Experimental Fault-Tolerant Quantum Cryptography in a Decoherence-Free Subspace

Qiang Zhang,1,2 Juan Yin,1 Teng-Yun Chen,1 Shan Lu,1 Jun Zhang,1 Xiao-Qiang Li,1 Tao Yang,1 Xiang-Bin Wang,3 and Jian-Wei Pan1,2
1Hefei National Laboratory for Physical Sciences at Microscale & Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
2Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, 69120 Heidelberg, Germany
3Imai Quantum Computation and Information Project, ERATO, JST, Daini Hongo White Building 201,5-28-3, Hongo, Bunkyo, Tokyo 113-0033, Japan

We experimentally implement a fault-tolerant quantum key distribution protocol with two photons in a decoherence-free subspace (DFS). It is demonstrated that our protocol can yield good key rate even with large bit-flip error rate caused by collective rotation, while the usual realization of BB84 protocol cannot produce any secure final key given the same channel. Since the experiment is performed in polarization space and does not need the calibration of reference frame, important applications in free-space quantum communication are expected. Moreover, our method can also be used to robustly transmit an arbitrary two-level quantum state in a type of DFS.

PACS numbers: 03.67.Pp, 03.67.Dd, 03.67Hk

Quantum key distribution (QKD) can help two remote parties to accomplish unconditionally secure communications which is an impossible task by any classical method. The security of QKD is guaranteed by known principles of quantum mechanics rather than the assumed computational complexity in classical secure communication. Since the first QKD protocol proposed by Bennett and Brassard in 1984 (BB84 protocol), much work has been done in the field. In recent years, numerous modified protocols have been proposed and experimentally realized, e.g. the single-photon realizations in either phase-coding or polarizations, the realizations with entangled photon pairs and so on.

While each protocols or the physical realizations may have its own advantage, there are still some limitations for QKD in practice. In certain cases, we have no way to use the optical fibers and the task has to be done in free space, for example, if we want to carry out secure communications between a fixed station on the earth and a moving object such as an airplane or satellite in the space. Photon polarization is a natural candidate for the QKD in free space, but the communicating parties must share a common reference frame for spatial orientation so that they can prepare and measure the photon polarization in the same reference frame. Sometimes, it could well be the case that the two parties have a relative instantaneous rotation, for example during the quantum key distribution between a swinging airplane and the earth. Moreover, in some other cases the channel may also rotate the photon polarization. Consequently, the two parties will no more share the same reference frame from a passive perspective. These practical disadvantages could bring significant error rate to the protocol if one uses the single-photon polarization as information carrier, in some extreme cases no secure final key can be distilled.

One possible solution to the above problem is to utilize multi-qubit entangled states in a decoherence-free subspace (DFS) where all the states are immune to some kind rotation of reference frame. According to the informatics, the rotation of the reference system can be seen as a collective noise, that is, the random unitary transformation to each qubit is identical. The idea of DFS was proven to be very important in quantum computation and quantum communication.

Very recently, several quantum communication protocols based on DFS have been put forward. Bartlett et.al and Boileau et.al utilize four photons as a logic qubit to perform quantum key distribution. Yet, the four photon entanglement source based on nowadays technology is too poor to be used in long distance communication. Recently, some other protocols have been also put forward where only two photons are used. Two photon entanglement source can be achieved by spontaneous parameter down conversion (SPDC) and it can be bright enough for the mission of quantum key distribution. However, these protocols demand collective measurement of the two photons after the trip through the channel and this kind of measurement demand that the photons interfere with each other.

Another two-photon protocol suggested by one of us has the following properties: While two photons are requested and the scheme only needs local individual measurement. Although the protocol has the drawback that it only applies to the collective random rotation noise, such a situation can be found in many realistic applications such as in free space quantum communication and communication with swinging object. In this letter, we report an experimental realization of such a protocol. It is demonstrated that our experimental method can yield good key rate even with large bit-flip error rate caused by collective rotation, while the usual realization...
of BB84 protocol cannot produce any secure final key given the same channel.

Our experiment exploits the following 4 encoded BB84 states \[|H⟩, |V⟩, |+⟩, |−⟩ \]:

\[
|H⟩ = |φ^+⟩_{12} = \frac{1}{\sqrt{2}}(|H⟩_1|H⟩_2 + |V⟩_1|V⟩_2) \\
|V⟩ = |ψ^−⟩_{12} = \frac{1}{\sqrt{2}}(|H⟩_1|V⟩_2 - |V⟩_1|H⟩_2) \\
|+⟩ = \frac{1}{\sqrt{2}}(|H⟩ + |V⟩) = \frac{1}{\sqrt{2}}(|H⟩_1|+⟩_2 - |V⟩_1|−⟩_2) \\
|−⟩ = \frac{1}{\sqrt{2}}(|H⟩ - |V⟩) = \frac{1}{\sqrt{2}}(|H⟩_1|−⟩_2 + |V⟩_1|+⟩_2).
\] (1)

Here \(|H⟩, |V⟩, |+⟩, |−⟩\) are the same meaning as in BB84 protocol, represent for horizontal, vertical, and diagonal and anti-diagonal polarization states respectively. It is easy to verify, the states \(|ψ^−⟩_{12}\) and \(|φ^+⟩_{12}\) are invariant under the following collective rotation

\[
|H⟩ \rightarrow \cos θ|H⟩ - \sin θ|V⟩ \\
|V⟩ \rightarrow \sin θ|H⟩ + \cos θ|V⟩.
\] (2)

Here, \(θ\) is the collective rotation noise parameter, which is depending on the environment and will fluctuate with time. This invariance implies that all the linear superposition of the two states constitute a subspace that is decoherence free to the collective rotation noise.

The experimental setup of the protocol is sketched in Fig. 1. Type II parametric down-conversion in \(β\)-barium borate (BBO), pumped by a mode-locked femtosecond laser working at wavelength of 394nm and a power of 600mW, produces about 4000 polarization entangled photon pairs per second at 788nm whose state is \(|ψ^−⟩_{12}\), i.e., the state \(|V⟩\) in our protocol. The other three states can be obtained by performing a corresponding local unitary transformation on the state \(|V⟩\).

We use electro-optic modulators controlled by random number generators to realize Alice’s encryption. After the bias voltage and half-wave voltage being carefully calibrated and adjusted, the modulators can translate the photon’s state properly. When the modulators are turned off, they do nothing to the polarization of the photons to be sent. Once switched on, the modulators will change the polarization of the photons like half wave plates. Modulator 1 is set to be 0 degree to its axis, Modulator 2 and 3 are set to be 45 degree and 22.5 degree, respectively. It is easy to show that when modulator 1, 2 are turned on together, the state will be changed from \(|V⟩\) to \(|H⟩\). When modulator 1, 3 are turned on, the state is \(|+⟩\) and when modulator 2, 3 are turned on, \(|−⟩\) is produced. Obviously when all the modulators are switched off, the output state is \(|V⟩\).

Similar to the realization of BB84 protocol, Alice has two random number \(X, Y\). \(X\) is used to choose base and \(Y\) is Alice’s bit value. Alice utilizes the two random number to control the modulators to randomly prepare one of the four encoded states in the DFS. If \(X = 0\), Alice will choose the base \(|{\overline{H}}, V⟩\}. When \(X = 1\), Alice will choose the base \(|{+⟩}, |−⟩\}. If \(Y = 1\), Alice will prepare \(|H⟩\) or \(|+⟩\). Otherwise, she will prepare \(|V⟩\) or \(|−⟩\). Table II describes the process in detail.

The two random numbers are achieved by quantum process of splitting a beam of single photons similar as Jennewein et al. did in their experiment [14]. At first, the two random numbers are stored in a FIFO memory. Then they will be readout and encoded according to table II triggered by a 100kHz clock. In our experiment, the encoding frequency of 100kHz is so high that the probability of more than 1 pair appearing in the same encoding period is small enough to guarantee the security of quantum key distribution.
In order to realize the rotation noise as in Eq. (2), we need to apply a unitary transformation of Eq.(2), if we set the HWP at 0 degree, in front of the \(H \) as assumed in the original protocol. Instead of the collective random rotation of the noise channel. Here, the unitary transformation introduced by the HWPs is slightly different from the noise of collective random rotations as assumed in the original protocol. Instead of the unitary transformation of Eq.(2), if we set the HWP at the angle \(\frac{\theta}{2} \) to its optical axis, the function is as follows:

\[
\begin{align*}
|H\rangle &\Rightarrow \cos \theta |H\rangle - \sin \theta |V\rangle \\
|V\rangle &\Rightarrow -(\sin \theta |H\rangle + \cos \theta |V\rangle).
\end{align*}
\]

In order to realize the rotation noise as in Eq. (2), we further insert an additional HWP \((H_C) \), which is set at 0 degree, in front of the \(H_N \) to correct the minus phase shift in each path.

Since the four encoded states as shown in Eq. (1) are invariant under the collective rotation described above, Bob only needs to use an electro-optic modulator to choose his measurement bases and then let each photon respectively pass through a PBS to perform a polarization measurement (see Fig. 1). In this way, our protocol avoids the collective measurement which needs the two-photon interference. The entangled photon pairs are detected by fiber-coupled single photon detectors. Bob uses another random number generator \(Z \) to control the electro-optic modulator that is set at 22.5 degree. If \(Z = 0 \), he measures photon 1 in the \(\{ |H\rangle, |V\rangle \} \) basis. Otherwise he chooses the \(\{ |+\rangle, |-\rangle \} \) basis. For photon 2, as there is no modulator, it is measured in \(\{ |H\rangle, |V\rangle \} \) basis.

The photons are detected by silicon avalanche photon diodes. When Bob finds that photon 1(D1 or D2) and photon 2(D3 or D4) are simultaneously detected in a coincidence window of 5ms, he will record it as a successful detection event. If D1 and D4 or D2 and D3 fire simultaneously, he will record the bit as “0”. Otherwise he will record as “1”.

The encoding clock can also give a timing signal in a measurement turn. The computer on Bob’s side registers all detection events as time stamps together with measure base information and the detection result. After the key distribution, Bob will declare at what time he get a detection event and his measurement base. And Alice will tell Bob to discard those bits in wrong bases to produce the raw key. Then, they can do error test and final key distillation. As it has been shown in Ref [13], the protocol here can actually be regarded as BB84 protocol with encoding and decoding. Therefore, we only need to check its quantum bit error rate (QBER) after decoding for the security issue, i.e., if the QBER after decoding is less than 11%, then we conclude that we can distill some unconditionally secure final key [4, 17].

Fig. 2 provides QBERs of each state with the same collective random rotation channel and the total error rates. In our two-photon encoding experiment, the rate of the raw keys is about 2000/s. Under different random rotation noise the QBERs are all observed to be less than 11%, which is sufficient to guarantee the absolute security of the protocol. For each experimental point, we spend 50 seconds to collect the raw keys to measure the QBERs, which leads to an error bar of the QBERs of 0.1%. Therefore our protocol indeed always works given whatever unknown collective random rotation noise.

In our experiment, we want to see whether the protocol has advantage to standard realization of BB84 therefore we only need to compare the QBERs of two protocols with the same collective random noise channel. Experimentally, we project photon 2 into the state \(|+\rangle \) as a trigger. Then photon 1 can be treated as a single photon source to be in the state \(|-\rangle \). We use Modulator 1 and 2 to prepare the four encoded single-photon state in

| Table I: Summary of the process of encoding. X denotes the base and Y is the bit value. They are prepared by the random number generator. The two number determine which modulators will be turn on and which state is prepared. |
|---|---|---|---|---|
| | X | Y | Modulator 1 | Modulator 2 | Modulator 3 |
| 0 | 0 | 0 | 0 | 0 | \(|V\rangle\) |
| 0 | 1 | 1 | 1 | 0 | \(|H\rangle\) |
| 1 | 0 | 0 | 1 | 1 | \(|-\rangle\) |
| 1 | 1 | 0 | 1 | 1 | \(|+\rangle\) |
the standard BB_84 protocol. Modulator 4 and the PBS behind are used to perform the necessary polarization measurement on photon 1. The obtained QBERs under different rotation noise is also shown in Fig. 2. The figure shows that as long as $|\theta| \geq \pi/18$, the QBERs of the standard realization of BB_84 are larger than 11%, which consequently leads to the failure of quantum key distribution.

It is important to note that, given perfect source of entangled photon source, modulator and detector, the QBERs of our protocol should approach to 0 at any random collective rotation noise. However, in our two-photon quantum key distribution experiment a significant average QBER of 6% is observed. This is mainly due to the imperfection of our entangle photon source from type II parameter down conversion. As shown in Fig. 3, the visibility of our entangled photon source has a limited visibility of about 88%, which is in good agreement with our observed QBER of 6%

In summary, we have experimentally realized a fault tolerant quantum key distribution protocol in a DFS. As far as we have known, this is the first result of two photon quantum cryptography experiment that conquers the rotation noise with a decoherence free subspace. So far, QECC codes have not been demonstrated by real qubits because they need at least 5 qubits. Here we for the first time demonstrate robust quantum communication of an arbitrary two-level quantum state in a type of decoherence free subspace and we can transmit quantum information robustly.

We thank Yu-Ao Chen for his useful help in picture. This work was supported by the NNSF of China, the CAS, the PCSIRT and the National Fundamental Research Program. This work was also supported by the Marie Curie Excellent Grant of the EU, the Alexander von Humboldt Foundation.
[18] Y.-K. Jiang, X.-B. Wang, B.-S. Shi, A. Tomita, Proceedings of the 12th Quantum Information Technology Symposium (QIT 12), May 12-13, pp 68-73

[19] Recently, we become aware that a different protocol for fault tolerant QKD has been realized by Jiang et al [18].