Pseudomonas aeruginosa Elastase Provides an Escape from Phagocytosis by Degrading the Pulmonary Surfactant Protein-A

Zhizhou Kuang1*, Yonghua Hao1*, Brent E. Walling1, Jayme L. Jeffries1, Dennis E. Ohman2, Gee W. Lau1*

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that causes both acute pneumonia in immunocompromised patients and chronic lung infections in individuals with cystic fibrosis and other bronchiectasis. Over 75% of clinical isolates of P. aeruginosa secrete elastase B (LasB), an elastolytic metalloproteinase that is encoded by the lasB gene. Previously, in vitro studies have demonstrated that LasB degrades a number of components in both the innate and adaptive immune systems. These include surfactant proteins, antibacterial peptides, cytokines, chemokines and immunoglobulins. However, the contribution of LasB to lung infection by P. aeruginosa and to inactivation of pulmonary innate immunity in vivo needs more clarification. In this study, we examined the mechanisms underlying enhanced clearance of the ΔlasB mutant in mouse lungs. The ΔlasB mutant was attenuated in virulence when compared to the wild-type strain PAO1 during lung infection in SP-A+/+ mice. However, the ΔlasB mutant was as virulent as PAO1 in the lungs of SP-A-/- mice. Detailed analysis showed that the ΔlasB mutant was more susceptible to SP-A-mediated opsonization but not membrane permeabilization. In vitro and in vivo phagocytosis experiments revealed that SP-A augmented the phagocytosis of ΔlasB mutant bacteria more efficiently than the isogenic wild-type PAO1. The ΔlasB mutant was found to have a severely reduced ability to degrade SP-A, consequently making it unable to evade opsonization by the collectin during phagocytosis. These results suggest that P. aeruginosa LasB protects against SP-A-mediated opsonization by degrading the collectin.

Introduction

Pulmonary surfactant is a layer of lipoprotein complex with critical surface tension lowering properties, which reduces the work of breathing and helps to maintain airspace patency. Also, it protects the lungs against inhaled air laden with microbes, oxidants, pollutants and allergens [1–7]. About 10% of the surfactant layer consists of proteins that have been identified as surfactant protein-A (SP-A), SP-B, SP-C and SP-D. The lung immune defense functions of surfactant are primarily mediated by SP-A and SP-D, which are members of the collectin family of proteins [2,6,8]. Severe depletion of SP-A and SP-D has been associated with several respiratory diseases including bacterial pneumonia, adult respiratory distress syndrome, and cystic fibrosis (CF) [9–14]. SP-A+/+ and SP-D+/+ mice have been shown to be more susceptible to lung infection by P. aeruginosa and other pathogens [2,7,13].

In the past decades, studies have demonstrated that SP-A is an important component of the pulmonary innate immune system. SP-A opsonizes and enhances the phagocytosis of a myriad of microbial pathogens in a calcium-dependent manner [2,3,6,7,15,16]. Also, SP-A activates phagocytic cells and upregulates the expression of host cell-surface receptors involved in microbial recognition [8,17–21]. Most recently, we and others have reported that SP-A also directly kills microbes in a macrophage-independent manner by increasing the permeability of microbial membranes [22–27]. However, the mechanism by which SP-A permeabilizes microbial membranes and its relative importance in the lung defense is not clear. For example, it is not known whether microbes that are membrane permeabilized by SP-A are phagocytized more efficiently than the microbes with intact cell membranes.

P. aeruginosa is a Gram-negative bacterial pathogen that causes both acute pneumonitis in immunocompromised patients and chronic lung infections in individuals with CF and non-CF bronchiectasis, and chronic obstructive pulmonary disease (COPD) [28–32]. Multiple virulence factors of P. aeruginosa contribute to lung infection [33]. These virulence determinants work in concert either offensively to inactivate components of host immune response, or defensively to camouflage or evade host response [33]. Cell surface associated virulence factors of P. aeruginosa include pili, flagella, alginate, and lipopolysaccharides.
SP-A isogenic D contribute to the pathogenesis of P. aeruginosa mediated proteolytic activities in the lungs, and to what extent they LasB by using wild-type investigation. In this study, we compared the virulence role of LasB is able to degrade lysozyme TNF- including SP-A and SP-D [42,43], cytokines and chemokines numerous components of innate and adaptive immune systems, [40,41]. Under in vitro epithelial barriers by attacking intercellular tight junctions extracellular matrix and by breaching the endothelial and epithelial barriers by attacking intercellular tight junctions [40,41]. Under in vitro experimental conditions, LasB degrades numerous components of innate and adaptive immune systems, including SP-A and SP-D [42,43], cytokines and chemokines TNF-γ, IFN-γ, IL-2 and IL-8 [40,44–47], and antibacterial peptide [48]. Also, there are reports of elastase inactivating secretory immunoglobulin A, immunoglobulin G and opsonin C3 [31,48–50]. Most recently, we have confirmed that P. aeruginosa LasB is able to degrade lysozyme in vitro [22,51].

Despite numerous in vitro studies, direct evidence of LasB-mediated proteolytic activities in the lungs, and to what extent they contribute to the pathogenesis of P. aeruginosa requires more investigation. In this study, we compared the virulence role of LasB by using wild-type P. aeruginosa strain PAO1 versus an isogenic ΔlasB mutant strain in an acute model of lung infection in SP-A+/+ versus SP-A−/− mice.

Results

The ΔlasB bacteria are severely attenuated in exoprotease activities

We examined the amounts of LasB in the supernatants of stationary phase P. aeruginosa cultures. As expected, the PDO240 mutant (Table 1) (from here in ΔlasB) bacteria did not secrete LasB. In contrast, both the wild-type PAO1 and the genetically complemented PDO240LasB bacteria produced the 33 kDa LasB (Figure 1A). In addition, the ΔlasB bacteria had approximately 10-fold less total exoprotease activity when compared to PAO1 and PDO240LasB (Figure 1B).

The ΔlasB bacteria are cleared more efficiently following lung infection in SP-A+/+ but not SP-A−/− mice

To determine the contribution of LasB to lung infection, we compared the virulence of the wild-type P. aeruginosa PAO1, the isogenic ΔlasB mutant, and the genetically-complemented strain PDO240LasB in a mouse acute pneumonia model of single infection studies. In the absence of bacterial infection, histopathological features of SP-A−/− mouse lungs were indistinguishable when compared to the lungs of SP-A+/+ mice (data not shown). Eighteen hr after intranasal inoculation with PAO1 or PDO240LasB, SP-A+/+ mice showed signs of infection and respiratory distress but were not moribund. In contrast, PAO1-infected SP-A−/− mice were moribund and had to be euthanized (data not shown). The number of viable wild-type PAO1 or PDO240LasB bacteria in SP-A−/− lungs were 1.72 log and 1.88 log higher than in SP-A+/+ mice, respectively (Figure 2A). Eighteen hr after infection with the ΔlasB mutant bacteria, the lungs of SP-A−/− mice showed little sign of disease. In contrast, SP-A−/− infected with ΔlasB mutant bacteria developed significant respiratory distress or were moribund, and had to be euthanized (data not shown). The viable counts of ΔlasB mutant were 1.3 log lower than PAO1 in SP-A+/+ mice. However, the number of ΔlasB bacteria was 3.1 log higher in SP-A−/− mice than in SP-A+/+ mice, and was statistically indistinguishable when compared to the number of PAO1 and PDO240lasB bacteria in the SP-A−/− mice (Figure 2A).

By 36 hr, the number of bacteria for each strain in the SP-A+/+ mice further decreased by approximately 0.5 log. However, the decrease was not obvious in the SP-A−/− mice (Figure 2B). These results indicate that ΔlasB bacteria are more virulent in the lungs of SP-A−/− mice than in the lungs of SP-A+/+ mice. Virulence attenuation in ΔlasB bacteria was not due to reduced growth rate as wild-type PAO1, ΔlasB and PDO240lasB bacteria had virtually identical growth kinetics (Figure 2C).

Next, we examined various infected mouse lungs with histopathological methods (Figure 3). Our analysis showed that PAO1 and PDO240lasB caused more severe alveolitis with pulmonary infiltrates (Figure 3A and 3E) whereas the ΔlasB mutant only caused mild alveolitis in the lungs of SP-A−/− mice (Figure 3C). In contrast, PAO1, ΔlasB mutant and PDO240lasB caused similar amounts of consolidation with more areas of pneumonia in SP-A−/− lungs (Figure 3B, 3D, and 3F). These results indicate that LasB plays an important protective role against anti-P. aeruginosa activity mediated by SP-A.

The ΔlasB bacteria are deficient in their ability to degrade SP-A

Previously, it has been shown that P. aeruginosa elastase degrades human SP-A (hSP-A) [22,43,52]. Here, we examined the ability of ΔlasB mutant on its ability to degrade hSP-A. The hSP-A (25 μg) was incubated with 1×108 wild-type PAO1, ΔlasB, or genetically
complemented PDO240lasB bacteria (Table 1) for the indicated time intervals. After 6 hr of incubation, the degradation of hSP-A by PAO1 and PDO240lasB bacteria was evident (Figure 4A). By 18 hr post incubation, hSP-A was almost completely degraded by PAO1 and PDO240lasB. In contrast, there was only minimal degradation of hSP-A by the ΔlasB bacteria, with majority of the collectin remaining intact even after 18 hr of exposure (Figure 4A). Densitometry analysis indicates that PAO1 degraded approximately 40% hSP-A after 6 hr incubation. By 12 and 18 hr, majority of the hSP-A had been degraded (Figure 4B). Increasing amount of hSP-A degradation was correlated with higher amount of LasB secretion by PAO1 and PDO240lasB as the time of incubation was lengthened (Figure 4C). The degradation of SP-A was not influenced by the presence or absence of Zn²⁺, suggesting that LB provided sufficient Zn²⁺ for the proteolytic activities of LasB (Figure S1). These results suggest that ΔlasB bacteria are strongly attenuated in their ability to degrade hSP-A, and that LasB is a major exoprotease of P. aeruginosa that is responsible for the removal of hSP-A.

The ΔlasB bacteria are impaired in the degradation of SP-A during infection of SP-A⁺⁺⁺ mouse lungs

Although in vitro studies have shown that P. aeruginosa secretes elastase to degrade SP-A [22,43,52], the biological importance of SP-A removal by LasB and the resulting resistance to clearance during infection of SP-A⁺⁺⁺ lungs have not been investigated. We compared the in vivo degradation of mouse SP-A (mSP-A) by wild-type PAO1, the elastase-deficient mutant ΔlasB, and the complemented strain PDO240lasB in SP-A⁺⁺⁺ mice. The amounts of mSP-A in the BAL fluids from mice infected with all three bacterial strains were similar at 6 hr (Figure 5A) and 12 hr post-infection (Figure 5B). However, by 18 hr post-infection, PAO1 or PDO240lasB had significantly lower amounts of mSP-A than ΔlasB mutant (Figure 5D). These results suggest that LasB plays important role in removal of mSP-A in vivo.

A previous study has suggested that mSP-A is a principal factor that permeabilizes microbial membranes in the alveolar lining fluid of mouse lungs [53]. Thus, proteolytic degradation of mSP-A by LasB-secreting PAO1 or PDO240lasB would inactivate the ability of mSP-A within lung BAL fluids to permeabilize microbial membranes. To further assess the function of LasB against mSP-A in vivo, we compared the ability of BAL fluids from 18 hr post-infection (from Figure 5C) to permeabilize the membrane of E. coli DH5α. Purified hSP-A was used as a positive control. Pure hSP-A has the highest levels of membrane permeabilization activity, which was 2.3 and 2.5 fold higher than BAL fluids from PAO1 and PDO240lasB infected SP-A⁺⁺⁺ mice after 90 min of incubation (Figure 5E). In contrast, even though the extent of membrane permeabilization on DH5α mediated by pure hSP-A was consistently higher than BAL fluids from ΔlasB-infected animals, the difference was not statistically significant (Figure 5E). Importantly, BAL fluids from PAO1 or PDO240lasB-infected SP-A⁺⁺⁺ mouse lungs, where mSP-A had been degraded by LasB, showed lower ability to permeabilize DH5α (Figure 5E). On the contrary, BAL fluids from ΔlasB-infected mice permeabilized DH5α bacteria at 1.9 and 2.1 fold higher than BAL from PAO1 and PDO240asB, respectively, after 90 min of exposure (Figure 5E). Taken together, these results suggest that during infection of mouse lungs, P. aeruginosa protects itself against the antimicrobial activities of mSP-A by degrading the collectin through the secretion of LasB.

The ΔlasB bacteria are not susceptible to SP-A-mediated membrane permeabilization

Previous studies have demonstrated that SP-A protects lungs against microbial infection by opsonization [2,5,7,15]. More recently, we and others have shown that SP-A is capable of directly killing microbes in a macrophage-independent manner, by permeabilizing microbial membranes [22–27]. We examined which defense mechanism(s) led to enhanced clearance of ΔlasB bacteria in the lungs of SP-A⁺⁺⁺ mice. Previously, we have reported that the wild-type P. aeruginosa strain PAO1 is resistant to hSP-A-mediated membrane permeabilization [22,26,27]. First, we compared the susceptibility of the ΔlasB mutant to hSP-A-mediated membrane permeabilization against its parental wild-type PAO1 and the complemented strain PDO240lasB. E. coli DH5α cells incubated with hSP-A were used as positive control. As expected, hSP-A permeabilized the membrane of DH5α cells (Figure 6). In contrast, PAO1, ΔlasB, and PDO240lasB bacteria demonstrated similar levels of resistance to hSP-A-mediated membrane permeabilization (Figure 6). These results suggest that

Table 1. P. aeruginosa strains used in this study.
Bacterial Strains
P. aeruginosa
PAO1
PAO1-gfp
PDO240 (ΔlasB)
ΔlasB-gfp
PDO240lasB
E. coli
DH5α
Plasmids
pUCP19-gfp
pKSM3

doi:10.1371/journal.pone.0027091.t001
mSP-A-mediated membrane permeabilization is not responsible for the enhanced clearance of ΔlasB bacteria in mouse lungs.

The ΔlasB bacteria are unable to degrade SP-A and are more susceptible to SP-A-mediated opsonization in vitro

Previously, *P. aeruginosa* has been shown to be susceptible to SP-A-mediated opsonization [54,55]. Because the ΔlasB mutant bacteria were not sensitive to hSP-A-mediated membrane permeabilization, we examined whether they were more susceptible to hSP-A-mediated opsonization. Bacterial phagocytosis assays were performed using the murine macrophages RAW 264.7. The number of *P. aeruginosa* cells internalized by macrophages RAW 264.7 was enumerated by gentamicin exclusion assays [56]. The presence of hSP-A significantly increased the phagocytosis of both the wild-type PAO1 and ΔlasB mutant by macrophages in a concentration dependent manner (Figure 7A). When exposed to 10, 20, or 50 μg/ml of hSP-A, the number of ΔlasB bacteria internalized by macrophages was 2.3, 3.6 and 3.8 fold higher respectively compared to ΔlasB without hSP-A treatment in 60 min. However, the increase in the phagocytosis of ΔlasB bacteria was statistically indistinguishable from PAO1. These results suggest that the ability of PAO1 bacteria to secrete LasB does not significantly interfere with the ability of hSP-A to opsonize the bacteria within the short duration (1 hr) under our *in vitro* experimental conditions. This observation is not surprising because a large amount of intact hSP-A still remained after 6 hr of exposure to PAO1, partly due to high amounts of hSP-A (25 μg) used in the experiments (Figure 4).

Next, we examined the impact of prolonged exposure of hSP-A to PAO1 or ΔlasB on the ability of the collectin to opsonize the bacteria. hSP-A (20 μg/ml) was preincubated with PAO1 or ΔlasB for 1, 6, 12 or 18 hr before the mixture was added to the macrophages for phagocytosis assays. After 60 min of phagocytosis, internalized bacteria were enumerated by gentamicin exclusion assay. The number of internalized PAO1 decreased gradually in a time-dependent manner (Figure 7B), in an inverse relationship to the degradation of hSP-A (Figure 4). By 12 and 18-hr, the number of PAO1 bacteria internalized by macrophages was 1.7-fold and 2.2-fold lower than the ΔlasB bacteria, respectively (Figure 7B). As expected, because of its greatly reduced ability to degrade hSP-A, the phagocytosis rate of ΔlasB bacteria remained nearly constant throughout the entire experiment. Even though there was a slight decrease in the number of ΔlasB bacteria internalized by macrophages exposed to the bacteria/hSP-A mixture from the 12th and 18th-hr, the decrease was not statistically significant (Figure 7B). These results are consistent with the observation that ΔlasB bacteria lack the ability to degrade hSP-A, and are subsequently opsonized by the collectin and phagocytized by macrophages.

The ΔlasB mutant bacteria are more susceptible to mSP-A mediated opsonization in vivo

The *in vitro* phagocytosis results presented in Fig. 6 suggest that proteolytic degradation of SP-A is required to negate enhanced clearance of *P. aeruginosa* by macrophages. We examined this possibility by performing *in vivo* phagocytosis assays. After infection with the wild-type PAO1 or ΔlasB bacteria, mouse lungs were lavaged at 6, 12 and 18 hours post infection. Bacteria that were internalized by lung leukocytes within the BAL fluids were enumerated by gentamicin exclusion assays. As shown in Figure 8A, the number of internalized ΔlasB bacteria was not different than internalized PAO1 bacteria at 6 and 12 hr post-infection. However, by 18 hr post infection, the number of internalized ΔlasB bacteria was 2.6 fold higher than PAO1. The

Figure 2. The ΔlasB mutant is attenuated for virulence in SP-A+/+ mice. (A) Respiratory tract infections with wild-type PAO1, ΔlasB mutant or genetically-complemented PDO240lasB bacteria were performed by intranasal inoculation of anesthetized SP-A+/+ or SP-A−/− mice. Mouse lungs were harvested 18 hr after infection for CFU enumeration. Data are the mean CFU ± SE (n = 5 per group). * p<0.05 when comparing lungs of SP-A+/+ mice infected with PAO1 and PDO240lasB versus ΔlasB; ** p<0.05 when compared between SP-A+/+ and SP-A−/− mice infected with PAO1, ΔlasB or PDO240lasB bacteria. (B) Mouse lungs were harvested 36 hr after infection for CFU enumeration. Data are the mean CFU ± SE (n = 5 per group). * p<0.05 when comparing lungs of SP-A−/− mice infected with PAO1 and PDO240lasB versus ΔlasB; ** p<0.05 when compared between SP-A+/+ and SP-A−/− mice infected with PAO1, ΔlasB or PDO240lasB bacteria. (C) Attenuation of ΔlasB bacteria in mouse lungs was not due to a slower growth rate. Bacterial growth was assessed by absorbance at OD600. The data from one of the three independent experiments are shown. doi:10.1371/journal.pone.0027091.g002
latter time point correlates with the time interval when a significant amount of mSP-A is degraded by PAO1 bacteria (Figure 5C) but not by the ΔlasB bacteria. The increase in the phagocytosis of ΔlasB bacteria was not due to disproportionately higher levels of professional phagocytes because flow cytometry analyses showed that both PAO1 and ΔlasB-infected mouse lungs had similar numbers of neutrophils and macrophages (Figure 8B). Leukocytes analysis was supported by ELISA assays, which indicated that the levels of the neutrophil and macrophage chemotactic chemokines CCL5 and MCP1 were not statistically different between mouse lungs infected with PAO1, ΔlasB or PDO240lasB (Figure 8C). These results suggest that the ΔlasB bacteria were unable to protect themselves from mSP-A-mediated opsonization in vivo due to their inability to remove the collectin through proteolytic degradation.

Aggregation of ΔlasB bacteria in the presence of SP-A

SP-A aggregates microbes, which are phagocytized at higher efficiency by professional phagocytes [2,3,7,16]. We used fluorescent microscopy to examine whether there was a difference in the efficiency of SP-A-mediated aggregation of GFP-expressing PAO1 versus ΔlasB bacteria. As shown in Figure 9A, after 120 min of aggregation by hSP-A, the number of ΔlasB-GFP aggregates was slightly higher than PAO1-GFP. However, the increase was not statistically significant. This is not surprising considering that excess amounts of intact hSP-A still present in the mixture (Figure 4A). Also, we examined the bacterial aggregates in the BAL fluids at 18 hr post-infection (Figure 9B). The ΔlasB-GFP bacteria were frequently found in aggregates, suggesting of opsonization by mSP-A (Figure 9B, arrows). In contrast, no aggregates of PAO1-GFP bacteria were apparent in infected mouse lungs. Taken together, these results suggest that failure by the ΔlasB bacteria to degrade SP-A allows the collectin to effectively aggregate, opsonize and facilitate the phagocytosis and preferential clearance of the LasB-deficient bacteria.

ΔlasB bacteria are attenuated in degradation of pulmonary innate immunity protein lysozyme

Our phagocytosis assays shown above have demonstrated that SP-A enhances the phagocytosis of *P. aeruginosa* by ~2-3 fold. However, the final difference in bacterial load of SP-A+/+ versus SP-A−/− is ~ 100 fold (Figure 2A), suggests that LasB may be required to degrade other components of pulmonary antimicrobial proteins. We examined whether the ΔlasB bacteria are attenuated in degradation of lysozyme, which has been previously shown to be important against *P. aeruginosa* [57]. In addition, we have previously shown that SP-A and lysozyme act synergistically to permeabilize the membranes of wild-type *P. aeruginosa* strain PAO1 [22]. Given this unanticipated discrepancy, we examined *in vitro* and in BAL fluids of infected mouse lungs for evidence of reduced degradation of lysozyme. As shown in Figure 10, LasB was able to degrade lysozyme both *in vitro* and *in vivo* experimental conditions. To confirm lysozyme degradation, we incubated 5 μg/ml...
lysozyme with 1×10^8 PAO1, ΔlasB, and PDO240lasB bacteria. After 18 hr incubation, lysozyme exposed to ΔlasB mutant remained intact (Figure 10A). In contrast, PAO1 or PDO240lasB bacteria were able to degrade lysozyme (Figure 10A). Similarly, BAL samples from mice infected with PAO1 or PDO240lasB had reduced amounts of lysozyme (Figure 10B). In contrast, BAL samples from mice infected with ΔlasB mutant still contained intact lysozyme. Densitometry quantifications indicated that by 18 hr, PAO1 and PDO240lasB had degraded 50-60% more lysozyme than the ΔlasB mutant in vitro (Figure 10C) and in vivo (Figure 10D). Thus, infection by *P. aeruginosa* likely induced the expression of lysozyme, which was subsequently degraded by LasB and other exoproteases produced by PAO1 or PDO240lasB. In contrast, due to inability of the ΔlasB mutant to elaborate adequate exoprotease activity, lysozyme remained intact.

Discussion

P. aeruginosa LasB is an important virulence factor during host infections. In addition to damaging tissues and disrupting intercellular junctions of lung epithelia, LasB also is capable of degrading components of the innate and acquired immune system, including cytokines and chemokines, antimicrobial peptides, immunoglobulins, serum complement factors, and surfactant protein [31,40,43–50,58,59]. However, most of these studies were performed *in vitro* with a combination of purified elastase and purified host components, or purified host component exposed to *P. aeruginosa*. Thus, direct proof of LasB-mediated proteolysis in lung infection is lacking. In this study, we provide evidence that *P. aeruginosa* elastase reduces the phagocytosis of the bacteria in mouse lungs by degrading SP-A, an important innate immune system component that opsonizes and membrane permeabilizes microbes. By comparing lung infections between SP-A+/+ and SP-A−/− mice using a combination of wild type *P. aeruginosa* strain PAO1 and isogenic mutant strain ΔlasB, we demonstrate that: (i) the ΔlasB mutant is attenuated in the lungs of SP-A+/+ mice but is fully virulent in the lungs SP-A−/− mice; (ii) inability to secrete LasB impairs the ability of *P. aeruginosa* to degrade SP-A both *in vitro* and in mouse lungs; (iii) LasB deficiency does not result in increased...
susceptibility of *P. aeruginosa* to membrane permeabilization by SP-
A; (iv) failure to degrade mSP-A results in increased opsonization
and enhanced clearance of the \(\Delta lasB \) mutant from the lungs of SP-
A\(^{+/-}\) mice; (v) substantial amounts of SP-A degradation by LasB
needs to occur before the phagocytosis of *P. aeruginosa* by professional phagocytes is significantly reduced. Collectively, these
results suggest that LasB affords a protective role to *P. aeruginosa*
by negating the ability of SP-A to serve as an opsonin that helps to
augment phagocytosis.

In vitro degradation of hSP-A by exoproteases of *P. aeruginosa* was
previously reported [43,52]. These authors observed the degra-
dation of hSP-A when the collectin was co-cultured with *P.
aeruginosa*, and with BAL fluids from the lungs of CF patients
chronically colonized by the bacterial pathogen. After purification
and mass spectroscopy analysis, the proteolytic enzyme was
identitified as *P. aeruginosa* elastase. By comparing the infection of
SP-A\(^{+/-}\) versus SP-A\(^{-/-}\) mouse lungs using both wild-type PAO1
and the \(\Delta lasB \) mutant, we reveal that LasB plays an important role
in negating the innate immunity role of mSP-A through pro
tolytic degradation of the collectin.

Apart from serving as an opsonin, SP-A also has the ability to
permeabilize microbial membranes, similar to antimicrobial
peptides [22,23,26,27,58,60]. It has been suggested that SP-A
may be one of the major lung innate immunity proteins that
permeabilize bacterial membranes [53]. However, we have
reported that wild-type *P. aeruginosa* is resistant to SP-A-mediated

Figure 5. Elastase deficient \(\Delta lasB \) mutant is attenuated in the degradation of SP-A during lung infection. (A-C) The amounts of intact mSP-A were not visibly changed at 6-hr (A) or 12- hr (B) post-infection. By 18 hr post-infection (C), intact mSP-A was reduced in the BAL fluid from PAO1- or PDO240lasB-infected SP-A\(^{+/-}\) mice (n = 6), suggesting that mSP-A was degraded in mouse lungs. In contrast, more abundant mSP-A was clearly visible in the BAL fluids from \(\Delta lasB \) (n = 8). C = Purified human SP-A. M1 – M8 = BAL of mice infected with *P. aeruginosa*. Western blot analyses were performed using a polyclonal antibody against SP-A. (D) Denitometry analysis of mSP-A degradation by PAO1, \(\Delta lasB \) and PDO240lasB in mouse lungs. The amounts of remaining mSP-A in \(\Delta lasB \) were set to the value of 100%. \(p < 0.05 \) when compared the amount of mSP-A in BAL fluids from lungs infected with PAO1 or PDO240lasB against BAL fluids from \(\Delta lasB \)-infected mice. (E) Mouse BAL from \(\Delta lasB \)-infected animals contains intact mSP-A that permeabilizes bacterial membranes. Pooled BAL fluids (from C) (50 \(\mu \)g/ml total proteins) were used for membrane permeabilization assays. hSP-A (50 \(\mu \)g/ml) was used as positive control. BAL fluids from PAO1 and PDO240lasB infected mice failed to permeabilize *E. coli* membranes. hSP-A and BAL samples from \(\Delta lasB \)-infected mice were able to permeabilize bacterial membranes of *E. coli* DH5\(\alpha \) at higher levels. Experiments were performed independently three times in triplicates. The mean + standard deviation from one representative experiment is shown. \(* p < 0.05 \) from 60 min onward when comparing the membrane permeabilization of *E. coli* by pure SP-A or BAL samples from \(\Delta lasB \)-infected mice against BAL samples from PAO1 or PDO240lasB-infected mice.

doi:10.1371/journal.pone.0027091.g005
membrane permeabilization [26,27]. *P. aeruginosa* confers resistance to SP-A-mediated membrane permeabilization by elaborating LPS, flagella, phosphoenolpyruvate phosphotransferase and salicylate biosynthesis, and exoproteases [22,26,27]. Especially interesting is the loss of flagella seems to reduce the ability of *P. aeruginosa* to synthesize adequate LPS, resulting in increased susceptibility to SP-A. Furthermore, flagella-deficiency also causes *P. aeruginosa* to produce less exoproteases [22]. As we have shown here, the loss of LasB, a major exoprotease in *P. aeruginosa*, renders the pathogen susceptible to increased clearance from lungs through opsonization, not membrane permeabilization. However, we have previously shown that the flagella-deficient mutants of *P. aeruginosa* do not exhibit increased susceptibility to SP-A-mediated opsonization. This discrepancy could be explained because the *in vitro* and *in vivo* phagocytosis studies of the flagella mutants were performed for only 60 - 120 minutes [26], and the data is similar to what we have observed for the ΔlasB mutant, where phagocytosis was carried out for 60 min (Fig. 5). However, as we have demonstrated, wild-type *P. aeruginosa* PAO1 induces a time-dependent degradation of SP-A with a corresponding reduction in SP-A-mediated opsonization at 6-hr or longer post-incubation *in vitro*, or 18 hr *in vivo*. In contrast, the ΔlasB mutant bacteria are unable to degrade adequate amounts of SP-A, and are increasingly cleared by hSP-A-augmented phagocytosis by RAW 246.7 macrophages through the 18 hr incubation. We are currently performing experiments to clarify the relationship between exoprotease deficiency of flagella mutants and susceptibility to SP-A-mediated opsonization.

Our comparative *in vivo* phagocytosis assays indicate that the difference between the number of PAO1 and ΔlasB bacteria internalized by pulmonary leukocytes are only apparent 18 hr post-infection, but not at earlier time points. This observation is reflective of the amounts of intact mSP-A remaining in the infected lungs, which are not substantially degraded until 18 hr post-

Figure 6. ΔlasB mutant bacteria are resistant to SP-A-mediated membrane permeabilization. Membrane permeabilization assays were performed with 1 x 10⁷ of E. coli DH5α or *P. aeruginosa* exposed to hSP-A (50 µg/ml) for 120 min. Three independent experiments were performed in triplicates. The mean + standard deviation from one representative experiment is shown. The membrane permeabilization activity of hSP-A against PAO1, ΔlasB and PDO240lasB was not statistically different among all three *P. aeruginosa* strains. *p<0.05 from 35 min onward when comparing the membrane permeabilization of DH5α against PAO1, ΔlasB and PDO240lasB.

doi:10.1371/journal.pone.0027091.g006

Figure 7. The ΔlasB mutant is unable to degrade and impede SP-A-mediated opsonization *in vitro*. (A) hSP-A opsonized and increased the phagocytosis of both wild-type PAO1 and ΔlasB bacteria in a concentration dependent manner. 1 x 10⁶ PAO1 or ΔlasB bacteria were treated with PBS alone or with increasing concentrations of hSP-A for 1 hr in the presence of 1 x 10⁶ cultured RAW 264.7 macrophages. The number of phagocytized bacteria was determined by gentamicin exclusion assay. The fold increase in phagocytosis was calculated based on the number of engulfed bacteria in macrophages treated with hSP-A versus PBS alone. Three independent experiments were performed in triplicates. The mean + standard deviation from one representative experiment is shown. *p<0.01 when comparing the internalized PAO1 or ΔlasB mutant pretreated with various concentrations of hSP-A versus PBS alone. (B) The ΔlasB mutant bacteria are more susceptible to hSP-A-mediated opsonization. hSP-A (20 µg/ml) was incubated with 1 x 10⁶ PAO1 or ΔlasB bacteria for 1, 6, 12, or 18 hr. At indicated time intervals, the bacteria-hSP-A mixture was added to 1 x 10⁶ cultured RAW 264.7 macrophages, and incubated for another 1 hr. The number of engulfed bacteria was examined as in (A), and normalized against PAO1 or ΔlasB bacteria phagocytized in the absence of hSP-A. Three independent experiments were performed in triplicates. The mean + standard deviation from one representative experiment is shown. *p<0.01 when comparing the number of phagocitized ΔlasB bacteria against internalized PAO1 bacteria.

doi:10.1371/journal.pone.0027091.g007
in mouse lungs infected with PAO1, macrophage and neutrophil chemotactic chemokines CCL5 and MCP1 against each cell type by using flow cytometry. (C) Profiles of neutrophils within BAL fluids were determined using antibody specific in mouse lungs infected with PAO1 or lasB bacteria. Macrophages and infiltrating leukocytes. Cells were centrifuged, At each time interval, infected mice (n = 5) were lavaged for bacteria against PAO1 bacteria. (B) Leukocyte profiles infected with 1 × 10⁷ of wild-type P. aeruginosa PAO1 or ΔlasB bacteria. At each time interval, infected mice (n = 5) were lavaged for macrophages and infiltrating leukocytes. Cells were centrifuged, washed and the engulfed bacteria were enumerated by gentamicin exclusion assay. Changes in bacterial phagocytosis were calculated based on the number of intracellular PAO1. The mean + standard deviation is shown. *p < 0.01 when comparing the number of internalized ΔlasB bacteria against PAO1 bacteria. (B) Leukocyte profiles in mouse lungs infected with PAO1 or ΔlasB bacteria. Macrophages and neutrophils within BAL fluids were determined using antibody specific against each cell type by using flow cytometry. (C) Profiles of macrophage and neutrophil chemotactic chemokines CCL5 and MCP1 in mouse lungs infected with PAO1, ΔlasB or PDO240lasB bacteria. doi:10.1371/journal.pone.0027091.g008

Figure 8. The ΔlasB mutant bacteria are more susceptible to SP-A-mediated opsonization in vivo. (A) SP-A−/− mice were intranasally infected with 1 × 10⁷ of wild-type P. aeruginosa PAO1 or ΔlasB bacteria. At each time interval, infected mice (n = 5) were lavaged for macrophages and infiltrating leukocytes. Cells were centrifuged, washed and the engulfed bacteria were enumerated by gentamicin exclusion assay. Changes in bacterial phagocytosis were calculated based on the number of intracellular PAO1. The mean ± standard deviation is shown. *p < 0.01 when comparing the number of internalized ΔlasB bacteria against PAO1 bacteria. (B) Leukocyte profiles in mouse lungs infected with PAO1 or ΔlasB bacteria. Macrophages and neutrophils within BAL fluids were determined using antibody specific against each cell type by using flow cytometry. (C) Profiles of macrophage and neutrophil chemotactic chemokines CCL5 and MCP1 in mouse lungs infected with PAO1, ΔlasB or PDO240lasB bacteria. doi:10.1371/journal.pone.0027091.g008

infection. These results suggest that the kinetics of mSP-A degradation are slower during lung infection. This is not surprising considering the complexity of the pulmonary immune response during an acute pneumonia infection. For example, it is known that neutrophil elastase also degrades SP-A [60,61]. Thus, at 18 hr post-P. aeruginosa infection when the neutrophil influx is prominent (Fig. 7B), it is possible that a combination of LasB, other minor P. aeruginosa exoproteases and neutrophil elastase all combine to afford a quantifiable difference in mSP-A degradation to result in an alteration in the phagocytosis of PAO1 and ΔlasB. However, the contribution of neutrophil elastase seems less likely because infections by both PAO1 and ΔlasB result in similar leukocytic infiltration. In addition, the loss of LasB function should trigger P. aeruginosa to overproduce other exoproteases to compensate for the loss of the former, or at least maintain the secretion of these exoproteases at the wild-type levels.

It is known that P. aeruginosa has a propensity to reduce the expression of many virulence factors such as elastase, lipase, exotoxin A, etc., during chronic infection of CF airways [33]. In contrast, many of these clinical CF isolates overproduced alginate, a major polysaccharide capsule, resulting in a mucoid phenotype. Mucoid P. aeruginosa are more resistant to phagocytosis. Previously, it was shown that LasB plays a role in the biosynthesis of alginate[62]. Overexpression of LasB in both mucoid and non-mucoid P. aeruginosa cells, stimulates alginate synthesis [62]. Mechanistically, this is achieved by a genetic rearrangement that triggers mucoidity in P. aeruginosa, which also allows retention of elastase in the periplasm in an active oligomeric form. The LasB cleaves the 16 kDa form of nucleoside diphosphate kinase (Ndk) to a truncated 12 kDa form. Processed Ndk is important for the generation of GTP required for alginate synthesis [62]. Thus, the loss of LasB may negatively affect alginate production, resulting in increased susceptibility to SP-A-mediated opsonization. Even though we cannot rule out this possibility, we predict that the effect of alginate is minimal since it is only present in limited amounts in non-mucoid P. aeruginosa.

Collectins, including SP-A, frequently bind and aggregate microbes. Aggregated microorganisms are phagocytosed at higher efficiency [2,3,7,16]. van Rozendaal et al reported that SP-D inhibits protein synthesis and hyphal outgrowth in Candida albicans [63]. These authors speculated that inhibition of protein synthesis was an indirect consequence of fungal aggregation restricting access of the organisms to essential nutrients. Undoubtedly, aggregation of ΔlasB mutant bacteria but not wild-type PAO1 at late stages of infection promotes more efficient clearance of the former. We are currently determining whether aggregation of ΔlasB bacteria is limiting access to nutrients.

One unresolved issue regarding our study is the relative contribution of SP-A versus other pulmonary innate immunity proteins in controlling P. aeruginosa infection. As we have discussed, exposure to SP-A increases the phagocytosis of P. aeruginosa by 2-3 fold, and that at late stages of acute pneumonia infection, the ΔlasB mutant bacteria are phagocytized better than the wild-type PAO1 because of the latter’s ability to degrade mSP-A. However, it was likely that a 2-3 fold increase in phagocytosis would not have accounted for ~100 fold increase in the clearance of ΔlasB mutant bacteria. ELISA assays indicated that the levels of neutrophil and macrophage chemotactic chemokines CCL5 and MCP1 in the mouse lungs infected by PAO1 versus ΔlasB were not significant different, suggesting that these chemokines were not susceptible to degradation by LasB. However, additional experiments suggest that LasB is also a major exoprotein that degrades lysozyme, which is known to have antimicrobial activities [57]. Thus, we cannot rule out that a synergistic or additive role of various pulmonary innate immunity proteins, which are susceptible to LasB degradation, may
have contributed to removal of ΔlasB mutant bacteria. We are currently examining in detail the susceptibility of these pulmonary innate immunity proteins to LasB.

In conclusion, our study demonstrates that ΔlasB mutant is unable to degrade mSP-A. This leads to more efficient clearance by SP-A-mediated opsonization in infected mouse lungs. Therapeutic strategies aiming at inactivating the activity of this exoprotease may enhance the clearance of P. aeruginosa, and reduce the morbidity and mortality during lung infections mediated by this versatile pathogen.

Materials and Methods

Chemicals

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO), unless stated otherwise.

Bacterial strains, media and growth conditions

The parental wild-type P. aeruginosa PAO1 strain was originally obtained from Dr. Michael Vasil as previously described [22,27,64]. The LasB-deficient mutant PDO240 (ΔlasB) was derived by gene replacement by McIver et al [65] in the same PAO1 strain. The genetically-complemented strain PDO240LasB was derived by transforming the ΔlasB mutant with the plasmid pKSM3 carrying a copy of the wild-type lasB gene [38]. Bacterial strains were grown in Luria-Bertani Broth (LB) for 16 hr at 37°C, resuspended in LB with 20% glycerol and frozen in aliquots at -80°C. Before each experiment, bacteria were cultured from frozen stocks in LB with or without antibiotics to stationary phase (OD600nm < 3.0). Bacterial density was determined spectrophotometrically and was correlated with numbers of viable bacteria by colony-forming units (cfu) after plating serial dilutions on agar plates. When required, antibiotics were used at the following concentrations: for P. aeruginosa, carbenicillin (300 μg/ml), gentamicin (30 μg/ml), spectinomycin (100 μg/ml), tetracycline (60 μg/ml); for Escherichia coli DH5α (66), carbenicillin (100 μg/ml) and tetracyclin (20 μg/ml).

Murine macrophage cell line

Murine RAW 264.7 macrophages (ATCC #TIB-71) were maintained in DMEM supplemented with 10% FBS, and 1% streptomycin and penicillin, respectively, at 37°C in the presence of 5% CO2.

Purification of human SP-A

Human SP-A was purified from the lung washings of patients with alveolar proteinosis as previously described [67]. Pure hSP-A samples were stored in membrane permeabilization buffer (5 mM Tris, 150 mM NaCl, pH 7.4) at -20°C. The preparations were deemed free of EDTA by a modified spectrophotometric assay, using β-phenanthroline–disulfonic acid as the indicator [68].

Figure 9. The ΔlasB mutant bacteria are more susceptible to SP-A-mediated aggregation in vivo. (A) In vitro aggregation of GFP-expressing wild-type P. aeruginosa PAO1 or ΔlasB bacteria co-incubated with hSP-A and observed under fluorescent microscopy. (B) In vivo aggregation of GFP-expressing wild-type P. aeruginosa PAO1 or ΔlasB (arrows) bacteria lavaged from mouse lungs 18-hr post-infection (n = 5) observed under FLUOVIEW FV300 confocal microscope.

doi:10.1371/journal.pone.0027091.g009
Protein assays

Protein concentrations were routinely determined by the bicinchoninic acid protein assay kit (BCA; Pierce Chemical Co., Rockford, IL, USA), using bovine serum albumin (BSA) as a standard. Protein samples were resolved on 8–16% SDS-PAGE gel and stained with Coomassie blue or silver nitrate.

Animal husbandry

Swiss Black SP-A-/- mice, a gift of J. Whitsett/T. Korfhagen, were derived from embryonic stem cells after disruption of the mouse SP-A gene by homologous recombination and were maintained by breeding with Swiss Black mice [69]. The SP-A null allele was backcrossed into the C3H/HeN genetic background through nine generations [25]. C3H/HeN control (SP-A+/+) mice were purchased from Harlan Laboratory (South Easton, MA). All comparisons made with the SP-A-/- mice were with age- and strain-matched C3H/HeN controls. All animals were housed in positively ventilated microisolator cages with automatic recirculating water located in a room with laminar, high efficiency particulate-filtered air. The animals received autoclaved food, water, and bedding. Mice were handled in accordance with approved protocols through the Institutional Animal Care and Use Committee at the University of Illinois at Urbana-Champaign.

Mouse infection

Single intranasal infections of SP-A+/+ and SP-A-/- mice (groups of 4-8) were performed with \(1 \times 10^7\) of PAO1, \(\Delta\text{lasB}\) or PDO240lasB bacteria as we have previously published [22,26,27]. After 18 hr, mouse lungs (\(n = 5\)) were harvested for bacterial enumeration, or broncho-alveolar lavaged (BAL) for proteins used in western blots or membrane permeabilization analyses (\(n = 5-8\)). Virulence attenuation was defined as the log 10 difference in CFU of various \(P.\ aeruginosa\) bacteria recovered from the lung tissues of SP-A+/+ versus SP-A-/- mice.

BAL

BAL was performed on \(P.\ aeruginosa\)-infected mice (\(n = 5\)) as we have previously described [22,27]. The trachea was exposed and...
intubated with a 1.7-mm outer diameter polyethylene catheter. BAL was performed by instilling PBS in 3x1 ml aliquots per mouse. In some experiments, the BAL samples were pooled for membrane permeabilization assays.

Flow cytometry of mouse lung leukocytes
BAL fluids from *P. aeruginosa*-infected mice (n = 5) were centrifuged and resuspended in flow cytometry staining buffer. Cells were pre-incubated with anti-mouse CD16/CD32 (Cat #: 14-0161, eBioscience, San Diego, CA) for 20 minutes on ice prior to staining to block non-specific Fc-mediated interactions. Mouse macrophages were labeled with primary antibody anti-mouse F4/80-PE (Cat #: 12-4801-80, eBioscience). Mouse neutrophils were labeled with anti-mouse Ly-6G-FITC (Cat #: 11-3931-81, eBioscience). Flow cytometric acquisition was performed using a C6 flow cytometer (Accuri, Ann Arbor, MI) and analyzed with CFlow Plus version 1.0.

Membrane permeabilization assays
The effect of SP-A on the cell membrane integrity of *P. aeruginosa* and *E. coli* DH5α was assessed by determining permeability to a phosphatase substrate, Enzyme-Labeled Fluorescence 97 (ELF-97) (Molecular Probes, Carlsbad, CA), as we have previously described [22,26,27]. hSP-A (50 μg/ml) or mouse BAL fluids (50 μg total protein) was incubated with 1x10⁸ stationary phase *P. aeruginosa* or *E. coli* bacteria/ml in 100 μl of membrane permeabilization buffer for 15 min at 37°C, and 100 μM ELF97 phosphatase substrate was added. Fluorescence was measured at excitation and emission wavelengths of 355 and 460 nm, respectively, for 90 - 120 min.

Exoprotease assays
Exoprotease activities were determined by the Sensolyte™ Red Protease Assay Kit (AnaSpec Inc, San Jose, CA, Cat #: 71140) using cell-free supernatants of stationary phase cultures from *P. aeruginosa* PAO1, ΔlasB or PDO240LasB grown in LB.

In vitro hSP-A and lysozyme degradation assays
P. aeruginosa strains PAO1, ΔlasB or PDO240LasB bacteria were cultured in LB overnight to late stationary phase. hSP-A (25 μg) or chicken lysozyme (5 μg) was added to 1x10⁸ *P. aeruginosa* cells resuspended in 250 μl of fresh LB supplemented with 2 mM CaCl₂ in the presence or absence of 0.6 mM ZnCl₂. At indicated time intervals, a 10 μl aliquot of each bacterial-SPA mixture or cell-free supernatants was mixed with loading buffer for SDS-PAGE and Western blot analysis.

Western blot
Western blot analyses were performed using standard protocols [70]. Briefly, protein samples of hSP-A, mouse BAL fluids, *P. aeruginosa* bacteria or culture supernatants were resolved by SDS-PAGE and electro-blotted onto Immobilon P polyvinylidene difluoride membranes (Millipore, Bedford, MA). The membranes were then incubated for 60 min at room temperature in blocking solution (PBS containing 3% BSA), followed by a 4-hr incubation with polyclonal antibody against hSP-A and mSP-A (Santa Cruz Biotecnoology Inc, Santa Cruz, CA), a polyclonal antibody against chicken and mouse lysozymes [57], or with a polyclonal antibody against LasB [38,39]. The membranes were hybridized with horseradish peroxidase-conjugated goat anti-mouse IgG secondary antibody. Immune complexes were visualized using the ECL Western Blotting Detection System (Amersham Biosciences, Piscataway, NJ) and Kodak BIOMAX (Kodak, Rochester, NY) X-ray films.

Supporting Information
Figure S1 SP-A-degrading ability is reduced in ΔlasB mutant bacteria *in vitro*. (A) hSP-A (25 μg) was incubated with 1x10⁸ PAO1, ΔlasB or PDO240LasB bacteria in LB supplemented with 0.6 mM ZnCl₂ for the indicated time intervals. hSP-A degradation was assessed by western blot analyses using the ECL Western Blotting Detection System (Amersham Biosciences, Piscataway, NJ) and horseradish peroxidase-conjugated goat anti-mouse IgG secondary antibody. **Panel S1A** shows the representative Western blot of wild-type PAO1, ΔlasB and PDO240LasB after 120 min incubation, while the panel **S1B** shows the quantification of hSP-A degradation presented as mean ± SD of 3 independent experiments.

ELISA assay
Protein levels of chemokines CCL5 and MCP1 in BAL or lung homogenates were determined by ELISA according to the manufacturer’s protocols (Invitrogen, Carlsbad, CA).

Statistical analysis
Statistical analysis was performed using the Student’s t-test and one-way analyses of variance (ANOVA). A significant difference was considered to be *p*<0.05.
Acknowledgments

We thank Professors Jeff Whitsett and Tom Korfhagen (Cincinnati Children’s Hospital) for the gift of the Swiss Black SP-A−/− mice, and Professor Frank McCormack (University of Cincinnati College of Medicine) for the C3H SP-A−/− mice. We thank Ms. Jennifer Ida for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: ZK YH BEW GWL. Performed the experiments: ZK YH BEW GWL. Analyzed the data: ZK YH BEW GWL. Contributed reagents/materials/analysis tools: ZK YH BEW GWL. Wrote the paper: ZK GWL.

References

1. Clements JA (1957) Surface tension of lung extracts. Proc Soc Exp Biol Med 95: 170–172.
2. Crouch E, Wright JR (2001) Surfactant proteins A and D and pulmonary host defense. Annu Rev Physiol 63: 521–554.
3. Hawgood S, Shiffer K (1991) Structures and properties of the surfactant-associated proteins. Annu Rev Physiol 53: 375–394.
4. Holmko, U, Thiel S, Jenaenius JC (2009) Collectins and ficolins: humoral hydrophilic lung surfactants proteins A and D with normal surfactant associated proteins. Annu Rev Exp Med 21: 547–578.
5. Pattle RE (1955) Properties, function and origin of the lining layer. Nature 175: 1125–1126.
6. Shepherd VL (2002) Distinct roles for lung collectins in pulmonary host defense. Am J Respir Cell Mol Biol 26: 257–260.
7. Wright JR (2005) Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 5: 58–68.
8. Henning LN, Azad AK, Parsa KV, Crowther JE, Tridandapani S, et al. (2008) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 175: 155–168.
9. LeVine AM, Lotze A, Stroud C, O’Donnel R, et al. (1996) Surfactant protein A mediated phagocytosis. J Biol Chem 271: 655–657.
10. Greis M, Bailer P, Demirov A (1997) Pulmonary surfactant in cystic fibrosis. Eur Respir J 10: 1983–1988.
11. Günther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, et al. (1996) Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med 153: 175–186.
12. LeVine AM, Lotze A, Stroud C, O’Donnel R, et al. (1996) Surfactant protein A mediated phagocytosis. J Biol Chem 271: 655–657.
13. Noah TL, Murphy PC, Alkja JJ, Leigh MW, Hull WM, et al. (2003) Bronchoalveolar lavage fluid surfactant protein-A and surfactant protein-D are inversely related to inflammation in early cystic fibrosis. Am J Respir Crit Care Med 168: 685–691.
14. Postle AD, Mander A, Reid KB, Wang JY, Wright SM, et al. (1999) Deficient hydrophic lung surfactant protein A and D with normal surfactant phospholipid molecular species in cystic fibrosis. Am J Respir Cell Mol Biol 20: 90–98.
15. Le Vine AM, Whitsett JA (2001) Pulmonary collectins and innate host defense of the lung. Microbes Infect 3: 161–166.
16. van Iwaarden F, Welmers B, Verhoef J, Haagsman HP, van Golde LM (1990) In vitro binding of SIRPα with calreticulin/CD91, lung collectins act as dual function surveilance molecules to suppress or enhance inflammation. Cell 115: 13–23.
17. Giri AD, McGeown JX, Levine AM (2009) Surfactant protein A modulates cell surface expression of CR3 on alveolar macrophages and enhances CR3-mediated phagocytosis. J Biol Chem 284: 7495–7504.
18. Jensen WJ, McPhillips KA, Dickinson MG, Linderman DJ, Morimoto K, et al. (2009) Surfactant protein-A-mediated clearance of Pseudomonas aeruginosa via interaction with SIRP alpha. Am J Respir Crit Care Med 178: 158–167.
19. Khazaie P, Zhang Y, Guo S, Lian L, Song L, et al. (1998) The type III secretion system of Pseudomonas aeruginosa: Degrade Human RANTES, MCP-1, and ENA-78. J Interf Cyto Res 23: 307–318.
20. Horvat RT, Clabaugh M, Duval-Joche C, Parmely MJ (1989) Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect Immun 57: 1660–1674.
21. Kim DL, Saun JP, Shimizu T, Nishitani C, et al. (2006) Surfactant protein A is mediated by TRL4 and MD-2 and regulates inflammatory cellular response. Importance of supratrimeric oligomerization. J Biol Chem 281: 21771–21780.
22. Pan X, Wang Z, Li Z, Wang H, et al. (2007) The flagellum of Pseudomonas aeruginosa is required for resistance to clearance by surfactant protein A. PLoS ONE 2: e564.
23. Farrell PM, Collins J, Broderick LS, Rock MJ, Li Z, et al. (2009) Association between murine Pseudomonas infection and bronchiectasis in children with cystic fibrosis. Radiology 252: 534–543.
24. Frick R, Hata J (1989) Pathogenic mechanisms in lung disease caused by Pseudomonas aeruginosa. Chest 95(Suppl): 206S–216S.
25. Kurihara K, Kajikawa O, Saya T, Ohara M, Gropper M, et al. (1999) Pathogenesis of septic shock in Pseudomonas aeruginosa pneumonia. J Clin Invest 104: 743–750.
26. Murphy TF, Brauer AL, Eichberger K, Loblbs M, Grove L, et al. (2006) Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177: 853–860.
27. Zoumot Z, Wilson R (2010) Respiratory infection in non-cystic fibrosis bronchiectasis. Curr Opin Infect Dis 23: 163–170.
28. Loo GW, Hazelst J, Beiragan BE (2005) Modulation of lung epithelial functions by Pseudomonas. Trends Microbiol 13: 389–397.
29. Engel J, Balachandran P (2009) Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12: 61–66.
30. Hanser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7: 654–665.
31. Hood RD, Singh P, Hsu F, Güvenen T, Carl MA, et al. (2010) A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 5–27.
32. Sato H, Frank DW (2004) EsoU is a potent intracellular phospholipase. Mol Microbiol 53: 1279–1290.
33. McVey KS, Kreuder E, Ölmman DB (2004) Identification of residues in the Pseudomonas aeruginosa elastase propeptide required for chaperone and secretation activities. Microbiol 150: 3969–3977.
34. Morihara K (1964) Production of elastase and proteinase by Pseudomonas aeruginosa. J Bacteriol 87: 745–757.
35. Aghani AO (1986) Pseudomonas aeruginosa and epithelial permeability: role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 15: 132–140.
36. de Bentzmann S, Polette M, Zahm JM, Himarjky, J, Kläckzy, C, et al. (2000) Pseudomonas aeruginosa virulence factors delay airway epithelial wound repair by altering the actin cytoskeleton and inducing alteration of epithelial matrix metalloproteinase-2. Lab Invest 80: 209–219.
37. Alcorn JR, Wright JR (2004) Degradation of pulmonary surfactant protein D by Pseudomonas aeruginosa elasate abrogates innate immune function. J Biol Chem 279: 30871–30879.
38. Mariencheck W, Alcorn JR, Palmer SM, Wright JR (2003) Pseudomonas aeruginosa elastase degrades surfactant proteins A and D. Am J Respir Cell Mol Biol 28: 520–537.
39. Schaud PA, Beavers RA, Navis TI, Lebar D, Hanne LF, et al. (1987) Cloning and characterization of elastase genes from Pseudomonas aeruginosa. J Bacteriol 169: 2601–2606.
40. Dietel LN, Liberati DM, Amin PB, Diglio CA (1998) Cleaveage of SIgA by gram-negative respiratory pathogens enhance neutrophil inflammatory potential. J Trauma 66: 1336–1342.
41. Schultz DR, Takeda KD (1974) Elastase of Pseudomonas aeruginosa. J Bacteriol 169: 2601–2606.
52. Beatty AL, Malloy JL, Wright JR (2005) *Pseudomonas aeruginosa* degrades pulmonary surfactant and increases conversion in vitro. Am J Respir Cell Mol Biol 32: 128–134.

53. Kuzmenko AI, Wu H, Wan S, McCormack FX (2005) Surfactant protein A is a principal and oxidation-sensitive microbial permeabilizing factor in the alveolar lining fluid. J Biol Chem 280: 25913–25919.

54. LeVine AM, Kurak KE, Bruno MD, Stark JM, Whitsett JA, et al. (1998) Surfactant protein-A-deficient mice are susceptible to *Pseudomonas aeruginosa* infection. Am J Respir Cell Mol Biol 19: 780–788.

55. Mariencheck WL, Savo J, Dong Q, Tino MJ, Wright JR (1999) Surfactant protein A enhances alveolar macrophage phagocytosis of a live, mucoid strain of *Pseudomonas aeruginosa*. Am J Physiol 277: L777–786.

56. Kong F, Vong L, Chen Y, Ran H, Meyers M, et al. (2006) *Pseudomonas aeruginosa* pyocyanin inactivates lung epithelial vacuolar ATPase-dependent cystic fibrosis transmembrane conductance regulator expression and localization. Cell Microbiol 8: 1121–1133.

57. Markert P, Faust N, Graf T, Na CL, Weaver TE, et al. (2004) Comparison of the microbicidal and muramidase activities of mouse lysozyme M and P. Biochem J 380: 393–392.

58. Cazañas O, García-Verdugo I, Kround KM, Casals C (2008) SP-A permeabilizes lipopolysaccharide membranes by forming protein aggregates that extract lipids from the membrane. Biophys J 95: 3287–3294.

59. Schmidtchen A, Frick IM, Anderson E, Tapper H, Björck L (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Biochim Biophys Acta 1577: 285–291.

60. Liau DF, Yin NX, Huang J, Ryan SF (1996) Effects of human polymorphonuclear leukocyte elastase upon surfactant proteins in vitro. Biochim Biophys Acta 1302: 117–128.

61. Pison U, Tam EK, Caughey GH, Havengol S (1989) Proteolytic inactivation of dog lung surfactant-associated proteins by neutrophil elastase. Biochim Biophys Acta 992: 251–257.

62. Kamath S, Kapatrial V, Chakrabarty AM (1998) Cellular function of elastase in *Pseudomonas aeruginosa*: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol Microbiol 30: 933–941.

63. van Rozendaal BA, van Spriel AB, van De Winkel JG, Haagman HP (2000) Role of pulmonary surfactant protein D in innate defense against *Candida albicans*. J Infect Dis 182: 917–922.

64. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jost J, et al. (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in *Pseudomonas aeruginosa*. Mol Microbiol 50: 809–824.

65. McIver KS, Kessler E, Olson JC, Ohman DE (1995) The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in *Pseudomonas aeruginosa*. Mol Microbiol 18: 887–899.

66. Bethesda Research Laboratories (1986) BRL pUC host: E. coli DH5α competent cells. Focus 8(2): 9.

67. Suwabe A, Mason RJ, Voelker DR (1996) Calcium dependent association of surfactant protein A with pulmonary surfactant: application to simple surfactant protein A purification. Arch Biochem Biophys 327: 285–291.

68. Kratochvil B, White MC (1965) Spectrophotometric determination of microgram quantities of (ethylenedinitrilo)tetraacetic acid with bis(2,4,6-tripyridyl-S-triazine)iron(II). Anal Chem 37: 111–113.

69. Korfhagen TR, Bruno MD, Ross GF, Hoeckman KM, Ikogami M, et al. (1996) Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci U S A 93: 9594–9599.

70. Sambrook J, Fritsch EF, Maniatis T (1989) *Molecular Cloning: a Laboratory Manual*. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.