A SPARSE COLORFUL POLYTOPAL KKM THEOREM

DANIEL MCGINNIS AND SHIRA ZERBIB

Abstract. Recently Soberón [16] proved a far-reaching generalization of the colorful KKM Theorem due to Gale [6], letting $n \geq k$, and assume that a family of closed sets $(A_i^j \mid i \in [n], j \in [k])$ has the property that for every $I \in \binom{[n]}{k}$, the family $(\bigcup_{j \in I} A_i^j)$ is a KKM cover of the $(k-1)$-dimensional simplex Δ^{k-1}; then there is an injection $\pi : [k] \to [n]$ so that $\bigcap_{i=1}^k A_{\pi(i)} \neq \emptyset$. We prove a polytopal generalization of this result, answering a question of Soberón in the same note. We also discuss applications of our theorem to fair division of multiple cakes, d-interval piercing, and a generalization of the colorful Carathéodory theorem.

1. Introduction

The KKM theorem due to Knaster, Kuratowski, and Mazurkiewicz [9] is a set covering version of Sperner’s lemma [17] and Brouwer’s fixed point theorem. It states that if there exists a family of closed subsets (A_1, \ldots, A_k) of the $(k-1)$-dimensional simplex $\Delta^{k-1} = \text{conv}\{v_1, \ldots, v_k\}$ that satisfy $\sigma \subset \bigcup_{i \in \sigma} A_i$ for every face σ of Δ^{k-1}, then $\bigcap_{i=1}^k A_i \neq \emptyset$. A family of sets (A_1, \ldots, A_k) satisfying the conditions of the KKM theorem is called a KKM cover of Δ^{k-1}.

There are many generalizations of the KKM theorem. One such result is the colorful KKM theorem by Gale [6], stating that given k KKM covers (A_i^1, \ldots, A_i^k) for $1 \leq i \leq k$, there exists a permutation $\pi : [k] \to [k]$ so that $\bigcap_{i=1}^k A_{\pi(i)} \neq \emptyset$.

Another generalization is the KKMS theorem, due to Shapley [13]. A KKMS cover of Δ^{k-1} is a collection of closed subsets $(A_\tau \mid \tau$ a face of $\Delta^{k-1})$ such that for every face σ of Δ^{k-1} we have $\sigma \subset \bigcup_{\tau \subset \sigma} A_\tau$. For a face σ of Δ^{k-1}, let $b(\sigma)$ denote the barycenter of σ. The KKMS theorem states that given a KKMS cover of Δ^{k-1}, there exist faces τ_1, \ldots, τ_k of Δ^{k-1} so that $b(\Delta^{k-1}) \in \text{conv}\{b(\tau_1), \ldots, b(\tau_k)\}$ and $\bigcap_{i=1}^k A_{\tau_i} \neq \emptyset$. Shih and Lee [14] proved a colorful version of the KKMS theorem.

Komiya proved a generalization of the KKMS Theorem for general polytopes.

Theorem 1.1 (Komiya [10]). Let P be a $(k-1)$-dimensional polytope with $p \in P$. Suppose that for every non-empty proper face τ of P we are given a closed subset A_τ of P and a point $y_\tau \in \tau$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A_\tau$ for every face σ of P, then there exist faces τ_1, \ldots, τ_k of P such that $\sigma \subset \text{conv}\{y_{\tau_1}, \ldots, y_{\tau_k}\}$ and $\bigcap_{i=1}^k A_{\tau_i} \neq \emptyset$.

A family of sets $(A_\tau \mid \tau$ a face of $P)$ satisfying the condition of Theorem 1.1 is called a Komiya cover of P. Note that the theorem is true also if all the sets A_τ are open (see e.g. [9]).

Frick and Zerbib [4] proved a colorful extension of Theorem 1.1.

D. McGinnis: Department of Mathematics, Iowa State University, USA. dam1@iastate.edu
S. Zerbib: Department of Mathematics, Iowa State University, USA. zerbib@iastate.edu S. Zerbib was supported by NSF grant DMS-1953929.
Theorem 1.2 (Frick-Zerbib [4]). Let P be a $(k-1)$-dimensional polytope with $p \in P$. Suppose for every non-empty proper face τ of P we are given k closed (open) subsets $A^1_\tau, \ldots, A^k_\tau$ of P and k points $y^1_\tau, \ldots, y^k_\tau \in \tau$. If for every $i \in [k]$ and every face σ of P, we have $\sigma \subset \bigcup_{\tau \subseteq \sigma} A^i_\tau$, then there exist faces τ_1, \ldots, τ_k of P such that $0 \in \text{conv}(y^1_{\tau_1}, \ldots, y^k_{\tau_k})$ and $\bigcap_{i=1}^k A^i_{\tau_i} \neq \emptyset$.

Recently, Soberón [16] proved a beautiful generalization of the colorful KKM Theorem that we call here the sparse colorful KKM theorem. Let $n \geq k, m$. A family of closed (open) sets $(A^1_i, \ldots, A^k_i \mid i \in [n])$ forms a m-weakly KKM cover of Δ^{k-1}, if for every $I \subseteq \binom{[n]}{m}$, the sets $\left(\bigcup_{i \in I} A^1_i, \ldots, \bigcup_{j \in I} A^k_j \right)$ form a KKM cover of Δ^{k-1}. The notion of m-weakly KKM cover was defined by Soberón in [16], where he proved:

Theorem 1.3 (Soberón [16]). Let $n \geq k$ be positive integers. Assume the family $(A^1_i, \ldots, A^k_i \mid i \in [n])$ forms a k-weakly KKM cover of Δ^{k-1}. Then there is an injection $\pi : [k] \to [n]$ so that $\bigcap_{i=1}^k A^i_{\pi(i)} \neq \emptyset$.

In the same note, Soberón asked whether Theorem 1.3 can be extended to general polytopes, in the same way that Theorem 1.2 generalizes the colorful KKMS theorem. In this paper we positively answer this question.

We first give a definition of m-weakly Komiya cover for a general polytope P. Given a polytope P, let $F(P)$ denote the set of non-empty, proper faces of P.

Definition 1.4 (m-weakly Komiya cover). Let $n \geq k, m$ be positive integers, and let P be a $(k-1)$-dimensional polytope. A family of closed sets $(A^i \mid i \in [n], \sigma \in F(P))$, is called an m-weakly Komiya cover of P if for every $I \subseteq \binom{[n]}{m}$, the family $\left(\bigcup_{i \in I} A^i_\sigma \mid \sigma \in F(P) \right)$ is a Komiya cover of P.

We are now ready to state our main theorem.

Theorem 1.5. Let $n \geq k \geq 2$ be integers. Let P be a $(k-1)$-dimensional polytope with $p \in P$. Assume for every $p \in F(P)$, we are given n points $y^1_\tau, \ldots, y^n_\tau \in \tau$. If the family $(A^i_\tau \mid i \in [n], \tau \in F(P))$ forms a k-weakly Komiya cover of P, then there exists an injection $\pi : [k] \to [n]$ and faces τ_1, \ldots, τ_k such that $p \in \text{conv}(y^{\pi(1)}_{\tau_1}, \ldots, y^{\pi(k)}_{\tau_k})$ and $\bigcap_{i=1}^k A^i_{\pi(i)} \neq \emptyset$.

As in the case of the previous theorems, Theorem 1.5 is true also if all the sets A^i_τ are open.

Let us discuss applications of Theorem 1.5. The first is a sparse colorful piercing theorem for hypergraphs of d-intervals. A d-interval is union of d closed intervals in \mathbb{R}. A separated d-interval is d-interval consisting d disjoint interval components h^1, \ldots, h^d such that $h^{i+1} \subset (i, i+1)$ for $0 \leq i \leq d-1$. A hypergraph of (separated) d-intervals is a hypergraph H whose vertex set is \mathbb{R} and whose edge set is a finite family of (separated) d-intervals.

A matching in a hypergraph H is a set of disjoint edges. The matching number of H, which we denote as $\nu(H)$, is the maximum size of a matching. A cover of H is a set of vertices that intersects each edge of H, and the covering number (or piercing number) of H, $\tau(H)$ is the minimum size of a cover.

Tardós [19] and Kaiser [8] proved the following result on the ratio between the covering and matching numbers in hypergraphs of d-intervals.
Theorem 1.6 (Tardós [19], Kaiser [8]). In any hypergraph of d-intervals H we have $\tau(H) \leq (d^2 - d + 1)\nu(H)$. If H is a hypergraph of separated d-intervals, then $\tau(H) \leq (d^2 - d)\nu(H)$.

Matoušek [11] constructed examples of hypergraphs of d-intervals H such that $\tau(H) = \Omega(\frac{d^2}{\log(d)}\nu(H))$, showing that the bounds from Theorem 1.6 are not far from optimal. Aharoni, Kaiser, and Zerbib [2] gave an alternative proof of Theorem 1.6 using the KKMS theorem and Theorem 1.1. Frick and Zerbib [4] applied Theorem 1.2 in a similar way to prove a colorful generalization of Theorem 1.6. In the following, a colorful matching M in a family of edges (F_1, \ldots, F_k) in a hypergraph H is a matching in H in which $|M \cap F_i| \leq 1$ for every $i \in [k]$.

Theorem 1.7 (Frick-Zerbib [4]).

1. For $i \in [k]$, let F_i be a hypergraph of d-intervals. If $\tau(F_i) \geq k$ for every $i \in [k]$, then there exists a colorful matching M of (F_1, \ldots, F_k) of size $|M| \geq \frac{k}{d+1}$.
2. For $i \in [(k-1)d + 1]$, let F_i be a hypergraph of separated d-intervals. If $\tau(F_i) \geq (k-1)d + 1$ for every $i \in [k]$, then there exists a colorful matching M of $(F_1, \ldots, F_{(k-1)d+1})$ of size $|M| \geq \frac{k}{d-1}$.

Here we use Theorem 1.5 to obtain a “sparse colorful” generalization of Theorem 1.7.

Theorem 1.8. Let n, k, m, d be positive integers.

1. Let $n \geq k$, and for every $i \in [n]$, let F_i be a hypergraph of d-intervals. If $\tau(\bigcup_{i \in I} F_i) \geq k$ for every $I \in \binom{[n]}{k+1}$, then there exists a colorful matching M of (F_1, \ldots, F_n) of size $|M| \geq \frac{k}{d+1}$.
2. Let $n \geq (m-1)d + 1$, and for every $i \in [n]$, let F_i be a hypergraph of separated d-intervals. Suppose $\tau(\bigcup_{i \in I} F_i) \geq (m-1)d + 1$ for every $I \in \binom{[n]}{(m-1)d}$. Then there exists a colorful matching M of (F_1, \ldots, F_n) of size $|M| \geq \frac{m}{d-1}$.

Another application of Theorem 1.5 is to fair division of multiple cakes. Suppose that there are n participants (players) at a party where d cakes (which we identify with d copies of the $[0,1]$ interval) are served. Given any partition of cakes into m interval pieces each, every player can choose their favorite d-tuple of pieces (a d-tuple of pieces contains one piece from each cake). The goal is to find such a partition so that every member in a large subset of players receives their favorite d-tuple.

We say that the set of players are (m, d)-hungry if the following two conditions hold:

1. Given any partition of the d cakes into m interval pieces each, and given any set I of $n - d(m-1)$ players, there is a player in I that prefers a d-tuple of non-empty pieces.
2. The preference sets of the players are closed: if a player prefers some d-tuple of pieces in a converging sequence of partitions, they prefer the same d-tuple also in the limit partition.

Soberón [16] used Theorem 1.3 to prove the following generalization of the classical fair division theorem due to Stromquist [18] and Woodall [20].
Theorem 1.9 (Soberón, [15]). Let \(n \geq k \), and assume that \(n \) players are \((k,1)\) hungry. Then there exists a partition of a single cake into \(k \) interval pieces where \(k \) players get their favorite piece.

Here we give an extension of this theorem to fair division of multiple cakes. Our theorem is also a generalization of Theorem 2.1 in [12].

Theorem 1.10. Let \(n, m, d \) be positive integers so that \(n \geq d(m - 1) + 1 \). Assume that \(n \) players are \((m,d)\)-hungry. Then, there exists a partition of the \(d \) cakes into \(m \) interval pieces each, and an allocation of \(d \)-tuples of pieces to a subset \(P \) of players of size at least \(\frac{m}{d-1} \), so that each player in \(P \) receives one of their favorite \(d \)-tuple of pieces.

A third application of Theorem 1.5 concerns a generalization of the colorful Carathéodory theorem [3]. The following sparse colorful version of Theorem 1.1. Let \(P \) be a polytope with \(d \) vertices. In order to prove Theorem 1.5, we first need a vertex that is needed for the proof of Theorem 1.5, and then in Section 4 we prove a theorem concerning the existence of certain triangulations that are needed for the proof of Theorem 1.5. Finally, in Section 5 we prove Theorems 1.8 and 1.10.

2. Preliminaries

All the triangulations considered in this paper are convex, that is, every face is the convex hull of its vertices. In order to prove Theorem 1.5, we first need a vertex labelling version of Theorem 1.1. Let \(P \) be a polytope and \(T \) a triangulation of \(P \). For \(v \in P \) denote by \(\text{supp}(v) \) the support of \(v \), that is, the minimal face of \(P \) containing \(v \). A Sperner-Shapley labelling of \(T \) is an assignment \(\lambda : V(T) \to F(P) \) such that \(\lambda(v) \subset \text{supp}(v) \) for every \(v \in V(T) \).

The following was essentially proved in [4], and we give the proof here for completion.

Theorem 2.1. Let \(P \subset \mathbb{R}^d \) be a polytope with \(p \in P \), and let \(T \) be a triangulation of \(P \). Let \(\lambda : V(T) \to F(P) \) be a Sperner-Shapley labeling of \(T \). Suppose that for every \(v \in V(T) \), a point \(y(v) \in \lambda(v) \) is assigned. Then there is a face \(\tau \) of \(T \) such that \(p \in \text{conv}\{y(v) \mid v \in V(\tau)\} \).

Proof. By the Sperner-Shapley labeling condition we have \(y(v) \in \lambda(v) \subset \text{supp}(v) \). Extending \(y \) linearly onto faces of \(T \) defines a continuous map \(Y : P \to P \), so that \(Y(\sigma) \subset \sigma \) for every face \(\sigma \) of \(P \). This implies that \(Y \) is homotopic to the identity on \(\partial P \), and thus \(Y|_{\partial P} \) has degree one. Then \(Y \) is surjective and we can find a point \(x \in P \) such that \(Y(x) = p \). Let \(\tau \) be a face of \(T \) containing \(x \). By the definition of \(Y \), we have \(p \in Y(\tau) = \text{conv}\{y(v) \mid v \in V(\tau)\} \). \(\square\)
We will use the following simple lemma frequently.

Lemma 2.2. Suppose the conditions of Theorem 1.5 hold. Let \(v \in P \) and \(I \subset [n] \). If \(|I| \geq n - k + 1 \) then there exists \(i \in I \) and \(\tau \subset \text{supp}(v) \) such that \(v \in A^i_\tau \).

Proof. Let \(J \) be a subset of \(I \) of size \(n - k + 1 \). Since the sets \(A^i_\sigma \) form a \(k \)-weakly Komiya cover of \(P \), the family \((\bigcup_{j \in J} A^i_j \mid \sigma \in F(P)) \) forms a Komiya cover of \(P \). Therefore, \(v \in \text{supp}(v) \subset \bigcup_{v \subset \text{supp}(v)} (\bigcup_{i \in J} A^i_\tau) \). Hence there is some \(\tau \subset \text{supp}(v) \) and \(i \in J \) such that \(v \in A^i_\tau \). \(\square \)

3. Refining a triangulation

Let \(X \) be a triangulation of \(P \). Denote by \(E(X) \) the one-dimensional faces (or edges) of \(X \). For an edge \(v_1v_2 \in E(X) \), let \(b(v_1, v_2) \) denote the barycenter of \(v_1v_2 \). For \(m \geq 2 \) we define \(b(v_1, \ldots, v_{m+1}) \) recursively, by

\[
b(v_1, \ldots, v_{m+1}) = b(b(v_1, \ldots, v_m), v_{m+1}).
\]

Denote by \(X(v_1, v_2) \) the triangulation refining \(X \), so that

\[
V(X(v_1, v_2)) = V(X) \cup \{b(v_1, v_2)\},
\]

and \(X(v_1, v_2) \) is obtained by replacing every face of the form \(\text{conv}\{v_1, v_2, \ldots, v_j\} \) in \(X \) that contains the edge \(v_1v_2 \) with two faces \(\text{conv}\{b(v_1, v_2), v_2, \ldots, v_j\} \) and \(\text{conv}\{b(v_1, v_2), v_1, v_3, \ldots, v_j\} \).

Given a map \(f : V(X) \to [n] \), an edge \(uv \in E(X) \) will be called bad if \(f(u) = f(v) \). Let \(B(X) \) denote the set of bad edges of \(X \), and for a vertex \(v \in V(X) \) define

\[
B(X; v) = \{u \in V(X) \mid uv \in B(X)\}.
\]

In this section we prove that given the conditions of Theorem 1.5, and given any triangulation \(T \) of \(P \), there exists a triangulation \(T' \) refining \(T \) and satisfying certain nice properties.

Theorem 3.1. Suppose the conditions of Theorem 1.5 hold. Let \(T \) be a convex triangulation of \(P \). Then there exists a refinement \(T' \) of \(T \) and maps \(\lambda : V(T') \to F(P) \), \(f : V(T') \to [n] \) and \(y : V(T') \to P \) with the following properties:

\[(P1) \text{ } v \in A^{f(v)}_{\lambda(v)} \text{ for every } v \in V(T'), \]

\[(P2) \text{ } y(v) \in \lambda(v) \subset \text{supp}(v) \text{ for every } v \in V(T'), \text{ and} \]

\[(P3) \text{ for every face } \tau \text{ of } T', \text{ the indices } (f(v), v \in \tau) \text{ are pairwise distinct.} \]

Proof. Let \(v \in V(T) \). By Lemma 2.2 we may choose an index \(i \in [n] \) and a face \(\tau \subset \text{supp}(v) \) such that \(v \in A^i_\tau \). Let \(\lambda(v) = \tau \), \(f(v) = i \) and \(y(v) = y^i_\tau \).

Let \(N = |B(T)| \) be the number of bad edges in \(T \). Note that if \(N = 0 \), then properties (P1)-(P3) hold for \(T \) with the defined maps \(\lambda, f, y \), and we are done. So assume \(N \geq 1 \), and let \(v_1v_2 \in B(T) \).

We will now describe an algorithm that receives \(T, \lambda, f, y \) and terminates with a refinement \(T' \) of \(T \) and assignments \(\lambda(v) \in F(P), f(v) \in [n], y(v) \in Y \) for every \(v \in V(T') \setminus V(T) \), with the following properties:

\[\text{(i) } \text{properties (P1) and (P2) hold for } T', \lambda, f, y,\]

\[\text{(ii) } B(T') \subset B(T), \text{ and} \]

\[\text{(iii) } v_1v_2 \notin E(T'). \]
Note that (ii) and (iii) implies that $B(T') < B(T)$, and Thus the triangulation T' has at most $N - 1$ bad edges. This suffices to prove the theorem.

Throughout the algorithm, T_c is being updated with finer and finer triangulations. The notation $T_c = T_c(b(v_1, \ldots, v_{j+1}), v_{j+2})$ in Step (2) below means that we replace the current T_c with the new refined triangulation $T_c(b(v_1, \ldots, v_{j+1}), v_{j+2})$, that we now call T_c.

The algorithm.

Setup: Set $T_c = T(v_1, v_2)$. Since $[n] \setminus \{f(v_2)\} \geq n - k + 1$, by Lemma 2.2 there exists $i \in [n] \setminus \{f(v_2)\}$ and $\tau \in \text{supp}(b(v_1, v_2))$ so that $b(v_1, v_2) \in A'_i$. Set $\lambda(b(v_1, v_2)) = \tau$, $f(b(v_1, v_2)) = i$, and $y(b(v_1, v_2)) = y^*_i$. Since $y^*_i \in \tau \subset \text{supp}(v)$, properties (P1) and (P2) hold for $v = b(v_1, v_2)$. Set $Q_1 = B(T_c; b(v_1, v_2))$ and $Q_j = \emptyset$ for all $j \geq 2$.

Apply the following procedure:

1. If $Q_j = \emptyset$ for all $j \geq 1$, stop and return T_c, λ, f, y. Otherwise,
2. Let j be the largest index for which $Q_j \neq \emptyset$, and choose a vertex $v \in Q_j$.
 Set $v_{j+2} = v$, $T_c = T_c(b(v_1, \ldots, v_{j+1}), v_{j+2})$. Remove v_{j+2} from Q_j.
3. Choose $i \in [n] \setminus \{f(v_2), f(v_3), \ldots, f(v_{j+2})\}$ and $\tau \subset \text{supp}(b(v_1, \ldots, v_{j+2}))$ such that $b(v_1, \ldots, v_{j+2}) \in A'_i$ (we will show that such a choice exists).
 Set $\lambda(b(v_1, \ldots, v_{j+2})) = \tau$, $f(b(v_1, \ldots, v_{j+2})) = i$, $y(b(v_1, \ldots, v_{j+2})) = y^*_i$.
 Like before, properties (P1) and (P2) hold for $v = b(v_1, \ldots, v_{j+2})$.
4. Set $Q_{j+1} = B(T_c; b(v_1, \ldots, v_{j+2}))$.
5. Return to Step (1).

The idea of the algorithm is as follows. We want to eliminate the bad edge v_1v_2 of T by subdividing it using the new vertex $b(v_1, v_2)$ and refining T to obtain $T(v_1, v_2)$. However, after assigning $f(b(v_1, v_2))$, the current triangulation $T(v_1, v_2)$ may contain bad edges that did not appear in T. Every such a bad edge must contain the vertex $b(v_1, v_2)$. So we let Q_1 record the vertices v for which $vb(v_1, v_2)$ is a bad edge; these are precisely the bad edges of $T(v_1, v_2)$ that are not bad in T. More generally, throughout the algorithm Q_j records the vertices v of the current triangulation T_c such that $vb(v_1, \ldots, v_{j+1})$ is a bad edge of T_c. At every iteration of the algorithm, every bad edge of T_c that is not bad in T is of the form $vb(v_1, \ldots, v_{j+1})$, for some $j \geq 1$. Thus, if the algorithm terminates, i.e. $Q_j = \emptyset$ for all j, then the returning triangulation T_c contains only bad edges that were already bad in T. Moreover, T_c does not contain the edge v_1v_2, which was bad in T. Thus, T_c contains at least one less bad edge than T.

The algorithm works in a depth-first manner. We find the largest index j such that $Q_j \neq \emptyset$ and we reduce the size of Q_j by subdividing an edge of the form $vb(v_1, \ldots, v_{j+1})$. By doing this we may have $Q_{j+1} \neq \emptyset$ in Step (4). The algorithm continues to run until $Q_{j+1} = \emptyset$ (we will show that this always happens), and then we reduce the size of Q_j by subdividing another edge of the form $vb(v_1, \ldots, v_{j+1})$. Similarly, we continue until $Q_j = \emptyset$, and then we reduce the size of Q_{j-1} by subdividing an edge of the form $vb(v_1, \ldots, v_j)$ (see example 3.10).

Our goal now is to show that: (a) the choice in Step (3) of the algorithm is possible as long as the algorithm runs, (b) the algorithm stops after finitely many steps, and (c) the returning triangulation satisfies Properties (i)-(iii). This will imply the theorem.
Claim 3.2. For every $2 \leq j \leq k$, each maximal simplex of T_c containing the vertex $b(v_1, \ldots, v_j)$ is of the form

$$
\text{conv}\{b(v_1, \ldots, v_j), w_2, \ldots, w_j, u_{j+1}, \ldots, u_k\},
$$

where

- $w_2 \in \{v_1, v_2\}$,
- $w_i \in \{v_i, b(v_1, \ldots, v_{i-1})\}$ for every $3 \leq i \leq j$, and
- u_{j+1}, \ldots, u_k are some vertices in $V(T_c)$.

Proof. We proceed by induction on j. For $j = 2$ the claim is true. Indeed, in the triangulation $T(v_1, v_2)$ each maximal simplex containing $b(v_1, v_2)$ contains v_1 or v_2. Since $f(b(v_1, v_2)) \neq f(v_1), f(v_2)$, the edges $v_1b(v_1, v_2)$ or $v_2b(v_1, v_2)$ are never subdivided at any iteration in the algorithm, so in each triangulation obtained at any iteration of the algorithm, any maximal simplex containing $b(v_1, v_2)$ will still contain v_1 or v_2. Let $3 \leq j \leq k$, and assume the claim is true for $j - 1$.

We first claim that v_j is not one of the vertices v_1, \ldots, v_{j-1} or $b(v_1, \ldots, v_i)$ for $2 \leq i \leq j - 1$. This is true because at some iteration in the algorithm, $v_j \in B(b(v_1, \ldots, v_{j-1}))$ and thus $v_jb(v_1, \ldots, v_{j-1})$ is a bad edge (and in particular $v_j \neq b(v_1, \ldots, v_{j-1})$), and $ub(v_1, \ldots, v_{j-1})$ is not a bad edge if u is one of the vertices v_1, \ldots, v_{j-1} or $b(v_1, \ldots, v_i)$ for $2 \leq i \leq j - 2$; indeed, we have that $f(v_1) = f(v_2)$ and $f(v_{i+1}) = f(b(v_1, \ldots, v_i))$ for $2 \leq i \leq j - 2$, and by the choice of $f(b(v_1, \ldots, v_i))$ made in Step (3), $f(b(v_1, \ldots, v_i)) \in [n] \setminus \{f(v_2), f(v_3), \ldots, f(v_i)\}$.

By the inductive hypothesis, the maximal simplices of T_c containing the edge $v_jb(v_1, \ldots, v_{j-1})$ are of the form

$$
\text{conv}\{b(v_1, \ldots, v_{j-1}), w_2, \ldots, w_{j-1}, v_j, u_{j+1}, \ldots, u_k\}
$$

where $w_2 \in \{v_1, v_2\}$ and for $3 \leq i \leq j$, w_i is equal to v_i or $b(v_1, \ldots, v_{i-1})$. Therefore, the maximal simplices of T_c containing $b(v_1, \ldots, v_j)$ are of the form

$$
\text{conv}\{b(v_1, \ldots, v_j), w_2, \ldots, w_j, u_{j+1}, \ldots, u_k\}
$$

where $w_2 \in \{v_1, v_2\}$ and for $3 \leq i \leq j$, w_i is equal to v_i or $b(v_1, \ldots, v_{i-1})$. This completes the proof of the claim. \hfill \Box

Applying the claim for $j = k$ we get:

Claim 3.3. Assume that at some iteration of the algorithm, at Step (2) we have $Q_{k-2} \neq \emptyset$ and $k - 2$ is the largest index j for which $Q_j \neq \emptyset$. Then in the current triangulation T_c, the vertex $b(v_1, \ldots, v_k)$ is connected by an edge only to the vertices v_1, \ldots, v_k and $b(v_1, \ldots, v_{i-1})$ for $3 \leq i \leq k$.

Claim 3.4. At any iteration of the algorithm, $Q_j = \emptyset$ for every $j \geq k - 1$. In other words, the index j from Step (2) is always at most $k - 2$.

Proof. We first prove that $Q_{k-1} = \emptyset$ at every iteration. Assume that v_k has been defined in some iteration of the algorithm in Step (2), and let T_c be the resulting triangulation defined in the same step. By Claim 3.3, $b(v_1, \ldots, v_k)$ is connected by an edge only to the vertices v_1, \ldots, v_k and $b(v_1, \ldots, v_j)$ for $2 \leq j \leq k - 1$ in T_c. By the choice of $f(b(v_1, \ldots, v_k))$ from Step (3), we have

$$
f(b(v_1, \ldots, v_k)) \in [n] \setminus \{f(v_2), f(v_3), \ldots, f(v_k)\}.
$$
Moreover, \(f(v_1) = f(v_2) \) and by the setup in Step (2), \(f(b(v_1, \ldots, v_i)) = f(v_{i+1}) \) for every \(2 \leq i \leq k - 1 \). Therefore, \(f(b(v_1, \ldots, v_k)) \neq f(v) \) for every vertex \(v \) that is connected to \(b(v_1, \ldots, v_k) \) by an edge in \(T_\tau \). It follows that \(Q_{k-1} = \emptyset \).

Now, since \(Q_{j+1} \) is being changed in Step (4) only if \(Q_j \neq \emptyset \) at Step (2) in some iteration of the algorithm, it follows that \(Q_j = \emptyset \) for every \(j \geq k \) as well. \(\square \)

Claim 3.5. The choice of \(i, \tau \) in Step (3) of the algorithm is possible as long as the algorithm runs.

Proof. By Claim 3.4, at any iteration of the algorithm \(j \leq k - 2 \), and thus the set \(I = [n] \setminus \{ f(v_2), f(v_3), \ldots, f(v_j+2) \} \) is of size at least \(n - k + 1 \). Therefore, by Lemma 3.2 there exists a choice of \(i \in I \) and \(\tau \in \text{supp}(b(v_1, \ldots, v_{j+2})) \) so that \(b(v_1, \ldots, v_{j+2}) \in A'_i \), as needed in Step (3). \(\square \)

Claim 3.6. For any \(j \geq 1 \), at any iteration of the algorithm, either \(Q_j = \emptyset \) or there is a later iteration in the algorithm for which \(Q_j = \emptyset \) and the size of \(Q_i \) for each \(1 \leq i \leq j - 1 \) is the same in both iterations.

Proof. We proceed by induction on \(k - 1 - j \). If \(k - 1 - j \leq 0 \), then the statement is true by Claim 3.4.

Let \(1 \leq j \leq k - 2 \). Assume that in the \(i_1 \)-th iteration in the algorithm, we have \(Q_j \neq \emptyset \). It suffices to show that there is some later iteration for which the size of \(Q_j \) is decreased by 1 and the size of \(Q_i \) for \(1 \leq i \leq j - 1 \) remains unchanged. By the induction hypothesis, there exists \(i_2 \geq i_1 \) such that in the \(i_2 \)-th iteration of the algorithm, \(Q_{j+1} = \emptyset \) and the size of \(Q_i \) for \(1 \leq i \leq j \) is the same as in the \(i_1 \)-th iteration. Similarly, we may find \(i_3 \geq i_2 \) such that in the \(i_3 \)-th iteration of the algorithm, \(Q_{j+2} = \emptyset \) and the size of \(Q_i \), for every \(1 \leq i \leq j + 1 \), is the same as in the \(i_2 \)-th iteration (and in particular, \(Q_{j+1} = \emptyset \)). Continuing in this way, we find some \(i_{k-1-j} \geq i_3 \) such that in the \(i_{k-1-j} \)-th iteration of the algorithm, \(Q_i = \emptyset \) for all \(j + 1 \leq i \leq k - 2 \) and the size of \(Q_i \) for \(1 \leq i \leq j \) is the same as in the \(i_3 \)-th iteration. It follows by Claim 3.4 that \(j \) is the largest index for which \(Q_j \neq \emptyset \). Therefore, in Step (2) of the \(i_{k-1-j} \)-th iteration, we choose some \(v \in Q_j \) and set \(Q_j = Q_j \setminus \{ v \} \), so the size of \(Q_j \) decreases by 1, and the size of \(Q_i \) for \(1 \leq i \leq j - 1 \) is unchanged. \(\square \)

Claim 3.7. If at some iteration of the algorithm \(Q_i = \emptyset \) for every \(1 \leq i \leq j \), then \(Q_j = \emptyset \) in every later iteration of the algorithm.

Proof. If \(Q_i = \emptyset \) for every \(1 \leq i \leq j \), then at the next iteration of the algorithm, the index chosen in Step (2) is at least \(j + 1 \). Therefore, it is still the case that \(Q_i = \emptyset \) for each \(1 \leq i \leq j \) in the next iteration. \(\square \)

Claim 3.8. At any iteration of the algorithm, every edge of \(B(T_\tau) \setminus B(T) \) is of the form \(vb(v_1, \ldots, v_j) \), where \(v \in Q_{j-1} \) and \(v_j \) has been defined in some iteration of the algorithm.

Proof. We proceed by induction on the number of iterations. The claim is true in the 0-iteration, when \(T_\tau = T(v_1, v_2) \) in the setup.

Let \(T' \) be the triangulation \(T_\tau \) obtained at the \(i \)-th iteration of the algorithm for some \(i \), and assume the statement holds for \(T' \). Let \(T'' \) be the triangulation obtained in the \((i+1)\)-th iteration. Let \(j \) be the index in Step (2) of the \((i+1)\)-th iteration. Then every bad edge of \(E(T') \setminus E(T) \) is of the form \(vb(v_1, \ldots, v_{j+2}) \), for \(v \in Q_{j+1} \). This, combined with the fact that the claim held for \(T' \), implies that the claim holds for \(T'' \). \(\square \)
Claim 3.9. The algorithm terminates after finitely many steps. The returning triangulation T' satisfies properties (i), (ii) and (iii).

Proof. Applying Claim 3.6 for $j = 1$, we have that there is some iteration for which $Q_1 = \emptyset$. Therefore, by Claim 3.7, we have that $Q_1 = \emptyset$ at any later iteration of the algorithm. Now, by Claim 3.6, there is a later iteration in the algorithm for which $Q_1 = Q_2 = \emptyset$. Applying Claim 3.7 again, we have that $Q_2 = \emptyset$ for every later iteration. Continuing this way, we get that there is an iteration where $Q_j = \emptyset$ for every $j \geq 1$, and therefore the algorithm terminates.

By Claim 3.8, every edge in $B(T') \setminus B(T)$ is of the form $vb(v_1, \ldots, v_{j+1})$ where $v \in Q_j$. When the algorithm terminates, we have that $Q_j = \emptyset$ for all $j \geq 1$, so T' has no such bad edges. Since T' no longer has the edge v_1v_2, it follows that T' has at most $N - 1$ bad edges. Finally, (i) holds by the definition of λ, f, y throughout the algorithm.

Claim 3.9 completes the proof of Theorem 3.1.

Example 3.10. Let P be a 2-dimensional simplex and $n = 4$. Assume we have closed sets $(A_{\sigma}^i \mid i \in [4], \sigma \in F(P))$ satisfying the conditions of Theorem 1.3. Let T be the triangulation of P depicted in Figure 1A. Suppose that a map $f : V(T) \rightarrow [4]$ is defined. Every vertex $v \in V(T)$ in the figure is labeled by $v, f(v)$. Then u_1u_2 is a bad edge.

We now apply the algorithm with $v_1 = u_1$ and $v_2 = u_2$. In the setup of the algorithm we obtain $T_\epsilon = T(u_1, u_2)$, and assign $f(b(v_1, v_2)) = [4] \setminus \{1\}$. Say $f(b(v_1, v_2)) = 2$. We then obtain the triangulation in Figure 1B.

Proceeding to Step (1) in the algorithm, we find that $Q_1 = \{u_3, u_4\}$ is non-empty, and in Step (2), the largest index j such that $Q_j \neq \emptyset$ is $j = 1$. We choose $v_3 = u_4$, $T_\epsilon = T_\epsilon(b(v_1, v_2), v_3)$, and remove v_3 from Q_1, so now $Q_1 = \{u_3\}$. Proceeding now to Step (3), we find some $i \in [4] \setminus \{f(v_2) = 1, f(v_3) = 2\}$ and $\sigma \subseteq \text{supp}(b(v_1, v_2, v_3))$ such that $b(v_1, v_2, v_3) \in A_i^f$, and set $f(b(v_1, v_2, v_3)) = i$. Say $i = 3$. We obtain the triangulation in Figure 1C. In step (4) we find $Q_2 = B(T_\epsilon, b(u_1, u_2, u_3)) = \emptyset$.

We go back to Step (1) and begin the second iteration of the algorithm. Since $Q_1 \neq \emptyset$, we move to Step (2). Here $j = 1$ is again the largest index for which $Q_j \neq \emptyset$. We set $v_3 = u_3$, $T_\epsilon = T_\epsilon(b(v_1, v_2), v_3)$, and $Q_1 = Q_1 \setminus \{v_3\} = \emptyset$. In Step (3), we find some $i \in [4] \setminus \{f(v_2) = 1, f(v_3) = 2\}$ and $\sigma \subseteq \text{supp}(b(v_1, v_2, v_3))$ such that $b(v_1, v_2, v_3) \in A_i^f$. We set $f(b(v_1, v_2, v_3)) = i$. Say $i = 4$. We obtain the triangulation T_ϵ in Figure 1D. In Step (4), $Q_2 = \emptyset$.

Now we go back to Step (1). The algorithm terminates since $Q_j = \emptyset$ for all j. In the returning triangulation T' every bad edge was bad already in the triangulation T we started with. Moreover, the edge u_1u_2 that was bad in T, is not an edge anymore in T'.

4. Proof of Theorem 1.5

The proof follows from Theorem 3.1 using an argument similar to the one used to prove Theorem 2.1 in [4]. By Theorem 3.1 for every $\varepsilon > 0$ there exists a triangulation T_ε of P with diameter at most ε and assignments $\lambda(v), f(v), y(v)$, such that the following properties hold:

1. for every $v \in V(T_\varepsilon)$ we have $v \in A_{\lambda(v)}^f$ and $y(v) = y_{\lambda(v)}^f$,
2. $\lambda(v) \subset \text{supp}(v)$, and
(a) The given triangulation and f values. The edges u_1u_2 and u_3u_4 are bad.

(b) The current triangulation and f values after the setup of the algorithm.

(c) The current triangulation and f values after the first iteration of the algorithm.

(d) The current triangulation and f values after the second and final iteration of the algorithm. u_3u_4 is the only bad edge.

Figure 1. The algorithm applied to a triangulation of a 2-simplex in Example 3.10.
Theorem 5.1 (Füredi [5]). If H is a hypergraph of rank $d \geq 2$, then $\nu(H) \geq \frac{\nu^*(H)}{d-1}$. If H is d-partite, then $\nu(H) \geq \frac{\nu^*(H)}{d-1}$.

We will also need the following simple lemma (see e.g. [1]).

Lemma 5.2. If a hypergraph $H = (V, E)$ of rank d has a perfect fractional matching, then $\nu^*(H) \geq \frac{|V|}{d}$.

Proof of Theorem 1.8. For a point $x = (x_1, \ldots, x_k) \in \Delta^{k-1}$ let $p_x(j) = \sum_{i=1}^{j} x_i \in [0, 1]$. Since $\mathcal{F} = \bigcup_{i=1}^{m} \mathcal{F}_i$ is finite, by rescaling \mathbb{R} we may assume that each member of \mathcal{F} is a subset of $(0, 1)$. Every face of Δ^{k-1} is of the form $\Delta^T = \text{conv}\{e_j \mid j \in T\}$ for some $T \subset [k]$, where e_j is the vertex of Δ^{k-1} having 1 at the j-component and 0 otherwise.

For every $T \subset [k]$, let A^*_T be the set consisting of all $x \in \Delta^{k-1}$ for which there exists a d-interval $f \in \mathcal{F}_T$ satisfying:

(a) $f \cap (p_x(j-1), p_x(j)) \neq \emptyset$ for each $j \in T$.
(b) $f \cap (p_x(j-1), p_x(j)) \neq \emptyset$ for each $j \in T$.

Note that $A^*_T = \emptyset$ whenever $|T| > d$, and that the sets A^*_T are open.

Let $I \in \binom{[n]}{n-k+1}$. The assumption $\tau(\bigcup_{i \in I} F_i) \geq k$ implies that for every $x = (x_1, \ldots, x_k) \in \Delta^{k-1}$, the set $P(x) = \{p_x(j) : j \in [k-1]\}$ is not a cover of $\bigcup_{i \in I} F_i$, meaning that there exists $i \in I$ and $f \in \mathcal{F}_i$ not containing any $p_x(j)$. This, in turn, means that $x \in A^*_T$ for some $T \subset [k]$. Thus the sets $(A^*_T \mid i \in I, T \subset [k])$ form a cover of Δ^{k-1}. To show that this is a k-weakly Komiya cover, let Δ^S be a face of Δ^{k-1} for some $S \subset [k]$. If $x \in \Delta^S$ then $(p_x(j-1), p_x(j)) = \emptyset$ for $j \notin S$, and hence it is impossible to have $f \cap (p_x(j-1), p_x(j)) \neq \emptyset$. Thus $x \in A^*_T$ for some $T \subset S$. This proves that $\Delta^S \subseteq \bigcup_{T \subseteq S} \bigcup_{i \in I} A^*_T$, and thus $(\bigcup_{i \in I} A^*_T \mid T \subset [k])$ is a Komiya cover for every $I \in \binom{[n]}{n-k+1}$.

By Theorem 1.5 there is an injection $\pi : [k] \to [n]$ and faces $\Delta^{T_1}, \ldots, \Delta^{T_k}$ of Δ^{k-1} such that

(1) $b(\Delta^{k-1}) \subseteq \text{conv}\{b(\Delta^{T_1}), \ldots, b(\Delta^{T_k})\}$, and
(2) $\bigcap_{i=1}^{k} A^*_{T_i} \neq \emptyset$.

Note that (1) implies that the hypergraph $H = ([k], \{T_1, \ldots, T_k\})$ has a perfect fractional matching, and (2) implies that $|T_i| \leq d$ for all $i \in [k].$

Then by the observation mentioned above $\nu^*(H) \geq \frac{k}{d}$. Therefore, by Theorem 5.1 $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{k}{d-1}$. Therefore, by Theorem 5.1 $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{k}{d-1}$. Therefore, by Theorem 5.1 $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{k}{d-1}$.

Let M be a matching in H of size $m \geq \frac{k}{d-1}$. Let $x \in \bigcap_{i=1}^{k} A^*_{T_i}$. For every $i \in [k]$ let f_i be the d-interval of \mathcal{F}_{T_i} witnessing the fact that $x \in A^*_{T_i}$. Then the set $M = \{f_i \mid T_i \in M\}$ is a colorful matching of size m in \mathcal{F}. This proves the first assertion of the theorem.

Now suppose that \mathcal{F}_i is a hypergraph of separated d-intervals for all $i \in [n]$. For $f \in \mathcal{F}$ let $f^t \subset (t-1, t)$ be the t-th interval component of f. We can assume without loss of generality that f^t is nonempty. Let $P = (\Delta^{m-1})$. Then dim $P = (m-1)d$. For a d-tuple $T = (j_1, \ldots, j_d) \in [m]^d$ (note that T corresponds to the vertex $\nu_T = e_{j_1} \times e_{j_2} \times \cdots \times e_{j_d}$ of P) let A^*_T consist of all $x = x^1 \times \cdots \times x^d \in P$ for which there exists $f \in \mathcal{F}_i$ satisfying $f^t \subset (t-1 + p_x(j_t-1), t-1 + p_x(j_t))$ for all $t \in [d]$.

Let $I \in \binom{[n]}{m-d(m-1)}$. Since $\tau(\bigcup_{i \in I} \mathcal{F}_i) \geq d(m-1) + 1$, the set of points

$$\{ t - 1 + p_{x_i}(j) \mid t \in [d], j \in [m-1] \}$$

do not form a cover of $\bigcup_{i \in I} \mathcal{F}_i$. Therefore, by the same argument as before, the sets $(A_T^i \mid i \in [n], T \in [m]^d)$ are open and form a $(d(m-1) + 1)$-weakly Komiya cover of P.

Applying Theorem 1.5 with $k = d(m-1) + 1$, we conclude that there exists an injection $\pi : [d(m-1) + 1] \rightarrow [n]$ and d-tuples $T_1, \ldots, T_{d(m-1)+1}$ in $[m]^d$ such that

1. $b(P) = \text{conv}\{v_{T_1}, \ldots, v_{T_k}\}$, and
2. $\bigcap_{i \in [m]} A_{T_i}^{\pi(i)} \neq \emptyset$.

Observe that (1) implies that the d-partite hypergraph

$$(n \times [d], \{T_1, \ldots, T_{d(m-1)+1}\})$$

(where an edge T_i contains a vertex (i, j) if T_i has i in its j-th entry) has a perfect fractional matching. Hence by Lemma 5.2 we have $\nu^*(H) \geq md/d = m$. By Theorem 5.1 this implies $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{m}{d-1}$. Now, by the same argument as before, taking $x \in \bigcap_{i \in [m]} A_{T_i}^{\pi(i)}$ we obtain a colorful matching in F of the same size, concluding the proof of the theorem.

Proof of Theorem 1.10 Given d cakes, the set of all possible partitions of the cakes in m interval pieces is modeled by the polytope $P = (\Delta^{m-1})^d$ of dimension $(m-1)d$ (see e.g. 12[1]). For a d-tuple $T = (j_1, \ldots, j_d) \in [m]^d$ define

$$A_T^i = \{ x = x_1 \times \cdots \times x_d \in P \mid \text{Player } i \text{ prefers the } d\text{-tuple of pieces } T \}.$$

The fact that the players are (m, d) hungry implies that the sets $(A_T^i \mid i \in [n], T \in [m]^d)$ form a $(d(m-1) + 1)$-weakly Komiya cover of P. Applying Theorem 1.5 with $k = d(m-1) + 1$ as in the previous proof, we conclude that there exists an injection $\pi : [d(m-1) + 1] \rightarrow [n]$ and d-tuples $T_1, \ldots, T_{d(m-1)+1}$ in $[m]^d$ such that

1. $b(P) = \text{conv}\{v_{T_1}, \ldots, v_{T_k}\}$, and
2. $\bigcap_{i \in [m]} A_{T_i}^{\pi(i)} \neq \emptyset$.

Like before, (1) implies that the d-partite hypergraph $H = ([n] \times [d], \{T_1, \ldots, T_{d(m-1)+1}\})$ has a perfect fractional matching. Hence by Lemma 5.2 we have $\nu^*(H) \geq md/d = m$. By Theorem 5.1 this implies $\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{m}{d-1}$.

Let M be a matching of size at least $\frac{m}{d-1}$ in H. Consider the partition $x \in \bigcap_{i \in [m]} A_{T_i}^{\pi(i)}$. Then players $\{\pi(i) \mid T_i \in M\}$ prefer in the partition x pairwise disjoint d-tuples of pieces, as needed.

References

[1] R. Aharoni, E. Berger, J. Briggs, E. Segal-Halevi, and S. Zerbib. Fractionally balanced hypergraphs and rainbow kkm theorems. Combinatorica, to appear.
[2] R. Aharoni, T. Kaiser, and S. Zerbib. Fractional covers and matchings in families of weighted d-intervals. Combinatorica, 37(4):555–572, 2017.
[3] I. Bárány. A generalization of Carathéodory’s theorem. Discrete Math., 40(2-3):141–152, 1982.
[4] F. Frick and S. Zerbib. Colorful coverings of polytopes and piercing numbers of colorful d-intervals. Combinatorica, 39(3):627–637, 2019.
[5] Z. Füredi. Maximum degree and fractional matchings in uniform hypergraphs. *Combinatorica*, 1(2):155–162, 1981.
[6] D. Gale. Equilibrium in a discrete exchange economy with money. *Internat. J. Game Theory*, 13(1):61–64, 1984.
[7] A. F. Holmsen. The intersection of a matroid and an oriented matroid. *Adv. Math.*, 290:1–14, 2016.
[8] T. Kaiser. Transversals of d-intervals. *Discrete Comput. Geom.*, 18(2):195–203, 1997.
[9] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein beweis des fixpunktsatzes für n-dimensionale simplexe. *Fund. Math.*, 14(1):132–137, 1929.
[10] H. Komiyama. A simple proof of K-K-M-S theorem. *Econ. Theory*, 4(3):463–466, 1994.
[11] J. Matoušek. Lower bounds on the transversal numbers of d-intervals. *Discrete Comput. Geom.*, 26(3):283–287, 2001.
[12] K. Nyman, F. E. Su, and S. Zerbib. Fair division with multiple pieces. *Discrete Appl. Math.*, 283:115–122, 2020.
[13] L. S. Shapley. On balanced games without side payments. In *Mathematical programming (Proc. Advanced Sem., Univ. Wisconsin, Madison, Wis., 1972)*, pages 261–290. Math. Res. Center Publ., No. 30, 1973.
[14] M. Shih and S. Lee. Combinatorial formulae for multiple set-valued labellings. *Math. Ann.*, 296(1):35–61, 1993.
[15] P. Soberón. Robust Tverberg and colourful Carathéodory results via random choice. *Combin. Probab. Comput.*, 27(3):427–440, 2018.
[16] P. Soberón. Fair distributions for more participants than allocations. *arXiv preprint arXiv:2110.03600*, 2021.
[17] E. Sperner. Neuer beweis für die invarianz der dimensionszahl und des gebietes. *Abh. Math. Sem. Univ. Hamburg*, 6(1):265–272, 1928.
[18] W. Stromquist. How to cut a cake fairly. *Amer. Math. Monthly*, 87(8):640–644, 1980.
[19] G. Tardos. Transversals of 2-intervals, a topological approach. *Combinatorica*, 15(1):123–134, 1995.
[20] D. R. Woodall. Dividing a cake fairly. *J. Math. Anal. Appl.*, 78(1):233–247, 1980.