SIMPLE GROUPS WITH BRAUER TREES OF PRINCIPAL BLOCKS
IN THE SHAPE OF A STAR

ANDREI KUKHAREV

Abstract. We have found a list of finite simple groups with cyclic Sylow p-subgroup whose principal p-blocks have Brauer trees in the shape of a star, that is a tree of diameter at most 2. Moreover, for an arbitrary finite group G with cyclic Sylow p-subgroup, we have obtained a necessary condition when the Brauer tree of the principal p-block of G is a star.

Introduction

Let G be a finite group, p be a prime number dividing the order of G. Suppose that a Sylow p-subgroup of G is cyclic. Then the Brauer graph of a p-block of G is uniquely defined. Moreover, this graph is a tree.

Denote by \mathcal{X}_p the class of finite groups with non-trivial cyclic Sylow p-subgroup such that the Brauer tree of the principal p-block is a star, that is a tree of diameter at most 2. Note that the Brauer graph of a p-block with cyclic defect group is a star if and only if every p-modular irreducible character of this block lifts to an ordinary irreducible character (see [37, Lemma 3.1]).

We are interested in the description of the class \mathcal{X}_p. The problem arises from the work [4], where the author studied the properties of such groups. For instance, he has shown that if $G \in \mathcal{X}_p$ and G is not a p-solvable group, then the star has an even number of edges. A similar problem was studied in [21], where the author considered the class \mathcal{L}_p of groups all whose absolutely irreducible p-modular characters are liftable.

It is known that if G is a p-solvable group with cyclic Sylow p-subgroup, then Brauer trees of all p-blocks are starts, in particularly $G \in \mathcal{X}_p$. But there exist also nonsolvable groups having this property. For instance, $A_5 \in \mathcal{X}_3$.

The main goal of this work is to find all simple finite groups with the property \mathcal{X}_p. But some non-simple groups (namely, symmetric and classical groups) also will be covered during our study.

For simple groups, we have obtained the following result.

Theorem 1. Let G be a finite simple group, and let p be a primer dividing the order of G. Then $G \in \mathcal{X}_p$ if and only if one of the following statements holds.

1) $G = C_p$;
2) $G = \text{PSL}_2(q)$, $p \neq 2$ and p divides $q \pm 1$;
3) $G = \text{PSL}_3(q)$, $p \neq 2$ and p divides $q + 1$;
4) $G = \text{PSU}_3(q^2)$, $p \neq 2$ and p divides $q - 1$;
5) $G = A_5$, $p \in \{3, 5\}$;
6) $G = A_6$ and $p = 5$;
7) $G = \text{Sz}(q^2)$, $q^2 = 2^{2n+1}$ ($n \geq 1$), where $p \neq 2$ divides $q - 1$ or $q + r + 1$;
8) $G = \text{Sz}(q^2)$, $q^2 = 3^{2n+1}$ ($n \geq 1$), where $p \neq 2$ divides $q^2 - 1$ or $q^2 + \sqrt{3}q + 1$;

Key words and phrases. Brauer tree, Brauer star, simple group, finite group.
6) \(G \in \{ M_{11}, M_{12}, J_3 \} \) and \(p = 5 \);
7) \(G = J_1 \) and \(p \in \{3,5 \} \).

Moreover, for an arbitrary finite group \(G \), the following theorem gives a necessary condition when \(G \in \mathcal{X}_p \).

Theorem 2. Let \(G \) be a non-\(p \)-solvable group with a non-trivial cyclic Sylow \(p \)-subgroup \(P \). Then there exists the smallest normal subgroup \(K \) in \(G \) properly containing \(O_{p'}(G) \), and the quotient group \(L = K/O_{p'}(G) \) is simple non-abelian. Moreover, if \(G \in \mathcal{X}_p \), then \(L \in \mathcal{X}_p \).

1. Preliminaries

Recall some basic facts about Brauer trees of finite groups. We refer the reader to [3, 12] for details.

Let \(p \) be a primer dividing the order of a finite group \(G \). We will denote by \(\text{Irr}(G) \) the set of irreducible ordinary characters of \(G \) and by \(\text{IBr}_p(G) \) the set of irreducible Brauer (\(p \)-modular) characters of \(G \). The restriction \(\chi^o \) of \(\chi \in \text{Irr}(G) \) to the set on \(p \)-regular elements of \(G \) can be decomposed as

\[
\chi^o = \sum_{\varphi \in \text{IBr}_p(G)} d_{\chi \varphi} \varphi.
\]

The coefficients \(d_{\chi \varphi} \) are called the decomposition numbers. They form a decomposition matrix.

The Brauer graph of \(G \) is an undirected graph, the vertices of which are labelled by elements of \(\text{Irr}(G) \), and the edges are labelled by elements of \(\text{IBr}(G) \). Some vertices may be labelled by a few irreducible ordinary characters \(\chi_1, \ldots, \chi_m \) if they have the same restriction to the \(p \)-regular conjugacy classes. We call a such vertex exceptional with multiplicity \(m \). Two vertices labelled by \(\chi, \psi \in \text{Irr}(G) \) are adjacent if there exists \(\varphi \in \text{IBr}_p(G) \) such that \(d_{\chi \varphi} \neq 0 \) and \(d_{\psi \varphi} \neq 0 \). The connected components of the Brauer graph are called \(p \)-blocks of \(G \).

Let \(B \) be a \(p \)-block of \(G \) with cyclic defect group. Then the Brauer graph corresponding to \(B \) is a tree, which we will denote by \(\tau(B) \). If \(e \) is the number of edges in \(\tau(B) \), then \(\tau(B) \) has \(e + 1 \) vertices. A \(p \)-block may have not more then one exceptional vertex (with multiplicity \(m > 1 \)).

A vertex of a Brauer graph is called non-real if its character has a non-real value for some \(p \)-regular element. The real stem of a Brauer tree is a subtree obtained by removing all non-real vertices. The real stem always has the shape of a straight line (see [22, p. 3]).

Lemma 1. [3, p. 212] If a group \(G \) has a cyclic Sylow \(p \)-subgroup \(P \), then the number \(e \) of edges of Brauer tree of the principal \(p \)-block of \(G \) is equal to \(|N_G(P)|/C_G(P)| \), and the multiplicity of the exceptional vertex is \(m = (|P| - 1)/e \).

Lemma 2. [4, Theorem 1, Corollary 1] Let \(G \) be a simple non-abelian group with a non-trivial cyclic Sylow \(p \)-subgroup \(P \). Suppose that the Brauer tree of the principal \(p \)-block of \(G \) is a star with \(e \) edges. Then 1) \(e \) is even, 2) if the number \(|C_G(P)| \) is odd, then all involutions of \(G \) form a unique conjugacy class.

Lemma 3. Suppose that \(G \) is a group with cyclic Sylow \(p \)-subgroup \(P \). Suppose that \(H \) is a normal subgroup of \(G \) such that \(|G/H|, p \) = 1. Let \(e_G, e_H \) be the numbers of edges of Brauer tree of the principal \(p \)-block of the groups \(G \) and \(H \), correspondently. Then \(e_H | e_G \).
Proof. Since \(P \in \text{Syl}_p(H) \), applying Frattini’s argument, we obtain

\[
e_H = \frac{|N_H(P)|}{|C_H(P)|} = \frac{|C_G(P)H|}{|G|} \cdot e_G,
\]

where \(C_G(P)H \) is a subgroup of \(G \), because \(H \) is normal in \(G \). \(\square \)

Let \((\tau, Q)\) be the Brauer tree of a block \(B \) with the exceptional vertex \(Q \). Then the tree \((\tau, Q)^n\) is obtained by winding up \(\tau \) around \(Q \) which created \(n \) branches, where the original tree is considered as one of these branches.

We say that the Brauer trees of blocks \(B_1 \) and \(B_2 \) are similar if there is a tree \((\tau, Q)\) such that \(\tau(B_1) = (\tau, Q)^m \) and \(\tau(B_2) = (\tau, Q)^n \) for some \(m, n \in \mathbb{N} \).

We denote by \(B_0(G) \) the principal \(p \)-block of \(G \), by \(\tau_0(G) \) the Brauer tree of \(B_0(G) \), and by \(e_0(G) \) or \(e_G \) the number of edges in \(\tau_0(G) \).

Lemma 4. Let \(G \) be a group with a cyclic Sylow \(p \)-subgroup \(P \). Let \(H \) be a normal subgroup of \(G \) of index coprime to \(p \). Then:

1) \(\tau_0(G) \) is similar to \(\tau_0(H) \);

2) If \(\tau_0(G) \) is a line, then the same holds true for \(\tau_0(H) \).

Proof. The first part of the lemma follows from [12, Lemma 4.2].

Suppose that \(\tau_0(G) \) is a line with \(e_G \) edges. Since \(\tau_0(G) \) is similar to \(\tau_0(H) \), we have that \(\tau_0(G) = \tau^m \) and \(\tau_0(H) = \tau^n \) for some tree \(\tau \). If \(e_G \) is odd, then \(\tau \) coincides with \(\tau_0(G) \). It follows from \(e_H \leq e_G \) that \(\tau_0(H) = \tau \).

If \(e_G \) is even, then either \(\tau_0(G) = \tau \) or \(\tau_0(G) = \tau^2 \). In both cases, we obtain that \(\tau_0(H) \) is a line. \(\square \)

The following Lemma describes some simple properties of the class \(\mathfrak{X}_p \).

Proposition 1. Let \(G \) be a finite group, and \(P \) be a Sylow \(p \)-subgroup of \(G \).

1) If \(G \) is \(p \)-solvable and \(P \) is cyclic, then \(G \in \mathfrak{X}_p \).

2) \(G \in \mathfrak{X}_p \) if and only if \(G/O_{p'}(G) \in \mathfrak{X}_p \).

3) Suppose that \(H \) is a normal subgroup of \(G \) such that \(|G/H| \) is coprime to \(p \). If \(G \in \mathfrak{X}_p \), then \(H \in \mathfrak{X}_p \).

Proof. 1) If \(G \) is a \(p \)-solvable group, then according to [12, Lemma X.4.2], the Brauer tree of any \(p \)-block of \(G \) with a cyclic defect group is a star.

2) The second statement holds because the kernel of the principal \(p \)-block of \(G \) is equal to \(O_{p'}(G) \).

3) The third statement follows from Lemmas 1 and 3. \(\square \)

Proof of Theorem 2. Let \(G \) be a non-\(p \)-solvable group with a non-trivial cyclic Sylow \(p \)-subgroup \(P \). Let \(H = G/O_{p'}(G) \). Then, by [31, Lemma 6.1], there is a unique minimal normal subgroup \(L \) in \(H \), and \(L \) is simple.

Denote by \(K \) a subgroup of \(G \) such that \(L \cong K/O_{p'}(G) \). Then \(K \) is normal in \(G \), and \(K \) containing \(O_{p'}(G) \) properly, because \(L \neq 1 \).
Since G is not p-solvable, the subgroup H can not be a Frobenius group with kernel P. Thus, according to [4, Lemma 5.1], L contains P, hence p doesn’t divide $|G/K|$. It gives that K is not abelian.

If $G \in \mathfrak{X}_p$, then using Proposition 1 we obtain that $K \in \mathfrak{X}_p$ and $L \in \mathfrak{X}_p$. □

The proof of Theorem 1 is based on the classification of simple finite groups [8]. We will consequentially consider cyclic groups, alternating groups, classical groups, exceptional groups of Lie type and sporadic groups.

2. Cyclic, symmetric and alternating groups

For cyclic groups, the result is simple.

Proposition 2. $C_p \in \mathfrak{X}_p$ for any prime p.

Proof. The statement holds because each abelian group is solvable, i.e. it is p-solvable for any p dividing the order of the group. □

Note that by definition the trivial group is not in \mathfrak{X}_p.

For symmetric and alternating groups, we have the following result.

Proposition 3.

1) $S_n \in \mathfrak{X}_p$ if and only if $p = 2$ and $n \in \{2, 3\}$, or $p = 3$ and $n \in \{3, 4, 5\}$.

2) $A_n \in \mathfrak{X}_p$ if and only if $p = 3$ and $n \in \{3, 4, 5\}$, or $p = 5$ and $n \in \{5, 6\}$.

Proof. 1) Let $G = S_n$ $(n \geq 2)$. A sylow p-subgroup P of G is cyclic if and only if $p \leq n < 2p$ (or $n/2 < p \leq n$). Suppose that P is cyclic. Since all ordinary irreducible characters of S_n are real, they lay on the real steam which is a line, and there are no exceptional characters (i.e. multiplicity $m = 1$). Thus, the number of edges in $\tau_0(G)$ is $e = |P| - 1$. This tree is a star if and only if $e \leq 2$. This holds if and only if $|P| = 3$ and $n \in \{3, 4, 5\}$, or $|P| = 2$ and $n \in \{2, 3\}$.

2) For $G = A_n$ $(n \geq 3)$, the number of edges in $\tau_0(G)$ is $e = p - 1$ if $n/2 < p < n - 1$, and $e = (p - 1)/2$ if $p \in \{n - 1, n\}$ (see [21, p.282]). It gives desired. □

3. Sporadic groups

Proposition 4. Let G be one of the sporadic groups. Then $G \in \mathfrak{X}_p$ if and only if one of the following statements holds.

1) $G = M_{11}$ and $p = 5$;

2) $G = M_{23}$ and $p = 5$;

3) $G = J_1$ and $p \in \{3, 5\}$;

4) $G = J_3$ and $p = 5$.

Proof. Brauer trees of sporadic groups for most values of p can be found in [22]. Some trees can be also easily constructed from decomposition matrices [2]. Also, using information about the orders of the centralizer $C_G(P)$ and normalizer $N_G(P)$ of a Sylow p-subgroup P of G, it is easy to show with Lemma 2 that $\tau_0(G)$ is not a star for most sporadic groups.

For instance, consider the Mathieu group $G = M_{23}$ of the order $2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11 \cdot 23$. For $p \in \{2, 3\}$, a Sylow p-subgroup P of G is not cyclic. The Brauer tree of the principal 5-block is
a star, according to [22]. For \(p \in \{7, 23\} \), the order \(|N_G(P)/C_G(P)| \) is odd, hence \(G \notin X_p \). For \(p = 11 \), the order of \(C_G(P) \) is odd and \(G \) has more than one conjugacy class of involutions, and \(G \notin X_p \) by Lemma 2. Other groups are analysed the same way. Only two groups, Baby Monster \(BM \) for \(p \in \{13, 19\} \) and Fisher group \(F_{24}^0 \) for \(p \in \{11, 13\} \), are required special consideration. In [29, Lemma 5.1], it has been showed that in these cases the graph \(\tau_0(G) \) contains a path of length at least 3.

\[\square \]

4. Classical groups

In this section, we will consider Brauer trees of finite classical groups: linear, symplectic, unitary, and orthogonal.

Lemma 5. Let \(G \) be a finite group which is not solvable. Then a Sylow 2-subgroup of \(G \) is not cyclic.

Proof. Let \(G \) is a non-solvable group. Then by the Feit-Thompson theorem, 2 divides \(|G|\).

Suppose that a Sylow 2-subgroup \(P \) of \(G \) is cyclic. Then according to [26, Satz IV.2.8], \(G \) is 2-nilpotent, i.e. \(G \) has a normal subgroup \(H \) such that \(G/H \cong P \). It gives a contradiction.

\[\square \]

Lemma 6. [33, Proposition 5.1] Let \(G \) be a simple finite group of Lie type over \(\mathbb{F}_q \), which is not isomorphic \(\text{PSL}_2(q) \). If \(p \mid q \), then Sylow \(p \)-subgroup of \(G \) is not abelian.

Thus, it is sufficient to consider only cases when \(p \neq 2 \), and when \(p \) does not divide \(q \) (except linear groups). We will use Stather’s result [36, Table 1] about sizes of Sylow \(p \)-subgroups for such case. Also, the following Lemma shows that, in this case, the number of edges in a \(p \)-block depends only on \(\text{ord}_p(q) \), the multiplicative order of \(q \) modulo \(p \).

Lemma 7. [18] Let \(G \) be a finite group of Lie type over a field of \(q \) elements with cyclic (non-trivial) Sylow \(p \)-subgroup. Suppose that \(p \nmid q \), and let \(d = \text{ord}_p(q) \). Then \(p \)-modular decomposition matrix directly depends only on \(d \), and does not depend on the particular choice of \(q \) and \(p \).

Lemma 8. Suppose that \(G \in \{ \text{GL}_n(q), \text{Sp}_{2n}(q) \} \), where \(q \geq 2 \), or \(G \in \{ \text{GU}_n(q^2), \text{SO}_{2n+1}(q), \text{CSO}^\pm_{2n}(q) \} \), where \(q \) is odd, or \(G \in \{ \text{SU}_n(q^2), \text{GO}^\pm_{2n}(q) \} \), where \(q \) is even. Suppose also that a Sylow \(p \)-subgroup of \(G \) is cyclic, \(p \nmid q \) and \(p \neq 2 \). Then the Brauer tree of the principal block of \(G \) is a line.

Proof. The result has been proven in [13] for \(\text{GL}_n(q) \) with any \(q \), and in [14] for the groups \(\text{Sp}_{2n}(q), \text{GU}_n(q^2), \text{SO}_{2n+1}(q) \), and \(\text{CSO}_{2n}^\pm(q) \), when \(q \) is odd.

Assume that \(G \) is one of the groups \(\text{Sp}_{2n}(q) \) or \(\text{GO}^\pm_{2n}(q) \), where \(q \) is even. Then, by Gow [20], each element of the group \(G \) is a product of two involutions. It follows that each element of \(G \) is conjugated to its inverse. Therefore, each ordinary character of \(G \) is real-valued. Thus, the Brauer tree of each block with cyclic defect group coincides with its real stem, i.e. it has the shape of a line.

Assume that \(G = \text{SU}_n(q^2), q \) is even. Since \(G \) is quasi-simple, it follows from [32, Section 6] that each non-exceptional character in \(B_0(G) \) is rational-valued, and hence it is located on the real stem. Thus, \(\tau_0(G) \) is a line.

\[\square \]
Thus, for these groups, we need just to find the number $e_0(G)$ of edges in the principal block of G, i.e. the order of $N_G(P)/C_G(P)$. As we will see soon, for general linear groups, this number is equal to the multiplicative order of q modulo p. This is not always true for other classical groups, but the approach is similar.

4.1. Linear groups. Recall that the order of the general linear group $\text{GL}(n, q)$ over the finite field \mathbb{F}_q with q elements is equal to

$$|\text{GL}_n(q)| = q^{n(n-1)/2} \cdot (q-1) \cdot \ldots \cdot (q^n - 1).$$

The special linear group $\text{SL}(n, q)$ is a normal subgroup of $\text{GL}(n, q)$ of index $q-1$. The projective special linear group $\text{PSL}(n, q)$ is obtained from $\text{SL}(n, q)$ by factoring out its center Z whose order equals $(n, q-1)$.

Lemma 9. [28, Lemma 2] Let $G = \text{GL}_n(q)$, $p \nmid q$ and $d = \text{ord}_p(q)$. Then

1) A Sylow p-subgroup P of G is cyclic and non-trivial if and only if $d \leq n < 2d$.

2) If $d \leq n < 2d$, then $|N_G(P)/C_G(P)| = d$.

Proposition 5. Let $G = \text{GL}_n(q)$, $n \geq 2$. Then $G \in \mathcal{X}_p$ if and only if one of the following statements holds.

1) $n = 2$ and $p = q \in \{2, 3\}$;

2) $n \in \{2, 3\}$, $p \neq 2$ and $p \mid q + 1$.

Proof. Assume that $p \mid q$. In this case, P is cyclic if and only if $n = 2$ and $q = p$. Let $G = \text{GL}_2(p)$. Then $|N_G(P)| = p(p-1)^2$ and $|C_G(P)| = p(p-1)$. Hence, $\tau_0(G)$ is a line (by Lemma 8) with $|N_G(P)/C_G(P)| = p-1$ edges. Therefore, $\text{GL}_2(p) \in \mathcal{X}_p$ if and only if $p \in \{2, 3\}$.

Assume now that $p \nmid q$, and $d = \text{ord}_p(q)$. Since P is cyclic, by Lemma 9 we have that $p \neq 2$, $n < 2d$ and $|N_G(P)/C_G(P)| = d$. In particular, $d \geq 2$. Thus, $\tau_0(G)$ is a star if and only if $d = 2$ and $n = 2, 3$.

\[\square \]

Lemma 10. Let $G = \text{GL}_n(q)$, $H = \text{SL}_n(q)$. Suppose that a Sylow p-subgroup P of H is cyclic (and non-trivial).

1) If $p \nmid q$, then $\tau_0(G)$ and $\tau_0(H)$ contain the same number of edges.

2) If $p \nmid q$ and $p \nmid q - 1$, then $\tau_0(G) = \tau_0(H)$.

Proof. 1) According to Frattini’s argument, $G = N_G(P)H$. Therefore,

$$G/N_G(P) = H/(H \cap N_G(P)) = H/N_H(P),$$

and $|N_G(P)|/|N_H(P)| = |G|/|H| = q - 1$.

Since $p \nmid q$, the centralizers $C_G(P)$ and $C_H(P)$ coincide with Singer cycles in G and H. They have orders $q^n - 1$ and $(q^n - 1)/(q-1)$, correspondingly. It gives that $|N_H(P)/C_H(P)| = |N_G(P)/C_G(P)|$, as desired.

2) If also $(|G/H|, p) = 1$, then by Lemma 1, Brauer trees $\tau_0(G)$ and $\tau_0(H)$ are similar. And since they contain the same number of edges, they have the same shape.

\[\square \]
Proposition 6. Let \(H = \text{PSL}_n(q) \) and \(G = \text{SL}_n(q) \), where \(n \geq 2 \) and \(q \geq 5 \). Then \(H \in \mathcal{X}_p \) \((G \in \mathcal{X}_p)\) if and only if one of the following statements holds.

1) \(n = 2 \) and \(p = q = 5 \);
2) \(n = 2 \), \(p \neq 2 \) and \(p | q - 1 \);
3) \(n \in \{2, 3\} \), \(p \neq 2 \) and \(p | q + 1 \);

Proof. We may assume that \(p > 2 \), otherwise Sylow \(p \)-subgroups of both \(\text{SL}_n(q) \) and \(\text{PSL}_n(q) \) for \(q \geq 5 \) are not cyclic.

The center \(Z \) of \(\text{SL}_n(q) \) has the order \((n, q - 1)\). Therefore, if \(p \nmid q - 1 \), then \(Z \) is in the kernel of the block \(B_0(\text{SL}_n(q)) \); hence, this block consists with \(B_0(\text{PSL}_n(q)) \).

First, assume that \(n = 2 \). We will consider three cases: 1) \(p | q \), 2) \(p | q - 1 \), and 3) \(p \) doesn’t divide \(q \) neither \(q - 1 \).

1) Let \(p | q \). Then a Sylow \(p \)-subgroup \(P \) of \(\text{SL}_2(q) \) is cyclic if and only if \(p = q \). According to [11, Theorem 71.3], the Brauer tree of the principal \(p \)-block of \(\text{SL}_2(p) \) is a line with \((p - 1)/2\) edges. Thus, \(\text{SL}_2(p) \in \mathcal{X}_p \) if and only if \(p \leq 5 \).

2) Let \(p | q - 1 \). For \(G = \text{SL}_2(q) \), we have that \(P = Syl_p(G) \) is cyclic, the centralizer \(C_G(P) = \langle \alpha \rangle \) and the normalizer \(N_G(y) = \langle \alpha, \beta \rangle \), where \(\alpha = \left(\begin{smallmatrix} 0 & \nu^{-1} \\ \nu & 0 \end{smallmatrix} \right) \) and \(\beta = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) \). Here \(\nu \) is a generator of the multiplicative group \(\mathbb{F}_q^{*} \) (see [11, p. 230]). Therefore, \(|N_G(P)/C_G(P)| = 2 \), and \(G \in \mathcal{X}_p \).

Now consider \(H = \text{PSL}_2(q) \), where \(p | q - 1 \). A Sylow \(p \)-subgroup of \(H \) is also cyclic, and it follows from [5] that the tree \(\tau_0(H) \) is a line with two edges.

3) Let \(p \nmid q \) and \(p \nmid q - 1 \). In this case, the tree \(\tau_0(H) \) consists with \(\tau_0(G) \). But \(\tau_0(G) \) consists also with \(\tau_0(\text{GL}_n(q)) \) by Lemma 10. Thus, the trees \(\tau_0(H) \) and \(\tau_0(G) \) are both stars if \(p | q + 1 \) (see Proposition 5).

Now suppose that \(n \geq 3 \). In this case, a Sylow \(p \)-subgroup of \(\text{SL}_n(q) \) is cyclic if and only if \(p | q \) and \(p \nmid q - 1 \). As well as above, the trees of all three groups \(\text{PSL}_n(q) \), \(\text{SL}_n(q) \) and \(\text{GL}_n(q) \) are the same, and we can apply Proposition 5.

\[\Box \]

4.2. Symplectic groups. Let \(V \) be a vector space of even dimension \(n = 2m \) over the field \(\mathbb{F}_q \). Let \(f : V \times V \to V \) be a skew-symmetric form on \(V \), i.e. a bilinear form such that \(f(u, v) = -f(v, u) \) for all \(u, v \in V \). If \(f \) is given by a matrix \(W \), then \(W = -W^t \), where \(t \) means transpose.

A symplectic group \(\text{Sp}_{2m}(q) \) consists of invertible matrices \(A \) of order \(2m \) which preserve \(f \), i.e. \(AWA^t = W \). It has the order \[|\text{Sp}_{2m}(q)| = q^{m^2} \cdot (q^2 - 1) \cdot (q^4 - 1) \cdot \ldots \cdot (q^{2m} - 1). \]

We may take \(W = \left(\begin{smallmatrix} 0 & I_m \\ -I_m & 0 \end{smallmatrix} \right) \). Then the rule
\[
\varphi : A \mapsto \left(\begin{smallmatrix} A & 0 \\ 0 & A^{-t} \end{smallmatrix} \right)
\]
defines an embedding of \(\text{GL}_m(q) \) into \(\text{Sp}_{2m}(q) \).

The projective symplectic group is \(\text{PSp}_{2m}(q) = \text{Sp}_{2m}(q)/Z \), where \(Z \) is the center of \(\text{Sp}_{2m}(q) \).

The groups \(\text{Sp}_2(q) \cong \text{SL}_2(q) \) and \(\text{PSp}_2(q) \cong \text{PSL}_2(q) \) have been already considered in the previous section. For \(m \geq 2 \), the groups \(\text{PSp}_{2m}(q) \) are simple, except \(\text{PSp}_4(2) \cong \text{Sp}_4(2) \cong S_6 \).

If \(p \neq 2 \), then the principal \(p \)-blocks of \(\text{Sp}_n(q) \) and \(\text{PSp}_n(q) \) are the same, because \(|Z| = (2, q - 1) \). Moreover, \(\text{Sp}_{2m}(q) \cong \text{PSp}_{2m}(q) \) for even \(q \).
Proposition 7. Let G be one of the groups $PSp_{2m}(q)$ or $Sp_{2m}(q)$, where $m \geq 2$, and let p be a prime dividing $|G|$. Then $G \not\in \mathcal{X}_p$.

Proof. Using Lemmas 5 and 6, we may assume that $p > 2$ and $p \nmid q$. In this case, Sylow subgroups of $PSp_{2m}(q)$ and $Sp_{2m}(q)$ are isomorphic, and the principal blocks of this groups are the same, because p doesn’t divide $|Z(\text{Sp}_{2m}(q))|$. Thus, it suffices to consider only $Sp_{2m}(q)$.

Assume that $G = \text{Sp}_{2m}(q) \in \mathcal{X}_p$ for some m, q (where $m \geq 2$).

Let $d = \text{ord}_d(q)$. If $d = 1$, then, by Lemma 9, a Sylow p-subgroup of $\text{GL}_m(q)$ is not cyclic for $m \geq 2$. The diagonal embedding 2 shows that the same holds true for a Sylow subgroup P of $\text{Sp}_{2m}(q)$.

Therefore, we can assume that $d \neq 1$. By Lemma 1, the number e of edges in the Brauer tree $\tau_0(G)$ is equal to $|N_G(P)/C_G(P)|$.

We will show that $e \geq d \geq 3$, that gives a contradiction with the assumption, because $\tau_0(G)$ is a line by Lemma 8.

The structure of P depends on d.

(1) Even d. According to [36, Table 1], P coincides with a Sylow p-subgroup of the ambient group $\text{GL}_{2m}(q)$. Since P is non-trivial and cyclic, we conclude that $m < d \leq 2m$. Further, $m \geq 2$ yields $d \geq 4$.

Under a suitable choice of the matrix W, the group $\text{Sp}_d(q) \times \text{Sp}_{2m-d}(q)$ is embedded into $\text{Sp}_{2m}(q)$ as a block diagonal (see [1, Remark 3.2] for details); hence, P can be chosen in the left upper corner $G_d = \text{Sp}_d(q)$. Now taking into account Lemma 3, it suffices to show that $e_d = |N_{G_d}(P)/C_{G_d}(P)| \geq d$.

Let α be a generator of P. According to [36, Lemma 4.6], $N_{G_d}(P)/C_{G_d}(P)$ is a cyclic group generated by an element γ acting by conjugation as $\alpha^\gamma = \alpha^d$. Since this action has order d, we obtain $e_d \geq d$. Thus, $e \geq d \geq 4$ as desired.

(2) Odd d. According to [36], the order of P is equal to the order of a Sylow p-subgroup P' of $\text{GL}_m(q)$. We may assume that P is the image of P' under embedding 2. Since P' is cyclic, we have $m/2 < d \leq m$. Thus, $d \geq 3$.

It remains to show that $e \geq d$. As above, we may assume that $m = d$. Consider an element $y' \in \text{GL}_d(q)$ which acts by conjugation on P' as an automorphism of order d. The diagonal image of this element belongs to $N_G(P)$ and acts as an automorphism of order d on this subgroup. \hfill \Box

4.3. Unitary groups. Let us denote by \bar{a} the involution $a \mapsto a^q$ of the field \mathbb{F}_q, and let V be an n-dimensional vector space over this field. Then there exists an unique non-singular conjugate-sesquilinear form $f : V \times V \rightarrow \mathbb{F}_q$, i.e. $f(u, v) = \overline{f(v, u)}$ for all $u, v \in V$. If f is given by a matrix W, then $W = \overline{W}$. For instance, W can be the identity matrix.

The general unitary group $\text{GU}_n(q^2)$ consists of matrices $A \in \text{GL}_n(q^2)$ preserving f, i.e. $AWA^t = W$. The order is

$$|\text{GU}_n(q^2)| = q^{n(n-1)/2} \cdot (q + 1) \cdot (q^2 - 1) \cdots \cdot (q^n - (-1)^n).$$
The unitary matrices of determinant 1 form a normal subgroup in $\text{GU}_n(q^2)$ of index $q + 1$, called the special unitary group $\text{SU}_n(q^2)$. The center Z of $\text{SU}_n(q^2)$ consists of scalar matrices, and $|Z| = (n, q + 1)$. The quotient group $\text{PSU}_n(q^2) = \text{SU}_n(q^2)/Z$ is called the projective special unitary group. If $n \geq 3$, then this group is simple, except $\text{PSU}_3(2^2)$.

Note that $\text{PSU}_2(q^2) \cong \text{PSL}_2(q)$. Thus, it suffices to consider $n \geq 3$.

Proposition 8. Let G be one of the groups $\text{PSU}_n(q^2)$ or $\text{SU}_n(q^2)$, where $n \geq 3$, and let p be a prime dividing $|G|$. Then $G \in \mathcal{X}_p$ if and only if $n = 3$, $p > 2$ and p divides $q - 1$.

Proof. As before, we assume that $p \neq 2$ and $p \nmid q$. Write $d = \text{ord}_p(q)$, and $s = \text{ord}_p(q^2)$.

We first consider the case $n = 3$. If $p = 3$ and $p \mid q + 1$, then Sylow subgroups of $\text{PSU}_3(q^2)$ and $\text{SU}_3(q^2)$ are not cyclic. Otherwise, the Sylow subgroups are cyclic, and the principal p-block of $\text{PSU}_3(q^2)$ coincides with the principal p-block B_0 of $\text{SU}_3(q^2)$, because B_0 is annihilated by the center of the group $\text{SU}_3(q^2)$. It follows from [16] that the Brauer tree of B_0 is a start if and only if $p \neq 2$ and $p \mid q - 1$.

Now set $n \geq 4$. In this case, if p divides $q \pm 1$, Sylow p-subgroups of $\text{PSU}_n(q^2)$ and $\text{SU}_n(q^2)$ are not cyclic.

Assume that $p \nmid q \pm 1$. Then $2 < d \leq 2n$. Further, the principal block of $\text{PSU}_n(q^2)$ coincides with the principal block B_0 of the group $\text{SU}_n(q^2)$.

A Sylow p-subgroup P of $H = \text{SU}_n(q^2)$ coincides with a Sylow p-subgroup of $G = \text{GU}_n(q^2)$. Moreover, $|N_G(P)/C_G(P)| = |N_H(P)/C_H(P)|$. Therefore, $\tau_0(H) = \tau_0(G)$. This tree is a line by Lemma 8 (for odd and even q). Thus, it suffices to show that the number of edges in $\tau_0(G)$ is greater than 2.

There are two possibilities for P in depending on d.

1. $d \equiv 2 \pmod{4}$. According to [36], P is also a Sylow p-subgroup of the ambient group $\text{GL}_n(q^2)$. Because P is cyclic, we conclude that $n/2 < s = d/2 \leq n$. In particular, $s \geq 3$.

The group $\text{GU}_s(q^2) \times \text{GU}_{n-s}(q^2)$ is embedded into $\text{GU}_n(q^2)$, and P can be chosen in the left upper corner $G_s = \text{GU}_s(q^2)$. As well as for symplectic groups, it is easy to show that the number of edges $e_0(G) \geq e_0(G_s) = |N_{G_s}(P)/C_{G_s}(P)| \geq s$, as desired.

2. $d \equiv 0, 1, 3 \pmod{4}$. Let $n = 2m + \varepsilon$, where $\varepsilon = 0, 1$. According to [36], the order of P equals the order of a Sylow p-subgroup P' of $\text{GL}_m(q^2)$. If $\varepsilon = 0$, then choosing $W = \left(\begin{smallmatrix} I_m & 0_m \\ 0_m & I_m \end{smallmatrix} \right)$, we obtain the embedding from $\text{GL}_m(q^2)$ into $\text{GU}_n(q^2)$, which sends A to $\left(\begin{smallmatrix} A & 0_m \\ 0_m & A^{-1} \end{smallmatrix} \right)$. And a similar embedding takes place for $\varepsilon = 1$ if we add 1 to the lower right corner of W.

We first consider the case when d is odd; hence, $s = d > 2$. Because P' is cyclic and non-trivial, we conclude that $m/2 < s \leq m$. As above, to estimate $e_0(G)$, we may assume that $n = 2d$. Choose an element in $\text{GL}_d(q^2)$ which acts by conjugation on P' as an automorphism of order s. By multiplying by a constant we may assume that this element has determinant 1. Expanding diagonally, we conclude that $e \geq s > 2$, as desired.

It remains to consider the last case when d is divisible by 4. In this case, $d = 2s$. If $d > 4$, then, using the diagonal embedding, we conclude that $e \geq s > 2$.

Finally, if $d = 4$, i.e. $G = \text{GU}_4(q^2)$ and $p \mid q^2 + 1$, then the generator $A = \alpha'$ for P' can be chosen such that $A \cdot \alpha'^{t} = I_2$. As above, using the diagonal embedding we obtain that $e \geq 2$. But also the matrix W normalizers P, hence $e \geq 4$, as desired. \qed
4.4. Orthogonal groups in odd dimension. Let $n = 2m + 1$, where $m \geq 1$, and let V be an n-dimensional vector space over \mathbb{F}_q. The general orthogonal group $GO_n(q)$ consists of invertible matrices of order n which preserve a scalar product given by a matrix W, i.e. $A \in GO_n(q)$ if and only if $AWA^t = W$. For instance, we may take $W = \begin{pmatrix} 0 & I_m & 0 \\ I_m & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. It gives the embedding

$$\text{GL}_m(q) \to GO_{2m+1}(q), \ A \mapsto \begin{pmatrix} A & 0 & 0 \\ 0 & A^{-1} & 0 \\ 0 & 0 & I \end{pmatrix}.$$

The group $GO_n(q)$ contains a special orthogonal group $SO_n(q)$, consisting of matrices with determinant 1. The derived subgroup of $SO_n(q)$ is denoted by $\Omega_n(q)$.

If q is even, then $\Omega_{2m+1}(q) \cong \text{PSp}_{2m}(q)$ for any $m \geq 1$. If q is odd, then $\Omega_3(q) \cong \text{PSL}_2(q)$ and $\Omega_5(q) \cong \text{PSp}_4(q)$, according to [27, p. 43].

Thus, it suffices to consider the groups $\Omega_{2m+1}(q)$ for odd q and $m \geq 3$. They are all simple, and the order is

$$|\Omega_{2m+1}(q)| = \frac{1}{2} \cdot q^{m^2} \cdot (q^2 - 1) \cdot (q^4 - 1) \cdots (q^{2m} - 1).$$

Lemma 11. Suppose that $G = GO_{2m+1}(q)$ and $H = SO_{2m+1}(q)$, where q is odd. Suppose that Sylow p-subgroup P of H is cyclic and non-trivial, and that p does not divide q. Then the Brauer trees of the principal blocks of G and H are the same.

Proof. Since $\tau_0(H)$ is similar to $\tau_0(G)$ by Lemma 1, it is sufficient to show that $|N_G(P)/C_G(P)| = |N_H(P)/C_H(P)|$.

The equality $|G| = |H|/2$ yields $|N_H(P)| = |N_G(P)|/2$. To deduce the same equality for centralizers of P, it suffices to show that there exists a matrix $Z \in G$ such that $\det(Z) = -1$ and Z centralizes P. One may take $Z = \text{diag}(1,1,\ldots,1,-1)$.

Theorem 3. Let G be one of the groups $\Omega_{2m+1}(q)$, $SO_{2m+1}(q)$ or $GO_{2m+1}(q)$, where $m \geq 3$ and q is odd. Let p be a prime dividing the order of G. Then $G \notin \mathfrak{X}_p$.

Proof. Assume that $G \in \mathfrak{X}_p$. Then a Sylow p-subgroup P of G is cyclic, and $p \nmid q$.

Since all indices in the normal series $\Omega_n(q) \subset SO_n(q) \subset GO_n(q)$ are equal to 2, the Brauer trees of the principal blocks of these groups are similar to each other. Moreover, by Lemma 11, the principal blocks of $SO_n(q)$ and $GO_n(q)$ have the same Brauer trees. Further, since this tree is a line (by Lemma 8), it suffices to show that the number e of edges in $\tau_0(GO_n(q))$ is larger than 4, or equals 4 but the exception vertex is not in the center.

Write $d = \text{ord}_p(q)$.

(1) Even d. In this case, P can be chosen as a subgroup of the ambient group $\text{GL}_{2m}(q)$. Because P is cyclic and non-trivial, we obtain $m < d \leq 2m$; hence, $d > 3$. Using [36, Lemma 4.5], we derive that $e \geq d$. Thus, if $m \geq 4$, then $d \geq 6$ implies $e \geq 6$, a contradiction.

Consider the remaining case $m = 3$ and $d = 4$, i.e. $G = \text{SO}_7(q)$, where $p \mid q^2 + 1$. Using [7, p. 466–467], we can calculate the Brauer tree of the principal block. It has the following shape, where the numbers near vertices show the degrees and parameterization symbols of characters.

\[
\begin{array}{cccccc}
1 & q^2(q^4+q^2+1) & q^4(q^3+1)(q+1)/2 & (q^6-1)(q^2-1) & q^4(q^3-1)(q-1)/2 \\
\left(\begin{smallmatrix} 3 \\ 0 \end{smallmatrix}\right) & \left(\begin{smallmatrix} 0 \\ 2 \end{smallmatrix}\right) & \left(\begin{smallmatrix} 0 \\ 1 \\ 3 \end{smallmatrix}\right) & \left(\begin{smallmatrix} 0 \\ 1 \\ 2 \end{smallmatrix}\right)
\end{array}
\]
The character degrees are comparable with $1, -1, 1, 4, 1$ modulo p; therefore, the second on the right character is exceptional (see [12, Theorem 7.2.16]).

(2) Odd d. In this case, the order of P equals the order of a Sylow p-subgroup P' of $GL_m(q)$. Thus, P is the image of P' via the embedding (3).

Since P is cyclic, we conclude that $m/2 < d \leq m$; hence, $d \geq 3$. Calculating the normalizer of P' in $GL_d(q)$, we get $e \geq d$. If $m > 5$, then $d > 3$ that gives the desired.

Now consider the remaining cases with $3 \leq m \leq 5$ and $d = 3$ (i.e. $p \mid q^2 + q + 1$). It follows from Lemma 7 that the number of edges $e_0(G)$ in the principal block of $G = SO_{2m+1}(q)$ depends on d only. For instance, we may take $q = 3$ and $p = 13$. A calculation in GAP [15] gives $e_0(G) = |N_G(P)/C_G(P)| = 6$ for $m = 3, 4, 5$.

\[\square\]

4.5. Orthogonal groups in even dimension. Write $n = 2m$, where $m \geq 1$. A general orthogonal group $GO_n^\pm(q)$ consists of invertible matrices of order n, preserving the quadratic form correspondingly $Q^{(+)} = (0 \quad I_m)$ and $Q^{(-)} = (0 \quad I_{m-1} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad a \quad b)$, where $a = \gamma + \gamma^\alpha$, $b = \gamma^{q + 1}$, and γ is a primitive element of \mathbb{F}_q^2. The corresponding bilinear form for $Q^{(\pm)}$ is $W = Q + Q^T$.

The conformal orthogonal group $CO_n^\pm(q)$ consists of invertible matrices which preserve this form up to a multiplicative constant. The special orthogonal group $SO_n^\pm(q)$ is a subgroup of $GO_n^\pm(q)$ of matrices with determinant 1. The conformal special orthogonal group $CSO_{2m}^\pm(q)$ consists of matrices A such that the multiplicative constant $\lambda = \lambda(A)$ satisfies $\lambda^m = \det A$ (see [30, p. 13]).

For odd q, we have the following diagram of normal subgroups of $CO_n^\pm(q)$.

\[\begin{array}{c}
CO_n^\pm(q) \\
CSO_n^\pm(q) \\
GO_n^\pm(q) \\
SO_n^\pm(q) \\
\Omega_n^\pm(q)
\end{array}\]

For even q, we have $GO_n^\pm(q) \cong SO_n^\pm(q)$ and $CO_n^\pm(q) \cong CSO_n^\pm(q)$.

The centre Z of $\Omega_n^\pm(q)$ consists of scalar matrices, and $|Z| = (4, q^m - 1)/2$. The factor group $P\Omega_{n}^\pm(q) = \Omega^\pm(q)/Z$ is called a projective orthogonal group. It has the following order.

$$|P\Omega_{2m}^\pm(q)| = \frac{1}{(4, q^m - 1)} \cdot q^{m(m - 1)/2} \cdot (q^m + 1) \cdot \prod_{i=1}^{m-1}(q^{2i} - 1).$$

Note (see [27, p. 43]) that the group $\Omega_2^\pm(q)$ is isomorphic to the dihedral group $D_{2(q-1)}$, which is solvable.

Further, the group $P\Omega_{2m}^\pm(q) \cong 2.(PSL_2(q) \times PSL_2(q))$ is not simple. The simple groups $P\Omega_4^\pm(q) \cong PSL_2(q^2)$ have been already considered.

If $m \geq 3$, all groups $P\Omega_{2m}^\pm(q)$ are simple. We already know the answer for $P\Omega_6^+(q) \cong PSL_4(q)$ and $P\Omega_6^-(q) \cong PSU_4(q^2)$. Thus, it is remaining to consider the groups with $m \geq 4$.
Theorem 4. Let G be one of groups $\mathrm{PO}_m^\pm(q)$, $\Omega_m^\pm(q)$, $\mathrm{SO}_m^\pm(q)$, $\mathrm{GO}_m^\pm(q)$, where $m \geq 4$, and let p be a prime dividing the order of G. Then $G \notin \mathcal{X}_p$.

Proof. As usual, we exclude the case $p = 2$, and also when p divides q or $q - 1$. Thus, we may assume that $d \geq 2$, and a Sylow p-subgroup P of G is cyclic and non-trivial.

First, assume that q is odd. By Fact 8, $\tau_0(\mathrm{CSO}_n^+(q))$ is a line. By Lemma 1, the Brauer trees of the principal blocks of $\mathrm{SO}_n^+(q)$ and $\Omega_n^+(q)$ are similar to $\tau_0(\mathrm{CSO}_n^+(q))$, hence they are lines, too. Moreover, $\tau_0(\mathrm{GO}_n^+(q)) = \tau_0(\mathrm{SO}_n^+(q))$, because they have the same number of edges. Also $\tau_0(\mathrm{PO}_n^+(q))$ coincide with $\tau_0(\Omega_n^+(q))$ because $Z \subseteq O_p(\Omega_n^+(q))$. Therefore, $e_0(\mathrm{GO}_n^+(q)) > 4$ implies $e_0(\mathrm{PO}_n^+(q)) > 2$.

Now assume that q is even. Then $\mathrm{PO}_n^+(q) \cong \Omega_n^+(q)$. By Fact 8, the Brauer tree of the principal block of $\mathrm{GO}_n^+(q) \cong \mathrm{SO}_n^+(q)$ is a line. And, by Fact 1, the tree $\tau_0(\Omega_n^+(q))$ is similar to $\tau_0(\mathrm{GO}_n^+(q))$.

Thus, for both odd and even q, it suffices to show that the number of edges in $\tau_0(\mathrm{GO}_n^+(q))$ exceeds 4.

We first consider the group $G = \mathrm{GO}_n^+(q)$. Since a Sylow p-subgroup P of G is cyclic, it gives that $d \leq 2m - 2$. According to [36, Table 1], we have the following possibilities for P.

(1.1) *Odd d. Then P can be chosen in $\GL_m(q)$. Since P is non-trivial and cyclic, we obtain $m/2 < d \leq m$. Using the diagonal embedding $A \mapsto \begin{pmatrix} A & 0 \\ 0 & A^{-1} \end{pmatrix}$ from $\GL_m(q)$ into $\GL_2^m(q)$, we obtain $e \geq d$.

If $m \geq 8$, then $e > 4$, as desired. Since $e \geq d$, it remains to consider only cases when $d = 3$ and $m \in \{4, 5\}$. By Lemma 7, the shape of $\tau_0(\mathrm{GO}_n^+(q))$ depends only on d and m. Taking $p = 7$ and $q = 2$, we have found with GAP that $e = 6$ for both $m \in \{4, 5\}$.

(1.2) *Even d is even*. The inequality $d \leq 2m - 2$ implies that the integer part of the fraction $d/2m$ equals zero; hence, P can be chosen as a subgroup of $\GL_2^m(q)$. Since P is cyclic and non-trivial, we obtain $m < d$. Now, using [36, Lemma 4.6], we get $e \geq d$. Then $d > 4$ yields $e > 4$, as desired.

Now consider $G = \mathrm{GO}_n^-(q)$. Since a Sylow p-subgroup P of G is cyclic, we have $2 \leq d \leq 2m$. Notice that $d = 2m$ may occur, when $p \mid q^n + 1$. We will consider possibilities for P, according to [36, Table 1].

(2.1) *Odd d. Then P can be chosen as a subgroup of $\GL_{m-1}(q)$. Since P is cyclic, we conclude that $(m - 1)/2 < d$. By [36, Lemma 4.6], we have $e \geq d$.

If $m \geq 7$, then $e \geq d \geq 5$, as desired. We should consider only $m \in \{4, 5, 6\}$ and $d = 3$. In all these cases, we have found with GAP that $e = 6$.

(2.2) *Even d. This case splits into two subcases.*

If the integer part of $d/2m$ is odd, then $d \leq 2m$ yields $d = 2m$. From [36, Table 1] we see, that P can be chosen as a subgroup of $\GL_{2m}(q)$. Since P is cyclic, we conclude that $m < d$ yields $d \geq 5$. Using [36, Lemma 4.6], we conclude that $e \geq d \geq 5$, as desired.

Otherwise, the integer part of $d/2m$ is zero. Hence, P can be chosen as a subgroup of $\GL_{2m-2}(q)$. Since P is cyclic, we get $m - 1 < d$. If $m > 4$, it follows from [36, Lemma 4.6] that $e \geq d > 4$.

For the remaining case when $m = d = 4$, we have found with GAP that the number of edges in the principal blocks of both groups $\mathrm{GO}_8^-(q)$ and $\mathrm{PO}_8^-(q)$ are equal 4. This completes the proof. \qed
5. Exceptional groups of Lie type

In this section, we consider the finite exceptional groups of Lie type, namely E_6, E_7, E_8, F_4, G_2 and twisted groups 2B_2, 3D_4, 2E_6, 2F_4, 2G_2. The last two types are called Ree groups. The groups of the type 2B_2 are known as Suzuki groups.

All these groups are simple except $G_2(2)$ and $^2F_4(2)$. The group $G_2(2)$ has order $2^6 \cdot 3^3 \cdot 7$, and its derived subgroup $G_2(2)' \cong \text{PSU}(3, 3)$ is simple of order $2^2 \cdot 3^3 \cdot 7$.

The group $^2F_4(2)$ has the derived subgroup $^2F_4(2)'$ which is simple and called the Tits group.

Proposition 9. Let $G = ^2F_4(2)'$ and p divides $|G|$. Then $G \not\in \mathcal{X}_p$.

Proof. The order of G is $2^{11} \cdot 3^3 \cdot 5^2 \cdot 13$. Since G contains maximal subgroups $\text{PSL}(3, 3).C_2$ and $\text{PSL}(2, 25)$ (see [7, p. 74]), we conclude that a Sylow p-subgroup of G is not cyclic for $p = 2, 3, 5$.

If $p = 13$, then it follows from decomposition matrices [2] that $\tau_0(G)$ is not a star. □

Proposition 10. Let G be a simple group of any type 3D_4, E_6, 2E_6, E_7, E_8, F_4, 2F_4 or G_2. Then $G \not\in \mathcal{X}_p$ for any p dividing the order of G.

Proof. Assume that $G \in \mathcal{X}_p$ for some p dividing $|G|$. Then Sylow p-subgroup P of G is cyclic and $p \nmid q$. Let $d = \text{ord}_p(q)$. In particular, d divides $p - 1$. We will consider groups from the list one by one.

1. Let $G = ^3D_4(q)$, where q is a prime power. It has the order

$$|^3D_4(q)| = q^{12}(q^2 - 1)^2(q^4 - q^2 + 1)(q^4 + q^2 + 1)^2.$$

Since P is cyclic, it follows from [10, Prop. 5.6c and Table 1.1] that P is a subgroup of the maximal torus $T_5 = C_{q^4 - q^2 + 1}$, i.e. p divides $q^4 - q^2 + 1$. In this case according to [17, p. 3265], the Brauer tree of B_0 is a line with 4 edges; hence, $\tau_0(G)$ is not a star, a contradiction.

2. Let $G = E_6(q)$. Looking at the order

$$|E_6(q)| = \frac{1}{(3, q - 1)} \cdot q^{36}(q^2 - 1)(q^5 - 1)(q^6 - 1)(q^8 - 1)(q^9 - 1)(q^{12} - 1),$$

we see that the possible values for d are $1, \ldots, 6, 8, 9, 12$.

If $p = 3$, then p divides either $q + 1$ or $q - 1$. According to [9, p. 897], G contains the maximal torus $C_{q + 1} \times C_{q - 1}$, so Sylow 3-subgroups of G are not cyclic.

Assume now that $p > 3$. If $d \in \{1, 6\}$, then by [24, Theorem 3.1] there are no unipotent blocks with cyclic defect group. Note that the principal p-block is always unipotent, and its cyclic defect group is a Sylow p-subgroup of G.

For $d \in \{3, 4, 5, 8, 9, 12\}$, according to [24, Theorem 3.1], there are no unipotent blocks whose Brauer tree is a star.

If $d = 2$, then $p \mid q + 1$. In this case, P is not cyclic because G contains a subgroup which is isomorphic to $C_{q + 1} \times C_{q + 1}$.

3. Let $G = ^2E_6(q)$. Since

$$|^2E_6(q)| = \frac{1}{(3, q + 1)} \cdot q^{36}(q^2 - 1)(q^5 + 1)(q^6 - 1)(q^8 - 1)(q^9 + 1)(q^{12} - 1),$$

the possible values for d are $1, 2, 3, 4, 6, 8, 10, 12, 18$.

13
Again we first consider the case \(p > 3 \). If \(d \in \{2, 3\} \), by [25, Theorem 2.2] the group \(G \) has no unipotent blocks with cyclic defect group. If \(d \in \{4, 6, 8, 10, 12, 18\} \), then there are no unipotent blocks whose Brauer tree is a star and whose defect group is cyclic.

Finally, assume that \(d = 1 \), i.e. \(p | q - 1 \). According to [9, p. 903], the maximal tori of \(G \) can be obtained from the corresponding list for \(E_6(q) \) by a formal substitution \(q \mapsto -q \).

It follows from [9, p. 897] that \(G \) contains the maximal torus \(T_{11} = C_{q^2-1} \times C_{q^4-1} \). Therefore, \(P \) is not cyclic.

Thus, it remains to consider the case \(p = 3 \). Since \(q \equiv \pm 1 \ (\text{mod } 3) \), we conclude that \(P \) is not cyclic by considering the same torus as above.

(4) Let \(G = E_7 \). Since

\[
|E_7(q)| = \frac{1}{(2, q - 1)} \cdot q^{63}(q^2 - 1)(q^6 - 1)(q^8 - 1)(q^{10} - 1)(q^{12} - 1)(q^{14} - 1)(q^{18} - 1),
\]

the possible values for \(d \) are \(1, \ldots, 10, 12, 14, 18 \).

If \(d \in \{5, 7, 8, 9, 10, 12, 14, 18\} \), then it follows from [18, Theorem 12.6, and remark on p. 2970] that all unipotent blocks with cyclic defect group have Brauer tree in the shape of a line of length \(e \geq 4 \).

For remaining values of \(d \), considering the maximal tori of \(G \), it is easy to see that a Sylow \(p \)-subgroup of \(G \) is not cyclic. Indeed, we can take the torus \(T_{10} = C_{q-1} \times C_{q^2-1} \) (see [9, p. 898]) for \(d \in \{1, 3\} \), the torus \(T_6 = C_{q-1} \times C_{q+1} \times C_{q^2-1} \) for \(d = 2 \), and \(T_{28} = C_{(q-1)(q^2+1)} \times C_{q^2-1} \times C_{q^2+1} \) for \(d = 4 \). Finally, for \(d = 6 \) replacing \(q \) by \(-q\) in \(T_{10} \), we see that the group contains the torus \(C_{q+1} \times C_{q^2+1} \).

Note that the case \(p = 3 \), when either \(p | q + 1 \) or \(p | q - 1 \), is already included into consideration above.

(5) Let \(G = E_8 \). The order is

\[
|E_8(q)| = q^{120}(q^2 - 1)(q^8 - 1)(q^{12} - 1)(q^{14} - 1)(q^{18} - 1)(q^{20} - 1)(q^{24} - 1)(q^{30} - 1).
\]

Hence the possible values for \(d \) are \(1, \ldots, 10, 12, 14, 15, 18, 20, 24, 30 \).

If \(d \in \{7, 9, 14, 15, 18, 20, 24, 30\} \), then it follows from [18, Thm. 12.7] that the Brauer trees of all unipotent blocks with cyclic defect group are not stars.

For remaining values of \(d \), a Sylow \(p \)-subgroup of \(G \) is not cyclic because \(G \) contains the following tori (see [9, p. 899–901]): \(T_{34} = C_{(q+1)(q^2-1)} \) for \(d = 1, 2, 3 \); \(T_{36} = C_{q^2-1} \) for \(d = 4 \); \(T_{57} = C_{q^4+q^3+q^2+q+1} \) for \(d = 5 \); \(T_{61} = C_{q^4+1} \) for \(d = 8 \); and \(T_{67} = C_{q^3-q^2+1} \) for \(d = 12 \). For \(d = 6 \), we can take the torus \(C_{(q^4-q^2+1)(q^2-q-1)} \times C_{q^2-q+1} \) that obtained from \(T_{62} \) by plugging \(q \mapsto -q \). And for \(d = 10 \), we obtain the torus \(C_{q^4-q^3+q^2-q+1} \) from \(T_{57} \) by the same substitution.

(6) Let \(G = F_4(q) \). Then

\[
|F_4(q)| = q^{24}(q - 1)^4(q + 1)^4(q^2 - q + 1)(q^2 + 1)^2(q^2 + q + 1)(q^4 - q^2 + 1)(q^4 + 1)(q^4 + q^2 + 1),
\]

the possible values for \(d \) are \(1, 2, 3, 4, 6, 8, 12 \).

First assume that \(p > 3 \). If \(d \in \{1, 2, 3, 6\} \), then it follows from [25, Theorem 2.1] that there are no unipotent blocks with cyclic defect group. If \(d \in \{4, 8, 12\} \), then by the same reference the Brauer tree of unipotent blocks is not a star.
Now suppose that \(p = 3 \). It follows from [19, Table 4.7.3] that \(G \) has three conjugacy classes of 3-elements. Hence, Sylow 3-subgroups of \(G \) are not cyclic.

(7) Let \(G = 2F_4(q^2) \), where \(q^2 = 2^{2n+1} \), \(n > 0 \). Then \(G \) is a simple group of the order
\[
q^{24}(q^2 - 1)^2(q^2 + 1)^2(q^4 - q^2 + 1)(q^4 + 1)^2(q^4 \pm \sqrt{2}q^3 + q^2 \pm \sqrt{2}q + 1).
\]

If \(P \) is cyclic, then it follows from [23, Section 4.2] that \(p > 3 \) and \(p \) divides \(q^4 - q^2 + 1 \) or \(q^4 \pm \sqrt{2}q^3 + q^2 \pm \sqrt{2}q + 1 \). According to [23, Theorems 4.5–4.7], in each of these cases \(\tau_0(G) \) is not a star.

(8) Let \(G = G_2(q) \), where \(q \geq 3 \). This group is simple, and its order is
\[
|G_2(q)| = q^6(q^2 - 1)(q^2 - q + 1)(q^2 + q + 1).
\]

If \(p \) divides \(q \pm 1 \), then the Sylow \(p \)-subgroup of \(G \) is not cyclic, because \(G \) contains the tori \(C_2^2 \) (see [34, p. 1902]).

Suppose that \(p \) divides \(q^2 \pm q + 1 \). If \(p \neq 3 \), then by [35, p. 380–381] \(\tau_0(G) \) is not a star.

Now assume that \(p = 3 \). If \(3 \) divides \(q^2 + q + 1 \), then \(q \equiv 1 \pmod{3} \), and this case has been already considered above. Similarly, \(3 | q^2 - q + 1 \) leads to \(3 | q + 1 \).

\[\Box \]

Now consider the series of groups \(2G_2(q^2) \), where \(q^2 = 3^{2n+1} \). They are simple if and only if \(n \geq 1 \). The order is
\[
|2G_2(q^2)| = q^6(q^2 - 1)(q^2 + 1) = q^6(q^2 - 1)(q^2 + 3q + 1)(q^2 - \sqrt{3}q + 1).
\]

Proposition 11. Let \(G = 2G_2(q^2) \), where \(q^2 = 3^{2n+1} \), \(n \geq 1 \). Then \(G \in \mathcal{X}_p \) if and only if \(p > 2 \) and \(p \) divides either \(q^2 - 1 \) or \(q^2 + \sqrt{3}q + 1 \).

Proof. Again we may assume that \(p \nmid q \) and \(p > 2 \). According to [23, Theorems 4.1-4.4], if \(p \) divides \(q^2 + 1 \) or \(q^2 - \sqrt{3}q + 1 \), then \(P \) is cyclic and \(\tau_0(G) \) is a star. If \(p \) divides \(q^2 + \sqrt{3}q + 1 \) or \(q^2 - 1 \), then \(P \) is cyclic, but \(\tau_0(G) \) is not a star.

\[\Box \]

Finally, we will consider the Suzuki groups \(2B_2(q) \).

Proposition 12. Let \(G = 2B_2(q) \), where \(q = 2^{2n+1} \), \(n \geq 1 \), and let \(r = 2^{n+1} \). Then \(G \in \mathcal{X}_p \) if and only if \(p \) divides either \(q - 1 \) or \(q + r + 1 \).

Proof. Since \(r^2 = 2q \), the order of \(G \) can be written as
\[
|G| = q^2(q^2 + 1)(q - 1) = q^2(q + r + 1)(q - r + 1)(q - 1).
\]

It is known that \(|G| \) is not divisible by 3, and that a Sylow \(p \)-subgroup of \(G \) is cyclic for \(p > 3 \). The tree \(\tau_0(G) \) is described in [6]. It is a star when \(p \) divides either \(q - 1 \) or \(q + r + 1 \), and it is not a star when \(p \) divides \(q - r + 1 \).

\[\Box \]

The work was supported by Russian Science Foundation (grant 18-71-10007).
References

[1] M.I. Alali, C. Hering, A. Neumann, A Number Theoretic Approach to Sylow r-Subgroups of Classical Groups. Revista Matematica Complutense, 18(2) (2005), 329–338.
[2] T. Breuer et al., The Modular Atlas Homepage: Decomposition Matrices, http://www.math.rwth-aachen.de/homes/MOC/decomposition/.
[3] Y. Benson, Representations and Cohomology. I, Cambridge Studies in Advanced Mathematics, Vol. 30, 1995.
[4] H.I. Blau, On Brauer stars. J. Algebra 90 (1984), 169–188.
[5] R. Burkhardt, Die Zerlegungsmatrizen der Gruppen PSL(2, pf). J. Algebra 40 (1976), 75–96.
[6] R. Burkhardt, Über die Zerlegungszahlen der Suzukigruppen Sz(q). J. Algebra 59(2) (1979), 421–433.
[7] R.W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley and Sons, 1985.
[8] J.H. Conway (et al.), Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, 1985.
[9] D.I. Deriziotis, A.P. Fakiolas, The maximal tori in the finite Chevalley groups of type E6, E7 and E8, Comm. Algebra, 19(3) (1991), 889–903.
[10] D.I. Deriziotis, G.O. Michler, Character tables and blocks of finite simple triality groups 3D4(q), Trans. Amer. Math. Soc., 303(1) (1987), 39–70.
[11] L. Dornhoff, Group Representation Theory (in 2 parts), Marcel Dekker Inc., 1971.
[12] W. Feit, Possible Brauer trees. Illinois J. Math. 28 (1984), 43–56.
[13] P. Fong, B. Srinivasan, Blocks with cyclic defect groups in GL(n, q). Bull. Amer. Math. Soc. 3 (1980), 1041–1044.
[14] P. Fong, B. Srinivasan, Brauer trees in classical groups. J. Algebra 131 (1990), 179–225.
[15] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021, http://www.gap-system.org.
[16] M. Geck, Irreducible Brauer characters of the 3-dimensional unitary group in non-defining characteristic. Comm. Algebra, 18(2) (1990), 563–584.
[17] M. Geck, Generalized Gelfand–Graev characters for Steinberg’s triality groups and their applications, Comm. Algebra, 19(12) (1991), 3249–3269.
[18] M. Geck, Brauer trees of hecke algebras. Comm. Algebra, 20, no. 10, 1992, pp. 563–584.
[19] D. Gorenstein, R. Lyons, R. Solomon, The Classification of Finite Simple Groups, number 3, Math. Surveys Monogr., Amer. Math. Soc., 1998.
[20] R. Gow, Products of two involutions in classical groups of characteristic 2, J. Algebra, 71 (1981), 583–591.
[21] G. Hiss, A converse to the Fong-Swan-Isaacs theorem, J. Algebra, 111 (1987), 279–290.
[22] G. Hiss, K. Lux, Brauer Trees of Sporadic Groups, Clarendon Press, Oxford, 1989.
[23] G. Hiss, The Brauer trees of the Ree groups. Comm. Algebra 19(3) (1991), 871–888.
[24] G. Hiss, F. Lübeck, G. Malle, The Brauer trees of the exceptional Chevalley groups of type E6, Manuscripta Math., 87(1) (1995), 131–144.
[25] G. Hiss, F. Lübeck, The Brauer trees of the exceptional Chevalley groups of types F4 and 2E6, Arch. Math., 70(1) (1998), 16–21.
[26] B. Huppert, Endliche Gruppen I. Berlin-Heidelberg-New York : Springer, 1967.
[27] P. Kleidman, M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lect. Notes Series, Vol. 129, 1990.
[28] A. Kukharev, G. Puninski, Serial group rings of finite groups. General linear and close groups. Algebra Discrete Math. 20(1) (2015), 259–269.
[29] A.V. Kukharev, G.E. Puninski, Serial group rings of finite groups. Sporadic simple groups and Suzuki groups. J. Math. Sci. 219 (2016), 539–552.
[30] M. Livsley, On Rouquier blocks for finite classical groups at linear primes, J. Algebra, 432 (2015) 91–128.
[31] N. Naehrig, A construction of almost all Brauer trees, J. Group Theory, 11 (2008), 813–829.
[32] G.R. Robinson, Some uses of class algebra constants, J. Algebra, 91, (1984), 64–74.
[33] M. Sawabe, A. Watanabe, *On the principal blocks of finite groups with abelian Sylow \(p \)-subgroups*, J. Algebra, 237 (2001), 719–734.

[34] J. Shamash, *Blocks and Brauer trees in the group \(G_2(q) \) for primes dividing \(q \pm 1 \)*, Comm. Algebra, 17(8) (1989), 1901–1949.

[35] J. Shamash, *Brauer trees for blocks of cyclic defect in the group \(G_2(q) \) for primes dividing \(q^2 \pm q + 1 \)*, J. Algebra, 123(2) (1989), 378–396.

[36] M. Stather, *Constructive Sylow theorems for the classical groups*, J. Algebra 316 (2007), 536–559.

[37] W. Willems, A.E. Zalesski, *Quasi-projective and quasi-liftable characters*, J. Algebra, 442(15) (2015), 548–559.

Siberian Federal University, Krasnoyarsk, Russia
Email address: kukharev.av@mail.ru