Towards a Direct, By-Need Evaluator for Dependently Typed Languages

David M. Rogers
School of Natural Sciences and Mathematics, University of South Florida, Tampa, Florida.
Email: davidrogers@usf.edu

Abstract

We present a C-language implementation of the lambda-pi calculus by extending the (call-by-need) stack machine of Ariola, Chang and Felleisen to hold types, using a typeless- tagless- final interpreter strategy. It has the advantage of expressing all operations as folds over terms, including by-need evaluation, recovery of the initial syntax-tree encoding for any term, and eliminating most garbage-collection tasks. These are made possible by a disciplined approach to handling the spine of each term, along with a robust stack-based API. Type inference is not covered in this work, but also derives from the present stack transformation. Timing and maximum stack space usage results for executing benchmark problems are presented. We discuss how the design choices for this interpreter allow the language to be used as a high-level scripting language for automatic distributed parallel execution of common scientific computing workflows.

1. Introduction

Scientific computing workflows are commonly built at a high-level and require verifiability and reproducibility. Although this is an ideal match for a functional programming style, almost all current approaches are imperative. In practice, these quickly become special-purpose and non-composable when dealing with large-scale projects. Several frameworks have emerged to use task-level dependency information to orchestrate data and work distribution, including HT-CONDOR[25], Pegasus[8], and many smaller projects such as REXEC[6] and Fireworks[12]. This also includes middle-ware libraries such as ADIOS[16] and StarPU.[3] One prominent example of what has been accomplished for a few specialized problems are the SETI@HOME and Folding@HOME projects. Internally, many individual codes also uses dependency information to exploit fine-grained parallelism. For example, the NAMD2 molecular dynamics[13] uses the Charm++ library.[2] and large-scale multiphysics PDE-s solvers are moving in this direction as well.[22]

The idea that computer science can provide useful high-level abstractions for scientific computing is well-established.[24] However, applications of functional language constructs in high-performance and distributed computing are just beginning to receive widespread recognition. All three of the Darpa high-productivity grand challenge languages, X10, Fortress, and Chapel.[10] included some language features for specifying programs using their mathematical properties. New languages like Tupeware[7] are also emerging to facilitate distributed workflows.

All of these languages have been designed with user-directed parallelization in mind. That design strategy targets parallelization of large, single-purpose, monolithic codes. At the end of a run with such tools, all the data must be serialized, stored, and then re-arranged for use with the next analysis. For example, molecular dynamics with NAMD2 can be run on multiple, slightly different molecular systems to generate millions of large arrays for later analysis. Later, those sets of large arrays might be subject to map-reduce type computations, as well as interactive analysis. The entire workflow may later need to be re-run with slightly different starting parameters or continued from the last run. These glue steps almost always require custom code, and consume a large portion of developer time in these workflows.

Our vision of a high-level language for distributed storage and execution of parsed data requires a new virtual machine that preserves term structure. The central objects in this workflow will not be files, but functional syntax trees. Turning this picture into reality requires the ability to automate serialization of all data objects and make retrieving and working with remote data transparent. When required, single-purpose codes can be run as primitive operations, executing on-demand as part of a global virtual filesystem / code ecosystem. The evaluation method presented in this paper takes an important step by guaranteeing that every evaluation intermediate can always be serialized, and that evaluation can stop at any point. With this, fundamentally new applications are possible.

We present details of an efficient, by-need evaluation strategy on type-annotated terms that are capable of encoding the \(\lambda \) calculus. The bulk of the paper is devoted to introducing the stack form and proving its equivalence with the usual, syntax tree encoding of lambda terms. Reduction and normal terms are then defined in terms of the head-values in stack form. The equivalence between forms is directly proven by our implementation, which provides functions converting back and forth between initial and final representations.

After detailing the term encoding and reduction machine, this paper describes the fold structure based on the typeless- tagless- interpretation strategy,[3][13] including all the details on garbage collection, refcounting, and handling of primitives. Next, timings and space usage for two simple benchmarks are provided and compared to the Glasgow Haskell Compiler (GHC). [20] The implementation validates the claimed invariant properties of the stack-form, and shows that the stack size remains manageable for even large problems. We end by discussing improvements that are possible, along with code parallelization strategies.
Table 2. Specification of the winding operation, which mutates a stack and terminates by setting the spine’s head-value. \(N, M \) are abstract syntax trees (the initial encoding) composed of the terms in the diagram. Variable translation from de-Brujin indices to context pointers, \(x_i \), occurs for the \(\Var / \Var T / \Dtor \) rules by walking \(n \) elements up the context for the current stack. Open binders occur when no pending applications are present (i.e. when \(\text{popAppl}() \) is unsuccessful).

Initial Term	Next Step	Stack Action
\[Apply\ N\ M\]	\[N\]	\[pushAppl\ M\]
\[\Lambda\ x_i : N \rightarrow M\]	\[M\]	\[pushCtx\ x_i : N = \text{popAppl}()\]
\[\text{LetRec}\ x_i : N = \text{Lin} \rightarrow M\]	\[M\]	\[pushCtx\ x_i : N = L\]
\[\text{Ctor} : N\ Done\]	\[\text{Val} = \text{Ctor}\ \text{wind}(N)\]	
\[\text{Dtor} \ n\ Done\]	\[\text{Val} = \text{Dtor}\ x_i\]	
\[\text{Prim} : N\ Done\]	\[\text{Val} = \text{Prim}\ \text{wind}(N)\]	
\[\Var\ n\ Done\]	\[\text{Val} = \text{Var}\ x_i\]	
\[\Var T \ n\ Done\]	\[\text{Val} = \text{Var T}\ x_i\]	

Prior Work
By-need reduction strategies have been extensively investigated as fully lazy evaluation methods\[1, 2, 18\]. More recently, Chang and Felleisen provided a new characterization of normal terms and proofs of uniqueness, correctness, standard reduction, and observational equivalence\[5\]. That work also introduced the single reduction axiom, as well as a reduction machine. Here, we fill in missing details in that picture by re-stating their reduction axiom and proving invariants maintained by the stack representation.

Part of the motivation for this work to find a better evaluation method for exploiting implicit parallelism. Parallel extensions to Haskell have been in-progress for some time\[17\]. This goal is also shared by recent innovations in template\[23\] and cloud Haskell.\[9\] Effective run-time code distribution still remains a challenge for both of those frameworks.

2. Stack Representation
The interpreter uses a well-known transformation to turn every lambda term into a single stack (Fig 3). Each stack represents a spine for a lambda-term (see Fig 3). In this form, the head-value is trivially available as the stack bottom (variable reference, constructor, etc.), the list of all reachable variable bindings is available within the context, and, until this stack is to be substituted somewhere else, all the head-value’s pending applications are visible as well. Spines move to the left of applications and inside of lambda-brackets, and so include a list of bound variables, as well as leftover, unmatched, lambdas and applications. The critical information stored by our evaluator for each spine is listed in Fig 3.

The context is a series of type-annotated let-bindings ‘owned’ by the stack’s closure. They are used for when needed by terms at the bottom of the stack, and for determining which variables represent function arguments. The unpaired (open) binders are denoted by \((X) \). They have type annotations, but no right-hand side. There are no free variables in this representation. A special rule prevents non-termination by dereferencing recursive bindings. Variable references can point at either a term or a term’s type annotation. Even though variable references are actually pointers to their bound value, we carry the complete context to allow recovery of the initial syntax-tree encoding.

Each context ends logically at the context where the stack branched from a unique larger, enclosing, term. These are shown schematically by arrows in the example of Fig 3. Together, the end pointers have enough information to reconstruct the pairing of \(@\cdot \lambda\)-s in the initial, syntax tree, representation.

Figures 2, 3. Specification of stack representation and an example stack.

This work aims to manipulate \(\lambda \) terms entirely in stack form. Accordingly, we have defined stacks in Fig 1 so that the stack and syntax-tree encodings are equivalent representations of the same object. Our major contribution is proving that a set of invariants guarantee this equivalence, and are preserved by a sensible reduction strategy. We then leverage this representation to define reduced terms based on the stack definition, rather than the universally encountered initial definition of normal form. We will also describe some other major advantages of working with the stack form.

Many transformations that appear very difficult in the initial syntax tree representation become almost trivial in stack form. One of those advantages is the ability to make use of type annotations present for each binder. In the \(\lambda_l \) calculus, terms and types inhabit the same space. The syntax definition in Fig 1 makes this explicit, and at the same time loosens some of the conventional type-theory restrictions. In particular, in \(\lambda_l \), the type of functions from values, \(x \), of type \(A \) to values of type \(B(x) \) is \((\forall x : A.B(x)) \). The \(\Pi \) is a binding construct, since \(B \) can be an arbitrary function of \(x \). It is different from \(\lambda \) only to denote that the whole term must evaluate to a type-level quantity. However, if \(B(x) \) is another \(\Pi \) function type, then this restriction just means that the value returned by \(B(z) \) is a type. Therefore, \(\Pi \) terms can be curried in exactly the same way as functions.

For simplicity, we choose to represent \(\forall x : A.B(x) \) as just \(\lambda x : A \rightarrow B(x) \). The only difference from \(\lambda_l \) is that a \(\Pi \) value would have an earlier guarantee to be a type-level quantity. With this perspective, \(\Pi \) is just a marking on a \(\lambda \) value that guarantees it will eventually return a type. Finally, we include two special constructors for closing the type hierarchy. A 0-argument hole constructor, \((? : N) \), to indicate an unknown term, and a 0-argument type-universe, \((\star : \star) \). In this way, type schemes can be translated to terms by applying a function to an unknown value. For example, the type of the identity function, \(\forall a, a \rightarrow a \), can be written as \(\lambda a : \star \rightarrow \lambda a : a \rightarrow a (\star : \star) \). Applying this type to a right-hand side actually shows that it is the type of function, taking an argument to its type.

We note that to be completely correct, \(\star \) should be parameterized by a universe level, or else it is possible to run into a recursive definition problem known as Girard’s paradox. This universe level is also closely connected to subtyping, which must distinguish \(\star \) with unknown arity from, e.g. \(\text{Int : } \star \). Although preliminary results seem promising, this work will assume all terms are correctly, statically typed, and will not address type inference issues.

With this shortcut, it also becomes trivial to evaluate the type of every term that already has properly annotated binders. The type of each term can be found by typing the bottom of a stack, and then dressing it with a new copy of all the binders in the stack’s context. For example, the type of the function,

\[
\lambda a : (\forall 1 : \star) \rightarrow \lambda b : (\forall 2 : \star) \rightarrow a \ b
\]

requires solving the unification problem,

\[
(\forall 1 : \star) = \lambda a : (\forall 2 : \star) \rightarrow (\forall 3 : \star)
\]

and results in the term,

\[
\text{let } t : \star = ?2 : \star \\
\quad u : \star = ?3 : \star \\
\text{in } \lambda a : (\lambda (t : \star) \rightarrow u) : b : t \rightarrow a b
\]

The stack bottom’s type is, in turn, just the type of the head-value, after substitution of the head value for its type and evaluation.
Syntax

Stack \([S],[T],[U] := \)

\[\begin{align*}
\text{let } & x_1 : [T] = [S]((X) \\
& \vdots \\
& x_n : [T] = [S]((X) \\
\text{in } & \text{Val} [S_1] \cdots [S_m] \\
end}
\]

Values Val := Var \(x_i\)
| VarT \(x_i\)
| Ctor : [S]
| Dtor \(x_i\)
| Prim : [S]

Variable reference
Type reference
Base data value / constructor (Int, Cons, ?, etc.)
Distributor
Primitive

Bottom Evaluation Semantics

\begin{align*}
\text{Var } x_i & : \text{Done}, \quad x_i = \text{Open or Var } x_i \text{ is recursive and WHNF}^3 \\
\text{VarT } x_i & : \text{appendStack } [S] [U] \quad \text{eval}(x_i) = [U] \\
\text{Ctor} & : \text{appendStack } [S] [U] \quad \text{eval}(x_i) = \text{Ctor} [U] \\
\text{Dtor } x_i & : \text{Done} \quad \text{WHNF}^3 \text{ or insufficient args} \\
\end{align*}

Figure 1. Syntax, stack representation, and by-need reduction rules for a type-annotated \(\lambda\)-calculus. Sec. 3 details additional, essential restrictions on the locations of open binders, \((X)\), and the ordering of end-pointers for each context. \(^1\) WHNF denotes that at least one open binder is reachable from the stack’s context – hence the term is already in weak head-normal form. The special notation in \(\delta\)-reduction for primitives notes that if a primitive consumes \(k\) arguments, then those arguments are popped off of the pending applications when it returns.

\[
\frac{x}{y} \quad \frac{P}{Q} \quad \frac{A}{B}
\]

Figure 3. Example reduction term, showing both initial and stack-based encodings. Arrows on the left indicate pairing structure discovered during winding. Arrows on the far right show the end-pointers for the context of each bound right-hand side. Each separate stack is delimited by \([\ldots]\)s.

of the stack bottom. For our example, this procedure results in,

\[
\begin{align*}
\text{let } & t : \ast = {?}_2 : \ast \\
& u : \ast = {?}_3 : \ast \\
\text{in } & \text{Val} \ast : (\lambda t : \ast \to u) \to b : t \to u.
\end{align*}
\]

Type-level holes are used for free type variables so that terms can represent type schemes with the same ease as lambda. This simplification should accordingly make unification problems much clearer. The type annotations on open binders must be unified, followed by unification of the remaining context of one stack with the bottom of another. For convenience, we also allow variables to reference the type annotations on terms as well as the terms themselves. This may be too permissive as it leads to multiple equivalent encodings – with a type-level hole present in the annotation or as a bound right-hand side.

Example Figure 3 shows the stack winding transformation of an example from Chang and Fellesein [3]. The application right-hand sides are immediately apparent, but the difficulty comes in accounting for the reference structure while evaluating the term. All of these complications are stuffed into the appendStack method.

Stacks are mutable structures that rearrange during appendStack. First, the stack to be appended (the appendee) is copied. Next, the appender’s head value is manually destroyed by calling stack dtor on its internal type annotations, if present. Finally, the appendee is inserted in the head position between the last context value and the next pending application for the appendor. Explicitly,

\[
\text{appendStack}(\{S\}, \{U\}) = \text{gc_val}(\{S\}); \text{wind}(\{S\}, \text{getast}([U]))
\]

Get \(\ast\) retrieves the initial encoding of \(\{U\}\) without modifying \(\{U\}\). The wind step traverses that syntax tree, pairing \(S\)’s contexts when it finds an open \(\lambda\) and pushing its pending applications in front of the appendor’s.

In practice, get \(\ast\) uses automatically garbage-collected heap space which is immediately orphaned, and so we have implemented appendStack as a direct copy instead. For a direct copy, only the variable references (to contexts) internal to the copied stack need to be renumbered. This is because variable references are direct pointers instead of de-Bruijn indices. The appendee’s entire context extends the appendor’s. Winding would have paired \(\{U\}\)’s closed binders internally in exactly the same way, while its open lambda bind the appendor’s pending applications. The appendee’s remaining pending applications go in front of the appendor’s.

In our implementation, stack deallocation (stack dtor), construction of the initial encoding (get \(\ast\)), and even by-need evaluation (need), are implemented using folds over the stack structure. These folds are described in more detail in the next section.

3. Properties

The context provides a ‘handle’ for traversing the stack. This is shown by noting that the stack maintains the all of the following invariants:

- Invariants
1. All sub-stacks directly referenced from a stack (annotations, bound right-hand sides and pending applications) end at a context within the stack or at the stack’s end.

2. All variables referenced from the stack are reachable on the path from the stack’s context pointer (but may be past the stack’s end).

3. A sub-stack of the head value (type annotation or even a nested data structure not shown in Fig.1) always ends at the start of the head value’s context.

4. The ending points of bound right-hand sides in a given stack show the pairing structure of lambda-s and applications in the following way. If, when traversing the context from start to end, a right-hand side’s end pointer is another context value in the stack, no end pointers (of right-hand sides) on intervening contexts can go beyond that context value. Let-rec-s are easily identified because their context ends at their own binder.

5. Pending application contexts end at ordered locations, with the innermost, first, application closest to the start (having the largest context), and the outermost, last, application closest to the end (smallest context).

6. No pending applications have end points between paired binders.

7. All open binders in a stack are reachable from all pending applications for that stack.

The first means that each referenced spine terminates at some point of the main spine’s context. These termination points are what hold the stack into a coherent tree – since each stack represents an entire self-contained sub-tree. Nevertheless, the number of stacks are exactly the same as the number of non-lambda or apply nodes in an initial syntax tree encoding, while the number of contexts is exactly the number of lambda terms.

The ordering properties are a consequence of the fact that each spine represents a transformed syntax tree. Application of a lambda turns into a paired, closed, binding on the context, and so open binders have to come before unpaired, pending applications. Similarly, a pending application cannot have a context ending in-between paired apply-lambda-s. Pending applications are ordered from outermost to innermost.

We prove that as long as these invariants are satisfied, there is always a transformation from the stack form back to a syntax tree. Conversely, the translation from the syntax tree to the stack form is trivial. Because of this duality, the two forms are equivalent. Operations on the stack can be written in terms of these operations on the context, and vice versa.

We then give an evaluation algorithm that simultaneously computes both terms and types. We prove this algorithm maintains the above invariants. Normalization is defined implicitly via reducible and irreducible head-values. This leads to a computationally useful definition, since every stack has a unique head-value, and since the reduction proceeds by case analysis on these values.

They ensure that de-Bruijn indices can always be constructed by counting the number of steps to a reference in the context. We now prove two theorems that establish the 1:1 mapping between conventional lambda terms and stacks, and a third that justifies defining normal forms in terms of a stack form.

3.1 Winding produces valid stacks

First, we assume that winding proceeds from an otherwise valid stack. Since winding terminates by setting a bottom value, the starting bottom value can be undefined. We can always start at a stack with no contexts or pending applications.

Since the winding process always proceeds along the left branch, we can consider the set of \(\lambda, @\), encountered as a series of tokens with unknown order. We need to show that any series produces a valid stack. The end-context of an application is the nearest \(\lambda\) to its left, while the applications always pair with the nearest \(\lambda\) to their right. Unmatched binders become open contexts, while unmatched applications become pending applications.

Property 1 is simple to show, since the context can only grow during winding, and originally starts at the stack’s end point. The context at every point during winding contains all binding \(\lambda\)-s in the tree’s path to the root. Violating property 2 would therefore mean that an unbound variable had been found. Similarly, property 3 is automatically satisfied by all the winding termination rules, since the stack’s context is fixed when winding terminates.

Properties 6-7 are also simple, since violating (6) would indicate a mis-pairing of \(\lambda@\), and since an unmatched binder cannot occur after any unmatched application. Property 4 and 5 can be proven by noting the matching process is equivalent to matching parentheses. Each \(\lambda\) acts as a left-parentheses, and each \(\lambda\) as a right. When traversing the stack from start to end, it is like reading a parenthesized expression backwards. The ending points of the bound right-hand sides are everything left of its matched parentheses.

Property 4 follows trivially from this observation. Similarly, there may exist interspersed, unmatched \(\lambda\)-s and @-s. These are always ordered.

3.2 Valid stacks can always be unwound to initial terms

We prove this by giving the unwind algorithm in Fig. It proceeds in two phases. First, the stack bottom is transformed into its initial encoding. For stacks without annotations this is trivial. For stacks with annotations, the annotation must be unwound first. Variables are simple to resolve to de-Bruijn notation by walking up the context (property 2).

Second, the bottom is wrapped in a series of lambda/apply-s by visiting the context from start to end (end is not visited). Initially, the contexts of all pending applications are copied, in the same order, onto an interrupt stack. Unwinding stops at each interrupt to wrap the term in an Apply (unwinding the pending application right-hand side). At each binder, the term is wrapped in a Lambda tree node (or a LetRec if the right-hand side context ends at the current binder). Using the analogy from the previous section, each binder in the context is a right-parentheses. The context of its corresponding left-parentheses is pushed onto the interrupt stack and unwinding proceeds to it. No pending application can interrupt this process (by property 6). At this point, the term is wrapped in an Apply node. This must match the corresponding Lambda, since all other Lambda-s will have been matched using this procedure, by property 4.

Interrupts are guaranteed to be encountered during unwinding by property 1. If unwinding encounters an open binder, no interrupt is pushed. The interrupt stack will already be clear, by property 7.

We also observe here that each paired application can be destroyed without spoiling the stack property. By analogy to the parentheses matching, none of the ordering properties are altered. However, this involves checking the end-pointers of every stack reachable from the current one that ends at the collected binding, replacing it with the next binder in the series. This can cause a considerable slow-down and should be re-examined in the future. Our implementation maintains reference counts for each binder to identify and remove unused binders immediately.

3.3 Evaluation does not break validity

Since evaluation makes use of essentially only 1 rule, this is easy to show. First, note that appendStack can be written in terms of wind and unwind (Eq. 2). Destroying the stack bottom is inconsequen-
tial, and results in a valid starting stack for wind. Winding the result of an evaluation may encounter any variables reachable from that evaluation. Since only right-hand sides are substituted, those variable references fall in one of two sets. Either the variable is internal to the right-hand side (below the right-hand side’s end pointer), or it is external (at or above end). If internal, that reference will link to a binder that will be added during wind. By property 1, that end pointer is reachable from the current stack’s context. Therefore, the precondition for wind to produce a valid stack has been met.

Evaluation can trivially stop at any point and still produce a valid partial evaluation.

Next, we should consider the special impact of the primitive reduction rule. In our implementation, primitives use an API for manipulating the first k terms in the pending application stack (where k depends on the primitive). These are evaluated by-need when the primitive requests their value. The API makes it impossible to insert binders or change context values (other than normal evaluation). The primitive completes by leaving a return value on the application stack, and destroying the others. This last remaining value forms the new stack bottom. To show this is valid, note that none of the ordering properties are violated if any k − 1 of the first k pending applications are removed, since no re-ordering is possible. Also, the move of the remaining stack to the bottom also uses appendStack.

If more generality is needed, the k pending applications could all be re-linked to end at the start of the stack’s context and a general lambda-term could be wound into the head value. The additional invariants have been very useful for developing and testing functions that work with stacks, including fast copies and the primitive API.

4. Unwinding Functions

Dealing with in-memory references is notoriously difficult in low-level languages. This section presents wind and unwind routines that standardize computations, eliminating most common errors. The major workhorse is the unwind function, which essentially works as the fold of f, starting from val. In higher-level languages, it is possible to achieve a much more precise manipulation of the function, including composition, partial evaluation, and inlining. These three together produce the tagless property of tagless interpreters.

Underneath the hood, each member of a deconstructor typeclass has to be looked up from a dictionary and replaced with the appropriate function during compilation of the evaluator. Here, we make that choice explicit by providing different definitions of val, let_l, let_a, and apply for each type of fold.

Recovering Initial Encoding (get_lst)

The visitor structure in our implementation is specially designed for this task. It can produce arbitrary partial terms and context errors by recognizing the end pointer of its starting stack and jumping in number to a root context, which is visible from another arbitrary place in the term. In pseudocode,

- val: (StackVar cp) = val ← Var (steps from s¿c to cp)
- let_l x t = val ← Lambda x : get_lst(t) → val
- let_a b = val ← Apply val get_lst(b)
- apply b = val ← Apply val get_lst(b)

A major source of early difficulties was attempting to both evaluate and produce a syntax tree at once.

Call-By-Need

Call-by-need is focused on evaluating the stack’s head-value, but also has the ability to clean up the context or evaluate pending applications after it is completed. How to evaluate pending applications is one major point of contention in existing applications [15]. If the stack is to be substituted, or if the head value is strict, evaluation needs to be done. However, this work can also be delayed by creating new bindings on the context. This requires a generalized lifting operation.

- val: Implement Fig. 1 returning NULL after appendStack and returning the current stack on Done.
- let_l Ctxt c | ref c == 0 = stack_dtor c.t; stack_dtor c.b; unlink c
- let_a Ctxt c | otherwise = need (c.t)
- let_a b = pass
- apply b = need b

![Figure 4. Stack-unwinding algorithm, expressing a generic fold. This is the heart of the interpreter.](image-url)
xx has clearly described how call-by-need can be implemented in terms of folds over this structure. Whenever a head-value is a variable reference, the binding for that variable is evaluated by
need, and the result is copied and substituted for the variable. Because all variable references are pointers in this scheme, no index
re-numbering is required during the copy.

Substitution can often be optimized to a direct move of the
stack. This is possible when the variable is the only reference to
its binder. We maintain reference counts by incrementing a con-
text’s count whenever a variable is added during \(\texttt{\texttt{x=_}} \), and decre-
menting reference counts whenever a variable is destroyed. Recur-
sive references can not be optimized in this way, since substitu-
tion might lead to more references. Recursive references are only
counted for references outside the stack. Cyclic references require
a special constructor (we use record types). Their counts are main-
tained by saving the reference count before and restoring it after
their right-hand side is evaluated.

As shown by the use of stack_dtor, by-need evaluation proceeds in
tandem with stack destruction. Further traversal steps continue up
the tree, visiting all the binders in the context. After the stack
bottom has been evaluated, all the needed right-hand sides should
have been substituted. Hence, all matched let-bindings could de-
stroyed, leaving only the open let-bindings. A refinement used in
this work is to keep all bindings that have any references remain-
ing. This way, exactly as much garbage collection is done as needed –
so partial evaluation still results in a valid term. The correctness
of this procedure relies critically on the fact that the tree is traversed
from start to end. Because of this, each let-binding is visited imme-
 diately after all possible references to it have already been visited.

Garbage Collection (stack_dtor) Destroying the stack can be
done by de-allocating all its internal data structures. It only makes
sense to do this with a visiting fold. We have taken special care to
read the next few steps from the stack during the unfolding pro-
cess so that this works. Since stacks maintain a strict tree ordering,
automatic garbage-collection is not needed (or used in our imple-
mentation) for stack structures.

5. **Benchmarks**

We give timings and heap usage below for the n-queens and tak
benchmark on an Intel 2.5 GHz Core I7 running OSX, for an in-
terpreter compiled with clang-602.0.53. Each test was checked for
reproducibility and status was tabulated at each context creation.
Timings were reported for the non-heap reporting versions.

The 8-queens program runs in 6.9 seconds and makes 1.8 mil-
lion context allocations, with a high-water mark of 2029 contexts
and 7856 stacks. The 10-queens program runs in 221 s and makes
45 million context allocations, with a high-water mark of 2778 con-
texts and 10789 stacks (Fig. 5). The program utilized the deforested
version of lists, with type

\[
\text{List}(\alpha : \tau) = (\lambda \alpha : \tau \to (\alpha : \tau \to b \to b) \to \alpha : b \to b)(? : \tau)
\]

introduced by Gill, Launchbury, and Peyton-Jones.[11] Interest-
ingly, that strategy is an incipient version of the tagless method – as it relies on replacing the list construction operators, cons and
nil, with deconstruction functions.

The tak benchmark is a stringent test of recursive calls. When run
with our interpreter on a medium problem size (27 16 8), it makes
26.9 million context allocations. Nevertheless, its high-
water mark was just 162 contexts and 1245 stacks (Fig. 5). The
benchmark ran in 119 s without any memoization.

In contrast, the Glasgow Haskell Compiler (GHC)[20] uses
highly optimized array STM and pinned memory to solve the 10-
queens problem in just over 0.01 s, and tak in 0.09 s. For both
problems, its heap-space usage remains essentially flat at 36 kbytes
throughout the run. It should be noted that GHC has much slower
performance for these problems in interpreted execution mode,
requiring 1.4 s to run 10-queens and 4.9 s to run tak.

Our linked-list implementation of stacks and contexts requires
48 bytes per context and 56 bytes per stack. This makes the high-
water marks for 10-queens at 738 kbytes and tak at 77 kbytes.
These compare favorably with GHC’s heap-space usage.

6. **Discussion**

The benchmark problems above clearly show that the interpreta-
tion strategy taken here is robust. Development versions of our inter-
preter have successfully checked all the invariants listed in Sec. ??
at every major step of code interpretation. Although the run-times
above are slightly disappointing, it is highly encouraging that the
stack space usage parallels that used by GHC itself. It is notable
that most naive functional language implementations face great dif-
ficulty with these programs.

This is an excellent starting point for more advanced evaluators
for the generic lambda-calculus with dependent types. Several
improvements can likely be made to increase the execution speed,
and to finally realize the automatic task-level parallelism that \(\lambda
\)-calculus has the potential to provide.

The actual implementation recognizes Cons, Tup, and Com-
mu (for a directory of named bindings), as constructors, provides
several base data types, as well as provides a means for creating
generalized algebraic datatypes[23] as Sym constructors. It imple-
mments IO by recognizing stacks with IO head-values as construc-
tors during functional evaluation, and as primitives during imper-
ative reduction[26] IO primitives return an extra flag indicating
whether evaluation has completed with returnIO. The ST monad
is implemented in a similar way, but can be invoked from within a
functional computation by the runST primitive, which creates the
initial copy and manages the state. It also provides a unique mech-
anism for creating primitives and new packed binary data values
from specially formatted Commit types.

Elimination of most relinking steps As mentioned in the text
describing the stack_dtor fold, a major source of inefficiency in the
present work is the maintenance of end pointers on each context.
Since evaluation proceeds in tandem with context deletion, the
stack must be constantly scanned to rewrite these pointers. If
instead, the end pointer of every right-hand side was contained as
part of its context, then each stack could have a NULL end-pointer.
This would eliminate recursive re-writes, but require some other mechanism for creating de-Brujin indices pointing outside the current stack during get\textunderscore last. One simple resolution is to track parent spines for each spine. Alternatively, the parent spine of each context could be used. The spine tree structure could be re-built by examining all Var pointers in each stack and creating a topological sort.

Unboxing and inlining fold functions The usual machine implementation of the lambda-calculus uses continuation passing to jump back after evaluating an application right-hand side. The unwind method is slightly more complicated, maintaining a state of paired binders. Nevertheless, it could be made into a closure and returned into in the same way.

Once this step has been taken, each fold function over stacks can be inlined by turning all stacks into executable code. For example, the code for \texttt{var \gets Apply(var, \texttt{get_last}(b))} would be \texttt{push_closure(Apply(var, \texttt{closure}) \texttt{closure}) \texttt{followed by \texttt{call b}}. For arguments that have statically known, machine-representable types, both the producer and consumer know can create code that makes use of unboxed data values – final form.

Enhanced Type System Development As discussed in Sec. 2 terms and types are syntactically very close. This makes unification much simpler, since unifying two terms in stack form just requires unifying the types of their open binders, and then unifying the bottom of the term with the smaller context with the remaining stack on the other. It is the unification solutions which make this process difficult. Each solution eventually gets written into a \texttt{? constructor}. However, that solution must be lifted to a point in the context where it is reachable from both halfs of the unification problem. If the solution references variables, those must also be lifted. This reachability requirement translates to an occurs\textdash check so that the solution cannot be recursive. It also disallows open binders (or stacks referencing open binders) from being lifted above the binder. This imposes a very helpful restriction on type annotations, namely that unification cannot automatically create types that depend on future, unknown variables. This requires a non-trivial edit in stack form which will be discussed in future work.

Distributed Parallel Evaluation The interpreter built in this work can serialize syntax trees in initial form to a Google protocol buffer format, and store them in a distributed hash table. The resolver hash table manages objects in much the same way as a git source\textdash code repository. This automatic serialization of every term is made possible by the tagless\textdash inspired strategy of this work. From this point, trivial parallelization of arbitrary code can be facilitated using a bag of tasks model.

We note that a distributed, lazy, work\textdash stealing scheduling strategy is also possible. If a term has a strict head\textdash value, all its pending application stacks will need to be evaluated. By properties 1 and 2, all of the references from any of these applications are reachable from the context of the current stack. Therefore, only the bound right\textdash hand sides need to be made available in case they are needed by a peer evaluating of one of those pending applications. Once placed in the table, the context can be replaced with a hash reference.

The work list starts out when each strict, pending application is made available as code and placed in an active queue. In general, peers can start by dequeuing any object from the active queue, and activating any right\textdash hand sides as needed. Peers remain lazy, evaluating references only by\textdash need. On completion, the evaluated term is stored in a completed work list, along with a mapping from the hash of the original to the hash of the evaluated term. Generally, peers may cause contention by competing to dequeue common references. Nevertheless, re\textdash evaluation does not cause harm, and this organization structure gives a implementable distributed lazy evaluator.

References

[1] Z. M. ARIOLA and M. FELLEISEN. The call\textdash by\textdash need lambda calculus. J. Funct. Prog., 7:265–301, 5 1997.

[2] Z. M. Ariola, J. Marais, M. Odersky, M. Felleisen, and P. Wadler. A call\textdash by\textdash need lambda calculus. In Proc. 22nd ACM SIGPLAN\textdash SIGACT Symposium on Principles of Program. Lang., POPL ’95, pages 233–246, New York, NY, USA, 1995. ACM.

[3] C. Augonnet, S. Thibault, R. Namyst, and P.\textendash A. Wacrenier. StarPU: a unified platform for task scheduling on heterogeneous multicore architectures. *Concurrency and Computation: Practice and Experience*, 23(2):187–198, 2011. Euro-Par 2009 best papers.

[4] J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evaluated: Tagless staged interpreters for simpler typed languages. *J. Funct. Prog.*, 19(5):509–543, 2009.

[5] S. Chang and M. Felleisen. The call\textdash by\textdash need lambda calculus, revisited. In 21st European Symposium on Programming, volume 7211 of Lecture Notes in Computer Science, pages 128–147. Springer Berlin Heidelberg, 2012.

[6] B. N. Chun and D. E. Culler. REXEC: a decentralized, secure remote execution environment for clusters. In B. Falsafi and M. Laura, editors, 4th International Workshop, CANP, volume 1797 of Lecture Notes in Computer Science, pages 1–14. Springer Berlin Heidelberg, 2000.

[7] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Cetintemel, and S. Zdonik. Tupelware: “big” data, big analytics, small clusters. CIDR ’15: 7th Biennial Conf. on Innovative Data Systems Research, 2015.

[8] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani, W. Chen, R. F. da Silva, M. Livny, and K. Weng. Pegasus: a workflow management system for science automation. *Future Generation Computer Systems*, 46:17–35, 2015.

[9] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards haskell in the cloud. *Haskell Symposium ’11*, 2011.

[10] K. A. Y. Ewing L. Lusk. Languages for high\textdash productivity computing: the darpa hpcs language project, 2007.

[11] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to deforestation. In *Proc. Conf. on Funct. Progr. Lang. and Comp. Arch.*, FPCA ’93, pages 223–232, New York, NY, USA, 1993. ACM.

[12] J. Jain and K. Persson. https://pythonhosted.org/FireWorks/contributors.html.

[13] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. Namd2: Greater scalability for parallel molecular dynamics. *J. Comput. Phys.*, 151(1):283–312, 1999.

[14] L. V. Kale and A. Blatele. *Parallel Science and Engineering Applications: The Charm++ Approach*. CRC Press, 2013.

[15] O. Kiselyov. Typed tagless final interpreters. In *Generic and Indexed Programming: International Spring School*, SSGIP 2010, Oxford, UK, Lecture Notes in Computer Science 7470, pages 130–174. Springer-Verlag Berlin Heidelberg, 2012. Revised Lectures.

[16] J. F. Lofstead, S. Klasky, K. Schwann, N. Podhorszki, and C. Jin. Flexible io and integration for scientific codes through the adaptable io system (adios). In *Proceedings of the 6th international workshop on Challenges of large applications in distributed environments*, CLADE ’08, pages 15–24, New York, NY, USA, 2008. ACM.

[17] R. Loogen. Eden parallel functional programming with Haskell. In Central European Functional Programming School, volume 7241 of *Lecture Notes in Computer Science*, pages 142–206, 2012.

[18] J. MARAIST, M. ODERSKY, and P. WADLER. A call\textdash by\textdash need lambda calculus. *J. Funct. Prog.*, 8:275–317, 5 1998.

[19] S. Marlow and S. P. Jones. Making a fast curry: push/enter vs. eval/apply for higher\textdash order languages. *ICFP ’04: Proc. 9th ACM SIGPLAN Conf. Funct. Prog.*, pages 4–15, 2004.

[20] S. Marlow and S. Peyton-Jones. *The Glasgow Haskell Compiler*. 2012.
[21] C. McBride and J. McKinna. Functional pearl: I am not a number – i am a free variable. *Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell*, 2004.

[22] P. K. Notz, R. P. Pawlowski, and J. Sutherland. Graph-based software design for managing complexity and enabling concurrency in multi-physics pde software. In *ACM Transactions on Mathematical Software*, volume 40, pages 111–134, 2010.

[23] T. Sheard and S. P. Jones. Template metaprogramming for haskell. *Proc. Haskell Workshop 2002*, 2002.

[24] G. J. Sussman and J. Wisdom. *Structure and Interpretation of Classical Mechanics*. MIT Press, 2001.

[25] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: The condor experience. *Concurrency: Pract. Exper.*, 17(2–4):323–356, 2004.

[26] P. Wadler. How to declare an imperative. *ACM Computing Surveys*, 29(3):240–263, 1997.

[27] M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults. *ICFP 01: Proc. 6th ACM Int. Conf. Funct. Progr.*, pages 241–252, 2001.