The atypical emission-line star Hen 3-209*

Y. Nazé1†‡, G. Rauw1§, D. Hutsemékers1§, E. Gosset1§, J. Manfroid1¶, P. Royer2

1 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bât B5c, 4000 Liège, Belgium
2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium

20 March 2022

ABSTRACT

We analyse observations, spanning 15 years, dedicated to the extreme emission-line object Hen 3-209. Our photometric data indicate that the luminosity of the star undergoes marked variations with a peak-to-peak amplitude of 0.65 mag. These variations are recurrent, with a period of 16.093 ± 0.005 d. The spectrum of Hen 3-209 is peculiar with many different lines (Hα, He i, Fe ii,...) showing P Cygni profiles. The line profiles are apparently changing in harmony with the photometry. The spectrum also contains [O iii] lines that display a saddle profile topped by three peaks, with a maximum separation of about 600 km s⁻¹. Hen 3-209 is most likely an evolved luminous object suffering from mass ejection events and maybe belonging to a binary system.

Key words: stars: emission-line – stars: individual: Hen 3-209 – stars: peculiar

1 INTRODUCTION

In the middle of the last century, dedicated Hα surveys have identified many emission-line stars. A large number of these stars were at first classified as Wolf-Rayet (WR) stars but, on second sight, it appears that their spectrum rarely presents the typical WR characteristics. Although these peculiar objects may represent keys for understanding stellar evolution, only a few of them, generally the brightest and least reddened ones, are analysed in detail.

Hen 3-209, also known as WRAY 15-285, MR 14, SS73 10, or Ve 6-14 (8°48′45.5″ – 46°05′09″, J2000), is such an emission-line object (Velarde 1957). It has only been poorly studied since its discovery. Nevertheless, the star actually displays a strong and broad Hα line which led to the classification of Hen 3-209 as a Wolf-Rayet star (Roberts 1962; Henize 1976), an extreme B-like object (Sanduleak & Stephenson 1973) and more recently as a B[e] star (de Winter et al. 2001). Henize (1976) even suggested that Hen 3-209 could be a nova on the basis of its non-detection by Smith (1968). However, as the star is photometrically variable (see below), it could simply have been below Smith’s detection limit at the time of her observation.

The aim of this paper is to present the results of a long-term observing campaign on this object. The paper is organized as follows: the observations are presented in Sect. 2, the photometric data are analysed in Sect. 3, and the spectral features of Hen 3-209 are examined in Sect. 4. Finally, we discuss in Sect. 5 the nature of the star using the gathered evidence and we conclude in Sect. 6.

2 OBSERVATIONS AND DATA REDUCTION

2.1 Photometry

Between 16 March and 19 April 1997, we performed differential photometry of Hen 3-209 with the 0.6 m Bochum telescope at La Silla, Chile, equipped with a direct camera and a Thomson 7882 CCD detector subtending a field of 3.2′ × 4.8′. All the observations have been performed through a Johnson V filter (exp. time 5 min). About 60 independent science frames have been acquired distributed all over the run. Details on the particular treatment of flat-field calibrations can be found in Gosset et al. (2001).

On each reduced frame, we performed aperture photometry of all the objects down to some threshold. The field of Hen 3-209 is sufficiently populated so that we can use other stars on the same CCD frame as constant reference stars. The photometry (Table A1) was further reduced in the standard way through a global minimization process allowing for extinction, zero point of individual frames, etc. The typical dispersion in the final relative magnitudes of a constant star with the same brightness as Hen 3-209 is characterized by σ = 0.01 mag. On a few nights, we also observed standard stars in order to perform absolute photometry. The latter procedure allowed us to fix the zero point magnitude with a typical error of σ = 0.04 mag.

2.2 Spectroscopy

We have observed Hen 3-209 spectroscopically over a period of 15 years with various instruments (Table A2). A low resolution red/near-IR spectrum was obtained in September 2005 during test time on the EFOSC2 instrument attached to the ESO 3.6 m telescope. Medium resolution spectra were gathered in 1990, 1991, 1996 and 1997 with the ESO 1.5 m telescope equipped with a Boller & Chivens (hereafter B&C) Cassegrain spectrograph. One additional
medium resolution spectrum was obtained at the 1.5 m Ritchey-Chrétien telescope of the Cerro Tololo Inter-American Observatory (CTIO) with the Cspec Cassegrain spectrograph in May 1999. High resolution spectra, covering roughly 90 Å and centered on the Hα line, were obtained in 1996 with the 1.4 m Coude Auxiliary Telescope (CAT) at La Silla, feeding the Coudé Echelle Spectrometer (CES) equipped with the Long Camera (LC). Finally, two echelle spectra of Hen 3-209 were gathered in March 2002 with the EMMI instrument at ESO’s New Technology Telescope (NTT) at La Silla.

3 PHOTOMETRIC VARIABILITY OF Hen 3-209

Two observations taken in February 1991 showed that Hen 3-209 displayed on 24 Feb. $V_0=13.48$ mag, $V=13.48$ mag, $V=13.48$ mag, and $V=13.48$ mag, with a σ of 0.17 mag. In comparison, the V magnitude measured with an aperture of 2.450 552.5046 which corresponds to the minimum light in the 2002) archives from the All-Sky Automated Survey (ASAS, Pojmanski 2002) provided 214 photometric measurements of Hen 3-209 spanning 2000 days, i.e. more than 100 cycles (from Nov. 2000 to Feb. 2006). These data present a much larger dispersion than ours ($\sigma=0.13$ mag for the comparison stars) but they clearly confirm the periodic behaviour of Hen 3-209. In addition, since the time base is longer, the determination of the period is much better:

$$P_{\text{lim}} = 16.103 \pm 0.013 \text{ d and } P_{\text{lim}} = 16.090 \pm 0.013 \text{ d (see the periodogram on Fig. 1).}$$

Combining the ASAS and Bochum data yields a period of $P = 16.093 \pm 0.005$ d. All the phases quoted in this paper refer to this final value, taking into account an arbitrarily chosen T_0 (in HJD) of 2.450 552.5046 which corresponds to the minimum light in the Bochum data.

We might note that our average magnitude of Hen 3-209 is

1. Available from: http://archive.princeton.edu/ asas
in agreement with the recent value $V = 13.56$ of de Winter et al. (2001), but it is however larger than the magnitude of 12.5 given by Sanduleak & Stephenson (1973). Although this latter value might be more subject to uncertainties, it is also possible that Hen 3-209 was indeed brighter some 30 years ago.

4 THE SPECTRUM OF Hen 3-209

Figure 2 presents the spectrum of Hen 3-209. It is dominated by a huge Hα emission and exhibits broad P Cygni profiles in the upper Balmer lines as well as in a number of He I and Fe II transitions. A very weak He II λ 4686 emission might also be present, whereas the red/near-IR spectrum revealed only a few Paschen and helium lines. The analysis of the most prominent lines of this spectrum generally reveals three main features: a redshifted emission component plus two blueshifted absorptions, a narrow one and a broad one.

The hydrogen Balmer lines consist of a rather sharp emission peak at a velocity of $\sim 305 - 345$ km s$^{-1}$ and an absorption component at (-280 ± 10) km s$^{-1}$ (Fig. 3). As was already suspected by Henize (1976), a broader and shallower secondary absorption also appears at -980 km s$^{-1}$ in the Hα, Hβ and Hγ lines (Figs. 3 and 4). This component is most probably also present in the Hδ line, but could not be clearly disentangled from the narrow deeper component.

On the other hand, the most prominent He I lines, shown in Fig. 3 display a rather complicated profile dominated by a narrow emission peak at $\sim 325 - 370$ km s$^{-1}$. Again, a broad absorption feature is present: it extends over about 800 km s$^{-1}$ and is centered on a velocity of (-900 ± 40) km s$^{-1}$. At least in the case of He I λ 5876 a sharp absorption is also found at -220 km s$^{-1}$.

The profiles of the Fe II lines (e.g. Fe II λλ 4924 and 5169 presented in Fig. 3) differ from those observed for hydrogen and helium. These iron lines display P Cygni profiles with a roughly triangular emission at ~ 270 km s$^{-1}$ and a somewhat detached absorption component at -230 km s$^{-1}$.

Note that an additional Na absorption appears besides the two narrow interstellar Na I features (with velocities of 50 ± 5 km s$^{-1}$, Fig. 3). This component displays a velocity of -225 km s$^{-1}$, again quite close to the radial velocity found for many of the sharp absorption features seen in the H I, He I and Fe II P Cygni profiles. A similar line can be spotted in the spectrum of the extreme P Cygni supergiant HD 316285 (Hillier et al. 1998).

The most peculiar feature of the spectrum is the presence of the [O III] λλ 4363, 4959, 5007 forbidden lines with unusual profiles (Fig. 3). The lines are broad, going from ~ -200 to $+375$ km s$^{-1}$ with a saddle or flat-topped shape with three sharp components superimposed. While two of these narrow features are found at the blue and red edges of the profile, the third, slightly weaker, component has a radial velocity of $+33$ km s$^{-1}$ and is therefore offset by ~ -55 km s$^{-1}$ from the centre of the flat topped structure. In fact, this $+33$ km s$^{-1}$ feature is associated with the Vela SNR which is expected to be in the foreground. The shape of the broad component and the two most extreme narrow components suggest a disk or an envelope expanding at a velocity of ~ 300 km s$^{-1}$. Note that the large intensity of the [O III] 4363 line suggests a high density for this feature. It should be stressed that the morphology of He I λλ 5876 and 7065 between -200 and $+400$ km s$^{-1}$ is quite reminiscent of that of the [O III] lines. The 1996 CAT data do not show the presence of these -200 km s$^{-1}$ and $+375$ km s$^{-1}$ components in Hα or [N II]; both features thus display strengths similar to the foreground component in [O III] but are much weaker in [N II], suggesting that the N/O ratio is not unusually high.

Since several of our spectroscopic observations have overlapping wavelength domains, we also investigated the spectral variability of Hen 3-209. Calculating the time variance spectrum (TVS, Fullerton et al. 1996) of our spectroscopic time series, strong variability was identified for the Balmer lines, but significant changes were also detected for the He I λ 4471, Mg II λ 4481, Ca II H and K as well as Fe II lines. This variability is not related to a systematic shift in radial velocity but rather consists of line profile variations, especially in the P Cygni profiles of the Balmer lines (Fig. 5). These changes mainly affect the strength of the emission component and of the broad high velocity (-980 km s$^{-1}$) absorption component, that both reach their maximum level at minimum light. The opposite situation (weak emission and absorption) occurs near maximum light, suggesting dilution by additional light. However, there must be an additional cause for this variability since the equivalent widths variations are larger than the simultaneous continuum flux variations. For instance, the equivalent width of Hγ changes by a factor of 2

The brightest component recorded in the high-resolution CAT data displays a constant velocity of -30 km s$^{-1}$ along the whole slit. This feature is also detected in the EMMI observations of the [N II], [S II], and [O III] lines not only at the position of the star but also next to it, suggesting that this component belongs to the Vela SNR.
Figure 2. The spectrum of Hen 3-209: the top panel shows B&C data from 1990, the four middle panels present the EMMI echelle spectrum as observed in March 2002, and the bottom panel displays the red/near-IR data obtained in 2005 with EFOSC2. The most important stellar and interstellar lines as well as diffuse interstellar bands (DIBs) are indicated. An unidentified feature appears at 7767Å; it is not associated to any known line, DIB or instrumental defect.

Figure 3. Profiles of the H\textsc{i} Balmer lines, of the most important He\textsc{i} and Fe\textsc{ii} lines and of the [O\textsc{iii}] lines in the March 2002 EMMI spectrum of Hen 3-209 as a function of heliocentric radial velocity. Note that the red wing of He\textsc{i} λ5876 is blended with interstellar and probably also circumstellar Na\textsc{i} absorptions. To ease the comparison, velocity scales in the rest frame of these Na\textsc{i} lines are also shown, with tickmarks for each 100 km s\(^{-1}\) interval. The different line profiles have been arbitrarily shifted.
Our observing campaign unveiled many aspects of Hen 3-209. First, our spectra reveal spatially unresolved [O\textsc{iii}] emission with velocity components separated by up to 600 km/s. This compact emission region appears denser than the Vela SNR and shows no obvious chemical enrichment. It might be associated to an accretion disk or to material ejected by the star.

On the other hand, the optical flux from Hen 3-209 is not constant: after a plateau, the brightness periodically undergoes a sharp, deep minimum followed by a slightly broader maximum. This behaviour could only be explained by a stable clock either due to rotation or binarity, but the shape of the lightcurve is not typical of eclipsing binaries, and requires a more complex geometry of the system (e.g. hot spots, non-alignment of the rotation and magnetic axes,...). If we envisage Hen 3-209 as a symbiotic system, such photometric variations could reflect the occultations of the accretion disk and the central compact object by a low-mass companion or could be linked to a beating phenomenon between the orbital period and the precession period of the disk. However, these scenarios can probably be discarded since we do not find any prominent spectral features, neither in the visible domain nor in the near-infrared, attributable to a cool star companion (e.g. TiO bands). This lack of molecular bands rather indicates Hen 3-209 to be a hot, early-type star.

The presence of diffuse interstellar bands (DIBs; Fig 2) indicates that the star is rather strongly reddened and therefore located at a large distance. The interstellar extinction of Hen 3-209 can be evaluated through the analysis of the EWs of certain DIBs (Herbig 1995; Crowther & Smith 1999). Using our EMMI observations and the EW data of Herbig (1995) for the DIBs situated at 5797, 6195, 6269 and 6283 Å, we found an extinction \(E(B-V) \sim 1.30 \) with a scatter of 0.03 mag. This reddening value is indeed rather large, but an additional, circumstellar absorption may also exist. Such a large extinction can explain the lack of strong X-ray emission: an archival PSPC observation (ROSAT, rp180293, 2.1 ks) only leads to an upper limit of \(2.2 \times 10^{-3} \) cts s\(^{-1}\) on its count rate. This non-detection would be puzzling for a nearby symbiotic binary or an X-ray binary but is not totally surprising in the case of a distant, thus strongly extinguished, early-type star. However, we may also note that Hen 3-209 cannot be an ultra-luminous star. With a galactic longitude of \(\sim 270^\circ \), the star must be closer than \(\sim 10 \) kpc to remain within the Galaxy. Actually, if we consider the stellar systemic velocity to be equal to the average velocity of the two extreme [O\textsc{iii}] components, we find that \(v_{\text{LSR}} \sim 76 \) km s\(^{-1}\), suggesting a distance of 8–9 kpc in the case of a flat galactic rotation curve (Moffat et al. 1998; Fich et al. 1989). The above estimates of distance and interstellar reddening imply that the absolute \(V \) magnitude of Hen 3-209 should be between \(-5.6 \) and \(-4.7 \). Therefore, Hen 3-209 cannot be a Luminous Blue Variable (LBV), although it shares several similarities with this type of stars.

The observed \(UBVRI \) magnitudes and the estimated reddening are compatible with the intrinsic colors of B stars and giant, early B stars actually have absolute magnitudes comparable to that derived above. A fit of the apparent spectral energy distribution (SED) by a simple atmosphere model\(^4\) (LTE, static and plane-parallel, composition fixed to 90%H+10%He) also favors physical parameters similar to those of a distant B star (Fig 5).

Finally, Hen 3-209 also presents peculiar IR colors. This object has been proposed to be the counterpart of the IRAS 08464-4554 point source by The et al. (1994) but the IRAS source is rather far away (more than 30′′ from Hen 3-209) and another study rejected the identification (Allen & Glass 1975) found the IR emission of Hen 3-209 to be a pure stellar continuum. On the other hand, the 2MASS All-Sky Survey reports \(J = 10.44 \pm 0.02, H = 9.86 \pm 0.02 \) and \(K_S = 9.35 \pm 0.02 \) for the star. Compared to “normal” colors (Fig 5), Hen 3-209 thus apparently displays a slight IR excess, possibly due to hot dust in the compact nebula we have found, although it is by no means comparable to those of peculiar stars like \(\eta \) Carinae and NaSt1 or B[e] stars (Crowther & Smith 2002).
normal and Wolf-Rayet stars reported by Crowther & Smith (1999, 6).

Considering the above evidence, our data then indicate that Hen 3-209 probably belongs to the group of so-called iron stars that Walborn & Fitzpatrick (2000) introduced in their atlas of peculiar spectra. All objects of this category have prominent Fe lines in their spectra, but they have quite varied physical natures. Some of the iron stars have been classified as B[e] stars, i.e. as B-type stars with forbidden emission lines in their optical spectra (Swings 1976). Lamers et al. (1998) emphasized that the group of B[e] stars consists of at least five categories: supergiants (sgB[e] stars) related to the LBV phenomenon, Herbig AeB[e] pre-main sequence stars (HAeB[e] stars), compact planetary nebulae (cPNB[e] stars), symbiotic stars (SymB[e] stars) and unclassified objects (uncB[e] stars). The defining characteristics of the B[e] phenomenon are (1) strong Balmer emission lines, (2) low excitation permitted emission lines of low ionization metals, (3) forbidden emission lines of [Fe II] and [O I] in the optical spectrum and (4) a strong near or mid-infrared excess due to circumstellar dust. Whilst the first two criteria are certainly met by the spectrum of Hen 3-209, we did not find strong [Fe II] nor [O I] emissions nor any large IR excess. However, as pointed out above, the spectrum of Hen 3-209 does contain high ionization forbidden emission lines (e.g. [OVI]), as are often seen for cPNB[e] stars. It is true that very young PNs can display irregular, short-term luminosity changes as well as smooth, monotonic, longer-term variations (Arkhipova et al. 2001), but these changes are never strictly recurrent if the star is single. This is also the case of Herbig AeBe or AeB[e] stars that display rather irregular light variations (Waters & Waelkens 1998). Furthermore, the presence of P Cygni profiles in the spectrum of Hen 3-209 suggests the presence of an outflow rather than of infalling material (that is one of the defining characteristics of the HAeB[e] category, Lamers et al. 1998). In addition, the lack of a low-mass companion further discards the SymB[e] scenario and the putative luminosity ($M_V \sim -5.1$ on average) is difficult to reconcile with a very bright sgB[e] star. In summary, though Hen 3-209 shares some characteristics of the B[e] phenomenon, especially cPNB[e] and unclB[e], it does not meet all the criteria of this class of objects.

With the currently available set of data, the most likely explanation for the nature of Hen 3-209 appears to be an extremely hot star maybe belonging to a binary system and surrounded by expanding ejecta. Once disentangled from the foreground Vela SNR, a detailed study of the larger-scale nebulosities that we detect on narrow-band images and possibly associated to the star may shed more light on the mass-loss history and nature of Hen 3-209.

6 CONCLUSIONS

Our study shed new light on the poorly known peculiar system Hen 3-209. In our data, this intriguing object displays recurrent photometric variations with a peak-to-peak amplitude of 0.65 mag and a period of 16.09±0.01 days. Its spectrum presents many P Cygni profiles (H, He, Fe, ...) and some forbidden lines like [O I]. The Balmer line profiles vary along with the photometry. The [O I] profile is very peculiar and contains three sub-peaks: one is associated with the foreground nebula, but the other two, separated by ~600 km s$^{-1}$, indicate the presence of an accretion disk or of expanding ejecta close to the star.

The actual nature of Hen 3-209 is still difficult to ascertain with our limited sample of observations, but most existing evidence points towards a moderately bright and distant object ($d \sim 8-9$ kpc and $M_V \sim -5.1$) having probably undergone a mass ejection event and maybe belonging to a binary system.

ACKNOWLEDGMENTS

We thank O. Hainaut and I. Saviane for their help in collecting some of the data and Simon Jeffery for his advice and guidelines for using his atmosphere code. We also acknowledge support from the FNRS (Belgium) and from the PRODEX XMM and Integral contracts. This research is also partly supported by contracts P5/36 “PAI” (Belspo). This publication makes use of Simbad, the ADS abstract service and the data products from the 2MASS.

REFERENCES

Allen, D.A., Glass, I.S. 1975, MNRAS, 170, 579
Arkhipova, V.P., Ikonnikova, N.P., Noskova, R.I., Komissarova, G.V., Klochkova, V.G., Esipov, V.F. 2001, Astr. Letters, 27, 719
Crowther, P.A., Smith, L.J. 1999, MNRAS, 308, 82
de Winter, D., van den Ancker, M.E., Maira, A., et al. 2001, A&A, 380, 669
Fich, M., Blitz, L., Stark, A.A. 1989, ApJ, 342, 272
Fullerton, A.W., Gies, D.R., Bolton, C.T. 1996, ApJS, 103, 475
Gosset, E., Royer, P., Rauw, G., Manfroid, J., Vreux, J.-M. 2001, MNRAS, 327, 435
Heck, A., Manfroid, J., Mersch, G. 1985, A&AS, 59, 63
Henize, K.G. 1976, ApJS, 30, 491
Herbig, G.H. 1995, ARA&A, 33, 19
Hillier, D.J., Crowther, P.A., Najarro, F., Fullerton, A.W. 1998, A&A, 340, 483
Lafler, J., Kinman, T.D. 1965, ApJS, 11, 216
Lamers, H.J.G.L.M., Zickgraf, F.-J., de Winter, D., Houziaux, L., Zorec, J. 1998, A&A, 340, 117
Moffat, A.F.J., Marchenko, S.V., Seggewiss, W., et al. 1998, A&A, 331, 949
Pojmanski, G. 2002, Acta Astronomica, 52, 397
Roberts, M.S. 1962, AJ, 67, 79
Sanduleak, N., Stephenson, C.B. 1973, ApJ, 185, 899
Smith, L.F. 1968, MNRAS, 138, 109
Stetson, P.B. 1987, PASP, 99, 191
Swings, J.-P. 1976, in Be and Shell Stars, IAU Symp. 70, ed. A. Slettebak, Reidel, Dordrecht, p219
Thé, P.S., de Winter, D., Pérez, M.R. 1994, A&AS, 104, 315
Velghe, A.G. 1957, ApJ, 126, 302
Walborn, N.R., Fitzpatrick, E.L. 2000, PASP, 112, 50
Waters, L.B.F.M., Waelkens, C. 1998, ARA&A, 36, 233