Pangolin: A Fault-tolerant Persistent Memory Programming Library

Lu Zhang, Steven Swanson
Non-Volatile Systems Laboratory
Department of Computer Science & Engineering
University of California, San Diego

Track I, 11:00am on Friday, July 12
Persistent memory modules finally arrive

- Working alongside DRAM
- New programming model
 - Byte addressability
 - Memory semantics
 - Direct access (DAX)
Challenges with programming

• Crash consistency
 – Volatile CPU caches
 – 8-byte store atomicity

• Fault tolerance
 – Media errors
 – Software bugs

No file system can protect DAX-mapped persistent memory data.
Pangolin design goals

- Ensure crash consistency
- Protect against media and software errors
- Require very low storage overhead (1%) for fault tolerance
Pangolin – Replication, parity, and checksums

- Combines replication and parity as redundancy
 - Similar performance compared to replication
 - Low space overhead (1% of gigabyte-sized object store)

Metadata	Metadata	Object	Object	Object	Object
Object	Object	Object	Object		
Object	Object	Object			
Object	Object				
Parity					

- Checksums all metadata and object data
Pangolin – Transactions with micro-buffering

- Provides micro-buffering-based transactions
 - Atomically updates objects, checksums, and parity
 - Prevents programming errors from corrupting PMEM

Track I, 11:00am on Friday, July 12