A note on the equioscillation theorem for best ridge function approximation

Vugar E. Ismailov
Institute of Mathematics and Mechanics
National Academy of Sciences of Azerbaijan
Az-1141, Baku, Azerbaijan
e-mail: vugaris@mail.ru

Abstract. We consider the approximation of a continuous function, defined on a compact set of the d-dimensional Euclidean space, by sums of two ridge functions. We obtain a necessary and sufficient condition for such a sum to be a best approximation. The result resembles the classical Chebyshev equioscillation theorem for polynomial approximation.

Mathematics Subject Classifications: 41A30, 41A50, 46B50, 46E15

Keywords: ridge function; Chebyshev equioscillation theorem; a best approximation; path; weak* convergence

1. Introduction

Let Q be compact set in the d-dimensional Euclidean space and $C(Q)$ be the space of continuous real-valued functions on Q. Consider the approximation of a function $f \in C(Q)$ by sums of the form $g_1(a_1 \cdot x) + g_2(a_2 \cdot x)$, where a_i are fixed vectors (directions) in $\mathbb{R}^d \setminus \{0\}$ and g_i are continuous univariate functions. We are interested in characterization of a best approximation. Note that functions of the form $g(a \cdot x)$ are called ridge functions. These functions and their linear combinations arise naturally in problems of computerized tomography (see, e.g., [26]), statistics (see, e.g., [9, 11]), partial differential equations [19] (where they are called plane waves), neural networks (see, e.g., [35] and references therein), and approximation theory (see, e.g., [12, 27, 31, 32]). In the past few years, problems of ridge function representation have gained special attention among researchers (see e.g. [1, 24, 25, 34]). For more on ridge functions and application areas see a recently published monograph by Pinkus [33].

Characterization theorems for best approximating elements are essential in approximation theory. The classical and most striking example of such a theorem are the Chebyshev equioscillation theorem. This theorem characterizes the unique best uniform approximation to a continuous real-valued function $F(t)$ by polynomials $P(t)$ of degree at most n, by the oscillating nature of the difference $F(t) - P(t)$. The result says that if such polynomial has the property that for some particular $n + 2$ points t_i in $[0, 1]$

$$F(t_i) - P(t_i) = (-1)^i \max_{x \in [0,1]} |F(x) - P(x)|, \ i = 1, \ldots, n + 2,$$

then P is the best approximation to F on $[0, 1]$. The monograph of Natanson [30] contains a very rich commentary on this theorem. Some general alternation type theorems applying
functions by sums of two ridge functions. To be more precise, let Q be a compact subset
of the space \mathbb{R}^d. Fix two directions \mathbf{a}_1 and \mathbf{a}_2 in \mathbb{R}^d and consider the following space

$$
\mathcal{R} = \mathcal{R}(\mathbf{a}_1, \mathbf{a}_2) = \{ g_1(\mathbf{a}_1 \cdot \mathbf{x}) + g_2(\mathbf{a}_2 \cdot \mathbf{x}) : g_1, g_2 \in C(\mathbb{R}) \}.
$$

Note that the space \mathcal{R} is a linear space. Assume a function $f \in C(Q)$ is given. We ask
and answer the following question: which geometrical conditions imposed on $G_0 \in \mathcal{R}$ is
necessary and sufficient for the equality

$$
\| f - G_0 \| = \inf_{G \in \mathcal{R}} \| f - G \|?
$$

Here $\| \cdot \|$ denotes the standard uniform norm in $C(Q)$. Recall that functions G_0 satisfying
(1.1) are called best approximations or extremal elements.

It should be remarked that in the special case when $Q \subset \mathbb{R}^2$ and \mathbf{a}_1 and \mathbf{a}_2 coincide
with the coordinate directions, the above question was answered by Khavinson [21]. In
[21], he obtained an equioscillation theorem for a best approximating sum $\varphi(x) + \psi(y)$. In
our papers [12, 16], Chebyshev type theorems were proven for ridge functions under
additional assumption that Q is convex. For a more recent and detailed discussion of an
equioscillation theorem in ridge function approximation see Pinkus [33].

2. Equioscillation theorem for ridge functions

We start with a definition of paths with respect to two directions. These objects will
play an essential role in our further analysis.

Definition 2.1 (see [16]). A finite or infinite ordered set $p = (p_1, p_2, \ldots) \subset Q$
with $p_i \neq p_{i+1}$, and either $\mathbf{a}_1 \cdot p_1 = \mathbf{a}_1 \cdot p_2, \mathbf{a}_2 \cdot p_2 = \mathbf{a}_2 \cdot p_3, \mathbf{a}_1 \cdot p_3 = \mathbf{a}_1 \cdot p_4, \ldots$ or
$\mathbf{a}_2 \cdot p_1 = \mathbf{a}_2 \cdot p_2, \mathbf{a}_1 \cdot p_2 = \mathbf{a}_1 \cdot p_3, \mathbf{a}_2 \cdot p_3 = \mathbf{a}_2 \cdot p_4, \ldots$ is called a path with respect to the
directions \mathbf{a}_1 and \mathbf{a}_2.

In the sequel, we will simply use the term “path” instead of the expression “path with
respect to the directions \mathbf{a}_1 and \mathbf{a}_2”. If in a finite path $(p_1, \ldots, p_n, p_{n+1})$, $p_{n+1} = p_1$ and n
is an even number, then the path (p_1, \ldots, p_n) is said to be closed. Note that for a closed
path (p_1, \ldots, p_{2n}) and any function $G \in \mathcal{R}$, $G(p_1) - G(p_2) + \cdots - G(p_{2n}) = 0$.

Paths, in the special case when $Q \subset \mathbb{R}^2$, \mathbf{a}_1 and \mathbf{a}_2 coincide with the coordinate
directions, are geometrically explicit objects. In this case, a path is a finite ordered set
(p_1, \ldots, p_n) in \mathbb{R}^2 with the line segments $[p_i, p_{i+1}], i = 1, \ldots, n$, alternatively perpendicular
to the x and y axes (see, e.g., [2], [8] [10], [17], [18], [20], [28]). These objects were first
introduced by Diliberto and Straus [7] (in [7], they are called “permissible lines”). They
appeared further in a number of papers with several different names such as “bolts” (see,
On the other hand, for any function G, there exists an infinite path ($\exists \infty$) case, f valid. The following linear functional p exists a closed path ($\exists C$) approximation to a function h e.g., \([2, 20, 28]\), “trips” (see \([29]\)), “links” (see, e.g., \([3, 22, 23]\)), etc. Paths with respect to two directions a_1 and a_2 were exploited in some papers devoted to ridge function interpolation (see, e.g., \([3, 13]\)). In \([14, 15]\), paths were generalized to those with respect to a finite set of functions. The last objects turned out to be very useful in problems of interpolation (see, e.g., \([3, 13]\)).

In the sequel, we need the concept of an “extremal path”, which is defined as follows.

Definition 2.2 (see \([16]\)). A finite or infinite path (p_1, p_2, \ldots) is said to be extremal for a function $h \in C(Q)$ if $h(p_i) = (-1)^i \|h\|, i = 1, 2, \ldots$ or $h(p_i) = (-1)^{i+1} \|h\|, i = 1, 2, \ldots$

The purpose of this note is to prove the following theorem.

Theorem 2.1. Assume Q is a compact subset of \mathbb{R}^d. A function $G_0 \in \mathcal{R}$ is a best approximation to a function $f \in C(Q)$ if and only if there exists a closed or infinite path $p = (p_1, p_2, \ldots)$ extremal for the function $f - G_0$.

Proof. Sufficiency. There are two possible cases. The first case happens when there exists a closed path (p_1, \ldots, p_{2n}) extremal for the function $f - G_0$. Let us check that in this case, $f - G_0$ is a best approximation. Indeed, on the one hand, the following equalities are valid.

$$
\left| \sum_{i=1}^{2n} (-1)^i f(p_i) \right| = \sum_{i=1}^{2n} (-1)^i \left[f - G_0 \right] (p_i) = 2n \| f - G_0 \|.
$$

On the other hand, for any function $G \in \mathcal{R}$, we have

$$
\left| \sum_{i=1}^{2n} (-1)^i f(p_i) \right| = \sum_{i=1}^{2n} (-1)^i \left[f - G \right] (p_i) \leq 2n \| f - G \|.
$$

Therefore, $\| f - G_0 \| \leq \| f - G \|$ for any $G \in \mathcal{R}$. That is, G_0 is a best approximation.

The second case happens when we do not have closed paths extremal for $f - G_0$, but there exists an infinite path (p_1, p_2, \ldots) extremal for $f - G_0$. To analyze this case, consider the following linear functional

$$
l_q : C(Q) \to \mathbb{R}, \quad l_q(F) = \frac{1}{n} \sum_{i=1}^{n} (-1)^i F(q_i),
$$

where $q = \{q_1, \ldots, q_n\}$ is a finite path in Q. It is easy to see that the norm $\|l_q\| \leq 1$ and $\|l_q\| = 1$ if and only if the set of points of q with odd indices $O = \{q_i \in q : i \text{ is an odd number}\}$ do not intersect with the set of points of q with even indices $E = \{q_i \in q : i \text{ is an even number}\}$. Indeed, from the definition of l_q it follows that $|l_q(F)| \leq \|F\|$ for all functions $F \in C(Q)$, whence $\|l_q\| \leq 1$. If $O \cap E = \emptyset$, then for a function F_0 with the property $F_0(q_i) = -1$ if i is odd, $F_0(q_i) = 1$ if i is even and $-1 < F_0(x) < 1$ elsewhere on Q, we have $|l_q(F_0)| = \|F_0\|$. Hence, $\|l_q\| = 1$. Recall that such a function F_0 exists on the basis of Urysohn’s great lemma.
Note that if \(q \) is a closed path, then \(l_q \) annihilates all members of the class \(\mathcal{R} \). But in general, when \(q \) is not closed, we do not have the equality \(l_q(G) = 0 \), for all members \(G \in \mathcal{R} \). Nonetheless, this functional has the important property that

\[
|l_q(g_1 + g_2)| \leq \frac{2}{n}(\|g_1\| + \|g_2\|),
\]

where \(g_1 \) and \(g_2 \) are ridge functions with the directions \(a_1 \) and \(a_2 \), respectively, that is, \(g_1 = g_1(a_1 \cdot x) \) and \(g_2 = g_2(a_2 \cdot x) \). This property is important in the sense that if \(n \) is sufficiently large, then the functional \(l_q \) is close to an annihilating functional. To prove (2.1), note that \(|l_q(g_1)| \leq \frac{2}{n} \|g_1\| \) and \(|l_q(g_2)| \leq \frac{2}{n} \|g_2\| \). These estimates become obvious if consider the chain of equalities \(g_1(a_1 \cdot x_1) = g_1(a_1 \cdot x_2), g_1(a_1 \cdot x_3) = g_1(a_1 \cdot x_4), \ldots \) (or \(g_1(a_1 \cdot x_2) = g_1(a_1 \cdot x_3), g_1(a_1 \cdot x_4) = g_1(a_1 \cdot x_5), \ldots \)) for \(g_1(a_1 \cdot x) \) and the corresponding chain of equalities for \(g_2(a_2 \cdot x) \)

Now consider the infinite path \(p = (p_1, p_2, \ldots) \) and form the finite paths \(p_k = (p_1, \ldots, p_k) \), \(k = 1, 2, \ldots \). For ease of notation, let us set \(l_k = l_{p_k} \). The sequence \(\{l_k\}_{k=1}^{\infty} \) is a subset of the unit ball of the conjugate space \(C^*(Q) \). By the Banach-Alaoglu theorem, the unit ball is weak* compact in the weak* topology of \(C^*(Q) \) (see, e.g., Rudin [36, p. 66]). From this theorem we derive that the sequence \(\{l_k\}_{k=1}^{\infty} \) must have weak* cluster points. Suppose \(l^* \) denotes one of them. Without loss of generality we may assume that \(l_k \xrightarrow{\text{weak}^*} l^* \), as \(k \to \infty \). From (2.1) it follows that \(l^*(g_1 + g_2) = 0 \). That is, \(l^* \in \mathcal{R}^\perp \), where the symbol \(\mathcal{R}^\perp \) stands for the annihilator of \(\mathcal{R} \). Since in addition \(\|l^*\| \leq 1 \), we can write that

\[
|l^*(f)| = |l^*(f - G)| = \|f - G\|,
\]

for all functions \(G \in \mathcal{R} \). On the other hand, since the infinite bolt \(p \) is extremal for \(f - G_0 \)

\[
|l_k(f - G_0)| = \|f - G_0\|, \quad k = 1, 2, \ldots
\]

Therefore,

\[
|l^*(f)| = |l^*(f - G_0)| = \|f - G_0\|.
\]

From (2.2) and (2.3) we conclude that

\[
\|f - G_0\| \leq \|f - G\|,
\]

for all \(G \in \mathcal{R} \). In other words, \(G_0 \) is a best approximation to \(f \). We proved the sufficiency of the theorem.

Necessity. The proof of this part is mainly based on the following theorem of Singer.

Theorem 2.2 (see Singer [37]). Let \(X \) be a compact space, \(U \) be a linear subspace of \(C(X) \), \(f \in C(X) \setminus U \) and \(u_0 \in U \). Then \(u_0 \) is a best approximation to \(f \) if and only if there exists a regular Borel measure \(\mu \) on \(X \) such that

1. The total variation \(\|\mu\| = 1 \);
2. \(\mu \) is orthogonal to the subspace \(U \), that is, \(\int_X ud\mu = 0 \) for all \(u \in U \);
(3) For the Jordan decomposition \(\mu = \mu^+ - \mu^- \),
\[
f(x) - u_0(x) = \begin{cases}
\|f - u_0\| & \text{for } x \in S^+, \\
-\|f - u_0\| & \text{for } x \in S^-,
\end{cases}
\]
where \(S^+ \) and \(S^- \) are closed supports of the positive measures \(\mu^+ \) and \(\mu^- \), respectively.

Let us show how we use this theorem in the proof of necessity part of our theorem. Assume \(G_0 \in \mathcal{R} \) is a best approximation. For the subspace \(\mathcal{R} \), the existence of a measure \(\mu \) satisfying the conditions (1)-(3) is a direct consequence of Theorem 2.2. Let \(x_0 \) be any point in \(S^+ \). Consider the point \(y_0 = a_1 \cdot x_0 \) and a \(\delta \)-neighborhood of \(y_0 \). That is, choose an arbitrary \(\delta > 0 \) and consider the set \(I_\delta = (y_0 - \delta, y_0 + \delta) \cap a_1 \cdot Q \). Here, \(a_1 \cdot Q = \{a_1 \cdot x : x \in Q\} \). For any subset \(E \subset \mathbb{R} \), put
\[
E^i = \{x \in Q : a_i \cdot x \in E\}, \ i = 1, 2.
\]

Clearly, for some sets \(E \), one or both the sets \(E^i \) may be empty. Since \(I_\delta^1 \cap S^+ \) is not empty (note that \(x_0 \in I_\delta^1 \)), it follows that \(\mu^+(I_\delta^1) > 0 \). At the same time \(\mu(I_\delta^1) = 0 \), since \(\mu \) is orthogonal to all functions \(g_1(a_1 \cdot x) \). Therefore, \(\mu^-(I_\delta^1) > 0 \). We conclude that \(I_\delta^1 \cap S^- \) is not empty. Denote this intersection by \(A_\delta \). Tending \(\delta \) to 0, we obtain a set \(A \) which is a subset of \(S^- \) and has the property that for each \(x \in A \), we have \(a_1 \cdot x = a_1 \cdot x_0 \). Fix any point \(x_1 \in A \). Changing \(a_1 \), \(\mu^+ \), \(S^+ \) to \(a_2 \), \(\mu^- \) and \(S^- \) correspondingly, repeat the above process with the point \(y_1 = a_2 \cdot x_1 \) and a \(\delta \)-neighborhood of \(y_1 \). Then we obtain a point \(x_2 \in S^+ \) such that \(a_2 \cdot x_2 = a_2 \cdot x_1 \). Continuing this process, one can construct points \(x_3 \), \(x_4 \), and so on. Note that the set of all constructed points \(x_i \), \(i = 0, 1, \ldots \), forms a path. By Theorem 2.2, this path is extremal for the function \(f - G_0 \). We have proved the necessity and hence Theorem 2.1.

Remark. Theorem 2.1 was proven by Ismailov [12] and in a more general form by Pinkus [33] under additional assumption that \(Q \) is convex. Convexity assumption was made to guarantee continuity of the following functions
\[
g_{1,i}(t) = \max_{x \in Q} F(x) \quad \text{and} \quad g_{2,i}(t) = \min_{x \in Q} F(x), \ i = 1, 2,
\]
where \(F \) is an arbitrary continuous function on \(Q \). Note that in the proof given above we need not continuity of these functions.

References

[1] R. A. Aliev and V. E. Ismailov, On a smoothness problem in ridge function representation, Adv. in Appl. Math. 73 (2016), 154-169.

[2] V. I. Arnold, On functions of three variables (Russian) Dokl. Akad. Nauk SSSR 114 (1957), 679-681; English transl. in Amer. Math. Soc. Transl. 28 (1963), 51-54.
[3] D. Braess and A. Pinkus, Interpolation by ridge functions, *J. Approx. Theory* **73** (1993), 218-236.

[4] B. Brosowski and A. R. da Silva, A general alternation theorem, Approximation theory (Memphis, TN, 1991), 137–150, Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992.

[5] R. C. Buck, Alternation theorems for functions of several variables, *J. Approx. Theory* **1** (1968), 325–334.

[6] R. C. Cowsik, A. Klopotowski, M. G. Nadkarni, When is $f(x, y) = u(x) + v(y)$?, *Proc. Indian Acad. Sci. Math. Sci.* **109** (1999), 57–64.

[7] S. P. Diliberto and E. G. Straus, On the approximation of a function of several variables by the sum of functions of fewer variables, *Pacific J. Math.* **1** (1951), 195-210.

[8] N. Dyn, W. A. Light and E. W. Cheney, Interpolation by piecewise-linear radial basis functions, *J. Approx. Theory* **59** (1989), 202-223.

[9] J.H.Friedman and W.Stuetzle, Projection pursuit regression, *J.Amer. Statist. Assoc. **76***(1981), 817-823.

[10] M. Golomb, Approximation by functions of fewer variables *On numerical approximation. Proceedings of a Symposium. Madison 1959. Edited by R.E.Langer. The University of Wisconsin Press.* 275-327.

[11] P.J.Huber, Projection pursuit, *Ann. Statist. **13***(1985), 435-475.

[12] V. E. Ismailov, Approximation by ridge functions and neural networks with a bounded number of neurons, *Appl. Anal.* **94** (2015), no. 11, 2245-2260.

[13] V. E. Ismailov and A. Pinkus, Interpolation on lines by ridge functions, *J. Approx. Theory* **175** (2013), 91-113.

[14] V. E. Ismailov, A note on the representation of continuous functions by linear superpositions, *Expo. Math.* **30** (2012), 96-101.

[15] V. E. Ismailov, On the representation by linear superpositions, *J. Approx. Theory* **151** (2008), 113-125.

[16] V. E. Ismailov, Characterization of an extremal sum of ridge functions. *J. Comput. Appl. Math.* **205** (2007), no. 1, 105–115.

[17] V. E. Ismailov, On error formulas for approximation by sums of univariate functions, *Int. J. Math. and Math. Sci.*, volume **2006** (2006), Article ID 65620, 11 pp.
[18] V. E. Ismailov, Methods for computing the least deviation from the sums of functions of one variable, (Russian) Sibirskii Mat. Zhurnal 47 (2006), 1076–1082; translation in Siberian Math. J. 47 (2006), 883-888.

[19] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience, New York, 1955.

[20] S. Ya. Khavinson, Best approximation by linear superpositions (approximate nomography). Translated from the Russian manuscript by D. Khavinson. Translations of Mathematical Monographs, 159. American Mathematical Society, Providence, RI, 1997, 175 pp.

[21] S. Ya. Khavinson (S. Ja. Havinson), A Chebyshev theorem for the approximation of a function of two variables by sums of the type $\varphi(x) + \psi(y)$, Izv. Acad. Nauk. SSSR Ser. Mat. 33 (1969), 650-666; English transl. Math. USSR Izv. 3 (1969), 617-632.

[22] A. Klopotowski, M. G. Nadkarni, K. P. S. Bhaskara Rao, When is $f(x_1, x_2, \ldots, x_n) = u_1(x_1) + u_2(x_2) + \cdots + u_n(x_n)$?, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 77–86.

[23] A. Klopotowski, M. G. Nadkarni, Shift invariant measures and simple spectrum, Colloq. Math. 84/85 (2000), 385-394.

[24] S. V. Konyagin, A. A. Kuleshov, On the continuity of finite sums of ridge functions (Russian), Mat. Zametki 98 (2015), 308-309; English transl. in Math. Notes 98 (2015), 336-338.

[25] S. V. Konyagin, A. A. Kuleshov, On some properties of finite sums of ridge functions defined on convex subsets of \mathbb{R}^d (Russian), Trudy Matem. Inst. imeni Steklova 293 (2016), 193-200; English transl. in Proc. Steklov Inst. Math. 293 (2016), 186–193.

[26] B. F. Logan and L. A. Shepp, Optimal reconstruction of a function from its projections, Duke Math. J. 42 (1975), 645-659.

[27] V. E. Maiorov, On best approximation by ridge functions, J. Approx. Theory 99 (1999), 68-94.

[28] D. E. Marshall, A. G. O’Farrell, Approximation by a sum of two algebras. The lightning bolt principle, J. Funct. Anal. 52 (1983), 353-368.

[29] D. E. Marshall, A. G. O’Farrell, Uniform approximation by real functions, Fund. Math. 104 (1979), 203-211.

[30] I. P. Natanson, Constructive function theory, Vol. I. Uniform approximation, Translated from the Russian by Alexis N. Obolensky Frederick Ungar Publishing Co., New York 1964, 232 pp.
[31] B. Pelletier, Approximation by ridge function fields over compact sets, *J. Approx. Theory* **129** (2004), 230-239.

[32] P. P. Petrushev, Approximation by ridge functions and neural networks, *SIAM J. Math. Anal.* **30** (1998), 155-189.

[33] A. Pinkus, *Ridge Functions*, Cambridge Tracts in Mathematics, 205. Cambridge University Press, Cambridge, 2015, 218 pp.

[34] A. Pinkus, Smoothness and uniqueness in ridge function representation, *Indag. Math. (N.S.)* **24** (2013), no. 4, 725–738.

[35] A. Pinkus, Approximation theory of the MLP model in neural networks, *Acta Numerica* **8** (1999), 143-195.

[36] W. Rudin, *Functional analysis*, McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., 1973, 397 pp.

[37] I. Singer, The theory of best approximation and functional analysis. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 13. *Society for Industrial and Applied Mathematics, Philadelphia, Pa.*, 1974, 95 pp.