THE GENERATING FUNCTION OF TERNARY TREES AND CONTINUED FRACTIONS

IRA M. GESSEL* AND GUOCE XIN

Abstract. Michael Somos conjectured a relation between Hankel determinants whose entries $\binom{3n}{n}$ count ternary trees and the number of certain plane partitions and alternating sign matrices. Tamm evaluated these determinants by showing that the generating function for these entries has a continued fraction that is a special case of Gauss’s continued fraction for a quotient of hypergeometric series. We give a systematic application of the continued fraction method to a number of similar Hankel determinants. We also describe a simple method for transforming determinants using the generating function for their entries. In this way we transform Somos’s Hankel determinants to known determinants, and we obtain, up to a power of 3, a Hankel determinant for the number of alternating sign matrices. We obtain a combinatorial proof, in terms of nonintersecting paths, of determinant identities involving the number of ternary trees and more general determinant identities involving the number of r-ary trees.

Keywords: Hankel determinants, continued fractions, hypergeometric series, plane partitions, alternating sign matrices, trinomial coefficients, ternary trees

Mathematics Subject Classifications: Primary 05A15, Secondary 05A10, 05A17, 30B70, 33C05

1. Introduction

Let $a_n = \frac{1}{2n+1} \binom{3n}{n} = \frac{1}{3n+1} \binom{3n+1}{n}$ be the number of ternary trees with n vertices and define the Hankel determinants

$$U_n = \det (a_{i+j})_{0 \leq i, j \leq n-1}$$
$$V_n = \det (a_{i+j+1})_{0 \leq i, j \leq n-1}$$
$$W_n = \det \left(\frac{a_{(i+j+1)/2}}{2} \right)_{0 \leq i, j \leq n-1}$$

where we take a_k to be 0 if k is not an integer. (We also interpret determinants of 0×0 matrices as 1.) The first few values of these determinants are

n	1	2	3	4	5	6	7
U_n	1	2	11	170	7429	920460	323801820
V_n	1	3	26	646	45885	9304650	5382618660
W_n	1	1	2	6	33	286	4420

This paper began as an attempt to prove the conjectures of Michael Somos [27] that

(a) U_n is the number of of cyclically symmetric transpose complement plane partitions whose Ferrers diagrams fit in an $n \times n \times n$ box,
(b) V_n is the number of $(2n+1) \times (2n+1)$ alternating sign matrices that are invariant under vertical reflection, and

(c) W_n is the number of $(2n+1) \times (2n+1)$ alternating sign matrices that are invariant under both vertical and horizontal reflection.

Mills, Robbins, and Rumsey [22] (see also [3, Eq. (6.15), p. 199]) showed that the number of objects of type (a) is

$$n - 1 \prod_{i=1}^{n-1} \frac{(3i+1)(6i)!}{(4i+1)(4i)!}.$$ \hspace{1cm} (1.4)

Mills [25] conjectured the formula

$$\prod_{i=1}^{n} \frac{(6i-2)_{2i}}{2(4i-1)_{2i}}$$ \hspace{1cm} (1.5)

for objects of type (b) and this conjecture was proved by Kuperberg [19]. A formula for objects of type (c) was conjectured by Robbins [26] and proved by Okada [23]. A determinant formula for these objects was proved by Kuperberg [19].

It turns out that it is much easier to evaluate Somos’s determinants than to relate them to (a)–(c). It is easy to see that $W_{2n} = U_n V_n$ and $W_{2n+1} = U_{n+1} V_n$, so it is only necessary show that U_n is equal to (1.4) and V_n is equal to (1.5) to prove Somos’s conjectures.

This was done by Tamm [28], who was unaware of Somos’s conjectures. Thus Somos’s conjectures are already proved; nevertheless, our study of these conjecture led to some additional determinant evaluations and transformations that are the subject of this paper.

Tamm’s proof used the fact that Hankel determinants can be evaluated using continued fractions; the continued fraction that gives these Hankel determinants is a special case of Gauss’s continued fraction for a quotient of hypergeometric series. The determinant V_n was also evaluated, using a different method, by Eğecioğlu, Redmond, and Ryavec [6, Theorem 4], who also noted the connection with alternating sign matrices and gave several additional Hankel determinants for V_n:

$$V_n = \det (b_{i+j})_{0 \leq i,j \leq n-1} = \det (r_{i+j})_{0 \leq i,j \leq n-1} = \det (s_{i+j}(u))_{0 \leq i,j \leq n-1},$$ \hspace{1cm} (1.6)

where $b_n = \frac{1}{n+1} \binom{3n+1}{n}$, $r_n = \binom{3n+2}{n}$, and

$$s_n(u) = \sum_{k=0}^{n} \frac{k+1}{n+1} \binom{3n-k+1}{n-k} u^k,$$

where u is arbitrary. As noted in [6, Theorem 4], $s_n(0) = b_n$, $s_n(1) = a_{n+1}$, and $s_n(3) = r_n$.

In Section 2, we describe Tamm’s continued fraction method for evaluating these determinants. In Section 3, we give a systematic application of the continued fraction method to several similar Hankel determinants. In Theorem 3.1 we give five pairs of generating functions similar to that for a_n whose continued fractions are instances of Gauss’s theorem. Three of them have known combinatorial meanings for their coefficients, including the number of two-stack-sortable permutations (see West [29]).
In Section 4 we discuss a simple method, using generating functions, for transforming determinants and use it to show that

\[U_n = \det \left(\begin{pmatrix} i + j \\ 2i - j \end{pmatrix} \right)_{0 \leq i, j \leq n-1} \]

and

\[V_n = \det \left(\begin{pmatrix} i + j + 1 \\ 2i - j \end{pmatrix} \right)_{0 \leq i, j \leq n-1} \]

(1.7)

(1.8)

We also prove Eğecioğlu, Redmond, and Ryavec’s identity (1.9) and the related identity

\[\det \left(s_{i+j-1}(u) \right)_{0 \leq i, j \leq n-1} = U_n / u, \quad n > 0, \]

(1.9)

where \(s_{-1}(u) = u^{-1} \). When \(u = 1 \), (1.9) reduces to (1.1) and when \(u = 3 \), (1.9) reduces to

\[\det \left(r_{i+j-1} \right)_{0 \leq i, j \leq n-1} = U_n / 3, \quad n > 0. \]

(1.10)

Note that \(r_{n-1} = \frac{1}{3} \left(\binom{3n}{n} \right) \), so (1.10) is equivalent to

\[\det \left(\binom{3n}{n} \right)_{0 \leq i, j \leq n-1} = 3^{n-1} U_n \]

for \(n > 0 \).

In Section 5 we consider the Hankel determinants of the coefficients of

\[\frac{1}{3x} \left(1 - (1 - 9x)^{1/3} \right) \]

We first evaluate them using continued fractions, and then show that the method of Section 4 transforms them into powers of 3 times the determinant

\[\det \left(\begin{pmatrix} i + j \\ i - 1 \end{pmatrix} + \delta_{ij} \right)_{0 \leq i, j \leq n-1} \]

which counts descending plane partitions and alternating sign matrices. Similarly, the Hankel determinant corresponding to

\[\frac{1}{3x} \left(1 - (1 - 9x)^{2/3} \right) \]

is transformed to a power of 3 times the determinant

\[\det \left(\begin{pmatrix} i + j \\ i \end{pmatrix} + \delta_{ij} \right)_{0 \leq i, j \leq n-1} \]

which counts cyclically symmetric plane partitions.

By a result of Gessel and Viennot [11], both sides of (1.7) can be interpreted by \(n \)-tuples of nonintersecting lattice paths. A similar situation holds for (1.8). In Section 6, we describe the nonintersecting lattice path interpretations of these determinants. We give a new class of interpretations of \(a_n \) in terms of certain paths called \(K \)-paths in Theorem 6.3. From this new interpretation of \(a_n \), (1.7) follows easily. The proof of Theorem 6.3 relies on a “sliding lemma,” which says that the number of certain \(K \)-paths does not change after sliding their starting and ending points.

In Section 7, we study another class of paths called \(T \)-paths, which are related to trinomial coefficients, and \(KT \)-paths, which are analogous to \(K \)-paths. We find another class of interpretations of \(a_n \) in terms of \(KT \)-paths, using which we find a new determinant identity involving \(U_n \) (Theorem 7.3). Unfortunately, we do not have a nonintersecting
path interpretation for this determinant. There is a natural bijection from K-paths to KT-paths, and the sliding lemma for KT-paths is easier to prove than that for K-paths.

In Section 8, we study $KT^{(r)}$-paths, which reduce to KT paths when $r = 2$. The results of Section 7 generalize, and we obtain determinant identities involving Hankel determinants for the number of $(r + 1)$-ary trees (see [§3] and [§5.4]).

In Section 9, we give algebraic proofs of the results of Section 8 using partial fractions.

2. Hankel Determinants and Gauss’s Continued Fraction

Let $A(x) = \sum_{n \geq 0} A_n x^n$ be a formal power series. We define the Hankel determinants $H_n^{(k)}(A)$ of $A(x)$ by

$$H_n^{(k)}(A) = \det (A_{i+j+k})_{0 \leq i, j \leq n-1}.$$

We shall write $H_n(A)$ for $H_n^{(0)}(A)$ and $H_n^{(1)}(A)$ for $H_n^{(1)}(A)$. We also define $\hat{H}_n(A)$ to be $H_n(A(x^2))$. It is not difficult to show that $\hat{H}_{2n}(A) = H_n(A)H_{n+1}(A)$ and $\hat{H}_{2n+1}(A) = H_{n+1}(A)H_n(A)$.

Let $g(x)$ be the generating function for ternary trees:

$$g(x) = \sum_{n \geq 0} a_n x^n = \sum_{n \geq 0} \frac{1}{2n+1} \binom{3n}{n} x^n, \tag{2.1}$$

which is uniquely determined by the functional equation

$$g(x) = 1 + xg(x)^3. \tag{2.2}$$

Then $U_n = H_n(g(x))$, $V_n = H_n^{(1)}(g(x))$, and $W_n = \hat{H}_n(g(x))$.

In general, it is difficult to say much about $H_n(A(x))$. However, if $A(x)$ can be expressed as a continued fraction, then there is a very nice formula. This is the case for $g(x)$: Tam [28] observed that $g(x)$ has a nice continued fraction expression, which is a special case of Gauss’s continued fraction. We introduce some notation to explain Tam’s approach.

We use the notation $S(x; \lambda_1, \lambda_2, \lambda_3, \ldots)$ to denote the continued fraction

$$S(x; \lambda_1, \lambda_2, \lambda_3, \ldots) = \frac{1}{\lambda_1 x} \bigg/ \frac{1}{1 - \frac{\lambda_2 x}{1 - \frac{\lambda_3 x}{\ddots}}} \tag{2.3}.$$

The following theorem is equivalent to [14, Theorem 7.2]. Additional information about continued fractions and Hankel determinants can be found in Krattenthaler [17, Section 5.4].

Lemma 2.1. Let $A(x) = S(x; \lambda_1, \lambda_2, \lambda_3, \ldots)$ and let $\mu_i = \lambda_1 \lambda_2 \cdots \lambda_i$. Then for $n \geq 1$,

$$H_n(A) = (\lambda_1 \lambda_2)^{n-1} (\lambda_3 \lambda_4)^{n-2} \cdots (\lambda_{2n-3} \lambda_{2n-2}) = \mu_2 \mu_4 \cdots \mu_{2n-2} \tag{2.4}$$

$$H_n^{(1)}(A) = \lambda_1^n (\lambda_2 \lambda_3)^{n-1} \cdots (\lambda_{2n-2} \lambda_{2n-1}) = \mu_1 \mu_3 \cdots \mu_{2n-1} \tag{2.5}$$

$$\hat{H}_n(A) = \lambda_1^{n-1} \lambda_2^{n-2} \cdots \lambda_{n-2}^2 \lambda_{n-1} = \mu_1 \mu_2 \cdots \mu_{n-1}. \tag{2.6}$$
We define the hypergeometric series by
\[2F_1(a, b; c \mid x) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{n!(c)_n} x^n, \]
where \((u)_n = u(u + 1) \cdots (u + n - 1)\).

Gauss proved the following theorem \cite[Theorem 6.1]{14}, which gives a continued fraction for a quotient of two hypergeometric series:

Lemma 2.2. If \(c\) is not a negative integer then we have the continued fraction
\[\frac{2F_1(a, b + 1; c + 1 \mid x)}{2F_1(a, b; c \mid x)} = S(x; \lambda_1, \lambda_2, \ldots), \]
where
\[\lambda_{2n-1} = \frac{(a + n - 1)(c - b + n - 1)}{(c + 2n - 2)(c + 2n - 1)}, \quad n = 1, 2, \ldots, \]
\[\lambda_{2n} = \frac{(b + n)(c - a + n)}{(c + 2n - 1)(c + 2n)}, \quad n = 1, 2, \ldots. \]

Combining Lemmas 2.1 and 2.2 gives a formula for evaluating certain Hankel determinants.

Lemma 2.3. Let
\[A(x) = \frac{2F_1(a, b + 1; c + 1 \mid px)}{2F_1(a, b; c \mid px)}. \]
Then
\[H_n(A) = \prod_{i=0}^{n-1} \frac{(a)_i(b + 1)_i(c - b)_i(c - a + 1)_i}{(c + 1)_i(c + 2i)} \rho^{2i} \]
\[H_n^1(A) = \prod_{i=1}^{n} \frac{(a)_i(b + 1)_i(c - b)_i(c - a + 1)_i}{(c + 1)_i(c + 2i - 1)} \rho^{2i-1} \]
\[= \prod_{i=1}^{n} \frac{(c - 1)c_{i}}{b(c - a) \rho} \frac{(a)_i(b)_i(c - b)_i(c - a)_i}{(c + 1)_i(c - 1)_i} \rho^{2i} \]

Proof. By Lemma 2.2, \(A(x)\) has the continued fraction expansion \(A(x) = S(x; \lambda_1, \lambda_2, \ldots)\) where
\[\lambda_{2n-1} = \frac{(a + n - 1)(c - b + n - 1)}{(c + 2n - 2)(c + 2n - 1)} \rho, \]
\[\lambda_{2n} = \frac{(b + n)(c - a + n)}{(c + 2n - 1)(c + 2n)} \rho. \]

Then
\[\lambda_1 \lambda_3 \cdots \lambda_{2i-1} = \frac{(a)_i(c - b)_i}{(c)_i} \rho^i \]
and
\[\lambda_2 \lambda_4 \cdots \lambda_{2i} = \frac{(b + 1)_i(c - a + 1)_i}{(c + 1)_i} \rho^i. \]
So with the notation of Lemma 2.1,
\[\mu_{2i} = \lambda_1 \lambda_2 \cdots \lambda_{2i} = \frac{(a)_i(c - b)_i(b + 1)_i(c - a + 1)_i}{(c)_i(c + 1)_i} \rho^{2i} \]
and
\[\mu_{2i-1} = \lambda_1 \lambda_2 \cdots \lambda_{2i-1} = \frac{(a)_i(c - b)_i(b + 1)_{i-1}(c - a + 1)_{i-1}}{(c)_i(c + 1)_{i-2}} \rho^{2i-1}. \]

Then (2.9) follows immediately from (2.10), and (2.10) follows from (2.5) with the help of the identity \((c)_i(c + 1)_{i-2} = (c)_{i-1}(c + 1)_{i-1}\), and (2.11) follows easily from (2.10). \(\square\)

There is also a simple formula for \(H_n^{(2)}(A)\), although we will not need it.

Lemma 2.4. Let \(Q(a, b, c \mid x) = \frac{1}{2} F_1(a, b + 1; c + 1 \mid x) / 2 F_1(a, b; c \mid x)\). Then
\[Q(b, a, c \mid x) = \frac{c(a - b)}{a(c - b)} + \frac{b(c - a)}{a(c - b)} Q(a, b, c \mid x). \]

Proof. The formula is an immediate consequence of the contiguous relation
\[c(a - b)_2 F_1(a, b; c \mid x) + b(c - a)_2 F_1(a, b + 1; c + 1 \mid x) + a(b - c)_2 F_1(a + 1; b; c + 1 \mid x) = 0, \]
which is easily proved by equating coefficients of powers of \(x\). \(\square\)

Equivalently, Lemma 2.4 asserts that \(ca + b(c - a)Q(a, b, c \mid x)\) is symmetric in \(a\) and \(b\).

Proposition 2.5. With \(A(x)\) as in Lemma 2.3, we have
\[H_n^{(2)}(A) = \left(\frac{a(c - b)(a + 1)_n(c - b + 1)n}{c(a - b)(b + 1)_n(c - a + 1)n} - \frac{b(c - a)}{c(a - b)} \right) H_{n+1}(A). \]

Proof. First note that if \(u(x) = \alpha + \beta v(x)\), where \(\alpha\) and \(\beta\) are constants, then
\[H_{n+1}(u) = \beta^{n+1}H_{n+1}(v) + \alpha\beta^nH_n^{(2)}(v), \]
so
\[H_n^{(2)}(v) = \frac{1}{\alpha\beta^n}H_{n+1}(u) - \frac{\beta}{\alpha}H_{n+1}(v). \tag{2.12} \]

Now take \(u = Q(b, a, c \mid x)\) and \(v = Q(a, b, c \mid x)\), so that \(u = \alpha + \beta v\) by Lemma 2.4, where \(\alpha = c(a - b)/a(c - b)\) and \(\beta = b(c - a)/a(c - b)\). Then by Lemma 2.3 we have
\[\frac{H_{n+1}(u)}{H_{n+1}(v)} = \prod_{i=1}^{n} \frac{(a + 1)_i (b)_i (c - b + 1)_i (c - a)_i}{(a)_i (b + 1)_i (c - b)_i (c - a + 1)_i} \]
\[= \prod_{i=1}^{n} \frac{b(c - a)(a + i)(c - b + i)}{a(c - b)(b + i)(c - a + i)} = \left[\frac{b(c - a)}{a(c - b)} \right]^n \frac{(a + 1)_n(c - b + 1)_n}{(b + 1)_n(c - a + 1)_n}. \tag{2.13} \]

and by (2.12) we have
\[\frac{H_n^{(2)}(v)}{H_{n+1}(v)} = \frac{a(c - b)}{c(a - b)} \left[\frac{a(c - b)}{b(c - a)} \right]^n \frac{H_{n+1}(u)}{H_{n+1}(v)} - \frac{b(c - a)}{c(a - b)}. \tag{2.14} \]
The result follows from (2.13) and (2.14). \(\square\)
Tamm [28] evaluated the determinants U_n and V_n by first showing that

$$
\sum_{n=0}^{\infty} a_n x^n = 2F_1 \left(\begin{array}{c}
\frac{2}{3}, \frac{4}{3} \newline
\frac{3}{2}
\end{array} \right) \left(\frac{27}{4} x \right) / 2F_1 \left(\begin{array}{c}
\frac{2}{3}, \frac{1}{3} \newline
\frac{1}{2}
\end{array} \right) \left(\frac{27}{4} x \right).
$$

(2.15)

Given (2.15), it follows from Lemma 2.3 that

$$
U_n = \prod_{i=1}^{n-1} \frac{1}{(\frac{2}{3} i + \frac{1}{6})_i (\frac{2}{3} i + \frac{5}{6})_i} \left(\frac{27}{4} \right)^{2i}
$$

and

$$
V_n = \prod_{i=0}^{n} \frac{2}{3} \frac{1}{(\frac{2}{3} i + \frac{1}{6})_i (\frac{2}{3} i + \frac{5}{6})_i} \left(\frac{27}{4} \right)^{2i}
$$

So (1.4) and (1.5) will follow from

$$
\frac{1}{(\frac{2}{3} i + \frac{1}{6})_i (\frac{2}{3} i + \frac{5}{6})_i} \left(\frac{27}{4} \right)^{2i} = \frac{(3i + 1)(6i)!}{(4i + 1)(4i)!} \quad (2.16)
$$

and

$$
\frac{2}{3} \frac{1}{(\frac{2}{3} i + \frac{1}{6})_i (\frac{2}{3} i + \frac{5}{6})_i} \left(\frac{27}{4} \right)^{2i} = \frac{(6i - 2)^{2i}}{4i - 1}(4i - 1) \quad (2.17)
$$

for $i \geq 1$. These identities are most easily verified by using the fact that if $A_i = B_i$ and $A_{i+1} = B_{i+1}/B_i$ for $i \geq 1$, then $A_i = B_i$ for all $i \geq 1$. It is interesting to note that although (2.16) holds for $i = 0$, (2.17) does not.

3. Hypergeometric series evaluations

Let $f = g - 1 = \sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} \frac{1}{2n+1} \binom{3n}{n} x^n$. In this section we study cases of Gauss’s continued fraction (2.7) that can be expressed in terms of f. We found empirically that there are ten cases of (2.7) that can be expressed as polynomials in f. We believe there are no others, but we do not have a proof of this. Since $a \neq b$ in all of these cases, by Lemma 2.4 they must come in pairs which are the same, except for their constant terms, up to a constant factor. It turns out that one element of each of these pairs factors as $(1 + f)(1 + rf)$, where r is 0, 1, $\frac{1}{3}$, $-\frac{1}{3}$, or $\frac{2}{3}$, while the other does not factor nicely. We have no explanation for this phenomenon.

Note that (3.1a) is the same as (2.15).
Theorem 3.1. We have the following cases of Gauss’s continued fraction:

\[1 + f = _2F_1 \left(\frac{2}{3}, \frac{1}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{2}{3}, \frac{1}{3}; 2; \frac{27}{4}x \right) \]
\[(1 + f)^2 = _2F_1 \left(\frac{4}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{4}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) \]
\[(1 + f)(1 + \frac{1}{2}f) = _2F_1 \left(\frac{5}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{5}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) \]
\[(1 + f)(1 - \frac{1}{2}f) = _2F_1 \left(\frac{5}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{5}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) \]
\[(1 + f)(1 + \frac{2}{5}f) = _2F_1 \left(\frac{2}{3}, \frac{4}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{2}{3}, \frac{4}{3}; 2; \frac{27}{4}x \right) \]

Their companions are

\[1 - \frac{1}{2}f = _2F_1 \left(\frac{1}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{1}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) \]
\[1 + \frac{1}{3}f + \frac{1}{10}f^2 = _2F_1 \left(\frac{2}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{2}{3}, \frac{7}{3}; 2; \frac{27}{4}x \right) \]
\[1 + \frac{6}{7}f + \frac{2}{9}f^2 = _2F_1 \left(\frac{4}{3}, \frac{8}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{4}{3}, \frac{8}{3}; 2; \frac{27}{4}x \right) \]
\[1 - \frac{2}{5}f + \frac{2}{5}f^2 = _2F_1 \left(\frac{4}{3}, \frac{8}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{4}{3}, \frac{8}{3}; 2; \frac{27}{4}x \right) \]
\[1 + \frac{1}{2}f + \frac{1}{9}f^2 = _2F_1 \left(\frac{1}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) / _2F_1 \left(\frac{1}{3}, \frac{5}{3}; 2; \frac{27}{4}x \right) \]

In order to prove Theorem 3.1, we need formulas for some rational functions of f that are easily proved by Lagrange inversion.

Lemma 3.2. Let $f = \sum_{n=1}^{\infty} \frac{1}{2n+1} \binom{3n}{n} x^n$. Then f satisfies the functional equation $f = x(1 + f)^3$ and

\[f^k = \sum_{n=k}^{\infty} \frac{k}{n} \binom{3n}{n-k} x^n \]
\[(1 + f)^k = \sum_{n=0}^{\infty} \frac{k}{3n+k} \binom{3n+k}{n} x^n \]
\[\frac{(1 + f)^{k+1}}{1 - 2f} = \sum_{n=0}^{\infty} \binom{3n+k}{n} x^n. \]
In particular,

\[1 + f = 2F_1 \left(\begin{array}{c} 1 \ 1 \ 2 \ 3 \ 3 \ 2 \ 3 \ 3 \ 2 \ \frac{27}{4} \ x \end{array} \right) \] \quad (3.6) \]

\[\frac{1 + f}{1 - 2f} = 2F_1 \left(\begin{array}{c} 1 \ 1 \ 1 \ 3 \ 3 \ 2 \ 3 \ 3 \ 2 \ \frac{27}{4} \ x \end{array} \right) \] \quad (3.7) \]

\[\frac{(1 + f)^2}{1 - 2f} = 2F_1 \left(\begin{array}{c} 4 \ 2 \ 3 \ 3 \ 3 \ 3 \ 3 \ 3 \ 2 \ \frac{27}{4} \ x \end{array} \right). \] \quad (3.8) \]

Proof. We use the following form of the Lagrange inversion formula (see [9, Theorem 2.1] or [13, Theorem 1.2.4]): If \(G(t) \) is a formal power series, then there is a unique formal power series \(h = h(x) \) satisfying \(h = xG(h) \), and

\[[x^n] h^k = \frac{k}{n} [t^{n-k}] G(t)^n, \text{ for } n, k > 0, \] \quad (3.9) \]

\[[x^n] \frac{h^k}{1 - xG''(h)} = [t^{n-k}] G(t)^n, \text{ for } n, k \geq 0. \] \quad (3.10) \]

Let us define \(f \) to be the unique formal power series satisfying \(f = x(1 + f)^3 \). With \(G(t) = (1 + t)^3 \), \(3.9\) gives \(3.3\), and the case \(k = 1 \) gives that the coefficient of \(x^n \) in \(f \) for \(n \geq 1 \) is \(\frac{1}{n} \binom{3n}{n-1} = \frac{1}{2n+1} \binom{3n}{n} \).

Replacing with \(f \) with \(x(1 + f)^3 \) and \(k \) with \(j \) in \(3.3\), and dividing both sides by \(x^j \), gives

\[(1 + f)^{3j} = \sum_{n=0}^{\infty} \frac{j}{n+j} \binom{3n + 3j}{n} x^n. \]

Since the coefficient of \(x^n \) on each side is a polynomial in \(j \), we may set \(j = k/3 \) to obtain \(3.4\).

From \(3.10\) we have

\[\frac{f^j}{1 - 3x(1 + f)^2} = \sum_{n=j}^{\infty} \binom{3n}{n-j} x^n. \]

Replacing \(f \) by \(x(1 + f)^3 \) in the numerator, and replacing \(x(1 + f)^2 \) by \(f/(1 + f) \) in the denominator, gives

\[\frac{x^j(1 + f)^{3j+1}}{1 - 2f} = \sum_{n=j}^{\infty} \binom{3n}{n-j} x^n \]

\[= \sum_{n=0}^{\infty} \binom{3n + 3j}{n} x^{n+j}, \]

so

\[\frac{(1 + f)^{3j+1}}{1 - 2f} = \sum_{n=0}^{\infty} \binom{3n + 3j}{n} x^n. \]

As before, we may set \(j = k/3 \) to obtain \(3.8\). \(\square \)
Proof of Theorem 3.1. Formulas (3.1a)–(3.1e) follow from the evaluations of their numerators and denominators: (3.6), (3.7), (3.8), and
\[
\begin{align*}
2F_1 \left(\frac{2}{3}, \frac{4}{3}; \frac{5}{2} \bigg| \frac{27}{4} x \right) &= (1 + f)^2 (1 + \frac{4}{5} f) \quad (3.11) \\
2F_1 \left(\frac{4}{3}, \frac{5}{3}; \frac{5}{2} \bigg| \frac{27}{4} x \right) &= \frac{(1 + f)^4}{1 - 2f} \quad (3.12) \\
2F_1 \left(\frac{5}{3}, \frac{7}{3}; \frac{7}{2} \bigg| \frac{27}{4} x \right) &= \frac{(1 + f)^5 (1 + \frac{4}{5} f)}{1 - 2f} \quad (3.13) \\
2F_1 \left(\frac{4}{3}, \frac{5}{3}; \frac{3}{2} \bigg| \frac{27}{4} x \right) &= \frac{(1 + f)^4}{(1 - 2f)^3} \quad (3.14) \\
2F_1 \left(\frac{5}{3}, \frac{7}{3}; \frac{5}{2} \bigg| \frac{27}{4} x \right) &= \frac{(1 + f)^5 (1 - \frac{3}{5} f)}{(1 - 2f)^3} \quad (3.15)
\end{align*}
\]

Our original derivations of these formulas were through the \(2F_1\) contiguous relations \[1, \text{ p. 558}], but once we have found them, we can verify (3.11)–(3.13) by taking appropriate linear combinations of (3.3) and (3.5). Formulas (3.14) and (3.15) can be proved by applying the formula
\[
2F_1 (a + 1, b + 1; c + 1 \bigg| x) = \frac{c d}{a b} d x 2F_1 (a, b; c \bigg| x)
\]
to (3.7) and (3.8) and using the fact that \(df/dx = (1 + f)^4/(1 - 2f)\).

Formulas (3.2a)–(3.2e) can be proved similarly; alternatively, they can be derived from (3.1a)–(3.1e) by using Lemma 2.4. \(\square\)

Now we apply Lemma 2.3 to the formulas of Theorem 3.1. First we normalize the coefficient sequences that occur in (3.1a)–(3.1e) to make them integers, using (3.3) to find formulas for the coefficients. We define the sequence \(a_n, b_n, c_n, d_n,\) and \(e_n\) by
\[
\begin{align*}
1 + f &= \sum_{n=0}^{\infty} a_n x^n & a_n &= \frac{(3n)!}{n! (2n + 1)!} = \frac{1}{2n + 1} \binom{3n}{n} \\
(1 + f)^2 &= \sum_{n=0}^{\infty} b_n x^n & b_n &= \frac{(3n + 1)!}{(n + 1)! (2n + 1)!} = \frac{1}{n + 1} \binom{3n + 1}{n} \\
(1 + f)(2 + f) &= \sum_{n=0}^{\infty} c_n x^n & c_n &= 2 \frac{(3n)!}{(n + 1)! (2n)!} = \frac{2}{n + 1} \binom{3n}{n} = a_n + b_n \\
(1 + f)(2 - f) &= \sum_{n=0}^{\infty} d_n x^n & d_n &= 2 \frac{(3n)!}{(n + 1)! (2n + 1)!} = 3a_n - b_n \\
(1 + f)(5 + 2f) &= \sum_{n=0}^{\infty} e_n x^n & e_n &= (9n + 5) \frac{(3n)!}{(n + 1)! (2n + 1)!} = 3a_n + 2b_n
\end{align*}
\]

Here is a table of the first few values of these numbers.
The sequences a_n and b_n are well-known, and have simple combinatorial interpretations in terms of lattice paths: a_n is the number of paths, with steps $(1, 0)$ and $(0, 1)$, from $(0, 0)$ to $(2n, n)$ that never rise above (but may touch) the line $x = 2y$ and b_n is the number of paths from $(0, 0)$ to $(2n, n)$ that never rise above (but may touch) the line $x = 2y - 1$ (see, e.g., Gessel [10]). Moreover, for $n > 0$, d_n is the number of two-stack-sortable permutations of $\{1, 2, \ldots, n\}$. (See, e.g., West [29] and Zeilberger [30].) The sequences c_n and e_n are apparently not well-known.

Let us write $H_n(a)$ for $H_n\left(\sum_{n=0}^{\infty} a_n x^n\right)$, and similarly for other letters replacing a. Then applying Lemma 2.3 and Theorem 3.1 gives

\[
H_n(a) = \prod_{i=0}^{n-1} \frac{\left(\frac{2}{3}\right)_i \left(\frac{1}{3}\right)_i \left(\frac{4}{3}\right)_i \left(\frac{2}{3}\right)_i}{\left(\frac{1}{2}\right)_i \left(\frac{3}{2}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n^1(a) = \prod_{i=1}^{n} \frac{2 \left(\frac{2}{3}\right)_i \left(\frac{1}{3}\right)_i \left(\frac{4}{3}\right)_i \left(-\frac{1}{6}\right)_i}{\left(\frac{1}{2}\right)_i \left(-\frac{1}{2}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n(b) = \prod_{i=0}^{n-1} \frac{\left(\frac{4}{5}\right)_i \left(\frac{5}{5}\right)_i \left(\frac{2}{5}\right)_i \left(\frac{3}{5}\right)_i}{\left(\frac{3}{5}\right)_i \left(\frac{3}{5}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n^1(b) = \prod_{i=1}^{n} \frac{\left(\frac{4}{5}\right)_i \left(\frac{5}{5}\right)_i \left(\frac{2}{5}\right)_i \left(\frac{3}{5}\right)_i}{\left(\frac{3}{5}\right)_i \left(\frac{3}{5}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n(c) = \prod_{i=0}^{n-1} \frac{\left(\frac{5}{7}\right)_i \left(\frac{7}{7}\right)_i \left(\frac{3}{7}\right)_i \left(\frac{4}{7}\right)_i}{\left(\frac{2}{7}\right)_i \left(\frac{2}{7}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n^1(c) = \prod_{i=1}^{n} \frac{\left(\frac{5}{7}\right)_i \left(\frac{7}{7}\right)_i \left(\frac{3}{7}\right)_i \left(\frac{4}{7}\right)_i}{\left(\frac{2}{7}\right)_i \left(\frac{2}{7}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n(d) = \prod_{i=0}^{n-1} \frac{\left(\frac{5}{5}\right)_i \left(\frac{5}{5}\right)_i \left(\frac{3}{5}\right)_i \left(\frac{6}{5}\right)_i}{\left(\frac{3}{5}\right)_i \left(\frac{3}{5}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n^1(d) = (-1)^n \prod_{i=1}^{n} \frac{\left(\frac{5}{5}\right)_i \left(\frac{5}{5}\right)_i \left(\frac{3}{5}\right)_i \left(-\frac{1}{6}\right)_i}{\left(\frac{3}{5}\right)_i \left(\frac{3}{5}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n(e) = \prod_{i=0}^{n-1} \frac{\left(\frac{5}{7}\right)_i \left(\frac{7}{7}\right)_i \left(\frac{3}{7}\right)_i \left(\frac{4}{7}\right)_i}{\left(\frac{3}{7}\right)_i \left(\frac{3}{7}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]

\[
H_n^1(e) = \prod_{i=1}^{n} \frac{\left(\frac{5}{7}\right)_i \left(\frac{7}{7}\right)_i \left(\frac{3}{7}\right)_i \left(\frac{5}{7}\right)_i}{\left(\frac{3}{7}\right)_i \left(\frac{3}{7}\right)_i} \left(\frac{27}{4}\right)^{2i}
\]
Here is a table of the values of these Hankel determinants:

n	$H_n(a)$	$H_n^1(a)$	$H_n(b)$	$H_n^1(b)$	$H_n(c)$	$H_n^1(c)$	$H_n(d)$	$H_n^1(d)$	$H_n(e)$	$H_n^1(e)$
1	1	1	1	2	1	3	2	1	5	7
2	2	3	3	11	3	26	3	10	66	143
3	11	26	26	170	11	646	10	85	2431	8398
4	7429	646	646	920460	170	45885	85	1932	25286	141150
5	920460	45885	45885	323801820	920460	9304650	1932	120060	6206201	677688675
6	323801820	9304650	9304650	323674802088	323801820	323674802088	120060	20648232	20648232	928501718850
7	323674802088	323674802088	323674802088	5382618660	323674802088	5382618660	20648232	485460	485460	362817384404120

It is apparent from the table that

$$U_n = H_n(a) = H_{n-1}^1(b) = H_{n-1}(c),$$

(3.16)

and that $V_n = H_n^1(a) = H_n(b) = H_{n-1}^1(c)$, and these are easily verified from the formulas. The combinatorial interpretations of U_n and V_n have already been discussed. The numbers $H_n(e)$ were shown by Kuperberg [19, Theorem 5] to count certain alternating sign matrices. In Kuperberg’s notation, $H_n(e) = A_{U(2)}^{2}(4n; 1, 1, 1)$.

There are also Hankel determinant evaluations corresponding to (3.2a)–(3.2e), normalized to make the entries integers. These evaluations can be found in Krattenthaler [17, Theorem 30].

4. Determinants and Two-Variable Generating Functions

In this section we describe a method for transforming determinants whose entries are given as coefficients of generating functions. (A related approach was used in [8] to evaluate Hankel determinants of Bell numbers.) Using this technique, we are able to convert the determinants for U_n and V_n in (1.1) and (1.2) into the known determinant evaluations given in (1.7) and (1.8). (Conversely, the evaluations of these Hankel determinants give new proofs of (1.7) and (1.8).) These two determinants are special cases of a determinant evaluation of Mills, Robbins, and Rumsey [22] (see [16, Theorem 37] for related determinants):

$$\det \left(\begin{array}{c} i + j + r \\ 2i - j \end{array} \right)_{0 \leq i, j \leq n-1} = (-1)^{\chi(n \equiv 3 \bmod 4)}2^{(n-1)/2} \prod_{i=1}^{n-1} \frac{(r + i + 1)(i+1/2)}{(i)} \left(-r - 3n + i + \frac{3}{2} \right)^{\lfloor i/2 \rfloor},$$

(4.1)

where $\chi(S) = 1$ if S is true and $\chi(S) = 0$ otherwise. There exist short direct proofs of (4.1) (see [3, 15, 24]), but no really simple proof.
Suppose that we have a two-variable generating function

\[D(x, y) = \sum_{i,j=0}^{\infty} d_{i,j} x^i y^j. \]

Let \([D(x, y)]_n\) be the determinant of the \(n \times n\) matrix

\[(d_{i,j})_{0 \leq i, j \leq n-1}.

The following rules can be used to transform the determinant \([D(x, y)]_n\) to a determinant with the same value:

Constant Rules. Let \(c\) be a non-zero constant. Then

\[[cD(x, y)]_n = c^n[D(x, y)]_n, \]

and

\[[D(cx, y)]_n = c^n[D(x, y)]_n. \]

Product Rule. If \(u(x)\) is any formal power series with \(u(0) = 1\), then

\[[u(x)D(x, y)]_n = [D(x, y)]_n. \]

Composition Rule. If \(v(x)\) is any formal power series with \(v(0) = 0\) and \(v'(0) = 1\), then

\[[D(v(x), y)]_n = [D(x, y)]_n. \]

The product and composition rules hold because the transformed determinants are obtained from the original determinants by elementary row operations. Equivalently, the new matrix is obtained by multiplying the old matrix on the left by a matrix with determinant 1. Note that all of these transformations can be applied to \(y\) as well as to \(x\).

The Hankel determinants \(H_n(A)\) and \(H^1_n(A)\) of a formal power series \(A(x)\) are given by

\[H_n(A) = \begin{bmatrix} \frac{x A(x) - y A(y)}{x - y} \end{bmatrix}_n, \]

\[H^1_n(A) = \begin{bmatrix} \frac{A(x) - A(y)}{x - y} \end{bmatrix}_n. \]

Proof of (1.7) and (1.8). The generating function for the Hankel determinant \(H_n(g)\) is

\[\frac{x g(x) - y g(y)}{x - y}. \]

Since \(f/(1+f)^3 = x\), \(f\) is the compositional inverse of \(x/(1+x)^3\), and thus \(f(x/(1+x)^3) = x\). Since \(g = 1 + f\), we have \(g(x/(1+x)^3) = 1 + x\).

Now let us substitute \(x \rightarrow x/(1+x)^3\), \(y \rightarrow y/(1+y)^3\) in (4.4). After simplifying, we obtain

\[\frac{(1 - xy)(1 + x)(1 + y)}{1 - xy^2 - 3xy - x^2y}. \]

Then dividing by \((1 + x)(1 + y)\), we get

\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y}. \]
Next, we show that
\[\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{i,j} \left(\frac{i + j}{2i - j} \right) x^i y^j. \]
(4.5)

Multiplying both sides of (4.5) by \(1 - xy^2 - 3xy - x^2y \) and equating coefficients of \(x^m y^n \) shows that (4.5) is equivalent to the recurrence
\[\left(\frac{m + n}{2m - n} \right) - 3 \left(\frac{m + n - 2}{2m - n - 1} \right) - \left(\frac{m + n - 3}{2m - n - 3} \right) = \begin{cases} 1, & \text{if } m = n = 0 \\ -1, & \text{if } m = n = 1 \\ 0, & \text{otherwise} \end{cases} \]
where we interpret the binomial coefficient \(\binom{a}{b} \) as 0 if either \(a \) or \(b \) is negative, and the verification of the recurrence is straightforward. (We will give another proof of (4.5) in Example 9.2.) This completes the proof of (1.7).

For equation (1.8), we need to consider the generating function
\[\frac{(g(x) - g(y))}{(x - y)}. \]
Making the same substitution as before gives
\[\frac{(1 + x)^3(1 + y)^3}{1 - xy^2 - 3xy - x^2y}. \]
Dividing by \((1 + x)^2(1 + y)^3 \) gives
\[\frac{1 + x}{1 - xy^2 - 3xy - x^2y}, \]
which can be shown, by the same method as before, to equal
\[\sum_{i,j} \left(\frac{i + j + 1}{2i - j} \right) x^i y^j. \]

To transform in this way the more general determinant on the left side of (4.1), we would start with the generating function
\[\sum_{i,j} \left(\frac{i + j + r}{2i - j} \right) x^i y^j = \sum_{n=0}^{\infty} \frac{\left[\binom{r + n}{2n} + \binom{r + n - 2}{2n - 1} \right] y^n}{1 - xy^2 - 3xy - x^2y}. \]
(4.6)
The generating function in \(r \) of (4.6) is derived in (9.4). The sums in the numerator can be evaluated explicitly by making an appropriate substitution in the identities
\[\sum_{n=0}^{\infty} \binom{r + n}{2n} (-4 \sin^2 \theta)^n = \frac{\cos(2r + 1)\theta}{\cos \theta}, \]
\[\sum_{n=0}^{\infty} \binom{r + n - 2}{2n - 1} (-4 \sin^2 \theta)^n = -2 \tan \theta \sin 2(r - 1)\theta. \]
However we have not been able to use these formulas to prove (4.1).
Another application of this method gives a family of generating functions that have the same Hankel determinants.

Theorem 4.1. Let \(A(x) \) be a formal power series with \(A(0) = 1 \) and let \(c \) be a constant. Then we have

\[
H_n \left(\frac{A(x)}{1 - cx A(x)} \right) = H_n(A) \tag{4.7}
\]

for all \(n \), and

\[
H_n \left(\frac{1}{1 - cx A(x)} \right) = c^{n-1} H_{n-1}^1(A) \tag{4.8}
\]

for \(n \geq 1 \).

Proof. We use the method of generating functions to evaluate these determinants. By (4.2),

\[
H_n \left(\frac{A(x)}{1 - cx A(x)} \right) = \begin{bmatrix} xA(x) & yA(y) \\ 1 - cx A(x) & 1 - cy A(y) \end{bmatrix}^n = \begin{bmatrix} 1 \\ (1 - cx A(x))(1 - cy A(y)) \end{bmatrix}^n.
\]

Since \((1 - cx A(x))^{-1}\) is a formal power series with constant term 1, we get

\[
H_n \left(\frac{A(x)}{1 - cx A(x)} \right) = \begin{bmatrix} xA(x) - yA(y) \\ x - y \end{bmatrix}^n = H_n(A).
\]

A similar computation shows that

\[
H_n \left(\frac{1}{1 - cx A(x)} \right) = \begin{bmatrix} 1 + cxy A(x) - A(y) \\ x - y \end{bmatrix}^n = c^{n-1} H_{n-1}^1(A),
\]

since \([1 + xyD(x,y)]_n\) is the determinant of a block matrix of two blocks, with the first block \([1]\) and the second block \([D(x,y)]_{n-1}\). \(\square\)

We now prove (1.6) and (1.9). First we set \(c = u - 1 \) and \(A = f/x \) in (4.7), getting

\[
V_n = \det (a_{i+j+1})_{0 \leq i,j \leq n-1} = H_n(f/x) = H_n \left(\frac{f/x}{1 + (1 - u)f} \right).
\]

Next we show that

\[
\frac{f/x}{1 + (1 - u)f} = \sum_{n=0}^{\infty} s_n(u) x^n, \tag{4.9}
\]

where

\[
s_n(u) = \sum_{k=0}^{n} \binom{n + 1}{n - k} \binom{3n - k + 1}{n - k} u^k. \tag{4.10}
\]
We have
\[
\frac{f/f}{1 + (1-u)f} = \frac{1}{1 + f} \cdot \frac{1}{1 - uf/(1+f)}
\]
\[
= \frac{(1+f)^2}{1 - ux(1+f)^2}, \quad \text{since } f = x(1+f)^3,
\]
\[
= \sum_{k=0}^{\infty} u^k k(1+f)^{2k+2}
\]
\[
= \sum_{k=0}^{\infty} u^k k \sum_{m=0}^{\infty} \frac{2k+2}{3m+2k+2} \binom{3m+2k+2}{m} x^m, \quad \text{by (3.4)},
\]
\[
= \sum_{n=0}^{\infty} x^n \sum_{k=0}^{n} \frac{k+1}{n+1} \binom{3n-k+1}{n-k} u^k,
\]
which proves \([1.9]\). Then \(s_n(1) = a_{n+1} \) from \([4.9]\), \(s_n(0) = \frac{1}{n+1}\binom{3n+1}{n} \) by setting \(u = 0 \) in \([4.10]\), and \(s_n(3) = \binom{3n+2}{n} \) follows from \([3.5]\). This completes the proof of \([1.6]\).

Next we prove \([1.9]\), which by \([4.9]\) is equivalent to
\[
H_n \left(u^{-1} + \frac{f}{1 + (1-u)f} \right) = U_n/u. \quad (4.11)
\]
We have
\[
u^{-1} + \frac{f}{1 + (1-u)f} = \frac{u^{-1}}{1 - ux(1+f)^2},
\]
so by \([4.8]\), the Hankel determinant is equal to \(u^{-1}H_{n-1}^1((1+f)^2)\). In the notation of Section 3, this is \(u^{-1}H_{n-1}^1(b)\), which by \([3.16]\) is equal to \(u^{-1}U_n\).

We also have an analogue of Theorem 4.1 for the Hankel determinants \(H_n^1\).

Theorem 4.2. Let \(A(x)\) be a formal power series with \(A(0) = 1\) and let \(c \neq 1\) be a constant. Then we have
\[
H_n^1 \left(\frac{A(x)}{1 - cA(x)} \right) = (1-c)^{-2n} H_n^1(A) \quad (4.12)
\]

Proof. We use the method of generating functions. By \([1.3]\),
\[
H_n^1 \left(\frac{A(x)}{1 - cA(x)} \right) = \left[\frac{A(x)}{1 - cA(x)} - \frac{A(y)}{1 - cA(y)} \right]_{x-y}^n
\]
\[
= \left[\frac{1}{(1 - cA(x))(1 - cA(y))} \frac{A(x) - A(y)}{x-y} \right]_{x-y}^n.
\]
Since \((1 - cA(x))^{-1}\) is a formal power series with constant term \((1-c)^{-1}\) when \(c \neq 1\), we get
\[
H_n^1 \left(\frac{(1-c)^2 A(x)}{1 - cA(x)} \right) = \left[(1-c)^{-2} \frac{A(x) - A(y)}{x-y} \right]_{x-y}^n = (1-c)^{-2n} H_n^1(A). \quad \square
\]
5. A Hankel Determinant for the Number of Alternating Sign Matrices

Let A_n be the number of $n \times n$ alternating sign matrices. It is well-known that

$$A_n = \prod_{k=0}^{n-1} \frac{(3k + 1)!}{(n+k)!},$$

as conjectured by Mills Robbins and Rumsey [21] and proved by Zeilberger [31] and Kuperberg [18].

The numbers A_n also count totally symmetric, self-complementary plane partitions, as shown by Andrews [2]. We find, up to a power of 3, a Hankel determinant expression for A_n.

Let

$$\hat{C}(x) = 1 - \frac{(1 - 9x)^{1/3}}{3x}. \quad (5.1)$$

The coefficients of $\hat{C}(x)$ are positive integers that are analogous to Catalan numbers. They have no known combinatorial interpretation and have been little studied, but they do appear in [20, Eq. 61].

Theorem 5.1. The number of $n \times n$ alternating sign matrices is

$$A_n = 3^{-\binom{n}{2}} H_n(\hat{C}). \quad (5.2)$$

Proof. Let

$$D(x, y) = (x\hat{C}(x) - y\hat{C}(y))/(x - y)$$

be the generating function for the Hankel determinant $H_n(\hat{C})$. It is easy to see that $D(x/\sqrt{3}, y/\sqrt{3})$ is the generating function for $3^{-\binom{n}{2}} H_n(\hat{C})$. We make the substitution $x \rightarrow x - \sqrt{3}x^2 + x^3$, $y \rightarrow y - \sqrt{3}y^2 + y^3$ in $D(x/\sqrt{3}, y/\sqrt{3})$, and simplify. The generating function becomes

$$\frac{1}{1 - \sqrt{3}(x + y) + x^2 + xy + y^2}.$$

Let $\omega = -\frac{1}{2} - \frac{\sqrt{-3}}{2}$ be a cube root of unity. Make another substitution $x \rightarrow -\sqrt{-1}x/(1 + \omega x), y \rightarrow \sqrt{-1}y/(1 + \omega^2 y)$, and simplify. The generating function becomes

$$\frac{(1 + \omega x)^2 (1 + \omega^2 y)^2}{(1 - xy)(1 - x - y)}.$$

Dividing by $(1 + \omega x)^2 (1 + \omega^2 y)^2$, the generating function becomes

$$\frac{1}{(1 - x - y)(1 - xy)}.$$

Multiplying by $(1 - x + x^2)(1 - y)/(1 - x)$, we get

$$\frac{(1 - x + x^2)(1 - y)}{(1 - x)(1 - x - y)(1 - xy)} = \frac{x}{y(1 - x - y)} + \frac{1}{1 - xy} - \frac{x}{y(1 - x)}.$$

Expanding the right-hand side of the above equation, we get

$$H_n(\hat{C}) = 3 \binom{n}{2} \det \left(\begin{pmatrix} i+j \\ i \end{pmatrix} + \delta_{i,j} \right)_{0 \leq i,j \leq n-1},$$

where $\delta_{i,j}$ equals 1 if $i = j$ and 0 otherwise. The theorem then follows from a known formula for A_n \cite[p. 22]{5}.

\begin{remark}
We have another determinant expression

$$A_n = \det \left(\begin{pmatrix} i+j \\ i \end{pmatrix} - \delta_{i,j+1} \right),$$

since

$$\frac{1}{(1-x-y)(1-xy)} = \frac{1}{1-y+y^2} \left(\frac{1}{1-x-y} - \frac{y}{1-xy} \right).$$

There is a result similar to Theorem 5.1

$$\hat{C}_1(x) = \frac{1-(1-9x)^{2/3}}{3x}.$$

Let A'_n be the number of cyclically symmetric plane partitions in the n-cube. We have

\begin{theorem}
$$A'_n = 3^{-\binom{n}{2}} H_n(\hat{C}_1).$$
\end{theorem}

\begin{proof}
Let

$$D(x, y) = (x\hat{C}_1(x) - y\hat{C}_1(y))/(x-y)$$

be the generating function for the Hankel determinant $H_n(\hat{C}_1)$. Similarly $D(x/\sqrt{3}, y/\sqrt{3})$ is the generating function for $3^{-\binom{n}{2}} H_n(\hat{C}_1)$. We make the same substitution (as for $H_n(\hat{C})$)

$$x \rightarrow x - \sqrt{3}x^2 + x^3, \quad y \rightarrow y - \sqrt{3}y^2 + y^3,$
$$
and simplify. The generating function becomes

$$\frac{2 - \sqrt{3}(x+y)}{1 - \sqrt{3}(x+y) + x^2 + xy + y^2}.$$

Similarly, we make another substitution $x \rightarrow -\sqrt{-1}x/(1 + \omega x), y \rightarrow \sqrt{-1}y/(1 + \omega^2 y)$, and simplify. The generating function becomes

$$\frac{(2 - x - y - xy)(1 + \omega x)(1 + \omega^2 y)}{(1-xy)(1-x-y)}.$$

Dividing by $(1 + \omega x)(1 + \omega^2 y)$, the generating function becomes

$$\frac{(2 - x - y - xy)}{(1-x-y)(1-xy)} = \frac{1}{1-x-y} + \frac{1}{1-xy}.$$

So we have

$$H_n(\hat{C}_1) = 3^{\binom{n}{2}} \det \left(\begin{pmatrix} i+j \\ i \end{pmatrix} + \delta_{i,j} \right)_{0 \leq i,j \leq n-1},$$

which is equal to $3^{\binom{n}{2}} A'_n$. (See \cite[p. 177, (5.28)]{3}.)
\end{proof}
Since $\hat{C}(x) = 2F_1 \left(\frac{2}{3}, 1; 2 \mid 9x \right)$, we can find a continued fraction for $\hat{C}(x)$ by setting $a = \frac{2}{3}, b = 0, c = 1$ in Lemma 2.2 and thus evaluate the Hankel determinant for $\hat{C}(x)$ by Lemma 2.1. Similarly, since $\hat{C}_1(x) = 2F_1 \left(\frac{1}{3}, 1; 2 \mid 9x \right)$, we can find a continued fraction for $\hat{C}_1(x)$ by taking $a = \frac{1}{3}, b = 0, c = 1$ in Lemma 2.2.

The Hankel determinants $H_n(\hat{C})$ and $H_n(\hat{C}_1)$ can also be evaluated by a more general result (see, e.g., [16, Theorem 26, Eq. (3.12)]):

$$\det \left(\begin{array}{c|c} A & \delta_{i,j} \\ \hline L_i + j & 0 \leq i, j \leq n \end{array} \right) = \frac{\prod_{1 \leq i < j \leq n} (L_i - L_j) \prod_{1 \leq i \leq n} (L_i + A + 1)! \prod_{1 \leq i \leq n} (A + 1 - i)!}{\prod_{1 \leq i \leq n} (L_i + n)! \prod_{1 \leq i \leq n} (A + 1 - i)!},$$

where L_1, \ldots, L_n and A are indeterminates, and the factorials are interpreted using gamma functions when necessary.

Thus these calculations give a simple method of evaluating the determinants

$$\det \left(\begin{array}{c|c} i + j & \delta_{i,j} \\ \hline \frac{i}{i-1} & 0 \leq i, j \leq n-1 \end{array} \right) \quad \text{and} \quad \det \left(\begin{array}{c|c} i + j & \delta_{i,j} \\ \hline \frac{i}{i} & 0 \leq i, j \leq n-1 \end{array} \right).$$

For more information on similar determinants, see Krattenthaler [16, Theorems 32–35] [17, Section 5.5].

6. A Combinatorial Proof of (1.7)

For the reader’s convenience, we restate equation (1.7) as follows:

$$\det (a_{i+j})_{0 \leq i, j \leq n-1} = \det \left(\begin{array}{c} i + j \\ 2i - j \end{array} \right)_{0 \leq i, j \leq n-1}. \quad (6.1)$$

Both sides of (6.1) have combinatorial meanings in terms of nonintersecting paths (see Gessel and Viennot [11]). The right-hand side counts $U_R(n)$, the set of n-tuples of nonintersecting paths from P'_0, \ldots, P'_{n-1} to Q'_0, \ldots, Q'_{n-1}, where $P'_i = (i,-2i)$ and $Q'_i = (2i,-i)$. For the paths to be nonintersecting, P'_i must go to Q'_i. See the right picture of Figure 1. Mills, Robbins, and Rumsey [15] in fact gave a bijection from the type (a) objects of Section 1 to such n-tuples of lattice paths.

![Lattice path interpretation of (6.1).](image)

Figure 1. Lattice path interpretation of (6.1).

For the left-hand side, we notice that a_n counts the number of paths from $(0,0)$ to $(2n,n)$ that never go above the line $y = x/2$. See, e.g., [10]. It is easy to see that the left-hand side of (6.1) counts $U_L(n)$, the set of n-tuples of nonintersecting paths that stay below the line $y = x/2$, from M_0, \ldots, M_{n-1} to N_0, \ldots, N_{n-1}, where $M_i = (-2i,-i)$ and
We call a path \mathcal{P} a K-path if it satisfies the following four conditions.

1. The path P never goes above the diagonal.
2. The part of P that is below the line $y = -2x$ is a V_2 path.
3. The part of P between the two lines $y = -2x$ and $x = -2y$ is a normal path.
4. The part of P that is above the line $x = -2y$ is an H_2 path.

Proposition 6.1. The number of H_2-paths (or V_2-paths) that start at $(0, 0)$, end at $(2n, 2n)$ and never go above the diagonal equals a_n.

Definition 6.2. We call a path P a K-path if it satisfies the following four conditions.

1. The path P never goes above the diagonal.
2. The part of P that is below the line $y = -2x$ is a V_2 path.
3. The part of P between the two lines $y = -2x$ and $x = -2y$ is a normal path.
4. The part of P that is above the line $x = -2y$ is an H_2 path.
From the definition, we see that a K-path can be uniquely decomposed into three kinds of paths: a V_2 path, followed by a normal path, followed by an H_2 path. Depending on its starting point, some of the paths may be empty. The normal path region is between the two lines $y = -2x$ and $x = -2y$. The steps occurring in a K-path are shown in Figure 2.

![Figure 2. The grid for K-paths.](image)

Theorem 6.3. The number of K-paths from $(-2m, -2m)$ to $(2n, 2n)$, where $m + n \geq 0$, is a_{m+n}.

The proof of the theorem will be given later. From the new interpretation of a_n, U_n counts $U_K(n)$, the set of n-tuples of nonintersecting K-paths from P_0, \ldots, P_{n-1} to Q_0, \ldots, Q_{n-1}, where $P_i = (-2i, -2i)$, and $Q_i = (2i, 2i)$ for $i = 0, 1, \ldots, n - 1$. See Figure 2. For the paths to be nonintersecting, P_i must go to Q_i. In such an n-tuples of nonintersecting K-paths, the path from P_i to Q_i must start with a path from $P_i = (-2i, -2i)$ to $P_i' = (i, -2i)$, and end with a path from $Q_i' = (2i, -i)$ to $Q_i = (2i, 2i)$. So $U_K(n)$ is in natural bijection with $U_R(n)$. If we count the number of K-paths according to their intersections with the lines $y = -2x$ and $x = -2y$, we get the matrix identity (6.2).

If P is a K-path from $(-2m, -2m)$ to $(2n, 2n)$ with $m \leq 0$ (or $n \leq 0$), then P is an H_2 (or a V_2)-path, and Theorem 6.3 follows from Proposition 6.1. So we can assume that m and n are both positive integers.

The idea of the proof of Theorem 6.3 is to show that the number of K-paths from $(-2m, -2m)$ to $(2n, 2n)$ is unchanged after sliding their starting and ending points along the diagonal by $(2, 2)$.
In fact, the following refinement is true. See Figure 3.

Lemma 6.4 (Sliding Lemma). The number of K-paths from $(i - 2, -2i - 2)$ to $(2j, -j)$ equals the number of K-paths from $(i, -2i)$ to $(2j + 2, -j + 2)$.

![Figure 3. Picture for the sliding lemma.](image)

Proof. Let $N(i, j)$ be the number of K-paths from $A_i = (i - 2, -2i - 2)$ to $B_j = (2j, -j)$. It is clear that $N(i, j) = 0$ if $i < 0$ or $j < 0$.

By reflecting in the line $y = -x$, we can give a bijective proof of the following statement: The number of K-paths from $(i, -2i)$ to $(2j + 2, -j + 2)$ equals the number of K-paths from $(j - 2, -2j - 2)$ to $(2i, -i)$, which is $N(j, i)$. Therefore it suffices to show that $N(i, j) = N(j, i)$.

The cases $i = 0$ and $i = 1$ correspond to starting at A_0 and A_1. From Figure 3 we can check that $N(i, j) = N(j, i)$ directly. We have

\[
\begin{array}{c|cccc}
 i \backslash j & 0 & 1 & 2 & 3 \\
 \hline
 0 & 1 & 2 & 1 & 0 & 0 \\
 1 & 2 & 5 & 9 & 5 & 1 \\
 2 & 1 & 9 & * & * & * \\
 3 & 0 & 5 & * & * & * \\
 4 & 0 & 1 & * & * & * \\
\end{array}
\]

and $N(i, j) = 0$ if one of i, j is 0 or 1 and the other is great than 4.

In the case $i \geq 2$, we count the number of K-paths from A_i to B_j according to its intersection with the line $y = -2x$. From Figure 3 we see that there are 4 possible intersection points. We have

\[
N(i, j) = B(2j - i + 2, 2i - j - 4) + 3B(2j - i + 1, 2i - j - 2) + 3B(2j - i, 2i - j) + B(2j - i - 1, 2i - j + 2),
\]

where $B(a, b) = \binom{a+b}{b}$.

Let $M(a, b)$ be defined by

\[
M(a, b) = B(a + 2, b - 4) + 3B(a + 1, b - 2) + 3B(a, b) + B(a - 1, b + 2).
\]
Then \(N(i, j) = M(2j - i, 2i - j) \). We need to show that \(M(a, b) = M(b, a) \) for \(a + b \geq 2 \), which implies \(N(i, j) = N(j, i) \) for \(i \geq 2 \). Using the basic identity of binomial coefficients \(B(c, d) = B(c - 1, d) + B(c, d - 1) \) for all integers \(c \) and \(d \), when \(a + b \geq 2 \), we have

\[
M(a, b) = B(a - 4, b + 2) + 3B(a - 3, b + 1) + 6B(a - 2, b) + 7B(a - 1, b - 1) + 6B(a, b - 2) + 3B(a + 1, b - 3) + B(a + 2, b - 4). \tag{6.4}
\]

In the following Figure 4, every number we put at a point is the sum of the numbers at points that are to the left of it or under it. This corresponds to the formula \(B(c, d) = B(c - 1, d) + B(c, d - 1) \). (6.4)

![Figure 4](image)

Figure 4. Proof of equation (6.4) by picture.

By the symmetry property \(B(c, d) = B(d, c) \), we have \(M(a, b) = M(b, a) \). This completes the proof.

Remark 6.5. Observe that the symmetry property of the numbers \((1, 3, 6, 7, 6, 3, 1)\) along the diagonal in Figure 4 implies (6.4). A bijective proof of this symmetry will induce a bijective proof of \(N(i, j) = N(j, i) \), and then a bijective proof of Lemma 6.4.

Proof of Theorem 6.3. Let \(G(m, n) \) be the number of \(K \)-paths starting at \((-2m, -2m)\) and ending at \((2n, 2n)\). We will prove that \(G(m - 1, n + 1) = G(m, n) \) for all \(m > 0 \). Then by induction, \(G(m, n) = G(0, m + n) = a_{m+n} \).

We give the bijection as follows. Given a \(K \)-path \(P \) from \((-2m, -2m)\) to \((2n, 2n)\), we separate it by the two lines \(y + 2 = -2(x + 2) \) and \(x = -2y \) into three parts: a \(V_2 \)-path \(P_1 \), followed by a \(K \)-path \(P_2 \), followed by an \(H_2 \)-path \(P_3 \).

Applying the bijection in the sliding lemma (Lemma 6.4) for \(P_2 \), we get \(P_2' \), a \(K \)-path starting on the line \(y = -2x \), ending on the line \(x = -2y - 2 \). Then \(P' = P_1 P_2' P_3 \) with starting point \((-2m + 2, -2m + 2)\) is the desired \(K \)-path.

A similar argument gives the inverse bijection.

This bijective proof of Theorem 6.3 is not very desirable, though it is sufficient to prove the determinant formula (6.1). The proof relies on the sliding lemma, whose proof involves
a case by case bijection that is not explicitly given. We would prefer a natural bijection for the sliding lemma that preserves the nonintersecting properties of K-paths. This is because such a bijection would give rise to a bijection from $\mathcal{U}_K(n)$ to $\mathcal{U}_L(n)$: we could slide the n-tuples of K-paths in $\mathcal{U}_K(n)$ so that all the paths are above the line $x = -2y$. Then the resulting paths would all be H_2-paths that can be easily converted into normal paths in $\mathcal{U}_L(n)$.

7. Trinomial Coefficients and a_n

In this section, we introduce T-paths that are counted by trinomial coefficients. The trinomial coefficient $T(a, b)$ is defined by

$$T(a, b) = [x^a y^b] (x^2 + xy + y^2)^{\frac{a+b}{2}},$$

if $a + b$ is even, and $T(a, b) = 0$ otherwise.

The trinomial coefficients $T(a, b)$ have a simple combinatorial interpretation: We call a path P a T-path if each step of P is $(2, 0)$ or $(1, 1)$ or $(0, 2)$. Then the number of T-paths that start at $(0, 0)$ and end at (a, b) is $T(a, b)$. This follows easily from the definition of $T(a, b)$. See the following Figure 5, in which dots represent vertices of T-paths.

![Figure 5. The grid for T-paths.](image)

Using T-paths, we can give a better bijective proof of the sliding lemma. In addition, we find a new determinant identity (7.2).

Let $n = (a + b)/2$. We can get another formula for $T(a, b)$ in the following way. We write $(x^2 + xy + y^2)^n = (x(x + y) + y^2)^n$ and use the binomial theorem twice:

$$(x(x + y) + y^2)^n = \sum_{k=0}^{n} \binom{n}{k} y^{2(n-k)} x^k \sum_{l=0}^{k} \binom{k}{l} x^l y^{k-l}$$

$$= \sum_{a=0}^{2n} \left(\sum_{k=0}^{a} \binom{n}{k} \binom{k}{a-k} \right) x^a y^{2n-a}. $$

So

$$T(a, b) = \sum_{k=0}^{a} \binom{n}{k} \binom{k}{a-k}. $$

(7.1)
This algebraic fact gives another combinatorial explanation of $T(a, b)$:

Lemma 7.1. The number of paths from $(0, -2m)$ to $(i, -i)$, in which the part below the line $y = -2x$ is a V_2 path, and the other part is a normal path, is equal to the number of T-paths from $(0, -2m)$ to $(i, -i)$, which is $T(i, 2m - i)$.

Proof. For a given path P from $(0, -2m)$ to $(i, -i)$, with the part P_1 below the line $y = -2x$ a V_2 path, and the other part P_2 a normal path, it is clear that P_1 must end at a point $(j, -2j)$ for some $j \geq 0$, and this j is unique.

We observe that the number of horizontal steps in P_1 is j, which equals the total number of steps in P_2. Therefore, we can associate to each horizontal step in P_1 a step in P_2, with order preserved. We call this new path Q. Clearly, Q is a T-path, since each step of Q is a $(0, 2)$-step, which is kept from P_1, or a $(1, 1)$-step, by associating a vertical step in P_2 to a horizontal step in P_1, or a $(2, 0)$-step, by associating a horizontal step in P_2 to a horizontal step in P_1. Since the above procedure is a rearrangement of the steps in P_1P_2, Q is a T-path from $(0, -2m)$ to $(i, -i)$. So Q is the desired T-path. The above procedure is clearly reversible. \(\square\)

By reflecting in $y = -x$, we get

Lemma 7.2. The number of paths from $(i, -i)$ to $(0, 2m)$, in which the part above the line $x = -2y$ is an H_2 path, and the other part is a normal path, is also $T(i, 2m - i)$.

Pictures for generalizations of these lemmas can be found in Figures 8 and 9. These lemmas correspond to the case $r = 2$.

Theorem 7.3. The number of K-paths from $(0, -2m)$ to $(2n, 0)$ is equal to the number of T-paths from $(0, -2m)$ to $(2n, 0)$, which is $T(2n, 2m)$. Moreover, we have the following identity.

$$U_n = \det (T(2i, 2j))_{0 \leq i, j \leq n-1}. \quad (7.2)$$

Proof of Theorem 7.3. We can split any K-path from $(0, -2m)$ to $(2n, 0)$ into two parts: one ends at $(i, -i)$ and the other starts at $(i, -i)$ for some $i \geq 0$ (this i is unique). Then using the two bijections in Lemmas 7.1 and 7.2 we have a bijective proof of the first part of the corollary.

We have shown in last section that U_n equals the number of n-tuples of nonintersecting K-paths from P_0, \ldots, P_{n-1} to Q_0, \ldots, Q_{n-1}, where $P_i = (-2i, -2i)$, and $Q_i = (2i, 2i)$ for $i = 0, 1, \ldots, n - 1$. It is clear (see Figure 2) that it is still true if we replace P_i by $\tilde{P}_i = (0, -2i)$, and Q_i by $\tilde{Q}_i = (2i, 0)$. But from the first part of this corollary, the number of K-paths from P_i to Q_j is $T(2j, 2i) = T(2i, 2j)$ for all $0 \leq i, j \leq n$. Then the identity (7.2) follows. \(\square\)

Remark 7.4. The identity (7.2) has a generalization in Section 8. Note that U_n does not equal the number of n-tuples of nonintersecting T-paths from P_0', \ldots, P_{n-1}' to Q_0', \ldots, Q_{n-1}', because their steps can cross without meeting at a vertex of the T-paths.

Definition 7.5. We call a path P a KT-path if it satisfies the following conditions.

1. The path P never goes above the diagonal.
2. The part of P that is to the left of the line $x = 0$ is a V_2 path.
3. The part of P in the fourth quadrant is a T-path.
4. The part of P that is above the line $y = 0$ is an H_2 path.

Theorem 7.6. The number of KT-paths from $(-2m, -2m)$ to $(2n, 2n)$ is a_{m+n} for all $m + n \geq 0$.

We give three bijective proofs of this theorem. The first bijective proof establishes the bijection from K-paths to KT-paths. A sliding lemma for KT-paths will then yield a sliding lemma for K-paths. We find that it is much easier to slide KT-paths: we can slide slowly and we can also slide fast. We give the fast sliding in our bijection.

Figure 6, where we did not draw the paths explicitly.

By the conditions that P is a T-path from $(0, 0)$ to $(2, 2)$, we have $S(P) = 0$ and $E(P) = 2$. Given the starting point $S(P)$ and ending point $E(P)$ of P, we can predict the position of $E(P') = S(P_N)$: $E(P')$ must lie on the line with slope -2 and passing through the point O, which is determined by the conditions that $O \rightarrow S(P)$ is vertical and the slope of $O \rightarrow E(P)$ is -1.

Similarly the bijection ϕ_2 for Lemma 7.4 maps a T-path P to a normal path P_N followed by an H_2-path P_H with similar properties.

Fast sliding bijection from KT-paths to V_2-paths. Let P be a KT-path from $(-2m, -2m)$ to $(2n, 2n)$ with $m, n \geq 0$.

We first uniquely separate P, according to its intersections with the lines $x = 0$ and $y = 0$, into three parts, a V_2-path P_1, followed by a T-path P_2, followed by an H_2-path P_3, such that P_1 ends with a horizontal step and P_3 starts with a vertical step, except that P_1 and P_3 may be empty. We will map $P_2 P_3$ to a V_2 path with the same starting and ending points.

Suppose $S(P_2) = (0, -i)$ and $E(P_2) = (j, 0)$. Obviously we can assume $j > 0$ for otherwise P_2 is a V_2-path and P_3 is the empty path. Applying ϕ_2 to P_2 gives us a V_2-path P_2' followed by a normal path P_{2N} with $S(P_{2N}) = (a, -2a + j)$ for some $a > 0$. See Figure 6 where we did not draw the paths explicitly.

Draw a vertical line at $S(P_{2N})$, which intersects the diagonal at (a, a). It is easy to check that the total number of steps of P_{2N} is a. Factor the H_2-path P_3, according to its intersection with the line $y = a$, into $P_{31} P_3'$ such that P_3' starts with a vertical step. The total number of vertical steps of P_{31} equals a. Applying ϕ_2^{-1} to $P_{2N} P_{31}$ gives us a T-path P_2'. See Figure 7.
Now we are left to map $P_{2^V} P_{2'} P_{3'}$ to a V_2-path. If we slide down the path by (a, a), then we met the same situation as for the path $P_2 P_3$. Repeat the above procedure we can finally obtain the desired V_2-path. The procedure is reversible because of the required conditions of ending with a horizontal step or starting with a vertical step, as shown in Figures 6 and 7.

Figure 6. First step of the fast sliding.

Figure 7. Second step of the fast sliding.
8. Generalizations of K-paths and KT-paths

Let $g_n^{(r)} = \frac{1}{r+1} \binom{r+1n}{n}$ be the number of $r+1$-ary trees with n nodes, and

$$g^{(r)}(x) = \sum_{n \geq 0} g_n^{(r)} x^n$$

be the generating function. Then $g^{(r)}(x)$ satisfies the following functional equation.

$$g^{(r)}(x) = 1 + x \left(g^{(r)}(x) \right)^{r+1}.$$

For $r = 1$, $g_n^{(1)}$ is the Catalan number. It is well-known that the Hankel determinants of the Catalan generating function are all 1. We have studied the the case $r = 2$. We wish to say something about the Hankel determinants of $g^{(r)}(x)$ for $r \geq 3$.

Since $H_n(g^{(r)}(x))$ does not factor for $r \geq 3$, a formula like (1.4) is unlikely. However, we find generalizations of (6.1) (which is the same as (1.1)), (6.4), and (6.5). They are given by (8.3), (8.4), and (8.5). Their algebraic proofs can be found in Section 9. Except for $H_n(g^{(r)}(x))$, we do not have nonintersecting paths interpretation of these determinants.

We have natural generalizations of the concepts in the last two sections. A path is an H_r path if each step is either $(r,0)$ or $(0,1)$. Similarly, a path is a V_r path if each step is either $(1,0)$ or $(0,r)$. The following is equivalent to a special case of a classical result given (without proof) by Barbier [4]. (See [12] for a new proof and further references.)

Proposition 8.1. The number of V_r-paths (or H_r-paths) from $(0,0)$ to (rn, rn) that never go above the diagonal is $g_n^{(r)}$.

A path is a $T^{(r)}$-path if each of its step is $(r,0)$, $(r-1,1)$, . . . , or $(0,r)$.

For any path P, we denote by $S(P)$ the starting point, $E(P)$ the ending point, and $L(P)$ the number of steps in P.

For a $T^{(r)}$-path P with $S(P) = (0,0)$ and $L(P) = k$, $E(P)$ must lie on the line $y = -x + rk$. So to compute $L(P)$, we take the sum of the x-coordinate and y-coordinate of $E(P) - S(P)$, and divide by r. A normal path is also a $T^{(1)}$-path, a V_1 path, and an H_1 path, and a T-path is a $T^{(2)}$-path.

Let $T^{(r)}(a,b)$ be the number of $T^{(r)}$-paths from $(0,0)$ to (a,b). Then $T^{(r)}(a,b) = 0$ if $a + b$ is not divisible by r, so we can suppose $a = ri - s$ and $b = rj + s$ for some i,j and $0 \leq s \leq r - 1$. We have

$$T^{(r)}(ri + s, rj - s) = [x^{ri+s}y^{rj-s}] (x^r + x^{r-1}y + \cdots + y^r)^{i+j}.$$

Since the right-hand side of the above equation is homogeneous in x and y, we can write it in terms of one variable t, where $t = y/x$.

Let $\alpha = 1 + t + t^2 + \cdots + t^r$ and $\beta = \alpha/t^r = 1 + t^{-1} + \cdots t^{-r}$. Then

$$T(ri + s, rj - s) = CT t^{s\alpha^i \beta^j} = CT t^{s^{-rj} \alpha^i \beta^j},$$

where CT means to take the constant term of a Laurent polynomial of t.

Definition 8.2. We call a path P a $K^{(r)}$-path if it satisfies the following conditions.

1. The path P never goes above the diagonal.
2. The part of P that is to the left of the line $y = -rx$ is a V_r path.
3. The part of P between the two lines $y = -rx$ and $x = -ry$ is a $T^{(r-1)}$-path.
Definition 8.3. We call a path P a $KT^{(r)}$-path if it satisfies the following conditions.

1. The path P never goes above the diagonal.
2. The part of P that is to the left of the line $x = 0$ is a V_r path.
3. The part of P in the fourth quadrant is a $T^{(r)}$-path.
4. The part of P that is above the line $y = 0$ is an H_r path.

For example, a K-path is a $K^{(2)}$-path, and a KT-path is a $KT^{(2)}$-path.

Let $K(m, n, r, s)$ be the set of all $K^{(r)}$-paths from (m, n, r) to (n, r). Let $T(m, n, r, s)$ be the set of all $KT^{(r)}$-paths from $(s - mr, s - mr)$ to $(nr + s, nr + s)$. Now we can state our main results.

Theorem 8.4. The cardinality of $K(m, n, r)$ is $g^{(r)}_{m+n}$ for all m and n. The cardinality of $T(m, n, r, s)$ is also $g^{(r)}_{m+n}$ for all m, n and s.

As in the case $r = 2$, if $m \leq 0$ (or $n \leq 0$), then $K^{(r)}$-paths and $KT^{(r)}$-paths are in fact H_r-paths (or V_r-paths), and in these cases, Theorem 8.4 follows from Proposition 8.1. The idea of the proof of Theorem 8.4 is to show that $|T(m, n, r, s)| = |T(m, n, r, s - 1)|$ for all $1 \leq s \leq r$. Then $|T(m, n, r, s)| = g^{(r)}_{m+n}$ follows by induction. We will give a bijection from $T(m, n, r, 0)$ to $K(m, n, r)$.

The bijective proof we are going to give highly relies on the following lemma, especially on the bijection from $T(i, j)$ to $V(i, j)$, which is a generalization of Lemma 8.5.

Lemma 8.5. The following four sets all have cardinality $T^{(r)}(j, ri - j)$.

1. The set $T(i, j)$ of all $T^{(r)}$-paths from $(0, -ri)$ to $(j, -j)$.
2. The set $T'(i, j)$ of all $T^{(r)}$-paths from $(j, -j)$ to $(ri, 0)$.
3. The set $V(i, j)$ of all paths from $(0, -ri)$ to $(j, -j)$, with the part before the line $y = -rx$ a V_r path, and the part after the line $y = -rx$ a $T^{(r-1)}$-path.
4. The set $H(i, j)$ of all paths from $(j, -j)$ to $(ri, 0)$ with the part before the line $x = -ry$ a $T^{(r-1)}$-path, and the part after the line $x = -ry$ an H_r path.

Proof. We construct only the bijection from $T(i, j)$ to $V(i, j)$. The bijection from $T'(i, j)$ to $H(i, j)$ is similar. The bijection from $V(i, j)$ to $H(i, j)$ and the bijection from $T(i, j)$ to $T'(i, j)$ are given by reflecting in the line $y = -x$.

For any given path $T \in T(i, j)$ the steps in T are $(r - k, k)$ for $k = 0, 1, \ldots, r$. We first replace all the steps in T that are not $(0, r)$ with steps $(r, 0)$. Then we get a path T_1, with $E(T_1)$ on the line $y = -x$. Changing every $(r, 0)$-step in T_1 into $(1, 0)$ will give us a V_r path V_1 with $E(V'_1)$ on the line $y = -rx$. By removing all the $(0, r)$-steps in T, and changing every $(r - k, k)$-step into $(r - k - 1, k)$ for $k = 0, 1, \ldots, r - 1$, we get a $T^{(r-1)}$-path V_2. Then $V = V_1V_2 \in V(i, j)$ is the desired path. One way to see that $E(V) = (j, -j)$ is that if we regard an $(r - k, k)$-step as a $(1, 0)$ step followed by a $(r - k - 1, k)$-step for $k = 0, 1, \ldots, r - 1$, then the bijection we gave is just a rearrangement of the steps in T.

The inverse procedure is as follows. For a given $V' \in V(i, j)$, the line $y = -rx$ divides V' into a V_r path V'_1 followed by a $T^{(r-1)}$ path V'_2. Suppose $E(V'_2) = (k', -rk')$ for some k'. We can see that the number of $(1, 0)$-steps in V'_1, which is k', equals the total number of steps in V'_2, which is $(j - k') + (-j + rk')/(r - 1) = k'$. Then we can associate to each
(1, 0) step in V'_1 a step in V'_2, with order preserved. This gives us a $T^{(r)}$-path $T' \in T(i, j)$. In Figure 8 we give an example of the case $r = 4$. The above two procedures are clearly inverse to each other. □

Remark 8.6. The bijection from $T(i, j)$ to $V(i, j)$ we gave originated from the following algebraic fact.

For $r \geq 3$, there are many ways to group and expand the polynomial $(x^r + x^{r-1}y + \cdots + y^r)m$. We find the following way has a nice combinatorial explanation.

\[
(x(x^{r-1} + x^{r-2}y + \cdots + y^{r-1}) + y^r)m = \sum_{j=0}^{m} \binom{m}{j} y^{r(m-j)} x^j (x^{r-1} + x^{r-2}y + \cdots + y^{r-1})^j
\]

\[
= \sum_{i=0}^{rm} \left(\sum_{j=0}^{m} \binom{m}{j} T^{(r-1)}(rj-i, i-j) \right) x^i y^{rm-i}
\]

So we have

\[
T^{(r)}(i, rm-i) = \sum_{j=0}^{m} \binom{m}{j} T^{(r-1)}(rj-i, i-j).
\] (8.2)

In Figure 8 $|V(i, j)|$ can be counted according to the intersection points of the paths in $V(i, j)$ with the line $y = -rx$. This yields (8.2).
We denote the bijection from \(T(i,j) \) to \(V(i,j) \) by \(\phi_v \), and the bijection from \(T'(i,j) \) to \(H(i,j) \) by \(\phi_h \). One thing we should mention is that neither \(\phi_h \) nor \(\phi_v \) changes the starting point and the ending point. The path in Figure 9 is obtained from the \(T(r) \)-path \(T \) in Figure 8 by applying \(\phi_h \).

Applying \(\phi_v \) to a \(T(r) \) path will give us a \(V_r \) path followed by a \(T(r-1) \) path, in which the number of horizontal steps in the \(V_r \) path equals the total number of steps in the \(T(r-1) \) path. We can locate the ending point of the \(V_r \) path by the following three easy steps. (See Figure 8)

1. Draw a vertical line at \(S(T) \).
2. Draw a line of slope \(-1\) at \(E(T) \).
3. At the intersecting point of the above two lines, draw a line of slope \(-r\). Then this is the line on which the ending point of the \(V_r \) path must lie.

We call the line obtained in the above three steps the bisecting line \(BL_v(T) \) of \(\phi_v(T) \). For any \(T(r) \) path \(T \), with \(S(T) = (0, -ri) \) and \(E(T) = (j, -j) \), \(BL_v(T) \) is \(y = -rx \), which is independent of \(i \) and \(j \).

A similar argument for \(\phi_h \) holds for a \(T(r) \)-path \(T' \). The corresponding three steps are given as follows. (See Figure 9)

1. Draw a horizontal line at \(E(T') \).
2. Draw a line of slope \(-1\) at \(S(T') \).
3. At the intersecting point of the above two lines, draw a line of slope \(-1/r\). Then this is the line on which the starting point of the \(H_r \) path must lie.

We call the line obtained in the above three steps the bisecting line \(BL_h(T') \) of \(\phi_h(T') \).

The following is a generalization of Theorem 7.3.

Lemma 8.7. The number of each of the following four kinds of paths from \((0, -ri + s)\) to \((rj + s, 0)\) equals to \(T(rj + s, ri - s) \).
(1) All $T^{(r)}$-paths from $(0, -ri + s)$ to $(rj + s, 0)$.
(2) All paths from $(0, -ri + s)$ to $(rj + s, 0)$ consisting of a V_r path, followed by a $T^{(r-1)}$ path, in which the number of $(1,0)$-steps in the V_r path equals the total number of steps in the $T^{(r-1)}$ path.
(3) All the paths from $(0, -ri + s)$ to $(rj + s, 0)$ consisting of a $T^{(r-1)}$ path, followed by an H_r path, in which the number of $(0,1)$-steps in the H_r path equals the total number of steps in the $T^{(r-1)}$ path.
(4) All the paths from $(0, -ri+s)$ to $(rj+s, 0)$, with the part before the line $y = -rx + s$ a V_r path, between the lines $y = -rx + s$ and $x = -ry + s$ a $T^{(r-1)}$ path, and the part after the line $x = -ry + s$ an H_r path.

Proof. Part 1 follows from the definition of $T^{(r)}(rj + s, ri - s)$. Part 2 and part 3 are obvious by Lemma 8.5, so we need only prove part 4.

For a given $T^{(r)}$ path T from $(0, -ri+s)$ to $(rj + s, 0)$, we can uniquely separate it by the line $y = -x + s$ into a $T^{(r)}$ path T_1 followed by a $T^{(r)}$ path T_2. Applying ϕ_v on T_1, we get a V_r path T_{1V} followed by a $T^{(r-1)}$ path T_{1T}. Applying ϕ_h on T_2, we get a $T^{(r-1)}$ path T_{2T} followed by an H_r path T_{2H}. Using the three steps for finding BL$_v(T_1)$, we see that $E(T_{1V})$ must lie on the line $y = -rx + s$, since the line $y = -x + s$ intersects the line $x = 0$ at $(0,s)$. Similarly, $S(T_{2T})$ must lie on the line $x = -ry + s$, since the line $y = -x + s$ intersect the line $y = 0$ at $(s,0)$. Together with the fact that $E(T_{1T}) = E(T_1) = S(T_2) = S(T_{2T})$, we see that $T_{1V}T_{1T}T_{2T}T_{2H}$ is also a $T^{(r-1)}$ path and the path $T_{1V}T_{1T}T_{2T}T_{2H}$ is the desired path.

The above procedure is clearly invertible. □

The bijection in the above proof will induce a bijection from $\mathbb{T}(m,n,r,0)$ to $\mathbb{K}(m,n,r)$. We will see this in the proof of Theorem 8.4.

For any $1 \leq s \leq r$, let $A_s(i,j)$ be the set of $KT^{(r)}$-paths from $(0, -(ri-s))$ to $(rj+s,1)$, and $B_s(i,j)$ be the set of $KT^{(r)}$-paths from $(-1, -(ri-s)+1)$ to $(rj+s-1, 0)$. Then we have the following lemma, which will induce the bijection from $\mathbb{T}(m,n,r,s)$ to $\mathbb{T}(m,n,r,s-1)$.

Lemma 8.8 (Slow Sliding Lemma). There is a bijection from $A_s(i,j)$ to $B_s(i,j)$ for all i,j.

We will give two proofs for this lemma. The algebraic proof will be given in the next section. The bijective proof is as follows.

Bijective proof of Lemma 8.8 For any given $P \in A_s(i,j)$, we uniquely factor P, according to its intersections with the lines $y = 0$ and $y = -x + s$, into $P_1P_2P_3$, where we require P_3 to start with a vertical step. In the left picture of Figure 10 we marked each intersection point by a \circ.

Now we apply ϕ_v to P_1 to obtain a V_r-path followed by a $T^{(r-1)}$-path, and apply ϕ_h to P_2 to obtain a $T^{(r-1)}$-path followed by an H_r-path. The bisection lines are $y = -rx + s$ and $x = -ry + s$, as drawn in the right picture of Figure 10.

Denote by P' the whole path obtained this way. We uniquely factor P', according to its intersections with the lines $x = 1$ and $y = -x + s - r + 1$ into $P'_1P'_2P'_3$, where we require P'_1 to end with a horizontal step. In the left picture of Figure 11 we marked each intersection point by a \square.

Now we apply ϕ_v^{-1} to P'_2 to obtain a $T^{(r)}$-path Q_2, and apply ϕ_h^{-1} to P'_3 to obtain a $T^{(r)}$-path Q_3. See the right picture of Figure 11. We need to check that the three lines
Figure 10. First step of the slow sliding bijection.

Figure 11. Second step of the slow sliding bijection.

\[y = -x + s - r + 1, \quad x = -ry + s, \quad \text{and} \quad y = 1 \]
intersect at the point \((s - r, 1)\), so that \(\phi_h^{-1}(P'_3)\) is well defined.

Finally, let \(Q\) be obtained from \(P'_1Q_2Q_3\) by sliding down by \((1, 1)\). Then \(Q\) is the desired path. Every step in the above procedure is invertible. This completes the proof. \[\square\]
Proof of Theorem 8.4. First we construct the bijection from $T(m, n, r, 0)$ to $\mathbb{K}(m, n, r)$.
This shows that $|T(m, n, r, 0)| = |\mathbb{K}(m, n, r)|$.

Recall that any $P \in T(m, n, r, 0)$ is a $KT^{(r)}$-path from $(-rm, -rm)$ to (rn, rn), and
any $Q \in \mathbb{K}(m, n, r)$ is a K_r-path with the same ending points. We can uniquely factor P,
according to its intersections with the lines $x = 0$ and $y = 0$, into $P_1P_2P_3$, such that P_1 is
a V_r path ending with a horizontal step and P_3 is an H_r path starting with a vertical step,
except that P_1 and P_3 may be empty. Applying the bijection of Lemma 8.7 part 4 to P_2,
we get a K_r-path $Q_2 = Q_{2a}Q_{2b}Q_{2c}$ from $S(P_2)$ to $E(P_2)$, with Q_{2a} a V_r path ending on
the line $y = -rx$, Q_{2b} a $T^{(r-1)}$ path ending on the line $x = -ry$, and Q_{2c} an H_r path.
Then P_1Q_{2a} is a V_r path, and $Q_{2b}P_3$ is an H_r path. So

$$Q = P_1Q_{2a}Q_{2b}(Q_{2c}P_3)$$

is the desired path. The above procedure is clearly reversible.

Next we construct the bijection from $T(m, n, r, s) \rightarrow T(m, n, r, s - 1)$ for $1 \leq s \leq r$.
which implies $|T(m, n, r, s)| = |T(m, n, r, s - 1)|$. Any $P \in T(m, n, r, s)$ can be uniquely factored,
according to its intersections with the lines $x = 0$ and $y = 1$, into $P_1P_2P_3$, such that
P_1 is a V_r path ending with a horizontal step and P_3 is an H_r path starting with a vertical step,
except that P_1 and P_3 may be empty. Then P_2 is a $KT^{(r)}$-path.

Applying the bijection of Lemma 8.7 to P_2, we get a $KT^{(r)}$-path $Q_2 = Q_{2a}Q_{2b}$, with
Q_{2a} a V_r path starting on the line $x = -1$ and ending on the line $x = 0$, and Q_{2b} a T_r path ending on the line $y = 0$. Let Q_1 be obtained from P_1 by sliding down by (1, 1), and Q_3 be obtained from P_3 by sliding down by (1, 1). Then $Q = Q_1Q_2Q_3 = (Q_1Q_{2a})Q_{2b}Q_3$ is a path from $(s - 1 - mr, s - 1 - mr)$ to $(s - 1 + nr, s - 1, nr)$ that never goes above the diagonal and with the part before the line $x = 0$ a V_r path, the part between the two lines $x = 0$ and $y = 0$ a T_r path, and the part after the line $y = 0$ an H_r path. Hence $Q \in T(m, n, r, s - 1)$ is the desired path. The above procedure is clearly reversible.

Finally, we use induction to conclude the theorem. By the second part, it is easy
to see that $|T(m, n, r, s)| = |T(m, n, r, r)|$ for $0 \leq s \leq r$. But $T(m, n, r, r)$ in fact
$T(m-1, n+1, r, 0)$. Theorem 8.7 then follows by induction and the fact that $|T(m, n, r, 0)| = g^{(r)}_{m+n}$.

\[\square \]

Remark 8.9. We can also give a fast sliding bijection from $T(m, n, r, 0)$ to $T(0, m+n, r, 0)$.

Recall that $g^{(r)}(x)$ is the generating function of $r+1$-ary trees. Let $f^{(r)}(x) = g^{(r)}(x) - 1$. Then $f^{(r)}$ satisfies the following functional equation.

$$f^{(r)} = x(1 + f^{(r)})^{r+1}.$$

If we count $K^{(r)}$-paths from $(-mr, -mr)$ to (nr, nr) according to their intersections with the lines $y = -rx$ and $x = -ry$, we see that Theorem 8.4 yields the matrix identity

$$\begin{pmatrix} g^{(r)}_{i+j} \end{pmatrix}_{0 \leq i, j \leq n-1} = \left[[x^i]g^{(r)}(f^{(r)})^j \right]_{0 \leq i, j \leq n-1}$$

\[(T^{(r-1)}(rj - i, ri - j))_{0 \leq i, j \leq n-1} \left[[x^i]g^{(r)}(f^{(r)})^j \right]_{0 \leq i, j \leq n-1} \]

where

$$[x^i]g^{(r)}(f^{(r)})^j = \frac{(r+1)^{i+j} + 1}{(r+1)^{i+j}} \binom{(r+1)i + 1}{i - j}$$

is the number of V_r-paths from $(-ri, -ri)$ to $(j, -rj)$ that never go above the diagonal.
Since the transformation matrices in (8.3) are upper (or lower) triangular matrices with diagonal entries 1, we have
\[
\det \left(g_{i+j}^{(r)} \right)_{0 \leq i,j \leq n-1} = \det \left((T^{(r-1)}(r_j - i, ri - j))_{0 \leq i,j \leq n-1} \right. \tag{8.4}
\]
A similar argument gives
\[
\det \left(g_{i+j}^{(r)} \right)_{0 \leq i,j \leq n-1} = \det \left(T^{(r)}(ri, rj)_{0 \leq i,j \leq n-1} = \det \left(T^{(r)}(ri - s, rj + s)_{0 \leq i,j \leq n-1} \right. \tag{8.5}
\]
for any \(0 \leq s \leq r - 1 \).

9. The Algebraic Proof

The scheme of our algebraic proof of Lemma 8.8 is by first representing our object as the constant term of a rational function, and then evaluating the constant term. This technique is well-known. For instance, Egorychev [7] gave many applications for evaluating combinatorial sums in the context of residues (equivalent to constant terms). We also use this method, together the method in Section 4, to give algebraic proofs of (8.4) and (8.5).

The only thing we need here is the following Proposition 9.1. Its proof is included since the idea of the proof applies to most of our examples. We will give a different algebraic proof of equations (4.5) and (4.6).

Let \(B(x, y, t) \in \mathbb{Q}[t, t^{-1}][[x, y]] \). Then \(B(x, y, t) \) can be written as
\[
B(x, y, t) = \sum_{i,j=0}^{\infty} b_{ij}(t)x^iy^j,
\]
where \(b_{ij}(t) \in \mathbb{Q}[t, t^{-1}] \). Define
\[
\text{CT } B(x, y, t) = \sum_{i,j=0}^{\infty} (\text{CT } b_{ij}(t))x^iy^j,
\]
where \(\text{CT } b_{ij}(t) \) is the constant term of the Laurent polynomial \(b_{ij}(t) \) in \(t \).

The general problem in this section is to find the constant term of the function \((1 - P(t^{-1})x)^{-1}(1 - Q(t)y)^{-1}\) for some specific \(P(t), Q(t) \in \mathbb{Q}[t] \).

Proposition 9.1. Let \(P(t) \) and \(Q(t) \) be polynomials in \(t \), and let \(a_{mn} = \text{CT } P(t)^m Q(t^{-1})^n \). Then
\[
\sum_{m,n} a_{mn} x^m y^n
\]
is a rational function in \(x \) and \(y \).

Proof. We show that
\[
\text{CT } \frac{1}{(1 - P(t)x)(1 - Q(t^{-1})y)}
\]
is rational, where we work in the ring $\mathbb{Q}[t, t^{-1}][[x, y]]$. We may assume that $P(t)$ has degree at least 1. Let d be the degree of $Q(t)$. Let

$$F = \frac{1}{(1 - P(t)x)(1 - Q(t^{-1})y)} = \frac{t^d}{(1 - P(t)x)(t^d - t^d Q(t^{-1})y)}.$$ \hspace{1cm} (9.1)

Since $t^d Q(t^{-1})$ is a polynomial in t of degree at most d, and the degree of $P(t)$ is at least 1, F has a partial fraction expansion in t that may be written

$$F = \frac{1}{R(x, y)} \left(\frac{A(x, y, t)}{1 - P(t)x} + \frac{B(x, y, t)}{1 - P(t)x} \right) \hspace{1cm} (9.2)$$

where $R(x, y)$ is a polynomial in x and y, $A(x, y, t)$ and $B(x, y, t)$ are polynomials in x, y, and t, and the degree of B in t is less than d.

Now the constant term in t of $B(x, y, t)t^{-d}/(1 - Q(t^{-1})y)$ is 0 and the constant term in $A(x, y, t)/(1 - P(t)x)$ is $A(x, y, 0)/(1 - P(0)x)$. We would like to conclude that

$$\text{CT} F = \frac{A(x, y, 0)}{R(x, y)(1 - P(0)x)}.$$ \hspace{1cm} (9.2)

However, we don’t know that $1/R(x, y)$ has a power series expansion. To avoid this problem, we multiply (9.1) by $R(x, y)$ to get

$$R(x, y)F = \frac{A(x, y, t)}{1 - P(t)x} + \frac{B(x, y, t)t^{-d}}{1 - Q(t^{-1})y}.$$ \hspace{1cm} (9.2)

Then

$$\text{CT} R(x, y)F = \frac{A(x, y, 0)}{1 - P(0)x},$$

but since $\text{CT} R(x, y)F = R(x, y) \text{CT} F$, (9.2) follows. \hspace{1cm} \square

Since the main idea of this proof is a partial fraction decomposition, we call this method the partial fraction method. In the following examples, we use formula (9.1). Let $\alpha = 1 + t + t^2 + \cdots + t^r$ and $\beta = \alpha/t^r = 1 + t^{-1} + \cdots t^{-r}$. Then

$$T(ri + s, rj - s) = \text{CT} t^s \alpha^i \beta^j.$$

In particular,

$$\binom{m+n}{m} = [t^n](1 + t)^{m+n} = \text{CT}(1 + t)^m(1 + \frac{1}{t})^n.$$

Example 9.2. A different proof of identity (4.5)

$$\frac{1 - xy}{1 - xy^2 - 3xy - x^2y} = \sum_{i,j} \binom{i+j}{2i-j} x^i y^j.$$
Proof. We have
\[\sum_{i,j \geq 0} \binom{i+j}{2i-j} x^i y^j = \sum_{i,j \geq 0} (CT(1 + t)^{2i-j}(1 + t^{-1})^{2j-i}) x^i y^j\]
\[= CT \sum_{i,j \geq 0} \frac{(1 + t)^{2i}}{(1 + t^{-1})^j} x^i \cdot \frac{(1 + t^{-1})^{2j}}{(1 + t)^i} y^j\]
\[= CT \frac{1}{(1 - tx - t^2 x)(1 - t^{-1} y - t^{-2} y)}\]

Using Maple, we find the partial fraction expansion in \(t\):
\[\frac{1}{(1 - tx - t^2 x)(1 - t^{-1} y - t^{-2} y)} = \frac{1}{1 - 3xy - x^2 y - xy^2} \left(\frac{1 - xy + txy + tx^2 y}{1 - tx - t^2 x} - \frac{y(1 + t + tx - xy)}{t^2 - ty - y}\right)\] (9.3)

It is easy to see that
\[CT \frac{1}{1 - 3xy - x^2 y - xy^2} \frac{1 - xy + txy + tx^2 y}{1 - tx - t^2 x} = \frac{1 - xy}{1 - 3xy - x^2 y - xy^2},\]

obtained by setting \(t = 0\), since it is a formal power series in \(x\) and \(y\), with coefficients in \(\mathbb{Q}[t]\). Similarly,
\[CT \frac{y(1 + t + tx - xy)}{t^2 - ty - y} = CT \frac{t^{-1} y(1 + t^{-1} + x - t^{-1} xy)}{1 - t^{-1} y - t^{-2} y} = 0,\]
since it is a formal power series in \(x\) and \(y\) with coefficients in \(t^{-1} \mathbb{Q}[t^{-1}]\).

Equation (9.4) then follows. \(\square\)

Similarly, we can compute the generating function of \(\binom{i+j+r}{2i-j}\) for nonnegative integer \(r\), from which it is easy to deduce (1.5).

Example 9.3.
\[\sum_{i,j,r \geq 0} \binom{i+j+r}{2i-j} x^i y^j z^r = \frac{1 - z - xy(1 - 2z - xz)}{(1 - 3xy - x^2 y - xy^2)(1 - 2z + z^2 - xz)}\] (9.4)

Proof. We have
\[\sum_{i,j,r \geq 0} \binom{i+j+r}{2i-j} x^i y^j z^r = \sum_{i,j,r \geq 0} (CT(1 + t)^{2i-j}(1 + t^{-1})^{2j-i+r}) x^i y^j z^r\]
\[= CT \sum_{i,j,r \geq 0} \frac{(1 + t)^{2i}}{(1 + t^{-1})^j} x^i \cdot \frac{(1 + t^{-1})^{2j}}{(1 + t)^i} y^j \cdot (1 + t^{-1})^r z^r\]
\[= CT \frac{1}{1 - tx - t^2 x} \cdot \frac{1}{1 - t^{-1} y - t^{-2} y} \cdot \frac{1}{1 - z - t^{-1} z}\]

By (9.3), this equals
\[CT \frac{1}{1 - 3xy - x^2 y - xy^2} \left(\frac{1 - xy + txy + tx^2 y}{1 - tx - t^2 x} - \frac{y(1 + t + tx - xy)}{t^2 - ty - y}\right) \frac{1}{1 - z - t^{-1} z}.\]
Since $1/(1 - z - t^{-1}z)$ is a formal power series in z with coefficients in $\mathbb{Q}[t^{-1}]$, we can discard the second part of (9.3) in our computation. So we have

$$\text{CT} \frac{1}{1 - 3xy - x^2y - xy^2} \left(\frac{1 - xy + txy + tx^2y}{1 - tx - t^2x} \right) \frac{1}{1 - z - t^{-1}z}. $$

Converting this into partial fraction in t, we get two parts, one with coefficients in $\mathbb{Q}[t]$, the other with coefficients in $t^{-1}\mathbb{Q}[t^{-1}]$. So we can discard the second part and set $t = 0$ to get equation (9.4).

\begin{proof}

Algebraic Proof of Lemma 8.8.

For s with $1 \leq s \leq r$ and any $P \in A_s(i, j)$, we factor P, according to its intersection with the line $y = 0$, uniquely as P_1P_2, where P_1 is a $T^{(r)}$-path, and P_2 is an H_r path starting with a vertical step. Then $S(P_2) = (kr + s, 0)$, for some $0 \leq k \leq j$. See the left picture of Figure 12.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{example_paths.png}
\caption{Example paths for $A_s(i, j)$ and $B_s(i, j)$.}
\end{figure}

For any k, there are $T^{(r)}(kr + s, ir - s)$ choices for P_1 since it is a $T^{(r)}$-path from $(0, -(ir - s))$ to $(kr + s, 0)$. There is only one choice for P_2 since it is a $(0, 1)$ step followed by a fixed number of $(r, 0)$ steps. Conversely, any such P_1P_2 stays below the diagonal and hence belongs to $A_s(i, j)$. Summing on all possible k, we get a formula for $|A_s(i, j)|$:

$$|A_s(i, j)| = \sum_{k=0}^{j} T^{(r)}(kr + s, ir - s). \quad (9.5)$$

\end{proof}
Multiplying both sides of equation (9.5) by x^iy^j, and summing on i and j, we have

$$
\sum_{i,j=0}^{\infty} |A_s(i,j)|x^iy^j = \sum_{i,j=0}^{\infty} \sum_{k=1}^{i} T^{(r)}(kr+s, ir-s)x^iy^j
$$

$$
= \sum_{i,j=0}^{\infty} \sum_{k=0}^{i} (CT^s \alpha^k \beta^i)x^iy^j
$$

$$
= CT^s \sum_{j=0}^{\infty} \beta^j x^j \sum_{k=0}^{\infty} \alpha^k y^k \sum_{j\geq k}^{\infty} y^{j-k}
$$

$$
= CT^s \frac{1}{(1 - \alpha y)(1 - \beta x)(1 - y)}
$$

Similarly, any $Q \in B_s(i,j)$ can be factored, according to its intersection with the line $x = 0$, uniquely as Q_1Q_2, where Q_1 is a V_r path ending with a horizontal step and Q_2 is a $T^{(r)}$-path. Then $E(Q_1) = (0, -(k'r - s + 1))$ for some $1 \leq k' \leq i$. See the right picture of Figure 12. We see that even in the case $s = 1$, k' cannot be zero, since otherwise Q_1 will go above the diagonal.

For any k', there is only one choice for Q_1 since it is a fixed number of $(0, r)$ steps followed by a $(1, 0)$ step. There are $T^{(r)}(jr+s-1, k'r-s+1)$ choices for Q_2 since it is a $T^{(r)}$-path from $(0, -(k'r-s+1))$ to $(jr+s-1, 0)$. Summing on all the possible k', we get a formula for $|B_s(i,j)|$.

$$
|B_s(i,j)| = \sum_{k'=1}^{i} T^{(r)}(jr+s-1, k'r-s+1).
$$

(9.6)

A similar computation shows that

$$
\sum_{i,j=0}^{\infty} |B_s(i,j)|x^iy^j = CT^s \sum_{j=0}^{\infty} \alpha^j y^j \sum_{k'=1}^{\infty} \beta^{k'} x^{k'} \sum_{i\geq k'}^{\infty} x^{i-k'}
$$

$$
= CT^s \frac{1}{1 - \alpha y} \frac{1}{1 - \beta x} \frac{1}{1 - x}
$$

$$
= CT^s \frac{1}{(1 - \alpha y)(1 - \beta x)(1 - x)} - CT^{s-1} \frac{1}{(1 - \alpha y)(1 - x)}
$$

$$
= CT^s \frac{1}{(1 - \alpha y)(1 - \beta x)(1 - x)} - \delta_{s,1} \frac{1}{(1 - y)(1 - x)}.
$$

To compute the two generating functions does not seem easy, but their difference has a simple form.

$$
CT^s \frac{1}{1 - \alpha y} \frac{1}{1 - \beta x} \frac{1}{1 - x} - CT^{s-1} \frac{1}{1 - \alpha y} \frac{1}{1 - \beta x} \frac{1}{1 - y}
$$

$$
= CT^{s-1} \frac{t - ty - 1 + x}{(1 - x)(1 - y)(1 - \alpha y)(1 - \beta x)}
$$
Direct computation shows that
\[
\frac{t - ty - 1 + x}{(1 - \alpha y)(1 - \beta x)} = -\frac{x}{t^r(1 - \beta x)} - \frac{1 - y - t}{1 - \alpha y}
\]
It is easy to see that \(-\frac{x}{t^r(1 - \beta x)}\), belonging to \(\mathbb{Q}[t][[y]]\), has constant term \(-1\) in \(t\), and \(-\frac{1 - y - t}{1 - \alpha y}\), belonging to \(t^{-1}\mathbb{Q}[t^{-1}][[x]]\), has constant term 0. Hence
\[
\text{CT} t^{r-1} \frac{t - ty - 1 + x}{(1 - x)(1 - y)(1 - \alpha y)(1 - \beta x)} = -\delta_{s,1} \frac{1}{(1 - x)(1 - y)}.
\]
Put the above altogether, we obtain
\[
\sum_{i,j=0}^{\infty} (|A_s(i, j)| - |B_s(i, j)|) x^i y^j = 0.
\]
\[\square\]

Lemma 9.4.
\[
\sum_{i,j \geq 0} T^{(r)}(ri, rj)x^i y^j = \frac{x(1 - x)^{r-1} - y(1 - y)^{r-1}}{x(1 - x)^r - y(1 - y)^r}. \quad (9.7)
\]

Proof. Let \(x = uv\) and \(y = v\). Then
\[
\sum_{i,j \geq 0} T^{(r)}(ri, rj)x^i y^j = \sum_{i,j \geq 0} T^{(r)}(ri, rj)u^i v^{i+j}
= \sum_{n \geq i \geq 0} T^{(r)}(ri, r(n-i))u^i v^n
= \sum_{n \geq i \geq 0} \text{CT} \frac{\alpha^n}{t^ri} u^i v^n
= \text{CT} \frac{1}{1 - ut^{-r}} \frac{1}{1 - \alpha v}.
\]
We have
\[
\frac{1}{1 - \alpha v} = \frac{1 - t}{(1 - t) - v(1 - t^{r+1})}
= \frac{1}{1 - v} \frac{1 - t}{1 - t^{r+1}}
= \frac{1}{1 - v} \left(1 + t \frac{1 - t^rv}{1 - v} + \cdots + \left(\frac{1 - t^rv}{1 - v}\right)^{r-1}\right)
= \frac{1}{1 - v} \frac{1 - t^r \left(\frac{1 - t^rv}{1 - v}\right)^{r-1}}{1 - t^r \left(\frac{1 - t^rv}{1 - v}\right)^r} + \text{other terms}
\]
Since the other terms contain only terms like $a_{rm+s}t^{rm+s}$ for $1 \leq s \leq r - 1$, they do not contribute to the constant term in t. Let $z = t^r$. Then we have

$$
\text{CT} \left(\frac{1}{1 - ut^r} \right) = \text{CT} \left(\frac{1}{1 - uz^r} \right),
$$

where CT_z means to take the constant term of a function in z. Since the other part of the right side of the above equation is a formal power series in z, it is straightforward to obtain

$$
\text{CT} \left(\frac{1}{1 - ut^r} \right) = \frac{1 - u \left(\frac{1 - uv}{1 - v} \right)^{r-1}}{1 - u \left(\frac{1 - uv}{1 - v} \right)^r}.
$$

Replacing u with x/y and v with y, we get formula (9.7). □

Theorem 9.5.

$$
\det \left(g_{i+j}^{(r)} \right)_{0 \leq i, j \leq n-1} = \det \left(T^{(r)}(ri, rj) \right)_{0 \leq i, j \leq n-1} = \det \left(T^{(r-1)}(rj - i, ri - j) \right)_{0 \leq i, j \leq n-1}.
$$

Note that the identities in this theorem appeared in (8.4) and (8.5).

Proof. We use the technique of Section 4. The generating function for the first determinant is

$$
\frac{xg^{(r)}(x) - yg^{(r)}(y)}{x - y}.
$$

Since $f^{(r)}(x) = g^{(r)}(x) - 1$ is a formal power series in x satisfying

$$
f^{(r)}(x) = x / (1 + f^{(r)}(x))^{r+1},
$$

we make the substitution $x \to x/(1+x)^{r+1}$ and $y \to y/(1+y)^{r+1}$. The generating function becomes

$$
\frac{x(1+x)^{-r-1}(1+x) - y(1+y)^{-r-1}(1+y)}{x(1+x)^{-r-1} - y(1+y)^{-r-1}} = \frac{x(1+x)^{-r} - y(1+y)^{-r}}{x(1+x)^{-r-1} - y(1+y)^{-r-1}}.
$$

Normalizing and dividing by $(1+x)(1+y)$, we get

$$
\frac{x(1-x)^{r-1} - y(1-y)^{r-1}}{x(1-x)^r - y(1-y)^r}. \quad (9.8)
$$

The first equality hence follows from Lemma 9.3.
To show the second equality, we compute the generating function for the third determinant.

\[
\sum_{i,j \geq 0} T^{(r-1)}(r_j - i, r_i - j)x^i y^j
\]

\[
= \sum_{i,j \geq 0} T^{(r-1)}((r - 1)j + (j - 1)i, (r - 1)i - (j - 1))x^i y^j
\]

\[
= \sum_{i,j \geq 0} CT t^{-i}(1 + t + \cdots + t^{r-1})^j(1 + t^{-1} + \cdots + t^{-r+1})^i x^i y^j
\]

\[
= CT \sum_{i,j \geq 0} (t^{-1} + t^{-2} \cdots + t^{-r})^i x^i (t + t^2 + \cdots + t^r)^j y^j
\]

\[
= CT \frac{1}{1 - (t^{-1} + t^{-2} \cdots + t^{-r})x} \frac{1}{1 - (t + t^2 + \cdots + t^r)y}
\] (9.9)

Similarly, the generating function for the second determinant is

\[
CT \frac{1}{1 - (1 + t^{-1} + t^{-2} \cdots + t^{-r})x} \frac{1}{1 - (1 + t + t^2 + \cdots + t^r)y}
\] (9.10)

The following computation shows that the (9.10) can be obtained from (9.9) by making the substitution \(x \to x/(1 - x) \) and \(y \to y/(1 - y) \), and then dividing by \((1 - x)(1 - y) \). This yields the second equality.

\[
CT \frac{1}{1 - (1 + t^{-1} + t^{-2} \cdots + t^{-r})x} \frac{1}{1 - (t + t^2 + \cdots + t^r)y}
\]

\[
= CT \frac{1}{1 - x - (t^{-1} + t^{-2} \cdots + t^{-r})x} \frac{1}{1 - y - (t + t^2 + \cdots + t^r)y}
\]

\[
= CT \frac{1}{(1 - x)(1 - y)} \frac{1}{1 - (t^{-1} + t^{-2} \cdots + t^{-r}) \frac{x}{1-x} \frac{y}{1-y}}
\]

\[
= CT \frac{1}{1 - (t + t^2 + \cdots + t^r) \frac{y}{1-y}}
\] □

Acknowledgements: The authors wish to thank the Institut Mittag-Leffler and the organizers of the Algebraic Combinatorics program held there in the spring of 2005, Anders Björner and Richard Stanley.

References

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
2. G. E. Andrews, Plane partitions. V. The TSSCPP conjecture, J. Combin. Theory Ser. A 66 (1994), 28–39.
3. G. E. Andrews and W. H. Burge, Determinant identities, Pacific J. Math. 158 (1993), 1–14.
4. É. Barbier, Généralisation du problème résolu par M. J. Bertrand, C. R. Acad. Sci. Paris 1858 (1887), 407.
5. D. M. Bressoud, Proofs and Confirmations, The story of the alternating sign matrix conjecture. MAA Spectrum. Mathematical Association of America, Washington, DC, 1999.
6. Ö. Eğecioğlu, T. Redmond, and C. Ryavec, *From a polynomial Riemann hypothesis to alternating sign matrices*, Electron. J. Combin. 8 (2001), no. 1, R36, 51 pp.

7. G. P. Egorychev, *Integral Representation and the Computation of Combinatorial Sums*, Translations of Mathematical Monographs, vol. 59, American Mathematical Society, Providence, RI, 1984.

8. I. M. Gessel, Solution to part (B) of Problem 6151, *Partitions of finite sets*, Amer. Math. Monthly 86 (1979), 64–65. Proposed by Clarence H. Best, Amer. Math. Monthly 84 (1977), 391.

9. , *A factorization for formal Laurent series and lattice path enumeration*, J. Combin. Theory Ser. A 28 (1980), 321–337.

10. , *A probabilistic method for lattice path enumeration*, J. Statist. Plann. Inference 14 (1986), 49–58.

11. I. M. Gessel and G. Viennot, *Binomial determinants, paths, and hook length formulae*, Adv. Math. 58 (1985), 300–321.

12. I. P. Goulden and L. G. Serrano, *Maintaining the spirit of the reflection principle when the boundary has arbitrary integer slope*, J. Combin. Theory Ser. A 104 (2003), 317–326.

13. I. P. Goulden and D. M. Jackson, *Combinatorial Enumeration*, Dover Publications Inc., Mineola, NY, 2004. Reprint of the 1983 original.

14. W. B. Jones and W. J. Thron, *Continued Fractions: Analytic Theory and Applications*, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley, Reading, MA, 1980.

15. C. Krattenthaler, *An alternative evaluation of the Andrews-Burge determinant*, Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math., vol. 161, Birkhäuser Boston, Boston, MA, 1998, pp. 263–270.

16. , *Advanced determinant calculus*, Séminaire Lotharingien Combin. 42 (1999), Article B42q, 67 pp.

17. , *Advanced determinant calculus: A complement*, arXiv:math.CO/0503507.

18. G. Kuperberg, *Another proof of the alternating-sign matrix conjecture*, Internat. Math. Res. Notices (1996), 139–150.

19. , *Symmetry classes of alternating-sign matrices under one roof*, Ann. of Math. (2) 156 (2002), 835–866.

20. W. Lang, *On generalizations of the Stirling number triangles*, J. Integer Seq. 3 (2000), no. 2, Article 00.2.4.

21. W. H. Mills, D. P. Robbins, and H. Rumsey, Jr., *Alternating sign matrices and descending plane partitions*, J. Combin. Theory Ser. A 34 (1983), 340–359.

22. , *Enumeration of a symmetry class of plane partitions*, Discrete Math. 67 (1987), 43–55.

23. S. Okada, *Enumeration of symmetry classes of alternating sign matrices and characters of classical groups*, arXiv:math.CO/0408234.

24. M. Petkovšek and H. S. Wilf, *A high-tech proof of the Mills-Robbins-Rumsey determinant formula*, Electron. J. Combin. 3 (1996), no. 2, R19, 3 pp.

25. D. P. Robbins, *The story of 1, 2, 7, 42, 429, 7436, · · ·*, Math. Intelligencer 13 (1991), no. 2, 12–19.

26. , *Symmetry classes of alternating sign matrices*, arXiv:math.CO/0008045.
27. M. Somos, *Number walls in combinatorics*, http://cis.csuohio.edu/~somos/nwic.html, September 20, 2000.

28. U. Tamm, *Some aspects of Hankel matrices in coding theory and combinatorics*, Electron. J. Combin. 8 (2001), no. 1, A1, 31 pp.

29. J. West, *Sorting twice through a stack*, Theoret. Comput. Sci. 117 (1993), no. 1-2, 303–313, Conference on Formal Power Series and Algebraic Combinatorics (Bordeaux, 1991).

30. D. Zeilberger, *A proof of Julian West's conjecture that the number of two-stack-sortable permutations of length n is 2(3n)!/((n+1)!(2n+1)!)*, Disc. Math. 102 (1992), 85–93.

31. [Reference](http://cis.csuohio.edu/~somos/nwic.html), *Proof of the alternating sign matrix conjecture*, The Foata Festschrift, Electron. J. Combin. 3 (1996), no. 2, R13, 84 pp.

Department of Mathematics, Brandeis University, Waltham MA 02454-9110

E-mail address: gessel@brandeis.edu

Department of Mathematics, Brandeis University, Waltham MA 02454-9110

E-mail address: guoce.xin@gmail.com