Relationships of clinical response to relevant molecular signal during Phase I testing of Aurora Kinase A inhibitor: Retrospective assessment

John Nemunaitis, Christopher Blend, Gabriel Bien-Willner, Meghan Degele, Alyssa Roth, Stacey Hayes, Leah Plato, Andrew Guo, James Nemunaitis, David B. Jackson and Neil Senzer

1 Mary Crowley Cancer Research Centers, Dallas TX, USA
2 Texas Oncology, P.A., Dallas, TX, USA
3 Gradalis, Inc., Dallas, TX, USA
4 Medical City Dallas Hospital, Dallas, TX, USA
5 Molecular Health, Heidelberg, Germany

Abstract
Retrospective analysis utilizing "next generation sequencing (NGS)" was done on cancer tissue harvested from 14 patients prior to receiving MLN8237, a novel Aurora Kinase A inhibitor. The responding patients (n=4) were characterized by stable disease ≥6 months and prolonged time of progression (≥1.3 fold prior treatment). Differential patterns of nodal connectivity in protein-protein interaction networks (consequent to determined genomic alterations) emerged from the comparison between responder and non-responder groups. The responding patient population showed high connectivity within MYC related genes including regulators of the Wnt/beta-catenin pathway. On the other hand, the non-responding patients showed high connectivity centered on the TP53/RB1 axis. Matching "targeted therapy to target" is a sine qua non for maximizing effective therapy in appropriate patients and NGS mapping may further our understanding of the relationships between molecular biological pathways and targeted therapy response. While awaiting further progress in systems analysis across "omic" levels (genomic-transcriptomic-proteomic), research involving of NGS sequence mapping to interrogate patient response to therapy in order to help elucidate molecular therapeutic predictors is justified based on the urgent needs of patient care.

Introduction
"Personalized" oncology, defined as the delivery of rationally based singlet or combinatorial therapeutics targeting a patient’s tumor-specific rewired pathway dysfunctional operational sites, has rapidly become the current paradigm of cancer treatment [1]. Despite consensus on this strategy, tactical implementation remains limited in scope [2]. The most appropriate methodology of target identification, including sequential parallel qualitative and quantitative retrieval of "omics" strata (i.e., genomics, epigenomics, transcriptomics, proteomics and metabolomics), data interrogation, and systems analysis has yet to be identified. However, the exigencies of patient care require the application of best available resources.

Of interest in this space is the regulation and targeting of Aurora kinase signaling. Aurora Kinase A (AURKA) is a highly conserved serine/threonine kinase [3], which is overexpressed or amplified in human cancer [4,5] and cancer cell lines [6-9]. Although AURKA is expressed in all actively dividing cells, overexpression is associated with oncogenesis. There is both cell cycle dependent (mRNA and protein expressed in all actively dividing cells, overexpression is associated with human cancer [4,5] and cancer cell lines [6-9]. Although AURKA is serine/threonine kinase [3], which is overexpressed or amplified in kinase signaling. Aurora Kinase A (AURKA) is a highly conserved gene that includes regulators of the Wnt/beta-catenin pathway. On the other hand, the non-responding patients showed high connectivity centered on the TP53/RB1 axis. Matching "targeted therapy to target" is a sine qua non for maximizing effective therapy in appropriate patients and NGS mapping may further our understanding of the relationships between molecular biological pathways and targeted therapy response. While awaiting further progress in systems analysis across "omic" levels (genomic-transcriptomic-proteomic), research involving of NGS sequence mapping to interrogate patient response to therapy in order to help elucidate molecular therapeutic predictors is justified based on the urgent needs of patient care.

While the interactions between p53 and AURKA are complex, there is emerging preclinical evidence that cancer cells lacking p53 function may be more resistant to Alisertib therapy. Specifically, a recent study demonstrated that triple negative breast cancer (TNBC) cells with loss of p53 function responded to Alisertib treatment by entering a state of cellular senescence, whereas p53-wt TNBC cells treated with Alisertib largely underwent apoptosis [24]. Furthermore, TNBC patient-derived xenograft models from patients who exhibited resistance to Alisertib...

Correspondence to: John Nemunaitis, M.D, 12222 Merit Drive, Suite 1500, Dallas, Texas 75231, Tel: 214-658-1964; Fax: 214-658-1992; E-mail: jnemunaitis@marycrowley.org

Key words: aurora kinase a inhibitor, mln8237, wnt/beta-catenin , tp53/rb1 axis

Received: July 25, 2015; Accepted: August 20, 2015; Published: August 24, 2015
showed a senescent (rather than an apoptotic) phenotype [24]. Another critical function of AURKA is stabilization of c-Myc, a well-characterized oncogene [25] which, in turn, upregulates AURKA.

Several inhibitors of AURKA/B including Hesperadin (B>A), MLN8237 (A>B), ZM447439 (B>A), VX680 (A=B) and AZD1152 (B>>A) have been developed as anti-cancer agents with encouraging anti-tumoral potential in vitro and in vivo [18,26-31]. However, the underlying tumor-specific mechanisms of the anti-neoplastic activities of these drugs are still poorly understood.

We have evaluated DNA signal defects via available customized next generation sequencing (NGS) platforms in patients entered into a pilot trial (unpublished) with Alisertib (MLN8237), an adenosine triphosphate (ATP)-competitive/reversible inhibitor of both AURKA [28,29,31] and Aurora Kinase B (AURKB) [32,33], with greater AURKA specificity in vitro (A>B), to determine the translational potential of single level "omics" analysis in uncovering therapeutic predictive biomarkers. We performed a retrospective DNA molecular pathway analysis of cancer tissue from 14 consecutive responsive and non-responsive cancer patients entered into a prior unpublished pilot trial with Alisertib (MLN8237) which, although the ATP binding site affinity of AURKA for MLN8237 is higher than that of Aurora B, is likely inhibitory of both Aurora A and B kinases at therapeutic levels, at least in some tumors [33,34]. This preliminary analysis was intended to gain insight on the relationship of relevant molecular signals and cancer responsiveness to MLN8237.

Materials and methods

Patient population

Fourteen cancer patients (Demographics Table 1) were entered into study from 07/01/2013 to 04/01/2014. All patients received Alisertib (MLN8237) as part of participation study C14015 with Takeda (Cambridge, MA) (50mg BID for 7 days of a 21 day cycle starting at cycle 3; Cycle 1: 50mg QD on Day 1 and 10, 50mg BID Day 4-9 of a 21 day cycle; Cycle 2: 50mg QD on Day 8, 50mg BID on days 11-17 of a 28 day cycle) as part of a Phase I clinical trial MC #12-18. Patients were monitored for safety, response and survival as part of study MC #12-18. Archival tissue was retrospectively sent for molecular signal analysis to either Foundation Medicine (www.foundationmedicine.com) or Molecular Health (www.molecularhealth.com) for gene sequence analysis. All patients signed IRB approved consent for participation in study MC #12-18.

Gene sequencing

All Tumor tissue DNA extraction, library preparation and NGS analysis was performed by Foundation Medicine, Inc (Cambridge, Massachusetts), or Molecular Health (The Woodlands, Texas). A minimum of 50 ng of DNA extracted from pathologist-reviewed, Formalin-fixed, paraffin-embedded blocks. Tumor tissue was identified and micro-dissected, followed by DNA extraction and NGS library preparation consistent with established or proprietary methods. For Foundation analyzed samples, Genomic libraries were captured to analyze the whole exome or exonic regions of 236 cancer-related genes and 47 introns of 19 genes commonly rearranged in cancer. For Molecular Health analyzed samples, genomic libraries were captured to analyze the whole exome or exonic regions of 617 genes; including oncogenes, tumor suppressors, other cancer-related genes, and genes of established pharmacogenomic importance. All samples were sequenced to high, uniform coverage (average of >95% of exons covered at greater than ×100), using Illumina HiSeq 2000 and Illumina HiSeq 2500 platforms. Genomic alterations (base substitutions, small insertions/deletions (INDELs), small rearrangements, and copy-number alterations) were determined. Potentially actionable alterations included those linked to anticancer drugs on the market or in registered clinical trials, excluding known benign SNPs (via dbSNP) and variants of unknown significance that were not predicted to influence gene function.

Protein-protein interaction networks

To generate networks, lists of genes affected by potentially actionable mutation were compiled from the lists of reported mutations in tables 1 and 2. For the non-responder patient population, all genes containing reported mutations were used. For the responder patient population, only genes that were uniquely mutated in this population (i.e., genes that were found to have reported mutations in the responder patients but not the non-responder patients) were used. These gene lists were analyzed using FunCoup v 3.0 build 2014-02 [35,36] a publically available, optimized Bayesian framework gene interaction analysis tool that can be found at: http://funcoup.sbc.su.se/search/. The analysis was restricted to protein-protein interactions (PPI) that have been annotated to occur within humans (interactions that have only been observed in non-human species were excluded). The resulting PPI networks were visualized using jsquid [37] a java-based application for the visualization and analysis of protein-protein interaction and functional coupling networks: http://jsquid.sbc.su.se/.

Results

A summary of patient responses and survival to MLN8237 is shown in relation to molecular abnormalities in Table 2. Molecular profiling of cancer tissue was preferred independent and prior to entry into trial with Alisertib in patients with available paraffin stored tissue. Prolonged stable disease (SD) ≥6 months from time of start of MLN8237 was observed in four patients, 506 (9 months), 509 (20 months), 510 (11 months), and 511 (14 months). Patients 509, 510 and 511 were evaluated by NGS methods. Patient 506 had insufficient tissue for molecular evaluation. An inactivating STK11 mutation was found in the thymoma of patient 509, an expected mutation of APC and a p53 mutation (R282W) of undefined functional significance in the colon cancer of patient 510, and c-Myc amplification (8 fold) in the ovarian cancer of patient 511. The genomic changes identified in patients 509, 510 and 511 share nodal connectivity to AURKA and AURKB, the expression of which or lack thereof has been shown to be complicit in cancer progression (i.e. most particularly vis-à-vis c-Myc expression with enhanced stabilization). Moreover, time of progression was significantly greater when comparing the time to progression on Alisertib to that achieved with the immediate prior cancer treatment for two of these patients (363 versus 55 days in 510, 426 versus 120 days in 511). All 3 of these patients also remain alive well beyond 1 year after treatment initiation (Table 2). The ten other patients (501, 503, 504, 505, 507, 508, 512, 513, 514 and 515) did not achieve SD ≥6 months or better and none experienced a delay >1.3-fold in time to progression on Alisertib to that achieved with the immediate prior cancer treatment for two of these patients (363 versus 55 days in 510, 426 versus 120 days in 511). All 3 of these patients also remain alive well beyond 1 year after treatment initiation (Table 2). The ten other patients (501, 503, 504, 505, 507, 508, 512, 513, 514 and 515) did not achieve SD ≥6 months or better and none experienced a delay >1.3-fold in time to progression longer than their prior treatment. Von Hoff and colleagues [38] have suggested a ratio of >1.3 of time to progression with new therapy vs. time to progression with prior therapy as a surrogate measure of positive response to the new therapy. NGS was performed in five of these patients (504, 513, 501, 512, 515); two (503, 505) utilized whole exome sequencing and in three sequencing was not done (506, 507, 508). No actionable mutations were obtained for 515.

When the constellation of genes that are mutated/copy-altered in the responder and non-responder groups are analyzed, differential
Table 1. Demographics of MLN8237 Treated Patients.

Patient's Study ID	Cancer	Stage at Screening	Genome signals (amplified, mutated)	Therapy (treatments prior to MLN8237)	Best Response/Time to Progression (prior txs)
501	Ovarian	III	AR, TP53, MCL1, NFKBIA*	Carbo + Taxol	N/A
				Letrozole	N/A
				Doxil	SD/ No PD
				Topotecan	PD/ 84 days
				Carbo + Taxol + Custirsen	SD/ 139 days
503	Ovarian	IV	ENG, pG191D*	Carbo + Taxol	N/A
				Carboplatin + Taxol	CR/ 249 days
				Carboplatin + Gemcitabine	SD/ 241 days
				Gemcitabine alone	SD/ 161 days
504	Breast	IV	AURKA, PTEN*	Carbo/ Taxol/ Tamoxifen	N/A
				Femara	N/A
				Faslodex	N/A
				Xeloda	SD/ 126 days
				Eribulin	PD/ 70 days
				Ixempra	PD/ 61 days
				Exemestane/Everolimus	SD/ 131 days
				Navelbine	PD/ 144 days
				Doxil	SD/ 96 days
				Cytosan	PD/ 15 days
505	Pancreatic	IV	PIK3CD, TSC1, STK11*	Gemcitabine + Erlotinib	PD/ 60 days
				Capcitabine + Rexolitinib	SD/ 390 days
506	Liver	IV	Insufficient tissue	5-FU + Leucovorin	N/A
				Carbo + Taxol	SD/ 99 days
507	Neuro-endocrine Carcinoma	IV	UNK	Carbo + Taxol + VP-16	PD/98 days
508	Ovarian	IV	UNK	Carbo + Taxol + (adjuvant)	N/A
				Carboplatin + Taxol	PD/ 133 days
				Doxil	PD/ 84 days
				Topotecan	PD/ 76 days
509	Thymoma	IV	STK11 (LKB1)*	Cisplatin, Adriamycin, Cytosan (adjuvant)	N/A
				Cisplatin + XRT	PR/544 days
510	Colon	IV	APC, BRAF, KRAS, SMAD4, TP53*	FOLFOX + Avastin (adjuvant)	N/A
				FOLFIRI1 + Avastin (adjuvant)	N/A
				5-FU + Leucovorin + Avastin + CPT 11	N/A
				Imprime POG + Eribux	SD/258 days
				Xeloda + Perifosine	PR/ 483 days
				Investigational Agent (CDX 1127)	PD/57 days
				Carbo + Taxol + Custirsen	PD/ 355 days
511	Ovarian	IV	MYC, CRKL, BRCA1*	Carbo + Taxol	N/A
				Doxil	N/A
				Tamoxifen	N/A
				Cisplatin + Gemzar	CR/ 954 days
				Gemzar + maintenance	CR cont'd/ 801 days
				Tamoxifen	PD/ 102 days
				Carboplatin	PR/ 766 days
				Taxol	PD/ 126 days
				Topotecan	SD/ 203 days
				Cisplatin + Gemzar	PR/ 175 days
				Carbo + Taxol + Custirsen	PR/ No PD
				ONT-10	SD/ 120 days
512	Pancreatic	IV	CCNE1, KRAS, RB1, TP53*	Gemzar/ 5-FU + XRT (adjuvant)	N/A
				FOLFIRINOX ABRAXANE/GEMZAR	SD/538 days
				Abraxane/Gemzar	PD/62 days
513	Breast	IV	AURKA, PTEN, TP53*	Adriamycin + Cytosan	N/A
				Tamoxifen	N/A
				Taxotere	CR/ 567 days
				Doxil	NE
				Gemzar	PD/ 73 days
				Eribulin	SD/ 123 days
				Ixempra	PR/ unk
				Navelbine	SD/ 349 days
				CARBO/5409	SD/
514	NSCLC	IV	Insufficient tissue	Carboplatin + VP-16	CR/221 days
				Topotecan	PD/ 95 days
515	Colon	IV	APC, KIT, TP53*	5-FOLFOX FOLFIRI1	N/A
				FOLFIRI1 + Vectibex	PD/ 51 days
				FOLFOX/Avastin	PR/ 407 days
				CEP-3725O/KHK2804	SD/ 208 days

*Targeted NGS methods
*Whole exome sequencing method
patterns of nodal connectivity in protein-protein interaction networks emerge (Figure 1). A network developed from the genes that are mutated/copy-altered in the non-responder patient population is centered on the TP53/RB1 axis, with extensive connectivity between TP53 and a number of genes that were mutated/amplified in the non-responding patient population. This is consistent with preclinical findings which suggest that loss of p53 function may promote resistance to Alisertib [24]. While there was a single TP53 mutation (R282W) identified in the responder patient 510, there is some structural evidence that this particular p53 mutation may retain some functionality [39]. Interestingly, a network formed from genes that were uniquely mutated/copy-altered in the responding patient population is centered on MYC and MYC-related genes, including negative regulators of the Wnt/beta-catenin pathway. This is particularly intriguing considering the established pattern of cross-regulation between MYC and the Wnt/beta-catenin signaling pathway [40,41].

Discussion

Alisertib is being developed as a small molecular inhibitor of AURKA (although, as noted above, it is likely differentially inhibitory of both Aurora A and B kinases at therapeutic levels) for the treatment of advanced malignancies and has already demonstrated activity against a broad range of both in vitro and in vivo preclinical tumor models.

NGS based evaluation of the cancer genome with consequent protein-protein interaction mapping, although a first step in tumor biomolecular deconstruction, is a key component in the personalization of cancer therapy. Knowledge of the mutated genes and variants of the responsive and non-responsive populations resulted in construction of two different gene-gene protein interaction networks; one (Figure 1B) representing the non-responsive patients and one (Figure 1A) the responsive patients. As such two distinctly different networks were constructed based on the different gene mutation profile. This analysis was performed to see if there was a specific pathway/interaction cluster that was uniquely mutated in the responder population but not the non-responder population and in doing so provide suggestive direction in interpreting relationship of said pathway to predictive opportunity for response and to determine relationship of said pathway to mechanism of Alisertib. In our pathway network assessment the Wnt/beta-catenin pathway appeared to be mutated exclusively in the responder population, while other “non” Wnt/beta-catenin pathways were identified in the non-responder group. Based on the very small number of assessable patients, results can only be considered as suggestive and hypothesis generating. Statistical significance was not achieved. The approach in this study has highlighted a possible relationship between MYC expression and sensitivity to Alisertib. The approach in this study has highlighted a possible relationship between MYC expression and sensitivity to Alisertib. That AURKA has a critical function in stabilizing N-Myc protein was initially reported by Otto et al. [25] in neuroblastoma, half of which carry N-Myc amplification. They showed that elevated levels of AURKA inhibit the degradation of Myc during mitosis by interacting with both Myc and the Fbxw7 ubiquitin ligase. As a result, high expression levels of AURKA effectively uncouple degradation of Myc from PI3-kinase-dependent signaling. Interestingly, our cohort showed a dearth of PI3K/AKT/mTOR mutations in the responder group, consistent with the above observation. This may be because MYC-dependence on the PI3K/AKT/mTOR pathway is relieved by a positive feedback loop involving either MYC-AURKA or MYC-Wnt/beta-catenin. Aberrant activation of the Wnt/beta-catenin signaling pathway is associated with numerous cancers and indeed correlates frequently with amplification of c-Myc oncogene or c-Myc related signaling. Co-expression of c-Myc and Wnt-1 in nude murine models is associated with rapid tumor growth. It appears that the anti-apoptotic function of Wnt-1 plays a critical role in synergistic action between c-Myc and Wnt-1 [42]. Our findings suggest that anything that promotes MYC (including just direct

Patient's Study ID	# of Cycles	Reason for Ending Treatment	Best Response 2 Months	Survival from start of MLN8237 therapy (days)	Response time from start of MLN8237 therapy	Validated cancer-associated mutations
501	2	Disease Progression	PD	240	45	TP53;pA276fs69, AR.pD840N, NFKBIA amp, NCKI amp
503	2	Disease Progression	PD	206	60	ENG.pG191D, TP53;pR249S, TERT.pH412Y
504	2	Disease Progression	PD	153	51	PTEN.pI101612, AURKA amp
505	2	Disease Progression	PD	83	48	STK11.pQ100, PIK3CD.pS520A, ABCC6.pR265G
506	12	Disease Progression	SD	625	272	N/A
507	2	Clinical Progression	SD	76	76	N/A
508	4	Disease Progression	SD	270	98	N/A
509	17	**	SD	429	369	STK11.pF354L
510	11	Toxicity	SD	423	363	KRAS.pG12S, APC.pD1509674, TP53;pR282W, APC.pR213, SMAD4. pG516
511	14	**	SD	409	344	BRCA1.pE1046, CRKL amp, MYC amp
512	<2	Clinical Progression	NE	22	UNK	KRAS.pG12V, TP53.pG245S, RB1.pY454, CCNE1 amp
513	2	Disease Progression	PD	168	55	PTEN.pF238620, TP53. pV225fs17,AURKA amp
514	<2	Disease Progression	PD	73	19	N/A
515	2	Disease Progression	PD	516	49	APC, KIT, TP53

**Indicates patient is currently receiving treatment with MLN8237 (Alisertib) |
Updated data as of 11/07/2014
MYC amplification) in the absence of AKT/Pi3K/mTOR elements may predict sensitivity to ALS. Furthermore, Myc both directly and indirectly upregulates AURKA transcription, a process essential for the maintenance of the malignant state [43]. c-Myc destabilization is one of the mechanisms resulting in anticancer activity demonstrated in tumor xenographs with Alisertib [44]. Notably, the ovarian cancer from patient 511 demonstrated c-Myc amplification. That no relationship was shown towards sensitivity of the two AURKA amplified patients to Aurora Kinase inhibitor highlights the need for eventual full "omics" integration and multilevel systems analysis.

In the three “responders” with molecular characterization, there appears to be an overrepresentation of mutations in the Wnt/β-catenin and TGFβ pathways in the patients who exhibited the best response to Alisertib therapy. This overrepresentation was detected by gene ontology clustering analysis, although it fails to reach statistical significance, most likely due to the small sample size. The colorectal adenocarcinoma carcinoma of patient 510 is characterized by multiple genetic changes involving APC, KRAS, BRAF, TP53 and SMAD4. As in patient 511, Myc again emerges as a likely common nodal target interactive with AURKA. SMAD4 and AURKA interact via a reciprocal TGFβ-independent pathway and the former blocks the direct and indirect up-regulation of Myc (AURKA inhibits GSK3β which in turn inhibits β-catenin/TCF which regulates Myc). The mutated SMAD4 would, then, effectively increase Myc expression. In addition, insofar as LKB1 (STK11) interacts with APC to downregulate Wnt/TCF and Myc, the loss of APC would, likewise, result in upregulation of Myc expression [45,46]. There are multiple levels of interaction between the Myc and Wnt/TCF pathways that are observed in these patients. Furthermore, overexpression of Myc, loss of negative regulators of

Figure 1. A) A protein-protein interaction network of genes with reported variants in the non-responder patient population. B) A protein-protein interaction network of genes with reported variants unique to the responder patient population.
Wnt/beta-catenin signaling (such as SMAD4 and APC), as well as damaging mutations in TGF-beta may be predictive of cells that are AURKA-driven and thus sensitive to Alisertib [47].

Using in vitro signaling studies, Alisertib has been shown to lead to G2/M arrest in both breast (MCF7 (p53 wt) and MDA-MB 231 (p53 C839G>A) [48] and osteosarcoma (U-2 OS (p53 wt) and MG-63 (p53 wt) [49] cell models, in both cases via activation of pro-apoptotic signaling (lowered BCL-2, upregulated Bax) and downregulation of PI3K/AKT/mTOR signaling. That this mechanism may be partially p53-dependent is supported by a recent study that demonstrated that triple negative breast cancer (TNBC) cells with loss of p53 function responded to Alisertib by entering cellular senescence, whereas p53-wt TNBC cells underwent apoptosis [24]. Furthermore, TNB-PDX models from patients with resistance to Alisertib show a senescent phenotype [24]. Although one responding patient (PID510) had a TP53 mutation (R282W) it is notable that this mutation remains of undefined functional significance [39,50,51]. In a reciprocal negative feedback interaction, wild-type p53 is regulated by AURKA phosphorylation, which, in turn, inhibits interaction with MDM2 [52] and p53 functions as a negative regulator of AURKA via both transcriptional and translational modifications [53]. Therefore, a loss-of-function mutation in TP53 could result in enhanced expression of AURKA and increased sensitivity to targeted inhibitory therapy [53-55]. Yet, two recent studies show that MK-8745 (A>B) can utilize both p53-dependent [56] and p53-independent [57] mechanisms. Whether this apparent mechanistic disparity is due to microenvironmental differences, differences in G1-M slippage due to kinetics of the cyclin B1 protein [58] or susceptibility to p53 mediated G1 checkpoint arrest remains undetermined. Alternatively, insofar as AURKB inhibition bypasses the G1-M checkpoint and thereby activates G1 checkpoint activity resulting in apoptosis due to the accumulation of chromosomal instability, it is possible that Alisertib may act as a pan-AURK inhibitor in a dose-dependent/tumor-dependent manner [33,34,58]. Thus, although brought to attention as a potential indicator of responsiveness by NGS analysis, the role of p53, which appears to be contextual, remains to be further elucidated.

As this very preliminary evaluation shows, despite the implementation of NGS as an adjunct to optimizing the choice of personalized therapeutics, obvious limitations are evident. This tool is currently unable to document DNA→RNA sequence discordance or RNA→protein expression discordance [59,60]. For example, two patients (504 and 513) with existing tools to provide further increments in treatment outcome. target assessment has now become patient-ready and can supplement in need of care. Although only a first step, the application of NGS to strata “omic” toolbox continues to expand its capabilities, patients are

Acknowledgements

We gratefully acknowledge the generous support of Michele Ashby, as well as the MMK Foundation.

References

1. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, et al. (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Transl Med 3: 111ra121. [Crossref]

2. Nemunaitis J (2014) Genome Expression to Targeted Therapy in Cancer Management. Hereditary Genet 3: 129.

3. Vas AC, Clarke DJ (2008) Aurora B kinases restrict chromosome decondensation to telophase of mitosis. Cell Cycle 7: 293-296. [Crossref]

4. Fu J, Bian M, Jiang Q, Zhang C (2007) Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5: 1-10. [Crossref]

5. Keen N, Taylor S (2004) Aurora-kine inhibitors as anticancer agents. Nat Rev Cancer 4: 927-936. [Crossref]

6. Katayama H, Ota T, Jisaki F, Ueda Y, Tanaka T, et al. (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91: 1160-1162. [Crossref]

7. Sasai K, Katayama H, Stenoien DL, Fuji S, Honda R, et al. (2004) Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 59: 249-263. [Crossref]

8. Tatsuoka M, Katayama H, Ota T, Tanaka T, Oshida S, et al. (1998) Multinuclearity and increased ploidy caused by overexpression of the aurora- and Ipl1-like midbody-associated protein mitotic kinase in human cancer cells. Cancer Res 58: 4811-4816. [Crossref]

9. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]

10. Rettig RB, Su L, Sisto R, Fuchs C, Hardeman J, et al. (2007) AURKA expression is associated with de-differentiated astrocytoma. Cancer Res 67: 3237-3244. [Crossref]

11. Zeng B, Lei Y, Zou Z, Huo X, Zhan S, et al. (2009) Aurora-A (but not Aurora B) is predictive of survival in breast cancer. Breast Cancer Res Treat 119: 123-133. [Crossref]

12. Goos JA, Coupe VM, Diosdado B, Delis-Van Diemen PM, Karga C, et al. (2013) Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 70: 661-687. [Crossref]

13. Bischoff JR, Anderson L, Zhang H, Dossert S, et al. (2008) Expression of Aurora kinase A in mouse mammary epithelium induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]

14. Goos JA, Coupe VM, Diosdado B, Delis-Van Diemen PM, Karga C, et al. (2013) Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 70: 661-687. [Crossref]

15. Nemunaitis J (2015) Relationships of clinical response to relevant molecular signal during Phase I testing of Aurora Kinase A inhibitor: Retrospective assessment. Cell Mol Life Sci 20: 1171-1182. [Crossref]

16. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]

17. Rettig RB, Su L, Sisto R, Fuchs C, Hardeman J, et al. (2007) AURKA expression is associated with de-differentiated astrocytoma. Cancer Res 67: 3237-3244. [Crossref]

18. Goos JA, Coupe VM, Diosdado B, Delis-Van Diemen PM, Karga C, et al. (2013) Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci 70: 661-687. [Crossref]

19. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]

20. Rettig RB, Su L, Sisto R, Fuchs C, Hardeman J, et al. (2007) AURKA expression is associated with de-differentiated astrocytoma. Cancer Res 67: 3237-3244. [Crossref]

21. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]

22. Rettig RB, Su L, Sisto R, Fuchs C, Hardeman J, et al. (2007) AURKA expression is associated with de-differentiated astrocytoma. Cancer Res 67: 3237-3244. [Crossref]

23. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189-193. [Crossref]
a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320: 1655-1658. [Crosfer]

23. Yuan K, Huang Y, Yao X (2011) Illumination of mitotic orchestra during cell division: a Polo view. Cell Signal 23: 1-5. [Crosfer]

24. Teltjer JJ, Jenkina AA, Tan AC, Newton TP, Pitts TM, et al. (2015) p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer. Mol Cancer Ther 14: 1117-29. [Crosfer]

25. Otto T, Hom S, Brockmann M, Eilers U, Schüttrumpfl U, et al. (2009) Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15: 67-76. [Crosfer]

26. Lee EC, Floros A, Li R, Ayala G, Greenberg NM (2006) Targeting Aurora kinases for the treatment of prostate cancer. Cancer Res 66: 4996-5002. [Crosfer]

27. Wilkinson RW, Odedra R, Heaton SP, Wedge SR, Keen NJ, et al. (2007) AZD1152, a selective inhibitor of Aurora B kinase, inhibits human tumor xenograft growth by inducing apoptosis. Clin Cancer Res 13: 3682-3688. [Crosfer]

28. Venkataraman K, Zhou X, Escoye J, Mould DR, Liu H, et al. (2014) Dose Selection for the Investigational Anticancer Agent Alisertib (MLN8237). Pharmacokinetics, Pharmacodynamics, and Exposure-Safety Relationships. J Clin Pharmacol [Crosfer]

29. Goldberg SL, Fenaus P, Craig MD, Gyan E, Lister J, et al. (2014) An exploratory phase 2 study of investigational Aurora A kinase inhibitor alisertib (MLN8237) in acute myelogenous leukemia and myelodysplastic syndromes. Leukemia Research Reports 3: 58-61.

30. Malumbres M, Pérez de Castro I (2014) Aurora kinase A inhibitors: promising agents in antitumoral therapy. Expert Opin Ther Targets 18: 1377-1393. [Crosfer]

31. Falchook G, Kurzrock R, Gwok L, Hong D, McGregor KA, et al. (2014) Investigational Aurora A kinase inhibitor alisertib (MLN8237) as an enteric-coated tablet formulation in non-hematologic malignancies: phase 1 dose-escalation study. Invest New Drugs 32: 1181-1187. [Crosfer]

32. Pinel S, Barbaud Foucher S, Lott-Desroches MC, Astier A (2009) Inhibitors of aurora kinases. Ann Pharm Fr 36: 67-69. [Crosfer]

33. Qi W, Spier C, Liu X, Agarwal A, Cooke LS, et al. (2013) Alisertib (MLN8237) is an investigational agent suppresses Aurora A and B activity, enhances proliferation, promotes endo-reduplication and induces apoptosis in T-NHL cell lines supporting its importance in PTCL treatment. Leuk Res 37: 434-439. [Crosfer]

34. Qi W, Cooke LS, Liu X, Rimza L, Roe DJ, et al. (2011) Aurora inhibitor MLN8237 in combination with docetaxel enhances apoptosis and anti-tumor activity in mantle cell lymphoma. Biochem Pharmacol 81: 881-890. [Crosfer]

35. Schmitt T, Ogris C, Sonnhammer EL (2014) FunCoup 3.0: database of genome-wide functional coupling in eukaryotes from comprehensive data integration. Nucleic Acids Res 42: D380-388. [Crosfer]

36. Alexeyenko A, Sonnhammer EL (2009) Global networks of functional coupling in the p53 DNA-binding core domain. J Mol Biol 386: 120-128. [Crosfer]

37. Nair JS, Roopra S, Sonnhammer EL (2008) jSquid: a Java applet for graphical on-line network exploration. Bioinformatics 24: 1467-1468. [Crosfer]

38. Von Hoff DD, Stephenson JJ Jr, Rosen P, Loesch DM, Borad MJ, et al. (2010) Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol 28: 4877-4883. [Crosfer]

39. Calhoun S, Daggett V (2011) Structural effects of the L145Q, V157F, and R282W cancer-associated mutations in the human p53 DNA-binding core domain. Biochemistry 50: 5345-5353. [Crosfer]

40. Xu J, Chen Y, Huo D, Khramtsova A, Khramtsova G, et al. (2015) β-catenin regulates c-Myc and CDKN1A expression in breast cancer cells. Cell Cycle 14: 116: 1498-1505. [Crosfer]