Strategies to optimize shock wave lithotripsy outcome: Patient selection and treatment parameters

Michelle Jo Semins, Brian R Matlaga

Abstract
Shock wave lithotripsy (SWL) was introduced in 1980, modernizing the treatment of upper urinary tract stones, and quickly became the most commonly utilized technique to treat kidney stones. Over the past 5-10 years, however, use of SWL has been declining because it is not as reliably effective as more modern technology. SWL success rates vary considerably and there is abundant literature predicting outcome based on patient- and stone-specific parameters. Herein we discuss the ways to optimize SWL outcomes by reviewing proper patient selection utilizing stone characteristics and patient features. Stone size, number, location, density, composition, and patient body habitus and renal anatomy are all discussed. We also review the technical parameters during SWL that can be controlled to improve results further, including type of anesthesia, coupling, shock wave rate, focal zones, pressures, and active monitoring. Following these basic principles and selection criteria will help maximize success rate.

Key words: Shock wave lithotripsy; Kidney stones; Nephrolithiasis; Treatment outcome; Optimization

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION
Shock wave lithotripsy (SWL) was introduced in 1980, modernizing the treatment of upper urinary tract stones. Prior to the SWL era, proximal ureteral and renal calculi required major operations with a prolonged recovery time. Because SWL is a non-invasive surgical procedure with a low complication rate allowing same day discharges, it has been the most commonly utilized treatment of kidney stones...
over the past 3 decades[1-3]. Over the past 5-10 years, however, use of SWL has been declining and just recently, a group in Canada showed ureteroscopy has surpassed it as the most common treatment of nephrolithiasis[4-9]. While ureteroscopy is more invasive than SWL, it is still minimally invasive, with a low morbidity profile, and it is more reliably definitive than SWL requiring fewer subsequent procedures to establish stone-free status[5]. As SWL technology has transformed to a more convenient and easier process, success rates have declined. SWL outcomes, however, can be optimized with careful patient selection and control of specific treatment parameters. Herein, we review how to maximize the success rate of SWL and reduce failures by defining the appropriate range of uses and outlining what technical factors can be controlled to improve efficacy.

PATIENT SELECTION

Success rate of SWL varies considerably. This variability is a direct result of well-established stone-specific and patient-specific features. While the American Urological Association guidelines for management of ureteral calculi cite SWL as a primary treatment option if intervention is needed, and the technology could theoretically be used on any urinary stone, selectivity is crucial to maximize efficacy[6]

Stones have varying responsiveness to SWL depending on several aspects. Stone size and number, location, density, and composition all affect the stone-free rate following SWL (Table 1). The American Urological Association Guideline on the management of staghorn calculi recommends against SWL as monotherapy because of poor outcomes, with only 54% overall stone-free rate, and increased complications (pain, obstruction, infection, bleeding, loss of kidney)[7]. SWL may be appropriate as an adjunctive procedure following percutaneous nephrolithotomy for staghorn calculi if there is a small residual stone. In general, it is still recommended that nephroscopy be the final procedure performed to confirm stone clearance in this setting[7]. If SWL is used as monotherapy for staghorn calculi, then a stent or nephrostomy tube should be placed prior to intervention, though the drainage mostly helps to prevent complications, and does not necessarily improve outcome. Multiple procedures are generally required for this scenario.

While staghorn is the extreme of large stone size, any stone over 2 cm is associated with an inferior outcome when treated with SWL[8-11]. Larger stones usually require more procedures and have increased complications such as obstruction from steinstrasse or larger fragment passage. If a stone is larger than 2 cm, then an alternate treatment may be best. In addition to stone size, total stone burden should be considered when electing treatment. If there are several stones throughout the kidney or bilateral stones amenable to single stage ureteroscopy vs multi-stage SWL then the patient should be counseled that stone-free rate may be higher with fewer procedures with the former option.

In addition to stone burden dispersed throughout the kidney making SWL less ideal, different stone locations affect success rates of the procedure. Specifically, there is an abundance of literature showing a lower stone-free rate for kidney calculi located in the lower pole treated with SWL with highest success rates in renal pelvis, upper pole and ureteropelvic junction stones[12-15]. Lower pole 1, a prospective, multicenter, randomized controlled trial evaluating treatment outcome for lower pole kidney stones, illustrated a 37% vs 95% stone-free rate for SWL vs percutaneous nephrolithotomy[12]. Outcome worsened further for lower pole kidney stones larger than 2 cm when treated with SWL (stone free rate 14%)[12]. This inferior outcome is directly related to the infundibulopelvic angle and lack of fragment clearance, rather than actual successful fragmentation. Success rates can be further delineated with measurements of infundibular width and length. One research group evaluated these anatomical features using intravenous pyelogram measurements and better stone clearance with SWL was achieved in kidneys with a wide infundibulopelvic angle or a short length and a broad width[15]

In addition to kidney stone locations, ureteral stone location affects outcome as well. Lower stone free rates are seen with distal ureteral stones, particularly stones greater than 1 cm, and SWL is not recommended as the primary treatment option but is an acceptable secondary alternative[6]. In general, SWL of the pelvis (distal ureteral stones) is avoided in women of childbearing age due to the theoretical risk of adjacent adnexal injury[6,16]

Both how hard a stone is and its composition also affect outcome of SWL. Density alone is a great predictor of successful fragmentation. Several groups have found that Hounsfield unit (HU) measurement of the stone on computed tomography imaging is associated with stone-free rate[17-19]. One group reported treatment failure in close to 50% of patients for stones greater than 1000 HU[19]. Another study found at least 3 SWL sessions were required 70% of the time if HU was more than 750, and stone-free rate was still only 65%[18]. Specific stones compositions are more dense than others, and therefore have well-established resistance to SWL. Brushite, cystine, and

Table 1 Stone criteria for shock wave lithotripsy

Sub-optimal features suggesting alternate therapy	Stone size > 2 cm	Multiple stones	Lower pole stone	Hounsfield unit > 1000	History of cystine, calcium oxalate monohydrate, matrix stones

Semins MJ et al. Shock wave lithotripsy optimization
calcium oxalate monohydrate are well-known to have very poor responses to SWL[7,20-24]. If suspicious for these stone compositions based on prior history or crystal presence on urinalysis, SWL is best avoided and another treatment selected. Matrix stones, while not dense, are made of organic matter and do not break with SWL[25]. Ureteroscopy or percutaneous nephrolithotomy should be used to treat this rare stone type if known.

Once the checklist for SWL has been reviewed for ideal stone characteristics, patient-specific features need to be evaluated. Body habitus and renal anatomy both affect SWL outcome (Table 2). Obesity, specifically skin to stone distance (SSD) measured on axial imaging, predicts outcome, with greater than 9 or 10 cm having a poor result[26-28]. This is because the shock wave fired loses energy as it travels through excess body fat in a patient with an elevated body mass index[29]. Pelvic kidneys and horseshoe kidneys also have a lower stone-free rate with a greater number of SWL sessions needed to achieve success[30,31]. SWL is generally not recommended in patients with a calculus in a calyceal diverticulum. While some patients may have symptomatic relief with stone fragmentation, stone-free rate is only 21% because the diverticular neck does not allow for stone passage[31]. If the ostium of the diverticulum is well-visualized, the stone is small, and the diverticula fills with contrast, success rates have been shown to be improved[32]. Hydronephrosis and renal insufficiency are also associated with lower success rates but the mechanism for this is unknown[33]. Anticoagulation, bleeding disorders, pregnancy, severe skeletal malformations, distal obstruction, and infection associated with obstruction are all absolute contraindications to SWL (Table 3)[6,35].

While some patients may still choose SWL despite not satisfying all criteria, keeping these general principles in mind regarding stone-specific characteristics and patient features when electing SWL will improve the procedure success rate.

TREATMENT PARAMETERS

Once SWL is selected as the procedure for definitive management based on the above criteria, several technical parameters during the procedure can be controlled to also optimize outcomes (Table 4).

The first way to improve outcome begins before the procedure even starts when selecting anesthesia. With more modern lithotripters having a narrow focal zone, unforeseen movements may shift the location of the stone out of the treatment zone, thus delivering shocks to surrounding tissue instead of the desired target. One way to minimize movement is to administer general anesthesia, as the anesthesiologist can control respirations with adjustments of rate and volume as needed, thus providing more control over kidney and stone motion. Several studies have shown improved SWL outcomes with higher stone free rates using general anesthesia vs sedation[36,37].

The next way to improve outcome is during the preparation. The original lithotripter in 1980 immersed patients completely in a bathtub and therefore used water as the medium to couple the shock wave to the patient. This was the optimal coupler as there was no air present to dissipate any energy. With miniaturization of the technology, most lithotripter machines now have a dry treatment head and use gel or oil for coupling. This has negatively impacted the outcome as air bubbles that form within the medium dampen the energy and reduce the impact on the stone. Efficacy can be reduced by as much as 40% with the presence of as few as 2% of air pockets[38]. Avoiding patient movement or repositioning during the procedure will lessen the impact of this effect minimizing the number of air pockets created. Additionally, medium application as a large volume mound directly from the stock container has been shown to minimize air bubble creation far more than dispensing from a squirt bottle or applying with the hand[39].

Once ready to initiate SWL several settings can be adjusted as well to optimize outcome. Shock wave rate can be set prior to initiating treatment and a slow rate of 60 shocks per minute has been shown to not only reduce tissue injury but also have a superior stone free rate[40,45]. This optimal rate has been confirmed by several studies including a meta-analysis of randomized controlled trials[46]. If the lithotripter being used, allows for control of focal zone size and

Table 2 Patient criteria for shock wave lithotripsy
Sub-optimal features suggesting alternate therapy
Obesity - skin to stone distance > 10 cm
Pelvic kidney
Horseshoe kidney
Calyceal diverticulum

Table 3 Absolute contraindications to shock wave lithotripsy
Anticoagulation
Bleeding diathesis
Pregnancy
Severe skeletal malformations
Distal obstruction
Infection associated with obstruction

Table 4 Technical factors that optimize shock wave lithotripsy outcome
General anesthesia
Optimal coupling
Low shock wave rate (60 shocks per minute)
Wider focal zone
Active intraoperative monitoring
pressures, a wider zone with lower pressures have been shown to have the best outcomes while reducing tissue injury\cite{47-50}. Another setting recommendation for SWL is pre-treating the stone at a low energy for 100-200 shock waves and then pausing for several minutes prior to going to a higher energy\cite{50,51}. While this does not necessarily improve efficacy of SWL it does improve outcome by decreasing injury to the kidney\cite{52-54}. Once the procedure begins, active monitoring of the stone location with continuous ultrasound or spot fluoroscopy every couple of minutes or every 100-200 shocks, will confirm that the target is still appropriately positioned within the treatment zone.

Following these general guidelines for control of technical parameters during SWL will help to optimize outcome and improve stone free rates while minimizing tissue injury.

CONCLUSION

SWL is an excellent treatment modality for upper urinary tract treatment stones however success rate has decreased in the recent years secondary to changes in the machine design. Careful patient and stone selection and control of technical parameters improves stone free rates and will more likely result in a successful outcome.

REFERENCES

1. **Pearle MS**, Calhoun EA, Curhan GC. Urologic diseases in America project: urolithiasis. *J Urol* 2005; 173: 848-857 [PMID: 15711292]
2. **Ordon M**, Urbach D, Mandani M, Sankin R, D’A Honey RJ, Pace KT. The surgical management of kidney stone disease: a population based time series analysis. *J Urol* 2014; 192: 1450-1456 [PMID: 24866599 DOI: 10.1016/j.juro.2014.05.095]
3. **Kerb K**, Rehman J, Landman J, Lee D, Sundaram C, Clayman RV. Current management of urolithiasis: progress or regress? *J Endourol* 2002; 16: 281-288 [PMID: 12184077 DOI: 10.1098/09827790/22301275]
4. **Scales CD**, Knupski TL, Curtis LH, Matlaga B, Lotan Y, Pearle MS, Saigal C, Preminger GM. Practice variation in the surgical management of urinary lithiasis. *J Urol* 2011; 186: 146-150 [PMID: 21575964 DOI: 10.1016/j.juro.2011.03.018]
5. **Scales CD**, Lai JC, Dick AW, Hanley JM, van Meijgaard J, Setodji MS, Saigal C, Preminger GM. The contemporary management of renal and ureteral calculi. *BJU Int* 2006; 98: 1283-1288 [PMID: 17125846 DOI: 10.1111/j.1464-410X.2006.06514.x]
6. **Abe T**, Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H, Nozumi K, Suzuki K. Outcomes of shockwave lithotripsy for upper urinary-tract stones: a large-scale study at a single institution. *J Endourol* 2005; 19: 768-773 [PMID: 16190825]
7. **Egilmez T**, Tekin MI, Gonen M, Kilinc F, Goren R, Ozkardes H. Efficacy and safety of a new-generation shockwave lithotripsy machine in the treatment of single renal or ureteral stones: Experience with 2670 patients. *J Endourol* 2007; 21: 23-27 [PMID: 17263603]
8. **Albala DM**, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez-Aceves J, Kahn RI, Leveillee RJ, Lingeman JE, Macaluso JN, Munch LC, Nakada SY, Newman RC, Pearle MS, Preminger GM, Teichman J, Woods JR. Lower pole I: a prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. *J Urol* 2001; 166: 2072-2080 [PMID: 11696709 DOI: 10.1016/S0022-5347(05)65058-5]
9. **Weld KJ**, Montiglio C, Morris MS, Bush AC, Cespedes RD. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. *Urology* 2007; 70: 1043-1046; discussion 1046-1047 [PMID: 18158009]
10. **Pearle MS**, Lingeman JE, Leveillee R, Kuo R, Preminger GM, Nadler RB, Macaluso J, Monga M, Kumar U, Dushinski J, Albala DM, Wolf JS, Assimos D, Fabrizio M, Munch LC, Nakada SY, Auge B, Honey J, Ogan K, Pattaras J, McDougall EM, Averch TD, Turk T, Pietrow P, Watkins S. Prospective, randomized trial comparing shock wave lithotripsy and ureteroscopy for lower pole caliceal calculi 1 cm or less. *J Urol* 2005; 173: 2005-2009 [PMID: 15879805]
11. **Elbahhassy AM**, Clayman RV, Shalhav AL, Hoenig DM, Chandhoke P, Lingeman JE, Denstedt JD, Kahn R, Assimos DG, Nakada SY. Lower-pole caliceal stone clearance after shockwave lithotripsy, percutaneous nephrolithotomy, and flexible ureteroscopy: impact of radiographic spatial anatomy. *J Endourol* 1998; 12: 113-119 [PMID: 9607435 DOI: 10.1089/08927790276010275]
12. **Curtis LH**, Assimos DG, Clayman RV, Shalhav AL, Hoening DM, Chandhoke P, Lingeman JE, Denstedt JD, Munch LC, Preminger GM. Stone free rates and the impact of stone size, location, and shape on Ureteroscopy success. *J Urol* 2002; 167: 1481-1488 [PMID: 11956419 DOI: 10.1016/S0022-5347(05)65064-1]
13. **Kerbl K**, Rehman J, Landman J, Lee D, Sundaram C, Clayman RV. Current management of urolithiasis: progress or regress? *J Endourol* 2002; 16: 281-288 [PMID: 12184077 DOI: 10.1098/09827790/22301275]
14. **Scales CD**, Knupski TL, Curtis LH, Matlaga B, Lotan Y, Pearle MS, Saigal C, Preminger GM. Practice variation in the surgical management of urinary lithiasis. *J Urol* 2011; 186: 146-150 [PMID: 21575964 DOI: 10.1016/j.juro.2011.03.018]
15. **Scales CD**, Lai JC, Dick AW, Hanley JM, van Meijgaard J, Setodji CM, Saigal CS. Comparative effectiveness of shock wave lithotripsy and ureteroscopy for treating patients with kidney stones. *JAMA Surg* 2014; 149: 648-653 [PMID: 24839228]
16. **Preminger GM**, Tsilisus HG, Assimos DG, Alken P, Buck C, Galhacci M, Knoll T, Lingeman JE, Nakada SY, Pearle MS, Sarica K, Türk C, Wolf JS. 2007 guideline for the management of ureteral calculi. *J Urol* 2007; 178: 2418-2434 [PMID: 17993340]
17. **Preminger GM**, Assimos DG, Lingeman JE, Nakada SY, Pearle MS, Wolf JS. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. *J Urol* 2005; 173: 1991-2000 [PMID: 15879803 DOI: 10.1016/j.juro.2004.09.017]
18. **Lingeman JE**, Coury TA, Newman DM, Kahnoski RJ, Mertz JH, Mosbaugh PG, Stolle RE, Woods JR. Comparison of results and morbidity of percutaneous nephrolithotomy and extracorporeal shock wave lithotripsy. *J Urol* 1987; 138: 485-490 [PMID: 3625845]
19. **Galvin DJ**, Pearle MS. The contemporary management of renal and urologic calculi. *BJU Int* 2006; 98: 1283-1288 [PMID: 17125846 DOI: 10.1111/j.1464-410X.2006.06514.x]
20. **Williams JC**, Saw KC, Paterson RF, Hatt EK, McAtee JA, Lingeman JE. Variability of renal stone density in shock wave lithotripsy. *Urology* 2003; 61: 1092-1096; discussion 1097 [PMID: 12898676 DOI: 10.1016/S0090-4295(03)00349-2]
21. **Koch N**, Negen Y, Linde FK, Heinrich CL. Relative efficacy of extracorporeal shock wave lithotripsy and percutaneous nephrolithotomy in the management of cystine calculi. *J Endourol* 1989; 2: 273-285 [DOI: 10.1089/end.1989.2.273]
22. **Lee LW**, Brito CG, Lingeman JE. The clinical implications of Semins MJ et al. Shock wave lithotripsy optimization
Semins MJ et al. Shock wave lithotripsy optimization

brushite calculi. J Urol 1991; 145: 715-718 [PMID: 2005685]

Bani-Hani AH, Segura JW, Leroy AJ. Urinary matrix calculi: our experience at a single institution. J Urol 2005; 173: 120-123 [PMID: 15592051 DOI: 10.1097/01.ju.0000154868.18824.25]

Thomas R, Cass AS. Extracorporeal shock wave lithotripsy in morbidly obese patients. J Urol 1993; 150: 30-32 [PMID: 8510269]

Perks AE, Schuler TD, Lee J, Ghiucilea D, Chung DG, D’A Honey RJ, Pace KT. Stone attenuation and skin-to-stone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology 2008; 72: 765-769 [PMID: 18674803 DOI: 10.1016/j.urology.2008.05.04]

Pareek G, Hedican SP, Lee FT, Nakada SY. Shock wave lithotripsy success determined by skin-to-stone distance on computed tomography. Urology 2005; 66: 941-944 [PMID: 16286099 DOI: 10.1016/j.urology.2005.05.011]

Pareek G, Armenakas NA, Panagopoulos G, Bruno JJ, Fracchia et al. Operator experience and adequate coupling for shock wave lithotripsy in 150 patients. J Urol 2007; 177:104-107 [PMID: 18680494 DOI: 10.1111/j.1464-410X.2007.07922.x]

Pace KT, Ghiucilea D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol 2005; 174: 595-599 [PMID: 16066908 DOI: 10.1097/01.ju.0000165156.9011.95]

Connors BA, Evan AP, Blomgren PM, Handa RK, Willis LR, Gao S, McAteer JA, Lingeman JE. Extracorporeal shock wave lithotripsy at 60 shock waves/min reduces renal injury in a porcine model. BJU Int 2009; 104: 1004-1008 [PMID: 19338532 DOI: 10.1111/j.1464-410X.2009.08520.x]

Madboully E, El-Tirafi AM, Seida M, El-Faqih SR, Atassi R, Talian RF. Slow versus fast shock wave lithotripsy rate for urolithiasis: a prospective randomized study. J Urol 2005; 173: 127-130 [PMID: 15592053]

Semins MJ, Trock BJ, Matlaga BR. The effect of shock wave rate on the outcome of shock wave lithotripsy: a meta-analysis. J Urol 2008; 179: 194-197; discussion 197 [PMID: 18001796 DOI: 10.1016/j.juro.2007.08.173]

Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR. A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 2007; 121: 1190-1202 [PMID: 17348540 DOI: 10.1121/1.2404894]

Cleveland RO, Sapozhnikov OA. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 2005; 118: 2667-2676 [PMID: 16266186 DOI: 10.1121/1.2032187]

Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A. The first clinical results of “wide-focus and low-energy shock wave lithotripsy for solitary kidney or ureteral stones”. BJU Int 2009; 103: 110-118 [PMID: 17051999 DOI: 10.1111/j.1464-410X.2008.07922.x]

Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment protocol on stone comminution efficiency in shock wave lithotripsy. J Urol 2004; 172: 349-354 [PMID: 15208189]

McAteer JA, Evan AP, Williams JR, Cleveland RO, Evan AP. Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol 2005; 57: 271-287 [PMID: 16247349]

Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment protocol on stone comminution efficiency in shock wave lithotripsy. J Urol 2004; 172: 349-354 [PMID: 15208189]

McAteer JA, Evan AP, Williams JR, Cleveland RO, Evan AP. Strategies for improved shock wave lithotripsy. Minerva Urol Nefrol 2005; 57: 271-287 [PMID: 16247349]

Zhou Y, Cocks FH, Preminger GM, Zhong P. The effect of treatment protocol on stone comminution efficiency in shock wave lithotripsy. J Urol 2004; 172: 349-354 [PMID: 15208189]

P - Reviewer: Bugaj AM, Tsikouras P, Watanabe T S - Editor: Tian YL L - Editor: A E - Editor: Lu YJ
