The Fibroblast Growth Factor signaling pathway

David M. Ornitz¹ and Nobuyuki Itoh²

The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc.

INTRODUCTION

The Fibroblast Growth Factor (FGF) family is comprised of secreted signaling proteins (secreted FGFs) that signal to receptor tyrosine kinases and intracellular non-signaling proteins (intracellular FGFs [iFGFs]) that serve as cofactors for voltage gated sodium channels and other molecules (Table 1(a) and Figure 1(a)). Additionally, secreted FGFs and iFGFs may have direct functions in the nucleus and functional interactions with other cellular proteins. Members of both branches of the FGF family are related by core sequence conservation and structure and are found in vertebrates and invertebrates.¹,² Secreted FGFs are expressed in nearly all tissues and they serve essential roles in the earliest stages of embryonic development, during organogenesis, and in the adult, where they function as homeostatic factors that are important for tissue maintenance, repair, regeneration, and metabolism (Table 2(a)). In general, secreted FGFs function as autocrine or paracrine factors (canonical FGFs; also called paracrine FGFs), however, three members of the secreted FGFs have evolved to function as endocrine factors (endocrine FGFs) with essential roles in the adult where they regulate phosphate, bile acid, carbohydrate and lipid metabolism in addition to the canonical FGF functions that control cell proliferation, differentiation and survival.⁷⁵–⁷⁷,⁹⁸,¹⁴⁹–¹⁶³

At the cellular level, secreted FGFs regulate fundamental cellular processes that include positive and negative regulation of proliferation, survival, migration, differentiation, and metabolism.
HUGO/MGI Symbol	Name	Alternative Symbol	Name, Comments
(a) Fgf			
FGF1/Fgf1	Fibroblast Growth Factor 1	aFgf	Acidic Fgf
		Hbgf1	Heparin-binding growth factor 1
		Ecgr	Endothelial cell growth factor
FGF2/Fgf2	Fibroblast Growth Factor 2	bFgf	Basic Fgf
		Hbgf2	Heparin-binding growth factor 2
FGF3/Fgf3	Fibroblast Growth Factor 3	Int-2	Int-2 oncogene
		V-Int-2	MMTV integration site 2
FGF4/Fgf4	Fibroblast Growth Factor 4	Hst1	Human stomach tumor oncogene
		Hstf1	Heparin secretory transforming protein 1
		K-Fgf, Kgf	Kaposi sarcoma Fgf
FGF5/Fgf5	Fibroblast Growth Factor 5		
FGF6/Fgf6	Fibroblast Growth Factor 6	Hst2	Hst2 oncogene
FGF7/Fgf7	Fibroblast Growth Factor 7	Kgf	Keratinocyte growth factor
FGF8/Fgf8	Fibroblast Growth Factor 8	Aigf	Androgen induced growth factor
		K-fgf, kal6	
FGF9/Fgf9	Fibroblast Growth Factor 9	Gaf	Glia activating factor
		Eks	Elbow knee synostosis
FGF10/Fgf10	Fibroblast Growth Factor 10	Kgf-2	Keratinocyte growth factor 2
FGF11/Fgf11	Fibroblast Growth Factor 11	Fhf3	Fibroblast Growth Factor homologous factor 3
FGF12/Fgf12	Fibroblast Growth Factor 12	Fhf1	Fibroblast Growth Factor homologous factor 1
FGF13/Fgf13	Fibroblast Growth Factor 13	Fhf2	Fibroblast Growth Factor homologous factor 2
FGF14/Fgf14	Fibroblast Growth Factor 14	Fhf4	Fibroblast Growth Factor homologous factor 4
		Sca27	spinocerebellar ataxia 27
Fgf15	Fibroblast Growth Factor 15		Rodent ortholog of vertebrate Fgf19
Fgf16/Fgf16	Fibroblast Growth Factor 16		
FGF17/Fgf17	Fibroblast Growth Factor 17		Called FGF-13 in some older literature
FGF18/Fgf18	Fibroblast Growth Factor 18		
FGF19	Fibroblast Growth Factor 19		Human ortholog of rodent Fgf15
FGF20/Fgf20	Fibroblast Growth Factor 20		
FGF21/Fgf21	Fibroblast Growth Factor 21		
FGF22/Fgf22	Fibroblast Growth Factor 22		
FGF23/Fgf23	Fibroblast Growth Factor 23		
(b) Fgfr			
FGFR1/Fgfr1	Fgf receptor 1	Flg	Fms-like gene
		Flt2	Fms-like tyrosine kinase 2
		Cek	Chicken embryo kinase 1
		KAL2	Kallman syndrome 2
		K-sam	KATO-III cell-derived stomach cancer amplified gene
FGFR2/Fgfr2	Fgf Receptor 2	Bek	Bacterial expressed kinase
		Cek3	Chicken embryo kinase 3
		Kgfr	KGF receptor
FGFR3/Fgfr3	Fgf Receptor 3	Cek2	Chicken embryo kinases 2
		Ach	Achondroplasia
FGFR4/Fgfr4	Fgf Receptor 4	Tkf	Tyrosine kinase related to Fibroblast Growth Factor receptor
FGFR1L/Fgfr1L	Fgf receptor like 1	Fgfr5	Fgf receptor 5
FIGURE 1	FGF and FGFR families. (a) Phylogenetic analysis suggests that 22 Fgf genes can be arranged into seven subfamilies containing two to four members each. Branch lengths are proportional to the evolutionary distance between each gene. The Fgf1, Fgf4, Fgf7, Fgf8, and Fgf9 subfamily genes encode secreted canonical FGFs, which bind to and activate FGFRs with heparin/HS as a cofactor. The Fgf15/19 subfamily members encode endocrine FGFs, which bind to and activate FGFRs with the Klotho family protein as a cofactor. The Fgf11 subfamily genes encode intracellular FGFs, which are non-signaling proteins serving as cofactors for voltage gated sodium channels and other molecules. (b) Schematic representations of FGFR protein structures are shown. FGFR is a receptor tyrosine kinase of ∼800 amino acids with several domains including three extracellular immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and two intracellular tyrosine kinase domains (TK1 and TK2). SP indicates a cleavable secreted signal sequence. The Fgfr gene family is comprised of four members, Fgfr1–Fgfr4. Among them, Fgfr1–Fgfr3 generate two major splice variants of immunoglobulin-like domain III, referred to as IIIb and IIIc, which are essential determinants of ligand-binding specificity. (c) The schematic representation of FGFR1/FGFR5 protein structure is shown. FGFR1, with structural similarity to FGFRs, is a membrane protein of ∼500 amino acids with three extracellular immunoglobulin-like domains (I, II, and III), a transmembrane domain (TM), and a short intracellular tail with no tyrosine kinase domain. SP indicates a cleavable secreted signal sequence.		
Gene Name	Viability /Age at Death	Null Phenotype (Organ, Structure, or Cell Type Affected)	Tissue-Specific (Conditional) Phenotypes, Redundant Phenotypes, Phenotypes Induced by Physiological Challenge
-----------	-------------------------	--	---
Fgf1	Viable	No apparent phenotype	An aggressive diabetic phenotype with white adipocyte remodeling on high-fat diet
Fgf2	Viable	Cortical neuron, vascular smooth muscle, blood pressure, skeletal development, and wound healing	Decreased cardiac hypertrophy induced by ischemic injury and delayed wound healing; Increased bone mineralization in high molecular weight isoform knockout
Fgf3	Viable	Inner ear and skeletal development	Heart development (redundant with Fgf10)
Fgf4	E4-5	Blastocyst inner cell mass	Limb bud development (redundant with Fgf8)
Fgf5	Viable	Hair follicle development	
Fgf6	Viable	Muscle development	Muscle regeneration
Fgf7	Viable	Hair follicle and ureteric bud development and synaptogenesis	Thymus regeneration (radiation injury) and wound healing
Fgf8	E7	Gastrulation	Heart field, limb, somitogenesis, kidney, CNS, inner ear development, spermatogenesis
Fgf9	P0	Lung, heart, skeletal, gonad, inner ear, and intestine development	Migration of cerebellar granule neurons and kidney agenesis (redundant with Fgf20)
Fgf10	P0	Limb bud, lung bud, trachea, thymus, pancreas, pituitary, palat e, tongue epithelium, ecum, kidney, submandibular, salivary, lacrimal, and mammary gland, heart, stomach, and white adipose tissue	Lung branching morphogenesis and inner ear development (redundant with Fgf3)
Fgf11	Viable	No identified phenotype	
Fgf12	Viable	No identified phenotype	Severe ataxia and motor weakness (redundant with Fgf14)
Fgf13	Viable	Neuronal migration, learning and memory deficits, and microtubule binding	
Fgf14	Viable	Ataxia, motor weakness, learning and memory deficits, and impaired neuronal excitability	Severe ataxia and motor weakness (redundant with Fgf12)
Fgf15	E13.5-P7	Cardiac outflow tract development, neurogenesis, and bile acid metabolism	Liver regeneration
Fgf16	Viable	Heart development	Promotes cardiac remodeling induced by angiotensin II
Fgf17	Viable	Cerebellum and frontal cortex development	
Fgf18	P0	CNS, skeletal, palate, and lung development	
Fgf20	Viable	Guards hair, teeth, cochlea, and kidney development	Kidney agenesis (redundant with Fgf9)
Fgf21	Viable	Energy/lipid metabolism	
Gene Name	Viability/Age at Death of Null Mutant	Null Phenotype (Organ, Structure, or Cell Type Affected)	Tissue-Specific (Conditional) Phenotypes, Redundant Phenotypes, Phenotypes Induced by Physiological Challenge
-----------	--------------------------------------	--	---
Fgf22	Viable	Synaptogenesis	Decreased skin papillomas formation following carcinogenesis challenge
Fgf23	PW4-13	Phosphate and vitamin D homeostasis, deafness, middle ear development	
			(b) Phenotypes of germline and conditional loss-of-function Fgfr mutations in mice
Fgfr1	E7.5-9.5	Gastrulation, Blastocyst inner cell mass	Hematopoietic cell engraftment
			Osteoblast maturation
			Limb bud development
			Hippocampal progenitor cell proliferation
			Inner ear sensory epithelium
			Deletion of Ig domain 1 (defect in node regression)
			Adipocyte metabolism
			Endothelial Fgfrβ expression and endothelial-mesenchymal transition; Endothelial regulation of CXCR4 in liver regeneration and fibrosis
			Spermatogenesis
Fgfr2	E10-11	Placenta, no limb buds	Skeletal, lung, limb bud, CNS, GI tract, skin, and adrenal cortex development in Fgfr2b null mice
Fgfr1/2			Myelin sheath thickness in oligodendrocyte
			Kidney, metanephric mesenchyme, ureteric bud, ocular gland development
			Angiogenesis, vascular integrity
			Hepato-cytoprotective through regulation of cytochrome P450 enzymes
Fgfr3	Viable	Skeletal overgrowth, inner ear, brain, articular cartilage, oligodendrocyte differentiation, pancreatic growth, intestinal crypt cell growth arrest	Alveolar septation and elastogenesis (redundant with Fgfr4)
Fgfr4	Viable	Cholesterol metabolism and bile acid synthesis	Increased liver injury and fibrosis induced by carbon tetrachloride
			Alveolar septation and elastogenesis (redundant with Fgfr3)
			Vitamin D homeostasis (redundant with Fgfr3)
			Phosphate homeostasis (redundant with Fgfr1)
Fgfr1l	P0	Kidney, diaphragm, skeleton	
During early development, FGFs regulate differentiation of the inner cell mass into epiblast and primitive endoderm lineages.164–166 Later in development, FGFs have key roles in organogenesis, for example in the regulation of the anterior and secondary heart fields,168,169 induction of limb buds54,55,170 and lung buds,54,55 ventral liver and pancreas,171,172 kidney development,27,40,120,121,147,122,220 inner ear development,12,28,41,56,90,103,104,127,173 and brain development.174,175

In the adult, FGFs have important roles in response to injury and tissue repair.176 FGF signaling is cardioprotective following ischemic injury to the heart,177–179 and is important for epithelial repair in the lung and in wound healing.180–182 FGF signaling, however, may also increase or decrease tissue fibrosis.81,183–185 Endocrine FGFs mediate mineral, metabolic, energy, and bile acid homeostasis.75,98,186,187 FGF receptor (Fgfr) mutation, amplification, and gene fusions can drive abnormal morphogenesis, the progression of several types of cancer, and provide escape pathways for drugs that target other oncogenic tyrosine kinase receptors.152,188–196

Given the ubiquitous roles for FGF signals in development, homeostasis, and disease, tight regulation of the pathway is essential. Canonical FGFs are tightly bound to heparin/heparan sulfate (HS) proteoglycans (HSPGs), which function to limit diffusion through the extracellular matrix (ECM) and serve as coreceptors that regulate specificity and affinity for signaling FGFRs.153,197–201 The endocrine FGFs, evolved with reduced affinity for heparin/HS and a requirement for Klotho family cofactors for receptor binding.75,202 Additional regulation is provided by a fifth non-tyrosine kinase FGFR (FGFRL1) which can bind FGF ligands and possibly function as a decoy receptor, dimerization-induced inhibitor of tyrosine kinase FGFRs, or modulator of receptor turnover or signaling.203 Downstream of the signaling tyrosine kinase FGFRs, intracellular signaling cascades are also tightly regulated by specialized adaptor proteins such as FGF substrate 2α (FRS2α) and regulators of the RAS-MAPK and PI3K-AKT pathways such as Sprouty (SPRY) proteins151,204–207 (Figure 3(a)).

iFGFs (also known as FGF homologous factors (FHFs)) are essential regulators of neuronal and myocardial excitability. However, whether iFGFs are required during normal embryonic development is currently not known. Several proteins are known to directly interact with iFGFs. These include members of the voltage gated sodium channel family,154 IB2 (MAPK8IP2, Mitogen-activated protein kinase 8-interacting protein 2),208 β-tubulin,70 and NEMO209 (NF-κB essential modulator). Analysis of evolutionary relationships in the FGF family suggests that iFGFs may be the first members of the family to evolve, followed by the acquisition of a signal peptide for secretion, and affinity for heparin/HS to limit diffusion and regulate receptor binding.210 The most recent evolutionary event led to the endocrine branch of the FGF family, which has reduced affinity for heparin/HS and a requirement for Klotho family cofactors for receptor binding.

In this review we will focus on the roles and regulation of FGF signaling pathways that function during vertebrate organogenesis and on how gain and loss-of-function mutations in the FGF pathway result in developmental or metabolic disease and cancer.

PATHWAY COMPONENTS

Fibroblast Growth Factors

Historical Perspective

Embryo extracts and brain extracts were shown to promote the growth of chicken periosteal fibroblast as early as 1939.211 A proteinaceous ‘Fibroblast Growth Factor’ activity was first identified in an extract from bovine pituitary in 1973.212 This activity was shown to be protease sensitive and thermolabile and could stimulate the proliferation of 3T3 fibroblasts at low (ng/ml) concentrations. This activity was partially purified in 1975213 and purified to homogeneity in 1983214 and would later be referred to as basic FGF (bFGF or FGF2) due the overall basic composition of amino acids and high isoelectric point. Purification of a factor with similar mitogenic activity from bovine brain that was free of myelin basic protein fragments identified a second Fibroblast Growth Factor-like activity with a low isoelectric point that was eventually referred to as acidic FGF215–220 (aFGF or FGF1). This factor was also found to be identical to an activity called endothelial cell growth factor221 (ECGF) and related to FGF2.217 In addition to stimulation of 3 T3 cell proliferation, these growth factors were found to promote proliferation of a wide variety of mesoderm-derived cells such as endothelial cells.217,220–222 cDNA clones for FGF1 were first isolated from a human brain cDNA library in 1986.223 cDNA clones for Fgf1 and Fgf2 were also isolated from bovine pituitary cDNA libraries in 1986.224 Additional members of the FGF family were identified as growth factors for cultured cells, as oncogenes tagged by retroviral insertions, as genes responsible for hereditary diseases, or by homology-based PCR or homology-based searches of DNA databases.152,153,99
The mammalian Fgf family contains 22 genes, 18 of which encode molecules known to signal through FGF tyrosine kinase receptors (Table 1(a)). The secreted signaling FGFs can be grouped into subfamilies based on biochemical function, sequence similarities, and evolutionary relationships. The current consensus is that there are 5 subfamilies of paracrine FGFs, one subfamily of endocrine FGFs, and one subfamily of intracellular FGFs (Figure 1(a)). Fgf15 and Fgf19 are likely to be orthologs in vertebrates. In this review, we refer to these as Fgf15/19.

Canonical (Secreted) FGFs

FGF1 Subfamily

The FGF1 subfamily is comprised of FGF1 and FGF2 (Figure 1(a)). These FGFs lack classical secretory signal peptides but are nevertheless readily exported from cells by direct translocation across the cell membrane.227 The mechanism of translocation is thought to involve a chaperone complex that includes synaptotagmin-I and the calcium binding protein S100A13.228,229 FGF1 and FGF2 have also been found in the nucleus of some cells. The mechanisms by which FGFs transit through the cell are poorly understood, but are thought to require binding to and activating cell surface tyrosine kinase FGFRs with heparin/HS as a cofactor and interaction with HSP90.230,231 Several studies have shown that extracellular FGF1 passes through the plasma membrane, moves through the cytosol, and enters the nucleus.232,233 Potential functions of nuclear FGF1 include regulation of the cell cycle, cell differentiation, survival, and apoptosis.234,235 FGF1 is the only FGF that can activate all FGFR splice variants (Figure 2; see below).

FGF4 Subfamily

Phylogenetic analysis suggests that the FGF4 family is comprised of FGF4, FGF5 and FGF6236 (Figure 1(a)). However, there is some controversy as to whether FGF3 should be included in this subfamily. Sequence homology and biochemical properties support inclusion in the FGF7 subfamily, while chromosomal localization supports inclusion with FGF4 and FGF6.210 One recent study proposed an eighth subfamily composed of only FGF3.226 FGFs, 3, 7, 10, and 22 preferentially activate the IIIb splice variant of FGFR2 and FGF3 and FGF10 also activate the IIIb splice variant of FGFR1237,238 (Figure 2; see below).

FGF8 Subfamily

The FGF8 subfamily is comprised of FGF8, FGF17, and FGF18236 (Figure 1(a)). Members of this subfamily contain an N-terminal cleaved signal peptide. These FGFs activate IIIc splice variants of FGFRs 1–3 and FGFR4237,238 (Figure 2; see below).

FGF9 Subfamily

The FGF9 subfamily is comprised of FGF9, FGF16, and FGF20 (Figure 1(a)). This subfamily does not have a classical N-terminal signal peptide but does have an internal hydrophobic sequence that functions as a non-cleaved signal for transport into the endoplasmic reticulum and secretion from cells.239–241 This subfamily has the unique properties of activation of the IIIb splice variant of FGFR3 in addition to FGFR4 and the IIIc splice variants of FGFRs 1, 2 and 3237,238 (Figure 2; see below).

FGF15/19 Subfamily (Endocrine FGFs)

The FGF15/19 subfamily is comprised of FGF15, FGF19, FGF21, and FGF2375,242 (Figure 1(a)). These FGFs are unique in that they primarily function as endocrine factors and are referred to as endocrine FGFs. In contrast to canonical FGFs, endocrine FGFs bind to heparin/HS with very low affinity.243 The reduced heparin-binding affinity facilitates release from ECM and allows these FGFs to function as endocrine factors. However, endocrine FGFs still mediate their biological responses in an FGFR-dependent manner, but instead of heparin/HS as cofactors for receptor binding and activation, endocrine FGFs require members of the Klotho family, αKlotho (Klotho), βKlotho, and Klotho-LPH related protein (KLPH), which has also been called Lactase-like Klotho (Lctl) or γKlotho. αKlotho and βKlotho are structurally related single-pass transmembrane proteins of ~1000 amino acids with a short cytoplasmic domain. FGF15/19 and FGF21 signaling requires βKlotho1,75,156,244–246 (see below). In vitro assays for receptor activation using BaF3 cells or L6 myoblasts that co-express FGFR splice variants and βKlotho shows that FGF19 can activate FGFR1c, FGFR2c, FGFR3c, and FGFR4, while FGF21 only activates...
FIGURE 2 | Receptor specificity of canonical and endocrine FGFs. The six subfamilies of signaling FGFs use either heparin-like molecules or Klotho molecules as cofactors for receptor binding. Data is derived from receptor activation assays using BaF3 cells, L6 myoblasts, or HEK293 cells transfected with individual splice variants of FGFRs or by direct binding studies.140,141,162,237,238,246–254 FGFR4Δ is a two immunoglobulin-like domain form of FGFR4.

FGFR1c and FGFR3c162,246 (Figure 2). In vivo studies show that FGFR2 directly regulates hepatocyte and adipocyte metabolism through interactions with FGFR1 and βKlotho. By contrast, FGFR1, but not FGFR2, activates FGFR4, which functions in hepatocytes as a proliferative signal and as a regulator of bile acid synthesis, and has been implicated in the etiology or progression of hepatocellular carcinoma.143,162,256,257 KLPH has been shown to enhance signaling of FGF19 in HEK293 cells, however, the in vivo function of KLPH is not known. FGFR2 signaling is mediated through the activation of FGF1c, FGFR3c, and FGFR4, together with the cofactor, αKlotho (Figure 2; see below).

Intracellular FGFs

FGF11 Subfamily

The FGF11 subfamily (FGF11, FGF12, FGF13, FGF14) is also known as iFGFs. iFGFs are not secreted and have not identified interaction with signaling FGFRs. iFGFs interact with the cytosolic carboxy terminal tail of voltage gated sodium (Nav) channels. This interaction may help to regulate the subcellular localization of Nav channels at the axon initial segment during development and the ion-gating properties of the channel in mature neurons and other excitable cells such as cardiomyocytes.69,261,262,263,264 Additional interacting proteins have been identified for some iFGFs. For example, FGF12 (FHF1) was shown to interact with the MAP kinase scaffolding protein, IB2 (MAPK8IP2),265 and FGF13 (FHF2) was shown to interact with microtubules.70

Fibroblast Growth Factor Receptors

Historical Perspective

Tyrosine kinase activity was first associated with signaling by brain-derived growth factor, an activity with similar properties to FGF1. Subsequently, purified FGF1 and FGF2 were shown to cause phosphorylation of a 90 kDa protein in Swiss 3T3 cells. Crosslinking of FGF2 was used to tag and purify a receptor protein from chicken embryo membrane fractions. Sequence of tryptic peptides from the chicken FGF receptor, were found to match a partial human cDNA clone called FGL (Fms-like gene), now referred to as FGF receptor 1 (FGFR1) (Table 1(b)). This information was used to clone a full-length cDNA from a chicken library. The cDNA encoded a 91.7 kDa protein with an N-terminal hydrophobic signal sequence, three extracellular immunoglobulin-like domains, and an intracellular tyrosine kinase domain (Figures 1(b) and 3). The chicken cDNA showed high homology to a cDNA isolated from a human library (90–100% in the tyrosine kinase domain) and the partial FGL cDNA clone, and 84% sequence identity to a mouse partial cDNA called BeK (bacterial expressed kinase). BeK is now referred to as FGF receptor 2 (FGFR2) (Table 1(b)). Homology based cloning was used to identify Fgfr3 and Fgfr4. A receptor for FGF7/KGF was isolated by functional cloning in NIH3T3 cells that expressed FGF7. Sequencing revealed a two immunoglobulin-like domain variant with identity to BeK in the tyrosine kinase domain.

Determinants of Ligand Binding Affinity and Specificity of FGFRs

Immunoglobulin-like domains II and III, and the linker region between these domains regulates the ligand binding specificity of the four FGFR proteins. Immunoglobulin-like domain I and the acidic amino acid sequence (acidic box) located between immunoglobulin-like domains I and II are thought to inhibit ligand binding. Consistent with this, an alternative splicing event that results in receptor variants lacking immunoglobulin-like domain I and the I-II linker have increased affinity for FGF ligands. Fgfr1–Fgfr3 generate two additional major splice variants of immunoglobulin-like domain III, referred to as IIIb and IIIc (Figure 1(b)). The FGFRb and FGFRc splice variants are essential determinants of ligand-binding specificity (Figure 2). Alternative splicing of Fgfrs is critical to pathway function as evidenced by the highly conserved intronic control elements
FIGURE 3 | legend on the next page.
in species ranging from sea urchin to mammals. Immunoglobulin-like domain III of Fgfr4 is not alternatively spliced. Among the other three Fgfrs, alternative splicing of Fgfr2 is functionally the most important. Fgfr1 splicing and ligand binding properties parallels that of Fgfr2, and these two receptors often show functional redundancy during development. Other splice variants of Fgfrs have also been identified. For example, an Fgfr1 cDNA encoding immunoglobulin-like domains II and III generates a secreted FGFR binding domain that can functionally inhibit FGFR signaling. An Fgfr3 splice variant in which exons 8–10, which encode the transmembrane domain, are skipped has been identified in both normal epithelial cells and some cancer cell lines. This splice variant produces a secreted protein that can bind FGF ligands and functionally inhibit FGFR signaling.

Ligand binding specificity of the 18 secreted FGFs have been compared using various mitogenic assays and by directly measuring affinity for FGFRs. The BaF3 cell line and L6 myoblasts have been particularly useful, as they have little or no endogenous Fgfr expression. Studies in BaF3 cells identified strong mitogenic response to FGFR1 and FGFR2 and weak responses to FGFR3 and FGFR4, suggesting that the strength or the specific downstream signaling pathways activated by FGFRs may be unique. Using BaF3 cells or L6 myoblasts that express unique extracellular splice variants of Fgfrs (Fgfr1b, 1c, 2b, 2c, 3b, 3c, 4) fused to either the FGFR1 or FGFR2 cytoplasmic domain, the mitogenic activity of all secreted FGFs were compared in the presence of heparin. Additionally, the mitogenic activity of FGF15/19 and FGF21 were assayed on BaF3 cells or L6 myoblasts that also co-expressed βKlotho and FGF23 was assayed on HEK293 cells that co-expressed aKlotho. This analysis showed that FGF1 was the only ligand that could activate all receptor splice variants (Figure 2). This analysis also showed that members of the FGF subfamilies have very similar receptor specificities. Direct binding, using iodinated FGFs and using surface plasmon resonance has also been used to evaluate FGF binding specificity. The binding studies are qualitatively in agreement with mitogenic assays.

Expression of alternative splice variants of Fgfr1 and Fgfr2 are regulated in a tissue-specific manner. Mesenchymal tissue expresses IIIc splice variants of Fgfr1 and Fgfr2 and often are activated by FGF ligands that are expressed in epithelial cells, such as members of the Fgf4 and Fgf8 subfamilies. By contrast, epithelial tissues express IIIb splice variants of Fgfr1 and Fgfr2 and bind ligands that are normally expressed in mesenchymal tissues, such as members of...
Mechanisms of FGF signaling during organogenesis. (a–c) Limb bud development uses a classical reciprocal epithelial-mesenchymal FGF signal. The earliest identified event in limb bud development involves an FGF10 signal to coelomic epithelium (a). This induces an epithelial to mesenchymal transition (orange arrow) that increases the amount of mesenchyme (orange hash) at the forming limb bud, resulting in a bulge. As development progresses (b), FGF10 signals to ectoderm to induce the formation of the apical ectodermal ridge (AER). Initially FGF8 (blue hash) is expressed throughout its length of the AER (b) and later FGF4, FGF9, and FGF17 are also expressed in the posterior half of the AER. AER FGFs signal to FGFR1 and FGFR2 in distal mesenchyme. (d, e) Lung development uses a modified reciprocal mesothelial/epithelial-mesenchymal FGF signal. The lung bud is initiated with an FGF10 signal from foregut mesenchyme to FGFR2b in foregut epithelium. Continued FGF10 expression is required for epithelial branching. Reciprocal signals from mesothelial FGF9 regulates mesenchymal proliferation through FGFR1 and FGFR2, while epithelial FGF9 functions as an autocrine factor to regulate epithelial branching through an as yet unidentified receptor. (f–h) Induction of the otic placode and differentiation of the otic vesicle. (f, g) FGF3, derived from the hindbrain and FGF10 derived from head mesenchyme, together, induce formation of the otic placode and its progression to the otic cup and otic vesicle. (h) After formation of the otic vesicle, FGF20 signals to FGFR1 within the prosensory epithelium (white hash) as a permissive autocrine factor required for differentiation of outer hair cells and outer supporting cells in the organ of Corti.

This epithelial/mesenchymal expression of alternative splice variants of FGFRs and reciprocal expression of interacting FGF ligands is essential for the development of many organs, particularly those that undergo branching morphogenesis such as the lung or salivary gland, and structures such as the limb bud, and skin (Figure 4).

Although this pattern of reciprocal signaling is essential for the development of some organs, it is not universal. For example, the tissue-specific regulation of alternative splicing is less stringent for Fgfr3, where both splice variants have been found in epithelial cell types. The FGF9 subfamily, though primarily expressed in epithelial cells, has the unique ability to activate FGFR3b in addition to IIIc splice variants of FGFRs 1–3 (Figure 2). Fgf10 expression can be found in some epithelial cell types, such as the developing inner ear where it likely signals in an autocrine manner to epithelial cells. During somitogenesis, Fgf4 and Fgf8 are expressed and signal within presomitic mesenchyme and nascent somites where they suppress differentiation.
PATHWAY REGULATION
Extracellular FGF Associated Cofactors and Binding Proteins

Heparan Sulfate Proteoglycans
HS is now recognized to function as a potent cofactor for canonical FGF signaling as well as a wide range of other signaling pathways including bone morphogenetic proteins (BMPs), WNTs, and Hedgehogs197,297–299. Using a cell line (BaF3) that lacks cell surface HS, or through inhibition of HS sulfation (with chlorate), the signaling ability of all canonical FGFs were shown to require heparin/HS200,237,238,254 (Figure 2). The HS molecule consists of four310 a long linear carbohydrate chain of repeating sulfated disaccharides, glucuronic acid linked to N-acetylg glucosamine. The HS chains are covalently linked to specific core proteins such as syndecan, perlecan, glypican, and agrin. These HS proteoglycans (HSPGs) are cell surface transmembrane type proteins (e.g. syndecans), cell surface glycerophosphatidylinositol-anchored type proteins (e.g. glypicans), or diffusible proteins localized in the ECM198,298,301–304 (e.g. perlecan and agrin). HS independently can interact with both FGFs and FGFRs and is proposed to cooperatively increase the affinity of a 1:1 FGF-FGFR dimer by binding to a cleft formed between the HS binding sites on FGFs and the N-terminal region of immunoglobulin-like domain230,305 (Figure 3(a)). This 1:1:1 FGF-HS-FGFR complex leads to conformational changes that stabilize a symmetric 2:2:2 dimer. FGFR dimerization then directs the juxtaposition and activation of the intracellular tyrosine kinase domains, followed by the activation of intracellular signaling pathways.198,301 As a component of the ECM, HS also functions to sequester FGFs and modulate their diffusion through tissue to effectively regulate the shape of a gradient. For example, differences in binding affinity of FGF7 and FGF10 for HS, underlie differences in epithelial branching patterns during glandular organogenesis.306

The structure of HS is complex and heterogeneous; with variations in chain length, and patterns of sulfation and acetylation along the length of the glycosaminoglycan (GAG) chain.307–309 Synthesis of the HS chain is catalyzed by the glycosyltransferases, EXT1 and EXT2.310 The HS molecule consists of repeating disaccharide units of N-acetylg glucosamine and glucuronic acid. The HS chain matures in the Golgi where N-acetylg glucosamine residues are partially N-deacetylated and N-sulfated by a family of four N-deacetylase/N-sulfotransferase enzymes311 (NDST1-4). Subsequently, 2-O-sulfotransferases, 6-O-sulfotransferases, and 3-O-sulfotransferases add O linked sulfate groups.309 The pattern and density of deacetylation and sulfation varies along the length of the GAG chain. In the extracellular environment, the 6-O-endosulfatases, SULF1 and SULF2, can also selectively desulfate HS.

The sulfation pattern and length of HS chains regulate FGF signaling.198,312 In the embryo, specific HS chains can regulate the cell-specific patterns of FGF and FGFR binding to the extracellular matrix, the direct interactions between FGFs and FGFRs, and activation of FGFR signaling.313–315 In general, higher levels of sulfation of HS chains facilitate FGF signaling and the formation of ternary complexes with FGFs and FGFRs.316,317 Furthermore, oligosaccharides with eight or more sugar residues are most active, but shorter HS chains can also facilitate the formation of ternary complexes with FGFs and FGFRs.254,316,318,319 Cleavage of the HSPG core protein also modulates FGF signaling.198 The cleavage by serine proteinases possibly facilitates FGF signaling by releasing FGFs that were sequestered at the cell-surface.313 In addition, the cleavage by endoglycosidases such as heparanase possibly modulates FGF signaling.198 For example, FGF10 in the basement membrane, that is released by heparanase, promotes FGF signaling in branching morphogenesis.320

Klotho Family Proteins
The klotho gene was originally identified as a candidate gene responsible for a premature aging syndrome.321 Based on the phenotypic similarity of klotho and Fgf23 knockout mice, klotho was identified as a cofactor for Fgf23 signaling through FGFR1c, FGFR3c and FGFR\textsubscript{4}140,141,247,248,322 (Figure 2). The klotho gene is highly expressed in the distal convoluted tubules in the kidney and choroid plexus in the brain.321 A major function of Fgf23-aKlotho-FGFR signaling in the kidney is to regulate phosphate and calcium homeostasis. Mice lacking Fgf23 or aKlotho develop hyperphosphatemia and hypercalcemia by two weeks of age.258,323

The Klotho family is comprised of three members including aKlotho, bKlotho, and KLPH.98,324 aKlotho contains \textasciitilde1000 amino acid, a single transmembrane domain, and a short cytoplasmic domain (Figure 3(c)). There are no known functions of the cytoplasmic domains of Klotho proteins. The large extracellular part of the Klotho molecule has two repeated internal domains, KL1 and KL2, which...
are structurally similar to β-glucosidases. However, there is no evidence for glucosidase activity of αKlotho. βKlotho is also a single-pass transmembrane protein similar to αKlotho. The βKlotho gene is predominantly expressed in the liver and white adipose tissue.325 βKlotho is a cofactor for FGF15/19 and FGF21 signaling through FGFR4 and FGFR1c, respectively (Figure 3(b)).322 KLPH is also a single-pass transmembrane protein similar to αKlotho.326 The KLPH gene is expressed in the eye and brown adipose tissue.327 KLPH efficiently interacts with FGFR1b, FGFR1c, FGFR2c, and FGFR4. In KLPH-transfected HEK293 cells, FGF19, but not FGF21 and FGF23, causes ERK phosphorylation.160 However, the physiological function of KLPH remains unclear. Although Klotho proteins act as cofactors for the endocrine FGFs through formation of an FGF-FGFR-Klotho ternary complex, they also directly compete with a receptor docking site for canonical FGF8 family ligands, and thus may actively suppress these canonical FGFs while activating endocrine FGFs.327

FGF Binding Proteins

FGFBP1 (FGF Binding Protein 1)

FGFBP1 (HBP17) was originally isolated as a heparin-binding protein that co-eluted with FGF2 from a heparin affinity column.328 The *Fgfbp1* cDNA encodes a secreted 234 amino acid polypeptide (M, 17,000) that binds both heparin and FGF1 and FGF2.328 In these initial studies, FGFBP1 was shown to inhibit the biological activity of these FGFs by inhibiting receptor binding. However, in later studies, FGFBP1 was shown to mobilize FGF from HS binding sites in the extracellular matrix and function to present FGF to the FGFR.329

FGFBP1 is expressed in several human tumors, including breast and colon cancer, and FGFBP1 can be rate-limiting for tumor growth, but pro-angiogenic, thus acting to facilitate tumor invasion.330 In mice, *Fgfbp1* is abundantly expressed in the colon, stomach, ileum, and eye.328 FGFBP1 also binds to and activates FGF7, FGF10 and FGF22, and functions to enhance wound healing.331,332

FGFRL1/FGFR5

FGFRL1 was identified as a protein structurally similar to FGFRs203,333 (Figure 1(c)). The *Fgfrl1* cDNA, originally cloned from human cartilage, encodes a ~500 amino acid protein containing three extracellular immunoglobulin-like domains with similarity to FGFRs, a single transmembrane domain, and a short intracellular tail with no tyrosine kinase domain.333,334 *Fgfrl1* (termed *Fgfr5*) was also cloned from human and mouse cDNA libraries.335,336 A soluble form of FGFRL1 binds to heparin and to FGF2, 3, 4, 8, 10, 22, and ectopic expression antagonized FGF signaling during Xenopus development and inhibited cell proliferation in vitro.334,337 Interestingly, the short cytoplasmic domain of FGFRL1 contains an SH2 binding motif that interacts with the tyrosine phosphatase SHP1338 (Figure 3(d)). Overexpression of *Fgfrl1* results in increased ERK1/2 signaling.338 This result suggests that FGFRL1 is not a decoy receptor, but rather a non-tyrosine kinase signaling molecule.

Fgfrl1 knockout mice die immediately after birth from respiratory failure due to a hypoplastic diaphragm.148 Analysis of these mice reveals agenesis of slow muscle fibers.339 These mice also show kidney agenesis due to a reduction in mesenchymal nephron progenitors (cap mesenchyme), arrested branching of the urogenic epithelium, failure to form functional nephrons, and a hypoplastic collecting duct system147 (Table 2(b)). Interestingly, mice that lack the intracellular domain of FGFRL1 are viable, fertile, and phenotypically normal, suggesting that the extracellular domain of FGFRL1 mediates most of its activity (Box 1).340

Intracellular Signal Transduction

Cytosolic Signaling Pathways

FGF binding activates the FGFR tyrosine kinase by inducing receptor dimerization and trans-autophosphorylation of the kinase domain1 (Figure 3(a)). For FGFR1, six tyrosine residues are sequentially phosphorylated to fully activate the kinase domain341,342 (Figure 3(b)). In the first phase of activation, Y653 is phosphorylated, resulting in a 50- to 100-fold increase in tyrosine kinase activity. In the second phase of activation, Y583, and then Y463, Y766, and Y585 are phosphorylated. In the third phase of activation, Y654 is phosphorylated, resulting in a further 10 fold (overall 500- to 1000-fold) increase in tyrosine kinase activity. Phosphorylation of two additional tyrosine residues, 677 and 766, is required, respectively, for STAT3 and phospholipase Cγ (PLCγ) binding.343–345 The adaptor protein, FGFR substrate 2α (FRS2α) is constitutively docked to its binding site in the juxtamembrane region of FGFRs and anchored to the cell membrane through myristoylation207,346,347 (Figure 3(b)).

The activated FGFR phosphorylates adaptor proteins for four major intracellular signaling pathways, RAS-MAPK, PI3K-AKT, PLCγ, and signal transducer and activator of transcription (STAT)1,151–153,344 (Figure 3(a) and (b)). Activation of the RAS-MAPK and PI3K-AKT pathway is initiated...
Activated (phosphorylated) FRS2α binds the membrane anchored adaptor protein, growth factor receptor-bound 2 (GRB2) and the tyrosine phosphatase SHP2. GRB2 further activates the RAS-MAPK pathway through recruitment of SOS, and the PI3K-AKT pathway through recruitment of GAB1 to the signaling complex (Figure 3(a)). The RAS-MAPK pathway regulates the expression of diverse target genes through activation of E26 transformation-specific (ETS) transcription factors. Etv4 (Pea3) and Etv5 (Erm) are ETS transcription factors that are often transcriptionally induced by FGF signaling. Phosphorylation of ETS transcription factors by activated MAPK allows interaction with DNA and regulation of target gene expression.

In contrast to the RAS-MAPK pathway, the PI3K-AKT pathway functions to inhibit the activity of target molecules such as the forkhead box class transcription factor, FOXO1, and the cytosolic tuberous sclerosis complex 2, TSC2. FOXO1, a pro-apoptotic effector, is inactivated by AKT phosphorylation, causing it to exit the nucleus and promote cell survival. AKT also activates the mTOR complex 1 through phosphorylation and inhibition of TSC2, ultimately stimulating cell growth and proliferation.

BOX 1

INHIBITORY MECHANISMS THAT REGULATE FGFR SIGNALING

Inhibition of FGFR signaling is important for the precise control of cellular functions. Several mechanisms have evolved to regulate FGF signaling. These range from internalization and degradation of the receptor to modulation of receptor kinase activity by phosphatases and regulation of accessibility to downstream signaling pathways.

In recent studies, a dimeric form of GRB2, the adaptor protein that couples FRS2 to the RAS-MAPK and PI3K-AKT pathways (Figure 3(a)), was found to interact directly with the FGFR2 C-terminal 10 amino acid residues, where it stabilized a FGFR dimer which could autophosphorylate a limited number of tyrosine residues including Y653 and Y654 in the activation loop (Figure 3(b)). However, additional C-terminal phosphorylation and recruitment of signaling proteins was sterically hindered by the bound GRB2 dimer. Following ligand mediated receptor activation, phosphorylation of GRB2 caused GRB2 to dissociate from the FGFR C-terminus permitting full receptor activation.

Additionally, high levels of GRB2 inhibited phosphorylation-dependent binding of PLCγ (through its SH3 domain) to the very C-terminus of the FGFR. Lower levels of GRB2 allowed PLCγ binding and increased phospholipase activity, resulting in increased cell motility, an activity that can promote metastatic behavior of melanoma cells.

The RAS-MAPK pathway can also exert direct negative feedback inhibition of FGFRs. ERK1 and ERK2, which are activated by FGF and other receptor tyrosine kinases, can phosphorylate the C-terminus of FGFR2 at Ser777 to functionally inhibit FGFR2 tyrosine kinase activity. This provides a negative feedback pathway for FGF signaling and a means for other receptor tyrosine kinases that use the RAS-MAPK pathways to communicate with FGFRs.

by phosphorylation of FRS2α. FRS2α phosphorylation and ERK1/2 activation is partially dependent on phosphorylation of Y463 and the presence of CRKL. pY463 directly interacts with the adapter protein CRKL and with much lower affinity to the related protein, CRK. Downstream of RAS and PI3K, FGFR signaling has been shown to regulate several distinct MAP kinases including ERK1/2, JNK and p38.

© 2015 Wiley Periodicals, Inc. Volume 4, May/June 2015
STAT3 was phosphorylated resulting in activation of downstream target genes. In brain microvascular endothelial cells, FGF signaling was found to activate STAT5, which was necessary for migration, invasion, and tube formation.

To the best of our knowledge, quantitative similarities and differences in the signaling output of the four FGFR kinase domains have not been assessed. However, activation of downstream signaling pathways are thought to be qualitatively similar for Fgfr1 and Fgfr2 and different from Fgfr3 and Fgfr4. Similarities and differences in signaling of the four FGFRs could be mediated by differential rates of endocytosis, by differential subcellular trafficking after ligand activation, or by differences in the affinity or specificity for adaptor proteins that couple to downstream signaling cascades.

Inhibitors of FGFR Signaling

Sprouty (SPRY) is an intracellular negative regulator of receptor tyrosine kinases including FGFR, vascular-endothelial growth factor receptor, platelet-derived growth factor receptor, and nerve growth factor receptor. The human/mouse SPRY family is composed of four members, SPRY1-SPRY4. Most Sproy genes are ubiquitously expressed in both embryos and adult tissues. In FGF signaling, SPRY interacts with GRB2 to inhibit the RAS-MAPK pathway and to regulate the PI3K-AKT pathway (Figure 3(a)). The phenotypes of Spry knockout mice indicate that SPRYs are essential for development and growth. The deregulation of SPRY function often results in human cancers and autoimmune diseases.

SEF (similar expression to Fgf) is a transmembrane protein that functions as an antagonist of FGF signaling through the Ras-MAPK pathway (Figure 3(a)). SEF functions by binding to activated MEK to inhibit dissociation of the MEK–MAPK (ERK1/2) complex, thus blocking nuclear translocation of activated MAPK. The extracellular domain of SEF may also interact directly with the FGFR to inhibit receptor phosphorylation.

Dusp6 (Dual-specificity phosphatase 6) encodes an ERK-specific MAPK phosphatase (MKP3). Dusp6 expression is transcriptionally upregulated by FGFR signaling and Dusp6 expression patterns closely resemble those of Fgfs. DUSP6 serves as a negative feedback regulator of FGFR signaling by directly dephosphorylating MAPK (ERK1 and ERK2) on phosphotyrosine and phosphothreonine residues (Figure 3(a)).

CBL, an E3 ubiquitin ligase, forms a ternary complex with phosphorylated FRS2α and GRB2, resulting in the ubiquitination and degradation of FGFR and FRS2 in response to FGF stimulation (Figure 3(a)). FGFR2 activation can also increase CBL-PI3K interactions, leading to PI3K degradation and attenuated signaling.

SHP2 binds to phosphorylated FRS2 following ligand activation of the FGFR. SHP2 functions to dephosphorylate FGFR2 and GRB2 (Figure 3(a)). However, activation of SHP2 (by phosphorylation) and access to the FGFR are also inhibited by receptor-bound GRB2.

Regulation of the Cellular Response to FGFR Activation

The cellular response to FGFR signaling is regulated by differences in the intrinsic signaling properties of FGFRs and by the dynamics of subcellular FGFR trafficking in response to ligand binding. Cytosolic signaling pathways can be differentially activated by cell surface FGFRs and internalized FGFRs. Furthermore, regulating synthesis and degradation of FGFRs can modulate the strength of the FGFR signal. Differential cellular response can also result from differences in signal output from multiple FGFRs. For example, FGF1 stimulates lung epithelial cells to form buds resulting in branching, while FGF7 stimulates lung epithelial cells to form cyst-like structures. This could be due to activation of FGFR2 and FGFR4 by FGF1 and only activation of FGFR2b in response to FGF7. Two FGFs that are even more similar, FGF7 and FGF10, can elicit different cellular responses. FGF10 specifically induced the formation of a Y734-phosphorylated FGFR2b-PI3K-SH3BP4 complex that targets FGFR2b to recycling endosomes and controls cell migration and epithelial branching, whereas FGF7 leads to cell proliferation and degradation of FGFR2b.

Function of FGFs and FGFRs in the Nucleus

Both FGF ligands and receptors can localize to the cell nucleus where they carry out signaling functions that can be independent of receptor tyrosine kinase activity. FGFR localization in the nucleus was found to stimulate DNA synthesis independent of FGFRs, and FGF2 nuclear localization was associated with glioma cell proliferation. It is not clear whether FGFs have direct transcriptional functions or exert their activity in the nucleus through interactions with other molecules.

Following ligand-mediated internalization, FGFR1 can be transported to the nucleus by interactions with importin β. Nuclear FGFR1 is required for neuronal differentiation and functions by activating transcription in cooperation with cyclic AMP response element-binding protein (CREB).
Nuclear translocation of FGFR1, along with its ligand, FGF2, promoted pancreatic stellate cell proliferation and changes in the elaborated ECM, making it more permissive for pancreatic cancer cell invasion. In breast cancer cells, activation of FGFR1b by FGF10 activated granzyme B cleavage of FGFR1. Transport of the resulting C-terminal fragment of FGFR1 to the nucleus was required for cell migration.

MicroRNA REGULATION OF FGF AND FGFR EXPRESSION AND SIGNALING

MicroRNAs (miRNAs) are small (approximately 21–24 nucleotides) non-coding RNAs, which are post-transcriptional regulators of gene expression. miRNAs participate in diverse biological processes including development, differentiation, cell proliferation, metabolism, as well as in human diseases including metabolic disorders and cancers. FGF pathway activity during development or regeneration can be regulated by miRNAs and loss of miRNA regulation of FGF signaling can result in disease progression or cancer.

During development, miRNAs can affect cell differentiation by directly regulating Fgf or Fgfr expression. For example, in the osteoblast, miR-338 was found to directly regulate the 3′ untranslated region (UTR) of Fgfr2 to suppress Fgfr2 expression. Decreased miR-338 increased Fgfr2 expression resulting in enhanced osteoblast differentiation. miRNAs can also affect FGF signaling during development by regulating downstream effectors of the pathway. For example, the miR-17 family directly targets Stat3 and Mapk14 in lung epithelium to modulate the response to FGF10-FGFR2b signaling.

In disease pathogenesis, such as in pulmonary arterial hypertension (PAH), hyperproliferation of pulmonary artery endothelial and smooth-muscle cells leads to destruction of the pulmonary vascularplexus. miR-424 and miR-503 directly regulate (suppress) Fgf2 and Fgfr1 expression in pulmonary artery endothelial cells. Decreased expression of miR-424 and miR-503 in PAH leads to increased FGF2 and FGFR1 and consequent vascular hyperproliferation. In a model for tissue repair, inhibition of miR-710, a direct regulator of Fgf15 expression in myofibroblasts, increased FGF15 in conditioned media and enhanced in vitro intestinal epithelial wound repair.

The metabolic functions of endocrine FGFs can be regulated by miRNAs. miR-34a is highly elevated in adipose tissue in obese mice and in liver in patients with steatosis. Elevated miR-34a in obesity attenuates hepatic FGF19 signaling and adipose FGF21 signaling by directly targeting the 3′ UTR of β-Klotho and Fgfr1. Downregulation of miR-34a increases the levels of the FGF21 receptor components, FGFR1 and β-Klotho (and also SIRT1), resulting in FGF21/SIRT1-dependent induction of genes that favor brown fat and improved hepatic FGF21 signaling and lipid oxidation.

In several cancers, decreased expression of miRNAs that normally suppress FGF expression have been identified as a potential mechanism for promoting cancer progression. For example, in non-small-cell lung cancer (NSCLC) miR-152 and miR-198 are downregulated, and FGF2, a direct target of miR-152, and Fgfr1, a direct target of miR-198, are overexpressed, leading to decreased apoptosis and increased proliferation and invasion. In breast cancer cell line, miR-503 expression is suppressed by HBXIP (hepatitis B X-interacting protein). Reduced expression of miR-503, which directly targets the 3′ UTR of FGF8, results in increased FGF8 and consequent increased angiogenesis and proliferation of the breast cancer cells. In gastric cancer and hepatocellular carcinoma, miR-26a and miR-140-5p, respectively, are strongly downregulated, and FGF9, a direct target of both of these miRNAs is increased. Interestingly, decreased miR-140-5p and miR-99b expression has also been observed in NSCLC tissue. High FGF9 expression observed in 10% of human NSCLC specimens suggests an additional pathogenic relationship between miR-140-5p and FGF9 in lung cancer. Increased expression of FGFR3, a direct target of miR-99b, was observed in human NSCLC tissue. Of relevance to this mechanism, FGFR3 is the obligate FGFR mediating FGF9 induced adenocarcinoma in a mouse model for lung cancer.

DEVELOPMENTAL, GENETIC, AND PATHOLOGICAL FUNCTIONS

FGF Signaling during Peri-implantation Development

The earliest requirement for FGF signaling is in the preimplantation embryo, where Fgf4 is first expressed in the morula and later in the epiblast cells of the inner cell mass (ICM). Fgf4 gene inactivation in mice shows that FGF4 is required for ICM proliferation and for formation of the primitive ectoderm. The receptor for FGF4 in the ICM is more controversial. Campbell et al. detected Fgfr1 (Flg) but not Fgfr2 (Bek) transcripts in mouse blastocysts. Orr-Urtreger et al. concluded that both Fgfr1 and Fgfr2 are expressed in the ICM and Fgfr2 is expressed in the embryonic ectoderm, while
Guo et al. concluded that Fgfr2 is not expressed in the epiblast lineage but is highly expressed in embryonic ectoderm.423 Fgfr knockout studies are also controversial (Table 2(b)). Arman et al. generated a mutant allele of Fgfr2 and found defects in the outgrowth, differentiation, and maintenance of the inner cell mass424; however, it is possible that this allele functions as a dominant negative that partially interferes with Fgfr1 signaling, as mice homozygous for two other engineered null alleles of Fgfr2 survived until embryonic day 10–11115,116 (Table 2(b)). Inactivation of Fgfr1 or Fgfr8, which are also expressed in the blastocyst, indicates a function slightly later in development, with phenotypes affecting axis formation and mesoderm specification105,425,426 (Table 2(a) and (b)). We are not aware of studies in which both Fgfr1 and Fgfr2 have been conditionally inactivated in the ICM.

FGF Signaling in Organogenesis

FGF signaling is involved almost ubiquitously throughout organogenesis.161 A key function of FGF signaling is to regulate interactions between epithelial (and mesothelial) cells and mesenchyme. A general principle that applies to branched organs (lung, salivary gland, lacrimal gland), intestine, liver, and limb bud development involves mesenchymal expressed FGFs, such as FGF10 signaling to the epithelial IIIb splice variant of FGFR1 and FGFR2.171,117,427 Reciprocal signaling, from epithelium to mesenchyme is mediated by FGFs expressed in epithelia, such as FGF8 and FGF9, which signal to mesenchymal IIIc splice variants of FGFR1 and FGFR2.428,429 However, this general principle does not apply to all tissues. For example, in the developing central nervous system, FGF8 signals as an autocrine/paracrine factor in the anterior neural primordium430 and during development of the inner ear, autocrine/paracrine FGF signaling regulates differentiation of the cochlear sensory epithelium.90,103,104

Epithelial-Mesenchymal Signaling in Limb, Lung, and Neurogenic Placode Development

FGF signaling is essential for initiation and proximal-distal growth of the limb bud (Figure 4(a)–(c)). Fgf10 is expressed diffusely in the lateral plate mesoderm.54 FGF10 was recently shown to signal to coelomic epithelium where it induces an epithelial-mesenchymal transition to generate mesenchyme in the presumptive limb fields.431 Later, FGF10 signals to overlying ectoderm to initiate formation of the apical ectodermal ridge (AER), a specialized thickening of epithelium at the tip of the growing limb that is required for proximal-distal limb growth. Inactivation of FGFR2 in the AER at different times during development results in blunt truncations of the limb117,427 (Table 2(b)). FGF10 signaling to the AER activates expression of Wnt3a and expression of the downstream transcription factors SP6 and SP8, which are required for Fgf8 expression.432–434 Fgf8 is first expressed as the lateral ectoderm begins to swell and then throughout the AER. Fgf4, Fgf9, and Fgf17 are subsequently expressed in the posterior AER.15,30,435,436 AER FGFs signal to distal limb mesenchyme through FGFR1 and FGFR2 to activate ETV1 and EWSR1, which are required to maintain Fgf10 expression117,437 (Table 2(b)).

FGF signaling in lung development follows similar principles to that in limb development (Figure 4(d) and (e)). Fgf10 expression in mesenchyme adjacent to the sites of lung bud formation is regulated by the transcription factor Tbx4.293,438,439 Conditional inactivation of Fgf10 or FGFR2, after initial lung bud formation, results in reduced epithelial branching.15,441 FGF10 signaling in lung epithelium is inhibited by Spry1, Spry2, and Spry4, which are expressed in the distal ducetal epithelium proximal to sites of Fgf10 expression in mesenchyme.442,443 Inactivation of Spry1 and Spry2 results in increased epithelial proliferation, branching, and differentiation toward distal airway cell-types.444,445 Inactivation of Spry2 and Spry4 results in epithelial dilation and reduced branching.446 Interestingly, Fgf10 appears to be expressed in a lung mesenchymal progenitor that can give rise to parabronchial cells, vascular smooth muscle cells and lipofibroblasts.447

Fgf9 has a complementary role to that of Fgf10. Fgf9 is expressed in the mesothelium and epithelium.448,449 Mice lacking Fgf9 have severely hypoplastic lung development, characterized by reduced distal mesenchyme and decreased epithelial branching.42,43 The primary target of Fgf9 in lung mesenchyme is FGFR1 and FGFR2.43 Most of the mesenchymal proliferation can be accounted for by Fgf9 derived from the mesothelium, whereas epithelial-derived FGF9 is important for branching.44 In lung mesenchyme, an interaction with FGFR and canonical WNT signaling is essential for development. FGFR activation is required for the expression of Wnt2a and WNT/β-catenin signaling is required to maintain mesenchymal Fgfr1 and Fgfr2 expression.450 Thus WNT/β-catenin signaling functions to modulate the tissue responsiveness to FGF signals.
FGF signaling is required for the induction of neurogenic placodes. For example, the otic placode, which gives rise to the entire inner ear including sensory hair cells, specialized supporting cells and the innervating sensory neurons, requires direct signaling from FGF3 and FGF10 (Figure 4(f) and (g)). FGF3 is derived from the hindbrain and FGF10 is expressed in head mesenchyme. Both of these FGFs signal to pre-otic ectoderm to induce the otic placode. The size of the otic placode is initially regulated by FGF-induced proliferation and expression of the FGF pathway inhibitors, Spry1 and Spry2. FGF8 is also necessary for otic placode development; however, FGF8 functions indirectly, signaling from cranial endoderm to regulate Fgf10 expression in adjacent head mesenchyme.

Canonical FGF Signaling within the Nervous System

Canonical FGF signaling within an epithelial or mesenchymal compartment is used in an autocrine, paracrine, or juxtacrine manner during the development of some neuronal tissues. For example, in the developing central nervous system, Fgf8 is expressed in localized organizing centers such as the anterior neural primordium (neuroepithelium) where it signals as a paracrine factor to regulate anterior–posterior patterning of the telencephalon and maintain the survival of telencephalic progenitors. Similarly, FGF signaling is important for patterning around the midbrain-hindbrain junction and around rhombomere 4. During development of the cochlear duct in the inner ear, Fgf10 is expressed in the prosensory epithelium and signals as an autocrine/paracrine factor to FGFR1 to regulate differentiation of the cochlear sensory epithelium (Figure 4(h)). FGF signaling is also required for neuronal migration in the cortical ventricular zone and for the translocation of astrogial cells from the ventricular zone to the cortical surface. In myelinating nerves, FGFs expressed in neurons, signal to FGFR1 and FGFR2 in oligodendrocytes to regulate myelination and in synaptogenesis, FGF7 and FGF22, expressed in specific neuronal populations, are required for the induction of inhibitory and excitatory synapses, respectively, in the neurons that they innervate.

Canonical FGF Diffusion Controlled by ECM Interactions Regulates Development

Interactions of FGF ligands and the ECM affect receptor affinity and their diffusion through tissue. Receptor binding and diffusion through tissue can have synergistic or antagonistic effects on overall FGF signaling. An example of this is the elbow knee syndactyly (EKS) mutation and multiple syndactyly syndrome, both of which result from missense mutations in Fgf9 and Fgf10 (discussed under Heritable disease mutations below). The Fgf9EKS mutation reduces its affinity for heparan sulfate proteoglycan and increases diffusion of FGF9 through developing joint tissue. This increases FGF9 signaling distally in the presumptive joint space and results in failure to form a joint cavity. In lacrimal gland development, Fgf10 is expressed in periocular mesenchyme. Lacrimal gland development was impaired in mice in which the mesenchymal biosynthetic enzyme for glycosaminoglycans, UDP-glucose dehydrogenase, or enzymes required for heparan sulfation, NDST1 and NDST2, were inactivated. Phenotypic analysis indicated that these mutations resulted in increased FGF10 diffusion, decreased local concentrations, and defective epithelial branching into the FGF10-deficient mesenchyme.

Loss-of-Function Fgf and Fgfr Mutations in Mice

Fgf1 Subfamily

Fgf1 and Fgf2 appear to have relatively minor roles in embryonic development but are important regulators of the injury response. Fgf1 expression in adipose tissue is induced in response to a high fat diet and mice lacking Fgf1 develop a diabetes phenotype when placed on a high fat diet (Table 2(a)). Mice lacking Fgf2 also develop normally, but show reduced vascular tone, impaired cardiac hypertrophy, reduced cortical neuron density, and defects in response to cutaneous, pulmonary, or cardiac injury (Table 2(a)).

Fgf4 Subfamily

Fgf4 knockout mice die at early embryonic stages due to impaired proliferation of the blastocyst inner cell mass. Conditional inactivation of Fgf4 in limb bud apical ectodermal ridge cells identified redundancy with Fgf8 for survival of cells located distal to the apical ectodermal ridge. Similarly, Fgf4 and Fgf8 show redundancy in somitogenesis and conditional loss of both genes results in loss of presomitic mesoderm and its premature differentiation. Genetic analysis in domestic dog breeds identified a retrovirus-mediated duplication of Fgf4 associated with a short-legged phenotype resembling chondrodysplasia. Fgf5 and Fgf6 knockout mice are viable. Inactivation of the Fgf5 gene results in a long hair phenotype in angora mice and in engineered knockouts (Table 2(a)). Fgf6 knockout mice have defects in muscle regeneration and
the combined loss of Fgf2, Fgf6 and the Mdx gene leads to severe dystrophic changes with reduced formation of new myotubes in regenerating muscle \(^{20}\) (Table 2(a)).

Fgf7 Subfamily

Fg7 knockout mice are viable, but have phenotypes that include inner ear agenesis and dysgenesis, microtia, and microdontia \(^{12,36,479}\) (Table 2(a)). Fgf7 knockout mice, which are also viable, have impaired hair and kidney development \(^{23,24}\) and defects in the formation of neuronal synapses \(^{22}\) (Table 2(a)). Fgf10 knockout mice die shortly after birth. Fgf10 is critical for epithelial-mesenchymal interactions necessary for the development of epithelial components of multiple organs including the limb, lung, salivary glands kidney, and white adipose tissue \(^{54,55,58,480}\) (Table 2(a)). Fgf22 knockout mice are viable, but like Fgf7 have defects in synaptogenesis. \(^{867}\) Interestingly, Fgf22 knockout mice have defects in the formation of excitatory synapses, while Fgf7 knockout mice have defects in inhibitory synapses. Consistent with this, Fgf7 and Fgf22 knockout mice are either resistant to or prone to epileptic seizures, respectively \(^{22,91}\) (Table 2(a)).

Fgf8 Subfamily

Fg8 knockout mice lack all embryonic mesoderm and endoderm-derived structures and die by embryonic day 9.5. \(^{226}\) Subsequent analysis revealed that FGF8 is required for Fg4 expression in the primitive streak resulting in impaired migration away from the primitive streak. \(^{32}\) Conditional inactivation of Fg8 identified additional roles in limb bud development and organogenesis \(^{15}\) (Table 2(a)). Fgf17 knockout mice are viable, but show impaired hindbrain development and a selective reduction in the size of the dorsal frontal cortex \(^{31,84}\) (Table 2(a)). Fgf18 knockout mice die shortly after birth. Fgf18 has essential roles in the development of mesenchymal components of multiple organs including the skeleton, lung, and brain. \(^{85–88,481}\) Late in embryonic development FGF18 is involved in lung alveolar development \(^{88}\) (Table 2(a)).

Fgf9 Subfamily

Mice lacking Fgf9 have hypoplastic lungs, sex reversal and impaired survival of male germ cells, impaired skeletal growth, impaired cardiomyocyte growth, impaired growth of the small intestine and cecum, and defects in inner ear development \(^{41,42,45–49,482}\) (Table 2(a)). Mice lacking Fgf16 are viable but have decreased proliferation of cardiomyocytes in embryos and neonatal mice \(^{82,83}\) and enhanced cardiac hypertrophy and fibrosis in response to angiotensin II as adults \(^{81}\) (Table 2(a)). Mice lacking Fgf20 are viable but lack guard hairs, have impaired differentiation of sensory cells in the cochlea, small kidneys, and defects in tooth development. \(^{40,90–92}\) Fgf9 and Fgf20 show redundancy in their requirement for kidney development, where they function to maintain the stemness of cap mesenchyme progenitor cells \(^{40}\) (Table 2(a)).

Fgf15/19 Subfamily

Mice lacking Fgf15 develop normally until E10.5, but then gradually die due to variably penetrant defects in morphogenesis of the cardiac outflow tract. \(^{76,483}\) At postnatal stages, intestinal FGF15/19 functions to regulate hepatic bile acid synthesis \(^{78}\) (Table 2(a)). Following partial hepatectomy, mice lacking Fgf15 have severe defects in regeneration; showing reduced or delayed expression of early response genes and transcription factors that regulate the cell cycle. \(^{79,484}\) Mice lacking Fgf21 are phenotypically normal under homeostatic conditions. However, when fasted, Fgf21 expression is rapidly upregulated in the liver, \(^{485–487}\) and in response to fasting, mice lacking Fgf21 showed increased lipolysis \(^{93}\) and an impaired adaptation to a ketogenic diet. \(^{488}\) Subsequent studies showed that FGF21 is an upstream effector of adiponectin in white adipocytes and that adiponectin mediates many of the systemic effects of FGF21 on energy metabolism and insulin sensitivity in liver and skeletal muscle \(^{489,490}\) (Table 2(a)). Fgf23 knockout mice survive until birth, but then gradually die. \(^{100}\) Fgf23 knockout mice and mice in which Fgf23 is inhibited with antibodies show hyperphosphatemia and increased levels of the active form of vitamin D, 1,25-dihydroxyvitamin D \((1,25(\text{OH})_2\text{D})\). Fgf23, which is expressed in osteocytes, signals to the kidney where it induces the vitamin D activating enzyme Cyp27b1 and inhibits Cyp24, which inactivates vitamin D. Injection of recombinant FGF23 rapidly reduces circulating parathyroid hormone \((\text{PTH})\) and levels of the sodium-dependent phosphate co-transporters, NPT2a and NPT2c, in the kidney, resulting in phosphaturia. \(^{491,492}\) FGF23 has also been shown to signal directly to cardiomyocytes to induce hypertrophy, \(^{493}\) and increase myocyte Ca\(^{2+}\) levels and cardiac contractility \(^{494}\) (Table 2(a)).

Fgf11 Subfamily

Mice lacking Fgf13, though viable, have defects in neuronal migration and deficits in learning and memory \(^{70}\) (Table 2(a)). Mice lacking Fgf14 have paroxysmal dyskinesia, movement disorders, and impaired spatial learning \(^{71,72,74}\) (Table 2(a)). Fgf14 and other members of the iFGF family interact with the cytoplasmic carboxy terminal tail of voltage gated sodium channel \((\text{Nav})\) \(\alpha\) subunits \(^{69,263,264,495–498}\)
FGF13 was also found to interact directly with and stabilize microtubules and bind junctophilin-2, a protein that regulates L-type Ca\(^{2+}\) channels.

Mice lacking Fgf4 have defective neuronal firing due to altered Nav channel physiology, suggesting that Fgf4 functions as a physiological regulator of Nav channels in vivo. Interestingly, Fgf4 interactions with Nav channels may be regulated downstream of glycogen synthase kinase 3 providing a pathway that could link intercellular signaling and neuronal excitability.

Consistent with phenotypes seen in Fgf14 deficient mice, mutations in Fgf14 in humans result in a progressive spinocerebellar ataxia syndrome (SCA27).

Fgfr Family

Most embryos lacking both alleles of Fgfr1 do not survive past embryonic day 8.5. Analysis of earlier stages of development shows that Fgfr1-null embryos are smaller, but do initiate gastrulation (mesoderm formation), have impaired mesoderm migration, but fail to initiate somitogenesis (Table 2(a)). Inactivation of Fgf14 in adult mouse Purkinje neurons results in loss of spontaneous firing and deficits in coordination, suggesting that Purkinje neurons results in loss of spontaneous firing and deficits in coordination.

FGFRs in Humans and Other Mammals

FGF4 Subfamily

Michel aplasia is a unique autosomal recessive syndrome characterized by aplasia, atresia, or hypoplasia of the lacrimal and salivary glands (ALSG) is an autosomal dominant congenital anomaly characterized by aplasia, atresia, or hypoplasia of the lacrimal and salivary systems. Lacrimo-auriculo-dento-digital (LADD) syndrome is an autosomal-dominant multiple congenital anomaly disorder characterized by aplasia, atresia, or hypoplasia of the lacrimal and salivary systems.

FGF7 Subfamily

Chondrodysplasia is a short-legged phenotype that defines at least 19 dog breeds. The expression of a recently acquired expressed retrogene encoding Fgf4 is strongly associated with the chondrodysplasia phenotype.

A missense mutation in Fgfr5 was also found in longhaired cats and the Angora mouse mutant (Table 3(a)).

FGF10 Mutations

Mutations in Fgfr1 and Fgfr2 are viable and overtly healthy. Although, they have normal liver histology and regenerative response to partial hepatectomy, mice lacking Fgfr4 exhibit depleted gallbladders, elevated bile acid reserves, elevated bile acid excretion, increased mass of white adipose tissue, hyperlipidemia, glucose intolerance, insulin resistance, and hypercholesterolemia (Table 2(b)).

The role of FGFR4 in tumorigenesis is controversial. In one study, mice lacking Fgfr4 have increased susceptibility to chemically induced hepatocellular carcinoma, indicating that FGFR4 may function as a tumor suppressor in the liver. However, in a second study, FGFR4 was found to be required for FGF15/19 induced hepatocellular carcinoma and mice lacking Fgfr5 are resistant to chemically induced hepatocellular carcinogenesis. FGFR3 and FGFR4 show redundant function in the regulation of vitamin D levels and in regulating alveolar septation.

Heritable Disease Mutations in FGFs and FGFRs in Humans and Other Mammals

Chondrodysplasia is a short-legged phenotype that defines at least 19 dog breeds. The expression of a recently acquired expressed retrogene encoding Fgf4 is strongly associated with the chondrodysplasia phenotype.
TABLE 3 | Heritable Mutations in FGFs Associated with Disease in Humans (and Mice)

Gene Name	Mutation	Associated Disease	Selected References
(a) Heritable mutations in FGFs associated with disease in humans (and other mammals)			
FGF1		Haploinsufficiency	Oto-dental syndrome 479,514–517
FGF2		Haploinsufficiency	Michel aplasia (inner ear agenesis, microtia, and microodontia), LAMM syndrome (labyrinthine aplasia, microtia, and microdontia)
FGF3		Missense/frameshift mutation	Michel aplasia (inner ear agenesis, microtia, and microodontia), LAMM syndrome (labyrinthine aplasia, microtia, and microdontia)
FGF4	Retroviral overexpression	Chondrodysplasia (dogs) 16	
FGF5	Deletion mutation	Angora mutation (mice) 18,518–521	
	Missense/splice-site mutation	Coat variability (pure bred dogs)	
	Missense/insertion/deletion mutation	Long-hair (cats)	
FGF6	Polymorphism	Chronic obstructive pulmonary disease risk 522	
FGF7	Nonsense mutation	Hypogonadotropic hypogonadism 523–528	
FGF8	Missense mutation	Cleft lip and palate, Holoprosencephaly, craniofacial defects, Hypothalamo-pituitary dysfunction, Kallman syndrome type 6	
	Hypomorphic allele	Lack of hypothalamic GnRH neurons	
FGF9	Missense mutation	Multiple synostoses syndrome, Elbow knee synostosis (mice) 469,470,529	
	Promoter polymorphism	Sertoli cell-only syndrome	
FGF10	Nonsense mutation	Aplasia of lacrimal and salivary glands, LADD syndrome 530–534	
	Polymorphism	Extreme myopia	
FGF11	Missense mutation	Brugada syndrome (candidate gene) 535	
FGF12	Nonsense mutation	Börjeson-Forssman-Lehmann syndrome (BFLS) (candidate gene) 536,537	
FGF13	Polymorphism	Elbow synostosis (mice)	
FGF14	Missense mutation/ translocation/deletion	Spinocerebellar ataxia 27 (SCA27) 505,538,539	
FGF15/19	Nonsense mutation	Metacarpal 4–5 fusion 540,541	
FGF16	Missense mutation	Hypogonadotropic hypogonadism 542	
FGF17	Polymorphism	Parkinson disease risk 40,543–545	
FGF18	Missense mutation	Kidney agenesis (human)	
FGF19	Polymorphism	Macronutrient intake, obesity, and type-2 diabetes risk 546–548	
FGF20	Polymorphism	Autosomal dominant hypophosphataemic rickets, Familial hyperphosphatemic tumoral calcinosis 242,549–555	
FGF21	Polymorphism	Cardiac abnormality risk in Kawasaki syndrome (increased serum FGF23)	
FGF23	Nonsense mutation	Autosomal dominant hypophosphataemic rickets, Familial hyperphosphatemic tumoral calcinosis 242,549–555	
(b) Heritable mutations in FGFRs associated with disease in humans (and other mammals)			
FGFR1	Missense mutation	Pfeiffer syndrome, Kallman syndrome 2, Normosmic idiopathic hypogonadotropic hypogonadism, Split hand/foot malformation, Osteoglophonic dysplasia, Harstfield syndrome 556–566	
	Missense or frameshift mutation	Jackson-Weiss syndrome	
TABLE 3 | Continued

Gene Name	Mutation	Associated Disease	Selected References
FGFR2	Missense mutation	Apert syndrome, Crouzon syndrome, Jackson-Weiss syndrome, Pfeifer syndrome, Non syndromic craniosynostosis, Bent bone dysplasia	567–579
	Deletion	Saethre-Chotzen-syndrome	
FGFR3	Missense mutation	Hypochondroplasia, Achondroplasia, Thanatophoric dysplasia, Coronal craniosynostosis, Crouzon syndrome with acanthosis nigricans, Platyspondylic lethal skeletal dysplasia, Achondroplasia with developmental delay, and acanthosis nigricans (SADDAN), Muenke syndrome, Saethre-Chotzen-syndrome, CATSHL syndrome, Mouse models for aberrant osteogenesis, Achondroplasia, Muenke syndrome	288,574,580–611
FGFR4	Overexpression	Facioscapulohumeral muscular dystrophy	612–614
	Missense mutation	Gallstone disease	
	Polymorphism	Bronchopulmonary dysplasia, Neonatal respiratory distress syndrome	
FGFRL1	Frameshift mutation	Craniosynostosis, Antley–Bixler-like syndrome	615–617
	Deletion	Wolf-Hirshchhorn syndrome	

FGF8 Subfamily

Nonsense mutations in FGF8 and destabilizing missense mutations in FGF17 were found in familial hypogonadotropic hypogonadism with variable degrees of gonadotropin-releasing hormone deficiency and olfactory phenotypes. Cleft lip and/or palate (CLP) appear when the two halves of the palatal shelves fail to fuse completely. A missense mutation in FGF8 which is predicted to cause loss-of-function by destabilizing the N-terminal structure of the protein (important for FGFR binding affinity and specificity) was found in a patient with CLP. Metacarpal 4–5 fusion is a rare congenital malformation of the hand characterized by the partial or complete fusion of the fourth and fifth metacarpals in humans. Nonsense mutations in FGF16 are associated with X-linked recessive metacarpal 4–5 fusion, indicating the involvement of FGF16 in the fine tuning of skeletal development. Parkinson disease is a common neurodegenerative disorder resulting in the inability to control movement. The disease has been attributed to the severe loss of dopaminergic neurons within the substantia nigra. The significant correlation of Parkinson disease with single nucleotide polymorphisms in FGF20 indicates that the genetic variability of FGF20 may be a risk factor for Parkinson disease. A frameshift mutation in FGF20 also results in bilateral renal agenesis in humans, indicating that FGF20 is essential for metanephric kidney development.
FGF15/19 Subfamily

Dietary intake of macronutrients has been associated with risk of obesity and type 2 diabetes. Polymorphisms in FGF21 are potentially associated with macronutrient consumption and risk of obesity and type 2 diabetes in humans.\(^{546-548}\) (Table 3(a)). Mutations resulting in either gain- or loss-of-function of FGF23 result in human disease.\(^{620}\) (Table 3(a)). Autosomal dominant hypophosphatemic rickets (AHDR) is caused by gain-of-function mutations in FGF23.\(^{242}\) Tumors that over-produce FGF23 also cause tumor-induced osteomalacia (TIO), which is a paraneoplastic disease characterized by renal phosphate wasting and resulting hypophosphatemia.\(^{621}\) Reduced FGF23 signaling also causes familial tumoral calcinosis (FTC); a disease characterized by ectopic calcification and hyperphosphatemia.\(^{549,550}\) (Table 3(a)). Kawasaki syndrome (KS) is a childhood vascular inflammatory disease with an increased risk of developing subsequent cardiac abnormalities. Thirty three percent of patients examined were found to have a polymorphism in FGF23 and elevated serum levels of FGF23.\(^{551,552}\) FGF23 polymorphisms were significantly associated with cardiac abnormalities (Table 3(a)).

FGF11 Subfamily

Brugada syndrome (BrS) is a potentially life-threatening inherited cardiac arrhythmia. FGF12 (FHF1) is the major intracellular FGF expressed in the human ventricle. A single missense mutation in FGF12 in Brugada syndrome patients reduces binding to the voltage gated sodium channel (NaV1.5) C-terminus, resulting in reduced Na\(^+\) channel current density and availability without affecting Ca\(^{2+}\) channel function.\(^{335}\) (Table 3(a)). Börjeson–Forssman–Lehmann syndrome (BFLS) is an X-linked mental retardation syndrome. A duplication breakpoint is identified in a patient with BFLS maps near the FGF13 (FHF2) gene at Xq26.3. This disease association and the high expression of FGF13 in brain and skeletal muscle makes it a good candidate gene for BFLS.\(^{536}\) (Table 3(a)). X-linked congenital generalized hypertrichosis is an extremely rare condition of hair overgrowth on different body sites. This disease maps to Xq24-27 and a large interchromosomal insertion at Xq27.1 co-segregates with the disease. In patients with this disease, FGF13 expression is significantly decreased throughout the outer root sheath of affected hair follicles, suggesting a role for FGF13 in hair follicle growth and in the hair cycle.\(^{537}\) (Table 3(a)). Spinocerebellar ataxias (SCAs) are neurodegenerative disorders with multiple genetic etiologies. SCA27 is characterized by early onset tremor, dyskinesia, and slowly progressive cerebellar ataxia. SCA27 is caused by missense, translocation, or deletion mutations in FGF14.\(^{506,622,623}\) (Table 3(a)). Loss of binding of the mutant FGF14 protein to Nav channel \(\alpha\) subunits and instability of the mutant protein are thought to be the primary factors leading to this disease.\(^{505,624}\) (Table 3(a)).

FGFR1

Gain-of-function missense mutations in FGFR1 are found in several craniosynostosis syndromes including Pfeiffer syndrome, Jackson-Weiss syndrome, Muenke syndrome, and osteoglyphic dysplasia.\(^{556,557,567,625,626}\) (Table 3(a)). These are autosomal dominant syndromes that affect cranial suture closure and have various additional skeletal and soft tissue phenotypes. Interestingly, Pfeiffer syndrome, Jackson-Weiss syndrome, and Muenke syndrome phenotypes also can be caused by activating mutations in FGFR2 (Pfeiffer) or FGFR3 (Pfeiffer, Muenke), suggesting possible redundant or parallel function of these FGFRs in skeletal development.\(^{568,626}\)

Loss-of-function missense mutations have also been identified in FGFR1 as a cause of Kallmann syndrome 2 (hypogonadotropic hypogonadism 2) with or without anosmia.\(^{538,539}\) (Table 3(a)). Dominant or recessive mutations in FGFR1 that are likely loss-of-function are found in Harstfield syndrome (holoprosencephaly and ectroductaly, with or without cleft lip and palate).\(^{560}\) (Table 3(a)).

FGFR2

Autosomal dominant gain-of-function missense mutations, deletions, and insertions in FGFR2 result in Apert syndrome, Crouzon syndrome, non-syndromic craniosynostosis syndrome, Saethre-Chotzen syndrome, Pfeiffer syndrome, and Jackson-Weiss syndromic craniosynostosis syndrome, Saethre-Chotzen syndrome, and Jackson-Weiss syndrome.\(^{567-574,627,628}\) (Table 3(b)). Pfeiffer and Jackson-Weiss syndromes also result from mutations in FGFR1, as described above. All of these syndromes have in common craniosynostosis of at least one cranial suture; many of these syndromes also affect the appendicular skeleton and other organs. For example, the Crouzon syndrome mutation, FGFR2\(^{C142Y}\), affects the shape of the brain, but not its overall volume.\(^{529}\)

The biochemical consequences of the classic Apert syndrome mutations (FGFR2\(^{S252W}\) and FGFR2\(^{P253R}\)) and a relatively rare Alu element insertion, or deletion of an intronic splicing element in the intron between exon 8 (IIIb) and exon 9 (IIIC) of FGFR2 is to change the ligand binding affinity to an extent that mesenchymal ligands such as FGF10 are able to activate mesenchymal splice variants of FGFR2.\(^{575,630}\) (Figure 5(b)). Importantly, the Apert...
mutations all remain ligand dependent. The Alu element insertion acts by disrupting splicing to exon 9, encoding the IIIc splice variant (Figure 1(b)), leading to alternative mesenchymal misexpression of exon 8, encoding the IIIb splice variant. The missense mutations directly affect ligand affinity for the mutant receptor.575,576,631–638

Bent bone dysplasia, which is a perinatal lethal skeletal dysplasia characterized by osteopenia, craniofacial dysmorphology and bent bones, results from mutations in FGFR2 that decrease plasma membrane signaling without affecting nuclear localization of the mutant receptor577 (Table 3(b)). The consequence of this mutation is enhanced nucleolar occupancy of the receptor at the ribosomal DNA promoter where it activates rDNA transcription.639

Loss-of-function mutations in FGFR2 are seen in lacrimo-auriculo-dento-digital (LADD) syndrome, which is characterized by lacrimal-duct aplasia, dysplastic ears, hearing loss, small teeth, and digital malformations531 (Table 3(b)). Mutations in FGFR2 disrupt the catalytic pocket of the tyrosine kinase domain resulting in reduced substrate binding and reduced tyrosine kinase activity.640,641 Other individuals with LADD syndrome have inactivating mutations in FGF10 (see above), a ligand for FGFR2b,533 or a missense mutation in FGFR3531 (Box 2).

FGFR3

Hypochondroplasia, Achondroplasia, Thanatophoric dysplasia, and Platyspondylal lethal skeletal dysplasia are autosomal dominant disorders characterized by short-limbed dwarfism.580,581 These syndromes are caused by gain-of-function missense mutations in FGFR3. Among the mutations, the G380R mutation in the transmembrane domain of FGFR3 activates the receptor in a ligand dependent manner resulting in Achondroplasia, the most common form of skeletal dwarfism in humans (Figure 5(c)). By contrast, in the lethal skeletal dysplasia syndrome, Thanatophoric dysplasia, type I or type II, the R248C mutation in the extracellular domain or the K650E mutation in the |

© 2015 Wiley Periodicals, Inc. Volume 4, May/June 2015

or indirect inhibition of the FGFR3 signaling pathway could form the basis of a therapy for Achondroplasia.738 The direct inhibition of the FGFR3 kinase has thus far not succeeded in vivo, possibly because of difficulties in achieving therapeutic levels of FGFR3 kinase inhibitors in the avascular growth plate. However, over the past 20 years, other therapies have been aimed at indirectly augmenting skeletal growth or indirectly suppressing FGFR3 signaling. One of the first therapies to be evaluated was the use of human growth hormone; however, no long-term benefit was observed.581,739 More recently, it was discovered that C-type natriuretic peptide (CNP) signaling through its receptor, natriuretic peptide receptor 2 (guanylate cyclase B) in chondrocytes, inhibits the MAPK signaling pathway at the level of RAF1, to regulate skeletal growth. Overexpression of CNP in mice or humans results in skeletal overgrowth through attenuation of FGFR3 signaling.740,741 BMN-111, a CNP agonist with an extended half-life, was found to normalize skeletal growth in a mouse model for Achondroplasia604,742,743 and this drug is currently being evaluated in a clinical trial for the treatment of Achondroplasia.

Other indirect strategies involve the use of a soluble FGFR3 extracellular domain (sFGFR3) to interfere with endogenous FGFR3 signaling by binding FGF ligands (FGF9 and FGF18) that normally are required to activate the receptor during postnatal skeletal development.47,85–87,744 In a mouse model for Achondroplasia,132 subcutaneous injections of recombinant sFGFR3 throughout the growth period normalized skeletal growth and decreased mortality without having any apparent toxic side effects. Several inhibitory antibodies have also been developed to target the FGFR3 extracellular domain for potential cancer therapeutics, but these have not yet been evaluated for treatment of Achondroplasia.745–747

Statins (drugs that inhibit cholesterol biosynthesis) were recently identified through a screen for drugs that could improve chondrogenic differentiation of induce pluripotent stem cells (iPSCs) derived from patients with Thanatophoric dysplasia.748 Treatment of a mouse model for Achondroplasia132 with Rosuvastatin, which is one of the statin drugs, increased anteroposterior skull length and the lengths of the ulnas, femurs and tibiae.748 Although the mechanism is poorly defined, statin treatment was found to increase degradation of the mutant FGFR3.

BOX 2

DEVELOPING A PHARMACOLOGICAL TREATMENT FOR ACHONDROPLASIA

Achondroplasia is caused by a ligand dependent autosomal dominant mutation in FGFR3. Because the disease phenotypes form during the prepubertal years when bones are actively growing, it was anticipated that direct...
Activating mutations in FGFRs in heritable and acquired disease. (a) Wild type FGFR-FGF-HS complex. (b) Missense mutations in the linker between immunoglobulin-like domain II and III affect the affinity and specificity of the receptor. The Apert syndrome mutation, S252W, allows FGF10 to activate the IIIc splice variant of FGFR2. (c) Missense mutations in the transmembrane domain, as seen in the G380R Achondroplasia mutation, weakly activates the receptor in a ligand dependent manner by impeding receptor internalization. (d) The strongly activating ligand independent mutation, R248C, in Thanatophoric dysplasia, type I, causes constitutively active disulfide linked receptor dimers. (e) Mutations in the tyrosine kinase domain, as seen in the K640E Thanatophoric dysplasia, type II mutation, are often ligand independent and result in receptor autophosphorylation and signaling from intracellular sites such as the endoplasmic reticulum.

The intracellular domain activates FGFR3 in a ligand independent manner288,382–395,642,643 (Figure 5(d) and (e)). Muenke syndrome (Muenke nonsyndromic coronal craniosynostosis) is an autosomal dominant disorder characterized by synostosis, macrocephaly, midfacial hypoplasia, and hearing loss caused by gain-of-function missense mutations in \textit{FGFR3}396–602,644 (Table 3(b)). Mouse models for aberrant osteogenesis, Achondroplasia, and Muenke syndrome have been developed603–606 (Table 3(b)). Two craniosynostosis syndromes, Crouzon syndrome and Saethre-Chotzen syndrome, can result from mutations in \textit{FGFR2} or \textit{FGFR3}, suggesting overlapping or redundant functions of these FGFRs592,607,608.

Loss-of-function missense mutations, that likely function through a dominant negative mechanism, have been identified in \textit{FGFR3} as the cause of CAT-SHL syndrome (autosomal dominant syndrome characterized by camptodactyly, tall stature, and hearing loss)609 (Table 3(b)). A recessive loss-of-function mutations in \textit{FGFR3} has also been identified in two siblings with tall stature, severe skeletal abnormalities, camptodactyly, arachnodactyly, scoliosis and hearing impairment610. A similar disease, spider-lamp syndrome in sheep, is characterized by abnormally long limbs, kyphoscoliosis, malformed ribs and sternebrae, hooked or ‘Roman’ nose, lack of body fat, and muscular atrophy645,646. This disease is associated with a missense mutation in the FGFR3 tyrosine kinase domain coupled with poorly described interactions with other genetic and environmental factors.

A mutation in \textit{FGFR3} has also been associated with LADD syndrome (Table 3(b)). Although the function of the mutation, localized to the conserved proximal tyrosine kinase domain (TK1, Figure 1(b)), is not known, the phenotypes of affected individuals are distinct from both known gain-of-function mutations causing chondrodysplasia syndromes and
loss-of-function mutations resulting in skeletal overgrowth and hearing loss.531,581,609

\textbf{FGFR4}

Facioscapulohumeral muscular dystrophy is an autosomal dominant disorder, ranging from mild dysfunction to severe respiratory failure. Overexpression of \textit{FGFR4} in muscle and surrounding connective tissue and overexpression of \textit{FGF1} and \textit{FGF2} on the sarcolemma may be associated with this disease.612 Bronchopulmonary dysplasia, characterized by impaired alveolar development and inflammation is the most common chronic lung disease resulting from premature birth. Neonatal respiratory distress syndrome is a pulmonary disease affecting preterm neonates. A single nucleotide polymorphism (I > V) in exon 10 of \textit{FGFR4} is a potential risk factor for these diseases.613 (Table 3(b)). The common allelic variant (G388R) in \textit{FGFR4} is associated with breast cancer progression and increased insulin secretion and risk of diabetes.647

\textbf{FGFRL1/FGFR5}

Antley–Bixler syndrome is a disorder characterized by craniosynostosis, radio-ulnar synostosis, and genital abnormalities. A C-terminal frameshift mutation in \textit{FGFRL1} was found in one patient with this disease. The mutation results in preferential localization of the mutant protein to the plasma membrane, compared to the localization of wild-type \textit{FGFRL1} to vesicular structures and the Golgi complex615 (Table 3(b)). Wolf-Hirschhorn syndrome (WHS) is a disease resulting in growth delay, craniofacial dysgenesis, developmental delay, and epilepsy. Micro deletions containing \textit{FGFRL1}, but not the WHSC1 gene have craniofacial features resembling that seen in WHS patients, suggesting that \textit{FGFRL1} could be a possible candidate gene616 (Table 3(b)). Analysis of a new null allele for \textit{Fgfrl1} in mice revealed skeletal and other defects that resemble WHS.617

\textbf{FGFs and FGFRs: Mutations and Expression in Cancer}

Deregulation of FGF signaling pathways have been implicated in many types of human and animal cancers. Deregulation can occur at the level of gene/protein expression of ligands or receptors, which can result from changes in transcriptional activity or gene amplification. Deregulation can also result from mutations in FGF ligands, receptors, or downstream signaling pathways. A more detailed discussion of FGF signaling in cancer can be found in a review by Turner and Grose.152

\textbf{FGF Family}

Mechanisms of FGF ligand activation involve aberrant expression, gene amplification leading to overexpression, or mutations that increase diffusion through tissue or increase affinity for FGFRs (Table 4(a)). aberrant expression and mutations in FGFs have been observed in many human cancers.163,418,649–653,656–662,664,665,667–669,671,672,675 Gene amplification of FGFs has also been observed.648,654 Overexpression and gene amplification leads to excessive FGF signaling, which can result in cancer initiation or progression. In contrast to the oncogenic properties of many FGF ligands, in some human colon and endometrial cancers that lack β-catenin activation, homozygosity for loss-of-function somatic mutations in \textit{FGF9} have been observed. Additionally, mice lacking \textit{Fgf22} have normal skin, but show increased papilloma formation in a DMBA/TPA induced tumorigenesis model96 (Table 4(a)). These examples show that in at least some cases, FGF signaling can also function to suppress tumorigenesis, possibly by promoting cell differentiation.664 Single nucleotide polymorphisms in \textit{FGF23} have been associated with an increased risk of prostate cancer, although it remains unclear whether polymorphisms result in gain- or loss-of-function.673

\textbf{FGFR Family}

FGFRs can be activated by gene amplification leading to receptor overexpression, by activating mutations (Figure 5), or by translocations resulting in activating gene fusions.720,721 \textit{FGFR1} gene amplification has been identified in 20% of lobular breast cancer, in 3% of lung adenocarcinomas and 21% of squamous cell lung cancer.192,674,722,723 \textit{FGFR1} or \textit{FGFR2} was amplified in 47% of hormone resistant prostate cancers.724 \textit{FGFR3} was amplified in 3% of bladder cancers.725 \textit{FGFR4} overexpression (65% of cases) and amplification (30% of adult tumors) were observed in adrenocortical tumors and amplification was associated with worse prognosis.726 \textit{FGFR4} amplification was also found in 10% of primary breast tumors.727 Thus, \textit{FGFR} gene amplification may be pathogenic in a large fraction of some of the major cancer subtypes (Table 4(b)).

Oncogenic gene fusions that activate the FGFR tyrosine kinase domain is a relatively common occurrence in myeloproliferative syndrome, glioblastoma, bladder, lung, breast, thyroid, oral, and prostate cancers.193,684 In the 8p11 myeloproliferative syndrome (myeloid and lymphoid neoplasms with \textit{FGFR1} abnormalities), \textit{FGFR1} translocations result in at least 10 fusion proteins with N-terminal dimer forming partners fused to the C-terminal
TABLE 4 | Acquired and Heritable Mutations in FGFs and FGFRs in Malignancy

Gene Name	Mutation Type	Type of Cancer	Selected References
(a) Contributions of FGFs to malignancy (in vivo)			
FGF1	Amplification	Ovarian cancer	648
FGF2	Over expression	Bladder cancer, Prostate cancer, Small cell lung carcinoma, Melanoma, Hepatocellular carcinoma	649–653
FGF3	Amplification	Breast cancer	654
FGF4	Amplification	Breast cancer	655
FGF5	Over expression	Glioblastoma	656
FGF6	Over expression	Prostate cancer	657
FGF7	Over expression	Lung adenocarcinoma	658
FGF8	Over expression	Breast cancer, Prostate cancer, Hepatocellular carcinoma, Colorectal cancer	659–663
Fgf9	Frameshift/missense/nonsense mutation	Colorectal and endometrial carcinomas	418,664–666
	Over expression	Non small cell lung cancer	
FGF10	Over expression	Breast carcinomas, Prostate cancer	667,668
FGF15/19	Over expression	Prostate cancer, Hepatocellular carcinoma	162,163,513,669,670
FGF16	Over expression	Ovarian cancer	671
FGF17	Over expression	Prostate cancer, Hepatocellular carcinoma	660,672
FGF18	Over expression	Hepatocellular carcinoma	660
FGF22	Knockout	Suppresses skin papilloma (in mice)	96
FGF23	Polymorphism	Increased risk of prostate cancer	673
(b) Contributions of FGFRs to malignancy (in vivo)			
FGFR1	Amplification	Small cell lung cancer, Squamous cell lung cancer, Breast cancer, Ovarian cancer, Pancreatic ductal adenocarcinoma, Tongue squamous cell carcinoma	191,192,674–682
	Missense mutation	Melanoma, Pilocytic astrocytoma	683
	Translocation	Leukemia, Lymphoma, Alveolar rhabdomyosarcoma, Glioblastoma, Myeloproliferative syndrome (fusion with CUX1, FGFRP2, FIM, RANBP2/NUP358, SQSTM1, TRP, ZNF198)	681,684–692
	Over expression	Glioblastoma	656
FGFR2	Amplification	Gastric cancer, Breast cancer	693–697
	Missense mutation	Endometrial carcinoma, Gastric cancer	693,698
	Translocation	Cholangiocarcinoma	699–702
FGFR3	Missense mutation	Gastric cancer, Colorectal cancer, Breast cancer, Endometrial carcinoma, Urothelial carcinoma, Bladder tumor, Skin tumor, Myeloma	608,693,703–706
	Mis-localization	Breast cancer	707
	Translocation	Myeloma, Squamous cell lung cancer, Bladder cancer, Glioblastoma, Lymphoma	708–712
	Over expression	Breast cancer, Colon cancer (FGFR3c)	713,714
FGFR4	Missense mutation	Rhabdomyosarcoma, Adenoid cystic carcinoma, Breast Cancer (resistance to adjuvant therapy)	715–717
	Over expression	Ovarian cancer, hepatocellular carcinoma	256,718,719
FGFR1 tyrosine kinase domain (Table 4(b)). FGFR1–FGFR3 are also closely linked to the transforming, acidic coiled-coil containing protein 1–3 genes (TACC1–TACC3), or FGFR3 and TACC3 gene fusions have been identified in glioblastoma, non–small cell lung cancers (NSCLC), bladder cancer, multiple myeloma, and lung squamous cell carcinoma (Table 4(b)). These gene fusions can generate constitutively active FGFR kinase domains that are localized to the mitotic spindle. FGFR2 translocations resulting in gene fusions with AHCYL1, BICC1, MGEA5, AFF3, and TACC3 have been identified in subtypes of cholangiocarcinoma. Gene fusions can also result in 3′ UTR deletion, allowing escape from regulation by microRNAs, as seen in an FGFR3-TACC3 fusion in multiple myeloma (Table 4(b)).

Activation of FGFR3 in multiple myeloma can occur through several mechanisms and is thought to contribute to the neoplastic transformation. A common translocation between the immunoglobulin heavy chain locus on chromosome 14q32 and the FGFR3 and MMSET (multiple myeloma set domain) region of chromosome 4 is found in 15–20% of multiple myeloma cases and many of these result in increased expression of FGFR3. However, although this translocation is associated with poor survival, survival does not correlate with FGFR3 expression.

Activation of FGFRs by somatic acquisition of missense mutations is another common tumorigenic mechanism. Missense mutations in FGFR2 have been found in gastric and endometrial cancer (Table 4(b)). Missense mutations in FGFR3 have been observed in 25% of cervical carcinomas and 35% of bladder carcinomas (Table 4(b)). Interestingly, these mutations are identical to the activating mutations that cause Thanatophoric dysplasia. Tyrosine kinase domain mutations were found in 7.5% of rhabdomyosarcomas. In gastric cancer, at least one allele of the common G388R variant of FGFR4 was present in 57% of patients, and expression of this allele was associated with worse prognosis (Table 4(b)).

CONCLUSION

Since the purification of the first FGF over thirty years ago, an amazing amount of research has uncovered biochemical and biological functions of FGFs, FGFRs, and other interacting molecules that are essential for almost all aspects of life through the regulation of developmental, physiological, and pathological processes, from the earliest stages of embryonic development, to organogenesis, tissue maturation, homeostasis, response to injury, and cancer. Biochemical studies have identified mechanisms that regulate the expression of FGFs, their bioavailability, and their ability to activate cellular responses through interaction with cell surface receptors. Within the cell, signal transduction mechanisms have been identified that reveal interactions with multiple cellular signaling pathways, complex feedback mechanisms, and regulatory molecules that control FGF signaling, both extracellularly and intracellularly. Developmental studies have uncovered redundant functions of FGFs and FGFRs, and interactions with most of the other major signaling pathways, including BMP, WNT, Notch and Hedgehog. The discovery of endocrine FGFs has uncovered new mechanisms that regulate metabolism, lipid, and mineral homeostasis, and has provided potential therapeutic targets for a variety of common diseases, including type 2 diabetes, chronic kidney disease, and obesity. Understanding pathogenic mechanisms resulting from mutations, gene fusions, and gene amplifications in FGFs and FGFRs has led to therapeutic approaches for chondrodysplasia and craniosynostosis syndromes, as well as a variety of cancers. Future directions will be aimed at acquiring a deeper mechanistic understanding of the roles of FGF signaling in development and in adult tissues with a goal of understanding how these pathways become reactivated during injury response and cancer. The development of highly selective pharmacological agonists and antagonists that function at all levels of FGF signaling should provide new tools to protect tissues from injury, enhance cell and tissue repair, treat a variety of metabolic diseases, and inhibit cancer.

ACKNOWLEDGMENTS

This work was supported by NIH grants HL105732, HL111190, and HD049808, March of Dimes (FY14-329), Action on Hearing Loss, and a Grant-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (25460065).
REFERENCES

1. Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013, 14:166–180.

2. Goetz R, Dover K, Laezza F, Shtrausz N, Huang X, Tchetchik D, Eliseenkova AV, Xu CF, Neubert TA, Ornitz DM, et al. Crystal structure of a Fibroblast Growth Factor homologous factor (FGH) defines a conserved surface on FGFs for binding and modulation of voltage-gated sodium channels. J Biol Chem 2009, 284:17883–17896.

3. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by Fibroblast Growth Factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 2000, 20:2260–2268 [published erratum appears in Mol Cell Biol 2000, 20:3752].

4. Jonker JW, Suh JM, Atkins AR, Ahmadian M, Li P, Whyte J, He M, Juguilon M, Yin YQ, Phillips CT, et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 2012, 485:391–394.

5. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hynes JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, et al. Fibroblast Growth Factor (FGF)-2 and FGF receptor 3 are required for the development of the substantia nigra, and FGF-2 plays a crucial role for the rescue of dopaminergic neurons after 6-hydroxydopamine lesion. J Neurosci 2007, 27:459–471.

6. Schultz JE, Witt SA, Nieman ML, Reiser J, Ahman JF, Schwartz ML, Vaccarino FM. Requirement of FGF-4 for postimplantation mouse development. Dev Biol 2011, 356:383–397.

7. Ortega S, Ittmann M, Tsang SH, Ehrlich R, Raballo R, Rhee J, Lyn-Cook R, Leckman M, Goddard JM, Capecchi MR. Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 1993, 117:13–28.

8. Unness LD, Bleyl SB, Wright TJ, Moon AM, Mansour SL. Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol 2011, 356:383–397.

9. Feldman B, Poueymirou W, Papaioannou VE, DeChiara TM, Goldfarb M. Requirement of FGF-4 for postimplantation mouse development. Science 1995, 267:246–249.

10. Sun X, Lewandowski M, Meyers EN, Liu YH, Maxson RE Jr, Martin GR. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat Genet 2000, 25:83–86.

11. Parker HG, VonHoldt BM, Quignon P, Mitra R, Ostrander EA, Bathke A, et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 2009, 325:995–998.

12. Moon AM, Boulet AM, Capecchi MR. FGF5 as a regulator of the calcineurin-dependent pathway in regenerating soleus of adult mice. J Biol Chem 2000, 275:190–192.

13. Moon AM, Boulet AM, Capecchi MR. FGF5 as a regulator of the calcineurin-dependent pathway in regenerating soleus of adult mice. J Biol Chem 2000, 275:190–192.

14. Martin GR. Targeted disruption of Fgf8 in the cortex and Fgf10 in cardiovascular development. Development 2000, 127:989–996.

15. Hebert JM, Rosenquist T, Giotz J, Martin GR. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 1994, 78:1017–1025.

16. Floss T, Arnold HH, Braun T. A role for Fgf-6 in skeletal muscle regeneration. Genes Dev 1997, 11:2040–2051.

17. Neuhaus P, Oustanina S, Loch T, Kruger M, Bober E, Dono R, Zeller R, Braun T. Reduced mobility of Fibroblast Growth Factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice. Mol Cell Biol 2003, 23:6037–6048.

18. Armand AS, Pariset C, Lazai I, Launay T, Fiore F, Della Gaspera B, Brulbaum-D Charnonnier F, Channeau C. FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol 2005, 204:297–308.

19. Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. Distinct FGFs promote differentiation of excitatory and inhibitory synapses. Nature 2010, 465:783–787.

20. Guo L, Degenstein L, Fuchs E. Keratinocyte growth factor is required for hair development but not for wound healing. Genes Dev 1996, 10:165–175.

21. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D. FGF-7 modulates uretic bud growth and nephron number in the developing kidney. Development 1999, 126:547–554.

22. Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J, Kochman AA, Eng JM, et al. Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 2006, 107:2453–2460.

23. Peng C, He Q, Luo C. Lack of keratinocyte growth factorretards angio genesis in cutaneous wounds. J Int Med Res 2011, 39:416–423.

24. Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C, Vainio S, Dove LF, Lewandowski M. Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 2005, 132:3859–3871.

25. Ladher RK, Wright TJ, Moon AM, Mansour SL, Schoenwolf GC. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 2005, 19:603–613.

26. Naiche LA, Holder N, Lewandowski M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci USA 2011, 108:4018–4023.

27. Lewandowski M, Sun X, Martin GR. Fgf8 signalling from the AER is essential for normal limb development. Nat Genet 2000, 26:460–463.

28. Xu J, Liu Z, Ornitz DM. Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 2000, 127:1833–1843.

29. Sun X, Meyers EN, Lewandowski M, Martin GR. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev 1999, 13:1834–1846.

30. Moon AM, Capecchi MR. Fgf8 is required for outgrowth and patterning of the limbs. Nat Genet 2000, 26:455–459.

31. Brown CB, Wenning JM, Lu MM, Epstein DJ, Meyers EN, Epstein JA. Calcineurin-dependent FGF8 in the Thy1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol 2004, 267:190–192.
35. Ilagan R, Abu-Issa R, Brown D, Yang YP, Jiao K, Schwartz RJ, Klinger-Smith J, Meyers EN. Fgf8 is required for anterior heart field development. Development 2006, 133:2435–2445.

36. Park EJ, Ogden LA, Talbot A, Evans S, Cai CL, Black BL, Frank DU, Moon AM. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development 2006, 133:2419–2433.

37. Jacques BE, Montcouquiol ME, Layman EM, Lewandoski M, Kelley MW. Fgf8 induces pillar cell fate and regulates cellular patterning in the mammalian cochlea. Development 2007, 134:3021–3029.

38. Zelarayan LC, Vendrell V, Alvarez Y, Dominguez-Frutos E, Theil T, Alonso MT, Macrophie M, Schimmang T. Differential requirements for Fgf3, Fgf8 and Fgf10 during inner ear development. Dev Biol 2007, 308:379–391.

39. Hasegawa K, Saga Y. FGF8-FGFR1 signaling acts as a niche factor for maintaining undifferentiated spermatogonia in the mouse. Biol Reprod 2014, 91:145.

40. Barak H, Huh SH, Chen S, Jeanpierre C, Martinovic J, Parisot M, Bole-Feysoyt C, Nitschke P, Salomon R, Antignac C, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man. Dev Cell 2012, 22:1191–1207.

41. Pirvola U, Zhang X, Mantela J, Ornitz DM, Ylikoski J. Fgf9 signaling regulates essential components of lung mesenchyme. FGF9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2004, 131:2419–2433.

42. Colvin JS, White A, Pratt SJ, Ornitz DM. Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 2001, 128:2095–2106.

43. White AC, Xu J, Yin Y, Smith C, Schmid G, Ornitz DM. Fgf9 and SHH signaling coordinate lung growth and development through regulation of distinct mesenchymal domains. Development 2006, 133:1307–1317.

44. Yin Y, Wang F, Ornitz DM. Mesothelial and epithelial derived FGF9 have distinct functions in the regulation of lung development. Development 2011, 138:3169–3177.

45. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM. Male-to-female sex reversal in mice lacking Fibroblast Growth Factor 9. Cell 2001b, 104:875–889.

46. Dinapoli L, Batchvarov J, Capel B. FGF9 promotes survival of germ cells in the fetal testis. Development 2006, 133:1519–1527.

47. Hung IH, Yu K, Lavine KJ, Ornitz DM. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vasculatization in the developing stylopod. Dev Biol 2007, 307:300–313.
II-induced cardiac hypertrophy and fibrosis are promoted in mice lacking Fgf16. *Genes Cells* 2013, 18:544–553.
82. Hotry Y, Sasaki S, Konishi M, Kinoshita H, Kuwahara K, Nakao K, Itoh N. Fgf16 is required for cardioangiocyte proliferation in the mouse embryonic heart. *Dev Dyn* 2008, 237:2947–2954.
83. Lu SY, Sheikh F, Sheppard PC, Fresnoza A, Duckworth ML, Detilleux KA, Cattni PA. FGF-16 is required for embryonic heart development. *Biochem Biophys Res Commun* 2008, 373:270–274.
84. Choppin JA, Rubenstein JL. Patternning of frontal cortex subdivisions by Fgf17. *Proc Natl Acad Sci USA* 2007, 104:7652–7657.
85. Ohbayashi N, Shibayama M, Kurotaki Y, Imanishi M, Fujitomi I, Itoh N, Takada S. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. *Genes Dev* 2002, 16:870–879.
86. Liu Z, Lavine KJ, Hung IH, Ornitz DM. FGF18 is required for early chondrocyte proliferation, hypertrophy and vascular invasion of the growth plate. *Dev Biol* 2007, 302:80–91.
87. Liu Z, Xu J, Colvin JS, Ornitz DM. Coordination of chondrogenesis and osteogenesis by Fibroblast Growth Factor 18. *Genes Dev* 2002, 16:859–869.
88. Usui H, Shibayama M, Ohbayashi N, Konishi M, Takada S, Itoh N. Fgf18 is required for embryonic lung alveolar development. *Biochem Biophys Res Commun* 2004, 322:887–892.
89. Whitsett JA, Clark JC, Picard L, Tichelaar J, Wert SE, Itoh N, Perl AK, Stahlan MT. Fibroblast Growth Factor 18 influences proximal programming during lung morphogenesis. *J Biol Chem* 2002, 277:22743–22749.
90. Huh SH, Jones J, Warchol ME, Ornitz DM. Differentiation of the lateral compartment of the cochelea requires a temporally restricted FGF20 signal. *PLoS Biol* 2012, 10:e1001231.
91. Haara O, Harjunmaa E, Lindfors PH, Huh SH, Fliniaux I, Aberg T, Jernvall J, Ornitz DM, Mikkola ML, Thesleff I. Ectodysplasin regulates activator-inhibitor balance in murine tooth development. *Biochem Biophys Res Commun* 2004, 322:887–892.
92. Huh SH, Narhi K, Lindfors PH, Haara O, Yang L, Ornitz DM, Mikkola ML. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. *Genes Dev* 2013, 27:450–458.
93. Hotry Y, Nakamura H, Konishi M, Murata Y, Takagi H, Matsumura S, Inoue K, Fushiki T, Itoh N. Fibroblast Growth Factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. *Endocrinology* 2009, 150:4625–4633.
94. Murata Y, Nishio K, Mochiyama T, Konishi M, Shimada M, Ohta H, Itoh N. Fgf21 impairs adipocyte insulin sensitivity in mice fed a low-carbohydrate, high-fat ketogenic diet. *PLoS One* 2013, 8:e96930.
95. Lee CH, Umemori H. Suppression of epileptogenesis-associated changes in response to seizures in Fgf22-deficient mice. *Front Cell Neurosci* 2013, 7:43.
96. Jarosz M, Robbez-Masson L, Chioni AM, Cross B, Rosewell I, Grose R. Fibroblast Growth Factor 22 is not essential for skin development and repair but plays a role in tumorigenesis. *PLoS One* 2012, 7:e39436.
97. Singh R, Su J, Brooks J, Terauchi A, Umemori H, Fox MA. Fibroblast Growth Factor 22 contributes to the development of retinal nerve terminals in the dorsal lateral geniculate nucleus. *Front Mol Neurosci* 2012, 4:61.
98. Hu MC, Shizaki K, Kuro-o M, Moe OW. Fibroblast Growth Factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. *Annu Rev Physiol* 2013, 75:503–533.
99. Yu X, White KE. FGF23 and disorders of phosphate homeostasis. *Cytokine Growth Factor Rev* 2005, 16:221–323.
100. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. *J Clin Invest* 2004, 113:561–568.
101. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, Jupner H, Lanske B. Homozygous ablation of Fibroblast Growth Factor-23 results in hyperphosphatemia and impaired skeletonogenesis, and reverses hypophosphatemia in Phex-deficient mice. *Matrix Biol* 2004, 23:421–432.
102. Lysaght AC, Yuan Q, Fan Y, Kalwani N, Caruso P, Cunnane M, Lanske B, Stankovic KM. FGF23 deficiency leads to mixed hearing loss and middle ear malformation in mice. *PLoS One* 2014, 9:e107681.
103. Pirvola U, Ylikoski J, Trokovic R, Hebert JM, McConnell SK, Partanen J. FGFFR1 is required for the development of the auditory sensory epithelium. *Neuron* 2002, 35:671–680.
104. Ono K, Kita T, Sato S, O’Neill P, Mak SS, Paschaki M, Ito M, Gotoh N, Kawakami K, Sasaki Y, et al. FGFFR1-Frs2 signalling maintains sensory progenitors during
inner ear hair cell formation. *PLoS Genet* 2014, 10:e1004118.

105. Yamaguchi TP, Harpal K, Henkmeyer M, Rossant J. FGR-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. *Genes Dev* 1994, 8:3032–3044.

106. Zhao M, Ross JT, Itkin T, Perry JM, Venkatakrishnan A, Haug JS, Hember MJ, Deng CX, Lapidot T, He XC, et al. GFG signaling facilitates postinjury recovery of mouse hematopoietic system. *Blood* 2012, 120:1831–1842.

107. Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast Growth Factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. *Dev Biol* 2006, 296:315–328.

108. Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X. Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. *Development* 2005, 132:4235–4245.

109. Li C, Xu X, Nelson DK, Williams T, Ohkubo Y, Uchida A, Shin D, Partanen J, Xu X, Li C, Takahashi K, Slavkin HC, Adams AC, Yang C, Coskun T, Cheng CX, Lapidot T, He XC, et al. FGF signaling facilitates postinjury recovery of myelin sheath thickness. *J Neurosci* 2012, 32:6631–6641.

110. Avgoustoudis S, Smith C, Santeford A, Oladipupo SS, Smith C, Simons M. The FGF system has a key role in regulating vascular integrity. *Mol Metab* 2012, 2:214–219.

111. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, Towler DA, Ornitz DM. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. *Development* 2003, 130:3063–3074.

112. Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. *Development* 2008, 135:483–491.

113. De Moerloose L, Spencer-Dene B, Revest C, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of FGF-2 in mesenchymal-epithelial signalling during mouse organogenesis. *Development* 2000, 127:483–492.

114. Guasti L, Candy Sze WC, McKay T, Gross E, King PJ. FGF signaling through Fgfr2 isoform IIIb regulates adrenal cortex development. *Mol Cell Endocrinol* 2013, 37:182–188.

115. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Role of Fibroblast Growth Factor receptors 1 and 2 in the ureteric bud. *Dev Biol* 2004, 276:403–415.

116. Poladí D, Kish K, Kutty B, Hains D, Kegg H, Zhao H, Bates CM. Role of Fibroblast Growth Factor receptors 1 and 2 in the metanephric mesenchyme. *Development* 2006, 291:325–339.

117. Furusho M, Dupree JL, Nave KA, Bansal R. Fibroblast Growth Factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. *J Neurosci* 2012, 32:6631–6641.

118. Oladipupo SS, Smith C, Santeford A, Oladipupo SS, Smith C, Simons M. The FGF system has a key role in regulating vascular integrity. *Mol Metab* 2012, 2:214–219.

119. Avgoustoudis S, Smith C, Santeford A, Oladipupo SS, Smith C, Simons M. The FGF system has a key role in regulating vascular integrity. *Mol Metab* 2012, 2:214–219.

120. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN, Towler DA, Ornitz DM. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. *Development* 2003, 130:3063–3074.

121. Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. *Development* 2008, 135:483–491.

122. De Moerloose L, Spencer-Dene B, Revest C, Hajihosseini M, Rosewell I, Dickson C. An important role for the IIIb isoform of FGF-2 in mesenchymal-epithelial signalling during mouse organogenesis. *Development* 2000, 127:483–492.

123. Xiao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM. Role of Fibroblast Growth Factor receptors 1 and 2 in the ureteric bud. *Dev Biol* 2004, 276:403–415.

124. Poladí D, Kish K, Kutty B, Hains D, Kegg H, Zhao H, Bates CM. Role of Fibroblast Growth Factor receptors 1 and 2 in the metanephric mesenchyme. *Development* 2006, 291:325–339.

125. Furusho M, Dupree JL, Nave KA, Bansal R. Fibroblast Growth Factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. *J Neurosci* 2012, 32:6631–6641.

126. Oladipupo SS, Smith C, Santeford A, Oladipupo SS, Smith C, Simons M. The FGF system has a key role in regulating vascular integrity. *Mol Metab* 2012, 2:214–219.

127. Colvin JS, Bohne BA, Harding GW, McEwen DG, Ornitz DM. Skeletal overgrowth and deafness in mice lacking Fibroblast Growth Factor receptor 3. *Nat Genet* 1996, 12:390–397.

128. Deng C, Wynshaw-Boris A, Zhou F, Kuo A, Leder P. Fibroblast Growth Factor receptor 3 is a negative regulator of bone growth. *Cell* 1996, 84:911–921.

129. Puligilla C, Feng F, Ishikawa K, Bertuzzi S, Dabdoub A, Griffith AJ, Fritzsch B, Kelley MW. Disruption of Fibroblast Growth Factor receptor 3 signaling results in defects in cellular differentiation, neuronal patterning, and hearing impairment. *Dev Dyn* 2007, 236:1905–1917.

130. Oh LT, Denninger A, Colvin JS, Vyas A, Teole S, Ornitz DM, Bansal R. Fibroblast Growth Factor receptor 3 signaling regulates the onset of oligodendrocyte terminal differentiation. *J Neurosci* 2003, 23:883–894.

131. Weinstein M, Xu X, Ohyama K, Deng CX. FGF-3 and FGF-4 function cooperatively to direct alveogenesis in the murine lung. *Development* 1998, 125:3615–3623.

132. Naski MC, Colvin JS, Coffin JD, Ornitz DM. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by Fibroblast Growth Factor receptor 3. *Development* 1998, 125:4977–4988.

133. Szarama KB, Stepanyan R, Petralia RS, Gavara N, Schlessinger J. Skeletal overgrowth is mediated by deficiency in a specific isoform of Fibroblast Growth Factor receptor 3. *Proc Natl Acad Sci USA* 2007, 104:3937–3942.

134. Valverde-Franco G, Binette JS, Li W, Wang H, Chai S, Laflamme F, Tran-Khanh N, Quenneville E, Meijers T, Poole AR, et al. Defects in articular cartilage metabolism and early arthritis in Fibroblast Growth Factor receptor 3 deficient mice. *Hum Mol Genet* 2006, 15:1783–1792.

135. Valverde-Franco G, Liu H, Davidson S, Chai S, Valderrama-Carvajal H, Goltzman D, Ornitz DM, Henderson JE. Defective bone mineralization and osteopenia in young adult FGFR3−/− mice. *Hum Mol Genet* 2004, 13:271–284.

136. Mueller KL, Jacques BE, Kelley MW. Fibroblast Growth Factor signaling regulates pillar cell development in the organ of corti. *J Neurosci* 2002, 22:9368–9377.
138. Su N, Xu X, Li C, He Q, Zhao L, Chen S, Luo F, Yi L, Du X, Huang H, et al. Generation of Fgrf3 conditional knock-out mice. Int J Biol Sci 2010, 6:327–332.

139. Srisuma S, Bhattacharya S, Simon DM, Solleti SK, Tyagi S, Starcher B, Mariani TJ. Fibroblast Growth Factor receptors control epithelial-mesenchymal interactions necessary for alveolar elastogenesis. Am J Respir Crit Care Med 2010, 181:838–850.

140.Gattineni J, Twombly K, Goetz R, Mohammadi M, Baum M. Regulation of serum 1,25(OH)2 vitamin D3 levels by Fibroblast Growth Factor 23 is mediated by FGF receptors 3 and 4. Am J Physiol Renal Physiol 2011, 301:F371–F377.

141. Gattineni J, Alphonse P, Zhang Q, Mathews N, Bates CM, Baum M. Regulation of renal phosphate transport by FGF23 is mediated by FGRFR1 and FGRFR4. Am J Physiol Renal Physiol 2014, 306:F351–F358.

142. Li H, Martin A, David V, Quares LD. Compound deletion of Fgfr3 and Fgrfr4 partially rescues the Hyp mouse phenotype. Am J Physiol Endocrinol Metab 2011, 300:E508–E517.

143. Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeenan WL. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGRFR4. J Biol Chem 2000, 275:15482–15489.

144. Yu C, Wang F, Jin C, Wu X, Chan WK, McKeenan WL. Increased carbon tetrachloride-induced liver injury and fibrosis in FGRFR4-deficient mice. American Journal of Pathology 2002, 161:2003–2010.

145. Arnaud-Dabernat S, Kritzik M, Kayali N,דוגי ML, טרייבל ב. מונף I. אסמי rol of FGFR/Erk signaling in the wound repair process. Dev Biol 2005, 278:428–439.

146. Dorey K, Amaya E. FGF signalling: diverse roles during early vertebrate embryo genesis. Development 2010, 137:3731–3742.

147. Fon Tacer K, Bookout AL, Ding X, Powers CJ, McLeskey SW, Wellstein A. Fibroblast Growth Factor receptors, their receptors and signaling. Endocr Relat Cancer 2000, 7:165–197.

148. Turner N, Grose R. Fibroblast Growth Factor signalling: from development to cancer. Nat Rev Cancer 2010, 10:116–129.

149. Beeken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009, 8:235–253.

150. Orntz DM, Ioth N. Fibroblast Growth Factors. Genome Biol 2001, 2:REVIEWS3005.

151. Essarvarakumar VP, Lax I, Schlessinger J. Cellular signaling by Fibroblast Growth Factor receptors. Cytokine Growth Factor Rev 2005, 16:139–149.

152. Turner N, Grose R. Fibroblast Growth Factor signalling: from development to cancer. Nat Rev Cancer 2010, 10:116–129.

153. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009, 8:235–253.

154. Goldfarb M. Fibroblast Growth Factor homologous factors: evolution, structure, and function. Cytokine Growth Factor Rev 2005, 16:1215–220.

155. Khairtonenkov A. FGFs and metabolism. Curr Opin Pharmacol 2009, 9:805–810.

156. Angelin L, Larsson TE, Rudling M. Circulating Fibroblast Growth Factors as metabolic regulators—a critical appraisal. Cell Metab 2012, 16:693–705.

157. Ioth N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tiss Res 2010, 342:1–11.

158. Ioth N, Orntz DM. Fibroblast Growth Factors: from molecular evolution to roles in development, metabolism and disease. J Biosci 2011, 149:121–130.

159. Dorey K, Amaya E. FGF signalling: diverse roles during early vertebrate embryo genesis. Development 2010, 137:3731–3742.

160. Fon Tacer K, Bookout AL, Ding X, Powers CJ, McLeskey SW, Wellstein A. Fibroblast Growth Factor receptors, their receptors and signaling. Endocr Relat Cancer 2000, 7:165–197.

161. Turner N, Grose R. Fibroblast Growth Factor signalling: from development to cancer. Nat Rev Cancer 2010, 10:116–129.

162. Wu X, Ge H, Lomon B, Vonderfecht S, Weisztam J, Hecht R, Gupte J, Hager T, Wang Z, Lindberg R, et al. FGF19-induced hepatocyte proliferation is mediated through FGRFR4 activation. J Biol Chem 2010, 285:5165–5170.

163. Feng S, Dakhova O, Creighton CJ, Irtmann M. Endocrine Fibroblast Growth Factor FGRF19 promotes prostate cancer progression. Cancer Res 2013, 73:2531–2562.

164. Yamanaka Y, Lanner F, Rossant J. Fgf signaling in pluripotent cells. Development 2010, 137:3351–3360.

165. Kage M, Pilzsek A, Artus J, Hadjantonakis AK. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 2013, 140:267–279.

166. Muller AK, Meyer M, Werner S. The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 2012, 23:963–970.

167. Kardami E, Detilleloux K, Ma X, Jiang Z, Santiago JJ, Jimenez SK, Cattini PA. Fibroblast Growth Factor-2 and...
cardioprotection. *Heart Fail Rev* 2007, 12:267–277.

178. House SL, Branch K, Newman G, Doetschman T, Schultz Jel J. Cardioprotection induced by cardiac-specific overexpression of Fibroblast Growth Factor-2 is mediated by the MAPK cascade. *Am J Physiol Heart Circ Physiol* 2005, 289: H2167–H2175.

179. Liao S, Porter D, Scott A, Newman G, Doetschman T, Schultz Jel J. The cardioprotective effect of the low molecular weight isoform of Fibroblast Growth Factor-2: the role of JNK signaling. *J Mol Cell Cardiol* 2007, 42:106–120.

180. Braun S, auf dem Keller U, Steiling H, Werner S. Fibroblast Growth Factors in epithelial repair and cytoprotection. *Philos Trans R Soc Lond B Biol Sci* 2004, 359:753–757.

181. Guzy RD, Stoilov I, Elton TJ, Mecham RP, Ornitz DM. FGF2 is required for epithelial recovery, but not for pulmonary fibrosis, in response to bleomycin. *Am J Respir Cell Mol Biol* 2015, 52:116–128.

182. Meyer M, Muller AK, Yang J, Moik D, Ponzio G, Ornitz DM, Grose R, Werner S. FGF receptors 1 and 2 are key regulators of keratinocyte migration in vitro and in wounded skin. *J Cell Sci* 2012, 125:5690–5701.

183. Xiao L, Du Y, Shen Y, He Y, Zhao H, Li Z. TGF-beta 1 induced fibroblast proliferation is mediated by the FGF-2/ERK pathway. *Front Biosci (Landmark Ed)* 2012, 17:2667–2674.

184. Warburton D. Developmental responses to lung injury: repair or fibrosis. *Fibrogenesis Tissue Repair* 2012, 5(Suppl 1):S2.

185. Gupte VV, Ramasamy SK, Reddy R, Lee J, Weinreb PH, Violette SM, Guenther A, Warburton D, Driscoll B, Minoo P, et al. Overexpression of Fibroblast Growth Factor-10 during both inflammatory and fibrotic phases attenuates bleomycin-induced pulmonary fibrosis in mice. *Am J Respir Crit Care Med* 2009, 180: 424–436.

186. Long YC, Khartonov P, Haironelike Fibroblast Growth Factors and metabolic regulation. *Biochem Biophys Acta* 2012, 1812:791–795.

187. Itoh N. FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. *Front Endocrinol (Lausanne)* 2014, 5:107.

188. Brooks AN, Kilgour E, Smith PD. Molecular pathways: Fibroblast Growth Factor signaling: a new therapeutic opportunity in cancer. *Clin Cancer Res* 2012, 18: 1855–1862.

189. Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. *J Cell Physiol* 2012, 227:3731–3743.

190. Wynes MW, Hinz TK, Gao D, Martin M, Marek LA, Ware KE, Edwards MG, Bohm D, Perner S, Helfrich BA, et al. FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies. *Clin Cancer Res* 2014, 20:3299–3309.

191. Schultheis AM, Bos M, Schmitz K, Wilsberg L, Binot E, Wolf J, Buttner R, Schildhaus HU. Fibroblast Growth Factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer. *Mod Pathol* 2014, 27:214–221.

192. Malchers F, Dietlein F, Schottle J, Lu X, Helfrich BA, et al. FGFs, heparan sulfate and its high affinity receptor. *Dev Biol* 2005, 289: 64:841–848.

193. Sarrazin S, Lamanna WC, Eso DJ, Heparan sulfate proteoglycans. *Cold Spring Harb Perspect Biol* 2011, 3:1–33.

194. Rapraeger AC, Kruftka A, Olwin BB. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. *Science* 1991, 252:1703–1708.

195. Yayon A, Klagesbom M, Eso DJ, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic Fibroblast Growth Factor to its high affinity receptor. *Cell* 1991, 64:841–848.

196. Smith ER, McMahon LP, Holt SG. Fibroblast Growth Factor 23. *Ann Clin Biochem* 2014, 51:203–227.

197. Trueb B. Biology of FGFR1, the fifth Fibroblast Growth Factor Receptor. *Cell Mol Life Sci* 2014, 68:951–964.

198. Gotoh N. Regulation of growth factor signaling by FRS2 family docking/scaffold adaptor proteins. *Cancer Sci* 2008, 99:1319–1325.

199. Yu T, Yaguchi Y, Echevarria D, Martinez S, Basson MA. Sprotty genes prevent excessive FGF signalling in multiple cell types throughout development of the cerebellum. *Development* 2011, 138:2957–2968.

200. Yang X, Gong Y, Tang Y, Li H, He Q, Gower L, Liaw F, Friesel RE. Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. *PLoS One* 2013, 8:e58746.

201. Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF receptor activation to the Ras/MAPK signaling pathway. *Cell* 1997, 89:693–702.

202. Schoorlemmer J, Goldfarb M. Fibroblast Growth Factor homologous factors and the islet-brain-2 scaffold protein regulate activation of a stress-activated protein kinase. *J Biol Chem* 2002, 277: 49111–49119.

203. Konig HG, Fenner BJ, Byrne JC, Schwamborn RF, Bernas T, Jefferies CA, Prehn JH. Fibroblast Growth Factor homologous factor 1 interacts with NEMO to regulate NF-kappaB signaling in neurons. *J Cell Sci* 2012, 125: 6058–6070.

204. Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. *Dev Dyn* 2008, 237:18–27.

205. Trowell OA, Chir B, Willmer EN. Studies on the growth of tissues in vitro. *J Exp Biol* 1939, 16:60–70.

206. Armelin HA. Pituitary extracts and growth hormone. *J Pathol* 1939, 49:111–49119.

207. Kernig HS, Bernas T, Jeffries CA, Prehn JH. Fibroblast Growth Factor homologous factor 1 interacts with NEMO to regulate NF-kappaB signaling in neurons. *J Cell Sci* 2012, 125: 6058–6070.

208. Brooks AN, Kilgour E, Smith PD. Molecular pathways: Fibroblast Growth Factor signaling: a new therapeutic opportunity in cancer. *Clin Cancer Res* 2012, 18: 1855–1862.

209. Matsuo I, Kimura-Yoshida C. Extracellular modulation of Fibroblast Growth Factor signaling through heparan sulfate proteoglycans in mamalian development. *Curr Opin Genet Dev* 2013, 23:399–407.
213. Gospodarowicz D. Purification of a Fibroblast Growth Factor from bovine pituitary. J Biol Chem 1975, 250: 2515–2520.

214. Lemmon SK, Bradshaw RA. Purification and partial characterization of bovine pituitary Fibroblast Growth Factor. J Cell Biochem 1983, 21:195–208.

215. Thomas KA, Rios-Candelore M, Fitzpatrick S. Purification and characterization of acidic Fibroblast Growth Factor from bovine brain. Proc Natl Acad Sci USA 1984, 81:357–361.

216. Thomas KA, Riley MC, Lemmon SK, Thomas KA, Gimenez-Gallego G, Rodkey J, Benzak A, Wilcox WR. Molecular pathology of the Fibroblast Growth Factor family. Hum Mutat 2009, 30:1245–1255.

217. Lemmon SK, Riley MC, Thomas KA, Hoover GA, Maciag T, Bradshaw RA. Bovine Fibroblast Growth Factor: nonidentity with myelin basic protein fragments. J Biol Chem 1980, 255:5517–5520.

218. Thomas KA, Rios-Candelore M, Baglan NC, Bradshaw RA. Brain Fibroblast Growth Factor: nonidentity with myelin basic protein fragments. J Biol Chem 1980, 255:5517–5520.

219. Gimenez-Gallego G, Conn G, Thomas KA. Brain-derived acidic Fibroblast Growth Factor: nonidentity with interleukin 1. Proc Natl Acad Sci USA 1985, 82:6409–6413.

220. Planque N. Nuclear trafficking of the receptor C-terminal tail. J Cell Sci 2006, 119:4332–4341.

221. Schreiber AB, Kenney J, Kowalski WJ, Friesel R, Mehmels T, Maciag T. Interaction of endothelial cell growth factor with heparin: characterization by receptor and antibody recognition. Proc Natl Acad Sci USA 1985, 82:6409–6413.

222. Schreiber AB, Kenney J, Kowalski J, Thomas KA, Gimenez-Gallego G, Rios-Candelore M, Di Salvo J, Barrault D, Courty J, Courtois Y, et al. A unique family of endothelial cell polypeptide mitogens: the antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic Fibroblast Growth Factor, and eye-derived growth factor-II. J Cell Biol 1985, 101:1623–1626.

223. Jaye M, Howk R, Burgess W, Ricca GA, Chiu I-M, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN. Human endothelial cell growth factor: cloning, nucleotide sequence, and chromosomal localization. Science 1986, 233:541–545.

224. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC. Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic Fibroblast Growth Factor. Science 1986, 233:545–548.

225. Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR. Molecular pathology of the Fibroblast Growth Factor family. Hum Mutat 2009, 30:1245–1255.

226. Oulion S, Bertrand S, Escriva H. Evolution of the FGF gene family. Int J Evol Biol 2012, 2012:298147.

227. Prudovsky I, Kumar TK, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013, 14:3734–3772.

228. Prudovsky I, Mandinova A, Soldi R, Bagala C, Graziani I, Landriscina M, Tarantini F, Duarte M, Bellum S, Doherty H, et al. The non-classical export routes: FGF1 and H-1alpha point the way. J Cell Sci 2003, 116:4871–4881.

229. Landriscina M, Soldi R, Bagala C, Micucci I, Bellum S, Tarantini F, Prudovsky I, Maciag T. S100A13 participates in the release of Fibroblast Growth Factor 1 in response to heat shock in vitro. J Biol Chem 2001, 276:22544–22552.

230. Wescie J, Malecki J, Wiedlocha A, Khnykin D, Wesche J, Olsnes S. Differrents in the receptor C-terminal tail. J Biol Chem 2003, 278:35718–35724.

231. Revest JM, De Moerloose I, Dickson C. Fibroblast Growth Factor 9 secretion is mediated by a non-cleaved amnio-terminal signal sequence. J Biol Chem 2000, 275:8083–8090.

232. Consortium A. Autosomal dominant hypophosphatemic rickets is associated with mutations in FGF23. Nat Genet 2000, 26:345–348.

233. Goetz R, Beekenk A, Ibrahim OA, Kelinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, et al. Molecular insights into the klotho-dependent, endocrine mode of action of Fibrobast Growth Factor 19 subfamily members. Mol Cell Biol 2007, 27:3417–3428.

234. Kiewer SA, Mangelsdorf DJ. Fibroblast Growth Factor 21: from pharmacology to physiology. Am J Clin Nutr 2010, 91: 254s–257s.

235. Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, Kiewer SA. betaKlotho is required for Fibroblast Growth Factor 21 effects on growth and metabolism. Cell Metab 2012, 16:387–393.

236. Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T, betaKlotho is required for Fibroblast Growth Factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008, 22:1006–1014.
247. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, et al. Regulation of Fibroblast Growth Factor-23 signaling by klotho. *J Biol Chem* 2006, 281:6120–6123.

248. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. *Nature* 2006, 444:770–774.

249. Ornitz DM, Leder P. Ligand specificity and heparin dependence of Fibroblast Growth Factor receptors 1 and 3. *J Biol Chem* 1992, 267:16305–16311.

250. Wang JK, Gao GX, Goldfarb M. Fibroblast growth-factor receptors have different signaling and mitogenic potentials. *Mol Cell Biol* 1994, 14:181–188.

251. Mathieu M, Chatelain E, Ornitz D, Bresnick J, Mason I, Kiefer P, Dickson C. Receptor binding and mitogenic properties of mouse Fibroblast Growth Factor 3. Modulation of response by heparin. *J Biol Chem* 1995, 270:24197–24203.

252. Blunt AG, Lawshe A, Cunningham ML, Seto ML, Ornitz DM, Macarthur CA. Overlapping expression and redundant activation of mesenchymal Fibroblast Growth Factor (FGF) receptors by alternatively spliced FGF-8 ligands. *J Biol Chem* 1997, 272:3733–3738.

253. Santos-Ocampo S, Colvin JS, Chellaiya AT, Ornitz DM. Expression and biological activity of mouse Fibroblast Growth Factor-9. *J Biol Chem* 1996, 271:1726–1731.

254. Ornitz DM, Yaron A, Flanagan JG, Svanh CM, Levi E, Leder P. Heparin is required for cell-free binding of basic Fibroblast Growth Factor to a soluble receptor and for mitogenesis in whole cells. *Mol Cell Biol* 1992, 12:240–247.

255. Wu AL, Kolumam G, Stawicki S, Lim KS, Loo HL, Aung MO, Lim CL, Burgess WH, Chan AM, Aaronson SA. Determination of ligand-binding cDNA libraries. *Mol Cell Biol* 1988, 8:5541–5544.

256. Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Fibroblast Growth Factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. *Proc Natl Acad Sci USA* 1996, 93:9850–9857.

257. Olsen SK, Garbi M, Zampieri N, Eliseenkova AV, Ornitz DM, Goldfarb M, Mohammadi M. Fibroblast Growth Factor receptor and for mitogenesis in whole cells express two isoforms of Fibroblast Growth Factor (FGF) receptor family, FGFR-3. *J Biol Chem* 2003, 278:34226–34236.

258. Hsu WC, Nilsson CL, Laezza F. Role of the axonal initial segment in psychiatric disorders: function, dysfunction, and intervention. *Front Psychiatry* 2014, 5:109.

259. Xiao M, Bosch MK, Nerbonne JM, Ornitz DM. FGF14 localization and organization of the axon initial segment. *Mol Cell Neurosci* 2013, 56:393–403.

260. Lou JY, Laezza F, Gerber BR, Xiao M, Yamada KA, Hartmann H, Craig AM, Nerbonne JM, Ornitz DM. Fibroblast Growth Factor receptor 14 is an intracellular modulator of voltage-gated sodium channels. *J Physiol* (Lond) 2005, 569:179–193.

261. Wang C, Hennessey JA, Kirkton RD, Graham V, Puranam RS, Rosenberg PB, Bursac N, Pitt GS. Fibroblast Growth Factor homologous factor 13 regulates Na+ channels and conduction velocity in murine hearts. *Circ Res* 2011, 109:775–782.

262. Schoorlemmer J, Goldfarb M. Fibroblast Growth Factor homologous factors are intracellular signaling proteins. *Circ Res* 2000, 101:413–424.

263. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. *Adv Cancer Res* 1993, 60:1–41.

264. Kornbluth S, Paulson KE, Hanafusa H. Novel tyrosine kinase identified by phosphotyrosine antibody screening of

265. S. W. C., L. H. S., R. P. D. L., A. V. K., E. C., F. S., J. D. H., H. G. P., J. K., F. W. L. Alternately spliced NH2-terminal immunoglobulin-like loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. *J Biol Chem* 1995, 270:10231–10235.

266. Roghani M, Moscatelli D. Prostate cells express two isoforms of Fibroblast Growth Factor receptor 1 with different affinities for Fibroblast Growth Factor-2. *Prostate* 2007, 67:115–124.
specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc Natl Acad Sci USA 1992, 89:246–250.

282. Chellaiah AT, Ornitz DM. Fibroblast Growth Factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/FGF-1. J Biol Chem 1994, 269:11620–11627.

283. Werner S, Duan DS, de Vries C, Peters KG, Johnson DE, Williams LT. Differential splicing in the extracellular region of Fibroblast Growth Factor receptor 1 generates receptor variants with different ligand-binding specificities. Mol Cell Biol 1992, 12:82–88.

284. Mistry N, Harrington W, Lasda E, Wagner EJ, Garcia-Blanco MA. Of urchins and men: evolution of an alternative signaling pathway and men: evolution of an alternative

285. MacArthur CA, Lawshe A, Xu J, Santos-Ocampo S, Heinkinheimo M, Chellaiah AT, Ornitz DM. FGF-8 isoforms activate receptor splice forms that are expressed in mesenchymal regions of mouse development. Development 1995, 121:3630–3631.

286. Sun X, Mariani FV, Martin GR. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 2002, 418:501–508.

287. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast Growth Factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 1997, 124:4867–4878.

288. Beyer TA, Werner S, Dickson C, Grose R. Fibroblast Growth Factor 22 and its potential role during skin development and repair. Exp Cell Res 2003, 287:228–236.

289. Scotet E, Houssaint E. The choice between alternative IIb and IIc exons of the FGFR-3 gene is not strictly tissue-specific. Biochim Biophys Acta 1995, 1264:238–242.

290. Murgue B, Tsunekawa S, Rosenberg I, deBeaumont M, Podolsky DK. Identification of a novel variant form of Fibroblast Growth Factor receptor 3 (FGFR3 IIIb) in human colonic epithelium. Cancer Res 1994, 54:5206–5211.

291. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004, 20:781–810.

292. Lin X. Functions of heparan sulfate proteoglycans in cell signaling during development. Development 2004, 131:6009–6021.

293. Kuo WJ, Digman MA, Lander AD. Heparan sulfate acts as a bone morphogenetic protein coreceptor by facilitating ligand-induced receptor hetero-oligomerization. Mol Biol Cell 2010, 21:4028–4041.

294. Olwin B, Rapraeger A. Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 1992, 118:631–639.

295. Below AA, Mohammadi M. Molecular mechanisms of Fibroblast Growth Factor signaling in physiology and pathology. Cold Spring Harb Perspect Biol 2013, 5:1–24.

296. Kim MJ, Cotman SL, Halfwer W, Cole GJ. The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. J Neurobiol 2003, 55:261–277.

297. Cotman SL, Halfwer W, Cole GJ. Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin. Exp Cell Res 1999, 249:54–64.

298. Aviezer D, Hecht D, Safran M, Eisinger M, David G, Yayon A. Plasticity in interactions of Fibroblast Growth Factor receptor complex in situ. J Cell Biol 2000, 14:137–144.

299. Allen BL, Rapraeger AC. Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. J Cell Biol 2003, 163:637–648.

300. Shimokawa K, Kimura-Yoshida C, Nagai N, Mukai K, Matsubara K, Watanabe H, Matsuda Y, Mochida K, Matsuo I. Cell surface heparan sulfate chains regulate local region of FGF signaling in the mouse embryo. Dev Cell 2011, 21:257–272.

301. Patel VN, Likar KM, Zisman-Rozen S, Cowherd SN, Lassiter KS, Sher I, Yates EA, Turnbull JE, Ron D, Hoffman MP. Specific heparan sulfate structures
modulate FGF10-mediated submandibular gland epithelial morphogenesis and differentiation. *J Biol Chem* 2008, 283:9308–9317.

317. Escobar Galvis ML, Jia J, Zhang X, Jas-trebova N, Spillmann D, Gottfriedson E, van Kuppevelt TH, Zcharia E, Vlo-davsky I, Lindahl U, et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. *Nat Chem Biol* 2007, 3:773–778.

318. Ostrovsky O, Berman B, Gallagher J, Mulloy B, Fennig DG, Delehedde M, Ron D. Differential effects of heparin saccharides on the formation of specific Fibroblast Growth Factor (FGF) and FGF receptor complexes. *J Biol Chem* 2002, 277:2444–2453.

319. Ornitz DM, Herr AB, Nilsson M, West- man J, Svanh CM, Waksman GS. FGF binding and FGF receptor activation by synthetic heparin-derived di- and trisaccharides. *Science* 1995, 268:432–436.

320. Patel VN, Knox SM, Likar KM, Lathrop E, van Kuppevelt TH, Zcharia E, Vlodavsky I, Elkin M, Vlodavsky I, Hoffman MP. Heparanase cleavage of perlecan heparan sulphate modulates FGF10-mediated submandibular gland branching morphogenesis. *Development* 2007, 134:4177–4186.

321. Kuro-o M, Matsushima Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, et al. Mutation of the mouse klotho gene leads to a syndrome resembling aging. *Nature* 1997, 390:45–51.

322. Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. *Trends Endocrinol Metab* 2008, 19:239–245.

323. Kuroshu H, Kuro OM. The Klotho gene family as a regulator of endocrine Fibroblast Growth Factors. *Mol Cell Endocrinol* 2009, 299:72–78.

324. Kuro-o M. Klotho in health and disease. *Curr Opin Nephrol Hypertens* 2012, 21:362–368.

325. Ito S, Kinoshita S, Shiraiishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YL. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. *Meb Dev* 2000, 98:115–119.

326. Ito S, Fujimori T, Hayashizaki Y, Nabeshima Y. Identification of a novel mouse membrane-bound family 1 glycosidase-like protein, which carries an atypical active site structure. *Biochem Biophys Acta* 2002, 1576:341–345.

327. Goetz R, Olnishi M, Ding X, Kurosu H, Wang L, Akiyoshi J, Ma J, Gai W, Siddis Y, Pitteloud N, et al. Klotho coreceptors inhibit signaling by paracrine Fibroblast Growth Factor 8 subfamily ligands. *Mol Cell Biol* 2012, 32:1944–1954.

328. Wu DQ, Kan MK, Sato GH, Okamoto T, Sato JD. Characterization and molecular cloning of a putative binding protein for heparin-binding growth factors. *J Biol Chem* 1991, 266:16778–16785.

329. Czubayko F, Lazudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wessell A. A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. *Nat Med* 1997, 3:1137–1140.

330. Abuharbeid S, Czubayko F, Aigner A. The Fibroblast Growth Factor-binding protein FGF-BP. *Int J Biochem Cell Biol* 2006, 38:1463–1468.

331. Beer HD, Bittner M, Niklaus G, Mund- ing C, Max N, Goppelt A, Werner S. The Fibroblast Growth Factor binding protein is a novel interaction partner of FGF-7, FGF-10 and FGF-22 and regulates FGF activity: implications for epithelial repair. *Oncogene* 2005, 24:5269–5277.

332. Tassi E, McDonnell K, Gibby KA, Tilan JU, Kim SE, Kodack DP, Schmidt MO, Sharif GM, Wilcox CS, Welch WJ, et al. Impact of Fibroblast Growth Factor-binding protein-1 expression on angiogenesis and wound healing. *Am J Pathol* 2011, 179:2220–2232.

333. Wiedemann M, Trueb B. Characterization of a novel protein (FGFRL1) from human cartilage related to FGF receptors. *Genomics* 2000, 69:275–279.

334. Trueb B, Zhuang L, Taeschler S, Wiede- mann M. Characterization of FGFRL1, a novel Fibroblast Growth Factor (FGF) receptor preferentially expressed in skeletal tissues. *J Biol Chem* 2003, 278:33857–33865.

335. Kim I, Moon S, Yu K, Kim U, Koh GY. A novel Fibroblast Growth Factor receptor-5 preferentially expressed in the pancreas(1). *Biochim Biophys Acta* 2001, 1518:152–156.

336. Sleeman M, Fraser J, McDonald M, Yuan S, White D, Grandison P, Kumble K, Watson JD, Murison JG. Identification of a novel Fibroblast Growth Factor receptor mediates direct association and activation of SNT adapter proteins. *J Biol Chem* 1998, 273:17987–17990.

337. Ong SH, Guy GR, Hadari YR, Laks S, Gotoh N, Schlessinger J, Lax I. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on Fibroblast Growth Factor and nerve growth factor receptors. *Mol Cell Biol* 2000, 20:979–989.

338. Moon AM, Guris DL, Seo JH, Li L, Ham- mond J, Talbot A, Imamoto A. Crkl defi- ciency disrupts Fgfs signaling in a mouse model of 22q11 deletion syndromes. *Dev Cell* 2006, 10:71–80.

339. Seo JH, Sunga A, Hatakeyama M, Taiji M, Imamoto A. Structural and functional basis of a role for CRKL in a Fibroblast Growth Factor-8-induced feed-forward loop. *Mol Cell Biol* 2009, 29:3076–3087.

340. Larsson H, Klint P, Landgren E, Claesson-Welsh L. Fibroblast Growth Factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-
containing adaptor protein Crk. J Biol Chem 1999, 274:25726–25734.

351. Kanazawa S, Fujiwara T, Matsuoka S, Shingaki K, Taniguchi M, Miyata S, Tolyama M, Sakai Y, Yano K, Hosokawa K, et al. bFGF regulates PI3-kinase-Rac1-JNK pathway and promotes fibroblast migration in wound healing. PLoS One 2010, 5:e12228.

352. Tsang M, Dawib IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE 2004, 2004:pe17.

353. Tan Y, Rouse J, Zhang A, Cariati S, Tsang M, Dawid IB. Promotion and attenuation of FGF signaling through the Ras-MAPK pathway. Sci STKE 2004, 2004:pe17.

354. Hadari YR, Kouhara H, Lax I, Schlessinger J. Binding of Shp2 tyrosine phosphatase to FGFR2 is essential for Fibroblast Growth Factor-induced PC12 cell differentiation. Mol Cell Biol 1998, 18:3966–3973.

355. Lamote B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J. The docking protein Gab1 is an essential component of an indirect mechanism for Fibroblast Growth Factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol 2004, 24:5657–5666.

356. Firthberg N, Neubuser A. FGF signaling regulates expression of Tbx2, Ema, Pea3, and Pax3 in the early nasal region. Dev Biol 2002, 247:237–230.

357. Raible F, Brand M. Tight transcriptional control of the ETS domain factors Erm and Pea3 by FGF signaling during early zebrafish development. Mech Dev 2001, 107:105–117.

358. Roehl H, Nusslein-Volhard C. Zebrafish pea3 and erm are general targets of FGF8 signaling. Curr Biol 2001, 11:503–507.

359. Brent AE, Tabin CJ. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development 2004, 131:3885–3896.

360. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2007, 129:1261–1274.

361. Reilly JF, Mickey G, Maher PA. Association of Fibroblast Growth Factor Receptor 1 with the adaptor protein Grb14. Characterization of a new receptor binding partner. J Biol Chem 2000, 275:7771–7778.

362. Browaeys-Poly E, Blanquart C, Pereau F, Antoine AF, Goenaga D, Luzy JP, Chen H, Garbay C, Issad T, Cailliau K, et al. Grb14 inhibits FGF receptor signaling through the regulation of PLCγ2 recruitment and activation. FEMS Lett 2010, 584:4383–4388.

363. Cross MJ, Lu L, Magnusson P, Nyqvist D, Holmqvist K, Welch M, Claesson-Welsh L. The Shb adaptor protein binds to tyrosine 766 in the FGFR-1 and regulates the Ras/MEK/MAPK pathway via FRS2 phosphorylation in endothelial cells. Mol Biol Cell 2002, 13:2881–2893.

364. Su WC, Kitagawa M, Xue N, Xie B, Gorafolo S, Cho J, Deng C, Horton WA, Fu XY. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 1997, 386:288–292.

365. Yang X, Qiao D, Meyer K, Pier T, Keles S, Friedl A. Angiogenesis induced by signal transducer and activator of transcription 5A (STAT5A) is dependent on autocrine activity of proliferin. J Biol Chem 2012, 287:6490–6502.

366. Hart KC, Robertson SC, Kanemoto MY, Meyer AN, Tynan JA, Donoghue DJ. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene 2000, 19:3309–3320.

367. Heath C, Cross NC. Critical role of FGF receptor trafficking and cell differentiation. Fibroblast Growth Factor receptor signaling pathway. Cytokine Growth Factor Rev 2005, 16:233–247.

368. Di Giordano S. Negative receptor signalling. Curr Opin Cell Biol 2003, 15:128–135.

369. Guy GR, Jackson RA, Yusoff P, Chow SY. Sprouty proteins: modified modulators, matchmakers or missing links? J Endocrinol 2009, 203:191–202.

370. This K, Grassmann S. Functions and regulations of Fibroblast Growth Factor signaling during embryonic development. Dev Biol 2005, 287:390–402.

371. Forthma H, Lin W, Ang SL, Thiss K, Sef S. A feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 2002, 4:163–169.

372. Torii S, Usuki K, Yamamoto T, Maekawa M, Nishida E. Sef is a spatial regulator for Ras/MAPK kinase signaling. Dev Cell 2004, 7:33–44.

373. Ovanes Jr D, Yang X, Chen PY, Nadeau RJ, Zubanov OA, Pigeon K, Friesel R. A role for extracellular and transmembrane domains of Sef in Sef-mediated inhibition of FGF signaling. Signal Cell 2006, 18:1958–1966.

374. Campos M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C, Boschert U, Arkinstall S. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 1998, 280:1262–1265.

375. Li C, Scott DA, Hatch E, Tian X, Manson SL. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 2007, 134:167–176.

376. Ekerot M, Stavridis MP, Delaivane L, Mitchell MP, Staples C, Owens DM, Keenan ID, Dickinson RJ, Storey KG, Keyse SM. Negative-feedback regulation of FGF signalling by DUSP6/MKP3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the DUSP6/MKP3 gene promoter. Biochem J 2008, 412:287–298.

377. Dickinson RJ, Eblelagh MC, Keyse SM, Morrisey-Kay GM. Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mech Dev 2002, 113:193–196.

378. Eblelagh MC, Lunn JS, Dickinson RJ, Munsterberg AE, Sanz-Eguizber EH, Farrell ER, Mathers J, Keyse SM, Storey K, Tickle C. Negative feedback regulation of FGF signalling levels by Pyst1/MKP3 in chick embryos. Curr Biol 2003, 13:1009–1018.
Wong A, Lamotthe B, Lee A, Schlessinger J, Lax I. FRS2 alpha attenuates FGF receptor signaling by Ghr2-mediated recruitment of the ubiquitin ligase Cbl. *Proc Natl Acad Sci USA* 2002, 99:6684–6689.

Dufour C, Guenou H, Kaabeche K, Bouvard D, Sanjay A, Marie PJ. FGFR2-Chl interaction in lipid rafts triggers attenuation of PI3K/Akt signaling and osteoblast survival. *Bone* 2008, 42:1032–1039.

Ahmed Z, George R, Lin CC, Suen KM, Levitt JA, Suhling K, Ladbury JE. Direct binding of Ghr2 SH3 domain to FGFR2 regulates SHP2 function. *Cell Signal* 2010, 22:23–33.

Ahmed Z, Lin CC, Suen KM, Melo FA, Levitt JA, Suhling K, Ladbury JE. Ghr2 controls phosphorylation of FGFR2 by inhibiting receptor kinase and Shp2 phosphatase activity. *J Cell Biol* 2013, 200:493–504.

Cardoso WV, Itoh A, Nagawa H, Mason I, Brody JS. FGF-1 and FGF-7 induce distinct patterns of growth and differentiation in embryonic lung epithelium. *Dev Dyn* 1997, 208:398–405.

Belleudi F, Leone L, Nobili V, Raffa S, Francescangeli F, Maggio M, Morrone S, Marchese C, Torrisi MR. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. *Traffic* 2007, 8:1854–1872.

Volckaert T, De Langhe SP. Wnt and FGF mediated epithelial-mesenchymal crosstalk during lung development. *Dev Dyn* 2015, 244:342–366.

Bryant DM, Stow JL. Nuclear translocation of cell-surface receptors: lessons from Fibroblast Growth Factor. *Traffic* 2005, 6:947–954.

Coleman SJ, Bruce C, Chioni AM, Kocher HM, Grose RP. The ins and outs of Fibroblast Growth Factor Receptor signaling. *Clin Sci (Lond)* 2014, 127:217–231.

Wiedlocha A, Falnes PO, Maddus H, Vandvik O, Olness S. Dual mode of signal transduction by externally added acidic Fibroblast Growth Factor. *Cell* 1994, 76:1039–1051.

Joy A, Moffett J, Neary K, Mordechai E, Stachowiak EK, Coons S, Rankin-Shapiro J, Florkiewicz RZ, Stachowiak MK. Nuclear accumulation of FGF-2 is associated with proliferation of human astrocytes and glioma cells. *Oncogene* 1997, 14:171–183.

Stachowiak MK, Maher PA, Stachowiak EK. Integrative nuclear signaling in cell development—a role for FGF receptor-1. *DNA Cell Biol* 2007, 26:811–826.
of Fibroblast Growth Factor receptors by embryonal carcinoma cells and early mouse embryos. *In Vitro Cell Dev Biol 1992, 28a:61–66.*

422. Orr-Urtreger A, Givol D, Yayon A, Yarden Y, Lonai P. Developmental expression of two murine Fibroblast Growth Factor receptors, flg and bek. *Development 1991, 113:1419–1434.*

423. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. *Dev Cell 2010, 18:675–685.*

424. Arman E, Haffner-Krausz R, Chen Y, Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, Robson P. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. *Dev Cell 2010, 18:675–685.*

425. Deng CX, Wynshaw-Boris A, Shen MM, Lu P, Yu Y, Perdue Y, Werzb Y, Kuroiwa A. The apoptotic volume 4, May/June 2015 © 2015 Wiley Periodicals, Inc. 255

426. Danopoulos S, Parsa S, Al Alam D, Tabatabai R, Baptista S, Tiozzo C, Carraro G, Wheeler M, Barreto G, Braun T, et al. Transient Inhibition of FGFR2b ligands signaling leads to irreversible loss of cellular beta-catenin organization and signaling in AER during mouse limb development. *PLoS One 2013, 8:e76248.*

427. Kawakami Y, Esteban CR, Matsui T, Rodriguez-Leon J, Kato S, Iipsiusa Belmonte JC. Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgfl expression and limb outgrowth in vertebrate embryos. *Development 2004, 131:4763–4774.*

428. Martin V, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. *Nature 2008, 453:401–405.*

429. Martin GR. The roles of FGFs in the early development of vertebrate limbs. *Genes Dev 1998, 12:1571–1586.*

430. Yamamoto-Sharaiishi YI, Higuchi H, Yamamoto K, Oshino M, Kuroiwa A. Etv1 and Ewst cooperatively regulate limb mesenchymal Fgfl expression in response to apical ectodermal ridge-derived Fibroblast Growth Factor signal. *Dev Biol 2014, 394:181–190.*

431. Sakiyama J, Yamagishi A, Kuroiwa A. Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. *Proc Natl Acad Sci USA 1998, 95:5082–5087.*

432. Fukuchi-Shimogori T, Grove EA. Neoectodermal ridge is a timer for generation of Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. *Proc Natl Acad Sci USA 1998, 95:5082–5087.*

433. Sakiyama J, Yamagishi A, Kuroiwa A. The role of Fgf8 in the early development of vertebrate limbs. *Genes Dev 1998, 12:1571–1586.*

434. Que J, Okubo T, Goldenberg JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevey LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. *Development 2007, 134:2521–2531.*

435. Lassiter RN, Stark MR, Zhao T, Zhou C, Jiang Z, Shterekhskaya T, Chen Y, Mansouri A, Oberg KC, Ros MA, Nakano H, Singh G, Maass M, Kotani R, Morrisey EE, Tara-Noa O, Pevey LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. *Development 2007, 134:2521–2531.*

436. Martin GR. The roles of FGFs in the early development of vertebrate limbs. *Genes Dev 1998, 12:1571–1586.*

437. Yamamoto-Shiraishi YI, Higuchi H, Yamamoto K, Oshino M, Kuroiwa A. Etv1 and Ewst cooperatively regulate limb mesenchymal Fgfl expression in response to apical ectodermal ridge-derived Fibroblast Growth Factor signal. *Dev Biol 2014, 394:181–190.*

438. Sakiyama J, Yamagishi A, Kuroiwa A. Etv1 and Ewst cooperatively regulate limb mesenchymal Fgfl expression in response to apical ectodermal ridge-derived Fibroblast Growth Factor signal. *Dev Biol 2014, 394:181–190.*

439. Que J, Okubo T, Goldening JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevey LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. *Development 2007, 134:2521–2531.*

440. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, et al. Fgfl-positive cells represent a progenitor cell population during lung development and postnatally. *Development 2014, 141:296–306.*

441. Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM. Genomic organization and embryonic expression of the mouse Fibroblast Growth Factor 9 gene. *Dev Dyn 1999, 216:72–88.*

442. del Moral PM, De Lange SP, Sala FG, Veltmaat JM, Tefft D, Wang K, Warburton D, Bellusci S. Differential role of Fgf10 on epithelium and mesenchyme in mouse embryonic lung. *Dev Biol 2006, 293:77–89.*

443. Yin Y, White AC, Hu SH, Hilton MJ, Kanazawa H, Long F, Ornitz DM. An FGF-WNT gene regulatory network controls lung mesenchyme development. *Dev Biol 2008, 319:426–436.*

444. Lassiter RN, Stark MR, Zhao T, Zhou C, Jiang Z, Shterekhskaya T, Chen Y, Mansouri A, Oberg KC, Ros MA, Nakano H, Singh G, Maass M, Kotani R, Morrisey EE, Tara-Noa O, Pevey LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. *Development 2007, 134:2521–2531.*

445. Lassiter RN, Stark MR, Zhao T, Zhou C, Jiang Z, Shterekhskaya T, Chen Y, Mansouri A, Oberg KC, Ros MA, Nakano H, Singh G, Maass M, Kotani R, Morrisey EE, Tara-Noa O, Pevey LH, Hogan BL. Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. *Development 2007, 134:2521–2531.*

446. Danopoulos S, Parsa S, Al Alam D, Tabatabai R, Baptista S, Tiozzo C, Carraro G, Wheeler M, Barreto G, Braun T, et al. Transient Inhibition of FGFR2b ligands signaling leads to irreversible loss of cellular beta-catenin organization and signaling in AER during mouse limb development. *PLoS One 2013, 8:e76248.*

447. Hashimoto S, Nakano H, Singh G, Katsay S. Expression of Sprouty and Sprouty in developing rat lung. *Gene Expr Patterns 2002, 2:347–353.*

448. Zhang S, Lin Y, Iitaranta P, Yagi A, Vainio S. Expression of Sprouty genes 1, 2 and 4 during mouse organogenesis. *Mech Dev 2001, 109:367–370.*

449. Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Brinigar P Jr, Crowe DL, Warburton D. Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. *Curr Biol 1999, 9:219–222.*

450. Tang N, Marshall WF, McMahon M, Metge RJ, Martin GR. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. *Science 2011, 333:342–345.*

451. Taniguchi K, Ayada T, Ichiyama K, Kohno R, Yonemitsu Y, Minami Y, Kikuchi A, Maehara Y, Yoshimura A. Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. *Biochem Biophys Res Commun 2007, 352:896–902.*

452. El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, et al. Fgfl-positive cells represent a progenitor cell population during lung development and postnatally. *Development 2014, 141:296–306.*

453. Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM. Genomic organization and embryonic expression of the mouse Fibroblast Growth Factor 9 gene. *Dev Dyn 1999, 216:72–88.*

454. del Moral PM, De Lange SP, Sala FG, Veltmaat JM, Tefft D, Wang K, Warburton D, Bellusci S. Differential role of Fgf10 on epithelium and mesenchyme in mouse embryonic lung. *Dev Biol 2006, 293:77–89.*

455. Yin Y, White AC, Hu SH, Hilton MJ, Kanazawa H, Long F, Ornitz DM. An FGF-WNT gene regulatory network controls lung mesenchyme development. *Dev Biol 2008, 319:426–436.*
256

© 2015 Wiley Periodicals, Inc.
Volume 4, May/June 2015

456. Paek H, Gutin G, Hebert JM. FGF signaling is strictly required to maintain early telencephalic precursor cell survival. Development 2009, 136:2477–2465.

457. Rhinn M, Pickard A, Brand M. Global and local mechanisms of forebrain and midbrain patterning. Curr Opin Neurobiol 2006, 16:5–12.

458. Liu A, Li JY, Bromleigh C, Lao Z, Niswander LA, Joyner AL. FGF17b and FGF18 have different midbrain regulatory properties from FGF8b or activated FGF receptors. Development 2003, 130:6175–6185.

459. Lee SM, Danielian PS, Fritzsch B, McMahan AP. Evidence that FGF signaling from the midbrain–hindbrain junction regulates growth and polarity in the developing midbrain. Development 1997, 124:959–969.

460. Partanen J. FGF signaling pathways in development of the midbrain and anterior hindbrain. J Neurochem 2007, 101:1185–1193.

461. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996, 380:66–68.

462. Saarimaki-Vire J, Peltopuro P, Lahti I, Naserke T, Blak AA, Vogt Weisenhorn DM, Yu K, Ornitz DM, Wurst W, Partanen J. Fibroblast Growth Factor Receptor 2 cooperates to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 2007, 27:8581–8592.

463. Maves L, Jackman W, Kimmel CB, FGFR3 and FGFR4 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 2002, 129:3825–3837.

464. Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGFR8. Curr Biol 2002, 12:1117–1123.

465. Guillemot F, Zimmer C. From cradle to grave: the multiple roles of Fibroblast Growth Factor. J Cell Biol 1998, 143:749–752.

466. Partanen J. FGF signalling pathways in development of the midbrain and anterior hindbrain. J Neurochem 2007, 101:1185–1193.

467. Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996, 380:66–68.

468. Saarimaki-Vire J, Peltopuro P, Lahti I, Naserke T, Blak AA, Vogt Weisenhorn DM, Yu K, Ornitz DM, Wurst W, Partanen J. Fibroblast Growth Factor Receptor 2 cooperates to regulate neural progenitor properties in the developing midbrain and hindbrain. J Neurosci 2007, 27:8581–8592.

469. Harada M, Murakami H, Okawa A, Okimoto N, Hiraoka S, Nakahara T, Akasaka R, Shiraishi Y, Futatsugi N, Mizutani-Koseki Y, et al. FGF monomer/dimer equilibrium regulates extracellular matrix affinity and tissue diffusion. Nat Genet 2009, 41:289–298.

470. Wu XL, Gu MM, Huang L, Liu XS, Zhang HX, Ding XY, Xu JQ, Cui B, Wang L, Lu SY, et al. Multiple synostoses syndrome is due to a missense mutation in exon 2 of FGF9 gene. Am J Hum Genet 2009, 85:53–63.

471. Qu X, Pan Y, Carbe C, Powers A, Grobe K, Zhang X. Glycosaminoglycan-dependent restriction of FGF diffusion is necessary for lacrimal gland development. Development 2012, 139:2730–2739.

472. Amann K, Faulhaber J, Campean V, Balajew V, Dono R, Mall G, Ehmkne H. Impaired myocardial capillarogenesis and increased adaptive capillary growth in FGF2-deficient mice. Lab Invest 2006, 86:45–53.

473. Virag JA, Rolle ML, Reece J, Hardouin S, Feig EO, Murry CE. Fibroblast Growth Factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 2007, 171:1431–1440.

474. Nusayr E, Doetschman T. Cardiac development and physiology are modulated by FGFR2 in an isoform- and sex-specific manner. Physiol Rep 2013, 1:000087.

475. Nusayr E, Sadideen DT, Doetschman T. FGFR2 modulates cardiac remodeling in an isoform- and sex-specific manner. Physiol Rep 2013, 1:e000088.

476. House SL, House BE, Glascock B, Kim SE, Balajew V, Dono R, Mall G, Ehmkne H. Impaired myocardial capillarogenesis and increased adaptive capillary growth in FGF2-deficient mice. Lab Invest 2006, 86:45–53.

477. Virag JA, Rolle ML, Reece J, Hardouin S, Feig EO, Murry CE. Fibroblast Growth Factor-2 regulates myocardial infarct repair: effects on cell proliferation, scar contraction, and ventricular function. Am J Pathol 2007, 171:1431–1440.

478. Nusayr E, Doetschman T. Cardiac development and physiology are modulated by FGFR2 in an isoform- and sex-specific manner. Physiol Rep 2013, 1:000087.

479. Nusayr E, Sadideen DT, Doetschman T. FGFR2 modulates cardiac remodeling in an isoform- and sex-specific manner. Physiol Rep 2013, 1:e000088.

480. Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic Fibroblast Growth Factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007, 5:426–437.

481. Inagaki T, Dutchak P, Zhao G, Ding X, Guo L, Parikh R, Li Y, Goetz R, Mohammadi M, Esser V, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of Fibroblast Growth Factor 21. Cell Metab 2007, 5:415–425.

482. Sundaresan T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 2007, 360:437–440.

483. Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast Growth Factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009, 150:4931–4940, V.

484. Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013, 17:779–789.

485. Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E,
Cheng CC, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013, 17:790–797.

491. Shimada T, Fukumoto S. FGF23 as a novel therapeutic target. Adv Exp Med Biol 2012, 728:158–170.

492. Tang WJ, Wang LF, Xu XY, Zhou Y, Jin WF, Wang HF, Gao J. Autocrine/paracrine action of vitamin D on FGF23 expression in cultured rat osteoblasts. Calcif Tissue Int 2010, 86:404–410.

493. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011, 121:4393–4408.

494. Touchberry CD, Green TM, Tchikrizov M, Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutierrez OM, Aguillon-Prada R, Lincoln J, Hare JM, et al. FGF23 is a novel regulator of intracellular calcium and cardiac contractility in addition to cardiac hypertrophy. Am J Physiol Endocrinol Metab 2013, 304:E863–E873.

495. Liu C, Bib-Hajj SD, Waxman SG. Fibroblast Growth Factor homologous factor 1B binds to the C terminus of the tetrodotoxin-resistant sodium channel nNav.1.5 by FGF14: FGF14 homodimer interaction through short peptide fragments. Mol Neurobiol Drug Targets 2014, 13:1559–1570.

496. Liu C, Bib-Hajj SD, Renganathan M, Cummins TR, Waxman SG. Modulation of the cardiac sodium channel Na(v)1.5 by Fibroblast Growth Factor homologous factor 1B. J Biol Chem 2003, 278:1029–1036.

497. Laezza F, Lampert A, Kozel MA, Gerber NJ, Vincent RJ, Wemore L, Dawn B, et al. FGFR3 is a novel regulator of intracellular calcium and cardiac contractility. J Biol Chem 2009, 284:35331–35340.

498. Laezza F, Lampert A, Kozel MA, Gerber NJ, Vincent RJ, Wemore L, Dawn B, et al. FGFR3 is required for spontaneous and evoked firing in cerebellar Purkinje neurons and for motor coordination and balance. J Neurosci. In press.

499. Shavkunov AS, Wildburger NC, Nenov MN, James TF, Bzhudyan TP, Panova-Elektronova NI, Green TA, Veselak NL, Bourne N, Laezza F. The Fibroblast Growth Factor 14 voltage-gated sodium channel complex is a novel target of glycogen synthase kinase 3 (GSK3). J Biol Chem 2013, 288:19370–19388.

500. Wildburger NC, Laezza F. Control of neuronal ion channel function by glycogen synthase kinase-3: new prospective for an old kinase. Front Mol Neurosci 2012, 5:80.

501. Ali S, Shavkunov A, Panova N, Stoilova-McPhie S, Laezza F. Regulation of the FGF14:FGF14 homodimer interaction through short peptide fragments. Mol Neurobiol Drug Targets 2014, 13:1559–1570.

502. Van Swieten JC, Brusse E, De Graaf BM, Krieger E, Van De Graaf R, De Koning JM, et al. A mutation in the Fibroblast Growth Factor 14 gene is associated with autosomal dominant cerebellar ataxia. Am J Hum Genet 2003, 72:191–199.

503. Brusse E, de Koning I, Maat-Kievit A, Leegwater P, Dooijes D, Oostra BA, et al. A mutation in the Fibroblast Growth Factor 14 gene is associated with autosomal dominant cerebellar ataxia. Am J Hum Genet 2003, 72:191–199.

504. Ali S, Shavkunov A, Panova N, Stoilova-McPhie S, Laezza F. Regulation of the FGF14:FGF14 homodimer interaction through short peptide fragments. Mol Neurobiol Drug Targets 2014, 13:1559–1570.

505. Yang J, Meyer M, Muller AK, Bohm F, Grosse R, Dauwalder T, Verrey F, Kopf M, Partanen J, Bloch W, et al. Fibroblast Growth Factor receptors 1 and 2 in keratinocytes control the epidermal barrier and cutaneous homeostasis. J Cell Biol 2010, 188:935–952.

506. Hayashi T, Cunningham D, Berningham-McDonough O. Loss of Fgfr3 leads to excess hair cell development in the mouse organ of corti. Dev Dyn 2007, 236:525–533.

507. Molichir RX, Mezerra C, Holmes WM, Goda S, Brookfield SJ, Rankin AJ, Barr E, Kurniawan N, Dewar D, Richards LJ, et al. Fgfr3 regulates Paneth cell lineage allocation and epithelial cyst formation. Cell 2011, 144:1586–1599.

508. Vidrich A, Buzan JM, Brodick B, Ilo C, Krieger E, Van De Graaf R, De Koning JM, et al. Intracellular FGF14 (iFGF14) is required for spontaneous and evoked firing in cerebellar Purkinje neurons and for motor coordination and balance. J Neurosci. In press.

509. Huang X, Yang C, Jin C, Luo Y, Wang F, McKeenan WL. Resident hepatocyte Fibroblast Growth Factor receptor 4 limits hepatocarcinogenesis. Mol Carcinog 2009, 48:553–562.

510. Uriarte I, Latasa MU, Carotti S, Fernandez-Barrena MG, Garcia-Irigoyen O, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, de Mingo A, et al. FGF5 contributes to fibrosis-associated hepatocellular carcinoma development. Int J Cancer 2014. In press. doi:10.1002/ijc.29287.

511. Kehler JS, David VA, Schaffer AA, Bajema K, Eizirik E, Ryugo DK, Pauli F, McKeenan WL. Resident hepatocyte Fibroblast Growth Factor receptor 4 limits hepatocarcinogenesis. Mol Carcinog 2009, 48:553–562.

512. Alsmadi O, Meyer BF, Alkuraya F, Wakil S, Alkayal F, Al-Saud H, Ramzan K, Al-Sayed M. Syndromal congenital sensorineural deafness, microtia, and microodontia resulting from a novel homoallelic mutation in Fibroblast Growth Factor 3 (FGF3). Eur J Hum Genet 2013, 19:14–21.

513. Sensi A, Ceruti S, Trevisi P, Gualandi F, Busi M, Donati I, Neri M, Ferlini A, Martini A. LAMM syndrome with middle ear dysplasia associated with compound heterozygosity for FGF3 mutations. Am J Med Genet A 2011, 155A:1096–1101.

514. Cadieu E, Neff MW, Quignon P, Walsh K, Chase K, Parker HG, Vonholdt BM, Rhue A, Boyko A, Byers A, et al. Coat variation in the domestic dog is governed by variants in three genes. Science 2009, 326:150–153.

515. Droegemueller C, Rufenacht S, Wichert B, Leeb T. Mutations within the FGF5 gene are associated with hair length in cats. Anim Genet 2007, 38:218–221.

516. Kohler JS, David VA, Schaffer AA, Bajema K, Eizirik E, Ryugo DK, Haner SS, O’Brien SJ, Menotti-Raymond M. Four independent mutations in the feline Fibroblast Growth Factor 5 gene determine the long-haired phenotype in domestic cats. J Hered 2007, 98:553–566.

517. Diersk C, Momke S, Philipp U, Distl O. Allelic heterogeneity of FGF5 mutations

Volume 4, May/June 2015 © 2015 Wiley Periodicals, Inc. 257
causes the long-hair phenotype in dogs. Annu Genet 2013, 44:425–431.

522. Brehm JM, Hagiwara K, Tesfaigzi Y, Bruse S, Mariani TJ, Bhattacharya S, Boutaoui N, Zinini JP, Soto-Quiros ME, Avila L, et al. Identification of FGF7 as a novel susceptibility locus for chronic obstructive pulmonary disease. Thorax 2011, 66:1085–1090.

523. Trarbach EB, Abreu AP, Silveira LF, Garces HM, Baptista MT, Teles MG, Costa EM, Mohammadi M, Petteloud N, Mendonca BB, et al. Nonsense mutations in FGF8 gene causing different degrees of human gonadotropin-releasing deficiency. J Clin Endocrinol Metab 2010, 95:3491–3496.

524. Riley BM, Mansilla MA, Ma J, Daach-Hirsch S, Maher BS, Rafsensperger LM, Russo ET, Vieira AR, Dode C, Mohammadi M, et al. Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci USA 2007, 104:4512–4517.

525. Falardeau J, Chung WC, Beenken A, Trarbach EB, Abreu AP, Silveira LF, Gulyaev J, et al. Mutations in the FGF8 gene contribute to cleft lip and palate. Hum Mol Genet 2006, 15:39–66.

526. Arauz RF, Solomond B, Pineda-Alvarez DE, Gropman AL, Parsons JA, Roessler D, Muenke M. A hypomorphic allele in the FGF8 gene contributes to holoprosencephaly and is allelic to holoprosencephaly-releasing hormone in humans and mice. J Clin Invest 2008, 118:2822–2831.

527. Hennessey JA, Marcou CA, Wang C, Wei EQ, Wang C, Tester DJ, Torchio M, Dagradi F, Crotti L, Schwartz PJ, et al. FGF12 is a candidate Brugada syndrome locus. Heart Rhythm 2013, 10:1886–1894.

528. DeStefano GM, Fantauzzo KA, Petukhova L, Kurbain M, Tadin-Strapp M, Levy B, Wallbrun D, Cirulli ET, Han Y, Sun X, et al. Position effect on the FGF14 gene: frameshift mutation and polymorphisms associated with recessive holoprosencephaly, craniofacial defects, and hypothyalamic-pituitary dysfunction. J Clin Endocrinol Metab 2011, 96:E1709–E1718.

529. Valdez-Socin H, Rubio Almanza M, Tome Fernandez-Ladreda M, Debray FG, Bours V, Beckers A. Reproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. Front Endocrinol (Lausanne) 2014, 5:109.

530. Chung CL, Lu CW, Cheng YS, Lin CY, Sun HS, Lin YM. Association of aberrant expression of sex-determining gene Fibroblast Growth Factor 9 with Sertoli cell-only syndrome. Fertil Steril 2013, 100:1547–1554.e1.e1541–1544.

531. Entesarian M, Matsson H, Klar J, Bergendal B, Olson L, Arakaki R, Hayashi Y, Ohuchi H, Falahat B, Bolstad AL, et al. Mutations in the gene encoding Fibroblast Growth Factor 10 are associated with aplasia of lacrimal and salivary glands. Nat Genet 2005, 37:125–127.

532. Geicz J, Baker E, Donnelly A, Ming JE, McDonald-McGinn DM, Spinner NB, Zackai EH, Sutherland GR, Mulley JC. Fibroblast Growth Factor 10 homologous factor 2 (FHF2): gene structure, expression and mapping to the Borjeson-Forsmann-Lehmann syndrome region in Xq26 delineated by a duplication breakpoint in a BFLS-like patient. Hum Genet 1999, 104:56–63.

533. Dalski A, Atici J, Kreuz FR, Hellbroich Y, Schwingler E, Zulkille C. Mutation analysis in the Fibroblast Growth Factor 14 gene: frameshift mutation and polymorphisms in patients with inherited ataxias. Eur J Hum Genet 2005, 13:118–120.

534. Coebergh JA, van de Putte DE, Snoeck IN, Ruivenkamp C, van Haeringen A, Smit LM. A new variable phenotype in spinocerebellar ataxia 27 (SCA 27) caused by a deletion in the FGF14 gene. Eur J Hum Genet 2014, 18:413–415.

535. Jamsheer A, Zemojtel T, Kolaczyk M, Stricker S, Hecht J, Krawitz P, Doelken SC, Glazar R, Socha M, Mundlos S. Whole exome sequencing identifies FGF16 nonsense mutations as the cause of X-linked recessive metacarpal 4/5 fusion. J Med Genet 2013, 50:579–584.

536. Laurell T, Nilsson D, Hofmeister W, Lindstrand A, Ahituv N, Vandermeer J, Amilon A, Anneren G, Arner M, Pettersson M, et al. Identification of three novel FGFR16 mutations in X-linked recessive fusion of the fourth and fifth metacarpals and possible correlation with heart disease. Mol Genet Genomic Med 2014, 2:402–411.

537. Mirouzi H, Dwyer AA, Sykiotis GP, Plummer L, Chung WC, Bolen R, Everman DB. LADD syndrome is caused by FGFR1 mutations. Clin Genet 2006, 69:349–354.

538. van der Walt JM, Noureddine MA, Kitappa R, Hauser MA, Scott WK, McKay R, Zhang F, Stajich JM, Fujiwara K, Scott BL, et al. Fibroblast Growth Factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 2004, 74:1121–1127.

539. Itoh N, Ohta H. Roles of FGF20 in dopaminergic neurons and Parkinson's disease. Front Mol Neurosci 2013, 6:15.

540. Lemaire H, Mattay VS, Sambataro F, Verchinski B, Straub RE, Callcott JH, Kitappa R, Hyde TM, Lipska BK, Kleinman J, et al. Genetic variation in FGF20 modulates hippocampal biology. J Neurosci 2010, 30:5992–5997.

541. Chu AY, Workaleahu T, Paynter NP, Rose LM, Giuliani N, Tanaka T, Ngwa JS, Qi Q, Curhan GC, Rimb EB, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet 2013, 22:1895–1902.

542. Tanaka T, Ngwa JS, van Rooij FJ, Zillikens MC, Wojczynski MK, Frazer-Wood AC, Houston DK, Kanoni S, Lemaire RN, Luan J, et al. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake. Am J Clin Nutr 2013, 97:1395–1402.

543. Zhang M, Zeng L, Wang YJ, An ZM, Ying BW. Associations of Fibroblast Growth Factor 21 gene 3’ untranslated region single-nucleotide polymorphisms with metabolic syndrome, obesity, and diabetes in a Han Chinese population. DNA Cell Biol 2012, 31:547–552.

544. Benet-Pages A, Orlik P, Strom TM, Lorenz-Depiereux B. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia. Hum Mol Genet 2005, 14:385–390.

545. Masi L, Gozzini A, Franchi A, Campanacci D, Amedei A, Falchetti A, Franceschelli F, Marcucci G, Tanini A, Capanna R, et al. Novel recessive mutation of Fibroblast Growth Factor-23 in...
Fibroblast Growth Factor signaling pathway

tumoral calcinosis. J Bone Joint Surg Am 2009, 91:1190–1198.

551. Falcini F, Franceschelli F, Leoncini G, Gozzini A, Rigante D, La Torre F, Mattucci-Cerinic M, Brandi ML, Falcini F. Can Fibroblast Growth Factor (FGF)-23 circulating levels suggest coronary artery abnormalities in children with Kawasaki disease? Clin Exp Rheumatol 2013, 31:149–153.

552. Falcini F, Rigante D, Masi L, Covino M, Franceschelli F, Leoncini G, Tarantino G, Mattucci-Cerinic M, Brandi ML. Fibroblast Growth Factor 23 (FGF23) gene polymorphism in children with Kawasaki syndrome (KS) and susceptibility to cardiac abnormalities. Ital J Pediatr 2013, 39:69.

553. Chefetz I, Heller R, Galli-Tsinopoulou A, Richard G, Wolnik B, Indelman M, Koerber F, Topaz O, Bergman R, Sprecher E, et al. A novel homozygous missense mutation in FGF23 causes familial tumoral calcinosis associated with disseminated visceral calcification. Hum Genet 2005, 118:261–266.

554. Araya K, Fukumoto S, Backenroth R, Takeuchi Y, Nakayama K, Ito N, Yoshi N, Yamazaki Y, Yamashita T, Silver J, et al. A novel mutation in Fibroblast Growth Factor (FGF)23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005, 90:5523–5527.

555. Garringer HJ, Malekpour M, Esteghamat F, Mortazavi SM, Davis SL, Farrow EG, Yu X, Arking DE, Dietz HC, White KE. Molecular genetic and biochemical analyses of FGF23 mutations in familial tumoral calcinosis. Am J Physiol Endocrinol Metab 2005, 299:E529–E537.

556. Muenke M, Schell U, Feldman GJ, Robin NH, Losken HW, Schinzel A, Pulleyn LJ, Rutland P, Poole MD, Malcolm S, Migeotte I, Lambert N, Malcom S, et al. A common mutation in the Fibroblast Growth Factor 23 (FGF23) gene explains a major fraction of idiopathic tumoral calcinosis. J Med Genet 2006, 43:22–28.

557. Dode C, Levilliers J, Dupont JM, De Paeppe A, Le Du N, Soussi-Yanicostas N, Coimbra RS, Delmaghani S, Compain-Nouaille S, Baverel F, et al. Loss-of-function mutations in FGF23 cause autosomal dominant Caffey disease. Nat Genet 2004, 36:555–561.

558. Villanueva C, Jacobson-Dickman E, Xu Y, Manouvrier S, Dwyer AA, Hughes VA, et al. Mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndromes: a clinical entity with a high frequency of FGFR1 mutations. Nat Genet 2004, 36:562–567.

559. Falcini F, Rigante D, Masi L, Covino M, Franceschelli F, Leoncini G, Tarantino G, Mattucci-Cerinic M, Brandi ML. Fibroblast Growth Factor 23 (FGF23) gene polymorphism in children with Kawasaki syndrome (KS) and susceptibility to cardiac abnormalities. Ital J Pediatr 2013, 39:69.

560. Pitteloud N, Alcón A, Slaney SF, Pitteloud N, Quinton R, Pearce S, Dwyer AA, Bebear J, Hughes VA, et al. Mutations in the Fibroblast Growth Factor (FGF)23 gene as a cause of tumoral calcinosis. J Clin Endocrinol Metab 2005, 90:1317–1322.

561. Masi L, Migeotte I, Lambert N, Perazzolo C, de Silva DC, Dimitrov B, Heinrichs C, Jansen S, Kerr B, Mortier G, et al. FGFRI mutations cause Hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. J Med Genet 2013, 50:585–592.

562. Koika V, Varnavas P, Valavani S, Cheng YZ, et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest 2007, 117:457–463.

563. Zhou YX, Xu X, Chen L, Li C, Brodie SG, Deng C. A Pro250Arg substitution in mouse Fgf1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Genet 2000, 9:2001–2008.

564. Pitteloud N, Acierzo JS Jr, Maysing A, Eliseenkova AV, Ma J, Ibrahim OA, Metzger DL, Hayes FJ, Dwyer AA, Hughes VA, et al. Mutations in Fibroblast Growth Factor receptor 1 gene cause both Caffey syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 2006, 103:6281–6286.

565. Villanueva C, Jacobson-Dickman E, Xu Y, Manouvrier S, Dwyer AA, Hughes VA, et al. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med 2014. In press. doi:10.1038/gim.2014.166.

566. Wang XL, Wang DD, Qu JQ, Zhang N, Shan ZY. A female patient with normosmic idiopathic hypogonadotropic hypogonadism carrying a novel mutation in FGFR1. Genet Mol Res 2014, 13:9472–9476.

567. Rutland P, Pulley J, Reardon W, Baraizer M, Hayward R, Jones B, Malcolm S, Winter RM, Oldridge M, Slaney SF, et al. Identical mutations in the FGFR2 gene cause both Pfeiffer and Crouzon syndrome phenotypes. Nat Genet 1995, 9:173–176.

568. Schell U, Hehr A, Feldman GJ, Robin NH, Zackai EH, de Die-Smulders C, Viskoehl DH, Stewart JM, Wolf G, Ohashi H, et al. Mutations in FGFR1 and FGFR2 cause familial and sporadic Pfeiffer syndrome. Hum Mol Genet 1995, 4:323–328.

569. Jabs EW, Li X, Scott AF, Meyers G, Chen W, Eccles M, Mao J, Charnas LR, Jackson CE, Jaye M, Jackson-Weiss and Crouzon syndromes are allelic with mutations in Fibroblast Growth Factor receptor 2. Nat Genet 1994, 8:275–279.

570. Park WJ, Meyers GA, Li X, Theda C, Day D, Orlow SJ, Jones MC, Jabs EW. Novel FGFR2 mutations in Crouzon and Jackson-Weiss syndromes show allelic heterogeneity and phenotypic variability. Hum Mol Genet 1995, 4:1229–1233.

571. Reardon W, Winter RM, Rutland P, Pulley J, Jones BM, Malcolm S. Mutations in the Fibroblast Growth Factor receptor 2 gene cause Crouzon syndrome. Nat Genet 1994, 8:98–103.

572. Oldridge M, Wilkie AO, Slaney SF, Poole MD, Pulley J, Rutland P, Hockley AD, Wake MJ, Goldin JH, Winter RM, et al. Mutations in the third immunoglobulin domain of the Fibroblast Growth Factor receptor-2 gene in Crouzon syndrome. Hum Mol Genet 1995, 4:1077–1082.

573. Steinberger D, Mulliken JB, Muller A. Crouzon syndrome: previously unrecognized deletion, duplication, and point mutation within FGFR2 gene. Hum Mutat 1996, 8:386–390.

574. Paznekas WA, Cunningham ML, Howard TD, Korf BR, Lipson MH, Greis AW, Feingold M, Goldberg R, Bowerchowitz Z, Aleck K, et al. Genetic heterogeneity of Saethre-Chotzen-Syndrome, due to twist and Fgrf mutations. Am J Hum Genet 1998, 62:1370–1380.

575. Oldridge M, Zackai EH, McDonald-McGinn DM, Iseki S, Morris-Kay GM, Twigg SR, Johnson D, Wall SA, Jiang W, Theda C, et al. De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. Am J Hum Genet 1999, 64:446–451.

576. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ, Hockley AD, Hayward RD, David DJ, Pulley J, Rutland P, et al. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 1995, 9:165–172.

577. Merrill AE, Sarukhanov A, Krejci P, Idoni B, Camacho N, Estrada KD, Lyons KM, Dexler H, Robinson H, Chitayat D, et al. Bent bone dysplasia-FGFR2 type, a distinct skeletal disorder, has deficient canonical FGF signaling. Am J Hum Genet 2012, 90:550–557.

578. Johnsson D, Wall SA, Mann S, Wilkie AO. A novel mutation, Ala311Ser, in FGFR2: a gene-environment interaction leading to craniosynostosis? Eur J Hum Genet 2000, 8:571–577.
579. Park WJ, Theda C, Maestri NE, Meyers GA, Fryburg JS, Dufresne C, Cohen MM Jr, Jabs EW. Analysis of phenotypic features and FGFR2 mutations in Apert syndrome. Am J Hum Genet 1995, 57:321–328.

580. Foldynova-Trantirkova S, Wilcox WR, Krejec P. Sixteen years and counting: the current understanding of Fibroblast Growth Factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat 2012, 33:29–41.

581. Horton WA, Hall JG, Hecht JT. Achromatoplasia. Lancet 2007, 370:162–172.

582. Chen L, Li C, Qiao W, Xu X, Deng C. A Ser365→Cys mutation of Fibroblast Growth Factor receptor 3 in mouse downregulates Ihh/PTHrP signals and causes severe achondroplasia. Hum Mol Genet 2001, 10:457–465.

583. Winterpacht A, Hilbert K, Stelzer C, Schweikardt T, Decker H, Segerer H, Spranger J, Zabel B. A novel mutation in FGFR-3 disrupts a putative N-glycosylation site and results in hypochondroplasia. Physiol Genomics 2000, 2:9–12.

584. Li C, Chen L, Iwata T, Kitagawa M, Fu XY, Deng CX. A Lys644Glu substitution in Fibroblast Growth Factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum Mol Genet 1999, 8:33–44.

585. Chen I, Adar R, Yang X, Monsonego EO, Li C, Haushcka PV, Yayon A, Deng CX. Gly369Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999, 104:1517–1525.

586. Brodie SG, Kitoh H, Lachman RS, Nolasco LM, Melikian PB, Wilcox WR. Platsypodylc lethal skeletal dysplasia, San Diego type, is caused by FGFR3 mutations. Am J Med Genet 1999, 84:476–480.

587. Bellus GA, Bamshad MJ, Przylepa KA, Dorot J, Lee RR, Haruko O, Jabs EW, Curry CJ, Wilcox WR, Lachman RS, et al. Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN): phenotypic analysis of a new skeletal dysplasia caused by a Lys630Met mutation in Fibroblast Growth Factor receptor 3. Am J Med Genet 1999, 85:53–65.

588. Matsui Y, Yasui N, Kimura T, Tsumaki N, Kawahata H, Ochi T. Genotype-phenotype correlation in achondroplasia and hypochondroplasia. J Bone Joint Surg Br 1998, 80:1052–1056.

589. Webster MK, D’Avis PY, Robertson SC, Donoghue DJ. Profound ligand-independent kinase activation of Fibroblast Growth Factor receptor 3 by the activation loop mutation responsible for a lethal skeletal dysplasia, thanatophoric dysplasia type II. Mol Cell Biol 1996, 16:4081–4087.

590. Webster MK, Donoghue DJ. Constitutive activation of Fibroblast Growth Factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J 1996, 15:520–527.

591. Tavormina PL, Shiang R, Thompson LM, Zhu Y, Wilkin DJ, Lachman RS, Wilcox WR, Rimoin DL, Cohn DH, Wasmuth JJ. Thanatophoric dysplasia (types I and II) caused by distinct mutations in Fibroblast Growth Factor receptor 3. Nat Genet 1995, 9:321–328.

592. Meyers GA, Orlow SJ, Munro IR, Przylepa KA, Jabs EW. Fibroblast Growth Factor receptor 3 (FGFR3) transmembrane mutation in Crouzon syndrome with acanthosis nigricans. Nat Genet 1995, 11:462–464.

593. Bellus GA, McIntosh I, Smith EA, Aylesworth AS, Kaitila I, Horton WA, Greenlaw GA, Hecht JT, Francomano CA. A recurrent mutation in the tyrosine kinase domain of Fibroblast Growth Factor receptor 3 causes hypochondroplasia. Nat Genet 1995, 10:357–359.

594. Shiang R, Thompson LM, Zhu Y-Z, Church DM, Fielder TJ, Bocian M, Winokur ST, Wasmuth JJ. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994, 78:335–342.

595. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002, 3:439–449.

596. Muenke M, Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, Bartlett SP, Markowitz RI, Robin NH, Nwokoro N, Mulvihill JJ, et al. A unique point mutation in the Fibroblast Growth Factor receptor 3 gene (FGFR3) defines a new craniosynostosis syndrome. Am J Hum Genet 1997, 60:555–564.

597. Gripp KW, McDonald-McGinn DM, Gaudenz K, Whitaker LA, Bartlett SP, Glen PM, Cassileth LB, Mayro R, Zackai EH, Muenke M. Identification of a transmembrane mutation in Crouzon growth hormone receptor 3 by the activation loop mutation. J Pediatr 1998, 132:714–716.

598. Lajeunie E, El Ghouzzi V, Le Merrer M, Munnich A, Bonaventure J, Renier D. Syndrome of coronal craniosynostosis with brachydactyly and carpal/tarsal coalition due to Pro250Arg mutation in FGFR3 gene. Am J Med Genet 1998, 77:322–329.

599. Moloney DM, Wall SA, Ashworth GJ, Oldridge M, Glass IA, Franco-Manca E, Muenke M, Wilkie AO. Prevalence of Pro250Arg mutation of Fibroblast Growth Factor receptor 3 in coronal craniosynostosis. Lancet 1997, 349:1059–1062.

600. Golla A, Lichter P, von Gernert S, Winterpacht A, Fairley J, Marken J, Schufenhauer S. Phenotypic expression of the Fibroblast Growth Factor receptor 3 (FGFR3) mutation P250R in a large craniosynostosis family. J Med Genet 1997, 34:683–684.

601. Schindler S, Friedrich M, Wagen H, Lorenz B, Preising MN. Hypochondroplasia and acanthosis nigricans. Hum Mol Genet 2002, 11:139–142.

602. Su N, Sun Q, Li C, Lu X, Qi H, Chen S, Yang J, Xu X, Zhao L, He Q, et al. Gain-of-function mutation in FGFR3 in mice leads to decreased bone mass by affecting both osteoblastogenesis and osteoclastogenesis. Hum Mol Genet 2010, 19:1199–1201.

603. Pannier S, Couloigner V, Messaddeq N, Elmaleh-Berges M, Munnich A, Romand R, Legeai-Mallet L. Activating Fgfr3 Y367C mutation causes hearing loss and inner ear defect in a mouse model of chondrodysplasia. Biochim Biophys Acta 2009, 1792:140–147.

604. Mansour SL, Twigg SR, Freeland RM, Wall SA, Li C, Wilkie AO. Hearing loss in a mouse model of Muenke syndrome. Hum Mol Genet 2009, 18:43–50.

605. Mansour SL, Li C, Urem LD. Genetic rescue of Muenke syndrome model hearing loss reveals prolonged FGF-dependent plasticity in cochlear supporting cell fates. Genes Dev 2013, 27:2320–2331.

606. Wilkes D, Rutland P, Pulley SJ, Reardon W, Moss C, Ellis JP, Winter RM, Malcolm S. A recurrent mutation, ala391glu, in the transmembrane region of FGFR3 causes Crouzon syndrome and acanthosis nigricans. J Med Genet 1996, 33:744–748.

607. Sahlin P, Tarnow P, Martinsson T, Stenman G. Germ-line mutation in the FGFR3 gene in a TWIST1-negative family with saethre-chotzen syndrome and breast cancer. Genes Chromosomes Cancer 2009, 48:285–288.

608. Toydemir RM, Brassington AE, Bayrak-Toydemir P, Krakowiak PA, Jorde LB, Whitby FG, Longo N, Viskochil DH, Carey JC, Bamshad MJ. A
novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATCH22) syndrome. Am J Hum Genet 2006, 79:935–941.

610. Makrythanasis P, Tettamany S, Aglan MS, Otariy GA, Hamamy H, Antonarakis SE. A novel homozygous mutation in FGFR3 causes tall stature, severe lateral tibial deviation, scoliosis, hearing impairment, camptodactyly and arachnodactyly. Hum Mutat 2014, 35:959–963.

611. Iwata T, Chen L, Li C, Ovchinnikov DA, Behringer RR, Francomano CA, Deng CX. A neonatal lethal mutation in FGFRI uncouples proliferation and differentiation of growth plate chondrocytes in embryos. Hum Mol Genet 2000, 9:1603–1613.

612. Saito A, Higuchi I, Nakagawa M, Saito M, Uchida Y, Inose M, Kasai T, Niyama T, Fukunaga H, Arimura K, et al. An overexpression of Fibroblast Growth Factor (FGF) and FGF receptor 4 in a severe clinical phenotype of facioscapulohumeral muscular dystrophy. Muscle Nerve 2000, 23:490–497.

613. Rezvani M, Wilde J, Vitt P, Mailaparam-Saito A, Higuchi I, Nakagawa M, Saito Saito M, Uchida Y, Inose M, Kasai T, Niyama T, Fukunaga H, Arimura K, et al. An overexpression of Fibroblast Growth Factor (FGF) and FGF receptor 4 in a severe clinical phenotype of facioscapulohumeral muscular dystrophy. Muscle Nerve 2000, 23:490–497.

614. Engel HH, von der Maat JJ, van’t Slot R, Vermeesch JR, Hochstenbach R, Poot M. Wolf-Hirschhorn syndrome facial dysmorphic features in a patient with a terminal 4p16.3 deletion telomeric to the WHSCR and WHSCR 2 regions. Eur J Hum Genet 2009, 17:129–132.

615. Catela C, Bilbao-Cortes D, Slonimsky E, Kratssios P, Rosenthal N, Te Welscher P. Multiple congenital malformations of Wolf-Hirschhorn syndrome are recapitulated in Fgfr1 null mice. Dis Model Mech 2009, 2:283–294.

616. Wang Q, Green RP, Zhao G, Ornitz DM. Differential regulation of endochondral bone growth and joint development by FGFRI and FGFRII tyrosine kinase domains. Development 2001, 128:3867–3876.

617. Jones B, Byers H, Watson JS, Newman WG. Identification of a novel familial FGFR16 mutation in metacarpal 4–5 fusion. Clin Dysmorphol 2014, 23:95–97.

618. Razzoque MS. The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat Rev Endocrinol 2009, 5:611–619.

619. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, Takeuchi Y, Fujita T, Fukumoto S, Yamashita T. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001, 98:6500–6505.

620. Missione K, Okamura A, Natsume J, Aiba K, Kurahashi H, Kubota T, Yokochi K, Yamamoto T. Spinocerebellar ataxias type 27. Dev Neurosci 2009, 31:257–264.

621. Laezza F, Gerber BR, Lou KY, Kozel MA, Hartman H, Craig AM, Ornitz DM, Neronne J. The FGFR1(F1455) mutation disrupts the interaction of FGFR1 with voltage-gated Na+ channels and impairs neuronal excitability. J Neurosci 2007, 27:12033–12044.

622. White KE, Cabral JM, Davis SI, Fishburn T, Evans WE, Ichikawa S, Fields J, Yu X, Shaw NJ, McLellan NJ, et al. Mutations that cause osteoglycosial dysplasia define novel roles for FGFRI in bone elongation. Am J Hum Genet 2005, 76:361–367.

623. Hajihosseini MK, Wilson S, De Moerlooze L, Dickson C. A splicing switch and gain-of-function mutation in Fgfr2-Iic hemizygotes causes Apert/Pfeiffer-syndrome-like phenotypes. Proc Natl Acad Sci USA 2001, 98:3855–3860.

624. Ibrahimi OA, Eliseenkova AV, Plotnikov AN, Yu K, Ornitz DM, Mohammadi M. Structural basis for Fibroblast Growth Factor receptor 2 activation in Apert syndrome. Proc Natl Acad Sci USA 2014, 111:197–202.

625. Hajihosseini MK, Duarte R, Pegrum J, Donjacour A, Lana-Elola E, Rice DP, Sharpe J, Dickson C. Evidence that Fgf10 contributes to the skeletal and visceral defects of an Apert syndrome mouse model. Dev Dyn 2009, 238:376–385.

626. Holmes G, Basilico C. Mesodermal expression of Fgf10(S252W) is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome. Dev Biol 2012, 368:283–293.

627. Morita J, Nakamura M, Kobayashi Y, Deng CX, Funato N, Moriyan K. Soluble form of FGFRII with S252W partially prevents craniosynostosis of the mouse model. Dev Dyn 2014, 243:560–567.

628. Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, Merrill AE. Bent bone dysplasia syndrome reveals nuclear activity for FGFRII in ribosomal DNA transcription. Hum Mol Genet 2014, 23:5659–5671.

629. Lew ED, Bae HJ, Rohmann E, Wollnik B, Schlessinger J. Structural basis for reduced FGFRII activity in LADD syndrome: implications for FGFRII autoinhibition and activation. Proc Natl Acad Sci USA 2007, 104:19802–19807.
641. Shams I, Rohmann E, Eswarakumar VP, Lew ED, Yuzawa S, Wollnik B, Schlessinger J, Lax I. Lacrimo-auriculo-dento-digital syndrome is caused by reduced activity of the Fibroblast Growth Factor 10 (FGF10)-FGF receptor 2 signaling pathway. *Mol Cell Biol* 2007, 27:6903–6912.

642. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM, Maroteaux P, Le Merrer M, Munnich A. Mutations in the gene encoding Fibroblast Growth Factor receptor-3 in achondroplasia. *Nature* 1994, 371:252–254.

643. Bonaventure J, Rousseau F, Legeai-Mallet L, Le Merrer M, Munnich A, Maroteaux P. Common mutations in the Fibroblast Growth Factor receptor 3 (FGFR3) gene account for achondroplasia, hypochondroplasia, and thanatophoric dwarfism. *Am J Med Genet* 1996, 63:148–154.

644. Aghochukwu NB, Solomon BD, Muenke M. Hearing loss in syndromic craniosynostoses: introduction and consideration of mechanisms. *Am J Audiol* 2014, 23:133–141.

645. Cuevas R, Korzeniewski N, Tostoy V, Hohenfellner M, Duensing S. FGF-2 disrupts mitotic stability in prostate cancer through the intracellular trafficking protein CEP57. *Cancer Res* 2013, 73:1400–1410.

646. Reed JA, McNutt NS, Albino AP. Differential expression of basic Fibroblast Growth Factor (bFGF) in melanocytic lesions demonstrated by in situ hybridization. Implications for tumor progression. *Am J Pathol* 1994, 144:329–336.

647. Ueno K, Inoue Y, Kawaguchi T, Hosoe S, Kawahara M. Increased serum levels of basic Fibroblast Growth Factor in lung cancer patients: relevance to response of therapy and prognosis. *Lung Cancer* 2001, 31:213–219.

648. Uematsu S, Higashi T, Nousu K, Kariyama K, Nakamura S, Suzuki M, Nakatsuaka H, Kobayashi Y, Hanafusa T, Tsuj T, et al. Altered expression of vascular endothelial growth factor, Fibroblast Growth Factor-2 and endostatin in patients with hepatocellular carcinoma. *J Gastroenterol Hepatol* 2005, 20:583–588.

649. Gieu N, Lucchesi C, Raynal V, Rodrigues MJ, Pierrot G, Goudefroye R, Cottu P, Rayel F, Sastre-Garau X, Fourquet A, et al. Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. *Eur J Cancer* 2010, 46:2399–2407.

650. Theillet C, LeRoy X, deLapeyriere O, Grosgeorges J, Adnane J, Raynaud SD, Simony-Lafontaine J, Goldfarb M, Escot C, Birnbaum D. Amplification of FGF-related genes in human tumors: possible involvement of HST in breast carcinomas. *Oncogene* 1989, 4:915–922.

651. Allerstorfer S, Sonvila G, Fischer H, Spieg-Krenke KR, S. Gaughofler C, Setinek U, Czech T, Marosi C, Buchroithner J, Pichler J, et al. FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. *Oncogene* 2008, 27:4180–4190.

652. Ropiquet F, Giri D, Khadi-Jaddo B, Mansukhani A, Ittmann M. Increased expression of Fibroblast Growth Factor 6 in human prostate cancer cells. *Oncogene* 2004, 23:6047–6055.

653. Yamayoshi T, Nagayasu T, Matsumoto M, Okamoto Y, Tsuda H, Nakamura H, Takeda H, Watanabe T, et al. The cancer-associated FGFR4-G388R polymorphism enhances FGFR4 signaling and disrupts mitotic checkpoint. *Cell Biol* 2013, 17:929–940.

654. Birrer MJ, Johnson ME, Hao K, Wong KK, Park DC, Bell A, Welch WR, Berkowitz RS, Mok SC. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified Fibroblast Growth Factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. *J Clin Oncol* 2007, 25:2281–2287.

655. Shariat SF, Youssel RF, Gupta A, Chade DC, Karaskiewicz PJ, Ishbarn H, Jeldres C, Sagalowsky AI, Ashfaq R, Lotan Y. Association of angiogenesis related markers with bladder cancer outcomes and other molecular markers. *J Urol* 2010, 183:1744–1750.
Kato A, Shida T, Okamura D, Miyazaki M. Fibroblast Growth Factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer 2012, 12:56.

670. Feng S, Dakhova O, Creighton CJ, Ittmann MM. The endocrine Fibroblast Growth Factor FGF19 promotes prostate cancer progression. Cancer Res 2013, 73:2551–2562.

671. Basu M, Mukhopadhyay S, Chatterjee U, Roy SS. FGF16 promotes invasive behavior of SKOV-3 ovarian cancer cells through activation of mitogen-activated protein kinase (MAPK) signaling pathway. J Biol Chem 2014, 289:1415–1428.

672. Polanszek N, Kwabi-Addo B, Wang J, Ittmann MM. FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia. Prostate 2004, 60:18–24.

673. Kim HJ, Kim KH, Lee J, Oh JJ, Cheong JS, Weiss J, Sos ML, Seidel D, Peifer M, Lehnen NC, von Massenhausen A, van Deursen JM, et al. Frequent and focal FGFR1 amplification associates with clinical features and patient outcome. Oral Oncol 2013, 49:576–581.

674. Jones DT, Hutter B, Jager N, Korshunov AK, Kool M, Warnatz HJ, Zichner T, Lam B3, Meuleman E, Vermeulen L. A translocation t(2;8)(q12;p11) in pilocytic astrocytoma. Nat Genet 2013, 45:927–932.

675. Jackson CC, Medeiros LJ, Miranda RN. FGFR2-amplified gastric cancer receptor-1 in a patient with acute myelomonocytic leukemia with t(5;8)(q35;p11) translocation. Blood Cancer J 2014, 4:e265.

676. Li F, Zhai YP, Tang YM, Wang LP, Wan PJ. Identification of a novel partner gene, TPR, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2012, 51:890–897.

677. Wasag B, Lierman E, Meeus P, Cools J, Vandenbergh P. The kinase inhibitor TKI258 is active against the novel CUX1-FGFR1 fusion detected in a patient with T-lymphoblastic leukemia/lymphoma and t(7;8)(q22;p11). Haematologica 2011, 96:922–926.

678. Reiter A, Sohal J, Kulkarni S, Chase A, Macdonald DH, Aguilar RC, Goncalves C, Hernandez JM, Jennings BA, Gold am JM, et al. Consistent fusion of ZNF198 to the Fibroblast Growth Factor Factor-1 in the t(8;13)(p11;q12) myeloproliferative syndrome. Blood 1998, 92:1735–1742.

679. Jiang JH, Shin KH, Park JG. Mutations in Fibroblast Growth Factor receptor 2 and Fibroblast Growth Factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Res 2001, 61:3541–3543.

680. Kunii K, Davis L, Gorenenin J, Hatch H, Yashiro M, Di Bacco A, Elbi C, Lutterbach B. FGFR2-amplified gastric cancer cell lines require FGFR2 and ErbB3 signaling for growth and survival. Cancer Res 2008, 68:2340–2348.

681. Su X, Zhan P, Gavine PR, Morgan S, Womack C, Ni X, Shen D, Bang YJ, Im SA, Ho Kim W, et al. FGFR2 amplification has prognostic significance in gastric cancer: results from a large international multicentre study. Br J Cancer 2014, 110:967–975.

682. Matsuyama T, Arao T, Hamaguchi T, Shimada Y, Kato K, Oda I, Taniguchi H, Koizumi F, Yasugai M, Sasaki H, et al. FGFR2 gene amplification and clinicopathological features in gastric cancer. Br J Cancer 2012, 106:727–732.

683. Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Narrajan B, Geyer FC, van Koonenhove M, Kreike B, Mackay A, et al. Integrative molecular profiling of triple negative breast cancers identifies ampiclon drivers and potential therapeutic targets. Oncogene 2010, 29:2013–2023.

684. Dutt A, Salvesen HB, Chen TH, Ramos AH, Onofrio RC, Hatton C, Nicoletti L, Winckler W, Lonning P, Hanna M, et al. Drug-sensitive FGFR2 mutations in endometrial carcinoma. Proc Natl Acad Sci USA 2008, 105:8713–8717.

685. Ara I, Totoki Y, Hosoda F, Shirato T, Hama N, Nakamura H, Ojima H, Furuta K, Shimada K, Okusaka T, et al. Fibroblast Growth Factor receptor 2 tyrosine
kinase fusions define a unique molecular subtype of cholangiocarcinoma. *Hepatology* 2014, 59:1427–1434.

700. Borad MJ, Champion MD, Egan JB, Liang WS, Fonseca R, Bryce AH, Mc Cul- lough AE, Barrett MT, Hunt K, Patel MD, et al. Integrated genomic characteriza- tion reveals novel, therapeutically relevant drug targets in FGFR and EGF pathways in sporadic intrahepatic cholangiocarcinoma. *PLoS Genet* 2014, 10:e1004135.

701. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, Lonigro RJ, Vats P, Wang R, Lin SF, et al. Identification of targetable FGFR gene fusions in diverse cancers. *Cancer Discov* 2013, 3:636–647.

702. Graham RP, Barr Frichter EG, Pestova E, Schulz J, Saito LA, Vats P, Murphy SJ, McWilliams RR, Hart SN, Halling KC, et al. Fibroblast Growth Factor receptor 2 translocations in intrahepatic cholangiocarcinoma. *Hum Pathol* 2014, 45:1630–1638.

703. Al-Ahmadi HA, Iyer G, Janakiraman M, Lin O, Heguy A, Tickoo SK, Fine SW, Gopalan A, Shen X, Pan Y, Ye T, Zhang Y, Luo J, et al. Somatic mutation of Fibroblast Growth Factor receptor-3 (FGFR3) defines a distinc- t morphological subtype of high-grade urothelial carcinoma. *J Pathol* 2011, 224:270–279.

704. Hernandez S, Toll A, Basgela E, Ribe A, Azua-Romeo J, Pujol RM, Real FX. Fibroblast Growth Factor receptor 3 mutations in epidermal nevi and associated low grade bladder tumors. *J Invest Dermatol* 2007, 127:1664–1666.

705. Logie A, Dunois-Larde C, Royst C, Level O, Blanche M, Ribeiro A, Gass JM, Jorcano J, Werner S, Sastre-Garau X, et al. Activating mutations of the tyro- sine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. *Hum Mol Genet* 2005, 14:1153–1160.

706. Chesi M, Brents LA, Schrock RJ, Vats P, Wang R, Lin SF, et al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinase-centred RNA sequenc- ing. *J Pathol* 2013, 230:270–276.

707. Richelda R, Ronchetti D, Baldini L, Cro L, Viggiano L, Marzella R, Rocchi M, Orsuki T, Lombardi L, Maioi AT, et al. A novel chromosomal translo- cation t(4):14(p16.3; q32.3) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene. *Blood* 1997, 90:4062–4070.

708. Chesi M, Nardin E, Brents LA, Schrock RJ, Tied K, Kuehl WM, Bergsagel PL. Frequent translocation t(4;14)(p16.3; q32.3) in multiple myeloma is associated with increased expression and activating muta- tions of Fibroblast Growth Factor recep- tor 3. *Nat Genet* 1997, 16:260–264.

709. Yagasaki F, Wakao D, Yokoyama Y, Uchida Y, Murohashi I, Kayano H, Tanii- waki M, Matsuda A, Bessho M. Fusion of ETV6 to Fibroblast Growth Factor recep- tor 3 in peripheral T-cell lymphoma with a t(4;12)(p16.3;q32.3) chromosomal transloca- tion. *Cancer Res* 2001, 61:8371–8374.

710. Tomlinson DC, Knowles MA, Speirs V. Mechanisms of FGFR3 actions in endothelial resistant breast cancer. *Int J Cancer* 2012, 130:2857–2866.

711. Sonviga G, Allerstorfer S, Heinzl C, Stattner S, Karner J, Klmpfner M, Wriba F, Fischer H, Gauglhofer C, Paur J, Schrottmaier WC, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotrans- planted models. *Hum Mol Genet* 2003, 12:4107–4114.

712. Taylor JGT, Cheuk AT, Tsang PS, Chung JY, Song YK, Desai K, Yu Y, Chen QR, Shah K, Youngblood V, et al. Identification of FGFR4-activating muta- tions in human rhabdomyosarcomas. *J Clin Invest* 2009, 119:3393–3407.

713. Ho AS, Kannan K, Roy DM, Morris LG, Stathon JR, Poulsom R, Heidenreich A, Wingelhofer B, Huber D, Ngellen I, Pirker R, Mohr T, Heinzle C, Holz- mann K, et al. Fibroblast Growth Fact- or receptor 4: a putative key driver for the aggressive phenotype of hepatocellular carcinoma. *Carcinogenesis* 2013, 35:2331–2338.

714. Acevedo VD, Ittmann M, Spencer DM. Fibroblast Growth Factor receptors: cancer biology and therapeutics. *Med Res Rev* 2014, 34:280–300.

715. Brunello E, Brunelli M, Bogina G, Calio A, Manfrin E, Nottegar A, Vergine M, Molino A, Bria E, Massari F, et al. FGFR-1 amplification in metastatic lymph-nodal and haematogenous lobular breast carcinoma. *Exp Clin Cancer Res* 2012, 31:103.

716. Dutt A, Ramos AH, Hammerman PS, Mertel C, Cho J, Sharifnia T, Chande A, Tanka KE, Stransky N, Greulich H, et al. Inhibitor-sensitive FGFR1 amplifi- cation in human non-small cell lung can- cer. *PLoS One* 2011, 6:e20351.

717. Edwards J, Krishna NS, Witton CJ, Bartlett JM. Gene amplifications associ- ated with the development of hormone-resistant prostate cancer. *Clin Cancer Res* 2003, 9:5271–5281.

718. Fischbach A, Rogler A, Erber R, Stoehr R, Poulsom R, Heidenreich A, Schneevoigt BS, Hauke S, Hartmann A, Knechel R, et al. Fibroblast Growth Factor Receptor (FGFR) amplifi- cations are rare events in bladder cancer. *Histopathology* 2014. doi:10.1111/his.12473.

719. Brito LP, Ribeiro TC, Almeida MQ, Jorge AA, Soares IC, Latronico AC, Men- donca BB, Fragoso MC, Lerario AM. The role of Fibroblast Growth Factor recep- tor 4 overexpression and gene amplifica- tion as prognostic markers in pediatric and adult adrenocortical tumors. *Endocr Relat Cancer* 2012, 19:L11–L13.

720. Jakkola S, Salmikangas P, Nylund S, Partanen J, Armstrong E, Pyrhonen S, Lehtovirta P, Nevanlinna H. Amplifica- tion of fgfr4 gene in human breast and gynecological cancers. *Int J Cancer* 1993, 54:378–382.

721. Wang R, Wang L, Li Y, Hu H, Shen L, Shen X, Pan Y, Ye T, Zhang Y, Luo X, et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. *Clin Cancer Res* 2014, 20:4107–4114.

722. Parker BC, Annala MJ, Cogdell DE, Granberg KJ, Sun Y, Ji P, Li X, Gumin J, Zheng H, Hu L, et al. The tumorigenic
FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 2013, 123:855–865.

730. Still JB, Vince P, Cowell JK. The third member of the transforming acidic coiled coil-containing gene family, TACC3, maps in 4p16, close to translocation breakpoints in multiple myeloma, and is upregulated in various cancer cell lines. Genomics 1999, 58:165–170.

731. Kalff A, Spencer A. The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J 2012, 2:e89.

732. Chesi M, Nardini E, Lim RS, Smith KD, Kuehl WM, Bergsagel PL. The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 1998, 92:3025–3034.

733. Keats JJ, Reiman T, Maxwell CA, Taylor BJ, Larratt LM, Mant MJ, Belch AR, Pilarski LM. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 2003, 101:1520–1529.

734. Santra M, Zhan F, Tian E, Barlogie B, Shaughnessy J Jr. A subset of multiple myeloma harboring the t(4;14)(p16q32) translocation lacks FGFR3 expression but maintains an IgH/MMSET fusion transcript. Blood 2003, 101:2374–2376.

735. Pollock PM, Gartside MG, Dejeza LC, Powell MA, Mallon MA, Davies H, Mohammadi M, Futeal PA, Stratton MR, Trent JM, et al. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007, 26:7158–7162.

736. Cappellen D, De Oliveira C, Ricol D, de Medina S, Bourdin J, Sastre-Garau X, Chopin D, Thiery JP, Radavanyi F. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat Genet 1999, 23:18–20.

737. Ye Y, Shi Y, Zhou Y, Du C, Wang C, Zhan H, Zheng B, Cao X, Sun MH, Fu H. The Fibroblast Growth Factor receptor-4 Arg388 allele is associated with gastric cancer progression. Ann Surg Oncol 2010, 17:3354–3361.

738. Laederich MB, Horton WA. FGFR3 targeting strategies for achondroplasia. Expert Rev Mol Med 2012, 14:e11.

739. Kanazawa H, Tanaka H, Inoue M, Yamanaka Y, Nambe N, Seino Y. Efficacy of growth hormone therapy for patients with skeletal dysplasia. J Bone Miner Metab 2003, 21:307–310.

740. Bocciardi R, Giorda R, Buttgeret J, Gimelli S, Divizia MT, Beri S, Garofalo S, Tavella S, Lerone M, Zuffardi O, et al. Overexpression of the C-type natriuretic peptide (CNP) is associated with overgrowth and bone anomalies in an individual with balanced t(2;7) translocation. Hum Mutat 2007, 28:724–731.

741. Yasoda A, Komatsu Y, Chusho H, Miyazawa T, Ozasa A, Miura M, Kurihara T, Rogi T, Tanaka S, Suda M, et al. Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway. Nat Med 2004, 10:80–86.

742. Lorger F, Kaci N, Peng J, Benoist-Lassel C, Cugniere E, Oppeneer T, Wendt DJ, Bell SM, Bullens S, Bunting S, et al. Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet 2012, 91:1108–1114.

743. Yasoda A, Kitamura H, Fujii T, Kondo E, Murao N, Miura M, Kanamoto N, Komatsu Y, Arai H, Nakao K. Systemic administration of C-type natriuretic peptide as a novel therapeutic strategy for skeletal dysplasias. Endocrinology 2009, 150:3138–3144.

744. Garcia S, Dirat B, Tognacci T, Rochet J, Mugniery E, Oppeneer T, Wendt DJ, Kaci N, Palazuelos J, et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci Transl Med 2013, 5:203ra124.

745. Martinez-Torrecuadrada J, Cifuentes G, Lopez-Serra P, Saenz P, Martinez A, Casal JL. Targeting the extracellular domain of Fibroblast Growth Factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation. Clin Cancer Res 2005, 11:6280–6290.

746. Qing J, Du X, Chen Y, Chan P, Li H, Wu P, Marsters S, Stavwick S, Tien J, Topal K, et al. Antibody-based targeting of FGFR3 in bladder carcinoma and t(4;14)+positive multiple myeloma in mice. J Clin Invest 2009, 119:1216–1229.

747. Hadhari Y, Schlessinger J. FGFR3-targeted mAb therapy for bladder cancer and multiple myeloma. J Clin Invest 2009, 119:1077–1079.

748. Yamashita A, Morioka M, Kishi H, Kimura T, Yahara Y, Okada M, Fujita K, Sawai H, Ikegawa S, Tsumaki N. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 2014, 513:507–511.

749. Lin CC, Melo FA, Ghosh R, Suen KM, Stagg LJ, Kirkpatrick J, Arolst JD, Ahmed Z, Ladbury JE. Inhibition of basal FGFR receptor signaling by Dimeric Grb2. Cell 2012, 149:1514–1524.

750. Timsah Z, Ahmed Z, Lin CC, Melo FA, Stagg LJ, Leonard PG, Jeyabal P, Berrout J, O’Neil RG, Bogdanov M, et al. Competition between Grb2 and Pckgamma1 for FGFR2 regulates basal phospholipase activity and invasion. Nat Struct Mol Biol 2014, 21:180–188.

751. Zakrzewska M, Haugsten EM, Nattavongs-Olson B, Oppelt A, Hausott B, Jin Y, Otlevski J, Wescie J, Wiedlocha A. ERK-Mediated phosphorylation of Fibroblast Growth Factor receptor 1 on Ser777 inhibits signaling. Sci Signal 2013, 6:ra11.

FURTHER READING

General Reviews

Belov AA, Mohammadi M. Grb2, a double-edged sword of receptor tyrosine kinase signaling. Sci Signal 2012, 5:pe49.

Coleman SJ, Bruce C, Chioni AM, Kocher HM, Grose RP. The ins and outs of Fibroblast Growth Factor receptor signalling. Clin Sci (Lond) 2014, 127:217–231.

Goetz R, Mohammadi M. Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol 2013, 14:166–180.

Itoh N, Ornitz DM. Fibroblast Growth Factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011, 149:121–130.

Oulion S, Bertrand S, Escriva H. Evolution of the FGF gene family. Int J Evol Biol 2012, 2012:298147.
FGFs and Development

Du X, Xie Y, Xian CJ, Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. *J Cell Physiol* 2012, 227:3731–3743.

El Agha E, Belluscì S. Walking along the Fibroblast Growth Factor route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. *Scientifica (Cario)* 2014, 2014:538379.

Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK. Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. *Development* 2008, 135:3415–3424.

Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. *Cell Stem Cell* 2014, 15:123–138.

Miraoui H, Marie PJ. Fibroblast Growth Factor receptor signaling crosstalk in skeletogenesis. *Sci Signal* 2010, 3:re9.

Ornitz DM, Yin Y. Signaling networks regulating development of the lower respiratory tract. *Cold Spring Harb Perspect Biol* 2012, 4:1–19.

Pownall ME, Isacs HV. *FGF Signalling in Vertebrate Development*. San Rafael CA: Morgan & Claypool Life Sciences; 2010.

Towers M, Wolpert L, Tickle C. Gradients of signalling in the developing limb. *Curr Opin Cell Biol* 2012, 24:181–187.

FGFs and Genetic Diseases

Laederich MB, Horton WA. FGFR3 targeting strategies for achondroplasia. *Expert Rev Mol Med* 2012, 14:e11.

Melville H, Wang Y, Taub PJ, Jabs EW. Genetic basis of potential therapeutic strategies for craniostenosis. *Am J Med Genet A* 2010, 152A:3007–3015.

Valdes-Socin H, Rubio Almanza M, Tome Fernandez-Ladreda M, Debray FG, Bours V, et al. Reproduction, smell, and neurodevelopmental disorders: genetic defects in different hypogonadotropic hypogonadal syndromes. *Front Endocrinol (Lausanne)* 2014, 5:109.

FGFs and Cancer

Dieci MV, Arnedos M, Andre F, Soria JC. Fibroblast Growth Factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. *Cancer Discov* 2013, 3:264–279.

Kelleher FC, O’Sullivan H, Smyth E, McDermott R, Viterbo A. Fibroblast Growth Factor receptors, developmental corruption and malignant disease. *Carcinogenesis* 2013, 34:2198–2205.

Turner N, Grose R. Fibroblast Growth Factor signalling: from development to cancer. *Nat Rev Cancer* 2010, 10:116–129.

Endocrine FGFs

Hu MC, Shizaki K, Kuro-o M, Moe OW. Fibroblast Growth Factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. *Annu Rev Physiol* 2013, 75:503–533.

Itoh N. FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. *Front Endocrinol (Lausanne)* 2014, 5:107.

Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine Fibroblast Growth Factors 15/19 and 21: from feast to famine. *Genes Dev* 2012, 26:312–324.

Ray K. Liver: Fgf15 maintains bile acid homeostasis and is a key mediator of liver regeneration in mice. *Nat Rev Gastroenterol Hepatol* 2013, 10:65.

Sapir-Koren R, Livshits G. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of Fibroblast Growth Factor 23. *Biofactors* 2014, 40:555–568.

Smith ER, McMahon LP, Holt SG. Fibroblast Growth Factor 23. *Ann Clin Biochem* 2014, 51:203–227.