Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy

John L Wallace

Abstract

This article reviews the latest developments in understanding the pathogenesis, detection and treatment of small intestinal damage and bleeding caused by nonsteroidal anti-inflammatory drugs (NSAIDs). With improvements in the detection of NSAID-induced damage in the small intestine, it is now clear that this injury and the associated bleeding occurs more frequently than that occurring in the stomach and duodenum, and can also be regarded as more dangerous. However, there are no proven-effective therapies for NSAID-enteropathy, and detection remains a challenge, particularly because of the poor correlation between tissue injury and symptoms. Moreover, recent studies suggest that commonly used drugs for protecting the upper gastrointestinal tract (i.e., proton pump inhibitors) can significantly worsen NSAID-induced damage in the small intestine. The pathogenesis of NSAID-enteropathy is complex, but studies in animal models are shedding light on the key factors that contribute to ulceration and bleeding, and are providing clues to the development of effective therapies and prevention strategies. Novel NSAIDs that do not cause small in-
testinal damage in animal models offer hope for a solution to this serious adverse effect of one of the most widely used classes of drugs.

© 2013 Baishideng. All rights reserved.

Key words: Anti-inflammatory; Ulcer; Prostaglandin; Non-steroidal; Bleeding; Intestinal; Bile; Enterohpatic; Bacteria; Hydrogen sulfide; Aspirin; Hemorrhage

Wallace JL. Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J Gastroenterol 2013; 19(12): 1861-1876 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i12/1861.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i12.1861

INTRODUCTION

Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the widely prescribed and over-the-counter medications. They are used to treat the symptoms of a variety of inflammatory conditions, most notably osteoarthritis, rheumatoid arthritis, ankylosing spondylitis and gout. In such conditions, NSAIDs are used chronically, and the affected patients frequently have co-morbidities such as hypertension, diabetes and obesity, as well as often also taking glucocorticoids or anti-coagulants.

By inhibiting the activity of cyclo-oxygenase (COX), NSAIDs prevent the formation of prostaglandin (PG) H₂, which is the precursor for the production of all other PG and thromboxane subtypes. Most NSAIDs inhibit COX activity in a competitive fashion, whereas aspirin is an irreversible inhibitor of the enzyme. Indeed, the ability of aspirin to irreversibly inhibit thromboxane synthesis by platelets, and the lack of capacity of platelets to synthesize more COX, underlie the utility of chronic, low-dose aspirin as an anti-thrombotic drug, reducing the incidence of several adverse cardiovascular events (e.g., stroke, myocardial infarction).

Inhibition of COX is central to the major anti-inflammatory actions of NSAIDs. By inhibiting the production of PGs (particularly PGE₂ and PGI₂), NSAIDs reduce two key elements of inflammation: vasodilatation and pain. By reducing blood flow to a damaged and inflamed site, NSAIDs also contribute to a reduction of edema.

Unfortunately, PGs do not only contribute to the cardinal signs of inflammation. They also play important roles in many physiological processes. In the gastrointestinal (GI) tract, PGs are very important mediators of mucosal defence and repair[1]. Inhibition of their synthesis renders GI tissues much more susceptible to damage induced by luminal irritants (including gastric acid and bile), and less able to restore mucosal structure and function after injury[2]. Suppression of PG synthesis is the key effect of NSAIDs that leads to gastro-duodenal ulceration and bleeding. However, several other effects of NSAIDs appear to be central to the ability of these drugs to cause damage in the small intestine.

OVERVIEW OF THE CLINICAL PROBLEM

For several decades, the ability of NSAIDs to induce significant damage to the small intestine was largely unappreciated, being over-shadowed by the attention paid to damage induced by these agents in the stomach and proximal duodenum. The prevalence and clinical significance of NSAID-enteropathy continues to be greatly under-recognized. NSAID-induced enteropathy and bleeding occur more frequently that NSAID-induced gastropathy[2,3]. Significant small intestinal damage and bleeding can be observed in about 70% of chronic NSAID users[4], and in the majority of patients the injury is sub-clinical[5].

Unlike the case for NSAID-gastropathy, there are no proven-effective preventative therapies for NSAID-enteropathy, and the pathogenesis is poorly understood[6]. Iron-deficient anemia is a common first presentation of NSAID-enteropathy, and serious complications can include massive bleeding, perforation and strictures, sometimes leading to death[6,7].

Aspirin is the most commonly used NSAID, and it is a very frequent cause of small intestinal bleeding. In the United States and Europe, in over 50% of cases, aspirin has been identified as the precipitator of GI bleeding leading to hospital admissions[8,9]. Aspirin-induced small intestinal damage appears to occur more frequently when the aspirin is enteric-coated[10,11]. There is a lack of recognition of the frequency and potential severity of aspirin-induced lower GI injury, particularly when the aspirin is given at low doses for cardiovascular protection. In a recent clinical trial that involved over 1200 patients taking aspirin and another anti-platelet therapy for cardiovascular protection, lower GI bleeding was found to occur 3-times more frequently than upper GI bleeding[12]. Zhu et al[13] reported that only about 3.5% of patients prescribed low-dose aspirin also received a prescription for a proton pump inhibitor (PPI), histamine H₂ receptor antagonist (H₂RA) or muco-protective drug, suggesting that the prescribing physicians did not recognize the potential for GI adverse effects of low-dose aspirin. The pathogenesis of aspirin-induced small intestinal damage differs in several respects to that of the ulceration caused by other NSAIDs (discussed in more detail below).

Selective COX-2 inhibitors were introduced to the marketplace at the beginning of this century with a promise of GI safety[14,15]. While some selective COX-2 inhibitors produce less gastroduodenal damage in some circumstances, the promise of these drugs has been largely unfulfilled[16,17]. Selective COX-2 inhibitors cause small intestinal damage and bleeding (the latter effect is somewhat surprising given the minimal inhibitory effects these drugs of these drugs on platelet function). McCarthy[18] noted that in the VIGOR study, the majority of the GI bleeds originated from lesions in the small intestine (distal to the ligament of Treitz): 58% of the GI bleeds in patients taking rofecoxib and 52% of the GI bleeds in patients taking naproxen[19].

There are several reasons for the lack of recognition of the prevalence and seriousness of NSAID-enteropa-
was found to cause significant small intestinal damage with short-term administration; thus, Endo et al. reported that 80% of patients taking low-dose aspirin for 2 wk had intestinal damage.

POLYPHARMACY CONUNDRUM: SHIFTING GI INJURY MORE DISTALLY

Animal studies of NSAID injury to the GI tract usually involve the use of healthy animals. Of course, the people most commonly taking NSAIDs on a chronic basis are those with chronic illnesses, and more often than not, they are affected by more than one disease. It is also the case that disorders such as rheumatoid arthritis, obesity and diabetes can increase the susceptibility of the patient to the GI (and other) adverse effects of NSAIDs. Moreover, these patients are often taking a number of different drugs, which can also affect susceptibility to NSAID-induced GI injury and bleeding. Polyparmacy is now commonplace, even in patients that do not have disorders other than the one for which NSAID therapy is indicated. Consider a disorder like osteoarthritis, which is more common in the elderly. Cardiovascular diseases are common in this group of patients, often leading to co-prescription of low-dose aspirin and sometimes of other anticoagulants. Low-dose aspirin is also frequently co-prescribed with selective COX-2 inhibitors and conventional NSAIDs because of concerns about the elevated risk of serious cardiovascular events in patients taking those drugs. Of course, co-administration of low-dose aspirin together with a selective COX-2 inhibitor essentially eliminates any advantage, in terms of upper GI safety, of the selective COX-2 inhibitor as compared to a conventional NSAID. To reduce the expected upper GI toxicity of the combination of an NSAID and low-dose aspirin, PPIs are typically prescribed as well. Indeed, there are now fixed-dose, enteric-coated, combination tablets available that contain an NSAID and a PPI. While there is strong evidence for PPIs reducing the severity of damage and bleeding in the stomach and duodenum, where the role of acid in the production of damage has been clearly demonstrated, there is no evidence to suggest that a PPI (or other anti-secretory drug) would reduce the severity of NSAID-induced enteropathy. Indeed, antisecretory drugs have been described as “useless either in preventing or treating mucosal lesions” induced by NSAIDs in the intestine. It is worth repeating that the majority of damage and bleeding caused by NSAIDs occurs in the small intestine, distal to the ligament of Treitz.

Using a rat model, we attempted to replicate common clinical scenarios of polypharmacy to determine the effects on the small intestine. Groups of rats were treated with combinations of anti-inflammatory doses of NSAIDs (naproxen, celecoxib or a novel hydrogen sulfide-releasing NSAID, ATB-346, a PPI (omeprazole or lansoprazole) and an anti-thrombotic dose of aspirin. In rats that received only the NSAID, the levels of small
March 28, 2013 | Volume 19 | Issue 12 | 1864

WJG | www.wjgnet.com

Wallace JL. NSAID-induced enteropathy

intestinal damage and bleeding were very low (Figures 1 and 2). However, when co-administered with a PPI or with low-dose aspirin, the levels of small intestinal damage and bleeding in rats treated with naproxen or celecoxib increased significantly (Figures 1 and 2). This effect has been confirmed in a recent study by Satoh et al.[37]. The combination of an NSAID with both a PPI and low-dose aspirin resulted in extensive damage and bleeding (the latter was evident post-mortem and also by marked decreases in hematocrit). ATB-346 did not produce small intestinal damage alone or in combination with a PPI and/or low-dose aspirin (Figure 2).

We then performed experiments to try to determine the mechanisms underlying the exacerbation of small intestinal damage by the PPIs. As discussed in more detail below, there is evidence that the bacteria residing in the small intestine play a significant role in the pathogenesis of NSAID-enteropathy. Given the evidence that marked suppression of gastric acid secretion by PPIs can alter the numbers of bacteria in the small intestine (dysbiosis), we focused our investigation on potential changes in intestinal microbiota. Treatment of rats with omeprazole resulted in a dramatic shift in the types of bacteria in the small intestine (dysbiosis). In particular, there was a marked reduction of the Actinobacteria, particularly of Bifidobacteria spp. (> 80% reduction in the jejunum). This diminution of Bifidobacteria was an important factor in the PPI-induced increase in NSAID-induced intestinal damage: replenishment of intestinal Bifidobacteria in PPI-treated rats reduced levels of naproxen-induced intestinal damage those seen in rats not receiving a PPI. Further evidence that it was the dysbiosis induced by the PPI that resulted in elevated susceptibility to NSAID-enteropathy came from studies of germ-free mice.[37]. Groups of germ-free mice were colonized with intestinal contents from rats that had been treated with a PPI or vehicle. Beginning one week later, the mice were treated with naproxen for 4 d, and the severity of intestinal damage was then blindly evaluated. Mice that had been colonized with bacteria from PPI-treated rats developed significantly worse intestinal damage than those colonized with bacteria from vehicle-treated rats.

While no clinical studies have been published that directly tested the hypothesis that treatment with PPIs could cause dysbiosis and thereby exacerbate NSAID-induced intestinal damage, there are several reports with data that are consistent with our hypothesis, as summarized by Daniell[45]. In addition to numerous studies documenting that PPIs alter the gut microbiota, resulting in diarrhea[40-42,44], there is evidence from two studies for the presence of intestinal inflammation (detected by elevated fecal calprotectin levels) in patients taking PPIs[43,46], and evidence for microscopic colitis in patients taking NSAIDs or PPIs[47-49], and particularly in patients taking both types of drugs concurrently[49]. In addition, two studies reported greater small intestinal damage in healthy volunteers taking an NSAID plus a PPI as compared to a group taking only a selective COX-2 inhibitor[50,51], and it
is now clear that the ability of selective COX-2 inhibitors to damage the small intestine is comparable to that of non-selective NSAIDs\(^6,7\).

PATHOGENESIS

The key to development of treatments and prevention strategies for NSAID-enteropathy lies in better understanding of the pathogenesis of this injury. Fortunately, the animal models of NSAID enteropathy are very good, reproducible and simple, and can serve as useful tools for gaining a better understanding of the pathogenesis of this disorder and for testing potential therapeutic/preventative agents. Administration of NSAIDs to rats, for example, results in ulceration predominantly in the distal jejunum and ileum\(^5,34\), the same regions where ulcers are concentrated in humans\(^3,13\). While there will undoubtedly be some differences between rodent models and humans, the existing data suggest that the animal models will be predictive in terms of treatment and prevention strategies. Figure 3 shows some of the key mechanisms suggested to be involved in NSAID-enteropathy, which are discussed in more detail below.

Inhibition of cyclooxygenase activity

Flow et al\(^{55}\) first suggested the existence of more than one isofrom of COX in 1972. It was almost 20 years later that the two isoforms, now known as COX-1 and COX-2, were sequenced\(^{56,57}\). In the decade that followed, a tremendous amount of research was focused on understanding the physiology and pharmacology of these enzymes, largely fueled by the interest of several large pharmaceutical companies in the notion that selective inhibitors of COX-2 would provide all of the anti-inflammatory activities of NSAIDs without the major adverse effects. However, as the science of COX-2 caught up with the marketing of COX-2, it became evident that the delineation of functions of the two COX isoforms was not so clear-cut as had been proposed and heavily promoted. COX-1 contributes significantly to inflammation while COX-2 contributes significantly to many physiological functions, including mucosal defence\(^58\). This was shown clearly both by studies of mice lacking the gene for one of the COX isoforms and pharmacological studies\(^59-63\). A striking finding from our laboratory was that injection of carrageenan into the hind-paw of COX-2-deficient mice resulted in inflammation that did not resolve, as it would in a normal mouse\(^61\), suggesting an important role for COX-2-derived prostanoids in resolution of inflammation and healing. Gilroy et al\(^{61}\) provided compelling evidence from animal models of pleurisy showing the same, and identifying specific COX-2-derived prostanoids that contributed significantly to down-regulating inflammation. Serhan et al\(^{64}\) described a family of previously unrecognized lipid mediators (lipoxins, resolvins, protectins), some of which were derived from COX-2, that act at several levels of the inflammatory cascade to “turn off” inflammation and allow for a coordinated restoration of tissue homeostasis\(^65\).

The same was true in the GI tract, as COX-2-derived prostanoids were found to contribute significantly to maintenance of the integrity of the tissue, to repair of mucosal injury and to resolution of inflammation\(^66\). Thus, COX-2 is the isofrom that produces PGs at the margins of gastric ulcers, which contribute significantly to the healing of those ulcers\(^66,67\). In the colon, prostaglandins derived from COX-2 play a very important role in down-regulating inflammation and promoting repair of mucosal injury\(^62,69\). Suppression of COX-2 activity has been shown to exacerbate experimental colitis\(^62,69\). Indeed, COX-2 is up-regulated throughout the GI tract when the tissue is injured or when there is insufficient PG production via COX-1\(^{52,53,70}\). For example, COX-2 is rapidly induced in the stomach in response to suppression of COX-1 by aspirin\(^{59}\), and it helps to enhance mucosal defence in such circumstances. One of the mechanisms through which this is achieved is via the production, via COX-2, of a potent gastroprotective and anti-inflammatory substance, 15-epi-lipoxin A\(^4\). Induction of damage in the stomach, in the absence of any other toxic challenge, requires suppression of both COX-1 and COX-2\(^64\), and this also appears to be the case in the small intestine\(^68\).

Clinical studies generally show that selective COX-2 inhibitors produce less gastrointestinal injury and bleeding than conventional NSAIDs, but the small intestinal damage may not differ substantially between the two sub-classes of NSAIDs. For example, Maiden et al\(^{63}\) performed a VCE study comparing the enteropathy
produced in patients on long-term NSAID or selective COX-2 inhibitor therapy, and the key finding was that NSAIDs and selective COX-2 inhibitors produced comparable levels of small bowel damage (small intestinal injury was observed in 50% of the patients treated with a selective COX-2 inhibitor vs 62% of patients treated with a conventional NSAID; not significantly different).

While suppression of COX activity undoubtedly contributes to the pathogenesis of NSAID-enteropathy, it is clear that other factors probably play a more significant role. Suppression of COX activity likely contributes to this disorder mainly through the impairment of repair processes, such as angiogenesis[78], and through inhibition of platelet aggregation, leading to bleeding. The latter effect, however, is most apparent with aspirin, which irreversibly inhibits platelet COX-1, and with NSAIDs that have a long half-life.

Mitochondrial injury

One of the earliest changes that can be detected after NSAID administration, in addition to inhibition of COX activity, is mitochondrial injury[78]. Morphological evidence of mitochondrial damage can be detected within 1 h of administration of an NSAID to rats, and in vitro studies of liver showed that the NSAID could rapidly cause uncoupling of oxidative phosphorylation[79]. This provides a mechanistic explanation for the ability of NSAIDs to damage intestinal epithelial cells and to increase epithelial permeability, as have been demonstrated by several groups[22,25,26]. On the other hand, this mechanism does not explain the localization of ulcers in the jejunum and ileum in animal models and in humans. In their endoscopic study of diclofenac-induced small intestinal injury, Fujimoto et al[80] observed denuded regions throughout the small intestine (perhaps indicative of a topical erosive effect), but ulcers were concentrated in the distal jejunum and ileum.

Role of bile and enterohepatic circulation

Several observations suggest important roles for bile and for enterohepatic circulation of NSAIDs in the pathogenesis of NSAID-enteropathy (Figure 3). Ligation of the bile duct in rats prevents NSAID-induced intestinal damage[23,38]. There have also been reports that NSAIDs that do not re-circulate enterohepatically do not cause small intestinal damage[25,27], although aspirin is a notable exception, at least when administered intraduodenally or in an enteric-coated formulation[41,78]. Also, in rats lacking the hepatocanalicular conjugate export pump, which is required for excretion of conjugated NSAIDs into bile, but not for the flow of bile itself, intestinal damage induced by an NSAID (diclofenac) was prevented[42]. On the other hand, induction of higher expression of the export pump aggravated NSAID-induced intestinal damage[40]. A number of studies have demonstrated that a combination of an NSAID and bile is damaging to intestinal epithelial cells[80,81] and non-GI cells[82]. It is noteworthy that in all of these studies, it was secondary bile acids that were found, in combination with NSAIDs, to be effective in damaging cells. Moreover, it has been shown that administration of an NSAID to rats results in increased concentrations of secondary bile acids in bile[83]. Thus, when an NSAID recirculates enterohepatically, the intestinal epithelium is repeatedly exposed to a damaging combination of the NSAID and bile. If this were the primary mechanism of injury in NSAID-enteropathy, however, one would expect to see ulcers produced where the highest concentrations of NSAID and bile would be found (i.e., near the Sphincter of Oddi), whereas the most severe tissue injury is concentrated in the more distal parts of the small intestine[84]. It has been suggested that the sites of ulceration correspond to the sites of NSAID re-absorption, and related to the deconjugation of the NSAIDs at those sites by bacterial β-glucuronidases[85].

Role of bacteria

There is an abundance of evidence that intestinal bacteria contribute to the pathogenesis of NSAID-enteropathy, but it remains unclear if there is a primary role, initiating the tissue damage, or just a secondary role, exacerbating tissue injury and impeding repair. One of the key observations leading some to propose a primary role of bacteria in NSAID-enteropathy is that germ-free rats and mice develop little or no intestinal damage when given an NSAID, but when colonized by gram-negative bacteria, these animals become susceptible to NSAID-enteropathy[23,38]. Several studies have documented dramatic shifts in the types of bacteria in the small intestine following NSAID administration, with increases in gram-negative bacteria generally being observed, and a concomitant reduction in gram-positive bacteria[80-83]. In some studies, there appeared to be an enrichment of specific bacteria, such as *Enterococcus faecalis*, *Clostridium*, *Bacteroides* and *Escherichia coli* (*E. coli*). A number of studies reported protective effects of antibiotics against NSAID-enteropathy, particularly when the antibiotics were effective in reducing number of gram-negative bacteria[88,89,93,94]. Similarly, some probiotics have been reported to reduce the severity of NSAID-enteropathy, especially when they prevent increases in the number of gram-negative bacteria in the intestine[83,85,86]. Despite a considerable number of studies examining the potential contribution of bacteria to NSAID-enteropathy, there remains a lack of clear evidence for a primary role of bacteria in initiation of tissue injury. Bacteria rapidly colonize sites of ulceration and can interfere with ulcer healing[87,88]. In one of the earliest papers on the pathogenesis of NSAID-enteropathy, Kent et al[90] remarked “since the antibiotics do not prevent completely the ulceration, we think that these agents reduce the severity of the lesion by allowing healing to start sooner”. A similar conclusion was drawn by Yamada et al[91].

The apparent importance of gram-negative bacteria in the pathogenesis of NSAID-enteropathy is consistent with reports of a role for lipopolysaccharide (LPS) in driving tissue inflammation and impairment of ulcer healing. Hagiwara et al[91] showed that heat-killed *E. coli*...
and their purified LPS caused “deterioration” of NSAID-induced ileal ulcers, but could not cause ulcers themselves in the absence of the NSAID). Koga et al\(^{[34]}\) reported that systemic administration of LPS reversed the beneficial effects of an antibiotic in reducing the severity of NSAID-enteropathy in rats, and further demonstrated that T cell function was not required for NSAIDs to induce intestinal ulceration. Watanabe et al\(^{[35]}\) demonstrated that mice lacking the endotoxin receptor, toll-like receptor-4, developed much less (about 80%) intestinal damage when given an NSAID than the normal counterparts. These data are once again consistent with the notion that bacteria play a secondary role in NSAID-enteropathy, exacerbating tissue injury and interfering with ulcer healing. These effects may be in part attributable to activation of neutrophils in the mucosal microcirculation, which has been shown to contribute significantly to ulceration\(^{[10-106]}\), and local generation of tumor necrosis factor-alpha may be one of the main triggers leading to neutrophil recruitment and/or activation\(^{[105-107]}\).

As mentioned above, one of the key observations supporting an important role of bacteria in the pathogenesis of NSAID-enteropathy was that germ-free animals do not develop significant small intestinal damage following NSAID administration\(^{[35-78]}\). However, one must bear in mind that ligation of the bile duct blocks the secretion of bile and the enterohepatic circulation of NSAIDs, both of which have been implicated in intestinal inflammation\(^{[36-80]}\). Moreover, the re-absorption of NSAIDs in the distal small intestine is largely dependent on intestinal bacterial enzymes. Thus, germ-free animals lack secondary bile acids. As mentioned above, most studies that have shown that bile acids (alone or in combination with an NSAID) can cause damage to intestinal epithelial cells have used secondary, rather than primary bile acids\(^{[80,81]}\). Enterohepatic circulation of NSAIDs is negligible in animals that lack intestinal bacteria, resulting in decreased exposure of the intestine to the NSAID, and therefore decreased tissue injury. Recently, LoGuidice et al\(^{[82]}\) demonstrated that an inhibitor of bacterial β-glucuronidase could significantly reduce the severity of diclofenac-induced small intestinal injury in mice. β-glucuronidase has been shown to be expressed in Clostridium, Peptostreptococcus, Veillonella and E. coli\(^{[83,108]}\).

TREATING AND PREVENTING NSAID-ENTEROPATHY

In sharp contrast to NSAID-induced gastroduodenal damage, where several options are available to provide protection to a patient, no treatments or prevention strategies for NSAID-enteropathy have been convincingly shown to be effective. As outlined above, PPIs provide upper GI protection against NSAIDs but worsen NSAID-enteropathy in animals, and there is emerging evidence that the same is the case in humans. There are novel NSAIDs in development that do not cause enteropathy in animals (discussed below).

Misoprostol, metronidazole and sulfasalazine have all been suggested to be beneficial in treatment or prevention of NSAID-enteropathy in humans, but the studies suggesting this had significant limitations (open-label, not controlled, and/or small sample sizes)\(^{[65,24,109-111]}\). Misoprostol, H\(_2\)RA and sucralfate were found to be ineffective in reducing NSAID-induced intestinal permeability in humans\(^{[112,113]}\), though in one, open-label study misoprostol reduced the elevated intestinal permeability induced by indomethacin\(^{[114]}\). Based on the animal data showing beneficial effects of metronidazole in reducing NSAID-enteropathy\(^{[99]}\), Bjarnason et al\(^{[29]}\) performed an open-label human study of chronic NSAID users. The patients took metronidazole for 2-12 wk while continuing their NSAID treatment. The endpoints were fecal excretion of \(^{51}\)Cr-labeled erythrocytes and \(^{11}\)In-labelled neutrophils. Both markers declined significantly during metronidazole treatment, leading the authors to conclude that “these results suggest that the neutrophil is the main damaging effector cell in NSAID induced enteropathy” and that the main chemoattractant “may be a metronidazole sensitive microbe”.

The observations from animal studies that NSAID-enteropathy was accompanied by dramatic shifts in numbers and types of intestinal bacteria led to a number of studies of the potential value of probiotics for treatment or prevention of NSAID-enteropathy. In studies in rats, Kinouchi et al\(^{[93]}\) demonstrated that Lactobacillus acidophilus and Bifidobacteria adolescentis administration markedly reduced the severity of NSAID-induced ileal ulceration. Syet et al\(^{[96]}\) also showed a marked protective effect of Bifidobacteria adolescentis in a rat model of NSAID-enteropathy. Only two clinical trials of a probiotic for NSAID-enteropathy have been reported to date. Montalto et al\(^{[115]}\) performed a randomized, double-blind, placebo-controlled trial of VSL#3, a probiotic formulation consisting of 8 different live bacteria. Volunteers received indomethacin daily for 4 d, and fecal calprotectin levels were the endpoint. The placebo-treated volunteers exhibited markedly elevated fecal calprotectin levels during the period of indomethacin treatment, while during treatment with VSL#3 the fecal calprotectin levels remained within the normal range. In a study by Endo et al\(^{[101]}\), 25 patients with unexplained iron deficiency anemia who had been taking low-dose enteric-coated aspirin plus omeprazole for more than 3 mo were given either Lactobacillus casei (strain Shirota) or placebo for 3 mo while continuing the aspirin and omeprazole therapy. VCE at the end of the treatment period showed a significant reduction of mucosal breaks and “capsule endoscopy score” in the group receiving L. casei. The results of this small clinical study are consistent with a study of L. casei (strain Shirotta) in a rat model of indomethacin-induced enteropathy\(^{[117]}\).

Lactofermin has been shown to prevent NSAID-
induced bleeding in rodents[119] and this effect may be related to its ability to promote the growth of \textit{Bifidobacteria} in the small intestine[119]. Oral treatment of healthy volunteers with recombinant lactoferrin was shown to reduce indomethacin-induced changes in small intestinal permeability[120]. However, in this short-term study, only a very modest increase in intestinal permeability was seen, with only a single administration of lactoferrin that would have been unlikely to have significantly affected the intestinal microbiome.

Rebamipide is a quinolinone derivative that is used to promote the healing of GI ulcers and for mucosal protection. Its mechanism of action is not fully understood, though it appears to stimulate mucus secretion and PG synthesis[121,122] and to scavenge oxygen-derived free radicals[123]. It has been shown to significantly reduce the severity of NSAID-induced enteropathy in rats[124]. Niwa \textit{et al}[125] performed a pilot study in healthy humans to examine the effectiveness of rebamipide in preventing NSAID-enteropathy. The volunteers received placebo or rebamipride together with diclofenac for 7 d. The small intestine was examined at the end of the study by VCE. Damage was observed in 8 of the 10 of placebo-treated group (2 ulcers, 1 bleed), but in only 2 of the 10 of rebamipride-treated group (no ulcers or bleeding). However, a larger study of healthy volunteers treated for 14 d with an NSAID (diclofenac), a PPI (omeprazole) and either rebamipide or placebo demonstrated that certain 5-HT receptors could modulate susceptibility to NSAID-enteropathy. The volunteers received placebo or rebamipride together with diclofenac for 7 d. The small intestine was examined at the end of the study by VCE. Damage was observed in 8 of the 10 of placebo-treated group (2 ulcers, 1 bleed), but in only 2 of the 10 of rebamipride-treated group (no ulcers or bleeding). However, a larger study of healthy volunteers treated for 14 d with an NSAID (diclofenac), a PPI (omeprazole) and either rebamipride or placebo, failed to detect a significant beneficial effect of rebamipide in terms of reducing the incidence of intestinal mucosal injury[127]. Larger studies of rebamipide, ideally in patients receiving NSAID therapy for an inflammatory disorder, are needed to clarify if this drug will have benefit in reducing the incidence and/or severity of NSAID-enteropathy.

Studies in animal models have suggested other possible approaches to prevention of NSAID-enteropathy, but have not yet been assessed in humans. For example, in a mouse model of acute indomethacin-induced intestinal damage, Yasuda \textit{et al}[128,129] found that dopamine D2 receptor antagonists reduced the severity of damage, and these effects were mediated through the activation of endogenous anti-inflammatory pathways mediated by \textit{via} \textit{α_7}-nicotinic acetylcholine receptors, as had been observed previously[126]. Using the same model, Kato \textit{et al}[130] demonstrated that certain 5-HT \textit{receptor subtypes could modulate susceptibility to NSAID-enteropathy. They reported that antagonists of the 5-HT3 receptor (ondansetron and ramosetron) dose-dependently reduced intestinal damage, while a 5-HT4 antagonist (GR113808) aggravated damage. A 5-HT4 agonist (mosapride) significantly reduced damage. As in the case of protection with dopamine D2 receptor antagonists, the authors suggested that the beneficial effects of the 5HT4 agonist may be mediated through activation of \textit{α_7}-nicotinic acetylcholine receptors. There have also been studies demonstrating a significant increase in intestinal motor activity after administration of NSAIDs, and have suggested that this contributes to the generation of injury, but pharmacological approaches targeting this 5-HT/\textit{α_7}-nicotinic acetylcholine receptor axis have not yet been evaluated in human NSAID-enteropathy.

NSAID pro-drugs: The enteropathy remains

Pro-drugs have been defined as “bioreversible derivatives of drug molecules that undergo an enzymatic and/or chemical transformation \textit{in vivo} to release the active parent drug, which can then exert the desired pharmacological effect”[125,129]. A number of NSAID pro-drugs have been developed, based on the premise that if the drug can pass through the stomach in an inactive form, it will not inhibit PG synthesis in the stomach, and therefore will not be ulcerogenic. In essence, an NSAID pro-drug of this design does not differ significantly from an enteric coated NSAID, and the problems associated with the latter are well documented[8,36]. Moreover, there are several problems with the premise upon which NSAID pro-drugs are based. First, once the drug is absorbed and transformed to release the parent drug, that drug will produce “the desired pharmacological effect”. That effect, reduction of pain and inflammation, is attributable to systemic inhibition of COX activity. In the absence of any “protective” intervention, systemic inhibition of COX activity will result in damage and bleeding in the upper GI tract. Thus, NSAIDs administered systemically induce significant gastrointestinal ulceration and bleeding[130,132].

If a pro-drug is formulated such that it produces a marked delay in the release of the parent drug, there will be a similar delay in the onset of the desired activity. Second, the pro-drug approach is focused entirely on sparing the upper GI tract of injury, ignoring the potential of the drug to cause small intestinal injury, particularly if it undergoes enterohepatic recirculation. Once the pro-drug is metabolized to release the parent drug, the parent drug will behave, pharmacokinetically and pharmacodynamically, in the same way as if the parent drug itself had been administered. These are points that have been acknowledged on the website of a company that is developing a naproxen pro-drug: “the pro-drug approach will not address the GI damage associated with the systemic inhibition of COX after release of the parent drug, nor will it address the toxic effects of metabolites delivered into the gut lumen with bile”[133]

Clinical trials of pro-drugs have often produced data that are very favourable to the pro-drug. However, this is largely because such studies have typically focused on acute gastric or gastroduodenal damage (erosions and “endoscopic ulcers”)\textsuperscript{[134] that are of questionable clinical significance, since they do not necessarily predict the incidence of true ulcers[135]. Indeed, the same is true for most of the trials of selective COX-2 inhibitors and of PPIs, which gave a false signal of the GI safety of those classes of drugs because of reliance on inappropriate endpoints for upper GI damage and lack of consideration of the potential damaging effects of these drugs on the small intestine. When examined in “real world” scenarios, using clinically meaningful endpoints[136], there is little, if any, evidence of significant benefit of NSAID pro-drugs over...
the parent drugs or other NSAIDs. This topic has been very well reviewed by Graham[30]. Thus, while the pro-drug sulindac rarely caused erosions or “endoscopic ulcers” in short-term studies of human volunteers[36,37], longer term studies in at-risk patients showed this drug to offer no upper GI safety benefit as compared to other NSAIDs[38]. Likewise, nabumetone was purported to be a GI-safe pro-drug, and acute upper GI studies suggested that this was the case[39], but in at-risk patients the drug did not offer any benefit over other NSAIDs[40]. Neither sulindac nor nabumetone have been specifically examined with respect to their propensity to cause small intestinal ulceration and bleeding. Moreover, there are suggestions in the literature[32,41], supported by animal studies[30,31], that systemic administration of NSAIDs, which completely avoids contact of the drug with the lining of the stomach and duodenum, does not offer significant benefit in terms of reducing the incidence of significant GI ulceration and bleeding.

Novel intestinal-sparing NSAIDs

The advances that have been made in understanding the pathogenesis of NSAID-enteropathy provide important clues for designing novel NSAIDs that will not damage in the small intestine (or the stomach). Several approaches have been taken that show promise, mainly using the “co-drug” model of drug design[42]. Co-drugs are somewhat like pro-drugs, with the key difference being that the pro-drug is not inert; rather, it exerts important pharmacological effects[42]. Two such classes of co-drugs are the nitric oxide (NO)-releasing NSAIDs and the hydrogen sulfide (H2S)-releasing NSAIDs[43-45]. In each case, the NSAID portion of the co-drug behaves the same as expected (inhibition of COX-1 and COX-2, leading to anti-inflammatory activity relative to the parent drugs), but ATB-346 did not cause small intestinal damage[46,47]. NO-NSAIDs were shown to cause significantly less intestinal damage than the parent drugs[48-50], and to be well tolerated in rats with pre-existing colitis[39]. In a small, short-term clinical trial, an NO-NSAID produced significantly less of an increase in small intestinal permeability than was produced by an equivalent dose of the parent drug (naproxen)[101]. Despite very promising results from clinical trials that demonstrated efficacy and safety in osteoarthritis[162-166], NO-NSAIDs have not obtained regulatory approval because the safety advantages over the parent drug (naproxen) have not been sufficiently demonstrated. One key GI safety clinical trial fell just short of showing a significant benefit as compared to naproxen (P = 0.066)[41].

H2S-releasing NSAIDs exhibit enhanced anti-inflammatory activity relative to the parent drugs[37,151,155,168,169], presumably attributable to the anti-inflammatory and pro-resolution effects of the H2S released from these drugs[49,158,170-174]. In addition to sparing the gastric mucosa of damage in several circumstances of impaired mucosal defence[46,175], H2S-releasing NSAIDs have been shown not to cause damage in the small intestine of rats[48,153,175]. Moreover, when tested in co-morbidity and polymicrobial models, with repeated administration over several days, an H2S-releasing derivative of naproxen (ATB-346) did not cause small intestinal damage[175] (Figures 2 and 4). For example, obese rats that exhibited markedly greater naproxen-induced enteropathy than was observed in lean rats, but ATB-346 did not elicit damage in lean or obese rats[175]. Interestingly, Zucker obese rats have a microbiota distinct from that of their lean littermates, with a marked reduction in intestinal levels of *Bifidobacterium*[176]. Recall that we observed that PPIs increased the severity of NSAID-enteropathy in rats, and found that this was largely attributable to a decrease in intestinal *Bifidobacterium* levels[47]. ATB-346 retained its favourable profile in the intestine even when co-administered with a PPI and or low-dose aspirin[177] (Figure 2).

Figure 4 Intestinal safety and altered biliary excretion of ATB-346. A: ATB-346 is a hydrogen sulfide-releasing derivative of naproxen[49]. When administered to obese Zucker rats, twice-daily for 4.5 d at 10 mg/kg, naproxen induced small intestinal damage that was significantly more severe in the obese rats (P < 0.01). However, at an equimolar dose, ATB-346 did not induce intestinal damage in lean or obese rats[46]. B: The serum levels of naproxen in normal rats after 4.5 d of twice-daily administration of ATB-346 were marginally, but significantly (P < 0.05) lower than those in rats treated with an equimolar dose of naproxen; C: Biliary levels of naproxen in rats treated with ATB-346 (as above) were markedly reduced compared to those in rats treated with an equimolar dose of naproxen (P < 0.001). The data shown in this graph are from Blackler et al[49].
A particularly important feature of ATB-346 that may be very important in terms of its lack of damaging effects in the small intestine is that, though metabolized to release naproxen, there are relatively low levels of naproxen in bile after administration of this compound[178] (Figure 4). Moreover, the biliary levels of naproxen-glucuronide were reduced by 72% in the ATB-346 group as compared to the naproxen group[178]. These altered pharmacokinetics of ATB-346 on naproxen did not alter the anti-inflammatory activity of the drug[177], but could contribute significantly to the intestinal-sparing properties of ATB-346.

Recently, a class of drugs was described that consists of an NSAID attached to moieties releasing both NO and HSL[177]. These compounds show comparable actions as the parent drugs in terms of inhibiting COX activity, but there are no available data on their GI toxicity.

NSAIDs pre-associated with phospholipids are a unique type of “co-drug”.

Surface-active phospholipids have been proposed to constitute an important component of the epithelial “barrier” to acid back-diffusion, and NSAIDs can to disrupt this barrier[178,179]. Lichtenberger et al[180] demonstrated that pre-associating an NSAID with a zwitterionic phospholipid prevents the NSAID from disrupting the barrier function of the epithelium. Thus, covalently linking phosphatidylcholine to aspirin, ibuprofen and other NSAIDs results in compounds with equivalent anti-inflammatory properties to the parent drug, but with markedly reduced gastric toxicity[181]. This has been demonstrated in endoscopic clinical trials for an aspirin derivative[182], and also with an ibuprofen derivative[183], though in the latter trial, statistical significance was only seen in an older subset of the patients studied. Recently, Lichtenberger et al[184] demonstrated that pre-associating aspirin with phosphatidylcholine greatly reduced the small intestinal damage produced by intraduodenal administration of this compound, as compared to aspirin alone.

CONCLUSION

NSAID-enteropathy has largely been ignored for decades as a result of the focus on NSAID-gastropathy, driven largely by the development of several commercially successful drugs targeting that disorder (H2RA, PPIs, selective COX-2 inhibitors). Moreover, the difficulty in detecting NSAID-enteropathy and the lack of any proven-effective preventative or treatment options has contributed to an under-appreciation of the magnitude of this significant adverse reaction to a very widely used class of drugs. With the development of video capsule endoscopy, the frequency and severity of NSAID-enteropathy has become more evident. Techniques such as VCE also permit more conclusive studies of the safety of novel NSAIDs and of potential prevention or treatment strategies.

The animal models for NSAID-enteropathy are very good, and they have provided a great deal of information on the pathogenesis of this disorder. Moreover, the animal models have given some direction as to viable strategies for preventing NSAID-enteropathy, and the models are useful for testing novel therapeutics agents.

As is the case with NSAID-induced injury in the upper GI tract, it is important that studies of NSAID-enteropathy focus on animal models that are most similar to the patients that use these drugs and most often develop serious adverse effects. Thus, future studies should focus on the use of animal models with relevant co-morbidities that display increased susceptibility to NSAID-enteropathy, and on patients most at risk of developing intestinal damage and bleeding.

ACKNOWLEDGMENTS

Dr. Wallace is a founder and shareholder of Antibe Therapeutics Inc., a company developing novel NSAIDs.

REFERENCES

1 Wallace JL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev 2008; 88: 1547-1565 [PMID: 18923189 DOI: 10.1152/physrev.00004.2008]
2 Adebayo D, Bjarnason I. Is non-steroidal anti-inflammatory drug (NSAID) enteropathy clinically more important than NSAID gastropathy? Postgrad Med J 2006; 82: 186-191 [PMID: 16517800 DOI: 10.1136/pgmj.2005.039586]
3 McCarthy DM. GI bleeding: problems that persist. Gastrointest Endosc 2009; 70: 225-228 [PMID: 19631801 DOI: 10.1016/j.gie.2008.12.247]
4 Bjarnason I, Hayllar J, MacPherson AJ, Russell AS. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology 1993; 104: 1832-1847 [PMID: 8507043]
5 Graham DY, Opekun AR, Willingham FF, Qureshi WA. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol 2005; 3: 55-59 [PMID: 15645405 DOI: 10.1016/S1542-3559(04)00603-2]
6 Park SC, Chun HJ, Kang CD, Sul D. Prevention and management of non-steroidal anti-inflammatory drugs-induced small intestinal injury. World J Gastroenterol 2011; 17: 4647-4653 [PMID: 22180706 DOI: 10.3748/wjg.v17.i24.4647]
7 Wallace JL. NSAID gastropathy and enteropathy: distinct pathogenesis likely necessitates distinct prevention strategies. Br J Pharmacol 2012; 165: 67-74 [PMID: 21627632 DOI: 10.1111/j.1476-5381.2011.01509.x]
8 Davies NM. Sustained release and enteric coated NSAIDs: are they really GI safe? J Pharm Pharmacol 1999; 2: 5-14 [PMID: 10951657]
9 Lanas A, Sekar MC, Hirschowitz B. Objective evidence of aspirin use in both ulcer and nonulcer upper and lower gastrointestinal bleeding. Gastroenterology 1992; 103: 862-869 [PMID: 1499936]
10 Stack WA, Atherton JC, Hawkey GM, Logan RF, Hawkey CJ. Interactions between Helicobacter pylori and other risk factors for peptic ulcer bleeding. Aliment Pharmacol Ther 2002; 16: 497-506 [PMID: 11876703 DOI: 10.1046/j.1365-2036.2002.01197.x]
11 Endo H, Sakai E, Higurashi T, Yamada E, Ohkubo H, Iida H, Koide T, Yoneda M, Abe Y, Inamori M, Hosono K, Takanashi H, Kubota K, Nakajima A. Differences in the severity of small bowel mucosal injury based on the type of aspirin as evaluated by capsule endoscopy. Dig Liver Dis 2012; 44: 833-838 [PMID: 22749649 DOI: 10.1016/j.dld.2012.05.016]
12 Casado Arroyo R, Polo-Tomas M, Roncales MP, Schei-
lesions by antisecretory drugs in rats: the role of intestinal motility. J Pharmacol Exp Ther 2012; 343: 270-277 [PMID: 22854201 DOI: 10.1124/jpet.112.197475]

40 Verdu E, Viani F, Armstrong D, Fraser R, Siegist HH, Pignatelli B, Edstrom JP, Cederberg C, Blum AL, Fried M. Effect of omeprazole on intra gastric bacterial counts, nitrates, nitrites, and N-nitroso compounds. Gut 1994; 35: 455-460 [PMID: 8174980 DOI: 10.1136/gut.35.4.455]

41 Williams C, McColl KE. Review article: proton pump inhibitors and bacterial overgrowth. Aliment Pharmacol Ther 2006; 23: 5-10 [PMID: 16593275 DOI: 10.1111/j.1365-2036.2006.02270.x]

42 Lombardo L, Foti M, Ruggia O, Chiecchio A. Increased incidence of small intestinal bacterial overgrowth during proton pump inhibitor therapy. Clin Gastroenterol Hepatol 2010; 8: 504-508 [PMID: 2060664 DOI: 10.1016/j.cgh.2009.12.022]

43 Daniell HW. NSAID-PPI enteropathy in humans. Gastroenterology 2012; 142: e20; author reply e20-e21 [PMID: 22574457 DOI: 10.1053/j.gastro.2012.02.004]

44 Compare D, Pica L, Rocco A, De Giorgi F, Cuomo R, Saranelli G, Romano M, Nardone G. Effects of long-term PPI treatment on producing bowel symptoms and SIBO. Eur J Clin Invest 2011; 41: 380-386 [PMID: 21128930 DOI: 10.1111/j.1365-2362.2010.02419.x]

45 Poullis A, Foster R, Mendall MA, Shreeve D, Wiener K. Proton pump inhibitors are associated with elevation of faecal calprotectin and may affect specificity. Eur J Gastroenterol Hepatol 2005; 17: 573-574; author reply 574 [PMID: 12702920]

46 Andrèasson D, Scheja A, Saxne T, Ohlsson B, Hesselstrand R. Faecal calprotectin: a biomarker of gastrointestinal disease in systemic sclerosis. J Intern Med 2011; 270: 50-57 [PMID: 21205026 DOI: 10.1111/j.1365-2796.2010.02340.x]

47 Wilcox GM, Mattia AR. Microscopic colitis associated with omeprazole and esomeprazole exposure. J Clin Gastroenterol 2009; 43: 551-553 [PMID: 19142168 DOI: 10.1097/MCG.0b013e31817d3f1a]

48 Aeschthelyi D, Jansen SV, Schouten GA, de Kort S, Scholtes B, Negrel RR, Hotz-Behoftsitz C, Palibarzian A, Pombo J, Watts J, Morham SG, Bjarnason I. COX-1 and 2, intestinal integrity, and pathogenesis of nonsteroidal anti-inflammatory drug enteropathy in mice. Gastroenterology 2002; 122: 1913-1923 [PMID: 12055598 DOI: 10.1016/j.gastro.2002.33647]

49 Wallace JL, Devchand PR. Emerging roles for cyclooxygenase-2 in gastrointestinal mucosal defense. Br J Pharmacol 2005; 145: 275-282 [PMID: 15778736 DOI: 10.1038/sj.bjp.0706201]

50 Sighostersen G, Simpson RJ, Walley M, Anthony A, Foster R, Hotz-Beohoffitz C, Palibarzian A, Pombo J, Watts J, Morham SG, Bjarnason I. COX-1, Cox-2, and 12-lipoxygenase in rats. Br J Pharmacol 2007; 151: 109-117 [PMID: 17635006 DOI: 10.1038/sj.bjp.0706201]

51 Noguchi H, Akamatsu T, Kasuga M. Induction of cyclooxygenase synthase/cyclooxygenase homologue. Mol Pharma 2007; 74: 2385-2392 DOI: 10.1096/fj.06-19749

52 Talbot J, Vincenzi A, Picones A, Giorgio S, Verderame M, Neri R, Toppo R, Frigeri B, Alter F. Effect of inhibition of prostaglandin synthase-2 by inhibition of cyclooxygenase-1: a key to nonsteroidal anti-inflammatory drug-induced intestinal damage. J Pharmacol Exp Ther 2002; 300: 754-761 [PMID: 11861778 DOI: 10.1124/jpet.300.3.7574]

53 Serhan CN, Oliw E. Unorthodox routes to prostanooid formation: new twists in cyclooxygenase-initiated pathways. J Clin Invest 2001; 107: 1481-1489 [PMID: 11413515 DOI: 10.1172/JCI13375]

54 Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O'Neill LA, Perretti M, Rossi AG, Wallace JL. Resolution of inflammation: state of the art, definitions and terms. FASEB J 2007; 21: 325-332 [PMID: 17267386 DOI: 10.1096/fj.06-7227rev]

55 Mizuno H, Sakamoto C, Matsuda K, Wada K, Uchida T, Noguchi H, Akamatsu T, Kasuga M. Induction of cyclooxygenase-2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterology 1997; 112: 387-397 [PMID: 9024292 DOI: 10.1016/gast.1997.112.p0m.9024292]

56 Ma L, del Soldato P, Wallace JL. Divergent effects of new cyclooxygenase inhibitors on gastric ulcer healing: Shifting the angiogenic balance. Proc Natl Acad Sci USA 2002; 99: 13243-13247 [PMID: 12232090 DOI: 10.1073/pnas.202392199]

57 Schmaussmann A, Peskar BM, Stettler C, Netzer P, Stroff T, Flogerzi B, Halter F. Effects of inhibition of prostaglandin endoperoxide synthase-2 in chronic gastro-intestinal ulcer models in rats. Br J Pharmacol 1998; 123: 795-804 [PMID: 9535006 DOI: 10.1038/sj.bjp.0701672]

58 Okayama M, Hayashi S, Aoi Y, Nishio H, Kato S, Takeuchi K. Aggravation by selective COX-1 and COX-2 inhibitors of dextran sulfate sodium (DSS)-induced colon lesions in rats. Dig Dis Sci 2007; 52: 2095-2103 [PMID: 17429720 DOI: 10.1007/s10620-007-0290-x]
March 28, 2013 | Volume 19 | Issue 12 | 1873

Wallace JL. NSAID-induced enteropathy. Curr Drug Metab 2011; 12: 245-252 [PMID: 21565536 DOI: 10.2174/138920011795101877]

LoGuidice A, Wallace BD, Benders L, Redinho MR, Boelsterli UA. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 2012; 341: 447-454 [PMID: 22328575 DOI: 10.1124/jpet.11119122]

Atchison CR, West AB, Alakumaran A, Hargus SJ, Pohl LR, Daiker DH, Aronson JF, Hoffmann WE, Shipp BK, Treinen-Moslen M. Drug enterocyte adducts: possible causal factor for diclofenac enteropathy in rats. Gastroenterology 2000; 119: 1537-1547 [PMID: 11113075 DOI: 10.1053/gast.2000.20186]

Robert A, Asano T. Resistance of germfree rats to indomethacin-induced intestinal lesions. Prostaglandins 1977; 14: 333-341 [PMID: 331401 DOI: 10.1016/0090-6980(77)90178-2]

Uejima M, Kinouchi T, Kataoka K, Hiraoka I, Ohnishi Y. Role of intestinal bacteria in ileal ulcer formation in rats treated with a nonsteroidal antiinflammatory drug. Microbiol Immunol 1996; 40: 553-560 [PMID: 8887349]

Kent TH, Cardelli RM, Stamler FW. Small intestinal ulcers and intestinal flora in rats given indomethacin. Am J Pathol 1969; 54: 237-249 [PMID: 5755565]

Dalby AB, Frank DN, St Amand AL, Bendele AM, Pace NR. Culture-independent analysis of indomethacin-induced alterations in the rat gastrointestinal microbiota. Appl Environ Microbiol 2006; 72: 6707-6715 [PMID: 17021222 DOI: 10.1128/AEM.00378-06]

Hagiyawa M, Kataoka K, Arimochi H, Kuwahara T, Ohnishi Y. Role of unbalanced growth of gram-negative bacteria in ileal ulcer formation in rats treated with a nonsteroidal anti-inflammatory drug. J Med Invest 2004; 51: 43-51 [PMID: 15000255 DOI: 10.2152/jmi.SI43]

Kato N, Mashita Y, Kato S, Mitsuichi S, Yoshikawa T, Takeuchi K. Sildenafil, an inhibitor of phosphodiesterase subtype 5, prevents indomethacin-induced small intestinal ulceration in rats via a NO/cGMP-dependent mechanism. Dig Dis Sci 2009; 54: 2346-2356 [PMID: 19101880 DOI: 10.1007/s10620-008-0466-7]

Watanabe T, Higuchi K, Kobata A, Nishio H, Tanigawa T, Shibata M, Tomiyagi K, Fujisawa Y, Oshitan I, Asahara T, Nomoto K, Takeuchi K, Arakawa T. Non-steroidal anti-inflammatory drug-induced small intestinal damage is Toll-like receptor 4 dependent. Gut 2008; 57: 181-187 [PMID: 17639086 DOI: 10.1136/gut.2007.129963]

Koga H, Aoyagi K, Matsumoto T, Iida M, Fujishima M. Experimental enteritis in rats: byproducts of lipopolysaccharide and indomethacin. Am J Physiol 1999; 276: G576-G582 [PMID: 10070032]

Kinouchi T, Kataoka K, Bing SR, Nakayama H, Uejima Y, Shimono K, Kuwahara T, Akimoto S, Hiraoka I, Ohnishi Y. Culture supernatants of Lactobacillus acidophilus and Bifidobacterium adolescentis repress ileal ulcer formation in rats treated with a nonsteroidal anti-inflammatory drug by suppressing unbalanced growth of aerobic bacteria and lipid peroxidation. Microbiol Immunol 1998; 42: 347-355 [PMID: 9654366]

Syer SD, McNighton K, Auccourtier A, Martin R, Langella P, Wallace JL. Bifidobacteria exert a protective effect against NSAID-induced enteropathy that is dependent on lactate production. Gastroenterology 2012; 142: S-489

Elliott SN, Buret A, McNighton K, Miller MJ, Wallace JL. Bacteria rapidly colonize and modulate healing of gastric ulcers in rats. Am J Physiol 1998; 275: G425-G432 [PMID: 9724253]

Elliott SN, Wallace JL, McNighton K, Gall DG, Hardin JA, Olson M, Buret A. Bacterial colonization and healing of gastric ulcers: the effects of epidermal growth factor. Am J Physiol Gastrointest Liver Physiol 2000; 278: G105-G112 [PMID: 10644568]

Yamada T, Deitch E, Speckan RD, Ferry MA, Sartor RB, Grisham MB. Mechanisms of acute and chronic intestinal...
inflammation induced by indomethacin.

Wallace JL. NSAID-induced enteropathy

indomethacin-induced small intestinal lesions in rats. Pharmacol Res 1999; 40: 517-524 [PMID: 10660951 DOI: 10.1016/1047-2773(99)00050-0]

**Miura S, Suematsu M, Tanaka S, Nagata H, Houzawa S, Suzuki M, Kurose I, Serizawa H, Tatsuguchi A. Microcirculatory disturbance in indomethacin-induced intestinal ulcer. Am J Physiol 1991; 261: G213-G219 [PMID: 1651657]

**Santucci L, Reuter BK, Wallace JL. Phosphodiesterase inhibitors prevent NSAID enteropathy independently of effects on TNF-alpha release. Am J Physiol 1999; 277: G847-G854 [PMID: 10516151]

**Bertrand V, Guimbaud R, Tulliez M, Mauprivez C, Sogni P, Couturier D, Giroud JP, Chaussade S, Chauvelot-Moachon M, Kato S, Takeuchi K. Dopamine D-receptor antagonists ameliorate indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol 2009; 297: G506-G513 [PMID: 19589943 DOI: 10.1152/ajpgi.90533.2008]

**Dial EF, Dohrmann AJ, Romero JJ, Lichtenberger LM. Recombinant human lactoferrin prevents NSAID-induced intestinal bleeding in rodents. J Pharm Pharmacol 2005; 57: 93-99 [PMID: 15651117 DOI: 10.1211/00223570551911]

**Reiter BK, Wallace JL. Misoprostol reduces indomethacin-induced changes in intestinal permeability. Gastroenterology 1996; 101: 1066-1070 [PMID: 8590005]

**Bjarnason I. Nonsteroidal antiinflammatory drug-induced small intestinal inflammation and blood loss. Effects of sulfasalazine and other disease-modifying antirheumatic drugs. Arthritis Rheum 1994; 37: 1146-1150 [PMID: 7914409 DOI: 10.1002/art.1780370806]

**Morris AJ, Murray L, Sturrock RD, Madhok R, Capell HA, Wajid MA. Role of leukocytes in indomethacin-induced small intestinal injury and ulceration in mice. Eur J Clin Invest 1999; 29: 712-718 [PMID: 11856332 DOI: 10.1046/j.1464-2998.1999.00019.x]

**Niwa Y, Nakamura M, Omiya N, Maeda O, Ando T, Itoh A, Hirooka Y, Goto H. Effect of rebamipide for diclofenac-induced small-intestinal mucosal injuries in healthy subjects: a prospective, randomized, double-blinded, placebo-controlled, cross-over study. J Gastroenterol 2008; 43: 270-276 [PMID: 18458842 DOI: 10.1007/s00535-007-0155-6]

**Fujimori S, Takahashi Y, Gudis K, Kato S, Takeuchi K. Protective effect of misoprostol on indomethacin-induced small intestinal damage in rats. J Gastroenterol Hepatol 2001; 16: 1112-1119 [PMID: 11686857 DOI: 10.1046/j.1440-1746.2001.02309.x]

**Yonezawa M, Tanaka S, Tatsuguchi A, Sakamoto C. Rebamipide, novel prostaglandin-inducer accelerates healing and reduces release of acetic acid-induced rat gastric ulcer. Comparison with cimetidine. Dig Dis Sci 1995; 40: 2469-2472 [PMID: 7587834 DOI: 10.1007/BF02653257]

**Mizoguchi H, Ogawa Y, Kanatsu K, Tanaka A, Kurose I, Serizawa H, Tsuchiya M. Microcirculatory disturbance in indomethacin-induced intestinal ulcer. Am J Physiol 1991; 261: G213-G219 [PMID: 1651657]

**Gadelle D, Raibaud P, Sacquet E. Beta-Glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol 1985; 49: 682-685 [PMID: 3993472]

**Hayllar J, Smith T, Macpherson A, Price AB, Gumpel M, Bjarnason I. Nonsteroidal antiinflammatory drug-induced small intestinal inflammation and blood loss. Effects of sulfasalazine and other disease-modifying antirheumatic drugs. Arthritis Rheum 1994; 37: 1146-1150 [PMID: 7914409 DOI: 10.1002/art.1780370806]

**Najjar AM, Murray L, Sturrock RD, Madhok R, Capell HA, Wajid MA. Role of leukocytes in indomethacin-induced small intestinal injury and ulceration in mice. Eur J Clin Invest 1999; 29: 712-718 [PMID: 11856332 DOI: 10.1046/j.1464-2998.1999.00019.x]

**Troost FJ, Saris WH, Brummer RJ. Recombinant human lactoferrin ingestion attenuates indomethacin-induced enteropathy in vivo in healthy volunteers. Eur J Clin Nutr 2003; 57: 1579-1585 [PMID: 14647223 DOI: 10.1038/sj.ejnn.1601727]

**Endo H, Higurashi T, Hosono K, Sakai E, Sekino Y, Iida H, Sakamoto Y, Koide T, Takahashi H, Yoneda M, Tokoro C, Inamori M, Abe Y, Nakajima A. Efficacy of Lactobacillus casei treatment on small bowel injury in chronic low-dose aspirin users: a pilot randomized controlled study. J Gastroenterol 2011; 46: 894-905 [PMID: 21556830 DOI: 10.1007/s00535-011-0410-1]

**Watanabe T, Nishio H, Tanigawa T, Yamagami H, Okazaki H, Watanabe K, Tominaga K, Fujiwara Y, Oshitani N, Asahara T, Nomoto K, Higuchi K, Takeuchi K, Arakawa T. Probiotic Lactobacillus casei strain Shirotia prevents indomethacin-induced small intestinal injury: involvement of lactic acid. Am J Physiol Gastrointest Liver Physiol 2009; 297: G506-G513 [PMID: 19589943 DOI: 10.1152/ajpgi.90533.2008]

**Dial EF, Dohrmann AJ, Romero JJ, Lichtenberger LM. Recombinant human lactoferrin prevents NSAID-induced intestinal bleeding in rodents. J Pharm Pharmacol 2005; 57: 93-99 [PMID: 15651117 DOI: 10.1211/00223570551911]
Endoscopic ulcers are neither meaningful nor validated as a surrogate for clinically significant upper gastrointestinal harm. Clin Gastroenterol Hepatol 2009; 7: 1147-1150 [PMID: 19559818 DOI: 10.1016/j.cgh.2009.06.006]

Lanza FL. Endoscopic studies of gastric and duodenal injury after the use of ibuprofen, aspirin, and other nonsteroidal anti-inflammatory agents. Am J Med 1984; 77: 19-24 [PMID: 64165160 DOI: 10.1016/0002-9345(84)90014-5]

Graham DY, Smith JL, Holmes GJ, Davies RO. Nonsteroidal anti-inflammatory effect of sulindac sulfoxide and sulfide on gastric mucosa. Clin Pharmacol Ther 1985; 38: 65-70 [PMID: 3874038 DOI: 10.1016/cplt.1985.136]

Carson JL, Strom BL, Morse ML, West SL, Soper KA, Stolz J, Goldstein JL, Cirino G, Wallace JL. Markedly reduced intestinal toxicity of a diclofenac derivative. J Am Coll Surg 2000; 191: 709-720 [PMID: 10930387 DOI: 10.1016/j.jamcollsurg.2000.09.004]

Elliott SN, Mc Knight W, Cirino G, Wallace JL. A nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology 1995; 109: 524-530 [PMID: 7615202 DOI: 10.1016/0001-502X(95)90857-6]

Wallace JL. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 2006; 131: 259-271 [PMID: 16831608 DOI: 10.1053/j.gastro.2006.02.033]

Zanardo RC, Brancalone V, Distrettu E, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 2006; 20: 2118-2120 [PMID: 16912150 DOI: 10.1096/fj.06-6270fje]

Goldstein JL, Jungwirthova A, David J, Spindel E, Bouchard MR, Zanardo RC, Cirino G, Wallace JL. Inhibition of hydrogen sulfide generation reduces antral ulcer. J Clin Gastroenterol 2006; 40: 149-154 [PMID: 16230075 DOI: 10.1097/01.jcg.0000243073.99682.2a]

Elliott SN, Mc Knight W, Cirino G, Wallace JL. Nitric oxide-releasing nonsteroidal anti-inflammatory drug accelerates gastric ulcer healing in rats. Gastroenterology 1995; 109: 524-530 [PMID: 7615202 DOI: 10.1016/0001-502X(95)90857-6]

Wallace JL. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid Redox Signal 2010; 12: 1125-1133 [PMID: 19769457 DOI: 10.1089/ars.2009.2900]

Wallace JL, Ignarro LJ, Fiorucci S. Potential cardioprotective actions of no-releasing aspirin. Nat Rev Drug Discov 2002; 1: 375-382 [PMID: 12120413 DOI: 10.1038/nrd9749]

Konturek SJ, Brzozowski T, Majka J, Pytko-Polczynycz J, Stachura J. Inhibition of nitric oxide synthesis delays healing of chronic gastric ulcers. Eur J Pharmocol 1993; 239: 215-217 [PMID: 7693490 DOI: 10.1016/0014-2999(93)90997-V]

Ma L, Wallace JL. Endothelial nitric oxide synthase modulates gastric ulcer healing in rats. Am J Physiol Gastrointest Liver Physiol 2000; 279: G341-G346 [PMID: 10915643]

Wallace JL, Caliendo G, Santagada V, Cirino G, Fiorucci S. Gastrintestinal safety and anti-inflammatory effects of a hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 2007; 132: 261-271 [PMID: 17241876 DOI: 10.1053/j.gastro.2006.11.042]

Whittle BJ, Lopez-Belmonte J, Moncada S. Regulation of the gastrointestinal tract via the endogenous nitric oxide/endothelial NO synthase (NOS) pathway. Curr Opin Investig Drugs 2004; 5: 316-322 [PMID: 14940316 DOI: 10.1016/j.copido.2004.01.003]
Wallace JL. NSAID-induced enteropathy

Soldo P, Calignano A, Cirino G, Wallace JL. NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. *Aliment Pharmacol Ther* 1997; 11: 67-79 [PMID: 9042976 DOI: 10.1046/j.1365-2036.1997.11326800.x]

161 Hawkey CJ, Jones JL, Atherton CT, Skelly MM, Bebb JR, Fagerholm U, Jonzon B, Karlsson P, Bjarnason IT. Gastrointestinal safety of AZD3582, a cyclooxygenase inhibiting nitric oxide donor: proof of concept study in humans. *Gut* 2003; 52: 1537-1542 [PMID: 14570719 DOI: 10.1136/gut.52.11.1537]

162 Schnitzer TJ, Hochberg MC, Marrero CE, Duquesroix B, Frayssinet H, Beekman M. Efficacy and safety of naproxinod in patients with osteoarthritis of the knee: a 53-week prospective randomized multicenter study. *Semin Arthritis Rheum* 2011; 40: 285-297 [PMID: 20828790 DOI: 10.1016/j.semarthr.2010.06.002]

163 Karlsson J, Pividic A, Aguirre D, Schnitzer TJ. Efficacy, safety, and tolerability of the cyclooxygenase-inhibiting nitric oxide donor naproxinod in treating osteoarthritis of the hip or knee. *J Rheumatol* 2009; 36: 1290-1297 [PMID: 19413388 DOI: 10.3899/jrheum.081011]

164 Baerwald C, Verdeccia P, Duquesroix B, Frayssinet H, Ferreira T. Efficacy, safety, and effects on blood pressure of naproxinod 750 mg twice daily compared with placebo and naproxen 500 mg twice daily in patients with osteoarthritis of the hip: a randomized, double-blind, parallel-group, multicenter study. *Arthritis Rheum* 2010; 62: 3635-3644 [PMID: 20722026 DOI: 10.1002/art.27694]

165 Schnitzer TJ, Kivitz A, Frayssinet H, Duquesroix B. Efficacy and safety of naproxinod in the treatment of patients with osteoarthritis of the knee: a 13-week, prospective randomized, multicenter study. *Osteoarthr Cartil* 2010; 18: 629-639 [PMID: 20202489 DOI: 10.1016/j.joca.2009.12.013]

166 Wallace JL, Viapiani S, Bolla M. Cyclooxygenase-inhibiting nitric oxide donors for osteoarthritis. *Trends Pharmacol Sci* 2009; 30: 112-117 [PMID: 19230986 DOI: 10.1016/j.tips.2009.01.001]

167 Lohmander LS, McKeith D, Svensson O, Malmenäs M, Bolin L, Kalla A, Genti G, Szechinski J, Ramos-Remus C. A randomised, placebo controlled, comparative trial of the gastrointestinal safety and efficacy of AZD3582 versus naproxen in osteoarthritis. *Ann Rheum Dis* 2005; 64: 449-456 [PMID: 15345500 DOI: 10.1136/ard.2004.025352]

168 Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. *Free Radic Biol Med* 2007; 42: 706-719 [PMID: 17291594 DOI: 10.1016/j.freeradbiomed.2006.12.011]

169 Sparatore A, Perrino E, Tazzari V, Giustarini D, Rossi R, Rossoni G, Erdmann K, Schröder H, Del Soldato P. Pharmacological profile of a novel H(2)S-releasing aspirin. *Free Radic Biol Med* 2009; 46: 586-592 [PMID: 19100325 DOI: 10.1016/j.freeradbiomed.2008.11.013]

170 Li L, Bhatta M, Moore PK. Hydrogen sulphide—a novel mediator of inflammation? *Curr Opin Pharmacol* 2006; 6: 125-129 [PMID: 16487749 DOI: 10.1016/j.coph.2005.10.007]

171 Whiteman M, Le Trionnaire S, Chopra M, Fox B, Whatmore J. Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. *Clin Sci* (Lond) 2011; 121: 459-488 [PMID: 21843150 DOI: 10.1042/CS20110267]

172 Dufton N, Natividad J, Verdu EF, Wallace JL. Hydrogen sulfide and resolution of acute inflammation: A comparative study utilizing a novel fluorescent probe. *Sci Rep* 2012; 2: 499 [PMID: 22787557 DOI: 10.1038/srep00499]

173 Wallace JL, Vong L, McKnight W, Dicy M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. *Gastroenterology* 2009; 137: 569-578 [PMID: 19375422 DOI: 10.1053/j.gastro.2009.04.012]

174 Wallace JL, Fennar JC, Muscara MN. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. *Antioxid Redox Signal* 2012; 17: 58-67 [PMID: 22917247 DOI: 10.1089/ars.2011.4351]

175 Blackler R, Syer S, Bolla M, Ongini E, Wallace JL. Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. *Plos One* 2012; 7: e35196 [PMID: 22496907 DOI: 10.1371/journal.pone.0035196]

176 Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson JD, Tuohy KM, McCarty AL, Gibson GR, Nicholson JK. Top-down systems biology modeling of host metabolite-microbiome associations in obese rodents. *J Proteome Res* 2009; 8: 2361-2375 [PMID: 19275195 DOI: 10.1021/pr800988s]

177 Kodela R, Chatopathayhy M, Kashki F. NOSH-Aspirin: A Novel Nitric Oxide-Hydrogen Sulfide-Releasing Hybrid: A New Class of Anti-inflammatory Pharmaceuticals. *ACS Med Chem Lett* 2012; 3: 257-262 [PMID: 22916316 DOI: 10.1021/ml30002rn]

178 Lichtenberger LM, Zhou Y, Dial EJ, Raphael RM. NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. *J Pharm Pharmacol* 2006; 58: 1421-1428 [PMID: 17152203 DOI: 10.1211/jpp.58.10.0001]

179 Lichtenberger LM, Wang ZM, Romero JJ, Ulloa C, Perez JC, Giraud MN, Barreto JC. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. *Nat Med* 1995; 1: 154-158 [PMID: 7785013 DOI: 10.1038/nmt0295-154]

180 Lichtenberger LM, Barron M, Marathi U. Association of phosphatidylcholine and NSAIDs as a novel strategy to reduce gastrointestinal toxicity. *Drugs Today (Barc)* 2009; 45: 877-890 [PMID: 19130522]

181 Cryer B, Bhatta DL, Lanza FL, Dong JF, Lichtenberger LM, Marathi UK. Low-dose aspirin-induced ulceration is attenuated by aspirin-phosphatidylcholine: a randomized clinical trial. *Ann J Gastroenterol* 2011; 106: 272-277 [PMID: 21081908 DOI: 10.1038/ajg.2010.436]

182 Lanza FL, Marathi UK, Anand BS, Lichtenberger LM. Clinical trial: comparison of ibuprofen-phosphatidylcholine and ibuprofen on the gastrointestinal safety and analgesic efficacy in osteoarthritic patients. *Aliment Pharmacol Ther* 2008; 28: 431-442 [PMID: 18549459 DOI: 10.1111/j.1365-2036.2008.03765.x]

P- Reviewer Tarnowski AS S- Editor Wen LL L- Editor A E- Editor LJY