TWO WEIGHT L^p-INEQUALITIES FOR DYADIC SHIFTS AND
THE DYADIC SQUARE FUNCTION

EMIL VUORINEN

Abstract. We consider two weight $L^p \rightarrow L^q$-inequalities for dyadic shifts and
the dyadic square function with general exponents $1 < p, q < \infty$. It is shown
that if a so-called quadratic $A_{p,q}$-condition related to the measures holds, then a
family of dyadic shifts satisfies the two weight estimate in an R-bounded sense if
and only if it satisfies the direct- and the dual quadratic testing condition. In the
case $p = q = 2$ this reduces to the result by T. Hytönen, C. Pérez, S.Treil and A.
Volberg [7].

The dyadic square function satisfies the two weight estimate if and only if it
satisfies the quadratic testing condition and the quadratic $A_{p,q}$-condition holds.
Again in the case $p = q = 2$ we recover the result by F. Nazarov, S. Treil and A.
Volberg [13].

An example shows that in general the quadratic $A_{p,q}$-condition is stronger than
the Muckenhoupt type $A_{p,q}$-condition.

1. Introduction

The main purpose of this note is to consider two weight norm inequalities
for dyadic shifts and the dyadic square function. A two weight L^p-inequality, $1 < p < \infty$, for an operator T defined for a suitable class of functions would mean an
inequality of the form

\begin{equation}
\left(\int_{\mathbb{R}^n} |Tf|^q w dx \right)^{\frac{1}{q}} \leq C \left(\int_{\mathbb{R}^n} |f|^p v dx \right)^{\frac{1}{p}},
\end{equation}

where the constant $C > 0$ does not depend on f. Here v and w are weights, that is,
non-negative Borel measurable functions. The two weight inequality (1.1) can also
be formulated a little differently, and we will do so, but this type of a problem we
are anyway working with.

Dyadic shifts are in a sense discrete models of Calderón-Zygmund singular integral
operators. They are much simpler than a general Calderón-Zygmund operator but
they already have the complication that they are not positive integral operators.

The sense in which we mean that the dyadic shifts represent Calderón-Zygmund
operators is that it was shown in [5] that a general Calderón-Zygmund operator can
be represented as an average over all dyadic systems on \mathbb{R}^N of a rapidly convergent
series of dyadic shifts. This representation was used to prove the so called A_2-
conjecture about sharp constants in one weight estimates for Calderón-Zygmund
operators.
Dyadic shifts fall also in the category of well localized operators as defined in [14] by F. Nazarov, S. Treil and A. Volberg. They showed that a two weight inequality holds for a well localized operator in L^2 if and only if the operator satisfies the so called Sawyer type testing conditions. This means that it suffices to show that the operator and its formal adjoint satisfy the inequality with an arbitrary indicator of a (dyadic) cube, and hence the Sawyer type testing may also be called indicator testing. Two weight L^p-inequalities for well localized operators were considered in [19].

The definition of a well localized operator depends on a parameter r which measures how “well” the operator is localized. The constant C in the two weight inequality proved in [14] and [19] depends on r and the constants in the Sawyer type testing conditions.

In [7] the dyadic shifts were looked from a little different perspective. There T. Hytönen, C. Pérez, S. Treil and A. Volberg proved the two weight inequality in L^2 assuming the Sawyer type testing conditions and finiteness of the so called A_2-constant related to the weights. This approach was related to the A_2-conjecture mentioned above, and this is the point of view that we take in this note. The main difference between this approach and the more general point of view of well localized operators is that this way one gets a better estimate depending on the complexity of the shift, which was crucial in the A_2-conjecture. The complexity of the shift is somewhat analogous to the “well localization” parameter in the definition of well localized operators.

Our novelty here is that we characterize the two weight inequality for dyadic shifts for general exponents $1 < p, q < \infty$, whereas it was only done before in the case $p = q = 2$. Despite the positive result in the case $p = q = 2$, F. Nazarov has constructed an example (unpublished) of a Haar multiplier (a special kind of dyadic shift) and a pair of weights such that the operator satisfies the Sawyer type testing conditions for some exponent $1 < p = q < \infty$, $p \neq 2$, but still does not satisfy the (quantitative) two weight estimate.

Knowing that there are problems with the Sawyer type testing and general exponents $p \in (1, \infty)$, we generalize the testing conditions for exponents $1 < p < \infty$ in the spirit of \mathcal{R}-bounded operator families as used for example in [20]. We call these new testing conditions quadratic testing conditions. Similarly we interpret the A_2-condition as a special case of a quadratic $\mathcal{A}_{p,q}$-condition, see section 3 for a definition.

Now we state a special version of the main Theorem 5.1 for the dyadic shifts. It is assumed here that we have some fixed underlying dyadic lattice \mathcal{D} on \mathbb{R}^N which is used in the definition of the shifts and the $\mathcal{A}_{p,q}$-condition.

Theorem 1.1. Fix exponents $p, q \in (1, \infty)$, and assume that the quadratic $\mathcal{A}_{p,q}$-condition holds. Suppose T^σ is a dyadic shift with complexity κ, and let T^w be the formal adjoint of T^σ. Then there exists a constant C such that

\[
\|T^\sigma f\|_{L^p(w)} \leq C\|f\|_{L^p(\sigma)}
\]
holds for all \(f \in L^p(\sigma) \) if and only if there exist constants \(C' \) and \(C'' \) such that for all sequences \((Q_i)_{i=1}^{\infty} \subset \mathcal{D} \) of dyadic cubes and all sequences \((a_i)_{i=1}^{\infty} \) of real numbers the inequalities

\[
(1.3) \quad \left\| \left(\sum_{i=1}^{\infty} (a_i 1_{Q_i} T^\sigma 1_{Q_i})^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq C' \left\| \left(\sum_{i=1}^{\infty} a_i^2 1_{Q_i} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

and

\[
(1.4) \quad \left\| \left(\sum_{i=1}^{\infty} (a_i 1_{Q_i} T^w 1_{Q_i})^2 \right)^{\frac{1}{2}} \right\|_{L^{p'}(\sigma)} \leq C'' \left\| \left(\sum_{i=1}^{\infty} a_i^2 1_{Q_i} \right)^{\frac{1}{2}} \right\|_{L^{q'}(w)}
\]

hold.

Moreover if \(T^\sigma \) and \(T^w \) denote the best possible constants in (1.3) and (1.4), respectively, and \([\sigma, w]_{p,q}\) is the quadratic \(\mathscr{A}_{p,q} \)-constant, then the best constant \(\|T\| \) in (1.2) satisfies

\[
(1.5) \quad \|T\| \lesssim (1 + \kappa)(T^\sigma + T^w) + (1 + \kappa)^2 [\sigma, w]_{p,q}.
\]

If \(p = q = 2 \) quadratic testing is equivalent with indicator testing and the quadratic \(\mathscr{A}_{2,2} \)-condition is equivalent with the simple \(A_2 \)-condition. Thus, when \(p = q = 2 \), the above theorem reduces to the one proved in [7].

As an other novelty in Theorem 5.1 we shall actually consider a family \(\mathcal{T} \) of dyadic shifts with at most a given complexity \(\kappa \). Then it is shown that under the quadratic \(\mathscr{A}_{p,q} \)-condition, the family is \(\mathcal{R} \)-bounded with the same quantitative bound as in (1.3) if and only if a quadratic testing condition for the whole family is satisfied. Our proof follows the broad outlines of \(L^2 \)-theory but with additional complications coming from the general exponents. We also briefly outline the proof that if the dyadic shifts are of a special form that arises naturally in the representation theorem concerning general Calderón-Zygmund operators, then a certain weakening of the \(\mathscr{A}_{p,q} \)-condition is sufficient.

It will be shown that this quadratic \(\mathscr{A}_{p,q} \)-constant is comparable to the constant in the “two weight Stein’s inequality” for conditional expectations from \(L^p \) into \(L^q \) in the same way as the usual \(A_2 \)-constant is related to boundedness of conditional expectations in weighted \(L^2 \). We also construct an example showing that for \(p > 2 \) or \(1 < q < 2 \) the \(\mathscr{A}_{p,q} \)-condition is in general stronger than the simple \(A_{p,q} \)-condition. Since they are equivalent in the case \(1 < p \leq 2 \leq q < \infty \), we deduce that the simple \(A_{p,q} \)-condition is in general sufficient for the two weight Stein’s inequality if and only if \(1 < p \leq 2 \leq q < \infty \).

The two weight inequality for the dyadic square function was characterized in \(L^2 \) in terms of the Sawyer type testing and the \(A_2 \)-condition in another paper by F. Nazarov, S. Treil and A. Volberg [13]. We use similar ideas as with the dyadic shifts and show that the two weight inequality for the dyadic square function holds from \(L^p \) into \(L^q \) if and only if the quadratic testing condition and the quadratic \(\mathscr{A}_{p,q} \)-condition hold, and we get a similar quantitative estimate as with the dyadic shifts. Here again we get the previous result as a special case when \(p = q = 2 \).

Our approach to the dyadic square function is inspired by the strategy in [10], and similar steps appeared also in [13].

Acknowledgements. I am a member of the Finnish Centre of Excellence in Analysis and Dynamics Research. This work is part of my PhD project under supervision of Tuomas Hytönen, and I am very grateful for all the key ideas and discussions related to this work. I am also thankful for Timo Hänninen for teaching me many facts about dyadic shifts.

2. Set up and preliminaries

We begin by specifying the basic notation and concepts we use. Two Radon measures σ and w on \mathbb{R}^N are fixed. Most of the definitions below are made with respect to the measure σ, but it will be clear that they are defined similarly with respect to any Radon measure.

For any $1 \leq p \leq \infty$ the usual L^p-space with respect to the measure σ is denoted by $L^p(\sigma)$. For a sequence $(f_i)_{i=1}^{\infty}$ of Borel measurable functions we define

$$\| (f_i)_{i=1}^{\infty} \|_{L^p(\sigma; l^2)} := \left(\int \left(\sum_{i=1}^{\infty} |f_i|^2 \right)^{\frac{p}{2}} \, d\sigma \right)^{\frac{1}{p}},$$

and the space $L^p(\sigma; l^2)$ consists of those sequences $(f_i)_{i=1}^{\infty}$ for which this norm is finite. All our functions will be real valued.

We fix a dyadic lattice \mathcal{D} on \mathbb{R}^N. This means that $\mathcal{D} = \bigcup_{k \in \mathbb{Z}} \mathcal{D}_k$, where each \mathcal{D}_k is a disjoint cover of \mathbb{R}^N with cubes of the form $x + [0, 2^{-k})^N, x \in \mathbb{R}^n$, and that for every $k \in \mathbb{Z}$ any cube $Q \in \mathcal{D}_k$ is a union of 2^N-cubes in \mathcal{D}_{k+1}.

If $Q \in \mathcal{D}_k$, denote by $Q^{(1)}$ the unique cube in \mathcal{D}_{k-1} that contains Q, and for any integer $r \geq 2$ define inductively $Q^{(r)} := (Q^{(r-1)})^{(1)}$. Write also $Q^{(0)} := Q$. For $m = 0, 1, 2, \ldots$ the collection $ch^{(m)}(Q)$ consists of those $Q' \in \mathcal{D}$ such that $Q^{(m)} = Q$, and we abbreviate $ch^{(1)}(Q) := ch(Q)$. The side length of a cube $Q \in \mathcal{D}_k$ is $l(Q) := 2^{-k}$, and the volume $l(Q)^N$ is written as $|Q|$.

Martingale decomposition. If $Q \in \mathcal{D}$ is any cube, the average of a locally σ-integrable function f over Q is denoted by

$$\langle f \rangle_Q := \frac{1}{\sigma(Q)} \int_Q f \, d\sigma,$$

and the averaging or conditional expectation operator $\mathbb{E}_k, k \in \mathbb{Z}$, is defined as

$$\mathbb{E}_k f := \sum_{Q \in \mathcal{D}_k} \langle f \rangle_Q 1_Q.$$

The martingale difference related to a cube $Q \in \mathcal{D}$ is defined as

$$\Delta_Q f := \sum_{Q' \in ch(Q)} \langle f \rangle_{Q'} 1_{Q'} - \langle f \rangle_Q 1_Q.$$
Let \((\varepsilon_i)_{i=1}^{\infty}\) a sequence of independent random signs on some probability space \((\Omega, \mathbb{P})\). This means that the sequence is independent and \(\mathbb{P}(\varepsilon_i = 1) = \mathbb{P}(\varepsilon_i = -1) = 1/2\) for all \(i\). We will use the Kahane-Khinchine inequality \(^8\) saying that for any Banach space \(X\), any two exponents \(1 \leq p, q < \infty\) and any elements \(x_1, \ldots, x_M \in X\) it holds that

\[
\left(\mathbb{E} \left\| \sum_{i=1}^{M} \varepsilon_i x_i \right\|_X^q \right)^{\frac{1}{q}} \simeq_{p,q} \left(\mathbb{E} \left\| \sum_{i=1}^{M} \varepsilon_i x_i \right\|_X^p \right)^{\frac{1}{p}},
\]

where \(\mathbb{E}\) refers to the expectation with respect to the random signs.

The notation \(\simeq_{p,q}\) in (2.2) means that there exists a constant \(C > 0\) depending only on \(p\) and \(q\) and not on \(N, X\) nor on the elements \(x_i\) such that if \(A\) and \(B\) denote the left and right hand sides of (2.2), respectively, then \(C^{-1}B \leq A \leq CB\). The subscript refers to the information that the constant \(C\) depends on, and is sometimes omitted. We use this kind of notation only if the constant \(C\) does not depend on any relevant information in the situation, and no confusion should arise. Similarly \(A \leq CB\) would be written as \(A \lesssim B\).

Let \(f \in L^p(\sigma)\) for some \(1 < p < \infty\). Then we can do the martingale difference decomposition

\[
f = \sum_{Q \in \mathcal{D}_l} (f)_{Q} \varepsilon_Q 1_Q + \sum_{Q \in \mathcal{D}_{l(Q)} \leq 2^{-l}} \Delta Q f,
\]

where \(l \in \mathbb{Z}\) is any integer, and the series in (2.3) converges to \(f\) in any order (that is, unconditionally). Burkholder’s inequality

\[
\|f\|_{L^p(\sigma)} \simeq_p \left\| \left(\sum_{Q \in \mathcal{D}_l} |(f)_{Q}|^p 1_Q + \sum_{Q \in \mathcal{D}_{l(Q)} \leq 2^{-l}} |\Delta Q f|^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\]

implies that

\[
\|f\|_{L^p(\sigma)} \simeq \mathbb{E} \left\| \sum_{Q \in \mathcal{D}_l} \varepsilon_Q (f)_{Q} 1_Q + \sum_{Q \in \mathcal{D}_{l(Q)} \leq 2^{-l}} \varepsilon_Q \Delta Q f \right\|_{L^p(\sigma)},
\]

where \(\{\varepsilon_Q\}_{Q \in \mathcal{D}_l}\) is a collection of independent random signs. Burkholder’s inequality \(^4\) was originally proved in \([1]\) in a little different situation.

From (2.5) one can deduce with the Kahane-Khinchine inequalities the following lemma for \(L^p(\sigma; l^2)\)-norms. Below we shall also call equation (2.6) Burkholder’s inequality.
Lemma 2.1. Let $1 < p < \infty$ and suppose we have a sequence $(f_k)_{k=-\infty}^{\infty} \in L^p(\sigma; l^2)$. Then we have the estimate

(2.6)
\[\|(f_k)_{k=-\infty}^{\infty}\|_{L^p(\sigma; l^2)} \lesssim_p \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} |(f_k)_{Q,k}'|^2 \right)^{1/2} \| \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \Delta_{Q}^p f_k \right)^{1/2} \|_{L^p(\sigma)}, \]

where $l \in \mathbb{Z}$ is any integer.

Proof. By monotone convergence me may assume that only finitely many functions f_k are non zero. Furthermore, by the martingale convergence, we can suppose that for every k there is only finitely many terms in the martingale decomposition of f_k. Thus the sums in the following computation are actually finite.

Let $\{\varepsilon_k\}_{k \in \mathbb{Z}}$ and $\{\varepsilon'_Q\}_{Q \in \mathcal{G}}$ be two independent sequences of random variables on some distinct probability spaces, and we write \mathbb{E} and \mathbb{E}' for the corresponding expectations. Then we compute with the Kahane-Khinchine inequalities and equation (2.5) that

(2.7)
\[\|(f_k)_{k=-\infty}^{\infty}\|_{L^p(\sigma; l^2)} = \left\| \mathbb{E} \left(\sum_{k=-\infty}^{\infty} \varepsilon_k f_k \right)^2 \right\|_{L^p(\sigma)} \]
\[\approx \mathbb{E} \int_{\mathbb{R}^N} \left| \sum_{k=-\infty}^{\infty} \varepsilon_k f_k \right|^p \, d\sigma \]
\[\approx \mathbb{E} \mathbb{E}' \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k \varepsilon'_Q (f_k)_{Q,k}' 1_Q \right) + \sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k \varepsilon'_Q \Delta_Q f_k \right|^{p} \, d\sigma. \]

If $\{c_{k,Q}\}_{k \in \mathbb{Z}, Q \in \mathcal{G}}$ is any doubly indexed finitely non zero set or real numbers, then

(2.8)
\[\mathbb{E} \mathbb{E}' \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k \varepsilon'_Q c_{k,Q} \right)^p = \mathbb{E} \mathbb{E}' \left(\sum_{Q \in \mathcal{G}} \varepsilon'_Q \sum_{k=-\infty}^{\infty} \varepsilon_k c_{k,Q} \right)^p \]
\[\approx \mathbb{E} \left(\mathbb{E}' \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k c_{k,Q} \right)^2 \right)^{p/2} = \mathbb{E} \left(\mathbb{E}' \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k \varepsilon'_Q c_{k,Q} \right)^2 \right)^{p/2} \]
\[\approx \left(\mathbb{E} \mathbb{E}' \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} \varepsilon_k \varepsilon'_Q c_{k,Q} \right)^2 \right)^{p/2} = \left(\sum_{k=-\infty}^{\infty} \sum_{Q \in \mathcal{G}} |c_{k,Q}|^2 \right)^{p/2}. \]

Using (2.3) in (2.7) we get the estimate we wanted. \(\square \)

Principal cubes and Carleson’s embedding theorem. We will need the construction of principal cubes. More precisely, suppose $f \in L^1_{loc}(\sigma)$ and take some cube $Q_0 \in \mathcal{G}$. Set $\mathcal{I}_0 = \{Q_0\}$, and assume that $\mathcal{I}_0, \ldots, \mathcal{I}_k$ are defined for some
non-negative integer k. Then, for $S \in \mathcal{I}_k$, let $\text{ch}_\mathcal{I}(S)$ consist of the maximal cubes $S' \in \mathcal{D}$ such that $S' \subset S$ and

$$\langle |f| \rangle_{S'}^\gamma > 2 \langle |f| \rangle_S^\gamma.$$

Set $\mathcal{I}_{k+1} := \bigcup_{S \in \mathcal{I}_k} \text{ch}_\mathcal{I}(S)$ and

$$\mathcal{I} := \bigcup_{k=0}^\infty \mathcal{I}_k.$$

Now for every cube $Q \in \mathcal{D}, Q \subset Q_0$, there exists a unique smallest $S \in \mathcal{I}$, denoted by $\pi \mathcal{I} Q = S$, that contains Q, and it follows from the construction that $\langle |f| \rangle_Q^\gamma \leq 2 \langle |f| \rangle_S^\gamma$.

Let $\gamma \in (0,1)$. We say that a collection $\mathcal{D}_0 \subset \mathcal{D}$ is γ-sparse if there exist pairwise disjoint measurable sets $E(Q) \subset Q$, $Q \in \mathcal{D}_0$, such that $\sigma(E(Q)) \geq \gamma \sigma(Q)$ for all $Q \in \mathcal{D}_0$. The collection \mathcal{I} of stopping cubes constructed above is a $\frac{1}{\gamma}$-sparse collection. Related to these sparse families we shall use the following form of Carleson’s embedding theorem:

Lemma 2.2. Suppose $1 < p < \infty$ and $(f_k)_{k=1}^\infty \subset L^p(\sigma; l^2)$. For each k let \mathcal{I}_k be any γ-sparse collection. Then

$$(2.9) \quad \left\| \left(\sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} (\langle f_k \rangle_S^\gamma)^2 1_S \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim_{\gamma,p} \left\| \left(\sum_{k=1}^\infty f_k^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)};$$

Proof. Let M_σ^d be the dyadic maximal function defined for any Borel measurable f by

$$M_\sigma^d(f) = \sup_{Q \in \mathcal{D}} 1_Q \langle |f| \rangle_Q^\sigma.$$

For any k and $S \in \mathcal{I}_k$ denote again by $E(S)$ the measurable subset of S such that $\sigma(E(S)) \geq \gamma \sigma(S)$ and $E(S') \cap E(S) = \emptyset$ for any other $S' \in \mathcal{I}_k$.

To prove (2.9), assume without loss of generality that every f_k is non-negative. We want to argue by duality, and for that purpose let $\{g_{k,S} : k = 1, 2, \ldots, S \in \mathcal{I}_k\}$ be any finitely non-zero collection of $L^{p'}(\sigma)$ functions (p' denotes the Hölder conjugate exponent to p). Then

$$\sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} \langle f_k \rangle_S^\gamma 1_{g_{k,S}} d\sigma \leq \gamma^{-1} \sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} \langle f_k \rangle_S^\gamma \langle g_{k,S} \rangle_S^\gamma \sigma(E(S))$$

$$\leq \gamma^{-1} \sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} M_\sigma^d(f_k) M_\sigma^d(g_{k,S}) 1_{E(S)} d\sigma$$

$$\leq \gamma^{-1} \left\| \left(\sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} (M_\sigma^d(f_k))^2 1_{E(S)} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}$$

$$\cdot \left\| \left(\sum_{k=1}^\infty \sum_{S \in \mathcal{I}_k} (M_\sigma^d(g_{k,S}))^2 1_{E(S)} \right)^{\frac{1}{2}} \right\|_{L^{p'}(\sigma)}.$$
Since for a fixed k the sets $E(S), S \in \mathcal{S}_k$, are pairwise disjoint, the first factor satisfies
\[
\left\| \left(\sum_{k=1}^{\infty} \sum_{S \in \mathcal{S}_k} (M_{f_k}^p)^2 1_{E(S)} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \leq \left\| \left(\sum_{k=1}^{\infty} (M_{f_k}^p)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]
\[
\lesssim_p \left\| \left(\sum_{k=1}^{\infty} (f_k)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\]
where in the last step we used the dyadic Fefferman-Stein inequality \[3\]. In the second factor we may just omit the indicators $1_{E(S)}$ and apply the Fefferman-Stein inequality again. These estimates prove (2.9).

Stein's inequality. Let $(f_k)_{k=-\infty}^{\infty} \in L^p(\sigma; l^2), 1 < p < \infty$, be a sequence of functions. Stein's inequality, which originally appeared in [18], says that
\[
(2.10) \quad \left\| \left(\sum_{k=1}^{\infty} \left((f_k)^2 \right) 1_{D_k} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim_p \left\| (f_k)_{k=-\infty}^{\infty} \right\|_{L^p(\sigma; l^2)}.
\]
This can equivalently be formulated by saying that for any set $\{f_Q\}_{Q \in \mathcal{Q}}$, where each f_Q is a locally σ-integrable function, the inequality
\[
(2.11) \quad \left\| \left(\sum_{Q \in \mathcal{Q}} \left((f_Q)^2 \right) 1_{Q} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim_p \left\| \left(\sum_{Q \in \mathcal{Q}} f_Q^2 1_{Q} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]
holds. Note that (2.10) follows also from the dyadic Fefferman-Stein inequality that was used in the proof of Carleson’s embedding theorem.

3. THE QUADRATIC $\mathcal{A}_{p,q}$-CONDITION

In this section we introduce the quadratic $\mathcal{A}_{p,q}$-condition and investigate its relation with the Muckenhoupt type $A_{p,q}$-condition. Here the exponents satisfy $1 < p, q < \infty$. The quadratic $\mathcal{A}_{p,q}$-condition will be used in the characterization of two weight inequalities for the dyadic square function and the dyadic shifts.

The measures σ and w are said to satisfy the simple- or Muckenhoupt type $A_{p,q}$-condition if
\[
(\sigma, w)_{p,q} := \sup_{Q \in \mathcal{Q}} \frac{\sigma(Q)^{\frac{1}{p}} w(Q)^{\frac{1}{q}}}{|Q|} < \infty.
\]
If $p = q$ we write just A_p instead.

The measures σ and w are said to satisfy the quadratic $\mathcal{A}_{p,q}$-condition if for every collection $\{a_Q\}_{Q \in \mathcal{Q}}$ of real numbers the inequality
\[
(3.2) \quad \left\| \left(\sum_{Q \in \mathcal{Q}} \left(a_Q \sigma(Q)^{\frac{1}{p}} w(Q)^{\frac{1}{q}} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)} \leq [\sigma, w]_{p,q} \left\| \left(\sum_{Q \in \mathcal{Q}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]
holds, where $[\sigma, w]_{p,q} \in [0, \infty)$ is the best possible constant. We also write $[\sigma, w]_{p,q} < \infty$ to mean that the condition holds, and $[\sigma, w]_{p,q} = \infty$ to mean that it doesn’t hold.
It is clear that \((\sigma, w)_{p,q} \leq [\sigma, w]_{p,q}\), which follows by taking only one term in the sums in (3.2).

Lemma 3.1. Let \(1 < p, q < \infty\). The quadratic \(A_{p,q}\)-condition is symmetric in the sense that \([\sigma, w]_{p,q} \simeq [w, \sigma]_{q', p'}\).

Proof. Choose any (finitely non zero) collection \(\{a_Q\}_{Q \in \mathcal{Q}}\) of real numbers, and let also \(\{f_Q\}_{Q \in \mathcal{Q}}\) be a collection of \(L^p(\sigma)\)-functions. Then

\[
\int \sum_{Q \in \mathcal{Q}} a_Q \frac{w(Q)}{|Q|} 1_Q f_Q d\sigma = \int \sum_{Q \in \mathcal{Q}} a_Q \frac{f_Q f_Q d\sigma}{|Q|} 1_Q dw
\]

\[
\leq \left\| \left(\sum_{Q \in \mathcal{Q}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^{p'}(w)} \left\| \left(\sum_{Q \in \mathcal{Q}} \left(|f_Q|^{\sigma(Q)} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)}
\]

\[
\leq [\sigma, w]_{p,q} \left\| \left(\sum_{Q \in \mathcal{Q}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^{p'}(w)} \left\| \left(\sum_{Q \in \mathcal{Q}} |f_Q 1_Q|^2 \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)}
\]

where in the last step we used Stein’s inequality. By duality this shows that \([w, \sigma]_{q', p'} \lesssim [\sigma, w]_{p,q}\).

For \(1 < p, q < \infty\) a two weight version of Stein’s inequality (2.11) can be formulated as

\[
(3.3) \quad \left\| \left(\sum_{Q \in \mathcal{Q}} \left(\frac{f_Q f_Q d\sigma}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)} \leq \mathcal{S} \left\| \left(\sum_{Q \in \mathcal{Q}} f_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

where \(\{f_Q\}_{Q \in \mathcal{Q}}\) is again a collection of locally \(\sigma\)-integrable functions, and \(\mathcal{S} = \mathcal{S}(\sigma, w, p, q)\) denotes the smallest possible constant with the understanding that it may be \(\infty\).

Lemma 3.2. The best constant \(\mathcal{S} = \mathcal{S}(\sigma, w, p, q)\) in (3.3) satisfies \(\mathcal{S} \simeq [\sigma, w]_{p,q}\).

Proof. That \([\sigma, w]_{p,q} \leq \mathcal{S}(\sigma, w, p, q)\) follows from (3.3) with the special functions \(f_Q = a_Q 1_Q\), where \(a_Q \in \mathbb{R}\). To see that \(\mathcal{S}(\sigma, w, p, q) \lesssim [\sigma, w]_{p,q}\), choose any set \(\{f_Q\}_{Q \in \mathcal{Q}}\) of locally \(\sigma\)-integrable functions. Then

\[
\text{LHS}(3.3) = \left\| \left(\sum_{Q \in \mathcal{Q}} \left(\langle f_Q \rangle^{\sigma(Q)} \frac{\sigma(Q)}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)}
\]

\[
\leq [\sigma, w]_{p,q} \left\| \left(\sum_{Q \in \mathcal{Q}} \left(\langle f_Q \rangle^2 \right) 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim [\sigma, w]_{p,q} \left\| \left(\sum_{Q \in \mathcal{Q}} f_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\]

where we used Stein’s inequality (2.11) in the last step. Hence also \([\sigma, w]_{p,q} \lesssim \mathcal{S}(\sigma, w, p, q)\).
The next lemma shows that the quadratic $\mathcal{A}_{p,q}$-condition is actually equivalent with the simple $A_{p,q}$-condition in the case $1 < p \leq 2 \leq q < \infty$, and a similar remark will apply to the quadratic testing conditions below.

Lemma 3.3. If $1 < p \leq 2 \leq q < \infty$, then $[\sigma, w]_{p,q} = (\sigma, w)_{p,q}$.

Proof. This follows from the fact that L^p-spaces have certain type and cotype properties. For our purposes it is not necessary to define these in general, but it suffices to note that for any sequence $(f_k)_{k=1}^\infty \subset L^p(\sigma; L^2), 1 < p \leq 2$, it holds that

\[
\left\| \left(\sum_{k=1}^\infty f_k \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \geq \left(\sum_{k=1}^\infty \left\| f_k \right\|_{L^p(\sigma)}^2 \right)^{\frac{1}{2}},
\]

and for any sequence $(g_k)_{k=1}^\infty \subset L^q(\sigma; L^2), 2 \leq q < \infty$,

\[
\left\| \left(\sum_{k=1}^\infty g_k \right)^{\frac{1}{2}} \right\|_{L^q(\sigma)} \leq \left(\sum_{k=1}^\infty \left\| g_k \right\|_{L^q(\sigma)}^2 \right)^{\frac{1}{2}}.
\]

Of course these inequalities are independent of the measure.

Suppose then that the simple $A_{p,q}$-condition holds with $1 < p \leq 2 \leq q < \infty$, and let $\{a_Q\}_{Q \in \mathcal{D}} \subset \mathbb{R}$ be any collection. Then

\[
\left\| \left(\sum_{Q \in \mathcal{D}} \left(a_Q \frac{\sigma(Q)}{|Q|} \right) ^{2} 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq \left(\sum_{Q \in \mathcal{D}} \left\| a_Q \frac{\sigma(Q)}{|Q|} 1_Q \right\|_{L^q(w)}^2 \right)^{\frac{1}{2}},
\]

\[
\leq (\sigma, w)_{p,q} \left(\sum_{Q \in \mathcal{D}} \left\| a_Q 1_Q \right\|_{L^p(\sigma)}^2 \right)^{\frac{1}{2}} \leq (\sigma, w)_{p,q} \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_Q \right)^{\frac{1}{2}} \left\| \sigma \right\|_{L^p(\sigma)},
\]

and thus $[\sigma, w]_{p,q} \leq (\sigma, w)_{p,q}$. \qed

4. **The dyadic square function**

In this section we consider the dyadic square function. Let $\{b_Q\}_{Q \in \mathcal{D}}$ be a collection of real numbers. For a locally Lebesgue integrable function the generalized dyadic square function is defined by

\[
S_b(f) := \left(\sum_{Q \in \mathcal{D}} (b_Q \Delta_Q f)^2 \right)^{\frac{1}{2}},
\]

where $\Delta_Q f$ is the usual martingale difference related to the cube Q as in (2.1), but with respect to the Lebesgue measure. The “generalized” here refers to the coefficients b_Q, and the usual dyadic square function corresponds to the case $b_Q = 1$ for all $Q \in \mathcal{D}$.

Now we are interested in the two weight estimate for this operator. Namely, we fix two exponents $1 < p, q < \infty$ and want to characterize when there exists a constant $C \geq 0$ such that the inequality

\[
\left\| \left(\sum_{Q \in \mathcal{D}} (b_Q \Delta_Q f)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq C \left\| f \right\|_{L^p(\sigma)}
\]

(4.1)
holds for all $f \in L^p(\sigma)$. Here $\Delta_Q(f \sigma)$ is understood as
\[
\Delta_Q(f \sigma) := \sum_{Q' \in \partial_Q(Q)} \frac{\int_{Q'} f \, d\sigma}{|Q'|} 1_{Q'} - \frac{\int_Q f \, d\sigma}{|Q|} 1_Q.
\]
Denote by S^σ_b the operator defined for locally σ-integrable functions by
\[
S^\sigma_b(f) := \left(\sum_{Q \in \mathcal{D}} (b_Q \Delta_Q(f \sigma))^2 \right)^{\frac{1}{2}},
\]
and define also for all $Q \in \mathcal{D}$ the localized version
\[
S^\sigma_{b,Q}(f) := \left(\sum_{Q' \in \mathcal{D} : Q' \subset Q} (b_Q \Delta_Q'(f \sigma))^2 \right)^{\frac{1}{2}}.
\]

If u and v are two weight functions on \mathbb{R}, that is, positive Borel functions, and $p = q = 2$, we have the result from [13] saying that
\[
(4.2) \quad \| S^\sigma_b(fu) \|_{L^2(v)} \leq C \| f \|_{L^2(u)}
\]
holds if and only if there exists a constant C' such that
\[
(4.3) \quad \| S^\sigma_b(1_Iu) \|_{L^2(v)} \leq C' \| 1_I \|_{L^2(u)}
\]
holds for all $I \in \mathcal{D}$. Also in this case the best constants in (4.2) and (4.3) satisfy $C' \simeq C$. Actually a bit more was shown, namely that the two weight inequality holds if and only if a Muckenhoupt type condition for the measures and a localized testing condition hold.

Here we are going to give a characterization for the inequality (4.1) with any exponents $1 < p, q < \infty$ and any Radon measures σ and w. This will be done in terms of a quadratic testing condition and the quadratic $A_{p,q}$-condition introduced in the last section, and in the case $p = q = 2$ the theorem reduces to the result from [13].

We say that the operator S^σ_b satisfies the *global quadratic testing condition* (with respect to p and q) if there exists a constant C such that for every collection $\{a_Q\}_{Q \in \mathcal{D}} \subset \mathbb{R}$ the inequality
\[
(4.4) \quad \left\| \left(\sum_{Q \in \mathcal{D}} S^\sigma_b(a_Q 1_Q)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq C \left\| \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]
holds. S^σ_b is said to satisfy the *local quadratic testing condition* if it similarly satisfies estimate
\[
(4.5) \quad \left\| \left(\sum_{Q \in \mathcal{D}} S^\sigma_{b,Q}(a_Q 1_Q)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq C \left\| \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]
for some constant C. And of course it is equivalent to assume that these inequalities hold for all finitely non zero collections $\{a_Q\}_{Q \in \mathcal{D}}$.

We shall modify the quadratic $A_{p,q}$-conditions according to the coefficients b_Q. The measures satisfy the $A^b_{p,q}$-condition if for every collection $\{a_Q\}_{Q \in \mathcal{D}}$ of real numbers the inequality
\[(4.6) \quad \left\| \left(\sum_{Q \in \mathcal{D}} \left(a_Q b_Q \frac{\sigma(Q)}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq \left[\sigma, w \right]_b^{p,q} \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \]
holds, where again $[\sigma, w]_b^{p,q}$ denotes the best possible constant.

Now we can state the two weight theorem for the dyadic square function as follows:

Theorem 4.1. Let $1 < p, q < \infty$. The dyadic square function S^σ_b satisfies the two weight inequality (4.1) if and only if it satisfies the global quadratic testing condition (4.4) and if and only if it satisfies the local quadratic testing condition (4.5) and the quadratic $A^b_{p,q}$-condition (4.6) holds.

In this case the best constant $\|S^\sigma_b\|$ in (4.1) satisfies $\|S^\sigma_b\| \approx \hat{\mathcal{G}}_{\text{glob}} \approx \mathcal{G}_{\text{loc}} + [\sigma, w]_b^{p,q}$, where $\hat{\mathcal{G}}_{\text{glob}}$ and \mathcal{G}_{loc} are the best possible constants in (4.4) and (4.5), respectively.

Let us discuss the case $p = q = 2$, or more generally the case $1 < p \leq 2 < q < \infty$. Similarly as we noted above in Lemma 3.3 then the $A^b_{p,q}$-condition is equivalent with assuming
\[
\sup_{Q \in \mathcal{D}} |b_Q| \frac{\sigma(Q)^{\frac{1}{p}} w(Q)^{\frac{1}{q}}}{|Q|} \lesssim 1.
\]
And a same kind of computation shows that the quadratic testing conditions are equivalent with the corresponding Sawyer type testing conditions. For example considering the global testing (4.4), this means that it is enough to assume just
\[
\left\| S^\sigma_b(1_Q) \right\|_{L^q(w)} \leq C \sigma(Q)^{\frac{1}{p}}
\]
uniformly for all $Q \in \mathcal{D}$.

With these facts Theorem 4.1 reduces to the result proved in [13] when $p = q = 2$.

Proof of Theorem 4.1. We begin by showing that the global, and hence also the local, testing condition is a necessary consequence of the two weight inequality (4.1). Then we show that the global testing implies the quadratic $A^b_{p,q}$-condition. The main part of the proof is in showing that the local testing and the $A_{p,q}^b$-condition are also sufficient for (4.1).

Necessity of the testing conditions. This is very much like a classical theorem of Marcinkiewicz and Zygmund [12], which says that bounded linear operators in L^p-spaces have an extension into a vector valued situation. Choose a sequence $(f_k)_{k=1}^l \subset L^p(\sigma)$ and let $(\varepsilon_k)_{k=1}^l$ be a sequence of independent random signs. Then we compute with the Kahane-Khinchine inequalities that
\[
\left\| \left(\sum_{k=1}^{l} |S_0^q(f_k)|^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} = \left\| \left(\sum_{Q \in \mathcal{D}} \sum_{k=1}^{l} |b_Q \Delta_Q(f_k\sigma)|^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \\
= \left\| \left(\sum_{Q \in \mathcal{D}} \mathbb{E} \left| \sum_{k=1}^{l} \varepsilon_k b_Q \Delta_Q(f_k\sigma) \right|^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \\
= \left\| \left(\mathbb{E} \left| \left\{ \sum_{k=1}^{l} \varepsilon_k b_Q \Delta_Q(f_k\sigma) \right\}_{Q \in \mathcal{D}} \right|^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \\
\simeq \left(\mathbb{E} \left\| \left\{ \sum_{k=1}^{l} \varepsilon_k b_Q \Delta_Q(f_k\sigma) \right\}_{Q \in \mathcal{D}} \right\|_l^{q} \right)^{\frac{1}{q}} \\
\simeq \mathbb{E} \left\| \left\{ \sum_{k=1}^{l} \varepsilon_k b_Q \Delta_Q(f_k\sigma) \right\}_{Q \in \mathcal{D}} \right\|_l^{q},
\tag{4.7}
\]

where at the first “\(\simeq\)” we used Kahane-Khinchine inequality in \(l^2\) and at the second in \(L^q(w; l^2)\). From this continue using linearity of the martingale differences and the assumed two weight inequality \((4.1)\) as

\[
RHS(4.7) = \mathbb{E} \left\| S_0^q \left(\sum_{k=1}^{l} \varepsilon_k f_k \right) \right\|_{L^q(w)} \\
\leq \|S_0^q\| \left\| \sum_{k=1}^{l} \varepsilon_k f_k \right\|_{L^p(\sigma)} \simeq \|S_0^q\| \left\| \left(\sum_{k=1}^{l} f_k^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\tag{4.8}
\]

where at the “\(\simeq\)” we used Kahane-Khinchine inequality first in \(L^p(\sigma)\) and then in \(\mathbb{R}\). With \(4.7\) and \(4.8\) it is seen that the two weight inequality \((4.1)\) implies the global quadratic testing condition \((4.4)\).

Global testing implies the \(\mathcal{A}_{p,q}^b\)-condition. For any \(Q \in \mathcal{D}\) let \(\{Q_k\}_{k=1}^{2^N}\) be its dyadic children. If \(Q \in \mathcal{D}\) and \(k \in \{1, \ldots, 2^N\}\), then

\[
\frac{\sigma(Q_k)}{|Q_k|} \lesssim |\Delta_Q(1_{Q_k\sigma})(x)|
\]

for any \(x \in Q\), and thus

\[
|a_Q b_Q \sigma(Q_k)|_{L^q} \lesssim S_{b,Q}(a_Q 1_{Q_k}).
\]
This leads to
\[
\left\| \left(\sum_{Q \in \mathcal{D}} \left(a_Q b_Q \frac{\sigma(Q_k)}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(w)} \leq \left\| \left(\sum_{Q \in \mathcal{D}} S_{k,Q}^\sigma (a_Q 1_{Q_k})^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)}
\]
\[
\leq \left\| \left(\sum_{Q \in \mathcal{D}} S_{k}^\sigma (a_Q 1_{Q_k})^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \leq \mathcal{G}_{\text{glob}} \left\| \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_{Q_k} \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}.
\]
Since
\[
\left(\sum_{Q \in \mathcal{D}} \left(a_Q b_Q \frac{\sigma(Q)}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}} \leq \sum_{k=1}^{2^N} \left(\sum_{Q \in \mathcal{D}} \left(a_Q b_Q \frac{\sigma(Q_k)}{|Q|} \right)^2 1_Q \right)^{\frac{1}{2}},
\]
we get \([\sigma, w]_{p,q}^b \lesssim \mathcal{G}_{\text{glob}}.\]

Sufficiency of the local testing and the \(\mathcal{A}_{p,q}^b\)-condition. Now we turn to the main part of the theorem, which consists of showing that the local testing and the \(\mathcal{A}_{p,q}^b\)-condition are sufficient for the estimate (4.4). To this end, fix a function \(f \in L^p(\sigma)\). We can assume here that there are only finitely many non zero coefficients \(b_Q\) in the definition of \(S_p^\sigma\), and we prove a bound that is independent of this finite number. Of course the original local testing condition implies the same condition for this “truncated” square function.

There are at most \(2^N\) increasing sequences \(Q_1^i \subseteq Q_2^i \subseteq \ldots, i = 1, \ldots, j \leq 2^N\), such that
\[
(4.9) \quad \mathbb{R}^N = \bigcup_{i=1}^{j} \bigcup_{k=1}^{\infty} Q_k^i
\]
and
\[
\bigcup_{k=1}^{\infty} Q_k^i \cap \bigcup_{k=1}^{\infty} Q_k^{i'} = \emptyset
\]
if \(i \neq i'\). It follows from the properties of dyadic systems that for every cube \(Q \in \mathcal{D}\) there exists \(i \in \{1, \ldots, j\}\) such that \(Q \subset \bigcup_{k=1}^{\infty} Q_k^i\).

Since there are only finitely many non zero \(b_Qs\), we can choose indices \(k_1, \ldots, k_j\) such that if \(b_Q \neq 0\), then \(b_Q \subset \bigcup_{i=1}^{j} Q_k^i\), and we write \(\tilde{Q}_i := Q_k^i\). Thus we can assume that the function \(f\) is supported on \(\bigcup_{i=1}^{j} \tilde{Q}_i\). Since \(S_p^\sigma f = \sum_{i=1}^{j} S_p^\sigma (1_{\tilde{Q}_i} f)\), it is enough to bound each of these separately.

The choice of the cubes \(\tilde{Q}_i\) implies that \(S_p^\sigma (1_{\tilde{Q}_i}) = S_{b_{\tilde{Q}_i}}^\sigma (1_{\tilde{Q}_i})\), and thus
\[
\left\| \langle f \rangle_{\tilde{Q}_i} S_p^\sigma (1_{\tilde{Q}_i}) \right\|_{L^p(w)} = \left\| \langle f \rangle_{\tilde{Q}_i} S_{b_{\tilde{Q}_i}}^\sigma (1_{\tilde{Q}_i}) \right\|_{L^p(w)} \leq \mathcal{G}_{\text{loc}} \left\| \langle f \rangle_{\tilde{Q}_i} 1_{\tilde{Q}_i} \right\|_{L^p(\sigma)} \leq \mathcal{G}_{\text{loc}} \left\| 1_{\tilde{Q}_i} f \right\|_{L^p(\sigma)}.
\]
So finally it is enough to fix some $Q^i_{k_i} =: Q_0$, and assume that the function f is supported on Q_0 and has zero σ-average.

We use a similar kind of splitting of the function inside the operator as in [10], and a corresponding step appeared also in [13]. Consider some $Q \in \mathcal{D}$. Since the martingale differences $\Delta^\sigma_Q f$ have σ-integral zero, the term $\Delta_Q(f\sigma)$ in the square function can be written as

$$\Delta_Q(f\sigma) = \Delta_Q((\Delta^\sigma_Q f)\sigma) = \Delta_Q((\Delta^\sigma_Q f)\sigma) + (f\sigma)_Q \Delta_Q(1Q\sigma).$$

Here we used that f has zero average to get $\sum_{R:R \supset Q} \Delta^\sigma_R f 1_Q = (f\sigma)_Q 1_Q$. Accordingly we split the estimate for the square function into two parts as

$$\|S^p_{\sigma}(f)\|_{L^q(w)} \leq \left\| \left(\sum_{Q \in \mathcal{D}} \left(b_Q \Delta_Q((\Delta^\sigma_Q f)\sigma) \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} + \left\| \left(\sum_{Q \in \mathcal{D}} \left(b_Q (f\sigma)_Q \Delta_Q(1Q\sigma) \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)}.$$

(4.10)

For the first term in the right hand side of (4.10) we estimate

$$|\Delta_Q((\Delta^\sigma_Q f)\sigma)| \lesssim \frac{\int |\Delta^\sigma_Q f| d\sigma}{|Q|} 1_Q = (|\Delta^\sigma_Q f|\sigma(Q))_{Q} 1_Q.$$

This together with the $\mathcal{A}^b_{p,q}$-condition give

$$\left\| \left(\sum_{Q \in \mathcal{D}} \left(b_Q \Delta_Q((\Delta^\sigma_Q f)\sigma) \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \lesssim \left\| \left(\sum_{Q \in \mathcal{D}} \left(b_Q \frac{\int |\Delta^\sigma_Q f| d\sigma}{|Q|} \right)^2 \right)^{\frac{1}{2}} 1_Q \right\|_{L^q(w)} \leq [\sigma, w]_{p,q}^{b} \left\| \left(\sum_{Q \in \mathcal{D}} (\Delta^\sigma_Q f)^2 1_Q \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim [\sigma, w]_{p,q}^{b} \| f \|_{L^p(\sigma)},$$

where the second to last step follows from Stein’s inequality (2.11), and the last step follows from Burkholder’s inequality (2.6).

The last thing to do is to bound the second term in (4.10). Let \mathcal{F} be the collection of principal cubes for the function f constructed beginning from the cube Q_0.

15
Note that $\Delta_Q(1_{Q\sigma}) = \Delta_Q(1_{R\sigma})$ for every cube $Q \supset R \supset Q$. Using the principal cubes we estimate

$$\left\| \left(\sum_{Q \in \mathcal{D}} \left(b_Q(f) Q \Delta_Q(1_{Q\sigma}) \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \lesssim \left\| \left(\sum_{F \in \mathcal{F}} (\langle |f| \rangle_F)^2 \sum_{Q \in \mathcal{D} : \pi_Q = F} (b_Q \Delta_Q(1_{F\sigma}))^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \lesssim S_{\operatorname{loc}} \left\| \left(\sum_{F \in \mathcal{F}} (\langle |f| \rangle_F)^2 1_F \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \lesssim S_{\operatorname{loc}} \| f \|_{L^p(\sigma)},$$

where the last step follows from Carleson’s embedding theorem (2.9).

Note that we actually applied the quadratic testing condition only with a collection that is sparse with respect to the measure σ. This concludes the proof of Theorem 4.1.\square

5. DYADIC SHIFTS

Now we begin to consider the dyadic shifts. First we give some basic definitions and then we move on to characterize the two weight inequality.

For any interval $I \subset \mathbb{R}$ write $h^0_I := |I|^{-1} I$, and $h^1_I := |I|^{-\frac{1}{2}} (I_L - I_R)$, where $|I|$ is the length of the interval and I_L and I_R are the left and right halves of the interval, respectively. The function h^0_I is called non cancellative- and h^1_I cancellative Haar function related to the interval I.

For a cube $Q = I_1 \times I_2 \times \cdots \times I_N \in \mathcal{D}$, where each I_i is an interval in \mathbb{R}, define for $\eta \in \{0, 1\}^N$ the Haar function related to the cube by

$$h^{\eta}_Q(x_1, \ldots, x_N) := \prod_{i=1}^N h^{\eta_i}_{I_i}(x_i).$$

If some η_i is non zero, then h^{η}_Q is called cancellative since it has \(\int h^{\eta}_Q \, dx = 0 \), and otherwise it is called non cancellative. In any case \(\int |h^{\eta}_Q|^2 \, dx = 1 \).

Fix two non-negative integers m and n. For every cube $K \in \mathcal{D}$ suppose we have a linear operator A^σ_K defined on locally σ-integrable functions by

$$(5.1) \quad A^\sigma_K f := \sum_{I,J \in \mathcal{D}: \pi_{I^{(m)}} = \pi_{J^{(m)}} = K} a_{IJK} \langle f, h_I \rangle_{A} h_J,$$

where h_I and h_J are some Haar functions related to the cubes (not intervals) $I, J \in \mathcal{D}$, and the coefficients $a_{IJK} \in \mathbb{R}$ satisfy $|a_{IJK}| \leq \frac{\sqrt{|I||J|}}{|K|}$. Here the Haar functions are just some Haar functions, not any specific ones, and hence we omitted the
superscript η. So with a slight misuse of notation the Haar function h_I related to a cube I in (5.1) can change as J changes, and vice versa. Similarly define

$$A_w^K g := \sum_{I,J \in \mathcal{D}} a_{IJK} \langle g, h_J \rangle_w h_I$$

for locally w-integrable functions, where it should be noted that here the functions h_I and h_J are in “opposite places”.

As a direct consequence of the size assumption of the coefficients we get for any $f \in L^1_{\text{loc}}(\sigma)$ that

$$(5.2) \quad |A^K f| \leq \frac{1}{|K|} \int_K |f| d\sigma 1_K,$$

and a similar estimate holds for A_w^K.

We assume that there are only finitely many $K \in \mathcal{D}$ such that the coefficients a_{IJK} are non zero. We make this assumption to have the dyadic shift well defined in the general two weight setting, but all the bounds below will be independent of this number.

With the operators A^K the dyadic shift T^σ is defined by

$$(5.3) \quad T^\sigma f := \sum_{K \in \mathcal{D}} A^K f, \quad f \in L^1_{\text{loc}}(\sigma),$$

and the shift T^w is defined analogously with the operators A_w^K. They are formal adjoints of each other in the sense that

$$\langle T^\sigma f, g \rangle_w = \langle f, T^w g \rangle_\sigma$$

for all $f \in L^1_{\text{loc}}(\sigma)$ and $g \in L^1_{\text{loc}}(w)$. The shift T^σ is said to have parameters (m, n), and correspondingly the shift T^w has parameters (n, m). The number $\max\{m, n\}$ is the complexity of the shift.

Instead of a single dyadic shift we are going to consider a family \mathcal{T} of dyadic shifts with at most a given complexity. Let us first recall the definition of \mathcal{R}-bounded operator families as used for example in [20]. Suppose $(\varepsilon_k)_{k=1}^\infty$ is a sequence of independent random signs. If X and Y are two Banach spaces and \mathcal{T} is a family of linear operators from X into Y, then \mathcal{T} is said to be \mathcal{R}-bounded if for all $U \in \{1, 2, \ldots \}$, $(T_u)_{u=1}^U \subseteq \mathcal{T}$ and $(x_u)_{u=1}^U \subseteq X$ it holds that

$$(5.4) \quad \mathbb{E} \left\| \sum_{u=1}^U \varepsilon_u T_u x_u \right\|_Y \leq \mathcal{R}(\mathcal{T}) \mathbb{E} \left\| \sum_{u=1}^U \varepsilon_u x_u \right\|_X,$$

where $\mathcal{R}(\mathcal{T})$ is the best possible constant.

If $X = L^p(\sigma)$ and $Y = L^q(w)$ for some $1 \leq p, q < \infty$, then similar computations with the Kahane-Khinchine inequality as above with the dyadic square function
shows that in this case \mathcal{R}-boundedness can be equivalently defined as

\[
\left\| \left(\sum_{u=1}^{U} (T_u f_u)^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \lesssim \mathcal{R}(\mathcal{F}) \left\| \left(\sum_{u=1}^{U} f_u^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)},
\]

where $\mathcal{R}(\mathcal{F})$ is the constant when formulated as in (5.4). If $p = q = 2$ it is easily seen from (5.5) that in this case \mathcal{R}-boundedness is equivalent with uniform boundedness. On the other hand from (5.4) one sees that if \mathcal{F} consists of a single operator T, then \mathcal{R}-boundedness is just the same as T is bounded.

Let $\mathcal{F} = \{T_\alpha^\sigma : \alpha \in \mathcal{A} \}$ be a collection of dyadic shifts. If $T_\alpha^\sigma \in \mathcal{F}$, then we write T_α^w for the corresponding formal adjoint. We say that the collection \mathcal{F} of dyadic shifts satisfies the (local) quadratic testing condition (with respect to exponents $1 < p, q < \infty$) if for any $U \in \{1, 2, \ldots \}$, all sequences $(a_u)^U_{u=1} \subset \mathbb{R}$, $(T_u^\sigma)^U_{u=1} \subset \mathcal{F}$ and $(Q_u)^U_{u=1} \subset \mathcal{D}$ the inequalities

\[
\left\| \left(\sum_{u=1}^{U} (a_u Q_u T_u^\sigma 1_{Q_u})^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \leq \mathcal{T}^\sigma \left\| \left(\sum_{u=1}^{U} a_u^2 1_{Q_u} \right)^{\frac{1}{2}} \right\|_{L^p(w)}
\]

and

\[
\left\| \left(\sum_{u=1}^{U} (a_u Q_u T_u^w 1_{Q_u})^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \leq \mathcal{T}^w \left\| \left(\sum_{u=1}^{U} a_u^2 1_{Q_u} \right)^{\frac{1}{2}} \right\|_{L^p(w)}
\]

hold, where \mathcal{T}^σ and $\mathcal{T}^w < \infty$ are the best possible constants. Note that it is not forbidden in this definition that $T_u = T_{u'}$ for some $u \neq u'$. In particular if \mathcal{F} consists only of a single shift, then we get a corresponding quadratic testing condition as above with the dyadic square function.

The two weight theorem for the dyadic shifts is as follows:

Theorem 5.1. Let $1 < p, q < \infty$ be two exponents and assume that the measures σ and w satisfy the quadratic $\mathcal{A}_{p,q}$-condition. Suppose \mathcal{F} is a collection of dyadic shifts as in (5.3) with complexities at most κ. Then the collection \mathcal{F} is \mathcal{R}-bounded from $L^p(\sigma)$ into $L^q(w)$ if and only if it satisfies the quadratic testing conditions (5.6) and (5.7), and in this case

\[
\mathcal{R}(\mathcal{F}) \lesssim (1 + \kappa)(\mathcal{T}^\sigma + \mathcal{T}^w) + (1 + \kappa)^2 [\sigma, w]_{p,q}.
\]

Again before proving the theorem we comment quickly on the case $1 < p \leq 2 \leq q < \infty$. Similar computations as in (3.6) show that in this case \mathcal{R}-boundedness is equivalent with uniform boundedness, the quadratic testing condition reduces to Sawyer type testing and the quadratic $\mathcal{A}_{p,q}$-condition becomes the simple $A_{p,q}$-condition. Thus we get that a dyadic shift T_σ^σ is bounded from $L^p(\sigma)$ into $L^q(w)$ if and only if the Sawyer type conditions

\[
\left\| 1_Q T_\sigma^\sigma 1_Q \right\|_{L^q(w)} \leq \mathcal{T}^\sigma \sigma(Q)^{\frac{1}{2}}
\]

and

\[
\left\| 1_Q T_\sigma^w 1_Q \right\|_{L^p(\sigma)} \leq \mathcal{T}^w w(Q)^{\frac{1}{2}}
\]
hold for all $Q \in \mathcal{D}$, and the measures satisfy the Muckenhoupt type $A_{p,q}$-condition

$$(\sigma, w)_{p,q} := \sup_{Q \in \mathcal{D}} \frac{\sigma(Q)^{\frac{1}{p}} w(Q)^{\frac{1}{q}}}{|Q|} < \infty.$$

In this case

$$\|T^\sigma\|_{L^p(\sigma) \to L^q(w)} \lesssim (1 + \kappa)(T^\sigma + T^w) + (1 + \kappa)^2 (\sigma, w)_{p,q},$$

which is the result proved in [7] when $p = q = 2$.

Proof of Theorem 5.1 Suppose \mathcal{T} is \mathcal{R}-bounded, whence clearly the quadratic testing condition (5.6) is satisfied. Using duality one sees that the collection of formal adjoints of the shifts in \mathcal{T} is \mathcal{R}-bounded from $L^d(w)$ into $L^p(\sigma)$, and thus also (5.7) is satisfied. Hence it is enough to show the sufficiency of the testing conditions.

So we assume that we have a collection \mathcal{T} of dyadic shifts with complexity at most κ satisfying the quadratic testing conditions (5.6) and (5.7). For any $U = 1, 2, \ldots$ suppose we have some sequences $(T^\sigma_u)_{u=1}^U \subset \mathcal{T}$ and $(f_u)_{u=1}^U \subset L^p(\sigma)$. To prove (5.8) it is enough to take an arbitrary sequence $(g_u)_{u=1}^U \subset L^d(w)$ and show that

$$\left| \sum_{u=1}^U \langle T^\sigma_u f_u, g_u \rangle_w \right| \lesssim \left((1 + \kappa)(T^\sigma + T^w) + (1 + \kappa)^2 (\sigma, w)_{p,q} \right) \|f_u\|_{L^p(\sigma)} \|g_u\|_{L^d(w)}.$$

For any u we write the corresponding shift as

$$T^\sigma_u f_u = \sum_{K \in \mathcal{D}} A^\sigma_{u,K} f_u = \sum_{K \in \mathcal{D}} \sum_{I,J \in \mathcal{D}; I^{(m)} = I^{(n)} = K} a_i^{u} \langle f_u, h_{I,J} \rangle_\sigma h_{I,J}. $$

Let again $\cup_{i=1}^\infty Q_i$, $i = 1, \ldots, j \leq 2^N$, be the different “quadrants” of our dyadic system, as explained around equation (1.9). Because we assumed that every shift consists of only finitely many operators A^σ_K, we can choose for every i a cube $Q_i^j := Q_i$ such that $a_i^{u} \neq 0$ implies $K \subset \cup_{i=1}^\infty Q_i$. Since the definition of the shift shows that

$$T^\sigma_u (f_u 1_{Q_i})$$

is supported on 1_{Q_i}, we have

$$\sum_{u=1}^U \langle T^\sigma_u f_u, g_u \rangle_w = \sum_{i=1}^j \sum_{u=1}^U \langle T^\sigma_u 1_{Q_i} f_u, 1_{Q_i} g_u \rangle_w,$$

and it is enough to estimate for each i separately.

Finally we split

$$\langle T^\sigma_u 1_{Q_i} f_u, 1_{Q_i} g_u \rangle_w = \langle T^\sigma_u (1_{Q_i} (f_u - \langle f_u \rangle_{Q_i}), 1_{Q_i} (g_u - \langle g_u \rangle_{Q_i}) \rangle_w$$

$$+ \langle 1_{Q_i} (f_u - \langle f_u \rangle_{Q_i}), \langle g_u \rangle_{Q_i} T^w u_{Q_i} \rangle_\sigma + \langle \langle f_u \rangle_{Q_i} T^w u_{Q_i}, 1_{Q_i} g_u \rangle_w. $$

(5.9)
and the sum over u of the last two terms can be bound directly with the testing conditions. For example
\[
\left| \sum_{u=1}^{U} \langle f_u \rangle^{\sigma}_{Q_u} \langle T_u^{\sigma} 1_{Q_u}, 1_{Q_u} g_u \rangle_w \right|
\leq \left\| \left(\sum_{u=1}^{U} \left(\langle f_u \rangle^{\sigma}_{Q_u} 1_{Q_u} T_u^{\sigma} 1_{Q_u} \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \left\| \left(\sum_{u=1}^{U} \left| 1_{Q_u} g_u \right|^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)}
\leq T^{\sigma} \left(\sum_{u=1}^{U} \left(\langle f_u \rangle^{\sigma}_{Q_u} \right)^2 \right)^{\frac{1}{2}} \sigma(\tilde{Q}_i)^{\frac{1}{2}} \left\| (1_{Q_u} g_u)_{u=1}^{U} \right\|_{L^p(w)} ,
\]
and using the fact that an l^2-sum of averages is less than the average of the l^2-sum we get
\[
\left(\sum_{u=1}^{U} \left(\langle f_u \rangle^{\sigma}_{Q_u} \right)^2 \right)^{\frac{1}{2}} \sigma(\tilde{Q}_i)^{\frac{1}{2}} \leq \left\langle \left(\sum_{u=1}^{U} f_u^2 \right)^{\frac{1}{2}} \right\rangle_{\tilde{Q}_i} \sigma(\tilde{Q}_i)^{\frac{1}{2}} \leq \| (1_{Q_u} f_u)_{u=1}^{U} \|_{L^p(w)}.
\]
Thus after these reductions it is enough to fix one cube $Q_{Q_0}^1 =: Q_0$ and suppose that for every u the functions f_u and g_u are supported on Q_0 and have zero averages. Since the shifts T_u^{σ} are \textit{a priori} bounded, we can by L^p-convergence of martingale differences assume that the functions are given by
\[
f_u = \sum_{Q \in D: Q \subset Q_0} \Delta_Q^u f_u, \quad g_u = \sum_{Q \in D: Q \subset Q_0} \Delta_Q^w g_u,
\]
where the sums are finite.

Using the martingale decomposition
\[
\sum_{u=1}^{U} \langle T_u^{\sigma} f_u, g_u \rangle_w = \sum_{u=1}^{U} \sum_{Q, R \in D} \langle T_u^{\sigma} \Delta_Q^u f_u, \Delta_R^w g_u \rangle_w
\]
we split the proof into parts depending on the relative positions of the cubes Q and R, and this part of the proof follows the outlines in [4]. The cases “$l(Q) \leq l(R)$” and “$l(Q) > l(R)$” are treated symmetrically, and here we concentrate on the first. Then, using the maximal possible complexity κ of the shifts, we further split into three cases “$Q \cap R = \emptyset$”, “$Q^{(\kappa)} \subset R$” and “$Q \subset R \subset Q^{(\kappa)}$”, and these are treated separately using different properties of the shifts.

In the summations we understand that we are summing over dyadic cubes, and won’t always write “$Q \in D$” in the summation condition. Moreover, since we assumed the finite martingale decompositions of f and g, we can think that every $Q \in D$ that appears below will actually belong to some sufficiently big \textit{finite} collection $D_0 \subset D$. This way all the sums are actually finite, and one does not have to worry about any convergence issues.
At this point it is convenient to introduce the notation
\[\Delta^\sigma_Q f := \sum_{Q' \in \mathcal{D}_Q} \Delta^\sigma_{Q'} f\]
for any \(f \in L^1_{loc}(\sigma), Q \in \mathcal{D}\) and \(i \in \{0, 1, 2, \ldots\}\), and of course similarly with the measure \(w\).

Disjoint cubes; \(Q \cap R = \emptyset\) and \(l(Q) \leq l(R)\). Here we bound the part
\[\sum_{u=1}^{U} \sum_{l(Q) \leq l(R)} \langle T^\sigma_u \Delta^\sigma_Q f_u, \Delta^w_R g_u \rangle_w \]
(5.11)

Consider a fixed \(u\) first, and suppose the shift \(T^\sigma_u\) has parameters \((m, n)\) with \(m + n \leq \kappa\). Fix two cubes \(Q, R \in \mathcal{D}\) with \(Q \cap R = \emptyset\). If \(K \in \mathcal{D}\) is such that \(\langle A^\sigma_{u,K} \Delta^\sigma_Q f_u, \Delta^w_R g_u \rangle_w \neq 0\), it must be that \(Q \subset K \subset Q^{(m)}\) and \(R \subset K \subset R^{(n)}\). Thus the sum (5.11) is actually zero if \(m = 0\) or \(n = 0\). Hence we assume \(m, n \geq 1\), rearrange the sum in question and estimate with (5.2) as
\[\sum_{i,j=1}^{\kappa} \sum_{Q \in \mathcal{D}_Q} \sum_{R \in \mathcal{D}_R} \|\Delta^\sigma_Q f_u\|_{L^1(\sigma)} \|\Delta^w_R g_u\|_{L^1(w)} \frac{1}{|K|} \leq \sum_{i,j=1}^{\kappa} \sum_{Q \in \mathcal{D}_Q} \sum_{R \in \mathcal{D}_R} \|\Delta^\sigma_Q f_u\|_{L^1(\sigma)} \|\Delta^w_R g_u\|_{L^1(w)} \frac{1}{|K|}.
\]
(5.12)

Note that this estimate does not depend on the parameters \((m, n)\) of the shift.

Then for any fixed \(i\) and \(j\), we sum over \(u\), and continue with
\[\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}_Q} \frac{\|\Delta^\sigma_{K^i_j} f_u\|_{L^1(\sigma)} \|\Delta^w_{K^j_i} g_u\|_{L^1(w)}}{|K|} \leq \int \left(\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}_Q} \frac{\|\Delta^\sigma_{K^i_j} f_u\|_{L^1(\sigma)} \|\Delta^w_{K^j_i} g_u\|_{L^1(w)}}{|K|} \right)^{\frac{1}{2}} \|1_K\|_{L^q(w)} \right)^{\frac{1}{2}} \cdot \left(\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}_Q} \left(\frac{\|\Delta^w_{K^j_i} g_u\|_{1_K}}{|K|} \right)^{\frac{1}{2}} \right)^{\frac{1}{2}} \right) =: A \cdot B.
\]
(5.13)
Using the quadratic \(\mathcal{A}_{p,q} \)-condition we get

\[
A = \left\| \left(\sum_{u=1}^{U} \sum_{K \in \mathcal{D}} \left(\langle |\Delta_{K}^m f_u| \rangle_{K}^{\sigma(K)} \right)^2 1_K \right)^{1/2} \right\|_{L^p(w)}
\]

(5.14)

\[
\leq [\sigma, w]_{p,q} \left\| \left(\sum_{u=1}^{U} \sum_{K \in \mathcal{D}} \left(\langle |\Delta_{K}^m f_u| \rangle_{K}^{\sigma(K)} \right)^2 1_K \right)^{1/2} \right\|_{L^p(\sigma)}
\]

\[
\leq [\sigma, w]_{p,q} \left\| \left(\sum_{K \in \mathcal{D}} \left(\langle \sum_{u=1}^{U} (\Delta_{K}^m f_u)^2 \rangle_{K}^{\sigma(K)} 1_K \right)^{1/2} \right)^{1/2} \right\|_{L^p(\sigma)}.
\]

Applying Stein’s inequality (2.11) and then Burkholder’s inequality (2.6) to the last term in (5.14) we have

\[
RHS(5.14) \lesssim [\sigma, w]_{p,q} \left\| \left(\sum_{K \in \mathcal{D}} \left(\langle \sum_{u=1}^{U} (\Delta_{K}^m f_u)^2 \rangle_{K}^{\sigma(K)} 1_K \right)^{1/2} \right)^{1/2} \right\|_{L^p(\sigma)}
\]

\[
\lesssim [\sigma, w]_{p,q} \left\| (f_u)_{u=1}^{U} \right\|_{L^p(\sigma; |x|^2)}.
\]

The factor \(B \) in (5.13) is estimated directly with Burkholder’s inequality, and then it only remains to sum over the finite ranges of \(i \) and \(j \), which produces a factor \(\kappa^2 \) in the final estimate. Hence we have shown that

(5.11) \(\lesssim \kappa^2 \cdot [\sigma, w]_{p,q} \left\| (f_u)_{u=1}^{U} \right\|_{L^p(\sigma; |x|^2)} \left\| (g_u)_{u=1}^{U} \right\|_{L^p(\sigma; |x|^2)}.
\]

Deeply contained cubes; \(Q^{(\kappa)} \subsetneq R \). We consider again a fixed \(T^m \) with parameters \((m, n) \) first. Assume \(Q, R \in \mathcal{D} \) are two cubes such that \(Q^{(\kappa)} \subsetneq R \). If \(A_{u,K}^m \Delta_{Q}^w f_u \) is non zero, it must be that \(K \subset Q^{(m)} \subset Q^{(\kappa)} \subsetneq R \). Since \(A_{u,K}^m \Delta_{Q}^w f_u \) is supported on \(K \), we see that

\[
\left\langle A_{u,K}^m \Delta_{Q}^w f_u, \Delta_{Q}^w g_u \right\rangle_{w} = \left\langle A_{u,K}^m \Delta_{Q}^w f_u, \langle \Delta_{R}^w g_u \rangle_{Q^{(\kappa)}} 1_{Q^{(\kappa)}} \right\rangle_{w},
\]

and thus

\[
\left\langle T^m_{u} \Delta_{Q}^w f_u, \Delta_{Q}^w g_u \right\rangle_{w} = \left\langle T^m_{u} \Delta_{Q}^w f_u, \langle \Delta_{R}^w g_u \rangle_{Q^{(\kappa)}} 1_{Q^{(\kappa)}} \right\rangle_{w}.
\]

Taking “\(Q^{(\kappa)} \)” as a new summation variable we can rewrite the sum to be estimated as

(5.15)

\[
\sum_{Q \in \mathcal{D}} \sum_{R \in \mathcal{D}; Q^{(\kappa)} \subsetneq R} \sum_{Q^{(\kappa)} \in \mathcal{D}; Q^{(\kappa)} \subsetneq R} \left\langle T^m_{u} \Delta_{Q}^w f_u, \langle \Delta_{R}^w g_u \rangle_{Q^{(\kappa)}} 1_{Q^{(\kappa)}} \right\rangle_{w}
\]

\[
= \sum_{Q \in \mathcal{D}} \left\langle \Delta_{Q}^w f_u, \langle g_u \rangle_{Q^{(\kappa)}} \Delta_{Q}^w T^m_{u} 1_{Q^{(\kappa)}} \right\rangle_{\sigma},
\]

where we collapsed the sum \(\sum_{R \in \mathcal{D}; Q^{(\kappa)} \subsetneq R} \langle \Delta_{R}^w g_u \rangle_{Q^{(\kappa)}} 1_{Q} = \langle g_u \rangle_{Q^{(\kappa)}} 1_{Q} \), and used the fact that the martingale difference operator \(\Delta_{Q}^w \) can be put also to the other side of the pairing.
\(\langle \cdot , \cdot \rangle_{\sigma} \). Now we have again an equation that is independent of the parameters \((m, n)\), so it holds for all the shifts \(T_u^w \).

Then we sum over \(u \) and estimate up as

\[
\left| \sum_{u=1}^{U} \sum_{Q \in \mathcal{D}} \left\langle \Delta_{Q}^{\sigma, \kappa} f_u, \langle g_u \rangle_{Q}^{w} \Delta_{Q}^{\sigma, \kappa} T_u^w 1_Q \right\rangle_{\sigma} \right|
\]

\[
= \left| \int \sum_{u=1}^{U} \sum_{Q \in \mathcal{D}} \Delta_{Q}^{\sigma, \kappa} f_u \langle g_u \rangle_{Q}^{w} \Delta_{Q}^{\sigma, \kappa} T_u^w 1_Q d\sigma \right|
\]

\[
\leq \left\| \left(\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}} \left(\Delta_{Q}^{\sigma, \kappa} f_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

\[
\cdot \left\| \left(\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}} \left(\langle g_u \rangle_{Q}^{w} \Delta_{Q}^{\sigma, \kappa} T_u^w 1_Q \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\]

where Burkholder’s inequality (2.6) implies that the first factor is dominated by \(\| (f_u)_{u=1}^{U} \|_{L^p(\sigma)} \).

In the second factor we note that if \(\varphi \) is any locally \(w \)-integrable function, then \(\Delta_{Q}^{\sigma, \kappa} A_{u,K}^{w}(1_{\mathcal{D}} \varphi) = 0 \) for any \(Q, K \in \mathcal{D} \), which follows from the fact that the shift has complexity at most \(\kappa \). This shows that

\[
\Delta_{Q}^{\sigma, \kappa} T_u^w 1_Q = \Delta_{Q}^{\sigma, \kappa} T_u^w 1_P
\]

for any \(\mathcal{D} \ni P \supset Q \).

Beginning from the cube \(Q_0 \), construct the sets \(\mathcal{G}_u \) of principal cubes for the functions \(g_u \) with respect to the measure \(w \). Since the functions \(g_u \) have finite martingale difference decompositions, and are accordingly constant on sufficiently small cubes \(Q \in \mathcal{D} \), the collections \(\mathcal{G}_u \) are finite.

With the remark (5.17) we proceed with

\[
\left\| \left(\sum_{u=1}^{U} \sum_{Q \in \mathcal{D}} \left(\langle g_u \rangle_{Q}^{w} \Delta_{Q}^{\sigma, \kappa} T_u^w 1_Q \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

\[
\leq \left\| \left(\sum_{u=1}^{U} \sum_{G \in \mathcal{G}_u} \left(\langle |g_u| \rangle_{G}^{w} \right)^2 \sum_{\pi Q = G} \left(\Delta_{Q}^{\sigma, \kappa} T_u^w 1_G \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

\[
\approx \left\| \left(\sum_{u=1}^{U} \left(\sum_{G \in \mathcal{G}_u} \langle |g_u| \rangle_{G}^{w} \sum_{\pi Q = G} \Delta_{Q}^{\sigma, \kappa} T_u^w 1_G \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},
\]

where we used Burkholder’s inequality in the last step.
To bound the last quantity we choose an arbitrary sequence \((h_u)_{u=1}^U \in L^p(\sigma; l^2)\) and compute

\[
\sum_{u=1}^U \int \left(\sum_{G \in \mathcal{G}_u} \langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \cdot h_u \right) d\sigma
\]

\[
= \sum_{u=1}^U \int \left(\sum_{G \in \mathcal{G}_u} \langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right) d\sigma
\]

\[
\leq \left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \left(\langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

\[
\cdot \left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \left(\sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}.
\]

(5.18)

The first factor satisfies

\[
\left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \left(\langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \leq \left\| T^u \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \left(\langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)}
\]

\[
\leq \left\| T^u \right\|_{L^p(\sigma)} \left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \langle |g_u| \rangle_w \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right\|_{L^p(\sigma)}
\]

where we used the Carleson’s embedding theorem (2.9).

Suppose \((c_{k,l})_{k,l}\) is any finite doubly indexed sequence of real numbers. One can compute with the Kahane-Khinchine inequalities that

\[
\left(\sum_{k,l} c_{k,l}^2 \right)^{\frac{p}{2}} = \left(\mathbb{E} \sum_k \left(\sum_l c_{k,l} \right)^2 \right)^{\frac{p}{2}}
\]

\[
\simeq \mathbb{E} \left(\sum_k \left(\sum_l c_{k,l} \right)^2 \right)^{\frac{p}{2}}.
\]

Using this to the double some \(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u}\) in the second factor in the last term in (5.18) we get

\[
\left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \left(\sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \simeq \mathbb{E} \left\| \left(\sum_{u=1}^U \sum_{G \in \mathcal{G}_u} \sum_{\pi Q = G} \Delta^\sigma \Delta h_u \right)^2 \right\|_{L^p(\sigma)}
\]

\[
\leq \mathbb{E} \left\| (h_u)_{u=1}^U \right\|_{L^p(\sigma; l^2)}^2 = \mathbb{E} \left\| (h_u)_{u=1}^U \right\|_{L^p(\sigma; l^2)}^2
\]

where we used Burkholder’s inequality in the second step to get rid of the random signs \(\varepsilon_{u,G}\). This concludes the proof for the part “\(Q^{(\kappa)} \subset R\)".
Contained cubes of comparable size; $Q \subset R \subset Q^{(\kappa)}$. For a fixed u, the sum to be estimated in this last subsection can be written as

$$
\sum_{i=0}^{\kappa} \sum_{R \in \mathcal{D}} \sum_{\mathcal{Q} \in \mathcal{Q}^{(i)}} \langle T_u^{(i)} \Delta_Q^{(i)} f_u, \Delta_{R}^{(i)} g_u \rangle_w = \sum_{i=0}^{\kappa} \sum_{k=1}^{2^N} \sum_{R \in \mathcal{D}} \langle \Delta_R^{(i)} f_u, \langle \Delta_R^{(i)} g_u \rangle_{R_k} T_u^{(i)} 1_{R_k} \rangle \sigma,
$$

(5.19)

where the cubes R_k are the dyadic children of R.

Consider the first sum in the right side of (5.19). We fix some i and k, sum over u and use testing to deduce that

$$
\left| \sum_{u=1}^{U} \sum_{R \in \mathcal{D}} \langle 1_{R_k} \Delta_R^{(i)} f_u, \langle \Delta_R^{(i)} g_u \rangle_{R_k} T_u^{(i)} 1_{R_k} \rangle \sigma \right|
\leq \left\| \left(\sum_{u=1}^{U} \sum_{R \in \mathcal{D}} (1_{R_k} \Delta_R^{(i)} f_u)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} \cdot \left\| \left(\sum_{u=1}^{U} \sum_{R \in \mathcal{D}} (\langle \Delta_R^{(i)} g_u \rangle_{R_k} 1_{R_k} T_u^{(i)} 1_{R_k})^2 \right)^{\frac{1}{2}} \right\|_{L^{p'}(\sigma)}
\lesssim T_w \left\| (f_u)_{u=1}^{U} \right\|_{L^p(\sigma; 2^i)} \left(\sum_{u=1}^{U} \sum_{R \in \mathcal{D}} \left| \langle \Delta_R^{(i)} g_u \rangle_{R_k} 1_{R_k} \right|^2 \right)^{\frac{1}{2}} \left\| (g_u)_{u=1}^{U} \right\|_{L^{p'}(2^{i}; 2^i)}
\lesssim T_w \left\| (f_u)_{u=1}^{U} \right\|_{L^p(\sigma; 2^i)} \left\| (g_u)_{u=1}^{U} \right\|_{L^{p'}(2^{i}; 2^i)}.
$$

Now turn to the other sum in (5.19) to be estimated. With the same notation as there, we have $1_{\mathcal{E}_R} A_{w, K} 1_{R_k} \neq 0$ only if $K \supset R$. Hence, using (5.2), we get

$$
\left| \left\langle 1_{\mathcal{E}_R} \Delta_R^{(i)} f_u, \langle \Delta_R^{(i)} g_u \rangle_{R_k} T_u^{(i)} 1_{R_k} \right\rangle \sigma \right| \leq \sum_{K \supset \mathcal{E}_R, K \subset R} \left| 1_{\mathcal{E}_R} \Delta_R^{(i)} f_u \right|_{L^{1}(\sigma)} \left\| 1_{R_k} \Delta_R^{(i)} g_u \right\|_{L^{1}(w)} \left| K \right|
\lesssim \left| 1_{\mathcal{E}_R} \Delta_R^{(i)} f_u \right|_{L^{1}(\sigma)} \left\| 1_{R_k} \Delta_R^{(i)} g_u \right\|_{L^{1}(w)} \left| R \right|.
$$
Lemma 5.2. Let $1 < p, q < \infty$ and suppose \mathcal{F} is a family of dyadic shifts containing all shifts with parameters (m, n). If \mathcal{F} is \mathcal{R}-bounded from $L^p(\sigma)$ into $L^q(w)$, then

$$\|a\|_{p,q} \leq 2^{N_{\min(m,n)}} \mathcal{R}(\mathcal{F}).$$

Proof. Suppose for example that $m \leq n$. The situation $m > n$ is similar. For any $I \in \mathcal{D}$ define the shift

$$T_I^\sigma := \sum_{J \in \mathcal{D} : J(n-m) = I} \frac{\sqrt{\|J\|J}}{|I(m)|} \langle \cdot, h_I \rangle_\sigma h_J,$$

where the functions h_I and h_J are some fixed Haar functions related to the cubes I and J. Define also the function $f_I := h_I \sqrt{|I|}$.

With these definitions we have $|T_I f_I| = \frac{a_I(1)}{2^{N_{\min(m,n)}}} \|J\| 1_I$, and clearly $|f_I| = 1_I$. Thus, if $\{a_I\}_{I \in \mathcal{D}}$ is any finitely non zero set of real numbers, then

$$2^{-Nm} \left\| \left(\sum_{I \in \mathcal{D}} \left(a_I \frac{\sigma(I)}{|I|} 1_I \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} = \left\| \left(\sum_{I \in \mathcal{D}} \left(a_I T_I^\sigma f_I \right)^2 \right)^{\frac{1}{2}} \right\|_{L^q(w)} \leq \mathcal{R}(\mathcal{F}) \left\| \left(\sum_{I \in \mathcal{D}} \left(a_I f_I 1_I \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)} = \mathcal{R}(\mathcal{F}) \left\| \left(\sum_{I \in \mathcal{D}} a_I^2 1_I \right)^{\frac{1}{2}} \right\|_{L^p(\sigma)},$$

which shows that $[\sigma, w]_{p,q} \leq 2^{N_{\min(m,n)}} \mathcal{R}(\mathcal{F}).$

Corollary 5.3. Suppose $1 < p, q < \infty$. The family \mathcal{F} of all shifts with parameters (m, n) is \mathcal{R}-bounded from $L^p(\sigma)$ into $L^q(w)$ if and only if the family satisfies the quadratic testing conditions (5.13) and (5.14), and the quadratic $\alpha'_{p,q}$-condition holds. Moreover we have the quantitative estimate

$$2^{-N_{\min(m,n)}} [\sigma, w]_{p,q} + \mathcal{T}^\sigma + \mathcal{T}^w \lesssim \mathcal{R}(\mathcal{F}) \lesssim (1 + \kappa)(\mathcal{T}^\sigma + \mathcal{T}^w) + (1 + \kappa)^2 [\sigma, w]_{p,q},$$
where \mathcal{T}^σ and \mathcal{T}^w are the testing constants and $\kappa = \max\{m,n\}$.

Dyadic shifts of a specific form. We look at the case when all the operators A^*_K in the definition of the dyadic shifts are of the form

$$A^*_K f := \sum_{I,J: I^{(m)} = J^{(n)} = K} a_{IJK} \langle f, h_I \rangle_{\sigma} h_J,$$

where $I \lor J$ denotes the smallest cube (if it exists) in \mathcal{D} containing both I and J. Thus $I \lor J = K$ is equivalent with saying that I and J are subcubes of different children of K. This kind of dyadic shifts arise naturally when representing general Calderón-Zygmund operators with dyadic shifts as in [5]. Note that in this case if A^*_K is to be non zero then $m, n \geq 1$.

In this situation a weaker form of the quadratic $A_{p,q}$-condition is sufficient in Theorem 5.1. Namely, let again $Q_k, k \in \{1, \ldots, 2^N\}$, denote the dyadic children of a cube $Q \in \mathcal{D}$. We do not have any special ordering in mind, and in fact the ordering need not be the same for different cubes. Thus, if $Q, Q' \in \mathcal{D}$ and $Q \neq Q'$, then Q_k and Q'_k need not be in symmetrical places with respect to the parents Q and Q'. We say that the measures σ and w satisfy the quadratic $A_{p,q}^*$-condition if for any $k, l \in \{1, \ldots, 2^N\}, k \neq l$, and any collection $\{a_Q\}_{Q \in \mathcal{D}}$ of real numbers the inequality

$$\left\| \left(\sum_{Q \in \mathcal{D}} \left(\frac{a_Q \sigma(Q_k)}{|Q_k|} \right)^2 1_{Q_k} \right)^{1/2} \right\|_{L^q(w)} \leq [\sigma, w]_{p,q}^* \left\| \left(\sum_{Q \in \mathcal{D}} a_Q^2 1_{Q_k} \right)^{1/2} \right\|_{L^p(\sigma)}$$

is satisfied, and here again $[\sigma, w]_{p,q}^*$ denotes the best possible constant. Similarly as with the quadratic $A_{p,q}$-condition above we have $[\sigma, w]_{p,q}^* \simeq [w, \sigma]_{p',q'}^*$.

The two weight inequality for the Hilbert transform was characterized by M. Lacey, E. Sawyer, C.-Y. Shen and I. Uriarte-Tuero [11] and M. Lacey [9] in the case when the measures σ and w do not have common point masses. This restriction on the measures was lifted by T. Hytönen in [6], and a key new component was a similar kind of weakening as we have here of the Poisson A_2 conditions used in [11] and [9].

Theorem 5.4. Let $1 < p, q < \infty$ be two exponents and assume that the measures σ and w satisfy the quadratic $A_{p,q}^*$-condition. Suppose \mathcal{I} is a collection of dyadic shifts with complexities at most κ, and suppose every shift in \mathcal{I} is of the specific form (5.21). Then the collection \mathcal{I} is R-bounded from $L^p(\sigma)$ into $L^q(w)$ if and only if it satisfies the quadratic testing conditions (5.6) and (5.7), and in this case

$$R(\mathcal{I}) \lesssim (1 + \kappa)(\mathcal{T}^\sigma + \mathcal{T}^w) + (1 + \kappa)^2 [\sigma, w]_{p,q}^*.$$

We outline the proof Theorem 5.4. This is very probably known to specialists, but we record this fact here.

All we need to do is to look at the proof above and consider the places where the quadratic $A_{p,q}^*$-condition was applied, and show that in this special case it is enough to assume the weaker condition. The quadratic $A_{p,q}^*$-condition was applied in two
places: First in the end of the subsection dealing with the case \(Q \cap R = \emptyset \), and then in the end of the case \(Q \subset R \subset Q^{(\ast)} \).

Assume \(K \in \mathscr{D} \) and we have an operator \(A_{K}^{\sigma} \) of the form (5.21). Then for \(f \in L_{loc}^{1}(\sigma) \) and \(g \in L_{loc}^{1}(w) \) we have

\[
\left| \langle A_{K}^{\sigma} f, g \rangle_{w} \right| = \sum_{k,l \in \{1, \ldots, 2^{N} \}} \sum_{k \neq l} a_{JK} \langle f, h_{I} \rangle_{\sigma} \langle g, h_{J} \rangle_{w} \]
\[
\quad \quad \quad \leq \sum_{k,l \in \{1, \ldots, 2^{N} \}} \frac{\|1_{K_{k}}f\|_{L^{1}(\sigma)} \|1_{K_{l}}g\|_{L^{1}(w)}}{|K|}.
\]

(5.24)

If we use (5.24) in (5.12) we end up with a term

\[
\sum_{i,j=1}^{K} \sum_{k \in \mathscr{D}} \sum_{k \neq l} \frac{\|1_{K_{k}} \Delta_{K_{i}}^{\sigma} f_{u}\|_{L^{1}(\sigma)} \|1_{K_{l}} \Delta_{K_{i}}^{w} g_{u}\|_{L^{1}(w)}}{|K|}.
\]

If one continues as in (5.13) with fixed \(k \neq l \), the result is

\[
\left\| \left(\sum_{u=1}^{U} \sum_{k \in \mathscr{D}} \left(\frac{\|1_{K_{k}} \Delta_{K_{i}}^{\sigma} f_{u}\|_{L^{1}(\sigma)} \|1_{K_{l}} \Delta_{K_{i}}^{w} g_{u}\|_{L^{1}(w)}}{|K|} \right)^{2} \right)^{1} \right\|_{L^{q}(w)} \cdot \left\| \left(\sum_{u=1}^{U} \sum_{K \in \mathscr{D}} \left(\frac{\|1_{K_{k}} \Delta_{K_{i}}^{w} g_{u}\|_{L^{1}(w)}}{|K|} \right)^{2} \right)^{1} \right\|_{L^{q'}(w)}.
\]

The factor related to \(g \) is directly handled with Burkholder’s inequality, and the other related to \(f \) is estimated with the \(\mathscr{A}_{p,q}^{*} \)-condition similarly as in (5.14). In the end one can sum over the finite ranges of \(k \) and \(l \). This takes care of the first application of the \(\mathscr{A}_{p,q}^{*} \)-condition.

The other application is even easier, since there the functions are already in the right form. If we look at the first term in (5.20), we see that it can be written as

\[
\sum_{u=1}^{U} \sum_{k \in \mathscr{D}} \sum_{k \neq l} \|1_{R_{k}} \Delta_{R_{i}}^{\sigma} f_{u}\|_{L^{1}(\sigma)} 1_{R_{l}} \Delta_{R_{i}}^{w} g_{u}\|_{L^{1}(w)}
\]

and for a fixed pair \(k \neq l \) this can again be estimated with the \(\mathscr{A}_{p,q}^{*} \)-condition.

6. Examples related to the quadratic \(\mathscr{A}_{p,q}^{*} \)-condition

Consider the one weight case with \(p = q \in (1, \infty) \), where we have an almost everywhere (in the Lebesgue sense) positive Borel measurable function \(w : \mathbb{R}^{N} \to \mathbb{R} \).

With the same symbol we also denote the Borel measure

\[
w(E) := \int_{E} wdx,
\]

and for a fixed pair \(k \neq l \) this can again be estimated with the \(\mathscr{A}_{p,q}^{*} \)-condition.
where $E \subset \mathbb{R}^N$ is any Borel set. The dual weight to w is $\sigma := w^{\frac{1}{q-1}}$, and we again use σ for the corresponding measure. The Muckenhoupt A_p characteristic is defined as

$$[w]_p := \sup_{Q \in \mathcal{D}} \frac{\sigma(Q)^{p-1}w(Q)}{|Q|^p},$$

and the Muckenhoupt A_p class consists of those weights that have $[w]_p < \infty$.

In this one weight case the weighted Stein’s inequality (3.3) can be equivalently written as

$$(6.1) \quad \left\| \left(\sum_{Q \in \mathcal{D}} \left(\int_Q f_Q dx \right)^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)} \leq \mathcal{J} \left\| \left(\sum_{Q \in \mathcal{D}} f_Q^2 \right)^{\frac{1}{2}} \right\|_{L^p(w)}.$$

It can quite easily be seen that if $p = 2$ the constant \mathcal{J} in the weighted Stein’s inequality is $[w]_{2}^\frac{1}{2}$, that is the inequality (6.1) holds with a finite constant if and only if the weight is in the Muckenhoupt A_2 class. A quantitative form of the extrapolation theorem of Rubio de Francia by O. Dragičević, L. Grafakos, M. Pereyra and S. Petermichl [2] gives then that the best constant $\mathcal{J}(w, p)$ in (6.1) satisfies

$$\mathcal{J}(w, p) \lesssim \begin{cases} [w]_{p}^{\frac{1}{2}}, & 1 < p \leq 2, \\ [w]_{p}^{\frac{1}{2}}, & 2 \leq p < \infty. \end{cases}$$

Since Lemma 3.2 shows that the quadratic $\mathcal{A}_{p,q}$-constant is equivalent with the best constant in the two weight Stein’s inequality, we get the quantitative estimates

$$\begin{align*}
[w]_p^{\frac{1}{2}} &\leq [\sigma, w]_{p,p} \lesssim [w]_{p}^{\frac{1}{2(p-1)}}, & 1 < p \leq 2, \\
[w]_p^{\frac{1}{2}} &\leq [\sigma, w]_{p,p} \lesssim [w]_{p}^{\frac{1}{2}}, & 2 \leq p < \infty.
\end{align*}$$

On the other hand in the general two weight setting the quadratic $\mathcal{A}_{p,q}$-condition is strictly stronger than the simple $A_{p,q}$-condition if $p > 2$ or $q < 2$:

Lemma 6.1.

a) If $1 < p \leq 2 \leq q < \infty$, then $(\sigma, w)_{p,q} = [\sigma, w]_{p,q}$ for all Radon measures σ and w.

b) If $2 < p < \infty$ or $1 < q < 2$, then there exist Radon measures σ and w such that $(\sigma, w)_{p,q} < \infty$ but $[\sigma, w]_{p,q} = \infty$.

Proof. The case a) is just Lemma 3.3 so we need to prove only the other assertion. Consider now some exponents $1 < p, q < \infty$ and choose a cube $Q_0 \in \mathcal{D}$ with $|Q_0| = 1$. Then we simply set a measure σ to be $1_{Q_0} dx$, that is, the Lebesgue measure restricted to Q_0.

The measure w that we next construct must satisfy

$$w(Q) \leq C \frac{|Q|^q}{\sigma(Q)^p}, \quad Q \in \mathcal{D},$$
for some constant C. Keeping this in mind we set w to be
\[
w := \sum_{k=1}^{\infty} |Q_0^{(k)}|^{q-1} 1_{Q_0^{(k)} \setminus Q_0^{(k-1)}} dx.
\]

To see that the pair (σ, w) satisfies the simple $A_{p,q}$ condition, first note that since the measures are supported on Q_0 and $\mathbb{B}Q_0$, respectively, then $\sigma(Q)w(Q) = 0$ for all cubes $Q \in \mathcal{D}$ with $l(Q) \leq 1$. Also if $Q \in \mathcal{D}$ is such that $l(Q) > 1$ and $\sigma(Q) \neq 0$, there exists an $l \in \{1, 2, \ldots \}$ such that $Q = Q_0^{(l)}$. But then
\[
w(Q_0^{(l)}) = \sum_{k=1}^{l} |Q_0^{(k)}|^{q-1} |Q_0^{(k)} \setminus Q_0^{(k-1)}| \approx \sum_{k=1}^{l} |Q_0^{(k)}|^{q} \approx |Q_0^{(l)}|^{q},
\]
and this shows that
\[
\frac{\sigma(Q_0^{(l)})^{\frac{1}{p}} w(Q_0^{(l)})^{\frac{1}{q}}}{|Q_0^{(l)}|} \lesssim 1.
\]
Thus $(\sigma, w)_{p,q} \lesssim 1$.

On the other hand consider the quadratic $\mathcal{A}_{p,q}$ condition, and choose some $M \in \{1, 2, \ldots \}$. We set $a_k = 1$ and for $k \in \{1, \ldots, K\}$ and $a_k = 0$ for $k > K$. Then the construction of the measures shows that
\[
\left\| \left(\sum_{k=1}^{K} a_k \frac{\sigma(Q_0^{(k)})}{|Q_0^{(k)}|} 1_{Q_0^{(k)}} \right)^{\frac{2}{q}} \right\|_{L^p(w)}^{q} = \sum_{k=1}^{K} \left(\sum_{m=k}^{K} |Q_0^{(m)}|^{-2} \right)^{\frac{1}{2}} |Q_0^{(k)}|^{q-1} |Q_0^{(k)} \setminus Q_0^{(k-1)}| \lesssim \sum_{k=1}^{K} |Q_0^{(k)}|^{-q+q} = K,
\]
where in the second to last step we used the fact that a geometric sum is about as big as its biggest term.

For the quadratic $\mathcal{A}_{p,q}$ condition to hold, this should be dominated by
\[
[\sigma, w]_{p,q}^{q} \left(\sum_{k=1}^{K} 1_{Q_0^{(k)}} \right)^{\frac{2}{q}} \| \|_{L^p(\sigma)}^{q} = [\sigma, w]_{p,q}^{q} \frac{K}{q}.
\]
Comparing (6.2) and (6.3), we see that since K was arbitrary, (6.3) can dominate (6.2) only if $q \geq 2$.

So if $q < 2$, we can construct a pair (σ, w) of weights such that $(\sigma, w)_{p,q} < \infty$ but $[\sigma, w]_{p,q} = \infty$. On the other hand if $p > 2$, then $p' < 2$, and we can construct measures so that $(\sigma, w)_{q',p'} = (w, \sigma)_{p,q} < \infty$ and $[\sigma, w]_{q',p'} \approx [w, \sigma]_{p,q} = \infty$.

Combining Lemmas 5.2 and 6.1 we get the following corollary:
Corollary 6.2. If $p, q \in (1, \infty)$ are two exponents, then the simple $A_{p,q}$-condition is sufficient for the two weight Stein’s inequality (3.3) if and only if $1 < p \leq 2 \leq q < \infty$.

REFERENCES

[1] Burkholder, D. L. Martingale transforms. Ann. Math. Statist. 37 1966 1494-1504.
[2] Dražić, Oliver; Grafakos, Loukas; Pereyra, María Cristina; Petermichl, Stefanie. Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces. Publ. Mat. 49 (2005), no. 1, 73-91.
[3] Fefferman, C.; Stein, E. M. Some maximal inequalities. Amer. J. Math. 93 1971 107-115.
[4] Hytönen, Tuomas P. Representation of singular integrals by dyadic operators, and the A_2--theorem. arXiv:1108.5119v1 [math.CA] (2011)
[5] Hytönen, Tuomas P. The sharp weighted bound for general Calderón-Zygmund operators. Ann. of Math. (2) 175 (2012), no. 3, 1473-1506.
[6] Hytönen, Tuomas P. The sharp weighted inequality for the Hilbert transform with general measures. arXiv:1312.0853 [math.CA] (2013)
[7] Hytönen, Tuomas; Pérez, Carlos; Treil, Sergei; Volberg, Alexander. Sharp weighted estimates for dyadic shifts and the A_2 conjecture. J. Reine Angew. Math. 687 (2014), 43-86.
[8] Kahane, Jean-Pierre. Some random series of functions. Second edition. Cambridge Studies in Advanced Mathematics, 5. Cambridge University Press, Cambridge, 1985.
[9] Lacey, Michael T. Two-weight inequality for the Hilbert transform: a real variable characterization, II. Duke Math. J. 163 (2014), no. 15, 2821-2840.
[10] Lacey, Michael T.; Li, Kangwei. Two weight norm inequalities for the g function. Math. Res. Lett. 21 (2014), no. 3, 521-536.
[11] Lacey, Michael T.; Sawyer, Eric T.; Shen, Chun-Yen; Uriarte-Tuero, Ignacio. Two-weight inequality for the Hilbert transform: a real variable characterization, I. Duke Math. J. 163 (2014), no. 15, 2795-2820.
[12] Marcinkiewicz, J.; Zygmund, A. Quelques inégalités pour les opérations linéaires. Fundam. Math., Warszawa, 32, 115-121 (1939).
[13] Nazarov, F.; Treil, S.; Volberg, A. The Bellman functions and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc. 12 (1999), no. 4, 909-928.
[14] Nazarov, F.; Treil, S.; Volberg, A. Two weight inequalities for individual Haar multipliers and other well localized operators. Math. Res. Lett. 15 (2008), no. 3, 583-597.
[15] Rubio de Francia, José L. Factorization theory and Ap weights. Amer. J. Math. 106 (1984), no. 3, 533-547.
[16] Sawyer, Eric T. A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75 (1982), no. 1, 1-11.
[17] Sawyer, Eric T. A characterization of two weight norm inequalities for fractional and Poisson integrals. Trans. Amer. Math. Soc. 308 (1988), no. 2, 533-545.
[18] Stein, Elias M. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, No. 63 Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1970.
[19] Vuorinen, Emil. $L^p(\mu) \to L^q(\nu)$ characterization for well localized operators. arXiv:1412.2127 [math.CA] (2014)
[20] Weis, Lutz. Operator-valued Fourier multiplier theorems and maximal L_p-regularity. Math. Ann. 319 (2001), no. 4, 735-758.
