Differential-algebraic integrability analysis of the
generalized Riemann type and Korteweg–de
dVries hydrodynamical equations

Anatoliy K Prykarpatsky1,2, Orest D Artemovych3,4,
Ziemowit Popowicz3 and Maxim V Pavlov6

1 Department of Mining Geodesy, AGH University of Science and Technology, Craców 30059,
Poland
2 Ivan Franko State Pedagogical University, Drohobych, Lviv region, Ukraine
3 Department of Algebra and Topology, Faculty of Mathematics and Informatics of the Vasyl
Stefanyk Pre-Carpathian National University, Ivano-Frankivsk, Ukraine
4 Institute of Mathematics and Informatics, Tadeusz Kosciuszko University of Technology,
Craców, Poland
5 Institute of Theoretical Physics, University of Wrocław, Poland
6 Department of Mathematical Physics, P.N. Lebedev Physical Institute, 53 Leninskij Prospekt,
Moscow 119991, Russia

E-mail: pryk.anat@ua.fm, artemo@usik.pk.edu.pl, ziemek@ift.uni.wroc.pl and
M.V.Pavlov@lboro.ac.uk

Received 2 March 2010, in final form 21 May 2010
Published 18 June 2010
Online at stacks.iop.org/JPhysA/43/295205

Abstract
A differential-algebraic approach to studying the Lax-type integrability of the
generalized Riemann-type hydrodynamic equations at \(N = 3, 4 \) is devised.
The approach is also applied to studying the Lax-type integrability of the well-
known Korteweg–de Vries dynamical system.

PACS numbers: 02.30.Jr, 02.30.Hq
Mathematics Subject Classification: 35A30, 35G25, 35N10, 37K35, 58J70,
58J72, 34A34

1. Introduction

Nonlinear hydrodynamic equations are of constant interest since the classical works by
Riemann in the general three-dimensional case, having paid special attention to their one-
dimensional spatial reduction, for which he devised the generalized method of characteristics
and Riemann invariants. These methods appeared to be very effective [1, 4] in investigating
many types of nonlinear spatially one-dimensional systems of hydrodynamical type and, in
particular, the characteristic method in the form of a ‘reciprocal’ transformation of variables
has been used recently in studying the so-called Gurevich–Zybin system [2, 3] in [14] and
the Whitham type system in [10, 12, 15]. Moreover, this method was further effectively applied to studying solutions to a generalized [11] (owing to Holm and Pavlov) Riemann-type hydrodynamical system

\[D_t^N u = 0, \quad D_t := \partial/\partial t + u\partial/\partial x, \quad N \in \mathbb{Z}_+, \]

where \(u \in C^\infty(\mathbb{R}^2; \mathbb{R}) \) is a smooth function. The case \(N = 2 \) was recently analyzed in detail in [10, 11] making use of the standard symplectic theory techniques. In particular, it was demonstrated that the Riemann-type hydrodynamical system (1.1) at \(N = 2 \), looking upon putting \(\zeta := D_t u \) equivalently as

\[u_t = \zeta - uu_x, \quad \zeta_t = -uz_x \]

allows the Lax-type representation

\[\partial f/\partial x = \ell[u, \zeta; \lambda] f, \quad \partial f/\partial t = p(\ell) f, \quad p(\ell) := -u\ell[u, \zeta; \lambda] + q(\lambda), \]

where \(f \in C^\infty(\mathbb{R}^2; \mathbb{C}^2) \) and \(\lambda \in \mathbb{C} \) is an arbitrary spectral parameter. Making use of a method devised in [20–22] and based on the spectral theory and related very complicated symplectic theory relationships in [10, 11, 13] the corresponding Lax-type representations for the cases \(N = 3, 4 \) were constructed in explicit form.

In this work a new and very simple differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic equations at \(N = 3, 4 \) is devised. It can be easily generalized for treating the problem for arbitrary integers \(N \in \mathbb{Z}_+ \). The approach is also applied to studying the Lax-type integrability of the well-known Korteweg–de Vries dynamical system.

2. The differential-algebraic description of the Lax-type integrability of the generalized Riemann-type hydrodynamical equation at \(N = 3 \) and \(4 \)

2.1. The differential-algebraic preliminaries

Take the ring \(\mathcal{K} := \mathbb{R}[\{x, t\}, (x, t) \in \mathbb{R}^2] \), of convergent germs of real-valued smooth functions from \(C^\infty(\mathbb{R}^2; \mathbb{R}) \) and construct [5–9] the associated differential polynomial ring \(\mathcal{K}\{u\} := \mathcal{K}[\Theta u] \) with respect to a functional variable \(u \), where \(\Theta \) denotes the standard monoid of all commuting differentiations \(\partial/\partial x := D_x \) and \(\partial/\partial t \). The ideal \(I\{u\} \subset \mathcal{K}\{u\} \) is called [6, 7] differential if the condition \(I\{u\} = \Theta I\{u\} \) holds.

Consider now the additional differentiation

\[D_t : \mathcal{K}\{u\} \rightarrow \mathcal{K}\{u\}, \]

depending on the functional variable \(u \), which satisfies the Lie-algebraic commutator condition

\[[D_t, D_x] = (D_x u) D_t \]

for all \((x, t) \in \mathbb{R}^2 \). As a simple consequence of (2.2) the general (suitably normalized) representation of the differentiation (2.1)

\[D_t = \partial/\partial t + u\partial/\partial x \]
in the differential ring $K[u]$ holds. Impose now on the differentiation (2.1) a new algebraic constraint
\[D^N_t u = 0, \quad (2.4) \]
defining some smooth functional set (or ‘manifold’) $M^{(N)}$ of functions $u \in \mathbb{R}[[x, t]]$, and which allows to reduce naturally the initial ring $K[u]$ to the basic ring $K[u]_{|M^{(N)}} \subseteq \mathbb{R}[[x, t]]$. In this case the following natural problem of constructing the corresponding representation of differentiation (2.1) arises: to find an equivalent linear representation of the reduced differentiation $D_t|_{M^{(N)}} : \mathbb{R}^{p(N)}[[x, t]] \to \mathbb{R}^{p(N)}[[x, t]]$ in the functional vector space $\mathbb{R}^{p(N)}[[x, t]]$ for some specially chosen integer dimension $p(N) \in \mathbb{Z}^+$. As it will be shown below for the cases $N = 3$ and $N = 4$, this problem is completely analytically solvable, giving rise to the corresponding Lax-type integrable nonlinear Korteweg–de Vries dynamical system (1.1). Moreover, the same problem is also solvable for the more complicated constraint
\[D_t u - D_3^1 u = 0, \quad (2.5) \]
equivalent to the well-known Lax-type integrable nonlinear Korteweg–de Vries dynamical system.

2.2. The generalized Riemann-type hydrodynamical equation: the case $N = 3$

To proceed with analyzing the above-formulated representation problem for the generalized Riemann-type equation (2.4) at $N = 3$, we first construct an adjoint to the differential ring $K[u]$ invariant with respect to differentiation (2.3) so-called Riemann differential ideal $R[u] \subset K[u]$ as
\[R[u] := \left\{ \lambda \sum_{n \in \mathbb{Z}^+} f^{(1)}_n D^n_t u - \sum_{n \in \mathbb{Z}^+} f^{(2)}_n D^n_3 u + \sum_{n \in \mathbb{Z}^+} f^{(3)}_n D^n_t D^n_3 u : D^n_t u = 0, \right\} \subset K[u], \quad (2.6) \]
where $\lambda \in \mathbb{R}$ is an arbitrary parameter, and formulate the following simple but important lemma.

Lemma 2.1. The kernel $\text{Ker} \ D_t \subset R[u]$ of the differentiation $D_t : K[u] \to K[u]$, reduced modulo the Riemann differential ideal $R[u] \subset K[u]$, is generated by elements satisfying the linear functional–differential relationships
\[D_t f^{(1)} = 0, \quad D_t f^{(2)} = \lambda f^{(1)}, \quad D_t f^{(3)} = f^{(2)}, \quad (2.7) \]
where, by definition, $f^{(k)} := f^{(k)}(\lambda) = \sum_{n \in \mathbb{Z}^+} f^{(k)}_n \lambda^n \in K[u]_{|M^{(N)}}, k = 1, 3$ and $\lambda \in \mathbb{R}$ is arbitrary.

It is easy to see that equations (2.7) can be equivalently rewritten both in the matrix form as
\[D_t f = q(\lambda) f, \quad q(\lambda) := \begin{pmatrix} 0 & 0 & 0 \\ \lambda & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad (2.8) \]
where $f := (f^{(1)} , f^{(2)} , f^{(3)})^T \in K^3[u]_{|M^{(N)}}$ and $\lambda \in \mathbb{R}$ is an arbitrary ‘spectral’ parameter, and in the compact scalar form as
\[D^3_t f_3 = 0 \quad (2.9) \]
for an element \(f_3 \in \mathcal{K}[u] \). Here it is noteworthy that the Riemann differential ideal (2.6), satisfying the \(D_t \)-invariance condition, is in this case maximal. Now we can construct by means of relationship (2.9) a new invariant, the so-called Lax differential ideal \(L[u] \subset \mathcal{K}[u] \), isomorphic to the Riemann differential ideal \(R[u] \subset \mathcal{K}[u] \) and realizing the Lax-type integrability condition of the Riemann-type hydrodynamical equation (1.1). Namely, based on the result of lemma 2.1 the following proposition holds.

Proposition 2.2. Expression (2.8) is an adjoint linear matrix representation in the space \(\mathbb{R}^3 \{x, t\} \) of the differentiation \(D_t : \mathcal{K}[u] \to \mathcal{K}[u] \), reduced to the ideal \(R[u] \subset \mathcal{K}[u] \). The related \(D_t \)- and \(D_r \)-invariant Lax differential ideal \(L[u] \subset \mathcal{K}[u] \), which is isomorphic to the invariant Riemann differential ideal \(R[u] \subset \mathcal{K}[u] \), is generated by the element \(f_3(\lambda) \in \mathcal{K}[u], \lambda \in \mathbb{R} \), satisfying condition (2.9), and equals

\[
L[u] := \left\{ g_1 f_3(\lambda) + g_2 D_t f_3(\lambda) + g_3 D_t^2 f_3(\lambda) : D_t^3 f_3(\lambda) = 0, \lambda \in \mathbb{R}, g_j \in \mathcal{K}[u], j = 1, 2, 3 \right\} \subset \mathcal{K}[u].
\]

We now construct a related adjoint linear matrix representation in the functional vector space \(\mathbb{R}^3 \{x, t\} \) for the differentiation \(D_x : \mathcal{K}[u] \to \mathcal{K}[u] \), reduced modulo the Lax differential ideal \(L[u] \subset \mathcal{K}[u] \). For this problem to be solved, we need to take into account the commutator relationship (2.2) and the important invariance condition of the Lax differential ideal \(L[u] \subset \mathcal{K}[u] \) with respect to the differentiation \(D_x : \mathcal{K}[u] \to \mathcal{K}[u] \). As a result of simple but slightly tedious calculations one obtains the matrix representation

\[
D_x f = \ell[u, v, z; \lambda] f, \quad \ell[u, v, z; \lambda] := \begin{pmatrix}
\lambda u_x & -v_z & z_x \\
3\lambda^2 & -2\lambda u_x & \lambda v_x \\
6\lambda^2 r[u, v, z]
\end{pmatrix}, \tag{2.11}
\]

where, by definition, \(v := D_t u, z := D_t v, (\cdots)_x := D_x (\cdots) \), a vector \(f \in \mathbb{R}^3 \{x, t\} \), \(\lambda \in \mathbb{R} \) is an arbitrary spectral parameter and a smooth functional mapping \(r : \mathcal{M}(3) \to \mathbb{R}^3 \{x, t\} \), \(\mathcal{M}(3) := \cap_{j=1}^3 D_t^j \mathcal{M}(3) \), solve the following functional-differential equation:

\[
D_r + r D_t u = 1. \tag{2.12}
\]

Moreover, the matrix \(\ell := \ell[u, v, z; \lambda] : \mathbb{R}^3 \{x, t\} \to \mathbb{R}^3 \{x, t\} \) satisfies the determining functional-differential equation

\[
D_x \ell + \ell D_x u = [q(\lambda), \ell], \tag{2.13}
\]

where \([\cdot, \cdot]\) denotes the usual commutator in the functional space \(\mathbb{R}^3 \{x, t\} \). The following proposition solving the representation problem posed above holds.

Proposition 2.3. Expression (2.11) is an adjoint linear matrix representation in the space \(\mathbb{R}^3 \{x, t\} \) of the differentiation \(D_x : \mathcal{K}[u] \to \mathcal{K}[u] \), reduced modulo the invariant Lax differential ideal \(L[u] \subset \mathcal{K}[u] \), given by (2.10).

Remark 2.4. Here it is necessary to mention that the matrix representation (2.8) coincides completely with that obtained before in the work [11] by means of completely different methods, based mainly on the gradient-holonomic algorithm, devised in [20–22]. The presented derivation of these representations (2.8) and (2.11) is much easier and simpler that can be explained by a deeper insight into the integrability problem, devised above using the differential-algebraic approach.

To proceed further, it is now worth observing that the invariance condition for the Lax differential ideal \(L[u] \subset \mathcal{K}[u] \) with respect to the differentiations \(D_r, D_t : \mathcal{K}[u] \to \mathcal{K}[u] \)
is also equivalent to the related Lax-type representation for the generalized Riemann-type equation (1.1) in the following dynamical system form:

\[
\begin{align*}
 u_t &= v - uu_x, \\
 v_t &= z - uv_x, \\
 z_t &= -uz_x,
\end{align*}
\]

(2.14)

Namely, the following theorem, summing up the results obtained above, holds.

Theorem 2.5. The linear differential-matrix expressions (2.8) and (2.11) in the space \(\mathbb{R}^3[(x, t)] \) for differentiations \(D_x : \mathcal{K}[u] \to \mathcal{K}[u] \) and \(D_t : \mathcal{K}[u] \to \mathcal{K}[u] \), respectively, provide us with the standard Lax-type representation for the generalized Riemann-type equation (1.1) in the equivalent dynamical system form (2.14), thereby implying its Lax-type integrability.

The next problem of great interest is to construct, making use of the differential-algebraic tools, the functional-differential solutions to the determining equation (2.17), and to construct the corresponding differential-algebraic analogs of the symplectic structures characterizing the differentiations \(D_x, D_t : \mathcal{K}[u] \to \mathcal{K}[u] \), as well as the local densities of the related conservation laws, which were derived in [11, 13].

2.3. The solution set analysis of the functional-differential equation \(D_x r + r D_x u = 1 \)

We consider the generalized Riemann-type dynamical system (2.14) on a suitable \(2\pi \)-periodic functional manifold \(\mathcal{M}_{(3)} \subset \mathbb{R}^3[(x, t)] \):

\[
\begin{align*}
 u_t &= v - uu_x, \\
 v_t &= z - uv_x, \\
 z_t &= -uz_x,
\end{align*}
\]

(2.15)

which, as shown above and in [11, 13], possesses the Lax-type representation

\[
\begin{align*}
 f_x &= \ell[u, v, z; \lambda] f, \\
 f_t &= p(\ell) f, \\
 p(\ell) f_t &= p(\ell) := -u(\ell[u, v, z; \lambda]) + q(\lambda),
\end{align*}
\]

\[
\ell[u, v, z; \lambda] = \begin{pmatrix}
 \lambda u_x & -v_x & z_x \\
 3\lambda^2 & -2\lambda u_x & \lambda v_x \\
 6\lambda^2 r[u, v, z] & -3\lambda^2 & \lambda u_x
\end{pmatrix},
\]

(2.16)

\[
q(\lambda) := \begin{pmatrix}
 0 & 0 & 0 \\
 \lambda & 0 & 0 \\
 0 & 1 & 0
\end{pmatrix},
\]

where \(f \in L_\infty(\mathbb{R}; \mathbb{R}^3) \), \(\lambda \in \mathbb{R} \) is an arbitrary spectral parameter and a function \(r : \mathcal{M} \to \mathbb{R} \) satisfies the functional-differential equation

\[
D_x r + r D_x u = 1
\]

(2.17)

under the commutator condition (2.2).

Below we will describe all functional solutions to equation (2.17), making use of the lemma in [10, 13].

Lemma 2.6. The functions

\[
B_0 = \xi(z), \quad B_1 = u - tv + zt^2/2, \quad B_2 = v - zt, \quad B_3 = x - tu + vt^2/2 - zt^3/6,
\]

(2.18)
where $\xi : D^2_2 M \to \mathbb{R}\{x, t\}$ is an arbitrary smooth mapping, are the main invariants of the Riemann-type dynamical system (2.15), satisfying the determining condition

$$D_2 B = 0. \quad (2.19)$$

As a simple consequence of relationships (2.18) the next lemma holds.

Lemma 2.7. The local functionals

$$b_0 := \xi(z), \quad b_1 := \frac{u}{z} - \frac{v^2}{2z^2}, \quad b_2 := \frac{u}{z} - \frac{v^2}{2z}, \quad b_3 := x - \frac{uv}{z} + \frac{v^3}{3z^2} \quad (2.20)$$

and

$$\tilde{b}_1 := \frac{v}{z}, \quad \tilde{b}_2 := \frac{v}{z}$$

on the functional manifold $\tilde{M}_1(3)$ are the basic functional solutions $b_j : \tilde{M}_1(3) \to \mathbb{R}\{x, t\}$, $j = 0, 3$, and $b_k : M(3) \to \mathbb{R}\{x, t\}$, $k = 1, 2$, to the determining functional-differential equations

$$D_2 b = 0 \quad (2.21)$$

and

$$D_2 b = 1, \quad (2.22)$$

respectively.

Now one can formulate the following theorem about the general solution set to the functional-differential equation (2.21).

Theorem 2.8. The infinite hierarchies

$$\eta^{(n)}_{1,j} := (\alpha D_x)^n b_j, \quad \eta^{(n)}_{2,k} := (\alpha D_x)^{n+1} b_k, \quad (2.23)$$

where $\alpha := 1/z$, $j = 0, 3$, $k = 1, 2$ and $n \in \mathbb{Z}_+$, are the basic functional solutions to the functional-differential equation (2.21), that is,

$$D_2 \eta^{(n)}_{s,j} = 0 \quad (2.24)$$

for $s = 1, 2$, $j = 0, 3$ and all $n \in \mathbb{Z}_+$.

Proof. It is enough to observe that for any smooth solutions b and $\tilde{b} : \tilde{M}_1(3) \to \mathbb{R}\{x, t\}$ to functional-differential equations (2.21) and (2.22), respectively, the expressions $(\alpha D_x) b$ and $(\alpha D_x) \tilde{b}$ are solutions to the determining functional-differential equation (2.21). Iterating the operator αD_x, one obtains the theorem statement. \(\square\)

We proceed now to analyze the solution set to the functional-differential equation (2.17), making use of the transformation

$$r := \frac{a}{\alpha \eta}. \quad (2.25)$$

where $\eta : \tilde{M}_1(3) \to \mathbb{R}\{x, t\}$ is any solution to equation (2.24) and a smooth functional mapping $a : M(3) \to \mathbb{R}\{x, t\}$ satisfies the following determining functional-differential equation:

$$D_2 a = \alpha \eta. \quad (2.26)$$
Then any solution to functional-differential equation (2.17) has the form
\[
r = \frac{a}{\alpha \eta} + \eta_0, \quad (2.27)
\]
where \(\eta_0 : \tilde{\mathcal{M}}_{(3)} \to \mathbb{R}[[x, t]]\) is any smooth solution to the functional-differential equation (2.24).

To find solutions to equation (2.26), we make use of the linear \(\alpha\)-expansion in the corresponding Riemann differential ideal \(R[\alpha] \subseteq \mathcal{K}[\alpha]\)
\[
a = c_3 + c_0 \alpha + c_1 \dot{\alpha} + c_2 \ddot{\alpha} \in R[\alpha], \quad (2.28)
\]
where \(\dot{\alpha} := D \alpha, \ddot{\alpha} := D^2 \alpha\) and taking into account that all functions \(\alpha, \dot{\alpha}\) and \(\ddot{\alpha}\) are functionally independent owing to the fact that \(\dddot{\alpha} := D^3 \alpha = 0\). As a result of substitution (2.28) into (2.26), we obtain the relationships
\[
\dot{c}_1 + c_0 = 0, \quad \dot{c}_0 = \eta, \quad \dot{c}_2 + c_1 = 0, \quad \dot{c}_3 + c_2 = 0. \quad (2.29)
\]
Whence, owing to (2.22) we have at the special solution \(\eta = 1\) to equation (2.24) two functional solutions for the mapping \(c_0 : \tilde{\mathcal{M}}_{(3)} \to \mathbb{R}[[x, t]]\):
\[
c_0^{(1)} = \frac{v}{z}, \quad c_0^{(2)} = \frac{v_x}{z_x}. \quad (2.30)
\]
As a result, solving the recurrent functional equations (2.29) yields
\[
a^{(1)}_2 = [(xv - u^2/2)/z]_x, \quad a^{(2)}_2 = \frac{v_x}{z_x} - \frac{u_x^2}{2z_x^2}, \quad (2.31)
\]
giving rise to the following three functional solutions to (2.17):
\[
r^{(1)}_1 = \frac{v_x^3}{6z^3} - \frac{u_x v_x^2}{2z^2} + \frac{u(u_{xx} - v^2)z_x}{6z^3} + \frac{v}{z}, \quad (2.32)
\]
\[
r^{(2)}_1 = (xv - u^2/2)/z]_x, \quad r_2 = \frac{v_x}{z_x} - \frac{u_x}{2z_x}. \quad (2.33)
\]
Having now chosen the next special solution \(\eta := b_2 = \frac{u_x}{z} = \frac{v_x}{z_x}\) to equation (2.24), one easily obtains from (2.29) that the functional expression
\[
r^{(3)} = \left(\frac{u_x^2}{6z_x^3} - \frac{u_x v_x}{2z_x^2} + \frac{3}{4z_x} \right) \left(\frac{u_x}{z_x} - \frac{v_x^2}{2z_x^2} \right) \quad (2.34)
\]
also solves the functional-differential equation (2.29). Proceeding as above, one can construct an infinite set \(\Omega\) of the desired solutions to the functional-differential equation (2.29) on the manifold \(\tilde{\mathcal{M}}_{(3)}\). Thereby one has the following theorem.

Theorem 2.9. The complete set \(\mathcal{R}\) of functional-differential solutions to equation (2.17) on the manifold \(\tilde{\mathcal{M}}_{(3)}\) is generated by functional solutions in the form (2.27) to the reduced functional-differential equations (2.24) and (2.26).

In particular, the subset
\[
\tilde{\mathcal{R}} = \left\{ \left. r^{(1)}_1 = \frac{v_x v^3}{6z^3} - \frac{u_x v_x^2}{2z^2} + \frac{u(u_{xx} - v^2)z_x}{6z^3} + \frac{v}{z} \right| + \left(\frac{u_x}{z_x} - \frac{v_x^2}{2z_x^2} \right), \quad (2.34) \quad \right\} \subseteq \mathcal{R}
\]
coincides exactly with that found in [10, 11, 13].
2.4. The generalized Riemann-type hydrodynamical equation: the case $N = 4$

Now consider the generalized Riemann-type differential equation (1.1) at $N = 4$

\[D_t^4 u = 0 \]

(2.35)

on an element $u \in \mathbb{R}[[x, t]]$ and construct the related invariant Riemann differential ideal $R[u] \subset \mathcal{K}[u]$ as follows:

\[
R[u] := \left\{ \sum_{n \in \mathbb{Z}} f_n^{(1)} D_n^4 u - \sum_{n \in \mathbb{Z}} f_n^{(2)} D_t D_n^3 u + \sum_{n \in \mathbb{Z}} f_n^{(3)} D_t^2 D_n^2 u - \sum_{n \in \mathbb{Z}} f_n^{(4)} D_t^3 D_n^1 u : D_t^4 u = 0, \lambda \in \mathbb{R}, f_n^{(k)} \in \mathcal{K}[u], k = 1, 4, n \in \mathbb{Z} \right\}
\]

(2.36)

at a fixed function $u \in \mathbb{R}[[x, t]]$. The Riemann differential ideal (2.36), satisfying the D_t-invariance condition, is in this case also maximal. The corresponding kernel $\text{Ker } D_t \subset R[u]$ of the differentiation $D_t : \mathcal{K}[u] \to \mathcal{K}[u]$, reduced modulo the Riemann differential ideal (2.36), is given by the linear differential relationships

\[
D_t f^{(1)} = 0, \quad D_t f^{(2)} = \lambda f^{(1)}, \quad D_t f^{(3)} = \lambda f^{(2)}, \quad D_t f^{(4)} = \lambda f^{(3)},
\]

(2.37)

where $f^{(k)} := f^{(k)}(\lambda) = \sum_{n \in \mathbb{Z}} f_n^{(k)} \lambda^n \in \mathcal{K}[u] |_{M_u} = \mathbb{R}[[x, t]], k = 1, 4$ and $\lambda \in \mathbb{R}$ is arbitrary. The linear relationships (2.37) can be easily represented in the space $\mathbb{R}^4[[x, t]]$ in the matrix form

\[
D_t f = q(\lambda) f, \quad q(\lambda) := \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \lambda & 0 & 0 \\ 0 & 0 & \lambda & 0 \\ 0 & 0 & 0 & \lambda \end{pmatrix},
\]

(2.38)

where $f := (f^{(1)}, f^{(2)}, f^{(3)}, f^{(4)})^T \in \mathbb{R}^4[[x, t]]$, and $\lambda \in \mathbb{R}$. Moreover, it is easy to observe that relationships (2.37) can be equivalently rewritten in the compact scalar form as

\[
D_t^4 f^{(4)} = 0,
\]

(2.39)

where an element $f_4 \in \mathcal{K}[u]$. Thus, now one can construct the invariant Lax differential ideal, isomorphically equivalent to (2.36), as follows:

\[
L[u] := \{ g_1 D_t^4 f^{(4)} + g_2 D_t D_t^3 f^{(4)} + g_3 D_t^2 D_t^2 f^{(4)} + g_4 D_t^3 D_t f^{(4)} : D_t^4 f^{(4)} = 0, g_j \in \mathcal{K}[u], j = 1, 4 \} \subset \mathcal{K}[u],
\]

(2.40)

whose D_t-invariance should be checked separately. The latter gives rise to the representation

\[
D_t f = \ell[u, v, w, z; \lambda] f, \quad \ell[u, v, w, z; \lambda] := \begin{pmatrix} -\lambda^3 u_x & \lambda^2 v_x & -\lambda u_x & z_x \\ -4\lambda^4 & 3\lambda^3 u_x & -2\lambda^2 v_x & \lambda w_x \\ -10\lambda^5 r_1 & 6\lambda^4 & -3\lambda^3 u_x & \lambda^2 v_x \\ 20\lambda^5 r_2 & 10\lambda^4 r_1 & -4\lambda^4 & \lambda^3 u_x \end{pmatrix},
\]

(2.41)

where we put, by definition,

\[
D_t u := v, \quad D_t v := w, \quad D_t w := z, \quad D_t z := 0,
\]

(2.42)

$(u, v, w, z)^T \in \mathcal{M}_4 \subset \mathbb{R}^4[[x, t]]$, and the mappings $r_j : \mathcal{M}_4 \to \mathbb{R}[[x, t]], j = 1, 2$, satisfy the functional-differential equations

\[
D_t r_1 + r_1 D_t u = 1, \quad D_t r_2 + r_2 D_t u = r_1,
\]

(2.43)
Lax-type representation, characterizing the integrability of the nonlinear dynamical system (2.45), equivalent to the generalized Riemann-type hydrodynamical system (2010) 295205 Anatoliy K Prykarpatsky. Theorem 2.11. Following theorem holds.

Expressions (2.38) and (2.41) are the linear matrix representations in the space $\mathbb{R}^4[x, t]$ of the differentiations $D_t : \mathcal{K}[u] \to \mathcal{K}[u]$ and $D_x : \mathcal{K}[u] \to \mathcal{K}[u]$, respectively, reduced modulo the invariant Lax differential ideal $L[u] \subset \mathcal{K}[u]$ given by (2.10).

Whence, we obtain the following proposition.

Proposition 2.10. Expressions (2.38) and (2.41) are the linear matrix representations in the space $\mathbb{R}^4[x, t]$ of the differentiations $D_t : \mathcal{K}[u] \to \mathcal{K}[u]$ and $D_x : \mathcal{K}[u] \to \mathcal{K}[u]$, respectively, reduced modulo the invariant Lax differential ideal $L[u] \subset \mathcal{K}[u]$ given by (2.10).

Based now on the representations (2.38) and (2.41) one easily constructs a standard Lax-type representation, characterizing the integrability of the nonlinear dynamical system:

\[
\begin{align*}
 u_t &= v - uu_x, \\
 v_t &= w - uv_x, \\
 w_t &= z - uw_x, \\
 z_t &= -uz_x
\end{align*}
\]

equivalent to the generalized Riemann-type hydrodynamical system (2.35). Namely, the following theorem holds.

Theorem 2.11. The dynamical system (2.45), equivalent to the generalized Riemann-type hydrodynamical system (2.35), possesses the Lax-type representation

\[
f_x = \ell[u, v, w, z; \lambda] f, \quad f_t = p(\ell) f, \quad p(\ell) := -u \ell[u, v, w, z; \lambda] + q(\lambda),
\]

where $f \in \mathbb{R}^4[x, t]$, $\lambda \in \mathbb{R}$ is a spectral parameter and

\[
\begin{align*}
 \ell[u, v, w, z; \lambda] := & \begin{pmatrix}
 -\lambda v_x & \lambda^2 v_x & -\lambda w_x & z_x \\
 -4\lambda^4 & 3\lambda^3 u_x & -2\lambda^2 v_x & \lambda w_x \\
 -10\lambda^5 r_1 & 6\lambda^4 & -3\lambda^3 u_x & \lambda^2 v_x \\
 -20\lambda^6 r_2 & 10\lambda^5 r_1 & -4\lambda^4 & \lambda^3 u_x
 \end{pmatrix}, \\
 q(\lambda) := & \begin{pmatrix}
 0 & 0 & 0 & 0 \\
 \lambda & 0 & 0 & 0 \\
 0 & \lambda & 0 & 0 \\
 0 & 0 & \lambda & 0
 \end{pmatrix}, \\
 p(\ell) := & \begin{pmatrix}
 \lambda u_x & -\lambda^2 w_x & \lambda u_x & -\lambda z_x \\
 \lambda + 4\lambda^4 u & -3\lambda^3 u_x & 2\lambda^2 v_x & -\lambda^2 w_x \\
 10\lambda^5 r_1 & \lambda - 6\lambda^4 u & 3\lambda^3 u_x & -\lambda^2 w_x \\
 20\lambda^6 r_2 & -10\lambda^5 r_1 & \lambda + 4\lambda^4 u & -\lambda^3 u_x
 \end{pmatrix}.
\]

so it is a Lax-type integrable dynamical system on the functional manifold $\mathcal{M}(\delta)$.
The result obtained above can be easily generalized in the case of an arbitrary integer
$N \in \mathbb{Z}_+$, thereby proving the Lax-type integrability of the whole hierarchy of the Riemann-type hydrodynamical equation (1.1). The related calculations will be presented and discussed in other work. Here we only do the next remark.

Remark 2.12. The Riemann-type hydrodynamical equation (1.1) as $N \to \infty$ can be equivalently rewritten as the Benney-type \cite{4,16,17} chain

$$D_t u^{(n)} = u^{(n+1)}, \quad D_t := \partial/\partial t + u^{(0)} \partial/\partial x,$$

for the suitably constructed moment functions $u^{(n)} := D_t^n u^{(0)}$, $u^{(0)} := u \in \mathbb{R}[\{x, t\}]$, $n \in \mathbb{Z}_+$.

This aspect of the problem is very interesting and we plan to treat it in detail by means of the differential-geometric tools elsewhere.

3. The differential-algebraic analysis of the Lax-type integrability of the Korteweg–de Vries dynamical system

3.1. The differential-algebraic problem setting

We consider the well-known Korteweg–de Vries equation (2.5) in the differential-algebraic form

$$D_t u - D^3_x u = 0,$$

where $u \in \mathcal{K}[u]$ and the differentiations $D_t := \partial/\partial t + u \partial/\partial x$, $D_x := \partial/\partial x$ satisfy the commutation condition (2.2):

$$[D_x, D_t] = (D_t u)D_x.$$

We will also interpret relationship (3.1) as a nonlinear dynamical system

$$D_t u = D_{xxx} u$$

on a suitably chosen functional manifold $\mathcal{M} \subset \mathbb{R}[\{x, t\}]$.

Based on expression (3.1) we can easily construct a suitable invariant KdV-differential ideal $\text{KdV}[u] \subset \mathcal{K}[u]$ as follows:

$$\text{KdV}[u] := \left\{ \sum_{k=0}^{2} \sum_{n \in \mathbb{Z}_+} f^{(k)}_n D^k_t D^n_x u \in \mathcal{K}[u] : D_t u - D^3_x u = 0, \quad f^{(k)}_n \in \mathcal{K}[u], \quad k = 0, 2, n \in \mathbb{Z}_+ \right\} \subset \mathcal{K}[u].$$

The ideal (3.4) proves to be not maximal that seriously influences on the form of the reduced modulo it representations of derivatives D_x and $D_t : \mathcal{K}[u] \to \mathcal{K}[u]$. As the next step we need to find the kernel $\text{Ker} D_t \subset \text{KdV}[u]$ of the differentiation $D_t : \mathcal{K}[u] \to \mathcal{K}[u]$, reduced modulo the KdV-differential ideal (3.4). We obtain by means of easy calculations that it is generated by the differential relationships

$$D_t f^{(0)} = -\lambda f^{(0)}, \quad D_t f^{(2)} = -\lambda f^{(2)} + 2f^{(2)}D_x u,$$

where, by definition, $f^{(k)}(\lambda) = \sum_{n \in \mathbb{Z}_+} f^{(k)}_n \lambda^n \in \mathcal{K}[u]|_{\mathcal{M}} = \mathbb{R}[\{x, t\}]$, $k = 0, 2$, and $\lambda \in \mathbb{R}$ is an arbitrary parameter. Based on the relationships (3.5) the following proposition holds.

10
Theorem 3.2. The differential relationships (3.5) can be equivalently rewritten in the linear matrix form

\[D_t f = q(\lambda) f, \quad q(\lambda) := \begin{pmatrix} D_t u - \lambda & D_{x_2} u \\ 0 & D_t u - \lambda \end{pmatrix}, \]

where \(f := (f_1, f_2)^T \in \mathbb{R}^2[x, t] \), \(\lambda \in \mathbb{R} \), giving rise to the corresponding linear matrix representation in the space \(\mathbb{R}^2[x, t] \) of the differentiation \(D_t : \mathcal{K}[u] \to \mathcal{K}[u] \), reduced modulo the KdV-differential ideal (3.4).

3.2. The Lax-type representation

Now, making use of the matrix differential relationship (3.6), we can construct the Lax differential ideal related to the ideal (3.4)

\[L[u] := \{ (g, f) \mid g, f \in \mathcal{K}[u] : D_t f = q(\lambda) f, \quad f, g \in \mathcal{K}^2[u] \} \subset \mathcal{K}[u], \]

where \((\cdot, \cdot)_{\mathbb{R}^2} \) denotes the standard scalar product in the Euclidean real space \(\mathbb{R}^2 \). Since the Lax differential ideal (3.7) is, by construction, \(D_t \)-invariant and isomorphic to the \(D_t - \) and \(D_x \)-invariant KdV-differential ideal (3.4), it is necessary to check its \(D_t \)-invariance. As a result of this condition the differential relationship

\[D_x f = \ell[u; \lambda] f, \quad \ell[u; \lambda] := \begin{pmatrix} D_x \bar{a} & 2 D_x \bar{a} \\ 0 & -D_x \bar{a} \end{pmatrix}, \]

holds, where the mapping \(\bar{a} : \mathcal{M} \to \mathbb{R}[[x, t]] \) satisfies the functional–differential relationships

\[D_x \bar{a} = 1, \quad D_x u - D_x^2 u = 0, \]

and the matrix \(\ell := \ell[u; \lambda] : \mathbb{R}^2[[x, t]] \to \mathbb{R}^2[[x, t]] \) satisfies for all \(\lambda \in \mathbb{R} \) the determining functional–differential equation

\[D_t \ell + \ell D_x u = \{q(\lambda), \ell\} + D_x q(\lambda), \]

generalizing the similar equation (2.13). We formulate the result obtained above as the following proposition.

Theorem 3.2. The derivatives \(D_t : \mathbb{R}[[x, t]] \to \mathbb{R}[[x, t]] \) and \(D_x : \mathcal{K}[u] \to \mathcal{K}[u] \) of the differential ring \(\mathcal{K}[u] \), reduced modulo the Lax differential ideal \(L[u] \subset \mathcal{K}[u] \), which isomorphic to the KdV-differential ideal \(\mathcal{K}dV[u] \subset \mathcal{K}[u] \), allow the compatible Lax-type representation (generated by the invariant Lax differential ideal \(L[u] \subset \mathcal{K}[u] \))

\[D_t f = q(\lambda) f, \quad q(\lambda) := \begin{pmatrix} D_t u - \lambda & D_{x_2} u \\ 0 & D_t u - \lambda \end{pmatrix}, \]

where the mapping \(\bar{a} : \mathcal{M} \to \mathbb{R}[[x, t]] \) satisfies the functional–differential relationships (3.9), \(f \in \mathbb{R}^2[[x, t]] \) and \(\lambda \in \mathbb{R} \).

It is interesting to mention that the Lax-type representation (3.11) strongly differs from that given by the well-known [18] classical expressions

\[D_t f = q_{cl}(\lambda) f, \quad q_{cl}(\lambda) := \begin{pmatrix} D_x u/6 & -(2u/3 - 4\lambda) \\ (D_x u/6 - (u/6 - \lambda)(u/3 - 4\lambda) & -11 D_x u/6 \end{pmatrix}, \]

\[D_x f = \ell_{cl}[u; \lambda] f, \quad \ell_{cl}[u; \lambda] := \begin{pmatrix} 0 \\ u/6 - \lambda \end{pmatrix}, \]

11
where, as above, the functional-differential equation (equivalent to the nonlinear dynamical system (3.3) on the functional manifold \(\mathcal{M} \))

\[
D_t \ell_{\lambda} + \ell_{\lambda} D_x u = [q_{\lambda}(\lambda), \ell_{\lambda}] + D_x q_{\lambda}(\lambda)
\]

(3.13)

holds for any \(\lambda \in \mathbb{R} \). This fact, as we suspect, is related with the existence of different \(D_t \)-invariant KdV-differential ideals of form (3.4), which are not maximal. Thus, a problem of constructing a suitable KdV-differential ideal \(\mathcal{K} \{ u \} \subset \mathcal{K} \{ u \} \) generating the corresponding invariant Lax-type differential ideal \(L \{ u \} \subset \mathcal{K} \{ u \} \), invariant with respect to the differential representations (3.12), naturally arises, and we expect to treat this in detail elsewhere. There also is a very interesting problem of the differential-algebraic analysis of the related symplectic structures on the functional manifold \(\mathcal{M} \), with respect to which the dynamical system (3.3) is Hamiltonian and suitably integrable. Here we also need to mention a very interesting work [19], where the integrability structure of the Korteweg–de Vries equation was analyzed from the differential-algebraic point of view.

4. Conclusion

The results presented provide convincing evidence that the differential-algebraic tools, when applied to a given set of differential relationships based on the derivatives \(D_t \) and \(D_x : \mathcal{K} \{ u \} \rightarrow \mathcal{K} \{ u \} \) in the differential ring \(\mathcal{K} \{ u \} \) and parameterized by a fixed element \(u \in \mathcal{K} \{ u \} \), make it possible to construct the corresponding Lax-type representation as that realizing the linear matrix representations of the derivatives reduced modulo the corresponding invariant Riemann differential ideal. This scheme was elaborated in detail for the generalized Riemann-type differential equation (1.1) and for the classical Korteweg–de Vries equation (3.3). As these equations are equivalent to the corresponding Hamiltonian systems with respect to suitable symplectic structures, this aspect presents a very interesting problem from the differential-algebraic point of view, which we plan to study in the near future.

Acknowledgments

The authors are much obliged to Professors Zbignew Peradzyński (Warsaw University, Poland), Jan Sławianowski (IPPT, Poland) and Denis Blackmore (NJIT, NJ, USA) for very valuable discussions. AKP is cordially thankful to Dr Camilla Hollanti (Turku University, Finland) for the invitation to take part in the ‘Cohomology Course-2010’, to deliver a report and for the nice hospitality. MVP was in part supported by RFBR grant 08-01-00054 and a grant of the RAS Presidium ‘Fundamental Problems in Nonlinear Dynamics’. He also thanks the Wrocław University for the hospitality. Last but not the least, the authors thank the referees whose many instrumental comments, suggestions and remarks made the exposition strongly improve.

References

[1] Whitham G B 1974 Linear and Nonlinear Waves (New York: Wiley Interscience) 221 pp
[2] Gurevich A V and Zybin K P 1988 Nondissipative gravitational turbulence Sov. Phys.–JETP 67 1–12
[3] Gurevich A V and Zybin K P 1995 Large-scale structure of the Universe Analytic Theory Sov. Phys. Usp. 38 687–722
[4] Prykarpatsky A K, Blackmore D and Bogolubov N N Jr 1999 Hamiltonian structure of Benney type hydrodynamic systems and Boltzmann–Vlasov kinetic equations on an axis and some applications to manufacturing science Open Syst. Inform. Dyn. 6 335–73
[5] Kaplanski I 1957 Introduction to Differential Algebra (New York)
[6] Ritt J F 1966 *Differential Algebra* vol 33 (New York: Dover)

[7] Kolchin E R 1973 *Differential Algebra and Algebraic Groups* (New York: Academic)

[8] Weil J-A 2001 Introduction to differential algebra and differential Galois theory *CIMPA-UNESCO-VIETNAM Lectures, Hanoi*

[9] Crespo T and Hajto Z Introduction to differential Galois theory *Preprint IMUJ* Cracow, 2007/11

[10] Golenia J, Bogolubov N Jr, Popowicz Z, Pavlov M and Prykarpatsky A 2010 A new Riemann type hydrodynamical hierarchy and its integrability analysis *Preprint ICTP* IC/2009/095

[11] Golenia J, Pavlov M, Popowicz Z and Prykarpatsky A 2010 On a nonlocal Ostrovsky–Whitham type dynamical system, its Riemann type inhomogeneous regularizations and their integrability *SIGMA* 6 1–13

[12] Prykarpatsky A K and Prytula M M 2006 The gradient-holonomic integrability analysis of a Whitham-type nonlinear dynamical model for a relaxing medium with spatial memory *Nonlinearity* 19 2115–22

[13] Popowicz Z and Prykarpatsky A A 2010 The non-polynomial conservation laws and integrability analysis of generalized Riemann type hydrodynamical equations arXiv:1005.2660v4 [nlin.SI]

[14] Pavlov M 2005 The Gurevich-zybin system *J. Phys. A: Math. Gen.* 38 3823–40

[15] Sakovich S 2009 On a Whitham-type Equation *SIGMA* 5 101

[16] Benney D J 1973 Some properties of long nonlinear waves *Stud. Appl. Math.* 52 45–50

[17] Kupershmidt B A and Manin Ju I 1978 Long wave equations with a free surface: II. The Hamiltonian structure and the higher equations *Funktsional. Anal. i Prilozhen.* 12 25–37

[18] Novikov S P (ed.) 1980 *Theory of Solitons* (Moscow: Nauka) (in Russian)

[19] Wilson G 1988 On the quasi-Hamiltonian formalism of the KdV equation *Phys. Lett.* 132 445–50

[20] Prykarpatsky A and Mykytyuk I 1998 *Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects* (The Netherlands: Kluwer) 553 pp

[21] Mitropolsky Yu, Bogolubov N Jr, Prykarpatsky A and Samoylenko V 1987 *Integrable Dynamical System: Spectral and Differential-Geometric Aspects* (Kiev: Naukova Dunka) (in Russian)

[22] Hentosh O, Prytula M and Prykarpatsky A 2006 *Differential-geometric and Lie-algebraic foundations of investigating nonlinear dynamical systems on functional manifolds* 2nd edn (Lviv: Lviv University Publication) (in Ukrainian)