ABSOLUTELY SUMMING OPERATORS ON NON COMMUTATIVE C^*-ALGEBRAS AND APPLICATIONS

NARCISSE RANDRIANANTOANINA

Abstract. Let E be a Banach space that does not contain any copy of ℓ^1 and A be a non commutative C^*-algebra. We prove that every absolutely summing operator from A into E^* is compact, thus answering a question of Pełczynski.

As application, we show that if G is a compact metrizable abelian group and Λ is a Riesz subset of its dual then every countably additive A^*-valued measure with bounded variation and whose Fourier transform is supported by Λ has relatively compact range. Extensions of the same result to symmetric spaces of measurable operators are also presented.

1. Introduction

It is a well known result that every absolutely summing operator from a $C(K)$-space into a separable dual space is compact. More generally if F is a Banach space with the complete continuity property (CCP) then every absolutely summing operator from any $C(K)$-spaces into F is compact (see [10]).

It is the intention of the present note to study extensions of the above results in the setting of C^*-algebras, i.e., replacing the $C(K)$-spaces above by a general non commutative C^*-algebra. Typical examples of Banach spaces with the CCP are dual spaces whose preduals do not contain ℓ^1. Our main result is that if E is a Banach space that does not contain any copy of ℓ^1 and A is a C^*-algebra then every absolutely summing operator from A into E^* is compact. This answered positively the following question raised by Pełczynski (see [17] Problem 3. P.20): Is every absolutely summing operator from a non commutative C^*-algebra into a Hilbert space compact? This result is also used to study

1991 Mathematics Subject Classification. 46E40; Secondary 47D15, 28B05.
Key words and phrases. C^*-algebras, vector measures, Riesz sets.
relative compactness of range of countably additive vector measures with values in duals of non commutative C^\ast-algebras. In [9], Edgar introduced new types of Radon-Nikodym properties associated with Riesz subsets of countable discrete group (see the definition below) as generalization of the usual Radon-Nikodym property (RNP) and the Analytic Radon-Nikodym property (ARNP). These properties were extensively studied in [7] and [8]. In [7], it was shown that if Λ is a Riesz subset of a countable discrete group then $L^1[0,1]$ has the type II-Λ-RNP. In the other hand, Haagerup and Pisier showed in [14] that non commutative L^1-spaces have the ARNP so it is a natural question to ask if non commutative L^1-spaces have the type II-Λ-RNP for any Riesz subset. In this direction, we obtain (as a consequence of our main result) that if a countably additive vector measure of bounded variation is defined on the σ-field of Borel subsets of a compact metrizable abelian group and takes its values in a dual of a C^\ast-algebra then its range is relatively compact provided that its Fourier transform is supported by a Riesz subset of the dual group.

Our terminology and notation are standard. We refer to [8] and [1] for definitions from Banach space theory and [2], [16] and [11] for basic properties from the theory of operator algebras and non-commutative integrations.

2. Preliminary Facts and Notations

We recall some definitions and well known facts which we use in the sequel.

Let \mathcal{A} be a C^\ast-algebra, we denote by \mathcal{A}_h the set of Hermitian (self adjoint) elements of \mathcal{A}.

Definition 1. Let E and F be Banach spaces and $0 < p < \infty$. An operator $T : E \to F$ is said to be absolutely p-summing (or simply p-summing) if there exists C such that

$$\left(\sum_{i=1}^\ell \| Te_i \|^p \right)^{1/p} \leq C \max \left\{ \sum |\langle e_i, e^* \rangle|^p, \| e^* \| \leq 1 \right\}^{1/p}$$
The following class of operators was introduced by Pisier in \cite{Pisier} as an extension of the q-summing operators in the setting of C^*-algebras.

Definition 2. Let \mathcal{A} be a C^*-algebra and F be a Banach space, $0 < q < \infty$. An operator $T : \mathcal{A} \to F$ is said to be q-C^*-summing if there exists a constant C such that for any finite sequence (A_1, \ldots, A_n) of Hermitian elements of \mathcal{A} one has

\[
\left(\sum_{i=1}^{n} \|T(A_i)\|^q \right)^{1/q} \leq C \left(\sum_{i=1}^{n} |A_i|^q \right)^{1/q}
\|A\|.
\]

The smallest constant C for which the above inequality holds is denoted by $C_q(T)$. It should be noted that if the C^*-algebra \mathcal{A} is commutative then every q-C^*-summing operator from \mathcal{A} into any Banach space is q-summing. The following extension of the classical Pietsch's factorization theorem (\cite{Pietsch}) was obtained by Pisier (see Proposition 1.1 of \cite{Pisier}).

Proposition 1. If $T : \mathcal{A} \to F$ is a q-C^*-summing operator then there exists a positive linear form f of norm less than 1 such that

\[
\|Tx\| \leq C_q(T) \{f(|x|^q)\}^{1/q}, \text{ for every } x \in \mathcal{A}_h.
\]

Let \mathcal{M} be a von-Neumann algebra and \mathcal{M}_* be its predual. We recall that a functional f on \mathcal{M} is called normal if it belongs to \mathcal{M}_*. In \cite{Pisier}, it was shown that for the case of von-Neumann algebra and the operator T being weak* to weakly continuous then the positive linear form on the above proposition can be chosen to be normal; namely we have the following lemma (see Lemma 4.1 of \cite{Pisier}).

Lemma 1. Let $T : \mathcal{M} \to F$ be a 1-C^*-summing operator. If T is weak* to weakly continuous then there exists a linear form $f \in \mathcal{M}_*$ with $\|f\| \leq 1$ such that

\[
\|Tx\| \leq C_1(T)f(|x|), \text{ for every } x \in \mathcal{M}_h.
\] \hspace{1cm} (1)

For the next lemma, we recall that for $x \in \mathcal{M}$ and $f \in \mathcal{M}_*$, xf (resp. fx) denotes the element of \mathcal{M}_* defined by $xf(y) = f(yx)$ (resp. $fx(y) = f(xy)$) for all $y \in \mathcal{M}$.
Lemma 2. Let \(f \) be a positive linear form on \(M \). For every \(x \in M \),

\[
f \left(\left(\frac{xx^* + x^*x}{2} \right)^{1/2} \right) \leq 2\|xf + fx\|_{M^*}.
\]

(2)

Proof. Assume first that \(x \in M_h \). In this case \((xx^* + x^*x)/2 = |x|^2 \).

The operator \(x \) can be decomposed as \(x = x_+ - x_- \) where \(x_+, x_- \in M^+ \)

and \(x_+x_- = 0 \). There exists a projection \(p \in M \) such that \(px_- = x_-p = x_- \)

and \((1-p)x_+ = x_+(1-p) = x_+ \). This yields the following estimates:

\[
f(|x|) = f(x_+ + x_-) = f(x_+) + f(x_-)
\]

\[
= \frac{1}{2}(xf + fx)(1-p) + \frac{1}{2}(xf + fx)(p)
\]

\[
\leq \frac{1}{2} \left(\|xf + fx\| \|1-p\| + \|xf + fx\| \|p\| \right)
\]

\[
\leq \|xf + fx\|.
\]

For the general case, fix \(x \in M \). Let \(a = (x + x^*)/2 \) and \(b = (x - x^*)/2i \).

Clearly \(x = a + ib \) and \(((xx^* + x^*x)/2)^{1/2} = |a| + |b| \).

Using the Hermitian case, we get:

\[
f(|a| + |b|) \leq \|af + fa\| + \|bf + fb\|
\]

\[
\leq \|xf + fx\| + \|x^f + fx^*\|;
\]

but since \(f \geq 0 \),

\[
\|x^f + fx^*\| = \sup\{|f(sx^* + x^*s)|; \ s \in M, \|s\| \leq 1\}
\]

\[
= \sup\{|f^*(xs^* + s^*x)|; \ s \in M, \|s\| \leq 1\}
\]

\[
= \sup\{|f(xs^* + s^*x)|; \ s \in M, \|s\| \leq 1\}
\]

\[
= \|xf + fx\|,
\]

which completes the proof of the lemma.

\[
\square
\]

3. Main Theorem

Theorem 1. Let \(A \) be a \(C^* \)-algebra, \(E \) be a Banach space that does not contain any copy of \(\ell^1 \) and \(T : A \to E^* = F \) be a 1-summing operator then \(T \) is compact.
We will divide the proof into two steps. First we will assume that the C^*-Algebra A is a σ-finite von-Neumann algebra and the operator T is weak* to weakly continuous; then we will show that the general case can be reduced to this case. We refer to [21] P. 78 for the definition of σ-finite von-Neumann algebra.

Proposition 2. Let M be a σ-finite von-Neumann algebra. Let $T : M \to E^*$ be a weak* to weakly continuous 1-summing operator then T is compact.

Proof. The operator T being weak* to weakly continuous and 1-summing, there exist a constant $C = C_1(T)$ and a normal positive functional f on M such that

$$\|Tx\| \leq Cf(|x|) \text{ for every } x \in M_h.$$

Since the von-Neumann algebra M is σ-finite, there exists a faithful normal state f_0 in M_* (see [21] Proposition II-3.19). Replacing f by $f + f_0$, we can assume that the functional f on the inequality above is a faithful normal state and using Lemma 2, we get

$$\|Tx\| \leq 2C\|xf + fx\|_{M^*} \text{ for every } x \in M. \quad (3)$$

We may equip M with the scalar product by setting for every $x, y \in M$,

$$\langle x, y \rangle = f \left(\frac{xy^* + y^*x}{2} \right).$$

Since f is faithful, M with $\langle .., \rangle$ is a pre-Hilbertian. we denote the completion of this space by $L^2(M, f)$ (or simply $L^2(f)$).

By construction, the inclusion map $J : M \to L^2(M, f)$ is bounded and is one to one (f is faithful). On the dense subspace $J(M)$ of $L^2(f)$, we define a map $\theta : J(M) \to L^2(f)^*$ by $\theta(Jx) = \langle ., J(x^*) \rangle$. The map θ is clearly linear and is an isometry; indeed for every $x \in M$,

$$\|\theta(Jx)\|^2 = \sup_{\|u\| \leq 1} \langle u, J(x^*) \rangle^2 = \langle J(x^*), J(x^*) \rangle = f(x^*x + xx^*) = \|Jx\|^2.$$

So it can be extended to a bounded map (that we will denote also by θ) from $L^2(f)$ onto $L^2(f)^*$.
Let $S = J^* \circ \theta \circ J$. The operator is defined from \mathcal{M} into \mathcal{M}_* and we claim that for every $x \in \mathcal{M}$, $Sx = xf + fx$. In fact for every $x, y \in \mathcal{M}$, we have:

$$
Sx(y) = J^* \circ \theta \circ Jx(y) = \theta \circ Jx(Jy) = \langle J(y), J(x^*) \rangle = f(xy + yx) = (xf + fx)(y).
$$

Notice also that since f is normal, the functionals xf and fx are both normal for every $x \in \mathcal{M}$; therefore $S(\mathcal{M}) \subset \mathcal{M}_*$. Also since J is one to one, J^* has weak* dense range. The latter with the facts that both J and θ have dense ranges imply that $S(\mathcal{M})$ is weak* dense in \mathcal{M}^* so $S(\mathcal{M})$ is (norm) dense in \mathcal{M}^*.

Let us now define a map $L : S(\mathcal{M}) \rightarrow E^*$ by $L(xf + fx) = Tx$ for every $x \in \mathcal{M}$. The map L is clearly linear and one can deduce from (3) that L is bounded so it can be extended as a bounded operator (that we will denote also by L) from \mathcal{M}_* into E^*. The above means that T can be factored as follows

$$
\mathcal{M} \xrightarrow{S} \mathcal{M}_* \xrightarrow{L} E^*
$$

Taking the adjoints we get

$$
E^* \xrightarrow{T^*} \mathcal{M}^*_* \xrightarrow{S^*} \mathcal{M}^*_*
$$

To conclude the proof of the proposition, let $(e_n)_n$ be a bounded sequence in E. Since $E \nrightarrow \ell^1$, we will assume (by taking a subsequence if necessary) that $(e_n)_n$ is weakly Cauchy. We will show that $(T^*(e_n))_n$ is norm-convergent. For that it is enough to prove that if $(e_n)_n$ is a weakly null sequence in E then $(\|T^*e_n\|)_n$ converges to zero.

Let $(e_n)_n$ be a weakly null sequence in E. $(L^*(e_n))_n$ is a weakly null sequence in \mathcal{M}. This implies that $((L^*(e_n))^*)_n \geq 1$ (the sequence of the adjoints of the $L^*(e_n)$'s) is weakly null in \mathcal{M}.

Since T is 1-summing, it is a Dunford-Pettis operator (i.e. takes weakly convergent sequence into norm-convergent sequence). Hence

$$\lim_{n \to \infty} \|T((L^* e_n)^*)\|_{E^*} = 0.$$

In particular, since $(e_n)_n$ is a bounded sequence in E, we have

$$\lim_{n \to \infty} \langle T((L^* e_n)^*), e_n \rangle = 0$$

but

$$\langle T((L^* e_n)^*), e_n \rangle = \langle LS((L^* e_n)^*), e_n \rangle = \langle S((L^* e_n)^*), L^* e_n \rangle = \langle \theta \circ J((L^* e_n)^*), J(L^* e_n) \rangle = \langle J(L^* e_n), J(L^* e_n) \rangle_{L^2(f)} = \|J(L^* e_n)\|_{L^2(f)}.$$

So $\|J(L^* e_n)\|_{L^2(f)} \to 0$ as $n \to \infty$ and therefore since $T^* = S^* \circ L^* = J^* \circ \theta \circ J \circ L^*$, we get that $\lim_{n \to \infty} \|T^* e_n\| = 0$.

This shows that $T^*(B_E)$ is compact and since B_E is weak* dense in $B_{E^{**}}$ and T^* is weak* to weakly continuous, $T^*(B_{E^{**}}) \subseteq T^*(B_E)$ so T^* (and hence T) is compact. The proposition is proved. \hfill \Box

To complete the proof of the theorem, let \mathcal{A} be a C^*-algebra and $T : \mathcal{A} \to E^*$ be a 1-summing operator. The double dual \mathcal{A}^{**} of \mathcal{A} is a von-Neumann and $T^{**} : \mathcal{A}^{**} \to E^*$ is 1-summing. Let $(a_n)_n$ be a bounded sequence in \mathcal{A}^{**}. If we denote by \mathcal{M} the von-Neumann algebra generated by $(a_n)_n$ then the predual \mathcal{M}_* of \mathcal{M} is separable and therefore the von-Neumann algebra \mathcal{M} is σ-finite. Moreover, if we set $I : \mathcal{M} \to \mathcal{A}^{**}$ the inclusion map then I is weak* to weak* continuous. Hence \mathcal{M} and $T^{**} \circ I$ satisfy the conditions of Proposition 2 so $T^{**} \circ I$ is compact and since the sequence $(a_n)_n$ is arbitrary, the operator T^{**} (and hence T) is compact. \hfill \Box

Remark. It should be noted that for the proof of Proposition 2, we only require the operator T to be C^*-summing and Dunford-Pettis so
the conclusion of Proposition 2 is still valid for \(C^*-\text{summing operators}\) that are Dunford-Pettis.

4. APPLICATIONS TO VECTOR MEASURES

In this section we will provide some applications of the main theorem to study range of countably additive vector measures with values in duals of \(C^*-\text{Algebras}\).

The letter \(G\) will denote a compact metrizable abelian group, \(\hat{G}\) its dual, \(\mathcal{B}(G)\) is the \(\sigma\)-algebra of the Borel subsets of \(G\), and \(\lambda\) the normalized Haar measure on \(G\).

Let \(X\) be a Banach space and \(1 \leq p \leq \infty\), we will denote by \(L^p(G, X)\) the usual Bochner spaces for the measure space \((G, \mathcal{B}(G), \lambda)\); \(M(G, X)\) the space of \(X\)-valued countably additive Borel measures of bounded variation; \(C(G, X)\) the space of \(X\)-valued continuous functions and \(M^\infty(G, X) = \{\mu \in M(G, X), |\mu| \leq C\lambda \text{ for some } C > 0\}\).

If \(\mu \in M(G, X)\), we recall that the Fourier transform of \(\mu\) is a map \(\hat{\mu}\) from \(\hat{G}\) into \(X\) defined by \(\hat{\mu}(\gamma) = \int_G \gamma d\mu\) for \(\gamma \in \hat{G}\).

For \(\Lambda \subset \hat{G}\), we will use the following notation:

\[
\begin{align*}
L^p_\Lambda(G, X) &= \{f \in L^p(G, X), \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda\} \\
C_\Lambda(G, X) &= \{f \in C(G, X), \hat{f}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda\} \\
M_\Lambda(G, X) &= \{\mu \in M(G, X), \hat{\mu}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda\} \\
M^\infty_\Lambda(G, X) &= \{\mu \in M^\infty(G, X), \hat{\mu}(\gamma) = 0 \text{ for all } \gamma \notin \Lambda\}.
\end{align*}
\]

We also recall that \(\Lambda \subset \hat{G}\) is called a Riesz subset if \(M_\Lambda(G) = L^1_\Lambda(G)\). We refer to \[20\] and \[13\] for detailed discussions and examples of Riesz subsets of dual groups.

The following Banach space properties were introduced by Edgar \[9\], and Dowling \[7\].

Definition 3. Let \(\Lambda\) be a Riesz subset of \(\hat{G}\). A Banach space \(X\) is said to have type I-\(\Lambda\)-Radon Nikodym Property (resp. type II-\(\Lambda\)-Radon Nikodym property) if \(M^\infty_\Lambda(G, X) = L^\infty_\Lambda(G, X)\) (resp. \(M_\Lambda(G, X) = L^1_\Lambda(G, X)\)).
Our next result deals with property of dual of C^*-algebras related to the types of Radon-Nikodym properties defined above.

Theorem 2. Let Λ be a Riesz subset of \hat{G} and \mathcal{A} be a C^*-Algebra. If $F : \mathcal{B}(G) \to \mathcal{A}^*$ is a countably additive measure with bounded variation that satisfies $\hat{F}(\gamma) = 0$ for $\gamma \notin \Lambda$ then the range of F is a relatively compact subset of \mathcal{A}^*.

Proof. Let $F : \mathcal{B}(G) \to \mathcal{A}^*$ be a measure with bounded variation and $\hat{F}(\gamma) = 0$ for $\gamma \notin \Lambda$. Let $S : C(G) \to \mathcal{A}^*$ be the operator defined by $Sf = \int f \, dF$. Since F is of bounded variation, the operator S is integral (see [4] Theorem IV-3.3 and Theorem IV-3.12) and therefore $S^* : \mathcal{A}^{\ast\ast} \to (C(G))^*$ is also integral. Now since $\hat{F}(\gamma) = 0$ for $\gamma \notin \Lambda$, if we denote by $\Lambda' = \{\gamma \in \hat{G}, \bar{\gamma} \notin \Lambda\}$ then $S(\gamma) = 0$ for all $\gamma \in \Lambda'$ and therefore we have the following factorization

$$
\begin{array}{ccc}
C(G) & \xrightarrow{S} & \mathcal{A}^* \\
\downarrow{q} & & \uparrow{\mathcal{L}} \\
C(G)/C_{\Lambda'}(G) & & \\
\end{array}
$$

where q is the natural quotient map. Taking the adjoints, we get

$$
\begin{array}{ccc}
\mathcal{A}^{\ast\ast} & \xrightarrow{S^*} & (C(G))^* \\
L^* & \searrow & \uparrow{q^*} \\
M_\Lambda(G) & & \\
\end{array}
$$

Since q^* is the formal inclusion and S^* is 1-summing, the operator L^* is 1-summing. The assumption Λ being a Riesz subset implies that $M_\Lambda(G) = L_\Lambda^1(G)$ is a separable dual (in particular its predual does not contain ℓ^1). So by Theorem 1, L^* (and hence S) is compact. This proves that the range of the representing measure F of S is relatively compact (see [4] Theorem II-2.18).

Our next result is a generalization of Theorem 2 for the case of symmetric spaces of measurable operators.

Let (\mathcal{M}, τ) be a semifinite von-Neumann algebra acting on a Hilbert space H. Let τ be a distinguished faithful normal semifinite trace on \mathcal{M}.

Let \(\overline{\mathcal{M}} \) be the space of all measurable operators with respect to \((\mathcal{M}, \tau)\) in the sense of \([14]\); for \(a \in \overline{\mathcal{M}} \) and \(t > 0 \), the \(t^{th} \)-s-number (singular number) of \(a \) is defined by

\[
\mu_t(a) = \inf \{ \|ae\| : e \in \mathcal{M} \text{ projection with } \tau(I - e) \leq t \}.
\]

The function \(t \mapsto \mu_t(a) \) defined on \((0, \tau(I))\) will be denoted by \(\mu(a) \). This is a positive non-increasing function on \((0, \tau(I))\). We refer to \([11]\) for complete detailed study of \(\mu(a) \).

Let \(E \) be a rearrangement invariant Banach function space on \((0, \tau(I))\) (in the sense of \([15]\)). We define the symmetric space \(E(\mathcal{M}, \tau) \) of measurable operators by setting

\[
E(\mathcal{M}, \tau) = \{ a \in \overline{\mathcal{M}} : \mu(a) \in E \}
\]

and \(\|a\|_{E(\mathcal{M}, \tau)} = \|\mu(a)\|_E \).

It is well known that \(E(\mathcal{M}, \tau) \) is a Banach space and if \(E = L^p(0, \tau(I)) \) \((1 \leq p \leq \infty)\) then \(E(\mathcal{M}, \tau) \) coincide with the usual non-commutative \(L^p \)-spaces associated with the von-Neumann algebra \(\mathcal{M} \). The space \(E(\mathcal{M}, \tau) \) is often referred as the non-commutative version of the function space \(E \). Some Banach space properties of these spaces can be found in \([2], [6] \) and \([22]\).

For the case where the trace \(\tau \) is finite, we obtain the following generalization of Theorem 2 for symmetric spaces of measurable operators.

Corollary 1. Assume that \(\tau \) is finite. Let \(E \) be a rearrangement invariant function space on \((0, \tau(I))\) that does not contain \(c_0 \) and \(\Lambda \) be a Riesz subset of \(\widehat{G} \). Let \(F : \mathcal{B}(G) \to E(\mathcal{M}, \tau) \) be a countably additive measure with bounded variation and \(\widehat{F}(\gamma) = 0 \) for every \(\gamma \notin \Lambda \) then the range of \(F \) is relatively compact.

Proof. We will begin by reducing the general case to the case where \(E(\mathcal{M}, \tau) \) is separable. Since \(\mathcal{B}(G) \) is countably generated, the range of \(F \) is separable. Choose \((A_n)_n \subset \mathcal{B}(G)\) so that \(\{F(A_n), n \geq 1\} \) is dense in \(\{F(A), A \in \mathcal{B}(G)\} \). Let \(\mathcal{M} \) be the von-Neumann algebra generated \(I \) and \(F(A_n) \ (n \geq 1) \) and \(\tau \) the restriction of \(\tau \) in \(\mathcal{M} \). Clearly \(E(\mathcal{M}, \tau) \) is a closed subspace of \(E(\mathcal{M}, \tau) \) and \(F(A) \in E(\mathcal{M}, \tau) \) for all \(A \in \mathcal{B}(G) \).
Moreover the space \(E(\tilde{M}, \tilde{\tau}) \) is separable (see Lemma 5.6 of [22]). So without loss of generalities we will assume that \(E(\mathcal{M}, \tau) \) is separable. It is a well known fact that \(E(\mathcal{M}, \tau) \) is contained in \(L^1(\mathcal{M}, \tau) + \mathcal{M} \) and since \(\tau \) is finite, \(E(\mathcal{M}, \tau) \subset L^1(\mathcal{M}, \tau) \). Let \(J : E(\mathcal{M}, \tau) \to L^1(\mathcal{M}, \tau) \) be the formal inclusion. The measure \(J \circ F \) is of bounded variation and \(\hat{J} \circ \hat{F}(\gamma) = J(\hat{F}(\gamma)) \) for every \(\gamma \in \hat{G} \). One can conclude from Theorem 2 that the range of \(J \circ F \) is relatively compact in \(L^1(\mathcal{M}, \tau) \).

To show that the range of \(F \) is relatively compact, fix \(h : G \to E(\mathcal{M}, \tau)^* \) a weak*-density of \(F \) with respect to the Haar measure \(\lambda \) (see [3]). We have for each \(A \in \mathcal{B}(G) \),

\[
F(A) = \text{weak*} - \int_A h(t) \ d\lambda(t)
\]

and

\[
|F|(A) = \int_A \|h(t)\| \ d\lambda(t).
\]

For each \(N \in \mathbb{N} \), let \(A_N = \{t \in G, \|h(t)\| \leq N\} \) and \(F_N \) the measure defined by \(F_N(A) = F(A \cap A_N) \) for all \(A \in \mathcal{B}(G) \). Clearly \(|F_N| \leq N\lambda \) for every \(N \in \mathbb{N} \).

Define \(T_N : L^1(G) \to E(\mathcal{M}, \tau) \) by \(T_N(f) = \int f(t) \ dF_N(t) \) for every \(f \in L^1(G) \). The operator \(T_N \) is bounded and we claim that \(T_N \) is Dunford-Pettis; for that notice that since the range of \(J \circ F \) is relatively compact so is the range of \(J \circ F_N \) and therefore the operator \(J \circ T_N \) is a Dunford-Pettis operator. The space \(E(\mathcal{M}, \tau) \) is separable and \(J \) is a semi-embedding (see Lemma 5.7 of [22]) so \(J \) is a \(G_\delta \)-embedding (see [4] Proposition 1.8) and one can deduce from Theorem II.6 of [12] that \(T_N \) is a Dunford-Pettis operator. Hence the range of \(F_N \) is relatively compact. Now since

\[
\lim_{N \to \infty} \|F - F_N\| = \lim_{N \to \infty} \int_{G \setminus A_N} \|h(t)\| \ d\lambda(t) = 0,
\]

the range of \(F \) is relatively compact.

Let us finish by asking the following question:

Question: Do non-commutative \(L^1 \)-spaces have type II-\(\Lambda \)-RNP for any Riesz set \(\Lambda \)?
In light of Theorem 2, the result of Haagerup and Pisier (14) and so many properties that have been generalized from classical L^1-spaces to non-commutative L^1-spaces, one tends to conjecture that the answer of the above question is affirmative.

Acknowledgements: I would like to thank Professor G. Pisier for many valuable suggestions concerning this work.

References

[1] J. Bourgain and H. P. Rosenthal. *Applications of the theory of semi-embeddings to Banach space theory*. J. Funct. Anal., 52:149–188, (1983).

[2] V.I. Chilin and F.A. Sukochev. *Symmetric spaces on semifinite von Neumann algebras*. Soviet Math. Dokl., 42:97–101, (1992).

[3] J. Diestel. *Sequences and Series in Banach Spaces*, volume 92 of Graduate Text in Mathematics. Springer Verlag, New York, first edition, (1984).

[4] J. Diestel and Jr. J.J. Uhl. *Vector Measures*, volume 15 of Math Surveys. AMS, Providence, RI, (1977).

[5] N. Dinculeanu. *Vector Measures*. Pergamon Press, New York, (1967).

[6] P.G. Dodds, T.K. Dodds, and B. Pagter. *Non-commutative Banach function spaces*. Math. Zeit., 201:583–597, (1989).

[7] P. Dowling. *Radon-Nikodym properties associated with subsets of countable discrete abelian groups*. Trans. Amer. Math. Soc., 327:879–890, (1991).

[8] P. Dowling. *Duality in some vector-valued function spaces*. Rocky Mount. Jr. of Math., 22:511–518, (1992).

[9] G. Edgar. *Banach spaces with the analytic Radon-Nikodym property and compact abelian group*. Proc. Int. Conf. on Almost Everywhere convergence in Probability and Ergodic Theory, Academic Press, pages 195–213, (1989).

[10] G. Emmanuele. *Dominated operators on C[0,1] and the (CRP)*. Collect. Math., 41:21–25, (1990).

[11] T. Fack and H. Kosaki. *Generalized s-numbers of τ-measurable operators*. Pac. J. Math., 123:269–300, (1986).

[12] N. Ghoussoub and H. P. Rosenthal. *Martingales, G_δ-Embeddings and quotients of L_1*. Math. Ann., 264:321–332, (1983).

[13] G. Godefroy. *On Riesz subsets of Abelian discrete groups*. Isr. J. of Math., 61:301–331, (1988).

[14] U. Haagerup and G. Pisier. *Factorization of Analytic functions with values in non-commutative L_1-spaces*. Canad. J. Math., 41:882–906, (1989).

[15] J. Lindenstrauss and L. Tzafriri. *Classical Banach spaces II*, volume 97 of Modern Survey In Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, first edition, (1979).

[16] E. Nelson. *Notes on non-commutative integration*. J. Funct. Anal., 15:103–116, (1974).
ABSOLUTELY SUMMING OPERATORS

[17] A. Pelczynski. *Compactness of absolutely summing operators.* In V. Havin and N. Nikolski, editors, *Linear and Complex Analysis*, volume 1573 of Lectures Notes in Mathematics, Berlin Heidlberg New York, (1994). Springer Verlag.

[18] G. Pisier. *Grothendieck’s Theorem for non-commutative C*-algebras with appendix on Grothendieck’s constants.* J. Func. Anal., 29:397–415, (1978).

[19] G. Pisier. *Factorization of operators through L_p∞ or L_1∞ and Non-commutative generalizations.* Math. Ann., 276:105–136, (1986).

[20] W. Rudin. *Fourier analysis on groups,* volume 12 of Interscience Tracts in Pure and Appl. Math. . Interscience, New York, first edition, (1962).

[21] M. Takesaki. *Theory of operator Algebras I.* Springer-Verlag, New-York, Heidelberg, Berlin, (1979).

[22] Q. XU. *Analytic functions with values in Lattices and Symmetric spaces of measurable operators.* Math. Proc. Camb. Phil. Soc., 109:541–563, (1991).

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TX 78712-1082

E-mail address: nrandri@math.utexas.edu