Suppression of plant defense responses by extracellular metabolites from *Pseudomonas syringae* pv. *tabaci* in *Nicotiana benthamiana*

Seonghee Lee, Dong Sik Yang, Srinivasa Rao Uppalapati, Lloyd W Sumner and Kirankumar S Mysore*

Abstract

Background: *Pseudomonas syringae* pv. *tabaci* (*Pstab*) is the causal agent of wildfire disease in tobacco plants. Several pathovars of *Pseudomonas syringae* produce a phytotoxic extracellular metabolite called coronatine (COR). COR has been shown to suppress plant defense responses. Interestingly, *Pstab* does not produce COR but still actively suppresses early plant defense responses. It is not clear if *Pstab* produces any extracellular metabolites that actively suppress early defense during bacterial pathogenesis.

Results: We found that the *Pstab* extracellular metabolite extracts (*Pstab* extracts) remarkably suppressed stomatal closure and nonhost hypersensitive response (HR) cell death induced by a nonhost pathogen, *P. syringae* pv. *tomato* T1 (*Pst* T1), in *Nicotiana benthamiana*. We also found that the accumulation of nonhost pathogens, *P. syringae* pv. *glycinea* (*Psgly*), was increased in *N. benthamiana* plants upon treatment with *Pstab* extracts. The HR cell death induced by Pathogen-Associated Molecular Pattern (INF1), gene-for-gene interaction (*Pto*/*AvrPto* and *Cf-9/*AvrCf-9) and ethanol was not delayed or suppressed by *Pstab* extracts. We performed metabolite profiling to investigate the extracellular metabolites from *Pstab* using UPLC-qTOF-MS and identified 49 extracellular metabolites from the *Pstab* supernatant culture. The results from gene expression profiling of PR-1, PR-2, PR-5, PDF1.2, ABA1, COI1, and HSR203J suggest that *Pstab* extracellular metabolites may interfere with SA-mediated defense pathways.

Conclusions: In this study, we found that *Pstab* extracts suppress plant defense responses such as stomatal closure and nonhost HR cell death induced by the nonhost bacterial pathogen *Pst* T1 in *N. benthamiana*.

Keywords: *Nicotiana benthamiana*, *Pseudomonas syringae* pv. *tabaci*, Extracellular metabolites, Hypersensitive response (HR), Stomata, Nonhost resistance

Background

Foliar bacterial phytopathogens such as the *Pseudomonas syringae* species survive on the plant leaf surface as epiphytes [1]. During the initial infection process, the bacterial pathogens produce virulence factors including effector proteins and secondary metabolites, to inactivate early plant defense responses such as stomata-based immunity [2,3] and hypersensitive response (HR) cell death at the site of infection [4]. The failure of early pathogen recognition delays initiation of the downstream defense cascade and results in the development of disease symptoms in plants. Therefore, the suppression of early plant defense responses is one of the important steps for bacterial pathogens to successfully colonize plant tissues, leading to disease.

It has long been thought that stomata are the passive portal for entry of phytopathogens. However, recent studies demonstrated that stomata play an active role in restricting bacterial invasion as part of the plant innate immune system [2,5]. Perception of multiple bacterial pathogen-associated molecular patterns (PAMPs), including flagellin, lipopolysaccharide (LPS) and elongation factor Tu (EF-Tu) induces closure of stomata in leaf epidermal peels of *Arabidopsis* [6]. It is now believed that stomatal closure is a common plant defense response initiated by the perception of bacterial PAMPs and limits bacterial invasion in plants. However, certain bacterial pathogens have evolved to deliver specific virulence factors.
such as coronatine (COR) to overcome PAMP-triggered immunity (PTI) and stomata-based defense.

COR is a nonhost-specific, non-proteinaceous virulence effector produced by several pathovars of *P. syringae* [7,8]. This is one of the most extensively studied phytopathogenic secondary metabolites that modulate plant hormonal defense signaling and functions as a stomatal-based immunity suppressor. COR has structural and functional similarity to jasmonates including 12-oxo-phytodienoic acid (12-OPDA) and jasmonic acid-isoleucine (JA-Ile), and activates the JA pathway in Arabidopsis and tomato [9-11]. The virulent pathogen *P. syringae* pv. *tomato* strain DC3000 (*Pst* DC3000) produces COR on the plant surface to reopen closed stomata, allowing increased bacterial entry [2,3]. A *Pst* DC3000 mutant (*Pst* DC3118) that is deficient in COR production has severely attenuated virulence when dip- or spray-inoculated onto Arabidopsis and tomato leaves [3]. However, this defect can be restored in Arabidopsis mutants (*fts2*, *ost1* and *gpa1*) that are defective in abscisic acid (ABA)- and PAMP-regulated stomatal closure [12,13].

In contrast to the number of studies done for COR-producing bacterial pathogens, it has been largely overlooked that other pathovars of *P. syringae* without COR may also produce non-proteinaceous virulence factors to suppress plant innate immunity. *Xanthomonas campestris* pv. *campestris* (*Xcc*) that has a broad host range including *Brassicaceae* family is shown to overcome stomatal defense in Arabidopsis [14]. The extracellular metabolite secreted from *Xcc* is regulated by *rpf* (regulation of pathogenicity factor) gene cluster. The *rpf* mutant strains of *Xcc* were unable to reopen stomata, but the stomata closure was reverted when ethyl acetate extracts from *Xcc* culture supernatants were added to the mutant strains in Arabidopsis [14]. Two other *P. syringae* strains, *P. s. pv. tabaci* (*Pstab*) and *P. s. pv. tomato* strain T1 (*Pst T1*), do not produce COR, but these bacterial strains can actively reopen stomata in tobacco and tomato plants, respectively [3,5].

Hypersensitive response (HR) is another important form of early defense response against bacterial pathogens. HR is associated with defenses that are highly manifested by development of rapid cell death. A number of HR elicitors from bacterial pathogens have been described. Phytopathobial avirulent proteins (Avr) cause HR during incompatible interactions in plants containing corresponding plant resistance (*R*) genes (gene-for-gene resistance-mediated HR). Protein products of the *hrrp* (hypersensitive response and pathogenicity) gene family cause HR in nonhost plants (nonhost disease resistance-mediated HR; nonhost HR). The nonhost HR cell death is the common phenomenon observed in many plants in response to non-adapted bacterial pathogens [15]. The bacterial effector proteins of *P. syringae* are injected into plant cells by the pathogen type III secretion system (TTSS) to suppress basal resistance in host plants [16,17]. The TTSS- and *Hrp*-deficient mutants cannot elicit nonhost HR cell death or be pathogenic on host plants [18]. Moreover, several effectors from *Pst* DC3000 play an important role in suppression of the R-gene mediated HR in tomato [19-21]. In addition, it has been also shown that the *Pst* DC3000 effector, AvrPto, suppresses nonhost HR cell death in *Nicotiana benthamiana* and tomato [22]. We recently showed that COR can also suppress HR induced by a nonhost pathogen in *N. benthamiana* [23].

In the current study, we report that the extracellular metabolite(s) from *Pstab* suppresses plant defense responses such as stomata-based immunity and hypersensitive response (HR) cell death. We performed extracellular metabolite profiling of *Pstab* by ultra high performance liquid chromatography coupled to hybrid quadrupole time-of-flight mass spectrometry (UHPLC-qTOF-MS) and isolated putative metabolites involved in the suppression of early plant defense responses in *N. benthamiana*. The patterns of plant defense gene expression suggest that the SA-mediated defense pathway may be modulated by extracellular metabolites from *Pstab*.

Results

Bacterial pathogens, *Pstab* and *Pst* T1, suppress early defense responses in their host plants, *N. benthamiana* and tomato, respectively

The early infection processes of *Pstab* in *N. benthamiana* and *Pst* T1 in tomato were determined using GFPuv-expressing bacteria [24]. Five days after spray inoculation, a number of fluorescent spots (bacterial colonization) at infection sites were observed under long-wavelength UV light in *N. benthamiana* with *Pstab* and in tomato with *Pst* T1 infection. In contrast, only a few fluorescent spots were detected on *N. benthamiana* leaves infected with *Pst* T1 and on tomato plants infected with *Pstab* (Figure 1A). We also observed that both *Pstab* and *Pst* T1 can reopen stomata and actively enter into apoplastic space in their respective host plants (Figure 1B). However, most stomata remained closed in tomato when inoculated with a nonhost pathogen, *Pstab*. Similarly, most *N. benthamiana* stomata remained closed when inoculated with a nonhost pathogen, *Pst* T1. In addition, the inoculation of *Pst* T1 induced typical nonhost HR cell death on *N. benthamiana* leaves within 20 hrs, while the host pathogen *Pstab* did not induce any visible cell death at that time point (Figure 1C). We speculate that the nonhost HR cell death in *N. benthamiana* is triggered either by PAMPs or effectors of the nonhost pathogen, *Pst* T1. Such PAMP- and/or effector-triggered HR is probably suppressed during *Pstab*- *N. benthamiana* interaction, thus resulting in disease symptoms after inoculation. These results suggested that *Pstab* produces host-specific virulence
factor(s) to inactivate stomatal closure and probably suppress PAMP- and/or effector-triggered HR in *N. benthamiana*. This prompted us to investigate if any extracellular metabolite(s) from *Pstab* can inactivate some plant defense responses.

Extracellular nonpolar metabolites from *Pstab* suppress stomatal closure induced by the nonhost bacterial pathogen *Pst T1*

We prepared the *Pstab* extracts from bacterial culture to investigate whether the observed suppression of stomatal closure and HR in *N. benthamiana* was due to the activity of extracellular metabolites. The extracts were prepared by bacterial culture and tested for their ability to inactivate stomatal closure and HR in *N. benthamiana* and tomato. The results showed that the extracts from *Pstab* were able to reopen stomata and suppress HR in both *N. benthamiana* and tomato, indicating the presence of extracellular metabolites that could inactivate plant defense responses.
defense (shown in Figure 1B) is due to the metabolites secreted out of bacteria. The stomatal closure induced by the nonhost pathogen Pst T1 was suppressed when Pst T1 was mixed with the extracellular metabolites in the ethyl acetate extract of Pstab culture supernatant prior to inoculation in N. benthamiana (Figure 2A). To determine if the metabolites that suppress stomatal closure are extracellular or intracellular products, the Pstab extracts were individually prepared from both the culture supernatant and bacterial cell pellets. Detached N. benthamiana leaves were floated on a bacterial suspension supernatant and bacterial cell pellets. Detached extracts were individually prepared from both the culture supernatant and bacterial cell pellets. Detached N. benthamiana leaves were floated on a bacterial suspension of Pst T1 mixed with extracts from either the minimal growth medium (MG; control) or the Pstab supernatant (Pstab sup. ext.), or the Pstab bacterial cell pellet (Pstab cell ext.). The Pst T1 cell numbers in the leaf apoplast were significantly higher (due to more entry of bacteria through stomata) at 4 hrs after incubation of Pst T1 mixed with Pstab supernatant when compared to bacterial numbers in the leaf treated with Pst T1 mixed with Pstab cell extract or the control (Figure 2B). These findings suggest that Pstab supernatant extracts function to suppress stomatal closure. We also detected a slight increase in bacterial entry with cell extract compared to MG extracts, possibly due to the presence of remaining small amounts of Pstab extracellular extracts in bacterial cell pellet.

Pstab extracts suppress hypersensitive response (HR) cell death triggered by nonhost pathogens

Nonhost disease resistance is the common plant defense mechanism which protects plants from various potential pathogens. HR is a common phenomenon for nonhost resistance observed in plant-bacterial pathogen interactions. We further tested whether the metabolites secreted from Pstab (Pstab extracts) can also overcome nonhost HR cell death induced by Pst T1 in N. benthamiana. HR occurred within 16 hrs of syringe infiltration of Pst T1 (2.1 × 10⁶ CFU/ml) in N. benthamiana. Interestingly, the nonhost HR cell death was suppressed when Pst T1 was infiltrated along with Pstab extracts. Furthermore, when Pstab extracts alone were infiltrated, there was no visible symptom on the N. benthamiana leaf (Figure 3A and 3B).

To determine if Pstab extracts play a role in virulence, we examined the growth of two nonhost bacterial pathogens, Pst T1 and P. syringae pv. glycinea (Psgly), in the N. benthamiana leaves in the presence of Pstab extracts. After co-inoculation of Pst T1 or Psgly with Pstab extracts, the bacterial growth was significantly higher on the inoculated area of both Pst T1 + Pstab extracts and Psgly + Pstab extracts than in the co-inoculated area of Pst T1 or Psgly with MG medium extracts (mock) (Figure 3C and 3D). Since N. benthamiana is a nonhost for both Psgly and Pst T1, their populations gradually decreased two days after inoculation in the mock control. The bacterial populations of Psgly and Pst T1 with Pstab extracts also decreased, but the populations were higher than the population after the mock inoculation. No visible disease symptoms were found in either Psgly + Pstab extracts or Pst T1 + Pstab extracts in the inoculated area of the leaves when compared to mock controls.

To examine the stability of the metabolite, Pstab extracts were treated at 95°C for 5 min and infiltrated with three nonhost bacterial pathogens, P. s. pv. phaseolicola,

Figure 2 Suppression of stomatal defense by the metabolite extract from Pstab supernatant in N. benthamiana. (A) Suppression of stomatal closure by Pstab extracts in N. benthamiana epidermal peels. KCI-MES; stomata opening buffer, MG ext/Pst T1; bacterial suspension of Pst T1 with MG media extracts, and Pstab ext/Pst T1; bacterial suspension of Pst T1 with Pstab extracts. (B) Ability of Pst T1 migration through stomata and a number of bacterial cells of Pst T1 in apoplastic space. Detached leaves of N. benthamiana were floated on Pst T1 suspension (1×10⁷ CFU/ml) along with MG media, Pstab supernatant, and Pstab cell pellet extracts, and samples were collected at 1 hr and 4 hrs after incubation. Bars represent the means ± standard deviation (SD) (P<0.05, student’s t-test).
Figure 3 (See legend on next page.)
P. s. pv. maculicola and Pst T1. The degree of nonhost HR cell death suppression by the boiled Pstab extracts did not change for all the tested nonhost pathogens (Figure 3E). However, there was cell death at the site of syringe infiltration and chlorosis symptom with the boiled Pstab extracts, suggesting that the virulence factor in the Pstab extracts may be perturbed. To investigate whether Pstab supernatant extracts can suppress R-gene- and PAMP-mediated cell death, we transiently expressed R-Avr gene combinations, Pto/AvrPto [25] and Cf-9/AvrCf-9 [26], in N. benthamiana leaves along with Pstab extracts. In addition, we also expressed INF1 (the major secreted elicitin of Phytophthora infestans) [27] that encodes a PAMP and causes cell death on N. benthamiana along with Pstab extracts. The development of cell death (HR) was monitored from 24 hrs after the inoculations. Interestingly, Pstab extracts did not suppress or reduce the intensity of cell death observed for both R-Avr-gene- and PAMP-induced HR (Figure 4). In addition, chemically induced cell death (20% EtOH) was also not affected by Pstab extracts, suggesting that Pstab extracts specifically suppress nonhost HR cell death (Figure 4).

Metabolite profiling of the extracellular metabolites from Pstab
To further prove that Pstab can secrete metabolites into the growth media, we performed metabolite profiling of the Pstab culture media using UHPLC-qTOF-MS (Figure 5A). The extracts of the Pstab culture media contained secreted metabolites from Pstab as well as MG medium. A total of 49 extracellular metabolites from Pstab were detected after subtracting metabolites present in MG medium (Figure 5B). The extracellular metabolite profiling includes the retention time, specific ion (m/z) and relative intensity used to differentiate unique metabolites; however, they were not chemically annotated (Additional file 1: Table S1). In particular, M39 with the most abundant ion 1080.7322 (m/z) was quantitatively the major metabolite in the extracellular metabolites of Pstab.

Figure 3 Suppression of nonhost HR cell death and enhancement of bacterial multiplication by Pstab extracts in N. benthamiana. (A) Suppression of nonhost HR cell death by the ethyl acetate extract from Pstab culture supernatant (Pstab ext.). Pst T1 (2.1 x 10^6 CFU/ml) was infiltrated in N. benthamiana leaves, and photo was taken at 48 hpi. (B) Non-phytotoxin activity of Pstab extracts in N. benthamiana leaf. A high concentration of the Pstab extracts was used, 24 μl/ml instead of 6 μl/ml. Photographs were taken three days after infiltration. (C and D) Bacterial multiplications of nonhost pathogens P. s. pv. tomato T1 (Pst T1) and P. s. pv. glycinea (Pgy) after inoculation with Pstab extracts in N. benthamiana. Pst T1 (C) and Pgy (D) (3x10^6 CFU/ml) were inoculated with Pstab extracts, and the bacterial growth was measured. The experiment was repeated twice (three replications for each experiment) with similar results. Bars represent the means ± standard deviation (SD) (P<0.05, student’s t-test). (E) Temperature stability of Pstab extracts and suppression of nonhost HR cell death for three nonhost pathogens, P. s. pv. phaseolicola (Pip), P. s. pv. maculicola (Psm), and Pst T1. Pstab extracts were boiled (5 min/95°C) and co-infiltrated with the bacterial suspensions. Photographs were taken at 24 hpi.

Altered expression of defense-related genes by Pstab extracts
SA has been shown to play a role in HR cell death. We determined the gene expression of PR1, PR2 and PR5 to dissect the involvement of Pstab extracts in the SA-
mediated defense pathway. The expression of the PR5 gene was slightly induced in N. benthamiana leaves at 6 and 12 hrs after treatments of MG extracts and Pstab extracts. We didn’t examine for the expression of PR1 and PR2 after treatments of MG extracts and Pstab extracts. The elevation of the PR5 expression without Pst T1 inoculation may be related to wounding stress by syringe infiltration. However, when treated with Pst T1, the expression level of PR1, PR2 and PR5 was significantly induced. Strikingly, the accumulation of PR1, PR2 and PR5 gene transcripts was significantly reduced in N. benthamiana leaves when the Pstab extracts were mixed with Pst extracts, suggesting that Pstab extracts delay the signaling for nonhost pathogen induced-HR cell death (Figure 6). Although, we didn’t observe any visible cell death at the site of infiltration of Pst T1/Pstab extracts, the level of HSR203J expression in Pst T1/Pstab extracts was similar with Pst T1/MG extracts at 12 hpi. These results suggest that Pstab extracts down-regulate SA-mediated early defense to suppress nonhost HR cell death. To determine if JA signaling is altered by Pstab extracts, the expression of plant defensin (PDF1.2), a marker for the JA signaling pathway, was examined. The expression level of PDF1.2 was increased rapidly by 12 hrs in leaves infiltrated by MG extracts due to wound stress by syringe infiltration, while the expression level with Pstab extracts alone remained little changed during the experiment (Additional file 2: Figure S1), suggesting that the Pstab extracts suppress even the wound induced defense response. When Pst T1 was inoculated with MG extracts and Pstab extracts, the transcripts of PDF1.2 were increased at 6 hpi and declined at 12 hpi (Figure 6). The expression pattern was not significantly different between Pst T1 + MG extracts and Pst
Figure 6 (See legend on next page.)
T1 + Pstab extracts, suggesting that the JA-mediated defense signaling pathway against bacterial pathogen may not be directly modulated by Pstab extracts, in contrast to the SA-mediated pathway.

It has been known that coronatine insensitive 1 (COI1) gene is involved in the stomatal defense in response to bacterial pathogens [2]. Thus, we examined the gene expressions of COI1 to determine if Pstab extracts target the expression of this gene. The level of expression of COI1 gradually decreased upon infiltration of MG extracts and Pstab extracts alone (Additional file 2: Figure S1). This finding agrees with the results of Arabidopsis gene expressions data in the eFP Browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi) that the gene expressions are down-regulated 6 and 12 hrs after distilled water infiltration in Arabidopsis. After nonhost pathogen Pst T1 inoculation, COI1 gene was significantly down-regulated by Pstab extracts at 6 hrs post inoculation. However, COI1 expression pattern with Pst T1 inoculation appeared similar to that of the COI1 expression pattern upon infiltration of MG extracts and Pstab extracts alone (Figure 6; Additional file 2: Figure S1). This finding indicates that COI1 expression is decreased at 6 hpi by Pstab extracts and may interfere with the COI1-mediated defense pathway.

Abscisic acid (ABA) is the critical phytohormone for regulating stomatal opening and closure. ABA1 is induced by ABA and a marker gene for the ABA signaling pathway. The expression of ABA1 was similar to that of COI1 where in the expression was down-regulated upon infiltration with MG extracts and Pstab extracts alone (Additional file 2: Figure S1). In Arabidopsis, ABA1 expression is reduced 6 hrs after water or buffer infiltration (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). Pst T1 infection did not alter the expression of ABA1 compared to infiltration with MG extracts and Pstab extracts alone (Figure 6; Additional file 2: Figure S1). In addition, the expression pattern of ABA1 was not significantly different among Pst T1 + MG extracts inoculated leaves and Pst T1 + Pstab extracts inoculated leaves.

Discussion

Studies on the mechanisms of bacterial elicitation of early plant defense responses have unraveled important questions during plant-pathogen interactions [29-31]. It is remarkable that bacteria have evolved to deliver diverse virulence factors to defeat sophisticated plant defense systems [30,32]. Apart from the numerous proteinaceous effectors that the bacteria can deliver into plants, COR is the first discovered virulence metabolite secreted from several P. syringae strains and can suppress plant defense responses [2,7,10,33-35]. However, we still don’t know whether other non-COR-producing pathovars of P. syringae produce metabolites that have virulence function. It is still not clear how extracellular metabolites from bacterial pathogens can suppress plant defense responses.

In this study, we showed that extracellular metabolites from the non-COR producing Pseudomonas syringae pathogen, Pstab, can suppress plant defense responses including stomatal closure and nonhost HR cell death in N. benthamiana. Most stomata in epidermal peels of N. benthamiana close within 3 hrs upon inoculation with the nonhost pathogen Pst T1. Both Pst T1 and Pstab do not produce COR (due to lack of genes involved in biosynthesis of COR), but they can still reopen stomata in their respective host plants (Figure 2). We demonstrated that Pstab extracts suppress stomatal defense in N. benthamiana; however, it is unknown how Pst T1 suppresses stomatal defense in tomato. COR has been shown to suppress stomatal closure in Arabidopsis [2,12], and this is important for a virulent bacterium to enter the leaf apoplast. Interestingly, when a nonhost pathogen, Pst T1, was inoculated on N. benthamiana with Pstab extracts, the stomatal closure induced by Pst T1 was suppressed (Figure 2). This finding suggests that the non-COR-producing strain Pstab may produce other uncharacterized extracellular metabolites that may have a similar function as COR in opening stomata.

We also found that the nonhost HR cell death induced by Pst T1 in N. benthamiana was also suppressed when inoculated with Pstab extracts (Figure 3). It has been known that Pstab produces tabtoxin that induces chlorosis and is associated with the symptoms of wildfire disease on tobacco and halo blight of oats [36]. Tabtoxin is a dipeptide which is not biologically active and needs to be hydrolyzed by peptidase for an active toxic component, tabtoxinine-β-Lactam (TBL). TBL is released by zinc-dependent aminopeptidases in the periplasm of the bacterium or by enzymes in the plant cell, and inhibits the enzyme glutamine synthetase that results in chlorosis.

Figure 6 Expression patterns of PR1, PR2, PR5, PDF1.2, ABA1, COI1 and HSR203J genes after inoculation with Pst T1 + Pstab extracts in N. benthamiana. The expression level of PR1, PR2, PR5, PDF1.2, ABA1, COI1 and HSR203J was determined by qRT-PCR after inoculation of Pst T1 with MG medium extracts of Pstab extracts in N. benthamiana. Gene expression analyses were performed using three biological replications, where each biological replicate consists of three technical replicates. Bars represent the means ± standard deviation (SD). Same letters above bars indicate no statistically significant difference (P<0.05) among plant genotypes for a given time point using one-way ANOVA followed by LSD test analysis. The qRT-PCR data were normalized to NbActin transcript and shown as relative to that of target gene expressions in 0 hr N. benthamiana leaves without any treatment.
[37,38]. Raaijmakers et al. [39] described that TBL is proved to be difficult to synthesize due to the toxin’s instability. Tabtoxin is a relatively unstable molecule in vivo and during the procedures of toxin purification [40,41]. It has been demonstrated that the biological activity of a tabtoxin solution decreases with a half-life of approximately one day at room temperature [41]. In addition, chlorosis is the most characteristic symptom of tabtoxin in tobacco leaves [42]. We, therefore, hypothesized that

Pstab extracts does not contain tabtoxin. To prove that metabolites but not active proteins play a role in stomata opening and HR suppression, the Pstab culture supernatant was extracted using an organic solvent, ethyl acetate with 1% formic acid. The process of ethyl acetate extraction removes peptides from

Pstab culture supernatant and few JAZ proteins (JAZ1, JAZ3, and JAZ9) have been shown to interact with COII [47]. It has also been shown that COII plays a role in plant cell death during plant-microbe interaction. When COII was silenced in N. benthamiana, cell death-induced by potato virus X (PVX) was accelerated [48]. Devadas et al. [49] reported that a hr1 (hypersensitive response-like lesions 1) coi1 double mutant exacerbated cell death lesions, suggesting that COII is necessary for cell death limitation.

Interestingly, in our study, we observed that nonhost HR cell death was suppressed by Pstab extracts, but not for any of the specific R-AVR or PAMP triggered cell death. It is possible that the unknown metabolite in Pstab extracts may specifically inhibits the defense mechanism involved in nonhost resistance. Further studies should be performed to isolate the metabolite and identity its function for the suppression of nonhost HR cell death in response to bacterial pathogens.

Conclusions

It is demonstrated here that another Pseudomonas pathogen, Pstab that does not produce COR, can still actively suppress stomatal defense and nonhost HR cell death in N. benthamiana. This finding clearly suggests that Pseudomonas syringae strains can produce metabolite(s) other than COR to suppress plant defense responses. Isolation and characterization of the Pstab extracellular metabolite(s) will facilitate a better understanding of strategies used by bacterial pathogens to cause disease in host plants.

Methods

N. benthamiana growth

N. benthamiana was sowed on soilless potting mix BM7 (Berger Co., Quebec, Canada) and grown in a growth room at 22 to 25°C for two weeks under a 12 hr photoperiod with light intensity ranging from 300 to 400 μmol m⁻² s⁻¹. Two-week-old seedlings were transplanted to 10 cm diameter round pots containing potting soil (BM7) (Berger Co., Quebec, Canada), with one plant per pot, and grown in the greenhouse at 23°C with 16 hrs of extended day-light and supplemental lighting at 100 μmol m⁻² s⁻¹. Plants were regularly fertilized (20-10-20).
Three- to four-week-old *N. benthamiana* plants were used for the experiments. Seeds of tomato (*Solanum lycopersicum* cv. Glamour) were obtained from Stokes Seeds Inc (Buffalo, NY, USA). Plants were grown in Scott-200® mix (The Scotts Co., Marysville, Ohio, USA) and maintained in growth chambers (24°C, 40-70% RH, 12 h photoperiod, photon flux density of 150–200 μmol m–2 sec–1). Three-week-old seedlings were transplanted to 10 cm diameter round pots and maintained the same as the *N. benthamiana* plants described above.

Metabolite extracts from the Pstab culture supernatant

To extract metabolites secreted from *Pstab*, we followed the extraction method used for COR with minor modifications [50]. The bacterial strain *Pstab* was grown on a KB plate containing appropriate antibiotics. A single colony of *Pstab* was incubated in 10 ml of Manitol-Glutamate (MG) medium (manitol, 10 g; L-glutamic acid, 2 g; KH₂PO₄, 0.5 g; NaCl, 0.2 g; MgSO₄, 0.2 g with pH7/liter) at 28°C with 250 rpm for 48 hr. The 2.5 ml of *Pstab* culture was added to 47.5 ml fresh MG medium and cultured for six days at 18°C with 220 rpm in a rotary shaker. The *Pstab* cultures (150 ml) were centrifuged for 30 min at 3,700g at 4°C, and the supernatant was transferred to a sterile glass tube. The *Pstab* cell pellets were used for analysis of intracellular metabolites and the supernatant for analysis of extracellular metabolites. For extraction of intracellular metabolites, the *Pstab* cell pellets were placed in a glass vial with 5 ml ethyl acetate containing 1% (v/v) formic acid and then sonicated for 20 min. The ethyl acetate fraction was collected through centrifugation (3,700g, 30 min) and completely dried, using N₂ gas. For extraction of extracellular metabolites, the *Pstab* supernatant was extracted with ethyl acetate containing 1% formic acid. The ratio of the culture supernatant to the acidified ethyl acetate was 3:5. The ethyl acetate fraction was collected and completely dried, using N₂ gas. The MG medium without *Pstab* was extracted as a control, following the above procedures. The dried extracts were resuspended in 600 μl of 16.7% methanol in H₂O. For stomatal and nonhost HR cell death bioassays, 6 μl of extracts were used for every milliliter of inoculation buffer (10 mM MES, pH 6.5).

Assays for suppression of nonhost HR cell death by *Pstab* extracts

Five *P. syringae* species, one host (*Pstab*) and four nonhost pathogens [*Pst* T1, *P. s. pv. glycinea* (*Psgly*), *P. s. pv. phaseolicola* (*Psp*) and *P. s. pv. maculicola* (*Psm*)] were used for this experiment. The bacterial pathogens were cultured in KB medium with appropriate antibiotics overnight at 28°C on a rotary shaker (250 rpm). Bacteria were collected by centrifugation (3500 rpm/10 min) and resuspended in MES buffer (MES 10 mM, pH 6.5). The bacterial suspension was syringe-infiltrated to fully expanded *N. benthamiana* leaves for determining bacterial growth (for *Psgly*) and nonhost HR cell death (for *Pst* T1). To determine whether the bacterial growth is promoted by *Pstab* extracts, the nonhost pathogen *Psgly* that does not induce HR cell death was inoculated with either MG medium or the *Pstab* extracts. The bacterial population in the apoplast was examined for 0, 1, 3 and 5 days. For nonhost HR cell death assay, each metabolite sample was infiltrated with *Pst* T1 using a needle-less syringe on six-week-old *N. benthamiana* leaves. We selected fully extended upper leaves for the inoculation. In all experiments, the extracts from *Pstab* supernatant and MG medium were included as positive and negative controls. To eliminate any contaminating proteins in *Pstab* extracts, the extracts were treated at 95°C for 5 min. Two additional nonhost bacterial pathogens, *Psp* and *Psm*, including *Pst* T1 were inoculated along with the boiled *Pstab* extracts in *N. benthamiana*. Symptoms of nonhost HR cell death were determined from 12 hrs to 72 hrs after inoculation.

To determine the specificity of *Pstab* extracts suppressing nonhost HR cell death, we used several *Avr-R* gene combinations (35S:*AvrPto-35S:Pto* and 35S:*Avr9-35S: C9*) [51,52]. *Agrobacterium* containing the respective constructs were cultured in 5 mL LB medium containing respective antibiotics for 24 hr at 28°C. The bacterial culture was centrifuged at 1,500 g for 10 min and resuspended in 5 mL of infiltration buffer (10 mM morpholinoethane...
sulfonic acid (MES) and 200 mM acetylsolone). Then, the culture was incubated at room temperature for three to five hrs. After incubation, bacterial cells were harvested by centrifugation and diluted to 5×10⁵ CFU/ml (inf1, Pto, and AvrPto) and 2×10⁴ CFU/ml (Cf9 and AvrCf9) for infiltration. Pto and AvrPto, and Cf9 and AvrCf9 constructs were mixed to 1:1 ratio before infiltration to N. benthamiana leaves.

Metabolite profiling of the Pstab supernatant extracts

The dried Pstab extracts were resuspended in 150 μl of 80% methanol in H₂O and analyzed using a UHPLC-ESI (−)-qTOF-MS instrument (Waters Premier qTOF) with a reverse-phase column (ACQUITY UPLC™ BEH C18 1.7 μm, 2.1 mm × 150 mm), which was maintained at 60°C, and components were eluted using a multi-step gradient from 95 to 30% A (eluent A, 0.1% aqueous acetic acid) over 30 min, 30 to 5% over 3 min and 5 to 95% A over 3 min at a flow rate 0.56 mL/min. The complementary eluent B was acetonitrile. TOF-MS spectra were acquired under the following conditions: spectral acquisition rate: 3.13 per second; detector voltage: 2600 V; threshold: 2037; ESI: -4500 V; desolvation temperature: 300°C; nebulizer pressure: 350 kPa; interface: 100°C. Mass measurement accuracy was within 20 ppm. The MS system was calibrated using sodium formate, and raffinose was used as the lock mass for internal calibration. Data obtained from metabolite analyses were processed using MarkerLynx 4.1 (Waters) for accurate data mass extraction. Relative abundance was normalized by dividing each peak area by the value of the internal standard peak area.

Determination of defense signaling modulated by Pstab extracts

To examine the expression patterns of genes involved in SA-, JA- and ABA-related plant signal transduction pathways, N. benthamiana leaf samples were collected at various time points after treatments. RNA was isolated from leaves at 0, 6 and 12 hrs after inoculation with Pst T1 or Pstab extracts (Pstab ext./Pst T1) or with Pst T1 + MG medium extracts as control (MG ext./Pst T1). All RNA samples were extracted using Qiagen RNaseasy Mini Kit (Qiagen, Valencia Calif.), and cDNA was synthesized using Superscript III reverse transcriptase (Invitrogen, Grand Island, N.Y.). Quantification and purity of RNA and cDNA were determined using NanoDrop (Thermo Scientific, Wilmington, Del.). Expressions of PR1, PR2, PR5, PDF1.2, ABA1, and COI1, representative genes for each ABA, SA and JA signal pathway, and HSR203J for HR cell death, were determined by quantitative real-time PCR. At least three biological replicates of each sample and three technical replicates of each biological replicate were analyzed for real-time PCR analysis. The amount of transcripts for each gene in different RNA samples was normalized with the transcripts of the internal control gene NbActin to ensure an equal amount of cDNA was used for individual reactions.

Additional files

Additional file 1: Table S1. List of extracellular metabolites secreted from P. syringae pv. tabaci using UHPLC-qTOF-MS.

Additional file 2: Figure S1. Expression patterns of PR5, PDF1.2, ABA1, HSR203J and COI1 genes after treating with MG or Pstab extracts in N. benthamiana. The expression level of PR5, PDF1.2, ABA1, HSR203J and COI1 as determined by qRT-PCR after treatment of Pstab extracts. Gene expression analyses were performed using three biological replications. Bars represent the means ± standard deviation (SD). Same letters above bars indicate no statistically significant difference (P<0.05) among plant genotypes for a given time point using one-way ANOVA followed by LSD test analysis. The qRT-PCR data were normalized to NbActin transcript and shown as relative to that of target gene expressions in 0 hr N. benthamiana leaves without any treatment.

Competing interests

The authors declare that they don’t have any competing interests.

Authors’ contributions

SL performed major parts of the experiments; DY prepared Pstab extracts and carried out mass-spectrometry analysis for Pstab extracts; SRU carried out confocal images of GFP-expressing bacteria in stomata and apoplast space; LWS designed bacterial metabolomics work and edited this manuscript; KSM participated in designing and coordinating the project. SL and KM wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This study was supported by The Samuel Roberts Noble Foundation. The authors thank Pierce Young (Texas A&M University) for technical assistance during the 2011 Noble Foundation summer intern program, Mr. David Huhman for performing the UHPLC-qTOF-MS analyses and Hee-Kyung Lee for RNA sample preparations. We also thank Janie Gallaway and Colleen Elles for greenhouse support and Jackie Kelley for manuscript editing.

Received: 21 November 2012 Accepted: 13 April 2013

References

1. Hirano SS, Upper CD: Population biology and epidemiology of Pseudomonas syringae, Annu Rev Phytopathol 1990, 28:151–177.

2. Melotto M, Underwood W, Koczan J, Nomura K, He SY: Plant stomata function in innate immunity against bacterial invasion. Cell 2006, 126(5):969–980.

3. Melotto M, Underwood W, He SY: Role of stomata in plant innate immunity and foliar bacterial diseases. Annu Rev Phytopathol 2008, 46:101–122.

4. Heath MC: Hypersensitive response-related death. Plant Mol Biol 2000, 44(3):321–334.

5. Underwood W, Melotto M, He SY: Role of plant stomata in bacterial invasion. Cell Microbiol 2007, 9:1621–1629.

6. Boller T, Felix G: A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009, 60:379–406.

7. Bender CL, Arnaud-Chaize F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999, 63:256–292.

8. Cintas NA, Koike ST, Bull CT: A new pathovar, Pseudomonas syringae pv. alicigenis, proposed for the causal agent of bacterial blight of broccoli and broccoll raab. Plant Disease 2002, 86:992–998.

9. Feyes B, Benedetti CE, Penfold CN, Turner JG: Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive
to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 1994, 6(5):751–759.
10. Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA: Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signalling pathway. Plant J 2003, 36(6):685–690.
11. Upadhyaya SR, Ayoubi P, Weng H, Palmer DA, Mitchell RE, Jones W, Bender CL: The phytotoxin coronatine and methyl jasmonate impact multiple phytophormone pathways in tomato. Plant J 2005, 42(2):201–217.
12. Zeng W, He SY: A prominent role of the flgellin receptor FLAGELLIN-SENSING2 in mediating stomatal response to Pseudomonas syringae pv tomato DC3000 in Arabidopsis. Plant Physiol 2010, 153(3):1188–1198.
13. Zeng W, Brutus A, Kremer JM, Withers JC, Gao X, Jones AD, He SY: A genetic screen reveals Arabidopsis stomatal and/or apoplastic defenses against Pseudomonas syringae pv. tomato DC3000. PLoS Pathog 2011, 7(10):e1002291.
14. Gudeisblat GE, Torres PS, Vojnov AA: Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSS cell-to-cell signal-regulated virulence factor. Plant Physiol 2009, 149(2):1017–1027.
15. Mycole KS, Ryu CM: Nonhost resistance: how much do we know? Trends Plant Sci 2004, 9(2):97–104.
16. Preston GM, Bertrand N, Rainey PB: Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 2001, 41(5):999–1014.
17. Alfano JR, Collmer A: Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol 2004, 42:385–414.
18. Lindgren PB: The role of hsp genes during plant-bacterial interactions. Annu Rev Phytopathol 1997, 35:129–152.
19. Abramovich RB, Kim YJ, Chen S, Dickman MB, Martin GB: Pseudomonas type III effector AvrPto induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J 2003, 22(0):50–69.
20. Jamir Y, Guo M, Oh HS, Pietricki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfano JR: Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 2004, 37(4):554–565.
21. Lin NC, Martin GB: An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Mol Plant Microbe Interact 2005, 18(12):43–51.
22. Kang L, Tang X, Mycole KS: Pseudomonas Type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato. Mol Plant Microbe Interact 2004, 17(12):1328–1336.
23. Lee S, Ishiga Y, Clermont K, Mycole KS: Coronatine inhibits stomatal closure and delays hypersensitive response cell death induced by nonhost bacterial pathogens. PLoS 2013, 13(3):e34.
24. Wang K, Kang L, Anand A, Lazarovits G, Mycole KS: Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPw. New Phyto 2007, 174(12):212–223.
25. Bogdanove AJ, Martin GB: AvrPto-dependent Pto-interacting proteins and AvrPto-interacting proteins in tomato. Proc Natl Acad Sci 2000, 97(16):8836–8840.
26. De Wit PJGM: Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 1997, 2(12):452–458.
27. Kanneganti TD, Huijema E, Cakir C, Kamoun S: Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans NLP1-like protein PINP11 and INFL1 elicitor. Mol Plant Microbe Interact 2006, 19(8):854–863.
28. Pandey B, Godiard L, Marco Y, Roby D: Nicotinamide, a tobacco gene whose activation is rapid, highly localized and specific for incompatible plant/pathogen interactions. Plant J 1994, 5(4):507–521.
29. Beattie GA, Lindow SE: The secret life of foliar bacterial pathogens on leaves. Annu Rev Phytopathol 1995, 33:145–172.
30. Chinchilla D, Bauer Z, Regenas M, Boller T, Felix G: The Arabidopsis receptor kinase FLS2 binds Rgs22 and determines the specificity of flagellin perception. Plant Cell 2006, 18(2):465–476.
31. Chisholm ST, Coaker G, Day B, Staskawicz BJ: Host-microbe interactions: shaping the evolution of the plant immune response. Cell 2006, 124(4):803–814.
32. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM: Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A 2005, 102(5):1791–1796.
33. Mittal S, Davis KR: Role of the phytotoxin coronatine in the infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 1995, 8(1):165–171.
34. Budde P, Ulrich MS: Interactions of Pseudomonas syringae pv. glycines with host and nonhost plants in relation to temperature and phytotoxin synthesis. Mol Plant Microbe Interact 2000, 13(9):951–961.
35. Brooks DM, Bender CL, Kunkel BN: The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol Plant Pathol 2005, 6(6):629–639.
36. Mitchell RE: Implications of toxins in the ecology and evolution of plant pathogenic microorganisms: bacteria. Experientia 1991, 47:791–803.
37. Turner JG, Debbage JM: Tabtoxin-induced symptoms are associated with accumulation of ammonia formed during photorepiration. Physiol Plant Pathol 1982, 20:223–233.
38. Bender CL: Chlorosis-inducing phytotoxins produced by Pseudomonas syringae. European J Plant Pathol 1999, 105:1–12.
39. Raskin JN, Jem I, de Kord M: Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 2006, 19(7):699–710.
40. Lee DL, Raepoent H: Synthesis of tabtoxin-α-lactam. J Org Chem 1975, 40:3491–3495.
41. Hwang MS, Morgan RL, Sarkar SF, Wang PW, Gutman DS: Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Appl Environ Microbiol 2001, 71(5):1512–1519.
42. Mitchell RE: Isolation and structure of a chlorosis inducing toxin of Pseudomonas phaseolicola. Phytochemistry 1976, 15:1941–1947.
43. UT F, Durbin RD: Hydrolysis of tabtoxins by plant and bacterial enzymes. Experientia 1980, 36:301–302.
44. Ewald JC, Heux S, Zamboni N: High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multimwell format. Anal Chem 2009, 81(9):3623–3629.
45. Alvarez ME: Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 2000, 44:429–442.
46. Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, et al: The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 2009, 21(8):2220–2233.
47. Bari R, Jones JDG: Role of plant hormones in plant defence responses. Plant Mol Biol 2009, 69:473–488.
48. Pacheco R, Garcia-Marcos A, Manzano A, de Lacoba MG, Camanes G, Garcia-Agustin P, Diaz-Ruiz JR, Tenllado F: Comparative analysis of transcriptomic and hormonal responses to compatible and incompatible plant-virus interactions that lead to cell death. Mol Plant Microbe Interact 2012, 25(5):707–723.
49. Davadas SK, Erendi A, Raina R: The Arabidopsis hr1 mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 2002, 30(4):467–480.
50. Nüsse J, Bulbitz F: In vitro coronatine production by several Pseudomonas syringae pv. glycines isolates. J Basic Microbiol 1993, 33:241–246.
51. Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB: The avirulence protein AvrPto physically interacts with the Pto kinase. Science 1996, 274:2060–2063.
52. Van der Hoom RA, Laurent F, Roth R, De Wit PJ: Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/CF-9-induced and Avr4/CF-4-induced necrosis. Mol Plant Microbe Interact 2000, 13(4):439–446.

Cite this article as: Lee et al.: Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. BMC Plant Biology 2013 13:65.