Received: 2019.6.11

Accepted: 2019.12.11

J-STAGE Advance Published Date: 2020.2.14
Development of an effective microsatellite marker system to determine the genetic structure of *Meriones meridianus* populations

Xin Liu¹, Xiuyi Yu¹, Yimei Xu², Xiaoyan Du¹, Xueyun Hao¹, Changlong Li¹, Jianyi Lv¹, Meng Guo¹, Jing Lu¹, Zhenwen Chen¹

¹Department of Medical Genetics and Developmental Biology, Capital Medical University, Beijing 100069, China
²Center for Laboratory Animal Research of Xinjiang, Urumqi 830002, China

Correspondence: Zhenwen Chen, Capital Medical University, Beijing 100069, China, czwenteam@163.com

Running title: Microsatellite marker of *Meriones meridianus*
ABSTRACT

Understanding the genetic quality of the gerbil, Meriones meridianus, plays an important role in the study of medical biology. However, no effective system has been established for evaluating a population’s genetic diversity to date. In the present study, we established a set of reasonable evaluative systems based on microsatellite markers of the Mongolian gerbil by using the method of cross-amplification of species. Following electrophoresis analysis, short tandem repeat (STR) scanning, and sequencing, 11 microsatellite loci were identified by matching the criteria characteristics and were used to evaluate the genetic diversity of two stocks of Meriones meridianus: Meriones meridianus jei Wang, 1964 (M. m. jei) and Meriones meridianus cryptorhinus Blanford, 1875 (M. m. cryptorhinus) from Xinjiang, China. The microsatellite loci screened were highly polymorphic and were suitable for genetic quality control of Meriones meridianus. In addition, the quality of the non-bred M. m. jei and M. m. cryptorhinus strains in our study is sufficient for them to be promising stocks in the future for the farmed animal industry.

Key words: biomarker, genetic diversity, Meriones meridianus, microsatellite loci
INTRODUCTION

The gerbil, *Meriones meridianus* (Rodentia, Muridae, Gerbillinae), otherwise known as the midday gerbil, belongs to Rodentia, Cricetidae, *Meriones*, is native to the sandy deserts in Afghanistan, China, Iran, Azerbaijan, Kazakhstan, Kyrgyzstan, Mongolia, Russia, Tajikistan, Turkmenistan, and Uzbekistan [26]. It also widely distributed in the Inner Mongolia Xinjiang Plateau in China.

Meriones meridianus can serve as an animal model for biological and medical research in many aspects. For several decades, *Meriones meridianus* has been used as an animal model for research, human medicines, and animal anti-disease breeding, such as studies of echinococcosis [21], viral hepatitis [39], the sensibility of plague virus [31], a hantavirus infection model [38], a helicobacter infection model [9], and the duration and characteristics of the course of cutaneous leishmaniasis [27]. *Meriones meridianus* has also benefited a great deal of research on ethology [30].

So far, the major physiological and biochemical indices, including reproductive performance, reproductive biology [32], structure of parasympathetic ganglia [13], and thermogenesis parameters [2], have been systematically evaluated for *Meriones meridianus* populations. In order to breed better varieties of this species, two stocks, *Meriones meridianus jei* Wang, 1964 (*M. m. jei*) and *Meriones meridianus cryptorhinus* Blanford, 1875 (*M. m. cryptorhinus*), were captured in Turpan and Luntai areas of Xinjiang, china, in June 1992 [35]. Currently, forty-three generations of these stocks have been bred, and biochemical information of the stocks has been estimated from their urine [37]. The *Meriones meridianus* individuals used throughout this study were originated from the fortieth generations.

The genetic quality of *Meriones meridianus* has an important influence on the accuracy, repeatability, and scientificity of medical biological research results. If genetic quality
standards have not been established, it is difficult to monitor the genetic quality within each stock and unify the quality among a population, and this has become one of the obstacles for widespread monitoring of genetic quality. While some basic research on the genetic diversity of *Meriones meridianus* has been conducted using molecular biology methods [10], to this day, there are still no suitable standards for genetic evaluation of *Meriones meridianus*.

Many methods are utilized to monitor genetic variation, such as biochemical marker gene detection, immunological trait marker gene detection, and DNA polymorphism. Among them, simple sequence repeats (SSRs) or microsatellites (MS) are extremely valuable tools for assessing population genetic diversity because of their distinctive features [29]. Microsatellites are characterized by short tandem repeats (STRs) of 1 to 6 nucleotide motifs, which widely spread in a random manner throughout the eukaryotic genome. They are commonly used in a wide range of applications, such as the evaluation of genetic diversity and population structure patterns [3, 16]. In previous studies, microsatellites have also been used as biomarkers for monitoring heritable traits in rodents [7, 33]. Because the whole genome of *Meriones meridianus* has not been sequenced completely, it is difficult to obtain suitable microsatellite markers by genome sequencing. It has been reported that cross-species amplification of species microsatellite loci in related species is an effective way to isolate microsatellite markers [14, 15, 22, 24]. Since the midday gerbils and Mongolian gerbils are the closely related species, the present study aimed to identify microsatellite loci for *Meriones meridianus* on the basis of a significant microsatellite marker system (28 loci markers) using the method of cross-amplification of species, which has already been established for the Mongolian gerbil [8]. On the basis of this research, we discuss the genetic structure of the *Meriones meridianus* population in the Xinjiang area of China.
MATERIAL AND METHODS

Ethics

All of the experimental procedures were conducted in accordance with the Guidelines of the Capital Medical University Animal Experiments and Experimental Animals Management Committee (No.AEEI-2017-032).

Sample background and collection

All the samples were available from the Center for Laboratory Animal Research of Xinjiang district in China. Forty *Meriones meridianus* subspecies (20 *M. m. jei* and 20 *M. m. cryptorhinus*; 1.5 months old; half male and half female; weight, 80-100g and 60-80g respectively) were captured in the Turpan and Luntai areas of Xinjiang in June 1992. The locations of the sampled gerbil populations chosen as the original gerbils to be bred are shown in Figure 1. *Meriones meridianus* individuals were bred at 17°C-26°C with a relative humidity of 30%-65% and were placed in an experimental animal room with visible light and darkness for 12 hours, respectively. *Meriones meridianus* individuals captured in the wild will likely fight if housed together, causing injury or death; therefore, one mature female and one mature male or two mature females and one mature male were selected for pairing. Pairings were determined by observation of several hours without fighting. The number of litters ranged from 1 to 8, and the average ratio of males to females was 1.4:1.0. To date, 43 generations of gerbils have been bred. The *Meriones meridianus* individuals used in this study originated from the fortieth generations. In total, 63 DNA samples were extracted from 39 *M. m. jei* and 24 *M. m. cryptorhinus* individuals and preserved in sterile tubes at -80°C.

DNA Extraction

In order to develop microsatellite loci for *Meriones meridianus*, total genomic DNA was extracted from 63 tail tissue samples following a previously described method [6]. The
concentration and purity of DNA from each sample were determined by A260/280 measurement using a microplate absorbance reader system (Bio-Rad, Hercules, CA, USA), and the sample quality was further evaluated by 0.5% (w/v) agarose gel electrophoresis. DNA was then diluted to 100ng/μl and stored at -20°C for later use as polymerase chain reaction (PCR) templates.

PCR procedure

For each 20 μl PCR amplification, the following reagents were used: 2 μl 10X buffer, 1.0 μl each of 10 μM primer; 1.0 μl dNTPs (100 μM; Takara Co. Ltd., Tokyo, Japan), 0.2 μl Taq high-fidelity DNA polymerase (1.0U; Takara), and 1.0 μl template DNA (50-100 ng). Amplifications were performed in a gradient thermal cycler (ALS1296, Bio-Rad, Hercules, CA USA) using the following protocol: Pre-denaturation was performed at 94°C for 5 min, and then 35 cycles of denaturation were performed at 94°C for 30 s. The annealing temperature was set by a gradient PCR approach the temperature range of 45°C to 67°C. The optimum annealing temperature was selected, which allowed clear DNA bands to be distinguished in agarose gel. Extension was then performed at 72°C for 30s, followed by a final extension at 72°C for 7 min. Amplified products were stored at 4°C for further analysis. The genotypes of 28 microsatellites loci for 63 Meriones meridianus individuals were detected using PCR with fluorescent primers, each labeled with a different commercially available dye label (FAM, HEX, TAMRA).

Agarose gel electrophoresis

Agarose was weighed and added into 0.5x TBE (Solarbio, Beijing, China) to make 2% gel, and ethidium bromide (EB) was added to a final concentration of 0.5μg/ml. After the electrophoresis for 35 min at 120 V, images of the agarose gel were observed by ultraviolet imager and analyzed.

Microsatellite loci selection
All scanned data were analyzed with Gene Scan 3.7. The results revealed that there are two types of species, those that were homozygous, which mainly display a single waveform, there were both homozygous individuals, which mainly had no polymorphic positions, and those that were heterozygous, which had polymorphic positions, among the animals studied. The polymorphic microsatellite loci were selected for cloning and sequencing by Ruibiotech Company (Beijing, China). Finally, by searching PubMed, we identified the appropriate target sequence.

Analysis of population genetic structure

The population genetic diversity and genetic structure were assessed using 11 microsatellite loci. Alleles of loci were classified as A, B, C or D according to amplified fragments. Genotypes of each microsatellite locus in all samples were input into POPGENE 3.2 in the form of AB and BB to observe significant genetic structure indices, including the observed and effective numbers of alleles, Shannon information index, observed and effective heterozygosity, and polymorphic loci (Poly-loci), were calculated for genetic variation analysis within the populations. In addition, the genetic distance between *M. m. jei* and *M. m. cryptorhinus* was measured according to the method for Nei’s standard distance [18].

RESULTS

Selection of microsatellite loci

Previous studies have suggested that 28 microsatellite loci are optimal for identifying the Mongolian gerbil [8]. Since *Meriones meridianus* and the Mongolian gerbil both belong to the subfamily Gerbillinae, we can make use of the Mongolian gerbil microsatellite loci for filtering. The first round of selection was performed with 28 microsatellite loci of the Mongolian gerbil through PCR assays. After initial PCR assays, 19 primer sets generated the desired amplification products under modified conditions. Partial results of agarose
gel electrophoresis are shown in Figure 2, in which individual strips appear in pure individuals and two strips appear in hybrid individuals. Further STR screening, shown in Figure 3, revealed that 13 loci matched microsatellite criteria. Primer sequences, annealing temperatures, range of allele genes, and GenBank accession numbers for the 13 microsatellites are shown in Table 1. To further verify the results obtained from STR scanning, we sent microsatellite loci to Ruibiotech Company (Beijing, China) to confirm the sequencing. The sequencing was performed using an ABI3730XL auto-sequencing machine system. Partial results of cloning and sequencing are shown in Figure 4. With the exception of D8Mit56 and Mit26, all loci were polymorphic and showed different degrees of variability. D8Mit56 and Mit26 were discarded, as they had one allele in M. m. jei or M. m. cryptorhinus population for further verification. As shown in Table 2, AF200941, AF200942, AF200943, AF200944, AF200945, and AF200947 loci were significantly polymorphic. Based on the results of PCR, STR scanning, and sequencing, an appropriate microsatellite loci system was established.

Analysis of the genetic structure of Meriones meridianus

Samples of 39 M. m. jei and 24 M. m. cryptorhinus individuals were screened for the analysis of the genetic structures of 11 polymorphic MS loci. Supplementary Table 1 shows the genotypes of each microsatellite locus in all of the samples. The average effective number of alleles, heterozygosity, and average observation of heterozygosity as well as other factors, were analyzed in the determination of genetic variation in each population. As shown in Table 2, not all loci were equally variable. The average observed numbers of alleles in the two populations were 6.1818 and 2.8182, the average effective numbers of alleles were 3.6546 and 1.9946, the average Shannon information indices were 1.3028 and 0.6852, the average observed heterozygosity values were 0.6143 and 0.5000, and the average expected heterozygosity values were 0.6166 and 0.4118, respectively.
The average Nei’s genetic distances were 0.6087 and 0.4032. The fixation index (F_{ST}) value, including all loci, was estimated to be 0.2585, which indicated a significant genetic differentiation between the *M. m. jei* and *M. m. cryptorhinus* populations.

DISCUSSION

M. meridianus has been widely used as a valuable animal model in many medical fields [21, 31]. Its quality has an important influence on the accuracy, repeatability and scientificity of the research results. In the present study, we sought to construct a system for evaluating genetic quality using microsatellite markers for *Meriones meridianus* gerbil populations in China, which will be helpful for genetic quality control and monitoring of these populations. Molecular marker technology has brought with it the opportunity for the genetic breeding of experimental animals. For example, DNA sequencing [5], random amplified polymorphic DNA (RAPD) [17], amplified fragment length polymorphism (AFLP) [23], restriction fragment length polymorphisms (RFLP) [1], and other technologies have become powerful tools for genetic diversity analysis. Among these molecular biomarkers, the stability of the RAPD technology has been inadequate, while RFLP and other methods have required large amounts of high purity DNA. In the present study, microsatellite DNA polymorphism markers were selected as primers on both sides of the site, and PCR amplification was performed with high repeatability and comparability. Therefore, microsatellite DNA polymorphism markers represent an ideal tool for genetic diversity studies. Screening of microsatellite markers from near-source species is a feasi-
ble method [25, 33]. This approach is particularly useful for species that do not have sequence information available. Mongolian gerbil is a gerbil strain that has been widely used in a variety of studies [4, 11, 28]. In a previous study, we have screened 28 microsatellite marker systems to determine the genetic quality of a closed group of Mongolian gerbils through the use of cross-amplifying technology, using microsatellite sites in mice [6]. The genetic detection system was effectively applied to population quality monitoring for Mongolian gerbils in that study. Since midday gerbils and Mongolian gerbils are the closely related species, after further experiments, microsatellite loci suitable for Meriones meridianus were screened from 28 loci of Mongolian gerbils in the present study.

The results showed that 11 pairs (39%) could be stably amplified and had a single amplified stripe in agarose gel electrophoresis. After gene analysis of synthetic fluorescent primers, 11 microsatellite loci with good polymorphism and high heterozygosity were obtained. The results showed that it is feasible to obtain microsatellite sites by cross-amplification between near-source species (Meriones meridianus and Mongolian gerbils).

In our research, genetic variation between the two Meriones meridianus strains was studied using 11 microsatellite markers. Genetic variation in the group was determined on the basis of average effective heterozygosity, average effective allele number, average Shannon index, and other analytical indices used for estimating group genetic variation.

Nei (1987) stated that the mean number of alleles for different populations is a fair indicator of genetic variation and mutation drift balance. A higher mean effective number of alleles indicate that a population is able to maintain the original gene and avoids new var-
iation in the case of pressures from genetic drift and artificial selection [20, 29]. In the *M. m. jei* group, the observed number of alleles varied from 1 to 12, with a mean of 6.1818, whereas the effective number of alleles varied from 1 to 6.6419, with a mean of 3.6546. The results indicate that the alleles were stable and evenly distributed in the population.

In the *M. m. cryptorhinus* group, the observed number of alleles varied from 1 to 5, with a mean of 2.8182, and the effective number of alleles was 1 to 3, with a mean of 1.9946. The effective number of alleles was less than the actual observed number of alleles, which indicates that the allele distribution of the population was uneven; however, the fact that the population of this group was so small, only 24 animals, may have affected the number of effective alleles of this group.

Average effective heterozygosity is an important index that reflects the genetic diversity of a population. When the average effective heterozygosity of a group is less than 0.5, its genetic diversity is low; low genetic variability (heterozygote deficiency) coupled with inbreeding is the consequence of genetic bottleneck resulting from overexploitation and habitat-related events. The heterozygosity of an ideal closed group is between 0.5 and 0.7. In the *M. m. jei* stock, the average observed heterozygosity (HO) was 0.6143, and the average expected heterozygosity (HE) was 0.6166. This suggests that the population had high genetic diversity, which may be due to long-term natural selection for adaptation, the mixed nature of the breeds, or historic mixing of strains of different populations [12]. In addition, it was found that the mean observed heterozygosity was similar to the mean expected heterozygosity, indicating that there was no naked allele or inbreeding within this population. The results of this research suggested that the hybrid standard was strictly followed during the breeding process for this population, thus obtaining good genetic variation and diversity.
The above indicates that the *M. m. jei* group will be able to adapt to changing environments and could be the ideal closed group in the future. According to the existing data, *M. m. cryptorhinus* stock (mean heterozygosity = 0.4118; mean allelic number = 1.9946) with less genetic variability will be unlikely to resist selection, mutation, and genetic drifting. This is likely the result of rapid population expansion from a small population. In addition, not many microsatellite loci (11) and breeds (24) were analyzed within the *M. m. cryptorhinus* stock; therefore, additional markers and samples are required to increase the accuracy and generality of the results. Thus, breeding strictly with non-inbred strains, which can increase genetic variation, is necessary in the future.

The *F*_{ST} is the correlation between two gametes randomly drawn from each subgroup and measures the degree of genetic differentiation and the heterogeneity of gene frequencies in sites studied [19]. The value of *F*_{ST} can range from 0 to 1. Wright had stated that values ranging from 0-0.05 indicate “little” genetic differentiation, those from 0.05–0.15 indicate “moderate” genetic differentiation, and those from 0.15–0.25 indicate “great” great genetic differentiation [36]. The higher the *F*_{ST}, the greater the implied different of a population from other populations. In this study, *F*_{ST} values (*F*_{ST} = 0.2585) indicated a significant *F*_{ST} genetic differentiation between the *M. m. jei* and *M. m. cryptorhinus* groups. According to genetic data, *M. m. jei* [34] belongs to *M. penicilliger* [10], and *M. m. cryptorhinus* from the south of the Taklamakan Desert belongs to *M. psammophilus* [10, 40]. Based on the distance and barriers, there is a low genetic flow between the two sub-populations, which can be attributed to the differences between the two groups.

Evaluation of genetic variation and patterns of population/species genetic diversity provides insight into the breeding methods, which could to rapid changes in methods and conservation. In this study, we developed a microsatellite loci system for identifying the stock of *Meriones meridianus*. However, the ideal microsatellite tag would ideally be able
to meet certain conditions. For instance, Barker proposed the analysis of at least 25 samples for each variety. The number of microsatellites should not be less than 25 (4 alleles per locus), and there should be no association between the position points. Currently, 11 microsatellites are not sufficient to establish a perfect marker system; further studies on the candidate sites of *Meriones meridianus* are required to determine the genetic structure of their populations.

Use of highly polymorphic microsatellite markers as genetic tags plays an important role in monitoring *Meriones meridianus* as a laboratory animal model; for instance, in our research, microsatellite loci system were shown to be powerful markers for quantifying genetic variations within and between populations of *M. m. jei* and *M. m. cryptorhinus* species. Population gene frequency is an important index of *Meriones meridianus* genetic variation sizes, which should be taken into account in the modeling period. It would be useful to keep the base genetic profiles of representative samples of *Meriones meridianus* in a holding facility.

In conclusion, there have been few genetic studies of microsatellite DNA markers in *Meriones meridianus*, since DNA markers are very rare. To date, no detailed information is available on the genetic diversity of cultured stocks of *Meriones meridianus*. In this study, we identified appropriate microsatellite markers for *Meriones meridianus* and elucidated ways to enrich their genetic database. Continuous monitoring of the genetic structure using microsatellite markers is essential for the successful propagation of *Meriones meridianus*.

Taken together, the combination of 11 loci selected in this experiment provides a good choice for genetic monitoring of the quality and the population genetic structure of outbred stocks.

Acknowledgments
This study was funded by the National Natural Science Foundation of China (No. 31772545), Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan (No. IDHT20170516) and the Science and Technology Plan of Beijing Municipal Education Commission (No. KM201910025027).

Figure Legend

Figure 1. Maps of the *Meriones meridianus* populations showing the sample locations in the Turpan and Luntai areas in Xinjiang, China.

Figure 2. PCR amplification of the gerbil genome by primers for microsatellite loci: AF200943, which showed heterogeneity and homogeneity for the *M. m. jei* (A) and *M. m. cryptorhinus* (B) populations of *Meriones meridianus* gerbils in this study.

Figure 3. STR loci AF200941 (A), AF20043 (B), AF200944 (C), and AF200945 (D) showed microsatellite polymorphisms in *Meriones meridianus* gerbils.

Figure 4. Cloning sequences showing *Meriones meridianus* genomes generated at the loci AF200943 (up) and AF200945 (down) by Mongolian gerbils.

Table 1. Characteristics of the 13 microsatellite loci isolated from *Meriones meridianus* gerbils. AN, GenBank accession No.; AT, optimized annealing temperature; Mg$^{2+}$ (mM), concentration of Mg$^{2+}$ (mM) for PCR; Chr, position on mouse chromosome of the corresponding mouse locus; Rng, allele range.

Table 2. Summary of the statistics for 11 microsatellite loci in the two *Meriones meridianus* gerbil populations. Obs-alle, observed number of alleles; Eff-alle, effective number of alleles; Obs-Het, observed heterozygosisty; Exp-Het, expected heterozygosisty; Nei’s, Nei’s genetic variation; F_{ST}, fixation index, Shan-, shannon’s information index analyzed for 11 loci.

Supplementary Table 1. Genotypes of each microsatellite locus in the two *Meriones meridianus* gerbil populations.
References:

1. Akhavan, A.A., Yaghoobi-Ershadi, M.R., Khamesipour, A., Mirhendi, H., Alimohammadian, M.H., Rassi, Y., Arandian, M.H., Jafari, R., Abdoli, H., Shareghi, N., Ghanei, M., and Jalali-zand, N. 2010. Dynamics of Leishmania infection rates in Rhombomys opimus (Rodentia: Gerbillinae) population of an endemic focus of zoonotic cutaneous leishmaniasis in Iran. Bulletin de la Societe de pathologie exotique (1990). 103: 84-9.

2. Bao, W.D., Wang, D.H., Wang, Z.W. 2002. Nonshivering thermogenesis in four rodent species from Kubuqi desert, Inner Mongolia, China. Folia Zool. 511: 9-13.

3. Bilgic, H.B., Unlu, A.H., Aksulu, A., Bakirci, S., Hacilarlioglu, S., Eren, H., Weir, W., and Karagenc, T. 2017. Selection of Genetic Markers to Determine Diversity in Theileria annulata Populations after Recombination. Turkiye Parazitoloji Dergisi. 41: 9-18.

4. Dai, F., Zhuo, X., Kong, Q., Du J, Yu, H., Zhou, S., Song, X., Tong, Q., Lou, D., Lou, Q., Lu, L., Lv, Y., Sa, X., and Lu, S. 2019. Early Detection of Toxoplasma gondii Infection In Mongolian Gerbil By Quantitative Real-Time PCR. J. Parasitol. 105: 52-57.

5. Dobigny, G., Aniskin, V., Granjon, L., Cornette, R., and Volobouev, V. 2005. Recent radiation in West African Taterillus (Rodentia, Gerbillinae): the concerted role of chromosome and climatic changes. Heredity. 95: 358-368.

6. Du, X., Chen, Z., Li, W., Tan, Y., Lu, J., Zhu, X., Zhao, T., Dong, G., and Zeng, L. 2010. Development of Novel Microsatellite DNA Markers by Cross-Amplification and Analysis of Genetic Variation in Gerbils. J. Hered. 101: 710-716.

7. Du, X., Cui, J., Wang, C., Huo, X., Lu, J., Li, Y., and Chen, Z. 2013. Detected microsatellite polymorphisms in genetically altered inbred mouse strains. Mol. Genet. Genomics. 288: 309-316.

8. Du, X.Y., Li, W., Sa, X.Y., Li, C.L., Lu, J., Wang, Y.Z., and Chen, Z.W. 2015. Selection of an effective microsatellite marker system for genetic control and analysis of gerbil populations in China. GENETICS AND MOLECULAR RESEARCH. 14: 11030-11042.

9. Goto, K., Jiang, W., Zheng, Q., Oku, Y., Kamiya, H., Itoh, T., and Ito, M. 2004. Epidemiology of Helicobacter infection in wild rodents in the Xinjiang-Uygur autonomous region of China. Curr. Microbiol. 49: 221-3.

10. Ito, M., Jiang, W., Sato, J.J., Zhen, Q., Jiao, W., Goto, K., Sato, H., Ishiwata, K., Oku, Y., Chai, J.J., and Kamiya, H. 2010. Molecular phylogeny of the subfamily Gerbillinae (Muridae, Rodentia) with emphasis on species living in the Xinjiang-Uygur Autonomous Region of China and based on the mitochondrial cytochrome b and cytochrome c oxidase subunit II genes. Zoolog Sci. 27: 269-78.

11. Khakisahneh, S., Zhang, X.Y., Nouri, Z., Hao, S.Y., Chi, Q.S., and Wang, D.H. 2019. Thyroid hormones mediate metabolic rate and oxidative, anti-oxidative balance at different temperatures in...
Mongolian gerbils (*Meriones unguiculatus*). *Comp Biochem Physiol C Toxicol Pharmacol.* 216: 101-109.

12. Kotzé A, M.G. Genetic relationship in South African cattle breeds. in Proceedings of the 5th world congress on genetics applied to livestock production. 1994. Guelph, Canada.

13. KUDER, T. 1985. Topography and macroscopic structure of parasympathetic ganglia connected with the trigeminal nerve in midday gerbil (*Meriones meridianus*—Mammalia: Rodentia). *Acta Biologica Cracoviensia. Series Zoologia.* Vol.27: 61.

14. Lei, D.J., Zhao, G., Xie, P., Li, Y., Yuan, H., Zou, M., Niu, J.G., and Ma, X.F. 2017. Analysis of genetic diversity of *Leuciscus leuciscus baicalensis* using novel microsatellite markers with cross-species transferability. *Genetics and Molecular Research.* 16.

15. Maduna, S.N., Rossouw, C., Roodt-Wilding, R., and Bester-van Der Merwe, A.E. 2014. Microsatellite cross-species amplification and utility in southern African elasmobranchs: A valuable resource for fisheries management and conservation. *BMC research notes.* 7: 352-352.

16. Mun, J.H., Kim, D.J., Choi, H.K., Gish, J., Debelle, F., Mudge, J., Denny, R., Endre, G., Saurat, O., Dudez, A.M., Kiss, G.B., Roe, B., Young, N.D., and Cook, D.R. 2006. Distribution of microsatellites in the genome of *Medicago truncatula*: A resource of genetic markers that integrate genetic and physical maps. *GENETICS.* 172: 2541-2555.

17. Naseri Z, Jalal.R.Darvish.J. 2007. Determination of *Meriones* Species (Rodentia, Gerbillinae) by RAPD-PCR. *Iranian Journal of Animal Biosystematics.*

18. NEI, M. 1972. GENETIC DISTANCE BETWEEN POPULATIONS. *Am. Nat.* 106: 283-292.

19. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. *Ann. Hum. Genet.* 41: 225-33.

20. Ojango JM, Mpofu.N, Marshall.K. 2011. Quantitative methods to improve the understanding and utilization of animal genetic resources. Animal genetics training resource. Vol. version3. 2011, Nairobi, Kenya: 2011. Uppsala, Sweden:Swedish University of Agricultural Sciences.

21. Osman, I., Jiao, W., Liao, L., and Chai, J. 1998. Comparative observation on experimental infection with *Echinococcus multilocularis* in *Cricetulus migratorius* and *Meriones meridianus*. *Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi.* 16: 130-2.

22. Pirog, A., Jaquemet, S., Blaison, A., Soria, M., and Magalon, H. 2016. Isolation and characterization of eight microsatellite loci from *Galeocerdo cuvier* (tiger shark) and cross-amplification in *Carcharhinus leucas*, *Carcharhinus brevipinna*, *Carcharhinus plumbeus* and *Sphyrna lewini*. *PEERJ.* 4.

23. Razzoli, M., Papa, R., Valsecchi, P., and Nonnis Marzano, F. 2003. AFLP to assess genetic variation in laboratory gerbils (*Meriones unguiculatus*). *J. Hered.* 94: 507-511.

24. Reid, K., Hoareau, T.B., Bloomer, P. 2012. High-throughput microsatellite marker development in two sparid species and verification of their transferability in the family Sparidae. *Mol. Ecol. Resour.* 12: 740-752.
25. Ruggeri, P., Splendiani, A., Giovannotti, M., Cerioni, P.N., and Caputo, V. 2012. Isolation of novel microsatellite loci in the black goby Gobius niger and cross-amplification in other gobiid species (Perciformes, Gobiidae). J. Fish Biol. 81: 2044-2052.

26. Smith, A.T., Yan, X., A Guide to the Mammals of China, A.T. Smith and Y. Xie, A.T. Smith and Y. Xie*Editors. 2008. p. 1-487,495-525.

27. Strelkova, M.V. 1975. [Duration and character of the course of cutaneous leishmaniasis in the midday gerbil (Meriones meridianus Pall.)]. Parazitologiia. 9: 532-4.

28. Suzuki, R., Satou, K., Shiroma, A., Shimoji, M., Teruya, K., Matsumoto, T., Akada, J., Hirano, T., and Yamaoka, Y. 2019. Genome-wide mutation analysis of Helicobacter pylori after inoculation to Mongolian gerbils. Gut Pathog. 11: 45.

29. Takezaki, N., Nei, M. 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. GENETICS. 144: 389-399.

30. Tchabovskv, A.V., Savinetskaya, L.E., Ovchinikova, N.L., Safonova, A., Ilchenko, O.N., Sapozhnikova, S.R., and Vasilieva, N.A. 2019. Sociability and pair-bonding in gerbils: a comparative experimental study. Curr. Zool. 65: 363-373.

31. Tikhomirova, M.J. 1934. Meriones meridianus Pall, a Reservoir of Plague Virus in sandy Regions of the Volga-Ural Steppes. Revue demicrobiologie (et) d’epidemiologie (et de parasitologie). 13: 89-101.

32. Verevkin MV. 1985. Reproductive biology of the midday jird (Meriones meridianus). Zool. Zh. 64: 276-281.

33. Wang, C., Zhang, S.J., Du, X.Y., Xu, Y.M., Huo, X.Y., Liao, L.F., and Chen, Z.W. 2015. Development of novel DNA markers for genetic analysis of grey hamsters by cross-species amplification of microsatellites. GENETICS AND MOLECULAR RESEARCH. 14: 14339-14347.

34. Wang, S. 1964. New species and subspecies of mammals from Sinkiang,China. Acta Zootaxonomica Sinica.: 6-15.

35. Wang, Y., Zhao, L., Fang, F., Liao, J., and Liu, N. 2013. Intraspecific molecular phylogeny and phylogeography of the Meriones meridianus (Rodentia: Cricetidae) complex in northern China reflect the processes of desertification and the Tianshan Mountains uplift. Biol. J. Linn. Soc. 110: 362-383.

36. Wright, S. 1968, Evolution and the genetics of populations, Volume 4: Variability within and among natural populations. in: Chicago: University of Chicago Press.

37. Yi-mei, X., Shen, S., Yun, L., Shun-sheng, Y., Hong-qiong, Z., and Li-fu, L. 2017. Establishment of Urine Collection Method and Determination of Some Biochemical Indexes for Meriones meridianus in Xinjiang. Laboratory Animal and Comparative Medicine. 37: 55-58.

38. Zhang, Y.Z., Zou, Y., Fu, Z.F., and Plyusnin, A. 2010. Hantavirus infections in humans and animals, China. Emerg. Infect. Dis. 16: 1195-203.

39. Zhao Su-yuan, Liao.L.Zou.L. 2001. Study of Experiment on HEV Infection in Gerbil(}
meridianus) from Generation to Generation. Chinese Journal of Vector Biology and Control. 12: 215-217.

40. Zou G., Zhou L.Zha.X. 2008. Geographical pattern and historical demography of Midday gerbil *Meriones meridianus* (Gerbillidae, Rodentia) inferred from the sequences of the mitochondrial DNA control region. RUSSIAN JOURNAL OF THERIOLOGY. 7(1): 25-32.
Figure Legend

Figure 1. Maps of the *Meriones meridianus* populations showing the sample locations in the Turpan and Luntai areas in Xinjiang, China.

![Maps of the Meriones meridianus populations showing the sample locations in the Turpan and Luntai areas in Xinjiang, China.](image)

Figure 2. PCR amplification of the gerbil genome by primers for microsatellite loci: AF200943, which showed heterogeneity and homogeneity for the *M. m. jei* (A) and *M. m. cryptorhinus* (B) populations of *Meriones meridianus* gerbils in this study.

A	M. m. jei
bp	M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
250	
100	

B	M. m. cryptorhinus
bp	M 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
250	
100	
Figure 3. STR loci AF200941 (A), AF20043 (B), AF200944 (C), and AF200945 (D) showed microsatellite polymorphisms in *Meriones meridianus* gerbils.

Figure 4. Cloning sequences showing *Meriones meridianus* genomes generated at the loci AF200943 (up) and AF200945 (down) by Mongolian gerbils.
AN	Primer sequences(5'-3')	M. m. jei	M. m. cryptorhinus	
	AT(℃) Rng(bp)	AT(℃) Rng(bp)	Mg²⁺(mM) Chr	
AF20094	TGGGTCTTTTGGAAGA CatGCAACCCCCAGTTTT	55℃ 170-230	53.8℃ 219-237	2 /
	TGGCTAAAATGAATCCTAAG			
AF20094	CAGGCACCCCCAGTTTT GCTCTACAGGGCAGGATGTG	54℃ 120-150	50.8℃ 137-143	2 /
AF20094	GCCCTGGTTCAATCCATACATTG	55℃ 180-200	53.8℃ 195-206	2 /
	CAACCACCGCAACTCTC			
AF20094	GCTGGGCTTTATAATTTATGG	55℃ 200-300	57.5℃ 158-179	2 /
	GTGGGCTCAGACTTTGTCTAG			
AF20094	AGTCCCTATTACATCCAGACGTCA	58℃ 150-180	50.8℃ 160-177	2 /
	TATTCCTGCACAGCCCTAAAG			
AF20094	GACAGAGGTGGGGTGATGTTGGAAGACCATTTGATGGGGTT	55℃ 180-207	57.5℃ 197-199	2 /
	TGGCAAGGGTTGTTTGTGA			
GU56270	CAGGAATAAAGTATAATGGGGTG GCATGACGTTGGGTT	50℃ 216-228	50.8℃ 227	2 D16Mit26
	CCCATGATCAGTTGGGTTTTT			
GU56277	GCTCCCTTTCTCTGAACCAAC GGGCCCTATCTATCTCCC	53℃ 110-130	50℃ 186-192	2 D2Mit22
	GGGGCACTTTATCTATCTCCC			
GU56274	AACACATGAAAAGGGTGGTCGT TGATAGGCAATGGGTTAAGGCC	50℃ 230-245	48.3℃ 243	2 D3Mit130
	TGATAGGCAATGGGTTAAGGCC			
GU56270	ATCCCCTGCATTCAACTCAAGGCA CATGAGATTCCAGTAAACACTC	50℃ 157	50℃ 157	2 D19Mit1
	CATGAGATTCCAGTAAACACTC			
GU56270	CCTGGAGGAGTAAACCAACCGC CATGAGATTCCAGTAAACACTC	50.8℃ 210-235	50.8℃ 228-236	2 D17Mit38
	CATGAGATTCCAGTAAACACTC			
GU56269	CTTGTTGGGCACTAGATT TAAACCCATGTCTTTTCGTTGGG	50℃ 215	45.4℃ 237	2 DXMit17
	TAAACCCATGTCTTTTCGTTGGG			
GU56272	ACACCTCAGAGACCATGACTACACC GAGTTCACTAACCAAGTCCTCC	53℃ 135	50.8℃ 111-127	2 D8Mit56

Table 1. Characteristics of the 13 microsatellite loci isolated from *Meriones meridianus* gerbils. AN, GenBank accession No.; AT, optimized annealing temperature; Mg²⁺(mM), concentration of Mg²⁺(mM) for PCR; Chr, position on mouse chromosome of the corresponding mouse locus; Rng, allele range.
Loci	Obs-alle	Eff-alle	Shan-	Poly-loci%	Obs-Het	Exp-Het	Nei’s	Obs-alle	Eff-alle	Shan-	Poly-loci%	Obs-Het	Exp-Het	Nei’s	F^ST
AF200941	7	4.8907	1.7	——	0.8462	0.8059	0.7955	5	3.1911	1.2995	——	0.2083	0.7012	0.6866	0.0865
AF200942	7	2.5934	1.3315	——	0.6667	0.6224	0.6144	4	2.8444	1.1803	——	1	0.6622	0.6484	0.1355
AF200943	10	4.8517	1.871	——	0.8462	0.8042	0.7939	2	1.0425	0.1013	——	0.0417	0.0417	0.0408	0.3832
AF200944	12	5.5209	1.9866	——	0.7949	0.8295	0.8189	4	2.7961	1.1524	——	0.75	0.656	0.6424	0.0676
AF200945	7	4.8057	1.7002	——	0.6154	0.8022	0.7919	4	2.8872	1.1386	——	0.7083	0.6676	0.6536	0.1017
AF200947	8	6.4419	1.9467	——	0.8974	0.8605	0.8494	2	1.3318	0.4154	——	0.2917	0.2544	0.2491	0.2735
Mit22	3	2.7531	1.0559	——	0.9474	0.6453	0.6368	2	1.9692	0.6853	——	0.875	0.5027	0.4922	0.0606
D3Mit130	3	1.3011	0.4692	——	0.1026	0.2344	0.2314	2	1.0868	0.1732	——	0	0.0816	0.0799	0.7091
D8Mit56	1	1	0	——	0	0	0	2	2	0.6931	——	1	0.5106	0.5	0.6
D17Mit38	5	1.6751	0.8026	——	0.4615	0.4083	0.403	3	1.7916	0.6976	——	0.625	0.4512	0.4418	0.3641
Mit26	5	4.1674	1.4669	——	0.5789	0.7702	0.76	1	1	0	——	0	0	0	0.3114

Table 2. Summary of the statistics for 11 microsatellite loci in the two *Meriones meridianus* gerbil populations. Obs-alle, observed number of alleles; Eff-alle, effective number of alleles; Obs-Het, observed heterozygosisty; Exp-Het, expected heterozygosisty; Nei’s, Nei’s genetic variation; F^ST, fixation index; Shan-, shannon’s information index analyzed for 11 loci.
Genotypes of *M. m. jei*

Genotype	AF200941	AF200942	AF200943	AF200944	AF200945	AF200947	Mit22	D3Mit130	D8Mit56	D17Mit38	Mit26
AF	DD	AD	FH	EE	BF	AC	CC	AA	DD	BC	
AB	AD	FF	BC	EF	BF	AC	AB	AA	DD	CD	
AD	AD	DE	BB	CC	CH	AC	BB	AA	ED	BB	
CC	DD	EI	FJ	FF	AB	AC	BB	AA	DD	AA	
AB	DD	DI	DF	DD	EF	AB	BB	AA	DD	BD	
FF	DD	DE	BF	EE	BE	AB	BB	AA	DD	BE	
AD	AD	DE	BF	CE	GH	AC	BB	AA	DD	AA	
BB	DE	DI	BD	DD	DF	AB	BB	AA	BD	BD	
BF	DE	DE	BF	EE	BD	AB	BB	AA	CD	BE	
AB	DE	BE	BD	EF	DF	BB	BB	AA	CD	BD	
EG	BB	AC	AM	AB	DH	AB	CC	AA	AB	CC	
BE	DE	DE	CK	EE	BE	AC	BB	AA	DD	BD	
CD	DF	EH	JK	EF	EF	AB	BB	AA	DD	AC	
CF	DF	BE	BB	FF	CG	AC	BB	AA	DD	AA	
AC	DF	DD	DF	CE	EF	AB	BB	AA	CD	BC	
AB	DE	DE	FJ	EE	EE	AB	BB	AA	CD	AD	
BB	DE	BI	DE	DD	DD	AB	BB	AA	BD	BD	
CD	DD	EH	FJ	CE	EF	AB	BB	AA	DD	AC	
DF	BB	AC	AM	AB	DH	AB	CC	AA	BD	CC	
BF	DE	DE	BF	EG	CC	AC	BB	AA	DD	CC	
AF	DD	DE	BF	CE	BG	BC	BB	AA	DD	DD	
AB	DF	DI	FF	EG	DH	AC	BB	AA	DD	AC	
AA	DD	DD	BJ	CF	DE	AB	BB	AA	CD	AA	
BB	DE	DE	FL	DE	DE	AB	BB	AA	CD	DD	
AF	DF	DI	CF	CG	CD	AC	BB	AA	CD	BC	
AC	DE	BI	FL	DD	DF	AB	BB	AA	DD	BD	
BD	DF	DE	CF	CG	CH	AC	BB	AA	CD	BC	
AD	AD	DD	CF	CF	BH	AC	BB	AA	DD	AA	
AB	AD	FF	CC	EF	BF	AC	AB	AA	DD	AD	
AC	DF	AD	BH	EE	BE	AC	BB	AA	DD	BC	
BD	DF	DE	CF	EF	GH	..	BB	AA	DD	AC	
AB	DG	DF	CC	DF	BF	AC	AB	AA	DD	DD	
AD	DG	FG	CJ	CD	BC	AB	BB	AA	CD	AA	
EF	BB	AC	NM	AA	DH	AA	BB	AA	BD	CC	
AC	DD	BJ	CF	CF	FG	AC	BB	AA	CD	BB	
AD	DD	DE	CF	CF	BH	AC	BB	AA	DD	AA	
CF	CD	DD	CC	CD	EE	AB	BB	AA	BD	..	
AB	DD	FG	CC	CD	BE	AB	AB	AA	DD	AD	
AF	DE	DI	FF	CC	FG	BC	BB	AA	CD	BC	

Genotypes of *M. m. cryptorhinus*

Genotype	AF200941	AF200942	AF200943	AF200944	AF200945	AF200947	Mit22	D3Mit130	D8Mit56	D17Mit38	Mit26
EE	AC	BB	BC	AC	AB	AB	AA	BC	AC	AA	
DD	BC	BB	BC	BB	AA	AB	AA	BB	BC	CC	
DD	BC	BB	BC	BD	AB	AB	AA	BC	AC	AA	
EE	CD	BB	CD	BC	AA	BB	AA	BC	AC	AA	
AB	CD	BB	CC	BD	AA	AB	AA	BC	AC	AA	
EE	AC	BB	BD	DD	AB	AB	AA	BC	AC	AA	
DD	CD	BB	BC	BD	AA	AB	AA	BC	AC	AA	
DD	CD	BB	BC	BB	AA	AB	AA	BC	AC	AA	
DD	CD	BB	BC	BB	AA	AB	AA	BC	BC	AA	
DD	BC	BB	BC	BB	AB	AB	AA	BC	AC	AA	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	
CD	AC	BB	CD	CD	AA	AB	AA	BC	CC	AA	
DD	AC	BB	AD	BD	AB	BB	AA	BC	CC	AA	
BC	CD	BB	AC	CD	AA	AB	AA	BC	AC	AA	
DD	CD	BB	BD	BD	AA	AB	AA	BC	AC	AA	
BB	CD	BB	CC	CD	AB	AB	AA	BC	AC	AA	
EE	CD	BB	CD	CC	AA	AB	AA	BC	AC	AA	
EE	AC	BB	CD	BC	AA	AB	AA	BC	AC	AA	
EE	AC	AB	CC	CD	AA	AB	AA	BC	AC	AA	
BB	CD	BB	CC	BD	AA	AB	AA	BC	AC	AA	
DD	AC	BB	CC	BC	AA	BB	AA	BC	CC	AA	
DE	AC	BB	CD	BC	AB	AB	AA	BC	CC	AA	
BE	AC	BB	CD	BC	AA	AB	AA	BC	CC	AA	
CC	CD	BB	DD	BB	AA	AB	AA	BC	CC	AA	
EE	CD	BB	BD	BC	AA	AB	BB	BC	CC	AA	

Supplementary Table 1. Genotypes of each microsatellite locus in the two *Meriones meridianus* gerbil populations.