New-onset acute symptomatic seizure and risk factors in Corona Virus Disease 2019:
A Retrospective Multicenter Study

Lu Lu 1#, Weixi Xiong 1#, Dan Liu 2#, Jing Liu 3, Dan Yang 3, Nian Li 4, Jie Mu 1, Jian Guo 1, Weimin Li 2, Gang Wang 2, Hui Gao 1, Yingying Zhang 1, Mintao Lin 1, Lei Chen 1, Sisi Shen 1, Hesheng Zhang 1, Josemir W. Sander 5, Jianfei Luo 6*, Shengli Chen 3*, Dong Zhou 1*

1 Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
2 Department of Pulmonary & Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
3 Department of Neurology, Chongqing Three Gorges Central Hospital, Chongqing, China
4 Department of Medical Affairs, West China Hospital, Sichuan University, Chengdu, China
5 NIHR University College London Hospitals Biomedical Research Centre, UCL Queen Square Institute of Neurology, London WC1N 3BG, Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom; & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
6 Department of Gastrointestinal Surgery, Renmin hospital of Wuhan University, Wuhan, China
Summary
Our aim was to clarify the incidence and risk of acute symptomatic seizures in people with coronavirus disease 2019 (COVID-19). This multicenter retrospective study enrolled people with COVID-19 from 18 January to 18 February 2020 at 42 government-designated hospitals in Hubei province, the epicenter of the epidemic in China; Sichuan province; and Chongqing municipality. Data were collected from medical records by 11 neurologists using a standard case report form. A
total of 304 people were enrolled, of whom 108 had a severe condition. None in this cohort had a known history of epilepsy. Neither acute symptomatic seizures or status epilepticus were observed. Two people had seizure-like symptoms during hospitalization due to acute stress reaction and hypocalcemia, Eighty-four (27%) had brain insults or metabolic imbalances during the disease course known to increase the risk of seizures. There was no evidence suggesting an additional risk of acute symptomatic seizures in people with COVID-19. Neither the virus or potential risk factors for seizures seem to be significant risks for the occurrence of acute symptomatic seizures in COVID-19.

Keywords

COVID-19; SARS-CoV-2; Epilepsy; acute symptomatic seizures.
Introduction
In December 2019, pneumonia caused by a novel coronavirus, later called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China. On 12 March 2020, the World Health Organization (WHO) declared the syndrome caused by SARS-CoV-2 infection, the coronavirus disease 2019 (COVID-19) a pandemic. According to WHO Situation Report of 07 April 2020, there are over 1,200,000 confirmed COVID-19 cases and over 72,000 deaths globally. COVID-19 affect people of all ages, and in severe cases, it may cause dyspnea, hypoxia, acute respiratory distress syndrome (ARDS), and septic shock.

The current situation has raised concerns whether people with epilepsy have a higher risk to be infected with COVID-19 and whether people would develop acute seizures during the course of COVID-19. The objective of this study is to clarify the incidence and the risk of acute symptomatic seizures during acute COVID-19 infections.

Methods
Study population
This retrospective multi-center study was approved by the Ethics Committee of West China Hospital, Sichuan University (approval 2020[100]). The study was conducted in 42 officially-designed hospitals in Hubei province, the epicenter of the COVID-19 epidemic in China; Sichuan province; and Chongqing municipality. These hospitals included the East branch of Renmin Hospital of Wuhan University (West China Ward), Chongqing Three Gorges Central Hospital, and hospitals in Sichuan province designated by the government to treat COVID-19 (see the list of hospitals in Supplementary Materials).

People with COVID-19 who were discharged or died from the participating hospitals between 18 January and 18 February 2020 were consecutively enrolled. All cases were diagnosed according to the Diagnosis and Treatment Protocol for COVID-19 (Trial Version 6). All those enrolled tested positive through nucleic acid detection. Disease severity was classified as mild, moderate, severe, or critical according to the national guidelines (see Box 1 for classification criteria). For our
study we aggregated severe and critical cases into a single severe group, while mild and moderate
cases were aggregated into a single milder group. The clinical outcome at discharge was either
cured or death.

**BOX 1. Criteria for classification of COVID-19 severity (modified from the Diagnosis and
Treatment Protocol for COVID-19 (Trial Version 6)).**

Group	Classification	Criteria
Mild	Mild	Light clinical symptoms and no sign of pneumonia on imaging
	Moderate	Fever, respiratory tract symptoms and other symptoms, imaging suggests pneumonia
Severe	Severe	Any of the following: (1) respiratory distress, respiration rate (RR) ≥ 30 times / min; (2) oxygen saturation ≤ 93% in the resting state; (3) PaO₂ / FiO₂ ≤ 300 mmHg (1mmHg = 0.133 kPa)
	Critical	As in severe + any of the following: (1) respiratory failure occurs and mechanical ventilation is required; (2) shock occurs; (3) complicated with other organ failure and need of ICU monitoring and treatment

Study data

Electronic medical records of all enrolled cases were reviewed by 11 neurologists using a standard
case report form (see Supplementary Materials). Data were extracted on demographic characteristics, medical history, complications, treatments and presence of risk factors for seizures. These risk factors were considered to be the following: acute cerebrovascular disease, traumatic
brain injury (TBI), central nervous system (CNS) infection, shock, hypoxia, severe metabolic disturbance (based on criteria from the International League Against Epilepsy), multiple-organ dysfunction syndrome (MODS), sepsis, and exposure to drugs or toxic substances.

Statistical analysis

Continuous variables were presented as median (interquartile range, IQR) and categorical variables as n (%).

Results

All of 304 people discharged from or who died at participating hospitals were consecutively identified and enrolled. Most were from Sichuan Province (n=174), followed by Chongqing (n=81) and Hubei (n=49).

Ten individuals died, giving case fatality rates of 6.1% (n=3) in Hubei, 4.9% (n=4) in Chongqing, and 1.7% (n=3) in Sichuan. Of the 108 severe cases, 51 (47%) received mechanical ventilation, and 16 (19%) were given sedatives. Apart from the effect of sedatives, mental state was relatively normal in 296 people. Eight were encephalopathic (one was obtunded, one was delirious and six were comatose). The diagnosis of non-convulsive status epilepticus was not made in any of these cases based on clinical presentation, results of investigations or response to therapy. No routine or long-term electroencephalogram (EEG) was recorded due to exposure concerns.

None in this cohort had a past history of epilepsy. None had any seizures, including febrile seizures, or status epilepticus during hospitalization. Seizure-like events were seen in two people and felt that in one this was the result of an acute stress reaction and hypocalcemia in the other. The first was a 32-year-old woman who reported bilateral bodily spasms lasting for about a minute, with mouth deviation but no impairment of awareness. She was evaluated neurologically and psychiatrically and was diagnosed with an acute anxiety disorder which was treated with olanzapine, paroxetine and diazepam.
The second case was a 65-year-old woman who displayed bilateral myoclonus in the limbs with no impairment in consciousness two hours after admission. Though this was initially suspected to represent seizures, she was found to have an electrolyte disturbance including hyponatremia, hypokalemia and hypocalcemia, and the myoclonus resolved with correction of the metabolic disturbances.

Eighty-four (27%) cases reported systemic or direct brain insults which increased their risk for acute symptomatic seizures (Table 1). The most common risk factor was hypoxia. No severe electrolyte disturbance was seen but hypokalemia (40, 13%), hyponatremia (34, 11%) and hypocalcemia (22, 7%), were frequently seen in the cohort. Urea, creatinine and serum glucose levels were moderately altered in most of cases. In two cases who had chronic kidney dysfunction substantial increases of creatinine levels were noted. Results of investigations are shown in Table 2. One case with TBI had an epidural hematoma, cerebral contusion, and skull base fracture. Five people with severe COVID-19 experienced septic shock. Three other cases of shock had hypovolemia or cardiac problems. Ninety-four (31%) were given antibiotics and moxifloxacin (53, 17%), piperacillin sulbactam sodium (30, 10%), and third-generation cephalosporins (21, 7%) were most commonly used.

Discussion

We found no new-onset seizures or status epilepticus in a large cohort of people hospitalized during the acute phase of COVID 19 infection despite a substantial proportion having risk factors for acute symptomatic seizures. This is useful information, given the prior lack of knowledge about seizure risk during the acute phase of infection.

No individual in this cohort had a history of epilepsy prior to hospital admission. To date, there is not much information available on people with epilepsy during the COVID-19 crisis. There is one report of epilepsy in a case COVID-19 from Wuhan\(^8\). As information is limited it is not possible to
establish if this was a case who had a history of epilepsy or if the case presented acute seizures. There is at this time little if any evidence indicating that people with epilepsy are at an increased risk of COVID-19 infection. A major challenge for people with epilepsy in this outbreak is non-adherence with the prescribed anti-seizure medication (ASM) which was seen during the in SARS endemic in 2003. This indicates the need to ensure the availability of supplies of medications and to advocate patients’ self-management. Possible strategies for coping could also include online consultations and telemedicine networks.

Though many neurological and systemic disorders regarded as potential triggers of acute symptomatic seizures were identified in this cohort, seizures and status were not seen. Stroke is one such risk factor. The risk of developing acute symptomatic seizures after stroke ranges from 3.1% to 33%. Acute cerebrovascular disease is considered a major cause of seizure and status epilepticus. An earlier study from Hubei also reported six people with COVID-19 who had acute cerebrovascular disease without seizure. Infection of the CNS can also give rise to seizures. Though limited evidence of the presence of the SARS-CoV-2 in the cerebrospinal fluid (CSF), the co-occurrence of tubercular meningitis had been reported, with no seizure or status observed. Whether COVID-19 can cause direct CNS insults needs further follow-up. In the earlier outbreaks of another coronavirus, a generalized convulsion with a positive RT-PCR for SARS-CoV in CSF was reported which could have been a coincidence.

Disturbances of homeostasis may lead to acute symptomatic seizures. Hypoxia, the most common complication in our cohort, may trigger anoxic encephalopathy particularly if in refractory hypoxia. Electrolyte disturbances as seen in COVID-19 are considered as potential causes of acute symptomatic seizure. The severity and speed of such disturbances may affect onset of seizures, so these parameters should be carefully monitored.
The cytokine storm syndromes behind severe infection may cause the production of inflammatory cytokines systemically with the consequence of acute toxic encephalopathies. While sepsis is a common cause of encephalopathy in intensive care medicine, hypoxia appears far more often than sepsis in COVID-19. There was also a high rate of septic shock in the COVID-19 population, varied from 4% to 20% in earlier studies in Hubei.

Certain antibiotics have been associated with symptomatic seizure. Antibiotics were used in a large number of people in our cohort without problems but most used in the cohort were of low or moderate risk. Clinicians should keep this seizure risk in mind when prescribing antibiotics, especially for people with renal dysfunction.

Our study has several limitations. Firstly, as a cross-sectional study, we only have data from the acute phase of the disease. A follow-up study is underway to evaluate longitudinal seizure outcomes. Secondly, the retrospective study design meant that we could not collect data on all relevant variables; for example, EEG was not recorded so subclinical seizures could have been missed. As all healthcare costs of COVID-19 treatment are covered by the government, all those suspected of infection are screened. This may assure the objectivity and reliability of study materials, and it will allow for good follow up a future follow-up study.

Our analysis suggests that COVID-19 poses minimal risk for seizures during the acute illness, though a significant proportion of severely ill individuals have risk factors which may increase the propensity to experience seizures. These risk factors should be promptly addressed to minimize the risk of developing seizures. Prospective long-term studies must be done to determine whether people who suffered from Covid-19 have an increased risk for developing seizures or epilepsy in subsequent months or years as a consequence of their illness.

Acknowledgements
This work was supported by grants from the National Natural Science Foundation of China (81801294, 81871017, 81420108014), the Post-Doctoral Research Project of West China Hospital at Sichuan University (2018HXBH023), and the 1.3.5 Project for Disciplines of Excellence of West China Hospital at Sichuan University (ZY2017305, ZYGD20011). We are grateful to the Sichuan Health Commission for providing access to data, and to all the participating medical centers and their staff who took part in the project. JWS is based at NHIR University College London Hospitals Biomedical Research Centre, which receive a proportion of funding from the UK Department of Health’s Research Centres funding scheme. He receives research support from the Marvin Weil Epilepsy Research Fund, the UK Epilepsy Society, and the Christelijke Vereniging voor de Verpleging van Lijders aan Epilepsie, Netherlands. We are grateful to Prof. Michael R. Sperling for the support during the preparation of the manuscript.

Disclosure of conflicts of interest
None of the authors has any conflict of interest to disclose in relation to this work.

Ethical publication statement
We confirm that we have read the Journal’s position on issues involved in ethical publication and that this study is consistent with those guidelines.
References

1. World Health Organization. Coronavirus disease 2019 (2019) Situation Report – 78 Coronavirus disease (COVID-2019) situation reports, 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200407-sitrep-78-covid-19.pdf?sfvrsn=bc43e1b_2. Accessed March 29, 2020.

2. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China N Engl J Med. 2020 Feb 28. [Epub ahead of print].

3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China Jama. 2020 Feb 7. [Epub ahead of print].

4. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study Lancet Respir Med. 2020 Feb 24. [Epub ahead of print].

5. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study Lancet. 2020 Mar 11. [Epub ahead of print].

6. National Health Commission, State Administration of Traditional Chinese Medicine. Diagnosis and treatment of COVID-19 (trial version 6). Available at: http://www.nhc.gov.cn/jkj/s3577/202003/4856d5b0458141fa9f376853224d41d7.shtml. Accessed March 29, 2020.

7. Beghi E, Carpio A, Forsgren L, Hesdorffer DC, Malmgren K, Sander JW, et al. Recommendation for a definition of acute symptomatic seizure Epilepsia. 2010 Apr;51:671-675.

8. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a retrospective case series study medRxiv. 2020:2020.2002.2022.20026500. [Epub ahead of print].

9. Lai SL, Hsu MT, Chen SS. The impact of SARS on epilepsy: the experience of drug withdrawal in epileptic patients Seizure. 2005 Dec;14:557-561.

10. Leung T, Leung H, Soo YO, Mok VC, Wong KS. The prognosis of acute symptomatic seizures after ischaemic stroke J Neurol Neurosurg Psychiatry. 2017 Jan;88:86-94.

This article is protected by copyright. All rights reserved
11. Chen Shengcai, Hu Bo, Li Hongge, Xia Yuanpeng, Zhang Yunjian, Mao Ling, et al. COVID-19 with acute cerebral infarction: one case report Chinese Journal of Neurology. 2020 Mar 15. [Epub ahead of print].

12. Liang. W, Jia. C, Huating. L, Hongzhi. G, Hongzhi. W, Cheng. H, et al. A case of coronavirus disease 2019 with tuberculous meningitis Chinese Journal of Neurology. 2020 Mar 8. [Epub ahead of print].

13. Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus Emerg Infect Dis. 2004 Feb;10:342-344.

14. Nardone R, Brigo F, Trinka E. Acute Symptomatic Seizures Caused by Electrolyte Disturbances J Clin Neurol. 2016 Jan;12:21-33.

15. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression Lancet. 2020 Mar 16. [Epub ahead of print].

16. Davies NW, Sharief MK, Howard RS. Infection-associated encephalopathies: their investigation, diagnosis, and treatment J Neurol. 2006 Jul;253:833-845.

17. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study Lancet. 2020 Feb 15;395:507-513.

18. Sutter R, Rüegg S, Tschudin-Sutter S. Seizures as adverse events of antibiotic drugs A systematic review. 2015;85:1332-1341.
Table 1. Demographic characteristics and seizure risk factors in people with COVID-19

Characteristic	All (N=304)	Disease severity	
	Mild (n=196)	Severe (n=108)	
Age, yrs.	44 (33,59.25)	39 (31,49)	61.5 (47,73.25)
0-14	2	2	0
15-49	180	147	33
50-64	66	39	27
≥65	56	8	48
Male sex	59.9%	59.2%	61.1%

Risk factors of seizure

	All (N=304)	Disease severity	
	Mild (n=196)	Severe (n=108)	
Acute cerebrovascular disease	3	0	3
Traumatic brain injury	1	1	0
Condition	n	%	Median (IQR)
----------------------------------	----	-----	--------------
CNS infection	0	0	0
Hypoxia	77	14	63
Shock	8	0	8
Sepsis	8	0	8
Imipenem use	13	0	13
Multiple organ dysfunction	8	0	8
Hyperglycemia (≥25 mmol/L)	1	0	1
Hyperglycemia (<2.0 mmol/L)	0	0	0
Hyponatremia (<115 mmol/L)	0	0	0
Hypocalcemia (<1.2 mmol/L)	0	0	0
Hypomagnesemia (<0.3 mmol/L)	0	0	0
Urea nitrogen (>35.7 mmol/L)	0	0	0
Creatinine (>884 μmol/L)	2	0	2
Exposure to drugs or toxic substances	0	0	0

Values are n, %, or median (interquartile range).

Abbreviations: IQR, interquartile range; yrs., years. CNS, central nervous system.
Table 2. Chemical Pathology results in people with COVID-19

Test	All (N=304)	Mild (N=196)	Severe (n=108)
Serum glucose (mmol/L)	5.8 (5.0, 7.3)	5.6 (5.1, 7.04)	6.1 (5.2, 8.4)
Serum sodium (mmol/L)	140.1 (137.7, 142.2)	140.1 (138.1, 142.2)	139.3 (137.2, 142.3)
Test	Range 1	Range 2	Range 3
-----------------------------	-----------	-----------	-----------
Serum potassium (mmol/L)	4.0(3.7,4.4)	4.0(3.7,4.4)	4.0(3.6,4.4)
Serum calcium (mmol/L)	2.2(2.1,2.3)	2.3(2.2,2.3)	2.1(2.0,2.2)
Blood urea nitrogen (mmol/L)	3.9(3.3,5.1)	3.8(3.2, 4.7)	4.7(3.4,6.5)
Creatinine, μmol/L	67.4(55.0, 78.1)	68.0(56.0,77.9)	67.1(54.9, 80.2)

Abbreviations: IQR, interquartile range.