HIRZEBRUCH-RIEMANN-ROCH FOR GLOBAL MATRIX FACTORIZATIONS

BUMSIG KIM

Abstract. We prove a Hirzebruch-Riemann-Roch type formula for global matrix factorizations. This is established by an explicit realization of the abstract Hirzebruch-Riemann-Roch type formula of Shklovsky. We also show a Grothendieck-Riemann-Roch type theorem.

1. Introduction

Let k be a field of characteristic zero and let G be either the group \mathbb{Z} or $\mathbb{Z}/2$. We consider a G-graded dg enhancement $D_{dg}(X, w)$ of the derived category of matrix factorizations for (X, w). Here X is an n-dimensional nonsingular variety over k and w is a regular function on X. An object of $D_{dg}(X, w)$ is a G-graded vector bundle E on X equipped with a degree 1, O_X-linear homomorphism $\delta_E : E \to E$ such that $\delta_E^2 = w \cdot \text{id}_E$. The structure sheaf O_X is by definition G-graded but concentrated in degree 0. The degree of w is 2. If w is nonzero, then G is forced to be $\mathbb{Z}/2$. Assume that the critical locus of w is set-theoretically in $w^{-1}(0)$ and proper over k.

The Hochschild homology $\text{HH}(D_{dg}(X, w))$ of $D_{dg}(X, w)$ is naturally isomorphic to

$$\mathbb{H}^{-s}(X, (\Omega^*_X, -dw));$$

see [10, 14]. The isomorphism is called the Hochschild-Kostant-Rosenberg (in short HKR) type isomorphism, denoted by I_{HKR}. Here $(\Omega^*_X, -dw)$ is a G-graded complex $\bigoplus_{p \in \mathbb{Z}} \Omega^p_X[p]$ with the differential $-dw$. Let $\text{ch}(E) \in \mathbb{H}^0(X, (\Omega^*_X, -dw))$ be the image of the categorical Chern character $\text{Ch}(E) \in \text{HH}_0(D_{dg}(X, w))$ of E under I_{HKR}. In this paper we prove the following Hirzebruch-Riemann-Roch type formula.

Theorem 1.1. For matrix factorizations P and Q in $D_{dg}(X, w)$ we have

$$(1.1) \sum_{i \in G} (-1)^i \dim \mathbb{R}^i \text{Hom}(P, Q) = (-1)^{(n+1)/2} \int_X \text{ch}(P)^\vee \wedge \text{ch}(Q) \wedge \text{td}(X),$$

where $\text{td}(X) \in \bigoplus_{p \in \mathbb{Z}} H^0(X, \Omega^p_X[p])$ is the Todd class of X.
We explain notation in the above theorem. Firstly, the operation ∧ is the wedge product inducing
\[(1.2) \quad \mathbb{H}^*(X, (\Omega_X^\bullet, -dw)) \otimes \mathbb{H}^*(X, (\Omega_X^\bullet, dw)) \otimes \mathbb{H}^*(X, (\Omega_X^\bullet, 0)) \xrightarrow{\text{wedge}} \oplus_p H_c^*(X, \Omega_X^p[1]);\]
see §3.2 for details. Secondly, \(\int_X\) is the composition
\[(1.3) \quad \oplus_{p \in \mathbb{Z}} H_c^*(X, \Omega_X^p[1]) \xrightarrow{\text{proj}} H_c^0(X, \Omega_X^0[n]) \xrightarrow{\text{tr}_{X, k}} k\]
of the projection and the canonical trace map \(\text{tr}_X\) for the properly supported cohomology; see §3.6.2. Thirdly, \(\vee\) is induced from a chain map
\[(\Omega_X^\bullet, dw) \rightarrow (\Omega_X^\bullet, -dw), \text{ defined by } (-1)^{p} \text{id} : \Omega_X^p \rightarrow \Omega_X^p\]
in each component.

For a proper dg category \(\mathcal{A}\) there is an abstract Hirzebruch-Riemann-Roch formula (2.5) due to Shklyarov [18]. By an explicit realization of the formula for \(\mathcal{A} = D_{dg}(X, w)\) we will obtain Theorem 1.1. Let
\[\langle \cdot, \cdot \rangle_{\text{can}} : HH_* (\mathcal{A}) \otimes HH_* (\mathcal{A}^{\text{op}}) \rightarrow k\]
be the so-called canonical pairing for \(\mathcal{A}\). Here \(\mathcal{A}^{\text{op}}\) is the opposite category of \(\mathcal{A}\) and there is an isomorphism \(\mathcal{A}^{\text{op}} \cong D_{dg}(X, -w)\); see §3.1. This yields
\[(1.4) \quad \begin{array}{ccc}
HH_* (\mathcal{A}) & \xrightarrow{\text{IHKR}} & \mathbb{H}^{-*}(X, (\Omega_X^\bullet, -dw)) \\
\vee & & \vee \\
HH_* (\mathcal{A}^{\text{op}}) & \xrightarrow{\text{IHKR}} & \mathbb{H}^{-*}(X, (\Omega_X^\bullet, dw)),
\end{array}\]
where the left \(\vee\) is defined to make the diagram commute. Shklyarov’s formula says that the left-hand side of (1.4) is equal to \(\langle \text{Ch}(Q), \text{Ch}(P) \rangle_{\text{can}}\).

Therefore Theorem 1.1 is reduced to an explicit realization of the pairing.

Theorem 1.2. The canonical pairing \(\langle \cdot, \cdot \rangle_{\text{can}}\) under \(I_{\text{IHKR}}\) corresponds to
\[(-1)^{(n+1)/2} \int_X (\cdot \wedge \cdot \wedge \text{td}(X))\].

The following formula for \(\text{ch}(E)\) is established in [4] [9] [14]. Let \(\mathcal{U} = \{U_i\}_{i \in I}\) be an affine open covering of \(X\) and let \(\nabla_i\) be a connection of \(E|_{U_i}\). In the Čech hypercohomology \(\mathbb{H}^*(\mathcal{U}, (\Omega_X^\bullet, (\cdot)^1 dw \wedge))\)
\[\text{ch}(E) = \text{str} \exp(-\sum_{i \in I} (\nabla_i \wedge \nabla_j)_{i,j \in I, i < j}).\]
Here \(\text{str}\) means the supertrace and the products in the exponential are Alexander-Čech-Whitney cup products in the Čech complex \(\check{C}^*(\mathcal{U}, (\text{End}(E) \otimes \Omega_X^\bullet))\); see [3] for details.

Remarks on others’ related works are in order. When \(\mathbb{G} = \mathbb{Z}\) and \(X\) is a projective variety over \(\mathbb{C}\), there is a natural isomorphism between Hodge cohomology and the singular (or equivalently \(C^\infty\)-de Rham) cohomology of the associated complex manifold \(X^\text{an}\): \(\oplus_{p,q} H^q(X, \Omega_X^p)[p] \xrightarrow{\phi} H^*(X^\text{an}, \mathbb{C})\). Let \(\text{tw}\) be an automorphism of \(\oplus_{p,q} H^q(X, \Omega_X^p)[p]\) sending a \((p, q)\)-form \(\gamma^{p,q}\) to
(\frac{1}{2\pi i})^{p+q}, then \(\phi(\text{tw}(\text{ch}(E)))\) coincides with the topological Chern character \(\text{ch}_{\text{top}}(E)\) of \(E\). The right-hand side of \((1.1)\) becomes

\[
\int_{\mathcal{X}_{an}} \text{ch}_{\text{top}}(P^{\vee}) \text{ch}_{\text{top}}(Q) \tau_{\text{top}}(X).
\]

Here \(\int_{\mathcal{X}_{an}}\) denotes the usual integration and \(\tau_{\text{top}}(X)\) is the usual Todd class of \(X^{an}\). Hence Theorem \((1.1)\) is the usual Hirzebruch-Riemann-Roch theorem \([8]\). When \(G = \mathbb{Z}\) and \(k = \mathbb{C}\), Theorem \((1.1)\) is the O’Brian – Toledo – Tong theorem for algebraic coherent sheaves \([13]\). When \(G = \mathbb{Z}\), Theorem \((1.1)\) and its generalization Corollary \((3.3)\) coincide with Theorem 4 of Markarian \([12]\) and some works of Căldăruşă – Willerton \([2]\) and Ramadoss \([16]\), respectively.

When \(G = \mathbb{Z}/2\), \(X\) is an open subscheme of \(\mathcal{X}_{an}\) containing the origin, and \(w\) has only one singular point at the origin, the composition of wedge products \((1.2)\) and \(\int_{\mathcal{X}}\) in \((1.3)\) is a residue pairing as shown in \([1, \text{Proposition 4.34}]\). Thus in this case, Theorem \((1.1)\) is the Polishchuk – Vaintrob theorem \([15, \text{Theorem 4.1.4}]\) and Theorem \((1.2)\) is the Brown – Walker theorem \([1, \text{Theorem 1.8}]\) proving a conjecture of Shklyarov \([19, \text{Conjecture 3}]\).

It is natural to consider the stacky version of Theorem \((1.1)\). It will be treated elsewhere \([3]\).

Conventions: Unless otherwise stated a dg category is meant to be a \(G\)-graded dg category over \(k\). For a variety \(X\) over \(k\), we write simply \(\Omega_{X}^{p}\) for the sheaf \(\Omega_{X}^{p}\) of relative differential \(p\)-forms of \(X\) over \(k\). For a homogenous element \(a\) in a \(G\)-graded \(k\)-space, \(|a|\) denotes the degree of \(a\). For a dg category \(\mathcal{A}\) we often write \(\text{Hom}_{\mathcal{A}}(x, y)\) instead of the Hom complex \(\text{Hom}_{\mathcal{A}}(x, y)\) between objects \(x, y\) of \(\mathcal{A}\). For a dg algebra \(A\), \(C(A)\) denotes the Hochschild \(G\)-graded complex \(\bigoplus_{n \geq 0} A \otimes A[1]^{\otimes n}\) with differential \(b\). Similarly for a dg category \(\mathcal{A}\), \(C(\mathcal{A})\) denotes the Hochschild complex of \(\mathcal{A}\); see for example \([1, 18]\). For \(a_{i} \in \mathcal{A}(x_{i+1}, x_{i}), i = 1, \ldots, n, x_{i} \in \mathcal{A}\), we write \(a_{0}[a_{1}| \ldots | a_{n}]\) for \(a_{0} \otimes s_{a_{1}} \otimes \ldots \otimes s_{a_{n}}\), where \(s\) is the suspension so that \(|sa| = |a| - 1\). The symbol \(\text{str}\) stands for the supertrace. By a coherent factorization for \((X, w)\) we mean a \(G\)-graded coherent \(\mathcal{O}_{X}\)-sheaf \(E\) with a curved differential \(\delta_{E}\) such that \(\delta_{E}^{2} = w \cdot \text{id}_{E}\).

Acknowledgements: The author thanks David Favero, Taejung Kim, and Kuerak Chung for useful discussions.

2. Abstract Hirzebruch-Riemann-Roch

Following mainly \([15, 18]\) we review the abstract Hirzebruch-Riemann-Roch theorem in the framework of Hochschild homology theory.

2.1. Categorical Chern characters. For a \(G\)-graded dg category \(\mathcal{A}\) over \(k\) let \(C(\mathcal{A})\) be the Hochschild complex of \(\mathcal{A}\). For \(x \in \mathcal{A}\), the identity morphism \(1_{x}\) of \(x\) is a 0-cycle element and hence it defines a class

\[
\text{Ch}(x) := [1_{x}] \in \text{HH}_{0}(\mathcal{A}) := H^{0}(C(\mathcal{A})),
\]
which is called the categorical Chern character of x. For an object y of the
dg category $\text{Perf}\mathcal{A}$ of perfect right \mathcal{A}-modules, we also regard $\text{Ch}(y)$ as an
element of $HH_0(\mathcal{A})$ by the canonical isomorphism $HH_*(\text{Perf}\mathcal{A}) \cong HH_*(\mathcal{A})$.

2.2. K"unneth isomorphism. Let \mathcal{A}, \mathcal{B} be dg categories. We define a
natural chain map over k

$C(\mathcal{A}) \otimes C(\mathcal{B}) \to C(\mathcal{A} \otimes \mathcal{B})$

$a_0[a_1, ..., a_n] \otimes b_0[b_1, ..., b_m] \mapsto (-1)^{|b_0|(|\Sigma_{i=1}^n (|a_i| - 1)|)} a_0 \otimes b_0 \sum \sigma \pm [c_{\sigma(1)}, ..., c_{\sigma(n+m)}],$

where σ runs for all (n, m)-shuffles, $c_1 = a_1 \otimes 1, ..., c_n = a_n \otimes 1, c_{n+1} =
1 \otimes b_1, ..., c_{n+m} = 1 \otimes b_m$, and the rule of sign \pm is determined by the
Koszul sign rule. Here after each shuffle, each 1 is uniquely replaced by an
appropriate identity morphism so that the outcomes make sense as elements
of the Hochschild complex $C(\mathcal{A} \otimes \mathcal{B})$. The Eilenberg-Zilber theorem says that
the chain map is a quasi-isomorphism. We call the induced isomorphism

$HH_*(\mathcal{A}) \otimes HH_*(\mathcal{B}) \to HH_*(\mathcal{A} \otimes \mathcal{B})$

the K"unneth isomorphism, denoted by K"unn.

2.3. The diagonal bimodule. We denote by \mathcal{A}^{op} the opposite category of
\mathcal{A}. For $x \in \mathcal{A}$ we write x^\vee for the object of \mathcal{A}^{op} corresponding to x. Let
$\text{Com}_{dg}k$ be the dg category of complexes over k. The diagonal \mathcal{A}-\mathcal{A}-bimodule
$\Delta_\mathcal{A}$ of a dg category \mathcal{A} is defined to be the dg functor

$\Delta_\mathcal{A} : \mathcal{A} \otimes \mathcal{A}^{op} \to \text{Com}_{dg}k; \ y \otimes x^\vee \mapsto \text{Hom}_\mathcal{A}(x, y).$

Since $\mathcal{A} \otimes \mathcal{A}^{op} \cong (\mathcal{A}^{op} \otimes \mathcal{A})^{op}$, $\Delta_\mathcal{A}$ is a right $\mathcal{A}^{op} \otimes \mathcal{A}$-module. Assume that
\mathcal{A} is proper, i.e.,

$\sum_{i \in \mathbb{G}} \dim H^i(\text{Hom}_\mathcal{A}(x, y)) < \infty$

for all $x, y \in \mathcal{A}$. Then we may replace the codomain of $\Delta_\mathcal{A}$ by the dg category
$\text{Perf}k$ of perfect dg k-modules.

2.4. The canonical pairing. For a proper dg category \mathcal{A}, the canonical
pairing $\langle \cdot, \cdot \rangle_{\text{can}}$ is defined as the composition

$HH_*(\mathcal{A}) \times HH_*(\mathcal{A}^{op}) \xrightarrow{\text{K"unn}} HH_*(\mathcal{A} \otimes \mathcal{A}^{op}) \xrightarrow{\Delta_*} HH_*(\text{Perf}k) \cong k,$

where Δ_* is the homomorphism in Hochschild homology level induced from
the dg functor $\Delta_\mathcal{A}$. Here we use the canonical isomorphism $HH_*(\text{Perf}k) \cong k$
making a commuting diagram for $C \in \text{Perf}k$

\begin{equation}
HH_* (\text{Perf}k) \xrightarrow{\cong} HH_*(k) \cong k, \quad \text{natural} \quad \text{str} \quad \text{ZEnd}(C)
\end{equation}
where \(\text{ZEnd}(C) \) is the graded \(k \)-space of closed endomorphisms of \(C \) and \(\text{str} \) denotes the supertrace. Since \(HH_\ast(\text{Perf}k) = HH_0(\text{Perf}k) \), the pair \(\langle \gamma, \gamma' \rangle \) for \(\gamma \in HH_p(A), \gamma' \in HH'_p(A^{\text{op}}) \) can be nontrivial only when \(p + p' = 0 \).

2.5. **A proposition.** Let \(A \) be a proper dg category. Let \(M \) be a perfect right \(A^{\text{op}} \otimes B \) module, in other words, a perfect \(A-B \)-bimodule. Denote by \(T_M \) the dg functor

\[
\otimes_A M : \text{Perf}A \rightarrow \text{Perf}B \quad \text{sending} \; N \mapsto N \otimes_A M
\]

and denote the induced map in Hochschild homology by

\[
(T_M)_\ast : HH_\ast(A) \rightarrow HH_\ast(B).
\]

Proposition 2.1. \([18, \text{Proposition 4.2}]\) If we write \(\text{Ch}(M) = \sum t_i \otimes t_i \in HH_\ast(A^{op}) \otimes HH_\ast(B) \cong HH_\ast(A^{op} \otimes B) \cong HH_\ast(\text{Perf}(A^{op} \otimes B)) \) via the Künneth isomorphism and the canonical isomorphism, then for every \(\gamma \in HH_p(A) \) we have

\[
(T_M)_\ast(\gamma) = \sum_i \langle \gamma, t_i \rangle_{\text{can}} t_i \in HH_p(B).
\]

Proof. The proof given in \([18]\) also works for dg categories. \(\square \)

Furthermore assume that \(A \) is smooth, i.e., the diagonal bimodule \(\Delta_A \) is perfect. Then the Hochschild homology of \(A \) is finite dimensional and hence Proposition 2.1 can be rewritten as a commuting diagram

\[
\begin{array}{ccc}
HH_\ast(A) & \xrightarrow{\langle \cdot, \cdot \rangle_{\text{can}}} & HH_\ast(A^{\text{op}}) \times HH_\ast(A^{\text{op}}) \times HH_\ast(B) \\
(T_M)_\ast & \downarrow{\text{Ch}(M)} & \downarrow{\text{Ch}(M)} \\
HH_\ast(B) & & \end{array}
\]

Since \(T_{\Delta_A} = \text{id}_A \), the above diagram for \(M = \Delta_A \) shows that \(\langle \cdot, \cdot \rangle_{\text{can}} \) is non-degenerate and the canonical pairing is characterized as follows.

Since \(\Delta_A \in \text{Perf}(A^{op} \otimes A) \), via the Künneth isomorphism we can write

\[
\text{Ch}(\Delta_A) = \sum_i T_i \otimes T_i, \; \text{for some} \; T_i \in HH_\ast(A^{op}), \; T_i \in HH_\ast(A).
\]

Then \(\langle \cdot, \cdot \rangle_{\text{can}} \) is a unique non-degenerate \(k \)-bilinear map \(\langle \cdot, \cdot \rangle : HH_\ast(A) \times HH_\ast(A^{op}) \rightarrow k \) satisfying

\[
\sum_i \langle \gamma, T_i \rangle \langle T_i, \gamma' \rangle = \langle \gamma, \gamma' \rangle, \; \text{for every} \; \gamma \in HH_\ast(A), \gamma' \in HH_\ast(A^{op}).
\]

2.6. **The chain map \(\triangledown \).** Define an isomorphism of complexes

\[
\triangledown : (C(A), b) \rightarrow (C(A^{op}), b)
\]

\[
a_0[a_1][a_2][a_3] \rightarrow (-1)^{n+1} \sum_{1 \leq i < j \leq n} a_i a_j a_i a_j (-1)^{|a_i| - 1} a_0 a_1 \cdots a_n.
\]

Remark 2.2. Using the quasi-Yoneda embedding and the HKR-type isomorphism it is straightforward to check that the chain map \(\triangledown \) in § 2.6 fits in diagram \([1,4]\); see for example \([4]\).
2.7. **Abstract generalized HRR.** For a proper dg category \mathcal{A} we may consider a sequence of natural maps

\[(2.3) \quad HH_*(\mathcal{A}) \otimes HH_*(\mathcal{A}) \xrightarrow{\sim} HH_*(\mathcal{A}) \otimes HH_*(\mathcal{A}^{op}) \xrightarrow{\text{Kinn}} HH_*(\mathcal{A} \otimes \mathcal{A}^{op}) \xrightarrow{\Delta_*} HH_*(\text{Perf}k) \cong k.
\]

For two closed endomorphisms $b \in \text{End}_\mathcal{A}(y)$, $a \in \text{End}_\mathcal{A}(x)$, we define an endomorphism $Lb \: \Rightarrow Ra$ of $\text{Hom}_\mathcal{A}(x, y)$ by sending c to $p_1 q | a | c | b \Rightarrow c | a$. Note that $\Delta_*(b \otimes a) = Lb \otimes Ra$. Hence from (2.3) and (2.1) we obtain

\[(2.4) \quad \text{str}(Lb \otimes Ra) = \langle [b], [a] \rangle_{\text{can}},
\]

Here $[b], [a]$ are the homology classes in $HH_0(\mathcal{A})$ represented by b, a, respectively.

2.8. **Abstract HRR.** When $a = 1_x$, $b = 1_y$, (2.4) yields the abstract Hirzebruch-Riemann-Roch theorem [15, 18] for Hochschild homology:

\[(2.5) \quad \sum_{i \in \mathbb{Z}} (-1)^i \dim H^i(\text{Hom}_\mathcal{A}(x, y))) = \langle \text{Ch}(y), \text{Ch}(x)^\vee \rangle_{\text{can}}.
\]

This tautological HRR theorem can be useful when one expresses the right-hand side of (2.5) in an explicit form.

3. Proofs of Theorems

In this section we prove Theorems 1.1 and 1.2. As in § 1 let X be an n-dimensional nonsingular variety over k and w is a function on X such that the critical locus of w is in $w^{-1}(0)$ and proper over k.

3.1. **A geometric realization of $\Delta_\mathcal{A}$.** Let $\mathcal{A} = D_{dg}(X, w)$. It is proper and smooth. There is the duality functor

\[D : \mathcal{A}^{op} \to D_{dg}(X, -w); (E, \delta_E) \mapsto (\text{Hom}_{\mathcal{O}_X}(E, \mathcal{O}_X), \delta_E^\vee),\]

which is an isomorphism. Hence we have the HKR type isomorphism

\[HH_*(\mathcal{A}^{op}) \cong \mathbb{H}^{-\circ}((\Omega^*_X, dw)).\]

Let X' be another nonsingular variety with a global function w'. Assume that the critical locus of w' is proper over k and located on the zero locus of w'. Let \mathcal{B} denote $D_{dg}(X', w')$. Let $\tilde{w} := w \otimes 1 - 1 \otimes w'$ a global function on $Z := X \times X'$. We consider a dg functor

\[\Psi : D_{dg}(Z, -\tilde{w}) \to \text{Perf}(\mathcal{A}^{op} \otimes \mathcal{B})\]

defined by letting

\[\Psi(z) : \mathcal{A} \otimes \mathcal{B}^{op} \to \text{Com}_{dg}(k);
\]

\[y \otimes x^\vee \mapsto \text{Hom}_{D_{dg}(Z, -\tilde{w})}(D(y) \boxtimes x, z)\]
for \(y \in \mathcal{A} \), \(x \in \mathcal{B} \), \(z \in D_{dg}(Z, -\bar{w}) \). Since \(\mathcal{A}^{op} \otimes \mathcal{B} \) are saturated by \([10]\), we may apply Proposition 3.4 of \([17]\) to see that \(\Psi(z) \) is indeed a perfect right \(\mathcal{A}^{op} \otimes \mathcal{B} \)-module.

Let \(f : X \to X' \) be a proper morphism such that \(f^*w' = w \). Then there is a dg functor
\[
\mathbb{R}f_* : D_{dg}(X, w) \to D_{dg}(X', w')
\]
by derived pushforward; see \([5\), § 2.2]. Define
\[
\Delta_{\mathbb{R}f_*} : \mathcal{A} \otimes \mathcal{B}^{op} \to \text{Com}_{dg}k; \ y \otimes x^\vee \to \text{Hom}_B(x, \mathbb{R}f_*y).
\]
Again by Proposition 3.4 of \([17]\), we see that \(\Delta_{\mathbb{R}f_*} \) is a perfect right \(\mathcal{A}^{op} \otimes \mathcal{B} \)-module. Let \(\Gamma_f \subset X \times X' \) denote the graph of \(f \). Since \(Z = X \times X' \) is nonsingular, there is an object \(\mathcal{O}_{\Gamma_f}^{\tilde{w}} \) in \(D_{dg}(Z, -\bar{w}) \) which is quasi-isomorphic to the coherent factorization \(\mathcal{O}_{\Gamma_f} \) for \((Z, \bar{w}) \). Since
\[
\Delta_{\mathbb{R}f_*}(y \otimes x^\vee) = \mathcal{B}(x, \mathbb{R}f_*y) \cong \text{Hom}_{D_{dg}(Z, -\bar{w})} (D(y) \boxtimes x, \mathcal{O}_{\Gamma_f}^{\tilde{w}}),
\]
by the projection formula \([5\), § 2.2], \(\Delta_{\mathbb{R}f_*} \) and \(\Psi(\mathcal{O}_{\Gamma_f}^{\tilde{w}}) \) are isomorphic in the derived category of right \(\mathcal{A}^{op} \otimes \mathcal{B} \)-modules. Hence \(\text{Ch}(\Delta_{\mathbb{R}f_*}) = \text{Ch}(\Psi(\mathcal{O}_{\Gamma_f}^{\tilde{w}})) \).

Consider a dg functor
\[
\boxtimes : \mathcal{A}^{op} \otimes \mathcal{B} \to D_{dg}(Z, -\bar{w}); u^\vee \otimes v \mapsto D(u) \boxtimes v.
\]
The following commutative diagram of natural isomorphisms transforms the abstract terms to the concrete terms:

\[
\begin{array}{c}
\begin{array}{ccc}
\text{HH}_\#(\mathcal{A}^{op}) \otimes \text{HH}_\#(\mathcal{B}) & \xrightarrow{=} & \text{HH}_\#(\mathcal{A}^{op} \otimes \mathcal{B}) \\
\text{Kunn} & & \text{Yoneda} \\
\downarrow & & \downarrow \\
\text{HH}_\#(D_{dg}(Z, -\bar{w})) & \xrightarrow{=} & \text{HH}_\#(\text{Perf}(\mathcal{A}^{op} \otimes \mathcal{B})) \\
\end{array}
\end{array}
\]

The commutativity of the triangle is straightforward. The commutativity of the rectangle can be seen as follows. Using the Mayer-Vietoris sequence argument, we reduce it to the case when \(X \) and \(X' \) are affine. We further reduce it to the curved smooth algebra case. In the curved smooth algebra case, the commutativity of a corresponding diagram for Hochschild complexes of the second kind is straightforward; see for example \([4]\).

We conclude that
\[
\text{ch}(\Delta_{\mathbb{R}f_*}) = \text{ch}(\mathcal{O}_{\Gamma_f}^{\tilde{w}}) \in \mathbb{H}^0(\Omega^*_X, d\bar{w})
\]
by the compatibility of the K"unneth isomorphisms and the HKR type isomorphisms in \((3.1)\). In particular for \(f = \text{id}_X \) we have
\[
\text{ch}(\Delta_A) = \text{ch}(\mathcal{O}_{\Delta X}^{\tilde{w}}) \in \mathbb{H}^0(\Omega^*_X, d\bar{w})
\]
if the subscript \(\Delta_X \) denote \(\Gamma_{\text{id}_X} \).
3.2. Some definitions.

Definition 3.1. Considering a vector bundle F as an object in the derived category of coherent sheaves on X, we have the categorical Chern character of F and hence $\text{ch}(F) \in \bigoplus_p H^0(X, \Omega^p_X[p]) \cong I^{HKR}_{HH_0}(D^b(\text{coh}(X)))$. Using this and the Todd class formula in terms of Chern roots we define $\text{td}(F) \in \bigoplus_p H^0(X, \Omega^p_X[p])$, which we call the Todd class of F valued in Hodge cohomology. We write $\text{td}(X)$ for $\text{td}(T_X)$, called the Todd class of X. Similarly, we define the i-th Chern class $c_i(F)$ of F valued in Hodge cohomology.

Definition 3.2. Let $w_i \in \Gamma(X, \mathcal{O}_X)$, $i = 1, 2$ and let Z_i be the critical locus of w_i. The wedge product \wedge of twisted Hodge cohomology classes is defined by the composition of

$$
\bigoplus_{q_1 + q_2 = q \in \mathbb{G}} H^{q_1}(X, (\Omega^*_{X, dw_1}) \otimes H^{q_2}(X, (\Omega^*_{X, dw_2}))
\xrightarrow{\text{K"unneth}} H^q(X^2, (\Omega^*_{X, dw_1}) \boxtimes (\Omega^*_{X, dw_2}))
\xrightarrow{\Delta^*_X} H^q(X, (\Omega^*_{X, dw_1}) \boxtimes_{\mathcal{O}_X} (\Omega^*_{X, dw_2}))
\xrightarrow{\text{wedge}} H^q_{Z_1 \cap Z_2}(X, (\Omega^*_{X, dw_1} + dw_2)).
$$

Here Δ^*_X is the pullback of the diagonal morphism $X \to X \times X$. We sometimes omit the symbol \wedge for the sake of simplicity.

Definition 3.3. Let Z denote the critical locus of w. Consider a sequence of maps

$$(3.4) \quad H^*(X, (\Omega^*_{X, -dw})) \times H^*(X, (\Omega^*_{X, dw})) \xrightarrow{\langle \cdot, \cdot \rangle} H^*_Z(X, (\Omega^*_{X, 0}))
\xrightarrow{\langle \text{td}(X) \rangle} H^*_Z(X, (\Omega^*_{X, 0})) \xrightarrow{\text{proj}} H^0_Z(X, \Omega^n_X[n]) \to H^0_c(X, \Omega^n_X[n]) \xrightarrow{(-1)^{\left(\frac{n+1}{2}\right)}b} k.$$

Denote the composition $(-1)^{\left(\frac{n+1}{2}\right)}\int_X \langle \cdot \wedge \cdot \wedge \text{td}(X) \rangle$ by $\langle \cdot, \cdot \rangle$.

3.3. **Proof of Theorem 1.2.** Since $\text{td}(X)$ is invertible, the nondegeneracy of $\langle \cdot, \cdot \rangle$ follows from Serre’s duality; see [6, § 4.1]. Therefore it is enough to show that $\langle \cdot, \cdot \rangle$ satisfies (2.2) under the HKR-type isomorphism in (3.1).

Recalling (3.3), we write

$$
\text{ch}(\mathcal{O}_{\Delta}^\wedge) = \sum_i t^i \otimes t_i \in \bigoplus_{q \in \mathbb{Z}} H^q(X, (\Omega^*_{X, dw}) \otimes H^{-q}(X, (\Omega^*_{X, -dw})).
$$

For $\gamma \in H^*(\Omega^*_{X, -dw})$ and $\gamma' \in H^*(\Omega^*_{X, dw})$, we have

$$(3.5) \quad \sum_i \langle t^i \otimes t_i, \gamma' \rangle = \int_{X \times X} \langle \gamma \otimes \gamma' \rangle \wedge \text{ch}(\mathcal{O}_{\Delta}^\wedge) \wedge (\text{td}(X) \otimes \text{td}(X)),$$

since $\int_X \otimes k \int_X = \int_{X \times X} \circ \text{K"unneth}$.

Since O_{Δ_X} is supported on the diagonal $\Delta_X \subset X \times X$, we will apply the deformation of $X \times X$ to the normal cone of Δ_X. The normal cone is isomorphic to the tangent bundle T_X of X. Let π denote the projection $T_X \to X$. We claim a sequence of equalities

$$\text{RHS of (3.5)} \overset{(\dagger)}{=} \int_{T_X} \pi^*(\gamma \wedge \gamma') \wedge \text{ch}(\text{Kos}(s)) \wedge \pi^*\text{td}(X)^2$$
$$\overset{(\dagger\dagger)}{=} (-1)^{(n+1)} \int_X (\gamma \wedge \gamma' \wedge \text{td}(X)) = \langle \gamma, \gamma' \rangle,$$

whose proof will be given below. Here s is the 'diagonal' section of π^*T_X defined by $s(v) = (v, v) \in \pi^*T_X$ for $v \in T_X$ and $\text{Kos}(s)$ is the Koszul complex $(\bigwedge^* \pi^*T^*_X, \iota_s)$ associated to s.

For (\dagger) consider the deformation space M° of $X \times X$ to the normal cone of the diagonal Δ_X; see [7]. It is a variety with morphisms $h : M^\circ \to X \times X$ and $pr : M^\circ \to \mathbb{P}^1$, satisfying that (i) the preimages of general points of \mathbb{P}^1 are $X \times X$, (ii) the preimage of a special point ∞ of \mathbb{P}^1 is the normal cone $N_{\Delta_X/X^2} = T_X$, (iii) pr is a flat morphism, and (iv) $h|_{T_X}$ coincides with the composition $\Delta \circ \pi$.

The morphism $\Delta \times \text{id}_{\mathbb{A}^1} : X \times \mathbb{A}^1 \to X \times X \times \mathbb{A}^1$ extends to a closed immersion $f : X \times \mathbb{P}^1 \to M^\circ$. For a closed point p of \mathbb{P}^1 let M°_p denote the fiber $pr^{-1}(p)$ and consider the commuting diagram

\[
\begin{array}{cccc}
X & \xrightarrow{f} & X \times \mathbb{P}^1 & \xleftarrow{f^\circ} X \\
\Downarrow \Delta = f_0 & & \Downarrow f & \Downarrow f_x = \text{zero section} \\
X^2 & \xrightarrow{g_0} & M^\circ & \xrightarrow{g_x} M^\circ_p = T_X \\
\Downarrow 0 & & \Downarrow pr & \Downarrow \Delta \circ \pi \\
\mathbb{P}^1 & \xleftarrow{h} & X^2 & \\
\end{array}
\]

with three fiber squares. Since $X \times \mathbb{P}^1$ and M°_p are Tor independent over M°, we have

$$\text{(3.6)} \quad \mathbb{L}_{g_0^*f_*O_{X \times \mathbb{P}^1}} \sim (f_p)_*O_X,$$

i.e., they are quasi-isomorphic as coherent factorizations for $(M_p, -h^*\tilde{w}|_{M_p})$. Note that $h^*\tilde{w}|_{T_X \otimes O_X} = 0$. Since s is a regular section with the zero locus $X \subset T_X$, two factorizations $(f_\infty)_*O_X$ and $\text{Kos}(s)$ are quasi-isomorphic to each other as coherent factorizations for $(T_X, 0)$:

$$\text{(3.7)} \quad (f_\infty)_*O_X \sim \text{Kos}(s).$$
For $\rho = (\gamma \otimes \gamma') \cdot (\text{td}(X) \otimes \text{td}(X))$, we have a sequence of equalities

\[
\int_{X \times X} \rho \wedge \text{ch}((f_0)_* \mathcal{O}_X)
= \int_{X \times X} \rho \wedge \text{ch}(Lg_0^*f_*\mathcal{O}_{X \times \mathbb{P}^1}) \quad \text{by (3.6)}
= \int_{X \times X} g_0^*(h^*\rho \wedge \text{ch}(f_*\mathcal{O}_{X \times \mathbb{P}^1})) \quad \text{by the functoriality of ch}
= \int_{T_X} g_0^*(h^*\rho \wedge \text{ch}(f_*\mathcal{O}_{X \times \mathbb{P}^1})) \quad \text{by Lemma 3.7}
= \int_{T_X} \pi^*\Delta^*\rho \wedge \text{ch}(\text{Kos}(s)) \quad \text{by (3.6) & (3.7)},
\]

which shows (†).

The equality (††) immediately follows from some basic properties of the proper pushforward (3.11) in Hodge cohomology: the functoriality (3.18), the projection formula (3.19), and (3.21).

3.4. Proof of Theorem 1.1

For $\alpha \in \oplus_{i \in \mathbb{G}} \mathbb{R}^{i \text{End}}(P)$ and $\beta \in \oplus_{i \in \mathbb{G}} \mathbb{R}^{i \text{End}}(Q)$, let us define

\[
L_\beta \circ R_\alpha : \oplus_{i \in \mathbb{G}} \mathbb{R}^{i \text{Hom}}(P, Q) \rightarrow \oplus_{i \in \mathbb{G}} \mathbb{R}^{i \text{Hom}}(P, Q), \quad c \mapsto (-1)^{||\alpha|||c|} \beta \circ c \circ \alpha.
\]

Since α and β are cycle classes of $C(A)$, they can be considered as elements of $HH_*(A)$. We denote by $\tau(\alpha)$, $\tau(\beta)$ be the image of α, β under the HKR map. The map τ is sometimes called the boundary-bulk map. Combining (2.4) and Theorem 1.2 we obtain this.

Corollary 3.4. (The Cardy Condition) We have

(3.8) \[
\text{str}(L_\beta \circ R_\alpha) = (-1)^{\binom{n+1}{2}} \int_X \tau(\beta) \wedge \tau(\alpha)^\vee \wedge \text{td}(X).
\]

In particular, Theorem 1.1 holds.

Corollary (3.8) is the matrix factorization version of Theorem 16 of [2] and the explicit Cardy condition in [16].

Let $\mathcal{U} = \{U_i\}_{i \in I}$ be an affine open covering of X and let ∇_i be a connection of $P|_{U_i}$, which always exists. By [4, 9, 14] the following formula for $\tau(\alpha)$ in the Čech cohomology $\check{H}^0(\mathcal{U}, (\Omega^\bullet_X, dw))$ is known:

\[
\tau(\alpha) = \text{str} \left((\exp(-(\nabla_i, \delta_E))_i - (\nabla_i - \nabla_j)_{i < j})\check{\alpha} \right),
\]

where $\check{\alpha}$ is a Čech representative of α. Here we recall that $\Omega^\bullet_X = \oplus_{p=0}^n \Omega^p_X[p]$ is \mathbb{G}-graded.

In the local case, i.e., X is an open neighborhood of the origin 0 in \mathbb{A}^n_k and w has a critical point only at 0 with $w(0) = 0$, we can relate the canonical
pairing with a residue pairing. Let \(x = (x_1, \ldots, x_n) \) be a local coordinate system and let \(\partial_i w = \frac{\partial w}{\partial x_i} \). Proposition 4.34 of [1] shows that

\[
\int_X (\tau(\beta) \wedge \tau(\alpha)\wedge) = \text{Res}_{x=0} \left[\frac{g(x)f(x)}{\partial_1 w, \ldots, \partial_n w} \right]
\]

for \(\tau(\alpha) = f(x)dx_1 \ldots dx_n, \tau(\beta) = g(x)dx_1 \ldots dx_n \) in \(\Omega_X^*/dw \wedge \Omega_X^{-1} \). Hence from Theorem 1.2 and \(\tau(\alpha') = \tau(\alpha)^\wedge \) we immediately obtain this.

Corollary 3.5. [1, 15] In the local case we have

\[
\langle \beta, \alpha'^\wedge \rangle_{can} = (-1)^{\left(\begin{array}{c} n+1 \\ 2 \end{array}\right)} \text{Res}_{x=0} \left[\frac{g(x)f(x)}{\partial_1 w, \ldots, \partial_n w} \right].
\]

The corollary above reproves a conjecture of Shklyarov [19, Conjecture 3].

3.5. GRR type theorem.

Consider the proper morphism \(f : X \to X' \) in § 3.1, inducing the dg functor \(\mathbb{R}f_* \) and the module \(\Delta_{\mathbb{R}f_*} \in \text{Perf}(A^{op} \otimes B) \). They together make a commutative diagram

\[
\begin{array}{ccc}
A := D_{dg}(X, w) & \xrightarrow{\mathbb{R}f_*} & B := D_{dg}(X', w') \\
Yone & \xrightarrow{T_{\Delta_{\mathbb{R}f_*}}} & \text{Perf}B.
\end{array}
\]

The paring defined by the composition

\[
\mathbb{H}^*(X', (\Omega_{X'}^*, -dw')) \otimes \mathbb{H}^*(X', (\Omega_{X'}^*, dw')) \xrightarrow{\triangle} \mathbb{H}^*_c(X', (\Omega_{X'}^*, 0)) \xrightarrow{[X'_0, k]}
\]

is nondegenerate by the Serre duality; see [6, § 4.1]. Using the paring we define the pushforward for \(q \in \mathbb{C} \)

\[
\int_f : \mathbb{H}^q(X, (\Omega_X^*, -dw)) \to \mathbb{H}^q(X', (\Omega_{X'}^*, -dw'))
\]

by the projection formula requirement

\[
\int_{X'} (\int_f \alpha) \wedge \beta = \int_X \alpha \wedge f^* \beta
\]

for every \(\beta \in \mathbb{H}^{-q}(X', (\Omega_{X'}^*, dw')) \).

Let \(n = \dim X \) and \(m = \dim X' \). Denote by \(HH(\mathbb{R}f_*) \) the map in Hochschild homology level from \(\mathbb{R}f_* \). Let \(K_0(A), K_0(B) \) be the Grothendieck group of the homotopy category of \(A, B \), respectively.
Theorem 3.6. The diagram

\[
\begin{array}{ccc}
K_0(A) & \xrightarrow{\mathbb{R}f_*} & K_0(B) \\
\text{Ch} & & \text{Ch} \\
HH_*(A) & \xrightarrow{HH(\mathbb{R}f_*)} & HH_*(B) \\
I_{HKR} & & I_{HKR} \\
\mathbb{H}^-(X, (\Omega^*_X, -dw)) & \xrightarrow{(1-\frac{1}{2})\int_f \wedge \text{td}(T_f)} & \mathbb{H}^-(X', (\Omega^*_X, -dw'))
\end{array}
\]

is commutative. Here \(\text{td}(T_f) := \text{td}(X)/f^*\text{td}(X')\) and \(\# = \begin{pmatrix} n+1 \\ 2 \end{pmatrix} - \begin{pmatrix} m+1 \\ 2 \end{pmatrix}\).

Proof. By the definition of categorical Chern characters the upper rectangle is commutative. Consider \(\gamma \in HH_*(A)\). Let \(\alpha := I_{HKR}(\gamma)\) and \(\alpha' := I_{HKR}(HH(\mathbb{R}f_*)(\gamma))\). If we write \(ch(\Delta_{Rf_*}) = \sum_i T^i \otimes T^i \in H^*(X, (\Omega^*_X, dw)) \otimes H^*(X, (\Omega^*_X, -dw))\), then by Proposition 2.1 and Theorem 1.2 we have for \(\beta \in H^-(X', (\Omega^*_X, dw'))\)

\[
(3.9) \int_{X'} \alpha' \wedge \beta \wedge \text{td}(X') = (-1)^{\begin{pmatrix} n+1 \\ 2 \end{pmatrix}} \sum_i \int_X \alpha \wedge T^i \wedge \text{td}(X) \int_{X'} T_i \wedge \beta \wedge \text{td}(X').
\]

By (3.2) and a normal-cone deformation argument as in § 3.3 we have

RHS of (3.9)

\[
= (-1)^{\begin{pmatrix} n+1 \\ 2 \end{pmatrix}} \int_{X \times X'} (\alpha \otimes \beta) \wedge ch(\Omega^\wedge_{X'} \otimes \text{td}(X) \otimes \text{td}(X'))
\]

\[
= (-1)^{\begin{pmatrix} n+1 \\ 2 \end{pmatrix}} \int_{f^*T_{X'}} \pi^*(\alpha \wedge f^*\beta \wedge \text{td}(f^*T_{X'}) \wedge \text{td}(X)) \wedge ch(\text{Kos}(s))
\]

\[
= (-1)^{\frac{1}{2}} \int_X \alpha \wedge f^*\beta \wedge \text{td}(X) = (-1)^{\frac{1}{2}} \int_{X'} \left(\int_f \alpha \wedge \text{td}(X) \right) \wedge \beta,
\]

where \(\pi\) denotes the projection \(f^*T_{X'} \to X\) and \(s\) is the diagonal section of \(\pi^* f^*T_{X'}\) on \(f^*T_{X'}\). Hence LHS of (3.9) equals \((-1)^{\frac{1}{2}} \int_{X'} (\int_f \alpha \wedge \text{td}(X)) \wedge \beta\), which shows the commutativity of the lower rectangle. \(\square\)

3.6. Pushforward in Hodge cohomology. We collect some properties of pushforwards in Hodge cohomology that are used in § 3.3 For lack of a suitable reference we provide their proofs.

Throughout this subsection \(f : X \to Y\) will be a morphism between varieties \(X, Y\) with varieties \(n, m\) respectively. Let \(d = n - m\).

3.6.1. Definition of \(f_*\). Suppose that \(f\) is a proper locally complete intersection (l.c.i) morphism. Let \(E\) be a perfect complex on \(Y\). Denote by

\[
\tau_f : \mathbb{R}f_* f^! E \to E
\]
the duality map in the derived category $D^{+}_{qc}(\mathcal{O}_Y)$ of cohomologically bounded below quasi-coherent sheaves; see for example [11, § 4]. Since f is l.c.i, $f^!\mathcal{O}_Y$ is taken to be an invertible sheaf up to shift and there is a canonical isomorphism $\mathbb{L}f^*E \otimes f^!\mathcal{O}_Y \cong f^!E$. For $q \in \mathbb{Z}$, let $\delta \in \mathbb{H}^q(X, f^!E)$, which can be considered as a map $\delta : \mathcal{O}_X[-q] \to f^!E$ in the derived category. We have a composition of maps

$$\mathcal{O}_Y[-q] \xrightarrow{\text{natural}} \mathbb{R}f_*f^*\mathcal{O}_Y[-q] \xrightarrow{\mathbb{R}f_*(\delta)} \mathbb{R}f_*f^!E \xrightarrow{\tau_f} E,$$

denoted by $f_*(\delta)$. This yields a homomorphism

$$f_* : \mathbb{H}^q(X, f^!E) \to \mathbb{H}^q(Y, E).$$

Let $g : Y \to Z$ be a proper l.c.i. morphism between varieties. The uniqueness of adjunction implies the functoriality of the pushforward

$$(g \circ f)_* = g_* \circ f_* : \mathbb{H}^q(X, (g \circ f)^!F) \to \mathbb{H}^q(Z, F)$$

for F in $D^{+}_{qc}(\mathcal{O}_Z)$.

3.6.2. Definitions of \mathcal{F}_f and \mathcal{F}_X. Let $f : X \to Y$ be a morphism between nonsingular varieties. For $p \geq 0$ with $p - d \geq 0$ we have a natural homomorphism

$$\Omega^p_X[q] \cong \bigwedge^{n-p} T_X[q] \otimes f^*\Omega^p_Y[-d] \otimes f^!\mathcal{O}_Y$$

$$\to \bigwedge^{n-p} f^*T_Y[q] \otimes f^*\Omega^p_Y[-d] \otimes f^!\mathcal{O}_Y \cong f^*\Omega^{p-d}_Y[q - d] \otimes f^!\mathcal{O}_Y.$$

denoted by \mathcal{F}_f.

We define Hodge cohomology with proper supports along f as the direct limit:

$$H^q_{cf}(X, \Omega^p_X) := \lim_{\rightarrow} H^q_Z(X, \Omega^p_X),$$

where Z runs over all closed subvarieties of X that are proper over Y. By Nagata’s compactification and the resolution of singularities there is a nonsingular variety \bar{X} including X as an open subvariety and a proper morphism $\bar{f} : \bar{X} \to Y$ extending f. Recall the fact that if Z is a closed subvariety of X that is proper over Y, then Z is a closed subvariety of \bar{X}. Let

$$\text{nat} : H^q_{\bar{f}^!}(X, \Omega^p_X) \to H^q_{\bar{f}_2^*}(\bar{X}, \Omega^p_{\bar{X}})$$

be the natural map where (\bar{z}_1, \bar{z}_2) is either (c, c) or (cf, \emptyset). We define the pushforward (for $p \geq 0$ with $p - d \geq 0$)

$$(3.11) \quad \int_f : H^q_{\bar{f}_1^!}(X, \Omega^p_X) \to H^q_{\bar{f}_2^*}(Y, \Omega^{p-d}_Y); \gamma \mapsto \bar{f}_*(\mathcal{F}_f(\text{nat}(\gamma))).$$

Using the functoriality (3.10), we note that \int_f is independent of the choices of \bar{X}, an open immersion $X \hookrightarrow \bar{X}$, and an extension \bar{f}. When $Y = \text{Spec} \mathbb{C}k$,
If \(v : X' \to X \) be a proper morphism between nonsingular varieties, we have the natural pullback map
\[
v^* : H^q_c(X, \Omega^p_X) \to H^q_c(X', \Omega^p_{X'}). \]

3.6.3. **Base change I.** Consider a fiber square diagram of varieties
\[
\begin{array}{ccc}
X' & \xrightarrow{u} & X \\
\downarrow{g} & & \downarrow{f} \\
Y' & \xrightarrow{u} & Y
\end{array}
\]
Assume that \(f \) is a flat, proper, l.c.i morphism. Then from the base change [11 § 4.4] we obtain a base change formula, for \(\delta \in H^q_c(X, f^!\mathcal{O}_Y) \)
\[
g_* (\mathbb{L}v^*(\delta)) = \mathbb{L}u^* (f_*(\delta))
\]
in \(H^q(Y', \mathcal{O}_{Y'}) \). Here \(\mathbb{L}v^*(\delta) \in H^q(X', g^!\mathcal{O}_Y) \) is the naturally induced map
\[
\mathcal{O}_{X'}[-q] \to \mathbb{L}v^* f^!\mathcal{O}_Y \cong g^! \mathbb{L}u^* \mathcal{O}_Y = g^! \mathcal{O}_Y,
\]
in the derived category.

Furthermore suppose that all varieties \(X, Y, X' \) are nonsingular and \(Y' \) is a closed point of \(Y \). Then for \(\gamma \in H^d_c(X, \Omega^d_{X'}) \) we easily check that
\[
v^*(\gamma) = \mathbb{L}v^* (\mathcal{E}_f(\gamma))
\]
in \(H^d_c(X', \Omega^d_{X'}) = H^0_c(X', g^!\mathcal{O}_{Y'}) \). Hence (3.13) for \(\delta = \mathcal{E}_f(\gamma) \) means that
\[
\int_{X'} v^*(\gamma) = u^* (\int_f \gamma).
\]

3.6.4. **Base change II.** Let \(Y \) be a connected nonsingular complete curve and let \(Y' \) be a closed point of \(Y \). Consider the fiber square diagram (3.12) of nonsingular varieties. Assume that \(f \) is flat but possibly non-proper.

Lemma 3.7. For \(\gamma \in H^d_c(X, \Omega^d_{X'}) \) we have
\[
\int_{X'} v^*(\gamma) = \int_f \gamma \in k.
\]

Proof. By Nagata’s compactification \(f \) is extendible to a proper flat morphism \(\bar{f} : \bar{X} \to Y \) with an open immersion \(X \hookrightarrow \bar{X} \). By the resolution of singularities we can make that \(\bar{X} \) is nonsingular and the closure \(\bar{X}' \) of \(X' \) in \(\bar{X} \) is also nonsingular. Let \(\bar{v} : \bar{f}^{-1}(Y') \to \bar{X} \) be the induced morphism and let \(\bar{v}_o := \bar{v}|_{\bar{X}'} \). Thus we have a commutative diagram
\[
\begin{array}{ccc}
\bar{X}' & \xrightarrow{\bar{v}} & \bar{X} \\
\downarrow{\bar{g}} & & \downarrow{\bar{f}} \\
Y' & \xrightarrow{u} & Y
\end{array}
\]
with a fiber square. To show (3.15) we may assume \(\gamma \in H^d_Z(X, \Omega^d_X) \) for some complete subvariety \(Z \) of \(X \). Let \(\text{nat} \) denote the natural map \(H^d_Z(X, \Omega^d_X) \to H^d(X, \Omega^d_X) \). Then by the support condition of \(\gamma \) we have
\[
(3.17) \quad (\tilde{g}_o)_*\tilde{v}^*(\mathcal{F}_f(\text{nat}(\gamma))) = \tilde{g}_o\tilde{v}^*(\mathcal{F}_f(\text{nat}(\gamma))) \in k.
\]
Since \(\tilde{v}^*(\text{nat}(\gamma)) = L\tilde{v}^*(\mathcal{F}_f(\text{nat}(\gamma))) \) under \(\Omega^d_X \approx g^!\mathcal{O}_Y \), LHS of (3.17) becomes \(\int_X \tilde{v}^*(\text{nat}(\gamma)) \), which equals to LHS of (3.15) by the support condition of \(\gamma \). On the other hand by (3.13), RHS of (3.17) becomes \(u^*\int_f \text{nat}(\gamma) \), which equals to RHS of (3.15) by the support condition and \(H^0(Y, \mathcal{O}_Y) = k \).

3.6.5. **Projection formula.** Let \(X, Y, Z \) be nonsingular varieties and let \(f : X \to Y, g : Y \to Z \) be morphisms. Let \(d' = \dim Y - \dim Z \). The uniqueness of adjunction implies the functoriality of the pushforward, for \(p \geq 0 \) with \(p - d \geq 0 \) and \(p - d - d' \geq 0 \)
\[
(3.18) \quad \int_{g \circ f} = \int_g \circ \int_f : H^p_c(X, \Omega^p_X) \to H^{p-d-d'}_c(Z, \Omega^{p-d-d'}_Z).
\]

Let \(f : X \to Y \) be a (possibly non-proper) morphism between nonsingular varieties. Then for \(\gamma \in H^d_{c,f}(X, \Omega^d_X) \) and \(\sigma \in H^q(Y, \Omega^q_Y) \) the projection formula
\[
(3.19) \quad \int_f (f^*\sigma \wedge \gamma) = \sigma \wedge \int_f \gamma
\]
holds in \(H^q(Y, \Omega^q_Y) \). This can be verified as follows. We may assume that \(f \) is proper. Consider the commuting diagram

\[
\begin{array}{cccccc}
\Omega^q_Y & \xrightarrow{\mathbb{R}f_*\Omega^p_X} & \mathbb{R}f_*\Omega^p_X & \xrightarrow{\mathbb{R}f_*(\gamma \wedge \sigma)} & \mathbb{R}f_*(\mathcal{F}_f) & \xrightarrow{\mathbb{R}f_*(\mathcal{F}_f)} \Omega^p_Y \otimes \mathbb{R}f_*f^!\mathcal{O}_Y \\
\sigma \downarrow & & \mathbb{R}f_*f^*\sigma \downarrow & & \mathbb{R}f_*(f^*\gamma \wedge \sigma) \downarrow & & \mathbb{R}f_*(f^*\sigma \wedge \gamma) \\
\mathcal{O}_Y[-q] & \xrightarrow{\mathbb{R}f_*\mathcal{O}_X} & \mathbb{R}f_*\mathcal{O}_X & \xrightarrow{\mathbb{R}f_*(\mathcal{F}_f(\gamma \wedge \sigma))} & \mathbb{R}f_*(\mathcal{F}_f(\gamma \wedge \sigma))
\end{array}
\]

We note that the composition of the maps in the top horizontal line is \(\text{id}_{\Omega^q_Y} \otimes \mathbb{R}f_*f^!\mathcal{O}_Y \) using the generic smoothness of \(f \) and local coordinate systems for compatible bases of \(\Omega^d_X \) and \(\Omega^q_Y \). The clockwise compositions of maps starting from \(\mathcal{O}_Y[-q] \) followed by \(\tau_f \) yields LHS of (3.19) and the counterclockwise compositions of maps followed by \(\tau_f \) yields RHS of (3.19).

3.6.6. **Some computations.** Let \(Q \) be the tautological quotient bundle on the projective space \(\mathbb{P}^n \). We want to compute \(\int_{\mathbb{P}^n} \) of the top Chern class \(c_n(Q) \in H^0(\mathbb{P}^n, \Omega^d_{\mathbb{P}^n}[n]) \). The class \(c_n(Q) \) is equal to \((-1)^n c_1(\mathcal{O}(-1))^n \). Let \(U_i = \{ x_i \neq 0 \} \) where \(x_0, \ldots, x_n \) are homogeneous coordinates. On each \(U_i \), we may identify \(\mathcal{O}(-1) \) with the \(i \)-th component of \(\mathcal{O}_{\mathbb{P}^n}^{\mathbb{P}^{n+1}} \) by the tautological monomorphism \(\mathcal{O}(-1) \to \mathcal{O}_{\mathbb{P}^n}^{\mathbb{P}^{n+1}} \). This yields connections \(\nabla_i \) on \(\mathcal{O}(-1)|_{U_i} \). Let \(z_i = x_i/x_0 \). Note that \(\nabla_0 - \nabla_i = -\frac{dz_i}{z_i} \). Hence \(\nabla_i - \nabla_j = \frac{dz_i}{z_i} - \frac{dz_j}{z_j} \) on
By the n-th fold Alexander-Čech-Whitney cup product of a Čech representative $(\nabla_i - \nabla_j)_{i < j}$ of $c_1(\mathcal{O}(-1))$ we conclude that $c_n(Q)$ is representable by a Čech cycle

$$(-1)^{\binom{n+1}{2}} \frac{dz_1 \ldots dz_n}{z_1 \ldots z_n} \in \Omega^n_{\mathcal{P}^n} (U_0 \cap \ldots \cap U_n).$$

Here the sign contribution of $\binom{n}{2}$ among $\binom{n+1}{2}$ comes from the exchanges of odd Čech ‘elements’ and differential one forms $\frac{dz_i}{z_i}$; see [1, 4]. Thus

$$(3.20) \quad \int_{\mathcal{P}^n_k} c_n(Q) = (-1)^{\binom{n}{2}} \text{res} \left[\frac{dz_1 \ldots dz_n}{z_1 \ldots z_n} \right] = (-1)^{\binom{n+1}{2}}.$$

Let E be a rank n vector bundle on a nonsingular variety X and let $\pi : E \to X$ be the projection. We have the diagonal section s of π^*E by letting $s(e) = (e, e)$. Let $\bar{\pi} : \mathbb{P}(E \oplus \mathcal{O}_X) \to X$ be the projection, which is a proper extension of π:

$$\mathbb{P}(E \oplus \mathcal{O}_X) = \mathbb{P}(E) \cup E \supset E \supset \mathbb{P}(\mathcal{O}_X) = X.$$

Let Q be the tautological quotient bundle on $\mathbb{P}(E \oplus \mathcal{O}_X)$. It has a section \bar{s} by the composition $\mathcal{O} \xrightarrow{(0, -\text{id})} \pi^* E \oplus \mathcal{O} \xrightarrow{\text{quot}} Q$. Note that the zero locus \bar{s} is $\mathbb{P}(\mathcal{O}_X)$, since $(0, -\text{id})$ is factored through the kernel of quot exactly on $\mathbb{P}(\mathcal{O}_X)$. Note that the composition $\text{quot} \circ (\text{id}, 0)|_E : \pi^* E \to Q|_E$ is an isomorphism sending s to $\bar{s}|_E$. Therefore we have

$$(3.21) \quad \int_{\bar{\pi}} \chi(\text{Kos}(s)) \text{td}(\pi^*E) = \int_{\bar{\pi}} \chi(\text{Kos}(\bar{s})) \text{td}(Q)$$

$$= \int_{\bar{\pi}} c_n(Q) \quad \text{(by letting } \bar{s} = 0) = (-1)^{\binom{n+1}{2}} \quad \text{(by (3.14) \& (3.20))}.$$

REFERENCES

[1] M. Brown and M. Walker, A proof of a conjecture of Shklyarov. [arXiv:1909.04088]
[2] A. Căldăraru and S. Willerton, The Mukai pairing, I: a categorical approach. New York J. Math. 16 (2010) 61-98.
[3] D. Choa, B. Kim, and B. Sreedhar, In preparation.
[4] K. Chung, B. Kim, and T. Kim, A chain-level HKR-type map and a Chern character formula. In preparation.
[5] I. Ciocan-Fontanine, D. Favero, J. Guéré, B. Kim, M. Shoemaker, Fundamental Factorization of a GLSM, Part I: Construction. To appear in Memoirs of the American Mathematical Society. [arXiv:1802.05247v3].
[6] D. Favero and B. Kim, General GLSM Invariants and Their Cohomological Field Theories. [arXiv:2006.12182].
[7] W. Fulton, Intersection theory. Second edition. Springer-Verlag, Berlin, 1998.
[8] F. Hirzebruch, Topological methods in algebraic geometry. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[9] B. Kim and A. Polishchuk, Atiyah class and Chern character for global matrix factorizations. To appear in J. Inst. Math. Jussieu, [arXiv:1907.11441v3].
[10] K. Lin and D. Pomerleano, Global matrix factorizations. Math. Res. Lett. 20 (2013), no. 1, 91-106.
[11] J. Lipman and M. Hashimoto, Foundations of Grothendieck duality for diagrams of schemes. Lecture Notes in Mathematics, 1960. Springer-Verlag, Berlin, 2009.
[12] N. Markarian, The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem. J. London Math. Soc. (2) 79 (2009) 129-143.
[13] N. O’Brien, D. Toledo, and Y. Tong, Hirzebruch-Riemann-Roch for coherent sheaves. Amer. J. Math. 103 (1981), no. 2, 253-271.
[14] D. Platt, Chern character for global matrix factorizations. arXiv:1209.5686
[15] A. Polishchuk and A. Vaintrob, Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Duke Math. J. 161 (2012), no. 10, 1863-1926.
[16] A. Ramadoss, A generalized Hirzebruch Riemann-Roch theorem. C. R. Math. Acad. Sci. Paris 347 (2009), no. 5-6, 289-292.
[17] D. Shklyarov, On Serre duality for compact homologically smooth DG algebras. arXiv:math/0702590.
[18] D. Shklyarov, Hirzebruch-Riemann-Roch-type formula for DG algebras. Proc. Lond. Math. Soc. (3) 106 (2013), no. 1, 1-32.
[19] D. Shklyarov, Matrix factorizations and higher residue pairings. Adv. Math. 292 (2016), 181-209.

Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

Email address: bumsig@kias.re.kr