Plants as De-Worming Agents of Livestock in the Nordic Countries: Historical Perspective, Popular Beliefs and Prospects for the Future

By P.J. Waller, G. Bernes, S.M. Thamsborg, A. Sukura, S.H. Richter, K. Ingebrigtsen and J. Höglund

1Dept. Parasitology (SWEP AR), National Veterinary Institute, Uppsala, Sweden, 2Dept. Agric. Research Nth. Sweden, SLU, Umeå, Sweden, 3Dept. Anim. Science and Animal Health, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark, 4Dept. Basic Vet. Science, Univ. Helsinki, Finland, 5Inst. Exp. Pathology, Univ. Iceland, Keldur, Reykjavik, Iceland, 6Dept. Pharmacology, Microbiology and Food Hygiene, Norwegian School Vet. Medicine, Oslo, Norway, and 7SWEPAR, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Introduction

The use of plants, or their extracts, for treatment of gastro-intestinal parasites in humans and livestock is steeped in antiquity. It was Claudius Galénus (AD 130-200), a Greek physician of Pergamon, who received notoriety for applying medicines prepared from vegetable substances by infusion, or decoction. These became known generically as "galenical" drugs, or preparations, and established the foundation for modern veterinary pharmacology. It is with some interest to note that the approach taken by Galénus was in contrast to the Hippocrates / Paracelsus school of thinking which espoused treating "like with like" (similia similibus curantur), that later formed the basis for Hahneman’s concepts of homeopathy (Vaarst 1996). In medieval times, plants with reputed anthel-
mintic properties were often mixed with mineral salts (arsenic, copper etc.), or more esoteric materials (blood, faeces, fluids from reptiles, wild animals etc.) to form quite bizarre and often hazardous concoctions – for both parasites and hosts alike. With time, trial and error, such preparations were refined in an attempt to at least moderate the undesirable consequences to the host, but with the advent of safer and more effective synthetic anthelmintic compounds, they rapidly disappeared from the veterinary anthelmintic market (Gibson 1980). Nevertheless, it is of interest to note that the World Health Organisation has recently estimated that 80% of the population of developing countries rely on traditional medicine, mostly plant drugs, for their primary health care needs (Danoe & Bøgh 2000). Also in a global context, modern pharmacopoeia still contain in the order of 25% drugs derived from plants and many others which are synthetic analogues built on prototype compounds isolated from plants. However, there has been a resurgence of interest in traditional health practices throughout the world. In veterinary medicine, this interest encompasses ethnomedicine and the use of herbal remedies. Workshops, forums and conferences are occurring with increasing regularity, which is obviously being driven by a concomitant increasing level of research activity. The forces responsible for this momentum are manifold. These include the perception that "natural is nice", concerns of synthetic drug residues in the environment and the food chain, and particularly the spectre of rapid emergence of multiple resistant pest organisms through misuse and overuse of these modern drugs. Within the Nordic countries, the same holds true. This region of the world is at the vanguard of the organic farming movement, with major emphasis on livestock production. Many progressive and educated farmers who have chosen to farm livestock organically are well aware of the importance of nematode parasites affecting the productivity of their animals and adopt grazing strategies aimed at evading, or mitigating the effects of parasites in their animals (Svensson et al. 2000). However, others show less awareness and management of grazing livestock is largely determined by herbage supply and not by parasitological considerations (Vaarst et al. 1996). One specific strategy is to graze livestock on plants with purported anthelmintic properties. For example, a survey of Danish organic dairy farmers with 255 respondents, revealed the use of herbs in the leys on 26% of the farms. Of these, caraway (Carum carvi) [56%], parsley (Petroselinum crispum) [20%], chicory (Cichorium intybis) [10%], chervil (Anthriscus cerefolium) and dill (Anethum graveolens) [14%], used singly or in combination, were the most commonly used plants (Smidt 1997). For the purposes of deworming, the feeding of wormwood (Artemisia absinthium), mugwort (A. vulgaris), chicory (Cichorium intybis) and common tansy (Tanacetum vulgare) were expected by farmers to have anthelmintic properties (Smidt 1997). In addition, there has been a major commitment to the development of sustainable disease control systems, which by definition means the integration of a range of non-chemical methods with the minimal use of drugs, to insure continued effectiveness for the foreseeable future. Control of internal parasites of livestock by these means has been a major focus of research activities in the Nordic countries for several years (Thamsborg et al. 1999). Research in the Nordic countries on anthelmintic properties, or protective effects, of local plants against helminth parasites of livestock is very recent and limited at this stage to studies on tanniferous forages (Kahiya et al. 1999, Bernes et al. 2000). However, many of the earliest written reports of anthelmintic properties of plants originate from this region of the world.
Plants as de-worming agents

Acta vet. scand. vol. 42 no. 1, 2001

(eg., the writings of Henrik Harpestræng in the early 13th century). The purpose of this review is to provide a historical perspective and to present our view of the potential and possibilities for the use of plants that are endemic, or thrive in the Nordic environment, as de-worming agents. Due to the relatively wide variation in climate, soil, altitude etc. within this limited area, the total number of plant species is quite large.

Also, a brief consideration is made of the recent developments in the use of specialized crops, the so-called "nutraceuticals", which are bioactive crops that are either grazed, or fed after preservation, with the main purpose of preventing or curing disease. The ultimate objective would be to use these plants as additional means for the further development and refinement of sustainable parasite control systems of livestock.

Plants and parasites

There is an inextricable association between plants and parasites of livestock. Pastures provide the link between the free-living and the parasitic phases of helminth parasites for all grazing animals. At different stages of growth, pasture species may facilitate or impede the survival of free-living populations, the establishment of parasite burdens and lessen or intensify the effects of parasitism on the host. Competent management of pastures is needed for the twin goals of efficient conversion of herbage to animal products and effective control of gastrointestinal parasites.

Indirect effects of plants on parasites

It is reasonable to assume that the height, density and form of plant growth could affect the micro-environment of the free-living stages of parasites and thus play a role in transmission of infection. Because of the necessity of moisture films for movement of nematode larvae from faecal deposits to herbage, it might be expected that pastures consisting largely of erect, tall growing species would provide less protection from desiccation, and from removal by heavy rain, than those consisting primarily of prostrate species. Indeed, a factor considered to mitigate the high rates of contamination following increased stocking rates is the decreased availability of herbage, which provide conditions less favourable for the development and survival of the free-living stages of nematode parasites (Thamsborg et al. 1996). Although there has been a number of such ecological studies, little has been done in the Nordic countries and this aspect is outside the scope of this review. However, it is important to recognise these indirect effects of herbage when any grazing studies are conducted on plants with purported anthelmintic properties. It must be established that observed effects are directly plant related and not due to effects on development and survival of the free living stages of parasites, or the provision of an enhanced level of nutrition which helps the animal to rapidly mount an immune response against incoming or resident parasite infections.

Direct effects of plants on parasites

This relates specifically to anthelmintic properties of plants. Although there is a large and diverse range of herbal de-wormers that are used throughout the world, particularly in the Asian and African countries, generally there is a lack of scientific validation of the purported anthelmintic effects of these products. Evidence to date is almost entirely anecdotal. This also applies to the reports of de-worming properties of herbal preparations that have either Nordic origins, or a long history of use in this region (for some historical background, see Grove 1990). These can be broadly classified into the following classes (see Table 1):
Table 1. Plants said to have been used against internal parasites in the Nordic countries; their scientific names and names in English and in the Nordic languages.

Plant family	Scientific name	English	Swedish	Norwegian	Danish	Finnish	Icelandic	Host	Target	Part used	Reference	
Lichens	Cetraria islandica	Iceland moss	islandslav	islandslav	lav *	jákálá	fjallagrös *	M	H	W	8, 9, 33, 36, 37, 41	
Ferns		bracken fern	örnbräken *	einstape *	ornbregne *	sananjalka *	arnarburkni	M	H, C	R	9, 21, 35, 45	
	Dryopteridaceae	dryopteris wood fern	skogsbäcken	broddløv	småbladet mangelov	metalsalvejurs *	M	H, C	R	31		
	D. expansa	spring wood fern	nordbräken	saueklg	finbladet mangelov	isoalvejuuri *	M	H	R	31		
	D. filix-mas	male fern	träjon *	ormetelg *	allmindelig mangelov	kivikkoalvejuur *	störi burkni *	M, A, S, H	H, N, C, T	R	4, 5, 8, 9, 10, 30, 31, 33, 35, 44, 45, 53, 54, 70	
	Polypodiaceae	Polypodium vulgare	polypody	stensöta *	aieselrot	engelsad	kallomarre *	köldugras	M	H, C	R	45, 49
Coniferous trees		Picea abies	spruce	gran	gran *	rodgren	kuusi *	rauögrem	M, A	H	J	29, 55
	Pinus sylvestris	pine	tall *	furu	skovfyr	mänty	skogfyr	M	C	H, P, T	45, 49	
	Cypresseae	Juniperus communis	juniper	en *	eier *	enebær *	katja *	einir *	M, A, C, H	H, N, C	B, R	4, 9, 14, 25, 34, 44, 45, 53
	J. sabina	saxon	sivenbom	sevenbom *	rohtokatja	sabinminir	C, H, P	W	9			
Trees, shrubs		Populus tremula	aspen	aap	aap *	barsæveaap	haapa *	öap	M, H	H, N, C, L, P	34, 45	
	Salix spp	willow	salg	vier	pal *	paju *	vúr *	M, S, J	H, C, T, L, P	9, 33, 45		
Myrtaceae	Myrica gale	sweet gale	pors	pors *	porse *	suomyerti	mjuusteling	M, H	H	W, L	9, 35	
Betulaceae	Alnus glutinosa	alder	al	or	el *	tervaléppä	rauöléri	S	T	H	9	
	Betula pendula	silver birch	vårbräken	hengebjörk	vorte-brik	randuskovu *	M	C	L, J, P	45		
	P. pubescens	downy birch	glashjörk	björk	dun-brik	hiskuovu *	birki *	M, S, H, C	L, J, P, C	9, 33, 37, 45, 50		
Corylaceae	Corylus avellana	hazel bush	hassel	hassel	hassel	pälkimänsä	heiliñjät	H	L	9		
Grossulariaceae	Ribes nigrum	blackcurrant	svarta vinbär	solbär	solbär	musta vinimarja	sölberjarummu	M	C	B	45	
Rosaceae	Prunus padus	bird cherry	higg	høeg	høeg	tuomi *	heggur	M	C	B, P	45	
	Pyrus communis	pear	pärón	pære	pære *	päärynä	periñät	S	N	O	9	
	Sorbus aucuparia	rowan	rogn	røm	røm	phialja *	reynir	M	C	P	45	
Rosaceae	Rhus vernicifolia	honeywood	buckthorn	bukthorn	bukthorn	bukthorn	pukapu	H	L	9		
	Quercus robur	oak	ask	ask	ask	saarni *	askur	M	H, C	L, P	45, 49	
	Sambucus nigra	black elder	flader	svartvlhyld	hyld *	selja *	svartylhr	M, S, C, T	B	9, 45		

Host (if specified): M = human, A = animal, C = cattle, S = sheep, H = horse, P = pig.

Target (if specified): H = helminths, N = nematodes, C = cestodes, T = trematodes, P = protozoa.

Part used (if specified): W = whole plant, L = leaves, F = flowers, S = seeds, B = berries, H = shoots or buds, R = root or tuber, J = sap, P = phloem or bark, O = wood, C = charcoal or ashes, T = tar.

* Indicates that the plant is mentioned in literature from that Nordic country.

Note: Plants included in this table are based on generally historical reports. This does not imply endorsement by the authors in either their effectiveness against parasites, or safety for human and/or animal use.
Table 1. Continued

Plant family	Scientific name	English	Swedish	Norwegian	Danish	Finnish	Icelandic	Host	Target	Part used	Reference
C. brunnescens	C. brunHeatd	good king	høgsko	stort Henrik	giskeflett	pluggut ark	litorina	M	H,C	W	45, 49
Caryophyllaceae	Cardamine pratensis	hairy bitter-	ängsbräsm	rosettkarse	roset	mäkilitukka	lambaklukka	H	L	8, 36, 37	
Descurainia sophia	D. flexuosa	common	flaxweed	stillfrö	hundesennep	finbladet liitutilli	befjurt	M	H, N, C	S	22, 45, 49
Lepidium sativum	L. sativum	garden cress	kryddkrasse	matkarse	karse	vihanneskrassi	karsi	M, S	H, T	W, S	9, 44, 45
Raphanus sativus	R. sativus	garden radish	rättika	rödmålde	rød gåsefod	punasavikka	M	C	H	9, 44	
Sisymbrium officinale	S. officinale	hedge mustard	vägsenap	vegsennep	vejsennep	rohtopernaruoho	götudesurt	M	C	H	9, 44
Crassulaceae	Rhodiola rosea	roseroot	rosenrot	rosenrot	rosenrod	ruusujuuri	burnirót	C	H	R	55
Sempervivum tectorum	S. tectorum	house leek	taklök	takløk	husløg	mehitähti	húslaukur	M	C	W	9, 44
Rosaceae	Agrimonia eupatoria	agrimony	småborre	åkermåne	agermåne	maarianverijuuri	M	H, W	9, 44, 49		
Fragaria vesca	F. vesca	wood	markjordbær	skov mansikka	villijär	jordbær		M	C	B	9, 45
Potentilla anserina	P. anserina	silverweed	gåsört	gåsemure	gåse-potentil	ketohanhikki	tágamura	M	H	W	44
Rubus chamaemorus	R. chamaemorus	cloudberry	hjortron	molte	multebær	lakka	múltuber	M	C	B	45
Sanguisorba officinalis	S. officinale	great burnet	blodtopp	læge kvæsurt	punaluppio	blókollur	H	H	R	30	
Fabaceae	Vicia sativa	common vetch	fodervicker	fôrvikke	vikke	vikkeri	fóurflækja	H	W	9	
Rutaceae	Ruta graveolens	common rue	vinruta	vinrute	rude	ruutakasvi	ruutakasvi	M	H	W	9
Clusiaceae	Hypericum perforatum	perforate	äkta prikkperikum	prikbladet	mäkikuisma	jónsmessurunni	M	H, F, H	9, 49, 51		
H. maculatum	H. maculatum	imperforate	fyrkantig	firkant-	kantet	särmäkuisma	flekkjagullrunni	M	C	45	
Violaceae	Viola odorata	sweet violet	luktviol	marsfiol	marts-viol	tuoksuorvokki	ilmfjóla	M	9		
Cucurbitaceae	Cucumis sativus	cucumber	gurka	agurk	agurk	kurkku	agúrka	M	C	S	45
Plant family	Scientific name	English	Swedish	Norwegian	Danish	Finnish	Icelandic	Host	Target	Part used	Reference
-------------	----------------	--------	---------	-----------	--------	---------	-----------	------	--------	-----------	-----------
Cucurbitaceae	Cucurbita pepo	pumpkin	pumpa	gressakr	mandel-gressakr	kurtaska	grasker	M	N,C	S	9, 45
Apiaceae	Anethum graveolens	dill	dill	dild *	till	dill	C	9			
	Angelica archangelica	angelica	kvanne	kvann	vamnpunkki	hvom *	M, H	H	S,R	W	8, 32, 35, 36, 37, 41
	Anthriscus cerefolium	chervil	dansk-körel *	bagekjørvel	körel *	maustekvikri	garukjerköll	M	H	W	9, 44
	Apium graveolens	celeriac	selleri	lagese lleri	selleri *	selleri	blaßelja	M	9		
	Carum carvi	caraway	kumin	karv *	kommen *	kuminus *	kümni	M	H, C	W,S	9, 34, 45
	Coriandrum sativum	coriander	korrajander	korriender	korriander *	korrianti	körjandra	M	9		
Daucus carota	carrot	morot *	gulroter *	gulerod *	porkkana	gurrott	M,P	H,C	R	9, 35, 44, 45, 49, 55	
	Foeniculum vulgare	fennel	fläskul	femnikel	femnikel *	femniki	fennhaka	S	T	9	
	Levisticum officinale	lovage	livsbitiska	livsbitikke	livsbitikke *	liperi	trellatrygg	M	H	S	9, 44
	Petroselinum crispum	parsley	persilla	persille	persille	persila *	steinselja	C	P	29	
	Valeriana officinalis	valerian	valerian	valerian	valerian	valerian	valerian	C	P	29	
	Hyoscyamus niger	henbane	bolmiört	bulmiort	bulmiort *	hullaali	skollarótt	H	S	9	
	Nicotiana rustica	tobacco	tobak	tobak	tobak *	takalaka	bónsd-tobaksjur	S, T	R	9	
	Solanum dulcamara	woody nightshade	begesöta	sylngsöver	bitterös natskygge	natskygge *	punakoiso	ereturfläcka	M	9	
	S. nigrum	black nightshade	nattsanka	nartstwér	sort natskygge	sort natskygge *	mustakoiso	hünjurt	H	L,B	9
	S. tuberosum	potato	potatis	potet	kartoefi	perun *	kartufla	M	C	R	45
Table 1. Continued

Plant family	Scientific name	English	Swedish	Norwegian	Danish	Finnish	Icelandic	Host	Target	Part used	Reference	
Scrophulariaceae	Rhinanthus spp	yellow rattle	skältra	kull	skålje	laukku	lóka	M	H	W	8, 36, 37	
Veronica anagallis-aquatica		blue water speedwell	vattenveronica	vassveronika	lancettbladet	komnuniTyde	laugadepla	M	H	W	8, 36, 37	
V. chamaedrys		germander speedwell	teveronica	tveskjevg-veronica	tveskjeget	narmuriTyde	völudepla	M	H	W	44	
Plantaginaceae	Plantago lanceolata	English plantain	svartkämpar	smålkjörp	lancet-vejbred	hemiråtamo	selgäri	M	H	L,R	8, 33, 35, 36, 41	
P. major		great plantain	groblad	groblad	vejbred	piharatamo	graösiura	M	H	W,L,R	9, 35, 37, 41, 55	
P. maritima		sea plantain	gulmar	strandkomppe	strand-vejbred	meriråtamo	kattarunga	M	H	L,R	8, 36	
Valerianaceae	Valeriana officinalis	valerian	vänderot	lege-venderot	legebadkramra*	roftovormrajaksi	garastäru	M	H	W	9, 4, 44, 49	
Asteraceae	Achillea millefolium	yarrow	röllika	röllika	sünkarsámö	vallhumall	M	H	W,LF	9, 5, 35, 38		
Artemisia absinthium		southernwood	åbrodd	åbrodd	ambra	aaprontimarana	M	N	W	44		
A. absinthium		wormwood	malört	ekte malurt	malurt	mali	M,C,S, H	H,C	W,LS		5, 9, 25, 34, 44, 45, 49, 53, 55, 58	
A. vulgaris		mugwort	gråbo	burott	gråbyröke	puo	M	H	W	9, 38, 40, 58		
Cicuta maculata		blessed thistle	kardbenedikt*	kardbenedikt*	korbendikt*	karvasohdake*	M	H	W,L	9, 35, 44, 55		
Helianthus annuus	sunflower	solros	solsikke	solsikke	auringonkakka*	sölfildl	M	C	S	45		
Inula heptaphylla		sea heptaphylla	alandarot	alandarot	lagealart	lagealart	M	H	R	9, 55		
Matricaria maritima	sea mayweed	sea mayweed	kustbadbrar*	strand-baldbrar*	kamillke	merisunio	baldursbr*	M	H,L,F	8, 9, 33, 36, 37, 41		
Senecio vulgaris		common groundsel	korsört	åkersvineblom	almindelig brændhedge*	peltoviikko*	krostfildl	M,C	C	L	9, 22, 45	
Silphium marianum		mariajiestel	mariajiestel	mariajiestel	mariajiestel	mariajiestel	mariajiestel	M	S		9, 53	
Tanacetum balsamita	alectros	balsamblad	balsam	okroej	palsempän-pänkakkara	M	H	W	35			
T. parthenium	feverfew	matram	matrem	matrem	reynup-pin-kakkara	M	H	S	44			
T. vulgare		common tansy	renfana	renfann	renfann	renfann	pøtaryrt	regfanged	M,A,S,H	H,N,C,T	W,LF,S	1, 4, 9, 10, 19, 30, 34, 35, 44, 45, 49, 53, 55, 58, 70
Liliaceae	Allium cepa	onion	rödlök	rödlök	rödlag	punasipul	rau-laukur	M	H	W	9, 35, 44, 55	
A. porrum	leek	purrlokk	purrlokk	purlag	purjo	bladlaukur	M	H	W	34		
A. sativum	garlic	viitlokk	hvitlokk	hvitlokk	hvitløg	hvitløg	hvitløg	hvitløg	M, A	W,N,C	W	4, 9, 33, 44, 45, 55, 70
A. asarinum	ramson	ramskik	ramlokk	rams-lokk	rams-lokk	karhunalaukka	bjarmalaaukka	M	H	W	34	
Asparagust officinalis	asparagus	sparris	asparagus	asparagus	asparagus	ruokaparsa	M					
Iris pseudacorus	iris	svärdjilja	sverdiljhe	gul sverdiljhe	keltakurjemnakka	gula sverdiljhe	M	H	R	9, 30		
Araceae	Acorus calamus	sweetflag	kalmus	kalmsrot能够	kalmsrot	kalmsrot	M	C	R	45		
Grasses	Poaceae	Poa annua	couch grass	kvickrot	kvickrot	kvickrot	jouluvehna	húsapintur	M	H, W		9, 18
Hordeum vulgare	barley	korn	bygg	bygg	bygg	orha	bygg	M			9	
Secale cereale	rye	råg	rug	rug	rug	rugin	rugin	M			9	
Lichens and Ferns: One of the plants most commonly mentioned in the Nordic literature is male fern (*Dryopteris filix-mas*), a common fern that is widespread throughout the Northern hemisphere. Extracts from powdered rhizomes were first used by the Greeks (circa 350-250 BC) to treat tapeworm infections. This product (oil of aspidium) became an established product in many Pharmacopoeia of the Western World and was sold until the end of the 1940s. A number of active compounds have been isolated from this product, but it appears that the anthelmintic constituent is filicic acid.

Trees and Shrubs: Reports are few on the extensive use of trees and shrubs specifically to feed to livestock as treatment against parasites. However, products of willow (*Salix* spp.) have been widely used as analgesics or antipyretics in humans, probably attributable to the content of salicin and derivatives. *Salix* spp. also has a reputation as an anthelmintic for humans and livestock. Horses fed leaves are not supposed to get worms and a decoction of the bark is efficacious against flukes (trematode parasites) and diarrhoea in sheep (*Brøndegård* 1980).

Herbaceous Plants: There is a great variety of these plant types that has been used as deworming preparations. Whilst most of those mentioned in Table 1 thrive in the Nordic environment, many originated from other countries. Possibly one of the most widespread and commonly used herbal anthelmintic is oil of chenopodium, derived from *Chenopodium ambrosoides*, popularly known as American wormseed, or goosefoot. Archeological and ethno-logical studies suggest that this material has been used for many centuries. It is of passing interest that in the early eighteenth century, Peter Kalm (1715-1779), a Swedish botanist and traveller, reported that it was used by both the indigenous inhabitants and European settlers in the American colonies for the treatment of *Ascaris* infections. Plants were taken to Europe, cultivated widely, and were soon in common usage. The active principle, ascaridol, a volatile terpene, was isolated and eventually synthesized. However, in the Nordic countries, *Chenopodium* is not one of the most commonly mentioned plant families.

Some of the plants mentioned are now commonly used as spices eg. caraway (*Carum carvi*), thyme (*Thymus* spp) and mint (*Mentha* spp). These have been found in Russian studies to have effect against *Trichostrongylus* larvae *in vitro* and also in sheep (*Gadzhiev & Eminov* 1986, *Eminov* 1982).

Members of the family *Asteraceae* have also a prominent position in the herbal de-worming literature. The Romans used dried, unexpanded flower heads obtained from several species of the genus *Artemisia* in the first century, for the treatment of *Ascaris, Enterobius* and tapeworm infections. The name given for this herbal preparation was *semen-contra vermes* (semen against worms), apparently because of its superficial resemblance to semen. It became an important member of the European Pharmacopoeia until the early 20th century. The active principle was found to be the sesquiterpene lactone, santonin. More recent pharmacological studies have demonstrated the pharmacological basis of this chemical. Low concentrations of santonin are reported to have a selective toxic action on the ganglion located in the nerve ring of *Ascaris* spp. (*Sollmann* 1957). Against other nematodes, such as *Oxyuris* spp and the cestodes, santonin is not effective (*Steinegger & Hänsel* 1972). Pharmacological studies investigating the specific effects of santonin-containing herbal preparations are not known. This is probably because santonin had been isolated and used as a vermifuge as early as 1830. Due to its narrow therapeutic window (safety index) and toxicity, the crude drug santonin is no longer used (*Reynolds & Prasad* 1982, *Tyler et al.* 1988, *De Smet* 1997).
Another member of the *Asteraceae* family, more widely used in the Nordic countries, is common tansy (*Tanacetum vulgare*). The active component is claimed to be thujon. *In vitro* studies have shown an effect of this plant on *Trichostrongylus* and *Ostertagia circumcincta* spp. (*Gadzhiev & Eminov 1986, Eminov 1982*). Vegetables, such as carrot (*Daucus carota*), brassicas (*Brassica* spp), the onion group (*Allium* spp.), as well as all kinds of berries have had widespread use against parasites in the Nordic as well as most other countries. Seeds of pumpkin and cucumber (Cucurbitaceae) have been used in tropical America for centuries as a treatment of tapeworm infections. From there the popularity of this remedy spread to Europe. The active component, cucurbitine, was identified as an amino acid (3-amino 3 carboxy pyrrolidin). Leaves from another tropical plant, tobacco (*Nicotiana rustica*), have enjoyed universal popularity and latterly notoriety for use in smoking. However, infusions of this plant, or synthetic analogues (e.g. nicotine sulphate) were commonly used as anti-nematode preparations in ruminant livestock up until the advent of the modern broad spectrum anthelmintics in the mid 1950s. Both these plants have also been grown and used as anthelmintics in the Nordic countries.

Pasture plants: The possible use of specialised crops to control nematode infections in grazing ruminants has attracted considerable research interest in recent years. Bioactive plants or forages with secondary metabolites, particularly legumes with a high content of proanthocyanidins (condensed tannins) e.g. sulla (*Hedysarum coronarium*) or lotus major (*Lotus pedunculatus*) have been reported to reduce worm burdens in grazing lambs by up to 50% (*Niezen et al. 1995*). An *in vivo* anthelmintic effect has also been observed using quebracho, a condensed tannins extract, as a single high dose against sheep nematodes (*Athanasidou et al. 1999*) and the capacity of purified condensed tannins from Danish legumes to kill nematode larvae *in vitro* has been demonstrated (*Kahiya et al. 1999*). However, in several field studies it has been difficult to relate anti-parasitic effects to the actual amounts of condensed tannins (e.g. *Niezen et al. 1998*). A complicating factor is that condensed tannins are a poorly defined group of compounds (basically polymers capable of covalently binding protein) making standardised determinations in plant material difficult.

It has been postulated that the beneficial effects of tanniferous plants against internal parasites could be due to one, or a combination, of the following factors:

- Tanniferous plants increase the supply and absorption of digestible protein by animals. This is achieved by tannins forming non-biodegradable complexes with protein in the rumen, which dissociate at low pH in the abomasum to release more protein for metabolism in the small intestine of ruminants – in other words, ”natures protected protein.” This indirectly improves host resistance and resilience to nematode parasite infections.
- Tannins have a direct anthelmintic effect on resident worm populations in animals.
- Tannins and/or metabolites in dung have a direct effect on the viability of the free-living stages (development of eggs to infective larval stages).

Although there is some evidence to support each of these above claims (for review, see *Kahn & Diaz-Hernandez 1999*), we believe that the data are by no means clear-cut (*Bernes et al. 2000*).

Limitations with using plants as natural anthelmintics

It is not a simple matter of just growing these plants and expecting them to be used in a natural parasite control system. In a longer perspec-
tive, many issues need to be considered. These include, whether the chosen plants are amenable to cultivation and if so by what means (pure stands or as mixed leys), ease of harvesting seeds and thus their commercial availability, and means of use or administration (grazing, or individual stable feeding – short, or long term). In addition, factors such as palatability, stability, biodegradability of active compounds in preserved products, whether these are to be used curatively, or preventively, need to be considered. Finally, dosage may be difficult to control and the possibility of toxic side effects in animals needs to be considered.

Some of the potential candidate plants cannot withstand trampling by livestock, are poor competitors with other pasture species in mixed grazing swards (e.g. *Lotus* spp., Beuselinck & Grant 1995), or they are preferentially sought out by grazing animals and thus easily succumb to even light grazing pressure (e.g. *H. coronarium*, Niezen et al. 1995).

Plants which have a high content of known direct-acting parasiticides (e.g. santonin in wormseed) may be effective for short-term "curative" use eg. a short grazing interval on a "deworming" paddock before a pasture change. In other cases, plants may have to constitute a substantial proportion of the feed and may therefore be used in a preventive fashion mixed with grass and clover in larger grazing areas, or in pure stands for rotational grazing.

A word of warning – plant toxicity

The whole animal kingdom is dependent on the use of plant material. Plants have probably covered much of our planet throughout the history of multicellular life. This implies that herbivores have been too few in number to consume all the food available (Hairston et al. 1960), and probably more importantly, that some plants have evolved defence mechanisms against being eaten by herbivorous animals (Murdoch 1966). One of their defence principles is the production of chemical compounds, which may be harmful or distasteful to potential herbivores. The fact that certain plants could have adverse effects on man and livestock has been known since ancient times. Likewise, it has been recognised that some plants could be of benefit in disease conditions. These two aspects of the plant kingdom, the beneficial and the harmful properties of plants, strongly related to dosage, are described in the early medical literature of classical Greece and Rome (Hippocrates, Theophrastus, Dioscorides).

Modern scientific literature on plant effects on livestock deals mainly with adverse effects, and less attention has been paid to the curative potential of plant material. The complex nature of this discipline is reflected in the difficulties in classification of poisonous plants. Attempts to classify them according to the chemical nature of their active constituents are met with the obstacles that these may be either a single substance or a number of substances with wide differences in chemical properties. Accordingly, a chemical classification will lead to considerable overlapping with some plants featuring in several chemical groups. Albeit these difficulties, the majority of recent textbooks group the poisonous plants according to their known toxic constituents (Cooper & Johnson 1998). These include a vast range of compounds that may be classified as alkaloids, glycosides, nitrates, oxalates, photodynamic substances, thiaminases, local irritants and phytooestrogens. The most reputed plants in the Nordic flora with reported responsibility for livestock poisoning include wolf’s-bane (*Aconitum lycoctonum*) (alkaloids), cowbane (*Cicuta virosa*) (alkaloids), groundsel (*Senecio* spp.) (alkaloids), yew (*Taxus baccata*) (alkaloids), brassicas (*Brassica* spp.) (S-methyl cystein sulphoxide, progoitrin, nitrates, amongst others), foxglove (*Digitalis purpurea*) (digitalis-glycosides), bog...
Plants as de-worming agents

Conclusion

This review provides ample evidence that a considerable amount of information relating to the use of plant material as de-worming preparations for man and his livestock in the Nordic countries, is available. However, almost all of these reports are historical and/or anecdotal. Evidence for effectiveness of plant de-worming preparations has been rarely obtained and little has been made available in scientific publications. With respect to increasing interest in the therapeutic use of natural products, we believe that it is important that a systematic evaluation is made of the botanical resources of the Nordic countries in relation to the purported de-worming properties of those plants that are endemic, or thrive, in this region of the world.

References

Ahonen U: Fytoterapian käsikirja (Manual for Phytotherapy). Gummerus kirjapaino Oy, Saarijärvi, 1997.

Andersson G, Hedhammar Å, Holmgren A, Persson H, Tjälve H: Förgiftningspanoramatas dos djur. In: Förgiftningar hos djur (Poisoning panorama in animals). Svensk Veterinärtidning 1989, 41, Supplement 19, 5-37.

Athanasiadou S, Kyriazakis I, Coop RL, Jackson F: Evidence for direct anthelmintic effect of condensed tannins. WAAVP Conf. Copenhagen. 1999, f.5.04.

Bergmark M: Vallört och vitlök (Comfrey and garlic). Prisma, Stockholm, 1967.

Bergmark M: Lust och lidande (Lust and suffering). Natur & Kultur, Stockholm, 1968.

Bernes G, Waller P.I, Christensson D: The effect of birdsfoot trefoil (Lotus corniculatus) and white clover (Trifolium repens) in mixed pasture swards on incoming and established worm infections in young lambs. Acta. Vet. Scand. 2000, 41, 351-361.

Beuselinck PR, Grant WF: Birdsfoot trefoil. In: (Barnes RF, Miller DA, Nelson CJ, eds). Forages, vol. 1: An Introduction to Grassland Agriculture. 5th edit. Iowa State University Press, Ames, Iowa, USA, 1995, 237-248.

Bjarnason A: Um íslenskar drykkurtir, söfnun þeirra, geymslu, nytsemi, verkanir og tilreiðslu (About...
Icelandic plants used in drinks, their collection, storage, usefulness, effects and preparation. Prents-miôja Norður- og Austuramtsins hjá H. Helgasyri, 1860.

Brøndegaard VJ: Folk og Flora – Dansk etnobotanik, vol. 1-4 (People and flora - Danish ethnobotany, vol. 1-4). Rosenkilde og Bagger, 1980.

Cantell S, Saarnio V: Suomen myrkylliset ja lääkekasvit, niiden vaikuttavat aineet, vaikutukset elimistöön, lääkkeinä käytö sekä rohdoksis keräily ja viljely (Toxic and medicinal plants in Finland. Effective ingredients, function and use in medicine. Cultivation and collection). Karisto Oy, Hämeenlinna, 1936.

Cooper MR, Johnson AW: Poisonous plants and fungi in Britain. 2nd edit. The Stationary Office, London, 1998.

Danoe R, Bogh HB: Usage of herbal medicine against helminths in livestock. An old tradition gets its renaissance. World Animal Review 1999, 93, 60-67.

De Smet P AGM (Ed): Adverse Effects of Herbal Drugs. Springer-Verlag, Berlin Heidelberg New York, 1997, 3.

Einarsson, G: Um sauðfénað (About sheep). Prents-miôja Ísafoldar, Reykjavík, 1879.

Eminov RS: Effect of certain pasture plants on gastrointestinal nematodes of sheep. Sov. Agric. Sci. 1982, 1, 72-74.

Fløøyen A, Binde M, Bratberg B, Djønne B, Fjølstad M, Grønstøl H, Hassan H, Mantle PG, Landsverk T, Schönheit J, Tønnessen MH: Nephrotoxicity of Narthecium ossifragum in cattle in Norway. Vet. Rec. 1995, 137, 259-263.

Fløøyen A, Froslie A: Photosensitization disorders. In: Handbook of plant and fungal toxicants. D’Mello JPF ed., CRC Press, Boca Raton, 1997, 191-204.

Fogelfors H: Nyttiga ogräs, del 2 (Useful weeds, part 2). Lantmannen, 1984, 3, 19.

Fogelfors H: Nyttiga ogräs, del 7 (Useful weeds, part 7). Lantmannen, 1984, 8, 51.

Fogelfors H: Nyttiga ogräs, del 10 (Useful weeds, part 10). Lantmannen, 1984, 11, 31.

Fogelfors H: Nyttiga ogräs, del 16 (Useful weeds, part 16). Lantmannen, 1984, 18, 38.

Fogelfors H: Nyttiga ogräs, del 17 (Useful weeds, part 17). Lantmannen, 1984, 21, 44.

Fogelfors H: Nyttiga ogräs, del 22 (Useful weeds, part 22). Lantmannen, 1985, 3, 52.

Gadzhiev YG, Eminov RS: Action of medicinal plants on gastrointestinal nematodes of sheep. Byul.-len Vsesoyuznogo Instituta Gelmitologii im. K.I. Skryabina, 1986, 44, 12-16.

Ganander C: Eländien Tauti-kirja, kolmas ylöspano (Disease of Animals). 3rd edit. J. D. Frendell ja poika, Helsinki & Turku, 1829.

Gibson TE: Factors influencing the application of anthelmintics in practice. Vet. Parasitol. 1980, 6, 241-245.

Grove DI: The discovery and development of anthelmintics. In: A History of Human Helminthology DI Grove (ed). C.A.B. International, Oxford, 1990, 75-101.

Hairston NG, Smith FE, Slobodkin LB: Community structure, population control, and competition. American Naturalist 1960, 94, 421-425.

Hako M: Kansanomainen lääkintätietous (Medicine in Folklore). 2nd edit. Suomalaisen Kirjallisuuden Seuran Toimituksia 229:4, KJ Gummerus OY, Jyväskylä, 1982.

Hewe N: Välsignade växter (Blessed plants). Stockholm, 1939.

Hiltunen R, Holin Y: Luonnonlääkkeet (Natural Medicine). Helsingin yliopisto oppimateriaaleja 27. Painotalo Miker, Helsinki, 1994.

Hjaltalin J: Lækninga-Bök um þa helstu kvilla á kvikkfénaþ, samantekin fyrir Íslendinga og lögð eptir þorfun þerria, af Jóni Hjaltalin, Studios. Chirurg. et Medic. (Medical book about the main ailments of livestock, compiled for the Icelanders and adapted to their needs, by Jóni Hjaltalin, Studios. Chirurg. et Medic.). Kaupmannahöfn, 1837.

Hjaltalin J, Oddur J: Íslenks grasafraði (Icelandic botany). Gefin út að tilhlutun Hins islenska bökmenntafélags, Kaupmannahöfn, 1830.

Høeg OA: Planter og tradisjon (Plants and tradition). Universitetsforlaget, Oslo-Bergen-Tromsø, 1976.

Høeg OA: Være medisinske planter (Our medical plants). Forlaget Det Beste, 1984.

Jönsson BL: Íslenskar læknings- og dykkjarjurtr (Icelandic medical plants and plants used as drinks). 13. Rit Náttúrlækningsfélagö Islands, Reykjavík, 1977.

Jönsson J: Litil ritgjörd um nytsemi nokkurra íslenskra jurta eptir ymsa höfunda (A booklet about the usefulness of some Icelandic plants by various authors). Einar þórðarson, Reykjavík, 1880.

Juneby HB: Junebys medicinalväxter (Juneby’s medical plants). Reformförlaget, Malmö, 1984.

Kahiya CJ, Mukaratirwa S, Thamsborg SM, Ndlovoo LR: Anthelmintic effects of proanthocyanidins and related polyphenolics. Proc. WAAVP Conf.
with focus on the situation in Norway). Norsk Veterinærtidsskrift 1981, 93, 87-91.

Thamsborg SM, Jørgensen RJ, Waller PJ, Nansen P: The influence of stocking rate on gastrointestinal nematode infections of sheep over a two-year grazing period. Vet. Parasitol. 1996, 67, 207-224.

Thamsborg SM, Roepstorff A, Larsen M: Integrated and biological control of parasites in organic and conventional production systems. Vet. Parasitol. 1999, 84, 169-186.

Tyler VE, Brady LR, Robbers JE: Pharmacognosy. 9th ed. Lea and Fabiger, Philadelphia, 1988.

Ulvund MJ: Alveld og andre sjukdommer med symptomer på fotosensibilitet hos sau. In: Giftige planter og planteforgiftninger hos dyr i Rogaland ("Alveld" (hepatogenous photosensitization) and other diseases with symptoms of photosensibility in sheep. In: Poisonous plants and plant poisoning in animals in Rogaland). Rogaland Veterinærforenings seminar på Utstein Kloster 1984, 23-29.

Vaarst M: Veterinær homöopati: baggrund, principper og anvendelse med speciel fokus på økologiske malkekøbsbesætninger – et litteraturreview (Veterinary homeopathy: background, principles and use, with special focus on organic dairy herds – a literature review). Report from Danish Institute of Animal Science No. 731, 1996.

Vaarst M, Ploeger H, Thamsborg SM, Sørensen JT: Organic dairy farming and nematode parasitism. Ingest patterns among replacement heifers in dairy herds not preventedly treated with anthelmintics. In: Livestock farming systems. (Dent, McGregor, Sibbald eds.) Wageningen Press. EAAP Publication 1996, No. 79, 85-90.

Vennerholm J, Dahlström H, Stålfors H: Husdjures sjukdomar (Diseases of domestic animals). Albert Bonniers förlag, Stockholm, 1920.

Wandeland H: Aktuelle planteforgiftninger hos sau i Rogaland. In: Giftige planter og planteforgiftninger hos dyr i Rogaland (Plant poisoning in sheep in Rogaland. In: Poisonous plants and plant poisoning in animals in Rogaland). Rogaland Veterinærforenings seminar på Utstein Kloster 1984, 30-37.

(Received June 5, 2000; accepted September 8, 2000).

Reprints may be obtained from: P.J. Waller, Department of Parasitology (SWEP AR), Statens Veterinärmedicinska Anstalt, S-751 889 Uppsala, Sweden. E-mail: Peter.Waller@sva.se, tel: +46 18 67 41 27, fax: +46 18 30 91 62.