Inflammatory response of *Haemophilus influenzae* biotype *aegyptius* causing Brazilian Purpuric Fever

Gisele Cristiane Gentile Cury, Rafaella Fabiana Carneiro Pereira, Luciana Maria de Hollanda, Marcelo Lancellotti*

Biotechnology Laboratory, Department of Biochemistry, Institute of Biology, State University of Campinas, Campinas, SP, Brazil.

Submitted: January 17, 2014; Approved: April 17, 2014.

Abstract

The Brazilian Purpuric Fever (BPF) is a systemic disease with many clinical features of meningococcal sepsis and is usually preceded by purulent conjunctivitis. The illness is caused by *Haemophilus influenzae* biogroup *aegyptius*, which was associated exclusively with conjunctivitis. In this work construction of the *las* gene, hypothetically responsible for this virulence, were fusioned with *ermAM* cassette in *Neisseria meningitidis* virulent strains and had its DNA transfer to non BPF *H. influenzae* strains. The effect of the *las* transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants (in eight log scale of folding change RNA expression). This is the first molecular study involving the *las* transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to *H. influenzae*.

Key words: Brazilian purpuric fever, *Haemophilus influenzae* biogroup *aegyptius*, genetic transfer, *Neisseria meningitidis*, *Haemophilus influenzae*.

Introduction

The Brazilian Purpuric Fever (BPF) is a fulminant pediatric disease caused by *Haemophilus influenzae* biogroup *aegyptius* (Hae). BPF was first described just over a decade ago when an outbreak emerged in several locations in the Sao Paulo State, Brazil. The illness has many clinical features of meningococcal sepsis as high fever, vomiting, abdominal pain, rapid progression of petechiae and vascular collapse. These symptoms generally manifest between 7-10 days after an episode of purulent conjunctivitis (1985; 1986; 1987a; 1987b).

Major outbreaks of BPF occurred from 1984 through 1990, and sporadic cases also have been reported in Australia (McIntyre and others 1987), USA (Virata and others 1998) and recently in 2007 in Amazonas region, Brazil (Santana-Porto and others 2009). However, the disease may be more common than expected. Since the clinical picture is very similar to the meningococcal septicemia, possible cases of BPF could be misreported. Currently, BPF is a disease requiring mandatory reporting in Brazil, because BPF agents may potentially lead to new outbreaks.

Before the emerging of BPF, Hae was a bacterium only associated with conjunctivitis, producing seasonal and epidemic infection in hot climates (Pittman and Davis 1950). Little is known of the determinants of Hae virulence or the pathogenesis of infection in BPF. Potential virulence factors such as pilus proteins and lipopolysaccharide have been investigated in the infant rat model (Rubin and St Geme 1993) and *in vitro* with endothelial cells (Quinn and others 1995; Weyant and others 1994), but these factors have not been consistently associated with the pathogenesis of BPF. The invasive unique phenotype in Hae makes evident that this bacterium has virulence factors absent in the rest of *Haemophilus* strains.

The horizontal transfer of virulence genes has a major role in the evolution of bacterial pathogens and since the natural genetic exchange between *Haemophilus influenzae* and *Neisseria meningitidis* was already described (Kroll and others 1998), the highly virulent "meningococcal"
phenotype in Hae may be result of the genetic transfer from
the meningococcus to Hae-BPF. One possible explanation
for the emergence of the invasive Hae strains is an occur-
rence of a genetic exchange of invasiveness genes between
those two bacteria. Meningococcal conserved sequences
were identified in the Hae strains associated with BPF de-
termined as NMB0419 in *N. meningitidis* and *bfp001* in
Hae (Li and others 2003). The *lav* gene is another proof of the lateral transfer
between *Haemophilus* and *Neisseria*. This gene is pre-
dicted to encode a virulence-associated autotransporter and
to be transferred from *H. influenzae* to *Neisseria*. Through
homology and base sequences analysis, it was observed
that a novel type of this autotransporter had emerged in
Hae, which was described as *las* (Davis and others 2001).

In the present work, we aimed to analyze the role of
the *las* gene as a virulence determinant in BPF. Construc-
tions of the *las* gene from Hae were transfer to non BPF
H. influenzae strains and the inflammatory effects were an-
alyzed and measured in an endothelial cellular system *in vi-
tro*. This work is the first molecular study involving the *las*
transfer to search an elucidation of the pathogenic factors
by horizontal intergeneric transfer between meningococci
and *H. influenzae*.

Material and Methods

Bacterial conditions

The *Neisseria meningitidis* and *Haemophilus influenzae*
strains used in this work (Table 1) were grown in
chocolate agar at 37 °C with 5% CO₂. When needed, cul-
ture media were supplemented with erythromycin at
2 mg/mL for *N. meningitidis* receptor strains or 1 μg/mL for
H. influenzae receptor strains.

Table 1 - Bacterial Strains used in this work.

Strain	Characteristics	Origin (Reference)
DH5μ	*Escherichia coli* F-, endA1, hsdR17 c, supE44, thi1, gir A96, relA1	[23]
pLAN75	pGEM T Easy pGEM T Easy containing the amplicon of lasiF and lasiR, the initial portion of las gene	This work
pLAN76	pGEM T Easy containing the amplicon of lasF and lasR, the final portion of las gene	This work
pLAN77	pLAN 76 with amplicom containing the upstream region of las gene and ermAM cassette from pLAN 75	This work
C2135	*Neisseria meningitidis* serogroup C, BIOMERIEUX	INCQS - FIOCRUZ
B4	*Neisseria meningitidis* B4:P1-16 serogroup B	IAL – SP
Rd	*Haemophilus influenzae* strain serotype d Rd KW20 ATCC 51907	INCQS – FIOCRUZ
βlac	*Haemophilus influenzae* strain serotype b ATCC 33553	INCQS – FIOCRUZ
Hae 254/86	*Haemophilus influenzae* biotype aegyptius BPF	IAL-SP[1]
Hae 258/86	*Haemophilus influenzae* biotype aegyptius BPF	IAL – SP[1]
Hae 284/86	*Haemophilus influenzae* biotype aegyptius BPF	IAL – SP[1]
LG2	*Neisseria meningitidis* B4 transformed with pLAN77 with a transcriptional fusion of las::ermAM	This work
RdLG2	*H. influenzae* Rd strain transformed with genomic DNA from LG2 las::ermAM	This work
βlacLG2	*H. influenzae* βlac strain transformed with genomic DNA from LG2 las::ermAM	This work

DNA techniques

Recombinant DNA protocols and transformation
were performed as described previously (Holland and oth-
ers; Lancellotti and others 2008). The oligonucleotides
used are listed in Table 2. All the mutants obtained by ho-
mologous recombination were verified by PCR analysis us-
ing an oligonucleotide harboring the target gene and
another harboring the cassette.

Construction of fusion mutation in las::ermAM

The *las* gene was amplified from Hae11116 strain using
the template sequence from GenBank GI: 14994100.
Initially, the upstream region of the start codon was ampli-
cied using the primers lasiF and lasiR (Table 2). The down-
stream region to start codon of *las* was also amplified using
lasF and lasR primers (Table 2). The lasi and lasF ampli-
cons were cloned in pGEMT Easy (Promega), originating
the plasmids pLAN 75 and pLAN76, respectively. Both
plasmids had one BamHI site, which was necessary to fu-
ture insertions. In the BamHI site of pLAN75 was inserted
the *ermAM* cassette to generate the pLAN77. A new ampli-
lication reaction was performed using the ERAM3 and
lasF primers using pLAN77 as template. The ampiclon ob-
tained was inserted in BamHI site of pLAN76 generating
the transcriptional fusion vector pLAN78. Then, this vector
was transformed in *N. meningitidis* B4 strain, originating
the LG2 strain (Figure 1).

Genetic transfer assays of las gene from *N. meningitidis* to *H. influenaeae*

The fused mutant LG2 was used as DNA donor to
performed in vitro transformation of *H. influenaeae*
RdKw20 and *H. influenaeae* βlac strains. The transformation
process was performed according specifications already
described (Taha and others 1998) adapted for *H. influenzae* using the BHI liquid medium (supplemented with haemin and NAD at 10 μg/mL). The *H. influenzae* strains were growth in chocolate agar and suspensions of OD 600 in supplemented BHI were made. The 5 μg of DNA from LG2 strain was added in the bacterial suspensions and then incubated at 37 °C in atmosphere of 5% of CO₂ by 5 hours. The suspensions were plated in chocolate agar with erythro-mycin.

Hec1b cell culture and adhesion assay

Hec1B cells line were grown in plastic flasks (25 cm²) with RPMI 1640 medium (Cultilab, Campinas, SP Brazil), supplemented with 2% L-glutamine, 120 μg/mL of garamycin and 10% inactivated fetal bovine serum (com-
plete medium). The tests for adhesion in cells followed specifications already described (Pereira RFC 2011).

Production of inflammatory cytokines by real time PCR

For those strains that promoted morphological alterations in Hec1b cells were performed analysis of the cytokines (IL10 and TNFα) production. Total RNA was extracted using the Trizol Reagent (Invitrogen, Calsbag, CA, USA). RNA yield was estimated by Nanodrop (Thermo Scientific). A minimum amount of 0.2 ng of the RNA was submitted to reverse transcription followed by qRT PCR. Real-time PCR primers are listed in Table 2 and the reaction was performed using the StepONE Plus thermocycler (Applied Biosystems). Each 10 μL reaction contained 400 nM of each primer, 5 μL Master Mix and 1/60 000 Fast EVA Green Master Mix (both from Biotium), 0.25 uL of Super Script III Platinum One-Step qRT-PCR System (Invitrogen Calsbad, CA, USA) and the recommendations for cDNA production described in the kit were followed. Reactions were repeated on three different biological replicates using as endogenous control the GAPDH gene and fold expression changes were averaged. The data was analyzed by the comparative Ct method revised in (Schmittgen and Livak 2008).

Statistical analysis

The data from each assay were statistically analyzed using Turkey’s test compared with a control sample and p < 0.05 was considered significant. All experiments were performed in triplicate and the data shown in the graphs and in the table represent the means ± standard errors.

Results

For the production of the las::ermAM gene aiming the detection of the las transfer was used the template strain Hae11116 (GenBank GI: 14994100). The construction of pLAN78 and the correct insertion of each construction component were verified using ermA’s and las’s primers. This construction was used in the transformation of B4 strain for the achievement of the mutant B4 LG2.

The artificial horizontal transfer from N. meningitidis to H. influenzae strains was performed using the DNA extracted from strain LG2 and the strains Rd and βlac were used as receptors, originating the mutants Rd LG2 and βlac LG2. The transference process was verified by erythromycin resistant transformants at 1μg/mL. Also, analyses for las::ermAM insertion were made using the primer lasi and ERAM1 (data not shown).

H. influenzae and N. meningitidis transformants and their wild types, three Hae-BPF strains (Hae 254/86, Hae 284/86 and Hae 258/86) and one typical H. influenzae (Hi 46) strain were analyzed in inducing expression of cytokines TNFα and IL10 in Hec-1-B cells. The in vitro assays showed that the insertion of the foreign construction in the N. meningitidis B4 donor strain did not influence the cytokines production when the B4 mutant LG2 infected Hec-1B cells. There was an increase in the expression of these inflammatory cytokines in Hec-1B cells when infected with the transformed strains βlac and Rd. Still, the levels of IL10 expression in the infection with the mutants were higher than in the presence of the Hae-BPF strains (Figure 2).

Discussion

The use of the increase of cytokines in septic shock characterization is normally done in N. meningitidis pathologies. The implication of TNFα and interleukines, such as IL10, in meningococci sepsis is well described by many authors (Bjerre and others 2004; Brandtzaeg and others 2001; Jacobs and Tabor 1990). In this work the use the Hec-1-B cells line, which had already used as model of TNFα verification in meningococcal infection (Pereira RFC 2011; Taha 2000), for the immunological analysis in the transfer process of the las gene from meningococci strains to H. influenzae not associated with the purpura fulminans process. Nevertheless, the study of the immune response of H. influenzae biotype aegyptius causing the Brazilian

Figure 2 - Expression of tumor necrose factor alpha – TNFα (white bars) and interleukin 10 – IL10 (gray bars). The Y axis shows the log folding change of RNA expression. The mutants RdLG2 and βlac LG2 demonstrated significant increase of TNFα and IL10 expression when compared with receptor strains Rd and βlac LG2 (black arrows). p > 0.05.
purpuric fever had never been described before in vitro. The strains involved in the first BPF outbreak Hae254, Hae258 and Hae284 were able to activate the expression of IL10 and TNFα in Hec-1B cells. Though, the expression profile was lower than that observed in the transformants (Figure 2). The differential cytokines production is an important result still in study by our group. Whereas the invasive phenotype is unique in Hae strains within the Haemophilus genre, the use of a transcriptions fusion, as mimicking models of bacterial genetic transfer, is a useful and neglected tool in the search of Hae’s virulence factors.

Nevertheless, the effect of the genetic transfer of the intergeneric of las gene open a new discussion about its implication in BPF physiopathology. Since the gene las was proved to have differences between lav from H. influenzae (Davis and others 2001), it is possible that this gene is associated with Hae virulence. The present work do not touch the details of the ancestrality of las gene described (Davis and others 2001), However, the role of las in the transfer of pathogenic characteristics in NTHi strains was evidenced with production of IL10 and TNFα in cells infected with the βlactLG2 and RdLG2 mutants (Figure 2).

Still, it is very important to reinforce that the gene acquisition was mediated by an environmental action. The BPF outbreak occurred in the Southwest Brazilian region where the primitive agriculture was performed with a great emission of carbon dust from sugar cane burn. The atmosphere is similar to the one described to N. meningitidis using nanostructures mimicking the action of dust and particles formed by silica and carbon in atmosphere (Hollanda and others; Mattos and others). Thereby, the involvement of environment mimicked through the use of nanoparticles is one of the focus in our group research.

Recently the whole genome of Hae254/86 (also described as F3031) was sequenced and deposited in GenBank (accession no. FQ670178). The genomes of 254/86, F3047 a nontybeable H. influenzae that causes otitis and other five H. influenzae strains also non-invasive were compared. It was observed that more than 75% of the Hae 254/86 genome is similar among this H. influenzae strains (Strouts and others). The genome of the strain Hae 258/86 was sequenced as well as it’s assembling and annotation is in process currently by our research group. Despite the fact that 254/86, 258/86 and all the other strains isolated from the Brazilian outbreak belong to the same clonal group (Brenner and others 1988), the strains are genetically distinct and the complete genome sequence of more than one strain of this clone will be a very helpful tool to better define the virulence determinants in the unique BPF clinical picture.

Also, new strategies to study this interesting bacterium must be considered and the search for new virulence variants. The emergence of a new outbreak in Brazil (Santana-Porto and others 2009) might be an indicative of omitted cases, reinforcing the importance of new studies about its pathogenicity and prophylaxis.

In conclusion, the las gene could be a possible predominant virulence gene involved in the pathology caused by H. influenzae biogroup aegyptius – BPF. This is the first molecular study involving the las transfer to search an elucidation of the pathogenic factors by horizontal intergeneric transfer from meningococci to H. influenzae. Also, the effect of the las transfer was capable to increase the cytokines TNFα and IL10 expression in Hec-1B cells line infected with these transformed mutants. These results reinforced the hypothesis of the real involving of las gene in H. influenzae biotype aegyptius causing the brazilian purpuric fever.

Acknowledgments
All the authors declare have no conflicts of interest in this work. This work was supported by FAPESP (number 2008/56777-5) and CNPq (number 575313/2008-0). Thanks for the English revision for Julia N. Varela.

References
(1985) Preliminary report: epidemic fatal purpuric fever among children-Brazil. MMWR Morb Mortal Wkly Rep 34:217-219.
(1986) Brazilian purpuric fever: Haemophilus aegyptius bacteremia complicating purulent conjunctivitis. MMWR Morb Mortal Wkly Rep 35:553-554.
(1987a) Brazilian purpuric fever: epidemic purpura fulminans associated with antecedent purulent conjunctivitis. Brazilian Purpuric Fever Study Group. Lancet 2:757-761.
(1987b) Haemophilus aegyptius bacteremia in Brazilian purpuric fever. Brazilian Purpuric Fever Study Group. Lancet 2:761-763.
Bjerre A, Brusletto B, Hoiby EA, Kierulf P, Brandtzaeg P (2004) Plasma interferon-gamma and interleukin-10 concentrations in systemic meningococcal disease compared with severe systemic Gram-positive septic shock. Crit Care Med 32:433-438.
Brandtzaeg P, Bjerre A, Osttebo R, Brusletto B, Joo GB, Kierulf P (2001) Neisseria meningitidis lipopolysaccharides in human pathology. J Endotoxin Res 7:401-420.
Brenner DJ, Mayer LW, Carlone GM, Harrison LH, Bibb WF, Brandleone MC, Sotnnek FO, Irino K, Reeves MW, Swenson JM and others (1988) Biochemical, genetic, and epidemiologic characterization of Haemophilus influenzae biogroup aegyptius (Haemophilus aegyptius) strains associated with Brazilian purpuric fever. J Clin Microbiol 26:1524-1534.
Davis J, Smith AL, Hughes WR, Golomb M (2001) Evolution of an autotransporter: domain shuffling and lateral transfer from pathogenic Haemophilus to Neisseria. J Bacteriol 183:4626-4635.
Hollanda LM, Cury GC, Pereira RF, Ferreira GA, Souza A, Sousa EM, Lancellotti M (2011) Effect of mesoporous silica under Neisseria meningitidis transformation process: environmental effects under meningococci transformation. J Nanobiotechnology 9:28.
Jacobs RF, Tabor DR (1990) The immunology of sepsis and meningitis-cytokine biology. Scand J Infect Dis Suppl 73:7-15.

Kroll JS, Wilks KE, Farrant JL, Langford PR (1998) Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc Natl Acad Sci U S A 95:12381-2385.

Lancellotti M, Pace F, Stehling EG, Villares MC, Brocchi M, Silveira WD (2008) Ribotyping, biotyping and capsular typing of Haemophilus influenzae strains isolated from patients in Campinas, southeast Brazil. Braz J Infect Dis 12:430-437.

Li MS, Farrant JL, Langford PR, Kroll JS (2003) Identification and characterization of genomic loci unique to the Brazilian purpuric fever clonal group of H. influenzae biogroup aegyptius: functionality explored using meningococcal homology. Mol Microbiol 47:1101-1111.

Mattos IB, Alves DA, Hollanda LM, Cearagioli HJ, Baranauskas V, Lancellotti M Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitidis transformation process. J Nanobiotechnology 8:53.

McIntyre P, Wheaton G, Erlich J, Hansman D (1987) Brazilian purpuric fever in central Australia. Lancet 2:112.

Overbergh L, Kyama CM, Valckx D, Debrock S, Mwenda JM, Mathieu C, D’Hooghe T (2005) Validation of real-time RT-PCR assays for mRNA quantification in baboons. Cytokine 31:454-458.

Pereira RFC AD, Jacinto RK, Hollanda LM, Verinaud LC, Machado CML and Lancellotti M (2011) Effects of Neisseria meningitidis Infection in Tumor Glioblastoma Cell Line NG97: Respiratory Pathogen Inducing Apoptosis. J Bacteriol Parasitol 2:5.

Pitman M, Davis DJ (1950) Identification of the Koch-Weeks bacillus (Haemophilus aegyptius). J Bacteriol 59:413-426.

Quinn FD, Weyant RS, Worley MJ, White EH, Uit EA, Ades EA (1995) Human microvascular endothelial tissue culture cell model for studying pathogenesis of Brazilian purpuric fever. Infect Immun 63:2317-2322.

Rubin LG, St Geme JW, 3rd (1993) Role of lipooligosaccharide in virulence of the Brazilian purpuric fever clone of Haemophilus influenzae biogroup aegyptius for infant rats. Infect Immun 61:650-655.

Santana-Porto EA, Oliveira AA, da-Costa MR, Pinheiro A, Oliveira C, Lopes ML, Pereira LE, Sacchi C, Araujo WN, Sobel J (2009) Suspected Brazilian purpuric fever, Brazilian Amazon region. Emerg Infect Dis 15:675-676.

Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101-1108.

Strouts FR, Power P, Croucher NJ, Corton N, van Tonger A, Quail MA, Langford PR, Hudson MJ, Parkhill J, Kroll JS and others Lineage-specific virulence determinants of Haemophilus influenzae biogroup aegyptius. Emerg Infect Dis 18:449-457.

Taha MK (2000) Neisseria meningitidis induces the expression of the TNF-alpha gene in endothelial cells. Cytokine 12:21-25.

Taha MK, Morand PC, Pereira Y, Eugene E, Giorgini D, Larrise M, Nassif X (1998) Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol Microbiol 28:1153-1163.

Virata M, Rosenstein NE, Hadler JL, Barrett NL, Tondella ML, Mayer LW, Weyant RS, Hill B, Perkins BA (1998) Suspected Brazilian purpuric fever in a toddler with overwhelming Epstein-Barr virus infection. Clin Infect Dis 27:1238-1240.

Weyant RS, Quinn FD, Uit EA, Worley M, George VG, Candal FJ, Ades EW (1994) Human microvascular endothelial cell toxicity caused by Brazilian purpuric fever-associated strains of Haemophilus influenzae biogroup aegyptius. J Infect Dis 169:430-433.

All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License CC BY-NC.