PREPARATION OF POLYOXOMETALATE COMPOUND (NH₄)₆(β-P₂W₁₈O₆₂)₃/SiO₂ BY SOL-GEL METHOD AND ITS CHARACTERIZATION

Osin R Tambunan¹*, Risfadion Mohadi¹

¹Department of Chemistry, Faculty of Mathematic and Natural Science, Universitas Sriwijaya, Jl. Palembang Prabumulih, Km. 32, Indralaya, Ogan Ilir, Sumatera Selatan
*Corresponding Author E-mail: osintambunan@yahoo.com

ABSTRACT
Preparation of polyoxometalate compound of (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O supported with silica derived from the hydrolysis of tetraethyl orthosilicate by sol-gel method has been conducted. The compound was synthesized and characterized using FT-IR spectrophotometer, crystallinity using XRD analysis and the determination of acidity via quantitatively and qualitatively. Qualitative analysis was performed using ammonia and pyridine adsorption and quantitative analysis using potentiometric titration. FT-IR spectrum of (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O appeared in wavenumber 786.96 cm⁻¹ (W-O-W), 918.12 cm⁻¹ (W-O-W), 964.41 cm⁻¹ (W=O), 1087.85 cm⁻¹ (P-O), 3572.17 cm⁻¹ (O-H), 1404.18 cm⁻¹ (N-H) reinforced with wavenumber 1612.49 cm⁻¹ with show vibration NH dari NH₄, and to (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O/SiO₂ appears in wavenumbers 794.67 cm⁻¹ (W-O-W), 918.12 cm⁻¹ (W-O-W), 1049.28 cm⁻¹ (W=O), 1087.85 cm⁻¹ (P-O), 3564.15 cm⁻¹ (O-H), 470.63 cm⁻¹ (Si-O). Diffraction pattern of (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O and (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O/SiO₂ compounds show high crystallinity. The acidic properties showed (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O/SiO₂ more acidic than (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O. Analysis of the effect of temperature on the stability of the compounds polyoxometalate (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O/SiO₂ show that the temperature of 600°C the shift in wavenumbers of the compounds caused by vibration W=O, W-O, W-O, W has been lost. This shows that at a temperatures of 600°C on heating can cause changes in the structure of polyoxometalate (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O/SiO₂.

Keywords: (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O, Polyoxometalate, SiO₂

INTRODUCTION
Polyoxometalate is a metal-oxygen cluster compound having acid-base properties, has various structural variations and oxidation rates so it is very effective for both acid base and oxidation reaction catalyst. In general, polyoxometalate compounds can be classified into two groups: isopolyoxometalate and heteropolioxometalate (Yamase et al, 2002).

Polyoxometalate compounds have many benefits, as a catalyst and basic ingredients of macromolecular synthesis. Its utilization as a catalyst because it has a high acidity that exceeds sulfuric acid and is not toxic (Okuhara et al,1996). Research on polyoxometalate compounds is primarily intended in terms of its superiority as a catalyst which can be performed in homogeneous and heterogeneous system depending on the medium used. In heterogeneous system, polyoxometalate compounds may be used repeatedly of catalytic reaction. Polyoxometalate compounds have attracted attention to continue to be developed due to flexible properties as acid and base as well as an adjustable oxidation rate according to the desired application recruitment (Kozhevnikov, 2002).

Previous research has been done on the development of polyoxometalate compounds using carriers as TiO₂, ZrOCl₂, TaCl₅ (Fatimah, 2009). Yang (2011) has also carried on (NH₄)₆(β-P₂W₁₈O₆₂)₃nH₂O with SiO₂ sourced from tetraethyl orthosilica (TEOS) and using alcohol as a medium. In this research, TEOS hydrolysis was used as a source of SiO₂ by using microemulsion medium derived from sodium bis(2-ethylhexxil) sulfosuccinate with cyclohexane (Kim et al, 2006). According to Eriksson et al (2004) microemulsion is a liquid derived from a mixture of water, hydrocarbons, and surfactants. Sari and Situngkir (2016) reported metal oxide from reduction of TEOS (tetra ethyl ortho silicate) supported polyoxometalate. Polyoxometalate compounds embedded with SiO₂ using microemulsions and sol-gel techniques are expected to have characteristics as catalysts having uniform pore sizes and can improve the acidity side of polyoxometalate compounds. In this research, synthesis and characterization of Dawson-type polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)₃ were carried out with SiO₂. The process of loading is done by sol-gel technique. To know the functional groups of polyoxometalate compound and to know whether or not a SiO₂ carried by polyoxometalate compounds is characterized using FT-IR spectrophotometer and XRD. This characterization is performed both before and after the silica is carried by the polyoxometalate compounds. The acidity of the compound (NH₄)₆(β-P₂W₁₈O₆₂),nH₂O/SiO₂ was studied through quantitative and qualitative studies through potentiometric titration and identification using an FT-IR spectrometer followed by thermal stability test.

EXPERIMENTAL SECTION
The XRD Shimidzu lab X Type 6000, spectrophotometer FT-IR Shimidzu prestige 21 were used for characterization of the
polyoxometalate compounds in this research. The materials used in this research were sodium tungsten, ortho phosphoric acid, aquades, ammonia, ammonium chloride, tetracyethyl orthosilicates, bis(2-ethylhexyl)sulfosuccinate, n-butylamin, pyridin, cyclohex-ane and acetonitrile.

Synthesis of Dawson-Type Polyoxometalate compounds (NH4)4(β- P2W18O62)·nH2O and its characterization.

A total amount of 31.25 g of sodium tungsten was dissolved in water 62.5 mL and added 26.25 mL ortho phosphoric acid while stirred with a magnetic stirrer. The solution was refluxed for 4 hours and obtained a greenish solution. The solution was cooled and added 12.5 g ammonium chloride while stirring for 10 minutes to obtain a pale yellow solid. The obtained solid was filtered, dissolved with 75 mL aquades and the obtained filtrate was added with 12.5 g ammonium chloride to obtain a white solid. The white solid was filtered and dissolved with 31.25 mL of distilled water. The obtained solution was left for 5 days for polyoxometalate compound (NH4)4(β- P2W18O62)·nH2O according to (Contant, 1990). The polyoxometalate (NH4)4(β- P2W18O62)·nH2O obtained is characterized by spectrophotometer FT-IR and XRD.

Preparation Polyoxometalate compounds (NH4)4(β- P2W18O62)·nH2O/SiO2 by Sol-Gel Method (Newman et al, 2006)

Preparation polyoxometalate compound (NH4)4(β- P2W18O62)·nH2O/SiO2 was modified from the Kim et al. (2006) procedure. The compound (NH4)4(β- P2W18O62)·nH2O/SiO2 was synthesized with 0.5 g sodium bis(2-ethylhexyl) sulfosuccinate dissolved with 1 mL cyclohexane (Solution A). Compound (NH4)4(β- P2W18O62)·nH2O of 0.76 g was dissolved with 1 mL of aquades (Solution B). Solution B was added to solution A while distirrer. A total 2 mL tetracyethyl ortosilica (TEOS) was added dropwise. Stirred with a magnetic stirrer and heated 60°C. The mixture will form a hydrogel and heated to 100°C while stirring with a glass spatula. The white solid formed is a compound (NH4)4(β- P2W18O62)·nH2O/SiO2. The compound (NH4)4(β- P2W18O62)·nH2O/SiO2 was characterized by a FT-IR spectrophotometer, and an XRD diffractometer.

Acidity Test of the Compound (NH4)4(β- P2W18O62)·nH2O/SiO2 qualitatively

The acidity test was qualitatively modified from the Maksimov et al. (2001) procedure by saturation of polyoxometalate compounds using ammonia and also pyridine. For saturation with ammonia as much as 0.5 g of compound (NH4)4(β- P2W18O62)·nH2O and (NH4)4(β- P2W18O62)·nH2O/SiO2 inserted into vials and 1 mL of ammonia (NH3) 25% into a beaker. A vial bottle is inserted into a beaker containing ammonia and tightly sealed with a plastic kreb. The compound is allowed one day in order to adsorption between ammonia and polyoxometalate compound. For saturation using a pyridine compound, the same work was done. A total of 0.5 g of each compound (NH4)4(β- P2W18O62)·nH2O and (NH4)4(β- P2W18O62)·nH2O/SiO2 were inserted into vials and 1 mL of pyridine 25% were fed into beaker. A vial bottle is inserted into a beaker containing ammonia and tightly sealed with a plastic kreb. The compound was allowed for one day to allow adsorption between pyridine and polyoxometalate compounds. Compound (NH4)4(β- P2W18O62)·4H2O and (NH4)4(β- P2W18O62)·4H2O/SiO2 results in saturation with ammonia and pyridine were qualitatively tested by characterization using a FT-IR spectrophotometer.

Acidity Test of the compound (NH4)4(β- P2W18O62)·nH2O/SiO2 Quantitatively (Reddy et al, 2006)

A total of 0.1 g of each compound (NH4)4(β- P2W18O62)·nH2O and (NH4)4(β- P2W18O62)·nH2O/SiO2 were dissolved in 8 mL acetonitrile and stirred for 6 hours with a magnetic stirrer. The suspension was titrated with 0.05 M n-butylamine which was monitored by glass electrode as a pH sensor. Each droplet of potential titrant was generated, and recorded and linked potentiometric titration curves between the titrant volume and the resulting potential. The classification of the seams from the acidity side was classified on a scale: E> 100 mV (very acidic); -100 < E < 0 mV (weak acid side); and E < -100 mV (acid side is very weak).

The Impact of Temperature on the Stability of the compound (NH4)4(β- P2W18O62)·nH2O/SiO2

The compound (NH4)4(β- P2W18O62)·nH2O/SiO2 was heated at various temperature 200°C, 300°C, 500°C, and 600°C for 3 hours in he furnace. The combustion compound was cooled and analyzed by using FT-IR spectrophotometer.

RESULTS AND DISCUSSION

Synthesis of Dawson-Type Polyoxometalate compound (NH4)4(β- P2W18O62)·nH2O and characterization

The synthesis of Dawson-type polyoxometalate compound (NH4)4(β- P2W18O62)·nH2O based on the procedure performed by Contant (1990) using sodium tungsten as the base material. The forming polyoxometalate compound were characterized by functional group analysis using a FT-IR spectrophotometer and christianity analysis using XRD analysis. The reaction of polyoxometalate compound formation as follows:

\[
18(\text{WO}_3)_2^2^- + 32\text{H}_3\text{PO}_4 + 6\text{(NH}_4)^+ \rightarrow (\text{NH}_4)_4(\beta-\text{P}_2\text{W}_{18}\text{O}_{62}) + 18\text{H}_3\text{PO}_4^- + 30\text{H}_2\text{O}^- .
\]

The identification was carried out on a polyoxometalate (NH4)4(β- P2W18O62)·nH2O compound using a FT-IR spectrophotometer in the range of 200-4000 cm⁻¹ wave numbers is shown in Figure 1. The spectrum FT-IR polyoxometalate (NH4)4(β- P2W18O62)·nH2O in Figure 1 shows some significant absorption bands located at the wave number of 786 cm⁻¹ showing the vibration of the W-Oc-W group (oxygen in the middle of the polyoxometalate compound) and the numbers in 918 cm⁻¹ denote the vibration of the W-Oc-W group (oxygen at the edge of the polyoxometalate compound). The wave number at 964 cm⁻¹ shows the vibration of the W = O group, and the wave number at 1087 cm⁻¹ denotes the vibration of the P-O group. The wave number at 1404 cm⁻¹ denotes the vibration of the N-H group which is amplified by the 1612 cm⁻¹ number indicating the NH vibration NH⁺ (Finke et al, 1987). The compound (NH4)4(β- P2W18O62)·nH2O was analyzed using
XRD. Diffractogram of compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O presented in figure 2.

Figure 1. FT-IR spectra polyoxometalate compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O

Figure 2. XRD Diffraction pattern of polyoxometalate compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O

The diffractogram in figure 2 shows the diffraction for the highest intensity of the polyoxometalate compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O complexes appearing at the diffraction angles of 8°, 17°, 27°. According to Yang et al. (2011) the diffraction for polyoxometalate compounds was found in some diffraction regions at 6-10°, 15-20°, 22-25°, and 35-40°. The diffraction that appears below 10° in region 20 shows that the polyoxometalate compound has a very high crystallinity. Diffractogram of polyoxometalate compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O shows the sharp diffraction peaks indicating polyoxometalate (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O compounds have very high crystalline properties in which the atoms of the polyoxometallic compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O is arranged regularly based on the length and angle of the regular bond.

Synthesis of Dawson-Type Polyoxometalate Compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O/SiO$_2$ And Characterization.

The preparation of Dawson-Type polyoxometalate compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O with SiO$_2$ based on the procedure undertaken by Newman et al. (2006) in SiO$_2$ is derived from tetraethyl orthosilicate in the form of a liquid. Identification using spectrophotometer FT-IR compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O/SiO$_2$ showed the presence of specific vibrations of polyoxometalate and SiO$_2$ compounds presented in Figure 3. On FT-IR spectrum of compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O and (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O/SiO$_2$ noticeable differences before placement and after assuming SiO$_2$.

Figure 3 shows the difference shown by FT-IR spectrum of polyoxometalate (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O compound before being assumed with SiO$_2$. According to Derick et al. (1999) the asymmetric stretching vibration of Si-O-Si is at the wave number 1130-1000 cm$^{-1}$. Smith (1999) reported that the Si-O-Si asymmetric stretch vibration was stronger at 1085 cm$^{-1}$. The FT-IR spectrum of compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O/SiO$_2$ undergoes a shift of wave numbers for asymmetric Si-O-Si stretching vibration at 1103.28 cm$^{-1}$. The shift of wave numbers occurs in vibration W = O. The W = O vibration after assumption appears at 964.41 cm$^{-1}$ wave numbers and the vibrations before being assumed with SiO$_2$ appear at 1049.28 cm$^{-1}$ wave numbers. According to Stuart (2004), the vibration -OH vibration in the presence of hydrogen bonding effect is in the range of 3500-2500 cm$^{-1}$ wavelengths characterized by a widened peak on the FT-IR spectrum. Figure 3B has a shift of wave numbers at the peak 3572.17 cm$^{-1}$ identifies the -OH vibration by the presence of H$_2$O in the compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O and the wave number at peak 3464.15 cm$^{-1}$ identifies the -OH by the presence of H$_2$O in the compound (NH$_4$)$_6$(β$_2$-P$_2$W$_{18}$O$_{62}$).nH$_2$O/SiO$_2$.
have the same absorption bands of both the polyoxometalate (NH₄)₆[β- P₂W₁₈O₆₂]·nH₂O as well as the SiO₂ absorption bands. This identifies the presence of polyoxometalate (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O and SiO₂ forming groups which show the success of SiO₂ baffling process in the polyoxometalate (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O. Table 1 shows wave numbers of polyoxometalate compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O and (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂. Further, polyoxometalate (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O analysis using XRD. Comparison of the compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O and (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ presented in the Figure 4.

Compound	Vibration	Type
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O	964.41	W=O
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂	1049.28	W=O
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O	790.96	W-O-W
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂	794.67	W-O-W
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O	918.12	P-O
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂	1087.85	P-O
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O	3572.12	O-H
(NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂	3464.15	O-H

Figure 4. Diffractions of (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O (A) and (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ (B)

Polyoxometalate compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O which was assumed by SiO₂ was characterized using XRD. Characterization using XRD diffraction angle and crystallinity showed polioksmetale compounds dengau SiO₂ (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂. The comparison of XRD diffraction of the compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O with (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ were presented in Figure 4. Figure 4A shows the diffraction of (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O that appear at 2θ area under 10° indicates that the compound polioksmetale (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O possess extremely high crystallinity due to atoms (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O regularly by Length and angle of bond formed. Figure 4B shows the XRD pattern of compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂. The compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ has a high crystallinity by the diffraction angle 2θ 8°, 18°, 27° and 34°, respectively which shows the characteristics of the compound polyoxometalate (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ where atoms polyoxometalate compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ arranged regularly based on the length and angle of a regular bond. In Figure 4B shows the XRD pattern of (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ indicates the diffraction angle changes.

Acidity Test Of The compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O and (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O/SiO₂ Quantitatively

Measurement of acidity in polyoxometalate compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O done both qualitatively and quantitatively. Qualitatively, FT-IR spectrophotometer was used in which polyoxometalate (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O was saturated with ammonia and with pyridine for one day resulting in adsorption on the surface of the compound adsorpsi (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O. The saturation result is then compared before or after being saturated with ammonia or pyridine. The spectra of FT-IR compound (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O of saturation result is presented in Figure 5.

Figure 5. FTIR spectrum of (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O saturated with pyridine (A), (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O saturated with ammonia (B), and (NH₄)₆[β-P₂W₁₈O₆₂]·nH₂O before saturated (C)

FT-IR spectrum in Figure 5A and B did not find any absorption band at wave number 1400-1440 cm⁻¹ on
polyoxometalate \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\). According to Dines et al. (1991) ammonia forms ammonium ions \((\text{NH}_4^+)\) with the observed wave numbers being at 1400-1440 cm\(^{-1}\). In polyoxometalate compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) saturated with ammonia and pyridine does not exhibit the ammonium ion vibration \((\text{NH}_4^+)\) in the 1400-1440 cm\(^{-1}\) wave numbers range. Ammonia can be adsorbed on the acid side of the heteropoly compound as well as on the metal cations which in this study is not observed as Figure 5A and 5B.

Acidity Test Of Compound (\((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\)

The compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) is saturated using ammonia and pyridine just as with section 3.3.1. Then the polyoxometalate \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) was characterized using a FT-IR spectrophotometer. The saturated FT-IR \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) spectrum is presented in Figure 6. Figure 6A shows the spectrum of FT-IR polyoxometalate \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) before it is saturated. Figure 6B shows the FT-IR spectrum of polyoxometalate \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) saturated with pyridine. Dines et al. (1991) states that ammonia forms an ammonium ion \((\text{NH}_4^+)\) with an observed wave number at 1400-1440 cm\(^{-1}\). Seo et al (1988) states that ammonia can be adsorbed on the acid side of the heteropoly compound as well as on the metal cation. The compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) exhibits the ammonium ion vibration \((\text{NH}_4^+)\) on the acid side of the heteropoly compound as well as on the metal cation. The compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) shows wave number at 1481.33 cm\(^{-1}\). This shows the polyoxometalate compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) having Lewis acid properties.

Acidity Test of the Compound (\((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) and \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\)

Potentiometric titration method is an analytical technique based on the potential measurement of a sensor or electrode. The electrodes used are glass-containing glassy electrode, the liquid having the potential difference properties between the membrane and the electrolyte in contact with the membrane is determined by the activity of the particular ion. The membrane electrode used is a glass electrode. These glass electrodes are said to be ion-selective because they are specific to \(\text{H}^+\) ions only. The acidities measurements of \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) and \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) were carried out quantitatively by measurement using potentiometric titration with n-butylamine as titrant and acetonitrile as solvent. Acetonitrile is an aprotic solvent as a solvent in compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) and \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) so measurable only acidity \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) and \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\). According to Pecchi et al (1985) the use of benzene, acetonitrile, and iso-octane solvents as solvents in potentiometric titration as a polar solvent to avoid the occurrence of acid or proton adsorption of n-butylamine and acetonitrile as an inert solvent. The measurement by potentiometric method can determine the total acidity and acidity side of a polyoxometalate compound. The initial potential value \((\text{Ei})\) identifies acidity strength from the surface side and classifies the acidity strength based on the span divided into scales: \(\text{Ei}>100\) mV (acid side is very strong), \(0<\text{Ei}<100\) mV (strong acid side), \(-100<\text{Ei}<0\) mV (weak acid side), \(\text{Ei}<-100\) mV (acid side is very weak) (Romanelli et al, 2004).

The first and second derivative curves are made to see where the titration equivalent point is shown in Figures 7B and 7C. Equivalent point is performed to see the condition where the base of n-butylamine is added precisely reacts with the compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) being titrated. In addition, an equivalence point is performed to determine the amount of base volume of n-butylamine needed to neutralize the compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}/\text{SiO}_2\) which is considered to be acidic. Figure 7A shows the result of measurement of compound \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) has an initial potential value of 61.96 mV. Based on the potential value range \(0<\text{Ei}<100\) polyoxometalate \((\text{NH}_4)_6(\beta-\text{PW}_{18}\text{O}_{62})\cdot\text{nH}_2\text{O}\) has a strong acid side. The titration equivalent point is at 0.8 mL of n-
butylamine volume reinforced by the first derivative curve and the second derivative of potentiometric titration data. The titration equivalent point can be observed with sharp potential changes (Mulja and Suharman, 1995). Figures 7B and 7C show the first derivative curves and the second derivative curves of the polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}\).

The measurement of the acidity of the polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) quantitatively is also carried out through potentiometric titration. From the titration curve presented in Figure 7, the titration equivalent point is obtained when the titration volume is 0.8 mL n-butylamine. Based on equivalence point data, it is found that polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) compounds require more n-butylamine base volume to neutralize the polyoxometalate compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) is more acidic than the polyoxometalate compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}\). This is also supported by looking at the potential initial value comparison. The initial potential value of polyoxometalate compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) is 76.16 mV whereas the initial potential value of polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) amount 61.96 mV. The compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) is included in the acid classification having a strong acid side based on the potential acid strength value range. Increasing the safety of the polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) compound due to the compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}\) interacts with the carrier SiO2 derived from tetraethyl orthosilicate. The titration curve of potentiometric compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) can be seen in Figure 8.

The Effect of Temperature on the Stability of the Compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\)

The compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) was heated at various temperatures to see the effect of temperature on the stability of the compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\). The heating results of the compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) at various temperatures were characterized by an FT-IR spectrophotometer. Figure 9 shows the spectrum of FT-IR polyoxometalate compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) without heating and heated at various temperatures from 200-600°C.

In Figure 9 shows the difference shown by FT-IR spectrum of polyoxometalate \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) before and after heated at the temperature range 200-600°C. Based on the FT-IR spectrum of compound \((\text{NH}_4)_6(\beta\text{-P}_2\text{W}_{18}\text{O}_{62})\cdot n\text{H}_2\text{O}/\text{SiO}_2\) which was warmed up the vibrations appear to have shifted wavenumbers.
polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ in the wavenumber 800-1000 cm⁻¹ at 600°C indicates a difference caused by vibration W = O, W-Oe-W vibration and vibration W- Oe-W has been lost. This indicates that on the increase of temperature on heating can cause structure change of polyoxometalate (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂. At a temperature of 200°C shows little difference due to vibration W = O that overlap with vibration W-Oe-W and W-Oe-W, whereas with temperature 300°C vibration W = O and W-Oe-W was disappeared. This indicates an increase in the heating temperature which may cause changes in the structure of the polyoxometalate (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂.

CONCLUSION
Polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O and (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ has been successfully prepared which is characterized by the vibration of the polyoxometalate group as results of the characterization of the FT-IR spectrofotometer. Vibration of the polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O shows the presence of vibration W=O appear on the area 964.41 cm⁻¹, W-O appear on the area 786.96 cm⁻¹, W-O-W appear on the area 918.12 cm⁻¹, P-O appear on the area 1087.85 cm⁻¹, and polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ shows the presence of vibration W=O appear on the area 1049.28 cm⁻¹, W-O-W appear on the area 794.67 cm⁻¹, W-O-W appear on the area 918.12 cm⁻¹, P-O appear on the area 1087.85 cm⁻¹, O-H appear on the area 3464.15 cm⁻¹, Si-O appear on the area 470 cm⁻¹. XRD diffraction patterns show polyoxometalate compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O and (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ has high crystallinity with an angle of diffraction 2θ each of them 8°-34°. Compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ has high acidity compared with the compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O acidity test quantitatively. The impact temperature on the stability of the compound (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂ shows of the temperature 600°C there is a shift of compound wavenumbers (NH₄)₆(β-P₂W₁₈O₆₂)nH₂O/SiO₂.

REFERENCES
Contant, R., Abbessi, M., Thouvenot, R., Herve., 2004, Syntheses and ³¹P, ³¹V, and ¹⁸W NMR Structural Investigation of Octadeca (molybdo−tungsto−vanado) diphosphates Related to the [H₄P₆W₁₂O₄₈]²⁺ Anion. Inorganic Chemistry, 43, 3597.

Dines, T. J., Colin H. R., and Andrew M. W., 1991. Infrared and Raman Study of the Adsorption of NH₃, Pyridine, NO and NO₂ on Anatase. Journal Chemical Society, 87, 643-651.

Fatimah, I. 2009, Peningkatan Aktivitas Katalitik TiO₂ dan ZrO₂ melalui Pengembangan pada Matriks Al₂O₃-Montmorillonit. Laporan Akhir Kegiatan Hibah Penelitian untuk Mahasiswa Program Doktor, UGM.

Finke, R.G, Droge, M.W, Domaille, P.J., 1987, Trivacant Heroploy tungstate Devirates. 3.¹. Rational Syntheses, Characterization, Two-Dimensional ¹⁸W NMR, and Properties of P₆W₁₈M₄(H₂O)₉O₆₂⁶⁻ and P₆W₁₂M₄(H₂O)₇O₁₂²⁻ (M= Co, Cu, Zn), Inorganic Chemistry, 26, 3886-3896.

Khalifah, S.N., and Prasetyoko, D. 2008, Sintesis dan Karakterisasi ZSM-5 Mesoporous Dengen Variasi Rasio SiO₂/Al₂O₃. Surabaya
Kim, H. J, Shul, Y. G, and Han, H, 2006, Synthesis of Heteropolyacid (H₃PW₁₂O₄₀)/SiO₂ Nanoparticles and Their Catalytic Properties, Applied Catal. A: General, 299, 46-51.
Kozhevnikov, I., Robert, M. R., Derouane, E, 2002, Catalyst for Chemical Synthesis, Vol. 2: Catalysis by Polyoxometalates. John Willey & Sons: Liverpool.
Mulja, Muhammad & Suharman, 1995, Analisis Instrumental. Airlangga University Press, Surabaya.
Newman, A., Brown D R., Siril, P., Lee, AF.,Wilsom, K, 2006, Structural Studies of High Dispersion (H₃PW₁₂O₄₀)/SiO₂ Solid Acid Catalyst Physical Chemistry. Chemical Physics, pp 8, 2893-2902.
Okuhara,T.; Mizuno. N.; Misono. M, 1996, Advances in Catalysis Vol 41: Catalytic Chemistry of Heteropoly Compounds. 113-252.
Pecchi, G and Ruby Cid., 1983. Potentiometric Method for Determining The Number and Relative Strength of Acid Site in Colored Catalysts. Applied Catalysis, 14 : 15-21
Reddy, K. M, N. Lingaiah, P. S Sai Prasad, and I. Suryanarayana., 2006, Acidity Constants of Supported Salts of Heteropoly Acids Using a Methodology Related to the Potentiometric Mass Titration Technique. Journal of Solution Chemistry, 35, 3.
Romanelli, G., P. Vázquez,, L. Pizio,, N. Quaranta,, J. Autino,, M. Blanco,, C. Cáceres, 2004, Phenol Tetrahydropyranylation Catalyzed by SilicaAlumina Supported Heteropolyacids with Keggin Structure. Applied Catalysis, 261, 163-170.
Sari M A, Y., & Situngkir, M. (2017). Synthesis, Characterization, and Thermal Stability of K8[SiW11O39]nH2O/SiO2. Science & Technology Indonesia, 1(1), 8-15.
Seo, Gon., Jeong Woo Lim., Jong Taik Kim., 1988, Infrared Study on the Adsorbed State of Ammonia on Heteropoly Compounds. Journal of Catalysis, 114, 469-472.
Smith, B. 1999. Infrared Spectral Interpretation : A systematic Approach . CRC Press, New York.
Yamase, T.;Pope, M. T. Eds, 2002, Polyoxometalate Chemistry For Nano-Composite Design; Kluwer: Dordrecht. The Netherlands.
Yang, Shuijin. Yongkui Huang., and Li Yu, 2011, Catalytic Application of H₃SiW₁₂O₄₀/SiO₂ in Synthesis of Acetals and Ketals. Advanced Materials Research, 284-286, 2374-237