Considerations when prescribing trimethoprim–sulfamethoxazole

Joanne M.-W. Ho MD, David N. Juurlink MD PhD

Introduced in 1968, trimethoprim–sulfamethoxazole remains a popular antibiotic because of its low cost, effectiveness and familiarity among clinicians. It is the most frequently prescribed antibiotic for urinary tract infections in Canada. Other indications include treatment of infections caused by *Pneumocystis jiroveci*, *Toxoplasma gondii*, *Stenotrophomonas maltophilia* and community-associated methicillin-resistant *Staphylococcus aureus*. In addition, among patients with depressed CD4 counts from infection with HIV, the use of low-dose trimethoprim–sulfamethoxazole for prophylaxis against *P. jiroveci* and *T. gondii* is associated with decreased mortality caused by opportunistic infections. With up to 4000 prescriptions for trimethoprim–sulfamethoxazole dispensed each week in Ontario, this drug is used by hundreds of thousands of Canadians each year.

More than 40 years of widespread use has provided ample opportunity to identify the many adverse events associated with trimethoprim–sulfamethoxazole. Although this drug is well tolerated by many patients, it is associated with several potentially serious adverse reactions. Most of these associations are supported only by case reports and case series, but some have been the subject of volunteer studies and observational studies. Many of these adverse effects are rare, however others are predictable and several can be life-threatening. Here we provide an overview of the various toxicities associated with the use of trimethoprim–sulfamethoxazole and offer a simple mnemonic — “NOT RISKY?” — to help clinicians recall the various toxicities associated with this drug (Table 1).

Literature review

We performed a search using MEDLINE (1950 to August 2011) and Embase (1980 to 2011), along with a manual review of relevant bibliographies. We used the permuted index search tool in Ovid to search MEDLINE with the term “trimethoprim–sulfamethoxazole combination” and the subheadings “adverse effects” and “toxicity.” Using the keyword search, we searched for the terms “cotrimoxazole” and “trimethoprim–sulfamethoxazole combination,” and then combined each term with each of the following terms: “cytochrome P450,” “hyperkalemia,” “hypoglycemia,” “hematologic,” “anemia,” “neutropenia,” “thrombocytopenia,” “hemolysis,” “hypersensitivity,” “drug interaction,” “renal” and “methemoglobinemia.” We used a similar search strategy for the Embase database.

We included all types of reports (case reports, volunteer studies, observational studies and randomized trials), and we excluded articles that were not available in English, were conducted in animals or did not include information about the safety of trimethoprim–sulfamethoxazole.

We identified 925 publications that described adverse events involving trimethoprim–sulfamethoxazole. After we assessed the citations for eligibility, 88 articles were reviewed and 70 were included in this review. J.H. reviewed all citations for eligibility and full-text articles for quality. D.J. reviewed selected articles for quality. Conflicts were resolved by consensus.

N: Neurologic effects

Trimethoprim–sulfamethoxazole readily crosses the blood–brain barrier and is associated with various adverse neurologic events, all of which have been described only in case reports. Numerous instances of aseptic meningitis (involving high doses of trimethoprim alone or trimethoprim–sulfamethoxazole) have been reported, many of them involving patients with pre-existing autoim-

KEY POINTS

- Trimethoprim–sulfamethoxazole is an effective antimicrobial, but it has numerous adverse effects, some of which can be severe.
- Important drug–drug interactions include the development of hyperkalemia with renin-angiotensin system blocking agents or drugs that inhibit kaliuresis, and hypoglycemia with the concomitant use of some hypoglycemic agents.
- Hyperkalemia in conjunction with use of trimethoprim–sulfamethoxazole can also occur in patients with impaired renal function, diabetes, older age or AIDS.
- Other toxicities include neurologic, renal and reproductive abnormalities, decreased oxygen-carrying capacity and other hematologic effects, and drug hypersensitivity syndromes.
Table 1: Summary of the adverse effects associated with the use of trimethoprim-sulfamethoxazole

Adverse effect	Manifestation	Postulated risk factor	Frequency
N Neurologic effects			
Aseptic meningitis⁴	Autoimmune disease and HIV⁴	Uncommon	
Tremor⁷		Rare	
Delirium^{5,6}	Older age, previous neurologic injury, infection, metabolic disturbances^{5,6}	Relatively uncommon	
Gait disturbances^{5,6}		Rare	
O Decreased oxygen-carrying capacity and other hematologic abnormalities			
Methemoglobinemia^{7,8}	• Neonates less than 6 weeks of age • Nicotinamide adenine dinucleotide-dependent methemoglobin reductase (also known as cytochrome-b₅ reductase) deficiency	Rare	
Blood dyscrasia^{9,10}	• Malnutrition, specifically folic acid deficiency • Glucose-6-phosphate dehydrogenase deficiency	Uncommon	
T Toxic epidermal necrolysis and other hypersensitivity reactions	Drug hypersensitivity (fever, rash and internal organ involvement, such as blood dyscrasia, hepatitis and acute interstitial nephritis)¹¹⁻¹⁴	Previous or family history of drug hypersensitivity syndrome	Uncommon
Simply exanthema or fixed drug eruption¹⁷		Common	
R Reproductive toxicity	Structural malformations (neural tube, cardiovascular and possible oral cleft and urinary system)¹⁸	• Low levels of folic acid¹⁹ • Exposure during the first trimester²⁰	Uncommon
Small-for-gestational-age²¹	Exposure during the second and third trimesters⁹	Uncommon	
Hyperbilirubinemia²⁶	Exposure after 32 weeks' gestation²⁹	Rare	
I Interactions with other drugs	• Inhibition of the cytochrome P450 system (2CB and 2C9)²² • Renal drug transporter inhibition (organic cation transporter and organic anion transporter)^{22,24}	Polypharmacy	Common
S Sugar	Hypoglycemia²⁵⁻²⁸	• Renal insufficiency²⁵ • High-dose trimethoprim–sulfamethoxazole²⁵ • Concomitant use of sulphonylureas or meglitinides²⁵⁻²⁸	Common as a drug–drug interaction; rare when trimethoprim–sulfamethoxazole is used in isolation
K Hyperkalemia and other kidney effects	Hyperkalemia³¹⁻³⁷	• Renal insufficiency^{36,39} • High-dose trimethoprim–sulfamethoxazole^{31,36} • Older age³⁴ • Diabetes⁴ • AIDS³⁹ • Concomitant use of ACE inhibitors, angiotensin receptor blockers, spironolactone or NSAIDs^{36,37}	Common
Acute interstitial nephritis³⁵		Uncommon	
Obstructive tubulopathy³⁸		Uncommon	
Hyponatremia^{31,35}		Uncommon	

Note: ACE = angiotensin-converting enzyme, NSAID = nonsteroidal anti-inflammatory drug.
mune disease or HIV infection. The mechanism of toxicity is not well defined, but an immunologic process is suggested. Clinically, drug-induced meningitis is indistinguishable from other causes of aseptic meningitis, and the diagnosis is suggested by negative results of microbiologic testing, temporal association with drug initiation, prompt improvement following discontinuation of the offending drug and the absence of another identifiable cause.

Other rare adverse neurologic effects include delirium and milder effects such as tremor, which typically occurs in the first week of therapy, and gait disturbances. In general, neurologic symptoms occur within days of continuous treatment and resolve following discontinuation of trimethoprim–sulfamethoxazole.

O: Decreased oxygen-carrying capacity and other hematologic abnormalities

Several case reports describe methemoglobinemia in patients taking trimethoprim–sulfamethoxazole. Although this adverse effect is rare, the sulfamethoxazole component can induce methemoglobinemia, which occurs when more than 1% of heme iron exists in the ferric (Fe³⁺) redox state, rather than the usual ferrous (Fe²⁺) state. Methemoglobin cannot bind oxygen, resulting in functional anemia and bluish-brown discoloration of the skin.

Several uncommon but potentially serious blood dyscrasias have been reported following the use of trimethoprim–sulfamethoxazole. The incidence of severe hematologic toxicity is unknown, but estimates range up to 1.7–5.5/100 000 prescriptions. Several mechanisms have been implicated and described in case reports (Table 2).

T: Toxic epidermal necrolysis and other hypersensitivity reactions

Immune-mediated idiosyncratic reactions are often associated with a reactive metabolite, lead-
ing to drug-specific antibodies or T-lymphocyte activation. Simple exanthems and fixed drug eruptions are some of the most common adverse effects of trimethoprim–sulfamethoxazole, occurring in about 3% of hospital inpatients taking the drug.4 Less common is a classic drug hypersensitivity syndrome manifesting with a triad of fever, exanthem and varying degrees of internal organ involvement. Typical manifestations vary in presentation and severity. They include hematologic abnormalities (most commonly lymphopenia or lymphocytosis, but occasionally eosinophilia), cholestatic or hepatocellular hepatitis (which may progress to fulminant hepatic failure), renal dysfunction (including acute interstitial nephritis), Stevens–Johnson syndrome and potentially life-threatening toxic epidermal necrolysis.5 If there has been no previous exposure to trimethoprim–sulfamethoxazole, these reactions typically begin after at least four or five days of therapy but may occur after several weeks of prolonged therapy. Importantly, the presence of fever can mislead clinicians by suggesting an unresolved infection, thereby delaying discontinuation of trimethoprim–sulfamethoxazole.

R: Reproductive toxicity

Folic acid is important for normal development of the fetus and placenta.19 Although the inhibitory effect of trimethoprim on dihydrofolate reductase is more selective for the bacterial isozyme than for the human isozyme, the rapid rate of cell division during pregnancy potentiates the drug’s anti-folate effect in humans. A host of adverse effects have been well described with use of trimethoprim–sulfamethoxazole during pregnancy and the neonatal period.

Case–control studies have reported an association between exposure to trimethoprim–sulfamethoxazole during the first trimester and an increased risk of structural malformations. These include defects of the neural tube, cardiovascular system and possibly oral cleft and urinary system.18,19,55 The risk of major malformations, however, is reduced with supplementation with folic acid.56,57 In patients with first-trimester exposure to trimethoprim–sulfamethoxazole, detailed ultrasonography should be performed at 18–20 weeks’ gestation.20

A recent case–control study reported a 60% increased risk of small-for-gestational-age among the offspring of women exposed to trimethoprim–sulfamethoxazole during the second and third trimesters, compared with those exposed to other urinary antimicrobials.21 The use of sulfamethoxazole has classically been discouraged for pregnant women at 32 weeks’ gestation or later because of the risk of hyperbilirubinemia resulting from the drug’s displacement of bilirubin from albumin. Although there are no case reports describing this toxicity in the literature, the use of an alternative antibiotic should be considered in most situations.

Although the overall risk of methemoglobinema is low with trimethoprim–sulfamethoxazole, it may be increased in neonates younger than six weeks because of lower levels of nicotinamide adenine dinucleotide–dependent methemoglobin reductase activity.58 If there is a strong clinical

Table 3: Potential and proven drug interactions involving trimethoprim–sulfamethoxazole

Drug	Mechanism of interaction	Complication
S-warfarin	CYP450 2C9 inhibition	Increased international normalized ratio and hemorrhage
Oral hypoglycemic drugs: Sulfonylureas (e.g., glyburide, gliclazide, glimepiride, glipizide) Meglitinides (e.g., repaglinide)	CYP450 2C9 inhibition, CYP450 2C8 inhibition	Hypoglycemia
Methotrexate	Organic anion transporter inhibition in the renal tubule, anti-folate effect	Methotrexate toxicity (cytopenia, hepatotoxicity, mucositis)
Nonsteroidal anti-inflammatory drugs (e.g., ibuprofen, celecoxib, piroxicam)*	CYP450 2C9 inhibition Trimethoprim-induced antikaliuretic effect	Hypertension, hyperkalemia
Angiotensin receptor blocking agents and angiotensin-converting enzyme inhibitors Spironolactone	Trimethoprim-induced antikaliuretic effect	Hyperkalemia
Fluvastatin*	CYP450 2C9 inhibition	Myalgia, myositis, rhabdomyolysis
Phenytoin (also metabolized by 2C19)	CYP450 2C9 and 2C8 inhibition	Phenytoin toxicity

*Potential interaction.
Indication for trimethoprim–sulfamethoxazole therapy in a newborn, it is recommended to start the drug after four to six weeks of age. Although trimethoprim–sulfamethoxazole is detected in breast milk, exposure through breast milk appears to be safe in healthy breastfed infants.

I: Interactions with other drugs

Drug interactions occur when one drug alters the clinical response to another. Several important drug interactions can occur with trimethoprim–sulfamethoxazole (Table 3).

Interactions involving the cytochrome P450 enzyme system

The cytochrome P450 enzyme system is responsible for the oxidative metabolism of hundreds of drugs. Among the various cytochrome P450 enzymes, the 2C8 and 2C9 isoforms are of particular relevance in patients receiving trimethoprim–sulfamethoxazole because the 2C8 isoform is inhibited by trimethoprim and the 2C9 isoform is inhibited by sulfamethoxazole. Consequently, drugs metabolized by cytochrome P450 2C8 or 2C9 can accumulate during treatment with trimethoprim–sulfamethoxazole. Whereas several interactions are theoretically possible under this mechanism, two merit particular emphasis: oral hypoglycemic agents and warfarin.

Sulfonylurea agents (e.g., glyburide, gliclazide, glimepiride and glipizide) are metabolized by cytochrome P450 2C9, whereas repaglinide, a meglitinide, is metabolized by cytochrome P450 2C8. Pharmacokinetic studies have shown that trimethoprim–sulfamethoxazole increases plasma levels of sulfonylureas and repaglinide, leading to an increased release of pancreatic insulin and symptomatic hypoglycemia. The clinical consequences of the interaction between trimethoprim–sulfamethoxazole and sulfonylureas have been described in case reports and observational studies, which have reported four- to sixfold increases in the risk of hospital admission for hypoglycemia following the addition of trimethoprim–sulfamethoxazole to regimens containing a sulfonylurea.

Warfarin also has the potential to interact with trimethoprim–sulfamethoxazole. Commercially available warfarin exists as two enantiomers, R- and S-warfarin. Of these, the latter is roughly five times more biologically active and is metabolized by cytochrome P450 2C9. Co-prescription of trimethoprim–sulfamethoxazole increases S-warfarin levels in most patients. Two recent population-based studies have shown that among patients receiving warfarin, the use of trimethoprim–sulfamethoxazole is associated with a two- to threefold increased risk of gastrointestinal hemorrhage relative to other antibiotics.

Interactions involving drug transporters

Trimethoprim also inhibits the renal organic cation transporter and sulfamethoxazole inhibits the organic anion transporter transport systems that normally facilitate the renal elimination of several drugs. In children receiving methotrexate, treatment with trimethoprim–sulfamethoxazole decreases organic anion transporter–mediated renal clearance of methotrexate by 40%, increasing the risk of methotrexate toxicity (including cytopenia, mucositis, hepatotoxicity and gastrointestinal symptoms). The anti-folate effect of trimethoprim may also contribute to this interaction, as documented in several case reports and one observational study. Consequently, the Canadian 3E Initiative in Rheumatology has formally recommended against the use of trimethoprim–sulfamethoxazole by patients receiving methotrexate.

S: Sugar (hypoglycemia)

In patients taking trimethoprim–sulfamethoxazole, the most common reason for hypoglycemia is the potentiation of concomitant sulfonylurea or repaglinide therapy. However, sulfamethoxazole itself can directly cause pancreatic insulin release, particularly at higher doses and in patients with renal impairment. This likely reflects the drug’s structural similarity to the sulfonylureas. Hypoglycemia typically develops shortly after the patient begins to receive trimethoprim–sulfamethoxazole, and resolution may be delayed in patients with renal failure. To minimize the risk of hypoglycemia, reduction of dosage should be considered in patients with a creatinine clearance of less than 30 mL/min.

K: Hyperkalemia and other kidney effects

Trimethoprim–sulfamethoxazole can influence kidney function in several ways, which can result in hyperkalemia and hyponatremia, among other kidney effects.

Hyperkalemia

Hyperkalemia was first recognized during high-dose trimethoprim–sulfamethoxazole therapy for P. jiroveci, but it is increasingly appreciated as a potential complication at doses usually prescribed. This is a predictable and potentially fatal adverse effect of treatment with trimethoprim–sulfamethoxazole. Structurally similar to the
potassium-sparing diuretic amiloride, trimethoprim inhibits potassium elimination in the distal nephron.31 In a randomized controlled trial involving 97 outpatients taking trimethoprim–sulfamethoxazole, 6% of patients experienced hyperkalemia (serum potassium level > 5.5 mmol/L) and most patients (81.5%) experienced an increase in serum potassium level.39 Among observational studies of patients in hospital, the incidence of hyperkalemia (serum potassium level > 5.0 mmol/L) has been reported to exceed 20%.32–34

Hyperkalemia tends to develop after several days of therapy,32,34 and the risk factors predictably include diabetes,36 renal insufficiency,34,35 older age,34 AIDS,39 higher doses of trimethoprim32,35 and treatment with other drugs that inhibit kaliuresis such as angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers36 and spironolactone.37 A recent population-based case–control study involving 439 677 patients taking ACE inhibitors or angiotensin receptor blockers found a sevenfold increased risk of hospital admission for hyperkalemia among those taking trimethoprim–sulfamethoxazole compared with those taking other antibiotics used for urinary tract infections.36 We suggest that physicians monitor patients for hyperkalemia following a few days of trimethoprim–sulfamethoxazole treatment at a standard dose, especially patients with impaired renal function, which may include older patients, those with diabetes or AIDS, and those also taking ACE inhibitors, angiotensin receptor blockers or spironolactone.

Other kidney effects
Although not as common as hyperkalemia, trimethoprim-mediated blockade of epithelial sodium channels in the distal nephron may also increase the risk of hyponatremia.31,35

Patients with chronic renal insufficiency are at increased risk of adverse effects associated with use of trimethoprim–sulfamethoxazole.32,34,35 Although uncommon, this drug can also cause renal injury in otherwise healthy patients. This adverse effect generally manifests as a form of drug hypersensitivity syndrome, most commonly acute interstitial nephritis.39 The classic findings include fever, rash and an elevated creatinine level. If present, eosinophilia and eosinophiluria support the diagnosis, but their absence does not exclude it.

A much less common mechanism by which trimethoprim–sulfamethoxazole may cause acute kidney injury is obstructive tubulopathy resulting from the intraluminal precipitation of sulfamethoxazole. This phenomenon has been described in one case report but is more typically associated with older sulfonamide antibiotics.38

Box 1: Applying the results of this review to a fictional case in clinical practice

A 67-year-old woman presents to her family physician with a nonspecific complaint of weakness and an unwell feeling. She recently completed a seven-day course of trimethoprim–sulfamethoxazole for a urinary tract infection. Her longstanding medications include ramipril for hypertension and metformin for type 2 diabetes. Her physical examination is unremarkable. Results of routine blood tests show hyperkalemia (serum potassium level 6.9 [normal 3.5–5.0] mmol/L) and are otherwise normal. Hyperkalemia developed because of the potassium-sparing effect of trimethoprim on the distal tubule of the kidney, which was exacerbated by diabetes and the concomitant use of ramipril. Symptomatic treatment of hyperkalemia is started and ramipril is temporarily withheld. The patient’s condition improves without consequence.

Box 2: Suggestions for reducing the risks of prescribing trimethoprim–sulfamethoxazole, based on the results of our literature review

When prescribing trimethoprim–sulfamethoxazole, consider the following:

- Prescribing an alternative antibiotic if clinically indicated, particularly for pregnant patients in the first trimester, patients with glucose-6-phosphate dehydrogenase deficiency or patients taking methotrexate.
- Monitoring electrolytes within a few days of starting therapy to identify hyperkalemia or hyponatremia in specific patient groups, including those with reduced renal function, diabetes, older age and AIDS. Electrolytes should also be monitored in those taking higher doses of trimethoprim–sulfamethoxazole and those also taking angiotensin-converting enzyme inhibitors, angiotensin receptor blockers or spironolactone.
- Monitoring the international normalized ratio within three to four days of starting therapy in patients taking warfarin.
- Monitoring for hypoglycemia within a few days of starting therapy for patients taking oral hypoglycemic agents (e.g., sulfonylureas and meglitinides).
influence of pharmacogenomics on the safety profile of trimethoprim–sulfamethoxazole.

Clinicians should be cognizant of the potential consequences of prescribing trimethoprim–sulfamethoxazole, monitor patients for adverse events during therapy or use an alternate antibiotic when appropriate. Box 2 provides suggestions for reducing the risks associated with trimethoprim–sulfamethoxazole.

References

1. McIsaac WJ, Prakash P, Ross S. The management of acute uncomplicated cystitis in adult women by family physicians in Canada. Can J Infect Dis Med Microbiol 2008;19:287-93.
2. Biondi ME, Benson C, Holmes KK, et al. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents. MMWR Recomm Rep 2009;58:1-207.
3. Marshall D, Gough J, Grootendorst P, et al. Impact of administrative means on antibiotic use and expenditure in Ontario: time series analysis. J Health Serv Res Policy 2006;11:13-20.
4. Jolles S, Sewell WC, Leighton C. Drug-induced aseptic meningitis: diagnosis and management. Drugs Saf 2000;22:215-26.
5. Slavik RS, Rybaltinski L, Sarna S. Trimethoprim/sulfamethoxazole-induced tremor in a patient with AIDS. Ann Pharmacother 1998;32:189.
6. Dakin LE. Probable trimethoprim/sulfamethoxazole-induced higher-level gait disorder and nocturnal delirium in an elderly man. Ann Pharmacother 2009;43:129-33.
7. Dameron IA, Stoker JM, Abadie JL. Methemoglobinemia after sulfamethoxazole and trimethoprim. JAMA 1983;249:590-1.
8. Kourakis J. Trimethoprim-sulfamethoxazole-induced methemoglobinemia in an HIV-infected patient. Mayo Clin Proc 2004;79:829-30.
9. Keisu M, Wiholm BE, Palmblad J. Trimethoprim-sulfamethoxazole. Chemotherapy 2005;51:313-9.
10. Myers MW, Jick H. Hospitalization for serious blood and blood disorders following co-trimoxazole. Br J Clin Pharmacol 1997;43:409-51.
11. Zaman F, Ye G, Abreo KD, et al. Successful orthotopic liver transplantation after trimethoprim-sulfamethoxazole associated fulminant liver failure. Clin Transplant 2003;17:461-4.
12. Kourtakis J, Panagopoulos A, Alexopoulou A, et al. Cholestatic hepatitis with severe systemic reactions induced by trimethoprim-sulfamethoxazole. Ann Hepatol 2007;6:63-5.
13. Berg PA, Daniel PT. Co-trimoxazole-induced hepatic injury–an analysis of cases with hypersensitivity-like reactions. Infectious 1987;15(Suppl 5):S259-64.
14. Pusey CD, Saltissi D, Bloodworth L, et al. Drug associated acute liver failure in pregnancy. Can J Infect Dis Med Microbiol 1987;15(Suppl 5):S248-53.
15. Dakin LE. Probable trimethoprim/sulfamethoxazole-induced higher-level gait disorder and nocturnal delirium in an elderly man. Ann Pharmacother 2009;43:129-33.
16. Persson A, Karlsson B, Sjöberg D, et al. Sulfamethoxazole reduces the risk of severe hyperkalemia in patients receiving the standard dose of trimethoprim-sulfamethoxazole. J Intern Med 1996;124:316-319.
17. Han S, Choi J, Lee S, et al. Trimethoprim-sulfamethoxazole-induced hyperkalemia in patients receiving inhibitors of the renin-angiotensin system: a population-based study. J Infect Chemother 2010;16:1045-9.
18. Marinella MA. Severe hyperkalemia associated with trimethoprim-sulfamethoxazole and spironolactone. Infect Dis Clin Pract 1997;6:257.
19. Schwartz A, Perez-Canto A. Nephrotoxicity of antiinfective drugs. Int J Clin Pharmacol Ther 1998;36:164a.
20. Alapann R, Perazella MA, Buller GK. Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Int J Clin Pract 1987;144:1691-2.
21. Mori H, Kuroda Y, Imamura S, et al. Hypotenremia and/or hyperkalemia in patients treated with the standard dose of trimethoprim-sulfamethoxazole. Int J Clin Pract 1993;119:291-5.
22. Medina I, Mills J, Leung G, et al. Oral therapy for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. N Engl J Med 1990;323:776-82.
23. Alapann R, Perazella MA, Buller GK. Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Int J Clin Pract 1993;119:291-5.
24. Gustafsson LS, Eriksson A, Bergström A, et al. Trimethoprim-sulfamethoxazole induces reversible hyperkalemia. J Infect Chemother 2010;16:1045-9.
25. Marinella MA. Severe hyperkalemia associated with trimethoprim-sulfamethoxazole and spironolactone. Infect Dis Clin Pract 1997;6:257.
26. Schwarz A, Perez-Canto A. Nephrotoxicity of antiinfective drugs. Int J Clin Pharmacol Ther 1998;36:164a.
27. Alapann R, Perazella MA, Buller GK. Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Int J Clin Pract 1993;119:291-5.
28. Medina I, Mills J, Leung G, et al. Oral therapy for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. N Engl J Med 1990;323:776-82.
29. Alapann R, Perazella MA, Buller GK. Hyperkalemia in hospitalized patients treated with trimethoprim-sulfamethoxazole. Int J Clin Pract 1993;119:291-5.
30. Marinella MA. Severe hyperkalemia associated with trimethoprim-sulfamethoxazole and spironolactone. Infect Dis Clin Pract 1997;6:257.
31. Schwarz A, Perez-Canto A. Nephrotoxicity of antiinfective drugs. Int J Clin Pharmacol Ther 1998;36:164a.
52. Lexomboon U, Unkurapiana N. Co-trimoxazole in the treatment of typhoid fever in children with glucose-6-phosphate dehydrogenase deficiency. Southeast Asian J Trop Med Public Health 1978;9:576-80.
53. Markowitz N, Saravolatz LD. Use of trimethoprim-sulfamethoxazole in a glucose-6-phosphate dehydrogenase-deficient population. Rev Infect Dis 1987;9(Suppl 2):S218-20.
54. Jick H. Adverse reactions to trimethoprim-sulfamethoxazole in hospitalized patients. Rev Infect Dis 1982;4:426.
55. Briggs G, Freeman RK, Yaffe SJ. Drugs in pregnancy and lactation: a reference guide to fetal and neonatal risk. Philadelphia (PA): Wolters Kluwer Health/Lippincott Williams & Wilkins; 2011.
56. Czeizel AE, Rockenbauer M, Sørensen HT, et al. The teratogenic risk of trimethoprim-sulfonamides: a population based case-control study. Reprod Toxicol 2001;15:637-46.
57. Hernández-Díaz S, Werler MM, Walker AM, et al. Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 2000;343:1608-14.
58. Mofenson LM, Brady MT, Damer SP, et al. Guidelines for the prevention and treatment of opportunistic infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. MMWR Recomm Rep 2009;58(RR-11):1-166.
59. Tomasulo P. LactMed-new NLM database on drugs and lactation. Med Ref Serv Q 2007:26:51-8.
60. O'Reilly RA. Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphs of racemic warfarin in man. N Engl J Med 1980;302:33-5.
61. O'Reilly RA. Stereoselective interaction of trimethoprim-sulfamethoxazole with the separated enantiomorphs of racemic warfarin in man. N Engl J Med 1980;302:33-5.
62. Flockhart DA. Drug interactions: cytochrome P450 drug interaction table. Indianapolis www.drug-interactions.com (accessed 2011 May 2).
63. Wing LM, Miners JO. Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulfamethoxazole separately and combined on tolbutamide disposition. Br J Clin Pharmacol 1985;20:482-5.
64. O'Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther 1974;16:346.
65. Wing LM, Miners JO. Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulfamethoxazole separately and combined on tolbutamide disposition. Br J Clin Pharmacol 1985;20:482-5.
66. O'Reilly RA. Studies on the optical enantiomorphs of warfarin in man. Clin Pharmacol Ther 1974;16:346.
67. Breckenridge A, Orme M, Wesseling H, et al. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 1974;15:424-30.
68. Kosoglo T, Rocci ML Jr, Vlasses PH. Trimethoprim alters the disposition of procainamide and N-acetylprocainamide. Clin Pharmacol Ther 1988;44:467-77.
69. Fujita T, Urban TJ, Leabman MK, et al. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J Pharm Sci 2006;95:25-36.
70. Katchamart W, Bourre-Tessier J, Donka T, et al. Canadian recommendations for use of methotrexate in patients with rheumatoid arthritis. J Rheumatol 2010;37:1422-30.

Affiliations: From the Division of Clinical Pharmacology (Ho, Juurlink); and the Department of Medicine, University of Toronto, the Institute for Clinical Evaluative Sciences, and Sunnybrook Health Sciences Centre (Juurlink), Toronto, Ont.

Contributors: Both authors conceived and drafted the article, revised it for intellectual content and approved the final version submitted for publication.

Acknowledgements: The authors thank Tony Antoniou for reviewing the manuscript, Anna Pupco from Motherisk for reviewing the section on reproduction, and Henry Lam from the Sunnybrook Health Sciences Centre Library for assisting with the literature search.