Mitigating environmental degradation with institutional quality and foreign direct investment (FDI): New evidence from Asymmetric approach

Edmund Ntom Udemma
Faculty of Economics Administrative and Social sciences
Istanbul Gelisim University, Istanbul-Turkey
Email: eudemba@gelisim.edu.tr; eddy.ntom@gmail.com
Tel: +905357808713; WhatsApp: +2347039678122

Funding
Author wishes to inform the Editor/Journal that no form of funding was received for this research

Compliance with Ethical Standards
Author wishes to inform the Editor/Journal that there are no conflicts of interest at any level of this study.

Acknowledgements
This manuscript has not been submitted to any journal for publication, nor is under review at another journal or other publishing venue

Author’s contributions
The paper is written by just one author, and the contributions are purely and majorly by
Edmund Ntom Udemma
Faculty of Economics Administrative and Social sciences
Istanbul Gelisim University, Istanbul-Turkey
Email: eudemba@gelisim.edu.tr; eddy.ntom@gmail.com
Tel: +905357808713; WhatsApp: +2347039678122

Abstract
Chile is currently rated among the performing countries towards the achievement of the global goals of reducing carbon emission. It is on recorded that Chile as a country has moved from highly
insufficient and still working towards conforming to the recommend the region of 2°C in quest of controlling climate change through carbon emission reduction. From this development, it is essential to investigate on the country’s strategies in achieving this success and equally make recommendation for other countries to adopt Chile’s strategy as a blue print in controlling carbon emission. To effectively do this and achieve the objective of this study, I adopt nonlinear and asymmetric approaches to have a combine (positive and negative) view of the reactions of the selected variable towards determining the impact of each variable towards curbing emission in Chile. Also, a careful selection of variable which includes economic growth (GDP per capita-Y), institutional quality, foreign direct investment (FDI), fossil fuels and renewable energy consumption was undertaken in this study. The focus was on the interaction of institutional quality and FDI towards ascertainment of environment performance. Chile’s quarterly data of 1996Q1 to 2018Q4 was utilized and the following findings were made: positive and negative shocks to the economic growth, institutional quality and renewable energy impacted favorably and negatively on Chile’s environment through reduction and promotion of emission respectively. In contrast, positive and negative shocks to FDI and fossil fuels impact both negatively on the Chile’s environment through increase in carbon emission. So institutional quality is vital in controlling the negative impact from FDI and fossil fuels.

Keywords: Economic growth; institutional quality; FDI; sustainable study; nonlinear study; Chile

1. **Introduction**

Climate change is a threat to the entire earth as it affects the existence of living and non-living things. The dangers associated with climate change cut across the entirety of human race, wild and aquatic lives. Global warming is associated with climate change and detrimental to the continuous existence of the occupants of earth. Ugly incidences such as natural disasters, rising of sea level, attack on Antarctic region, strange diseases in form of pandemics and epidemics, extinction of wild and aquatic lives that are rooted in climate change are in steady occurrence because emissions and climate change. This has led to several summits targeting the control of climate change by the world leaders ranging from Kyoto summit/protocol (1997 and 2005) under United National Framework Convention on Climate Change(UNFCCC) to Paris Agreement of 2015 with its ratification in 2016. Conventional approaches and scholarly research on how to mitigate climate
change is on the increase with majority focus on strategies to lower carbon emissions. Carbon footprint as it concerns the increase emitting of carbon into surroundings has been studied by different scholars (Alola and Kirikkaleli, 2019; Zhang et al., 2021; Chang et al., 2021.; Xu et al., 2021) with different variables and indexes with motive of exposing the real causes and ways of controlling it for effective mitigation of climate change.

Many studies with different instruments and variables such as economic growth (Adebayo and Akinsola, 2021; Aslan et al., 2021; Ahmad et al., 2021), economic liberalization policies (trade, globalization, finance and FDI) (Yu et al., 2021; Gleditsch, 2021; Tan et al., 2021), energy consumption policies (renewable and non-renewable sources), electricity (Benitez et al., 2021; Xue et al., 2021), natural resources (Sarkodie, 2021; Zheng et al., 2021) etc have been utilized in researching climate change, but little has been done respect to institutional quality. Institutional quality depends largely on the effectiveness and efficient implementing and monitoring of established rules and policies towards moderating any phenomenon. Policies in the areas of environment and economic performance are made, strengthen and executed through the institutions of any given country. The direction of policies are always determined by the intended goals of enacting such policies. The policies could be in form of discouraging the phenomenon which are inimical to the positive development of the country or encouraging the phenomenon that enhances the positive development of the country. As remarked, climate change is a global phenomenon that is inimical to the existence of life (both humans and other living things including non-living things) and has drawn a global attention that cuts across nations and regions. The causes and effects of climate change have been greatly researched and discussed among scholars in different literature both at national and international levels. Different measures have been agreed under recognized bodies like Kyoto and Paris Agreement such as nations taking responsibility of emissions generation and working towards curbing of climate change through reducing of carbon emission to a globally accepted standard (i.e. between 2° C and 1.5°C), and working towards achieving Sustainable Development Goals (SDGs 6→15). Affairs of nations with regards to sustainable development are determined by its authorities through good initiatives and policies meted out for either short, medium or long term goals. The authorities of each country are expected to come up with deliberated policies as the effective and efficient way of achieving goals set before them. The effectiveness of the policies are largely dependent on the quality and effectiveness of institutions saddled with the responsibilities of executing and monitoring the policies (Acemoglu
et al., 2001; Easterly and Levine, 2003; Hall and Jones, 1999; Rodrik et al., 2004). The effectiveness of the institutions in delivering their assignments largely depends on the freedom of the institutions from undue interference and corruption (Vogel, 1997). Any country that has its institutions heavily controlled by any elected or appointed political officer or infiltrated by the corrupt elements will likely perform low in policy executions. Scenarios such as tax evasion, rules bending and subversion, jumping of processes and free from penalty are corrupt practices encouraged by corrupt and weak institutions.

One striking area of economic operation that has great impacts on both economic and environmental performances which is likely to be influenced by the institutional quality and corruption is foreign direct investment (FDI). FDI is perceived as among the ways of transferring pollution intensive economic activities from one nation to another, mostly from developed to developing nations. Studies (Anyawu, 2012; Udemba, 2020b) have remarked the direction of FDI towards the resources endowed nations and places where there are laxity in their laws for free ride in operations. Most developing countries including Chile is known with accepting great influx of FDI because of the above cited factors (resources based, serenity of environment and laxity in their laws). Foreign investors are informed of these factors are always work towards exploiting them for their profiting through production activities. Often times, environmental quality is neglected in the process of carrying out their (foreign investors) production activities through collaboration with corrupt officials in charge of environment regulations.

To this end, this study wishes to investigate the sustainable trajectory of Chile with institutional quality and FDI. Chile has been recognized as a country that is ambitious in delivering towards the Paris agreement of keeping climate condition at 2°C or below. Chile had moved from the state of highly insufficient to insufficient and even to sufficient range of maintaining 2020 national determined contribution (NDC). For accurate investigation of this topic, a shift from single perspective to a more comprehensive approach is utilized by author. Nonlinear-autoregressive distribution lag (NARDL) with structural break are adopted for effective and insightful estimation and discussion of this topic. The novel of this study is on the multifaceted approaches adopted for accurate finding and its justification. Also, a combination of institutional quality and FDI is perceived by the author as a possible way of exposing the impact of institutional quality on Chile’s environment performance. This will equally give insight on the impact of FDI on Chile’s
environment, and how institutional quality is moderating both FDI and environment. Also, for
direct insight into the interaction of institutional quality and FDI towards the ascertainment of the
environment quality. For the effectiveness of this finding, granger causality is adopted especially
for the purpose of exposing direct effect and for forecasting purpose. This will give insight on how
Chile have been able to mitigate carbon emission and equally become a model for other developing
nations especially within the Latin American countries for effective control and mitigation of
climate change. This might not be the only work to have dealt with emission control with
institutional quality but the uniqueness of this work is on the interaction of institutional quality
with FDI in determining the strength of Chile in controlling the excesses of foreign investors.

The rest of this study is structured as section 2 for Data and variables, section 3 for Methodology
and modelling, section 4 for Empirical results and discussions, section 5 for concluding summary
and policy implication.

2. Data and Variables

The present work applied Chile annual data of 1996 to 2018 which is converted to quarterly data
of 1996Q1 to 2018Q4 for the accommodation of greater sample size of 89 instead of 25 as in the
case of annual data. Chile is chosen because of its antecedent in curbing the environmental
degradation and its prospects and likelihood of peaking emissions (carbon neutrality goal) in 2023
which is two years earlier than proposed peak year of 2025 (Climate Action Tracker, 2020).
Following the record of its performance, Chile is identified as among the first countries to officially
tender an updated Paris Agreement target to the UNFCCC in the early 2020. The progressive
achievement of Chile towards carbon neutrality (through its National determined Contribution)
within the periods of 2019 and 2020 has moved the country from the position of highly insufficient
to insufficient. Considering the energy mix of Chile with fossil fuels (coal, oil and gas) amounting
up to 73.4 percent of its total primary energy (International Energy Agency, 2017), it is expected
that the country will be locked up in carbon emission, instead Chile as a country has defiled this
expectation and put itself forward for emulation. This has posit Chile as a frontrunner on climate
action which is worth researching for policy recommendation on how to achieve the same fit.

The data used in this work are sourced from three (3) renowned and trusted sources namely,
Worldwide Governance Indicator (WGI), 2018 updated World Development Indicator (WDI) and
British Petroleum (BP) Statistical Review of World Energy. With emphasis on the aim of this
study which is the efficiency and effectiveness of mitigating carbon emission for carbon neutrality with institution of Chile, this study adopt institutional quality as explanatory variable to measure the efficiency of Chile in handling the emission level of the country through its regulatory bodies (institutions). Institutional quality is an indexed variable that consist of six indicators (voice and accountability, Political stability, Government effectiveness, regulatory quality, Rule of law and control of corruption) and it is sourced from Worldwide Governance Indicators (WGI). This is considered as the most popular indicators in measuring governance through its institutions (Arndt, 2008). Real per capita Gross Domestic Product measured as GDP per capita (constant 2010 US$) is among the explanatory variables in determining the environmental performance of Chile and it is sourced from 2018 updated World Development Indicators (WDI). The interconnection between the economic growth and the environment performance has been discussed in many literature (Ekins, 1993; Illege, 2009; Arrow, 1995; Cole, 1999; United Nations World Commission on Environment and Development (WCED), 1987; Dergiades, 2016). Environmental Kuznets Curve (EKC) theory has been utilized by many scholars to demonstrate the interconnections between economic growth and environment quality through its inverted U-shape (Vehmas, 2007; Chen, 2008; Stern, 2004). FDI is among the explanatory variables adopted in this study to investigate the trend and credible management of carbon emission in Chile, and it is sourced from the 2018 updated World Development Indicators (WDI). FDI is applied in this study is measured as Foreign direct investment, net outflows (% of GDP). Chile is ranked third (3rd) in the attraction and retaining FDI in the Latin America after Mexico and Brazil. This is depicted with the current resurgence of FDI in Chile after the setback of the country’s FDI in 2014-2016 periods (Commissioners, 2019). FDI has been identified as a channel to enhance economic growth through projection of new ideas and technologies (Aizenman et al., 2013; Blonigen and Piger, 2014), and economic growth by extension impact the environmental performance through various economic activities. These economic activities ranges from manufacturing, industrial and agricultural activities which utilizes excessive energy in executing them, and this sometimes leads to injection of carbon emission because of over utilization of fossil fuels. Another strong factor that affect the movement of FDI aside the resources-based (primary resources and human labor) is the institutional shaped policy of the any given country. The effect could be from the certainty or the uncertainty of the policy which could have two expected effects, positive or negative. Some of these policies shape the political environment with regards to rules and orders (Arellano et al.,
Carbon emission, renewable and non-renewable energy consumption are all part of the variables (explained and explanatory) utilized in this study. The energy consumption (renewable and non-renewable) are important to this study for the exposition of their impacts towards the injection of emission and controlling of emission by the non-renewable and renewable energies respectively. They are all measured in million tonnes of carbon dioxide and million tonnes oil equivalent for carbon dioxide emissions and the energy (renewable and non-renewable) consumption respectively, and they are sourced from the British Petroleum (BP) Statistical Review of World Energy. The summary of the selected variables with respect to their measurements and time trend of the variables are displayed in Table 1 and Figure 1 as follows:

Variables	Short Form	Measurements	Sources
Economic growth	GDP (Y)	GDP per capita (constant 2010 US$)	2018 updated World Development Indicator (WDI)
Institutional Quality	I.Q Rank	Rank the of six indicators	Worldwide Governance Indicator (WGI), (voice and accountability,
			Political stability, Government effectiveness, Regulatory quality, Rule of law and control of corruption)
Foreign Direct Investment	FDI	Foreign direct investment, net outflows (% of GDP)	2018 updated World Development Indicator (WDI)
Carbon emission	CO₂	million tonnes of carbon dioxide	2019 British Petroleum (BP) Statistical Review of World Energy
Renewable energy	R.E	million tonnes oil equivalent	2019 British Petroleum (BP) Statistical Review of World Energy
Non-renewable energy consumption

Fossil fuels (FF)

2019 British Petroleum (BP) Statistical Review of World Energy

Source: Author’s Compilation

Figure 1: Trends in GDP per capita, Institutional quality, FDI, carbon emission, fossil fuels and renewable energy consumption in Chile from 1996Q1 to 2018Q4

3. Methodology and modelling

Author applied different methods ascertain the correctness of the data with regards to normality, stability and fitness of good, and for the avoidance of misleading findings and conclusion. The major methodology adopted in this study is nonlinear and asymmetric cointegration with asymmetric causality tests as developed by Shin et al., (2014) and Hatemi-J, (2012) respectively. The nonlinear ARDL (NARDL) captures the nonlinear and asymmetric cointegration between the variables, and distinguishes between the short term and long term impacts of the independent variables (in a decomposed manner of positive and negative impacts) on the dependent variables.
NARDL is chosen over other nonlinear approaches such as nonlinear threshold Vector Error Correction Model (VECM) or a smooth transition model and error correction models because of its advantage over them. The likelihood of the model to suffer from convergence problem due to proliferation of number of parameters is minimized in the case of NARDL, also NARDL unlike other approaches ignores the mandatory criteria of the integrating in a certain specified order i.e. I(1) rather it accommodates any order of integration ranges from integrating at levels I(0), integrating at 1st difference I(1) to mixed order of levels and 1st difference. Also, multicollinearity problem is avoided by choosing appropriate lag order for the selected variables (Shin et al., 2014). Other methods adopted in this study ranges from descriptive statistics, unit root tests with structural break tests.

3.1 Modelling

The empirical modelling of this study follows the form of multivariate nonlinear autoregressive distributed lag (NARDL) bounds testing method as proposed by Shin et al., (2014). Following Shin et al., (2014), the NARDL model with the asymmetric error correction model is as follows:

\[
\Delta CO_{2t} = \beta_0 + \rho CO_{2t-1} + \alpha_1^+ Y_{t-1} + \alpha_2^+ \Delta Y_{t-1} + \alpha_3^+ IQ_{t-1} + \alpha_4^+ I\Delta Q_{t-1} + \alpha_5^+ FDI_{t-1} + \alpha_6^+ FDI_{t-1}^- + \alpha_7^+ FF_{t-1} + \alpha_8^+ FF_{t-1}^- + \alpha_9^+ RE_{t-1} + \alpha_{10}^+ I\Delta RE_{t-1}^- \]

\[
\Delta Y_{t-1} = \beta_1 \Delta CO_{2t-1} + \sum_{i=0}^{\rho} \beta_3^+ \Delta Y_{t-i} + \sum_{i=0}^{\rho} \beta_4^+ \Delta IQ_{t-i} + \sum_{i=0}^{\rho} \beta_5^+ \Delta I\Delta Q_{t-i}^- + \sum_{i=0}^{\rho} \beta_6^+ \Delta FDI_{t-i} + \sum_{i=0}^{\rho} \beta_7^+ \Delta FDI_{t-i}^- + \sum_{i=0}^{\rho} \beta_8^+ \Delta FF_{t-i} + \sum_{i=0}^{\rho} \beta_9^+ \Delta FF_{t-i}^- + \sum_{i=0}^{\rho} \beta_{10}^+ \Delta I\Delta RE_{t-i} + \sum_{i=0}^{\rho} \beta_{11}^+ \Delta I\Delta RE_{t-i}^- + \mu_t
\]

(1)

From Equation (1), \(\beta_i\) and \(\alpha_i\) denote short run and long run coefficients with \(i=1 \ldots 10\). A short run estimation and analysis is the assessment of the immediate impact of explanatory variable change on the explained (dependent) variable, while the long run estimation and analysis is the assessment and measurement of the reaction and speed of adjustment from short run disequilibrium towards equilibrium level in the long run. In furtherance of this study, Wald test is applied to check the long term asymmetry \((\alpha = \alpha^+ = \alpha^-)\) and short term asymmetry \((\beta = \beta^+ = \beta^-)\) for all the variables. \(CO_{2t}\) represents carbon emission which is the dependent variable, \(Y_t\) represents GDP per capita, \(IQ_t, FDI_t, FF_t and RE_t\) represent institutional quality, foreign direct investment, inflow, and renewable energy consumption respectively. \(p\) and \(q\) represent the optimal lags for the dependent variable \((CO_{2t})\) and independent variable \((IQ_t, FDI_t, FF_t and RE_t)\) which are ascertained by Akaike Information Criterion (AIC). The effects of independent variables are
decomposed into positive and negative effects giving a two-way implication of the changes of the independent variables on the dependent variable. The decomposition of the independent variables in their positive and negative partial sums for increases and decreases is represented as follows:

\[x_t^+ = \sum_{j=1}^{t} \Delta x_j^+ = \sum_{j=1}^{t} \max(\Delta x_j, 0) \quad \text{and} \quad x_t^- = \sum_{j=1}^{t} \Delta x_j^- = \sum_{j=1}^{t} \max(\Delta x_j, 0) \]

From the above expression, \(x_t \) denotes the independent variables \((IQ_t, FDI_t, FF_t \text{ and } RE_t)\).

Shin et al., (2014) proposed bound test (a joint test of all the lagged levels of the explanatory variables) for the symmetric long run cointegration. F-statistics and t-statistics of Pesaran et al., (2001) and Banerjee et al., (1998) are considered for the cointegration in this study. For the F-statistics test, null hypothesis is expressed as \(\alpha = \alpha^+ = \alpha^- = 0 \) against the alternative hypothesis \(\alpha = \alpha^+ = \alpha^- \neq 0 \), while for t-statistics, the null hypothesis is expressed as \(\alpha = 0 \) against alternative hypothesis \(\alpha \neq 0 \). The decision to reject either of the hypotheses dependent on the evidence of the bound test subject to comparing the F and t-statistics with the critical values of upper and lower bounds. When F-stats is greater or less than the upper bound, the decision is there is or no cointegration. If the F-stats fall in between the upper and lower bounds, the outcome is inconclusive.

Moreover, the long term asymmetric coefficients are calculated based on \(L_{mi} = \alpha^+ / \rho \) and \(L_{mi^-} = \alpha^- / \rho \). The long run coefficients measures the relationship between the variables (dependent and independent) w.r.t positive and negative changes of the independent variables in the long run equilibrium. The estimation of asymmetric dynamic multiplier effects is expressed in equation as follows:

\[m_h^+ = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial x_t^+}, m_h^- = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial x_t^-}, m_h^+ = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial IQ_t^+}, m_h^- = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial IQ_t^-}, m_h^+ = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial FDI_t^+}, m_h^- = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial FDI_t^-}, m_h^+ = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial FF_t^+}, m_h^- = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial FF_t^-}, m_h^+ = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial RE_t^+}, m_h^- = \sum_{j=0}^{h} \frac{\partial CO_{2t+j}}{\partial RE_t^-}, \text{for } h = 0, 1, 2, \ldots \]

Where, if \(h \rightarrow \infty \), then \(m_h^+ \rightarrow L_{mi^+} \) and \(m_h^- \rightarrow L_{mi^-} \).

The asymmetric responses of the dependent variable to positive and negative changes in the independent variables is depicted with dynamic multipliers. From the estimated multipliers, the dynamic adjustment is identified from the initial equilibrium to the new equilibrium between the system variables following the changes that affects the system.
Asymmetric causality tests is among the approaches adopted to buttress the findings from the nonlinear and asymmetric estimations. For this purpose, author applied the asymmetric causality tests proposed by Hatemi-J (2012). The asymmetric causality by Hatemi-J incorporates the idea behind the Toda-Yamamoto (1995) test by considering nonlinear effects and decompose the impact into negative and positive shocks. This approach separates the parameters into negative and positive shocks and tests their causality from negative shocks to negative shocks and positive to positive shocks corresponding to the framework of VAR. The decision of whether there is asymmetric causality is based on the size of WALD and critical values of bootstrap. It favors the small sample when the figures from WALD are smaller than the critical values of bootstrap.

4. Empirical results and discussions

The results gotten from the approaches adopted in this study are presented in this section with interpretations and discussions following the movement and directions of the findings. The discussions will be based on the findings from descriptive statistics and unit root tests with structural break version of the unit root. Also, large part of the discussion of the empirical findings will be based on results of the asymmetric cointegration test (long run relationship between the variables in a decomposed manner), and a detailed presentation of the asymmetric causalities between the variables.

4.1 Descriptive statistics and Unit root tests

The outcomes of the descriptive statistics and unit root tests with structural break version of unit root tests are shown in the Table 2, 3 and 4 below. Table 2 specifically presents the outcome of descriptive statistics. The result shows that renewable energy consumption is less volatile to compare with other variables followed by foreign direct investment (FDI), fossil fuel, and carbon emission, institutional quality and economic growth. Economic growth proves to be the variable with the highest volatility followed by institutional quality. Also, the data displayed an asymmetric distribution with the outcomes from skewness. The Jarque-Bera shows outcome with all the outcomes showing significant which means that the series are not normally distributed and does not show a bell shape. This paves way for author to rely on asymmetric analysis in this study.

Table 2: Descriptive statistics
CO$_2$
Mean
Table 3 shows the outcome of three traditional (basic) unit root tests applied in this study to ascertain the stationarity and order of integration of the series. The three approaches utilized in this study are Dickey Fuller (DF, 1979); Philip-perron (PP, 1990) and Kwiatkowski Philips-Schmidt-Shin (KPSS, 1992). Most times, times series data tend towards volatility because of some structural occurrences. These occurrences could be in form of natural disasters like Earthquake, macroeconomic problems such as recession or depression like 2008/9 financial meltdown or outbreak of diseases such as pandemic or epidemic like the case of COVID 19. These phenomenon which causes structural change are capable of altering the stability of indicators and variables, and for accuracy in any research work it is essential to accommodate these trends in the variables. For the purpose of clarity and accuracy in the findings of this study, I adopt both the conventional unit root tests such as ADF, PP and KPSS, and the Zivot Andrews, (1992) structural break tests for the unit root tests. Most times, the conventional unit root tests are limited in the total exposition of the stationarity of the variable, and for this, structural break tests will aid in exposing the existence of unit root with emphasis on the year such structural break which are capable of registering a lasting or permanent shock in the economy occurred. From the result of the conventional unit roots in
Table 3, a mixed order of integration i.e. I(0) and I(1) is established showing the existence of unit root. Furthermore, from the result of Zivot Andrew test the variables are found to be non-stationary in the presence of structural breaks that occurred in 2003Q2 for CO₂, GDP and institutional quality, 2009Q2 for GDP, 2010Q2 for FDI and fossil fuels, 2014Q2 for renewable energy consumption, 2000Q2 for institutional quality, 2012Q2 for fossil fuels, and 2008Q2 for renewable energy consumption. These findings on the structural break dates give credence to the graphical representation of the data in Figure1. From the identified dates, especially 2003 and 2008/9, strategic global oil and financial shocks took place which affects the world economy and these shocks are capable of transcending to individual countries such as Chile. Specifically, 2008/9 affected the utilization of renewable energy source and economic growth of Chile as seen from the break dates of 2008/9 which reflected on renewable energy and GDP. Also, oil shock of 2003 which affected oil price and market has shown tendency of impacting Chile economy which is reflected in the case of GDP, CO₂ and institutional quality. It is vital for the exposition of the trends of the variables adopted in any research work which might form the basis of the choice of the approach to adopt in the entire study, however, the current study has adopted nonlinear NARD and asymmetric approach and this does not need any special criteria for adoption.

Table 3 Conventional (ADF, PP and KPSS) Unit root test

Variables	level	Intercept	Intercept & trend	1st Diff	Order	
LCO₂		-0.4615	-3.2403*	-3.4636**	-3.4391*	MIXED
LGDP		-0.3998	-3.1073	-3.0890**	-3.0537	I (1)
LIQ		-2.7466*	-2.8044	-3.1158**	-3.1852*	MIXED
FDI		-1.5819	-0.9997	-1.00668	-1.3905	MIXED
LFF		-0.9280	-4.4573***	-3.6149***	-3.5449**	MIXED
LRE		1.0582	-0.6868	-2.4257	-3.3049*	I (1)

ADF

LCO₂		-0.5988	-1.9884	-3.6604***	-3.6317**	I (1)
LGDP		-0.6678	-1.6629	-3.3403**	-3.3107*	I (1)
LIQ		-1.4518	-1.4624	-3.2720**	-3.3358*	I (1)
FDI		-1.8259	-1.3841	-3.8258***	-3.9331**	I (1)
LFF		-1.6026	-3.2646*	-3.8064***	-3.7510**	MIXED
Variables	Ziv-A	Prob	Lg	Break period	CV@ (1%)	CV@ (5%)
LCO₂	-3.74868	0.3632	4	2003Q2	-5.57	-5.08
LGDP	-4.07140	0.0018***	4	2009Q2	-5.57	-5.08
LIQ	-4.87723	0.03958**	4	2003Q2	-5.57	-5.08
FDI	-5.3099	0.0010***	4	2010Q2	-5.57	-5.08
LFF	-5.08214	0.0674*	4	2010Q2	-5.57	-5.08
LRE	-2.1459	0.00016***	4	2014Q2	-5.57	-5.08
DLCO₂	-3.74868	0.3632	4	2003Q2	-5.57	-5.08
DLGDP	-3.42126	0.4019	4	2003Q2	-5.57	-5.08
DLIQ	-3.78407	0.37841	4	2000Q2	-5.57	-5.08
DFDI	-5.4905	0.0104*	4	2010Q2	-5.57	-5.08
DFF	-3.5537	0.0616*	4	2012Q2	-5.57	-5.08
DLRE	-4.8337	0.28315	4	2008Q2	-5.57	-5.08

Note: Null hypothesis is non-stationary for ADF&PP, and stationary for KPSS.

The signs depict (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%. and (no) Not Significant.

*MacKinnon (1996) one-sided p-values.

The signs depict (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%. and (no) Not Significant.

*MacKinnon (1996) one-sided p-values.
4.3 Nonlinear ARDL (NARDL) and cointegration

The nonlinear ARDL (NARDL) results are shown in Table 6 below with the following findings derived from the result: First, goodness of fit is established from the estimation with 0.996 and 0.995 representing the values of R^2 and adjusted R^2 which shows that carbon emission (CO$_2$) injected in Chile is explained by economic growth (GDP), institutional quality (IQ), foreign direct investment, inflows (FDI), fossil fuels (FF) and renewable energy consumption (RE) at 99.6 percent, while the remaining variation is explained by the error term in the model. The absence of autocorrelation and serial correlation are established with both Durbin Watson (DW) and LM tests at 2.18 and 0.111 [0.963] respectively. Heteroscedasticity is tested and the normal distribution of error term is confirmed at 31.79 [0.104]. The ability of the short term disequilibrium to return back to equilibrium in the long run is ascertained with highly significant error correction term (ECT) at -0.004 which means that the disequilibrium will be adjusted at 0.004 percent in the long run which also points to the presence of long run relationship between the variables (dependent and independent). Second, the nonlinear interactions and shocks of the explanatory variables with and to the dependent variable in a decomposed (positive and negative) process both in the short run and long run are presented as follows: A positive shock to economic growth has a positive and significant effect on environment (a coefficient of -0.004 at 1 percent significant level), which indicates a reduction of carbon emission. This shows that a positive shock to economic growth promotes positive environment performance in Chile. This points towards the reduction in dilapidation of the environment quality due to the positive performance of economic growth. In contrast, a negative shock to the economic growth of Chile is positively linked to carbon emission which shows a negative environment performance. This means the slow in economic growth portrays a dampen of the environmental quality by 0.009 at 1 percent significant level. This exposition of the growth pattern in Chile clearly shows the sensitive nature of economic activities in determining the environmental performance of Chile, and it calls for government attention and proactive actions through its environment regulatory institutions and agencies. The same asymmetric pattern is established between economic growth and environment in the short run. This finding is consistent with the findings from the past literature Doda (2013) and largely contradicts the findings by (Eng and Wong, 2015 for USA; Burke et al., 2015; Sheldon, 2017 and York, 2012). As revealed by York (2012), economic expansions increase environmental degradation while economic slowdown is accompanied by reduction in environmental degradation. Nevertheless,
York (2012) advocated the symmetric reaction of CO$_2$ emissions to economic change. A positive shock to Institutional quality impact positively on the environment performance of Chile by reducing the carbon emission, while a negative shock to the institutional quality is expected to impact negatively on Chile’s environment performance by increasing carbon emission. This asymmetric pattern of interaction between institutional quality and environment is established in both periods (long run and short run) with varying degrees in their coefficients. Hence, a positive shock to institutional quality of Chile will impact significantly (at 1 percent) and positively on the quality of Chile’s environment by reducing the emission by 0.0649 (-0.649) both in long run and short run respectively. A negative shock to the institutional quality will cause a significant (at1percent) and negative change on the Chile’s environment quality by increasing the carbon emission by 0.524. This is a success story for Chile which revealed that positive and negative performance of Chile’s environment is depends largely on the positive and negative changes on the institutions of the country. This findings revolves round the quality of Chilean institutions. This finding is pointing towards the needs for effective and efficient management of Chile by the government officials through its regulatory institutions and agencies. For this scenario to be maintained, there is a need for a determined and corruption free institutions in the country for effective and efficient delivery in execution and monitoring of policies. Occasions may demand the implementation of regulatory policies to checkmate the excesses of economic agents on energy, land and other pollution intensive utilization, this could only be achieved if the regulatory policies of the country is placed above individual needs and pursued without favor or on a selective (discriminative) manner. This finding is in line with the author’s expectation on the control of carbon emission in achieving carbon neutrality and enhances environment quality with institutional quality. This equally supports the findings from (Vogel,1997; Panayotou 1997; Gagliardi , 2008; Aron, 2000; Subramanian, 2007; Lee and Kim 2009) who are of opinion that institutional quality is an effective tool for correcting environmental degradation. A positive shock to the foreign direct investment (FDI) which depicts increase in FDI will impact negatively on Chilean environmental performance by increasing the carbon emission at 0.908 and at 1 percent significant level. On the contrary, a negative shock to the foreign direct investment (FDI) which portrays reduction in FDI will impact positive but not significance on Chilean environmental performance by reducing the carbon emission by 0.034 (-0.034). The same asymmetric pattern of interaction between the FDI and environment is established both in long run and short run. This
shows that FDI has the potential to dampen the Chilean environmental performance if not controlled, but thanks to the potential mitigating force of the Chile’s institutions. A careful look at the FDI trend on the graphical presentation of the data gives insight to the movement of FDI into Chile which is not stable. This is a sign that a force is always trying to control the infiltration of FDI and its menace in Chilean economy. This finding support the theory of pollution haven hypothesis (PHH) for the case of Chile, and in consistent with the findings by (Acharyya, 2009; Zhang, 2011; Lau et al., 2014; Pao and Tsai, 2010). Again, a positive shock to the fossil fuels will impact significant (at 1 percent level) and negatively on Chile’s environmental performance by increasing the carbon emission by 3.323, while a negative shock to the fossil fuel will have a significant (at 1 percent level) and positive effect on Chile’s environmental performance by reducing carbon emission by 4.193. The asymmetric pattern found between fossil fuels and the environmental performance is in line with the expectations of the author, hence, as remarked above from the Chile’s energy mix, 79 percent of Chile’s energy consumption is derived from fossil fuel and this is emission driven capable of increasing the emission if not regulated or controlled. The same asymmetric pattern of interaction is established both in long run and short run. The finding supports the findings from (Udemba, 2019 for China; Udemba et al., 2019 for Indonesia and Udemba, 2020 for Turkey). However, a departure from the findings of impacts of fossil fuels on environment, shows a positive shock to the renewable energy consumption will impact positively and significantly (at 1 percent level) on Chile’s environment by reducing the carbon emission by 2.634 (-2.634). In contrast, a negative shock to the renewable energy consumption portraying a reduction in renewable energy will significantly impact negative on environment performance by increasing the emission level by 2.786. This pattern is repeated in both long term and short term, and it portrays renewable energy consumption as a good measure to mitigate the environmental performance. This finding is in consonance with the findings from studies of (Kirikaleli and Adebayo, 2020; Shafiei and Salim, 2014; Wang, et al. 2021; Khan et al. 2020).

Table 5: Non-Linear ARDL Long and Short-run Results

Variables	Coeff	Std Error	t-stat	P-value	Variables	Coeff	Std Error	t-stat	P-value
GDP^+	-0.004***	0.001	-4.975	0.000	GDP^+	-0.004***	0.001	-6.658	0.000
GDP^-	0.009***	0.001	7.254	0.000	GDP^-	0.009***	0.001	9.241	0.000
IQ^+	-0.649***	0.042	-15.64	0.000	IQ^+	-0.649***	0.030	-21.54	0.000
IQ^-	0.524***	0.033	15.83	0.000	IQ^-	0.524***	0.022	23.31	0.000
Furthermore, Wald test is adopted in this present study for the purpose of unfolding the long run asymmetric interaction and its significance. The result displayed in Table 6 below confirms significant long-run asymmetric relationship between the variables at 1 percent for economic growth (GDP-Y), institutional quality (IQ), foreign direct investment (FDI), and fossil fuels (FF) and at 10 percent for renewable energy (RE). This finding confirms and gives support to the findings from cointegration and error correction term with insight in the long run (asymmetric) relationship between the variables. The stability of the model is tested and confirmed by the CUSUM and CUSUMSQ in Figures 2 and 3 below Table 6.

Table 6: Long-run asymmetries (WALD test)

Variables	χ^2 Chi-Square [Prob]	Decision
GDP(Y)	47.83*** [0.000]	Yes
IQ	267.8***[0.000]	Yes
FDI	62.37*** [0.000]	Yes
FF	7.082***[0.008]	Yes
RE	3.661* [0.056]	Yes

Note: *, ** and *** mirror 10%, 5% and 1% significance level, respectively.
Lastly, the adjustments to new equilibrium equations after the early negative and positive shocks is illustrated with NARDL multipliers for the explanatory (GDP-Y, IQ, FDI, FF, RE) variables. This is shown in Figur 4 below. The asymmetries adjustments of CO$_2$ to negative and positive shocks are shown with black dotted and solid black lines, while the red dotted lines are the asymmetric pattern that show the difference between positive and negative shocks.
Figures 4 Figure 4: Multiplier for GDP, Institutional quality, FDI, Fossil fuels and Renewable energy consumption.
5. Concluding remark and policy recommendation

This study is an investigation into the factors that have assisted Chile as a country to maintain a steady positive improvement on its environmental performance through mitigating carbon emission. Part of the objective is to give insight on Chile’s success towards achieving carbon neutrality and to possibly recommend the strategies for other countries to adopt. This will evidently triggers a conscious effort towards reduction in climate change through individual activeness in curtailing the rate of emissions globally. To effectively do this and achieve the objective of this study, I adopt nonlinear and asymmetric approaches to have a combine (positive and negative) view of the reactions of the selected variable towards determining the impact of each variable towards curbing emission in Chile. Also, a careful selection of variable which includes economic growth (GDP per capita-Y), institutional quality, FDI, fossil fuels and renewable energy consumption was undertaken in this study. The focus was on the interaction of institutional quality and FDI towards ascertainment of environment performance. Reason is because of the potency of policies in controlling negative phenomenon such as carbon emission. The effectiveness and efficient execution of policies to achieve the intended goals is highly dependent on the quality and functionality of the established institutions saddle with such assignment. Also, FDI has been used in many studies to test the environment performance and the outcomes are mixed (positive and negative) with majority of FDI impacting negatively on environment of developing countries due to laxity in policies of those countries. It is not enough to generalize that institution’s rooted policies are positive in controlling the negative phenomenon without research. Bearing in mind the Chile’s positive trend of controlling the carbon emission, the present paper hypothesized that institutional quality of Chile’s government positively impact the environment quality. From the nonlinear analysis, I find positive shock to the institutional quality aiding environment quality positively through reduction of carbon emission, the same trend is recorded in the case of economic growth and renewable energy. In contrast, FDI and fossil fuels are impacting negatively on Chile’s environment when increased, but thanks to the controlling force from institutional quality and economic growth.

Having ascertained the performance of the variables towards controlling Chile’s environment quality through the interactions of the selected variables from the estimation, the following policies are recommended: First, with the findings that affirmed the potency of controlling carbon emission
through institutional quality, priority and more attention should be given to the maintenance of institutional quality so as to keep up with the trend of maintaining good environment performance. Economic growth should be encouraged with both short and long term policies with rapt attention paid towards energy mix to ensure relaxing of carbon intensive economic activities, hence it is effective in controlling carbon emission. This will help in promoting the energy decentralizing and a gradual move away from fossil fuels towards a more renewable energy sources such as solar, hydro etc. Also, considering responsible consumption and production as among a sustainable development goal (SDG-12) targets, a policy that will help to moderate the consumption and production pattern in the country is vital. This could be in form of placing a target on the manufacturing sectors which will be taxable if violated.

Conclusively, this study has implication to other countries and will likely serve as a blue print to other countries especially countries within the Latin American region towards carbon neutrality.

Declarations

Ethics approval and consent to participate

I, the author is giving my ethical approval and consent for this paper to be published in ESPR if found publishable

Consent to participate

I, the author is giving my consent for participation in this paper to be published in ESPR if found publishable

Consent for publication

I, the author is giving my consent for this paper to be published in ESPR if found publishable

Availability of data and materials

Data sources are outlined above in the table 1 and will be made available on demand

Competing interests

I, the author hereby declares that there are no competing or conflicting interests on the paper

Funding
No funding is provided for this research

Authors contributions

The paper is written by just one author, and the contributions are purely and majorly by

Edmund Ntom Udamba

Faculty of Economics Administrative and Social sciences

Istanbul Gelisim University, Istanbul-Turkey

Email: eudemba@gelisim.edu.tr; eddy.ntom@gmail.com

Tel: +905357808713; WhatsApp: +2347039678122

Acknowledgements

This manuscript has not been submitted to any journal for publication, nor is under review at another journal or other publishing venue

References

Acemoglu, D., S. Johnson, and J. A. Robinson (2001, December), ‘The Colonial Origins of Comparative Development: An Empirical Investigation’, American Economic Review, 91(5): 1369–1401.

Acharyya, J. (2009). FDI, growth and the environment: Evidence from India on CO2 emission during the last two decades. Journal of economic development, 34(1), 43.

Adebayo, T. S., & Akinsola, G. D. (2021). Investigating the causal linkage among economic growth, energy consumption and CO2 emissions in Thailand: an application of the wavelet coherence approach. Int J Renew Energy Dev, 10(1), 17-26.;

Ahmad, M., Akram, W., Ikram, M., Shah, A. A., Rehman, A., Chandio, A. A., & Jabeen, G. (2021). Estimating dynamic interactive linkages among urban agglomeration, economic performance, carbon emissions, and health expenditures across developmental disparities. Sustainable Production and Consumption, 26, 239-255;

Aizenman, J., & Spiegel, M. M. (2006). Institutional efficiency, monitoring costs and the investment share of FDI. Review of International Economics, 14(4), 683-697.

Aizenman, J., Jinjarak, Y., & Park, D. (2013). Capital flows and economic growth in the era of financial integration and crisis, 1990–2010. Open Economies Review, 24(3), 371-396.
Alola, A. A., & Kirikkaleli, D. (2019). The nexus of environmental quality with renewable consumption, immigration, and healthcare in the US: wavelet and gradual-shift causality approaches. *Environmental Science and Pollution Research, 26*(34), 35208-35217;

Anyawu, J. C. (2012). Why does foreign direct investment go where it goes?: New evidence from African countries. *Annals of Economics and Finance, 13*(2), 425-462.

Arellano, C., Bai, Y., & Kehoe, P. J. (2019). Financial frictions and fluctuations in volatility. *Journal of Political Economy, 127*(5), 2049-2103.

Aron J. Growth and institutions: a review of the evidence. World Bank Res Obser 2000;15(1):99e135;

Arrow, K., Bolin, B., Costanza, R., Dasgupta, P., Folke, C., Holling, C. S., ... & Pimentel, D. (1995). Economic growth, carrying capacity, and the environment. *Ecological economics, 15*(2), 91-95.

Aslan, A., Altinoz, B., & Özsolak, B. (2021). The nexus between economic growth, tourism development, energy consumption, and CO2 emissions in Mediterranean countries. *Environmental Science and Pollution Research, 28*(3), 3243-3252;

Banerjee, A., Dolado, J., & Mestre, R. (1998). Error-correction mechanism tests for cointegration in a single-equation framework. *Journal of time series analysis, 19*(3), 267-283.

Benitez, A., Wulf, C., de Palmenaer, A., Lengersdorf, M., Röding, T., Grube, T., ... & Kuckshinrichs, W. (2021). Ecological assessment of fuel cell electric vehicles with special focus on type IV carbon fiber hydrogen tank. *Journal of cleaner production, 278*, 123277;

Birgisdóttir, H., Moncaster, A., Wiberg, A. H., Chae, C., Yokoyama, K., Balouktsi, M., ... & Malmqvist, T. (2017). IEA EBC annex 57 ‘evaluation of embodied energy and CO2eq for building construction’. *Energy and Buildings, 154*, 72-80.

Blonigen, B. A., & Piger, J. (2014). Determinants of foreign direct investment. *Canadian Journal of Economics/Revue canadienne d'économique, 47*(3), 775-812.

Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P., ... & Zhu, D. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. *Nature communications, 12*(1), 1-10.;

Chen, Y. S. (2008). The driver of green innovation and green image–green core competence. *Journal of business ethics, 81*(3), 531-543.

Choi, H., Shin, J., & Woo, J. (2018). Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact. *Energy Policy, 121*, 13-24.

Christiano, L. J., Motto, R., & Rostagno, M. (2014). Risk shocks. *American Economic Review, 104*(1), 27-65.

Cole, J. J. (1999). Aquatic microbiology for ecosystem scientists: new and recycled paradigms in ecological microbiology. *Ecosystems, 2*(3), 215-225.
Dergiades, T., Kaufmann, R. K., & Panagiotidis, T. (2016). Long-run changes in radiative forcing and surface temperature: The effect of human activity over the last five centuries. *Journal of Environmental Economics and Management, 76*, 67-85.

Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. *J Am Stat Assoc* 74(366a):427–431

different income groups of countries: determinants of long-run economic growth revisited. *World Dev* 2009;37(3):533e49)

Dixit, A. K. (2011). *Lawlessness and economics: Alternative modes of governance*. Princeton University Press.

Doda, B. (2014). Evidence on business cycles and CO2 emissions. *Journal of Macroeconomics, 40*, 214-227.

Easterly, W. and R. Levine (2003, January), ‘Tropics, Germs, and Crops: How Endowments Influence Economic Development’, *Journal of Monetary Economics, 50*(1): 3–39.

Ekins, P. (1993). ‘Limits to growth’and ‘sustainable development’: grappling with ecological realities. *Ecological Economics, 8*(3), 269-288.

Gagliardi F. Institutions and economic change: a critical survey of the new institutional approaches and empirical evidence. *J Socio Econ* 2008;37:416e43;

Gleditsch, N. P. (2021). This time is different! Or is it? NeoMalthusians and environmental optimists in the age of climate change. *Journal of Peace Research*, 0022343320969785;

Hall, R. E. and C. I. Jones (1999, February), ‘Why Do Some Countries Produce So Much More Output PerWorker Than Others?’, *The Quarterly Journal of Economics, 114*(1): 83–116

Hatemi-j, A. (2012). Asymmetric causality tests with an application. *Empirical economics, 43*(1), 447-456.

Illge, L., & Schwarze, R. (2009). A matter of opinion—How ecological and neoclassical environmental economists and think about sustainability and economics. *Ecological Economics, 68*(3), 594-604.

Khan, A., Muhammad, F., Chenggang, Y., Hussain, J., Bano, S., & Khan, M. A. (2020). The impression of technological innovations and natural resources in energy-growth-environment nexus: a new look into BRICS economies. *Science of The Total Environment, 727*, 138265.

Kirikkaleli, D., Adebayo, T. S., Khan, Z., & Ali, S. (2020). Does globalization matter for ecological footprint in Turkey? Evidence from dual adjustment approach. *Environmental Science and Pollution Research, 1*-9.

Kwiatkowski D, Phillips PC, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationarity against the alternative of a unit root. *J Econ* 54(1–3):159–178
Lau, L. S., Choong, C. K., & Eng, Y. K. (2014). Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: do foreign direct investment and trade matter? *Energy Policy, 68*, 490-497.

Lee K, Kim BY. Both institutions and policies matter but differently for
Panayotou T. Demystifying the environmental Kuznets curve: turning a black box into a policy tool. *Env Dev Econ 1997;2(4):465e84*;
Pao, H. T., & Tsai, C. M. (2010). CO2 emissions, energy consumption and economic growth in BRIC countries. *Energy Policy, 38*(12), 7850-7860.

Perron P (1990) Testing for a unit root in a time series with a changing mean. *J Bus Econ Stat 8*(2):153 162

Pesaran MH, Shin Y (1998) An autoregressive distributed-lag modelling approach to cointegration analysis. *Econ Soc Monographs 31*:371–413

Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. *J Appl Econ 16*(3):289–326

Pesaran MH, Shin Y, Smith RJ (2001) Bounds testing approaches to the analysis of level relationships. *J Appl Econ 16*(3):289–326

Rodrik, D., A. Subramanian, and F. Trebbi (2004). ‘Institutions Rule: The Primacy of Institutions over Geography and Integration in Economic Development’, *Journal of Economic Growth, 9*(2): 131–165.

Sarkodie, S. A. (2021). Environmental performance, biocapacity, carbon & ecological footprint of nations: Drivers, trends and mitigation options. *Science of the Total Environment, 751*, 141912;

Shafiei, S., & Salim, R. A. (2014). Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: a comparative analysis. *Energy Policy, 66*, 547-556.

Shin, Y., Yu, B., & Greenwood-Nimmo, M. (2014). Modelling asymmetric cointegration and dynamic multipliers in a nonlinear ARDL framework. In *Festschrift in honor of Peter Schmidt* (pp. 281-314). Springer, New York, NY.

Stern, D. I. (2004). The rise and fall of the environmental Kuznets curve. *World Development, 32*(8), 1419-1439.

Subramanian A. The evolution of institutions in India and its relationship with economic growth. *Oxf Rev Econ Pol 2007;23*(2):196e220;

Tan, Q., Ding, Y., Zheng, J., Dai, M., & Zhang, Y. (2021). The Effects of Carbon Emissions Trading and Renewable Portfolio Standards on the Integrated Wind–Photovoltaic–Thermal Power-Dispatching System: Real Case Studies in China. *Energy, 119927*

Tracker, C. A. (2020). A government roadmap for addressing the climate and post COVID-19 economic crises. *CAT (Climate Action Tracker).* URL: https://climateactiontracker.org/publications/addressing-thecclimate-and-post-covid-19-economic-crises/(accessed 5.19. 20).
Udemba EN (2019) Triangular nexus between foreign direct investment, international tourism, and energy consumption in the Chinese economy: accounting for environmental quality. Environ Sci Pollut Res 26(24):24819–24830

Udemba EN, Güngör H, Bekun FV (2019) Environmental implication of offshore economic activities in Indonesia: a dual analyses of cointegration and causality. Environ Sci Pollut Res 26(31):32460–32475

Udemba, E. N. (2020). A sustainable study of economic growth and development amidst ecological footprint: New insight from Nigerian Perspective. Science of the Total Environment, 732, 139270.

Udemba, E. N. (2020). Ecological implication of offshored economic activities in Turkey: foreign direct investment perspective. Environmental Science and Pollution Research, 27(30), 38015-38028.

Vehmas, J., Luukkanen, J., & Kaivo-Oja, J. (2007). Linking analyses and environmental Kuznets curves for aggregated material flows in the EU. Journal of Cleaner Production, 15(17), 1662-1673.

Vogel, D. Trading up and governing across: Transnational governance and environmental protection. J. Eur. Public Policy 1997, 4, 556–571. [CrossRef]

Vogel, D. Trading up and governing across: Transnational governance and environmental protection. J. Eur. Public Policy 1997, 4, 556–571. [CrossRef];

Wang, X., Bolan, N., Tsang, D. C., Sarkar, B., Bradney, L., & Li, Y. (2021). A review of microplastics aggregation in aquatic environment: Influence factors, analytical methods, and environmental implications. Journal of Hazardous Materials, 402, 123496.

WCED, S. W. S. (1987). World commission on environment and development. Our common future, 17(1), 1-91.

Xu, X., Xia, Z., Liu, Y., Liu, E., Müller, K., Wang, H., ... & Li, Y. (2021). Interactions between methanotrophs and ammonia oxidizers modulate the response of in situ methane emissions to simulated climate change and its legacy in an acidic soil. Science of The Total Environment, 752, 142225.

Xue, M., Lin, B. L., & Tsunemi, K. (2021). Emission implications of electric vehicles in Japan considering energy structure transition and penetration uncertainty. Journal of Cleaner Production, 280, 124402.

York, R. (2012). Asymmetric effects of economic growth and decline on CO₂ emissions. Nature Climate Change, 2(11), 762-764.

Yu, X., Dong, Z., Zhou, D., Sang, X., Chang, C. T., & Huang, X. (2021). Integration of tradable green certificates trading and carbon emissions trading: How will Chinese power industry do?. Journal of Cleaner Production, 279, 123485;
Zhang, J. (2011). Interjurisdictional competition for FDI: The case of China's “development zone fever”. *Regional Science and Urban Economics, 41*(2), 145-159.

Zhang, L., Li, Z., Kirikkaleli, D., Adebayo, T. S., Adeshola, I., & Akinsola, G. D. (2021). Modeling CO₂ emissions in Malaysia: an application of Maki cointegration and wavelet coherence tests. *Environmental Science and Pollution Research, 1*-15;

Zheng, S., Wang, R., Mak, T. M., Hsu, S. C., & Tsang, D. C. (2021). How energy service companies moderate the impact of industrialization and urbanization on carbon emissions in China?. *Science of The Total Environment, 751*, 141610

Zivot EA, DWK Andrews (1992) Further evidence on the great crash, oil prices shock and the unit root hypothesis. *Journal of Business and Economics Statistics 10*(3):251–270