Breaking restricted taxonomic functionality by dual resistance genes

Mari Narusaka,1 Yasuyuki Kubo,2 Katsunori Hatakeyama,3 Jun Imamura,4 Hiroshi Ezura,5 Yoshihiko Nanasato,6 Yutaka Tabei,6 Yoshitaka Takano,7 Ken Shirasu8 and Yoshihiro Narusaka1,*

1Research Institute for Biological Sciences Okayama; Okayama, Japan; 2Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan; 3Vegetable Breeding and Genome Research Division; NARO Institute of Vegetable and Tea Science; Mie, Japan; 4Graduate School of Agriculture; Tamagawa University; Tokyo, Japan; 5Faculty of Life and Environmental Sciences; University of Tsukuba; Ibaraki, Japan; 6Genetically Modified Organism Research Center; National Institute of Agrobiological Sciences; Ibaraki, Japan; 7Graduate School of Agriculture; Kyoto University; Kyoto, Japan; 8RIKEN Plant Science Center; Yokohama, Japan; 9Research Institute for Biological Sciences Okayama; Okayama, Japan

N-B-LRR-type disease resistance (R) genes have been used in traditional breeding programs for crop protection. However, functional transfer of NB-LRR-type R genes to plants in taxonomically distinct families to establish pathogen resistance has not been successful. Here we demonstrate that a pair of Arabidopsis (Brassicaceae) NB-LRR-type R genes, RPS4 and RRS1, properly function in two other Brassicaceae, Brassica rapa and B. napus, but also in two Solanaceae, Nicotiana benthamiana and tomato (Solanum lyco persicum). The solanaceous plants transformed with RPS4/RRS1 confer bacterial effector-specific immunity responses. Furthermore, RPS4 and RRS1, which confer resistance to a fungal pathogen Colletotrichum higginsianum in Brassicaceae, also protect against Colletotrichum orbiculare in cucumber (Cucurbitaceae). Thus the successful transfer of two R genes at the family level overcomes restricted taxonomic functionality. This implies that the downstream components of R genes must be highly conserved and interfamily utilization of R genes can be a powerful strategy to combat pathogens.

Plants trigger innate immunity responses to pathogens via a two-layer surveillance system composed of pattern recognition receptors (PRRs) and nucleotide binding-leucine rich repeat (NB-LRR) proteins that are encoded by resistance (R) genes.1 PRRs recognize microbe-associated molecular patterns (MAMPs) at a plasma membrane, and NB-LRR proteins subsequently detect pathogen-derived effectors inside the cell. Although interfamily transfer of PRR-mediated disease resistance has been successful,2 no R genes have been successfully expressed in a different family, a phenomenon which has come to be known as restricted taxonomic functionality (RTF) of R genes.3 Heterologous expression of NB-LRR type R genes in a taxonomically distinct family triggers either no response or inappropriate auto-immunity responses, suggesting that the regulatory or signaling components associated with NB-LRR protein-based resistance are family specific.4

A pair of Arabidopsis thaliana (Brassicaceae) NB-LRR type R genes, RPS4 and RRS1, function together to confer disease resistance against two taxonomically distinct bacteria, Pseudomonas syringae pv. tomato DC3000, which produces the effector AvrRps4 (Pst-avrRps4), and Ralstonia solanacearum strains, which express the PopP2 effector5 (Fig. 1). To determine whether the RPS4/RRS1 R gene pair also functions in non-Brassicaceae plants, we generated transgenic Nicotiana benthamiana (Solanaceae) plants expressing RPS4 and RRS1 under control of their cognate promoters. We found that either of the two bacterial effectors, AvrRps4 or PopP2 produced in planta via Agrobacterium-mediated transient expression, induced cell death in N. benthamiana transformed with both R genes (RPS4+RRS1), but not in plants expressing only RPS4 or RRS1. Importantly, the

Keywords: R gene, restricted taxonomic functionality, RPS4, RRS1, Colletotrichum higginsianum, Pseudomonas syringae, Ralstonia solanacearum

Submitted: 03/07/13
Accepted: 03/08/13

Citation: Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Ezura H, Nanasato Y, Tabei Y, Takano Y, Shirasu K, Narusaka Y. Breaking restricted taxonomic functionality by dual resistance genes. Plant Signal Behav 2013; 8: e24244; http://dx.doi.org/10.4161/psb.24244
*Correspondence to: Yoshihiro Narusaka; Email: yo_narusaka@bio-ribs.com

Addendum to: Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Ezura H, et al. Interfamily Transfer of Dual NB-LRR Genes Confers Resistance to Multiple Pathogens. PLoS ONE 2013; 8(2): e55954. doi:10.1371/journal.pone.0055954
transgenic *N. benthamiana* plants showed no significant constitutive expression of inducible defense-related genes, indicating that the conferred resistance is effector specific.

R. solanacearum causes bacterial wilt, a serious soilborne disease of many plants worldwide. Resistance lines are urgently needed, as natural resource for resistance is limited and soil fumigation has not been effective. Tomato plants (*Solanum lycopersicum*) transformed with *RPS4* and *RRS1* also conferred resistance to *R. solanacearum* expressing popP2, indicating that the conferred resistance is specific for the PopP2 effector. *Pst-avrRps4* causes bacterial speck on tomato, a disease characterized by defoliation, blossom blight and lesions on developing fruit. In *Arabidopsis*, the transgenic tomato plants exhibited resistance against the *Pst-avrRps4* pathogen, but showed no significant constitutive expression of inducible defense-related genes, indicating that the conferred resistance is specific for the AvrRps4 effector. Thus, *RPS4* and *RRS1* are functional in at least two solanaceous plants, *N. benthamiana* and tomato.

In *Arabidopsis*, the dual *RPS4*/*RRS1* genes also confer resistance to the fungal pathogen *Colletotrichum higginsianum*. *Colletotrichum* spp cause anthracnose disease in a wide range of host plants, including cucumber (*Cucumis sativus*, Cucurbitaceae). We generated transgenic cucumber plants expressing **RPS4**/**RRS1** and inoculated them with *Colletotrichum orbiculare*, which infects cucurbits. WT cucumber plants developed brown necrotic lesions surrounded by a yellow halo, a typical symptom of anthracnose disease. **RPS4**/**RRS1** plants were highly resistant, developing only small necrotic flecks at the inoculated sites, indicative of an active defense reaction. Transgenic plants grew normally and did not express inducible defense-related genes, suggesting that autoimmunity is not induced by **RPS4**/**RRS1** in cucumber. These data indicate that **RPS4**/**RRS1** recognize effectors common to *Colletotrichum* or detect some alteration of a host protein targeted by both strains.

Our study demonstrates that introduction of the two **RPS4** and **RRS1** overcomes RTF and suggests that the downstream components of the **R** genes are highly conserved. It is likely that **R** gene-based immunity can be transferred to distantly related species once the right gene pair is identified. The number of known potential pairs of **R** genes from various plant species is increasing and we postulate that some of those pairs may also overcome RTF. In summary, this finding indicates that a new strategy can be used for creating pathogen-resistant vegetables and crops by using a previously unexploited resource of durable genetic resistance.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This work was supported by the Programme for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry to K.S., Y. Tak., Y. Nar. and by JSPS Grant-in-Aid for Scientific Research (KAKENHI) (21580060 to Y. Nar., 21780038 to M.N. and 19678001 to K.S.). We thank Mariko Miyashita, Yoko Iwasaki and Yasuyo Katayama for their excellent technical assistance and Tsuyoshi Nakagawa (Shimane University) for kindly providing pGWBI. The tomato resources used in this research were provided by the National BioResource Project (NBRP), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The production of transgenic tomato plants was supported by the RIKEN Plant Transformation Network.

References

1. Jones JDG, Dangl JL. The plant immune system. *Nature* 2006; 444:323-9; PMID:17086577; http://dx.doi.org/10.1038/nature05286
2. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Est R, et al. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. *Nat Biotechnol* 2010; 28:365-9; PMID:20231819; http://dx.doi.org/10.1038/nbt.1613
3. Tai TH, Dahlbeck D, Clark ET, Gaiwala P, Pasion R, Whalen MC, et al. Expression of the *Bt* 2 pepper gene confers resistance to bacterial spot disease in tomato. *Proc Natl Acad Sci USA* 1999; 96:14153-8; PMID:10570214; http://dx.doi.org/10.1073/pnas.96.24.14153
4. Brutus A, He SY. Broad-spectrum defense against plant pathogens. *Nat Biotechnol* 2010; 28:330-1; PMID:20379175; http://dx.doi.org/10.1038/nbt.1850
5. Narusaka M, Shirasu K, Nourouzi Y, Kubo Y, Shirashi T, Iwabuchi M, et al. *RRS1* and *RPS4* provide a dual Resistance-gene system against fungal and bacterial pathogens. *Plant J* 2009; 60:218-26; PMID:19519800; http://dx.doi.org/10.1111/j.1365-313X.2009.03949.x
6. Etta TK, Dangl JL. NB-LRR proteins: pairs, pieces, perception, partners, and pathways. *Curr Opin Plant Biol* 2010; 13:472-7; PMID:20483655; http://dx.doi.org/10.1016/j.pbi.2010.04.007