Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity

Yi Yu1, Thomas C. Leete1, David A. Born1, Lauren Young1, Luis A. Barrera1, Seung-Joo Lee1, Holly A. Rees1, Giuseppe Ciaramella1✉ & Nicole M. Gaudelli1✉

Cytosine base editors (CBEs) enable efficient, programmable reversion of T•A to C•G point mutations in the human genome. Recently, cytosine base editors with rAPOBEC1 were reported to induce unguided cytosine deamination in genomic DNA and cellular RNA. Here we report eight next-generation CBEs (BE4 with either RrA3F [wt, F130L], AmAPOBEC1, SsAPOBEC3B [wt, R54Q], or PpAPOBEC1 [wt, H122A, R33A]) that display comparable DNA on-target editing frequencies, whilst eliciting a 12- to 69-fold reduction in C-to-U edits in the transcriptome, and up to a 45-fold overall reduction in unguided off-target DNA deamination relative to BE4 containing rAPOBEC1. Further, no enrichment of genome-wide C•G to T•A edits are observed in mammalian cells following transfection of mRNA encoding five of these next-generation editors. Taken together, these next-generation CBEs represent a collection of base editing tools for applications in which minimized off-target and high on-target activity are required.
Base editors are gene editing tools that enable efficient and programmable correction of point mutations for both research and therapeutic applications. Unlike CRISPR-associated nuclelease gene editing approaches, base editors do not create double-stranded DNA breaks and therefore minimize the formation of undesired editing byproducts, including insertions, deletions, translocations, and other large-scale chromosomal rearrangements. Cytosine base editors (CBEs) are comprised of a cytidine deaminase fused to an impaired form of Cas9 (D10A nickase) tethered to one (BE3) or two (BE4) monomers of uracil glycosylase inhibitor (UGI). This architecture of CBEs enables the conversion of C-G base pairs to T-A base pair in human genomic DNA, through the formation of a uracil intermediate. Although CBEs lead to robust on-target DNA base editing efficiency in a variety of contexts (e.g., rice, wheat, human cells, and bacteria, reviewed here), recent reports have demonstrated that treatment of cells with high doses of BE3 can lead to low, but detectable cytosine deamination in both DNA and cellular RNA in a guide-independent fashion. Specifically, Zuo et al. observed substantial off-target single-nucleotide variants (SNVs) in mouse embryos upon treatment with BE3 containing rAPOBEC1. A mutation frequency of one in ten million bases was detected, resulting in ~300 additional SNVs compared with untreated cells. Even though this mutation frequency is within the range of somatic mutations that occurs naturally in mouse and human cells, the therapeutic importance of CBEs, we were motivated to develop next-generation CBEs that function efficiently at their on-target loci with minimal off-target edits relative to the foundational base editors, BE3/4, which contain rAPOBEC1.

To mitigate guide-independent off-target editing events, we develop sensitive, high-throughput cellular assay to select next-generation CBEs that display reduced guide-independent off-target editing profiles relative to rAPOBEC1-based CBEs, whilst maintaining equivalent or superior on-target editing frequencies. We screen 153 cytidine deaminases with diverse sequences within the context of a base editor and identify four CBEs with the most promising on/off-target editing profile. These next-generation CBEs (BE4 with either RrA3F, AmAPOBEC1, SaAPOBEC3B, or PpAPOBEC1) are further optimized for superior on- and off-target DNA editing profiles through structure-guided mutagenesis of the deaminase domain. The resulting next-generation CBEs (BE4 with either RrA3F [wt, F130L], AmAPOBEC1, SaAPOBEC3B [wt, R54Q], or PpAPOBEC1 [wt, H122A, R33A]) display high DNA on-target editing activity and minimized unguided DNA and RNA off-target activity.

Mutagenesis of rAPOBEC1 in BE4. First, we used this cellular assay to test if mutagenesis of deaminases is an effective strategy toward reducing guide-independent DNA off-target activity. Utilizing a homology model of rAPOBEC1 aligned with the crystal structure of hA3C, we identified 15 residues that may be involved in ssDNA binding and 8 that likely affect catalytic activity. Through mutagenesis of these 23 residues, preferentially into alanine, we identified seven high-fidelity (HiFi) mutations in rAPOBEC1 (R33A, W90F, K34A, R52A, H122A, H121A, and Y120F) that greatly reduce on-target activity without dramatically reducing on/off-target activity (Supplementary Fig. 2). Further, we identify two mutations (T36A and R126A) that moderately reduce on-target DNA off-target activity (Supplementary Fig. 2). Previously described rAPOBEC1 mutations in BE4 constructs are reported to improve its RNA off-target editing profile (e.g., “SECURE” CBEs containing R33A or [R33A, K34A] mutations), or alter the editing window (e.g., BE4-YE1 containing W90Y and R126E substitutions) and have
recently been identified to reduce genome-wide unguided C-to-T editing. However, at ten loci we evaluated, SECURE-CBE (R33A) and SECURE-CBE (R33A, K34A) retained only ~53% and ~18% on-target activity, respectively, as compared with BE4 with rAPOBEC1 (Supplementary Fig. 3). Among the seven HiFi mutants, BE4-rAPOBEC1-H122A was the only CBE that showed equivalent in cis-activity compared with BE4-rAPOBEC1 at ten target sites tested (the remaining HiFi mutants yielded a range of 18–71% in cis-activity as compared with BE4). Of note, the average in cis/in trans-editing efficiency is 32.3%/11.8% for BE4-rAPOBEC1 and 34.5%/4.2% for BE4-rAPOBEC1-H122A (Supplementary Fig. 3). This mutagenic study, in which we included the SECURE-CBEs, indicated that BE4-rAPOBEC1-H122A was the most promising CBE among the group tested with respect to its relative in cis/in trans-editing profiles.

Cytidine deaminase screening round 1. Next, we began a broader search for next-generation CBEs with a preliminary screen of CBEs containing cytidine deaminases from well-characterized families including APOBEC1, APOBEC2,
Among these deaminases, four APOBEC1s (MdAPOBEC1, PpAPOBEC1, OcAPOBEC1, and hAPOBEC1) showed a high in cis/in trans-ratio at select sites (Fig. 2a and Supplementary Figs. 4 and 5). A CBE containing PpAPOBEC1 deaminase (67% sequence identity to rAPOBEC1) showed comparable on-target DNA activity to BE4 with rAPOBEC1 and on average 2.3-fold decrease in in trans-activity across ten sites tested (Supplementary Fig. 6). HiFi mutations of PpAPOBEC1 were predicted based on sequence alignment (Supplementary Fig. 5), and BE4 with PpAPOBEC1 containing either H122A or R33A mutations displayed desirable editing profiles (Supplementary Fig. 6), with 76% and 73% average in cis-activities and 45- and 12-fold reduction in average in trans-activities as compared with BE4 with rAPOBEC1, respectively. Together, these data established BE4 with PpAPOBEC1 as the preferred CBE from our first round of screening.

Cytosine deaminase screening round 2. Encouraged by these results, a second round of screening of 43 APOBEC-like cytidine deaminases with broad sequence diversity was performed (Fig. 2a, b, Supplementary Fig. 7, and Supplementary Note 1). We performed a protein BLAST with hAPOBEC1 as the query sequence to generate a sequence similarity network with the top 1000 sequences, enabling us to select cytidine deaminases with broad sequence diversity. From this screening campaign, three constructs (BE4s with RrA3F, AmAPOBEC1, or SsAPOBEC3B) showed robust on-target DNA editing activities that are comparable with BE4 (with rAPOBEC1) with 111%, 72%, and 89% average in cis-activities, respectively, and 2.2-, 14.8-, and 6.6-fold decrease on average in trans-activity (Fig. 2b and Supplementary Figs. 8–10). Notably, the sequence identity of these editors to rAPOBEC1 is 23%, 31%, 20%, respectively.

Fig. 2 Deaminase similarity network and next-generation CBEs with high in cis-activities and reduced in trans-activities. a similarity network of APOBEC-like deaminases. This network was constructed using methods described in Supplementary Note 1. The size of the dots represents the average in cis-activity; the color of the dots represents the average in trans/in cis-ratio. Mean in cis/in trans-activities were calculated based on data from n = 3 independent biological replicates on-target sites 1, 4, 6, and the individual editing efficiencies are displayed in Supplementary Figs. 4, 7, and 8. b In cis-activity vs. in trans-activity of CBEs tested. The three orange dots represent next-generation CBEs with equivalent in cis-activity to BE4 with rAPOBEC1; the five blue dots represent next-generation CBEs with minimized in trans-activity; the nine pink dots represent BE4- rAPOBEC1 mutants; gray dots represent other CBEs screened. Base editing efficiencies were reported for the most edited base in the target sites. The mean activities were calculated based on data from n = 4 independent biological replicates (orange and blue dots), n = 3 independent biological replicates (pink and gray dots) on-target sites 1, 4, and 6. c mean in cis-activity at cytosines prior to different bases at target sites 1–10. Values reflect the mean of n = 4 independent biological replicates. All data presented are provided as Source Data.
editing frequencies at GC target sites that are not well edited with BE4 with rAPOBEC1 (Fig. 2c). In addition, we observed variations in editing windows of in cis- and in trans-editing with these editors (Supplementary Fig. 9). Finally, we expanded our screen again to interrogate a set of 80 putative cytidine deaminases from other protein families that has less sequence homology to APOBECs. None of these deaminases showed >1% editing efficiency in the context of BE4 at the site tested (Supplementary Fig. 11).

Mutagenesis of next-generation CBEs. We further engineered our BE4 editors (containing RrA3F, AmAPOBEC1, or SsAPOBEC3B) via rational mutagenesis for optimal on- and off-target editing outcomes (Supplementary Figs. 2 and 3). We installed select HiFi mutations from our rAPOBEC1 studies into these BE4 editors based on homology modeling of existing crystal structures of similar proteins (Supplementary Fig. 12). Two engineered CBEs containing RrA3F F130L and SsAPOBEC3B R54Q, emerged from our high-throughput screen that demonstrated improved on- to off-target editing profiles (Fig. 2b and Supplementary Fig. 8), with 102% and 89% average in cis-activities and 3.6- and 19.6-fold decrease in average in trans-activities, respectively, relative to BE4 with rAPOBEC1. These two next-generation CBEs with optimal in cis/in trans-editing profiles were used in further studies.

The eight next-generation editors [BE4 with PpAPOBEC1 (wt, H1122A, or R33A), RrA3F (wt, AmAPOBEC1 (wt), and SsAPOBEC3B (wt)] can be divided into two groups based on their in cis/in trans-activity (Fig. 2b): (1) contains three CBEs with high on-target editing efficiency (101% to 111% in cis-activity relative to BE4 containing rAPOBEC1) and reduced in trans-activity (2.2- to 3.6-fold compared with BE4 with rAPOBEC1), and (2) contains five CBEs with slightly reduced on-target editing efficiency (71 to 89% in cis-activity relative to BE4 containing rAPOBEC1) and minimized in trans-activity (6.6- to 45-fold decrease compared with BE4 with rAPOBEC1). Since the majority of rAPOBEC1-BE4 variants tested resulted in an inferior on- to off-target editing ratio, as compared with BE4 constructs containing alternative cytidine deaminase (Fig. 2b), we advanced our work by refining and characterizing BE4 constructs containing non-rAPOBEC1 cytidine deaminases in order to best optimize CBEs for high on-target gene editing activity and minimized off-target, guide-independent deamination.

Evaluation of guided DNA off-target editing. With these next-generation CBEs in hand, we selected a subset [BE4 with PpAPOBEC1 (wt, H1122A or R33A), RrA3F (wt), AmAPOBEC1 (wt), and SsAPOBEC3B (wt)] to further characterize their off-target editing activity. We began by evaluating guide-dependent DNA off-target editing at known Cas9 off-target loci19 associated with three SpCas9 sgRNAs. Because base editing at Cas9-guided off-target sites relies on the interplay between the inherent properties of a given deaminase and Cas9 binding at the mismatched loci, exchanging the deaminase within base editor architecture may lead to different editing outcomes18. Guide-dependent off-target activities of BE4 with PpAPOBEC1 were similar to BE4 with rAPOBEC1 (Supplementary Fig. 13). Interestingly, some next-generation CBEs showed reduced guide-dependent off-target editing for at least one sgRNA tested, and our HiFi mutations also reduced guide-dependent off-target editing efficiency (Supplementary Fig. 13). For example, at three of the most highly edited off-target sites (HEK2, site 1; HEK3, site 3; and HEK4, site 1), cells treated with BE4- containing AmAPOBEC1 showed 19-, 27-, and 3.3-fold reduction in guide-dependent off-target editing than BE4 with rAPOBEC1 respectively (Supplementary Fig. 13). Notably, BE4 with PpAPOBEC1 H1122A showed greater than threefold reduction in guide-dependent off-target editing than BE4 with PpAPOBEC1 at these three sites, while no observable decrease was found in on-target editing (Supplementary Fig. 13). These data indicate that next-generation CBEs can yield more favorable or equivalent guided off-target editing profiles as compared with BE4 containing rAPOBEC1.

Evaluation of unguided RNA and DNA off-target editing. We further characterize off-target RNA editing activity of selected next-generation CBEs. Plasmid-based overexpression of BE3 containing rAPOBEC1 has previously been shown to induce transcriptome-wide RNA cytosine deamination, and as such we evaluated our next-generation CBEs in similar conditions9,20. Satisfyingly, six next-generation BE4s tested showed 12 to 69-fold reduction in C-to-U edits as compared with BE4 with rAPOBEC1 (Fig. 3a). Notably, treatment of cells with BE4 containing RrA3F, SsAPOBEC3B, and PpAPOBEC1 R33A led to frequencies of C-to-U edits that are comparable with cells treated with nCas9 (D10A)–2×(UGI). In addition, deep-sequencing analysis of selected regions in the transcriptome revealed C-to-U editing outcomes that were consistent with transcriptome-wide mRNA sequencing data (Fig. 3b, c). Taken together, these data suggest that next-generation CBEs result in reduced transcriptome-wide RNA editing compared with BE3 or BE4 containing rAPOBEC1.

Next, we investigated if our next-generation CBEs can reduce guide-independent off-target editing in the genome. Whole genome sequencing (WGS) experiments were performed on base-editor-treated HEK293T cells grown by clonally expanding single cells (Supplementary Fig. 15a). We compared the frequency of CBE-induced mutations in cells where base editors were delivered as either plasmid or mRNA. Four to five biological replicates (independent clonal expansions) for each treatment group were sequenced.

Across cells treated with plasmids encoding CBEs, we found no statistically significant increase in the ratio of C-to-T mutations following treatment with non-rAPOBEC1 containing CBEs (BE4-PpAPOBEC1 H1122A, BE4-AmAPOBEC1, or BE4-SsAPOBEC3B) (Fig. 4a). However, we identified a statistically significant increase in the ratio of C-to-T mutations following cellular treatment with BE4-rAPOBEC1 (as previously reported6–8,21), BE4-PpAPOBEC1, and BE4-RrA3F F130L compared with untreated controls (P = 0.018, 0.026, and 0.018, respectively, one-sided Wilcoxon–Mann–Whitney U test) (Fig. 4a). For mRNA delivery, only samples treated with BE4-rAPOBEC1, BE4-PpAPOBEC1, and BE4-RrA3F F130L showed a significant increase in the ratio of C-to-T mutations compared with untreated controls (P = 0.004, 0.010, and 0.010, respectively, one-sided Wilcoxon–Mann–Whitney U test) (Fig. 4b). Notably, although cells treated with BE4-RrA3F F130L showed a significant increase in the ratio of C-to-T mutations, the absolute value of the increase is very small (the mean odds ratio is 1.06, compared with untreated control of 0.97). Across all editors, a lower level of C-to-T mutations was detected in cells treated with mRNA as compared with plasmid delivery (P = 0.0074, one-sided Wilcoxon–Mann–Whitney U test). Notably, the reduction in genome-wide cytosine deamination with mRNA delivery was
not a result of decrease in on-target editing efficiency: a higher mean on-target editing was observed with mRNA delivery compared with plasmid delivery (Supplementary Fig. 15b, c). These results showed that combining mRNA delivery and the use of next-generation CBEs is a highly effective strategy to eliminate or decrease detectable genome-wide DNA off-target editing activity while maintaining or increasing on-target editing.

Our results suggest that replacing rAPOBEC1 in canonical BE3 and BE4 with next-generation deaminases, such as BE4-PpAPOBEC1 H122A, BE4-AmAPOBEC1, BE4-SsAPOBEC3B (wt, R54Q), and BE4-RrA3F (wt, F130L), leads to a more favorable on-target vs. off-target editing profile. We also demonstrated that there is a relationship between C-to-T mutations detected from WGS and in trans-activity (Fig. 4c).

Furthermore, we evaluated the unguided deamination activity of CBEs in an in vitro assay comprised of base editor protein and synthetic ssDNA substrate (Fig. 4d and Supplementary Fig. 16). From this assay we observed 7.5- to 12-fold more C-to-U modified ssDNA at 5 min and 10- to 50-fold more product formed at 16 h by BE4 with rAPOBEC1 compared with our next-generation CBEs (Fig. 4d). Together with our in cis/in trans- assay and WGS experiments, these data further validate that our next-generation CBEs display reduced activity on exposed ssDNA, a feature that is especially important for both research and therapeutic applications.

On-target activity comparison with published CBEs. Recently, engineered CBEs displaying minimized unguided C-to-U editing events in the transcriptome ("SECURE" CBEs, with R33A or [R33A, K34A] substitutions) or minimized genome-wide unguided cytosine deamination (BE4-YE1, with W90Y and R126E substitutions) were reported. Since these recently published CBEs, as well as the CBEs reported here, all result in highly minimized unguided off-target deamination events, we were motivated to compare their relative on-target editing activities on various genomic sites. When our eight next-generation CBEs, SECURE-BE4, and BE4-YE1 were tested for on-target editing at the 33 sequence-diverse loci used in this study, we observed that our next-generation CBEs enabled higher mean editing efficiencies compared with SECURE-BE4 and BE4-YE1 (Fig. 5). Next-generation CBEs showed 64.0–96.8% relative mean on-target editing activity to BE4-rAPOBEC1 (Fig. 5a). In contrast, the relative mean on-target editing activities of BE4-rAPOBEC1 YE1, BE4-rAPOBEC1 R33A, and BE4-rAPOBEC1 R33A K34A are 41.1%, 49.0%, and 15.4%, respectively (Fig. 5a). When the collection of off-target minimized CBEs were tested on six previously published sites (FANCF, RNF2, EMX1, HEK2, HEK3, and HEK4), our next-generation CBEs showed 78.2–97.3% mean on-target editing activity as compared with BE4-rAPOBEC1, while the relative mean on-target editing activities of BE4-rAPOBEC1 YE1,
BE4- rAPOBEC1 R33A, and BE4- rAPOBEC1 R33A K34A are 69.3%, 80.1%, and 43.8%, respectively (Fig. 5b). BE4-rAPOBEC1 showed high (>50%) on-target activity at these six previously published sites5,8 compared with more varied editing outcomes from the 33 guides we tested in this study (<5% to >80% editing efficiency) (Fig5).

Since base editing outcomes are site- and context-dependent1,5,18, identification of the most generalizable tools can best be achieved through survey of a large number of sequence-diverse sites that display variable on-target editing frequencies when targeted with the current standard set of BEs. Comparisons between genome editing tools where only a few sites are interrogated may be misleading for those who hope to perform efficient base editing at novel loci. Our comparison highlights that, across a diverse range of target sites, the eight off-target minimized, next-generation CBEs reported in this work enable higher on-target editing efficiencies than previously published CBEs with minimized DNA/RNA off-target editing profiles (Fig. 5).

Discussion

Through an extensive and systematic screening campaign, we discovered and subsequently characterized eight next-generation CBEs. We developed high-throughput assays to evaluate unguided ssDNA editing efficiency and from a total of 153 deaminases, we found that BE4- rAPOBEC1 R33A and BE4- rAPOBEC1 R33A K34A are 69.3%, 80.1%, and 43.8%, respectively (Fig. 5b). BE4- rAPOBEC1 showed high (>50%) on-target activity at these six previously published sites5,8 compared with more varied editing outcomes from the 33 guides we tested in this study (<5% to >80% editing efficiency) (Fig5).
screened, four enzymes (PpAPOBEC1, RrA3F, AmAPOBEC1, and SsAPOBEC3B) were identified to have reduced off-target editing whilst maintaining equivalent or superior on-target editing. Together with structure-guided mutagenesis on these four, non-rAPOBEC1 containing, constructs we highlight eight next-generation CBEs (BE4-PpAPOBEC1 [wt, H122A, R33A], BE4-RrA3F [wt, F130L], BE4-AmAPOBEC1, and BE4-SsAPOBEC3B [wt, R52Q]) with reduced to minimized off-target editing efficiency and comparable on-target editing efficiency to BE4 containing rAPOBEC1. Transcriptome-wide RNA deamination associated with expression of a subset of our next-generation CBEs, SECURE-BE4s, and BE4-YE1 at 33 genomic sites (site 1–22 and 24–34) (a) and 6 previously published sites (b). Base editing efficiencies are reported for the base within the target site with the highest editing frequency. Next-generation CBEs reported here are in blue, BE4 (containing rAPOBEC1) is in black, BE4-YE1 is in pink, and SECURE-CBEs are in orange. The red horizontal line across each plot represent the mean of the base within the target site with the highest editing frequency.

Methods

General methods. Constructs used in this study were obtained by USER assembly, Gibson assembly, or synthesized by GenScript. Gene fragments used for PCR were purchased as mammalian codon-optimized gene fragments from IDT, Thermo Fisher Scientific and Twist Bioscience. PCR were performed with primers ordered from IDT using either Phusion U DNA Polymerase Green MultiPlex PCR Master Mix (Thermo Fisher) or Q5 Hot Start HiFi 2x Master Mix (New England Biolabs). Endo-free plasmids used for mammalian transfection were prepped using ZymoPURE II Plasmid MidiPrep (Zymo Research Corporation) from 50 mL Mach1 (Thermo Fisher) culture. mRNA was synthesized by IVT reactions, and gRNA with spacer sequences for sgRNA, and oligos used in this study can be found in Supplementary Table 1–4. Primer8 (v 8.3.0), Excel (v16.32), R (v3.4.3) were used for data analysis in addition to data analysis listed in Supplementary Note 1 and 3–5.

Fig. 5 Next-generation CBES showed higher DNA on-target editing efficiencies than SECURE-CBES and BE4-YE1. C-to-T editing efficiencies of next-generation CBES, SECURE-BE4s, and BE4-YE1 at 33 genomic sites (site 1–22 and 24–34) (a) and 6 previously published sites (b). Base editing efficiencies are reported for the base within the target site with the highest editing frequency. Next-generation CBES reported here are in blue, BE4 (containing rAPOBEC1) is in black, BE4-YE1 is in pink, and SECURE-CBES are in orange. The red horizontal line across each plot represent the mean of the base within the target site with the highest editing frequency.
protocol. An extra on-column Dnase I (Rnase-Free Dnase Set, Qiagen) digestion step was added before the washing step following the manufacturer’s instructions.

DNA samples were generated from the isolated mRNA using SuperScript IV One-Step RT-PCR System (Thermo Fisher Scientific) according to the manufacturer’s instructions. NGS for targeted RNA sequencing was performed using the same protocol as for DNA editing. For whole transcriptome sequencing, mRNA isolation was performed from 100 ng total RNA was done using NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). Exome sequencing preparation was performed using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina following manufacturer’s instructions. The optional second SPRI beads selection was performed to remove residue adaptor contamination. The libraries made were analyzed using fragment analyzer (Agilent) and sequencing was conducted at Novogene on NovaSeq S4 flow cell. Data analysis was performed as described in Supplementary Note 4.

In vitro enzymatic assays. Cells were lysed in M- per buffer and concentration of Cas9 was performed using automated Ella assay using Ella instrument (Protein Simple). An aliquot of 5 μl cell lysate or Cas9 standard solution was mixed with 45 μl sample diluent (D-13) and the mixture was added to 48-digoxigenin cartridges. Cas9 in base editor complex were quantified using anti-Cas9 antibody (7A9-A3A, Novus Biologicals). The protein concentration was adjusted to 0.1 nM (final concentration) and mixed with 1 μl oligo (oligo sequence included in Supplementary Fig. 2 files). Data analysis was performed as described in Supplementary Note 5.

Whole genome sequencing for DNA off-target editing. HEK293T cells were seeded onto six-well cell-bind cell culture plates (Corning) at a density of 200,000 cells/well. Transfection of HEK293T cells were done after 18–24 h. For plasmid transfection, 1500 ng base editor or control plasmid, 50 μg sgRNA plasmid, and 10 μl Lipofectamine 2000 (Thermo Fisher Scientific) were used in each transfection; for mRNA transfection, 2000 ng base editor or Cas9 mRNA, 500 μg sgRNA guide and 7.5 μl Lipofectamine messengermax (Thermo Fisher Scientific) were used. After 12h (plasmid transfection) or 6h (mRNA transfection) of incubation, the cells were stained using B2M antibody (Cell signaling). B2M knockout cells were sorted as single cells into 96-well plate. After 7 days, colonies expanded from single cells were treated by TrypLE and dispersed on the same plate. After 3–4 days, cells were harvested from each well and genomic DNA were isolated using the BD DNA Advance kit (Beckman Coulter) following the manufacturer’s instructions. The editing of B2M site was verified by sanger sequencing and colonies that have 100% editing at target position were used for WGS library prep. WGS library prep was performed using the Nextera flex genomic DNA library kit (Illumina) with 100–500 ng genomic DNA input and barcoded using Nextera CD 96 index (Illumina). The sequencing of WGS libraries were carried out at Novogene using NovaSeq S4 flow cells (Illumina). Data analysis was performed as described in Supplementary Note 5.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability Core next-generation CRISPs described in this work are deposited on Addgene. Figures 1c–f and Supplementary Figs. 2–4, 6–10, 13, and 14–16 are provided as Source Data files. High-throughput sequencing data are available in the NCBI Sequence Read Archive ([https://www.ncbi.nlm.nih.gov/sra?term=PRJNA595157]). Any other relevant data are available from the authors upon reasonable request.

Code availability All software tools used for data analysis are publicly available. Detailed information about versions and parameters used, as well as shell commands, are provided in Supplementary Note 3–5.

Received: 25 February 2020; Accepted: 30 March 2020; Published online: 28 April 2020

References
1. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
2. Gaudelli, N. M. et al. Programmable base editing of A+T to G+C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).
3. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–778 (2018).
4. Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).
5. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gm protein yields Cα-to-Tα base editors with higher efficiency and product purity. Sci. Adv. 3, eaa04774 (2017).
6. Jia, S. et al. Cytosine, but not adenosine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).
7. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364, 289–292 (2019).
8. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 1–9 (2020).
9. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 560, 433–437 (2019).
10. Mitholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).
11. Lynch, M. Evolution of the mutation rate. Trends Genet. 26, 345–352 (2010).
12. Saraconi, G., Severi, F., Sala, C., Mattiuoz, G. & Conticello, S. G. The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. 15, 417 (2014).
13. Harris, R. S., Petersen-Mahrt, S. K. & Neuberger, M. S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).
14. Teng, B., Burant, C. F. & Davidson, N. O. Molecular cloning of an apolipoprotein B messenger RNA editing protein. Science 260, 1816–1819 (1993).
15. Koblan, L. W. et al. Improving cytidine and adenosine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–846 (2018).
16. Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC5. Nat. Struct. Mol. Biol. 24, 131–139 (2017).
17. Kitamura, S. et al. The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat. Struct. Mol. Biol. 19, 1005–1010 (2012).
18. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 131–139 (2017).
19. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
20. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).
21. McGrath, E. et al. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. Nat. Commun. 10, 5353 (2019).

Acknowledgements
Bob Gantz, Jeremy Decker, and Matt Humes are thanked for NGS support. Jason Gehrke, Ian Skylmayer, and Michael Packer are thanked for suggestions in experimental design. Ryan Murray and Jason Gehrke are thanked for help with B2M antibody staining experiments. Scott Haskett is thanked for single cell sorting experiment.

Author contributions
Y.Y. and N.M.G. conceived of the work and designed experiments. L.A.B. contributed to design of WGS experiment and sgRNAs used in this study. Y.Y. and T.C.L. conducted all experiments and performed data collection. D.A.B. performed the generation of cytidine deaminase similarity network and deaminase selection. S-J.L. designed mutagenesis of rAPOBEC1 and created PyMol figures. Y.Y., D.A.B., L.Y., and T.C.L. generated all other figures. L.Y., D.A.B., Y.Y., and L.A.B. conducted all statistical analyses of NGS data. N.M. G. and G.C. supervised the research. N.M.G., Y.Y., and H.A.R. wrote the manuscript. All authors edited the manuscript.

Competing interests
All authors are employees of Beam Therapeutics which utilizes base editing technology for therapeutic application. Y.Y., D.A.B., L.A.B., S-J.L., H.A.R., G.C., and N.M.G. have filed patents pertaining to base editing and all authors hold stock in the company. Y.Y., N.M.G., D.A.B., S-J.L. are named inventors on a patent application filed by Beam covering the development and application of the cytosine base editors presented in this manuscript.
Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-15887-5.

Correspondence and requests for materials should be addressed to G.C. or N.M.G.

Peer review information Nature Communications thanks Sangsu Bae and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020