REVIEW

Application of CRISPR/Cas9 in plant biology

Xuan Liu, Surui Wu, Jiao Xu, Chun Sui*, Jianhe Wei

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China

Received 2 December 2016; revised 4 January; accepted 5 January 2017

Abstract The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system was first identified in bacteria and archaea and can degrade exogenous substrates. It was developed as a gene editing technology in 2013. Over the subsequent years, it has received extensive attention owing to its easy manipulation, high efficiency, and wide application in gene mutation and transcriptional regulation in mammals and plants. The process of CRISPR/Cas is optimized constantly and its application has also expanded dramatically. Therefore, CRISPR/Cas is considered a revolutionary technology in plant biology. Here, we introduce the mechanism of the type II CRISPR/Cas called CRISPR/Cas9, update its recent advances in various applications in plants, and discuss its future prospects to provide an argument for its use in the study of medicinal plants.

© 2017 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Corresponding author. Tel.: +86 10 57863016.
E-mail address: csui@implad.ac.cn (Chun Sui).
Peer review under responsibility of Institute of Materia Medica, Chinese Academy of Medical Sciences and Chinese Pharmaceutical Association.
1. Introduction

CRISPR/Cas acts as a type of adaptive immunity in prokaryotes that was formed over a long evolutionary history. It can degrade exogenous genes from an invading phage or plasmid and was first observed in 1987. Ishino et al. found an interval approximately 32 nt of non-repetitive sequences and “tandem repeats” downstream from the \textit{iap} gene in \textit{Escherichia coli}. In 2002, the “tandem repeats” were called “clustered regularly interspaced short palindromic repeats” (CRISPR)2,3. In 2005, the CRISPR spacer sequence was found to be highly homologous with exogenous sequences from bacterial plasmids and phages4-6. As a result of this homology between host and exogenous substances, CRISPR is able to cleave foreign DNA. Notably, the vital site-specific gene editing tool called the CRISPR/Cas system was developed in 2013. CRISPR/Cas only requires a short guide RNA sequence to recognize the target loci according to Watson–Crick base pairing, the endonuclease activity of Cas can lead to gene modification by cleaving the target DNA and forming DNA double-strand breaks (DSBs) that stimulate DNA repair mechanisms \textit{in vivo}, resulting in gene mutation (e.g., insertion, deletion and replacement).

Compared with previously developed gene editing tools zinc finger nucleases (ZFNS)7,8, and transcription activator–like effector nucleases (TALENs)9,10 (Table 1)11,12, CRISPR/Cas is more efficient and it can edit multiple target genes simultaneously13. Based on these advantages, applications of CRISPR/Cas are rapidly developing. The ZFN and TALEN gene editing tools search valid sequences with proteins, while CRISPR/Cas depends on guide RNA (gRNA). Recently, a new genome editing technology was developed called NgAgo, which is applicable for editing genes in human cells with the DNA-mediated NgAgo endonuclease11. To date, only one study using NgAgo has been published14. This study reports that gDNA/NgAgo led to a gene knockdown that resulted in an abnormal phenotype in zebrafish. Unfortunately, other groups have not successfully repeated the utilization of NgAgo for genome editing, and therefore NgAgo is still a topic of discussion in the field. Gene editing technologies are developing rapidly, including those using the CRISPR/Cas system. Foreseeably, gene editing technologies will have an impact on the progress of medicine, agriculture, and other scientific fields because it will allow for direct and fast genetic modifications of model systems used in these fields.

CRISPR/Cas can be divided into three major types, I, II and III15. At present, most research is focused on the principles and applications of the type II CRISPR/Cas9 more than the other two types. The CRISPR/Cas9 system requires CAS-associated 9 protein, crRNA (CRISPR RNA), tracrRNA (transactivating crRNA) and RNase III (Ribonuclease III) to edit target genes. Jinek et al.16 demonstrated that a single guide RNA (sgRNA) formed by fusing crRNA to tracrRNA plays the same role as a crRNA-tracrRNA hybrid. Zhang et al.17 and Church et al.18 reported the use of CRISPR/Cas9 in mouse and human cells, respectively, and showed that they could edit target specific genes of mammalian cells successfully in March 2013. Then, three research teams19-21 were able to use CRISPR/Cas9 to target genes in plants and the technology has since obtained widespread attention in plant biology (Table 2)22-78. CRISPR/Cas9 has been rapidly developed and successfully applied to alter metabolic pathways and improve crop quality and drug development \textit{via} gene mutation, gene silencing, and transcriptional regulation. The applications of type II CRISPR have had a tremendous impact on bioengineering and molecular biology, however, scientists are still searching for more flexible and applicable CRISPR-derived systems, such as dCas9 nickase79, fCas980, Cpf181, and other similar nuclease systems to apply to molecular biology research. This review summarizes some of the sophisticated applications of CRISPR/Cas9 in plants in order to facilitate its application in medicinal plant research.

2. The mechanism of CRISPR/Cas9

CRISPR/Cas9 cleaves foreign DNA \textit{via} two components, Cas9 and sgRNA (Fig. 1A). Cas9 is a DNA endonuclease that can be derived from different bacteria, such as \textit{Brevibacillus laterosporus}82, \textit{Staphylococcus aureus}83, \textit{Streptococcus pyogenes}84, \textit{Streptococcus thermophilus}85, and \textit{Streptococcus pyogenes} is the most widely used for Cas9 isolation. Cas9 contains two domains, \textit{i.e.}, HNH domain and RuvC-like domain. The HNH domain cuts the complementary strand of crRNA, while the RuvC-like domain cleaves the opposite strand of the double-stranded DNA. The sgRNA is a synthetic RNA with a length of about 100 nt. Its 5’-end has a 20-nt sequence that acts as a guide sequence to identify the target sequence accompanied by a protospacer adjacent motif (PAM) sequence, which is often the consensus NGG (N, anynucleotide; G, guanine). The loop structure at the 3’-end of the sgRNA can anchor the target sequence by the guide

Table 1	Comparison of ZFN, TALEN, CRISPR/Cas9 and NgAgo11,12.							
Technology	DNA binding determinant	Endonuclease	Mutation rate (%)	Target site length (bp)	Binding specificity	Off-targeting	Application	
ZFN	Zinc finger protein	FokI	10	18–36	3 Nucleotides	High	Human cells, pig, mice, tobacco, nematode and zebrafish	
TALEN	Transcription-activator-like effector	FokI	20	30–40	1 Nucleotide	Low	Human cells, water flea, cow and mice	
CRISPR/Cas9	crRNA/sgRNA	Cas9	20	22	1:1 Nucleotide pairing	Variable	Human cells, wheat, rice, maize and \textit{Drosophila}	
NgAgo-gDNA	5’ phosphorylated ssDNA	NgAgo	21.3–41.3	24	1:1 Nucleotide pairing	Low	Human cells	
Plant	Target gene	Cas9 version	Cas9 promoter	sgRNA promoter	Delivery method	Editing method	Mutation frequency (%)	Ref.
-------	-------------	--------------	---------------	----------------	-----------------	----------------	------------------------	------
Arabidopsis thaliana	BRII1, JAZ1, GAI	Human codon-optimized Cas9	2 × 35S	AtU6-26	Agrobacterium-mediated transformation	NHEJ	30–84	22
A non-functional GFP	Chlamydomonas	Plant codon-optimized Cas9	35 SPPDK	AtU6	Agrobacterium infiltration	NHEJ	1.1–7.7	19
AtPDS3, AtFLS2, AtRACK1b, etc.								
CHL1, CHL2, TT4	Human codon-optimized Cas9	CaMV 35S	AtU6-26	Agrobacterium-mediated transformation	NHEJ	N/A	23	
ADH1, TT4, RTEL1	Arabidopsis codon-optimized Cas9	PcUbi4-2	AtU6-26	Agrobacterium-mediated transformation	NHEJ	N/A	25	
ADH1								
TRY, CPC, ETC2								
FT, SPL4	Human codon-optimized Cas9	AtICU2	AtU6	Agrobacterium-mediated transformation	NHEJ	10.00–84.78	28	
AtCRU3	Arabidopsis codon-optimized Cas9	35S	U6-26	Agrobacterium-mediated transformation	NHEJ	N/A	29	
At1g16210, At1g56650, At5g55580								
AP1, TT4	Plant codon-optimized Cas9							
ADH1	Streptococcus thermophilus and Staphylococcus aureus							
ETC2, TRY, CPC, etc.	Zea mays codon-optimized Cas9	EC1.2	U6-26p, U6-29p	Agrobacterium-mediated transformation	NHEJ	N/A	33	
BRII	Human codon-optimized Cas9	2 × 35S, YAO	AtU6-26	Agrobacterium-mediated transformation	NHEJ	4.3–90.5	34	
PYR1, PYL1, PYL2, etc.								
Brassica oleracea	BolC.GA4.a	Streptococcus pyogenes Cas9	35S	U6-26	Agrobacterium-mediated transformation	NHEJ	10	36
Citrus sinensis	CaPDS	Human codon-optimized Cas9	CaMV 35S	CaMV 35 S	Agrobacterium infiltration	NHEJ	3.2–3.9	37
Cucumis sativus	eIF4E	Plant codon-optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	N/A	38
Glycine max	Bar, GmFEI1, GmFEI2, etc.	Plant codon-optimized Cas9	2 × 35S	AtU6	Electroporation and transformation	NHEJ	10.0–93.3	39
GmPDS11, GmPDS18								
GFP, 01gDDM1, 11gDDM1, etc.	Human codon-optimized Cas9							
DD20, DD43	Soybean codon-optimized Cas9	GmEF1A2	GmU6	Particle bombardment	NHEJ, HDR	59–76	42	
Organism	Gene(s)	CRISPR/Cas9	Delivery Method	Tag(s)	Transformation Type	NHEJ	HDR	
-------------------	------------------	-------------	----------------	-----------------	--------------------	------	-----	
Glycine maxima	Glyma06g14180, Glyma08g02290, Glyma12g37050	Soybean codon-optimized Cas9	2 × 35S U6	Agrobacterium-mediated transformation	NHEJ	N/A	43	
Hordeum vulgare	HvPM19	Streptococcus pyogenes Cas9	35S U6-26	Agrobacterium-mediated transformation	NHEJ	3.2–20.2	44	
Marchantia polymorpha	MpARF1	Human codon-optimized Cas9	CaMV 35S and MpU6-1	Agrobacterium-mediated transformation	NHEJ	N/A	45	
Medicago truncatula	GUS	Soybean codon-optimized Cas9	2 × 35S U6	Agrobacterium-mediated transformation	NHEJ	N/A	43	
Nicotiana benthamiana	GFP	Chlamydomonas Reinhardtii codon-optimized Cas9	CaMV 35S AtU6-26	Agrobacterium infiltration	NHEJ	N/A	23	
Plant and Human codon-optimized Cas9 35S	2 × 35S AtU6-26	Agrobacterium-mediated transformation	NHEJ	11	49			
Nicotiana tabacum	NiPDS, NiPDR6	Plant and Human codon-optimized Cas9 35S	2 × 35S AtU6-26	Agrobacterium-mediated transformation	NHEJ	81.8–87.5	50	
Nicotiana tabacum	mCherry	Plant codon-optimized Cas9	35S-PPDK U6	Agrobacterium-mediated transformation	NHEJ	N/A	51	
Oryza sativa	ROC5, SPP, YSA	Human codon-optimized Cas9	CaMV 35S OsU6-2	Agrobacterium-mediated transformation	NHEJ	4.8–75	22	
Oryza sativa	OsSWEET11,OsSWEET14	Streptococcus pyogenes Cas9 and rice-optimized Cas9	CaMV 35S OsU6	PEG-mediated transformation	NHEJ	N/A	23	
Oryza sativa	OsMYB1	Human codon-optimized Cas9	OsUBQ1 OsU3	Agrobacterium-mediated transformation	NHEJ	50–89	24	
Oryza sativa	CAO1, LAZY1	Rice codon-optimized Cas9	OsUbI OsU3	Agrobacterium-mediated transformation	NHEJ	83–92	52	
Oryza sativa	OsPDS, OsMPK2, OsBADH2, etc.	Rice codon-optimized Cas9	2 × 35S OsU6	Particle bombardment	NHEJ, HDR 7.1–50	20		
Oryza sativa	OsMPK5	Human codon-optimized Cas9	CaMV 35S OsU6	Agrobacterium-mediated transformation	NHEJ	3–8	53	
Oryza sativa	OsPDS, OsDEP1	Rice codon-optimized Cas9	2 × 35S OsU3	Particle bombardment	NHEJ, HDR 33–38	54		
Oryza sativa	OsBEL	Plant codon-optimized SpCas9	2 × 35S AtU6-26	Agrobacterium-mediated transformation	NHEJ	2–16	55	
Oryza sativa	OsPDS, OsPMS3, OsEPSPS, etc.	Rice codon-optimized SpCas9	OsUbI OsU6, OsU3	Agrobacterium-mediated transformation	NHEJ	21.1–66.7	56	
Oryza sativa	SWEET1a, SWEET1b, SWEET11, etc.	Rice codon-optimized SpCas9	OsUbI OsU6, OsU3	Agrobacterium-mediated transformation	NHEJ	12.5–100	57	
Oryza sativa	ALS	Rice codon-optimized SpCas9	2 × 35P3S OsU6	Agrobacterium-mediated transformation	HDR	0.147–1	58	
Plant	Target gene	Cas9 version	Cas9 promoter	sgRNA promoter	Delivery method	Editing method	Mutation frequency (%)	Ref.
-------------------------------	-------------	--	---------------	----------------	--------------------------------------	----------------	-----------------------	------
CDEA1, CDEA2, CDKB1, etc.	CDKA1, CDKA2, OsYSA, OsROC5	Rice codon-optimized SpCas9	2 × P35S	OsU3	Agrobacterium-mediated transformation	NHEJ	0–76.9	59
OsFTL1, Os07g0261200, Os02g0700600, YSA, CDKB2	Rice codon-optimized SpCas9	2 × CaMV 35S OsU3			Agrobacterium-mediated transformation	NHEJ	7.6–68.7	60
OsAOX1a, OsAOX1b, OsAOX1c, etc.	OsYSA, CDKB2	Plant codon optimized Cas9	35S	OsU3, OsU6	Agrobacterium-mediated transformation	NHEJ	33.3–53.3	46
OsPDS, OsMPK2, Os02g23823	OsFTL1, Os07g0261200, Os02g0700600, YSA, CDKB2	Plant codon optimized Cas9	2 × CaMV 35S	OsU3	Agrobacterium-mediated transformation	NHEJ	81.4–90.0	30
OsAOX1a, OsAOX1b, OsAOX1c, etc.	OsYSA, CDKB2	Plant codon optimized Cas9	35S	OsU3, OsU6	Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
OsFTL1, Os07g0261200, Os02g0700600, YSA, CDKB2	Rice codon-optimized SpCas9	2 × P35S OsU3			Agrobacterium-mediated transformation	NHEJ	55.6–87.5	65
Petunia hybrid PDS	PDS	Plant codon optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	55.6–87.5	65
Populus tomentosa PtoPDS	PtoPDS	Wild-type SpCas9	35S	AtU3b, AtU3d, AtU6-1, AtU6-29	Agrobacterium-mediated transformation	NHEJ	51.7	66
Solanum lycopersicum SIAGO7	SIAGO7	Codon-optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
SHR, SCR	Nicotiana	Codon-optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
RIN	Codon-optimized Cas9	35S	AtU6		Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
SIPDS, SIPIF4	Human codon-optimized Cas 9	35S	AtU6-26		Agrobacterium-mediated transformation	NHEJ	72.7–100	70
Solanum tuberosum SIALS1	Arabidopsis	Codon-optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	3–60	71
SIAIA2	Rice-codon optimized Cas9	2 × 35S	StU6		Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
Sorghum bicolor DsRED2	Monocot codon-optimized synthetic Cas9	Rice Actin 1	OsU6		Agrobacterium-mediated transformation	NHEJ	6.6–81.0	62
Triticum aestivum Tainox, Tapds	Human codon-optimized Cas9	35S	AtU6		Agrobacterium-mediated transformation	NHEJ	18–22	47
TaMLO	Rice codon-optimized Cas9	2 × 35S	TaU6		Agrobacterium-mediated transformation	NHEJ	26.5–38	20
TaLOX2	Rice codon-optimized Cas9	2 × 35S	TaU6		Agrobacterium-mediated transformation	NHEJ	26.5–38	20
TaMLOA1, TaMLOB1, TaMLOD1	Plant codon-optimized Cas9	2 × 35S	TaU6		Agrobacterium-mediated transformation	NHEJ	26.5–38	20
Vitis vinifera	IdnDH	Human codon-optimized Cas9	35S	AtU6	Agrobacterium-mediated transformation	NHEJ	100% (suspension cell)	74
sequence and form a complex with Cas9, which cleaves the double-stranded DNA and forms a double-strand break (DSB) at this site.

Once a DSB is generated, nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) DNA repair mechanisms are initiated (Fig. 1B). A DSB is usually repaired by NHEJ in most situations and is a simple way to create mismatches and gene insertion/deletions (indel), leading to gene knockout. When an oligo template is present, HDR induces specific gene replacement or foreign DNA knock-ins41,85,86. These processes are all ways that CRISPR/Cas9 can efficiently edit the genome of diverse organisms, including humans, animals and plants.

3. The application of CRISPR/Cas9 in plants

3.1. NHEJ gene knockouts

The major applications of CRISPR/Cas9 include gene knockouts in organisms for elucidating the function of single or multiple gene targets (e.g., enzyme genes or microRNAs) via gene mutation.

3.1.1. Enzyme genes

Jiang et al.23 constructed different binary vectors carrying diverse Cas9 and sgRNA combinations, investigated transient expression of Cas9/sgRNA in Arabidopsis, tobacco, rice, and sorghum by Agrobacterium or PEG-mediated transfection, and confirmed that CRISPR/Cas9 has the capability to edit target genes in these four plants. Jia and Wang37 developed a new tool for transient expression in sweet orange targeting CsPDS (phytoene desaturase gene) via Xanthomonas citri subsp. citri (Xcc)-facilitated agroinfiltration, and found the target gene was successfully mutated with no off-target effects detected. Yin et al. 48 reported a unique sgRNA delivery system named VIGE (virus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing) could be used for transient expression that targets NbPDS3 and NbIspH, which cause a photo-bleaching phenotype when they are expressed in tobacco. The authors demonstrated that newly-grown leaves exhibited the phenotype, thus confirming that VIGE could edit target genes successfully and was an effective mode for genome modification. Wang et al. 73 constructed Cas9/sgRNA vectors that were delivered by particle bombardment to protoplasts of haxaploid bread wheat that targeted the TaMLO (mildew resistance locus) gene. This report confirmed CRISPR/Cas9 as a versatile tool could also be harnessed in haxaploid plants.

Lawrenson36 used CRISPR/Cas9 to edit the HvPM19 gene in Hordeum vulgare and BoI.CGA4.a in Brassica oleracea via a transgenic system. The indel frequency of HvPM19 was 23% in the first generation, while that of BoI.CGA4.a was 10%. In addition, the authors also screened for the expected phenotype in T0 plants and observed that the mutations could be stably inherited in the next generation. This study demonstrated that CRISPR/Cas9 is a powerful tool for investigating the function of target genes in both barley and Brassica oleracea. Ito et al. 69 constructed sgRNA and Cas9 carriers to target the ripening inhibitor gene (RIN) that encodes a transcription factor that regulates fruit ripening in tomato. They found that red pigmentation in the RIN-protein-defective mutants was significantly lower than that of the wild type in T0 transgenic lines, while heterozygous mutants developed ripe red fruits as wild type.
3.1.2. MicroRNAs
MicroRNAs (miRNA) serve as regulators to stimulate or inhibit gene expression in plants. Jacobs et al.63 applied CRISPR/Cas9 to two miRNAs (miR1514 and miR1509) in soybean. Vectors harboring sgRNA and Cas9 were delivered by particle bombardment for transient expression and the authors confirmed that CRISPR/Cas9 could be utilized to target miRNA in soybean, which further extended the application of CRISPR/Cas9 in plants. Li et al.63 used CRISPR/Cas9 to target miR156 recognition site in which further extended the application of CRISPR/Cas9 in plants. CRISPR/Cas9 could be utilized to target miRNA in soybean, ment for transient expression and the authors harboring sgRNA and Cas9 were delivered by particle bombardment for two miRNAs (miR1514 and miR1509) in soybean. Vectors studies have successfully utilized CRISPR/Cas9 editing target precise gene knock-in or gene replacement. But only a few HDR is a highly desirable repair pathway for DSB that lead to 3.2. HDR gene knock-in and gene replacement
HDR is a highly desirable repair pathway for DSB that lead to precise gene knock-in or gene replacement. But only a few studies have successfully utilized CRISPR/Cas9 editing target genes with HDR. Li et al.19 transiently co-expressed Cas9 and gRNA in tobacco protoplasts to target the AvrII site of NbPDS gene using a DNA template. Sanger sequencing found that HDR-mediated gene replacement took a proportion of 9.0%. However, this report did not achieve successful HDR-mediated DSB repair system in Arabidopsis. Subsequently, Schiml et al.26 constructed Cas9/sgRNA vectors targeting the ADH1 (alcohol dehydrogenase 1) gene in Arabidopsis delivered by an Agrobacterium-mediated system for transgenic expression, and obtained mutants made by the HDR-mediated repair system. The authors elucidated that the HDR-mediated repair system was able to target genes in Arabidopsis. Endo et al.26 transformed a Cas9 expression construct, gRNA, and a gene targeting (GT) vector containing an HDR template into the calli of Oryza sativa to target the acetolactate synthase (ALS) gene and successfully obtained bi-allelic rice mutants. Moreover, the HDR-mediated CRISPR/Cas9 system was successfully utilized to create precise and heritable modifications in tomato31, maize37 and soybean32.

There are still great challenges remaining in HDR-mediated CRISPR/Cas9 genome modification, one of the major challenges being how to simultaneously deliver the donor DNA template and the synthetic endonuclease to plant tissues. Thus, if the delivery of donor DNA and endonuclease is elucidated, the efficacy of precise gene knock-in or gene replacement in organisms will increase. Dissecting the functionality of some genes will be quite simple, and it will be possible to produce more new cultivars of medicinal plants with desired traits, such as pest resistance, high yield and high quality. Undeniably, it is essential to do more research on HDR-mediated editing pathways.

3.3. Transcriptional regulation
Transcriptional regulation refers to changes in transcription that induce the changes in gene expression levels. Some research has used CRISPR/Cas9 to regulate transcription in mammalian cells66–69 and plants; Piatet et al.33 was able to target transcription regulation with a catalytically inactive Cas9 (dCas9) combined with a deactivated nuclease function that was still able to bind DNA with gRNA. The results of the experiments with dCas9 demonstrated that the dCas9 C-terminus with a plant-specific transcriptional activator, EDLL, and transcription activator-like (TAL) effectors guided by gRNAs could activate transcription of a PDS target gene, and that the dCas9 C-terminus with SRDX guided by gRNAs could repress transcription of a PDS target gene. Moreover, Lowder et al.34 found that dCas9-VP64 with gRNAs could activate the transcription of AtPAP1 (production of anthocyanin pigment 1) and miR319 2-, 3- and 7-fold in Arabidopsis. Additionally, dCas9-VP64 could reverse methylation-induced gene silencing of AtFIS2 (fertilization-independent seed 2) in Arabidopsis. All three transgenic lines had 200-, 300- and 400-fold changes in AtFIS2 gene expression. Therefore, CRISPR/Cas9 is a powerful tool for transcriptional activation/repression of protein-coding and non-protein-coding genes, and it can also reverse gene silencing caused by methylation, thus proving a significant tool in plant biology.

4. The tools of CRISPR/Cas9
The design of sgRNA is one of the key factors in editing target genes successfully using CRISPR/Cas9. Up until now, dozens of

Figure 1 Schematic diagram of CRISPR/Cas9 editing of target genes. (A) A sketch of CRISPR/Cas9 system. The sgRNA (black and red) can identify the target gene, and then the two domains of Cas9 (yellow) cleave the target sequence. (B) Two ways DSB can be repaired. NHEJ is imprecise and always results in a gene knockout mutation. When a template is present, HDR can be activated and results in gene replacement or knock-in. PAM, protospacer adjacent motif; sgRNA, single guide RNA; DSB, double-strand break; NHEJ, nonhomologous end-joining; HDR, homology-directed repair.
online tools and stand-alone software have been developed to devise efficient and specific sgRNA. Zhang and coworkers at the Broad Institute developed an online tool called CRISPR Design (http://www.genome-engineering.org/) to assist in the design of sgRNA and evaluate off-target effects. This tool has two modes; one is the Single Sequence mode that only designs sgRNA 23–500 nt, and the Batch mode can predict several sgRNAs simultaneously. Mismatch and off-target effects can be assessed when sgRNA is designed using this program. In the CRISPR Design program, the available sgRNAs are marked in green, yellow or red, which indicate the different specificity of the sgRNAs. In addition, there are some other tools, including E-CRISPR, CRISPR-P, Cas-OFFinder, Cas-Designer, Cas OT, SSFinder, which make the design of sgRNA become easier.

The construction of expression vectors is diverse in its methodology. Some researchers have constructed different binary vectors by combining Cas9 with gRNA and induced target gene modification. However, others constructed gRNA and Cas9 vectors, respectively, and edited target genes with sequential transformation. Delivering vector(s) effectively is also crucial for high editing efficiency and faces enormous challenges in plants, though the most applied methods for delivering vector(s) to plants include Agrobacterium-mediated transformation, PEG-mediated transfection of protoplasts, and particle bombardment (Fig. 2). All methods have their virtues and faults, and there is still much to be learned and optimized for the use of CRISPR/Cas9 in plants.

5. Conclusions and prospects

CRISPR/Cas9 as an essential technology with specific features, such as simple manipulation, high efficiency and wide application; as a result, it has been rapidly and widely applied to diverse facets of molecular biology. Currently, some medicinal plants have completely sequenced genomes; for instance, *Salvia miltiorrhiza* and *Dendrobium officinale*. Thus, it is feasible to harness CRISPR/Cas9 to edit target genes in these plants and study the synthesis of effective constituents or toxic components to increase the effective constituents or reduce toxicity. Furthermore, using CRISPR/Cas9 to research genetic resources of medicinal plants can select excellent traits and increase yield. Utilizing new technologies like CRISPR/Cas9 can promote research on biosynthetic pathways and regulatory mechanisms of effective components, and screen of excellent germplasm in medicinal plants for rapid development, which is an important part of current pharmaceutical botany.

Currently, the application of CRISPR/Cas9 is mainly about genome editing and transcriptional regulation. Furthermore, DNA labeling and epigenome editing with CRISPR/Cas9 have been reported, but they are not applied in plants. Thus, it will be interesting to see CRISPR/Cas9 application in plant DNA labeling using fluorescent-labeled Cas9 protein and optimized gRNA, and epigenome editing by DNA methylation or histone modifications in the future. The evidence of CRISPR/Cas9 essential functions in genome editing opens many new experimental avenues for gene function analysis and has a tremendous potential in medicinal plant research.

Although the CRISPR/Cas9 can be applied to plant genome editing, there are still certain challenges, such as minimizing off-target rates, elucidating the precise mechanism for this minimization, and how to optimize Cas9 function. Further study is needed to improve the experimental application of CRISPR/Cas9 to promote the development of its basic and applied abilities in the future.

References

1. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the *iap* gene, responsible for alkaline phosphatase isozyme conversion in *Escherichia coli*, and identification of the gene product. J Bacteriol 1987;169:5429–33.
2. Mojica F, Diez-Villasenor C, Ferrer C, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of archaea, bacteria and mitochondria. Mol Microbiol 2000;36:244–6.
3. Jansen R, Embden JD, Gaaster W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002;43:1565–75.
4. Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in *Yersinia pestis* acquire new repeats by preferential uptake of bacteriophage
DNA, and provide additional tools for evolutionary studies. *Microbiology* 2005; 51:653–63.

5. Mojica F, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. *J Mol Evol* 2005; 60:174–82.

6. Bolotin A, Quinquis B, Sorokin A, Ehrlich S. Clustered regularly interspaced short palindromic repeats (CRISPRs) have spacers of extrachromosomal origin. *Microbiology* 2005; 151:2551–61.

7. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Efficiently endogenous human gene correction using designed zinc-finger nucleases. *Nature* 2005; 436:646–51.

8. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. Precise genome modification in the crop species *Zea mays* using zinc-finger nucleases. *Nature* 2009; 459:437–41.

9. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. Targeting DNA double-strand breaks with TAL effector nucleases. *Genetics* 2010; 186:757–61.

10. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Knug RG, et al. In vivo genome editing using high efficiency TALENs. *Nature* 2012; 491:114–8.

11. Gao F, Shen XZ, Jiang F, Wu YQ, Han CY. DNA-guided genome editing using the *Natronobacterium gregoryi* Argonaute. *Nat Biotechnol* 2016; 34:768–73.

12. Alin QU, Chung YJ, Kim YH. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. *J. Control Release* 2015; 205:120–7.

13. Zhao HW, Lv X, Yin W. The CRISPR/Cas9 system: a novel strategy for targeted genome engineering. *J Pathog Biol* 2015; 10:281–4.

14. Qi JL, Dong ZJ, Shi YW, Wang X, Qin YY, Wang YM, et al. NgAgo-based fad11a gene knockdown causes eye developmental defects in *zebra fish*. *Cell Res* 2016; 26:1349–52.

15. Makarova KS, Makarova T, Barrangou R, Brouns SJJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. *Nat Rev Microbiol* 2011; 9:467–77.

16. Jinke M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacteria immunity. *Science* 2012; 337:816–21.

17. Cong L, Ran FA, Cox D, Lin SL, Barrett R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. *Science* 2013; 339:819–23.

18. Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. *Science* 2013; 339:823–6.

19. Li JP, Aach J, Norville JE, McCormack M, Zhang D, Bush J, et al. Multiplex and homologous recombination-mediated genome editing in *Arabidopsis* and *Nicotiana benthamiana* using guide RNA and Cas9. *Nat Biotechnol* 2013; 31:688–91.

20. Shan QW, Wang YP, Li J, Zhang Y, Chen KL, Liang Z, et al. Targeted genome modification of crop plants using a CRISPR-Cas system. *Nat Biotechnol* 2013; 31:686–8.

21. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S. Targeted mutagenesis in the model plant *Nicotiana benthamiana* using Cas9-guided endonuclease. *Nat Biotechnol* 2013; 31:691–3.

22. Feng ZY, Zhang BT, Ding WN, Liu XD, Yang DL, Wei PL, et al. Efficient genome editing in plants using a CRISPR/Cas system. *Cell Res* 2013; 23:1229–32.

23. Jiang WZ, Zhou HB, Bi HH, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in *Arabidopsis*, tobacco, sorghum and rice. *Nucleic Acids Res* 2013; 41:e188.

24. Mao YF, Zhang H, Xu NF, Zhang BT, Gou F, Zhu JK. Application of the CRISPR–Cas9 system for efficient genome engineering in plants. *Mol Plant* 2013; 6:2008–11.

25. Fauser F, Schilm S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in *Arabidopsis thaliana*. *Plant J* 2014; 79:348–59.

26. Schilm S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in *Arabidopsis* resulting in heritable progeny. *Plant J* 2014; 80:1139–50.

27. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. *BMC Plant Biol* 2014; 14:327.

28. Hyan Y, Jim J, Cho SW, Choi Y, Kim JS, Coupland G. Site-directed mutagenesis in *Arabidopsis thaliana* using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. *Plant Biol* 2015; 18:271–84.

29. Johnson RA, Gurevich V, Filler S, Samach A, Levy AA. Comparative assessments of CRISPR-Cas9 nucleases’ cleavage efficiency in *plants*. *Plant Mol Biol* 2015; 87:143–56.

30. Ma XL, Zhang QY, Zhu QL, Liu W, Chen Y, Qiu R, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. *Mol Plant* 2015; 8:1274–84.

31. Mao YF, Zhang ZJ, Feng ZY, Wei PL, Zhang H, Botella JR, et al. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in *Arabidopsis*. *Plant Biotechnol J* 2016; 14:519–32.

32. Steiner J, Schiml S, Fauser F, Puchta H. Highly efficient heritable plant genome engineering using Cas9 orthologues from *Streptococcus thermophilus* and *Staphylococcus aureus*. *Plant J* 2015; 84:1295–305.

33. Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in *Arabidopsis* in a single generation. *Genome Biol* 2015; 16:144.

34. Yan LH, Wei SW, Wu YR, Hu RL, Li HJ, Yang WC, et al. High efficiency genome editing in *Arabidopsis* using Yao promoter-driven CRISPR/Cas9 system. *Mol Plant* 2015; 8:1820–3.

35. Zhang ZJ, Mao YF, Ha S, Liu WS, Botella JR, Zhu JK. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in *Arabidopsis*. *Plant Cell Rep* 2015; 15:159–33.

36. Lawrenson T, Shorinola O, Stacey N, Li CD, Østergaard L, Patron N, et al. Induction of targeted, heritable mutations in barley and *Brassica oleracea* using RNA-guided Cas9 nucleases. *Genome Biol* 2015; 16:258.

37. Jia HG, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. *PLoS One* 2014; 9:e93806.

38. Chandrasekaran J, Brumlin M, Wolf D, Leibman D, Klap C, Pearlsman M, et al. Development of broad virus resistance in non-transgenic *cucumber* using CRISPR/Cas9 technology. *Mol Pathol* 2016; 17:1140–55.

39. Cai YP, Chen L, Liu XJ, Sun S, Wu CX, Jiang BJ, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots. *PLoS One* 2015; 10:e0136064.

40. Du HY, Zeng XR, Zhao M, Cui XP, Wang Q, Yang H, et al. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. *J Biotechnol* 2015; 217:90–7.

41. Jacobs TB, Lafayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. *BMC Biotechnol* 2015; 15:16.

42. Li ZS, Liu ZB, Xing AQ, Moon BP, Koellehoffer JP, Huang LX, et al. Cas9-guide RNA directed genome editing in soybean. *Plant Physiol* 2015; 169:960–70.

43. Michno JM, Wang XB, Liu QJ, Curtin SJ, Kono T. CRISPR/Cas9 mutagenesis of soybean and *Medicago truncatula* using a new web-tool and a modified Cas9 enzyme. *GM Crop Food* 2015; 6:4234–52.

44. Sun XJ, Hu Z, Chen R, Jiang QY, Song GH, Zhang H, et al. Targeted mutagenesis in soybean using the CRISPR-Cas9 system. *Sci Rep* 2015; 5:10342.

45. Sugano SS, Shirakawa M, Takagi M, Matuda Y, Shimada T, Haranishima I, et al. CRISPR/Cas9 mediated targeted mutagenesis in the liverwort *Marchantia polymorpha*. *Plant Cell Physiol* 2014; 55:475–81.
Application of CRISPR/Cas9 in plant biology

46. Lowder LG, Zhang DW, Baltes NJ, Paul JW, Tang X, Zheng XL, et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. *Plant Physiol* 2015;169:971–85.

47. Upadhyay SK, Kumar J, Alok A, Tuli R. RNA-guided genome editing for target gene mutations in wheat. *G3-Genes Genomes Genet* 2013;3:2233–8.

48. Yin KQ, Han T, Liu G, Chen T, Wang Y, Alice YZ, et al. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. *Sci Rep* 2015;5:14926.

49. Vazquez-Vilar M, Bernabe-Orts JM, Fernandez-del-Carmen A, et al. A modular toolbox for genome editing using the CRISPR/Cas9 system. *Nat Methods* 2015;12:10.

50. Gao JP, Wang GH, Ma SY, Xie XD, Wu WX, Zhang XT, et al. CRISPR/Cas9-mediated targeted mutagenesis in *Nicotiana tabacum*. *Plant Mol Biol* 2015;87:99–110.

51. Mercx S, Tollet J, Magy B, Navarre C, Boutry M. Gene inactivation by CRISPR-Cas9 in *Nicotiana tabacum* BY-2 suspension cells. *Front Plant Sci* 2016;7:40.

52. Miao J, Guo DS, Zhang JZ, Huang QP, Qin GJ, Zhang X, et al. Targeted mutagenesis in rice using CRISPR-Cas system. *Cell Res* 2013;23:1233–6.

53. Xie KB, Yang YN. RNA-guided genome editing in plants using a CRISPR–Cas system. *Mol Plant* 2013;6:1975–83.

54. Shan QW, Wang YP, Li J, Qin RY, Wang L, Li L, Wei PC, et al. A modular toolbox for CRISPR/Cas9-mediated targeted mutagenesis in *Nicotiana tabacum* by CRISPR-Cas system. *Plant Methods* 2016;12:10.

55. Xu RF, Li H, Qin RY, Wang L, Li L, Wei PC, et al. Gene targeting using the *Agrobacterium tumefaciens*-mediated CRISPR-Cas system in rice. *Rice* 2014;7:5.

56. Zhang H, Zhang JS, Wei PL, Zhang BT, Gu F, Feng ZY, et al. The CRISPR/Cas9 system produces specific and homogenous targeted gene editing in rice in one generation. *Plant Biotechnol J* 2014;12:797–807.

57. Zhou HB, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. *Nucleic Acids Res* 2014;42:10903–14.

58. Endo M, Mikami M, Toki S. Bi-allelic gene targeting in rice. *Plant Physiol* 2016;170:666–77.

59. Endo M, Mikami M, Toki S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. *Plant Cell Physiol* 2015;56:41–7.

60. Mikami M, Toki S, Endo M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. *Plant Cell Rep* 2015;34:1807–15.

61. Xu RF, Li H, Qin RY, Li J, Qiu CH, Yang YC, et al. Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. *Sci Rep* 2015;5:11491.

62. Wang C, Shen L, Fu YP, Yan CJ. A simple CRISPR/Cas9 system for multiplex genome editing in rice. *J Genet Genom* 2015;42:703–6.

63. Li MR, Li XX, Zhou ZJ, Wu PZ, Fang MC, Pan XP, et al. Reassessment of the four yield-related genes *GnLa*, *DEP1*, *GS3*, and *IPAI* in rice using a CRISPR/Cas9 system. *Front Plant Sci* 2016;7:377.

64. Zheng XL, Yang SX, Zhang DW, Zhong ZH. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. *Plant Cell Rep* 2016;35:1545–54.

65. Zhang B, Yang X, Yang CP, Li MY, Guo YL. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in *Petunia*. *Sci Rep* 2016;6:20315.

66. Fan D, Liu TT, Li CF, Jiao B, Li S, Hou YS, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in *Populus* in the first generation. *Sci Rep* 2015;5:12217.

67. Brooks C, Nekrasov V, Lippman ZB, Eck JV. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. *Plant Physiol* 2014;166:1292–7.

68. Ron M, Kajala K, Pauluzzi G, Wang DX, Reynoso MA, Zamstein K, et al. Hairpin root transformation using *Agrobacterium rhizogenes* as a tool for exploring cell type-specific gene expression and function using tomato as a model. *Plant Physiol* 2014;166:455–69.

69. Ito Y, Nishizawa-Yokoi A, Endo M, Mikami M. CRISPR/Cas9-mediated mutagenesis of the *R1V* locus that regulates tomato fruit ripening. *Biochem Biophys Res Commun* 2015;467:76–82.

70. Pan CT, Ye L, Qin L, Liu X, He YJ, Wang J, et al. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. *Sci Rep* 2016;6:24765.

71. Butler NM, Atkins PA, Voyer D, Douches DS. Generation and inheritance of targeted mutations in potato (*Solanum tuberosum L*) using the CRISPR/Cas system. *PLoS One* 2015;10:e0144591.

72. Wang SH, Zhang SB, Wang WX, Xiong XY, Meng FR, Cui X. Efficient targeted mutagenesis in potato using the CRISPR/Cas9 system. *Plant Cell Rep* 2015;34:1473–6.

73. Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, et al. Simultaneous editing of three homoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. *Nat Biotechnol* 2014;32:947–51.

74. Ren C, Liu XJ, Zhang Z, Wang Y, Duan W, Li SH, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in *Chardonnay* (*Vitis vinifera L*). *Sci Rep* 2016;6:32289.

75. Liang Z, Zhang K, Chen KL, Gao CX. Targeted mutagenesis in *Zea mays* using TALENs and the CRISPR/Cas system. *J Genet Genom* 2014;41:63–8.

76. Svtashev S, Young JK, Schwartz C, Hao HR, Falco SC. Targeted mutagenesis, precise gene editing and site-specific gene insertion in maize using Cas9 and guide RNA. *Plant Physiol* 2015;169:931–45.

77. Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han FP. Efficient targeted genome modification in maize using CRISPR/Cas9 system. *J Genet Genom* 2016;43:37–43.

78. Zhu JJ, Song N, Sun SL, Yang WL, Zhao HM, Song WB, et al. Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9. *J Genet Genom* 2016;43:25–36.

79. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, et al. Double nicking by RNA-guided CRIPR/Cas9 for enhanced genome editing specificity. *Cell* 2013;154:1380–9.

80. Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. *Nat Biotechnol* 2014;32:577–82.

81. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Esletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. *Cell* 2015;163:759–71.

82. Karvelis T, Gasius G, Young J, Bigeljyte G, Silanskas A, Cigan M, et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. *Genome Biol* 2015;16:253.

83. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using *Staphylococcus aureus* Cas9. *Nature* 2015;520:186–91.

84. Geng YJ, Deng ZX, Sun YH. An insight into the protospacer adjacent motif of *Streptococcus pyogenes* Cas9 with artificially stimulated RNA-guided-Cas9 DNA cleavage flexibility. *RSC Adv* 2016;6:33514–22.

85. Chang ZY, Yan W, Liu DF, Chen ZF, Xie G, Lu JW, et al. Research progress on CRISPR/Cas. *J Agric Biotechnol* 2015;23:1196–206.

86. Jia LJ. Review about CRISPR/Cas system as a new targeted genome editing technology, *China Med Herald* 2014;11:154–7.

87. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF. High-frequency, precise modification of the tomato genome. *Genome Biol* 2015;16:232.

88. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell* 2013;152:1173–83.
89. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. *Cell* 2013;154:442–51.
90. Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M, Iyer EPR, et al. Highly efficient Cas9-mediated transcriptional programming. *Nat Methods* 2015;12:326–8.
91. Piatek A, Ali Z, Baazim H, Li LX, Abulfaraj A, Al-Shareef S, et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. *Plant Biotechnol J* 2015;13:578–89.
92. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol* 2013;31:827–32.
93. Heigwer F, Kerr G, Boutros M. E-CRISPR: fast CRISPR target site identification. *Nat Methods* 2014;11:122–3.
94. Lei Y, Lu L, Liu HY, Li S, Xing F, Chen LL. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. *Mol Plant* 2014;7:1494–6.
95. Bae S, Park J, Kim J. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. *Bioinformatics* 2014;30:1473–5.
96. Park J, Bae S, Kim J. Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. *Bioinformatics* 2015;31:4014–6.
97. Xiao A, Cheng ZC, Kong L, Zhu ZY, Lin S, Gao G, et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. *Bioinformatics* 2014;30:1180–2.
98. Upadhyay SK, Sharma S. SSFinder: high throughput CRISPR-Cas target sites prediction tool. *BioMed Res Int* 2014;2014:742482.
99. Mikami M, Toki S, Endo M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. *Plant Mol Biol* 2015;88:561–72.
100. Zhang GH, Tian Y, Zhang J, Shu LP, Yang SC, Wang W, et al. Hybrid de novo genome assembly of the Chinese herbal plant danshen (*Salvia miltiorrhiza* Bunge). *GigaScience* 2015;4:62.
101. Yan L, Wang X, Liu H, Tian Y, Lian JM, Yang RJ, et al. The genome of *Dendrobium officinale* illuminates the biology of the important traditional Chinese Orchid herb. *Cell Press* 2014;8:922–34.
102. Ma HH, Tu LC, Naseri A, Huisman M, Zhang SJ, Grunwald D, et al. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. *Nat Biotechnol* 2016;34:528–30.
103. Hilton IB, D’Ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. *Nat Biotechnol* 2015;33:510–7.