Effects of Valacyclovir on Markers of Disease Progression in Postpartum Women Co-Infected with HIV-1 and Herpes Simplex Virus-2

Alison C. Roxby¹, Alison L. Drake², Francisca Ongecha-Owuor¹⁰, James N. Kiarie⁷, Barbra Richardson²,⁴, Daniel N. Matemo⁷, Julie Overbaugh⁸, Sandra Emery⁹, Grace C. John-Stewart¹,²,³,⁵, Anna Wald¹,³,⁶,⁹, Carey Farquhar¹,²,³

¹ Department of Medicine, University of Washington, Seattle, Washington, United States of America, ² Department of Global Health, University of Washington, Seattle, Washington, United States of America, ³ Department of Epidemiology, University of Washington, Seattle, Washington, United States of America, ⁴ Department of Biostatistics, University of Washington, Seattle, Washington, United States of America, ⁵ Department of Pediatrics, University of Washington, Seattle, Washington, United States of America, ⁶ Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America, ⁷ Department of Obstetrics and Gynaecology, University of Nairobi, Nairobi, Kenya, ⁸ Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, ⁹ Division of Vaccine and Infectious Disease, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America, ¹⁰ Department of Medicine, Therapeutics, and Psychiatry, Kenyatta University, Nairobi, Kenya

Abstract

Objective: Herpes simplex virus type 2 (HSV-2) suppression has been shown to reduce HIV-1 disease progression in non-pregnant women and men, but effects on pregnant and postpartum women have not been described.

Methods: We analyzed data from a cohort of Kenyan women participating in a randomized clinical trial of HSV-2 suppression. Pregnant HIV-1-seropositive, HSV-2-seropositive women who were not eligible for antiretroviral therapy (WHO stage 1–2, CD4≥250 cells/µl) were randomized to either 500 mg valacyclovir or placebo twice daily from 34 weeks gestation through 12 months postpartum. Women received zidovudine and single-dose nevirapine for prevention of mother-to-child HIV-1 transmission. HIV-1 progression markers, including CD4 count and plasma HIV-1 RNA levels, were measured serially. Multivariate linear regression was used to compare progression markers between study arms.

Results: Of 148 women randomized, 136 (92%) completed 12 months of postpartum follow-up. While adjusted mean CD4 count at 12 months (565 cells/µl placebo arm, 638 cells/µl valacyclovir arm) increased from antenatal levels in both arms, the mean CD4 count increase was 73 cells/µl higher in the valacyclovir arm than placebo arm (p = 0.03). Mean increase in CD4 count was 154 cells/µl in the valacyclovir arm, almost double the increase of 78 cells/µl in the placebo arm. At 12 months, adjusted HIV-1 RNA levels in the placebo arm increased by 0.66 log₁₀ copies/ml from baseline, and increased by only 0.21 log₁₀ copies/ml in the valacyclovir arm (0.40 log₁₀ copies/ml difference, p = 0.001).

Conclusion: Women randomized to valacyclovir suppressive therapy during pregnancy and postpartum had greater increases in CD4 counts and smaller increases in plasma HIV-1 RNA levels than women in the placebo arm. Valacyclovir suppression during pregnancy and breastfeeding may improve outcomes and delay antiretroviral therapy for HIV-1/HSV-2 co-infected women.

Introduction

Addressing herpes simplex virus type 2 (HSV-2) co-infection may be a pathway to improving health of HIV-1 infected mothers.
seroconversion [2,3]. Trials of herpes virus suppression in HIV-1/HSV-2 co-infected persons have consistently shown reductions in HIV-1 plasma RNA levels, but these trials have excluded pregnant women [4,5,6,7,8,9,10,11]. Recent randomized clinical trials of acyclovir for herpes suppression in co-infected persons have demonstrated 16–25% reductions in HIV-1 disease progression endpoints over 2 years of follow-up [12,13]. Progression endpoints for both studies included CD4 thresholds and evidence of clinical disease progression including non-traumatic death and/or ART initiation.

Valacyclovir is now available in generic form, providing higher levels of acyclovir with a simpler regimen, improving adherence and potentially increasing effects on HIV-1 progression. We analyzed data from a randomized, double-blind, placebo-controlled trial to determine whether valacyclovir reduces maternal disease progression, using CD4 count as the primary marker, when taken in late pregnancy and for 12 months postpartum.

Methods

Study Design

Participants were part of a randomized, double-blind, placebo-controlled trial of valacyclovir suppressive therapy of 500 mg twice daily in pregnant HIV-1/HSV-2 co-infected women from 34 weeks gestation to 12 months postpartum, as previously described [14]. The original study was powered to detect at least a 0.50 log10 copies/ml difference in plasma HIV-1 RNA levels. The study was approved by Kenyatta National Hospital Ethical Review Committee and the University of Washington Institutional Review Board, and registered at ClinicalTrials.gov under Identifier NCT 00530777. All participants provided written informed consent.

Participants

Women presenting to public clinics in Nairobi, Kenya for antenatal care between April 2008 and June 2009 were recruited if they resided in Nairobi and were HIV-1-seropositive by rapid tests according to local protocols. Pregnant women with HIV-1 who were ≥18 years of age had HIV-1 confirmed by enzyme-linked immunosorbant assay (ELISA), HSV-2 antibodies, and CD4 count. HIV-1/HSV-2-seropositive women with CD4 counts >250 cells/μl and World Health Organization (WHO) clinical stage 1–2 were eligible.

Study participants received routine antenatal care and prevention of mother-to-child HIV-1 transmission (PMTCT) according to Kenya national guidelines: oral zidovudine (ZDV) 300 mg twice daily from 28 weeks gestation, oral ZDV at onset of labor and every 3 hours until delivery, single-dose nevirapine 200 mg at onset of labor, and ZDV or ZDV/lamivudine “tail” for 7 days postpartum. Baseline CD4 counts were measured prior to initiation of PMTCT regimens.

Enrollment took place at 34 weeks to allow completion of laboratory tests to determine eligibility. All women in the study received the following free of charge: antenatal and delivery care, co-trimoxazole prophylaxis, multivitamins in pregnancy, family planning, and prescribed outpatient medications.

Study Procedures

WHO stage was determined at enrollment. Women were seen at 38 weeks gestation, within 48 hours of delivery, at 2, 6, 10, and 14 weeks postpartum, and at 6, 9, and 12 months postpartum. Antenatal study visits focused on obstetric care; postpartum visits included a physical exam and assessment of WHO stage. If women became eligible for antiretroviral therapy (ART) after enrollment, they were referred for treatment but continued to participate in the study. Counseling to promote adherence to study drug was done regularly. Women returned all unused pills to the study each month and at study termination. Adherence was measured by self-report of number of pills missed and by pill count at follow-up visits.

Laboratory Methods

HIV-1 serostatus was confirmed by ELISA (Vironostika HIV UniForm II, bioMérieux, France) and HSV-2 serostatus was determined using ELISA (HerpeSelect, Focus Technologies, Cypress, CA) with a cutoff optical density (OD) ≥3.5 [15]. Tests were repeated if OD was between 1.1 and 3.4; women were eligible if the repeat assay was positive. CD4 counts were performed in Nairobi using flow cytometry (FACSCalibur or FACSCount, BectonDickinson, Franklin Lakes, NJ). HIV-1 RNA assays were conducted using a transcription-mediated amplification method validated for HIV-1 subtypes prevalent in Kenya (Gen-Probe Inc, San Diego, CA) [16]. HIV-1 RNA levels below the lower limit of detection (150 copies/ml) were recorded as half the value of the lower limit of detection.

Statistical Methods

Analyses were conducted using Stata Version 10.0 (College Station, TX). All participants with a postpartum visit were included in this intention-to-treat analysis. Adequacy of randomization was assessed by chi-square and Fisher’s exact tests for categorical variables and Wilcoxon rank-sum tests for continuous variables comparing baseline values in both arms. Primary endpoints of CD4 counts and log10 HIV-1 plasma RNA levels at 6 months and 12 months were assessed using 2-sided t-tests and multivariate linear regression, controlling for baseline values. Cox proportional hazards regression was used to compare progression events in both arms. Adherence to study drug was measured by monthly pill counts and monthly self-report. Pill counts were totaled over the duration of the study and adherence was calculated as follows: (total pills dispensed – total pills missed)/total pills dispensed.

Results

Study Population

Women in both study arms had comparable baseline health status (Table 1). Most women lived in poverty in the urban slum neighborhoods surrounding the clinic. At enrollment, 85% of women in the placebo arm and 93% of women in the valacyclovir arm were WHO stage 1. Tuberculosis treatment was reported by 4% of women and 6% had prior herpes zoster. Participants in both study arms had similar baseline median CD4 counts and log10 HIV-1 plasma RNA levels. Almost all women (93% placebo, 100% valacyclovir) had started ZDV for PMTCT before study enrollment.
Retention and Adherence

Retention was high: 146 (99%) participants had at least one postpartum visit, and 136 women (92%) were followed for 12 months. Adherence to study drug was high among study participants, and was sustained over 12 months postpartum. By pill count, overall adherence averaged 85% (84% placebo, 85% valacyclovir).

CD4 Counts

Mean CD4 counts improved from baseline in both randomization arms (Table 2). Of the 116 participants with CD4 count results available at 6 months postpartum, mean CD4 increased from 484 cells/µL to 631 cells/µL in the valacyclovir arm and 487 cells/µL to 612 cells/µL in the placebo arm (P = 0.72). At 12 months, with 136 (93%) participants measured, we observed a higher mean CD4 in the valacyclovir arm than in the placebo arm (638 cells/µL vs. 565 cells/µL, respectively; P = 0.03). Mean increase in CD4 counts was 73 cells/µL higher in the valacyclovir arm than in the placebo arm; mean HIV-1 RNA increased by 0.21 log10 copies/ml in the valacyclovir arm and increased by three times more, 0.66 log10 copies/ml, in the placebo arm (P = 0.001).

HIV-1 RNA Levels

Mean plasma HIV-1 RNA levels were lowest in pregnancy (valacyclovir arm: 3.89 log10 copies/ml, placebo arm: 3.87 log10 copies/ml), when women were taking ZDV for PMTCT. Previously published data from this trial modeled plasma HIV-1 RNA from 6 weeks to 12 months postpartum and described an average 0.51 log copies/ml reduction in HIV-1 plasma RNA levels between study arms during that period [14]. In the present analysis, we report all antenatal, 6 month and 12 month plasma HIV-1 RNA data. During the postpartum period, HIV-1 RNA levels rebounded in both study arms after completion of maternal antiretrovirals (ARVs), but increases in HIV-1 RNA levels were smaller in the valacyclovir arm. At 6 months postpartum, after adjusting for baseline levels, plasma HIV-1 RNA levels were 0.42 log10 copies/ml lower in the valacyclovir arm than in the placebo arm (Table 2). At 12 months postpartum, adjusted plasma HIV-1 RNA levels were 0.40 log10 copies/ml lower in the valacyclovir arm than in the placebo arm (Table 2). At 12 months postpartum, adjusted plasma HIV-1 RNA levels were 0.40 log10 copies/ml lower in the valacyclovir arm than in the placebo arm; mean HIV-1 RNA increased by 0.21 log10 copies/ml in the valacyclovir arm, and increased by three times more, 0.66 log10 copies/ml, in the placebo arm (P = 0.001).

Maternal Morbidity, Mortality, and Obstetric Outcomes

Despite provision of free care to study participants, there were multiple poor maternal outcomes. Overall, 3 women (2%) died during the study (2 placebo, 1 valacyclovir) and 7 (5%) were hospitalized (5 placebo, 2 valacyclovir). Poor birth outcome with fetal demise occurred in 3 women (2 placebo, 1 valacyclovir) who had third-trimester stillbirths. Other morbidities included tuberculosis (6 women), diarrhea/colicitis (26 women), malaria (20 women) and pneumonia (7 women). Overall, 6 women progressed to WHO Stage 3 or 4 during the study, 3 in each arm. Sixteen women (7 on placebo, 9 on valacyclovir) had a progression event (death, CD4<250 cells/µL, WHO stage 3–4; or opportunistic infection). Cox proportional hazards regression models assessing time to disease progression events revealed no significant

Table 1. Baseline Maternal Health Characteristics, by Treatment Arm.
Baseline Health Characteristic
Median (IQR) or n (%)
Age (years)
Prior STI
Prior syphilis
Prior GUD
Prior TB
Prior herpes zoster
WHO Stage 1
CD4 count (cells/µL)
Log10 HIV-1 plasma RNA level (copies/ml)
No symptoms this pregnancy
Fever
Malaria
Diarrhea
Cough
Weight loss
Itchy rash
Thrush

IQR = Interquartile range. USD = US Dollars. STI = sexually transmitted infection. GUD = genital ulcer disease. ARVs = antiretrovirals. TB = tuberculosis. PMTCT = prevention of mother-to-child transmission of HIV-1. *P value calculated using the Wilcoxon rank-sum test for continuous variables and chi-squared and Fisher’s exact test for categorical variables.

doi:10.1371/journal.pone.0038622.t001
differences in risk of any progression events, but the study was not powered for these outcomes and events were few. There were no serious adverse events related to use of valacyclovir.

Discussion

Our study of daily valacyclovir during late pregnancy and postpartum showed a significant increase in CD4 counts among women in the valacyclovir arm at 12 months postpartum. CD4 is the most reliable marker of HIV-1 disease progression and morbidity in pregnant and postpartum African women [17]. Although all women in this study received short-course maternal ARVs for PMTCT, the rise in maternal CD4 count in the valacyclovir arm was sustained months after maternal ARVs for PMTCT had been discontinued. This improvement in CD4 is plausible since we concurrently observed less increase in plasma HIV-1 RNA among women in the valacyclovir arm, modeled over the entire study period. Given that asymptomatic African patients with HIV-1 lose an estimated 30–60 CD4 cells/µl per year [18,19,20], improved CD4 counts of the magnitude observed in this study could translate into improved outcomes and delayed need for ART for postpartum women.

This is the first randomized trial reporting results of valacyclovir on HIV-1 disease progression specifically among pregnant women in Africa. Other studies in African non-pregnant HIV-1 infected populations have noted benefits of acyclovir, including the landmark trial by Lingappa et al, noting a 16% reduction in HIV-1 disease progression with acyclovir therapy [12], and a randomized controlled trial in Uganda of daily acyclovir among HIV-1/HSV-2 seropositive adults with CD4 counts 300–400

| Table 2. Effect of Valacyclovir on Mean CD4 Count and Log_{10} Plasma HIV-1 RNA Level. |
|---|---|---|
Placebo Valacyclovir	Placebo Valacyclovir	Placebo Valacyclovir			
n	**Mean (SD)**	**Mean (SD)**			
Enrollment	146 487 (174)	484 (179)	-	95% CI	0.02
6 months postpartum	116 612 (232)	631 (309)	17	-8, 22	0.72
12 months postpartum	136 565 (206)	638 (292)	73	6, 140	0.03
Log_{10} plasma HIV-1 RNA (copies/ml)					
Enrollment	146 3.87 (0.83)	3.89 (0.95)	-0.01	-0.18, 0.17	0.95
6 months postpartum	136 4.40 (0.81)	3.98 (1.05)	-0.42	-0.65, -0.2	<0.001
12 months postpartum	136 4.53 (0.81)	4.10 (1.07)	-0.40	-0.63, -0.17	0.001

SD = standard deviation. *method used: Multivariate linear regression models control for baseline plasma HIV-1 RNA levels for plasma HIV-1 RNA models, and baseline CD4 for CD4 models.
doi:10.1371/journal.pone.0038622.t002

Figure 1. Change in CD4 count over time in participants on valacyclovir compared to placebo. Mean CD4 counts were compared at each timepoint by multivariate linear regression, adjusting for baseline values. Baseline CD4 counts were measured during pregnancy, prior to initiation of PMTCT antiretroviral short-course therapy. doi:10.1371/journal.pone.0038622.g001
Valacyclovir and Postpartum HIV-1 Progression

ART during pregnancy and breastfeeding ("Option B") as choose either short-course maternal ZDV during pregnancy and health. WHO guidelines recommend that, in addition to providing possible [27], especially mothers who need ART for their own health. Efforts to scale-up HIV treatment available in resource-limited settings, and continues to be relatively expensive. Although valacyclovir is now a generic medication, it is not widely available in resource-limited settings, and continues to be relatively expensive.

What would be the role of valacyclovir, given the current push for elimination of PMTCT? Efforts to scale-up HIV treatment include increasing recognition of the benefits, both reduced infant transmission within existing PMTCT programs. The small number of women in our study and the relatively brief follow-up time limited our ability to comment on disease progression events. Although valacyclovir is now a generic medication, it is not widely available in resource-limited settings, and continues to be relatively expensive.

Acknowledgments

We appreciate the efforts and support of the dedicated staff of the Mathare North Health Centre. The Valacyclovir in Pregnancy research staff were instrumental in daily study operations: Sarah Githuku, Jane Wairitha, Winnie Nekesa, Wambui Karuoya, Benetha Kendo, Jane Munuhe, and Samuel Kiricu. We remember and honor our colleague Robert Wainaina, who died in 2009. We thank our Data Safety and Monitoring Committee for their assistance: Dalton Wamalwa, Brandon Guthrie, Irene Inwani, and John Ong’ech. Finally, we thank the women who participated and made this research possible.

Presentation. An oral abstract of this work was presented at the International AIDS Society 2011 meeting in Rome, Italy, on July 18, 2011 (Abstract number TUAB0202).

Author Contributions

Conceived and designed the experiments: ACR ALD BR JNK GJS AW CF. Analyzed the data: ACR ALD BR JNK GJS AW CF. Contributed reagents/materials/analysis tools: JO SE. Wrote the paper: GJS CF. Analyzed the data: ACR ALD BR JNK GJS AW CF. Contributed reagents/materials/analysis tools: JO SE. Wrote the paper: ACR ALD FO0 JNK BR DNM JO SE GJS AW CF.

References

1. Drake AL, John-Stewart GG, Wald A, MBori-Ngacha DA, Bouré R, et al. (2007) Herpes simplex virus type 2 and risk of intrapartum human immunodeficiency virus transmission. Obstet Gynecol 109: 405–409.
2. Sewarda D, Gray RH, Sewankambo NK, Wolwa-Martins F, Chen MZ, et al. (2003) Human immunodeficiency virus acquisition associated with genital ulcer disease and herpes simplex virus type 2 infection: a nested case-control study in Rakai, Uganda. J Infect Dis 188: 1492–1497.
3. Duffus WA, Memin J, Bunnell R, Byers RH, Ondondo G, et al. (2005) Chronic herpes simplex virus type-2 infection and HIV viral load. Int J STD AIDS 16: 733–735.
4. Ouedraogo A, Nagoit N, Vergne L, Konate I, Weiss HA, et al. (2006) Impact of suppressive herpes therapy on genital HIV-1 RNA among women taking antiretroviral therapy: a randomized controlled trial. AIDS 20: 2305–2313.
5. Cehm C, Wald A, Lingappa JR, Magaret AS, Wang RS, et al. (2010) Acyclovir and transmission of HIV-1 from persons infected with HIV-1 and HSV-2 N Engl J Med 362: 427–430.
6. Baeten JM, Strick LB, Luacchetti A, Whittington WL, Sanchez J, et al. (2008) Herpes simplex virus (HSV)-suppressive therapy decreases plasma and genital HIV-1 levels in HSV-2/HIV-1 co-infected women: a randomized, placebo-controlled, crossover trial. J Infect Dis 198: 1804–1808.
7. Delany S, Milaha N, Clayton T, Ako PRIMARYGENIE G, Capovilla A, et al. (2009) Impact of aciclovir on genital and plasma HIV-1 RNA in HSV-2/HIV-1 co-infected women: a randomized placebo-controlled trial in South Africa. AIDS 23: 461–469.
8. Zuckerman RA, Luacchetti A, Whittington WL, Sanchez J, Coombs RW, et al. (2007) Herpes simplex virus (HSV) suppression with valacyclovir reduces rectal and blood plasma HIV-1 levels in HIV-1/HSV-2-seropositive men: a randomized, double-blind, placebo-controlled crossover trial. J Infect Dis 196: 1589–1590.
9. Tanton C, Weiss HA, Ruizmolcho M, Legoff J, ChangalACHA M, et al. (2010) Long-term impact of acyclovir suppressive therapy on genital and plasma HIV RNA in Tanzanian women: a randomized controlled trial. J Infect Dis 201: 1285–1297.
10. Nagoit N, Ouedraogo A, Fouloungne V, Konate I, Weiss HA, et al. (2007) Reduction of HIV-1 RNA levels with therapy to suppress herpes simplex virus. N Engl J Med 356: 790–799.
11. Dumas FE, Whitehead S, Sterenberg M, Thapamunywa S, Levlaawit W, et al. (2008) Suppressive acyclovir therapy reduces HIV cervicovaginal shedding in HIV- and HSV-2-infected women, Chiang Rai, Thailand. J AcquirImmune Defic Syndr 49: 77–83.
12. Lingappa JR, Baeten JM, Wald A, Hughes JP, Thomas KK, et al. (2010) Daily aciclovir for HIV-1 disease progression in people dually infected with HIV-1 and herpes simplex virus type 2: a randomized placebo-controlled trial. Lancet 375: 824–833.
13. Reynolds SJ, Makumbi F, Nwosu K, Kiwanuka N, Ssebbowa P, et al. (2012) Effect of daily aciclovir on HIV disease progression in individuals in Rakai, Uganda, co-infected with HIV-1 and herpes simplex virus type 2: a randomised, double-blind placebo-controlled trial. Lancet Infect Dis.

14. Drake AL, Roxby AC, Ongecha-Owuor F, Kiarie J, John-Stewart G, et al. (2011) Valacyclovir suppressive therapy reduces plasma and breast milk HIV-1 RNA levels during pregnancy and postpartum: a randomised trial. J Infect Dis 205: 366–375.

15. Ashley Morrow R, Krantz E, Friedrich D, Wald A (2006) Clinical correlates of index values in the focus HerpeSelect ELISA for antibodies to herpes simplex virus type 2 (HSV-2). J Clin Virol 36: 141–145.

16. Emery S, Bedrug N, Richardson BA, Giachetti C, Bott MA, et al. (2000) Evaluation of performance of the Gen-Probe human immunodeficiency virus type 1 viral load assay using primary subtype A, C, and D isolates from Kenya. J Clin Microbiol 38: 2688–2695.

17. Brown ER, Otieno P, Mberri-Ngacha DA, Farquhar C, Omboko EM, et al. (2009) Comparison of CD4 cell count, viral load, and other markers for the prediction of mortality among HIV-1-infected Kenyan pregnant women. J Infect Dis 199: 1292–1300.

18. Wolbers M, Babiker A, Sahin C, Young J, Dorracci M, et al. (2010) Pretreatment CD4 cell slope and progression to AIDS or death in HIV-infected patients initiating antiretroviral therapy—the CASCADE collaboration: a collaboration of 23 cohort studies. PLoS Med 7: e1000239.

19. Urassa W, Bakari M, Sandstrom E, Swai A, Pallangyo K, et al. (2004) Rate of decline of absolute number and percentage of CD4+ T lymphocytes among HIV-1-infected adults in Dar es Salaam, Tanzania. AIDS 18: 433–438.

20. Katubulushi M, Zulu I, Yavwa F, Kelly P (2005) Slow decline in CD4 cell count in a cohort of HIV-infected adults living in Lusaka, Zambia. AIDS 19: 102–103.

21. Mugwanya K, Bakari M, Made, T, Mung’o N, Murungi E, Ngar K, et al. (2011) High-dose valacyclovir HSV-2 suppression results in greater reduction in plasma HIV-1 levels compared with standard dose acyclovir among HIV-1/HSV-2 coinfected persons: a randomized, crossover trial. J Infect Dis 204: 1912–1917.

22. Baggaley RF, Griffin JT, Chapman R, Hollingsworth TD, Nagot N, et al. (2009) Estimating the public health impact of the effect of herpes simplex virus suppressive therapy on plasma HIV-1 viral load. AIDS 23: 1065–1073.

23. Mojisola K, Chaman E, Vermund SH (2008) Impact of small reductions in plasma HIV RNA levels on the risk of heterosexual transmission and disease progression. AIDS 22: 2179–2183.

24. Vickers R, Devine A, Foss AM, Delany-Morrell S, Mayaud P, et al. (2011) The cost-effectiveness of herpes simplex virus-2 suppressive therapy with daily aciclovir for delaying HIV disease progression among HIV-1-infected women in South Africa. Sex Transm Dis 38: 401–409.

25. Baeten JM, Liangappa J, Beck I, Frenkel LM, Pepper G, et al. (2010) Herpes simplex virus type 2 suppressive therapy with acyclovir or valacyclovir does not select for specific HIV-1 resistance in HIV-1/HSV-2 dually infected persons. J Infect Dis 203: 117–121.

26. Watson-Jones D, Wald A, Celum C, Liangappa J, Weiss HA, et al. (2010) Use of acyclovir for suppression of human immunodeficiency virus infection is not associated with genotypic evidence of herpes simplex virus type 2 resistance to acyclovir: analysis of specimens from three phase III trials. J Clin Microbiol 48: 3496–3503.

27. Chibwesha CJ, Giganti MJ, Putta N, Chimba N, Mulindwa J, et al. (2011) Optimal time on HAART for prevention of mother-to-child transmission of HIV. J Acquir Immune Defic Syndr 58: 224–228.

28. WHO (2010) Antiretroviral drugs for treating pregnant women and preventing HIV infection in infants: recommendations for a public health approach. 2010 Version. Geneva.

29. Schouten EJ, Jahn A, Midiana D, Makombe SD, Mthambala A, et al. (2011) Prevention of mother-to-child transmission of HIV and the health-related Millennium Development Goals: time for a public health approach. Lancet 378: 282–284.

30. Boyles TH, Wilkinson LS, Leisegang R, Maartens G (2011) Factors influencing retention in care after starting antiretroviral therapy in a rural South African programme. PLoS One 6: e19201.

31. Thomson KA, Chen YO, Reid T (2011) Implementation and outcomes of an active defaulter tracing system for HIV, prevention of mother to child transmission of HIV (PMTCT), and TB patients in Kibera, Nairobi, Kenya. Trans R Soc Trop Med Hyg 105: 320–326.