Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

Title:
Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

Journal Issue:
BMC Physiology, 10(1)

Author:
Watkins, Paul A; Moser, Ann B; Toomer, Cicely B; Steinberg, Steven J; Moser, Hugo W; Karaman, Mazen W; Ramaswamy, Krishna; Siegmund, Kimberly D; Lee, D Rick; Ely, John J; Ryder, Oliver A; Hacia, Joseph G

Publication Date:
2010

Series:
UC San Diego Previously Published Works

Permalink:
http://escholarship.org/uc/item/1680h534

DOI:
http://dx.doi.org/10.1186/1472-6793-10-19

Abstract:
Abstract Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts
from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.

Supporting material:

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at http://www.escholarship.org/help_copyright.html#reuse
Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

Paul A Watkins¹, Ann B Moser¹, Cicely B Toomer¹, Steven J Steinberg¹, Hugo W Moser¹, Mazen W Karaman², Krishna Ramaswamy², Kimberly D Siegmund³, D Rick Lee⁴, John J Ely⁴, Oliver A Ryder⁵, Joseph G Hacia²*

Abstract

Background: It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism.

Results: Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC) phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes.

Conclusion: We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.

Background

Humans and great apes (bonobos, chimpanzees, gorillas, and orangutans) share a common gut anatomy, consisting of a simple stomach, small intestine, small cecum terminating in an appendix, and a hindgut consisting of the large intestine, rectum, and anal canal [1]. Nevertheless, significant differences have been reported in their gut proportions [2-4]. While the large intestine represents the majority of the great ape gut volume, the majority of the modern human gut volume consists of the small intestine [2-4]. Initial surveys have also indicated modern humans have a smaller total gut volume to body mass ratio relative to the great apes [5-7]. However, this could be influenced by primate gut plasticity related to diet and genetic diversity [2,8].

It has been proposed that gut proportions changed at some point within the human lineage in response to higher quality foods which can be digested in the small intestine [2]. The diets of hominids and/or early human populations improved, in part, due to cooking [9] and the...
increased abundance of animal products obtained through scavenging, hunting, fishing, and dairy consumption [10-19]. In contrast, great ape species in the wild derive a significant amount of their total daily metabolic energy needs through the fermentation of lower quality plant materials in their hindguts [20-25]. Although hindgut fermentation also occurs in humans [26-28], there is evidence that wild great apes derive greater amount of total daily metabolic energy from this process than do humans on Western diets [20-22]. However, seasonal changes in great ape diets and the limited dietary diversity of the humans studied will influence the interpretation of these data sets.

To explore the systemic consequences of hindgut fermentation activities in humans and great apes, we evaluated their physiological levels and cellular metabolic activities of phytanic acid, a branched chain fatty acid that can bind to and/or activate PPAR-alpha [29-34] and RXR [35-38] transcription factors. Humans do not synthesize phytanic acid, but rather acquire it from the diet [39,40]. In ruminants, the gut fermentation of plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats [39,40]. While humans can covert free phytol into phytic acid, they do not accumulate significant amounts of phytic acid as a result of consuming plant materials [41,42]. However, they can obtain phytic acid from ruminant fats, fish, and dairy products [41]. Humans with impaired phytic acid catabolism can overaccumulate phytic acid, which results in peripheral polineuropathy, cerebellar ataxia, retinitis pigmentosa, anosmia, and hearing loss [43-45]. This can also result in cardiac arrhythmias, shortened metacarpals or metatarsals, and ichthyosis [43-45].

Despite the demonstrated importance of maintaining appropriate levels of phytic acid in humans and mice [46-48], phytic acid metabolism has not been studied in the great apes. Based on the biochemical evaluation of red blood cells and cultured primary skin fibroblasts, we uncovered candidate human-specific differences in the ability to obtain phytic acid from dietary sources relative to the great apes. We also provide indirect evidence that these changes could affect physiological functions relevant to the evolution and health of these species.

Results

Red blood cell (RBC) phytic acid levels

RBCs are commonly used to evaluate the physiological abundance of phytic acid (Fig. 1) in clinical settings [49]. First, we measured RBC phytic acid levels in a cohort of humans with Western diets (N = 135), chimpanzees (N = 46), bonobos (N = 4), lowland gorillas (N = 7), and Sumatran orangutans (N = 3) (Fig. 2A and Additional File 1). We found significant differences in RBC phytic acid levels in humans with Western diets relative to the great apes (P < 2 × 10^{-13}). Chimpanzee (1.5-fold, P < 3 × 10^{-10}), bonobo (1.7-fold, P < 6 × 10^{-3}), gorilla (1.7-fold, P < 7 × 10^{-3}), and orangutan (2.6-fold, P < 4 × 10^{-5}) RBC phytic acid levels were all elevated relative to those of this human cohort. This is remarkable given the higher phytic acid content of human Western diets, reportedly 50-100 mg per day [43], relative to the minimal (< 2 mg) daily amounts in the diets of our great ape cohort, even taking nutritional biscuits into consideration as described in the Materials and Methods section.

To begin to address these dietary differences, we compared RBC phytic acid levels in great apes and humans on phytic acid-deficient diets (Fig. 2A). The latter are based on a cohort of 16 humans on vegan diets for over one year (Additional File 1). The absolute amount of phytic acid intake in this population is unknown; however,
it should be minimal (< 10 mg), based on typical components of vegan diets [41,50]. Phytanic acid RBC levels were lower in vegans relative to individuals on Western diets (2.3-fold, \(P < 1 \times 10^{-13} \)). We also found robust differences in vegan RBC phytanic acid levels relative to the great apes (\(P < 3 \times 10^{-25} \)). RBC phytanic acid levels in chimpanzees (3.5-fold, \(P < 6 \times 10^{-20} \)), bonobos (3.9-fold, \(P < 6 \times 10^{-10} \)), gorillas (3.8-fold, \(P < 2 \times 10^{-12} \)), and orangutans (5.9-fold, \(P < 5 \times 10^{-12} \)) were all dramatically higher relative to vegans.

Given the composition of our cohort, we had adequate statistical power to screen for possible sexual dimorphism in human (Western diet) and chimpanzee RBC phytanic acid levels. Although no sex-specific differences were found in humans on Western diets, male chimpanzees showed 1.4-fold higher (\(P = 0.017 \)) RBC phytanic acid oxidation rates relative to gorilla (1.6-fold, \(P = 0.017 \)) and orangutan (1.8-fold, \(P = 0.002 \)) cells (Fig. 3A). Humans cells also showed elevated pristanic acid oxidation rates compared to chimpanzee (1.7-fold, \(P = 0.018 \)), bonobo (1.5-fold, \(P = 0.05 \)), and orangutan (1.8-fold, \(P = 0.011 \)) cells (Fig. 3B).

Comparative transcriptome analysis of peroxisomal α- and β-oxidation pathways

To evaluate potential in vivo consequences of cross-species differences in lipid metabolism, we reanalyzed...
oligonucleotide microarray gene expression data from 5 male chimpanzees and 6 male human livers, brains, kidneys, heart, and testes [51]. We only considered data from probes predicted to be perfectly matched to both genomes and calculated gene expression scores only for probe sets containing at least four probes after masking [52]. We focused on genes involved in peroxisomal phytanic acid α-oxidation, β-oxidation, and PPAR-responsive genes relevant to phytanic acid metabolism (Fig. 4, Additional File 3). Our criteria for differential gene expression are provided in the legend of Figure 4.

We found that cross-species differential expression of phytanic acid α-oxidation and peroxisomal β-oxidation genes in the liver, brain, and testes always reflected higher transcript levels in humans (Fig. 4). Genes in these categories also showed cross-species differential expression in heart and kidney; however, some transcripts were more abundant in humans (7 for heart and 4 for kidneys) while others were more abundant in chimpanzees (1 for heart and 8 for kidneys). Strikingly, ACOX3 transcript levels were higher in humans relative to chimpanzees for all five tissues examined. In 4 tissues (liver, heart, testes, and kidney), PHYH transcript levels were also higher in human relative to chimpanzee. To further explore this latter observation, we measured PHYH levels in human, chimpanzee, bonobo, and gorilla fibroblast cultures (6 different donors per species) via quantitative PCR (qPCR) using primers designed against a conserved region of this transcript. PHYH levels were at least 2-fold more abundant in human relative to chimpanzee, bonobo, and gorilla fibroblasts (\(P < 3 \times 10^{-4} \) for each individual comparison, ANOVA \(P < 2 \times 10^{-5} \) for human versus African great apes).

Lastly, we examined a group of five genes (FABP1, DBI, SLC27A1, GOT2, and CAT) previously used to evaluate PPAR-activity in mice with phytanic acid disorders [53].

Table: Differential expression of genes related to peroxisomal lipid metabolism

Type	Probe Set	Gene	Liver	Heart	Brain	Testes	Kidney
			Hsa	Hsa	Hsa	Hsa	Hsa
			Pr	Pr	Pr	Pr	Pr
			FC	FC	FC	FC	FC
Phytanic acid α-oxidation	203335_at	PHYH	5257	5168	1224	1188	4211
	223211_at	HACL1	972	391	324	1309	456
	202053_s_at	ALDH3A2	6892	1866	2001	1881	3480
	202054_s_at	ALDH3A2	7207	1874	1504	1618	3560
	210544_s_at	ALDH3A2	2022	540	462	460	789
	205768_s_at	SLC27A2	5960	96	106	90	1411
	205769_at	SLC27A2	6450	133	159	133	1519
	201963_at	ACSL1	7342	3834	505	483	3774
	207275_at	ACSL1	7975	3055	486	382	3015
	209424_at	AMACR	1672	188	227	265	1049
	220698_at	AMACR	173	135	156	242	219
Peroxisomal fatty acid β-oxidation	205364_at	ACOX2	5147	720	170	342	1173
	204241_at	ACOX3	560	262	189	189	189
	202222_at	EHHADH	3106	228	75	1063	
	201339_s_at	SCP2	8495	2649	1029	1950	4770
	211733_s_at	SCP2	6459	643	643	643	2945
	202025_s_at	ACA1A	6208	1321	643	509	2430
	214274_s_at	ACA1A	2233	1450	531	3426	
Peroxisomal fatty acid β-oxidation	205892_s_at	FABP1	15420	91	83	62	2709
	231693_s_at	FABP1	967	219	225	208	302
	202428_s_at	DBI	9541	6223	4472	7929	
	211070_s_at	DBI	9609	6054	4441	7730	
	209389_s_at	DBI	7627	5993	3134	5394	
	226728_s_at	SLC27A1	516	643	741	595	
	200708_at	GOT2	8706	10478	4268	4636	
	215573_at	CAT	116	70	68	71	83
	205160_at	PEX11A	895	386	383	204	466

Figure 4 Differential expression of genes related to peroxisomal lipid metabolism. We reanalyzed of Affymetrix GeneChip U133v2.0 expression profiles of human and chimpanzee tissues [51] using the masking strategy stated in the text. We used standard F-tests (FDR-adjusted using the Benjamini and Hochberg approach) to test for differences in the distributions by species for the 5 tissues. The fold change (FC) of human (Hsa) versus chimpanzee (Ptr) geometric mean gene expression scores are provided. Differentially expressed genes (≥1.2 FC in either direction with a Student’s t-test, two-tailed P-value ≤0.05 after Bonferroni correction) for a given tissue are highlighted in red (higher in human) or green (higher in chimpanzee). Probe sets with (i) F-tests yielding a ≤5% FDR and (ii) differential expression in at least one tissue are shown. All data are provided in Additional File 3.
and PEX11A, a direct transcriptional target of PPAR-alpha [54]. All differentially expressed transcripts in heart (DBI and SLC27A1) and testes (DBI and GOT2) were more abundant in humans. FABP1, DBI, and PEX11A transcript levels were higher in human liver; however, CAT transcripts were more abundant in chimpanzee liver. None of these six genes showed cross-species differential expression in brain or kidney.

Discussion

Microbial fermentation in human [26-28] and great ape [20-25] hindguts are responsible for the break down of complex carbohydrates not processed and absorbed in the small intestine. The major end products of hindgut fermentation are short chain fatty acids, which provide energy-yielding substrates for colonic mucosa that regulate its growth and blood flow and promotes sodium and water absorption [26,27]. It has been estimated that wild chimpanzees derive 21-33% and wild orangutans derive 7-57% of their total daily metabolic energy from fiber fermentation [22]. This could be as high as 30-60% for wild Western gorillas [21]. In contrast, humans on Western diets are estimated to obtain no more than 10% of their daily energy needs through hindgut fermentation; however, this is likely higher in populations with lower quality diets and instances of small intestinal malabsorption [28].

Although we contrast human and the great ape dietary strategies, it is important to consider diversity within the great apes. For example, gorillas and orangutans can and often do subsist on lower quality foods (e.g. mature foliage and unripe fruits) relative to chimpanzees and bonobos, which can consume ample amounts of succulent ripe fruits [2]. Furthermore, chimpanzees hunt colobus monkeys and other small mammals; however, this comprises a minor component of their diets and varies among individuals and communities [55-59]. Thus, we propose that it is likely that the human, chimpanzee, bonobo, gorilla and orangutan lineages have all acquired molecular adaptations relevant to their diets.

In the studies presented here, we began to evaluate the broader systemic consequences of hindgut fermentation and related lipid metabolic activity in humans and great apes. In principle, RBC phytanic acid can be an effective biomarker of hindgut fermentation of plant materials as long as phytanic acid or its precursor phytol is not appreciably present in the human or great ape diets. The phytic acid content of Western diets (50-100 mg daily intake) [43] is estimated to be at least 10 × greater than its free phytol content [41,60]. Since phytic acid is primarily found in ruminant fats (organic beef fat has >325 mg/100 g), dairy products (45% fat cream cheese has >125 mg/100 g), and fish (canned salmon has >250 mg/100 g) [41], human vegans are appropriate for our studies. In this regard, a survey of fresh vegetables and fruits all showed minimal phytol levels (<2 mg phytol/100 g) [41]. We also note a prior study demonstrating that an individual who ingested 3.5-kg of boiled spinach leaves within a 60 hour period as a supplement to an uncontrolled mixed diet later showed serum phytic acid levels within normal limits [42]. Our captive great ape cohort should be exposed to similar low levels of dietary phytic acid (< 2 mg daily intake) and phytol [41].

We discovered elevated RBC phytic acid levels in all great apes relative to humans on both high- (Western) and low-phytanic acid (vegan) diets (Fig. 2). In principle, these could be influenced by differences in phytic acid retention and/or biosynthesis. Relevant to the retention hypothesis, both humans and great apes showed robust cellular rates of phytanic and pristanic acid oxidation (Fig. 3). In fact, there were no differences in phytic acid oxidation rates in human relative to chimpanzee or bonobo fibroblasts (Fig. 3A). Although it is possible that the lower phytanic acid oxidation rates in gorilla and orangutan relative to human fibroblasts (Fig. 3A) relate to the dietary strategies of these species [2], these observations need to be validated in larger-scale studies prior to commentary. We also cannot exclude the possibility that the cultured fibroblasts do not fully reflect in vivo activities; however, they are invaluable for the clinical diagnosis of phytanic acid oxidation disorders [61]. Likewise, we cannot exclude the possibility that great apes, unlike humans, show robust biological retention of trace dietary phytanic acid. However, laboratory mice do not accumulate significant physiological levels of phytanic acid when fed standard diets not supplemented with additional phytol or phytic acid [53]. In addition, rats on standard diets can rapidly catabolize artificially elevated stores of phytanic acid in their tissues [62].

Our preferred hypothesis is that all the great apes, unlike humans [45,63], are capable of accumulating significant amounts of phytanic acid from the hindgut fermentation of plant materials. We propose that the great apes have maintained the ancestral condition and that humans diverged since their most recent common ancestor with chimpanzees and bonobos and now have a derived metabolism. We believe that changes in gut anatomy provide a likely basis for the proposed reduction of hindgut fermentation activity in the human lineage. In this regard, it has been proposed that improved dietary quality contributed to hindgut reduction in modern humans relative to great apes (i.e. the hindgut comprises ~20% of the total human gut volume, but >50% of the total great ape gut volume) [2,3] and the smaller total gut volume to body mass ratio in modern humans relative to great apes [6,7,64,65]. However, we also recognize that the human and great ape gut microbiomes, whose
composition are influenced by the diets of these species and other environmental interactions [66,67], could also contribute to the proposed differences in hindgut fermentation activity. Thus, in principle, the improved dietary quality in the human lineage could have influenced the major factors (gut anatomy and microbial activities) that we propose are most likely to be causally responsible for the observed differences in human and great ape RBC phytanic acid levels.

Given that sexual dimorphism in human lipid metabolism is well-documented [68,69], we screened for sex-specific differences in RBC phytanic acid levels. Here, we found no evidence of sexual dimorphism in RBC levels in humans on Western or vegan diets. However, we observed 1.4-fold elevated RBC phytanic acid levels in male relative to female chimpanzees (Fig. 2B). The evolutionary implications and physiological origin of this sexual dimorphism are unclear. Phytanic acid profiling in additional males and females from other non-human primates could shed light on the extent of this phenomenon. As discussed above, phytanic acid levels are affected by multiple factors, including gut anatomy, microbiomes, and gene expression, which provide candidate mechanisms for the observed sexual dimorphism in chimpanzees.

We note that sexual dimorphism in phytic acid metabolism has been documented in rodents. C57BL/6J laboratory mice show sexually dimorphic phytic acid accumulation in response to phytol-enriched diets; however, unlike chimpanzees, females showed higher phytic acid levels than males [53,70]. There is no evidence as to whether this is a metabolic adaptation to diet or a non-specific result of inbreeding. It is thought this sexual dimorphism is influenced by the higher liver expression of sterol carrier protein-x (SCP-x) in males relative to females [53]. SCP-x is required for branched fatty acid catalysis through its keto-acyl CoA thiolase activity [53,70]. Sexual dimorphism in liver SCP-x expression has also been observed in FVB mice [53], BALB/c mice [71], and laboratory rats [72]. This suggests that sexual dimorphism in phytic acid metabolism could be present in additional rodent species. To date, SCP-x expression has not been measured in human and chimpanzee livers, even in a recent study involving both sexes from each species [73].

We also investigated possible relationships between human and chimpanzee RBC lipid profiles and their transcriptomes. While there is no known physiological role for phytic acid, it can bind to and/or activate PPAR-alpha [29-34], RXR [35-38], and likely other transcription factors [29]. Experiments involving laboratory mice have concluded that phytic acid is a physiological ligand for PPAR-alpha [29-31]. While the estimated phytic acid concentration in normal human serum (6 μM total [42], 2 μM free [35]) was at the threshold needed for RXR

stimulation of one cell culture study, the authors concluded that phytol metabolites, such as phytanic acid, are compelling candidate physiological effectors of RXR [35].

Here, we found that multiple genes reported to be influenced by PPAR-alpha activity, including those involved in peroxisomal α- and β-oxidation of fatty acids, show cross-species expression differences in the chimpanzee and human tissues surveyed (Fig. 4). Such genes were primarily more highly expressed in humans relative to chimpanzee for all tissues except kidney, where higher expression in chimpanzees was frequently found. Exploratory work, not involving non-human primates, highlighted the lower fatty acid α-oxidation capacity in the kidneys, but not livers, of carnivorous relative to herbivorous animals [74]. Also of interest, others have provided gene expression-based evidence that PPAR-signaling is higher in human relative to chimpanzee liver [75]. The elevated FABP1 transcript levels in human liver suggest an increased capacity for humans to transport phytanic acid to peroxisomes for degradation [53]. Nevertheless, we recognize phytic acid is just one of several activators of PPAR transcription factors and that the dietary information and RBC lipid profiles of the humans and chimpanzees in the gene expression profiling studies are unknown.

We have previously noted that the toxicity associated with abnormal phytic acid accumulation in humans could provide selective pressure to maintain or enhance its degradation [76]. For example, Refsum disease is an autosomal recessive disorder in humans that can result from mutations in the PHYH gene and subsequent accumulation of phytic acid in tissues [46,47]. This typically affects the peripheral nerves (i.e. polyperipheral neuropathy), movement (i.e. cerebellar ataxia), and senses (e.g. retinitis pigmentosa, anosmia, and hearing loss) [43-45]. These individuals can also show cardiac arrhythmias, skeletal malformations (e.g. shortened metacarpals or metatarsals), and skin changes (i.e. ichthyosis) [43-45]. Given that cardiac arrhythmias are suspected to be responsible for the sudden deaths of Refsum disease patients [43], the commonly observed sudden cardiac death, presumed secondary to fatal arrhythmias, in captive male chimpanzees [77] could be influenced by their physiological levels of phytic acid. However, the RBC phytic acid levels in our cohort of male chimpanzees are far below those of Refsum disease patients, which was approximately 100 times higher than normal in one case we evaluated. Nevertheless, we raise the possibility that phytic acid metabolism could influence physiological differences and medical conditions amongst human and non-human primates.

Conclusions

The candidate differences in human and great ape phytanic acid metabolism are consistent with prior reports that the regulation of genes involved in lipid metabolism
likely evolved under directional selection in humans [75] and that the promoter regions of nutrition-related genes are under positive selection in humans [78]. It is also relevant that the effects human diets have on mouse liver transcriptomes can be used as a model for expression differences between humans and chimpanzees [79]. We note that even if transcriptome data of humans and chimpanzees on matching diets were obtained, differences in how each species digests their food and extract regulators of transcription would have a major impact on the observed cross-species and sex-specific differences.

Our study also relates to hypotheses that historic diets and/or changes in lipid metabolism influenced the evolution of numerous human traits [2,12,18,55,64,65,80-85]. To further explore such hypotheses, it will be necessary to determine if the RBC phytanic acid profiles in our cohort extend to other cell types. The comparative analyses of the lipid composition of human and great ape nervous and cardiovascular systems will be of special interest given the clinical phenotypes observed in humans with phytanic acid metabolic [43-45] and other peroxisomal disorders [86]. In addition, prostate tissue could be of interest given the differences of phytanic acid metabolic activities in normal and cancerous tissues [87-89] and male reproductive differences across human and non-human primates [90]. Lastly, we propose that larger-scale lipid profiling studies will likely identify additional candidate metabolic adaptations to human and non-human diets and that investigations into the microbial contributions toward specific metabolic differences is warranted.

Methods

Cohort for red blood cell lipid profiling

Bloods from adult humans with Western diets were collected from healthy individuals attending an international conference. Bloods from adult humans on vegan diets for over one year were collected in conjunction with a blood donor center. Appropriate Institutional Review Board (IRB) approval from the University of Southern California and Johns Hopkins Medicine was obtained for all human subjects research. Chimpanzee blood was collected at the Alamogordo Primate Facility. All chimpanzees took part in daily enrichment activities to maintain psychological well-being. Animals were maintained in accordance with the Guide for the Care and Use of Animals (U.S. Dept. of Health and Human Services, Public Health Service, Bethesda, MD, 1996). The APF and its program were fully accredited by the Association for Assessment and Accreditation of Laboratory Animal Care, International (AAALAC). Other great ape bloods were collected at the Zoological Society of San Diego. The gender and ages of blood donors are provided in Additional File 2. One gorilla blood donor, described in reference [91], carries a deletion of the distal q arm of chromosome 3 (the homolog of human chromosome 4) as indicated in Additional File 4. Great ape diets contain fresh fruits, vegetables, and nutritional biscuits. Capillary gas chromatography (GC) - electron-capture negative-ion mass spectrometry [92] analysis of nutritional biscuits indicated the great apes were exposed to <2 mg of daily phytanic acid intake.

Red blood cell lipid profiling

Whole blood samples were collected from fasting individuals and stored in EDTA blood collection tubes. RBCs were collected by centrifugation, washed twice with physiological saline, transferred to freezer vials, flushed with nitrogen, and stored at -80°C until analysis. RBCs were thawed briefly before 100 µl aliquots were taken for analysis of the total lipid fatty acid content by capillary GC - electron-capture negative-ion mass spectrometry [92]. Processed data are provided in Additional File 4.

Primary fibroblast cultures

Great ape dermal fibroblasts were obtained from the Zoological Society of San Diego while human dermal fibroblasts were obtained from the Coriell Institute for Medical Research or the Kennedy Krieger Institute. All individuals are thought to be unrelated. The gender, age, and biopsy site of all fibroblast donors and corresponding biochemical analyses are provided in Additional File 2. Fibroblasts were cultured as previously described [76].

Phytanic and pristanic acid oxidation in cultured fibroblasts

Fatty acids were dried under nitrogen and solubilized with β-cyclodextrin (Sigma; 10 mg/ml in 10 mM Tris, pH 7.5) by warming to 37°C and sonication. Fibroblasts were grown to approximately 80% confluence in 12-well culture plates under standard conditions. Afterwards, the media was removed and replaced with 0.6 mL of serum-free culture media supplemented with 10 µM [1-14C]-phytanic acid (~40,000 dpm/nmol) or 10 µM [1-14C]-pristanic acid (~20,000 dpm/nmol). The cells were incubated for two hours (pristanic) or four hours (phytanic) at 37°C in 5% CO₂. Reactions were terminated by addition of 0.12 ml of 2.6 N HClO₄. Water-soluble reaction products were separated from the labeled substrates and quantified by liquid scintillation counting. The specific activity of phytanic acid or pristanic acid oxidation (pmoles/hour/mg protein) were calculated based on the amount of water-soluble radioactivity in the test sample minus the blank per mg of protein, determined using the Lowry method [93]. All primary data are provided in Additional File 5.

Statistical considerations

We analyzed all data on the log2 scale. We used analysis of variance (ANOVA) to compare average blood lipid data across humans and great apes. Heterogeneity...
P-values are reported for the test that the mean level is different in at least one of the great apes groups, and Wald P-values for tests comparing the average level in individual non-human primate groups to humans. Under ANOVA, statistical tests use an estimate of within-group variation from all samples. Due to the unbalanced group sizes, this estimate is driven by the variation in humans and in chimpanzees. For gene expression studies, we tested for differential expression (Fig. 4) using ANOVA and standard F-tests. To account for testing differential expression across multiple genes, we adjusted p-values using the Benjamini and Hochberg approach for controlling the false-discovery rate (FDR). All analyses were done using the R programming language.

Additional material

Additional file 1: Composition of blood donor cohort. A summary of the numbers, ages, and sex of blood donors is provided.

Additional file 2: Skin fibroblast cultures used for phytanic and pristanic acid biochemical analysis. A summary of donor sex and age and anatomical source of the skin fibroblasts is provided.

Additional file 3: Detailed summary of gene expression data for cross-species comparisons. More complete gene expression data summary statistics relevant to Figure 4 are provided.

Additional file 4: Phytanic acid levels relative to total fatty acids in red blood cells from individual donors. Relative phytanic acid levels for all RBC donors are provided.

Additional file 5: Rates of phytanic and pristanic acid oxidation in cultured dermal fibroblasts. The rates of phytanic and pristanic acid oxidation from all individual fibroblast cultures are provided.

Acknowledgements

We thank C. Finch, C. Stanford, K. Benischke, M. Goodman, P. Gagneux, and N. Braverman for thoughtful discussion, M. Houck and L. Chemnick for technical assistance, and D. Johnson for the synthesis of [1-14C] pristanic acid. This study was funded by the National Institutes of Health (GM072447 to J.G.H. and HD24061 to P.A.W. and A.B.M).

Author details

1 Hugo W. Moser Research Institute at Kennedy Krieger, and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. 2 Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, 90089, USA. 3 Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90089, USA. 4 Alamogordo Primate Facility, New Mexico, NM 88330, USA. 5 Institute for Conservation and Research, Zoological Society of San Diego, Escondido, CA 92027, USA.

Authors’ contributions

PAW, ABM, CBT, and SJS carried out the biochemical analyses in this project. PAW, ABM, and HWIM were involved in the design and conception of the peroxisome components of this project. MWK and KR maintained and conducted genetic and biochemical analysis on human and great ape cells. KDS conducted statistical analyses of all biochemical and phytanic acid expression data. RL and JIE provided characterized chimpanzee blood samples and diet information. OAR provided characterized great ape cells, blood samples, and diet information. OAR, JIE and RL were involved in the design and conception of the great ape components of the project. JGH was involved in the overall design and conception of the project, statistical analysis of all data sets, and wrote the manuscript with the help of all authors.

Received: 14 June 2010 Accepted: 8 October 2010

Published: 8 October 2010

Published: 8 October 2010

References

1. Mitchell P, C, V. On the intestinal tract of mammals. Trans Zool Soc Lond 1905, XVII:437-536.
2. Milton K. A hypothesis to explain the role of meat-eating in human evolution. Evolutionary Anthropology 1999, 8(1):11-21.
3. Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr 2003, 133(11 Suppl 2):3885S-3892S.
4. Leonard WR, Snodgrass JJ, Robertson ML. Effects of brain evolution on human nutrition and metabolism. Annu Rev Nutr 2007, 27:311-327.
5. Martin RD, Chivers DJ, Macalmon AM, Hladik CM. Gastrointestinal allometry in primates and other mammals. In Size and Scaling in Primate Biology. Edited by: Jungers WJ. Plenum: Plenum Press; 1985:61-139.
6. Milton K, Demment MW. Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. J Nutr 1988, 118(9):1082-1088.
7. Hladik CM, Chivers DJ, Pasquet P. On Diet and Gut Size in Non-human Primates and Humans: Is There a Relationship to Brain Size?Curr Anthropol 1999, 40(5):695-697.
8. Leonard WR, Robertson ML, Aiello LC, Wheeler P. On diet, energy metabolism, and brain size in human evolution. Curr Anthropology 1996, 37:125-129.
9. Carmody RN, Wrangham RW. The energetic significance of cooking. J Hum Evol 2009, 57(4):379-391.
10. Schoeninger MJ, Bunn HT, Murray S, Pickering T, Moore J. The fourth African ape. In Meat-eating and Human Evolution. Edited by: Stanford CB, Bunn HT. Oxford University Press. New York, 2001:179-195.
11. Bunn HT, Kroll EM. Systematic butchery by Plio/Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology 1986, 27:431-452.
12. Plummer T. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Am J Phys Anthropol 2004, Suppl 39: 118-164.
13. Tishkoff SA, Reed FA, Ranciaro A, Voight BF, Babbitt CC, Silverman JS, Powell K, Mortensen HM, Herbo JB, Osman M, et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nat Genet 2007, 39(1):31-40.
14. Bunn HT. Meat made us human. In Evolution of the human diet: The known, the unknown, and the unknowable. Edited by: Ungar PS. Oxford: Oxford University Press; 2006:191-211.
15. Marean CW, Bar-Matthews M, Bematchez J, Fisher E, Goldberg P, Herries AI, Jacobs Z, Jerardino A, Karkanas P, Minichello T, et al. Early human use of marine resources and pigments in South Africa during the Middle Pleistocene. Nature 2007, 449(7164):905-908.
16. Todd TI. The origins of the human diet: the resolution of an archaeological problem. Science 1986, 234(4785):586-591.
17. Meehan PR. Human diet and the spread of farming. Science 2006, 312(5773):1607-1609.
18. Teaford MF. Meat-eating by prehistoric hominins: a review of the evidence. J Hum Evol 2009, 56(6):585-607.
19. Conklin-Brittain NL, Knott CD, Wrangham RW: Energy intake by wild chimpanzees and orangutans: methodological considerations and a preliminary comparison. In Feeding Ecology in Apes and Other Primates: Ecological, Physical, and Behavioral Aspects. Edited by: Hohmann G, Robbins MM, Boesch C. Cambridge: Cambridge University Press; 2006:445-472.
23. Remis MJ. Initial studies on the contributions of body size and gastrointestinal passage rates to dietary flexibility among gorillas. *Am J Phys Anthropol* 2000, 112(2):171-180.

24. Remis MJ, Dierentfeld ES. Digesta passage, digestibility, and behavior in captive gorillas under two dietary regimens. *International Journal of Primatology* 2004, 25:825-845.

25. Schmidt DA, Kerley MS, Dempsey JL, Porton IJ, Porter JH, Griffin ME, Ellinghaus P, Wolfrum C, Assmann G, Spener F, Seedorf U: A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways. *J Lipid Res* 2005, 46(7):716-726.

26. Wolffum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Borchers T, Spencer F. Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein. *J Lipid Res* 1999, 40(5):1850-1854.

27. Ellinghaus P, Wolffum C, Assmann G, Spencer F, Seedorf U: Phytanic acid activates the peroxisome proliferator-activated receptor alpha (PPARalpha) in sterol carrier protein 2-sterol carrier protein x-deficient mice. *J Biol Chem* 1999, 274(6):2766-2772.

28. Goto T, Takahashi N, Kato S, Utsumi S, Moriyama T, Fushiki T, Forman BM, Mais DE, Heyman RA, McMorris T, Anderle S, Kerley MS, Dempsey JL, Porton IJ, Porter JH, Griffin ME, Kerley MS, Dempsey JL, Porton IJ, Porter JH, Griffin ME, Ahluwalia TS, Hermann RP, Schuttler A, Barbera MJ, Iglesias R, Giralt M, Villarroya F, Wolfrum C, Ellinghaus P, Fobker M, Seedorf U, Assmann G, Borchers T, Spencer F, Assmann G, Seedorf U: Effects of dietary phytol and phytanic acid in animals. *J Biol Chem* 2002, 276(8):7135-7141.

29. Mihalik SJ, Morrell JC, Kim D, Sacksteder KA, Watkins PA, Gould SJ: Identification of PAHX, a Refsum disease gene. *Nat Genet* 1997, 17(2):190-193.

30. Bajzer MJ, Fallowk S: What are the consequences of the disappearing human microbiota? *Nat Rev Microbiol* 2009, 7(12):887-894.
Sexual dimorphism in human lipid metabolism. J Nutr 2005, 135(4):681-686.

69. Kitson AP, Stoudt CK, Stark KD: Elevated production of docosahexaenoic acid in females: potential molecular mechanisms. Lipids 2010, 45(3):209-224.

70. Arshaves BP, Payne HR, McVicth AL, Tichy SE, Russell D, Keir AB, Schroeder F: Sexually dimorphic metabolism of branched-chain lipids in C57BL/6 mice. J Lipid Res 2004, 45(5):812-830.

71. Roff CF, Pasteauzyn A, Strauss JF, Billheimer JT, Vanier MT, Brady RO, Scallen TJ, Pentiche PG: Deficiencies in sex-regulated expression and levels of two hepatic sterol carrier proteins in a murine model of Niemann-Pick type C disease. J Biol Chem 1992, 267(22):15902-15908.

72. McLean MP, Billheimer JT, Warden KJ, Irby RB: Differential expression of hepatic sterol carrier proteins in the streptozotocin-treated diabetic rat. Endocrinology 1995, 136(8):3360-3368.

73. Bleikman R, Maroni XC, Zumbo P, Stephens M, Glad Y: Sex-specific and lineage-specific alternative splicing in primates. Genome Res 2010, 20(2):180-189.

74. Stokoe O: Alpha-oxidation of fatty acids in various mammals, and a phytanic acid feeding experiment in an animal with a low alpha-oxidation capacity. Scand J Clin Lab Invest 1967, 20:305-312.

75. Bleikman R, Olshack A, Chabot AE, Smyth GK, Gilad Y: Gene regulation in primates evolves under tissue-specific selection pressures. PLoS Genet 2008, 4(11):e1000271.

76. Karaman MW, Houck ML, Chemnick LG, Nagpal S, Chawannakul D, Sudano D, Pike BL, Ho WW, Ryder OA, Hacia JG: Comparative analysis of gene expression patterns in human and african great ape cultured fibroblasts. Genome Res 2003, 13(7):1619-1630.

77. Lammie ML, Lee DR, By JI, Sleeper MM: Sudden cardiac death in 13 captive chimpanzees (Pan troglodytes). J Med Primatol 2008, 37(Suppl 1):39-43.

78. Haygood R, Fedrigo O, Hanson B, Yokoyama KD, Wray GA: Novel mutations and sequence variation in the Zellweger syndrome peroxisomal branched chain fatty acid beta-oxidation pathway in a lowland gorilla (Pan paniscus) and deletion of 3q in a lowland gorilla (Gorilla gorilla gorilla): comparison with human trisomy 18 and human deletion 4q syndrome. Cytogenet Cell Genet 2001, 95(3-4):228-233.

79. Lagerstedt SA, Hinrichs DR, Bitt SM, Magera MJ, Rinaldo P, McConnell JP: Quantitative determination of plasma c8-c26 total fatty acids for the biochemical diagnosis of nutritional and metabolic disorders. Mol Genet Metab 2001, 73(1):38-46.

80. Lovy OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193(1):265-275.