Anisotropy of thermionic electron emission values for LaB$_6$ single-crystal emitter cathodes

P. H. Schmidt, D. C. Joy, L. D. Longinotti, H. J. Leamy, S. D. Ferris, and Z. Fisk

Physics Department, University of California, San Diego, La Jolla, California 92093
(Received 21 June 1976)

Measurement of thermionic electron emission values for pointed LaB$_6$ single-crystal emitter cathodes has shown that (110) axial orientations yield emission values ten times higher than (100) orientations at 1545 K. Minimum values were obtained for the (510) directions. These findings seem encouraging in achieving perhaps two orders of magnitude higher emission fluxes as compared to tungsten emitters.

PACS numbers: 79.40.+z, 84.60.Ny, 07.80.+x

The potential use of LaB$_6$ as an electron emitter has received considerable attention since the investigations of Lafferty1 on boride cathodes. Early work by Broers2 and Vogel3 clearly demonstrated the superiority of LaB$_6$ as an electron emitter over conventional tungsten hairpin filaments for application in a scanning electron microscope. Practical application of high-intensity emitter cathodes for electron microscopes and electron-beam exposure systems, however, requires detailed information on emission characteristics, the angular variation of electron emissivity, and stability. Further detailed data is required on temperature effects, vacuum requirements, tip shaping, and the compatibility of structural mounting materials with LaB$_6$. Finally, much work remains to be done on crystalline imperfections and strains and their relation to ultimate emitter performance.

Recent work by Swanson4 et al. on the work function values from (100) single-crystal LaB$_6$ has indicated the possibility of yet lower values of Φ for other crystal directions.

We report results of a detailed study on measurements of electron emission anisotropy values for pointed single-crystal LaB$_6$ thermionic emitters designed for direct replacement of tungsten hairpin cathodes in a scanning electron microscope system. Actual details of the emitter mounting structure will be reported elsewhere.5

The test apparatus was mounted in an ion-pumped hard-seal testing chamber. Typical vacuum conditions during cathode testing were $\sim 5 \times 10^{-7}$ Torr after initial gas desorption. The test apparatus consisted of a Faraday-cup electron collector and picoammeter detector, a tantalum accelerating anode plate with a 1.0-mm-aperture hole, and an emitter mounting structure that contained a resistively heated single crystal of LaB$_6$. The crystal mounting structure was designed so as to be rotatable plus or minus 50° in one plane, with the axis of rotation made to be directly through the crystal tip. Deflector plates mounted between the anode and Faraday cup were included to aid in beam alignment.

Direct observation of emission patterns was achieved by constructing an accelerating plate coated with a thin layer of phosphor. Photoluminescence of the phosphor provided a direct visual record of emission intensities in addition to the electrical measurements from the Faraday cup. A continuous display of emission patterns was achieved by angular rotation of the emitter mounting.

Single crystals were prepared by aluminum flux growth procedures6 from ultrahigh-purity elements. Details of crystal growth have been described elsewhere. Naturally faceted (100) single-crystal prisms were obtained from the crystal-growth runs having typical dimensions of 0.1 mm x 0.1 mm x 5–7 mm. Use of naturally faceted crystals enabled us to avoid mechanical shaping with the possible introduction of crystal defects that might be detrimental to electron emission characteristics.

Only the crystal tip was additionally shaped. Pointing was done electrolytically using an electrolyte of 20% HCl and 80% water. The cathode used was a tantalum strip and the bath held at room temperature. A dc potential of 10 V was applied to the cell. Tips were shaped very quickly (15 sec) and had a typical included angle of 10°.

![FIG. 1. Output current is plotted versus the rotation angle for a (100) axial orientation single crystal of LaB$_6$ at 1545 K. Maximum emission is seen for the (110) crystal direction.](image)
angle of 30–45° with a 1–2-μm tip radius. Use of the electrolyte described by Shimizu developed in other laboratories. 6–9

of the NRL laser-target code, and similar thermoelectric field sources are associated with an impurity grain embedded in a dense plasma. 4 Thus if a laser pulse is focused on to a grainy target (e.g., Al dust in epoxy), the resulting plasma is expected to fill out with magnetic turbulence. This technique for seeding turbulence may have applications in the design of fusion targets. 1,3 In this letter we give computer results for the field of a single impurity grain. The code on which our results are based is a derivative of the NRL laser-target code. 4,5 Similar codes have been developed in other laboratories. 5–6

A single axisymmetric impurity grain is considered to be located in a temperature gradient produced by holding the plasma temperature constant on two boundaries at \(z = \pm \frac{1}{2} L \) as shown in Fig. 1. Hydrodynamics is "frozen" and we self-consistently solve the complete magnetic field and thermal energy flow equations. 10

\[
\begin{align*}
\frac{\partial B}{\partial t} &= -\frac{c^2}{4\pi} \nabla \times [r \times (\nabla \times B)] - \frac{c}{e N_T} \nabla \times \left(B \times \frac{\mathbf{i}}{N_T} \right) \\
&+ c \nabla \times (r \times \mathbf{j}) ,
\end{align*}
\]

where

\[
\mathbf{r} = \mathbf{b} \mathbf{c} \mathbf{r}^+ + (\mathbf{I} - \mathbf{b}) \mathbf{c} \mathbf{r}^0
\]

is the resistivity tensor, \(E \) the thermal energy density,

\[
\mathbf{j} = c / 4 \pi \nabla \times \mathbf{B} - \mathbf{J}_0
\]

is expected to be located in a temperature gradient produced by holding the plasma temperature constant on two boundaries at \(z = \pm \frac{1}{2} L \) as shown in Fig. 1. Hydrodynamics is "frozen" and we self-consistently solve the complete magnetic field and thermal energy flow equations. 10

\[
\frac{\partial B}{\partial t} = -\frac{c^2}{4\pi} \nabla \times [r \times (\nabla \times B)] - \frac{c}{e N_T} \nabla \times \left(B \times \frac{\mathbf{i}}{N_T} \right) \\
+ c \nabla \times (r \times \mathbf{j}) ,
\]

where

\[
\mathbf{r} = \mathbf{b} \mathbf{c} \mathbf{r}^+ + (\mathbf{I} - \mathbf{b}) \mathbf{c} \mathbf{r}^0
\]

is the resistivity tensor, \(E \) the thermal energy density,

\[
\mathbf{j} = c / 4 \pi \nabla \times \mathbf{B} - \mathbf{J}_0
\]

is expected to be located in a temperature gradient produced by holding the plasma temperature constant on two boundaries at \(z = \pm \frac{1}{2} L \) as shown in Fig. 1. Hydrodynamics is "frozen" and we self-consistently solve the complete magnetic field and thermal energy flow equations. 10

\[
\frac{\partial B}{\partial t} = -\frac{c^2}{4\pi} \nabla \times [r \times (\nabla \times B)] - \frac{c}{e N_T} \nabla \times \left(B \times \frac{\mathbf{i}}{N_T} \right) \\
+ c \nabla \times (r \times \mathbf{j}) ,
\]

where

\[
\mathbf{r} = \mathbf{b} \mathbf{c} \mathbf{r}^+ + (\mathbf{I} - \mathbf{b}) \mathbf{c} \mathbf{r}^0
\]

is the resistivity tensor, \(E \) the thermal energy density,

\[
\mathbf{j} = c / 4 \pi \nabla \times \mathbf{B} - \mathbf{J}_0
\]