M-ELLIPTICITY OF FREDHOLM PSEUDO-DIFFERENTIAL OPERATORS ON $L^p(\mathbb{R}^n)$ AND GÅRDING’S INEQUALITY

APARAJITA DASGUPTA AND LALIT MOHAN

Abstract. In this paper, we study the M-ellipticity of Fredholm pseudo-differential operators associated with weighted symbols on $L^p(\mathbb{R}^n)$, $1 < p < \infty$. We also prove the Gårding’s inequality for M-elliptic operators and the hybrid class of pseudo-differential operators, namely SGM-elliptic operators.

Contents

1. Introduction 1
2. M-Ellipticity of Fredholm Pseudo-Differential Operators 4
3. Gårding’s Inequality for M-elliptic operators 8
References 18

1. Introduction

A general symbolic calculus and corresponding definition of global ellipticity for partial differential operators and pseudo-differential operators on noncompact manifolds represent a relevant issue of the modern Mathematical Analysis. In the case of the Euclidean space \mathbb{R}^n, one can refer to the pseudo-differential operators corresponding to the Hörmander symbol class, $S^m_{\rho,\delta}$, $m \in \mathbb{R}$, $0 \leq \rho, \delta \leq 1$, [12, 19]. The other is given by the so-called SG classes. In [7], they are also called pseudo-differential operators with exit behavior. SG pseudo-differential operators and related topics can be found in [3, 5, 6, 13, 14] and the references therein. In general to prove L^p boundedness of pseudo-differential operators associated with the Hörmander symbols, $S^0_{1,0}$, the key ingredient is the Mikjlin-Hörmander theorem about Fourier multipliers. But unfortunately, L^p-boundedness theorem for $p \neq 2$ does not hold for operators in $S^0_{\rho,0}$, for $0 < \rho < 1$. Taylor in [15] introduced a suitable symbol subclass, $M^m_{\rho,0}$, of $S^m_{\rho,0}$ giving a continuous operator for every $1 < p < \infty$ and $0 < \rho \leq 1$. Further to this, Garello and Morando introduced the subclass $M^m_{\rho,\Lambda}$ of $S^m_{\rho,\Lambda}$, which are just weighted version of the ones introduced by Taylor in [8, 9, 10] and developed the symbolic calculus for the associated pseudo-differential operators with many applications to study the regularity of multi-quasi-elliptic operators. Many studies on various properties of M-elliptic pseudo-differential operators can be found in [8, 18, 2, 4, 10] and [17]. But till now not much has been done on the M-ellipticity of Fredholm pseudo-differential operators. In this paper, we prove that Fredholm pseudo differential operators with weighted symbol are M-elliptic pseudo-differential operators on \mathbb{R}^n. Finally we prove the Gårding’s Inequality for M-elliptic operators. Let us start with a few historical notes and basic definitions.
A positive function $\Lambda \in C^\infty(\mathbb{R}^n)$ is said to be a weight function with polynomial growth if there exists positive constants μ_0, μ_1, C_0 and C_1 be such that $\mu_0 \leq \mu_1$ and $C_0 \leq C_1$, for which we have following conditions:

$$C_0(1 + |\xi|)^{\mu_0} \leq \Lambda(\xi) \leq C_1(1 + |\xi|)^{\mu_1}, \quad \xi \in \mathbb{R}^n.$$

Also, we assume that there exists a real constant μ such that $\mu \geq \mu_1$ and for all multi-indices $\alpha, \gamma \in \mathbb{Z}^n$ with $\gamma_j \in \{0, 1\}, j = 1, 2, \ldots, n$, we can find a positive constant say $C_{\alpha,\gamma}$ such that

$$|\xi^\gamma (\partial^\alpha + \gamma \Lambda)(\xi)| \leq C_{\alpha,\gamma} \Lambda(\xi)^{1 - \frac{1}{\mu}|\alpha|}, \quad \xi \in \mathbb{R}^n. \quad \text{(1.1)}$$

Let us take $m \in \mathbb{R}$ and let $\rho \in (0, \frac{1}{\mu}]$. Then we say a function $\sigma \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ is in $S_{\rho,\Lambda}^m$ class if for all multi-indices α and β we can find a positive constant $C_{\alpha,\beta}$ such that

$$|(\partial_\xi^\alpha \partial_\rho^\beta \sigma)(x, \xi)| \leq C_{\alpha,\beta} \Lambda(\xi)^{m-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

We call such σ be a symbol of order m and type ρ with weight Λ. Also, we say a symbol $\sigma \in M_{\rho,\Lambda}^m$ if for all multi-indices γ with $\gamma_j \in \{0, 1\}, j = 1, 2, \ldots, n$, we have

$$\xi^\gamma (\partial_\xi^\gamma \sigma)(x, \xi) \in S_{\rho,\Lambda}^m.$$

Let $\sigma \in S_{\rho,\Lambda}^m$. Define pseudo-differential operator T_σ associate with symbol σ by

$$(T_\sigma \varphi)(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) \, d\xi, \quad x \in \mathbb{R}^n,$$

where φ is in Schwartz space S and

$$\hat{\varphi}(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \varphi(x) \, dx, \quad \xi \in \mathbb{R}^n.$$

Now we give a brief introduction to the properties of M-elliptic pseudo-differential operators. For this, we will start by defining a class of symbols $S_{\rho,\Lambda}^m$, where $m, \rho \in \mathbb{R}$ and $\rho \in (0, \frac{1}{\mu}]$. We say a symbol $\sigma \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ is in $S_{\rho,\Lambda}^m$ if for all multi-indices α we can find a positive constant C_α such that

$$|(\partial_\xi^\alpha \partial_\rho \sigma)(x, \xi)| \leq C_\alpha \Lambda(\xi)^{m-\rho|\alpha|}, \quad x, \xi \in \mathbb{R}^n.$$

Also, we say a symbol $\sigma \in M_{\rho,\Lambda}^m$ if for all multi-indices γ with $\gamma_j \in \{0, 1\}, j = 1, 2, \ldots, n$, we have

$$\xi^\gamma (\partial_\xi^\gamma \sigma)(x, \xi) \in S_{\rho,\Lambda}^m.$$

Let $\sigma \in S_{\rho,\Lambda}^m$. Define pseudo-differential operator T_σ associated with symbol σ by

$$(T_\sigma \varphi)(x) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{ix \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) \, d\xi, \quad x \in \mathbb{R}^n, \quad \text{where} \quad \varphi \text{ is in Schwartz space } S \quad \text{and}$$

$$\hat{\varphi}(\xi) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} e^{-ix \cdot \xi} \varphi(x) \, dx, \quad \xi \in \mathbb{R}^n.$$

Note that it can be easily shown that $T_\sigma : S \rightarrow S$ is a continuous linear mapping. The following results can be found in [6].

Theorem 1.1. Let $\sigma \in M_{\rho,\Lambda}^m$ and $\tau \in M_{\rho,\Lambda}^\mu$. Then $T_\sigma T_\tau = T_\lambda$, where $\lambda \in M_{\rho,\Lambda}^{m+\mu}$ and

$$\lambda \sim \sum_{\mu} \frac{(-i)^{|\mu|}}{\mu!} (\partial_\xi^\mu \sigma)(\partial_\rho^\mu \tau).$$
M-ELLIPTICITY OF FREDHOLM PSEUDO-DIFFERENTIAL OPERATORS ON $L^p(\mathbb{R}^n)$ AND GÅRDING’S INEQUALITY

Here the asymptotic expansion means that for every positive integer M, there exists a positive integer N such that

$$
\lambda - \sum_{|\mu|<N} \frac{(-i)^{|\mu|}}{\mu!} (\partial^\mu_x \sigma)(\partial^\mu_x \tau) \in M^m_{\rho, \Lambda} - \rho M.
$$

Theorem 1.2. Let $\sigma \in M^m_{\rho, \Lambda}$. Then the formal adjoint T^*_σ of T_σ is the pseudo-differential operator T_τ, where $\tau \in M^m_{\rho, \Lambda}$ and

$$
\tau \sim \sum_{|\mu|<N} \frac{(-i)^{|\mu|}}{\mu!} \partial^\mu_x \sigma \partial^\mu_x \tau.
$$

Here the asymptotic expansion means that for every positive integer M, there exists a positive integer N such that

$$
\tau - \sum_{|\mu|<N} \frac{(-i)^{|\mu|}}{\mu!} \partial^\mu_x \sigma \partial^\mu_x \tau \in M^m_{\rho, \Lambda} - \rho M.
$$

Now using formal adjoint, we can extend the definition of a pseudo-differential operator from the Schwartz space S to the space S' of all tempered distributions. For this, let $\sigma \in M^m_{\rho, \Lambda}$. Then for all $u \in S'$, we define $T_\sigma u : S \to \mathbb{C}$ such that

$$
(T_\sigma u)(\varphi) = u(T^*_\sigma \varphi). \quad (1.3)
$$

It is easy to check that T_σ maps S' into S' continuously. In fact, we have the following theorem.

Theorem 1.3. Let $\sigma \in M^0_{\rho, \Lambda}$. Then $T_\sigma : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a bounded linear operator for $1 < p < \infty$.

Proof of this theorem can be found in from Theorem 1.4 in [18].

Let $\sigma \in M^m_{\rho, \Lambda}$, where $m \in \mathbb{R}$. Then σ is said to be M-elliptic if there exists positive constants C and R such that

$$
|\sigma(x, \xi)| \geq CA(\xi)^m, \quad |\xi| \geq R.
$$

Theorem 1.4. Let $\sigma \in M^m_{\rho, \Lambda}$ be M-elliptic. Then there exists a symbol $\tau \in M^{-m}_{\rho, \Lambda}$ such that

$$
T_\tau T_\sigma = I + R
$$
and

$$
T_\sigma T_\tau = I + S,
$$

where R and S are pseudo-differential operators with symbol in $\cap_{k \in \mathbb{R}} M^k_{\rho, \Lambda}$.

The pseudo-differential operator T_τ in Theorem 1.4 is known as parametrix of the M-elliptic pseudo-differential operator T_σ.

To make this paper self contained we recall here the definition of the Sobolev spaces.

For $m \in \mathbb{R}$ and $1 < p < \infty$, we define the Sobolev space $H^m_{\Lambda} \cap L^p(\mathbb{R}^n)$ by

$$
H^m_{\Lambda} \cap L^p(\mathbb{R}^n) = \{ u \in S' : J_{-m} u \in L^p(\mathbb{R}^n) \}.
$$

Then $H^m_{\Lambda} \cap L^p(\mathbb{R}^n)$ is a Banach space in which the norm $\| \cdot \|_{m,p,\Lambda}$ is given by

$$
\| u \|_{m,p,\Lambda} = \| J_{-m} u \|_{L^p(\mathbb{R}^n)}, \quad u \in H^m_{\Lambda} \cap L^p(\mathbb{R}^n).
$$

Note that $H^0_{\Lambda} \cap L^p(\mathbb{R}^n) = L^p(\mathbb{R}^n)$.

All the above results and definitions for SG-M elliptic case can be found in [1].

The main aim of this paper is to prove the ellipticity of fredholm pseudo-differential operators associated with weighted symbols and to prove the Gårding’s Inequality for M-elliptic operators. In Section 2, first, we prove that Fredholm pseudo-differential operators are M-elliptic and then show that ellipticity of fredholm pseudo-differential operators for the hybrid case. In Section 3, we prove the Gårding’s inequality for both M-elliptic operators and SG M-elliptic operators.

2. M-Ellipticity of Fredholm Pseudo-Differential Operators

In this section, our aim is to show that Fredholm pseudo-differential operator is M-elliptic on $L^p(\mathbb{R}^n)$. For this, we need some technical preparations which are done in [5] and [19].

Definition 2.1. Let $\lambda > 0, \tau \geq 0$ and $x_0, \xi_0 \in \mathbb{R}^n$. For $1 < p < \infty$, we define the operator $R_{\lambda, \tau} (x_0, \xi_0) : L^p (\mathbb{R}^n) \to L^p (\mathbb{R}^n)$, by

$$
(R_{\lambda, \tau} (x_0, \xi_0) u) (x) = \lambda^{\tau n/p} e^{i\lambda x \cdot \xi} u \left(\lambda^\tau (x - x_0) \right), \quad x \in \mathbb{R}^n,
$$

for all $u \in L^p (\mathbb{R}^n)$.

Proposition 2.2. The operator $R_{\lambda, \tau} (x_0, \xi_0) : L^p (\mathbb{R}^n) \to L^p (\mathbb{R}^n)$ is a surjective isometry and the inverse is given by

$$
(R_{\lambda, \tau} (x_0, \xi_0)^{-1} u) (x) = \lambda^{-\tau n/p} e^{-i\lambda (x_0 + \lambda^{-\tau} x) \cdot \xi_0} u \left(x_0 + \lambda^{-\tau} x \right), \quad x \in \mathbb{R}^n,
$$

for all $u \in L^p (\mathbb{R}^n)$.

Proposition 2.3. Let $1 < p < \infty$ and $\tau > 0$. Then, for all $u \in L^p (\mathbb{R}^n)$ and $v \in L^q (\mathbb{R}^n)$, where $\frac{1}{p} + \frac{1}{q} = 1$,

$$(R_{\lambda, \tau} (x_0, \xi_0) u, v) \to 0$$

as $\lambda \to \infty$.

The following theorem is one of the main theorems of this paper.

Theorem 2.4. Let $\sigma \in M^0_{\rho, \Lambda}$ be such that $T_{\sigma} : L^p (\mathbb{R}^n) \to L^p (\mathbb{R}^n)$ is a Fredholm operator for $1 < p < \infty$. Then σ is M-elliptic.

To prove this theorem, we need following lemma.

Lemma 2.5. Let $\sigma \in M^m_{\rho, \Lambda}$, where $m \in (-\infty, \infty)$. Then

$$
R_{\lambda, \tau} (x_0, \xi_0)^{-1} T_{\sigma} R_{\lambda, \tau} (x_0, \xi_0) = T_{\sigma_{\lambda, \tau}}, \quad (2.1)
$$

where

$$
\sigma_{\lambda, \tau} (x, \eta) = \sigma \left(x_0 + \lambda^{-\tau} x, \lambda \xi_0 + \lambda^{\tau} \eta \right), \quad x, \eta \in \mathbb{R}^n. \quad (2.2)
$$

Moreover, if $\sigma \in M^0_{\rho, \Lambda}$, $\lambda \geq 1, 0 \leq \tau \leq \rho \mu_0 / (1 + \rho \mu_0)$ and $\xi_0 \neq 0$, then for all multi-indices α and β, there exists a positive constant C_{β} such that

$$
\left| \left(\partial^\alpha_{x} \partial^\beta_{\eta} \sigma_{\lambda, \tau} \right) (x, \eta) \right| \leq C_{\beta} p_{\alpha, \beta}(\sigma) \frac{(\Lambda(\eta))^{\beta|\beta|}}{|\xi_0|^{\mu_0|\beta|}} \lambda^{-\tau |\alpha|} \lambda^{-(\rho \mu_0 + (1 + \rho \mu_0) \tau)|\beta|}, \quad x, \eta \in \mathbb{R}^n. \quad (2.3)
$$

Here $p_{\alpha, \beta}$ denotes the corresponding norm in $M^0_{\rho, \Lambda}$.
Thus, we get \((\eta) \).

Now by substituting \(z = \lambda^\tau (y - x_0) \), the above expression takes the form
\[
\lambda^{-\tau \sigma} (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x - y) \cdot \sigma} (x_0 + \lambda^{-\tau} x, \xi) e^{i\lambda y \xi_0} u (\lambda^\tau (y - x_0)) dy d\xi.
\]

Now by substituting \(\eta = \lambda^{-\tau} (\xi - \xi_0) \), the above expression takes the form
\[
(2\pi)^{-n} \int_{\mathbb{R}^n} e^{i(x - z) \cdot \eta} (x_0 + \lambda^{-\tau} x, \lambda \xi_0 + \lambda^\tau \eta) u (z) dz d\eta.
\]

Thus, we get (2.1) and (2.2), as asserted. Now, using (2.2), the chain rule and Peetre’s inequality,
\[
\left| \left(\partial^\sigma_x \partial^\beta_\eta \sigma_{\lambda, \tau} \right) (x, \eta) \right| \leq \left| \left(\partial^\sigma_x \partial^\beta_\eta \sigma \right) (x_0 + \lambda^{-\tau} x, \lambda \xi_0 + \lambda^\tau \eta) \right| \lambda^{-\tau |\alpha|} \lambda^{|\beta|} \\
\leq p_{\alpha, \beta}(\sigma) (\Lambda (\lambda \xi_0 + \lambda^\tau \eta))^{-|\beta|} \lambda^{-\tau |\alpha|} \lambda^{|\beta|} \\
\leq C_{\beta} P_{\alpha, \beta}(\sigma) (\lambda \xi_0 + \lambda^\tau \eta)^{-|\beta|} \lambda^{-\tau |\alpha|} \lambda^{|\beta|} \\
\leq C_{\beta} P_{\alpha, \beta}(\sigma) (\xi_0)^{-|\beta|} \lambda^{-\tau |\alpha|} \lambda^{|\beta|} \\
\leq C_{\beta} P_{\alpha, \beta}(\sigma) (\xi_0)^{-|\beta|} (\Lambda (\eta))^{\rho |\beta|} \lambda^{-(\rho_\alpha (1 + \rho_\mu \tau) |\beta| \lambda^{-|\alpha|}} \\
\leq C_{\beta} P_{\alpha, \beta}(\sigma) (\xi_0)^{-|\beta|} (\Lambda (\eta))^{\rho |\beta|} \lambda^{-(\rho_\alpha (1 + \rho_\mu \tau) |\beta| \lambda^{-|\alpha|}}
\]
which completes proof of Equation (2.3).

\textbf{Proof of Theorem 2.4} Since \(T_\sigma \) is a Fredholm operator, so by Theorem 20.5 in [19], we can find a non-zero bounded linear operator \(S \) on \(L^p (\mathbb{R}^n) \) and a compact operator \(K \) on \(L^p (\mathbb{R}^n) \) such that
\[
ST_\sigma = I + K.
\]

Let \(M \) be the set of all points \(\xi \) in \(\mathbb{R}^n \) such that there exists a point \(x \) in \(\mathbb{R}^n \) for which
\[
|\sigma (x, \xi)| \leq \frac{1}{2||S||}.
\]

Now, if \(M \) is bounded, then there exists a positive number \(R \) such that
\[
|\xi| < R, \quad \xi \in M.
\]

Thus, for each point \(\xi \in \mathbb{R}^n \) with \(|\xi| \geq R \), we get, for all \(x \in \mathbb{R}^n \),
\[
|\sigma (x, \xi)| \geq \frac{1}{2||S||},
\]
and this implies that that \(\sigma \) is \(M \)-elliptic. So, suppose that \(M \) is not bounded. Then there exists a sequence \(\{(x_k, \xi_k)\} \) in \(\mathbb{R}^n \times \mathbb{R}^n \) such that
\[
|\xi_k| \to \infty
\]
as \(k \to \infty \) and
\[
|\sigma (x_k, \xi_k)| \leq \frac{1}{2||S||}, \quad k = 1, 2, \ldots
\]
Thus, there exists a subsequence of \(\{(x_k, \xi_k)\} \), again denoted by \(\{(x_k, \xi_k)\} \), such that
\[
\sigma (x_k, \xi_k) \to \sigma_\infty
\]
For some complex number σ_∞ as $k \to \infty$. Therefore

$$|\sigma_\infty| \leq \frac{1}{2\|S\|}$$ (2.4)

For $k = 1, 2, \ldots$, let $\lambda_k = |\xi_k|$. Then, by Lemma 2.5, we have

$$R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right)^{-1} T_\sigma R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) = T_{\sigma_{\lambda_k, \tau}},$$

where

$$\sigma_{\lambda_k, \tau}(x, \eta) = \sigma \left(x_k + \lambda_k^{-1} x, \lambda_k \eta \right), \quad x, \eta \in \mathbb{R}^n.$$

Let α and β be arbitrary multi-indices. Then, by Equation (2.3), there exists a positive constant C_β such that

$$\left| \left(\partial^\alpha_x \partial^\beta_\eta \sigma_{\lambda_k, \tau} \right) (x, \eta) \right| \leq C_{\beta \rho} \sigma(\Lambda(\eta))^{\rho + |\beta|} \lambda_k^{-|\alpha|} \lambda_k^{-\rho - (1 + \rho_0) \tau |\beta|}, \quad x, \eta \in \mathbb{R}^n.$$ (2.5)

For $k = 1, 2, \ldots$, we define σ_∞^k by

$$\sigma_\infty^k = \sigma_{\lambda_k, \tau}(0, 0) = \sigma \left(x_k, \xi_k \right).$$

Then, by using Theorem 7.3 in [19] and the estimate (2.5), we get

$$\left| \sigma_{\lambda_k, \tau}(x, \eta) - \sigma_\infty^k \right| = \left| \sigma_{\lambda_k, \tau}(x, \eta) - \sigma_{\lambda_k, \tau}(0, 0) \right|$$

$$= \left| \sum_{|\gamma + \mu| = 1} x^\gamma \eta^\mu \int_0^1 \left(\partial^\alpha_x \partial^\beta_\eta \sigma_{\lambda_k, \tau} \right) (\theta x, \theta \eta) d\theta \right|$$

$$\leq \sum_{|\gamma + \mu| = 1} |x|^{|\gamma|} |\eta|^{|\mu|} \int_0^1 C_{\mu \rho} \sigma(\Lambda(\eta))^{\rho + |\mu|} \lambda_k^{-|\gamma|} \lambda_k^{-\rho - (1 + \rho_0) \tau |\mu|} d\theta \to 0$$ (2.6)

uniformly for (x, η) on every compact subset K of $\mathbb{R}^n \times \mathbb{R}^n$ as $k \to \infty$. Let $u \in S$. Then

$$\left(T_{\sigma_{\lambda_k, \tau}} u \right)(x) - \sigma_\infty^k u(x) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \eta} \left(\sigma_{\lambda_k, \tau}(x, \eta) - \sigma_\infty^k \right) \hat{u}(\eta) d\eta$$

for all $x \in \mathbb{R}^n$. By (2.6), the assumption that $\sigma \in M_{\rho, A}^0$ and Lebesgue’s dominated convergence theorem,

$$\left(T_{\sigma_{\lambda_k, \tau}} u \right)(x) \to \sigma_\infty^k u(x)$$

for all $x \in \mathbb{R}^n$ as $k \to \infty$. Moreover, for all $l \in \mathbb{N}$, using (2.5) and an integration by parts, we can find a positive constant C_μ for each μ with $|\mu| \leq 2l$ such that

$$\left| \langle x \rangle^{2l} \left(T_{\sigma_{\lambda_k, \tau}} u \right)(x) \right|$$

$$= \left| \langle x \rangle^{2l} (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{ix \cdot \eta} \sigma_{\lambda_k, \tau}(x, \eta) \hat{u}(\eta) d\eta \right|$$

$$= \left| (2\pi)^{-n/2} \int_{\mathbb{R}^n} \left(\left(I - \Delta \xi \right)^l e^{ix \cdot \xi} \sigma_{\lambda_k, \tau}(x, \xi) \hat{u}(\xi) d\xi \right) \right|$$

$$\leq (2\pi)^{-n/2} \int_{\mathbb{R}^n} \left| \sum_{|\mu| \leq 2l} \frac{1}{\mu!} \left(P^\mu(D) \hat{u} \right)(\xi) C_\mu (\Lambda(\xi))^{|\mu|} d\xi \right|$$

$$\leq (2\pi)^{-n/2} \int_{\mathbb{R}^n} \sum_{|\mu| \leq 2l} \frac{C_\mu'}{\mu!} |\hat{u}(\xi)| |\Lambda(\xi)|^{2l-|\mu|} |\xi|^{|\mu|} d\xi$$
2.4

Now, if \(2lp > n \), then \(\langle x \rangle^{-2lp} \in L^1(\mathbb{R}^n) \). So, there exists a positive constant \(C_1 \) such that

\[
\left| \left(T_{\sigma_{\lambda_k}, \tau} - \sigma_k^\infty \right) u(x) \right|^p \leq C_1 \langle x \rangle^{-2lp}, \quad x \in \mathbb{R}^n.
\]

Thus,

\[
T_{\sigma_{\lambda_k}, \tau} u \rightarrow \sigma_\infty u
\]

in \(L^p(\mathbb{R}^n) \) as \(k \rightarrow \infty \). Let \(u \) be a nonzero function in \(L^p(\mathbb{R}^n) \). Since \(R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) \) is an isometry, it follows that

\[
0 < \| u \|_p^p = \left\| R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p
= \left\| (ST_\sigma - K) R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p
\leq \left\| ST_\sigma R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p + \left\| KR_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p
\leq \left\| R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right)^{-1} T_\sigma R_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p \| S \| + \left\| KR_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p.
\]

(2.7)

Now, using the fact that \(K \) is a compact operator and Proposition 2.3, it follows that

\[
\left\| KR_{\lambda_k, \tau} \left(x_k, \frac{\xi_k}{|\xi_k|} \right) u \right\|_p^p \rightarrow 0
\]

as \(k \rightarrow \infty \). Then, by Equation (2.7),

\[
\| u \|_p^p \leq \| S \| \| \sigma_\infty \| \| u \|_p^p.
\]

(2.8)

Thus, Equation (2.4) and Equation (2.8) give the contradiction that

\[
\frac{1}{\| S \|} \leq |\sigma_\infty| \leq \frac{1}{2\| S \|},
\]

which completes the proof of the theorem.

The preceding theorem can be generalized to the following theorem.

Theorem 2.6. Let \(\sigma \in M_{\rho, \Lambda}^m \), where \(m \in (-\infty, \infty) \), and let \(T_\sigma : H_{\Lambda}^{s,p} \rightarrow H_{\Lambda}^{s-m,p} \) be a Fredholm operator for some \(s \in (-\infty, \infty) \). Then \(T_\sigma \) is an \(M \)-elliptic operator.

Proof By Theorem 1.6 in [18], the operators \(T_\sigma : H^{s,p} \rightarrow H_{\Lambda}^{s-m,p}, J_{-s} : H_{\Lambda}^{s,p} \rightarrow L^p(\mathbb{R}^n), J_s : L^p(\mathbb{R}^n) \rightarrow H_{\Lambda}^{s,p}, J_{s-m} : H_{\Lambda}^{s-m,p} \rightarrow L^p(\mathbb{R}^n) \) and \(J_{s-m} : L^p(\mathbb{R}^n) \rightarrow H_{\Lambda}^{s-m,p} \) are bounded linear operators. Here \(J_m \) is a pseudo-differential operator with symbol \(\sigma_m \in M_{\rho, \Lambda}^{-m} \), where

\[
\sigma_m(\xi) = (\Lambda(\xi))^{-m}, \quad \xi \in \mathbb{R}^n.
\]

Let

\[
J_{s-m} T_\sigma J_s = T_\tau.
\]

(2.9)

Then

\[
T_\tau : L^p(\mathbb{R}^n) \rightarrow L^p(\mathbb{R}^n),
\]
where \(\tau \in M_{\rho,\Lambda}^{0} \). Since \(J_{s} \) is bijective, it follows that \(J_{s} \) is Fredholm and \(M \)-elliptic for all \(s \in (-\infty, \infty) \). So, by Theorem 2.4, \(T_{\tau} \) is \(M \)-elliptic. By Equation (2.9), the fact that \(J_{s}, s \in \mathbb{R} \), is bijective and product of two \(M \)-elliptic operators is again an \(M \)-elliptic operator, we get \(T_{\tau} \) is \(M \)-elliptic. \(\square \)

The following theorem is a simple consequence of Theorem 2.4 and Theorem 2.6, which proves the \(M \)-ellipticity of the Fredholm SG pseudo-differential operators on \(L^{p}(\mathbb{R}^{n}) \). Details about the Sobolev spaces, \(H_{\Lambda}^{s_{1},s_{2},p} \), can be found in [1].

Theorem 2.7. Let \(\sigma \in M_{\rho,\Lambda}^{m_{1},m_{2}} \), where \(m_{1}, m_{2} \in (-\infty, \infty) \) and let

\[T_{\sigma} : H_{\Lambda}^{s_{1},s_{2},p} \to H_{\Lambda}^{s_{1}-m_{1},s_{2}-m_{2},p} \]

is a Fredholm operator for some \(s_{1}, s_{2} \in (-\infty, \infty) \). Then \(T_{\sigma} \) is a SG \(M \)-elliptic operator.

3. Gårding’s Inequality for \(M \)-Elliptic Operators

We begin with a definition.

Definition 3.1. Let \(\sigma \in M_{\rho,\Lambda}^{m} \), where \(m \in \mathbb{R} \). Then \(\sigma \) is said to be strongly \(M \)-elliptic if there exist positive constants \(C \) and \(R \) for which

\[\text{Re}(\sigma(x, \xi)) \geq C \Lambda(\xi)^{m}, \quad |\xi| \geq R. \]

Theorem 3.2. (Gårding’s Inequality for \(M \)-Elliptic Operators)

Let \(\sigma \in M_{\rho,\Lambda}^{m} \), where \(m \in \mathbb{R} \), be strongly \(M \)-elliptic symbol. Then we can find positive constants \(C' \) and \(C_{s} \) for every real number \(s \geq \frac{m}{2} \) such that

\[\text{Re}(T_{\sigma} \varphi, \varphi) \geq C' \| \varphi \|_{m,2,\Lambda}^{2} - C_{s} \| \varphi \|_{m-s,2,\Lambda}^{2}, \quad \varphi \in \mathcal{S}. \]

To prove this theorem, we need the following three lemmas.

Lemma 3.3. Let \(\sigma \in S_{\rho,\Lambda}^{0} \) and \(F \) be a \(C^{\infty} \)-function on the complex plane \(\mathbb{C} \). Then \(F \circ \sigma \in S_{\rho,\Lambda}^{0} \).

Proof We need to prove that for any two multi-indices \(\alpha \) and \(\beta \), we can find a positive constant \(C_{\alpha,\beta} \) such that

\[|(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} (F \circ \sigma))(x, \xi)| \leq C_{\alpha,\beta} \Lambda(\xi)^{-|\beta|}, \quad x, \xi \in \mathbb{R}^{n}. \] \(\text{(3.1)} \)

Let \(\alpha \) and \(\beta \) be two multi-indices such that \(|\alpha + \beta| = 0 \), i.e., \(|\alpha| = 0 \) and \(|\beta| = 0 \). Since \(\sigma \in S_{\rho,\Lambda}^{0} \), so we can find a positive constant \(C \) such that

\[|\sigma(x, \xi)| \leq C, \quad x, \xi \in \mathbb{R}^{n}. \]

Thus, \(F \circ \sigma \) is a bounded and \(C^{\infty} \) function on \(\mathbb{R}^{n} \times \mathbb{R}^{n} \). So we can find another positive constant \(C_{0} \) such that

\[|(F \circ \sigma)(x, \xi)| \leq C_{0}, \quad x, \xi \in \mathbb{R}^{n}. \]

Hence Equation (3.1) is true for all multi-indices \(\alpha \) and \(\beta \) with \(|\alpha + \beta| = 0 \). Now, suppose that Equation (3.1) is true for all \(C^{\infty} \) functions \(F \) on \(\mathbb{C} \), \(\sigma \in S_{\rho,\Lambda}^{0} \) and multi-indices \(\alpha \) and \(\beta \) with \(|\alpha + \beta| \leq k \). Let \(\alpha \) and \(\beta \) be multi-indices with \(|\alpha + \beta| = k + 1 \). We first suppose that

\[\partial_{x}^{\alpha} \partial_{\xi}^{\beta} = \partial_{x}^{\alpha} \partial_{\xi}^{\gamma} \partial_{\xi_{j}}, \quad j = 1, 2, ..., n. \]

Then, by chain rule,

\[(\partial_{x}^{\alpha} \partial_{\xi}^{\beta} (F \circ \sigma))(x, \xi) = \partial_{x}^{\alpha} \partial_{\xi}^{\gamma} \{(F_{1} \circ \sigma) \partial_{\xi_{j}} \sigma + (F_{2} \circ \sigma) \partial_{\xi_{j}} \sigma\}(x, \xi) \]
Let a positive constant \(C \) be a function on the complex plane \(\mathbb{C} \) and for some multi-index \(\gamma \), we can find a positive constant \(C \) such that
\[
|\partial^\alpha_\xi (F \circ \sigma)(x, \xi)| \leq C, \quad x, \xi \in \mathbb{R}^n.
\]
Similarly, we can find another positive constant \(C'_{\alpha, \gamma, j} \) such that
\[
|\partial^\alpha_\xi (F \circ \sigma)(x, \xi)| \leq C'_{\alpha, \gamma, j} |\Lambda(\xi)|^{\rho(|\gamma| - |\beta| + 1)}, \quad x, \xi \in \mathbb{R}^n.
\]
Hence
\[
|\partial^\alpha_\xi (F \circ \sigma)(x, \xi)| \leq (C_{\alpha, \gamma, j} + C'_{\alpha, \gamma, j}) |\Lambda(\xi)|^{\rho(|\beta|)}, \quad x, \xi \in \mathbb{R}^n.
\]
Now, we assume that
\[
\partial^\alpha_\xi (F \circ \sigma) = \partial^\alpha_\xi \partial^\beta_\xi (F \circ \sigma)
\]
for some multi-index \(\gamma \) with \(|\gamma + \beta| = k\), and for some \(j = 1, 2, \ldots, n \). Then, as before, we can find a positive constant \(C''_{\alpha, \gamma, j} \) such that
\[
|\partial^\alpha_\xi (F \circ \sigma)(x, \xi)| \leq C''_{\alpha, \gamma, j} |\Lambda(\xi)|^{\rho(|\beta|)}, \quad x, \xi \in \mathbb{R}^n.
\]
So, by the principle of mathematical induction, Equation (3.1) follows. \(\square \)

Lemma 3.4. Let \(\sigma \in M^0_{p, \Lambda} \) and \(F \) be a \(C^\infty \)-function on the complex plane \(\mathbb{C} \). Then \(F \circ \sigma \in M^0_{p, \Lambda} \).

Proof Let \(S = \{ \gamma \in \mathbb{Z}^n_0 : \gamma_j \in \{0, 1\}, j = 1, 2, \ldots, n; n \in \mathbb{N} \} \), where \(\mathbb{Z}_0 = \mathbb{Z}_+ \cup \{0\} \).

Then, we need to show that, for all \(\gamma \in S \), we have
\[
\xi^\gamma \partial^\alpha_\xi (F \circ \sigma)(x, \xi) \in S^0_{p, \Lambda},
\]
i.e., for all multi-indices \(\alpha, \beta \), we can find a positive constant \(C_{\alpha, \beta} \) such that
\[
|\partial^\alpha_\xi (\xi^\gamma \partial^\beta_\xi (F \circ \sigma)(x, \xi))| \leq C_{\alpha, \beta} |\Lambda(\xi)|^{\rho(|\beta|)}, \quad \forall \gamma \in S, \quad x, \xi \in \mathbb{R}^n.
\] (3.2)

Let \(|\alpha + \beta| = 0\). This implies \(|\alpha| = 0\) and \(|\beta| = 0\). Then we need to show that there exists a positive constant \(C_{00} \) such that
\[
|\xi^\gamma \partial^\alpha_\xi (F \circ \sigma)(x, \xi)| \leq C_{00}, \quad \forall \gamma \in S, \quad x, \xi \in \mathbb{R}^n.
\] (3.3)

Let \(|\gamma| = 0\). Then by Lemma 3.3, we can find a positive constant \(C_{00} \) such that
\[
|F \circ \sigma(x, \xi)| \leq C_{00}, \quad x, \xi \in \mathbb{R}^n.
\]
Now, suppose that Equation (3.3) is true for all C^∞ functions F on \mathbb{C}, $\sigma \in M^0_{\rho, \Lambda}$ and multi-indices γ with $|\gamma| \leq k$. Let γ be a multi-index with $|\gamma| = k + 1$. We suppose that $\partial_x^j = \partial_{\xi^j}$, for some $j = 1, 2, \ldots, n$ and multi-index γ_0 with $|\gamma_0| = k$. Then by chain rule,

$$\xi^\gamma \partial_\xi^\gamma (F \circ \sigma)(x, \xi) = \xi^\gamma \partial_\xi^\gamma \{(F_1 \circ \sigma) \partial_{\xi_j} \sigma + (F_2 \circ \sigma) \partial_{\xi_j} \sigma\}(x, \xi)$$

for all x and ξ in \mathbb{R}^n, where F_1 and F_2 are the partial derivatives of F with respect to the first and second variables respectively. Now, by Leibniz’s formula,

$$\partial_\xi^\gamma (F \circ \sigma)(x, \xi) = \partial_\xi^\gamma (F \circ \sigma)(x, \xi) \cdot \partial_{\xi_j} \sigma(x, \xi)$$

Thus by induction hypothesis and using the fact that $\sigma \in M^0_{\rho, \Lambda}$, we can find positive constants C_{δ_0} and C_{γ_0, δ_0} such that

$$|\xi^\gamma \partial_\xi^\gamma ((F_1 \circ \sigma)(x, \xi) \cdot \partial_{\xi_j} \sigma(x, \xi))|$$

$$\leq \sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) C_{\delta_0} \cdot C_{\gamma_0, \delta_0}.$$

So, we have

$$|\xi^\gamma \partial_\xi^\gamma ((F_1 \circ \sigma)(x, \xi) \cdot \partial_{\xi_j} \sigma(x, \xi))| \leq C_{00}^\prime, \quad x, \xi \in \mathbb{R}^n,$$

where

$$C_{00}^\prime = \sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) C_{\delta_0} \cdot C_{\gamma_0, \delta_0}.$$

Similarly, we can find a positive constant C_{00}'' such that

$$|\xi^\gamma \partial_\xi^\gamma ((F_2 \circ \sigma)(x, \xi) \cdot \partial_{\xi_j} \sigma(x, \xi))| \leq C_{00}''^\prime, \quad x, \xi \in \mathbb{R}^n.$$

Hence

$$|\xi^\gamma \partial_\xi^\gamma (F \circ \sigma)(x, \xi)| \leq (C_{00}^\prime + C_{00}''^\prime), \quad x, \xi \in \mathbb{R}^n.$$

Thus, by the principle of mathematical induction, Equation (3.3) follows.
Now, suppose that Equation (3.4) is true for all C^∞ functions F on \mathbb{C}, $\sigma \in M^0_{\rho,\Lambda}$ and multi-indices γ with $|\gamma| \leq k$. Let γ be a multi-index with $|\gamma| = k + 1$. We suppose that $\partial^\alpha_\xi = \partial^\alpha_\xi \partial_{\xi_i}$, for some $i = 1, 2, \ldots, n$ and multi-index γ_0 with $|\gamma_0| = k$. Then, by chain rule,

\[
\partial^\alpha_\xi \partial^\beta_\xi (\xi^\gamma \partial^\gamma_\xi (F \circ \sigma)(x, \xi)) = \partial^\alpha_\xi \partial^\beta_\xi (\xi^\gamma \partial^\gamma_\xi \partial_{\xi_i} (F \circ \sigma)(x, \xi)) = \partial^\alpha_\xi \partial^\beta_\xi (\xi^\gamma \partial^{\gamma_0}_{\xi_i} ((F_1 \circ \sigma) \partial_{\xi_i} \sigma + (F_2 \circ \sigma) \partial_{\xi_i} \sigma)(x, \xi)).
\]

Thus, by Leibniz's formula,

\[
\partial^\alpha_\xi \partial^\beta_\xi (\xi^\gamma \partial^{\gamma_0}_{\xi_i} ((F_1 \circ \sigma) \cdot \partial_{\xi_i} \sigma)(x, \xi))
\]

\[
= \partial^\alpha_\xi \partial^\beta_\xi \left(\xi^\gamma \left(\sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) \partial^0_\xi (F_1 \circ \sigma)(x, \xi) \cdot \partial^{\gamma_0-\delta_0}_{\xi_i} (\partial_{\xi_i} \sigma(x, \xi)) \right) \right)
\]

\[
= \partial^\alpha_\xi \partial^\beta_\xi \left(\sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) \partial^{\gamma_0}_{\xi_i} (F_1 \circ \sigma)(x, \xi) \cdot (\xi^{\gamma_0-\delta_0+1} \partial^{\gamma_0-\delta_0}_{\xi_i} (\partial^{\gamma_0-\delta_0+1}_{\xi_i} \sigma(x, \xi))) \right)
\]

\[
+ \partial^\alpha_\xi \partial^\beta_\xi \left(\sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) \partial^{\gamma_0}_{\xi_i} (F_1 \circ \sigma)(x, \xi) \cdot \partial_{\xi_i} \left((\xi^{\gamma_0-\delta_0+1} \partial^{\gamma_0-\delta_0+1}_{\xi_i} \sigma(x, \xi)) \right) \right).
\]

First, consider

\[
\partial^\alpha_\xi \partial^\beta_\xi \left(\sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) \partial^{\gamma_0}_{\xi_i} (F_1 \circ \sigma)(x, \xi) \cdot (\xi^{\gamma_0-\delta_0+1} \partial^{\gamma_0-\delta_0+1}_{\xi_i} \sigma(x, \xi)) \right)
\]

\[
= \sum_{\delta_0 \leq \gamma_0} \sum_{\rho_0 \leq \delta_0} \sum_{\beta_0 \leq \alpha} \left(\frac{\delta_0}{\gamma_0} \right) \left(\frac{\rho_0}{\beta_0} \right) \left(\frac{\beta_0}{\alpha} \right) \partial^\alpha_\xi \partial^{\rho_0+1}_{\xi_i} (\xi^{\delta_0} \partial^{\delta_0}_{\xi_i} (F_1 \circ \sigma)(x, \xi)) \cdot \partial^{\rho_0-\delta_0}_{\xi_i} \partial^{\rho_0-\delta_0}_{\xi_i} \partial^{\gamma_0-\delta_0+1}_{\xi_i} \sigma(x, \xi)) \right).
\]

Thus by induction hypothesis and using the fact that $\sigma \in M^0_{\rho,\Lambda}$, we can find positive constants C_{p,ρ_0} and $C_{p,\rho_0,\alpha,\beta_0}$ such that

\[
\left| \partial^\alpha_\xi \partial^\beta_\xi \left(\sum_{\delta_0 \leq \gamma_0} \left(\frac{\delta_0}{\gamma_0} \right) \partial^{\gamma_0}_{\xi_i} (F_1 \circ \sigma)(x, \xi) \cdot (\xi^{\gamma_0-\delta_0+1} \partial^{\gamma_0-\delta_0+1}_{\xi_i} \sigma(x, \xi)) \right) \right|
\]

\[
\leq \sum_{\delta_0 \leq \gamma_0} \sum_{\rho_0 \leq \delta_0} \sum_{\beta_0 \leq \alpha} \left(\frac{\delta_0}{\gamma_0} \right) \left(\frac{\rho_0}{\beta_0} \right) \left(\frac{\beta_0}{\alpha} \right) C_{p,\rho_0} (\Lambda(\xi))^{-\rho_0+1} \cdot C_{p,\rho_0,\alpha,\beta_0} (\Lambda(\xi))^{-\rho_0-\rho_0+1} \cdot C_{p,\rho_0,\alpha,\beta_0} \Lambda(\xi)^{-\rho_0-\rho_0+1} \cdot C_{p,\rho_0,\alpha,\beta_0} \Lambda(\xi)^{-\rho_0-\rho_0+1}.
\]

where

\[
C_{p,\alpha,\beta} = \sum_{\delta_0 \leq \gamma_0} \sum_{\rho_0 \leq \delta_0} \sum_{\beta_0 \leq \alpha} \left(\frac{\delta_0}{\gamma_0} \right) \left(\frac{\rho_0}{\beta_0} \right) \left(\frac{\beta_0}{\alpha} \right) C_{p,\rho_0} C_{p,\rho_0,\alpha,\beta_0}.
\]
Similarly, we can find a positive constant $C'_{\alpha,\beta}$ such that

$$\left| \partial_x^\alpha \partial_{\xi}^\beta \left(\sum_{\delta_0 \leq \gamma_0} \left(\xi^{\delta_0} \partial_{\xi}^{\delta_0} (F_1 \circ \sigma)(x, \xi) \right) \cdot \partial_{\xi}(\xi^{\gamma_0-\delta_0+1} \partial_{\xi}^{\gamma_0-\delta_0+1} \sigma(x, \xi)) \right) \right| \leq C'_{\alpha,\beta} (\Lambda(\xi))^{-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

Hence

$$|\partial_x^\alpha \partial_{\xi}^\beta \left((F_1 \circ \sigma)(x, \xi) \right)| \leq (C'_{\alpha,\beta} + C''_{\alpha,\beta}) (\Lambda(\xi))^{-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

Similarly, we can find a positive constant $C''_{\alpha,\beta}$ such that

$$|\partial_x^\alpha \partial_{\xi}^\beta \left((F_2 \circ \sigma)(x, \xi) \right)| \leq C''_{\alpha,\beta} (\Lambda(\xi))^{-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

Hence

$$|\partial_x^\alpha \partial_{\xi}^\beta \left((F \circ \sigma)(x, \xi) \right)| \leq (C'_{\alpha,\beta} + C''_{\alpha,\beta}) (\Lambda(\xi))^{-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

Now, we assume that

$$\partial_x^\alpha \partial_{\xi}^\beta = \partial_x^\gamma \partial_{\xi}^\gamma$$

for some multi-index γ with $|\gamma + \beta| = k$ and for some $j = 1, 2, ..., n$. Then, as before, we can find a positive constant $C'''_{\alpha,\beta}$ such that

$$|\partial_x^\alpha \partial_{\xi}^\beta (F \circ \sigma)(x, \xi)| \leq C'''_{\alpha,\beta} \Lambda(\xi)^{-\rho|\beta|}, \quad x, \xi \in \mathbb{R}^n.$$

So, by the principle of mathematical induction, Equation (3.4) follows.

This completes the proof of the Equation (3.2).

\[\square\]

Lemma 3.5. Let σ be a strongly M-elliptic symbol in $M^{2m}_{\rho, \Lambda}$, where $m \in \mathbb{R}$. Then we can find two positive constants η and κ such that

$$\text{Re}(\sigma(x, \xi)) \geq \eta (\Lambda(\xi))^{2m} - \kappa (\Lambda(\xi))^{2m-\rho}, \quad x, \xi \in \mathbb{R}^n.$$

Proof By strong ellipticity, there exist positive constants C and R such that

$$\text{Re}(\sigma(x, \xi)) \geq C (\Lambda(\xi))^{2m}, \quad |\xi| \geq R.$$

Since $\sigma \in M^{2m}_{\rho, \Lambda}$, we can find a positive constant K such that

$$|\sigma(x, \xi)| \leq K (\Lambda(\xi))^{2m}, \quad x, \xi \in \mathbb{R}^n.$$

Therefore, if $m \geq 0$, then

$$|\text{Re}(\sigma(x, \xi))| \leq K (\Lambda(\xi))^{2m} \leq K_{2m} (1 + |\xi|)^{2m} \leq K_{2m} (1 + R)^{2m}, \quad |\xi| \leq R,$$

where

$$K_{2m} = K \cdot C_1^{2m}.$$

And if $m < 0$, then

$$|\text{Re}(\sigma(x, \xi))| \leq K (\Lambda(\xi))^{2m} \leq K, \quad |\xi| \leq R.$$

By Equation (3.5) and Equation (3.6), for given $m \in \mathbb{R}$, we can find a positive constant M such that

$$\text{Re}(\sigma(x, \xi)) \geq -M, \quad |\xi| \leq R.$$

Since $\frac{\text{Re} \sigma}{(\Lambda(\xi))^{2m-\rho}}$ is continuous on the compact set $\{\xi \in \mathbb{R}^n : |\xi| \leq R\}$, so we can find a positive constant κ such that

$$\frac{\text{Re} \sigma}{(\Lambda(\xi))^{2m-\rho}} > -\kappa, \quad |\xi| \leq R.$$
Therefore
\[\text{Re}(\sigma(x, \xi)) + \kappa(\Lambda(\xi))^{2m-\rho} > 0, \quad |\xi| \leq R. \]

Since \(\frac{\text{Re}\sigma + \kappa(\Lambda(\xi))^{2m-\rho}}{(\Lambda(\xi))^{2m}} \) is a positive and continuous function on the compact set \(\{\xi \in \mathbb{R}^n : |\xi| \leq R\} \), so we can find another positive constant \(\delta \) such that
\[\frac{\text{Re}\sigma + \kappa(\Lambda(\xi))^{2m-\rho}}{(\Lambda(\xi))^{2m}} \geq \delta, \quad |\xi| \leq R. \]

So, the lemma is proved if we let \(\eta = \min(C, \delta) \). \(\Box \)

Proof of Theorem 3.2 Let \(T_\tau = J_m T_\tau J_m \), where \(J_m = T_{\sigma_m} \) and \(\sigma_m(\xi) = (\Lambda(\xi))^{-m} \). Then, using the asymptotic expansion for the product of two pseudo-differential operators in Theorem 1.2 in \([18]\),
\[T_\sigma J_m = T_{\tau_1}, \]
where
\[\tau_1 - (\Lambda(\cdot))^{-m}\sigma \in M_{p,\Lambda}^{m-\rho}. \quad (3.7) \]

Similarly,
\[T_\tau = J_m T_{\tau_1} \]
and
\[\tau - (\Lambda(\cdot))^{-m}\tau_1 \in M_{p,\Lambda}^{-\rho}. \quad (3.8) \]

Multiplying Equation (3.7) by \((\Lambda(\cdot))^{-m}\) and adding the result to Equation (3.8), we get
\[\tau - (\Lambda(\cdot))^{-2m}\sigma \in M_{p,\Lambda}^{-\rho}. \]

Therefore
\[\tau = (\Lambda(\cdot))^{-2m}\sigma + r, \]
where \(r \in M_{p,\Lambda}^{-\rho} \). So, by Lemma 3.5,
\[\text{Re}\tau = (\Lambda(\cdot))^{-2m}\text{Re}\sigma + \text{Re}r \geq \eta - \kappa(\Lambda(\cdot))^{-\rho} + \text{Re}r \geq \eta - \kappa'(\Lambda(\cdot))^{-\rho}, \]
where \(\kappa' \) is another positive constant. Therefore \(\tau \) satisfies the conclusion ofLemma 3.5 with \(m = 0 \). Let us suppose for a moment that Gårding's inequality is valid for \(m = 0 \). Then we can find a positive constant \(C' \) and a positive constant \(C_s \) for every real number \(s \geq \frac{n}{2} \) such that
\[\text{Re}(T_\sigma \varphi, \varphi) = \text{Re}(J_m T_\sigma J_m \varphi, \varphi) = \text{Re}(T_\tau J_m \varphi, J_m \varphi) \geq C' \|J_m \varphi\|^2_{\theta,2,\Lambda} - C_s \|J_m \varphi\|^2_{s,2,\Lambda} = C' \|\varphi\|^2_{m,2,\Lambda} - C_s \|\varphi\|^2_{m-s,2,\Lambda} \]
for all \(\varphi \) in \(\mathcal{S} \). Now we need only to prove Gårding’s inequality for \(m = 0 \). Let \(\sigma \in M_{p,\Lambda}^0 \). Then, by Lemma 3.5, we can find positive constants \(\eta \) and \(\kappa \) such that
\[\text{Re}\sigma + \kappa(\Lambda(\cdot))^{-\rho} \geq \eta. \]

Let \(F \) be a \(C^\infty \) function on \(\mathbb{C} \) such that
\[F(z) = \sqrt{\frac{\eta}{2} + z}, \quad z \in [0, \infty). \]

Let \(\tau \) be the function defined on \(\mathbb{R}^n \times \mathbb{R}^n \) by
\[\tau(x, \xi) = F\left(2 \left(\text{Re}(\sigma(x, \xi)) + \kappa(\Lambda(\xi))^{-\rho} - \eta\right)\right), \quad x, \xi \in \mathbb{R}^n. \]
Then, by Lemma 3.4, \(\tau \in M^0_{\rho, \Lambda} \), and for all \(x \) and \(\xi \) in \(\mathbb{R}^n \),

\[
\tau(x, \xi) = \sqrt{\frac{\eta}{2} + 2 \Re \sigma(x, \xi) + 2\kappa(\Lambda(\xi))^{-\rho} - 2\eta}
\]

Using the asymptotic expansion for the formal adjoint of a pseudo-differential operator in Theorem 1.3 in [18], we get

\[
T^*_\tau = T^*_\tau^*,
\]

where \(\tau^* \in M^0_{\rho, \Lambda} \) and \(\tau - \tau^* \in M^{-\rho}_{\rho, \Lambda} \). Again, by using Theorem 1.2 in [18], we have

\[
T^*\tau T = T_\lambda,
\]

where

\[
\lambda - \tau^* \tau \in M^{-\rho}_{\rho, \Lambda}.
\]

If we let \(r_1 \) and \(r'_1 \) in \(M^{-\rho}_{\rho, \Lambda} \) be such that

\[
\tau^* = \tau + r_1
\]

and

\[
\lambda = \tau^* \tau + r'_1.
\]

Then

\[
\lambda = (\tau + r_1) \tau + r'_1 = 2 \Re \sigma + 2\kappa(\Lambda(\xi))^{-\rho} - \frac{3}{2} \eta + r_2,
\]

where

\[
r_2 = r_1 \tau + r'_1 \in M^{-\rho}_{\rho, \Lambda}.
\]

So, if we let \(r_3 = 2\kappa(\Lambda(\xi))^{-\rho} + r_2 \in M^{-\rho}_{\rho, \Lambda} \), then we get

\[
\lambda = 2 \Re \sigma - \frac{3}{2} \eta + r_3.
\]

But

\[
2 \Re \sigma = \sigma + \bar{\sigma} = \sigma + \sigma^* + r_4
\]

for some \(r_4 \) in \(M^{-\rho}_{\rho, \Lambda} \). Therefore

\[
\lambda = \sigma + \sigma^* - \frac{3}{2} \eta + r_5
\]

for some \(r_5 \) in \(M^{-\rho}_{\rho, \Lambda} \). Thus,

\[
\sigma + \sigma^* = \lambda + \frac{3}{2} \eta - r_5.
\]

Since

\[
(T_\lambda \varphi, \varphi) = (T^*_\tau \varphi, T^*_\tau \varphi) \geq 0, \quad \varphi \in \mathcal{S},
\]

it follows that

\[
2 \Re (T_\sigma \varphi, \varphi) = (T_\sigma \varphi, \varphi) + (T^*_\sigma \varphi, \varphi) = (T_{\sigma + \sigma^*} \varphi, \varphi)
\]

\[
= (T_\lambda \varphi, \varphi) + \frac{3}{2} \eta \| \varphi \|_{0,2,\Lambda}^2 - (T_{r_5} \varphi, \varphi)
\]

\[
\geq \eta \| \varphi \|_{0,2,\Lambda}^2 + \left\{ \frac{\eta}{2} \| \varphi \|_{0,2,\Lambda}^2 - \| T_{r_5} \varphi \|_{\frac{2}{5},2,\Lambda} \| \varphi \|_{-\frac{2}{5},2,\Lambda} \right\}, \quad \varphi \in \mathcal{S}.
\]

Then, by Theorem 1.6 in [18] and using the fact that \(r_5 \in M^{-\rho}_{\rho, \Lambda} \), we can find a positive constant \(\nu \) such that

\[
2 \Re (T_\sigma \varphi, \varphi) \geq \eta \| \varphi \|_{0,2,\Lambda}^2 + \left\{ \frac{\eta}{2} \| \varphi \|_{0,2,\Lambda}^2 - \nu \| \varphi \|_{-\frac{2}{5},2,\Lambda}^2 \right\}, \quad \varphi \in \mathcal{S}.
\]
But
\[\nu \| \varphi \|^2_{-\frac{\rho}{2}, 2, \Lambda} = \int_{\mathbb{R}^n} \nu (\Lambda(\xi))^{-\rho} |\hat{\varphi}(\xi)|^2 d\xi = I + J, \]

where
\[I = \int_{\nu (\Lambda(\xi))^{-\rho} \leq \frac{\eta}{2}} \nu (\Lambda(\xi))^{-\rho} |\hat{\varphi}(\xi)|^2 d\xi \]

and
\[J = \int_{\nu (\Lambda(\xi))^{-\rho} \geq \frac{\eta}{2}} \nu (\Lambda(\xi))^{-\rho} |\hat{\varphi}(\xi)|^2 d\xi. \]

Obviously,
\[I \leq \frac{\eta}{2} \int_{\mathbb{R}^n} |\hat{\varphi}(\xi)|^2 d\xi = \frac{\eta}{2} \| \varphi \|^2_{0, 2, \Lambda}. \]

To estimate \(J \), we note that
\[\nu (\Lambda(\xi))^{-\rho} \geq \frac{\eta}{2} \Rightarrow \Lambda(\xi) \leq \left(\frac{2 \nu}{\eta} \right)^{\frac{1}{\rho}}. \]

So, for \(\nu (\Lambda(\xi))^{-\rho} \geq \frac{\eta}{2} \), we get, for every real number \(s \geq \frac{\rho}{2} \),
\[\nu (\Lambda(\xi))^{-\rho} = \nu (\Lambda(\xi))^{2s - \rho} (\Lambda(\xi))^{-2s} \leq \nu \left(\frac{2 \nu}{\eta} \right)^{\frac{2s - \rho}{\rho}} (\Lambda(\xi))^{-2s}. \]

Thus for every real number \(s \geq \frac{\rho}{2} \),
\[J \leq \nu \left(\frac{2 \nu}{\eta} \right)^{\frac{2s - \rho}{\rho}} \int_{\mathbb{R}^n} (\Lambda(\xi))^{-2s} |\hat{\varphi}(\xi)|^2 d\xi = C_s' \| \varphi \|^2_{-s, 2, \Lambda}. \]

where \(C_s' = \nu \left(\frac{2 \nu}{\eta} \right)^{\frac{2s - \rho}{\rho}} \). Therefore
\[2 \text{Re}(T_\sigma \varphi, \varphi) \geq \eta \| \varphi \|^2_{0, 2, \Lambda} - C_s' \| \varphi \|^2_{-s, 2, \Lambda}, \quad \varphi \in \mathcal{S}, \]

and this completes the proof of the theorem.

Definition 3.6. Let \(\sigma \in M^{m_1, m_2}_{\rho, \Lambda} \), where \(m_1, m_2 \in \mathbb{R} \). Then \(\sigma \) is said to be strongly \(\nu \)-elliptic if there exist positive constants \(C \) and \(R \) such that
\[\text{Re}(\sigma(x, \xi)) \geq C \Lambda(x)^{m_2} \Lambda(\xi)^{m_1}, \quad |x|^2 + |\xi|^2 \geq R^2. \]

Theorem 3.7. (Gårding’s Inequality For SG M-elliptic Operators)
Let \(\sigma \in M^{2m_1, 2m_2}_{\rho, \Lambda} \), where \(m_1, m_2 \in \mathbb{R} \), be strongly \(\nu \)-elliptic symbol. Then we can find positive constants \(C' \) and \(C_{s_1, s_2} \) for every real number \(s_1 \leq \frac{\rho}{2}, s_2 \geq \frac{\rho}{2} \) such that
\[\text{Re}(T_\sigma \varphi, \varphi) \geq C' \| \varphi \|^2_{m_1, m_2, \Lambda} - C_{s_1, s_2} \| \varphi \|^2_{m_1 - s_1, m_2 - s_2, \Lambda}, \quad \varphi \in \mathcal{S}. \]

To prove this theorem, we need the following two lemmas.

Lemma 3.8. Let \(\sigma \in M^{0, 0}_{\rho, \Lambda} \) and \(F \) be a \(C^\infty \)- function on the complex plane \(\mathbb{C} \). Then \(F \circ \sigma \in M^{0, 0}_{\rho, \Lambda} \).

Proof of the above lemma follows from the similar techniques as in Lemma 3.3 and Lemma 3.4.

Lemma 3.9. Let \(\sigma \in M^{2m_1, 2m_2}_{\rho, \Lambda} \), where \(m_1, m_2 \in \mathbb{R} \), be strongly \(\nu \)-elliptic symbol. Then we can find two positive constants \(\eta \) and \(\kappa \) such that
\[\text{Re}(\sigma(x, \xi)) \geq \eta (\Lambda(x))^{2m_2} (\Lambda(\xi))^{2m_1} - \kappa (\Lambda(x))^{2m_2 - \rho} (\Lambda(\xi))^{2m_1 - \rho}, \quad x, \xi \in \mathbb{R}^n. \]
Proof of the above lemma follows from the similar techniques as in Lemma 3.5.

Proof of Theorem 3.7 Let $T_\tau = J_{m_1,m_2} T_\sigma J_{m_1,m_2}$, where $J_{m_1,m_2} = T_{\sigma_{m_1,m_2}}$ and $\sigma_{m_1,m_2}(x,\xi) = (\Lambda(x))^{-m_2} (\Lambda(\xi))^{-m_1}$. Then, by Theorem 1.1, we have

$$T_\sigma J_{m_1,m_2} = T_{\tau_1},$$

where

$$\tau_1 - \sigma_{m_1,m_2}\sigma \in M_{\rho,\Lambda}^{m_1,-\rho,m_2,-\rho}. \quad \text{(3.9)}$$

Similarly,

$$T_\tau = J_{m_1,m_2} T_{\tau_1}$$

and

$$\tau - \sigma_{m_1,m_2}\tau_1 \in M_{\rho,\Lambda}^{-\rho,-\rho}. \quad \text{(3.10)}$$

Multiplying Equation (3.9) by σ_{m_1,m_2} and adding the result to Equation (3.10), we get

$$\tau - \sigma_{m_1,m_2}^2 \sigma \in M_{\rho,\Lambda}^{-\rho,-\rho}.$$

Therefore

$$\tau = \sigma_{m_1,m_2}^2 \sigma + r,$$

where $r \in M_{\rho,\Lambda}^{-\rho,-\rho}$. So, by Lemma 3.9,

$$\text{Re} \tau = \sigma_{m_1,m_2}^2 \text{Re} \sigma + \text{Re} r \geq \eta - \kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} + \text{Re} r \geq \eta - \kappa' (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho},$$

where κ' is another positive constant. Therefore τ satisfies the conclusion of Lemma 3.9 with $m_1 = 0$ and $m_2 = 0$. Let us suppose for a moment that Gårding’s inequality is valid for $m_1 = 0$ and $m_2 = 0$. Then we can find a positive constant C' and a positive constant C_{s_1,s_2} for every real number $s_1 \leq \frac{3}{2}$, $s_2 \geq \frac{\eta}{2}$ such that

$$\text{Re} (T_\sigma \varphi, \varphi) = \text{Re} (J_{-m_1,-m_2} T_\tau J_{-m_1,-m_2} \varphi, \varphi) = \text{Re} (T_\sigma J_{-m_1,-m_2} \varphi, J_{-m_1,-m_2} \varphi) \geq C' \|J_{-m_1,-m_2} \varphi\|_{L^2(\Sigma_0,2,\Lambda)}^2 - C_{s_1,s_2} \|J_{-m_1,-m_2} \varphi\|_{L^{s_1,-s_2,2,\Lambda}}^2 = C' \|\varphi\|_{L^{m_1,m_2,2,\Lambda}}^2 - C' \|\varphi\|_{L^{m_1,m_2,-s_2,2,\Lambda}}^2$$

for all $\varphi \in \mathcal{S}$. Now we need only to prove Gårding’s inequality for $m_1 = 0$ and $m_2 = 0$. Let $\sigma \in M_{\rho,\Lambda}^{0,0}$. Then, by Lemma 3.9, we can find positive constants η and κ such that

$$\text{Re} \sigma + \kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} \geq \eta.$$

Let F be a C^∞ function on \mathcal{C} such that

$$F(z) = \sqrt{\frac{\eta}{2} + z}, \quad z \in [0, \infty).$$

Let τ be the function defined on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$\tau(x,\xi) = F \left(2 \left(\text{Re} \sigma(x,\xi) + \kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} - \eta \right) \right), \quad x,\xi \in \mathbb{R}^n.$$

Then, by Lemma 3.8, $\tau \in M_{\rho,\Lambda}^{0,0}$, and for all x and ξ in \mathbb{R}^n,

$$\tau(x,\xi) = \sqrt{\frac{\eta}{2} + 2 \text{Re} \sigma(x,\xi) + 2\kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} - 2\eta}$$

$$= \sqrt{2 \text{Re} \sigma(x,\xi) + 2\kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} - \frac{3}{2} \eta}.$$
Hence, by Theorem 1.2, we get

\[T_\tau^* = T_{\tau^*}, \]

where \(\tau^* \in \mathcal{M}_{\rho}^{0,0} \) and \(\tau - \tau^* \in \mathcal{M}_{\rho}^{\rho,\rho} \). Again, by using Theorem 1.1, we have

\[T_\tau^* T_\tau = T_\lambda, \]

where

\[\lambda - \tau^* \tau \in \mathcal{M}_{\rho}^{-\rho,-\rho}. \]

If we let \(r_1 \) and \(r'_1 \) in \(\mathcal{M}_{\rho}^{-\rho,-\rho} \) be such that

\[\tau^* = \tau + r_1 \]

and

\[\lambda = \tau^* \tau + r'_1. \]

Then

\[\lambda = (\tau + r_1) \tau + r'_1 = 2 \Re \sigma + 2 \kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} - \frac{3}{2} \eta + r_2, \]

where

\[r_2 = r_1 \tau + r'_1 \in \mathcal{M}_{\rho}^{-\rho,-\rho}. \]

So, if we let \(r_3 = 2 \kappa (\Lambda(x))^{-\rho} (\Lambda(\xi))^{-\rho} + r_2 \in \mathcal{M}_{\rho}^{-\rho,-\rho} \), then we get

\[\lambda = 2 \Re \sigma - \frac{3}{2} \eta + r_3. \]

But

\[2 \Re \sigma = \sigma + \sigma^* = \sigma + \sigma^* + r_4 \]

for some \(r_4 \) in \(\mathcal{M}_{\rho}^{-\rho,-\rho}. \) Therefore

\[\lambda = \sigma + \sigma^* - \frac{3}{2} \eta + r_5 \]

for some \(r_5 \) in \(\mathcal{M}_{\rho}^{-\rho,-\rho}. \) Thus,

\[\sigma + \sigma^* = \lambda + \frac{3}{2} \eta - r_5. \]

Since

\[(T_\lambda \varphi, \varphi) = (T_\tau \varphi, T_\tau \varphi) \geq 0, \quad \varphi \in \mathcal{S}, \]

it follows that

\[2 \Re (T_\sigma \varphi, \varphi) = (T_\sigma \varphi, \varphi) + (T_\sigma^* \varphi, \varphi) = (T_{\sigma + \sigma^*} \varphi, \varphi) \]

\[= (T_\lambda \varphi, \varphi) + \frac{3}{2} \eta \| \varphi \|^2_{0,0,2,\Lambda} - (T_\tau \varphi, \varphi) \]

\[\geq \eta \| \varphi \|^2_{0,0,2,\Lambda} + \left\{ \eta \frac{1}{2} \| \varphi \|^2_{0,0,2,\Lambda} - \| T_{\tau^*} \varphi \|^2_{-\frac{\rho}{2},-\frac{\rho}{2},2,\Lambda} \right\}, \quad \varphi \in \mathcal{S}. \]

Then, by Theorem ?? and using the fact that \(r_5 \in \mathcal{M}_{\rho}^{-\rho,-\rho}, \) we can find a positive constant \(\nu \) such that

\[2 \Re (T_\sigma \varphi, \varphi) \geq \eta \| \varphi \|^2_{0,0,2,\Lambda} + \left\{ \eta \frac{1}{2} \| \varphi \|^2_{0,0,2,\Lambda} - \nu \| \varphi \|^2_{-\frac{\rho}{2},-\frac{\rho}{2},2,\Lambda} \right\}, \quad \varphi \in \mathcal{S}. \]

Since \(\frac{\eta}{2} > 0, \) so by Theorem ??, there exists a positive constant \(C_0 \) such that

\[\| \varphi \|^2_{-\frac{\rho}{2},-\frac{\rho}{2},2,\Lambda} \leq C_0 \| \varphi \|^2_{0,0,2,\Lambda}, \quad \varphi \in \mathcal{S}. \]

Now

\[\nu \| \varphi \|^2_{-\frac{\rho}{2},-\frac{\rho}{2},2,\Lambda} = \int_{\mathbb{R}^n} \nu (\Lambda(x))^{-\rho} |(T_{\frac{\tau}{2}} \varphi)(x)|^2 dx = I + J, \]
Since ρ, thus for every real number s where C_1, we get:

$$I = \int_{\nu(\Lambda(x))^{-\rho} \leq \frac{\eta}{2C_0}} \nu(\Lambda(x))^{-\rho} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx$$

and

$$J = \int_{\nu(\Lambda(x))^{-\rho} \geq \frac{\eta}{2C_0}} \nu(\Lambda(x))^{-\rho} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx.$$

Obviously,

$$I \leq \frac{\eta}{2C_0} \int_{\mathbb{R}^n} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx = \frac{\eta}{2C_0} \nu(\Lambda(x))^{-\rho} \leq \frac{\eta}{2} \nu(\Lambda(x))^{-\rho} \nu(\Lambda(x))^{-2s_2}.$$

To estimate J, we note that

$$\nu(\Lambda(x))^{-\rho} \geq \frac{\eta}{2C_0} \Rightarrow \Lambda(x) \leq \left(\frac{2C_0}{\eta}\right)^{\frac{1}{\rho}}.$$

So, for $\nu(\Lambda(x))^{-\rho} \geq \frac{\eta}{2C_0}$, we get, for every real number $s_2 \geq \frac{\rho}{2}$,

$$\nu(\Lambda(x))^{-\rho} \nu(\Lambda(x))^{2s_2-\rho} (\Lambda(x))^{-2s_2} \leq \nu(\frac{2C_0}{\eta})^{\frac{2s_2-\rho}{\rho}} (\Lambda(x))^{-2s_2}.$$

Thus for every real number $s_2 \geq \frac{\rho}{2}$,

$$J \leq \nu \left(\frac{2C_0}{\eta}\right)^{\frac{2s_2-\rho}{\rho}} \int_{\mathbb{R}^n} (\Lambda(x))^{-2s_2} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx = C'_{s_2} \nu(\Lambda(x))^{-2s_2}.$$

where $C'_{s_2} = \nu \left(\frac{2C_0}{\eta}\right)^{\frac{2s_2-\rho}{\rho}}$. Therefore

$$2 \Re(T_{\sigma_2^{\frac{1}{2}}} \varphi, \varphi) \geq \eta \nu(\Lambda(x))^{-2s_2} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx = C_{s_2} \nu(\Lambda(x))^{-2s_2}.$$

Since $\frac{\rho}{2} \geq s_1$, so by Theorem 2, there exists a positive constant C'_{s_1} such that

$$|\varphi|^2 \nu(\Lambda(x))^{-2s_2} \leq C'_{s_1} \nu(\Lambda(x))^{-2s_2} \nu(\Lambda(x))^{-2s_2} \varphi \in \mathcal{S}.$$

Thus for every real number $s_1 \leq \frac{\rho}{2}$ and $s_2 \geq \frac{\rho}{2}$, we have

$$2 \Re(T_{\sigma_2^{\frac{1}{2}}} \varphi, \varphi) \geq \eta \nu(\Lambda(x))^{-2s_2} |(T_{\sigma_2^{\frac{1}{2}}} \varphi)(x)|^2 \, dx = C_{s_1, s_2} \nu(\Lambda(x))^{-2s_2} \varphi \in \mathcal{S},$$

where $C_{s_1, s_2} = C'_{s_1} C'_{s_2}$ and this completes the proof of the theorem.

References

[1] M. Alimohammady and M. K. Kalleji. Spectral theory of a hybrid class of pseudo-differential operators, Complex Variables and Elliptic Equations, Volume 59, 12 2014.

[2] M. Alimohammady and M. K. Kalleji. Fredholmness property of M-elliptic pseudo-differential operator under change variable in its symbol. J. Pseudo-Differ. Oper. Appl., 4(3):371–392, 2013.

[3] P. Boggiatto, E. Buzano and L. Rodino, Global Hypoellipticity and Spectral Theory, Akademie-Verlag, 1996.

[4] M. Cappiello and L. Rodino. SG-pseudodifferential operators and Gelfand-Shilov spaces. Rocky Mountain J. Math., 36(4):1117–1148, 2006.
M-ELLPTICITY OF FREDHOLM PSEUDO-DIFFERENTIAL OPERATORS ON $L^p(\mathbb{R}^n)$ AND GÅRDING’S INEQUALITY

[5] A. Dasgupta. Ellipticity of Fredholm pseudo-differential operators on $L^p(\mathbb{R}^n)$. In New developments in pseudo-differential operators, volume 189 of Oper. Theory Adv. Appl., pages 107–116. Birkhäuser, Basel, 2009.

[6] A. Dasgupta and M. W. Wong. Spectral theory of SG pseudo-differential operators on $L^p(\mathbb{R}^n)$. Studia Math., 187(2):185–197, 2008.

[7] Yu. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Applications, Birkhäuser, 1997.

[8] G. Garello and A. Morando. A class of L^p bounded pseudodifferential operators. In Progress in analysis, Vol. I, II (Berlin, 2001), pages 689–696. World Sci. Publ., River Edge, NJ, 2003.

[9] G. Garello and A. Morando, Lp-bounded pseudo-differential opearors and regularity for multi-quasi elliptic equations, Integr. Equ. Oper. Theory 51, 501-517 (2005).

[10] G. Garello and A. Morando. M-microlocal elliptic pseudodifferential operators acting on $L^p_{loc}(\Omega)$. Math. Nachr., 289(14-15):1820–1837, 2016.

[11] V. V. Grušin. Pseudodifferential operators in \mathbb{R}^n with bounded symbols. Funkcional. Anal. i Priložen, 4(3):37–50, 1970.

[12] Hörmander, L., The analysis of linear partial differential operators, Vol. III. Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1985. Pseudo-differential operators.

[13] F. Nicola, K-theory of SG-pseudo-differential algebras, Proc. Amer. Math. Soc. 131 (2003), 2841–2848.

[14] F. Nicola and L. Rodino, SG pseudo-differential operators and weak hyperbolicity, Pliska Stud. Math. Bulg. 15 (2003), 5–20.

[15] M. E. Taylor, Pseudo-differential operators, Princeton university press, Princon (1981).

[16] M. W. Wong, Fredholm pseudodifferential operators on weighted Sobolev spaces. Ark. Mat., 21(2):271–282, 1983.

[17] M. W. Wong. Spectral theory of pseudo-differential operators. Adv. in Appl. Math., 15(4):437–451, 1994.

[18] M. W. Wong. M-elliptic pseudo-differential operators on $L^p(\mathbb{R}^n)$. Math. Nachr., 279(3):319–326, 2006.

[19] M. W. Wong. An introduction to pseudo-differential operators, volume 6 of Series on Analysis, Applications and Computation. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, third edition, 2014.

APARAJITA DASGUPTA:
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI, HAUZ KHAS
NEW DELHI-110016
INDIA
E-mail address adasgupta@maths.iitd.ac.in

LALIT MOHAN:
DEPARTMENT OF MATHEMATICS
INDIAN INSTITUTE OF TECHNOLOGY, DELHI
INDIA
E-mail address mohanlalit871@gmail.com