Beyond 132Sn

Examples of new data on exotic neutron-rich Te isotopes from fission and β-decay

Radomira Lozeva1,*, Min Si1, and Guillaume Häfner1,2

1CSNSM, CNRS-IN2P3, Université Paris-Saclay, F-91405 Orsay Campus, France
2IKP, Universität zu Köln, D-50937 Köln, Germany

Abstract. Exotic nuclei beyond the 132Sn double shell-closure have both single-particle and collective particle-hole excitations and are expected to have competing excitation patterns from both type of excitations together with possible structural changes. We are, therefore, studying the region in the close vicinity beyond 132Sn and further with the neutron increase with experimental methods such as induced fission and β decay. A short overview of this knowledge will be given together with examples of newly obtained data at preliminary stage.

1 Introduction and Motivation

Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only a few nucleons away, involving predominantly protons from the lower-lying $\nu p_{3/2}$ and $\nu d_{5/2}$ orbitals and the neutrons in the $\nu f_{7/2}$, $\nu p_{3/2}$ and $\nu h_{9/2}$ orbitals beyond, respectively, $Z=50$, $N=82$ closed shells. For neutron-rich nuclei, for example at intermediate mass number A=136, the interplay between single-particle and collective particle-hole excitations $^{[1,2]}$ is evident in mid-shell $\nu f_{7/2}$. On the other hand at the end of the $\nu f_{7/2}$ shell possible sub-shell gap with respect to $\nu p_{3/2}$ has been suggested $^{[3]}$. With the extreme addition of neutrons but also protons additional effects are expected such as the formation of neutron skin $^{[4]}$, orbital crossings between $\nu p_{3/2}$ and $\nu d_{5/2}$ orbitals $^{[5,6]}$ and possible quickly evolving deformation $^{[7]}$.

The knowledge of experimental nuclear ingredients is especially interesting beyond 132Sn as little is known on how the excitation modes develop with the addition of both protons and neutrons for the Sb, Te, I nuclei. Therefore, systematic prompt and decay studies can be such a sensitive probe for their structure $^{[8,9]}$. Aiming at more global picture and understanding this barely explored neutron-rich portion of the nuclear chart, we have performed several investigations, recently.

We have produced the nuclei of interest following fission such as relativistic 238U on 9Be in inverse kinematics, thermal neutron-induced fission on 241Pu and 235U or fast neutron-induced fission on 238U and 232Th and in β-decay of fission products in several recent γ-ray spectroscopy projects $^{[8,10]}$. Consistent data analysis allows to access various spins and excitation energies and to provide complementary data, better understanding, as well as a new and indispensable input to theory. Examples from some of these studies on isotopes with A~136 will be briefly presented along with a short discussion of the new data. Detailed description and further details will be accordingly published in dedicated articles $^{[11,12]}$.

2 New data on 134Te from fission

With only two valence protons outside the doubly-magic 132Sn, a long-lived isomeric $I = \frac{7}{2}$ state emerges in 134Te based on the $\nu p_{3/2}^2$ proton configuration. Below the 6^+_1 isomer, a short-lived 4^+_1 isomer with $T_{1/2} = 1.28(10)$ ns has been observed $^{[13]}$. The nucleus of interest has been produced in a fast neutron-induced fission experiment and its de-excitation measured with a hybrid array consisting of HpGe and LaBr$_3$(Ce) scintillation detectors $^{[10]}$.

Due to its short half-life, the 4^+_1 state is not measurable with HpGe detectors, but delayed LaBr$_3$(Ce), after tagging the 134Te nucleus can be utilized for measuring this state. In the left panel of Fig. $\ref{fig:1}$ the LaBr$_3$(Ce) energy projection can be seen after gating on the 1279 keV $2^+_2 \rightarrow 0^+_1$ transition and several transitions above the 6^+_1 isomer. Both, 115 and 297 keV transitions feeding and de-populating the 4^+_1 state are visible. Furthermore, the LaBr$_3$(Ce) projection after an additional LaBr$_3$(Ce) gate on 115 keV is shown. The time difference spectrum, illustrated in the right panel of Fig. $\ref{fig:1}$ has been fitted with an exponential decay curve plus constant background to obtain the half-life, $T_{1/2}$. A value of $T_{1/2} = 1.3(3)$ ns has been obtained, in accordance with the literature value of $1.36(11)$ ns $^{[14]}$. This measurement demonstrates the feasibility of measuring ns and sub-ns lifetimes with this experiment and is employed toward more neutron rich Te isotopes of interest.

3 New data on 136Te from fission

The neutron rich 136Te has two valence protons and neutrons outside the doubly magic 132Sn and is of major importance to study the onset of collectivity beyond the 132Sn...
core. Excited states in 136Te have been populated in fast neutron-induced fission and its γ-rays detected using the previously described (see Section 2) combination of HpGe and LaBr$_3$(Ce) scintillation detectors.

Figure 2 shows an example for the 136Te nucleus. In the left panel of Fig. 2, the energy projection after applying a clean HpGe gate on the 750 keV, $8^+_1 \rightarrow 6^+_1$ transition in 136Te is presented. All the transitions below the 6^+_1 are clearly visible in both LaBr$_3$(Ce) and HpGe energy projections. Utilizing the superior energy resolution of the HpGe detectors one can conclude that the peaks of interest show almost no contribution from other contaminants. From measuring time differences between the labeled transitions, lifetimes of the respective states are deduced.

In the right panel of Fig. 2, an energy matrix is shown to demonstrate the HpGe - LaBr$_3$(Ce) coincidence between the $8^+_1 \rightarrow 6^+_1$ and $6^+_1 \rightarrow 4^+_1$ transition in 136Te. The number of coincidence counts amounts to about 10^3 which, scaled by efficiencies for the LaBr$_3$(Ce), is reasonable to measure the lifetime of the 6^+_1 state in 136Te. This data result will be presented in a forthcoming article [12].

4 New data on 136Te from β decay of 136Sb

The β-decay data of 136Sb to 136Te, accessing the low-spin states which are not populated in fission, is extremely scarce [14]. It gives very important information not only on the ground state spin/parity and thus its properties, but also on specific type first excited states, such as the 2^+_1, 2^+_2, 2^+_3 etc. Such measurement has been performed using β-decay of 136Sb nuclei, after the thermal neutron-induced fission of 235U and detected using a system of clover HpGe, coaxial HpGe and LaBr$_3$(Ce) detectors in combination with β-decay detectors and a tape station.

Well adapted to the lifetime of the 136Sb nucleus [14], the duty cycle of the system allowed the short-lived daughter to be well separated from the grand-daughter decays.
The new data allows to verify and expand our current knowledge for these mid-shell nuclei ($A\sim 136$) with respect to the $\nu f_{7/2}$ orbital nuclei, which is the lowest-lying neutron orbital beyond ^{132}Sn. The collected new information allows multiple coincidence relations to be established and used determine the position in the level scheme of new, or verify previously known γ transitions.

In addition, several lifetime measurements have been possible in the data analysis. Added to the new γ-ray information these provide new and important ingredients to compare with shell-model theory. The current understanding of the region with reasonably slow development of collectivity at mid-shell, expected to increase with the increase of the valence particles, can now be reexamined, especially for states which have not been populated in previous measurements. From preliminary view, the new data reasonably well agrees with the expectations from theory, however only the very detailed comparison will allow specific conclusions to be drawn. The experimental ingredients such as the transition rates obtained from the lifetime measurements allow better tuning of the transition matrix elements. Such data is valuable when testing the nucleon-nucleon interaction for the region beyond ^{132}Sn and when predicting nucleon or two nucleon excitations e.g. type $\pi g_{7/2}^2$ and $\nu f_{7/2}^2$ in the currently out of reach $A>140$ region.

In the data on the Sb β decay, for the first time a very large Q_β window has been experimentally scanned. This allows the population of many new low-spin states at high excitation energy. This, respectively, provides a field for more detailed comparison to shell-model, particularly on the strength of the first-forbidden transitions beyond ^{132}Sn. New ingredients in understanding the role of first-forbidden transitions with respect to the Gamow-Teller strength can now be analysed in details, especially as it is open in ^{136}I [8], but not seen in the Te chain [14]. Thus, combining both data sets with our previous knowledge in the region, new transitions, new excitation energies and extension of the level schemes, with new spin/parity etc. contributes importantly to the structure studies of the populated states and their behaviour beyond ^{132}Sn.

5 Discussion

The new data allows to verify and expand our current knowledge for these mid-shell nuclei ($A\sim 136$) with respect to the $\nu f_{7/2}$ orbital nuclei, which is the lowest-lying neutron orbital beyond ^{132}Sn. The collected new information allows multiple coincidence relations to be established and used determine the position in the level scheme of new, or verify previously known γ transitions.

Figure 3. Short-lived energy projection corresponding to the decay of ^{136}Sb using HpGe detectors and gate on $606\, 2_1^+ \rightarrow 0^+$ transition in ^{136}Te (red) and an additional anti-coincidence gate on the $1313\, \text{keV}$ transition $2_1^+ \rightarrow 0^+$ in ^{136}Xe (green). New transitions e.g. candidates belonging to ^{136}Te are shown. The detailed level scheme will be given together with all newly extracted logt values in a forthcoming article [11].

References

[1] M. -G. Porquet, S. Peru and M. Girod, Eur. Phys. J. A 25, 319 (2005).
[2] R. Kshetri, M. Saha Sarkar, and S. Sarkar, Phys. Rev. C 74, 034314 (2006).
[3] S. Sarkar and M. Saha Sarkar, Phys. Rev. C 81, 064328 (2010).
[4] B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
[5] J. Shergur, B. A. Brown, V. Fedoseyev et al., Phys. Rev. C 65, 034313 (2002).
[6] R. Lozeva, H. Naidja, F. Nowacki et al., Phys. Rev. C 93, 014316 (2016).
[7] W. Urban, T. Rzaca-Urban, A. Korgul et al., Phys. Rev. C 65, 024307 (2002).
[8] R. Lozeva, E. A. Stefanova, H. Naidja et al., Phys. Rev. C 98, 024323 (2018).
[9] M. Jentschel, A. Blanc, G. de France et al., J. Instrum. 12, 11003 (2017).
[10] J. N. Wilsson, M. Lebois, L. Qi et al., Phys. Rev. Lett. 118, 222501 (2017).

[11] M. Si et al., in preparation.

[12] G. Häfner et al., in preparation.

[13] J. P. Omtvedt, H. Mach, B. Fogelberg et al., Phys. Rev. Lett. 75, 3090 (1995).

[14] www.nndc.bnl.gov