Original Article

Monosodium L-Glutamate and/or Dietary Fat Differently Modifies the Composition of the Intestinal Microbiota in Growing Pigs

Zemeng Feng, Tiejun Li, Li Wu, Dingfu Xiao, Francois Blachier, Yulong Yin

*Institute of Subtropical Agriculture, Chinese Academy of Sciences, Research Center of Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center of Animal & Poultry Science, Key Lab Agro-Ecology Processing Subtropical Region, Scientific Observational and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan, China; bCollege of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China; cUMR914 INRA/AgroParisTech, Nutrition Physiology and Ingestive Behavior, Paris, France

Supplemental Material
Feng et al.: Monosodium L-Glutamate and/or Dietary Fat Differently Modifies the Composition of the Intestinal Microbiota in Growing Pigs

Supplementary table 1. Composition of experimental diets

Item	Basal diet (BD)	High fat diet (HF)	Basal diet + 3% MSG (BDM)	High fat diet + 3% MSG (HFM)
Ingredient composition (%)				
Corn	71.37	59.80	70.30	59.58
Soybean meal	19.20	21.27	16.80	21.50
Corn starch	0.00	7.00	0.00	5.00
Corn gluten meal	5.00	2.50	7.00	3.10
MSG	0.00	0.00	3.00	3.00
Alanine	1.58	1.58	0.00	0.00
L-lysine monohydrochloride	0.15	0.15	0.20	0.12
Soybean oil	0.00	5.00	0.00	5.00
Premixa	2.70	2.70	2.70	2.70
Calculated analysis				
DE, Mj/kg	13.98	13.92	13.87	13.98
CP, %	17.93	17.88	17.95	17.91
Fat, %	4.35	9.39	4.51	9.45
Ca, %	0.60	0.59	0.58	0.59
P, %	0.45	0.48	0.44	0.46

Composition (%): CaHPO₄, 27.78; Mountain flour, 24.07; NaCl, 11.11; Medical stone, 12.33; Powdered rice hulls, 18.81; FeSO₄, 0.74; ZnSO₄, 0.74; Selenium powder (1%), 0.15; Iodine powder (1%), 0.15; CuSO₄, 0.37; MnSO₄, 0.30; Choline chloride, 2.22; Growth pig multidimensional, 1.11; Antioxidants (Ethoxyquin 66%), 0.11.
Supplementary table 2. Group and species-specific 16S rDNA gene-targeted primers used in this study

Name	Sequence	Length	Reference
All bacteria	UniF 5’ TCCTACGGGAGGGCAGCATG 3’	466 bp	In this study
	UniR 5’ GACCTACAGGG- TATCTAATTCTGTT 3’		
Bacteroidetes	g-Bacte-F 5’ AGCAGCGCGGGTATATA 3’	184 bp	Armougom & Raoult, 2008
	g-Bacte-R 5’ CTAGGCTTCTGCTGCTA 3’		
Bacteroides fragilis	g-Bfra-F 5’ ATAGCCTTTCCGAAAGRAAGAT 3’	495 bp	Matsuki et al., 2002
	g-Bfra-R 5’ CCAGTATCAACTGCAATTATTA 3’		
Bacteroides thetaiotaomicron	BT-F 5’ GGCAGCATTCTGTTGTGAA 3’	423 bp	Wang et al., 1996
	BT-R 5’ GGTATATACACAAATATTCCACAGT		
Firmicutes	g-Firmi-F 5’ GTCAAGCTTCTGCTGTA 3’	179bp	Armougom & Raoult, 2008
	g-Firmi-R 5’ CTAATGKACGGTGTTG 3’		
Akkermansiamuniciniphila	AkmUC-F 5’ CAGCAGTGGAAGGTTGAGC 3’	329 bp	Collado et al., 2007
	AkmUC-R 5’ CCTGCGGTGTGCTTCAATG 3’		
Clostridium cocoides group	g-Ccoc-F 5’ AATTAGCGATCTGACTAA 3’	440 bp	Matsuki et al., 2002
	g-Ccoc-R 5’ CTTTGAGTTTCATTCTTGCA 3’		
Clostridium leptum subgroup	sg-Clept-F 5’ GCACAGCAGTGGAAGT 3’	239 bp	Matsuki et al., 2004
	sg-Clept-R 5’ CTCCTCTGTTTCACCCAA 3’		
Clostridium difficile	Cdif-F 5’ TTGAGCGATTTACTTCGGTA 3’	157 bp	Rinttilä et al., 2004
	Cdif-R 5’ CCATCTCTCTTGTGCTATGC 3’		
Clostridium clostridiiforme	CC-F 5’ CGCAGTTCGCGGTTCTGAAA 3’	255 bp	Wang et al., 1996
	CC-R 5’ CTCTCTCAGTCAGGCTTTCATC 3’		
Clostridium cocoides - eubacteria rectale group	ClEub-F 5’ CGGTACCTGACTAAGAAGC 3’	429 bp	Bartosch et al., 2004
	ClEub-R 5’ AGTTTYATTCTCTGCAAGGC 3’		
Prevotella	g-Prevo-F 5’ CACGTTAAACGAGGAGATG 3’	513 bp	Matsuki et al., 2002
	g-Prevo-R 5’ GTTCGCGGTGCAGACC 3’		
Faecalibacterium prausnitzii	FaPRA-F 5’ GGAGGAAAGAGGTCTTCGCG 3’	248 bp	Wang et al., 1996
	FaPra465R 5’ AATTCGCCGCACTCTCGACT 3’		Ramirez-Farias et al., 2009
Fusobacterium prausnitzii	FuPRA-F 5’ CCCTCGATGCAGCGAGCTG 3’	158 bp	Rinttilä et al., 2004
	FuPRA-R 5’ GTCCGAGGGATGTCAAGACG 3’		
Peptostreptococcus productus	PSP- F 5’ AACTCCCGGTTGATACATG 3’	268 bp	Wang et al., 1996
	PSP-R 5’ GGGGCTTCTGAGGTGAGT 3’		
Methanobrevibacter smithii	g-MeSMI-F 5’ CGGGTATCTAATCCGGTTC 3’	123 bp	Armougom et al., 2009
	g-MeSMI-R 5’ CTCCCGAGG-TAGAGGTGAAA 3’		
Roseburia	RosF 5’ TACCTGATTTGAAACTGTCG 3’	230 bp	Larsen et al., 2010
	RosR 5’ CGGCCACCAGAGCAAT 3’		
Feng et al.: Monosodium L-Glutamate and/or Dietary Fat Differently Modifies the Composition of the Intestinal Microbiota in Growing Pigs

Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics. 2008; 9:576.

Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004; 70:3575-81.

Collado MC, Derrien M, Isolauri E, et al. Intestinal integrity and Akkermansiamuciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007; 73:7767-70.

Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010; 5:e9085.

Matsuki T, Watanabe K, Fujimoto J, et al. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol. 2002; 68:5445-51.

Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol. 2004; 70:7220-8.

Oliwa-Stasiak K, Kolaj-Robin O, Adley CC. Development of real-time PCR assays for detection and quantification of Bacillus cereus group species: differentiation of B. weihenstephanensis and rhizoid B. pseudomycooides isolates from milk. Appl Environ Microbiol. 2011; 77:80-8.

Ramirez-Farias C, Sležak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009; 101:541-50.

Rinttilä T, Kassinen A, Malinen E, et al. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol. 2004; 97:1166-77.

Wang RF, Cao WW, Cerniglia CE. PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol. 1996; 62:1242-7.