Transition-Metal-Doped SiP$_2$ Monolayer for Effective CO$_2$ Capture: A Density Functional Theory Study

Kelvin Wang and Xuan Luo*

ABSTRACT: Two-dimensional materials have exhibited great potential in mitigating climate change through sensing and capturing carbon dioxide. The interaction of CO$_2$ on orthorhombic silicon diphosphide remains unexplored in spite of its interesting properties such as high carrier mobility, piezoelectricity, and mechanical stability. Here, using density functional theory, the adsorption of CO$_2$ on pristine and Ti-, V-, and Cr-doped monolayer SiP$_2$ is investigated. Doped systems exhibited significantly stronger adsorption (-0.268 to -0.396 eV) than pristine SiP$_2$ (-0.017 to -0.031 eV) and have the possibility of synthesis with low defect formation energies. Our results on adsorption energy, band structure, partial density of states, and charge transfer conclude that titanium- and vanadium-doped SiP$_2$ monolayers would be promising materials for CO$_2$ capture and removal.

INTRODUCTION

One of the most significant problems countries are facing today is the threat of climate change. Higher sea levels to ocean acidification and global warming have all been documented, where the main cause has been ever-increasing amounts of greenhouse gases in the world since the Industrial Revolution. In particular, the concentration of carbon dioxide experienced a 46% increase from roughly 280 ppm in the late 1700s to 410 ppm in 2019. Substantial efforts have been made by scientists to mitigate climate change by designing materials capable of capturing carbon dioxide. The most mature method is amine scrubbing, where CO$_2$ is absorbed into a liquid solution of monoethanolamine. The CO$_2$–amine solution is then separated under steam, allowing the amine solution to be recycled. However, the process is corrosive, environmentally harmful, and requires a high amount of energy to regenerate the solvent. Therefore, there is a need to search for better methods.

A proposed alternative to the amine process has been to use ionic liquids because they are nonvolatile, stable at high temperatures, and can be tuned to react with CO$_2$. Still, they have not been widely implemented because of their higher price and lower solubility of CO$_2$ compared to other solvents. Within the past few decades, there has been a proliferation of interest in using nanomaterials. Nanomaterials possess a naturally active surface and the ability to be functionalized with other materials, which are favorable properties for gas capture. Metal organic frameworks (MOFs) and zeolites, a subfamily of MOFs, have stood out because of their strong sensitivity, tunability, and broad applicability. Functionalized carbon nanotubes have also held great potential because of their high stability and high adsorption capacity. In recent years, two-dimensional (2D) materials have attracted much attention for CO$_2$ capture because of their extremely high surface area–volume ratio and large reaction sites for capture and permeation.

Promising experimental work on 2D materials for gas capturing confirms the value of its continual theoretical research. MXene 2D nanosheets in a mixed-matrix membrane showed good selectivity toward CO$_2$ and ran with excellent stability over an extended period of time. Similar favorable results for 2D ZnAl and Ni–Al layered double hydroxide nanosheets were found as well. A variety of methods, such as doping, could also be used to manipulate the capture. Wang et al. showed that doping graphene with Cu and Ni increased CO$_2$ adsorption from weak physisorption to chemisorption. In another example, platinum-doped silicene improved its attraction to CO$_2$.

Over the past few years, monolayer SiP$_2$ has attracted much attention over its intriguing properties. Most of the past research focuses on its stability, electronic properties, and potential as a photocatalyst, with limited review of its potential for CO$_2$ capture. When CO$_2$ was adsorbed on the oblique...
form of SiP$_2$, chemical bonds formed and the structure strongly deformed.22 Meanwhile, Yu et al. tested the presence of CO$_2$, O$_2$, H$_2$, N$_2$, and H$_2$O molecules on SiP$_2$ to better understand its stability. Their results revealed that SiP$_2$ remained intact, and all the tested gases separated from the substrate.17 Notably, there has yet to be research done on the effects of doping to modify the adsorption strength and whether the other SiP$_2$ structures are suitable for CO$_2$ capture.

In this current research, we used first-principles calculations to search for the most stable atomic structure of the SiP$_2$ monolayer. Later, we tested multiple positions to understand the adsorption of CO$_2$ on the SiP$_2$ monolayer. To improve adsorption, we then doped the SiP$_2$ monolayer with titanium, vanadium, and chromium, investigating the band structure, charge transfer, and partial density of states (PDOS).

METHODS

Computations. We performed first-principles calculations based on density functional theory (DFT) within generalized gradient approximation in the Perdew–Burke–Ernzerhof format23 implemented in the ABINIT24 suite. For pseudopotentials, we used the projected augmented wave (PAW) method25 with projectors generated using ATOMPAW.26 The electron configurations used to generate the pseudopotentials are shown in Table 1.

element	electron configuration	radius cutoffs (a.u.)
silicon (Si)	[Ne]3s23p2	1.91
phosphorus (P)	[Ne]3s23p3	1.91
carbon (C)	[He]2s22p2	1.51
oxygen (O)	[He]2s22p4	1.41
titanium (Ti)	[Ne]3s23p64s13d3	2.3
vanadium (V)	[Ne]3s23p64s23d3	2.2
chromium (Cr)	[Ne]3s23p64s23d5	2.1

In the total energy calculation, the self-consistent field (SCF) will be terminated once the total energy difference is smaller than 1.0×10^{-10} Ha for the second time. We then

Figure 1. Top view (first row) and side view (second row) of (a) 3 \times 3 \times 1 oblique SiP$_2$, (b) 3 \times 2 \times 1 Janus SiP$_2$, and (c) 3 \times 1 \times 1 orthorhombic SiP$_2$. The frames in the top view represent the unit cells. Tan atoms represent silicon, and orange atoms represent phosphorus.

Figure 2. Relaxed structure of 3 \times 1 \times 1 SiP$_2$ and six possible adsorption sites of CO$_2$ we analyzed. T denotes that CO$_2$ was placed at the top of an atom, H denotes the placement at the hollow center of the upper hexagon, and B denotes that CO$_2$ was placed at the bond. Oval shapes represent where CO$_2$ was placed horizontally and circles represent where CO$_2$ was placed vertically. Tan and orange atoms denote silicon and phosphorus, respectively.

Table 2. Calculated Lattice Constants of the Three Identified SiP$_2$ Structures and the Theoretical and Experimental Lattice Constants Previously Obtained by Other Researchers24

structure	calculated	others	bulk exp	% error
oblique	a (Å)	3.73	3.71	2.2
	b (Å)	3.73		
Janus	a (Å)	3.45	3.45	17
	b (Å)	6.04	6.05	0.8
orthorhombic	a (Å)	3.47	3.44	0.86
	b (Å)	10.00	10.00	0.8
	c (Å)		13.97	

24Percent error is determined by calculated and bulk experimental values.
performed convergence with the kinetic energy cutoff, Monkhorst−Pack k-point grids, and vacuum. The dataset will be converged when the total energy difference is less than 0.0001 Ha (0.003 eV) twice consecutively. When performing structural relaxations, the SCF cycle will be terminated once the force difference is smaller than 1.0×10^{-6} Ha/bohr twice consecutively. The maximum force tolerance in the relaxation is 5.0×10^{-5} Ha/bohr.

Atomic Structure. We examined oblique SiP$_2$ because of its CO$_2$ capture ability, ultrahigh carrier mobility, and stability. We also analyzed the Janus structure because it was determined to have the lowest formation enthalpy compared to the other structures. Orthorhombic SiP$_2$ in the Pbam phase also captured our attention because it was the most widely researched crystal structure of SiP$_2$ and had a lower energy compared to the tetragonal structure. We converged and relaxed the structures using the 3-atom unit cell for oblique, 6-atom cell for Janus, and 12-atom cell for orthorhombic SiP$_2$ (Figure 1). Calculated lattice constants are shown in (Table 2).

After analyzing the pristine SiP$_2$ monolayers, we used orthorhombic SiP$_2$ for CO$_2$ adsorption. We placed the fully relaxed CO$_2$ molecule on the 3 × 1 × 1 SiP$_2$ monolayer at six typical positions, as shown in Figure 2. CO$_2$ is parallel to the

![Figure 3. Atomic structure and band structure of the orthorhombic SiP$_2$ monolayer. (a) Shows the 1 × 1 × 1 unit cell of SiP$_2$, (b) band structure of 1 × 1 × 1 SiP$_2$, (c) 3 × 1 × 1 cell of SiP$_2$, and (d) band structure of 3 × 1 × 1 SiP$_2$. Both structures have a direct band gap of 1.41 eV, as denoted by the blue line. The Fermi level has been set to 0 eV for both graphs. Tan atoms denote silicon, and orange atoms denote phosphorus.](https://doi.org/10.1021/acsomega.2c05532)

Table 3. Vertical Distance between CO$_2$ and the Substrate Is Represented by d_{vertical}, the Smallest Atom-to-Atom Distance between the Substrate and CO$_2$ Is Denoted by $d_{\text{atom-atom}}$, and the Adsorption Energy of CO$_2$ Is Denoted by E_{ads}.

	T$_0$	T$_P$	T$_{2P}$	2H	H	B
d_{vertical} (Å)	2.20	2.39	1.98	2.03	2.43	1.86
$d_{\text{atom-atom}}$ (Å)	3.83	3.99	4.04	4.12	3.86	3.96
E_{ads} (eV)	−0.028	−0.023	−0.031	−0.029	−0.017	−0.017
surface in T_{Si} (on top of a silicon atom), T_{P} (on top of a phosphorus atom), T_{2P} (between two phosphorus atoms in the upper hexagon), and 2H site (on top of the Si–P bond between the lower and upper hexagons). At H (on top of the upper hexagon) and B (on top of the Si–P bond), CO$_2$ is placed vertically to the surface. To calculate the adsorption energies of the various positions, we defined it as

$$E_{ads} = E_{SiP_2+CO_2} - E_{SiP_2} - E_{CO_2}$$

(1)

where $E_{SiP_2+CO_2}$ is the total energy of the SiP$_2$ monolayer adsorbed with CO$_2$, E_{SiP_2} is that of the pristine monolayer, and E_{CO_2} is that of a single CO$_2$ molecule. A negative E_{ads} denotes that CO$_2$ can be adsorbed on the monolayer and a more negative E_{ads} denotes stronger adsorption. Later, when we substituted titanium, vanadium, and chromium for phosphorus, we calculated defect formation energy as

$$E_f = E_{SiP_2+dopant} - E_{SiP_2} - E_{dopant} + E_{phosphorus}$$

(2)

where $E_{SiP_2+dopant}$, E_{SiP_2}, E_{dopant}, and $E_{phosphorus}$ represent the total energy of doped SiP$_2$, pure SiP$_2$, and the chemical potential for Ti, V, and Cr dopant and the removed E$_{phosphorus}$ atom, respectively.

To understand the charge transfer in the doped systems, we used

$$\Delta \rho = \rho(\text{surf} + CO_2) - \rho(\text{surf}) - \rho(CO_2)$$

(3)

where $\rho(\text{surf} + CO_2)$, $\rho(\text{surf})$, and $\rho(CO_2)$ are the charge density of the CO$_2$–SiP$_2$ system, SiP$_2$ monolayer, and CO$_2$ molecule, respectively.
To plot all the band structures, we used the high-symmetry k-points along Γ(0, 0, 0), Y(0.5, 0, 0), Σ(0.5, 0.5, 0), X(0, 0.5, 0), and S(0, 0, 0).

RESULTS AND DISCUSSION

Outline. We first analyze the structural and electronic properties of pristine monolayer SiP\(_2\). Next, we examine the adsorption of CO\(_2\) on pristine monolayer SiP\(_2\). Afterward, we discuss the interactions between doped SiP\(_2\) and CO\(_2\) using the band structure, PDOS, and charge transfer.

Pristine SiP\(_2\). We determined that the orthorhombic structure is energetically more stable than the oblique and Janus structure by \(-0.895\) and \(-0.003\) eV, respectively. Figure 3b,d shows that the unit cell and 3 × 1 × 1 orthorhombic monolayer SiP\(_2\) are both semiconductors with a direct band gap of 1.41 eV, and the conduction band minimum and valence band maximum are in the \(X−Γ\) path. Although the DFT method is known to underestimate the band gap, the general trend in the unit cell band structure agrees with previously reported findings. 20,21

CO\(_2\) Adsorption on Pristine SiP\(_2\). The corresponding adsorption energies, vertical distance of CO\(_2\) to the substrate, and smallest atom–atom distance between CO\(_2\) and SiP\(_2\) are listed in Table 3. Corresponding structures are shown in Figure 4.

As seen in Figure 4a, carbon moved away from T\(_i\), to the center of the lower hexagon with a distance of 3.83 Å to the nearest molecule. When CO\(_2\) was initially placed at T\(_j\), it also moved to the center of the lower hexagon, which can be seen upon comparing the before and after positions in Figure 4b. The energetically most favorable site had an adsorption energy of \(-0.031\) eV at T\(_{2p}\), where CO\(_2\) keeps its initial horizontal position in Figure 4c. In Figure 4d, O rotated from 2H to the center of the lower hexagon with both C atoms near opposite P atoms. The energetically least favorable site occurred at H with an adsorption energy of \(-0.017\) eV (Figure 4e). The O atom closest to the monolayer tilted away from the upper hexagon toward Si, while the other O atom remained at H. When placed vertically at B in Figure 4f, CO\(_2\) tilted toward the substrate and shifted to the edge of the lower hexagon.

In Figure 3, we see how a smaller vertical distance does not correlate with a smaller atom–atom distance and adsorption energy. 2H has the largest atom–atom distance of 4.12 Å; however, its vertical distance is smaller than other positions. T\(_{2p}\) has a larger atom–atom distance than most other positions but the highest adsorption energy. Meanwhile, B has the smallest vertical distance of 1.86 Å, while its adsorption energy is closest to zero. Comparing the positions shown in Figure 4 with the adsorption energy, we find that CO\(_2\) prefers to adsorb parallel at the center of the lower hexagon. As all the adsorption energies are small and there is a large distance from the monolayer at all the positions, pure monolayer SiP\(_2\) is ineffective for CO\(_2\) capture.

Ti-, V-, and Cr-Doped Monolayer SiP\(_2\). Finding that the adsorption energies on the pristine SiP\(_2\) monolayer were weak, we substituted Ti, V, and Cr for phosphorus. Doping Ti, V, and Cr resulted in strong adsorption energies of CO\(_2\) compared to other dopants across multiple monolayers. 30–34 Other dopants such as Mn and Fe did also exhibit strong adsorption; however, the strength of their adsorption was not as consistent as Ti, V, and Cr. Since titanium has four valence electrons, 4s\(^2\)3d\(^{3}\), and carbon is an electron acceptor with four valence electrons given by 2s\(^2\)2p\(^2\), we predicted that Ti-doped SiP\(_2\), could adsorb CO\(_2\) through strong ionic bonding between Ti and C. We used the T\(_j\) position for substitutional doping as consistent as Ti, V, and Cr. Since titanium has four valence electrons, 4s\(^2\)3d\(^{3}\), and carbon is an electron acceptor with four valence electrons given by 2s\(^2\)2p\(^2\), we predicted that Ti-doped SiP\(_2\), could adsorb CO\(_2\) through strong ionic bonding between Ti and C. We used the T\(_j\) position for substitutional doping as consistent as Ti, V, and Cr.
We obtained low defect formation energies of 1.288, 1.835, and 1.002 eV for Ti-, V-, and Cr-SiP\(_2\), respectively, by using eq 2 outlined in Methods. With chromium-doped SiP\(_2\), its five electrons in its outer 3d shell can pair with the five valence electrons of phosphorus to form a full 3d orbital, allowing Cr to interact stably with the nearby phosphorus atoms, and support the calculated lowest defect formation energy.

After structural relaxation of Ti-doped monolayer SiP\(_2\), Ti moves to the top of P, expanding the Ti–P–Si angle from 98.8 to 110.8°, as can be seen in the side view of Figure 5a. As can be seen in the side view of Figure 5b, the V–P–Si angle becomes 122.1° and the V–Si distance elongates from 2.34 to 2.48 Å. As shown in Figure 6c, Cr prefers to move above phosphorus with a Cr–P–Si angle of 118.1° and a P–Cr–P angle of 91.6°.

CO\(_2\) Adsorption on Ti-, V-, and Cr-Doped Monolayer SiP\(_2\). The adsorption energies, vertical distance, and smallest atom–atom distance between the doped substrates and CO\(_2\) are shown in Table 4. The adsorption energies of CO\(_2\) on the Ti-, V-, and Cr-SiP\(_2\) monolayer are calculated to be –0.396, –0.363, and –0.268 eV, respectively. In all the systems, CO\(_2\) prefers to adsorb vertically above the lower hexagon and form a bond between the dopant and O in the range of 2.22 to 2.28 Å (Figure 6).
Further research should analyze the total adsorption capacity and working capacity of Ti- and V-SiP. We used DFT to study the adsorption of CO and working capacity of Ti- and V-SiP. Figure 8 shows that doped Ti- and V-SiP systems showed significantly higher adsorption energies and their low defect formation energies suggest the feasibility of their synthesis. Band structure, PDOS, and charge transfer calculations were also performed, confirming that CO was strongly adsorbed. Our findings show that doped Ti- and V-SiP hold promise to be used in temperature swing adsorption for CO capture from flue gas. Further research should analyze the total adsorption capacity and working capacity of Ti- and V-SiP to understand their energy penalty and purity of CO capture.

CONCLUSIONS

In summary, we used DFT to study the adsorption of CO on orthorhombic SiP. Various adsorption sites were considered on pristine SiP, finding small adsorption energies and large adsorption distances unsuitable for gas capture. However, doped Ti-, V-, and Cr-SiP systems showed significantly higher adsorption energies and their low defect formation energies suggest the feasibility of their synthesis. Band structure, PDOS, and charge transfer calculations were also performed, confirming that CO was strongly adsorbed. Our findings show that doped Ti- and V-SiP hold promise to be used in temperature swing adsorption for CO capture from flue gas.

Author

Kelvin Wang — National Graphene Research and Development Center, Springfield, Virginia 22151, United States; orcid.org/0000-0003-3847-0430

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.2c05532

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Gefei Qian for the computational help provided.

REFERENCES

(1) VijayaVenkataRaman, S.; Iniyan, S.; Goic, R. A review of climate change, mitigation and adaptation. *Renewable Sustainable Energy Rev.* 2012, 16, 878-897.
(2) Schneider, R.; Schmitt, J.; Köhler, P.; Joos, F.; Fischer, H. A reconstruction of atmospheric carbon dioxide and its stable carbon isotopic composition from the penultimate glacial maximum to the last glacial inception. *Clim. Past* 2013, 9, 2507–2523.
(3) WMO. WMO Greenhouse Gas Bulletin (GHG Bulletin)—No. 16: *The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2019, 2020.
(4) Rochelle, G. T. Amine Scrubbing for CO2 Capture. *Science 2009*, 325, 1652–1654.
(5) Ramdin, M.; de Loos, T. W.; Vlugt, T. J. State-of-the-Art of CO2 Capture with Ionic Liquids. *Ind. Eng. Chem. Res.* 2012, 51, 8149–8177.
(6) Bae, T.-H.; Hudson, M. R.; Mason, J. A.; Queen, W. L.; Dutton, J. J.; Sumida, K.; Micklash, K. J.; Kaye, S. S.; Brown, C. M.; Long, J. R. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. *Energy Environ. Sci.* 2013, 6, 128–138.
(7) Wang, X.; Song, C. Carbon Capture From Flue Gas and the Atmosphere: A Perspective. *Front. Energy Res.* 2020, 8, 560849.
(8) Ke, Q.; Sun, T.; Wei, X.; Guo, Y.; Xu, S.; Wang, S. Economical synthesis strategy of RHO zeolites with fine-tuned composition and porosity for enhanced trace CO2 capture. *Chem. Eng. J.* 2019, 359, 344–353.
(9) Wang, X.; He, T.; Hu, J.; Liu, M. The progress of nanomaterials for carbon dioxide capture via the adsorption process. *Environ. Sci.: Nano* 2021, 8, 890–912.
(10) Tang, X.; Du, A.; Kou, L. Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2018, 8, No. e1361.

(11) Liu, G.; Cheng, L.; Chen, G.; Liang, F.; Liu, G.; Jin, W. Pexaa-Based Membrane Filled with Two-Dimensional Mxene Nanosheets for Efficient CO2 Capture. Chem.—Asian J. 2020, 15, 2364–2370.

(12) Zhang, L.; Meng, Y.; Pan, G.; Xia, S. Experimental and Theoretical Investigations into the Performance and Mechanism of CO2 Capture by 3D and 2D ZnAl Layered Double Hydroxides. Inorg. Chem. 2020, 59, 17722–17731.

(13) Hanif, A.; Sun, M.; Shang, S.; Tian, Y.; Yip, A. C.; Ok, Y. S.; Yu, I. K.; Tsang, D. C.; Gu, Q.; Shang, J. Exfoliated Ni-Al LDH 2D nanosheets for intermediate temperature CO2 capture. J. Hazard. Mater. 2019, 374, 365–371.

(14) Wang, C.; Fang, Y.; Duan, H.; Liang, G.; Li, W.; Chen, D.; Long, M. DFT study of CO2 adsorption properties on pristine, vacancy and doped graphenes. Solid State Commun. 2021, 337, 114436.

(15) Ersan, F.; Arslanalp, Ö.; Gökoglu, G.; Akçu, E. Effect of adatoms and molecules on the physical properties of platinum-doped and -substituted silicene: A first-principles investigation. Appl. Surf. Sci. 2016, 371, 314–321.

(16) Huang, B.; Zhuang, H. L.; Yoon, M.; Sumpter, B. G.; Wei, S.-H. Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties. Phys. Rev. B: Condens. Mater. Matter. Phys. 2015, 91, 121401.

(17) Yu, T.; Wang, C.; Yan, X.; Yang, G.; Schwinghamerschlôg, U. Anisotropic Janus SiP2 Monolayer as a Photocatalyst for Water Splitting. J. Phys. Chem. Lett. 2021, 12, 2464–2470.

(18) Zhang, P.; Jiang, E.; Ouyang, T.; Tang, C.; He, C.; Li, J.; Zhang, C.; Zhong, J. Potential thermoelectric candidate monolayer silicon diphaside (SiP2) from a first-principles calculation. Comput. Mater. Sci. 2021, 188, 110154.

(19) Xu, Y.; Li, Z.; He, C.; Li, J.; Ouyang, T.; Zhang, C.; Tang, C.; Zhong, J. Intrinsic piezoelectricity of monolayer group IV–V MX2: SiP2, SiAs2, GeP2, and GeAs2. Appl. Phys. Lett. 2020, 116, 023103.

(20) Matta, S. K.; Zhang, C.; Jiao, Y.; O’Mullane, A.; Du, A. Versatile Two-Dimensional Silicon Diphosphide (SiP2) for Photocatalytic Water Splitting; The Royal Society of Chemistry, 2018; Vol. 10, pp 6369–6374.

(21) Shojaei, F.; Mortazavi, B.; Zhuang, X.; Azizi, M. Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): Novel stable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. Mater. Today Energy 2020, 16, 100377.

(22) Fu, X.; Yang, H.; Fu, L.; He, C.; Huo, J.; Guo, J.; Li, L. Prediction of semiconducting SiP2 monolayer with negative Possion’s ratio, ultrahigh carrier mobility and CO2 capture ability. Chin. Chem. Lett. 2021, 32, 1089–1094.

(23) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

(24) Gonze, X.; et al. ABINIT: First-principles approach to material and nanosystem properties. Comput. Phys. Commun. 2009, 180, 2582–2615. 40 YEARS OF CPC: A celebratory issue focused on quality software for high performance, grid and novel computing architectures.

(25) Blöchl, P. Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 1994, 50, 17953–17979.

(26) Holzwarth, N. A. W.; Tackett, A. R.; Matthews, G. E. A Projector Augmented Wave (PAW) code for electronic structure calculations, Part I: atompw for generating atom-centered functions. Comput. Phys. Commun. 2001, 135, 329–347.

(27) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B: Solid State 1976, 13, S188–S192.

(28) Malyi, O. I.; Sopha, K. V.; Radchenko, I.; Wu, P.; Persson, C. Tailoring electronic properties of multilayer phosphorene by siliconization. Phys. Chem. Chem. Phys. 2018, 20, 2075–2083.

(29) Wadsten, T.; Vikan, M.; Krohn, C.; Nilsson, Å.; Theorell, H.; Blinc, R.; Päuskä, S.; Ehrenberg, L.; Dumanović, J. Crystal structures of SiP2, SiAs2, and Gep. Acta Chem. Scand. 1967, 21, 593.

(30) Zhang, H.-P.; Du, A.; Shi, Q.-b.; Zhou, Y.; Zhang, Y.; Tang, Y. Adsorption behavior of CO2 on pristine and doped phosphorenes: A dispersion corrected DFT study. J. CO2 Util. 2018, 24, 463–470.

(31) Cui, Q.; Qin, G.; Wang, W.; Sun, L.; Du, A.; Sun, Q. Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion. Beilstein J. Nanotechnol. 2019, 10, 540–548.

(32) Sikam, P.; Takahashi, K.; Roongcharoen, T.; Jitwatanasirikul, T.; Chitpakdee, C.; Faungnawakij, K.; Namuangruk, S. Effect of 3d-transition metals doped in ZnO monolayers on the CO2 electrochemical reduction to valuable products: first principles study. Appl. Surf. Sci. 2021, 550, 149380.

(33) Sikam, P.; Jitwatanasirikul, T.; Roongcharoen, T.; Yodsin, N.; Meerprasert, J.; Takahashi, K.; Namuangruk, S. Understanding the interaction between transition metal doping and ligand atoms of ZnS and ZnO monolayers to promote the CO2 reduction reaction. Phys. Chem. Chem. Phys. 2022, 24, 12909–12921.

(34) Promthong, N.; Tabtimsai, C.; Rakrai, W.; Wanno, B. Transition metal-doped graphene nanoflakes for CO and CO2 storage and sensing applications: a DFT study. Struct. Chem. 2020, 31, 2237–2247.

(35) Cui, H.; Yan, C.; Jia, P.; Cao, W. Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: A first-principles study. Appl. Surf. Sci. 2020, 512, 145759.

(36) Zhu, J.; Zhang, H.; Tong, Y.; Zhao, L.; Zhang, Y.; Qiu, Y.; Lin, X. First-principles investigations of metal (Y, Nb, Ta)-doped monolayer MoS2: Structural stability, electronic properties and adsorption of gas molecules. Appl. Surf. Sci. 2017, 419, 522–530.

(37) Cui, H.; Jia, P.; Peng, X. Adsorption of SO2 and NO2 molecule on intrinsic and Pd-doped HfSe2 monolayer: A first-principles study. Appl. Surf. Sci. 2020, 513, 145863.

(38) Lu, Z.; Zhai, Y.; Liang, Q.; Wu, W. Promoting sensitivity and selectivity of NO2 gas sensor based on metal (Pt, Re, Ta)-doped monolayer WSe2: A DFT study. Chem. Phys. Lett. 2020, 755, 137737.

(39) Verma, S.; Kumar, A.; Kumar, H.; Baghel, R.; Goel, N.; Verma, M. L. Ab-initio modelling for gas sensor device: based on Y-doped SnS2 monolayer. Phys. E 2022, 135, 114962.

(40) Berger, A. H.; Bhown, A. S. Comparing physisorption and chemisorption solid sorbents for use separating CO2 from flue gas using temperature swing adsorption. Energy Procedia 2011, 4, 562–567. 10th International Conference on Greenhouse Gas Control Technologies.