CD1d-mediated Recognition of an α-Galactosylceramide by Natural Killer T Cells Is Highly Conserved through Mammalian Evolution

By Laurent Brossay,* Maria Cristina Chioda,† Nicolas Burdin,* Yasuhiko Koezuka,‡ Giulia Casorati,‡ Paolo Dellabona,‡ and Mitchell Kronenberg*

From the *La Jolla Institute for Allergy and Immunology, San Diego, California 92121; †DIBIT, H.S. Raffaele Institute, I-20132 Milano, Italy; and ‡Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Gunma 370-12, Japan

Summary

Natural killer (NK) T cells are a lymphocyte subset with a distinct surface phenotype, an invariant T cell receptor (TCR), and reactivity to CD1. Here we show that mouse NK T cells can recognize human CD1d as well as mouse CD1, and human NK T cells also recognize both CD1 homologues. The unprecedented degree of conservation of this T cell recognition system suggests that it is fundamentally important. Mouse or human CD1 molecules can present the glycolipid α-galactosylceramide (α-GalCer) to NK T cells from either species. Human T cells, preslected for invariant Vα24 TCR expression, uniformly recognize α-GalCer presented by either human CD1d or mouse CD1. In addition, culture of human peripheral blood cells with α-GalCer led to the dramatic expansion of NK T cells with an invariant (Vα141) TCR and the release of large amounts of cytokines. Because invariant Vα14+ and Vα24+ NK T cells have been implicated both in the control of autoimmune disease and the response to tumors, our data suggest that α-GalCer could be a useful agent for modulating human immune responses by activation of the highly conserved NK T cell subset.

Key words: CD1 • natural killer T cells • antigen presentation • glycolipid • cytokines

**CD1 molecules are β2-microglobulin (β2m)-associated transmembrane proteins that are related to MHC-encoded antigen presenting molecules. Despite their association with β2m, comparisons of primary sequences demonstrate that CD1 molecules are almost as closely related to class II molecules as they are to class I molecules (1). Therefore, CD1 molecules probably diverged from these other antigen presenting molecules early in vertebrate evolution, around the time of the class I–class II divergence. CD1 molecules are distinguished from the MHC-encoded classical class I and class II molecules by their lack of polymorphism. Of the five human CD1 genes, protein products have been identified for the CD1a, -b, -c, and -d isoforms (2). The CD1 isofoms are themselves quite divergent, although CD1a, -b, and -c are more closely related to one another in their amino acid sequences than to CD1d (1, 3). Only two CD1 genes, CD1d1 and CD1d2, have been identified in mice. They are highly related to one another and are most similar to human CD1d in sequence (4). However, there is not an extraordinarily high degree of conservation between the mouse CD1 (mCD1) and human CD1d (hCD1d) homologues. The overall percentage of sequence identity between the hCD1d and mCD1 polypeptides in the antigen binding region is 60.4% for the α1 domain and 62.4% for the α2 domain (1, 5).

One of the properties shared by mCD1 and hCD1d molecules is their ability to be recognized by NK T cells (6–11). Recently, much interest has been focused upon the NK T cell subpopulation on account of its ability to quickly produce large amounts of cytokines, suggesting a potential for these T cells to regulate immune responses. The majority of mouse NK T cells use mainly the Vb8.2, Vb7, or Vb2 chain paired with an invariant Vα14jα281 rearrangement (12). The human counterpart of the mouse NK T cells also expresses a restricted TCR repertoire, including a homologous, invariant Vα24 rearrangement paired with Vβ11, the human homologue of mouse Vβ8 (13–15). NK T cells in both species are autoreactive in vitro for CD1 molecules, in the absence of exogenous antigen. In addition to TCR repertoire and CD1 autoreactivit...
ity, NK T cells from both species resemble each other in several additional ways, including expression of intermediate TCR levels, expression of CD4 or the absence of both CD4 and CD8, expression of cell surface proteins characteristic of memory or activated T cells (16), and the presence of NK receptors, particularly NKR P1 (CD161) in mice (17, 18) and its homologue, NKR P1, in humans (11, 16). Despite their relatively restricted TCR repertoire, a minority of NK T cells lack Vα14 expression. Moreover, Vα14 can be paired in the mouse with several different Vβs (19), and the Vβ rearrangements expressed by NK T cells have junctional diversity (12). The combination of these three factors allows for some diversity in the antigen receptors expressed by the NK T cell population, and the results from recent studies in the mouse indicate that mCD1 autoreactive T cells are in fact heterogeneous in their ability to recognize different mCD1+ cell lines and transfectants (20, 21). These data suggest that a diverse set of autologous ligands may be presented by mCD1, although other interpretations are not ruled out. Consistent with the requirement for a diverse set of ligands, it has been shown recently that mouse Vα14+ T cells can recognize the lipoglycan α-galactosylceramide (α-GalCer) presented by mCD1, whereas Vα14− but mCD1-auto-reactive T cells are not responsive to this antigen (22, 23).

In this study, we have uncovered a surprising degree of conservation in the interaction of invariant NK T cells from different species with CD1 molecules despite the extensive divergence in primary sequences of these molecules between mice and humans. We also demonstrate here that α-GalCer is presented by hCD1d to human NK T cells, providing the first evidence both for the presentation of a defined antigen by hCD1d and for a requirement for human NK T cells for a lipoglycan antigen in addition to hCD1d. As α-GalCer can induce a dramatic hCD1 dependent expansion of human NK T cells, as well as a strong release of cytokines by these cells, our data further suggest that this lipoglycan could be a useful agent for the modulation of human immune responses.

Materials and Methods

Gene Cloning and Transfection. pSR α-neo-hCD1d (a gift from Dr. S. Balk, Beth Isreal Hospital, Boston, MA), which contains a full-length hCD1d cDNA, was used as a template for PCR. After amplification, the hCD1d cDNA was sequenced and ligated into the TA cloning vector (Invitrogen, Carlsbad, CA). For expression in mammalian cells, the hCD1d cDNA was inserted into the BamHI and SalI sites of the phBAPneo vector, which contains the human β-actin promoter. 20 μg of plasmid was linearized and electrooporated (Gene Transfector 300, BTX Corp., San Diego, CA) into A20 B lymphoma, C1R, and Hela cells. Stable transfectants were chosen at 3–4 wk and stained with biotinylated anti-hCD1d mAb 42.2 (see below).

T Cell Hybridomas. The derivation and characterization of the mCD1 autoreactive T cell hybridomas has been described previously (21, 23, 24). For the stimulation assays, 5 × 10^5 T hybridoma cells per well were cultured in the presence of 10^6 mCD1+, hCD1d+, or control stimulator cells. After 16 h, IL-2 release was measured in a sandwich ELISA using rat anti-mouse IL-2 mAb (Pharmingen, San Diego, CA).

Cloning of Invariant Vα24+ T Cells. PBMCs of healthy donors were stained with purified anti-Vα24 (lgG1) and anti-Vβ11 (lgG2a) mAbs, followed by human adsorbed FITC-conjugated goat anti-mouse IgG1 and PE-conjugated goat anti-mouse IgG2a antibodies (Southern Biotechnology Associates, Inc., Birmingham, AL). Double positive cells were sorted and either immediately cloned by limiting dilution or activated as a primary bulk culture and then cloned by limiting dilution (14). Clones that coexpressed Vα24 and Vβ11 by cytofluorimetric analysis were further expanded and used for this study. Molecular typing of the TCR expressed by Vα24/Vβ11+ T cell clones was performed as previously described (25).

A divalent of Vα24/Vβ11+ T cell clones by CD1 transfectants. Activations were performed in 96-well plates in 200 μl total volume containing 1 ng/ml of PMA, T cell clones were added to wells at 10^4 per well, along with 10^6 CD1 transfectants. Hela and Hela-hCD1d transfectants were fixed for 30 s in glutaraldehyde 0.05% in PBS, immediately diluted, and washed three times in complete medium. Antigen-pulsed APCs were generated by culture of hCD1d transfectants for 2 h with 100 ng/ml of α-GalCer followed by three washes, and irradiated at 8,500 rads. To block recognition of hCD1d, the 511 anti-hCD1d-specific mAb, provided by Dr. S. Porcelli (Brigham and Women’s Hospital, Boston, MA), or control irrelevant mouse IgG2b was added to cultures at a final concentration of 20 μg/ml.

Generation of α-GalCer-reactive Cell Lines. Total human PBMCs were cultivated in 24-well plates in the presence of 50 U/ml of IL-2 and 100 ng/ml of α-GalCer. Expansion of the Vα24+ cells was determined upon staining with a combination of anti-CD3, anti-CD4, anti-CD8, anti-Vα24, and anti-Vβ11 mAbs. Flow cytometric analysis. Biotinylated anti-hCD1d mAb 42.2 was provided by Dr. S. Porcelli. Secondary reagents for mCD1 detection were streptavidin-PE-conjugated (Caltag, South San Francisco, CA). For staining, cells were suspended in buffer comprised of PBS, pH 7.3, containing 2% BSA (wt/vol) and 0.02% NaN3 (wt/vol) and incubated at 4°C for 30–60 min with the primary Ab, washed twice, and then further incubated with secondary reagents for another 20–30 min at 4°C. After two washes, the cells were fixed and analyzed on a FACScan® 440 flow cytometer (Becton Dickinson, San Jose, CA).

Cytokine Determination by ELISA. Supernatants were quantified for IL-4 or IFN-γ by ELISA using commercial pairs of mAbs (BASF, BAF285 and MAB285 for IFN-γ or BAF 204 and MAB604 for IL-4 (R & D Systems, Minneapolis, MN).

Results

A subset of mCD1 autoreactive hybridomas responds to hCD1d. The parallels between mouse and human NK T cells led us to test for a possible cross-reactivity of mouse T cell hybridomas with hCD1d. T transfectants in several different cell types were generated and selected for approximately similar levels of surface hCD1d expression (Fig. 1 A). Each of these three transfected cell lines was used as APCs for T cell hybridomas that are mCD1 autoreactive. As shown in Table 1, two of the seven mCD1 autoreactive hybridomas also react with the three different hCD1d transfectants, whereas the other five do not. The hCD1d reactivity of these two NK T cell hybridomas has been
confirmed using anti-hCD1d blocking mAb, which inhibited the reactivity to hCD1d A20 transfectants but not to mCD1 transfectants of the same cell line (Fig. 1B). Similar antibody blocking data have been obtained using hCD1d-transfected Hela and C1R cells (data not shown).

It is noteworthy that the two hCD1d reactive mouse T cell hybridomas express the canonical Vα14/Vβ8 NK TCR, whereas the nonreactive ones either express Vα14/Vβ8 or Vα14/Vβ10 or, in three instances, lack Vα14 expression. The lack of hCD1d reactivity of the Vα14/Vβ8+ 3C3 hybridoma is not due to a lower level of TCR expression, implicating either Vβ junctional sequences or some other factor that distinguishes this hybridoma. Surprisingly, one of the two cross-reactive T cell hybridomas, DN 3A4-1-2, responds much more strongly to hCD1d than to mCD1 transfectants of A20 cells (Table 1 and Fig. 1B). Although the amount of IL-2 this cell releases in response to mCD1 transfectants is well above the background, the ~12-fold greater increase in IL-2 release obtained with hCD1d was typical of the results from nine different experiments. By contrast, hybridoma 2C12 reacts equally to the two CD1 homologues (Table 1 and Fig. 1B).

Table 1. A Subset of mCD1-restricted T Cells Responds to hCD1d Molecule

Hybridoma	TCR	A20 mock	A20 mCD1	A20 hCD1d	Hela	Hela hCD1d	C1R	C1R hCD1d
24	α3.2/β9	0.1*	22.3	0.2	0.1	0.1	0.1	0.1
1A12	α5/β14	0.2	40.1	0.1	0.1	0.1	0.1	0.1
68	α4/β11	0.3	6	0.3	0.3	0.1	0.2	0.1
DN3A4-1-4	α14/β10	0.4	6.4	0.2	0.1	0.1	0.1	0.1
2C12	α14/β8	0.1	74.6	97.6	0.1	4	0.1	27
DN3A4-1-2	α14/β8	0.1	20	239	0.1	7.6	4.2	99
3C3	α14/β8	0.1	4	0.1	0.1	0.1	0.1	0.1

*IL-2 release is expressed in units per milliliter and determined according to the IL-2 standard from PharMingen.

Figure 1. hCD1d stimulates mouse NK T cell hybridomas. (A) Flow cytometry profiles of hCD1d-transfected A20, Hela, and C1R cell lines. Stainings were carried out with biotinylated 42.2 anti-hCD1d mAb, followed by PE-conjugated streptavidin. Before each staining, cells were incubated with 1% human serum. Each panel is an overlay of the isotype control (open histogram) and the anti-hCD1d mAb (filled histogram). (B) Interspecies cross-reactivity of mouse Vα14/Vβ8 T cell hybridomas. The DN3A4-1-2 mCD1-autoreactive hybridomas were cultured at 5 x 10⁴ cells/well with 10⁵ APCs. Antibody-mediated inhibition was determined using an anti-hCD1d mAb 51.1, anti-mCD1 mAb 1B1, or isotype-matched control mAbs, all at 10 μg/ml. After 16 h of culture, IL-2 release was determined by ELISA. The experiments shown here are representative of nine different experiments.
fected Hela cells but not to A20-transfected cells, whereas the other three clones respond similarly to both types of cells (Table 2). Neither of the two clones that lack the invariant V\textsubscript{a}24 responded significantly to both types of APCs when PMA was added. When reactive, each of the clones could synthesize significant quantities of both IFN-\gamma and IL-4 in response to hCD1d stimulation. Three out of the four clones with an invariant V\textsubscript{a}24 also were stimulated significantly by transfectants expressing heterologous mCD1 in the presence of PMA (Table 2), and this reactivity could be inhibited with an anti-mCD1 mAb (data not shown).

In summary, we conclude that not only have NKT cells been conserved throughout evolution, but the ability of the invariant TCR expressed by NKT cells to recognize the CD1d-like molecules mCD1 and hCD1d also has been conserved strictly. Furthermore, if self-ligands are required for this CD1 recognition, these ligands likely are to be similar in mice and humans.

Mouse V\textsubscript{a}14/V\textsubscript{b}8+ hybridomas respond to \(\alpha\)-GalCer-pulsed hCD1d M\textsubscript{ø}ø\øes. We tested the ability of mouse NKT cell hybridomas to respond to the lipoglycan \(\alpha\)-GalCer presented by the heterologous CD1d molecule. It has been shown recently that mouse NKT cells with an invariant V\textsubscript{a}14 TCR can respond in an mCD1-mediated fashion to \(\alpha\)-GalCer (22, 23). We therefore used this compound to determine if hCD1d and mCD1 can present similar compounds to NKT cells.

Using \(\alpha\)-GalCer-pulsed CD1d transfectants as APCs, we analyzed the reactivity of the panel of seven mouse T cell hybridomas described in Table 1. Only three hybridomas responded to the pulsed APCs, regardless of whether the hCD1d-expressing cell line was used as a transfected CIR, A20, or Hela cell. The responses of V\textsubscript{a}14/V\textsubscript{b}8+ hybridomas 2C12 and D N 3 A 4 -1-2 to hCD1d plus \(\alpha\)-GalCer were significantly increased above the level of hCD1d reactivity in the presence of the vehicle alone. Depending upon the APC used, the ratio of the IL-2 production in the presence of \(\alpha\)-GalCer compared with the vehicle increased from 1.7- to 3-fold for hybridoma 2C12, and from 1.5- to 9.6-fold for hybridoma D N 3 A 4 -1-2. Interestingly, although the third V\textsubscript{a}14/V\textsubscript{b}8+ hybridoma, 3C3, was unresponsive to hCD1d transfectants in the absence of antigen, it was strongly stimulated by \(\alpha\)-GalCer-pulsed hCD1d cells (Fig. 2 A). Complete inhibition of the IL-2 release induced by \(\alpha\)-GalCer pulsed APCs was obtained using an anti-hCD1d mAb, confirming the CD1-mediated presentation of \(\alpha\)-GalCer (Fig. 2 A). Therefore, all three V\textsubscript{a}14/V\textsubscript{b}8+ T cell hybridomas tested respond to hCD1d plus \(\alpha\)-GalCer. By contrast, the V\textsubscript{a}14/V\textsubscript{b}10+ hybridoma D N 3 A 4 -1-4 responded to \(\alpha\)-GalCer-pulsed mCD1-expressing APCs but not to \(\alpha\)-GalCer-pulsed hCD1d-expressing cells (Fig. 2 B).

In summary, these data demonstrate that hCD1d can present the same lipoglycan antigen as its mouse counterpart. Our previous studies demonstrated that mCD1-mediated recognition of \(\alpha\)-GalCer by mouse NKT cells was effective when V\textsubscript{a}14 was expressed with any one of these different TCR-\beta chains (23). The data presented here, in contrast, suggest that when presented by the heterologous hCD1d molecule \(\alpha\)-GalCer reactivity is dependent upon the TCR-\beta chain.

Human invariant V\textsubscript{a}24/V\textsubscript{b}11+ clones respond to \(\alpha\)-GalCer-pulsed hCD1d M\textsubscript{ø}ø\øes. We next tested if human NKT cell hybridomas responded to \(\alpha\)-GalCer-pulsed hCD1d M\textsubscript{ø}ø\øes. The experiments shown here have been performed without the addition of PMA, and they are representative of three different experiments.

Table 2. Invariant V\textsubscript{a}24+ T Cell Clones Respond to mCD1-Transfected Cells (IFN-\gamma)

Clones	TCR	A20	A20 mCD1	A20 hCD1d	Hela mCD1	Hela hCD1d
PD 9	I*	230	1,050	620	50	1,300
PD 16	I	430	1,500	1,280	0	1,590
LG2D 3	I	0	0	0	1,080	
15.21.2	I	0	690	510	0	220
15.21.3	N	370	280	94	2,500	770
PD 18	N	600	460	700	330	370

*1, invariant V\textsubscript{a}24/V\textsubscript{b}11 TCR

IFN-\gamma release is expressed in picogram per milliliter and determined according to the IFN-\gamma standard from R & D.
T cell clones are responsive to α-GaICer presented by hCD1d. Cultures containing lipoglycan antigen-pulsed APC were carried out in the absence of either PMA or glutaraldehyde fixation. Three NK T cell clones with an invariant \(\alpha\)V\(\alpha\)24 TCR (15.21.2, LG2D3, and PD9) and one of the \(\alpha\)V\(\alpha\)24/V\(\beta\)11 clones without the invariant junction (PD18) were tested. In the absence of lipoglycan antigen there was no stimulation by hCD1d because of the absence of PMA. The results from one representative experiment of three carried out with clone 15.21.2 are shown in Fig. 2C. α-GaICer is a potent inducer of both IFN-γ and IL-4 release by this T cell clone. The cytokine release was inhibited by an anti-hCD1d mAb (Fig. 2C) as well as an anti-\(\alpha\)-V\(\alpha\)24 mAb (data not shown), confirming the TCR-mediated recognition of α-GaICer-pulsed hCD1d+ APCs. Similar data were obtained with clones LG2D3 and PD9. The reactivity of the 15.21.2 and PD9 human T cell clones for heterologous mCD1 also could be detected by the addition of α-GaICer. Clone LG2D3, which did not respond to mCD1+ APCs in the presence of PMA, likewise did not respond to α-GaICer presented by mCD1 (data not shown).

α-GaICer-induced Expansion of Human Primary NK T Cells. The results described above demonstrate that long term T cell clones, selected only on the basis of invariant \(\alpha\)V\(\alpha\)24 and V\(\beta\)11 expression, are specifically activated by α-GaICer presented by hCD1d. To analyze the response of T cells that have not been subject to long-term culture, we asked whether α-GaICer would induce the in vitro proliferation of human NK T cells. In these experiments, either the lipoglycan antigen or the vehicle control was added directly to cultures of unfractionated, fresh PBMCs. The percentage of \(\alpha\)V\(\alpha\)24-positive T cells was determined by flow cytometry at days 0, 7, 9, 11, and 12. By day 12, we systematically obtained a significant expansion in both the percentage and number of T cells expressing the \(\alpha\)V\(\alpha\)24/V\(\beta\)11 TCR. A compilation of all the data from a series of experiments done with PBMCs from eight different donors is shown in Table 3. Although on day 0 the \(\alpha\)V\(\alpha\)24/V\(\beta\)11+ T cells were <1% of the total cell number, by day 7–12, the percentage of \(\alpha\)V\(\alpha\)24+ cells had expanded from 18.5- to 82-fold (Table 3). This increase in the percentage of \(\alpha\)V\(\alpha\)24+ cells is due to an expansion in cell number, because the total number of cells in the cultures generally was not decreased compared with day 0. This expansion required the presence of IL-2 and α-GaICer, as the number of \(\alpha\)V\(\alpha\)24/V\(\beta\)11+ T cells did not augment significantly when either one of these reagents was omitted (data not shown). PCR-heteroduplex analysis and oligotyping performed on aliquots of PBMCs drawn at different time points from the different culture conditions, confirmed the expansion of \(\alpha\)V\(\alpha\)24/V\(\beta\)11+ T cells expressing the invariant \(\alpha\)V\(\alpha\)24-J\(\alpha\)Q rearrangement (data not shown). Several of these lines were maintained in culture beyond day 12, and restimulated once with α-GaICer-pulsed autologous APCs, and further with α-GaICer-pulsed hCD1d-transfected C1R cells. These two further recalls allowed us to enrich the percentage of \(\alpha\)V\(\alpha\)24-positive T cells to 64% for line XC and 53% for line PB (Fig. 3). As shown in Fig. 3, lipoglycan-specific invariant \(\alpha\)V\(\alpha\)24/V\(\beta\)11+ T cells are either CD4+ or CD4−, consistent with previous reports on the surface phenotype of this subset (12, 14, 16). A 72% inhibition of the expansion of \(\alpha\)V\(\alpha\)24+ T cells was obtained for line PB when parallel cultures were set up from day 0 in the presence of the 51.1 anti-hCD1d mAb. This inhibition is consistent with the view that the α-GaICer-induced expansion of fresh T cells is hCD1d dependent. Similarly, a 62% and 60% reduction of the \(\alpha\)V\(\alpha\)24+ T cell expansion was obtained for lines MP and PD, respectively, when an anti-\(\alpha\)V\(\alpha\)24 mAb was added to the culture from day 0. These data suggest that the α-GaICer-induced T cell expansion was dependent upon engagement of the TCR. Interestingly, when cultured in the presence of α-GaICer-pulsed transfected

Cell line	Day 0	Antigen-stimulated*
PD	0.2†	5 (25)§
MP	0.08	2.7 (33)
CRG	0.06	3.4 (57)
BG	0.35	20 (57)
CU	0.13	8.6 (66)
XC	0.39	32.1 (82)
YG	0.45	8.17 (18.5)
PB	0.28	12.8 (45.7)

*Stainings were done at day 7, 9, 11, or 12 depending on the donor.
†Percentage of \(\alpha\)V\(\alpha\)24+ T cells within CD3+ T cells
§Fold of expansion over percentage of input.

Figure 3. NK T cells from human PBMCs expand in response to α-GaICer. Crude PBMCs were cultivated in the presence of 50 U/ml of IL-2 and 100 ng/ml of α-GaICer. At day 10 harvested cells from X cell line (top) or PB cell line (bottom) were cultured for 5 d in the presence of IL-2 only. Proliferating T cells were then cultured for another 5 d with α-GaICer-pulsed C1R-hCD1d transfectants in the presence of 50 U of IL-2. Expansion of the \(\alpha\)V\(\alpha\)24+ cells was determined upon staining with anti-CD4 and anti-\(\alpha\)V\(\alpha\)24 mAbs at days 0, 9, and 21.
APCs, these 2 lines released IFN-γ but not IL-4 in an hCD1d- and Vα24-dependent manner (data not shown).

Discussion

The hCD1d molecule is of particular interest on account of its recognition by human NKT cells and on account of having a broader expression pattern than do other human CD1 molecules (26). In this report, we provide the first evidence for the ability of hCD1d to present antigen. The antigen identified here is α-GalCer, a structurally well-defined glycolipid. In the presence of α-GalCer, neither the ad-dition of PMA nor fixation of the APCs is required to stimulate NKT cell reactivity to hCD1d. Furthermore, preliminary data indicate that α-GalCer can bind in vitro to purified, soluble hCD1d and mCD1 molecules (Mahe, J., O. Nad-enko, W. Ernst, R. Modlin, and M. Kronenberg, manuscript in preparation). Together with the antigen presenta-tion and antibody inhibition studies presented here, these data indicate that the effect of α-GalCer is not likely to be an indirect one, but rather that α-GalCer forms a complex with hCD1d that is recognized by the TCR on human NKT cells. It should be noted that α-GalCer was purified from an extract of a marine sponge, based upon the positive results obtained with this extract during a screen for compounds that prevent tumor metastases (27). Ceramides with an α-linked sugar are not abundant in most microbes, and they are much less abundant than those with a β-linked sugar in mammalian cells. However, β-galactosylceramide is not an antigen for CD1d presentation (22, 23). It therefore remains possible that α-GalCer is a mimic for a natural ligand that normally stimulates NKT cells, although there are no data to exclude the possibility of a low level of α-GalCer expression in mammalian cells. In mice, a glyco-sulfophosphatidylinositol has been the only natural ligand bound to mCD1 identified so far (28), although com-pounds of this type apparently do not stimulate NKT cells in a CD1-dependent fashion (23).

The lack of polymorphism of nonclassical antigen-presenting molecules has led to the proposal that they may carry out some conserved and essential antigen presenting function. Although this is a plausible hypothesis, with the possible exception of mouse Qa-1b and human HLA-E (29), there is surprisingly little evidence for interspecies conservation of nonclassical class I molecules at either the sequence level or the functional level. In contrast, the CD1 family is demonstrated here to show an extremely high degree of conservation with regard to its interaction with the invariant TCRs that are expressed by NKT cells. This conservation is observed either in the absence of exogenous antigen or together with a lipoglycan antigen. From a functional viewpoint, the mouse and human invariant TCRs and CD1 molecules are nearly equivalent, indicating a strong selection upon this TCR interaction with CD1. These data are consistent with previous reports demonstrating that human and mouse NKT cells are similar in phenotype and function (11, 12, 16). This degree of conservation and cross-reactivity at the antigen recognition level is particularly striking in light of the divergence in primary sequence of both the CD1 molecules and the TCRs expressed by NKT cells (5). We conclude that despite these significant changes in primary structure, the amino acids important for either lipoglycan binding to CD1 or the interaction between the TCR and CD1 may have diverged significantly.

The results from immune assays of mouse and human T cells permit the identification of candidate regions of the TCR that are necessary for the recognition of CD1 plus lipoglycan. Data from a previous study of TCR transgenic mice expressing Vβ8 and Vα14 and of mice deficient for Jα281 as a result of targeted mutation implicated a role for the invariant Vα14 TCR in α-GalCer recognition (22). Although several analyses of mCD1-reactive T cell hybridomas and cell lines established that Vα14 is not absolutely required for mCD1 autorecognition (20, 24, 30), only mCD1-autoreactive hybridomas with a Vα14 TCR could respond to α-GalCer plus mCD1 (23). The conservation of the Vα-Jα junction in the invariant TCR (14, 15, 18, 31) implicates this region of the TCR in contacting the CD1 molecule or a combination of CD1 and lipoglycan bound to it. Consistent with this hypothesis, we found that human T cells that express a Vα24 without the invariant V-J junctional sequence were unreactive to hCD1d transfectants in either the absence or presence of α-GalCer. Furthermore, there may be a more stringent selection upon the NKT cell β chain in humans than in mice, as the invariant Vα24 is mainly paired with Vβ11 (16, 32, 33), whereas in mice there are several predominant Vβ8s (12, 19, 20).

It is unprecedented to find complete cross-reactivity between mice and humans of the interaction of a TCR with a peptide-MHC complex. However, such a high degree of conservation is consistent with a superantigen type of recognition mechanism (34). In addition, the high frequency of α-GalCer-reactive cells in humans is consistent with a superantigen-like mode of action. However, there are two reasons why the data presented here do not favor the possibility that α-GalCer is recognized as a superantigen. First, the reactive T cells have a restricted V-J junctional diversity of their α chains, as well as Vα gene use. Second, the reactive T cells are selected for both Vα and for Vβ expression, particularly in humans. These findings favor a more conventional mechanism for the interaction of the α-GalCer plus CD1 complex with the TCR expressed by NKT cells.

At the functional level, NKT cells are distinguished by their ability to produce large amounts of the cytokines characteristic of memory T cells within a few hours of stimulation. It was proposed originally that the early expression of IL-4 by NKT cells could be required for Th2-type immune responses (35-36). Although NKT cells normally may contribute to the induction of Th2 responses, it is now clear that in many cases they are not required (37, 38). It also is clear from our studies and those of other investigators that NKT cells can secrete large amounts of IFN-γ in addition to IL-4 under some circumstances (39, 40). Based upon their relatively high frequency in some
sites and their ability to rapidly secrete large amounts of cytokines, for the NKT cells in the regulation of autoimmune diseases (33, 41, 42), the response to infectious agents (43), and the surveillance for tumors (44) have been proposed. With regard to autoimmune disease progression, the strongest evidence currently favors a connection between NKT cells and diabetes, in which the results from mice and humans show a striking degree of similarity (33, 42, 45). The dramatic expansion and activation of human NKT cells upon stimulation in vitro with αGalCer is therefore of considerable interest. Because we generally observed both IL-4 and IFN-γ in the culture supernatants of the T cell clones, but only IFN-γ from the lines, it should be possible to identify conditions in which a more polarized cytokine response develops. Therefore, one might envision the use of this molecule, or perhaps analogues (22) that might give a more polarized Th1 or Th2 response, as an attractive strategy to modulate human immune response in vivo.

The authors wish to thank Drs. S. Cardell (Lund University, Lund, Sweden), M. Bix (University of California at San Francisco, San Francisco, CA), and K. Hayakawa (Institute for Cancer Research, Philadelphia, PA) for kindly providing mCD1-restricted hybridomas. We also thank Dr. S. Porcelli for providing the anti-hCD1d mAbs. We thank Drs. S. Tungri, T. Prigozy, L. Gapin, and H. Cheurou et al. for critical review of the manuscript.

This work was supported by National Institutes of Health research grants CA-52511 and AI-40617 (to M. Kronenberg) and by Progetto Nazionale Tubercolosi, Istituto Superiore di Sanità (to P. Dellabona). This is manuscript no. 244 of the LIAI.

Address correspondence to Mitchell Kronenberg, La Jolla Institute of Allergy and Immunology, 10355 Science Center Dr., San Diego, CA 92121. Phone: 619-678-4540; Fax: 619-678-4595; E-mail: mitch@liai.org

Received for publication 18 June 1998 and in revised form 20 July 1998.

References

1. Hughes, A.L. 1991. Evolutionary origin and diversification of the mammalian CD1 antigen genes. Mol. Biol. Evol. 8:185-201.
2. Bilsland, C.A., and C. Milstein. 1991. The identification of the β2-microglobulin binding antigen encoded by the human CD1D gene. Eur. J. Immunol. 21:71-78.
3. Calabi, F., J.M. Jarvis, L. Martin, and C. Milstein. 1989. Two classes of CD1 genes. Eur. J. Immunol. 19:285-292.
4. Bradbury, A., K.T. Belt, T.M. Neri, C. Milstein, and F. Calabi. 1988. Mouse CD1 is distinct from and co-exists with TL in the same thymus. EMBO (Eur. Mol. Biol. Organ.) J. 7: 3081-3086.
5. Porcelli, S.A. 1995. The CD1 family: a third lineage of antigen-presenting molecules. Adv. Immunol. 59:1-98.
6. Bendelac, A., O. Lantz, M.E. Quimby, J.W. Yewdell, J.R. Bennink, and R.R. Brutkiewicz. 1995. CD1 recognition by mouse NK1+ T lymphocytes. Science. 268:863-865.
7. Bendelac, A. 1995. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182: 2091-2096.
8. Chen, Y.H., N.M. Chiu, M. Mandal, N. Wang, and C.R. Wang. 1997. Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity. 6:459-467.
9. Mendiratta, S.K., W.D. Martin, S. Hong, A. Boesteanu, S. Joyce, and L. Van Kae. 1997. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity. 6:469-477.
10. Smiley, S.T., M.H. Kaplan, and M.J. Grusby. 1997. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science. 275:977-979.
11. Exley, M., J. Garcia, S.P. Balk, and S. Porcelli. 1997. Requirements for CD1 recognition by human invariant Vα24+CD4+CD8− T cells. J. Exp. Med. 186:109-120.
12. Lantz, O., and A. Bendelac. 1994. An invariant T cell receptor α chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4− T cells in mice and humans. J. Exp. Med. 180:1097-1106.
13. Dellabona, P., G. Casorati, B. Friedli, L. Angman, F. Sallusto, A. Tunnaliffe, E. Roosnek, and A. Lanzavecchia. 1993. In vivo persistence of expanded clones specific for bacterial antigens within the human T cell receptor αβ CD4− subset. J. Exp. Med. 177:1763-1771.
14. Dellabona, P., E. Padovan, G. Casorati, M. Brockhaus, and A. Lanzavecchia. 1994. An invariant Vα24/αβ Q/Vβ 11 T cell receptor is expressed in all individuals by clonally expanded CD4− T cells. J. Exp. Med. 180:1171-1176.
15. Porcelli, S., C.E. Yockey, M.B. Brenner, S.P. Balk. 1993. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4− T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178:1-16.
16. Davodeau, F., M.A. Peyrat, A. Necker, R. Dominici, F. Blanchard, C. Leget, J. Gaschet, P. Costa, Y. Jacques, A. Godard, et al. 1997. Close phenotypic and functional similarities between human and murine αβ T cells expressing invariant TCR α chains. J. Immunol. 158:5603-5611.
17. Makino, Y., R. Kanno, T. Ito, K. Higashino, and M. Taniyamuchi. 1995. Predominant expression of invariant Vα24+ TCR α chain in NK1.1+ T cell populations. Int. Immunol. 7: 1157-1161.
18. Bendelac, A., M.N. Rivera, S.H. Park, and J.H. Roark. 1997. Mouse CD1-specific NK1 T cells develop, specificity, and function. Annu. Rev. Immunol. 15:535-562.
19. Masuda, K., Y. Makino, J. Cui, T. Ito, T. Tokuhisa, Y. Takahama, H. Koseki, K. Tsuchida, T. Koike, H. Moriya, M.
Amano, and M. Taniguchi. 1997. Phenotypes and invariant αβ TCR expression of peripheral Vα14+ NKT cells. J. Immunol. 158:2076–2082.
20. Park, S.H., J.H. Roark, and A. Bendelac. 1998. Tissue-specific recognition of mouse CD1 molecules. J. Immunol. 160:3128–3134.
21. Brossay, L., S. Tangri, M. Bix, S. Cardell, R. Locksley, and M. Kronenberg. 1998. Mouse CD1 autoreactive T cells have diverse patterns of reactivity to CD1+ targets. J. Immunol. 160:3681–3688.
22. Kawanoto, T., J. Cui, Y. Koezuka, I. Tourea, Y. Kaneko, K. Motoki, H. Ueno, N. Nakagawa, H. Sato, E. Kondo, et al. 1997. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science. 278:1626–1629.
23. Burdin, N., L. Brossay, Y. Koezuka, S.T. Smiley, M.J. Grusby, M. Gull, T. Taniguchi, K. Hayakawa, and M. Kronenberg. 1998. Selective ability of mouse CD1 to present glycolipids α-galactosylceramide specifically stimulates Vα14+ NKT lymphocytes. J. Immunol. 161:3271–3281.
24. Cardell, S., S. Tangri, S. Chan, M. Kronenberg, C. Benoist, and D. Mathis. 1995. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182:993–1004.
25. Wack, A., D. Montagna, P. Delabona, and G. Casorati. 1996. An improved PCR-heteroduplex method permits high-sensitivity detection of clonal expansions in complex T cell populations. J. Immunol. Methods. 196:181–192.
26. Blumberg, R.S., C. Tcrhost, P. Bleicher, F.V. McDermott, C.H. Allan, S.B. Landau, J.S. Trier, and S.P. Balk. 1991. Expression of a nonpolymorphic MHC class-I-like molecule, CD1d, by human intestinal epithelial cells. J. Immunol. 147:2524–2528.
27. Kobayashi, E., K. Motoki, T. Uchida, H. Fukushima, and Y. Koezuka. 1995. KRN 7000, a novel immunomodulator, and its antitumor activities. N. Otol. Res. 7:529–532.
28. Joyce, S., A.S. W goods, J.W. Y ewdell, J.R. Bennink, A.D. De Silva, A. Boesteanu, S.P. Balk, R.J. Cotter, and R.R. Brutkiewicz. 1998. Natural ligand of mouse CD1d1: cellular glycosylphosphatidylinositol. Science. 279:1541–1544.
29. Braud, V.M., D.S. Allan, C.A. O’Callaghan, K. Soderstrom, A. D’Andrea, G.S. Ogg, S. Lazetic, N.T. Young, J.I. Bell, J.H. Phillips, et al. 1998. HLA-E binds to natural killer cell receptors CD94/NKG2A, B, and C. Nature. 391:795–799.
30. Zeng, D., M. Dick, L. Cheng, M. Amano, S. Dejbakhsh-Jones, P. Huiie, R. Sibley, and S. Strober. 1998. Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines. J. Exp. Med. 187:525–536.
31. Adachi, Y., H. Koseki, M. Zilijstra, and M. Taniguchi. 1995. Positive selection of invariant Vα14+ T cells by non-major histocompatibility complex-encoded class I-like molecules expressed on bone marrow-derived cells. Proc. Natl. Acad. Sci. USA. 92:1200–1204.
32. Porcelli, S., D. Gerdes, A.M. Fertig, and S.P. Balk. 1996. Human T cells expressing an invariant Vα24-JαQ TCR α are CD4+ and heterogeneous with respect to TCR β expression. Hum. Immunol. 48:63–67.
33. Wilson, S.B., S.C. Kent, K.T. Patton, T. Orban, R.A. Jackson, M. Exley, S. Porcelli, D.A. Schatz, M.A. Atkinson, S.P. Balk, et al. 1998. Extreme Th1 bias of invariant Vα24αQ T cells in type 1 diabetes N ature. 391:177–181.
34. Acha-Obelea, H., and H.R. McDonald. 1995. Superantigens of mouse mammary tumor virus. Annu. Rev. Immunol. 13:459–486.
35. Yoshimoto, T., A. Bendelac, C. Watson, J. Hu-Li, and W.E. Paul. 1995. Role of N K1.1+ T cells in a T helper 2 response and in immunoglobulin E production. Science. 270:1845–1847.
36. Bendelac, A., R.D. Unziker, and O. Lantz. 1996. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing N K1.1 T cells. J. Exp. Med. 184:1285–1304.