Reconciliation of pH_{25} and $pH_{\text{in situ}}$ acidification rates of the surface oceans: A simple conversion using only in situ temperature

Hon-Kit Lui1,2 Chen-Tung Arthur Chen1

1Department of Oceanography, National Sun-Yat-sen University, Kaohsiung, Taiwan
2Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan

Abstract

Seawater pH is frequently measured at 25°C (pH_{25}), and can be converted thermodynamically to pH at the in situ temperature (T, $pH_{\text{in situ}}$) using an additional carbonate chemistry parameter, which is the total alkalinity (TA), dissolved inorganic carbon (DIC), or the partial pressure of CO$_2$ (pCO$_2$) of seawater. Although rates of temporal change of $pH_{\text{in situ}}$ ($\beta_{pH_{\text{in situ}}}$) and pH_{25} ($\beta_{pH_{25}}$) are both extensively used in studies of ocean acidification, the difference between $\beta_{pH_{\text{in situ}}}$ and $\beta_{pH_{25}}$ has not yet been quantified. This study deduces from 816 sets of data of the surface oceans over wide ranges of T (1–31°C) from six time series to reveal that the difference between calculated $pH_{\text{in situ}}$ and pH_{25} is a_1 ($T - 25°C$), where a_1 is a nearly constant of −0.0151 pH unit °C$^{-1}$. We illustrate that $\beta_{pH_{\text{in situ}}}$ equals ($\beta_{pH_{25}} + a_1\beta_T$), where β_T is the rate of temporal change of T. We further show that uneven distributions of sampling points significantly widen the difference between $\beta_{pH_{\text{in situ}}}$ and $\beta_{pH_{25}}$, making the degree of ocean acidification unclear. Distributions of a_1 values are modeled for the surfaces of the global oceans at various pCO$_2$ levels, and they closely match the observations from the studied time series. Without the use of an additional carbonate chemistry parameter, the $pH_{\text{in situ}}$ and pH_{25}, as well as $\beta_{pH_{\text{in situ}}}$ and $\beta_{pH_{25}}$, can now be converted into each other using only T, facilitating the study of the changing carbonate chemistry of seawater under the influences of increasing atmospheric CO$_2$ concentration.

The pH of seawater reflects directly the state of the acid-base systems of the oceans (Marion et al. 2011). It has attracted much attention recently, as it reflects the seawater acidification of the oceans under the influence of the increasing atmospheric CO$_2$ concentration (Dore et al. 2009; Olafsson et al. 2009; Byrne et al. 2010; Gonzalez-Davila et al. 2010; Ishii et al. 2011; Bates et al. 2014; Lui and Chen 2015; Lui et al. 2015), which has in turn been caused by the fact that since the industrial revolution, humans have released a massive amount of CO$_2$, so-called anthropogenic CO$_2$, to the atmosphere. The global oceans absorb around one third of the anthropogenic CO$_2$, increasing their CO$_2$ concentration but reducing their pH and the saturation state of calcium carbonate through the air-sea CO$_2$ exchange, adversely affecting marine ecosystems (Sabine et al. 2004; Dore et al. 2009; Feely et al. 2009; Olafsson et al. 2009; Bates et al. 2014).

The dissolution of CO$_2$ and the dissociation constants, K_0, K_1, and K_2, can be expressed as follows.

\[
\begin{align*}
\text{CO}_2 + \text{H}_2\text{O} &\rightleftharpoons [\text{H}_2\text{CO}_3], \quad K_0 = [\text{H}_2\text{CO}_3]/\text{pCO}_2 \\
[\text{H}_2\text{CO}_3] &\rightleftharpoons [\text{H}^+][\text{HCO}_3^-], \quad K_1 = [\text{H}^+][\text{HCO}_3^-]/[\text{H}_2\text{CO}_3] \\
[\text{HCO}_3^-] &\rightleftharpoons [\text{H}^+][\text{CO}_3^{2-}], \quad K_2 = [\text{H}^+][\text{CO}_3^{2-}]/[\text{HCO}_3^-]
\end{align*}
\]

where pCO$_2$ is the partial pressure of CO$_2$.

As shown above, the carbonate system includes five unknowns (pCO$_2$, $[\text{H}_2\text{CO}_3]$, $[\text{H}^+]$, $[\text{HCO}_3^-]$ and $[\text{CO}_3^{2-}]$) but only three independent equations. Therefore, the carbonate system can be solved only using an additional pair of four measurable carbonate chemistry parameters—pCO$_2$, pH, dissolved inorganic carbon (DIC) = $[\text{H}_2\text{CO}_3]+[\text{HCO}_3^-]+[\text{CO}_3^{2-}]$, and the total alkalinity (TA) = $[\text{HCO}_3^-]+2[\text{CO}_3^{2-}]+[\text{OH}^-]+[\text{H}^+] + [\text{B(OH)}_4^-]$ + minor bases (Ben-Yaakov 1970; Hunter 1998; Orr et al. 2015). Since the dissociation constants are functions of seawater temperature (T) and salinity (S), a change in T or S alters the speciation of the carbonate system and therefore the pH value (Ben-Yaakov 1970; Mehrbach et al. 1973; Dickson and Millero 1987; Millero 1995). pH is commonly measured at a constant temperature, such as at the most favored 25°C (pH_{25}). The pH_{25} value can then...
be converted thermodynamically to pH at the in situ T ($\text{pH}_{\text{insitu}}$) when the DIC, TA, or pCO$_2$ of seawater has been measured.

The pH$_{25}$ and pH$_{\text{insitu}}$ time series have been used to determine how the oceans respond to the increase in anthropogenic CO$_2$ concentration. Traditionally, the simple-linear-regression (SLR) method has been applied to the pH$_{\text{insitu}}$ or pH$_{25}$ time series. The slopes of the regression lines of the pH$_{\text{insitu}}$ ($\beta_{\text{pH}_{\text{insitu}}}$) and pH$_{25}$ ($\beta_{\text{pH}_{25}}$) time series reflect the rate of temporal change of pH, which is the so-called acidification rate (Dore et al. 2009; Gonzalez-Davila et al. 2010; Midorikawa et al. 2010; Ishii et al. 2011; Bates et al. 2014; Lui and Chen 2015). However, as shall be shown later, the reported $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ may differ significantly. For example, at the Carbon Retention in a Colored Ocean Project (CARIACO) site, reported $\beta_{\text{pH}_{\text{insitu}}}$ values are between -0.00214 and -0.0025 pH unit yr$^{-1}$ (Astor et al. 2013; Bates et al. 2014), which are about 56% higher than the expected rate of -0.0017 pH unit yr$^{-1}$, assuming air-sea CO$_2$ equilibrium. In contrast, the $\beta_{\text{pH}_{25}}$ is just -0.0004 pH unit yr$^{-1}$ (Astor et al. 2013), which is 76% lower than obtained by assuming air-sea CO$_2$ equilibrium. The difference between $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$, however, has not yet been quantified so reported $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ values are incomparable, making the degree of ocean acidification unclear.

Thermodynamically, the conversion between pH$_{25}$ and pH$_{\text{insitu}}$ is a non-linear function of T, S, and an additional value of TA, DIC, or pCO$_2$. This study uses 816 time series measurements of the surface seawaters from six stations in the global oceans to show that the difference between calculated pH$_{\text{insitu}}$ and pH$_{25}$ is indeed basically a linear function of T. Furthermore, the difference between $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ is shown to be a linear function of the rate of temporal change of T (β_T). The difference between $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ is shown potentially to be increased by the uneven distributions of the sampling points of the time series. The implications of our findings for studies of changing seawater carbonate systems are discussed.

Methods and materials

In this study, time series data from six stations in the global surface oceans are analyzed. The stations include the Bermuda Atlantic Time Series Study (BATS, taken from Bates (2007) and http://bats.bios.edu), CARIACO (taken from Astor et al. (2013) and the Institute of Marine Remote Sensing, University of South Florida. http://www.imars.usf.edu/CAR/), European Station for Time Series in the Ocean at the Canary Islands (ESTOC, taken from Gonzalez-Davila and Santana-Casiano (2009)), Hawaii Ocean Time Series (HOT, taken from Dore et al. (2009) and http://www.soest.hawaii.edu/HOT_WOCE/index.php), Kyodo North Pacific Ocean Time-Series (KNOT, taken from Wakita et al. (2010)), and the South East Asia Time-Series Study (SEATS, provided by the Taiwan Ocean Data Bank) (Fig. 1). The up-to-date CO$_2$ System Calculations Program version 2.1, developed by Pierrot et al. (2006), is used to calculate the measureable carbonate chemistry parameters, using recommended dissociation constants for carbonate chemistry that are taken from Lueker et al. (2000) (Dickson et al. 2007; Orr et al. 2015). The pH$_{\text{insitu}}$ at the CARIACO are calculated using the measured pH$_{25}$ and TA data, and the pH$_{\text{insitu}}$ and pH$_{25}$ at the other stations are calculated using the measured TA and DIC data. The $\beta_{\text{pH}_{\text{insitu}}}$, $\beta_{\text{pH}_{25}}$, and β_T values are shown in Table 1.

To study the distributions of the changes in pH$_{\text{insitu}}$ with T (a_1) at the surfaces of the global oceans, the climatological
Reconciliation of acidification rates

Table 1. Observed surface seawater $\beta_{\text{pH}^{\text{in situ}}}$, $\beta_{\text{pH}25}$, and β_T at various time series stations.

Time series study	Studied period	$(\times 10^{-3}$ pH unit yr$^{-1}$)	$(\times 10^{-3}$ pH unit yr$^{-1}$)	β_T (°C yr$^{-1}$)
BATS (Bates 2007)	1983–2005	-1.7 ± 0.3	-0.4 ± 0.5	0.017 ± 0.030
CARIACO (Astor et al. 2013)	1996–2008	-2.5 ± 0.4	-0.5 ± 0.4	0.09 ± 0.02
(deseasoned)				
CARIACO (Lui and Chen 2015)*	1995–2010	-2.14 ± 0.37	-0.74 ± 0.41† (This study)	0.093 ± 0.034
ESTOC (Santana-Casiano et al. 2007; Gonzalez-Davila et al. 2010)	1995–2004	-1.4 ± 0.7	-1.8 ± 0.3	0.002 ± 0.019
ESTOC (Lui and Chen 2015)†	1995–2009	-1.84 ± 0.39	-1.48 ± 0.24† (This study)	0.023 ± 0.039
Complete dataset: An extreme case of uneven sampling point distribution:		1.61 ± 0.37	-2.53 ± 0.42† (This study)	-0.273 ± 0.036
HOT (Dore et al. 2009)	1988–2007	-1.9 ± 0.2	-1.5 ± 0.4	0.026 ± 0.016
KNOT (Wakita et al. 2010)	1997–2008	-0.26 ± 1.85	-0.17 ± 4.35	0.00045 ± 0.20
SEATS (Lui and Chen 2015)†	1998–2006	0.206 ± 1.50	-3.20 ± 1.45† (This study)	-0.226 ± 0.157
137°E (Midorikawa et al. 2010)	1983–2007	Winter: -1.8 ± 0.2	Winter: -1.5 ± 0.3	Winter: 0.02 ± 0.02
		Summer: -1.3 ± 0.5	Summer: -1.4 ± 0.4	Summer: -0.01 ± 0.02

*Data taken from the Institute of Marine Remote Sensing, College of Marine Science, University of South Florida. http://www.imars.usf.edu/CAR/.
†Determined with the same dataset shown in Lui and Chen (2015). Data taken from Gonzalez-Davila and Santana-Casiano (2009). Data provided by the Ocean Data Bank (ODB), Ministry of Science and Technology, Taiwan.

monthly T, S from the World Ocean Atlas 2001, and the TA data (31,607 data points) estimated using the monthly T and S of the surface oceans, presented in Lee et al. (2006), are used to calculate the $pH_{\text{in situ}}$ and pH_{25} at various pCO$_2$ values using the MATLAB Program developed for CO$_2$ system calculations (version 1.1) (van Heuven et al. 2011). The phosphate and silicate concentrations are assumed to be zero. At each station, the climatological monthly differences between $pH_{\text{in situ}}$ and pH_{25} (Δ$H_{\text{in situ}-25}$) values are plotted vs. the monthly T, and a_1 is then obtained using the SLR method by forcing the regression line to pass through the reference point ($T = 25\, ^\circ C$, Δ$H_{\text{in situ}-25} = 0$). The $pH_{\text{in situ}}$ and pH_{25} are reported in the total scale. The values in this study are expressed as value ± one standard error.

Results and discussion

Conversions between $pH_{\text{in situ}}$ and pH_{25} and between $\beta_{pH_{\text{in situ}}}$ and $\beta_{pH_{25}}$ using T

Figure 2 plots $pH_{\text{in situ}}$ minus pH_{25} (Δ$H_{\text{in situ}-25}$) vs. T at six time series stations. Interestingly, although the seawaters at the studied time series stations have wide ranges of T (1–31°C), $pH_{\text{in situ}}$ (8.002–8.189) and pH_{25} (7.656–8.130), they exhibit almost identical Δ$H_{\text{in situ}-25}$ vs. T linearity. pH_{25} equals $pH_{\text{in situ}}$ when T is at 25°C. The regression reveals that the SLR lines have almost the same slopes, between –0.0150 and –0.0152 pH unit °C$^{-1}$, when they are forced to pass through the reference point at Δ$H_{\text{in situ}-25} = 0$ and $T = 25°C$. The average standard error is just ±0.00036 pH unit (or just ±0.0001 pH unit when the KNOT data is excluded) (Table 2). The slopes are consistent with DeGrandpre et al. (2014)’s calculations of –0.015 pH unit °C$^{-1}$ at the HOT and BATS stations and –0.016 pH unit °C$^{-1}$ for the coastal water in the northeast Pacific Ocean, suggesting the ranges of the slopes (the a_1 values) of the surface world oceans are fairly narrow as will be shown and discussed later.

As mentioned, the conversion between pH_{25} and $pH_{\text{in situ}}$ is a non-linear function of T, S, and an additional value of TA, DIC, or pCO$_2$. Empirically, $pH_{\text{in situ}}$ can be expressed as a non-linear function of pH_{25}, T, S, and the TA/DIC ratio (Millero 1995). In past decades, the TA/DIC ratio has declined insignificantly when S changes only a little (by less than 5, for example) (Millero 1995). Since S values in most parts of the oceans around the world, especially in the case of time series data, vary in a narrow range, the conversion depends on the use of only T. Based on the result above, the $pH_{\text{in situ}}$ and pH_{25} among the studied time series can be written as follows.

$$pH_{\text{in situ}} = pH_{25} + a_1(T-25°C),$$ \hspace{1cm} (1)

where a_1 is the slope of the plot of Δ$H_{\text{in situ}-25}$ vs. T, referring to the amount of $pH_{\text{in situ}}$ change as T increases.

Based on Eq. 1, the conversion between the long-term trends of $pH_{\text{in situ}}$ and pH_{25} can be simplified using a factor...
a_T, and is discussed as follows. To determine the rate of acidification of the oceans, the SLR method has been used to model the long-term temporal changes of pH_{in situ} and pH_{25}. For any pH_{in situ} time series, β_{pH_{in situ}} is defined as follows (Montgomery et al. 2006).

\[
β_{pH_{in situ}} = \frac{\sum_{i=1}^{n} pH_{in situ}(t_i - \bar{t})}{\sum_{i=1}^{n} (t_i - \bar{t})^2},
\]

where pH_{in situ}(i) and t_i are pH_{in situ} and time (t), respectively at t=t_i, and \(\bar{t} \) is the average t.

Substituting Eq. 1 into Eq. 2 yields,

\[
β_{pH_{in situ}} = \frac{\sum_{i=1}^{n} (pH_{25}(t_i - 25)) (t_i - \bar{t})}{\sum_{i=1}^{n} (t_i - \bar{t})^2}
= \sum_{i=1}^{n} pH_{25}(t_i - 25) (t_i - \bar{t})^2 + \sum_{i=1}^{n} T_i (t_i - \bar{t})^2
\]

As \(\sum_{i=1}^{n} pH_{25}(t_i - 25) (t_i - \bar{t})^2 = β_{pH_{25}} \sum_{i=1}^{n} T_i (t_i - 25) (t_i - \bar{t})^2 = β_T \) (see the definition shown in Eq. 2) and \(\sum_{i=1}^{n} (t_i - \bar{t})^2 = 0 \), the above equation can be simplified as follows.

Table 2. Simple linear regression coefficient in Eq. 1 obtained from various time series studies. Value of \(a_1 \) is determined by forcing the regression line to pass through the reference point (ΔpH_{in situ-25} = 0, T = 25°C).

Station	Year	\(a_1 \) (pH unit °C⁻¹)	\(R^2 \)	Standard error	n
BATS	1991–2010	-0.01519 ± (3.2 × 10⁻⁶)	0.999990	0.000168	215
CARIACO	1995–2010	-0.01508 ± (2.6 × 10⁻⁶)	0.99996	0.000070	144
ESTOC	1995–2009	-0.01516 ± (2.0 × 10⁻⁶)	0.99997	0.000113	144
HOT	1988–2010	-0.01515 ± (2.04 × 10⁻⁶)	0.99996	0.000037	222
KNOT	1997–2008	-0.01504 ± (1.32 × 10⁻⁶)	0.99998	0.001677	56
SEATS	1998–2006	-0.01506 ± (4.0 × 10⁻⁶)	0.99998	0.000075	35
Average		-0.01511 ± 0.00006	0.99989	0.000357 ± 0.000648	Total 816
Equation 3 reveals that, mathematically, when β_1 is a constant, the difference between β_{phnum} and β_{ph25} is $a_1 \beta_T$. Generally, Eq. 1 approximates the thermodynamic effect of T on $\text{pH}_{\text{in situ}}$ and is not affected by biological activities. Therefore, the transformation between β_{phnum} and β_{ph25}, the Eq. 3, is also a thermodynamic result, albeit complicated by biological activities. To confirm Eq. 3, observations from six time series (Table 1) present observed β_{phnum}, β_{ph25}, and β_T.

$$\beta_{\text{phnum}} = \beta_{\text{ph25}} + a_1 \beta_T + 0$$

$$= \beta_{\text{ph25}} + a_1 \beta_T$$

(3)

Figure 3 plots β_{phnum} vs. $\beta_{\text{ph25}} + a_1 \beta_T$. The result shows that all data, except those at the CARIACO (deseasoned) and the ESTOC sites, fall on the 1 : 1 line, validating our proposed Eq. 3. The deviations at the CARIACO and ESTOC sites arise from statistical errors since their T time series do not have the same sampling distributions as $\text{pH}_{\text{in situ}}$ and pH_{25}. Based on Eq. 3, a direct comparison between β_{phnum}, β_{ph25}, and β_T yields a difference of $a_1 \beta_T$. Worth mentioning, the datasets used in this study cover wide ranges of T (1–31°C), $\text{pH}_{\text{in situ}}$ (8.002–8.189), pH_{25} (7.656–8.130), TA (2167–2673 μmol kg$^{-1}$), DIC (1859–2389 μmol kg$^{-1}$), as well as normalized TA (NTA = TA/S × 35, 2252–2534 μmol kg$^{-1}$) and DIC (NDIC = DIC/S × 35, 1928–2251 μmol kg$^{-1}$) values. Although five of the time series stations have stable NTA concentrations, those at CARIACO show large temporal variations (2252–2534 μmol kg$^{-1}$). That is, our proposed Eqs. 1 and 3 are applicable over a wide T, $\text{pH}_{\text{in situ}}$, pH_{25}, NTA (or TA), and NDIC (or DIC) ranges. The distributions of a_1 values of the surface oceans will be shown and discussed later.

Uneven distributions of sampling points increase differences between β_{phnum} and β_{ph25}

From Eq. 3, the difference between β_{phnum} and β_{ph25} is $a_1 \beta_T$, where a_1 is almost a constant and is between -0.0150 and -0.0152 pH unit °C$^{-1}$ in the six time series (Fig. 2). That is, the difference between β_{phnum} and β_{ph25} increases with increasing β_T. Using ESTOC as an example, Lui and Chen (2015) showed an extreme example of uneven sampling distributions that the sampling time gradually shifts from summer to winter. The result was that the β_T changed from $0.023 \pm 0.039°$C yr$^{-1}$ (complete dataset) to $-0.273 \pm 0.036°$C yr$^{-1}$ (Table 1).

Figure 4 shows that although the observed β_{phnum} and β_{ph25} at the six stations and 137 °E line varied greatly, the differences between β_{phnum} and β_{ph25} are negatively correlated with β_T. All data, except for those at the CARIACO (deseasoned) and the ESTOC sites, fall on the $-0.0151 \beta_T$ line, and the -0.0151 pH unit °C$^{-1}$ is the average a_1 value among the six time series (Table 2). As mentioned, the slight deviations at the CARIACO and ESTOC sites arise from statistical
errors since their T time series do not have the same sampling distributions as $\text{pH}_{\text{insitu}}$ and pH_{25}. Generally speaking, the β_T that is caused by global warming is only about $-0.01^\circ C$ yr$^{-1}$ (Karl et al. 2015), so the large range of the observed β_T values is caused largely by the uneven sampling distribution. The above illustrates that uneven distributions of sampling points increase the differences between $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$. In that case, either $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ contain the deviations due to the uneven sampling distributions. Using our proposed method, $\text{pH}_{\text{insitu}}$ and pH_{25} data, as well as their rates of temporal changes now can transform to each other using only T. This helps avoiding the confusion in evaluating the acidification rate using $\text{pH}_{\text{insitu}}$ or pH_{25} data. We suggest that long-term monthly or seasonal sampling strategy efficiently helps reducing the deviations of $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ due to the uneven sampling distributions. In the case of short-term and unevenly distributed time-series data, the use of an appropriate regression model may help reducing the deviations. In the cases that $\text{pH}_{\text{insitu}}$ and pH_{25} time series can be expressed empirically as functions of t and T, the deviations of $\beta_{\text{pH}_{\text{insitu}}}$ and $\beta_{\text{pH}_{25}}$ due to the uneven sampling distributions can be largely removed using the multiple linear regression method with t and T as variables (Lui and Chen 2015).

Global distributions and estimations of a_1

Figure 5 plots the distributions of the modeled a_1 values using the climatological monthly T (−2 to 32°C), S (31–38) and estimated TA data (2053–2494 μmol kg$^{-1}$), taken from Lee et al. (2006), for pCO$_2$ values of 280 ($\text{pH}_{\text{insitu}}$: 8.139–8.188, pH_{25}: 7.739–8.260), 400 ($\text{pH}_{\text{insitu}}$: 8.004–8.063, pH_{25}: 7.610–8.140) and 800 ($\text{pH}_{\text{insitu}}$: 7.720–7.813, pH_{25}: 7.362–7.891) μatm. The use of different color scales is to show the small regional differences of the a_1 values at various pCO$_2$ levels. The results reveal that although the surface ocean has various physical and chemical properties, it has very similar a_1 values, ranging from -0.0152 to -0.0153 (average -0.01529 ± 0.00003) pH unit $^\circ C^{-1}$, when pCO$_2$ = 280 μatm. The a_1 values decrease and the regional differences of a_1 values increase as pCO$_2$ increases. When pCO$_2$ is 400 μatm, the a_1 values are slightly lower, at between -0.01510 and -0.01482 (average: -0.01502 ± 0.00005) pH unit $^\circ C^{-1}$. At a pCO$_2$ of 800 μatm, the a_1 values are between -0.01456 and -0.01357 (average -0.0141 ± 0.000285) pH unit $^\circ C^{-1}$. The observed a_1 values of -0.01504 to -0.01519 pH unit $^\circ C^{-1}$, shown in Fig. 2, match closely the modeled a_1 values when pCO$_2$ is between 280 μatm and 400 μatm, validating the modeled results in Fig. 5. Generally speaking, the a_1 value is a function of T, S and a pair of TA, DIC, pCO$_2$, and $\text{pH}_{\text{insitu}}$ or pH_{25}. Therefore, to state the applicable ranges of each carbonate parameter for our proposed method is complicated. The above information provides a reference of their applicable ranges.

Although a_1 declines as pCO$_2$ increases, the value changes little as pCO$_2$ varies between pre-industrial and present levels. As shown in Fig. 5 and Table 2, a_1 is approximately -0.0151 between 50°N and 50°S, and it is about -0.0150 pH unit $^\circ C^{-1}$ at higher latitudes. Notably, based on the assumption that the uncertainty in a_1 is ±0.00036 pH unit $^\circ C^{-1}$ (or just ±0.0001 when KNOT is excluded) pH unit $^\circ C^{-1}$, a transformation of a pH_{25} value to $\text{pH}_{\text{insitu}}$ at T as low as 0°C yields an uncertainty of only $(± 0.00036 \times 25)$ = ±0.009 pH unit. The uncertainty is less when T is closer to 25°C. Therefore, even lacking an additional carbonate parameter, historical $\text{pH}_{\text{insitu}}$ or pH_{25} data for the surface ocean can still be converted to each other using only T and a_1, which has been shown to be close to -0.0151 pH unit.
C−1. When the K_1 and K_2 values that are taken from Lueker et al. (2000) are used, the average a_1 of the studied time series is -0.01511 ± 0.00006 pH unit C−1. When the corresponding values from Mehrbach et al. (1973), refitted by Dickson and Millero (1987), and from Millero (2010), are used, a_1 becomes -0.01492 ± 0.0001 and -0.01492 ± 0.00007 pH unit C−1, respectively. The differences between such values are approximately 0.0002 pH unit C−1. Therefore, equilibrium constants should be used consistently in all calculations to prevent an additional, albeit small, systematic error.

Conclusions

The conversion between pH25 and pHinsitu traditionally requires an additional carbonate parameter. This study reveals that only T and a coefficient, a_1 which is about -0.0151 pH unit C−1, are required to convert linearly pH25 and $p_{\text{H}^+}_{\text{insitu}}$ to pHinsitu and $p_{\text{H}^+}_{\text{insitu}}$, respectively, and vice versa. This study demonstrates that the conversion between pH25 and $p_{\text{H}^+}_{\text{insitu}}$ can be significantly enlarged owing to uneven distributions of sampling points. Our method is applicable over wide T, pHinsitu, pH25 and NTA ranges, facilitating the study of the changing carbonate chemistry of seawater, such as to avoid the confusion in evaluating the acidification rate using pHinsitu or pH25 data.

References

Astor, Y. M., and others. 2013. Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin. Deep-Sea Res. Part II 93: 33–43. doi:10.1016/j.dsr2.2013.01.002

Bates, N. R. 2007. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. J. Geophys. Res. 112: 1–26. doi:10.1029/2006JC003759

Bates, N. R., and others. 2014. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 27: 126–141. doi:10.5670/oceanog.2014.16

Ben-Yaakov, S. 1970. A method for calculating the in situ pH of seawater. Limnol. Oceanogr. 15: 326–328. doi:10.4319/lo.1970.15.2.0326

Byrne, R. H., S. Mecking, R. A. Feely, and X. Liu. 2010. Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys. Res. Lett. 37: 1–5. doi:10.1029/2009GL040999

DeGrandpre, M. D., R. S. Spaulding, J. O. Newton, E. J. Jaqueth, S. E. Hamblock, A. A. Umansky, and K. E. Harris. 2014. Considerations for the measurement of spectrophotometric pH for ocean acidification and other studies. Limnol. Oceanogr.: Methods 12: 830–839. doi:10.4319/lom.2014.12.830

Dickson, A. G., and F. J. Millero. 1987. A comparison of the equilibrium-constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. Part A 34: 1733–1743. doi:10.1016/0198-0149(87)90021-5

Dickson, A. G., C. L. Sabine, and J. R. Christian. 2007. Guide to best practices for ocean CO2 measurements (PICES Special Publication, 3). North Pacific Marine Science Organization.

Dore, J. E., R. Lukas, D. W. Sadler, M. J. Church, and D. M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proc. Natl. Acad. Sci. USA 106: 12235–12240. doi:10.1073/pnas.0906044106

Feely, R. A., S. C. Doney, and S. R. Cooley. 2009. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22: 36–47. doi:10.5670/oceanog.2009.95

Gonzalez-Davila, M., and J. M. Santana-Casiano. 2009. Sea Surface and Atmospheric CO2 data measured during the ESTOC Time Series cruises from 1995-2009. Available from http://cdiac.ornl.gov/ftp/oceans/ESTOC_data/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.

Gonzalez-Davila, M., J. M. Santana-Casiano, M. J. Rueda, and O. Linas. 2010. The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004. Biogeosciences 7: 3067–3081. doi:10.5194/bg-7-3067-2010

Hunter, K. A. 1998. The temperature dependence of pH in surface seawater. Deep-Sea Res. Part I 45: 1919–1930. doi:10.1016/S0967-0637(98)00047-8

Ishii, M., N. Kosugi, D. Sasano, S. Saito, T. Saito, T. Midorikawa, and H. Y. Inoue. 2011. Ocean acidification off the south coast of Japan: A result from time series observations of CO2 parameters from 1994 to 2008. J. Geophys. Res. 116: 1–9. doi:10.1029/2010JC006831

Karl, T. R., and others. 2015. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348: 1469–1472. doi:10.1126/science.aaa5632

Lee, K., and others. 2006. Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophys. Res. Lett. 33: 1–5. doi:10.1029/2006GL027207

Lueker, T. J., A. G. Dickson, and C. D. Keeling. 2000. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K_1 and K_2; validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70: 105–119. doi:10.1016/S0304-4203(00)00022-0

Lui, H. K., and C. T. A. Chen. 2015. Deducing acidification rates based on short-term time series. Sci. Rep. 5: 11517. doi:10.1038/srep11517

Lui, H. K., C.-T. A. Chen, J. Lee, S.-L. Wang, G.-C. Gong, Y. Bai, and X. He. 2015. Acidifying intermediate water
accelerates the acidification of seawater on shelves: An example of the East China Sea. Cont. Shelf Res. 111Part B: 223–233. doi:10.1016/j.csr.2015.08.014

Marion, G. M., F. J. Millero, M. F. Camões, P. Spitzer, R. Feistel, and C. T. A. Chen. 2011. pH of seawater. Mar. Chem. 126: 89–96. doi:10.1016/j.marchem.2011.04.002

Mehrbach, C., C. Culberson, J. E. Hawley, and R. Pytkowicz. 1973. Measurement of apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18: 897–907. doi:10.4319/lo.1973.18.6.0897

Midorikawa, T., and others. 2010. Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific. Tellus Ser. B 62: 649–659. doi:10.1111/j.1600-0889.2010.00474.x

Millero, F. J. 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochem. Cosmochim. Acta 59: 661–677. doi:10.1016/0016-7037(94)00354-O

Millero, F. J. 2010. Carbonate constants for estuarine waters. Mar. Freshw. Res. 61: 139–142. doi:10.1071/MF09254

Montgomery, D. C., E. A. Peck, and G. G. Vining. 2006. Introduction to linear regression analysis, 4th ed. John Wiley and Sons.

Olafsson, J., S. R. Olafsdottir, A. Benoit-Cattin, M. Danielsen, T. S. Arnarson, and T. Takahashi. 2009. Rate of Iceland Sea acidification from time series measurements. Biogeoosciences 6: 2661–2668. doi:10.5194/bg-6-2661-2009

Orr, J. C., J. M. Epitalon, and J. P. Gattuso. 2015. Comparison of ten packages that compute ocean carbonate chemistry. Biogeoosciences 12: 1483–1510. doi:10.5194/bg-12-1483-2015

Pierrot, D., E. Lewis, and D. W. R. Wallace. 2006. MS Excel Program Developed for CO2 System Calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee. ORNL/CDIAC-105a.

Sabine, C. L., and others. 2004. The oceanic sink for anthropogenic CO2. Science 305: 367–371. doi:10.1126/science.1097403

Santana-Casiano, J. M., M. Gonzalez-Davila, M. J. Rueda, O. Llinas, and E. F. Gonzalez-Davila. 2007. The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochem. Cycles 21: 1–16. doi:10.1029/2006GB002788

van Heuven, S., D. Pierrot, J. W. B. Rae, E. Lewis, and D. W. R. Wallace. 2011. MATLAB Program Developed for CO2 System Calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S., Department of Energy, Oak Ridge, Tennessee ORNL/CDIAC-105b.

Wakita, M., S. Watanabe, A. Murata, M. Honda, and N. Tsurushima. 2010. Hydrographic Data Report at Station KNOT during the 1992-2008 cruises. Available from http://cdiac.ornl.gov/ftp/oceans/Moorings/KNOT/. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee. doi:10.3334/CDIAC/otg.TSM_KNOT_1992-2008

Acknowledgments

The authors would like to thank the organizations and principle investigators of the studied time series for providing the invaluable data. The Aim for Top University Program of Taiwan (04 C030204), the Ministry of Science and Technology of Taiwan (MOST104-2611-M-110-015, MOST104-2611-M-110-016, and MOST104-2811-M-110-013), and the Taiwan Ocean Research Institute, National Applied Research Laboratories are acknowledged for financially supporting this research. Mike DeGrandpre and two anonymous reviewers provided detailed and constructive comments which helped strengthening the manuscript.

Conflict of Interest

None declared.

Submitted 25 September 2016
Revised 28 December 2016
Accepted 18 January 2017

Associate editor: Mike DeGrandpre