The Effect of ‘Traffic-Light’ Nutritional Labelling in Carbonated Soft Drink Purchases in Ecuador

Luis A. Sandoval
Department of Agricultural and Applied Economics
Texas Tech University
luis.sandovalmejia@ttu.edu

Carlos E. Carpio
Department of Agricultural and Applied Economics
Texas Tech University
carlos.carpio@ttu.edu

Marcos Sanchez
Department of Animal and Food Science
Texas Tech University

Ivan Borja
Universidad San Francisco de Quito

Tania Cabrera
Universidad Tecnica Particular de Loja

Selected Paper prepared for presentation at the 2017 Agricultural & Applied Economics Association Annual Meeting, Chicago, Illinois, July 30-August 1

Copyright 2017 by Sandoval, Carpio, Sanchez, Borja and Cabrera. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
The Effect of ‘Traffic-Light’ Nutritional Labelling in Carbonated Soft Drink Purchases in Ecuador

Luis A. Sandoval1, Carlos E. Carpio1, Marcos Sanchez2, Ivan Borja3, Tania Cabrera4
1. Department of Agricultural and Applied Economics, 2. Department of Animal and Food Science, Texas Tech University
3. Universidad San Francisco de Quito, 4. Universidad Técnica Particular de Loja.

Introduction

Overweight and obesity are now problems in high and low-middle income countries (WHO 2016a). In Ecuador, a middle income country, it is estimated that 63% of adults, 26% of teenagers and 30% of children are either overweight or obese (Freire et al. 2014).

To help reverse its overweight and obesity problem, Ecuador implemented in 2014 a Traffic Light (TL) supplemental nutritional labelling system. The objective of the policy is to help consumers make educated choices with regard to their consumption of sugar, fat and salt in processed food products.

Ecuador is the first country to implement a Traffic Light nutritional labelling policy at the national level. Therefore, little information is available with respect to the effectiveness of this type of policy at influencing the consumption habits of the population towards healthier food products.

Objective

The objective of this research is to evaluate the impact of the ‘Traffic Light’ supplemental nutritional labelling system in the consumption habits of carbonated soft drinks (CSD) of Ecuadorean consumers.

We focus our analysis in carbonated soft drinks because of the high habits of carbonated soft drinks (CSD) of Ecuadorean consumers. The objective of this research is to evaluate the impact of the ‘Traffic Light’ label, in addition to dummy variables for socio-economic status, quarter and a time trend.

The Traffic Light Label

• Approved in November 2013.
• Applies to all processed food products.
• Medium and large companies had until August 29th of 2014 to comply with the regulation and small companies until November 29th of 2014.
• Additional to the nutrient declaration/facts label.
•Assigns a traffic light color to the content of sugar, fat and salt. Additional to the nutrient declaration/facts label.

Data

• Aggregated monthly food and drinks purchase data (volume in liters (L) and value in US$) from a Panel of 1,646 Ecuadorean households from January 2013 to December 2015 obtained from Kantar World Panel.
• The data set contains purchase information of 13 food groups and 17 drinks groups, including information on 23 brands of carbonated soft drinks.

Demand Model

• We estimated an unconditional non-linear Almost Ideal Demand System (Deaton and Muelbauer 1980).
• The demand system consists of the following 6 equations: 1) Coca-Cola, 2) Dark colored high sugar Coca-Cola substitutes, 3) Low and non-sugar CSD, 4) Fruit flavored and all other CSD, and 5) a numeraire good that includes all other foods and drinks.
• A dummy variable was included to evaluate the effect of the ‘Traffic Light’ label, in addition to dummy variables for socio-economic status, quarter and a time trend.

The expenditure elasticities suggest that CSD are necessary goods. Own price elasticities suggest that Ecuadorean are sensitive to price changes in dark colored and low- and non-sugar CSD categories but not for Coca-Cola and all other CSD categories. Cross price elasticities suggest that Coca-Cola is a substitute of low- and non-sugar CSD and that low- and non-sugar and all other CSD are substitutes of dark colored CSD.

The expenditure elasticities suggest that CSD are necessary goods. Relative to low income households, households in the highest socio-economic status groups consume less high sugar CSD and more low and non-sugar CSD.

During the period of observation, we observed a downward trend in the consumption of Coca-Cola (-0.723%/month) and all other CSD and an upward trend in the consumption of low- and non sugar CSD (+1.30%/month).

A joint test of effect of the ‘Traffic Light’ label dummy in the demand system, (F(4,4,485)) suggest that the labeling policy did have an effect in the consumption of CSD. The effects are small relative to the total consumption of drinks. Low and non-sugar CSD are estimated to have increased by about 0.081 L per capita after the policy was implemented. Contrary to expectations, high sugar CSD are also estimated to have increased by 0.028 L per capita after the introduction of the policy; however, this estimated aggregate effect is not statistically different from zero.

Discussion

The衢驄 CSD market is clearly dominated by one brand. Out of the 1.67 L. per capita per month that are consumed at home, Coca-Cola accounts for 59% of consumption.

Own price elasticities suggest that Ecuadorean are sensitive to price changes in dark colored and low- and non-sugar CSD categories but not for Coca-Cola and all other CSD categories. Cross price elasticities suggest that Coca-Cola is a substitute of low- and non-sugar CSD and that low- and non-sugar and all other CSD are substitutes of dark colored CSD.

The expenditure elasticities suggest that CSD are necessary goods. Relative to low income households, households in the highest socio-economic status groups consume less high sugar CSD and more low and non-sugar CSD.

During the period of observation, we observed a downward trend in the consumption of Coca-Cola (-0.723%/month) and all other CSD and an upward trend in the consumption of low- and non-sugar CSD (+1.30%/month).

A joint test of effect of the ‘Traffic Light’ label dummy in the demand system, (F(4,4,485)) suggest that the labeling policy did have an effect in the consumption of CSD. The effects are small relative to the total consumption of drinks. Low and non-sugar CSD are estimated to have increased by about 0.081 L per capita after the policy was implemented. Contrary to expectations, high sugar CSD are also estimated to have increased by 0.028 L per capita after the introduction of the policy; however, this estimated aggregate effect is not statistically different from zero.

Results

Table 2 Mean uncompensated price and expenditure elasticities.

CSD categories	Market share	Coca-Cola	Dark colored high sugar	Low- and non-sugar CSD	All others sodas	Expenditure elasticities
Coca-Cola	57.9%	-0.571	-0.405***	0.227**	0.2886	0.4956***
Dark colored high sugar	9.6%	-1.6129	-1.3850***	0.3566	2.3866	0.9334
Low- and non-sugar CSD	3.22%	1.4934	0.6061*	-1.489	-0.6024	0.5875
All other sodas	29.28%	0.4141	0.8709***	-0.1339	-0.7687	0.6640***

* Denote significances at α=0.1, 0.05 and 0.01, respectively.

Table 3 Mean effect of the demand shifters in quantity consumed (L/per-capita).

CSD categories	Consumption (L/per-capita)	High socio-economic status	Medium socio-economic status	Time trend	Traffic light labelling	1st quarter	2nd quarter	3rd quarter
Coca-Cola	0.967	-0.0535**	0.0228	-0.0026***	-0.0133	0.0543**	0.0214*	-0.0169
Dark colored high sugar	0.160	-0.9876***	-0.0608**	-0.0002	0.0056	0.0039	0.0003	-0.0009
Low- and non-sugar CSD	0.054	0.0148***	0.0050	0.0007***	0.0081*	-0.0019	0.00003	0.0009
All other sodas	0.460	-0.0767***	-0.0128	-0.0099*	0.0315**	0.0237***	0.0155**	-0.0073

* Denote significances at α=0.1, 0.05 and 0.01, respectively.

Conclusions

We find some evidence that the introduction of ‘Traffic Light’ labelling policy had an effect in the consumption of CSD in Ecuador; however, relative to the overall level of CSD consumption the estimated effects are very small. Moreover, we do not find evidence of a reduction in the consumption of high sugar CSD which was the main policy objective.

References

Boonsang, T., Fletcher, S. and Caspi C. C. (2008). European Urban Import Demand for In-Shell Peanuts, Journal of Agricultural and Applied Economics 40(2): 185-201.
Cao, C. A. S. and Muehlbauer J. (1988) An Almost Ideal Demand System, American Economic Review 78: 418-430.
Freire, W.B., Ramiro Luzungo, M.J., Beltrán, R. Mireles, M.J., Sika-Janggali, M.K., Romines, N., Salazar, K., Pitke, T., Gomez, L.F. and Mendez R. (2010). Taller de Enfocados Nacionales de Bases de Datos Nutricionales en la poblacion ecuatoriana de 0-59 años. ENADIS/ECECU. Ministerio de Salud Pública/Instituto Nacional de Estadísticas y Censos, Quito-Ecuador.
Gonzales, S., and White, H. (2000). Bootstrap Standard Error Estimation for Linear Regression, Journal of the American Statistical Association 100: 797-78.
World Health Organization (WHO). (2013a). Obese and overweight fact sheet. Retrieved from: http://www.who.int/mediacentre/factsheets/fs311/en/