Initiation of deep convection through deepening of a well-mixed boundary layer

Jun-Ichi Yano

CNRM UMR3589, CNRS and Météo-France, Toulouse, France

Correspondence
J.-I. Yano, CNRM, Météo-France, 31057 Toulouse Cedex, France.
Email: jiy.gfder@gmail.com

Abstract
The present study examines mechanisms by which deep moist convection may be initiated through deepening of a well-mixed convective boundary layer under large-scale low-level convergence. The process is examined using a standard formulation for the well-mixed boundary layer, in which the depth increases exponentially with time under a constant convergence with height. Consideration is also given to a case with a more realistic mean vertical velocity profile which has a maximum in the middle troposphere and attenuates to zero at the tropopause. In the latter case, the unstable well-mixed layer under convergence grows to a troposphere-deep mixed layer. Importantly, under these scenarios, the so-called convective inhibition (CIN) does not inhibit deepening of a well-mixed convective boundary layer, nor does deep moist convection need to overcome CIN to initiate.

KEYWORDS
convective inhibition, convective initiation, mixed-layer top entrainment, well-mixed convective boundary layer

1 | INTRODUCTION

It is phenomenologically well established that low-level convergence tends to induce deep moist convection (e.g., Byers and Braham, 1949; Weaver, 1979; Wilson and Schreiber, 1986). A very simple explanation for this tendency is to interpret it as a mechanism to gather moisture to the lower atmosphere, which is necessary to initiate convection. The idea has naturally led to the use of moisture convergence as a condition for closing a convection parametrization, as originally proposed by Kuo (1965, 1974). This idea has been popular during earlier developments of convection parametrization (e.g., Anthes, 1977; Bougeault, 1985; Tiedtke, 1989). However, the idea has been gradually discarded based on a criticism that moisture convergence is better considered to be feedback of large-scale circulations to convection in response to growing convection, rather than as a prerequisite for initiating convection (cf., Emanuel et al., 1994). However, the attempt to statistically predict thunderstorms by moisture convergence has hardly died out even today (e.g., van Zomeren and van Delden, 2007).

Processes leading to the initiation of deep moist convection are somehow yet not well understood. Our lack of understanding further leads to technical difficulties in properly timing initiation of deep convection in numerical modelling at large scales both for weather forecasts and global change projections. In the context of convection...
parametrization, this is a ‘trigger’ problem: a certain trigger condition must be satisfied for turning on a convection parametrization (cf. review at Yano et al., 2013).

A standard approach for addressing convective initiation in terms of parcel lifting (e.g., Roff and Yano, 2002; Manzato and Morgan, 2003) may be summarized as follows. A small quantity of air mass is lifted from the boundary layer (or surface) in isolation, maintaining its pressure as the same as the environment. Under a standard sounding, a lower layer of the atmosphere is stably stratified, thus a parcel lifted from the surface first loses its buoyancy with ascent until it reaches a lifting condensation level (LCL). At that level, the parcel is saturated. Beyond that level, latent heating by condensation of water vapour curbs the decrease of buoyancy with height. If the parcel is moist enough, the increase of buoyancy by latent heat overcompensates the decrease of buoyancy by adiabatic cooling, and finally, the parcel becomes positively buoyant, and convection may be initiated as a result of a buoyancy-induced instability. The level at which the parcel buoyancy turns from negative to positive is called the level of free convection (LFC) for this reason.

Under this parcel-based description of convective initiation, an air parcel must somehow be lifted from a surface layer to LFC for moist convection to be initiated. A certain external force is required to lift a parcel to this level, because this layer is negatively buoyant, and thus a parcel cannot be lifted spontaneously. A vertical integral of the buoyancy over this layer is called the convective inhibition (CIN), thus convection must be initiated by overcoming this barrier of CIN, according to the parcel-based description. Variations to this problem with alternative approaches are found in reviews by, for example, Nugent and Smith (2014). Nevertheless, all the existing approaches take a similar line of argument in which a barrier of CIN must somehow be overcome to initiate convection. Furthermore, this very intuitive parcel-based argument provides a basis for some convective initiation conditions in parametrizations (e.g., Mapes, 2000; Bretherton et al., 2004).

The present article will present a different perspective based on the dynamics of a convectively well-mixed boundary layer. More precisely, the article presents initiation of deep moist convection as a natural consequence of continuous deepening of a well-mixed boundary layer under a presence of large-scale convergence. From a point of view of the dynamics of the well-mixed boundary layer, the inversion at the top, as a major source of CIN, does not hinder a growth of the well-mixed boundary layer, but rather it is a consequence of a growth of the well-mixed boundary layer; the convective boundary-layer air is continuously penetrating into a stable layer so that an inversion is created. Thus, if nothing else happens, the well-mixed layer would simply keep growing even in the presence of CIN. Intuitively, a deeper well-mixed layer provides a more favourable condition for initiation of deep moist convection. Although the present study does not address the question of the initiation explicitly, it naturally follows that initiation of moist deep convection should not be hindered by the presence of CIN either, because the well-mixed layer is already growing at its expense.

The originality of the present article is to focus on the dynamics of the well-mixed boundary layer in the presence of large-scale convergence. Studies of the well-mixed boundary layer are usually focused on an environment with large-scale divergence, because it is an ideal environment for study in isolation. Once large-scale convergence kicks in, the well-mixed boundary layer is destroyed and replaced by deep moist convection, which would be a less interesting situation from a point of view of boundary-layer meteorology. In turn, the deep-convection studies are focused on a state with low-level convergence, but with fewer considerations on the processes within a pre-existing well-mixed boundary layer. The present article points out an important link of the well-mixed boundary-layer dynamics to the deep moist-convective dynamics.

The present article emphasizes a simple (even trivial) fact that, under the presence of large-scale convergence, the well-mixed boundary layer simply continues to deepen with time, so long as standard mixed-layer assumptions remain valid. Especially when a standard assumption of constant convergence with height is taken, it can be shown that the well-mixed layer height deepens with time exponentially, a type of instability. I propose it as an important precondition for transformation of the well-mixed boundary layer into deep moist convection.

Considering that there is less familiarity in the deep-convection community with the problems of the well-mixed boundary layer, the article proceeds rather pedagogically; the tendency of the well-mixed boundary layer to keep deepening with low-level convergence is demonstrated in two different ways. In the next section, a simple geometrical consideration of heat (entropy) budget is employed, thus the analysis can be understood without prior knowledge of the well-mixed boundary-layer dynamics. In Section 3, the same analysis is repeated with a standard formulation for the well-mixed boundary layer. In the latter case, a solution of exponentially growing mixed-layer depth naturally arises under a condition of low-level convergence. The basic claim of the present article is better supported by presenting these two different simple boundary-layer models, with substantially different assumptions in detail, which lead essentially to the same conclusion. At the same time, the overall equivalence of these two models is established by deriving the latter from
the former in the Appendix A. The article is concluded with further discussion.

Throughout the article, a horizontally homogeneous atmosphere is considered for the sake of a lucid and simple demonstration. Thus, all the variables depend only on the height, \(z \). To actually address the question of transformation of the well-mixed boundary layer into cumulus convection, the horizontal dependence of a growing perturbation must be considered explicitly by removing this assumption. However, as it turns out, deriving a solution becomes much more involved. For this reason, this generalization is left for a future study.

Furthermore, a dry atmosphere is assumed for the sake of simplicity throughout the article. A basic extension of the analysis to the moist case is straightforward, and essentially a matter of replacing the potential temperature by the equivalent potential temperature. Otherwise the identical formulation is still applicable, which leads to identical conclusions. However, for more careful analysis, the actual formulation becomes much more involved; Section 4.2 gives further remarks.

2 | A SIMPLE GEOMETRICAL ANALYSIS

As an initial condition, we consider an atmosphere with a constant lapse rate, \(\frac{d\theta}{dz} \), given in terms of the potential temperature, \(\theta \). Thus

\[
\theta(z, t = 0) = \theta_0 + \left(\frac{d\theta}{dz} \right) z. \tag{1}
\]

We assume a constant heat flux, \(H \) (with units K \(\cdot \) m \(\cdot \) s \(^{-1} \)) from the surface at \(z = 0 \). As a result, a well-mixed boundary layer is formed and grows from the surface. As is phenomenologically known, we assume that the potential temperature becomes a constant value, \(\theta_m \), with height, \(z \), over this well-mixed layer extending to a height, \(z_m \). Above the well-mixed layer \((z > z_m) \), a free atmosphere is considered (designated by a subscript \(+\) throughout), which is assumed to linearly evolve with time, \(t \), under a constant forcing, \(F_+ \):

\[
\theta_+(z, t) = \theta(z, t = 0) + F_+ t, \tag{2}
\]

and we may assume

\[
F_+ = - \left[\bar{w} \left(\frac{d\theta}{dz} \right) + Q_R \right]. \tag{3}
\]

Here, \(\bar{w} \) is a prescribed large-scale vertical velocity, which is assumed to be constant in this section, and \(Q_R \) is a constant radiative cooling rate.

The well-mixed layer deepens in response to the surface flux, \(H \). The supplied heat flux, \(H_t \), over time \(t \), must be equal to an area swept on a \((\theta, z)\)-plane from the initial condition to a state at time \(t \) as indicated by shading in Figure 1a, thus

\[
H_t = \frac{\Delta_0 \theta + \Delta_m \theta}{2} z_m, \tag{4}
\]

where \(\Delta_0 \theta = \theta_m(t) - \theta_m(t = 0) \), and \(\Delta_m \theta = \theta(z_m, t) - \theta_+(z_m, t = 0) = F_+ t \). For now, we neglect an inversion and set \(\theta_m = \theta_+(z_m, t) \). Note that when \(F_+ < 0 \), Equation (4) reduces to:

\[
H_t = \frac{z_m \Delta_0 \theta}{2} - \frac{z_m (F_+ t)}{2}.
\]

Thus, the gain of entropy (red shading to the left) for the growth of the mixed layer is equal to the sum of the surface flux supply, \(H_t \), and an excess entropy (blue shading to the right) provided in the free atmosphere.
by evolution of the free atmosphere, as shown in Figure 1b.

By referring to Figure 1, we also find that the well-mixed layer depth, z_m, and the change, $\Delta_0 \theta$, of the surface potential temperature over time t are related by

$$\Delta_0 \theta - F_+ t = \left(\frac{d \tilde{\theta}}{dz} \right) z_m,$$

or

$$\Delta_0 \theta = \left(\frac{d \tilde{\theta}}{dz} \right) z_m + F_+ t. \quad (5)$$

Substitution of Equation (5) into Equation (4) leads to:

$$H t = \frac{1}{2} \left(\frac{d \tilde{\theta}}{dz} \right) z_m^2 + (F_+ t) z_m. \quad (6)$$

By solving the above for z_m, we obtain

$$z_m = \left(\frac{d \tilde{\theta}}{dz} \right)^{-1} \left\{ -F_+ t + \left[(F_+ t)^2 + 2 \left(\frac{d \tilde{\theta}}{dz} \right) H t \right] \right\}^{1/2} \quad (7)$$

by choosing a solution with positive z_m. When the environmental air is descending (i.e., $\tilde{w} < 0$), the forcing, F_+, is positive, and we find that the mixed-layer depth asymptotically evolves as $z_m \to H/F_+$. On the other hand, under large-scale ascent, the forcing, F_+, may become negative, and the system never reaches equilibrium, but the mixed layer keeps deepening with time. This is the situation expected under large-scale low-level convergence.

The solution (7) can be presented in a more compact manner after non-dimensionalization by setting $z_m = z_m^* \tilde{z}_m$ and $t = \tilde{t} t$. Here, the non-dimensionalization scales for the mixed-layer depth and the time, respectively, are

$$z_m^* = \frac{H}{|F_+|} \sim 10^3 \text{ m}$$

and

$$t^* = z_m^* \left(\frac{d \tilde{\theta}}{dz} \right) \frac{1}{|F_+|} = \left(\frac{d \tilde{\theta}}{dz} \right) \frac{H}{F_+^2} \sim 10^5 \text{ s} \sim 1 \text{ day}.$$

These typical scales are obtained by setting

$$|F_+| \sim 10^{-5} \text{ K} \cdot \text{s}^{-1} \sim 1 \text{ K} \cdot \text{day}^{-1},$$

$$H \sim 10^{-2} \text{ K} \cdot \text{m} \cdot \text{s}^{-1}, \quad \frac{d \tilde{\theta}}{dz} \sim 10^{-3} \text{ K} \cdot \text{m}^{-1}.$$

The actual typical heat flux is $\rho C_p H \sim 10^2 \text{ W} \cdot \text{m}^{-2}$, and large-scale vertical velocity is $|\tilde{w}| \sim 10^{-2} \text{ m} \cdot \text{s}^{-1}$. After non-dimensionalization, the solution (7) reduces to:

$$\tilde{z}_m = -\text{sgn}(F_+) \tilde{t} + (\tilde{t}^2 + 2 \tilde{t})^{1/2}. \quad (8)$$

The non-dimensional solution (8) is plotted in Figure 2: a well-mixed boundary layer can grow to a depth of 2 km over half a day under a modest large-scale low-level convergence. The evolved mixed layer is deep enough to reach the level of free convection (LFC) in common situations and, under conventional wisdom, deep moist convection will be spontaneously initiated from there.

A finite inversion jump, $\Delta_i \theta = \theta_+(z_m) - \theta_m$ ($\neq 0$), can be included in the above analysis by simply replacing $F_+ t$ by $F_+ t - \Delta_i \theta$. Furthermore, when a finite downward entrainment flux at the top of the mixed layer (given by rH with r a constant, taken downward positive) is further considered, we just have to replace H by $(1 + r)H$. It transpires that the basic conclusion of Equation (8) does not change by these generalizations.

3 | ANALYSIS BASED ON A STANDARD MIXED-LAYER FORMULATION

In this section, an analysis equivalent to the last section is performed based on a standard formulation for the well-mixed boundary layer (cf. Stevens, 2006), with slightly different mixed-layer-top assumptions. As seen immediately below, in this case, an equation for the depth, z_m, of the well-mixed layer can be considered in a stand-alone manner, thus no other variable needs to be considered. This formulation can also be directly extended to the moist atmosphere without modifications, including a possibility of clouds at the top of a mixed layer. Evaluating the associated evolution of the potential temperature (and other thermodynamic variables) is straightforward, but without providing any further insight to the given problem. Section 4.2 gives further discussion.

We assume an inversion, $\Delta_i \theta = \theta_+(z_m) - \theta_m$, of the potential temperature at the top of the well-mixed
boundary layer. The mixed layer deepens relative to a back-
ground vertical motion, \bar{w}, at a rate that excess entropy is
transported downwards by vertical eddy flux, $-w'\theta'|_{z=z_m}$.
Thus,

$$\left(\frac{dz_m}{dt} - \bar{w} \right) \Delta_i \theta = -w'\theta'|_{z=z_m}. \quad (9)$$

Here, z_m refers to a level immediately below the
mixed-layer height, and a possible contribution of radia-
tion is neglected. Alternatively, this contribution can be
included as a part of vertical eddy flux. Furthermore, the
right-hand side of Equation (9) may be expressed by

$$-w'\theta'|_{z=z_m} = w_e \Delta_i \theta \quad (10)$$
in terms of the entrainment rate, w_e. We re-write the ver-
tical eddy flux in this manner so that the inversion strength,
$\Delta_i \theta$ no longer appears in the equation explicitly:

$$\frac{dz_m}{dt} = \bar{w} + w_e. \quad (11)$$

In the following, the entrainment rate, w_e, is consid-
ered to be a constant for the ease of analysis. It is further
shown in Appendix A that Equation (9) can be derived
from the geometrical formulation of the last section. As
also suggested therein, Equation (11) is valid also in the
limit of $\Delta_i \theta \to 0$.

Furthermore, as in many studies of the well-mixed
layer (e.g., Schubert et al., 1979), a background divergence,
D, is assumed to be constant for now, and

$$\bar{w} = -Dz. \quad (12)$$

By substituting Equation (12), Equation (11) reduces to

$$\left(\frac{dz_m}{dt} + D \right) z_m = w_e. \quad (13)$$

An equilibrium solution is identified from
Equation (13) as

$$\bar{z}_m = \frac{w_e}{D}. \quad (14)$$

Note that, when the background large scale is con-
vergent, $D < 0$, then the equilibrium depth, \bar{z}_m, becomes
negative, thus unphysical. In other words, a well-mixed
layer may reach an equilibrium state only under a diver-
gent large-scale background state. Nevertheless, even an
unphysical equilibrium solution provides a good refer-
ence point for performing a perturbation analysis. In the
present case, the issue is inconsequential, because the
perturbation analysis can be automatically extended glo-
ally, because Equation (13) is linear.

The perturbation problem around the equilibrium
solution is given by

$$\left(\frac{dz_m}{dt} + D \right) z_m' = 0$$

with a prime designating a perturbation. The solution is
immediately obtained as

$$z' = z_0' e^{-D t}, \quad (15)$$

with z_0' an initial perturbation. Thus, when the system
is divergent, associated with a mean descent, and $D > 0$,
the equilibrium state is stable. On the other hand, when
the system is convergent, associated with a mean ascent,
and $D < 0$, the unphysical equilibrium state becomes
unstable: a large-scale low-level convergence makes the
well-mixed convective boundary layer grow exponentially
without limit. Clearly, this is unrealistic.

Here, the result is presented in terms of a perturbation
analysis. However, recall that the original full system itself
(13) is linear, thus $z_m = \bar{z}_m + z_0'$ constitutes a full solution
of Equation (13). In other words, we can set an initial per-
turbation, z_0', large enough so that we can make $z_m(t = 0) = \bar{z}_m + z_0'$ positive, although \bar{z}_m is negative under con-
vergence. Thus, the exponential growth of the well-mixed
layer depth also becomes physically meaningful in this
respect.

However, another unphysical aspect of this solution is
that the mixed-layer depth keeps growing exponentially
without reaching any equilibrium. We should realize that
this behaviour is due to a rather artificial assumption of
a constant divergence, D, with height. Thus, when $D < 0$,
the large-scale vertical velocity, given by $\bar{w} = -Dz$, simply
increases linearly with height without limit. Clearly, this is
unrealistic.

To amend this problem, we modify the large-scale ver-
tical velocity to

$$\bar{w}(z) = -Dz \left(1 - \frac{z}{h} \right). \quad (16)$$

thus \bar{w} no longer grows linearly with height, but it turns
back to zero at a height $z = h$. This height may be taken
at the level of the tropopause, thus the existence of the top
height, h, does not affect an initial exponential growth of
z_m, but ultimately influences it, when z_m becomes deep
-enough. Here, D is a constant as before, corresponding to
the divergence at $z = 0$.

As a result, Equation (11) for the well-mixed layer depth turns into:

$$\frac{dz_m}{dt} = -Dz_m \left(1 - \frac{z_m}{h}\right) + w_e. \quad (17)$$

Equilibrium solutions are, in this case, given by

$$z_m = \frac{h}{2} \left[1 \pm \left(1 - \frac{4w_e}{hD}\right)^{1/2} \right]. \quad (18)$$

These two equilibria are approximately given by $z_m \approx w_e/D$ and h, when the top zero-velocity level is high enough and $w_e/hD \ll 1$. Thus we obtain two equilibrium mixed-layer depths: the first corresponds to a usual boundary-layer depth, and the second extends to a full troposphere.

By setting the lower and the upper equilibrium solutions, respectively, to be z_1 and z_2 (thus $z_1 < z_2$), Equation (17) is rewritten as

$$\frac{dz_m}{dt} = \frac{D}{h}(z_m - z_1)(z_m - z_2). \quad (19)$$

This form is much easier to solve analytically. The solution is more conveniently presented in two equivalent but different forms, depending on the sign of D, so that exponential contributions decay with time in both cases: when a background state is diverging,

$$z_m = z_1 + \varepsilon z_2 e^{-D\varepsilon t} \left(1 + \varepsilon e^{-D\varepsilon t}\right), \quad (20)$$

and when a background state is converging,

$$z_m = \frac{z_2 + (z_1/\varepsilon)e^{D\varepsilon t}}{1 + e^{D\varepsilon t}/\varepsilon}, \quad (21)$$

with

$$\varepsilon = \frac{z_0 - z_1}{z_2 - z_0}. \quad (22)$$

and z_0 is an initial depth. Thus, the depth, z_m, asymptotically approaches the lower and the upper equilibria, z_1 and z_2, respectively, when $D > 0$ and $D < 0$.

So long as the stability of the standard mixed-layer with a depth $z_m = z_1 \approx w_e/D$ is concerned, we recover the same conclusion as previously: it is stable and unstable under divergence and convergence, respectively. However, by introducing a more realistic large-scale vertical velocity profile, we can infer the subsequent evolution of an unstable boundary layer; it no longer keeps growing, but it asymptotically approaches a state of a troposphere-deep well-mixed layer. In reality, the well-mixed layer would be transformed into deep moist convection before getting to that stage. However, to describe this transformation process, the horizontal dependence of the perturbation growth must be explicitly taken into account by removing the assumption of horizontal homogeneity.

4 | DISCUSSION

4.1 Summary and implications

The present study suggests that deep moist convection is initiated through the deepening of a well-mixed convective boundary layer under a large-scale low-level convergence. This tendency of the well-mixed boundary layer is demonstrated by two similar, simple theoretical models, but which are substantially different in detail. The first, considered in Section 2, is based on a simple geometrical argument of the heat budget of the well-mixed boundary layer, assuming a constant large-scale vertical velocity with height. In this case, the well-mixed layer depth increases in quasi-linear manner under a large-scale convergence over a half day period up to a depth of a few kilometres. The second, considered in Section 3, is based on a standard formulation for the depth of a well-mixed layer. When the large-scale divergence (or convergence) is assumed to be constant with height, as is commonly assumed in theoretical analyses, the well-mixed layer simply grows exponentially with time under convergence. A more realistic solution is obtained by assuming a profile of the large-scale vertical velocity, which reaches the maximum at the middle troposphere, and vanishes at the top of the troposphere. In this case, the unstable standard well-mixed layer grows into a troposphere-deep mixed layer. This final state could even be very crudely interpreted as a state of deep moist convection.

Various alternative interpretations of deep-convection initiation under convergence are already available in literature. A historically important one is to interpret it in terms of moisture budget. Superficially, the present interpretation may somehow appear to be very akin to this historical interpretation, but is actually fundamentally different. This historical interpretation is based on an analysis of the budget of the column-integrated moisture in the atmosphere. Convergence is simply a mechanism of providing more moisture to an atmospheric column. There is no role of the boundary layer in this interpretation. In contrast, the moisture does not play any active role in the present analysis. The argument is solely based on a tendency of the boundary layer to deepen with time under a converging flow. The top of boundary layer may ultimately reach a LCL, and further to the LFC, thus leading to conditional instability. However, these aspects are not considered explicitly, but only implied as what follows.
Another common approach is to interpret the convective initiation process in term of a lifting parcel from the boundary layer. Under this picture, the main obstacle is convective inhibition (CIN), which is re-interpreted as an inversion strength, $\Delta \theta$, under the well-mixed layer formulation adopted herein. Importantly, the inversion does not hinder the deepening of the well-mixed layer at all under the standard description presented in Section 3. Phenomenologically, the well-mixed layer deepens by a downward vertical eddy flux, $-w^' \theta^'|_{z=zm}$, at the top, which is known to be approximately proportional to the surface flux. Although a stronger inversion may reduce the entrainment rate proportionally (cf. Equation 12), the inversion itself does not hinder the deepening of the well-mixed layer. It is rather other way round: the downward flux at the mixed-layer top generates the inversion. A stronger downward flux creates a stronger inversion, as a simple extension of a geometrical argument in Section 2 can show. In this manner, CIN does not play a role of convection inhibition in the context of a well-mixed convective boundary layer. If deep moist convection can be interpreted as a transformation of a continuously deepening well-mixed convective boundary layer, this transformation process should not be hindered by a presence of CIN either, because the well-mixed layer is already growing at its expense.

Here, growth of the convective well-mixed layer is not a sole mechanism for generation of an inversion and CIN. A notable example is the so-called elevated mixed layer, which is a consequence of advection of warm moist air originating from the Gulf of Mexico to higher latitudes (e.g., Lanicci and Warner, 1997). However, the main point remains the same: regardless of being self-generated or externally generated, the convective well-mixed layer continues to grow by penetrating its air into an inversion layer, thus the existence of CIN does not block its growth.

Under large-scale descent, a standard environment considered for studies of a well-mixed boundary layer, it reaches an equilibrium state due to the presence of a large-scale descent which tends to suppress the growth driven by entrainment. However, once the large-scale movement turns from descent to ascent, there is no longer a mechanism to restrict the well-mixed boundary layer to an equilibrium. Thus, it keeps growing, leading to deep convection. Based on this very simple picture, the deep-convection community should not be concerned with the existence of the so-called CIN. Unfortunately, this is not the case. In fact, for many of the parametrizations in current operational models, the initiation of convection is controlled by CIN (e.g., Zhao et al., 2009, 2016; Walters et al., 2019)

4.2 Limits of the present study

The present study is based on very simple theoretical analyses, and it hardly presents a full picture of the problem. At the most technical level, analyses have been performed under rather simple treatments at the top of the well-mixed boundary layer, assuming a constant heat flux and a constant entrainment rate in Sections 2 and 3, respectively. Validity of these simplifications can be questioned. However, a large-eddy simulation (Dimitrelos et al., 2020) indeed demonstrates that such an explosive growth of a well-mixed layer actually is realized. The case here assumes a large-scale divergence of 1.5×10^{-6} s$^{-1}$ constant with height under Arctic conditions. An exponential tendency of the growth of the mixed-layer depth from...
100 to 1,500 m over a period of $t = 6–30$ hr is convincingly shown in Figure 3 (reformatting their figure 3(h)) by making the vertical axis logarithmic. Note that in this simulation, by assuming an Arctic situation, the surface-flux values are by an order of magnitude smaller than those typical over the tropical oceans. Thus, if a similar simulation were performed in a tropical environment, the growth of the well-mixed layer would also be about ten times faster.

The most obvious limit in the physical formulation is the use of dry dynamics, and the contribution of moisture remains implicit. However, extension to the moist case is conceptually rather straightforward. Recall that the basic premise of the well-mixed layer is simply to assume that the main role of the convective dynamics is to mix the conserved variables of a system homogeneously in the vertical. Such a variable is the potential temperature in a dry well-mixed layer. When moisture is added to a system, the main modification is to replace it by the equivalent potential temperature, because the latter is conserved along with the total water when the precipitation can be neglected. Otherwise, the procedure of the analysis overall remains the same, although it becomes more involved in the detail; full discussions appear in Lilly (1968); Carson (1973); Deardorff (1976); Schubert et al. (1979). For the geometrical formulation in Section 2, the development of the well-mixed layer of moisture must be considered separately under this generalization, because of decreasing moisture with height rather than increasing. Appendix B shows that an identical result (Equation 8) as for the potential temperature is obtained in the end. So long as an equation for the evolution of the well-mixed layer height, z_m, is concerned, its form remains identical to Equation (13), as already emphasized in Section 3. The only necessary modification is to replace the potential temperature, θ, in Equations (11) and (12) by the virtual potential temperature, θ_v. Thus, as far as our very crude description of the evolution of well-mixed layer height is concerned, the given formulations can be extended to the moist case without any fundamental modifications.

From a more formal point of view, all those extra factors can be taken into account by including the possible time dependencies of various parameters (H, F, D, w_v) in both formulations. As it turns out, analytical solutions are still available in both cases even under those circumstances, and it can also be easily shown that the main conclusions do not change so long as these parameters evolve smoothly with time.

The most crucial limit of the present study is in assuming a horizontal homogeneity of the well-mixed layer. As long as we consider only a proper convective well-mixed boundary layer, this assumption would not be serious. However, this very assumption hinders us from describing its transformation into deep moist convection, because the latter is characterized by localized updraughts surrounded by environmental descent. Instead, a well-mixed layer deepens all the way through the troposphere, as a solution from the present analysis shows. Mathematically, it is straightforward to add horizontal dependence to a standard mixed-layer formulation. As a result, the formulation must also be modified in such manner that resulting local circulations arising from horizontal inhomogeneity are also taken into account. This turns out not to be a difficulty, either. However, my own preliminary investigation reveals that the resulting analysis is rather involved and lengthy. Thus, it will be reported in a separate article.

Probably, the most serious limit of the present analysis is in its perturbation approach. It would be relatively easy to envisage a fully nonlinear analysis under a certain numerical procedure, but with the latter detail still left to be sorted out. Inclusion of precipitation and the associated microphysics would be another aspect to be incorporated into this nonlinear formulation. Under such an approach, transformation of a convectively well-mixed boundary layer into deep moist convection may be described in full, still assuming a local vertical mixing for homogenization of variables.

4.3 Implications for the convection parametrization problem

The present study may be considered a first step for constructing a convective initiation condition in a more formal and robust manner. A main problem to note, in this respect, is the fact that the majority of current convection parametrizations are constructed without any explicit coupling with the boundary layer. The present study suggests the crucial importance of such a coupling, especially for initiating deep moist convection as a result of large-scale low-level convergence. No doubt many operational forecast centres are already working towards this goal. However, importantly, this issue should not be reduced to a narrow question of identifying, say, a coupling parameter. In this respect, it is worthwhile revisiting the original formulation of mass-flux convection parametrization by Arakawa and Schubert (1974); they introduced a specific well-mixed layer model, similar in design to the present study, for the purpose of coupling convection with the boundary layer. Likewise, any renewed efforts for coupling between deep convection and the boundary layer should also involve modifications in the treatment of both components. It is hoped that the present theoretical investigation suggests a general direction towards this goal.
ACKNOWLEDGEMENTS
An earlier conversation with Anton Beljaars motivated me to pursue this idea. Discussions with Annica Ekman and Rodorigo Caballero are acknowledged. Antonio Dimitrellos has kindly provided Figure 3 for the present manuscript. Thanks are also due to Michael Whitall and Adrian Lock for providing a reference. Thanks are also due to the QJ chief editor, Andrew Ross, for his exceptional patience with this editorial process.

ORCID
Jun-Ichi Yano https://orcid.org/0000-0002-2643-7572

REFERENCES
Anthes, R.A. (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Monthly Weather Review, 105, 270–286.

Arakawa, A. and Schubert, W.H. (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the Atmospheric Sciences, 31, 674–701.

Bougeault, P. (1985) A simple parameterization of the large-scale effects of cumulus convection. Monthly Weather Review, 100, 683–689.

Bretherton, C.S., McCaa, J.R. and Grenier, H. (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: description and 1D results. Monthly Weather Review, 132, 864–882.

Byers, H.R. and Braham, R.R.Jr. (1949) The Thunderstorm. Washington, DC: U.S. Govt. Printing Office.

Carson, D.J. (1973) The development of a dry inversion-capped convectively unstable boundary layer. Quarterly Journal of the Royal Meteorological Society, 99, 450–467.

Deardorff, J.W. (1976) On the entrainment rate of a stratocumulus-topped mixed layer. Quarterly Journal of the Royal Meteorological Society, 102, 563–583.

Dimitrellos, A., Ekman, A.M.L., Caballero, R. and Savre, J. (2020) A sensitivity study of Arctic air mass transformation using large-eddy simulation. Journal of Geophysical Research, 125. https://doi.org/10.1029/2019JD031738.

Emanuel, K.A., Neelin, J.D. and Bretherton, C.S. (1994) On the entrainment rate of a stratocumulus-topped mixed layer. Quarterly Journal of the Royal Meteorological Society, 120, 1111–1143.

Kuo, H.-L. (1965) On formation and intensification of tropical cyclones through latent heat released by cumulus convection. Journal of the Atmospheric Sciences, 22, 40–63.

Kuo, H.-L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. Journal of the Atmospheric Sciences, 31, 1232–1240.

Lanicci, J.M. and Warner, T.T. (1997) A case study of lid evolution using analyses of observational data and a numerical model simulation. Weather and Forecasting, 12, 228–252.

Lilly, D.K. (1968) Models of cloud-topped mixed layers under a strong inversion. Quarterly Journal of the Royal Meteorological Society, 94, 292–309.

Manzato, A. and Morgan, G.Jr. (2003) Evaluating the sounding instability with the lifted parcel theory. Atmospheric Research, 67–68, 455–473.

Mapes, B.E. (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of the Atmospheric Sciences, 57, 1515–1535.

Nugent, A.D. and Smith, R.B. (2014) Initiating moist convection in an inhomogeneous layer by uniform ascent. Journal of the Atmospheric Sciences, 71, 4597–4610.

Roff, G.L. and Yano, J.-I. (2002) Tropical convective variability in the CAPE phase space. Quarterly Journal of the Royal Meteorological Society, 128, 2317–2333.

Schubert, W.H., Wakefield, J.S., Steiner, E.J. and Cox, S.K. (1979) Marine stratocumulus convection. Part I: governing equations and horizontally homogeneous solutions. Journal of the Atmospheric Sciences, 36, 1286–1307.

Stevens, B. (2006) Bulk boundary-layer concepts for simplified models of tropical dynamics. Theoretical and Computational Fluid Dynamics, 20, 279–304.

Tiedtke, M. (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 177, 1779–1800.

van Zomeren, J. and van Delden, A. (2007) Vertically integrated moisture flux convergence as a predictor of thunderstorms. Atmospheric Research, 83, 435–445.

Walters, D., Baran, A.J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A.P., Manners, J., Morcrette, C.J., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R.A., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S.B., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S.B., Rumbold, H., Sellers, A., Uijlje, M., Whitall, M., Williams, K. and Zerrroukat, M. (2019) The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 12, 1909–1963. https://doi.org/10.5194/gmd-12-1909-2019.

Weaver, J.F. (1979) Storm motion as related to boundary-layer convergence. Monthly Weather Review, 107, 612–619.

Wilson, J.W. and Schreiber, W.E. (1986) Initiation of convective storm at radar-observed boundary-layer convergence lines. Monthly Weather Review, 114, 2516–2536.

Yano, J.-I., Bister, M., Fuchs, Z., Gerard, L., Phillips, V., Barkidija, S. and Piriou, J.M. (2013) Phenomenology of convection-parameterization closure. Atmospheric Chemistry and Physics, 13, 4111–4131.

Zhao, M., Held, I.M., Lin, S.-I. and Vecchi, G.A. (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50 km resolution GCM. Journal of Climate, 22, 6653–6678.

Zhao, M., Golaz, J.-C., Held, I.M., Ramaswamy, V., Lin, S.-J., Ming, Y., Ginoux, P., Wyman, B., Donner, L.J., Paynter, D. and Guo, H. (2016) Uncertainty in model climate sensitivity traced to representations of cumulus precipitation microphysics. Journal of Climate, 29, 543–560.

How to cite this article: Yano, J.-I. (2021) Initiation of deep convection through deepening of a well-mixed boundary layer. Quarterly Journal of the Royal Meteorological Society, 147(739), 3085–3095. Available from: https://doi.org/10.1002/qj.4117
APPENDIX A. DERIVATION OF EQUATION (11) FROM THE SYSTEM OF SECTION 2

In this Appendix, Equation (11) for the evolution of the mixed-layer height, \(z_m \), is derived from the system of Section 2. Two derivations are presented. The first is heuristic, which elucidates an implicit role of an inversion in the system of Section 2. The second is a full derivation.

A.1. Heuristic derivation

For a heuristic derivation, we begin with the simplest case with \(F_+ = 0 \) and \(\Delta t_0 = 0 \). In this case, Equations (4) and (7) reduce to

\[
Ht = \frac{\Delta_0 \theta}{2} z_m, \quad (A1)
\]

\[
\Delta_0 \theta = \left(\frac{d\bar{\theta}}{dz} \right) z_m. \quad (A2)
\]

By substituting Equation (A2) into Equation (A1), we obtain:

\[
\frac{z_m^2}{2} = \left(\frac{d\bar{\theta}}{dz} \right)^{-1} Ht.
\]

By taking a time derivative of the above, we obtain:

\[
\frac{dz_m}{dt} = \frac{H}{\Delta_0 \theta}, \quad (A3)
\]

also using Equation (A2). In a final step, we need to recover a small, but non-vanishing inversion, \(\Delta t_0 (\neq 0) \). Note that the heat flux must decreases linearly with height, thus a simple geometrical consideration suggests

\[
H/(z_m - \Delta t z) = -H_{(-)} / \Delta t z.
\]

Here, \(H_{(-)} = \bar{w} \theta |_{z = z_m} \) is the heat flux at \(z = z_m \) just below the inversion. By taking a limit of \(\Delta t z \to 0 \), we obtain

\[
H/z_m = -H_{(-)} / \Delta t z.
\]

Further recalling Equation (A2) and \(\Delta t_0 = (d\bar{\theta}/dz) \Delta t z \), thus

\[
H/\Delta_0 \theta = -H_{(-)} / \Delta t \theta. \quad (A4)
\]

Finally, by substituting Equation (A4) into Equation (A3), we obtain

\[
\Delta t_0 \frac{dz_m}{dt} = -H_{(-)}.
\]

In the presence of large-scale ascent, \(\bar{w} \), the height, \(z_m \), of the well-mixed layer is uplifted accordingly, thus

\[
\Delta t_0 \left(\frac{dz_m}{dt} - \bar{w} \right) = -H_{(-)}, \quad (A5)
\]

which is equivalent to Equation (11).

The derivation here suggests that the existence of a small, but finite, inversion is essential for the growth of a well-mixed layer: it grows by generating an inversion by penetrating convective plumes into a free atmosphere.

A.2. Full derivation

When a full system of Section 2 is considered, reduction to Equation (11) appears only under approximations, most likely due to minor inconsistencies in the formulation of Section 2, but not of any serious nature.

Under the presence of an inversion, Equations (4) and (7) are modified into:

\[
(H - H_{(-)}) t = \frac{\Delta_0 \theta + \Delta m \theta - \Delta t_0}{2} z_m, \quad (A6)
\]

\[
\Delta_0 \theta = \left(\frac{d\bar{\theta}}{dz} \right) z_m + \Delta m \theta - \Delta t_0. \quad (A7)
\]

From Equation (A7), we find:

\[
\frac{\Delta_0 \theta + \Delta m \theta - \Delta t_0}{2} = \frac{1}{2} \left(\frac{d\bar{\theta}}{dz} \right) z_m + \Delta m \theta - \Delta t_0.
\]

Substituting this expression into the right-hand side of Equation (A6), and taking a time derivative of the result:

\[
\Delta_0 \theta \frac{dz_m}{dt} + z_m \frac{d}{dt} (\Delta m \theta - \Delta t_0) = H - H_{(-)}. \quad (A8)
\]

In writing the above result, Equation (A7) has already been applied to the first term.

In deriving the final result, we need to introduce several approximations. First, the temporal change of \(\Delta t_0 \) is expected to be much smaller than that of \(\Delta m \theta \), thus

\[
\frac{d}{dt} (\Delta m \theta - \Delta t_0) \approx \frac{d}{dt} \Delta m \theta. \quad (A9)
\]

Furthermore, radiation is neglected in Equation (3), and it should be realized that it is always a good approximation to set:

\[
\left(\frac{d\bar{\theta}}{dz} \right) z_m \approx \Delta_0 \theta.
\]

Using these two approximations,

\[
\frac{d}{dt} \Delta m \theta \approx -\bar{w} \left(\frac{d\bar{\theta}}{dz} \right) \approx -\frac{\bar{w} \Delta_0 \theta}{z_m}. \quad (A10)
\]

By applying Equations (A9) and (A10) into Equation (A8), we find:

\[
\Delta_0 \theta \left(\frac{dz_m}{dt} - \bar{w} \right) = H - H_{(-)}. \quad (A11)
\]
Finally, by invoking a geometrical consideration,
\[
\frac{(H - H_{(-)1})}{\Delta_0 \theta} = -\frac{H_{(-)1}}{\Delta_1 \theta},
\]
Equation (A11) reduces to Equation (11)

APPENDIX B. DEVELOPMENT OF A WELL-MIXED MOISTURE LAYER

Development of a well-mixed layer with any conserved variable can be formulated as for the potential temperature, as presented in Section 2. However, when a background value decreases with height, a special consideration becomes necessary. This Appendix considers this issue by taking the moisture as an example. In extending the formulation of Section 2 to the moist case, this consideration becomes important, because the equivalent potential temperature also decreases with height in the lower troposphere.

The derivation proceeds in parallel to Section 2. For simplicity, some notations for the moisture are kept the same as for the potential temperature in Section 2. This should not cause any confusion, because none of the results in this Appendix are directly quoted in the main text. Thus, as an initial condition for the moisture mixing ratio, \(q \), we assume
\[
q(z, t = 0) = q_0 + \left(\frac{d\tilde{q}}{dz} \right) z \tag{B1}
\]
in place of Equation (1). Here, \(d\tilde{q}/dz \) \(<0\) is assumed constant with height. Though this rather strong assumption can be relaxed, as moisture typically decreases exponentially with height, but more involved algebra follows. As before, we assume a constant moisture flux, \(H \), from the surface at \(z = 0 \). As a result, a well-mixed layer of moisture is formed and grows from the surface.

However, as a major difference from the potential temperature treatment in Section 2, the growth is inevitably associated with a development of an inversion (discontinuity), \(\Delta q \), of the moisture at the top of the mixed layer. To close the problem with ease we assume, in turn, that the surface value, \(q_0 \), is maintained constant with time, thus all the supplied moisture flux is used for deepening of the mixed layer. Thus, the inversion is defined by
\[
\Delta q = q_0 - q_+(z_m, t) \tag{B2}
\]

In Figure B1, Schematic describing the well-mixed moisture layer

Evolution of moisture above the well-mixed layer \((z > z_m)\) may be given by
\[
q_+(z, t) = q(z, t = 0) + F_+ t \tag{B3}
\]
with
\[
F_+ = -w \left(\frac{d\tilde{q}}{dz} \right) \tag{B4}
\]

Note that, in contrast to the case with potential temperature, \(F_+ < 0 \) applies in a descending environment, and \(F_+ > 0 \) in an ascending environment.

Expected temporal growth of a well-mixed moisture layer is schematically shown in Figure B1: the well-mixed moisture layer deepens in response to the surface flux, \(H \). The supplied heat flux, \(Ht \), over time \(t \), must be equal to an areas swept on a \((q, z)\)-plane from the initial condition to a state at time \(t \) as indicated by the shading, thus
\[
Ht = \frac{\Delta q - F_+ t z_m}{2} \tag{B5}
\]

Also from a geometrical consideration suggested by Figure B1,
\[
\Delta q = -\left(\frac{d\tilde{q}}{dz} \right) z_m + (-F_+ t) \tag{B6}
\]

By substituting Equation (B6) into Equation (B5), we find:
\[
Ht = -\frac{1}{2} \left(\frac{d\tilde{q}}{dz} \right) z_m^2 + (-F_+ t) z_m \tag{B7}
\]

This equation becomes equivalent to Equation (8) by replacing \(-d\tilde{q}/dz\) and \(-F_+\) by \(d\tilde{\theta}/dz\) and \(F_+\), respectively.