Haplotype reconstruction of distant genetic variants remains an unsolved problem due to the short-read length of common sequencing data. Here, we introduce HapTree-X, a probabilistic framework that utilizes latent long-range information to reconstruct unspecific haplotypes in diploid and polyploid organisms. It introduces the observation that differential allele-specific expression can link genetic variants from the same physical chromosome, thus even enabling using reads that cover only individual variants. We demonstrate HapTree-X’s feasibility on in-house sequenced Genome in a Bottle RNA-seq and various whole exome, genome, and 10X Genomics datasets. HapTree-X produces more complete phases (up to 25%), even in clinically important genes, and phases more variants than other methods while maintaining similar or higher accuracy and being up to 10× faster than other tools. The advantage of HapTree-X’s ability to use multiple lines of evidence, as well as to phase polyploid genomes in a single integrative framework, substantially grows as the amount of diverse data increases.
The two primary technologies for modern genetic association studies, genotyping arrays for common variants and next-generation sequencing for rare variants, are both limited to inferring only the genotype of an individual, but not in stitching these genetic differences into phased haplotypes. This partial view can hide important interactions between nearby variants, and impede the search for understanding the molecular basis of human disease. For instance, if an individual contains disease-risk variants in two different exons of the same gene, the genotype alone does not reveal whether both disease-associated mutations impact the same allele, thus leaving one functional copy, or whether they impact different alleles, leading to no functional copies of the gene. Such examples of compound heterozygosity have been associated with multiple diseases, including cerebral palsy, deafness, and haemochromatosis. However, many additional examples likely remain undetectable given the lack of haplotype phasing information in the vast majority of disease association studies. The dearth of accurate haplotype phasing information can impact our ability to recognize optimal host-donor matches in organ transplantation, and also impede studies of human genetic variation, human population history reconstruction, ancestry determination for a given individual, and the study of genome evolution across individuals and across species.

Methods for inferring phase information are traditionally based on pedigree information within large families, but these apply mostly to traditional linkage studies and not to modern genome-wide association studies and rare variant sequencing studies, where relatedness is generally not known. More recently, large-scale population sequencing and genotyping studies such as HapMap and 1000 Genomes Project have provided experimentally phased or computationally phased reference genomes that can be used for phasing common variants, but these maps are ineffective for de novo mutations or rare variants that are typically not well-represented, or accurately phased in these references.

More specialized computational methods for phasing operate on sequencing data alone and are able to phase rare and de novo mutations as they rely on sequencing reads that span two or more heterozygous SNPs. However, many such methods are severely limited by the short sequence length for heterozygous SNP distances that exceed read fragment length. For some of these methods, speed and memory usage is also an issue. Two exceptions—the recent proximity-ligation (Hi-C) and long-read sequencing (e.g., Pacific Biosciences or Oxford Nanopore) based methods that enable longer-range phasing—yet still require specialized technologies that are expensive and that suffer from high error rates. On the other hand, some high-throughput sequencing technologies—especially transcriptome sequencing via RNA-seq—are affordable, widely available, already established and standardized, and allow longer-range phasing within genes by leveraging the fact that the transcriptomic distance between SNPs may be less than the genomic distance.

The splicing of RNA transcripts as they mature from pre-mRNAs to mRNAs provides an opportunity to mitigate the problem of short-read spans by bringing together exons across large genomic distances, thus enabling the recognition of heterozygous alleles that come from the same chromosomal copy. However, these methods are still contiguity-based, relying on sequencing reads that span two or more heterozygous SNPs. Moreover, even the range of paired-end RNA-seq based phasing is limited by read fragment length in the presence of multiple or long intermediary exons that are devoid of heterozygous variants. For instance, among the well-studied NA12878 transcripts that contain two or more heterozygous SNPs, one fifth contain a homoyxonic exonic region longer than 1000 bases between at least one pair of consecutive SNPs. Some attempts have been made to exploit underlying RNA-seq biases to improve the sequence-contiguity methods: examples include use of transcriptional bursting and technical dropout for haplotype phasing in single-cell RNA-seq datasets, yet these signals are much less pronounced in classical RNA-seq data.

Here we introduce a conceptual advance that enables longer and more accurate haplotype phasing than existing sequence contiguity-based phasing methods for high-throughput RNA-seq datasets by tapping into the rich source of differential allele-specific expression (DASE) information within RNA-seq data. We follow the intuition that DASE in the transcriptome can be exploited to improve phasing because SNP alleles within maternal and paternal haplotypes of a gene are present in the read data at asymmetric frequencies due to the gene’s differential haplotypic expression (DHE). Phasing based upon differentially expressed allele frequencies additionally allows the use of reads covering only one heterozygous SNP, as opposed to existing methods which discard this information and rely solely on sequence contiguity. Conceptually, given sufficient read coverage and DHE, all intra-genic SNPs of a gene with a single isoform can be phased using DASE, regardless of the transcriptomic distances between them. However, without knowing the underlying generative distributions of differential expression, we cannot extract linking information from this data source. We overcome this challenge by designing a Hidden Markov Model (HMM) to estimate the maximum likelihood underlying expression bias and prove that, with a few mild restrictions, the maximum likelihood estimate corresponds to concordant expression. We therefore present HapTree-X, an efficient and accurate phasing tool that performs single-individual haplotype reconstruction using RNA-seq data by exploiting DHE, in addition to spliced reads that overlap multiple variants. The core of the HapTree-X algorithm is the maximum likelihood framework that determines haplotype phasing by analyzing RNA-, DNA- or exome-seq and barcoded read data either independently or concurrently. HapTree-X enables long-range links to be used for phasing of much longer blocks. We demonstrate that our DASE-based portion leverages the large number of RNA-seq fragments that cover only one SNP—around an order of magnitude (more than 9x) more reads than other NGS-based methods can utilize, and increases the total phased block length up to 25% as compared to the other tools. We also show how DASE-based phasing of SNPs within genes with multiple isoforms can be theoretically achieved, with the restriction that the set of SNPs that can be phased is dependent on the composition and relative abundance of the multiple isoforms. HapTree-X generally decreases the switch error rate over the top-performing methods HapCUT and HapCUT21—up to 15% in some cases—while at the same time phasing more SNPs and getting longer phased blocks; the commonly used SE rate is the percentage of positions where the two chromosomes of a phase must be switched in order to agree with the true phase when compared to a ground truth high confidence haplotype. On the other hand, methods with similar SE rates to HapTree-X21 phase orders of magnitude fewer SNPs and provide significantly shorter blocks than HapTree-X. We also show that HapTree-X provides more complete phases in many disease-related genes, and that it consistently phases longer clinically important genes better than other tools even on low-coverage datasets.

HapTree-X generalizes prior work, HapTree—a maximum likelihood contig-based phaser that makes use of reads that span multiple SNPs—by non-trivially adapting the HapTree probabilistic model to now incorporate RNA-seq-specific priors that describe the correlation of allele-specific imbalance at SNP loci, allowing the construction of longer phased haplotype blocks. Furthermore, HapTree-X preserves the unique properties of HapTree, such as polyploid phasing, while adding capabilities such as incorporating long-range sequencing technologies and RNA-seq read data. HapTree-X also has greater scalability and is
significantly faster than HapTree due to algorithmic and engineering improvements that reduce redundant computation as well as parallelization capabilities provided by the bioinformatics domain-specific language Seq23.

Not only does our general model readily integrate existing contiguity-based sequencing data that provides pairs of linked SNPs (e.g., Illumina whole-genome sequencing (WGS)12, exome sequencing, 10X long-range sequencing22, and RNA-seq without DASE21), it also is able to incorporate more complex diverse data as long as the user can give a reasonable prior about the underlying data; this usage case is demonstrated below where DASE-based phasing performs accurate haplotype reconstruction, without requiring paired-end or long reads, maintaining or improving on accuracy independent of gene/exon lengths as long as differential haplotypic expression is consistent across the loci being phased.

Results

Datasets. We compared HapTree-X against state-of-the-art sequence-based computational phasing tools: HapCUT12, HapCUT215, and phASER21. For benchmarking, we utilized the well-studied GM12878 sample, using cytosol, nucleus, and whole-cell RNA-seq data from the GM12878 lymphoblastoid cell-line from ENCODE CSHL Long RNA-seq track24, whole exome sequencing data from 1000 Genomes Project and a WGS sample from Illumina Platinum Genomes25; GENCODE release 19 was used as the reference gene annotation. We also included the K562 chronic myelogenous leukemia cell line RNA-seq data and validated it with the recently validated phasing ground truth dataset from ENCODE26. Lastly, we used five in-house sequenced Genome in a Bottle (GIAB)27,28 RNA-seq samples: NA12878, NA24143, NA24149, NA24385, and NA24631 and 10X Genomics’ publicly available GIAB samples and compared phased haplotype blocks to the gold-standard GIAB validation phases (Table 1). All RNA-seq samples were aligned with STAR aligner29 and genotyped by using GATK’s Best Practices workflow for RNA-seq data30. All phasers were run on a macOS desktop computer with 3.60 GHz Intel Core i9 CPU and 64 GB of RAM. For further details on the experimental setup, see Supplementary Note 2.

RNA-seq results. The results in Table 1 show that HapTree-X generally decreases the SE rate over HapCUT and HapCUT2—up to 15% in some cases—while at the same time phasing more SNPs and getting up to 25% longer phased blocks, as in the K562 leukemia cells. While phASER has overall lower SE rate, this is due to its phasing an order of magnitude less SNPs because of stringent block filtering as compared to the other tools. However, when restricted to phASER’s blocks, the difference in SE either disappears or becomes negligible: in the worst case, HapTree-X introduces no more than 15 SEs over the 7000 validated phased SNPs (causing the effective error rate to be less than 0.2%).

Other technologies. HapTree-X is also able to use RNA-seq data to improve phasing of classical DNA sequencing. Table 1 shows
that HapTree-X can incorporate different technologies during the phasing. HapTree-X also phases and links up to 500 SNPs ignored by other phasers. On WGS datasets, HapTree-X outperformed HapCUT2 both in terms of SE rate and runtime; we also observed a total phased block length increase of 30% in the WGS and RNA-seq experiment (Table 2).

We compared HapTree-X to HapCUT2 (the only state-of-the-art phaser that can phase 10X data) not only on a whole-genome Platinum NA12878 dataset, but also on two high-coverage 10X datasets that were aligned by the EMA aligner34 (Table 2). HapTree-X was able to phase much faster than HapCUT2 (with up to 10× speed-up) while maintaining overall better switch rate.

Finally, we note that the polyploid capabilities of HapTree-X are identical to those of HapTree (except that the new pipeline is up to 10× speed-up) while maintaining overall better switch rate.

Table 1 Comparison of phasing quality for four different phasers: HapCUT, HapCUT2, phASER, and HapTree-X on 9 RNA-seq datasets with varying transcriptomic coverage and on four different RNA-seq datasets combined with the NA12878 exome dataset.

Dataset	HapCUT	HapCUT2	phASERa	HapTree-X
GIAB (low coverage)				
NA12878	N/A	N/A	3.238	5871
NA20434	N/A	N/A	2.399	5179
NA21449	6.696	0.97	9.306	6710
NA23435	7.079	1.75	8.100	7088
NA24637	7.888	0.00	10.355	7892
K562 leukemia cell line (medium coverage)	9993	0.96	9972	10,270
GM12878 (high coverage)	0.00	0.00	0.00	0.00
CytoS	28.706	2.61	18.441	28,815
Nucleus	31.420	2.23	21.208	33,593
Whole	30.520	1.91	18,960	30,672
NA12878 exome (low coverage) with RNA-seq data				
GIAB	181,442	1.26	16,506	181,467
Cytosol	205,184	1.44	37,036	205,483
Nucleus	211,743	1.37	47,259	212,214
Whole	209,252	1.31	57,060	209,694

*Cells contain the number of SNPs phased, switch error (SE) rate, and total length of phased blocks (span) in kilobases by a phaser for a dataset. Bold values represent the best overall results for a metric in the dataset. Overall, HapTree-X consistently phases more SNPs with comparable or lower switch error rates and longer phased blocks.

Performance and usability. In addition to accurate results, we demonstrate significant speed improvements over other phasing methods tested (Table 3)—HapTree-X is often twice as fast as HapCUT2, and in the case of 10X data, HapTree-X is more than 10X faster. HapTree-X is also the only phaser that can use more than one thread to perform phasing: while even in single-threaded mode HapTree-X is the fastest phaser, by using four threads HapTree-X runs even faster, allowing the user to completely joint exome and RNA-seq analysis in 5 min or less, and to complete joint WGS and RNA-seq analysis (=180 GB of data) in less than 25 min. Note that the runtime of HapTree-X is negligible as compared to the best practices genotyping pipeline (which takes at least a day to complete on a cluster).

HapTree-X can be added downstream to any pre-existing RNA-seq processing pipeline to output phased haplotype blocks. HapTree-X takes as input RNA-seq read alignment files (SAM/BAM format), a standard VCF file containing the individual's genotype, and a gene annotation that specifies the boundaries of genes and their exons. Finally, we note that HapTree-X can easily incorporate different technologies during the phasing.

Effect of DASE. Incorporating DASE into phasing enables HapTree-X to increase the number of phased SNPs and the length of phased blocks within genes in RNA-seq data. While DASE had modest impact on low-coverage GIAB samples, increasing the total phase length by only 1%, increased coverage on GM12878 samples caused DASE to increase the total phase length to 5% over other tools and HapTree-X with DASE turned off. The DASE effect is much stronger in joint exome and RNA-seq analysis: we observed up to a 12% increase in total phase length. We noticed that DASE performs the best on the K562 leukemia cell line, where the total phase length went up by 25%. We provide a theoretical explanation of this effect by showing that accuracy increases exponentially with FPKM depth—fragments per kilobase of transcript per million mapped reads (Supplementary Note 1, and Supplementary Figs. 1 and 2). As the cost of RNA-seq data decreases, datasets with increasing coverage will become more accessible, substantially expanding the impact of HapTree-X. Finally, we note that DASE itself is responsible for inclusion of many SNPs that are otherwise excluded by HapTree and other tools—in the case of combined RNA-exome datasets, DASE is able to use and link up to 1000 previously unphased SNPs as compared to HapTree-X without DASE. In a few cases, more SNPs result in slightly increased switch error (SE) rate as compared to HapTree-X without DASE and other tools. We examined those errors, and found that the number of SNPs that one needs to remove to achieve better SE rates is an order of magnitude less than the number of SNPs that are additionally phased.

HapTree-X improves phasing in clinically significant genes. HapTree-X links SNP pairs in the GM12878 dataset that could not be phased by sequence contiguity-based methods. Such phased SNPs enable us to better phase genes that have clinical associations with various diseases; a few significant examples that show BTK3A2 (associated with epithelial ovarian cancer35), KANK1 (cerebral palsy33), MED28 (breast cancer35), DDR1 (schizophrenia36), SPRN (Creutzfeldt-Jakob disease35), STEAP2 (prostate cancer38), ZNTP756 (renal cell carcinoma39), and NAPB2L2 (arsenic poisoning30) genes are shown in Fig. 2 (note that this list is not exhaustive: we just selected a few genes to illustrate the improvements by HapTree-X). HapTree-X not only phases previously unphased SNPs, but can also link separate blocks found...
by other methods and thus give more complete phasing results that link all the heterozygous SNPs in these genes (Fig. 2).

To demonstrate that these improvements are not individual-specific, we ran HapTree-X and other tools on thirty 1000 Genomes GEUVADIS RNA-seq samples41. All of these samples were low-coverage RNA-seq samples, and thus could not benefit from DASE as much as GM12878 samples. Nevertheless, HapTree-X phased more SNPs in all cases than the other methods, and DASE consistently (17 out of 30 samples) improved phasing of the long BCR gene, which has a causal relationship to chronic myeloid leukemia (42,43) (see Fig. 3 for the illustration of these improvements).

Discussion

With improvements in sequencing technologies, the ability to capitalize on diverse and available sequencing data will become critical to fully realizing the potential of large-scale genomics. The HapTree-X software provides joint DNA and RNA phasing capability that achieves better phasing performance than either data source used alone. It leverages the long-range phasing capabilities of RNA-seq and DASE to increase the span and completeness of regions phased with read overlap information. This enhances the phasing of even noncoding and non-expressed regions of the genome when used in combination with genome or exome sequencing datasets. As such, it can be incorporated as a pre- or post-processing step in conjunction with existing population-based phasing pipelines to provide more complete phases.

While linked read-based phasing technologies show great promise for long-range phasing applications (and HapTree-X can use this data as shown with 10x), RNA-seq datasets are currently cheaper, more prevalent and contain abundant long-range phasing information via splicing and DASE that is currently underutilized. Notwithstanding the inherent limitations of RNA-seq data that reduce the scope of DASE-enabled optimizations, such as the small transcriptome size and gene-restricted phases, we show that such data still harbors enough valuable information to significantly improve phasing quality of both RNA-only and joint DNA-RNA analyses, with no impact on the computational resources.

In the near future, we plan to extend HapTree-X to single-cell RNA-seq datasets that are rapidly becoming more affordable and common44,45. We also expect to see further validation of HapTree-X’s theoretical framework as the coverage of RNA-seq and the size of the ground truth datasets expand: DASE phases better if the coverage is higher, and the large portion of SNPs phased by any of the evaluated tools is not currently validated by the GIAB project (as HapTree-X phases the largest number of SNPs, we expect it to benefit the most from the more complete validation sets). Finally, we are looking to expand our DASE theoretical framework to other problems, as other kinds of data—such as barcoded reads—exhibit similar biases that can be in principle modeled by the same theoretical framework.

The fast access to more-comprehensively phased gene regions opens the door for further understanding of the relationship between genotype and phenotype in biomedical disease research. Our conceptual advance, as well as our implementation, will greatly benefit researchers who analyze large amounts of DNA and RNA sequencing data, regardless of the technology.

Methods

Overview of HapTree-X. HapTree-X is a Bayesian haplotype reconstruction framework which simultaneously employs read overlap information (through read contiguity or read barcodes) and optional DASE for haplotype phasing. HapTree-X outputs phased haplotype blocks, given an input of read alignment files (BAM/SAM), a VCF file containing the individual’s genotype, and an optional gene model which specifies the genes (and their exons) within the genome. It is able to take multiple lines of evidence (e.g., both RNA and DNA-seq aligned files) at the same time for improved phasing.

The HapTree-X pipeline is initiated by determining which genes are expressed using the gene model and RNA-seq data. For each of these genes, a maximum likelihood expression bias (DHE) is computed. Furthermore, we determine which SNPs within those genes have high likelihood of concordant expression; we phase only those SNPs. For reads containing only such SNPs, we assign to them the computed expression bias of the gene they cover; for all other reads, we assign a non-biased expression. Finally, applying a generalized version of HapTree14, we determine a haplotype of maximal likelihood which depends on the DASE present...
in the RNA-seq data, as well as the sequence-contiguity information within the reads.

A high-level overview of the DASE-based phasing. Using DASE for phasing presents major challenges. Consider a simple example, presented in Table 4, where we have a single gene, no splicing, and each read covers one SNP. We can attempt to phase the gene using DASE. If we already knew that the DHE was \(\beta = 0.9 \), then it would be straightforward to guess the haplotypes as in Table 4.

However, we overcome the difficulty that the underlying DHE is unknown, often not as drastically high as \(\beta = 0.9 \), and must instead be inferred from the same expression data. Furthermore, the integration of these data with reads covering multiple SNPs, as well as the complications arising from multiple genes and splicing makes this inference highly nontrivial.

We present a Bayesian mathematical framework for estimating \(B \), which allows inference of long-range haplotype links, using a combination of HMMs and maximum likelihood analysis (Online Methods). Our framework seeks to determine the haplotype of maximal probability given the observed read data (R), DHE (\(B \)), and error rates (\(\epsilon \)). Applying Bayes’ rule, we can reduce this problem to determining the haplotype \(H \) which maximizes the product over all reads \(R \) of the probability of observing each read \(r \), given \(H \) is the true haplotype:

\[
P[H|R, B, \epsilon] = \sum_{e[r]} \left(\prod_{r \in R} \left(1 - \epsilon_r \right) \prod_{e[r] \neq e} \epsilon_r \right).
\]

Notation. The goal of phasing is to recover the unknown haplotypes (haploid genotypes), \(H = (H_0, H_1) \), which contain the sequence of variant alleles inherited from each parent of the individual. As homozygous SNPs are irrelevant for phasing, we restrict ourselves to heterozygous SNPs (from now on referred to simply as an SNP) and we denote the set of these SNPs as \(S \). We assume these SNPs to be biallelic, and because of these restrictions, \(H_0 \) and \(H_1 \) may be expressed as binary sequences, where a 0 denotes the reference allele and a 1 the alternative allele; \(H_0 \) and \(H_1 \) are complement sequences. Let \(H[s] = (H_0[s], H_1[s]) \) denote the alleles present at \(s \), for \(s \in S \).

We denote the sequence of observed nucleotides of a fragment simply as a read (independent from single/paired-end reads). We assume each read is mapped accurately and uniquely to the reference genome, and moreover that each read is accurately and uniquely to the reference genome, and moreover that each read is (independent from single/paired-end reads). We assume each read is mapped accurately and uniquely to the reference genome, and moreover that each read is

\[
P[H|R, B, \epsilon] = \sum_{e[r]} \left(\prod_{r \in R} \left(1 - \epsilon_r \right) \prod_{e[r] \neq e} \epsilon_r \right).
\]

context and details of notation):

\[
P[H|R, B, \epsilon] = \sum_{e[r]} \left(\prod_{r \in R} \left(1 - \epsilon_r \right) \prod_{e[r] \neq e} \epsilon_r \right).
\]

To compute this probability, for each read \(r \), we partition the SNPs covered by \(r \) into \(A(r, H_0) \) and \(D(r, H_1) \) (those SNPs where the read \(r \) and haplotype \(H \) agree and disagree, respectively) and take the product of the probabilities of agreement and disagreement, along with the assumed rate of expression (see below for further context and details of notation):

\[
P[H|R, B, \epsilon] = \sum_{e[r]} \left(\prod_{r \in R} \left(1 - \epsilon_r \right) \prod_{e[r] \neq e} \epsilon_r \right).
\]

To compute this probability, for each read \(r \), we partition the SNPs covered by \(r \) into \(A(r, H_0) \) and \(D(r, H_1) \) (those SNPs where the read \(r \) and haplotype \(H \) agree and disagree, respectively) and take the product of the probabilities of agreement and disagreement, along with the assumed rate of expression (see below for further context and details of notation):

\[
P[H|R, B, \epsilon] = \sum_{e[r]} \left(\prod_{r \in R} \left(1 - \epsilon_r \right) \prod_{e[r] \neq e} \epsilon_r \right).
\]
In genomic read data, all SNPs are equally likely to be sampled from the maternal or paternal chromosomes. In RNA-seq data however, this may not always be the case. In this paper, we define the DHE to represent the underlying expression bias between the maternal and paternal chromosomes of a particular gene. Throughout, we refer to the probability of sampling from the higher frequency haplotype of a gene as β. We assume two genes g,g' have independent expression biases β,β'. DASE define as the observed bias in the alleles at a particular SNP locus present in R. We define the event of concordant expression to be when the DASE of an SNP agrees with the DHE of the gene to which the SNP belongs. To perform phasing using the sequence contiguity within reads (contig-based phasing), upon the set of SNP loci s and read set R, we define a read graph such that there is a vertex for each SNP locus $s \in S$ and an edge between any two vertices s,s' if there exists some read r containing both s and s'. These connected components correspond to the haplotype blocks to be phased.

To phase using differential expression (DASE-based phasing), we assume the existence of some gene annotation G that specifies the genes (and their exons) within the genome. We used GENCODE v19 annotation for our experiments on NA12878. For each $g \in G$, we assume that the haplotypes $H_g \in H$ restricted to g are expressed at rates $\rho_g,\rho_{g'}$ respectively due to DHE. The phasing blocks correspond to the SNPs in genes $g \in G$, though we will see that some SNPs are not phased due to insufficient probability of concordant expression. Two distinct genes g,g' may not be DASE-phased due to lack of correlation between their expression biases β,β'. In the remainder of this paper, when DASE-phasing a particular gene, by H we mean the gene haplotype, that is H restricted to the SNPs within g.

The final blocks to be phased by HapTree-X integrating both contig and DASE-based phasing are defined as the connected components of a joint read graph. The vertices are the SNPs phased by either method, and there is an edge between any two vertices s,s' if there exists some block (from either method) containing both s and s'.

Likelihood of a phase. We formulate the haplotype reconstruction problem as identifying the most likely phase(s) of a set of SNPs s, given the read data R, and sequencing error rates e. Furthermore, suppose we knew for each read r, the likelihood that r was sampled from H_g (denote this as $P[r \in H_g | e]$); we represent these probabilities as a matrix B. While B is not given to us, we may estimate B from R. We derive a likelihood equation for H_s restricted to s given the information.) Therefore, $P[R_s | \beta,\beta']$ are independent from s.

Our goal is to determine the maximum likelihood β, given R_s. We assume a prior uniform on β, and therefore $P[R_s | \beta]$ is proportional to $P[R_s | \beta,\beta']$ (immediate from Bayes theorem). We may theoretically compute $P[R_s | \beta,\beta']$ by conditioning H (which is independent from β, β')

$$P[R_s | \beta,\beta'] = \sum_{H \in H} P[R_s | H,\beta,\beta'] P[H],$$

and expand $P[R_s | H,\beta,\beta']$ as a product over $r \in R_s$ as in Eqs. (6) and (7). This method, however, requires enumerating all H; since $|H| = 2^{|s|}$ we seek different approach. Indeed, we translate this process into the framework of an HMM, apply the forward algorithm to compute $P[R_s | \beta,\beta']$ exactly for any β, and since S has a unique local maxima for β in $[0.5,1]$, we can apply Newton-Raphson method to determine β of maximum likelihood.

To set this problem in the framework of an HMM, we let the haplotypes H correspond to the hidden states, R_s to the observations, and let the time evolution be the ordering of the SNPs s. The observation at time s in this context is R_s, the set covering SNP s. The emission distributions are as follows:

$$P[R_s | H,\beta,\beta'] = \prod_{r \in R_s} P[r | H,\beta,\beta'],$$

and

$$P[r | H,\beta,\beta'] = \begin{cases} P[r \in H_0] & \beta_0 = \beta_0' \\ P[r \in H_1] & \beta_1 = \beta_1' \end{cases}$$

where $H[s]$ is restricted to s.

To determine the hidden state transition probabilities, recall our prior on H in Eq. (5). We may equivalently model this distribution H as a Markov chain, with transition probabilities:

$$P[H_{s+1} | H_s] = \begin{cases} \rho & \text{if } H_s[s] = H_{s+1}[s] \\ 1 - \rho & \text{if } H_s[s] \neq H_{s+1}[s] \end{cases}$$

These emission probabilities and hidden state transition probabilities are all that are needed to apply the forward algorithm and determine the β of maximum likelihood.

Table 4 A toy phasing example on five SNPs: the counts of mutant/reference allele observations for each SNP (left) and the inferred haplotypes (right), assuming that the differential haplotype expression was $\beta = 0.9$.

Allele/ SNP	1	2	3	4	5	Allele/ SNP	1	2	3	4	5
Reference	12	15	79	97	11	Reference	0	0	1	1	0
Mutant	92	85	7	4	84	Mutant	1	1	0	1	0
Likelihood of concordant expression. Here we prove that the intuitively correct solution (under mild conditions) is that of maximal likelihood. In doing so, we see the role played by discordant expression and motivate its use as a probabilistic measure for determining which SNPs we believe we may phase with high accuracy.

Under a certain set of conditions, we derive H^*, a haplotype solution of a gene g of maximum likelihood given R_g, β, and ϵ. Let C_g^i denote the number of reads $r \in R_g$ such that $r(s)=v$ where $v \in \{0,1\}$. Provided error rates are constant (say ϵ) and $\epsilon < 0.5$, and assuming a uniform prior distribution ($p(\beta)=0.5$), we can show a solution of maximum likelihood is $H^*(H_g, H_g')$, where $H_g' [s] = v$ such that $C_g^v > C_g^1 - \epsilon$. In words, H_g and H_g' contain the alleles that are expressed the majority and minority of the time (respectively) at each SNP locus; given sufficient expression bias and coverage, intuitively, H^* ought to correctly recover the true haplotypes.

To prove H^* is of maximal likelihood, we introduce the terms discordant expression and discordant coverage. We say R and H have discordant expression at s if $C_g^1(s) > C_g^0(s)$, discordant coverage if $C_g^1(s) > C_g^0(s)$, and equal expression otherwise. In words, since we assume $p_0 > p_1$, we expect to see the allele $H_g[s]$ expressed more than the allele $H_g'[s]$ in R_g (discordant expression).

We may now equivalently define H^* as a solution which assumes discordant or equal expression at every SNP s. Because we assume uniform priors, $P[H(s) \mid \beta, \epsilon]$ is proportional to $P[R(s) \mid H(s), \beta, \epsilon]$ (see Eq. (3)), and since each read is of size one, we can factor across S_g in the following way:

$$P[R(s) \mid H(s), \beta, \epsilon] = \prod_{s \in R_g} P[R(s) \mid H(s), \beta, \epsilon] \ldots (12)$$

Therefore, to show H^* is of maximal likelihood, it only remains to show that concordant expression is at least as likely as discordant expression, as intuition suggests. Let $\beta_i = \beta(1 - \epsilon) + (1 - \beta\epsilon)$, then as in Eq. (7) we may deduce

$$P[R(s) \mid H(s), \beta, \epsilon] = \prod_{i \in \{0,1\}} y(s)^{C_g^i}\ldots (13)$$

Let $H^* = (H_g', H_g)$, the opposite of H_g. We can now compare the likelihood of (or equal) expression at $s(H[s])$ with that of discordant (or equal) expression at $s(H'[s])$ for ease of notation, let $v_i = H_g'[s]$ and $w_i = H_g[s]$. Then,

$$P[R(s) \mid H^*(s), \beta, \epsilon] = \prod_{i \in \{0,1\}} y(s)^{C_g^i}\ldots (14)$$

The rightmost equality results from the fact that $H_g' = H_g$, and hence $w_i = v_i - 1$. Since $\epsilon < 0.5$, we have $y_0 > y_1$; $C_g^1 - C_g^0 \geq 0$ by the definition of H^*, which proves the inequality.

Having shown that the solution of maximal likelihood under mild conditions is, intuitively, that which has concordant expression at each SNP locus s, we now measure the probability of concordant expression at that SNP, and only phase when that probability is sufficiently high, in order to determine which SNPs can be phased with high accuracy. This probability of concordant expression can be immediately derived from Eq. (14). We assume a uniform error rate of ϵ for ease of notation, though is not required. Let $CE(R_g, H[s])$ denote the event of concordant expression at s, then

$$P[CE(R_g, H[s]) \mid \beta, \epsilon] = \frac{P[R(s) \mid H^*(s), \beta, \epsilon]}{P[R(s) \mid H^*(s), \beta, \epsilon] + P[R(s) \mid H^*(s), \beta, \epsilon]} = \frac{1}{1 + \left(\frac{\gamma}{C_g^1}\right)}\ldots (15)$$

Furthermore, given N reads, an expression bias β, and a constant error rate ϵ, we compute likelihood of discordant expression using the standard binomial distribution $B(N, y_0)$ by equating successes in the binomial model to observations of the majority allele, expressed with bias y_0 (recall y_0 takes errors into account):

$$P[CE|N, \beta, \epsilon] = \sum_{i=0}^{\min(N, N_0)} \binom{N}{i} y_0^{N_0 - i} \left(1 - e^{-\frac{\beta}{1-\beta}}\right)^i\ldots (16)$$

To obtain the bound on the right hand side, apply the Chernoff bound

$$P[X < (1 - \lambda)y_0] \leq e^{-\frac{\lambda^2}{2}},$$

where X corresponds to the number of successes and $\mu = E[X] = N\beta$. This bound shows that the probability of discordant expression increases exponentially with the coverage (N).

We remark for large N, the Binomial Distribution $B(n, \beta)$ converges to the normal distribution $\mathcal{N}(N\beta, N\beta(1 - \beta))$, and therefore this probability can always be easily computed.

Likelihood of non-biased expression. Now that we have a method for determining the likelihood of concordant expression, we can require any SNP loci to have a sufficiently high probability of concordant expression in order for HapTree-X to attempt to phase that SNP. The likelihood of concordant expression is dependent on β however, which we may only estimate. We therefore also require that for any gene g to be phased by DASE (or, alternatively, particular SNP s), the DASE within the gene (at s) must be sufficiently unlikely to have been generated by uniform DHE ($\beta < 0.5$) (because in this case, we cannot use DASE-based methods to phase).

We compute an upper bound on this probability using a two-sided binomial test applied to total allele counts m, M, where

$$m = \sum_{i=s} \min(C_g^i, C_g^1)$$

for the case of a gene g. For a single SNP s, we write

$$m = \min(C_g^1, C_g^0)$$

The likelihood of at least M heads and at most m tails is computed below. Let $N = m + M$, then the upper bound based on the two-sided binomial test is

$$\sum_{i=m}^{N} \binom{N}{i} \left(\frac{1}{2}\right)^{N_i}$$

As mentioned above, the Binomial distribution $B(n, \frac{1}{2})$ converges to the normal distribution $\mathcal{N}(\frac{1}{2}, \frac{1}{4})$, and therefore we may efficiently compute these likelihoods.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The complete experimental pipeline, the relevant software, and the relevant data download links are available in the Jupyter Notebook format at http://haptreex.csail.mit.edu and https://github.com/0xTCGG/haptreex/. The RNA-seq sequencing data for GM12878 (nucleus, cytosol and whole) and K562 cell lines are available through ENCODE project (track wgEncodeCeuhgLongRnaSeq; the exact accession IDs are listed in the Supplementary Note 2). 10x samples (NA12878 and NA24385) are available from 10x Genomics de novo Assembly collection (Supreme 2.0.0; https://www.10xgenomics.com/resources/datasets/). Whole exome data are available in BAM format through 1000 Genomes Phase 3 (ID: NA12878; version: 20121121). The GIAB RNA-seq data (NA12878, NA24143, NA24219, NA24385, and NA24631) are available for download at http://haptreex.csail.mit.edu/datasets. NA12878 WGS sample (BAM and VCF) is available through Illumina Platinum Genomes project (genome-public-data/platinum-genomes). The validation VCFs datasets are available through the Genome in the Bottle project (https://github.com/genome-in-a-bottle/gab_latest_release). GEUVADIS samples are available through 1000 Genomes project; the exact accession IDs are listed in the Supplementary Note 2.

All relevant data supporting the key findings of this study are available within the article and its Supplementary Information files or from the corresponding author upon reasonable request.

Code availability. The HapTree-X software is free and open source and is available at http://haptreex.csail.mit.edu.

Received: 15 April 2019; Accepted: 7 August 2020; Published online: 16 September 2020

References

1. Snyder, M. W., Adey, A., Kitzman, J. O. & Shendure, J. Haplotype-resolved genome sequencing: experimental methods and applications. Nat. Rev. Genet. 16, 344–358 (2015).
2. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,292 human genomes. Nature 491, 56–65 (2012).
3. Tewhey, R., Bansal, V., Torkamani, A., Topol, E. J. & Schork, N. J. The importance of phase information for human genomics. Nat. Rev. Genet. 12, 215–223 (2011).
4. Petersdorf, E. W., Malkki, M., Gooley, T. A., Martin, P. J. & Guo, Z. MHC haplotype matching for unrelated hematopoietic cell transplantation. PLoS Med. 4, e8 (2007).
5. Williams, A. L., Housman, D. E., Rinard, M. C. & Gifford, D. K. Rapid haplotype inference for nuclear families. Genome Biol. 11, R108 (2010).
6. Rodriguez, J. M., Batzoglou, S. & Bercovici, S. An accurate method for inferring relatedness in large datasets of unphased genotypes via an embedded Likelihood-Ratio test. In Deng, M., Jiang, R., Sun, F. & Zhang, X. (eds.) Research in Computational Molecular Biology, vol. 7821, 212–229 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).
7. International HapMap Consortium. The international HapMap project. Nature 426, 789–796 (2003).
8. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for thousands of genomes. *Nat. Methods* 9, 179–181 (2011).

9. Beringer, R. L., Shin, S.-B. & Brown, S. A unified approach to genotype imputation and Haplotype-Phase inference for large data sets of trios and unrelated individuals. *Am. J. Hum. Genet.* 84, 210–223 (2009).

10. Aguiar, D. & Istrail, S. Haplotype assembly in polyloid genomes and identical by descent shared tracts. *Bioinformatics* 29, 1552–1560 (2013).

11. Loh, P. R. et al. Reference-based phasing using the haplotype reference consortium panel. *Nat. Genet.* 48, 1443–1448 (2016).

12. Bansal, V. & Bafna, V. HapCUT: an efficient and accurate algorithm for the haplotype assembly problem. *Bioinformatics* 24, i153–1159 (2008).

13. Aguiar, D. & Istrail, S. HapCompass: a fast cycle basis algorithm for accurate haplotype assembly of sequence data. *J. Comput. Biol.* 19, 577–590 (2012).

14. Berger, E., Yorukoglu, D., Peng, J. & Berger, B. HapTree: a novel Bayesian framework for single individual polytoplying using NGS data. *PLoS Comput. Biol.* 10, e1003502 (2014).

15. Edge, P., Bafna, V. & Bansal, V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. *Genome Res.* 27, 801–812 (2017).

16. Garg, S. et al. A graph-based approach to diploid genome assembly. *Bioinformatics* 34, i1105–i1114 (2018).

17. Edsgård, D., Reinius, B. & Sandberg, R. scphaser: haplotype inference using single-cell RNA-seq data. *Bioinformatics* 32, 3038–3040 (2016).

18. Seo, J.-S. et al. De novo assembly and phasing of a korean human genome. *Nature* 538, 243–247 (2016).

19. Zheng, G. X. Y. et al. Haplotype genotyping and cancer genomes with high-throughput linked-read sequencing. *Nat. Biotechnol.* 34, 303–311 (2016).

20. Berger, E., Yorukoglu, D. & Berger, B. Haptree-x: An integrative bayesian framework for haplotype reconstruction from transcriptome and genome sequencing data. In *International Conference on Research in Computational Molecular Biology*, 28–29 (Springer, 2015).

21. Castel, S. E., Mohammadi, P., Chung, W. K., Shen, Y. & Lappalainen, T. Rare variant phasing and haplotype expression from RNA sequencing with phASER. *Nat. Commun.* 7, 12817 (2016).

22. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. *Nat. Commun.* 8, 14049 (2017).

23. Shaiji, A., Numanagić, I., Baghdadi, R., Berger, B. & Amarasinghe, S. Seq: a high-performance language for bioinformatics. *Proc. ACM Program. Lang.* 3, 1–29 (2019).

24. Rosenbloom, K. R. et al. ENCODE data in the UCSC genome browser: year 5 update. *Nucleic Acids Res.* 41, D56–D63 (2012).

25. Eberle, M. A. et al. A reference data set of 5.4 million phased human variants validated by genetic inheritance from sequencing a three-generation 17-member pedigree. *Genome Res.* 27, 157–164 (2017).

26. Zhou, B. et al. Comprehensive, integrated, and phased whole-genome analysis of the primary encode cell line k562. *Genome Res.* 29, 472–484 (2019).

27. Zook, J. M. et al. Extensive sequencing of seven human genomes to characterize benchmark reference materials. *Sci. Data* 3, 160025 (2016).

28. Zook, J. M. et al. An open resource for accurately benchmarking small variant and reference calls. *Nat. Biotechnol.* 37, 561–566 (2019).

29. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21 (2013).

30. McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. *Genome Res.* 20, 1297–1303 (2010).

31. Shaiji, A., Numanagić, I., Whelan, C. & Berger, B. Statistical binning for barcoded reads improves downstream analyses. *Cell Syst.* 7, 219–226 (2018).

32. Le Page, C. et al. Bta3a2 expression in epithelial ovarian cancer is associated with higher tumor infiltrating t cells and a better prognosis. *Plos ONE* 7 (2012).

33. MacLean, A. H., Thompson, S. C. & Gecc, J. Cerebral palsy: causes, pathways, and the role of genetic variants. *Am. J. Obstet. Gynecol.* 213, 779–788 (2015).

34. Ebstein, R. P., Knafo, A., Mankuta, D., Chew, S. H. & San Lai, P. The contributions of oxytocin and vasopressin pathway genes to human behavior. *Hormones Behav.* 61, 359–379 (2012).

35. Lee, M.-F., Pan, M.-H., Chou, Y.-S., Cheng, A.-C. & Huang, H. Resveratrol modulates med28 (magni/ge-1) expression and inhibits epidermal growth factor (egf)-induced migration in md-a-mb-231 human breast cancer cells. *J. Agric. food Chem.* 59, 11853–11861 (2011).

36. Roig, B. et al. The discoidin domain receptor 1 as a novel susceptibility gene for schizophrenia. *Mol. Psychiatry* 12, 835–841 (2007).