PRERAINBOW OSCILLATIONS IN 3He SCATTERING FROM THE HOYLE STATE OF 12C AND ALPHA PARTICLE CONDENSATION

S. OHKUBO

Department of Applied Science and Environment, Kochi Women’s University, Kochi 780-8515, Japan
* E-mail: shigeo@cc.kochi-wu.ac.jp
www.cc.kochi-wu.ac.jp/~shigeo/

Y. HIRABAYASHI

Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan
E-mail: hirabay@iic.hokudai.ac.jp

3He$^+$-12C scattering is studied in a coupled channel method by using a double folding model with microscopic wave functions of 12C. Experimental angular distributions in elastic and inelastic scattering to the 2^+ (4.44 MeV), 0^+_2 (7.65 MeV) and 3^- (9.63 MeV) states of 12C are well reproduced. It is found that the Airy minimum of the prerainbow oscillations for the Hoyle state is considerably shifted to a larger angle due to its dilute density distribution compared with that of the normal ground state in agreement with the idea of α particle condensation.

Keywords: 3He$^+$-12C scattering, nuclear rainbow, prerainbow, alpha particle condensation.

1. Introduction

Bose-Einstein condensation (BEC) has been well known in a dilute gas. The macroscopic properties such as superconductivity and superfluidity in both 3He and 4He are understood in relation to BEC. Recently it has been speculated that the 0^+_2 (7.65 MeV) state of 12C, the Hoyle state, is a Bose-Einstein condensate of three α particles. Uegaki et al. and Kamimura and Fukushima studied the α cluster structure of 12C thoroughly in the microscopic cluster model and showed that the 0^+_2 state of 12C, has a loosely coupled three α cluster structure with an $\alpha$$\otimes$8Be configuration. Recently it has been shown that the wave functions of Uegaki et al. and Kamimura and Fukushima are almost completely equivalent to the wave function of an α particle condensate that the three α particles are sitting in the lowest $0s$ state in a dilute gas.

A macroscopic property that is peculiar to BEC such as superconductivity and superfluidity has not been observed in the case of α particle condensation. Recently Kokalova et al. proposed a new experimental way of testing BEC of α particles.
in nuclei by directly observing the enhancement of α particle emission and the multiplicity partition of the possible emitted α particles. It is important to find a phenomenon which strongly reflects the properties of Bose-Einstein condensation of α particles.

We show that the dilute property of the matter density due to Bose-Einstein condensation can be seen in the nuclear refractive phenomena. Nuclear rainbow scattering has been powerful in the study of nucleus-nucleus interaction when absorption is incomplete5. It has been shown that rainbow scattering and the evolution of the Airy minimum can also be seen in inelastic scattering6. It is expected that the refractive effect becomes much larger and can be seen clearly at low incident energies. Recently a new concept of prerainbow has been proposed at the lower energy region7. The refractive index n is related to the optical potential V as follows:

$$n(r) = \sqrt{1 - \frac{V(r)}{E_{\text{c.m.}}}}.$$ \hspace{1cm} (1)

There is no useful experimental data in inelastic α particle scattering to the Hoyle state in the low energy region. Fortunately, for 3He scattering from 12C there is an experimental angular distribution at 34.7 MeV measured by Fujisawa et al.9 which had been unnoticed for many years and to which no theoretical attention from the viewpoint of α particle condensation in the Hoyle state had been paid.

2. The double folding model

We study elastic and inelastic 3He+12C scattering in the microscopic coupled channel method by taking into account simultaneously the 0^+_1 (0.0 MeV), 2^+ (4.44 MeV), 0^+_2 (7.65 MeV), and 3^- (9.63 MeV) states of 12C. The diagonal and coupling potentials for the 3He+12C system are calculated with the double folding model:

$$V_{ij}(R) = \int \rho_{00}^{(3\text{He})}(r_1) \rho_{ij}^{(12\text{C})}(r_2) v_{\text{NN}}(E, \rho, r_1 + R - r_2) \, dr_1 \, dr_2,$$ \hspace{1cm} (2)

where $\rho_{00}^{(3\text{He})}(r)$ is the ground state density of 3He taken from Cook et al.10, while v_{NN} denotes the density-dependent M3Y effective interaction (DDM3Y)11. $\rho_{ij}^{(12\text{C})}(r)$ represents the diagonal ($i = j$) or transition ($i \neq j$) nucleon density of 12C calculated in the resonating group method by Kamimura et al.4.

The folding potential is very sensitive to the wave functions used, which serves as a good test of the validity of the wave function. In the analysis we introduce the normalization factor N_R for the real part of the potential and phenomenological imaginary potentials with a Wood-Saxon form factor (volume absorption) and a derivative of the Wood-Saxon form factor (surface absorption) for each channel.
Fig. 1. The calculated angular distributions (solid lines) in 3He+12C scattering at $E_L=34.7$ and 72 MeV are decomposed into farside (dotted lines) and nearside (dashed lines) components and compared with the experimental data (points).

3. Analysis of refractive 3He+12C scattering

In Fig. 1 angular distributions calculated using a coupled channel method at $E_L=34.7$ MeV and 72 MeV are compared with the experimental data. The calculation reproduces the experimental angular distributions for the ground state and the Hoyle state as well as the 2^+ and 3^- states.

By decomposing the calculated scattering amplitude into farside and nearside contributions, the Airy minimum of the rainbow at 72 MeV and the prerainbow oscillations at 34.7 MeV for the Hoyle state is identified. At $E_L=72$ MeV the first Airy minimum A_1 appears at 35° for the 0^+_2 state. For elastic scattering a clear minimum is not seen in the angular distribution of the farside cross sections and the Airy minimum in the experimental data is obscured by the interference between the farside and nearside amplitudes. On the other hand, the A_1 minimum for the 0^+_2 state is clearly seen in the farside cross sections because the minimum is shifted to a larger angle where the nearside contribution is much smaller.

The situation is more clearly seen in the Airy structure at low the incident energy region where no typical rainbow falloff of the dark side appears. At $E_L=34.7$ MeV in Fig. 1 the Airy minimum A_1 appears at 60° for elastic scattering and 75° for
the 0^+_2 state. The latter is much shifted to a larger angle and the Airy minimum is not at all obscured by the nearside contributions. For the 0^+_2 state at $E_L = 34.7$ the nearside contributions are much smaller than the farside contributions compared with the elastic scattering case.

Thus the difference of the refraction between the ground state and the 0^+_2 state is much more clearly seen in the prerainbow oscillations at 34.7 MeV than in the rainbow at 72 MeV. This shows that the incident 3He is strongly refracted in the Hoyle state in accordance with the previous finding in $\alpha+^{12}$C scattering15 that the state has a large lens composed of three α particles in a dilute density distribution.

In Fig. 2 the coupling potentials for the g.s.-2^+_1 and g.s.-0^+_2 channels are compared. It is clear that the coupling potential for the g.s.-0^+_2 channel is considerably extended to the outer region, which enhances the inelastic scattering to the Hoyle state in the surface region.

In fact, in Fig. 3 we see that even at the low energy region where so many high partial waves are not involved, inelastic scattering to the Hoyle state occurs at large angular momenta (that is, large radius) compared with that to the normal g.s. and 2^+_1 states. This becomes clearer at the high energy region as was discussed in α particle scattering from 12C at $E_L = 139$ MeV16 These facts are in accordance with the previous finding that the Hoyle state has a large radius compared with the normal ground state.

4. Summary

We have shown that the prerainbow oscillation is useful for studying the dilute density distribution due to Bose-Einstein condensation of α particles. The present approach is applicable not only to 3He scattering but also to heavy ion rainbow scattering. The 16O+12C rainbow and prerainbow scattering will be useful to re-
Fig. 3. Calculated partial cross sections for elastic and inelastic 3He scattering to the 2^+_1 and 0^+_2 state of 12C at $E_L=34.7$ MeV are shown as a function of total angular momentum.

confirm the present conclusions because the refractive effect is very strong and clear Airy minima of higher order can be expected.

It has been also suggested that the 1^{-} (8.86 MeV) state in 13C, the 0^{+} (9.746 MeV) state in 14C and the 0^{+} (~29 MeV) state in 16C may be a state with one, two and four additional neutrons to the 0^+_2 state of 12C. If the above states have a dilute density distribution, the prerainbow oscillations for these states would be considerably different from a state with a normal density distribution. This kind of experiment is highly desired.

Acknowledgments

One of the authors (S.O.) has been supported by a Grant-in-aid for Scientific Research of the Japan Society for Promotion of Science (No. 16540265).

References

1. A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
2. A. Tohsaki, H. Horiuchi, P. Schuck, and G. G. Röpke, Phys. Rev. Lett. 87, 192501 (2001).
3. E. Uegaki, S. Okabe, Y. Abe, and H. Tanaka, Prog. Theor. Phys. 57, 1262 (1977); E. Uegaki, Y. Abe, S. Okabe, and H. Tanaka, ibid 59, 1031 (1978); 62, 1621 (1979).
4. M. Kamimura, Nucl. Phys. A351, 456 (1981); Y. Fukushima and M. Kamimura, in Proceedings of the International Conference on Nuclear Structure, Tokyo, 1977, edited by T. Marumori J. Phys. Soc. Japan Suppl. 44, 225 (1978).
5. Tz. Kokalova, N. Itagaki, W. von Oertzen, and C. Wheldon, *Phys. Rev. Lett.* **96**, 192502 (2006).
6. D. T. Khoa, W. von Oertzen, H. G. Bohlen, and S. Ohkubo, *J. Phys.* **G 34**, R111 (2007).
7. F. Michel and S. Ohkubo, *Phys. Rev.* **C 70**, 044609 (2004).
8. F. Michel, G. Reidemeister, and S. Ohkubo, *Phys. Rev. Lett.* **89**, 152701 (2002).
9. T. Fujisawa, S. Yamaji, K. Matsuda, S. Motonaga, F. Yoshida, H. Sakaguchi, and K. Masui, *J. Phys. Soc. Japan* **34**, 5 (1973).
10. J. Cook and R. J. Griffiths, *Nucl. Phys.* **A366**, 27 (1981).
11. A. M. Kobos, B. A. Brown, R. Lindsay, and G. R. Satchler, *Nucl. Phys.* **A425**, 205 (1984).
12. Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, and G. Röpke, *Phys. Rev. C* **67**, 051306(R) (2003).
13. A. S. Dem’yanova, E. F. Svinareva, S. A. Goncharov, S. N. Ershov, F. A. Gareev, G. S. Kazacha, A. A. Ogloblin, and J. S. Vaagend, *Nucl. Phys.* **A542**, 208 (1992).
14. S. Ohkubo and Y. Hirabayashi, *Phys. Rev. C* **75**, 044609 (2007).
15. S. Ohkubo and Y. Hirabayashi, *Phys. Rev. C* **70**, 041602(R) (2004).
16. S. Ohkubo and Y. Hirabayashi, to appear in *AIP Proceedings of the 2nd International Conference on Frontiers in Nuclear Structure, Astrophysics and Reactions (FINUSTAR2)* (Aghios Nikolaos, Crete, Greece, 10-14 Sept., 2007).