On the Role of Anisotropy of Membrane Components in Formation and Stabilization of Tubular Structures in Multicomponent Membranes

Nataliya Bobrovska1, Wojciech Góźdź1, Veronika Kralj-Iglic2, Ales Iglic3*

1 Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01–224 Warsaw, Poland, 2 Faculty of Health Studies, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia, 3 Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia

Abstract

Influence of isotropic and anisotropic properties of membrane constituents (nanodomains) on formation of tubular membrane structures in two-component vesicle is numerically investigated by minimization of the free energy functional based on the deviatoric-elasticity model of the membrane. It is shown that the lateral redistribution and segregation of membrane components may induce substantial change in membrane curvature resulting in the growth of highly curved tubular structures.

Introduction

The shape of lipid bilayers, cellular or artificial, strongly depends on composition and lateral distribution of membrane components [1]. In cell membranes as well as in multicomponent artificial membranes the aggregation/segregation of membrane components may occur under different physiological or non-physiological conditions [2–5].

Except for the sake of simplicity there is no a priori reason to consider membrane constituents/nanodomains to be isotropic [6, 7] instead of anisotropic, which actually represents a more general approach [2,5,8–12].

Not only proteins and/or protein-lipid complexes but also lipid molecules should be in general considered anisotropic [12–14]. Thermal rotational motion of lipids around their vertical axes may lead to wrong conclusion that the average (effective) intrinsic shape of lipid molecules is axisymmetric, i.e. isotropic. The membrane lipids have two tails and in general anisotropic headgroups. The rotational states in the curvature field of the membrane have different energy (except for the planar and spherical membranes). Averaging over rotational degrees of freedom gives effective anisotropic intrinsic shape of lipids [15]. When the membrane components are modeled as anisotropic, it is possible to explain formation of experimentally observed, transient, energetically stable, narrow necks (pores) connecting the fused vesicles to the target membrane. Such shapes may result from orientational ordering and lateral redistribution of membrane constituents/nanodomains [16].

Coupling between the cell/liposome shape and non-homogeneous lateral distribution [17] of membrane components may originate from the tendency of membrane components to find/induce the optimal configuration (optimal membrane curvature) with respect to the intrinsic shape of membrane components. It was indicated in different theoretical and experimental studies [5,8–10,12,13,18–22], that the generation and stability of the lipid bilayer tubes in the cellular and artificial multicomponent membrane systems in the absence of elongated inner stiff supports, e.g. microtubules [23–27] or external pulling forces, such as, optical tweezers [28,29] or motor proteins (kinesin, dynamin) [29,30], can be explained by the presence of membrane elements (nanodomains) and attached proteins with anisotropic properties. As for example, the membrane attached crescent shaped BAR domain proteins have clearly anisotropic shape and therefore their energy depend on their local orientation or statistically averaged local orientation, depending on the local curvature of the membrane [5,20,31]. The nanodomain can be a macromolecule which is partially or fully embedded into membrane bilayer (such as multi-anchoring polymers [32]), membrane attached proteins plus interacting lipids, a small protein-lipid cluster or a small cluster of different kind of lipids etc. The membrane is then considered as the self-assembly of nanodomains. The area of a single nanodomain can be in general much larger than the area of a single lipid molecule. The intrinsic shape of a nanodomain and a single lipid can be modeled within the framework of the deviatoric elasticity model with the appropriate choice of two principal intrinsic curvatures C_{1m} and C_{2m} [15,33].

The aim of this work is to study the influence of anisotropy of membrane nanodomains on the shape transformations and lateral segregation of membrane components in two-component axially symmetric vesicles of fixed topology. The special attention is devoted to the stability and growth of tubular membrane

Citation: Bobrovska N, Góźdź W, Kralj-Iglic V, Iglic A (2013) On the Role of Anisotropy of Membrane Components in Formation and Stabilization of Tubular Structures in Multicomponent Membranes. PLoS ONE 8(9): e73941. doi:10.1371/journal.pone.0073941

Editor: Yaakov Koby Levy, Weizmann Institute of Science, Israel

Received April 13, 2013; Accepted July 25, 2013; Published September 16, 2013

Copyright: © 2013 Bobrovska et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work of N.B. was realized within the International Ph.D. Projects Programme of the Foundation for Polish Science, co-financed from European Regional Development Fund within Innovative Economy Operational Programme “Grants for innovation”. A.I. and V.K.I. were supported by Slovenian Research Agency grants J1-4109, J1-4136, J3-3148 and P2-0232. W.G. would like to acknowledge support by NCN grant No. 2012/05/B/ST3/03302. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ales.iglic@fe.uni-lj.si
structures with thin tubular protrusions having small spherical vesicles at their free tips (Fig. 1) induced by accumulation of anisotropic membrane components in tubular membrane regions.

Results and Discussion

The model vesicles are built up by two components (A and B) and their shapes are obtained numerically by the direct minimization of the free energy functional of the membrane under the constraints of constant vesicle surface area \(S \) and volume \(V \) and a constant number of A type constituents/nanodomains, i.e. at constant total relative concentration of A component, \(\phi_{\text{tot}} = 1/S \int \phi \, dS \) [24,34]. The dimensionless reduced volume is defined as \(v = V/V_0 \) (the ratio of the volume of the vesicle to the volume of a sphere \(V_0 = 4\pi R_s^3/3 \) with the same surface area) where the radius \(R_s \) defines the unit length. The calculations were performed for vesicles with rotational symmetry, where the shape profile of the vesicle was described by the function \(\theta(s) \) and the distribution of components on the vesicle surface by the function \(\phi(s) \) (\(s \) is the arclength of the profile). \(\theta(s) \) and \(\phi(s) \) were calculated numerically by the minimization of the free energy functional.

Figure 1. (A) Scanning electron micrograph of membrane nanotubes of RT4 urothelial cancer cells. Some of the nanotubes have spherical vesicles at their free tips (indicated by the arrows). Bar = 10 \(\mu \)m (adapted with permission from [49]). (B) Vesiculation in human red blood cells. Note the exovesicles located around the parent red blood cells. Tethers are not visible in the figure. Bar = 3 \(\mu \)m (adapted with permission from [26]).

doi:10.1371/journal.pone.0073941.g001
The minimization procedure and the detail description of \(\theta(s) \) and \(\phi(s) \) is given in the Methods section.

In this work, we have investigated under what conditions the formation of thin tubular structures is favorable. The special examples of such systems observed in experiments (Fig. 1), i.e. the cells with thin tubular protrusions having small spherical vesicles at their free tips, are the main subject of this work, not thoroughly studied in our previous work [22].

The calculations were performed for different values of the bending rigidity for each component, \(\kappa^A = 30 \, \kappa^B \), \(\kappa^A = 4 \kappa^B \). The value of \(\kappa^B \) is characteristic for lipid domains, the value of \(\kappa^A \) characterizes the domains of lipid membranes with attached macromolecules, where the thickness of the membrane is relatively large [35–37]. In the model, the bending rigidity depends on the local concentration of the components in a small area may be important for some macromolecules, since they are biologically active only at sufficiently high concentration.

The cylindrical protrusions are formed when at least one component is anisotropic. Such behavior is demonstrated in Fig. 3, where the total concentration is varied from \(\phi_{tot} = 0.01 \) to \(\phi_{tot} = 0.055 \). It is interesting to note that very small amount of the anisotropic component is enough to induce the formation of the cylindrical protrusion. Moreover, the length of the protrusion depends on the concentration. This is due to the separation of the components in the membrane, where the anisotropic components are located mainly in the tubular part which has a very small surface area compared to the rest of the vesicle. It is interesting to note, that total component segregation was observed for \(\phi_{tot} = 0.02 \). At this concentration almost all anisotropic component was accumulated in the neck of the vesicle. The possibility of accumulation of the components in a small area may be important for some macromolecules, since they are biologically active only at sufficiently high concentration.

The calculations presented in Fig. 3 were performed for constant reduced volume \(v = 0.8 \). For such a reduced volume we observe the shapes without up-down symmetry, but for smaller values of the reduced volume the shapes with up-down symmetry are stable, as presented in Fig. 4. Moreover, the smaller the volume the more mixed are the components, and the cylindrical protrusions are no longer stable.

The complete mixing was observed for small concentration of the anisotropic component, \(\phi_{tot} = 0.02 \), which for small reduced

Figure 2. The shapes of the vesicle composed of (iso+iso), (iso+aniso), and (aniso+aniso) components for \(v = 0.8, \phi_{tot} = 0.02, H_m^A = 8.0, H_m^B = 4.2, \kappa^A = 4 \kappa^B \). doi:10.1371/journal.pone.0073941.g002

Figure 3. The vesicle shapes for different concentration, \(\phi_{tot} \) of anisotropic component, and for \(H_m^A = 4.2, v = 0.8, H_m^B = 8.0, \kappa^A = 4 \kappa^B \). The inset (a) shows the configuration with almost total segregation of components for \(\phi_{tot} = 0.02 \). The anisotropic component is accumulated in the neck area.

doi:10.1371/journal.pone.0073941.g003

Figure 4. The vesicle shapes for different values of the reduced volume, \(v \), and for (a) \(\phi_{tot} = 0.02, H_m^A = 3.0 \) (left), \(H_m^B = 4.2 \) (right), \(H_m^A = H_m^B = 8.0, \kappa^A = 4 \kappa^B \) and (b) \(\phi_{tot} = 0.055, H_m^A = 3.0 \) (left), \(H_m^B = 4.2 \) (right), \(H_m^A = H_m^B = 8.0, \kappa^A = 4 \kappa^B \).

doi:10.1371/journal.pone.0073941.g004
volume, \(v > 0.65 \), results in pearl-like shapes with up-down symmetry. The increase of the concentration of anisotropic component stabilizes longer and wider tubular structures.

The anisotropy of one of the components is not however a sufficient condition for the formation of the tubular structures. We have also observed that cylindrical protrusions may be induced by changing the properties of the isotropic component. It is demonstrated in Fig. 5 that when the intrinsic mean curvature of the isotropic component is increased (for fixed reduced volume) the cylindrical protrusions are formed and their length increases with the increase of the intrinsic mean curvature of the anisotropic component.

In the systems in which the cylindrical tubules are created when the proteins (BAR domain proteins, epsin) are adsorbed at the membrane surface, the radius of the tubule is determined by the intrinsic curvature of the protein [42,43]. In Fig. 6 we show that there is a strict relation between the intrinsic curvature, \(D_m^d \), of the anisotropic component and the radius of the tube. For smaller values of the intrinsic curvature, \(D_m^d \), the cylindrical tube is not well developed yet. At \(D_m^d \approx 9.45 \) there is a transition to the well developed cylindrical tube. Apart from the values of \(D_m^d \) in the vicinity of the transition value \(D_m^d \approx 9.45 \) we can see that for the well developed cylindrical tubes (for \(D_m^d > 10 \)) the radius of the tubular protrusion decreases linearly with increasing \(D_m^d \). Thus, the results of our theoretical calculations are in qualitative agreement with the experimental predictions showing that the membrane tubular protrusions induced by the membrane bound anisotropic molecules such as anisotropic BAR domain-containing proteins [5,20,31] with larger intrinsic curvature radius (corresponding to smaller \(D_m^d \) in our notation) generally have larger diameters than those formed by the molecules characterized by smaller intrinsic curvature radius (i.e. larger \(D_m^d \) [5,44].

Conclusions

We have shown that accumulation of anisotropic components may lead to the formation of thin tubular protrusions. The anisotropy of components is a necessary condition for creation of the stable tubular protrusions. When the components are isotropic such cylindrical structures may be created only when some external force is applied. For example when membrane is pushed by growing microtubules or pulled by molecular motors, the width of the tubes depends on the intrinsic curvatures of anisotropic components. When the membrane is composed of isotropic components the stable protrusions which are created without any external force are built of a series of connected beads.

Methods: Theoretical model and parametrization

In the model the membrane is composed of two components A and B which can be either isotropic or anisotropic and are characterized by the intrinsic principal curvatures \(C_{1i} \), \(C_{2i} \) (\(i = A, B \)). The free energy functional is composed of the (anisotropic) bending energy \(F_b \) and the free energy associated with the entropy of mixing \(F_{mix} \):

\[
F = F_b + F_{mix},
\]

where the membrane bending energy is given by [33,45,46]

\[
F_b = \int_A \kappa(\phi) [(H - H_m(\phi))^2 + (D - D_m(\phi))^2] dA,
\]

while \(F_{mix} \) is [2,46]

\[
F_{mix} = - \frac{k_B T}{a_0} \int_A \phi \ln \phi + (1 - \phi) \ln (1 - \phi) dA,
\]

where \(k_B \) is the Boltzmann constant, \(T \) is the absolute temperature, \(a_0 \) denotes the area of a single nanodomain, \(C_1 \) and \(C_2 \) are the membrane principal curvatures, \(\kappa(\phi) \) is the bending rigidity, \(H = (C_1 + C_2)/2 \) is the membrane mean curvature, \(D = |C_1 - C_2|/2 \) is the membrane curvature deviator, \(D_m = |C_{1m} - C_{2m}|/2 \) is the intrinsic nanodomain curvature deviator and \(H_m = (C_{1m} + C_{2m})/2 \) is the intrinsic nanodomain mean curvature, \(\phi \) is the local relative concentration of the component A. The integral is taken over the whole surface of the vesicle membrane.

The model parameters playing a crucial role in the vesicle shape transformations are: the total relative concentration \(\langle \phi_{tot} \rangle \) of the component A (the total relative concentration of the component B is \(1 - \langle \phi_{tot} \rangle \)), the bending rigidity of i-th component \(\kappa_i \), the nanodomain intrinsic mean curvature \(H_{m} = (C_{1m} + C_{2m})/2 \), and the nanodomain intrinsic curvature deviator \(D_{m} = |C_{1m} - C_{2m}|/2 \). The components can be either anisotropic or isotropic. A component is considered as isotropic when its intrinsic deviatoric curvature is zero, \(D_{m} = 0 \). The properties of anisotropic components are defined by setting the intrinsic deviatoric and the mean curvature equal \(D_{m} = H_{m} \).

For simplicity we assume linear dependence of the bending rigidity \(\kappa \) [47], the nanodomain intrinsic mean curvature \(H_{m} \) and the deviator \(D_{m} \) on the local relative concentration of the component A \(\phi \):

\[
\kappa(\phi) = (\kappa^A - \kappa^B) \phi + \kappa^B,
\]

\[
H_{m}(\phi) = (H_{m}^{A} - H_{m}^{B}) \phi + H_{m}^{B},
\]

\[
D_{m}(\phi) = (D_{m}^{A} - D_{m}^{B}) \phi + D_{m}^{B}.
\]

The contour of the vesicle is parametrized by the angle, \(\theta(s) \), which is the function of the arclength of the contour \(s \) and is defined by the tangent line to the vesicle profile and a horizontal line, which is perpendicular to the axis of rotation (see Fig. 7a)

Figure 5. The vesicle shapes for different values of the mean curvature of isotropic component, \(H_{m}^i \) and for \(v = 0,8 \), \(\phi_{tot} = 0.055 \): \(H_{m}^A = D_{m}^A = 8.0 \), \(D_{m}^B = 0 \), \(\kappa^A \phi^A = 4 \kappa^B \). (a) \(H_{m}^A = D_{m}^A = 6 \) and (b) \(H_{m}^A = D_{m}^A = 8.0 \).

doi:10.1371/journal.pone.0073941.g005
In this parametrization, the infinitesimal area element is given by \[dA = r(s) \text{d}s \] where \(r(s) = \frac{\cos(h(s))}{ds} \) is the distance from the rotation axis. The principal curvatures are given by \[C_1 = \frac{d}{ds}(h(s)) = \frac{ds}{\cosh h(s)} \quad \text{and} \quad C_2 = \sin(h(s))r(s) \] where \(h(s) \) is the position of the boundary between the region rich in the component A and the region rich in the component B, \(j \) is the slope of the concentration profile at \(h(s) \), and \(D_{s_0} \) is the distance between the inflection points of two hyperbolic tangents. The validity of Eq.(7) assumes the division of the vesicle surface into two regions, which are characterized by the minimal and maximal local concentrations of the component A, \(w_{A1} \) and \(w_{A2} \), respectively (see also Fig. 7 b)

In numerical calculation we have to find both the function \(\theta(s) \) and the function \(\phi(s) \) for which the functional (1) is minimized. In the minimization procedure the function \(\theta(s) \) is expressed as a Fourier series. When the function \(\theta(s) \), in the form of the Fourier series is plugged into the equation (1), the functional minimization can be replaced by the minimization of the function of many variables. The functional (1) becomes the function of many variables which are the amplitudes in the Fourier series and the length of the shape profile. Since the functional is minimized with respect to the shape and the concentration profile, a few additional variables \(w_{A1} \), \(w_{A2} \), \(j \), \(s_0 \), and \(D_{s_0} \) which determine the concentration profile, are also used in the minimization [7,34,40].

Acknowledgments

The authors are grateful to dr. Š. Perutkova for useful discussion.

Figure 6. The change of the radius of the tubular region of a vesicle as a function of the intrinsic curvature of the anisotropic component, \(D_{m}^{A} \), for \(m = 0.5, \theta_{ref} = 0.04, H_{m}^{A} = 4, J_{m}^{A} = 0, C_{m}^{A} = D_{m}^{A} \) and \(k_{m}^{A} = 4k_{m}^{A} \). The arrows in the lower panel indicate the position on the surface of the vesicle where the radius of the tube was measured.

Figure 7. (a) Schematic representation of the parametrization of the vesicle shape. \(s \) is the contour length, \(\theta(s) \) the angle between the tangent and the horizontal line, and \(r(s) \) the distance from the \(z \)-axis. (b) Color map shows the relative concentrations of anisotropic component, A, on the vesicle surface. Red color denotes high concentration of A component, blue color denotes high concentration of B component, green color denotes similar concentration of A and B component. \(\phi_{1} \) and \(\phi_{2} \) are the minimal and maximal local concentrations of the component A.

\[\phi = \phi(s) = \frac{1}{2} (\phi_{1} - \phi_{2}) \text{tanh}(\xi(s - s_0)) + \frac{1}{2} (\phi_{1} + \phi_{2}) - \text{tanh}(\xi(s - s_0 - \Delta s_0)) + \phi_{1} \]

where \(s_0 \) is the position of the boundary between the region rich in the component A and the region rich in the component B, \(\xi \) is the slope of the concentration profile at \(s_0 \), \(\Delta s_0 \) is the distance between the inflection points of two hyperbolic tangents.
Author Contributions
Conceived and designed the experiments: AI VK-I. Performed the experiments: AI VK-I. Wrote the paper: NB AI WG VK-I. Theory: AI VK-I. Computer programs: NB WG.

References
1. Goźdz WT, Gompper G (2002) Phase behavior of two-component membranes. Colloids Surf A 208: 241–251.
2. Hagerstrand H, Mroveczynska L, Salzer U, Prohaska R, Michelenm AK, et al. (2006) Curvature dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membr Biol 23: 277–288.
3. Risselada H, Marink S, Muller M (2011) Curvature-dependent elastic properties of lipid-ordered domains result in inverted domain sorting on uniaxially compressed vesicles. Phys Rev Lett 106: 148102.
4. Sorre B, Callan-Jones A, Mannville J, Nassoy P, J-F J, et al. (2009) Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins. PNAS 106: 5622–5626.
5. Baumgart T, Capraro BR, Zhu C, Das SL (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62: 483–506.
6. Israelachvili J (1991) Intermolecular and Surface Forces. Academic Press, London.
7. Goźdz WT, Bobrowska N, Ciach A (2012) Separation of components in lipid membranes induced by shape transformation. J Chem Phys 137: 15101.
8. Helfrich W, Prost J (1988) Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A 39: 3967–3968.
9. Fournier J (1996) Nonoptometric saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys Rev Lett 76: 4436–4439.
10. Kralj-Iglíc V, Heinrich V, Svetina S, Zeks B (1999) Free energy of closed membrane with anisotropic inclusions. Eur Phys J B, 10: 5–8.
11. Kralj-Iglíc V, Iglic A, Gomisˇćek G, Sekviš F, Arigell V, et al. (2002) Microtubes and nanotubes of a phospholipid bilayer membrane. J Phys A: Math Gen 35: 1333–1354.
12. Perutková S, Daniel M, Rappolt M, Pabst D, Dolinar G, et al. (2011) Elastic deformations in hexagonal phases studied by small-angle x-ray diffraction and simulations. Phys Chem Chem Phys 13: 3100–3107.
13. Rappolt M, Hodzic A, Sartori B, Ollivon M, Lagger P, (2008) Conformational and hydration properties during the Lp→LcPC and LcPC→H2PC phase transition in phosphatidyethanolamine. Chem Phys Lipids 154: 46–55.
14. Kulkarni C (2012) Lipid crystallization: from self-assembly to hierarchical and biological ordering. Nanoscale.
15. Kralj-Iglíc V, Babnik B, Ganger R, May S, Iglic A (2006) Quadrupolar ordering of phospholipid molecules in narrow necks of phospholipid vesicles. J Stat Phys 125: 727–732.
16. Jorgac´evski J, Fosˇnaricˇ M, Vardjan N, Stenovec M, Potokar M, et al. (2010) Curvature-dependent lateral distribution of raft markers in the human erythrocyte membrane. Mol Membr Biol 27: 65–80.
17. Roux A, Cuvelier D, Nassoy P, Prost J, Basereau M, et al. (2005) Role of curvature and phase transition in lipid sorting and fusion of membrane tubules. EMBO J 24: 1537–1545.
18. Kralj-Iglíc V, Iglic A, Hagerstrand H, Peterlin P (2000) Stable tubular membrane microvesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys Rev E 61: 4230–4234.
19. Iglic A, Hagerstrand H, Veraniˇc T, Plemenitaˇs A, Kralj-Iglıc V (2006) Curvature induced accumulation of anisotropic membrane components and raft formation in cylindrical membrane protrusions. J Theor Biol 240: 368–373.
20. Š Perutková, Kralj-Iglíc V, Frank M, Iglic A (2010) Mechanical stability of membrane nanotubular protrusions influenced by attachment of flexible rod-like proteins. J Biomech 43: 1612–1617.
21. Shlomovitz R, Goźdz V, Roux A (2011) Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. New J Phys 13: 063008.
22. Kralj-Iglíc V, Bobrovskova-Hagerstrand M, Hagerstrand H (2001) Tethers connecting daughter vesicles and parent red blood cell may be formed due to ordering of anisotropic membrane constituents. Colloids Surf A 179: 57–64.
23. Li Y, Lipowsky R, Dimova R (2011) Membrane nanotubes induced by aequous phase separation and stabilized by spontaneous curvature. PNAS 108: 4731–4736.
24. Tian A, Baumgart T (2009) Sorting of lipids and proteins in membrane curvature gradients. Biophys J 96: 2676–2688.
25. Koster G, VanDuijn M, Hof B, Dogterom M (2003) Membrane tube formation from giant vesicles by dynamic association of motor proteins. PNAS 100: 15593–15598.
26. Roux A, Cappello G, Cartaud J, Prost J, Groud B, et al. (2002) A minimal system allowing tubulation with molecular motors pulling on giant liposomes. PNAS 99: 5394–5399.
27. Kalado D, Gongadze E, Eling P, van Riessen U, Gimsa J, et al. (2011) Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 11: 272–282.
28. Tsudir I, Gaspi Y, Gaudean-Boudaille MA, Arzt T, Stavans J (2005) Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys Rev Lett 91: 138102.
29. Iglic A, Babnik B, Gimsa U, Kralj-Iglíc V (2005) On the role of membrane anisotropy in the budding transition of unilamellar tubular membrane structures. J Phys A: Math Gen 38: 8527–8536.
30. Goźdz WT (2006) The interface width of separated two-component lipid membranes. J Phys Chem B 110: 29544–29549.
31. Goźdz WT (2004) Spontaneous curvature induced shape transformation of tubular polymersomes. Langmuir 20: 7383–7391.
32. Christin Haurie, Reinhard Lipowsky (1996) Elastic properties of polymer-decorated membranes. J Phys II France 6: 1463–1481.
33. Nikolov V, Lipowsky R, Dimova R (2007) Behavior of giant vesicles with anchored DNA molecules. Biophysical Journal 92: 4536–4546.
34. Thukkar FM, Maiti PK, Kumaran V, Ayappa KG (2011) Verifying scalings for bending rigidity of bilayer membranes using mesoscale models. Soft Matter 7: 3963–3966.
35. Íniguez Palomares R, Acuña Campa H, Maldonado A (2011) Effect of polymer on the elasticity of surfactant membranes: A light scattering study. Phys Rev E 84: 011604.
36. Zhao H, Pykalainen A, Lappalainen P (2010) I-bar domain proteins: linking actin and plasma membrane dynamics. Curr Op Cell Biol 23: 14–21.
37. Thakkar FM, Maiti PK, Kumaran V, Ayappa KG (2011) Verifying scalings for bending rigidity of bilayer membranes using mesoscale models. Soft Matter 7: 3963–3966.
38. Sorre B, Callan-Jones A, Manzi J, Groud B, Prost J, et al. (2012) Nature of curvature coupling of amphiphysin with membranes depends on its bound density. PNAS 109: 173–178.
39. Roux A, Perera R, Roux A, Spasov K, Destaing O, et al. (2008) Structural basis of membrane invagination by I-bar domains. Cell 132: 80717.
40. Iglic A, Lokar M, Babnik B, Silvnik T, Veraniˇc T, et al. (2007) Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes. Blood Cells Mol Dis 39: 14–23.
41. Fournir M, Iglic A, Slivnik T, Kralj-Iglíc V (2008) Flexible membrane inclusions and membrane inclusions induced by rigid globular proteins. In: Advances in Planar Lipid Bilayers and Liposomes (A Leitmannova Liu, Ed) 7: 143–166.
42. Goźdz WT (2011) Transformation of lipid vesicles induced by diffusing macromolecules. J Chem Phys 134: 024110.
43. Helfrich W (1973) Elastic properties of lipid bilayers: Theory and possible experiments. Z Naturforsch 28c: 693–703.
44. Schara K, V J, Vjeˇsi´ć S, Dolinar D, Lokar M, et al. (2009) Mechanisms for the formation of membrane nanostuctures in cell-to-cell communications. Cell Mol Biol Lett 14: 636–656.