Characterization of the murMN Operon Involved in the Synthesis of Branched Peptidoglycan Peptides in Streptococcus pneumoniae

Sergio R. Filipe1,2, Mariana G. Pinho1,2 and Alexander Tomasz1,*

1Laboratory of Microbiology, The Rockefeller University, New York, New York 10021 and 2Molecular Genetics Unit, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

*Corresponding author: Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021; tel (212)327-8278; fax (212)327-8688; e-mail tomasz@rockvax.rockefeller.edu

Running title: Determination of the activity of MurM and MurN in S. pneumoniae
SUMMARY

The murMN operon, recently identified in the genome of Streptococcus pneumoniae, encodes for enzymes involved in the synthesis of branched structured muropeptides in the pneumococcal peptidoglycan: inactivation of murMN causes production of a peptidoglycan composed exclusively of linear muropeptides and a virtually complete loss of resistance in penicillin-resistant strains (Filipe, S., R., and A. Tomasz. 2000. Proc. Natl. Acad. Sci. 97:4891-4896). The experiments described in this paper follow up these observations. Primer extension analysis was used to identify the putative promoter region of the murMN operon in penicillin-susceptible and -resistant strains. Selective inactivation of the murN gene in the penicillin-resistant strain Pen6 caused production of an unusual peptidoglycan that contained only single amino acid residues in the muropeptide branches, indicating that the product of murN was involved with the addition of the second amino acid and the product of murM with the addition of the first amino acid (alanine or serine) to the peptidoglycan crossbridge. Allelic replacement of the mosaic murM gene of strain Pen6 with murM of the penicillin-susceptible laboratory strain caused enrichment of the peptidoglycan in linear muropeptides. The findings suggest that the genetic determinant primarily controlling the synthesis of branched muropeptides in the pneumococcal peptidoglycan is murM.
INTRODUCTION

The cell wall of *Streptococcus pneumoniae* is a heterogeneous polymer composed of peptidoglycan and polysaccharides of different nature (capsular polysaccharides and teichoic acids) and proteins. The peptidoglycan itself is a highly complex molecule composed of a glycan (polymers of N-acetylated and non-acetylated [1] glucosamine and N-acetylmuramic acid residues) with short stem peptides attached to the glycan chains. These peptides, when crosslinked by Penicillin-Binding Proteins (PBPs), interconnect different glycan chains enabling the bacteria to resist high osmotic pressures. The complexity of the peptidoglycan structure has been fully recognized after the introduction of a high-resolution analytical technique, high-pressure liquid chromatography (HPLC) (2). Use of this technique for the analysis of stem peptide composition of the peptidoglycan of clinical and laboratory strains of *S. pneumoniae* showed a species-specific peptidoglycan characterized by highly conserved molar ratios of 18 different muropeptides (3). A peculiar feature of the pneumococcal peptidoglycan is the simultaneous presence of both directly and indirectly crosslinked (branched) components. In the latter, alanyl-serine or alanyl-alanine dipeptides form the cross-bridge between neighboring muropeptides (3-4). In the species-specific peptidoglycan the percentage of these branched peptides, although detectable, is very small (3-5). Cell wall analysis by HPLC of the first high level penicillin resistant clinical isolates, from South Africa and Hungary, revealed that in the peptidoglycan of these strains the proportion of branched muropeptides was greatly increased and this abnormality of wall structure was to a significant degree co-transferred with resistance to penicillin during genetic transformation (6). It has been suggested that the abnormally high proportion of branched muropeptides in the cell wall of the resistant strains may provide the
bacteria with a set of cell wall precursors, the branched structure of which has a better “fit” into
the altered, low affinity active site(s) (7) of the remodeled PBPs of the resistant pneumococcus
(6). However, examination of a larger number of penicillin-resistant isolates showed that the
abnormally high proportion of branched wall peptides was not always associated with resistance
to penicillin. In fact, the abnormality of wall composition detected in several isolates appeared to
be related to the particular genetic lineage rather than being an obligatory correlate of resistance
itself (4, 5).

The molecular mechanism of penicillin resistance in *S. pneumoniae* involves remodelling
of the β-lactam target enzymes, the PBPs, in such a way that their affinity toward the antibiotic
molecule is greatly reduced (7). This is achieved by the construction of *pbp* mosaic genes that
are believed to be the result of heterologous recombinational events – in the case of clinical
isolates (8-10) or mutations in the *pbp* genes in the case of laboratory mutants (11). The recent
identification of the genetic determinants of the cell wall branching system *murMN* (12) has
allowed a reexamination of the relationship between muropeptide structure and penicillin
resistance. It was shown that inactivation of the *murMN* operon resulted in the production of a
peptidoglycan, both in penicillin-sensitive and penicillin-resistant strains, from which all
branched muropeptide components were missing and, concomitantly, there was a complete loss
of penicillin resistance in each one of several penicillin resistant strains examined (12). The
mechanistic connection between the functioning of *murMN* and the expression of the penicillin-
resistant phenotype remains to be elucidated.

Here we report the identification of the sites of action of the MurM and MurN proteins in
the assembly of the dipeptide branches and describe the impacts of selective inactivation of
murN and allelic replacement of murM - on the composition of peptidoglycan.
EXPERIMENTAL PROCEDURES

Strains and growth conditions. All strains and plasmids used in this study are listed in Table 1. *S. pneumoniae* strains were grown in a casein-based semisynthetic medium at 37°C without aeration, as previously described (6). *S. pneumoniae* and *Escherichia coli* strains containing pJDC9 or its derivatives were grown in the presence of 1 µg/ml and 1 mg/ml of erythromycin (Sigma), respectively. Growth rates of the insertionally inactivated mutants of Pen6 were determined with cultures first grown in C+Y containing erythromycin at 1 µg/ml and then diluted 100 fold in fresh C+Y. The OD was then measured at 590 nm over the time.

DNA and RNA techniques. All routine DNA manipulations were performed using standard methods (16-17). The chromosomal DNA from *S. pneumoniae* was isolated as described previously (18). Plasmids were isolated using the Wizard Plus Minipreps DNA Purification System (Promega) and PCR products were purified using the Wizard PCR Preps DNA Purification System (Promega). Oligonucleotides were purchased from Gibco BRL Life Technologies. Nucleotide and derived amino acid sequences were analyzed using DNASTAR software. RNA was prepared from exponentially growing cultures at OD590 of 0.5 and was extracted by using the FastRNA isolation kit (Bio101) according to the recommendations of the manufacturer.

Primer extension analysis. Primer extension analysis was performed by using primer ZOO36 (5’-TGTTCTTTTGACAAACTGATC-3’) (Figure 1), which was end labelled with [γ-32P]ATP and purified with the AGTC Gel Filtration Cartridges (Edge BioSystems). RNA from Pen6, R6Hex and R36A (50 µg) was hybridized with the primer at 65°C for 90 min and slowly
cooled to room temperature. Reversed transcription was carried out by using SuperScript RT (Gibco BRL) at 42°C for 90 min, and the reaction mixture was heated at 65°C for 10 min to inactivate the enzyme. The reaction product was incubated with RNase H (3 U) at 37°C for 30 min, ethanol precipitated, resuspended in 10 µl of Sequenase stop solution, denatured, and applied to a 6% sequencing gel. Sequencing reaction mixtures prepared by using the T7 Sequenase Kit vs2.0 (Amersham Life Sciences) primed by ZOO36 were also applied to the gel.

Transformation and Population Analysis Profiles. *S. pneumoniae* strains were transformed according to published procedures (5). To induce competence, synthetic CSPα was added to the medium at a concentration of 250 ng/ml. The competent cells were then incubated for 30 min at 30°C in the presence of plasmid DNA followed by the addition of 2 ml of C+Y and a 2 hours incubation at 37°C. Transformants were selected on blood agar plates [tryptic soy agar (TSA) + 3% (v/v) sheep blood] containing 1 µg/ml erythromycin. Population analysis profiles (PAPs) were determined by plating serial dilutions of early stationary phase cultures on plates of TSA containing 5% (v/v) of sheep blood (Micropure Medical Inc, White Bear Lake, MN), and different concentrations of Penicillin G (Sigma) (0, 0.01, 0.03, 0.06, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16 µg/ml). The PAPs were done with and without the presence of erythromycin 1 µg/ml in the medium. Plates were incubated at 37°C in a 5% CO₂-in-air atmosphere for 24h and the number of bacteria capable of forming colonies in the presence of various penicillin concentrations was plotted against the concentration of penicillin in the agar medium.

Inactivation of the murN gene. For gene disruption experiments by insertion-duplication mutagenesis, an internal fragment of murN was amplified by PCR using as template chromosomal DNA from R36A, and cloned into pJDC9, a plasmid that does not replicate in *S.
pneumoniae (15). The following primers were used– ZOO1KP (5’-
TATGGTACC GGCGATTTATACCCAACAAG-3’) and ZOO2BM (5’-
TATGGATCC AGTCTCGCGCTTCTGCTTTTC-3’) giving origin to the plasmid pZOO3.

Plasmid pZOO3 was used to inactivate the *murN* gene in Pen6 by transforming competent cells.

Allelic Replacement of the *murM* gene. The abnormal *murM* gene from penicillin resistant Pen6 strain was replaced by the *murM* gene from R36A laboratory strain by transforming competent cells from Pen6 with chromosomal DNA from R36AmurMN (R36A with inactivated *murMN*). Transformants were selected with erythromycin (1 µg/ml) and their penicillin susceptibility was confirmed. Revertants from these transformants that result from the loss of the plasmid inactivating *murMN* were selected by their penicillin resistance and erythromycin susceptibility. The excision of the plasmid carrying the erythromycin resistance marker allowed the reconstruction of active *murM* allele from R36A. The allelic replacement of the *murM* gene was confirmed by PCR amplification using primers ZOO7 (5’-
CATAGCGCTGGAAC TCAC-3’) and ZOO30 (5’-ATATTCTCTACGTTGAGG-3’) followed by restriction with *Pst*I and *Hind*III, two enzyme that cut the Pen6 allele but not the R36A allele.

Cell wall preparation. Pneumococcal cell walls were prepared by a previously published method (4, 19) except for the process of breaking the cells which was done by shaking with acid-washed glass beads with the help of FastPrep FP120 (Bio 101).

Enzymatic digestion of cell walls. Cell wall material (2 mg) was suspended in 25 mM sodium phosphate buffer pH 7.4 and treated with affinity-purified pneumococcal amidase (5 µg) at 37°C for 18-24h with constant stirring. The products were dried, the precipitate was washed
with acetone, and the peptides were extracted with acetonitrile-isopropanol-water (25:25:50) containing 0.1% trifluoroacetic acid as already described (4, 19-20). After removal of the solvents by evaporation in a SpeedVac, the peptides were dissolved in 0.1% trifluoroacetic acid.

Separation and analysis of the cell wall stem peptides. Peptides were separated with a Shimadzu LC-10AVP HPLC system, as described previously (4). The column used was a Vydac 218TP54 (The Separations Group). The peptides were eluted with an 80-min linear gradient from 0% to 15% acetonitrile (Fisher) in 0.1% trifluoroacetic acid (Pierce Chemical Co.) pumped at a flow rate of 0.5 ml/min. The eluted fractions were detected and quantified by determination of their ultraviolet absorption at 210 nm (A_{210}).

Characterization of stem peptides. The stem peptides generated by enzymatic hydrolysis of cell walls of mutants Pen6murN and Pen6murMN were recovered from the HPLC column and dried in the SpeedVac. The amino acid composition (21) and the peptides molecular mass were determined at the Rockefeller University Protein/DNA Technology Center. Approximately 1.1 nmol of sample from the stem peptides 3a, Ia and 7a were used to obtain the sequence of the part of the stem peptide amenable to Edman degradation. The procedure was performed as recommended by the manufacturer’s program in a Hewlett-Packard G-1000A protein sequencer using chemistry 3,5 and the phenylthiohydantoin-derivatives were identified by on-line HPLC at the Rockefeller University Protein/DNA Technology Center.

RESULTS

Determination of the transcription initiation site. Primer extension analysis was performed to determine the transcription start site using the primer ZOO36 that hybridizes with
the *murMN* transcript of Pen6 and R6Hex (Figure 1). Based on this analysis, it was determined that the transcript that includes *murM* can initiate at two different adenine residues (Figure 2A) located 25 and 26 bp upstream of the *murM* start codon in the case of Pen6 (Figure 1). In R6Hex the transcript can initiate at an adenine or a thymine residue located 26 and 27 bp respectively upstream of the *murM* start codon (Figure 2B and 1). These results indicate that the same region contains the promoter in both the penicillin-resistant strain Pen6 and in the susceptible strain R6Hex (Figure 1).

Gene disruption and characterization of the *murMN* and *murN* mutants. Inactivation of the *murMN* operon by insertion duplication mutagenesis in the penicillin resistant strain Pen6 did not cause any significant change in growth rate of the cultures: the mass doubling times of the parental strain Pen6 and its Pen6*murMN* mutant were 34.0±0.5 min and 32.5±0.3 min, respectively. However, when *murN* alone was inactivated the doubling time of the mutant increased to 48.5±0.9 min. The rates of autolysis in the stationary phase of growth were the same for Pen6*murMN* and for the parental strains Pen6 (1.7±0.3 x 10^{-3} min^{-1} and 2.3±0.5 x 10^{-3} min^{-1}, respectively), although the mutant culture started lysing sooner than the parental strain Pen6.

While inactivation of *murMN* caused a virtually complete block in the expression of penicillin resistance (12), inactivation of *murN* resulted only in a modest (two-fold) decrease of the MIC to penicillin (Figure 3) despite the major impact of the inactivation on the composition of the peptidoglycan (see below).

Composition of the peptidoglycan in the Pen6*murMN* and Pen6*murN* strains. The cell wall of the Pen6*murMN* and Pen6*murN* was analyzed by HPLC (Figure 4A and 4B). The stem
peptide composition of the strains shown as a percentage of the total peptides of the peptidoglycan is presented in Table 2, and the corresponding chemical structures are shown in Figure 6. As was shown before (12), disruption of the \textit{murMN} operon led to the disappearance of all branched muropeptide monomers and dimers accompanied by a parallel increase in the percentage of linear-structured stem peptides and in the appearance of novel peptide structures (peptides 10 and 11, Figure 4A).

HPLC analysis of the cell walls of strain Pen6 in which the \textit{murN} gene was inactivated showed major changes in the elution profile of stem peptides (Figure 5B): the branched components found in the peptidoglycan of Pen6 disappeared but in this case there was no increase of the linear peptides. Instead, inactivation of the \textit{murN} led to the appearance of novel peptide components that were not seen before in pneumococcal cell wall preparations. Similarly, these novel stem peptides with anomalous retention times were also detected in the cell walls of the penicillin-susceptible strain R6Hex with inactivated \textit{murN} (data not shown). Nevertheless, there was no change in the degree of crosslinking of the peptidoglycan in the Pen6\textit{murMN} and Pen6\textit{murN} mutants (as seen from the unchanged percentage of monomers relative to the total of peptides in Table 2).

\textbf{Characterization of the novel stem peptides in the \textit{murN} and \textit{murMN} mutants.} Analysis of the peptide composition of the peptidoglycan from the \textit{murN} mutant of Pen6 showed an accumulation of two novel peptides (3a and 1a). Based on the results of molecular weight determination and amino acid composition, peptides 3a and 1a are proposed to be monomers with only one serine or one alanine, respectively, attached to the \(\epsilon\)-NH\(_2\) terminal of the stem peptide lysine residue (Table 3). Components 7a, IV/Va, VIa appear to be dimeric peptides that would
result from the transpeptidation reaction of peptides 3a and Ia.

The structures of the peptides 3a, Ia, and 7a were confirmed by Edman degradation. According to the proposed structures (Table 3), the only sources of free amino termini in stem peptide 3a would be two alanine residues and in stem peptide Ia one alanine and one serine. The results of Edman degradation confirmed these predictions: only one alanine residue was released from peptide 3a and similar amounts of alanine and serine were released from peptide Ia. Edman degradation of peptide 7a resulted in the release of the same number of serine residues as in peptide Ia but twice the amount of alanine, consistent with the proposed structure.

The two new components detected in the peptidoglycan of cells with inactivated murMN operon (peptides 10 and 11) were tentatively identified (on the basis of amino acid composition and molecular mass) as trimers and tetramers composed of linear peptide units (Table 3).

Allelic replacement of murM. The murM alleles from R36A and Pen6 encode proteins that differ by 15% at the amino acid level (12). To determine if the different peptidoglycan types of these two strains were related to the two different murM proteins, we introduced the R36A murM allele into the Pen6 background by genetic transformation, in order to generate the construct Pen6murMR36A. Confirmation of efficient allelic replacement was obtained by sequencing the murMN operon of this mutant (data not shown).

The cell wall composition of the mutant Pen6murMR36A was analyzed by HPLC (Figure 5). The introduction of the murM allele from strain R36A caused a large increase in the representation of the monomeric linear peptide 1 (from 2.5% in the parental strain Pen6 to 17.5% in the allelic replacement mutant), and an increased proportion of the directly crosslinked tri/tetra dimer (from 3.1% to 10.5%). The percentage of branched peptide 3 was decreased from 13.8%
(in Pen6) to around 8.1%, a value similar to that found in R6Hex: 10.3%. (This value was considerably higher than the value found in strain R36A: 2.5%.) There was a considerable reduction in the proportion of the branched peptide I (from 13.9% to 3.6%) and a less pronounced reduction in peptide 3 (from 13.8% to 8.1%).

In spite of the extensive variation in the ratio of branched to linear peptides (from 8.0 in Pen6 to 1.4 in the mutant Pen6murMR36A) the level of crosslinking, determined by the percentage of all crosslinked muropeptide species, was similar in all mutants and in their parental strains (62% in the Pen6murMR36A and 63% in Pen6).

DISCUSSION

The enzymes involved in the addition of lateral peptides to the ε-amino group of lysine have been identified in the Staphylococci family (22-24) and recently in *S. pneumoniae* (12). In the case of *Staphylococcus aureus* the synthesis of the pentaglycine bridge involves three enzymes – FmhB, responsible for the addition of the first glycine to the linear pentapeptide precursor (25) and FemA and FemB involved in the addition of the glycyl residues 2 and 3 (26-27) and glycyl residues 4 and 5 (28), respectively. In *S. aureus*, the *fmhB* gene product was shown to be essential which may be related to the fact that dimers of linear muropeptides are extremely rare in this bacterial species. In contrast to *S. aureus*, *S. pneumoniae* appears to be able to use either linear or branched cell wall precursors as substrates for the PBPs in the crosslinking reaction of peptidoglycan. The disruption of the *murMN* operon did not impair growth indicating that the *murMN* genes are not essential in *S. pneumoniae*. However, the growth rate of the mutant Pen6murN was significantly reduced suggesting that the semibranched
peptides of this mutant may not be used as efficiently for some growth limiting function in *S. pneumoniae*.

A combination of genetic and biochemical studies described in this communication has allowed the clarification of the roles of the *murM* and *murN* gene products, in the assembly of the branched muropeptides.

Inactivation of the *murMN* operon in *S. pneumoniae* abolished the addition of any amino acid residue to the ε-amino group of the stem peptide lysine, resulting in the production of a peptidoglycan that completely lacked muropeptides of branched structure (12). Selective inactivation of *murN* caused the formation of an unusual peptidoglycan in which all dipeptide branches were replaced by branches composed of only one seryl or alanyl residue. These results suggest that the MurN protein is involved with the addition of the second amino acid residue (alanine) and the MurM protein with the addition of the first amino acid (alanine or serine) to the crossbridge.

Interestingly, replacement of the dipeptide bridges by branches composed of single amino acids did not alter the overwhelmingly branched muropeptide composition of strain Pen6: the proportion of branched peptides was 89% in Pen6 and 90% in Pen6*murN* (see Table 2). Furthermore, if one considers all branched muropeptides irrespective of whether they contain one or two amino acid residues, the characteristic proportions of the various specific branched muropeptide species also appeared to be retained in the Pen6*murN* mutant. These observations suggest that the amount of branched muropeptides in the pneumococcal peptidoglycan is primarily determined by the activity of the *murM* gene product.

Additional evidence for the dominant role of *murM* is provided by the changes observed
in the peptidoglycan composition of the penicillin-resistant strain Pen6 in which the mosaic
murM of this strain (12) was replaced by murM of the penicillin-susceptible strain R36A. The
murM alleles from R36A and Pen6 differ by 15% at the amino acid level (12). Comparison of the
peptidoglycan of the two strains shows that Pen6 has a much higher percentage of branched
peptides and can add an alanine or a serine as the first amino acid of the crossbridge, whereas
R36A only adds a serine residue efficiently. These differences may be related to the observed
15% difference at the amino acid level of the MurM. In order to determine if there were in fact
any differences in the activity of the MurM from Pen6 and R36A we transformed the R36A
murM allele into Pen6. This mutant Pen6murMR36A only diverges from the parental strain in the
sequence of murM allele. Data in Table 2 show that the introduction of the R36A allele of murM
shifted the peptidoglycan composition in the direction characteristic of the penicillin-susceptible
strain: the proportion of total branched muropeptides was reduced from 89% (in Pen6) to 58%
(in Pen6murMR36A), which is close to the proportion of branched peptides (55%) in strain
R36A. The ratio of branched to linear peptides also changed from 8.0 (in Pen6) to 1.4 (in
Pen6murMR36A) which is comparable to the ratio (1.3) seen in strain R36A. These results suggest that
the MurM from R36A is not as efficient as the one from Pen6 in the addition of the first amino
acid to the ε-NH₂ group of the lysine residue.

It is conceivable that these differences are related to different rates of transcription of the
two kinds of murM genes. Based on the result obtained by primer extension analysis for the
determination of the transcription initiation sites, we proposed a virtually identical promoter
region for the murM genes in strains Pen6 and R36A/R6Hex. The fact that R6Hex has a murM
allele identical to R36A but has a higher percentage of branched peptides indicates that
additional factors may also contribute to the regulation of the amount of branched peptides in the peptidoglycan. However, when murM allele from R36A is introduced in the background of Pen6 and therefore subject to the same regulation, the observed difference in the peptidoglycan composition should be due only to the differences in the protein. Therefore, compositional differences between the peptidoglycans of resistant and susceptible strains most likely reflect differences in the specific activities of the two types of MurM proteins. This possibility is currently under investigation.

Analysis of the composition of the peptidoglycan from Pen6 and its murN and murMN mutants showed similar proportions of crosslinked species in the peptidoglycan, suggesting that the PBPs from strain Pen6 are not very specific regarding their substrates. In the absence of antibiotic, PBPs seem to be able to use either linear, branched or semi-branched peptides as substrates for the transpeptidation reaction in the synthesis of peptidoglycan. On the other hand, when a β-lactam antibiotic is present in the medium, the bacteria seem to depend on the availability of branched or at least semi-branched peptides for the expression of penicillin resistance. It should be noticed that in strain R6Hex 74% of all stem peptides have branched structure, yet this strain is not resistant to penicillin indicating that the presence of branched peptides alone is not sufficient for the expression of penicillin resistance.

The fact that PBPs can efficiently crosslink either linear, branched or semibranched peptides taken together with the fact that substituting the murM allele of Pen6 by the allele from R36A results in drastic changes in the peptidoglycan composition indicate that the primary determinants of the type of peptidoglycan stem peptide structure (linear versus branched peptides) must be the MurM and MurN genes.
Addendum in proof. Confirmatory evidence for murM and murN and the role(s) of these genes in peptidoglycan structure and expression of β-lactam resistance first described in ref. 12 has appeared recently by Weber et al. (29), who identified the same genes but named them fibA (same as murM) and fibB (same as murN).

ACKNOWLEDGEMENTS

Partial support for these studies was provided by a grant from the National Institutes of Health RO1 AI37275 and by the Irene Diamond Foundation. S. F. was supported by grant BD/9071/96 from PRAXIS XXI from Fundação para a Ciência e Tecnologia. M. P. was supported by grant BD/9079/96 from PRAXIS XXI from Fundação para a Ciência e Tecnologia. We are grateful to Dr. Sandford Lacks for plasmid pJDC9. We also thank Mario Ramirez for stimulating and helpful discussions.
REFERENCES

1 Vollmer, W., and Tomasz, A. (2000) *J. Biol. Chem.*, in press

2 Glauner, B. (1988) *Anal. Biochem.* **172**, 451-464

3 Garcia-Bustos, J.F., Chait, B.T., and Tomasz, A. (1987) *J. Biol. Chem.* **262**, 15400-15405

4 Severin, A., and Tomasz A. (1996) *J. Bacteriol.* **178**, 168-174

5 Severin, A., Figueiredo, A. M. S., and Tomasz, A. (1996) *J. Bacteriol.* **178**, 1788-1792

6 Garcia-Bustos, J. F., and Tomasz, A. (1990) *Proc. Natl. Acad. Sci. USA* **87**, 5414-5419

7 Zighelboim, S., and Tomasz, A. (1980) *Antimicrob. Agents Chemother.* **17**, 434-442

8 Dowson, C. G., Hutchison, A., Brannigan, J. A., George, R. C., Hansman, D., Linares, J., Tomasz, A., Smith, J. M., and Spratt, B. G. (1989) *Proc. Natl. Acad. Sci. USA* **86**, 8842-8846

9 Laible, G., Spratt, B. G., and Hakenbeck, R. (1991) *Mol. Microbiol.* **5**, 1993-2002

10 Martin, C., Sibold, C., and Hakenbeck, R. (1992) *EMBO*. **11**, 3831-3836

11 Grebe, T., and Hakenbeck, R. (1996) *Antimicrob. Agents Chemother.* **40**, 829-834

12 Filipe, S. R., and Tomasz, A. (2000) *Proc. Natl. Acad. Sci USA* **97**, 4891-4896

13 Avery, O.T., Macleod, C.M., *et al.* (1944) *J. Exp. Med.* **79**, 137-157

14 Tiraby, J.G., and Fox, M.S. (1973) *Proc. Natl. Acad. Sci. USA* **70**, 3541-3545

15 Chen, J.D., and Morrison, D.A. (1988) *Gene* **64**, 155-164

16 Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1996) *Current Protocols in Molecular Biology*, Wiley, New York

17 Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

18 Marmur, J. (1961) *J. Mol. Biol.* **3**, 208-218
19 Garcia-Bustos, J. F., Chait, B. T., and Tomasz, A. (1988) *J. Bacteriol.* **170**, 2143-2147

20 Garcia-Bustos, J. F., and Tomasz, A. (1987) *J. Bacteriol.* **169**, 447-453

21 Atherton, N. D. (1989) *Techniques in Protein Chemistry*, T.E. Hugli, ed., vol. 273, Academic Press, NY

22 Sugai, M., Fujiwara, T., Ohta, K., Komatsuzawa, H., Ohara, M., and Suginaka, H. (1997) *J. Bacteriol.* **179**, 4311-4318

23 Thumm, G., and Gotz, F. (1997) *Mol. Microbiol.* **23**, 1251-1265

24 Tschierske, M., Mori, C., Rohrer, S., Ehlert, K., Shaw, K. J., and Berger-Bachi, B. (1999) *FEMS Microbiol. Lett.* **171**, 97-102

25 Rohrer, S., Ehlert, K., Tschierske, M., Labischinski, H., and Berger-Bachi, B. (1999) *Proc. Natl. Acad. Sci. USA* **96**, 9351-9356

26 Maidhof, H., Reinicke, B., Blumel, P., Berger-Bachi, B., and Labischinski, H. (1991) *J. Bacteriol.* **173**, 3507-3513

27 Stranden, A. M., Ehlert, K., Labischinski, H., and Berger-Bachi, B. (1997) *J. Bacteriol.* **179**, 9-16

28 Henze, U., Sidow, T., Wecke, J., Labischinski, H., and Berger-Bachi, B. (1993) *J. Bacteriol.* **175**, 1612-1620

29 Weber, B., Ehlert, K., Diehl, A., Reichmann, P., Labischinski, H., and Hakenbeck, R. (2000) *FEMS Microbiol. Letts.* **188**, 81-85
FIGURE LEGENDS

Figure 1. Nucleotide sequence of the region upstream of murM (Genebank database accession numbers – AJ250766 [Pen6] and AJ250764 [R36A]). Putative promoter region is highlighted by boxed sequences and labelled –10 and –35. The promoter is designated P_{murMN}. Putative ribosome-binding site is underlined and labelled SD. The 5’ ends of the RNA determined by primer extension are labelled +1. Start codon is in boldface and double underlined. The primer ZOO36 is indicated by an arrow. Part of the deduced amino acid sequence of murM from R36A or Pen6/8249 are aligned under the DNA sequence.

Figure 2. Mapping of the 5’ end of the murMN transcript by primer extension from Pen6 (A) and R6Hex (B). The sequencing encompassing the transcription start site (marked by asterisks) is enlarged.

Figure 3. The effect of inactivation of murMN and murN on the expression of penicillin resistance. Overnight cultures of strains R36A (◊), Pen6 (n), mutant Pen6murMN (×) and mutant Pen6murN (ê) were plated at different cell concentrations on blood agar plates containing different concentrations of penicillin and the number of bacterial colonies were counted, as described for population analysis in the Methods.

Figure 4. The effect of destruction of murMN (A) and murN (B) genes on the composition of peptidoglycan. Cell walls prepared from the penicillin-susceptible strain R36A, the penicillin-
resistant construct Pen6, and Pen6 with inactivated murMN or inactivated murN were enzymatically hydrolyzed and analyzed by HPLC for the composition of stem peptides (see Methods).

Figure 5. The effect of allelic replacement of murM on the stem peptide composition of pneumococcal cell wall. The mosaic-structured murM gene carried by the penicillin-resistant construct Pen6 was replaced by murM of the penicillin-susceptible strain R36A, as described in the Methods. The composition of cell walls prepared from Pen6, R36A, and Pen6murMR36A (i.e. Pen6 in which the murM gene was replaced by the allele carried in strain R36A) was analyzed by HPLC.

Figure 6. Structures of stem peptides identified in the peptidoglycan of penicillin-resistant *S. pneumoniae* strain Pen6 and its murMN and murN inactivated derivatives (see refs. 4-6 and this study).
Table 1: Relevant properties of the strains and plasmids used in this study

Strains	Relevant characteristics	Pen MIC µg/ml	Reference
Streptococcus pneumoniae			
R36A	Pen⁵ laboratory strain	0.01	13
R6Hex	Pen⁵ laboratory strain	0.01	14
Pen6	R6Hex transformant with chromosomal DNA from penicillin resistant clinical isolate 8249 and selected for Pen^R	6.0	7
Pen6^{murN}	Pen6 strain with the *murN* gene inactivated	2	This study
Pen6^{murMN}	Pen6 strain with the *murMN* operon inactivated	0.032	12
Pen6^{murMR36A}	Pen6 strain with the *murM* allele from R36A	-	This study
Escherichia coli			
DH5α	RecA endA1 gyrA96 thi-1 hsdR17 supE44relA1 φ80 d lac ZΔ M15		BRL
Plasmids			
pJDC9	*E. coli* plasmid Ery^R		15
pZOO3	pJDC9/0.7kb encoding aa 73-296 of *murN* from R36A		This study
Table 2: Cell wall peptide composition of *S. pneumoniae* R36A, Pen6, Pen6murMN and Pen6murN

Peptides	R36A	Pen6murMN	Pen6	Pen6murN	Pen6murMN	R36A
1	8.2	17.5	2.5	1.6	23.3	12.0
2	0.9	3.1	0.7	2.3	4.3	3.1
3	16.3	8.1	13.8	2.7	0.1	2.5
3a	0.4	0.7	0.1	13.1	0.8	0.4
T	6.0	3.6	13.9	0.7	0.0	1.6
T1	1.8	1.5	0.7	9.4	0.4	1.6
H	2.1	1.6	2.6	0.9	1.3	3.1
4	7.0	10.5	3.1	2.3	20.7	18.9
III	1.7	1.4	3.4	0.7	3.8	1.2
5	8.6	12.6	2.1	1.6	7.4	11.4
6	6.4	6.5	2.4	1.0	11.7	6.4
7	12.1	9.1	10.7	5.7	7.9	6.7
7a	0.5	0.3	0.2	12.6	0.0	1.0
IV	3.3	1.8	6.3	3.7	0.1	2.3
V	6.2	3.3	11.9	1.7	0.3	2.5
IV/VA	1.9	1.4	1.6	16.9	2.4	3.6
8	4.3	4.3	2.4	3.9	2.8	7.6
VI	5.7	1.7	9.8	4.4	2.7	5.9
V1a	3.4	5.7	1.2	8.0	0.2	3.9
9	9.8	5.1	11.2	7.8	0.3	5.4
Total	100	100	100	100	100	100

Monomers

| | 31 | 38 | 38 | 31 | 34 | 26 |

Dimeric

| | 69 | 62 | 63 | 69 | 66 | 75 |

Linear peptides

| | 26 | 42 | 12 | 11 | 67 | 45 |

Branched peptides

| | 74 | 58 | 90 | 90 | 33 | 58 |

All peptides

| | 2.9 | 1.4 | 8.0 | 8.5 | 0.5 | 1.3 |

Horizontal lines in Table: structurally similar stem peptides differing only in the number of aminoacids residues in the peptide branches and/or crosslinks (i.e. peptide 3 and 3a, or 1 and 1a) are grouped together for easier comparison.
Peak	Aminoacid composition	Experimental [M+H]⁺	Calculated [M+H]⁺	Proposed Structure
3a	Glx - 1.0	434.3	432.5	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 1.1			Ser
	Ser - 1.1			
1a	Glx - 1.0	418.3	416.5	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 2.1			Ala
	Ser - 0.0			
7a	Glx - 1.0	918.5	918.0	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 1.5			Ser
	Ser - 0.9			
IV/Va	Glx - 1.0	902.4	902.0	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 2.0			Ala
	Ser - 0.5			
VIa	Glx - 0.8	886.4	886.0	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 2.4			Ala
	Ser - 0.4			
10	Glx - 0.9	1142.6	1142.3	Ala-Gln-Lys
	Lys - 1.0			
	Ala - 1.8			Ala-Gln-Lys-Ala
	Ser - 0.0			Ala-Gln-Lys-Ala
11	Glx - 0.9	Lys - 1.0	Ala - 1.8	Ser - 0.1
----	----------	----------	----------	----------
		1540.8	1540.8	
	Ala-Gln-			Ala-Gln-Lys-
	Lys			Ala-Gln-Lys-
	Ala			Ala-Gln-Lys-Ala
	Ala-Gln-Lys-Ala			Ala-Gln-Lys-Ala
