Mesenteric changes in an ultrasound examination can facilitate the diagnosis of neuroendocrine tumors of the small intestine

Zmiany w krezce uwidocznione w badaniu ultrasonograficznym jako objaw pomocny w diagnostyce guzów neuroendokrynnych jelita cienkiego

Andrzej Smereczyński¹, Teresa Starzyńska¹, Katarzyna Kołaczyk²

¹ Department of Gastrology, Pomeranian Medical University, Szczecin, Poland
² Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, Szczecin, Poland

Correspondence: Prof. Andrzej Smereczyński, MD, PhD, ul. Wojciechowskiego 6A, 71-476 Szczecin, Poland, e-mail: andrzejsmereczynski@onet.eu, tel.: 91 454 22 17

DOI: 10.15557/JoU.2015.0024

Abstract

Neuroendocrine tumors make up an interesting pathology of a variable clinical picture, prognosis, localization, endocrine activity and degree of malignancy. **Aim:** The aim of this paper is to assess whether ultrasonography can be helpful in diagnosing neuroendocrine tumors in the small intestine by analyzing changes in the mesentery. **Material and methods:** From 1996 to 2013, we encountered 17 patients (9 women and 8 men at the mean age of 57) with a neuroendocrine tumor in the small intestine. The diagnosis was confirmed in all patients by pathomorphological examinations. All retrospectively analyzed patients (n = 17) had an abdominal US examination conducted in accordance with the previously mentioned protocol. **Results:** Primary neuroendocrine tumors were visualized ultrasonography in 13 of 17 patients (76.5%). In the remaining 4 patients, tumors in the small bowel were diagnosed in CT enteroclysis (n = 3) and conventional enteroclysis (n = 1). Somatostatin receptor scintigraphy and CT enteroclysis supplemented the ultrasound result by providing information about the stage of the disease in 7 cases. In most of the 17 patients with a neuroendocrine tumor diagnosed by ultrasound (n = 11, 64.7%), changes in the mesentery were prevailing pathological signs that raised suspicion and, consequently, helped localize the primary lesion. The hypoechoic mesenteric lymph nodes were the greatest (9–18 mm), well-circumscribed, and the largest of them showed signs of vascularization. The size of hypoechoic lesions in the mesentery ranged from 25 to 53 mm. These lesions showed moderate blood flow. All of them were single, usually poorly circumscribed; two lesions showed slight calcifications. **Conclusions:** In an abdominal US examination, 2/3 of patients with neuroendocrine tumors in the small bowel manifest secondary lesions in the mesentery which are easier to visualize than the primary focus. 30% of them are manifested as hypoechoic masses. The detection of such lesions should prompt the search for the primary focus in the small intestine.
Neuroendocrine tumors (NETs) make up an interesting pathology of a variable clinical picture, prognosis, localization, endocrine activity and degree of malignancy(3). In the past decades, the detection of this neoplasm has increased considerably (from 300 to 500%)2-9. Another sign of this trend was an increase of the NET incidence rate from 1.09/100,000 in 1973 to 5.25/100,000 in 20048. Moreover, another noteworthy phenomenon is the significant changes in the most common localization of these tumors in the alimentary tract. In 1950–1969, it was usually localized in the appendix whereas in 1973–1977, the most common localization was the small intestine(3). The greatest analysis from 1973–2004, which included 35,825 patients with NETs, demonstrated that tumors in the gastrointestinal tract developed in: the rectum (34%), the small intestine (26%), the stomach (12%), the large bowel (8%), the duodenum (8%), the cecum (6%) and the appendix (6%)3. Their well-known morphological feature is a small size. These tumors are rarely larger than 2 cm, which makes them difficult to detect in imaging examinations. The clinical manifestation of NETs in the intestine is usually late. The typical signs are obstruction or intussusception, gastrointestinal bleeding, metastases in the liver or carcinoid syndrome2,4,10.

The aim of this paper is to assess whether ultrasonography can be helpful in diagnosing neuroendocrine tumors in the small intestine by analyzing secondary changes in the mesentery.

Nowotwory neuroendokrynne to ciekawy dzisaię patologii o zróżnicowanym obrazie klinicznym, rozwojuaniu, umiejscowieniu, czynności wydzielniczej i stopniu złośliwości. Cel pracy: Celem pracy jest ocena możliwości diagnostyki nowotworów neuroendokrynnych jelita cienkiego przy użyciu ultrasonografii poprzez identyfikację zmian w kresce. Material i metoda: W okresie od 1996 do 2013 roku zgromadzono 17 chorych (9 kobiet i 8 mężczyzn w średnim wieku 57 lat) z nowotworem neuroendokrynm w jelicie cienkim. W wszystkich pacjentów potwierdzono rozpoznanie nowotworu neuroendokrymnego na podstawie badań patomorfologicznych. Wszystkie objęte retrospektywną analizą osoby (n = 17) miały wykonane badanie USG jamy brzusznej według protokołu opisanego wcześniej. Wyniki: W badaniu ultrasonograficznym udało się uwidocznić pierwotne nowotwór neuroendokryny u 13 z 17 chorych (76,5%). U pozostałych 4 osób guz zlokalizowany w jelicie cienkim został rozpoznany na podstawie enteroklizy TK (n = 3) i enteroklizy klasycznej (n = 1). Somatostatynowa scyntygrafia receptorowa i enterokliza TK dostarczyły dodatkowych informacji co do stopnia zaawansowania procesu chorobowego w stosunku do wyników badania USG w 7 przypadkach. Wśród 17 chorych z rozpoznanym ultrasonograficznie nowotworem neuroendokrynym jelita cienkiego u większości (n = 11, 64,7%) zmiany w kresce jelita były dominującym objawem patologicznym, który pozwolił podejrzewać, a następnie zlokalizować zmianę pierwotną. Hipoechoogeniczne węzły chlonne krekwne miały największe wymiary (9–18 mm), były dobrze odgraniczone, a większe z nich wykazywały unaczynienie. Wielkość hipoechoogenicznej masy w kresce wahała się od 25 do 53 mm. Zmiany tego typu wykazywały umiarkowane unaczynienie. Wszystkie były pojedyncze, przeważnie nieostrą odgraniczono, a w dwóch zmianach obecne były nie wielkie zwapnienia. Wnioski: W badaniu USG przezbrzuszny u 2/3 chorych z guzem neuroendokrynnym w jelicie cienkim występują wtórne zmiany w kresce, które są łatwiejsze do zobrazowania niż samo ognisko pierwotne. W 30% manifestują się jako masy hipoechoogeniczne. Wykrycie takich zmian powinno skłonić do poszukiwania ogólnika pierwotnego w jelicie cienkim.
Material and methods

From 1996 to 2013, 17 patients (9 women and 8 men, aged 23–62, mean age 57) with a neuroendocrine tumor in the small intestine were subject to a retrospective analysis. Most of them reported non-specific gastrointestinal symptoms (13 of 17). In each case, NETs were confirmed in pathomorphological examinations. All patients (n = 17) had an abdominal US examination conducted in accordance with the previously mentioned protocol(10). Ultrasound examinations were conducted with the use of various systems using convex probes with the frequency of 2.5–5 MHz and linear probes with the frequency of 5–12 MHz. All abdominal regions were scanned thoroughly, including the available loops of the small intestine, the mesentery and the colon. All scans were performed by one person, a physician with 25-year experience in ultrasound imaging. This study was mainly focused on secondary lesions in the mesentery. Moreover, the examined group was diagnosed with the use of multiphasic computed tomography or CT enteroclysis (n = 16), somatostatin receptor scintigraphy (n = 11) and conventional enteroclysis (n = 2). Also, biochemical tests, including non-specific and specific markers helpful in NET diagnosis, were performed in each patient.

Results

The ultrasound examinations visualized foci of neuroendocrine tumors in 13 of 17 patients (76.5%). In the remaining 4 patients, tumors in the small bowel were localized in CT enteroclysis (n = 3) and conventional enteroclysis (n = 1). The localization was also confirmed by somatostatin receptor scintigraphy in 3 of 4 such patients. Somatostatin receptor scintigraphy and CT enteroclysis supplemented the ultrasound result by providing information about the stage of the disease in 7 cases. This concerned the number of involved mesenteric lymph nodes (n = 4), metastases to the lungs (n = 2) and to the ovary in one woman.

The examinations revealed single intramural nodules with the size of 15–35 mm in the small intestine of 17 patients. Secondary mesenteric changes, which were striking ultrasound signs of an existing pathology in 11 patients (64.7%), were analyzed in greater detail (Tab. 1). It should also be mentioned that the hypoechoic mesenteric lymph nodes were the largest (9–18 mm) and well-circumscribed (Fig. 1 and 2). In most cases, only single nodes were visible (n = 9), but two patients presented 2–3 pairs of lymph nodes – they were all localized in the vicinity of the primary lesion. A hypoechoic mass in the mesentery was detected in five patients (29.4%). Its size ranged from 25–53 mm and showed slight blood flow. All lesions were single, poorly circumscribed, and slight calcifications were detected in two cases (Fig. 3, 4, 5, 6 A and 6 B). Figures 7a and 7b illustrate a similar case: a NET focus (20 mm) in the terminal ileum and a hypoechoic mass (35 mm) in the mesentery. CT enteroclysis confirmed the presence of these lesions and additionally revealed slight enlargement of four mesenteric lymph nodes (Fig. 7 C and 7 D) and two slight metastatic foci in the lower field of the right lung (not shown in figures). Celem pracy jest ocena możliwości diagnostyki nowotworów neuroendokrynnych jelita cienkiego przy użyciu ultrasonografii poprzez identyfikację wtórnych zmian w kreżce.

Material i metoda

W okresie od 1996 do 2013 roku retrospektywnej analizie poddano 17 chorych (9 kobiet i 8 mężczyzn w wieku od 23 do 62 lat, średnio 57), którzy w większości (13 z 17) podawali niecharakterystyczne objawy brzuszne. U wszystkich pacjentów rozpoznanie NET zostało potwierdzone badaniem patomorfologicznym. Wszystkie osoby (n = 17) miały wykonane badanie USG jamy brzusznej według protokołu opisanego wcześniej(10). Ultrasonografię przeprowadzono różnymi aparaturami cyfrowymi, posługując się głowicami konweksowymi o częstotliwości 2.5–5 MHz i liniowymi w zakresie częstotliwości 5–12 MHz. Badano dokładnie wszystkie kwadranty jamy brzusznej, w tym dostępne pętle jelita cienkiego, jego krezki oraz okrężnicę. Wszystkie badania wykonała jedna osoba, z 25-letnim doświadczeniem w diagnostyce USG. W aktualnej pracy skupiono się przede wszystkim na wtórnych zmianach w kreżce jelita cienkiego. Ponadto wymienioną grupę chorych diagnozowano za pomocą: wielofazowej tomografii komputerowej lub enteroclizy RTG (n = 16), somatostatynowej scyntygrafii receptorowej (n = 11) i klasycznej enteroclizy RTG (n = 2). Każdy chory miał wykonany pakiet badań biochemicznych obejmujących markery nieswoiste i swoiste przydatne w diagnozie NET.
Mesenteric changes in an ultrasound examination can facilitate the diagnosis of neuroendocrine tumors of the small intestine

No.	Ultrasound sign	Number of patient (percentage)	No. of the figure
1	Hypoechoic mesenteric lymph nodes	11 (64.7)	1, 2
2	Hypoechoic mass in the mesentery	5 (29.4)	3, 4, 5, 6 A, B, 7 A, B, C, D
3	Wrinkled and thickened mesentery	2 (11.8)	8 A, B
4	Irregular thickening of the mesentery	1 (5.9)	9

Table 1. Secondary mesenteric changes in 17 patients with small bowel NETs detected by ultrasonography

Lp.	Cecha sonograficzna	Liczba osób (procent)	Nr ryciny
1	Hipoechoogeniczne węzły chłonne krezki	11 (64.7)	1, 2
2	Hipoechoogeniczna masa w krezce jelita cienkiego	5 (29.4)	3, 4, 5, 6 A, B, 7 A, B, C, D
3	Zmarszczona i pogrubiała krezka jelita cienkiego	2 (11.8)	8 A, B
4	Nieregularne zgrubienie krezki jelita cienkiego	1 (5.9)	9

Fig. 1. Metastatic lymph nodes (N) in the mesentery reflect the presence of a small intestinal carcinoid tumor (not shown in the figure)

Ryc. 1. W krezce jelita cienkiego imponują przeszustowo zmienione węzły chłonne (N) jako wyraz obecności rakowiaka jelita cienkiego (niewystępujące na rycinie)

Fig. 2. One view shows irregular infiltration of a carcinoid tumor of the terminal ileum (C) and a sentinel lymph node (N)

Ryc. 2. Na jednym przekroju ujęto nierregularny naciek rakowiaka końcowego odcinka jelita krętego (C) i węzł chłonnny wartowniczy (N)

Fig. 3. Carcinoid tumor (12 mm) of the small bowel (not shown in the figure). In this case, an irregular hypoechoic and vascularized infiltration is visible in the mesentery

Ryc. 3. Rakowiak (12 mm) jelita cienkiego (niewystępujący na rycinie). W tym przypadku w krezce jelita cienkiego widoczny nieregularny naciek hipoechoogeniczny wykazujący unaczynienie

Fig. 4. An irregular hypoechoic mass in the mesentery is the only manifestation of a carcinoid tumor in the ileum (not shown in the figure)

Ryc. 4. W krezce jelita cienkiego nieregularna masa hipoechoogeniczna to główna manifestacja obecności rakowiaka jelita krętego (niewystępujące na tej rycinie)
Fig. 5. Two views of a hypoechoic mass (4 cm) in the mesentery of a 32-year-old patient with the body mass of 122 kg as the only ultrasound sign of a carcinoid tumor in the ileum.

Ryc. 5. Na dwóch przekrojach hipoechogeniczna masa (4 cm) w krezce jelita cienkiego u 32-letniego pacjenta o wadze 122 kg jako jedyny objaw ultrasonograficzny obecności rakowiaka w jelicie krętym.

Fig. 6 A. A sizeable, partially calcified hypoechoic mass (M) in the mesentery is a prominent manifestation of a carcinoid tumor in the ileum (not shown in the figure).

Ryc. 6 A. Sporych rozmiarów masa hipoechogeniczna częściowo uwapniona (M) w krezce jelita cienkiego jest wybijającym się przejawem rakowiaka jelita krętego (nieujęty na rycinie).

Fig. 6 B. The same case. The vascularization of the lesion shown in a different view.

Ryc. 6 B. Ten sam przypadek co na ryc. 6 A. W innym ujęciu pokazane unaczynienie masy.

Fig. 7 A. One view captures a carcinoid tumor in the ileum (C) and a hypoechoic mass in the mesentery, which is greater than the primary lesion.

Ryc. 7 A. Na jednym przekroju uchwycono rakowiaka w jelicie krętym (C) i masę hipoechogeniczną w krezce, większą niż zmiana pierwotna.

Fig. 7 B. The same patient. This view shows only the bean-shaped carcinoid tumor in the intestine, visualized with the use of a linear probe.

Ryc. 7 B. Ta sama chora co na ryc. 7 A. W tym ujęciu pokazano tylko rakowiaka kształtu ziarna fasoli w jelicie, obrazowanego głowicą liniową.
Mesenteric changes in an ultrasound examination can facilitate the diagnosis of neuroendocrine tumors of the small intestine

The wrinkled and thickened mesentery was hyperechoic (Fig. 8 A), and in one patient mesenteric retraction had caused small bowel obstruction (Fig. 8 B). In one patient, a NET was manifested by the heterogeneously thickened mesentery, in which a focal lesion was not visualized with certainty (Fig. 9). In five cases, the affected lymph nodes accompanied a hypoechoic mesenteric mass. Liver metastases were detected in 5 of 17 patients.

The same patient, but the lesions are visualized in CT enteroclysis. The tumor of the terminal ileum (C) is of an identical shape to that visualized by ultrasonography. Moreover, two affected mesenteric lymph nodes are visible

Ryc. 7 C. Ta sama chora co na ryc. 7 A i 7 B, jednak zmiany uwidocznione w enteroklizie TK. Rakowiak w końcowym odcinku jelita krętego (C) ma ten sam kształt co na obrazie USG. Ponadto uwidoczniono dwa zmienione węzły chłonne krezki

Fig. 7 C. The same patient, but the lesions are visualized in CT enteroclysis. The tumor of the terminal ileum (C) is of an identical shape to that visualized by ultrasonography. Moreover, two affected mesenteric lymph nodes are visible

Ryc. 7 C. Ta sama chora co na ryc. 7 A, 7 B i 7 C. Inna warstwa wieńcowa TK. Tutaj ujęto masę (M) w krezce jelita cienkiego i dwa inne zmienione węzły chłonne krezki (n). U tej chorej w badaniu uwidoczniono ponadto dwa ogniska przerzutowe w płucu prawym (tutaj nieekspozowane)

Fig. 7 D. The same patient. A different CT layer. It presents the mass (M) in the small intestine and two different affected mesenteric lymph nodes (n). Moreover, two metastatic foci were detected in the right lung (not shown here)

Ryc. 7 D. Ta sama chora co na ryc. 7 A, 7 B i 7 C. Inna warstwa wieńcowa TK. Tutaj ujęto masę (M) w krezce jelita cienkiego i dwa inne zmienione węzły chłonne krezki (n). U tej chorej w badaniu uwidoczniono ponadto dwa ogniska przerzutowe w płucu prawym (tutaj nieekspozowane)

Fig. 7 D. The same patient. A different CT layer. It presents the mass (M) in the small intestine and two different affected mesenteric lymph nodes (n). Moreover, two metastatic foci were detected in the right lung (not shown here)

Ryc. 7 D. Ta sama chora co na ryc. 7 A, 7 B i 7 C. Inna warstwa wieńcowa TK. Tutaj ujęto masę (M) w krezce jelita cienkiego i dwa inne zmienione węzły chłonne krezki (n). U tej chorej w badaniu uwidoczniono ponadto dwa ogniska przerzutowe w płucu prawym (tutaj nieekspozowane)

Ryc. 7 D. Ta sama chora co na ryc. 7 A i 7 B. Inna warstwa wieńcowa TK. Tutaj ujęto masę (M) w krezce jelita cienkiego i dwa inne zmienione węzły chłonne krezki (n). U tej chorej w badaniu uwidoczniono ponadto dwa ogniska przerzutowe w płucu prawym (tutaj nieekspozowane)

Fig. 8 A. Carcinoid tumor (2 cm) of the ileum with features of hyperemia and with the markedly hyperechoic mesentery

Ryc. 8 A. Rakowiak (2 cm) z cechami przekrwienia w jelicie krętym i z wyraźnym odczynem hiperechogenicznym krezki

Fig. 8 B. Carcinoid tumor (2 cm) of the ileum with features of hyperemia and with the markedly hyperechoic mesentery

Ryc. 8 A. Rakowiak (2 cm) z cechami przekrwienia w jelicie krętym i z wyraźnym odczynem hiperechogenicznym krezki
Discussion

Out of all NETs in the gastrointestinal tract, those in the small bowel are characterized by the greatest ability to metastasize, both locally and distantly. This localization decides about the prognosis. Hari et al. (6) list the following 5-year survival rates depending on the localization of the primary focus: 85–90 in the appendix, colon and rectum, 73 in the stomach, 68 in the cecum and 67 in the small bowel. The aforementioned authors have not demonstrated a strong relationship in their multivariate analysis. Despite small sizes, NETs in the small bowel rapidly metastasize to the lymph nodes: 1 cm lesions metastasize in 15–25% of cases, tumors between 1 and 2 cm – in 58–80% of cases, and larger masses (greater than 2 cm) – in over 70% of cases (5). The role of abdominal ultrasound (apart from its endoscopic version) in diagnosing NETs is rather limited. The literature usually mentions that US can detect metastatic foci in the liver and lymph nodes, or the method is not included at all in the diagnostic algorithms of small bowel NETs. There are only case reports that present single cases of NETs in the small intestine diagnosed by ultrasonography. The attempts to introduce ultrasound contrast agents have not changed the attitude to abdominal ultrasonography either. However, it seems that, in experienced hands, this modality can be useful in the initial diagnosis of patients with suspicions of NETs in the small intestine. Secondary changes in the mesentery can indicate that such a pathology exists. These changes are sometimes more visible than the primary focus concealed in the intestinal wall. This issue was the main subject of the analysis conducted in our 17 patients with small bowel NETs. All hypoechoic changes are well visible against the mesentery of intermediate or slightly increased echogenicity. This concerns affected lymph nodes and hypoechoic masses. Mesenteric thickening and centrally folding structure are usually manifested by a pattern of slightly increased reflection intensity compared with the normal mesentery, and that is why such a reaction can be more difficult to detect. To date, pathological changes in the mesentery, which can signal the presence of a NET in the small intestine, have been the subject of only few papers. The only detailed retrospective analysis węzłów chłonnych kresekowych (ryc. 7 C i 7 D) i dwóch niewielkich ognisk przerzutowych w dolnym polu płuca prawego (na rycinach nie zostały ujęte). Pomarszczona i pogrubia krecka jelita cienkiego miała hiperechogeniczny wzór oraz odbić (ryc. 8 A), a u jednego pacjenta retrakcja kreżki była powodem niedrożności jelita cienkiego (ryc. 8 B). U jednej chorej manifestacja obecności NEN była heterogenicznie pogrubiała kreka jelita cienkiego, w której nie udało się z pewnością uwidocznić zmiany ogniskowej (ryc. 9). W pięciu przypadkach stwierdzono współistnie- nie zminionych węzłów chłonnych z hipoechogeniczną masą w kreżce. Ogniska przerzutowe w wątrobie wykryto u 5 spośród 17 pacjentów.

Dyskusja

NEN w jelicie cienkim charakteryzują się największą zdolnością tworzenia przerzutów miejscowych i odległych pod względem lokalizacji tych guzów w całym przewodzie pokarmowym. Taka lokalizacja będzie decydowała o rokowaniu w konkretnym przypadku. Dane na ten temat przytaczają Hari i wsp., którzy wymienili następujący odsetek 5-letniego przeżycia chorych w zależności od położenia ogniska pierwotnego: 85–90 w wątrobie, 73 w żołądku, 68 w kątnicy i 67 w jelicie cienkim. Wymieniony autorzy w przeprowadzonej analizie wielowariantowej jednak nie wykazały takiego ściśłego związku. Mimo małych rozmiarów guzów typu NEN w jelicie cienkim dają one szybko przerzuty do węzłów chłonnych: przy zmianach do 1 cm – w 15–25% przypadków, między 1 a 2 cm – w 58–80%, przy większych rozrostach powyżej 2 cm – w ponad 70% (8). Przebrzuszne badaniu USG w rozpoznawaniu NEN (poza endoskopową wersją) przypisuje się niewielką rolę; zazwyczaj wspominana jest o możliwości wykrywania ognisk przerzutowych w wątrobie i w węzłach chłonnych albo w ogóle pomija się tę metodę obrazową w algorytmie diagnostycznym NEN w jelicie cienkim (1,8,9,11-14). W piśmiennictwie istnieją tylko prace kauzystyczne prezentujące przypadki NEN w jelicie cienkim rozpoznane za pomocą ultrasonografii. Próby wprowadzenia ultrasonograficznych środków kontrastujących też jak na razie nie wpłynęły na postrzeganie USG przebrzusznej. Wydaje się jednak, że metoda
was conducted by Pantongrag-Brown et al.\((23)\) based on CT and histologic findings. Of 29 patients with a tumorous carcinoid mass, 30 foci were detected in the mesentery. Their sizes ranged from 0.5 cm to 6.0 cm (mean 3.3 cm) and most of them (24/30, 70%) contained calcifications of various types. 21 specimens were tested histologically, but only 7 (33%) showed fragments of the lymph node architecture. However, the authors of this paper\((23)\) do not specify the percentage of patients with NETs in whom mesenteric changes were found. In our patients, such changes were detected in 5 of 17 cases (29.4%). It must be therefore concluded that a hypoechoic mass in the mesentery is not a rare phenomenon in patients with NETs in the small bowel and can be an important manifestation of such a pathology in an abdominal US scan. This finding should prompt the ultrasonographer to assess the small intestine carefully, particularly when such a pathological process is suspected clinically. It is obvious that a change detected in the mesentery can also be a different neoplasm, either primary (e.g. lymphoma, liposarcoma, mesothelioma, etc.) or secondary (e.g. metastases of colorectal cancer or carcinoma of the small intestine or ovary, etc.) The differential diagnosis should also include inflammatory lesions (tuberculosis, sarcoidosis, etc.) and other processes (amyloidosis, fibromatosis, etc.). However, the detection of the affected mesenteric lymph nodes as the only finding requires even more pathologies to be ruled out, mainly numerous infectious lesions and Crohn’s disease. Fragmentary thickening of the mesentery in NETs is difficult to differentiate from mesenteritis (particularly its fibrotic form) which can also lead to small bowel obstruction\((11,14)\). Sonography should be treated as an initial examination in the diagnostic algorithm of NETs because of its limited ability to assess the generalization of the pathological process, the possibility of multiple NETs in the small bowel (which is relatively frequent) and increased risk of the development of other neoplastic lesions, either synchronous or metachronous\((11,14,26)\).

Conclusions

- In an abdominal US examination, 2/3 of patients with neuroendocrine tumors in the small bowel manifest secondary lesions in the mesentery which are easier to visualize than the primary focus. Thirty percent of them are manifested as hypoechoic masses.
- The detection of such lesions should prompt the search for the primary focus in the small intestine.

Conflict of interest

Authors do not report any financial or personal links with other persons and organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.

ta in doświadczonych rąkach może znaleźć zastosowanie we wstępnej diagnostyce chorych podejrzanych o NEN w jelicie cienkiem\((10,20)\). Wskazówkami istnienia takiej patologii będą wtórne zmiany w krzeczu jelita cienkiego, które niekiedy są lepiej widoczne niż ukryte w ścianie jelita ognisko pierwotne. Temu zagadnieniu poświęcena była retrospektywna analiza naszych 17 chorych z NEN w jelicie cienkim. Na tle pośredniej lub podwyższonej echogeniczności krzeczy jelita cienkiego wszelkie zmiany hipoechogeniczne są łatwo wykrywalne. Dotyczy to zmienionych węzłów chłonnych i hipoechoologicznych mas. Odczyzn krzeczy pod postacią jej zgubienia i docentralnego sfaldowania\((23)\) przejawia się zwykle wzorcem o nieco wyższym natężeniu odbić niż niezmieniona krzeźka, dlatego jest ultrasonograficznie gorzej zauważalny. Dotyczych zmiany w krzeczu pod postacią patologicznej masy, będące wyrazem istnienia NEN w jelicie cienkim, były tematem niewielu prac\((10,11,14,23-25)\). Szczegółową retrospektywną analizę dotyczącą tego zagadnienia przeprowadzili jedynie Pantongrag-Brown i wsp.\((23)\) na podstawie wyników badań TK i patomorfologicznego. Wśród 29 pacjentów z guzowaną zmianą rakowiającą w krzeczu stwierdzono 30 takich ognisk, o wielkości 0,5–6,0 cm (średnio 3,3 cm), które w większości (24/30, 70%) zawierały różnego rodzaju zwapnienia. Patomorfologicznie oceniono 21 preparatów, przy czym tylko w 7 (33%) znaleziono fragmenty budowy węzła chłonnego. Autorzy cytowanej pracy\((23)\) nie podali jednak, u jakiego odsetka chorych z NEN w jelitach stwierdzono opisane zmiany w krzeczu. W naszych badaniach rozpoznaliśmy te zmiany w 5 z 17 przypadków (29,4%). Należy więc sądzić, że masa hipoechoologiczna w krzeczu nie jest rzadkością u chorych z NEN w jelicie cienkim i może być ważnym przejawem istnienia takiej patologii w badaniu USG przebrzuszynnym. Takie znalezisko powinno więc skłonić ultrasonografistę do dokładnej oceny jelita cienkiego, zwłaszcza wtedy, gdy istnieje kliniczne podejrzenie istnienia takiego procesu. Jest oczywiste, że wykryta zmiana w krzeczu może być innym nowotworem: pierwotnym (np. chłoniak, tłuszczakomięś, międybloniak itd.), jak i wtórnym (np. przerzuty raka jelita grubej lub jelita cienkiego, jajnika itd.). W różnicowaniu należy też uwzględnić zmiany zapalne (gruźlicę, sarkoidozę itd.) oraz inne procesy (np. skrobiawice, fibromatose itd.). Natomiast wykrycie tylko zmienionych węzłów chłonnych krzeczy będzie zmuszało do wykuczenia jeszcze większej liczby patologii, przed wskazującym liczej grupy zmian infekcyjnych i choroby Leśniowskiego–Crohn. Natomiast odcinkowe zgubienie krzeczy jelita cienkiego w przebiegu NEN będzie trudne do odróżnienia od zapalenia krzeczy, zwłaszcza od formy zwłoknionej, która też może doprowadzić do niedrożności jelita cienkiego\((11,14)\). Ultrasonografię należy więc traktować jako wstępne badanie w algorytmie diagnostycznym NEN, ze względu na jej ograniczone możliwości oceny uogólnienia procesu patologicznego, nieradziej występujących zmian jelita cienkiego w formie mnogiej i zwiększonego ryzyka u tych chorych pojawienia się innych zmian nowotworowych – synchronicznych oraz metachronicznych\((11,14,26)\).
Wnioski

- W badaniu USG przezbrzuszny u 2/3 chorych z guzem neuroendokrynynym w jelitach ciekowym występują wtórne zmiany w krzewie, które są prawdopodobne do obrazowania niż samo ognisko pierwotne. W 30% przypadków manifestują się jako masy hipoechogeniczne.
- Wykrycie takich zmian powinno skłonić do poszukiwania ogniska pierwotnego w jelitach ciekowym.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej pracy.

References / Piśmiennictwo

1. Kos-Kudla B: Guzy neuroendokrynne przewodu pokarmowego. Via Medica, Gdańsk 2010.
2. Modlin IM, Lye KD, Kidd M: A 5-decade analysis of 13,715 carcinoid tumors. Cancer 2003; 97: 934–959.
3. Maggard MA, O’Connell JB, Ko CY: Updated population-based review of carcinoid tumors. Ann Surg 2004; 240: 117–122.
4. Modlin IM, Championica MC, Chan AK, Kidd M: A three-decade analysis of 3,911 small intestinal neuroendocrine tumors: the rapid pace of no progress. Am J Gastroenterol 2007; 102: 1464–1473.
5. Yao JC, Hassan M, Phan A, Dagohoy C, Learg C, Mares JE et al.: One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063–3072.
6. Hari DM, Goff SL, Reich HJ, Leung AM, Sim MS, Lee JH et al.: Small bowel carcinoid: location isn’t everything. World J Gastrointest Surg 2013; 5: 239–244.
7. Mocellin S, Nitti D: Gastrointestinal carcinoid: epidemiological and survival evidence from large population-based study (n=25531). Ann Oncol 2013; 24: 3040–3044.
8. Reznik RH: CT/MRI of neuroendocrine tumours. Cancer Imaging 2006; 6: S163–S177.
9. Bolarowski M, Bednarczuk T, Bobek-Bilewicz B, Handkiewicz-Juńak D, Jezierski A, Nowakowska-Dudas E et al.: Neuroendocrine neoplasms of the small intestine and the appendix – management guideline (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol 2013; 64: 480–493.
10. Smereczyński A, Gałdyńska M, Lubiński J, Bojko S, Król M, Ostasz O: Obrazy USG rakowisk przewodu pokarmowego w materiale własnym. Ultrasonografia 2005; 22: 92–96.
11. Horton KM, Kamel I, Hofmann L, Fisher EK: Carcinoid tumors of the small bowel: a multitechnique imaging approach. Am J Roentgenol 2004; 182: 559–567.
12. Cwikla JB, Nasierowska-Guttmejer A, Jezierski KG, Cichocki A, Durlik M, Andziak P et al.: Diagnostic algorithm of neuroendocrine tumors of the digestive system (GEP-NET) and bronchi. Pol J Radiol 2005; 70: 85–92.
13. Kim KW, Krajewski KM, Nishino M, Jagannathan JP: Shiragare AB, Tirmanti SH et al.: Update on the management of gastroenteropancreatic neuroendocrine tumors with emphasis on the role of imaging. Am J Roentgenol 2013; 201: 811–824.
14. Ganesan D, Bhosale P, Yang T, Kundra V: Imaging features of carcinoid tumors of the gastrointestinal tract. Am J Roentgenol 2013; 201: 773–786.
15. Morin ME, Panella J, Baker DA, Engle J: Ultrasound detection of a carcinoid tumor. Gastrointest Radiol 1979; 4: 359–360.
16. Svobodnik W, Wechsler JG, Ditschuneit H: [Sonographic diagnosis of malignant small intestine carcinoid tumor. A case report]. Ultrasschall Med 1983; 4: 47–48.
17. Rioux M, Duchesne N, Langis P: Carcinoid tumor of the appendix: ultrasound findings in two cases. J Clin Ultrasound 1994; 22: 129–133.
18. Rioux M, Langis P, Naud F: Sonographic appearance of primary small bowel carcinoid tumor. Abdom Imaging 1995; 20: 37–43.
19. Deeg KH, Reising A, Seitz G: Sonographic diagnosis of a carcinoid tumour in a 14-year-old boy. Ultraschall Med 2003; 24: 120–122.
20. Kala Z, Válek V, Kysela P, Svoboda T: A shift in diagnostics of the small intestine tumors. Eur J Radiol 2007; 62: 160–165.
21. Dörffel Y, Wernke W: Neuroendocrine tumors: characterization with contrast-enhanced ultrasonography. Ultrasschall Med 2008; 29: 506–514.
22. Rickes S, Uhe C, Neye H, Ensberg D, Rauh P: Diagnose eines Ileumcarcinoids mittel kontrastverstärken Ultraschalls. Med Klin 2009; 104: 564–566.
23. Pantonggr-Brown L, Buetow PC, Carr NJ, Lichtenstein JE, Buck JL: Sonographic findings and pathologic correlation of a carcinoid tumour of the appendix in a 14-year-old boy. Ultraschall Med 2003; 24: 120–122.
24. Hellman P, Hessman O, Akerström G, Stålberg P, Hennings J, Björekk M et al.: Stenting of the superior mesenteric vein in mitgut carcinoid disease with large mesenteric masses. World J Surg 2010; 34: 1373–1379.
25. Kamaou I, De-Luca V, Ficarelli S, Mennesson S, Lombard-Bohas C, Pilleul F: Value of CT enteroclysis in suspected small-bowel carcinoid tumors. Am J Roentgenol 2010; 194: 629–633.
26. Yanaru-Fujisawa R, Matsumoto T, Esaki M, Obji Y, Gishima M, Hiranishi M et al.: A case of multiple carcinoid tumors of the small intestine. Endoscopy 2009; 41 Suppl. 2: E299–E300.