Impact of Substrate Temperatures On the Properties of V$_2$O$_5$ Thin Films Deposited by Pulsed Laser Deposition

Mansour S. Farhan1, Haider TH. Salim AlRikabi2, and Faisal Theyab Abed3

Electrical Eng. Department, College of Engineering, Wasit University, Wasit, Iraq1,2,3

E-mail: mansour@uowasit.edu.iq

Abstract. Vanadium pentoxide (V$_2$O$_5$) thin films were fabricated by pulsed laser deposition (PLD) on fused silica substrate at temperatures (T_s) ranged from ambient temperature up to 300°C. UV-VIS-NIR spectral measurements, X-ray diffraction (XRD) X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were made to understand the influence of substrate temperature on optical, structural, and compositional properties. The substrate temperature displayed a robust effect on the construction and visual characteristics. The photosensitive band gap of PLD V$_2$O$_5$ films was powerfully dependent on the substrate temperature and was reduced from 2.36 eV to 2.08 eV with the growth of substrate temperature from ambient temperature to 300°C. However, the refractive index showed an increase from 2.28 to 2.69 for the same temperature range. V$_2$O$_5$ films grown at $T_s = 300°C$ exhibited a crystalline nature as evidenced by XRD and SEM studies. The chemical composition of V$_2$O$_5$ films has been studied by XPS and the data revealed pure V$_2$O$_5$ compound was formed.

Keywords: Vanadium oxide pulsed laser deposition, substrate temperatures, grain size, structure, compositional and optical properties.

1. Introduction

Vanadium available in several oxide forms (VO$_2$, V$_2$O$_3$, and V$_2$O$_5$). Some researchers have been managed in thin-film system and functional as visual and electrical strategies. As a wide bandgap and n-type semiconductor material, vanadium pentoxide (V$_2$O$_5$) is particularly useful. Because of its intriguing electrical conductivity, it has received a lot of attention. performance [1, 2], and integration in lithium auxiliary batteries[3]. V$_2$O$_5$ has been extensively considered in recent years into many scientific and technological applications[4]. Electrochromic materials, digital data demonstrations, and colour storage systems all have a lot of potential with V$_2$O$_5$ [5, 6]. Due to their ability to incorporate vast quantities of lithium ions mixed with their peculiar optical properties, vanadium oxides have some of the most studied materials for electrochemical applications in recent years, and in general and especially for applications that require high energy density solid-state batteries and information displays. V$_2$O$_5$ films' variable optical properties are used in the development of smart devices. Chemical detecting, photochromic, catalysis, and optical and electrical switching are just a few of the functions that V$_2$O$_5$films can perform in other technological applications. [7-10]. Because the processing window during which these oxides exist as a stable single-phase material is so small, tuning the process parameters for controlled growth and desired properties is one of the main difficulties met during the preparation of vanadium oxides in thin-film system. Vanadium procedures a variety of oxides, each of which is steady above a wide range of compositions [11-14].
configuration and phase constancy of full-grown films is extremely significant for all applied requests.

V_2O_5 films can be gotten by thermal vanishing[15], flash fading[16], electron-beam vaporisation[17], sol-gel evolution procedures[18], chemical steam confession, and spitting. In the last decade, extensive and successful efforts have been made for thin-film processing of vanadium oxides using pulsed laser deposition because it is an appealing choice for the preparation of stoichiometric and high-quality metal oxide films (PLD) [19-21]. PLD is a versatile and influential performance that has been effectively used to deposit a wide range of materials in the past [21-27]. In this paper, the impact of the substrate temperature on the compositional, optical, and structural properties of V_2O_5 films equipped by pulsed laser deposition was studied. The results obtained from UV-Vis-NIR spectra, SEM, XRD and XPS spectroscopies are presented and connected with different substrate temperatures controlled during deposition.

2. Experimental details

Pulsed laser deposition with Lambda Complex 201 excimer laser ($\lambda = 308$ nm) with the influence of 2.55 Jcm^{-2} was used to fabricate vanadium oxide thin films on fused silica substrates. The rotating target used was a pure ceramic V_2O_5. The vacuum chamber was impelled to a base compression of $2 \times 10^{-6} \text{ mbar}$ before the installation process. The in-situ deposition temperatures and O_2 partial pressures in the vacuum chamber were altered leading to the formation of thin films with different crystal structures. The V_2O_5 threshold for PLD was enriched with the goodness (99.99 percent) V2O5 powder, with a diameter of 20 mm and a thickness of 2 mm. The UV laser beam cantered by the lens scans the target surface through the quartz window. The angle formed by the incident laser beam and the normal of the target surface was 45 degrees. The laser pulse had an energy of 0.3 Joule and a pulse repetition rate of 10 Hz. After focusing on the target surface, the laser produced a 10 Jcm$^{-2}$. To avoid material depletion at the identical promotion and get identical thin films, the target was interchanged endlessly at a rate of 10 cycles per min. during ablation. The deposition was carried out at a rate of 0.1 nm sec$^{-1}$ on fused silica substrate materials. A thermocouple and temperature controller were used to heat and maintain the substrates in a temperature range of ambient to 300°C. The objective to substrate length was 4 cm, for reactive testimony. During the deposition, purely oxygen gas was released into the chamber through a flow controller. The oxygen limited density was preserved during depositions at 10-2 mbar, which is the optimal assessment to get stoichiometric V_2O_5 thin films with a clean phase. All of the PLD V_2O_5 thin films used in this study had a thickness of 380 nm. The deposition times were adjusted according to the substrate's nature and temperature to maintain this thickness. Thin films of V_2O_5 grown on highly cleaned fused silica substrates were used to investigate the surface morphology and regional composition development as a function of reaction temperature. Diffraction patterns were obtained using the Cu K$_\alpha$ radiation ($\lambda = 1.542\text{A}°$) was employed as the excitation source. The optical transmittance measurements were carried out using a Shimadzu 3101 PC double-beam spectrophotometer in the 320–3200 nm wavelength range. The refractive index (n) was considered using the generalized wavelength of Swanepoel’s [28-30]. The surface morphology of films was observed by scanning electron microscopy (SEM). To determine the oxidation state of the vanadium, in V_2O_5 films, X-ray photoelectron spectroscopy (XPS) has been carried out in an analytical system which was activated with an Mg terminal at 10 kV and 10 mA. Before gathering XPS data, no ion bombard has been used to protect any preferred sputtering of the surface organisms. The incidental C1s peak at 284.6 eV was used to correct for any alleging of the sampling surface.

3. Results and discussion

3.1. Optical properties

The values of photosensitive factors [refractive index (n), extinction constant (k), and optical bandgap] as a function of substrate temperatures are summarized in Table 1. It is clear that at higher substrate temperature, the higher values of refractive index and extinction coefficient with lower values of the optical bandgap. In the present work, the values of the optical constants obtained are in respectable settlement with informed values for V_2O_5 thin films gotten by several deposition approaches [6-8, 10-11, 16-18].
Table 1. Estimated optical parameter of grown V₂O₅ thin films at several substrate temperatures.

Substrate temperature (°C)	Refractive index (n)	Extinction coefficient (k)	Optical band gap (eV)
Ambient	2.28	0.015	2.36
100	2.30	0.021	2.18
200	2.49	0.032	2.16
300	2.69	0.034	2.08

3.2. Structural properties

By using scanning electron microscopy (SEM) the surface morphology of PLD V₂O₅ thin films was calculated. Figure 1 displays the SEM images of V₂O₅ films as a purpose of growing temperature. The SEM data for V₂O₅ thin films deposited at 300°C show nano-structured grain growth. The film is composed of spherical particles of varying sizes, with an average grain size of 50 nm (Fig. 1A). With increasing temperature, the grain size increased even more. The grains for films deposited at 200°C were almost spherical in shape, but as the temperature rises to 300°C, they definitely moved to a rectangle (Fig. 1B). The rise in grain dimension that is linked to increasing temperature suggests that the grains on the film surface are distributed randomly.

Figure 1. The SEM images of PLD V₂O₅ films as a task of rising temperature: (A) film grownup at 200°C (B) film grownup at 300°C.

Figure 2 shows the relationship between average grain size and evolution temperature. The greater growing temperature leads to the greater grain dimensions. The films dumped at ambient substrate temperature are totally formless. The grain dimension increased from 89nm to 310nm with the rise in substrate temperature from 200°C to 300°C. This could be explained on the basis that, the growth temperature enhanced the surface dispersal of the classes due to the smaller grains connection together and produce into superior grains.
The changing of the bandgap with grain magnitude due to the variation in substrate temperatures is shown in figure 3. It is very clearly show that the upper value of grain size V_2O_5 films exhibit a lower value of bandgap. The bandgap value shows a decrease from 2.36 eV to 2.02 eV when the grain size increases from 45nm to 310nm.

The XRD patterns for samples deposited at vary substrate temperatures shows in Figure 4. The crystalline phase of vanadium oxide structure forms at 200°C, as shown in Fig. 2, but only low-intensity peaks can be seen. It is indicated that the crystallinity of the film rises with higher deposition temperatures. The XRD spectrum of the deposited films at 300°C substrate temperature shows peaks that coincided with V_2O_5 (001), (400), and (200) exhibit the predominant (001) peak of the orthorhombic V_2O_5 phase.
3.3. Compositional Analysis

The binding energy values of the main XPS peaks for V$_2$O$_5$ film samples deposited at 500°C, respectively, are presented in Table 2. As it is seen, V$_2$P$_{3/2}$ and V$_2$P$_{1/2}$ peaks for both samples are similar. The binding energy corresponds to the V$^{5+}$ state of vanadium and agrees well with those reported in[31]. The O1s peak at a binding energy of 530.3 eV corresponding to O$^{2-}$ ions in V$_2$O$_5$ films [31]. In Table 2, the location and spin-orbit split steady for various vanadium oxides are compared to other recorded XPS results. When the experimental data is compared to published data, it is clear that the oxide produced under these conditions is not V$_2$O$_3$, VO$_2$, or any other vanadium oxide other than V$_2$O$_5$[32, 33].

Table 2. Core levels binding energies between levels V$_2$P$_{3/2}$ and V$_2$P$_{1/2}$

Core level	Experimental data [binding energies (eV)]	Reported data [binding energies(eV)]						
	V$_2$O$_5$	VO$_2$	V$_2$O$_3$					
V$_2$P$_{3/2}$	517.1	516.9	517.6	516.1	561.2	515.5	515.7	
V$_2$P$_{1/2}$	524.2	524.5	524.3	524.4	523.1	523.5	523.0	523.3

4. Conclusion

In this research, V$_2$O$_5$ films were grown up on a heated fused silica substrate using the PLD method. The effect of substrate temperature was dominant on the film properties. The SEM images of V$_2$O$_5$ films showed the grain dimension is uniform and with mean grain size range from 45nm to 310nm. XPS measurements on the surface designate that the models are mostly collected of V$_2$O$_5$. All the models displayed narrow V$_2$P$_{3/2}$ crests (FWHM~1.6 eV), centred between 517.1 eV and 517.4 eV. The optical band gap for film growth decreased from 2.36 eV to 2.08 eV however, the refractive index increased from 2.28 to 2.69 as the substrate temperature increased from ambient temperature to 300°C.
The grain size showed strong dependence in substrate temperatures. The XRD spectrum of the deposited films at 300°C substrate temperature shows peaks that coincided with V$_2$O$_5$ (001), (400), and (200) exhibit the predominant (001) peak of the orthorhombic V$_2$O$_5$ phase.

ACKNOWLEDGEMENT

The authors are highly acknowledging all the staff of the Physics Department and the Centre developed Industrial and Material Treating, University of Malaya, Kuala Lumpur, Malaysia, for their valuable support to carry out the experimental procedure and tests.

References

[1] Ilinskiy A V, Nikulin E I and Shadrin E B J P o C S 2020 Comparative analysis of semiconductor-metal phase transition mechanisms in vanadium oxides (V2O3 and VO2) 1

[2] Mjejri I, Rougier A and Gaudon M J I c 2017 Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties 56 1734-41

[3] Zhang Y, Wang H, Yang J, Fan H, Zhang Y, Dai Z, Zheng Y, Huang W, Dong X and Yan Q J N R 2017 Hydrogenated vanadium oxides as an advanced anode material in lithium ion batteries 10 4266-73

[4] Majumdar D, Mandal M and Bhattacharya S K J C 2019 V2O5 and its Carbon-Based Nanocomposites for Supercapacitor Applications 6 1623-48

[5] Jain R K, Khanna A, Gautam Y K and Singh B P J A S S 2021 Sputter deposited crystalline V2O5, WO3 and WO3/V2O5 multi-layers for optical and electrochemical applications 536 147804

[6] Thapa C 2010 A Study Of Structure-Property Correlation In V2O5 And Tio2 Based Thin Films As Functional Materials

[7] Sanchez C, Lebeau B, Chaput F and Boilot J P J A M 2003 Optical properties of functional hybrid organic–inorganic nanocomposites 15 1969-94

[8] Granqvist C G 1995 *Handbook of inorganic electrochromic materials*: Elsevier

[9] Al_airaji R M, Aljazaery I A, Al_dulaimi S K and Alrikabi H T S 2021 Generation of high dynamic range for enhancing the panorama environment *Bulletin of Electrical Engineering and Informatics* 10 138-47

[10] Rihab Salah Khairy A S H, Haider TH. Salim ALRikabi2 2021 The Detection of Counterfeit Banknotes Using Ensemble Learning Techniques of AdaBoost and Voting *International Journal of Intelligent Engineering and Systems* 14 326-39

[11] Zhang Z 2014 Experimental and theoretical study on VO2-based nanostructures for environmental applications. The University of New South Wales)

[12] Moshfegh A and Ignatiev A J T S F 1991 Formation and characterization of thin film vanadium oxides: Auger electron spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and optical reflectance studies 198 251-68

[13] Hala A, Naman N A H, Mohand Lokman Al-dabag, Haider Th.Salim Alrikabi 2021 Encryption System for Hiding Information Based on Internet of Things *International Journal of Interactive Mobile Technologies (IJIM)* 15

[14] Mohammed B K, Mortatha M B, Abdalrada A S, ALRikabi H T S J P o E and Sciences N 2021 A comprehensive system for detection of flammable and toxic gases using IoT 9 702-11

[15] Ramana C V, Smith R, Hussain O, Chusuei C C and Julien C J C o M 2005 Correlation between growth conditions, microstructure, and optical properties in pulsed-laser-deposited V2O5 thin films 17 1213-9
[16] Ramana C, Hussain O, Pinto R and Julien C J A S S 2003 Microstructural features of pulsed-laser deposited V2O5 thin films 207 135-8
[17] Ramana C, Hussain O, Naidu B S and Reddy P J T S F 1997 Spectroscopic characterization of electron-beam evaporated V2O5 thin films 305 219-26
[18] Beke S J T S F 2011 A review of the growth of V2O5 films from 1885 to 2010 519 1761-71
[19] Manoravi P and Joseph M J S B Pulsed laser deposition of a few oxide thin films 107
[20] Koch C, Johnson S, Kumar D, Jelinek M, Chrisey D, Doraiswamy A, Jin C, Narayan R, Mihailescu I J M S and C E 2007 Pulsed laser deposition of hydroxyapatite thin films 27 484-94
[21] Farhan M S, Zalnezhad E, Bushroa A R J I J o P E and Manufacturing 2013 Investigation of optical and structural properties of ion-assisted deposition (IAD) ZrO 2 thin films 14 1977-2002
[22] Wang B, Zhang Z B, Zhong S P, Zheng Z Q, Xu P and Zhang H J J o M C C 2020 Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology 8 4988-5014
[23] Willmott P and Huber J J R o M P 2000 Pulsed laser vaporization and deposition 72 315
[24] Abed F T, ALRikabi H T S and Ibrahim I A 2020 Efficient Energy of Smart Grid Education Models for Modern Electric Power System Engineering in Iraq. In: IOP Conference Series: Materials Science and Engineering; IOP Publishing) p 012049
[25] Farhan M S, Zalnezhad E and Bushroa A J M R B 2013 Properties of Ta2O5 thin films prepared by ion-assisted deposition 48 4206-9
[26] Al-dabag M, ALRikabi H S and Al-Nima R 2021 Anticipating Atrial Fibrillation Signal Using Efficient Algorithm International Journal of Online and Biomedical Engineering (IJOE) 17 106-20
[27] Tuama H, Abbas H, Alseelawi N S and ALRikabi H T H S 2020 Bordering a set of energy criteria for the contributing in the transition level to sustainable energy in electrical Iraqi projects Periodicals of Engineering and Natural Sciences 8 516-25
[28] Jin Y, Song B, Jia Z, Zhang Y, Lin C, Wang X and Dai S J o e 2017 Improvement of Swanepoel method for deriving the thickness and the optical properties of chalcogenide thin films 25 440-51
[29] Swanepoel R J J o P E S I 1983 Determination of the thickness and optical constants of amorphous silicon 16 1214
[30] Aljazaery I A, Alhasan H, Al Hachami F N and Alrikabi H T S 2020 Simulation Study to Calculate the Vibration Energy of Two Molecules of Hydrogen Chloride and Carbon Oxide Journal of Green Engineering 10 5989-6010
[31] Demeter M, Neumann M and Reichelt W J S S 2000 Mixed-valence vanadium oxides studied by XPS 454 41-4
[32] Chastain J and King Jr R C J P-E C 1992 Handbook of X-ray photoelectron spectroscopy 40 221
[33] Fuerst T F, Petsalis E P, Lundin S-T B, Wilcox J, Way J D and Wolden C A J T J o P C C 2018 Experimental and theoretical insights into the potential of V2O3 surface coatings for hydrogen permeable vanadium membranes 122 3488-96