ON CONSECUTIVE HAPPY NUMBERS

HAO PAN

Abstract. Let $e \geq 1$ and $b \geq 2$ be integers. For a positive integer $n = \sum_{j=0}^{k} a_j \times b^j$ with $0 \leq a_j < b$, define

$$T_{e,b}(n) = \sum_{j=0}^{k} a_j^e.$$

n is called (e,b)-happy if $T_{e,b}(n) = 1$ for some $r \geq 0$, where $T_{e,b}$ is the r-th iteration of $T_{e,b}$. In this paper, we prove that there exist arbitrarily long sequences of consecutive (e,b)-happy numbers provided that $e - 1$ is not divisible by $p - 1$ for any prime divisor p of $b - 1$.

1. Introduction

For an arbitrary positive integer n, let $T(n)$ be the sum of the squares of 10-adic digits of n. That is, if we write $n = \sum_{j=0}^{k} a_j \times 10^j$ with $0 \leq a_1, a_2, \ldots, a_k < 10$, then $T(n) = \sum_{j=0}^{k} a_j^2$. Also, let T^r denote the r-th iteration of T, i.e.,

$$T^r(n) = T(T(\ldots T(n) \ldots)).$$

In particular, we set $T^0(n) = n$. If T is iteratively applied to n, it is easy to see (cf. [4]) that we either get 1 or fall into a cycle

$$4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4.$$

We say that n is a happy number if we get 1 by applying T to n iteratively, i.e., $T^r(n) = 1$ for some positive integer r.

Obviously here squares and 10-adic digits are very specialized. In general, we may replace the square by an arbitrary positive e-th power, and replace the base 10 by an integer $b \geq 2$. Let $T_{e,b}(n)$ be the sum of the e-th powers of b-adic digits of n, i.e.,

$$T_{e,b} \left(\sum_{j=0}^{k} a_j \times b^j \right) = \sum_{j=0}^{k} a_j^e.$$
where $0 \leq a_j < b$. And n is called (e,b)-happy provided that there exists $r \geq 0$ such that $T_{e,b}^r(n) = 1$. Observe that

$$T_{e,b}(n) < (b - 1)^e(\log_b n + 1).$$

So if we iteratively apply $T_{e,b}$ to n, the process must reach some fixed points or cycles. And the fixed points and cycles of $T_{e,b}$ and $T_{3,b}$ ($2 \leq b \leq 10$) have been listed in [2].

In the second edition of his famous book [3, Problem E34], Guy asked whether there exists arbitrarily long sequences of consecutive $(2,10)$-happy numbers? For example, the least five consecutive $(2,10)$-happy numbers are

$$44488, 44489, 44490, 44491, 44492.$$

In [1], El-Sedy and Siksek gave an affirmative answer to Guy’s question. As we will see soon, a key of El-Sedy and Siksek’s proof is to find $h > 0$ such that $h + x$ is $(2,10)$-happy for each $x \in \{1, 4, 16, 20, 37, 42, 58, 89, 145\}$.

However, El-Sedy and Siksek’s result cannot be extended to every power e and base b. In fact, assume that p is a prime divisor of $b - 1$ and $e \equiv 1 \pmod{p - 1}$. Then by Fermat’s little theorem

$$T_{e,b}\left(\sum_{j=0}^{k} a_j \times b^j\right) = \sum_{j=0}^{k} a_j^e \equiv \sum_{j=0}^{k} a_j \equiv \sum_{j=0}^{k} a_j \times b^j \pmod{p},$$

that is, $T_{e,b}(n) \equiv n \pmod{p}$ for every n. Hence now n is (e,b)-happy only if $n \equiv 1 \pmod{p}$. In this paper, we shall show that the above examples are the only exceptions.

Theorem 1.1. Let $e \geq 1$ and $b \geq 2$ be integers. Suppose that $e \not\equiv 1 \pmod{p - 1}$ for any prime divisor p of $b - 1$. Then for arbitrary positive integer m, there exists $l > 0$ such that $l + 1, l + 2, \ldots, l + m$ are all (e,b)-happy.

In view of Theorem 1.1, we know that there exist arbitrarily long sequences of consecutive $(2, b)$-happy numbers if b is even. For example, the least nine consecutive $(2,16)$-happy numbers are

$$65988605 + i, \quad i = 0, 1, \ldots, 8.$$

However, there exists no pair of consecutive $(2,12)$-happy numbers less than $2^{32} - 1$ (the maximal value of unsigned long integers).

The proof of Theorem 1.1 will be given in the next section.

2. Proof of Theorem 1.1

Let \mathbb{Z}^+ denote the set of all positive integers. Since $2 - 1 = 1 \mid e - 1$, below we always assume that b is even. And for convenience, we abbreviate
‘(e, b)-happy’ to ‘happy’ since e and b are always fixed. The following lemma is motivated by El-Sedy and Siksek’s proof in [1].

Lemma 2.1. Let x and m be an arbitrary non-negative integers. Then for any \(r \geq 1 \), there exists a positive integer \(l \) such that

\[
T_{e,b}^r(l + y) = T_{e,b}^r(l) + T_{e,b}^r(y) = x + T_{e,b}^r(y)
\]

for each \(0 \leq y \leq m \).

Proof. We make an induction on \(r \). When \(r = 1 \), choose a positive integer \(s \) such that \(b^s > m \) and let

\[
l_1 = \sum_{j=0}^{x-1} b^{s+j}.
\]

Clearly

\[
T_{e,b}(l_1 + y) = T_{e,b}(l_1) + T_{e,b}(y) = x + T_{e,b}(y)
\]

for any \(0 \leq y \leq m \).

Now assume \(r > 1 \) and the assertion of Lemma 2.1 holds for the smaller values of \(r \). Since \(T_{e,b}(n) \leq (b-1)^e (\log_b n + 1) \), there exists an \(m' \) satisfying that \(T_{e,b}(y) \leq m' \) for all \(0 \leq y \leq m \). Thus by the induction hypothesis, there exists an \(l_{r-1} \) such that

\[
T_{e,b}^{r-1}(l_{r-1} + T(y)) = T_{e,b}^{r-1}(l_{r-1}) + T_{e,b}^{r-1}(T(y)) = x + T_{e,b}^r(y).
\]

whenever \(0 \leq y \leq m \).

Let

\[
l_r = \sum_{j=0}^{l_{r-1}-1} b^{s+j}.
\]

where \(s \) satisfies that \(b^s > m \). Then

\[
T_{e,b}^r(l_r) = T_{e,b}^{r-1}(T(l_r)) = T_{e,b}^{r-1}(l_{r-1}) = x,
\]

and for each \(0 \leq y \leq m \)

\[
T_{e,b}^r(l_r + y) = T_{e,b}^{r-1}(T_{e,b}(l_r + y)) = T_{e,b}^{r-1}(T_{e,b}(l_r) + T(y)) = T_{e,b}^{r-1}(l_{r-1} + T(y)) = T_{e,b}^{r-1}(l_{r-1}) + T_{e,b}^r(y) = T_{e,b}^r(l_r) + T_{e,b}^r(y).
\]

Suppose that a subset \(D_{e,b} \) of positive integers satisfies that:

1. For any \(n \in \mathbb{Z}^+ \), there exists \(r \geq 0 \) such that \(T_{e,b}^r(n) \in D_{e,b} \).
2. For any \(x \in D_{e,b} \), \(T(x) \in D_{e,b} \).
3. For any \(x \in D_{e,b} \), there exists \(r \geq 1 \) such that \(T_{e,b}^r(x) = x \).
Then we say that \(D_{e,b} \) is a cycle set for \(T_{e,b} \). It is not difficult to see that \(D_{e,b} \) is finite and uniquely determined by \(e \) and \(b \). For example, \(D_{2,10} = \{1, 4, 16, 2037, 42, 58, 89, 145\} \).

Corollary 2.1. Let \(D_{e,b} \) is the cycle set for \(T_{e,b} \). Assume that there exists \(h \in \mathbb{Z}^+ \) such that \(h + x \) is happy for any \(x \in D_{e,b} \). Then for arbitrary \(m \in \mathbb{Z}^+ \), there exists \(l \in \mathbb{Z}^+ \) such that \(l + 1, l + 2, \ldots, l + m \) are all happy.

Proof. By the definition of cycle sets, there exists \(r \in \mathbb{Z}^+ \) such that \(T_{e,b}^r(y) \in D \) for all \(1 \leq y \leq m \). Applying Lemma 2.1, we can find an \(l \in \mathbb{Z}^+ \) such that \(T_{e,b}^r(l + y) = h + T_{e,b}^r(y) \) whenever \(1 \leq y \leq m \). Thus by noting that \(x \) is happy if and only if \(T_{e,b}^r(x) \) is happy, we are done. \(\square \)

However, in general, it is not easy to search such \(h \) for \(D_{e,b} \). With help of computers, when \(e = 2 \) and \(b = 10 \), El-Sedy and Siksek found such

\[
h = \sum_{r=1}^{233192} 9 \times 10^{r+4} + 20958
\]

by noting that \(233192 \times 9^2 + 2^2 + T_{2,10}(958 + x) \) is happy for any \(x \in D_{2,10} \). Fortunately, the following lemma will reduce the requirement of \(h \).

Lemma 2.2. Let \(D_{e,b} \) is the cycle set for \(T_{e,b} \). Assume that for any \(x \in D_{e,b} \), there exists \(h_x \in \mathbb{Z}^+ \) such that both \(h_x + 1 \) and \(h_x + x \) are happy. Then there exists \(h \in \mathbb{Z}^+ \) such that \(h + x \) is happy for each \(x \in D_{e,b} \).

Proof. We shall prove that under the assumptions of Lemma 2.2, for any subset \(S \) of \(D_{e,b} \) with \(1 \in S \) and \(|S| \geq 2 \), there exists \(h_S \in \mathbb{Z}^+ \) such that \(h_S + x \) is happy for any \(x \in S \).

The cases \(|S| = 2 \) are trivial. Assume that \(|S| > 2 \) and the assertion holds for any smaller value of \(|S| \). For any \(1 \neq x \in S \), since \(h_x + 1 \) and \(h_x + x \) are happy, there exists \(r \in \mathbb{Z}^+ \) such that

\[
T_{e,b}^r(h_x + 1) = T_{e,b}^r(h_x + x) = 1,
\]

and

\[
T_{e,b}^r(h_x + y) \in D_{e,b} \quad \text{for all } y \in S
\]

by the definition of the cycle set. Let

\[
S^* := \{T_{e,b}^r(h_x + y) : y \in S\}.
\]

Then \(1 \in S^* \subseteq D_{e,b} \) and \(|S^*| < |S| \). Thus by the induction hypothesis, we can find \(h_{S^*} \in \mathbb{Z}^+ \) such that \(h_{S^*} + T_{e,b}^r(h_x + y) \) is happy for any \(y \in S \). Also in view of Lemma 2.1, there exists \(l \in \mathbb{Z}^+ \) satisfying that

\[
T_{e,b}^r(l + h_x + y) = h_{S^*} + T_{e,b}^r(h_x + y)
\]
provided that \(y \in S \). It follows that \((l + h_x) + y\) is happy for any \(y \in S \).

All are done. \(\Box\)

Lemma 2.3. Suppose that for any integer \(a \), there exists a happy number \(h \) such that

\[h \equiv a \pmod{(b-1)^e}. \]

Then for any \(x \in \mathbb{Z}^+ \), there exists an arbitrarily large happy number \(l \) such that \(l + x \) is also happy.

Proof. Choose \(s \in \mathbb{Z}^+ \) satisfying that \(b^s > x \) and let \(x^* = b^s - x \). Suppose that \(h \) is the happy number such that

\[h \equiv T_{e,b}(x^*) \pmod{(b-1)^e}. \]

Note that \(hb^{\phi((b-1)^e)} \) is also happy and

\[hb^{\phi((b-1)^e)} \equiv h \pmod{(b-1)^e} \]

where \(\phi \) is the Euler totient function. We may assume that \(h > T_{e,b}(x^*) \).

Write \(h = (b-1)^ek + T_{e,b}(x^*) \). Let

\[l = x^* + \sum_{j=0}^{k-1} (b-1) b^{s+j}. \]

Then

\[T_{e,b}(l) = k(b-1)^e + T_{e,b}(x^*) = h \]

and

\[T_{e,b}(l + x) = T_{e,b}(b^s + \sum_{j=0}^{k-1} (b-1) b^{s+j}) = T_{e,b}(b^{s+k}) = 1. \]

It follows that both \(l \) and \(l + x \) are happy. \(\Box\)

Lemma 2.4. Let \(n \) be a positive odd integer. Then for any \(a \) with \(a \equiv 1 \pmod{n} \) and positive integer \(k \), there exists \(r \in \mathbb{Z}^+ \) such that

\[(n+1)^r \equiv a \pmod{n^k}. \]

Proof. Assume that \(n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s} \) where \(p_1, p_2, \ldots, p_s \) are distinct odd primes and \(\alpha_1, \alpha_1, \ldots, \alpha_s \geq 1 \). For \(1 \leq i \leq s \), let \(g_i \) be a prime root of \(p_i^{\alpha_i k} \).

Assume that

\[n + 1 \equiv g_i^{\beta_i} \pmod{p_i^{\alpha_i k}} \]

and \(a \equiv g_i^{\gamma_i} \pmod{p_i^{\alpha_i}} \)

for each \(1 \leq i \leq s \). Clearly both \(\beta_i \) and \(\gamma_i \) are divisible by \(\phi(p_i^{\alpha_i}) \) since \(n + 1 \equiv a \equiv \pmod{p_i^{\alpha_i}} \). So we only need to find \(r \) satisfying that

\[\beta_i r \equiv \gamma_i \pmod{\phi(p_i^{\alpha_i})} \]

for all \(i \), or equivalently,

\[(\beta_i/\phi(p_i^{\alpha_i})) r \equiv \gamma_i/\phi(p_i^{\alpha_i}) \pmod{p_i^{\alpha_i(k-1)}}. \]
Note that \(p_i \nmid \beta_i / \phi(p_i^{\alpha_i}) \) since \(n + 1 \not\equiv 1 \pmod{p_i^{\alpha_i+1}} \). Thus such \(r \) always exists in view of the Chinese remainder theorem. \(\square \)

Corollary 2.2. Assume that for any integer \(a \), there exists a happy number \(h \) such that

\[h \equiv a \pmod{b - 1}. \]

Then we can find a happy number \(h' \) such that

\[h' \equiv a \pmod{(b - 1)^e}. \]

Proof. Suppose that

\[\sum_{j=1}^{h-1} b^j \equiv k_1(b - 1) + a - 1 \pmod{(b - 1)^e}. \]

And suppose that

\[b^{-h}(-k_1(b - 1) + 1) \equiv k_2(b - 1) + 1 \pmod{(b - 1)^e}. \]

In light of Lemma 2.4, there exists \(r \in \mathbb{Z}^+ \) such that

\[b^r \equiv k_2(b - 1) + 1 \pmod{(b - 1)^e}. \]

Therefore

\[\sum_{j=1}^{h-1} b^j + b^{h+r} \equiv \sum_{j=1}^{h-1} b^j + b^h(k_2(b - 1) + 1) \equiv a \pmod{(b - 1)^e}, \]

which is apparently happy. \(\square \)

Lemma 2.5. Let \(a \) be a positive integer. Assume that there exists a happy number \(h \) such that

\[l \equiv T_{e,b}(h') \pmod{b - 1} \]

for some \(h' \equiv a \pmod{b - 1} \). Then we can find a happy number \(h \) such that

\[h \equiv a \pmod{b - 1}. \]

Proof. In view of the proof of Lemma 2.2, we may assume that \(l > T_{e,b}(h') \).

And let

\[h = \sum_{j=0}^{l-T_{e,b}(h')} b^{s+j} + h', \]

where we choose \(s \) such that \(b^s > h' \). Clearly

\[h \equiv l - T_{e,b}(h') + h' \equiv a \pmod{b - 1}. \]

And

\[T_{e,b}(h) = l - T_{e,b}(h') + T_{e,b}(h') = l. \]

Thus \(h \) is the desired happy number. \(\square \)

ON CONSECUTIVE HAPPY NUMBERS

Note that the property of e is not used until now.

Proof of Theorem 1.1. Write $b - 1 = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ where p_1, p_2, \ldots, p_s are distinct odd primes and $\alpha_1, \alpha_2, \ldots, \alpha_s$ are positive integers. Let $1 \leq g_i \leq p_i^{\alpha_i}$ be a primitive root of $p_i^{\alpha_i}$ for $1 \leq i \leq s$. For every positive integer $0 \leq a \leq b - 1$, let $L(a) \in \{0, 1, \ldots, b - 1\}$ be the integer such that

$$L(a) \equiv \begin{cases} a - g_i + g_i^e \pmod{p_i^{\alpha_i}} & \text{if } a \not\equiv 1 \pmod{p_i^{\alpha_i}}, \\ 1 \pmod{p_i^{\alpha_i}} & \text{if } a \equiv 1 \pmod{p_i^{\alpha_i}} \end{cases},$$

$i = 1, 2, \ldots, s.$

And let $r_a \geq 0$ be the minimal integer such that $L^r(a) \equiv 1 \pmod{b - 1}$, where L^r denotes r-th iteration of L. Since $e \not\equiv 1 \pmod{p_i - 1}$, we have $g_i^e - g_i$ is prime to p_i for every i. Hence r_a always exists.

Combining Corollary 2.1, Lemma 2.2, Lemma 2.3 and Corollary 2.2, now it suffices to show that for every integer $0 \leq a \leq b - 1$ there exists a happy number h such that

$$h \equiv a \pmod{b - 1}.$$

We use an induction on r_a. If $r_a = 0$, then $a \equiv 1 \pmod{b - 1}$. There is noting to do. Now assume that $r_a \geq 1$ and the assertion holds for any a' with $r_a < r_a$. Clearly $r_{L(a)} = r_a - 1$. Hence by the induction hypothesis, there exists a happy number l such that

$$l \equiv L(a) \pmod{b - 1}.$$

Let $0 \leq g \leq b - 1$ be the integer such that

$$g \equiv \begin{cases} g_i \pmod{p_i^{\alpha_i}} & \text{if } a \not\equiv 1 \pmod{p_i^{\alpha_i}}, \\ 1 \pmod{p_i^{\alpha_i}} & \text{if } a \equiv 1 \pmod{p_i^{\alpha_i}} \end{cases},$$

$i = 1, 2, \ldots, s.$

And let

$$h' = \sum_{j=1}^{a+b-1-g} b^j + g.$$

Then

$$h' \equiv a + b - 1 - g + g \equiv a \pmod{b - 1}.$$

And

$$T_{e,b}(h') \equiv a + b - 1 - g + g^e \equiv \begin{cases} a - g_i + g_i^e \pmod{p_i^{\alpha_i}} & \text{if } a \not\equiv 1 \pmod{p_i^{\alpha_i}}, \\ 1 \pmod{p_i^{\alpha_i}} & \text{if } a \equiv 1 \pmod{p_i^{\alpha_i}} \end{cases},$$

for every $1 \leq i \leq s$. Hence

$$T_{e,b}(h') \equiv L(a) \equiv l \pmod{b - 1}.$$

Thus in light of Lemma 2.3, we are done. \qed
REFERENCES

[1] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math., 30(2000), 565-570.
[2] H. G. Grundman and E. A. Teeple, Generalized happy numbers, Fibonacci Q., 39(2001), 462-466.
[3] R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 1st ed. 1981; 2nd ed. 1994; 3rd ed. 2004.
[4] R. Honsberger, Ingenuity in mathematics, 6th printing, New Mathematical Library 23, Mathematical Association of America, Washington, DC, 1998.
[5] K. Ireland and M. Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics 84, Springer-Verlag, New York, 1990.

Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

E-mail address: haopan79@yahoo.com.cn