Measuring health literacy: A systematic review and bibliometric analysis of instruments from 1993 to 2021

Mahmoud Tavousi¹, Samira Mohammadi¹, Jila Sadighi¹, Fatemeh Zarei², Ramin Mozafari Kermani¹, Rahele Rostami¹, Ali Montazeri¹,³*

¹ Health Metrics Research Center, ACECR, Iranian Institute for Health Sciences Research, Tehran, Iran,
² Faculty of Medical Sciences, Department of Health Education, Tarbiat Modares University, Tehran, Iran,
³ Faculty of Humanity Sciences, University of Science and Culture, Tehran, Iran

* montazeri@acecr.ac.ir

Abstract

Background

It has been about 30 years since the first health literacy instrument was developed. This study aimed to review all existing instruments to summarize the current knowledge on the development of existing measurement instruments and their possible translation and validation in other languages different from the original languages.

Methods

The review was conducted using PubMed, Web of Science, Scopus, and Google Scholar on all published papers on health literacy instrument development and psychometric properties in English biomedical journals from 1993 to the end of 2021.

Results

The findings were summarized and synthesized on several headings, including general instruments, condition specific health literacy instruments (disease & content), population-specific instruments, and electronic health literacy. Overall, 4848 citations were retrieved. After removing duplicates (n = 2336) and non-related papers (n = 2175), 361 studies (162 papers introducing an instrument and 199 papers reporting translation and psychometric properties of an original instrument) were selected for the final review. The original instruments included 39 general health literacy instruments, 90 condition specific (disease or content) health literacy instruments, 22 population-specific instruments, and 11 electronic health literacy instruments. Almost all papers reported reliability and validity, and the findings indicated that most existing health literacy instruments benefit from some relatively good psychometric properties.

Conclusion

This review highlighted that there were more than enough instruments for measuring health literacy. In addition, we found that a number of instruments did not report psychometric
properties sufficiently. However, evidence suggest that well developed instruments and those reported adequate measures of validation could be helpful if appropriately selected based on objectives of a given study. Perhaps an authorized institution such as World Health Organization should take responsibility and provide a clear guideline for measuring health literacy as appropriate.

Introduction

The term ‘health literacy’ was first used in 1974 in a paper entitled ‘health education as a social policy’ [1]. Since then, health literacy appeared more frequently in the biomedical literature and believed that it goes beyond the ability to read, write, and understand the meanings of words and numbers in health care settings [2]. The World Health Organization (WHO) defined health literacy as: ‘cognitive and social skills that determine the motivation and ability of individuals to access understand and use the information to promote and maintain optimal health’ [3]. Later the WHO regional office for Europe defined health literacy as: ‘Health literacy is linked to literacy and entails people’s knowledge, motivation and competences to access, understand, appraise and apply health information in order to make judgments and take decisions in every-day life concerning health care, disease prevention and health promotion to maintain or improve quality of life during the life course’ [4].

Health literacy is believed to have a vital impact on public health through access to and use of health services [5, 6]. Low health literacy is associated with poor health status [6, 7], frequent use of health services, longer hospital length of stay [5, 6], and high mortality [7, 8]. In addition, some studies have linked low health literacy to unhealthy behaviors, such as smoking [4, 9–12], low physical activity [10–12], and low use of preventive services [4, 7, 10]. Essentially, health literacy plays a role in improving health outcomes both at the individual level (reducing health inequalities) and at the societal level (continuous development of health policies) [13].

Therefore, measuring health literacy is fundamental and needs appropriate measures. Among health literacy instruments, the Rapid Assessment of Adult Literacy in Medicine (REALM) [14], the Test of Functional Health Literacy (TOFHLA) [15], and the Newest Vital Sign (NVS) [16] have a long history of application. These instruments have been criticized for a number of reasons, including evaluation of only a few areas of health literacy, inadequacy for use in interventional studies, or lack of development with a health promotion perspective. In addition, most of these scales were developed and used in clinical settings [17].

In a review of the literature from 1999 to 2013, 51 instruments were identified. Of these, 26 were general health literacy instruments, 15 were condition specific (disease or content), and 10 were health literacy instruments in a specific population [18]. In a review by O’Neil et al. on self-administered health literacy instruments, 35 measures were reported (27 original; 8 derivative instruments) [19]. Nguyen et al., in their study, stated that there are more than 100 health literacy instruments, but only a small number of them have been developed using modern guidelines [20]. In addition, there were further review papers with limited focus covering either general measures or papers that reviewed condition and population-specific health literacy measures. A chronological list of selected review papers is provided in Table 1 [20–38]. However, none of the previous reviews assess instruments comprehensively. Thus, to provide insight into the literature, we performed a bibliometric analysis from the start to the end of 2021 to comprehensively review all existing instruments. We thought this might help synthesize evidence and provide a platform for investigators with similar interests to easily select, apply, or appraise an instrument when needed.
Materials and methods

Search engine and time period

The electronic databases searched included PubMed, Scopus, Web of Science, and Google Scholar. The aim was to review all full publications in biomedical journals between 1993 and 2021. The search was updated twice: once in January 2022 and once in early February 2022. The year 1993 was chosen since the first standard instrument was reported in 1993.

Search strategy

The search strategy was limited to health literacy instruments whose psychometric information was accurately and transparently presented. Papers were retrieved using different combinations of keywords and MeSH terms including: 'Health literacy', 'eHealth literacy', 'e-Health literacy', 'e Health literacy', 'electronic Health literacy', 'Tool', 'Instrument', 'Scale', 'Questionnaire', 'Measure' and 'Inventory' in the title and abstract of papers.

All potentially relevant publications were extracted and reviewed independently by two authors (SM and FZ). Discrepancies between authors were resolved by consensus with the first investigator (MT). Then, qualified studies were obtained for full-text screening. The three authors extracted the data in order to identify eligible studies. After the final evaluation, the required data were extracted and recorded.

Ethics statement

The Iranian Academic Center for Education, Culture, and Research (ACECR) approved the study (Code of Ethics approved: IR.ACECR.IBCRC.REC.1397.014).

Table 1. Review papers on health literacy instruments.

Author [ref.]	Year	Number of instruments reviewed	focus
Machado et al. [21]	2014	4	Health literacy in elderly hypertensive patients
Dickson-Swift et al. [22]	2014	32	Oral health literacy
O’Connor et al. [23]	2014	13	Mental health literacy
Parthasarathy et al. [24]	2014	13	Oral health literacy
Perry [25]	2014	5	Health literacy in adolescents
Wei et al. [26]	2015	Validated measures: knowledge (14), stigma (65), help-seeking related (10)	Mental health literacy (knowledge, stigma, help-seeking related)
Duell et al. [27]	2015	43	Health literacy in a clinical setting
Stonbraker et al. [28]	2015	19	Health literacy among Spanish speakers in clinical or research settings
Nguyen et al. [20]	2015	Instruments (109): General HL (58), specific content/context (51)	Health literacy measures for ethnic minority populations
Wei et al. [29]	2017	12	Mental health literacy tools measuring help-seeking
Lee et al. [30]	2017	13	Health literacy for people with diabetes
Shum et al. [31]	2018	Asthma (40), COPD (22), Asthma/COPD (3)	Airway diseases and health literacy measurement tools
Guo et al. [32]	2018	29	Children and adolescents
Wei et al. [33]	2018	101	Mental health literacy measurement tools (the stigma of mental illness)
Okan et al. [34]	2018	15	Health literacy instruments used in children and adolescents
Estrella et al. [35]	2020	17	Health literacy among US African Americans and Hispanics/Latinos with type 2 diabetes
Slatyer et al. [36]	2020	3	Self-reported instruments to assess health literacy in older adults
Ghaffari et al. [37]	2020	21	Oral and dental health literacy
Mafruhah et al. [38]	2021	48	Health literacy for medication use

https://doi.org/10.1371/journal.pone.0271524.t001
Selection criteria
This study included all original papers reporting psychometric properties of health literacy (and e-health literacy) instruments published in English. Papers only published in journals remained in the study, and books and pamphlets, dissertations, papers presented at conferences, etc., were excluded. All publications were screened using the PRISMA guideline [39].

Quality assessment
The quality of papers was evaluated using the Consensus-based Standards for the selection of the health status Measurement Instrument (COSMIN) checklist. The COSMIN initiative aims to improve the selection of health measurement instruments [40]. For the purpose of this review reporting, six criteria (with at least eight items) were considered sufficient, and for each reported item, a score of 1 was assigned, giving a total score of 8. The criteria were reporting: internal consistency, stability (interclass correlation), face/content validity, structural validity (exploratory and confirmatory factor analyses), criterion validity, hypotheses testing (convergent or divergent validity, discriminant or known groups comparison). Then, the quality of psychometric reporting of each measure was categorized as: poor (<2), fair (2, 3), good (4, 5), and excellent (≥6).

Data synthesis
The data for each paper were extracted and summarized. The summary then was tabulated by a topic. The following information was provided: author(s)’ name, year of publication, validity, and reliability, and type of instruments, including: ‘general health literacy instruments’, ‘condition (disease or content) specific instruments’, instruments that were developed for ‘specific populations’ [18], and e-Health Literacy instruments.

Results
Descriptive findings
The study flowchart is presented in Fig 1. Overall, 4848 papers were identified. After removing duplicates (n = 2336) and irrelevant documents (n = 2175), 361 papers were included in the final review. Of these, 162 papers introduced an instrument, and 199 papers reported translation and psychometric properties for an original measure. Indeed, the original instruments are briefly described in four categories in the following sections.

General health literacy instruments
There were 39 instruments for measuring general health literacy. Historically among the general instruments, the most frequently used instruments were the REALM [14], the TOFHLA [15], and the NVS [16]. However, recently two well-developed instruments were introduced: The Health Literacy Questionnaire (HLQ) [55] and the Health Literacy Survey Questionnaire (HLS-EU-Q) [56]. The HLS-EU-Q and its newer versions [61, 69] have been widely used in European and Asian settings. Overall proper psychometric properties were reported for measures in this category. A summary of findings is presented in Table 2.

Condition (disease or content) specific instruments
There were 90 condition specific (disease & content) instruments. Measuring health literacy for chronic non-communicable diseases, especially diabetes mellitus, has been considered more frequently. At least nine instruments assess health literacy in diabetes. Infectious diseases
(such as HIV, HPV, tuberculosis, cholera, and infectious disease-specific) were the second topic of interest in developing health literacy measures. These instruments have also been well-reviewed and validated in relevant studies in terms of validity and reliability (Table 3).

Among the instruments with special content, the most frequently used were oral/dental health literacy and mental health literacy. The parental and maternal, insurance, occupational,
Author [ref.]	Year	Name (abbreviation)	Country/sample	Items	Validity	Reliability	
Davis et al. [14]	1993	Rapid estimate of adult literacy in medicine (REALM)	American public health and primary care settings	66	Concurrent	Cronbach α = 0.86	Test-retest = 0.99
Parker et al. [15]	1995	Test of Functional Health Literacy in Adults (TOFHLA)	American adults patients	57 ✓	Concurrent	Cronbach α = 0.98	-
Baker et al. [41]	1999	Short form of the Test of Functional Health Literacy in Adults (S-TOFHLA)	American English speaking patients	40	Concurrent	Cronbach α = 0.97	-
Weiss et al. [16]	2005	Newest Vital Sign (NVS)	American adults	6	Concurrent	Cronbach α = 0.78	-
Lee et al. [42]	2006	Short Assessment of Health Literacy for Spanish-speaking Adults (SAHLSA-50)	American Spanish-speaking adults	50	Convergent; Predictive; CFA	Cronbach α = 0.92	Test-rest = 0.86
Morris et al. [43]	2006	Single Item Literacy Screener (SILS)	American adults with diabetes	1	Criterion	-	-
Zikmund-Fisher et al. [44]	2007	Subjective Numeracy Scale (SNS)	American general population	8	Predictive	-	-
Ishikawa et al. [45]	2008	Functional, Communicative, and Critical Health Literacy (FCCHL)	Japanese diabetic patients	14	Discriminant; EFA	Cronbach α = 0.65–0.84	-
Chew et al. [46]	2008	3 health literacy screening questions	American adult patients	3	Criterion	-	-
Pleasant et al. [47]	2008	Public health literacy knowledge scale	Mexican & Chinese & Ghanaian & Indian participants	16 ✓	Discriminate	Cronbach α = 0.79	-
Rawson et al. [48]	2009	Medical Term Recognition Test (METER)	American adult patients	40	Predictive	Cronbach α = 0.93	-
Zhang et al. [49]	2009	Functional Health Literacy Tests (FHLTs)	Singapore: general public and rheumatic patients	21	Divergent (Discriminant); Convergent	Cronbach α = 0.72, 0.68	Test-retest = 0.56; ICC = 0.95
McCormack et al. [50]	2010	Health literacy skills instrument	American population	25 ✓	CFA; Concurrent	Cronbach α = 0.86; Item-total correlation = 0.27–0.59	-
Yu Ko et al. [51]	2012	Health Literacy Test for Singapore (HLTS)	Singapore adults	25 ✓	Convergent; Predictive	Cronbach α = 0.87	-
Begoray et al. [52]	2012	Self-reported health literacy scale	Canadian adults	9	Criterion	Cronbach α = 0.83	-
Kaplingst et al. [53]	2012	Health literacy INDEX: health literacy demands of health information materials	American adults	63	Concurrent	-	kappa value = 0.6–0.64
Helitzer et al. [54]	2012	The TALKDOC health literacy measurement tool	New Mexico female adults	80 ✓	Convergent	-	-
Osborne et al. [55]	2013	Health Literacy Questionnaire (HLQ)	Australian general population	44 ✓	CFA; Discriminant	Cronbach α = 0.86–0.90	-
Sorensen et al. [56]	2013	Health Literacy Survey Questionnaire (HLS-EU-Q-47)	English/Bulgarian/Dutch/German/Greek/Polish/Spanish/Irish/Austrian adults	47 ✓	EFA	Cronbach α = 0.51–0.91	-
Suka et al. [57]	2013	14-item Health Literacy Scale (HLS-14)	Japanese adults	14	EFA; CFA	Cronbach α = 0.76–0.85	-

(Continued)
Table 2. (Continued)

Author [ref.]	Year	Name (abbreviation)	Country/sample	Items	Validity	Reliability		
		Face/Content			Construct	Internal consistency	External/Relative	
Farin et al.	2013	Health Education Literacy of Patients (HELP questionnaire)	German patient adults	18	✓	EFA; CFA; IRT Cronbach α = 0.88–0.95	-	
Jordan et al.	2013	The Health Literacy Management Scale (HeLMS)	Australian adults	29	✓	EFA; CFA Cronbach α > 0.82 ICC > 0.90	-	
Sand-Jecklin	2014	Brief Health Literacy Screen (BHLS)	American adult patients	5	-	EFA; Concurrent Cronbach α = 0.79	-	
Pelikan et al.	2014	Short versions of the European Health Literacy Survey Questionnaire (HLS-EU-Q16, Q6)	English/Bulgarian/Dutch/German/Greek/Polish/Spanish/Irish/Austrian adults	16 & 6	✓	CFA; Concurrent Cronbach α = 0.80 for Q6	-	
Kang et al.	2014	Korean Health Literacy Instrument (KHLI)	Korean adults	18	✓	EFA; CFA Cronbach α = 0.82 Test-retest = 0.89	-	
Nakagami et al.	2014	Japanese Functional Health Literacy Test (JFHLT)	Japanese adults	16	✓	Convergent; Concurrent Cronbach α = 0.81	-	
Chau et al.	2015	Chinese Health Literacy Scale for Low Salt Consumption-Hong Kong population (CHLSalt-HK)	Hong Kong older adults	49	✓	Discriminant; EFA; CFA; Concurrent t; Predictive Cronbach α = 0.79 Test-retest = 0.84; ICC = 0.7	-	
Haghdooost et al.	2015	Iranian Health Literacy Questionnaire (IHLQ)	Iranian adults	36	✓	EFA Cronbach α = 0.71–0.96 Test-retest [ICC] = 0.73 to 0.86	-	
Zotti et al.	2017	Single question on Self-rated Reading Ability (SrRA)	Italian adult cancer patients	1	✓	Convergent; Discriminant	-	
Tsubakita	2017	Functional Health Literacy Scale for Young Adults (funHLS-YA)	Japanese Young Adults	19	-	Criterion; EFA Cronbach α = 0.75	-	
Kim	2017	short version of the Korean Functional Health Literacy Test (S-KHLT)	Korean nursing students and older adults	8	-	Convergent; KR-20 = .84	-	
Finbraten et al.	2018	Short version of the European Health Literacy Survey Questionnaire (HLS-Q12)	Norwegian adults	12	-	Rasch model; CFA; Convergent Person separation Reliability = 0.75–0.82	-	
Pleasant et al.	2018	Calgary charter on health literacy scale	American general population	5	-	Discriminant Cronbach α = 0.80	-	
Duong et al.	2019	European Health Literacy Survey questionnaire (HLS-SF12)	Indonesian/Kazakh/Russian/Malay/Myanmar/Burmese/Mandarin/Vietnamese adults	12	-	Convergent; CFA Cronbach α = 0.85	-	
Mc Clintock et al.	2020	Eight health literacy questions based on the national academy of medicine	Sub-Saharan Africa countries adults	8	✓	Discriminant; EFA Cronbach α = 0.72	-	
Leung et al.	2020	Rapid Estimate of Inadequate Health Literacy for older adults (REIHL)	Hong Kong patients with chronic illnesses	12	-	Concurrent Sensitivity and specificity (by ROC curve analysis)	-	
Shannon et al.	2020	Health Communication Questionnaire (HCQ)	Australian mining industry workers	14	✓	-	- Test-retest = 0.72	-
Tavousi et al.	2020	Health Literacy Instrument for Adults (HELIA)	Iranian adults	33	✓	EFA Cronbach α = 0.72–0.89	-	

(Continued)
complementary, and alternative medicine, the responsiveness of primary care practices, weight-specific childhood, overweight, social determinants of health, and non-specific neck pain health food, were other specific content measures (Table 4).

Population-specific instruments

A number of health literacy instruments were designed for a specific population- or specific demographic population (n = 22). The grouping was based on age (adolescents, adults/elderly adults, and the elderly) or nationality (Korean, Taiwanese, English, Spanish, American, Switzerland, Australian, German, Chinese, Iranian, and Finnish). A list of instruments and their psychometric properties are shown in Table 5.

e-Health literacy instruments

There were 11 electronic health literacy instruments. Of these, the instrument developed by Norman et al. [189] was used more frequently in various studies. A list of instruments is presented in Table 6.

Other versions that reported for an original instrument

There were a number of instruments that translated and validated in other nations with different demographic backgrounds (n = 199). A list of these instruments is presented in Table 7.

Results for quality assessment

As indicated in the methods section, all papers under review were assessed for quality. The results are shown in Table 8.

Synthesis of findings

Numerous instruments have been developed during the past thirty years for measuring health literacy. This review could provide information on 162 instruments. Of these, there were two well-developed instruments:

1. HLQ, which avoided the use of prevailing theories until the later development process, and great care was taken to fully understand the experiences and lives of people, professionals, and healthcare providers [55].

2. HLS-EU-Q47, which used conceptual-based, multi-faceted attributes [56].

However, they reported limited psychometric properties. Of the remaining instruments, 15 instruments reported proper psychometric properties needed. In addition, there were a number of instruments that were translated and validated to other languages more frequently. A list of instruments is presented in Table 9.

Table 2. (Continued)

Author [ref.]	Year	Name (abbreviation)	Country/sample	Items	Validity	Reliability
Park et al. [76]	2021	Korean Health Literacy Instrument	Late School-Aged Children	16	✓	EFA, CFA, Criterion KR-20 = 0.85, 0.88, 0.82 & item-total correlations = 0.31–0.69

*Unpublished (conference).

https://doi.org/10.1371/journal.pone.0271524.t002
Author [ref.]	year	Name (abbreviation)	Country/sample	Disease	Items	Validity	Reliability		
						Face/Content	Construct	Internal consistency	External
Huizinga et al. [77]	2008	Diabetes Numeracy Test (DNT43, 15)	English patients	Type 2 diabetes	43 & 15	✓	Discriminant; Convergent; EFA	KR-20 = 0.95 & 0.90	-
Kim et al. [78]	2012	High Blood Pressure-focused Health Literacy Scale (HBP-HLS)	Korean American elder (aged 60 or older)	High blood pressure	30	✓	Convergent; Discriminant	KR-20 = 0.98	-
Leung et al. [79]	2013	Chinese Health Literacy Scale for Diabetes (CHLSD)	Chinese patients elder (aged 65 or older)	Type 2 diabetes	34	✓	Discriminant	Cronbach α = 0.65–0.88	Test-retest = 0.89
Leung et al. [80]	2013	Chinese Health Literacy Scale for Chronic Care (CHLCC)	Chinese patients elder (aged 65 or older)	Chronic illnesses (hypertension, diabetes mellitus, chronic obstructive pulmonary disease, or arthritis)	24	✓	Discriminant	Cronbach α = 0.91	Test-retest (ICC) = 0.77
Ownby et al. [81]	2013	Brief computer-administered HIV-related Health Literacy Scale (HIV-HLS)	American physicians	Treated for HIV infection	19	-	Convergent; Concurrent; EFA	Cronbach α = 0.69	-
Sun et al. [82]	2013	Skills-based instrument on health literacy regarding respiratory infectious diseases	Chinese patients	Respiratory infectious diseases	30	-	EFA; CFA	Cronbach α = 0.86; Item-total relation = 0.86	-
Han et al. [83]	2014	Assessment of Health Literacy in Cancer screening (AHL-C)	Korean American immigrant women	Breast and cervical cancer screening	52	✓	Convergent; Concurrent; Discriminant	Cronbach α = 0.96; Item-total correlations = 0.18–0.86	-
Dumenci et al. [84]	2014	Cancer Health Literacy Test (CHLT-30) & (CHLT-6)	American English speaking adults	Cancer	30 & 6	✓	CFA; Discriminant	Cronbach α = 0.88	Test-retest = 0.90 (for CHLT-30)
Londono et al. [85]	2014	Tool for asthma patients in the Italian-speaking	Italian-speaking patient’s region of Switzerland	Asthma	19	✓	-	-	ICC = 0.97
Shih et al. [86]	2016	Health literacy questionnaire for Taiwanese hemodialysis patients	Taiwanese adult patients	Hemodialysis	26	✓	CFA	Cronbach α = 0.81	-
Matsuoka et al. [87]	2016	Heart Failure-specific Health Literacy scale (HF-specific HL)	Japanese patients adults with HF	Heart failure	12	✓	EFA; Discriminant	Cronbach α = 0.71	Test-retest (ICC) = 0.88–0.89
Tian et al. [88]	2016	Infectious Disease-Specific Health Literacy (IDSHL)	Chinese population adults households	Infectious disease-specific	22	✓	EFA; Discriminant	Cronbach α = 0.75–0.81; item-total correlation (<0.30)	-
Mafutha et al. [89]	2017	Hypertension Health Literacy Assessment Tool (HHLAT)	South African adult patients	Hypertension	11	✓	Concurrent	-	-
Tique et al. [90]	2017	HIV Literacy Test (HIV-LT)	Portuguese speaking patients	HIV infection	16 & 10	✓	EFA; Convergent	KR-20 = 0.87	-

(Continued)
Author [ref.]	year	Name (abbreviation)	Country/ sample	Disease	Items	Validity	Reliability
--------------	------	---------------------	----------------	---------	-------	----------	-------------
Chou et al. [91]	2017	Cancer Health Literacy Scale (C-HLS)	Chinese adults patients	Newly diagnosed cancer patients	33 ✓	CFA; Criterion	Spearman–Brown split-half coefficient = 0.74; KR-20 = 0.82
Yang et al. [92]	2018	Infectious disease-specific health literacy (IDSHL)	General population of Tibet	Infectious disease fever, diarrhea, rash, jaundice or conjunctivitis	25 -	CFA; Known-groups	Cronbach α = 0.70; split-half coefficient = 0.62
Lee et al. [93]	2018	Comprehensive Diabetes Health Literacy Scale (DHLSS)	Korean adults	Diabetes	14 ✓	Criterion; Convergent; EFA; CFA	Cronbach α = 0.91
Khazaei et al. [94]	2018	Heart Health Literacy Scale (HHLS)	Iranian adults	Heart health literacy	26 ✓	EFA; CFA	Cronbach α = 0.88
Dehghani et al. [95]	2018	Multidimensional Health Literacy Questionnaire for multiple sclerosis patients (MSHLQ)	Iranian patients	Multiple sclerosis	22 ✓	EFA; Known-groups	Cronbach α = 0.94; ICC = 0.96
Yeh et al. [96]	2018	Diabetes-specific health literacy	Mandarin/Taiwanese-speaking patients	Type 2 diabetes	11 ✓	CFA	KR-20 = 0.84
Kanga et al. [97]	2018	Korean Health Literacy Scale for Diabetes Mellitus (KHLS-DM)	Korean diabetic patients	Type 2 diabetes	58 ✓	Rasch analysis; EFA; Criterion; CFA	Cronbach α = 0.83; Test-retest = 0.80
Tutu et al. [98]	2019	Household cholera-focused health literacy scale	American households urban poor	Household cholera-focused	13 ✓	EFA	Cronbach α = 0.76
Cardoso et al. [99]	2019	Alfabetizacao em Saude Relacionada a Adesao Medicamentosa entre Diabeticos (ASAM-D)	Brazilian diabetic patients adults	Type 2 diabetes	18 ✓	-	Cronbach α = 0.77; Kappa coefficient = 0.31–1
De Sousa et al. [100]	2019	Instrument of the Health Literacy regarding Diabetic Foot (HLDF)	Brazilian diabetic patients adults	Diabetic foot	18 ✓	Concurrent	Cronbach α = 0.73; ICC = 0.79; Kappa < 0.60
Li et al. [101]	2019	Chinese Health Literacy Scale for Tuberculosis (CHLS-TB)	Chinese patients	Tuberculosis	31 ✓	EFA; CFA; Discriminant	Cronbach α = 0.0.82; split-half reliability = 0.78; Test-retest = 0.95
Wu et al. [102]	2020	Brief tool to measure melanoma-related health literacy and attitude	Chinese adolescents	Melanoma	13 ✓	CFA	Spear–Brown split-half = no reported; Kappa coefficient > 0.7
Martins et al. [103]	2020	Oral Health Literacy among Diabetics (OHL-D)	Brazilian adults	Type 2 diabetes	30 ✓	-	-; Kappa coefficient > 1
Echeverri et al. [104]	2020	Multidimensional Cancer Literacy Questionnaire (MCLQ)	American diverse populations	Cancer	82 -	Content; EFA; CFA; Discriminant	Cronbach α = 0.89
Huang et al. [105]	2020	Health Literacy battery for three phases of Stroke (HL-3S)	Taiwanese adults patients	Stroke survivors	30 -	Rasch analysis	Rasch reliability coefficients = 0.86 and 0.87

(Continued)
Discussion

This bibliometric review covered the literature for about thirty years. The present review extracted and reported a wide range of health literacy instruments in several sections and perhaps could be a good reference for investigators who wish to use an instrument for measuring health literacy. In addition, the current study might help to avoid adding yet another measure to a rather long list of existing instruments.

Some general health literacy instruments have multiple versions used in different languages and populations. For instance, there were 16 versions for the REALM [14], 15 versions for the NVS [16], 6 versions for the TOFHLA [15], 13 versions for the S-TOFHLA [41], and 19 versions for the HLQ [55] (Table 7). Among the general health literacy instruments the HLS-EU-Q [56], which examines health literacy in three areas (health care, health prevention, and health promotion), has a potential to be used universally.

Despite a large number of general health literacy assessment instruments and specific topics, currently having a unique and international instrument for measuring health literacy is one of the concerns of public health professionals. This study showed that one of the most widely used instruments at the international level is the European Health Literacy Survey (HLS-EU-Q) [56]. During the development process, the English version of the HLS-EU-Q simultaneously was translated into Bulgarian, Dutch, German, Greek, Polish, Spanish, Irish, Austrian [56] and in Asia into Indonesia, Kazakhstan, Malaysia, Myanmar, Taiwan, and Vietnam [295]. Also, the Taiwanese [293–296]; Norwegian [297]; Japanese [298]; Vietnamese [299] versions of this instrument have been used in various populations, making it one of the most widely used internationally. Given this instrument’s relatively wide range of applications, it may be considered a prelude for producing an international instrument for measuring health literacy.

Many instruments were developed to measure health literacy among specific diseases (chronic non-communicable diseases, especially diabetes, hypertension, and cancer). With the

Table 3. (Continued)

Author [ref.]	year	Name (abbreviation)	Country/sample	Disease	Items	Validity	Reliability	
Rajabi et al. [106]	2020	Health literacy questionnaire on the most important domains of Non-Communicable Diseases (NCDs)	Iranian patient	Cardiovascular diseases, diabetes, and cancer	27	✓	EFA	Cronbach α = 0.93
Wei et al. [107]	2021	health literacy specific to Chronic Kidney Disease (CKD)	Taiwanese patients	Chronic kidney disease (CKD)	17	✓	CFA	KR-20 = 0.68
Chen et al. [108]	2021	Health Literacy Assessment Instrument	Chinese patients	Chronic Pain	31	✓	EFA; CFA	Cronbach α = 0.93–0.97; split-half reliability = 0.91
Savci et al. [109]	2021	Health Literacy Scale for Protection Against COVID-19	Turkish Adults (15–30)	COVID-19	20	✓	EFA; CFA; Criterion	Cronbach α = 0.97; item-total correlation = 0.68–0.94
Hiltrop et al. [110]	2021	COVID-19 related Health Literacy in Healthcare Professionals (HL-COV-HP)	Healthcare professionals	COVID-19	12	-	EFA; CFA; Convergent	Cronbach α = 0.87

https://doi.org/10.1371/journal.pone.0271524.t003

Table 4. Content specific health literacy instruments (1993–2021).

Author [ref.]	Year	Name (abbreviation)	Country/sample	Condition	Items	Validity	Reliability		
Cormier et al. [111]	2006	Health Literacy Knowledge and Experience Survey (HL-KES)	American nursing students	Knowledge and experience	38	✓	EFA	Cronbach α = 0.79, 0.76	
Sabbahi et al. [112]	2009	Oral Health Literacy Instrument (OHLI)	Canadian adults	Oral health literacy	57	✓	Convergent; Discriminant; Concurrent	Cronbach α = 0.89	ICC = 0.88
Kumar et al. [113]	2010	Health Literacy, numeracy and the Parental Health Literacy Activities Test (PHLAT)	American caregivers of infants	Parental health literacy	10 & 20	✓	Discriminant	KR-20 = 0.76	
Macek et al. [114]	2010	Comprehensive oral health knowledge	American low-income adults	Oral health literacy	4	✓	Criterion	Cronbach α = 0.74	
Devi et al. [115]	2011	Questionnaire to assess oral health literacy among college students in Bangalore city	Indian college students	Oral health literacy	14	-	Convergent; Predictive	Cronbach α = 0.40	Test-retest = 0.69
Mojoyinola [116]	2011	Maternal Health Literacy and Pregnancy Outcome Questionnaire (MHLAPQ)	All pregnant women patients	Maternal health literacy	33	-	-	Cronbach α = 0.81	
Loureiro et al. [117]	2012	Questionario de Avaliacao da Literacia em Saude Mental (QuALiSMental)	Portuguese adolescents and young people	Mental health literacy	46	-	EFA	Cronbach α = 0.60–0.82	
Wong et al. [118]	2013	Hong Kong Oral Health Literacy Assessment Task for Pediatric dentistry (HKOHLAT-P)	Speak Chinese child/parent dyads in Hong Kong	Oral health literacy	2	✓	Convergent; Predictive; Concurrent	Cronbach α = 0.86, 0.73	Test-retest (ICC) = 0.63
Dahlke et al. [119]	2014	Mini Mental Status Exam (MMSE)	American English speaking older adults	Mental health literacy	5	✓	Convergent; Criterion (Predictive)	-	
Jones et al. [120]	2014	Health Literacy in Dentistry scale (HeLD-29)	Indigenous Australians adults	Oral health literacy	29	✓	Convergent; Discriminant; Predictive; EFA	Cronbach α = 0.91	ICC = 0.65
Naghibi Sistani et al. [121]	2014	Oral Health Literacy for Adults Questionnaire (OHL-AQ)	Iranian adults	Oral health literacy	17	✓	Discriminant	Cronbach α = 0.72	Test-retest (ICC) = 0.84
Paez et al. [122]	2014	Health Insurance Literacy Measure (HILM)	American adult	Health insurance literacy	42	-	EFA; CFA; Convergent	Cronbach α > 0.9	
Shreffler-Grant et al. [123]	2014	Montana State University (MSU) CAM health literacy scale	American older adults living in rural	Complementary and alternative medicine	21	✓	Convergent; EFA	Cronbach α = 0.75	
Villanueva Vilchis et al. [124]	2015	Spanish Oral Health Literacy Scale (SOHLS)	Mexican adult	Oral health literacy	29	✓	Convergent	Cronbach α = 0.74	Test-retest (ICC) = 0.76

(Continued)
Table 4. (Continued)

Author [ref.]	year	Name (abbreviation)	Country/sample	Condition	Items	Validity	Reliability	
O’Connor et al. [125]	2015	Mental Health Literacy Scale (MHLS)	Australian residents	Mental health literacy	35	✓	EFA; Concurrent; Discriminant	Cronbach α = 0.87; Test-retest = 0.79
Altim et al. [126]	2015	Health Literacy responsiveness of Primary Care practices (HLPC)	German general population	Primary care practices	4	-	EFA; CFA; Concurrent	Cronbach α = 0.86
Curtis et al. [127]	2015	Comprehensive Health Activities Scale (CHAS)	American participants	Comprehensive health activities	45	-	Predictive; Convergent; CFA	Cronbach α = 0.92
Guttersrud et al. [128]	2015	Maternal Health Literacy (MaHeLi) scale	Uganda adolescents patients	Maternal health literacy	12	-	Rasch models	Cronbach α = 0.92; Person Separation Index (PSI) = 0.82–0.90
Stein et al. [129]	2015	Adult Health Literacy Instrument for Dentistry (AHLID)	Norwegian adults older	Oral health literacy	-	✓	Predictive	Cronbach α (= 0.98) Test-retest = 0.81
Intarakamhang et al. [130]	2016	Alcohol, Baccy, Coping, Diet, and Exercise Health Literacy scale (ABCDE-HL)	Thai adults	ABCDE	64	✓	EFA; CFA	Cronbach α = 0.61–0.91
Kapoor et al. [131]	2016	Determination of Functional Literacy in Dentistry (DFLD)	Indian patients	Oral health literacy	30 words/30 items	✓	Convergent; Predictive	Cronbach α = 0.84 Test-retest = 0.69
Jung et al. [132]	2016	Multicomponent mental health literacy measure	American local public housing authority	Mental health literacy	26	✓	Groups known; EFA; CFA; Convergent	Cronbach α = 0.76–0.84; KR-20 = 0.83
Campos et al. [133]	2016	Mental Health Literacy questionnaire (MHLq)	Portuguese young people	Mental health literacy	33	✓	EFA	Cronbach α = 0.84 Test-retest (ICC) = 0.88
Squires et al. [134]	2017	Health literacy promotion practices assessment instrument	American health care provider	Health promotion practices	38	✓	EFA	Cronbach α = 0.95
Bjornsen et al. [135]	2017	Mental Health-Promoting Knowledge (MHPK-10)	Norwegian adolescents	Mental health literacy	10	✓	Groups known; EFA; CFA	Cronbach α = 0.87 Test-retest = 0.70
Moll et al. [136]	2017	Mental Health Literacy tool for the Workplace (MHL-W)	Canadian healthcare workers	Mental health literacy	16	-	Discriminant; Convergent; EFA	Cronbach α = 0.94
Intarakamhang et al. [137]	2017	HL scale for Thai childhood overweight	Thai school students	Childhood overweight	55	-	EFA; CFA	Cronbach α = 0.70; KR-20 = 0.76; Item-total correlation coefficient = 0.2–0.8
Matsumoto et al. [138]	2017	Health Literacy of Social Determinants of Health Questionnaire (HL-SDHQ)	Japanese adults	Social determinants of health	33	✓	CFA	Cronbach α = 0.92

(Continued)
Table 4. (Continued)

Author [ref.]	year	Name (abbreviation)	Country/sample	Condition	Items	Validity	Reliability			
						Face/ Content	Construct	Internal consistency	External	
						✓ -	Convergent; Predictive; EFA; CFA	Cronbach α = 0.80 & 0.81; split-half coefficient = 0.78 & 0.81	-	
Tsai et al. [139]	2018	Weight-Specific Health literacy Instrument (WSHLI)	Taiwanese adults	Weight-Specific	✓	-	Convergent; Predictive; EFA; CFA	Cronbach α = 0.80 & 0.81; split-half coefficient = 0.78 & 0.81	-	
Lichtveld et al. [140]	2019	Environmental Health Literacy (EHL)	American public health students	Environmental health literacy	42	✓	EFA; CFA	Cronbach α = 0.63–0.70	-	
Areerak et al. [141]	2019	Neck pain-specific Health behavior in Office Workers (NHBOW)	Thai office workers	Non-specific neck pain	6	✓	EFA; CFA; Discriminative	Cronbach α = 0.64, 0.53	Test-retest (ICC) = 0.75	
Zhang et al. [142]	2019	Chinese Parental Health Literacy Questionnaire (CPHLQ)	Chinese caregivers of children (0–3 years)	Parental health literacy	39	✓	CFA	Cronbach α = 0.89; Split-half (Spearman-Brown coefficient) = 0.92	Test-retest = 0.82	
Ivrik et al. [143]	2019	Water Environmental Literacy Level Scale (WELLS)	Thai adults	Water environmental literacy	6	✓	Criterion; Discriminative	Cronbach α = 0.51	-	
Wei et al. [144]	2019	Mental Health Literacy tool for Educators (MHL-ED)	Canadian educators	Mental health literacy	29	✓	EFA; Groups known;	Cronbach α = 0.85	-	
Ayre et al. [145]	2020	Parenting Plus Skills Index (PPSI)	Australian parents	Parenting health literacy	13	✓	CFA; Criterion	Cronbach α = 0.70	-	
Intarakamhang et al. [146]	2020	Environmental Health Literacy (EHL)	Thai village health volunteers	Environmental health literacy	25	✓	CFA	Cronbach α = 0.91–0.93	-	
Suthakorn et al. [147]	2020	Thai Occupational Health Literacy Scale- Informal Workers (TOHLS-IF)	Thai informal workers	Occupational health literacy	38	✓	EFA; CFA	Cronbach α = 0.98	-	
Lin et al. [148]	2020	Chinese Medication Literacy Measurement (ChMLM-13 &17)	Mandarin or Taiwanese adults	Medication-related health literacy	13 & 17	✓	EFA; Convergent; Discriminant	Cronbach α = 0.83, 0.78	-	
Taheri et al. [149]	2020	Maternal Health Literacy Inventory in Pregnancy (MHELIP)	Iranian pregnant women	Maternal health literacy	48	✓	EFA	Cronbach α = 0.94	ICC = 0.96	
Tabacchi et al. [150]	2020	Food Literacy Assessment Tool (FLAT)	Italian children	Food literacy	16	✓	Discriminant; CFA	Cronbach α = 0.73 to 0.76	-	
Zenas et al. [151]	2020	Danish Mental Health Literacy Adolescents questionnaire (MeHILA)	Danish adolescents	Mental health literacy	Not indicated-	✓	EFA; CFA	Cronbach α = 0.82	-	
Taoufik et al. [152]	2020	Greek Oral Health Literacy measurement instrument (GROHL-20)	Greek adult patients	Oral health literacy	20	✓	Convergent	Cronbach α = 0.80	Test-retest (ICC) = 0.95	-

(Continued)
Author [ref.]	year	Name (abbreviation)	Country/sample	Condition	Items	Validity	Reliability	Face/Content	Construct	Internal consistency	External
Chao et al. [153]	2020	Mental Health Literacy Scale for Healthcare Students (MHLS-HS)	Taiwanese health care students	Mental health literacy	26	✓	EFA; CFA; Convergent; Discriminant; Known groups		Cronbach $\alpha = 0.70$–0.87	-	
Sun et al. [154]	2021	The Comprehensive Oral Health Literacy (COHL)	Chinese general population Community health centers in Beijing (18–86 years)	Oral health literacy	30	✓	EFA; Discriminant, Concurrent		Cronbach $\alpha = 0.72$	Test-retest = 0.972	
Poureslami et al. [155]	2021	Vancouver Airways Health Literacy Tool (VAHLT)	-	Chronic airway disease (CAD) patients	44	✓	-	-	-	-	
Mahmoudian et al. [156]	2021	Hearing health literacy in Iranian young people	Iranian young people (12–25 years)	Hearing health literacy	22	✓	-	Cronbach $\alpha = 0.65$	-		
Simkiss et al. [157]	2021	Knowledge and Attitudes to Mental Health Scales (KAMHS)	Children and adolescents (13–14 years)	Mental health literacy	50	✓	EFA; CFA	Lavaan. Omega$(\omega) = 0.53$–76	Test-retest = 0.40–0.64		
Charophsrat et al. [158]	2021	Oral Health Literacy Questionnaire	Thai adults	Oral Health Literacy	21	✓	Known-group; Concurrent	Cronbach $\alpha = 0.87$	-		
Karimi et al. [159]	2021	Sexual health literacy related to HIV/AIDS and sexually transmitted diseases	Iranian young men (19–29 years)	Sexual health literacy	30	✓	-	Cronbach $\alpha = 0.79$–0.87	ICC = 0.79–0.87		
Ma et al. [160]	2021	Reproductive health literacy questionnaire	Chinese unmarried youth (15–24 years)	Reproductive health literacy	58	✓	CFA	Cronbach $\alpha = 0.91$; split-half reliability = 0.84	Test-retest = 0.72		
Suto et al. [161]	2021	Health literacy scale for preconception care	Japanese adults (16–49 years)	Reproductive health literacy	17 & 25	✓	EFA; Criterion	Cronbach $\alpha = 0.68$–0.89 & 0.82–0.90	-		
Kodama et al. [162]	2021	Mental Health Literacy Scale for Depression Affecting the Help-Seeking Process	Health Professional Students	Mental health literacy	10	✓	EFA; CFA; Criterion	Cronbach $\alpha = 0.68$–0.85	Test-retest (ICC) = 0.78		
Aller et al. [163]	2021	Mental Health Awareness and Advocacy Assessment Tool (MHAA-AT)	college attending participants of Amazon’s Mechanical Turk	Mental health literacy	65	✓	EFA; Convergent	Cronbach $\alpha = 0.62$–0.95	-		
Robbins et al. [164]	2021	OSA Functional Health Literacy (SOFHL)	Dwelling black participants, at risk for OSA	Obstructive sleep apnea functional health literacy	18	-	-	Cronbach $\alpha = 0.71$–0.81	-		
Rabin et al. [165]	2021	Mental Health Literacy Assessment-college (MHLA-c)	US college students	Mental health literacy	54	✓	Known groups	KR-20 = 0.74–0.75	-		

(Continued)
widespread prevalence of chronic non-communicable, there was a strong desire to develop such instruments. As shown in Table 3, among chronic diseases, diabetes has received more attention than other diseases. Among the instruments that consider a specific content (e.g., maternal, parental, environmental, obesity, and weight gain), oral/dental health literacy and mental health literacy have received special attention.

Development and psychometric evaluation of health literacy instruments was observed in different countries. We recognized health literacy instruments in different languages such as Korean, Taiwanese, English, Spanish, American, Australian, German, Switzerland, Finnish, Iranian, Chinese, Japanese, Brazilian, Philippines, and Vietnamese. As shown in Table 5, the countries of Southeast Asia, especially China, have a long history of activity in this field. It has also been shown that the American population and the populations of Southeast Asian countries (Chinese, Taiwanese, and Koreans) address a large number of health literacy assessment instruments.

One of the unique features of this study is the reporting of e-health literacy instruments. There were eleven instruments available for measuring e-health literacy (Table 6). The existence of many different versions of such instruments (Table 7) demonstrates a growing tendency to measure health literacy related to the increasing use of internet and social media by the general public almost everywhere.

Finally, one should note that the most important question is, do we need so many instruments for measuring health literacy? Although one could not prevent investigators from developing new instruments, it is evident that such haphazard development of instruments is not helpful. It seems that we need a core global general health literacy instrument for use around the globe. Then perhaps it is possible to add a few contents/disease-specific, population-specific, or e-health literacy items to the general instruments according to their use. The experience of the European Organization for Research and Treatment of Cancer-EORTC (the Quality of Life Study Group) might be useful to be adapted (https://qol.eortc.org/quality-of-life-group/).

Limitations
The main criterion in extracting information was the availability of the full-text papers. In cases of no access to the original text, the required information was extracted from their abstracts. Otherwise, such studies were removed from the review. In addition, we only reviewed papers that included the word health literacy in the title. Thus there is a risk of missing papers that did not use health literacy in their titles.

Conclusion
This review highlighted that there were more than enough instruments for measuring health literacy. In addition, we found that a number of instruments did not report psychometric

Table 4. (Continued)

Author [ref.]	year	Name (abbreviation)	Country/sample	Condition	Items	Validity	Reliability
Moein et al. [166]	2021	Physical activity health literacy in Iranian older adults (PAHLO) questionnaire	Iranian older adults (60–75 years)	Physical activity health literacy	18	✓	EFA; CFA Cronbach α = 0.85–0.94

Test-retest (ICC) = 0.89–1

* Unpublished (dissertation).

https://doi.org/10.1371/journal.pone.0271524.t004
Table 5. Population-specific health literacy instruments (1993–2021).

Author [ref.]	year	Name (abbreviation)	Country/sample	Items	Validity	Reliability			
						Face/Content	Construct	Internal consistency	External
						Cronbach α			
Lee TW et al. [167]	2009	Korean Health Literacy Scale (KHLS)	Korean older adults	24	✓	EFA; CFA	Cronbach α = 0.89	-	
Pan et al. [168]	2010	Taiwan Health Literacy Scale (THLS)	Taiwanese elderly adults	66	-	Concurrent; Discriminant	Cronbach α = 0.98	-	
Tsai et al. [169]	2010	Mandarin Health Literacy Scale (MHLS)	Taiwanese adults	50	✓	EFA; CFA; Convergent; Predictive	Cronbach α = 0.95; Spearman–Brown split-half coefficient = 0.95	-	
Weidmer et al. [170]	2012	Consumer Assessment of Healthcare Providers and Systems (CAHPS)	English and Spanish adult patients	22	-	CFA	Cronbach α = 0.89	-	
Massey et al. [171]	2013	Multidimensional measure of adolescent health literacy	American adolescent	24	✓	EFA	Cronbach α = 0.83	-	
Wang et al. [172]	2014	Multidimensional instrument to assess competencies for health	Switzerland resident population	74	✓	EFA; CFA	Cronbach α = 0.72–0.81	-	
Harper et al. [173]	2014	Health literacy assessment for young adult college students	American undergraduate student	51	✓	CFA: IRT	-	-	
Yuen et al. [174]	2014	Health Literacy of Caregivers Scale- Cancer (HLCS-C)	Australian cancer caregivers	88	✓	-	-	-	
Manganello et al. [175]	2015	Health Literacy Assessment Scale for Adolescents (HAS-A)	American Teen (12–19)	15	✓	EFA; Criterion	Cronbach α = 0.73–77	-	
Shen et al. [176]	2015	Chinese resident health literacy scale	Chinese population-based	64	-	CFA; Discriminant	Cronbach α = 0.95; Spearman–Brown split-half coefficient = 0.94	-	
Abel et al. [177]	2015	Short survey tool for public health and health promotion research	German-speaking young adults	8	-	EFA; CFA; Discriminant	Cronbach α = 0.64	-	
Ghanbari et al. [178]	2016	Health Literacy Measure for Adolescents (HELMA)	Iranian adolescents	44	✓	EFA	Cronbach α = 0.93	Test-retest (ICC) = 0.93	
Paakkari et al. [179]	2016	Health Literacy for School-Aged Children (HLSAC)	Finnish school-aged children	10	✓	CFA	Cronbach α = 0.93	Test-retest = 0.83	
Yang et al. [180]	2017	The Health Literacy Index for Female Marriage Immigrants (HLI-FMI)	Asian women	12	-	CFA; Discriminant; Concurrent	Cronbach α = 0.74	-	
Ernstmann et al. [181]	2017	Health Literacy-sensitive Communication (HL–COM)	German adult patients	9	-	EFA; CFA	Cronbach α = 0.91; Item-total correlation = 0.622–0.762	-	
Chang et al. [182]	2017	Instrument Of Health Literacy Competencies (IOHLC)	Chinese-speaking health professionals	49	-	EFA; CFA; Discriminant; Convergent; IRT	Cronbach α = 0.97	-	
Eliason et al. [183]	2017	Health literacy among Lesbian, Gay, and Bisexual (LGB)	American adults	10	✓	EFA	Cronbach α = 0.95	Test-retest = 0.91	
Hashimoto et al. [184]	2017	Health Literacy Scale among Brazilian Mothers (HLSBM)	Brazilian mothers	10	✓	EFA; CFA; Concurrent	Cronbach α = 066–0.89	-	
Bradley-Klug et al. [185]	2017	Health Literacy and Resiliency Scale: Youth version (HLRS-Y)	American youth	37	-	EFA; Discriminant	Cronbach α = 0.88–0.94	-	
Guo et al. [186]	2018	Chinese eight-item Health Literacy Assessment Tool (c-HLAT-8)	Chinese secondary school students	8	✓	CFA; Convergent	Cronbach α = 0.94; ICC = 0.72	-	

(Continued)
properties sufficiently. However, evidence suggest that well developed instruments and those reported adequate measures of validation could be helpful if appropriately selected based on objectives of a given study. Perhaps an authorized institution such as World Health...

Table 5. (Continued)

Author [ref.]	year	Name (abbreviation)	Country/sample	Items	Validity	Reliability	
Azizi et al. [187]	2019	Health Literacy Scale for Workers (HELSW)	Iranian workers	34	✓	EFA	Cronbach α = 0.90
Domanska et al. [188]	2020	Measurement Of Health Literacy Among Adolescents Questionnaire (MOHLAA-Q)	German adolescents	29	✓	Convergent; Concurrent; CFA	Cronbach α = 0.79

https://doi.org/10.1371/journal.pone.0271524.t005

Table 6. Electronic health literacy instruments (1993–2021).

Author [ref.]	year	Name (abbreviation)	Country/sample	Items/ Terms/ phrases	Validity	Reliability	
Norman et al. [189]	2006	The e-Health Literacy Scale (e-HEALS)	Canadian youth	8	✓	EFA	Cronbach α = 0.88
Hahn et al. [190]	2011	Health Literacy assessment using Talking Touchscreen (Health LiTT)	American English speaking patients	82	✓	IRT; Discriminant	Cronbach α ≥ 0.9
Ownby et al. [191]	2013	Fostering Literacy for Good Health Today (FLIGHT) & Vive Desarrollando Ampla Salud (VIDAS)	Spanish and English speaking adults	82	✓	EFA; Concurrent; Know groups	Cronbach α = 0.56–0.83
Seckin et al. [192]	2016	Electronic Health Literacy Scale (e-HLS-19)	American residents adults	19	-	EFA; CFA	Cronbach α = 0.93; Item total correlations = 0.09–0.81
Van der Vaart et al. [193]	2017	Digital Health Literacy Instrument (DHLI)	General Dutch population	21	✓	EFA	Cronbach α > 0.68–0.88
Kayser et al. [194]	2018	English/Danish version of e-Health Literacy Questionnaire (eHLQ)	English/Danish people with chronic conditions	35	-	IRT; EFA; CFA	Cronbach α > 0.7
Paige et al. [195]	2019	Transactional e-Health Literacy Instrument (TeHLI)	American patients	18	-	CFA	Cronbach α = 0.90
Woudstra et al. [196]	2019	Computer-based and performance-based instrument to assess health literacy skills for informed decision making in colorectal cancer screening	Dutch adults	22	-	IRT; CFA; Convergent; Predictive	Cronbach α = 0.66
Castellvi et al. [197]	2020	Espaijove.net Mental Health Literacy test (EMHL)	Spanish adolescents	35	-	Groups known; Convergent	Cronbach α = 0.610 & 0.74
Liu et al. [198]	2021	eHealth Literacy Scale (eHLS-Web 3.0)	Chinese college students	24	✓	Convergent, Concurrent; EFA; CFA	Cronbach α = 0.97
Duong et al. [199]	2021	eHealthy Diet Literacy Questionnaire (e-HDLQ)	Taiwanese adults aged 18 years and above	11	✓	EFA; Convergent	Cronbach α = 0.64

https://doi.org/10.1371/journal.pone.0271524.t006
Table 7. The original health literacy instruments and the existing translations and validation versions (1993–2021).

General health literacy instruments

Author [ref.]	Original instrument [abbreviation]	Translations	Validation and other versions
Davis et al. [14]	Rapid Estimate of Adult Literacy in Medicine (REALM)	UK [200]; Korean American [201]; Arabic [202]; REALM-SF [203]; REAL-G [204, 205]; REAL-VS [206]; REALM-Teen [207, 208]; REALD-30 [209–211]; REALD-20 [212]; REALD-99 [213]; OHLA [214, 215]	
Parker et al. [15]	Test of Functional Health Literacy in Adults (TOFHLA)	Serbian [216]; Danish [217]; American [218]; TOFHLA in dentistry (TOFHLiD) [220]; OA-TOFHLiD [221]	
Baker et al. [41]	Short form of the Test of Functional Health Literacy in Adults (S-TOFHLA)	Korean American [201]; Arabic [202, 222, 223]; Serbian [216]; Turkish [224]; Spanish [225]; Italian [66]; American [227]; Chines [228]; Hebrew [229]; English-Spanish [230]; TOFHLA in dentistry (TOFHLiD) [220]; OA-TOFHLiD [221]	
Weiss et al. [16]	Newest Vital Sign (NVS)	American [208, 227, 231, 232]; Brazilian Portuguese [233, 234]; Italian [66, 235]; Taiwanese [236]; Brazilian [237]; UK [238]; Dutch [239]; Turkish [240]; Arabic [223, 241];	
Lee et al. [42]	Short Assessment of Health Literacy for Spanish-speaking Adults (SAHLSA-50)	Dutch [242]; Portuguese [243–245]; Dutch [246]; Spanish & English [247]; SAHLSA-33 [248]	
Morris et al. [43]	Single Item Literacy Screener (SILS)	Arabic [202, 222, 223]; Italian [66, 249]; American [227];	
Zikmund-Fisher et al. [44]	Subjective Numeracy Scale (SNS)	English-Spanish [230]; American [250];	
Ishikawa et al. [45]	Functional, Communicative, and Critical Health Literacy (FCCHL)	German [251]; Dutch [252]; French [253]; Iranian [254]; Japanese [255]; Australian [256]; American [257, 258]; Korean [259]; Swedish [260];; FCCHL-12 [261]	
Chew et al. [46]	Health Literacy Screening Questions	English-Spanish [230]; American [262–265]; American-English and Spanish [266]; Hungarian/Italian/Lebanon/Switzerland/Turkey [267];	
Pleasant et al. [47]	Public Health Literacy Knowledge Scale	Turkish [268];	
Rawson et al. [48]	Medical Term Recognition Test (METER)	Italian [269]; Portuguese [270];	
McCormack et al. [50]	Health Literacy Skills Instrument	-	HLSI-SF-10 [271]
Osborne et al. [55]	Health Literacy Questionnaire (HLQ)	Danish [272]; Slovak [273]; Norwegian [274]; Ghanaiian [275]; German [276]; Australian [277–280]; Chinese [281, 282]; Urdu [283]; Norwegian [284]; Yoruba [285]; Brazilian [286]; Brazilian Portuguese [287]; French [288, 289]; American [290];	
Sorensen et al. [56]	European Health Literacy Survey Questionnaire (HLS-EU-Q-47)	Albanian [219]; Turkish [291]; Indonesian/Kazakh/Malay/Myanmar/Burmese/Mandarin/Vietnamese [292]; Taiwanese [293–296]; Norwegian [297]; Japanese [298]; Vietnamese [299];	
Suka et al. [57]	14-item Health Literacy Scale (HLS-14)	Brazilian Portuguese [300];	
Pelikan et al. [61]	Short versions of the European Health Literacy Survey Questionnaire (HLS-EU-Q16, Q6)	Turkish [301]; Italian [302]; Icelandic [303]; French [304]; Arabic/French [305]; Swedish-Arabic [306]; Japanese [307]; Brazilian Portuguese [308]; Pakistani [309]; German [310]; French [311];	
Haghdoost et al. [65]	Iranian Health Literacy Questionnaire (IHLQ)	Iranian [312];	
Finbraten et al. [69]	Short version of Health Literacy Survey Questionnaire (HLS-Q12)	Japanese [307];	
Duong et al. [71]	European Health Literacy Survey Questionnaire (HLS-SF12)	Taiwanese [313]; Vietnam [314]; Turkish [315]; Japanese [307];	

Disease specific health literacy instruments

(Continued)
Table 7. (Continued)

Author et al.	Health Literacy Instrument	Language(s)	
Huizinga et al. [77]	Diabets Numeracy Test (DNT-43, 15)	-	DNT-5 [230]
Kim et al. [78]	High Blood Pressure-focused Health Literacy Scale (HBP-HLS)	Chinese [316]	
Leung et al. [79]	Chinese Health Literacy Scale for Diabetes (CHLSD)	Chinese [317]	-
Dumenci et al. [84]	Cancer Health Literacy Along a Continuum (CHLT-30) & (CHLT-6)	American [318]; Chinese [319]	
Matsuoka et al. [87]	Heart Failure-specific Health Literacy scale (HF-specific HL)	Chinese [320]; Iranian [321]	

Content specific health literacy instruments

- Cormier et al. [111] | Health Literacy Knowledge and Experience Survey (HL-KES) | Iranian [322] | - |
- Sabbahi [112] | Oral Health Literacy Instrument (OHLI) | Russian [323]; Chilean [324]; Malaysian [325] | - |
- Kumar et al. [113] | Health Literacy, Numeracy and The Parental Health Literacy Activities Test (PHLAT) | Spanish [326] | - |
- Wong et al. [118] | Hong Kong Oral Health Literacy Assessment Task for Pediatric Dentistry (HKOHLAT-P) | Brazilian-Portuguese [327] | |
- Jones et al. [120] | Health Literacy in Dentistry scale (HeLD-29) | Thai [328]; Australian [329]; Brazilian [330, 331] HeLD-14 [332] |
- Naghibi Sistani et al. [121] | Oral health literacy for Adults Questionnaire (OHL-AQ) | American [333, 334]; Persian [335]; Hindi [336]; Mandarin [337] | - |
- Shreffler-Grant et al. [123] | Montana State University (MSU) CAM Health Literacy Scale | American [338] | - |
- O’Connor et al. [125] | Mental Health Literacy Scale (MHLS) | Pakistani [339]; South African and Zambian [340]; Arabic [341]; Chinese [342]; Portuguese [343]; Iranian [344-348] | - |
- Jung [132] | Multicomponent Mental Health Literacy Measure (MMHLM) | - | MMHLM for Student Athletes and Therapists [349] |
- Campos et al. [133] | Mental Health Literacy (MHLq) | Portuguese [350] | - |
- Matsumoto et al. [138] | Social Determinants of Health Questionnaire (HL-SDHQ) | Korean [351] | - |

Population-specific health literacy instruments

- Lee TW et al. [167] | Korean Health Literacy Scale (KHLS) | Korean [352] | - |
- Pan et al. [168] | Taiwan Health Literacy Scale (THLS) | - | STHLS [353]; THLS for Middle-Aged and Older People [354] |
- Tsai et al. [169] | Mandarin Health Literacy Scale (MHLS) | - | S-MHLS [355] |
- Yuen et al. [174] | Health Literacy of Caregivers Scale-Cancer (HLCS-C) | Australian [356] | - |
- Manganello et al. [175] | Health Literacy Assessment Scale for Adolescents (HAS-A) | Arabic [357] | - |
- Paakkari et al. [179] | Health Literacy for School-Aged Children (HLSAC) | Turkish [358]; Polish [359]; Danish [360]; Finnish/Polish/Slovak/Belgian [361] | - |

Electronic health literacy instruments

(Continued)
Table 7. (Continued)

Author [ref.]	Instrument	Language(s)	Rating
Norman et al. [189]	e-Health Literacy Scale (e-HEALS)	Swedish-Arabic [306]; Italian [362–364]; Portuguese [365]; Dutch [366]; Hungarian [367]; Greek and Cypriot [368]; African-American and Caucasian [369]; US, UK, New Zealand [370]; UK [371]; American-Hispanic [372]; American [373–375]; Taiwanese [199]; Indonesian [376]; Polish [377]; Australian [378]; Korean [379, 380]; Arabic [381]; Iranian [382, 383]; Serbian [384]; Norwegian [385]; Ethiopian [386]; Swiss-German [387]; Brazilian [388, 389]; Chinese [390–392]	-
Hahn et al. [190]	Health Literacy Assessment Using Talking Touchscreen Technology (Health LiTT)	-	10-item Health LiTT [393]
Van der Vaart et al. [193]	Digital Health Literacy Instrument (DHLI)	American [394]	-
Kayser et al. [194]	English/Danish version of e-Health Literacy Questionnaire (eHLQ)	Australian [395]	-

https://doi.org/10.1371/journal.pone.0271524.1007

Table 8. The results for quality assessment of existing health literacy instruments (1993–2021).

Author [ref.]	Reliability	Validity	Ratings						
	Internal Consistency	Test-retest (ICC)	Content & face	Structural	Criterion	Construct	Hypothesis testing	Discrimination & Known groups comparison	
Davis et al. [14]	✓	✓	-	-	✓	-	-	-	Fair
Parker et al. [15]	✓	✓	-	-	✓	-	-	-	Fair
Baker et al. [41]	✓	✓	-	-	✓	-	-	-	Fair
Weiss et al. [16]	✓	✓	-	-	✓	-	-	-	Fair
Lee et al. [42]	✓	✓	-	-	✓	✓	-	-	Good
Morris et al. [43]	-	-	-	-	✓	-	-	-	Poor
Zikmund-Fisher et al. [44]	-	-	-	-	✓	-	-	-	Poor
Ishikawa et al. [45]	✓	✓	-	-	✓	-	-	-	Fair
Chew et al. [46]	-	-	-	-	✓	-	-	-	Poor
Pleasant et al. [47]	✓	✓	-	-	✓	-	-	-	Fair
Rawson et al. [48]	✓	✓	-	-	✓	-	-	-	Fair
Zhang et al. [49]	✓	✓	-	-	✓	✓	-	-	Good
McCormack et al. [50]	✓	-	✓	-	✓	-	-	-	Good
Yu Ko et al. [51]	✓	✓	-	-	✓	✓	-	-	Good
Begoray et al. [52]	✓	✓	-	-	✓	-	-	-	Fair
Kaphingst et al. [53]	-	✓	-	-	✓	-	-	-	Fair
Helitzer et al. [54]	-	-	✓	-	✓	-	-	✓	Fair
Osborne et al. [55]	✓	✓	-	-	✓	-	-	-	Good
Sorensen et al. [56]	✓	✓	-	-	✓	-	-	-	Fair
Suka et al. [57]	-	-	✓	-	✓	-	-	-	Fair
Farin et al. [58]	✓	✓	-	-	✓	✓	-	-	Good
Jordan et al. [59]	✓	✓	-	-	✓	✓	-	-	Good
Sand-Jecklin [60]	✓	-	✓	-	✓	-	-	-	Fair
Pelikan et al. [61]*	✓	✓	-	-	✓	✓	-	-	Good

(Continued)
Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings	
		Internal Consistency	Test-retest (ICC)	Structural Criterion	Predictive & Concurrent	Discrimination & Known groups comparison	
Kang et al. [62]	✓	✓	✓	✓	✓	✓	Good
Nakagami et al. [63]	✓	-	✓	-	✓	-	Good
Chau et al. [64]	✓	✓	✓	✓	✓	✓	Excellent
Haghdoost et al. [65]	✓	✓	✓	-	✓	-	Good
Zotti et al. [66]	-	✓	-	-	✓	✓	Fair
Tsubakita et al. [67]	✓	-	✓	-	✓	-	Fair
Kim [68]	✓	-	-	-	-	✓	Fair
Finbraten et al. [69]	✓	-	-	✓	-	✓	Fair
Pleasant et al. [70]	✓	-	-	-	-	✓	Fair
Duong et al. [71]	✓	-	-	✓	-	✓	Fair
Mc Clintock et al. [72]	✓	✓	✓	-	✓	-	Good
Leung et al. [73]	-	-	-	✓	-	✓	Poor
Shannon et al. [74]	✓	-	✓	-	✓	-	Fair
Tavousi et al. [75]	✓	✓	✓	-	✓	-	Fair
Park et al. [76]	✓	✓	✓	✓	✓	-	Good
Disease specific health literacy instruments							
Huizinga et al. [77]	✓	-	✓	-	✓	✓	Good
Kim et al. [78]	✓	-	✓	-	✓	✓	Good
Leung et al. [79]	✓	✓	✓	-	✓	-	Good
Leung et al. [80]	✓	✓	✓	-	-	✓	Good
Ownby et al. [81]	✓	-	-	✓	✓	✓	Good
Sun et al. [82]	✓	-	✓	✓	-	✓	Good
Han et al. [83]	✓	✓	✓	-	✓	✓	Good
Dumenci et al. [84]	✓	✓	-	✓	✓	-	Good
Londono et al. [85]	-	✓	-	-	-	-	Fair
Shi et al. [86]	✓	-	✓	-	✓	-	Fair
Matsuoka et al. [87]	✓	✓	✓	-	✓	-	Good
Tian et al. [88]	✓	✓	✓	-	✓	-	Good
Mafutha et al. [89]	-	✓	-	✓	-	-	Fair
Tique et al. [90]	✓	-	✓	-	✓	-	Good
Chou et al. [91]	✓	✓	✓	-	✓	-	Good
Yang et al. [92]	✓	-	✓	-	✓	✓	Fair
Lee et al. [93]	✓	✓	✓	✓	✓	✓	Excellent
Khazaee et al. [94]	✓	✓	✓	✓	✓	-	Good
Dehghani et al. [95]	✓	✓	✓	✓	✓	-	Good
Yeh et al. [96]	✓	-	✓	-	✓	-	Fair
Kang et al. [97]	✓	✓	✓	✓	✓	-	Excellent
Tutu et al. [98]	✓	-	✓	-	✓	-	Fair
Cardoso et al. [99]	✓	✓	✓	-	✓	-	Fair
De Sousa et al. [100]	✓	✓	✓	-	✓	-	Good
Li et al. [101]	✓	✓	✓	✓	✓	-	Excellent
Wu et al. [102]	✓	✓	✓	-	✓	-	Good
Martins et al. [103]	-	✓	✓	-	✓	-	Fair

(Continued)
Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings			
	Internal Consistency	Test-retest (ICC)	Structural Criterion	EFA	CFA	Predictive & Concurrent	Convergent	Discrimination & Known groups comparison	
Echeverri et al. [104]	✓	-	✓	✓	✓	✓	-	✓	Good
Huang et al. [105]	✓	-	-	-	-	-	-	-	Poor
Rajabi et al. [106]	✓	-	✓	✓	-	-	-	-	Fair
Wei et al. [107]	✓	-	✓	✓	-	-	-	-	Fair
Chen et al. [108]	✓	✓	✓	✓	✓	✓	-	-	Good
Savci et al. [109]	✓	-	✓	✓	✓	✓	-	-	Good
Hiltrop et al. [110]	✓	-	✓	✓	✓	-	-	✓	Good
Content specific health literacy instruments	Cormier et al. [111]	✓	-	✓	✓	✓	-	-	Fair
Sabbahi et al. [112]	✓	✓	✓	-	✓	✓	✓	-	Excellent
Kumar et al. [113]	✓	-	-	-	-	-	-	-	Fair
Macek et al. [114]	✓	-	✓	-	✓	✓	-	-	Fair
Devi et al. [115]	✓	✓	-	-	✓	✓	-	-	Good
Mojoyinola [116]	✓	-	-	-	-	-	-	-	Poor
Loureiro et al. [117]	✓	-	✓	-	-	-	-	-	Fair
Wong et al. [118]	✓	✓	✓	-	✓	✓	-	-	Good
Dahlke et al. [119]	✓	-	✓	-	✓	✓	-	-	Fair
Jones et al. [120]	✓	✓	✓	✓	✓	✓	-	-	Excellent
Naghibi Sistani et al. [121]	✓	✓	✓	-	✓	✓	-	-	Good
Paez et al. [122]	✓	-	✓	✓	-	✓	-	-	Good
Shreffler-Grant et al. [123]	✓	-	✓	✓	✓	-	-	-	Good
Villanueva Vilchis et al. [124]	✓	✓	✓	-	✓	✓	-	-	Good
O’Connor et al. [125]	✓	✓	✓	-	✓	✓	-	-	Excellent
Altin et al. [126]	✓	-	✓	✓	✓	-	-	-	Good
Curtis et al. [127]	✓	-	✓	✓	✓	-	-	-	Good
Guttersrud et al. [128]	✓	-	✓	✓	✓	-	-	-	Poor
Stein et al. [129]	✓	✓	✓	✓	✓	-	-	-	Good
Intarakamhang et al. [130]	✓	-	✓	✓	✓	-	-	-	Good
Kapoor et al. [131]	✓	✓	✓	-	✓	✓	-	-	Good
Jung et al. [132]	✓	-	✓	✓	✓	-	-	-	Excellent
Campos et al. [133]	✓	✓	✓	-	✓	✓	-	-	Good
Squires et al. [134]	✓	-	✓	✓	✓	-	-	-	Fair
Bjornsen et al. [135]	✓	✓	✓	✓	✓	-	-	-	Excellent
Moll et al. [136]	✓	-	✓	✓	✓	-	-	-	Good
Intarakamhang et al. [137]	✓	-	✓	✓	✓	-	-	-	Fair
Matsumoto et al. [138]	✓	-	✓	✓	✓	-	-	-	Fair
Tsia et al. [139]	✓	-	✓	✓	✓	-	-	-	Good
Lichtveld et al. [140]	✓	-	✓	✓	✓	-	-	-	Good
Areerak et al. [141]	✓	✓	✓	✓	✓	-	-	-	Excellent
Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings			
---------------	-------------	----------------	----------	-----------	-------------------	---------			
	Internal Consistency	Test- retest (ICC)	Structural	Criterion	Predictive & Concurrent	Convergent	Discrimination & Known groups comparison		
Zhang et al. [142]	✓ ✓ ✓ - ✓ - ✓ -	- - - -	- -	-	Good				
Irvin et al. [143]	✓ ✓ ✓ ✓ - ✓ - ✓ -	- - - -	- -	-	Good				
Wei et al. [144]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Ayre et al. [145]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Intarakamhang et al. [146]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Fair				
Suthakorn et al. [147]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Lin et al. [148]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Taheri et al. [149]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Tabacchi et al. [150]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Zenasa et al. [151]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Taoufik et al. [152]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Chao et al. [153]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Excellent				
Sun et al. [154]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Excellent				
Poureslami et al. [155]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Mahmoudian et al. [156]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Simkiss et al. [157]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Charphasrat et al. [158]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Karimi et al. [159]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Ma et al. [160]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Suto et al. [161]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Kodama et al. [162]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Aller et al. [163]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Robbins et al. [164]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Rabin et al. [165]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				
Moein et al. [166]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good				

Population-specific health literacy instruments

Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings
Lee TW et al. [167]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Pan et al. [168]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Tsai et al. [169]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Weidmer et al. [170]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Massey et al. [171]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Wang et al. [172]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Harper et al. [173]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Yuen et al. [174]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Manganello et al. [175]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Shen et al. [176]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Abel et al. [177]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Ghanbari et al. [178]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Paakkari et al. [179]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Yang et al. [180]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	
Ernstmann et al. [181]	✓ ✓ ✓ ✓ ✓ ✓ ✓	- - - -	- -	-	Good	

Continued
Table 8. (Continued)

Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings		
	Internal Consistency	Test-retest (ICC)	Structural	Criterion	Predictive & Concurrent	Convergent	Discrimination & Known groups comparison	
Chang et al. [182]	✓	-	-	✓	✓ -	✓	✓	Good
Eliason et al. [183]	✓	✓	✓	✓	- -	-	-	Good
Hashimoto et al. [184]	✓	-	-	✓	✓ ✓ -	✓	✓	Good
Bradley-Klug et al. [185]	✓	-	-	✓	✓ -	-	✓	Fair
Guo et al. [186]	✓	-	✓	✓	- ✓ -	✓	-	Good
Azizi et al. [187]	✓	✓	✓	✓	✓ - -	-	-	Good
Domanska et al. [188]	✓	-	✓	-	✓ ✓ -	✓	-	Good

Electronic health literacy instruments

Author [ref.]	Reliability	Content & face	Validity	Construct	Hypothesis testing	Ratings		
Norman et al. [189]	✓	✓	✓	✓	✓ - -	-	-	Good
Hahn et al. [190]	✓	✓	✓	✓	- - -	-	✓	Fair
Ownby et al. [191]	✓	✓	✓	✓	✓ - ✓	-	✓	Good
Seckin et al. [192]	✓	✓	✓	✓	✓ - -	-	-	Fair
Van der Vaart et al. [193]	✓	✓	✓	✓	✓ - -	-	-	Good
Kayser et al. [194]	✓	-	✓	✓	✓ - -	-	-	Fair
Paige et al. [195]	✓	✓	✓	✓	✓ - -	-	-	Fair
Woudstra et al. [196]	✓	-	✓	✓	✓ ✓ -	✓	-	Good
Castellvi et al. [197]	✓	✓	-	✓	✓ - -	✓	✓	Good
Liu et al. [198]	✓	✓	✓	✓	✓ ✓ ✓	✓	-	Excellent
Duong et al. [199]	✓	✓	✓	✓	✓ - -	✓	-	Good

Table 9. A list of instruments that well developed, reported proper psychometric properties, and instruments frequently translated or validated in other countries (1993–2021).

Instruments	Instruments with excellent reported psychometric properties
Well-developed instruments	Chinese Health Literacy Scale for Low Salt Consumption-Hong Kong population (CHLSalt-HK) [64]
	Comprehensive Diabetes Health Literacy Scale (DHLS) [93]
	Korean Health Literacy Scale for Diabetes Mellitus (KHLS-DM) [97]
	Chinese Health Literacy Scale for Tuberculosis (CHLS-TB) [101]
	Oral Health Literacy Instrument (OHLI) [112]
	Health Literacy in Dentistry scale (HeLD-29) [120]
	Mental Health Literacy Scale (MHLS) [125]
	Multicomponent mental health literacy measure [132]
	Mental Health-Promoting Knowledge (MHPK-10) [135]

(Continued)
Organization should take responsibility and provide a clear guideline for measuring health literacy as appropriate.

Supporting information

S1 Checklist. PRISMA 2020 checklist.

(DoCX)

Acknowledgments

The authors are grateful to all staff in Iranian Institute for Health Sciences Research, ACECR, Tehran, Iran for help and support.

Author Contributions

Conceptualization: Mahmoud Tavousi, Jila Sadighi, Ali Montazeri.

Data curation: Mahmoud Tavousi, Samira Mohammadi, Fatemeh Zarei.

Formal analysis: Mahmoud Tavousi, Ali Montazeri.

Investigation: Samira Mohammadi, Fatemeh Zarei, Ramin Mozafari Kermani, Rahele Rostami.

Methodology: Mahmoud Tavousi, Samira Mohammadi, Jila Sadighi, Ali Montazeri.

Supervision: Ali Montazeri.

Writing – original draft: Mahmoud Tavousi, Samira Mohammadi, Fatemeh Zarei.
Writing – review & editing: Ali Montazeri.

References
1. Simonds SK. Health education as social policy. Health Educ. 1974; 2(1_sup pl):1–10.
2. Kindig DA, Panzer AM, Nielsen-Bohman L. Health literacy: A prescription to end confusion. National Academies Press, 2004.
3. Smith BJ, Tang KC, Nutbeam D. WHO health promotion glossary: New terms. Health Promot Int. 2006; 21(4):340–345. https://doi.org/10.1093/heapro/dai033 PMID: 16963461
4. Kickbusch I, Pelikan JM, Apfel F, Tsouros AD. Health Literacy. The solid facts. Copenhagen: WHO Regional Office for Europe, 2013.
5. Vandenbosh J, Van den Broucke S, Vancorenland S, Avalosse H, Verniest R, Caliens M. Health literacy and the use of healthcare services in Belgium. JECH. 2016; 70(10):1032–1038. https://doi.org/10.1136/jech-2015-206910 PMID: 27116951
6. Sorensen K, Pelikan JM, Rothlin F, Ganahl K, Slonska Z, Doyle G, et al. Health literacy in Europe: Comparative results of the European health literacy survey (HLS-EU). Eur J Public Health. 2015; 25 (6):1059–1055. https://doi.org/10.1093/europub/ckv043 PMID: 25843827
7. Berkman ND, Sheridan SL, Donahue KE, Halpern DJ, Crotty K. Low health literacy and health outcomes: An updated systematic review. Ann Intern Med. 2011; 155(2):97–107. https://doi.org/10.7326/0003-4819-155-2-201107190-00005 PMID: 21768583
8. Bostock S, Steptoe A. Association between low functional health literacy and mortality in older adults: Longitudinal cohort study. BMJ. 2012; 344:e1602. https://doi.org/10.1136/bmj.e1602 PMID: 22422872
9. Von Wagner C, Knight K, Steptoe A, Wardle J. Functional health literacy and health-promoting behaviour in a national sample of British adults. J Epidemiology Community Health. 2007; 61(12):1086–1090.
10. Fernandez DM, Larson JL, Zikmund-Fisher BJ. Associations between health literacy and preventive health behaviors among older adults: Findings from the health and retirement study. BMC Public Health. 2016; 16(1):1–8. https://doi.org/10.1186/s12889-016-3267-7 PMID: 27430477
11. Jayasinghe UW, Harris MF, Parker SM, Litt J, van Driel M, Mazza D, et al. The impact of health literacy and life style risk factors on health-related quality of life of Australian patients. Health Qual Life Outcomes. 2016; 14(1):1–3. https://doi.org/10.1186/s12955-016-0471-1 PMID: 27142865
12. Palumbo R, Annarumma C, Adinolfi P, Musella M, Piscopo G. The Italian health literacy project: Insights from the assessment of health literacy skills in Italy. Health Policy. 2016; 120(9):1087–1094. https://doi.org/10.1016/j.healthpol.2016.08.007 PMID: 27593949
13. Kutcher S, Wei Y, Coniglio C. Mental health literacy: Past, present, and future. Can J Psychiatry. 2016; 61(3):154–158. https://doi.org/10.1177/07067437156156609 PMID: 27254090
14. Davis TC, Long SW, Jackson RH, Mayeaux EJ, George RB, Murphy PW, et al. Rapid estimate of adult literacy in medicine: A shortened screening instrument. Fam Med. 1993; 25(6):391–395. PMID: 8349060
15. Parker RM, Baker DW, Williams MV, Nurss JR. The test of functional health literacy in Adults: A new instrument for measuring patients’ literacy skills. J Gen Intern Med. 1995; 10:537–541. https://doi.org/10.1007/BF02640361 PMID: 8576769
16. Weiss BD, Mays MZ, Martz W, Castro KM, DeWalt DA, Pignone MP, et al. Quick assessment of literacy in primary care: the newest vital sign. Ann Fam Med. 2005; 3:514–522. https://doi.org/10.1370/afm.405 PMID: 16338915
17. Kanj M, Mitic W. Health literacy and health promotion: Definitions, concepts and examples in the East Mediterranean region. 7th global conference on health promotion working paper. Nairobi: World Health Organization, 2009.
18. Haun JAN, Valero MA, McCormack LA, Sorensen K, Paasche-Orlow MK. Health literacy measurement: An inventory and descriptive summary of 51 instruments. J Health Commun. 2014; 19 (sup2):302–333.
19. O’Neill B, Goncalves D, Ricci-Cabello I, Ziebland S, Valera RS. An overview of self-administered health literacy instruments. Plos One. 2014; 9(12):e109110. https://doi.org/10.1371/journal.pone.0109110 PMID: 25478813
20. Nguyen TH, Paasche-Orlow MK, Kim MT, Han HR, Chan KS. Modern measurement approaches to health literacy scale development and refinement: Overview, current uses, and next steps. J Health Commun. 2015; 20(sup2):112–115.
21. Machado AL, Lima FE, Cavalcante TF, Araujo TL, Vieira NF. Instruments of health literacy used in nursing studies with hypertensive elderly. Rev gaucha enferm. 2014; 35(4):101–107. https://doi.org/10.1590/1983-1447.2014.04.45139 PMID: 25842787

22. Dickson-Swift V, Kenny A, Farmer J, Gussy M, Larkins S. Measuring oral health literacy: A scoping review of existing tools. BMC Oral Health. 2014; 14(1):1–3. https://doi.org/10.1186/1472-6831-14-148 PMID: 25472659

23. O’Connor M, Casey L, Clough B. Measuring mental health literacy—a review of scale-based measures. J Ment Health. 2014; 23(4):197–204. https://doi.org/10.3109/09638237.2014.910646 PMID: 24785120

24. Parthasarathy DS, McGrath CP, Bridges SM, Wong HM, Yiu CK, Au TK. Efficacy of instruments measuring oral health literacy: A systematic review. Oral Health Prev Dent. 2014; 12(3):2233–2243. https://doi.org/10.3290/j.ohpd.a32681 PMID: 25197741

25. Perry EL. Health literacy in adolescents: An integrative review. J Pediatr Nurs. 2014; 19(3):210–218. https://doi.org/10.1111/jspn.2015.07.012 PMID: 24612548

26. Wei Y, McGrath PJ, Hayden J, Kutcher S. Mental health literacy measures evaluating knowledge, attitudes and help-seeking: A scoping review. BMC Psychiatry. 2015; 15(1):1–20. https://doi.org/10.1186/s12888-015-0681-9 PMID: 26576680

27. Duell P, Wright D, Renzaho AM, Bhattacharya D. Optimal health literacy measurement for the clinical setting: A systematic review. Patient Educ Couns. 2015; 98(11):1295–1307. https://doi.org/10.1016/j.pec.2015.04.003 PMID: 26162954

28. Stonbraker S, Schnall R, Larson E. Tools to measure health literacy among Spanish speakers: An integrative review of the literature. Patient Educ Couns. 2015; 98(12):1513–1523. https://doi.org/10.1016/j.pec.2015.07.012 PMID: 26227578

29. Lee EH, Kim CJ, Lee J, Moon SH. Self-administered health literacy instruments for people with diabetes: Systematic review of measurement properties. J Adv Nurs. 2015; 73(9):2035–2048. https://doi.org/10.1111/jan.13256 PMID: 28103387

30. Shum J, Pourselami I, Wiebe D, Doyle-Waters MM, Nimmon L, FitzGerald JM. Airway diseases and Health Literacy (HL) measurement tools: A systematic review to inform respiratory research and practice. Patient Educ Couns. 2018; 101(4):596–618. https://doi.org/10.1016/j.pec.2017.10.011 PMID: 29107399

31. Guo S, Armstrong R, Waters E, Sathish T, Ali SM, Browne GR, et al. Quality of health literacy instruments used in children and adolescents: A systematic review. BMJ Open. 2018; 8(6):e020080. https://doi.org/10.1136/bmjopen-2017-020080 PMID: 29903787

32. Okan O, Lopes E, Bollweg TM, Broder J, Messer M, Brueland D, et al. Generic health literacy measurement instruments for children and adolescents: A systematic review of the literature. BMC Public Health. 2018; 18(1):1–9. https://doi.org/10.1186/s12889-018-5054-0 PMID: 29357867

33. Estrella ML, Allen-Meares P. Tools to measure health literacy among US African Americans and Hispanics/Latinos with type 2 diabetes: A scoping review of the literature. Patient Educ Couns. 2020; 103(10):2155–2165. https://doi.org/10.1016/j.pec.2020.04.012 PMID: 32451221

34. Slatyer S, Toye C, Burton E, Jacinto AF, Hill KD. Measurement properties of self-report instruments to assess health literacy in older adults: A systematic review. Disabil Rehabil. 2020; 42(26):1–17. https://doi.org/10.1080/09638288.2020.1836044 PMID: 33164591

35. Ghaffari M, Rakhshenderou S, Ramezankhani A, Mehrabi Y, Safari-Moradabadi A. Systematic review of the tools of oral and dental health literacy: Assessment of conceptual dimensions and psychometric properties. BMC Oral Health. 2020; 20(1):1–9. https://doi.org/10.1186/s12903-020-01170-y PMID: 32620108

36. Mafruhah OR, Huang YM, Shiyanbola OO, Shen GL, Lin HW. Ideal instruments used to measure health literacy related to medication use: A systematic review. Res Social Adm Pharm. 2021; 10(17):1663–1672. https://doi.org/10.1016/j.sapharm.2021.01.017 PMID: 33674228

37. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS medicine. 2009; 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 PMID: 19621072
40. Mokkink LB, Terwee CB, Knol DL, Stratford PW, Alonso J, Patrick DL, et al. The COSMIN checklist for evaluating the methodological quality of studies on measurement properties: A clarification of its content. BMC Med Res Methodol. 2010; 10(1):1–8. https://doi.org/10.1186/1471-2288-10-22 PMID: 20298572

41. Baker DW, Williams MV, Parker RM, Gazmararian JA, Nurss J. Development of a brief test to measure functional health literacy. Patient Educ Couns. 1999; 38(1):33–42. https://doi.org/10.1016/s0738-3991(98)00116-5 PMID: 14528569

42. Lee SYD, Bender DE, Ruiz RE, Cho YI. Development of an easy-to-use Spanish health literacy. Test Health Serv Res. 2006; 41(4p1):1392–1412. https://doi.org/10.1111/j.1756-7730.2006.00532.x PMID: 16699014

43. Morris NS, MacLean CD, Chew LD, Littenberg B. The single item literacy screener: Evaluation of a brief instrument to identify limited reading ability. BMC Fam Pract. 2006; 7(1):1–7. https://doi.org/10.1186/1471-2296-7-21 PMID: 16563164

44. Zikmund-Fisher BJ, Smith DM, Ubel PA, Fagerlin A. Validation of the Subjective Numeracy Scale (SNS): Effects of low numeracy on comprehension of risk communications and utility elicitations. Med Decis Making. 2007; 27(5):663–671. https://doi.org/10.1177/0272989X07303824 PMID: 17652180

45. Ishikawa H, Takeuchi T, Yano E. Measuring functional, communicative, and critical health literacy among diabetic patients. Diabetes Care. 2008; 31(5):874–879. https://doi.org/10.2337/dc07-1932 PMID: 18299446

46. Chew LD, Griffin JM, Partin MR, Noorbaloocsi S, Grill JP, Snyder A, et al. Validation of screening questions for limited health literacy in a large VA outpatient population. J Gen Intern Med. 2008; 23(5):561–566. https://doi.org/10.1007/s11606-008-0520-5 PMID: 18335281

47. Pleasant A, Kuruvilla S. A tale of two health literacies: Public health and clinical approaches to health literacy. Health Promot Int. 2008; 23(2):152–159. https://doi.org/10.1093/heaprd/dan001 PMID: 18223203

48. Rawson KA, Gunstad J, Hughes J, Spitznagel MB, Potter V, Waechter D, et al. The METER: A brief, self-administered measure of health literacy. J Gen Intern Med. 2009; 24(5):67–71. https://doi.org/10.1007/s11606-009-1158-7 PMID: 19885705

49. Zhang XH, Thumboo J, Fong KY, Li SC. Development and validation of a functional health literacy tTest. Patient. 2009; 2(3):169–178. https://doi.org/10.2165/11314850-00000000-00000 PMID: 22273168

50. McCormack L, Bann C, Squiers L, Berkmann ND, Squire C, Schillinger D, et al. Measuring health literacy: A pilot study of a new skills-based instrument. J Health Commun. 2010; 15(S2):51–71.

51. Yu Ko Y, Joyce Yu-Chia Lee, Matthias Paul Han Sim Toh, Wern-Ee Tang, Audrey Siok-Ling Tan. Development and validation of a general health literacy test in Singapore. Health Promot Int. 2012; 27(1):45–51. https://doi.org/10.1093/heaprd/dar020 PMID: 21467097

52. Begoñay DL, Kwan B. A Canadian exploratory study to define a measure of health literacy. Health Promot Int. 2012; 27(1):23–32. https://doi.org/10.1093/heaprd/dar015 PMID: 21361439

53. Kaphingst KA, Kreuter MW, Casey C, Lema L, Thompson T, Cheng MR, et al. Health literacy INDEX: Development, reliability, and validity of a new tool for evaluating the health literacy demands of health information materials. J Health Commun. 2012; 17(sup3):203–21.

54. Hellitzer D, Hollis C, Sanders M, Roybal S. Addressing the "other" health literacy competencies—knowledge, dispositions, and oral/aural communication: Development of TALKDOC, an intervention assessment tool. JHC. 2012; 17(sup3):160–175.

55. Osborne RH, Batterham RW, Elsworth GR, Hawkins M, Buchbinder R. The grounded psychometric development and initial validation of the Health Literacy Questionnaire (HLQ). BMC Public Health. 2013; 13(1):1–7. https://doi.org/10.1186/1471-2458-13-658 PMID: 23855504

56. Sorensen K, Van den Broucke S, Pelikan JM, Fullam J, Doyle G, Slonska Z, et al. Measuring health literacy in populations: illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health. 2013; 13(1):948. https://doi.org/10.1186/1471-2458-13-948 PMID: 24112855

57. Sekuk M, Odajima T, Kasai M, Igarashi A, Ishikawa H, Kusama M, et al. The 14-item Health Literacy Scale for Japanese adults (HLS-14). Environ Health Prev Med. 2013; 18(5):407–415. https://doi.org/10.1007/s12199-013-0340-z PMID: 23689952

58. Farin E, Ulrich A, Nagl M. Health education literacy in patients with chronic musculoskeletal diseases: Development of a new questionnaire and sociodemographic predictors. Health Educ Res. 2013; 28(6):1080–1091. https://doi.org/10.1093/her/cyt095 PMID: 24113084

59. Jordan JE, Buchbinder R, Briggs AM, Elsworth GR, Busija L, Batterham R, et al. The Health Literacy Management Scale (HeLMS): A measure of an individual's capacity to seek, understand and use
health information within the healthcare setting. Patient Educ Couns. 2013; 91(2):228–235. https://doi.org/10.1016/j.pec.2013.01.013 PMID: 23419326

60. Sand-Jecklin K, Coyle S. Efficiently assessing patient health literacy: The BHLS instrument. Clin Nurs Res. 2014; 23(6):581–600. https://doi.org/10.1177/1054778313488417 PMID: 23729022

61. Pelikan JM, Rothlin F, Ganahl K. Measuring comprehensive health literacy in general populations: Validation of indices and scales of the HLS-EU study. In6th annual health literacy research conference. Bethesda, 2014.

62. Kang SJ, Lee TW, Paasche-Orlow MK, Kim GS, Won HK. Development and evaluation of the Korean health literacy instrument. JHC. 2014; 19(sup2):254–266. https://doi.org/10.1080/10810730.2014.946113 PMID: 23515597

63. Nakagami K, Yamauchi T, Noguchi H. Development and validation of a new instrument for testing functional health literacy in Japanese adults. Nurs Health Sci. 2014; 16(2):201–208. https://doi.org/10.1111/nhs.12087 PMID: 23991825

64. Chau PH, Leung AY, Li HL, Sea M, Chan R, Woo J. Development and validation of Chinese Health Literacy scale for Low Salt consumption- Hong Kong population (CHLSalt-HK). Plos One. 2015; 10(7): e0132303. https://doi.org/10.1371/journal.pone.0132303 PMID: 26148008

65. Haghdooest AA, Rakshani F, Aarabi M, Montazeri A, Tavouzi A, Solimaniian A, et al. Iranian Health Literacy Questionnaire (IHLQ): An instrument for measuring health literacy in Iran. IRJM. 2015; 17(6): e25831. https://doi.org/10.5812/irmj.17(5)2015.25831 PMID: 26290752

66. Zotti P, Cocchi S, Polese J, Cipolati Mis Ch, Bragatto D, Cavuto S, et al. Cross-cultural validation of health literacy measurement tools in Italian oncology patients. BMC Health Serv Res. 2017; 17(1):1–7.

67. Tsubakita T, Kawazoe N, Kasano E. A new functional health literacy scale for Japanese young adults based on item response theory. Asia Pac J. 2017; 29(2):149–158. https://doi.org/10.1177/1010539517690226 PMID: 28201939

68. Kim SH. Validation of the short version of Korean functional health literacy test. Int J Nurs. 2017; 23(4): e12559. https://doi.org/10.1111/jn.12559 PMID: 28695717

69. Finbraten HS, Wilde-Larsson B, Nordstrom G, Pettersen KS, Trollvik A, Guttersrud O. Establishing the HLS-Q12 short version of the European health literacy survey questionnaire: Latent trait analyses applying Rasch modelling and confirmatory factor analysis. BMC Health Serv Res. 2018; 18(1):1–7.

70. Pleasant A, Maish C, O’Leary C, Carmona RH. A theory-based self-report measure of health literacy: The calgary charter on health literacy scale. MIO. 2018; 11(3):1–9.

71. Duong TV, Aringazina A, Kayupova G, Nurjanah, Pham TV, Pham KM, et al. Development and validation of a new Short-Form Health Literacy Instrument (HLS-SF12) for the general public in six Asian countries. Health Lit Res Pract. 2019; 3(2):e90–e102. https://doi.org/10.3928/24748307-20190225-01 PMID: 31294310

72. McClintock HF, Alber JM, Schrauben SJ, Mazzola CM, Wiebe DJ. Constructing a measure of health literacy in Sub-Saharan African countries. Health Promot Int. 2020; 35(5):907–915. https://doi.org/10.1093/heapro/daz078 PMID: 3104512

73. Huizinga MM, Elasy TA, Wallston KA, Cavanaugh K, Davis D, Gregory RP, et al. Development and validation of the Diabetes Numeracy Test (DNT). BMC Health Serv Res. 2008; 8(1):1–8. https://doi.org/10.1186/1472-6963-8-96 PMID: 18452617

74. Shannon HA, Parker AW. Evaluation of a health literacy instrument designed for the mining industry. HLNP. 2020; 4(2):84–93. https://doi.org/10.3928/24748307-20200316-01 PMID: 32293688

75. Tavouzi M, Haeri-Mehrizi AA, Rakshani F, Rafieefar SH, Soleymamian A, Sarbandi F, et al. Development and validation of a short and easy-to-use instrument for measuring health literacy: The Health Literacy Instrument for Adults (HELIA). BMC Public Health. 2020; 20:656. https://doi.org/10.1186/s12889-020-08787-2 PMID: 32397970

76. Park SK, Kim EG. A study on the reliability and validity of the Korean health literacy instrument for late school-aged children. Int J Environ Res Public Health. 2021; 18:10304. https://doi.org/10.3390/ijerph181910304 PMID: 3469605

77. Kim MT, Song HJ, Han HR, Song Y, Nam S, Nguyen TH, et al. Development and validation of the high blood pressure-focused health literacy scale. Patient Educ Couns. 2012; 87(2):165–170. https://doi.org/10.1016/j.pec.2011.09.005 PMID: 22030252
79. Leung AYM, Lou VWQ, Cheung MKT, Chan SSC, Chi I. Development and validation of Chinese health literacy scale for diabetes. J Clin Nurs. 2013; 22(15–16):2090–2099. https://doi.org/10.1111/jocn.12018 PMID: 23186320

80. Leung AY, Cheung MK, Lou VW, Chan FH, Ho CK, Do TL, et al. Development and validation of the Chinese health literacy scale for chronic care. J Health Commun. 2013; 18(sup1):205–222. https://doi.org/10.1080/10810730.2013.829138 PMID: 24093357

81. Ownby RL, Waldrop-Valverde D, Hardigan P, Caballero J, Jacobs R, Acevedo A. Development and validation of a brief computer-administered HIV-related Health Literacy scale (HIV-HL). AIDS Behav. 2013; 17(2):710–718. https://doi.org/10.1007/s10461-012-0301-3 PMID: 22961499

82. Sun X, Chen J, Shi Y, Zeng Q, Wei N, Xie R, et al. Measuring health literacy regarding infectious respiratory diseases: A new skills-based instrument. Plos One. 2013; 8(5):e64153. https://doi.org/10.1371/journal.pone.0064153 PMID: 23724029

83. Han HR, Huh B, Kim MT, Kim J, Nguyen T. Development and validation of the assessment of health literacy in breast and cervical cancer screening. J Health Commun. 2014; 19(sup2):267–284. https://doi.org/10.1080/10810730.2014.936569 PMID: 25315598

84. Dumenci L, Matsuyama R, Riddle DL, Cartwright LA, Perera RA, Chung H, et al. Measurement of cancer health literacy and identification of patients with limited cancer health literacy. J Health Commun. 2014; 19(sup2):205–224. https://doi.org/10.1080/10810730.2014.943377 PMID: 25315594

85. Londono AMM, Schulz PJ. Judgment skills, a missing component in health literacy: Development of a tool for asthma patients in the Italian-speaking region of Switzerland. Arch Public Health. 2014; 72(1):1–9.

86. Shih CL, Chang TH, Jensen DA, Chiu CH. Development of a health literacy questionnaire for Taiwanese hemodialysis patients. BMC Nephrol. 2016; 17(1):1–2. https://doi.org/10.1186/s12882-016-0266-y PMID: 27245160

87. Matsuoka S, Kato N, Kayane T, Yamada M, Koizumi M, Ikegame T, et al. Development and validation of a heart failure-specific health literacy scale. JCN. 2016; 31(2):131–139. https://doi.org/10.1097/JCN.0000000000000226 PMID: 26049813

88. Tian X, Di Z, Cheng Y, Ren X, Chai Y, Ding F, et al. Study on the development of an infectious disease-specific health literacy scale in the Chinese population. BMJ Open. 2016; 6(8):e012039. https://doi.org/10.1136/bmjopen-2016-012039 PMID: 27496240

89. Mafutha NG, Mogotsane S, De Swardt HC. Development of a hypertension health literacy assessment tool for use in primary healthcare clinics in South Africa. Afr J Prim Health Care Fam Med. 2017; 9(1):1–8. https://doi.org/10.4103/pha.pha_136_17 PMID: 28828872

90. Tique JA, Howard LM, Gaveta S, Sidat M, Rotherman RL, Vermund SH, et al. Measuring health literacy among adults with HIV infection in Mozambique: Development and validation of the HIV literacy test. AIDS Behav. 2017; 21(3):822–832. https://doi.org/10.1007/s10461-016-1348-3 PMID: 26961538

91. Chou HL, Lo YL, Liu CY, Lin SC, Chen YL. Development and psychometric evaluation of the cancer health literacy scale in newly diagnosed cancer patients. Cancer Nurs. 2017; 40(3):237–244. https://doi.org/10.1097/NCC.000000000000386 PMID: 27244666

92. Yang P, Dunzhu C, Widdowson MA, Wu S, Ciren P, Duoji D, et al. Infectious disease-specific health literacy in Tibet, China. Health Promot Int. 2018; 33(1):84–91. https://doi.org/10.1093/heaprog/daw054 PMID: 27478688

93. Lee E-Hyun, Lee YW, Lee K-Woo, Nam M, Kim SH. A new comprehensive diabetes health literacy scale: Development and psychometric evaluation. Int J Nurs Stud. 2018; 88:1–8. https://doi.org/10.1016/jijnurstu.2018.08.002 PMID: 30142483

94. Khazaei H, Komasi S, Zakiei A, Rezaei M, Hatamian P, Jashporoor M, et al. Design and standardization of tools for assessing the perceived heart risk and heart health literacy in Iran. Ann Card Anaesth. 2018; 21(1):46. https://doi.org/10.4103/aca.ACA_136_17 PMID: 29336391

95. Dehghani A, Keshavarzi A. Development and validation of a multidimensional health literacy questionnaire for multiple sclerosis patients. Multiple Sclerosis Rel Dis. 2018; 25:156–162. https://doi.org/10.1016/j.msard.2018.07.018 PMID: 30081315

96. Yeh JZ, Wei CJ, Weng SF, Tsai CY, Shih JH, Shih CL, et al. Disease-specific health literacy, disease knowledge, and adherence behavior among patients with type 2 diabetes in Taiwan. BMC Public Health. 2018; 18(1):1–5.

97. Kanga SJ, Simb KH, Songc BR, Parkd JE, Change SJ, Parkf C, et al. Validation of the health literacy scale for diabetes as a criterion-referenced test with standard setting procedures. Patient Educ Couns. 2018; 101(8):1468–1476. https://doi.org/10.1016/j.pec.2018.03.013 PMID: 29598965

98. Tutu RA, Gupta S, Elavarthi S, Busingye JD, Boateng JK. Exploring the development of a household cholera-focused health literacy scale in James Town, Accra. J Infect Public. 2019; 12(1):62–69.
99. Cardoso MC, Santos AS, Fonseca AD, Silva-Junior RF, Carvalho PD, Martins AM. Validity and reliability of the health literacy assessment scale for adherence to drug treatment among diabetics. Einstein. 2019; 17(2):eAO4405. https://doi.org/10.31744/einstein_journal/2019AO4405 PMID: 30970045

100. De Sousa AAD, Quintao ALA, Brito AMG, Ferreira RC, de Barros Lima Martins AME. Development of a health literacy instrument related to diabetic foot. Escola Anna Nery. 2019; 23(3):e20180332.

101. Li Y, Zhang S, Zhang T, Cao Y, Liu W, Jiang H, et al. Chinese health literacy scale for tuberculosis patients: A study on development and psychometric testing. BMC Infect Dis. 2019; 19(1):454.

102. Wu T, Su J, Zhao S, Chen X, Shen M. Development and assessment of a brief tool to measure melanoma-related health literacy and attitude among adolescents. JCE. 2020; 35(5):905–911. https://doi.org/10.1007/s13187-019-01541-2 PMID: 31152356

103. Martins AMEBL Amorim MMTA, Carvalho BO Pinto RA, Froes DTC Santos ASF. Development, judgment of the validity and reliability of an instrument of assessment of oral health literacy among diabetics. RGO Rev Gaucha Odontol. 2020; 68: e20200039.

104. Echeverri M, Anderson D, Haas JM, Serrano FS, Napoles AM. Testing the preliminary validity of a multidimensional framework for studying the effects of cancer health literacy on cancer screening behaviors among diverse populations. Int J Environ Res Public Health. 2020; 17(9):2987. https://doi.org/10.3390/ijerph17092987 PMID: 32344860

105. Huang YJ, Chen CT, Sorensen K, Hsieh CL, Hou WH. Development of a battery of phase-adaptive health literacy tests for stroke survivors. Patient Educ Couns. 2020; 103(11):2342–2346. https://doi.org/10.1016/j.pec.2020.04.023 PMID: 32389387

106. Rajabi F, Pirdehghan A, Sanaie Z, Ghadirian L, Sayarifard A, Esna Ashari F. Designing and investigating the validity and reliability of the health literacy questionnaire in Iran: Recognizing the risk factors for cardiovascular diseases, diabetes, and cancer. Int J Prev Med. 2020; 11:110. https://doi.org/10.4103/ijrpm.IJPM_280_18 PMID: 33088438

107. Wei CJ, Shih CL, Hsu YJ, Hsu YJ, Chen YC, Yeh JZ, et al. Development and application of a chronic kidney disease-specific health literacy, knowledge and disease awareness assessment tool for patients with chronic kidney disease in Taiwan. BMJ Open. 2021; 11: e052597. https://doi.org/10.1136/bmjopen-2021-052597 PMID: 34635527

108. Chen S, Zhang X, Cao M, Zhao B, Fang J. Development and validation of the health literacy assessment instrument for patients with chronic pain. Evid Based Complement Alternat Med. 2021; 9:9342746. https://doi.org/10.1155/2021/9342746 PMID: 35096099

109. Savci C, Zengin N, Cil Akinci A. Development of the health literacy scale for protection against COVID-19. Electron J Gen Med. 2021; 18(6): em332.

110. Hiltrop K, Hiebel N, Geiser F, Kriegsmann-Rabe M, Gambashidze N, Morawa E, et al. Measuring COVID-19 related Health Literacy in Healthcare Professionals—Psychometric Evaluation of the HL-COV-HP Instrument. Int J Environ Res Public Health. 2021; 18:11959. https://doi.org/10.3390/ijerph182211959 PMID: 34831720

111. Cormier CM. Health literacy: The knowledge and experiences of senior level baccalaureate nursing students. Louisiana State University and Agricultural and Mechanical College 2006. [Dissertation].

112. Sabbahi DA, Lawrence HP, Limeback H, Rootman I. Development and evaluation of an oral health literacy instrument for adults. Community Dent Oral Epidemiol. 2009; 37:451–462. https://doi.org/10.1111/j.1600-0528.2009.00490.x PMID: 19740249

113. Kumar D, Sanders L, Perrin EM, Lokker N, Patterson B, Gunn V, et al. Parental understanding of infant health information: Health literacy, numeracy, and the Parental Health Literacy Activities Test (PHLAT). Acad Pediatr. 2010; 10(5):309–316. https://doi.org/10.1016/j.acap.2010.06.007 PMID: 20674532

114. Macek MD, Haynes D, Wells W, Bauer-Leffler S, Cotten PA, Parker RM. Measuring conceptual health knowledge in the context of oral health literacy: Preliminary results. J Public Health Dent. 2010; 70 (3):197–204. https://doi.org/10.1111/j.1752-7325.2010.00165.x PMID: 20337901

115. Devi AM. Reliability and validity of a questionnaire to assess oral health literacy among college students in Bangalore city. J Contemp Dent. 2011; 2(2):43–47.

116. Mojoyinola JK. Influence of maternal health literacy on healthy pregnancy and pregnancy Outcomes of women attending public hospitals in Ibadan, Oyo State, Nigeria. Afr Res Rev. 2011; 5(3):28–39.

117. Loureiro L. Questionario de Avaliacao da Literacia em Saude Mental- QuALiSMen tal: Estudo das prèpriedades psicométricas. Revista de Enfermagem Referencia. 2012; 4(4):79–88.

118. Wong HM, Bridges SM, Yiu CK, McGrath CP, Au TK, Parthasarathy DS. Validation of the Hong Kong Oral Health Literacy Assessment Task for Paediatric dentistry (HKOHLAT-P). Int J Paediatr Dent. 2013; 23(5):366–375. https://doi.org/10.1111/ijd.12021 PMID: 23947421
119. Dahlke AR, Curtis LM, Federman AD, Wolf MS. The mini mental status exam as a surrogate measure of health literacy. J Gen Intern Med. 2014; 29(4):615–620. https://doi.org/10.1007/s11606-013-2712-x PMID: 24327311

120. Jones K, Parker E, Mills H, Brennan D, Jamieson LM. Development and psychometric validation of a Health Literacy in Dentistry scale (HeLD). Community Dent Health. 2014; 31(1):37–43. PMID: 24741892

121. Naghibi Sistani MM, Montazeri A, Yazdani R, Murtoamaa H. New oral health literacy instru-ment for public health: Development and pilot testing. J Investig Clin Dent. 2014; 5(4):313–321. https://doi.org/10.1111/jicd.12042 PMID: 25185671

122. Paez KA, Mallery CJ, Noel H, Pugliese C, McSorley VE, Lucado JL, et al. Development of the Health Insurance Literacy Measure (HILM): Conceptualizing and measuring consumer ability to choose and use private health insurance. J Health Commun. 2014; 19(suppl 2):225–239. https://doi.org/10.1080/10810730.2014.936568 PMID: 25315595

123. Shreffler-Grant J, Weinert C, Nichols E. Instrument to measure health literacy about comple-mentary and alternative medicine. J Nurs Meas. 2014; 22(3):489–499. https://doi.org/10.1891/1061-3749.22.3.489 PMID: 25086434

124. Villanueva Vilchis MD, Wintergerst A, Borges Yanez SA. Toward a compre-hensive instru-ment of oral health literacy in Spanish. J Health Commun. 2014; 19(2):930–937. https://doi.org/10.1080/10810730.2014.936568 PMID: 25315595

125. O’Connor M, Casey L. The Mental Health Literacy Scale (MHLS): A new scale-based measure of mental health literacy. Psychiatry Res. 2015; 229(1–2):511–516. https://doi.org/10.1016/j.psychres.2015.05.064 PMID: 26228163

126. Altim SV, Lorrek K, Stock S. Development and validation of a brief screener to measure the Health Literacy responsiveness of Primary Care practices (HLPC). BMC Fam Pract. 2015; 16(1):1–8. https://doi.org/10.1186/s12875-015-0336-4 PMID: 26362669

127. Curtis LM, Revelle W, Waite K, Wilson EA, Condon DM, Bojarski E, et al. Development and validation of the comprehensive health activities scale: A new approach to health literacy measurement. J Health Commun. 2015; 20(2):157–164. https://doi.org/10.1080/10810730.2014.917744 PMID: 25375025

128. Guttersrud O, Naigaga MD, Pettersen KS. Measuring maternal health literacy in adolescents attending antenatal care in Uganda: Exploring the dimensionality of the health literacy concept studying a composite scale. J Nurs Meas. 2015; 23(2):E50–E66. https://doi.org/10.1891/1061-3749.23.2.E50 PMID: 26284831

129. Stein L, Pettersen KS, Bergdahl M, Bergdahl J. Development and validation of an instru-ment to assess oral health literacy in Norwegian adult dental patients. Acta Odontol Scand. 2015; 73(7):530–538. https://doi.org/10.3109/00016357.2015.1007477 PMID: 25652174

130. Intarakamhang U, Kwanchuen Y. The development and applica-tion of the ABCDE-health literacy scale for Thais. Asian Biomed. 2016; 10(6):587–594.

131. Kapoor P, Prasad S, Tandon S. Development of a word instru-ment to test dental health literacy: The DFLD-Determination of Functional Literacy in Dentistry. J Community Med Health Educ. 2016; 6(5):504–507.

132. Jung H, von Sternberg K, Davis K. Expanding a measure of mental health literacy: Development and validation of a multicomponent mental health literacy measure. Psychiatry Res. 2016; 243:278–286. https://doi.org/10.1016/j.psychres.2016.06.034 PMID: 27423635

133. Campos L, Dias P, Palha F, Duarte A, Veiga E. Development and psychometric properties of a new questionnaire for assessing mental health literacy in young people. Univ Psychol. 2016; 15(2):61–72.

134. Squires AP, Yin HS, Jones SA, Greenberg SA, Moore R, Cortes TA. Validating the health literacy promotion practices assessment instrument. HLRP. 2017; 1(4):e239–246. https://doi.org/10.3928/24748307-20171030-01 PMID: 31294269

135. Bjornsen HN, Ringdal R, Espnes GA, Moksnes UK. Positive mental health literacy: Development and validation of a measure among Norwegian adolescents. BMC Public Health. 2017; 17(1):1–10.

136. Moll S, Zahnour M, Patten SB, Stuart H, MacDermid J. Evaluating mental health literacy in the workplace: Development and psychometric properties of a vignette-based tool. J Occup Health Rehabil. 2017; 27(4):601–611. https://doi.org/10.1016/j.joor.2017.06.002 PMID: 28120136

137. Intarakamhang U, Intarakamhang P. Health literacy scale and causal model of childhood overweigth. J Res Health Sci. 2017; 17(1):e00368. PMID: 28413166

138. Matsumoto M, Nakayama K. Development of the health literacy on social determinants of health ques-tionnaire in Japanese adults. BMC Public Health. 2017; 17(1):1–11.
139. Tsai TI, Lee SY. Development and validation of a Weight-Specific Health Literacy Instrument (WSHLI). Obes Res Clin Pract. 2018; 12(2):214–221. https://doi.org/10.1016/j.orcp.2017.11.003 PMID: 29269247

140. Lichtveld MY, Covert HH, Sherman M, Shankar A, Wickliffe JK, Alcala CS. Advancing environmental health literacy: Validated scales of general environmental health and environmental media-specific knowledge, attitudes and behaviors. Int J Environ Res Public Health. 2019; 16(21):4157. https://doi.org/10.3390/ijerph16214157 PMID: 31661913

141. Areerak K, Janwantanakul P, van der Beek AJ. Development and psychometric assessment of a health literacy-based questionnaire to differentiate between office workers with and without non-specific neck pain. J Med Assoc Thai. 2019; 102(3):264–272.

142. Zhang Y, Li M, Jiang H, Shi H, Xu B, Atkins S, et al. Development and validation of a Chinese parental health literacy questionnaire for caregivers of children 0 to 3 years old. BMC Pediatr. 2019; 19(1):1–9.

143. Irvin VL, Rohlman D, Vaughan A, Amantia R, Berlin C, Kile ML. Development and validation of an environmental health literacy assessment screening tool for domestic well owners: The Water Environmental Literacy Level Scale (WELLS). Int J Environ Res Public Health. 2019; 16(5):881. https://doi.org/10.3390/ijerph16050881 PMID: 30862003

144. Wei Y, Baxter A, Kutzer S. Establishment and validation of a mental health literacy measurement in Canadian educators. Psychiatry Res. 2019; 279:231–236. https://doi.org/10.1016/j.psychres.2019.03.009 PMID: 30890275

145. Ayre J, Costa DS, McCaffery KJ, Nutbeam D, Muscat DM. Validation of an Australian parenting health literacy skills instrument: The parenting plus skills index. Patient Educ Couns. 2020; 103(6):1245–1251. https://doi.org/10.1016/j.pec.2020.01.012 PMID: 31982204

146. Lin HW, Chang EH, Ko Y, Wang CY, Wang YS, Mafruhah OR, et al. Conceptualization, development and psychometric evaluations of a new medication-related health literacy instrument: The Chinese medication literacy measurement. Int J Environ Res Public Health. 2020; 17(19):6951. https://doi.org/10.3390/ijerph17196951 PMID: 32977520

147. Taheri S, Tavousi M, Momenimovahed Z, Direkvand-Moghadam A, Tiznobaik A, Suhrabi Z, et al. Development and psychometric properties of maternal health literacy inventory in pregnancy. Plos One. 2020; 15(6):e0234305. https://doi.org/10.1371/journal.pone.0234305 PMID: 32525889

148. Tabacchi G, Battaglia G, Messina G, Paoli A, Palma A, Bellaioire M. Validity and internal consistency of the preschool-FLAT, a new tool for the assessment of food literacy in young children from the training-to-health project. Int J Environ Res Public Health. 2020; 17(8):2759. https://doi.org/10.3390/ijerph17082759 PMID: 32316251

149. Zenas D, Nielsen MG, Fonager K, Petersen KS, Szulevicz T, Overgaard C. Assessing Mental Health Literacy among Danish Adolescents-development and validation of a multifaceted assessment tool (the Danish MeHLA questionnaire). Psychiatry Res. 2020; 293:113373. https://doi.org/10.1016/j.psychres.2020.113373 PMID: 32805589

150. Taoufik K, Divaris K, Kavvadia K, Koletsi-Kounari H, Polychronopoulou A. Development of a Greek Oral Health Literacy measurement instrument: GROHL. BMC Oral Health. 2020; 20(1):1–11. https://doi.org/10.1186/s12903-020-1000-5 PMID: 31941482

151. Chao HJ, Lien YJ, Kao YC, Tasi IC, Lin HS, Lien YY. Mental health literacy in healthcare students: An expansion of the mental health literacy scale. Int J Environ Res Public Health. 2020; 17:948. https://doi.org/10.3390/ijerph17030948 PMID: 32033015

152. Sun Y, Sun J, Zhao Y, Cheng A, Zhou J. A new comprehensive oral health literacy scale; Development and psychometric evaluation. BMC Oral Health. 2021; 21:429. https://doi.org/10.1186/s12903-021-01795-7 PMID: 34482838

153. Pournasl I, Kopec J, Tregobov N, Shum J, Sawatzky R, Hohn R, et al. An integrated framework to conceptualize and develop the Vancouver Airways Health Literacy Tool (VAHLT). Int J Environ Res Public Health. 2021; 18:8646. https://doi.org/10.3390/ijerph18168646 PMID: 34444392

154. Mahmoudian S, Farhadi M, Mahdavi Hezaveh A, Maleki M, Shariatinia S, Shams M. Development and application of a tool to measure hearing health literacy of young people in the Islamic Republic of Iran. East Mediterr Health J. 2021; 27(2):177–182. https://doi.org/10.26719/emhj.20.106 PMID: 33665802
157. Simkiss NJ, Gray NS, Chris Dunne C, Snowden RJ. Development and psychometric properties of the Knowledge and Attitudes to Mental Health Scales (KAMHS): A psychometric measure of mental health literacy in children and adolescents. BMC Pediatr. 2021; 21:508. https://doi.org/10.1186/s12887-021-02964-x PMID: 34774022

158. Charophrasat S, Thitasomakul S, Tianviwat S. Development and validation of oral health literacy questionnaire for Thai adults. J Int Soc Prevent Commun ity Dent. 2021; 11:685–694. https://doi.org/10.4103/jispc d.JISPCD_155_21 PMID: 35036378

159. Karimi L, Rahmati F, Parandeh A. Development and validation of psychometric properties of a questionnaire for sexual health literacy related to HIV/AIDS and sexually transmitted diseases among Iranian young men. HIV AIDS Rev. 2021; 20(1):26–32.

160. Ma X, Yang Y, Wei E, Jiang H, Shi H. Development and validation of the reproductive health literacy questionnaire for Chinese unmarried youth. Reprod Health. 2021; 18:226. https://doi.org/10.1186/s12978-021-01278-6 PMID: 34774064

161. Suto M, Mitsunaga H, Honda Y, Maeda E, Ota E, Arata N. Development of a health literacy scale for preconcept ion care: A study of the reproductive age population in Japan. BMC Public Health. 2021; 21:2057. https://doi.org/10.1186/s12889-021-12081-0 PMID: 34758797

162. Kodama S, Shido K, Ikeda N. Development of mental health literacy scale for depression affecting the help-seeking process in health professional students. IJMHP.2021;331–352.

163. Aller TB, Novak JR, Fauth EB, Schwartz S. Measurin g mental health literacy: Development of the mental health awareness and advocacy assessment tool. JMDE. 2021; 17(39):15–31.

164. Robbins R, Hays RD, JCalderon JL, Seixas A, Newsome V, Chung A, et al. The development and psychometric evaluation of the survey of obstructive sleep apnea functional health literacy. Sleep Med Res. 2021; 12(1):64–73. https://doi.org/10.17241/smr.2021.00885 PMID: 34790431

165. Rabin LA, Miles RT, Kamata A, Krishnan A, Elbulok-Charcape M, Stewart G, et al. Development, item analysis, and initial reliability and validity of three forms of a multiple-choice Mental Health Literacy Assessment for college students (MHLA-c). Psychiatry Res.2021; 300;113897. https://doi.org/10.1016/j.psychres.2021.113897 PMID: 33887516

166. Moeini B, Barati M, Heidarimoghadam R, Tapak L, Parsamajd Shahryar. Physical activity health literacy in Iranian older adults: Development and psychometric testing. J Aging Phys Act. 2021; 30:1–9.

167. Lee TW, Kang SJ, Lee HJ, Hyun SI. Testing health literacy skills in older Korean adults. Patient Educ Couns. 2009; 75(3):302–307. https://doi.org/10.1016/j.pec.2009.04.002 PMID: 19394184

168. Pan FC, Su CL, Chen CH. Development of a health literacy scale for Chinese-speaking adults in Taiwan. J Healthc Eng. 2010; 4(1):150–156.

169. Tsai TI, Lee SY, Tsai YW, Kuo KN. Methodology and validation of health literacy scale development in Taiwan. J Health Commun. 2010; 16(1):50–61.

170. Weidmer BA, Brach C, Hays RD. Development and evaluation of CAHPS survey items assessing how well healthcare providers address health literacy. Med Care. 2012; 50(9 Suppl 2):3–11. https://doi.org/10.1097/MMLR.0b013e3182652482 PMID: 22895227

171. Massey P, Prelip M, Calimlim B, Alfii A, Quiter E, Nessim S, et al. Findings toward a multidimensional measure of adolescent health literacy. Am J Health Behav. 2013; 37(3):342–350. https://doi.org/10.5993/AJHB.37.3.7 PMID: 23985181

172. Wang J, Thoms BD, Schmid MR. The Swiss health literacy survey: Development and psychometric properties of a multidimensional instrument to assess competencies for health. Health Expectations. 2014; 17(3):396–417. https://doi.org/10.1111/j.1369-7625.2012.00766.x PMID: 22390287

173. Harper R. Development of a health literacy assessment for young adult college students: A pilot study. J Am Coll Health. 2014; 62(2):125–134. https://doi.org/10.1080/07448481.2013.865625 PMID: 24261413

174. Yuen EY, Knight T, Dobson S, Ricciardelli L, Burney S, Livingston PM. Development of the Health Literacy of Caregivers Scale-Cancer (HLCS-C): Item generation and content validity testing. BMC Fam Pract. 2014; 15(1):1–12. https://doi.org/10.1186/1471-2296-15-1 PMID: 25491883

175. Manganello JA, DeVellis RF, Davis TC, Schottler-Thal C. Development of the Health Literacy Assessment Scale for Adolescents (HAS-A). J Commu in healthc. 2015; 38(6):172–184. https://doi.org/10.1177/1753807615616067 PMID: 26756257

176. Shen M, Hu M, Liu S, Chang Y, Sun Z. Assessment of the Chinese resident health literacy scale in a population-based sample in South China. BMC Public Health. 2015; 15(1):637–647.

177. Abel T, Hofmann K, Ackermann S, Bucher S, Sakarya S. Health literacy among young adults: A short survey tool for public health and health promotion research. Health Promot Int. 2015; 30(3):725–735. https://doi.org/10.1093/heapro/dat096 PMID: 24482542
178. Ghanbari S, Ramezankhani A, Montazeri A, Mehrabi Y. Health Literacy Measure for Adolescents (HELMA): Development and psychometric properties. Plos One. 2016; 11(2):e0149202. https://doi.org/10.1371/journal.pone.0149202 PMID: 26881933

179. Paakkari O, Torppa M, Kannas L, Paakkari L. Subjective health literacy: Development of a brief instrument for school-aged children. Scand J Public Health. 2016; 44(8):751–757. https://doi.org/10.1177/1403494816669639 PMID: 27655781

180. Yang SJ, Chee YK. Development and psychometric testing of the Health Literacy Index for Female Marriage Immigrants (HLI-FMI) in Korea. Women Health. 2017; 57:1007–1030. https://doi.org/10.1080/03630242.2016.1222328 PMID: 27537617

181. Ernstmann N, Halbach S, Kowalski C, Pfaff H, Ansmann L. Measuring attributes of health literate health care organizations from the patients’ perspective: Development and validation of a questionnaire to assess Health Literacy-sensitive Communication (HL-COM). ZEFQ. 2017; 121:58–63. https://doi.org/10.1016/j.zefq.2016.12.008 PMID: 28545615

182. Chang LC, Chen YC, Liao LL, Wu FL, Hsieh PL, Chen HJ. Validation of the instrument of health literacy competencies for Chinese-speaking health professionals. Plos One. 2017; 12(3):e0172859. https://doi.org/10.1371/journal.pone.0172859 PMID: 28264036

183. Domanska OM, Bollweg TM, Loer AK, Holmberg C, Schenk L, Jordan S. Development and psychometric properties of a questionnaire assessing self-reported generic health literacy in adolescence. Int J Environ Res Public Health. 2020; 17(8):2860. https://doi.org/10.3390/ijerph17082860 PMID: 32326285

184. Hashimoto H, Yanagisawa S. Development of health literacy scale among Brazilian mothers in Japan. Health Promot Int. 2017; 32(6):1034–1040. https://doi.org/10.1093/heapro/daw040 PMID: 27209049

185. Owensby RL, Acevedo A, Waldrop-Valverde D, Jacobs RJ, Caballero J, Davenport R, et al. Development and initial validation of a computer-administered health literacy assessment in Spanish and English: FLIGHT/VIDAS. Patient Relat Outcome Meas. 2013; 4:21. https://doi.org/10.2147/PROM.S48384 PMID: 23990736

186. Seckin G, Yeatts D, Hughes S, Hudson C, Bell V. Being an informed consumer of health information and assessment of electronic health literacy in a national sample of internet users: Validity and reliability of the e-HLS instrument. J Med Internet Res. 2016; 18(7):e161. https://doi.org/10.2196/jmir.5496 PMID: 27400726

187. Van der Vaart R, Drossaert C. Development of the digital health literacy instrument: Measuring a broad spectrum of health 1.0 and health 2.0 skills. J Med Internet Res. 2017; 19(1):e19. https://doi.org/10.2196/jmir.6709 PMID: 28119275

188. Kayser L, Kamoe A, Furstrand B, Batterham R, Christensen KB, Elsworth G, et al. A multidimensional tool based on the eHealth literacy framework: Development and initial validity testing of the eHealth Literacy Questionnaire (eHLQ). J Med Internet Res. 2018; 20(2):e36. https://doi.org/10.2196/jmir.8371 PMID: 29430411

189. Paige SR, Stelzlton M, Krieger JL, Miller MD, Cheong J, Anderson-Lewis C. Transactional eHealth literacy: Developing and testing a multi-dimensional instrument. J Health Commun. 2019; 24(10):737–748. https://doi.org/10.1080/10810730.2019.1666940 PMID: 31593963

190. Woudstra AJ, Smets EM, Galenkamp H, Fransen MP. Validation of health literacy domains for informed decision making about colorectal cancer screening using classical test theory and item
response theory. Patient Educ Couns. 2019; 102(12):2335–2343. https://doi.org/10.1016/j.pec.2019.09.016 PMID: 31561933

197. Castellvi P, Casanas R, Arfuch VM, Gil Moreno JJ, Torres Torres M, Garcia-Forero C, et al. Development and validation of the Espaijo ve.net Mental Health Literacy (EMHL) test for Spanish adolescents. Int J Environ Res Public Health. 2020; 17(1):72.

198. Liu HX, Chow BC, Liang W, Hassel H, Huang YW. Measuring a broad spectrum of eHealth skills in the Web 3.0 context using an eHealth literacy scale: Development and validation study. J Med Internet Res. 2021; 23(9):e1627. https://doi.org/10.2196/31627 PMID: 34540987

199. Duong TV, Chiu CH, Lin CY, Chen YC, Wong TC, Chang PWS, et al. e-Healthy diet literacy scale and its relationship with behaviors and health outcomes in Taiwan. Health Promot Int. 2021; 36(1):20–33. https://doi.org/10.1093/heapro/daa033 PMID: 32267935

200. Ibrahim SY, Reid F, Show A, Rowlands G, Gomez GB, Chesnokov M, et al. Validation of a health literacy screening tool (REALM) in a UK population with coronary heart disease. Int J Public Health. 2008; 53:449–455.

201. Han HR, Kim J, Kim MT, Kim KB. Measuring health literacy among immigrants with a phonetic primary language: A case of Korean American women. J Immigr Minor Health. 2011; 13:253–259. https://doi.org/10.1007/s10903-010-9366-0 PMID: 20585985

202. Fadda M, Karaj M, Kabakian-Khasholian T, Schulz PJ. Validation of three Arabic health literacy assessment tools in Lebanon. Health Promot Int. 2018; 33(2):261–267. https://doi.org/10.1093/heapro/daw079 PMID: 27651348

203. Arozullah AM, Yarnold PR, Bennett CL, Soltysik RC, Wolf MS, Ferreira RM, et al. Development and validation of a short-form, rapid estimate of adult literacy in medicine. Med Care. 2007; 45(11):1026–1033. https://doi.org/10.1097/MLR.0b013e3180616c1b PMID: 18049342

204. Erby LH, Roter D, Larson S, Cho J. The Rapid Estimate of Adult Literacy in Genetics (REAL-G): A means to assess literacy deficits in the context of genetics. Am J Med Genet. 2008; 146A (2):174–181. https://doi.org/10.1002/ajmg.a.32068 PMID: 18076116

205. Rodriguez SA, Roter DL, Castillo-Salgado C, Hooker GW. Translation and validation of a Spanish-language genetic health literacy screening tool. Health Psychology. 2015; 34(2):120–129. https://doi.org/10.1037/hea000162 PMID: 25622082

206. Wallace LS, Ergen WF, Cassada DC, Freeman MB, Grandas OH, Stevens SL, et al. Development and validation of the Rapid Estimate of Adult Literacy in Vascular Surgery (REAL- VS). Ann Vasc Surg. 2008; 23(4):446–452. https://doi.org/10.1016/j.avsg.2008.08.005 PMID: 19059757

207. Davis TC, Wolf MS, Arnold CL, Byrd RS, Long SW, Springer T, et al. Development and validation of the Rapid Estimate of Adolescent Literacy in Medicine (REALM-Teen): A tool to screen adolescents for below-grade reading in health care settings. Pediatrics. 2006; 118; e1707. https://doi.org/10.1542/peds.2006-1139 PMID: 17142495

208. Caldwell EP, Carter P, Becker H, Mackert M. The use of the newest vital sign health literacy instrument in adolescents with sickle cell disease. J Pediatr Oncol Nurs. 2018; 35(5):361–367. https://doi.org/10.1177/1043454218767875 PMID: 29658377

209. Lee JY RG, Lee SYD, Bender D, Ruiz RE. Development of a word recognition instrument to test health literacy in dentistry: The REALD-30-A brief communication. J Public Health Dent. 2007; 67:94–98. https://doi.org/10.1177/1043454217676785 PMID: 23293880

210. Deodh S, Chaichit R, Muktabhand B, Udompich S. Reliability and validity of the thai version of rapid estimate of adult literacy in dentistry. J Int Oral Health. 2011; 11:132–136.

211. Gironda M, Der-Martirosian C, Messadi D, Holtzman J, Atchison K. A brief 20-item dental/medical health literacy screen (REALMD-20). J Public Health Dent. 2013; 73(1):50–55. https://doi.org/10.1111/jphd.12005 PMID: 23293880

212. Bado FM, Rebustini F, Jamieson L, Cortellazzi KL, Mialhe FL. Evaluation of the psychometric properties of the Brazilian version of the oral health literacy assessment in Spanish and development of a
shortened form of the instrument. Plos One. 2018; 13(11): e0207989. https://doi.org/10.1371/journal.
pone.0207989 PMID: 30496226

216. Jovic-Vranes A, Bjegovic-Mikanovic V, Marinkovic J, Vukovic D. Evaluation of a health literacy screening tool in primary care patients: Evidence from Serbia. Health Promot Int. 2014; 29:601–607. https://doi.org/10.1080/13540851.2014.934128 PMID: 24345940

217. Hæsum LKE, Ehlers L, Hejlesen OK. Validation of the test of functional health literacy in adults in a Danish population. Scandinavian Int J Caring Sci. 2015; 29;573–581.

218. Chisolm DJ, Buchanan L. Measuring adolescent functional health literacy: A pilot validation of the test of functional health literacy in adults. J Adolesc Health. 2007; 41:312–314. https://doi.org/10.1016/j.jadohealth.2007.04.015 PMID: 17707303

219. Toci E, Burazeri G, Slrensen K, Kamberi H, Brand H. Concurrent validation of two key health literacy instruments in a south eastern European population. Eur J Public Health. 2015; 25(3):482–486. https://doi.org/10.1093/eurpub/cku190 PMID: 25395401

220. Gong DA, Lee JY, Rozier RG, Pahel BT, Richman JA, Vann WF. Development and Testing of the Test of Functional Health Literacy in Dentistry (TOFHLID). J Public Health Dent. 2007; 67:105–112. https://doi.org/10.1111/j.1752-7325.2007.00023.x PMID: 17557682

221. Wanichsaithong P, Goodwin M, Pretty IA. Development and pilot study of an oral health literacy tool for older adults. J Investig Clin Dent. 2019; 00: e12465. https://doi.org/10.1111/jicd.12465 PMID: 31622547

222. Alkhaldi TM, Al-Jumaili AA, Alnemer KA, Alharbi K, Al-Akeel ES, Alharbi MH, et al. Measuring the health literacy level of Arabic speaking population in Saudi Arabia using translated health literacy instruments. Pharm Pract. 2018; 16(3):1223. https://doi.org/10.18549/PharmPract.2018.03.1223 PMID: 30416624

223. Al-Jumaili AA, Al-Rekabi MD, Sorofman B. Evaluation of instruments to assess health literacy in Arabic language among Iraqis. Res Social Adm Pharm. 2015; 11(6):803–813. https://doi.org/10.1016/j.sapharm.2015.02.002 PMID: 25800139

224. Eyuboglu E, Schulz PJ. Validation of Turkish health literacy measures. Health Promot Int. 2016; 31:355–362. https://doi.org/10.1093/heapro/dau111 PMID: 25586111

225. Rivero-Mendez M, Suarez E, Solis-Baez SS, Hernandez G, Cordero W, Vazquez I, et al. Internal Consistency of the Spanish Health Literacy Test (TOFHLA-SPR) for Puerto Rico. P R Health Sci J. 2010; 29:49–53. PMID: 20221043

226. Mantwill S. Peter J. Schulz PJ. Health literacy in Mainland China: Validation of a functional health literacy test in simplified Chinese. Health Promot Int. 2015; 31(4):742–748. https://doi.org/10.1093/heapro/dav043 PMID: 26071605

227. Mock MS. Sethares KA. Concurrent validity and acceptability of health literacy measures of adults hospitalized with heart failure. Appl Nurs Res. 2019; 46:50–56. https://doi.org/10.1016/j.apnr.2019.02.007 PMID: 30853076

228. Chang LC, Hsieh PL, Liu CH. Psychometric evaluation of the Chinese version of short-form test of functional health literacy in adolescents. J Clin Nurs. 2012; 21:2429–2437. https://doi.org/10.1111/j.1365-2702.2012.04147.x PMID: 22784219

229. Baron-Epel O, Balin L, Daniely Z, Eidelman S. Validation of a Hebrew health literacy test. Patient Educ Couns. 2007; 67:235–239. https://doi.org/10.1016/j.pec.2007.02.005 PMID: 17386994

230. Chakkalakal RJ, Venkatraman S, White RO, Kripalani S, Rothman R, Wallston K. Validating health literacy and numeracy measures in minority groups. HLRP. 2017; 1(2): e23–e30. https://doi.org/10.3928/24748307-20170329-01 PMID: 29883442

231. Russell AM, Patel DA, Curtis LM, Kim KY, Wolf MS, Rowland ME, et al. Test-retest reliability of the newest vital sign health literacy instrument: In-person and remote administration. Patient Educ Couns. 2019; 102(4):749–752. https://doi.org/10.1016/j.pec.2018.11.016 PMID: 30503639

232. McKee MM, Paasche-Orlow MK, Winters PC, Fiscella K, Zazove P, Sen A, et al. Assessing health literacy in deaf American sign language users. J Health Commun. 2015; 20(Suppl 2):92–100. https://doi.org/10.1080/10810730.2015.1066468 PMID: 26510306

233. Pereira Cruvinel AF, Cusicanqui Mendez DA, Campos Chaves G, Gutieres E, Lotto M, Marchini Oliveira T, et al. The Brazilian validation of a health literacy instrument: The newest vital sign. Acta Odontol Scand. 2018; 76(8):587–594. https://doi.org/10.1080/00016357.2018.1484511 PMID: 30045650

234. Santos O, Stefanovska-Petkovska M, Virgolino A, Miranda AC, Costa J, Fernandes E, et al. Functional health literacy: psychometric properties of the newest vital sign for Portuguese adolescents (NVS-PTeen). Nutrients. 2021; 13(3):790. https://doi.org/10.3390/nu13030790 PMID: 33673682
235. Capecchi L, Guazzini A, Lorini C, Santomauro F, Bonaccorsi G. The first Italian validation of the most widespread health literacy assessment tool: The newest vital sign. Epidemiologia e Prevenzione. 2015; 39(Suppl 1):124–128. PMID: 26494929

236. Tseng HM, Liao SF, Wen YP, Chuang YJ. Adaptation and validation of a measure of health literacy in Taiwan: The newest vital sign. Biomed J. 2018; 41(4):273–278. https://doi.org/10.1016/j.bj.2018.07.001 PMID: 30348271

237. Rodrigues R, de Andrade SM, Gonzalez AD, Birolim MM, Mesas AE. Cross-cultural adaptation and validation of the Newest Vital Sign (NVS) health literacy instrument in general population and highly educated samples of Brazilian adults. Public Health Nutr. 2017; 20(11):1907–1913. https://doi.org/10.1017/S1368980017000778 PMID: 28514977

238. Rowlands G, Khazaeddin N, Ong-Ntam E, Seed P, Barr S, Weiss B.D. Development and validation of a measure of health literacy in the UK. The newest vital sign. BMC Public Health. 2013; 13(1):1–9.

239. Fransen MP, Leenaars KEF, Rowlands G, Weiss BD, Maat HP, Essink-Bot ML. International application of health literacy measures: Adaptation and validation of the newest vital sign in the Netherlands. Patient Educ Couns. 2014; 97:403–409. https://doi.org/10.1016/j.pec.2014.08.017 PMID: 25224314

240. Ciftci F, Demirci H, Ciftci HN, Ocakoglu G. Validation of Turkish version of newest vital sign scale to assess health literacy. Bezmialem Sci. 2021; 9(2):219–225.

241. Al-Abdulrazzaq D, Al-Taair A, Al-Haddad M, Al-Tarawa A, Al-Zanati N, Al-Yousef A, et al. Cultural adaptation of health literacy measures: Translation validation of the newest vital sign in Arabic-speaking parents of children with type 1 diabetes in Kuwait. The Science of Diabetes Self-Management and Care. 2021; 47(2):164–172. https://doi.org/10.1177/0145721721996309 PMID: 34078178

242. Maat HP, Essink-Bot ML, Leenaars KE, Fransen MP. A Short Assessment of Health Literacy (SAHL) in the Netherlands. BMC Public Health. 2014; 14(1):1–8.

243. Apolinario D, Oliveira RDC, Braga P, Magalidli RM, Busse AL, Campora F, et al. Short assessment of health literacy for Portuguese-Speaking adults. Rev Saude Publica. 2012; 46:702–711. https://doi.org/10.1590/S0034-89102012050000047 PMID: 22782124

244. Pires C, Rosa P, Vigario M, Cavaco A. Short Assessment of Health Literacy (SAHL) in Portugal: Development and validation of a self-administered tool. Prim Health Care Res. 2018; 20(e51):1–18. https://doi.org/10.1017/S1463423618000087 PMID: 29444735

245. Espirito-Santo M, Nascimento T, Pinto E, De Sousa-Coelho AL, Newman J. Health literacy assessment: Translation and cultural adaptation to the Portuguese population. J Eval Clin Pract. 2020; 26(5):1399–1405. https://doi.org/10.1111/jep.13319 PMID: 31867875

246. Woudstra AJ, Meppelink CS, Maat HP, Oosterhaven J, Fransen MP, Dim LA. Validation of the Short Assessment of Health Literacy (SAHL-D) and short-form development: Rasch analysis. BMC Med Res Methodol. 2019; 19(1):1–10.

247. Lee SYD, Stucky BD, Lee JY, Rozier RG, Bender DE. Short assessment of health literacy-Spanish and English: A comparable test of health literacy for Spanish and English speakers. Health Serv Res. 2010; 45:1105–1120. https://doi.org/10.1111/j.1475-6773.2010.01119.x PMID: 20500222

248. Paiva D, Silva S, Severoa M, Moura-Ferreirao P, Luneta N, Azevedoa A. Validation of the short assessment of health literacy in portuguese-speaking adults in Portugal. Gac Sanit. 2017; 53(3):205–212. https://doi.org/10.4415/ANN_17_03_05 PMID: 28956799

249. Bonaccorsi G, Grazzini M, Pieri L, Santomauro F, Ciancio M, Lorini C. Assessment of health literacy and validation of Single-Item Literacy Screener (SILS) in a sample of Italian people. Ann Ist Super Sanita. 2017; 53(3):205–212. https://doi.org/10.4415/ANN_17_03_05 PMID: 31155446

250. Luoa H, Patlib SP, Wuc Q, Bella RA, Cummings DM, Adamsb AD, et al. Validation of a combined health literacy and numeracy instrument for patients with type 2 diabetes. Patient Educ Couns. 2018; 101(10):1846–1851. https://doi.org/10.1016/j.pec.2018.05.017 PMID: 29805071

251. Dwinger S, Kriston L, Harter M, Dirmaier J. Translation and validation of a multidimensional instrument to assess health literacy. Health Expect. 2015; 18(6):2776–2786. https://doi.org/10.1111/hex.12252 PMID: 25155949

252. Van de Vaart R, Drossaert CHC, Taal E, Klooster PMT, Hilderink-Koertshuis RTE, Klasse JM, et al. Validation of the Dutch functional, communicative and critical health literacy scales. Patient Educ Couns. 2012; 89:82–88. https://doi.org/10.1016/j.pec.2012.07.014 PMID: 22878030

253. Ousseine YM, Rouquette A, Bouhnik AD, Rigal L, Ringa V, Smith AB, et al. Validation of the French version of the Functional, Communicative and Critical Health Literacy scale (FCCHL). J Patient-Rep Outcomes. 2018; 2:3.

254. Reisi M, Mostafavi F, Jadavizade H, Mahaki B, Sharifirad G, Tavassoli E. The Functional, Communicative, and Critical Health Literacy (FCCHL) Scales: Cross-cultural adaptation and the psychometric properties of the Iranian version. Iran Red Crescent Med J. 2017; 19(1):e29700.
255. Ishikawa H, Nomura K, Sato M, Yano E. Developing a measure of communicative and critical health literacy: A pilot study of Japanese office workers. Health Promot Int. 2008; 23:269–274. https://doi.org/10.1093/heapro/dan017 PMID: 18515303

256. McDonald F, Patterson P, Costa DSJ, Shepherd HLS. Validation of a health literacy measure for adolescents and young adults diagnosed with cancer. J Adolesc Young Adult Oncol. 2015; 5(1):69–75. https://doi.org/10.1089/jayao.2014.0043 PMID: 26812455

257. Merker VL, McDaniel S, Riklin E, Talaei-Khoei M, Monica R, Jordan JT, et al. Health literacy assessment in adults with neurofibromatosis: electronic and short-form measurement using FCCHL and health LiTT. J Neurooncol. 2018; 136:335–342. https://doi.org/10.1007/s11060-017-2657-8 PMID: 29119424

258. Zegers CA, Gonzales K, Smith L, Pullen C, De Alba C, Fianik K. The psychometric testing of the functional, communicative, and critical health literacy tool. Patient Educ Couns. 2020; 103 (11):2347–2352. https://doi.org/10.1016/j.pec.2020.05.019 PMID: 32622692

259. Lee EH, Lee YW. First-order vs. second-order structural validity of the health literacy scale in patients with diabetes. Scand J Caring Sci. 2018; 32(1):441–447. https://doi.org/10.1111/scs.12460 PMID: 28771769

260. Wangdahl JM, Martensson LI. Measuring health literacy—the Swedish functional health literacy scale. Scand J Caring Sci. 2015; 29:165–172. https://doi.org/10.1111/scs.12125 PMID: 24628048

261. Finbraten HS, Guttersrud Q, Nordstrom G, Pedersen KS, Tollefson B. Validating the functional, communicative, and critical health literacy scale using rasch modeling and confirmatory factor analysis. J Nurs Meas. 2018; 26(2):341–363. https://doi.org/10.1891/1061-3749.26.2.341 PMID: 30567948

262. McNaughton C, Wallston KARothman RL, Marcovitz DE, Storrow AB. Short, subjective measures of numeracy and general health literacy in an adult emergency department. Acad Emerg Med. 2011; 18:1148–1155. https://doi.org/10.1111/j.1553-2712.2011.01210.x PMID: 22092896

263. Woods NK, Chesser AK. Validation of a single question health literacy screening tool for older adults. GMM. 2017; 3:1–4.

264. Shaw TC. Uncovering health literacy: Developing a remotely administered questionnaire for determining health literacy levels in health disparate populations. J Hosp Adm. 2014; 3(4):140–156. https://doi.org/10.5430/jha.v3n4p140 PMID: 25126152

265. Sarkar U, Schilling D, Lopez A, Sudore R. Validation of self-reported health literacy questions among diverse English and Spanish-speaking populations. J Gen Intern Med. 2010; 26(3):265–271. https://doi.org/10.1007/s11606-010-1552-1 PMID: 21057882

266. Bishop WP, Craddock Lee SJ, Skinner CS, Jones TM, McCallister K, Tiro JA. Validity of single-item screening for limited health literacy in English and Spanish speakers. Am J Public Health. 2016; 106 (5):889–892. https://doi.org/10.2105/AJPH.2016.303092 PMID: 26985600

267. Mantwill S, Allam A, Camerini AL, Schulz PJ. Validity of three brief health literacy screeners to measure functional health literacy—evidence from five different countries. J Health Commun. 2018; 23 (2):153–161. https://doi.org/10.1080/10810730.2017.1417515 PMID: 29319424

268. Ardic A, Demirci H, Ocakoglu G, Demirci N. Validity and reliability of the Turkish version of the public health literacy knowledge scale. Eur J Public Health. 2021; 1(1), 33–44.

269. Biasio LR, Corbellini G, D'Alessandro D. An Italian validation of “meter”, an easy-to-use health literacy (hl) screener. Annali di Igiene Ann ig Med Prev Comunita. 2017; 29:171–178. https://doi.org/10.7416/ai.2017.2144 PMID: 28383608

270. Paiva D, Silva S, Severo M, Ferreira P, Santos O, Lunet N, et al. Cross-cultural adaptation and validation of the health literacy assessment tool METER in the Portuguese adult population. Patient Educ Couns. 2014; 97(2):269–275. https://doi.org/10.1016/j.pec.2014.07.024 PMID: 25107513

271. Bann CM, McCormack LA, Berkman ND, Squiers LB. The health literacy skills instrument: A 10-item short form. J Health Commun. 2012; 17:191–202. https://doi.org/10.1080/10810730.2012.718042 PMID: 23030570

272. Maindal HT, Kayser L, Norgaard O. Cultural adaptation and validation of the Health Literacy Questionnaire (HLQ): Robust nine-dimension Danish language confirmatory factor model. Springerplus. 2016; 5(1):1–6. https://doi.org/10.1186/s40064-016-2887-9 PMID: 27536516

273. Kolarcik P, Cepova E, Madarasova Geckova A. Structural properties and psychometric improvements of the health literacy questionnaire in a Slovakia. Int J Public Health. 2017; 62:591–604. https://doi.org/10.1007/s00038-017-0945-x PMID: 28258403

274. Urstad KH, Andenes R, Wahl AK, Kvarme LG, Helseth S, Mourt M. The health literacy questionnaire: Initial validity testing in a Norwegian sample. HLRP. 2020; 4(4):e190–199. https://doi.org/10.3928/24748307-20200903-01 PMID: 33034661
275. Boateng MA, Agyei-Baffour P, Angel S, Enemark U. Translation, cultural adaptation and psychometric properties of the Ghanaian language (Akan; Asante Twi) version of the health literacy questionnaire. BMC Health Serv Res. 2020; 20(1):1–5. https://doi.org/10.1186/s12913-020-05932-w PMID: 3228648

276. Nolte S, Osborne RH, Dwinger S, Elsworth GR, Conrad ML, Rose M, et al. German translation, cultural adaptation, and validation of the Health Literacy Questionnaire (HLQ). Plos one. 2017; 12(2): e0172340. https://doi.org/10.1371/journal.pone.0172340 PMID: 28234987

277. Morris RL, Soh SE, Hill KD, Buchbinder R, Lowthian JA, Redfern J, et al. Measurement properties of the Health Literacy Questionnaire (HLQ) among older adults who present to the emergency department after a fall: A Rasch analysis. BMC Health Serv Res. 2017; 17(1):1–11.

278. Elsworth GR, Beauchamp A, Osborne RH. Measuring health literacy in community agencies: A Bayesian study of the factor structure and measurement invariance of the Health Literacy Questionnaire (HLQ). BMC Health Serv Res. 2016; 16(1):1–4. https://doi.org/10.1186/s12913-016-1754-2 PMID: 27659559

279. Huang Y, Ruan T, Yi Q, Wang T, Guo Z. The health literacy questionnaire among the aged in Changsha, China: Conrmatory factor analysis. BMC Public Health. 2019; 19(1):1–2.

280. Zhang L, Ding D, Fethney J, Gallagher R. A psychometric evaluation of the health literacy questionnaire into Urdu: A robust nine-dimension confirmatory factor model. Health Promot Int. 2021; 36(5):1219–1230. https://doi.org/10.1093/heapro/daa149 PMID: 33970429

281. Wahl AK, Hermansen A, Osborne RH, Larsen MH. A validation study of the Norwegian version of the Health Literacy Questionnaire: A robust nine-dimension factor model. Scand J Public Health. 2021; 49(4):471–478. https://doi.org/10.1177/1403494820926426 PMID: 32508258

282. Wuhr AK, Hermansen A, Osborne RH, Larsen MH. A validation study of the Norwegian version of the Health Literacy Questionnaire: A robust nine-dimension factor model. Scand J Public Health. 2021; 49(4):471–478. https://doi.org/10.1177/1403494820926426 PMID: 32508258

283. Mbada CE, Johnson OE, Oyewole OO, Adejube OJ, Fatoye C, Idowu OA, et al. Cultural adaptation and psychometric evaluation of the Yoruba version of the Health Literacy Questionnaire. Ann Ig Med Prev Comunit. 2022; 34(1):54–69. https://doi.org/10.7416/ai.2021.2470 PMID: 34698762

284. Wagner AF, Hill K, Toye C, Ferreira M, Bertoni A, Slatyer S, et al. Test-retest reliability of the Health Literacy Questionnaire (HLQ-Br) in Brazilian carers of older people. Rev Assoc Med Bras. 2021; 67:500–504. https://doi.org/10.1906/8906-9282.20201102 PMID: 34495051

285. Moraes KL, Brsili VV, Mialhe FL, Sampaio HA, Sousa AL, Canhestro MR, et al. Validation of the Health Literacy Questionnaire (HLQ) to Brazilian Portuguese. ACTA Paul Enferm. 2021; 34(1): eAPE02171.

286. Debuissche X, Caroupin-Soupouteijn J, Balcou-Debuissche M, Fassier M, Boegner C, Hawkins M, et al. Health literacy needs among migrant populations in France: Validity testing and potential contribution of the Health Literacy Questionnaire (HLQ). J Public Health. 2021:1–9.

287. Debuissche X, Lenoctume V, Balcou-Debuissche M, Alakian D, Sokolowsky C, Battler D, et al. Characterisation of health literacy strengths and weaknesses among people at metabolic and cardiovascular risk: Validity testing of the health literacy questionnaire. SAGE Open Med. 2018; 6:1–12. https://doi.org/10.1177/2050312118801250 PMID: 30317779

288. Leslie CJ, Hawkins M, Smith DL. Using the Health Literacy Questionnaire (HLQ) with providers in the early intervention setting: A qualitative validity testing study. J Environ Res Public Health. 2020; 17(7):2603. https://doi.org/10.3390/jerph17072603 PMID: 32290295

289. Abagail F, Harlak H, Oyay P, Kiraz D, Gursoy Turan S, Sanuhun G, et al. Validity and reliability of the Turkish version of the European health literacy survey questionnaire. Health Promot Int. 2019; 34(4):658–667. https://doi.org/10.1093/heapro/day020 PMID: 29648593

290. Duong TV, Aringazina A, Basunova G, Pham TV, Pham KM, Truong TQ, et al. Measuring health literacy in Asia: Validation of the HLS-EU-Q47 survey tool in six Asian countries. J Epidemiol. 2017; 27(2):80–86. https://doi.org/10.1093/jjepm/jew012 PMID: 28142016

291. Duong VT, Lin IF, Sorensen K, Pelikan JM, Van den Broucke S, Lin YC, et al. Health literacy in Taiwan: A population-based study. Asia Pac J. 2015; 27:871–880. https://doi.org/10.1177/1010395515607962 PMID: 26419635
294. Huang YJ, Chen CT, Lin GH, Wu TY, Chen SS, Lin LF, et al. Evaluating the European health literacy survey questionnaire in patients with stroke: A latent trait analysis using Rasch modeling. Patient. 2018; 11(1):83–96. https://doi.org/10.1007/s40271-017-0267-3 PMID: 28710681

295. Huang YJ, Lin GH, Lu WS, Tam KW, Chen C, Hou WH, et al. Validation of the European health literacy survey questionnaire in women with breast cancer. Cancer Nurs. 2018; 41(2): e40–8. https://doi.org/10.1097/NCC.0000000000000475 PMID: 28221213

296. Chu-Ko F, Chong ML, Chung CJ, Chang CC, Liu HY, Huang LC. Exploring the factors related to adolescent health literacy, health-promoting lifestyle profile, and health status. BMC public health. 2021; 21(1):1–2.

297. Finbraten HS, Pettersen KS, Wilde-Larsen B, Nordstrom G, Trollvik A, Guttersrud O. Validating the European health literacy survey questionnaire in people with type 2 diabetes: Latent trait analyses applying multidimensional Rasch modelling and confirmatory factor analysis. J Adv Nurs. 2017; 73(11):2730–2744. https://doi.org/10.1111/jan.13342 PMID: 28543754

298. Nakayama K, Osaka W, Togari T, Ishikawa H, Yoneykura Y, Sekido A, et al. Comprehensive health literacy in Japan is lower than in Europe: A validated Japanese-language assessment of health literacy. BMC Public Health. 2015; 15(1):1–2. https://doi.org/10.1186/s12889-015-0835-x PMID: 26001385

299. Thao NTH, Thanh PH, Tai TP, Hang NT, Nga NT, Linh TTT, et al. Reliability and validity of health literacy questionnaire (new vietnamese version of hls-eu-q47) among mothers of children under 3-year at two vaccination centers in hanoi in 2019. J Med Res. 2020; 127(E6):3.

300. Bas-Sarmiento P, Poza-Mendez M, Fernandez-Gutierrez M, Gonzalez-Caballero JL, Romero MF. Psychometric assessment of the European Health Literacy Survey Questionnaire (HLS-EU-Q16) for Arabic/French-Speaking migrants in Southern Europe. Int J Environ. 2020; 17:8181. https://doi.org/10.3390/ijerph17218181 PMID: 33167475

301. Go E, Aygar H, Isiktekin B. Health literacy scale-European union-Q16: A validity and reliability study in Turkey. ISC. 2018; 6(1):1–7.

302. Lorini C, Lastrucci V, Mantwill S, Vettori V, Bonaccorsi G. Measuring health literacy in Italy: A validation study of the HLS-EU-Q16 and of the HLS-EU-Q6 in Italian language, conducted in Florence and its surroundings. Ann Ist Super Sanita. 2019; 55(1):10–18. https://doi.org/10.4415/ANN_19_01_04 PMID: 30968831

303. Gustafsdottir SS. Translation and cross-cultural adaptation of the European Health Literacy Survey Questionnaire, HLS-EU-Q16: The Icelandic version. BMC Public Health. 2020; 20(1):61. https://doi.org/10.1186/s12889-020-08126-6 PMID: 31937293

304. Rouquette A, Nadot T, Labitrie P, Van den Broucke S, Mancini J, Rigal L, et al. Validity and measurement invariance across sex, age, and education level of the French short versions of the European health literacy survey questionnaire. Plos One. 2018; 13(12): e0208091. https://doi.org/10.1371/journal.pone.0208091 PMID: 30251552

305. Bas-Sarmiento P, Poza-Mendez M, Fernandez-Gutierrez M, Gonzalez-Caballero JL, Romero MF. Psychometric assessment of the European Health Literacy Survey Questionnaire (HLS-EU-Q16) for Arabic/French-Speaking migrants in Southern Europe. Int J Environ. 2020; 17:8181. https://doi.org/10.3390/ijerph17218181 PMID: 33167475

306. Wangdahl JM, Dahlberg K, Jaensson M, Nilsson U. Psychometric validation of Swedish and Arabic versions of two health literacy questionnaires, eHEALS and HLS-EU-Q16, for use in a Swedish context: A study protocol. BMJ Open. 2019; 9: e029668. https://doi.org/10.1136/bmjopen-2019-029668 PMID: 31530602

307. Maie A, Kanekuni S, Yoneykura Y, Nakayama K, Sakai R. Evaluating short versions of the European Health Literacy Survey Questionnaire (HLS-EU-Q47) for health checkups. Health Promot Int. 2021:2020–2028.

308. Malhe FL, Moraes KL, Bado FM, Brasil VV, Sampaio HA, Rebustini F. Psychometric properties of the adapted instrument European health literacy survey questionnaire short-short form. Rev Latino-Am Enfermagem. 2021; 29: e4346. https://doi.org/10.1590/1518-8345.4362.3436 PMID: 34231791

309. Toor MA. Translation and adaptation of European health literacy survey questionnaire for Urdu speaking school going adolescents in Pakistan. Int Soc Sci Rev. 2021; 9(2):174–180.

310. Konopik N, Kaspar R, Penger S, Oswald F, Himmelsbach I. Advancing health literacy measurement in old age. Health Promot Int. 2021; 36(5):1310–1323. https://doi.org/10.1093/heapro/ddaa137 PMID: 33462608

311. Rouquette A, Rigal L, Mancini J, Guillermi F, Van den Broucke S, Allaire C, et al. Health Literacy throughout adolescence: Invariance and validity study of three measurement scales in the general population. Patient Educ Couns. 2021. [In Press]. https://doi.org/10.1016/j.pec.2021.07.044 PMID: 34384639
312. Yari A, Soofimajidpoor M, Moradi G, Bidarpoor F, Nadrian H, Iranpoor A, et al. Measuring the constructs of health literacy in the Iranian adult Kurdish population. BMC Public Health. 2021; 21(1):1–10.

313. Van Duong T, Chang PW, Yang SH, Chen MC, Chao WT, Chen T, et al. A new comprehensive short-form health literacy survey tool for patients in general. Asian Nurs Res. 2017; 11(1):30–35.

314. Duong TV, Nguyen TT, Pham KM, Nguyen KT, Giap MH, Tran TD, et al. Validation of the Short-Form Health Literacy Questionnaire (HLS-SF12) and its determinants among people living in rural areas in Vietnam. Int J Environ. 2019; 16(18):3346.

315. Sungur MA, Gamsizkan Z, Sungur DH. A short-form suggestion for the Turkish version of the European health literacy survey questionnaire: A development and validation study in university students. Glob Health Promot. 2021; 7:1–10. https://doi.org/10.1177/24748307-20180207-01 PMCID: 34933638

316. Zhang Q, Huang F, Liu Z, Zhang N, Mahapatra T, Tang W, et al. Cross-cultural validation of the high blood pressure health literacy scale in a Chinese community. Plos One. 2016; 11(4): e0152182. https://doi.org/10.1371/journal.pone.0152182 PMID: 27116336

317. Leung AY, Lau HF, Chau PH, Chan EW. Chinese Health Literacy Scale for Diabetes–Multiple-Choice version (CHLSD-MC): A validation study. J Clin Nurs. 2015; 24:2679–2682. https://doi.org/10.1111/jocn.12902 PMCID: 26178461

318. Dumenci L, Matsuyama RK, Riddle DL, Cartwright L, Siminoff LA. Validation of the cancer health literacy test-30 for populations without cancer. HLRP. 2018; 2(2):e58–66. https://doi.org/10.3928/24748307-20180207-01 PMCID: 31294278

319. Yue M, Zhang L, Lu Y, Jin C. Translation and psychometric evaluation of the Chinese version of the heart failure-specific health literacy scale. Int J Nurs Sci. 2016; 3(4):342–346.

320. Parandeh A, Rahmati-Najarkhameh Z, Farghadani Z, Rasky E. Validity and reliability evaluation of the Persian version of the heart failure-specific health literacy scale. IJCBNM. 2019; 7(3):222–230. https://doi.org/10.4103/ijcbnm.ijcbnm_398_19 PMCID: 31341921

321. Sermsuti-Anuwat N, Pongpanich S. Validation of Thai version of the health literacy in dentistry scale: Validation among Thai adults with physical disabilities. J Investig Clin Dent. 2019; 10(4): e12474. https://doi.org/10.1111/jicd.12474 PMCID: 31628878

322. Sermunts-Anuwat N, Pongpanich S. Validation of Thai version of the health literacy in dentistry scale: Validation among Thai adults with physical disabilities. J Investig Clin Dent. 2019; 10(4): e12474. https://doi.org/10.1111/jicd.12474 PMCID: 31628878

323. Blizniuk A, Ueno M, Furukawa S, Kawaguchi Y. Evaluation of a Russian version of the Oral Health Literacy Instrument (OHLI). BMC Oral Health. 2014; 14(1):1–7. https://doi.org/10.1186/1472-6831-14-141 PMCID: 25430803

324. Cartes-Velasquez RA, Machuca LL. Adaptation and validation of the oral health literacy instrument for the Chilean population. Int Dent J. 2017; 67(4):215–220. https://doi.org/10.1111/idj.12288 PMCID: 28439904

325. Ramlay MZ, Saddki N, Tin-Oo MM, Ariffin WN. Cross-cultural adaptation and validation of Oral Health Literacy Instrument (OHLI) for Malaysian adults. Int J Environ. 2020; 17(15):5407. https://doi.org/10.3390/ijerph17155407 PMCID: 32731318

326. Yin HS, Sanders LM, Rothman RL, Mendelsohn AL, Dreyer BP, White RO, et al. Assessment of health literacy and numeracy among Spanish-speaking parents of young children: Validation of the Spanish Parental Health Literacy Activities Test (PHLAT Spanish). Acad Pediatr. 2012; 12(1):68–74. https://doi.org/10.1016/j.acap.2011.08.008 PMCID: 22056223

327. Firmino RT, Granville-Garcia AF, McGrath CP, Bendo CB, Ferreira FM, Paiva SM. Validation for Brazilian Portuguese language of the Hong Kong Oral Health Literacy Assessment Task for Paediatric Dentistry (BOHLAT-P). Int J Paediatr Dent. 2020; 30(2):234–243. https://doi.org/10.1111/ipd.12585 PMCID: 31628878

328. Serrmsut-Anuwat N, Pongpanich S. Validation of Thai version of the health literacy in dentistry scale: Validation among Thai adults with physical disabilities. J Investig Clin Dent. 2019; 10(4): e12474. https://doi.org/10.1111/jicd.12474 PMCID: 31628878

329. Ju X, Brennan DS, Parker E, Chrisopoulos S, Jamieson L. Confirmatory factor analysis of the Health Literacy in Dentistry scale (HeLD) in the Australian population. Community Dent Health. 2018; 35(3):140–147. https://doi.org/10.1922/CDH.4325Ju06 PMCID: 30130002

330. Mialhe FL, Bado FM, Ju X, Brennan DS, Jamieson L. Validation of the health literacy in dentistry scale in Brazilian adults. Int J Dent. 2020; 70(2):116–126. https://doi.org/10.1111/idj.12531 PMCID: 31792976
331. Mialhe FL, Tenani CF, DE CHECC HI MH, Jamieson L, Xiangqun JU. Psychometric properties of health literacy in dentistry scale in an elderly Brazilian population. Braz Oral Res. 2020; 34: e021. https://doi.org/10.1590/1807-3107bor-2020.vol34.0021 PMID: 32187306

332. Jones K, Brennan D, Parker E, Jamieson L. Development of a short-form Health Literacy Dental scale (HeLD-14). Community Dent. 2015; 43(2):143–151.

333. Pattanaik S, John MT, Kohli N, Davison ML, Chung S, Self K, et al. Item and scale properties of the oral health literacy adults questionnaire assessed by item response theory. J Public Health Dent. 2021; 81(3):214–223. https://doi.org/10.1111/jphd.12434 PMID: 33305385

334. Flynn PM, John MT, Naik A, Kohli N, VanWormer JJ, Self K. Psychometric properties of the English version of the Oral Health Literacy Adults Questionnaire-OHL-AQ. Community Dent Health. 2016; 33(4):274–280. https://doi.org/10.1922/CDH_3868Flynn07 PMID: 28537364

335. Flynn PM, John MT, Sistani MM. Confirmation of the unidimensional structure of the oral health literacy adults questionnaire. Int Dent. 2019; 69(3):207–213. https://doi.org/10.1111/dj.12451 PMID: 30525199

336. Vyas S, Nagarajappa S, MISHRA P. Linguistic adaptation and psychometric evaluation of original Oral Health Literacy-Adult Questionnaire (OHL-AQ). JAMP. 2016; 4(2):163–169. PMID: 27795966

337. Ho MH, Montayre J, Chang HC, Joo JY, Naghibi Sistani MM, Lin YK, et al. Validation and evaluation of the Mandarin version of the oral health literacy adult questionnaire in Taiwan. Public Health Nurs. 2020; 37(2):303–309. https://doi.org/10.1111/phin.12688 PMID: 31742791

338. Weinert C, Shreffler-Grant J, Nichols E. Psychometric evaluation of the MSU CAM health literacy scale. Complement Ther Med. 2019; 42:156–157. https://doi.org/10.1016/j.ctim.2018.11.007 PMID: 30670236

339. Naz Akhter I, Ahmed A, Khalid S. Mental health literacy scale: Translation and validation in Pakistani context. PSSR. 2020; 4(2):722–735.

340. Korhonen J, Axelin A, Katajisto J, Lahti M. Construct validity and internal consistency of the revised mental health literacy scale in South African and Zambian contexts. Nurs Open. 2021. [Online ahead of print]. https://doi.org/10.1002/nop2.1132 PMID: 34822738

341. Dias Neto DA, Rocha I, Figueiras J, Nunes DA, Silva AN. Measuring mental health literacy: Adaptation and validation of the Portuguese version of the Mental Health Literacy Scale (MHLS). Eur J Ment Health. 2021; 16(1):64–77.

342. Heizomi H, Kouzekanani K, Jafarabadi MA, Allahverdipour H. Psychometric properties of the Persian version of mental health literacy scale. Int J Women’s Health. 2020; 12:513–520. https://doi.org/10.2147/IJWH.S252348 PMID: 32753978

343. Nejatian M, Tehrani H, Momeniyan V, Jafari A. A modified version of the Mental Health Literacy Scale (MHLS) in Iranian people. BMC psychiatry. 2021; 21(1):1–1.

344. Sahedamin Harouni G, Sajjadi H, Forouzan AS, Ahmadi S, Ghaafari M, Vameghi M. Validation of the Persian version of the mental health literacy scale in Iran. Asia Pac Psychiatry. 2021; 13(1):12447. https://doi.org/10.1111/appy.12447 PMID: 34177650

345. Bessing B, Honan CA, van der Mei I, Taylor BB, Claflin SB. Rasch analysis of the health literacy questionnaire in the understanding multiple sclerosis online course cohort. Int J Epidemiol. 2021; 50(Supplement_1):dyab168–076.

346. Sullivan P, Murphy J, Blacker M. The psychometric properties of the multicomponent mental health literacy measure with a sample of student athletes and student athletic therapists. J Appl Sport Psychol. 2021; 33(3):343–356.

347. Dias P, Campos L, Almeida H, Palha F. Mental health literacy in young adults: A dataation and psychometric properties of the mental health literacy questionnaire. Int J Environ. 2018; 15(7):1318.

348. Cho M, Lee H, Lee YM, Lee JY, Min H, Kim Y, et al. Psychometric properties of the Korean version of the Health Literacy on Social Determinants of Health Questionnaire (K-HL-SDHQ). Plos One. 2019; 14(11):e0224557. https://doi.org/10.1371/journal.pone.0224557 PMID: 31738802

349. Lee TW, Kang SJ. Development of the short form of the Korean health literacy scale for the elderly. Res Nurs Health. 2013; 36(5):524–534. https://doi.org/10.1002/nur.21556 PMID: 23918591
353. Pan FA. Short form of the Taiwan Health Literacy Scale (THLS) for Chinese-Speaking adults. International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering. 2010; 4:1054–1059.

354. Shih YL, Hsieh CJ, Li PS, Liu CY. Psychometric properties of the health literacy scale used in the Taiwan longitudinal study on middle-aged and older people. Healthcare. 2021; 9(10):1391. https://doi.org/10.3390/healthcare9101391 PMID: 34683071

355. Yuen E, Knight T, Dodson S, Chirgwin J,Busija L, Ricciardelli LA, et al. Measuring cancer caregiver health literacy: Validation of the Health Literacy of Caregivers Scale–Cancer (HLCS-C) in an Australian population. Health Soc Care Community. 2018; 26(3):330–344. https://doi.org/10.1111/hsc.12524 PMID: 29210140

356. Sarhan MB, Shannon HS, Fujiya R, Jimba M, Giacaman R. Psychometric properties of an Arabic-language Health Literacy Assessment Scale for Adolescents (HAS-A-AR) in Palestine. BMJ Open. 2020; 10(6): e034943. https://doi.org/10.1136/bmjopen-2019-034943 PMID: 32565466

357. Haney MO. Psychometric testing of the Turkish version of the health literacy for school-aged children. J Child Health Care. 2018; 22:97–107. https://doi.org/10.1177/1367493517738124 PMID: 29110532

358. Mazur J, Malkowska-Szkutnik A, Paakkari L, Paakkari O, Zawadzka D. The Polish version of the short scale measuring health literacy in adolescence. Dev Period Med. 2019; 23(3):190–198. https://doi.org/10.1016/j.devpemed.2019.03.003 PMID: 31654998

359. De Caro W, Corvo E. eHealth literacy scale: Online version validation in Italian. Prof inferm. 2017; 70 (5):21–24.

360. Van der Vaart R, van Deursen AJ, Drossaert CH, Taal E, van Dijk JA. Does the eHealth Literacy Scale (eHEALS) measure what it intends to measure? validation of a Dutch version of the eHEALS in two adult populations. J Med Internet Res. 2011; 13(4): e86. https://doi.org/10.2196/jmir.1840 PMID: 22071338

361. Zrubka Z, Hajdu O, Rencz F, Baji P, Gulacsi L, Pentek M. Psychometric properties of the Hungarian version of the eHealth literacy scale. Eur J Health Econ. 2019; 20(1):57–69. https://doi.org/10.1007/s10198-019-01062-1 PMID: 31098883

362. Effthymiou A, Middleton N, Charalambous A, Papastavrou E. Adapting the eHealth literacy scale for carers of people with chronic diseases (eHeals-Carer) in a sample of Greek and Cypriot carers of people with dementia: Reliability and validation study. J Med Internet Res. 2019; 21(11): e12504. https://doi.org/10.2196/jmir.1840 PMID: 31778120

363. Paige SR, Krieger JL, Stelfeloson M, Alber JM. eHealth literacy in chronic disease patients: An item response theory analysis of the eHealth Literacy Scale (eHEALS). Patient Educ Couns. 2017; 100 (2):320–326. https://doi.org/10.1016/j.pec.2016.09.008 PMID: 27658660

364. Sudbury-Riley L, FitzPatrick M, Schulz PJ. Exploring the measurement properties of the eHealth literacy scale (eHEALS) among baby boomers: A multinational test of measurement invariance. J Med Internet Res. 2017; 19(2): e53. https://doi.org/10.2196/jmir.5998 PMID: 28242590

365. Holch P, Marwood JR. eHealth literacy in UK teenagers and young adults: Exploration of predictors and factor structure of the eHealth Literacy Scale (eHEALS). JMIR Form Res. 2020; 4(9): e14450. https://doi.org/10.2196/14450 PMID: 32897230

366. Aponte J, Nokes KM. Validating an electronic health literacy scale in an older hispanic population. J Clin Nurs. 2017; 26(17–18):2703–2711. https://doi.org/10.1111/jocn.13763 PMID: 28207962
373. Nguyen J, Moorhouse M, Curbow B, Christie J, Walsh-Childers K, Islam S. Construct validity of the eHealth Literacy Scale (eHEALS) among two adult populations: A Rasch analysis. JPHS. 2016; 2(1): e24. https://doi.org/10.2196/publichealth.4967 PMID: 27244771

374. Stellefson M, Paige SR, Tennant B, Alber JM, Chaney BH, Chaney D, et al. Reliability and validity of the telephone-based eHealth literacy scale among older adults: Cross-sectional survey. J Med Internet Res. 2017; 19(10): e362. https://doi.org/10.2196/jmir.8481 PMID: 29074471

375. Chung SY, Nahm ES. Testing reliability and validity of the eHealth Literacy Scale (eHEALS) for older adults recruited online. CIN- Comput Inform Nurs 2015; 33(4):150–156. https://doi.org/10.1097/CIN.0000000000000146 PMID: 25783223

376. Wijaya MC, Kloping YP. Validity and reliability testing of the Indonesian version of the eHealth literacy scale during the COVID-19 pandemic. J Med Health. 2021; 27(1):1460458220975464. https://doi.org/10.1177/1460458220975464 PMID: 33446030

377. Duplaga M, Sobbecka K, Wojcik S. The reliability and validity of the telephone-based and online polish eHealth literacy scale based on two nationally representative samples. Int J Environ Res Public Health. 2019; 16(17):3216. https://doi.org/10.3390/ijerph16173216 PMID: 31484338

378. Hyde LL, Boyes AW, Evans TJ, Mackenzie RJ, Sanson-Fisher R. Three-factor structure of the eHealth literacy scale among magnetic resonance imaging and computed tomography outpatients: A confirmatory factor analysis. JMIR Hum Factors. 2018; 5(1): e6. https://doi.org/10.2196/humanfactors.9039 PMID: 29493536

379. Chun S, Park BK, Nahm ES. The Korean eHealth Literacy Scale (K-eHEALS): Reliability and validity testing in younger adults recruited online. J Med Internet Res. 2018; 20(4): e138. https://doi.org/10.2196/jmir.8759 PMID: 29678800

380. Gartrell K, Han K, Trinkoff A, Cho H. Three-factor structure of the eHealth Literacy Scale (eHEALS) among older adults recruited online. Int J Environ Res Public Health. 2019; 16(17):3216. https://doi.org/10.3390/ijerph16173216 PMID: 31484338

381. Wangdahl J, Dahlberg K, Jaensson M, Nilsson U. Arabic version of the electronic health literacy scale in Arabic-speaking individuals in Sweden: Prospective psychometric study. JMIR mHealth uHealth. 2020; 8(2): e16316.

382. Bazm S, Mirzei M, Failahzadeh H, Bazm R. Validity and reliability of the Iranian version of eHealth literacy scale. J Community Health Res. 2016; 5(2):121–130.

383. Lin CY, Brostrom A, Griffiths MD, Pakpour AH. Psychometric evaluation of the Persian eHealth Literacy Scale (eHEALS) among elder Iranians with heart failure. Eval Health Prof. 2020; 43(4):222–229. https://doi.org/10.1177/0163278719827997 PMID: 30744419

384. Gazibara T, Cakic J, Cakic M, Pekmezovic T, Grgurevic A. eHealth and adolescents in Serbia: Psychometric properties of eHEALS questionnaire and contributing factors to better online health literacy. Health Promot Int. 2019; 34(4):770–778. https://doi.org/10.1093/heapro/day028 PMID: 29800141

385. Brors G, Wentzel-Larsen T, Dalen H, Hansen TB, Norman CD, Wahl A, et al. Psychometric properties of the Norwegian version of the Electronic Health Literacy Scale (eHEALS) among patients after percutaneous coronary intervention: Cross-sectional validation study. J Med Internet Res. 2020; 22(7): e17312. https://doi.org/10.2196/17312 PMID: 32720900

386. Shiferaw KB. Validation of the Ethiopian version of eHealth Literacy Scale (ET-eHEALS) in a population with chronic disease. Risk Manag Healthc Policy. 2020; 13:465–71. https://doi.org/10.2147/RMHP.S240829 PMID: 32547277

387. Juvalta S, Kerry MJ, Jaks R, Baumann I, Dravta J. Electronic health literacy in Swiss-German parents: Cross-sectional study of eHealth literacy scale unidimensionality. J Med Internet Res. 2020; 22(3): e14492. https://doi.org/10.2196/14492 PMID: 32167476

388. Mialhe FL, Moraes KL, Sampaio HA, Brasil VV, Vila VD, Soares GH, et al. Evaluating the psychometric properties of the eHealth literacy scale in Brazilian adults. Rev bras enferm. 2021; 75(1): e20201320. https://doi.org/10.1590/0034-7167-2020-1320 PMID: 34495134

389. Baek JJ, Soares GH, da Rosa GC, Mialhe FL, Blazevic MG, Michel-Crosato E. Network analysis and psychometric properties of the Brazilian version of the eHealth literacy scale in a dental clinic setting. Int J Med Inform. 2021; 153:104532. https://doi.org/10.1016/j.ijmedinf.2021.104532 PMID: 34298425

390. Ma Z, Wu M. The psychometric properties of the Chinese eHealth Literacy Scale (C-eHEALS) in a Chinese rural population: Cross-sectional validation study. J Med Internet Res. 2019; 21(10): e15720. https://doi.org/10.2196/15720 PMID: 31642811

391. Xu RH, Zhou L, Lu SY, Wong EL, Chang J, Wang D. Psychometric validation and cultural adaptation of the simplified Chinese eHealth literacy scale: Cross-sectional study. J Med Internet Res. 2020; 22(12): e18613. https://doi.org/10.2196/18613 PMID: 33284123
392. He Y, Guo L, Zauszniewski JA, Wei M, Zhang G, Lei X, et al. A reliability and validity study of the electronic health literacy scale among stroke patients in China. Topics in Stroke Rehabilitation. 2021:1–9. https://doi.org/10.1080/10749357.2021.2016100 PMID: 34927574

393. Slesinger NC, Yost KJ, Choi SW, Hahn EA. Validation of a short form for health literacy assessment using talking touchscreen technology. HLRP. 2020; 4(4):e200–207. https://doi.org/10.3928/24748307-20200909-01 PMID: 33034662

394. Park E, Kwon M. Testing the digital health literacy instrument for adolescents: Cognitive interviews. J Med Internet Res. 2021; 23(3): e17856. https://doi.org/10.2196/17856 PMID: 33720031

395. Cheng C, Elsworth G, Osborne RH. Validity evidence based on relations to other variables of the eHealth Literacy Questionnaire (eHLQ): Bayesian approach to test for known-groups validity. J Med Internet Res. 2021; 23(10): e30243. https://doi.org/10.2196/30243 PMID: 34647897