Idiopathic Spinal Cord Herniation Associated With a Thoracic Disc Herniation

Case Report, Surgical Video, and Literature Review

Pal S. Randhawa, MD, Christopher Roark, MD, David Case, MD, and Joshua Seinfeld, MD

Purpose: The aim of this publication is to present a case of idiopathic spinal cord herniation (ISCH) associated with a transdural disk herniation, demonstrate an operative technique used to treat this condition and provide an updated review the literature.

Background Context: ISCH is an infrequent condition that can cause progressive myelopathy leading to severe neurological dysfunction. This condition is characterized by ventral displacement of the spinal cord across a defect in the dura, either congenital or acquired, resulting in vascular compromise and adhesion that subsequently causes injury to the spinal cord. We present the management of such a patient, in addition to a review of the literature regarding management of ISCH.

Methods: This patient underwent surgery using the dural graft sling technique for repair of the dural defect and restoration of normal spinal cord position within the thecal sac. A review of the literature revealed a total of 171 patients supplemented by our 1 patient, which were then analyzed.

Results: The majority of patients, treated with a variety of surgical techniques, experienced improvements in symptomatology. Our patient experienced significant improvement in symptomatology.

Conclusions: Although ISCH is a rare clinical condition that causes myelopathy, patients managed with surgery generally, though not universally, have a favorable neurological outcome. The associated surgical technique video demonstrates the dural sling technique for the treatment of this rare disorder.

Key Words: idiopathic spinal cord herniation, transdural herniated disk fragment, dural defect, dural graft sling, surgical repair

Clin Spine Surg 2020;33:222–229

Idiopathic spinal cord herniation (ISCH) is an infrequent condition that can cause progressive myelopathy leading to severe neurological dysfunction.1–6 This condition is characterized by ventral displacement of the spinal cord across a defect in the dura, either congenital or acquired, resulting in vascular compromise and adhesion that subsequently results in injury to the spinal cord.5,6 Since its first description in the English literature by Wortzman and colleagues in 1974, ISCH has slowly become a more readily diagnosed entity with the availability of magnetic resonance imaging (MRI) along with increased awareness in the associated signs and symptoms.7–18

Here we describe a case of ISCH, which provides 2 valuable additions to the currently available literature on this disorder. First, this case demonstrates the presence of a transdural herniated disk fragment, a previously hypothesized etiology of the dural defect present with ISCH.5,6 Second, a video demonstrating the dural graft sling technique for repair of the dural defect is presented to assist surgeons not familiar with the surgical management of this rare entity.

CLINICAL CASE AND OPERATIVE TECHNIQUE

Clinical Presentation
A 50-year-old male with a history of multiple lumbar spine surgeries presented with new-onset and progressive myelopathy. MRIs of his spinal axis (Fig. 1A) demonstrated ventral displacement of the spinal cord, in the midthoracic region, in the pattern characteristic of ISCH. A computed tomography (CT) myelogram (Fig. 1B) was also consistent with this diagnosis. Given the neurological dysfunction present, the decision was made to perform a laminectomy and intradural exploration to repair the suspected dural defect.

Operative Technique
Following induction of general anesthesia and prone positioning on a radiolucent Jackson Frame, localizing fluoroscopy was performed to determine the level of interest. A complete thoracic laminectomy centered primarily at T (thoracic) 7 was carried out in the standard fashion, with partial laminectomies also performed at the inferior portion of T6, and superior T8. Ultrasound was used before performing a durotomy to evaluate the spinal cord position.

Received for publication November 7, 2018; accepted April 19, 2019.
From the CU Department of Neurosurgery, University of Colorado, Aurora, CO.
The authors declare no conflict of interest.
Reprints: Pal S. Randhawa, MD, CU Department of Neurosurgery, University of Colorado, 12631 East 17th Avenue, C307, Aurora, CO 80045 (e-mail: pal.randhawa@ucdenver.edu).
Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website, www.jspinaldisorders.com.
Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
This confirmed localization with a ventral displacement of the spinal cord at the center of our dural exposure. After opening and retracting the dura with tacking sutures, microdissection around the spinal cord was performed demonstrating a focal protrusion of the spinal cord through a ventral dural defect that appeared partial thickness in nature. The dentate ligaments were transected bilaterally to allow manipulation and gentle rotation of the spinal cord. Once the spinal cord was mobilized a small desiccated herniated disk fragment was noted at the base of the dural defect, which was resected. A strip of latex surgical glove was cut and passed under the spinal cord. This was used to elevate the cord out of the defect. A small Duragen Plus (Integra LifeSciences Co., Plainsboro, NJ) pledget was placed in the defect after which a thin Gore-tex (WL Gore & Associates Inc., Flagstaff, AZ) pericardial patch was then cut to the appropriate size and positioned under the spinal cord to prevent it from reherniating into the defect. The graft was then sutured to the sides of the thecal sac before closing the dura. This technique is demonstrated in the Supplemental Video (Supplemental Digital Content 1, http://links.lww.com/CLINSPINE/A117). The wound was closed in layers with absorbable sutures.

The patient’s postoperative course was uneventful and he was discharged home on postoperative day 3. His myelopathy improved rapidly over the course of the next several weeks and a postoperative MRI showed the spinal cord positioned centrally within the thecal sac (Fig. 1C). At last follow-up, his neurological symptoms have resolved though he continues to have mild nondisabling back pain.

DISCUSSION

ISCH is a rare cause of myelopathy, that occurs secondary to an anterior dural defect which allows the spinal cord to descend into the resulting cavity. The first report of ISCH was by Wortzman and colleagues in 1974. Since that time, the number of published cases have markedly increased, especially with the advent of MRI. In general, ISCH most frequently occurs in the thoracic spine. The unique features of the thoracic spine, which may predispose to this condition, compared with other spinal segments, include the anterior positioning of the thoracic spinal cord, the kyphosis of the thoracic spine, and the anterior physiologic movements of the spinal cord due to cardiac, pulmonary, and flexion and extension movements.

Etiopathogenesis

ISCH most commonly presents with pathology at the T4–T5 level, in women (67/33, female to male ratio), during the sixth decade of life (with a range of 22–78 y).

Although the etiology remains debatable, there are 3 types of defects described by Aizawa et al which include: a pseudomeningocele or epidural cyst, a full-thickness dural defect, and a defect in the layer of duplicated ventral dura. Any clinical or historic injury may precipitate a tear in the dura that grows over time. Alternatively, it has also been proposed that a herniated and calcified disk abutting the dura may initiate thinning, erosion, and eventual compromise or rupture of the dura. In this patient, it was noted that the dura appeared, in fact, to be duplicated and a herniated disk fragment was noted within the ventral dural defect perhaps giving credence to this potential mechanism of dural defect formation.

Clinical Sequelae

Thoracic myelopathy in a Brown-Séquard syndrome pattern is the most frequently cited presentation if ISCH. Additional manifestations include the full range of neurological signs and symptoms that one might expect from thoracic myelopathy. These signs and symptoms can include gait dysfunction, sphincter, and sexual disturbances, progressive paraparesis, and sensory loss.
References	Age (y)	Sex	Clinical Symptoms	Duration (y)	Spinal Level	Treatment or Repair Procedure	Clinical Outcomes
Wortzman et al[20]	63	Male	BS	1.5	T7	Direct suture closure	W-IM
Masuzawa et al[39]	36	Male	BS	1	T4/T5	Graft	IM, IS
Oe et al[30]	61	Male	BS	NA	T4/T5	Defect widening	Same
Isu et al[31]	43	Female	BS	1	T5/T6	Arachnoid cyst resection	IS
Tromnier et al[28]	45	Female	BS	1.5	T2/T3	Arachnoid cyst resection	IS
Nakazawa et al[42]	43	Female	BS	5	T2	Defect widening	IM+S
White and Firth[29]	61	Female	BS	1.5	T4	Graft	Same
Kumar et al[30]	38	Male	BS	3	T7/T8	Direct suture closure	IM+S
Borges et al[6]	68	Female	BS	12	T7	Direct suture closure	IM+S
Isu et al[41]	43	Female	BS	8	T2/T3	Direct suture closure	IM
Tronnier et al[28]	45	Female	BS	10	T7	Direct suture closure	IM
Nakazawa et al[42]	61	Male	BS	3	T4/T5	Defect widening	IM
Hausmann and Moseley[44]	56	Female	BS	8	T6	Direct suture closure	Same
Nakaj et al[49]	57	Male	BS	10	T6/T7	Hernia not confirmed surgically	Same
Miyake et al[50]	49	Female	SP	3	T4/T5	Hernia not confirmed surgically	Same
Maita et al[51]	45	Female	BS	3	T3/T4	Defect widening	I
Uchino et al[26]	71	Female	BS	2	T4/T5	Direct suture closure	Same
Baur et al[48]	66	Female	BS	7	T10	Direct suture closure	IM+S
Chong et al[6]	56	Female	BS	4	T4/T5	Patch	Same
Dix et al[4]	44	Male	BS	5	T6	Direct closure+biopsy	W-I
Brugier et al[23]	70	Male	BS	0.5	T5/T6	Direct suture closure	IS
Marshman et al[52]	55	Female	BS—SP	6	T7/T8	Hernia not confirmed surgically	Same
Abe et al[53]	58	Male	BS	4	T7/T8	Defect widening	IM
Tekkšk et al[54]	49	Female	BS	3	T3/T4	Patch	IM
Wada et al[4]	59	Male	BS	4	T4/T5	Defect widening	IM
Pereira et al[55]	52	Male	BS	6	T5/T6	Direct suture closure	IM
Miyagushi et al[1]	54	Female	BS	2	T3/T4	Hernia not confirmed surgically	IM+S
Morkoff et al[57]	56	Female	BS	NA	T	Hernia not confirmed surgically	Same
Egushi et al[58]	54	Female	BS	5	T8/T9	Hernia not confirmed surgically	Same
Aizawa et al[35]	44	Male	BS	5	T4	Hernia not confirmed surgically	Same
Watanabe et al[35]	43	Female	BS	3	T3	Hernia not confirmed surgically	Same

(Continued)
TABLE 1. Summary of Reported Cases of Spinal Cord Herniation in the Literature 1974–2017 (continued)

References	Age (y)	Sex	Clinical Symptoms	Duration (y)	Spinal Level	Treatment or Repair Procedure	Clinical Outcomes
Cellerini et al59	47	Male	SP	3	T3	Defect widening	I
Massicotte et al2	63	Male	BS	14	T3/T6	Observation	Same
Massicotte et al2	59	Female	BS	6	T4/T5	Observation	Same
Massicotte et al2	33	Female	BS	2	T7/T8	Observation	Same
Massicotte et al2	57	Female	BS	8	T6	Patch	Same
Massicotte et al2	27	Male	BS	1	T9	Patch	IM
Massicotte et al2	46	Female	BS	2	T4	Observation	Same
Giuseppe et al60	28	Female	BS	5	T6	Patch	W-I
Massicotte et al2	64	Male	SP	4	T8	Patch	W
Najjar et al49	50	Male	Numbness	6	T4	Observation	Same
Massicotte et al2	39	Female	BS	2	T7/T8	Observation	Same
Massicotte et al2	50	Male	BS	1	T9	Patch	IM
Massicotte et al2	44	Female	BS	8	T8/T9	Patch	W-IM
Massicotte et al2	32	Male	SP	1	T7	Primary closure	IM
Massicotte et al2	36	Female	BS	1.5	T2-T3	Patch	IM
Massicotte et al2	50	Female	SP	1	T7-T8	Patch	IM
Massicotte et al2	50	Male	BS	1	T6-T7		
Elleg er et al65	59	Female	BS	2.5	T2	NS	IM
Massicotte et al2	59	Female	BS	1.5	T6	NS	IM
Massicotte et al2	52	Male	BS	3	T4-T5	Patch	Same
Massicotte et al2	54	Female	BS	7	T2-T3	Patch	IM
Massicotte et al2	60	Female	BS	2	T2-T3	Patch	IM
Massicotte et al2	59	Female	BS	1	T5-T6	Patch	IM
Massicotte et al2	34	Male	BS	5	T7-T8	Patch	Same
Massicotte et al2	72	Male	BS	5	T4-T5	Sling	Same
Morley et al58	28	Female	BS	2	T5-T6	Patch/graft	IM
Saito et al69	68	Female	BS	32	T6-T7	Defect widening	IM
Saito et al24	57	Male	BS	14	T2-T3	Patch	IM
Arts et al60	58	Female	SP	5	T7-T8	Sling	IM
Akaza et al71	56	Male	BS	5	T2-T3	NS	IM
Kim et al72	38	Female	BS	3	T4-T5	Patch	IM
Senturk et al73	38	Female	SL	0.5	T4	No treatment	Stable
Ulil et al38	50	Male	BS	2	T2-T3	Graft/patch	IM
Hassler et al75	51	Female	BS	2	T5-T6	Patch	IS
Hassler et al75	49	Female	BS	3	T5-T6	Patch	W
Hassler et al75	46	Male	SP	12	T2	Patch	Same
Hassler et al75	50	Male	BS	4	T4-T5	Patch	Same
Hassler et al75	52	Female	SP	5	T6-T7	Patch	IS
Hassler et al75	37	Female	BS	4	T4-T5	Patch	Same
Hassler et al75	54	Female	SP	6	T4-T5	Patch	IM
Hassler et al75	43	Female	BS	1	T6-T7	Patch	IM
Hassler et al75	54	Female	BS	0.5	T7-T8	Patch	IM
Hassler et al75	41	Male	SP	4	T3	Patch	IM
Hassler et al75	59	Female	BS	5	T8-T9	Patch	IM
Hassler et al75	51	Male	BS	2	T2-T3	Patch	IM
Hassler et al75	47	Female	BS	3	T6-T7	Sling	IM
Hassler et al75	42	Female	BS	5	T5-T6	Sling/sleeve	IM
Hassler et al75	68	Male	BS	5	T7-T8	Sling/sleeve	IM
Hassler et al75	72	Male	SL	2	T6	Defect widening	W
Hassler et al75	49	Male	SL	1	T4-T5	Defect widening	Same
Hassler et al75	62	Female	SL	10	T6	Defect widening	IM
Hassler et al75	69	Female	SL	1	T4-T5	Defect widening	Same
Hassler et al75	48	Female	BS	4	T3	Defect widening	IM
Hassler et al75	58	Male	BS	12	T7-T8	Defect widening	IM
Hassler et al75	56	Female	BS	2	T4-T5	Defect widening	IM
Hassler et al75	65	Female	SL	7	T2-T3	Defect widening	IM
Hassler et al75	39	Female	SL	15	T3-T4	Defect widening	IM
Hassler et al75	75	Male	BS	5	T4-T5	Defect widening	IM
Hassler et al75	55	Male	SL	2	T4-T5	Defect widening	IM

(Continued)
Imaging Workup

Currently, MRI is the most common imaging modality utilized in making the diagnosis of ISCH. Specifically, one can note on sagittal MRI the ventral angulation of the thoracic spinal cord along with enlargement subarachnoid space behind, giving it a “delta” configuration. One should also be cognizant of posterior compressive arachnoid cysts, which can appear similar to ISCH, and be better defined by phase-contrast MRI which allows for visualization of the dorsal pulsatile cerebrospinal fluid flow. Alternatively a CT myelogram can be performed to support the diagnosis of ISCH, by demonstrating ventral displacement of the spinal cord without a contrast block or defect that could indicate the presence of an arachnoid cyst which does not communicate with the subarachnoid space. A CT myelogram may also be a useful alternative in those with contraindications to MRI.2,23,24

Treatment

Surgical management is recommended in symptomatic patients with ISCH to prevent further neurological deterioration. Three surgical techniques have been described: use of primary sutures to close the dural defect,6,25–27 use of a dural graft sling to repair the defect3,23,28–34 and enlargement of the dural defect.1,22,35,36

References	Age (y)	Sex	Clinical Symptoms	Duration (y)	Spinal Level	Treatment or Repair Procedure	Clinical Outcomes
Sasani et al21	49	Female	BS	8	T1–T2	Defect widening	IM
Kwong et al80	56	Female	SL	3	T3	No treatment	Stable
Zairi et al33	41	Female	M	2	T8	Sling	IM
Prada et al32	50	Female	BS, M	3	T3–T4	Patch	IM
Kwong et al80	37	Female	BS, M	3	T4–T5	Patch	Same
31	Male	SL	5	T5	Patch	IM	
38	Female	SL	2	T2–T3	Patch	IM	
53	Female	SL	3	T6–T7	Patch	Same	
58	Male	SL	2	T8	Patch	Same	
46	Male	M	7	T8	Patch	Same	
71	Female	M	3	T8	Patch	Same	
26	Female	M	2	T6	Patch	IM	
69	Male	M	2	T8	Patch	Same	
35	Female	M	1	T8	Patch	IM	
51	Male	BS, M	1	T7	Patch	IM	
De Souza et al14	66	Female	BS	7	T4	Patch	IM
Yamamoto et al83	60	Female	BS	15	T5–T6	Defect widening	IM
Berg-Johnsen et al84	44	Female	M	3	T4–T5	Patch	IM
63	Female	M	5	T5–T6	Patch	Same	
75	Male	BS	4	T4–T5	Patch	IM	
58	Female	M	4	T4–T5	Patch	IM	
57	Female	BS	6	T4	Patch	IM	
42	Female	BS	2	T6–T7	Sling	Same	
60	Female	BS	10	T7–T8	Sling	IM	
Hawasi et al85	32	Female	BS	1	T6–T7	Sling	IM
44	Female	BS	1	T5–T6	Sling	IM	
58	Male	BS	3	T4–T6	Sling	IM	
36	Female	BS	0.25	T6–T7	Sling	IM	
44	Female	BS	0.33	T1–T2	Sling	IM	
58	Female	BS	7	T5–T6	Defect widening	IM	
Carroll et al86	58	Male	BS	3	T4–T6	Sling	IM
Ju et al87	33	Female	BS	6	T3–T4	Patch	IM
Samuel et al88	58	Male	SL	1	T6–T7	Observation	Resolution
Kumar et al89	58	Male	BS	0.25	T7–T8	Dural graft	IM
Delgado-López et al90	33	Female	BS	1.5	T7–T8	Titanium microstaples	IM
Alkhamesa et al91	50	Female	BS	3	T3	Patch	IM
Payer et al92	60	Male	SL	2	T5–T6	Patch	Stable
Gkekas et al93	55	Male	BS	5	T5–T6	Defect widening	IM
Martinez-del-Campo et al13	61	Male	M	0.5	T3–T4	Dural graft	IM
Current study	50	Male	M	1	T7	Dural graft sling	IM

171 patients Male: 61

BS indicates Brown-Séquard syndrome; I, improved; IM, improved motor function; IM+S, improved motor and sensory; IS, improved sensation; M, myelopathy; NA, not available; NS, not specified; SL, sensory loss; SP, spastic paraparesis; W, worse; W-I (M or S), worse than improved (motor or sensory).
Surgical Outcomes

A meta-analysis by Groen et al.\(^37\) looked at surgical results of 121 ISCH patients. They demonstrated that 73% had neurological improvement, 20% being unchanged, and 7% with a neurological decline. A more recent review of the literature by Summers et al.\(^38\) showed that 74% of a patient diagnosed (119/159) with ISCH that underwent surgery demonstrated clinical improvement postoperatively. Overall, 18% showed no clinical changes, and 8% demonstrated worsening postoperative exam findings.\(^38\) Subsequent case reports demonstrate a similar theme of improvement with surgical management. These reports spanning from 1974 to 2015 are summarized in Table 1. Unfortunately, detailed reporting of the techniques employed in individual cases has not uniformly been carried out. Therefore, while all 3 of the described surgical approaches to ISCH appear relatively safe and effective, drawing conclusions regarding the optimal mode of surgical repair is not possible at this time.

CONCLUSIONS

Although ISCH is a rare clinical condition that causes thoracic myelopathy, patients managed with surgery generally, though not universally, have a favorable neurological outcome. The case presented demonstrates the transdural extension of a herniated thoracic disk as a potential cause for dural defect formation. The associated surgical technique video demonstrates the dural sling technique for the treatment of this rare disorder.

REFERENCES

1. Miyaguchi M, Nakamura H, Shikudo M, et al. Idiopathic spinal cord herniation associated with intervertebral disc extrusion: a case report and review of the literature. *Spine (Phila Pa 1976).* 2001;26:1090–1094.
2. Massicotte EM, Montanera W, Ross Fleming JF, et al. Idiopathic spinal cord herniation: report of eight cases and review of the literature. *Spine (Phila Pa 1976).* 2002;27:E233–E241.
3. White BD, Tsegaye M. Idiopathic anterior spinal cord hernia: under-recognized cause of thoracic myelopathy. *Br J Neurosurg.* 2004;18:246–249.
4. Wada E, Yononobu K, Kang J. Idiopathic spinal cord herniation: report of three cases and review of the literature. *Spine (Phila Pa 1976).* 2000;25:1984–1988.
5. Dix JE, Griffitt W, Yates C, et al. Spontaneous thoracic spinal cord herniation through an anterior dural defect. *Am J Neuroradiol.* 1998;19:1345–1348.
6. Borges LF, Zervas NT, Lehrich JR. Idiopathic spinal cord herniation: a treatable cause of the Brown-Sequard syndrome—case report. *Neurosurgery.* 1995;36:1023–1028.
7. Hamcan S, Akgun V, Battal B, et al. Idiopathic transdural spinal cord herniation. *Spine.* 2001;26:592–595.
8. Goodwin CR, Abu-Bonsrah N, Hashi S, et al. Cervical spinal cord herniation. *Spine.* 2001;16:507–508.
9. Fonoff ET, Contreras Lopez WO, Teixeira MJ. Mystery case: Brown-Séquard syndrome caused by idiopathic spinal cord herniation. *Neurology.* 2016;87:e54.
10. Corredor JA, Härä R. Surgical treatment of thoracic spinal cord herniation. *Clin Spine Surg.* 2016;29:415–418.
11. Rajapakse D, Mapara LM, Maniharana S. Idiopathic spinal cord herniation of the cervical cord: unusual cause of proximal muscle weakness in upper limbs. *BMJ Case Rep.* 2016;2016:bcr2016215022.
88. Samuel N, Goldstein CL, Santaguida C, et al. Spontaneous resolution of idiopathic thoracic spinal cord herniation: case report. *J Neurosurg Spine*. 2015;23:306–308.

89. Kumar A, Dacosta L. Thoracic cord herniation and associated intraoperative nuances: a report. *Eur Spine J*. 2015;24 (Suppl 4):S522–S524.

90. Delgado-López PD, Gil-Polo C, Martín-Velasco V, et al. Spinal cord herniation repair with microstaples: case report. *J Neurosurg Spine*. 2017;26:384–387.

91. Alkhamees A, Proust F. Idiopathic spinal cord herniation: a case report. *Int J Heal Sci*. 2016;10:592–595.

92. Payer M, Zumsteeg D, De Tribolet NWS. Surgical management of thoracic idiopathic spinal cord herniation. Technical case report and review. *Acta Neurochir*. 2016;158:1579–1582.

93. Gkekas N, Kasapas K, Sioutos PGN. Duplication of the dura as a cause of anterior thoracic spinal cord herniation. A case report. *Br J Neurosurg*. 2017;31:616–618.