PSEUDO-LIKELIHOOD-BASED M-ESTIMATION OF RANDOM GRAPHS WITH DEPENDENT EDGES AND PARAMETER VECTORS OF INCREASING DIMENSION

BY JONATHAN R. STEWART AND MICHAEL SCHWEINBERGER

Florida State University and Penn State University

An important question in statistical network analysis is how to estimate models of discrete and dependent network data with intractable likelihood functions, without sacrificing computational scalability and statistical guarantees. We demonstrate that scalable estimation of random graph models with dependent edges is possible, by establishing convergence rates of pseudo-likelihood-based M-estimators for discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. We highlight the impact of two complex phenomena on the convergence rate: phase transitions and model near-degeneracy. The main results have possible applications to discrete and dependent network, spatial, and temporal data. To showcase convergence rates, we introduce a novel class of generalized β-models with dependent edges and parameter vectors of increasing dimension, which leverage additional structure in the form of overlapping subpopulations to control dependence. We establish convergence rates of pseudo-likelihood-based M-estimators for generalized β-models in dense- and sparse-graph settings.

1. Introduction. Network data have garnered considerable attention in recent years, driven by the growth of the internet and online social networks that can serve as echo chambers and facilitate polarization, and applications in science, technology, and public health (e.g., pandemics).

During the past two decades, substantial progress has been made on models of network data, including β- and p_1-models [e.g., 23, 9, 42, 33, 24, 28, 11]; exchangeable random graph models [e.g., 6, 13]; stochastic block models [e.g., 3, 34, 1, 17]; latent space models [e.g., 22]; and exponential-family models of random graphs [e.g., 19, 35, 8, 29, 37]. Other models are small-world networks [40] and scale-free networks with power law degree distributions [4]. That said, despite strides in modeling and inference, fundamental questions arising from the statistical analysis of non-standard and dependent network data have remained unanswered.

*MSC2010 subject classifications. Primary 05C80; secondary 62B05, 62F10, 91D30.

Keywords and phrases: Markov random fields, graphical models, conditional independence, statistical exponential families, phase transitions, model near-degeneracy
1.1. Three questions. Since the dawn of statistical network analysis in the 1980s [23, 15], three questions have loomed large:

I. How can one construct models that allow the propensities of nodes to form edges and other subgraphs to vary across nodes?

II. How can one construct models that do justice to the fact that network data are dependent data?

III. How can one learn models from a single observation of a random graph with dependent edges and parameter vectors of increasing dimension, regardless of whether the likelihood function is tractable?

We take steps to answer these questions by building on the statistical exponential-family platform [5], which has long served as a convenient mathematical platform for obtaining first answers to statistical questions involving discrete and dependent data and hosts Bernoulli random graphs, β- and p_1-models [23, 9], generalized linear models of random graphs, and undirected graphical models of random graphs [15, 25]. An alternative route, not considered here, is provided by the Hoover-Aldous representation theorem [3] via exchangeable random graphs [6, 13], which can likewise induce dependence (as demonstrated by stochastic block and latent space models).

On the statistical exponential-family platform, research has focused on β- and p_1-models, which provide answers to the first question but assume that edges are independent; and exponential-family random graph models, which allow edges to be dependent and can capture observed heterogeneity via covariates, but are less suited to capturing unobserved heterogeneity and often give rise to intractable likelihood functions. An additional issue is that theoretical properties of statistical procedures – well-established in the literature on β- and p_1-models [e.g., 9, 42, 33, 24, 41, 28, 11] – are scarce in the literature on exponential-family random graph models, with two recent exceptions. Mukherjee [29] considered models with functions of degrees as sufficient statistics, which allow edges to be dependent, but have two parameters and do not capture network features other than degrees. Schweinberger and Stewart [37] considered models with dependent edges, but constrained dependence to non-overlapping subpopulations of nodes. While both works provide statistical guarantees, these works focus on the second question rather than the first question.

We aim to provide tentative answers to all three questions, leveraging the statistical exponential-family platform.

1.2. Probabilistic framework. On the modeling side, we consider a flexible approach to specifying random graph models with complex dependence from simple building blocks. We demonstrate the probabilistic framework
by extending the β-model of Chatterjee et al. [9] – studied by Rinaldo et al. [33], Yan and Xu [42], Karwa and Slavković [24], Mukherjee et al. [28], Chen et al. [11], and others – to generalized β-models capturing dependence among edges along with heterogeneity in the propensities of nodes to form edges. To control the dependence among edges, generalized β-models leverage additional structure in the form of overlapping subpopulations. The β-model and generalized β-models have in common that the number of parameters increases with the number of nodes. Having said that, the closest relative of generalized β-models with dependent edges is not the β-model with independent edges, but are statistical exponential-family models for discrete and dependent random variables: e.g., Ising models, Markov random fields, and undirected graphical models for discrete and dependent network, spatial, and temporal data [e.g., 18].

1.3. Computational scalability and statistical guarantees. On the statistical side, we demonstrate that computational scalability and statistical guarantees need not be sacrificed in order to estimate random graph models with dependent edges and parameter vectors of increasing dimension.

We do so by focusing on pseudo-likelihood-based M-estimators, which possess convenient factorization properties and are more scalable than estimators based on intractable likelihood functions. Despite computational advantages, the properties of pseudo-likelihood-based M-estimators for random graphs with dependent edges and parameter vectors of increasing dimension are unknown. In the related literature on Ising models and discrete Markov random fields in single-observation scenarios, consistency of maximum pseudo-likelihood estimators has been established [12, 7, 2, 18], but those results are limited to a fixed number of parameters.

We demonstrate that scalable estimation of random graph models with dependent edges is possible, by establishing convergence rates of pseudo-likelihood-based M-estimators for discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. In contrast to Ravikumar et al. [31] and other works on high-dimensional Ising models and discrete Markov random fields, we do not assume that independent replications are available. The main results have possible applications to discrete and dependent network, spatial, and temporal data. We highlight the impact of two complex phenomena on the convergence rate: phase transitions and model near-degeneracy. To showcase convergence rates, we establish convergence rates for generalized β-models with dependent edges and parameter vectors of increasing dimension in dense- and sparse-graph settings.
1.4. Structure. Section 2 introduces the probabilistic framework. Section 3 establishes convergence rates for pseudo-likelihood-based M-estimators.

1.5. Notation. Let $N := \{1, \ldots, N \}$ ($N \geq 3$) be a finite set of nodes and X be a random graph defined on N with sample space $\mathcal{X} := \{0, 1\}^\binom{N}{2}$, where $X_{i,j} = 1$ if nodes $i \in N$ and $j \in N$ are connected by an edge and $X_{i,j} = 0$ otherwise. We focus on random graphs with undirected edges and without self-edges, although our results can be extended to directed random graphs. The set $\mathbb{R}^+ := (0, \infty)$ denotes the set of positive real numbers, and the vector $0 \in \mathbb{R}^d$ denotes the d-dimensional null vector in \mathbb{R}^d ($d \geq 1$). We denote the ℓ_1, ℓ_2, and ℓ_∞-norm of vectors in \mathbb{R}^d by $\| \cdot \|_1$, $\| \cdot \|_2$, and $\| \cdot \|_\infty$, respectively. For any matrix $A \in \mathbb{R}^{d \times d}$, let $\| A \|_1 := \max_{1 \leq i \leq d} \sum_{j=1}^d |A_{i,j}|$, $\| A \|_\infty := \max_{1 \leq i \leq d} \sum_{j=1}^d |A_{i,j}|$, and $\| A \|_2 := \sup_{\| u \|_2 = 1} \| A u \|_2$. The open hypercube in \mathbb{R}^d centered at $c \in \mathbb{R}^d$ with radius $\rho > 0$ is denoted by $B_\infty(c, \rho) := \{ a \in \mathbb{R}^d : \| a - c \|_\infty < \rho \}$. For any subset $S \subset \mathbb{R}^d$, int(S) denotes the interior of S. The total variation distance between two probability measures \mathbb{P}_1 and \mathbb{P}_2 defined on a common measurable space is denoted by $\| \mathbb{P}_1 - \mathbb{P}_2 \|_{TV}$. Expectations, variances, and covariances are denoted by \mathbb{E}, \mathbb{V}, and \mathbb{C}, respectively. For any finite set S, the number of elements of S is denoted by $|S|$. The function $1(\cdot)$ is an indicator function, which is 1 if its argument is true and is 0 otherwise. Uppercase letters A, B, C, \ldots denote finite constants. We write $a(n) = O(b(n))$ if there exists a finite constant $C > 0$ such that $|a(n) / b(n)| \leq C$ for all large enough n, and write $a(n) = o(b(n))$ if, for all $\epsilon > 0$, $|a(n) / b(n)| < \epsilon$ for all large enough n.

2. Probabilistic framework. We consider a simple and flexible approach to specifying random graph models with complex dependence from simple building blocks. Let $\{ \mathbb{P}_\theta, \theta \in \Theta \}$ be a family of probability measures dominated by a σ-finite measure ν, with densities of the form

$$f_\theta(x) \propto \prod_{i<j} \varphi_{i,j}(x_{i,j}, x_{S_{i,j}}; \theta), \quad x \in \mathcal{X},$$

where $\varphi_{i,j} : \{0, 1\}^{|S_{i,j}|+1} \times \Theta \mapsto [0, \infty)$ is a function that specifies how edge variable $X_{i,j}$ depends on a subset of edge variables $X_{S_{i,j}}$. Here, $S_{i,j}$ denotes a subset of unordered pairs of nodes $\{a, b\} \subset N$, and $X_{S_{i,j}}$ denotes a set of indicators of edges between the unordered pairs of nodes in $S_{i,j}$. We allow the dimension $p \geq 1$ of parameter vector $\theta \in \Theta \subseteq \mathbb{R}^p$ to increase as a function of the number of nodes N, i.e., $p \to \infty$ as $N \to \infty$. A natural choice of reference measure ν is the counting measure.
It is worth noting that the factorization of (2.1) does not imply that edges are independent, because each \(\varphi_{i,j} \) can be a function of multiple edges and can hence induce dependence among edges. That said, the factorization of (2.1) implies conditional independence properties \([14]\), and the resulting models can be viewed as undirected graphical models of random graphs \([15, 25]\). In contrast to the undirected graphical models of random graphs by Frank and Strauss \([15]\), which allow edges to depend on many other edges and can give rise to undesirable behavior \([e.g., \text{model near-degeneracy, } 19, 32, 35, 8]\), we leverage additional structure to control dependence among edges. The additional structure consists of a population with overlapping subpopulations and comes with two benefits. First, it facilitates the construction of novel models with non-trivial dependence. Second, it helps control the dependence among edges. To demonstrate, we introduce a novel class of generalized \(\beta \)-models with dependent edges in Sections 2.2–2.4.

2.1. Parameterizations. It is convenient to parameterize the functions of edges \(\varphi_{i,j} \) by using exponential parameterizations. Exponential parameterizations are widely used in the literature on undirected graphical models: see, e.g., Lauritzen et al. \([25]\). We therefore assume that

\[
\varphi_{i,j}(x_{i,j}, x_{S_{i,j}}; \theta) := a_{i,j}(x_{i,j}, x_{S_{i,j}}) \exp(\langle \theta, s_{i,j}(x_{i,j}, x_{S_{i,j}}) \rangle),
\]

where \(a_{i,j} : \{0, 1\}^{|S_{i,j}|+1} \mapsto [0, \infty) \) is a function of \(x_{i,j} \) and \(x_{S_{i,j}} \), which can be used to induce sparsity by penalizing edges, and \(\langle \theta, s_{i,j}(x_{i,j}, x_{S_{i,j}}) \rangle \) is the inner product of a vector of parameters \(\theta \in \Theta \subseteq \mathbb{R}^p \) and a vector of statistics \(s_{i,j} : \{0, 1\}^{|S_{i,j}|+1} \mapsto \mathbb{R}^p (\{i, j\} \subset \mathbb{N}) \). The probability density function (2.1) with parameterization (2.2) can be written in exponential-family form:

\[
f_\theta(x) = a(x) \exp(\langle \theta, s(x) \rangle - \psi(\theta)), \quad x \in \mathbb{X},
\]

where \(a : \mathbb{X} \mapsto [0, \infty) \) is given by \(a(x) := \prod_{i<j} a_{i,j}(x_{i,j}, x_{S_{i,j}}) \) and the vector of sufficient statistics \(s : \mathbb{X} \mapsto \mathbb{R}^p \) is given by

\[
s(x) := \sum_{i<j} s_{i,j}(x_{i,j}, x_{S_{i,j}}).
\]

The function \(\psi : \Theta \mapsto (0, \infty) \) ensures that \(\int_{\mathbb{X}} f_\theta(x) \, d\nu(x) = 1:\n\]

\[
\psi(\theta) := \log \int_{\mathbb{X}} a(x) \exp(\langle \theta, s(x) \rangle) \, d\nu(x), \quad \theta \in \Theta.
\]
The parameter space is $\Theta := \{ \theta \in \mathbb{R}^p : \psi(\theta) < \infty \} = \mathbb{R}^p$, because the family of densities is an exponential family of densities with respect to a σ-finite measure with a finite support [5]. To ensure that $\theta \in \Theta$ is identifiable, we assume that the exponential family is minimal in the sense of Brown [5, p. 2]. The assumption of a minimal exponential family involves no loss of generality, because all non-minimal exponential families can be reduced to minimal exponential families [5, Theorem 1.9, p. 13].

We demonstrate the probabilistic framework by developing a novel class of generalized β-models with dependent edges and $p \geq N \to \infty$ parameters.

2.2. Model 1: β-model with independent edges. To introduce generalized β-models with dependent edges, we first review the β-model with independent edges [9]. The β-model assumes that edges between nodes $i \in N$ and $j \in N$ are independent Bernoulli($\mu_{i,j}$) ($\mu_{i,j} \in (0, 1)$) random variables, where

$$
\log \frac{\mu_{i,j}}{1 - \mu_{i,j}} = \theta_i + \theta_j, \quad \theta_i \in \mathbb{R}, \quad \theta_j \in \mathbb{R}.
$$

The parameters θ_i and θ_j can be interpreted as the propensities of nodes i and j to form edges. The β-model is a special case of the probabilistic framework introduced above, corresponding to

$$
\varphi_{i,j}(x_{i,j}; \theta) = a_{i,j}(x_{i,j}) \exp((\theta_i + \theta_j) x_{i,j}), \quad \theta = (\theta_1, \ldots, \theta_N) \in \mathbb{R}^N,
$$

where $a_{i,j}(x_{i,j})$ is 1 if $x_{i,j} \in \{0, 1\}$ and is 0 otherwise. The β-model captures heterogeneity in the propensities of nodes to form edges, but assumes that edges are independent.

2.3. Model 2: generalized β-model with dependent edges. We introduce a generalization of the β-model, which captures dependence among edges induced by brokerage in networks, in addition to heterogeneity in the propensities of nodes to form edges. Brokerage can influence economic and political outcomes of interest and has therefore been studied by economists, political scientists, and other network scientists since at least the 1980s. An example of brokerage is given by faculty members of universities with appointments in both computer science and statistics, who can facilitate collaborations between faculty members in computer science and faculty members in statistics and can hence facilitate interdisciplinary research.

To capture dependence among edges induced by brokerage in networks, consider a finite population of nodes N consisting of $K \geq 2$ known subpopulations A_1, \ldots, A_K, which may overlap in the sense that the intersections of subpopulations are non-empty. As a consequence, nodes may belong to
multiple subpopulations: e.g., faculty members of universities may have appointments in multiple departments, which implies that the faculties of departments overlap. Subpopulation structure is inherent to many real-world networks, in part because people tend to build communities, and in part because organizations tend to divide large bodies of people into small bodies of people (e.g., divisions, subdivisions). It is worth noting that we focus on known subpopulations that can overlap, in contrast to the literature on stochastic block models [3]. In applications, it is often possible to observe subpopulation structure: e.g., the appointments of faculty members can be determined by scraping the websites of universities.

Define, for each node \(i \in N \), its neighborhood \(N_i \) as the subset of all other nodes \(j \in N \setminus \{i\} \) that share at least one subpopulation with node \(i \in N \):

\[
N_i := \{j \in N \setminus \{i\} : \exists k \in \{1, \ldots, K\} \text{ such that } i \in A_k \text{ and } j \in A_k\}.
\]

To capture dependence among edges induced by shared partners in the intersections of neighborhoods, we consider functions of edges \(\varphi_{i,j} \) of the form

\[
\varphi_{i,j}(x_{i,j}, x_{S_{i,j}}; \theta) := a_{i,j}(x_{i,j}) \exp\left((\theta_i + \theta_j) x_{i,j} + \theta_{N+1} b_{i,j}(x_{i,j}, x_{S_{i,j}})\right),
\]

where \(S_{i,j} \subset N \) is the set of unordered pairs of nodes such that one node is an element of \(\{i, j\} \) and the other node is an element of \(N_i \cap N_j \), \(a_{i,j}(x_{i,j}) \) is 1 if \(x_{i,j} \in \{0, 1\} \) and is 0 otherwise, and

\[
b_{i,j}(x_{i,j}, x_{S_{i,j}}) := \begin{cases}
0 & \text{if } N_i \cap N_j = \emptyset \\
\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} & \text{if } N_i \cap N_j \neq \emptyset.
\end{cases}
\]
Here, \(1(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1)\) is an indicator function, which is 1 if nodes \(i\) and \(j\) have at least one shared partner in the intersection of neighborhoods \(N_i\) and \(N_j\) and is 0 otherwise, and \(\theta := (\theta_1, \ldots, \theta_{N+1}) \in \mathbb{R}^{N+1}\).

Remark. Generalized \(\beta\)-model captures brokerage in networks. The generalized \(\beta\)-model captures brokerage in networks, along with heterogeneity in the propensities of nodes to form edges. To demonstrate, consider the two overlapping subpopulations \(A_1\) and \(A_2\) shown in Figure 1. The nodes \(1 \in A_1 \setminus A_2\) and \(2 \in A_2 \setminus A_1\) do not belong to the same subpopulation, but the shared partner \(3 \in A_1 \cap A_2\) in the intersection of subpopulations \(A_1\) and \(A_2\) can facilitate an edge between nodes 1 and 2, provided \(\theta_{N+1} > 0\).

In the language of network science, nodes in the intersection \(A_1 \cap A_2\) of subpopulations \(A_1\) and \(A_2\) can act as brokers, facilitating edges between nodes in \(A_1 \setminus A_2\) and nodes in \(A_2 \setminus A_1\). In fact, the generalized \(\beta\)-model can capture an excess in the expected number of brokered edges relative to the \(\beta\)-model, in the sense that

\[
\mathbb{E}_{\theta_1, \ldots, \theta_{N}, \theta_{N+1} > 0} b(X) > \mathbb{E}_{\theta_1, \ldots, \theta_{N}, \theta_{N+1} = 0} b(X),
\]

where \(b(X) = \sum_{i < j} b_{i,j}(X_{i,j}, X_{\bar{i},\bar{j}})\) and \(\mathbb{E}_{\theta_1, \ldots, \theta_{N}, \theta_{N+1}} b(X)\) is the expectation of \(b(X)\) under \((\theta_1, \ldots, \theta_{N}, \theta_{N+1}) \in \mathbb{R}^{N+1}\). In other words, the generalized \(\beta\)-model with \(\theta_{N+1} > 0\) generates graphs that have, on average, more brokered edges than the \(\beta\)-model, assuming that the propensities \(\theta_1, \ldots, \theta_{N}\) of nodes \(1, \ldots, N\) to form edges are the same under both models. The inequality in (2.6) follows from the fact that the generalized \(\beta\)-model is an exponential-family model along with Corollary 2.5 of Brown [5, p. 37].

2.4. Model 3: sparse generalized \(\beta\)-models with dependent edges. Sparse random graphs have been studied since the pioneering work of Erdős and Rényi [e.g., 33, 28, 29, 11]. To develop sparse versions of generalized \(\beta\)-models, it makes sense to penalize edges between nodes \(i \in N\) and \(j \in N\) that are distant in the sense that \(N_i \cap N_j = \emptyset\), without penalizing edges between nodes that are close in the sense that \(N_i \cap N_j \neq \emptyset\). We therefore induce sparsity by considering Model 2 with

\[
a_{i,j}(x_{i,j}) := \begin{cases} N^{-\alpha} x_{i,j} 1(N_i \cap N_j = \emptyset) & \text{if } x_{i,j} \in \{0, 1\} \\ 0 & \text{otherwise}, \end{cases}
\]

where \(\alpha \in (0, 1]\) is called the level of sparsity of the random graph.
To demonstrate that Model 3 encourages random graphs to be sparse, we bound the expected degrees of nodes.

Proposition 1. Consider Model 3 with \(\theta \in \mathbb{R}^{N+1} \) and \(\alpha \in (0, 1] \). Then

\[
\max_{1 \leq i \leq N} \mathbb{E}_\theta \left(\sum_{j \neq i}^{N} X_{i,j} \right) \leq 2 \exp \left(3 \| \theta \|_\infty \right) \left(\left(\max_{1 \leq h \leq N} |N_h| \right)^2 + N^{1-\alpha} \right).
\]

Proposition 1 reveals that when the neighborhoods \(N_h \) of nodes \(h \in N \) are not too large, the random graph is sparse in the sense that the expected degrees of all nodes are \(o(N) \). For example, if \(\max_{1 \leq h \leq N} |N_h| \) and \(\| \theta \|_\infty \) are bounded above, the expected degrees of nodes are \(O(N^{1-\alpha}) \).

3. Statistical guarantees. We establish consistency results and convergence rates of maximum likelihood and pseudo-likelihood-based \(M \)-estimators in Sections 3.2 and 3.3, respectively. We then present applications to \(\beta \)- and generalized \(\beta \)-models with dependent edges in Section 3.4. To prepare the ground, we first discuss how the dependence among edges and the smoothness of sufficient statistics can be quantified. To ease the presentation, we replace the double subscripts of edge variables by single subscripts and write \((X_m)_{1 \leq m \leq M}\) instead of \((X_{i,j})_{i < j; i \in \mathbb{N}, j \in \mathbb{N}}\), where \(M := \binom{N}{2} \). The data-generating parameter vector is denoted by \(\theta^* \in \Theta = \mathbb{R}^p \).

3.1. Controlling dependence and smoothness. To obtain consistency results and convergence rates based on a single observation of a random graph with dependent edges, we need to control the dependence among edges along with the smoothness of the sufficient statistics of the model.

The dependence among edges can be controlled by bounding the total variation distance between conditional probability mass functions of edge variables, quantifying how much the conditional probability mass functions of edge variables are affected by changes of other edge variables. Define \(X_{a:b} := (X_a, \ldots, X_b) \in \{0, 1\}^{b-a+1} \), where \(a \leq b \) and \(a, b \in \{1, \ldots, M\} \). For each \(i \in \{1, \ldots, M\} \), we denote the conditional probability mass function of subgraph \(X_{i+1:M} \) given subgraph \((X_{1:i-1}, X_i) = (x_{1:i-1}, x_i) \) by \(\mathbb{P}_{\theta^*, x_{1:i-1}, x_i} \):

\[
\mathbb{P}_{\theta^*, x_{1:i-1}, x_i}(X_{i+1:M} = a) := \mathbb{P}_{\theta^*}(X_{i+1:M} = a \mid (X_{1:i-1}, X_i) = (x_{1:i-1}, x_i)),
\]

where \(a \in \{0, 1\}^{M-i} \). We quantify the dependence among edges by bounding the total variation distance between the conditional probability mass functions \(\mathbb{P}_{\theta^*, x_{1:i-1}, 0} \) and \(\mathbb{P}_{\theta^*, x_{1:i-1}, 1} \) by using coupling methods [27]:

\[
\| \mathbb{P}_{\theta^*, x_{1:i-1}, 0} - \mathbb{P}_{\theta^*, x_{1:i-1}, 1} \|_{TV} \leq Q_{\theta^*, x_{1:i-1}}(X_{i+1:M}^* \neq X_{i+1:M}^{**}).
\]
where the pair of random vectors \((X_{i+1:M}, X_{i+1:M}^*)\) ∈ \(\{0, 1\}^{M-i} \times \{0, 1\}^{M-i}\) with joint probability mass function \(Q_{\theta^*, i, x_1:i-1}^\cdot\) is a coupling of \(P_{\theta^*, x_1:i-1, 0}\) and \(P_{\theta^*, x_1:i-1, 1}\) [27]. The coupling \(Q_{\theta^*, i, x_1:i-1}^\cdot\) is constructed in Lemma 13 in the supplement [38]. Based on the coupling \(Q_{\theta^*, i, x_1:i-1}^\cdot\), we quantify the dependence among edges by the spectral norm \(\|D_N(\theta^*)\|_2\) of the upper triangular \(M \times M\) coupling matrix \(D_N(\theta^*)\) with elements

\[
D_{i,j}(\theta^*) := \begin{cases}
0 & \text{if } j < i \\
1 & \text{if } j = i \\
\max_{x_{1,i-1} \in \{0,1\}^{i-1}} Q_{\theta^*, i, x_{1,i-1}}^\cdot (X_j^* \neq X_j^{**}) & \text{if } j > i.
\end{cases}
\]

While the definition of \(D_N(\theta^*)\) depends on the ordering of edge variables, it is possible to obtain bounds on the spectral norm \(\|D_N(\theta^*)\|_2\) that hold for all orderings. We describe in Section 3.3.2 how \(\|D_N(\theta^*)\|_2\) can be bounded by using coupling methods from percolation theory [39].

To control the smoothness of the sufficient statistics of the model, define

\[
\Xi_{i,j} := \max_{(x, x') \in \mathbb{X} \times \mathbb{X}} |s_i(x) - s_i(x')|, \quad j = 1, \ldots, M,
\]

where \(s_1(x), \ldots, s_p(x)\) are the coordinates of the sufficient statistic vector \(s(x) \in \mathbb{R}^p\) defined in (2.4). Let \(\Xi_i = (\Xi_{i,1}, \ldots, \Xi_{i,M})\) and define

\[
\Psi_N := \max_{1 \leq i \leq p} \|\Xi_i\|_2.
\]

To exclude the trivial case where \(\Psi_N = 0\), we assume that there exists an integer \(N_0 \geq 3\) such that \(\Psi_N > 0\) for all \(N > N_0\).

3.2. Maximum likelihood estimators

Consider a single observation \(x\) of a random graph \(X\) with dependent edges. Let \(\ell(\theta; x) := \log f_{\theta}(x)\) and

\[
\hat{\Theta} := \{\theta \in \mathbb{R}^p : |\nabla_{\theta} \ell(\theta; x)|_\infty = 0\}.
\]

We develop a novel approach to establishing consistency results and convergence rates of maximum likelihood estimators for discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. These results serve as a stepping stone for establishing consistency results and convergence rates of pseudo-likelihood-based \(M\)-estimators in Section 3.3.
and \(p \), such that \(\mathcal{I} (\theta) \) is invertible for all \(\theta \in \mathcal{B}_\infty (\theta^*, \epsilon^*) \). Define

\[
\Lambda_N (\theta^*) := \sup_{\theta \in \mathcal{B}_\infty (\theta^*, \epsilon^*)} \| \mathcal{I} (\theta)^{-1} \|_\infty
\]

(3.1)

\[
\Phi_N (\theta^*) := \Lambda_N (\theta^*) \| \mathcal{D}_N (\theta^*) \|_2 \Psi_N \sqrt{\log \max\{N, p\}}.
\]

Theorem 1. Consider a single observation of a random graph with \(N \) nodes and dependent edges. Assume that \(\theta^* \in \Theta = \mathbb{R}^p \), where \(p \to \infty \) as \(N \to \infty \) is allowed. If \(\Phi_N (\theta^*) \to 0 \) as \(N \to \infty \), there exists an integer \(N_0 \geq 3 \) such that, for all \(N > N_0 \), the random set \(\hat{\Theta} \) is non-empty and its unique element \(\hat{\theta} \) satisfies

\[
\| \hat{\theta} - \theta^* \|_\infty \leq \sqrt{3/2} \Phi_N (\theta^*)
\]

with probability at least \(1 - 2/\max\{N, p\}^2 \).

While Theorem 1 is stated in terms of random graphs, Theorem 1 covers discrete undirected graphical models with exponential parameterizations and parameter vectors of increasing dimension in single-observation scenarios. Theorem 1 suggests that the convergence rate of maximum likelihood estimators depends on the dimension \(p \) of the parameter space \(\Theta = \mathbb{R}^p \) and

- the inverse Fisher information matrix in a neighborhood of the data-generating parameter vector \(\theta^* \in \mathbb{R}^p \), quantified by \(\Lambda_N (\theta^*) \);
- the dependence induced by the model, quantified by \(\| \mathcal{D}_N (\theta^*) \|_2 \);
- the sensitivity of sufficient statistics, quantified by \(\Psi_N \).

We highlight the impact of two complex phenomena on the convergence rate: phase transitions and model near-degeneracy \[19, 32, 35, 8, 36\]. It is known that some random graph models with dependent edges [e.g., the ill-posed edge-and-triangle model, 19, 32, 35, 8, 36] exhibit phase transitions and model near-degeneracy. To examine the impact of phase transitions and model near-degeneracy on the convergence rate, consider a model with a parameter space \(\Theta = \mathbb{R}^p \) divided into two or more subsets (regimes) inducing very different distributions, some of which may place almost all mass on a small subset of graphs (e.g., near-empty or near-complete graphs).

Phase transitions. On subsets of \(\Theta \) where transitions between such regimes occur, small changes of natural parameters \(\theta \) can lead to large changes of mean-value parameters \(\mu (\theta) := \nabla_\theta \psi (\theta) = \mathbb{E}_\theta s (X) \). In such cases, \(\mathcal{I} (\theta) := \nabla^2_\theta \psi (\theta) \) can become ill-posed and non-invertible, in which case Theorem 1 does not establish consistency.
Model near-degeneracy. On subsets of Θ inducing near-degenerate distributions, the variances of sufficient statistics (e.g., the number of edges) can be small, so that the elements on the main diagonal of $I(\theta) = C_\theta s(X)$ can be small for some or all $\theta \in B_\infty(\theta^*, \epsilon^*)$. In such cases, the convergence rate is reduced via $\Lambda_N(\theta^*)$. In addition, model near-degeneracy is sometimes associated with strong dependence and high sensitivity of sufficient statistics [35], depressing the convergence rate via $|||D_N(\theta^*)|||_2$ and Ψ_N. An example is the ill-posed edge-and-triangle model [19, 32, 35, 8, 36]. We are interested in well-posed models that are amenable to scalable estimation with statistical guarantees. Therefore, the applications in Section 3.4 focus on models that leverage additional structure to control all relevant quantities.

Proof of Theorem 1. Let $\theta \in \Theta$ be the natural parameter vector and $\mu(\theta) := E_\theta s(X)$ be the mean-value parameter vector of an exponential family of the form (2.3). To ensure that $\theta \in \Theta$ is identifiable, we assume that the exponential family is minimal in the sense of Brown [5, p. 2]. The assumption of a minimal exponential family involves no loss of generality, because all non-minimal exponential families can be reduced to minimal exponential families [5, Theorem 1.9, p. 13]. The map $\mu : \Theta \mapsto \mathbb{M}$ from the natural parameter space $\Theta := \{\theta \in \mathbb{R}^p : \psi(\theta) < \infty\} = \mathbb{R}^p$ to the mean-value parameter space $\mathbb{M} := \mu(\Theta)$ is a homeomorphism [5, Theorem 3.6, p. 74]. As a result, the inverse map $\mu^{-1} : \mathbb{M} \mapsto \Theta$ exists and both μ and μ^{-1} are continuous, one-to-one, and onto.

Main idea of proof. By assumption, there exists a real number $\epsilon^* \in (0, \infty)$, independent of N and p, such that $I(\theta)$ is invertible for all $\theta \in B_\infty(\theta^*, \epsilon^*)$. We will show that we can focus on the subset $B_\infty(\theta^*, \epsilon^*) \subset \Theta$, by proving in Equation (3.26) that

$$P(\hat{\theta} \in B_\infty(\theta^*, \epsilon^*)) \geq 1 - \frac{2}{\max\{N, p\}^2} \quad \text{for all large enough } N.$$

Consider any $\epsilon \in (0, \epsilon^*)$ and define

$$\delta(\epsilon) := \sup\{\rho \in (0, \infty) : B_\infty(\mu(\theta^*), \rho) \subseteq \mu(B_\infty(\theta^*, \epsilon))\}. \tag{3.2}$$

By the definition of $\delta(\epsilon)$, the hypercube $B_\infty(\mu(\theta^*), \delta(\epsilon)) \subset \mathbb{M}$ is the largest hypercube contained in the image $\mu(B_\infty(\theta^*, \epsilon)) \subset \mathbb{M}$ of the hypercube $B_\infty(\theta^*, \epsilon) \subset \Theta$, which implies that

$$\delta(\epsilon) = \sup\{\rho \in (0, \infty) : \mu^{-1}(B_\infty(\mu(\theta^*), \rho)) \subseteq B_\infty(\theta^*, \epsilon)\}.$$
The definition of $\delta(\epsilon)$ as a supremum implies the following useful result:

\begin{equation}
\text{If } \rho \in (0, \infty) \text{ guarantees that } \mu^{-1}(\mathcal{B}_\infty(\mu(\theta^*), \rho)) \subseteq \mathcal{B}_\infty(\theta^*, \epsilon), \text{ then } \rho \leq \delta(\epsilon).
\end{equation}

Equation (3.4) implies the following relation between hypercubes in Θ and hypercubes in \mathbb{M}:

\begin{equation}
\mu^{-1}\left(\mathcal{B}_\infty\left(\mu(\theta^*), \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon)} I(\theta)^{-1}\|\|_{\infty}\right)\right) \subseteq \mathcal{B}_\infty(\theta^*, \epsilon).
\end{equation}

To relate the radius ϵ of hypercubes in Θ to the radius $\delta(\epsilon)$ of hypercubes in \mathbb{M}, we will prove the following result by using a proof by contradiction:

\begin{equation}
\frac{\epsilon}{\sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon)} I(\theta)^{-1}\|\|_{\infty}} \leq \delta(\epsilon).
\end{equation}

Equation (3.6) helps convert concentration results for maximum likelihood estimators $\mu(\bar{\theta}) = s(X)$ of the mean-value parameter vector $\mu(\theta^*)$ into concentration results for maximum likelihood estimators $\bar{\theta}$ of the natural parameter vector θ^*, which in turn facilitates rates of convergence for $\bar{\theta}$ based on $\mu(\bar{\theta}) = s(X)$. To convert concentration results for $\mu(\bar{\theta}) = s(X)$ into concentration results for $\bar{\theta}$, observe that $\mathcal{B}_\infty(\theta^*, \epsilon) \subseteq \Theta = \mathbb{R}^p$ implies that $\mu(\mathcal{B}_\infty(\theta^*, \epsilon)) \subseteq \mathbb{M}$ and that the random set Θ is non-empty in the event $s(X) \in \mu(\mathcal{B}_\infty(\theta^*, \epsilon)) \subseteq \mathbb{M}$, with its unique element $\bar{\theta} \in \Theta$ solving $\mu(\bar{\theta}) = s(X)$ [5, Theorem 5.5, p. 148]. We can therefore bound the probability of event $\bar{\theta} \in \mathcal{B}_\infty(\theta^*, \epsilon)$ from below as follows:

\begin{equation}
\begin{align*}
\mathbb{P}(\bar{\theta} \in \mathcal{B}_\infty(\theta^*, \epsilon)) &= \mathbb{P}(s(X) \in \mu(\mathcal{B}_\infty(\theta^*, \epsilon))) \\
&\geq \mathbb{P}(s(X) \in \mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon))) \\
&\geq 1 - 2 \exp\left(-\frac{2\delta(\epsilon)^2}{\|D_N(\theta^*)\|^2_2 \Psi_N^2} + \log p\right),
\end{align*}
\end{equation}

where
• the first line follows from the fact that \(\mu : \Theta \mapsto \mathcal{M} \) is a homeomorphism and \(\tilde{\Theta} \) exists, is unique, and solves \(\mu(\tilde{\Theta}) = s(X) \) in the event \(s(X) \in \mu(\mathcal{B}_\infty(\theta^*, \epsilon)) \subset \mathcal{M} \) [5, Theorem 5.5, p. 148];

• the second line follows from \(\mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon)) \subseteq \mu(\mathcal{B}_\infty(\theta^*, \epsilon)) \), which in turn follows from the definition of \(\delta(\epsilon) \) in Equation (3.2);

• the third line follows from Lemma 1 in the supplement [38].

We will bound the probability of event \(\tilde{\Theta} \in \mathcal{B}_\infty(\theta^*, \epsilon) \) from below by bounding the radius \(\delta(\epsilon) \) of hypercubes in \(\mathcal{M} \) from below by an explicit function of the radius \(\epsilon \) of hypercubes in \(\Theta \), by proving Equations (3.5) and (3.6).

Proving Equation (3.5). To prove Equation (3.5), the Fisher information matrix \(\mathcal{I}(\theta) \) needs to be invertible for all \(\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \subset \Theta \). Let

\[
(3.8) \quad \delta(\epsilon^*) := \sup \{ \rho \in (0, \infty) : \mathcal{B}_\infty(\mu(\theta^*), \rho) \subseteq \mu(\mathcal{B}_\infty(\theta^*, \epsilon^*)) \}.
\]

By the definition of \(\delta(\epsilon^*) \), the hypercube \(\mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon^*)) \subset \mathcal{M} \) with radius \(\delta(\epsilon^*) \) is the largest hypercube contained in the image \(\mu(\mathcal{B}_\infty(\theta^*, \epsilon^*)) \subset \mathcal{M} \) of the hypercube \(\mathcal{B}_\infty(\theta^*, \epsilon^*) \subset \Theta \) such that all mean-value parameter vectors \(\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon^*)) \) pull back to natural parameter vectors \(\theta' := \mu^{-1}(\mu') \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \) for which \(\mathcal{I}(\theta') \) is invertible. Consider any \(\rho \in (0, \delta(\epsilon^*)) \) and any \(\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho) \subset \mathcal{M} \), and let \(\theta' := \mu^{-1}(\mu') \in \Theta \) be the natural parameter vector corresponding to the mean-value parameter vector \(\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho) \subset \mathcal{M} \). Note that there is one and only one \(\theta' \) corresponding to \(\mu' \) because \(\mu^{-1} : \mathcal{M} \mapsto \Theta \) is one-to-one, and that \(\mu' = \mu(\theta') \).

To prove Equation (3.5), we invoke the multivariate mean-value theorem [16, Theorem 5], which implies that there exists a real number \(\lambda \in (0, 1) \) and a natural parameter vector \(\theta'' := \lambda \theta^* + (1 - \lambda) \theta' \in \Theta \) such that

\[
(3.9) \quad \mu(\theta') - \mu(\theta^*) = \mathcal{I}(\theta'')(\theta' - \theta^*).
\]

To solve Equation (3.9) for \(\theta' - \theta^* \), we first show that \(\mathcal{I}(\theta'') \) is invertible. For any \(\rho \in (0, \delta(\epsilon^*)) \), the definition of \(\delta(\epsilon^*) \) in Equation (3.8) implies that

\[
\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho) \subseteq \mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon^*)) \subseteq \mu(\mathcal{B}_\infty(\theta^*, \epsilon^*)),
\]

which in turn implies that the natural parameter vector \(\theta' := \mu^{-1}(\mu') \) corresponding to the mean-value parameter vector \(\mu' \) is an element of \(\mathcal{B}_\infty(\theta^*, \epsilon^*) \):

\[
\theta' \in \mu^{-1}(\mathcal{B}_\infty(\mu(\theta^*), \rho)) \subseteq \mu^{-1}(\mathcal{B}_\infty(\mu(\theta^*), \delta(\epsilon^*))) \subseteq \mathcal{B}_\infty(\theta^*, \epsilon^*).
\]

The fact that \(\theta^* \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \) and \(\theta' \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \) implies that \(\theta'' \) is an element of \(\mathcal{B}_\infty(\theta^*, \epsilon^*) \):

\[
\theta'' := \lambda \theta^* + (1 - \lambda) \theta' \in \mathcal{B}_\infty(\theta^*, \epsilon^*).
\]
By assumption, the Fisher information matrix $I(\theta)$ is invertible for all $\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)$, which includes $\theta'' \in \mathcal{B}_\infty(\theta^*, \epsilon^*)$. Since $I(\theta'')$ is invertible, we multiply both sides of Equation (3.9) by $I(\theta'')^{-1}$ to obtain

$$
\theta' - \theta^* = I(\theta'')^{-1} (\mu(\theta') - \mu(\theta^*)),
$$

which in turn implies that

(3.10)
$$
|||\theta' - \theta^*|||_\infty \leq \|||I(\theta'')^{-1}|||_\infty \|||\mu(\theta') - \mu(\theta^*)|||_\infty.
$$

To obtain an upper bound on the right-hand side of Equation (3.10), note that $\mu(\theta') = \mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho)$ and that $\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho)$ implies that $|||\mu' - \mu(\theta^*)|||_\infty < \rho$, so that

(3.11)
$$
\begin{align*}
|||\theta' - \theta^*|||_\infty &\leq \|||I(\theta'')^{-1}|||_\infty \|||\mu(\theta') - \mu(\theta^*)|||_\infty \\
&< \|||I(\theta'')^{-1}|||_\infty \rho
\end{align*}
$$

To prove Equation (3.5), we would like to know which real numbers $\rho \in (0, \delta(\epsilon^*))$ guarantee that each element

$$
\mu' \in \mathcal{B}_\infty(\mu(\theta^*), \rho)
$$

pulls back to an element

$$
\theta' \in \mathcal{B}_\infty(\theta^*, \epsilon).
$$

In other words, we want to determine which real numbers $\rho \in (0, \delta(\epsilon^*))$ guarantee that

(3.12)
$$
|||\theta' - \theta^*|||_\infty < \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|||I(\theta)|||_\infty \rho \leq \epsilon.
$$

It is evident from Equation (3.12) that

$$
|||\theta' - \theta^*|||_\infty \leq \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|||I(\theta)|||_\infty \rho \leq \epsilon
$$

is satisfied by all real numbers $\rho \in (0, \delta(\epsilon^*))$ satisfying

(3.13)
$$
\rho \leq \frac{\epsilon}{\sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|||I(\theta)|||_\infty}.
$$
Since the mean-value parameter vector $\mu' = \mu(\theta') \in B_\infty(\mu(\theta^*), \rho)$ was arbitrary, Equation (3.13) suggests the following result:

\[
(3.14) \quad \text{All } \rho \leq \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty} \text{ guarantee that } \mu^{-1}(B_\infty(\mu(\theta^*), \rho)) \subseteq B_\infty(\theta^*, \epsilon).
\]

Setting

\[
\rho = \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty}
\]

establishes Equation (3.5):

\[
\mu^{-1}\left(B_\infty\left(\mu(\theta^*), \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty} \right) \right) \subseteq B_\infty(\theta^*, \epsilon).
\]

In light of Equation (3.3), we know that all ρ satisfying Equation (3.14) satisfy $\rho \leq \delta(\epsilon)$. In addition, we prove that there does not exist any other $\rho \in (\delta(\epsilon), \infty)$ satisfying Equation (3.14) by using a proof by contradiction.

Proving Equation (3.6). We will establish Equation (3.6) by proving the following result by a proof by contradiction:

\[
(3.15) \quad \text{All } \rho \in (0, \infty) \text{ satisfying } \rho \leq \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty} \text{ satisfy } \rho \leq \delta(\epsilon).
\]

To prove Equation (3.15) by contradiction, suppose that there exists a real number $\rho' \in (\delta(\epsilon), \infty)$ such that

\[
(3.16) \quad \rho' \leq \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty}.
\]

We will show that the above assumption gives rise to a contradiction, which implies that there does not exist a real number $\rho' \in (\delta(\epsilon), \infty)$ satisfying Equation (3.16). To prove Equation (3.15) by contradiction, we make two observations. First, it suffices to prove the result for all $\rho' \in (\delta(\epsilon), \delta(\epsilon^*))$: We will show that if the result holds for all $\rho' \in (\delta(\epsilon), \delta(\epsilon^*))$, then it also holds for all $\rho'' \in (\delta(\epsilon^*), \infty)$. Second, Equation (3.11) holds for all $\mu' \in B_\infty(\mu(\theta^*), \delta(\epsilon^*))$ and $\theta' := \mu^{-1}(\mu') \in B_\infty(\theta^*, \epsilon^*)$. As a result, for any $\rho' \in (\delta(\epsilon), \delta(\epsilon^*))$ satisfying Equation (3.16) and any mean-value parameter vector $\mu' \in B_\infty(\mu(\theta^*), \rho')$ and natural parameter vector $\theta' := \mu^{-1}(\mu')$, the
multivariate mean-value theorem implies that
\[
|\theta' - \theta^*|_\infty \leq \|\mathcal{I}(\theta')^{-1}\|_\infty |\mu(\theta') - \mu(\theta^*)|_\infty
\]
(3.17)
\[
< \sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \|\mathcal{I}(\theta)^{-1}\|_\infty \rho' \leq \epsilon,
\]
recalling that \(\mu(\theta') = \mu' \in B_\infty(\mu(\theta^*), \rho')\). Equation (3.17) implies that each mean-value parameter vector \(\mu(\theta') \in B_\infty(\mu(\theta^*), \rho')\) in Equation (3.17) pulls back to a natural parameter vector \(\theta' \in B_\infty(\theta^*, \epsilon)\). Since \(\mu' \in B_\infty(\mu(\theta^*), \rho')\) was arbitrary, Equations (3.16) and (3.17) imply that
\[
\mu^{-1}(B_\infty(\mu(\theta^*), \rho')) \subseteq B_\infty(\theta^*, \epsilon).
\]
(3.18)
Equation (3.18) implies that \(\rho' \leq \delta(\epsilon)\) by virtue of Equation (3.3), which contradicts the assumption that \(\rho' \in (\delta(\epsilon), \delta(\epsilon^*)]\). We conclude that
\[
\mu^{-1}(B_\infty(\mu(\theta^*), \rho')) \not\subseteq B_\infty(\theta^*, \epsilon) \text{ for all } \rho' \in (\delta(\epsilon), \delta(\epsilon^*)],
\]
(3.19)
which in turn implies that
\[
\mu^{-1}(B_\infty(\mu(\theta^*), \rho'')) \not\subseteq B_\infty(\theta^*, \epsilon) \text{ for all } \rho'' \in (\delta(\epsilon^*), \infty).
\]
(3.20)
In view of Equations (3.19) and (3.20), Equation (3.16) cannot be satisfied by any \(\rho' \in (\delta(\epsilon), \delta(\epsilon^*)]\) nor by any \(\rho'' \in (\delta(\epsilon^*), \infty)\). A proof by contradiction thus establishes Equation (3.15):
\[
\text{All } \rho \in (0, \infty) \text{ satisfying } \rho \leq \frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \|\mathcal{I}(\theta)^{-1}\|_\infty} \text{ satisfy } \rho \leq \delta(\epsilon).
\]
(3.21)
Equation (3.21) implies Equation (3.6):
\[
\frac{\epsilon}{\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \|\mathcal{I}(\theta)^{-1}\|_\infty} \leq \delta(\epsilon).
\]
(3.22)
Bounding the probability of event \(\hat{\theta} \in B_\infty(\theta^*, \epsilon)\) using Equation (3.22). Using Equation (3.22), we bound the probability of event \(\hat{\theta} \in B_\infty(\theta^*, \epsilon)\) in Equation (3.7) from below by
\[
P(\hat{\theta} \in B_\infty(\theta^*, \epsilon)) \geq 1 - 2 \exp\left(-\frac{2 \delta(\epsilon)^2}{\|\mathcal{D}_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right)
\]
(3.23)
\[
\geq 1 - 2 \exp\left(-\frac{2 \epsilon^2}{\Lambda_N(\theta^*)^2 \|\mathcal{D}_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right),
\]
recalling that $\Lambda_N(\theta^*)$ is defined by
\[
\Lambda_N(\theta^*) := \sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| I(\theta)^{-1} \|_\infty.
\]
Set $\epsilon := \sqrt{3/2} \Phi_N(\theta^*)$, where $\Phi_N(\theta^*)$ is defined by
\[
\Phi_N(\theta^*) := \Lambda_N(\theta^*) \| D_N(\theta^*) \|_2 \Psi_N \sqrt{\log \max\{N, p\}}.
\]
Then Equation (3.23) implies that
\[
(3.24) \quad \mathbb{P}(\hat{\theta} \in B_\infty(\theta^*, \sqrt{3/2} \Phi_N(\theta^*))) \geq 1 - \frac{2}{\max\{N, p\}^2}.
\]

Showing that the focus on the subset $B_\infty(\theta^*, \epsilon^*) \subset \Theta$ with $\epsilon^* \in (0, \infty)$ is legitimate. To complete the proof of Theorem 1, we show that the focus on the subset $B_\infty(\theta^*, \epsilon^*) \subset \Theta$ is legitimate, by noting that the assumption $\Phi_N(\theta^*) \to 0$ as $N \to \infty$ implies that there exists an integer $N_0 \geq 3$ such that $\epsilon := \sqrt{3/2} \Phi_N(\theta^*) < \epsilon^*$ for all $N > N_0$. The fact that $\sqrt{3/2} \Phi_N(\theta^*) < \epsilon^*$ for all $N > N_0$ implies that
\[
(3.25) \quad B_\infty(\theta^*, \sqrt{3/2} \Phi_N(\theta^*)) \subset B_\infty(\theta^*, \epsilon^*) \quad \text{for all} \quad N > N_0.
\]
The relation established in Equation (3.25), along with the lower bound on the probability of event $\hat{\theta} \in B_\infty(\theta^*, \sqrt{3/2} \Phi_N(\theta^*))$ in Equation (3.24), proves that
\[
(3.26) \quad \mathbb{P}(\hat{\theta} \in B_\infty(\theta^*, \epsilon^*)) \geq \mathbb{P}(\hat{\theta} \in B_\infty(\theta^*, \sqrt{3/2} \Phi_N(\theta^*))) \geq 1 - \frac{2}{\max\{N, p\}^2} \quad \text{for all} \quad N > N_0.
\]
We conclude that, for all $N > N_0$, the random set $\hat{\Theta}$ is non-empty and its unique element $\hat{\theta}$ satisfies
\[
\| \hat{\theta} - \theta^* \|_\infty \leq \sqrt{3/2} \Phi_N(\theta^*)
\]
with probability at least $1 - 2 / \max\{N, p\}^2$. □

3.3. Pseudo-likelihood-based M-estimators. Maximum likelihood estimators are unappealing on computational grounds, because evaluating $\ell(\theta; x)$ requires evaluating the normalizing constant of $f_\theta(x)$. The normalizing constant of $f_\theta(x)$ is a sum over $\exp(M \log 2)$ possible graphs and cannot be
computed unless $M := \binom{N}{2}$ is small or the model makes restrictive independence assumptions. As a scalable alternative, consider M-estimators

$$\tilde{\Theta}(\gamma_N) := \left\{ \theta \in \mathbb{R}^p : \| \nabla_\theta \tilde{\ell}(\theta; x) \|_{\infty} \leq \gamma_N \right\}, \quad \gamma_N \in [0, \infty)$$

based on the pseudo-loglikelihood function

$$\tilde{\ell}(\theta; x) := \log \prod_{i=1}^M f_\theta(x_i | x_{-i}),$$

where $f_\theta(x_i | x_{-i})$ is the conditional probability of $X_i = x_i$ given all other edge variables $X_{-i} = x_{-i}$ ($i = 1, \ldots, M$).

To bound the statistical error of pseudo-likelihood-based M-estimators in single-observation scenarios with $p \to \infty$ parameters, let $i \in \{1, \ldots, M\}$ and $\mathcal{N}_i \subseteq \{1, \ldots, M\} \setminus \{i\}$ be the smallest subset of $\{1, \ldots, M\}$ such that

$$X_i \perp \perp X_{\{1,\ldots,M\}\setminus\{i\}\cup\mathcal{N}_i}. $$

Let $\epsilon^* \in (0, \infty)$ be a constant, independent of N and p, and

$$\mathbb{H} \subseteq \left\{ x \in \mathbb{X} : -\nabla^2_{\theta} \tilde{\ell}(\theta; x) \text{ is invertible for all } \theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \right\},$$

and define

$$\tilde{\Lambda}_{N,x}(\theta^*) := \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|(-\nabla^2_{\theta} \tilde{\ell}(\theta; x))^{-1}\|_{\infty}, \quad x \in \mathbb{H}$$

$$\tilde{\Lambda}_N(\theta^*) := \max_{x \in \mathbb{H}} \tilde{\Lambda}_{N,x}(\theta^*)$$

$$\Phi_N(\theta^*) := \tilde{\Lambda}_N(\theta^*) (1 + D_N) \|\| D_N(\theta^*)\|\|_2 \Psi_N \sqrt{\log \max\{N, p\}},$$

where $D_N := \max\{|\mathcal{N}_1|, \ldots, |\mathcal{N}_M|\} \in \{0, \ldots, M - 1\}$. It is worth noting that the set \mathbb{H} can be a proper subset of the set of all $x \in \mathbb{X}$ for which $-\nabla^2_{\theta} \tilde{\ell}(\theta; x)$ is invertible on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$, provided \mathbb{H} is a high probability subset of \mathbb{X} (see Theorem 2 below). The fact that \mathbb{H} can be a proper subset of all $x \in \mathbb{X}$ for which the Hessian is invertible on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ has two advantages. First, characterizing the set of all $x \in \mathbb{X}$ for which the Hessian is invertible may be hard, but finding a sufficient condition for invertibility may well be possible. Second, subsets of $x \in \mathbb{X}$ for which $-\nabla^2_{\theta} \tilde{\ell}(\theta; x)$ is invertible but $\sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|(-\nabla^2_{\theta} \tilde{\ell}(\theta; x))^{-1}\|_{\infty}$ is large can be excluded from \mathbb{H}, as long as those subsets are low probability subsets of \mathbb{X}.

Theorem 2. Consider a single observation of a random graph with \(N \) nodes and dependent edges. Let \(\theta^* \in \Theta = \mathbb{R}^p \), where \(p \to \infty \) as \(N \to \infty \) is allowed. Assume that there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \), \(\sqrt{96} \tilde{\Phi}_N(\theta^*) < e^* \) and

\[
\mathbb{P}(X \in \mathbb{H}) \geq 1 - \frac{2}{\max\{N, p\}^2}.
\]

Then, for all \(N > N_0 \), the random set \(\tilde{\Theta}(\gamma_N) \) is non-empty and satisfies

\[
\tilde{\Theta}(\gamma_N) \subseteq B_\infty(\theta^*, \sqrt{96} \tilde{\Phi}_N(\theta^*)) \subset B_\infty(\theta^*, e^*)
\]

with probability at least \(1 - 4/\max\{N, p\}^2 \), provided

\[
\gamma_N = \sqrt{24} (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}} > 0.
\]

We first provide a simple application of Theorems 1 and 2 in Section 3.3.1 and explore how fast the dimension \(p \) of the parameter space \(\Theta = \mathbb{R}^p \) can grow as a function of the number of nodes \(N \). We then explain in Sections 3.3.2, 3.3.3, and 3.3.4 how \(\tilde{\Phi}_N(\theta^*) \) can be bounded. Applications to generalized \(\beta \)-models with dependent edges and \(p \geq N \to \infty \) parameters are presented in Section 3.4. These applications demonstrate that \(\tilde{\Phi}_N(\theta^*) \to 0 \) as \(N \to \infty \) provided \(D_N \) does not grow too fast. We conclude Section 3.4 with a comparison with related statistical exponential-family models for discrete and dependent random variables in single-observation scenarios.

3.3.1. Example: growth of \(p \) as a function of \(N \). To showcase Theorems 1 and 2 in one of the simplest possible scenarios and explore how fast the dimension \(p \) of the parameter space \(\Theta = \mathbb{R}^p \) can grow as a function of \(N \), we consider inhomogeneous Bernoulli random graphs in the dense-graph regime. Inhomogeneous Bernoulli random graphs assume that edge variables \(X_i \) are independent Bernoulli(\(\mu_i \)) random variables, with edge probabilities \(\mu_i := \mathbb{E}X_i \) satisfying \(0 < C_1 < \mu_i < C_2 < 1 \) for finite constants \(C_1 \) and \(C_2 \), independent of \(N \). Suppose that each edge variable \(X_i \) belongs to one of \(p \leq M \) distinct categories \(k \in \{1, \ldots, p\} \) with edge probabilities \(\pi_k \in (0, 1) \) and that \(\mu_i = \pi_k \) if edge variable \(X_i \) is assigned to category \(k \). Inhomogeneous Bernoulli random graphs are statistical exponential families with natural parameters \(\theta_k := \text{logit}(\pi_k) \) and sufficient statistics \(s_k(x) := \sum_{i=1}^M 1_k(i) x_i \) \((k = 1, \ldots, p) \), where \(\theta := (\theta_1, \ldots, \theta_p) \in \mathbb{R}^p \), \(s(x) := (s_1(x), \ldots, s_p(x)) \in \mathbb{R}^p \), and \(1_k(i) \) is 1 if edge variable \(X_i \) is assigned to category \(k \) and is 0 otherwise. Since edges are independent, \(\ell(\theta; x) = \ell(\theta; x) \) for all \((\theta, x) \in \Theta \times X \) and hence \(\nabla_\theta^2 \ell(\theta; x) = \nabla_\theta^2 \ell(\theta; x) = I(\theta) = C_\theta s(X) \) for all \((\theta, x) \in \Theta \times X \). By the independence of edges, \(\nabla_\theta s(X) \) is a diagonal matrix, so the
variances $\mathbb{V}_\theta s_1(X), \ldots, \mathbb{V}_\theta s_p(X)$ are the eigenvalues of $C_\theta s(X)$. To bound them, assume that there exist finite constants $0 < C_3 < C_4$ such that

$$\frac{C_3 N^2}{p} \leq \sum_{i=1}^M 1_k(i) \leq \frac{C_4 N^2}{p}, \quad k = 1, \ldots, p,$$

that is, the p categories are balanced, in the sense that the sizes of the p categories are of the same order of magnitude. Then there exists a finite constant $C_5 > 0$, independent of N and p, such that

$$\Lambda_N(\theta^*) = \tilde{\Lambda}_N(\theta^*) = \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|\mathcal{I}(\theta)^{-1}\|_{\infty}$$

$$= \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \max_{1 \leq k \leq p} \frac{1}{\mathbb{V}_\theta s_k(X)} \leq \frac{C_5 p}{N^2}.$$

By the independence of edges, $D_N = 0$ and the coupling matrix $D_N(\theta^*)$ is the $M \times M$ identity matrix with spectral norm $\|D_N(\theta^*)\|_2 = 1$. The quantity $\Psi_N := \max_{1 \leq k \leq p} |\Xi_k|_2$ can be bounded as follows. First, adding or deleting an edge in any category k can change the number of edges $s_k(x)$ in category k by -1 or $+1$, while changes of edges in other categories leave $s_k(x)$ unchanged. Second, each category k contains at most $C_4 N^2 / p$ edges, so $|\Xi_k|_2 \leq \sqrt{C_4 N^2 / p}$ for all k and hence $\Psi_N \leq \sqrt{C_4 N^2 / p}$. Thus, there exists a finite constant $C > 0$, independent of N and p, such that

$$\Phi_N(\theta^*) = \tilde{\Phi}_N(\theta^*) \leq \frac{\sqrt{p \log \max\{N, p\}}}{C N}.$$

If $p = o(N^2 / \log N)$, then $\Phi_N(\theta^*) = \tilde{\Phi}_N(\theta^*) \to 0$ and the maximum likelihood and pseudo-likelihood estimators $\hat{\theta}$ and $\tilde{\theta}$ are consistent estimators of $\theta^* \in \Theta = \mathbb{R}^p$ by Theorem 1; note that $\hat{\theta}$ and $\tilde{\theta}$ are equal with probability 1 when edges are independent. Thus, Theorems 1 and 2 confirm the intuition that the number of parameters p we can estimate (without assuming θ^* to be sparse) is less than N^2 (ignoring logarithmic terms). These results dovetail with the results of Portnoy [30, Theorem 2.1] based on $n \to \infty$ independent observations from a statistical exponential family with $p \to \infty$ parameters, which suggest that consistency results can be obtained as long as $p = o(n)$; note that the number of independent observations under inhomogeneous Bernoulli random graphs is $n = \binom{N}{2}$. While the example is limited to inhomogeneous Bernoulli random graphs, we conjecture that p can grow at most as fast when edges are dependent and the random graph is sparse, because dependence increases $\|D_N(\theta^*)\|_2$ while sparsity decreases information $\mathcal{I}(\theta)$ and hence increases $\Lambda_N(\theta^*)$.

3.3.2. Bounding the spectral norm of the coupling matrix. If edges are independent, the spectral norm $\|D_N(\theta^*)\|_2$ of the coupling matrix $D_N(\theta^*)$ is 1, otherwise $\|D_N(\theta^*)\|_2$ needs to be bounded from above. We transform the hard problem of bounding $\|D_N(\theta^*)\|_2$ into the more convenient problem of studying paths in a conditional independence graph \mathcal{G} that represents the conditional independence structure of a random graph \cite{15, 25}. A conditional independence graph \mathcal{G} consists of a set of vertices $\mathcal{V} := \{X_1, \ldots, X_M\}$ and a set of undirected edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ indicating the absence of conditional independencies among edge variables X_1, \ldots, X_M [see, e.g., 15, 25].

We begin with the observation that the concentration results of Chazottes et al. \cite{10} leveraged in Theorems 1 and 2 hold for all possible couplings $Q(\theta^*, i, x_{i+1})$ of $P(\theta^*, x_{i+1}, 0)$ and $P(\theta^*, x_{i+1}, 1)$, and all possible couplings bound the total variation distance between $P(\theta^*, x_{i+1}, 0)$ and $P(\theta^*, x_{i+1}, 1)$:

$$\|P(\theta^*, x_{i+1}, 0) - P(\theta^*, x_{i+1}, 1)\|_{TV} \leq Q(\theta^*, i, x_{i+1})\left(X^{**}_{i+1:M} \neq X^{*}_{i+1:M}\right) = Q(\theta^*, i, x_{i+1}) \left(\bigcup_{j=i+1}^M \{X_j^* \neq X_j^{**}\}\right) \leq \sum_{j=i+1}^M D_{i,j}(\theta^*)$$

We can therefore replace optimal couplings (which provide the tightest bounds on the total variation distance) by suboptimal but more convenient couplings that facilitate bounds on the spectral norm $\|D_N(\theta^*)\|_2$ of $D_N(\theta^*)$. To do so, we adapt the coupling approach of van den Berg and Maes \cite[pp. 759–760]{39} from Markov random fields to random graphs. The resulting coupling $Q(\theta^*, i, x_{i+1})$ is described in Lemma 13 in the supplement \cite{38} and may not be optimal, but it helps translate the hard problem of bounding the spectral norm $\|D_N(\theta^*)\|_2$ of $D_N(\theta^*)$ into the more convenient problem of studying paths in the conditional independence graph \mathcal{G}.

We start with the inequality

$$\|D_N(\theta^*)\|_2 \leq \sqrt{\|D_N(\theta^*)\|_1 \|D_N(\theta^*)\|_\infty}.$$

We then bound the quantities $\|D_N(\theta^*)\|_1$ and $\|D_N(\theta^*)\|_\infty$ by bounding the above-diagonal elements $D_{i,j}(\theta^*)$ of $D_N(\theta^*)$, using paths of disagreement $i \leftrightarrow j$ between vertices X_i and X_j in the conditional independence graph \mathcal{G}; note that the below-diagonal and diagonal elements of $D_N(\theta^*)$ are 0 and 1. A path of disagreement $i \leftrightarrow j$ between vertices X_i and X_j is a sequence of two or more distinct vertices (X_i, \ldots, X_j) in the conditional independence graph \mathcal{G} starting at vertex X_i and ending at vertex X_j, such that

- each subsequent pair of vertices (X_v, X_w) in the sequence is connected by an edge in the conditional independence graph \mathcal{G}, which indicates the absence of conditional independence of vertices X_v and X_w;
• the coupling \(\mathbf{X}^*_{i+1:M}, \mathbf{X}^{**}_{i+1:M} \) ∈ \(\{0,1\}^{M-i} \times \{0,1\}^{M-i} \) with joint probability mass function \(\mathbb{Q}_{\theta^*,i}^{x_1,i-1} \) disagrees at each vertex \(X_v \) in the sequence, in the sense that \(X_v^* \neq X_v^{**} \).

Theorem 1 of van den Berg and Maes [39] implies that the coupling \(\mathbb{Q}_{\theta^*,i}^{x_1,i-1} \) constructed in the supplement [38] satisfies

\[
\mathbb{Q}_{\theta^*,i}^{x_1,i-1}(X_v^* \neq X_j^{**}) = \mathbb{Q}_{\theta^*,i}^{x_1,i-1}(i \leftrightarrow j) \leq \mathbb{B}_{\pi(\theta^*)}(i \leftrightarrow j),
\]

where \(\mathbb{B}_{\pi(\theta^*)} \) is a Bernoulli product measure on \(\{0,1\}^M \) with probability vector \(\pi(\theta^*) \in [0,1]^M \). The coordinates \(\pi_v(\theta^*) \) of \(\pi(\theta^*) \) are given by

\[
\pi_v(\theta^*) := \begin{cases}
0 & \text{if } v \leq i-1 \\
1 & \text{if } v = i \\
\max_{(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}} \pi_v, x_{-v}, x'_{-v}(\theta^*) & \text{if } v \geq i + 1,
\end{cases}
\]

where

\[
\pi_v, x_{-v}, x'_{-v}(\theta^*) := \| \mathbb{P}_{\theta^*}(\cdot | X_{-v} = x_{-v}) - \mathbb{P}_{\theta^*}(\cdot | X_{-v} = x'_{-v}) \|_{TV}
\]

is the total variation distance between the conditional probability mass functions of vertex \(X_v \) given \(X_{-v} = x_{-v} \) and \(X_{-v} = x'_{-v} \). Leveraging (3.28), we can bound the above-diagonal elements \(\mathcal{D}_{i,j}(\theta^*) \) of \(\mathcal{D}_N(\theta^*) \) as follows:

\[
\mathcal{D}_{i,j}(\theta^*) := \max_{x_{1:i-1} \in \{0,1\}^{i-1}} \mathbb{Q}_{\theta^*,i}^{x_1,i-1}(X_j^* \neq X_j^{**}) \leq \mathbb{B}_{\pi(\theta^*)}(i \leftrightarrow j).
\]

In other words, the spectral norm \(\| \mathcal{D}_N(\theta^*) \|_2 \) of \(\mathcal{D}_N(\theta^*) \) can be bounded by using paths of disagreement \(i \leftrightarrow j \) in the conditional independence graph \(\mathcal{G} \), and by bounding the probabilities of those paths by Bernoulli product measures. Specific bounds depend on the data-generating model with parameter vector \(\theta^* \in \Theta = \mathbb{R}^p \). Applications to generalized \(\beta \)-models with dependent edges can be found in the supplement [38].

3.3.3. Bounding the \(\ell_\infty \)-norm of inverse negative (expected) Hessians. To establish convergence rates, \(\Lambda_N(\theta^*) \) and \(\tilde{\Lambda}_N(\theta^*) \) need to be bounded, which amounts to bounding the suprema of \(\| (\mathbb{E} \nabla^2_{\theta^*} \ell(\theta; X))^{-1} \|_\infty \) and \(\| (\nabla^2_{\theta^*} \tilde{\ell}(\theta; x))^{-1} \|_\infty \) for all \(x \in \mathbb{H} \) on \(\mathcal{B}_\infty(\theta^*, \epsilon^*) \subset \Theta = \mathbb{R}^p \).

As a case in point, consider the \(\ell_\infty \)-induced matrix norm of \((\nabla^2_{\theta^*} \tilde{\ell}(\theta; x))^{-1} \), where \(\nabla^2_{\theta^*} \tilde{\ell}(\theta; x) \) is invertible for all \((\theta, x) \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \times \mathbb{H} \). Then

\[
\|(\nabla^2_{\theta^*} \tilde{\ell}(\theta; x))^{-1}\|_\infty \leq \sqrt{p} \|(\nabla^2_{\theta^*} \tilde{\ell}(\theta; x))^{-1}\|_2,
\]

\[
(3.29) \quad \frac{1}{\lambda_{\min}(\nabla^2_{\theta^*} \tilde{\ell}(\theta; x))}.
\]
where \(\lambda_{\min}(-\nabla^2_{\tilde{\theta}} \tilde{\ell}(\theta; x)) > 0 \) is the smallest eigenvalue of \(-\nabla^2_{\tilde{\theta}} \tilde{\ell}(\theta; x)\). That said, bounds of \(\tilde{\Lambda}_N(\theta^*) \) based on (3.29) may be loose when \(p \to \infty \) as \(N \to \infty \), as is the case with generalized \(\beta \)-models with dependent edges.

To establish bounds on \(\tilde{\Lambda}_N(\theta^*) \) in scenarios with \(p \to \infty \) parameters, we leverage the fact that generalized \(\beta \)-models with dependent edges and \(p = N + 1 \to \infty \) parameters include the \(\beta \)-model with independent edges and \(p = N \to \infty \) parameters as a special case, along with the fact that the negative expected Hessian of the \(\beta \)-model is diagonally dominant in the sense of Hillar and Wibisono [21]. By leveraging these properties, Lemma 6 in the supplement [38] establishes the bound

\[
\tilde{\Lambda}_N(\theta^*) \leq C D_N^9 \frac{N}{N^{1 - \alpha}} - \epsilon^*.
\]

where the constants \(C \in (0, \infty) \), \(\alpha \in [0, 1/2) \), and \(\epsilon^* \in [0, 1/2 - \alpha) \) are independent of \(N \) and \(p \), while \(D_N \) satisfies \(D_N = O(\log N) \).

3.3.4. **Bounding the smoothness of the sufficient statistics.** The quantity \(\Psi_N := \max_{1 \leq i \leq p} ||\Xi_i||_2 \) can be bounded by bounding the coordinates \(\Xi_{i,j} \) of \(\Xi_i \). Bounding \(\Xi_{i,j} \) amounts to bounding changes of sufficient statistics.

3.4. **Applications.** We present applications of pseudo-likelihood-based M-estimators to \(\beta \)- and generalized \(\beta \)-models with dependent edges and \(p \geq N \to \infty \) parameters, in dense- and sparse-graph settings. Throughout, we assume that the data-generating parameter vector \(\theta^* \in \Theta = \mathbb{R}^p \) satisfies

\[
\|\theta^*\|_\infty \leq \frac{L + \vartheta \log N}{12 (3 + D_N)} - \epsilon^*,
\]

where \(L \in [0, \infty) \), \(\vartheta \in [0, \infty) \), and \(\epsilon^* \in (0, \infty) \) are constants, independent of \(N \) and \(p \). The constant \(\epsilon^* \) is identical to the constant \(\epsilon^* \) in the definition of \(\Lambda_N(\theta^*) \) and Theorem 2. The quantity \(D_N := \max\{|\Omega_1|, \ldots, |\Omega_M|\} \) is identical to the quantity \(D_N \) in the definition of \(\Phi_N(\theta^*) \) and satisfies \(D_N = 0 \) under Model 1, but can increase as a function of \(N \) under Models 2 and 3. To ensure that \(\|\theta^*\|_\infty > 0 \), we assume that \(D_N \) satisfies

\[
1 \leq D_N < \frac{L + \vartheta \log N}{12 \epsilon^*} - 3
\]

under Models 2 and 3.

We start with the \(\beta \)-model [9], because its theoretical properties have been studied and it is therefore a convenient benchmark.

Corollary 1. \(\beta \)-model. Consider Model 1 with \(\theta^* \in \mathbb{R}^N \) satisfying (3.30) with \(\vartheta \in [0, 3) \). Then there exist finite constants \(C > 0 \) and \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \),

\[
\Phi_N(\theta^*) = \tilde{\Phi}_N(\theta^*) \leq C \sqrt{\frac{\log N}{N^{1-\vartheta/2}}}.
\]
Corollary 1 shows that the convergence rate is highest when $\|\theta^*\|_\infty$ is bounded above ($\vartheta = 0$). Condition (3.30) is the weakest known condition on $\|\theta^*\|_\infty$: Chatterjee et al. [9, Theorem 1.3] report a non-asymptotic error bound of the form $\|\hat{\theta} - \theta^*\|_\infty \leq C \sqrt{\log N / N}$ assuming that $\|\theta^*\|_\infty$ is bounded above ($\vartheta = 0$), while Yan and Xu [42, Theorem 1] report asymptotic consistency and normality results assuming that $\|\theta^*\|_\infty = o(\log \log N)$. By contrast, condition (3.30) assumes that $\|\theta^*\|_\infty < (1/12) \log N (\theta^* \in \mathbb{R}^N, L = 0, \vartheta < 3, D_N = 0)$, which dovetails with the condition $\|\theta^*\|_\infty < (1/24) \log N (\theta^* \in \mathbb{R}^{2N-1})$ of Yan et al. [41, Theorem 1] based on the p_1-model for directed random graphs; note that the β-model for undirected random graphs can be viewed as a relative of the p_1-model for directed random graphs, because both models are statistical exponential-family models of degree sequences. These results, along with the results on the dimension p of the parameter space $\Theta = \mathbb{R}^p$ in Section 3.3.1, demonstrate that Theorems 1 and 2 recover the sharpest known results for random graphs with independent edges and $p \to \infty$ parameters, suggesting that the generality of Theorems 1 and 2 comes at a low cost. It is worth noting that it is unknown whether the constants mentioned above are sharp. While it would be of interest to investigate whether these constants are sharp, constants do not affect convergence rates and the question of whether these constants are sharp is therefore not pertinent to the main results of the paper.

To demonstrate that Theorem 2 covers random graph models with non-trivial dependence, we turn to generalized β-models with dependent edges. Throughout, we assume that the size $|A_k|$ of each subpopulation A_k satisfies $|A_k| \geq 3 (k = 1, \ldots, K)$. We start with non-overlapping subpopulations in Corollary 2 and deal with overlapping subpopulations in Corollary 3.

Corollary 2. Generalized β-models with dependent edges. Consider Models 2 and 3 with non-overlapping subpopulations, level of sparsity $\alpha \in [0, 1/2)$, and $\theta^* \in \mathbb{R}^{N+1}$ satisfying (3.30) with $\vartheta \in [0, 1/2 - \alpha)$. Then

$$4D_N \sqrt{N \log N} \leq \gamma_N \leq 28D_N^2 \sqrt{N \log N},$$

and there exist finite constants $C > 0$ and $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$, (3.27) holds provided $D_N = O(\log N)$, and

$$\Phi_N(\theta^*) \leq C D_N^{14} \sqrt{\log N / N^{1/2}}.$$

Corollary 2 shows that the convergence rate of pseudo-likelihood-based M-estimators under generalized β-models with dependent edges and non-overlapping subpopulations resembles the convergence rate under the β-model with independent edges when the random graph is dense ($\alpha = 0$) and
Assumption A is satisfied. Then there exist finite constants $\alpha \in (0, 1/2)$ and the growth of $|\theta^*|_\infty$ controlled by $\alpha \in [0, 1/2)$ and the growth of $|\theta^*|_\infty$ controlled by $\alpha \in [0, 1/2)$.

We turn to overlapping subpopulations. To bound $\|\mathcal{D}_N(\theta^*)\|_2$ in scenarios with overlapping subpopulations, we need to control the amount of overlap of subpopulations, because the dependence among edges can propagate through overlapping subpopulations. To do so, we introduce a subpopulation graph \mathcal{G}_A with a set of vertices $\mathcal{V}_A := \{A_1, \ldots, A_K\}$, where a pair of distinct subpopulations A_k and A_l is connected by an edge if $A_k \cap A_l \neq \emptyset$.

Denote by $d_{\mathcal{G}_A} : \mathcal{V}_A \times \mathcal{V}_A \mapsto \{0, 1, \ldots\} \cup \{\infty\}$ the length of the shortest path between pairs of subpopulations in \mathcal{G}_A, called the graph distance; note that $d_{\mathcal{G}_A}(A_k, A_k) := 0$ and $d_{\mathcal{G}_A}(A_k, A_l) := \infty$ if there is no path of finite length between two distinct subpopulations A_k and A_l. Let $\mathcal{V}_{A_k,l}$ be the subset of subpopulations at graph distance l from a given subpopulation A_k:

$$\mathcal{V}_{A_k,l} := \{A^* \in \{A_1, \ldots, A_K\} \setminus \{A_k\} : d_{\mathcal{G}_A}(A_k, A^*) = l\}.$$

Assumption A. Define $U := 1/(1 + \exp(-L))$, where $L \in (0, \infty)$ is identical to the constant L in (3.30) and is independent of N and p. Assume that $D_N \in [1, \infty)$ and that there exist finite constants $\omega_1 \in [0, \infty)$ and

$$0 \leq \omega_2 \leq \min \left\{ \omega_1, \frac{1}{(\omega_1 + 1)|\log(1 - U)|} \right\},$$

independent of N and p, such that

$$\max_{1 \leq k \leq K} |\mathcal{V}_{A_k,l}| \leq \omega_1 + \frac{\omega_2}{2D_N^3} \log l, \quad l \in \{1, \ldots, K - 1\}.$$

Assumption A covers tree- and non-tree subpopulation graphs in which, for each subpopulation, the number of subpopulations at graph distance l is either constant or grows slowly as a function of l (depending on D_N).

Corollary 3. Generalized β-models with dependent edges. Consider Models 2 and 3 with overlapping subpopulations and level of sparsity $\alpha \in [0, 1/2)$. Assume that $\theta^* \in \mathbb{R}^{N + 1}$ satisfies (3.30) with $\vartheta = 0$ and that Assumption A is satisfied. Then there exist finite constants $A > 0$, $B > 0$, $C > 0$, and $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$,

$$4D_N \sqrt{N \log N} \leq g_N \leq B \exp(A D_N^3) \sqrt{N \log N},$$

(3.27) holds provided $D_N = o((\log(N / \log N))^{1/3})$, and

$$\Phi_N(\theta^*) \leq C \exp(A D_N^3) \sqrt{\frac{\log N}{N^{1-2\alpha}}}.$$
A comparison of Corollaries 2 and 3 reveals that overlap comes at a cost. First, the convergence rate is lower due to the factor $\exp(A D^3_N)$ in the overlapping subpopulation scenario, compared with the factor D^1_{N1} in the non-overlapping subpopulation scenario. Second, overlap requires stronger restrictions on D_N. For example, consider the best-case scenario when the random graph is dense ($\alpha = 0$) and $||\theta^\star||_\infty$ is bounded above ($\tilde{\vartheta} = 0$). Then, to ensure $||\theta^\star||_\infty > 0$ and $||\tilde{\theta} - \theta^\star||_\infty \overset{p}{\to} 0$, D_N needs to satisfy

- $D_N = O(\log N)$ when the subpopulations do not overlap;
- $D_N = o((\log(N / \log N))^{1/3})$ when the subpopulations do overlap.

These results dovetail with results on other statistical exponential-family models for discrete and dependent random variables in single-observation scenarios. For example, Chatterjee and Diaconis [8] considered the edge-and-triangle model with $p = 2$ parameters and unbounded D_N of order $O(N)$, but concluded that the edge-and-triangle model possesses undesirable properties and did not report consistency results. Likewise, the recent results of Ghosal and Mukherjee [18] on Ising models with $p = 2$ parameters suggest that consistency results may not be obtainable unless D_N is bounded or other restrictions are imposed. By contrast,

- we allow $D_N \to \infty$ as $N \to \infty$ provided $D_N = O(\log N)$ (non-overlapping subpopulations) or $D_N = o((\log(N / \log N))^{1/3})$ (overlapping subpopulations), as discussed above;
- we allow $p \to \infty$ as $N \to \infty$ provided $p = o(N^2 / \log N)$, as discussed in Section 3.3.1;
- we cover a wide range of model specifications, beyond the pairwise interaction terms of discrete graphical models (e.g., Ising models).

Supplementary materials. We present proofs of all theoretical results along with simulation results in the supplement [38].

Acknowledgements. We acknowledge support from NSF awards DMS-1513644 and DMS-1812119 and DoD award ARO W911NF-21-1-0335.

References.

[1] Amini, A. A., Chen, A., Bickel, P. J., and Levina, E. (2013), “Pseudo-likelihood methods for community detection in large sparse networks,” *The Annals of Statistics*, 41, 2097–2122.

[2] Bhattacharya, B. B., and Mukherjee, S. (2018), “Inference in Ising models,” *Bernoulli*, 24, 493–525.
[3] Bickel, P. J., and Chen, A. (2009), “A nonparametric view of network models and Newman-Girvan and other modularities,” in Proceedings of the National Academy of Sciences, Vol. 106, pp. 21068–21073.

[4] Bollobás, B., Riordan, O., Spencer, J., and Tusnády, G. (2001), “The degree sequence of a scale-free random graph process,” Random Structures & Algorithms, 18, 279–290.

[5] Brown, L. (1986), Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory, Hayworth, CA, USA: Institute of Mathematical Statistics.

[6] Caron, F., and Fox, E. B. (2017), “Sparse graphs using exchangeable random measures,” Journal of the Royal Statistical Society, Series B (with discussion), 79, 1–44.

[7] Chatterjee, S. (2007), “Estimation in spin glasses: A first step,” The Annals of Statistics, 35, 1931–1946.

[8] Chatterjee, S., and Diaconis, P. (2013), “Estimating and understanding exponential random graph models,” The Annals of Statistics, 41, 2428–2461.

[9] Chatterjee, S., Diaconis, P., and Sly, A. (2011), “Random graphs with a given degree sequence,” The Annals of Applied Probability, 21, 1400–1435.

[10] Chazottes, J. R., Collet, P., Külske, C., and Redig, F. (2007), “Concentration inequalities for random fields via coupling,” Probability Theory and Related Fields, 137, 201–225.

[11] Chen, M., Kato, K., and Leng, C. (2021), “Analysis of networks via the sparse β-model,” Journal of the Royal Statistical Society, Series B (Statistical Methodology), 83, 887–910.

[12] Comets, F. (1992), “On consistency of a class of estimators for exponential families of Markov random fields on the lattice,” The Annals of Statistics, 20, 455–468.

[13] Crane, H., and Dempsey, W. (2018), “Edge exchangeable models for interaction networks,” Journal of the American Statistical Association, 113, 1311–1326.

[14] Dawid, A. P. (1979), “Conditional independence in statistical theory,” Journal of the Royal Statistical Society, Series B, 41, 1–31.

[15] Frank, O., and Strauss, D. (1986), “Markov graphs,” Journal of the American Statistical Association, 81, 832–842.

[16] Furi, M., and Martelli, M. (1991), “On the mean value theorem, inequality, and inclusion,” The American Mathematical Monthly, 98, 840–846.

[17] Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. (2018), “Community detection in degree-corrected block models,” The Annals of Statistics, 46, 2153–2185.

[18] Ghosal, P., and Mukherjee, S. (2020), “Joint estimation of parameters in Ising model,” The Annals of Statistics, 48, 785–810.

[19] Handcock, M. S. (2003), “Statistical Models for Social Networks: Inference and Degeneracy,” in Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers, eds. Breiger, R., Carley, K., and Pattison, P., Washington, D.C.: National Academies Press, pp. 1–12.

[20] Harville, D. A. (1997), Matrix algebra from a statistician’s perspective, New York: Springer.

[21] Hillar, C. J., and Wibisono, A. (2015), “A Hadamard-type lower bound for symmetric diagonally dominant positive matrices,” Linear Algebra and its Applications, 472, 135–141.

[22] Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002), “Latent space approaches to social network analysis,” Journal of the American Statistical Association, 97, 1090–1098.

[23] Holland, P. W., and Leinhardt, S. (1981), “An exponential family of probability distributions for directed graphs,” Journal of the American Statistical Association,
76, 33–65.

[24] Karwa, V., and Slavković, A. B. (2016), “Inference using noisy degrees: Differentially private β-model and synthetic graphs,” The Annals of Statistics, 44, 87–112.

[25] Lauritzen, S., Rinaldo, A., and Sadeghi, K. (2018), “Random networks, graphical models and exchangeability,” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80, 481–508.

[26] Lehmann, E. L., and Romano, J. P. (2005), Testing Statistical Hypotheses, New York: Springer-Verlag, 3rd ed.

[27] Lindvall, T. (2002), Lectures On The Coupling Method, Courier Corporation.

[28] Mukherjee, R., Mukherjee, S., and Sen, S. (2018), “Detection thresholds for the β-model on sparse graphs,” The Annals of Statistics, 46, 1288–1317.

[29] Mukherjee, S. (2020), “Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics,” Bernoulli, 26, 1016–1043.

[30] Portnoy, S. (1988), “Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity,” The Annals of Statistics, 16, 356–366.

[31] Ravikumar, P., Wainwright, M. J., and Lafferty, J. (2010), “High-dimensional Ising model selection using ℓ₁-regularized logistic regression,” The Annals of Statistics, 38, 1287–1319.

[32] Rinaldo, A., Fienberg, S. E., and Zhou, Y. (2009), “On the geometry of discrete exponential families with application to exponential random graph models,” Electronic Journal of Statistics, 3, 446–484.

[33] Rinaldo, A., Petrović, S., and Fienberg, S. E. (2013), “Maximum likelihood estimation in the β-model,” The Annals of Statistics, 41, 1085–1110.

[34] Rohé, K., Chatterjee, S., and Yu, B. (2011), “Spectral clustering and the high-dimensional stochastic block model,” The Annals of Statistics, 39, 1878–1915.

[35] Schweinberger, M. (2011), “Instability, sensitivity, and degeneracy of discrete exponential families,” Journal of the American Statistical Association, 106, 1361–1370.

[36] Schweinberger, M., Krivitsky, P. N., Butts, C. T., and Stewart, J. R. (2020), “Exponential-family models of random graphs: Inference in finite, super, and infinite population scenarios,” Statistical Science, 35, 627–662.

[37] Schweinberger, M., and Stewart, J. R. (2020), “Concentration and consistency results for canonical and curved exponential-family models of random graphs,” The Annals of Statistics, 48, 374–396.

[38] Stewart, J. R., and Schweinberger, M. (2023), “Supplement to: Pseudo-likelihood-based M-estimators for random graphs with dependent edges and parameter vectors of increasing dimension,” Department of Statistics, Florida State University.

[39] van den Berg, J., and Maes, C. (1994), “Disagreement percolation in the study of Markov fields,” The Annals of Probability, 22, 749–763.

[40] Watts, D. J. (2003), Six Degrees. The Science of a Connected Age, Norton.

[41] Yan, T., Leng, C., and Zhu, J. (2016), “Asymptotics in directed exponential random graph models with an increasing bi-degree sequence,” The Annals of Statistics, 44, 31–57.

[42] Yan, T., and Xu, J. (2013), “A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices,” Biometrika, 100, 519–524.
Supplement to:
Pseudo-likelihood-based M-estimation of random graphs with dependent edges and parameter vectors of increasing dimension

BY JONATHAN R. STEWART AND MICHAEL SCHWEINBERGER

Florida State University and Penn State University

Appendix A: Auxiliary results for Theorem 1 ... 1
Appendix B: Proof of Theorem 2 ... 2
 Appendix B.1: Auxiliary results for Theorem 2 5
Appendix C: Proofs of Corollaries 1–3 ... 18
 Appendix C.1: Bounding $\Lambda_N(\theta^*)$.. 22
 Appendix C.2: Bounding $|||D_N(\theta^*)|||_2$... 51
Appendix D: Proof of Proposition 1 ... 81
Appendix E: Simulation results ... 83

In Appendices A, B, C.2.3 and C.2.4, we adopt the notation used in Section 3 of the manuscript, by denoting the number of edge variables by $M := \binom{N}{2}$ and edge variables by X_1, \ldots, X_M. In addition, we denote the data-generating parameter vector by $\theta^* \in \Theta = \mathbb{R}^p$ and the data-generating probability measure and expectation by $\mathbb{P} \equiv \mathbb{P}_{\theta^*}$ and $E \equiv E_{\theta^*}$, respectively. Throughout, we assume that $\min_{1 \leq k \leq K} |A_k| \geq 3$.

APPENDIX A: AUXILIARY RESULTS FOR THEOREM 1

A proof of Theorem 1 can be found in Section 3.2 of the manuscript. Here, we state and prove Lemma 1, which is used in the proof of Theorem 1.

Lemma 1. Under the assumptions of Theorem 1, for all $t > 0$,

$$
\mathbb{P}(s(X) \in B_{\infty}(\mu(\theta^*), t)) \geq 1 - 2 \exp\left(-\frac{2t^2}{\|D_N(\theta^*)\|_2^2 \Psi_N^2} + \log p\right),
$$

where $\|D_N(\theta^*)\|_2 \geq 1$ and $\Psi_N > 0$ provided N is large enough.

Proof of Lemma 1. By Theorem 1 of Chazottes et al. [10, p. 207],

$$
\mathbb{P}(|s_i(X) - E s_i(X)| \geq t) \leq 2 \exp\left(-\frac{2t^2}{\|D_N(\theta^*)\|_2^2 \|\Xi_i\|_2^2}\right), \ i = 1, \ldots, p.
$$
A union bound over the p coordinates of $s(X)$ shows that
\[
P\left(\|s(X) - \mathbb{E}s(X)\|_\infty \geq t\right) \leq 2 \exp\left(-\frac{2 t^2}{\|D_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right),
\]
where $\Psi_N := \max_{1 \leq i \leq p} \|\Xi_i\|_2$. As a result, we obtain
\[
P\left(s(X) \in B_\infty(\mu(\theta^*), t)\right) \geq 1 - 2 \exp\left(-\frac{2 t^2}{\|D_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right),
\]
using $\mu(\theta^*) := \mathbb{E}_{\theta^*} s(X)$. \(\square\)

Remark. Extensions to dependent random variables with countable and uncountable sample spaces. Theorem 1 is not restricted to random graphs with dependent edges. It covers models of dependent random variables with finite sample spaces, and can be extended to countable sample spaces: e.g., the concentration result of Chazottes et al. [10] used in Theorem 1 assumes that the sample spaces are finite—motivated by applications to Ising models—but could be extended to countable sample spaces. Uncountable sample spaces could be accommodated by replacing the concentration result of Chazottes et al. [10] by other suitable concentration results, e.g., Subgaussian concentration results. Likewise, the exponential-family properties used in Theorem 1 are neither restricted to finite nor countable sample spaces [5].

APPENDIX B: PROOF OF THEOREM 2

We prove Theorem 2 stated in Section 3.3 of the manuscript. Auxiliary results are proved in Appendix B.1.

Proof of Theorem 2. Define
\[
\mathbb{G}(\gamma_N) := \{x \in \mathbb{X} : \|g(\theta^*; x)\|_\infty \leq \gamma_N\}, \quad \gamma_N \in [0, \infty),
\]
and recall that \mathbb{H} is a subset of \mathbb{X} satisfying
\[
\mathbb{H} \subseteq \{x \in \mathbb{X} : -\nabla^2_\theta \bar{\ell}(\theta; x)\text{ is invertible for all } \theta \in B_\infty(\theta^*, \epsilon^*)\}
\]
and
\[
P(X \in \mathbb{H}) \geq 1 - \frac{2}{\max\{N, p\}^2},
\]
where $\epsilon^* \in (0, \infty)$ is a constant independent of N and p.

\[
\rho(\theta^*) := \mathbb{E}_{\theta^*} s(X).
\]
I. In the event $X \in \mathbb{G}(\gamma_N)$, the set $\tilde{\Theta}(\gamma_N)$ is non-empty. By the construction of the sets $\mathbb{G}(\gamma_N)$ and $\tilde{\Theta}(\gamma_N)$, the set $\tilde{\Theta}(\gamma_N)$ is non-empty for all $x \in \mathbb{G}(\gamma_N)$, because

$$\theta^* \in \tilde{\Theta}(\gamma_N) := \{\theta \in \Theta : \|g(\theta; x)\|_\infty \leq \gamma_N\}.$$

II. In the event $X \in \mathbb{G}(\gamma_N) \cap \mathbb{H}$, the set $\tilde{\Theta}(\gamma_N)$ satisfies $\tilde{\Theta}(\gamma_N) \subseteq \mathbb{B}_\infty(\theta^*, \sqrt{96} \Phi_N(\theta^*))$ provided $N > N_0$. Let $\epsilon = \sqrt{96} \Phi_N(\theta^*) > 0$, where

$$\Phi_N(\theta^*) := \tilde{\Lambda}_N(\theta^*) (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}},$$

recalling the definitions

$$\tilde{\Lambda}_{N,x}(\theta^*) := \sup_{\theta \in \mathbb{B}_\infty(\theta^*, \epsilon^*)} \|(-\nabla^2_\theta \tilde{\ell}(\theta; x))^{-1}\|_\infty \text{ for all } x \in \mathbb{H}$$

$$\tilde{\Lambda}_N(\theta^*) := \max_{x \in \mathbb{H}} \tilde{\Lambda}_{N,x}(\theta^*).$$

By assumption, $\Phi_N(\theta^*) \to 0$ as $N \to \infty$, which implies that there exists a constant $N_0 \geq 3$, independent of N and p, such that

$$\epsilon = \sqrt{96} \Phi_N(\theta^*) < \epsilon^* \text{ for all } N > N_0.$$

By the definition of \mathbb{H}, the matrix $-\nabla^2_\theta \tilde{\ell}(\theta; x)$ is invertible for all $x \in \mathbb{H}$. By Lemma 2, $\tilde{\ell}(\cdot; x)$ is strictly concave on Θ for any given $x \in \mathbb{H}$, which implies that $g(\theta; x) = -\nabla_\theta \tilde{\ell}(\theta; x)$, considered as a function of $\theta \in \Theta$ for fixed $x \in \mathbb{G}(\gamma_N) \cap \mathbb{H}$, is a homeomorphism. Since the inverse $g^{-1}(\cdot; x)$ of $g(\cdot; x)$ exists and is continuous on Θ, there exists, for each $x \in \mathbb{H}$, a real number $\delta_x(\epsilon) \in (0, \infty)$ such that

$$|g(\theta; x) - g(\theta^*; x)|_\infty \leq \delta_x(\epsilon) \text{ implies } |\theta - \theta^*|_\infty \leq \epsilon. \quad (B.1)$$

We can therefore invoke the main argument of Theorem 1 in the manuscript to conclude that $\delta_x(\epsilon)$ is related to ϵ by the following inequality:

$$\frac{\epsilon}{\tilde{\Lambda}_{N,x}(\theta^*)} \leq \delta_x(\epsilon). \quad (B.2)$$

To leverage (B.2), note that, for all $\theta \in \tilde{\Theta}(\gamma_N)$ and all $x \in \mathbb{G}(\gamma_N) \cap \mathbb{H}$,

$$\|g(\theta; x) - g(\theta^*; x)\|_\infty \leq \|g(\theta; x)\|_\infty + \|g(\theta^*; x)\|_\infty \leq \sqrt{\gamma_N} + \sqrt{\gamma_N} \leq \frac{\sqrt{\gamma_N}}{\sqrt{\gamma_N}} = \frac{\epsilon}{\tilde{\Lambda}_N(\theta^*)}, \quad (B.3)$$

by virtue of $\theta \in \tilde{\Theta}(\gamma_N)$, $x \in \mathbb{G}(\gamma_N)$.
because $\epsilon = \sqrt{96} \, \Phi_N(\theta^*) > 0$ and γ_N is assumed to be of the form

$$\gamma_N = \frac{\epsilon}{2 \, \Lambda_N(\theta^*)},$$

$$= \sqrt{24} \, (1 + D_N) \, \|D_N(\theta^*)\|_2 \, \Psi_N \, \sqrt{\log \max\{N, p\}}.$$

So, by the definition of $\Lambda_N(x(\theta^*)) > 0$ and $\Lambda_N(x(\theta^*)) := \max_{x \in \mathbb{H}} \Lambda_N(x(\theta^*)) > 0$,

(B.4) \[\|g(\theta; x) - g(\theta^*; x)\|_\infty \leq \frac{\epsilon}{\Lambda_N(\theta^*)} \leq \frac{\epsilon}{\Lambda_N,x(\theta^*)} \]

and, according to (B.2),

(B.5) \[\|g(\theta; x) - g(\theta^*; x)\|_\infty \leq \frac{\epsilon}{\Lambda_N(\theta^*)} \leq \delta_x(\epsilon). \]

Since \[|g(\theta; x) - g(\theta^*; x)|_\infty \leq \delta_x(\epsilon) \] implies $|\theta - \theta^*|_\infty \leq \epsilon$ and \[\epsilon = \sqrt{96} \, \Phi_N(\theta^*) < \epsilon^* \] for all $N > N_0$,

the random set $\tilde{\Theta}(\gamma_N)$ is non-empty and satisfies

(B.6) \[\tilde{\Theta}(\gamma_N) \subseteq B_\infty(\theta^*, \sqrt{96} \, \Phi_N(\theta^*)) \subset B_\infty(\theta^*, \epsilon^*) \] for all $N > N_0$

in the event $X \in G(\gamma_N) \cap \mathbb{H}$.

III. The event $X \in G(\gamma_N) \cap \mathbb{H}$ occurs with probability at least 1 – 4 / max{N, p}^2 **provided** $N > N_0$. **A union bound shows that**

(B.7) \[P(X \in G(\gamma_N) \cap \mathbb{H}) \geq 1 - P(X \in \mathbb{X} \setminus G(\gamma_N)) - P(X \in \mathbb{X} \setminus \mathbb{H}). \]

The first probability on the right-hand side of (B.7) can be bounded above by invoking Lemma 3 along with

$$\epsilon = \sqrt{96} \, \Phi_N(\theta^*) > 0,$$
which leads to the following upper bound:

\[
\mathbb{P}(X \in X \setminus G(\gamma_N)) \leq \mathbb{P}\left(\|g(\theta^*; X)\|_\infty \geq \frac{\epsilon}{2 \Lambda_N(\theta^*)}\right)
\]

\[
= \mathbb{P}\left(\|g(\theta^*; X) - \mathbb{E}g(\theta^*; X)\|_\infty \geq \frac{\epsilon}{2 \Lambda_N(\theta^*)}\right)
\]

\[
\leq 2 \exp\left(-\frac{\epsilon^2}{32 \Lambda_N(\theta^*)^2 (1 + D_N)^2 \|D_N(\theta^*)\|_2^2 \Psi_N^2} + \log p\right)
\]

\[
= \frac{2}{\max\{N, p\}^2},
\]

using the fact that \(\mathbb{E}g(\theta^*; X) = 0\) by Lemma 4. The second probability on the right-hand side of (B.7) is bounded above by assumption (3.27):

\[
\mathbb{P}(X \in X \setminus H) \leq \frac{2}{\max\{N, p\}^2}.
\]

IV. Conclusion. Combining (B.6) with (B.8) and (B.9) establishes that, for all \(N > N_0\), the random set \(\Theta(\gamma_N)\) is non-empty and satisfies

\[
\Theta(\gamma_N) \subseteq B_{\infty}(\theta^*, \sqrt{96 \bar{\Phi}_N(\theta^*)}) \subset B_{\infty}(\theta^*, \epsilon^*)
\]

with probability at least \(1 - 4 / \max\{N, p\}^2\), provided

\[
\gamma_N = \sqrt{24} (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}} > 0. \quad \Box
\]

B.1. Auxiliary results for Theorem 2.

Lemma 2. \(\overline{\ell}(\cdot; x)\) is strictly concave on \(\Theta\) provided \(x \in \mathbb{H}\), where

\[
\mathbb{H} \subseteq \left\{ x \in \mathbb{X} : -\nabla_\theta^2 \overline{\ell}(\theta; x) \text{ is invertible for all } \theta \in B_{\infty}(\theta^*, \epsilon^*) \right\}.
\]

Proof of Lemma 2. The pseudo-loglikelihood function \(\overline{\ell}(\cdot; x)\) is a sum of loglikelihoods based on conditional Bernoulli distributions, each of which is concave on \(\Theta\) [5, Lemma 5.3, p. 146]. As a result, \(\overline{\ell}(\cdot; x)\) is concave on \(\Theta\). We first establish strict concavity of \(\overline{\ell}(\cdot; x)\) on \(B_{\infty}(\theta^*, \epsilon^*)\) and then extend the result from \(B_{\infty}(\theta^*, \epsilon^*)\) to \(\Theta\). All of the following results focus
on the subset $\mathbb{H} \subseteq \mathbb{X}$. By construction of \mathbb{H}, $-\nabla^2_\theta \bar{\ell}(\theta; x)$ is invertible for all $(\theta, x) \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \times \mathbb{H}$.

Characterizing the strict concavity of $\bar{\ell}(\theta; x)$ provided $x \in \mathbb{H}$. Observe that

$$\bar{\ell}(\theta; x) = \sum_{i=1}^{M} (\langle \theta, s(x_i, x_{-i}) \rangle - \psi_i(\theta; x_{-i})), \quad \text{where}$$

$$(B.10) \quad \psi_i(\theta; x_{-i}) = \log \sum_{x_i=0}^{1} \exp (\langle \theta, s(x_i, x_{-i}) \rangle), \quad i \in \{1, \ldots, M\}.$$

We establish strict concavity of $\bar{\ell}(\cdot; x)$ by demonstrating that at least one of the $\psi_i(\cdot; x_{-i})$ is strictly convex on Θ. Hölder’s inequality shows that, for any $x_{-i} \in \{0,1\}^{M-1}$, the function $\psi_i(\theta; x_{-i})$ is a convex function of $\theta \in \Theta$, implying that

$$\psi_i(\lambda \theta_1 + (1-\lambda) \theta_2; x_{-i}) \leq \lambda \psi_i(\theta_1; x_{-i}) + (1-\lambda) \psi_i(\theta_2; x_{-i}) \quad \text{for all } \lambda \in (0,1) \text{ and } (\theta_1, \theta_2) \in \Theta \times \Theta.$$

where $\psi_i(\lambda \theta_1 + (1-\lambda) \theta_2; x_{-i}) \leq \lambda \psi_i(\theta_1; x_{-i}) + (1-\lambda) \psi_i(\theta_2; x_{-i}),$

where $\lambda \in (0,1)$ and $(\theta_1, \theta_2) \in \Theta \times \Theta$. The inequality (B.11) is an equality if and only if

$$(B.12) \quad \exp (\langle \theta_1, s(x_i, x_{-i}) \rangle) \propto \exp (\langle \theta_2, s(x_i, x_{-i}) \rangle) \quad \text{for all } x_i \in \{0, 1\}.$$

Upon taking the natural logarithm on both sides, condition (B.12) can be written as follows:

$$(B.13) \quad \langle \theta_1 - \theta_2, s(x_i, x_{-i}) \rangle = \log C \quad \text{for all } x_i \in \{0, 1\},$$

where $C > 0$ is a constant. For $\bar{\ell}(\cdot; x)$ to be concave—but not strictly concave—condition (B.13) must be satisfied for all $i \in \{1, \ldots, M\}$. By construction of \mathbb{H}, the negative Hessian $-\nabla^2_\theta \bar{\ell}(\theta; x)$ is invertible for all $(\theta, x) \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \times \mathbb{H}$, implying that $\bar{\ell}(\cdot; x)$ is strictly concave on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ by virtue of the concavity of $\bar{\ell}(\cdot; x)$ on Θ, discussed above. As a result, there exists an integer $i \in \{1, \ldots, M\}$ such that condition (B.13) is not satisfied for each $x \in \mathbb{H}$. We leverage the above characterization to extend the strict concavity of $\bar{\ell}(\cdot; x)$ on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ to Θ.

Extending the strict concavity of $\bar{\ell}(\theta; x)$ on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ to Θ provided $x \in \mathbb{H}$. We extend the above result from $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ to Θ by using a proof by contradiction. Consider any parameter vector $\theta \in \Theta \setminus \mathcal{B}_\infty(\theta^*, \epsilon^*)$.

Since Θ and $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ are convex sets [5, Theorem 5.8, p. 154], there exists a real number $\lambda \in (0, 1)$ and a parameter vector $\hat{\theta} \in \mathcal{B}_\infty(\theta^*, \epsilon^*)$ such that

$$\hat{\theta} = \lambda \theta + (1 - \lambda) \theta^* \in \mathcal{B}_\infty(\theta^*, \epsilon^*).$$

Therefore, θ can be represented as

$$\theta = \frac{\hat{\theta}}{\lambda} - \frac{1 - \lambda}{\lambda} \theta^* \in \Theta \setminus \mathcal{B}_\infty(\theta^*, \epsilon^*).$$

Next, consider any pair of parameter vectors $(\theta_1, \theta_2) \in \Theta \times (\Theta \setminus \mathcal{B}_\infty(\theta^*, \epsilon^*))$ and observe that both θ_1 and θ_2 can be represented in the form (B.14), and that the same λ can be used to represent them (by choosing λ small enough).

In other words, there exists a real number $\lambda \in (0, 1)$ and a pair of parameter vectors $(\dot{\theta}_1, \dot{\theta}_2) \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \times \mathcal{B}_\infty(\theta^*, \epsilon^*)$ such that

$$\dot{\theta}_1 = \lambda \theta_1 + (1 - \lambda) \theta^* \in \mathcal{B}_\infty(\theta^*, \epsilon^*)$$
$$\dot{\theta}_2 = \lambda \theta_2 + (1 - \lambda) \theta^* \in \mathcal{B}_\infty(\theta^*, \epsilon^*),$$

so θ_1 and θ_2 can be represented as

$$\theta_1 = \frac{\dot{\theta}_1}{\lambda} - \frac{1 - \lambda}{\lambda} \theta^* \in \Theta$$
$$\theta_2 = \frac{\dot{\theta}_2}{\lambda} - \frac{1 - \lambda}{\lambda} \theta^* \in \Theta \setminus \mathcal{B}_\infty(\theta^*, \epsilon^*).$$

Assume that

$$\langle \theta_1 - \theta_2, s(x_i, x_{-i}) \rangle = \log C \quad \text{for all} \quad x_i \in \{0, 1\}$$
$$\quad \text{and all} \quad i \in \{1, \ldots, M\},$$

which in turn implies that

$$\langle \dot{\theta}_1 - \dot{\theta}_2, s(x_i, x_{-i}) \rangle = \lambda \log C \quad \text{for all} \quad x_i \in \{0, 1\}$$
$$\quad \text{and all} \quad i \in \{1, \ldots, M\},$$

because

$$\theta_1 - \theta_2 = \left(\frac{\dot{\theta}_1}{\lambda} - \frac{1 - \lambda}{\lambda} \theta^*\right) - \left(\frac{\dot{\theta}_2}{\lambda} - \frac{1 - \lambda}{\lambda} \theta^*\right) = \frac{1}{\lambda} (\dot{\theta}_1 - \dot{\theta}_2).$$

The conclusion (B.17) contradicts the strict concavity of $\tilde{\ell}(\cdot; x)$ on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$, because both $\dot{\theta}_1$ and $\dot{\theta}_2$ are elements of $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ and $\lambda > 0$ is a constant.
independent of $x_i \in \{0, 1\}$. Therefore, the assumption (B.16) cannot be satisfied, hence $\bar{\ell}(\cdot; x)$ is strictly concave on Θ provided $x \in \mathbb{H}$.

\textbf{Lemma 3.} Under the assumptions of Theorem 2, for any $\theta \in \Theta$ and $t > 0$,

$$
P(\|g(\theta; X) - g(\theta)\|_\infty \geq t) \leq 2 \exp\left(\frac{t^2}{8(1 + D_N)^2 \|D_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right),$$

where $g(\theta; X)$ and $g(\theta)$ are defined by

$$
g(\theta; X) := \nabla_\theta \bar{\ell}(\theta; X)
g(\theta) := E \nabla_\theta \bar{\ell}(\theta; X),$$

while $D_N \geq 0$, $\|D_N(\theta^*)\|_2 \geq 1$, and $\Psi_N > 0$ provided N is large enough.

\textbf{Proof of Lemma 3.} We prove Lemma 3 by leveraging concentration results of Chazottes et al. [10] along with conditional independence properties of models with factorization properties of the form (2.1).

Consider any $\theta \in \Theta$ and any $x \in \mathbb{X}$. By definition,

$$
\bar{\ell}(\theta; x) := \sum_{i=1}^M \log P_\theta(X_i = x_i | X_{-i} = x_{-i}),
$$

which implies that

$$
g(\theta; x) := \nabla_\theta \bar{\ell}(\theta; x) = \sum_{i=1}^M \nabla_\theta \log P_\theta(X_i = x_i | X_{-i} = x_{-i}).
$$

Observe that

\begin{equation}
\nabla_\theta \log P_\theta(X_i = x_i | X_{-i} = x_{-i}) = s(x) - E_{\theta,x_{-i}} s(X),
\end{equation}

where $E_{\theta,x_{-i}}$ denotes the expectation with respect to the conditional probability distribution of X_i given $X_{-i} = x_{-i}$. The result in (B.18) follows from exponential-family properties [5], because the conditional distribution of X_i given $X_{-i} = x_{-i}$ is an exponential-family distribution with sufficient statistic vector $s(x)$ and natural parameter vector θ.

We are interested in events of the form

\begin{equation}
\{\|g(\theta; X) - g(\theta)\|_\infty \geq t\}, \quad t > 0, \quad \theta \in \Theta.
\end{equation}
To bound the probabilities of events of the form (B.19), we leverage concentration results of Chazottes et al. [10]. Theorem 1 of Chazottes et al. [10] states that, for each \(k \in \{1, \ldots, p\} \) and \(t > 0 \),

\[
\mathbb{P}(|g_k(\theta, X) - \mathbb{E} g_k(\theta, X)| \geq t) \leq 2 \exp\left(-\frac{2t^2}{\|\Delta_k\|^2 \|\mathcal{D}_N(\Theta^\star)\|^2}\right),
\]

where \(\mathcal{D}_N(\Theta^\star) \) is defined in Section 3.1 and \(\Delta_k \in [0, \infty)^M \) is defined by

\[
\Delta_{k,i} := \max_{\{x, x'\} \in \mathbb{X} \times \mathbb{X}: x_i = x'_i \text{ for all } l \neq i} |g_k(\theta; x) - g_k(\theta; x')|, \quad i \in \{1, \ldots, M\}.
\]

We bound the probability of event (B.19) by bounding

\[
|\Delta_k|^2 = \sum_{i=1}^M \left(\max_{\{x, x'\} \in \mathbb{X} \times \mathbb{X}: x_i = x'_i \text{ for all } l \neq i} |g_k(\theta; x) - g_k(\theta; x')|\right)^2.
\]

Consider any \(i \in \{1, \ldots, M\} \) and any \(\{x, x'\} \in \mathbb{X} \times \mathbb{X} \) such that \(x_i = 0 \) and \(x'_i = 1 \) while \(x_l = x'_l \) for all \(l \neq i \). Write

\[
g(\theta; x) - g(\theta; x') = \sum_{j=1}^M \nabla_{\theta} \lambda_j(\theta; x, x'),
\]

where

\[
\lambda_j(\theta; x, x') := \log \frac{\mathbb{P}_\theta(X_j = x_j | X_{-j} = x_{-j})}{\mathbb{P}_\theta(X_j = x'_j | X_{-j} = x'_{-j})}, \quad j \in \{1, \ldots, M\}.
\]

By definition, for any given \(j \in \{1, \ldots, M\} \), the set \(\mathfrak{M}_j \subseteq \{1, \ldots, M\} \setminus \{j\} \) is the smallest subset of indices such that

\[
\text{(B.20)} \quad X_j \perp \perp X_{\{1, \ldots, M\} \setminus \{j\} \cup \mathfrak{M}_j} | X_{\mathfrak{M}_j}.
\]

Therefore, for all \(j \in \{1, \ldots, M\} \setminus \{i\} \cup \mathfrak{M}_i \), the conditional probability mass function of \(X_j \) is unaffected by \(X_i \), so (B.20) implies that

\[
\mathbb{P}_\theta(X_j = x_j | X_{-j} = x_{-j}) = \mathbb{P}_\theta(X_j = x'_j | X_{-j} = x'_{-j}),
\]

which in turn implies, for all \(j \in \{1, \ldots, M\} \setminus \{i\} \cup \mathfrak{M}_i \), that

\[
\lambda_j(\theta; x, x') := \log \frac{\mathbb{P}_\theta(X_j = x_j | X_{-j} = x_{-j})}{\mathbb{P}_\theta(X_j = x'_j | X_{-j} = x'_{-j})} = 0,
\]
noting that $x_l = x'_l$ for all $l \neq i$. As a result,

$$g(\theta; x) - g(\theta; x') = \sum_{j=1}^{M} \nabla_{\theta} \lambda_j(\theta; x, x') = \sum_{j \in (i) \cup g_i} \nabla_{\theta} \lambda_j(\theta; x, x').$$

The triangle inequality and (B.18) imply, for each $k \in \{1, \ldots, p\}$, that

$$|g_k(\theta; x) - g_k(\theta; x')| \leq \sum_{j \in \{i\} \cup g_i} \left(|s_k(x) - s_k(x')| + |\mathbb{E}_{\theta, x_{-j}} s_k(X) - \mathbb{E}_{\theta, x'_{-j}} s_k(X)| \right).$$

We bound the terms of the above sum one by one.

Bounding $|s_k(x) - s_k(x')|$. Consider any $i \in \{1, \ldots, M\}$ and any $(x, x') \in \mathbb{X} \times \mathbb{X}$ such that $x_i = 0$ and $x'_i = 1$ while $x_l = x'_l$ for all $l \neq i$.

By definition,

$$\Xi_{k,i} := \max_{(x, x') \in \mathbb{X} \times \mathbb{X}} |s_k(x) - s_k(x')|,$$

providing the following bound:

$$|s_k(x) - s_k(x')| \leq \Xi_{k,i},$$

provided $(x, x') \in \mathbb{X} \times \mathbb{X}$ satisfies $x_l = x'_l$ for all $l \neq i$ with $x_i = 0$ and $x'_i = 1$.

Bounding $|\mathbb{E}_{\theta, x_{-j}} s_k(X) - \mathbb{E}_{\theta, x'_{-j}} s_k(X)|$. We take advantage of the coupling argument in Section 2.1 of Chazottes et al. [10] to bound deviations of conditional expectations.

Consider any $i \in \{1, \ldots, M\}$ and any $(x, x') \in \mathbb{X} \times \mathbb{X}$ such that $x_i = 0$ and $x'_i = 1$ while $x_l = x'_l$ for all $l \neq i$. Define

$$\mathbb{P}_{j, \theta, x_{-j}}(a) := \mathbb{P}_{\theta}(X_j = a \mid X_{-j} = x_{-j}), \quad a \in \{0, 1\}.$$

Let $(X^*, X^{**}) \in \{0, 1\}^M \times \{0, 1\}^M$ be an optimal coupling of the conditional probability mass functions $\mathbb{P}_{j, \theta, x_{-j}}$ and $\mathbb{P}_{j, \theta, x'_{-j}}$ such that

- the marginal probability mass function of X^*_j is $\mathbb{P}_{j, \theta, x_{-j}}$;
- the marginal probability mass function of X^{**}_j is $\mathbb{P}_{j, \theta, x'_{-j}}$;
- the coupling ensures the following events occur with probability 1:

 - $\{X^*_i = x_i = 0\}$,
- \{X_i^{**} = x'_i = 1\},
- \{X_i^* = X_i^{**} = x_l\} for all \(l \in \{1, \ldots, M\} \setminus \{i, j\}\).

An optimal coupling is guaranteed to exist, but it may not be unique [27, pp. 99–107]. That said, any optimal coupling will suffice. We denote the joint probability mass function of \((X^*, X^{**})\) by \(T_{j, \theta, x_{-j}, x'_{-j}}\).

An important property of the optimal coupling \(T_{j, \theta, x_{-j}, x'_{-j}}\) is that, for all \(j \in \{1, \ldots, M\} \setminus (\{i\} \cup \mathcal{M}_j)\),

\[
T_{j, \theta, x_{-j}, x'_{-j}}(X_j^* \neq X_j^{**}) = \|P_{j, \theta, x_{-j}} - P_{j, \theta, x'_{-j}}\|_{TV} = 0,
\]

because

- \(T_{j, \theta, x_{-j}, x'_{-j}}(X_j^* \neq X_j^{**}) = \|P_{j, \theta, x_{-j}} - P_{j, \theta, x'_{-j}}\|_{TV},\) by virtue of \(T_{j, \theta, x_{-j}, x'_{-j}}\) being an optimal coupling of \(P_{j, \theta, x_{-j}}\) and \(P_{j, \theta, x'_{-j}}\);

- the conditional independence of \(X_i\) and \(X_j\) implies \(P_{j, \theta, x_{-j}} = P_{j, \theta, x'_{-j}}\) for all \((x, x') \in \mathbb{X} \times \mathbb{X}\) such that \(x_l = x'_l\) for all \(l \neq i\), further implying that \(\|P_{j, \theta, x_{-j}} - P_{j, \theta, x'_{-j}}\|_{TV} = 0\).

By construction of the coupling \(T_{j, \theta, x_{-j}, x'_{-j}}\), we can write

\[
E_{\theta, x_{-j}} s_k(X) - E_{\theta, x'_{-j}} s_k(X) = E_{T_{j, \theta, x_{-j}, x'_{-j}}} s_k(X^*) - E_{T_{j, \theta, x_{-j}, x'_{-j}}} s_k(X^{**}) = E_{T_{j, \theta, x_{-j}, x'_{-j}}} (s_k(X^*) - s_k(X^{**})),
\]

where \(E_{T_{j, \theta, x_{-j}, x'_{-j}}}\) is the expectation operator under the coupling probability distribution \(T_{j, \theta, x_{-j}, x'_{-j}}\) of \((X^*, X^{**})\). Taking advantage of the telescoping identity on page 205 and the bounding argument on page 206 of Chazottes et al. [10] gives rise to the bound

\[
\left|E_{\theta, x_{-j}} s_k(X) - E_{\theta, x'_{-j}} s_k(X)\right| = \left|E_{T_{j, \theta, x_{-j}, x'_{-j}}} (s_k(X^*) - s_k(X^{**}))\right| \leq \sum_{l=1}^M \Xi_{k, l} \, T_{j, \theta, x_{-j}, x'_{-j}}(X_l^* \neq X_l^{**}).
\]
The construction of the coupling $T_{j, \theta, x_{-j}, x'_{-j}}$ implies that

$$
\left| \mathbb{E}_{\theta, x_{-j}} s_k(X) - \mathbb{E}_{\theta, x'_{-j}} s_k(X) \right| \leq \sum_{l=1}^{M} \Xi_{k,l} T_{j, \theta, x_{-j}, x'_{-j}} (X^*_l \neq X'^*_l)
$$

$$
\begin{cases}
\Xi_{k,i} & \text{if } i = j \\
\Xi_{k,i} + \Xi_{k,j} & \text{if } i \neq j \text{ and } j \in \mathcal{M}_i \\
0 & \text{if } i \neq j \text{ and } j \notin \mathcal{M}_i.
\end{cases}
$$

Collecting terms. Upon collecting terms, we obtain the bounds

$$
|g_k(\theta; x) - g_k(\theta; x')|
$$

$$
\leq \sum_{j \in \{i\} \cup \mathcal{M}_i} \left(|s_k(x) - s_k(x')| + \left| \mathbb{E}_{\theta, x_{-j}} s_k(X) - \mathbb{E}_{\theta, x'_{-j}} s_k(X) \right| \right)
$$

$$
\leq 2 \Xi_{k,i} + \sum_{j \in \mathcal{M}_i} (\Xi_{k,i} + (\Xi_{k,i} + \Xi_{k,j}))
$$

$$
\leq 2 \left(\Xi_{k,i} + \sum_{j \in \mathcal{M}_i} (\Xi_{k,i} + \Xi_{k,j}) \right)
$$

and

$$
\max_{(x, x') \in \mathcal{X} \times \mathcal{X}: x_l = x'_l \text{ for all } l \neq i} |g_k(\theta; x) - g_k(\theta; x')|
$$

$$
\leq 2 \left(\Xi_{k,i} + \sum_{j \in \mathcal{M}_i} (\Xi_{k,i} + \Xi_{k,j}) \right).
$$
The Cauchy–Schwarz inequality implies that

\[
\left(\max_{(x, x') \in X \times X: x_j = x'_j \text{ for all } l \neq i} |g_k(\theta; x) - g_k(\theta; x')| \right)^2
\leq 4 \left(\Xi_{k,i} + \sum_{j \in \mathcal{N}_i} (\Xi_{k,i} + \Xi_{k,j}) \right)^2
\]

\[
\leq 4 \left(1 + 2D_N \right) \left(\Xi_{k,i}^2 + \sum_{j \in \mathcal{N}_i} (\Xi_{k,i}^2 + \Xi_{k,j}^2) \right)
\]

\[
\leq 8 \left(1 + D_N \right) \left(\Xi_{k,i}^2 + \sum_{j \in \mathcal{N}_i} (\Xi_{k,i}^2 + \Xi_{k,j}^2) \right)
\]

\[
\leq 8 \left(1 + D_N \right) \left((1 + D_N) \Xi_{k,i}^2 + \sum_{j \in \mathcal{N}_i} \Xi_{k,j}^2 \right),
\]

using \(D_N := \max\{|\mathcal{N}_1|, \ldots, |\mathcal{N}_M|\} \). We hence obtain

\[
|\Delta_k|^2_2 := \sum_{i=1}^{M} \left(\max_{(x, x') \in X \times X: x_j = x'_j \text{ for all } l \neq i} |g_k(\theta; x) - g_k(\theta; x')| \right)^2
\leq \sum_{i=1}^{M} 8 \left(1 + D_N \right) \left((1 + D_N) \Xi_{k,i}^2 + \sum_{j \in \mathcal{N}_i} \Xi_{k,j}^2 \right)
\]

\[
= 8 (1 + D_N)^2 |\Xi_k|^2_2 + 8 (1 + D_N) \sum_{j=1}^{M} \Xi_{k,j}^2 \sum_{i=1}^{M} 1 (j \in \mathcal{N}_i).
\]

To bound the second term on the right-hand side, note that edge variable \(X_j \) can be in the dependence neighborhoods \(\mathcal{N}_i \) \((i = 1, \ldots, M)\) of at most \(D_N := \max\{|\mathcal{N}_1|, \ldots, |\mathcal{N}_M|\} \) other edge variables \(X_i \), which implies that

\[
8 (1 + D_N) \sum_{j=1}^{M} \Xi_{k,j}^2 \sum_{i=1}^{M} 1 (j \in \mathcal{N}_i) \leq 8 (1 + D_N) \sum_{j=1}^{M} \Xi_{k,j}^2 D_N
\]

\[
\leq 8 (1 + D_N)^2 |\Xi_k|^2_2.
\]
We hence arrive at the following bound on $\|\Delta_k\|_2^2$:

$$\|\Delta_k\|_2^2 \leq 8 (1 + D_N)^2 \|\Xi_k\|_2^2 + 8 (1 + D_N) \sum_{j=1}^M \Xi_{k,j}^2 \sum_{i=1}^M 1 (j \in \mathcal{R}_i)$$

$$\leq 16 (1 + D_N)^2 \|\Xi_k\|_2^2$$

$$\leq 16 (1 + D_N)^2 \Psi_N^2,$$

where $\Psi_N := \max_{1 \leq k \leq p} \|\Xi_k\|_2$.

Concentration result. By applying Theorem 1 of Chazottes et al. [10] to each coordinate $g_k(\theta; X) - g_k(\theta)$ of $g(\theta; X) - g(\theta)$ ($k = 1, \ldots, p$) using the above bound on $\|\Delta_k\|_2$, we have, for all $t > 0$,

$$P(\|g_k(\theta; X) - g_k(\theta)\| \geq t) \leq 2 \exp\left(-\frac{2 t^2}{16 (1 + D_N)^2 \|\mathcal{D}_N(\theta^*)\|_2^2 \Psi_N^2}\right),$$

where $D_N \geq 0$, $\|\mathcal{D}_N(\theta^*)\|_2 \geq 1$, and $\Psi_N > 0$ provided N is large enough.

A union bound over the p coordinates $g_k(\theta; X) - g_k(\theta)$ of $g(\theta; X) - g(\theta)$ gives rise to the bound

$$P(\|g(\theta; X) - g(\theta)\|_\infty \geq t) \leq 2 \exp\left(-\frac{t^2}{8 (1 + D_N)^2 \|\mathcal{D}_N(\theta^*)\|_2^2 \Psi_N^2 + \log p}\right).$$

Lemma 4. The function $\mathbb{E} \tilde{\ell}(\theta; X)$ is a strictly concave function on the convex set $\mathcal{Y} = \mathbb{R}^p$. In addition, the data-generating parameter vector $\theta^* \in \Theta$ maximizes the expected loglikelihood and pseudo-loglikelihood functions:

$$\theta^* = \arg\max_{\theta \in \Theta} \mathbb{E} \ell(\theta; X) = \arg\max_{\theta \in \Theta} \mathbb{E} \tilde{\ell}(\theta; X).$$

Proof of Lemma 4. Section 2 of the manuscript shows that the family of densities $\{f_\theta, \theta \in \Theta\}$ parameterized by (2.1) and (2.2) is an exponential family of densities. We take advantage of the properties of exponential families [5] to prove Lemma 4, and divide the proof into three parts:

I. $\mathbb{E} \tilde{\ell}(\theta; X)$ is a strictly concave function on the convex set Θ.
II. θ^* is the unique maximizer of $\mathbb{E} \ell(\theta; X)$.

III. θ^* is the unique maximizer of $\mathbb{E} \tilde{\ell}(\theta; X)$.

I. $\mathbb{E} \tilde{\ell}(\theta; X)$ is a strictly concave function on the convex set Θ. Let x be an observation of a random graph X with dependent edges. Then, by definition,

$$\tilde{\ell}(\theta; x) = \sum_{i=1}^{M} \tilde{\ell}_i(\theta; x),$$

where

$$\tilde{\ell}_i(\theta; x) = \langle \theta, s(x) \rangle - \psi_i(\theta; x_{-i})$$

and

$$\psi_i(\theta; x_{-i}) = \log \sum_{x_i=0}^{1} \exp [\langle \theta, s(x_{-i}, x_i) \rangle].$$

The set Θ is a convex set [5, Theorem 1.13, p. 19]. We first show that $\mathbb{E} \tilde{\ell}(\theta; X) = \sum_{i=1}^{M} \mathbb{E} \tilde{\ell}_i(\theta; X)$ is a concave function on the convex set Θ by proving that the functions $\mathbb{E} \tilde{\ell}_i(\theta; X)$ are concave on Θ. Observe that the functions $\mathbb{E} \tilde{\ell}_i(\theta; X)$ are concave provided the functions $\tilde{\ell}_i(\theta; x)$ are concave for all $x \in X$. To show that the functions $\tilde{\ell}_i(\theta; x)$ are concave for all $x \in X$, consider any $i \in \{1, \ldots, M\}$, any $x_i \in \{0, 1\}$, and any $x_{-i} \in \{0, 1\}^{M-1}$. Each $\tilde{\ell}_i(\theta; x)$ consists of two terms. The first term, $\langle \theta, s(x) \rangle$, is a linear function of θ, so $\tilde{\ell}_i(\theta; x)$ is a concave function of θ if the second term, $\psi_i(\theta; x_{-i})$, is a convex function of θ. Consider any $(\theta^{(1)}, \theta^{(2)}) \in \Theta \times \Theta$ and any $\lambda \in (0, 1)$. Then, by Hölder’s inequality,

$$\psi_i (\lambda \theta^{(1)} + (1 - \lambda) \theta^{(2); x_{-i}}) \leq \lambda \psi_i (\theta^{(1); x_{-i}}) + (1 - \lambda) \psi_i (\theta^{(2); x_{-i}}).$$

As a consequence, for any $x_{-i} \in \{0, 1\}^{M-1}$, $\psi_i(\theta; x_{-i})$ is a convex function on Θ. Hence, for all $x \in X$, $\tilde{\ell}(\theta; x)$ is a concave function on Θ, and so is $\mathbb{E} \tilde{\ell}(\theta; X)$ as a finite sum of concave functions on Θ.

Second, we prove by contradiction that

$$\mathbb{E} \tilde{\ell}(\theta; X) = \sum_{i=1}^{M} [\langle \theta, \mathbb{E} s(X) \rangle - \mathbb{E} \psi_i(\theta; X_{-i})]$$

is a strictly concave function on Θ. As discussed above, the first term $\langle \theta, \mathbb{E} s(X) \rangle$ is concave in θ. Therefore, the strict concavity of $\mathbb{E} \tilde{\ell}(\theta; X)$ is determined by the terms $\mathbb{E} \psi_i(\theta; X_{-i}) (i \in \{1, \ldots, M\})$. Suppose that there does not exist any $i^* \in \{1, \ldots, M\}$ such that $\mathbb{E} \psi_{i^*}(\theta; X_{-i^*})$ is strictly
convex on Θ. Then, there exists $(\theta^{(1)}, \theta^{(2)}) \in \Theta \times \Theta$ such that, for all $i \in \{1, \ldots, M\}$, all $x_{-i} \in \{0, 1\}^{M-1}$, and all $x_i \in \{0, 1\}$,

$$\exp \left(\langle \theta^{(1)}, s(x_{-i}, x_i) \rangle \right) \propto \exp \left(\langle \theta^{(2)}, s(x_{-i}, x_i) \rangle \right),$$

as Hölder’s inequality reduces to an equality if and only if (B.22) holds, i.e.,

$$\psi_1 \left(\lambda \theta^{(1)} + (1 - \lambda) \theta^{(2)}; x_{-i} \right) = \lambda \psi_1 \left(\theta^{(1)}; x_{-i} \right) + (1 - \lambda) \psi_1 \left(\theta^{(2)}; x_{-i} \right)$$

if and only if (B.22) holds. In other words, for all $x \in \mathbb{X}$,

$$\exp \left(\langle \theta^{(1)}, s(x) \rangle \right) \propto \exp \left(\langle \theta^{(2)}, s(x) \rangle \right).$$

The conclusion (B.23) contradicts the assumption that the exponential family is minimal. Therefore, there exists $i^* \in \{1, \ldots, M\}$ such that $E \psi_{i^*}(\theta; X_{i^*})$ is strictly convex on Θ, which implies that $E \bar{\ell}_{i^*}(\theta; X)$ is strictly concave on Θ, and so is $E \bar{\ell}(\theta; X) = \sum_{i=1}^M E \bar{\ell}_i(\theta; X)$.

II. θ^* is the unique maximizer of $E \ell(\theta; X)$. Maximizing $E \ell(\theta; X)$ is equivalent, by Lemma 5, to solving

$$\nabla_{\theta} E \ell(\theta; X) = E s(X) - E_{\theta} s(X) = 0. \tag{B.24}$$

The unique solution of (B.24) is $\theta^* \in \Theta = \mathbb{R}^p$, because $E \equiv E_{\theta^*}$. The fact that the solution is unique follows from the fact the map $\mu : \Theta \mapsto \mathbb{M}$ defined by $\mu(\theta) := E_{\theta} s(X)$ is one-to-one [5, Theorem 3.6, p. 74]. As a result, $\theta^* \in \Theta = \mathbb{R}^p$ is the unique maximizer of $E \ell(\theta; X)$.

III. θ^* is the unique maximizer of $E \bar{\ell}(\theta; X)$. Observe that, for any $x \in \mathbb{X}$, $\bar{\ell}(\theta; x)$ is a sum of exponential-family loglikelihood functions, because the conditional distributions of edge variables X_i given $X_{-i} = x_{-i}$ ($i = 1, \ldots, M$) are exponential-family distributions with sufficient statistic vector $s(x)$ and natural parameter vector θ. As a result, $\bar{\ell}(\theta; x)$ is continuously differentiable on Θ for all $x \in \mathbb{X}$ [5], and so is $E \bar{\ell}(\theta; X)$. We then have

$$g(\theta) := E \nabla_{\theta} \bar{\ell}(\theta; X) = E \sum_{i=1}^M \left(s(X) - E_{\theta, X_{-i}} s(X) \right),$$

where $E_{\theta, X_{-i}}$ denotes the conditional expectation with respect to the conditional distribution of X_i given $X_{-i} = x_{-i}$. By the law of total expectation and the fact that $E \equiv E_{\theta^*}$, we have $E E_{\theta^*, X_{-i}} s(X) = E s(X)$, which implies

$$g(\theta^*) = E \sum_{i=1}^M \left(s(X) - E_{\theta^*, X_{-i}} s(X) \right) = 0. \tag{B.25}$$
Thus, a root of $g(\theta)$ exists, and θ^* is a root of $g(\theta)$. In addition, $\mathbb{E} \tilde{\ell}(\theta; X)$ is strictly concave on Θ, so θ^* is the unique root of $g(\theta)$. As a consequence, the maximizer of $\mathbb{E} \tilde{\ell}(\theta; X)$ as a function of $\theta \in \Theta = \mathbb{R}^p$ exists and is unique, and is given by $\theta^* \in \Theta = \mathbb{R}^p$.

\begin{lemma}
Under the assumptions of Theorem 2, \[
\nabla_\theta \mathbb{E} \tilde{\ell}(\theta; X) = \mathbb{E} \nabla_\theta \tilde{\ell}(\theta; X) \quad \text{for all} \quad \theta \in \Theta = \mathbb{R}^p.
\]
\end{lemma}

\textbf{Proof of Lemma 5.} We start with two observations. First, the exponential family introduced in Section 2.1 of the manuscript is regular in the sense of Brown \[5, \text{p. 2}\], because

$$
\Theta := \{\theta \in \mathbb{R}^p : \psi(\theta) < \infty\} = \mathbb{R}^p \quad \text{and} \quad \Theta = \mathbb{R}^p \text{ is open}.
$$

Second, for any $x \in \mathbb{X}$, $\tilde{\ell}(\theta; x)$ is a sum of exponential-family loglikelihood functions, because the conditional distribution of X_i given $X_{-i} = x_{-i}$ is an exponential-family distribution with sufficient statistic vector $s(x)$ and natural parameter vector θ. Thus, for any $x \in \mathbb{X}$, $\tilde{\ell}(\cdot; x)$ is continuously differentiable on Θ.

Consider $\tilde{\ell}(\theta; x)$ as a function of $x \in \mathbb{X}$ for fixed $\theta \in \Theta$ and define

$$
g(\theta; x) := \nabla_\theta \tilde{\ell}(\theta; x) = \sum_{i=1}^M (s(x) - \mathbb{E}_{\theta, x_{-i}} s(X)),
$$

where $\mathbb{E}_{\theta, x_{-i}}$ denotes the expectation with respect to the conditional distribution of X_i given $X_{-i} = x_{-i}$. Here, $g(\theta; x)$ is considered as a function of $x \in \mathbb{X}$ for fixed $\theta \in \Theta$. By the triangle inequality, for each $k \in \{1, \ldots, p\}$,

$$
|g_k(\theta; x)| \leq M |s_k(x)| + \sum_{i=1}^M |\mathbb{E}_{\theta, x_{-i}} s_k(X)| =: h_k(x),
$$

where the dependence of $h_k(x)$ on θ is suppressed. Since the exponential family is regular in the sense of Brown \[5, \text{p. 2}\], all moments of $s(X)$ exist \[Theorem 2.2, \text{p. 34}, 5\], implying that, for all $k \in \{1, \ldots, p\}$, $\mathbb{E}|s_k(X)| < \infty$ and $\mathbb{E}|\mathbb{E}_{\theta, x_{-i}} s_k(X)| < \infty$. As a result,

$$
\mathbb{E} h_k(X) = M \mathbb{E}|s_k(X)| + \sum_{i=1}^M \mathbb{E}|\mathbb{E}_{\theta, x_{-i}} s_k(X)| < \infty.
$$
Since $|g_k(\theta; x)| \leq h_k(x)$ for all $x \in \mathbb{R}$ and all $\theta \in \Theta$ and $\mathbb{E} h_k(X) < \infty$, Lebesgue’s dominated convergence theorem implies that

$$\nabla_\theta \mathbb{E} \bar{\ell}(\theta; X) = \mathbb{E} \nabla_\theta \bar{\ell}(\theta; X) \text{ for all } \theta \in \Theta = \mathbb{R}^p.$$

\hfill \Box

APPENDIX C: PROOFS OF COROLLARIES 1–3

We prove Corollaries 1–3 stated in Section 3.4 of the manuscript, using auxiliary results proved in Appendices C.1 and C.2. To prove them, it is convenient to return to the notation used in Section 2 of the manuscript, denoting edge variables by $X_{i,j}$ ($\{i, j\} \subset N$). Throughout Appendix C, we assume that Models 2 and 3 satisfy one of the two following conditions.

S.1 The subpopulations do not intersect ($\omega_1 = \omega_2 = 0$), $\theta^* \in \mathbb{R}^{N+1}$ satisfies condition (3.30) with $\vartheta \in [0, 1/2 - \alpha)$ and $\alpha \in [0, 1/2)$, and

$$D_N = O(\log N).$$

S.2 The subpopulations intersect ($\omega_1 > 0, \omega_2 \geq 0$), $\theta^* \in \mathbb{R}^{N+1}$ satisfies condition (3.30) with $\vartheta = 0$ and $\alpha \in [0, 1/2)$, and

$$D_N = o((\log(N/\log N)^{1/3}).$$

Condition S.1 and S.2 ensure that the assumptions of Corollaries 2 and 3 are satisfied, respectively.

PROOF OF COROLLARIES 1–3. To prove Corollaries 1–3, we bound

$$\Phi_N(\theta^*) = \bar{\Lambda}_N(\theta^*) (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}}.$$

We first bound Ψ_N and then prove Corollaries 1–3.

Bounding Ψ_N. Recall the definition of Ψ_N: For each $a \in \{1, \ldots, p\}$ and each pair of nodes $\{i, j\} \subset N$,

$$\Xi_{a,\{i,j\}} := \max_{(x, x') \in \mathbb{R} \times \mathbb{R}: x_{k,l} = x'_{k,l} \text{ for all } \{k,l\} \neq \{i,j\}} |s_a(x) - s_a(x')|$$

and

$$\Psi_N := \max_{1 \leq a \leq p} \|\Xi_a\|_2.$$

We show that $\Psi_N \leq \sqrt{N}$ under Model 1 and $\Psi_N \leq |s_{N+1}|_{\text{Lip}} \sqrt{N}$ under Models 2 and 3 and bound $|s_{N+1}|_{\text{Lip}}$, where $|s_{N+1}|_{\text{Lip}}$ is the Lipschitz coefficient of $s_{N+1}(X)$ with respect to the Hamming metric on $\mathbb{X} \times \mathbb{X}$:
• Models 1, 2, and 3 have sufficient statistics \(s_1(X), \ldots, s_N(X)\), the degrees of nodes 1, \ldots, N, respectively. Since the degrees of nodes are sums of \(N - 1\) edge variables \(X_{i,j} \in \{0, 1\}\), we have

\[
|\Xi_a|_2 = \sqrt{N - 1} \leq \sqrt{N}, \quad a = 1, \ldots, N.
\]

• Models 2 and 3 include the additional sufficient statistic for brokerage

\[s_{N+1}(x) := \sum_{i<j} X_{i,j} I_{i,j}(X),\]

where

\[
I_{i,j}(x) := 1 \left(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1 \right), \quad \{i,j\} \subset N.
\]

By the definition of \(s_{N+1}(x)\), we have \(\Xi_{N+1,\{i,j\}} = 0\) for all pairs of nodes \(\{i,j\} \subset N\) satisfying \(N_i \cap N_j = \emptyset\). The number of pairs of nodes \(\{i,j\} \subset N\) satisfying \(N_i \cap N_j \neq \emptyset\) is bounded above by \(ND^2\): For each of the \(N\) nodes \(i \in N\), there are at most \(D_N^2\) distinct nodes \(j \in N_i\) such that \(N_i \cap N_j \neq \emptyset\), a fact established by Lemma 12. In addition, Lemma 15 shows, for each \(\{i,j\} \subset N\), that \(\Xi_{N+1,\{i,j\}} \leq 1 + D_N\). Thus,

\[
|\Xi_{N+1}|_2 \leq \sqrt{N D_N^2 (1 + D_N)^2} \leq \sqrt{4N D_N^4} = 2D_N^2 \sqrt{N}.
\]

As a result, under Model 1,

\[
\sqrt{N/2} \leq \Psi_N := \max_{1 \leq a \leq p} |\Xi_a|_2 = \sqrt{N - 1} \leq \sqrt{N},
\]

whereas under Models 2 and 3,

\[
\sqrt{N/2} \leq \Psi_N := \max_{1 \leq a \leq p} |\Xi_a|_2 \leq 2D_N^2 \sqrt{N},
\]

noting that \(D_N \geq 1\) under Models 2 and 3.

Convergence rates. We obtain the following convergence rates using the auxiliary results in Appendices C.1 and C.2. The following results hold for all large enough \(N\). The constants vary from model to model.

- **Corollary 1:** The independence of edges under Model 1 implies that \(D_N = 0\), \(\|D_N(\theta^*)\|_2 = 1\), and \(\Lambda_N(\theta^*) = \bar{\Lambda}_N(\theta^*)\), which in turn implies that \(\Phi_N(\theta^*) = \bar{\Phi}_N(\theta^*)\). We have \(p = N\) and \(\Psi_N \leq \sqrt{N}\). By Lemma 6 with \(\alpha = 0\) and \(\vartheta \in [0, 6(1/2 - \alpha)) = [0, 3)\), there exist constants \(B > 0\) and \(N_0 \geq 3\), independent of \(N\) and \(p\), such that

\[
\bar{\Lambda}_N(\theta^*) \leq \frac{B}{N^{1-\vartheta/6}} \quad \text{for all } N > N_0.
\]
As a result, there exists a constant $C > 0$, independent of N and p, such that, for all $N > N_0$,

$$
\Phi_N(\theta^*) = \tilde{\Phi}_N(\theta^*) \leq C \frac{\sqrt{N \log N}}{N^{1-\alpha/6}} = C \sqrt{\frac{\log N}{N^{1-2\alpha/6}}} = C \sqrt{\frac{\log N}{N^{1-\alpha/3}}}.
$$

Corollaries 2 and 3: By assumption, $D_N \geq 1$ under Models 2 and 3, and Ψ_N is bounded as follows:

$$
\frac{\sqrt{N/2}}{2} \leq \Psi_N \leq 2 D_N^2 \sqrt{N}.
$$

To bound γ_N, recall that γ_N is given by

$$
\gamma_N = \sqrt{24} (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}}.
$$

Using $\|D_N(\theta^*)\|_2 \geq 1$ along with $\Psi_N \geq \sqrt{N/2}$, we obtain the lower bound

$$
\gamma_N \geq \sqrt{12} D_N \sqrt{N \log N}
$$

and the upper bound

$$
\gamma_N \leq \sqrt{768} D_N^3 \|D_N(\theta^*)\|_2 \sqrt{N \log N},
$$

using $1 + D_N \leq 2 D_N$ ($D_N \geq 1$) along with $\Psi_N \leq 2 D_N^2 \sqrt{N}$ and

$$
\log \max\{N, p\} = \log (N + 1) \leq 2 \log N.
$$

Thus, γ_N satisfies

$$
\sqrt{24} D_N \sqrt{N \log N} \leq \gamma_N \leq \sqrt{768} D_N^3 \|D_N(\theta^*)\|_2 \sqrt{N \log N}.
$$

We turn to bounding

$$
\tilde{\Phi}_N(\theta^*) := \tilde{\Lambda}_N(\theta^*) (1 + D_N) \|D_N(\theta^*)\|_2 \Psi_N \sqrt{\log \max\{N, p\}}.
$$

By Lemma 11, there exists an integer $N_0 > 0$ and a subset $H \subseteq X$ such that, for all $N > N_0$,

- $-\nabla^2_{\theta'} \ell(\theta; x)$ is invertible for all $(\theta, x) \in B_\infty(\theta^*, \epsilon^*) \times H$,
- the event $X \in H$ occurs with probability at least $1 - 2/\max\{N, p\}^2$,

provided that either condition S.1 or condition S.2 is satisfied. By Lemma 6, there exist constants $C_1 > 0$ and $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$,

$$
\tilde{\Lambda}_N(\theta^*) \leq \frac{C_1 D_N^\alpha}{N^{1-(\alpha+\theta)}},
$$
assuming that \(\alpha \in [0, 1/2) \) and \(\vartheta \in [0, 1/2 - \alpha) \). As a result, there exists a constant \(C_2 := 4 C_1 > 0 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \),

\[
\tilde{\Phi}_N(\theta^*) \leq C_2 \frac{D_N^{0+1+2} \|D_N(\theta^*)\|_2 \sqrt{N \log N}}{N^{1-(\alpha+\vartheta)}}
\]

\[
= C_2 \frac{D_N^{12} \|D_N(\theta^*)\|_2 \sqrt{\log N}}{N^{1-2(\alpha+\vartheta)}},
\]

(C.1)

using the inequalities \(1+D_N \leq 2 D_N \) and \(\Psi_N \leq 2 D_N^2 \sqrt{N} \), noting that \(D_N \geq 1 \) under Models 2 and 3. By Lemma 13, there exist constants \(C_3 > 0 \) and \(C_4 > 0 \), independent of \(N \) and \(p \), such that:

- Corollary 2 with \(\vartheta \in [0, 1/2 - \alpha) \):

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2 \leq 5 D_N^2,
\]

(C.2) using the fact that \(D_N \) satisfies \(D_N \geq 1 \) under Models 2 and 3.

- Corollary 3 with \(\vartheta = 0 \): If Assumption A is satisfied,

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2 + \omega_1 C_3 \exp(C_4 D_N^3)
\]

\[
\leq 3 \max\{4, \omega_1 C_3\} D_N^2 \exp(C_4 D_N^3)
\]

\[
\leq B_1 \exp(2 \log D_N + C_4 D_N^3)
\]

\[
\leq B_1 \exp(A_1 D_N^3),
\]

(C.3) using \(D_N \geq 1 \) along with \(\log D_N \leq D_N \leq D_N^3 \), and defining \(A_1 := 2 + C_4 > 0 \) and \(B_1 := 3 \max\{4, \omega_1 C_3\} > 0 \). Note that the constants \(C_3 > 0 \), \(C_4 > 0 \), and \(\omega_1 \geq 0 \) are independent of \(N \) and \(p \), implying that \(A_1 \) and \(B_1 \) are likewise independent of \(N \) and \(p \).

Upon collecting terms, we conclude that there exist constants \(C_5 > 0 \) and \(C_6 > 0 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \):

- Corollary 2 with \(\alpha \in [0, 1/2) \) and \(\vartheta \in [0, 1/2 - \alpha) \): Equations (C.1) and (C.2) provide the bound

\[
\tilde{\Phi}_N(\theta^*) \leq C_5 \frac{D_N^{14} \sqrt{\log N}}{N^{1-2(\alpha+\vartheta)}},
\]

where \(C_5 := 4 C_2 > 0 \) and \(\gamma_N \) satisfies (noting \(\sqrt{768} \leq 28 \))

\[
4 D_N \sqrt{N \log N} \leq \gamma_N \leq 28 D_N^5 \sqrt{N \log N}.
\]
Corollary 3 with $\alpha \in [0, 1/2)$ and $\vartheta = 0$: If Assumption A is satisfied, Equations (C.1) and (C.3) provide the bound

$$\Phi_N(\theta^*) \leq C_6 D_N^{12} \exp(A_1 D_N^3) \sqrt{\frac{\log N}{N^{1-2\alpha}}}$$

$$\leq C_6 \exp(12 \log D_N + A_1 D_N^3) \sqrt{\frac{\log N}{N^{1-2\alpha}}}$$

$$\leq C_6 \exp(A_2 D_N^3) \sqrt{\frac{\log N}{N^{1-2\alpha}}},$$

where γ_N satisfies

$$4 D_N \sqrt{N \log N} \leq \gamma_N \leq B_2 \exp(A_3 D_N^3) \sqrt{N \log N},$$

where $A_2 := 12 + A_1 > 0$, $C_6 := B_1 C_2 > 0$, and $B_2 := 28 B_1 > 0$; note that the upper bound on γ_N leverages the fact that $D_N \geq 1$ under Models 2 and 3 along with $\log D_N \leq D_N \leq D_N^3$, so that

$$D_N^3 \exp(A_1 D_N^3) = \exp(3 \log D_N + A_1 D_N^3) \leq \exp(A_3 D_N^3),$$

where $A_3 := 3 + A_1 > 0$ is a constant, independent of N and p.

\[\square \]

C.1. Bounding $\bar{\Lambda}_N(\theta^*)$. We bound

$$\bar{\Lambda}_N(\theta^*) := \max_{x \in \mathbb{R}^n} \sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \|(-\nabla^2_{\theta} \tilde{\ell}(\theta; x))^{-1}\|_\infty,$$

using Lemma 6, which leverages auxiliary results supplied by Lemmas 7–11. To do so, we first introduce additional notation. The negative Hessian $-\nabla^2_{\theta} \tilde{\ell}(\theta; x)$ corresponding to Models 2 and 3 is of the form

\[(C.4) \quad -\nabla^2_{\theta} \tilde{\ell}(\theta; x) = \begin{pmatrix} A(\theta, x) & c(\theta, x) \\ c(\theta, x)^\top & v(\theta, x) \end{pmatrix}, \]

where

- the entries $A_{i,j}(\theta, x)$ of the matrix $A(\theta, x) \in \mathbb{R}^{N \times N}$ are given by

$$A_{i,j}(\theta, x) = \sum_{a<b} C_{\theta, x_{-\{a,b\}}}(s_i(X), s_j(X)), \quad i, j = 1, \ldots, N;$$
the entries $c_i(\theta, x)$ of the vector $c(\theta, x) \in \mathbb{R}^N$ are given by

$$c_i(\theta, x) = \sum_{a < b} C_{\theta, x_{-\{a,b\}}}(s_i(X), s_{N+1}(X)), \quad i = 1, \ldots, N;$$

- $v(\theta, x) \in \mathbb{R}^+$ is given by

$$v(\theta, x) = \sum_{a < b} V_{\theta, x_{-\{a,b\}}} s_{N+1}(X),$$

where $C_{\theta, x_{-\{a,b\}}}$ and $V_{\theta, x_{-\{a,b\}}}$ are the conditional covariance and variance operators with respect to the conditional probability distribution of edge variable $X_{a,b}$ given all other edge variables $X_{-\{a,b\}} = x_{-\{a,b\}}$. The negative Hessian under Model 1 is $-\nabla^2 \theta \ell(\theta; x) = A(\theta, x)$.

Throughout, the indicator function

$$I_{i,j}(x) := 1 \left(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1 \right), \quad \{i, j\} \subset N$$

indicates whether there exists a node $h \in N_i \cap N_j$ in the intersection of i’s neighborhood N_i and j’s neighborhood N_j such that both i and j are connected to h. In addition, define the vector

$$I_i(x) := (I_{i,1}(x), \ldots, I_{i,i-1}(x), I_{i,i+1}(x), \ldots, I_{i,N}(x)), \quad i \in N.$$

As a result, $|I_i(x)|_\infty$ indicates whether, for a given node $i \in N$, there exists a distinct node $j \in N \setminus \{i\}$ such that $N_i \cap N_j \neq \emptyset$ and i and j are both connected to a third node $h \in N \setminus \{i, j\}$ contained in $N_i \cap N_j$.

Lemma 6. Assume that $\theta^* \in \mathbb{R}^p$ satisfies condition (3.30) in Section 3.4. Then there exist constants $B > 0$, $C > 0$, and $N_0 \geq 3$, independent of N and p, such that $\Lambda_N(\theta^*)$ is bounded above as follows:

- **Model 1:** For all $N > N_0$, $-\nabla^2 \theta \ell(\theta; x)$ is invertible for all $x \in \mathbb{X}$ and

$$\Lambda_N(\theta^*) := \max_{x \in \mathbb{X}} \sup_{\theta \in \mathbb{B}_N(\theta^*, \epsilon^*)} \|(-\nabla^2 \theta \ell(\theta; x))^{-1}\|_\infty \leq \frac{B}{N^{1 -(\alpha + \theta/6)}},$$

assuming $\alpha \in [0, 1/2)$ and $\theta \in [0, 6(1/2 - \alpha)]$.

• Models 2 and 3: For all $N > N_0$, the event

$$
\mathbb{H} := \left\{ x \in \mathbb{X} : \sum_{i=1}^{N} \| I_i(x) \|_{\infty} \geq \frac{N}{2(1 + \exp((3 + D_N) (\| \theta^* \|_{\infty} + \epsilon^*)^2))} \right\}
$$

occurs with at least probability $1 - 2 / \max\{N, p\}^2$. In the event $x \in \mathbb{H}$, $-\nabla_{\theta}^2 \bar{\ell}(\theta; x)$ is invertible and

$$
\bar{\Lambda}_N(\theta^*) := \max_{x \in \mathbb{X}} \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \| (\nabla_{\theta}^2 \bar{\ell}(\theta; x))^{-1} \|_{\infty} \leq \frac{C D_N^0}{N^{1-(\alpha + \vartheta)}},
$$

assuming that $\alpha \in [0, 1/2)$ and $\vartheta \in [0, 1/2 - \alpha)$, D_N satisfies

$$
1 \leq D_N < \frac{L + \vartheta \log N}{12 \epsilon^*} - 3,
$$

and either condition S.1 or condition S.2 is satisfied.

Remark. Under Model 1, edges are independent and $D_N = 0$, whereas under Models 2 and 3, edges are dependent and $D_N \geq 1$. The upper bound on D_N under Models 2 and 3 ensures that $\| \theta^* \|_{\infty} > 0$.

Proof of Lemma 6. Using (C.4), we can write the negative Hessian $-\nabla_{\theta}^2 \bar{\ell}(\theta; x)$ corresponding to Models 2 and 3 as

$$
-\nabla_{\theta}^2 \bar{\ell}(\theta; x) = \begin{pmatrix}
A(\theta, x) & c(\theta, x) \\
c(\theta, x)^\top & v(\theta, x)
\end{pmatrix},
$$

where $A(\theta, x) \in \mathbb{R}^{N \times N}$, $c(\theta, x) \in \mathbb{R}^N$, and $v(\theta, x) \in \mathbb{R}^+$ are defined above.

Bounding $\| A(\theta, x)^{-1} \|_{\infty}$. Lemma 7 proves that the smallest eigenvalue of $A(\theta, x)$ is strictly positive on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ for all $x \in \mathbb{X}$, so $A(\theta, x)$ is invertible on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ for all $x \in \mathbb{X}$. Theorem 1.2 of Hillar and Wibisono [21], along with the bounds on the entries of $A(\theta, x)$ given in (C.7) of
Lemma 7, reveal that
\[\| A(\theta, x)^{-1} \|_{\infty} \leq \frac{(3N - 4)(1 + \exp((3 + D_N)\|\theta\|_{\infty}))^2}{2N^{-\alpha}(N - 2)(N - 1)} \]
\[\leq \frac{(1 + \exp((3 + D_N)\|\theta\|_{\infty}))^2}{2N^{1-\alpha}} \frac{9}{2} \]
\[\leq \frac{(1 + \exp((3 + D_N)(\|\theta^*\|_{\infty} + \epsilon^*)))^2}{2N^{1-\alpha}} \frac{9}{2} \]
\[\leq \frac{(2 \exp((3 + D_N)(\|\theta^*\|_{\infty} + \epsilon^*)))^2}{2N^{1-\alpha}} \frac{9}{2} \]
\[= \exp((3 + D_N)(\|\theta^*\|_{\infty} + \epsilon^*))^2 \frac{18}{N^{1-\alpha}} \]
\[= \frac{18 \tau(\theta^*)^2}{N^{1-\alpha}}, \]
where
\[\tau(\theta^*) := \exp((3 + D_N)(\|\theta^*\|_{\infty} + \epsilon^*)). \]

The above exploits the fact that \(\|\theta\|_{\infty} \leq \|\theta^*\|_{\infty} + \epsilon^* \) for all \(\theta \in B_\infty(\theta^*, \epsilon^*) \),
along with the inequality
\[\frac{3N - 4}{2(N - 2)(N - 1)} = \frac{3(N - 1) - 1}{2(N - 2)(N - 1)} \leq \frac{3(N - 1)}{2(N - 2)(N - 1)} = \frac{3}{2(N - 2)}, \]
which is bounded above by
\[\frac{3}{2(N - 2)} \leq \frac{9}{2N}, \]
provided \(N \geq 3 \). Using the assumption
\[\|\theta^*\|_{\infty} \leq \frac{L + \vartheta \log N}{12(3 + D_N)} - \epsilon^*, \]
we obtain
\[\tau(\theta^*)^2 = \exp(2(3 + D_N)(\|\theta^*\|_{\infty} + \epsilon^*)) \leq \exp \left(2(3 + D_N) \frac{L + \vartheta \log N}{12(3 + D_N)} \right) \]
\[= \exp \left(\frac{L + \vartheta \log N}{6} \right) = \exp(L / 6) N^{\vartheta / 6}. \]

As a consequence, we find that, for all \(x \in X \),
\[\| A(\theta, x)^{-1} \|_{\infty} \leq \frac{18 \tau(\theta^*)^2}{N^{1-\alpha}} \leq \frac{18 \exp(L / 6) N^{\vartheta / 6}}{N^{1-\alpha}} = \frac{B}{N^{1-(\alpha + \vartheta / 6)}}, \]
where $B := 18 \exp(L/6) > 0$. Under Model 1, we therefore obtain

$$\tilde{A}_N(\theta^*) := \max_{x \in X} \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|(-\nabla_\theta^2 \ell(\theta; x))^{-1}\|_\infty$$

$$= \max_{x \in X} \sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} \|A(\theta, x)^{-1}\|_\infty$$

$$\leq \frac{B}{N^{1-(\alpha + \vartheta/6)},}$$

assuming $\alpha \in [0, 1/2]$ and $\vartheta \in [0, 6(1/2 - \alpha)]$.

Bounding $\|(-\nabla_\theta^2 \ell(\theta; x))^{-1}\|_\infty$ under Models 2 and 3. Let

$$\xi(\theta, x) := v(\theta, x) - c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x).$$

Theorem 8.5.11 of Harville [20, p. 99] implies that, if the inverse of $-\nabla_\theta^2 \ell(\theta; x)$ exists, then it can be written as

$$(-\nabla_\theta^2 \ell(\theta; x))^{-1} = \begin{pmatrix} A(\theta, x) & c(\theta, x) \\ c(\theta, x)^\top & v(\theta, x) \end{pmatrix}^{-1} = \begin{pmatrix} B_{1,1}(\theta, x) & B_{1,2}(\theta, x) \\ B_{2,1}(\theta, x) & B_{2,2}(\theta, x) \end{pmatrix},$$

where

$$B_{1,1}(\theta, x) := A(\theta, x)^{-1} + \xi(\theta, x)^{-1} (A(\theta, x)^{-1} c(\theta, x)) (A(\theta, x)^{-1} c(\theta, x))^\top$$

$$B_{1,2}(\theta, x) := -\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)$$

$$B_{2,2}(\theta, x) := \xi(\theta, x)^{-1}.$$

To establish that $-\nabla_\theta^2 \ell(\theta; x)$ is invertible, note that $A(\theta, x)$ is invertible on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ for all $x \in X$, because its smallest eigenvalue is strictly positive by Lemma 7. In addition, we demonstrate below that there exists an integer $N_0 \geq 3$, independent of N and p, such that

$$\mathbb{P}(X \in \mathcal{H}) \geq 1 - \frac{2}{\max\{N, p\}^2} \quad \text{for all} \quad N > N_0$$

and

$$\xi(\theta, x) > 0 \quad \text{for all} \quad x \in \mathcal{H}$$

provided that either condition S.1 or condition S.2 is satisfied. As a result, $-\nabla_\theta^2 \ell(\theta; x)$ is invertible on $\mathcal{B}_\infty(\theta^*, \epsilon^*)$ for all $x \in \mathcal{H}$ by virtue of Theorem 8.5.11 of Harville [20, p. 99]. We proceed to bound $\|(-\nabla_\theta^2 \ell(\theta; x))^{-1}\|_\infty$ under Models 2 and 3. Observe that

$$\|(-\nabla_\theta^2 \ell(\theta; x))^{-1}\|_\infty \leq \max\{T_1, T_2\},$$
where
\[
T_1 := \|A(\theta, x)^{-1} + \xi(\theta, x)^{-1} (A(\theta, x)^{-1} c(\theta, x)) (A(\theta, x)^{-1} c(\theta, x))^\top\|_\infty
\]
\[
+ \|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)\|_\infty
\]
\[
T_2 := \|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)\|_1 + |\xi(\theta, x)|^{-1}.
\]
We bound the terms \(T_1\) and \(T_2\) one by one.

Bounding \(T_1\). The term \(T_1\) is defined as
\[
T_1 := \|A(\theta, x)^{-1} + \xi(\theta, x)^{-1} (A(\theta, x)^{-1} c(\theta, x)) (A(\theta, x)^{-1} c(\theta, x))^\top\|_\infty
\]
\[
+ \|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)\|_\infty.
\]
We bound the first term of \(T_1\) by using the triangle inequality:
\[
\|A(\theta, x)^{-1} + \xi(\theta, x)^{-1} (A(\theta, x)^{-1} c(\theta, x)) (A(\theta, x)^{-1} c(\theta, x))^\top\|_\infty
\]
\[
\leq \|A(\theta, x)^{-1}\|_\infty + |\xi(\theta, x)|^{-1} \|(A(\theta, x)^{-1} c(\theta, x)) (A(\theta, x)^{-1} c(\theta, x))^\top\|_\infty
\]
\[
= \|A(\theta, x)^{-1}\|_\infty + |\xi(\theta, x)|^{-1} \|A(\theta, x)^{-1} c(\theta, x)\|_\infty \|A(\theta, x)^{-1} c(\theta, x)\|_1
\]
\[
\leq \|A(\theta, x)^{-1}\|_\infty + N |\xi(\theta, x)|^{-1} \|c(\theta, x)\|^2\|A(\theta, x)^{-1}\|_\infty^2
\]
\[
\leq \|A(\theta, x)^{-1}\|_\infty + N |\xi(\theta, x)|^{-1} \|c(\theta, x)\|^2 \|A(\theta, x)^{-1}\|_\infty^2,
\]
\[
= \|A(\theta, x)^{-1}\|_\infty (1 + N |\xi(\theta, x)|^{-1} \|c(\theta, x)\|^2 \|A(\theta, x)^{-1}\|_\infty).
\]
taking advantage of the identity
\[
\|z z^\top\|_\infty = \max_{1 \leq i \leq N} \sum_{j=1}^N |z_i z_j| = \max_{1 \leq i \leq N} |z_i| \sum_{j=1}^N |z_j| = \|z\|_\infty \|z\|_1
\]
applied to the vector
\[
z := A(\theta, x)^{-1} c(\theta, x),
\]
along with the fact that \(\|A(\theta, x)^{-1}\|_1 = \|A(\theta, x)^{-1}\|_\infty\), thanks to the symmetry of \(A(\theta, x)\). The second term of \(T_1\) can be bounded as follows:
\[
|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)|_\infty \leq |\xi(\theta, x)|^{-1} \|c(\theta, x)\|_\infty \|A(\theta, x)^{-1}\|_\infty.
\]
Combining these results gives the following bound on \(T_1\):
\[
T_1 \leq \|A(\theta, x)^{-1}\|_\infty
\]
\[
\times (1 + N |\xi(\theta, x)|^{-1} \|c(\theta, x)\|^2 \|A(\theta, x)^{-1}\|_\infty + |\xi(\theta, x)|^{-1} \|c(\theta, x)\|_\infty).
\]
Bounding T_2. The term T_2 is defined as follows:

$$T_2 := \|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)\|_1 + |\xi(\theta, x)|^{-1}. $$

We bound T_2 by

$$T_2 = \|\xi(\theta, x)^{-1} A(\theta, x)^{-1} c(\theta, x)\|_1 + |\xi(\theta, x)|^{-1}$$

$$\leq |\xi(\theta, x)|^{-1} (1 + \|c(\theta, x)\|_1 \|A(\theta, x)^{-1}\|_1)$$

$$= |\xi(\theta, x)|^{-1} (1 + \|c(\theta, x)\|_1 \|A(\theta, x)^{-1}\|_\infty)$$

$$\leq |\xi(\theta, x)|^{-1} (1 + N \|c(\theta, x)\|_\infty \|A(\theta, x)^{-1}\|_\infty),$$

using the inequality $\|v\|_1 \leq N \|v\|_\infty$, where the step from $\|A(\theta, x)^{-1}\|_1$ to $\|A(\theta, x)^{-1}\|_\infty$ follows from the symmetry of $A(\theta, x)$. We bound the terms in T_1 and T_2 one by one. The resulting bounds hold for all $\theta \in B_\infty(\theta^*, c^*)$.

Bounding $\|A(\theta, x)^{-1}\|_\infty$. We have shown above that

$$\|A(\theta, x)^{-1}\|_\infty \leq \frac{18 \tau(\theta^*)^2}{N^{1-\alpha}}$$

for all $x \in \mathbb{X}$.

Bounding $\|c(\theta, x)\|_\infty$. Lemma 10 establishes that

$$\|c(\theta, x)\|_\infty \leq 3 D_N^2$$

for all $x \in \mathbb{H}$.

Bounding $|\xi(\theta, x)|^{-1}$. The term $\xi(\theta, x)$ is defined as

$$\xi(\theta, x) := v(\theta, x) - c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)$$

$$= c(\theta, x)^\top c(\theta, x)$$

$$\times \left(\frac{v(\theta, x)}{c(\theta, x)^\top c(\theta, x)} - \frac{c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \right).$$

To bound $\xi(\theta, x)$, we leverage Lemmas 8–10, which show that the following bounds are satisfied for all $x \in \mathbb{H}$:

$$c(\theta, x)^\top c(\theta, x) \geq \frac{N}{128 \tau(\theta^*)^6}$$

by Lemma 9,

$$\frac{v(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \geq \frac{1}{576 D_N^6 \tau(\theta^*)^4}$$

by Lemma 10,

$$\frac{c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \leq \frac{12 \tau(\theta^*)^2}{N^{1-\alpha}}$$

by Lemma 8.
All of the above quantities are well-defined because $N \geq 3$, $D_N \geq 1$, and $	au(\theta^*) > 0$ under Models 2 and 3. These results help bound $\xi(\theta, x)$ as follows:

$$\xi(\theta, x) = c(\theta, x) \cdot c(\theta, x) \times \left(\frac{v(\theta, x)}{c(\theta, x) c(\theta, x)} - \frac{c(\theta, x)}{c(\theta, x) c(\theta, x)} A(\theta, x) c(\theta, x) \right)$$

$$\geq \frac{N}{128 \tau(\theta^*)^6} \left(\frac{1}{576 D_N^6 \tau(\theta^*)^4} - \frac{12 \tau(\theta^*)^2}{N^{1-\alpha}} \right)$$

$$= \frac{N}{(128) (576) D_N^6 \tau(\theta^*)^{10}} \left(1 - \frac{(12) (576) D_N^6 \tau(\theta^*)^6}{N^{1-\alpha}} \right).$$

To bound the term $1 - \frac{(12) (576) D_N^6 \tau(\theta^*)^6}{N^{1-\alpha}}$, observe that the assumption

$$\|\theta^*\|_{\infty} \leq L + \vartheta \log N \frac{12 (3 + D_N)}{12 (3 + D_N) - \epsilon^*}$$

implies that the term $\tau(\theta^*)^6$ is bounded above by

$$\tau(\theta^*)^6 = \exp(6 (3 + D_N) (\|\theta^*\|_{\infty} + \epsilon^*))$$

$$\leq \exp \left(\frac{6}{12} (L + \vartheta \log N) \right)$$

$$= \exp \left(\frac{1}{2} L \right) N^{\vartheta / 2},$$

which in turn implies that

$$\frac{D_N^6 \tau(\theta^*)^6}{N^{1-\alpha}} \leq \frac{\exp((1/2) L) D_N^6 N^{\vartheta / 2}}{N^{1-\alpha}} \leq \frac{\exp((1/2) L) D_N^6}{N^{1/2}},$$

using the assumption that $\alpha \in [0, 1/2)$ and $\vartheta \in [0, 1/2 - \alpha)$. Since conditions S.1 and S.2 ensure that $D_N = O(\log N)$, there exist constants $C_1 \in (0, 1)$ and $N_1 \geq N_0$, independent of N and p, such that, for all $N > N_1$,

$$1 - \frac{(12) (576) D_N^6 \tau(\theta^*)^6}{N^{1-\alpha}} \geq 1 - \frac{(12) (576) \exp((1/2) L) D_N^6}{N^{1/2}} \geq C_1 > 0.$$

We then obtain, for all $N > N_1$ and all $x \in \mathbb{H}$,

$$\xi(\theta, x) \geq \frac{N}{(128) (576) D_N^6 \tau(\theta^*)^{10}} \left(1 - \frac{(12) (576) D_N^6 \tau(\theta^*)^6}{N^{1-\alpha}} \right)$$

$$\geq \frac{C_1 N}{(128) (576) D_N^6 \tau(\theta^*)^{10}}.$$
which shows that $\xi(\theta, x) > 0$ and hence

$$|\xi(\theta, x)|^{-1} = \frac{1}{\xi(\theta, x)} \leq \frac{C_2 D_N^6 \tau(\theta^*)^{10}}{N},$$

defining $C_2 := (128)(576)/C_1 > 0$.

Bounding $\max\{T_1, T_2\}$. We have shown that

$$T_1 \leq \|A(\theta, x)^{-1}\|_\infty (1 + N |\xi(\theta, x)|^{-1} |c(\theta, x)|^2 \|A(\theta, x)^{-1}\|_\infty + |\xi(\theta, x)|^{-1} |c(\theta, x)| \infty$$

$$T_2 \leq |\xi(\theta, x)|^{-1} (1 + N |c(\theta, x)| \infty \|A(\theta, x)^{-1}\|_\infty).$$

Using the bounds derived above, we obtain, for all $N \geq N_1$ and all $x \in \mathbb{H}$,

$$T_1 \leq \|A(\theta, x)^{-1}\|_\infty (1 + N |\xi(\theta, x)|^{-1} |c(\theta, x)|^2 \|A(\theta, x)^{-1}\|_\infty + |\xi(\theta, x)|^{-1} |c(\theta, x)| \infty)$$

$$\leq \frac{18 \tau(\theta^*)^2}{N^{1-\alpha}} \left(1 + N \left(\frac{C_2 D_N^6 \tau(\theta^*)^{10}}{N} \right)^2 \left(\frac{18 \tau(\theta^*)^2}{N^{1-\alpha}} \right) + \left(\frac{C_2 D_N^6 \tau(\theta^*)^{10}}{N} \right)^3 \right)$$

$$\leq \frac{18 \tau(\theta^*)^2}{N^{1-\alpha}} \left(1 + \left(\frac{18}{(3)^2} \frac{C_2 D_N^2 \tau(\theta^*)^{12}}{N^{1-\alpha}} \right) + \frac{3 C_2 D_N^6 \tau(\theta^*)^{10}}{N} \right)$$

$$= \frac{(18)^2 (3)^2 C_2 D_N^2 \tau(\theta^*)^{14}}{N^{1-\alpha}} \left(\frac{1}{(18)^2 (3)^2 C_2 D_N^2 \tau(\theta^*)^{12}} \right) + \frac{1}{N^{1-\alpha}} + \frac{1}{(18)^2 (3)^2 D_N^2 \tau(\theta^*)^{2} N}$$

$$\leq \frac{(18)^2 (3)^2 C_2 D_N^2 \tau(\theta^*)^{14}}{N^{1-\alpha}} \left(\frac{1}{(18)^2 (3)^2 C_2 D_N^2 \tau(\theta^*)^{12}} + \frac{1}{N^{1-\alpha}} + \frac{1}{D_N^2 \tau(\theta^*)^{2} N} \right)$$

$$\leq \frac{(3)^3 (18)^2 C_2 D_N^2 \tau(\theta^*)^{14}}{N^{1-\alpha}} \min\{C_2 D_N^2 \tau(\theta^*)^{12}, \frac{N^{1-\alpha}, D_N^2 \tau(\theta^*)^{2} N} \}$$

and

$$T_2 \leq |\xi(\theta, x)|^{-1} (1 + N |c(\theta, x)| \infty \|A(\theta, x)^{-1}\|_\infty)$$

$$\leq \frac{C_2 D_N^6 \tau(\theta^*)^{10}}{N} \left(1 + N D_N^3 \left(\frac{3 (18) \tau(\theta^*)^2}{N^{1-\alpha}} \right) \right)$$

$$= \frac{C_2 D_N^6 \tau(\theta^*)^{10}}{N} \left(1 + (3) \frac{D_N^3 \alpha \tau(\theta^*)^2}{N} \right)$$

$$\leq \frac{C_3 D_N^6 \tau(\theta^*)^{12}}{N^{1-\alpha}},$$
using the fact that $D_N^3 N^{\alpha} \tau(\theta^*)^2 \geq 1$ under Models 2 and 3 and defining $C_3 := (2) (3) (18) C_2 > 0$. Define

$$U := \frac{C_3 D_N^3 \tau(\theta^*)^2}{N^{1-\alpha}},$$

$$V := \frac{C_4 D_N^3 \tau(\theta^*)^2}{\min\{C_2 D_N^3 \tau(\theta^*)^{12}, N^{1-\alpha}, D_N^3 \tau(\theta^*)^2 N\}},$$

so that the bounds on T_1 and T_2 can be stated in terms of U and V:

$$T_1 \leq \frac{C_3 C_4 D_N^{12} \tau(\theta^*)^{14}}{N^{1-\alpha} \min\{C_2 D_N^{12} \tau(\theta^*)^{12}, N^{1-\alpha}, D_N^3 \tau(\theta^*)^2 N\}} = U V$$

$$T_2 \leq U,$$

where $C_4 := (3)^3 (18)^2 C_2 / C_3 > 0$. Thus, for all $N \geq N_1$ and all $x \in \mathbb{H}$,

$$\sup_{\theta \in \mathcal{B}_{\infty}(\theta^*, \epsilon^*)} \left\| -\nabla_{\theta}^2 \ell(\theta; x) \right\|^{-1}_\infty \leq \max \{T_1, T_2\} \leq \max \{U V, U\}.$$

To make the bound on $\max \{T_1, T_2\}$ as tight as possible, we need constants $C_5 \geq 1$ and $N_2 \geq N_1$, independent of N and p, such that, for all $N > N_2$,

$$V := \frac{C_4 D_N^3 \tau(\theta^*)^2}{\min\{C_2 D_N^{12} \tau(\theta^*)^{12}, N^{1-\alpha}, D_N^3 \tau(\theta^*)^2 N\}} \leq C_5.$$

Upon inspecting the denominator of V,

$$\min\{C_2 D_N^{12} \tau(\theta^*)^{12}, N^{1-\alpha}, D_N^3 \tau(\theta^*)^2 N\},$$

and observing that $\alpha \in [0, 1/2)$, it is evident that

- the first term $C_2 D_N^{12} \tau(\theta^*)^{12}$ grows either slower or faster than $N^{1/2}$, depending on the growth of D_N and $\tau(\theta^*)$;
- the second term $N^{1-\alpha}$ grows faster than $N^{1/2}$, because $1 - \alpha > 1/2$ for all $\alpha \in [0, 1/2)$;
- the third term $D_N^3 \tau(\theta^*)^2 N$ grows faster than $N^{1/2}$, because $D_N \geq 1$ and $\tau(\theta^*) \geq 1$ under Models 2 and 3.

To bound the first term, observe that the assumption

$$\|\theta^*\|_\infty \leq \frac{L + \vartheta \log N}{12 (3 + D_N)} - \epsilon^*$$
implies that the term $\tau(\mathbf{\theta}^*)^{12}$ is bounded above by

$$\tau(\mathbf{\theta}^*)^{12} = \exp(12(3 + D_N)(|\mathbf{\theta}^*|_\infty + \epsilon^*)) \leq \exp(L + \vartheta \log N) = \exp(L) N^\vartheta,$$

which in turn implies that the first term is bounded above by

$$C_2 D_N^{12} \tau(\mathbf{\theta}^*)^{12} \leq C_2 \exp(L) D_N^{12} N^\vartheta.$$

Since $\alpha \in [0, 1/2)$ and $\vartheta \in [0, 1/2 - \alpha)$ under Models 2 and 3, the constant ϑ satisfies $\vartheta < 1/2$ while D_N satisfies $D_N = O(\log N)$ by conditions S.1 and S.2. As a result, the first term grows slower than $N^{1/2}$, while the second and third term grow at least as fast as $N^{1/2}$. Thus, there exist constants $C_5 > 0$ and $N_2 \geq N_1$, independent of N and p, such that, for all $N > N_2$,

$$V := \frac{C_4 D_N^3 \tau(\mathbf{\theta}^*)^2}{\min\{C_2 D_N^{12} \tau(\mathbf{\theta}^*)^{12}, N^{1-\alpha}, D_N^3 \tau(\mathbf{\theta}^*)^2 N\}}$$

$$= \frac{C_4 D_N^3 \tau(\mathbf{\theta}^*)^2}{C_2 D_N^{12} \tau(\mathbf{\theta}^*)^{12}} = \frac{C_4}{C_2 D_N^3 \tau(\mathbf{\theta}^*)^{10}} \leq C_5.$$

It is worth noting that D_N and $\tau(\mathbf{\theta}^*)$ may or may not increase as a function of N, but both quantities are bounded below by 1 under Models 2 and 3.

The above results show that, for all $N > N_2 \geq 3$,

$$\mathbb{P}(\mathbf{X} \in \mathbb{H}) \geq 1 - \frac{2}{\max\{N, p\}^2},$$

and, for all $\mathbf{x} \in \mathbb{H}, -\nabla_{\mathbf{\theta}}^2 \tilde{\ell}(\mathbf{\theta}; \mathbf{x})^{-1}$ is invertible and

$$\tilde{\Lambda}_N(\mathbf{\theta}^*) := \max_{\mathbf{x} \in \mathbb{H}} \sup_{\mathbf{\theta} \in \mathcal{B}_{\infty}(\mathbf{\theta}^*, \epsilon^*)} \|(-\nabla_{\mathbf{\theta}}^2 \tilde{\ell}(\mathbf{\theta}; \mathbf{x}))^{-1}\|_\infty$$

$$\leq \max\{U V, U\}$$

$$\leq \max\{1, C_5\} U$$

$$= \frac{C_3 \max\{1, C_5\} D_N^9 \tau(\mathbf{\theta}^*)^{12}}{N^{1-\alpha}}$$

$$\leq \frac{C_3 \max\{1, C_5\} \exp(L) D_N^9 N^\vartheta}{N^{1-\alpha}}$$

$$= \frac{C D_N^9}{N^{1-(\alpha+\vartheta)}},$$

assuming $\alpha \in [0, 1/2)$ and $\vartheta \in [0, 1/2 - \alpha)$, where the constant $C := C_3 \max\{1, C_5\} \exp(L) > 0$ is independent of N and p. \hfill \Box
Lemma 7. Consider Models 1, 2, and 3 with $\alpha \in [0, 1/2)$. Then, for all $x \in \mathbb{X}$,

$$\inf_{\theta \in B_{\infty}(\theta^*, \epsilon^*)} \lambda_{\min}(A(\theta, x)) \geq \frac{N^{1-\alpha}}{12 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2} > 0,$$

where $\lambda_{\min}(A(\theta, x))$ is the smallest eigenvalue of $A(\theta, x)$.

Proof of Lemma 7. By definition,

$$\tilde{\ell}(\theta; x) = \sum_{i<j} N \log \mathbb{P}_\theta(X_{i,j} = x_{i,j} \mid X_{-\{i,j\}} = x_{-\{i,j\}}), \quad x \in \mathbb{X}.$$

Note that the conditional distribution of edge variable $X_{i,j}$ conditional on the event $X_{-\{i,j\}} = x_{-\{i,j\}}$ is an exponential-family distribution with sufficient statistic vector $s(x)$ and natural parameter vector θ. Using standard properties of exponential families, it is straightforward to calculate, for each pair of nodes $\{i, j\} \subset N$ and coordinates $(t, l) \in \{1, \ldots, N\}^2$:

$$-\sum_{i<j} \frac{\partial}{\partial \theta_t \partial \theta_l} \log \mathbb{P}_\theta(X_{i,j} = x_{i,j} \mid X_{-\{i,j\}} = x_{-\{i,j\}})$$

$$= \sum_{i<j} C_{\theta, x_{-\{i,j\}}}(s_t(X), s_l(X)),$$

where $C_{\theta, x_{-\{i,j\}}}(s_t(X), s_l(X))$ denotes the conditional covariance of $s_t(X)$ and $s_l(X)$, computed with respect to the conditional distribution of $X_{i,j}$ given $X_{-\{i,j\}} = x_{-\{i,j\}}$. We have, for all $\{i, j\} \subset N$ and $x_{-\{i,j\}} \in \{0, 1\}^{(N/2)-1}$,

$$C_{\theta, x_{-\{i,j\}}}(s_t(X), s_l(X)) = \sum_{h_1 \in N \setminus \{t\}} \sum_{h_2 \in N \setminus \{l\}} C_{\theta, x_{-\{i,j\}}}(X_{t,h_1}, X_{l,h_2}),$$

as

$$s_t(X) = \sum_{h \in N \setminus \{t\}} X_{t,h}, \quad t \in \{1, \ldots, N\}.$$

For each pair of nodes $\{i, j\} \subset N$, we distinguish two cases:

1. If either $t \not\in \{i, j\}$ or $l \not\in \{i, j\}$, then $s_t(X)$ and $s_l(X)$ cannot both be a function of $X_{i,j}$. It then follows that, conditional on $X_{-\{i,j\}} = x_{-\{i,j\}}$,

$$C_{\theta, x_{-\{i,j\}}}(s_t(X), s_l(X)) = 0,$$

as in this case either $s_t(X)$ or $s_l(X)$ will be almost surely constant.
2. If either \(\{t, l\} = \{i, j\}\) or \(t = l \in \{i, j\}\), then both \(s_t(X)\) and \(s_l(X)\) are functions of \(X_{i,j}\). Conditional on \(X_{-\{i,j\}} = x_{-\{i,j\}}\), edge variables \(X_{a,b}\) corresponding to pairs of nodes \(\{a, b\} \neq \{i, j\}\) are almost surely constant, implying
\[
C_{\theta, x_{-\{i,j\}}} (X_{t,h_1}, X_{l,h_2}) = 0,
\]
for all \(\{t, h_1\} \neq \{i, j\}\) and all \(\{l, h_2\} \neq \{i, j\}\). We then have, in the case \(\{t, l\} = \{i, j\}\) \((t \neq l)\), that
\[
C_{\theta, x_{-\{i,j\}}} (s_t(X), s_l(X)) = \mathbb{V}_{\theta, x_{-\{i,j\}}} X_{i,j},
\]
and in the case when \(t = l \in \{i, j\}\),
\[
C_{\theta, x_{-\{i,j\}}} (s_t(X), s_t(X)) = \mathbb{V}_{\theta, x_{-\{i,j\}}} s_t(X) = \mathbb{V}_{\theta, x_{-\{i,j\}}} X_{i,j}.
\]
As a result, for all \(t \neq l \in \{1, \ldots, N\}\),
\[
(C.5) \quad \sum_{i<j}^N C_{\theta, x_{-\{i,j\}}} (s_t(X), s_t(X)) = \mathbb{V}_{\theta, x_{-\{t,l\}}} X_{t,l}
\]
and all \(t \in \{1, \ldots, N\}\),
\[
(C.6) \quad \sum_{i<j}^N \mathbb{V}_{\theta, x_{-\{i,j\}}} s_t(X) = \sum_{t \in \mathcal{N} \setminus \{t\}} \mathbb{V}_{\theta, x_{-\{t,l\}}} X_{t,l}.
\]
An important consequence of (C.5) and (C.6) is that the matrix \(A(\theta, x)\) given in (C.4) is diagonally balanced in the sense of Hillar and Wibisono [21]. Observe that
\[
\mathbb{V}_{\theta, x_{-\{i,j\}}} X_{i,j} = \mathbb{P}_\theta (X_{i,j} = 1 | X_{-\{i,j\}} = x_{-\{i,j\}}) \times \left(1 - \mathbb{P}_\theta (X_{i,j} = 1 | X_{-\{i,j\}} = x_{-\{i,j\}})\right).
\]
Applying Lemma 14, for all \(x_{-\{i,j\}} \in \{0, 1\}^{(N) - 1}\),
\[
\mathbb{P}_\theta (X_{i,j} = 1 | X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{N^{-\alpha}}{1 + \exp((3 + D_N) \|\theta\|_\infty)};
\]
\[
\mathbb{P}_\theta (X_{i,j} = 1 | X_{-\{i,j\}} = x_{-\{i,j\}}) \leq \frac{1}{1 + \exp(-(3 + D_N) \|\theta\|_\infty)}.
\]
PSEUDO-LIKELIHOOD-BASED M-ESTIMATION

noting that $D_N = 0$ under Model 1, which implies that

$$1 - \mathbb{P}_\theta(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + D_N) \| \theta \|_\infty)}.$$

Thus, for all pairs of nodes $\{i, j\} \subset N$ and all $x_{-\{i,j\}} \in \{0, 1\}^{(N^2) - 1}$,

$$\forall \theta, x_{-\{i,j\}} X_{i,j} \geq \frac{N^{-\alpha}}{(1 + \exp((3 + D_N) \| \theta \|_\infty))^2}.$$

As a result, each element $A_{t,l}(\theta, x)$ of $A(\theta, x)$ is bounded from below by

$$(C.7) \quad A_{t,l}(\theta, x) \geq \frac{N^{-\alpha}}{(1 + \exp((3 + D_N) \| \theta \|_\infty))^2} > 0.$$

By invoking Lemma 2.1 of Hillar and Wibisono [21] using the above bounds, the smallest eigenvalue $\lambda_{\min}(A(\theta, x))$ of the matrix $A(\theta, x)$ satisfies

$$\lambda_{\min}(A(\theta, x)) \geq \frac{N^{-\alpha} (N - 2)}{(1 + \exp((3 + D_N) \| \theta \|_\infty))^2} \geq \frac{N^{-\alpha} (N - 2)}{4 \exp((3 + D_N) \| \theta \|_\infty)^2}.$$

Using the inequality $N - 2 \geq N / 3$ (for $N \geq 3$), we obtain, for all $x \in X$

$$\lambda_{\min}(A(\theta, x)) \geq \frac{N^{-\alpha} (N - 2)}{4 \exp((3 + D_N) \| \theta \|_\infty)^2} \geq \frac{N^{1-\alpha}}{12 \exp((3 + D_N) \| \theta \|_\infty)^2}.$$

Since $\| \theta \|_\infty \leq \| \theta^* \|_\infty + \epsilon^*$ for all $\theta \in B_\infty(\theta^*, \epsilon^*)$, we can conclude that, for all $x \in X$,

$$\inf_{\theta \in B_\infty(\theta^*, \epsilon^*)} \lambda_{\min}(A(\theta, x)) \geq \frac{N^{1-\alpha}}{12 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*))^2}.$$

\[\square \]

Lemma 8. Consider Models 2 and 3 with $\alpha \in [0, 1/2)$ and assume that $\theta^* \in \mathbb{R}^p$ satisfies condition (3.30) in Section 3.4. Then there exists an integer $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$ and all $x \in \mathbb{X}$,

$$\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \frac{c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \leq \frac{12 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*))^2}{N^{1-\alpha}}.$$

Proof of Lemma 8. Based on (C.4), define

$$R(A(\theta, x)^{-1}, c(\theta, x)) := \frac{c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)}{c(\theta, x)^\top c(\theta, x)},$$

$$\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} R(A(\theta, x)^{-1}, c(\theta, x)) \leq \frac{12 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*))^2}{N^{1-\alpha}}.$$
recognizing $R(A(\theta, x)^{-1}, c(\theta, x))$ to be the Rayleigh quotient of the matrix $A(\theta, x)^{-1} \in \mathbb{R}^{N \times N}$, assuming $c(\theta, x) \in \mathbb{R}^{N \setminus 0}$, where $0 \in \mathbb{R}^{N}$ denotes the N-dimensional zero vector. To bound $R(A(\theta, x)^{-1}, c(\theta, x))$, note that if $\lambda_1, \ldots, \lambda_N$ are the eigenvalues of $A(\theta, x)$, then $1/\lambda_1, \ldots, 1/\lambda_N$ are the eigenvalues of $A(\theta, x)^{-1}$. Let $\lambda_{\min}(A(\theta, x))$ be the smallest eigenvalue of $A(\theta, x)$, so that $1/\lambda_{\min}(A(\theta, x))$ is the largest eigenvalue of $A(\theta, x)^{-1}$.

Since the Rayleigh quotient of a matrix is bounded above by the largest eigenvalue of the matrix, Lemma 7 shows that, for all $\theta \in B_\infty(\theta^*, \epsilon^*)$ and all $x \in X$,

$$R(A(\theta, x)^{-1}, c(\theta, x)) \leq \frac{1}{\lambda_{\min}(A(\theta, x))} \leq \frac{12 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2}{N^{1-\alpha}},$$

which implies the bound

$$\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \frac{c(\theta, x)^\top A(\theta, x)^{-1} c(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \leq \frac{12 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2}{N^{1-\alpha}}.$$

Last, but not least, we show that $c(\theta, x) \in \mathbb{R}^{N \setminus 0}$ for all $N > N_0$ and all $x \in \mathbb{H}$. By Lemma 9, there exists an integer $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$ and all $x \in \mathbb{H}$,

$$\inf_{\theta \in B_\infty(\theta^*, \epsilon^*)} c(\theta, x)^\top c(\theta, x) \geq \frac{N}{128 (1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^6} \geq \frac{N}{128 (2 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^6} = \frac{N}{(64) (128) (\exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^6}.$$

The condition (3.30) implies that

$$\|\theta^*\|_\infty \leq \frac{L + \vartheta \log N}{12 (3 + D_N)} - \epsilon^*,$$

which in turn implies that

$$\exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^6 \leq \exp(L/2 + (\vartheta/2) \log N) \leq \exp(L/2) N^{3/2} \leq \exp(L/2) N^{1/4}.$$
using \(\theta \in [0, 1/2] \). As a result,

\[
\inf_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} c(\theta, x)^\top c(\theta, x) \geq \frac{N}{(64) (128) \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*))}^6
\]

\[
\geq \frac{N}{64 (128) \exp(L/2) N^{1/4}}
\]

\[
= \frac{N^{3/4}}{(64) (128) \exp(L/2)}
\]

which implies that \(c(\theta, x) \in \mathbb{R}^N \setminus \{0\} \) for all \(\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \) and all \(x \in \mathbb{H} \).

Lemma 9. Consider Models 2 and 3. Then there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N \geq N_0 \) and all \(x \in \mathbb{H} \),

\[
\inf_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} c(\theta, x)^\top c(\theta, x) \geq \frac{N}{128 \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*))^6}.
\]

Proof of Lemma 9. By (C.4), the coordinates of \(c(\theta, x) \) are given by

\[
c_t(\theta, x) = \sum_{i<j} C_{\theta,x_{-\{i,j\}}}(s_t(X), s_{N+1}(X)), \quad t \in \{1, \ldots, N\}.
\]

Recall that

\[
s_t(X) := \sum_{a \in N \setminus \{t\}} X_{t,a}, \quad t \in \{1, \ldots, N\}.
\]

Then

\[
c_t(\theta, x) = \sum_{i<j} C_{\theta,x_{-\{i,j\}}}(s_t(X), s_{N+1}(X))
\]

\[
= \sum_{i<j} C_{\theta,x_{-\{i,j\}}} \left(\sum_{a \in N \setminus \{t\}} X_{t,a}, s_{N+1}(X) \right)
\]

\[
= \sum_{i<j} \sum_{a \in N \setminus \{t\}} C_{\theta,x_{-\{i,j\}}}(X_{t,a}, s_{N+1}(X)).
\]
Since \(C_{\theta, x-\{i,j\}}(X_{t,a}, s_{N+1}(X)) = 0 \) almost surely for all \(\{i, j\} \neq \{t, a\} \),

\[
\sum_{i<j} \sum_{a \in N \setminus \{t\}} C_{\theta, x-\{i,j\}}(X_{t,a}, s_{N+1}(X)) = \sum_{a \in N \setminus \{t\}} C_{\theta, x-\{t,a\}}(X_{t,a}, s_{N+1}(X)),
\]

as \(C_{\theta, x-\{i,j\}} \) is the conditional covariance operator with respect to the conditional distribution of \(X_{i,j} \) given \(X-\{i,j\} = x-\{i,j\} \), implying \(X_{t,a} \) is almost surely constant whenever \(\{i, j\} \neq \{t, a\} \). Recall that

\[
s_{N+1}(X) := \sum_{i<j} X_{i,j} I_{i,j}(X),
\]

where

\[
I_{i,j}(X) := 1 \left(\sum_{h \in N_i \cap N_j} X_{i,h} X_{j,h} \geq 1 \right), \quad \{i, j\} \subset N.
\]

Thus, we have

\[
C_{\theta, x-\{t,a\}}(X_{t,a}, s_{N+1}(X)) = \sum_{i<j} C_{\theta, x-\{t,a\}}(X_{t,a}, X_{i,j} I_{i,j}(X)),
\]

implying

\[
\sum_{a \in N \setminus \{t\}} C_{\theta, x-\{t,a\}}(X_{t,a}, s_{N+1}(X)) = \sum_{a \in N \setminus \{t\}} \sum_{i<j} C_{\theta, x-\{t,a\}}(X_{t,a}, X_{i,j} I_{i,j}(X)).
\]

The FKG inequality implies that

\[
C_{\theta, x-\{t,a\}}(X_{t,a}, X_{i,j} I_{i,j}(X)) \geq 0 \quad \text{for all} \quad x-\{t,a\} \in \{0, 1\}^{(N)_2},
\]

because the conditional covariance is computed with respect to the conditional distribution of \(X_{t,a} \) and both \(X_{i,j} \) and \(X_{i,j} I_{i,j}(X) \) \(\{i,j\} \subset N \) are monotone non-decreasing functions of \(X_{t,a} \). As a result,

\[
\sum_{a \in N \setminus \{t\}} \sum_{i<j} C_{\theta, x-\{t,a\}}(X_{t,a}, X_{i,j} I_{i,j}(X)) \geq C_{\theta, x-\{t,a\}}(X_{t,a}, X_{t,a} I_{t,a}(X)),
\]
for some \(a \in N \) satisfying \(N_a \cap N_t \neq \emptyset \). Such a node \(a \in N \) exists because each node \(t \in N \) belongs to one or more subpopulations \(A_k (k \in \{1, \ldots, K\}) \) and \(|A_k| \geq 3 \) for all \(k \in \{1, \ldots, K\} \). We then obtain

\[
 c(\theta, x) \top c(\theta, x) \geq \sum_{t=1}^{N} \left(\mathbb{C}_{\theta, x - \{t,a\}}(X_{t,a}, X_{t,a} I_{t,a}(X)) \right)^2.
\]

We can partition the sample space of \(X_{-\{t,a\}} \in \{0, 1\}^{(N')-1} \) based on whether \(I_{t,a}(X) = 0 \) or \(I_{t,a}(X) = 1 \). When \(I_{t,a}(X) = 0 \),

\[
 \mathbb{C}_{\theta, x - \{t,a\}}(X_{t,a}, X_{t,a} I_{t,a}(X)) = \mathbb{C}_{\theta, x - \{t,a\}}(X_{t,a}, 0) = 0
\]

and when \(I_{t,a}(X) = 1 \),

\[
 \mathbb{C}_{\theta, x - \{t,a\}}(X_{t,a}, X_{t,a} I_{t,a}(X)) = \mathbb{V}_{\theta, x - \{t,a\}} X_{t,a}.
\]

By Lemma 14, for pairs \(\{i, j\} \subset N \) with \(N_i \cap N_j \neq \emptyset \), we have the bounds

\[
 P_{\theta}(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + \mathbb{D}_N) \|\theta\|_{\infty})}
\]

and

\[
 P_{\theta}(X_{i,j} = 0 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + \mathbb{D}_N) \|\theta\|_{\infty})},
\]

for all \(x_{-\{i,j\}} \in \{0, 1\}^{(N')-1} \). Using these bounds, we obtain

\[
 \mathbb{V}_{\theta, x - \{t,a\}} X_{t,a} \geq \left(\frac{1}{1 + \exp((3 + \mathbb{D}_N) \|\theta\|_{\infty})} \right)^2,
\]

which shows that

\[
 \mathbb{C}_{\theta, x - \{t,a\}}(X_{t,a}, X_{t,a} I_{t,a}(X)) \geq \frac{I_{t,a}(X)}{(1 + \exp((3 + \mathbb{D}_N) \|\theta\|_{\infty})^2).
\]

For all \(\theta \in \mathcal{B}_\mathcal{N}(\theta^*, \epsilon^*), \|\theta\|_{\infty} \leq \|\theta^*\|_{\infty} + \epsilon^* \), which implies that

\[
 \frac{1}{1 + \exp((3 + \mathbb{D}_N) \|\theta\|_{\infty})} \geq \frac{1}{1 + \exp((3 + \mathbb{D}_N) (\|\theta^*\|_{\infty} + \epsilon^*))}.
\]

We then obtain the following lower bound:

\[
 c(\theta, x) \top c(\theta, x) \geq \sum_{t=1}^{N} \max_{a \in N \setminus \{t\}} \frac{I_{t,a}(x)}{(1 + \exp((3 + \mathbb{D}_N) (\|\theta^*\|_{\infty} + \epsilon^*))^4}
\]

\[
 = \frac{\sum_{t=1}^{N} |I_t(x)|_{\infty}}{(1 + \exp((3 + \mathbb{D}_N) (\|\theta^*\|_{\infty} + \epsilon^*))^4}
\]
where \(I_t(x) := (I_{t,1}(x), \ldots, I_{t,t-1}(x), I_{t,t}(x), \ldots, I_{t,N}(x)) (t \in \mathbb{N}) \). By definition of \(\mathbb{H} \),

\[
\mathbb{H} := \left\{ x \in \mathbb{X} : \sum_{i=1}^{N} \| I_i(x) \|_\infty \geq \frac{N}{2 \left(1 + \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*))^2\right)} \right\},
\]

all \(x \in \mathbb{H} \) satisfy

\[
c(\theta, x)^\top c(\theta, x) \geq \frac{N}{2 \left(1 + \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*)^6\right)} \geq \frac{N}{2 \left(2 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*)^6\right)} \geq \frac{N}{128 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*)^6\right)}.
\]

Lemma 10. Consider Models 2 and 3. Then there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N \geq N_0 \) and all \(x \in \mathbb{H} \),

\[
\sup_{\theta \in B_\infty(\theta^*, \epsilon^*)} \| c(\theta, x) \|_\infty \leq 3 D_N^3
\]

and

\[
\inf_{\theta \in B_\infty(\theta^*, \epsilon^*)} \frac{v(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \geq \frac{1}{576 D_N^6 \exp((3 + D_N) (\| \theta^* \|_\infty + \epsilon^*))^4\right)}.
\]

noting that \(D_N \geq 1 \) under Models 2 and 3.

Proof of Lemma 10. Recall that \(s_{N+1}(X) \) is defined by

\[
s_{N+1}(X) := \sum_{i<j}^N X_{i,j} I_{i,j}(X),
\]

where

\[
I_{i,j}(X) = 1 \left(\sum_{h \in N_i \cap N_j} X_{i,h} X_{j,h} \geq 1 \right), \quad \{i, j\} \subset \mathbb{N}.
\]
According to (C.4), $v(\theta, x)$ is given by

$$v(\theta, x) := \sum_{i<j}^N \sum_{a<b}^N \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{a,b} I_{a,b}(\mathbf{X}))$$

$$= \sum_{i<j}^N \sum_{a<b}^N \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{a,b} I_{a,b}(\mathbf{X})).$$

Given any pair of nodes $\{i, j\} \subset \mathbb{N}$, the FKG inequality implies, for all pairs of nodes $\{a, b\} \subset \mathbb{N}$ and $\{r, t\} \subset \mathbb{N}$, that

$$C_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{a,b} I_{a,b}(\mathbf{X}), X_{r,t} I_{r,t}(\mathbf{X})) \geq 0,$$

because the conditional covariance is computed with respect to the conditional distribution of $X_{i,j}$ and each $X_{a,b} I_{a,b}(\mathbf{X}) (\{a, b\} \subset \mathbb{N})$ is a monotone non-decreasing function of $X_{i,j}$. Thus,

$$v(\theta, x) = \sum_{i<j}^N \sum_{a<b}^N \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{a,b} I_{a,b}(\mathbf{X}))$$

$$\geq \sum_{i<j}^N \sum_{a<b}^N \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{a,b} I_{a,b}(\mathbf{X}))$$

$$\geq \sum_{i<j}^N \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{i,j} I_{i,j}(\mathbf{X}))$$

$$= \sum_{i<j: N_i \cap N_j \neq \emptyset} \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{i,j} I_{i,j}(\mathbf{X})),$$

noting that $I_{i,j}(\mathbf{X}) = 0$ almost surely when $N_i \cap N_j = \emptyset$. Observe that $\mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{i,j} I_{i,j}(\mathbf{X}))$ can be simplified as follows:

$$\mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} (X_{i,j} I_{i,j}(\mathbf{X})) = I_{i,j}(\mathbf{x}) \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} X_{i,j},$$

because $I_{i,j}(\mathbf{X})$ is a function of $\mathbf{X}_{-\{i,j\}}$ but is not a function of $X_{i,j}$, and therefore $I_{i,j}(\mathbf{X})$ is almost surely constant conditional on $\mathbf{X}_{-\{i,j\}} = \mathbf{x}_{-\{i,j\}}$. Hence,

$$v(\theta, x) \geq \sum_{i<j: N_i \cap N_j \neq \emptyset} I_{i,j}(\mathbf{x}) \mathbb{V}_{\theta, \mathbf{x}_{-\{i,j\}}} X_{i,j}.$$
Using Lemma 14 shows that, for all $x_{-\{i,j\}} \in \{0,1\}^{\binom{N}{2}-1}$ and $\{i,j\} \subset N$ satisfying $N_i \cap N_j \neq \emptyset$,

$$
\mathbb{P}_\theta(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + D_N) \|\theta\|_\infty)}
$$

and

$$
\mathbb{P}_\theta(X_{i,j} = 0 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + D_N) \|\theta\|_\infty)},
$$

implying

(C.8) $$
\forall_{\theta, x_{-\{i,j\}}} X_{i,j} \geq \frac{1}{(1 + \exp((3 + D_N) \|\theta\|_\infty))^2}.
$$

Therefore,

\[
v(\theta, x) \geq \sum_{i<j: N_i \cap N_j \neq \emptyset} \frac{I_{i,j}(x)}{(1 + \exp((3 + D_N) \|\theta\|_\infty))^2}
\geq \sum_{i \in N} \sum_{j \in N \setminus \{i\}} \frac{I_{i,j}(x)}{2 (1 + \exp((3 + D_N) \|\theta\|_\infty))^2} \geq \frac{\sum_{i \in N} \max_j \in N \setminus \{i\} I_{i,j}(x)}{2 (1 + \exp((3 + D_N) \|\theta\|_\infty))^2} = \frac{\sum_{i \in N} \|I_i(x)\|_\infty}{2 (1 + \exp((3 + D_N) \|\theta\|_\infty))^2} \geq \frac{\sum_{i \in N} \|I_i(x)\|_\infty}{2 (1 + \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*))^2)},
\]

defining $I_i(x) := (I_{i,1}(x), \ldots, I_{i,i-1}(x), I_{i,i+1}(x), \ldots, I_{i,N}(x))$ for each $i \in N$ and using $\|\theta\|_\infty \leq \|\theta^*\|_\infty + \epsilon^*$ for all $\theta \in B_\infty(\theta^*, \epsilon^*)$. The second inequality follows because $I_{i,j}(x) = 0$ ($x \in X$) for all $\{i,j\} \subset N$ satisfying $N_i \cap N_j = \emptyset$ and by noting that $I_{i,j}(x) = I_{j,i}(x)$ ($\{i,j\} \subset N$). By definition of \mathbb{H},

\[
\mathbb{H} := \left\{ x \in X : \sum_{i=1}^{N} \|I_i(x)\|_\infty \geq \frac{N}{2 (1 + \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*))^2)} \right\}.
\]

Thus, for all $N \geq N_0$, all $\theta \in B_\infty(\theta^*, \epsilon^*)$ and all $x \in \mathbb{H}$,

\[
v(\theta, x) \geq \frac{N}{4 (1 + \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*))^4)}.
\]
We proceed with \(c(\theta, x)^\top c(\theta, x) \). Lemma 9 establishes that

\[
c_t(\theta, x) = \sum_{a \in N \setminus \{t\}} C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X))
\]

\[
= \sum_{a \in N \setminus \{t\}} \sum_{i<j}^N C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X))
\]

\[
= \sum_{a \in N \setminus \{t\} : N_a \cap N_t \neq \emptyset} \sum_{i<j}^N C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)),
\]

noting that, by Proposition 2, \(X_{t,a} \) is independent of all other edge variables when \(N_t \cap N_a = \emptyset \), in which case \(C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) = 0 \). Hence,

\[
\leq D^2_N \left(\max_{a \in N \setminus \{t\}} \sum_{i<j}^N C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) \right).
\]

This bound follows from Lemma 12, which shows that, for all \(t \in N \),

\[
|\{a \in N \setminus \{t\} : N_a \cap N_t
eq \emptyset\}| \leq D^2_N.
\]

If \(N_t \cap N_a \neq \emptyset \), then \(C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) = 0 \) if

1. \(\{i, j\} \neq \{t, a\} \), in which case \(X_{i,j} \) is constant almost surely, and

2. \(I_{i,j}(X) \) is constant in \(X_{t,a} \), implying \(I_{i,j}(X) \) is constant almost surely.

The justification for the above statements regarding constancy is due to the fact that the conditional covariance \(C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) \) is computed with respect to the conditional distribution of \(X_{t,a} \) conditional on \(X_{-\{t,a\}} = x_{-\{t,a\}} \). It is therefore enough to bound

- the number of pairs \(\{i, j\} \subset N \) which do not satisfy either point 1. or 2. above, for a given \(\{t, a\} \subset N \), and

- the quantity \(E C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) \).

Since \(C_{\theta, x_{-\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) \leq 1 \), we focus on the bounding the number of pairs \(\{i, j\} \subset N \) for which \(X_{i,j} I_{i,j}(X) \) is a function of \(X_{t,a} \):

- First, \(\{i, j\} = \{t, a\} \) for only one pair \(\{i, j\} \subset N \).
\[I_{i,j}(X) = 1 \left(\sum_{h \in N_i \cap N_j} X_{i,h} X_{j,h} \geq 1 \right), \quad \{i, j\} \neq \{t, a\}, \]

is a function of \(X_{t,a}\) if and only if one of the following holds:

1. \(\{i, j\} \cap \{t, a\} = a\) and \(t \in N_i \cap N_j\), or
2. \(\{i, j\} \cap \{t, a\} = t\) and \(a \in N_i \cap N_j\).

In either case, the number of possible pairs \(\{i, j\} \neq \{t, a\}\) is bounded above by \(\max\{|N_i|, |N_j|\} \leq D_N\) by Lemma 12, and hence is bounded above by \(2D_N\) in either case.

Recalling \(D_N \geq 1\) under Models 2 and 3, we have the bound

\[\sum_{a \in N \setminus \{t\}} \sum_{t < j} C_{\theta, x_{\setminus\{t,a\}}} (X_{t,a}, X_{i,j} I_{i,j}(X)) \leq D_N^2 (1 + 2D_N) \leq 3D_N^3, \]

which shows, for all \(\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)\) and all \(x \in \mathbb{X}\), that

\[\|c(\theta, x)\|_\infty \leq 3D_N^3, \]

and

\[c(\theta, x) \top c(\theta, x) \leq N(3D_N^3)^2 = 9D_N^6 N. \]

Collecting terms reveals that, for all \(\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)\) and all \(x \in \mathbb{X}\),

\[\frac{v(\theta, x)}{c(\theta, x) \top c(\theta, x)} \geq \frac{N}{4(1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^4) \left(\frac{1}{9D_N^6 N} \right)} \geq \frac{1}{36D_N^6 (1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^4)} \geq \frac{1}{36D_N^6 (2 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^4)} = \frac{1}{576D_N^6 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^4}. \]

In conclusion, for all \(N \geq N_0\) and all \(x \in \mathbb{X}\),

\[\sup_{\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*)} |c(\theta, x)|_\infty \leq 3D_N^3. \]
and
\[
\inf_{\theta \in B_\infty(\theta^*, \epsilon^*)} \frac{v(\theta, x)}{c(\theta, x)^\top c(\theta, x)} \geq \frac{1}{576 D_N^6 \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^4}.
\]

Lemma 11. Consider Models 2 and 3 and assume that \(\theta^* \in \mathbb{R}^p \) satisfies condition (3.30) in Section 3.4 and either condition S.1 or condition S.2 is satisfied. Then there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \),
\[
\mathbb{P}(X \in \mathbb{H}) \geq 1 - \frac{2}{\max\{N, p\}^2},
\]
where
\[
\mathbb{H} := \left\{ x \in X : \sum_{i=1}^{N} \| I_i(x) \|_\infty \geq \frac{N}{2(1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2)} \right\}.
\]

Proof of Lemma 11. Define
\[
A(X) := \sum_{i=1}^{N} \| I_i(X) \|_\infty.
\]
We prove Lemma 11 as follows. First, we show that there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \),
\[
\frac{1}{2} \mathbb{E} A(X) \geq \frac{N}{2(1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2)}.
\]
Second, we prove that
\[
\mathbb{P} \left(|A(X) - \mathbb{E} A(X)| < \frac{1}{2} \mathbb{E} A(X) \right) \geq 1 - \frac{2}{\max\{N, p\}^2},
\]
which implies that the events
\[
A(X) \in \left(\frac{1}{2} \mathbb{E} A(X), \frac{3}{2} \mathbb{E} A(X) \right)
\]
and
\[
A(X) > \frac{1}{2} \mathbb{E} A(X) \geq \frac{N}{2(1 + \exp((3 + D_N)(\|\theta^*\|_\infty + \epsilon^*))^2)}
\]
occur with probability at least \(1 - \frac{2}{\max\{N, p\}^2} \), proving the desired result.

Bounding \((1/2) \mathbb{E} \sum_{i=1}^{N} \|I_i(X)\|_\infty\) from below. We first observe that, for all \(x \in X \),

\[
(C.9) \quad \sum_{i=1}^{N} \|I_i(x)\|_\infty \geq \sum_{i=1}^{N} I_{i,a_i}(x) \quad \text{for all} \quad a_i \in N \setminus \{i\} \quad (i \in N).
\]

Consider any \(\theta \in \mathcal{B}_\infty(\theta^*, \epsilon^*) \) and note that each node \(i \in N \) belongs to at least subpopulation \(A_k \) \((k \in \{1, \ldots, K\})\). Since \(\min_{1 \leq k \leq K} |A_k| \geq 3 \), there exists, for any given node \(i \in N \), at least one other node \(a_i \in N \setminus \{i\} \) such that \(N_i \cap N_{a_i} \neq \emptyset \). In addition, there exists a node \(b \in N_i \cap N_{a_i} \) so that

\[
\mathbb{P}_\theta(I_{i,a_i}(X) = 1) \geq \mathbb{P}_\theta(X_{i,b}X_{a_i,b} = 1),
\]

because the event \(X_{i,b}X_{a_i,b} = 1 \) implies the event \(I_{i,a_i}(X) = 1 \). Thus,

\[
\mathbb{E} \sum_{i=1}^{N} \|I_i(X)\|_\infty \geq \mathbb{E} \sum_{i=1}^{N} I_{i,a_i}(X) = \sum_{i=1}^{N} \mathbb{P}_\theta(I_{i,a_i}(X) = 1) \geq \sum_{i=1}^{N} \mathbb{P}_\theta(X_{i,b}X_{a_i,b} = 1).
\]

Using Lemma 14, we obtain, for all \(\{i, j\} \subset N \) satisfying \(N_i \cap N_j \neq \emptyset \) and all \(x_{-\{i,j\}} \in \{0, 1\}^{(\frac{n}{2})-1} \), the bounds

\[
\mathbb{P}_\theta(X_{i,j} = 0 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + D_N) \|\theta\|_\infty)}
\]

\[
\mathbb{P}_\theta(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \geq \frac{1}{1 + \exp((3 + D_N) \|\theta\|_\infty)}.
\]

As a result,

\[
\mathbb{P}_\theta(X_{i,b}X_{a_i,b} = 1) = \mathbb{P}_\theta(X_{i,b} = 1 \mid X_{a_i,b} = 1) \mathbb{P}_\theta(X_{a_i,b} = 1)
\]

\[
\geq \left(\min_{\{i, j\} \subset N} \min_{x_{-\{i,j\}} \in \{0, 1\}^{(\frac{n}{2})-1}} \mathbb{P}_\theta(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \right)^2
\]

\[
\geq \left(\frac{1}{1 + \exp((3 + D_N) \|\theta^*\|_\infty)} \right)^2
\]

\[
\geq \frac{1}{(1 + \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*)))^2},
\]

\[
46 \quad \text{JONATHAN R. STEWART AND MICHAEL SCHWEINBERGER}
\]
because $|\theta|_\infty \leq |\theta^*|_\infty + \epsilon^*$ for all $\theta \in B_\infty(\theta^*, \epsilon^*)$. Using condition (3.30) in Section 3.4 with $\vartheta \in [0, 1/2 - \alpha)$, we obtain

$$(1 + \exp((3 + D_N) (|\theta^*|_\infty + \epsilon^*))^2 \leq (2 \exp((3 + D_N) (|\theta^*|_\infty + \epsilon^*))^2 \leq 4 \exp \left(\frac{2 (3 + D_N) L + \vartheta \log N}{14 (3 + D_N)} \right)$$

$$= 4 \exp(L/7) N^{\vartheta/7},$$

which implies that

$$P_\theta(X_{i,b} X_{a_i,b} = 1) \geq \frac{1}{(1 + \exp((3 + D_N) (|\theta^*|_\infty + \epsilon^*))^2} \geq \frac{1}{4 \exp(L/7) N^{\vartheta/7}}.$$

We have thus demonstrated that

$$\frac{1}{2} \mathbb{E} \sum_{i=1}^N |I_i(X)|_\infty \geq \frac{1}{2} \sum_{i=1}^N P_\theta(X_{i,b} X_{a_i,b} = 1) \geq \frac{N}{2 (1 + \exp((3 + D_N) (|\theta^*|_\infty + \epsilon^*))^2} \geq \frac{N}{8 \exp(L/7) N^{\vartheta/7}}.$$

Concentrating $\sum_{i=1}^N |I_i(X)|_\infty$. Applying Lemma 1 with

$$s(X) := \sum_{i=1}^N |I_i(X)|_\infty \quad \text{and} \quad \mu(\theta^*) := \mathbb{E} \sum_{i=1}^N |I_i(X)|_\infty$$

shows that, for all $t > 0$,

$$P \left(\left\| \sum_{i=1}^N I_i(X) \right\|_\infty - \mathbb{E} \sum_{i=1}^N |I_i(X)|_\infty < t \right) \geq 1 - 2 \exp \left(- \frac{2 t^2}{\left\| D_N(\theta^*) \right\|_2^2 \Psi^2_N} \right).$$

Choosing

$$t = \sqrt{\log \max\{N, p\}} \left\| D_N(\theta^*) \right\|_2 \Psi_N > 0$$
gives
\[
\mathbb{P}\left(\sum_{i=1}^{N} \| I_i(X) \|_{\infty} - \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} < \sqrt{\log \max\{N, p\} \| D_N(\theta^*) \|_2 \Psi_N} \right) \\
\geq 1 - \frac{2}{\max\{N, p\}^2}.
\]

We will demonstrate below that there exists an integer \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_0 \),

\[
\left(C.10 \right) \quad \frac{1}{2} \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} \geq \frac{N}{8 \exp(L/7) N^{3/7}} \\
\geq \sqrt{\log \max\{N, p\} \| D_N(\theta^*) \|_2 \Psi_N},
\]

which implies that
\[
\mathbb{P}\left(\sum_{i=1}^{N} \| I_i(X) \|_{\infty} - \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} < \frac{1}{2} \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} \right) \\
\geq \mathbb{P}\left(\sum_{i=1}^{N} \| I_i(X) \|_{\infty} - \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} < \sqrt{\log \max\{N, p\} \| D_N(\theta^*) \|_2 \Psi_N} \right) \\
\geq 1 - \frac{2}{\max\{N, p\}^2}.
\]

Bounding \(\sqrt{\log \max\{N, p\}} \) from above. Since \(p = N + 1 \) under Models 2 and 3, we obtain, for all \(N \geq 2 \),

\[
\sqrt{\log \max\{N, p\}} = \sqrt{\log(N + 1)} \leq \sqrt{\log 2 N} \leq \sqrt{2 \log N} \leq 2 \sqrt{\log N}.
\]

Bounding \(\Psi_N \) from above. Lemma 16 shows that, for each pair of nodes \(\{a, b\} \subset N \) with \(N_a \cap N_b = \emptyset \),

\[
\max_{(x, x') \in X \times X: x_{v, w} = x'_{v, w}, \{v, w\} \neq \{a, b\}} \left| \sum_{i=1}^{N} I_{i,a_i}(x) - \sum_{i=1}^{N} I_{i,a_i}(x') \right| = 0,
\]

and, for each pair of nodes \(\{a, b\} \subset N \) with \(N_a \cap N_b \neq \emptyset \),

\[
\max_{(x, x') \in X \times X: x_{v, w} = x'_{v, w}, \{v, w\} \neq \{a, b\}} \left| \sum_{i=1}^{N} I_{i,a_i}(x) - \sum_{i=1}^{N} I_{i,a_i}(x') \right| \leq D_N.
\]
Using Lemma 12, the number of pairs \(\{a, b\} \subset N \) with \(N_a \cap N_b \neq \emptyset \) is bounded above by \(N D_N^2 \), so that

\[
\Psi_N \leq \sqrt{N D_N^2} = D_N \sqrt{N}.
\]

Bounding \(\|D_N(\theta^*)\|_2 \) from above. We have shown that

\[
\sqrt{\log \max\{N, p\}} \Psi_N \|D_N(\theta^*)\|_2 \leq 2 \sqrt{\log N} D_N \sqrt{N} \|D_N(\theta^*)\|_2
\]

\[
= 2 D_N \sqrt{N \log N} \|D_N(\theta^*)\|_2.
\]

To bound \(\|D_N(\theta^*)\|_2 \) from above, we distinguish two scenarios:

1. **Bounding \(\|D_N(\theta^*)\|_2 \) from above when the subpopulations do not intersect** \((\omega_1 = \omega_2 = 0) \): If condition S.1 is satisfied, Lemma 13 implies that

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2 \leq 5 D_N^2,
\]

because \(D_N \geq 1 \) under Models 2 and 3. As a result,

\[
\sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N \leq 10 D_N^3 \sqrt{N \log N}.
\]

Since condition S.1 ensures that \(D_N = O(\log N) \), there exist constants \(C > 0 \) and \(N_0 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N \geq N_0 \),

\[
\sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N \leq 10 D_N^3 \sqrt{N \log N}
\]

\[
\leq C (\log N)^{3/2} \sqrt{N}
\]

\[
< \frac{N}{8 \exp(L/7) N^\vartheta/7}
\]

\[
\leq \frac{1}{2} \mathbb{E} \sum_{i=1}^{N} \|I_i(X)\|_\infty,
\]

because \(\sqrt{N} < N / N^\vartheta/7 \) owing to \(\vartheta < 1/2 - \alpha < 1/2 \).

2. **Bounding \(\|D_N(\theta^*)\|_2 \) from above when the subpopulations intersect** \((\omega_1 > 0, \omega_2 \geq 0) \): If condition S.2 is satisfied, Lemma 13 implies there exist constants \(C_1, C_2, C_3 > 0 \) and \(N_1 \geq 3 \), independent of \(N \) and \(p \), such that, for all \(N > N_1 \),

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2 + \omega_1 C_1 \exp(C_2 D_N^2) \leq C_3 \exp(C_2 D_N^3).
\]
Thus, there exists constants $C_4 > 0$ and $N_2 \geq 3$, independent of N and p, such that, for all $N > N_2$,
\[
\sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N \leq 2 \sqrt{\log N} D_N \sqrt{N} C_3 \exp(C_2 D_N^2) \\
\leq \exp(C_4 D_N^3) \sqrt{N \log N}.
\]

We want to prove that
\[
\sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N \leq \exp(C_4 D_N^3) \sqrt{N \log N} \\
\leq \frac{N}{8 \exp(L/7) N^{\vartheta/7}}.
\]

Note that there exists an integer $N_3 \geq 3$, independent of N and p, such that, for all $N > N_3$, the condition
\[
\exp(C_4 D_N^3) \sqrt{N \log N} \leq \frac{N}{8 \exp(L/7) N^{\vartheta/7}}
\]

is satisfied, by invoking the assumption that $\vartheta = 0$ and concluding that
\[
\exp(C_4 D_N^3) \leq \frac{1}{8 \exp(L/7)} \sqrt{\frac{N}{\log N}},
\]
provided
\[
D_N = o((\log(N / \log N))^{1/3}),
\]
which is condition S.2. As a result, for all $N > \max\{N_1, N_2, N_3\} \geq 3$,
\[
\sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N \leq \frac{N}{8 \exp(L/7) N^{\vartheta/7}} \\
\leq \frac{1}{2} E \sum_{i=1}^{N} |I_i(X)|_\infty.
\]

Conclusion. We have demonstrated that there exists an integer $N_0 \geq 3$, independent of N and p, such that, for all $N > N_0$,
\[
\frac{1}{2} E \sum_{i=1}^{N} |I_i(X)|_\infty \geq \frac{N}{2 (1 + \exp((3 + D_N) (\|\theta^*\|_\infty + \epsilon^*)))^2} \\
\geq \frac{N}{8 \exp(L/7) N^{\vartheta/7}} \\
\geq \sqrt{\log \max\{N, p\}} \|D_N(\theta^*)\|_2 \Psi_N
\]
and
\[
\mathbb{P}\left(\sum_{i=1}^{N} \| I_i(X) \|_{\infty} - \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} \right) < \frac{1}{2} \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty}
\]
\[
\geq \mathbb{P}\left(\sum_{i=1}^{N} \| I_i(X) \|_{\infty} - \mathbb{E} \sum_{i=1}^{N} \| I_i(X) \|_{\infty} \right) < \sqrt{\log \max\{N, p\}} \| D_N(\theta^*) \|_2 \Psi_N
\]
\[
\geq 1 - \frac{2}{\max\{N, p\}^2}.
\]
Combining these two results proves the desired result, as explained at the beginning of the proof of Lemma 11.

C.2. Bounding \(\| D_N(\theta^*) \|_2\). To bound the spectral norm \(\| D_N(\theta^*) \|_2\) of the coupling matrix \(D_N(\theta^*)\), we first review undirected graphical models encoding the conditional independence properties of generalized \(\beta\)-models with dependent edges in Appendices C.2.1 and C.2.2. We then bound \(\| D_N(\theta^*) \|_2\) by using these conditional independence properties in Appendix C.2.3. Auxiliary results can be found in Appendix C.2.4.

C.2.1. Undirected graphical models of random graphs. Let \(\mathcal{G}(V, E)\) be an undirected graph with set of vertices \(V\) and set of edges
\[
E \subseteq \{\{v, w\} : v \in V, w \in V \setminus \{v\}\}.
\]
An undirected graphical model of a random graph \([25]\) is a family of probability measures \(\{\mathbb{P}_\theta, \theta \in \Theta\}\) dominated by a \(\sigma\)-finite measure \(\nu\), with factorization and conditional independence properties \([14]\) of the form
\[
f_\theta(x) := \frac{d\mathbb{P}_\theta}{d\nu}(x) \propto \prod_{C \in \mathcal{C}} g_C(x_C; \theta), \quad x \in \mathcal{X},
\]
where \(\mathcal{C}\) is the set of all maximal complete subsets of the conditional independence graph \(\mathcal{G}(V, E)\) with set of vertices \(V = \{X_1, \ldots, X_M\}\) and set of edges \(E \subset \{\{v, w\} : v \in V, w \in V \setminus \{v\}\}\). The functions \(g_C : \mathcal{X} \times \Theta \mapsto \mathbb{R}^+ \cup \{0\}\) are non-negative functions defined on the maximal complete subsets \(C \in \mathcal{C}\) of the conditional independence graph \(\mathcal{G}\). A complete subset of the conditional independence graph \(\mathcal{G}\) is a subset of vertices such that each pair of vertices is connected by an edge, and a complete subset is maximal complete if no vertices can be added without losing the property of completeness.
The conditional independence graph of Models 2 and 3 with population of nodes $N := \{1, \ldots, 9\}$, consisting of overlapping subpopulations $A_1 := \{1, 2, 3, 4\}$, $A_2 := \{4, 5, 6\}$, and $A_3 := \{7, 8, 9\}$. Edge variables $X_{i,j}$ are represented by circles with labels $\{i, j\}$. If nodes i and j share a subpopulation, $X_{i,j}$ is colored red. If nodes i and j do not share a subpopulation but belong to overlapping subpopulations, $X_{i,j}$ is colored orange. Otherwise, $X_{i,j}$ is colored gray.

The probability density functions introduced in Section 2 are of the form

$$(C.12) \quad f_\theta(x) \propto \prod_{i < j}^N \varphi_{i,j}(x_{i,j}, x_{S_{i,j}}; \theta), \quad x \in X,$$

where $S_{i,j} \subset \{(v, w) : v \in N, w \in N \setminus \{w\} \setminus \{i, j\}\}$ for all $\{i, j\} \subset N$. Probability density functions of the form (C.12) can be represented as probability density functions of the form (C.11) by grouping the functions $\varphi_{i,j}$ in accordance with the maximal complete subsets of conditional independence graph \mathcal{G}. The conditional independence graph \mathcal{G} depends on the model: e.g., the conditional independence graph of Model 1 has no edges, because all edge variables are independent. By contrast, the conditional independence graph of Models 2 and 3 shown in Figure 2 has edges, which indicate the absence of conditional independence among edge variables due to brokerage in overlapping subpopulations.

To distinguish the random graph (representing data structure) from the conditional independence graph \mathcal{G} (representing conditional independence structure, i.e., model structure), we call elements of V vertices rather than nodes, and elements of E edges rather than edge variables.

C.2.2. Conditional independence properties. We prove selected conditional independence properties that help establish consistency results and
convergence rates for generalized β-models with dependent edges.

By Equations (2.1) and (2.2), for each $\{i, j\} \subset N$,

$$
\varphi_{i,j}(x_{i,j}, x_{S_{i,j}}; \theta) := a_{i,j}(x_{i,j}) \exp\left((\theta_i + \theta_j) x_{i,j} + \theta_{N+1} b_{i,j}(x_{i,j}, x_{S_{i,j}})\right),
$$

where

$$
b_{i,j}(x_{i,j}, x_{S_{i,j}}) := \begin{cases}
0 & \text{if } N_i \cap N_j = \emptyset \\
x_{i,j} \mathbb{1} \left(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1 \right) & \text{if } N_i \cap N_j \neq \emptyset.
\end{cases}
$$

Definition 1. Neighborhood intersection property. Consider a random graph model with a probability density function parameterized by (2.1) and (2.2). If $S_{i,j} = \{(a, b) \subset N : (a, b) \in \{i, j\} \times \{N_i \cap N_j\}\}$ for all pairs of nodes $\{i, j\} \subset N$, then the random graph is said to satisfy the neighborhood intersection property.

By construction, generalized β-models with dependent edges satisfy the neighborhood intersection property, which implies conditional independence properties, including—but not limited to—the conditional independence properties established in Proposition 2 below. Define

$$
\mathcal{D}_N := \{\{a, b\} : a \in N, b \in N \setminus \{a\}\}.
$$

We will utilize \mathcal{D}_N as the index set of all possible edge variables, which will be useful in constructing statements which exclude certain edge variables.

Proposition 2. A random graph with overlapping subpopulations A_k of sizes $|A_k| \geq 3$ ($k = 1, \ldots, K$) satisfying the neighborhood intersection property possesses the following conditional independence properties:

1. For all pairs of nodes $\{i, j\} \subset N$ such that $N_i \cap N_j = \emptyset$:

$$
X_{i,j} \perp \perp X_{\mathcal{D}_N \setminus \{i,j\}}.
$$

2. For all pairs of nodes $\{i, j\} \subset N$ such that $N_i \cap N_j \neq \emptyset$ and there exists $k \in \{1, \ldots, K\}$ such that $\{i, j\} \subset A_k$:

$$
X_{i,j} \perp \perp X_{\mathcal{D}_N \setminus ((i,j) \cup \mathcal{N}_{i,j})} \mid X_{\mathcal{N}_{i,j}},
$$
where $\mathcal{N}_{i,j} = J_i^{(j)} \cup J_j^{(i)}$, using the definition

$$J_t^{(v)} := \left[\bigcup_{b \in \mathcal{N}_i \setminus \{v\}} \{v, b\} \right] \cup \left[\bigcup_{b \in \mathcal{N}_i} \{\{a, b\} : (a, b) \in \{v, b\} \times \mathcal{N}_v \cap \mathcal{N}_b\} \right],$$

and with the property that

$$\mathcal{N}_{i,j} \subseteq \{\{a, b\} : a \in \mathcal{N}_i \cup \mathcal{N}_j, b \in \mathcal{N}_i \cup \mathcal{N}_j \setminus \{a\}\}.$$

3. For all pairs of nodes $\{i, j\} \subset \mathcal{N}$ such that $\mathcal{N}_i \cap \mathcal{N}_j \neq \emptyset$ and there exists no $k \in \{1, \ldots, K\}$ such that $\{i, j\} \subset A_k$:

$$X_{i,j} \perp \perp X_{\mathcal{D}_N \setminus (\{i,j\} \cup \mathcal{S}_{i,j})} | X_{\mathcal{S}_{i,j}}.$$

where $\mathcal{S}_{i,j} = \{\{a, b\} \subset \mathcal{N} : (a, b) \in \{i, j\} \times \{\mathcal{N}_i \cap \mathcal{N}_j\}\}$.

Proof of Proposition 2. In the following, we use the characterizations of conditional independence due to Dawid [14], which relate factorization properties of probability density functions to conditional independence properties. Using these characterizations of conditional independence, we establish the conditional independence properties of Proposition 2 by showing that, for each pair of nodes $\{i, j\} \subset \mathcal{N}$, there exists a subset of edge indices $\mathcal{N}_{i,j} \subseteq \mathcal{D}_N \setminus \{i, j\}$ and non-negative functions g and h such that the probability density function can be written as

$$f_\theta(x) \propto g(x_{i,j}, x_{\mathcal{S}_{i,j}}) h(x_{\mathcal{D}_N \setminus \{i,j\}}),$$

where $\mathcal{D}_N := \{\{a, b\} : a \in \mathcal{N}, b \in \mathcal{N} \setminus \{a\}\}$, implying that

$$X_{i,j} \perp \perp X_{\mathcal{D}_N \setminus (\{i,j\} \cup \mathcal{S}_{i,j})} | X_{\mathcal{S}_{i,j}}.$$

Proposition 2 assumes that the neighborhood intersection property is satisfied, allowing us to write

$$f_\theta(x) \propto \prod_{i < j} \psi_{i,j}(x_{i,j}, x_{\mathcal{S}_{i,j}}),$$

where

$$\mathcal{S}_{i,j} = \{\{v, w\} : (v, w) \in \{i, j\} \times \mathcal{N}_i \cap \mathcal{N}_j\},$$

recalling the definition of the node neighborhood sets $\mathcal{N}_i (i \in \mathcal{N})$:

$$\mathcal{N}_i = \{h \in \mathcal{N} \setminus \{i\} : \text{exists } k \in \{1, \ldots, K\} \text{ such that } \{i, h\} \subset A_k\}.$$
Condition 1: Consider any pair of nodes \(\{i, j\} \subset N \) with \(N_i \cap N_j = \emptyset \), that is, nodes \(i \) and \(j \) neither belong to a common subpopulations nor belong to distinct subpopulations that overlap. Since \(\{i, j\} \times N_i \cap N_j = \emptyset \),

\[
\varphi_{i,j}(x_{i,j}, x_{S_{i,j}}) \equiv \varphi_{i,j}(x_{i,j}).
\]

It remains to check whether any \(\varphi_{a,b} \) with \(\{a, b\} \neq \{i, j\} \) can be a function of \(x_{i,j} \), which can happen in one of two different ways:

- \(i \in \{a, b\} \) and \(j \in N_a \cap N_b \), in which case, by the definition of the node neighborhood sets \(N_v (v \in N) \), it must be that \(j \in N_i \); or
- \(j \in \{a, b\} \) and \(i \in N_a \cap N_b \), in which case, similarly, \(i \in N_j \).

We prove that there exists no \(\varphi_{a,b} \) with \(\{a, b\} \neq \{i, j\} \) which is a function of \(x_{i,j} \). As a consequence, taking \(g(x_{i,j}) = \varphi_{i,j}(x_{i,j}) \) and

\[
h(x_{D_N \setminus \{i,j\}}) = \prod_{a < b: \{a,b\} \neq \{i,j\}} \varphi_{a,b}(x_{a,b}, x_{S_{a,b}})
\]

shows that \(f_{\theta}(x) \) can be written as

\[
f_{\theta}(x) \propto g(x_{i,j}) h(x_{D_N \setminus \{i,j\}}),
\]

which implies \(X_{i,j} \perp \perp X_{D_N \setminus \{i,j\}} \), i.e., \(X_{i,j} \) is independent of all others edges.

Condition 2: Consider any pair of nodes \(\{i, j\} \subset N \) with \(N_i \cap N_j \neq \emptyset \) and such that there exists a \(k \in \{1, \ldots, K\} \) such that \(\{i, j\} \subset A_k \). By definition, \(\varphi_{i,j}(x_{i,j}, x_{S_{i,j}}) \) is a function of \(x_{i,j} \). Recall the key condition for the neighborhood intersection assumption, which was that \(S_{a,b} \) satisfies

\[
S_{a,b} = \{ \{v, w\} : (v, w) \in \{a, b\} \times N_a \cap N_b \}, \quad \{a, b\} \subset N.
\]

For any \(\varphi_{a,b}(x_{a,b}, x_{S_{a,b}}) \) with \(\{a, b\} \neq \{i, j\} \) to be a function of \(x_{i,j} \), one of the following must hold:
1. \(i \in \{a, b\}\) and \(j \in \mathcal{N}_a \cap \mathcal{N}_b\), in which case, by the definition of the node neighborhood sets \(\mathcal{N}_v\) (\(v \in \mathcal{N}\)), \(j \in \mathcal{N}_i\); or

2. \(j \in \{a, b\}\) and \(i \in \mathcal{N}_a \cap \mathcal{N}_b\), in which case, similarly, \(i \in \mathcal{N}_j\).

Consider the first case: \(i \in \{a, b\}\) and \(j \in \mathcal{N}_a \cap \mathcal{N}_b\), and without loss, take \(a = i\). The condition for this case implies that \(j \in \mathcal{N}_i \cap \mathcal{N}_b\). By assumption, \(\{i, j\} \subset \mathcal{A}_k\) for some \(k \in \{1, \ldots, K\}\), which implies \(j \in \mathcal{N}_i\). If \(j \in \mathcal{N}_b\), then \(b \in \mathcal{N}_j\), implying \(\varphi_{i,b}\) is a function of \(x_{i,j}\) for all \(\{i, b\} \subset \mathcal{N}\) with \(b \in \mathcal{N}_j\). Applying the same argument to the second case where \(j \in \{a, b\}\) and \(i \in \mathcal{N}_a \cap \mathcal{N}_b\) reveals that \(\varphi_{a,b}\) is a function of \(x_{i,j}\) for all \(\{j, b\}\) with \(b \in \mathcal{N}_i\).

Summarily, \(\varphi_{a,b}\) is a function of \(x_{i,j}\) if it is in the following list:

- \(\varphi_{i,j}(x_{i,j}, x_{\mathcal{S}_{i,j}})\), where \(\{v, w\} \in \mathcal{S}_{i,j}\) if \((v, w) \in \{i, j\} \times \mathcal{N}_i \cap \mathcal{N}_j\).
- \(\varphi_{i,b}(x_{i,b}, x_{\mathcal{S}_{i,b}})\) (\(b \in \mathcal{N}_j\)), where \(\{v, w\} \in \mathcal{S}_{i,b}\) if \((v, w) \in \{i, b\} \times \mathcal{N}_i \cap \mathcal{N}_b\).
- \(\varphi_{j,b}(x_{j,b}, x_{\mathcal{S}_{j,b}})\) (\(b \in \mathcal{N}_i\)), where \(\{v, w\} \in \mathcal{S}_{j,b}\) if \((v, w) \in \{j, b\} \times \mathcal{N}_j \cap \mathcal{N}_b\).

This collection of functions is a function of all edge variables \(X_{a,b}\) with indices \(\{a, b\}\) in \(\mathcal{J}_{i}^{(j)} \cup \mathcal{J}_{j}^{(i)} \cup \{i, j\}\), where

\[
\mathcal{J}_{i}^{(v)} := \left[\bigcup_{b \in \mathcal{N}_i \setminus \{v\}} \{v, b\} \right] \cup \left[\bigcup_{b \in \mathcal{N}_i} \{a, b\} : (a, b) \in \{v, b\} \times \mathcal{N}_v \cap \mathcal{N}_b \right].
\]

Thus, there exist non-negative functions \(g\) and \(h\) such that the probability density function can be written as follows:

\[
f_\Theta(x) \propto g(x_{i,j}, x_{\mathcal{S}_{i,j}}) h(x_{\mathcal{D}_N \setminus \{i,j\}}),
\]

where \(\mathcal{S}_{i,j} = \mathcal{J}_i^{(j)} \cup \mathcal{J}_j^{(i)}\), implying that

\[
X_{i,j} \perp X_{\mathcal{D}_N \setminus \{(i,j) \cup \mathcal{S}_{i,j}\}} | X_{\mathcal{S}_{i,j}}.
\]

As \(\{i, j\} \subset \mathcal{N}_i \cup \mathcal{N}_j\),

\[
\mathcal{S}_{i,j} \subseteq \{\{a, b\} : a \in \mathcal{N}_i \cup \mathcal{N}_j, b \in \mathcal{N}_i \cup \mathcal{N}_j \setminus \{a\}\}.
\]

Condition 3: Consider any pair of nodes \(\{i, j\} \subset \mathcal{N}\) with \(\mathcal{N}_i \cap \mathcal{N}_j \neq \emptyset\) and such that there exists no \(k \in \{1, \ldots, K\}\) such that \(\{i, j\} \subset \mathcal{A}_k\). It is clear that \(\varphi_{i,j}\) is a function of \(x_{i,j}\). For any \(\varphi_{a,b}(x_{a,b}, x_{\mathcal{S}_{a,b}})\) with \(\{a, b\} \neq \{i, j\}\) to be a function of \(x_{i,j}\), one of the following must hold:

- \(i \in \{a, b\}\) and \(j \in \mathcal{N}_a \cap \mathcal{N}_b\), in which case, by the definition of the node neighborhood sets \(\mathcal{N}_v\) (\(v \in \mathcal{N}\)), it must be that \(j \in \mathcal{N}_i\); or
• \(j \in \{a, b\} \) and \(i \in N_a \cap N_b \) in which case, similarly, \(i \in N_j \).

In both conditions, \(i \in N_j \) and \(j \in N_i \), which implies that \(\{i, j\} \subset A_k \) for some \(k \in \{1, \ldots, K\} \), violating the assumption that no such \(k \) exists. Thus, \(\varphi_{a,b}(x_{a,b}, x_{a,b}) \) is a function of \(x_{i,j} \) if and only if \(\{a, b\} = \{i, j\} \). As a result, there exist non-negative functions \(g \) and \(h \) such that

\[
f_{\theta}(x) \propto g(x_{i,j}, x_{i,j}) h(x_{\mathcal{D}_N \setminus \{i,j\}})
\]

which implies \(X_{i,j} \perp \perp X_{\mathcal{D}_N \setminus \{i,j\}} \mid X_{\mathcal{S}_{i,j}} \).

\[\text{Lemma 12. Consider Models 2 and 3. Then } \max_{t \in \mathcal{N}} |N_t| \leq D_N \text{ and } \max_{t \in \mathcal{N}} |\{a \in \mathcal{N} \setminus \{t\} : N_a \cap N_t \neq \emptyset\}| \leq D_N^2, \]

where \(D_N := \max_{\{i,j\} \subset \mathcal{N}} |\mathcal{N}_{i,j}| \).

Proof of Lemma 12. By Proposition 2, for any \(\{i, j\} \subset \mathcal{N} \) satisfying \(N_i \cap N_j \neq \emptyset \) and for which there exists \(k \in \{1, \ldots, K\} \) such that \(\{i, j\} \subset A_k \), we have \(\mathcal{N}_{i,j} = \mathcal{J}_i^{(j)} \cup \mathcal{J}_j^{(i)} \), where, for all \(t, v \subset \mathcal{N} \),

\[
\mathcal{J}_i^{(v)} := \left[\bigcup_{b \in N_t \setminus \{v\}} \{v, b\} \bigcup \bigcup_{b \in N_v} \{a, b\} : (a, b) \in \{v, b\} \times N_v \cap N_b \right].
\]

Then, for each \(t \in \mathcal{N} \), there exists \(v \in \mathcal{N} \setminus \{t\} \) and \(k \in \{1, \ldots, K\} \) such that \(\{t, v\} \subset A_k \), due to the assumption that \(|A_k| \geq 3 \) for all \(k \in \{1, \ldots, K\} \) under Models 2 and 3, implying that

\[
|\mathcal{N}_{v,t}| = |\mathcal{J}_i^{(v)} \cup \mathcal{J}_v^{(t)}| \geq \left| \left[\bigcup_{b \in N_t \setminus \{v\}} \{v, b\} \right] \cup \left[\bigcup_{b \in N_v \setminus \{t\}} \{t, b\} \right] \right| \geq |N_t|.
\]

Thus \(D_N := \max_{\{i,j\} \subset \mathcal{N}} |\mathcal{N}_{i,j}| \geq |N_t| \) for all \(t \in \mathcal{N} \). Next, for all \(t \in \mathcal{N} \),

\[
|\{a \in \mathcal{N} \setminus \{t\} : N_a \cap N_t \neq \emptyset\}| \leq \bigcup_{r \in N_t} N_r \leq |N_t| \left(\max_{r \in \mathcal{N}} |N_r| \right) \leq D_N^2,
\]

using the above-proven fact that \(\max_{t \in \mathcal{N}} |N_t| \leq D_N \).

\[\text{C.2.3. Bounding the spectral norm of the coupling matrix.} \text{ We bound the spectral norm } \|\mathcal{D}_N(\theta^*)\|_2 \text{ of the coupling matrix } \mathcal{D}_N(\theta^*). \text{ Throughout, we adopt the notation used in Section 3 of the manuscript and denote the number of edge variables by } M = \binom{N}{2} \text{ and edge variables by } X_1, \ldots, X_M.\]

**Lemma 13. Consider Models 2 and 3. Assume that Assumption A is satisfied and that } \theta^* \in \Theta = \mathbb{R}^p \text{ satisfies condition (3.30) in Section 3.4.}\]
1. If the subpopulations do not intersect \((\omega_1 = \omega_2 = 0)\) and \(\theta^* \in \mathbb{R}^{N+1}\) satisfies condition (3.30) with \(\vartheta \in [0, 1/2 - \alpha)\), then

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4D_N^2.
\]

2. If the subpopulations do intersect \((\omega_1 > 0)\) and \(\theta^* \in \mathbb{R}^{N+1}\) satisfies condition (3.30) with \(\vartheta = 0\), then there exists finite constants \(C_1 > 0\) and \(C_2 > 0\), independent of \(N\) and \(p\), such that

\[
\|D_N(\theta^*)\|_2 \leq 1 + 4D_N^2 + \omega_1 C_1 \exp(C_2 D_N^3).
\]

Proof of Lemma 13. We adapt the coupling approach of van den Berg and Maes [39, pp. 759–760] from the literature on Gibbs measures and Markov random fields to coupling conditional distributions of subgraphs of random graphs. Let \(i \in \mathcal{V}\) be any vertex of the conditional independence graph \(\mathcal{G}\), corresponding to edge variable \(X_i\), and consider any \(\mathbf{x}_{1;i-1} \in \{0,1\}^{i-1}\). Define

\[
\mathbb{P}_{i,\mathbf{x}_{1;i-1},0}(X_{i+1:M} = \mathbf{a}) := \mathbb{P}(X_{i+1:M} = \mathbf{a} \mid X_{1;i-1} = \mathbf{x}_{1;i-1}, X_i = 0)
\]

and

\[
\mathbb{P}_{i,\mathbf{x}_{1;i-1},1}(X_{i+1:M} = \mathbf{a}) := \mathbb{P}(X_{i+1:M} = \mathbf{a} \mid X_{1;i-1} = \mathbf{x}_{1;i-1}, X_i = 1),
\]

where \(X_{1;i-1} = (X_1, \ldots, X_{i-1}), X_{i+1:M} = (X_{i+1}, \ldots, X_M)\), and \(\mathbf{a} \in \{0,1\}^{M-i}\).

We divide the proof into three parts:

I. Coupling conditional distributions of subgraphs.

II. Bounding the elements of the coupling matrix \(D_N(\theta^*)\).

III. Bounding the spectral norm \(\|D_N(\theta^*)\|_2\) of the coupling matrix \(D_N(\theta^*)\).

I. Coupling conditional distributions of subgraphs. Given any vertex \(i \in \mathcal{V}\) of the conditional independence graph \(\mathcal{G}\) and any \(\mathbf{x}_{1;i-1} \in \{0,1\}^{i-1}\), we construct a coupling \((X^*, X^{**})\) of the conditional probability distributions \(\mathbb{P}_{i,\mathbf{x}_{1;i-1},0}\) and \(\mathbb{P}_{i,\mathbf{x}_{1;i-1},1}\). Some background on coupling can be found in Lindvall [27].

It will be convenient to assume that the coupling \((X^*, X^{**})\) takes on values in the set \(\{0,1\}^M \times \{0,1\}^M\) rather than the set \(\{0,1\}^{M-i} \times \{0,1\}^{M-i}\), where we set \((X^*_{1;i-1}, X^*_i) = (\mathbf{x}_{1;i-1}, 0)\) and \((X^{**}_{1;i-1}, X^{**}_i) = (\mathbf{x}_{1;i-1}, 1)\) with probability 1. As a consequence, the random vectors \(X^* \in \{0,1\}^M\) and \(X^{**} \in \{0,1\}^M\) have the same dimension as random vector \(X \in \{0,1\}^M\). We construct a coupling of the conditional probability distributions \(\mathbb{P}_{i,\mathbf{x}_{1;i-1},0}\) and \(\mathbb{P}_{i,\mathbf{x}_{1;i-1},1}\) as follows:
1. Initialize the subset of vertices $\mathcal{V} = \{1, \ldots, i\}$.

2. Check whether there exists a vertex $j \in \mathcal{V} \setminus \mathcal{V}$ connected to a vertex $v \in \mathcal{V}$ in the conditional independence graph \mathcal{G} such that the coupling disagrees at vertex $v \in \mathcal{V}$, in the sense that $X_v^* \neq X_v^{**}$.

 (a) If such a vertex j exists, pick the smallest such vertex, and let (X_j^*, X_j^{**}) be distributed according to an optimal coupling of $\mathbb{P}(X_j = \cdot \mid X_{\mathcal{V}} = x_{\mathcal{V}}^*)$ and $\mathbb{P}(X_j = \cdot \mid X_{\mathcal{V}} = x_{\mathcal{V}}^{**})$.

 (b) If no such vertex j exists, select the smallest $j \in \mathcal{V} \setminus \mathcal{V}$ and let (X_j^*, X_j^{**}) be distributed according to an optimal coupling of $\mathbb{P}(X_j = \cdot \mid X_{\mathcal{V}} = x_{\mathcal{V}}^*)$ and $\mathbb{P}(X_j = \cdot \mid X_{\mathcal{V}} = x_{\mathcal{V}}^{**})$. In this case, an optimal coupling will ensure $X_j^* = X_j^{**}$ with probability 1, as conditional independence properties and the equality of edge variables in the conditioning statement in this case will imply

 $$\mathbb{P}(X_j = a \mid X_{\mathcal{V}} = x_{\mathcal{V}}^*) = \mathbb{P}(X_j = a \mid X_{\mathcal{V}} = x_{\mathcal{V}}^{**}), \quad a \in \{0, 1\},$$

 resulting in a total variation distance of 0.

 In both steps, an optimal coupling exists [27, Theorem 5.2, p. 19], but it may not be unique. Any optimal coupling will do.

3. Replace \mathcal{V} by $\mathcal{V} \cup \{j\}$ and repeat Step 2 until $\mathcal{V} \setminus \mathcal{V} = \emptyset$.

Denote the resulting coupling distribution by $Q_{i, x_{1:i-1}}$. Lemma 17 verifies that the above algorithm constructs a valid coupling of the conditional distributions $P_{i, x_{1:i-1}, 0}$ and $P_{i, x_{1:i-1}, 1}$, in the sense that the marginal distributions of X^* and X^{**} are $P_{i, x_{1:i-1}, 0}$ and $P_{i, x_{1:i-1}, 1}$, respectively.

For any two distinct vertices $i \in \mathcal{V}$ and $j \in \{i + 1, \ldots, M\}$ of the conditional independence graph \mathcal{G}, define the event $i \leftrightarrow j$ to be the event that there exists a path of disagreement between i and j in \mathcal{G}. A path of disagreement $i \leftrightarrow j$ between vertices X_i and X_j is a sequence of two or more distinct vertices (X_i, \ldots, X_j) in the conditional independence graph \mathcal{G} starting at vertex X_i and ending at vertex X_j, such that

- each subsequent pair of vertices (X_v, X_w) in the sequence is connected by an edge in the conditional independence graph \mathcal{G}, which indicates the absence of conditional independence of vertices X_v and X_w;

- the coupling $(X_{i+1:M}^*, X_{i+1:M}^{**}) \in \{0, 1\}^{M-i} \times \{0, 1\}^{M-i}$ with joint probability mass function $Q_{\theta, i, x_{1:i-1}}$ disagrees at each vertex X_v in the sequence, in the sense that $X_v^* \neq X_v^{**}$.

Theorem 1 of van den Berg and Maes [39, p. 753] shows that
\[(C.13) \quad Q_{i,x_1:i-1}(X_j^* \neq X_j^{**}) = Q_{i,x_1:i-1}(i \leftrightarrow j) \leq B_\pi(i \leftrightarrow j),\]
where B_π is a Bernoulli product measure on $\{0,1\}^M$ with probability vector \(\pi \in [0,1]^M\). The coordinates π_v of π are given by
\[
\begin{align*}
\pi_v &:= \begin{cases}
0 & \text{if } v \in \{1, \ldots, i-1\} \\
1 & \text{if } v = i \\
\max_{(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}} \pi_{v,x_{-v},x'_{-v}} & \text{if } v \in \{i+1, \ldots, M\},
\end{cases}
\end{align*}
\]
where
\[
\pi_{v,x_{-v},x'_{-v}} := \|\mathbb{P}(\cdot \mid X_{-v} = x_{-v}) - \mathbb{P}(\cdot \mid X'_{-v} = x'_{-v})\|_{TV}.
\]
Observe that the total variation distance
\[
\|\mathbb{P}(\cdot \mid X_{-v} = x_{-v}) - \mathbb{P}(\cdot \mid X'_{-v} = x'_{-v})\|_{TV}
\]
is equal to
\[
\sup_{x_{v} \in \{0,1\}} |\mathbb{P}(X_v = x_v \mid X_{-v} = x_{-v}) - \mathbb{P}(X_v = x_v \mid X'_{-v} = x'_{-v})|.
\]
The Bernoulli product measure B_π assumes that independent Bernoulli experiments are carried out at vertices $v \in \{1, \ldots, M\}$. The Bernoulli experiment at vertex $v \in \{i+1, \ldots, M\}$ has two possible outcomes: Either vertex v is open, in the sense that the event $\{X_v^* \neq X_v^{**}\}$ occurs and hence vertex v allows a path of disagreement from i to j to pass through, or vertex v is closed. A vertex v is open with probability π_v, and closed with probability $1 - \pi_v$. By construction, vertices $v \in \{1, \ldots, i-1\}$ are closed with probability 1, and vertex i is open with probability 1.

The coupling argument of van den Berg and Maes [39] is useful, in that it translates the hard problem of bounding probabilities of events involving dependent random variables into the more convenient problem of bounding probabilities of events involving independent random variables. Indeed, we can bound the above-diagonal elements $D_{i,j}(\theta^*)$ of $D_N(\theta^*)$ by
\[(C.14) \quad D_{i,j}(\theta^*) := \sup_{x_{1:i-1} \in \{0,1\}^{i-1}} Q_{i,x_1:i-1}(X_j^* \neq X_j^{**}) \leq B_\pi(i \leftrightarrow j).\]
By the construction of $D_N(\theta^*)$, the below-diagonal and diagonal elements of $D_N(\theta^*)$ are 0 and 1, respectively. We define $\pi^* \in (0, 1)$ by
\[
\pi^* := \max_{1 \leq v \leq M} \pi_v,
\]
and note that Lemma 18, together with the assumption that $\theta^* \in \Theta_N = \mathbb{R}^p$ satisfies (3.30), implies that
\[
\pi^* \leq \frac{1}{1 + \exp(-L - \vartheta \log N)} < 1,
\]
where $L \in [0, \infty)$ and $\vartheta \in [0, \infty)$ are the same constants as in (3.30), assumed to be independent of N and p. Let
\[
U := \frac{1}{1 + \exp(-L - \vartheta \log N)}
\]
and define the vector $\xi \in [0, 1]^M$ by
\[
\xi_i := \begin{cases}
0 & \text{if } v \in \{1, \ldots, i - 1\} \\
1 & \text{if } v = i \\
U & \text{if } v \in \{i + 1, \ldots, M\}
\end{cases}
\]
Observe that the probabilities $\mathbb{B}_\pi(i \not\leftrightarrow j)$ of the events $\{i \not\leftrightarrow j\}$ are non-decreasing in the coordinates of π, so that
\[
\mathbb{B}_\pi(i \not\leftrightarrow j) \leq \mathbb{B}_\xi(i \not\leftrightarrow j).
\]
We bound the elements $D_i,j(\theta^*)$ of $D_N(\theta^*)$ by bounding the probabilities $\mathbb{B}_\xi(i \not\leftrightarrow j)$ of the events $\{i \not\leftrightarrow j\}$.

II. Bounding the elements of the coupling matrix $D_N(\theta^*)$. To bound the elements $D_i,j(\theta^*)$ of $D_N(\theta^*)$, we bound the probabilities $\mathbb{B}_\xi(i \not\leftrightarrow j)$ of the events $\{i \not\leftrightarrow j\}$ using Assumption A. To do so, define
\[
S_{G,i,k} := \{v \in V \setminus \{i\} : d_G(i, v) = k\}, \quad k = 1, \ldots, M - 1,
\]
where $d_G(i, v)$ is the graph distance (i.e., the length of the shortest path) between vertices $i \in V$ and $v \in V$ in the conditional independence graph G. The set $S_{G,i,k} \subseteq V$ represents the subset of vertices in the conditional independence graph G at graph distance k from vertex i in G.
We bound $B_\xi(i \leftrightarrow j)$ by placing restrictions on the subpopulation structure, which determines which edges are present in \mathcal{G}. To do so, define the subpopulation graph \mathcal{G}_A to be the graph with the set of subpopulations $\{A_1, \ldots, A_K\}$ as vertices and edges between vertices A_r and A_l if and only if $A_r \cap A_l \neq \emptyset$. In \mathcal{G}_A, two vertices corresponding to subpopulations A_r and A_l are connected by an edge if and only if they overlap. Let $d_{\mathcal{G}_A}(A_r, A_l)$ denote the graph distance (i.e., the length of the shortest path) between vertices A_r and A_l in \mathcal{G}_A. Define, for all $A_r \in \{A_1, \ldots, A_K\}$ and $k \in \{1, \ldots, K-1\}$,

$$V_{A_r,k} := \{A_l \in \{A_1, \ldots, A_K\} \setminus \{A_r\} : d_{\mathcal{G}_A}(A_r, A_l) = k\}.$$

Let $g : \{1, 2, \ldots\} \mapsto [0, \infty)$ be such that, for all $K \in \{1, 2, \ldots\}$,

$$|V_{A_r,k}| \leq g(k), \quad k \in \{1, \ldots, K-1\}, \quad \text{for all } A_r \in \{A_1, \ldots, A_K\}.$$

In words, $g(k)$ bounds the number of subpopulations at graph distance k from any given subpopulation in \mathcal{G}_A for all conceivable subpopulations and thus all conceivable subpopulation structures, i.e., for all \mathcal{G}_A defined for subpopulations A_1, \ldots, A_K at all values of $K \in \{1, 2, \ldots\}$.

Models 2 and 3 satisfy Definition 1 and posses the neighborhood intersection property. By Proposition 2, the dependence neighborhood of any edge variable X_i between nodes $\{a, b\} \subset N$ is not larger than the subset of edge indices contained in the set $M_{a,b} := \{\{c, d\} : c \in N_a \cup N_b, d \in N_a \cup N_b \setminus \{c\}\}$, i.e., the edge variables contained in the set \mathcal{R}_i will correspond to edge variables between pairs of nodes in $M_{a,b}$. We construct a graph covering \mathcal{G}^* of the conditional independence graph \mathcal{G} as follows:

1. Initialize \mathcal{G}^* with the same set of vertices and edges as \mathcal{G}.

2. For each vertex X_i in \mathcal{G} corresponding to an edge variable between nodes $\{a, b\} \subset N$ with degree greater than 0 in \mathcal{G}, add edges between X_i and any other edge variables X_j contained in the subgraph $X_{M_{a,b}}$ which are not already present in \mathcal{G}.

The construction of \mathcal{G}^* ensures that the dependence neighborhood of any given vertex X_i in \mathcal{G}^* corresponding to the edge variable between pair of nodes $\{a, b\} \subset N$ is either empty or is equal to the set of vertices corresponding to edge variables contained in the subgraph $X_{M_{a,b}}$. Moreover, the fact that $\mathcal{G} \subseteq \mathcal{G}^*$ implies

$$\mathbb{E}_\xi(i \leftrightarrow j \text{ in } \mathcal{G}) \leq \mathbb{E}_\xi(i \leftrightarrow j \text{ in } \mathcal{G}^*).$$

In words, the probability of the existence of a path of disagreement does not decrease through the addition of edges in the graph. Henceforth and for ease
of presentation, the event \(i \leftrightarrow j \) will represent a path of disagreement in the graph covering \(G^* \) of \(G \) and we will assume \(S_{i,k} \equiv S_{G^*,i,k} \).

We bound each \(|S_{i,k}|\) \((k \in \{1, 2, \ldots\})\) for arbitrary \(i \in V \) with non-zero degree in \(G^* \):

- **Bounding \(|S_{i,1}|\).** Let \(X_i \) denote the edge variable between pair of nodes \(\{a, b\} \subset N \). By definition, \(S_{i,1} \) contains all vertices in \(G^* \) corresponding to edge variables \(X_j \) which lie in the dependence neighborhood of edge variable \(X_i \) in \(G^* \). By the construction of \(G^* \), the dependence neighborhood of edge variable \(X_i \) in \(G^* \) is equal to the set of edge variables contained in the subgraph \(X_{M_{a,b}} \), the number of which is bounded above by 4 \(D_N^2 \):
 \[
 |M_{a,b}| \leq |N_a \cup N_b| \leq (|N_a| + |N_b|)^2 \leq (2 \max\{|N_a|, |N_b|\})^2 \leq 4 D_N^2,
 \]
 where by Lemma 12, \(D_N \geq \max_{t \in N} |N_t| \). Hence, \(|S_{i,1}| \leq 4 D_N^2\).

- **Bounding \(|S_{i,2}|\).** Consider any \(j \in S_{i,2} \) and let \(X_i \) denote the edge variable between pair of nodes \(\{a, b\} \subset N \). The shortest path between edge variables \(X_i \) and \(X_j \) in \(G^* \) is of length 2, implying the following:
 1. \((F.1)\) \(X_j \) is not in the dependence neighborhood of \(X_i \) in \(G^* \).
 2. \((F.2)\) In \(G^* \), there is at least one edge variable \(X_l \) in the dependence neighborhood of \(X_i \) such that \(X_j \) is likewise in the dependence neighborhood of \(X_l \).

By the construction of \(G^* \), facts \((F.1)\) and \((F.2)\) imply there exist

- a pair of nodes \(\{v, w\} \subseteq N_a \cup N_b \) such that \(X_l \) is the edge variable between \(\{v, w\} \), and
- a pair of nodes \(\{c, d\} \subseteq N_v \cup N_w \) such that \(X_j \) is the edge variable between \(\{c, d\} \) and \(\{c, d\} \not\subseteq N_a \cup N_b \), otherwise \(X_j \) would be in the dependence neighborhood of \(X_i \), violating the assumption that \(j \in S_{i,2} \).

\[
\begin{align*}
X_i & \quad \{a, b\} \\
X_l & \quad \{v, w\} \\
X_j & \quad \{c, d\}
\end{align*}
\]

Recall the definition, for all \(v \in N \),

\[
N_v := \{w \in N \setminus \{v\} : \text{exists } r \in \{1, \ldots, K\} \text{ such that } \{v, w\} \subset A_r\}.
\]

As \(\{c, d\} \subseteq N_v \cup N_w \), there must exist \(r, t \in \{1, \ldots, K\} \) such that:
– either \{c, v\} \subset A_r or \{c, w\} \subset A_t, and
– either \{d, v\} \subset A_r or \{d, w\} \subset A_t.

Since \{c, d\} \not\subseteq N_a \cup N_b, therefore \{a, b\} \not\subseteq A_r \cup A_t \subseteq N_r \cup N_d. Finally, \{v, w\} \subseteq N_a \cup N_b implies that there exists \(n, m \in \{1, \ldots, K\}\) such that
– either \{v, a\} \subset A_n or \{v, b\} \subset A_n, and
– either \{w, a\} \subset A_m or \{w, b\} \subset A_m.

As a result, \((A_n \cup A_m) \cap (A_r \cup A_t) \not= \emptyset\), implying either \(v\) or \(w\) belong to a subpopulation \(A_z \not\subseteq N_a \cup N_b\) for which \(d_{G_A}(A_z, A_y) = 1\) for some \(y \in \{1, \ldots, K\}\) with \(A_y \subseteq N_a \cup N_b\), i.e., a subpopulation with graph distance at least 1 in \(G_A\) from all subpopulations represented in \(N_a \cup N_b\) and equal to 1 for at least one such subpopulation. The same holds for either \(c\) or \(d\). Thus,

\[|S_{i,2}| \leq 2 D_N^3 (g(1) + 1) g(1),\]

which follows from the following argument:

– First, the number of subpopulations contained in \(N_a \cup N_b\) is bounded above by \(2(g(1) + 1)\), because \(g(1)\) bounds the number of subpopulations which overlap with any other subpopulation, so that \(g(1) + 1\) bounds the number of subpopulations to which any node \(a \in N\) or \(b \in N\) may belong;

– Second, the number of subpopulations with graph distance 1 in the subpopulation graph \(G_A\) to any subpopulation represented in \(N_a \cup N_b\) is bounded above by \(2 (g(1) + 1) g(1)\);

– Third, note that either \(c\) or \(d\) must be in one of the subpopulations with graph distance 1 in \(G_A\) to at least one of the subpopulations represented in \(N_a \cup N_b\). Without loss, let this be \(c\). Then the total number of such nodes \(c\) which are contained in one of the aforementioned subpopulations at graph distance 1 is bounded above by \(2 D_N (g(1) + 1) g(1)\), using the bound \(|A_k| \leq |N_i| \leq D_N\) from Lemma 12 which holds for all \(k \in \{1, \ldots, K\}\) and \(i \in A_k\).

– Finally, we bound the number of possible \(d\) that may be paired with \(c\). Note \(X_j\) has non-zero degree in \(G^*\). By Proposition 2, \(X_j\) is independent of all other edges if \(N_c \cap N_d = \emptyset\). Thus, we bound the number of edge variables \(X_j\) between node \(c \in N\) and nodes \(d \in N \setminus \{c\}\) for which \(N_c \cap N_d \not= \emptyset\) using Lemma 12:

\[|\{d \in N \setminus \{c\} : N_c \cap N_d \not= \emptyset\}| \leq D_N^2.\]
Hence, the number of such \(d \) (for a given \(c \)) numbers no more than \(D^2_N \); the total of which is bounded above by \(2D^3_N (g(1) + 1) g(1) \).

- **Bounding \(|S_{i,k}| \) for \(k \in \{3,4,\ldots\} \).** Consider any \(k \in \{3,4,\ldots\} \) and any \(j \in S_{i,k} \). Let \(X_i \) be the edge variable between nodes \(\{a,b\} \subset N \) and \(X_j \) be the edge variable between pair of nodes \(\{c,d\} \subset N \). For \(j \in S_{i,k} \), there must exist an \(l \in S_{i,k-1} \) such that \(j \in S_{l,1} \). Let \(X_l \) be the edge variable between nodes \(\{v,w\} \subset N \). Leveraging arguments from the case bounding \(|S_{i,1}| \) above, \(\{c,d\} \subset N_v \cup N_w \), implying both \(c \) and \(d \) belong to at least one subpopulation to which either \(v \) or \(w \) also belong. Assume the following:

\[
\begin{align*}
(A.1) & \ h \in S_{i,k-1} \text{ if and only if } X_h \text{ is an edge variable between nodes } \{r,t\} \subset N \text{ and either } r \text{ or } t \text{ belongs to a subpopulation at graph distance } k-2 \text{ in } G_A \text{ to a subpopulation represented in } N_a \cup N_b \text{ and not less than } k-2 \text{ to all others in } N_a \cup N_b. \\
(A.2) & \ h \in S_{i,k-2} \text{ if and only if } X_h \text{ is an edge variable between nodes } \{r,t\} \subset N \text{ and either } r \text{ or } t \text{ belongs to a subpopulation at graph distance } k-3 \text{ in } G_A \text{ to a subpopulation represented in } N_a \cup N_b \text{ and not less than } k-3 \text{ to all others in } N_a \cup N_b.
\end{align*}
\]

We have shown above that (A.1) and (A.2) are satisfied when \(k = 3 \):

- \(h \in S_{i,1} \) corresponds to edge variables \(X_h \) between nodes \(\{r,t\} \subset N_a \cup N_b \), in which case both \(r \) and \(t \) belong to a subpopulation represented in \(N_a \cup N_b \) and therefore have graph distance 0 in \(G_A \) to a subpopulation represented in \(N_a \cup N_b \).

- \(h \in S_{i,2} \) corresponds to edge variables \(X_h \) between nodes \(\{r,t\} \subset N \) for which either \(r \) or \(t \) belongs to a subpopulation which is not represented in \(N_a \cup N_b \), but which is at graph distance 1 in \(G_A \) to a subpopulation represented in \(N_a \cup N_b \), and at graph distance no less than 1 to all others in \(N_a \cup N_b \).

Assumptions (A.1) and (A.2) require that neither \(v \) nor \(w \) belong to a subpopulation at graph distance less than or equal to \(k-2 \) in \(G_A \) from any subpopulation represented in \(N_a \cup N_b \). Leveraging the argument used in the case bounding \(|S_{i,2}| \): For \(\{c,d\} \subset N_v \cup N_w \), either \(c \) or \(d \) must belong to a subpopulation \(A_r \ (r \in \{1,\ldots,K\}) \) jointly with either \(v \) or \(w \) which is at graph distance at least \(k-1 \) in \(G_A \) from any subpopulation represented in \(N_i \cup N_j \). Thus, there must exist some \(q \in \{1,\ldots,K\} \) such that \(A_r \cap A_q \neq \emptyset \) and for which both of the following are satisfied:

\[
- \ d_{G_A}(A_q, A_y) \geq k-2 \text{ for all } y \in \{1,\ldots,K\} \text{ satisfying } A_y \subset N_a \cup N_b;
\]
\(- d_{S_i}(A_r, A_y) = k - 2\) for at least one \(y \in \{1, \ldots, K\}\) satisfying \(A_y \subseteq N_a \cup N_b\).

Hence, there exists at least one \(y \in \{1, \ldots, K\}\) satisfying \(A_y \subseteq N_a \cup N_b\) for which \(d_{S_i}(A_r, A_y) = k - 1\). Repeating the counting argument from the case bounding \(|S_{i,2}|\) above shows that the number of such pairs \(\{a, b\} \subset N\) is bounded above by

\[
|S_{i,k}| \leq 2 D_N^3 (g(1) + 1) g(k - 1),
\]

and the result is proved by induction.

From the above, we have the bounds \(|S_{i,1}| \leq 4 D_N^2\) and

\[
|S_{i,k}| \leq 2 D_N^3 (g(1) + 1) g(k - 1), \quad k \in \{2, 3, \ldots\}. \quad (C.15)
\]

We proceed with bounding \(D_{i,j}(\Theta^*)\) under Assumption A. Define the function \(g : \{1, 2, \ldots\} \mapsto [0, \infty)\) by

\[
g(k) = \omega_1 + \frac{\omega_2}{2 D_N^3} \log k, \quad k \in \{1, 2, \ldots\}, \quad (C.16)
\]

where \(\omega_1 \geq 0\) and \(\omega_2 \in \{0, \omega_1\}\) are independent of \(N\) and \(p\) by Assumption A, and \(\omega_2 \in [0, \omega_1]\) additionally satisfies

\[
\omega_2 < \frac{1}{(\omega_1 + 1) |\log(1 - U)|}.
\]

Using (C.16) and (C.15), we obtain the bounds \(|S_{i,1}| \leq 4 D_N^2\) and

\[
|S_{i,k}| \leq (\omega_1 + 1)(2 D_N^3 \omega_1 + \omega_2 \log(k - 1)), \quad k \in \{2, 3, \ldots\}. \quad (C.15)
\]

By construction,

\[
\mathbb{E}_\xi(v \text{ is open in } \mathcal{G}^*) \leq U < 1, \quad v \in \{i + 1, \ldots, M\}.
\]

For there to be a path of disagreement \(i \leftrightarrow j\) in \(\mathcal{G}^*\) between a vertex \(i \in \{1, \ldots, M\}\) and \(j \in S_{i,k}\), there must be at least one open vertex in each of the sets \(S_{i,1}, \ldots, S_{i,k-1}\) and \(j\) must be open (placing no restrictions on the connectedness of vertices within sets or between two sequential sets); note that \(i\) is open with probability 1. The probability that there exists at least one open vertex \(v \in S_{i,1}\) is bounded above by

\[
1 - (1 - U)^{|S_{i,1}|} \leq 1 - (1 - U)^{4 D_N^2} \leq 1,
\]
and for $k \in \{2, 3, \ldots\}$, the same is bounded above by

$$1 - (1 - U)^{|S_{i,k}|} \leq 1 - (1 - U)^{(\omega_1 + 1)(2D_N^3 + \omega_2 \log(k-1))} = 1 - (1 - U)^{C_1D_N^3 + C_2 \log(k-1)},$$

defining $C_1 := 2\omega_1 (\omega_1 + 1) \in [0, \infty)$ and $C_2 := \omega_2 (\omega_1 + 1) \in [0, \infty)$. Since the events that vertices are open are independent under the Bernoulli product measure B_ξ, we obtain

$$B_\xi(i \leftrightarrow j) \leq U \left[1 - (1 - U)^{4D_N^2} \prod_{l=2}^{k-1} \left[1 - (1 - U)^{C_1D_N^3 + C_2 \log(l-1)}\right]\right]$$

$$\leq \left[1 - (1 - U)^{4D_N} \right]^{k-2} \leq \left[1 - (1 - U)^{C_1D_N^3 + C_2 \log(k-2)}\right]^{k-2},$$

by the monotonicity of logarithms. We then bound

$$1 - (1 - U)^{C_1D_N^3 + C_2 \log(k-2)} \leq \exp\left(-(1 - U)^{C_1D_N^3 + C_2 \log(k-2)}\right),$$

using the inequality $1 - z \leq \exp(-z)$ ($z \in (0, 1)$). We proceed by writing

$$\exp\left(-(1 - U)^{C_1D_N^3 + C_2 \log(k-2)}\right) = \exp\left(-\exp\left([C_1D_N^3 + C_2 \log(k-2)] \log(1 - U)\right)\right) = \exp\left(-\exp\left(-[C_1D_N^3 + C_2 \log(k-2)] \log(1 - U)\right)\right) = \exp\left(-\exp(-C_1D_N^3 \log(1 - U))\right) (k-2)^{-C_2 \log(1 - U)} \right),$$

where in the above we used the fact that $\log(1 - U) < 0$. Define

$$A := \exp(-C_1D_N^3 \log(1 - U)) \in (0, 1),$$

noting that $D_N \geq 1$ under Models 2 and 3. Then

$$\left[1 - (1 - U)^{C_1D_N^3 + C_2 \log(k-2)}\right]^{k-2} \leq \left[\exp\left(-A (k-2)^{1-C_2 \log(1 - U)}\right)\right]^{k-2} = \exp\left(-A (k-2)^{1-C_2 \log(1 - U)}\right),$$
demonstrating the bound (for $i \in \{1, \ldots, M\}$ and $j \in S_{i,k}$)

$$B_{\pi}(i \leftrightarrow j) \leq B_{\xi}(i \leftrightarrow j) \leq \exp \left(-A \left(k - 2 \right)^{1 - C_2 \log(1-U)} \right).$$

We hence obtain (for $i \in \{1, \ldots, M\}$ and $j \in S_{i,k}$)

\begin{equation}
(C.17) \quad \mathcal{D}_{i,j}(\theta^*) \leq \exp \left(-A \left(k - 2 \right)^{1 - C_2 \log(1-U)} \right).
\end{equation}

III. Bounding the spectral norm $\|\mathcal{D}_N(\theta^*)\|_2$ of the coupling matrix $\mathcal{D}_N(\theta^*)$. To bound the spectral norm $\|\mathcal{D}_N(\theta^*)\|_2$ of the coupling matrix $\mathcal{D}_N(\theta^*)$, we first use Hölder’s inequality to obtain

$$\|\mathcal{D}_N(\theta^*)\|_2 \leq \sqrt{\|\mathcal{D}_N(\theta^*)\|_1 \|\mathcal{D}_N(\theta^*)\|_\infty}.$$

Next, we form a symmetric $M \times M$ matrix \mathcal{T} by defining

$$\mathcal{T} := \mathcal{D}_N(\theta^*) + \mathcal{D}_N(\theta^*)^\top - \text{diag}(\mathcal{D}_N(\theta^*)),$$

where $\mathcal{D}_N(\theta^*)^\top$ is the $M \times M$ transpose of $\mathcal{D}_N(\theta^*)$ and $\text{diag}(\mathcal{D}_N(\theta^*))$ is the $M \times M$ diagonal matrix with elements $\mathcal{D}_{1,1}, \ldots, \mathcal{D}_{M,M}$ on the main diagonal. By the construction of \mathcal{T}, the elements $\mathcal{T}_{i,j}$ of \mathcal{T} are given by

$$\mathcal{T}_{i,j} = \begin{cases}
\mathcal{D}_{i,j}(\theta^*) & \text{if } j > i \\
\mathcal{D}_{i,i}(\theta^*) & \text{if } i = j \\
\mathcal{D}_{j,i}(\theta^*) & \text{if } j < i
\end{cases},$$

where $\mathcal{D}_{i,i}(\theta^*) = 1$ ($i = 1, \ldots, M$) by the definition of $\mathcal{D}_N(\theta^*)$. Using the fact that $\mathcal{T}_{i,j} = \max(\mathcal{D}_{i,j}(\theta^*), \mathcal{D}_{j,i}(\theta^*))$ ($i, j = 1, \ldots, M$), we obtain

$$\|\mathcal{D}_N(\theta^*)\|_1 = \max_{1 \leq j \leq M} \sum_{i=1}^{M} |\mathcal{D}_{i,j}(\theta^*)| \leq \max_{1 \leq j \leq M} \sum_{i=1}^{M} |\mathcal{T}_{i,j}| = \|\mathcal{T}\|_1$$

and

$$\|\mathcal{D}_N(\theta^*)\|_\infty = \max_{1 \leq i \leq M} \sum_{j=1}^{M} |\mathcal{D}_{i,j}(\theta^*)| \leq \max_{1 \leq i \leq M} \sum_{j=1}^{M} |\mathcal{T}_{i,j}| = \|\mathcal{T}\|_\infty.$$

In addition, we know that $\mathcal{T}_{i,j} = \mathcal{T}_{j,i}$ ($i, j = 1, \ldots, M$), which implies that

$$\|\mathcal{T}\|_1 = \|\mathcal{T}^\top\|_\infty = \|\mathcal{T}\|_\infty.$$

As a consequence, we obtain
\[\|DN(\theta^*)\|_2 \leq \sqrt{\|DN(\theta^*)\|_1 \|DN(\theta^*)\|_\infty} \leq \sqrt{\|\mathcal{I}\|_1 \|\mathcal{T}\|_\infty} = \|\mathcal{T}\|_\infty, \]
where \(\|\mathcal{T}\|_\infty\) can be bounded above by using (C.14):
\[\|\mathcal{T}\|_\infty = \max_{1 \leq i \leq M} \sum_{j=1}^{M} |T_{i,j}| \leq 1 + \max_{1 \leq i \leq M} \sum_{j=1, j\neq i}^{M} B_\xi(i \leftrightarrow j). \]

Hence using (C.17) along with Assumption A,
\[\|DN(\theta^*)\|_2 \leq 1 + \max_{1 \leq i \leq M} \sum_{j=1, j\neq i}^{M} B_\xi(i \leftrightarrow j) \]
and, for all \(i \in \{1, \ldots, M\}\),
\[\sum_{j=1, j\neq i}^{M} B_\xi(i \leftrightarrow j) \]
\[\leq |S_{i,1}| + \sum_{k=2}^{\infty} |S_{i,k}| \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right) \]
\[\leq 4 D_N^2 + \sum_{k=2}^{\infty} \left(C_1 D_N^3 + C_2 \log(k-1)\right) \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right), \]
using the above bounds on the number of vertices \(|S_{i,k}|\) which are at graph distance in \(k\) to any given vertex \(i \in \mathcal{V}\) in \(G^\ast\). We focus on bounding the infinite series
\[\sum_{k=2}^{\infty} \left(C_1 D_N^3 + C_2 \log(k-1)\right) \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right) \]
\[= C_1 D_N^3 \sum_{k=2}^{\infty} \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right) \]
\[+ C_2 \sum_{k=2}^{\infty} \log(k-1) \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right). \]

For the first series,
\[\sum_{k=2}^{\infty} \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right) = 1 + \sum_{k=1}^{\infty} \exp\left(-A k^{1-C_2 |\log(1-U)|}\right), \]
noting that \(\exp(-A(k-2)^{1-C_2 |\log(1-U)|}) = 1 \) when \(k = 2 \). By a Taylor expansion of \(\exp(z) \), we can establish the inequality \(\exp(z) > z^u / u! \) for any \(z > 0 \) and any \(u \in \{1, 2, \ldots\} \), which in turn establishes the inequality \(\exp(-z) < u! / z^u \). Using this inequality,

\[
(C.18) \quad \exp\left(-A k^{1-C_2 |\log(1-U)|}\right) < \frac{u!}{A^u k^u (1-C_2 |\log(1-U)|)}.
\]

Assume that \(1 - C_2 |\log(1-U)| > 0 \), which is satisfied when

\[
\omega_2 < \frac{1}{(\omega_1 + 1) |\log(1-U)|},
\]

recalling \(C_2 := \omega_2 (\omega_1 + 1) > 0 \). Taking \(u = [2 / (1 - C_2 |\log(1-U)|)] > 0 \),

\[
\sum_{k=1}^{\infty} \exp\left(-A k^{1-C_2 |\log(1-U)|}\right) \leq \frac{u!}{A^u} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{u!}{A^u} \left(\frac{\pi^2}{6}\right).
\]

Thus, the first infinite series is bounded above by

\[
(C.19) \quad C_1 D_N^3 \left(1 + \frac{u!}{A^u} \left(\frac{\pi^2}{6}\right)\right).
\]

For the second infinite series, we write

\[
C_2 \sum_{k=2}^{\infty} \log(k-1) \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right)
\]

\[
= C_2 \sum_{k=3}^{\infty} \log(k-1) \exp\left(-A (k-2)^{1-C_2 |\log(1-U)|}\right)
\]

\[
= C_2 \sum_{k=1}^{\infty} \log(k+1) \exp\left(-A k^{1-C_2 |\log(1-U)|}\right).
\]

We employ \((C.18) \) once more to show that

\[
\exp\left(-A k^{1-C_2 |\log(1-U)|}\right) \leq \frac{u!}{A^u k^3},
\]

taking \(u = [3 / (1 - C_2 |\log(1-U)|)] > 0 \) this time. Thus,

\[
\sum_{k=1}^{\infty} \log(k+1) \exp\left(-A k^{1-C_2 |\log(1-U)|}\right) \leq \frac{u!}{A^u} \sum_{k=1}^{\infty} \frac{\log(k+1)}{k^3}
\]

\[
\leq \frac{u!}{A^u} \sum_{k=1}^{\infty} \frac{k}{k^3} = \frac{u!}{A^u} \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{u!}{A^u} \left(\frac{\pi^2}{6}\right),
\]
using the inequality \(\log(z + 1) \leq z \) for \(z \in (0, \infty) \). As a result, the second infinite series is bounded above by

\[
(C.20) \quad C_2 \frac{u!}{A^u} \left(\frac{\pi^2}{6} \right).
\]

Combining (C.19), (C.20), and the bound \(2 \geq \frac{\pi^2}{6} \),

\[
\| D_N(\theta^\star) \|_2 \leq 1 + 4 D_N^2 + C_1 D_N^3 \left(1 + 2 \frac{u!}{A^u} \right) + 2 C_2 \frac{u!}{A^u}
\]

\[
\leq 1 + 4 D_N^2 + \max\{C_1, C_2\} A^{-u} ((A^u + 2 u!) D_N^3 + 2 u!)
\]

\[
\leq 1 + 4 D_N^2 + \max\{C_1, C_2\} A^{-u} ((1 + 2 u!) D_N^3 + 1 + 2 u!)
\]

\[
\leq 1 + 4 D_N^2 + \max\{C_1, C_2\} A^{-u} (1 + 2 u!) (D_N^3 + 1),
\]

recalling that \(A := \exp(-C_1 D_N^3 | \log(1-U)|) \), which implies \(A^u \in (0, 1) \).

Next, using the definitions of \(C_1 \) and \(C_2 \), and the assumption that \(\omega_2 \leq \omega_1 \),

\[
\max\{C_1, C_2\} = \max\{2 \omega_1 (\omega_1 + 1), \omega_2 (\omega_1 + 1)\} \leq 2 \omega_1 (\omega_1 + 1).
\]

Then, there exist finite constants

\[
C_3 := 2 (\omega_1 + 1) (1 + 2 u!) > 0
\]

and \(C_4 := C_1 | \log(1-U)| > 0 \), independent of \(N \) and \(p \), such that

\[
\| D_N(\theta^\star) \|_2 \leq 1 + 4 D_N^2 + \omega_1 C_3 \exp(C_4 D_N^3) (1 + D_N^3).
\]

We complete the proof by noticing two key facts:

- If \(\omega_1 = 0 \), then \(\omega_1 (1 + D_N^3) \leq 2 \omega_1 D_N^3 \) for all \(D_N^3 \).
- Since \(D_N \geq 1 \) under Models 2 and 3, \(\omega_1 (1 + D_N^3) \leq 2 \omega_1 D_N^3 \).

Thus, there exists \(C_5 := 2 C_3 > 0 \), independent of \(N \) and \(p \), such that

\[
\| D_N(\theta^\star) \|_2 \leq 1 + 4 D_N^2 + \omega_1 C_5 D_N^3 \exp(C_4 D_N^3)
\]

\[
\leq 1 + 4 D_N^2 + \omega_1 C_5 \exp(C_4 D_N^3 + 3 \log D_N)
\]

\[
\leq 1 + 4 D_N^2 + \omega_1 C_5 \exp(C_6 D_N^3),
\]

taking \(C_6 := (3 + C_4) > 0 \) and since \(\log D_N \leq D_N^3 \). Recall that

\[
U := \frac{1}{1 + \exp(-L - \vartheta \log N)}
\]

is bounded away from 1 when \(\vartheta = 0 \).

We then have the following cases:
• If subpopulations overlap, i.e., $\omega_1 > 0$ and $\omega_2 \in [0, \omega_1]$, provided

$$\omega_2 < \frac{1}{(1 + \omega_1) |\log(1 - U)|},$$

then

$$\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2 + \omega_1 C_5 \exp(C_6 D_N^3),$$

provided $\vartheta = 0$ to ensure the constants are independent of N and p.

• If subpopulations do not overlap, i.e., $\omega_1 = \omega_2 = 0$, then

$$\|D_N(\theta^*)\|_2 \leq 1 + 4 D_N^2.$$

Since D_N does not depend on U, we allow $\vartheta > 0$. \qed
C.2.4. Auxiliary results. We prove Lemmas 14–18, which establish auxiliary results utilized in the proof of Lemma 13.

Lemma 14. Consider Models 1, 2, and 3 with $\theta \in \mathbb{R}^p$ and $\alpha \in [0, 1/2)$. Then there exist functions $L_k : \mathbb{R}^p \mapsto (0, 1)$ and $U_k : \mathbb{R}^p \mapsto (0, 1)$ $(k = 0, 1)$ such that, for all $\{i, j\} \subset N$ and $x_{-\{i,j\}} \in \{0, 1\}^{M-1}$,

$$0 < L_k(\theta) \leq \mathbb{P}_{\theta}(X_{i,j} = k \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \leq U_k(\theta) < 1.$$

The functions $L_k(\theta)$ and $U_k(\theta)$ $(k = 0, 1)$ are given by

\[
L_1(\theta) := \begin{cases}
1 + \exp((3 + D_N) \|\theta\|_{\infty}) & \text{if } N_i \cap N_j \neq \emptyset \\
N^{-\alpha} \frac{1}{1 + \exp(3 \|\theta\|_{\infty})} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

\[
U_1(\theta) := \begin{cases}
1 + \exp(-3 \|\theta\|_{\infty}) & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp(-3 \|\theta\|_{\infty})} N^\alpha & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

\[
L_0(\theta) := \begin{cases}
1 + \exp((3 + D_N) \|\theta\|_{\infty}) & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp(3 \|\theta\|_{\infty})} N^{-\alpha} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

\[
U_0(\theta) := \begin{cases}
1 + \exp(-3 \|\theta\|_{\infty}) & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp(-3 \|\theta\|_{\infty})} N^{-\alpha} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

Proof of Lemma 14. Consider any pair of nodes $\{i, j\} \subset N$ and any $x_{-\{i,j\}} \in \{0, 1\}^{N-1}$. We can express the full conditional probability

$$\mathbb{P}_{\theta}(X_{i,j} = x_{i,j} \mid X_{-\{i,j\}} = x_{-\{i,j\}})$$

two different ways depending whether N_i and N_j are disjoint.
First, if \(N_i \cap N_j = \emptyset \),

\[
P_\theta(X_{i,j} = x_{i,j} \mid X_{-\{i,j\}} = x_{-\{i,j\}}) = \frac{\exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j}) \rangle) N^{-\alpha x_{i,j}}}{\exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 0) \rangle) + \exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 1) \rangle)) N^{-\alpha}}
\]

\[
= \frac{1}{g(0; x_{-\{i,j\}}, x_{i,j}, \theta) N^{\alpha x_{i,j}} + g(1; x_{-\{i,j\}}, x_{i,j}, \theta) N^{-\alpha (1-x_{i,j})}}
\]

defining, for \(y \in \{0, 1\} \),

\[
g(y; x_{-\{i,j\}}, x_{i,j}, \theta) := \exp((\langle \theta, s(x_{-\{i,j\}}, y) - s(x_{-\{i,j\}}, x_{i,j}) \rangle)
\]

Note \(g(x_{i,j}; x_{-\{i,j\}}, x_{i,j}, \theta) = 1 \) for all \(x_{-\{i,j\}} \in \{0, 1\}^{(N)\setminus 1} \) and all \(\theta \in \mathbb{R}^p \).

Second, if \(N_i \cap N_j \neq \emptyset \),

\[
P_\theta(X_{i,j} = x_{i,j} \mid X_{-\{i,j\}} = x_{-\{i,j\}}) = \frac{\exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j}) \rangle)}{\exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 0) \rangle) + \exp((\langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 1) \rangle))}
\]

\[
= \frac{1}{1 + g(1-x_{i,j}; x_{-\{i,j\}}, x_{i,j}, \theta)}
\]

Next, observe that

\[
\max_{x_{-\{i,j\}} \in \{0, 1\}^{M-1}} \left| s_l(x_{-\{i,j\}}, x_{i,j} = 0) - s_l(x_{-\{i,j\}}, x_{i,j} = 1) \right|
\]

\[
\begin{cases}
0 & \text{if } l \in \{1, \ldots, N\} \setminus \{i, j\} \\
1 & \text{if } l \in \{i, j\} \\
1 + D_N & \text{if } l = N + 1 \text{ and } N_i \cap N_j \neq \emptyset \\
0 & \text{if } l = N + 1 \text{ and } N_i \cap N_j = \emptyset
\end{cases}
\]

The bound on \(s_{N+1} \) follows from Lemma 15, whereas the conditions follow from Proposition 2: \(s_{N+1} \) is a function of only dependent edge variables and \(X_{i,j} \) is independent of all other edges in the graph when \(N_i \cap N_j = \emptyset \). The bound on \(s_l(x) \) \((l \in N) \) follows because \(s_l(x) = \sum_{h \in N \setminus \{l\}} x_{l,h} \) is a function
of $x_{i,j}$ if and only if $l \in \{i,j\}$. As a result, the triangle inequality shows that
\[
|\langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 1) \rangle - \langle \theta, s(x_{-\{i,j\}}, x_{i,j} = 0) \rangle| \leq \begin{cases}
(3 + D_N) \|\theta\|_\infty & \text{if } N_i \cap N_j \neq \emptyset \\
3 \|\theta\|_\infty & \text{if } N_i \cap N_j = \emptyset,
\end{cases}
\]
implying, for $\{i, j\} \subseteq N$ with $N_i \cap N_j \neq \emptyset$,
\[
\exp(-(3 + D_N) \|\theta\|_\infty) \leq g(1 - x_{i,j}; x_{-\{i,j\}}, x_{i,j}, \theta) \leq \exp((3 + D_N) \|\theta\|_\infty),
\]
and for $\{i, j\} \subseteq N$ with $N_i \cap N_j = \emptyset$,
\[
\exp(-3 \|\theta\|_\infty) \leq g(1 - x_{i,j}; x_{-\{i,j\}}, x_{i,j}, \theta) \leq \exp(3 \|\theta\|_\infty).
\]
As a result, for all $k \in \{0, 1\}$,
\[
0 < L_k(\theta) \leq \mathbb{P}(X_{i,j} = k \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \leq U_k(\theta) < 1,
\]
where
\[
L_1(\theta) := \begin{cases}
1 & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{N^{-\alpha}}{1 + \exp(3 \|\theta\|_\infty)} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]
and
\[
U_1(\theta) := \begin{cases}
1 & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp(-3 \|\theta\|_\infty) N^\alpha} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]
We obtain $L_0(\theta)$ and $U_0(\theta)$ by noting
\[
\mathbb{P}(X_{i,j} = 0 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) = 1 - \mathbb{P}(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}),
\]
implying
\[
1 - U_1(\theta) \leq \mathbb{P}(X_{i,j} = 0 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) \leq 1 - L_1(\theta),
\]
which allows us to obtain

\[
L_0(\theta) := \begin{cases}
1 & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp((3 + D_N) \|\theta\|_\infty)} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

and

\[
U_0(\theta) := \begin{cases}
1 & \text{if } N_i \cap N_j \neq \emptyset \\
\frac{1}{1 + \exp(-3 \|\theta\|_\infty) N^{-\alpha}} & \text{if } N_i \cap N_j = \emptyset
\end{cases}
\]

\[\square\]

Lemma 15. Consider

\[s_{N+1}(x) = \sum_{i<j}^{N} x_{i,j} I_{i,j}(x),\]

where

\[I_{i,j}(x) := \begin{cases}
0 & \text{if } N_i \cap N_j = \emptyset \\
1 & \text{if } N_i \cap N_j \neq \emptyset
\end{cases}\left(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1 \right) \]

Then, for all \(\{i, j\} \subset N\),

\[
\max_{(x, x') \in \mathbb{X} \times \mathbb{X}, \{v, w\} \neq \{i, j\}} |s_{N+1}(x) - s_{N+1}(x')| \leq 1 + D_N,
\]

where \(D_N := \max_{\{i, j\} \subset N} |\mathcal{M}_{i,j}|\).

Proof of Lemma 15. Consider any pair of nodes \(\{i, j\} \subset N\). The number of \(x_{a,b} I_{a,b}(x) \) \((\{a, b\} \neq \{i, j\})\) which are a function of \(x_{i,j}\) includes

- \(\{a, b\} = \{i, b\} \) \((b \in N \setminus \{i, j\})\) satisfying \(j \in N_i \cap N_b \subseteq N_i\), and
- \(\{a, b\} = \{j, b\} \) \((b \in N \setminus \{i, j\})\) satisfying \(i \in N_j \cap N_b \subseteq N_j\).
As a result, the number of summands \(x_{a,b} I_{a,b}(\mathbf{x}) \) \((\{a, b\} \neq \{i, j\}) \) which can change value due to changing the value of \(x_{i,j} \) is bounded above by \(|((\{i\} \times N_i) \cup (\{j\} \times N_j))|\). Proposition 2 establishes that, for any \(k \in \{1, \ldots, K\} \) and \(\{i, j\} \subset A_k, \)

\[\{ \{a, b\} : (a, b) \in \{i\} \times N_i \text{ or } (a, b) \in \{j\} \times N_j \} \subset \mathfrak{N}_{i,j}. \]

Hence \(|((\{i\} \times N_i) \cup (\{j\} \times N_j))| \leq D_N\), noting \(D_N := \max_{\{i,j\} \subset N} |\mathfrak{N}_{i,j}|. \) As a result, the number of total summands \(x_{a,b} I_{a,b}(\mathbf{x}) \) which are a function of \(x_{i,j} \) is bounded above by \(1 + D_N \), now counting the case when \(\{a, b\} = \{i, j\} \).

Consider any \((\mathbf{x}, \mathbf{x}') \in \mathbb{X} \times \mathbb{X}\) such that \(x_{v,w} = x'_{v,w} \) for all \(\{v, w\} \neq \{i, j\} \).

Then, by the triangle inequality,

\[|s_{N+1}(\mathbf{x}) - s_{N+1}(\mathbf{x}')| \leq \sum_{\{a,b\} \subset N} |x_{a,b} I_{a,b}(\mathbf{x}) - x'_{a,b} I_{a,b}(\mathbf{x}')| \leq 1 + D_N, \]

using \(x_{a,b} I_{a,b}(\mathbf{x}) \in \{0, 1\} \) for all \(\{a, b\} \subset N \) and all \(\mathbf{x} \in \mathbb{X} \).

Lemma 16. Consider the function

\[I(\mathbf{x}) = \sum_{i<j}^N I_{i,j}(\mathbf{x}), \]

where

\[I_{i,j}(\mathbf{x}) = \begin{cases} 0 & \text{if } N_i \cap N_j = \emptyset \\ 1 \left(\sum_{h \in N_i \cap N_j} x_{i,h} x_{j,h} \geq 1 \right) & \text{if } N_i \cap N_j \neq \emptyset. \end{cases} \]

Then, for all \(\{i, j\} \subset N, \)

\[\max_{(\mathbf{x}, \mathbf{x}') \in \mathbb{X} \times \mathbb{X}: x_{v,w} = x'_{v,w}, \{v, w\} \neq \{i, j\}} |I(\mathbf{x}) - I(\mathbf{x}')| \leq \begin{cases} D_N & N_i \cap N_j \neq \emptyset \\ 0 & N_i \cap N_j = \emptyset. \end{cases} \]

where \(D_N := \max_{\{i,j\} \subset N} |\mathfrak{N}_{i,j}|. \)

Proof of Lemma 16. Consider any pair of nodes \(\{i, j\} \subset N. \) Note that \(I_{i,j}(\mathbf{x}) \) is not a function of \(x_{i,j}. \) Additionally, note that each \(I_{i,j}(\mathbf{x}) \) is only a function of edge variables for which \(N_i \cap N_j \neq \emptyset, \) and is constant in all edge variables \(x_{a,b} \) with \(N_a \cap N_b = \emptyset. \) The number of \(I_{a,b}(\mathbf{x}) \) \((\{a, b\} \subset N) \) which are a function of \(x_{i,j} \) includes
\[\{a, b\} = \{i, j\} (a \leq N \setminus \{i, j\}) \text{ satisfying } j \in N_i \cap N_b \subseteq N_i, \text{ and} \]
\[\{a, b\} = \{j, b\} (b \leq N \setminus \{i, j\}) \text{ satisfying } i \in N_j \cap N_b \subseteq N_j. \]

As a result, the number of summands \(I_{a,b}(x) \) \((a, b) \subseteq N \) which can change value due to changing the value of \(x_{i,j} \) is bounded above by

\[|(\{i\} \times N_i) \cup (\{j\} \times N_j)|. \]

Proposition 2 establishes that, for any \(k \in \{1, \ldots, K\} \) and \(\{i, j\} \subseteq A_k \),

\[\{a, b\} : (a, b) \in \{i\} \times N_i \text{ or } (a, b) \in \{j\} \times N_j \subseteq \mathcal{N}_{i,j}. \]

Hence \(|(\{i\} \times N_i) \cup (\{j\} \times N_j)| \leq D_N \), noting \(D_N := \max_{\{i,j\} \subseteq N} |\mathcal{N}_{i,j}|. \) As a result, the number of total summands \(I_{a,b}(x) \) which are a function of \(x_{i,j} \) is bounded above by \(D_N \). Consider any \((x, x') \in X \times X \) such that \(x_{v,w} = x'_{v,w} \) for all \(v, w \neq \{i, j\} \). Then, by the triangle inequality,

\[|I(x) - I(x')| \leq \sum_{(a,b) \subseteq N} |I_{a,b}(x) - I_{a,b}(x')| \leq D_N, \]

using \(I_{a,b}(x) \in \{0, 1\} \) for all \((a, b) \subseteq N \) and all \(x \in X. \)

\[\square \]

Lemma 17. Choose any \(i \in \{1, \ldots, M\} \) and any \(x_{1:i-1} \subseteq \{0, 1\}^{i-1}. \) Then the coupling of the conditional distributions

\[\mathbb{P}(\cdot \mid X_{1:i-1} = x_{1:i-1}, X_i = 0) \text{ and } \mathbb{P}(\cdot \mid X_{1:i-1} = x_{1:i-1}, X_i = 1) \]

of \(X_{(i+1):M} \) constructed in Lemma 13 is a valid coupling.

Proof of Lemma 17. Denote the coupling distribution generated by the algorithm in Lemma 13 by \(\mathcal{Q}_{i, x_{1:i-1}} \) and let \(v_1, \ldots, v_{M-i} \) be the vertices added to the set \(\mathfrak{Q} \) at iteration \(1, \ldots, M-i \) of the algorithm. To reduce the notational burden, define

\[q(x_{a:b}^*, x_{a:b}^{**} \mid x_{c:d}^*, x_{c:d}^{**}) \]
\[:= \mathcal{Q}_{i, x_{1:i-1}}(X_{a:b}^* = x_{a:b}^*, X_{a:b}^{**} = x_{a:b}^{**} \mid X_{c:d}^* = x_{c:d}^*, X_{c:d}^{**} = x_{c:d}^{**}), \]

where \(a, b, c, d \in \{1, \ldots, M\} \) are distinct and \(\{a, \ldots, b\} \cap \{c, \ldots, d\} = \emptyset. \) By construction,

\[q(x_{i+1:M}^*, x_{i+1:M}^{**}) = q(x_{v_1}, x_{v_1}^{**}) \prod_{i=2}^{M-i} q(x_{v_i}, x_{v_i}^{**} \mid x_{v_1,\ldots,v_{i-1}}^*, x_{v_1,\ldots,v_{i-1}}^{**}). \]
Observe that
\[\sum_{x_{v_{M-i}}^* \in \{0,1\}} q(x_{v_{M-i}}^*, x_{v_{M-i}}^{**} | x_{v_1,\ldots,v_{M-i-1}}^*, x_{v_1,\ldots,v_{M-i-1}}^{**})\]
\[= \mathbb{P}(X_{v_{M-i}} = x_{v_{M-i}}^{**} | X_{1:i-1} = x_{1:i-1}, X_i = 1, X_{v_1,\ldots,v_{M-i-1}} = x_{v_1,\ldots,v_{M-i-1}}^{**})\]
and
\[\sum_{x_{v_{M-i}}^* \in \{0,1\}} q(x_{v_{M-i}}^*, x_{v_{M-i}}^{**} | x_{v_1,\ldots,v_{M-i-1}}^*, x_{v_1,\ldots,v_{M-i-1}}^{**})\]
\[= \mathbb{P}(X_{v_{M-i}} = x_{v_{M-i}}^* | X_{1:i-1} = x_{1:i-1}, X_i = 0, X_{v_1,\ldots,v_{M-i-1}} = x_{v_1,\ldots,v_{M-i-1}}^*),\]
owing to the fact that \((X_{v_{M-i}}^*, X_{v_{M-i}}^{**})\) is distributed according to the optimal coupling of the conditional distributions
\[\mathbb{P}(X_{v_{M-i}} = \cdot | X_{1:i-1} = x_{1:i-1}, X_i = 0, X_{v_1,\ldots,v_{M-i-1}} = x_{v_1,\ldots,v_{M-i-1}}^*)\]
and
\[\mathbb{P}(X_{v_{M-i}} = \cdot | X_{1:i-1} = x_{1:i-1}, X_i = 1, X_{v_1,\ldots,v_{M-i-1}} = x_{v_1,\ldots,v_{M-i-1}}^{**}).\]

We can repeat the same argument to show that
\[\sum_{x_{i+1}^* \in \{0,1\}} \cdots \sum_{x_{v_{M-i}}^* \in \{0,1\}} q(x_{v_1,\ldots,v_{M-i}}^* | x_{1:i+1:M}^{**})\]
\[= \mathbb{P}(X_{i+1:M} = x_{i+1:M}^{**} | X_{1:i-1} = x_{1:i-1}, X_i = 1)\]
and
\[\sum_{x_{i+1}^* \in \{0,1\}} \cdots \sum_{x_{v_{M-i}}^* \in \{0,1\}} q(x_{i+1:M}^* | x_{v_1,\ldots,v_{M-i}}^{**})\]
\[= \mathbb{P}(X_{i+1:M} = x_{i+1:M}^* | X_{1:i-1} = x_{1:i-1}, X_i = 0),\]
so the coupling is indeed a valid coupling of the conditional distributions
\[\mathbb{P}(X_{i+1:M} = \cdot | X_{1:i-1} = x_{1:i-1}, X_i = 0)\]
and
\[\mathbb{P}(X_{i+1:M} = \cdot | X_{1:i-1} = x_{1:i-1}, X_i = 1).\]
Lemma 18. Consider Models 1, 2, and 3, any $v \in \{1, \ldots, M\}$, and any $(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}$. Define
\[
\pi_{v, x_{-v}, x'_{-v}} := \| P(\cdot | X_{-v} = x_{-v}) - P(\cdot | X_{-v} = x'_{-v}) \|_{TV}
\]
and
\[
\pi^* := \max_{1 \leq v \leq M} \max_{(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}} \pi_{v, x_{-v}, x'_{-v}},
\]
and define $D_N := \max_{(i,j) \in \mathcal{N}} |\mathcal{N}_{i,j}|$. Then
\[
\pi^* \leq \begin{cases}
1 & \text{under Model 1} \\
\frac{1}{1 + \exp(-(3 + D_N)|\theta^*|_{\infty})} & \text{under Models 2 and 3}.
\end{cases}
\]

Proof of Lemma 18. Under Model 1, edge variables X_v are independent, which implies that $\pi_{v, x_{-v}, x'_{-v}} = 0$ for all $v \in \{1, \ldots, M\}$ and all $(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}$, which in turn implies that $\pi^* = 0$. To bound π^* under Models 2 and 3, we distinguish two cases:

(a) If edge variable X_v corresponds to a pair of nodes with non-intersecting node neighborhoods, i.e., a pair $\{i,j\} \subset \mathcal{N}$ with $N_i \cap N_j = \emptyset$, then X_v is independent of all other edge variables by Proposition 2. As a result, $\pi_{v, x_{-v}, x'_{-v}} = 0$ for all $(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}$.

(b) If edge variable X_v corresponds to a pair of nodes with intersecting node neighborhoods, i.e., a pair $\{i,j\} \subset \mathcal{N}$ with $N_i \cap N_j \neq \emptyset$, then X_v is not independent of all other edges, implying $\pi_{v, x_{-v}, x'_{-v}} > 0$ for some or all $(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}$.

We focus henceforth on case (b). Consider any $v \in \{1, \ldots, M\}$ such that $\pi_{v, x_{-v}, x'_{-v}} > 0$ for some $(x_{-v}, x'_{-v}) \in \{0,1\}^{M-1} \times \{0,1\}^{M-1}$ and define
\[
a_0 = P(X_v = 0 | X_{-v} = x_{-v}) \quad \text{and} \quad a_1 = P(X_v = 1 | X_{-v} = x_{-v})
\]
\[
b_0 = P(X_v = 0 | X_{-v} = x'_{-v}) \quad \text{and} \quad b_1 = P(X_v = 1 | X_{-v} = x'_{-v}).
\]
Then
\[
\pi_{v, x_{-v}, x'_{-v}} = \frac{1}{2} \left(|(1 - a_1) - (1 - b_1)| + |a_1 - b_1| \right) = |a_1 - b_1| \leq \max\{a_1, b_1\}.
\]
By symmetry,
\[
\pi_{v, x_{-v}, x'_{-v}} \leq \max\{a_0, b_0\},
\]
which implies that
\[\pi_{v, x_{-v}, x'_{-v}} \leq \min \{ \max \{ a_0, b_0 \}, \max \{ a_1, b_1 \} \} . \]

Lemma 14 shows that, under Models 2 and 3,
\[P(X_v = 0 \mid X_{-v} = x_{-v}) \leq \frac{1}{1 + \exp(-(3 + D_N) \| \theta^* \|_\infty)} \]
and
\[P(X_v = 1 \mid X_{-v} = x_{-v}) \leq \frac{1}{1 + \exp(-(3 + D_N) \| \theta^* \|_\infty)} . \]

We therefore conclude that, under Models 2 and 3,
\[\pi^* \leq \min \{ \max \{ a_0, b_0 \}, \max \{ a_1, b_1 \} \} \]
\[\leq \frac{1}{1 + \exp(-(3 + D_N) \| \theta^* \|_\infty)} . \]

\[\square \]

APPENDIX D: PROOF OF PROPOSITION 1

We prove Proposition 1 stated in Section 2.4 of the manuscript.

PROOF OF PROPOSITION 1. The expected degree of any node \(i \in N \) under Model 3 with \(\alpha \in (0, 1] \) is given by
\[\mathbb{E}_\theta \left(\sum_{j \neq i}^{N} X_{i,j} \right) = \sum_{j \in \mathcal{A}_{i,1}} \mathbb{E}_\theta X_{i,j} + \sum_{j \in \mathcal{A}_{i,2}} \mathbb{E}_\theta X_{i,j} \]
\[\leq |\mathcal{A}_{i,1}| \max_{j \in \mathcal{A}_{i,1}} \mathbb{E}_\theta X_{i,j} + |\mathcal{A}_{i,2}| \max_{j \in \mathcal{A}_{i,2}} \mathbb{E}_\theta X_{i,j}, \]
where
- \(\mathcal{A}_{i,1} = \{ j \in N \setminus \{ i \} : N_i \cap N_j \neq \emptyset \} ; \)
- \(\mathcal{A}_{i,2} = \{ j \in N \setminus \{ i \} : N_i \cap N_j = \emptyset \} . \)

We bound the expectations of edges \(\mathbb{E}_\theta X_{i,j} \) by using the bound
\[\mathbb{E}_\theta X_{i,j} = P_\theta(X_{i,j} = 1) \]
\[\leq \max_{x_{-(i,j)} \in \{0,1\}^{(N \setminus \{i\})^{-1}}} P_\theta(X_{i,j} = 1 \mid X_{-\{i,j\}} = x_{-\{i,j\}}) . \]
For any \(j \in \mathcal{A}_{i,1} \), \(\mathbb{P}_\theta(X_{i,j} = 1 \mid \mathbf{X}_{-\{i,j\}} = \mathbf{x}_{-\{i,j\}}) \leq 1 \leq \exp(3 \|\theta\|_\infty) \) for all \(\mathbf{x}_{-\{i,j\}} \in \{0,1\}^{(N-1)} \). In addition, for any \(j \in \mathcal{A}_{i,2} \), Lemma 14 in Appendix C.2.3 shows that
\[
\mathbb{P}_\theta(X_{i,j} = 1 \mid \mathbf{X}_{-\{i,j\}} = \mathbf{x}_{-\{i,j\}}) \leq \frac{1}{1 + \exp(-3 \|\theta\|_\infty)} N^\alpha \frac{\exp(3 \|\theta\|_\infty)}{N^\alpha},
\]
for all \(\mathbf{x}_{-\{i,j\}} \in \{0,1\}^{(N-1)} \). Hence,
\[
\mathbb{E}_\theta \left(\sum_{j \neq i} N X_{i,j} \right) \leq \exp(3 \|\theta\|_\infty) (|\mathcal{A}_{i,1}| + |\mathcal{A}_{i,2}| N^{-\alpha}).
\]

Bounding \(|\mathcal{A}_{i,1}|\). To bound \(|\mathcal{A}_{i,1}|\), we distinguish two cases:

- \(N_i \cap N_j \neq \emptyset \) and \(j \in N_i \), which implies that there exists \(k \in \{1, \ldots, K\} \) such that \(\{i, j\} \subset A_k \), in which case \(j \in N_i \).

- \(N_i \cap N_j \neq \emptyset \) and \(j \notin N_i \), in which case there exists \(h \in N_i \cap N_j \), which further implies \(j \in N_h \).

The number of nodes \(j \in N \) satisfying the first case is bounded above by \(|N_i| \leq \max_{1 \leq r \leq N} |N_r| \leq (\max_{1 \leq r \leq N} |N_r|)^2 \), since \(|N_r| \in \{0,1,\ldots,N-1\} \), and the number of \(j \in N \) satisfying the second case is bounded above by
\[
|N_h| \geq \max_{1 \leq h \leq N} |N_h| \leq \left(\max_{1 \leq h \leq N} |N_h| \right)^2.
\]

In conclusion,
\[
|\mathcal{A}_{i,1}| \leq 2 \left(\max_{1 \leq h \leq N} |N_h| \right)^2.
\]

Bounding \(|\mathcal{A}_{i,2}|\). For each node \(i \in N \), there are at most \(N - 1 < N \) other nodes \(j \in N \setminus N_i \), hence \(|\mathcal{A}_{i,2}| \leq N \leq 2N \).

Conclusion. By collecting terms, for all nodes \(i \in N \),
\[
\mathbb{E}_\theta \left(\sum_{j \neq i} N X_{i,j} \right) \leq 2 \exp(3 \|\theta\|_\infty) \left(\left(\max_{1 \leq h \leq N} |N_h| \right)^2 + N^{1-\alpha} \right).
\]
\(\Box \)
APPENDIX E: SIMULATION RESULTS

We study the performance of maximum pseudo-likelihood estimators by considering populations with \(N = 125, 250, 500, \) and \(1,000 \) nodes. We focus on maximum pseudo-likelihood estimators, because computing maximum likelihood and Monte Carlo maximum likelihood estimators is too time-consuming when \(N \) is large (e.g., when \(N = 500 \) and \(N = 1,000 \)). For each value of \(N \), we generate 1,000 populations with overlapping subpopulations as follows:

- The number of subpopulations \(K \) is \(N/25 \).
- Each node \(i \in N \) belongs to \(1 + Y_i \) subpopulations, where \(Y_i \overset{iid}{\sim} \text{Binomial}(K - 1, 1/K) \) (\(i = 1, \ldots, N \)).
- For node \(i \in \{1, \ldots, N\} \), the \(1 + Y_i \) subpopulation memberships are sampled from the \(\text{Multinomial}(p_1^{(i)}, \ldots, p_K^{(i)}) \) distribution with

\[
p_k^{(i)} = \begin{cases}
\frac{1}{K} & \text{if } i = 1 \\
\frac{1}{K - 1} \left(1 - \frac{N_k^{(i-1)}}{N_1^{(i-1)} + \ldots + N_K^{(i-1)}}\right) & \text{if } i \in \{2, \ldots, N\},
\end{cases}
\]

where \(N_k^{(i-1)} \) is the number of nodes in \(\{1, \ldots, i - 1\} \) that belong to subpopulation \(A_k \) (\(k = 1, \ldots, K \)) at the current time.

We consider Model 2 with degree parameters \(\theta_1^\star, \ldots, \theta_N^\star \) drawn from Uniform\((-1.25, -0.75)\) and brokerage parameter \(\theta_{N+1}^\star = .25 \). For each popu-
Figure 4. The maximum deviation $\max_{1 \leq i \leq N} |\bar{\theta}_i - \theta_i^*|$ of the maximum pseudo-likelihood estimators $\bar{\theta}_i$ from the data-generating degree parameters $\theta_i^* (i = 1, \ldots, N)$ (left) and the deviation $|\bar{\theta}_{N+1} - \theta_{N+1}^*|$ of the maximum pseudo-likelihood estimator $\bar{\theta}_{N+1}$ from the data-generating brokerage parameter θ_{N+1}^* (right).

For each value of N, the gradient ascent algorithm used to compute the maximum pseudo-likelihood estimator converged for at least 95% of the simulated data sets, and the following simulation results are based on the simulated data sets for which the gradient ascent algorithm converged.

Figure 3 demonstrates that the statistical error $\|\bar{\theta} - \theta^*\|_\infty$ of $\bar{\theta}$ as an estimator of the data-generating parameter vector $\theta^* \in \mathbb{R}^{N+1}$ decreases as the number of nodes N increases. Figure 4 decomposes the statistical error of $\bar{\theta}$ into the statistical error of the degree parameter estimators $\bar{\theta}_1, \ldots, \bar{\theta}_N$ and the statistical error of the brokerage parameter estimator $\bar{\theta}_{N+1}$. Figure 4 reveals that the brokerage parameter is estimated with greater accuracy than the degree parameters, which makes sense as the degree parameters are greater in absolute value than the brokerage parameter and there are N estimated degree parameters $\bar{\theta}_1, \ldots, \bar{\theta}_N$, compared with the single estimated brokerage parameter $\bar{\theta}_{N+1}$.

REFERENCES

[1] Amini, A. A., Chen, A., Bickel, P. J., and Levina, E. (2013), “Pseudo-likelihood methods for community detection in large sparse networks,” *The Annals of Statistics*, 41, 2097–2122.

[2] Bhattacharya, B. B., and Mukherjee, S. (2018), “Inference in Ising models,” *Bernoulli*, 24, 493–525.

[3] Bickel, P. J., and Chen, A. (2009), “A nonparametric view of network models and
PSEUDO-LIKELIHOOD-BASED M-ESTIMATION

Newman-Girvan and other modularities,” in *Proceedings of the National Academy of Sciences*, Vol. 106, pp. 21068–21073.

[4] Bollobás, B., Riordan, O., Spencer, J., and Tusnády, G. (2001), “The degree sequence of a scale-free random graph process,” *Random Structures & Algorithms*, 18, 279–290.

[5] Brown, L. (1986), *Fundamentals of Statistical Exponential Families: With Applications in Statistical Decision Theory*, Hayworth, CA, USA: Institute of Mathematical Statistics.

[6] Caron, F., and Fox, E. B. (2017), “Sparse graphs using exchangeable random measures,” *Journal of the Royal Statistical Society, Series B (with discussion)*, 79, 1–44.

[7] Chatterjee, S. (2007), “Estimation in spin glasses: A first step,” *The Annals of Statistics*, 35, 1931–1946.

[8] Chatterjee, S., and Diaconis, P. (2013), “Estimating and understanding exponential random graph models,” *The Annals of Statistics*, 41, 2428–2461.

[9] Chatterjee, S., Diaconis, P., and Sly, A. (2011), “Random graphs with a given degree sequence,” *The Annals of Applied Probability*, 21, 1400–1435.

[10] Chazottes, J. R., Collet, P., Külske, C., and Redig, F. (2007), “Concentration inequalities for random fields via coupling,” *Probability Theory and Related Fields*, 137, 201–225.

[11] Chen, M., Kato, K., and Leng, C. (2021), “Analysis of networks via the sparse β-model,” *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 83, 887–910.

[12] Comets, F. (1992), “On consistency of a class of estimators for exponential families of Markov random fields on the lattice,” *The Annals of Statistics*, 20, 455–468.

[13] Crane, H., and Dempsey, W. (2018), “Edge exchangeable models for interaction networks,” *Journal of the American Statistical Association*, 113, 1311–1326.

[14] Dawid, A. P. (1979), “Conditional independence in statistical theory,” *Journal of the Royal Statistical Society, Series B*, 41, 1–31.

[15] Frank, O., and Strauss, D. (1986), “Markov graphs,” *Journal of the American Statistical Association*, 81, 832–842.

[16] Furi, M., and Martelli, M. (1991), “On the mean value theorem, inequality, and inclusion,” *The American Mathematical Monthly*, 98, 840–846.

[17] Gao, C., Ma, Z., Zhang, A. Y., and Zhou, H. H. (2018), “Community detection in degree-corrected block models,” *The Annals of Statistics*, 46, 2153–2185.

[18] Ghosal, P., and Mukherjee, S. (2020), “Joint estimation of parameters in Ising model,” *The Annals of Statistics*, 48, 785–810.

[19] Handcock, M. S. (2003), “Statistical Models for Social Networks: Inference and Degeneracy,” in *Dynamic Social Network Modeling and Analysis: Workshop Summary and Papers*, eds. Breiger, R., Carley, K., and Pattison, P., Washington, D.C.: National Academies Press, pp. 1–12.

[20] Harville, D. A. (1997), *Matrix algebra from a statistician’s perspective*, New York: Springer.

[21] Hillar, C. J., and Wibisono, A. (2015), “A Hadamard-type lower bound for symmetric diagonally dominant positive matrices,” *Linear Algebra and its Applications*, 472, 135–141.

[22] Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002), “Latent space approaches to social network analysis,” *Journal of the American Statistical Association*, 97, 1090–1098.

[23] Holland, P. W., and Leinhardt, S. (1981), “An exponential family of probability distributions for directed graphs,” *Journal of the American Statistical Association*, 76, 33–65.
Karwa, V., and Slavković, A. B. (2016), “Inference using noisy degrees: Differentially private β-model and synthetic graphs,” *The Annals of Statistics*, 44, 87–112.

Lauritzen, S., Rinaldo, A., and Sadeghi, K. (2018), “Random networks, graphical models and exchangeability,” *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 80, 481–508.

Lehmann, E. L., and Romano, J. P. (2005), *Testing Statistical Hypotheses*, New York: Springer-Verlag, 3rd ed.

Lindvall, T. (2002), *Lectures On The Coupling Method*, Courier Corporation.

Mukherjee, R., Mukherjee, S., and Sen, S. (2018), “Detection thresholds for the β-model on sparse graphs,” *The Annals of Statistics*, 46, 1288–1317.

Mukherjee, S. (2020), “Degeneracy in sparse ERGMs with functions of degrees as sufficient statistics,” *Bernoulli*, 26, 1016–1043.

Portnoy, S. (1988), “Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity,” *The Annals of Statistics*, 16, 356–366.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. (2010), “High-dimensional Ising model selection using ℓ_1-regularized logistic regression,” *The Annals of Statistics*, 38, 1287–1319.

Rinaldo, A., Fienberg, S. E., and Zhou, Y. (2009), “On the geometry of discrete exponential families with application to exponential random graph models,” *Electronic Journal of Statistics*, 3, 446–484.

Rinaldo, A., Petrović, S., and Fienberg, S. E. (2013), “Maximum likelihood estimation in the β-model,” *The Annals of Statistics*, 41, 1085–1110.

Rohe, K., Chatterjee, S., and Yu, B. (2011), “Spectral clustering and the high-dimensional stochastic block model,” *The Annals of Statistics*, 39, 1878–1915.

Schweinberger, M. (2011), “Instability, sensitivity, and degeneracy of discrete exponential families,” *Journal of the American Statistical Association*, 106, 1361–1370.

Schweinberger, M., Krivitsky, P. N., Butts, C. T., and Stewart, J. R. (2020), “Exponential-family models of random graphs: Inference in finite, super, and infinite population scenarios,” *Statistical Science*, 35, 627–662.

Schweinberger, M., and Stewart, J. R. (2020), “Concentration and consistency results for canonical and curved exponential-family models of random graphs,” *The Annals of Statistics*, 48, 374–396.

Stewart, J. R., and Schweinberger, M. (2023), “Supplement to: Pseudo-likelihood-based M-estimators for random graphs with dependent edges and parameter vectors of increasing dimension,” *Department of Statistics, Florida State University*.

van den Berg, J., and Maes, C. (1994), “Disagreement percolation in the study of Markov fields,” *The Annals of Probability*, 22, 749–763.

Watts, D. J. (2003), *Six Degrees. The Science of a Connected Age*, Norton.

Yan, T., Leng, C., and Zhu, J. (2016), “Asymptotics in directed exponential random graph models with an increasing bi-degree sequence,” *The Annals of Statistics*, 44, 31–57.

Yan, T., and Xu, J. (2013), “A central limit theorem in the β-model for undirected random graphs with a diverging number of vertices,” *Biometrika*, 100, 519–524.
PSEUDO-LIKELIHOOD-BASED M-ESTIMATION

Jonathan R. Stewart
Department of Statistics
Florida State University
117 N Woodward Ave.
Tallahassee, FL 32306-4330
E-mail: jrstewart@fsu.edu

Michael Schweinberger
Department of Statistics
Penn State University
326 Thomas Building
University Park, PA 16802
E-mail: mus47@psu.edu