Introduction

Today, changes in lifestyle habits, including nutrition and physical activity habits, that the prevalence of obesity for public health caused a significant increase in the last 20 years considered to be a serious threat in Turkey [1,2]. In order to stop this increase, it is recommended to provide public health education including balanced nutrition and physical activity [2].

Students have more hardship in making healthy food choices with the increased independence reason of transition from high school to university [3]. In the transition period to adulthood, where models of healthy behaviours are formed, university students are exposed to unhealthy eating habits [4]. It is known that unhealthy eating habits are also affected by the inadequate exercise habits, poor time management and increasing stress caused of education life (university lifestyle, exams, etc.) [3,5,6]. At the same time, it has been shown to be associated with students are uninformed about healthy food choices, increasing financial concerns and health problems [3,7]. In addition, it seems that the nutritional environment of the university (such as inadequate options such as cafeteria, refectory) affects the adoption of unhealthy eating habits [8].

According to the qualitative research, most of the university students’ eating habits were considered unhealthy [4,9–11]. A study conducted in Finland found that university students are fond of unhealthy foods [4]. According to research conducted at 5 UK universities, male students are consume based on ready meals, alcohol and red meat [9]. In another study, male students adopted the Western-type diet model and women adopted the vegetarian / low-calorie diet model at private universities in Lebanon [10]. It has been found that students studying at the

Abstract

This study aimed to assess and compare nutritional and physical activity status of Nutrition&Dietetics and Audiology Departments.

The study was carried on students of Bezmialem Foundation University Faculty of Health Sciences Nutrition&Dietetics (experimental group) and Audiology (control group) Departments in 2016/2017 academic year. The survey included socio-demographic characteristics, 24-h recall Food Consumption Record, Food Frequency Questionnaire to determine nutrition and physical activity. Body Mass Index, waist circumference and body fat mass ratios were measured by bioelectrical impedance device.

Overall, 220(66%) students participated, 125(84%) from experimental group and 95(46%) from control group. 75% of experimental group and 73% of control group were calculated as normal weight and mean body fat ratios were normal (24.3% and 22.8%, respectively). However, energy, water, carbohydrates, some vitamins and minerals were inadequate for two groups and fat consumption levels were high. 34% of those in control group had skipped breakfast meals, and they had unhealthy attitudes like chocolate and biscuits. Daily dairy products consume were found experimental group more than control group (p<0.05). 55% of experimental group and 58% of control group had regular physical activity.

Health professionals need to be more conscious about healthy life, which includes adequate-balanced nutrition and regular physical activity.
state university in Bangladesh are eating unhealthy due to various reasons such as nutrition education and conditions of nutrition [11].

The impact of physical activity on health behavior patterns, such as eating habits also known [12–14]. Regular physical activity has positive effects on physical, social and mental health [12,13,15,16]. On the other hand, appropriate and regular physical activity; reduces the risk of developing chronic disease, improves quality of life and well-being, and improves cognitive mechanism [15–19]. The World Health Organization (WHO) recommends that adults aged 18 to 64, exercise in moderate physical activity for at least 150 minutes per week or severe physical activity for at least 75 minutes per week [20]. It was seen that physical activity decreased during the transition period from high school to university especially in males [21,22].

The assessment studies have accomplished on university students of health professions about nutrition and physical activity in Turkey [22–25]. According to the studies it is observed that students have unhealthy behavior models although they take courses in health field [22,24]. However, interdepartmental nutrition and physical activity assessment and comparison studies were found to be insufficient [22,24]. There is no study on Audiology (ADY) and Nutrition & Dietetics (ND) students in the literature. Accordingly, the study was planned and conducted to determine and compare the nutritional and physical activity status of the students of ND Department and ADY Department of the Faculty of Health Sciences.

Materials and methods

Ethical aspects of research

This study was approved by Bezmialem Vakif University Ethics Committee for Non-Interventional Studies (No: 54022451-050.05.04-9/89). In line with the Helsinki Declaration, the students who were invited to the study were informed about the purpose, expectations and the necessary information about the research and then received verbal and written consent to participate in the study.

Formation of research groups

In the 2017–2018 academic year, the students of Bezmialem Vakif University Faculty of Health Sciences (Istanbul, Turkey), ND (experimental group, n=149) and ADY (control group; n=209) Departments formed the study groups (n=358).

Data collection tools

In the study, an including the scales a modified questionnaire from Bayr and Güçlü (2018) was conducted by the researcher’s face-to-face interviews with the participants. The survey consists of 5 separate sections; socio-demographic data, anthropometric measurements, nutritional habits, nutritional status assessment scales that used from 24-h recall Food Consumption Record and Food Consumption Frequency Form. In addition, a questionnaire was used to evaluate physical activity [22]. Anthropometric measurement applied to each participant with the same tools in the practice laboratory was performed by trained researchers. Height measurement was measured wall-mounted height scale measuring cylinder (ADE; Tarti medical, Istanbul, Turkey), body weight and body fat mass (BFM) ratio analysis was measured bioelectric impedance analyzer (BIA) (Tanita MC 780; Tarti medical, Istanbul, Turkey) and waist circumference was measured with tape (ADE; Tarti medical, Istanbul, Turkey) were recorded. Body Mass Index (BMI) values were calculated by weight (kg) / height\(^2\) (m\(^2\)) and classified according to WHO’s BMI standards [26]. In this classification, BMI is less than 18.5kg/m\(^2\) were accepted as underweight, 18.5–24, 9kg/m\(^2\) were normal weight, 25 to 29.9kg/m\(^2\) were overweight (pre-obese), 30.0 – 34.9kg/m\(^2\) were first degree obese, 35–39.99kg/m\(^2\) were II. degree and >40.00 kg/m\(^2\) were III. degree was determined to be obese. The waist circumference that determines the risk of abdominal obesity was determined by WHO as 88cm and above for women and 102 cm and above for men [26]. In the questionnaire that was contained main and intermediate meals, skipping meals, frequency of eating out, frequency of fast food consumption, daily water consumption, smoking and alcohol habits, the most preferred cooking methods, frequently consumed food groups etc. used in the research. 24-hour dietary recall [27], was used with all amounts of food and beverages consumed by the participants. Food frequency questionnaire (FFQ) [27], was used to determine the frequency of food consumption and food groups by day, week or month. Forms were filled using visual materials (My plate food replicas; Nasco, Wisconsin; USA) (Figure 1). Questions were asked to determine the state of physical activity.

Data analysis

The data obtained from FFQ and 24-hour dietary recalls were analyzed by Nutrition Information System (BeBIS; Pacific Electrical, Electronic and Environmental Technology Products Industry and Trade Limited Co., Istanbul, Turkey). BeBIS is a

![Figure 1: My Plate Food Replicas Used as Visual Materials.](https://www.peertechz.com/journals/journal-of-food-science-and-nutrition-therapy)
of ND students were 20.9 kg/m² (15.8-38.8) and ADY students differences were found which median BMI (min-max) values obese, and 1% (n=1) were II. degree obese found in ranges. Similarly, 12% (n=11) of ADY students were underweight, 75% (n=69) were normal, 13% (n=12) were pre-obese, 2% (n=2) were I. degree obese, and 1% (n=1) were II. degree obese found in ranges. No differences were found which median BMI (min-max) values of ND students were 20.9 kg/m² (15.8-38.8) and ADY students were 21.3 kg/m² (16.7-38.8) (p=0.323). According to TBPA-2010 report, underweight ones were 5.1%, normal ones were 57.7%, pre-obese ones were 26.9% and obese subjects were 9.7% when the average BMI values of individuals between 19-30 [29]. In a study, the BMI classification of university students was found to be like this study [30]. When the median (min-max) measurement of BFM ratio of BIA device were examined; ND Department was found to be 23.4% (3.8-39.6), while the ADY Department was found to be 23.8% (2.5-45.6) (p=0.144). In another study conducted with 229 students in the Faculty of Medicine, it was found that the mean BFM ratio was similar [31]. When the waist circumference of women with ≥88 cm and men with ≥102 cm are examined, it is respectively 12% (n=21) and 8.4% (n=8) of ND and ADY students. A cross-sectional study of 1934 university students in a university where is in Jordan found that the waist circumference of ≥ 88 cm in females and ≥ 102 cm in males of the students was 4.9% (n=90) [32] Graphic 1.

When the nutritional habits of the students were examined, 91% of the students of the ND (n=111) and ADY (n=86) Department skipped meals. On the other hand, 19% (n=21) of ND students who skipped the breakfast meal, while 34% (n=29) of ADY students (p<0.05). This result is consistent with several studies [22,28,33] conducted in Turkey with university students. In our study, 36% (n=40) of ND students and 47% (n=40) of ADY students indicated the highest rate of time insufficiency as the reason for skipping meals. In another study, this was found to be the highest cause of lack of time in skipping meals [22]. 94% (n=118) of ND students and 97% (n=92) of ADY students consumed snacks. ND students consume mostly dried fruits (49%, n=58), fresh fruits (46%, n=54) and

	Nutrition & Dietetics (experimental group)	Audiology (control group)	P value		
Class years	n	%	n	%	0.36*
1st Class	53	42	38	40	
2nd Class	39	31	22	23	
3rd Class	28	22	30	32	
4th Class	5	4	5	5	

Years (min-max)	median (18-23)	19	20 (18-23)	<0.05**	
Gender	n	%	n	%	<0.05*
Female	117	94	80	84	
Male	8	6	15	16	
City				0.2*	
Istanbul	107	86	76	80	
Other	18	14	19	20	

Anthropometric Characteristics	Body Mass Index (BMI) (kg/m²)	Underweight (<18.5 kg/m²)	19	15	11	12	0.438*
Normal (18.5-24.9 kg/m²)	94	75	69	73	0.667*		
Pre-obese (25.29-29.9 kg/m²)	8	6	12	13	0.111*		
1st Degree Obese (30.34-99.9 kg/m²)	3	2	2	2	1*		
2nd Degree Obese (35-39.9 kg/m²)	1	1	1	1	1*		
3rd Degree Obese (≥40.00 kg/m²)	0	0	0	0			
Waist Circumference	≥88 cm females and ≥102 cm males	15	12	8	8	0.404*	
Body Fat Mass Ratio median (min-max)	23.4 (3.8-39.6)	22.60 (4.5-45.6)	0.144**				

Total 125 95

*Chi-square test was used. **Mann Whitney test was applied. (p<0.05 was considered statistically significant)
milk–yoghurt (29%, n=34) respectively. On the other hand, ADY students mostly chocolate (51%, n=47), fresh fruit (45%, n=41) and biscuits (34%, n=31) respectively. It was observed that ND students preferred more the nuts which were healthier with statistically significant than ADY students in consuming snacks (p<0.01). It was found that 21% (n=26) of ND students and 31% (n=29) of ADY students consumed fast food 2-3 times or more per week. The three most preferred cooking methods were found to be similar in both department students. ND and ADY students were answered respectively; baking 30% and 29%, boiling 19% and 22%; frying was 19% and 22% (p<0.05).

In nutritional status assessment studies, FFQ [27] and 24-h recall Food Consumption Record [27], scales were found to be good for determining nutritional habits for use in university student populations [34]. Therefore, both scales were used with the Nutrition Information System (BeBIS) and calculated with that. The data obtained using the 24-h recall Food Consumption Record are shown in Table 2 in detail and comparatively by the average values consumed for both department students. Turkey Nutrition Guide (TUBER) [35] is reported, the average individual daily energy needs 2239 kcal for men and 1786 kcal for women between the ages of 18-29 lower activity. Daily energy intake was found to be 1387 kcal (222-2773) in ND students and 1695 kcal (517-3689) in ADY students, and these values were found to be below the TUBER recommendations. When the protein intake rates of the students are examined, they are 17.2% and 17.4%, respectively in the ND and ADY departments, in accordance with TUBER recommendations (12%-20%) [35]. When the carbohydrate intake rates are examined, they are 42.7% and 43.4% and these rates are lower than the recommended values. The recommended daily amount of potassium is 4.7g [35]. ND and ADY students consumed 16 g to 17 g and respectively, and had less consumption than recommended. The recommended daily amount of calcium is 1000 mg [35].ND students consumed 543 mg (46-1376) and ADY students consumed 531 mg (152-1313) of drinking water. The daily fiber intake recommended by the European Food Safety Authority (EFSA) and also TUBER is 25 g [35,36]. ND and ADY students consumed 16 g to 17 g of fiber, respectively, and had less consumption than recommended. The recommended daily amount of magnesium is 300 mg [35]. ND students consumed 159 mg of magnesium and ADY students consumed 207 mg that remained below the recommended and there was a significant difference between the two departments (p<0.01). The salt consuming was limited by WHO to 5 g per day [37]. As a result of the study, it was observed that ND students consumed 6.7±3.2 g and ADY students consumed 7.4±3.4 g salt. The recommended daily intake for vitamin C is 90mg [35]. ND students consumed significantly more to ADY students and approached the reference intake level (p<0.05).

The data obtained from the FFQ were evaluated in the I-IV food groups with reference to “Four Leaf Clover Model”; (I) milk and milk products; (II) meat and products, eggs and legumes and oil seeds; (III) vegetable–fruit; (IV) bread and cereals. Food group preferences of ADY and ND students are shown in Chart I in detail. Group I Milk and dairy products were preferred by ND students (42%) and ADY students (41%) for ND students and 16% (n=19) for ADY students. When the daily consumption of vegetables and fruits (Group III) was examined, it was found that ND students were 42%

Nutrients	Nutrition & Dietetics (experimental group)	Audiology (control group)	P value
Water (ml)	1200 (200-3000)	1200 (200-2400)	0.2*
Energy (kcal)	1387 (222-2773)	1495 (517-3689)	0.257*
Protein (g)	56 (6-141)	60 (16-37)	0.140*
%	16 (7-45)	17 (6-34)	0.386*
Fat (g)	62.98±25.15	66.73±27.82	0.297**
%	40.10±8.47	39.19±8.25	0.423**
Saturated fatty acid (g)	23 (3-52)	20 (4-52)	0.196*
Monounsaturated fatty acid (g)	19 (4-59)	19 (4-37)	0.968*
Polyunsaturated fatty acid (g)	13 (2-43)	16 (2-58)	<0.01*
C18,3 Linolenic acid (g)	1 (0-6)	1 (0-8)	0.057*
Cholesterol (mg)	208 (0-758)	190 (4-1030)	0.495*
Carbohydrate (g)	140 (18-451)	149 (30-524)	0.204*
%	43±9	43±9	0.579**
Fiber (g)	16 (3-40)	17 (6-49)	0.617*
Vitamins			
Vitamin A (µg)	739 (96-5973)	731 (151-3329)	0.497*
Vitamin E (µg)	11 (2-44)	16 (1-57)	<0.01*
Vitamin B1 (µg)	1 (0-2)	1 (0-1)	0.768*
Vitamin B2 (µg)	1 (0-3)	1 (0-3)	0.895*
Niacin equivalent (mg)	19 (2-92)	20 (6-44)	0.260*
Vitamin B6 (µg)	1 (0-3)	1 (0-3)	0.583*
Pantothenic acid (mg)	3 (0-8)	3 (1-10)	0.797*
Total folic acid (µg)	201 (18-511)	198 (85-519)	0.903*
Vitamin B12 (µg)	3 (0-52)	3 (0-101)	0.121*
Vitamin C (mg)	83 (5-7773)	71 (6-381)	<0.05*
Minerals			
Sodium (mg)	2619 (577-10529)	3049 (872-12697)	<0.05*
Potassium (mg)	1391 (26-3880)	1798 (607-4169)	<0.05*
Calcium (mg)	543 (46-1376)	531 (152-1313)	0.914*
Magnesium (mg)	159 (1-546)	207 (73-491)	<0.01*
Phosphorus (mg)	888 (87-2244)	925 (318-1917)	0.769*
Iron (mg)	9 (1-21)	9 (3-21)	0.609*
Zinc (mg)	8 (1-20)	8 (2-23)	0.139*
Salt (g)	6 (1-17)	7 (1-24)	0.136*

*Mann-Whitney test was used. ** T-test was applied. (p <0.05 was considered statistically significant. p<0.01 was considered statistically significant).
(n=53) higher than ADY students (23%, n=22) and statistically significant (p=0.005). Bread and cereals (Group IV) consume 65% (n=81) of ND students and 72% (n=68) of ADY students daily. The fact that PPS students consume more fruits and vegetables every day (Group III) shows that they have the tendency and awareness towards healthier choices. However, such a result was not seen in consumption of other groups [35].

It was found that 64(45%) of ND students and 55(58%) of ADY students in the study were doing regular physical activity. A similar result was obtained in a cross-sectional study of ADY students in the study were doing regular physical activity. Further cross-sectional studies are needed to determine the nutritional status and physical activity of students at the Faculty of Health Sciences.

Conclusion

According to the results of the study, dietary habits of ADY students consist of unhealthy choices than ND students. Moreover, students of both departments have an inadequate–unbalanced diet patterns and not all of them have regular physical activity habits.

ADY and ND students will be among the individuals who are the future healthcare professionals and manage society. For this reason, it is recommended to include more nutrition lessons in the curriculum during the university period and to increase the incentives for healthy nutrition as well as regular physical activity. Further cross-sectional studies are needed to determine the nutritional status and physical activity of students at the Faculty of Health Sciences.

Acknowledgements

We would like to thank Res. Assist. Ayşeğül Yabaci from the Department of Biostatistics at Bezmialem Vakif University who helped the project during the statistical analysis.

References

1. Alper Z, Ercan I, Uncu Y (2018) A meta-analysis and an evaluation of trends in obesity prevalence among children and adolescents in Turkey: 1990 through 2015. J Clin Res Pediatr Endocrinol 10: 59-67. Link: http://bit.ly/2HyPfx

2. Erem C (2015) Prevalence of overweight and obesity in Turkey. JJC Metabolic Endocrine 8: 38-41. Link: http://bit.ly/2wPxrQ3

3. Deliens T, Clarys P, De Bourdeaudhuij I, Deforce B (2014) Determinants of eating behaviour in university students: a qualitative study using focus group discussions. BMC Public Health 14: 53. Link: http://bit.ly/32av4T

4. El Ansan W, Suominen, S, Samara A (2015) Eating habits and dietary intake: is adherence to dietary guidelines associated with importance of healthy eating among undergraduate university students in Finland? Cent Eur J Public Health 23: 306-313. Link: http://bit.ly/37TCojQ

5. Ozberak C (2010) The social factors of college lifestyle that may cause weight gain in undergraduate students. Perspectives 2: 20. Link: http://bit.ly/2PLYy9

6. Fabian C, Pagan I, Rios JL, Betancourt J, Cruz SY, et al. (2013) Dietary patterns and their association with sociodemographic characteristics and perceived academic stress of college students in Puerto Rico. P R Health Sci J 32: 36-43. Link: http://bit.ly/3a5YkY

7. Gan WY, Mohd NM, Zallah MS, Hazizi AS (2011) Differences in eating behaviours, dietary intake and body weight status between male and female. Malaysian University students. Malays J Nutr 17: 213-228. Link: http://bit.ly/37VFZet

8. Freedman MR (2010) Development, evaluation, and validation of environmental assessment tools to evaluate the college nutrition environment. J Am Coll Health 58: 565-568. Link: http://bit.ly/2Te80zC

9. Sprake EF, Russell JM, Cecil JE, Cooper RJ, Grabowski P, et al. (2018) Dietary patterns of university students in the UK: a cross-sectional study. Nutrition Journal 17: 90. Link: http://bit.ly/39EYtjk

10. Salameh P, Jomaa L, Issa C, Farhat G, Salame J, et al. (2014) Assessment of dietary intake patterns and their correlates among university students in Lebanon. Front Public Health 2: 185. Link: http://bit.ly/32svYe1

11. Kabir A, Miah S, Islam A (2018) Factors influencing eating behavior and dietary intake among resident students in a public university in Bangladesh: A qualitative study. PLoS one 13: e0198801. Link: http://bit.ly/37YDjpt

12. Janssen I, LeBlanc AG (2010) Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 7: 40. Link: http://bit.ly/2PqVUUm

13. Chung QE, Abraham SA, Khan MKJ, Sathik HB, Rashid A (2018) The Relationship between Levels of Physical Activity and Academic Achievement among Medical and Health Sciences Students at Cyberjaya University College of Medical Sciences. The Malays J Med Sci 25: 88-102. Link: http://bit.ly/32pEOtc

14. World Health Organization (2010) Global recommendations on physical activity for health. Geneva, Switzerland: WHO Press 1-60. Link: http://bit.ly/2ZtuClL

15. Ballard-Barbash R, Friedenreich CM, Courneya KS, Siddiqi SM, McTiernan A, et al. (2012) Physical activity, biomarkers, and disease outcomes in cancer survivors: a systematic review. J Natl Cancer Inst 104: 815-840. Link: http://bit.ly/3B0fTB9

16. Gunes-Bayir A, Kiziltan HS, Sentürk N, Mayadaglu A, Gumus M (2015) A pilot study of self-reported physical activity and eating habits in Turkish cancer patients under chemotherapy. Nutr Cancer 67: 906-911. Link: http://bit.ly/390w53G

17. Pontefex MB, Saliba BJ, Raine LB, Picchietti DL, Hillman CH (2013) Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J Pediatr 162: 543-551. Link: http://bit.ly/2zuHvSH

18. Scheewe TW, Backx FJG, Takken T, Jörg F, van Strater AC, et al. (2013) Exercise therapy improves mental and physical health in schizophrenia: a randomised controlled trial. Acta Psychiatr Scand 127: 464-473. Link: http://bit.ly/2TbnkbP

19. Verret C, Guay MC, Berthiaume C, Gardiner P, Béliveau L (2012) Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J Pediatr 162: 543-551. Link: http://bit.ly/2zufHxS

20. World Health Organization (2019) “Physical activity” 29 May 2019, Link: http://bit.ly/3a4SI6t

21. Kwan MY, Cairney J, Faulkner GE, Pullenayegum EE (2012) Physical activity and other health-risk behaviors during the transition into early adulthood: a longitudinal cohort study. Am J Prev Med 42: 14-20. Link: http://bit.ly/3Z2Zyrf

22. Güneş-Bayir A, Güzüloğlu D (2019) Nutritional assessment and physical activity of the departments for Nutrition&Dietetics and Nursing students at a foundation university. Bezmialem Science 7: 132-137. Link: http://bit.ly/32zBtrC

23. Baydemir C, Özgür EG, Balci S (2018) Evaluation of adherence to Mediterranean diet in medical students at Kocaeli University, Turkey. J Int Med Res 46: 1585-1594. Link: http://bit.ly/2uzCOAE
24. Arslan SA, Daşkapan A, Çakır B (2016) Üniversite öğrencilerinin beslenme ve fiziksel aktivite alışkanlıklarını belirlemesi. TAF Preventive Medicine Bulletin 15: 171-180. Link: http://bit.ly/2Tg1h7F

25. Tözün M, Sözmen MK, Babaoğlu AB (2017) Türkiye’ninbatısında bir üniversitenin sağlık ile ilişkili okullarında beslenme alışkanlıkları ve bunun obezite, fizik aktivite ve yaşam kalitesi ile ilişkisi. ESDÜJ Academic Open Access System. Link: http://bit.ly/2w1H0uJ

26. World Health Organization (2019) Body Mass Index-BMI. Link: http://bit.ly/3a9jqer

27. Pekcan G, Baysal A, Aksoy M, Besler HT, Bozkurt N, et al. (2013) Beslenme Durumunun Saptanması. Diyet El Kitabı 67-142.

28. Önal AE, Gürtekin B, Özel S, Erbil S, Ayvaz Ö, et al. (2013) Nutrition habits and food consumption frequencies of medical faculty students. İstanbul Tip Fakültesi Dergisi 76: 25-30. Link: http://bit.ly/3a91L6G

29. Sağlık Bakanlığı TC (2014) Beslenme durumu ve alışkanlarının değerlendirilmesi sonuç raporu. Türkiye Beslenme ve Sağlık Araştırmaları 2010 476-485.

30. Mutlu E (2018) Medya araçlarının başkent üniversitesi öğrencilerinin beslenme davranışları ve gıda ürünlerinin seçiminde karar vermedeki etkisi. Master Thesis, Basket university Institute of Health Sciences 62-63. Link: http://bit.ly/37ZdIL9

31. Pektaş E, Cayır Y, Koşan Z (2017) Weight change and associated factors in Atatürk University Faculty of Medicine employees. Family Practice and Palliative Care 2: 1-4. Link: http://bit.ly/2Phn2b0X

32. Al-Shudifat AE, Al-Shdaifat A, Al-Abdouh AA, Aburuman MI, Otoum SM, et al. (2017) Diabetes risk score in a young student population in Jordan: a cross-sectional study. J Diabetes Res 2017: 8290710. Link: http://bit.ly/386bov4

33. Ünal G, Uzdlı Z, Kükden M, Özenoğlu A (2017) Breakfast habits and diet quality among university students and its effect on anthropometric measurements and academic success. Progress in Nutrition 19: 154-162. Link: http://bit.ly/2SXI7wG

34. Comrie F, Masson LF, Mcneil G (2009) A novel online Food Recall Checklist for use in an undergraduate student population: a comparison with diet diaries. Nutr J 8: 13. Link: http://bit.ly/390zvdD

35. Sağlık Bakanlığı TC (2015) Türkiye Beslenme Rehberi (TUBER) 164-176. Link:

36. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010) Scientific opinion on dietary reference values for carbohydrates and dietary fibre. EFSA J 8: 1462. Link: http://bit.ly/383s9gC

37. World Health Organization (2012) WHO Guideline: Sodium Intake for Adults and Children. Report Geneva 46. Link: http://bit.ly/37ZhyDrn

38. Beslenme ve Diyetetik Bölümü, Hacettepe Üniversitesi Sağlık Bilimleri Fakültesi (2015) Türkiye’ye Özgü Besin ve Beslenme Rehberi 19-35.