Antioxidant and antiproliferative activities on prostate and cervical cultured cancer cells of five medicinal plant extracts from Burkina Faso

Bagora BAYALA¹,²,³,⁴*, Théodora Mahoukédè ZOHONCON¹,²,⁵,⁶, Florencia Wendkuuni DJIGMA¹,², Christelle NADEMBEGA¹,², Silvère BARON³, Jean-Marc LOBACCARO³ and Jacques SIMPORE¹,²,⁵,⁶

¹Laboratoire de Biologie Moléculaire et de Génétique (LABIOGENE), Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso.
²Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), 01 BP 216 Ouagadougou 01, Burkina Faso.
³Laboratoire Génétique, Reproduction & Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne, 28, Place Henri Dunant, BP 38, F63001, Clermont-Ferrand, France.
⁴Université Norbert ZONGO, BP 376 Koudougou, Burkina Faso.
⁵Université Saint Thomas d’Aquin (USTA), 06 BP 10212 Ouagadougou 06, Burkina Faso.
⁶Hôpital Saint Camille de Ouagadougou (HOSCO), 09 BP 444 Ouagadougou 09, Burkina Faso.

*Corresponding authors; E-mail: b.bayala@labiogene.org ; bayalabagora@gmail.com; Tel.: +226 76 69 61 66

ABSTRACT

Medicinal plants are a potential source of drug discovery and development of cancer chemoprevention drugs. Thus, the aim of this work was to study the antioxidant and antiproliferative activities of hydromethanolic extracts of *Musa sapientum* L., *Cassia italica* (Mill.) Spreng., *Crataeva adansonii* DC., *Euphorbia hirta* L. and *Ceratotheca sesamoides* Endl. from Burkina Faso. The antioxidative activity of hydromethanolic extracts of plant was assessed using DPPH radical scavenging assay and ABTS+ radical cation decolorisation assay. Antiproliferative activity was evaluated by MTT assay. Of these five plant extracts, hydromethanol extract of *Euphorbia hirta* leaf twigs showed the best antioxidant activity both by DPPH (IC₅₀ = 0.53 ± 0.04 μg extract / μg DPPH) and ABTS (C = 0.302 ± 0.003 μMET / g extract) methods. In addition, hydromethanol extract of *Euphorbia hirta* leaf twigs showed the best antiproliferative activity on LNCaP cell lines of prostate cancer while the hydromethanolic extract of the *Ceratotheca sesamoides* leaf stems showed the best antiproliferative activity on the HeLa cell lines of cervical cancer. This work has shown not only the antioxidant and anticancer activities of these five local plants, but also the potential valorization of these species used in traditional medicine in Burkina Faso.

© 2020 International Formulae Group. All rights reserved.

Keywords: Cancer, antioxidant, antiproliferative, Medicinal plants, Burkina Faso.

INTRODUCTION

Traditional plants generally have many therapeutic properties (Sarr et al., 2015). Indeed, medicinal plants are a potential source of drug discovery and development of cancer chemoprevention drugs. Most African people still rely heavily on traditional medicine (Zank and Hanazaki, 2017). In fact, more than 80% of
African population uses medicinal plants (Shewamene et al., 2020). Plants are reservoirs for novel chemical molecules and provide a promising line for research on cancer (Iqbal et al., 2017). Indeed, several extracts of African medicinal plants are known to have properties against cancer cells (Ambe et al., 2016; Bayala et al., 2019; Moore et al., 2016). Musa sapientum, Cassia italica, Crateva adansonii, Euphorbia hirta and Ceratotheca sesamoides are used in traditional medicine in Burkina Faso to treat inflammatory and oxidative diseases (Nacouma, 1996). These plants are known in the literature for their many biological properties. Regarding Musa sapientum, ethanol extracts have anti-plasmodium and anti-toxoplasma activities in vitro (Leesombun et al., 2019) and an antidepressant activity possibly mediated by α1-adrenergic and dopaminergic D2 receptors and without anxiolytic effect (Salako et al., 2019). Stem extract of Musa sapientum showed anticonvulsant and antioxidant effects on both acute and chronic epilepsy experimental models (Reddy et al., 2018). Proteins extracted from flowers showed antibacterial effects against gram-positive and negative bacteria (Sitthiya et al., 2018). A significant antidepressant-like activity was found in Musa sapientum stem extract in experimental models in mice (Reddy et al., 2016). Methanol extract of stems has significant antihypercholesterolemic and antioxidant effects (Dikshit et al., 2016). At last, Musa sapientum decoction extract of fresh unripe peels exhibited strong antioxidant activity (Phuaklee et al., 2012).

Ethanol extract of the whole parts of Cassia italica showed a dose-dependent inhibition of prostaglandin release effect using rat peritoneal leucocytes (Jain et al., 1997). Phytol, 1-hexyl-2-nitrohexane and 2-isopropyl-5-methylcyclohexyl 3- (1- (4-chlorophenyl) -3-oxobutyl) -coumarin-4-yl carbonate are three compounds identified in the extract C. adansonii that showed anti-inflammatory properties (Thirumalaisamy et al., 2018). Ahama-Esseh et al. (2017) pointed out that various C. adansonii leaf samples have anti-inflammatory activities. While dichloromethane / methanol extracts of stem bark exhibit anti-cancer activity on breast cancer cells MCF-7 and MDA-MB-231 (Zingue et al., 2016). The stem bark also possesses analgesic activity against peripheral and central mediated pain sensation and also antioxidant properties (Udeh & Onoja, 2015).

Euphorbia hirta has anthelmintic properties (Nseroko et al., 2019), as well anti-inflammatory and anxiolytic effects on neonatal asthmatic rats with inflammation (Xia et al., 2018). Isolated compounds caffeic acid and epicatechin 3-gallate showed antibacterial effect against Pseudomonas aeruginosa (Perumal et al., 2017). Aerial parts have in vitro antimicrobial activities against the bacterium Aeromonas hydrophila (Sheikhkar et al., 2017). Decoctions of leaves and bark are used for the treatment of dengue (de Guzman et al., 2016). E. hirta also inhibits the survival of MCF-7 cells with a half inhibitory concentration (IC50) value of 25.26 µg/mL at 24 h (Kwan et al., 2016). Chen et al. (2015) described the in vitro anti-inflammatory activity of fractionated E. hirta aqueous extract on rabbit synovial fibroblasts.

Toyin et al. (2012) showed antidiarrheal activity of aqueous leaf extract of Ceratotheca sesamoides in rats, while extract from leaves have antiviral activities (Obi et al., 2006). According to these data, several other studies have been carried out on these five plants, but, to date, no study has yet been carried out on the anticancer activity of these five plants on prostate and cervical cancers cells. Based on that, we evaluated the antioxidant and antiproliferative activities of hydromethanolic extracts of Musa sapientum, Cassia italica, Crateva adansonii, Euphorbia hirta and Ceratotheca sesamoides from Burkina Faso on cells derived from prostate (LNCaP) and cervical (HeLa) cancers.
MATERIALS AND METHODS
Vegetal material and Extraction
The plant material of *Musa sapientum*, *Cassia italica*, *Crateva adansonii*, *Euphorbia hirta*, and *Ceratotheca sesamoides* were collected in August 2017 in Burkina Faso with respective GPS coordinates (Table 1). Taxonomic identities were confirmed by Dr. Abdoulaye SEREME, Plant Biology Researcher, Botanist of “Centre National de la Recherche Scientifique et Technologique (CNRST)”.

The different samples of harvested plants were dried in the laboratory away from sunlight and then reduced to powder. Each crude extract was obtained by hydromethanolic maceration (80:20) for 48 hours with frequent agitation. The mixture was filtered with Whatman No. 1 filter paper and the filtrate was concentrated by rotary evaporator with vacuum at 40 °C, poured in glass Petri dishes and brought to dryness at 40 °C oven.

Antioxidant activity

DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) radical scavenging assay

DPPH (Sigma-Aldrich, L’Ile d’Abeau, France) radical scavenging activity was measured as described by Velasquez (Velázquez et al., 2003) with modifications. Briefly, plant extract at 0.625mg / mL was diluted at different concentrations in a 96-well plate. Then, 100 μL of each extract concentration was mixed with 100 μL of DPPH (30 mg / L in methanol). After 30 min of incubation in the dark, the absorbance was read at 517 nm using a UV / Visible spectrophotometer for Radical scavenging capacity. Gallic acid was used as a control. The radical scavenging activity was expressed as a percentage inhibition according to the formula:

\[
\text{RSC (\%) } = \left(\frac{\text{Absorbance Blank } - \text{Absorbance Sample}}{\text{Absorbance Blank}} \right) \times 100
\]

RSC: Radical scavenging capacity.

Concentrations were expressed in μg of extracts / μg of DPPH by formula:

\[
\text{Concentration } = \frac{\text{Mass of extract}}{\text{Mass of DPPH}}
\]

That is to say:

\[
C = \frac{\text{Concentration of extract } \times \text{Volume of extract}}{\text{Concentration of DPPH } \times \text{Volume of DPPH}}
\]

ABTS⁺ radical cation decolorization assay

The spectrophotometric analysis of ABTS⁺ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) scavenging activity was determined according Re et al. (1999). Briefly, preparation of ABTS⁺ solution was done by dissolving 10 mg of ABTS in 2.6 mL of distilled water. Then, 1.7212 mg of potassium persulfate was added and the mixture kept in the dark at room temperature for 12 hours. The mixture was then diluted with ethanol in order to obtain an absorbance of 0.70 ± 0.02 to 734 nm. In 96-well plates, 50 μL of ethanolic extract solution at an initial concentration of 0.625 mg / mL (*Musa sapientum, Cassia italica, Crateva adansonii* and *Ceratotheca sesamoides*) and of 0.125 mg/mL (*Euphorbia hirta*) were added to 200 μL of freshly prepared ABTS⁺ solution. The same process was carried out for gallic acid at an initial concentration of 0.0125 mg/mL used as standard. The mixture made in the 96-well plates was then incubated in the dark at room temperature (25 °C) for 15 min and the absorbance was read at 734 nm against a standard curve of 5.7,8-tetramethyl-2-carboxylic acid 6-hydroxy-2 (Trolox, Sigma-Aldrich) using a spectrophotometer. The plant extract activity on the radical cation ABTS⁺.
was expressed in micromoles Trolox equivalent per gram of extract (μmol TE / g) using the following formula: C = (cx D) / Ci, C being the concentration of plant extract in μmol TE / g; c, the concentration of the sample read; D, the dilution factor and Ci, concentration of the stock solution.

Cancer cell lines and culture conditions

LNCaP (Lymph Node Cancer of the Prostate) cells are an androgen responsive prostate cancer cell line with a low metastatic potential derived from a lymph node metastasis (Horoszewicz et al., 1983). HeLa (Henrietta Lacks) cells derived from tumor of the cervix (C, 1974). All these cells are available through the GReD (Génétique, Reproduction & Développement) Laboratory (University Clermont-Auvergne, France) and others manipulations were carried out in GReD and CERBA/LABIOGEME Laboratories. They are cultured and maintained at 37 °C in a chamber moistened with 5% CO₂ in 75 cm² flasks of tissue culture, in medium supplemented with 10% fetal calf serum (FCS, Biowest, Nuaille, France), 1% penicillin and 1% streptomycin (Invitrogen, Oslo, Norway). Cells were maintained in RPMI-1640 (Roswell Park Memorial Institute) medium (Invitrogen).

Antiproliferative activity

3(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide (Sigma-Aldrich) assay (MTT) was used to measure the cell survival. Briefly, 50,000 cells/mL were seeded for 24 h in 96-well plates. After 24 h, extracts were added. And after 72 h incubation, the number of living cells was measured as described (Bayala et al., 2014, 2018) using a microplate reader type Bio-Rad 11885 at 490 nm. Experiments were performed in sextuplicate with three independent experiments on each cell line.

Statistical analysis

All data are presented as mean ± standard deviation. The data were analyzed by analysis of variance followed by the Turkey multiple comparison test. The analyses were performed using XLSTAT 7.1 software. P < 0.05 was used as a criterion for statistical significance.

Table 1: GPS geographic location of plants.

Plant	GPS coordinates
Musa sapientum	662753 1369094
Cassia italica	678088 1374329
Crateva adansonii	679992 1373734
Euphorbia hirta	662723 1369080
Ceratotheca sesamoides	678084 1374327
RESULTS

The antioxidant activities of the hydromethanolic extracts of *Musa sapientum*, *Cassia italica*, *Crateva adansonii*, *Euphorbia hirta* and *Ceratotheca sesamoides* are presented in Table 1. From these results, it appears that the extracts of the leafy twigs of *Euphorbia hirta* presented the highest inhibition of DPPH with IC50 of 0.53 ± 0.04 µg extract / µg DPPH (p < 0.05) and *Crateva adansonii* bark the lowest inhibition (IC50 of 15.73 ± 2.04 µg extract / µg DPPH) (Table 1). In ABTS radical cations inhibition, leafy twigs extract of *Euphorbia hirta* also showed the highest activity (0.302 ± 0.003 µMET / g of extract) (p < 0.05) while those of *Crateva adansonii* bark hydromethanolic extracts has the lowest activity (0.024 ± 0.002 µMET / g of extract) (Table 2). The gallic acid used as a standard exhibited a good activity with an IC50 of inhibition of the DPPH radicals of 0.11 ± 0.04 µg extract / µg DPPH and an inhibition concentration of the ABTS cation radicals of 2.665 ± 0.314, µMET / g extract (Table 2).

The results of the tests of the antiproliferative activity are recorded in Table 2. This table presents the different IC50 of *Musa sapientum*, *Cassia italica*, *Crateva adansonii*, *Euphorbia hirta* and *Ceratotheca sesamoides* hydromethanolic extracts. Extract of the leafy twigs of *Euphorbia hirta* has antiproliferative activity on LNCaP cell lines of prostate cancer are 251.15 ± 6.5 µg / mL. In HeLa cell lines of cervical cancer, leaf stems of *Ceratotheca sesamoides* had an activity of 723.25 ± 3.82 µg / mL. Figure 1 shows the viability of LNCaP cells according to the concentrations of each extract used. As for Figure 2, it also demonstrates the viability of HeLa cells of cervical cancer according to the concentrations of each extract. Cisplatin was used as standard on LNCaP cells of prostate cancer and HeLa cells of cervical cancer (Figures 1 and 2).

Table 2: Antioxidant activity of hydromethanolic extracts of *Musa sapientum*, *Cassia italica*, *Crateva adansonii*, *Euphorbia hirta* and *Ceratotheca sesamoides*.

Sample	DPPH, IC50 (µg extract / µg DPPH)	ABTS, C (µMET/g extract)
Musa sapientum (F.)	5.7 ± 0.91^d^	0.032 ± 0.005^d^
Cassia italica (Rx F.)	5.13 ± 1.06^d^	0.029 ± 0.004^a^
Crateva adansonii (F.)	3.65 ± 0.88^c^	0.041 ± 0.004^c^
Euphorbia hirta (Rx F.)	0.53 ± 0.04^b^	0.302 ± 0.003^b^
Ceratotheca sesamoides (Tg F.)	2.02 ± 0.94^c^	0.027 ± 0.004^d^
Crateva adansonii (E.)	15.73 ± 2.04^c^	0.024 ± 0.002^d^
Gallic acid	0.11 ± 0.04^a^	2.665 ± 0.314^a^

IC50, Inhibitory concentration 50; C, Concentration; DPPH, (2,2-diphenyl-1-picrylhydrazyl); ABTS (2,2′-azinobis-[3-ethylbenzothiazoline-6-sulfonic acid]); Values are expressed as mean values ± SD. n = 3 independent experiments in triplicate for the measurement of antioxidant activity; DPPH activities is expressed as IC50 (µg Extract / µg DPPH) and ABTS activities are given in µmol Throlox equivalent/g of Extract. a, b, c, d, e, from the largest to the smallest activity, the same letters are used for statistically identical activities and different letters when they are statistically different in each column (p < 0.05). F, Leaf; Rx F, leafy twigs; Tg F, Leaf Stem; E, Bark. Galic acid was used as standard.
Table 3: IC$_{50}$ of hydromethanolic extracts tested on LNCaP human prostate cancer cell lines and HeLa human cervical cancer cell lines.

Sample	IC$_{50}$ (µg/mL)	LNCaP cell lines	HeLa cell lines
Musa sapientum (F.)	>1000	>1000	
Cassia italica (Rx F.)	>1000	>1000	
Crateva adansonii (F.)	>1000	>1000	
Euphorbia hirta (Rx F.)	251.15 ± 6.50***	>1000	
Ceratotheca sesamoides (Tg F.)	599.85 ± 4.76*	723.25 ± 3.82s	
Crateva adansonii (E.)	585.35 ± 3.19**	>1000	
Cisplatin	3.4 ± 0.5****	5.12 ± 1.1ss	

IC$_{50}$, Inhibitory concentration 50; Values are expressed as mean values ± standard deviation. n = 3 independent experiments in sextuplicate; *, **, *** and s, ss (p < 0.05) from lowest to highest activity and significantly different compared respectively. F, Leaf; Rx F, leafy twigs; Tg F, Leaf Stem; E, Bark. Cisplatin was used as standard.

Figure 1: Dose-dependent anti-proliferative activity of hydromethanolic extracts of plant on human LNCaP cell lines of Prostate cancer.
Cell lines were treated for 72 h. Experiments were performed 3 times in sextuples. F, Leaf; Rx F, leafy twigs; Tg F, Leaf Stem; E, Bark. Cisplatin was used as standard.
Figure 2: Dose-dependent anti-proliferative activity of hydromethanolic extracts on human HeLa cells lines of cervical cancer. Cell lines were treated for 72 h. Experiments were performed 3 times in sextuplicates. F, Leaf; Rx F, leafy twigs; Tg F, Leaf Stem; E, Bark. Cisplatin was used as standard.

DISCUSSION

Oxygen reactive species (ORS) are involved in physiological processes at low levels. However, excess production of ORS can become toxic to major cell components, lipids, proteins and nucleic acids (Ouattara et al., 2020) causing oxidation in the body. The DPPH and ABTS method are used to determine the antioxidant activity in vitro. The difference between DPPH anti-radical and anti-radical ABTS activities at the origin of the antioxidant activity is mainly at the level of their mechanism of action brought into play. Indeed, the DPPH involves free radicals while the ABTS involves radical cations. So, the hydromethanolic extracts of *Musa sapientum*, *Cassia italica*, *Crataeva adansonii*, *Euphorbia hirta* and *Ceratotheca sesamoides* all exhibited antioxidant activities depending on the inhibition of radicals DPPH and cation radicals ABTS. Hydromethanolic extracts of the leafy twigs of *Euphorbia hirta* presented the higher inhibition of DPPH as well of ABTS radical cations. This antioxidant activity could be justified by a high content of antioxidant compounds contained in *Euphorbia hirta* (Basma et al., 2011). Indeed, extract of the aerial parts of *Euphorbia hirta* contains many acidic compounds (Yang et al., 2020) that could justify this antioxidant activity. High total phenolic and flavonoid contents, suggested that *E. hirta* methanolic extract is a potential antioxidant agent for the development of local natural products for disease treatment (Ismail et al., 2019). Moreover, concerning *Crataeva adansonii*, it should also be noted that hydromethanolic extract of its leaves are more active than those of its bark. Thus, for the same plant, the activity may vary according to the parts used. The standard gallic acid exhibits stronger antioxidant activity compared to the natural hydromethanolic extracts from plants (Table 2). Indeed, gallic acid is a pure compound compared to extracts which are composed of a complex mixture of several...
compounds which could have antagonistic effects.

Hydromethanolic extracts from Musa sapientum leaves, Cassia italica twigs and leaves, Crataeva adansonii leaves do not present strong inhibitory effects on both LNCaP and HeLa cell lines with IC50 > 1000 µg/mL (Figures 1 & 2). These three extracts would therefore be active in high concentrations. Furthermore, these extracts are a mixture of several compounds whose antagonistic actions between them could also explain their low overall activity. Conversely, hydromethanolic extracts from the leafy twigs of Euphorbia hirta has a significant antiproliferative activity on the LNCaP cell lines from prostate cancer with IC50 of 251.15 ± 6.5 µg/mL (P < 0.05) (Table 3). This activity is also higher than that of leaf stems of Ceratotheca sesamoides on HeLa cell lines of cervical cancer whose IC50 is 723.25 ± 3.82 µg/mL (P < 0.05) (Table 3). The presence of phenolic compounds in Euphorbia hirta could explain this activity (Basma et al., 2011). Moreover, the phytochemical screening and chromatography revealed the presence of saponin, sterol, terpene, alkaloids, polyphenols, tannins and flavonoids on Euphorbia hirta extract (Yvette Fofie et al., 2015). Indeed, terpene (Gill et al., 2016), polyphenols (Costea et al., 2019; Miyata et al., 2019) and sterol (Blanco-Vaca et al., 2019) are known to have anticancer activities. Previous studies have shown that Euphorbia hirta exhibited significant inhibition of the survival of breast cancer MCF-7 cells with an IC50 of 25 µg/mL at 24 h (Kwan et al., 2016). This antiproliferative activity exerted by the hydromethanolic extract of Euphorbia hirta is concentration dependent but remains low compared to cisplatin used as standard. Comparable effects could be observed with Ceratotheca sesamoides leaf Stem and Crataeva adansonii bark hydromethanolic extract. Leaf stems of Ceratotheca sesamoides as cisplatin are also concentration dependent on HeLa cells of cervical cancer.

Conclusion
This work evaluated for the first time the antioxidant and antiproliferative activities of the hydromethanolic extracts of plants from Burkina Faso on cultured cancer cells. Even though the active compounds are yet to be identified and need to be investigated further, this work constitutes a scientific basis and also allow the valorization of these local medicinal plants of Burkina Faso.

COMPETING INTERESTS
The authors declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS
BB, JS and JML designed the research; BB and TMZ performed the experiments and analyzed the data. BB, TMZ, FWD, CN, SB, JML and JS wrote the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGEMENTS
Part of this study was supported by Conférence Episcopale Italienne (CEI) and Ambassade de France au Burkina Faso (Grant stage SSHN n°948600C) for BB and JS; Région Auvergne, Fond Européen de Développement Régional (FEDER), Plan National de Recherche sur les Perturbateurs Endocriniens (13-MRES-PNRPE-1-CVS043), and Plan-Cancer 2016 (JMAL) for JMAL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES
Ahama-Esseh K, Bodet C, Quashie-Mensah-Attoh A, Garcia M, Théry-Koné I, Dorat J, De Souza C, Enguehard-Gueiffier C, Boudesocque-Delaye L. 2017. Anti-inflammatory activity of Crataeva adansonii DC on keratinocytes infected by Staphylococcus aureus: From traditional practice to scientific approach using HPTLC-densitometry. J.
881–896. DOI: https://doi.org/10.1007/s11033-016-4032-9

Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM, Mirand EA, Murphy GP. 1983. LNCAp model of human prostatic carcinoma. Cancer Res., 43(4): 1809–1818. DOI: https://cancerres.aacrjournals.org/content/43/4/1809.long

Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT. 2017. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed., 7(12): 1129–1150. DOI: https://doi.org/10.1016/j.apjtb.2017.10.016

Ismail A, Mohamed M, Kwei YF, Yin KB. 2019. Euphorbia hirta methanolic extract displays potential antioxidant activity for the development of local natural products. Pharmacogn Res., 11(1): 78. DOI: https://doi.org/10.4103/pr.pr_113_18

Jain SC, Jain R, Sharma RA, Capasso F. 1997. Pharmacological investigation of Cassia italica. J. Ethnopharmacol., 58(2): 135–142. DOI: https://doi.org/10.1016/s0378-8741(97)00091-3

Kwan YP, Saito T, Ibrahim D, Al-Hassan FMS, Ein Oon C, Chen Y, Jothy SL, Kanwar JR, Sasidharan S. 2016. Evaluation of the cytotoxicity, cell-cycle arrest, and apoptotic induction by Euphorbia hirta in MCF-7 breast cancer cells. Pharm. Biol., 54(7): 1223–1236. DOI: https://doi.org/10.3109/13880209.2015.1064451

Leesombun A, Boonmasawai S, Nishikawa Y. 2019. Ethanol extracts from Thai plants have anti-plasmodium and anti-toxoplasma activities in vitro. Acta Parasitol., 64(2): 257–261. DOI: https://doi.org/10.2478/s11686-019-00036-w

Miyata Y, Shida Y, Hakariya T, Sakai H. 2019. Anti-Cancer Effects of Green Tea Polyphenols Against Prostate Cancer. Molecules (Basel, Switzerland), 24(1). DOI: https://doi.org/10.3390/molecules24010193

Moore J, Yousef M, Tsiani E. 2016. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients, 8(11). DOI: https://doi.org/10.3390/nu8110731

Nacouma OG. 1996. Plantes médicales et pratiques médicinales traditionnelles au Burkina Faso. cas du plateau central. Tome I et II. Thèse doct., Univ. Ouaga., Ouagadougou. p. 242-285.

Nsereko G, Emudong P, Omujal J, Acai J, Kungu JM, Kabi F, Mugerwa S, Bugeza J. 2019. Comparison of the efficacy of crude methanolic extracts of Cassia occidentalis and Euphorbia hirta with levamisole-HCL against gastrointestinal nematodes of economic importance to goat production in Uganda. Trop. Anim. Health Prod., 51(8):2269-2278. DOI: https://doi.org/10.1007/s11250-019-01939-6

Obi RK, Iroagba II, Ojiako OA. 2006. Virucidal potential of some edible Nigerian vegetables. Afr. J. Biotechnol., 5(19). DOI: https://www.ajol.info/index.php/ajb/article/view/55854

Ouattara A, Traore Y, Ouattara GA, Konate G, Ouattara K, Coulibaly A. 2020. Antioxidant and anti-gastroenteritis activities of Funtumia elastica (Apocynaceae) and Caesalpinia bonduc (Caesalpiniaceae). Int. J. Biol. Chem. Sci., 14(1): 170–180. DOI: https://www.ajol.info/index.php/ijbcs/article/view/194143

Perumal S, Mahmud R, Ismail S. 2017. Mechanism of Action of Isolated Caffeic Acid and Epicatechin 3-gallate from...
Euphorbia hirta against Pseudomonas aeruginosa. *Pharmacogn. Mag.*, 13(2): S311–S315. DOI: https://doi.org/10.4103/pm.pm_309_15

Phuaklee P, Ruangnoo S, Itharat A. 2012. Anti-inflammatory and antioxidant activities of extracts from *Musa sapientum* peel. *J Med Assoc Thail Chotmaihet Thangphaet*, 95(1): S142-146.

Reddy AJ, Dubey AK, Handu SS, Sharma P, Mediratta PK, Ahmed QM, Jain S. 2018. Anticonvulsant and Antioxidant Effects of *Musa sapientum* Stem Extract on Acute and Chronic Experimental Models of Epilepsy. *Pharmacogn. Res.*, 10(1): 49–54. DOI: https://doi.org/10.4103/pr.pr_31_17

Reddy AJ, Handu SS, Dubey AK, Mediratta PK, Shukla R, Ahmed QM. 2016. Effect of *Musa sapientum* Stem Extract on Animal Models of Depression. *Pharmacogn. Res.*, 8(4): 249–252. DOI: https://doi.org/10.4103/0974-8490.188876

Salako OA, Akindele AJ, Balogun AO, Adeyemi OO. 2019. Investigation of Antidepressant, Anxiolytic and Sedative Activities of the Aqueous Leaf Extract of *Musa sapientum* Linn. (Banana; Musaceae). *Drug Res.*, 69(3): 136–143. DOI: https://doi.org/10.1055/a-0651-7978

Sarr SO, Fall AD, Gueye R, Diop A, Sene B, Diatta K, Ndiaye B, Diop YM. 2015. Evaluation de l’activité antioxydante des extraits des feuilles de *Aphania senegalensis* (Sapindaceae) et de *Saba senegalensis* (Apocynaceae). *Int. J. Biol. Chem. Sci.*, 9(6): 2676–2684. DOI: https://doi.org/10.4314/ijbcs.v9i6.13

Sheikhlar A, Meng GY, Alimon R, Romano N, Ebrahimi M. 2017. Dietary *Euphorbia hirta* Extract Improved the Resistance of Sharptooth Catfish Clarias gariepinus to Aeromonas hydrophila. *J. Aquat. Anim. Health*, 29(4): 225–235. DOI: https://doi.org/10.1080/08997659.2017.1374310

Shewamene Z, Dune T, Smith CA. 2020. Use of traditional and complementary medicine for maternal health and wellbeing by African migrant women in Australia: a mixed method study. *BMC Complement. Med. Ther.*, 20(1): 60. DOI: https://doi.org/10.1186/s12906-020-2852-6

Sithi K, Devkota L, Sadiq MB, Anal AK. 2018. Extraction and characterization of proteins from banana (*Musa Sapientum* L) flower and evaluation of antimicrobial activities. *J. Food Sci. Technol.*, 55(2): 658–666. DOI: https://doi.org/10.1007/s13197-017-2975-z

Thirumalaisamy R, Ammashi S, Muthusamy G. 2018. Screening of anti-inflammatory phyto compounds from *Crateva adansonii* leaf extracts and its validation by in silico modeling. *J. Genet. Eng. Biotechnol.*, 16(2): 711–719. DOI: https://doi.org/10.1016/j.jgeb.2018.03.004

Toyin YM, Khadijat OF, Saoban SS, Olakunle AT, Abraham BF, Luqman QA. 2012. Antidiarrheal activity of aqueous leaf extract of *Ceratotheca sesamoides* in rats. *Bangladesh J. Pharmacol.*, 7(1): 14–20. DOI: https://doi.org/10.3329/bjp.v7i1.9789

Udeh NE, Onoja SO. 2015. Analgesic and free radical scavenging activities of hydromethanolic extract of *Crateva adansonii* stem bark. *J. Intercult. Ethnopharmacol.*, 4(3): 224–227. DOI:
https://doi.org/10.5455/jice.2015040305

Velázquez E, Tournier HA, Mordujovich de Buschiazzo P, Saavedra G, Schinella GR. 2003. Antioxidant activity of Paraguayan plant extracts. Fitoterapia, 74(1): 91–97. DOI: https://doi.org/10.1016/S0367-326X(02)00293-9

Xia M, Liu L, Qiu R, Li M, Huang W, Ren G, Zhang J. 2018. Anti-inflammatory and anxiolytic activities of Euphorbia hirta extract in neonatal asthmatic rats. AMB Express, 8(1): 179. DOI: https://doi.org/10.1186/s13568-018-0707-z

Yang ZN, Su BJ, Wang YQ, Liao HB, Chen ZF, Liang D. 2020. Isolation, Absolute Configuration, and Biological Activities of Chebulic Acid and Brevifolicarboxylic Acid Derivatives from Euphorbia hirta. J. Nat. Prod., 83(4): 985-995. DOI: https://doi.org/10.1021/acs.jnatprod.9b00877

Yvette Fofie NB, Sanogo R, Coulibaly K, Kone-Bamba D. 2015. Minerals salt composition and secondary metabolites of Euphorbia hirta Linn., an antihyperglycemic plant. Pharmacogn. Res., 7(1): 7–13. DOI: https://doi.org/10.4103/0974-8490.147131.

Zank S, Hanazaki N. 2017. The coexistence of traditional medicine and biomedicine: A study with local health experts in two Brazilian regions. Plos One, 12(4): e0174731. DOI: https://doi.org/10.1371/journal.pone.0174731

Zingue S, Cisilotto J, Tueche AB, Bishayee A, Mefegue FA, Sandjo LP, Magne Nde CB, Winter E, Michel T, Ndinteh DT, Awounfack CF, Silihe KK, Melachio Tanekou TT, Creczynski-Pasa TB, Njamen D. 2016. Crateva adansonii DC, an African ethnomedicinal plant, exerts cytotoxicity in vitro and prevents experimental mammary tumorigenesis in vivo. J. Ethnopharmacol., 190: 183–199. DOI: https://doi.org/10.1016/j.jep.2016.06.004