Reparametrization Invariance and the Schrödinger Equation

V.I. Tkach

Instituto de Física de la Universidad de Guanajuato,
Apartado Postal E-143, C.P. 37150, Leon Gto. Mexico

A.I. Pashnev, and J.J. Rosales

JINR–Bogoliubov Laboratory of Theoretical Physics,
141980 Dubna, Moscow Region, Russia

Abstract

In the present work we consider a time-dependent Schrödinger equation for systems invariant under the reparametrization of time. We develop the two-stage procedure of construction such systems from a given initial ones, which is not invariant under the time reparametrization. One of the first-class constraints of the systems in such description becomes the time-dependent Schrödinger equation. The procedure is applicable in the supersymmetric theories as well. The $n = 2$ supersymmetric quantum mechanics is coupled to world-line supergravity, and the local supersymmetric action is constructed leading to the square root representation of the time-dependent Schrödinger equation.

*E-mail: vladimir@ifug1.ugto.mx
†E-mail: pashnev@thsun1.jinr.ru
‡E-mail: rosales@thsun1.jinr.ru
I. INTRODUCTION

Time plays a central and peculiar role in Hamiltonian quantum mechanics. In the standard non-relativistic quantum mechanics one can describe the motion of a system by using the canonical variables which are only functions of time. The scalar product specifies a direct probability of observation at one instant of time \[1\]. Time is the sole observable assumed to have a direct physical significance, but it is not a dynamical variable itself. It is an absolute parameter differently treated from the other coordinates, which turn out to be operators and observables in quantum mechanics.

In the cases of non-relativistic and relativistic point particles mechanics generally covariant systems may be obtained by promoting the time \(t\) to a dynamical variable \[1–8\]. The idea behind this transformation is to treat symmetrically the time and dynamical variables. This is achieved by taking the time \(t\) as a function of an arbitrary parameter \(\tau\) (label time) in Dirac’s approach \[2\]. The arbitrariness of the label time \(\tau\) is reflected in the invariance of the action under the \(\tau\) reparametrization.

In this work we give the two-stage procedure for constructing generally covariant systems. Using additional gauge variables we rewrite the original action of the system in the reparametrization invariant form \[2,3\]. The structure of the reparametrization transformations leads to zero Hamiltonian (first-class constraint) associated to the original action \[3,6\]. At the quantum theory this constraint imposes condition on the vector states, which becomes time-independent Schrödinger equation \[3,8\]. After that we consider an additional action invariant under reparametrization, which does not change the equations of motion of the original action, but modifies only the first-class constraint, which becomes now the time-dependent Schrödinger equation \[3,5\]. In the case of different versions of supersymmetric quantum mechanics \[8,11\] such a procedure finds its application, when the transformations of reparametrization
belong to a wider group of local transformations arising from the construction of the generally covariant systems. In this case, the set of auxiliary gauge variables are components of the world-line supergravity multiplet \[19\].

Here we construct a local supersymmetric action for \( n = 2, \, d = 1 \) supersymmetric quantum mechanics, in which the first-class constraint becomes time-independent Schrödinger equation, supercharges and the fermion number operator. It is well known, that in the case of supersymmetric quantum mechanics there is a square root representation for the vector states of the original Hamiltonian, a state with zero energy \([9–11, 19]\). It will be shown, that there exists an additional supersymmetric invariant action, which permits the generalization of the above local supersymmetric quantum theory. Hence, we have the square root representation of the Schrödinger operator.

The plan of this work is as follows: in section 2, applying the canonical quantization procedure to reparametrization invariant action, we obtain the time-dependent Schrödinger equation. In section 3 the same procedure is applied to relativistic case. The extension to supersymmetric model is performed in section 4. Finally, section 5 is devoted to final remarks.

**II. NON-RELATIVISTIC PARAMETRIZED PARTICLE DYNAMICS**

In this section the central idea is illustrated with the aid of a simple model of parametrized dynamics.

We start by considering the theory of a non-relativistic particle moving in the three dimensional space with dynamical variables \( x_i \) (\( i = 1, 2, 3 \)) and with \( t \) denoting the ordinary physical time parameter. The action for this simplest model may be written as
\[ S_0 = \int \left\{ \frac{1}{2} m \dot{x}_i^2(t) - V(x_i) \right\} dt, \quad (2.1) \]

where \( m \) is the mass of the particle, \( \dot{x}_i = \frac{dx_i}{dt} \) is its velocity and \( V(x_i) \) is the potential. The action (2.1) is invariant under the global translation of time

\[ t' \rightarrow t + c, \quad c = \text{constant}. \quad (2.2) \]

We see, that the Lagrangian is non-degenerate in the sense that the relation between momentum and velocity is one to one

\[ p_i = \frac{\partial L}{\partial \dot{x}_i} = m \dot{x}_i. \quad (2.3) \]

The Hamiltonian for this model has the form

\[ H_0 = \frac{p_i^2}{2m} + V(x_i). \quad (2.4) \]

In the action (2.1) time \( t \) is an absolute parameter, differently treated from the other coordinates which turn out to be operators and observables in quantum mechanics. On the other hand, it is well known, that in non-relativistic point particle mechanics generally covariant systems may be obtained by promoting the time \( t \) to a dynamical variable \([2,3]\). The same procedure has been applied to relativistic particle case \([6,7]\).

So, we will rewrite the action (2.1) in the parametrized form

\[ \tilde{S} = \int \left\{ \frac{m \dot{x}_i^2(\tau)}{2N(\tau)} - N(\tau)V[x_i(\tau)] \right\} d\tau, \quad (2.5) \]

where the dot denotes derivative with respect to the parameter \( \tau \). \( N(\tau) \) is the so called “lapse function” and relates the physical time \( t \) to the arbitrary parameter \( \tau \) through \( dt = N(\tau)d\tau \). This canonical variable is a pure gauge variable and it is not dynamical. \( N(\tau) \) in (2.5) defines the scale on which the time is measured, and in the “gauge” \( N(\tau) = 1 \) the time parameter \( \tau \) is identified as the “classical” time \( t \) and (2.3) becomes (2.1). On the other hand, \( N(\tau) \) can be viewed as one
dimensional gravity field, then the action (2.5) describes the interaction between “matter” \( x_i(\tau) \) and the gravity field \( N(\tau) \). The action (2.5) is invariant under the local conformal time transformation

\[
\tau' = \tau + a(\tau),
\] (2.6)

if \( N(\tau) \) and \( x(\tau) \) transform as

\[
\delta N(\tau) = (aN) \quad \quad \delta x_i(\tau) = a\dot{x}_i(\tau).
\] (2.7)

This is because \( \delta \tilde{S} = \int \frac{d}{d\tau}(a\tilde{L})d\tau \) is a total derivative with the Lagrangian \( \tilde{L} = \frac{m\dot{x}^2}{2N} - NV(x_i) \).

Varying the action (2.5) with respect to \( x(\tau) \) and \( N(\tau) \) one obtains the classical equations of motion for \( x(\tau) \) and the constraint, respectively. The constraint generates the local reparametrization of \( x(\tau) \) and \( N(\tau) \).

Now we consider the Hamiltonian analysis of this simple constrained system. We define the canonical momentum \( p^i \) conjugate to the dynamical variable \( x_i \) as

\[
p^i = \frac{\partial \tilde{L}}{\partial \dot{x}_i} = \frac{m}{N}\dot{x}^i,
\] (2.8)

and the classical Poisson brackets between \( x_i \) and \( p^j \) by

\[
\{x_i, p^j\} = \delta^j_i.
\] (2.9)

The momentum conjugate to \( N(\tau) \) is

\[
P_N = \frac{\partial \tilde{L}}{\partial \dot{N}} = 0,
\] (2.10)

this equation merely constrains the variable \( N(t) \) (primary constraint). The canonical Hamiltonian can be calculated in the usual way, it has the form \( \tilde{H}_c = NH_0 \), and the total Hamiltonian is

\[
\tilde{H}_T = NH_0 + u_N P_N,
\] (2.11)
where \( u_N \) is the Lagrange multiplier associated to the constraint \( P_N = 0 \) in (2.10) and \( H_0 \) is the Hamiltonian of the system defined in (2.4). The canonical evolution of the constraint \( P_N \) is given by the Poisson bracket with the total Hamiltonian. Thus, we have

\[
\dot{P}_N = \{P_N, \tilde{H}_c + u_N P_N\} = -H_0 = 0,
\]

leading to the secondary constraint, which by definition is of the first-class constraint [5]. In the quantum theory the first-class constraint associated with the invariant action (2.5) under the transformations of reparametrization (2.6) becomes condition on the wave function \( \psi \). So that any physical state must obey the following quantum constraint

\[
H_0(\hat{p}^i, x_i)\psi(x_i) = 0,
\]

which is nothing but the time-independent Schrödinger equation.

Now we have to stress, that the physical meaning of the action (2.5) is different from that of the starting action (2.1). Indeed the equation (2.13) leads to the zero value of the energy of systems. To correct the situation and to get a time-dependent Schrödinger equation for the parametrized system (2.5) we will proceed as follows. We regard the following invariant action

\[
S_r = -\int p_t \left\{-\frac{dt}{d\tau}(\tau) + N(\tau)\right\} d\tau.
\]

Now \((t, p_t)\) is a pair of dynamic conjugated variables, \( p_t \) is the momentum corresponding to \( t \). The action (2.14) is invariant under reparametrization (2.6), if

\[
\delta p_t = a\dot{p}_t, \quad \delta t = a\dot{t}, \quad \delta N = \frac{d}{d\tau}(aN),
\]

since \( \delta S_r = \int \frac{d}{d\tau}(ap_t N - ap_t \dot{t}) d\tau \) is a total derivative. So, adding the action (2.14) to the action (2.5) we obtain in the first order form the total action \( \tilde{S} = \tilde{S} + S_r \).
\[
\tilde{S} = \int \left\{ p_i \dot{x}^i - NH_0(p,x) + p_t (t - N(t)) \right\} d\tau.
\] (2.16)

The action (2.16) is invariant under the local transformation (2.6), if \( N, x, p_t \) and \( t \) transform according to (2.7, 2.15).

So, we will proceed with the canonical quantization of the action (2.14–2.16). Following the rules of this procedure we have two constraints corresponding to the canonical variables \( t \) and \( p_t \)

\[
\Pi_1 \equiv P_t - p_t = 0, \quad \Pi_2 \equiv P_{p_t} = 0,
\] (2.17)

where \( P_t = \frac{\partial \tilde{L}}{\partial \dot{t}} = p_t \) and \( P_{p_t} = \frac{\partial \tilde{L}}{\partial \dot{p}_t} = 0 \) are the momenta conjugated to \( t \) and \( p_t \), respectively.

The constraints (2.17) are of the second class, and therefore, they can be eliminated by the Dirac’s procedure. Defining the matrix constraint \( C_{AB} \) with \( (A, B = 1, 2) \) as a Poisson bracket we find, that the only non-zero matrix elements are

\[
C_{1,2} = \{\Pi_1, \Pi_2\} = -1, \quad C_{2,1} = \{\Pi_2, \Pi_1\} = 1,
\] (2.18)

with their inverse matrix elements \((C^{-1})^{1,2} = 1\) and \((C^{-1})^{2,1} = -1\). The Dirac’s brackets \(#\cdot\#\#^*\) are defined by

\[
\{A, B\}^* = \{A, B\} - \{A, \Pi_i\}(C^{-1})^{ij}\{\Pi_j, B\}.
\] (2.19)

The result of this procedure leads to the non-zero Dirac’s brackets relations

\[
\{t, p_t\}^* = 1.
\] (2.20)

Then, the canonical Hamiltonian obtained from the action \( \tilde{S} \) in (2.10) has the form

\[
\tilde{H}_c = N(p_t + H_0),
\] (2.21)

and the total Hamiltonian is
\[ \tilde{H}_T = N(p_t + H_0) + u_N P_N, \]  

where \( u_N \) is the Lagrange multiplier associated to the constraint \( P_N = 0 \) in \((2.10)\), which must be conserved in the time, i.e.

\[ \dot{P}_N = \{P_N, \tilde{H}_T\} = -(p_t + H_0) = 0, \]  

which by definition is the first-class constraint. So, Hamiltonian’s equation of motion then yields

\[ \dot{x}_i = \{x_i, \tilde{H}_T\} = \frac{N p_i}{m}, \]  

\[ \dot{p}_i = \{p_i, \tilde{H}_T\} = -N \frac{dV}{dx_i}, \]

\[ \dot{N} = \{N, \tilde{H}_T\} = u_N, \]  

\[ \dot{t} = \{t, \tilde{H}_T\} = N, \]

\[ \dot{p}_t = \{p_t, \tilde{H}_T\} = 0. \]

The first two equations \((2.24)\) and \((2.25)\) are the equations of motion for the physical degrees of freedom. The action \((2.16)\) contains one extra canonical pair \((t, p_t)\) over \((2.1)\), but also contains the constraint \((2.23)\). This constraint, being the only one, is of the first-class. Furthermore, the action \((2.16)\) describes the same number of independent degrees of freedom as the action in \((2.1)\). The equation \((2.26)\) shows that \( N(\tau) \) is an arbitrary function playing the role of gauge field of the reparametrization symmetry. If we take the gauge condition \( N(\tau) = 1 \), then as it follows from \((2.27)\), we have \( t = \tau \). On the level of the equations of motion the action \( S_r \) is zero, and inserting \( N = \dot{t} \) in the action \( \tilde{S} \) in \((2.5)\), we can exclude the auxiliary gauge field
\(N(\tau)\) and obtain Dirac’s approach for reparametrization invariant action in the case of non-relativistic systems \([3,7,8]\).

At the quantum level Dirac’s brackets \((2.20)\) must be replaced by the commutator

\[
[t, \hat{p}_t] = i\{t, p_t\} = i, \tag{2.29}
\]

and the classical momentum \(p_t\) by the operator \(\hat{p}_t\) with the representation \(-i\frac{\partial}{\partial t}\) (we assume units in which \(\hbar = c = 1\)). Following the Dirac’s canonical quantization the first-class constraints must be imposed on the wave function \(\psi(x, t)\). So, the constraint \((2.23)\) may be written as

\[
\frac{i}{\hbar} \frac{d\psi(x^I, t)}{dt} = H_0(-i \frac{\partial}{\partial x^I}, x_m)\psi(x^I, t). \tag{2.30}
\]

Hence, the inclusion in \((2.3)\) of an additional reparametrization invariant action \((2.14)\) does not change the equations of motion \((2.24, 2.25)\), but only the constraint \((2.23)\), which becomes \((2.23)\). Thus, canonical quantization procedure applied to the parametrized theory \((2.16)\) yields the correct equation for the wave function \(\psi\) \((2.30)\), which is just the conventional time-dependent Schrödinger equation.

In the following two sections it will be shown, that the same procedure without any difficulties can be extended to the relativistic and supersymmetric cases.

**III. RELATIVISTIC POINT PARTICLE**

In this section we will consider a free relativistic particle. The action in this case has the form

\[
S = -m \int \sqrt{1 - \dot{x}_i^2(t)} dt, \tag{3.1}
\]

where \(m, t\) and \(x_i (i = 1, 2, 3)\) are, respectively, the mass, proper time and the position of the particle. After parametrization \(dt = N(\tau)d\tau\) the action \((3.1)\) becomes
\[ \tilde{S} = -m \int \sqrt{N^2(\tau) - \dot{x}_i^2(\tau)} \, d\tau. \] (3.2)

This action is invariant under the local time reparametrization (2.6), if \( N(\tau) \) and \( x_i(\tau) \) transform as (2.7). The canonical Hamiltonian in this case has the form

\[ \tilde{H}_c = NH_0 = N \left( \sqrt{p_i^2 + m^2} \right), \] (3.3)

where \( p_i = \frac{\partial \tilde{L}}{\partial \dot{x}_i} = \frac{m}{N} \frac{\dot{x}_i}{\sqrt{1 - \frac{\dot{x}_i^2}{N^2}}} \) is the canonical momentum conjugate to dynamical variable \( x_i \).

So, we will rewrite the action (3.2) by considering (2.14) in the first order form, we get

\[ \tilde{\tilde{S}} = \int \left\{ p_i \dot{x}_i + p_0 (\dot{x}_0 - N) - N \sqrt{p_i^2 + m^2} \right\} \, d\tau, \] (3.4)

where we have \( p_0 \equiv p_t \) and \( x_0 \equiv t \). Following the analogous procedure of the proceeding section, i.e. eliminating the second-class constraints by means of Dirac’s brackets (2.19), we get the relativistic canonical Hamiltonian

\[ \tilde{\tilde{H}}_c = NH = N \left( \sqrt{p_i^2 + m^2} + p_0 \right), \] (3.5)

where \( H \) is the classical relativistic constraint corresponding to the action (3.4). At the quantum level this constraint becomes condition on the wave function \( \psi \)

\[ \left( -i \frac{d}{dx_0} + \sqrt{p_i^2 + m^2} \right) \psi(x_0, x_i) = 0, \] (3.6)

this is the time-dependent Schrödinger equation for the relativistic free massive particle.

Note, that if we take the lapse function as

\[ N(\tau) = e(\tau) \sqrt{\frac{p_i^2 + m^2}{2} - p_0}, \] (3.7)

and putting it in (3.3) we have then
\[ \tilde{H}_e = \frac{e(\tau)}{2} \left( \sqrt{p_i^2 + m^2 - p_0} \right) \left( \sqrt{p_i^2 + m^2 + p_0} \right) = \frac{e(\tau)}{2} \left( p_i^2 + m^2 - p_0^2 \right). \] (3.8)

Using the relations (3.7), (2.7) and (2.13) for the \( N(\tau), p_i(\tau) \) and \( p_0(\tau) \), it is easy to show, that \( e(\tau) \) transforms as

\[ \delta e = (ae), \] (3.9)

corresponding to the transformation of \( N(\tau) \) in (2.7).

So, the action (3.4) takes the form

\[ S = \int \left\{ p_\mu \dot{x}^\mu - e(\tau) \left( \frac{p_\mu^2 + m^2}{2} \right) \right\} d\tau, \] (3.10)

where \( \mu = 0, 1, 2, 3 \). The action (3.10) describes a massive relativistic particle moving on the four dimensional space-time. The \( e(\tau) \) is an einbein, which plays the role of Lagrange multiplier. Variation of the action (3.10) with respect to \( e(\tau) \) leads to the relativistic constraint

\[ p_\mu^2 + m^2 = 0, \] (3.11)

which is nothing but the mass-shell condition. When we go over to quantum mechanics, the constraint (3.11) is replaced by the condition on the scalar field \( \phi \)

\[ \left( \frac{\partial^2}{\partial x_0^2} - \frac{\partial^2}{\partial x_i^2} + m^2 \right) \phi(x_0, x_i) = 0, \] (3.12)

which is the Klein-Gordon equation. Hence, inclusion of an additional action invariant under reparametrization leads us to the Schrödinger time-dependent equation for the wave function \( \psi(x, t) \) in the case of relativistic particle, and at the same time it leads to the Klein-Gordon equation in the case of quantum scalar field \( \phi(t, x) \). In this approach it is not necessary to introduce auxiliary time in order to obtain the Schrödinger equation \[ \square. \]
IV. N=2, D= 1 SUPERSYMMETRY

In the global \( n = 2 \) supersymmetric one dimensional quantum mechanics the simplest action has the form \([10,13,14]\)

\[
S_{n=2} = \int \left\{ \frac{\dot{x}^2}{2} - i\bar{\chi}\dot{\chi} - 2\left(\frac{\partial g}{\partial x}\right)^2 - 2\frac{\partial^2 g}{\partial x^2}\bar{\chi}\chi \right\} dt,
\]

where the overdot denotes derivatives with respect to \( t \). In the action (4.1) \( x \) is an even dynamical variable, unlike \( \chi \), which is odd. Note, that the action in (4.1) is the supersymmetric extension of (2.1).

The corresponding supersymmetric Hamiltonian is

\[
H_0 = \frac{p^2}{2} + 2\left(\frac{\partial g}{\partial x}\right)^2 + 2\frac{\partial^2 g}{\partial x^2}\bar{\chi}\chi,
\]

where \( p = \dot{x}, \pi_\chi = -i\bar{\chi}, \pi_{\bar{\chi}} = -i\chi \) are the momenta conjugated to \( x, \chi \) and \( \bar{\chi} \), respectively. The Dirac’s brackets are defined as

\[
\{\chi, \bar{\chi}\}^* = -i, \quad \{x, p\}^* = 1.
\]

Applying the Noether theorema to the \( n = 2 \) supersymmetry invariant action one finds the corresponding conserved supercharges

\[
S = \left( ip + 2\frac{\partial g}{\partial x}\right)\chi, \quad \bar{S} = S^\dagger = \left( -ip + 2\frac{\partial g}{\partial x}\right)\bar{\chi},
\]

and \( F \), which is the generator of the \( U(1) \) rotation on \( \chi \)

\[
F = \bar{\chi}\chi.
\]

In terms of the Dirac’s brackets (4.3) the quantities \( H_0, S, \bar{S} \) and \( F \) form a closed super-algebra

\[
\{S, \bar{S}\}^* = -2iH_0, \quad \{H_0, S\}^* = \{H_0, \bar{S}\}^* = 0, \quad \{S, S\}^* = \{\bar{S}, \bar{S}\}^* = 0, \quad \{F, S\}^* = iS, \quad \{F, \bar{S}\}^* = -i\bar{S}.
\]
Now, our goal will be to obtain the time-dependent Schrödinger equation for the supersymmetric case. The approach will be similar to that we have followed earlier. Dirac’s approach applied to the action (4.1) for the \( n = 2 \) supersymmetric mechanics in the reparametrization invariant form requires a modification. A direct way to construct such action is a supersymmetric extension of the action (2.5), including in the local \( n = 2 \) supersymmetry the transformations of reparametrization (2.6). As a consequence of this extension the new gauge fields \( \psi(\tau), \bar{\psi}(\tau) \) and \( V(\tau) \) in the action will appear. These gauge fields are the superpartners of the “lapse function” \( N(\tau) \).

In order to obtain the superfield formulation of the action (4.1) the transformation of the time reparametrization (2.6) must be extended to the \( n = 2 \) local conformal time supersymmetry \( (\tau, \theta, \bar{\theta}) \) [13–18]. The transformations of the supertime \( (\tau, \theta, \bar{\theta}) \) can be written as

\[
\delta \tau = I_L(\tau, \theta, \bar{\theta}) + \frac{1}{2} \bar{\theta} D_\theta I_L(\tau, \theta, \bar{\theta}) - \frac{1}{2} \theta D_\bar{\theta} I_L(\tau, \theta, \bar{\theta}),
\]
\[
\delta \theta = i D_\bar{\theta} I_L(\tau, \theta, \bar{\theta}), \quad \delta \bar{\theta} = -i D_\theta I_L(\tau, \theta, \bar{\theta}),
\]

(4.7)

with the superfunction \( I_L(\tau, \theta, \bar{\theta}) \) defined by

\[
I_L(\tau, \theta, \bar{\theta}) = a(\tau) + i \theta \beta'(\tau) + i \bar{\theta} \bar{\beta}'(\tau) + b(\tau) \theta \bar{\theta},
\]

(4.8)

where \( D_\theta = \frac{\partial}{\partial \theta} + i \bar{\theta} \frac{\partial}{\partial \tau} \) and \( D_\bar{\theta} = -\frac{\partial}{\partial \bar{\theta}} - i \theta \frac{\partial}{\partial \tau} \) are the supercovariant derivatives of the \( n = 2 \) global supersymmetry, \( a(\tau) \) is a local time reparametrization parameter, \( \beta'(\tau) \) is the Grassmann complex parameter of the \( n = 2 \) local conformal supersymmetry transformations and \( b(\tau) \) is the parameter of the local \( U(1) \) rotations on the complex Grassmann coordinates \( \theta \) \( (\bar{\theta} = \bar{\theta}^\dagger) \).

Then, the superfield generalization of the actions (2.3) and (1.1), which are invariant under the \( n = 2 \) local conformal supersymmetry transformations (4.7), has the form [19,20].
\[ \tilde{S}_{n=2} = \int \left\{ \frac{1}{2} N^{-1} D_\theta D_\theta \Phi - 2g(\Phi) \right\} d\theta d\tilde{\theta} d\tau, \]  

where \( g(\Phi) \) is the superpotential. The local supercovariant derivatives have the form \( \tilde{D}_\theta = IN^{-\frac{1}{2}}D_\theta \) and \( \tilde{D}_{\tilde{\theta}} = IN^{-\frac{1}{2}}D_{\tilde{\theta}} \). In the superfield action (4.9) \( IN(\tau, \theta, \tilde{\theta}) \) is absent in the numerator of the second term, this is related to the fact that the superjacobian of the transformations (4.7), as well as the \( Ber E_B^A \), is equal to one and the quantity \( d\theta d\tilde{\theta} d\tau \) is an invariant volume.

In order to have the component action for (4.9) we must expand the superfields \( IN, \Phi \) and the superpotential \( g(\Phi) \) in Taylor series with respect to \( \theta, \tilde{\theta} \).

In the case of the real superfield \( IN(i.e. IN^\dagger = IN) \) we have the following expansion

\[ IN(\tau, \theta, \tilde{\theta}) = N(\tau) + i\theta \tilde{\psi}'(\tau) + i\tilde{\theta} \psi'(\tau) + V'(\tau)\theta \tilde{\theta}, \]  

where \( N(\tau) \) is the lapse function, \( \psi' = N^{1/2}(\tau)\psi(\tau) \) and \( V'(\tau) = NV + \tilde{\psi} \psi \). The components \( N, \psi, \tilde{\psi} \) and \( V \) of the superfield \( IN(\tau, \theta, \tilde{\theta}) \) are gauge fields of the one-dimensional \( n = 2 \) supergravity.

The superfield (4.10) transforms as the one-dimensional vector field under the local supersymmetric transformations (4.7)

\[ \delta IN = (ILN) \cdot + \frac{i}{2} D_\theta ILD_\theta N + \frac{i}{2} D_{\tilde{\theta}} ILD_{\tilde{\theta}} N. \]  

The transformation law for the components \( N(\tau), \psi(\tau), \tilde{\psi}(\tau) \) and \( V(\tau) \) may be obtained from (4.11)

\[ \delta N = (aN) \cdot + \frac{i}{2}(\beta \tilde{\psi} + \bar{\beta} \psi), \quad \delta V = (aV) \cdot + \dot{b}, \]  

\[ \delta \psi = (a\psi) \cdot + D\beta - \frac{i}{2} \dot{b} \psi, \quad \delta \tilde{\psi} = (a\tilde{\psi}) \cdot + D\bar{\beta} + \frac{i}{2} \dot{b} \tilde{\psi}, \]

where \( D\beta = \dot{\beta} + \frac{1}{2} V \beta \) and \( D\bar{\beta} = \dot{\bar{\beta}} - \frac{1}{2} V \beta \) are the \( U(1) \) covariant derivatives and \( \dot{b} = b - \frac{1}{2N}(\beta \tilde{\psi} - \bar{\beta} \psi) \).

For the real scalar matter superfield \( \Phi(\tau, \theta, \tilde{\theta}) \) we have
\[ \Phi(\tau, \theta, \bar{\theta}) = x(\tau) + i\theta \bar{\chi}'(\tau) + i\bar{\theta} \chi'(\tau) + F'(\tau) \theta \bar{\theta}, \quad (4.13) \]

where \( \chi' = N^{1/2} \chi(\tau) \) and \( F' = NF + \frac{1}{2}(\bar{\psi} \chi - \psi \bar{\chi}) \).

The transformations law for the superfield \( \Phi(\tau, \theta, \bar{\theta}) \) is

\[ \delta \Phi = I{\bar{\Phi}} + \frac{i}{2} D_{\theta} I{\bar{\Phi}} + \frac{i}{2} D_{\bar{\theta}} I{\Phi}. \quad (4.14) \]

The component \( F(\tau) \) in (4.13) is an auxiliary degree of freedom (non-dynamical variable), \( \chi(\tau) \) and \( \bar{\chi}(\tau) \) are the “fermionic” superpartners of the \( x(\tau) \). Their transformations law has the form

\[ \begin{align*}
\delta x &= ax + \frac{i}{2} (\beta \bar{\chi} + \beta \chi), \\
\delta F &= a F + \frac{1}{2N} \left( \beta \bar{D} \chi - \beta D \bar{\chi} \right), \\
\delta \chi &= a \dot{\chi} + \frac{\beta}{2} \left( \frac{D \chi}{N} + iF \right) - \frac{i}{2} \hat{b} \chi, \\
\delta \bar{\chi} &= a \dot{\bar{\chi}} + \frac{\bar{\beta}}{2} \left( \frac{D \bar{\chi}}{N} - IF \right) + \frac{i}{2} \hat{b} \bar{\chi},
\end{align*} \]

where \( Dx = \dot{x} - \frac{i}{2}(\psi \bar{\chi} + \bar{\psi} \chi) \), \( \bar{D} \chi = D \chi - \frac{i}{2} (\frac{D \chi}{N} + iF) \) are the supercovariant derivatives and \( D \chi = \dot{\chi} + \frac{1}{2} V \chi \).

It is clear, that the superfield action (4.9) is invariant under the \( n = 2 \) local conformal time supersymmetry. Now, we can write the expression under the integral (4.9) by means of certain superfunction \( f(I{\Phi}) \). Then, the infinitesimal small transformations of the action (4.9) under the superfield transformations (4.11,4.14) have the form

\[ \delta \tilde{S}_{n=2} = \frac{i}{2} \int \left\{ D_{\theta} (I{\Phi} f) + D_{\bar{\theta}} (I{\bar{\Phi}} f) \right\} d\theta d\bar{\theta} dt. \quad (4.16) \]

We can see, that the integrand is a total derivative, i.e. the action (4.9) is invariant under the \( n = 2 \) local conformal time supersymmetry.

After integration over the Grassmann complex coordinates \( \theta \) and \( \bar{\theta} \) we find the component action, where \( F(\tau) \) is an auxiliary field, and it can be eliminated using its equation of motion. Finally, the action \( \tilde{S}_{n=2} \), in terms of the components of the superfields \( I{\Phi} \) and \( \Phi \), takes the form
\[ \tilde{S}_{n=2} = \int \left\{ \frac{(Dx)^2}{2N} - i\bar{\chi}D\chi - 2N \left( \frac{\partial g}{\partial x} \right)^2 - 2N \frac{\partial^2 g}{\partial x^2} \bar{\chi} \chi + \frac{\partial g}{\partial x} (\bar{\psi} - \bar{\chi}) \right\} d\tau, \quad (4.17) \]

where \( Dx \) and \( D\chi \) are defined above.

The action (4.17) does not contain the kinetic terms for \( N, \psi, \bar{\psi} \) and \( V \), they are not dynamical. This fact is reflected in the primary constraints

\[
\begin{align*}
P_N &= \frac{\partial \tilde{L}_{n=2}}{\partial \dot{N}} = 0, \quad P_{\psi} = \frac{\partial \tilde{L}_{n=2}}{\partial \dot{\psi}} = 0, \quad P_{\bar{\psi}} = \frac{\partial \tilde{L}_{n=2}}{\partial \dot{\bar{\psi}}} = 0, \\
P_V &= \frac{\partial \tilde{L}_{n=2}}{\partial \dot{V}} = 0,
\end{align*}
\]  

(4.18)

where \( P_N, P_{\psi}, P_{\bar{\psi}} \) and \( P_V \) are the canonical momenta conjugated to \( N, \psi, \bar{\psi} \) and \( V \), respectively.

Then, the canonical Hamiltonian for the action \( \tilde{S}_{n=2} \) in (4.17) can be calculated in the usual way

\[ \tilde{H}_c = NH_0 + \frac{\bar{\psi}}{2} S - \frac{\psi}{2} \bar{S} + \frac{V}{2} F, \quad (4.19) \]

where \( H_0, S, \bar{S} \) and \( F \) are defined in (4.2, 4.4, 4.5). Therefore, the total Hamiltonian is

\[ \tilde{H}_T = \tilde{H}_c + u_N P_N + u_{\psi} P_{\psi} + u_{\bar{\psi}} P_{\bar{\psi}} + u_V P_V. \quad (4.20) \]

The secondary constraints are first-class constraints

\[ H_0 = 0, \quad S = 0, \quad \bar{S} = 0, \quad F = 0, \quad (4.21) \]

which are obtained using the standard Dirac’s procedure, i.e., the time derivatives of the primary constraints must be vanishing for all the \( p, x, \pi_{\chi}, \pi_{\bar{\chi}}, \chi \) and \( \bar{\chi} \), that satisfy the equation of motion.

In the quantum theory the first-class constraints (4.21) associated with the invariance of the action (4.17) become conditions on the wave function \( \psi = \psi(x, \chi, \bar{\chi}) \). The quantum constraints are
\[ H_0 \psi = 0, \quad S \psi = S \psi = 0, \quad F \psi = 0, \quad (4.22) \]

which are obtained when we change the classical dynamical variables by their corresponding operators. The first equation in (4.22) is the Schrödinger equation, a state with zero energy. Therefore, we have the time-independent Schrödinger equation, this fact is due to the invariance under the reparametrization symmetry of the action \((4.17)\), this problem is well-known as the “problem of time” \([1-6]\).

So, in order to have a time-dependent Schrödinger equation for the supersymmetric quantum mechanics, we consider the generalization of the reparametrization invariant action \(S_r \) in \((2.14)\). In the case of \(n = 2\) local supersymmetry it has the superfield form

\[ S_{r(n=2)} = - \int \left\{ IP - \frac{i}{2} N^{-1} (D_\theta T D_\theta IP - D_\theta IP D_\theta T) \right\} d\theta d\bar{\theta} d\tau. \quad (4.23) \]

The action \((4.23)\) is determined in terms of the new superfields \(T\) and \(IP\). The superfield \(T\) is determined by the odd complex time \(\eta(\tau)\) and \(\bar{\eta}(\tau)\), which are the superpartners of the time \(t(\tau)\) and one auxiliary field \(m'(\tau)\). Explicitly, we have

\[ T(\tau, \theta, \bar{\theta}) = t(\tau) + \theta \eta'(\tau) - \bar{\theta} \bar{\eta}'(\tau) + m'(\tau) \theta \bar{\theta}, \quad (4.24) \]

where \(\eta'(\tau) = N^{1/2}(\tau) \eta(\tau)\) and \(m'(\tau) = Nm + \frac{i}{2}(\bar{\psi} \bar{\eta} + \psi \eta)\). The transformation rule for the superfield \(T(\tau, \theta, \bar{\theta})\) under the \(n = 2\) local conformal supersymmetry transformations \((1.7)\) is

\[ \delta T = IL T + i/2 D_\theta IL D_\theta T + i/2 D_\theta IL D_\theta T. \quad (4.25) \]

The superfield \(IP(\tau, \theta, \bar{\theta})\) has the form

\[ IP(\tau, \theta, \bar{\theta}) = \rho(\tau) + i \theta p'_\eta(\tau) + i \bar{\theta} p'_{\bar{\eta}}(\tau) + p'_t(\tau) \theta \bar{\theta}, \quad (4.26) \]

where \(p'_\eta(\tau) = N^{1/2} p_\eta(\tau)\) and \(p'_t = Np_t + \frac{i}{2}(\bar{\psi} p_\eta - \psi p_{\bar{\eta}})\). \(p_\eta\) and \(p_{\bar{\eta}}\) are the odd complex momenta, i.e. superpartners of the momentum \(p_t\). The superfield \(IP\) transforms as
\[ \delta \mathcal{L} = \mathcal{L} \dot{\mathcal{L}} + \frac{i}{2} D_{\theta} \mathcal{L} D_{\bar{\theta}} \mathcal{L} + \frac{i}{2} D_{\bar{\theta}} \mathcal{L} D_{\theta} \mathcal{L}. \quad (4.27) \]

It is easy to show, that the infinitesimal small transformations of the action \( S_{r(n=2)} \) under the transformations \((4.11, 4.25, 4.27)\) is a total derivative, then the action \( S_{r(n=2)} \) is invariant under the \( n = 2 \) local supersymmetric transformations \((4.7)\).

After integration over \( \theta \) and \( \bar{\theta} \) the action \((4.23)\) may be written in its component form. We obtain

\[ S_{r(n=2)} = -\int \left\{ p_t (N - \dot{t}) + i \dot{\eta} p_\eta + i \dot{\bar{\eta}} p_{\bar{\eta}} + \frac{\bar{\psi}}{2} (p_\eta - \bar{\eta} p_t) - \frac{\psi}{2} (p_{\bar{\eta}} - \eta p_t) \right\} d\tau. \quad (4.28) \]

Varying the action \((4.29)\) with respect to \( p_t, p_\eta \) and \( p_{\bar{\eta}} \) we obtain the relations between \( N, \psi, \bar{\psi}, t, \eta \) and \( \bar{\eta} \), which are the generalization of \((2.27)\)

\[ N(\tau) = \dot{t} + \frac{1}{2} \bar{\psi}(\tau) \bar{\eta}(\tau) - \frac{1}{2} \psi(\tau) \eta(\tau), \quad \psi = 2i D\bar{\eta}, \quad \bar{\psi} = -2i D\eta, \quad (4.30) \]

where \( D\eta = \dot{\eta} - \frac{i}{2} V\eta \) and \( D\bar{\eta} = \dot{\bar{\eta}} + \frac{i}{2} V\bar{\eta} \) are the \( U(1) \) supercovariant derivatives.

Fulfilling the relations \((4.30)\) the action \((4.29)\) vanishes.

Proceeding to the Hamiltonization, in addition to the second-class constraints obtained in \((2.17)\) corresponding to the canonical variables \( t \) and \( p_t \), we have the following constraints
\[ \Pi_3(\eta) = P_\eta + ip_\eta = 0, \quad \Pi_4(p_\eta) = P_{p_\eta} = 0, \]  
\[ \Pi_5(\bar{\eta}) = P_{\bar{\eta}} + ip_{\bar{\eta}} = 0, \quad \Pi_6(p_{\bar{\eta}}) = P_{p_{\bar{\eta}}} = 0, \]  
where \( P_\eta = \frac{\partial L_{r(n=2)}}{\partial \dot{\eta}}, \) \( P_{p_\eta} = \frac{\partial L_{r(n=2)}}{\partial \dot{p}_\eta} \) are the odd momenta conjugated to \( \eta, p_\eta \) and their respective complex conjugate. We define the odd canonical Poisson brackets as

\[
\{ \eta, P_\eta \} = 1, \quad \{ p_\eta, P_{p_\eta} \} = 1. \tag{4.32}
\]

So, the constraints (4.31) are of the second-class. Defining the matrix (symmetric for the Grassmann variables) constraint \( C_{ik} (i, k = \eta, p_\eta, \bar{\eta}, p_{\bar{\eta}}) \) as the odd Poisson brackets, we have the following non-zero matrix elements

\[
C_{\eta, p_\eta} = C_{p_\eta, \eta} = \{ \Pi_3, \Pi_4 \} = i, \quad C_{\bar{\eta}, p_{\bar{\eta}}} = C_{p_{\bar{\eta}}, \bar{\eta}} = \{ \Pi_5, \Pi_6 \} = i \tag{4.33}
\]

with their inverse matrix \((C^{-1})_{\eta p_\eta} = -i \) and \((C^{-1})_{\bar{\eta} p_{\bar{\eta}}} = -i \). Using the Dirac’s brackets \{\ , \\}* defined in (2.19) we obtain, that the only non-zero matrix elements are

\[
\{ \eta, p_\eta \}^* = i, \quad \{ \bar{\eta}, p_{\bar{\eta}} \}^* = i. \tag{4.34}
\]

So, if we take the additional term (4.28) the full action will be

\[
\tilde{S} = \tilde{S}_{n=2} + S_{r(n=2)}. \tag{4.35}
\]

Then, the canonical Hamiltonian for the action \( \tilde{S} \) will have the form

\[
\tilde{H}_c = N(p_t + H_0) - \frac{\psi}{2}(S_\eta + \bar{S}) + \frac{\bar{\psi}}{2}(-S_\eta + S) + \frac{V}{2}(F_\eta + F), \tag{4.36}
\]

where \( S_\eta = (-p_\eta + \bar{p}_t), S_{\bar{\eta}} = (p_{\bar{\eta}} - \eta p_t) \) and \( F_\eta = (\eta p_\eta - \bar{\eta} p_{\bar{\eta}}) \).

Then the total Hamiltonian may be written as

\[
\tilde{H}_T = \tilde{H}_c + u_N P_N + u_\psi P_\psi + u_{\bar{\psi}} P_{\bar{\psi}} + u_V P_V. \tag{4.37}
\]

Due to the conditions
\[
\dot{P}_N = \dot{P}_\psi = \dot{P}_{\bar{\psi}} = \dot{P}_V = 0, \quad (4.38)
\]

we now have the first-class constraints

\[
H = p_t + H_0, \quad Q_\eta = -S_\eta + S, \quad Q_{\bar{\eta}} = S_\eta + \bar{S}, \quad F = F_\eta + F. \quad (4.39)
\]

The constraints (4.39) form a closed superalgebra with respect to the Dirac’s brackets

\[
\{Q_\eta, Q_{\bar{\eta}}\}^* = -2iH, \quad \{H, Q_\eta\}^* = \{H, Q_{\bar{\eta}}\}^* = 0, \quad (4.40)
\]

\[
\{F, Q_\eta\}^* = iQ_\eta, \quad \{F, Q_{\bar{\eta}}\}^* = -iQ_{\bar{\eta}}.
\]

After quantization the Dirac’s brackets (4.34) become anticommutator for the odd variables

\[
\{\eta, p_\eta\} = i\{\eta, p_\eta\}^* = -1, \quad \{\bar{\eta}, p_\eta\} = i\{\bar{\eta}, p_\eta\}^* = -1, \quad (4.41)
\]

with the operator representation \(p_\eta = -\frac{\partial}{\partial \eta}\) and \(p_{\bar{\eta}} = -\frac{\partial}{\partial \bar{\eta}}\). In order to obtain the quantum expression for \(H, Q_\eta, Q_{\bar{\eta}}\) and \(F\) we use the operator representation \(p = -i \frac{d}{dx}\) and \(\chi, \bar{\chi}\) as \(\{\chi, \bar{\chi}\} = 1, \chi = \sigma_(-)\) and \(\bar{\chi} = \sigma_+)\), where \(\sigma_\pm = \frac{1}{2}(\sigma_1 \pm i\sigma_2)\) in our case for the generators (4.41) on the quantum level, we have

\[
H = -i \frac{d}{dt} + H_0(p, x, \chi, \bar{\chi}), \quad Q_\eta = -\left(\frac{\partial}{\partial \eta} - i\bar{\eta}\frac{\partial}{\partial t}\right) + S(p, x, \chi), \quad (4.42)
\]

\[
Q_{\bar{\eta}} = \left(-\frac{\partial}{\partial \bar{\eta}} + i\eta\frac{\partial}{\partial t}\right) + \bar{S}(p, x, \bar{\chi}), \quad F = \left(\bar{\eta}\frac{\partial}{\partial \bar{\eta}} - \eta\frac{\partial}{\partial \eta}\right) + F(\chi, \bar{\chi}),
\]

where \(H_0 = -\frac{d^2}{dx^2} + 2(\frac{\partial \phi}{\partial x})^2 + \frac{d^2 \phi}{dx^2}[\chi, \bar{\chi}]\) and \(F = \frac{1}{2}[\chi, \bar{\chi}] = \frac{1}{2}\sigma_3\). In (4.42) \(S_\eta = \frac{\partial}{\partial \eta} - i\bar{\eta}\frac{\partial}{\partial t}\) and \(S_{\bar{\eta}} = -\frac{\partial}{\partial \bar{\eta}} + i\eta\frac{\partial}{\partial t}\) are the generators of supertranslations on the superspace with coordinates \((t, \eta, \bar{\eta})\) and \(p_t = -i \frac{\partial}{\partial t}\) is the ordinary time translation operator

\[
\{S_\eta, S_{\bar{\eta}}\} = 2i \frac{\partial}{\partial t}, \quad (4.43)
\]

and \(F_\eta = -\eta\frac{\partial}{\partial \eta} + \bar{\eta}\frac{\partial}{\partial \bar{\eta}}\) is the generator of the \(U(1)\) rotation on the complex Grassmann coordinates \(\eta\) \((\bar{\eta} = \eta^\dagger)\). The algebra of the quantum generators \(H, S, \bar{S}\) and \(F\) is a closed superalgebra.
\{S, S\} = 2H_0, \quad [S, H_0] = [\bar{S}, H_0] = [F, H_0] = 0, \quad (4.44)
\[F, S\] = -S, \quad [F, \bar{S}] = \bar{S}, \quad S^2 = \bar{S}^2 = 0,

the conserved quantities are $H, S, \bar{S}$ and $F$. We can see, that the generators $H, Q_\eta, Q_{\bar{\eta}}$ and $F$ satisfy the same superalgebra

\{Q_\eta, Q_{\bar{\eta}}\} = 2H, \quad [Q_\eta, H] = [Q_{\bar{\eta}}, H] = [F, H] = 0, \quad (4.45)
\[F, Q_\eta\] = -Q_\eta, \quad [F, Q_{\bar{\eta}}] = Q_{\bar{\eta}}, \quad Q_\eta^2 = Q_{\bar{\eta}}^2 = 0.

In the quantum theory the first-class constraints (4.42) become conditions on the wave function $\Psi$. So, we have the supersymmetric quantum constraints

$$H\Psi = 0, \quad Q_\eta \Psi = 0, \quad Q_{\bar{\eta}} \Psi = 0, \quad F\Psi = 0.$$ \quad (4.46)

We will search the wave function in the superfield form, we regard

$$\Psi(t, \eta, \bar{\eta}, \chi, \bar{\chi}) = \psi(t, x, \chi, \bar{\chi}) + i\eta \sigma(t, x, \chi, \bar{\chi}) + i\bar{\eta} \phi(t, x, \chi, \bar{\chi}) +$$
$$+ \zeta(t, x, \chi, \bar{\chi}) \eta \bar{\eta}.$$ \quad (4.47)

This wave function must satisfy the quantum constraints (4.46). In (4.47) $\psi, \zeta$ are even components of the wave function, unlike $\sigma, \phi$, which are odd. We take the constraints

$$Q_\eta \Psi = 0, \quad Q_{\bar{\eta}} \Psi = 0.$$ \quad (4.48)

Due to the algebra (4.45) we have

$$\{Q_\eta, Q_{\bar{\eta}}\} \Psi = 2H\Psi = 0.$$ \quad (4.49)

This is the time-dependent Schrödinger equation for the supersymmetric quantum mechanics.

The condition (4.48) leads to the following form of the wave function
\[
\Psi_* = \psi + \eta(S\psi) + \bar{\eta}(\bar{S}\psi) - \frac{1}{2}(\bar{S}S - SS)\psi\bar{\eta},
\]  
(4.50)

then, \(Q_\eta \Psi\) has the form

\[
Q_\eta \Psi_* = \bar{\eta}(i \frac{d\psi}{dt} - \frac{1}{2}\{S, \bar{S}\}\psi)
\]

\[
+ \eta \bar{\eta}S(i \frac{d\psi}{dt} - \frac{1}{2}\{S, \bar{S}\}\psi) = 0,
\]

this is the standard time-dependent Schrödinger equation

\[
i \frac{d\psi(t, \chi, \bar{\chi})}{dt} = H_0(p, x, \chi, \bar{\chi})\psi(t, \chi, \bar{\chi}),
\]

(4.52)

due to the relation \(H_0 = \frac{1}{2}\{S, \bar{S}\}\). If we put in the Schrödinger equation (4.52) the condition of the stationary states given by \(\frac{d\psi}{dt} = 0\), we will have \(H_0\psi = 0\) and due to the algebra (4.44) we obtain \(S\psi = \bar{S}\psi = 0\) and the wave function \(\Psi_*\) becomes wave function \(\psi(x, \chi, \bar{\chi})\) [10,11,19,20].

V. CONCLUSIONS

Without any difficulties our procedure may be generalized to D-dimensional extended supersymmetry mechanics [14,21]. This is due to the fact, that the full algebra of the transformations is closed on off-shell, and it is a \(n = 2\) local conformal supersymmetry. So, our procedure represents a direct possibility to apply the Batalin-Vilkovsky formalism [22–24] to supersymmetric systems.

In this work we have considered systems (including susy), which are not parametrized. Such systems always may be done in a parametrized invariant form. For this purpose we must include auxiliary gauge degree of freedom. Hence, the constraint system contains generator of reparametrization, which is the Hamiltonian generator. Its operator must annihilate the physical states, this leads to time-independent Schrödinger equation \(H_0\psi = 0\) for states with zero energy.
In order to have a time-dependent Schrödinger equation, \textit{i.e.} to describe the quantum evolution of a system, as we shown in this work, an additional invariant action \( S_r \) may be always constructed. The additional action does not change the equation of motions, but the constraint system, which becomes time-dependent Schrödinger equation. From our point of view, this fact is very important in those cases, when starting systems are invariant under reparametrization of time, such systems as: general relativity, cosmological models, string theories. These theories contain auxiliary additional gauge degree of freedom (lapse and shift functions) \cite{25}. Such theories have the problem which in literature is known as the “problem of time” \cite{1,3}. For instance, the Wheeler-DeWitt equation \cite{26}.

Naturally, the question arising as a result of this work is: could we construct an additional invariant under general covariant transformations action? If the result of this question is positive, then the additional action will remain without any changes the equations for the physical degree of freedom of the system, but the constraint will be modified leading to time-dependent Schrödinger equation.

**Acknowledgments.** We are grateful to A. Ivanov, S. Krivonos, J.L. Lucio, J.A. Nieto, I. Lyanzuridi, L. Marsheva, O. Obregón J. Socorro and M. Tsulaia for their interest in the work and useful comments. This research was supported in part by CONACyT under the grant 28454E. Work of A.P. was supported in part by INTAS Grant 96-0538 and by the Russian Foundation of Basic Research, Grant 99-02-18417. One of us (J.J. Rosales) would like to thank CONACyT for support under Estancias Posdoctorales en el Extranjero and Instituto de Física de la Universidad de Gto. for its hospitality during the final stages of this work.
REFERENCES

[1] K. Kuchař, in Quantum Gravity 2, edited by C.J. Isham, R. Penrose, and D.W. Sciama (Clarendon Press, Oxford, 1981), p.329.

[2] P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva Univ. Press, New York, 1967).

[3] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems (Princeton Univ. Press, Princeton, NJ. 1992).

[4] C.J. Isham and K. Kuchař, Ann. Phys. (N.Y.), 164, 316 (1985).

[5] D.M. Gitman and I.V. Tyutin, Quantization of Fields with Constraints (Springer-Verlag Berlin Heidelberg, 1990).

[6] G. Fülöp, D.M. Gitman and I.V. Tyutin, Int. Jour. of Theor. Phys. 38, 1941 (1999).

[7] J.L. Lucio M., J. Antonio Nieto and J. David Vergara, Phys. Lett. A 219, 150 (1996).

[8] J.B. Hartle, Class. and Quantum Grav. 13, 361 (1996).

[9] E. Witten, Nucl. Phys. B 185,513 (1981).

[10] F. Coopen, A. Khare and U. Sukhatme, Phys. Rep. 251, 267 (1995).

[11] P. Salomonson and M.B. Halpern, Nucl. Phys. B 196, 509 (1982).

[12] V.I. Tkach, J.J. Rosales and O. Obregon, Class. and Quantum Grav. 13, 2349 (1996); C. Teitelboim, Phys. Rev. D 25, 3159 (1982).

[13] C.V. Suluman, J. Phys. A 18, 2917 (1985).

[14] V.P. Berezevoj and A.I. Pashnev, Class. and Quantum Grav. 8, 484 (1991).
[15] L. Brink, P. DiVecchia and P. Howe, Nucl. Phys. B 118, 76 (1977).

[16] V.D. Gershun and V.I. Tkach, JETP Lett. 29, 288 (1979).

[17] P. Howe, S. Penati, M. Pernici and P. Townsend, Phys. Lett. B 215, 555 (1988).

[18] D.P. Sorokin, V.I. Tkach and D.V. Volkov, Mod. Phys. Lett. A 4, 901 (1989).

[19] V.I. Tkach, J.J. Rosales and J. Socorro, Class. and Quantum Grav. 16, 797 (1999).

[20] O. Obregón, J.J. Rosales, J. Socorro and V.I. Tkach, Class. and Quantum Grav. 16, 2861 (1999).

[21] E.A. Ivanov, S.O. Krivonos and A.I. Pashnev, Class. and Quantum Grav. 8, 19 (1991).

[22] I.A. Batalin and G.A. Vilkovsky, Phys. Lett. B 102, 27 (1981).

[23] E.S. Fradkin and G.A. Vilkovsky, Phys. Lett. B 55, 224 (1975).

[24] I.A. Batalin and G.A. Vilkovsky, Phys. Lett. B 69, 309 (1977).

[25] W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (W.M. Freeman, San Francisco, 1970).

[26] B.S. De Witt, Phys. Rev. D 160, 1113 (1967).