SUPPLEMENTARY MATERIAL

Three new phenylacetamide glycosides from *Dracocephalum tanguticum* Maxim
and their anti-hyperglycemic activity

En-Guang Ma, Hai-Yan Wu, Li-Jiao Hu, Min Wei, Lin-Yun Mou, Gan-Peng Li*

Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China.

Correspondence
Prof. Gan-Peng Li, Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, 650500, P.R.China. E-mail addresses: ganpeng_li@sina.com, Tel.: +86 0871 65936602

Acknowledgement
This work was financially supported by Technology Center, China Tobacco Yunnan Industrial Co., Ltd [grant number JSZX20151008-52].

ABSTRACT

Three new phenylacetamide glycosides (1–3) together with one known phenylacetamide glycoside (4) and two known flavonoid glycosides (5–6) were isolated from whole plants of *Dracocephalum tanguticum*. The structure of all compounds were elucidated based on spectroscopic data analysis and comparison with data reported in related literature. Compounds (1–3) were evaluated for their anti-hyperglycemic and anti-fungal (*Candida albicans*) activities, the results revealed that all of them showed moderate activity with 3T3-L1 adipocytes glucose consumption rate of 20.80±1.47%, 21.48±2.44%, and 21.57±1.35%, respectively at the final concentration of 25 μM. However, none of them showed obvious *Candida albicans* inhibitory activity.

Keywords; *Dracocephalum tanguticum*, phenylacetamide glycosides, anti-hyperglycemic activity
position	\(\delta_C \) (mult.)	\(\delta_H \) (mult, \(J \), Hz)	\(\delta_C \) (mult.)	\(\delta_H \) (mult, \(J \), Hz)	\(\delta_C \) (mult.)	\(\delta_H \) (mult, \(J \), Hz)
1	134.3 s	134.5 s	134.4 s	134.4 s	134.4 s	134.4 s
2,6	130.8 d	7.16 (d) 8.3	130.8 d	7.19 (d) 8.7	130.8 d	7.05 (d) 8.6
3,5	117.5 d	6.85 (d) 8.4	117.7 d	7.03 (d) 8.7	117.6 d	6.97 (d) 8.7
4	155.9 s	156.2 s				
7	35.7 t	2.88, overlap	35.7 t	2.82 (t) 7.3	35.7 t	2.65 (t) 7.2
8	42.8 t	3.59 (t) 7.4	42.3 t	3.51 (t) 7.3	42.1 t	3.30, overlap
1'	135.8 s	136.3 s	132.8 s	132.8 s	132.8 s	132.8 s
2',6'	128.2 d	7.77 (d) 7.5	128.8 d	7.53 (d) 8.5	130.4 d	7.01 (d) 8.6
3',5'	129.6 d	7.43 (d) 7.4	129.9 d	7.36 (d) 8.5	116.2 d	6.70 (d) 8.4
4'	132.6 d	7.50 (d) 7.1	130.9 d	7.36 m	156.8 s	2.88, overlap
7'	170.3 s	141.7 d	7.50 (d) 15.8	32.2 t	2.78 (t) 7.5	
8'	121.8 d	6.56 (d) 15.8	39.3 t	2.38 (t) 7.6	175.4 s	2.38 (t) 7.6
9'	168.6 s	175.4 s				
1''	98.3 d	5.60 (d) 1.7	99.7 d	5.43 (d) 1.7	99.6 s	5.40 (d) 1.5
2''	82.8 d	4.00, overlap	79.7 d	4.13 (dd) 9.8, 3.3	82.7 d	3.94 (dd) 9.1, 3.2
3''	80.3 d	4.41, overlap	71.8 d	4.31 (dd) 3.2, 1.9	71.4 d	4.29 (dd) 3.0, 1.9
4''	72.2 d	3.32, overlap	73.7 d	5.14 (t) 9.9	72.7 d	3.62, overlap
5''	70.1 d	3.64, overlap	68.5 d	3.85, overlap	70.2 d	3.68, overlap
6''	18.1 q	1.19 (d) 4.8	17.9 q	1.10 (d) 6.3	18.1 q	1.23 (d) 6.0
1'''	105.7 d	4.52 (d) 7.6	106.2 d	4.47 (d) 7.8	105.8 d	4.60 (d) 7.6
2'''	75.33 d	3.21, overlap	74.8 d	3.22, overlap	75.4 d	3.32, overlap
3'''	77.9 d	3.27, overlap	77.9 d	3.34, overlap	77.6 d	3.40, overlap
4'''	70.7 d	3.34, overlap	71.1 d	3.35, overlap	71.0 d	3.38, overlap
5'''	77.5 d	2.89, overlap	77.7 d	3.30, overlap	77.7 d	3.33, overlap
6''''a	61.8 t	3.49, overlap	62.3 t	3.83, overlap	62.2 t	3.85 (dd) 9.3, 2.4
6''''b	3.38, overlap	3.73 (dd) 11.9, 4.6	3.73 (dd) 10.6, 3.1			
1''''	106.4 d	4.64 (d) 7.7	21.2 q	2.09 (s)	3.73 (dd) 10.6, 3.1	
2''''	75.3 d	3.36, overlap	172.6 s			
3''''	77.6 d	3.46, overlap				
4''''	72.3 d	3.63, overlap				
5''''	75.6 d	3.76, overlap				
6''''''a	66.1 t	4.70 (d) 11.2				
6''''''b	4.40, overlap					
1''''''	130.9 s					
2''''''	130.5 d	7.96 (d) 7.7				
3''''''	129.7 d	7.08 (t) 7.7				
5''''''	134.3 d	7.24 (t) 7.4				

Table S1. \(^{1}H\) and \(^{13}C\) NMR data of 1–3 in Methanol-\(d_4\) (400 and 100 MHz, \(J\) in Hz)
Table S2. Compounds (1–3) glucose consumption rate

Sample	Final concentration (µM)	Glucose consumption rate (%)
insulin	0.1	27.45±1.63
1	25	20.80±1.47
2	25	21.48±2.44
3	25	21.57±1.35

Insulin was used as positive control.

Figure 1. The structures of compounds 1–6.
Supplemental file (Figure) Legend

Figure S1. 1H NMR spectrum of compound 1 recorded in CD$_3$OD at 400 MHz

Figure S2. 13C NMR spectrum of compound 1 recorded in CD$_3$OD at 100 MHz

Figure S3. Lift: 13C NMR spectrum of compound 1 benzene ring enlarge
Right: 13C NMR spectrum of compound 1 glycoside enlarge

Figure S4. HSQC spectrum of compound 1 recorded in CD$_3$OD at 500 MHz

Figure S5. HMBC spectrum of compound 1 recorded in CD$_3$OD at 500 MHz

Figure S6. COSY spectrum of compound 1 recorded in CD$_3$OD at 500 MHz

Figure S7. UV spectrum of compound 1 recorded in MeOH

Figure S8. IR spectrum of compound 1

Figure S9. HR-ESI-MS spectrum of compound 1

Figure S10. HPLC analysis of monosaccharide derivative of compound 1

Figure S11. Key HMBC correlations of compound 1.

Figure S12. 1H NMR spectrum of compound 2 recorded in CD$_3$OD at 400 MHz

Figure S13. 13C NMR spectrum of compound 2 recorded in CD$_3$OD at 100 MHz

Figure S14. HSQC spectrum of compound 2 recorded in CD$_3$OD at 500 MHz

Figure S15. HMBC spectrum of compound 2 recorded in CD$_3$OD at 500 MHz

Figure S16. HR- ESI-MS spectrum of compound 2

Figure S17. Key HMBC correlations of compound 2.

Figure S18. 1H NMR spectrum of compound 3 recorded in CD$_3$OD at 400 MHz

Figure S19. 13C NMR spectrum of compound 3 recorded in CD$_3$OD at 100 MHz

Figure S20. HR-ESI-MS spectrum of compound 3
Figure S1. 1H NMR spectrum of compound 1 recorded in CD$_3$OD at 400 MHz.

Figure S2. 13C NMR spectrum of compound 1 recorded in CD$_3$OD at 100 MHz.
Figure S3. Lift: 13C NMR spectrum of compound 1 benzene ring enlarge.

Right: 13C NMR spectrum of compound 1 glycoside enlarge.

Figure S4. HSQC spectrum of compound 1 recorded in CD$_3$OD at 500 MHz.
Figure S5. HMBC spectrum of compound 1 recorded in CD$_3$OD at 500 MHz.

Figure S6. COSY spectrum of compound 1 recorded in CD$_3$OD at 500 MHz.
Figure S7. UV spectrum of compound 1 recorded in MeOH.

Figure S8. IR spectrum of compound 1.
Figure S9. HR-ESI-MS spectrum of compound 1.

Figure S10. HPLC analysis of monosaccharide derivative of compound 1.
Figure S11. Key HMBC (→) correlations compound 1.
Figure S12. 1H NMR spectrum of compound 2 recorded in CD$_3$OD at 400 MHz.

Figure S13. 13C NMR spectrum of compound 2 recorded in CD$_3$OD at 100 MHz.
Figure S14. HSQC spectrum of compound 2 recorded in CD$_3$OD at 500 MHz.

Figure S15. HMBC spectrum of compound 2 recorded in CD$_3$OD at 500 MHz.
Figure S16. HR-ESI-MS spectrum of compound 2.

Figure S17. Key HMBC (→) correlations of compound 2.
Figure S18. 1H NMR spectrum of compound 3 recorded in CD$_3$OD at 400 MHz.
Figure S19. 13C NMR spectrum of compound 3 recorded in CD$_3$OD at 100 MHz.

Figure S20. HR-ESI-MS spectrum of compound 3.