A Simple Form for the Ground State Rotational Band of even-even Actinide nuclei

Mohamed E. Kelabi, Khaled A. Mazuz, Eman O. Farhat, Howida K. Elgowiry, and Samira E. Abushnag

Department of Physics, Faculty of Science, Al-Fatah University, Tripoli, LIBYA
P.O. Box 13220, Tripoli, LIBYA

Abstract
From Bohr-Mottelson model, a three parametric simple expression for the ground state rotational band of deformed even-even nuclei is deduced by incorporating the variable moment of inertia and the softness parameter. Our obtained results show good agreement with data in comparison with other existing models.

Introduction
The ground state rotational band of deformed nuclei was early described by the semi-classical expression [1]

\[E(I) = \frac{\hbar^2}{2J} I(I+1). \]

(1)

where \(J \) is the nuclear moment of inertia, and \(I \) is the nuclear spin state angular momentum, follows the sequence 0, 2, 4, 6,... with even parity. For relatively high spin states, Eq. (1) shows a higher systematic deviation from the energy spectrum [2]. This deviation can be moderated by adding a correction term to Eq. (1), expressive of rotation-vibration interaction [3], [4]

\[E(I) = A I(I + 1) - B I^2(I + 1)^2 \]

(2)

where \(A (= \hbar^2 / 2J) \) and \(B \) need to be determined from experiment\(^1\). Leaving aside a few very rigid nuclei, Eq (2) shows a noticeable deviation from data and thought as inappropriate to describe rotational energy spectrum [5]. R K Gupta [6] attributed this effect to the variation of moment of inertia \(J \) with nuclear angular momentum \(I \), giving

\[E_I = \frac{\hbar^2}{2J_I} I(I + 1). \]

(3)

\(^1\) The parameter \(B \) is related to the head energies of \(\beta \)- and \(\gamma \)-vibrational bands [4].
By using Taylor expansion of J_I about the ground state value J_0, corresponding to $I = 0$, and incorporating Morinaga’s softness parameter [7]

$$\sigma_n = \frac{1}{n!} \left. \frac{\partial^n J_I}{\partial I^n} \right|_{I=0}, \quad n = 1, 2, 3, \ldots$$ \hspace{1cm} (4)

Gupta could extract from Eq. (3), by keeping the first and the second order of σ_n, the following two expressions:

$$E_I = \frac{AI(I+1)}{1 + \sigma_1I}$$ \hspace{1cm} (5)

$$E_I = \frac{AI(I+1)}{1 + \sigma_1I + \sigma_2I^2}$$ \hspace{1cm} (6)

these are known as NS2 and NS3 models, respectively, where the parameters A, σ_1 and σ_2 can be obtained by fitting with data.

Approach and Formalism

In this work, we combine the effect of variation of the moment of inertia γ with nuclear angular momentum I, and the effect of nuclear rotation-vibration interaction in a simple expression

$$E(I) = \frac{AI(I+1)}{1 + \sigma_1I} - B I^2(I+1)^2.$$ \hspace{1cm} (7)

We further simplify Eq. (7) by expanding the denominator, using the following form of geometric series [8]

$$\frac{1}{1+\sigma_1 I} = \sum_{n=0}^{\infty} (-\sigma_1I)^n, \quad \text{for} \quad |\sigma_1I| < 1.$$

The higher powers of n bear less contribution, we therefore keep only the first two terms for $n < 2$,

$$E(I) = A I(I+1) - A\sigma_1 I^2(I+1) - B I^2(I+1)^2.$$ \hspace{1cm} (8)

By setting $a = A\sigma_1$ we obtain an elegant linear expression

$$E(I) = A I(I+1) - a I^2(I+1) - B I^2(I+1)^2$$ \hspace{1cm} (9)

contains three parameters A, a, and B which can be determined straight forward, using linear method of least squares fitting.

Eq. (9) is our fundamental expression and will be used to calculate the energies of the ground state rotational band of deformed even-even Actinide nuclei.
Results and Comparison
In this section we compare our results with other available calculations, namely:

1) The Exponential model (Expo1) \[9\]

\[
E(I) = \frac{\hbar^2}{2\bar{\epsilon}_0} I(I+1) \exp \left(\Delta \left(1 - \frac{I}{I_c} \right)^{1/2} \right)
\]

2) The Exponential model (Expo2) \[10\]

\[
E(I) = \frac{\hbar^2}{2\bar{\epsilon}_0} I(I+1) \exp \left(\Delta \left(1 - \frac{I}{I_c} \right)^{1/2} \right)
\]

3) The Nuclear Softness model (NS3) \[6\]

\[
E_I = \frac{A I(I+1)}{1 + \sigma_1 I + \sigma_2 I^2}
\]

4) The Variable Moment of Inertia model (VMI) \[11\]

\[
E_I = \frac{I(I+1)}{2\bar{\epsilon}_I} + \frac{1}{2} C (\varphi_I - \varphi_0)^2
\]

In Table 1, we present the result of our calculations tabulated as Linear form of nuclear Rotational and Vibrational interaction (LRV), along with experimental data in comparison other existing models. The corresponding fits of our calculations are given in Table 2. We show in Figure 1, the error of each model relative to experimental data by means of the chi squared per degrees of freedom

\[
\chi^2 = \frac{1}{m-p} \sum_m \left(E_{m,\text{exp}} - E_{m,\text{calc}} \right)^2,
\]

where \(m\) is the number of data points, and \(p\) is the number of free parameters.

Table 1. Energy levels of various calculations in the units of [MeV]. Data taken from \[12\].

	Data	Expo1 \(p=3\)	Expo2 \(p=4\)	NS3 \(p=3\)	VMI \(p=2\)	LRV \(p=3\)	
224Th	\(E(2)\)	0.0981	0.077986	0.093478	0.096672	0.093149	0.09013
	\(E(4)\)	0.2841	0.248133	0.280255	0.28366	0.27952	0.275322
	\(E(6)\)	0.5347	0.496401	0.533632	0.534463	0.531326	0.530558
	\(E(8)\)	0.8339	0.808843	0.836207	0.834347	0.833268	0.836662
	\(E(10)\)	1.1738	1.17149	1.17734	1.17469	1.1762	1.180301
	\(E(12)\)	1.5498	1.5702	1.55136	1.55035	1.55407	1.553987
	\(E(14)\)	1.9589	1.99046	1.95645	1.95824	1.96256	1.956072
	\(E(16)\)	2.398	2.41693	2.39374	2.39668	2.39846	2.390756
	\(E(18)\)	2.864	2.83288	2.86698	2.86489	2.85922	2.868078
$E(I)$	Data	Expo1 $p = 3$	Expo2 $p = 4$	NS3 $p = 3$	VMI $p = 2$	LRV $p = 3$	
-------	------	---------------	---------------	-------------	------------	-----------	
226Th	$E(2)$	0.0722	0.06488	0.072469	0.073562	0.073053	0.071832
	$E(4)$	0.22643	0.208936	0.226514	0.228103	0.229274	0.225487
	$E(6)$	0.4473	0.423293	0.446951	0.44791	0.450497	0.446189
	$E(8)$	0.7219	0.698886	0.72147	0.721218	0.723647	0.721402
	$E(10)$	1.0403	1.02638	1.04026	1.03904	1.03992	1.040833
	$E(12)$	1.3952	1.39605	1.39569	1.39439	1.39317	1.396435
	$E(14)$	1.7815	1.79756	1.7821	1.78178	1.7789	1.782401
	$E(16)$	2.1958	2.21964	2.19563	2.19681	2.19369	2.195168
	$E(18)$	2.6351	2.64958	2.6342	2.63592	2.63486	2.633419
	$E(20)$	3.0971	3.0721	3.0976	3.0962	3.1002	3.098076
228Th	$E(2)$	0.057759	0.056366	0.059189	0.059217	0.058458	0.059108
	$E(4)$	0.186823	0.182303	0.188648	0.188624	0.188576	0.188545
	$E(6)$	0.378179	0.370978	0.37903	0.378884	0.380053	0.379003
	$E(8)$	0.6225	0.615362	0.62084	0.621846	0.623384	0.622164
	$E(10)$	0.9118	0.9081	0.91058	0.91038	0.91107	0.910703
	$E(12)$	1.2394	1.24162	1.23823	1.23825	1.2374	1.238289
	$E(14)$	1.5995	1.60753	1.59966	1.59998	1.59796	1.599578
	$E(16)$	1.9881	1.99675	1.99038	1.99076	1.98927	1.990224
	$E(18)$	2.4079	2.39887	2.40676	2.40639	2.40858	2.406868
230Th	$E(2)$	0.0532	0.051	0.0545	0.0543	0.05473	0.054427
	$E(4)$	0.1741	0.166771	0.1759	0.175577	0.1782	0.175813
	$E(6)$	0.3566	0.343282	0.3578	0.357465	0.36276	0.357707
	$E(8)$	0.5941	0.57629	0.594	0.593827	0.60053	0.59398
	$E(10)$	0.8797	0.86128	0.8788	0.878804	0.884728	0.878825
	$E(12)$	1.2078	1.19335	1.20665	1.20685	1.20986	1.206755
	$E(14)$	1.5729	1.56711	1.57248	1.57275	1.57153	1.572609
	$E(16)$	1.9715	1.97646	1.97147	1.97166	1.9662	1.971543
	$E(18)$	2.3978	2.4142	2.39907	2.39906	2.39097	2.399039
	$E(20)$	2.85	2.871	2.85	2.8508	2.8434	2.850899
	$E(22)$	3.325	3.3358	3.323	3.323	3.3216	3.323246
	$E(24)$	3.812	3.7886	3.812	3.8126	3.8238	3.812526
$E(I)$	Data	$\text{Expo}1\ p=3$	$\text{Expo}2\ p=4$	NS3 $p=3$	VMI $p=2$	LRV $p=3$	
-------	--------	----------------------	----------------------	-----------	-----------	-----------	
232Th							
$E(2)$	0.049369	0.046986	0.051554	0.052111	0.051296	0.051566	
$E(4)$	0.16212	0.1537	0.16614	0.167346	0.167196	0.166222	
$E(6)$	0.3332	0.316576	0.3374	0.338902	0.340785	0.337598	
$E(8)$	0.5569	0.531959	0.5595	0.560796	0.564827	0.559809	
$E(10)$	0.827	0.796087	0.827	0.827747	0.833022	0.827454	
$E(12)$	1.1371	1.10507	1.1353	1.13508	1.14022	1.13562	
$E(14)$	1.4828	1.45483	1.4797	1.47864	1.48228	1.479878	
$E(16)$	1.8586	1.84111	1.8564	1.85473	1.85584	1.856284	
$E(18)$	2.2629	2.25936	2.2618	2.26004	2.25815	2.261381	
$E(20)$	2.6915	2.7047	2.6928	2.6916	2.687	2.692198	
$E(22)$	3.1442	3.1717	3.1467	3.1468	3.1403	3.146247	
$E(24)$	3.6196	3.6543	3.6216	3.6232	3.6166	3.621528	
$E(26)$	4.1162	4.1454	4.1159	4.1187	4.1144	4.116525	
$E(28)$	4.6318	4.6366	4.6291	4.6314	4.6325	4.630209	
$E(30)$	5.162	5.117	5.163	5.159	5.17	5.162035	
234Th							
$E(2)$	0.04955	0.050087	0.049647	0.049329	0.049842	0.049435	
$E(4)$	0.163	0.163789	0.162964	0.162752	0.16383	0.162812	
$E(6)$	0.3365	0.336946	0.336318	0.336555	0.337332	0.336472	
$E(8)$	0.5648	0.564832	0.565063	0.565347	0.564863	0.565271	
$E(10)$	0.843	0.841828	0.842863	0.842452	0.841075	0.842586	
$E(12)$	1.1602	1.16077	1.16023	1.16036	1.16119	1.160311	
230U							
$E(2)$	0.05172	0.051457	0.05271	0.052505	0.05199	0.052136	
$E(4)$	0.1695	0.167754	0.170521	0.170207	0.169995	0.169591	
$E(6)$	0.3471	0.344104	0.347429	0.347228	0.347769	0.346892	
$E(8)$	0.5782	0.57532	0.577644	0.577675	0.578488	0.578065	
$E(10)$	0.8564	0.855654	0.855554	0.855746	0.855978	0.856635	
$E(12)$	1.1757	1.17852	1.17568	1.17582	1.17505	1.175625	
232U							
$E(2)$	0.047572	0.047695	0.048754	0.048399	0.048355	0.048638	
$E(4)$	0.15657	0.155803	0.158395	0.157746	0.158565	0.158166	
$E(6)$	0.3226	0.320368	0.32408	0.323469	0.325521	0.323842	
$E(8)$	0.541	0.537231	0.541061	0.540791	0.543394	0.540928	
$E(10)$	0.8058	0.80197	0.804667	0.804835	0.806704	0.804699	
$E(12)$	1.1115	1.10981	1.11027	1.11072	1.1107	1.110437	
$E(14)$	1.4537	1.4555	1.45326	1.45364	1.45139	1.453432	
$E(16)$	1.8281	1.8331	1.82896	1.82894	1.82546	1.828985	
$E(18)$	2.2315	2.23572	2.23257	2.23216	2.23011	2.232404	
$E(20)$	2.6597	2.6546	2.65898	2.65907	2.66301	2.659005	
Table 1, continued...

$E(J)$	Data	Expo1 $p = 3$	Expo2 $p = 4$	NS3 $p = 3$	VMI $p = 2$	LRV $p = 3$	
234U	$E(2)$	0.043498	0.041039	0.045345	0.045495	0.044399	0.044599
	$E(4)$	0.143351	0.134995	0.146854	0.14715	0.145705	0.145124
	$E(6)$	0.296071	0.279609	0.299674	0.29998	0.299409	0.297353
	$E(8)$	0.49704	0.472491	0.499281	0.499432	0.500305	0.497103
	$E(10)$	0.7412	0.711086	0.741469	0.741344	0.743439	0.740218
	$E(12)$	1.0238	0.99263	1.02234	1.02191	1.02448	1.02258
	$E(14)$	1.3408	1.31408	1.33829	1.33763	1.33977	1.340101
	$E(16)$	1.6878	1.67202	1.68603	1.68533	1.68623	1.688727
	$E(18)$	2.063	2.06249	2.06253	2.06207	2.06129	2.064439
	$E(20)$	2.4642	2.48076	2.46511	2.46277	2.46227	2.463249
236U	$E(2)$	0.045242	0.047315	0.046889	0.046234	0.047318	0.046404
	$E(4)$	0.149476	0.153943	0.152847	0.151405	0.155263	0.151654
	$E(6)$	0.309784	0.315445	0.313739	0.311887	0.318989	0.311999
	$E(8)$	0.52224	0.52748	0.525436	0.523718	0.532918	0.523553
	$E(10)$	0.7823	0.785804	0.783816	0.782695	0.791754	0.782294
	$E(12)$	1.0853	1.08627	1.08476	1.08447	1.09087	1.084063
	$E(14)$	1.4263	1.42481	1.42414	1.42465	1.42637	1.424565
	$E(16)$	1.8009	1.79747	1.79784	1.79886	1.79498	1.799369
	$E(18)$	2.2039	2.20035	2.20173	2.20281	2.19397	2.20391
	$E(20)$	2.6317	2.62965	2.6317	2.63235	2.62101	2.633484
	$E(22)$	3.0812	3.08167	3.0836	3.08355	3.07413	3.083253
	$E(24)$	3.55	3.55274	3.55328	3.55267	3.55165	3.548242
238U	$E(2)$	0.044916	0.046941	0.046355	0.04572	0.047345	0.046329
	$E(4)$	0.14838	0.152766	0.151221	0.149839	0.155232	0.15116
	$E(6)$	0.30718	0.313113	0.310636	0.308893	0.318626	0.310549
	$E(8)$	0.5181	0.523718	0.520622	0.519061	0.531797	0.52053
	$E(10)$	0.7759	0.780406	0.77719	0.776266	0.789364	0.777114
	$E(12)$	1.0767	1.0791	1.07633	1.07627	1.08667	1.076287
	$E(14)$	1.4155	1.41579	1.41402	1.41475	1.41981	1.414014
	$E(16)$	1.7884	1.78658	1.78621	1.7874	1.78554	1.786238
	$E(18)$	2.1911	2.18764	2.18883	2.18998	2.18113	2.188878
	$E(20)$	2.6191	2.61522	2.61778	2.61837	2.60429	2.617829
	$E(22)$	3.0681	3.06564	3.06894	3.06865	3.05308	3.068964
	$E(24)$	3.5353	3.53531	3.53814	3.53708	3.52581	3.538134
	$E(26)$	4.0181	4.02069	4.0212	4.02019	4.02106	4.021166
	$E(28)$	4.517	4.51832	4.51387	4.51473	4.53753	4.513865
	$E(I)$	Data	Expo1 $p = 3$	Expo2 $p = 4$	NS3 $p = 3$	VMI $p = 2$	LRV $p = 3$
----------	--------	----------	---------------	---------------	-------------	-------------	-------------
236Pu	$E(2)$	0.04463	0.045477	0.045059	0.044751	0.04496	0.044898
	$E(4)$	0.14745	0.148921	0.147994	0.147552	0.148339	0.14775
	$E(6)$	0.3058	0.307014	0.3059	0.305695	0.306929	0.305765
	$E(8)$	0.5157	0.516276	0.51551	0.515699	0.516682	0.515586
	$E(10)$	0.7735	0.773025	0.773093	0.773454	0.773383	0.773287
	$E(12)$	1.0743	1.07332	1.07431	1.07438	1.07305	1.074376
	$E(14)$	1.4136	1.41285	1.414	1.41358	1.41211	1.41379
	$E(16)$	1.786	1.78687	1.78584	1.786	1.78742	1.785903
238Pu	$E(2)$	0.04076	0.045212	0.044883	0.044644	0.04496	0.044846
	$E(4)$	0.145952	0.148251	0.147394	0.146892	0.148339	0.147312
	$E(6)$	0.30338	0.306188	0.304836	0.304237	0.306929	0.304729
	$E(8)$	0.51358	0.516104	0.514459	0.513979	0.516682	0.514361
	$E(10)$	0.77348	0.775095	0.773461	0.773264	0.773383	0.773401
	$E(12)$	1.0801	1.08027	1.07898	1.07912	1.07305	1.078977
	$E(14)$	1.4291	1.42873	1.4281	1.42849	1.41211	1.428144
	$E(16)$	1.8185	1.81761	1.81782	1.81827	1.78742	1.817892
	$E(18)$	2.2449	2.24402	2.24508	2.24537	2.19624	2.245142
	$E(20)$	2.7057	2.70508	2.70672	2.70666	2.63621	2.706744
	$E(22)$	3.1988	3.1979	3.1995	3.1991	3.10527	3.199484
	$E(24)$	3.7208	3.7196	3.72014	3.7197	3.60161	3.720075
	$E(26)$	4.2652	4.2673	4.2651	4.26552	4.12364	4.265164
240Pu	$E(2)$	0.042824	0.043625	0.044081	0.044013	0.042812	0.044068
	$E(4)$	0.14169	0.142947	0.14412	0.143965	0.141614	0.144096
	$E(6)$	0.294319	0.295022	0.296843	0.296637	0.294043	0.296825
	$E(8)$	0.49752	0.496929	0.49911	0.498903	0.496966	0.499112
	$E(10)$	0.7478	0.745769	0.748	0.747737	0.746947	0.747923
	$E(12)$	1.0418	1.03866	1.0403	1.04021	1.04058	1.040339
	$E(14)$	1.3756	1.37275	1.3735	1.37351	1.37466	1.373553
	$E(16)$	1.7456	1.74518	1.7448	1.74493	1.74628	1.744871
	$E(18)$	2.152	2.15313	2.152	2.15185	2.15286	2.151713
	$E(20)$	2.591	2.59377	2.592	2.59179	2.59208	2.591609
	$E(22)$	3.061	3.0643	3.062	3.06236	3.0619	3.062205
	$E(24)$	3.56	3.5619	3.56	3.56129	3.56052	3.561259
	$E(26)$	4.088	4.08378	4.087	4.0864	4.08632	4.086639
Table 1, continued…

$E(I)$	Data	Expol $p = 3$	Expo2 $p = 4$	NS3 $p = 3$	VMI $p = 2$	LRV $p = 3$
242Pu						
$E(2)$	0.04454	0.046046	0.04536	0.044809	0.045684	0.045229
$E(4)$	0.1473	0.150649	0.1488	0.14769	0.15072	0.148553
$E(6)$	0.3064	0.310399	0.3075	0.306169	0.311837	0.307155
$E(8)$	0.5181	0.521881	0.5183	0.517304	0.524908	0.518019
$E(10)$	0.7786	0.781667	0.7781	0.777768	0.785642	0.779733
$E(12)$	1.0844	1.08631	1.0834	1.08393	1.08999	1.083489
$E(14)$	1.4317	1.43235	1.4308	1.43192	1.43431	1.431085
$E(16)$	1.8167	1.81626	1.8166	1.81777	1.81541	1.816922
$E(18)$	2.236	2.23452	2.237	2.2374	2.23052	2.237005
$E(20)$	2.686	2.68351	2.687	2.68677	2.67723	2.687142
$E(22)$	3.163	3.15956	3.163	3.1619	3.15345	3.162948
$E(24)$	3.662	3.65891	3.66	3.65892	3.65734	3.659839
$E(26)$	4.172	4.17768	4.173	4.17412	4.18729	4.173038
244Pu						
$E(2)$	0.0442	0.048448	0.04663	0.043968	0.050913	0.045509
$E(4)$	0.155	0.158174	0.153157	0.14713	0.166258	0.15055
$E(6)$	0.3179	0.325141	0.316661	0.308829	0.339602	0.313123
$E(8)$	0.535	0.545226	0.53969	0.526881	0.564046	0.530513
$E(10)$	0.8024	0.814204	0.801609	0.797669	0.833448	0.799293
$E(12)$	1.1159	1.12772	1.11574	1.11634	1.14271	1.115321
$E(14)$	1.471	1.48125	1.47208	1.47704	1.48768	1.473741
$E(16)$	1.8635	1.87007	1.86577	1.87325	1.86496	1.868982
$E(18)$	2.289	2.28915	2.29123	2.29806	2.27178	2.294761
$E(20)$	2.742	2.73313	2.74195	2.74452	2.70581	2.74408
$E(22)$	3.215	3.19612	3.21009	3.20586	3.16509	3.209226
$E(24)$	3.69	3.67153	3.68599	3.67574	3.64795	3.681775
$E(26)$	4.149	4.15177	4.15727	4.14842	4.15295	4.152586
$E(28)$	4.61	4.62762	4.60724	4.61882	4.67881	4.611806
Table 2. The corresponding fits of our calculation are given in the units of [MeV].

Nucleus	$A \times 10^{-3}$	$a \times 10^{-5}$	$B \times 10^{-7}$
224Th	16.39883	73.42685	-152.1694
226Th	12.71619	38.96642	-58.41588
228Th	10.29599	23.01033	-25.83317
230Th	9.358425	14.61316	-8.382393
232Th	8.887517	15.043	-12.6447
234Th	8.306782	2.22513	38.58171
230U	8.888611	9.574225	13.05427
232U	8.304480	9.915433	-0.2278621
234U	7.610906	8.911491	-0.8635747
236U	7.882479	7.317457	3.542552
238U	7.884489	8.132648	0.5960606
236Pu	7.566771	3.742624	14.78418
238Pu	7.581544	5.310031	1.783539
240Pu	7.486860	7.198797	-2.938037
242Pu	7.644267	5.160483	5.100313
244Pu	7.627230	1.564067	18.59270

Figure 1. Deviation from data of various mentioned calculations. (The zero level is shifted upward for convenience)
Conclusion
In this work, a simple linear expression is deduced to calculate the energy levels of the ground state rotational band of deformed even-even Actinide nuclei. It includes three parameters A, a, and B which are determined straightforward using linear least squares fitting. The results of our calculation show good agreement with data in comparison with other calculations.

We observe that the correction parameter B bears small values and could be neglected in some cases without affecting the results. This is an indication for which the β- and γ-vibrations do not contribute much to the ground state band. On the other hand, the moment of inertia and its variation at high spin states show considerable contributions. Our simple expression can also be employed to study some nuclear effects in deformed even-even nuclei, including the backbending effects in some nuclei and possibly the variation of moment of inertia with high energy spin states.

References
[1] A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 26, no 14 (1952).
[2] Nathan, O., and S. G. Nelsson, Collective Nuclear Motion and the Unified Model, Alpha-Beta and Gamma-Ray Spectroscopy, Vol I, North Holland Publishing Co. Amsterdam (1965).
[3] A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 27, no 16 (1953).
[4] Raymond K. Sheline, Rev. Mod. Phys., 32-1(1960)1.
[5] P. C. Sood, Phys. Rev. 161 (1967) 1063.
[6] Raj K. Gupta, ICTP internal report, IC/71/32, Trieste (1971).
[7] H. Morinaga, Nucl. Phys. 75 (1966) 385.
[8] Arfen and Weber, Mathematical Methods for Physicists, 6th Ed., Elsevier Inc. (2007).
[9] P. C. Sood and A. K. Jain, Phys. Rev. C18 (1983) 1522.
[10] H. A. Alhendi, H. H. Alharbi, S. U. El-Kameesy, "Improved Exponential model with pairing attenuation and the backbending phenomenon”, nucl-th/0409065.
[11] M. A. J. Mariscotti, G. Schorff-Goldhaber, and B. Buck, Phys. Rev. 178 (1969) 1864.
[12] H. A. Alhendi, H. H. Alharbi, S. U. El-Kameesy, “Nuclear Structure Study of Some Actinides Nuclei”, nucl-th/0502017.