Clinical outcomes in COVID-19 and cirrhosis: a systematic review and meta-analysis of observational studies

Paul Middleton, Catherine Hsu, Mark P Lythgoe

ABSTRACT
Background COVID-19 continues to pose a significant healthcare challenge throughout the world. Comorbidities including diabetes and hypertension are associated with a significantly higher mortality risk. However, the effect of cirrhosis on COVID-19 outcomes has yet to be systematically assessed.

Objectives To assess the reported clinical outcomes of patients with cirrhosis who develop COVID-19 infection.

Design/Method PubMed and EMBASE databases were searched for studies included up to 3 February 2021. All English language primary research articles that reported clinical outcomes in patients with cirrhosis and COVID-19 were included. The study was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The risk of bias was assessed using the Quality In Prognostic Score (QUIPS) risk-of-bias assessment instrument for prognostic factor studies template. Meta-analysis was performed using Cochrane RevMan V.5.4 software using a random effects model.

Results 63 studies were identified reporting clinical outcomes in patients with cirrhosis and concomitant COVID-19. Meta-analysis of cohort studies which report a non-cirrhotic comparator yielded a pooled mortality OR of 2.48 (95% CI: 2.02 to 3.04). Analysis of a subgroup of studies reporting OR for mortality in hospitalised patients adjusted for significant confounders found a pooled adjusted OR 1.81 (CI: 1.36 to 2.42).

Conclusion Cirrhosis is associated with an increased risk of all-cause mortality in COVID-19 infection compared to non-cirrhotic patients. Patients with cirrhosis should be considered for targeted public health interventions to prevent COVID-19 infection, such as shielding and prioritisation of vaccination.

BACKGROUND
COVID-19 first came to global attention in December 2019, when the Wuhan Municipal Health Commission in China reported cases of a novel ‘viral pneumonia’. Since then, the virus has spread with alarming rapidity across the globe, leading to the WHO declaring a global pandemic on 11 March 2020. As of 14 March 2021, the WHO reports 119 million global cumulative confirmed cases of COVID-19, with 2.6 million attributed deaths.

Observational studies have identified several risk factors associated with COVID-19 mortality. A meta-analysis including 38 906 patients showed the summary relative risk of death was 1.8 (95% CI: 1.6 to 2.0) for hypertension, 1.5 (95% CI: 1.4 to 1.7) for diabetes and 1.6 (95% CI: 1.9 to 3.8) for chronic liver disease (CLD). Another meta-analysis including 51 225 patients reported pooled OR of 1.09 for obesity (95% CI: 0.84 to 1.41), 2.98 for cardiovascular disease (95% CI: 2.51 to 3.53), 2.61 for hypertension (95% CI: 2.19 to 3.17), 2.12 for diabetes (95% CI: 1.79 to 2.52) and 1.80 for CLD (95% CI: 1.35 to 2.39).

Many studies have examined the impact of CLD on the prognosis of COVID-19; however, CLD encompasses a heterogeneous group of patients with a variety of aetiologies as well as a spectrum of severity of liver fibrosis and dysfunction. Aetiologies, such as non-alcoholic fatty liver disease (NAFLD), have a high comorbidity with obesity and diabetes, two other conditions associated with increased mortality in COVID-19. Cirrhosis represents the end stage of CLD. Development of infections in patients with cirrhosis is a well-established poor prognostic factor. Meta-analysis of studies examining the clinical outcome of patients with cirrhosis and any infection reported a mortality of 38%. Factors proposed to contribute to this include cirrhosis-associated immune dysfunction as well as altered gut microbiome.

Understanding the impact of concomitant cirrhosis in patients with COVID-19 is clinically important for several reasons. From a clinical perspective, it would inform decision-making on day-to-day treatment decisions, escalation and resuscitation status as well as on how to direct resources effectively. From a public health perspective, it would help shape healthcare policy-making regarding targeting of interventions such as vaccination prioritisation and shielding. This is particularly important in resource limited settings. On a lesser note, the
pandemic has resulted in a drastic reduction in hepatology outpatient face-to-face consultations. The risk of contracting COVID-19 while in hospital for routine bloods or surveillance imaging should be balanced appropriately against the risks of delaying access to these services.

To address this need, we performed a systematic literature review and meta-analysis to examine all primary studies reporting mortality of COVID-19 in patients with established cirrhosis.

METHODS

A systematic search of PubMed and EMBASE databases was performed for papers available on 3 February 2021. The study was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search terms “cirrhosis”, “chronic liver disease” and “liver disease” were combined with terms “COVID-19”, “coronavirus”, “SARS-CoV-2” and “ncov-19” in all possible permutations. After duplicates were excluded, all titles and abstracts were screened independently by two authors (PM and CH) for relevance and consideration of further review. Full texts were assessed by both authors (PM and CH) for consideration of inclusion. ML’s review was performed in instances of disagreement in author inclusion. Eligible studies included any English language primary research study reporting adult patients with cirrhosis with concomitant acute SARS-CoV-2 infection and reported any clinical outcome including mortality, hospitalisation or mechanical ventilation. No exclusion criteria were applied regarding the definition of cirrhosis within the paper, and all manuscripts which reported patients being cirrhotic were considered. Review articles and systematic reviews were excluded. Reported cases in patients who had undergone liver transplantation were also excluded. A prepublished protocol was not created.

Data were extracted using a defined spreadsheet and included study design, inclusion criteria, definition of cirrhosis, definition of COVID-19, length of follow-up, reported mortality, adjusted mortality, hospitalisation rate, intubation/ventilation rate, cirrhotic decompensation, reporting of cirrhosis aetiology and reporting of cirrhosis severity including Child–Turcotte–Pugh Score, the Model of End-Stage Liver Disease (MELD) Score or compensation/decompensation status. Decompensation of cirrhosis included reported new or worsening hepatic encephalopathy, ascites, jaundice, coagulopathy, spontaneous bacterial peritonitis or variceal bleeding.

Studies that reported cirrhosis mortality alongside a non-cirrhotic comparator group were considered for meta-analysis assessment of all-cause mortality. These papers were assessed independently by two authors for risk of bias using the Quality In Prognostic Score (QUIPS) risk-of-bias assessment instrument for prognostic factor studies template.9 Studies were assessed for consideration of risk of bias under six domains including study participation, study attrition, prognostic factor measurement, outcome measurement, study confounding and statistical analysis and reporting. Studies were scored as low, medium or high risk of bias within each domain. Disagreement between authors was resolved by consensus. Within the ‘study-confounding’ domain, we assessed for the reporting and adjustment for known prognostic factors including age, gender, diabetes, obesity, cardiovascular disease, hypertension and lung disease.3 We accepted statistical adjustment through cohort matching as well as multivariate regression analysis. We stipulated inclusion of a minimum of 10 patients with cirrhosis for a study to be deemed low risk of bias within the ‘prognostic factor’ domain. This is concordant with the previous systematic review and meta-analysis of clinical outcome in patients with cirrhosis and infections.5 The primary outcome examined was all-cause mortality.

Meta-analysis to assess the pooled OR for mortality was conducted using RevMan V.5.4.10 In cases where papers reported from the same cohort, only the paper reporting the largest cirrhotic cohort was included to prevent multiple reporting of the same patient cases. In cases where published abstracts and full articles of the same study were identified in our search, results from the complete paper were included. Crude OR was calculated from absolute values of total patients and patient deaths reported. RevMan calculator was used to derive absolute values from available data where it was not reported. Adjusted OR was input as reported. Interstudy heterogeneity was reported using the τ^2, χ^2 and I^2 statistical tests. A random effects model was used to perform meta-analysis, given the inherent variability of observational studies.
Table 1 Characteristics of accepted studies

Studies	Country	Number of cirrhotic patients	Aetiology	Child–Turotte–Pugh (A/B/C)	Hospitalised	Decompensation of cirrhosis during admission	Mechanical ventilation	All-cause mortality (%)
Published abstracts								
Neppala et al17	USA	1	ARLD (1/1)	NR	1/1	1/1	1/1	1/1 (100%)
Rozenshteyn et al18	USA	1	ARLD (1/1)	NR	1/1	1/1	1/1	
Garrido et al19	Portugal	3	NR	NR	3/3	NR	NR	2/3 (66.7%)
Joshi et al20	USA	3	ARLD (1/3) NASH (1/3) HCV (1/3)	B (1/3)	3/3	3/3	1/3	1/3 (33.3%)
Mangia et al21	Italy	10	Viral (3/10) Other (7/10)	NR	10/10	NR	NR	7/10 (70%)
Mandour et al22	UK	10	NR	NR	10/10	NR	NR	3/10 (30%)
Suresh et al23	USA	21	NR	NR	21/21	NR	NR	10/21 (47.6%)
Mendizabal et al24	Latin America	24	NR	NR	24/24	NR	NR	6/24 (25%)
Satapathy et al25	USA	84	NR	NR	84/84	NR	NR	
Choudhury et al26	Asia	121	NR	NR	NR	NR	NR	29/121 (24%)
Case reports								
Airolidi et al27	Italy	1	HCV (1/1)	B (1/1)	1/1	1/1	0/1	0/1 (0%)
Artru et al28	Switzerland	1	ARLD/NASH (1/1)	C (1/1)	1/1	0/1	0/1	0/1 (0%)
Culver et al29	France	1	ARLD (1/1)	B (1/1)	1/1	1/1	1/1	NR
El Kassas et al30	Egypt	1	HCV (1/1)	NR	1/1	1/1	1/1	0/1 (0%)
Gerstein et al31	USA	1	ARLD (1/1)	NR	1/1	1/1	0/1	0/1 (0%)
Glynn et al32	Ireland	1	ARLD (1/1)	B (1/1)	1/1	0/1	0/1	0/1 (0%)
Grosse et al33	Germany	1	NASH (1/1)	NR	1/1	1/1	0/1	0/1 (0%)
Umar et al34	Qatar	1	Cryptogenic (1/1)	B (1/1)	1/1	1/1	1/1	1/1 (100%)
Krevenaita et al35	Lithuania	1	HCV (1/1)	B (1/1)	1/1	0/1	0/1	0/1 (0%)
Mangiameli et al36	France	1	RHF (1/1)	NR	1/1	0/1	0/1	0/1 (0%)
Martini et al37	Italy	1	AILD (1/1)	NR	1/1	1/1	0/1	0/1 (0%)
Passarelli et al38	Brazil	1	NR	NR	1/1	1/1	1/1	1/1 (100%)
Qiu et al39	China	1	ARLD (1/1)	NR	1/1	1/1	0/1	0/1 (0%)
Rhee et al40	USA	1	NASH (1/1)	NR	1/1	1/1	1/1	1/1 (100%)
Zelman et al41	USA	1	ARLD (1/1)	NR	1/1	1/1	0/1	0/1 (0%)
Case series								
Rela et al42	India	2	NASH (1/2) Cryptogenic (1/2)	C (2/2)	2/2	2/2	2/2	2/2 (100%)
Eisa et al43	USA	2	ARLD (2/2)	NR	2/2	2/2	1/2	2/2 (100%)

Continued
Table 1

Studies	Country	Number of cirrhotic patients	Aetiology	Child-Tuottee–Pugh (A/B/C)	Hospitalised	Decompensation of cirrhosis during admission	Mechanical ventilation (%	All-cause mortality (%)
Kapuria et al	USA	3	ARLD (3/3)	C (3/3)	3/3	3/3	3/3 (100%)	
Qi et al	China	3	HBV (1/3), ARLD (1/3) Schistosomiasis (1/3)	B (1/3)	3/3	3/3	1/3 (66.7%)	
Kulka et al	India	9	ARLD (5/9), AILD (2/9), cryptogenic (1/9), NASH (1/9)	NR	NR	7/9	4/9 (44.4%)	
Liu et al	China	17	HBV (12/17), HCV (2/17) Other (3/17)	A (15/17), B (1/17), C (1/17)	NR	NR	2/17 (17.6%)	
Shalimar et al	India	22	ARLD (8/22), Cryptogenic (6/22), Viral (4/22), AILD (2/22), Other (2/22)	A (8/22), B (6/22), C (6/22)	NR	22/22	N/A (32.2%)	
Kumar et al	India	57	ARLD (25/57), NASH (13/57), cryptogenic (9/57), Viral (7/57), AILD (3/57)	A (11/57), B (20/57)	38/57	29 - 38/57	8/57 (14%)	

Single-centre cohort

Di Giorgio et al	Italy	1	AILD (1/1)	NR	1/1	1/1	0/1 (0%)	
Rigamonti et al	Italy	1	AILD (1/1)	NR	1/1	NR	0/1 (0%)	
Kroemer et al	USA	3	ARLD (2/3), AILD (1/3)	NR	3/3	1/3	1/3 (33.3%)	
Fortano et al	UK	6	NAFLD (6/6)	A (3/6), B (2/6), C (1/6)	6/6	NR	3/6 (50%)	
Guerra Veloz et al	Spain	7	HCV (4/7), Other (3/7)	A (5/7), B (2/7)	7/7	NR	3/7 (42.9%)	
Shalimar et al	India	26	ARLD (9/26), NAFLD (2/26), HBV (3/26), HCV (2/26), AILD (4/26), cryptogenic (6/26)	A (1/26)	NR	18/26	1/26 (42.3%)	
Torres-Macho et al	Spain	31	NR	NR	31/31	NR	9/31 (29%)	

Multicentre cohort

Li et al	China	2	HBV (2/2)	NR	2/2	0/2	0/2 (0%)	
Ji et al	China	3	NR	NR	3/3	0/3	1/3 (33.3%)	
Gerussi et al	Italy	4	AILD (4/4)	A (3/4), B (1/4)	3/4	NR	1/4 (25%)	
Marjot et al	UK	6†	NR	NR	NR	NR	6/6 (100%)	

Continued
Studies	Country	Number of cirrhotic patients	Aetiology	Child-Turcotte–Pugh (A/B/C)	Hospitalised	Decompensation of cirrhosis during admission	Mechanical ventilation	All-cause mortality (%)
Hashemi et al	USA	9	ARLD (3/9) NAFLD (1/9) HCV (4/9) HBV (1/9)	NR	2/2	NR	NR	5/9 (55.6%)
Mangia et al	Italy	10	Metabolic (7/10) HCV (3/10)	NR	10/10	NR	NR	7/10 (70%)
Lee et al	South Korea	14	HBV (5/14) ARLD (5/14) HCV (2/14) AILD (1/14) Cryptogenic (1/14)	A (9/14) B (5/14)	14/14	0/14	3/14	4/14 (28.6%)
Nathwani et al	UK	21	ARLD (10/27) Other (17/27)	A (8/21) B/C (13/21)	21/21	6/21	1/27	8/21 (38.1%)
Qi et al	China	21	HBV (9/21) HCV (2/21) ARLD (2/21) Schistosomiasis (1/21) AILD (1/21) Other (6/21)	A (16/21) B (3/21) C (2/21)	21/21	NR	3/21	5/21 (23.8%)
Bajaj et al	USA	37	HCV (9/37) ARLD (9/37) NASH (9/37) HCV+ARLD (4/37) Others (6/37)	NR	37/37	NR	14/37	11/37* (29.7%)
Iavarone et al	Italy	50	HCV (14/50) HBV (5/50) ARLD (12/50) NAFLD (3/50) Other/Multiple (16/50)	A (26/50) B (18/50) C (6/50)	48/50	12/50	2/50	17/50 (34%)
Singh et al	USA	50	NR	NR	NR	NR	NR	10/50 (20%)
Berenguer et al	Spain	54	NR	NR	54/54	NR	NR	26/54 (48.1%)
Mendizabal et al	Latin America	55	NR	NR	55/55	NR	NR	21/55 (38.2%)
Frager et al	USA	83	NR	NR	83/83	NR	22/83	30/83 (36.1%)
Butt et al	USA	93	HCV (79/93) Other (14/93)	NR	23/79	NR	NR	7/93 (7.5%)
Gottlieb et al	USA	207	NR	NR	100/207	NR	NR	NR
Kim et al	USA	227	NR	NR	NR	NR	NR	NR
Ioannou et al	USA	305	HCV-related (144/305) Other (161/305)	NR	163/305	NR	40/305	52/305 (17%)

Table 1 Continued

Multinational registry
RESULTS

Search and study characteristics

After removal of duplicates, 891 study titles and abstracts were reviewed. Three hundred and sixty-four studies progressed to full article review (figure 1). Sixty-three studies were included in the final cohort (table 1). Ten studies were published in conference abstracts, with the remaining fifty-three papers comprising full articles and letters. Three studies were published as both full articles and abstracts. Country of origin included 22 studies from Europe, 14 studies from Asia, 19 studies from North America, 3 studies from South America, 1 study from Africa, 1 study from Australia, 1 study from South America, and 3 studies from Europe. All studies were included in the final cohort (table 1). Ten studies reported further decompensation of cirrhosis associated with COVID-19 infection. Twenty-five studies reported patients receiving intubation and mechanical ventilation.

Risk-of-bias assessment

Overall, 10/63 papers were found to be at low risk of bias across all domains. Common areas for potential bias include low number of cirrhotic patients, lack of confounder reporting, and lack of adjustment for confounders. Two published abstracts were excluded as they did not report a non-cirrhotic COVID-19 comparator. Two studies were included in the meta-analysis. Nine studies included a non-cirrhotic COVID-19 comparator, with the remaining fifty-three studies reporting only cirrhotic patients with COVID-19 infection.

Meta-analysis of cohort studies

All studies that reported all-cause mortality in a cohort of 10 or more patients with cirrhosis and COVID-19 along with a non-cirrhotic COVID-19 comparator were incorporated into the meta-analysis. Two published abstracts were excluded as they did not report a non-cirrhotic COVID-19 comparator or did not report a mortality follow-up period. Two studies were included in the meta-analysis. Nine studies included a non-cirrhotic COVID-19 comparator, with the remaining fifty-three studies reporting only cirrhotic patients with COVID-19 infection.

Table 1

Studies	Country	Number of cirrhotic patients	Aetiology	Child–Turotte–Pugh (A/B/C)	Hospitalised	Decompensation of cirrhosis during admission	Mechanical ventilation	All-cause mortality (%)
Sarin et al73	Asia	43	Metabolic (14/43) Viral (26/43)	NR	43/43	14/43	NR	7/43 (16.3%)
Moon et al74	International	103	NR	A (46/103) B (30/103) C (27/103)	98/103	39/103	18/103	41/103 (39.8%)
Marjot et al75	International	386	NAFLD (102/386) ARLD (158/386) HBV (37/386) HCV (72/386)	A (171/386) B (124/386) C (91/386)	345/386	179/386	71/386	123/386 (31.9%)
Marjot et al76	International	509	NR	A (231/509) B (163/509) C (115/509)	NR	NR	NR	161/509 (31.6%)

**Death/hospice.†Cirrhotic patients from UK multicentre comparator cohort.

AILD, autoimmune liver disease; ARLD, alcohol-related liver disease; HBV, hepatitis B virus; HCV, hepatitis C virus; MAFLD, metabolic associated fatty liver disease; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NR, not reported for cirrhotic patients; RFH, right heart failure.
Middleton P, et al. BMJ Open Gastro 2021;8:e000739. doi:10.1136/bmjgast-2021-000739

In total, 16 studies were included in the meta-analysis, producing a total of 1603 cirrhotic patients with COVID-19 compared with 31,082 non-cirrhotic patients with COVID-19 (figure 2). In the majority of studies (14/16), this included all other patients with COVID-19 including a proportion of patients with CLD without cirrhosis. Overall, 2/16 studies only reported patients with CLD without cirrhosis to provide a comparator group. A funnel plot showed a degree of publication bias towards studies reporting greater associated risk; however, this was within the smaller studies (figure 3). Using a random-effect model, a pooled crude OR for all-cause mortality for patients with cirrhosis was calculated as 2.48 (95% CI: 2.02 to 3.04). Moderate interstudy heterogeneity was found. Sensitivity analysis removing studies which only had a CLD comparator showed minimal change to the associated mortality OR to 2.64 (95% CI: 2.08 to 3.36).

Inclusion of only eligible studies with a low risk of bias yielded an OR 2.44 (95% CI: 2.05 to 2.91) without significant interstudy variability (figure 4). Five low-risk-of-bias studies reported adjusted ORs for mortality between all cirrhotic patients and non-cirrhotic comparators. One study adjusted based on cohort matching for age and gender alone. Four studies reported adjusted ORs based on multivariate regression analysis incorporating age, gender as well as significant comorbidities including diabetes and cardiovascular disease in hospitalised patients. Pooled analysis of these four studies produced an adjusted OR of 1.81 (CI: 1.36 to 2.42) (figure 5).

Two eligible low-risk studies reported adjusted ORs for mortality by disease severity, suggesting worsening mortality with more advanced cirrhosis (table 2).

DISCUSSION

To the best of our knowledge, this study is the first to systematically examine and analyse the literature to describe the clinical outcome of patients with cirrhosis who have concomitant COVID-19. Pooled crude OR for mortality of 2.48 (95% CI: 2.02 to 3.04) is comparable to other established significant prognostic factors such as diabetes, hypertension and cardiovascular disease.3 This additional mortality risk persisted on analysis of adjusted ORs in hospitalised cirrhotic patients, suggesting cirrhosis poses an additional risk independent of its association with other comorbidities, such as diabetes and cardiovascular disease in patients with NAFLD. Mortality risk is potentially higher in patients with more advanced cirrhosis. Further studies with subgroup outcome reporting based on severity of cirrhosis are required to fully evaluate this; however, to assess this appropriately large patient numbers will be required, likely only achievable by large multinational or registry-based studies.

This study provides evidence to support targeted interventions aimed at protecting patients with cirrhosis from COVID-19, such as prioritisation for vaccination, shielding and limitation of hospital attendance with support from telemedical interventions where appropriate. Healthcare professionals should be aware of the associated heightened COVID-19 mortality in patients with cirrhosis and the potential risk of associated cirrhotic
decompensation. However, the associated mortality risk in cirrhosis is not out-keeping with other common comorbidities such as cardiovascular disease or diabetes. Therefore, all cirrhotic patients should still be considered for mechanical ventilation or escalation to intensive care unit on an individual basis.

Following the date of censoring, further studies have been published which may have been suitable for inclusion and it is important to consider these. Ge et al have reported data from the N3C Consortium in the USA which uses electronic healthcare record data to identify patients who underwent SARS-CoV-2 testing or had related symptoms. In total, 8941 patients with cirrhosis and COVID-19 were identified. When compared with SARS-COV-2 patients with non-cirrhotic CLD, they report an adjusted 30-day mortality HR of 3.31. This risk is higher than adjusted risks for hospitalised patients identified in our systematic review, likely due to the high proportion of non-hospitalised patients in this study and the difference in risk of hospitalisation between groups (CLD 22.9% vs cirrhosis 50.1%). Observational studies within our meta-analysis include predominantly patients who were hospitalised or presented to hospitals. This is likely due to changes in the availability and ease of access to SARS-CoV-2 testing in the community over time as the response to the pandemic has progressed.

Mallet et al have reported the outcomes of hospitalised COVID-19 from the French National Hospital Discharge database including 3207 patients with concomitant cirrhosis. Comparing cirrhotic patients to all non-cirrhotic patients produced a mortality OR of 1.73 (1.59–1.88) which is in line with our findings. Adjusted OR for 30-day mortality in compensated cirrhosis (0.71; 0.63–0.80) and decompensated cirrhosis (2.21; 1.94–2.51) were provided, highlighting the importance of delineating cirrhosis severity when prognosticating outcome. Mendizabal et al have published an update from their prospective study on hospitalised patients with COVID-19, which was already included in this systematic review. This update provided an adjusted OR 3.1 (1.9–4.8) for patients with cirrhosis. This represents an increase in reported mortality compared with their prior publication. However, they also report an increase in overall mortality for both cirrhotic patients (46.9% from 38.2%) and all non-cirrhotic patients (19.5% from 14.3%). As the pandemic progresses, regional variations in SARS-CoV-2 variant predominance, pressure on healthcare resources, public health policy and access and uptake of vaccination are likely to become more significant when predicting patient outcomes than in the first phase of the global pandemic with potentially increasing heterogeneity in reported outcomes.

The study has several limitations including the heterogeneity of study design and characteristics, the heterogeneity of the comparator group and the relatively small sample size with 34 out of 63 studies reporting fewer than 10 patients with cirrhosis. Although steps were taken to prevent multiple reporting of patient cases during meta-analysis, it is possible that cases reported are also included in registry-based studies and may be reported concurrently.

CONCLUSION
Systematic review and meta-analysis of observational studies of reporting COVID-19 in patients with cirrhosis supports an increased mortality rate compared with non-cirrhotic patients. Mortality is likely higher in those with more advanced cirrhosis. Patients with cirrhosis should be considered for targeted measures to prevent COVID-19, such as prioritisation of vaccination and shielding.

Contributors PM—authorship of manuscript, data collection, quality assessment and data analyses. CH—data collection, quality assessment and review of manuscript. ML—data collection, quality assessment and review of manuscript. All

Figure 4 Meta-analysis of studies at lower risk of bias.

Figure 5 Meta-analysis of adjusted mortality OR in studies comparing cirrhotic inpatients with COVID-19 and non-cirrhotic inpatients with COVID-19.
Table 2: Studies reporting adjusted ORs for severity subgroups of cirrhosis compared with non-cirrhotic chronic liver disease comparator

Studies	Severity	Adjusted OR (CI 95%)
Marjot et al.⁷⁶	CP A	2.18 (1.24 to 3.84)
	CP B	4.79 (2.72 to 8.45)
	CP C	12.41 (6.73 to 22.88)
Kim et al.⁷¹	Compensated	0.83 (0.46 to 1.49)
	Decompensated	2.91 (1.7 to 5.00)

authors take reponsibility for the accuracy and reporting of the data presented as guarantors.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The datasets generated and/or analysed during the current study are not publicly available due to data protection reasons.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Paul Middleton http://orcid.org/0000-0002-8070-2138

REFERENCES

1. WHO. Listings of WHO’s response to COVID-19, 2021. Available: https://www.who.int/news/item/29-06-2020-covidtimeline
2. WHO. COVID-19 Weekly epidemiological update, 2021. Available: https://www.who.int/docs/default-source/coronavirus/situation-reports/20210316_weekly_epi_update_31.pdf?sfvrsn=c947f7c2_14&download=true
3. Dorjee K, Kim H, Bonomo E, et al. Prevalence and predictors of death and severe disease in patients hospitalized due to COVID-19: a comprehensive systematic review and meta-analysis of 77 studies and 38,000 patients. PLoS One 2020;15:e0243191.
4. Mesas AE, Cavero-Redondo I, Álvarez-Bueno C, et al. Predictors of in-hospital COVID-19 mortality: a comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS One 2020;15:e0241742.
5. Liu J, Ayada I, Zhang X. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin Gastroenterol Hepatol 2021:00208–1.
6. Arvaniti V, D’Amico G, Fedele G, et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010;139:1246–56.
7. Albillos A, Lario M, Álvarez-Mon M. Cirrhosis-associated immune dysfunction: distinctive features and clinical relevance. J Hepatol 2014;61:1385–96.
8. Bajaj JS, Heumann DM, Hylemon PB, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014;60:940–7.
9. Hayden JA, Côté P, Bombardier C. Evaluation of the quality of prognosis studies in systematic reviews. Ann Intern Med 2006;144:407–17.
10. Collaboration TC. Review Manager (RevMan) [Computer program] Version 5.4. 2020.
11. Di Giorgio A, Nicastro E,Speziani C, et al. Health status of patients with autoimmune liver disease during SARS-CoV-2 outbreak in northern Italy. J Hepatol 2020;73:702–5.
12. Rigamonti C, Cittone MG, De Benedittis C, et al. Rates of symptomatic SARS-CoV-2 infection in patients with autoimmune liver diseases in northern Italy: a telemedicine study. Clin Gastroenterol Hepatol 2020;18:2369–71.
13. Butt AA, Yan P, Chotari RA, et al. Mortality is not increased in SARS-CoV-2 infected persons with hepatitis C virus infection.Liver Int 2021;41:1824–31.
14. Ge J, Fletcher MJ, Lai JC. Outcomes of SARS-CoV-2 infection in patients with chronic liver disease and cirrhosis: a national COVID-19 cohort collaborative study. Gastroenterology 2021;73.
15. Mallè V, Beeker N, Bouam S, et al. Prognosis French COVID-19 patients with chronic liver disease: a national retrospective cohort study for 2020. J Hepatol 2021;75:848–55.
16. Mendizabal M, Rínduejo E, Piñero F, et al. Comparison of different prognostic scores for patients with cirrhosis hospitalized with SARS-CoV-2 infection. Ann Hepatol 2021;25:100350.
17. Neppala S, Caravella J, Camero A, et al. S2113 COVID-19-Associated Coagulopathy and Gl Bleed in a Cirrhotic Patient. Am J Gastroenterol 2020;115:S1113–4.
18. Rozenheyt N, Shah M, Adeyemo O, et al. S2437 Budd-Chiari Syndrome Secondary to SARS-CoV-2 Infection. Am J Gastroenterol 2020;115:S1292.
19. Garrido M, Guedes T, Falcão D. Impact of abnormal liver tests and chronic liver disease in hospitalized COVID-19 patients’ outcomes—a still growing understanding. Hepatology 2020;72:278A–9.
20. Joshi TV, Bilalis MV, Brown J, et al. S2456 Clinical Outcomes of Acute-on-Chronic Liver Failure in Patients With SARS-CoV-2 Infection. Am J Gastroenterol 2020;115:S1300–1.
21. Mangia A, Verucchi G, Ciancio A. Are HCV antibodies positive cirrhotic patients at lower risk of death as compared to cirrhotic of different etiologies when infected by COVID-19? Hepatology 2020;72:259A.
22. Mandour MO, Rafique KK, Koh JM. Characteristics of SARS-CoV-2 and liver cirrhosis—a single-centre experience in the United Kingdom. Hepatology 2020;72:261A–2.
23. Suresh S, Siddiqui ME, Ghaniemeh MA. Clinical outcomes in hospitalized COVID-19 patients with chronic liver disease and cirrhosis. Hepatology 2020;72:263A.
24. Mendizabal M, Rínduejo E, Pinero F. Abnormal liver function tests on admission are associated with increased mortality in hospitalized patients with COVID-19; preliminary results from a large Latin American cohort. Hepatology 2020;72:79A–80.
25. Satapathy SK, Roth NC, Kvasnovsky C. Acute-On-Chronic liver failure related to COVID-19 infection is associated with increased in-hospital mortality. Hepatology 2020;72:80A–1.
26. Choudhury AK, Zheng M, Lau G. Apcolis score predicts outcome in patients of cirrhosis with SARS-CoV-2 infection data from ongoing apasi covid liver injury spectrum (apcolis-ii) study. Hepatology2020;72:76A–7.
27. Airoldi A, Perricone G, De Nicola S, et al. COVID-19-related thrombotic microangiopathy in a cirrhotic patient. Dig Liver Dis 2020;32:946.
28. Artru F, Alberio L, Moradpour D, et al. Acute immune thrombocytopenaic purpura in a patient with COVID-19 and decompensated cirrhosis. BMJ Case Rep 2020;13:e236815.
29. Culver A, Arbelot C, Bechis C, et al. First description of SARS-CoV-2 in ascites. IDCases 2020;21:13015.
30. El Kassas M, Al Shafie A, Abdel Hameed AS, et al. Emergency endoscopic variceal band ligation in a COVID-19 patient presented with hematemesis while on mechanical ventilation. Dig Endosc 2020;32:812–5.
31. Gerstein S, Khatri A, Roth N, et al. Coronavirus disease 2019 and extra-pulmonary tuberculosis co-infection - A case report and review of literature. J Clin Tuberc Other Mycobact Dis 2021;22:100213.
32. Glynn E, Ryan J. Mild COVID-19 despite end stage liver disease. Irish Medical Journal 2020;113:1–2.
33. Große K, Kramer M, Trautwein C, et al. SARS-CoV-2 as an extrahepatic precipitator of acute-on-chronic liver failure. Liver Int 2020;40:1792–3.
34. Khan MU, Mushida K, Akaabi SR. Acute-On-Chronic liver failure: possibly the main culprit of increased mortality in COVID-19 patients with liver disease. Gastroenterology 2021;160:1894–5.
35. Kreivenaitė E, Gedgaudas R, Valantiene I, et al. COVID-19 in a patient with liver cirrhosis. J Gastroenterin Liver Dis 2020;29:263–6.
36. Mangiamelli G, Al Zribi C, Caudron J, et al. Unexpected evolution of COVID-19 in a heart transplant patient with multimorbidity recently submitted to thoracic surgery. Minerva Chir 2020;75:467–8.
37. Martini S, Patrono D, Pittaluga F, et al. Urgent liver transplantation soon after recovery from COVID-19 in a patient with decompensated liver cirrhosis. Hepatol Commun 2021;5:144–5.
38. Passarelli VO, Perosa P, de Souza Luna LK, et al. Detected SARS-CoV-2 in ascitic fluid followed by Cryptococcosis: a case report. SN Compr Clin Med 2020;2:2414–8.

Middleton P et al. BMJ Open Gastro 2021;8:e000739. doi:10.1136/bmjgast-2021-000739
Open access

39 Qiuh, Wander P, Bernstein D, et al. Acute on chronic liver failure from novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Liver Int 2020;40:1590–3.
40 Rhee Y, Chan E, Eswaran SL, et al. Fatal COVID-19 in a patient with End-Stage liver disease Wait-Listed for liver transplantation: an Evidence-Based review of COVID-19 screening modalities prior to transplant. Clin Liver Dis 2020;15:246–50.
41 Zelman S, Holzwarth E, Malik R, et al. Alcoholic hepatitis and COVID-19: the equipoise of steroids. ACG Case Rep J 2020;7:e00504.
42 Rela M, Patil V, Narasimhan G, et al. COVID-19 in decompensated cirrhosis. Hepatol Int 2020;14:1125–7.
43 Eisa M, Kennedy R, Tefera R, et al. SARS-CoV-2 infection in patients with Alcohol-Associated hepatitis: metabolic similarities and treatment challenges. Am J Gastroenterol 2021;116:847–8.
44 Kapuria D, Upadhyay S, Shekhar R, et al. Alcoholic liver disease and COVID-19 pneumonia: a case series. J Clin Gastroenterol 2020;8:463–6.
45 Qi X, Wang J, Li X, et al. Clinical course of COVID-19 in patients with pre-existing decompensated cirrhosis: initial report from China. Hepatol Int 2020;14:478–82.
46 Kulkarni AV, Parthasarathy K, Kumar P, et al. Early liver transplantation after COVID-19 infection: the first report. Am J Transplant 2021;21:2279–84.
47 Liu F, Long X, Ji G, et al. Clinically significant portal hypertension in cirrhosis patients with COVID-19: clinical characteristics and outcomes. J Infect 2020;81:178–80.
48 Vaishnav M, Elhence A, et al. Outcome of conservative therapy in coronavirus disease 2019 patients presenting with gastrointestinal bleeding. J Clin Exp Gastroenterol 2021;11:327–37.
49 Kumar P, Sharma M, Suthana SF, et al. Severe acute respiratory syndrome coronavirus 2-related acute-on-chronic liver failure. J Clin Exp Gastroenterol 2021;11:604–6.
50 Kroemer A, Khan K, Plassmeyer M, et al. Inflammation and pyroptosis in lymphopenic liver patients with COVID-19. J Hepatol 2020;73:1258–62.
51 Forlano R, Mullish BH, Mukherjee SK, et al. In-Hospital mortality is associated with inflammatory response in NAPFL patients admitted for COVID-19. PLoS One 2020;15:e0240400.
52 Guerra Veloz MF, Cordero Ruiz P, Rios-Villejas MJ, et al. Liver manifestations in COVID-19 and the influence of pre-existing liver disease in the course of the infection. Rev Esp Enferm Dig 2021;113:103–11.
53 Elhence A, Vaishnav M, Kumar R. Poor outcomes in patients with cirrhosis and Corona Virus Disease-19. Indian J Gastroenterol 2020;39:285–91.
54 Torres-Macho J, Ryan P, Valencia J, et al. The PANDEMYC score. An easily applicable and interpretable model for predicting mortality associated with COVID-19. J Clin Med 2020;9:3066.
55 Li Y, Li C, Wang J, et al. A case series of COVID-19 patients with chronic hepatitis B virus infection. J Med Virol 2020;92:2785–91.
56 Ji D, Zhang D, Yang T, et al. Effect of COVID-19 on patients with compensated liver diseases. Hepatol Int 2020;14:701–10.
57 Gerussi A, Rigamonti C, Elia C, et al. Coronavirus disease 2019 (COVID-19) in autoimmune hepatitis: a lesson from immunosuppressed patients. Hepatol Commun 2020;4:1257–62.
58 Webb GJ, Marjot T, Cook JA, et al. Outcomes following SARS-CoV-2 infection in liver transplant recipients: an international registry study. Lancet Gastroenterol Hepatol 2020;5:1008–16.
59 Hashemini N, Viveiros K, Redd WD, et al. Impact of chronic liver disease on outcomes of hospitalized patients with COVID-19: a multicentre United States experience. Liver Int 2020;40:2515–21.
60 Marcia A, Curciarello G, Venuchi G, et al. Is postpositive for Hepatitis C virus antibody predictive of lower risk of death in COVID-19 patients with cirrhosis? World J Clin Cases 2020;8:5831–4.
61 Lee YR, Kang MK, Song JE, et al. Clinical outcomes of coronavirus disease 2019 in patients pre-existing chronic liver disease: a multicenter study in South Korea. Clin Mol Hepatol 2020;26:562–76.
62 Nathwani R, Mukherjee S, Forlano R, et al. Letter: liver disease and COVID-19—not the perfect storm. Aliment Pharmacol Ther 2020;52:572–4.
63 Qi X, Liu Y, Wang J, et al. Clinical course and risk factors for mortality of COVID-19 patients with pre-existing cirrhosis: a multicentre cohort study. Gut 2021;70:433–6.
64 Bajaj JS, Garcia-Tsao G, Biggins SW, et al. Comparison of mortality risk in patients with cirrhosis and COVID-19 compared with patients with cirrhosis alone and COVID-19 alone: multicentre matched cohort. Gut 2021;70:531–6.
65 Iavarone M, D’Ambrosio R, Soria A, et al. High rates of 30-day mortality in patients with cirrhosis and COVID-19. J Hepatol 2020;73:1083–11.
66 Singh S, Khan A. Clinical characteristics and outcomes of coronavirus disease 2019 among patients with pre-existing liver disease in the United States: a multicenter research network study. Gastroenterology 2020;159:768–71.
67 Berenguer J, Ryan P, Rodriguez-Baño J, et al. Characteristics and predictors of death in 9,819 consecutively hospitalized patients with COVID-19 in Spain. Clin Microbiol Infect 2020;26:1525–36.
68 Mendizabal M, Piñero F, Rícuere E, et al. Prospective Latin American cohort evaluating outcomes of patients with COVID-19 and acute on chronic liver failure. Hepatol Commun 2021;5:10298.
69 Frager SZ, Szymanski J, Schwartz JM, et al. Hepatic predictors of mortality in severe acute respiratory syndrome coronavirus 2: role of initial aspartate Aminotransferase/Alanine aminotransferase and preexisting cirrhosis. Hepatol Commun 2021;5:1–10.
70 Gottlieb M, Sansom S, Frankenberger C, et al. Clinical course and factors associated with hospitalization and critical illness among COVID-19 patients in Chicago, Illinois. Acad Emerg Med 2020;27:963–73.
71 Kim D, Adeniji L, Latt N, et al. Predictors of outcomes of COVID-19 in patients with chronic liver disease: US multi-center study. Clin Gastroenterol Hepatol 2021;19:1469–79.
72 Ioannou GN, Liang PS, Locke E, et al. Cirrhosis and severe acute respiratory syndrome coronavirus 2 infection in US veterans: risk of infection, hospitalization, ventilation, and mortality. Hepatology 2021;74:322–39.
73 Sarin SK, Choudhury A, Lau GK, et al. Pre-Existing liver disease is associated with poor outcome in patients with SARS CoV2 infection; the APCOLIS study (APASL COVID-19 liver injury spectrum study). Hepatol Int 2020;14:690–700.
74 Moon AM, Webb GJ, Alomar C, et al. High mortality rates for SARS-CoV-2 infection in patients with pre-existing chronic liver disease and cirrhosis: Preliminary results from an international registry. J Hepatol 2020;73:705–8.
75 Marjot T, Moon AM, Cook JA, et al. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: an international registry study. J Hepatol 2021;74:567–77.
76 Marjot T, Buescher G, Sebode M, et al. SARS-CoV-2 infection in patients with autoimmune hepatitis. J Hepatol 2021;74:1335–43.