Colle-Salvetti-type local density functional for the exchange-correlation energy in two dimensions

S. Şakiroğlu1,2 and E. Räsänen1 \\
1Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland \\
2Physics Department, Faculty of Arts and Sciences, Dokuz Eylül University, 35160 İzmir, Turkey \\
(Dated: May 19, 2011)

We derive an approximate local density functional for the exchange-correlation energy to be used in density-functional calculations of two-dimensional systems. In the derivation we employ the Colle-Salvetti wave function within the scheme of Salvetti and Montagnani [Phys. Rev. A \textbf{63}, 052109 (2001)] to satisfy the sum rule for the exchange-correlation hole. We apply the functional for the two-dimensional homogeneous electron gas as well as to a set of quantum dots and find a very good agreement with exact reference data.

PACS numbers: 31.15.E-, 71.15.Mb, 73.21.La

Development in modern technology has enabled the fabrication of nanoscale electronic devices with a large variety of low-dimensional systems. Two-dimensional (2D) quantum dots (QDs) are particularly interesting examples due to the tunability in their size and shape, and number of confined electrons[1,2]. From the theoretical point of view, QDs constitute an ideal platform to study the many-particle problem, electronic correlations, and the role of the dimensionality.

In density-functional theory[3] (DFT) particle-particle interactions beyond the classical (Hartree) term are captured through the exchange-correlation (xc) functional, which is approximated in practice. The development of xc functionals of varying portions of simplicity and accuracy have a long and successful history[4]. The Colle-Salvetti (CS) scheme[5,6] and its variants[7] have had an important role in the development, especially in terms of the electronic correlation. However, these efforts have focused almost solely on three dimensions (3D), apart from orbital functionals where the aspect of dimensionality is inbuilt through the Kohn-Sham orbitals. Only very recently, several local[8,9] and semi-local[10–15] functionals have been developed in 2D, and in many test cases involving, e.g., different QDs, they have outperformed the commonly used 2D local-density approximation based on the exact exchange and correlation of the homogeneous 2D electron gas[16,17] (2DEG).

In Ref.[8] a 2D local density functional for the correlation energy was derived using the CS framework with a Gaussian summation for the pair density[18]. Despite the good performance of this functional for the correlation, a compatible approximation for the exchange energy is needed in view of, e.g., total-energy calculations. In fact, a combination with the 2D generalized-gradient approximation for the exchange[12], leads to a reasonable accuracy in the total energy[19]. However, this combined functional is still semi-local, i.e., it depends on the density gradients, which reduces the numerical efficiency.

In this work we employ the CS framework to derive a 2D local functional for the xc energy, so that both the exchange and correlation are treated in the same footing. In the derivation we follow the 3D scheme of Salvetti and Montagnani[20] for the second-order density matrix to satisfy the sum rule of the xc hole, which is used to obtain a local density functional of a simple polynomial form. We optimize two remaining parameters of the functional by fitting against exact results for six-electron QDs. The obtained parameters show universality in the sense that a good accuracy and consistency is found when testing the functional for QDs with a varying electron number as well as for the 2DEG.

The electron-electron interaction energy can be formally expressed (in Hartree atomic units) as

\[E_{ee} = \langle \Psi | \hat{V}_{ee} | \Psi \rangle = \int dr_1 \int dr_2 \frac{\rho_2(r_1, r_2)}{|r_1 - r_2|}, \]

where

\[\rho_2(r_1, r_2) = \frac{N(N - 1)}{2} \sum_{\sigma_1, \sigma_2} \int d3 \ldots \int dN |\Psi(r_1, r_2, 3, \ldots, N)|^2. \]

is the diagonal element of the spinless second-order density matrix describing the distribution density of electron pairs. Here \(dN \) denotes the spatial integration and spin summation over the \(N \)th spatial and spin coordinates \(r_N, \sigma_N \), and \(\Psi(1, 2, \ldots, N) \) is the ground-state many-body wave function. The element \(\rho_2(r_1, r_2) \) satisfies the normalization

\[\frac{N(N - 1)}{2} = \int dr_1 \int dr_2 \rho_2(r_1, r_2), \]

and it is related with the electron density, i.e., the diagonal term of the first-order density matrix through

\[\rho(r_1) = \frac{2}{N - 1} \int dr_2 \rho_2(r_1, r_2). \]
Next, introducing a symmetric function accounting for all nonclassical effects called the pair correlation function $h(r_1, r_2)$ suggests us to write

$$\rho_2(r_1, r_2) = \frac{1}{2} \rho(r_1) \rho(r_2)[1 + h(r_1, r_2)].$$

(5)

The important sum rule for the xc hole can be expressed in terms of the pair correlation function as

$$\int dr_2 \rho(r_2)h(r_1, r_2) = -1.$$

(6)

The total interaction energy in Eq. (1) can be split in the classical Coulomb (Hartree) term associated with $\rho(r)$ and the nonclassical (indirect) part associated with the xc energy,

$$E_{cc} = E_H + E_{xc} = \frac{1}{2} \int dr_1 dr_2 \rho(r_1) \rho(r_2) \frac{1}{|r_1 - r_2|} + \frac{1}{2} \int dr_1 dr_2 \rho(r_1) \rho(r_2) h(r_1, r_2).$$

(7)

It should be noted that, compared with the conventional DFT formalism, E_{xc} as defined here neglects the kinetic-energy contribution to the correlation energy. The Hartree term can be computed in a straightforward fashion, but the integration in the xc part is nontrivial due to the pair correlation function $h(r_1, r_2)$. The key point in the present work is to obtain an approximation for $h(r_1, r_2)$ satisfying the sum rule in Eq. (6). Before proceeding with that, we will briefly introduce the CS approach which is relevant for the derivation.

The CS scheme starts with the following ansatz for the many-body wave function

$$\Psi(r_1 \sigma_1, ..., r_N \sigma_N) = \Psi_{HF}(r_1 \sigma_1, ..., r_N \sigma_N) \prod_{i>j} [1 - \varphi(r_i, r_j)],$$

(8)

where HF refers to the single-determinant Hartree-Fock wave function, and

$$\varphi(r_1, r_2) = [1 - \Phi(R)(1 + \zeta r)] \exp[-\beta^2(R) r^2]$$

(9)

describes the correlated part of the wave function written in center-of-mass, $R = (r_1 + r_2)/2$, and relative, $r = r_1 - r_2$ coordinates. The parameter ζ comes from the cusp conditions, and the quantities Φ and β act as correlation factors. In Refs. [8] and [3] dealing with 3D and 2D systems, respectively, β was introduced as a local factor for the correlation length, $\beta(R) = q \rho^{1/D}(R)$, where D is the dimension, q is a fitting parameter, and $\rho(R)$ is the electron density. The CS approach assumes that the first and second-order density matrices can be written as $\rho_1(r_1, r_2) = \rho_{HF}^1(r_1, r_2)$ and $\rho_2(r_1, r_2) = \rho_{HF}^2(r_1, r_2) + [1 - \varphi(r_1, r_2)]^2$, respectively [21].

To approximate $h(r_1, r_2)$, we extend the strategy by Salvetti and Montagnani [20] to 2D by introducing the correlation factors in the following way:

$$\beta(r_1, r_2) = \gamma \rho^{1/2}(r_1) \rho^{1/2}(r_2),$$

(10)

$$\Phi = \frac{\beta^2}{\sqrt{\pi} + \beta^2},$$

(11)

$$\varphi(\beta) = [1 - \Phi(1 + r)] \Phi e^{-\beta r^2}$$

(12)

with $r = |r_1 - r_2|$. Above, γ and α are optimizable parameters (γ with dimension of ρ^{-1}), and Φ is a monotonic function varying between zero and one. The differences from the original CS scheme are obvious; most importantly, β is now a non-local functional of the density.

We may now search for the pair correlation function

$$h(r_1, r_2) = \frac{\varphi^2 - 2 \varphi}{f},$$

(13)

where f is assumed to be a simple polynomial of the form

$$f(\Phi) = a_0 \Phi^n + a_1 \Phi^{n-1} + ...$$

(14)

The nominator in the expression for $h(r_1, r_2)$ is similar to the CS functional [20], whereas the denominator is chosen such that to the sum rule in Eq. (6) is satisfied. Substituting Eq. (13) into Eq. (6) yields

$$\int dr_2 \rho(r_2)h(r_1, r_2) = \int dr \rho(r_1 + r)h(r_1, r_1 + r)$$

$$= \int dr \rho(r_1 + r) \left\{ \Phi^4 e^{-2\beta r^2} (1 + r)^2 $$

$$- 2\Phi^2 e^{-2\beta r^2} (1 + r) + \Phi^2 e^{-2\beta r^2} \right\}$$

$$\times \left[e^{-\beta r^2} + 2(1 + r) \right] - 2\Phi e^{-\beta r^2} \right\} = -1$$

(15)

This expression involves integrals which can be computed by using mean value theorem and the regularity of the functions. By following the procedure of Ref. [21], we obtain

$$\int dr g(r_1, r_1 + r) e^{-b(r_1, r_1 + r)^2} r^n
\simeq 2\pi g(r_1) \int dr e^{-br^2} r^{n+1}. $$

(16)

Utilizing this approximate integration, which becomes more accurate as b becomes large, leads to

$$\int dr_2 \rho(r_2)h(r_1, r_2)$$

$$\simeq 2\pi \rho(r_1) \left[\Phi^4 (i_0 + 2i_1 + i_2) - \Phi^3 (2i_0 + 2i_1) $$

$$+ \Phi^2 (i_0 + 2j_0 + 2j_1) - 2\Phi j_0 \right] = -1,$$

(17)

where we define i_n and j_n as

$$i_n = \sqrt{2^{-n-2\beta-n}} \int dx e^{-x^2} x^{n+1}$$

(18)
and

\[j_n = \sqrt{\beta - \pi} \int dx \, e^{-x^2} x^{n+1}. \]

(19)

Using the definition of \(\beta \) and calculating the integrals leads to the final result for the polynomial function,

\[f = -2 \left(\frac{\pi}{\gamma} \right) \Phi(a_0 \Phi^3 + a_1 \Phi^2 + a_2 \Phi - 1), \]

(20)

where the coefficients are given by

\[
\begin{align*}
 a_0 &= \frac{1}{4} + \frac{1}{8\beta} + \frac{1}{4} \left(\frac{\pi}{2\beta} \right)^{1/2}, \\
 a_1 &= -\frac{1}{2} - \frac{1}{4} \left(\frac{\pi}{2\beta} \right)^{1/2}, \\
 a_2 &= \frac{5}{4} + \frac{1}{2} \left(\frac{\pi}{\beta} \right)^{1/2} .
\end{align*}
\]

(21)

Computation of the integral in Eq. (7) is performed by a similar procedure,

\[
\begin{align*}
 E_{xc} &= \frac{1}{2} \int dr_1 dr_2 \frac{\rho(r_1) \rho(r_2) h(r_1, r_2)}{|r_1 - r_2|} \\
 &= \frac{1}{2} \int dr_1 \rho(r_1) \int dr \rho(r_1 + r) \left(\frac{\varphi^2 - 2\varphi}{fr} \right) \\
 &= \pi \int dr_1 \rho^2(r_1) \frac{\Phi}{f} \sqrt{\frac{\pi}{\beta}} \left[b_0 \Phi^3 + b_1 \Phi^2 + b_2 \Phi - 1 \right],
\end{align*}
\]

(22)

where the coefficients are given by

\[
\begin{align*}
 b_0 &= \frac{1}{2\sqrt{\pi} \beta} + \frac{1}{2\sqrt{2}} + \frac{1}{8\beta \sqrt{2}}, \\
 b_1 &= -\frac{1}{2\sqrt{\pi} \beta} + \frac{1}{\sqrt{2}}, \\
 b_2 &= \frac{1}{\sqrt{\pi} \beta} + \frac{1}{2\sqrt{2}} + 1.
\end{align*}
\]

(23)

Using Eq. (21) and definition of \(\beta \) we obtain the final result for the \(xc \) energy in 2D,

\[E_{xc} = \int dr \rho^{3/2}(r) q(\rho) \]

(24)

with

\[q(\rho) = -\sqrt{\frac{\pi \gamma}{4}} \left(\frac{b_0 \Phi^3 + b_1 \Phi^2 + b_2 \Phi - 1}{a_0 \Phi^3 + a_1 \Phi^2 + a_2 \Phi - 1} \right). \]

(25)

The remaining task is to find a reasonable pair of values for \(\gamma \) and \(\alpha \) which determine \(q(\rho) \) through Eqs. (10), (11), (21), and (23). Here we choose to fit these parameters to reproduce the \(xc \) energies of parabolic QDs with \(N = 6 \), which is the smallest closed-shell system beyond the simplest \(N = 2 \) case. In the external potential \(v_{\text{ext}}(r) = \omega^2 r^2/2 \) we use the confinement strengths \(\omega = 1/4 \) and 1/16 for which numerically exact configuration-interaction \((CI) \) data is available [23]. These confinements have a rather wide range with respect to the relative weight of the \(xc \) effects, and, moreover, the chosen values are realistic regarding the modeling of real QD devices [1, 2]. The reference \(xc \) energy is obtained from

\[E_{xc} = E_{xc}^\text{ref} + E_{xc}^\text{ref} - E_{tot}^\text{exact} - E_{tot}^\text{EXX}, \]

(26)

where \(E_{tot}^\text{exact} \) is the reference total energy, \(E_{tot}^\text{EXX} \) is the total energy from the exact-exchange \((EXX) \) calculation performed here within the Krieger-Li-Infrate approximations [23] and using the \texttt{octopus} code [23], and \(E_{xc}^\text{ref} \) is the exchange energy. The best fit with \(E_{xc}^\text{ref} \) is obtained with parameter values \(\gamma = 1.12 \) and \(\alpha = 0.45 \).

Next we test if the chosen parameter values yield reasonable and consistent results for different 2D systems. This is naturally a desired property in any density functional in order to be a \textit{predictive} approximation. First we consider parabolic QDs with \(N = 2 \ldots 12 \) and \(\omega = 1/16 \ldots 1 \). The results are summarized in Table I. The reference \(xc \) energies have been calculated from Eq. (26) using the total-energy data from analytic [26], CI [23], and quantum Monte Carlo [27] \((QMC) \) calculations as indicated in the table. Overall, we find a very good performance of our functional, the mean error being 1.86\% , which is smaller than that of the 2D-LDA (2.19\%). Although also the LDA is this accurate for the \(xc \) energy, it should be noted that both the exchange and correlation parts, respectively, have significant errors (see, e.g., Refs. [11] and [14]), and the good overall performance follows from the well-known error cancellation. It is also noteworthy that the 12-electron case is very accurate, and it can be expected that the accuracy is preserved for larger when \(N \) is increased further.

Table I raises a natural question whether the good performance simply follows from the fact that \(\gamma \) and \(\alpha \) were fitted to a similar system with \(N = 6 \). Therefore, in Figs. 1(a) and (b) we examine the “extreme” cases of Table I with \(N = 2 \) \((\omega = 1) \) and \(N = 12 \) \((\omega = 1.89^2) \), respectively. The figures show the absolute relative errors

\(N \)	\(\omega \)	\(E_{xc}^\text{ref} \)	\(E_{xc}^\text{exact} \)	\(E_{xc}^\text{EXX} \)
2	1	1.2496	1.195	1.174
2	1/4	0.5987†	0.5794	0.5821
2	1/6	0.4936*	0.4678	0.4721
2	1/16	0.2774†	0.2789	0.2820
6	1/1.89²	2.156†	2.138	2.137
6	1/4	2.014†	2.008	2.011
6	1/16	0.9265†	0.9309	0.9429
12	1/1.89²	4.708†	4.716	4.701

† Total energy from the analytic solution in Ref. [26].
* Total energy from the CI data in Ref. [23].
‡ Total energy from the QMC data in Ref. [27].
as functions of both γ and α, so that here the parameter values have been left undetermined for both cases. The white crosses show the chosen values $\gamma = 1.12$ and $\alpha = 0.45$ based on the $N = 6$ data. In both cases, the crosses match very well with the optimal regime where the relative error is smallest for $N = 2$ and $N = 12$. Hence, Fig. 1 confirms that, at least for parabolic QDs, the functional is consistent. The figure also demonstrates the strong correlation between the two parameters as well as the uniqueness between them – for each γ (α) there is only one compatible α (γ).

Finally we consider the 2DEG corresponding to the important limit of an infinite electron number. Figure 2(a) shows the comparison of the xc energy per particle with respect to the exact 2DEG result. Here we have used the same parameter values $\gamma = 1.12$ and $\alpha = 0.45$ as before. We find an excellent agreement through a wide range of the density parameter $r_s = (\pi \rho)^{-1/2}$. In the realistic density range the relative error is within a few percent (see the inset). In Fig. 2(b) we show the function $q(\rho)$ of our functional (dashed line) in comparison with the optimal values to reproduce the exact xc energy of the 2DEG. Overall, we find good consistency in the results at varying r_s. More importantly, regarding the values for γ and α the present functional is also consistent in the comparison between 2DEG and the QDs above.

To summarize, we have used the Colle-Salvetti scheme, and in particular its recent generalizations to derive an approximate local density functional for the exchange-correlation energy of electrons in two dimensions. The functional has a simple polynomial form and it fulfills the sum-rule constraint of the exchange-correlation hole. We have fitted the remaining free parameters against exact results for six-electron quantum dots and found an excellent consistency in the results for a set of quantum dots with varying electron number and varying relative proportion of the exchange-correlation energy. The functional is precise also for the two-dimensional homogeneous electron gas with the same fixed parameters. Therefore, we may expect the functional to have predictive power in density-functional calculations for various two-dimensional electron systems. In this respect, generalization to spin-polarized systems would be the most important future extension of the method.
Acknowledgments

This work was funded by the Academy of Finland.

[1] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).
[2] S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
[3] For a review, see, e.g., R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer, Berlin, 1990).
[4] See, e.g., J. P. Perdew and S. Kurth, in A Primer in Density Functional Theory, edited by C. Fiolhais, F. Nogueira, and M. A. L. Marques (Springer, Berlin, 2003).
[5] R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975).
[6] R. Colle and O. Salvetti, Theor. Chim. Acta 53, 55 (1979).
[7] F. Moscardó, E. San-Fabián, and L. Pastor-Abia, Theor. Chim. Acta 115, 334 (2006).
[8] S. Pittalis, E. Räsänen, and M. A. L. Marques, Phys. Rev. B 78, 195322 (2008).
[9] S. Pittalis and E. Räsänen, Phys. Rev. B 80, 165112 (2009).
[10] S. Pittalis, E. Räsänen, N. Helbig, and E. K. U. Gross, Phys. Rev. B 76, 235314 (2007).
[11] E. Räsänen, S. Pittalis, C. R. Proetto, and E. K. U. Gross, Phys. Rev. B 79, 121305(R) (2009).
[12] S. Pittalis, E. Räsänen, J. G. Vilhena, and M. A. L. Marques, Phys. Rev. A 79, 012503 (2009).
[13] S. Pittalis, E. Räsänen, and E. K. U. Gross, Phys. Rev. A 80, 032515 (2009).
[14] S. Pittalis, E. Räsänen, C. R. Proetto, and E. K. U. Gross, Phys. Rev. B 79, 085316 (2009).
[15] S. Pittalis, E. Räsänen, and C. R. Proetto, Phys. Rev. B 81, 195103 (2010).
[16] A. K. Rajagopal and J. C. Kimball, Phys. Rev. B 15, 2819 (1977).
[17] C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002).
[18] F. Moscardó and E. San-Fabián, Int. J. Quantum Chem. 40, 23 (1991).
[19] E. Räsänen, S. Pittalis, J. G. Vilhena, and M. A. L. Marques, Int. J. Quantum Chem. (in print) (2010) (eprint: arxiv.org/abs/1001.3660).
[20] O. Salvetti and R. Montagnani, Phys. Rev. A 63, 052109 (2001).
[21] J. Tao, P. Gori-Giorgi, J. P. Perdew, and R. McWeeny, Phys. Rev. A 63, 032513 (2001).
[22] R. G. Parr and W. Yang, Density-functional theory of atoms and molecules, (Oxford University Press, 1989).
[23] M. Rontani, C. Cavazzoni, D. Bellucci, and G. Goldoni, J. Chem. Phys. 124, 124102 (2006).
[24] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 46, 5453 (1992).
[25] M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comput. Phys. Commun. 151, 60 (2003).
[26] M. Taut, J. Phys. A 27, 1045 (1994).
[27] F. Pederiva, C. J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000); ibid 68, 089901 (2003).