Patella re-alignment in children with a modified Grammont technique

Outcome in 65 knees after mean 8 years

Tanja Kraus1, Surjit Lidder2, Martin Švehlík1,3, Karoline Rippel1, Frank Schneider1, Robert Ebert1, and Wolfgang Linhart1

1Department of Paediatric Orthopaedics, Medical University of Graz, Graz, Austria; 2Department of Trauma and Orthopaedics, Eastbourne District General Hospital, East Sussex, UK; 1,3Department of Orthopaedic and Traumatology for Children and Adults, 2nd Faculty of Medicine, Charles University Prague, Prague, Czech Republic.

Correspondence: tanjakraus@medunigraz.at

Submitted 11-12-14. Accepted 12-07-14

Background and purpose In skeletally immature patients, surgical options due to recurrent patella dislocation are limited, because bony procedures bear the risk of growth disturbances. In this retrospective study, we report the long-term functional and radiographic outcome in skeletally immature patients using the modified Grammont surgical technique.

Patients Between 1999 and 2004, 65 skeletally immature knees (49 children) were treated with a modified Grammont procedure: an open lateral release and a shift of the patella tendon insertion below the growth plate on the tuberositas tibia, allowing the tendon to medialize. At mean 8 (5.6–11) years after surgery, 58 knees in 43 patients were evaluated by clinical examination, from functional scores (Lysholm, Tegner), and from radiographs of the knees.

Results Mean Lysholm score was 82 postoperatively. Tegner score decreased from 6.2 to 5. Eight knees had a single dislocation within 3 months of surgery. 3 knees had repeated late dislocations, all with a high grade of trochlea dysplasia. 6 knees showed mild signs of osteoarthritis. No growth disturbances were observed.

Interpretation The modified Grammont technique in skeletally immature patients allows restoration of the distal patella tendon alignment by dynamic positioning. Long-term results showed that there were no growth disturbances and that there was good functional outcome. However, patients with a high grade of trochlea dysplasia tended to re-dislocate.

The incidence of patella dislocation in children and adolescents is between 29 and 77 per 105 individuals per year, and it is higher in girls (Nietosvaara et al. 1994). About 80% of patella dislocations and recurrent instability can be attributed to predisposing factors such as bone dysplasias (e.g. trochlea dysplasia, patella alta, or dysplastic patella) (Dejour et al. 1994), axial deformities, and rotational deformities of the lower limb (increased Q-angle). Positive correlations have been found between hyperlaxity of the ligaments and positive family history on the one hand and an increased incidence of patella dislocation on the other (Buchner et al. 2005, Palmu et al. 2008).

Nonoperative management is recommended for first-time patella dislocations in the skeletally immature (Nikku et al. 2005, Sillanpaa et al. 2009), with early motion and quadriceps strengthening after initial long leg casting or bracing (Palmu et al. 2008). Re-dislocations may, however, occur in two-thirds of these patients (Arendt et al. 2002, Palmu et al. 2008) and operative treatment to re-align the patella may be necessary. Due to the open physe and residual growth, operative bony procedures are limited. Also, only a few reports have included long-term outcome (Nikku et al. 2005, Sillanpaa et al. 2009).

Grammont et al. (1985) described a technique for patella re-alignment with a lateral release and medial fixation of the patella tendon on the tibial tubercle (Grammont et al. 1985). Here we report a surgical technique involving a modified Grammont procedure with “dynamic placement” of the tibial tubercle for the correct positioning and alignment of the tibial tubercle. We also report the long-term functional and radiographic outcome in skeletally immature patients.

Patients and methods

We retrospectively reviewed the pediatric database at our institution at the Department of Paediatric and Adolescent Surgery at the Medical University of Graz to identify children and adolescents who underwent surgery for patella dislocation between 1999 and 2004. The inclusion criteria were (1)
Acta Orthopaedica 2012; 83 (5): 504–510

Characterized, with 43 patients (58 knees) completing final follow-up at 8.4 (5.5–11) years. 4 patients (5 knees) were lost to follow-up due to lost postal address, and 2 patients did not want to come back (2 knees). There were 10 males and 33 females with a mean age at operation of 14.6 (12.7–16) years for males and 13.4 (11.3–15.3) years for females. There were 15 bilateral cases, 16 left-sided and 12 right-sided. 33 patients (46 knees) had isolated patella re-alignment and 10 patients (12 knees) also had concomitant operative fixation of an associated osteochondral fragment.

Ethical approval was obtained from the local ethics committee (no. 20-465 ex 08/09). Patients who fulfilled the inclusion and exclusion criteria were invited for follow-up.

Clinical outcome
Axial deviations of the knee in the frontal (varus/valgus) and sagittal plane (recurvatum) and for measuring femoral and tibial torsion (Barbee Ellison et al. 1990) were measured clinically using a goniometer. Range of movement of the hip and knee and ligament stability of the knee were also investigated. Activity was rated using the Tegner score (Tegner and Lysholm 1985) and postoperative function was rated using the Lysholm score (Lysholm and Gillquist 1982). The visual analog scale (VAS) was used to evaluate pain during activities of daily living.

Radiographic assessment
Standard AP, lateral-, and Merchant-view radiographs of the operated knee were taken. The Blackburne-Peel index (Blackburne and Peel 1990) were measured clinically using a goniometer. Range of movement of the hip and knee and ligament stability of the knee were also investigated. Activity was rated using the Tegner score (Tegner and Lysholm 1985) and postoperative function was rated using the Lysholm score (Lysholm and Gillquist 1982). The visual analog scale (VAS) was used to evaluate pain during activities of daily living.

Operative technique
Under general anesthesia with the patient positioned supine, a high thigh tourniquet was applied. Arthroscopy was performed on all patients to rule out any other intra-articular pathology, to assess osteochondral damage, and to remove loose bodies. Following arthroscopy, a lateral incision was made starting at the mid-patella level and extending distally to include the anterolateral arthroscopy portal, to reach 1 cm below the tibial tuberosity (Figures 1A and 2A). Figure 3A shows a sagittal-plane view of the proximal tibia indicating the relationship between the patellar tendon insertion and the anterior tongue of the physis. In the 12 knees with concomitant osteochondral fragments identified at arthroscopy (10 patients), the incision was extended proximally (Figure 2B), allowing access to the lateral femoral condyle—or to turn around the patella for inspection of the medial patella facet. The medial patella facet and the lateral femoral condyle are the areas with most frequent chondral damage due to patella dislocations.

The osteochondral fragments were fixed using Arthrex chondral darts (Arthrex Inc., Naples, FL) or a small fragment screw, which was countersunk. With cutting of the lateral retinaculum near the patella, about 1 cm up to the fibers of the lateral vastus muscle, a lateral release was performed. The superficial oblique fibers were dissected from the deep transverse fibers. Subsequently, the deep transverse retinaculum was then divided from the underlying capsule. In the layer between the lateral retinaculum and the joint capsule, the subcutaneous tissue was mobilized proximally to distally. The deep fascia was split to reach the lateral part of the patella tendon, to expose the insertion of the patella ligament at the tibial tuberosity.
Finger mobilization of the subcutaneous tissue was performed along the tibial crest and from the patella ligament. The cartilage of the tibial tuberosity was then separated from the patella tendon by sharp dissection (Figure 1B and 3B). Once the insertion of the patella tendon had been separated from the tibial tuberosity, the tendon only remained attached to the distal periosteum. Starting at the tibial tuberosity, the periosteum was split along the tibial crest distally to the middle of the tibial shaft without opening the fascia of the tibialis anterior muscle. The periosteum was then detached from the tibial crest with a large rasp (Figure 2B). In knee flexion, the patella tendon was then allowed to spontaneously slide medially to track within the femoral groove. In contrast to the original technique described by Grammont et al. (1985), no medial fixation of the patella tendon onto the tibia was performed. Instead, the tendon was allowed to reside in its self-selected position (Figures 1C and 2C). The Hoffa fat pad and the “former” tuberosity were now covered on the medial side of the tendon only. The tourniquet was released and hemostasis was performed. A subcutaneous drain was inserted and the subcutaneous tissue and the dermis were closed.

Postoperative treatment and rehabilitation
Immediately after surgery, continuous passive motion (CPM) within a range of 30–60° of knee flexion was started for 3 days to facilitate positioning of the “new” tuberosity. The drain was removed on the second postoperative day and isometric muscle activation started. Physiotherapy was commenced 2 days after surgery to regain muscle strength and full range of movement of the knee. Subsequently, the patients were mobilized on forearm crutches, bearing half of their body weight on the operated limb for 4 weeks, after which full weight bearing was started. In cases where osteochondral fragments were fixed, patients remained non-weight bearing on the operated limb for 6 weeks, and in addition an orthosis was used to restrict knee flexion to 60°. After this period, the orthosis was discarded and full weight bearing was allowed, with no restriction in range of movement of the knee. Return to sporting activity was allowed 3 months after surgery.

Statistics
The statistical significance between pre- and postoperative visual analog score, sulcus angle, Blackburne-Peel index, and the Merchant angle were determined using paired t-test. A p-value of ≤ 0.05 was considered significant. In addition, for comparison of preoperative and postoperative Merchant views, results are given as mean with range and 95% confidence interval (CI). We used SPSS software version 16.0 for Macintosh.

Results
Clinical examination
At final follow-up, all the patients showed a symmetrical frontal and sagittal plane axis of the lower limbs. 50 hips showed increased internal rotation (> 50°) and 16 tibia showed
increased external torsion (> 25°). 4 patients (3 males) had slight varus (< 10°) and 10 patients (9 males) had slight valgus (< 10°) of the knee. There was no genu recurvatum. Symmetrical range of knee movement and joint stability of the knee was found in each patient irrespective of whether there was unilateral or bilateral surgery (Table 1).

Clinical outcome
The level of activity decreased by one level, from a Tegner score of 6.2 (2–10) to 5 (2–9) (p < 0.001). The Lysholm score postoperatively was 82 (52–100). Following surgery, the level of pain during activities of daily living—as assessed by the visual analog score—improved from a mean of 6.2 (0–10) to a mean of 2.6 (0–8) (p < 0.001).

Radiographic assessment
At follow-up, 6 of 58 of knees showed first- to second-degree signs of osteoarthritis according to the classification of Kellgren and Lawrence (Kellgren and Lawrence 1957). Of these, 3 knees also had concomitant fixation of an osteochondral fragment at the time of surgery. Preoperative lateral radiographs were evaluated for signs of trochlear dysplasia and were classified according to Dejour et al. (1994). 10 knees showed no signs of patellofemoral dysplasia (Table 2). Patellofemoral incongruence was evaluated by calculating the Merchant angle (normal angle: < 16°). For comparison of preoperative and postoperative values, 46 radiographs were available. Preoperatively, 41 of 46 of knees had a Merchant angle of greater than 16° (mean 31° (SD 12; range 5–56; CI: ± 3.4)). The mean postoperative Merchant angle was 16° (SD 10; range 0–44; CI: ± 2.9).

Patella height was similar preoperatively and postoperatively. The Blackburne-Peel index was 0.98 (SD 0.19; range 0.50–1.32) preoperatively and 0.95 (SD 0.20; range 0.5–1.32) postoperatively (p = 0.3). 17 of 46 patients had a pathological sulcus angle of > 142° (Brattstroem 1964). The mean angle preoperatively was 140° (127–168) and postoperatively it was 142° (131–168) (p = 0.09).

Complications
11 knees had recurrent dislocations after surgery. 8 knees had a single dislocation within 3 months of surgery, and 3 knees had repeated late dislocations. 2 of the 3 knees with repeated dislocations showed Dejour grade-C patellofemoral dysplasia and one showed a Dejour grade-B dysplasia. Internal rotation of the femur and external tibial torsion were normal in these patients.

Discussion
Dislocations of the patella have been reported to occur more often in children and adolescents (Buchner et al. 2005). For first-time patella dislocations, nonoperative management is recommended with early joint motion and quadriceps strengthening after initial long leg casting or bracing (Sillanpää et al. 2009). Recurrent patella dislocations that fail to respond to nonoperative treatment require operative intervention to prevent chondral damage and subsequent osteoarthritis (Maenpää et al. 1997a, Barber and McGarry 2008).

In young patients with open physes, surgery in the area of the growth plates could result in premature closure of the physis (Grammont et al. 1985, Nelitz et al. 2011). There have been few studies addressing the long-term outcome of operative treatment of recurrent patella dislocation in immature patients.

In 2009, one of the authors (FS) presented preliminary results of the modified Grammont technique after a mean of 4 years (Schneider and Linhart 2009). In that study, the redislocation rate was 4 out of 36 and the mean Tegner activity score declined to 1.5 points. 7 patients in the present study also took part in the earlier study by Schneider et al. (12 knees) (Schneider and Linhart 2009). In contrast to that study, we applied stricter inclusion criteria in the present study (see Material and methods).

Several procedures for the operative treatment of recurrent patella dislocations have been reported (Table 3). However, due to the variability of measured parameters, meaningful
comparisons between the studies mentioned are not possible. Several studies included adults only, while other studies included a small number of patients. The optimal management of patellofemoral instability in children and adolescents therefore remains unclear. Recent studies have identified the medial patella-femoral ligament (MPFL) as the strongest passive stabilizer of the patella in preventing excessive lateralization (Beasley and Vidal 2004). Reconstruction of the medial femuropatellar ligament (MPFL) is becoming more and more popular (Beasley and Vidal 2004). The femoral approach for reconstruction of the MPFL is close to the distal physis of the femur, with a risk of growth disturbances (Nelitz et al. 2011). Previous studies included a small number of patients. The optimal manage-

Table 3. Overview of literature

Author and year	Mean age	Knees/ patients	Follow-up (year)	Technique	Score	Results	Redislocation
Vahasarja 1995	13	57/48	4.2	Mixed b	Insall	E 20, G 20, F 11, P 6	13
Schneider et al. 1997	16	7/17	10	Goldwaith procedure	Bentley	recurrent group: E 20%; G 20%; F 20%; P 10% habitual group: E 43%; G 28%; F 14%; P 14%	1
Zeichen et al. 1998	21	?/45 e	6.5	prox. realignment with Insall technique	Larsen,	first-time dislocation: E 3, G 10, F 2	1
Letts et al. 1999	14	26/22	2.4	Semi-membranosus tendodesis modified Roux-Goldwaith proximal arthroscopic	Lysholm,	recurrent dislocation: E 7, G 12, F 10, P 1	1
Marsh et al. 2006	14	30/20	6.2	Insall	E 6, G 12, P 4	1	
All et al. 2007	26	36/35 d	4.3	Insall	E 26, G 3, F 1	0	
Joo et al. 2007	6	6/5	4.5	Insall	E+G 28, F 4, P 4	2	
Oliva et al. 2009	13	?/25	3.8	Insall	E 5, G 1	0	
Luhmann et al. 2011	14	27/23	5.1	proximal and/or distal realignment surgery	Cincinnati,	scores increased significantly from pre- to postoperative	1
					Kujala		

b Mixed: lateral release with or without medial reefment and/or Roux–Goldwaith procedure
d 15 first-time dislocations + 30 recurrent dislocations
e 15 first-time dislocations + 30 recurrent dislocations

It is well known that patients who undergo stabilizing surgery have a higher incidence of osteoarthritis over time. Arnbjørnsson et al. (1992) reported a 75% rate of osteoarthritis at a mean follow-up of 14 years. Sillanpaa et al. reported a severe osteoarthritis rate of 30% after 10 years (Sillanpaa et al. 2011).

A patellar ligament that is fixed too far medially leads to increased medial articular cartilage contact pressure, resulting in an early medial compartment arthritis, especially in patients with genu valga (Kuroda et al. 2001). We modified the original Grammont technique by allowing dynamic positioning of the distal patella tendon. We expected that the patella would find its “ideal” position, reducing deforming forces and minimizing the risk of chondral damage, which may explain the comparably low rate of osteoarthritis (6/58) in our patients.

In the present study, 54 of 65 knees had no more dislocations. None of the 8 patients with a single redislocation required revision surgery. Redislocations occurred in 2 knees with type-C dysplasia according to Dejour et al. (Dejour et al. 1994). For these patients, the simple patellar re-alignment does not appear to be sufficient, and as adults these patients were offered MPFL reconstruction. Notably, more than half of the patients in our study showed a patello-femoral dyspla-
The average Lysholm score in the present study was 82 points, revealing good to very good functional outcome. Redislocations do not appear to worsen clinical function, which is in accordance with the findings of Buchner et al. (2005). Other authors (Maenpaa et al. 1997b, Nikku et al. 1997) also found the discrepancy between a high recurrence rate and good subjective outcome. Buchner et al. (2005) reported a redislocation rate of 10/37 (surgical group) after acute patellar dislocation, with a good subjective outcome in 27/30.

The strengths of our study are the length of follow-up, the low dropout rate, and a uniform technique. Weaknesses of the study include the missing preoperative Lysholm scores for comparison, the lack of a control group, the lack of data on Q-angles, and the lack of additional radiographic measurements.

In summary, we found that a modified Grammont procedure is a feasible method to treat recurrent patella dislocation in skeletally immature patients. However, patients with higher-grade patello-femoral dysplasias (Dejour type C) should be informed that they have a higher risk of redislocation and that additional surgery might be required after skeletal maturity.
Sillanpaa P J, Mattila V M, Maenpaa H, Kiuru M, Visuri T, Pihlajamaki H. Treatment with and without initial stabilizing surgery for primary traumatic patellar dislocation. A prospective randomized study. J Bone Joint Surg (Am) 2009; 91 (2): 263-73.

Sillanpaa P J, Mattila V M, Visuri T, Maenpaa H, Pihlajamaki H. Patellofemoral osteoarthritis in patients with operative treatment for patellar dislocation: a magnetic resonance-based analysis. Knee Surg Sports Traumatol Arthrosc 2011; 19 (2): 230-5.

Tegner Y, Lysholm J. Rating systems in the evaluation of knee ligament injuries. Clin Orthop 1985; (198): 43-9.

Vahasarja V. Prevalence of chronic knee pain in children and adolescents in northern Finland. Acta Paediatr 1995; 84 (7): 803-5.

Yercan H S, Erkan S, Okcu G, Ozalp R T. A novel technique for reconstruction of the medial patellofemoral ligament in skeletally immature patients. Arch Orthop Trauma Surg 2011; 131 (8):1059-65.

Zeichen J, Lobenhoffer P, Bosch U, Friedemann K, Tscherne H. Interim results of surgical therapy of patellar dislocation by Insall proximal reconstruction. Unfallchirurg. 1998; 101 (6): 446-53.