A Comparative Systematic Review of COVID-19 and Influenza

Molka Osman 1, Timothée Klopfenstein 2, Nabil Belfeki 3, Vincent Gendrin 2,* and Souheil Zayet 2,*

1 Faculty of Medicine of Tunis, University Tunis El Manar, Tunis 1007, Tunisia; molkaosman@gmail.com
2 Infectious Disease Department, Nord Franche-Comté Hospital, 90400 Trévenans, France; timothee.klopfenstein@hnfc.fr
3 Internal Medicine Department, Groupe Hospitalier Sud Ile de France, 77000 Melun, France; nabil.belfeki@ghsif.fr
* Correspondence: vincent.gendrin@hnfc.fr (V.G.); souhail.zayet@gmail.com (S.Z.)

Abstract: Background: Both SARS-CoV-2 and influenza virus share similarities such as clinical features and outcome, laboratory, and radiological findings. Methods: Literature search was done using PubMed to find MEDLINE indexed articles relevant to this study. As of 25 November 2020, the search has been conducted by combining the MeSH words “COVID-19” and “Influenza”. Results: Eighteen articles were finally selected in adult patients. Comorbidities such as cardiovascular diseases, diabetes, and obesity were significantly higher in COVID-19 patients, while pulmonary diseases and immunocompromised conditions were significantly more common in influenza patients. The incidence rates of fever, vomiting, ocular and otorhinolaryngological symptoms were found to be significantly higher in influenza patients when compared with COVID-19 patients. However, neurologic symptoms and diarrhea were statistically more frequent in COVID-19 patients. The level of white cell count and procalcitonin was significantly higher in influenza patients, whereas thrombopenia and elevated transaminases were significantly more common in COVID-19 patients. Ground-grass opacities, interlobular septal thickening, and a peripheral distribution were more common in COVID-19 patients than in influenza patients where consolidations and linear opacities were described instead. COVID-19 patients were significantly more often transferred to intensive care unit with a higher rate of mortality. Conclusions: This study estimated differences of COVID-19 and influenza patients which can help clinicians during the co-circulation of the two viruses.

Keywords: influenza; COVID-19; SARS-CoV-2; clinical features; laboratory; imaging; systematic review

1. Introduction

Coronavirus disease 2019 (COVID-19), an infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was first reported in December 2019, in Wuhan, province of Hubei in China. Since then, it has evolved into a worldwide pandemic and became one of the world’s toughest health problems [1]. Both SARS-CoV-2 and influenza virus share similarities such as viral shedding, route of transmission, and clinical presentation [2]. Influenza affects 5–10% of adults annually with most cases occurring during the winter season [3]. According to the World Health Organization (WHO), influenza’s epidemics are estimated to result in about 3 to 5 million cases of severe illness, and about 290,000 to 650,000 respiratory deaths [4].

There have been few studies comparing COVID-19 with influenza mainly focused on epidemiological features in the general population [5]. However, no review study compared clinical, biological, and radiological characteristics between COVID-19 and influenza. With projections estimating the COVID-19 pandemic to last for another year [2] and it being the influenza season, it is crucial to evaluate the differences between the two diseases. The current study performed a systematic review to compare the clinical...
features and outcome, laboratory, and radiological findings of COVID-19 patients with influenza adult patients.

2. Methods

This study is based on a review of published literature comparing COVID-19 and influenza. Literature search was done using PubMed to find MEDLINE indexed articles relevant to this study. As of 25 November 2020, the search has been conducted by combining the MeSH words “COVID-19” and “Influenza”. At first, citations that were not in English or in French and not a free full text were excluded. Then, we screened citations based on titles and abstracts. Those with irrelevant information or subjects, studies with focus other than comparing COVID-19 and influenza, studies with a population under 18 years old and case reports about coinfection between COVID-19 and influenza were excluded. A p-value < 0.05 was considered significant to compare the two viruses.

3. Results

3.1. Included Citations in the COVID-19 vs. Influenza Review

On PubMed, 331 articles were initially found, out of which 46 articles were selected. In the end, 18 articles were selected [3,5–21] (8 retrospective studies, 6 cohort studies, 3 case-control studies, 1 prospective study, 1 cross-sectional study, 1 review and meta-analysis, and 1 review) (Figure 1 and Table 1)

![PRISMA guideline flowchart detailing article selection process.](image-url)
3.2. Studies in Patients with COVID-19 and Influenza

3.2.1. Demographic and Clinical Findings

In this review, 14 studies of 18 [5,6,9–16,18–21] reported a comparison between COVID-19 and influenza patients based on demographic findings, comorbidities, clinical features, and outcome (Table 2). Fever and respiratory symptoms such as cough, expectoration or sputum production and dyspnea were the main symptoms in both groups with COVID-19 and influenza; however, they were significantly more frequent in patients with influenza [5,9–11,13,15,16,19,20]. Moreover, vomiting, ototrhinolaryngological symptoms such as nasal congestion, rhinorrhea, sore throat and ocular symptoms such as tearing and conjunctival hyperemia were statistically more frequent in patients with influenza than COVID-19 adult patients [5,10–12,15]. In patients infected with COVID-19, the most significant and frequent clinical features were fatigue, neurologic symptoms such as headache (especially the frontal headache), anosmia and dysgeusia, gastro-intestinal (GI) symptoms such as diarrhea and acute respiratory distress syndrome (ARDS), compared to influenza patients [11,13–15,18]. In a retrospective case-control study, Tang et al. reported that patients with influenza were more disposed to have productive cough and higher Sequential Organ Failure Assessment (SOFA) scores (OR = 9.58, (95% CI: 1.73–64.72), p = 0.011 and OR = 2.26 (1.12–3.57), p = 0.006, respectively). Meanwhile, COVID-19 patients exhibit symptoms of fatigue or GI symptoms (OR = 0.91 (0.84–0.98), p = 0.011; OR = 0.12 (0.02–0.94), p = 0.013 and OR = 0.10, (0.01–0.98), p = 0.044, respectively) [13].

Concerning comorbidities; cardiovascular disease/hypertension, diabetes and obesity were significantly higher in patients with COVID-19, while respiratory diseases

References	Country	Study Type **	Number of Patients/Studies * (COVID-19 vs. Influenza)
Jordan Cates et al. [6]	United States	Cohort	9401 (3948 vs. 5453)
Ying Luo et al. [7]	China (Hubei)	Cohort	2167 (1027 vs. 1140)
Jiangnan Chen et al. [8]	China (Shaoxing)	Case-Control	380 (169 vs. 131; 80 healthy controls)
Jiajia Qu et al. [9]	China	Retrospective Cohort	366 (246 vs. 120)
Jinguo Zhang et al. [10]	China	Retrospective cohort	326 (211 vs. 115)
Helene Faury et al. [11]	France (Paris)	Retrospective	200 (100 vs. 100)
Pengfei Li et al. * [5]	-	Systematic review and Meta-analysis	197 (113 vs. 84)
Mengqi Liu et al. [12]	China (Chongqing)	Retrospective	180 (122 vs. 48)
Xiao Tang et al. [13]	China (Wuhan)	Retrospective case-control	148 (73 vs. 75)
Natalie L. Cobb et al. [14]	United States (Washington)	Retrospective Cohort	139 (65 vs. 74)
Souheil Zayet et al. [15]	France	Retrospective	124 (70 vs. 54)
Hao Wang et al. [16]	China	Retrospective	105 (13 vs. 92)
Liaoyi Lin et al. [17]	China (Wenzhou)	Retrospective	97 (52 vs. 45)
Raija Auvinen et al. [18]	Finland	Prospective study	61 (28 vs. 33)
Zhilan Yin et al. [19]	China	Retrospective	60 (30 vs. 30)
Yi-Hua Lin et al. [20]	China (Xiamen)	A cross-sectional retrospective study	57 (35 vs. 22)
Jaehee Lee et al. [21]	South Korea (Daegu)	Retrospective	29 (20 vs. 09)
Stephen O. Ongbiinde et al. * [3]	-	Review	17 (09 vs. 08)

* Studies for Review or Meta-analysis. ** Cohort studies are used to investigate causes of disease and establish association between risk factors and health outcomes. An outcome-free study population is first identified by the exposure/event of interest and followed in time until the outcome of interest happens. They can be prospective (carried out from the present time into the future) or retrospective (carried out at the present time and look to the past to examine medical events or outcome). Case-Control studies first identify subjects by outcome status (cases), then select from the same source population, subjects without the outcome (control). Cross-sectional study or prevalence study is an observational study that collects data on the subjects of interest at a specific point in time.
such as asthma and chronic obstructive pulmonary disease (COPD) and immunocompromised conditions were significantly more common in influenza patients [5,11,18]. Zayet et al. concluded that COVID-19 patients had a lower Charlson comorbidity index (CCI) than influenza patients (2 ± 2.5 vs. 3 ± 2.4, respectively, \(p = 0.003 \)), but with no significant differences regarding comorbidities [15]. Qu et al. reported that while the incidences of COVID-19 and influenza were comparable among the 18–65 and >65 year age groups, the incidences of influenza were much higher than COVID-19 among those aged under 18 years old [9]. However, Lee et al., reported that the median age was significantly higher in patients with COVID-19 compared to patients with influenza (68 (IQR: 59–75) years vs. 57 (IQR: 44–63) years, \(p = 0.016 \)) [21]. No significant difference was found concerning other demographic characteristics such as gender and ethnicity in our review.

Only a few studies (2/18 studies in adults) were interested in describing the timeline and onset of the main symptoms in COVID-19 and influenza [14,15]. Zayet et al. reconstituted the natural history of the two viruses and suggested that the onset of symptoms (pain symptoms appeared first, followed by fever, cough and diarrhea) did not differ between the two groups except fever, which appeared earlier in COVID-19 than in influenza (1.9 days vs. 2.5 days, \(p = 0.045 \)) [15]. They also concluded that hospitalization and clinical aggravation occurred later in COVID-19 than in influenza. In fact, COVID-19 patients were hospitalized at day 7 ± 3 (vs. day 5 ± 2 in influenza, \(p = 0.038 \)), had a respiratory rate \(\geq 22/\text{min} \) at day 9 ± 0.8 (vs. day 5 ± 1.3 in influenza, \(p < 0.001 \)), and were admitted to intensive care unit (ICU) at day 10 ± 2.7 (vs. day 7 ± 2.4 in influenza, \(p < 0.004 \)). Cobb et al. also reported that patients with COVID-19 had a longer median symptom duration prior to hospitalization compared to patients with influenza (7 days (IQR 5–13) vs. 3.5 (IQR 2–7), \(p < 0.001 \)) [14]. In the prospective study of Raija Auvinen et al., in multivariable Cox regression analysis, the predictors associated with a longer duration of hospitalization were COVID-19 (hazard ratio (HR) 0.221 (95% CI = 0.118–0.416), \(p < 0.001 \)), age (HR = 0.972, (0.955–0.990), \(p = 0.002 \)), Body Mass Index (HR = 0.950 (0.916–0.986), \(p = 0.006 \)) and diabetes (HR 0.539, (0.272–1.066), \(p = 0.076 \)) [18].

Reference	Significant Clinical Features/Outcome	COVID-19 (%)	Influenza (%)	\(p \)-Value < 0.05
Jordan Cates et al. [6]	Admitted to ICU	36.5	17.6	< 0.001
	Hospital mortality	21	3.8	< 0.001
	Duration of hospitalization (median days, [IQR])	8.6 [3.9–18.6]	3.0 [1.8–6.5]	< 0.001
Jiajia Qu et al. [9]	Fever	78.5	89.2	< 0.05
	Persistent fever	50.4	74.2	< 0.01
Jianguo Zhang et al. [10]	Cough	69.7	86.1	0.001
	Expectoration	22.7	74.8	< 0.001
	Dyspnea	14.7	27.8	0.004
	Chest pain	13.7	27.8	0.002
	Vomiting	1.4	9.6	< 0.001
Hélène Faury et al. [11]	Chronic pulmonary diseases	12.0	27.0	0.01
	Overweight/Obesity	40.8	25.0	0.02
	Median BMI	27.3	24.8	0.04
	Fatigue	63.6	39.0	0.0006
	Diarrhea	25.8	13.0	0.03
	Faintness	12.1	3.0	0.02
	Anosmia/Ageusia	7.0	0	0.01
	Sputum production	12.0	36.0	0.0001
	Nasal Congestion	8.3	21	0.02
	Secondary respiratory failure	21.0	0	< 0.0001
	Acute Kidney failure	17.0	7.0	0.048
Condition	Percentage	Reference		
---	------------	-----------------		
Pulmonary embolism	6.0	Pengfei Li et al. [5]		
Heart congestion	14.0			
Admitted to ICU	12.0			
Duration of hospitalization (days, [IQR])	10 [4–17]			
Oxygen therapy	42.3			
Mortality rate	5.0			
Cardiovascular disease/Hypertension	28.76			
Diabetes	11.12			
Asthma	16.09			
Chronic Obstructive Pulmonary disease	4.93			
Immunocompromised conditions	4.39			
Fever	89.99			
Cough	85.31			
Shortness of breath	49.19			
Rhinorrhea	38.57			
Sore throat	37.28			
Myalgia/Muscle pain	30.12			
Vomiting	24.27			
Stuffy and runny nose	23	Mengqi Liu et al. [12]		
Productive cough	73.4	Xiao Tang et al. [13]		
Fatigue	18.7			
GI symptoms	6.7			
Myalgia	14.7			
ARDS*	63	Natalie L. Cobb et al. [14]		
Hospital mortality	19			
Frontal headache	9.3	Souheil Zayet et al. [15]		
Retro-orbital or temporal headache	3.7			
Fever	92.6			
Anosmia	16.7			
Dysgeusia	20.4			
Diarrhea	20.4			
Sputum Production	51.9			
Sneezing	46.3			
Dyspnea	59.3			
Sore throat	44.4			
Conjunctival hyperemia	29.6			
Tearing	24.1			
Vomiting	22.2			
Crackling sound	20.4			
Ronchi sounds	16.7			
Pulmonary Diseases	45	Hao Wang et al. [16]		
Current smoking	30			
Headache	52			
ARDS	58			
ICU admission	6	Raija Auvinen et al. [18]		
Duration of hospitalization (days, [IQR])	6 [4–21]			
Cough	96.7	Zhilan Yin et al. [19]		
Expectoration	80			
Fever 38.0 °C–38.9 °C	43	Yi-Hua Lin et al. [20]		
Fever ≥39.0 °C	11			
Cough	100			
Expectoration	91			
Dyspnea	59			
Chills	55			

*ARDS: Acute Respiratory Distress Syndrome
3.2.2. Laboratory Findings

A total of 11 studies of 18 [7–11,13,14,18–21] compared routine laboratory test results between COVID-19 and influenza patients. Both infections caused abnormalities in biological parameters leading to aberrant blood cell counts and sometimes elevated hepatic, renal, and cardiac enzyme activity. White blood cells, especially neutrophils (NE) were significantly more elevated in influenza than COVID-19 patients [7,8,10,11,14,18–21]. Lymphocytes proportion in white blood cell count are higher in influenza than COVID-19 patients [7,8,20] but without difference between lymphocytes level [7,8], except for one study [20]. Platelets level was lower [11] with more often thrombocytopenia [18] in COVID-19 than influenza patients. Elevated transaminases were significantly more common in COVID-19 patients [7,8,11,18,20]. In a prospective study by Raija Auvinen et al, it was reported that C-reactive protein (CRP) values were similar at admission but rose significantly higher in COVID-19 patients than influenza patients during hospitalization [18]. However, elevated procalcitonin was significantly more frequent in influenza patients than in COVID-19 patients [19,20]. COVID-19 patients had also a greater disposition to elevated prothrombin time (OR = 0.63, 95% CI (0.46–0.86), p = 0.004) [13].

Finally, Chen et al. developed a diagnostic formula to differentiate between COVID-19 and influenza during their early stages. Two parameters (monocyte (MO) count and percentage of basophils (BA)) were combined to clarify the diagnostic efficacy, with a sensitivity of 71.6% and a specificity of 74.8% (joint probability = 0.63, 95% CI (0.46–0.86), p = 0.004) [13].

Table 3. Significant laboratory findings in COVID-19 and influenza adult groups.

Reference	Significant Laboratory Findings	COVID-19 (%)	Influenza (%)	p-Value < 0.05
White blood cell count (×10^9/L, median, [IQR])	5.45 [4.46–7.17]	6.14 [4.66–8.24]	< 0.001	
Neutrophil (×10^9/L, median, [IQR])	3.68 [2.68–5.16]	4.09 [2.85–6.11]	< 0.001	
Lymphocyte (%, median, [IQR])	22.0 [14.6–29.4]	20.5 [13.3–28.6]	0.009	
Monocyte (×10^9/L, median, [IQR])	0.47 [0.34–0.61]	0.52 [0.37–0.69]	< 0.001	
Eosinophil (×10^9/L, median, [IQR])	0.01 [0.00–0.05]	0.02 [0.00–0.07]	< 0.001	
Eosinophil (%, median, [IQR])	0.2 [0.0–2.9]	0.3 [0.0–1.2]	< 0.001	
Basophil (%, median, [IQR])	0.2 [0.0–0.3]	0.2 [0.1–0.3]	< 0.001	
Red blood cell count (×10^12/L, median, [IQR])	4.43 [4.00–4.84]	4.37 [3.96–4.78]	0.012	
Hemoglobin (g/L, median, [IQR])	134 [122–146]	131 [119–143]	< 0.001	
Hematocrit (%, median, [IQR])	39.7 [36.2–43.1]	39.1 [35.5–42.4]	0.002	
MCV (fl, median, [IQR])	89.1 [86.4–91.7]	89.6 [86.7–92.4]	0.003	
MCH (pg, median, [IQR])	30.6 [29.5–31.6]	30.4 [29.3–31.3]	0.002	
MCHC (g/L, median, [IQR])	343 [335–351]	337 [329–346]	< 0.001	
RDW-CV (Median, [IQR])	12.2 [11.9–12.8]	12.5 [12.0–13.2]	< 0.001	
RDW-SD (fl, median, [IQR])	39.5 [37.8–41.8]	40.9 [38.8–43.2]	< 0.001	
PDW (fl, median, [IQR])	12.0 [10.8–13.6]	12.3 [11.0–13.9]	0.021	
Alanine aminotransferase (U/L, median, [IQR])	25 [18–38]	24 [16–36]	0.019	
Aspartate aminotransferase (U/L, median, [IQR])	27 [21–36]	25 [19–35]	< 0.001	
Total Protein (g/L, mean)	69.3 ± 5.6	68.5 ± 6.4	0.003	
Globulin (g/L, median, [IQR])	32.4 ± 4.4	31.8 ± 4.8	< 0.001	
Indirect Bilirubin (μmol/L, median, [IQR])	5.5 [4.2–7.3]	4.9 [3.8–6.9]	< 0.001	
GGT (U/L, median, [IQR])	30 [21–48]	35 [21–54]	0.003	
Alkaline Phosphatase (U/L, median, [IQR])	65 [56–78]	75 [63–96]	< 0.001	
Test	Value (Mean ± SD) or Median [IQR]	p-value		
---	-----------------------------------	---------		
Triglyceride (mmol/L, median, [IQR])	1.75 ± 0.88/1.63 ± 0.84	< 0.001		
HDL-C (mmol/L, median, [IQR])	0.99 ± 0.19/0.97 ± 0.22	0.002		
LDL-C (mmol/L, median, [IQR])	2.45 ± 0.55/2.41 ± 0.68	0.004		
Creatinine (μmol/L, median, [IQR])	72 [61–87]/69 [59–82]	< 0.001		
Urea (mmol/L, median, [IQR])	5.89 ± 3.84/5.54 ± 3.41	0.001		
Calcium (mmol/L, median, [IQR])	2.14 ± 0.11/2.17 ± 0.11	< 0.001		
Magnesium (mmol/L, median, [IQR])	0.87 ± 0.07/0.86 ± 0.09	0.001		
Chlorine (mmol/L, median, [IQR])	100.4 ± 4.2/101.4 ± 3.7	< 0.001		
Potassium (mmol/L, median, [IQR])	4.21 ± 0.42/4.15 ± 0.40	< 0.001		
Sodium (mmol/L, median, [IQR])	139.7 ± 3.9/139.1 ± 3.4	< 0.001		
Hypersensitive CRP (mg/L, median, [IQR])	253 [206–313]/260 [219–304]	0.031		
White blood cells at admission (median, [IQR])	4.11 [2.99–3.79]	< 0.001		
Monocyte (×10^9/L, median, [IQR])	0.36 [0.28–0.48]/0.55 [0.4–0.71]	0		
Monocyte (%, median, [IQR])	7.60 [6.20–9.95]/9.0 [7.20–11.40]	0		
Neutrophil (×10^9/L, median, [IQR])	2.93 [2.26–3.79]/4.26 [3.00–5.74]	0		
Neutrophil (% mean)	64.50 ± 11.64/68.42 ± 14.69	0.011		
Lymphocyte (% mean)	26.30 ± 10.52/21.07 ± 12.85	0		
Eosinophil (% mean, [IQR])	0.60 [0.30–1.15]/0.40 [0.10–1.10]	0.038		
Basophil (% mean, [IQR])	0.20 [0.10–0.30]/0.10 [0.10–0.30]	0.001		
Hypersensitive CRP (mg/L, median, [IQR])	20.0 [5.8–45.8]/15.7 [4.8–40.1]	0.024		
ESR (mm/h, median, [IQR])	35 [24–47]/27 [17–40]	< 0.001		
Thrombin time (s, mean)	14.06 ± 1.09/14.09 ± 1.83	< 0.001		
Fibrinogen (mg/L, median, [IQR])	2.14 ± 0.11/2.17 ± 0.11	< 0.001		
D-Dimer (mg/L, median, [IQR])	1.24 [0.65–2.75]/1.72 [0.85–3.30]	< 0.001		
Elevation lymphocyte	0/5	< 0.01		
Abnormal Urinary test	32.11/21.67	< 0.05		
Urine protein positive	16.26/8.33	< 0.05		
Elevation procalcitonin	40.83/10.98	< 0.01		
Elevation white blood cells	75/26.83	< 0.01		
Leukocytosis > 9.5 × 10^9/L	16.1/30.4	0.003		
Neutrophilia > 75%	32.2/50.4	0.001		
Lymphocytopenia < 20%	46.9/68.7	<0.001		
Creatine Kinase > 25 U/L	11.8/3.5	0.013		
White Blood cell count (G/L, median, [IQR])	5.88 [4.41–7.68]/6.72 [5.15–9.42]	0.01		
Neutrophil (G/L, median, [IQR])	4.11 [2.99–5.65]/5.06 [3.43–7.25]	0.02		
Platelets (G/L, median, [IQR])	179 [145–225]/199 [168–239]	0.04		
Sodium (U/L, median, [IQR])	137 [135–139]/138 [136–140]	0.006		
Troponin (ng/L, median, [IQR])	9.2 [6.5–22.4]/34.4 [8.8–72.2]	0.007		
Albumin (g/L, median, [IQR])	30 [27–33]/37 [33–39]	0.04		
Aspartate aminotransferase (U/L, median, [IQR])	45 [34–76]/34 [29–49]	0.02		
LDH (U/L, median, [IQR])	397 [305–544]/298 [248–383]	0.04		
PaO2/FiO2 (Median, mm Hg)	198.5/107	< 0.001		
Aspartate transaminase (U/L)	25.5/70	< 0.001		
LDH (U/L)	483/767	< 0.001		
Troponin I (ng/mL)	0.03/0.14	< 0.001		
CD3^+ (Median, cells/mL)	193/303	0.007		
CD4^+/CD3^+ (Median, cells/mL)	97/185	< 0.001		

Virus 2021, 13, 452
3.2.3. Radiological findings

We found 10 studies of 18 on adult patients [10–14,16–20] that described imaging findings in COVID-19 and influenza, especially in chest computed tomography (CT) manifestations. Ground-grass opacities (GGO), interlobular septal thickening, and a peripheral distribution were more common in patients with COVID-19 than in patients with influenza [10,12,13,16,18,20]. However, consolidation, nodules, and linear opacities were more common in patients with influenza than those with COVID-19 [11–13,18,19]. Tang et al. reported that influenza patients were more inclined to have consolidation manifested on chest CT imaging (OR = 4.95 [95% CI = 1.518–16.176], p = 0.008), whereas COVID-19 patients had a greater disposition for having GGO on chest CT scans (OR = 0.086 [0.015–0.490]; p = 0.006) [13]. In a review from Onigbinde et al., GGO were usually peripherally located and that vascular engorgement, pleural thickening, and subpleural lines were more frequent in COVID-19 patients. Pneumomediastinum and pneumothorax were only reported in influenza studies [3] (Table 4).

Table 4. Significant radiological findings between COVID-19 and influenza adult groups.

Reference	Significant Radiological Findings	COVID-19 (%)	Influenza (%)	p-Value < 0.05
Jianguo Zhang et al. [10]	Bronchiolar wall thickening	33.6	13	< 0.0001
	Air bronchogram	29.9	13	< 0.001
	Consolidation	26.1	15.7	0.031
	Interlobular septal thickening	24.2	13.9	0.029
	Crazy paving pattern	22.3	9.6	0.004
	Tree-in-bud	13.7	5.2	0.018
	GGO with consolidation	25.6	39.1	0.011
Helene Faury et al. [11]	Pulmonary nodules	8.8	50.0	0.001
Mengqi Liu et al. [12]	Predominant distribution			

Bold: illness (COVID-19 or influenza) with significant difference. Abbreviations: Leukocytosis: leukocyte count > 10 × 10⁶/L; CRP: C-reactive protein; LDH: Lactate dehydrogenase; IQR: Interquartile range; MCV: Mean corpuscular volume; MCH: Mean corpuscular hemoglobin; MCHC: Mean corpuscular concentration; RDW-CV: Coefficient variation of red blood cell volume width; RDW_SD: Standard deviation in red cell distribution width; PDW: Platelet distribution width; GGT: γ-glutamyl transeptidase; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; HCO₃⁻: Bicarbonate ion; ESR: Erythrocyte sedimentation rate; APTT: Activated partial thromboplastin time.
Lesion Distribution:	GGO	94.5	45.3	<0.001
Central	2	6	0.022	
Peripheral	45	20		
Mixed	53	74		
Interlobular septal thickening	66	43	0.014	
Rounded opacities	35	17	0.048	
Nodules	28	71	<0.001	
Tree-in-bud	9	40	<0.001	
Pleural effusion	6	31	<0.001	
Pure GGO without nodules	29	11	<0.001	
Pure GGO + interlobular septal thickening	21	6	0.042	
Rounded opacities without nodules	22	0	0.002	
Interlobular septal thickening without nodules	45	6	<0.001	
Rounded opacities + interlobular septal thickening + absence of pleural effusion	19	3	0.021	

Study	GGO/Average Value	Consoli-Average Value	p-Value	
Xiao Tang et al. [13]	Bilateral opacities	90	52	<0.001
Lobe predomination:				
Central	7.7	75	0.000	
Peripheral	38.5	3.3		
Diffuse	0	21.7		
Non-specific	53.8	0		
Balanced predomination	53.8	10.9		
Lesion margin:				
Clear	46.2	10.9	0.004	
Vague	53.8	89.1		
GGO Involvement pattern:				
Patchy	38.5	5.4	0.000	
Cluster like	7.7	77.2		
GGO + consolidation opacities	46.2	6.5		
Whole consolidation	7.7	10.9		
Lesion Contour:				
Shrinking	69.2	1.1	0.000	
Non-shrinking	30.8	98.9		
Bronchial wall thickening	0	32.6	0.018	
Close to the pleura	69	40	0.005	
Mucoid impaction	2	13	0.047	
Pleural effusion	0	22	<0.001	
Axial distribution:				
Inner	6	7	<0.001	
Outer	67	24		
Diffuse	12	36		
Random	15	33		
Linear opacities	14	42	0.024	
GGO/Consolidation	68	21	<0.001	
Vascular enlargement	67	93	0.037	
Pleural Thickening	63	90	0.03	
Linear opacification	50	90	0.002	
Crazy-paving sign	30	60	0.021	
Pleural effusion	53	13	0.002	
Bronchiectasis	30	3	0.012	
GGO	71	23	<0.001	
Infiltration	29	68	0.003	
4. Discussion

The current review compared the clinical features and courses, laboratory data, and radiological findings between COVID-19 patients and those with influenza. We initially found that compared to patients with influenza, COVID-19 patients were more likely to exhibit symptoms such as diarrhea and neurologic symptoms. However, fever, productive cough, vomiting, dyspnea, ocular and otorhinolaryngological symptoms were more observed in the group influenza than the group COVID-19. Some authors concluded by describing the timeline of these viruses that SARS-CoV-2 infection may present with a slow onset compared with the clinical presentations of influenza infection with a longer incubation period [13,15]. Indeed, the differences in the clinical presentation of these two viral infections can be explained, in large part, by the pathophysiological distribution of the entry receptors for each virus. Human influenza A virus binds to cell receptors alpha2,6-linked via sialic acid linked glycoproteins. The distribution of sialic acid on cell surfaces is one determinant of host tropism and understanding its expression on human cells and tissues is important for understanding influenza pathogenesis. These receptors were especially expressed on the respiratory tract, from the nasopharynx, trachea to the bronchi, except the alveoli (alpha2,3-linked sialic acid receptors predominant on alveolar cells) [22]. The short incubation period of influenza infection with the predominant respiratory manifestations (sore throat, sneezing, sputum production, rhonchi on pulmonary auscultation) is well explained by this distribution. On the other hand, Angiotensin-converting enzyme 2 (ACE2) protein, known as the key regulator enzyme of the renin–angiotensin–aldosterone system (RAAS) is the functional receptor of SARS-CoV-2 and its expression and activity will mediate directly the SARS-CoV-2 infection. Regarding the tissue distribution of ACE2 protein, ACE2 is highly expressed on lung alveolar epithelial cells, small intestinal epithelial cells and endothelial cells (including in the central nervous system), but poorly found on the surface of nasopharyngeal cells [23]. When the SARS spike protein binds to the ACE-2 receptor, the complex is proteolytically processed by type 2 transmembrane protease TMPRSS2 leading to cleavage of ACE-2 and activation of the spike [24]. This mechanism is also described in influenza physiopathology. All these findings trigger a longer incubation period of SARS-CoV-2 infection and the observed symptoms in COVID-19 patients of dyspnea, dry cough, diarrhea, and bilateral crackling sound on pulmonary auscultation, but also neurologic symptoms such as new loss of smell and taste. ACE is also abundantly present in the basal layer of the non-keratinizing squamous epithelium of nasal and oral mucosa [25]. Indeed, most reports have so far linked new loss of taste or smell to neurological symptoms instead of rhinolaryngological symptoms [26]. In any case, in this epidemic context, patients presenting with dysgeusia and/or anosmia may be considered as patients infected with COVID-19, until microbiological confirmation has been obtained. In another study including 217 patients presenting influenza-like illness, we demonstrated that the specificity of the combination of anosmia and dysgeusia reached 91% for a positive SARS-CoV-2 RT-PCR result [27]. Unspecific symptoms such as fever and musculoskeletal symptoms or pain syndrome defined by fatigue, myalgia and/or arthralgia are associated with a cascade of inflammatory mediators and were not directly linked to the distribution of viral receptors. These clinical presentations can be equally described in the two illnesses. Concerning the outcome, both COVID-19 and influenza may be accompanied by ARDS with a high mortality [13]. However, it was clear that mortality and lethality of SARS-CoV-2 infection were much higher than those of the influenza infection in the general population [28].

Comparison of peripheral blood parameters from COVID-19 and influenza patients revealed some differences, especially during the early stages of the disease. Concerning
the blood count, NE were significantly more elevated in influenza than COVID-19 patients. Jiangnan Chen et al. conducted their study with a group control [8], the difference about NE is explained by an increase of NE in influenza and a decrease of NE in SARS-CoV-2 infection. The only study which has shown a higher level of lymphocytes in influenza than SARS-CoV-2 infection [20] is not conclusive because the two populations were not comparable (18% received invasive mechanical ventilation (IMV) in the influenza group while none received IMV in the COVID-19 group). Influenza and SARS-CoV-2 infection seems to decrease lymphocytes level with the same intensity. In another short review of COVID-19 hematological manifestations, Slomka et al. showed that the majority of patients (especially those presenting with an ARDS related to SARS-CoV-2) are likely to develop lymphocytopenia. The decreased number of lymphocytes is described in other diseases caused by other coronaviruses primarily infecting the human respiratory tract [29]. This lymphopenia is probably explained by direct infection of lymphocytes and destruction of lymphoid organs caused by the “cytokine storm” and a major release of pro-inflammatory cytokines [30]. On the one hand, it is known that MO and macrophages play central roles in the immune response of humans and in protecting the body from influenza infection. They are necessary for the influenza virus to infect lymphocytes and regulate lymphocyte apoptosis by synthesizing and expressing viral neuraminidase [31]. On the other hand, several studies revealed that COVID-19 patients exhibited a significant decrease under lower limit of lymphocyte counts [32]. This indicates that SARS-CoV-2 consumes many immune cells and inhibits the body’s cellular immune function [33]. Conversely, inflammatory cytokines including serum amyloid A (SAA), CRP, IL-6, IL-10 were significantly higher than normal values [32]. SARS-CoV-2 invasion activated T cell-mediated immunity, which resulted in increasing production of inflammatory cytokine [34]. However, inhibition cytokines such as IL-10 can suppress T cell activation conversely. Serum amyloid A and CRP are both of acute-phase proteins in response to inflammatory cytokines related by activated MO/macrophages after infections. High levels of SAA and CRP could reflect the severity of inflammation and result in a “cytokine storm”, during which the inflammation spreads throughout the body via the circulation. This severe inflammatory state secondary to COVID-19 leads to a severe derangement of hemostasis that has been recently described as a state of hypercoagulopathy, defined as increased degradation products such as D-dimer and fibrinogen. In a large American cohort study of 9407 adult COVID-19 patients, the overall in-hospital venous thromboembolism (VTE) was approximately 3%. The authors concluded that key predictors of VTE or mortality included advanced age, increasing CCI, past history of cardiovascular disease, ICU level of care, and elevated level of D-dimer [35]. In addition, several radiologists tried to differentiate COVID-19 from Influenza and other viral pneumonia on chest CT images [36]. Usually, the common findings on CT for typical influenza pneumonia consist of diffuse or multifocal GGO and small centrilobular nodules [3]. Onigbinde et al. showed that the occurrence of GGO and consolidation in COVID-19 were not markedly different from that of influenza studies. However, they were predominantly located bilaterally within the lower lobes for COVID-19 patients, whereas in the influenza studies, they were more widespread, involving all the lobes [3]. In another study including 122 patients, Mengqi et al. concluded that the COVID-19 patients were more likely to have rounded opacities and interlobular septal thickening compared with the influenza group, but less likely to have nodules, tree-in-bud sign and pleural effusion with significant difference between the two groups [12]. In our review, complications such as pneumothorax and pneumomediastinum were only described in influenza patients. These respiratory complications remain scarce during the course of COVID-19 and have recently been described in medical literature [3,37,38]. Therefore, these differential pathologic changes may present themselves as distinguishing imaging characteristics during clinical assessments. There are some limitations to our review. First of all, COVID-19 is relatively novel with a limited number of patients and studies. In most articles, the clinical features, laboratory data
and CT findings reporting on influenza dated before the onset of COVID-19. Finally, the use of abstracts in selecting full texts for a detailed review could have led to the omission of some articles. Moreover, we only considered PubMed a reference for our bibliographic research and database with accessible free access articles. We also just summarized what we found in recent medical literature and focused on what was statistically significant. Finally, a meta-analysis is recommended to further define the differences and the degree between COVID-19 and influenza.

5. Conclusions

This study provided a comprehensive comparison of adult patients in SARS-CoV-2 and influenza infections, regarding comorbidities, clinical and paraclinical features, and outcome. Clinical manifestations of COVID-19 and influenza seem to be similar with some differences: neurologic symptoms and diarrhea were more described in COVID-19, however; vomiting, ocular and otorhinolaryngological symptoms were more observed in influenza infection. Both viruses decreased lymphocytes; NE were significantly more elevated in influenza than COVID-19 patients while elevated transaminases were significantly more elevated in COVID-19 than influenza patients. Radiological findings showed that GGO are usually peripherally located in COVID-19 compared with influenza which also had central and random locations. All these findings can help clinicians when dealing with cases of influenza-like illnesses during the period of co-circulation of influenza and SARS-CoV-2.

Author Contributions: Conceptualization, M.O., T.K. and S.Z.; methodology, M.O.; software, M.O. and S.Z.; validation, M.O., T.K., N.B., V.G. and S.Z.; formal analysis, M.O.; investigation, M.O. and S.Z.; resources, M.O.; data curation, M.O.; writing—original draft preparation, M.O. and S.Z.; writing—review and editing, M.O., T.K. and S.Z.; visualization, N.B. and V.G.; supervision, T.K., N.B., V.G. and S.Z.; project administration, M.O.; funding acquisition, M.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Due to the nature of the study (review), the Ethics & Scientific Committee of Nord Franche-Comté Hospital determined that patient consent was required for publication. We make sure to keep patient data confidential and in compliance with the Declaration of Helsinki.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available on request due privacy to restrictions. The data presented in this case study are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
2. Khan, M.S.; Shahid, I.; Anker, S.D.; Solomon, S.D.; Vardeny, O.; Michos, E.D.; Fonarow, G.C.; Butler, J. Cardiovascular implications of COVID-19 versus influenza infection: A review. BMC Med. 2020, 18, 403.
3. Onigbinde, S.O.; Ojo, A.S.; Fleary, L.; Hage, R. Chest Computed Tomography Findings in COVID-19 and Influenza: A Narrative Review. Biomed. Res. Int. 2020, 2020, 6928368, doi: 10.1155/2020/6928368.
4. WHO. Up to 650 000 People Die of Respiratory Diseases Linked to Seasonal Flu Each Year. Available online: https://www.who.int/news/item/13-12-2017-up-to-650-000-people-die-of-respiratory-diseases-linked-to-seasonal-flu-each-year (accessed on 15 January 2021).
5. Li, P.; Wang, Y.; Peppelenbosch, M.P.; Ma, Z.; Pan, Q. Systematically comparing COVID-19 with 2009 influenza pandemic for hospitalized patients. Int. J. Infect. Dis. 2020, 102, 375–380. doi: 10.1016/j.ijid.2020.11.127.
6. Cates, J.; Lucero-Obusan, C.; Dahl, R.M.; Schirmer, P.; Garg, S.; Oda, G.; Hall, A.J.; Langley, G.; Havers, F.P.; Holodniy, M.; et al. Risk for In-Hospital Complications Associated with COVID-19 and Influenza—Veterans Health Administration, United States, October 1, 2018–May 31, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1528–1534.

7. Luo, Y.; Yuan, X.; Xue, Y.; Mao, L.; Lin, Q.; Tang, G.; Song, H.; Liu, W.; Hou, H.; Wang, F.; et al. Using a diagnostic model based on routine laboratory tests to distinguish patients infected with SARS-CoV-2 from those infected with influenza virus. Int. J. Infect. Dis. 2020, 85, 436–440.

8. Chen, J.; Pan, Y.; Li, G.; Xu, W.; Zhang, L.; Yuan, S.; Xie, Y.; Lu, P.; Zhang, J. Distinguishing between COVID-19 and influenza during the early stages by measurement of peripheral blood parameters. J. Med. Virol. 2020. doi:10.1002/jmv.26384

9. Qu, J.; Chang, L.K.; Tang, X.; Du, Y.; Yang, X.; Liu, X.; Han, P.; Xue, Y. Clinical characteristics of COVID-19 and its comparison with influenza pneumonia. Acta Clin. Belg. Int. J. Clin. Lab. Med. 2020, 75, 348–356.

10. Zhang, J.J.; Ding, D.; Huang, X.; Zhang, J.J.; Chen, D.; Fu, P.; Shi, Y.; Xu, W.; Tao, Z. Differentiation of COVID-19 from seasonal influenza: A multicenter comparative study. J. Med. Virol. 2020. doi:10.1002/jmv.26469.

11. Faury, H.; Courboulès, C.; Payen, M.; Jary, A.; Hausfater, P.; Luyt, C.E.; Dres, M.; Pourcher, V.; Abdi, B.; Wirden, M.; et al. Medical Features of COVID-19 and Influenza Infection: A Comparative Study in Paris, France. J. Infect. 2020, 82, E36–39, doi: 10.1016/j.jinf.2020.08.017

12. Liu, M.; Zeng, W.; Wen, Y.; Zheng, Y.; Lv, F.; Xiao, K. COVID-19 pneumonia: CT findings of 122 patients and differentiation from influenza pneumonia. Eur. Radiol. 2020, 30, 5463–5469.

13. Tang, X.; Du, R.H.; Wang, R.; Cao, T.Z.; Guan, L.L.; Yang, C.Q.; Zhu, Q.; Hu, M.; Li, X.Y.; Li, Y.; et al. Comparison of Hospitalized Patients with ARDS caused by COVID-19 and H1N1. Chest 2020, 158, 195–205.

14. Cobb, N.L.; Sathe, N.A.; Duan, K.L.; Seitz, K.P.; Thau, M.R.; Sung, C.C.; Morrell, E.D.; Mikacenic, C.; Kim, H.N.; Liles, W.C.; et al. Comparison of Clinical Features and Outcomes in Critically Ill Patients Hospitalized with COVID-19 versus Influenza. Am. J. Respir. Crit. Care Med. 2020. doi:10.1016/j.postctcm.2020.1804623.

15. Zayet, S.; Kadiane-Oussou, N.J.; Lepillier, Q.; Zahra, H.; Royer, P.Y.; Toko, L.; Gendrin, V.; Klopfenstein, T. Clinical features of COVID-19 and influenza: A comparative study on Nord Franche-Comte cluster. Microbes Infect. 2020, 22, 481–488.

16. Wang, H.; Wei, R.; Rao, G.; Zhu, J.; Song, B. Characteristic CT findings distinguishing 2019 novel coronavirus disease (COVID-19) from influenza pneumonia. Eur. Radiol. 2020, 30, 4910–4917.

17. Lin, L.; Fu, G.; Chen, S.; Tao, J.; Qian, A.; Yang, Y.; Wang, M. CT Manifestations of Coronavirus Disease (COVID-19) Pneumonia and Influenza Virus Pneumonia: A Comparative Study. Am. J. Roentgenol. 2020, 216, 71–79.

18. Auvinien, R.; Nohynek, H.; Syrjänen, R.; Olligren, J.; Kerttula, T.; Mäntylä, J.; Ikonen, N.; Loginov, R.; Haveri, A.; Kurkela, S.; et al. Comparison of the clinical characteristics and outcomes of hospitalized adult COVID-19 and influenza patients—A prospective observational study. Infect. Dis. 2020, 53, 111–121.

19. Yin, Z.; Kang, Z.; Yang, D.; Ding, S.; Luo, H.; Xiao, E. A Comparison of Clinical and Chest CT Findings in Patients with Influenza A (H1N1) Virus Infection and Coronavirus Disease (COVID-19). Am. J. Roentgenol. 2020, 215, 1065–1071.

20. Lin, Y.H.; Luo, W.; Wu, D.H.; Lu, F.; Hu, S.X.; Yao, X.Y.; Wang, Z.X.; Shi, Y.H. Comparison of clinical, laboratory, and radiological features between SARS-CoV-2 infection and community-acquired pneumonia caused by influenza virus: A cross-sectional retrospective study. Medicine 2020, 99, e23064, doi: 10.1016/j.jinf.2020.05.005.

21. Lee, J.; Lee, Y.H.; Chang, H.H.; Choi, S.H.; Seo, H.; Yoo, S.S.; Lee, S.Y.; Cha, S.I.; Park, J.Y.; Kim, C.H. Comparison of Short-Term Mortality between Mechanically Ventilated Patients with COVID-19 and Influenza in a Setting of Sustainable Healthcare System. J. Infect. 2020, 81, e67–e78.

22. Kumlin, U.; Olofsson, S.; Dimock, K.; Arntberg, N. Sialic acid tissue distribution and influenza virus tropism. Influenza Other Respir. Viruses 2008, 2, 147–154.

23. Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637.

24. Rabi, F.A.; Al Zoubi, M.S.; Kasabeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far. Pathogens 2020, 9, 231.

25. Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8.

26. Klopfenstein, T.; Zahra, H.; Kadiane-Oussou, N.J.; Lepillier, Q.; Royer, P.Y.; Toko, L.; Gendrin, V.; Zayet, S. New loss of smell and taste: Uncommon symptoms in COVID-19 patients on Nord Franche-Comte cluster, France. Int. J. Infect. Dis. 2020, 100, 117–122.

27. Zayet, S.; Klopfenstein, T.; Mercier, J.; Kadiane-Oussou, N.J.; Lan Cheong Wah, L.; Royer, P.Y.; Toko, L.; Gendrin, V. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. Infection 2020. doi:10.1007/s15010-020-01442-3. Available online: http://link.springer.com/10.1007/s15010-020-01442-3 (accessed on 15 January 2021).

28. Ji, Y.; Ma, Z.; Peppelenbosch, M.P.; Pan, Q. Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob. Health 2020, 8, e480.

29. Słomka, A.; Kowalewski, M.; Žekanowska, E. Coronavirus Disease 2019 (COVID–19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493.

30. Fathi, N.; Rezaei, N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol. Int. 2020, 44, 1792–1797.
31. Roberts, N.J. Diverse and Unexpected Roles of Human Monocytes/Macrophages in the Immune Response to Influenza Virus. *Viruses* **2020**, *12*, 379.

32. Xu, B.; Fan, C.; Wang, A.; Zou, Y.; Yu, Y.; He, C.; Xia, W.; Zhang, J.; Miao, Q. Suppressed T cell-mediated immunity in patients with COVID-19: A clinical retrospective study in Wuhan, China. *J. Infect.* **2020**, *81*, e51–e60.

33. Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, Md.A.; Alam, A. Immune response in COVID-19: A review. *J. Infect. Public Health* **2020**, *13*, 1619–1629.

34. Bonam, S.R.; Kaveri, S.V.; Sakuntabhai, A.; Gilardin, L.; Bayry, J. Adjunct Immunotherapies for the Management of Severely Ill COVID-19 Patients. *Cell Rep. Med.* **2020**, *1*, 100016. Available online: https://www.cell.com/cell-reports-medicine/abstract/S2666-3791(20)30021-5 (accessed on 2 March 2021).

35. Cohen, S.L.; Gianos, E.; Barish, M.A.; Chatterjee, S.; Kohn, N.; Lesser, M.; Giannis, D.; Coppa, K.; Hirsch, J.; McGinn, T.; et al. Prevalence and Predictors of Venous Thromboembolism or Mortality in Hospitalized COVID-19 Patients. *Thromb. Haemost.* **2021**. doi:10.1055/a-1366-9656.

36. Bai, H.X.; Hsieh, B.; Xiong, Z.; Halsey, K.; Choi, J.W.; Tran, T.M.L.; Pan, I.; Shi, L.-B.; Wang, D.-C.; Mei, J.; et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. *Radiology* **2020**, *296*, E46–E54.

37. Zayet, S.; Klopfenstein, T.; Mezher, C.; Gendrin, V.; Conrozier, T.; Ben Abdallah, Y. Coronavirus disease 2019 with spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema, France. *New Microbes New Infect.* **2020**, *38*, 100785.

38. Shim, S.S.; Kim, Y.; Ryu, Y.J. Novel influenza A (H1N1) infection: Chest CT findings from 21 cases in Seoul, Korea. *Clin. Radiol.* **2011**, *66*, 118–124.