Revisiting chaos in stimulus-driven spiking networks: signal encoding and discrimination

Guillaume Lajoie,1,2 Kevin K. Lin,3 Jean-Philippe Thivierge,4 and Eric Shea-Brown5,6

1University of Washington Institute for Neuroengineering
2Formerly at Max Plank Institute for Dynamics and Self-Organization, Dept. of Nonlinear Dynamics
3University of Arizona, School of Mathematics
4University of Ottawa, School of Psychology
5University of Washington, Dept. of Applied Mathematics
6University of Washington, Dept. of Physiology and Biophysics

(Dated: April 27, 2016)

Highly connected recurrent neural networks often produce chaotic dynamics, meaning their precise activity is sensitive to small perturbations. What are the consequences for how such networks encode streams of temporal stimuli? On the one hand, chaos is a strong source of randomness, suggesting that small changes in stimuli will be obscured by intrinsically generated variability. On the other hand, recent work shows that the type of chaos that occurs in spiking networks can have a surprisingly low-dimensional structure, suggesting that there may be “room” for fine stimulus features to be precisely resolved. Here we show that strongly chaotic networks produce patterned spikes that reliably encode time-dependent stimuli: using a decoder sensitive to spike times on timescales of 10’s of ms, one can easily distinguish responses to very similar inputs. Moreover, recurrence serves to distribute signals throughout chaotic networks so that small groups of cells can encode substantial information about signals arriving elsewhere. A conclusion is that the presence of strong chaos in recurrent networks does not prohibit precise stimulus encoding.

INTRODUCTION

Highly recurrent connectivity occurs throughout the brain. In the cortex, many circuits operate in a “balanced state” in which every neuron receives a large number of excitatory (E) and inhibitory (I) inputs. This creates synaptic currents that cancel on average but feature strong fluctuations (see, e.g., [1–3]), giving rise to sustained irregular spiking [4]. Well-established results show that such strongly recurrent networks operating in a balanced regime can produce chaotic dynamics in a range of settings, from abstracted firing rate models with random connectivity [5] to networks of spiking units with excitatory and inhibitory cell classes [2, 6–8]. Chaos implies that the network dynamics depend very sensitively on network states, so that tiny perturbations to initial conditions explode to large effects over time. As a consequence, when the same stimulus is presented to a chaotic network multiple times, it will fail to generate reproducible responses. How can stimuli be encoded in the variable spike trains that result (c.f. [9, 10])? A central issue is the relationship between trial-to-trial variability and input discriminability: since exactly the same sensory input can elicit different neural responses from one trial to the next (as can distinct inputs), how can one decide which stimulus is driving a network based on its response?

To illustrate the variable stimulus responses due to chaos, Figure 1 shows a model balanced network (to be described in detail below) driven by a fixed multi-dimensional stimulus, as well as a raster plot of the spiking output of the

FIG. 1: (A) An input \(I(t) \), with \(N \) independent components, is presented to a chaotic network of \(N \) spiking cells. (B) Raster plot of the network response to a fixed input \(I(t) \), on two trials. Arrow indicates a perturbation to the network on the second trial, in which an extra spike is “added” to neuron number 1. Different color markers indicate the widely divergent spike rasters that occur with and without the perturbation.
network on two trials. In each of these trials, the exact same stimulus is presented, but on the second trial a small perturbation is artificially introduced in the form of an extra spike for neuron 1 (as in [11–13]). This small perturbation quickly reverberates throughout the whole network in a seemingly random fashion [11–13]. If we were to repeat this process and present a second input to this network, could a decoder be trained to discriminate the spikes evoked by the first input from the spikes evoked by the second, despite both sets of output spikes being subject to the type of variability shown here? This is the central question that we investigate here.

We study this stimulus coding question using a strongly chaotic, recurrent spiking network model driven by temporal stimuli. The strength of stimulus inputs is comparable to network interactions, so that dynamics are not dominated by external stimuli alone. We find that, despite chaos, the network’s spike patterns encodes temporal features of stimuli with sufficient precision so that the responses to close-by stimuli can be accurately discriminated. We relate this coding precision to previous work grounded in the mathematical theory of dynamical systems, which shows that – at the level of multi-neuron spike patterns – chaotic networks do not produce as much variability as one might guess at first glance. This is because such networks, when driven by time-dependent stimuli, create low-dimensional chaotic attractors that show a type of intermittent variability, with some spiking “events” predictably repeated across trials [14, 15] (cf. [16–18]). Our main findings are:

1. It is possible for strongly chaotic recurrent networks to produce multi-cell spike responses that remain discriminable even for highly similar inputs.

2. The same recurrent connections that produce chaos distribute stimulus information throughout the network, so that stimuli can be discriminated based on only a small subset of “readout” neurons.

3. Input statistics influence the strength of chaotic fluctuations that can obscure stimuli. We quantify this via a chaos-induced “noise floor”; stimuli whose strength exceeds this floor will be easily discriminable.

Our results are based on numerical simulations guided by mathematical theory, but connect to a broad experimental literature: trial-to-trial variability in neural responses to repeated stimuli is often [1, 19–21] (but not always [22–26]) observed empirically. Even though there are many likely contributors to this variability, ranging from stochasticity in neurotransmitter release or ion channels ([27], but see [28, 29]) to confounding factors like behavioral state, activity level, and levels of adaptation [30, 31], chaotic interactions may play an inescapable role. Indeed, chaos may represent a mechanism by which other sources of variability are amplified.

The remainder of this paper is organized as follows. First, we briefly describe our network model and the input discrimination task we use throughout (further details can be found in the Methods section). We then present an overview of dynamical systems concepts useful to describe chaotic dynamics and relate them to the spike outputs our model produces. Next, we describe the Tempotron classifier [32], which we train on the spikes produced by our network. We use the performance of this classifier to quantify stimulus discrimination in chaotic networks, and how this depends on the temporal precision of the output spikes and the fraction of the network that is accessed by the decoder.

RESULTS

Discrimination task and conceptual framework

Model overview

We study a recurrent network of excitatory and inhibitory neurons with random, sparse coupling, as in [2, 3, 6, 14]. Every neuron $i = 1, \ldots, N$ in our network receives and external input signal $I_i(t)$, which is a time-dependent fluctuating stimulus that we describe in more detail below. The collection of all these signals is an N-dimensional input that we denote $I(t) = \{I_i(t)\}_{i=1,\ldots,N}$ and simply call the network’s input or stimulus. We emphasize that the inputs have N independently varying components; i.e., they are N-dimensional.

Our goal is to explore the ability of a decoder to discriminate between distinct network inputs, say $I^A(t)$ and $I^B(t)$, based on the spike output from the whole network (or from a subset of cells from the network). There are two main factors that influence this discrimination: (i) the similarity of the stimuli $I^A(t)$ and $I^B(t)$, and (ii) the variability of the network’s response to a given stimulus from trial to trial. Figure 2 (A) illustrates this by showing the response of a few neurons in the network to two distinct inputs, on several trials.

Individual neurons are modelled as Quadratic-Integrate-and-Fire (QIF) units [33] which are separated into excitatory and inhibitory populations (E and I) so that their outgoing synaptic weights obey “Dale’s Law” [34]. We set 20%
of the neurons to be inhibitory, 80% excitatory, and couple the network according to the random and sparse, \textit{balanced state} architecture [2, 3, 6, 14, 35]. Throughout the paper, we report simulations carried out with $N = 500$ but note that the majority of the results we outline are independent of network size, or scale with N in simple ways. Network parameters are tuned so that the population-averaged mean firing rate of about 6.5 Hz. The detailed equations, parameter choices and description of numerical methods used for simulations can be found in the Methods section.

Briefly, the state of each neuron $i = 1, ..., N$ is represented by a voltage variable $v_i \in (-\infty, \infty)$. These voltages evolve according to intrinsic voltage-dependent (QIF) dynamics, smooth and localized synaptic interactions, and external inputs $I_i(t)$. For convenience and for technical reasons, we use a smooth change of coordinates [33] that maps these unbounded values to phase variables $\theta_i \in [0, 1]$. Here $\theta_i = 0$ and $\theta_i = 1$ represent the same state of $v_i = \pm \infty$, and a neuron is said to “spike” once it reaches this point. Mathematically, this means that the voltage of each neuron is represented by a point on a circle and the state of the entire network at time t is given by the vector of phases $\theta(t) = (\theta_1(t), ..., \theta_N(t))$. Thus, the state of all neurons in the network can be thought of as a point on an N-torus (T^N).

\textbf{Stimulus statistics and discrimination task}

We model the stimulus components $I_i(t)$ to individual neurons i as a realization of Gaussian white noise, which is fixed and exactly repeated on every trial, i.e., the noise is “frozen”. We emphasize that even though input components $I_i(t)$’s are modelled as random processes, they represent signals and not noise. In fact, there is no noise in our model: it is a deterministic but non-autonomous dynamical system. All trial-to-trial variability is generated by chaos, as we explain in the next section. Throughout, we require that the realizations $I_i(t)$ be statistically independent from each other across neurons i, so that the network’s input $I(t) = \{I_i(t)\}_{i}$, is free of redundancies and can be thought of as a N-dimensional signal. The mean η and increment variance ε of each $I_i(t)$ are global parameters that are fixed across all neurons. They control the statistics of the input by setting its DC component and fluctuation amplitude, which both modulate the mean firing rate of the network. Importantly, when we compare the network’s response to two stimuli $I^A(t)$ and $I^B(t)$, we also require ε and η to be the same. This way, the averaged statistics of network responses are identical for any stimulus pair, and discrimination must rely on the differences in random fluctuations between the two specific realizations $I^A(t)$ and $I^B(t)$. Unless otherwise noted, we set the parameters to $\eta = -0.5$ and $\varepsilon = 0.5$ (see Methods for more details). We revisit their influence in the section \textit{Signal strength modulates a noise floor from chaos below.}

To study our network’s sensitivity to changes in its inputs, we introduce two notions of the similarity, or “distance”, between the stimuli $I^A(t)$ and $I^B(t)$. First, we define $\rho_{\text{same}} \in [0, 1]$ as the proportion of the network’s neurons that receive identical inputs ($I_i^A(t) = I_i^B(t)$) under both A and B paradigms; the remaining fraction $1 - \rho_{\text{same}}$ receive non-identical, independent inputs ($I_i^A(t) \neq I_i^B(t)$). Second, we vary the correlation $\rho_{\text{corr}} \in [0, 1]$ between input pairs driving each neuron i, simultaneously for all i. Thus, $I_i^A(t)$ and $I_i^B(t)$ are jointly gaussian processes, each a realization of white noise, with correlation coefficient equal to ρ_{corr}. Note that the inputs to distinct cells remain independent regardless of stimulus choice ($(I_i^A(t)I_j^B(t))_i = 0$ for $i \neq j$) and that ρ_{corr} and ρ_{same} only control the similarity of inputs to the same neuron across different stimuli. In both cases, $\rho_{\text{corr}} = \rho_{\text{same}} = 0$ enforces that all

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2}
\caption{(A) Two ensembles of spike patterns are generated by distinct, N-dimensional inputs I^A and I^B repeatedly presented to the network on multiple trials, where initial states are chosen at random. This results in two network-wide response ensembles Θ_{I^A} and Θ_{I^B} containing spike patterns across neurons, time and trials. (B) Illustration of the two procedures used to control input similarity. Left: ρ_{same} controls the number of neurons $N_{\text{same}} = \rho_{\text{same}}N$ that receive identical inputs $I_i(t)$ under both stimuli $I^A(t)$ and $I^B(t)$. Right: correlation coefficient ρ_{corr} controls the correlation of all pairs of neural inputs $I_i^A(t)$ and $I_j^B(t)$ (note that $I_i(t)$ and $I_j(t)$ remain uncorrelated if $i \neq j$).}
\end{figure}
pairs \((I_A^0(t), I_B^0(t))\) are independent, whereas if \(\rho_{\text{corr}} = \rho_{\text{same}} = 1\), they are identical. Figure 2 (B) illustrates the effect of both these similarity parameters.

As will be explained in detail, we evaluate the discriminability of our network’s response using a linear classifier called the Tempotron \([32]\). It can be interpreted as a simple integrating neuron, reading out spikes from the network, whose task is to fire a spike if stimulus \(I_A^0(t)\) was presented and stay silent for \(I_B^0(t)\). This classifier will be trained on ensembles of responses to both stimuli, and tested on novel responses. Using this framework, we also vary the number of readout neurons that the classifier has access to (i.e., the readout dimension). It is the relationship between the input statistics, similarity and readout dimension we seek to better understand.

Chaos: a state space view of variability

Suppose that an input \(I(t)\) is presented to the network starting at time \(t = 0\), but that the state of the network at that time (i.e., the “voltages” \(\theta^0 = (\theta^0_1, ..., \theta^0_N)\)) is unknown. What can be said about the network’s response to the ongoing input \(I(t)\) for \(t > 0\)? To approach this question, consider an ensemble of many initial network states \(\theta^0\).

To this ensemble corresponds another one, consisting of network responses, i.e., a version of the network’s activity parametrized by \(t > 0\) for each choice of initial state \(\theta^0\), in response to the same \(I(t)\). Each “response” in this ensemble represents a different “trial,” much like in an experiment where exactly the same stimulus is repeatedly presented to a system. Trial-to-trial variability thus depends on how distributed these ensembles of responses are about the network’s state space. The theory of Random Dynamical Systems (RDS), which we briefly review below, can help us understand response ensembles.

Formally, we define a response ensemble associated with an input \(I(t)\) as a collection of network trajectories through state space, for which initial states were sampled independently from some initial probability distribution. In this paper, we choose this distribution to be the uniform one, meaning that each point in state space has equal probability of being picked. We call individual trajectories within a response ensemble trials. Snapshots of all trials at any time \(t > 0\) are ensembles of points, corresponding to a probability distribution that describes all possible network states given the system has been subjected to the stimulus \(I(t)\) up to time \(t\). Taken together for all \(t > 0\), these “snapshot distributions” \([36]\) define input- and time-dependent probability distributions describing the network’s evoked activity for all possible initial states at once and they dictate statistical attributes of our network such as trial-to-trial variability.

We denote the response ensemble at time \(t\), subject to input \(I(t)\), by \(\Theta_t^I\). The variability of a network’s response to \(I(t)\) is characterized by the breadth of differences between the trajectories forming its response ensemble, i.e., the “size” of \(\Theta_t^I\) as measured by, e.g., its diameter. Although difficult to describe by simple mathematical formulae, for specific systems, response ensembles are well-defined mathematical objects with well-understood geometric properties that can be numerically characterized. RDS theory provides a framework for studying these properties. One of the key results of RDS theory is that under very general conditions, the ensembles \(\Theta_t^I\) are concentrated on time-evolving geometric objects known as random attractors, so called because almost all initial conditions, when subjected to the same forcing \(I(t)\), will converge to the attractor. Unlike “classical attractors” in un-driven systems, which have fixed positions in space (e.g. fixed points, periodic orbits, strange attractors), the position of \(\Theta_t^I\) changes in time \(t\) and with input choice \(I(t)\). This is because our networks are driven by time-dependent stimuli, and are governed by non-autonomous systems of differential equations (see Methods).

Geometrically, these random attractors can be points, curves, or higher-dimensional surfaces, and can wind around state space in complicated ways. The exact position and shape of an attractor depends on both the system parameters and the specific realization of the stimulus. However, RDS theory also states that certain important properties of the attractor — and thus the response ensembles \(\Theta_t^I\) — are independent of specific choices of input \(I(t)\), are invariant in time, and depend only on system parameters. An important one is the sensitivity of network responses to small perturbations, as measured by the Lyapunov exponents of the system. For an \(N\)-dimensional system, these exponents are real numbers \(\lambda_1 \geq \cdots \geq \lambda_N\) that describe the rate of separation of nearby trajectories in different state space directions. For a system like our network, the Lyapunov exponents do not depend on the choice of input realization \(I(t)\) so long as it is a realization of white noise with same parameters \(\varepsilon\) and \(\eta\). A criterion for chaos is the presence of positive Lyapunov exponents. Moreover, the number of positive Lyapunov exponents roughly indicates the number of unstable directions in state space, and their magnitude indicates how strong the amplification of small perturbations is in those directions. In a chaotic system, almost any nearby trajectories will diverge from each other exponentially fast, but they do so only along unstable directions of attractors.

Other geometric properties of random attractors can be related to their Lyapunov exponents as well. For example,
the attractor dimension is a quantity describing how much of state space is occupied by the attractor — the source of trial-to-trial variability for our network — and is (roughly) given by the number of positive Lyapunov exponents. To see that this should be the case, imagine a cloud of initial conditions evolving according to the same stimulus. The state-space expansion associated with positive exponents tends to “stretch” this cloud, leading to the formation of smooth Λ^+-dimensional surfaces, where Λ^+ is the number of positive exponents (see, e.g., [37] for a general, non-technical introduction and [38, 39] for more details). If all exponents are negative, for example, then the attractor is just a (time-dependent) point, whereas the presence of a single positive exponent suggests that the attractor is curve-like, etc.

In previous work, we showed that in a wide variety of dynamical regimes, the number of positive Lyapunov exponents in driven balanced networks is less than 20% of the network’s dimension N, and often remains below 10% [14, 15]. In most of the paper below, we choose network and input parameters, described above and in Methods, so that about 8% of Lyapunov exponents are positive. Here, the rate of trajectory separation is strong with $\lambda_1 \approx 3.5$, and the network is by all accounts in a chaotic regime. At the same time, there are plenty of directions in which the attractor is “thin”, leading to trial-to-trial variability that is far from homogeneously random at the population level. We explore different parameter regimes, leading to distinct attractor dimensions, toward the end of this article.

Response ensembles and state-space separability

Before stating our main findings, we first present some numerical results characterizing the chaotic response ensembles for our model system, i.e., the ensemble of trajectories evoked by the same input but starting from different initial states. Our main goal will be to compute the typical “diameter” of a response ensemble, and to compare this statistic to the typical distance between response ensembles elicited by distinct stimuli. From the discussion above, we know that for two inputs $I^A(t)$ and $I^B(t)$ with identical statistics, the dimension of their associated response ensembles, and thus their level of trial-to-trial variability, will be the same. Revisiting our discrimination task, network responses will be discriminable if and only if the corresponding ensembles Θ^A_t and Θ^B_t do not overlap most of the time. To predict when this is the case, knowing only the dimension of Θ^A_t and Θ^B_t is insufficient; we need to understand how the position of Θ^A in state space depends on the choice of $I(t)$. We will present evidence that for the balanced spiking networks studied here, there exist broad parameter regimes where the relation

$$\text{diameter of a response ensemble} \ll \text{distance between different ensembles}$$

generally holds.

Consider the following pairwise distance quantities, the statistics of which we sample using numerically simulated network trajectories (see Methods for details):

$$X(t) = \| \theta(t, \theta_0, I^A) - \theta(t, \tilde{\theta}_0, I^A) \|$$

$$Y(t) = \| \theta(t, \theta_0, I^A) - \theta(t, \tilde{\theta}_0, I^B) \|$$

where initial states θ_0 and $\tilde{\theta}_0$ are independently, randomly chosen and $\| \theta_1 - \theta_2 \|$ denotes the (shortest) distance between two states θ_1 and θ_2. Figure 3 (A) illustrates these measurements. Both $X(t)$ and $Y(t)$ denote the distance between a pair of trajectories at time t: “within-ensemble” for $X(t)$ and “between-ensemble” for $Y(t)$. Formally, they are random variables because they depend on a pair of random initial conditions.

The quantity $X(t)$ represents the “typical size” of an ensemble at time t; we view it like the diameter in that it measures the distance between two typical points on the corresponding attractor. The quantity $Y(t)$ is the typical distance between two ensembles elicited by stimuli $I^A(t)$ and $I^B(t)$. In the context of the present model, we say that the two stimuli are separable (in the state space sense) if the distributions of $X(t)$ and $Y(t)$ do not have a significant overlap (see Figure 3). The dimension of the underlying attractor is reflected in $X(t)$ in the following way: if the dimension were 0 (so the attractor is a single point), then $X(t) \approx 0$, and if the dimension is positive, then $X(t)$ would also be positive (but can be large or small). In general, $X(t)$ will fluctuate in a complicated fashion as the time-dependent attractor evolves and changes shape. Based on previous work [14, 15], we expect these fluctuations to be relatively small, so that $X(t)$ is nearly constant in time. Furthermore, while the fluctuations in $X(t)$ depend on the specific choice of stimulus, standard results from probability theory tell us that its mean depends only on the system parameters and the statistical distribution of the stimuli. Thus, the mean value of $X(t)$ remains unchanged if we replace $I^A(t)$ by $I^B(t)$ in Equation (1) (since we require $I^A(t)$ and $I^B(t)$ to have identical parameters). Similar reasoning applies to $Y(t)$, which is akin to measuring the rate of separation between two independent realizations of
the same stochastic process. Once again, we expect $Y(t)$ to fluctuate around some mean, with the exact fluctuations dependent on the input realizations but with mean and variance depending only on system parameters and stimulus statistics.

From simulations, we produce pairs of trajectories subject to both $I^A(t)$ and $I^B(t)$, all with random initial states. We compute $X(t)$ and $Y(t)$ and plot the result as a function of time in Figure 3 (B) where $\rho_{\text{corr}} = 0.5$ (I^A and I^B are 50% correlated). As expected, after a short transient $X(t)$ settles quickly to a positive constant, which is unchanged if the trajectory pair is selected from Θ^A_i or from Θ^B_i. Likewise, $Y(t)$ settles quickly to a steady-state in which it fluctuates around a well-defined mean.

For a more complete view of this phenomenon, we consider the distributions of pairwise distances, sampled over 100 trajectory pairs, starting from uniformly random states. Figure 3 (C) shows the time evolution of these distributions for the first second of elapsed time. As for the single-pair measurements (Figure 3 (B)), both distributions settle into near-constant, steady values after a very fast transient (~ 10-50 ms). This remains true for any similarity parameter value ρ_{same}, ρ_{corr}. We note that this short transient validates our general definition of “trial” which includes trajectories with distinct initial states as well as any trajectories that received some sort of perturbation — such as a synaptic failure or the event of an extra spike — in the recent past. To capture the stationary nature of pairwise distances, we compute time-averaged distributions $\langle X \rangle_t$ and $\langle Y \rangle_t$, which we calculate using 1000 time points between $t = 100$ and $t = 12,000$ ms. While $\langle X \rangle_t$ remains the same regardless of the similarity between $I^A(t)$ and $I^B(t)$, $\langle Y \rangle_t$ can be used to measure the effect of stimulus similarity on the location of response ensembles in state space. Figure 3 (D) shows the means $\langle X \rangle_t$ and $\langle Y \rangle_t$ as well as one averaged standard deviation, for a range of input similarity parameters ρ_{corr} and ρ_{same} between 0 and 1. As expected, when both inputs are identical ($\rho_{\text{corr}} = \rho_{\text{same}} = 1$), $\langle Y \rangle_t$ collapses to $\langle X \rangle_t$ since Θ^A_i and Θ^B_i describe the same ensemble.

However, we see that $\langle X \rangle_t$ and $\langle Y \rangle_t$ become more than two standard deviations apart as soon as the stimuli become less than 90% similar. This is true for both definitions of stimulus similarity. The conclusion is that the chaotic, balanced networks at hand produce dynamical responses that stay separated in state space even for stimuli that are very similar.

To summarize the above, pairwise distances between evoked trajectories inform us about geometric properties of response ensembles, and how they organize in state space. In parameter regimes where $X \ll Y$, which occur for stimuli that are less than 90% similar, we expect that a decoder could classify novel trajectories, given information about the distributions $\langle X \rangle_t$ and $\langle Y \rangle_t$. Conversely, in parameter regimes where $X \approx Y$, it may be difficult for a downstream decoder to discriminate response ensembles using simple criteria like linear separability. We now investigate this stimulus discrimination in detail.
Finding 1. Chaotic spike patterns are linearly discriminable

The state-space separability studied above assumes that one has access to the full state of the network at all times; any biologically realistic decoder would only have access to a network’s spiking activity. We next present evidence that the spikes generated by balanced, chaotic networks can also be used by a simple linear classifier, the Tempotron, to discriminate between two stimuli with identical statistical properties. We first review some general findings about spike responses in chaotic networks.

Trial-to-trial variability of single cells and reliable spike events

For the class of models studied here, previous work has shown that the unstable directions in attractors – i.e., the directions in which chaotic dynamics will spread the response ensemble produced by a single stimulus – generally align with neural coordinates. Moreover, the identity of the corresponding “unreliable” neurons change in time [14]. This leads to intermittent variability in single neurons: at any moment there is a small fraction of neurons in the network that have variable dynamics across trials, while the rest behave in a reliable fashion.

We can observe this phenomenon by restricting the definition of pairwise distance (1) to single-neuron coordinates: \(X_i(t) \), and \(Y_i(t) \) for the (transformed) voltage variable \(\theta_i \). The value \(X_i(t) = 0 \) means that different initial network states nevertheless lead to the same state for cell \(i \) at time \(t \), i.e., the neuron \(i \) has the same voltage across all trials.

A similar interpretation applies to \(Y_i(t) \). Figure 3 (E) shows these quantities for a randomly selected neuron \(i \). In contrast to pairwise distances in the full state space (Figure 3 (B)), \(X_i(t) \) regularly collapses to zero. This is a reflection of the intermittent variability discussed above. \(Y_i(t) \) also varies over time although it remains greater on average. This suggests that at any moment in time, for a given input \(I(t) \), some network coordinates may offer trial-to-trial reliable responses that can be used to distinguish similar input stimuli.

![FIG. 4: (A) The spike patterns from a response ensemble, \(\Theta_I \), containing network responses to input \(I(t) \) on many trials, are separated for different neurons. This leads to a collection of \(N \) single-neuron rasters across trials. (B) Example raster plot for a single neuron in the network on one hundred trials. Some spikes are precisely repeated across all trials (reliable) while some others are variable from trial to trial (unreliable). (C) Histogram of spike event reliability sampled over all spike events in the network (dark blue), and over uncoupled neurons where network interactions are replaced by trial-independent poisson spike trains (light red). See text for details, one hundred trials used for sampling.](image-url)

We now turn our attention from the internal states of cells to the spikes produced by response ensembles \(\Theta_I \). This is a collection of events indexed by time, neuron and trial as illustrated in Figure 4 (A) and denoted by \(\Theta_I \) (without explicit time-dependence \(t \)). Consistent with the intermittent trial-to-trial variability in the state variables of single cells, we find that the spiking of single cells shows changing levels of reliability (i.e., repeatability across trials). Figure 4 (B) shows the spikes generated by a randomly chosen neuron in the network over 100 repeated trials. It is clear that some spikes are repeated across all trials (reliable spikes) and others are not (unreliable spikes). We quantify the reliability of a spike by estimating the probability of it being repeated on other trials. This is done by convolving the cross-trial spike trains of a neuron with a gaussian filter (standard deviation 10 ms) and adding the resulting waveforms to obtain a filtered peri-stimulus time histogram (PSTH). We call each peak in this histogram a spike event and a spike is assigned to an event if it falls within a tolerance time-window defined by the width of the peak at half height [14, 40]. The event’s reliability is then estimated by the number of member spikes divided by the number of trials considered. If a spike event has a reliability of 1, it means that one can expect a spike from that neuron at that moment on every trial while a lower reliability indicates more variability.

Importantly, despite chaotic dynamics, a majority of spike events in the network are reliable, as illustrated by the
histogram (dark blue) in Figure 4 (C). This is due to the geometric properties of response ensembles described above and further outlined in [14, 15]. A consequence is that at any one moment, there typically is reliable spiking in some neurons’ coordinates (see Figure 4 (A)), leading to repeatable spike patterns embedded within population patterns.

As demonstrated in detail in earlier work, we stress that reliable spike events are not solely the result of strong fluctuations of inputs \(I(t) \) driving neuron \(i \) to spike reliably. While input fluctuations certainly contribute to spiking events, so does the timing of incoming synaptic events. To illustrate this, Figure 1 (D) shows a “surrogate” histogram of spike event reliability (light red), in which neurons are driven by the same input signals but network interactions are replaced by trial-independent, poisson-generated spike trains matching the network firing rate. It is apparent that replacing chaotic variability by homogeneous poisson randomness makes spikes become much less reliable (see also [14]). We revisit the roles of external inputs and network interactions in spike generation in the section Signal strength modulates a noise floor from chaos below (see e.g. Figure 8 (A)).

These results indicate that the response ensembles \(\Theta_i \) elicited by any fixed input \(I(t) \) correspond to relatively low-dimensional attractors whose projections onto the neural coordinate axes (i.e., the single-cell marginal probability distributions) are tightly distributed, except for a few directions at a time. These directions will change with time as the input \(I(t) \) fluctuates, but the number of unstable directions remains roughly constant. This leads to changing trial-to-trial variability of spike times in single neurons. Intriguingly, similar types of “intermittent” spiking variability have been reported in in vivo experiments (cf. [25, 41]).

The Tempotron and discrimination

Our goal is to discriminate between two statistically identical random stimuli based on the network responses they evoke. We do this by training a classifier on the collections of spike times \(t = t_i^s \) evoked by distinct network inputs \(I^A(t) \) and \(I^B(t) \) on finite time intervals \([0, T] \). There are many machine-learning techniques that can perform this task, but our main criteria for a preferred approach are: (i) it should be a useful metric to compare the encoding performance of our network under different conditions and (ii) it should isolate important spike features for coding (interpretability). We therefore opt for a simple, linear classification approach. The results serve as a lower bound on the classification capacity of the network.

There several approaches one can use to find a hyperplane that separates sets of points in a high-dimensional space, such as the Support Vector Machine [42] or other regression techniques. Here, we use a classification method called the Tempotron [32], a gradient-descent approach acting on linear weights of temporal kernels designed to mimic the post-synaptic potentials induced by individual spikes. Importantly, the resulting classification hyperplane corresponds to the threshold of a spiking Linear Integrate-and-Fire (IF) neuron model.

The Tempotron receives vector-valued filtered spike trains \(s(t) = \{s_i(t)\}_{i=1..N} \) where \(s_i(t) = \sum_{t_j} K(t - t_j) \) and \(K(t) = V_0[e^{-t/\tau_1} - e^{-t/\tau_2}] \) where \(V_0 \) is a normalizing constant. The double-exponential filtering is meant to mimic the rise and fall of synaptic potentials in an IF neuron whose voltage obeys the equation

\[
V(t) = \sum_{i=1}^{N} w_i \sum_{t_j} K(t - t_j^s) + V_{\text{rest}}
\]

with voltage threshold set at \(V_{\text{thr}} = 1 \). Thus, the Tempotron computes the sum of the filtered network spike trains, according to the read-out weights \(w_i \) and the timescale set by its kernel. We tune the filter’s decay and rise time-constants to \(\tau_1 = 20 \) and \(\tau_2 = 3.75 \) ms as in [32], to impose an intrinsic sensitivity to spike timing at that resolution.

The Tempotron’s goal is to fire at least one spike (i.e. cross its threshold \(V_{\text{thr}} \)) when presented with a network spike output associated to \(I^A(t) \) while refraining from firing when the network responds to \(I^B(t) \). Following [32], we train the Tempotron to classify spike outputs on finite-length time intervals \([t_0, t_0 + T] \) using a fixed number of trials from \(\Theta_{IA} \) and \(\Theta_{IB} \) respectively, and test the trained classifier on new trials. Thus, beyond discriminating between two “training” ensembles of spikes, we test the ability of the Tempotron to generalize and discriminate new patterns, related to training sets in that they are sampled from the same chaotic response ensemble. The robustness of the Tempotron to Gaussian, random spike-time jitters is well established [32]; here we investigate the effect of chaotic variability.

Figure 5 illustrates the process. Out of 100 trials from each ensemble, we select 50 from \(\Theta_{IA} \) and 50 from \(\Theta_{IB} \) to train the read-out weights \(w_i \) in Equation (2). Figure 5 (A) illustrates the filtered spike output of a randomly selected neuron on the training trials from \(I^A \) and \(I^B \). The remaining trials will be used for testing. We employ the algorithm described in [32] to find a set of weights \(w_i \) imposing that the voltage \(V \) of the Tempotron will exceed the threshold
Single cell spikes on multiple trials

We propose that reliable spiking of a few neurons at precise moments in time (i.e., reliable spike patterns) drive successful classification of stimuli by the Tempotron. In this section we demonstrate this by deconstructing the Tempotron’s readout and by observing the impact of “jittering” underlying spikes.

We first turn to the read-out weights \(w_i \), which are the result of a global optimizing algorithm \([32]\). Figure 6 (A) shows the values of all \(w_i \)'s for a Tempotron trained to distinguish two stimuli, \(I^A(t) \) and \(I^B(t) \), with perfect performance (\(P = 1 \)). We find that the neurons with the strongest weights spike very reliably when the network is presented with input \(I^A(t) \), right before the peak of the Tempotron’s output (asterisk, see Figure 6 (A) bottom and Figure 5 (B)). Conversely, the same neurons either do not spike or spike unreliably in response to \(I^B(t) \) around the same moment in time. In Figure 6 (B), we quantify this finding by showing a scatter plot of spiking event reliability for each neuron, plotted against its output weight \(w_i \). This shows that any neuron with a high \(w_i \) also shows high spiking reliability under input \(I^A(t) \).

Next, we degrade the temporal precision of network responses by randomly “jittering” spike times and study the impact on classification performance by the Tempotron. To “jitter” a spike train, we shift each spike time on all trials by a random amount, uniformly and independently drawn from an interval of \((-r, r)\), where \(r \) is the jitter radius (see...
To probe the question of what spiking features lead to the reliable classification learned by the Tempotron, we set the jitter radius to 50 ms and jitter different subsets of neurons in the testing data. In contrast to the procedure described above, where training and testing spike times were jittered, only testing spike times are now jittered; the Tempotron is trained on the original spikes produced by the network. We apply this jittering procedure to an increasing number of neurons in the network, re-testing the classification performance P as neurons are cumulatively added to this “jittered” pool. We do this for three different orderings in which neurons are added to the jittered pool: (i) neurons with largest trained weights w_i listed first, (ii) neurons with smallest w_i’s listed first and (iii) neurons randomly listed. The results are shown in Figure 6 (E). First, note that perturbing the spike times of neurons with large w_i’s quickly reduces performance down to chance, whereas jittering the spike times of random neurons or those with low read-out weights has little to no effect on performance. The details of the observations above are likely to depend on the choice of time constants for the Tempotron’s filters, but we expect the overall trends to persist.

Figure 6 (C)). This leaves the total number of spikes fired the same, but strongly disrupts their temporal precision, as illustrated in Figure 6 (C). We use this jittering in two ways. First, we train and test the Tempotron on jittered spikes, to probe the dependence of classification performance on the temporal precision of spike times produced by chaotic networks. Second, we train the Tempotron on the original spike data but test using jittered spike times for subsets of neurons, to probe the learned role of these neurons in classifying stimuli.

Training and testing the Tempotron on jittered spike time data shows that classification performance P progressively declines as the jitter radius increases. The rate at which performance drops depends on the similarity between inputs $I^A(t)$ and $I^B(t)$, as illustrated in Figure 6 (D) for three values of ρ_{same} (the fraction of neurons receiving identical direct inputs under both signals). Evidently, the lower ρ_{same} is, the more distinguishing features there will be in the two response ensembles to be classified, the combination of which enables the Tempotron to classify stimuli even with substantial spike time jitter. Overall, when spikes are jittered by 10’s of ms, classification performance drops significantly; for similar stimuli, performance drops halfway to chance when the jitter radius is 25 ms. We conclude that the Tempotron uses quite precisely timed spikes to distinguish the responses of chaotic networks to nearby stimuli.
for a range of these constants, based on the spike-time reliability described earlier. From this we conclude that the Tempotron learns to classify stimuli based on the reliable spikes of a few neurons, at precise moments in time.

Finally, we shuffled the spike ensembles across trials by building surrogate spike patterns in which the spike output of each neuron is taken from a randomly chosen trial from the ensemble; if the read-out cells that serve as strong inputs to the Tempotron (i.e., the cells with relatively large \(w_i \)) were unreliable, this would have the effect of shifting their spike times and changing the spike counts within the test window. Numerical results indicate that shuffling has no appreciable effect on classification performance. This further suggests that repeatable spike patterns are responsible for good classification, rather than statistics like spike counts on longer time scales.

Taken together, these tests show that despite chaos, the network response preserves a fair degree of spike reliability across trials in key neural coordinates, and a simple decoding scheme is capable of taking advantage of this reliability to accurately classify spike trains. Note that the identity of these “key” neurons will change for different input stimuli and thus, at least in principle, many readout schemes could be trained in parallel on the same network.

Finding 2. Recurrence enables information distribution within networks, discrimination using few read-outs

We have shown that a neural-like readout, the Tempotron, can use the reliable spikes embedded in a chaotic network’s response in order to classify input stimuli. Up to now, this classifier had access to spikes from every neuron. A natural question is whether this complete access is necessary. In other words, how does classification performance depend on the number of inputs and outputs to the network? For example, if only a few neurons in the network receive discriminable inputs (\(I^A(t) \neq I^B(t) \)) and the decoder only reads out from a few (different) neurons, do network interactions distribute enough stimulus information to enable a successful classification?

![Image](image_url)

FIG. 7: (A) Illustration of input similarity \(\rho_{\text{same}} \) and partial read-out dimension \(N_r \). The first \(N_{\text{same}} \) neurons receive the same direct inputs from \(I^A(t) \) and \(I^B(t) \) and the Tempotron only reads spikes from the first \(N_r \) neurons. (B) The Tempotron’s discrimination performance \(P \) as a function of \(N_r \) and \(\rho_{\text{same}} \) for the chaotic network (left) and populations of \(N \) uncoupled noisy neurons (right). Performance obtained using ensembles of 100 trials from each input evenly separated into training and testing sets. Values of \(P \) reported are the averages of 20 training cycles using different training and testing subsets from the ensembles. (C) Performance vs \(N_r \) profile for both the network and the uncoupled population with \(\rho_{\text{same}} = 0.5 \) (\(N_{\text{same}} = 250 \)). Shaded areas show the standard deviation of \(P \).

In our model, the proportion of the input that is directly discriminable is controlled by the parameter \(\rho_{\text{same}} \) – the fraction of cells that receive identical inputs under \(I^A(t) \) and \(I^B(t) \). We adopt an enumeration that lists these cells first for ease of notation: the first \(N_{\text{same}} \) neurons receive indistinguishable inputs while the remaining \(N_{\text{diff}} \) receive independent ones for each stimulus; with \(N_{\text{same}} = \rho_{\text{same}} N \) and \(N_{\text{diff}} = N - N_{\text{same}} \) (see Figure 2 (B)). In addition, we introduce a second parameter, \(N_r \), which controls the number of read-out neurons providing inputs to the Tempotron. We impose the same ordering so that the first \(N_r \) neurons will be read out (i.e. the Tempotron weights \(w_i \) are defined for indices \(i = 1, ..., N_r \)) as depicted in Figure 7 (A). In this way, the classifier always reads out neurons that receive identical inputs, and when \(N_r < N_{\text{same}} \), it only has access to such neurons.

Classification performance \(P \) as a function of \(N_{\text{same}} \) and \(N_r \) is plotted in Figure 7 (B). Consistent with the results above, we achieve near-perfect performance (\(P \approx 1 \)) up to \(\rho_{\text{same}} \sim 0.9 \) when reading out from the full network \(N_r = N \). However, we also obtain very high classification performance in many cases where \(N_r < N_{\text{same}} \). Here the classifier can only read out from neurons that receive identical inputs under the two stimuli (i.e. not directly discriminable). This means that discriminable features of these neurons’ spike patterns cannot originate from their direct inputs \(I^A(t) \) and \(I^B(t) \), and must instead result from network interactions that communicate activity from other neurons.
To help put these results in context, consider what would happen for a population of \(N \) uncoupled cells receiving the same inputs as the network. In the uncoupled population of QIF neurons, there cannot be any chaotic behavior: a general fact is that isolated QIF neurons are always reliable [43], meaning that their response ensembles collapse to single trajectories after a short transient. This means that by reading out from the entire population, one could classify inputs that share all but one direct input \(I_i(t) \) (i.e. \(N_{same} = N - 1 \)). However, if a classifier only had access to a few neurons that do not receive discriminable stimuli, classification would fail completely. This is demonstrated in Figure 7 (B). In these numerical simulations, we added independent gaussian noise to each neuron as a surrogate for chaotic variability: we choose the amplitude to match the \(X \) distance statistics from Equation 1 to values for chaotic networks given in Figure 3 (B). As expected, when \(N_r < N_{same} \), the uncoupled population has a classification performance of \(P = 0.5 \), which is random chance. When \(N_r > N_{same} \), \(P \) rapidly transitions to nearly perfect performance.

Figure 7 (C) displays a cut through the previous panels at \(p_{same} = 0.5 \), showing that the recurrent, chaotic network outperforms the uncoupled population for all \(N_r \). Thus, classification is more robust to the number and identity of cells that are read out for recurrent, chaotic networks that for noisy, uncoupled ones. We also repeated this procedure using randomly selected read-out neurons \(N_r \) (violating the ordering described above) which included both neurons that received distinct stimulus inputs and those that did not. In these cases, the recurrent networks continued to outperform noisy uncoupled populations, but by a smaller margin (data not shown). We also tested classification when adding the same amount of gaussian noise to the recurrent networks as for the uncoupled populations, and found that recurrent networks still showed better performance when \(N_r < N_{same} \) and remained comparable to the uncoupled population otherwise (data not shown). This means that even with a double source of variability (noise and chaos), recurrent networks still permit a high level of stimulus classification.

We conclude from these results that recurrent interactions of the type found in our network model, despite generating chaotic instabilities, are an effective and robust way to distribute information about local inputs throughout a network so that distant readouts can be used for stimulus discrimination without specifying precise connectivity. We expect these findings to hold generally in recurrent networks that are well-connected, in the sense that for every pair of vertices in the associated connectivity graph, there is a relatively short directed path between them. In the next section, we show how the relationship between the number of readouts \(N_r \) needed for classification and the number of distinct inputs \(N_{diff} \) depends on stimulus statistics.

Finding 3. Signal strength modulates a “noise floor” from chaos

So far, our investigation of stimulus encoding has been restricted to a single choice of the stimulus amplitude \(\varepsilon \) and mean \(\eta \) (\(\varepsilon = 0.5, \eta = -0.5 \)). For these parameters, we showed that even highly similar stimuli can be distinguished based on the responses of chaotic networks. How does this depend on the stimulus amplitude (i.e. strength of temporal features)? When this amplitude drops, one might expect that it will eventually fall below a limit when any differences in stimuli will be obscured by variability induced by the chaotic dynamics of a network. We call this limit the chaos-induced noise floor. Below, we study this noise floor, and thereby establish how the discriminability of stimuli in chaotic networks depends on their statistics.

To systematically compare how stimulus statistics impact discriminability, care is needed to keep the network activity in a fairly consistent firing regime. We do this by varying parameters \((\varepsilon, \eta)\) together in a way that will produce a fixed firing rate, averaged across the network. This way, we can be certain that classifiers will be trained on the same number of spikes on average, a quantity that could affect the interpretation performance \(P \) if left uncontrolled. Specifically, we vary \(\eta \) and \(\varepsilon \) together along a path that leaves the network-wide average firing rate fixed at 6.5 Hz, as was the case for parameter values used above (see also [15]). As illustrated in Figure 8 (A), we parameterize this path by a normalized arclength parameter \(x \): for higher values of \(x \), \(\eta \) is larger and \(\varepsilon \) is smaller (see Figure 8 (B) for illustration of input as \(x \) changes).

We begin by visualizing the relative amplitudes of external inputs \(I_i(t) \) and network interactions. If the strength of stimulus fluctuations \(\varepsilon \) was so great as to simply overwhelm interactions between neurons in the network, then the role of chaos in any conclusion about stimulus encoding would be trivial: the stimulus simply overwrites any intrinsic dynamics. Figure 8 (C) shows this is not the case, neither for our benchmark parameters nor for the others we study below. For a range of \(x \) values, we plot the ratio of fluctuation amplitudes generated by distinct input sources to single neurons in the network: external input stimulus v.s. synaptic interactions from other neurons. This ratio always remains below 0.7, indicating that recurrent network connections play an important role in shaping spiking activity in all regimes considered. See also [14] for further investigation of this mechanism using spike-triggered averages.
FIG. 8: (A) Mean firing rate of the network as a function of mean input η and signal amplitude ε. Black curve shows level set at 6.5 Hz, and is parametrized by the normalized arclength x in direction of arrow. Parameter set used throughout the rest of paper ($\varepsilon = 0.5$, $\eta = -0.5$) corresponds to $x \simeq 0.3$. (B) Illustration of input $I_i(t)$ presented to a neuron as a function of the parameter x. The red line shows the mean $\eta(x)$ while the blue line shows fluctuations of amplitude $\varepsilon(x)$. For all parameters, the mean excitatory firing rate is constant. (C) Ratio of the amplitude ε of $I_i(t)$ to that of the standard deviation of network interactions as a function of parameter x (computed in θ coordinates and integrated over increments of 1.25 milliseconds). Inset shows input (red) and network interactions to a single neuron for our benchmark parameters ($\varepsilon = 0.5$, $\eta = -0.5$). (D) The fraction of positive Lyapunov exponents $\# \{ \lambda_i > 0 \}/N$ as a function of the parameter x. Red dot shows the benchmark regime ($\eta = -0.5$, $\varepsilon = 0.5$). (E) Level curves of classification performance $P = 1$ in the (x, N_r) parameter space for several values of ρ_{same}. For parameter pairs to the left of these curves, the network achieves perfect classification. Stars indicate the corresponding $N_{same} = \rho_{same} * N$. (F) Classification performance P as a function of x and read-out dimension N_r for three input similarity fractions $\rho_{same} = 0, 0.5, 0.9$. Stars indicate the corresponding $N_{same} = \rho_{same} * N$.

Even if the stimulus input does not overwhelm the network, its statistics play an important role in shaping the level of discriminable features carried by network spike patterns. As we vary input parameters, two key quantities change. One is the “signal strength”: as ε becomes smaller, the direct impact of stimulus fluctuations on neurons subsides, and, as a consequence, so does the magnitude of the differences between stimuli $I^A(t)$ and $I^B(t)$. The second is the “noise”: the chaotic variability in the responses to a single input signal. These two quantities are not independent, and their relationship is not $a priori$ obvious. Together, they combine to create the chaos-induced noise floor described above. For stimulus parameters that fall below this noise floor, chaotic variability is too widespread to allow different stimuli to be accurately classified.

As described earlier, the variability across spike patterns from the same response ensemble depends on the dimension of the underlying chaotic attractor. There are many ways to quantify this dimensionality, here we use the number of positive Lyapunov exponents divided by the dimension of the system (see Methods or [14] for details of their computation):

$$\Lambda^+ \equiv \# \{ \lambda_i > 0 \}/N.$$

Intuitively, Λ^+ indicates the fraction of unstable directions in state space at any given time. As the geometric properties of our network attractors impose that those directions generally align with neural coordinates θ_i (see earlier text about spike-time reliability), Λ^+ dictates how many neurons are “unreliable” in the system at any given time [14, 15]. Figure 8 (D) shows Λ^+ as a function of x. Notice that the network becomes more chaotic (more positive
Lyapunov exponents) as the fluctuation amplitude ε of the inputs $I_i(t)$ shrinks. This can be interpreted as weaker stimulus fluctuations giving less entrainment of neural dynamics by the inputs, and hence allowing intrinsic dynamics, the mechanism by which chaos emerges, to dominate (c.f. [17]). Thus, as x increases, both signal and noise factors should conspire to make input stimuli less discriminable. We next quantify this effect, and study how it depends on input similarity (quantified by ρ_{same}) and readout dimension N_r.

We numerically estimate the Tempotron’s discrimination performance P along the x-parametrized curve of stimulus parameters, for a range of ρ_{same} and N_r values. We follow the same procedures described in the previous section. This determines regions of parameter space $(x, N_r, \rho_{\text{same}})$ where perfect classification performance, $P = 1$, is achieved. The boundaries of these regions are shown in Figure 8 (E), where every parameter point to the left of the boundaries yields perfect classification. These boundaries have the following interpretation: for a given input parameters specified by x, one needs to read-out from a number of neurons N_r greater than a given ρ_{same}-boundary to achieve perfect discrimination of inputs with a similarity level given by ρ_{same}. As expected, the regions of perfect performance shrink as inputs become more similar. This means that more readout dimensions N_r are needed to discriminate more-similar inputs. Importantly, the boundaries are positioned at much lower N_r than the corresponding $N_{\text{same}} = \rho_{\text{same}}N$ for all cases, indicating that networks across a broad parameter range can classify inputs using neurons that themselves do not receive discriminable inputs (i.e. $I^A(t) = I^B(t)$) as demonstrated for our benchmark parameter set in the previous section.

Moreover, there is a critical region of stimulus statistics ($x \sim 0.5$) where all classification boundaries aggregate for high N_r. This represents the chaotic noise floor for x, beyond which inputs cannot be perfectly discriminated. Figure 8 (F) illustrates this noise floor in more detail, by showing contour plots of classification performance P in (x, N_r)-space for three values of ρ_{same}. It shows that while P eventually drops to chance (0.5) as $x \to 1$ — an expected behavior since $I^A(t)$ and $I^B(t)$ become indistinguishable when $\varepsilon = 0$ — this transition becomes sharper for higher input similarity ρ_{same}. This suggests that when two stimuli have many identical components (high ρ_{same}), the network can either classify them very well or not at all, depending on the stimulus amplitude. When inputs are significantly dissimilar, this transition is more gradual. Importantly, for large enough readout size N_r, the noise floor is almost identical for all input similarities, indicating that for this network, perfect classification becomes impossible for any input similarity once Λ^+ reaches about 11% of N.

In sum, for the chaotic networks at hand, perfect stimulus classification can be achieved for a wide range of stimulus statistics and similarities, and classification can be achieved using spikes from relatively few readout cells. However, once the stimulus amplitude falls below a chaos-induced noise floor, classification performance degrades rapidly.

DISCUSSION

Summary

Sparse, strongly connected recurrent neural networks used to model cortical activity in the brain often produce a balanced state, leading to chaotic dynamics [2]. We studied how this chaos — viewed as an intrinsic source of variability — impacts the capacity of recurrent networks to accurately encode temporal stimuli. With detailed numerical simulations grounded in the theoretical literature, we studied how similar stimuli — modelled by multi-dimensional frozen white noise inputs — can be decoded from chaotic network responses, both at the level of the network state space and output spike trains.

Two factors influence the ability of a decoder to successfully classify stimuli based on network outputs. The first is the strength of the chaos-induced “noise”: the trial-to-trial variability of evoked patterns due to chaos. The second is the “signal”: the sensitivity of evoked patterns to the choice of input. Our analysis of these separate factors leads to three main points: (1) Chaos in recurrent spiking networks does not, in and of itself, preclude the accurate encoding of temporal stimuli; simple decoders read out these stimuli based on reliable multi-spike patterns that chaotic networks produce via low-dimensional attractors. (2) Recurrent connectivity distributes stimulus information throughout chaotic networks, enabling high-dimensional stimuli to be classified with low-dimensional readouts. (3) Stimulus statistics (i.e., the amplitude of stimulus fluctuations relative to their mean) modulate the number of readout neurons necessary to successfully classify them: as their amplitude decreases, more neurons are required to discriminate stimuli, until a ”noise floor” is reached where discrimination is no longer possible.
Biological implications of encoding and computing in chaotic networks

Chaotic dynamics appear as an emergent property of recurrent connectivity between neurons [2, 6, 12, 17, 44, 45] that would be otherwise very stable and reliable (see [46, 47] and [48, 49] for reliability of single neurons). It is conceivable that such chaos is a significant contributor to experimentally observed variability as well (e.g. [19, 25, 41, 50]). In this way, chaos amplifies and adds to other stochastic noise sources in biological networks.

Beyond contributing variability and noise, there is a substantial literature addressing the potential advantages of chaotic dynamics for encoding and memory [51–53]. In many cases, chaotic networks act as “reservoirs” and synaptic connections are trained to use their activity to perform a given task. Here, we take a more pragmatic perspective, studying how chaotic networks work as “channels” that receive inputs and produce spike outputs that carry usable information. Furthermore, we show that same recurrent connectivity that produces chaos also serves to distribute stimulus information throughout the network: discriminability is maintained even if a decoder only has access to small subpopulations of neurons, and even when the inputs to be discriminated do not directly drive the subpopulations. As such, recurrence may serve to simplify the process of reading out stimuli from large populations, eliminating the need for precise wiring – with the resulting chaotic dynamics being a manageable by-product. While this type of stimulus “spread” can also occur in multilayer feed-forward networks with fan-out between layers, a recurrent architecture does the same operation locally, without requiring that decoders be located downstream. We speculate that this mechanism may also be relevant for contextual coding [54, 55], where the response of some neurons to a fixed local input changes if a secondary contextual input to others differs. This role for recurrence complements many other functions that it may serve in neuronal computation (e.g., maintaining working memory, enabling winner-take-all computation, sharpening tuning curves, etc.).

Finally, we argue that the encoding mechanism based on spike patterns we outline in this paper enhances earlier balanced network encoding mechanisms. Classic results point to important properties of balanced population-averaged activity: its response to global external inputs is both rapid — much faster than single neuron time constants — and linear [5]. If the inputs to our network evoke different population firing rates, then population averages carry the necessary information for discrimination. In contrast, when two inputs have similar statistics and differ only in the fine temporal patterns they carry, we show that the same network can rely on spike-time based mechanisms to classify them. It is unclear if such dynamics are present in cortical circuits and if so, in which regime they typically operate. However, there is evidence of different activity states a given cortical network can take (e.g. up and down states) depending on various contextual factors [56]. In light of the results we outlined, it is conceivable that cortical networks encode different aspect of inputs depending on these input’s features. Under this assumption, the emergent nature of chaos in recurrent networks may act as a natural mechanism to implement adaptive coding schemes, without any changes required to the network or neurons themselves.

Future work

The results presented in this manuscript address a specific class of models, albeit one that is fairly prototypical. Further studies should focus on the effect of single neuron dynamics and connectivity statistics on stimulus encoding. Moreover, beyond the amplitude effects studied here, the correlation of stimulus inputs across neurons can also impact the resulting chaotic network responses (data not shown). At the same time, these input correlations effectively diminish the dimensionality of the stimulus by introducing redundancies. An interesting area of future work is to better understand the relationship between input and output dimension with respect to stimulus coding in recurrent, spiking networks.

In experiments, is not an easy task to test whether or not a particular neural circuit is chaotic. Indeed, even for a dynamical system that does not receive input drive, and for which one can observe all degrees of freedom, it is still a hard problem to attribute variability to stochastic or deterministic (chaos) mechanisms (see e.g. [57, 58]). Therefore, the problem of experimentally verifying the nature of variability in neural circuits found in the brain is not a simple one. Nevertheless, we note that some in vivo experiments show stimulus-evoked spikes that appear to have the type of intermittent variability we described in this article [19, 41]. This invites future work to make closer connections between mechanistic models of chaotic dynamics and neural recordings.
METHODS

Model equations

The dynamics of recurrently coupled QIF units follow the formalism of [6, 14, 15]. The internal dynamics of a single neuron are given by

\[
\dot{v} = \frac{1}{\tau_Q} (v - v_R)(v - v_T) + I_{ext}(t) \tag{3}
\]

where \(\tau_Q\) is the membrane time-constant, \(v_R\) and \(v_T\) are rest and threshold potentials, \(\Delta v = v_T - v_R\) and \(I_{ext}(t)\) is an external input stimulus. Typical parameter values are \(v_R = -65\,mV\), \(v_T = -55\,mV\) and \(\tau_Q = 10\,ms\). The dynamics of (3) are hybrid: once the membrane potential \(v\) exceeds the threshold, it blows up to infinity in finite time at which point a spike is said to be emitted and \(v\) is manually reset to \(-\infty\). By a smooth change of coordinates [33], one can map the voltage interval \((-\infty, \infty)\) onto the interval \([0, 1]\) in a one-to-one fashion, mapping voltages to “phase” variables \(0 \leq \theta_i \leq 1\), where \(\theta = 0\) and \(\theta = 1\) are identified (i.e. \([0, 1]\) represents the unit circle). The phase of a cell represents the fraction of the “spike cycle” it has completed; we think of the neuron as emitting a spike each time \(\theta = 1\). Similarly, the state space of the network is the cartesian product of \(N\) copies of the unit circle, i.e., the \(N\)-dimensional torus, which one can view as an \(N\)-dimensional cube with opposite faces identified. As formulated in Equation (4) below, this model has dimensionless units. For the sake of clarity, we report spikes and other temporal observables using milliseconds by fixing the neural time constant to 10 ms in the QIF coordinates (see appendix of [14] for more details about this coordinates change).

We consider a network of \(N\) neurons separated into excitatory and inhibitory populations, coupled randomly according to a Erdős-Renyi connectivity with mean in-degree \(K \ll N\) from each E/I population. The state of the network at time \(t\) is represented by the vector-valued solution \(\theta(t) = (\theta_1(t), ..., \theta_N(t))\) which lives on the \(N\)-dimensional unit torus \(\mathbb{T}^N\). The dynamics of neuron \(i\) are governed by

\[
\dot{\theta}_i = F(\theta_i) + Z(\theta_i) \sum_{j=1}^{N} a_{ij} g(\theta_j) + \frac{\varepsilon^2}{2} Z(\theta_i) \sum_{j=1}^{N} a_{ij} Z(\theta_j) + \underbrace{Z(\theta_i)[\eta + \varepsilon W_{i,t}]}_{I_i(t)} \tag{4}
\]

where \(F(\theta_i) = 1 + \cos(2\pi \theta_i)\), the phase response curve [59] \(Z(\theta_i)\) is given by \(1 - \cos(2\pi \theta_i)\), and \(g(\theta_j)\) is a sharp “bump” function, nonzero only near the spiking phase \(\theta_j \approx 1\), modelling the rapid rise and fall of post-synaptic currents (see [14]).

The \(I_i(t)\)’s represent external inputs to neuron \(i\); here, we model these by the sum of a DC current \(\eta\) and independent white-noise processes \(W_{i,t}\), and the \(O(\varepsilon^2)\) term results from the change of variables (we alway interpret white noise forcing in the sense of Itô calculus) [14]. Together, the input signals to each neuron form the global input to the network: \(I(t) = (I_1(t), ..., I_N(t))\) as depicted in Figure 1 (A). Throughout most of the paper, signal parameters are set to \(\varepsilon = 0.5\), \(\eta = -0.5\) while \(N = 500\), \(K = 20\) and \(|a_{ij}| \approx 0.2\) so that the network is in a fluctuation-driven excitable regime, producing sustained irregular activity characterized by a broad firing rate distribution with a mean of about 6.5 Hz [14]. Note that many of the results presented scale linearly with \(N\) when all parameters remain fixed (cf. [15]). We consider independent inputs \(I_i(t)\) across neurons \(i = 1, ..., N\) but briefly address the implication of such correlations in the Discussion section.

We stress that the \(I_i(t)\) model inputs to the system, and not the various molecular and cellular sources of noise associated with neuronal dynamics. In this framework, the response of the network to a specific input can be modelled by “freezing,” or choosing specific realizations of the stochastic processes \(\dot{W}_{i,t}\); this is sometimes known as a “frozen noise” experiment [28, 29]. Given specific realizations of inputs, the model (4) can be viewed as a deterministic, nonautonomous system of ordinary differential equations. We study responses of the network to fixed signals across repeated trials where the only source of variability arises from changes in the initial condition of the network.

Numerical simulations

A standard Euler-Marayuma [60] scheme was used to numerically integrate Equation (4), treated as a stochastic differential equation. Pseudo-random increments used to sample the fixed white-noise realizations \(I_i(t)\) were generated using the Mersenne Twister algorithm. A time-step of \(\Delta t = 0.5\,ms\) was used for all simulations. We verified that
smaller temporal resolution did not change our results. For estimates involving sampling of many trajectories within response-ensembles, initial states of the network were uniformly sampled over state space T^N. Numerical estimates of Lyapunov exponents were obtained by evolving the adjunct variational equation of (4); further details can be found in [14, 15]. Large batched simulations were carried out on the NSF XSEDE Science Gateway supercomputing platform.

Numerical simulations were implemented in Python and Cython programming languages. Computations of statistical quantities such as pairwise trajectory distances and spike-time reliability, as well as the Tempotron classifier training and testing, were implemented in MATLAB.

ACKNOWLEDGMENTS

The authors thank Fred Wolf and Lai-Sang Young for very helpful discussions. GL was supported by a Bernstein Fellowship from the Bernstein Center for Computational Neuroscience, by a postdoctoral fellowship from the *Fonds de Recherche du Québec* and by an *Innovation Fellowship* from the Washington Research Foundation. KL was supported in part by NSF grant DMS-1418775. JPT is supported by a Discovery grant from the Natural Sciences and Engineering Council of Canada (NSERC Grant No. 210977 and No. 210989), operating funds from the Canadian Institutes of Health Research (CIHR Grant No. 6105509), and the University of Ottawa Brain and Mind Institute (uOBMI). ESB and GL by NSF CAREER Grant DMS - 1056125 and NIH Training grant 5T90DA032436.

[1] M. N. Shadlen and W. T. Newsome, J. Neurosci. 18, 3870 (1998).
[2] C. van Vreeswijk and H. Sompolinsky, Neural Comput. 10, 1321 (1998).
[3] A. Renart and J. de la Rocha et al, Science 327, 587 (2010).
[4] W. R. Softky and C. Koch, The Journal of neuroscience : the official journal of the Society for Neuroscience 13, 334 (1993).
[5] H. Sompolinsky, A. Crisanti, and H. Sommers, Physical Review Letters 61, 259 (1988). URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1807509651402634788related: bx1kd40k1-oj.
[6] M. Monteforte and F. Wolf, Phys. Rev. Lett. 105 (2010).
[7] P. E. Latham, B. J. Richmond, P. G. Nelson, and S. Nirenberg, J. Neurophysiol. 83, 808 (2000).
[8] S. Luccioli, S. Olmi, A. Politi, and A. Torcini, Phys. Rev. Lett. 109 (2012), URL http://prl.aps.org/abstract/PRL/v109/i13/e138103.
[9] G. Stanley, Nature Neuroscience (2013), URL http://www.nature.com/articles/nn.3330.
[10] A. A. Faisal, L. P. J. Selen, and D. M. Wolpert, Nat Rev Neurosci 9, 292 (2008).
[11] J. Thivierge and P. Cisek, The Journal of Neuroscience (2008), URL http://www.jneurosci.org/content/28/32/7968.short.
[12] M. London, A. Roth, L. Beeren, M. Häusser, and P. E. Latham, Nature 466, 123 (2010).
[13] R. Rosenbaum and D. Boiron, Physical Review X (2014), URL http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=2013659920109141627related:e_6LTAf18RsJ.
[14] G. Lajoie, K. K. Lin, and E. Shea-Brown, Phys. Rev. E 87, 052901 (2013).
[15] G. Lajoie, J.-P. Thivierge, and E. Shea-Brown, Front. Comput. Neurosci. 8, 1 (2014).
[16] O. Marre, P. Yger, A. P. Davison, and Y. Fregnac, J. of Neuroscience 29, 14596 (2009).
[17] K. Rajan, L. Abbott, H. Sompolinsky, and D. Proment, Phys. Rev. E 82 (2010).
[18] L. Molgedey, J. Schuchhardt, and H. G. Schuster, Phys. Rev. Lett. 69 (1992).
[19] P. Kara, P. Reinagel, and R. Reid, Neuron 27, 635 (2000).
[20] T. Lu, L. Liang, and X. Wang, Nature Neuroscience (2001), URL http://www.nature.com/neuro/journal/v4/n11/abs/nn737.html.
[21] W. Bair, E. Zohary, and W. Newsome, The Journal of Neuroscience (2001), URL http://www.jneurosci.org/content/21/5/1676.short.
[22] E. Lottem, E. Gugig, and R. Azouz, Journal of Neurophysiology (2014), URL http://jn.physiology.org/content/early/2014/12/27/jn.00485.2014.abstract.
[23] L. Trussell, Annual review of physiology (1999), URL http://www.annualreviews.org/doi/abs/10.1146/annurev.physiol.61.1.477.
[24] A. Scaglione, K. Moxon, and J. Aguilar..., Proceedings of the ... (2011), URL http://www.pnas.org/content/108/36/14956.short.
[25] P. Tiesinga, J.-M. Fellous, and T. J. Sejnowski, Nat. Rev. Neurosci. 9, 97 (2008).
[26] Y. Dan, J. Alonso, W. Usrey, and R. Reid, Nature Neuroscience (1998), URL http://www.nature.com/neuro/journal/v1/n6/abs/nn1098_501.html.
[27] A. Faisal, L. Selen, and D. Wolpert, Nature Reviews Neuroscience (2008), URL http://www.nature.com/nrn/journal/v9/n4/abs/nnr2258.html.
[28] H. Bryant and J. Segundo, J. Physiology 260, 279 (1976).
[29] Z. Mainen and T. Sejnowski, Science 268, 1503 (1995).
[30] C. M. Niell and M. P. Stryker, Journal of Neuroscience 28, 7520 (2008).
[31] D. A. McCormick, M. J. Mceginley, and D. B. Salkoff, Current Opinion in Neurobiology 31, 133 (2015), URL http://dx.doi.org/10.1016/j.conb.2014.10.003.
[32] R. Gütig and H. Sompolinsky, Nature neuroscience 9, 420 (2006).
[33] B. Ermentrout, Neural Comput. 8, 979 (1996).
[34] E. Kandel, Principles of Neural Science, Fifth Edition, Principles of Neural Science (McGraw-Hill Education, 2013), ISBN 9780071390118, URL https://books.google.com/books?id=s64z-LdAIsEC.
[35] A. Namenson, E. Ott, and T. M. Antonsen, Physical Review E. Statistical, Nonlinear, and Soft Matter Physics 53, 2287 (1996).
[36] J. Fellous, D. Whitmer, P. Tiesinga, and T. Sejnowski, Neurocomputing 52-54 (2003).
[37] P. Reimnagel and R. Reid, J. Neurosci. 20, 5392 (2000), URL http://www.jneurosci.org/cgi/content/abstract/20/14/5392.
[38] M. Ambard and S. Rotter, Front. Comput. Neurosci. 6, 1 (2012).
[39] K. Lin, E. Shea-Brown, and L.-S. Young, J. Nonlin. Sci. 19(5), 497 (2009).
[40] A. Banerjee, J. Comp. Neuro. 20, 321 (2006).
[41] A. Banerjee, P. Serres, and A. Pouget, Neural Comput. 20, 974 (2008).
[42] Z. Mainen and T. Sejnowski, Science (New York, NY) 268, 1503 (1995).
[43] H. Bryant and J. Segundo, Journal of Physiology 260, 270 (1976).
[44] J. Ritt, Phys. Rev. E 68 (2003).
[45] B. Lindner, A. Longtin, and A. Babisar, Neural Comput. 15, 1761 (2003).
[46] R. de Ruyter van Steveninck, G. Lewen, S. Strong, R. Koberle, and W. Bialek, Science 275, 1805 (1997).
[47] D. Buonomano and W. Maass, Nature Rev. Neurosci. 10, 113 (2009), URL http://www.nature.com/nrn/journal/vaop/ncurrent/full/nrn2558.html.
[48] D. Sussillo and L. F. Abbott, Neuron 63, 544 (2009), URL http://dx.doi.org/10.1016/j.neuron.2009.07.018.
[49] R. Laje and D. Buonomano, Nat. Neurosci. 16 (2013), URL http://www.nature.com/neuro/journal/v16/n7/abs/nn.3405.html.
[50] O. Schwartz, A. Hsu, and P. Dayan, Nature Reviews Neuroscience (2007), URL http://www.nature.com/nrn/journal/v8/n7/abs/nnr2155.html.
[51] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, Nature 503, 78 (2013), URL http://refhub.elsevier.com/S0959-4388(14)00166-6/sbref0040.
[52] V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, Nature 503, 78 (2013).
[53] A. Brock, Journal of Economic Theory (1986).
[54] G. Sugihara and R. Mayf, Nature 344, 734 (1990).
[55] B. Ermentrout and D. Terman, Mathematical foundations of neuroscience, vol. 35 (Springer, Interdisciplinary applied mathematics, 2010).
[56] S. Asmussen and P. W. Glynn, Stochastic simulation : algorithms and analysis, vol. 57 of Stochastic modelling and applied probability (New York: Springer, 2007).