Weyl anomaly of conformal higher spins on six-sphere

A.A. Tseytlin

Blackett Laboratory, Imperial College, London SW7 2AZ, U.K.

Abstract

This paper is a sequel to arXiv:1309.0785 where we computed the Weyl anomaly a (Euler density or logarithmic divergence on S^d) coefficient for higher-derivative conformal higher spin field in $d = 4$ and shown that it matches the expression found in arXiv:1306.5242 by a “holographic” method from a ratio of massless higher spin determinants in AdS$_5$. Here we repeat the same computation in on 6-sphere and demonstrate that the result matches again the one following from AdS$_7$. We also discuss explicitly similar matching in the $d = 2$ case.

1Also at Lebedev Institute, Moscow. e-mail: tseytlin@imperial.ac.uk
1 Introduction

This paper continues the investigation \cite{1} of quantum conformal higher spin (CHS) models \cite{2,3} with higher-derivative flat-space action $\int d^d x \phi_s \partial^{2s+d-4} \phi_s$ (∂_s is transverse traceless symmetric rank s tensor projector). Generalising this action to curved background is a highly non-trivial problem, but as was argued in \cite{1}, at least in the case of a conformally flat Einstein background (i.e. $(A)dS_d$ or S^d), the corresponding Weyl-covariant $2s+d-4$ derivative kinetic operator should factorize into product of standard 2nd-derivative operators.\footnote{Here we shall always assume that d is even (d was called D in \cite{1}).}

Explicitly, the partition function of a conformal higher spin s field on a d-dimensional sphere of unit radius can be written as \cite{1}

$$Z_s(S^d) = \prod_{k=0}^{s-1} \left(\frac{\det [- \nabla^2 + k - (s-1)(s+d-2)]_{k \perp}}{\det [- \nabla^2 + s - (k+1)(k+d-2)]_{s \perp}} \right)^{1/2} \times \prod_{k'=-\frac{1}{2}(d-4)}^{s-1} \left(\frac{1}{\det [- \nabla^2 + s - (k'+1)(k'+d-2)]_{s \perp}} \right)^{1/2}, \quad (1.1)$$

or, equivalently, as

$$Z_s(S^d) = \prod_{k=0}^{s-1} \left(\det [- \nabla^2 + k - (s-1)(s+d-2)]_{k \perp} \right)^{1/2} \times \prod_{k'=-\frac{1}{2}(d-4)}^{s-1} \left(\det [- \nabla^2 + s - (k'+1)(k'+d-2)]_{s \perp} \right)^{-1/2}, \quad (1.2)$$

where the 2nd-order differential operator $(-\nabla^2 + M^2)_{k \perp}$ is defined on transverse traceless symmetric rank k tensors. The first line in (1.1) is the contribution of the “partially-massless” modes (with residual gauge invariance and thus “ghost” numerators) while the second corresponds to extra “massive” modes present for $d \neq 4$ (see \cite{1} and refs. there).

This representation allows one to compute the CHS partition function on S^d using standard (e.g., ζ-function) techniques, and, in particular, to find the coefficient of the logarithmic UV divergence or the a-coefficient of the Euler density term in the corresponding Weyl anomaly.

Remarkably, the arguments in \cite{4,1} suggest that $Z_s(S^d)$ in (1.1) should have also a “holo-graphic” representation in terms of the ratio of determinants of the standard (second-derivative) massless higher spin s operators with alternate boundary conditions in euclidean AdS$_{d+1}$:

$$\frac{Z_{s_0}^{-}(AdS_{d+1})}{Z_{s_0}^{+}(AdS_{d+1})} = Z_s(S^d), \quad (1.3)$$

$$Z_{s_0}(AdS_{d+1}) = \left(\frac{\det [- \nabla^2 + (s-1)(s+d-2)]_{s-1 \perp}}{\det [- \nabla^2 - s + (s-2)(s+d-2)]_{s \perp}} \right)^{1/2}. \quad (1.4)$$

Here AdS$_{d+1}$ and its boundary S^d are assumed to have unit radius. The subscripts \pm indicate the different boundary conditions.\footnote{These correspond to dimensions $\Delta_+ = s + d - 2$, $\Delta_- = 2 - s$ for the “physical” denominator and $\Delta_+ = s + d - 1$, $\Delta_- = 1 - s$ for the “ghost” numerator \cite{1} (see also section 4).}
Let us note that while motivated by the AdS/CFT \[5, 6, 4\], the relation (1.3) is essentially “kinematical” in nature (i.e. it does not rely on any non-renormalization and should be true for any \(d\) belonging to a class of bulk-boundary determinant relations like the one discussed in \[7\]. One should thus be able to prove it by starting from the one-loop path integral in AdS\(_{d+1}\) and “integrating out” the values of the fields in the interior points of AdS\(_{d+1}\). As in the scalar case \[8, 9, 10\] one should pay special attention to regularization. Indeed, the AdS\(_{d+1}\) side of (1.3) is IR divergent while the \(S^d\) side is UV divergent. The logarithm of partition function \(Z_{s0}\) on AdS\(_{d+1}\) is proportional to its volume which for even \(d\) has the following regularized value \[9\] (we shall keep track of logarithmic divergences only):

\[
\Omega(AdS_{d+1}) = \frac{2(-1)^{\frac{d}{2}}\pi^{\frac{d}{2}}}{\Gamma(\frac{d+1}{2})}\ln L + \ldots .
\] (1.5)

where \(L \to \infty\) is IR cutoff. The free energy on \(S^d\) of radius \(r\) has the following structure

\[
F = -\ln Z = \frac{1}{2}\ln \det (-\nabla^2 + M^2) = -B_d \ln (Lr) + \ldots ,
\] (1.6)

\[
B_d = \frac{1}{(4\pi)^{d/2}} \int d^d x \sqrt{g} b_d = \frac{1}{(4\pi)^{d/2}} \Omega(S^d) b_d,
\]

\[
\Omega(S^d) = \frac{2\pi^{\frac{d}{2}}}{\Gamma(\frac{d+1}{2})},
\] (1.7)

where \(b_d\) is the integrated Seeley coefficient (often called also \(a_{d/2}\)) of the operator \(-\nabla^2 + M^2\) and \(L \to \infty\) is UV (heat kernel) cutoff. In the case when the classical theory is conformally invariant \(B_d\) represents the integrated Weyl anomaly (see \[11, 12, 13, 14\] and refs. there). The total coefficient of \(\ln L\) term in \(\ln Z_s\) can be found by summing the \(B_d\)-coefficients for the operators in (1.2).

Identifying the IR cutoff in the AdS\(_{d+1}\) bulk and the UV cutoff at the \(S^d\) boundary the first check of (1.3) is the matching of the coefficients of the \(\ln L\) terms. Following \[4\] let us call \(a_s\) the coefficient of the IR singular term in the AdS\(_{d+1}\) free energy in (1.3). Comparing to the \(S^d\) expression (1.6) we should get\[4\]

\[
B_d^{(s)} = -a_s.
\] (1.8)

Equivalently, \(a_s\) should be the coefficient of the \(\ln r\) term in free energy on \(S^d\).

In the case of \(d = 4\) the coefficient of the IR divergent term in the l.h.s. of (1.3) was found in to be \[4\]

\[
a_s = \frac{1}{180}\nu_s^2(14\nu_s + 3), \quad \nu_s = s(s + 1).
\] (1.9)

The same expression was also obtained directly from the spin \(s\) CHS partition function (11) on \(S^4\) as (minus) the value of the total Weyl anomaly coefficient \(B_4^{(s)}\) \[11\]

\[
b_4 = -a_s R^* R^* = -24a_s, \quad B_4^{(s)} = \frac{1}{(4\pi)^{2}}\frac{8\pi^2}{3} b_4 = -4a_s = -a_s,
\] (1.10)

\[
B_4^{(s)} = -a_s = -\frac{s^2(s+1)^2}{180}(14s^2 + 14s + 3).
\] (1.11)

\[3\] The minus sign in the relation between \(B_d^{(s)}\) and \(a_s\) is due to the canonical minus sign in (1.6) or the definition of \(a_s\) in \[4\] so that it has the same sign as the \(a\)-coefficient in the trace anomaly. It is also sensitive to the order of the signs or the power of the l.h.s. of (1.3).
Our aim here will be to perform a further non-trivial test of the relation (1.3) by considering the \(d = 6 \) case (and also the \(d = 2 \) case, see Appendix). The case of \(d = 6 \) is of interest in view of the AdS\(_7\)/CFT\(_6\) duality and also because the structure of the CHS partition function (1.1) changes for \(d \neq 4 \). We shall first consider the r.h.s. of (1.3), i.e. find the coefficient \(B_6 \) (1.7) of logarithmically divergent term in \(F = -\ln Z_s \) in (1.2) on \(S^6 \).

In general, the local Weyl anomaly coefficient has the following structure in \(d = 6 \) [12, 13, 15] \(^4\)

\[
b_6 = a E_6 + \sum_{i=1}^{3} c_i I_i + \nabla_m J^m, \quad E_6 = -\epsilon_6 \epsilon_6 \epsilon_{RRR},
\]

(1.12)

where \(I_1 \sim C(\nabla^2 + ...)C, \ I_{2,3} \sim CCC \) contain powers of the Weyl tensor \(C \). Then for a unit-radius sphere \(S^6 \)

\[
b_6(S^6) = a E_6 = -\tfrac{8!}{7} a, \quad B_6(S^6) = \frac{1}{(4\pi)^{\frac{d-2}{2}}} \frac{16\pi^2}{15} b_6 = \frac{1}{60} b_6 = -96a \equiv -a.
\]

(1.13)

For a conformally coupled scalar \(\hat{\Delta} = -\nabla^2 + \frac{d-2}{4(d-1)} R \)

\[
a_0 = -\frac{5}{9}, \quad B_6^{(0)} = -a_0 = \frac{1}{756}.
\]

(1.14)

As we shall find below, for a conformal higher spin field in \(d = 6 \) the total value of \(B_6 \) corresponding to (1.2) (generalizing (1.14) to any \(s \geq 0 \)) is

\[
B_6^{(s)} = -a_s = -\frac{(s+1)(s+2)^2}{151200} (22s^6 + 198s^5 + 671s^4 + 1056s^3 + 733s^2 + 120s - 50) \\
= -\frac{1}{18900} \nu_s \left(88\nu_s^{3/2} - 110\nu_s - 4\nu_s^{1/2} + 1 \right), \quad \nu_s = \frac{1}{4}(s + 1)^2(s + 2)^2.
\]

(1.15)

Like in the \(d = 4 \) expression (1.9) here \(\nu_s \) stands for the number of dynamical degrees of a spin \(s \) CHS field in \(d = 6 \). Specialising the general expression [4] for the coefficient of the IR divergent part of the AdS\(_{d+1}\) side of (1.3) to the case of \(d = 6 \) we will also show that it indeed matches (1.15) according to (1.8).

We shall start in section 2 with a general discussion of the values of the \(\zeta \)-function and the logarithmic UV divergence coefficient \(B_d \) for a massive higher spin operator \((-\nabla^2 + M^2)_{s} \) on \(S^d \), and then specialise to the cases \(d = 4 \) and \(d = 6 \). In section 3 we shall apply the resulting expression for \(B_6 \) to the operators appearing in (1.2) to obtain eq. (1.15). In section 4 we shall rederive (1.15) as the coefficient of the IR divergence of the ratio of the AdS\(_7\) massless spin \(s \) partition functions in (1.3). Section 5 will contain concluding remarks. In Appendix we shall consider the \(d = 2 \) case of (1.3) and demonstrate explicitly that the AdS\(_3\) expression for \(a_s \) matches the coefficient \(B_2 \) of the UV divergence in the \(d = 2 \) conformal higher-spin partition function (1.3), thus providing another check of (1.3),(1.8).

\(^4\)In contrast to [13] here we do not include \(\frac{1}{(4\pi)^{\frac{d-2}{2}}} \) in the definition of \(b_d \).

\(^5\)Here \(R_{mnkl} = g_{mnl} g_{nk} - g_{mn} g_{lk} \), \(R = d(d-1) = 30 \). The (minus) Euler density \(E_6 \) is equal to \(-\frac{16}{75} R^3 \) on a conformally flat background.
2 ζ-function and B_d coefficient for spin s operators on S^d

To compute B_d we shall use the known solution of the spectral problem for the 2nd-order operator $\hat{\Delta}_{s\perp}$ defined on symmetric traceless transverse tensors of rank s on S^d

$$\hat{\Delta}_{s\perp}(M^2) \equiv (-\nabla^2 + M^2)_{s\perp}, \quad \hat{\Delta}_{s\perp}(\phi_n) = \lambda_n(\phi_n). \quad (2.1)$$

The eigen-values and their degeneracy are given by [16, 17, 18]

$$\lambda_n = (n + s)(n + s + d - 1) - s + M^2, \quad n = 0, 1, 2, ..., \quad (2.2)$$

$$d_n = g_s \frac{(n + 1)(n + 2s + d - 2)(2n + 2s + d - 1)(n + s + d - 3)!}{(d - 1)! (n + s + 1)!}, \quad (2.3)$$

$$g_s = \frac{(2s + d - 3)(s + d - 4)!}{(d - 3)! s!}. \quad (2.4)$$

Here $g_s \equiv g_s^{(d)}$ is the number of components of the symmetric traceless transverse rank s tensor in d dimensions.

$$g_s \equiv N_{s\perp} = N_s - N_{s-1}, \quad N_s = \frac{(2s + d - 2)(s + d - 3)!}{(d - 2)! s!}, \quad g_s^{(d)} = N_{s^{(d-1)}}, \quad (2.5)$$

where $N_s \equiv N_s^{(d)}$ is the number of symmetric traceless rank s tensor components. The number of dynamical components of a massless spin s field is (cf. (1.4))

$$\mu_s = N_{s\perp} - N_{s-1\perp} = \frac{(2s + d - 4)(s + d - 5)!}{(d - 4)! s!}, \quad \mu_s^{(d)} = g_s^{(d-1)} = N_s^{(d-2)}. \quad (2.6)$$

Note also that the number of dynamical degrees of freedom of a conformal higher spin s field is (cf. (1.2))

$$\nu_s = [s + \frac{1}{2}(d - 4)]N_{s\perp} - \sum_{k=0}^{s-1} N_{k\perp} = \frac{(d - 3)(2s + d - 2)(2s + d - 4)(s + d - 4)!}{2(d - 2)! s!}, \quad (2.7)$$

$$\nu_s = \frac{(2s + d - 2)(s + d - 4)}{2(d - 2)} \mu_s. \quad (2.8)$$

The ζ-function corresponding to the operator (2.1) is defined by

$$\zeta_{\hat{\Delta}_{s\perp}}(z) = \sum_{n=0}^{\infty} \frac{d_n}{\lambda_n z}. \quad (2.9)$$

In general, it is B_d and not $\zeta_{\hat{\Delta}}(0)$ that governs the scale dependence of log det $\hat{\Delta}$ in (1.6). Note that the definition of ζ we use here requires summation over all modes, including the zero ones. Then
while for the operator $\hat{\Delta}_s$ defined on differentially unconstrained tensors one has $\zeta_{\hat{\Delta}_s}(0) = B_d[\hat{\Delta}_s]$, this is not so in general for $\hat{\Delta}_{s\perp}$: $\zeta_{\hat{\Delta}_{s\perp}}(0)$ turns out to be equal to $B_d[\hat{\Delta}_{s\perp}]$ in \cite{17} for the operator \cite{21} only up to the contribution of the zero modes of the operator related to the change of variables from an unconstrained tensor ϕ_s to its transverse part. In the case of $d = 4$ and $s \leq 2$ the reason for this was explained in \cite{20} to define the operators acting on constrained (transverse) tensors one decomposes the field into its transverse and gradient parts but that introduces N additional zero modes of the Jacobian of the change of variables. Since these modes were not present for the original unconstrained operator one finds $B_d[\hat{\Delta}_{s\perp}] = \zeta_{\hat{\Delta}_{s\perp}}(0) - N$.

In more detail, starting with path integral over symmetric traceless tensor ϕ_s we may change the variables to transverse symmetric traceless rank s tensor $\phi_{s\perp}$ and symmetric traceless rank $s - 1$ tensor $\varphi_{s - 1}$
\begin{equation}
\phi_s = \phi_{s\perp} + K\varphi_{s - 1} , \quad \nabla \cdot \phi_{s\perp} = 0 , \quad (K\varphi_{s - 1})_{m_1...m_s} = \nabla_{(m_s} \varphi_{m_1...m_{s - 1})} - \frac{s - 1}{2(s - 2) + d} g_{(m_s m_{s - 1})} \nabla^n \varphi_{m_1...m_{s - 2})n} .
\end{equation}

Then $\det K$ will appear as the Jacobian. The zero modes of K are rank $s - 1$ conformal Killing tensors and their number is dimension of $(s - 1, 2, 0, ..., 0)$ representation of $SO(d + 1, 1)$ \cite{22}
\begin{equation}
k_{s - 1,d} = (2s + d - 4)(2s + d - 3)(2s + d - 2) \frac{(s + d - 4)! (s + d - 3)!}{s! (s - 1)! d! (d - 2)!} .
\end{equation}

Thus
\begin{equation}
B_d[\hat{\Delta}_{s\perp}] = \zeta_{\hat{\Delta}_{s\perp}}(0) - N , \quad N = \text{dim ker} K = k_{s - 1,d} .
\end{equation}

It should be noted that this subtlety is absent if one considers instead of S^d the non-compact euclidean $H^d = \text{AdS}_d$ background: then the corresponding $\zeta_{\hat{\Delta}_{s\perp}}(0)$-function defined according to \cite{18} matches $B_d[\hat{\Delta}_{s\perp}]$ \cite{16}.

In what follows we shall be interested in the two special cases: the familiar $d = 4$ case (to compare to the results of \cite{11} which were found directly from the general expression for B_4, i.e. without using the spectrum on S^4) and the new $d = 6$ one. One finds from \cite{2.2}–\cite{2.4}, \cite{2.12}
\begin{align}
d = 4 : \quad & \lambda_n = n^2 + (2s + 3)n + s(s + 2) + M^2 , \quad g_4(s) = 2s + 1 , \quad d_n = \frac{1}{6} g_4(n + 1)(n + 2s + 2)(2n + 2s + 3) , \quad k_{s - 1,4} = \frac{1}{12}(2s + 1)s^2(s + 1)^2 , \\
d = 6 : \quad & \lambda_n = n^2 + (2s + 5)n + s(s + 4) + M^2 , \quad g_6(s) = \frac{1}{6}(s + 1)(s + 2)(2s + 3) , \quad d_n = \frac{1}{120} g_6(n + 1)(n + s + 2)(n + s + 3)(n + 2s + 4)(2n + 2s + 5) , \quad k_{s - 1,6} = \frac{1}{3360}(2s + 3)s(s + 1)^3(s + 2)^3(s + 3) .
\end{align}

Note that in $d = 6$ the number of symmetric traceless tensor components is (see \cite{2.5})
\begin{equation}
N_s = \frac{1}{12}(s + 1)(s + 2)^2(s + 3) ; \quad \text{the number of transverse components is } N_{s\perp} = g_s = \frac{1}{6}(s +
\footnote{The difference between B_4 and $\zeta(0)$ was pointed out also in \cite{21}.}
\footnote{Here the zero modes are non-normalizable and effectively drop out of $\zeta_{\hat{\Delta}_{s\perp}}(0)$ on H^d defined as in \cite{18}.}
1)\((s + 2)(2s + 3) \); the number of dynamical degrees of freedom of a massless spin \(s \) field \((2.6)\) is \(\mu_s = (s + 1)^2 \); the number of dynamical degrees of freedom of a conformal spin \(s \) field \((2.8)\) is \(\nu_s = \frac{1}{4}(s + 1)^2(s + 2)^2 \).

Let us now consider the computation of the corresponding values of \(\zeta_{\Delta_{s\perp}}(0) \) in \(d = 4 \) and \(d = 6 \).

2.1 \(\mathbf{d = 4 \ case} \)

The computation of \(\zeta_{\Delta_{s\perp}}(z) \) in \(d = 4 \) was discussed in \([23]\). First, we write \((2.9)\) as

\[
\zeta_{\Delta_{s\perp}}(z) = \frac{1}{3}(2s + 1) \sum_{k = s + \frac{3}{4}}^{\infty} \frac{k[k^2 - (s + \frac{1}{2})^2]}{k^2z(1 - \frac{k^2}{k^2})^z}, \quad h^2 = s + \frac{9}{4} - M^2.
\]

Then using that

\[
(1 - \frac{h^2}{k^2})^z = \sum_{m=0}^{\infty} c_m(z) \frac{h^{2m}}{k^{2m}}, \quad c_m(z) = \frac{(z + m - 1)!}{m! (z - 1)!},
\]

we get

\[
\zeta_{\Delta_{s\perp}}(z) = \frac{1}{3}(2s + 1) \sum_{m=0}^{\infty} c_m(z) h^{2m} \left[\zeta_R(2z + 2m - 3, s + \frac{3}{2}) - (s + \frac{1}{2})^2 \zeta_R(2z + 2m - 1, s + \frac{3}{2}) \right],
\]

where \(\zeta_R(z, b) \equiv \sum_{n=0}^{\infty} (n + b)^{-z} \). To find the limit \(z \to 0 \) we need to use that the terms with \(m = 1, 2 \) may have a pole as \(\zeta_R(x, b) = \frac{1}{x-1} - \psi(b) + ... \). Then we end up with

\[
\zeta_{\Delta_{s\perp}}(0) = \frac{1}{3}(2s + 1) \left[\zeta_R(-3, s + \frac{3}{2}) - (s + \frac{1}{2})^2 \zeta_R(-1, s + \frac{3}{2}) - \frac{1}{4}(s + \frac{9}{4} - M^2)(2s^2 + s - \frac{7}{4} + M^2) \right],
\]

where \(\zeta_R(-1, b) = -\frac{1}{2}b^2 + \frac{1}{2}b - \frac{1}{12} \) and \(\zeta_R(-3, b) = -\frac{1}{4}b^4 + \frac{1}{4}b^3 - \frac{1}{4}b^2 + \frac{1}{120} \). Finally,

\[
\zeta_{\Delta_{s\perp}}(0) = \frac{1}{180}(2s + 1) \left[15M^4 + 30(s^2 - 2)M^2 + 58 - 10s - 70s^2 + 15s^4 \right].
\]

Then using \((2.13), (2.16)\) we get

\[
B_4[\hat{\Delta}_{s\perp}(M^2)] = \zeta_{\Delta_{s\perp}}(0) - k_{s-1,4}
\]

\[
= \frac{1}{180}(2s + 1) \left[15M^4 + 30(s^2 - 2)M^2 + 58 - 10s - 85s^2 - 30s^3 \right].
\]

Taking into account \((1.10)\) this matches the expression for \(a[\hat{\Delta}_{s\perp}(M^2)] \) which was found \([1]\) directly from the standard algorithm for \(B_4 \) \([28]\) and using that \([1]\)

\[
det \hat{\Delta}_{s\perp}(M^2) = \frac{\det \hat{\Delta}_{s}(M^2)}{\det \hat{\Delta}_{s-1}(M^2 - 2s - d + 3)},
\]

\[
B_d[\hat{\Delta}_{s\perp}(M^2)] = B_d[\hat{\Delta}_{s}(M^2)] - B_d[\hat{\Delta}_{s-1}(M^2 - 2s - d + 3)].
\]
Applying (2.25) to find the total B_4 or a coefficient (1.10) corresponding to the $d = 4$ CHS partition (1.1) one ends up with (1.11) [1].

Let us note that the same expression (2.25) can be found also by considering instead of S^4 the non-compact H^4 (euclidean AdS$_4$) background. Indeed, the local expressions for the coefficient b_4 in (1.7) should match since it depends on the square of the curvature while $R(S^4) = - R(H^4)$ (one should also change the sign of the M^2 term as it enters as $M^2 \epsilon$, $R = d(d-1) \epsilon$, $\epsilon = \pm 1$).

Computing the corresponding value of $\zeta_{\Delta_{s,\perp}}(0)$ as in [24] (where its “un-integrated” value was found) and taking into account [18] that the regularized volume of H^4 is [1] $\Omega(H^4) = \frac{4 \pi^2}{3}$ while $\Omega(S^4) = \frac{8 \pi^2}{3}$ we conclude that B_4 and $\zeta_{H^4}(0)$ should be equal up to the factor of 2 coming from the ratio of the two volumes. Explicitly, given the operator $\hat{\Delta}_{s,\perp}$ corresponding values of the massless higher spin theory in AdS$_4$.

Let us note that the same conclusion applies also for the zero-mode terms in (2.28),(2.16) given by (cf. (1.4))

$$
\sum_{s=0}^{\infty} (k_{s-1,4} - k_{s-2,4}) = \sum_{s=1}^{\infty} \frac{1}{6} (s^2 + 5 s^4)
$$

This is equivalent to the expression obtained in [25] using (2.20). It was found there that the ζ-function regularized sum of the values of $\zeta_{H^4}(0)$ over all massless spins $s > 0$ plus the $s = 0$ (scalar) contribution vanishes [12]. Let us note that the same conclusion applies also for the corresponding values of the massless higher spin ζ-function computed on S^4 or dS$_4$: the sum over the zero-mode terms in (2.28),(2.16) given by (cf. (1.4))

$$
\sum_{s=1}^{\infty} (k_{s-1,4} - k_{s-2,4}) = \sum_{s=1}^{\infty} \frac{1}{6} (s^2 + 5 s^4)
$$

vanishes separately when ζ-function regularized.

\[11\] In general, for even-dimensional case one has $\Omega(H^{2n}) = \pi^{n-\frac{1}{2}} \Gamma(-n + \frac{1}{2})$ [9].

\[12\] Note that the $s = 0$ value of $B_4^{(s=0)}$ in (2.32) is not equal to the conformal scalar contribution $-\frac{1}{90}$ but is twice this value (the reason is that here the “ghost” contribution $-B_4[\hat{\Delta}_{s-1,\perp}(M_{s-1,4})]$ does not vanish for $s = 0$ and effectively doubles the “physical” mode contribution). Regularizing the sum $\sum_{s=1}^{\infty} B_4^{(s=0)}$ with ζ-function gives $-\frac{2}{90} \zeta(0) = \frac{1}{90}$ which cancels against the separate massless scalar contribution [4].
2.2 \(d = 6 \) case

According to (2.13) we should have the following relation between \(B_6 \) in (1.6) and the corresponding \(\zeta \)-function on \(S^6 \)

\[
B_6[\Delta_{s\perp}] = \zeta_{\Delta_{s\perp}}(0) - k_{s-1,6},
\]

(2.33)

where \(k_{s-1,6} \) is given in (2.19). The computation of the \(\zeta_{\Delta_{s\perp}}(0) \) in \(d = 6 \) uses (2.17),(2.18) and follows the same lines as in \(d = 4 \). The counterpart of (2.20) is

\[
\zeta_{\Delta_{s\perp}}(z) = \frac{1}{60}g_s \sum_{k=s+\frac{5}{2}}^{\infty} \frac{k(k^2 - \frac{1}{4})[k^2 - (s + \frac{3}{2})^2]}{(k^2 - h^2)^2}, \quad h^2 = s + \frac{25}{4} - M^2, \quad (2.34)
\]

and using (2.21) we get

\[
\zeta_{\Delta_{s\perp}}(z) = \frac{1}{60}g_s \sum_{m=0}^{\infty} c_m(z)h^{2m} \left[\zeta_R(2z + 2m - 5, s + \frac{5}{2}) - (s^2 + 3s + \frac{5}{2})\zeta_R(2z + 2m - 3, s + \frac{5}{2}) + \frac{1}{4}(s + \frac{5}{2})^2\zeta_R(2z + 2m - 1, s + \frac{5}{2}) \right] \quad (2.35)
\]

Taking the limit \(z \rightarrow 0 \) gives (cf. (2.23))

\[
\zeta_{\Delta_{s\perp}}(0) = \frac{1}{60}g_s \left[\zeta_R(-5, s + \frac{5}{2}) - (s^2 + 3s + \frac{5}{2})\zeta_R(-3, s + \frac{5}{2}) + \frac{1}{4}(s + \frac{5}{2})^2\zeta_R(-1, s + \frac{5}{2}) \right. \\
\left. + \frac{1}{6}h^6 - \frac{1}{4}(s^2 + 3s + \frac{5}{2})h^4 + \frac{1}{8}(s + \frac{5}{2})^2h^2 \right] \quad (2.36)
\]

As a result,

\[
\zeta_{\Delta_{s\perp}}(0) = \frac{(s+1)(s+2)(2s+3)}{453600} \left[-210M^6 - 315M^4(s^2 + s - 10) + 630M^2(s^3 + 8s^2 + 8s - 24) + 22780 - 17514s - 15288s^2 + 2940s^3 + 945s^4 + 105s^6 \right] \quad (2.37)
\]

Then eq.(2.33) implies that (cf. (2.25))

\[
B_6[\Delta_{s\perp}(M^2)] = \frac{(s+1)(s+2)(2s+3)}{453600} \left[-210M^6 - 315M^4(s^2 + s - 10) + 630M^2(s^3 + 8s^2 + 8s - 24) + 22780 - 17514s - 15288s^2 + 2940s^3 + 945s^4 + 105s^6 \right]. \quad (2.38)
\]

In particular, in the case of the conformal scalar \(s = 0 \), \(M^2 = \frac{d-2}{4(d-1)}R = \frac{1}{4}d(d - 2) = 6 \) we get \(B_6 = \frac{1}{750} \), i.e. the standard value (1.14).

It should be possible of course to find (2.38) directly from the general expression (2.28) for the \(b_6 \) heat kernel coefficient of a 2nd-order differential operator in curved space, but in the arbitrary spin \(s \) case in \(d = 6 \) this computation appears to be more involved than the one based on the \(\zeta \)-function on \(S^6 \) presented here.
3 \(B_6^{(s)} \) coefficient in conformal spin \(s \) partition function on \(S^6 \)

Let us now apply the general expression (2.38) to find the \(B_6^{(s)} \) coefficient corresponding to the CHS partition function (1.2) on \(S^6 \). Explicitly, in \(d = 6 \) we get

\[
Z_s(S^6) = \prod_{k=0}^{s-1} \left[\det \hat{\Delta}_{k \perp}(M_{k,s}^2) \right]^{1/2} \prod_{k' = -1}^{s-1} \left[\det \hat{\Delta}_{k \perp}(M_{s,k'}^2) \right]^{-1/2}, \quad M_{k,m}^2 = k - (m - 1)(m + 4). \tag{3.1}
\]

Using (2.38) we find for the total anomaly coefficient (cf. (1.11))

\[
B_6^{(s)} = \sum_{k' = -1}^{s-1} B_6[\hat{\Delta}_{s \perp}(s - (k' - 1)(k' + 4))] - \sum_{k = 0}^{s-1} B_6[\hat{\Delta}_{k \perp}(k - (s - 1)(s + 4))] \nonumber
\]

\[
= - \frac{(s+1)^2(s+2)^2}{151200} (22s^6 + 198s^5 + 671s^4 + 1056s^3 + 733s^2 + 120s - 50) . \tag{3.2}
\]

Let us note that the \(k = s - 1, \ k' = s - 1 \) terms in (3.1) represent the partition function of massless spin \(s \) field on \(S^6 \) (or dS\(_6\)) which is the same as the AdS\(_6\) one in (1.4) up to the sign of the dimensionless mass parameters: on \(S^6 \) we have

\[
M_{s,s-1}^2 = -s^2 + 6 , \quad M_{s-1,s}^2 = -s^2 - 2s + 3 . \tag{3.3}
\]

We find for the contribution of this massless spin \(s \) factor (cf. (2.32))

\[
B_6^{(s0)} = B_6[\hat{\Delta}_{s \perp}(M_{s,s-1}^2)] - B_6[\hat{\Delta}_{s-1 \perp}(M_{s-1,s}^2)] \nonumber
\]

\[
= - \frac{(s+1)^2}{15120} (63s^6 + 378s^5 + 847s^4 + 868s^3 + 378s^2 + 28s - 20) . \tag{3.4}
\]

For \(s = 0 \) this equals to the conformal scalar value (1.14) as in this case \(B_6[\hat{\Delta}_{s-1 \perp}(M_{s-1,s}^2)] \) vanishes.

4 \(a_s \) coefficient in ratio of massless spin \(s \) partition functions in AdS\(_7\)

Let us now show that exactly the same expression (3.2) appears as a coefficient of the IR divergent term in the ratio of the massless spin \(s \) partition functions in AdS\(_7\) in the l.h.s. of eq.(1.3). We shall first review the general expression for this coefficient found in [2] and then apply it to the case of \(d = 6 \).

Starting with a mass \(m \) spin \(s \) operator in AdS\(_{d+1}\) of unit radius (\(\epsilon = -1 \))

\[
\hat{\Delta}(M^2)_{s \perp} = (-\nabla^2 + M^2 \epsilon)_{s \perp} , \quad M^2 = -m^2 + s - (s - 2)(s + d - 2) , \tag{4.1}
\]

one finds that the powers of near-boundary asymptotics of the corresponding solutions are \(\gamma_\pm = \Delta_\pm - s \) where [29]

\[
\Delta_\pm(m) = \frac{1}{2} d \pm \sqrt{m^2 + (s + \frac{1}{2} d - 2)^2} = \frac{1}{2} d \pm \sqrt{\frac{1}{4} d^2 + 3s - 4 - M^2} , \tag{4.2}
\]

\[
\Delta_+ \equiv \Delta_+(0) = s + d - 2 , \quad \Delta_- \equiv \Delta_-(0) = 2 - s , \quad \Delta_- = d - \Delta_+ . \tag{4.3}
\]
These Δ_\pm apply to the physical (spin s) part of (1.4) while for the “ghost” (spin $s-1$) part of (1.4) $\Delta'_+ = s + d - 1$, $\Delta'_- = 1 - s$ [4]. As discussed in the Introduction, the partition function of a constant-mass operator on AdS$_{d+1}$ is proportional to its volume which for even d is IR divergent (see (1.5)). Calling the coefficient of the ln L term in the corresponding free energy $F = \frac{1}{2} \ln \det \Delta_{s,1}(M^2)$ as $a_s(\Delta)$ where $\Delta = \Delta_+$ in (1.2) one finds that [4]

$$\delta a_s(\Delta) \equiv a_s(\Delta) - a_s(d - \Delta)$$

$$= -\frac{2g_s(d+1)}{\pi d!} \int^\Delta_1 dx (x - \frac{1}{2}d)(x + s + 1)(x - s + d + 1)\Gamma(x - 1)\Gamma(d - 1 - x)\sin(\pi x)$$

(4.4)

where $g_s(d+1)$ is the same as g_s in (2.4) with $d \to d + 1$. Then the coefficient a_s corresponding to the ratio of the partition functions appearing in the l.h.s. of (1.3) can be found as

$$a_s = \delta a_s(\Delta_+) - \delta a_{s-1}(\Delta'_+) = \delta a_s(s + d - 2) - \delta a_{s-1}(s + d - 1)$$

(4.5)

The special cases of $d = 2$ and $d = 4$ were already discussed in [4]. Doing the integral in (4.4) gives [3]

$$d = 2 : \quad \delta a_s(\Delta) = \frac{2}{3}(\Delta - 1) [3s^2 - (\Delta - 1)^2]$$

(4.6)

$$d = 4 : \quad \delta a_s(\Delta) = \frac{(s+1)^2}{180} (\Delta - 2)^3 [5(s+1)^2 - 3(\Delta - 2)^2]$$

(4.7)

Using these expressions in (4.5) leads to (here for $d = 2$ $s \geq 2$ and $a_0 = \frac{1}{3}$, $a_1 = \frac{1}{3}$)

$$d = 2 : \quad a_s = \frac{3}{2} + 4s(s - 1)$$

(4.8)

$$d = 4 : \quad a_s = \frac{s^2(s+1)^2}{180} (14s^2 + 14s + 3)$$

(4.9)

Thus in $d = 4$ one finds a_s in (1.9) that matches $B_4^{(s)}$ (1.11) derived in [4] directly from (1.1) (see also section 2.1).

The $d = 2$ coefficient (4.8) (rescaled by -3) was interpreted in [4] as the central charge $c_s = -2[1 + 6s(s-1)]$ ($s \geq 2$) of the first-order bc-ghost system with weights s and $1 - s$ corresponding to spin s W-gravity field [30, 31, 32]. In Appendix we shall demonstrate that the AdS$_3$ prediction (4.8) matches the B_2 anomaly coefficient for the $d = 2$ case of the conformal higher spin partition function (1.2).

Let us now consider the $d = 6$ case. Computing the integral in (4.4) we get (cf. (4.6), (4.7))

$$\delta a_s(\Delta) = \frac{(s+1)(s+2)^2(3s+1)^2}{453600} (\Delta - 3)^3 \left[-35(s+2)^2 + 21[(s+2)^2 + 1](\Delta - 3)^2 - 15(\Delta - 3)^4 \right]$$

(4.10)

Let us recall again that the normalization of a_s in (4.4) is such that it is the coefficient of the logarithm of the radius of S^d, i.e. it is equal to minus the corresponding value of B_d: in the case of $d = 6$ for $s = 0$, $\Delta = \frac{d}{2} + 1 = 4$ eq. (4.10) gives $-\frac{1}{756} = -B_6^{(0)}$ (cf. (1.13)).

Applying (4.10) to the case of (4.5) we find

$$d = 6 : \quad a_s = \delta a_s(s + 4) - \delta a_{s-1}(s + 5)$$

$$= \frac{(s+1)^2(s+2)^2}{151200} (22s^6 + 198s^5 + 671s^4 + 1056s^3 + 733s^2 + 120s - 50)$$

(4.11)

This is the same expression as in (1.15), i.e. it matches the expression (3.2) for $-B_6^{(s)}$ found above directly from the CHS partition function on S^6.

In $d = 2$ one finds from (2.4) that $g_s^{(d+1)} = 2$ for $s \geq 1$ and 1 for $s = 0$.

13
5 Concluding remarks

To summarize, in this paper we have shown the agreement (1.8) between the UV divergence coefficient $B_6^{(s)} (3.2)$ of the conformal higher spin partition function on S^6 and the IR divergence coefficient a_s in the ratio of massless higher spin partition functions with alternate boundary conditions on AdS$_7$. Together with the corresponding $d = 4$ results of [4, 11] this provides a non-trivial test of the relation (1.3). We also demonstrate a similar matching in the $d = 2$ case in Appendix below.

In $d = 4$ the sum of the anomaly coefficients a_s in (1.9) over all spins s vanishes [4] when computed using the standard ζ-function prescription. The same is true also for the sum of the $s \geq 1$ massless spin s divergence coefficients in (2.32) plus the $s = 0$ conformal scalar contribution [25]. In the $d = 6$ case we discussed here the corresponding sums of the coefficients in (3.2) and in (3.4) do not appear to vanish. This may not be surprising since in $d = 6$ there is no a priori reason to sum over all spins with weight one and, moreover, to consider only totally symmetric traceless tensor representation [14].

In general, it would be interesting also to study the $d = 6$ conformal higher spin partition function on other backgrounds, e.g., on Ricci-flat one as in $d = 4$ case in [1]. The corresponding covariant and Weyl-invariant CHS action should have the structure $\int d^6x \sqrt{g} \phi_s (\nabla^2 \phi_s + ...)\phi_s = \int d^6x \sqrt{\mathcal{G}} C_{2s} (\nabla^2 + ...)C_{2s}$, where the rank $2s$ tensor C_{2s} is a gauge-covariant CHS field strength $C_{2s} \sim P_s \nabla^s \phi_s + ...$. This action is known explicitly only for lowest values of the spin. For $s = 1$ the field strength C_2 is the antisymmetric tensor and the 2nd order Weyl-covariant operator $(\nabla^2 + ...)$ acting on it can be found, e.g., in [33]. For $s = 2$ the field strength C_4 is the same as the Weyl tensor and the corresponding Weyl-covariant operator $(\nabla^2 + ...)$ is the same that appears in the $I_1 \sim C(\nabla^2 + ...)C$ term in the trace anomaly (1.12) [12] (see also [33]). The “minimal” $d = 6$ Weyl gravity action $\int d^6x \sqrt{\mathcal{G}} I_1$ (which can be expressed in terms of Ricci tensor $I_1 \sim R_{ab} (\nabla^2 + ...)R_{mn}$ [12]) admits an equivalent representation [34] in terms of a collection of fields with ordinary (2nd-derivative) kinetic terms. Such an ordinary-derivative description of the CHS field with any spin s and in any even dimension d is known in flat space [19], and, following the $s = 2$ example [34], it may serve as a starting point for constructing a covariant CHS $s \geq 2$ actions in generic curved backgrounds.

Acknowledgments

We are grateful to A. Barvinsky, R. Metsaev, R. Roiban, E. Skvortsov and M. Vasiliev for useful discussions. We thank I. Klebanov for useful comments on the draft and pointing out that the AdS$_7$ expression (4.11) was independently found also in [36]. This work was supported by the ERC Advanced grant No.290456 and also by the STFC grant ST/J000353/1.

14For example, one may include also the self-dual 2-form field which contributes $221/210$ to the Weyl anomaly coefficient B_6 on S^6 [15].

15As was shown in [34], the other two Weyl invariants $I_2, I_3 \sim CCC$ may also be expressed in terms of fields of the “ordinary-derivative” formulation but that leads to higher than second derivative terms and that may be considered as an argument for I_1 as the natural conformal spin 2 action in $d = 6$ provided one uses the ordinary-derivative formulation of [34] as a starting point.
Appendix:
Partition function and B_2 coefficient of conformal higher spins on S^2

Here we shall show that the AdS$_3$ prediction for a_s [4,6] is indeed the same (1.8) as the logarithmic UV divergence coefficient B_2 in the conformal higher-spin partition function (1.1) specialised to the $d = 2$ case.

Naively, the $d = 2$ limit of the conformal higher spin action should start with a $\partial^{2s+d-4} = \partial^{2s-2}$ term ($s \geq 2$). However, the $d = 2$ case of the CHS theory is special – here the number of components N_s (2.5) of a symmetric traceless rank s tensor is s-independent: $N_s = 2$ for $s \geq 1$ ($N_s = 1$ for $s = 0$). Then the number of the corresponding transverse components $g_s = N_s$ (2.3) vanishes for $s \geq 2$: $N_{s\perp} = N_s - N_{s-1} = 0$ ($N_{1\perp} = 1$). Equivalently, a symmetric rank tensor CHS field ϕ_s can be completely gauged away by a combination of the gradient gauge symmetry (generalized reparametrizations) and the algebraic gauge symmetry (generalized Weyl symmetry), i.e. there is no non-trivial gauge-invariant field strength $C_{2s} \sim P_s \partial^s \phi_s$ (this is an $s \geq 3$ generalization of the fact of the absence of Weyl tensor in $d = 2$).

Thus the classical $d = 2$ CHS action is trivial (a familiar fact for $s = 2$ or gravity in $d = 2$). Still, non-zero contributions to the corresponding partition function may come from the gauge-fixing or ghost sector. Indeed, the number of dynamical degrees of freedom of a CHS field in $d = 2$ as following from the general expression in (2.7) is $\nu_s = -2$ (again, a well-known result for $d = 2$ gravity with trivial Einstein term action). More precisely, the CHS action in the path integral for the partition function in a background covariant harmonic gauge ($\nabla \cdot \phi_s = 0$) will have actually a non-trivial $\phi_s \partial^{2s-2} \phi_s + ...$ kinetic term but it will be coming solely from the gauge-fixing term. Thus, despite the triviality of the classical gauge-invariant CHS action, the corresponding partition function will still contain “physical” determinants of spin s operators coming from the gauge-fixing term.

Indeed, the $d = 2$ limit of the CHS partition function (1.2) is found to be

$$Z_s(S^2) = \prod_{k=0}^{s-1} \left[\frac{\det \hat{\Delta}_{k\perp}(k - s(s - 1))}{\det \hat{\Delta}_{s\perp}(s - k'(k' - 1))} \right]^{1/2} \prod_{k'=1}^{s-1} \left[\frac{\det \hat{\Delta}_{k\perp}(k - s(s - 1))}{\det \hat{\Delta}_{s\perp}(s - k'^2 + k')} \right]^{1/2} . \quad (A.1)$$

Using (2.26) this may be written explicitly in terms of unconstrained operators as ($\hat{\Delta}_{-\perp} \equiv 1$)

$$Z_s(S^2) = \prod_{k=0}^{s-1} \left[\frac{\det \hat{\Delta}_k(k - s^2 + s)}{\det \hat{\Delta}_{-\perp}(k - s^2 - s + 1)} \right]^{1/2} \prod_{k'=1}^{s-1} \left[\frac{\det \hat{\Delta}_{-\perp}(1 - s - k'^2 + k')}{\det \hat{\Delta}_s(k'^2 - k')} \right]^{1/2} . \quad (A.2)$$

Given an operator $\hat{\Delta}_k(M^2) = -\nabla^2 + M^2$ defined on unconstrained symmetric traceless rank k tensor the corresponding Seeley coefficient (1.7) in the free energy (1.6) on unit-radius S^2 (with curvature $R = d(d - 1) = 2$) is

$$B_2[\hat{\Delta}_k(M^2)] = \frac{1}{4\pi} \Omega(S^2) b_2 = b_2 , \quad b_2 = N_k \left(\frac{1}{6} R - M^2 \right) , \quad k \geq 1 : \quad b_2 = 2 \left(\frac{1}{3} - M^2 \right) , \quad k = 0 : \quad b_2 = \frac{1}{3} - M^2 . \quad (A.3)$$

\footnote{For example, for $s = 2$ the two components of the traceless rank 2 tensor ϕ_2 (or h_{mn} fluctuation of metric) will enter as $(\nabla^m h_{mn})^2 \sim h_+ + \nabla^2 h_{--} + ...$}
Applying (2.27) we find
\begin{align*}
k \geq 2 : \quad & B_2[\hat{\Delta}_{k+1}(M^2)] = B_2[\hat{\Delta}_k(M^2)] - B_2[\hat{\Delta}_{k-1}(M^2 - 2k + 1)] = -4k + 2, \quad (A.5) \\
& B_2[\hat{\Delta}_{1\perp}(M^2)] = -2 - M^2, \quad B_2[\hat{\Delta}_{0\perp}(M^2)] = B_2[\hat{\Delta}_0(M^2)] = \frac{1}{3} - M^2. \quad (A.6)
\end{align*}
Then the total B_2 coefficient in free energy (1.6) corresponding to (A.1) is $(s \geq 2)$
\begin{align*}
B_2^{(s)} &= \sum_{k'=0}^{s-1} B_2[\hat{\Delta}_{s\perp}(s-k'(k'-1))] - \sum_{k=0}^{s-1} B_2[\hat{\Delta}_{k\perp}(k-s(s-1))] \\
&= B_2[\hat{\Delta}_{s\perp}(s)] - B_2[\hat{\Delta}_{1\perp}(1-s(s-1))] - B_2[\hat{\Delta}_{0\perp}(s(s-1))] - 4 \sum_{k=2}^{s-1} (s-k) \\
&= -\frac{2}{3} - 4s(s-1). \quad (A.7)
\end{align*}
In the conformal 2d vector $s = 1$ case (corresponding to the Schwinger $\int F\partial^{-2}F = \int A_{m\perp}^2$ action) we get from (A.1) $Z_1 = [\det \hat{\Delta}_0(0)]^{1/2}$ and thus $B_2^{(1)} = -\frac{1}{2}$. This matches the expression for a_s (4.5) found from AdS$_3$, in line with the $d = 4$ and $d = 6$ tests of (1.3), (1.8) discussed above.

The $d = 2$ CHS model discussed here is, of course, closely related to spin s W-gravity model [31]: both have the same linearized symmetries – generalized reparametrizations and Weyl transformations for spin s field. The resulting conformal anomaly coefficient (A.7) is indeed equivalent to the quantum W-gravity anomaly given solely by the corresponding bc ghost contribution to the central charge $c_{gh} = -2(1 + 6s^2 - 6s)$ [31] [32] [17]. What is remarkable about the above derivation of this result from the CHS partition function (A.1) is that it illustrates that the $d = 2$ case, while somewhat degenerate (having trivial classical action), can still be viewed as a limit of d-dimensional conformal higher spin theory (which itself may then be interpreted as a natural $d > 2$ generalization of W-gravity) [18].

\[17\] In standard normalization with $c = 1$ for a real scalar one has $B_2 = \frac{1}{16\pi^2} \int d^2x \sqrt{-g}R$ or $B_2 = \frac{1}{4}c$ on S^2.

\[18\] It may be useful also to comment on a special nature of the $d = 2$ case regarding the structure of induced actions. Starting with a matter Lagrangian coupled to a CHS field and integrating out the matter field one, in general, gets a local logarithmically divergent term proportional to Weyl-invariant CHS action. In $d = 2$ this term is trivial which is related to the fact that in $d = 2$ the trace anomaly does not contain a Weyl-invariant B-type part [13] and is consistent with the vanishing of a gauge-invariant CHS action. The induced action will contain, of course, also finite non-local terms which, being anomalous, are not Weyl-invariant and thus are not candidates for a “critical” (i.e. fully symmetric) CHS action. Indeed, the induced actions for W-gravity spin s field φ_s discussed in [31] [35] may be written (generalizing the $s = 2$ Polyakov induced $d = 2$ gravity action) as $\int d^2x \left(R_{2s} \partial^{-2}R_{2s} + \ldots \right)$. Here $R_{2s} = \partial^\nu \varphi_s + \ldots$ is the higher spin curvature, which is invariant under the generalized reparametrizations but not under the generalized Weyl transformations.
References

[1] A. A. Tseytlin, “On partition function and Weyl anomaly of conformal higher spin fields,” arXiv:1309.0785.
[2] E. S. Fradkin and A. A. Tseytlin, “Conformal Supergravity,” Phys. Rept. 119, 233 (1985).
[3] A. Y. Segal, “Conformal higher spin theory,” Nucl. Phys. B 664, 59 (2003) hep-th/0207212.
[4] S. Giombi, I.R. Klebanov, S.S. Pufu, B.R. Safdi and G. Tarnopolsky, “AdS Description of Induced Higher-Spin Gauge Theory,” arXiv:1306.5242.
[5] S. S. Gubser and I. Mitra, “Double trace operators and one loop vacuum energy in AdS / CFT,” Phys. Rev. D 67, 064018 (2003) hep-th/0210093.
[6] S. S. Gubser and I. R. Klebanov, “A Universal result on central charges in the presence of double trace deformations,” Nucl. Phys. B 656, 23 (2003) hep-th/0212138.
[7] A. O. Barvinsky and D. V. Nesterov, “Quantum effective action in spacetimes with branes and boundaries,” Phys. Rev. D 73, 066012 (2006) hep-th/0512291.
[8] T. Hartman and L. Rastelli, “Double-trace deformations, mixed boundary conditions and functional determinants in AdS/CFT,” JHEP 0801, 019 (2008) hep-th/0602106.
[9] D. E. Diaz and H. Dorn, “Partition functions and double-trace deformations in AdS/CFT,” JHEP 0705, 046 (2007) hep-th/0702163.
[10] D. E. Diaz, “Polyakov formulas for GJMS operators from AdS/CFT,” JHEP 0807, 103 (2008) arXiv:0803.0571.
[11] M. J. Duff, “Twenty years of the Weyl anomaly,” Class. Quant. Grav. 11, 1387 (1994) hep-th/9308075.
[12] L. Bonora, P. Pasti and M. Bregola, “Weyl Cocycles,” Class. Quant. Grav. 3, 635 (1986).
[13] S. Deser and A. Schwimmer, “Geometric classification of conformal anomalies in arbitrary dimensions,” Phys. Lett. B 309, 279 (1993) hep-th/9302047.
[14] N. Boulanger, “Algebraic Classification of Weyl Anomalies in Arbitrary Dimensions,” Phys. Rev. Lett. 98, 261302 (2007) arXiv:0706.0340. “General solutions of the Wess-Zumino consistency condition for the Weyl anomalies,” JHEP 0707, 069 (2007) arXiv:0704.2472.
[15] F. Bastianelli, S. Frolov and A. A. Tseytlin, “Conformal anomaly of (2,0) tensor multiplet in six-dimensions and AdS / CFT correspondence,” JHEP 0002, 013 (2000) hep-th/0001041.
[16] M. A. Rubin and C. R. Ordonez, “Eigenvalues and degeneracies for n-dimensional tensor spherical harmonics”, J. Math. Phys. 25, 2888 (1984).
[17] A. Higuchi, “Symmetric Tensor Spherical Harmonics on the N Sphere and Their Application to the De Sitter Group SO(N,1),” J. Math. Phys. 28, 1553 (1987) [Erratum-ibid. 43, 6385 (2002)].
[18] R. Camporesi and A. Higuchi, “Spectral functions and zeta functions in hyperbolic spaces,” J. Math. Phys. 35, 4217 (1994).
[19] R. R. Metsaev, “Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields,” JHEP 1206, 062 (2012) arXiv:0709.4392.
[20] E. S. Fradkin and A. A. Tseytlin, “One Loop Effective Potential In Gauged O(4) Supergravity,” Nucl. Phys. B 234, 472 (1984).

[21] S. M. Christensen and M. J. Duff, “Quantizing Gravity with a Cosmological Constant,” Nucl. Phys. B 170, 480 (1980).

[22] M. G. Eastwood, “Higher symmetries of the Laplacian,” Annals Math. 161, 1645 (2005) [hep-th/0206233].

[23] B. Allen, “Phase Transitions in de Sitter Space,” Nucl. Phys. B 226, 228 (1983).

[24] R. Camporesi and A. Higuchi, “Arbitrary spin effective potentials in anti-de Sitter spacetime,” Phys. Rev. D 47, 3339 (1993).

[25] S. Giombi and I. R. Klebanov, “One Loop Tests of Higher Spin AdS/CFT,” arXiv:1308.2337.

[26] M. R. Gaberdiel, R. Gopakumar and A. Saha, “Quantum W-symmetry in AdS3,” JHEP 1102, 004 (2011) [arXiv:1009.6087].

[27] R. K. Gupta and S. Lal, “Partition Functions for Higher-Spin theories in AdS,” JHEP 1207, 071 (2012) [arXiv:1205.1130].

[28] P. B. Gilkey, “The Spectral geometry of a Riemannian manifold,” J. Diff. Geom. 10, 601 (1975).

[29] R. R. Metsaev, “Massive totally symmetric fields in AdS(d),” Phys. Lett. B 590, 95 (2004) [hep-th/0312297]. “Anomalous conformal currents, shadow fields and massive AdS fields,” Phys. Rev. D 85, 126011 (2012) [arXiv:1110.3749 [hep-th]].

[30] Y. Matsuo, “Remarks On Fractal W Gravity,” Phys. Lett. B 227, 209 (1989).

[31] C. M. Hull, “W gravity anomalies 1: Induced quantum W gravity,” Nucl. Phys. B 367, 731 (1991). “W gravity anomalies. 2. Matter dependent anomalies of nonlinearly realized symmetries,” Phys. Lett. B 265, 347 (1991). “Lectures on W gravity, W geometry and W strings,” in “Trieste 1992, Proceedings, High energy physics and cosmology”, p. 76-142 [hep-th/9302110].

[32] K. Yamagishi, “W(infinity) algebra is anomaly free at c = -2,” Phys. Lett. B 266, 370 (1991). C. N. Pope, L. J. Romans and X. Shen, “Conditions for anomaly free W and superW algebras,” Phys. Lett. B 254, 401 (1991). C. N. Pope, “Anomaly free W gravity theories,” in: Proceedings of “Strings and Symmetries 1991”, eds. N. Berkovitz et al. (World Scientific, 1992). [hep-th/9110033].

[33] J. Erdmenger, “Conformally covariant differential operators: Properties and applications,” Class. Quant. Grav. 14, 2061 (1997) [hep-th/9704108].

[34] R. R. Metsaev, “6d conformal gravity,” J. Phys. A 44, 175402 (2011) [arXiv:1012.2079].

[35] K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, “On the effective action of chiral W(3) gravity,” Nucl. Phys. B 371, 315 (1992). G. Delius, M. T. Grisaru, P. van Nieuwenhuizen, K. Schoutens and A. Sevrin, “Solvable extensions of two-dimensional gravity,” Class. Quant. Grav. 10, S109 (1993).

[36] S. Giombi, I.R. Klebanov and B.R. Safdi, work in progress.