A TRANSVERSAL FREDHOLM PROPERTY FOR THE
∂-NEUMANN PROBLEM ON G-BUNDLES

DEDICATED TO M.A. SHUBIN ON HIS 65TH BIRTHDAY

JOE J PEREZ

Abstract. Let \(M \) be a strongly pseudoconvex complex \(G \)-manifold with compact quotient \(M/G \). We provide a simple condition on forms \(\alpha \) sufficient for the regular solvability of the equation \(\Box u = \alpha \) and other problems related to the \(\partial \)-Neumann problem on \(M \).

1. Introduction

Let \(M \) be a manifold which is the total space of a \(G \)-bundle

\[G \longrightarrow M \longrightarrow X \]

with \(X \) compact. With respect to a \(G \)-invariant measure on \(M \), define the Hilbert space \(L^2(M) \). This decomposes as

\[L^2(M) \cong L^2(G) \otimes L^2(X), \tag{1.1} \]

and if we assume that the action of \(G \) is from the right, then \(t \in G \) acts in \(L^2(M) \) by \(t \mapsto R_t \otimes 1 \). The von Neumann algebra of operators on \(L^2(G) \) commuting with right translations is denoted by \(\mathcal{L}_G \) and the corresponding algebra of bounded linear operators on \(L^2(M) \) that commute with the action of \(G \) is denoted by \(\mathcal{B}(L^2(M))^G \).

This has a decomposition itself as follows,

\[\mathcal{B}(L^2(M))^G \cong \mathcal{B}(L^2(G) \otimes L^2(X))^G \cong \mathcal{L}_G \otimes \mathcal{B}(L^2(X)). \]

Definition 1.1. Let \(M \) be a \(G \)-manifold with quotient \(X = M/G \) and let \(\mathcal{H}_1, \mathcal{H}_2 \) be Hilbert spaces of sections of bundles over \(M \). A closed, densely defined, linear operator \(A : \mathcal{H}_1 \rightarrow \mathcal{H}_2 \) which commutes with the action of \(G \) is called transversally Fredholm if the following conditions are satisfied:

1. there exists a finite-rank projection \(P_{L^2(X)} \in \mathcal{B}(L^2(X)) \) such that \(\ker A \subset \text{im} (1_{L^2(G)} \otimes P_{L^2(X)}) \)
2. there exists a finite-rank projection \(P'_{L^2(X)} \in \mathcal{B}(L^2(X)) \) such that \(\text{im} A \subset \text{im} (1_{L^2(G)} \otimes P'_{L^2(X)})^\perp \).

This note will provide a simple example of this idea. Let \(M \) be a strongly pseudoconvex complex manifold which is also the total space of a \(G \)-bundle \(G \longrightarrow M \longrightarrow X \) with \(X \) compact. Furthermore, assume that \(G \) acts on \(M \) by holomorphic transformations. With respect to a \(G \)-invariant measure and Riemannian structure, define the Hilbert spaces of \((p,q)\)-forms \(L^2(M, \Lambda^{p,q}) \).

1991 Mathematics Subject Classification. Primary 32W05; 35H20.
Supported by FWF grant P19667, Mapping Problems in Several Complex Variables.
On M, consider Kohn’s Laplacian, \Box and its spectral decomposition, $\Box = \int_0^\infty \lambda dE_\lambda$ in $L^2(M, \Lambda^p, \gamma)$. If $q > 0$, it was shown in [P1] that if $\delta > 0$, then the Schwartz kernel of the spectral projection $P_\delta = \int_0^\infty dE_\lambda$ belongs to $C^\infty(M \times \overline{M})$. Choosing a piecewise smooth section $X \hookrightarrow M$, we may write points in M as pairs $(t, x) \in G \times X$. The Schwartz kernel K of P_δ then, almost everywhere, takes the form

$$K(t, x; s, y) = K(ts^{-1}, x; e, y) =: \kappa(ts^{-1}; x, y),$$

where we have used the G-invariance of P_δ. It is also true that κ has an expansion

$$\kappa(t; x, y) = \sum_{kl} \psi_k(x) h_{kl}(t) \bar{\psi}_l(y)$$

(1.2)

where $(\psi_k)_k$ is an orthonormal basis of $L^2(X)$. The functions h_{kl} are smooth in G with $\sum_{kl} \|h_{kl}\|^2_{L^2(G)} < \infty$, where $L^2_k(G)$ consists of the functions on G that are square-integrable with respect to right-Haar measure (cf. proof of Lemma 6.2 in [P1]).

The main result of the present paper is the fact that when κ corresponds to P_δ, the sum in equation (1.2) can be taken to be finite. This means that the spectral projections of \Box are subordinate to simple projections of the form $P = 1_{L^2(G)} \otimes P_{L^2(X)}$ with $P_{L^2(X)}$ the projection onto the space spanned by the ψ_k that appear in the sum. Since there are finitely many, we have that rank $P_{L^2(X)} < \infty$. Thus our main result in this note is

Theorem 1.2. Let M be a strongly pseudoconvex complex manifold which is also the total space of a G-bundle $G \to M \to X$ with X compact. Furthermore, assume that G acts on M by holomorphic transformations. It follows that for $q > 0$, the Laplacian \Box in $L^2(M, \Lambda^p, \gamma)$ is transversally Fredholm.

We will also show that the $\bar{\partial}$-Neumann problem has regular solutions for $g \in \text{im} P^\perp$.

As well as sharpening the results in [P1], the results of this note will be useful in studying the $\bar{\partial}$-Neumann problem and its consequences for G-manifolds with nonunimodular structure group; in [P1], G was always assumed unimodular. These G-manifolds, among others, occur naturally as complexifications of group actions, as shown in [HHK].

The present results, in addition to the amenability property introduced in [P2], will lead to a better understanding of two important exemplary nonunimodular G-manifolds discussed in [GHS]. One of these has a large space of L^2-holomorphic functions while the other has $L^2O = \{0\}$.

Remark 1.3. All the results in this note remain valid for weakly pseudoconvex M satisfying a subelliptic estimate, and for the boundary Laplacian, \Box_b, [P3].

2. Invariant operators in $L^2(M)$

Here we briefly sketch the construction of the Schwartz kernel (1.2) of P_δ. We will continue to simplify notation by suppressing the operators’ acting in bundles; some additional details are in [P1].

On the group alone, the projection P_L onto a translation-invariant subspace $L \subset L^2(G)$ is a left-convolution operator with distributional kernel κ,

$$(P_L u)(t) = (\lambda_u)(t) = \int_G ds \kappa(ts^{-1})u(s), \quad (u \in L^2(G)),$$
where ds is the right-invariant Haar measure.

Let us lift this definition to $L^2(M)$ by taking the decomposition $[2]$ a step further. Letting $(\psi_k)_k$ be an orthonormal basis for $L^2(X)$, we may write

$$L^2(M) \cong L^2(G) \otimes L^2(X) \cong \bigoplus_k L^2(G) \otimes \psi_k,$$

and with respect to this decomposition write matrix representations for operators in $L^2(M)$ as

$$B(L^2(M)) \ni P \mapsto [P]_{kl}, \quad P_{kl} \in B(L^2(G)).$$

When $P \in B(L^2(M))^G$ each of the P_{kl} is an operator commuting with the right action and thus is a left convolution operator. Thus $P_{kl} = \lambda_{h_{kl}}$ for distributions h_{kl} on G, as in the expansion $[2]$. When P is a self-adjoint projection, we find that the matrix of convolutions $H = [\lambda_{h_{kl}}]_{kl}$ is an idempotent in that $\sum_k H_{jk} H_{kl} = H_{jk}$ and the matrix corresponding to P^*, has matrix representation $[\lambda_{h_{ik}}]_{kl}$.

3. Regularity of the $\bar{\partial}$-Neumann problem on G-manifolds

We provide a brief list of the properties of the $\bar{\partial}$-Neumann problem relevant to our work here and refer the reader to $[FK, GHS, P1]$ for more detail. With the invariant measure and Riemannian structure on M define the Sobolev spaces $H^s(M, \Lambda^{p,q})$ of (p,q)-forms on M. Note that the G-invariance of the structures and the compactness of X imply that any two such Sobolev spaces are equivalent. A word on notation: we will write $A \lesssim B$ to mean that there exists a $C > 0$ such that $|A(u)| \leq C|B(u)|$ uniformly for u in a set that will be made clear in the context.

Lemma 3.1. Suppose that M is strongly pseudoconvex and U is an open subset of M with compact closure. Assume also that $\zeta_1, \zeta_2 \in C^\infty_c(U)$ for which $\zeta_2|_{\text{supp}(\zeta_1)} = 1$. If $q > 0$ and $\alpha|_U \in H^s(U, \Lambda^{p,q})$, then $\nabla(\Box + 1)^{-1} \alpha \in H^{s+1}(\bar{M}, \Lambda^{p,q})$ and

$$\|\zeta_2(\Box + 1)^{-1} \alpha\|_{s+1}^2 \lesssim \|\zeta_1 \alpha\|^2_{s} + \|\alpha\|^2_0.$$

Proof. This is Prop. 3.1.1 from $[FK]$ extended to the noncompact case in $[P1]$. \qed

It follows easily (Corollary 4.3, $[P1]$) that the image of the Laplacian’s spectral projection P_δ is contained in $C^\infty(M, \Lambda^{p,q})$.

In order to derive properties of the Schwartz kernel of P_δ, we will need global Sobolev estimates strengthening the previous result. The following assertion (Theorem 4.5 of $[P1]$) provides global a priori Sobolev estimates on M and is a generalization of Prop. 3.1.11, $[FK]$ to the noncompact case. Note that this crucially uses the uniformity on M guaranteed by the G-action and the compactness of X.

Lemma 3.2. Let $q > 0$. For every integer $s \geq 0$, the following estimate holds uniformly,

$$\|u\|^2_{s+1} \lesssim \|\Box u\|^2_s + \|u\|^2_0, \quad (u \in \text{dom}(\Box) \cap C^\infty(\bar{M}, \Lambda^{p,q})).$$

The previous two lemmata give

Corollary 3.3. For $q > 0$, let $\Box = \int_0^\infty \lambda dE_\lambda$ be the spectral decomposition of the Laplacian \Box and for $\delta \geq 0$, define $P_\delta = \int_0^\delta dE_\lambda$. Then $\text{im } P_\delta \subset H^\infty(M)$.

Proof. The assertion follows from lemmata 3.1, 3.2 and the fact that im $P_b \subset \text{dom} \Box^k$ for all $k = 1, 2, \ldots$. Thus the estimates
\[
\|\Box^{k-s} u\|_{s+1} \lesssim \|\Box^{k-s+1} u\|_{s} + \|\Box^{k-s} u\|_0, \quad (s = 1, 2, \ldots, k)
\]
hold for $u \in \text{im } P_b$. These can be reduced to the result. \hfill \Box

Remark 3.4. By results in [E, P3], these regularity properties essentially hold true for G-manifolds M that are weakly pseudoconvex but satisfy a subelliptic estimate. Similar results hold for the boundary Laplacian \Box_b as indicated in [P1].

4. The finiteness result

In this section, we modify an ingenious lemma from [GHS]. In the original setting, this lemma asserts that on a regular covering space $\Gamma \to M \to X$, it is true that any closed, invariant subspace $L \subset L^2(M)$ that belongs to some $H^s(M)$ ($s > 0$) has the following property. There exists an $N < \infty$ and a Γ-equivariant injection P_N such that
\[
L \xrightarrow{P_N} L^2(\Gamma) \otimes \mathbb{C}^N.
\]
This result has analogues in [A] and Theorem 8.10, [LL], gotten by different methods.

Here, we will use essentially the same proof as in [GHS] to obtain a similar result for G-bundles. We will need the following

Definition 4.1. For any positive integer s, let $H^{0,s}(G \times X) = L^2(G) \otimes H^s(X)$ be the completion of $C_c^\infty(G \times X)$ in the norm defined by
\[
\|u\|^2_{H^{0,s}(G \times X)} = \int_G dt \|u(t, \cdot)\|^2_{H^s(X)}.
\]
Clearly $\|\cdot\|_{H^{0,s}(G \times X)} \leq \|\cdot\|_{H^s(M)}$ and so $H^s(M) \subset H^{0,s}(G \times X)$.

The next two statements in this section follow [GHS] closely. Lemma 4.2 is taken verbatim and Theorem 4.3 is a small variation on Prop. 1.5 of that article.

Lemma 4.2. Let X be a compact Riemannian manifold, possibly with boundary and let $(\psi_k)_k$ be any complete orthonormal basis of $L^2(X)$. Then, for all $s > 0$ and $\delta > 0$ there exists an integer $N > 0$ such that for all $u \in H^s(X)$ in the L^2-orthogonal complement of $(\psi_k)_k$ we have the uniform estimate
\[
\|u\|_{L^2(X)} \leq \delta \|u\|_{H^s(X)}, \quad (u \in H^s(X), \ u \perp \psi_k, \ k = 1, 2, \ldots, N).
\]

Proof. Assuming the contrary, there exist $s > 0$ and $\delta > 0$ so that for each $N > 0$ there is an $u_N \in H^s(X)$ with $\langle u_N, \psi_k \rangle = 0$ for $k = 1, 2, \ldots, N$ and $\|u_N\|_s < 1/\delta \|u_N\|_0$. Without loss of generality we may rescale the u_N to unit length. By Sobolev’s compactness theorem, the sequence $(u_N)_N$ is a compact subset of $L^2(X)$. By the requirement that each u_N be orthogonal to ψ_k for $k = 1, 2, \ldots, N$, the sequence converges weakly to zero. This contradicts the choice of normalization. \hfill \Box

Theorem 4.3. Assume that G is a Lie group and $G \to M \to X$ is a G-bundle with compact quotient, X. Let L be an L^2-closed, G-invariant subspace in $H^\infty(M)$, such that for $s \in \mathbb{N}$ sufficiently large, $L \subset H^s(M)$ and
\[
\|u\|_{H^s(M)} \lesssim \|u\|_{L^2(M)}
\]
holds uniformly for $u \in L$. Then $L \subset \text{im } (1_{L^2(G)} \otimes P_{L^2(X)})$ where $P_{L^2(X)}$ is a finite-rank projection in $L^2(X)$.

Proof. First, assume that \(M \cong G \times X \) is a trivial bundle. For each fixed \(t \in G \), define the slice at \(t \), \(S_t = \{(t, x) \in M \mid x \in X\} \), and note that by the trace theorem, the restrictions of functions in \(L \) to these slices are in \(H^\infty(S_t) \). Note also that the invariance of \(L \) implies that all the restrictions \(L|_{S_t} \) are identical. At the identity \(e \in G \), choose an orthonormal basis \((\psi_j)_j\) for \(L^2(S_e) \cong L^2(X) \). Let \(L \) satisfy the assumptions of the theorem and define a map \(P_N : L \to L^2(G) \otimes \mathbb{C}^N \) by

\[
(P_N u)(t) = (u_1(t), u_2(t), \ldots, u_N(t)),
\]

where

\[
u_j(t) = \langle u|_{S_t}, \psi_j \rangle_{L^2(X)}, \quad j = 1, 2, \ldots, N.
\]

We will show that \(P_N \) is injective for large \(N \). Assume that \(u \in L \) and \(P_N u = 0 \). The smoothness of all the structures implies that \((P_N u)(t) = 0\) identically. Lemma \(4.2 \) and invariance imply that there is a \(\delta_N > 0 \) such that

\[
\|u\|_{L^2(S_t)}^2 \leq \delta_N^2 \|u|_{S_t}\|_{H^\infty(S_t)}^2, \quad (t \in G).
\]

Integrating over \(t \in G \) we obtain

\[
\|u\|_{L^2(M)}^2 \leq \delta_N^2 \|u\|_{H^\infty(G \times X)}^2 \leq \delta_N^2 \|u\|_{H^\infty(M)}^2.
\]

If this were possible for any \(N \), this would contradict the estimate \(4.1 \) unless \(u = 0 \), since \(\delta_N \to 0 \) as \(N \to \infty \). To obtain the result for a trivial bundle, let \(N \) be the least integer for which \(P_N \) is injective and choose \(N \) elements \(v_1, v_2, \ldots, v_N \in L \) whose restrictions to \(S_e \) are linearly independent. The result for a general bundle follows by a trivialization argument. \(\square \)

Remark 4.4. We should note here that the assumptions are redundant. For \(L \) to be \(L^2 \)-closed and in \(H^\infty(M) \) implies the validity of an estimate \(4.1 \) for any \(s \).

Corollary 4.5. Let \(\Box = \int_0^\infty \lambda dE_\lambda \) be the spectral resolution of the Laplacian and for \(\delta > 0 \) let \(P_\delta = \int_0^\delta dE_\lambda \) be a spectral projection. Also choose a piecewise smooth section \(x : X \hookrightarrow M \). It follows that \(P_\delta \) has a representation

\[
(P_\delta u)(t, x) = \sum_{k=1}^N \int_{G \times X} ds dy \psi_k(x)h_{kl}(st^{-1})\psi_l(y)u(s, y),
\]

where \((\psi_k)_k\) are an orthonormal basis of \(L^2(X) \) and \(H = [h_{kl}]_{kl} \) is a self-adjoint, idempotent convolution operator in \(\bigoplus_1^N L^2(G) \) with \(h_{kl} \in C^\infty(G) \). Also,

\[
\sum_{k=1}^N \|h_{kl}\|_{L^2(G)}^2 = \sum_{k=1}^N h_{kk}(e) < \infty.
\]

Proof. By Corollary \(4.3 \) the theorem applies. Apply the Gram-Schmidt procedure to the \((\psi_k)_k^N \) above, obtaining the \((\psi_k)_k^N \). The decomposition is described in \([P2] \). \(\square \)

Remark 4.6. In the case that \(G \) is unimodular, \(\sum_{kl} \|h_{kl}\|_{L^2(G)}^2 < \infty \) is the same as saying that \(P_\delta \) is in the \(G \)-trace class, which we established in \([P1] \) in the setting in which \(M \) is strongly pseudoconvex and in \([P3] \) where \(M \) satisfies a subelliptic estimate. The new content of Corollary \(4.5 \) is the finiteness of the sum \((4.4) \), etc. This transverse dimension gives a meaningful (though much rougher) measure of the spectral subspaces of \(\Box \) (and \(\Box_\delta \)) than the \(G \)-dimension when \(G \) is unimodular, but is also defined when the group is not assumed unimodular as, for example, in \([HHK] \) and in important examples in \([GHS] \). We should note that \([HHK] \) also
deals with the situation in which the G-action is only proper, rather than free as we assume here.

5. Applications

We will give a version of the solution of the $\bar{\partial}$-Neumann problem, for our noncompact M. The version valid for M compact, e.g. Prop. 3.1.15 of [FK], is unlikely to remain valid in our setting because the Neumann operator on a noncompact space is usually unbounded.

Let $\Box = \int_0^\infty \lambda dE_\lambda$ be the spectral decomposition of the Laplacian on M and for $\delta > 0$ put

$$L_\delta = \text{im} \int_\delta^\infty dE_\lambda \quad \text{and} \quad P_\delta = \int_0^\delta dE_\lambda.$$

In this section we will show that $\Box u = g$, and the $\bar{\partial}$-Neumann problem have regular solutions for $g \in L_\delta$.

Lemma 5.1. If $g \in L_\delta \cap C^\infty(\bar{M})$, then the solution u of $\Box u = g$ is smooth.

Proof. Let $g \in L_\delta \cap C^\infty(\bar{M})$ and solve $\Box u = g$ in $L^2(M)$. Note that $\|u\|_{L^2(M)} \leq (1/\delta)\|g\|_{L^2(M)}$. Adding u to both sides of the equation, $(\Box + 1)u = g + u$, we obtain that $(\Box + 1)u = \Box u + u = g + u$. Applying $(\Box + 1)^{-1}$, the real estimate, Lemma 3.1 provides that

$$\|\zeta u\|_{s+1} \lesssim \|\zeta_1 (g + u)\|_{s} + \|g + u\|_{0} \leq \|\zeta_1 g\|_{s} + \|\zeta_1 u\|_{s} + \|g + u\|_{0}.$$

Nesting the supports of cutoff functions, concatenating and reducing these estimates for $s = 0, 1, \ldots$, we obtain that for each positive integer s we have

$$\|\zeta u\|_{s+1} \lesssim \|\zeta_1 g\|_{s} + \|g + u\|_{0} \leq \|\zeta_1 g\|_{s} + (1 + 1/\delta)\|g\|_{0}.$$

Thus $u \in C^\infty(M)$ by the Sobolev embedding theorem. \qed

Corollary 5.2. In L_δ, the Laplacian satisfies the genuine estimate

$$\|u\|_{s+1} \lesssim \|\Box u\|_{s} + \|u\|_{0}, \quad (u \in L_\delta).$$

Proof. Let $(g_k)_k \subset L_\delta \cap H^\infty$ and $g_k \to g$ in $H^s(M)$. The previous lemma implies that there exists a sequence $(u_k)_k \subset C^\infty$ solving $\Box u_k = g_k$. Lemma 5.1 implies that $\|u_k\|_{s+1} \lesssim \|\Box u_k\|_{s} + \|u_k\|_{0}$ uniformly in k, so $(u_k)_k$ is Cauchy in the H^{s+1} norm. \qed

Lemma 5.3. Suppose that $q > 0$, $\alpha \in L^2(M, N^{p,q})$, $\bar{\partial}\alpha = 0$, and $\alpha \in L_\delta$. Then there is a unique solution ϕ of $\bar{\partial}\phi = \alpha$ with $\phi \perp \ker(\bar{\partial})$. If $\alpha \in H^s(M, N^{p,q})$, then $\phi \in H^s(M, N^{p,q-1})$ and $\|\phi\|_{s} \lesssim \|\alpha\|_{s}$ for each s.

Proof. Taking $\alpha \in L_\delta$, there is a unique solution to $\Box u = \alpha$ orthogonal to the kernel of \Box; in fact $u \in L_\delta \subset (\ker \Box)^\perp$. Since $\bar{\partial}\alpha = 0$, applying $\bar{\partial}$ to

$$\Box u = \bar{\partial}^* \bar{\partial} u + \bar{\partial}\bar{\partial}^* u = \alpha$$

gives that $\bar{\partial}\bar{\partial}^* \bar{\partial} u = 0$. This implies that $\langle \bar{\partial}\bar{\partial}^* \bar{\partial} u, \bar{\partial} u \rangle = 0$ which is equivalent to $\|\bar{\partial}\bar{\partial}^* \bar{\partial} u\|^2 = 0$. Thus $\bar{\partial}\bar{\partial}^* u = \alpha$ and we may take $\phi = \bar{\partial}^* u \in \text{im} \bar{\partial}^*$. But $\text{im} \bar{\partial}^* \subset (\ker \bar{\partial})^\perp$. The regularity claim follows immediately from Corollary 5.2 and the order of $\bar{\partial}^*$. \qed

Putting all these results together, we obtain
Corollary 5.4. Let M be a complex manifold on which a subelliptic estimate holds. Assume also that M is the total space of a bundle $G \to M \to X$ with G a Lie group acting by holomorphic transformations with compact quotient $X = M/G$. With respect to a piecewise smooth section $X \hookrightarrow M$, define the slices S_t. Then there exists a finite-dimensional subspace $L|_{S_t} \subset L^2(X)$, such that the equation $\Box u = \alpha$ has solutions $u \in L^2(M)$ with uniform estimates on the space of α satisfying $\alpha|_{S_t} \perp L|_{S_t}$ for all $t \in G$.

Proof. Choose $\delta > 0$. Corollary 3.3 and Theorem 4.3 imply that there exists a finite rank projection $P_{L^2(X)} \in B(L^2(X))$ such that $P_\delta < 1_{L^2(G)} \otimes P_{L^2(X)}$. The orthogonal complement of the latter projection is $1_{L^2(G)} \otimes P_{L^2(X)}^\perp$, which contains L_δ, on which the $\bar{\partial}$-Neumann problem is regular by the results of this section. Putting $L|_{S_t} = \text{im} P_{L^2(X)}$, we have the result.

Remark 5.5. A similar result holds for the $\bar{\partial}$-equation by Lemma 5.3.

Acknowledgments. The author wishes to thank Indira Chatterji and Bernhard Lamel for helpful conversations and the Erwin Schrödinger Institute for its generous hospitality.

REFERENCES

A. Atiyah, M.F.: Elliptic operators, discrete groups, and von Neumann algebras, Soc. Math. de France, Astérisque 32-3, (1976) 43–72

E. Englis, M.: Pseudolocal estimates for $\bar{\partial}$ on general pseudoconvex domains, Indiana Univ. Math. J. 50, (2001) 1593–1607

FK. Folland, G.B. & Kohn J.J.: The Neumann Problem for the Cauchy-Riemann Complex, Ann. Math. Studies, No. 75 Princeton University Press, Princeton, N.J. 1972

GHS. Gromov, M., Henkin, G. & Shubin, M.: Holomorphic L^2 functions on coverings of pseudoconvex manifolds, Geom. Funct. Anal. 8, (1998) 552–585

HHK. Heinzner, P., Huckleberry, A. T., Kutzschebauch, F.: Abels’ theorem in the real analytic case and applications to complexifications. In: Complex Analysis and Geometry, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 1995, 229–273

LL. Lieb, E.H., Loss, M.: Analysis (Graduate Studies in Mathematics) American Mathematical Society; 2 ed (2001)

P1. Perez, J.J.: The G-Fredholm property for the $\bar{\partial}$-Neumann problem, J. Geom. Anal. (2009) 19: 87–106

P2. Perez, J.J.: The Levi problem on strongly pseudoconvex G-bundles, Ann. Glob. Anal. Geom. (2010) 37 1–20

P3. Perez, J.J.: Subelliptic boundary value problems and the G-Fredholm property, http://arxiv.org/abs/0909.1476

Universität Wien
E-mail address: joe_jperez@yahoo.com