BASE POINT FREE THEOREM OF REID-FUKUDA TYPE

OSAMU FUJINO

Abstract. Let (X, Δ) be a proper dlt pair and L a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \in \mathbb{Z}_{>0}$. Then $|mL|$ is base point free for every $m \gg 0$.

0. Introduction

The purpose of this paper is to prove the following theorem. This type of base point freeness was suggested by M. Reid in [Re, 10.4].

Theorem 0.1 (Base point free theorem of Reid-Fukuda type). Assume that (X, Δ) is a proper dlt pair. Let L be a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and log big on (X, Δ) for some $a \in \mathbb{Z}_{>0}$. Then $|mL|$ is base point free for every $m \gg 0$, that is, there exists a positive integer m_0 such that $|mL|$ is base point free for every $m \geq m_0$.

This theorem was proved by S. Fukuda in the case where X is smooth and Δ is a reduced simple normal crossing divisor in [Fk2]. In [Fk3], he proved it on the assumption that dim $X \leq 3$ by using log Minimal Model Program. Our proof is similar to [Fk3]. However, we do not use log Minimal Model Program even in dim $X \leq 3$. He also treated this problem under some extra conditions in [Fk4].

Acknowledgments. I would like to express my sincere gratitude to Dr. Daisuke Matsushita for giving me some comments.

Notation. (1) We will make use of the standard notations and definitions as in [KoM].

(2) A pair (X, Δ) denotes that X is a normal variety over \mathbb{C} and Δ is a \mathbb{Q}-divisor on X such that $K_X + \Delta$ is \mathbb{Q}-Cartier.

(3) Diff denotes the different (See [Utah, Chapter 16]).
1. Preliminaries

In this section, we make some definitions and collect the necessary results.

Definition 1.1. (cf. [Ka2, Definition 1.3]) A subvariety W of X is said to be a *center of log canonical singularities* for the pair (X, Δ), if there exists a proper birational morphism from a normal variety $\mu : Y \to X$ and a prime divisor E on Y with the discrepancy $a(E, X, \Delta) \leq -1$ such that $\mu(E) = W$.

Definition 1.2. Let (X, Δ) be lc and D a \mathbb{Q}-Cartier \mathbb{Q}-divisor on X. The divisor D is called *nef and log big* on (X, Δ) if D is nef and big, and $(D^{\dim W} \cdot W) > 0$ for every center of log canonical singularities W of the pair (X, Δ).

Remark 1.3.
1. Our definition of nef and log big is equivalent to that of Reid and Fukuda (See [Fk3, Definition]).
2. In [Fj], the center of log canonical singularities of a dlt pair was investigated (See [Fj, Definition 4.6, Lemma 4.7]).

The following proposition is [Fk3, Proposition 2] (for the proof, see [Fk2, Proof of Theorem 3] and [Ka1, Lemma 3]).

Proposition 1.4. Let (X, Δ) be a proper dlt pair and L a nef Cartier divisor such that $aL - (K_X + \Delta)$ is nef and big for some $a \in \mathbb{Z}_{>0}$. If $Bs|mL| \cap \Delta = 0$ for every $m \gg 0$, then $|mL|$ is base point free for every $m \gg 0$, where $Bs|mL|$ is the base locus of $|mL|$.

Lemma 1.5. (cf. [Fk3, Lemma]) Let X be a proper smooth variety and $\Delta = \sum_i d_i \Delta_i$ a sum of distinct prime divisors such that $\text{Supp} \Delta$ is a simple normal crossing divisor and d_i is a rational number with $0 \leq d_i \leq 1$ for every i. Let D be a Cartier divisor on X. Assume that $D - (K_X + \Delta)$ is nef and log big on (X, Δ). Then $H^i(X, \mathcal{O}_X(D)) = 0$ for every $i > 0$.

This is a generalization of Kawamata-Viehweg vanishing theorem.

2. Proof of Theorem

Proof of Theorem (0.1). By using [Sz, Resolution Lemma] as in the proof of the Divisorial Log Terminal Theorem of [Sz], we have a log resolution $f : Y \to X$ of (X, Δ), which satisfies the following conditions:

1. $K_Y + f^{-1}_*\Delta = f^*(K_X + \Delta) + \sum_i a_i E_i$ with $a_i > -1$ for every i, where E_i's are irreducible exceptional divisors,
(2) f induces isomorphism at every generic point of center of log canonical singularities of (X, Δ).

We define $E := \sum_i a_i E_i \geq 0$ and $F := f_*^{-1} \Delta + E - \sum_i a_i E_i$. Then

$$K_Y + F = f^*(K_X + \Delta) + E.$$

If $\Delta \cdot S = 0$, then (X, Δ) is klt. So we may assume that $\Delta \cdot S \neq 0$. We take an irreducible component S of Δ. Then $(S, \text{Diff}((\Delta - S)))$ is dlt. It can be checked easily by [KoM, Corollary 5.52, Definition 2.37] and [Utah, 17.2 Theorem]. We put $S_0 := f_*^{-1} S$ and $M := f^* L$. We consider the following exact sequence;

$$0 \rightarrow \mathcal{O}_Y(-S_0) \rightarrow \mathcal{O}_Y \rightarrow \mathcal{O}_{S_0} \rightarrow 0.$$

Tensoring with $\mathcal{O}_Y(m M + E)$ for $m \geq a$, we have the exact sequence;

$$0 \rightarrow \mathcal{O}_Y(m M + E - S_0) \rightarrow \mathcal{O}_Y(m M + E) \rightarrow \mathcal{O}_{S_0}(m M + E) \rightarrow 0.$$

By Lemma (1.3), $H^1(Y, \mathcal{O}_Y(m M + E - S_0)) = 0$. Note that M is nef and $m M + E - S_0 - (K_Y + F - S_0) = f^*(m L - (K_X + \Delta))$ is nef and log big on $(Y, F - S_0)$. Then we have that

$$H^0(Y, \mathcal{O}_Y(m M + E)) \rightarrow H^0(S_0, \mathcal{O}_{S_0}(m M + E))$$

is surjective. By the projection formula, we have that

$$H^0(Y, \mathcal{O}_Y(m M + E)) \simeq H^0(X, f_* \mathcal{O}_Y(m M + E)) \simeq H^0(X, \mathcal{O}_X(m L))$$

and

$$H^0(S_0, \mathcal{O}_{S_0}(m M + E)) \supset H^0(S, \mathcal{O}_{S_0}(m M)) \simeq H^0(S, \mathcal{O}_S(m L)).$$

Note that E is effective and f-exceptional and that $E|_{S_0}$ is effective but not necessarily $f|_{S_0}$-exceptional, where $f|_{S_0} : S_0 \rightarrow S$. We consider the following commutative diagram;

$$
\begin{array}{ccc}
H^0(Y, \mathcal{O}_Y(m M + E)) & \longrightarrow & H^0(S_0, \mathcal{O}_{S_0}(m M + E)) \longrightarrow 0 \\
\uparrow \simeq & & \uparrow \iota \\
H^0(X, \mathcal{O}_X(m L)) & \longrightarrow & H^0(S, \mathcal{O}_S(m L)).
\end{array}
$$

Then $H^0(X, \mathcal{O}_X(m L)) \rightarrow H^0(S, \mathcal{O}_S(m L))$ is surjective and ι is isomorphism since the left vertical arrow is isomorphism and ι is injective by the above argument. By induction on dimension, $|m L|_S$ is base point free for every $m \gg 0$ since $(a L - (K_X + \Delta))|_S = a L|_S - (K_S + \text{Diff}(\Delta - S))$ is nef and log big on $(S, \text{Diff}(\Delta - S))$. So we have that $Bs|m L| \cap \Delta \neq \emptyset$. By Proposition (1.3), we get the result. \hfill \Box
References

[Fj] O. Fujino, Abundance theorem for semi log canonical threefolds, RIMS-1213, preprint 1998.

[Fk1] S. Fukuda, A generalization of the Kawamata-Viehweg vanishing theorem after Reid, Comm. Algebra, 24 (10) (1996), 3265–3268.

[Fk2] S. Fukuda, On base point free theorem, Kodai Math. J. 19 (1996), 191–199.

[Fk3] S. Fukuda, A base point free theorem of Reid type, J. Math. Sci. Univ. Tokyo 4 (1997), 621–625.

[Fk4] S. Fukuda, A base point free theorem of Reid type, II, preprint (alg-geom/9801113).

[Ka1] Y. Kawamata, Log canonical models of algebraic 3-folds, Internat. J. Math., 3 (1992), 351–357.

[Ka2] Y. Kawamata, On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann., 308, (1997), 491–505.

[KMM] Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the Minimal Model Problem, in Algebraic Geometry, Sendai 1985, Advanced Studies in Pure Math. 10, (1987) Kinokuniya and North-Holland, 283–360.

[KoM] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Vol. 134, 1998.

[Re] M. Reid, Commentary by M. Reid (§10 of Shokurov’s paper “3-fold log flips”), Russian Acad. Sci. Izv. Math., 40 (1993), 95–202.

[Sh] V. V. Shokurov, 3-fold log flips, Izv. Ross. Akad. Nauk Ser. Mat., 56 (1992), 105–203; English transl. in Russian Acad. Sci. Izv. Math., 40 (1993), 95–202.

[Sz] E. Szabó, Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo, 1 (1995), 631–639.

[Utah] J. Kollár, et al, Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. de. France, 1992.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502 Japan
E-mail address: fujino@kurims.kyoto-u.ac.jp