UNIQUENESS OF GABOR SERIES

YURI BELOV

Abstract. We prove that any complete and minimal Gabor system of Gaussians is a Markushevich basis in $L^2(\mathbb{R})$.

1. Introduction

Let $\Lambda \subset \mathbb{R}^2$ be a sequence of distinct points. With each such sequence we associate Gabor system

$$G_\Lambda := \{e^{2\pi i y t} e^{-\pi (t-x)^2}\}_{(x,y) \in \Lambda}.$$

Function $e^{2\pi i y t} e^{-\pi (t-x)^2}$ can be viewed as the time–frequency shift of the Gaussian $e^{-\pi t^2}$ in the phase space. It is well known that system G_Λ cannot be a Riesz basis in $L^2(\mathbb{R})$ (see e.g [9]). On the other hand, there exist a lot of complete and minimal systems G_Λ. A canonical example is the lattice without one point, $\Lambda := \mathbb{Z} \times \mathbb{Z} \setminus \{(0,0)\}$. However, the generating sets Λ can be very far from any lattice. For example, in [1] it was shown that there exists $\Lambda \subset \mathbb{R} \times \{0\} \cup \{0\} \times \mathbb{R}$ such that G_Λ is complete and minimal in $L^2(\mathbb{R})$.

If G_Λ is complete and minimal, then there exists the unique biorthogonal system $\{g_{(x,y)}\}_{(x,y) \in \Lambda}$. So, for any $f \in L^2(\mathbb{R})$ we may write the formal Fourier series with respect to the system G_Λ

$$f \sim \sum_{(x,y) \in \Lambda} (f, g_{(x,y)})_{L^2(\mathbb{R})} e^{2\pi i y t} e^{-\pi (t-x)^2}.$$

If $\Lambda = \mathbb{Z} \times \mathbb{Z} \setminus \{(0,0)\}$, then it is known that there exists a linear summation method for the series [1,2] (e.g. one can use methods from [8]). In [8] this was proved for certain sequences similar to lattices. The main point of the present note is to show that any series [1,2] defines an element f uniquely.

Theorem 1.1. Let G_Λ be a complete and minimal system in $L^2(\mathbb{R})$. Then the biorthogonal system $\{g_{(x,y)}\}_{(x,y) \in \Lambda}$ is complete. So, any function $f \in L^2(\mathbb{R})$ is uniquely determined by the coefficients $(f, g_{(x,y)})$.

Author was supported by RNF grant 14-21-00035.
This property is by no means automatic for an arbitrary system of vectors. Indeed, if \(\{ e_n \}_{n=1}^\infty \) is an orthonormal basis in a separable Hilbert space, then \(\{ e_1 + e_n \}_{n=2}^\infty \) is a complete and minimal system but its biorthogonal \(\{ e_n \}_{n=2}^\infty \) is not complete. A complete and minimal system in a Hilbert space with complete biorthogonal system is called Markushevich basis.

Theorem 1.1 is analogous to Young’s theorem [11] for systems of complex exponentials \(\{ e^{i\lambda_n t} \} \) in \(L^2 \) of an interval. However, the structure of complete and minimal systems for Gabor systems is more puzzling than for the systems of exponentials on an interval. For example, if \(\Lambda \) generates a complete and minimal system of exponentials in \(L^2(\mathbb{R}, \mathbb{R}) \), then the upper density of \(\Lambda (= \lim_{r \to \infty} \#(\Lambda \cap \{ |\lambda| < r \})(2r)^{-1}) \) is equal to 1; see Theorem 1 in Lecture 17 of [7]. On the other hand, if \(G_\Lambda \) is a complete and minimal Gabor system, then the upper density of \(\Lambda (= \lim_{r \to \infty} \#(\Lambda \cap \{ x^2 + y^2 \leq r^2 \})(\pi r^2)^{-1}) \) can vary from \(2/\pi \) to 1; see Theorem 1 in [1]. If, in addition, \(\Lambda \) is a regular distributed set, then the upper density have to be from \(2/\pi \) to 1; see Theorem 2 in [1].

Note that for some systems of special functions (associated to some canonical system of differential equations) in \(L^2 \) of an interval completeness of biorthogonal system may fail (even with infinite defect); see [2, Proposition 3.4].

In the next section we transfer our problem to Fock space of entire functions. The last section is devoted to the proof of our result.

Notations. Throughout this paper the notation \(U(x) \lesssim V(x) \) means that there is a constant \(C \) such that \(U(x) \leq CV(x) \) holds for all \(x \) in the set in question, \(U, V \geq 0 \). We write \(U(x) \asymp V(x) \) if both \(U(x) \lesssim V(x) \) and \(V(x) \lesssim U(x) \).

2. **Reduction to a Fock space problem**

Let
\[
\mathcal{F} := \{ F \text{ is entire and } \int_C |F(z)|^2 e^{-\pi |z|^2} dm(z) < \infty \};
\]
here \(dm \) denotes the planar Lebesgue measure. It is well known that the following Bargmann transform
\[
\mathcal{B}f(z) := 2^{1/4} e^{-i\pi z y} e^{\frac{\pi}{2} |z|^2} \int \mathbb{R} f(t) e^{2\pi i yt} e^{-\pi (t-x)^2} dt
\]
\[
= 2^{1/4} \int \mathbb{R} f(t) e^{-\pi t^2} e^{2\pi tz} e^{-\frac{\pi}{2} z^2} dt, \quad z = x + iy,
\]
is a unitary map between \(L^2(\mathbb{R}) \) and the Fock space \(\mathcal{F} \); see [5, 6] for the details.
Moreover, the time–frequency shift of the Gaussian is mapped to the normalized reproducing kernel of \(F \)
\[
2^{1/4} B(e^{2\pi i u t} e^{-\pi (t-v)^2})(z) = e^{-\pi |w|^2/2} e^{\pi w z} = \frac{k_w(z)}{\|k_w\|_F}, \quad w = u - iv, \quad k_w(z) := e^{\pi \bar{w} z}.
\]
The existence of such transformation allows us to apply methods from the theory of entire functions. For that reason the results about time–frequency shifts of the Gaussians are stronger than for the time–frequency shifts of other elements of \(L^2(\mathbb{R}) \).

Lemma 2.1. The system \(G_\Lambda \) is complete and minimal in \(L^2(\mathbb{R}) \) if and only if the system of reproducing kernels \(\{\frac{k_\lambda(z)}{\|k_\lambda\|} \}_{\lambda \in \Lambda} \) is complete and minimal in \(F \).

Proof. The system \(G_\Lambda \) is complete and minimal if and only if the system \(G_\Lambda \) is complete and minimal. Now Lemma 2.1 immediately follows from the unitarity of Bargmann transform.

In many spaces of entire functions the system biorthogonal to the system of reproducing kernels can be described via the generating function; see e.g. Theorem 4 in Lecture 18 of [7] (this idea goes back to Paley and Wiener).

Lemma 2.2. The system \(\{k_\lambda\}_{\lambda \in \Lambda} \) is complete and minimal in \(F \) if and only if there exists an entire function \(F \) such that \(F \) has simple zeros exactly at \(\Lambda \), \(\frac{F(z)}{z-\lambda} \) belongs to \(F \) for some (any) \(\lambda \in \Lambda \) and there is no non-trivial entire function \(T \) such that \(F T \in F \).

Proof. Necessity. The system \(\{k_\lambda\}_{\lambda \in \Lambda} \) has a biorthogonal system which we will call \(\{F_\lambda\}_{\lambda \in \Lambda} \). We know that \(F_{\lambda_1}(z)\frac{z-\lambda_1}{z-\lambda_2} \in F \) for any \(\lambda_1, \lambda_2 \in \Lambda \). This function vanishes at the points \(\lambda \in \Lambda \setminus \{\lambda_2\} \) and so it equals \(F_{\lambda_1} \) up to a multiplicative constant. Hence, the function \(c_\lambda F_\lambda(z)(z-\lambda) \) does not depend on \(\lambda \) for suitable coefficients \(c_\lambda \). Denote it by \(F \). It is easy to see that \(F \) satisfies the required properties.

Sufficiency. Assume that such \(F \) exists. From the inclusion \(\frac{F(z)}{z-\lambda_0} \in F \) we conclude that the system \(\{k_\lambda\}_{\lambda \in \Lambda \setminus \{\lambda_0\}} \) is not complete. On the other hand, if the whole system \(\{k_\lambda\}_{\lambda \in \Lambda} \) is not complete, then there exists \(T \) such that \(FT \notin F \).

The function \(F \) from Lemma 2.2 is called a generating function of \(\Lambda \). So, the following theorem is the reformulation of Theorem 1.1 in terms of the Fock space.

Theorem 2.3. If \(\{k_\lambda\} \) is a complete and minimal system of reproducing kernels in \(F \) and \(F \) is the generating function of this system, then the system \(\{\frac{F(z)}{z-\lambda}\}_{\lambda \in \Lambda} \) is also complete.

In the last section we will prove this theorem.
3. Completeness of biorthogonal system

3.1. Preliminary steps. Let σ be the Weierstrass σ-function associated to the lattice $\mathcal{Z} = \{z : z = m + in, m, n \in \mathbb{Z}\}$,

$$
\sigma(z) = z \prod_{\lambda \in \mathcal{Z}\setminus\{0\}} \left(1 - \frac{z}{\lambda}\right) e^{\frac{z}{\lambda} + \frac{\pi i z^2}{\lambda}}.
$$

It is well known that $|\sigma(z)| \lesssim \text{dist}(z, \mathcal{Z})e^{\pi|z|^2/2}$; see e.g. [10], p. 108. From this estimate it is easy to see that system $\{\|k_w\|\}_{w \in \mathcal{Z}\setminus\{0\}}$ is a complete and minimal system and $\sigma_0(z) := \frac{\sigma(z)}{z}$ is its generating function. The system $\{\|k_w\|\frac{\sigma_0(z)}{z-w}\}$ is the biorthogonal system. With any function $S \in \mathcal{F}$ we can associate its formal Fourier series with respect to the system $\{\|k_w\|\}_{w \in \mathcal{Z}\setminus\{0\}}$

$$
S \sim \sum_{w \in \mathcal{Z}\setminus\{0\}} b_w \frac{k_w}{\|k_w\|}, \quad b_w := \left(\frac{S(z)}{\sigma_0'(w)} \frac{\sigma_0(z)}{z-w}\right)_\mathcal{F}.
$$

This series is more regular than an arbitrary Fourier series (1.2). For example this series admits a linear summation method. In particular, we know that the sequence $\{b_w\}$ is non-trivial. We need the following straightforward estimate of coefficients

$$
|b_w|^2 \lesssim \|S\|^2 \cdot \left\|\frac{\|k_w\|}{\sigma_0'(w)} \cdot \frac{\sigma_0(z)}{z-w}\right\|^2 \lesssim \|S\|^2 \cdot \left\|\frac{w\sigma_0(z)}{z-w}\right\|^2
$$

(3.1) $\lesssim \|S\|^2 \cdot \left[\int_{|z|<2|w|} |\sigma_0'(z)|e^{-\pi|z|^2}dm(z) + 1\right] \lesssim \|S\|^2 \cdot \log(1 + |w|)$.

Lemma 3.1. If F is the generating function of a complete system of reproducing kernels $\{k_\lambda\}_{\lambda \in \Lambda}$ in \mathcal{F} and $\Lambda \cap \mathcal{Z} = \emptyset$, then for any triple $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$ we have

$$
\left(\frac{F(z)}{(z-\lambda_1)(z-\lambda_2)(z-\lambda_3)}, S\right)_\mathcal{F} = \sum_{w \in \mathcal{Z}\setminus\{0\}} \frac{F(w)b_w}{(w-\lambda_1)(w-\lambda_2)(w-\lambda_3)\|k_w\|}
$$

(3.2) for any $S \in \mathcal{F}$.

Proof. It is well known that for any function $H \in \mathcal{F}$ we have $\sum_{w \in \mathcal{Z}\setminus\{0\}} \frac{|H(w)|^2}{\|k_w\|^2} < \infty$ (see e.g. [4]). So, $\left\{\frac{F(w)}{(w-\lambda_1)\|k_w\|}\right\} \in \ell^2$. From (3.1) we conclude that $\left\{\frac{b_w}{(w-\lambda_2)(w-\lambda_3)}\right\} \in \ell^2$. Hence, the series on the right hand side of (3.2) converges and defines a bounded linear functional on \mathcal{F}. On the other hand, the left hand side and the right hand side of (3.2) coincides if S is a finite linear combination of $\{k_w\}_{w \in \mathcal{Z}\setminus\{0\}}$. \qed
3.2. **Proof of Theorem 1.1.** Assume the contrary. Then there exists a function $S \in F$ such that $S \perp F(z)$ for any $\lambda \in \Lambda$. Without loss of generality we can assume that $\Lambda \cap \mathbb{Z} = \emptyset$. From the identity

$$\frac{1}{(z - \lambda_1)(z - \lambda_2)(z - \lambda_3)} = \sum_{k=1}^{3} \frac{c_k}{z - \lambda_k}$$

we get that for any triple $\lambda_1, \lambda_2, \lambda_3 \in \Lambda$

$$\left(\frac{F(z)}{(z - \lambda_1)(z - \lambda_2)(z - \lambda_3)}, S \right) = 0.$$

Fix two arbitrary points $\lambda_1, \lambda_2 \in \Lambda$. Put

$$L(z) = \sum_{w \in \mathbb{Z} \setminus \{0\}} \frac{F(w)b_w}{(z - w)(w - \lambda_1)(w - \lambda_2)} \|k_w\|.$$

Using Lemma 3.1 we get that meromorphic function L vanishes at $\Lambda \setminus \{\lambda_1, \lambda_2\}$. Hence, (3.3)

$$\sum_{w \in \mathbb{Z} \setminus \{0\}} \frac{F(w)b_w}{(z - w)(w - \lambda_1)(w - \lambda_2)} \|k_w\| = \frac{F(z)T(z)}{(z - \lambda_1)(z - \lambda_2)\sigma_0(z)},$$

where T is some non-zero entire function. Comparing the residues of both sides of (3.3) we get $T(w) = \frac{b_w \sigma_0'(w)}{\|k_w\|}$, $w \in \mathbb{Z} \setminus \{0\}$. Assume that T has at least two zeros t_1, t_2, then

(3.4)

$$F(z) = \sum_{w \in \mathbb{Z} \setminus \{0\}} \frac{|w|^{1/2}\sigma_0(z)}{z - w} \cdot \frac{F(w)b_w}{(w - t_1)(w - t_2)|w|^{1/2}\|k_w\|}.$$

From the inclusion $\{F(w)/(w - \lambda_1)\|k_w\|\} \in \ell^2$ and estimates $|b_w|^2 \lesssim \log(1 + |w|)$, $\left| w^{1/2}\sigma_0(z)/(z - w) \right| \lesssim 1$ we get that the right hand side of (3.4) belongs to F. This contradicts the completeness of sequence $\{k_\lambda\}_{\lambda \in \Lambda}$.

Hence T has at most one zero. So, $T(z) = e^{P(z)}(a_1 z - a_0)$, where P is a polynomial of degree at most 2. This contradicts the estimate $|T(w)| = \left| b_w \sigma_0'(w)/(k_w) \right| \lesssim \frac{\log^{1/2}(1 + |w|)}{|w|}$, $w \in \mathbb{Z} \setminus \{0\}$.

□

3.3. **Concluding remarks.** 1. The author wonders if the following statement (stronger than Theorem 1.1) is true:

Question 1. Any complete and minimal Gabor system is a strong Markushevich basis. Which means that any vector $f \in L^2(\mathbb{R})$ belongs to the closed linear span of members of its Fourier series (1.2) (see [3] and references therein).
For systems of complex exponentials \(\{e^{i\lambda n t}\} \) in \(L^2 \) of an interval this is not true; see [3, Theorem 2].

2. Using our methods one can prove the completeness of the system \(\{\frac{F(z)}{z-\lambda}\}_{\lambda \in \Lambda} \) under weaker assumptions that in Theorem 2.3 (e.g. if \(F \in \mathcal{F} \) and \(z^n F \notin \mathcal{F}, n \in \mathbb{N} \)). Nevertheless we prefer to formulate the result as it is to avoid inessential technicalities.

Acknowledgements. A part of the present work was done when author was visiting Norwegian University of Science and Technology, whose hospitality is greatly appreciated.

References

[1] G. Ascenzi, Yu. Lyubarskii, K. Seip, Phase space distribution of Gabor expansions, Appl. Comput. Harmon. Anal. 26, 2009, 277–282.
[2] A. Baranov, Yu. Belov, Systems of reproducing kernels and their biorthogonal: completeness or incompleteness?, Int. Math. Res. Notices (2011), 22, 5076–5108.
[3] A. Baranov, Y. Belov, A. Borichev, Heirarchical completeness for systems of exponentials and reproducing kernels, Adv. Math. 235 (2013), 525–554.
[4] J. Buckley, X. Massaneda and J. Ortega-Cerda, Traces of functions in Fock spaces on lattices of critical density, Bull. London Math. Soc. 44 (2012) 222–240.
[5] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud., vol. 122, Princeton University Press, Princeton, NJ, 1989.
[6] K. Gröchenig, Foundations of Time–Frequency Analysis, Birkhäuser, Boston, MA, 2001.
[7] B. Levin, Lectures on Entire Functions, Transl. Math. Monogr., vol. 150, Amer. Math. Soc., Providence, RI, 1996.
[8] Yu. Lyubarskii, K. Seip, Convergence and summability of Gabor expansions at the Nyquist density, J. Fourier Anal. Appl. 5 (1999), 127–157.
[9] K. Seip, Density theorems for sampling and interpolation in the Bargmann–Fock space. I, J. Reine Angew. Math. 429 (1992), 91–106.
[10] K. Seip and R. Wallsten, Density theorems for sampling and interpolation in the Bargmann–Fock space. II, J. Reine Angew. Math. 429 (1992), 107–113.
[11] R. Young, On complete biorthogonal system, Proc. Amer. Math. Soc. 83 (1981), no. 3, 537–540.

Yurii Belov,
Chebyshev Laboratory, St. Petersburg State University, St. Petersburg, Russia,
{jb_juri_belov_mail_ru}