Earthquake Nucleation Along Faults With Heterogeneous Weakening Rate

Mathias Lebihain\(^1\) \(^{,}\) Thibault Roch\(^1\) \(^{,}\) Marie Violay\(^1\) \(^{,}\) and Jean-François Molinari\(^1\)

\(^1\)Laboratory of Experimental Rock Mechanics, Civil Engineering Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, \(^2\)Laboratoire Navier, École des Ponts ParisTech, Université Gustave Eiffel, CNRS (UMR 8205), Marne-la-Vallée, France, \(^3\)Computational Solid Mechanics Laboratory, Civil Engineering Institute, Materials Science and Engineering Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Abstract The transition from quasistatic slip growth to dynamic rupture propagation constitutes one possible scenario to describe earthquake nucleation. If this transition is rather well understood for homogeneous faults, how the friction properties of multiscale asperities may influence the overall stability of seismogenic faults remains largely unclear. Combining classical nucleation theory and concepts borrowed from condensed matter physics, we propose a comprehensive analytical framework that predicts the influence of heterogeneities of weakening rate on the nucleation length \(L_e\) for linearly slip-dependent friction laws. Model predictions are compared to nucleation lengths measured from 2D dynamic simulations of earthquake nucleation along heterogeneous faults. Our results show that the interplay between frictional properties and the asperity size gives birth to three instability regimes (local, extremal, and homogenized), each related to different nucleation scenarios, and that the influence of heterogeneities at a scale far lower than the nucleation length can be averaged.

Plain Language Summary Earthquakes occur on fault. Faults are usually at rest, but they sometimes break and suddenly release a portion of the accumulated elastic energy during earthquake ruptures through radiated waves, which may harm populations and structures. Yet, the birth of earthquake (nucleation phase) is not an instantaneous process and may start with slow slip on the fault. Understanding precisely how this initial phase occurs is thus crucial in predicting earthquake motion. If geophysical models describe it well in an ideal case where the fault is made of the same exact material (homogeneous fault), the role of asperities, which are present from the millimetric rock grain scale to the kilometric tectonic plate scale, remains largely unclear. Here, we propose an extension of the nucleation theory to account for the role of each asperity scale in nucleating earthquakes. Our results show that an earthquake can be triggered by some seismogenic asperities as previously assumed, but that these “weak” asperities may not control its nucleation if they are small enough. In that case, we show that the birth of earthquakes along complex faults can be accurately studied within the traditional homogeneous nucleation theory.

1. Introduction

Understanding how interfaces fail is of utmost importance in fields ranging from earthquake physics to engineering fracture mechanics. For unstable frictional interfaces such as seismogenic faults, field observations (Bouchon et al., 2013; Kato et al., 2012) as well as laboratory experiments (Ben-David & Fineberg, 2011; Diterich, 1978; Latour et al., 2013; McLaskey, 2019; Ohnaka & Kuwahara, 1990) suggest one possible scenario where the onset of fault motion is characterized by the transition from quasistatic slip growth to dynamic rupture propagation (Passelègue et al., 2016; Svetlizky et al., 2016). The transition happens when a region of critical size \(L_e\) of the fault is slipping. The knowledge of this nucleation length proves crucial since it allows to predict both the loading levels and the position at which the earthquake motion starts (Albertini et al., 2020; Ampuero et al., 2006; Uenishi & Rice, 2003).

Previous theoretical works linked \(L_e\) to the frictional properties of the fault for linear slip-dependent (Campillo & Ionescu, 1997; Dascalu et al., 2000; Uenishi & Rice, 2003) and more complex rate-and-state (Aldam et al., 2017; Brener et al., 2018; Ruina, 1983; Rubin & Ampuero, 2005; Viesca, 2016b) friction laws along homogeneous faults. Yet, frictional properties are expected to significantly vary along the fault plane and
with depth due to changes in the local host rock lithology, roughness, or in situ conditions (normal stress, temperature, pore fluid pressure, etc.) (Ohnaka, 2003; Tse & Rice, 1986). Then, how do these multiscale heterogeneous frictional asperities influence the global stability of seismogenic faults? Recent studies (Albertini et al., 2020; de Geus et al., 2019; Dublanchet, 2018; Perfettini et al., 2003; Ray & Viesca, 2017, 2019) provide valuable insights on how heterogeneities impact the overall stability of frictional interfaces, but arguably oversimplify the complexity of natural faults by assuming either a homogeneous weakening rate (Albertini et al., 2020) or orderly placed asperities of uniform size (Dublanchet, 2018; Perfettini et al., 2003; Ray & Viesca, 2017, 2019). A comprehensive framework, which links the variations of frictional properties at all scales to the overall fault stability, is thus dearly lacking.

In this Letter, we build on the theory of static friction (Rubin & Ampuero, 2005; Uenishi & Rice, 2003; Viesca, 2016a) and the physics of depinning (Cao et al., 2018; Démery et al., 2014; Tanguy & Vettorel, 2004) to develop a theoretical framework that predicts, for any heterogeneous linearly slip-dependent fault interface, the critical size \(L_c \) of the earthquake nucleus. Supported by numerical full-field dynamic calculations, we show that the nucleation of an earthquake is not only always triggered by the weakest heterogeneity, but can also emerge from the collective depinning of multiple asperities. We highlight that this shift in instability regime stems from the interplay between the characteristic size of the heterogeneity and the length scale set by the distribution of frictional properties. Finally, we show that, in assessing the stability of an interface, one has to mainly account for perturbations whose wavelength exceeds the nucleation length, since the influence of small-scale asperities can be averaged.

2. Materials and Methods

2.1. Dynamic Simulations of Earthquake Nucleation Along Heterogeneous Faults

We consider two homogeneous 2D semi-infinite elastic bodies that are kept in contact with a uniform normal pressure \(\sigma_n \), idealizing the fault structure as a planar 1D frictional interface indexed by \(x \). The fault is loaded through a macroscopic shear stress \(\tau_m(x,t) \) that slowly increases in time \(t \). The friction \(\tau_r \) that opposes interface motion is assumed to be linearly slip dependent and fluctuates along the fault (Figure 1a). It locally evolves as slip grows from its peak value \(\tau_r(x) \) to its residual one \(\tau_r(x) \) with a weakening rate \(W(x) \) that describes the material brittleness/ductility. Variations of the frictional properties \((\tau_r, \tau_r, W) \) may emerge along natural faults due to local changes in geometry, roughness, lithology, or ambient conditions (Ohnaka, 2003; Tse & Rice, 1986). Recent works show that the nucleation along homogeneous (Viesca, 2016a) and heterogeneous (Ray & Viesca, 2017) faults in the (aging) rate-and-state framework could be investigated from the stability of an equivalent interface with spatially dependent piecewise linear slip-weakening friction. Despite restrictive assumptions, our work may then provide ways to predict rupture nucleation for more complex and experimentally supported friction laws.

As the macroscopic loading \(\tau_m(x,t) \) grows, it locally exceeds the friction \(\tau_r(x) \), and the two bodies detach from one another by a slip \(\delta(x,t) \) (Figure 1b). Provided that the fault has been at rest for a time far longer than that set by the propagation of elastic waves, the evolution of \(\delta \) is described by the quasi-dynamic equations of elasticity for Mode II cracks (Lapusta et al., 2000; Rice, 1993):

\[
\tau_m(x,t) - \frac{\mu^*}{2c_s} \frac{\partial \delta(x,t)}{\partial t} - \mu^* L[\delta](x,t) = \max\{\tau_r(x) - W(x)\delta(x,t), \tau_r(x)\}
\]

where \(\tau_m \) is the far-field macroscopic loading, \(c_s \) the shear wave velocity, \(\mu^* = \mu/(1 - \nu) \) \((\mu \) and \(\nu \) being the shear modulus and the Poisson’s ratio, respectively), and \(L[\delta](x,t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\delta(x,t') \delta(x, t')}{(x-x')^2} \, dx' \) is a linear operator. In Equation 1, the term \(\frac{\mu^*}{2c_s} \frac{\partial \delta(x,t)}{\partial t} \) is often called “radiation damping,” physically represents wave radiation from the interface to the two elastic bodies, while \(\mu^* L[\delta] \) represents the nonlocal contributions of the overall slip to the local stress state. To investigate the stability of such a heterogeneous fault, we run periodic dynamic simulations building on a spectral boundary integral formulation of fracture (Breitenfeld & Geubelle, 1998; Geubelle & Rice, 1995). These simulations account for both the static redistribution of stress of Equation 1 and dynamic stress transfers (see Section 1.2 in Supporting Information S1).

How is the fault stability influenced by the steadily increasing loading? It results in rather complex dynamics as can be observed in Figure 1b. Multiple regions slipping at an accelerated rate, referred to as “slip...
patches,” start to nucleate on the positions where τ_p is low. As the loading is further increased, they grow quasistatically and coalesce into larger slipping regions. This initial nucleation stage of duration Δt_{nuc} proves rather quiescent since no major velocity burst is observed. Yet, at $\tau_p = 0$, an instability develops on the right part the fault: a rupture propagates dynamically, and the two bodies start sliding one onto another at a uniform slip rate.

If such a simulation constitutes one realistic scenario for natural earthquakes nucleation, the simultaneous growth of multiple slip patches prevents any accurate measurement of the size L_c of the instability nucleus, which might well be twice as large as our measurement of Figure 1c. Yet, identifying this critical length scale proves crucial since it gives access to (a) the loading levels (Uenishi & Rice, 2003) and (b) the position at which an earthquake nucleates (Albertini et al., 2020; Ampuero et al., 2006) when W is homogeneous along the fault.

These difficulties arise from spatial variations of peak strength that have been proven to play no role in the stability behavior of a slip-dependent frictional interface, which is solely controlled by the weakening rate W (Favreau et al., 1999; Uenishi & Rice, 2003). Indeed, assuming that the macroscopic loading τ_∞ slowly increases enough and that the slip perturbation is small enough, the interface velocity $\dot{\delta} = \dot{\delta}_{\text{c}}$ is described near the instability by Uenishi and Rice 2003:

$$\frac{\mu^* \ L \ c}{2 \ c_s} \frac{\partial}{\partial t} (x, t) + \mu^* \ L \ [v(x, t)] - W(x) v(x, t) = 0$$

where only W is involved. This observation is supported by recent numerical simulations of crack nucleation along interfaces with stochastic distributions of τ_p and homogeneous W (Albertini et al., 2020), except in rare situations where the asperity scale interacts with the nucleation length (Schär et al., 2021). One may
2.1. Measuring the Nucleation Length in Presence of Weakening Rate Variations: A Model Fault Approach

We thus focus on the stability behavior of an idealized fault along which both the peak strength \(\tau_p \) and the residual friction \(\tau_r \) are uniform (Figure 2a). To make any parallel to Mode I fracture easier and without any loss of generality, we set \(\tau_r (x) = 0 \) (Albertini et al., 2020). Meanwhile, the weakening rate \(W \) may vary from several orders of magnitude along the fault. Following the procedure of Albertini et al., 2020 (see Section 1.1 in Supporting Information S1), we generate \(W \) fields that follow Gaussian correlations up to a characteristic length scale \(\xi \). Moreover, the values of \(W \) follow a beta distribution of average \(\langle W \rangle \) and standard deviation \(\sigma_w \) between two extremal values \(W_{\text{min}}, W_{\text{max}} \). We set the nucleation length of the reference homogeneous material with uniform \(\langle W \rangle \) as the adimensionalizing length of the system \(L_c^{\text{hom}} \). In particular, \(L_c \) hits an inflection point at \(L = L_c \) (in linear-log space), which provides an accurate measurement of \(L_c \) from the growth rate \(L/L^2 \). See Movie S2, Movie S3, and Figure S2 in the Supporting Information S1 for comparison with the homogeneous case of Uenishi and Rice (2003).

then focus on variations of weakening rate \(W \) to quantify the influence of multiscale heterogeneities on fault stability.

2.2. Measuring the Nucleation Length in Presence of Weakening Rate Variations: A Model Fault Approach

We thus focus on the stability behavior of an idealized fault along which both the peak strength \(\tau_p \) and the residual friction \(\tau_r \) are uniform (Figure 2a). To make any parallel to Mode I fracture easier and without any loss of generality, we set \(\tau_r (x) = 0 \) (Albertini et al., 2020). Meanwhile, the weakening rate \(W \) may vary from several orders of magnitude along the fault. Following the procedure of Albertini et al., 2020 (see Section 1.1 in Supporting Information S1), we generate \(W \) fields that follow Gaussian correlations up to a characteristic length scale \(\xi \). Moreover, the values of \(W \) follow a beta distribution of average \(\langle W \rangle \) and standard deviation \(\sigma_w \) between two extremal values \(W_{\text{min}}, W_{\text{max}} \). We set the nucleation length of the reference homogeneous material with uniform \(\langle W \rangle \) as the adimensionalizing length of the system \(L_c^{\text{hom}} \). In the following, we consider \(\sigma_w = \langle W \rangle, W_{\text{min}} = 0.25 \langle W \rangle, W_{\text{max}} = 4 \langle W \rangle \), and \(\xi = 0.05 L_c^{\text{hom}} \). The behavior of such a heterogeneous interface remains out of scope of the current theories of rupture nucleation where \(W \) is homogeneous (Albertini et al., 2020; Ampuero et al., 2006; Favreau et al., 1999; Uenishi & Rice, 2003). We then wonder how local variations of \(W \) as well as their intensity impact the overall fault stability.
In presence of spatial variations of \(W \), the nucleation length is expected to fluctuate along the fault. In order to investigate the local instability dynamics, we force nucleation at a given point, referred to as “fault center,” by considering a macroscopic loading consisting of a slowly expanding region of size \(L_0 = c_\text{eq} t \) (\(c_\text{eq} \ll c_\text{c} \)), where the stress locally exceeds the frictional resistance \(\tau_m \geq \tau_0 \) (Figure 2b). We observe in Figure 2b that a typical nucleation event is very similar, yet much simpler, to that of the heterogeneous fault of Section 2.1. Its dynamics consists of two distinct regimes: (a) the first regime involves a stable quasistatic slip growth for \(t < 0 \) where a portion \(L \) of the interface is slipping, while (b) the second involves an unstable dynamic crack propagation for \(t > 0 \) where a rupture front propagates until the whole fault is moving. The shift from one regime to another occurs when the slipping region outgrows a critical length \(L_c \) independently of the nature of the loading shape as long as it is peaked (see Figure S4 in Supporting Information S1). Importantly, this instability results from the collective motion of multiple asperities (\(L_c \approx 13 \xi_c \) in Figure 2c).

To quantify the influence of spatial variations of \(W \) on \(L_c \), we first propose a heuristic framework to measure it from numerical calculations. Looking at the evolution of the slip patch size \(L \) over time in Figure 2c, we observe that its growth velocity \(\dot{L} \) follows an S-shaped curve and hits an inflexion point (in linear-log space) over time in Figure 3.1. It consists of finding the perturbation size \(L \) for which the linear symmetric operator \(\mathcal{D}[v](X) = \frac{2 \mu^*}{L^2} \mathcal{L}_1[v](X) - \frac{W(X_0 + LX/2)c(X,t)}{\omega} \) admits a zero eigenvalue. Condensed matter physics provides one way to tackle this problem in the presence of heterogeneities (Cao et al., 2018; Démery et al., 2014; Tanguy & Vettorel, 2004): We expand the perturbation \(v \) with the disorder intensity \(\sigma_w \) up to the second order \(v = v_0 + \sigma_w v_1 + \sigma_w^2 v_2 \) and solve the eigenproblem \(\mathcal{D}[v] = \omega v \), where \(\omega = \omega_0 + \sigma_w \omega_1 + \sigma_w^2 \omega_2 \) (see Section 3 in Supporting Information S1). The nucleation length \(L_c \) is the solution of the transcendental Equation 4, which encompasses the main novelty of the paper.

\[
\frac{2 \lambda_0 \mu^*}{L_c(x_0)} = \int_{-1}^{+1} W(x_0 + L_c(x_0)X/2)v_0(X')^2 dX' - \sum_{i=0}^{\xi_c-1} \frac{L_c(x_0)}{2 \mu^*} \left[\int_{-1}^{+1} W(x_0 + L_c(x_0)X/2)v_i(X')v_i(X') dX' \right] = 0
\]

In Equation 4, \(v_0 \) denotes the \(i^{th} \) eigenmode associated to the eigenvalue \(\lambda_i \) of the homogeneous eigenproblem \(\mathcal{L}_1[v] = \lambda_i v \) (Dascalu et al., 2000; Uenishi & Rice, 2003). The first two terms of Equation 4 represent the heterogeneity contributions up to the first order. The value of the critical length \(L_c \) at a position \(x = x_0 \) involves spatial variations of \(W \) on a scale potentially larger than the heterogeneity size \(\xi_c \). This collective yet heterogeneous behavior in the earthquake nucleation cannot be grasped by the homogeneous \(W \) theory.
(Albertini et al., 2020; Uenishi & Rice, 2003). The third term corresponds to the second-order contributions up to a critical mode \(k_c \approx 2L_c/\xi_c \). This higher order term accounts for the influence of the spatial shape of \(W \) in all its complexity, beyond the special cases of periodic ordered distributions of asperities (Dublanchet, 2018; Perfettini et al., 2003; Ray & Viesca, 2017, 2019). Equation 4 is only valid as long as no point of the fault reaches its residual friction value (i.e., \(\delta(x, t) < \delta_c(x) \)). But \(W(x) \) can be replaced by the instantaneous weakening rate \(W(x, \delta(x, t)) \) to assess fault stability around a stable slip state \(\delta(x, t) \) in the case of nonlinear or piecewise linear slip-dependent friction. Yet, if Equation 4 gives qualitative information on the influence of a nonstationary weakening onto the nucleation process, it does not provide a quantitative framework to predict rupture nucleation for these more complex friction laws, as the slip evolution remains unknown.

When we compare the theoretical predictions \(L_c^{\text{pred}} \) of Equation 4 to the numerically estimated critical lengths \(L_c^{\text{meas}} \) for an asperity size \(\xi_c \) that varies over four orders of magnitude, we observe an excellent agreement (Figure 3a). Note that (a) the nucleation length cannot be estimated from Uenishi and Rice (2003)’s homogeneous theory (Figure 3b) and (b) the second-order contributions are required for accurate predictions (see Figure S7 in Supporting Information S1).

Equation 4 unveils rich physics about the impact of microscopic heterogeneities on the macroscopic fault stability. From it, one can directly link the spatial profiles of weakening rate \(W \) to the local evolution of the nucleation length \(L_c \) along the interface (see black solid lines in Figures 3c–3e). In our simulations, the effective nucleation length corresponds to the one predicted at \(x = 0 \) due to the peaked nature of the loading. In more realistic cases, the position \(x_0 \) of the earthquake nucleus (and the associated nucleation length \(L_c(x_0) \)) will depend not only (a) on heterogeneities of peak strength \(\tau_p \), but also (b) on the spatial shape of the macroscopic loading \(\tau_m \), similarly to what has been observed for nonlinear slip-weakening laws (Rice & Uenishi, 2010).

Overall, our framework provides ways to quantify the influence of a single heterogeneity on the fault stability depending on its size and intensity (see Figure 3) as well as that of the superposition of multiple perturbations of frictional properties (see Figure 4). Next, we build on Equation 4 and distinguish three instability regimes that can be linked to realistic earthquake nucleation scenarios on natural faults.

3.2. Instability Regimes in Earthquake Nucleation

In natural fault zones, heterogeneities in friction occur over many different scales. We observe them at the centimetric scale with minerals, clasts, and foliation, at the metric/decametric scale along large faults consisting of different lithologies, up to the scale of tectonic plates where kilometric asperities generated by a heterogeneous stress distribution have been suggested as potential nucleation sites for megathrust earthquakes in subduction zones. It is still uncertain how those different scales may interact with each other and how they ultimately impact the nucleation of earthquakes. Building on Equation 4, we highlight in Figures 3c–3e three different instability regimes, referred to as local, extremal, and homogenized regimes, respectively. They emerge from the interplay between three length scales: the heterogeneity size \(\xi_c \), the nucleation length associated to average frictional properties \(L_c^{\text{hom}} \approx 1.158 \mu^*/(W_c) \), and the scale set by the weakest defect along the fault \(L_c^{\text{min}} \approx 1.158 \mu^*/W_{\text{max}} \).

1. **Local regime:** when \(\xi_c \gtrsim L_c^{\text{hom}} \) and \(\xi_c \gtrsim L_c^{\text{min}} \), the weakening rate \(W \) is almost constant over the nucleation patch (see Figure 3c). One then retrieves the dynamics of homogeneous nucleation (Uenishi & Rice, 2003), and the effective nucleation length is set by the local frictional properties at the fault center \(L_c(0) \approx L_c^{\text{loc}} \approx 1.158 \mu^*/W(0) \), which can be distributed above \((W(0) < \langle W \rangle) \) or below \((W(0) > \langle W \rangle) \)

2. **Extremal regime:** when \(\xi_c \ll L_c^{\text{hom}} \) and \(\xi_c \gtrsim L_c^{\text{min}} \), a critical nucleation patch of size \(L_c(0) \approx L_c^{\text{min}} \) may develop within a single brittle asperity of size \(\xi_c \), where the weakening rate reaches its maximal value \(W_{\text{max}} \). This small event destabilizes the interface as a whole, generating a complex dynamics of multiple slip pulses (see velocity map in Figure 3d for which \(\xi_c = 0.01L_c^{\text{hom}} = 2L_c^{\text{min}} \)). Along natural faults, these small ruptures may be arrested by local barriers of strength \(\tau_p \), but they may trigger a cascade of nucleation events centered on other weakest spots until the entire fault fails (de Geus et al., 2019; Noda et al., 2013; Zhang et al., 2003). Note that (a) these brittle asperities influence the effective nucleation length \(L_c \) far...
Figure 3. (a) The length of the critical instability nucleus $L_{c,\text{meas}}$ measured from the dynamic simulations is compared to the theoretical prediction $L_{c,\text{pred}}$ of Equation 4 at the fault center $x = 0$ for a broad range of characteristic scale ξ, of the asperities (320 simulations). Red region: ±5% error on $L_{c,\text{meas}}$. (b) $L_{c,\text{meas}}$ may strongly differ from the local nucleation length of Uenishi and Rice (2003) $L_{\text{loc}}(x) \approx 1.158\mu^*/\langle W \rangle$ at $x = 0$. The interplay between the length scales set by the frictional properties and the asperity size gives birth to three instability regimes: (c) When ξ is larger than the homogeneous nucleation length $L_{c,\text{hom}} \approx 1.158\mu^*/\langle W \rangle$ set by the average frictional properties, the effective nucleation length $L_{c}(x)$ of Equation 4 follows Uenishi and Rice (2003)’s predictions $L_{c}(0) \approx L_{\text{loc}}(0)$; (d) when ξ is smaller than $L_{c,\text{min}}$ yet larger than the minimal nucleation length $L_{\text{min}}^\text{hom} \approx 1.158\mu^*/\langle W \rangle$ set by the most brittle defect, $L_{c}(x)$ departs significantly from $L_{\text{hom}}(x)$ but can be locally controlled by the extrema of the weakening rate distribution $L_{c}(0) \approx L_{\text{min}}$; Inset: instability birth at $L \approx L_{\text{min}}^\text{hom} = 0.02L_{c,\text{hom}}$; (e) when ξ is smaller than both $L_{c,\text{hom}}$ and $L_{c,\text{min}}$, the nucleation behavior is homogenized and the nucleation length $L_{c}(x)$ is comparable to that set by the average frictional properties $L_{c}(x) \approx L_{\text{hom}}^\text{min}$ (see Movies S4–S6).
Figure 4. Influence of a modal perturbation on the stability of a heterogeneous fault: (a) an initial weakening rate profile \(W_w(x) \) consisting of the superposition of multiple spatial modes is considered. The spatial variations of \(W_w \) give birth to an effective profile of nucleation length \(L^{\text{ini}}(x) \) following Equation 4. (b) The influence of the superposition of a unimodal perturbation \(\delta \) of period \(\ell_{\text{pert}} \) and amplitude \(A_{\text{pert}} \) to the initial \(W \)-profile is quantified through the root-mean-square of the difference between the spatial profile of initial nucleation length \(L^{\text{ini}}(x) \) related to \(W_w(x) \) and the perturbed one \(L^{\text{ini}}_{\text{pert}}(x) \)/(related to \(W_w(x) + \delta(x) \). (c-e) When the perturbation wavelength \(\ell_{\text{pert}} \) is smaller than the initial nucleation length \(L^{\text{ini}} \), it does not change its spatial profile, no matter the perturbation amplitude. Only the larger wavelength perturbations may influence the nucleation length.

We argue here that all three instability regimes could occur along natural faults depending on their size, geometry, maturity, and lithology. But the homogenized regime proves to be of major importance for geo-
physical applications. Indeed, heterogeneous fracture is often described as a critical phenomenon controlled by the weakest defect, thus ruling out its study within a homogeneous framework. Yet, our results suggest that under the scale-separation condition \(\xi_s \ll L_{\text{hom}}^{\text{ini}} \), the stability behavior of a heterogeneous fault can be studied within the homogeneous nucleation framework of Faveau et al. (1999) and Uenishi and Rice (2003) with \(L_c \approx L_c^{\text{hom}} \approx 1.158\mu^*/(W) \). Moreover, the existence of the homogenized regime may account for the relative reproducibility of laboratory experiments where sample roughness is often imposed and kept relatively smooth and further justifies their relevance in the modeling of natural faults.

3.3. Influence of Each Asperity Scale to the Global Stability of Heterogeneous Fault

So far, we considered cases where the distribution of weakening rate asperities could be described through a unique length scale \(\xi_s \). Yet, the heterogeneities of weakening rate may emerge from, for example., the fault roughness that exhibits a scale-free self-affine behavior that spans over several decades of length scales (Candela et al., 2012), which makes the modeling of rough faults particularly challenging from a numerical point of view. Up to now, it is still largely unclear which length scales actively participate in the fault stability and which may be averaged in a realistic modeling of earthquake nucleation along rough faults.
To further demonstrate the potential of our theoretical framework, we consider a heterogeneous fault with a weakening rate profile $W_{\text{inf}}(x)$ (see Figure 4a) that emerges from a multiscale distribution of asperities with a Hurst exponent $H = 0.7$ (Ampuero et al., 2006). The nucleation length $L_{c}^{\text{inf}}(x)$ can be computed from Equation 4. We superpose to the initial weakening rate profile W_{inf}, a unimodal perturbation δ of period ℓ_{pert}, and amplitude A_{pert}, giving birth to a perturbed profile W_{pert}:

$$W_{\text{pert}}(x) = W_{\text{inf}}(x) + A_{\text{pert}} \cdot \cos \left(\frac{2\pi}{\ell_{\text{pert}}} x \right)$$ (5)

When computing the nucleation length $L_{c}^{\text{pert}}(x)$ associated to $W_{\text{pert}}(x)$, we observe that only perturbations whose wavelength is larger than the reference nucleation length $L_{c}^{\text{inf}}(x)$ matter (see Figure 4b and 4c), and that the perturbation of critical length increases with both the wavelength ℓ_{pert} and the amplitude A_{pert}. Furthermore, the small-scale perturbations ($\ell_{\text{pert}} \ll L_{c}^{\text{pert}}$) do not change the nucleation length L_{c}^{pert}, whether its amplitude is small (Figure 4c) or large (Figure 4d). Note that if the initial nucleation length L_{c}^{inf} locally drops to extremal values (see Figure 3d), very small-scale asperities may then influence the overall stability behavior of the fault.

Overall, our work provides then quantitative reasoning to assess which scale of asperities should be included in the modeling of complex faults and which can be averaged, when the frictional heterogeneities span over several length scales.

4. Conclusion

Nucleation processes along fault with differential frictional weakening W are a collective phenomenon that may involve the progressive depinning of multiple asperities until a perturbation of size L_c is reached. Building on the theory of static friction and the physics of depinning, we proposed an analytical framework that allows to predict the effective critical length L_c for any spatial profile of W. This framework has been successfully compared to dynamic simulations of Mode II friction and is directly tractable to nucleation of Mode I and Mode III fracture along weak interfaces. It provides clues to explain various nucleation scenarios observed in laboratory experiments and in nature as well as to derive scale-separation conditions assessing the influence of one asperity scale on the overall fault stability. Furthermore, it may provide ways to estimate the shear loading levels and the position at which nucleation occurs along more complex interfaces of known frictional properties, where all frictional quantities (τ_p, τ_r, W) as well as the external loading (σ_n, τ_m) fluctuate due to, for example, fault roughness (Cattania & Segall, 2021). The recent analogy drawn between earthquake nucleation for rate-and-state friction and rupture initiation along heterogeneous piecewise linear slip-weakening interfaces (Ray & Viesca, 2017; Viesca, 2016a) provides convincing ways to extend the proposed framework to rate-and-state friction laws. The generalization of our results to (a) nonlinear slip-dependent friction laws and (b) a three-dimensional setting is not straightforward, but one may adapt the approach proposed in this work to handle fault inhomogeneities to the energetic nucleation framework of Rice and Uenishi (2010). Yet, further experimental work is needed to assess the validity of our framework in predicting the influence of heterogeneities on the nucleation process. Dynamic rupture experiments performed on model microarchitecteded faults in the laboratory (e.g., Berman et al., 2020) may constitute a critical test for our theory.

Data Availability Statement

Data regarding the figures of the main text are available on Zenodo (Lebihain et al., 2021).

References

Albertini, G., Karrer, S., Grigoriu, M. D., & Kammer, D. S. (2020). Stochastic properties of static friction. Journal of the Mechanics and Physics of Solids, 147. https://doi.org/10.1016/j.jmps.2020.104242

Aldam, M., Weikamp, M., Spatschek, R., Brener, E. A., & Bouchbinder, E. (2017). Critical nucleation length for accelerating frictional slip. Geophysical Research Letters, 44(22), 11390–11398. https://doi.org/10.1002/2017GL074939

Ampuero, J.-P., Ripperger, J., & Mai, P. M. (2006). Properties of dynamic earthquake ruptures with heterogeneous stress drop. In Earthquakes: Radiated energy and the physics of faulting (pp. 255–261). American Geophysical Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/170GM25

Acknowledgments

M. Lebihain acknowledges funding provided by the Swiss National Science Foundation (Grant CRSK-2_190805). M. Violay and M. Lebihain acknowledge support provided by the ERC BEFINE (Grant 757290). The authors thank Dr. F.X. Passelègue for fruitful discussions and a critical reading of the manuscript, as well as the three anonymous reviewers whose valuable comments improved the manuscript. This work benefits from discussions with Dr. G. Albertini and Dr. D.S. Kammer. Open Access Funding provided by Ecole Polytechnique Fédérale de Lausanne.
Ben-David, O., & Fineberg, J. (2011). Static friction coefficient is not a material constant. Physical Review Letters, 106(25), 254301. https://doi.org/10.1103/1748025
Berman, N., Cohen, G., & Fineberg, J. (2020). Dynamics and properties of the cohesive zone in rapid fracture and friction. Physical Review Letters, 125(12), 125503. https://doi.org/10.1103/PhysRevLett.125.125503
Bouchon, M., Durand, V., Marsan, D., Karabulut, H., & Schmittbuhl, J. (2013). The long precursory phase of most large interplate earthquakes. Nature Geoscience, 6(4), 298–302. https://doi.org/10.1038/ngeo1730
Breitenfeld, M. S., & Geubelle, P. H. (1998). Numerical analysis of dynamic debonding under 2D in-plane and 3D loading. International Journal of Fracture, 93(1–4), 13–38. https://doi.org/10.1016/S0020-7403(98)00082-7
Brener, E. A., Aldam, M., Barras, F., Molinari, J.-F., & Bouchbinder, E. (2018). Unstable slip pulses and earthquake nucleation as a nonequilibrium first-order phase transition. Physical Review Letters, 121(23), 234302. https://doi.org/10.1103/PhysRevLett.121.234302
Campillo, M., & Ionescu, I. R. (1997). Initiation of antiplane shear instability under slip dependent friction. Journal of Geophysical Research, 102, 20363–20371. https://doi.org/10.1029/97JB01508
Candelà, T., Renard, F., Klingler, Y., Mair, K., Schmittbuhl, J., & Brodsky, E. E. (2012). Roughness of fault surfaces over nine decades of length scales. Journal of Geophysical Research, 117, B08409. https://doi.org/10.1029/2011JB009041
Cao, X., Bouzat, S., Kolton, A. B., & Rosso, A. (2018). Localization of soft modes at the depinning transition. Physical Review E, 97(2), 022218. https://doi.org/10.1103/10.1029/97JB01508
Cattania, C., & Segall, P. (2021). Precursory slow slip and foreshocks on rough faults. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020430. https://doi.org/10.1029/2020JB020430
Dascalu, C., Ionescu, I. R., & Campillo, M. (2000). Fault finiteness and initiation of dynamic shear instability. Earth and Planetary Science Letters, 177(1–2), 163–176. https://doi.org/10.1016/S0012-821X(00)00558-5
De Geus, T. W. J., Popovic, M. H. W., Rosso, A., & Wyart, M. (2019). How collective asperity detachments nucleate slip at frictional interfaces. Proceedings of the National Academy of Sciences, 116(48), 23977–23983. https://doi.org/10.1073/pnas.1906551116
Démery, V., Lecomte, V., & Rosso, A. (2014). The effect of disorder geometry on the critical force in disordered elastic systems. Journal of Statistical Mechanics: Theory and Experiment, 2014(3), P03009. https://doi.org/10.1088/1742-5468/2014/3/P03009
Dieterich, J. H. (1978). Preseismic fault slip and earthquake prediction. Journal of Geophysical Research, 83, 3940–3948. https://doi.org/10.1029/JB083iB08p03940
Dublandchet, P. (2018). The dynamics of earthquake precursors controlled by effective friction. Geophysical Journal International, 212(2), 853–871. https://doi.org/10.1093/gji/ggx438
Faveau, P., Campillo, M., & Ionescu, I. R. (1999). Initiation of in-plane shear instability under slip-dependent friction. Bulletin of the Seismological Society of America, 89(5), 1280–1295. Retrieved from https://pubs.geoscienceworld.org/bssa/article-abstract/89/5/1280/128057/Initiation-of-in-plane-shear-instability-under
Geubelle, P. H., & Rice, J. R. (1995). A spectral method for three-dimensional elastodynamic fracture problems. Journal of the Mechanics and Physics of Solids, 43(11), 1791–1824. https://doi.org/10.1016/0022-5096(95)00043-1
Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 mw 9.0 Tohoku-Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141
Lapusta, N., Rice, J. R., Ben-Zion, Y., & Zheng, G. (2000). Elastodynamic analysis for slow tectonic loading with spontaneous rupture episodes on faults with rate- and state-dependent friction. Journal of Geophysical Research, 105, 23765–23789. https://doi.org/10.1029/2000JB900250
Latorre, S., Schubnel, A., Nielsen, S., Madariaga, R., & Vinciguerra, S. (2013). Characterization of nucleation during laboratory earthquakes. Geophysical Research Letters, 40(19), 5064–5069. https://doi.org/10.1002/2013GL058546
Lebihain, M., Rock, T., Violy, M., & Molinar, J.-P. (2021). Earthquake nucleation along faults with heterogeneous weakening rate. https://doi.org/10.1029/2019JB018363
Ohnaka, M. (2003). Earthquake nucleation along faults with heterogeneous weakening rate. Geophysical Research Letters, 30(22), 2013. https://doi.org/10.1029/2003GL018363
Perfettini, H., Campillo, M., & Ionescu, I. (2003). On the scaling of the slip weakening rate of heterogeneous faults. Journal of Geophysical Research, 108, 2410. https://doi.org/10.1029/2002JB001969
Ray, S., & Viesca, R. C. (2017). Earthquake nucleation on faults with heterogeneous frictional properties, normal stress. Journal of Geophysical Research: Solid Earth, 122(10), 8241–8249. https://doi.org/10.1002/2017JB013451
Ray, S., & Viesca, R. C. (2019). Homogenization of fault frictional properties. Geophysical Journal International, 219(2), 1203–1211. https://doi.org/10.1093/gji/ggz327
Rice, J. R. (1993). Spatio-temporal complexity of slip on a fault. Journal of Geophysical Research, 98, 9885–9907. https://doi.org/10.1029/93JB00191
Rice, J. R., & Uheshi, K. (2010). Rupture nucleation on an interface with a power-law relation between stress and displacement discontinuity. International Journal of Fracture, 162(1), 1–13. https://doi.org/10.1007/s10704-010-9478-5
Rubin, A. M., & Ampuero, J. P. (2005). Earthquake nucleation on (aging) rate and state faults. Journal of Geophysical Research, 110, B11312. https://doi.org/10.1029/2005JB003686
Ruina, A. (1983). Slip instability and state variable friction laws. Journal of Geophysical Research, 88, 10359–10370. https://doi.org/10.1029/1983JB001836
Schär, S., Albertini, G., & Kammer, D. S. (2021). Nucleation of frictional sliding by coalescence of microslip. International Journal of Solids and Structures, 225, 110595.
Světlíček, L., Muzdr, D. P., Radigue, M., Kammer, D. S., Molinari, I.-F., & Fineberg, J. (2016). Properties of the shear stress peak radiated ahead of rapidly accelerating rupture fronts that mediate frictional slip. Proceedings of the National Academy of Sciences, 113(8), 542–547. https://doi.org/10.1073/pnas.1517545113
Tanguy, A., & Vettorel, T. (2004). From weak to strong pinning I: A finite size study. *The European Physical Journal B-Condensed Matter and Complex Systems*, 38(1), 71–82. https://doi.org/10.1029/2000jb000123

Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. *Journal of Geophysical Research*, 91, 9452–9472. https://doi.org/10.1029/JB091iB09p09452

Uenishi, K., & Rice, J. R. (2003). Universal nucleation length for slip-weakening rupture instability under nonuniform fault loading. *Journal of Geophysical Research*, 108, 2042. https://doi.org/10.1029/2001JB001681

Viesca, R. C. (2016a). Self-similar slip instability on interfaces with rate- and state-dependent friction. *Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences*, 472, 20160254. https://doi.org/10.1002/2015jb012694

Viesca, R. C. (2016b). Stable and unstable development of an interfacial sliding instability. *Physical Review E*, 93(6), 060202. https://doi.org/10.1029/2002jb001969

Zhang, W., Iwata, T., Irikura, K., Sekiguchi, H., & Bouchon, M. (2003). Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan, earthquake. *Journal of Geophysical Research*, 108, 2232. https://doi.org/10.1029/2002jb001889