Applications of Borel distribution series on holomorphic and bi-univalent functions

ABBAS KAREEM WANAS, ADNAN GHAZY AL AMOUSH

ABSTRACT. In present manuscript, we introduce and study two families $B_\Sigma(\lambda, \delta; \alpha)$ and $B^*_\Sigma(\lambda, \delta; \beta)$ of holomorphic and bi-univalent functions which involve the Borel distribution series. We establish upper bounds for the initial Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in each of these families. We also point out special cases and consequences of our results.

1. Introduction

We indicate by A the family of functions which are holomorphic in the open unit disk
$$\mathbb{U} = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$$
and have the following normalized type:

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k. \quad (1)$$

We also indicate by S the subclass of A consisting of functions which are also univalent in \mathbb{U}. According to the Koebe one-quarter theorem [8], every function $f \in S$ has an inverse f^{-1} defined by

$$f^{-1}(f(z)) = z, \quad (z \in \mathbb{U}),$$
and

$$f(f^{-1}(w)) = w, \quad \text{quad } |w| < r_0(f); \quad r_0(f) \geq \frac{1}{4},$$

where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2a_3 + a_4) w^4 + \cdots. \quad (2)$$

A function $f \in A$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ stand for the class of normalized bi-univalent functions

2020 Mathematics Subject Classification. Primary: 30C45; Secondary: 30C50.

Key words and phrases. Holomorphic functions, Bi-univalent functions, Borel distribution series, Coefficient bounds.

Full paper. Received 4 May 2021, revised 22 June 2021, accepted 22 July 2021, available online 23 September 2021.
Applications of Borel distribution series on holomorphic functions in U given by (1). For a brief historical account and for several interesting examples of functions in the class Σ, see the pioneering work on this subject by Srivastava et al. [18], which actually revived the study of bi-univalent functions in recent years. From the work of Srivastava et al. [18], we choose to recall here the following examples of functions in the class Σ:

$$\frac{z}{1 - z}, \quad -\log(1 - z) \quad \text{and} \quad \frac{1}{2} \log\left(\frac{1 + z}{1 - z}\right).$$

We notice that the class Σ is not empty. However, the Koebe function is not a member of Σ.

In a considerably large number of sequels to the aforementioned work of Srivastava et al. [18], several different subclasses of the bi-univalent function class Σ were introduced and studied analogously by the many authors (see, for example, [1–7, 9–11, 13, 14, 16, 17, 19–28, 30, 31]), but only non-sharp estimates on the initial coefficients $|a_2|$ and $|a_3|$ in the Taylor-Maclaurin expansion (1) were obtained in many of these recent papers. The problem to find the general coefficient bounds on the Taylor-Maclaurin coefficients

$$|a_n|, \quad (n \in \mathbb{N} \setminus \{1, 2\}; \mathbb{N} := \{1, 2, 3, \ldots\})$$

for functions $f \in \Sigma$ is still not completely addressed for many of the subclasses of the bi-univalent function class Σ (see, for example, [14, 19, 21]).

Recently, Srivastava [12] in his survey-cum-expository review article, explored the mathematical application of q-calculus, fractional q-calculus and fractional q-differential operators in Geometric Function Theory.

A discrete random variable x is said to have a Borel distribution, if it takes the values $1, 2, 3, \ldots$, with the probabilities

$$\frac{e^{-\delta}}{1!}, \quad \frac{2\delta e^{-2\delta}}{2!}, \quad \frac{9\delta^2 e^{-3\delta}}{3!}, \ldots,$$

respectively, where δ are called the parameters. Hence

$$\text{Prob}(x = r) = \frac{(\delta r)^{r-1} e^{-\delta r}}{r!}, \quad (r = 1, 2, 3, \ldots).$$

Wanas and Khuttar [29] introduced the following power series whose coefficients are probabilities of the Borel distribution:

$$\mathcal{M}(\delta, z) = z + \sum_{k=2}^{\infty} \frac{(\delta(k - 1))^{k-2} e^{-\delta(k-1)}}{(k-1)!} z^k, \quad (z \in \mathbb{U}; \, 0 < \delta \leq 1).$$

We note by the familiar Ratio Test that the radius of convergence of the above series is infinity.

Now, we considered the linear operator $\mathcal{B}_\delta : \mathcal{A} \rightarrow \mathcal{A}$ which is defined as follows:

$$\mathcal{B}_\delta f(z) = \mathcal{M}(\delta, z) * f(z) = z + \sum_{k=2}^{\infty} \frac{(\delta(k - 1))^{k-2} e^{-\delta(k-1)}}{(k-1)!} a_k z^k, \quad z \in \mathbb{U},$$
where (*) indicate the Hadamard product (or convolution) of two series.

Very recently, Srivastava and El-Deeb [15] have introduced some applications of the Borel distribution.

We now recall the following lemma that will be used to prove our main results.

Lemma 1 (see [8]). If \(h \in \mathcal{P} \), then

\[
|c_k| \leq 2, \quad (\forall k \in \mathbb{N}),
\]

where \(\mathcal{P} \) is the family of all functions \(h \), holomorphic in \(U \), for which

\[
\Re(h(z)) > 0, \quad (z \in U),
\]

with

\[
h(z) = 1 + c_1 z + c_2 z^2 + \cdots, \quad (z \in U).
\]

2. **Coefficient estimates for the bi-univalent function class \(\mathcal{B}_\Sigma(\lambda, \delta; \alpha) \)**

In this section, we first define the bi-univalent function class \(\mathcal{B}_\Sigma(\lambda, \delta; \alpha) \).

Definition 1. A function \(f \in \Sigma \), given by (1), in said to be the bi-univalent function class \(\mathcal{B}_\Sigma(\lambda, \delta; \alpha) \) if it satisfies the following conditions:

\[
\left| \arg \left(1 + \frac{z (B_\delta f(z))'}{B_\delta f(z)} + \frac{z (B_\delta f(z))''}{(B_\delta f(z))'} - \frac{\lambda z^2 (B_\delta f(z))'' + z (B_\delta f(z))'}{\lambda (B_\delta f(z))'} + (1 - \lambda) (B_\delta f(z))' \right) \right| < \frac{\alpha \pi}{2}
\]

and

\[
\left| \arg \left(1 + \frac{w (B_\delta g(w))'}{B_\delta g(w)} + \frac{w (B_\delta g(w))''}{(B_\delta g(w))'} - \frac{\lambda w^2 (B_\delta g(w))'' + w (B_\delta g(w))'}{\lambda (B_\delta g(w))'} + (1 - \lambda) (B_\delta g(w))' \right) \right| < \frac{\alpha \pi}{2},
\]

where \(z, w \in U \), \(0 < \alpha \leq 1 \), \(0 \leq \lambda \leq 1 \) and \(0 < \delta \leq 1 \).

If we choose \(\lambda = 1 \) in Definition 1, the family \(\mathcal{B}_\Sigma(\lambda, \delta; \alpha) \) reduces to the family \(\mathcal{S}_\Sigma(\delta; \alpha) \) of bi-starlike functions which satisfying the following conditions

\[
\left| \arg \left(\frac{z (B_\delta f(z))'}{B_\delta f(z)} \right) \right| < \frac{\alpha \pi}{2}
\]

and

\[
\left| \arg \left(\frac{w (B_\delta g(w))'}{B_\delta g(w)} \right) \right| < \frac{\alpha \pi}{2}.
\]

If we choose \(\lambda = 0 \) in Definition 1, the family \(\mathcal{B}_\Sigma(\lambda, \delta; \alpha) \) reduces to the family \(\mathcal{K}_\Sigma(\delta; \alpha) \) of bi-convex functions which satisfying the following conditions:

\[
\left| \arg \left(1 + \frac{z (B_\delta f(z))''}{(B_\delta f(z))'} \right) \right| < \frac{\alpha \pi}{2}
\]
and
\[\left| \arg \left(1 + \frac{w(B_\delta g(w))''}{(B_\delta g(w))'} \right) \right| < \frac{\alpha \pi}{2}. \]

Our first main result is asserted by Theorem 1 below.

Theorem 1. Let the function \(f \in B_\Sigma(\lambda, \delta; \alpha) \ (0 < \alpha \leq 1; 0 \leq \lambda \leq 1; 0 < \delta \leq 1) \) be given by (1). Then
\[|a_2| \leq \frac{2\alpha}{\sqrt{2\alpha e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right] + (1 - \alpha)(2 - \lambda)^2 e^{-2\delta}}} \]
and
\[|a_3| \leq \frac{4\alpha^2 e^{2\delta}}{(2 - \lambda)^2} + \frac{\alpha e^{2\delta}}{\delta(3 - 2\lambda)}. \]

Proof. In light of the conditions (3) and (4), we have
\[1 + \frac{z(B_\delta f(z))'}{B_\delta f(z)} + \frac{z(B_\delta f(z))''}{(B_\delta f(z))'} - \frac{\lambda z^2 (B_\delta f(z))'' + z (B_\delta f(z))'}{\lambda z (B_\delta f(z))'} + (1 - \lambda)B_\delta f(z) = [p(z)]^\alpha \]
and
\[1 + \frac{w(B_\delta g(w))'}{B_\delta g(w)} + \frac{w(B_\delta g(w))''}{(B_\delta g(w))'} - \frac{\lambda w^2 (B_\delta g(w))'' + w (B_\delta g(w))'}{\lambda w (B_\delta g(w))'} + (1 - \lambda)B_\delta g(w) = [q(w)]^\alpha, \]
where \(g = f^{-1} \) and the functions \(p, q \in \mathcal{P} \) have the following series representations:
\[p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots \]
and
\[q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \cdots. \]
By comparing the corresponding coefficients of (5) and (6), we find that
\[(2 - \lambda)e^{-\delta} a_2 = \alpha p_1, \]
\[2\delta(3 - 2\lambda)e^{-2\delta} a_3 - \left(5 - (\lambda + 1)^2 \right) e^{-2\delta} a_2^2 = \alpha p_2 + \frac{\alpha(\alpha - 1)}{2} p_1^2, \]
\[-(2 - \lambda)e^{-\delta} a_2 = \alpha q_1 \]
and
\[2\delta(3 - 2\lambda)e^{-2\delta} (2a_2^2 - a_3) - \left(5 - (\lambda + 1)^2 \right) e^{-2\delta} a_2^3 = \alpha q_2 + \frac{\alpha(\alpha - 1)}{2} q_1^2. \]
Thus, by using (9) and (11), we conclude that
\[p_1 = -q_1 \]
and
\[2(2 - \lambda)^2 e^{-2\delta} a_2^2 = \alpha^2 (p_1^2 + q_1^2). \]
If we add (10) to (12), we obtain
\[(15)\quad 2e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right] a_2^2 = \alpha(p_2 + q_2) + \frac{\alpha(\alpha - 1)}{2} \left(p_1^2 + q_1^2 \right).\]

Substituting the value of \(p_1^2 + q_1^2 \) from (14) into the right-hand side of (15), and after some computations, we deduce that
\[(16)\quad a_2^2 = \frac{\alpha^2(p_2 + q_2)}{2\alpha e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right] + (1 - \alpha)(2 - \lambda)^2 e^{-2\delta}}.\]

By taking the moduli of both sides of (16) and applying the Lemma 1 for the coefficients \(p_2 \) and \(q_2 \), we have
\[|a_2| \leq \frac{2\alpha}{\sqrt{2\alpha e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right] + (1 - \alpha)(2 - \lambda)^2 e^{-2\delta}}}.\]

Next, in order to determine the bound on \(|a_3| \), by subtracting (12) from (10), we get
\[(17)\quad 4\delta(3 - 2\lambda)e^{-2\delta} (a_3 - a_2^2) = \alpha(p_2 - q_2) + \frac{\alpha(\alpha - 1)}{2} \left(p_1^2 - q_1^2 \right).\]

Now, upon substituting the value of \(a_2^2 \) from (14) into (17) and using (13), we deduce that
\[(18)\quad a_3 = \frac{\alpha^2 (p_1^2 + q_1^2)}{2(2 - \lambda)^2 e^{-2\delta}} + \frac{\alpha(p_2 - q_2)}{4\delta(3 - 2\lambda)e^{-2\delta}}.\]

Finally, by taking the moduli on both sides of (18) and applying the Lemma 1 once again for the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), it follows that
\[|a_3| \leq \frac{4\alpha^2 e^{2\delta}}{(2 - \lambda)^2} + \frac{\alpha e^{2\delta}}{\delta(3 - 2\lambda)}.
\]

This completes the proof of Theorem 1. \(\square\)

Putting \(\lambda = 1 \) in Theorem 1, we state:

Corollary 1. For \(0 < \alpha \leq 1 \) and \(0 < \delta \leq 1 \), let the function \(f \in S_\Sigma(\delta; \alpha) \) be given by (1). Then
\[|a_2| \leq \frac{2\alpha}{\sqrt{2\alpha(2\delta - 1)e^{-2\delta} + (1 - \alpha)e^{-2\delta}}},\]
and
\[|a_3| \leq 4\alpha^2 e^{2\delta} + \frac{1}{\delta} \alpha e^{2\delta}.\]

Putting \(\lambda = 0 \) in Theorem 1, we state:
Corollary 2. For $0 < \alpha \leq 1$ and $0 < \delta \leq 1$, let the function $f \in K_\Sigma(\delta; \alpha)$ be given by (1). Then

$$|a_2| \leq \frac{\alpha}{\sqrt{\alpha e^{-2\delta}(3\delta - 2) + (1 - \alpha)e^{-2\delta}}}$$

and

$$|a_3| \leq \alpha^2 e^{2\delta} + \frac{1}{3\delta} \alpha e^{2\delta}.$$

3. Coefficient estimates for the bi-univalent function class $B^*_\Sigma(\lambda, \delta; \beta)$

In this section, we first define the bi-univalent function class $B^*_\Sigma(\lambda, \delta; \beta)$.

Definition 2. A function $f \in \Sigma$, given by (1), is said to be in the bi-univalent function class $B^*_\Sigma(\lambda, \delta; \beta)$ if it satisfies the following conditions:

$$\Re \left\{ 1 + \frac{z (B_\delta f(z))'}{B_\delta f(z)} + \frac{z (B_\delta f(z))''}{(B_\delta f(z))'} - \frac{\lambda z^2 (B_\delta f(z))'' + z (B_\delta f(z))'}{\lambda z (B_\delta f(z))' + (1 - \lambda)B_\delta f(z)} \right\} > \beta$$

and

$$\Re \left\{ 1 + \frac{w (B_\delta g(w))'}{B_\delta g(w)} + \frac{w (B_\delta g(w))''}{(B_\delta g(w))'} - \frac{\lambda w^2 (B_\delta g(w))'' + w (B_\delta g(w))'}{\lambda w (B_\delta g(w))' + (1 - \lambda)B_\delta g(w)} \right\} > \beta,$$

where $z, w \in \mathbb{U}, \ 0 \leq \beta < 1, \ 0 \leq \lambda \leq 1$ and $0 < \delta \leq 1$, and $g = f^{-1}$ is given by (2).

In particular, if we choose $\lambda = 1$ in Definition 2, the family $B^*_\Sigma(\lambda, \delta; \beta)$ reduces to the family $S^*_\Sigma(\delta; \beta)$ of bi-starlike functions which satisfying the following conditions

$$\Re \left\{ \frac{z (B_\delta f(z))'}{B_\delta f(z)} \right\} > \beta$$

and

$$\Re \left\{ \frac{w (B_\delta g(w))'}{B_\delta g(w)} \right\} > \beta.$$

Also, if we choose $\lambda = 0$ in Definition 2, the family $B^*_\Sigma(\lambda, \delta; \beta)$ reduces to the family $K^*_\Sigma(\delta; \beta)$ of bi-convex functions which satisfying the following conditions

$$\Re \left\{ 1 + \frac{z (B_\delta f(z))''}{(B_\delta f(z))'} \right\} > \beta$$

and

$$\Re \left\{ 1 + \frac{w (B_\delta g(w))''}{(B_\delta g(w))'} \right\} > \beta.$$

Our second main result is asserted by Theorem 2 below.
Theorem 2. Let the function \(f \in \mathcal{B}_\Sigma^*(\lambda, \delta; \beta) \) \((0 \leq \beta < 1; 0 \leq \lambda \leq 1; 0 < \delta \leq 1)\) be given by (1). Then

\[
|a_2| \leq \sqrt{\frac{2(1 - \beta)}{e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right]}}
\]

and

\[
|a_3| \leq \frac{4(1 - \beta)^2 e^{2\delta}}{(2 - \lambda)^2} + \frac{(1 - \beta)e^{2\delta}}{\delta(3 - 2\lambda)}.
\]

Proof. In view of the conditions (19) and (20), there exist the functions \(p, q \in \mathcal{P} \) such that

\[
1 + \frac{z (B_\delta f(z))'}{B_\delta f(z)} + \frac{z (B_\delta f(z))''}{(B_\delta f(z))'} - \frac{\lambda z^2 (B_\delta f(z))'' + z (B_\delta f(z))'}{\lambda z (B_\delta f(z))'} + (1 - \lambda)B_\delta f(z) = \beta + (1 - \beta)p(z)
\]

and

\[
1 + \frac{w (B_\delta g(w))'}{B_\delta g(w)} + \frac{w (B_\delta g(w))''}{(B_\delta g(w))'} - \frac{\lambda w^2 (B_\delta g(w))'' + w (B_\delta g(w))'}{\lambda w (B_\delta g(w))'} + (1 - \lambda)B_\delta g(w) = \beta + (1 - \beta)q(w),
\]

where \(g = f^{-1} \) and the functions \(p, q \in \mathcal{P} \) have the series expansions given by (7) and (8), respectively. Thus, by comparing the corresponding coefficients in (21) and (22), we get

\[
(2 - \lambda)e^{-\delta}a_2 = (1 - \beta)p_1,
\]

\[
2\delta(3 - 2\lambda)e^{-2\delta}a_3 - \left(5 - (\lambda + 1)^2\right)e^{-2\delta}a_2^2 = (1 - \beta)p_2,
\]

\[
-(2 - \lambda)e^{-\delta}a_2 = (1 - \beta)q_1
\]

and

\[
2\delta(3 - 2\lambda)e^{-2\delta} (2a_2^2 - a_3) - \left(5 - (\lambda + 1)^2\right)e^{-2\delta}a_2^2 = (1 - \beta)q_2.
\]

We now find from (23) and (25) that

\[
p_1 = -q_1
\]

and

\[
2 (2 - \lambda)^2 e^{-2\delta}a_2^2 = (1 - \beta)^2 (p_1^2 + q_1^2).
\]

By adding (24) and (26), we obtain

\[
2e^{-2\delta} \left[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5 \right] a_2^2 = (1 - \beta)(p_2 + q_2).
\]
Consequently, we have
\[a_2^2 = \frac{(1 - \beta)(p_2 + q_2)}{2e^{-2\delta}[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5]}. \]

Next, by applying the Lemma 1 for the coefficients \(p_2 \) and \(q_2 \), we deduce that
\[|a_2| \leq \sqrt{\frac{2(1 - \beta)}{e^{-2\delta}[(\lambda + 1)^2 + 2\delta(3 - 2\lambda) - 5]}}. \]

In order to determinate the bound on \(|a_3| \), by subtracting (26) from (24), we get
\[4\delta(3 - 2\lambda)e^{-2\delta}(a_3 - a_2^2) = (1 - \beta)(p_2 - q_2) \]

or, equivalently,
\[a_3 = a_2^2 + \frac{(1 - \beta)(p_2 - q_2)}{4\delta(3 - 2\lambda)e^{-2\delta}}. \]

Substituting the value of \(a_2^2 \) from (27) into (28), it follows that
\[a_3 = \frac{(1 - \beta)^2(p_1^2 + q_1^2)}{2(2 - \lambda)^2e^{-2\delta}} + \frac{(1 - \beta)(p_2 - q_2)}{4\delta(3 - 2\lambda)e^{-2\delta}}. \]

Finally, by applying the Lemma 1 once again for the coefficients \(p_1, p_2, q_1 \) and \(q_2 \), we get
\[|a_3| \leq \frac{4(1 - \beta)^2e^{2\delta}}{(2 - \lambda)^2} + \frac{(1 - \beta)e^{2\delta}}{\delta(3 - 2\lambda)}. \]

We have thus completed the proof of Theorem 2.

Putting \(\lambda = 1 \) in Theorem 2, we state:

Corollary 3. For \(0 \leq \beta < 1 \) and \(0 < \delta \leq 1 \), let \(f \in S^*_\Sigma(\delta; \beta) \) be given by (1). Then
\[|a_2| \leq \sqrt{\frac{2(1 - \beta)}{(2\delta - 1)e^{-2\delta}}}, \]

and
\[|a_3| \leq 4(1 - \beta)^2e^{2\delta} + \frac{1}{\delta}(1 - \beta)e^{2\delta}. \]

Putting \(\lambda = 0 \) in Theorem 2, we state:

Corollary 4. For \(0 \leq \beta < 1 \) and \(0 < \delta \leq 1 \), let \(f \in K^*_\Sigma(\delta; \beta) \) be given by (1). Then
\[|a_2| \leq \sqrt{\frac{1 - \beta}{(3\delta - 2)e^{-2\delta}}}, \]

and
\[|a_3| \leq (1 - \beta)^2e^{2\delta} + \frac{1}{3\delta}(1 - \beta)e^{2\delta}. \]
4. ACKNOWLEDGMENTS

The authors would like to thank the referee(s) for their helpful comments and suggestions.

REFERENCES

[1] C. Abirami, N. Magesh, J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by Horadam polynomials, Abstract and Applied Analysis, (2020), Article ID: 7391058, 1–8.

[2] E. A. Adegani, S. Bulut, A. A. Zireh, Coefficient estimates for a subclass of analytic bi-univalent functions, Bulletin of the Korean Mathematical Society, 55 (2) (2018), 405–413.

[3] A. G. Alamoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with Horadam polynomials, Malaya Journal of Matematik, 7 (2019), 618–624.

[4] A. G. Alamoush, Coefficient estimates for a new subclasses of lambda-pseudo bi-univalent functions with respect to symmetrical points associated with the Horadam Polynomials, Turkish Journal of Mathematics, 3 (2019), 2865–2875.

[5] A. G. Alamoush, On a subclass of bi-univalent functions associated to Horadam polynomials, International Journal of Open Problems in Complex Analysis, 12 (2020), 58–66.

[6] A. G. Alamoush, On subclass of analytic bi-close-to-convex functions, International Journal of Open Problems in Complex Analysis, 13 (2021), 10–18.

[7] S. Bulut, A. K. Wanas, Coefficient estimates for families of bi-univalent functions defined by Ruscheweyh derivative operator, Mathematica Moravica, 25 (1) (2021), 71–80.

[8] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[9] H. Ö. Güney, G. Murugusundaramoorthy, J. Sokól, Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Universitatis Sapientiae Mathematica, 10 (2018), 70–84.

[10] N. Magesh, S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions, Afrika Matematika, 29 (1-2) (2018), 203–209.

[11] B. Şeker, On a new subclass of bi-univalent functions defined by using Salagean operator, Turkish Journal of Mathematics, 42 (2018), 2891–2896.

[12] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iranian Journal of Science and Technology, Transactions A: Science, 44 (2020), 327–344.

[13] H. M. Srivastava, Ş. Altinkaya, S. Yalçın, Certain subclasses of bi-univalent functions associated with the Horadam polynomials, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), 1873–1879.
[14] H. M. Srivastava, S. S. Eker, S. G. Hamidi, J. M. Jahangiri, *Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator*, Bulletin of the Iranian Mathematical Society, 44 (1) (2018), 149–157.

[15] H. M. Srivastava, S. M. El-Deeb, *Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution*, Symmetry, 13 (2021), Article ID: 1023, 1–15.

[16] H. M. Srivastava, S. Gaboury, F. Ghanim, *Coefficient estimates for some general subclasses of analytic and bi-univalent functions*, Afrika Matematika, 28 (2017), 693–706.

[17] H. M. Srivastava, S. Gaboury, F. Ghanim, *Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type*, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas (RACSAM), 112 (2018), 1157–1168.

[18] H. M. Srivastava, A. K. Mishra, P. Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Applied Mathematics Letters, 23 (2010), 1188–1192.

[19] H. M. Srivastava, A. Motamednezhad, E. A. Adegani, *Faber polynomial coefficient estimates for bi-univalent functions defined by using differential subordination and a certain fractional derivative operator*, Mathematics, 8 (2020), Article ID: 172, 1–12.

[20] H. M. Srivastava, A. Motamednezhad, S. Salehian, *Coefficients of a comprehensive subclass of meromorphic bi-univalent functions associated with the Faber polynomial expansion*, Axioms, 10 (2021), Article ID: 27, 1–13.

[21] H. M. Srivastava, F. M. Sakar, H. Ö. Güney, *Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination*, Filomat, 32 (2018), 1313–1322.

[22] H. M. Srivastava, A. K. Wanas, *Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions defined by a linear combination*, Kyungpook Mathematical Journal, 59 (3) (2019), 493–503.

[23] H. M. Srivastava, A. K. Wanas, G. Murugusundaramoorthy, *Certain family of bi-univalent functions associated with Pascal distribution series based on Horadam polynomials*, Surveys in Mathematics and its Applications, 16 (2021), 193–205.

[24] S. R. Swamy, A. K. Wanas, Y. Sailaja, *Some special families of holomorphic and Sălăgean type bi-univalent functions associated with (m,n)-Lucas polynomials*, Communications in Mathematics and Applications, 11 (4) (2020), 563–574.

[25] A. K. Wanas, *Applications of (M,N)-Lucas polynomials for holomorphic and bi-univalent functions*, Filomat, 34 (10) (2020), 3361–3368.

[26] A. K. Wanas, *Coefficient estimates for Bazilevič functions of bi-prestarlike functions*, Miskolc Mathematical Notes, 21 (2) (2020), 1031–1040.

[27] A. K. Wanas, *Applications of Chebyshev polynomials on λ-pseudo bi-starlike and λ-pseudo bi-convex functions with respect to symmetrical points*, TWMS Journal of Applied and Engineering Mathematics, 10 (3) (2020), 568–573.

[28] A. K. Wanas, A. L. Alina, *Applications of Horadam polynomials on Bazilevič bi-univalent function satisfying subordinate conditions*, Journal of Physics: Conference Series, 1294 (2019), 1–6.
[29] A. K. Wanas, J. A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline Journal of Mathematical Sciences, 4 (2020), 71–82.

[30] A. K. Wanas, A. H. Majeed, On subclasses of analytic and m-fold symmetric bi-univalent functions, Iranian Journal of Mathematical Sciences and Informatics, 15 (2) (2020), 51–60.

[31] A. K. Wanas, H. Tang, Initial Coefficient estimates for a classes of m-fold symmetric bi-univalent functions involving Mittag-Leffler function, Mathematica Moravica, 24 (2) (2020), 51–61.

Abbas Kareem Wanas
Department of Mathematics
College of Science
University of Al-Qadisiyah
Iraq
E-mail address: abbas.kareem.w@qu.edu.iq

Adnan Ghazy Al Amoush
Faculty of Science
Taibah University
Saudi Arabia
E-mail address: adnan_omoush@yahoo.com