Supplement of Atmos. Chem. Phys., 21, 16183–16201, 2021
https://doi.org/10.5194/acp-21-16183-2021-supplement
© Author(s) 2021. CC BY 4.0 License.

Supplement of

Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels

Ruqian Miao et al.

Correspondence to: Qi Chen (qichenpku@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Table S1. Summary of the location, sampling information of the 86 surface online OA measurements in China as well as the campaign-average mass concentrations of the observed OA and the PMF-derived POA and SOA. The yearly measurements from 2011 to 2019 are 6, 8, 16, 19, 17, 8, 4, 7, and 1, respectively.

Site #	Site Name / Region	References	Site Type	Sampling Period	Lon.	Lat.	OA (μg m⁻³)	POA (μg m⁻³)	SOA (μg m⁻³)				
1	IAP / NCP	J. K. Zhang et al. (2014)	urban	1/1/2013-2/1/2013	116.37	39.97	44.65	20.54	24.11				
2	PKU / NCP	Hu et al. (2017)	urban	1/23/2013-3/2/2013	116.31	39.99	29.7	14.9	14.8				
3	IAP / NCP	Y. Sun et al. (2016a)	urban	12/17/2013-1/17/2014	116.37	39.97	38.1	21.5	16.5				
4	IAP / NCP	J. K. Zhang et al. (2015)	urban	1/1/2014-2/3/2014	116.37	39.97	27.27	8.45	18.82				
5	IRSDE / NCP	Elser et al. (2016)	urban	1/9/2014-1/26/2014	116.38	40.00	43	35.67	7.4				
6	IAP / NCP	Xu et al. (2019a)	urban	11/17/2014-12/13/2014	116.37	39.97	30.4	16.1	14.7				
7	IAP / NCP	Zhou et al. (2018)	urban	12/1/2014-1/18/2015	116.37	39.97	31.8	18.4	14.3				
8	THU / NCP	H. Li et al. (2019)	urban	12/6/2014-2/27/2015	116.30	40.00	30.4	17.9	12.6				
9	IAP / NCP	J. K. Zhang et al. (2016a)	urban	12/10/2014-12/31/2014	116.37	39.97	20.25	12.14	8.1				
10	NCNT / NCP	Huang et al. (2020)	urban	12/29/2014-2/28/2015	116.38	40.00	38.38	26.86	11.9				
11	IAP / NCP	Y. Zhang et al. (2016)	urban	2/2/2015-4/1/2015	116.37	39.97	39	24.75	14.25				
12	NCN / NCP	Duan et al. (2020)	urban	12/4/2015-2/6/2016	116.32	39.99	30.97	18.8	12.2				
13	IAP / NCP	Xu et al. (2019a)	urban	11/17/2016-12/13/2016	116.37	39.97	36.4	18.3	19				
14	IAP / NCP	Zhao et al. (2019)	urban	12/17/2016-12/30/2016	116.37	39.97	53.7	22.6	30.9				
15	THU / NCP	H. Li et al. (2019)	urban	12/11/2017-2/2/2018	116.30	40.00	11.9	6.1	5	8			
16	IAP / NCP	J. Li et al. (2020)	urban	11/10/2018-1/31/2019	116.37	39.97	11.5	6.7	4.8				
17	IGDB / NCP	Huang et al. (2019)	urban	1/11/2014-2/18/2014	114.54	38.03	89	64.97	24.03				
18	Handan / NCP	H. Li et al. (2017)	urban	12/4/2015-2/5/2016	114.50	36.57	82.50	50.61	31.87				
19	PKU / NCP	Hu et al. (2017)	urban	3/30/2012-5/7/2012	116.31	39.99	14	7.2	6.8				
20	PKU / NCP	Hu et al. (2016b)	urban	8/3/2011-9/15/2011	116.31	39.99	26.4	8.9	17.1				
21	PKU / NCP	Hu et al. (2017)	urban	7/29/2012-8/29/2012	116.31	39.99	12.5	3.9	8.6				
22	IAP / NCP	J. Zhang et al. (2015)	urban	8/1/2012-8/31/2012	116.37	39.97	13	5.9	7.2				
23	IAP / NCP	Xu et al. (2017)	urban	6/3/2014-7/11/2014	116.37	39.97	18.1	7.78	10.32				
24	THU / NCP	H. Li et al. (2018)	urban	6/30/2015-7/27/2015	116.30	40.00	12.2	4.15	8.05				
25	NCN / NCP	Duan et al. (2020)	urban	7/1/2015-8/19/2015	116.32	39.99	19.27	4.9	14				
26	NCN / NCP	Duan et al. (2019)	urban	8/15/2015-9/10/2015	116.32	39.99	13.8	3.9	9.8				
27	IAP / NCP	Xu et al. (2019b)	urban	6/4/2017-7/13/2017	116.37	39.97	9.8	3.4	6.4				
No	Location	Authors (Year)	Type	Collection Dates	PM2.5	PM10	CO	NO2	O3	SO2			
----	----------	----------------	------	------------------	-------	------	----	-----	----	-----			
28	IAP / NCP	Xu et al. (2019b)	urban	5/20/2018-6/23/2018	116.37	39.97	12.7	3.7	9.2				
29	Xinxian / NCP	H. Li et al. (2018)	urban	6/8/2017-6/25/2017	113.90	35.30	18.00	4.32	13.5				
30	IAP / NCP	J. Zhang et al. (2015)	urban	10/1/2012-10/31/2012	116.37	39.97	27	10.8	16.5				
31	PKU / NCP	Hu et al. (2017)	urban	10/13/2012-11/13/2012	116.31	39.99	18.2	9.7	8.6				
32	IAP / NCP	J. K. Zhang et al. (2016a)	urban	10/1/2014-10/27/2014	116.37	39.97	34.57	15.56	19.01				
33	IAP / NCP	W. Xu et al. (2015)	urban	10/10/2014-11/2/2014	116.37	39.97	29.4	15	14.9				
34	IAP / NCP	J. K. Zhang et al. (2016b)	urban	10/17/2014-11/2/2014	116.37	39.97	44.44	17.33	27.11				
35	IAP / NCP	Xu et al. (2017)	urban	10/14/2014-11/12/2014	116.37	39.97	29.58	14.84	14.74				
36	IAP / NCP	Zhao et al. (2017)	urban	9/4/2015-9/30/2015	116.37	39.97	18.31	6.33	11.97				
37	NCN / NCP	Duan et al. (2019)	urban	9/11/2015-10/10/2015	116.32	39.99	21.2	8.4	13				
38	NCN / NCP	Duan et al. (2019)	urban	10/11/2015-12/04/2015	116.32	39.99	29.6	15.7	13.9				
39	IAP / NCP	Zhou et al. (2018)	urban	11/13/2014-11/30/2014	116.37	39.97	38.1	23.8	13.1				
40	Qingdao / NCP	Zhu et al. (2018)	urban	11/1/2013-11/30/2013	120.47	36.10	10.43	5.57	4.86				
41	Xinglong / NCP	J. Li et al. (2020)	polluted regional	11/10/2018-1/31/2019	117.67	40.40	5.4	2.2	3.2				
42	Gucheng / NCP	Kuang et al. (2020)	polluted regional	11/11/2018-12/24/2018	115.73	39.15	66.08	42.29	21.81				
43	Changdao / NCP	Hu et al. (2013)	polluted regional	3/21/2011-4/24/2011	120.70	37.99	13.4	4.4	9.4				
44	Xingtai / NCP	Y. Zhang et al. (2018)	suburban	4/30/2016-6/20/2016	114.37	37.18	11.59	2.54	9.04				
45	Rizhao / NCP	Lei et al. (2020)	polluted regional	3/2/2019-3/29/2019	119.40	35.18	15.66	2.19	13.31				
46	Xianghe / NCP	Y. Sun et al. (2016b)	polluted regional	6/1/2013-6/30/2013	116.96	39.80	28.3	8.2	19				
47	BPT / NCP	Chen et al. (2020)	suburban	8/16/2018-9/16/2018	116.33	39.73	12.24	3.79	8.44				
48	Rizhao / NCP	Lei et al. (2020)	polluted regional	9/2/2018-9/29/2018	119.40	35.18	8.32	0.67	7.65				
49	Nanjing / YRD	Tang et al. (2014)	urban	1/14/2013-1/31/2013	118.73	32.21	26.26	14.11	11.89				
50	JEMC / YRD	Y. Zhang et al. (2015)	urban	12/1/2013-12/31/2013	118.77	32.05	38.4	15.74	22.66				
51	NOC / YRD	J. Wang et al. (2016)	urban	4/13/2015-4/29/2015	118.73	32.01	12.69	5.64	7.04				
52	Nanjing / YRD	Y. J. Zhang et al. (2015)	urban	6/1/2013-6/15/2013	118.76	32.08	15.4	3.3	11.2				
53	JEMC / YRD	Y. J. Zhang et al. (2014)	urban	8/1/2013-8/31/2013	118.77	32.05	10.3	2.73	6.86				
54	BJ / YRD	K. Li et al. (2018)	urban	8/5/2016-8/21/2016	120.21	30.21	17	6.7	10.7				
55	Nanjing / YRD	Y. J. Zhang et al. (2015)	urban	10/15/2013-10/30/2013	118.76	32.08	20.3	7.2	13.1				
56	JEMC / YRD	Y. Zhang et al. (2017)	urban	10/20/2015-11/19/2015	118.75	32.04	25.2	7.06	18.14				
57	BJ / YRD	K. Li et al. (2018)	urban	9/7/2016-9/23/2016	120.21	30.21	18.5	6.1	12.1				
	Location	Authors	Beginning Date	End Date	Site Type	NO2	SO2	PM2.5	PM10	O3	CO	Temperature	Humidity
---	------------	--------------------	----------------	----------	-----------	-----	-----	-------	------	----	----	-------------	----------
58	Lin’an / YRD	Y. W. Zhang et al. (2015)	11/16/2013-12/18/2013	119.73	30.30	29	13.4	15.7					
59	Dongguan / PRD	Zhu et al. (2018)	12/17/2013-1/17/2014	113.75	23.03	23.3	7.36	15.75					
60	PKU Shenzhen / PRD	Cao et al. (2018)	12/31/2015-1/23/2015	113.90	22.60	18.45	7.93	10.51					
61	GIG / PRD	Guo et al. (2020)	11/20/2017-1/5/2018	113.37	23.15	17.3	5.36	12.11					
62	Mong Kok / PRD	Lee et al. (2015)	3/7/2013-5/15/2013	114.17	22.32	12.8	7.9	4.9					
63	Mong Kok / PRD	Lee et al. (2015)	5/16/2013-7/19/2013	114.17	22.32	7.9	5.6	2.2					
64	HKEPD / PRD	C. Sun et al. (2016)	9/3/2013-12/31/2013	114.17	22.32	15.1	6.3	8.8					
65	GPACS / PRD	Qin et al. (2017)	1/17/2014-1/3/2015	113.35	23.00	20.36	7.81	12.55					
66	HKUST / PRD	Y. J. Li et al. (2015)	1/19/2012-3/1/2012	114.26	22.34	5.1	0.98	4.12					
67	HKUST / PRD	Y. J. Li et al. (2015)	4/25/2011-6/1/2011	114.26	22.34	4	0.8	3.2					
68	HKUST / PRD	Y. J. Li et al. (2015)	9/1/2011-9/29/2011	114.26	22.34	4.1	0.75	3.35					
69	HKUST / PRD	Y. J. Li et al. (2015)	10/28/2011-12/15/2011	114.26	22.34	6	0.82	5.18					
70	Xi’an / NW	Elser et al. (2016)	12/13/2013-1/6/2014	108.88	34.23	128.5	100.32	21					
71	Lzu / NW	Xu et al. (2016)	1/10/2014-2/4/2014	103.85	36.05	29.33	18.41	10.91					
72	Baoji / NW	Y. C. Wang et al. (2017)	2/26/2013-3/27/2014	107.14	34.35	29.7	16.63	13.07					
73	CAREERI / NW	Xu et al. (2014)	7/11/2012-8/7/2012	103.86	36.05	11.51	4.6	6.79					
74	GMA / NW	X. Zhang et al. (2017)	10/27/2014-12/3/2014	103.88	36.04	18.2	10.87	7.33					
75	Sichuan Basin / OTR	Hu et al. (2016a)	12/3/2012-1/5/2013	104.64	30.15	21.5	6.2	15.4					
76	Nan’ao island / OTR	Cao et al. (2019)	12/22/2015-1/16/2016	117.02	23.42	7.06	2.61	4.45					
77	Xiamen / OTR	Cao et al. (2017)	5/1/2015-5/18/2015	118.05	24.60	13.07	3.61	9.46					
78	Xinzhou / OTR	Q. Wang et al. (2016)	7/17/2014-9/5/2014	112.12	38.07	11.72	2.2	9.5					
79	Mt. Yulong / OTR	Zheng et al. (2017)	3/22/2015-4/14/2015	100.20	27.20	3.88	0.5	3.37					
80	Lake Hongze / OTR	Zhu et al. (2016)	3/19/2011-4/24/2011	118.33	33.23	9.8	3	6.8					
81	Mt. Wuzhi / OTR	Zhu et al. (2016)	3/18/2015-4/15/2015	109.49	18.84	4.9	0.01	4.89					
82	QOMS / OTR	X. Zhang et al. (2018)	4/12/2016-5/12/2016	86.95	28.36	2.39	1.04	1.34					
83	WLG / OTR	Zhang et al. (2019)	7/1/2017-7/31/2017	100.90	36.28	3.14	0.79	2.35					
84	Nam Co / OTR	J. Wang et al. (2017a)	5/30/2015-6/30/2015	90.98	30.77	0.71	0.13	0.59					
85	Nam Co / OTR	Xu et al. (2018)	5/31/2015-7/1/2015	90.95	30.77	1.36	0	1.36					
86	NBS / OTR	Du et al. (2015)	9/5/2013-10/15/2013	101.26	37.61	4.9	0.8	4.1					
Table S2. Summary of the location, sampling information of the 49 surface online measurements of VOCs as well as the campaign-average mixing ratios of benzene, toluene, and xylene in China.

Site #	Site Name	References	Sampling Period	Lon.	Lat.	Benzene (ppbv)	Toluene (ppbv)	Xylene (ppbv)
1	PKU	Wang et al. (2014)	12/29/2011-1/18/2012	116.31	40.00	2.34	2.67	
2	PKU	J. Li et al. (2019a)	1/1/2015-1/31/2015	116.33	39.99	1.30	1.20	
3	NCNST	K. Li et al. (2019)	1/31-2/15/2015	116.32	39.99	1.93	1.51	
4	RCEES	Liu et al. (2017)	12/15/2015-1/14/2016	116.30	40.00	1.81	1.67	1.12
5	PKU	Y. Shi et al. (2020)	12/01/2016-1/31/2017	116.33	39.99	3.27	3.63	1.50
6	PKU	Y. Shi et al. (2020)	12/2017	116.33	39.99	1.06	1.47	0.61
7	PKU	Y. Shi et al. (2020)	1/2018	116.33	39.99	1.03	1.26	0.51
8	TEPB	Liu et al. (2016)	12/2014-2/2015	117.15	39.10	0.54	0.27	0.38
9	UCAS	K. Li et al. (2019)	11/24-12/24/2014	116.67	40.41	0.91	0.73	
10	Wangdu	Zhang et al. (2020)	11/1/2017-1/21/2018	115.25	38.67	3.16	2.48	1.07
11	NUIST	An et al. (2017)	12/1/2013-2/28/2014	118.72	32.21	3.21	3.20	0.74
12	Ziyang	Li et al. (2014)	12/6/2012-1/4/2013	104.64	30.15	1.80	0.80	
13	BJ	L. Li et al. (2015)	5/2014	116.33	39.99	0.82	1.33	
14	PKU	J. Li et al. (2019a)	4/1/2015-4/30/2015	116.33	39.99	0.76	1.06	
15	TEPB	Liu et al. (2016)	3/2015-5/2015	117.15	39.10	0.24	0.30	0.21
16	SAES	Y. Liu et al. (2019c)	5/20-5/30/2017	121.72	31.28	0.42	1.31	1.52
17	WHU	Hui et al. (2020)	4/26-6/6/2017	114.36	30.54	0.49	0.71	0.43
18	PKUSZ	Yu et al. (2019)	4/1/2016-4/30/2016	113.90	22.60	0.60	3.12	1.07
19	PKU	M. Wang et al. (2015)	8/3/2011-9/13/2011	116.31	40.00	1.29	2.08	1.74
20	PKU	M. Wang et al. (2015)	8/1/2012-8/31/2012	116.31	40.00	0.98	2.25	1.75
21	PKU	M. Wang et al. (2015)	8/7/2013-8/25/2013	116.31	40.00	0.98	2.00	1.50
22	PKU	J. Li et al. (2019a)	7/1/2015-7/31/2015	116.33	39.99	0.80	1.55	
23	PKU	Li et al. (2016)	8/11/2015-9/3/2015	116.33	39.99	0.58	1.20	0.68
24	TEPB	Liu et al. (2016)	6/2015-8/2015	117.15	39.10	8.26	1.54	0.89
25	Gucheng	L. Li et al. (2015)	6/5/2013-7/16/2013	115.67	39.13	1.08	1.31	
26	Quzhou	L. Li et al. (2015)	6/11/2014-7/9/2014	115.02	36.86	0.81	0.48	
27	NUIST	An et al. (2017)	6/1-8/31/2013	118.72	32.21	1.86	1.47	0.74
28	Zhaohui	K. Li et al. (2017)	7/1/2013-8/15/2013	120.16	30.29	0.39	1.28	1.51
29	Nanling	Gong et al. (2018)	7/15/2016-8/17/2016	112.90	24.69	0.05	0.15	0.04
30	PKU	Wu et al. (2016)	10/1-10/16/2014	116.33	39.99	1.21	1.78	1.65
31	PKU	J. Li et al. (2015)	10/18-11/22/2014	116.33	39.99	1.62	2.43	1.24
	City	Institute	Dates	Min.	Max.	Mean	Standard Deviation	Median
---	--------	--------------------	------------------------------	------	------	------	--------------------	-------
32	PKU	J. Li et al. (2019a)	10/1/2015-10/31/2015	116.33	39.99	1.01	1.66	
33	TEPB	Liu et al. (2016)	11/2014-9/2015	117.15	39.10	2.12	1.18	
34	Shenyang	Z. Ma et al. (2019)	8/20-9/16/2017	123.42	41.78	1.41	1.63	0.88
35	Pixian	Deng et al. (2019)	8/28/2016-10/7/2016	103.87	30.80	0.79	1.78	
36	CIZ	J. Li et al. (2018)	8/24/2015-9/22/2015	106.50	29.62	1.10	1.20	0.70
37	JYS	J. Li et al. (2018)	8/24/2015-9/22/2015	106.38	29.83	0.60	0.40	
38	NQ	J. Li et al. (2018)	8/24/2015-9/22/2015	106.59	29.43	1.00	0.80	0.90
39	Heshan	M. Song et al. (2019)	10/22-11/22/2014	112.93	22.73	1.04	2.96	2.39
40	RCEES	Q. Li et al. (2020)	3/1/2016-1/31/2017	116.50	39.80	1.00	1.20	1.00
41	BNU	Liu et al. (2020)	1,4,7,10/2016	116.37	39.97	0.92	0.98	0.80
42	Langfang	C. Song et al. (2019)	4/2016-3/2017	116.76	39.57	0.86	0.84	0.62
43	NUIST	An et al. (2014)	3/2011-2/2012	118.72	32.21	3.14	2.10	1.37
44	WH	Lyu et al. (2016)	2/2013-10/2014	114.37	30.54	1.70	2.00	0.60
45	WHU	Yang et al. (2019)	9/2016-8/2017	114.62	30.88	0.73	0.95	0.37
46	Qingyang	Song et al. (2018)	10/27/2016-9/30/2017	104.08	30.93	0.95	1.80	1.71
47	LEMS	Jia et al. (2016)	1/2013-12/2013	103.92	36.05	1.94	1.01	1.23
48	GPACS	Zou et al. (2015)	6/2011-5/2012	113.35	23.00	0.62	4.59	2.07
49	Mong Kok	Z. Li et al. (2020)	1/2013-12/2014	114.17	22.32	0.44	1.74	0.63
Table S3. Summary of the locations, sampling information, and campaign-average mixing ratios of the 28 surface HONO measurements as well as the corresponding simulation results in the Sp_base and Sp_R1+2 simulations.

Site #	Site Name	References	Sampling Period	Lon.	Lat.	Observed HONO (ppbv)	Sp_base simulation	Sp_R1+2 simulation
							HONO (ppbv)	HONO (ppbv)
1	EESCAS	J. Wang et al. (2017b)	1/3-1/27/2016	116.34	40.01	1.03	0.71	0.68
2	Jinan	D. Li et al. (2018)	12/1/2015-2/29/2016	117.05	36.67	1.14	0.95	0.84
3	Jinan	L. Wang et al. (2015)	11/26/2013-1/5/2014	117.05	36.67	0.36	1.12	3.15
4	YeIRD	Gu et al. (2020)	2/8-3/24/2017	118.98	37.76	0.26	0.41	1.59
5	NUIST	Zheng et al. (2020)	12/1-12/31/2015	118.71	32.21	1.28	0.85	0.66
6	SORPES	Y. Liu et al. (2019b)	12/2017-2/2018	118.95	32.12	0.67	0.80	1.19
7	Tung Chung	Z. Xu et al. (2015)	2/3-3/9/2012	113.93	22.30	0.90	0.06	0.07
8	Zhengzhou	Hao et al. (2020)	1/9-1/31/2019	113.52	34.80	2.51	1.56	0.62
9	EESCAS	J. Wang et al. (2017b)	4/1-5/14/2016	116.34	40.01	1.05	0.15	0.14
10	Jinan	D. Li et al. (2018)	3/1-5/31/2016	117.05	36.67	1.11	0.45	0.41
11	Changzhou	X. Shi et al. (2020)	4/3-4/24/2017	119.90	31.80	1.52	0.32	0.21
12	SORPES	Y. Liu et al. (2019b)	3-5/2018	118.95	32.12	0.45	0.43	0.94
13	SORPES	Nie et al. (2015)	4/17-6/24/2012	118.95	32.12	0.75	0.30	0.40
14	Tung Chung	Z. Xu et al. (2015)	5/1-5/31/2012	113.93	22.30	0.40	0.15	0.38
15	Wangdu	Y. Liu et al. (2019a)	6/8-7/5/2014	115.18	38.68	0.92	0.22	0.24
16	EESCAS	J. Wang et al. (2017b)	6/20-7/25/2016	116.34	40.01	1.39	0.15	0.11
17	Jinan	D. Li et al. (2018)	6/1-8/31/2016	117.05	36.67	0.76	0.42	0.55
18	YeIRD	Gu et al. (2020)	6/1-7/10/2017	118.98	37.76	0.17	0.06	0.36
19	SORPES	Y. Liu et al. (2019b)	11/2017;9-11/2018	118.95	32.12	1.04	0.45	0.44
20	SORPES	Y. Liu et al. (2019b)	6-8/2018	118.95	32.12	0.66	0.31	0.46
21	Tung Chung	Z. Xu et al. (2015)	8/3-9/7/2011	113.93	22.30	0.68	0.10	0.14
22	IIECAS	Huang et al. (2017)	7/24-8/6/2015	108.87	34.22	1.11	0.06	0.06
23	EESCAS	J. Wang et al. (2017b)	9/22-10/21/2016	116.34	40.01	2.27	0.31	0.13
24	ICCAS	Tong et al. (2015)	10/28-11/2/2014	116.32	39.99	1.45	0.37	0.26
25	UCAS	Tong et al. (2015)	10/28-11/2/2014	116.60	40.40	0.75	0.17	0.23
26	ICCAS	Jia et al. (2020)	8/23-9/15/2018	116.32	39.99	1.24	0.21	0.17
27	Jinan	D. Li et al. (2018)	9/1-11/30/2015	117.05	36.67	1.75	0.80	0.46
28	Tung Chung	Z. Xu et al. (2015)	11/1-12/3/2011	113.93	22.30	0.92	0.08	0.09
Table S4. Summary of the locations, sampling information, and the maxima in the diurnal profiles of the hourly mean concentrations from 10 surface OH and HO2 measurements in China as well as the corresponding model results in the Sp_base and Sp_R1+2 simulations.

Site #	Site Name/Region	References	Sampling Period	Lon.	Lat.	OH (10^6 cm^-3)	HO2 (10^6 cm^-3)				
						Obs	Sp_base	Sp_R1+2	Obs	Sp_base	Sp_R1+2
Winter											
1	Huairou/ NCP	Tan et al. (2018)	1/6-2/2/2016; 2/20-3/5/2016	116.68	40.41	3.1	1.1	2.8	0.8	0.2	0.5
2	IAP/ NCP	Slater et al. (2020)	11/16-11/20/2016; 12/2-12/8/2016	116.37	39.97	2.7	1.3	3.0	0.4	0.2	0.6
3	IAP/ NCP	Ma (2019)	11/15-12/9/2016	116.37	39.97	2.3	1.1	2.8	0.6	0.2	0.5
4	PKU/ NCP	X. Ma et al. (2019)	11/16-12/24/2017	116.31	40.00	1.8	1.2	2.7	0.4	0.2	0.5
Summer											
5	Wangdu/ NCP	Tan et al. (2017)	6/7-7/8/2014	115.2	39.5	8.3	6.3	12.9	8.3	2.6	5.2
6	IAP/ NCP	Whalley et al. (2021)	5/21-6/26/2017	116.37	39.97	8.6	3.5	7.6	2.9	3.5	5.9
7	Tiazhou/ YRD	Yang (2021)	5/23-6/17/2018	119.9	32.3	11.1	9.0	14.2	11.4	4.4	6.6
8	Chengdu/ Southwest	Yang et al. (2021)	8/10-8/25/2019	103.8	30.4	10.0	9.8	19.7	10.1	4.0	7.6
Autumn											
9	Heshen/ PRD	Tan et al. (2019)	10/19-11/22/2014	112.9	22.7	4.4	7.0	18.4	3.2	1.8	5.6
10	Shenzhen/ PRD	Yang (2021)	10/5-10/28/2018	113.9	22.6	4.5	7.6	11.8	4.4	5.4	7.8
Table S5. Descriptions of the implemented new sources of HONO.

New sources	Description	Reference
Traffic emission	$E_{\text{HONO,traffic}} = 0.017 \times E_{\text{NO}_x,\text{traffic}}$	Rappengluck et al. (2013)
	$E_{\text{HONO,soil}} = \text{HONO}_f \times E_{\text{NO}_x,\text{soil}} \times f_{\text{SWC}} \times \text{CRF(LAI, meteorology, biome)}$	Hudman et al. (2012)
Soil emission	$E_{\text{NO}_x,\text{soil}}$ and canopy reduction factor (CRF): Hudman et al. (2012)	Rasool et al. (2019)
	The soil water content adjustment factor (f_{SWC}) and the proportions of the emissions of HONO to NO$_x$ (HONO$_f$): Rasool et al. (2019)	
Biomass burning emission	Burned area data: GFED4	Giglio et al. (2013)
	$EF_{\text{HONO,bb}}$: Andreae (2019)	Andreae (2019)
	$\text{NO}_2 \xrightarrow{\text{surface}} \text{HONO} \quad (k_g)$	
	$k_g = \frac{1}{8} \times v_{\text{NO}_2} \times \frac{s_g}{\nu} \times \gamma_{g-NO_2}$	
	Heterogeneous reaction of NO$_2$ on the ground	
	$\gamma_{g-NO_2} = \begin{cases} \frac{1}{2} \times 10^{-6} & \text{(night)} \\ 2 \times 10^{-5} \times \frac{j(\text{NO}_2)}{2 \times 10^{-3}} & \text{(day)} \end{cases}$	Li et al. (2010); Zhang et al. (2020)
	$\frac{s_g}{\nu} = \begin{cases} 0.1 & \text{(urban area)} \\ \frac{2 \times \text{LAI}}{H} & \text{(other areas)} \end{cases}$	
	Land cover type: MCD12C1 v6	
Photolysis of nitrate	Nitrate $\xrightarrow{h\nu} 0.67\text{HONO} + 0.33\text{NO}_2 \quad (J_{\text{Nitrate}})$	Kasibhatla et al. (2018)
	$J_{\text{Nitrate}} = 100 \times J_{\text{HNO}_3}$	
Table S6. The ratios of IVOCs to NMVOCs emissions from different subsectors.

Subsectors	IVOCs/NMVOCs	Reference
Gasoline	0.032	Lu et al. (2018)
Diesel	0.527	Lu et al. (2018)
Coal	0.352	Cai et al. (2019)
Biomass burning	0.164	Lim et al. (2019)
Solvent use	0.240	Khare and Gentner (2018)
Table S7. Annual mean emissions of IVOC6, IVOC5, and IVOC4 in China in 2014 (unit: Tg year$^{-1}$). The values in parentheses are the IVOCs emissions when the residential emission is multiplied by a factor of 7.

Sectors	Corresponding subsectors	IVOC6	IVOC5	IVOC4	Total IVOCs
Power	Coal	0.01	0.01	0.01	0.03
Industry	Coal	2.51	1.43	0.83	4.77
Residential	Coal Biofuel Gasoline	0.60	0.44	0.17	1.21 (5.64)
	Solvent	0.23	0.18	0.15	0.56
	Diesel	3.35	2.05	1.15	6.56 (11.00)
Table S8. The SOA yield parameterization for IVOCs under low and high NO$_x$ conditions in this study compared with the literature parameterization. The saturation concentration (C^*) is in unit of μg m$^{-3}$. Only one-step oxidation is considered in the parameterizations.

Parameterization	Category	mass-based stoichiometric coefficients (α) for C^*	SOA yield at 10 μg m$^{-3}$	Reference
		nonvolatile 0.1 1 10 100 1000		
	low NO$_x$ condition			
Pye and Seinfeld (2010)	IVOCs	0.73 - - - - -	0.73	Chan et al. (2009)
(Base)				
	high NO$_x$ condition			
Pye and Seinfeld (2010)	IVOCs	- 0 0.039 0.296 0.235 -	0.21	Chan et al. (2009)
(Base)				
Koo et al. (2014)	IVOCs	- - 0.030 0.194 0.264 0.376	0.15	Murphy and Pandis (2009)
Jathar et al. (2014)	n-C$_{13}$ proxy	0.014 0.059 0.220 0.400 -	0.21	Presto et al. (2010)
	n-C$_{15}$ proxy	0.044 0.071 0.410 0.300 -	0.34	
Lu et al. (2020)	IVOC6-ALK	- 0.009 0.045 0.118 0.470 -	0.15	Presto et al. (2010); Zhao et al. (2015); Zhao et al. (2016)
	IVOC5-ALK	- 0.051 0.061 0.394 0.494 -	0.35	
	IVOC4-ALK	- 0.068 0.083 0.523 0.239 -	0.43	
	IVOC3-ALK	- 0.067 0.086 0.544 0.198 -	0.43	
	IVOC6-ARO	- 0.022 0.109 0.251 0.005 -	0.25	
	IVOC5-ARO	- 0.143 0.021 0.329 0.358 -	0.36	
This study	IVOC6	- 0.011 0.052 0.201 0.296 -	0.19	Presto et al. (2010)
	IVOC5	- 0.049 0.078 0.439 0.271 -	0.36	
	IVOC4	- 0.063 0.089 0.550 0.200 -	0.44	
Table S9. The observed campaign-average mass concentrations of primary IVOCs at the SAES site and the corresponding model results in the Cp_R1+2 and Cp_R1+2+3 simulations.

Site	Reference	Period	Observation (μg m⁻³)	Cp_R1+2 simulation	Cp_R1+2+3 simulation
SAES (Shanghai)	Y. Li et al. (2019)	December 5, 2016 to January 3, 2017	35.1	9.3	0.26
		July 16 to August 8, 2017	4	1.9	0.48
Table S10. The values of EF\textsubscript{SOAP}/EF\textsubscript{CO} used in models and the maximum of ΔOA/ΔCO obtained in the experiments based on oxidation flow reactor (OFR). The values in parentheses are the ΔOA/ΔCO uncorrected for losses of low volatility vapors in the experiments.

Site/campaign name	Site/campaign condition	Simulating/Sampling period	EF\textsubscript{SOAP}/EF\textsubscript{CO} (g kg-1) or Maximum ΔOA/ΔCO (μg m-3 ppmv-1)	Reference
Model				
China		2014	69 in Sp\textsubscript{base}, R1, R1+2 80 in Sp\textsubscript{R1+2+3}	This study
World		2013	69	Pai et al. (2020)
MILAGRO	Mexico City region	15 to 31 March 2006	80	Hodzic and Jimenez (2011)
CalNex	Urban outflow from Los Angeles	15 May to 15 June 2010	69	Hayes et al. (2015); Woody et al. (2016)
SEAC4 RS	Summertime aircraft in the southeast US	1 August to 31 October 2013	69	Kim et al. (2015)
WINTER	Wintertime aircraft campaign in the northeastern US	1 February to 15 March 2015	80	Shah et al. (2019)
WINTER	Wintertime aircraft campaign in the northeastern US	1 February to 15 March 2015	69	Schroder et al. (2018)
OFR experiment				
CalNex	Urban outflow from Los Angeles	29 May to 10 June 2010	45-68 (43)	Ortega et al. (2016)
KORUS-AQ	Aircraft campaign over South Korea and the Yellow Sea	May to June 2016	129 ± 16.5	Nault et al. (2018)
Changping	Suburban near Beijing	12 to 21 June 2016	59	J. Li et al. (2019b)
Hong Kong	The east coast of Hong Kong	11 to 21 October 2016	22	Tkacik et al. (2014)
Pittsburgh	A highway tunnel	May 2013	91	T. Liu et al. (2019)
Hong Kong	1 m from a major road	24 Dec 2017 to 15 Jan 2018	48 (38 ± 65)	Saha et al. (2018)
Durham	10 m from the edge of Interstate 40	1 to 15 July 2015	180 (62 ± 18)	Liao et al. (2021)
Beijing	The 4th Ring Road	November 2018	44	
Figure S1. The (a) default and (b) new volatility distributions of primary SVOCs that used in the Cp_base and Cp_R1 simulations, respectively.
Figure S2. The volatility distributions of primary IVOCs from diesel, gasoline, coal combustion, solvent uses, and biomass burning. The volatility distributions from diesel and gasoline are adopted from Lu et al. (2018). For coal combustion, solvent uses, and biomass burning, the volatility distributions are provided by Cai et al. (2019), Khare and Gentner (2018), and Lim et al. (2019), respectively.
Figure S3. Annual emissions of IVOCs in 2014 that are estimated by (a) the new method developed in this study, (b) the new method with 7-fold emissions from the residential sector during the heating season, (c) the naphthalene-based, and (d) the POA-based methods as well as (e-f) the emission ratios of the new method to naphthalene-based and the new method to POA-based estimates.
Figure S4. Comparisons of monthly profiles of the IVOC emissions in China in 2014.
Figure S5. The PMF-derived and simulated campaign-average mass concentrations of POA at (a) urban, (b) suburban and regional, and (c) remote sites. The upper and lower edges of the boxes, the whiskers, the middle lines, and the solid dots denote the 25th and 75th percentiles, the 5th and 95th percentiles, the median values, and the mean values of the POA concentrations.
Figure S6. Scatter plots of the observed and simulated campaign-average concentrations of SOA by (a) the observational-constrained scheme and (b) the process-based scheme at urban, suburban and regional, and remote sites.
Figure S7. NMBs for SOA simulations at (a) urban, (b) suburban and regional, and (c) remote sites for different seasons. The model results were compared to the PMF-derived SOA results in China.
Figure S8. Winter-mean mass concentrations of SOA simulated by the Sp_R1+2 and Sp_R1+2+3 simulations. The circles are shown for the PMF-derived SOA concentrations from measurements.
References

An, J., Zhu, B., Wang, H., Li, Y., Lin, X., and Yang, H.: Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China, Atmos. Environ., 97, 206-214, https://doi.org/10.1016/j.atmosenv.2014.08.021, 2014.

An, J., Wang, J., Zhang, Y., and Zhu, B.: Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China, Arch. Environ. Contam. Toxicol., 72, 335-348, https://doi.org/10.1007/s00244-017-0371-3, 2017.

Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523-8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.

Cai, S., Zhu, L., Wang, S., Wisthaler, A., Li, Q., Jiang, J., and Hao, J.: Time-Resolved Intermediate-Volatility and Semivolatile Organic Compound Emissions from Household Coal Combustion in Northern China, Environ. Sci. Technol., 53, 9269-9278, https://doi.org/10.1021/acs.est.9b00734, 2019.

Cao, L.-M., Huang, X.-F., Li, Y.-Y., Hu, M., and He, L.-Y.: Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China, Atmos. Chem. Phys., 18, 1729-1743, https://doi.org/10.5194/acp-18-1729-2018, 2018.

Cao, L.-M., Huang, X.-F., Wang, C., Zhu, Q., and He, L.-Y.: Characterization of submicron aerosol volatility in the regional atmosphere in Southern China, Chemosphere, 236, 124383, https://doi.org/10.1016/j.chemosphere.2019.124383, 2019.

Cao, L., Zhu, Q., Huang, X., Deng, J., Chen, J., Hong, Y., Xu, L., and He, L.: Chemical characterization and source apportionment of atmospheric submicron particles on the western coast of Taiwan Strait, China, J. Environ. Sci., 52, 293-304, https://doi.org/10.1016/j.jes.2016.09.018, 2017.

Chan, A. W. H., Kautzman, K. E., Chhabra, P. S., Surratt, J. D., Chan, M. N., Crounse, J. D., Kurten, A., Wennberg, P. O., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from photooxidation of naphthalene and alkynaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049-3060, https://doi.org/10.5194/acp-9-3049-2009, 2009.

Chen, T., Liu, J., Liu, Y., Ma, Q., Ge, Y., Zhong, C., Jiang, H., Chu, B., Zhang, P., Ma, J., Liu, P., Wang, Y., Mu, Y., and He, H.: Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018, Chemosphere, 247, 125918, https://doi.org/10.1016/j.chemosphere.2020.125918, 2020.

Deng, Y., Li, J., Li, Y., Wu, R., and Xie, S.: Characteristics of volatile organic compounds, NO₂, and effects on ozone formation at a site with high ozone level in Chengdu, J. Environ. Sci., 75, 334-345, https://doi.org/10.1016/j.jes.2018.05.004, 2019.

Du, W., Sun, Y. L., Xu, Y. S., Jiang, Q., Wang, Q. Q., Yang, W., Wang, F., Bai, Z. P., Zhao, X. D., and Yang, Y. C.: Chemical characterization of submicron aerosol and particle growth events at a national background site (3295 m a.s.l.) on the Tibetan Plateau, Atmos. Chem. Phys., 15, 10811-10824, https://doi.org/10.5194/acp-15-10811-2015, 2015.

Duan, J., Huang, R.-J., Lin, C. S., Dai, W. T., Wang, M., Gu, Y. F., Wang, Y., Zhong, H. B., Zheng, Y., Ni, H. Y., Dusek, U., Chen, Y., Li, Y. J., Chen, Q., Worsnop, D. R., O'Dowd, C. D., and Cao, J. J.: Distinctions in source regions and formation mechanisms of secondary aerosol in Beijing from summer to winter, Atmos. Chem. Phys., 19, 10319-10334, https://doi.org/10.5194/acp-19-10319-2019, 2019.
Duan, J., Huang, R.-J., Li, Y. J., Chen, Q., Zheng, Y., Chen, Y., Lin, C., Ni, H., Wang, M., Ovadnevaite, J., Ceburnis, D., Chen, C., Worsnop, D. R., Hoffmann, T., O’Dowd, C., and Cao, J.: Summertime and wintertime atmospheric processes of secondary aerosol in Beijing, Atmos. Chem. Phys., 20, 3793-3807, https://doi.org/10.5194/acp-20-3793-2020, 2020.

Elser, M., Huang, R.-J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach, K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prevot, A. S. H.: New insights into PM$_{2.5}$ chemical composition and sources in two major cities in China during extreme haze events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207-3225, https://doi.org/10.5194/acp-16-3207-2016, 2016.

Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth generation global fire emissions database (GFED4), J. Geophys. Res. Biogeo., 118, 317-328, https://doi.org/10.1002/jgrg.20042, 2013.

Gong, D., Wang, H., Zhang, S., Wang, Y., Liu, S. C., Guo, H., Shao, M., He, C., Chen, D., He, L., Zhou, L., Morawska, L., Zhang, Y., and Wang, B.: Low-level summertime isoprene observed at a forested mountaintop site in southern China: implications for strong regional atmospheric oxidative capacity, Atmos. Chem. Phys., 18, 14417-14432, https://doi.org/10.5194/acp-18-14417-2018, 2018.

Gu, R., Zheng, P., Chen, T., Dong, C., Wang, Y., Liu, Y., Liu, Y., Luo, Y., Han, G., Wang, X., Zhou, X., Wang, T., Wang, W., and Xue, L.: Atmospheric nitrous acid (HONO) at a rural coastal site in North China: Seasonal variations and effects of biomass burning, Atmos. Environ., 229, 117429, https://doi.org/10.1016/j.atmosenv.2020.117429, 2020.

Guo, J., Zhou, S., Cai, M., Zhao, J., Song, W., Zhao, W., Hu, W., Sun, Y., He, Y., Yang, C., Xu, X., Zhang, Z., Cheng, P., Fan, Q., Hang, J., Fan, S., Wang, X., and Wang, X.: Characterization of submicron particles by time-of-flight aerosol chemical speciation monitor (ToF-ACSM) during wintertime: aerosol composition, sources, and chemical processes in Guangzhou, China, Atmos. Chem. Phys., 20, 7595-7615, https://doi.org/10.5194/acp-20-7595-2020, 2020.

Hao, Q., Jiang, N., Zhang, R., Yang, L., and Li, S.: Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China, Atmos. Chem. Phys., 20, 7087-7102, https://doi.org/10.5194/acp-20-7087-2020, 2020.

Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., Rappengluck, B., Gilman, J. B., Kuster, W. C., de Gouw, J. A., Zotter, P., Prevot, A. S. H., Szidat, S., Kleindienst, T. E., Offenberg, J. H., Ma, P. K., and Jimenez, J. L.: Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010, Atmos. Chem. Phys., 15, 5773-5801, https://doi.org/10.5194/acp-15-5773-2015, 2015.

Hodzic, A., and Jimenez, J. L.: Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models, Geosci. Model Dev., 4, 901-917, https://doi.org/10.5194/gmd-4-901-2011, 2011.

Hu, W., Hu, M., Hu, W.-W., Niu, H., Zheng, J., Wu, Y., Chen, W., Chen, C., Li, L., Shao, M., Xie, S., and Zhang, Y.: Characterization of submicron aerosols influenced by biomass burning at a site in the Sichuan Basin, southwestern China, Atmos. Chem. Phys., 16, 13213-13230, https://doi.org/10.5194/acp-16-13213-2016, 2016a.

Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y. S., Chen, C., Wang, Z., Peng, J., Zeng, L., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter, J. Geophys. Res. Atmos., 121, 1955-1977, https://doi.org/10.1002/2015JD024020, 2016b.
Hu, W., Hu, M., Hu, W.-W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing, Atmos. Chem. Phys., 17, 9979-10000, https://doi.org/10.5194/acp-17-9979-2017, 2017.

Hu, W. W., Hu, M., Yuan, B., Jimenez, J. L., Tang, Q., Peng, J. F., Hu, W., Shao, M., Wang, M., Zeng, L. M., Wu, Y. S., Gong, Z. H., Huang, X. F., and He, L. Y.: Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China, Atmos. Chem. Phys., 13, 10095-10112, https://doi.org/10.5194/acp-13-10095-2013, 2013.

Huang, R.-J., Yang, L., Cao, J., Wang, Q., Tie, X., Ho, K. F., Shen, Z., Zhang, R., Li, G., Zhu, C., Zhang, N., Dai, W., Zhou, J., Liu, S., Chen, Y., Chen, J., and O'Dowd, C. D.: Concentration and sources of atmospheric nitrous acid (HONO) at an urban site in Western China, Sci. Total Environ., 593-594, 165-172, https://doi.org/10.1016/j.scitotenv.2017.02.166, 2017.

Huang, R.-J., Wang, Y., Cao, J., Lin, C., Duan, J., Chen, Q., Li, Y., Gu, Y., Yan, J., Xu, W., Frohlich, R., Canonaco, F., Bozzetti, C., Ovadnevaite, J., Ceburnis, D., Canagaratna, M. R., Jayne, J., Worsnop, D. R., El-Haddad, I., Prevot, A. S. H., and O'Dowd, C. D.: Primary emissions versus secondary formation of fine particulate matter in the most polluted city (Shijiazhuang) in North China, Atmos. Chem. Phys., 19, 2283-2298, https://doi.org/10.5194/acp-19-2283-2019, 2019.

Huang, R.-J., He, Y., Duan, J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Hu, W., Lin, C., Ni, H., Dai, W., Cao, J., Wu, Y., Zhang, R., Xu, W., Ovadnevaite, J., Ceburnis, D., Hoffmann, T., and O'Dowd, C. D.: Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing, Atmos. Chem. Phys., 20, 9101-9114, https://doi.org/10.5194/acp-20-9101-2020, 2020.

Hudman, R. C., Moore, N. E., Mebust, A. K., Martin, R. V., Russell, A. R., Valin, L. C., and Cohen, R. C.: Steps towards a mechanistic model of global soil nitric oxide emissions: implementation and space based-constraints, Atmos. Chem. Phys., 12, 7779-7795, https://doi.org/10.5194/acp-12-7779-2012, 2012.

Jathar, S. H., Gordon, T. D., Hennigan, C. J., Pye, H. O., Poulion, G., Adams, P. J., Donahue, N. M., and Robinson, A. L.: Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States, Proc. Natl. Acad. Sci. U. S. A., 111, 10473-10478, https://doi.org/10.1073/pnas.1323740111, 2014.

Jia, C., Mao, X., Huang, T., Liang, X., Wang, Y., Shen, Y., Jiang, W., Wang, H., Bai, Z., Ma, M., Yu, Z., Ma, J., and Gao, H.: Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China, Atmos. Res., 169, 225-236, https://doi.org/10.1016/j.atmosres.2015.10.006, 2016.

Jia, C., Tong, S., Zhang, W., Zhang, X., Li, W., Wang, Z., Wang, L., Liu, Z., Hu, B., Zhao, P., and Ge, M.: Pollution characteristics and potential sources of nitrous acid (HONO) in early autumn 2018 of Beijing, Sci. Total Environ., 735, 139317, https://doi.org/10.1016/j.scitotenv.2020.139317, 2020.

Kasibhatla, P., Sherwen, T., Evans, M. J., Carpenter, L. J., Reed, C., Alexander, B., Chen, Q., Sulprizio, M. P., Lee, J. D., Read, K. A., Bloss, W., Crilley, L. R., Keene, W. C., Pszenny, A. A. P., and Hodzic, A.: Global impact of nitrate photolysis in sea-salt aerosol on NOx, OH, and O3 in the marine boundary layer, Atmos. Chem. Phys., 18, 11185-11203, https://doi.org/10.5194/acp-18-11185-2018, 2018.
Khare, P., and Gentner, D. R.: Considering the future of anthropogenic gas-phase organic compound emissions and the increasing influence of non-combustion sources on urban air quality, Atmos. Chem. Phys., 18, 5391-5413, https://doi.org/10.5194/acp-18-5391-2018, 2018.

Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., Yantosca, R. M., Sulprizio, M. P., Jimenez, J. L., 240 Campuzano-Jost, P., Froyd, K. D., Liao, J., Hair, J. W., Fenn, M. A., Butler, C. F., Wagner, N. L., Gordon, T. D., Welti, A., Wennberg, P. O., Crounse, J. D., St Clair, J. M., Teng, A. P., Millet, D. B., Schwarz, J. P., Markovic, M. Z., and Perring, A. E.: Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, https://doi.org/10.5194/acp-15-10411-2015, 2015.

Koo, B., Knipping, E., and Yarwood, G.: 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ, Atmos. Environ., 95, 158-164, https://doi.org/10.1016/j.atmosenv.2014.06.031, 2014.

Kuang, Y., He, Y., Xu, W., Yuan, B., Zhang, G., Ma, Z., Wu, C., Wang, C., Wang, S., Zhang, S., Tao, J., Ma, N., Su, H., Cheng, Y., Shao, M., and Sun, Y.: Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain, Environ. Sci. Technol., 54, 3849-3860, https://doi.org/10.1021/acs.est.9b06836, 2020.

Lee, B. P., Li, Y. J., Yu, J. Z., Louie, P. K. K., and Chan, C. K.: Characteristics of submicron particulate matter at the urban roadside in downtown Hong Kong-Overview of 4 months of continuous high-resolution aerosol mass spectrometer measurements, J. Geophys. Res. Atmos., 120, 7040-7058, https://doi.org/10.1002/2015JD023311, 2015.

Lei, L., Xie, C., Wang, D., He, Y., Wang, Q., Zhou, W., Hu, W., Fu, P., Chen, Y., Pan, X., Wang, Z., Worsnop, D. R., and Sun, Y.: Fine particle characterization in a coastal city in China: composition, sources, and impacts of industrial emissions, Atmos. Chem. Phys., 20, 2877-2890, https://doi.org/10.5194/acp-20-2877-2020, 2020.

Li, D., Xue, L., Wen, L., Wang, X., Chen, T., Mellouki, A., Chen, J., and Wang, W.: Characteristics and sources of nitrous acid in an urban atmosphere of northern China: Results from 1-yr continuous observations, Atmos. Environ., 182, 296-306, https://doi.org/10.1016/j.atmosenv.2018.03.033, 2018.

260 Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551-6567, https://doi.org/10.5194/acp-10-6551-2010, 2010.

Li, H., Zhang, Q., Zhang, Q., Chen, C., Wang, L., Wei, Z., Zhou, S., Parworth, C., Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H., Wallington, T. J., and He, K.: Wintertime aerosol chemistry and haze evolution in an extremely polluted city of the North China Plain: significant contribution from coal and biomass combustion, Atmos. Chem. Phys., 17, 4751-4768, https://doi.org/10.5194/acp-17-4751-2017, 2017.

Li, H., Zhang, Q., Zheng, B., Chen, C., Wu, N., Guo, H., Zhang, Y., Zheng, Y., Li, X., and He, K.: Nitrate-driven urban haze pollution during summertime over the North China Plain, Atmos. Chem. Phys., 18, 5293-5306, https://doi.org/10.5194/acp-18-5293-2018, 2018.

270 Li, H., Cheng, J., Zhang, Q., Zheng, B., Zhang, Y., Zheng, G., and He, K.: Rapid transition in winter aerosol composition in Beijing from 2014 to 2017: response to clean air actions, Atmos. Chem. Phys., 19, 11485-11499, https://doi.org/10.5194/acp-19-11485-2019, 2019.
Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, Atmos. Chem. Phys., 15, 7945-7959, https://doi.org/10.5194/acp-15-7945-2015, 2015.

Li, J., Wu, R., Li, Y., Hao, Y., Xie, S., and Zeng, L.: Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China, Sci. Total Environ., 557-558, 531-541, https://doi.org/10.1016/j.scitotenv.2016.03.140, 2016.

Li, J., Zhai, C., Yu, J., Liu, R., Li, Y., Zeng, L., and Xie, S.: Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China, Sci. Total Environ., 627, 1442-1452, https://doi.org/10.1016/j.scitotenv.2018.02.010, 2018.

Li, J., Hao, Y., Simayi, M., Shi, Y., Xi, Z., and Xie, S.: Verification of anthropogenic VOC emission inventory through ambient measurements and satellite retrievals, Atmos. Chem. Phys., 19, 5905-5921, https://doi.org/10.5194/acp-19-5905-2019, 2019a.

Li, J., Liu, Q., Li, Y., Liu, T., Huang, D., Zheng, J., Zhu, W., Hu, M., Wu, Y., Lou, S., Hallquist, A. M., Hallquist, M., Chan, C. K., Canonaco, F., Prevot, A. S. H., Fung, J. C. H., Lau, A. K. H., and Yu, J. Z.: Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer, J. Geophys. Res. Atmos., 124, 5629-5649, https://doi.org/10.1029/2018JD029904, 2019b.

Li, J., Liu, Z., Cao, L., Gao, W., Yan, Y., Mao, J., Zhang, X., He, L., Xin, J., Tang, G., Ji, D., Hu, B., Wang, L., Wang, Y., Dai, L., Zhao, D., Du, W., and Wang, Y.: Highly time-resolved chemical characterization and implications of regional transport for submicron aerosols in the North China Plain, Sci. Total Environ., 705, 135803, https://doi.org/10.1016/j.scitotenv.2019.135803, 2020.

Li, K., Chen, L. H., Ying, F., White, S. J., Jang, C., Wu, X. C., Gao, X., Hong, S. M., Shen, J. D., Azzi, M., and Cen, K. F.: Meteorological and chemical impacts on ozone formation: A case study in Hangzhou, China, Atmos. Res., 196, 40-52, https://doi.org/10.1016/j.atmosres.2017.06.003, 2017.

Li, K., Chen, L., White, S. J., Zheng, X., Lv, B., Lin, C., Bao, Z., Wu, X., Gao, X., Ying, F., Shen, J., Azzi, M., and Cen, K.: Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou, Environ. Pollut., 232, 42-54, https://doi.org/10.1016/j.envpol.2017.09.016, 2018.

Li, K., Li, J., Tong, S., Wang, W., Huang, R. J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021-8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.

Li, L., Chen, Y., Zeng, L., Shao, M., Xie, S. D., Chen, W., Lu, S., Wu, Y., and Cao, W.: Biomass burning contribution to ambient volatile organic compounds (VOCs) in the Chengdu-Chongqing Region (CCR), China, Atmos. Environ., 99, 403-410, https://doi.org/10.1016/j.atmosenv.2014.09.067, 2014.

Li, L., Xie, S., Zeng, L., Wu, R., and Li, J.: Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China, Atmos. Environ., 113, 247-254, https://doi.org/10.1016/j.atmosenv.2015.05.021, 2015.

Li, Q., Su, G., Li, C., Liu, P., Zhao, X., Zhang, C., Sun, X., Mu, Y., Wu, M., Wang, Q., and Sun, B.: An investigation into the role of VOCs in SOA and ozone production in Beijing, China, Sci. Total Environ., 720, 137536, https://doi.org/10.1016/j.scitotenv.2020.137536, 2020.
Li, Y., Ren, B., Qiao, Z., Zhu, J., Wang, H., Zhou, M., Qiao, L., Lou, S., Jing, S., Huang, C., Tao, S., Rao, P., and Li, J.: Characteristics of atmospheric intermediate volatility organic compounds (IVOCs) in winter and summer under different air pollution levels, Atmos. Environ., 210, 58-65, https://doi.org/10.1016/j.atmosenv.2019.04.041, 2019.

Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37-53, https://doi.org/10.5194/acp-15-37-2015, 2015.

Li, Z., Ho, K. F., and Yim, S. H. L.: Source apportionment of hourly-resolved ambient volatile organic compounds: Influence of temporal resolution, Sci. Total Environ., 725, 138243, https://doi.org/10.1016/j.scitotenv.2020.138243, 2020.

Liao, K., Chen, Q., Liu, Y., Li, Y. J., Lambe, A. T., Zhu, T., Huang, R. J., Zheng, Y., Cheng, X., Miao, R., Huang, G., Khuzestani, R. B., and Jia, T.: Secondary Organic Aerosol Formation of Fleet Vehicle Emissions in China: Potential Seasonality of Spatial Distributions, Environ. Sci. Technol., 55, 7276-7286, https://doi.org/10.1021/acs.est.0c08591, 2021.

Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., de Gouw, J., Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19, 12797-12809, https://doi.org/10.5194/acp-19-12797-2019, 2019.

Liu, B., Liang, D., Yang, J., Dai, Q., Bi, X., Feng, Y., Yuan, J., Xiao, Z., Zhang, Y., and Xu, H.: Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China, Environ. Pollut., 218, 757-769, https://doi.org/10.1016/j.envpol.2016.07.072, 2016.

Liu, C., Ma, Z., Mu, Y., Liu, J., Zhang, C., Zhang, Y., Liu, P., and Zhang, H.: The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China, Atmos. Chem. Phys., 17, 10633-10649, https://doi.org/10.5194/acp-17-10633-2017, 2017.

Liu, T., Zhou, L., Liu, Q., Lee, B. P., Yao, D., Lu, H., Lyu, X., Guo, H., and Chan, C. K.: Secondary Organic Aerosol Formation from Urban Roadside Air in Hong Kong, Environ. Sci. Technol., 53, 3001-3009, https://doi.org/10.1021/acs.est.8b06587, 2019.

Liu, Y., Lu, K., Li, X., Dong, H., Tan, Z., Wang, H., Zou, Q., Wu, Y., Zeng, L., Hu, M., Min, K.-E., Kecorius, S., Wiedensohler, A., and Zhang, Y.: A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain, Environ. Sci. Technol., 53, 3517-3525, https://doi.org/10.1021/acs.est.8b06367, 2019a.

Liu, Y., Nie, W., Xu, Z., Wang, T., Wang, R., Li, Y., Wang, L., Chi, X., and Ding, A.: Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China, Atmos. Chem. Phys., 19, 13289-13308, https://doi.org/10.5194/acp-19-13289-2019, 2019b.

Liu, Y., Wang, H., Jing, S., Gao, Y., Peng, Y., Lou, S., Cheng, T., Tao, S., Li, L., Li, Y., Huang, D., Wang, Q., and An, J.: Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport, Atmos. Environ., 215, 116902, https://doi.org/10.1016/j.atmosenv.2019.116902, 2019c.

Liu, Y., Song, M., Liu, X., Zhang, Y., Hui, L., Kong, L., Zhang, Y., Zhang, C., Qu, Y., An, J., Ma, D., Tan, Q., and Feng, M.: Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China, Environ. Pollut., 257, 113599, https://doi.org/10.1016/j.envpol.2019.113599, 2020.

Lu, Q., Zhao, Y., and Robinson, A. L.: Comprehensive organic emission profiles for gasoline, diesel, and gas-turbine engines including intermediate and semi-volatile organic compound emissions, Atmos. Chem. Phys., 18, 17637-17654, https://doi.org/10.5194/acp-18-17637-2018, 2018.
Lu, Q., Murphy, B. N., Qin, M., Adams, P. J., Zhao, Y., Pye, H. O. T., Efthathiou, C., Allen, C., and Robinson, A. L.: Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds, Atmos. Chem. Phys., 20, 4313-4332, https://doi.org/10.5194/acp-20-4313-2020, 2020.

Lyu, X. P., Chen, N., Guo, H., Zhang, W. H., Wang, N., Wang, Y., and Liu, M.: Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China, Sci. Total Environ., 541, 200-209, https://doi.org/10.1016/j.scitotenv.2015.09.093, 2016.

Ma, X.: Study of the Hydroxyl Radicals Chemistry during the Winter in Beijing, Ph.D. thesis, College of Environmental Sciences and Engineering, Peking University, China, 172 pp., 2019.

Ma, Z., Liu, C., Zhang, C., Liu, P., Ye, C., Xue, C., Zhao, D., Sun, J., Du, Y., Chai, F., and Mu, Y.: The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China, J. Environ. Sci., 79, 121-134, https://doi.org/10.1016/j.jes.2018.11.015, 2019.

Murphy, B. N., and Pandis, S. N.: Simulating the formation of semivolatile primary and secondary organic aerosol in a regional chemical transport model, Environ. Sci. Technol., 43, 4722-4728, https://doi.org/10.1021/es803168a, 2009.

Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V. M., Zheng, L. F., Qi, X. M., Huang, X., Yang, X. Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass burning plumes on HONO chemistry in eastern China, Atmos. Chem. Phys., 15, 1147-1159, https://doi.org/10.5194/acp-15-1147-2015, 2015.

Ortega, A. M., Hayes, P. L., Peng, Z., Palm, B. B., Hu, W., Day, D. A., Li, R., Cubison, M. J., Brune, W. H., Graus, M., Wanneke, C., Gilman, J. B., Kuster, W. C., de Gouw, J., Gutierrez-Montes, C., and Jimenez, J. L.: Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area, Atmos. Chem. Phys., 16, 7411-7433, https://doi.org/10.5194/acp-16-7411-2016, 2016.

Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Middlebrook, A. M., Coe, H., Shilling, J. E., Bahreini, R., Dingle, J. H., and Vu, K.: An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637-2665, https://doi.org/10.5194/acp-20-2637-2020, 2020.

Presto, A. A., Miracolo, M. A., Donahue, N. M., and Robinson, A. L.: Secondary Organic Aerosol Formation from High-NOx Photo-Oxidation of Low Volatility Precursors: n-Alkanes, Environ. Sci. Technol., 44, 2029-2034, https://doi.org/10.1021/es903712r, 2010.

Pye, H. O. T., and Seinfeld, J. H.: A global perspective on aerosol from low-volatility organic compounds, Atmos. Chem. Phys., 10, 4377-4401, https://doi.org/10.5194/acp-10-4377-2010, 2010.
Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prevot, A. S. H., and Chan, C. K.: Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China, Atmos. Chem. Phys., 17, 10245-10258, https://doi.org/10.5194/acp-17-10245-2017, 2017.

Rappengluck, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B., and Ackermann, L.: Radical precursors and related species from traffic as observed and modeled at an urban highway junction, J. Air Waste Manage. Assoc., 63, 1270-1286, https://doi.org/10.1080/10962247.2013.822438, 2013.

Rasool, Q. Z., Bash, J. O., and Cohan, D. S.: Mechanistic representation of soil nitrogen emissions in the Community Multiscale Air Quality (CMAQ) model v 5.1, Geosci. Model Dev., 12, 849-878, https://doi.org/10.5194/gmd-12-849-2019, 2019.

Saha, P. K., Reece, S. M., and Grieshop, A. P.: Seasonally Varying Secondary Organic Aerosol Formation From In-Situ Oxidation of Near-Highway Air, Environ. Sci. Technol., 52, 7192-7202, https://doi.org/10.1021/acs.est.8b01134, 2018.

Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., Sullivan, A. P., Campos, T., Reeves, J. M., Hills, A., Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L., McDuffie, E. E., Hayes, P. L., Weber, R. J., Dibb, J. E., Apel, E. C., Jaegle, L., Brown, S. S., Thornton, J. A., and Jimenez, J. L.: Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER, J. Geophys. Res. Atmos., 123, 7771-7796, https://doi.org/10.1029/2018JD028475, 2018.

Shah, V., Jaegle, L., Jimenez, J. L., Schroder, J. C., Campuzano-Jost, P., Campos, T. L., Reeves, J. M., Stell, M., Brown, S. S., Lee, B. H., Lopez-Hilfiker, F. D., and Thornton, J. A.: Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States, Geophys. Res. Lett., 46, 2974-2983, https://doi.org/10.1029/2019GL081530, 2019.

Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., and Zhang, Y.: Budget of nitrous acid and its impacts on atmospheric oxidative capacity at an urban site in the central Yangtze River Delta region of China, Atmos. Environ., 238, 117725, https://doi.org/10.1016/j.atmosenv.2020.117725, 2020.

Shi, Y., Xi, Z., Simayi, M., Li, J., and Xie, S.: Scattered coal is the largest source of ambient volatile organic compounds during the heating season in Beijing, Atmos. Chem. Phys., 20, 9351-9369, https://doi.org/10.5194/acp-20-9351-2020, 2020.

Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crielley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during wintertime in central Beijing, Atmos. Chem. Phys., 20, 14847-14871, https://doi.org/10.5194/acp-20-14847-2020, 2020.

Song, C., Liu, B., Dai, Q., Li, H., and Mao, H.: Temperature dependence and source apportionment of volatile organic compounds (VOCs) at an urban site on the north China plain, Atmos. Environ., 207, 167-181, https://doi.org/10.1016/j.atmosenv.2019.03.030, 2019.

Song, M., Liu, X., Zhang, Y., Shao, M., Lu, K., Tan, Q., Feng, M., and Qu, Y.: Sources and abatement mechanisms of VOCs in southern China, Atmos. Environ., 201, 28-40, https://doi.org/10.1016/j.atmosenv.2018.12.019, 2019.

Song, M. D., Tan, Q. W., Feng, M., Qu, Y., Liu, X. G., An, J. L., and Zhang, Y. H.: Source Apportionment and Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu, Southwest China, J. Geophys. Res. Atmos., 123, 9741-9763, https://doi.org/10.1029/2018jd028479, 2018.
Sun, C., Lee, B. P., Huang, D., Li, Y. J., Schurman, M. I., Louie, P. K. K., Luk, C., and Chan, C. K.: Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong, Atmos. Chem. Phys., 16, 1713-1728, https://doi.org/10.5194/acp-16-1713-2016, 2016.

Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T., Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations and processes, Atmos. Chem. Phys., 16, 8309-8329, https://doi.org/10.5194/acp-16-8309-2016, 2016a.

Sun, Y., Jiang, Q., Xu, Y., Ma, Y., Zhang, Y., Liu, X., Li, W., Wang, F., Li, J., Wang, P., and Li, Z.: Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer, J. Geophys. Res. Atmos., 121, 2508-2521, https://doi.org/10.1002/2015JD024261, 2016b.

Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Haseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals, Atmos. Chem. Phys., 17, 663-690, https://doi.org/10.5194/acp-17-663-2017, 2017.

Tan, Z., Rohrer, F., Lu, K., Ma, X., Bohn, B., Broch, S., Dong, H., Fuchs, H., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Liu, Y., Novelli, A., Shao, M., Wang, H., Wu, Y., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Wintertime photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign, Atmos. Chem. Phys., 18, 12391-12411, https://doi.org/10.5194/acp-18-12391-2018, 2018.

Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19, 7129-7150, https://doi.org/10.5194/acp-19-7129-2019, 2019.

Tang, L. L., Zhang, Y. J., Sun, Y. L., Yu, H. X., Zhou, H. C., Wang, Z., Qin, W., Chen, P., Zhang, H. L., Chen, Y., and Jiang, R. X.: Components and optical properties of submicron aerosol during the lasting haze period in Nanjing, Chin. Sci. Bull., 59, 1955, https://doi.org/10.1360/972013-1098, 2014.

Tkacik, D. S., Lambe, A. T., Jathar, S., Li, X., Presto, A. A., Zhao, Y., Blake, D., Meinardi, S., Jayne, J. T., Croteau, P. L., and Robinson, A. L.: Secondary Organic Aerosol Formation from in-Use Motor Vehicle Emissions Using a Potential Aerosol Mass Reactor, Environ. Sci. Technol., 48, 11235-11242, https://doi.org/10.1021/es502239v, 2014.

Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge, M.: Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014, Sci China Chem, 58, 1393-1402, https://doi.org/10.1007/s11426-015-5454-2, 2015.

Wang, J., Ge, X., Chen, Y., Shen, Y., Zhang, Q., Sun, Y., Xu, J., Ge, S., Yu, H., and Chen, M.: Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry, Atmos. Chem. Phys., 16, 9109-9127, https://doi.org/10.5194/acp-16-9109-2016, 2016.

Wang, J., Zhang, Q., Chen, M., Collier, S., Zhou, S., Ge, X., Xu, J., Shi, J., Xie, C., Hu, J., Ge, S., Sun, Y., and Coe, H.: First Chemical Characterization of Refractory Black Carbon Aerosols and Associated Coatings over the Tibetan Plateau (4730 m a.s.l), Environ. Sci. Technol., 51, 14072-14082, https://doi.org/10.1021/acs.est.7b03973, 2017a.
Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal formation and daytime budget, Sci. Total Environ., 587-588, 350-359, https://doi.org/10.1016/j.scitotenv.2017.02.159, 2017b.

Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X., Sui, X., Yao, L., and Zhang, Q.: HONO and its potential source particulate nitrite at an urban site in North China during the cold season, Sci. Total Environ., 538, 93-101, https://doi.org/10.1016/j.scitotenv.2015.08.032, 2015.

Wang, M., Shao, M., Chen, W., Yuan, B., Lu, S., Zhang, Q., Zeng, L., and Wang, Q.: A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China, Atmos. Chem. Phys., 14, 5871-5891, https://doi.org/10.5194/acp-14-5871-2014, 2014.

Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q., Zhang, Q., Chang, C.-C., Wang, B., Zeng, L., Hu, M., Yang, Y., and Li, Y.: Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013, Atmos. Chem. Phys., 15, 1489-1502, https://doi.org/10.5194/acp-15-1489-2015, 2015.

Wang, Q., Zhao, J., Du, W., Ana, G. S., Wang, Z., Sun, L., Wang, Y., Zhang, F., Li, Z., Ye, X., and Sun, Y.: Characterization of submicron aerosols at a suburban site in central China, Atmos. Environ., 131, 115-123, https://doi.org/10.1016/j.atmosenv.2016.01.054, 2016.

Wang, Y. C., Huang, R.-J., Ni, H. Y., Chen, Y., Wang, Q. Y., Li, G. H., Tie, X. X., Shen, Z. X., Huang, Y., Liu, S. X., Dong, W. M., Xue, P., Frohlich, R., Canonaco, F., Elser, M., Daellenbach, K. R., Bozzetti, C., El Haddad, I., Prevot, A. S. H., Canagaratna, M. R., Worsnop, D. R., and Cao, J. J.: Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China, Atmos. Environ., 158, 128-137, https://doi.org/10.1016/j.atmosenv.2017.03.026, 2017.

Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H., Percival, C. J., Ouyang, B., Jones, R. L., Cripps, L. R., Kramer, L. J., Bloss, W. J., Vu, T., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO₃ in Beijing, Atmos. Chem. Phys., 21, 2125-2147, https://doi.org/10.5194/acp-21-2125-2021, 2021.

Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., and Pye, H. O. T.: Understanding sources of organic aerosol during CalNex-2010 using the CMAQ-VBS, Atmos. Chem. Phys., 16, 4081-4100, https://doi.org/10.5194/acp-16-4081-2016, 2016.

Wu, R., Li, J., Hao, Y., Li, Y., Zeng, L., and Xie, S.: Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China, Sci. Total Environ., 560-561, 62-72, https://doi.org/10.1016/j.scitotenv.2016.04.030, 2016.

Wu, L., Ling, Z., Liu, H., Shao, M., Lu, S., Wu, L., and Wang, X.: A gridded emission inventory of semi-volatile and intermediate volatility organic compounds in China, Sci. Total Environ., 761, 143295, https://doi.org/10.1016/j.scitotenv.2020.143295, 2020.

Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 14, 12593-12611, https://doi.org/10.5194/acp-14-12593-2014, 2014.
Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prevot, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J., An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937-14957, https://doi.org/10.5194/acp-16-14937-2016, 2016.

Xu, J., Zhang, Q., Shi, J., Ge, X., Xie, C., Wang, J., Kang, S., Zhang, R., and Wang, Y.: Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry, Atmos. Chem. Phys., 18, 427-443, https://doi.org/10.5194/acp-18-427-2018, 2018.

Xu, W., Sun, Y., Chen, C., Du, W., Han, T., Wang, Q., Fu, P., Wang, Z., Zhao, X., Zhou, L., Ji, D., Wang, P., and Worsnop, D. R.: Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study, Atmos. Chem. Phys., 15, 13681-13698, https://doi.org/10.5194/acp-15-13681-2015, 2015.

Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Sun, Y.: Effects of Aqueous-Phase and Photochemical Processing on Secondary Organic Aerosol Formation and Evolution in Beijing, China, Environ. Sci. Technol., 51, 762-770, https://doi.org/10.1021/acs.est.6b04498, 2017.

Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z., Worsnop, D. R., and Coe, H.: Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From High-Resolution Aerosol Mass Spectrometry, J. Geophys. Res. Atmos., 124, 1132-1147, https://doi.org/10.1029/2018JD029245, 2019a.

Xu, Z., Wang, T., Wu, J. Q., Xue, L. K., Chan, J., Zha, Q. Z., Zhou, S. Z., Louie, P. K. K., and Luk, C. W. Y.: Nitrous acid (HONO) in a polluted subtropical atmosphere: Seasonal variability, direct vehicle emissions and heterogeneous production at ground surface, Atmos. Environ., 106, 100-109, https://doi.org/10.1016/j.atmosenv.2015.01.061, 2015.

Yang, X.: Quantitative Study on the New Regeneration Mechanism of Hydroxyl Radicals, Ph.D. thesis, College of Environmental Sciences and Engineering, Peking University, China, 160 pp., 2021.

Yang, X., Li, K., Ma, X., Liu, Y., Wang, H., Hu, R., Li, X., Lou, S., Chen, S., Dong, H., Wang, F., Wang, Y., Zhang, G., Li, S., Yang, S., Yang, Y., Kuang, C., Tan, Z., Chen, X., Qiu, P., Zeng, L., Xie, P., and Zhang, Y.: Observations and modeling of OH and HO2 radicals in Chengdu, China in summer 2019, Sci. Total Environ., 772, 144829, https://doi.org/10.1016/j.scitotenv.2020.144829, 2021.

Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., and Cheng, N.: Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China, J. Environ. Sci., 79, 297-310, https://doi.org/10.1016/j.jes.2018.12.002, 2019.

Yu, K., Zhu, Q., Du, K., and Huang, X. F.: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China, Atmos. Chem. Phys., 19, 5235-5249, https://doi.org/10.5194/acp-19-5235-2019, 2019.

Zhang, F., Shang, X., Chen, H., Xie, G., Fu, Y., Wu, D., Sun, W., Liu, P., Zhang, C., Mu, Y., Zeng, L., Wan, M., Wang, Y., Xiao, H., Wang, G., and Chen, J.: Significant impact of coal combustion on VOCs emissions in winter in a North China rural site, Sci. Total Environ., 720, 137617, https://doi.org/10.1016/j.scitotenv.2020.137617, 2020.
Zhang, J., Wang, Y., Huang, X., Liu, Z., Ji, D., and Sun, Y.: Characterization of Organic Aerosols in Beijing Using an Aerodyne High-Resolution Aerosol Mass Spectrometer, Adv. Atmos. Sci., 32, 877-888, https://doi.org/10.1007/s00376-014-4153-9, 2015.

Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903, https://doi.org/10.5194/acp-14-2887-2014, 2014.

Zhang, J. K., Ji, D. S., Liu, Z. R., Hu, B., Wang, L. L., Huang, X. J., and Wang, Y. S.: New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing, Atmos. Chem. Phys. Discuss., 15, 18537-18576, https://doi.org/10.5194/acpd-15-18537-2015, 2015.

Zhang, J. K., Cheng, M. T., Ji, D. S., Liu, Z. R., Hu, B., Sun, Y., and Wang, Y. S.: Characterization of submicron particles during biomass burning and coal combustion periods in Beijing, China, Sci. Total Environ., 562, 812-821, https://doi.org/10.1016/j.scitotenv.2016.04.015, 2016a.

Zhang, J. K., Wang, L. L., Wang, Y. H., and Wang, Y. S.: Submicron aerosols during the Beijing Asia–Pacific Economic Cooperation conference in 2014, Atmos. Environ., 124, 224-231, https://doi.org/10.1016/j.atmosenv.2015.06.049, 2016b.

Zhang, X., Zhang, Y., Sun, J., Yu, Y., Canonaco, F., Prevot, A. S. H., and Li, G.: Chemical characterization of submicron aerosol particles during wintertime in a northwest city of China using an Aerodyne aerosol mass spectrometry, Environ. Pollut., 222, 567-582, https://doi.org/10.1016/j.envpol.2016.11.012, 2017.

Zhang, X., Xu, J., Kang, S., Liu, Y., and Zhang, Q.: Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry, Atmos. Chem. Phys., 18, 4617-4638, https://doi.org/10.5194/acp-18-4617-2018, 2018.

Zhang, X., Xu, J., Kang, S., Zhang, Q., and Sun, J.: Chemical characterization and sources of submicron aerosols in the northeastern Qinghai–Tibet Plateau: insights from high-resolution mass spectrometry, Atmos. Chem. Phys., 19, 7897-7911, https://doi.org/10.5194/acp-19-7897-2019, 2019.

Zhang, Y., Tang, L., Yu, H., Wang, Z., Sun, Y., Qin, W., Chen, W., Chen, C., Ding, A., Wu, J., Ge, S., Chen, C., and Zhou, H.: Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime, Atmos. Environ., 123, 339-349, https://doi.org/10.1016/j.atmosenv.2015.08.017, 2015.

Zhang, Y., Sun, Y., Du, W., Wang, Q., Chen, C., Han, T., Lin, J., Zhao, J., Xu, W., Gao, J., Li, J., Fu, P., Wang, Z., and Han, Y.: Response of aerosol composition to different emission scenarios in Beijing, China, Sci. Total Environ., 571, 902-908, https://doi.org/10.1016/j.scitotenv.2016.07.073, 2016.

Zhang, Y., Tang, L., Croteau, P. L., Favez, O., Sun, Y., Canagaratna, M. R., Wang, Z., Couvidat, F., Albinet, A., Zhang, H., Sciare, J., Prevot, A. S. H., Jayne, J. T., and Worsnop, D. R.: Field characterization of the PM$_{2.5}$ Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China, Atmos. Chem. Phys., 17, 14501-14517, https://doi.org/10.5194/acp-17-14501-2017, 2017.

Zhang, Y., Du, W., Wang, Y., Wang, Q., Wang, H., Zheng, H., Zhang, F., Shi, H., Bian, Y., Han, Y., Fu, P., Canonaco, F., Prévôt, A. S. H., Zhu, T., Wang, P., Li, Z., and Sun, Y.: Aerosol chemistry and particle growth events at an urban downwind site in North China Plain, Atmos. Chem. Phys., 18, 14637-14651, https://doi.org/10.5194/acp-18-14637-2018, 2018.
Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Zhang, X. Z., Zhou, H. C., Chen, Y., and Jiang, R. X.: Aging of atmospheric organic aerosol during summertime in Nanjing: insights from on-line measurement, Sci. Sin. Chim., 44, 1654, https://doi.org/10.1360/n032013-00049, 2014.

Zhang, Y. J., Tang, L. L., Wang, Z., Yu, H. X., Sun, Y. L., Liu, D., Qin, W., Canonaco, F., Prevot, A. S. H., Zhang, H. L., and Zhou, H. C.: Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China, Atmos. Chem. Phys., 15, 1331-1349, https://doi.org/10.5194/acp-15-1331-2015, 2015.

Zhang, Y. W., Zhang, X. Y., Zhang, Y. M., Shen, X. J., Sun, J. Y., Ma, Q. L., Yu, X. M., Zhu, J. L., and Che, H. C.: Significant concentration changes of chemical components of PM$_{1}$ in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution, Sci. Total Environ., 538, 7-15, https://doi.org/10.1016/j.scitotenv.2015.06.104, 2015.

Zhao, J., Du, W., Zhang, Y., Wang, Q., Chen, C., Xu, W., Han, T., Wang, Y., Fu, P., Wang, Z., Li, Z., and Sun, Y.: Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260 m in Beijing, Atmos. Chem. Phys., 17, 3215-3232, https://doi.org/10.5194/acp-17-3215-2017, 2017.

Zhao, J., Qiu, Y. M., Zhou, W., Xu, W. Q., Wang, J. F., Zhang, Y. J., Li, L. J., Xie, C. H., Wang, Q. Q., Du, W., Worsnop, D. R., Canagaratna, M. R., Zhou, L. B., Ge, X. L., Fu, P. Q., Li, J., Wang, Z. F., Donahue, N. M., and Sun, Y. L.: Organic Aerosol Processing During Winter Severe Haze Episodes in Beijing, J. Geophys. Res. Atmos., 124, 10248-10263, https://doi.org/10.1029/2019JD030832, 2019.

Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from On-Road Diesel Vehicles: Chemical Composition, Emission Factors, and Estimated Secondary Organic Aerosol Production, Environ. Sci. Technol., 49, 4554-4563, https://doi.org/10.1021/acs.est.5b02841, 2015.

Zhao, Y., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson, A. L.: Intermediate Volatility Organic Compound Emissions from On-Road Gasoline Vehicles and Small Off-Road Gasoline Engines, Environ. Sci. Technol., 50, 4554-4563, https://doi.org/10.1021/acs.est.5b06247, 2016.

Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., and Guo, S.: Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China, Atmos. Chem. Phys., 17, 6853-6864, https://doi.org/10.5194/acp-17-6853-2017, 2017.

Zheng, J., Shi, X., Ma, Y., Ren, X., Jabbour, H., Diao, Y., Wang, W., Ge, Y., Zhang, Y., and Zhu, W.: Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China, Atmos. Chem. Phys., 20, 5457-5475, https://doi.org/10.5194/acp-20-5457-2020, 2020.

Zhou, W., Sun, Y., Xu, W., Zhao, X., Wang, Q., Tang, G., Zhou, L., Chen, C., Du, W., Zhao, J., Xie, C., Fu, P., and Wang, Z.: Vertical Characterization of Aerosol Particle Composition in Beijing, China: Insights From 3-Month Measurements With Two Aerosol Mass Spectrometers, J. Geophys. Res. Atmos., 123, 13016-13029, https://doi.org/10.1029/2018JD029337, 2018.

Zhu, Q., He, L.-Y., Huang, X.-F., Cao, L.-M., Gong, Z.-H., Wang, C., Zhuang, X., and Hu, M.: Atmospheric aerosol compositions and sources at two national background sites in northern and southern China, Atmos. Chem. Phys., 16, 10283-10297, https://doi.org/10.5194/acp-16-10283-2016, 2016.

Zhu, Q., Huang, X.-F., Cao, L.-M., Wei, L.-T., Zhang, B., He, L.-Y., Elser, M., Canonaco, F., Slowik, J. G., Bozzetti, C., El-Haddad, I., and Prevot, A. S. H.: Improved source apportionment of organic aerosols in complex urban air pollution using the multilinear engine (ME-2), Atmos. Meas. Tech., 11, 1049-1060, https://doi.org/10.5194/amt-11-1049-2018, 2018.
Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NO\textsubscript{x} and O\textsubscript{3} at a suburban site in Guangzhou, China, Atmos. Chem. Phys., 15, 6625-6636, https://doi.org/10.5194/acp-15-6625-2015, 2015.