The analgesic efficacy of transverse abdominis plane block versus epidural analgesia
A systematic review with meta-analysis

Moira Baeriswyl, MDa, Frank Zeiter, BScb, Denis Piubellini, BScb, Kyle Robert Kirkham, MDc,
Eric Albrecht, MDb.

Abstract

Background: The aim of the study was to compare the analgesic efficacy of epidural analgesia and transverse abdominis plane (TAP) block. TAP block has gained popularity to provide postoperative analgesia after abdominal surgery but its advantage over epidural analgesia is disputed.

Methods: We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement guidelines. Only trials comparing TAP block with epidural analgesia were included. The primary outcome was pain score at rest (analog scale, 0–10) on postoperative day 1 analyzed in subgroups according to the population (children and adults). Secondary outcomes included rate of hypotension, length of stay, and functional outcomes (time to first bowel sound, time to first flatus).

Results: Ten controlled trials, including 505 patients (195 children and 310 adults), were identified. Pain scores at rest on postoperative day 1 were equivalent for TAP block and epidural analgesia groups in children (mean difference: 0.3; 95% confidence interval [CI]: −0.1 to 0.6; I² = 0%; P = .15) and in adults (mean difference: 0.5; 95% CI: −0.1 to 1.0; I² = 81%; P = .10). The quality of evidence for our primary outcome was moderate according to the GRADE system. The epidural analgesia group experienced a higher rate of hypotension (relative risk: 0.13; 95% CI: 0.04–0.38; I² = 0%; P = .0002), while hospital length of stay was shorter in the TAP block group (mean difference: −0.6 days; 95% CI: −0.9 to −0.3 days; I² = 0%; P < .0001), without impact on functional outcomes.

Conclusion: There is moderate evidence that TAP block and epidural analgesia are equally effective in treating postoperative pain in both pediatric and adult patients, while TAP block is associated with fewer episodes of hypotension and reduced length of stay.

Abbreviations: 95% CI = 95% confidence interval, GRADE = Grades of Recommendation, Assessment, Development, and Evaluation, IV = intravenous, NRS = numeric rating scale, PONV = postoperative nausea and vomiting, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, RR = relative risk, TAP = transverse abdominis plane.

Keywords: abdominal surgery, analgesia, epidural analgesia, postoperative pain

1. Introduction

For many years, epidural and caudal analgesia have been considered the gold-standard techniques after abdominal surgery for adults and children, respectively. The techniques consist of injecting the local anesthetic within the epidural space, between the ligamentum flaveum and the dura mater. Depending on the surgical site and the level of injection, cervical, thoracic, or lumbar nerve roots are blocked after their emergence from the neural foramen. Epidural and caudal analgesia have technical drawbacks with epidural local anesthetic associated with hypotension secondary to the sympathetic blockade,[1,2] and increased intracranial pressure described after caudal blockade.[3]

In the last decade, a new abdominal truncal block, called the transversus abdominis plane (TAP) block, was described consisting of local anesthetic injection between the internal oblique and transversus abdominis muscle.[4] This block provides analgesia by blocking the 7th to 11th intercostal nerves (T7–T11), the subcostal nerve (T12), and the ilioinguinal nerve and iliohypogastric nerve (L1–L2).[4] Two distinct approaches have been described: an intercostoiliac approach where the probe is positioned between the rib cage and the iliac crest, and an oblique subcostal approach where the probe is placed anterior to the midaxillary line in an oblique subcostal angle. Both approaches have been shown to effectively cover pain after abdominal wall surgery. The TAP block has achieved widespread clinical uptake due to the technique’s simplicity when performed with ultrasound guidance and the absence of significant side effects.[4]

Several authors have compared the TAP block to neuraxial analgesic techniques but have reported conflicting results.[6,7] To reconcile these conclusions, we undertook this meta-analysis with the objectives to compare analgesic efficacy and side effects of TAP block versus epidural analgesia in pediatric and adult patients.
2. Methods

2.1. Literature search and inclusion criteria

This investigation followed the recommended process described in the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) statement,[8] and the protocol was registered on PROSPERO (registration number: CRD42017067401). Due to the nature of this manuscript (meta-analysis), an ethical approval was not necessary. The authors searched electronic databases including: Medline (until September 2017), PubMed (until September 2017), Excerpta Medica database, Embase (until September 2017), the Cochrane Central Register of Controlled Clinical Trials, CENTRAL (until September 2017), and the Latin American and Caribbean Center on Health Sciences Information, LILACS (until September 2017) applied the following population search terms: Epidural anesthesia OR Epidural anaesthesia OR Caudal anesthesia OR Caudal anaesthesia OR Epidural drug administration OR Epidural injection OR Epidural analgesia OR Peripheral nerve block OR Regional anesthesia OR Regional anaesthesia OR Pain. These search results were combined with Abdominal wall block OR Nerve block OR Transversus Abdominal wall block. Results were further limited with Clinical trials OR Random allocation OR Therapeutic use. The following words were searched as keywords: Analg∗, Pain∗, Nerve∗, Epidural∗, Caudal∗, Extradural∗, Postsurg∗, Postoperat∗, Perioperat∗, Transvers∗, Block∗. The results of this search strategy were limited to randomized controlled trials and humans. No age or language limits were placed on the search. Finally, the references of all articles retrieved from the search were manually scrutinized for any relevant trials not identified using the strategy described above and Google Scholar was examined for any additional publication.

2.2. Population

The meta-analysis addresses female and male adults (18 years or older) and children (younger than 18 years) undergoing any abdominal surgical operation.

2.3. Intervention and comparator

Only trials comparing TAP block, using an intercostoiliac (probe placed between the rib cage and iliac crest) or oblique subcostal approach (probe placed anterior to the midaxillary line in an oblique subcostal angle) with epidural or caudal analgesia were included in the present meta-analysis.

2.4. Outcomes

The specific outcomes sought from each article were derived following our standard approach, which we described in previous meta-analyses on acute postoperative pain.[9,10] The primary outcome was pain score at rest on postoperative day 1. Secondary acute pain-related outcomes were pain score at rest at 12 hours postoperatively, and on postoperative day 2; pain score on movement at 12 hours postoperatively, and on postoperative days 1 and 2; and intravenous (IV) morphine consumption equivalents at 12 hours postoperatively, and on postoperative days 1 and 2. We also aimed to capture functional-related outcomes such as time to first bowel sounds, time to first flatus, and hospital length of stay. Secondary side-effect-related outcomes were rates of postoperative nausea and vomiting (PONV) within the first 24 hours postoperatively, hypotension, and infection.

2.5. Trial characteristics

Extracted trial characteristics included type of surgery, regional block technique, concentration and volume of local anesthetics injected, and type of multimodal analgesia.

2.6. Rating of the studies

The quality of the research methodology of each randomized trial was assessed following the Cochrane Collaboration’s Risk of Bias Tool for randomized controlled trials.[11] Two authors (FZ and KK) independently screened, reviewed, and scored the items for each trial using this method and a third one (CP) extracted data for the analyses. Disagreements with scoring or extracted data were resolved through discussion with another author (EA).

2.7. Data extraction

The source study text, tables, or graphs were used to extract mean values, standard deviations, standard error of means, 95% confidence intervals (CIs), number of events, and total number of participants. The authors of trials who failed to report the sample size or results as a mean and standard deviation or standard error of the mean or 95% CIs were requested twice by mail to give the...
Reference	Group (n)	Surgery	TAP block technique	Local anesthetic administered for TAP block	Local anesthetic administered for Epidural analgesia	Anesthetic strategy	Postoperative analgesia	Primary outcome
Children Ahmed et al (2016)[17]	TAP block (20), Epidural analgesia (20)	Unilateral herniotomy	US-guided, unilateral single-shot injection, intercostoiliac approach	Bupivacaine 0.25%, 0.5 mL/kg	Bupivacaine 0.2%, 1 mL/kg	General anesthesia	Acetaminophen	Percentage of rescue analgesics in the recovery room
Alsadek et al (2015)[18]	TAP block (20), Epidural analgesia (20)	Abdominal laparotomy	US-guided, bilateral single-shot injection, intercostoiliac approach	Bupivacaine 0.25%, 0.5 mL/kg on each side	Bupivacaine 0.2%, 1 mL/kg	General anesthesia	Acetaminophen, diclofenac	Pain score at 12 h postoperatively
Bryskin et al (2015)[19]	TAP block (24), Epidural analgesia (21)	Abdominal laparotomy	US-guided, bilateral single-shot injection, intercostoiliac approach	Bupivacaine 0.25% + epinephrine 5 μg/mL, 0.5 mL/kg on each side	Bupivacaine 0.25% 1 mL/kg + epinephrine 5 μg/mL	General anesthesia	Morphine, ketorolac	Pain score at 24 h postoperatively
Sethi et al (2016)[23]	TAP block (34), Epidural analgesia (36)	Unilateral herniotomy or orchidopexy	US-guided, unilateral single-shot injection, intercostoiliac approach	Bupivacaine 0.25%, 0.5 mL/kg	Bupivacaine 0.25%, 0.75 mL/kg	General anesthesia	Acetaminophen, fentanyl	Duration of postoperative analgesia
Adults Ganapathy et al (2015)[6]	TAP block (26), Epidural analgesia (24)	Abdominal laparotomy	US-guided, bilateral continuous block, oblique subcostal approach	Ropivacaine 0.2%, 30 mL through each catheter followed by ropivacaine 0.35%, at a rate of 4–5 mL/h for 72 h	Bupivacaine 0.25%, 5 mL followed by bupivacaine 0.1% + hydromorphone 10 μg/mL, at a rate of 8 mL/h for 72 h	General anesthesia	Acetaminophen, naproxene, gabapentine	Pain score on coughing at 24 h postoperatively
Niraj et al (2011)[20]	TAP block (27), Epidural analgesia (31)	Abdominal laparotomy	US-guided, bilateral continuous block, oblique subcostal approach	Bupivacaine 0.375%, 1 mg/kg through each catheter followed by 8 h bolus of bupivacaine 0.375%, 1 mg/kg through each catheter for 72 h	Bupivacaine 0.25%, 20 mL followed by bupivacaine 0.125% with fentanyl 2 μg/mL, at a rate of 8–12 mL/h for 72 h with 2 mL bolus available every 30 min	General anesthesia	Acetaminophen, tramadol	Pain score on coughing at 24 h postoperatively
Niraj et al (2014)[21]	TAP block (30), Epidural analgesia (31)	Abdominal laparoscopic	US-guided, bilateral continuous block, oblique subcostal approach	Levobupivacaine 0.375%, 1.25 mg/kg through each catheter followed by levobupivacaine 0.25% at a rate of 8–10 mL/h through both catheters for 72 h	Bupivacaine 0.25%, 20 mL followed by bupivacaine 0.125% with fentanyl 2 μg/mL, at a rate of 6–12 mL/h for 72 h with 2 mL bolus available every 30 min	General anesthesia	Acetaminophen, diclofenac, IV tramadol	Pain score on coughing at 24 h postoperatively
Rao Kadam et al (2013)[22]	TAP block (22), Epidural analgesia (19)	Abdominal laparotomy	US-guided, bilateral continuous block, intercostoiliac approach	Ropivacaine 0.375%, 20 mL through each catheter followed by an infusion of ropivacaine 0.2%, 8 mL/h through each catheter for 72 h	Ropivacaine 0.2%, 8–15 mL/h bolus followed by an infusion of ropivacaine 0.2% at a rate of 5–15 mL/h	General anesthesia	Acetaminophen, N PCA of fentanyl	Pain score on coughing

(continued)
Table 1 (continued).

Reference	Group (n)	Surgery	Local anesthetic administered for TAP block	Local anesthetic administered for Epidural analgesia	TAP block technique	Postoperative analgesic strategy	Primary outcome	Postoperative pain	Reference Group (n) Surgery	Postoperative pain	
Wu et al (2013) [20]	22	Endaural	Bupivacaine 0.25%, 20 mL through each catheter	Repropracaine 0.25%, 8 mL, followed by an infusion of ropivacaine 0.25% 3 mL/h during surgery and another infusion of ropivacaine 0.125%, 5 mL/h for 72 h	US-guided, bilateral single-shot injection, oblique subcostal approach	General anesthesia	IV PCA of morphine (IV, 0.25 mg/kg 7.5 mg/h or oral hydromorphone 1.5 mg)	Morphine consumption at 24 h	20	IV tramadol 100 mg, oral pethidine 75 mg, oral oxycodone 20 mg, oral hydromorphone 10 mg = oral morphine 30 mg = IV hydromorphone 1.5 mg = oral hydromorphone 7.5 mg = IV pethidine 75 mg = oral oxycodone 20 mg = IV tramadol 100 mg	[20,22,24]

Meta-analyses were performed with the assistance of Review Manager software (RevMan version 5.3.5; Copenhagen, The Nordic Cochrane Centre, The Cochrane Collaboration 2014). This software estimates the weighted mean differences for continuous data, weighted standardized mean differences for ordinal data, and risk ratio for categorical data between groups, with an overall estimate of the pooled effect. A meta-analysis was conducted only if 2 or more trials reported the outcome of interest. The coefficient I^2 was used to evaluate heterogeneity with predetermined thresholds for low (25–49%), moderate (50–74%), and high (>75%) levels. A random effects model was used. All pain-related outcomes were analyzed in subgroups according to the type of population (children and adults) and the tap block approach adopted by the authors (intercostoiliac vs oblique subcostal) in an attempt to account for heterogeneity. The likelihood of publication bias was assessed for our primary outcome by drawing a funnel plot of standard error of the mean difference in pain score at rest on postoperative day 1 (y-axis) as a function of the mean difference in pain score at rest on postoperative day 1 (x-axis) and confirmed with Duval and Tweedie’s trim and fill test. This assessment was performed using Comprehensive Meta-analysis Version 2 software (BioStat, Englewood, NJ). Results are presented as the mean difference or relative risk (RR) with 95% CI. A 2-sided P-value of $<.05$ was considered significant.

3. Results

Of the 807 trials identified from the literature search strategy, 10 met the inclusion criteria, representing a total of 505 patients, and including 195 children aged from 1 to 9 years, and 310 adults.

According to our assessment following the Cochrane Collaboration Risk of Bias tool (Fig. 1), the majority of trials had a high risk of bias related to blinding of participants and outcome assessors. Attempts were made to contact 9 authors, and 3 provided the additional data requested. Data were approximated from median and range in 4 trials. The present study included 2 trials that injected the local anesthetic unilaterally, and 2 trials with adults employed an intercostoiliac approach; 4 trials with adults used an oblique subcostal approach. In 5 trials, authors administered a single-armed, patient-controlled analgesia.
shot injection only,17–19,23,24 while in 5 others, a continuous infusion was associated with the single-shot injection.6,7,20–22 Of note, 1 trial compared a single-shot injection for TAP block with a continuous epidural analgesia.24 Local anesthetics injected were bupivacaine or levobupicaine 0.125\% to 0.375\%6,7,17–21 or ropivacaine 0.2\% to 0.375\%.6,22,24 Authors consistently combined the regional technique with general anesthesia.

Pain scores at rest on postoperative day 1 were equivalent in TAP block and epidural analgesia groups, without subgroup differences between children and adults (Fig. 2). The quality of evidence for our primary outcome was moderate according to the GRADE system. With regards to the funnel plots for our primary outcome (Fig. 3), the Duval and Tweedie’s trim and fill test revealed the point estimates for the combined studies to be 0.37 (95\% CI: 0.18–0.77), suggesting an absence of publication bias.

Among the secondary pain-related outcomes, only 3 trials conducted in children recorded resting pain scores at 12 hours postoperatively (mean difference: –0.8; 95\% CI: –2.4 to 0.8; $I^2 = 95\%$; $P = .32$).18,19,23 All other secondary pain-related outcomes were reported on adult trials only and are presented in Table 2. Regarding the functional outcomes, time to first bowel sounds measured by 1 trial was equivalent in both groups (mean difference: –14.8 hours; 95\% CI: –43.6 to 14.0 hours; I^2 not applicable; $P = .31$)6 as was time to first flatus measured by 4 trials (mean difference: 5.2 hours; 95\% CI: –5.1 to 15.5 hours; $I^2 = 77\%$; $P = .32$).6,7,21,24 Based on 3 trials,7,21,22 statistical analysis revealed that hospital length of stay was inferior in the TAP block group (mean difference: –0.6 days; 95\% CI: –0.9 to –0.3 days; $I^2 = 0\%$; $P < .0001$).

A subgroup analysis of the TAP block approach for all pain-related outcomes (intercostoiliac vs subcostal approaches) did not account for the observed heterogeneity, nor did it reveal a significant difference between either subgroup compared to epidural analgesia, or between subgroups. For example, subgroup analysis of the primary outcome, pain score at rest on postoperative day 1, showed that the standardized mean difference (95\% CI) for intercostoiliac and oblique subcostal approaches were 0.52 (–0.15 to 1.19) and 0.29 (–0.23 to 0.81), respectively, with P-values of .13 and .28, and I^2 values of 81\% and 74\%, when compared to epidural analgesia; the P-value for subgroup difference was .60.

The rate of hypotension, recorded by 4 trials,6,7,22,24 was higher in the epidural analgesia group (RR: 0.13; 95\% CI: 0.04–0.38; $I^2 = 0\%$; $P = .0002$), while the rate of PONV was equivalent (RR: 0.80; 95\% CI: 0.37–1.74; $I^2 = 51\%$; $P = .57$).118,19,21,23,24 One trial reported no infection in either group.118

Table 3 summarized the findings according to the GRADE system.

4. Discussion

This systematic review and meta-analysis compared the analgesic efficacy and side effects of TAP block versus epidural analgesia in pediatric and adult patients. Based on 10 randomized controlled trials, including a total of 505 patients, we demonstrated that both techniques provide equivalent analgesia after abdominal surgery, with a moderate level of evidence for our primary outcome, pain score at rest on postoperative day 1.

This finding is notable but decision making around postoperative analgesia after abdominal surgery is often driven by additional considerations such as a drive to enhance recovery of

Table 2

Study or Subgroup	TAP block	Epidural analgesia	Mean Difference					
1.7.1 Children	BRavik et al. 2015 (Ref 19)	0.8	1	24	0.7	1	21	12.2\%
	Seshi et al. 2016 (Ref 23)	3.1	2	34	1	24	13.5\%	
	Subtotal (95\% CI)	21	25.8\%					

Table 3

Study or Subgroup	TAP block	Epidural analgesia	Mean Difference				
1.7.2 Adults	Ganapathy et al. 2015 (Ref 20)	1.5	1	20	1	21	13.0\%
	Nair et al. 2013 (Ref 20)	1.4	1	27	1	26	13.0\%
	Nair et al. 2014 (Ref 21)	1.5	1	30	1	29	13.0\%
	Rao Kadam et al. 2013 (Ref 22)	2	1	22	1	23	11.9\%
	Wahala et al. 2014 (Ref 27)	0	1	12	1	13	11.0\%
	Subtotal (95\% CI)	5	11.2\%				

Figure 2.

Pain score at rest on postoperative day 1 according to the population (children vs adults). CI = confidence interval, SD = standard deviation, TAP = transverse abdominis plane.

Figure 3.

Funnel plot of the primary outcome (pain score at rest on postoperative day 1). SE(SMD) = standard error of the standard mean difference.
bowel function. Enhanced recovery after surgery care pathways emphasize analgesia toward achieving this goal including the use of epidural analgesia. Due to limited reporting of these outcomes, we were unable to draw any meaningful conclusions on the relative benefit of the 2 techniques for this goal.

The equivalent analgesic efficacy of both techniques should be properly balanced with consideration of the risk of hypotensive episodes associated with epidural analgesia and the reduced length of stay in patients receiving a TAP block demonstrated in this meta-analysis. While these outcomes may favor TAP block, it should be emphasized that neither technique is without drawbacks. The rate of failure or inadequate analgesia can be as high as 30% with either epidural analgesia, or TAP blocks. Finally, the rare but catastrophic risk of major complications associated with epidural analgesia such as epidural hematoma should be included in the considerations.

The results of our subgroup analysis suggest no difference between the subcostal and intercostoiliac approach when

Table 2
Secondary pain-related outcomes in adult patients.

Outcomes	References	Group	N	Standardized mean or mean (SD)	Standardized or mean difference (95% CI)	I² (%)	P-value
Pain scores at rest (analog scale, 0–10)	12 h postoperatively	Ganapathy et al (2015) [6]	26	1.6 (1.1)	0.9 (–0.1 to 1.8)	91	.08
	Niraj et al (2011) [20]	2.0 (1.5)	27	1.7 (1.3)			
	Niraj et al (2014) [27]	1.0 (1.5)	30	0.0 (1.5)			
	Wahba and Kamal (2014) [7]	4.0 (0.7)	22	2.0 (0.7)			
Total	183	185		0.9 (–0.1 to 1.8)	91	.08	
Postoperative day 2	Gaanapathy et al (2015) [6]	1.3 (0.7)	26	1.1 (0.7)	0.5 (–0.6 to 1.6)	93	.34
	Niraj et al (2011) [20]	1.2 (1.1)	27	1.1 (1.3)			
	Niraj et al (2014) [27]	1.0 (1.1)	30	0.5 (1.5)			
	Rao Kadam et al (2013) [22]	1.0 (1.3)	22	1.0 (1.8)			
	Wahba and Kamal (2014) [7]	4.0 (0.7)	22	1.0 (0.7)			
	Wu et al (2013) [24]	0.8 (0.9)	27	0.6 (0.7)			
Total	154	156		0.6 (–0.2 to 1.3)	90	.16	
Pain scores on movement (analog scale, 0–10)	12 h postoperatively	Ganapathy et al (2015) [6]	26	3.0 (1.3)	0.6 (–0.3 to 1.0)	87	.34
	Niraj et al (2011) [20]	4.2 (2.0)	27	4.2 (2.4)			
	Niraj et al (2014) [27]	3.0 (1.5)	30	3.0 (1.5)			
	Wahba and Kamal (2014) [7]	5.0 (0.7)	22	3.0 (0.7)			
Total	105	106		0.6 (–0.2 to 1.3)	90	.16	
Pain scores on movement (analog scale, 0–10)	Postoperative day 1	Ganapathy et al (2015) [6]	26	2.8 (1.5)	0.6 (–1.6 to 9.9)	87	.15
	Niraj et al (2011) [20]	3.7 (2.4)	27	3.6 (2.3)			
	Niraj et al (2014) [27]	2.5 (1.5)	30	2.5 (3.0)			
	Rao Kadam et al (2013) [22]	6.0 (2.0)	22	5.0 (2.5)			
	Wahba and Kamal (2014) [7]	5.0 (0.7)	22	3.0 (0.7)			
	Wu et al (2013) [24]	4.0 (0.3)	27	3.5 (0.7)			
Total	154	156		0.6 (–0.2 to 1.3)	90	.16	
Intravenous morphine consumption equivalent, mg	Postoperative day 1	Ganapathy et al (2015) [6]	26	13.9 (12.6)	4.2 (–1.6 to 9.9)	87	.15
	Rao Kadam et al (2013) [22]	9.0 (6.4)	22	9.1 (8.0)			
	Wahba and Kamal (2014) [7]	18.0 (2.2)	22	11.5 (3.6)			
	Wu et al (2013) [24]	33.0 (11.0)	27	19.0 (16.0)			
Total	97	94		4.2 (–1.6 to 9.9)	87	.15	
Intravenous morphine consumption equivalent, mg	Postoperative day 2	Ganapathy et al (2015) [6]	26	13.2 (15.6)	3.2 (0.6–5.8)	52	.02
	Niraj et al (2014) [27]	12.5 (14.9)	30	10.0 (18.7)			
	Rao Kadam et al (2013) [22]	10.0 (6.3)	22	11.3 (6.5)			
	Wahba and Kamal (2014) [7]	11.0 (2.2)	22	7.0 (2.6)			
	Wu et al (2013) [24]	12.3 (6.8)	27	8.5 (8.9)			
Total	127	125		3.2 (0.6–5.8)	52	.02	

CI = confidence interval, N = total number of participants, SD = standard deviation, TAP = transverse abdominis plane.
Outcome	Limitations	Inconsistency	Indirectness	Imprecision	Publication bias	Number of participants in TAP block group	Number of participants in Epidural anaesthesia group	Standardized mean difference, mean difference or relative risk* (95% CI)	P-value for overall effect	Quality of evidence (GRADE)
Pain score at rest at 12 h postoperatively in children (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	78	77	−0.8 (−2.4 to 0.8)	.32	Moderate quality due to limitations
Pain score at rest at 12 h postoperatively in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	183	185	0.9 (−0.1 to 1.8)	.08	Moderate quality due to limitations
Pain score at rest on postoperative day 1 in children (analog scale, 0–10)	No blinding of participants and personnel in most studies	No serious inconsistency	No serious indirectness	No serious imprecision	No publication bias	58	57	0.3 (−0.1 to 0.6)	.15	Moderate quality due to limitations
Pain score at rest on postoperative day 1 in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	154	156	0.5 (−0.1 to 1.0)	.10	Moderate quality due to limitations
Pain score at rest on postoperative day 2 in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	45	45	0.7 (0.1 to 1.5)	.06	Moderate quality due to limitations
Pain score at movement at 12 h postoperatively in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	105	108	0.5 (−0.6 to 1.6)	.34	Moderate quality due to limitations
Pain score at movement on postoperative day 1 in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	154	156	0.6 (−0.2 to 1.3)	.16	Moderate quality due to limitations
Pain score at movement on postoperative day 2 in adults (analog scale, 0–10)	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	154	156	0.3 (−0.3 to 1.0)	.34	Moderate quality due to limitations
Intravenous morphine consumption equivalent on postoperative day 1, mg	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	97	94	4.2 (−1.6 to 9.9)	.15	Moderate quality due to limitations
Intravenous morphine consumption equivalent on postoperative day 2, mg	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	127	125	3.2 (0.6–5.8)	.02	Moderate quality due to limitations
Time to first bowel sound, h	No blinding of participants and personnel in most studies	Not applicable‡	No serious indirectness	No serious imprecision	No publication bias	26	24	−14.8 (−43.6 to 14.0)	.31	Low quality due to limitations, and low number of participants
Time to first flatus, h	No blinding of participants and personnel in most studies	Moderate inconsistency†	No serious indirectness	No serious imprecision	No publication bias	105	106	5.2 (−5.1 to 15.5)	.32	Moderate quality due to limitations
Hospital length of stay, d	No blinding of participants and personnel in most studies	No serious inconsistency	No serious indirectness	No serious imprecision	No publication bias	74	72	−0.6 (−0.9 to −0.3)	<.0001	Low quality due to limitations and low number of participants

Table 3: Summary of findings.
Table 3 (continued).

Quality assessment	Summary of findings
Number of participants in TAP block group	Number of participants in epidural analgesia group
Publication bias	Imprecision
Indirectness	Inconsistency
Limitations	Outcome
Rate of hypotension	Rate of postoperative nausea and vomiting
Rate of infection	Rate of first bowel sounds

Outcome	Rate of hypotension	Rate of postoperative nausea and vomiting	Rate of infection	Rate of first bowel sounds
Epidural analgesia	2.54	28.137	0.00	0.20
TAP block	2.57	25.94	0.13 (0.04-0.36)	0.80 (0.37-1.74)
P-value for overall effect	0.0002	0.57	Moderate	Moderate
Quality of evidence (GRADE)	Moderate	Moderate		
Limitations	No blinding of participants and personnel in most studies	No serious inconsistency in studies	No serious indirectness	No serious imprecision
I²	Not applicable	Not applicable	Not applicable	Not applicable

Number of participants in TAP block group	Number of participants in epidural analgesia group
Rate of hypotension	Rate of postoperative nausea and vomiting
Rate of infection	Rate of first bowel sounds

Outcome	Rate of hypotension	Rate of postoperative nausea and vomiting	Rate of infection	Rate of first bowel sounds
Epidural analgesia	2.54	28.137	0.00	0.20
TAP block	2.57	25.94	0.13 (0.04-0.36)	0.80 (0.37-1.74)
P-value for overall effect	0.0002	0.57	Moderate	Moderate
Quality of evidence (GRADE)	Moderate	Moderate		
Limitations	No blinding of participants and personnel in most studies	No serious inconsistency in studies	No serious indirectness	No serious imprecision
I²	Not applicable	Not applicable	Not applicable	Not applicable

There are additional notable limitations to this meta-analysis. First, as we describe above, we were unable to draw any robust conclusion regarding the impact of analgesic technique on the functional outcomes such as time to first bowel sounds. Consequently, the existing literature would benefit from additional trials employing a consistent methodology to better explore the relative functional impacts of TAP block compared to epidural analgesia. Second, although there were 7 different primary outcomes among the 10 included trials, we do not think that this myriad of different endpoints alters the validity of our results. We elected to define our primary one as pain score at rest on postoperative day 1, as we believe that it reflects the clinical comfort of the patients and therefore relevant for the daily practice of the anesthesiologist. Moreover, despite our attempt to group trials according to epidural and caudal analgesia, and despite the consistent regime of local anesthetics administered, the coefficient of heterogeneity remained elevated.

In conclusion, there is moderate evidence that TAP block and epidural analgesia are equally effective in treating postoperative pain in both pediatric and adult patients. Additional trials with robust methodology would better define the functional impact of each technique before supporting a stronger recommendation for TAP block, which is associated with fewer episodes of hypotension and reduced length of stay.

Acknowledgments
The authors are grateful to Mrs Isabelle von Kaenel (Head librarian, Lausanne University Hospital, Lausanne, Switzerland) for the assistance in the literature search.

Author contributions
Moira Baeriswyl: This author helped search the literature and prepare the primary manuscript.
Frank Zeiter: This author helped assess the articles and analyze the data.
Denis Piubellini: This author helped extract the data.
Kyle Robert Kirkham: This author helped assess the articles and analyze the data.
Eric Albrecht: This author helped design the study, search the literature, assess the articles, analyze the data, and write the manuscript.

Conceptualization: Eric Albrecht.
Formal analysis: Frank Zeiter.
Methodology: Moira Baeriswyl, Frank Zeiter, Denis Piubellini, Kyle Robert Kirkham, Eric Albrecht.
Project administration: Eric Albrecht.
Supervision: Eric Albrecht.
Validation: Eric Albrecht.
Writing – original draft: Moira Baeriswyl.
Writing – review & editing: Kyle Robert Kirkham, Eric Albrecht.
References

[1] Wijeysundera DN, Beattie WS, Austin PC, et al. Epidural anaesthesia and survival after intermediate-to-high risk non-cardiac surgery: a population-based cohort study. Lancet 2008;372:562-9.

[2] Rigg JR, Jamrozik K, Myles PS, et al. Epidural anaesthesia and analgesia and outcome of major surgery: a randomised trial. Lancet 2002;359:1276-82.

[3] Lee B, Koo BN, Choi YS, et al. Effect of caudal block using different volumes of local anaesthetic on optic nerve sheath diameter in children: a prospective, randomized trial. Br J Anaesth 2017;118:781-7.

[4] Albrecht E, Kirkham KR, Endersby RV, et al. Ultrasound-guided transversus abdominis plane (TAP) block for laparoscopic gastric-bypass surgery: a prospective randomized controlled double-blinded trial. Obes Surg 2015;23:1309-14.

[5] Baeriswyl M, Kirkham KR, Kern C, et al. The analgesic efficacy of ultrasound-guided transversus abdominis plane block in adult patients: a meta-analysis. Anesth Analg 2015;121:1640-54.

[6] Ganapathy S, Sondekoppam RV, Terlecki M, et al. Comparison of efficacy and safety of lateral-to-medial continuous transversus abdominis plane block with thoracic epidural analgesia in patients undergoing abdominal surgery: a randomized, open-label feasibility study. Eur J Anaesthesiol 2015;32:797-804.

[7] Walha SS, Kamal SM. Analgesic efficacy and outcome of transversus abdominis plane block versus local thoracic epidural analgesia after laparotomy in ischemic heart disease patients. J Anesth 2014;28:517-23.

[8] Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials. PLoS Med 2010;7:e1000251.

[9] Albrecht E, Kern C, Kirkham KR. A systematic review and meta-analysis of perineural dexamethasone for peripheral nerve blocks. Anaesthesia 2015;70:71-83.

[10] Albrecht E, Guyen O, Jacot-Guillarmod A, et al. The analgesic efficacy of local infiltration analgesia vs femoral nerve block after total knee arthroplasty: a systematic review and meta-analysis. Br J Anaesth 2016;116:597-609.

[11] Higgins JP, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928.

[12] Collaboration TC. Cochrane Handbook for systematic reviews of interventions version 5.1.0. Available at: http://ims.cochrane.org/revman. Accessed September 20, 2017.

[13] Balsberg H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401-6.

[14] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.

[15] Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000;56:455-63.

[16] Winterslev J, Thorlund K, Brok J, et al. Trial analysis in cumulative meta-analysis. J Clin Epidemiol 2008;61:64-75.

[17] Ahmed A, Rayan A. Ultrasound-guided transversus abdominal plane (TAP) block versus caudal block for postoperative analgesia in children undergoing unilateral open inguinal herniectomy: a comparative study. Ann-Shams J Anaesthesiol 2016;9:284-9.

[18] Alsadek WM, Al-Gohari MM, Elsonbary MI, et al. Ultrasound guided TAP block versus ultrasound guided caudal block for pain relief in children undergoing lower abdominal surgeries. Egypt J Anaesth 2015;31:155-60.

[19] Bryskin RB, Londergan B, Wheatley R, et al. Transversus abdominis plane block versus caudal epidural for lower abdominal surgery in children: a double-blinded randomized controlled trial. Anesth Analg 2015;121:471-8.

[20] Niraj G, Kelkar A, Jeyapalan I, et al. Comparison of analgesic efficacy of subcostal transversus abdominis plane blocks with epidural analgesia following upper abdominal surgery. Anaesthesia 2011;66:465-71.

[21] Niraj G, Kelkar A, Hart E, et al. Comparison of analgesic efficacy of four-quadrant transversus abdominis plane (TAP) block and continuous posterior TAP analgesia with epidural analgesia in patients undergoing laparoscopic colorectal surgery: an open-label, randomised, non-inferiority trial. Anaesthesia 2014;69:348-55.

[22] Rao Kadam V, Van Wijk RM, Moran JJ, et al. Epidural versus continuous transversus abdominis plane catheter technique for postoperative analgesia after abdominal surgery. Anaesth Int Care 2013;41:476-81.

[23] Sethi N, Pant D, Dutta A, et al. Comparison of caudal epidural block and ultrasoundography-guided transversus abdominis plane block for pain relief in children undergoing lower abdominal surgery. J Anesth 2016;33:222-9.

[24] Wu Y, Liu F, Tang H, et al. The analgesic efficacy of subcostal transversus abdominis plane block compared with thoracic epidural analgesia and intravenous opioid analgesia after colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 2010;29:505.

[25] Fearon KC, Ljungqvist O, Von Meyenfeldt M, et al. Enhanced recovery after surgery (ERAS) pathway for patients undergoing major elective open colorectal surgery: a meta-analysis of randomized controlled trials. Clin Nutr 2010;29:434-40.

[26] Ready LB. Acute pain: lessons learned from 25,000 patients. Reg Anesth Pain Med 1999;24:499-505.

[27] Horlocker T, Kopp S. Epidural hematoma after epidural blockade in the United States: it’s not just low molecular heparin following orthopedic surgery anymore. Anesth Analg 2013;116:1193-7.