Retroperitoneal Tumours - Treatment and Prognosis of Tumour Recurrence

OVIDIU GABRIEL BRATU1,2,3, ALEXANDRU IONUT CHERCIU1,2, ADRIAN BUMBUT1, SORIN LUPU1, DRAGOS RADU MARCU1,2,3, FLORENTINA IONITA RADU1, MARIA MANEA2, CRISTIAN FURAU4, CAMELIA CRISTINA DIACONU1,2, DAN LIVIU DOREL MISCHIANU1,2,3

1University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Str, 050474, Bucharest, Romania
2Department of Urology, Emergency Universitary Central Military Hospital, 88 Mircea V. Str, 010825, Bucharest, Romania
3Academy of Romanian Scientists, 54 Splaiul Independentei, 030167, Bucharest, Romania
4University of Medicine and Pharmacy, 10 Piata 1 Decembrie Str, 410073, Oradea, Romania
5Emergency Clinical County Hospital, 25 Calea Bucuresti, 050326, Brasov, Romania
6Department of Gastroenterology, Emergency Universitary Central Military Hospital, 88 Mircea V. Str, 010825, Bucharest, Romania
7Department of Cardiology, Emergency Universitary Central Military Hospital, 88 Mircea V. Str, 010825, Bucharest, Romania
8Department of Obstetrics and Gynecology, Arad County Clinical Hospital, 24 Andreny K. Str, 310037, Arad, Romania
9Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 8 Calea Floreasca, 014461, Bucharest, Romania

Retroperitoneal tumors, once considered uncommon, have been reported in the last years in such numbers that they cannot be considered anymore a rare condition. Tumor recurrence following surgical excision is quite common and a tumor that was considered originally as benign in many cases can recur as a malignant tumor. The purpose of this paper is to underline the difficulties in terms of establishing a correct diagnosis and a proper therapeutic protocol when facing a retroperitoneal mass of unknown origin, as well as to present the available data regarding prognosis, treatment options and tumor recurrence. Retroperitoneal tumors can be classified as benign or malignant; solid, cystic or both; single or multiple, and of varied histological types. A high percentage of patients with retroperitoneal tumors are discovered in advanced stages, usually seeking medical help for symptoms related to nearby organ compression/invasion. This pathology requires a prompt and adequate multidisciplinary management, in order to achieve disease control and to reduce the recurrence rate. Complete surgical resection is the potential curative treatment for retroperitoneal tumors and it is best managed in high-volume centers, by a multidisciplinary team. Complete oncological tumor resection and tumor grade remain the most important predictors for local recurrence and disease-specific survival. Further research is required in order to define the role of radiotherapy, as well as to discover new biological therapies that target various molecular pathways involved in retroperitoneal cancers.

Keywords: retroperitoneal tumors, prognostic, recurrence

Retroperitoneal tumors are a group of tumors that occur in the anatomical space named retroperitoneal space. Vital structures such as liver, stomach, pancreas, ipsilateral colon and mesocolon are strongly connected with the retroperitoneal space [1]. The posterior limit of the retroperitoneal space is represented by the psosas, transverse abdominal, iliacus and quadratus lumborum muscles, but depending on the tumors position and dimensions, it may be formed by the diaphragm, ipsilateral kidney, ureters and gonadal vessels. The spine, paraspinal muscles, inferior vena cava (for right-sided tumors) and aorta (for left-sided tumors) form the medial limits, while the lateral ones are represented by the lateral abdominal musculature and, depending on the tumors' location, it may include the kidney and colon. The inferior limit is formed by the iliopectoas muscle, the femoral nerve, the iliac vessels or the pelvic sidewall, while the upper limit of the retroperitoneal space is represented by the diaphragm, the right lobe of the liver, the duodenum, the pancreas or the spleen [2].

There are three categories of retroperitoneal tumors:

-Primary or metastatic tumors, involving the retroperitoneal lymph nodes.

Primary unattached tumors

Retroperitoneal tumors, once considered uncommon, have been reported in the last years in such numbers that they cannot be considered anymore a rare condition. They can be classified as benign or malignant tumors; solid, cystic, or both; single or multiple, and of varied histologic types. Recurrence following surgical excision is quite common for this type of tumors and a tumor originally regarded as being benign, in many cases can recur as a malignant tumor. According to a study conducted by Hansmann and Budd [1], the retroperitoneal tumors frequently originate from the embryological remnants of the urogenital tract. Their conclusion was based on the multiple correlations observed between the histological types, as well as on the resemblance of these tumors with the tumors encountered in adult urogenital organs. This concept has been accepted over the years. Another type of tumoral tissue may arise from the adult tissue normally present in the retroperitoneal space, such as fibrous connective tissue, fat, nerves, and ganglia, as well as from blood vessels or lymphatic tissue.

* email: chercia_alexandruionut@gmail.com

All authors had equal contribution and share the first authorship

http://www.revistadechimie.ro REV.CHIM.(Bucharest) • 70 • No. 1 • 2019
Fibrosarcoma

Adult-type fibrosarcoma is an aggressive and rare subgroup of soft tissue sarcomas. The diagnosis is in most cases an exclusion one, due to the multitude of other spindle-cell shaped sarcomas. The probability of misdiagnosis between similar tumor entities is high and it may lead to improper tumor management. Fibrosarcoma is characterized by a high rate of recurrence and a low sensitivity at radio- and chemotherapy [3].

Soft tissue sarcomas can be divided into five histopathological groups, such as: pleomorphic pattern, myxoid pattern, small round cell pattern, epithelioid cell pattern and spindle cell pattern. Spindle cell sarcomas represent almost half of all sarcomas. Fibrosarcoma is a constituent of the spindle cell type of soft tissue sarcomas, but histopathology alone is not enough for a clear distinction between fibrosarcoma and other spindle-cell neoplasms. Immunohistochemistry (IHC) can be used in such cases, in order to obtain a certain diagnosis of fibrosarcoma, using specific antibody reagents which allow the detection of important tumor markers. A tumor marker is a molecule, such as oncofetal antigens, cell surface antigens, receptors, enzymes, hormones, oncogenes or cytoplasmatic proteins found on the tumor cell surface, in the surrounding tumor microenvironment, in blood or urine. They tumor markers can be secreted in high quantities by the body, as a reaction to the tumor presence, or by the malignant cells themselves. Tumor markers have important functions in terms of therapy monitoring, as well as in monitoring of tumor recurrence, being crucial for the differential diagnosis of fibrosarcoma [4,5].

The prognosis of fibrosarcomas and soft tissue sarcomas is influenced by multiple factors, such as: patient's age, tumor depth and size, malignant nature of the tumor, involvement of bones, nerves, vessels, nearby organs, collagen density, as well as the metastatic potential and appearance of tumour recurrences [6,7].

Unfavorable prognostic factors of fibrosarcomas consist of: high histologic grade, large amount of tissue necrosis (＞50%), high number of mitotic processes (＞20/10 hpf), a decrease of collagen fibers in favor of an increased cellularity, deep localized tumors, tumors larger than 5 cm [4,6]. Histopathological grading is considered to be the most important prognostic indicator [6,8]. High-grade fibrosarcoma patients, with great risk for metastases, will most likely benefit from adjuvant therapy [9]. Multiple studies have shown that approximately 80% of adult-type fibrosarcomas are found to be high-grade malignancies and that the overall 5-year survival rate ranges between 40 and 60%, regardless of the tumors grade [4,9,10]. It has been reported that approximately 60% of the patients with low-grade tumors reach 10 years survival after the initial diagnosis, this percentage being much lower for the patients with high grade tumors, only 30% of them surviving 10 years after the diagnosis. Depending on the tumor grade, the patient’s age and the histology of the tumor margin, the recurrence rate varies between 12% and 79% [11].

An accurate diagnosis is essential for a proper treatment strategy. Therefore, assessing the typical features of the tumor is important for an accurate diagnosis. New markers used nowadays, such as miRNA expression profiles, may represent an important diagnostic step in the identification of fibrosarcoma.
sarcomas. In some settings, such agents show great promise in terms of treatment of cancers that, like LMS, show defects in the TP53 pathways or demonstrate genomic instability. The use of Poly(ADP-ribose) polymerase inhibitors (PARPi), either alone or in combination with cytotoxic agents, can be an option for future clinical trials in LMS [18,19].

Liposarcoma

Retroperitoneal liposarcomas are one of the most challenging tumors, considering their disposition for local recurrence following surgical excision. In current practice, chemotherapy is futile for the majority of patients, so surgical resection is the most effective treatment modality for the majority of the patients. The status of negative surgical margins is reachable in over 80% of patients, when the use of en bloc resection is utilized [20,21]. This is considered an aggressive approach, but it yields a median survival of approximately 7 years and a 5-year disease-specific survival of 60% [22,23].

Histologic subtype is classified as well-differentiated, dedifferentiated, myxoid/round cell or pleomorphic. Retroperitoneal fat tumors contain mature adipocytes with occasional atypical cells, with irregular hyperchromatic nuclei, and rare or absent lipoblasts, or those lesions with lipoblasts and minimal fibrosis that have been labeled as lipoma-like well-differentiated liposarcoma. Tumors with atypical stromal cells associated with significant fibrosis (>25%) were designated as sclerosing well-differentiated liposarcoma. Lesions with regions of non-lipogenic spindle cell sarcoma, arising within a fatty tumor or in the bed of a previously resected low grade lipomatous tumor, were identified as dedifferentiated liposarcoma [24].

The histologic subtype, and hence tumor grade, are well-established factors determining the outcome of patients with primary retroperitoneal liposarcoma. However, studies on patients with locally recurrent disease have shown that the previously mentioned factors are not so important in determining disease-specific survival and local recurrence. It was demonstrated that the subtype and grade of the primary tumor do not maintain their importance as independent prognostic factors for survival [24].

Tumors arising in organs normally present in the retroperitoneal space

Kidney

Kidney tumors are one of the biggest group of retroperitoneal tumors. One of most frequently encountered malignant kidney tumor is the clear cell carcinoma. It is often detected incidentally during imaging investigations, or it may present as a palpable mass accompanied by hematuria and/or lumbar, abdominal discomfort/pain, decreased renal function [25], these signs and symptoms bringing these patients to seek medical attention. The other representatives, like granular cell and tubular carcinoma, are not so common and are generally more aggressive, since they are non-encapsulated, free-growing tumors. Kidney sarcomas of any type must be regarded as a rarity. However, the most frequent kidney mixed tumor is the Wilms tumor, which is found during childhood. It should be considered when a palpable tumor is found in a child. According to Snyder et al., this type of tumor accounts for more than 50% of the retroperitoneal tumors discovered during childhood [26].

It is necessary to revise the treatment strategies when medical practice or advances in technology alter disease patterns. For kidney tumors less than 4 cm, studies suggest that local control can be achieved successfully by using the surgical approach (radical nephrectomy, as well as partial nephrectomy) [26,27]. Small renal tumors may be resected by partial nephrectomy, with minimal morbidity, and a cancer-specific outcome equivalent to that of radical nephrectomy. Although the need for renal preservation in an individual with a normal contralateral kidney may seem unnecessary today, its apparent benefit may be well appreciated in the future, because it can decrease the risk of renal failure and the need for chronic dialysis [28]. However, studies revealed that local recurrence rate after partial nephrectomy was from 0 to 12% [29-31].

Adrenal

Depending on their origin, adrenal tumors can be classified as tumors descending from the medulla and as tumors originating from the adrenal cortex [32,33].

The adrenal medulla is made from cells of the neural canal, therefore the tumors that originate from it are nerve type tumors. The neuroblastoma is not a rare tumor and it occurs more frequently in children. It is a malignant type of tumor and quite often it manifests itself as a palpable, solid mass in the abdomen, although not rarely patients with this type of tumor seek medical help for symptoms related to metastases, especially to bone metastases. Approximately 50% of these tumors have specific stippled calcification on the X-ray. When pyelography is performed, most of them will show various degrees of renal displacement. The prognosis is poor, even though there are many possibilities of surgical removal. The rare medullary tumor named ganglioneuroma which is composed of ganglion cells, is not included in this classification.

Adrenal cortex carcinoma can be asymptomatic or it may be accompanied by signs related to nearby organ compression/invasion. Recurrence and metastases from this type of tumor are common, and the prognosis is poor. Children with neuroblastoma have different outcomes, which depend on the stage of the disease, as well as on the patient's age.

There are evidences that neuroblastoma has a worse long-term prognosis, in spite of tumor stage and tumor location, and in some cases a more prolonged course. Even if the survival after 2-3 years of evolution is better in older patients, because of the more slow evolution, in patients with stage I to 3 the ultimate survival rate is estimated to be less than 5%. The number of older patients is very small, due to the rare incidence of neuroblastoma in this age interval. Only a few people remained disease-free, including patients with stage I, II, and III (localized or regional disease). In contrast, children with localized or regional disease, without MYCN amplification, present survival rates from 80% to 95%. For patients with neuroblastoma diagnosed after early childhood, there are no standard treatment guidelines.

Studies and literature reviews present adolescents and adults with localized disease (stage I or II), who have been treated initially conservatively, in the past, and now they may benefit from more intensive therapy. Patients with advanced disease (stage III and IV) at diagnosis have had a constant and poor prognosis from the beginning, identical with younger children diagnosed with metastatic neuroblastoma. It is not demonstrated if long-term therapy or more intensive and aggressive treatment will ultimately make a difference in the survival of these patients. More than that, biologic approaches, for example immunologic therapy and differentiating agents are currently being studied and someday may be used in these patients. It is
also necessary that biologic studies of tumor tissue from adult patients to continue and to discover why these type of tumors behave differently and in the same time why they lack MYCN amplification, often being negative for catecholamine secretion [34, 35].

Pancreas

The pancreas is partially a retroperitoneal organ and pancreatic tumors often involve the retroperitoneal space. Pancreatic malignant tumors represent the 4th most common cause of death because of cancer, in spite of being the 13th type of cancer worldwide. The incidence and mortality rates are growing year by year, worldwide. It is a severe type of cancer, approximately 70% of patients having locally advanced or metastatic tumors at the moment of diagnosis, with multiple complications and severe pain, which require a multidisciplinary management in the perioperative period [36-38]. The overall survival of patients with locally advanced tumors is estimated to be approximately 4 months and 2 to 3 months for those with metastases. The overall survival rate of patients with pancreatic cancer has not improved over the past two decades [39].

Over the years, the screening techniques for pancreatic cancer have evolved and nowadays an important role have the serologic markers, which include: CA19-9, carcinoembryonic antigen (CEA), osteopontin (OPN), macrophage inhibitory cytokine 1 (MIC-1), and S100A6. These markers are also helpful in terms of evaluating the patient’s prognosis and the treatment response.

Prognosis and treatment depend on the stage of cancer at the moment of diagnosis, so the correct staging is critical. Staging is principally based on TNM classification for pancreatic cancer. Simplifying the staging system, these tumors may be classified in resectable, borderline resectable and unresectable tumors. Resectable tumors include stage I and stage II tumors [40,41].

Despite the improvements that have been made over the years in terms of diagnostic tests, the detection rate at an early stage, as well as the survival rate, remain low, usually being detected when complications occurs [42]. Nowadays, the efficacy of conventional chemotherapy and radiotherapy for pancreatic cancer is limited, surgical excision being the best option for these patients. Even if only 20% of cases with pancreatic cancer (PC) are operable, the surgery is the only possibility to cure PC. For the operative procedure, many factors must be considered, such as tumor location, tumor staging and tumor size.

For the patients in whom surgical excision is not indicated, because of the unresectable status of the pancreatic tumor, chemotherapy is the first-line treatment and it is extensively used. GEM/erlotinib, GEM/NAB-paclitaxel, FOLFIRINOX, GEM/capecitabine and XELOX/capecitabine/oxaliplatin are examples of chemotherapy regimens used in PC. However, PC is defined by a reaction to develop new biological therapies, to target the various molecular pathways for the treatment of retroperitoneal cancers.
