Combined structural equation modelling – artificial neural networks model for predicting customer loyalty

M A Hadiyat
Department of Industrial Engineering, University of Surabaya, Raya Kalirungkut, Surabaya, 60293, Indonesia
E-mail: arbi@staff.ubaya.ac.id

Abstract. Customer loyalty becomes considerations by service providers to maintain for reducing the churn rate. Many studies propose factors that are significantly influencing customer loyalty, and apply them for predicting it. Based on mathematical models, loyalty prediction methods are developed, and it involves new approaches including machine learning. This research aim is predicting customer loyalty using the combination of structural equation model (SEM) and artificial neural networks (ANN). The methodology starts by applying SEM for selecting statistically significant factors affect the loyalty. The linear SEM model ensures this relationship by fulfilling statistical hypothesis and fulfilled assumptions. Once selected factors are found, they are treated as inputs for ANN modelling. ANN is selected because of its ability in nonlinear modelling to enhance its prediction. ANN then learns the relationship between those inputs and the loyalty in real time as any additional observation recorded in. Based on trained ANN, prediction of customer loyalty based on input factors could be done. A case study was conducted at a Hotel by asking 130 customers. SEM inputs includes tangibles, facility, and staff attitudes, while loyalty scores become output. Combination of SEM-ANN has successfully predicted the customer loyalty and brought up chances for improvement strategies.

1. Introduction
Customer loyalty becomes one of important targets in marketing strategies. Many studies discuss about how to improve customer loyalty by practicing customer relationship management. The main reason why this loyalty should be noticed by product or service provider is about its effect on frequent customer purchase exclusively [1], and of course it leads to domination of the market. Once the providers identify factors influencing customer loyalty, then customer service and relationship can be designed [2]. Some quantitative methods have been developed in measuring customer loyalty (see [3]), and some of them focus on predicting customer loyalty. Service or product provider uses this prediction to gain information about what customer relationship strategies should be deployed based on significant influencing factors (see [4]). Moreover, the prediction model can retrieve customer perception data taken from periodic survey to improve individual loyalty prediction, as done by [5]. Some researchers apply mathematical model to predict the loyalty, such as logistic regression [6], discriminant analysis [7], and artificial neural networks [8]. Some of them even combine the prediction model with data mining techniques (see [5]).
However, applying only mathematical model to determine factors influencing the customer loyalty has limitation in updating the fitted model with periodically survey data. Thus, the researcher needs to re-fit the model with new data and re-analyse it based on statistically significant factors. On the other hand, implementing only artificial neural networks (ANN) model for predicting customer loyalty leads to ineffectiveness, where this model involves all the factors without considering their statistical significance. The absence of these such statistical hypothesis also leads the ANN to black-box modelling which is hard to be interpreted by researchers.

The objective of this research is to propose alternative framework in combining the mathematical structural equation model (SEM) for determining factors influencing the customer loyalty with prediction techniques of it based on artificial neural networks (ANN). This framework applies iterative ANN fitting based on updated customer survey data to improve the prediction accuracy. Along with the amount of data collected by survey periodically, this iterative procedure forms simple data mining technique in loyalty prediction.

2. Literature review
2.1. Customer loyalty
In [9], it is mentioned that customer loyalty is a customer emotion that comes to the product or service provider, in spite of the presence of another competitor, more financially lucrative offers on the market. Providers should create strategies to improve this loyalty by determining specific factor, action, and activities to increase the indicator values of loyalty. Predicting customer loyalty could be useful for designing customer relationship management and improving customer perception about benefits they received from service or product providers [10].

2.2. Structural equation modelling (SEM)
Since firstly proposed by Sewall Wright at 1921, structural equation modeling (SEM) has become important tools for understanding relationship between latent and indicator variables in terms of reflective and formative causality.[11]. An example of simple SEM is shown in Figure 1.

![Simple SEM model](image)

Figure 1. Simple SEM model

In this research, SEM model takes part in determining significant factors or variables that affect the customer loyalty. Indicator variables are measured by valid and reliable questionnaire taken from survey activity. Theses significant factor are then treated as input in ANN model for loyalty prediction.
2.3. Artificial neural networks model (ANN)

Many studies apply ANN for several purposes, and some of them use it as part of data mining system (see [12]). It is a complex mathematical model that has flexibility for modelling nonlinear causality among variables, and some literatures categorize it as an artificial intelligence model [13]. However, ANN didn’t provide any statistical hypothesis testing for their input variables, and modelling process lead to black-box analysis [13]. General ANN architecture with single hidden layer that is used in this research shown in Figure 2. Each node in a layer is connected (as weights) with another node at the closest layer. A general mathematical model of ANN is shown in equation (1)

\[y = \sum \beta_j f(\sum \gamma_j x_i) + \epsilon \]

Where \(i \) represents the number of inputs, \(j \) expresses the number of hidden nodes, and function \(f \) represents pre-determined activation function which commonly uses logistic function. The ANN learning or training process estimates the weights \(\gamma_j \) and \(\beta_j \) based on observed input (\(x \)) and output (\(y \) (target)) variables. Once the weights are estimated, then this model uses new observed input data to predict its output. Some papers have successfully combined the SEM and ANN to predict such targeted variable based on questionnaire responses (see [14] and [15])

3. Proposed framework

The proposed customer loyalty prediction framework consists of four steps including iterative ANN weight updating process. Charted steps are shown in Figure 3.

- **First step**: research on customer loyalty should be conducted based on ordinary survey using pre-determined variables potentially influence the loyalty. Next, all observed survey data leads the fitted SEM model to find significant \(X \) variables that affect customer loyalty (\(Y \) variable).
- **Second step**: all significant \(X \) variables obtained from SEM are then treated as input for ANN model. ANN learning process also involves \(Y \) variable as response or targeted output. The ANN produces weights which is used to predict of customer loyalty.
- **Third step**: as new customer comes and fills the questionnaire, the provider could predict the loyalty based on his/her answer using ANN prediction. Every new recorded data from new customer gives information for the ANN to update its weights and improve prediction accuracy.
- **Fourth step**: ANN would update the weights by using re-learning process as new customer data recorded. Once the weights updated, ANN uses these new weights to predict loyalty of another new customer, and then again update the weights iteratively.
The framework involves iteratively updating ANN weights, the more data from new customer will then result to more accurate loyalty prediction. These steps form simple data mining process for customer loyalty prediction based on combination between SEM and ANN model.

4. Implementation result

4.1. SEM modelling

The framework in figure 2 takes case study on a digital printing service provider. Twenty variables are shown in Table 1, measured in Likert scale questionnaire filled by 100 customers that have been using this service. All predictor variables are involved in SEM model to find the significance ones. The SEM path model is shown in figure 4. Based on common analysis in SEM on some statistical goodness of fit test including Akaike’s Information Criterion (see [16]), significance predictors are then chosen. ANN modelling needs these predictors as input to predict customer loyalty.

4.2. ANN modelling

As significance predictor variables was determined by SEM modelling, ANN started the learning process by first created its architecture (see figure 5). As shown in Table 1, there are 8 predictor which should be involved in ANN, including two dimensions. This information is needed by ANN to set the input layer with 8 nodes, and to set the single hidden layer with two nodes. The learning process was then started with back-propagation algorithm [13], and the weights result is shown in Table 3. The Akaike’s Information Criterion (AIC) was also used to compare model performance between ANN and SEM.

Figure 3. Proposed SEM-ANN framework
Table 1. Predictor and response variable in SEM

ID	Variable	Code	Predictor Significance	Variable dimension	Dimension Significance	Goodness of fit
1	Various service	M1	No			
2	Latest technology equipment	M2	Yes			
3	Price according to quality	M3	No			
4	Competitive price	M4	No			
5	Friendly staffs	M5	No			
6	Experienced staffs	M6	Yes			
7	Responsive staffs	M7	No	Marketing mix	Significant	Akaike’s Information Criterion (AIC) for SEM model -19.378
8	Effective promotion	M8	No	dimension (predictors)	Significant	
9	Easy access information	M9	No			
10	Modern interior design	M10	Yes			
11	Clean and comfort environment	M11	No			
12	Strategic location	M12	No			
13	Easy to find location	M13	No			
14	Simple order procedure	M14	No			
15	Monitored order progress	M15	Yes			
16	Satisfaction for service provided	S1	Yes	Satisfaction	Significant	
17	Fulfilling customer expectation	S2	Yes			
18	Customer comfort and trust	S3	Yes			
19	Empathy and care	S4	No			
20	Excellence service	S5	No			
21	Response (target) variable	T1	Customer loyalty			

4.3. Customer loyalty prediction

New three customer with new answer then asked with only statistically significant variables, because SEM model has selected them for ANN inputs, and remove insignificant ones. Answers shown in Table 2. These new data then becomes input in learned ANN to predict the loyalty (see Table 3).
Table 2. New customer loyalty prediction by ANN (8 input nodes, 2 hidden nodes)

New Customer 1 questions	Answer (Likert scale)	New Customer 2 questions	Answer (Likert scale)	New Customer 3 questions	Answer (Likert scale)
M2	3	M2	3	M2	5
M3	3	M3	3	M3	4
M6	4	M6	4	M6	4
M10	4	M10	4	M10	4
M15	5	M15	4	M15	5
S1	4	S1	5	S1	5
S2	4	S2	5	S2	5
S3	4	S3	5	S3	5
Predicted loyalty	3.08 (loyal)	Predicted loyalty	3.83 (loyal)	Predicted loyalty	4.42 (loyal)

Table 3. Updated ANN weights

ANN path	Previous weights	Weights after updating	ANN path	Previous weights	Weights after updating	Goodness of fit
M2 \(\rightarrow \) hidden unit 1	1.419	0.045	M2 \(\rightarrow \) hidden unit 2	0.834	0.745	AIC for ANN model
M3 \(\rightarrow \) hidden unit 1	0.267	0.551	M3 \(\rightarrow \) hidden unit 2	-1.258	0.465	
M6 \(\rightarrow \) hidden unit 1	2.217	-0.23	M6 \(\rightarrow \) hidden unit 2	-0.338	-0.33	
M10 \(\rightarrow \) hidden unit 1	1.409	0.223	M10 \(\rightarrow \) hidden unit 2	-0.571	0.674	
M15 \(\rightarrow \) hidden unit 1	3.153	0.211	M15 \(\rightarrow \) hidden unit 2	2.079	0.326	
S1 \(\rightarrow \) hidden unit 1	1.843	-0.341	S1 \(\rightarrow \) hidden unit 2	0.325	0.152	-48.9398
S2 \(\rightarrow \) hidden unit 1	0.799	-0.315	S2 \(\rightarrow \) hidden unit 2	-0.028	0.571	
S3 \(\rightarrow \) hidden unit 1	1.228	-0.027	S3 \(\rightarrow \) hidden unit 2	-1.863	0.298	
Hidden unit 1 \(\rightarrow \) T1	0.787	0.218	Hidden unit 2 \(\rightarrow \) T1	-0.472	0.912	

4.4. Updating ANN weights
These data from new customer then become new raw input for ANN in updating the weights. Using similar learning process, ANN then updates the weights and produces new ones, as shown in Table 3. Every new raw data involved in ANN would then update the weights. This iterative procedure is repeated as new customer continuously comes to the provider, and ANN prediction becomes better with more data inputted in. The AIC criterion also shows better (smaller) result than SEM model.

5. Concluding remark
The framework proposed in Figure 3 has been successfully implemented, including iterative procedures to improve prediction accuracy. With additional programming techniques, this framework becomes a simple data mining system to predict customer loyalty, as there are steps for saving customer answer and updating the ANN weights continuously and automatically.

References
[1] Hayes B 2008 Measuring Customer Satisfaction and Loyalty3rd Ed (Milwaukee: Quality Press, American Society for Quality) 79
[2] Hassan R S, Nawaz A, Lashari M N, and Zafar F 2015 Effect of customer relationship management on customer satisfaction Procedia Economics and Finance 23 p 563
[3] Szwarc P 2005 Researching Customer Satisfaction and Loyalty (London: Kogan Page) p 55
[4] Chou P F, Lu C S, and Chang Y H 2014 Effects of service quality and customer satisfaction on customer loyalty in high-speed rail services in Taiwan Transpormetrica A: Transport Science 10 p 917
[5] Lu G, Lu P, and Qi X 2011 Customer loyalty prediction and implementation using data mining Proc. International Conference on Computer Science and Service System(Nanjing: IEEE) p 3120
[6] Tamaddoni A, Stakhovych S, and Ewing M 2016 Comparing Churn Prediction Techniques and Assessing Their Performance: A Contingent Perspective J. Service Research 19 p 123
[7] Khodabandehlou S and Rahman M Z 2017 Comparison of supervised machine learning techniques for customer churn prediction based on analysis of customer behavior J. Systems and Information Technology 19 p 65
[8] Tiwari A, Hadden J, and Turner C 2010 A New Neural Network Based Customer Profiling Methodology for Churn Prediction Lecture Notes in Computer Science Volume 6019 (Berlin: Springer)
[9] Kiseleva E M, Nekrasova M L, Mayorova M A, Rudenko M N, and Kankhva V S 2016 The theory and practice of customer loyalty management and customer focus in the enterprise activity Int. Review of Management and Marketing 6 p 95
[10] Figueroa C J 2010 Predicting customer loyalty labels in a large retail database Data Mining, Annals of Information System Vol 8 (Boston: Springer)
[11] Pearl J 2012 The causal foundations of structural equation modelling Handbook of Structural Equation Modelling (New York: Guilford Press) p 68
[12] Hadiyat M A and Prilianti K R 2012 Comparing statistical feature and artificial neural networks for control chart pattern recognition: a case study Proc 3rd Int Conference on Technology and Operation Management (Bandung: SBM ITB) p 83
[13] Bishop C 1999 Neural Networks for Pattern Recognition (Oxford: Clarendon Press) p 116
[14] Sharma S K, Gaur A, Saddikuti V, and Rastogi A 2017 Structural equation model (SEM)-neural network (NN) model for predicting quality determinants of e-learning management systems Behavior & Information Technology 36 p 1053
[15] Ahani A, Rahim N Z A, and Nilashi M 2017 Forecasting social CRM adoption in SMEs: a combined SEM-neural network method Comput. Hum. Behav. 75 p 560
[16] Suhartono and Hadiyat M A 2003 Building neural network model for time series as statistical modeling Proc. The SEAMS-GMU Int. Conf. of Mathematics and Its Applications (Yogyakarta: UGM Press)