpha_2 > 0,
$$

$$
\begin{align}
p_{11}(s), p_{12}(s) &\geq 0, p_{11}(s) \geq |p_{12}(s)|, \quad p_{21}(s), p_{22}(s) \geq 0, p_{22}(s) \geq |p_{21}(s)|, \\
p_{11}(s) + p_{12}(s) &\geq \beta_1(s) > 0, \quad p_{21}(s) + p_{22}(s) \geq \beta_2(s) > 0.
\end{align}
$$

The coefficients $a_i(s)$ and $p_{i,j}(s)$ for $(i, j = 1, 2)$ are sufficiently smooth functions in $\bar{\Upsilon}$. The
source term functions $q_1(s)$ and $q_2(s)$ are assumed to be adequately smooth on $(\Upsilon^- \cup \Upsilon^+)$. Their
derivatives have a single jump discontinuity at $d \in \Upsilon$, denoted by $[\nu]d = \nu(d^+) - \nu(d^-)$. Eventually, this discontinuity would give rise to internal layers in the solution of $\bar{u}(s)$ of the continuous problem (1)-(3). It is comfortable to introduce the symbols $\bar{\Upsilon} = [0, 1]$, $\Upsilon^- = (0, d)$ and $\Upsilon^+ = (d, 1), d \in \Upsilon$. When $\varepsilon_2 = 1$, the problem behaves like the established diffusion-convection problem [8] and for $\varepsilon_2 = 0$, it behaves like the diffusion-reaction problem [6]. In the current
paper, the analysis of the problem (1)-(3) is split into two cases given as,

Case (i): $\sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}$ and Case (ii): $\sqrt{\alpha \varepsilon_2} \geq \sqrt{\eta \varepsilon_1}$,

where $\alpha = \min\{\alpha_1, \alpha_2\}$ and $\eta = \min\{\eta_1, \eta_2\}$.

It is assumed that

$$
\begin{align}
\eta_1 &= \min_{\Upsilon \setminus \{d\}} \left\{ \frac{p_{11}(s) + p_{12}(s)}{a_1(s)} \right\}, \\
\eta_2 &= \min_{\Upsilon \setminus \{d\}} \left\{ \frac{p_{21}(s) + p_{22}(s)}{a_2(s)} \right\}
\end{align}
$$

The results in forthcoming sections show that the considered CRDP behaves more like the reaction type problem for $\sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}$ with a layer width of $\mathcal{O}(\sqrt{\varepsilon_1})$ appearing in the neighborhood of $s = 0, s = d$ and $s = 1$. When $\sqrt{\alpha \varepsilon_2} \geq \sqrt{\eta \varepsilon_1}$, a layer width of $\mathcal{O}(\frac{\varepsilon_1}{\varepsilon_2})$ in the neighborhood of $s = 0, s = d$ and a layer width of $\mathcal{O}(\frac{\varepsilon_1}{\varepsilon_2})$ in the neighborhood of $s = d$ and $s = 1$ can be predicted. The matrix-vector form of the considered problem (1)-(3) is represented as
\[L\bar{u} = \varepsilon_1 \bar{u}'' + \varepsilon_2 A(s)\bar{u}' - B(s)\bar{u} = \bar{g}(s), \quad x \in (\Upsilon^- \cup \Upsilon^+), \quad (4) \]

with the boundary conditions

\[\bar{u}(0) = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, \quad \bar{u}(1) = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \quad (5) \]

where

\[
L = \begin{pmatrix} L_1(s) \\ L_2(s) \end{pmatrix}, \quad \bar{u} = \begin{pmatrix} u_1(s) \\ u_2(s) \end{pmatrix}, \quad \bar{\varepsilon}_1 = \begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_1 \end{pmatrix}, \quad \bar{\varepsilon}_2 = \begin{pmatrix} \varepsilon_2 & 0 \\ 0 & \varepsilon_2 \end{pmatrix}, \quad A(s) = \begin{pmatrix} a_1(s) & 0 \\ 0 & a_2(s) \end{pmatrix}, \quad B(s) = \begin{pmatrix} p_{11}(s) & p_{12}(s) \\ p_{21}(s) & p_{22}(s) \end{pmatrix}, \quad \bar{g}(s) = \begin{pmatrix} g_1(s) \\ g_2(s) \end{pmatrix} = \begin{cases} g_{11}(s), & \text{for } s \leq d \\ g_{12}(s), & \text{for } s \geq d \end{cases} \begin{cases} g_{21}(s), & \text{for } s \leq d \\ g_{22}(s), & \text{for } s \geq d \end{cases}
\]

The other sections of the paper are coordinated as below. In Section 2 some a priori bounds and decomposition of the problem (1)-(3) is described. Discretization of the continuous problem and the methods to be applied with the discrete bounds are described in Section 3. Decomposition and bounds for the discrete solution are conferred in Section 4. In Section 5, the convergence and the methods to be applied with the discrete bounds are described in Section 3. Decomposition of the problem (1)-(3) is described. Discretization of the continuous problem (1)-(3) mitigate the following minimum principle.

Lemma 1. The WCSCRDP (1)-(3) has a solution, such that \(u_1(s), u_2(s) \in C^0(\Upsilon) \cap C^1(\Upsilon) \cap C^2(\Upsilon^- \cup \Upsilon^+)\). \(\square\)

The differential operator \(L\) of the continuous problem (1)-(3) mitigate the following minimum principle.

Lemma 2. (Minimum principle) Let the solution \(\bar{\nu}(s) \in C^0(\Upsilon) \cap C^2(\Upsilon^- \cup \Upsilon^+)\) satisfies \(\bar{\nu}(0) \geq \bar{0}, \quad \bar{\nu}(1) \geq \bar{0}\), and \(L_1\bar{\nu}(s) \leq \bar{0}, L_2\bar{\nu}(s) \leq \bar{0} \forall s \in (\Upsilon^- \cup \Upsilon^+)\) and \(|\bar{\nu}|d \leq \bar{0}\). Then \(\bar{\nu}(s) \geq \bar{0}, \quad \forall s \in \Upsilon\). \(\square\)

The very next result that follows, minimum principle is the stability of the solution.

The Lemmas 3 and 4 can be proved following the steps and techniques adopted in \([2, 13]\).
Lemma 3. Let \(u_1(s), u_2(s) \in C^0(\bar{\Upsilon}) \cap C^1(\Upsilon) \cap C^2(\Upsilon^- \cup \Upsilon^+) \) then
\[
||u_i(s)||_{\bar{\Upsilon}} \leq C \max \{||u_i(0)||, ||u_i(1)||, ||u_1(1)||, ||u_2(1)||\} + \Sigma_i \left\{ \frac{1}{\eta_i} \{||g_i||_{(\Upsilon^- \cup \Upsilon^+)}\} \right\}, \quad s \in \bar{\Upsilon}, \ i = 1, 2. \]

Lemma 4. For all \(0 \leq k \leq 3 \), \(j = 1, 2 \), \(u_j(s) \) be the solution of the problem (1)-(3) and the derivatives follow the following bounds.
\[
||u_j^{(k)}||_{\bar{\Upsilon}} \leq C \left(1 + \left(\frac{\varepsilon_2}{\varepsilon_1}\right)^k\right) \max \{||u||, ||g||\}, \quad k = 1, 2, \]
\[
||u_j^{(3)}||_{\bar{\Upsilon}} \leq C \left(1 + \left(\frac{\varepsilon_2}{\varepsilon_1}\right)^3\right) \max \{||u||, ||g||, ||g'||\} \]

The solution \(\bar{u}(s) \) is decomposed into regular \(\bar{y}(s) \) and singular \(\bar{z}(s) \) components to obtain sharper bounds in the error estimate. It is inevitable to split the analysis into two cases depending upon the ratio of \(\varepsilon_2 \) to \(\varepsilon_1 \) given by \(\sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1} \) and \(\sqrt{\alpha \varepsilon_2} \geq \sqrt{\eta \varepsilon_1} \). The solution \(\bar{u}(s) \) is decomposed as \(\bar{u}(s) = \bar{y}(s) + \bar{z}(s) + \bar{z}'(s) \), for both the cases, where \(\bar{y}(s) = (y_1(s), y_2(s))^T \) and \(\bar{z}(s) = (z_1(s), z_2(s))^T \). The regular component \(\bar{y}(s) \) is defined as the solution of the following problem,
\[
L\bar{y}(s) = \bar{y}(s), \quad s \in (\Upsilon^- \cup \Upsilon^+), \quad \bar{y}(0) = y(0), \ \bar{y}(1) = y(1), \ \bar{y}(d-) \text{ and } \bar{y}(d+) \text{ are chosen,}
\]where
\[
\bar{y}(s) = \begin{cases}
\bar{y}^-(s), & s \in \Upsilon^-, \\
\bar{y}^+(s), & s \in \Upsilon^+.
\end{cases}
\]The singular component \(\bar{z}_l(s) \) and \(\bar{z}_r(s) \) are the solutions of
\[
L\bar{z}_l(s) = 0, \quad s \in (\Upsilon^- \cup \Upsilon^+), \ \bar{z}_l(0) = \bar{z}_l(1) = 0, \quad \text{(6)}
\]
\[
L\bar{z}_r(s) = 0, \quad s \in (\Upsilon^- \cup \Upsilon^+), \ \bar{z}_r(0) = \bar{z}_r(1) = 0, \quad \text{(7)}
\]
\[
[\bar{z}_l]'d = -[\bar{y}]d - [\bar{z}_l]'d \text{ and } [\bar{z}_r]'d = -[\bar{y}]d - [\bar{z}_r]'d. \quad \text{(8)}
\]where
\[
\bar{z}_l(s) = \begin{cases}
\bar{z}_l^-(s), & s \in \Upsilon^-, \\
\bar{z}_l^+(s), & s \in \Upsilon^+.
\end{cases}
\]
\[
\bar{z}_r(s) = \begin{cases}
\bar{z}_r^-(s), & s \in \Upsilon^-, \\
\bar{z}_r^+(s), & s \in \Upsilon^+.
\end{cases}
\]The sum of the regular \(\{(\bar{y}(s))\} \) and the singular \(\{(\bar{z}_l(s)), (\bar{z}_r(s))\} \) components are in \(C^1(\Upsilon) \), by (8), although they are discontinuous at \(s = d \),

The sharper bounds for \(\bar{y}(s), \bar{z}_l^-(s), \) and \(\bar{z}_r^-(s), \bar{z}_{r}^-(s) \), are defined in the succeeding Lemmas for the two ratios of the parameters.
Consider the case(i): \(\sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1} \).
The proof of Lemmas 5 and 8 follows from the principles adopted in [2, 13].

Lemma 5. For \(0 \leq k \leq 3 \) the following bounds are satisfied by the regular component \(\bar{y}(s) \),
\[
||\bar{y}^{(k)}||_{\Upsilon \setminus \{d\}} \leq C \left(1 + \frac{1}{(\varepsilon_1)^{k-2}}\right), \quad 0 \leq k \leq 3. \quad \square
\]
Lemma 6. For $0 \leq k \leq 3$, the following bounds are satisfied by singular components $\bar{z}_l(s)$ and $\bar{z}_r(s)$,

$$
\|\bar{z}_l^{(k)}\|_{Y\setminus\{d\}} \leq \frac{C}{(\sqrt{\varepsilon_1})^k} \begin{cases}
Ce^{-\theta_1 s}, & s \in \Upsilon^-, \quad 0 \leq k \leq 3,
Ce^{-\theta_1(s-d)}, & s \in \Upsilon^+, \quad 0 \leq k \leq 3,
\end{cases}
$$

$$
\|\bar{z}_r^{(k)}\|_{Y\setminus\{d\}} \leq \frac{C}{(\sqrt{\varepsilon_1})^k} \begin{cases}
Ce^{-\theta_2(d-s)}, & s \in \Upsilon^-, \quad 0 \leq k \leq 3,
Ce^{-\theta_2(1-s)}, & s \in \Upsilon^+, \quad 0 \leq k \leq 3.
\end{cases}
$$

with

$$
\theta_1 = \frac{\sqrt{\eta}}{\sqrt{\varepsilon_1}}, \quad \theta_2 = \frac{\sqrt{\eta}}{\sqrt{\varepsilon_1}}.
$$

Consider the case(ii): $\sqrt{\alpha} \geq \sqrt{\eta}$. □

Lemma 7. The regular component $\bar{y}(s)$ satisfies the following bounds

$$
\|\bar{y}^{(k)}\|_{Y\setminus\{d\}} \leq C \left(1 + \left(\frac{\varepsilon_1}{\varepsilon_2}\right)^{2-k}\right), \quad 0 \leq k \leq 3. \quad \square
$$

Lemma 8. The singular components $\bar{z}_l(s)$ and $\bar{z}_r(s)$ satisfy the following bounds

$$
\|\bar{z}_l^{(k)}\|_{Y\setminus\{d\}} \leq C \left(\frac{\varepsilon_2}{\varepsilon_1}\right)^k \begin{cases}
Ce^{-\theta_1 s}, & s \in \Upsilon^-, \quad 0 \leq k \leq 3,
Ce^{-\theta_1(s-d)}, & s \in \Upsilon^+, \quad 0 \leq k \leq 3,
\end{cases}
$$

$$
\|\bar{z}_r^{(k)}(s)\|_{Y\setminus\{d\}} \leq C \left(\frac{1}{\varepsilon_2}\right)^k \begin{cases}
Ce^{-\theta_2(d-s)}, & x \in \Upsilon^-, \quad 0 \leq k \leq 3,
Ce^{-\theta_2(1-s)}, & s \in \Upsilon^+, \quad 0 \leq k \leq 3.
\end{cases}
$$

with

$$
\theta_1 = \frac{\alpha \varepsilon_2}{2\varepsilon_1}, \quad \theta_2 = \frac{\eta}{2\varepsilon_2} \quad \square
$$

The unique solution $\bar{u}(s)$ of the continuous problem (1)-(3) is now given by

$$
\bar{u}(s) = \begin{cases}
\bar{y}^-(s) + \bar{z}_l^-(s) + \bar{z}_r^+(s), & s \in \Upsilon^-,
\bar{y}^- (d^-) + \bar{z}_l^- (d^-) + \bar{z}_r^+ (d^-) = \bar{y}^+ (d^+) + \bar{z}_l^+ (d^+) + \bar{z}_r^+ (d^+) \quad \text{at } s = d,
\bar{y}^+ (s) + \bar{z}_l^+ (s) + \bar{z}_r^+ (s), & s \in \Upsilon^+.
\end{cases}
$$

3. Discrete Problem

The continuous problem is discretized using Upwind finite difference scheme with suitable Shishkin mesh. On $\check{\Upsilon}$ a piecewise uniform mesh size over M is builded by splitting the domain $\check{\Upsilon}$ into six subintervals defined as

$$
\check{\Upsilon} = [0, q_1] \cup [q_1, d - q_2] \cup [d - q_2, d] \cup [d, d + q_3] \cup [d + q_3, 1 - q_4] \cup [1 - q_4, 1].
$$
The subintervals $[0, \varrho_1]$, $[d - \varrho_2, d]$, $[d, d + \varrho_3]$ and $[1 - \varrho_4, 1]$ are scaled with a uniform mesh of $M/8$ mesh intervals, while $[\varrho_1, d - \varrho_2]$ and $[d + \varrho_3, 1 - \varrho_4]$ have a uniform mesh with $M/4$ mesh intervals. The step sizes in each subinterval is defined by $H_1 = 8\varrho_1/N$, $H_2 = 4(d - \varrho_1 - \varrho_2)/N$, $H_3 = 8\varrho_2/N$, $H_4 = 8\varrho_3/N$, $H_5 = 4(1 - \varrho_3 - \varrho_4)/N$ and $H_6 = 8\varrho_4/N$. If the discontinuous point is considered at the mesh point $x_i = x_d = M/2$ then the mesh points are represented by

$$\Upsilon^M = \{s_i : 1 \leq i \leq M/2 - 1\} \cup \{s_i : M/2 + 1 \leq i \leq M - 1\},$$

and the mesh points of the discrete domain are denoted by $\Upsilon^M = \{s_i\}^M_0 \cup \{d\}$. If $\varrho_1 = \varrho_2 = d/4$ and $\varrho_3 = \varrho_4 = (1 - d)/4$ and $\varrho_1 = \varrho_2 = \varrho_3 = \varrho_4 = 1/8$ (it is a special case of the discontinuous point at $d = 1/2$) then the mesh is uniform. The transition values in Υ are chosen as

$$\begin{align*}
\varrho_1 &= \min\left\{\frac{d}{4}, \frac{1}{\varrho_1} \ln M\right\}, \quad \varrho_2 = \min\left\{\frac{d}{4}, \frac{2}{\varrho_2} \ln M\right\}, \\
\varrho_3 &= \min\left\{\frac{1 - d}{4}, \frac{1}{\varrho_1} \ln M\right\}, \quad \varrho_4 = \min\left\{\frac{1 - d}{4}, \frac{2}{\varrho_2} \ln M\right\},
\end{align*}$$

(12)

where ϱ_1, ϱ_2, are defined in section 2.

The WCSCRDP boundary value problem (1)-(3) is discretized in the mesh domain Υ^M using the standard upwind finite difference method. Let us find a mesh function $\bar{U}(s_i)$, $\forall s_i \in \Upsilon^M$ such that

$$L^M \bar{U}(s_i) \equiv \varepsilon_1 \delta^2 \bar{U}(s_i) + \varepsilon_2 A(s_i) D^+ \bar{U}(s_i) + B(s_i) \bar{U}(s_i) = \bar{g}(s_i)$$

(13)

$$U(s_0) = \bar{u}(0), \ U(s_M) = \bar{u}(1),$$

(14)

$$D^- \bar{U}(s_{M/2}) = D^+ \bar{U}(s_{M/2}),$$

(15)

where the matrix A and B are defined in section 2. The stiffness matrix is obtained for the above discrete problem with the following operators.

$$D^+ U(s_i) = \frac{U(s_{i+1}) - U(s_i)}{h_i}, \quad D^- U(s_i) = \frac{U(s_i) - U(s_{i-1})}{h_i}, \delta^2 U(s_i) = \frac{(D^+ U(s_i) - D^- U(s_i))}{h_i},$$

where, $h_{i+1} = s_{i+1} - s_i, h_i = s_i - s_{i-1}, \bar{h}_i = \frac{h_{i+1} + h_i}{2}, i = 1, 2, ..., M$.

The discrete operator L^M has properties equivalent to the continuous differential operator L defined in section 2.

Lemma 9. Suppose there exist a mesh function $\bar{U}(s_i)$ such that $\forall s_i \in \Upsilon^M$ which satisfies $\bar{U}(s_0) \geq 0, \bar{U}(s_M) \geq 0$, and $L^M \bar{U}(s_i) \leq 0$, $L^2 \bar{U}(s) \leq 0$ and $D^+ \bar{U}(s_{M/2}) - D^- \bar{U}(s_M/2) \leq 0$. Then $\bar{U}(s_i) \geq 0, \forall s_i \in \Upsilon$.

Lemma 10. If $\bar{U}(s_i)$ is any mesh function, then $||\bar{U}(s_i)|| \leq \left(\frac{C}{\bar{C}}\right)$, for all $s_i \in \Upsilon^M$.

4. Decomposition and Bounds for the Discrete Solution

The error to be estimated at each mesh point $s_i \in \Upsilon^M$ is represented by $||e(s_i)|| = ||\bar{U}(s_i) - \bar{u}(s_i)||$. To find the error $||e(s_i)||$, we decompose the mesh function $\bar{U}(s_i)$ of the discrete problem (13) - (15) as $\bar{U}(s_i) = \bar{Y}(s_i) + \bar{Z}_l(s_i) + \bar{Z}_r(s_i)$ in a way similar to the decomposition of continuous solutions. To obtain sharper bounds the discrete regular component $\bar{Y}(s_i)$ and singular components $\bar{Z}_l(s_i), \bar{Z}_r(s_i)$ are further decomposed as $\bar{Y}^-(s_i), \bar{Y}^+(s_i), \bar{Z}_l^-(s_i), \bar{Z}_l^+(s_i)$.
and $\bar{Z}^{-}_r(s_i)$, $\bar{Z}^+_r(s_i)$ respectively to the left and right sides of the point of discontinuity $i = M/2$
This decomposition facilitate in deriving the convergence of the nodal error $||\bar{e}(s_i)||$ in the
boundary and interior layers.

The regular discrete component $\bar{Y}(s_i)$ is defined as

$$
\bar{Y}(s_i) = \begin{cases}
\bar{Y}^{-}(s_i), & \text{for } 1 \leq i \leq M/2 - 1, \\
\bar{Y}^{+}(s_i), & \text{for } M/2 + 1 \leq i \leq M - 1,
\end{cases}
$$

where, $\bar{Y}^{-}(s_i)$ and $\bar{Y}^{+}(s_i)$ are respectively, the solutions of the following discrete problems:

$$
\begin{align*}
L^M \bar{Y}^{-}(s_i) &= \bar{g}(s_i), & \text{for } 1 \leq i \leq M/2 - 1, & \bar{Y}^{-}(0) = y(0), \quad \bar{Y}^{-}(M/2) = y(d-), \\
L^M \bar{Y}^{+}(s_i) &= \bar{g}(s_i), & \text{for } M/2 + 1 \leq i \leq M - 1, & \bar{Y}^{+}(M/2) = y(d+), \quad \bar{Y}^{+}(1) = y(1).
\end{align*}
$$

Further the discrete singular components $\bar{Z}^{-}_l(s_i)$, $\bar{Z}^+_l(s_i)$, $\bar{Z}^{-}_r(s_i)$ and $\bar{Z}^+_r(s_i)$ are defined as

$$
\bar{Z}(s_i) = \bar{Z}_l(s_i) + \bar{Z}_r(s_i)
= \begin{cases}
\left(\bar{Z}^{-}_l + \bar{Z}^{-}_r\right)(s_i), & \text{for } 1 \leq i \leq M/2 - 1, \\
\left(\bar{Z}^{+}_l + \bar{Z}^{+}_r\right)(s_i), & \text{for } M/2 + 1 \leq i \leq M - 1,
\end{cases}
$$

where, $\bar{Z}^{-}_l(s_i)$, $\bar{Z}^+_l(s_i)$, $\bar{Z}^{-}_r(s_i)$ and $\bar{Z}^+_r(s_i)$ are respectively the solutions of the following discrete problems:

$$
\begin{align*}
L^M \bar{Z}^{-}_l(s_i) &= 0, & \text{for } 1 \leq i \leq M/2 - 1, & \bar{Z}^{-}_l(0) = z^{-}_l(0), \quad \bar{Z}^{-}_l(M/2) = z^{-}_lM/2, \\
L^M \bar{Z}^+_l(s_i) &= 0, & \text{for } M/2 + 1 \leq i \leq M - 1, & \bar{Z}^{+}_l(M/2) = z^{+}_l(M/2), \quad \bar{Z}^{+}_l(1) = z^{+}_l(1), \\
L^M \bar{Z}^{-}_r(s_i) &= 0, & \text{for } 1 \leq i \leq M/2 - 1, & \bar{Z}^{-}_r(0) = 0, \quad \bar{Z}^{-}_r(M/2) = z^{-}_rM/2, \\
L^M \bar{Z}^+_r(s_i) &= 0, & \text{for } M/2 + 1 \leq i \leq M - 1, & \bar{Z}^{+}_rM/2 = 0, \quad \bar{Z}^{+}_r(1) = z^{+}_r(1).
\end{align*}
$$

The solution $\bar{Y}(s_i)$ of the discrete problem (13)- (15) can be now defined as

$$
\bar{U}(s_i) = \begin{cases}
(\bar{Y}^{-} + \bar{Z}^{-}_l + \bar{Z}^{-}_r)(s_i), & \text{for } 1 \leq i \leq M/2 - 1, \\
(\bar{Y}^{-} + \bar{Z}^{-}_l + \bar{Z}^{-}_r)(s_i) = (\bar{Y}^{+} + \bar{Z}^{+}_l + \bar{Z}^{+}_r)(s_i), & \text{for } i = M/2, \\
(\bar{Y}^{+} + \bar{Z}^{+}_l + \bar{Z}^{+}_r)(s_i), & \text{for } M/2 + 1 \leq i \leq M - 1.
\end{cases}
$$

Lemma 11. The following bounds on $\bar{Z}^{-}_l(s_i)$, $\bar{Z}^+_l(s_i)$, $\bar{Z}^{-}_r(s_i)$ and $\bar{Z}^{+}_r(s_i)$ are given by

$$
\begin{align*}
|\bar{Z}^{-}_l(s_i)| &\leq C \prod_{j=1}^i \left(1 + \theta_1 h_j\right)^{-1} = \tilde{\psi}^{-}_l, \quad \tilde{\psi}^{-}_l,0 = C, \\
|\bar{Z}^+_l(s_i)| &\leq C \prod_{j=M/2+1}^i \left(1 + \theta_1 h_j\right)^{-1} = \tilde{\psi}^{+}_l, \quad \tilde{\psi}^{+}_l, M/2 = C, \\
|\bar{Z}^{-}_r(s_i)| &\leq C \prod_{j=1}^{M/2} \left(1 + \theta_2 h_j\right)^{-1} = \tilde{\psi}^{-}_r, \quad \tilde{\psi}^{-}_r, M/2 = C, \\
|\bar{Z}^{+}_r(s_i)| &\leq C \prod_{j=M/2+1}^{M} \left(1 + \theta_2 h_j\right)^{-1} = \tilde{\psi}^{+}_r, \quad \tilde{\psi}^{+}_r, M = C,
\end{align*}
$$

$\tilde{\varphi}^{-}_l = \tilde{\psi}^{-}_l \pm \bar{Z}^{-}_l(s_i)$ and $\tilde{\varphi}^{+}_r = \tilde{\psi}^{+}_r \pm \bar{Z}^{+}_r(s_i)$,
where

\[
\tilde{\psi}^{-}_{li} = \begin{cases}
\prod_{j=1}^{i} (1 + \theta_1 h_j)^{-1}, & 1 \leq i \leq M/2, \\
1, & i = 0,
\end{cases}
\]

\[
\tilde{\psi}^{-}_{ri} = \begin{cases}
\prod_{j=i+1}^{M/2} (1 + \theta_2 h_j)^{-1}, & 0 \leq i < M/2, \\
1, & i = M/2,
\end{cases}
\]

The values of \(\theta_1, \theta_2\) are defined in Section 3

5. Truncation Error Analysis

Lemma 12. The truncation error of the regular component satisfies the following estimate,

\[
\|\bar{Y} - \bar{y}\| \leq \left(\frac{CM^{-1}}{CM^{-1}} \right) \text{ for each mesh point } s_i \in \Omega^M.
\]

where \(\bar{Y}\) and \(\bar{y}\) are the solutions of the discrete and continuous decompositions defined in Section 4 and 2 respectively.

Lemma 13. The truncation error of the right singular component satisfies the following estimate,

\[
\|\bar{Z}_r - \bar{z}_r\| \leq \begin{cases}
\left(\frac{CM^{-1}(\ln M)}{CM^{-1}(\ln M)} \right), & \text{if } \sqrt{\alpha \epsilon_2} \leq \sqrt{\eta \epsilon_1}, \\
\left(\frac{CM^{-1}(\ln M)^2}{CM^{-1}(\ln M)^2} \right), & \text{if } \sqrt{\alpha \epsilon_2} \geq \sqrt{\eta \epsilon_1}.
\end{cases}
\]

for each mesh point \(s_i \in \Omega^M\).

Lemma 14. The truncation error of the left singular component satisfies the following estimate,

\[
\|\bar{Z}_l - \bar{z}_l\| \leq \begin{cases}
\left(\frac{CM^{-1} \ln M}{CM^{-1} \ln M} \right), & \text{if } \sqrt{\alpha \epsilon_2} \leq \sqrt{\eta \epsilon_1}, \\
\left(\frac{CM^{-1}(\ln M)^2}{CM^{-1}(\ln M)^2} \right), & \text{if } \sqrt{\alpha \epsilon_2} \geq \sqrt{\eta \epsilon_1}.
\end{cases}
\]

for each mesh point \(s_i \in \Omega^M\).

Lemma 15. At the discontinuity mesh point \(s_{M/2}\) the following error estimate \(\bar{e}(s_{M/2})\) is satisfied by

\[
|\{D^+ - D^-\} \bar{e}(s_{M/2})| \leq \begin{cases}
\left(\frac{\eta \alpha \varrho}{M \epsilon_1 \epsilon_1}, \frac{\eta \alpha \varrho}{M \epsilon_1 \epsilon_1} \right)^T, & \text{if } \sqrt{\alpha \epsilon_2} \leq \sqrt{\eta \epsilon_1}, \\
\left(\frac{\alpha \varrho^2}{M \epsilon_1^2}, \frac{\alpha \varrho^2}{M \epsilon_1^2} \right)^T, & \text{if } \sqrt{\alpha \epsilon_2} \geq \sqrt{\eta \epsilon_1},
\end{cases}
\]

where \(\varrho = \min\{\varrho_2, \varrho_3\}\).

The next theorem establishes theoretically that the numerical scheme considered in this study is parameter uniform convergent to first order to the logarithmic factor \(\forall s_i \in \Omega\).
Theorem 16. Let $\bar{u}(s)$ and $\bar{U}(s_i)$ be respectively the solutions of the problems (1) and (13). Then, for adequately large M, we have

$$\|\bar{U} - \bar{u}\| \leq \begin{cases}
\frac{C^M \ln M}{M^{1 - \ln M}}, & \text{if } \sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}, \\
\frac{C^M (\ln M)^2}{M^{1 - \ln M}}, & \text{if } \sqrt{\alpha \varepsilon_2} \geq \sqrt{\eta \varepsilon_1}.
\end{cases}$$

Proof. From the results of Lemmas 4, 12, 13 and 14, it follows that

$$e(s_i) \leq \begin{cases}
\frac{C^M \ln M}{M^{1 - \ln M}}, & \sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}, \\
\frac{C^M (\ln M)^2}{M^{1 - \ln M}}, & \sqrt{\alpha \varepsilon_2} \geq \sqrt{\eta \varepsilon_1},
\end{cases} \quad \forall s_i \in \mathcal{Y}^M. \quad (17)$$

To prove the desired error at the point of discontinuity $x_{M/2}$:

Consider the case $\sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}$. Let us define the discrete barrier function $\phi_j(s_i)$ for $j = 1, 2$ to be the solution of

$$\varepsilon_1 \delta^2 \phi_j(s_i) + \varepsilon_2 \alpha_j(s_i) D^+ \phi_j(s_i) - \beta_j(s_i) \phi_j(s_i) = 0,$$

$$\phi_j(s_0) = 0, \quad \phi_j(s_{M/2}) = 1 \text{ and } \phi_j(s_M) = 0.$$

We can prove that

$$D^- \phi_j(s_i) \geq 0, \quad \text{for } 1 \leq i \leq M/2 - 1 \quad \text{and}$$

$$D^+ \phi_j(s_i) \leq 0, \quad \text{for } 1 \leq i \leq M/2 + 1.$$

Note that $L^M \phi_j(s_i) \leq 0$ for all $s_i \in \mathcal{Y}^M$, using the procedure adopted from [20] we prove the following result at the point $s_{M/2} = d$,

$$D^+ \phi_j(s_{M/2}) - D^- \phi_j(s_{M/2}) = \frac{\phi_j(s_{M/2} + h_4) - 1}{h_4} - \frac{\phi_j(s_{M/2} + h_3) - 1}{h_3} \leq \frac{C^M \ln M}{\max(h_3, h_4)}.$$

Consider the barrier function for $j = 1, 2$

$$\psi_j^1(s_i) = C_3 M^{-1} \ln M + C_4 \frac{h}{\sqrt{\varepsilon_1}} \phi_j(s_i) \pm e(s_i), \quad \forall s_i \in \mathcal{Y}^M.$$

Now, $\psi_j^1(s_0) \geq 0$, $\psi_j^1(s_N) \geq 0$ and $L^M \psi_j^1(s_i) \leq 0$, $s_i \in \mathcal{Y}^M$,

$$D^+ - D^-) \psi_j^1(s_{M/2}) \leq 0, \quad i = M/2.$$

Hence applying the discrete minimum principle, we get $\psi_j^1(s_i) \geq 0 \forall s_i \in \mathcal{Y}^M$. For adequately large M we derive

$$|(\bar{U} - \bar{u})(s_i)| \leq C^M \ln M, \quad \sqrt{\alpha \varepsilon_2} \leq \sqrt{\eta \varepsilon_1}. \quad (18)$$
In the second case when $\sqrt{\alpha_2 \varepsilon_2} \geq \sqrt{\eta_1}$, consider the discrete barrier function
\[\psi^*_j(s_i) = \psi(s_i) \pm \epsilon(s_i) \text{ for } j = 1, 2 \text{ defined in the interval } (d - \varrho_2, d + \varrho_3) \]
where
\[\psi(s_i) = C M^{-1} (\ln M)^2 + \begin{cases} C M^{-1} \varrho_2 (s_i - d - \varrho_2), & s_i \in (d - \varrho_2, d), \\ C M^{-1} \varrho_3 \varepsilon_2 (d + \varrho_3 - s_i), & s_i \in [d, d + \varrho_3). \end{cases} \]

It could be seen that $\psi_2(d - \varrho_3) > 0$, $\psi_j(d + \varrho_3) > 0$ and $L^M \psi^*_j(s_i) < 0$ and $D^+ \psi^*_j(s_i) - D^- \psi^*_j(s_i) < 0$.

Applying the discrete minimum principle to $\psi^*_j(s_i)$, we find that $\psi^*_j(s_i) \geq 0$. Hence,
\[|(U - u)(s_i)| \leq \begin{cases} C M^{-1} \varrho_2^2 / \varepsilon_2^2 & \text{for } x_i \in (d - \varrho_2, d + \varrho_3) \\ C M^{-1} \varrho_3 \varepsilon_2^2 / \varepsilon_1^2 & \text{for } s_i \in (-\varrho_2, d + \varrho_3) \end{cases} \leq C M^{-1} (\ln M)^2. \tag{19} \]

Therefore by combining (18) and (19) we obtain the required result. \[\square\]

6. Numerical Example

In order to find the applicability of the present method, we have considered the problems of singularly perturbed two parameter BVP with discontinuous source terms.

Example 1.

\[-\varepsilon_1 \ddot{u}''(s) - \varepsilon_2 A(s) \dot{u}'(s) + B(s) \bar{u}(s) = \bar{g}(s), \quad s \in \Upsilon^- \cup \Upsilon^+, \]
\[\bar{u}(0) = (1, 1)^T, \quad \bar{u}(1) = (0, 0)^T, \]

where
\[A(s) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right) \quad \text{for } 0 < s < 1 \quad \text{B}(s) = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right), \]
\[g_1(s) = \begin{cases} 0.5, & \text{for } 0 < s < 0.5 \\ -0.6, & \text{for } 0.5 < s < 1 \end{cases} \quad \text{and } g_2(s) = \begin{cases} 0.2, & \text{for } 0 < s < 0.5 \\ -2 + s, & \text{for } 0.5 < s < 1 \end{cases} \]

Since the exact solutions are not available for the considered problem, the nodal errors and the order of convergence will be estimated using the double mesh principle [2]. The error in the double mesh differences are defined as
\[E^M_{(\varepsilon_1, \varepsilon_2)} = \max_{s_i \in \Upsilon^M} |\bar{U}^M(s_i) - \bar{U}^{2M}(s_i)|, \quad \text{and } E^M_{\varepsilon_1, \varepsilon_2} = \max_{s_i \in \Upsilon^M} E^M_{(\varepsilon_1, \varepsilon_2)}, \]

where $\bar{U}^M(s_i)$ and $\bar{U}^{2M}(s_i)$ respectively denote the numerical solutions obtained using M and $2M$ mesh intervals. The parameter-robust orders of convergence are calculated from the formula
\[R^M = \log_2 \left(\frac{E^M_{\varepsilon_1, \varepsilon_2}}{E^{2M}_{\varepsilon_1, \varepsilon_2}} \right). \]

The Table 1 and Table 2 displayed here give a clear notion on the maximum pointwise error estimates (E^M) and the corresponding orders of convergence (R^M) for u_1 and u_2 of Example 1 for different values of ε_1. Figures 1 and 2 represent the plot of (a) numerical solutions and (b) the errors for $\varepsilon_1 = 2^{-12}$ and $\varepsilon_2 = 2^{-20}$ when $N = 256$ for the Example 1.
Table 1: Maximum point-wise errors (E^M) and order of convergence (R^M) for u_1 of Example 1 when $\varepsilon_2 = 2^{-10}$.

ε_1	64	128	256	512	1024	2048
2^0	7.086e-004	3.522e-004	1.756e-004	8.766e-005	4.380e-005	2.189e-005
2^{-2}	1.270e-003	6.245e-004	3.097e-004	1.542e-004	7.694e-005	3.843e-005
2^{-4}	2.092e-003	1.049e-003	5.255e-004	2.629e-004	1.315e-004	6.577e-005
2^{-6}	5.170e-003	2.569e-003	1.280e-003	6.391e-004	3.193e-004	1.596e-004
2^{-8}	6.498e-003	3.212e-003	1.598e-003	7.974e-004	3.983e-004	1.900e-004
2^{-10}	6.498e-003	3.212e-003	1.598e-003	7.974e-004	3.983e-004	1.900e-004

E^M 1.568e-001 1.021e-001 6.240e-002 3.649e-002 2.066e-002 1.145e-002

R^M 0.6189 0.7104 0.7740 0.8207 0.8515 —

Table 2: Maximum point-wise errors (E^M) and order of convergence (R^M) for u_2 of Example 1 when $\varepsilon_2 = 2^{-10}$.

ε_1	64	128	256	512	1024	2048
2^0	3.291e-004	1.664e-004	8.366e-005	4.194e-005	2.100e-005	1.051e-005
2^{-2}	1.264e-003	6.372e-004	3.199e-004	1.603e-004	8.023e-005	4.013e-005
2^{-4}	4.160e-003	2.087e-003	1.045e-003	5.228e-004	2.615e-004	1.308e-004
2^{-6}	7.675e-003	3.825e-003	1.909e-003	9.539e-004	4.768e-004	2.383e-004
2^{-8}	9.087e-003	4.510e-003	2.248e-003	1.122e-003	5.608e-004	2.803e-004
2^{-10}	9.087e-003	4.510e-003	2.248e-003	1.122e-003	5.608e-004	2.803e-004

E^M 1.568e-001 1.021e-001 6.240e-002 3.649e-002 2.066e-002 1.145e-002

R^M 0.6189 0.7104 0.7740 0.8207 0.8515 —

7. Conclusion

Two point singularly perturbed weakly coupled system of convection-reaction-diffusion problems having two small parameters ($\varepsilon_1, \varepsilon_2$) multiplying the diffusion and convection term with
discontinuity over source term is studied. The solutions to these type of problems exhibit interior and boundary layers. An upwind difference scheme is applied to discretize the problem (1) - (3) by building a piecewise uniform mesh. The estimated analysis shows that the numerical scheme considered here converges to almost first order. Tables and figures illustrated in Section 6 test problem validate the theoretical estimates.

Figure 1: (a) Numerical Solution
Plot of Numerical Solution and Error when $\varepsilon_1 = 2^{-12}$, $\varepsilon_2 = 2^{-20}$ with $M = 256$ for Example 1

Figure 2: (b) Error

Acknowledgment
The authors thank the anonymous reviewers for their valuable suggestions to improve the paper

References
[1] Doolan E P, Miller J J H and Schilders W H 1980 Uniform numerical methods for problems with initial and boundary layers Vol 1 Boole Press
[2] Farrell P A, Hegarty A, Miller J J H, O’Riordan E and Shishkin G I 2000 Robust Computational Techniques for Boundary Layers CRC Press
[3] Roos H G, Stynes M and Tobiska L 1996 Numerical Methods for Singularly Perturbed Differential Equations Springer
[4] Matthews S, O’Riordan E and Shishkin G 2002 A numerical method for a system of singularly perturbed reaction–diffusion equations Jour nal of Computational and Applied Mathematics 145 1 pp 151-166
[5] Madden N, Stynes M and Thomas G 2004 On the application of robust numerical methods to a complete-flow wave-current model Proceedings of BAIL 2004
[6] Chandru M, Prabha T and Shanthi V 2015 A Hybrid Difference Scheme for a Second-Order Singularly Perturbed Reaction-Diffusion Problem with Non-smooth Data International Journal of Applied and Computational Mathematics 1 1 pp 87-100
[7] Chandru M and Shanthi V 2015 Fitted Mesh Method for Singularly Perturbed Robin Type Boundary Value Problem with Discontinuous Source Term International Journal of Applied and Computational Mathematics 1 3 pp 491-501
[8] Farrell P A, Hegarty A F, Miller J J H, O’Riordan E and Shishkin G I 2004 Singularly perturbed convection–diffusion problems with boundary and weak interior layers Journal of Computational and Applied Mathematics 166 1 pp 133-151
[9] Farrell P A, Miller J J H, O’Riordan E and Shishkin G I 2000 Singularly perturbed differential equations with discontinuous source terms Proc. Lozenetz
[10] Tamilselvan A, Ramanujam N and Shanthi V 2007 A numerical method for singularly perturbed weakly coupled system of two second order ordinary differential equations with discontinuous source term Journal of computational and Applied Mathematics 202 2 pp 203-216
[11] Basha P M and Shanthi V 2015 A parameter-uniform non-standard finite difference method for a weakly coupled system of singularly perturbed convection-diffusion equations with discontinuous source term International Journal of Applied and Computational Mathematics 3 2 pp 5–15
[12] Mohapatra J and Mahalik M 2018 An Initial Value Method for Solving Singularly Perturbed Boundary Value Problems Using Adaptive Grids *Computational Mathematics and Modeling* 29 1 pp 48-58

[13] O’Riordan E, Pickett M L and Shishkin G I 2003 Singularly perturbed problems modeling reaction-convection-diffusion processes *Computational Methods in Applied Mathematics* 3 3 pp 424-442

[14] Khandelwal P and Khan A 2017 Singularly perturbed convection-diffusion boundary value problems with two small parameters using nonpolynomial spline technique *Mathematical Sciences* 11 2 pp 119-126

[15] Zahra W and Van Daele M 2018 Discrete Spline Solution of Singularly Perturbed Problem with Two Small Parameters on a Shishkin-Type Mesh *Computational Mathematics and Modeling* pp 1-15

[16] Shanthi V, Ramanujam N and Natesan S 2006 Fitted mesh method for singularly perturbed reaction-convection-diffusion problems with boundary and interior layers *Journal of Applied Mathematics and Computing* 22 1 pp 49-65

[17] Chandru M, Prabha T and Shanthi V 2017 A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data *Journal of Computational and Applied Mathematics* 309 pp 11-27

[18] Prabha T, Chandru M and Shanthi V 2017 Hybrid difference scheme for singularly perturbed reaction-convection-diffusion problem with boundary and interior layers *Applied Mathematics and Computation* 314 pp 237-256

[19] Basha P M and Shanthi V 2016 Fitted mesh method for a weakly coupled system of singularly perturbed reaction–convection–diffusion problems with discontinuous source term *Ain Shams Engineering Journal*

[20] Farrell P, Miller J, O’Riordan E and Shishkin G 1998 Singularly perturbed differential equations with discontinuous source terms *Proceedings of Analytical and Numerical Methods for Convection-Dominated and Singularly Perturbed Problems Lozenetz*, Bulgaria pp 23-32