Umbral Calculus in Positive Characteristic

Anatoly N. Kochubei

Institute of Mathematics,
National Academy of Sciences of Ukraine,
Tereshchenkivska 3, Kiev, 01601 Ukraine
E-mail: kochubei@i.com.ua

*Partially supported by CRDF under Grant UM1-2567-OD-03
Abstract

An umbral calculus over local fields of positive characteristic is developed on the basis of a relation of binomial type satisfied by the Carlitz polynomials. Orthonormal bases in the space of continuous \mathbb{F}_q-linear functions are constructed.

Key words: \mathbb{F}_q-linear function; delta operator; basic sequence; orthonormal basis
1 INTRODUCTION

Classical umbral calculus \cite{15, 14, 16} is a set of algebraic tools for obtaining, in a unified way, a rich variety of results regarding structure and properties of various polynomial sequences. There exists a lot of generalizations extending umbral methods to other classes of functions. However there is a restriction common to the whole literature on umbral calculus – the underlying field must be of zero characteristic. An attempt to mimic the characteristic zero procedures in the positive characteristic case \cite{3} revealed a number of pathological properties of the resulting structures. More importantly, these structures were not connected with the existing analysis in positive characteristic based on a completely different algebraic foundation.

It is well known that any non-discrete locally compact topological field of a positive characteristic \(p \) is isomorphic to the field \(K \) of formal Laurent series with coefficients from the Galois field \(\mathbb{F}_q \), \(q = p^\nu \), \(\nu \in \mathbb{Z}_+ \). Denote by \(| \cdot |\) the non-Archimedean absolute value on \(K \); if \(z \in K \),

\[
z = \sum_{i=m}^{\infty} \zeta_i x^i, \quad n \in \mathbb{Z}, \zeta_i \in \mathbb{F}_q, \zeta_m \neq 0,
\]

then \(|z| = q^{-m}\). This valuation can be extended onto the field \(\overline{K} \), the completion of an algebraic closure of \(K \). Let \(O = \{z \in K : |z| \leq 1\} \) be the ring of integers in \(K \). The ring \(\mathbb{F}_q[x] \) of polynomials (in the indeterminate \(x \)) with coefficients from \(\mathbb{F}_q \) is dense in \(O \) with respect to the topology defined by the metric \(d(z_1, z_2) = |z_1 - z_2| \).

It is obvious that standard notions of analysis do not make sense in the characteristic \(p \) case. For instance, \(n! = 0 \) if \(n \geq p \), so that one cannot define a usual exponential function on \(K \), and \(\frac{d}{dt}(t^n) = 0 \) if \(p \) divides \(n \). On the other hand, some well-defined functions have unusual properties. In particular, there are many functions with the \(\mathbb{F}_q \)-linearity property

\[
f(t_1 + t_2) = f(t_1) + f(t_2), \quad f(\alpha t) = \alpha f(t),
\]

for any \(t_1, t_2, t \in K, \alpha \in \mathbb{F}_q \). Such are, for example, all power series \(\sum c_k t^{q^k}, c_k \in \overline{K} \), convergent on some region in \(K \) or \(\overline{K} \).

The analysis on \(K \) taking into account the above special features was initiated in a seminal paper by Carlitz \cite{1} who introduced, for this case, the appropriate notions of a factorial, an exponential and a logarithm, a system of polynomials \(\{e_i\} \) (now called the Carlitz polynomials), and other related objects. In subsequent works by Carlitz, Goss, Thakur, and many others (see references in \cite{6}) analogs of the gamma, zeta, Bessel and hypergeometric functions were introduced and studied. A difference operator \(\Delta \) acting on functions over \(K \) or its subsets, which was mentioned briefly in \cite{1}, became (as an analog of the operator \(t \frac{d}{dt} \)) the main ingredient of the calculus and the analytic theory of differential equations on \(K \) \cite{9, 10, 11}. It appears also in a characteristic \(p \) analog of the canonical commutation relations of quantum mechanics found in \cite{8}.

The definition of the Carlitz polynomials is as follows. Let \(e_0(t) = t \),

\[
e_i(t) = \prod_{m \in \mathbb{F}_q[x], \deg m < i} (t - m), \quad i \geq 1 \quad (1)
\]
(we follow the notation in [5] used in the modern literature; the initial formulas from [1] have different signs in some places). It is known [1, 5] that

\[e_i(t) = \sum_{j=0}^{i} (-1)^{i-j} \left[\begin{matrix} i \\ j \end{matrix} \right] t^{q^j} \]

where

\[\left[\begin{matrix} i \\ j \end{matrix} \right] = \frac{D_i}{D_j L_{i-j}}. \]

\(D_i \) is the Carlitz factorial

\[D_i = [i][i-1]^q \ldots [1]^{q^{i-1}}, \quad [i] = x^{q^i} - x \quad (i \geq 1), \quad D_0 = 1, \]

the sequence \(\{L_i\} \) is defined by

\[L_i = [i][i-1] \ldots [1] \quad (i \geq 1); \quad L_0 = 1. \]

It follows from (3), (4) that

\[|D_i| = q^{-\frac{q^i-1}{q-1}}, \quad |L_i| = q^{-i}. \]

The normalized polynomials \(f_i(t) = \frac{e_i(t)}{D_i} \) form an orthonormal basis in the Banach space \(C_0(O, \overline{K}_c) \) of all \(\mathbb{F}_q \)-linear continuous functions \(O \to \overline{K}_c \), with the supremum norm \(\| \cdot \| \). Thus every function \(\varphi \in C_0(O, \overline{K}_c) \) admits a unique representation as a uniformly convergent series

\[\varphi = \sum_{i=0}^{\infty} a_i f_i, \quad a_i \in \overline{K}_c, \quad a_i \to 0, \]

satisfying the orthonormality condition

\[\varphi = \sup_{i \geq 0} |a_i|. \]

For several different proofs of this fact see [2, 8, 20]. Note that we consider functions with values in \(\overline{K}_c \) defined on a compact subset of \(K \).

The sequences \(\{D_i\} \) and \(\{L_i\} \) are involved in the definitions of the Carlitz exponential and logarithm:

\[e_C(t) = \sum_{n=0}^{\infty} \frac{t^{q^n}}{D_n}, \quad \log_C(t) = \sum_{n=0}^{\infty} (-1)^n \frac{t^{q^n}}{L_n}, \quad |t| < 1. \]

It is seen from (2) and (5) that the above functions are \(\mathbb{F}_q \)-linear on their domains of definition.

The most important object connected with the Carlitz polynomials is the Carlitz module

\[C_s(z) = \sum_{i=0}^{\deg s} f_i(s) z^{q^i} = \sum_{i=0}^{\deg s} \frac{e_i(s)}{D_i} z^{q^i}, \quad s \in \mathbb{F}_q[x]. \]

Note that by (1) \(e_i(s) = 0 \) if \(s \in \mathbb{F}_q[x], \deg s < i. \)
The function C_s appears in the functional equation for the Carlitz exponential,

$$C_s(e_C(t)) = e_C(st).$$

Its main property is the relation

$$C_{ts}(z) = C_t(C_s(z)), \quad s, t \in \mathbb{F}_q[x],$$

which obtained a far-reaching generalization in the theory of Drinfeld modules, the principal objects of the function field arithmetic (see [6]).

Let us write the identity (7) explicitly using (6). After rearranging the sums we find that

$$C_{ts}(z) = \sum_{i=0}^{\text{deg}t + \text{deg} s} z^i \sum_{m+n=l, m,n \geq 0} \frac{1}{D_n D_m^q} e_n(t)\{e_m(s)\}q^n,$$

so that

$$e_i(st) = \sum_{n=0}^{i} \binom{i}{n}_K e_n(t)\{e_{i-n}(s)\}q^n$$

where

$$\binom{i}{n}_K = \frac{D_i}{D_n D_{i-n}^q}.$$

In this paper we show that the “K-binomial” relation (8), a positive characteristic counterpart of the classical binomial formula, can be used for developing umbral calculus in the spirit of [15]. In particular, we introduce and study corresponding (nonlinear) delta operators, obtain a representation for operators invariant with respect to multiplicative shifts, construct generating functions for polynomial sequences of the K-binomial type. Such sequences are also used for constructing new orthonormal bases of the space $C_0(O, \overline{K}_c)$ (in particular, a sequence of the Laguerre type polynomials), in a way similar to the p-adic (characteristic 0) case [18, 19, 13].

2 DELTA OPERATORS AND K-BINOMIAL SEQUENCES

Denote by $\overline{K}_c\{t\}$ the vector space over \overline{K}_c consisting of \mathbb{F}_q-linear polynomials $u = \sum a_k t^{q^k}$ with coefficients from \overline{K}_c. We will often use the operator of multiplicative shift $(\rho_{\lambda} u)(t) = u(\lambda t)$ on $\overline{K}_c\{t\}$ and the Frobenius operator $\tau u = u^q$. We call a linear operator T on $\overline{K}_c\{t\}$ invariant if it commutes with ρ_{λ} for each $\lambda \in K$.

Lemma 1. If T is an invariant operator, then $T(t^{q^n}) = c_n t^{q^n}$, $c_n \in \overline{K}_c$, for each $n \geq 0$.

Proof. Suppose that

$$T(t^{q^n}) = \sum_{l=1}^{N} c_{hl} t^{q^l}$$

where c_{hl} are coefficients. By invariance, $T(t^{q^n}) = t^{q^n}T(1) = c_n t^{q^n}$. Therefore, $c_{hl} = 0$ for $h \neq n$. Thus, $T(t^{q^n}) = c_n t^{q^n}$, as desired.
where \(j_i \) are different non-negative integers, \(c_{j_i} \in \mathbb{K}_c \). For any \(\lambda \in K \)

\[
\rho_\lambda T(t^{q^n}) = T \rho_\lambda (t^{q^n}) = T \left((\lambda t)^{q^n} \right) = \lambda^{q^n} T(t^{q^n}) = \lambda^{q^n} \sum_{l=1}^{N} c_{j_l} t^{q^{j_l}}.
\]

On the other hand,

\[
\rho_\lambda T(t^{q^n}) = \sum_{l=1}^{N} c_{j_l} \lambda^{q^{j_l}} t^{q^{j_l}}.
\]

Since \(\lambda \) is arbitrary, this implies the required result. ■

If an invariant operator \(T \) is such that \(T(t) = 0 \), then by Lemma 1 the operator \(\tau^{-1} T \) on \(\mathbb{K}_c \{ t \} \) is well-defined.

Definition 1. A \(\mathbb{F}_q \)-linear operator \(\delta = \tau^{-1} \delta_0 \), where \(\delta_0 \) is a linear invariant operator on \(\mathbb{K}_c \{ t \} \), is called a delta operator if \(\delta_0(t) = 0 \) and \(\delta_0(f) \neq 0 \) for \(\deg f > 1 \), that is \(\delta_0(t^{q^n}) = c_n t^{q^n} \), \(c_n \neq 0 \), for all \(n \geq 1 \).

The most important example of a delta operator is the Carlitz derivative \(d = \tau^{-1} \Delta \) where

\[
(\Delta u)(t) = u(xt) - xu(t).
\]

Many interesting \(\mathbb{F}_q \)-linear functions satisfy equations involving the operator \(d \); for example, for the Carlitz exponential we have \(de_C = e_C \). It appears also in \(\mathbb{F}_q \)-linear representations of the canonical commutation relations [8, 9].

Definition 2. A sequence \(\{P_n\}_{0}^{\infty} \) of \(\mathbb{F}_q \)-linear polynomials is called a basic sequence corresponding to a delta operator \(\delta = \tau^{-1} \delta_0 \), if \(\deg P_n = q^n \), \(P_0(1) = 1 \), \(P_n(1) = 0 \) for \(n \geq 1 \),

\[
\delta P_0 = 0, \quad \delta P_n = [n]^{1/q} P_{n-1}, \quad n \geq 1,
\]

or, equivalently,

\[
\delta_0 P_0 = 0, \quad \delta_0 P_n = [n] P_{n-1}^q, \quad n \geq 1.
\]

It follows from well-known identities for the Carlitz polynomials \(e_i \) (see [5]) that the sequence \(\{e_i\} \) is basic with respect to the operator \(d \). For the normalized Carlitz polynomials \(f_i \) we have the relations

\[
df_0 = 0, \quad df_i = f_{i-1}, \quad i \geq 1.
\]

The next definition is a formalization of the property (8).

Definition 3. A sequence of \(\mathbb{F}_q \)-linear polynomials \(u_i \in \mathbb{K}_c \{ t \} \) is called a sequence of \(K \)-binomial type if \(\deg u_i = q^i \) and for all \(i = 0, 1, 2, \ldots \)

\[
u_i(st) = \sum_{n=0}^{i} \binom{i}{n}_K u_n(t) \{u_{i-n}(s)\}^{q^n}, \quad s, t \in K.
\]
If \(\{u_i\} \) is a sequence of \(K \)-binomial type, then \(u_i(1) = 0 \) for \(i \geq 1 \), \(u_0(1) = 1 \) (so that \(u_0(t) = t \)).

Indeed, for \(i = 0 \) the formula (12) gives \(u_0(st) = u_0(s)u_0(t) \). Setting \(s = 1 \) we have \(u_0(t) = u_0(1)u_0(t) \), and since \(\deg u_0 = 1 \), so that \(u_0(t) \neq 0 \), we get \(u_0(1) = 1 \).

If \(i > 0 \), for all \(t \)

\[
0 = u_i(t) - u_i(t) = \sum_{n=0}^{i-1} \binom{i}{n} K_{u_i-n(1)} q^n u_n(t),
\]

and the linear independence of the polynomials \(u_n \) means that \(u_l(1) = 0 \) for \(l \geq 1 \).

Theorem 1. For any delta operator \(\delta = \tau^{-1} \delta_0 \), there exists a unique basic sequence \(\{P_n\} \), which is a sequence of \(K \)-binomial type. Conversely, given a sequence \(\{P_n\} \) of \(K \)-binomial type, define the action of \(\delta_0 \) on \(P_n \) by the relations (11), extend it onto \(\mathbb{K}_c \{t\} \) by linearity and set \(\delta = \tau^{-1} \delta_0 \). Then \(\delta \) is a delta operator, and \(\{P_n\} \) is the corresponding basic sequence.

Proof. Let us construct a basic sequence corresponding to \(\delta \). Set \(P_0(t) = t \) and suppose that \(P_{n-1} \) has been constructed. It follows from Lemma 1 that \(\delta \) is surjective, and we can choose \(P_n \) satisfying (10). For any \(c \in \mathbb{K}_c \), \(P_n + ct \) also satisfies (10), and we may redefine \(P_n \) choosing \(c \) in such a way that \(P_n(1) = 0 \).

Hence, a basic sequence \(\{P_n\} \) indeed exists. If there is another basic sequence \(\{P'_n\} \) with the same delta operator, then \(\delta(P_n - P'_n) = 0 \), whence \(P'_n(t) = P_n(t) + at, a \in \mathbb{K}_c \), and setting \(t = 1 \) we find that \(a = 0 \).

In order to prove the \(K \)-binomial property, we introduce some operators having an independent interest.

Consider the linear operators \(\delta_0^{(l)} = \tau^l \delta^l \).

Lemma 2. (i) The identity

\[
\delta_0^{(l)} P_j = \frac{D_j}{D_{j-l}} P_{j-l} \tag{13}
\]

holds for any \(l \leq j \).

(ii) Let \(f \) be a \(\mathbb{F}_q \)-linear polynomial, \(\deg f \leq q^n \). Then a generalized Taylor formula

\[
f(st) = \sum_{l=0}^{n} \left(\frac{\delta_0^{(l)} f}{D_l} \right) (s) P_1(t) \tag{14}
\]

holds for any \(s, t \in K \).

Proof. By (10),

\[
\delta^l P_j = \delta^{j-l-1} \left([j] q^{-1} P_{j-1} \right) = [j]^{q-1} \delta^l P_{j-1} = [j]^{q-1}[j-1] q^{-(l-1)} \delta^{l-2} P_{j-2} = \ldots = [j]^{q-1}[j-1] q^{-(l-1)} \ldots [j - (l-1)] q^{-1} P_{j-l},
\]
so that
\[\delta_0^{(l)} P_j = [j][j - 1]^q \ldots [j - (l - 1)]^q P_{j-l}^{q^l} \]
which is equivalent to (13).

Since \(\text{deg } P_j = q^j \), the polynomials \(P_1, \ldots, P_n \) form a basis of the vector space of all \(\mathbb{F}_q \)-linear polynomials of degrees \(\leq n \) (because its dimension equals \(n \)). Therefore
\[f(st) = \sum_{j=0}^{n} b_j(s) P_j(t) \quad (15) \]
where \(b_j(s) \) are, for each fixed \(s \), some elements of \(\overline{K_c} \).

Applying the operator \(\delta_0^{(l)} \), \(0 \leq l \leq n \), in the variable \(t \) to both sides of (15) and using (14) we find that
\[\left(\delta_0^{(l)} f \right)(st) = \sum_{j=l}^{n} b_j(s) \frac{D_j}{D_{j-l}} P_{j-l}^{q^l}(t) \]
(note also that \(\delta_0^{(l)} \) commutes with \(\rho_s \)). Setting \(t = 1 \) and taking into account that
\[P_{j-l}(1) = \begin{cases} 0, & \text{if } j > l; \\ 1, & \text{if } j = l, \end{cases} \]
we come to the equality
\[b_l(s) = \frac{\left(\delta_0^{(l)} f \right)(s)}{D_l}, \quad 0 \leq l \leq n, \]
which implies (14). \(\blacksquare \)

Note that the formulas (13) and (14) for the Carlitz polynomials \(e_i \) are well known; see \([5]\). It is important that, in contrast to the classical umbral calculus, the linear operators involved in (14) are not powers of a single linear operator.

Proof of Theorem 1 (continued). In order to prove that \(\{P_n\} \) is a sequence of \(K \)-binomial type, it suffices to take \(f = P_n \) in (14) and to use the identity (13).

To prove the second part of the theorem, we calculate the action in the variable \(t \) of the operator \(\delta_0 \), defined by (11), upon the function \(P_n(st) \). Using the relation \(D_{n+1} = [n+1]D_n^q \) we find that
\[
\delta_0 t P_n(st) = \sum_{j=0}^{n} \binom{n}{j} K P_{n-j}^q(s) (\delta_0 P_j)(t) = \sum_{j=1}^{n} \frac{D_n}{D_{n-j}^q D_j} P_{n-j}^q(s) [j] P_{j-l}^q(t) \\
= \sum_{i=0}^{n-1} \frac{D_n[i+1]}{D_{n-i-1}^q D_{i+1}} P_{n-i-1}^q(t) P_i^q(t) = [n] \sum_{i=0}^{n-1} \left(\frac{D_{n-i}}{D_{n-i-1} D_i} \right)^q P_{n-i-1}^q(s) P_i^q(t) \\
= [n] \left\{ \sum_{i=0}^{n-1} \binom{n-1}{i} K P_{n-i-1}^q(s) P_i(t) \right\}^q = [n] P_{n-1}^q(st) = (\delta_0 P_n)(st),
\]
that is \(\delta_0 \) commutes with multiplicative shifts.
It remains to prove that \(\delta_0(f) \neq 0 \) if \(\deg f > 1 \). Assuming that \(\delta_0(f) = 0 \) for \(f = \sum_{j=0}^{n} a_j P_j \)
we have

\[
0 = \sum_{j=0}^{n} a_j [j] P_j^{-1} = \left\{ \sum_{i=0}^{n-1} a_{i+1}^{1/q}[i+1]^{1/q} P_i \right\}^q
\]

whence \(a_1 = a_2 = \ldots = a_n = 0 \) due to the linear independence of the sequence \(\{P_i\} \). ■

3 INVARIANT OPERATORS

Let \(T \) be a linear invariant operator on \(\overline{K}_c \{t\} \). Let us find its representation via an arbitrary fixed delta operator \(\delta = \tau^{-1} \delta_0 \). By (14), for any \(f \in \overline{K}_c \{t\} \), \(\deg f = q^n \),

\[
(Tf)(st) = (\rho s T)f(t) = T(\rho s f)(t) = T_i f(st) = \sum_{l=0}^{n} (TP_l)(t) \frac{\left(\delta_0(l)^{(l)} \right)(s)}{D_l}.
\]

Setting \(s = 1 \) we find that

\[
T = \sum_{l=0}^{\infty} \sigma_l \delta_0(l) \tag{16}
\]

where \(\sigma_l = \frac{(TP_l)(1)}{D_l} \). The infinite series in (16) becomes actually a finite sum if both sides of (16) are applied to any \(\mathbb{F}_q \)-linear polynomial \(f \in \overline{K}_c \{t\} \).

Conversely, any such series defines a linear invariant operator on \(\overline{K}_c \{t\} \).

Below we will consider in detail the case where \(\delta \) is the Carlitz derivative \(d \), so that \(\delta_0 = \Delta \), and the operators \(\delta_0^{(l)} = \Delta^{(l)} \) are given recursively \[5\]:

\[
(\Delta^{(l)}u)(t) = (\Delta^{(l-1)}u)(xt) - x^{q^{l-1}}u(t) \tag{17}
\]

(the formula (16) for this case was proved by a different method in \([7]\)).

Using (17) with \(l = 0 \), we can compute for this case the coefficients \(c_n \) from Lemma 1. We have \(\Delta^{(l)}(t^{q^n}) = 0 \), if \(n < l \),

\[
\Delta(t^{q^n}) = [n]t^{q^n}, \quad n \geq 1;
\]

\[
\Delta^{(2)}(t^{q^n}) = \tau^2 d^2(t^{q^n}) = \tau \Delta t^{-1} \Delta(t^{q^n}) = \tau \Delta \left([n]^{1/q}t^{q^n-1} \right) = [n][n-1]^{q}t^{q^n}, \quad n \geq 2,
\]

and by induction

\[
\Delta^{(l)}(t^{q^n})[n][n-1]^q \ldots [n-l+1]^{q^{l-1}} t^{q^n} = \frac{D_n}{D_{n-l}} t^{q^n}, \quad n \geq l. \tag{18}
\]

The explicit formula (18) makes it possible to find out when an operator \(\theta = \tau^{-1}\theta_0 \), with

\[
\theta_0 = \sum_{l=1}^{\infty} \sigma_l \Delta^{(l)}, \tag{19}
\]
is a delta operator. We have \(\theta_0(t) = 0 \),

\[
\theta_0(t^{q^n}) = D_n S_n t^{q^n},
\]

where \(S_n = \sum_{l=1}^{n} \frac{\sigma_l}{D^q_{n-l}} \). Thus \(\theta \) is a delta operator if and only if \(S_n \neq 0 \) for all \(n = 1, 2, \ldots \).

Example 1. Let \(\sigma_l = 1 \) for all \(l \geq 1 \), that is \(\theta_0 = \sum_{l=1}^{\infty} \Delta^{(l)} \).

(20)

Since \(|D_i| = q^{\frac{q^{i+1}}{q-1}} \), we have

\[
|D^q_{n-l}| = q^{\frac{q^n-q^l}{q-1}},
\]

so that \(|S_n| = q^{\frac{q^n-q^1}{q-1}}(\neq 0) \) by the ultra-metric property of the absolute value. Comparing (20) with a classical formula from [15] we may see the polynomials \(P_n \) for this case as analogs of the Laguerre polynomials.

Example 2. Let \(\sigma_l = \frac{(-1)^{l+1}}{L_l} \). Now

\[
S_n = \sum_{l=1}^{n} (-1)^{l+1} \frac{1}{L_l D^q_{n-l}}.
\]

Let us use the identity

\[
\sum_{j=0}^{h-1} \frac{(-1)^j}{L_j D^q_{h-j}} = \frac{(-1)^{h+1}}{L_h}
\]

proved in [4]. It follows from (21) that

\[
\sum_{j=1}^{h} \frac{(-1)^j}{L_j D^q_{h-j}} = \frac{(-1)^{h+1}}{L_h} - \frac{1}{D_h} + \frac{(-1)^h}{L_h} = -\frac{1}{D_h},
\]

so that \(S_n = D_n^{-1} (\neq 0), \) \(n = 1, 2, \ldots \). In this case \(\theta_0(t^{q^j}) = t^{q_j} \) for all \(j \geq 1 \) (of course, \(\theta_0(t) = 0 \)), and \(P_0(t) = t, \ P_n(t) = D_n \left(t^{q^n} - t^{q^{n-1}} \right) \) for \(n \geq 1 \).

4 ORTHONORMAL BASES

Let \(\{P_n\} \) be the basic sequence corresponding to a delta operator \(\delta = \tau^{-1} \delta_0 \),

\[
\delta_0 = \sum_{l=1}^{\infty} \sigma_l \Delta^{(l)}
\]

(the operator series converges on any polynomial from \(\mathcal{K}_c(t) \)).
Let \(Q_n = \frac{P_n}{D_n}, \) \(n = 0, 1, 2, \ldots \). Then for any \(n \geq 1 \)

\[
\delta Q_n = D_n^{-1/q} \delta P_n = \frac{[n]^{1/q}}{D_n^{1/q}} P_{n-1} = \frac{P_{n-1}}{D_{n-1}} = Q_{n-1},
\]

and the \(K \)-binomial property of \(\{P_n\} \) implies the identity

\[
Q_i(st) = \sum_{n=0}^{i} Q_n(t) \{Q_{i-n}(s)\}^{q^n}, \quad s, t \in K.
\]

The identity (22) may be seen as another form of the \(K \)-binomial property. Though it resembles its classical counterpart, the presence of the Frobenius powers is a feature specific for the case of a positive characteristic. We will call \(\{Q_n\} \) a normalized basic sequence.

Theorem 2. If \(|\sigma_1| = 1, |\sigma_l| \leq 1 \) for \(l \geq 2 \), then the sequence \(\{Q_n\}_0^\infty \) is an orthonormal basis of the space \(C_0(O, \mathcal{K}_c) \) – for any \(f \in C_0(O, \mathcal{K}_c) \) there is a uniformly convergent expansion

\[
f(t) = \sum_{n=0}^{\infty} \psi_n Q_n(t), \quad t \in O,
\]

where \(\psi_n = \left(\delta^{(n)}_0 f\right)(1), \) \(|\psi_n| \rightarrow 0 \) as \(n \rightarrow \infty, \)

\[
\|f\| = \sup_{n \geq 0} |\psi_n|.
\]

Proof. We have \(Q_0(t) = P_0(t) = t \), so that \(\|Q_0\| = 1 \). Let us prove that \(\|Q_n\| = 1 \) for all \(n \geq 1 \). Our reasoning will be based on expansions in the normalized Carlitz polynomials \(f_n \).

Let \(n = 1 \). Since \(\deg Q_n = a^n \), we have \(Q_1 = a_0 f_0 + a_1 f_1 \). We know that \(Q_1(1) = f_1(1) = 0 \), hence \(a_0 = 0 \), so that \(Q_1 = a_1 f_1 \). Next, \(\delta Q_1 = Q_0 = f_0 \). Writing this explicitly we find that

\[
f_0 = a_1^{1/q} \tau^{-1} \sum_{l=1}^{\infty} \sigma_l \Delta^{(l)} f_1 = a_1^{1/q} \sigma_1^{1/q} \tau^{-1} \Delta f_1 = a_1^{1/q} \sigma_1^{1/q} f_0,
\]

whence \(a_1 = \sigma_1^{-1} \), \(Q_1 = \sigma_1^{-1} f_1 \), and \(\|Q_1\| = 1 \).

Assume that \(\|Q_{n-1}\| = 1 \) and consider the expansion

\[
Q_n = \sum_{j=1}^{n} a_j f_j
\]

(the term containing \(f_0 \) is absent since \(Q_n(1) = 0 \)). Applying \(\delta \) we get

\[
\delta Q_n = \sum_{j=1}^{n} a_j^{1/q} \sum_{l=1}^{\infty} \sigma_l^{1/q} \tau^{-1} \Delta^{(l)} f_j.
\]
It is known \(^5\) that
\[
\Delta^{(l)} e_j = \begin{cases} \frac{D_j}{D_{j-l}} e_{j-l}, & \text{if } l \leq j, \\ 0, & \text{if } l > j, \end{cases}
\]
so that
\[
\Delta^{(l)} f_j = \begin{cases} f^q_{j-l}, & \text{if } l \leq j, \\ 0, & \text{if } l > j. \end{cases}
\]
Therefore
\[
\delta Q_n = \sum_{j=1}^n a_j^{1/q} \sum_{l=1}^j \sigma_i^{1/q} f_{j-l}^{l-1}.
\] (25)

It follows from the identity \(f_{i-1}^q = f_{i-1} + [i] f_i \) (see \(^5\) \(^8\)) that
\[
f_{j-l}^{l-1} = \sum_{k=0}^{l-1} \varphi_{j,l,k} f_{j-l+k}
\]
where \(\varphi_{j,l,0} = 1, |\varphi_{j,l,k}| < 1 \) for \(k \geq 1 \). Substituting into (25) we find that
\[
Q_{n-1} = \sum_{j=1}^n a_j^{1/q} \sum_{l=1}^j \sigma_i^{1/q} \sum_{k=0}^{l-1} \varphi_{j,l,k} f_{j-l+k} = \sum_{j=1}^n a_j^{1/q} \sum_{i=0}^{j-1} f_i \sum_{l=j-i}^j \sigma_i^{1/q} \varphi_{j,l,i-j+l} = \sum_{i=0}^{n-1} f_i \sum_{j=i+1}^n a_j^{1/q} \sum_{l=j-i}^j \sigma_i^{1/q} \varphi_{j,l,i-j+l}
\]
whence
\[
\max_{0 \leq i \leq n-1} \left| \sum_{j=i+1}^n a_j^{1/q} \sum_{l=j-i}^j \sigma_i^{1/q} \varphi_{n,l,i-l-1} \right| = 1 \tag{26}
\]
by the inductive assumption and the orthonormal basis property of the normalized Carlitz polynomials.

For \(i = n - 1 \), we obtain from (26) that
\[
\left| a_n^{1/q} \sum_{l=1}^n \sigma_l^{1/q} \varphi_{n,l,l-1} \right| \leq 1.
\]
We have \(\varphi_{n,1,0} = 1, |\sigma_1| = 1 \), and
\[
\sum_{l=2}^n \sigma_l^{1/q} \varphi_{n,l,l-1} < 1,
\]
so that
\[
\left| \sum_{l=1}^n \sigma_l^{1/q} \varphi_{n,l,l-1} \right| = 1
\]
whence $|a_n| \leq 1$.

Next, for $i = n - 2$ we find from (26) that
\[
|a_{n-1}^{1/q} \sum_{l=1}^{n-1} \sigma_l^{1/q} \varphi_{n-1,l} + a_n^{1/q} \sum_{l=2}^{n} \sigma_l^{1/q} \varphi_{n,l} | \leq 1.
\]
We have proved that the second summand on the left is in O; then the first summand is considered as above, so that $|a_{n-1}| \leq 1$. Repeating this reasoning we come to the conclusion that $|a_j| \leq 1$ for all j. Moreover, $|a_j| = 1$ for at least one value of j; otherwise we would come to a contradiction with (26). This means that $\|Q_n\| = 1$.

If f is an arbitrary F_q-linear polynomial, $\deg f = q^N$, then by the generalized Taylor formula (14)
\[
f(t) = \sum_{l=0}^{N} \psi_l Q_l(t), \quad t \in O,
\]
where $\psi_l = \left(\delta_0^{(l)} f \right)(1)$.

Since $\|Q_l\| = 1$ for all l, we have $\|f\| \leq \sup_l |\psi_l|$. On the other hand, $\delta_0^{(l)} f = \tau^l (\tau^{-1} \delta_0)^l f$, and if we prove that $\|\delta_0 f\| \leq \|f\|$, this will imply the inequality $\|\delta_0^{(l)} f\| \leq \|f\|$. We have
\[
\|\Delta^{(l)} f\| = \max_{t \in O} \left| (\Delta^{(l-1)} f)(xt) - x^q \cdot (\Delta^{(l-1)} f)(t) \right| \leq \max_{t \in O} \left| (\Delta^{(l-1)} f)(t) \right| \leq \ldots \leq \max_{t \in O} \left| (\Delta f)(t) \right| \leq \|f\|
\]
so that
\[
\|\delta_0 f\| = \left\| \sum_{l=0}^{\infty} \sigma_l \Delta^{(l)} f \right\| \leq \sup_l |\sigma_l| \cdot \left\| \Delta^{(l)} f \right\| \leq \|f\|
\]
whence $\|\delta_0^{(l)} f\| \leq \|f\|$ and $\sup_l |\psi_l| \leq \|f\|$.

Thus, we have proved (24) for any polynomial. By a well-known result of non-Archimedean functional analysis (see Theorem 50.7 in [17]), the uniformly convergent expansion (23) and the equality (24) hold for any $f \in C_0(O, \mathcal{K}_e)$.

The relation $\psi_n = \left(\delta_0^{(n)} f \right)(1)$ also remains valid for any $f \in C_0(O, \mathcal{K}_e)$. Indeed, denote by $\varphi_n(f)$ a continuous linear functional on $C_0(O, \mathcal{K}_e)$ of the form $\left(\delta_0^{(n)} f \right)(1)$. Suppose that $\{F_N\}$ is a sequence of F_q-linear polynomials uniformly convergent to f. Then
\[
F_N = \sum_n \varphi_n(F_N) Q_n,
\]
so that
\[
F - F_N = \sum_{n=0}^{\infty} \left\{ \psi_n - \varphi_n(F_N) \right\} Q_n,
\]
and by (24),
\[
\|F - F_N\| = \sup_n |\psi_n - \varphi_n(F_N)|.
\]
For each fixed n we find that $|\psi_n - \varphi_n(F_N)| \leq \|F - F_N\|$, and passing to the limit as $N \to \infty$ we get that $\psi_n = \varphi_n(f)$, as desired. ■

By Theorem 2, the Laguerre-type polynomial sequence from Example 1 is an orthonormal basis of $C_0(O, K_c)$. The sequence from Example 2 does not satisfy the conditions of Theorem 2.

Note that the conditions $|\sigma_1| = 1$, $|\sigma_l| \leq 1$, $l = 2, 3, \ldots$, imply that $S_n \neq 0$ for all n, so that the series (19) considered in Theorem 2 always correspond to delta operators.

Let us write a recurrence formula for the coefficients of the polynomials Q_n. Here we assume only that $S_n \neq 0$ for all n. Let

$$Q_n(t) = \sum_{j=0}^{n} \gamma_j^{(n)} t^q^j. \quad (27)$$

We know that $\gamma_0^{(0)} = 1$.

Using the relation $\delta_0 \left(t^q^n\right) = D_n S_n t^q^n$ we find that for $n \geq 1$

$$Q_{n-1} = \delta Q_n = \tau^{-1} \sum_{j=1}^{n} \gamma_j^{(n)} D_j S_j t^q^j = \sum_{i=0}^{n-1} \left(\gamma_{i+1}^{(n)}\right)^{\frac{1}{q}} D_{i+1}^{\frac{1}{q}} S_{i+1}^{\frac{1}{q}} t^q^i.$$

Comparing this with the equality (27), with $n - 1$ substituted for n, we get

$$\gamma_i^{(n-1)} = \left(\gamma_{i+1}^{(n)}\right)^{\frac{1}{q}} D_{i+1}^{\frac{1}{q}} S_{i+1}^{\frac{1}{q}}$$

whence

$$\gamma_i^{(n)} = \frac{\left(\gamma_i^{(n-1)}\right)^{q}}{D_{i+1} S_{i+1}}, \quad i = 0, 1, \ldots, n - 1; \quad n = 1, 2, \ldots \quad (28)$$

The recurrence formula (28) determines all the coefficients $\gamma_i^{(n)}$ (if the polynomial Q_{n-1} is already known) except $\gamma_0^{(n)}$. The latter can be found from the condition $Q_n(1) = 0$:

$$\gamma_0^{(n)} = -\sum_{j=1}^{n} \gamma_j^{(n)}.$$

5 GENERATING FUNCTIONS

The definition (6) of the Carlitz module can be seen as a generating function for the normalized Carlitz polynomials f_i. Here we give a similar construction for the normalized basic sequence in the general case. As in Sect. 4, we consider a delta operator of the form $\delta = \tau^{-1} \delta_0$,

$$\delta_0 = \sum_{l=1}^{\infty} \sigma_l \Delta^{(l)}$$

We assume that $S_n \neq 0$ for all n. 14
Let us define the generalized exponential

$$e_{\delta}(t) = \sum_{j=0}^{\infty} b_j t^{q^j}$$

(29)

by the conditions \(\delta e_{\delta} = e_{\delta},\ b_0 = 1\). Substituting (29) we come to the recurrence relation

$$b_{j+1} = \frac{b_j^q}{D_{j+1}S_{j+1}}$$

(30)

which determines \(e_{\delta}\) as a formal power series.

Since \(b_0 = 1\), the composition inverse \(\log_{\delta}\) to the formal power series \(e_{\delta}\) has a similar form:

$$\log_{\delta}(t) = \sum_{n=0}^{\infty} \beta_n t^{q^n}, \quad \beta_n \in K,$$

(31)

(see Sect. 19.7 in [12] for a general treatment of formal power series of this kind). A formal substitution gives the relations

$$\beta_0 = 1, \quad \sum_{m+n=l} b_m \beta_n t^{q^m} = 0, \quad l = 1, 2, \ldots,$$

whence

$$\beta_l = -\sum_{m=1}^{l} b_m \beta_{l-m} t^{q^m}, \quad l = 1, 2, \ldots.$$

(32)

Theorem 3. Suppose that \(|\sigma_1| = 1\) and \(|\sigma_l| \leq 1\) for all \(l\). Then both the series (29) and (31) converge on the disk \(D_q = \{t \in O : |t| \leq q^{-1}\}\), if \(q \neq 2\), or \(D_2 = \{t \in O : |t| \leq q^{-2}\}\), if \(q = 2\), and

$$e_{\delta}(t \log_{\delta} z) = \sum_{n=0}^{\infty} Q_n(t) z^{q^n}, \quad t \in O, \ z \in D_q.$$

(33)

Proof. Since

$$\left| \frac{D_n}{D_{q^{n-1}}} \right| = q^{\frac{q^{n-1}}{q-1}},$$

under our assumptions we have \(|D_n S_n| = q^{-1}\) for all \(n\). By (30), \(|b_{j+1}| = q |b_j|^q, j = 0, 1, 2, \ldots,\) and we prove easily by induction that

$$|b_j| = q^{\frac{j}{q-1}}, \quad j = 0, 1, 2, \ldots.$$

(34)

For the sequence (32) we obtain the estimate

$$|\beta_j| \leq q^{\frac{j}{q-1}}, \quad j = 0, 1, 2, \ldots.$$

(35)
Indeed, this is obvious for \(j = 0 \). If (35) is proved for \(j \leq l - 1 \), then

\[
|\beta_j| \leq \max_{1 \leq m \leq l} |b_m| \cdot |\beta_{l-m}| q^m \leq \max_{1 \leq m \leq l} q^{m-1} + q^m q^{l-m-1} = q^{l-1}.
\]

It follows from (34) and (35) that both the series (29) and (31) are convergent for \(t \in D_q \) (in fact they are convergent on a wider disk from \(\overline{K_c} \), but here we consider them only on \(K \)).

Note also that

\[
|\log_\delta(t)| \leq \max_{n \geq 0} q^{\frac{1}{q^n}} q^{\frac{1}{q^n} |t|} = |t|
\]

if \(t \in D_q \).

If \(\lambda \in D_q \), then the function \(t \mapsto e_\delta(\lambda t) \) is continuous on \(O \), and by Theorem 2

\[
e_\delta(\lambda t) = \sum_{n=0}^{\infty} \psi_n(\lambda) Q_n(t)
\]

where \(\psi_n(\lambda) = \left(\delta_0^{(n)} e_\delta(\lambda \cdot) \right) (1) = \left(\delta_0^{(n)} e_\delta \right) (\lambda) \) due to the invariance of the operator \(\delta_0^{(n)} \).

Since \(\delta_0^{(n)} = \tau^n \delta^n \) and \(\delta e_\delta = e_\delta \), we find that \(\delta_0^{(n)} e_\delta = e_\delta^n \). Therefore

\[
e_\delta(\lambda t) = \sum_{n=0}^{\infty} Q_n(t) \{e_\delta(\lambda)\} q^n
\]

(36)

for any \(t \in O, \lambda \in D_q \). Setting in (36) \(\lambda = \log_\delta(z) \) we come to (33). ■
References

[1] L. Carlitz, On certain functions connected with polynomials in a Galois field, *Duke Math. J.*, 1 (1935), 137–168.

[2] K. Conrad, The digit principle, *J. Number Theory* 84 (2000), 230–257.

[3] L. Ferrari, An umbral calculus over infinite coefficient fields of positive characteristic, *Comp. Math. Appl.* 41 (2001), 1099–1108.

[4] E.-U. Gekeler, Some new identities for Bernoulli-Carlitz numbers, *J. Number Theory* 33 (1989), 209–219.

[5] D. Goss, Fourier series, measures, and divided power series in the theory of function fields, *K-Theory* 1 (1989), 533–555.

[6] D. Goss, *Basic Structures of Function Field Arithmetic*, Springer, Berlin, 1996.

[7] S. Jeong, Continuous linear endomorphisms and difference equations over the completions of $\mathbb{F}_q[T]$, *J. Number Theory* 84 (2000), 276–291.

[8] A. N. Kochubei, Harmonic oscillator in characteristic p, *Lett. Math. Phys.* 45 (1998), 11–20.

[9] A. N. Kochubei, \mathbb{F}_q-linear calculus over function fields, *J. Number Theory* 76 (1999), 281–300.

[10] A. N. Kochubei, Differential equations for \mathbb{F}_q-linear functions, *J. Number Theory* 83 (2000), 137–154.

[11] A. N. Kochubei, Differential equations for \mathbb{F}_q-linear functions II: Regular singularity, *Finite Fields Appl.* 9 (2003), 250–266.

[12] R. S. Pierce, *Associative Algebras*, Springer, New York, 1982.

[13] A. M. Robert, *A Course in p-Adic Analysis*, Springer, New York, 2000.

[14] S. M. Roman and G.-C. Rota, The umbral calculus, *Adv. Math.* 27 (1978), 95–188.

[15] G.-C. Rota, D. Kahaner and A. Odlyzko, On the foundations of combinatorial theory. VIII. Finite operator calculus, *J. Math. Anal. Appl.* 42 (1973), 684–760.

[16] G.-C. Rota and B. D. Taylor, The classical umbral calculus, *SIAM J. Math. Anal.* 25 (1994), 694–711.

[17] W. H. Schikhof, *Ultrametric Calculus*, Cambridge University Press, 1984.

[18] L. Van Hamme, Continuous operators, which commute with translations, on the space of continuous functions on \mathbb{Z}_p. In: “p-Adic Functional Analysis” (J. M. Bayod et al., eds.), Lect. Notes Pure Appl. Math. 137, Marcel Dekker, New York, 1992, pp. 75–88.
[19] A. Verdoodt, Umbral calculus in non-Archimedean analysis. In: “p-Adic Functional Analysis” (A. K. Katsaras et al., eds.), Lect. Notes Pure Appl. Math. 222, Marcel Dekker, New York, 2001, pp. 309–322.

[20] C. G. Wagner, Linear operators in local fields of prime characteristic, J. Reine Angew. Math. 251 (1971), 153–160.