Chasing the elusive core identity of *Avima* Roewer, 1949
(Arachnida; Opiliones; Agoristenidae)

Andrés F. García*, Adriano B. Kury1, Osvaldo Villarreal1, 2

1 Departamento de Invertebrados, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, São Cristóvão, 20.940-040, Rio de Janeiro, RJ, Brazil. E-mail: agarciarinc@gmail.com
2 Museo del Instituto de Zoología Agrícola, Facultad de Agronomía, Universidad Central de Venezuela, Maracay, Aragua, Venezuela.
*Corresponding author.

How to cite this paper: García A.F., Kury A.B., Villarreal O. 2022. Chasing the elusive core identity of *Avima* Roewer, 1949 (Arachnida: Opiliones: Agoristenidae). // Arthropoda Selecta. Vol.31. No.2. P.217–227. doi: 10.15298/arthropoda. 31.2.10

KEY WORDS: harvestmen, Leiosteninae, South America, taxonomy.

ABSTRACT. The holotype of *Avima leucobunus* Roewer 1949, type-species of *Avima*, is studied, and its genital morphology is described for the first time. The *Avima albioriorna* species group is here proposed to include three species, i.e. *Avima albidecorata* (Šilhavý, 1979), *A. albioriorna* (Goodnight et Goodnight, 1947) and *A. intermedia* (Goodnight et Goodnight, 1947), from Northeastern Venezuela, Trinidad and Tobago, and Suriname. *A. albioriorna* (Goodnight et Goodnight, 1947) is herein considered a senior subjective synonym of *A. leucobunus*, syn.n. *Avima leioobuniformis* (Šilhavý, 1973), syn.n. is considered a junior subjective synonym of *A. intermedia*. With the aim of chasing the elusive core identity of *Avima*, a discussion about some diagnostic characters for the genus, which currently includes a large number of unrelated Leiosteninae species, is given.

How to cite this paper: García A.F., Kury A.B., Villarreal O. 2022. Chasing the elusive core identity of *Avima* *Roewer, 1949 (Arachnida: Opiliones: Agoristenidae) // Arthropoda Selecta. Vol.31. No.2. P.217–227. doi: 10.15298/arthropoda. 31.2.10*

REZЮМЕ. Исследован голотип *Avima leucobunus* Roewer 1949, типового вида рода *Avima*, впервые описано морфология его гениталий. Предложена группа видов *Avima albioriorna*, включающая три вида, *Avima albidecorata* (Šilhavý, 1979), *A. albioriorna* (Goodnight et Goodnight, 1947) и *A. intermedia* (Goodnight et Goodnight, 1947), из северо-восточной Венесуэлы, Тринидада и Тобаго и Суринама. *A. albioriorna* (Goodnight et Goodnight, 1947) рассматривается как старший субъективный синоним *A. leucobunus*, syn.n. *Avima leioobuniformis* (Šilhavý, 1973), syn.n. — младший субъективный синоним *A. intermedia*. С целью поиска неуловимой коренной идентичности *Avima*, обсуждаются некоторые диагностические признаки рода, который ныне включает большое число неродственных видов подсемейства Leiosteninae.

Introduction

The family Agoristenidae Šilhavý, 1973, with 26 genera and 80 species, is a small group of Neotropical harvestmen. Currently, it is divided in three subfamilies: Agoristeninae Šilhavý, 1973 from the Greater Antilles, Globiibuninae Kury, 2012 from Ecuador, and Leiosteninae Šilhavý, 1973 from northern South America [Kury, 2013]. Leiosteninae, the most diverse subfamily (12 gen., 62 spp.), is distributed mainly in Andes, Amazon and Caribbean regions of Brazil, Colombia, French Guiana, Guyana, Peru, Suriname, Trinidad and Tobago and Venezuela [García, Pastrana-M., 2021; García, Villarreal, 2020; Villarreal, García, 2021; García et al., 2022].

Most of the Leiosteninae species have been described within (or later transferred to) the genus *Avima* Roewer, 1949, which monophyly has not been evaluated and seems to represent a trash basket [García, Villarreal, 2020; Villarreal, García, 2021], where many species have been grouped due to the sole absence of paired tubercles in the scutal area III, without an evaluation of the evolution of this character.

At present, *Avima* has 35 species, distributed throughout northern South America, encompassing the coastal regions of the Caribbean, the Guiana Shield, the Andes and the Amazon. In this work, the type species of the genus is redescribed revealing characters of taxonomic importance associated with genital morphology, which allow defining the nucleus of the ge-
nus, with the purpose of future depuration. At the same time, two specific synonymsies were detected and an updated map showing the geographic distribution of the species defined here as the nucleus of the genus is presented.

Historical background

The first known representative of Leiosteniinae (i.e. *Vima insignis* Hirst, 1912) was first placed in Phalangodidae subfamily Tricommatinae by Roewer [1923] and afterwards transferred to Agoristeniidae by Soares & Avram [1981]. *Vima* Hirst, 1912 underwent a series of changes in its composition and subfamily allocation, and currently consists of two species. For a more complete review of the taxonomic history of this genus, see García & Kury [2020].

Goodnight & Goodnight [1947] described *Vima albiornata* Goodnight et Goodnight, 1947 and *Trinella intermedia* Goodnight et Goodnight, 1947 (the type species of the genus *Trinella*), both from Trinidad and Tobago. Two years later, Roewer [1949] proposed the genera *Avima*, to allocate the species *Avima leucobenus* Roewer, 1949 from Suriname, and *Vimula* Roewer, 1949 to allocate *Vima albiornata*. Šilhavý [1973] proposed the monotypic genus *Leiostenus* with the species *Leiostenus leiobuniformis* Šilhavý, 1973 from Trinidad, and six years later proposed the subspecies *Leiostenus leiobuniformis albiornatus* from Venezuela [Šilhavý, 1979].

Avram & Soares [1979] gave a detailed redescriptions (including penis and ovipositor) of *Vima albiornata* based on material from Cueva Quijano, Caripue.

Soares & Avram [1987: 73, figs 1–10] described the subspecies *Vimula albiornata caripensis* from Cueva Quijano, in northeastern Venezuela, which was subsequently synonymized by Kury [2003] with *Avima albiornata* [Šilhavý, 1979] (at that moment *Trinella albiornata*), a species described from the same cave system, and cataloged all the information related to *Trinella* until that moment.

González-Sponga [1987] with base on the little or no dorsal ornamentation of the dorsal scutum and the vestigial grooves and areas, synonymized *Trinella Goodnight et Goodnight, 1947, *Avima, Leiostenus* Šilhavý, 1973 and *Vimula with Vima*, and suggested that also *Phalangozea Muñoz-Cuevas*, 1976 could be a synonym of *Vima*.

Pinto-da-Rocha [1996] redefined the concept of *Vima*, restricting it to include only its type species, *Vima insignis* Hirst, 1912; additionally, revalidated *Trinella* to contain the remaining species of *Vima*, resulting in 25 new combinations, and described three new species from Brazil and Venezuela. In this same work, the monotypic genus *Phalangozea Muñoz-Cuevas*, 1975 was proposed as a junior subjective synonym of *Trinella*.

Villarreal & Kury [2009] detected that *Trinella* revalidated by Pinto-da-Rocha [1996] was a junior homonym of *Trinella Bory de Saint Vincent, 1827* (Protista: Ciliophora), and revalidated the name *Avima*, the next oldest available junior synonym. Posteriorly, only three additional species have been described in the genus, *A. antas* Porto et Colmenares, 2014, *A. tutti-frutti* García et Pastrana-M., 2021, and *A. wayuunaiki* García, González Vargas et Gutiérrez Estrada, 2022, while *A. nigromaculata* (González-Sponga, 1998) was synonymized with *A. quadarta* (González-Sponga, 1987) [Villarreal et al., 2021a], leaving *Avima* with 35 species at present.

Materials and methods

Individuals of the species were photographed using the cameras Nikon 5200 and Sony Cybershot DSC-V1 attached to the stereomicroscope, and the multiple images of each species at different focal planes were combined with Combine ZP Suite software [Hadley, 2015] to increase the depth of field. The new species were photographed with a Leica M205C stereoscope attached to a Leica DFC450 digital camera and combined with Leica Application Suite (LAS) software version 4.6.2. All resultant photographs were posteriorly edited in Photoshop CC 2014 software.

Drawings of the species were made using a stereomicroscope with camera lucida, and digitized with Inkscape 0.91 software. Color descriptions use the standard names of the 267 Color Centroids of the NBS/IBCC Color System [Jaffer, 2001].

The distribution map was made using ESRI ArcGIS 10.4. When listing the examined material, the first order administrative divisions are written in small caps. Geographic coordinates have been transcriptiones labels from the original names and may be in different formats. When no original indications of coordinates were available, those were estimated using Google Maps and GeoNames and placed between square brackets.

The morphological terminology for dorsal scutum follows Kury & Medrano [2016], with the modifications explained in Villarreal & García [2021]: the Epsilon type shape in *Avima* is herein called Epsilon type 2 (subrectangular, anterior and posterior borders slightly narrower than mid-bulge). Penis chaetotaxy and nomenclature follows Kury & Villarreal [2015].

Morphometric abbreviations are: AL — abdomen length, AW — abdomen width, ChB — cheliceral bulla length, CL — carapace length, CW — carapace width, DS — dorsal scutum, DSL — dorsal scutum length, Fe — femur, FT — free tergites, LP — lamina parva, MS — macrosetae of penis, Pa — patella, St — stylus, Ta — tarsus, Ti — tibia, TL — total length, Tr — trochanter. All measurements are in mm unless otherwise noted.

Acronyms of the repositories are: AMNH — American Museum of Natural History, New York (USA); ISER — Institutul de Speologie ‘Emile Racovitza’ (Romanian Speiological Institute), Bucarest (Romania); MCZ — Museum of Comparative Zoology, Harvard University, Cambridge (USA); MHNG — Muséum d’histoire naturelle de la Ville de Genève, Geneva (Switzerland); MNRJ — Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil); MZTU — Museo di Zoologia, Instituto di Zoologia eAnatomia Comparata, Università di Torino (also MZUT, ZMT, now deposited in the Museo Regionale di Scienze Naturali di Torino (MRSN), which belongs to the Regione
Piemonte and not to the University), Torino (Italy); SMF — Forschungsinstut und Naturmuseum Senckenberg, Frankfurt am Main (Germany); USNM — National Museum of Natural History, Smithsonian Institution, Washington D.C. (USA).

Taxonomy

Order Opiliones Sundevall, 1833
Suborder Laniatores Thorell, 1876
Family Agoristenidae Šilhavý 1973
Subfamily Leiosteninae Šilhavý, 1973
Genus *Avima* Roewer, 1949

Trinella Goodnight et Goodnight 1947: 3 [junior homonym of *Trinella* Bory de Saint Vincent, 1827 (Cnidaria: Parisididae), homonymy first detected by Villarreal-M. & Kury [2009: 65]; junior subjective synonym of *Vima* Hirst, 1912 by González-Sponga [1987: 492]; synonymy disclaimed by Pinto-da-Rocha [1996: 316]; type species: *Trinella intermedia* Goodnight et Goodnight, 1947, by original designation].

Vima — Soares et Avram, 1981: 76; Pinto-da-Rocha, 1996: 316 (revalidated); Kury, 1997: 344; Kury 2003: 31.

Avima Roewer 1949: 58 [junior subjective synonym of *Vima* Hirst, 1912 by González-Sponga [1987: 492]; junior subjective synonym of *Trinella* Goodnight et Goodnight, 1947 by Pinto-da-Rocha [1996: 316]; type species: *Avima leucobunus* Roewer, 1949, by original designation].

Avima — Caporiacco, 1951: 11; Rambla, 1978: 304; Soares, Avram, 1981: 76; González-Sponga, 1987: 492; Villarreal-M., Kury, 2009: 65.

Vimula Goodnight et Goodnight, 1947 by Pinto-da-Rocha [1996: 316]; type species: *Vimula albiornata* Goodnight et Goodnight, 1947, by original designation.

Leiostenus leiobuniformis albidecoratus — Caporiacco, 1951: 11; Rambla, 1978: 304; Soares, Avram, 1981: 76; González-Sponga, 1987: 492; Villarreal-M., Kury, 2009: 65.

Trinella Goodnight et Goodnight 1947: 317.

TYPE DATA. Of *Avima albidecorata* Roewer [1949: 144]; junior subjective synonym of *Vima* Hirst, 1912 by González-Sponga [1987: 492]; junior subjective synonym of *Trinella* Goodnight et Goodnight, 1947 by Pinto-da-Rocha [1996: 316]; type species: *Vima albidecorata* Goodnight et Goodnight, 1947, by original designation].

Vimula — Roewer, 1963: 48; Rambla, 1978: 304; Soares, Avram, 1981: 76; González-Sponga, 1987: 492.

Leiostenus Šilhavý, 1973: 131 [junior subjective synonym of *Vima* Hirst, 1912 by González-Sponga [1987: 492]; junior subjective synonym of *Trinella* Goodnight et Goodnight, 1947 by Pinto-da-Rocha [1996: 316]; type species: *Leiostenus leioeuniformis* Šilhavý, 1973, by original designation].

Leiostenus — Soares, Avram, 1981: 75; González-Sponga, 1987: 492.

Phalangozea Muñoz-Cuevas, 1976: 88 [junior subjective synonym of *Trinella* Goodnight et Goodnight, 1947 by Pinto-da-Rocha [1996: 316]; type species: *Phalangozea bordoni* Muñoz-Cuevas, 1976, by original designation].

TYPE SPECIES. *Avima leucobunus* Roewer, 1949

PLACEMENT. *Avima, Trinella* and *Vimula* originally in Phalangodidae: Tricommatinae. Transferred to Agoristenidae: Leiosteninae by Soares & Avram [1981]. *Leiostenus* originally type of Agoristenidae: Leiosteninae. *Phalangozea* originally in Phalangodidae. Transferred to Agoristenidae: Leiosteninae by Šilhavý [1979: 330].

ETYMOLOGY. *Trinella* from the name *Trini* (dad) + Latin suffix -ella. Gender feminine. *Avima* and *Vimula* are obvious and unimaginative derivations of *Vima*. Gender feminine. *Leiostenus* probably from *Leio* (blunum) (which Šilhavý thought resembled it) + truncation of *Agori* system. Gender masculine. *Phalangozea* from Phalang(o)dia = toponym (Cueva Francisco Zea). Gender feminine.

Avima albidecorata species group

DIAGNOSIS. 1) large to very large harvestmen (DS + leg IV length more than 35 mm), 2) mesotegumen faintly delimited, divided in four smooth areas, 3) pedipalps large (more than 5 mm), 4) ocularium low, smooth and without median concavity, 5) yellowish blots on DS (*A. albidecorata* and *A. albidecorata*), 6) penis with distal corners of LP rounded, and 7) stylus straight or sub-straight, with smooth dorsal keeled expansion (tiny projection close to apical junction with the styli in *A. albidecorata*).

INCLUDED SPECIES. *Avima albidecorata* (Šilhavý, 1979), *A. albidecorata* Goodnight et Goodnight 1947 and *A. albiornata* (Goodnight et Goodnight, 1947).

DISTRIBUTION. Northeastern Venezuela, Trinidad and Tobago, and Suriname (Fig. 5).

Avima albidecorata (Šilhavý, 1979)

Fig. 5.

Leiostenus leioeuniformis albidecoratus Šilhavý, 1979: 330, figs 22–29.

Leiostenus leioeuniformis albidecoratus — Avram, 1987: 81; Rambla, Juberthie, 1994: 221.

Trinella albidecorata — Pinto-da-Rocha, 1996: 316.

Trinella albidecorata — Kury, 2003: 32.

Avima albidecorata — Villarreal-M., Kury, 2009: 65.

*Vimula of *Albidecorata* — Avram, Soares, 1979: 85, figs 1–10.

“Vima albidecorata caripensis” [nomen nudum] Soares, Avram, 1981: 76.

Vima albidecorata caripensis Soares, Avram, 1987: 73, fig. 49 [junior subjective synonym of *Leiostenus leioeuniformis albidecorata* Šilhavý, 1979 by Kury [2003: 32]].

Vima albidecorata caripensis — González-Sponga, 1987: 496, figs 630–635.

Trinella caripensis — Pinto-da-Rocha, 1996: 317.

TYPE DATA. Of *V. albidecorata caripensis*: holotype, 1 allotype, 1 paratype (MZTU); 3 4 4 paratypes (ISER?); Venezuela, MONAGAS, Carip: Cueva Quijano, 1060 m. Of *Leiostenus leioeuniformis albidecoratus*: 6 holotypes 6 paratypes (MHNJ), Venezuela, MONAGAS, Cueva del Guácharo, 700 m.

ADDITIONAL EXAMINED MATERIAL. Venezuela: 2 3 (MNRJ 1575*), MONAGAS, Cueva del Guácharo, [10.193316° – 63.603436°]., 9.VI.1956, leg. L.S. Jordán M.; 1 2 3 (MNRJ 1576*), same data as previous; 2 3 4 4 (MNRJ 9455*), caverna acima de Cueva del Guácharo, 8.XII.2002, leg. A. Pérez et A. Giupponi; 1 2 3 4 (MNRJ 9456*), carretera entre Cueva del Guácharo y Carpe, 1000 m, 3.XII.2002, leg. A. Pérez et A. Giupponi; 4 3 4 (MNRJ 9457*), Cueva del Guácharo, XII.2002, leg. A. Pérez et A. Giupponi; 5 4 9 (MNRJ 18032*), caverna próxima a la Cueva del Guácharo, 8.XII.2002, leg. A. Pérez et A. Giupponi.

DISTRIBUTION. Venezuela: Monagas (Fig. 5).

REMARKS. Šilhavý [1979: 331, fig. 22] drew the elevation posterior to ocularium and the male genital (very similar to those of *A. albidecorata*, except for the absence of the tiny projection in the dorsal keel). However, he showed variations of the white blots on the DS in different specimens. As all the toptypic material of the species that was deposited in the National Museum was lost before an examination of the male penis, we prefer to maintain it as a separated species.

Avima albiornata (Goodnight et Goodnight, 1947)

Figs 1, 2, 3A–C, 5.

Vima albiornata Goodnight et Goodnight, 1947: 4, fig. 5.

Vima albiornata — Türk, 1948: 258.
Fig. 1. *Avima albiornata* (Goodnight et Goodnight, 1947) (MNRJ 19622*) male. Habitus: A — panoramic view, B — dorsal view, C — lateral view, D — frontal view, E — ventral view. Scale bars: A–C, E — 1 mm, D — 0.5 mm.

Рис. 1. *Avima albiornata* (Goodnight et Goodnight, 1947) (MNRJ 19622*), самец. Внешний вид: A — общий вид, B — дорсально, C — латерально, D — фронтально, E — вентрально. Масштаб: A–C, E — 1 мм, D — 0.5 мм.
Fig. 2 Avima leucobunus Roewer, 1949 (SMF 1533/8) male holotype. Dorsal Scutum: A — dorsal view, B — lateral view; C — coxa I; D — left chelicera, frontal view; left pedipalp: E — ventroectal view, F — ventromesal view; penis: G — lateral view, H — dorsal view.

Abbreviations: LP — lamina parva, Ma — malleus, St — stylus, T — truncus. Scale bars: A, B, D–F — 1 mm, C — 0.5 mm.

Vimula albiornata: Roewer, 1949: 144.
Vimula albiornata — Avram, Soares, 1979: 85
Vimula albiornata albiornata: Soares, Avram, 1987: 74.
Trinella albiornata: Pinto-da-Rocha, 1996: 317.
Trinella albiornata — Kury, 2003: 32
Avima albiornata: Villarreal-M., Kury, 2009: 65.
Avima leucobunus Roewer, 1949: 58, fig. 112; Soares, Avram, 1982: 26; Villarreal-M., Kury, 2009: 66. syn.n.
“Trinella leucobuna” [unjustified emendation]: Pinto-da-Rocha, 1996: 317.

TYPE DATA. Of A. leucobunus: Suriname: holotype (SMF 1533/8), PARAMARIBO, Paramaribo, [5.861777° -55.201445°], examined. Of A. albiornata: Trinidad and Tobago: holotype (examined by photograph) (AMNH), TRINIDAD, Diego Martin, [10.735654° -61.549403°].

ADDITIONAL EXAMINED MATERIAL. Of A. albiornata: Trinidad and Tobago: 1 ♀ (MNRJ 19619*), TRINIDAD, Arima, Brasso Seco Village, Marianne watershed, [10.751008° -61.284738°], 134 m, 11.II.2016, leg. L. Blondel et S. Cally; 1 ♀ (MNRJ 19620*), same data as previous; 1 ♀ (MNRJ 19621*), same data as previous; 1 ♀ (MNRJ 19623*), same data as previous; 1 juvenile (MNRJ 19626*), Arima, Brasso Seco Village, Paria watershed, [10.761620° -61.250471°], 146 m, 14.II.2016, leg. L. Blondel et S. Cally; 1 ♀ (MNRJ 19632*), Arima, Morne Bleu Mountain, [10.724382° -61.308791°], 618 m, 16.II.2016, leg. L. Blondel et S. Cally; 1 ♀ (MNRJ 19633*), same data as previous; 1 ♀ (MNRJ 19637*), Arima, Morne La Croix, Yarra watershed, [10.738988° -61.327746°], 316 m, 19.II.2016, leg. L. Blondel et S. Cally; 1 ♀ (MNRJ 19638*), same data as previous; 1 ♀ (MNRJ 19645*), Las Cuevas, [10.781887° -61.386687°], 42 m, 22.II.2016, leg. L. Blondel et S. Cally.

REDESCRIPTION. Male Holotype of A. leucobunus (SMF 1533/8). Measurements: DSL (3.0), CL (1.3), CW (2.2), AL (1.7), AW (2.5), IOD (0.8), ChB (0.5). Pedipalp (Tr/Fe/Pa/Ti/Ta/Claw/Tl) (0.4/1.0/0.4/0.6/0.5/0.6/3.5). Legs (Tr/Fe/Pa/Ti/Mt/Ta/Tl): 1 ♀ (0.3/6.2/1.0/4.0/8.3/1.0/20.8); II ♀ (0.5/12.0/1.0/10.0/16.0/4.5/44.0); III (0.6/9.0/1.1/5.0/10.3/...
Fig. 3. A–B — male holotype of *Avima leucobunus* Roewer, 1949: A — dorsal view, B — lateral view; C — holotype (possibly male) of *Avima albioriata* (Goodnight et Goodnight, 1947) (AMNH), dorsolateral view; D — female or beta male of *Trinella intermedia* (AMNH), dorsal view. Scale bars: 1 mm. Pictures by: Andrés García (A, B) and Ricardo Pinto-da-Rocha (C, D).

Рис. 3. A–B — *Avima leucobunus* Roewer, 1949, голотип самец: A — дорсально, B — латерально; C — голотип (возможно самец) *Avima albioriata* (Goodnight et Goodnight, 1947) (AMNH), дорсолатерально; D — самка или бета-самец *Trinella intermedia* (AMNH), дорсально. Масштаб: 1 мм. Фото Andrés García (A, B) и Ricardo Pinto-da-Rocha (C, D).

2.7/28.7; IV (0.6/12.8/1.4/7.0/15.0/3.0/39.8). Dorsum. DS outline epsilon, type 2. Anterior and lateral margins of DS smooth. Ocularium low, smooth and without median concavity. Post-ocular region of carapace with an elliptical hill, provided with a yellowish lunate blot (Figs 1A–D, 2A,B, 3A–C). Mesotergum slightly delimited, divided into four unarmed areas: I divided medially into two halves; areas II–IV undivided (Figs 1B, 2A,B). Posterior margin of DS substraight with few granules. Free tergites I–III with some granules (Fig. 1E). Venter. Coxa I with a longitudinal row of tubercles (the distal one visible in dorsal view) and one conical large tubercle on the anteroproximal margin (the left coxa I has two conical large tubercles) (Figs 1E, 2C); coxae II–IV with some granules; coxa II longer than coxa I; coxa III longer than coxae II; coxa IV backward projected. Stigmata oval and transverse (Fig. 1E). Chelicera. Basiculicertite quadrate in dorsal view, with well-marked bulla, two ectal, three anterior and two mesal tubercles. Hand swollen,
Fig. 4. *Avima intermedia* (Goodnight et Goodnight, 1947) (USNM AK 10*) male. Habitus: A — panoramic view, B — dorsal view, C — lateral view, D — anterior view, E — ventral view. Scale bars: 1 mm.

Рис. 4. *Avima intermedia* (Goodnight et Goodnight, 1947) (USNM AK 10*), самец. Внешний вид: A — общий вид, B — дорсально, C — латерально, D — спереди, E — вентрально. Масштаб: 1 мм.
with setiferous tubercles of different sizes (reaching the medial and posterior region of the hand), and with one tubercle near the joint of the movable finger. Fixed finger with the inner surface finely grooved. Movable finger with one trapezoid, sub-basal tooth and with a dentate distal inner surface (Fig. 2D). Pedipalps. Trochanter with one subapical tubercle on the ventral face. Femur with a ventroectal row of five setiferous tubercles (the two basalmost largest, the medial small, and the two distalmost medium-sized), and one large ventromesal setiferous tubercle in the apical portion. Patella with one large mesal setiferous tubercle. Tibia ectal iII, mesal Hi. Tarsus ectal ii, mesal ili (Fig. 2E,F). Legs. Increasing in thickness from leg I to leg IV, unarmed (Fig. 1A). Leg I filiform; coxa I with one dorsoanterior and one dorsoposterior tubercles. Coxa II with one dorsomedial and one retrolateral tubercle. Coxa III with one anterior, one posterior and one large retrolateral tubercle. Coxa IV with two small dorsodistal tubercles; Fe IV length four times DS length (Fig. 1A); Pa IV with one medium-sized tubercle on prolateral face, two large tubercles on prolateroventral face, and on large tubercle on retroventral face; Ta I–II each with one eversible claw; Ta III–IV with two subparallel smooth claws and without tarsal process. Penis. LP small (width twice the height) and depressed, with anterolateral rounded corners (ear-shaped) dorsoapically pointed (Fig. 2G,H). Malleus with two pairs of branched MS-A; one pair of branched MS-B; MS-C absent; two pairs of short MS-D located in a keel between the ventral part of the LP and the base of the stylus; MS-E2 large and triffid, MS-E1 short and conical, located slightly distal to MS-E2 on the ventral side of the LP (Fig. 2G,H). Stylus elongated, mostly straight (curved dorsally at the apex), and surpassing the LP; dorsal keel present, with a tiny projection close to apical junction with the stylus (indicated by an arrow in Fig. 2G); tip truncated, dorsally projected. Color (in alcohol). Carapace, chelicerae and pedipalps Moderate Orange Yellow (71). Carapace, legs I–IV Dark Orange Yellow (72). Dorsal lunate blot Pale Yellow (89) (Fig. 3). Free tergite III with a white elliptical blot (Fig. 1E).

DISTRIBUTION. Trinidad and Suriname.

REMARKS. In the description of A. albiornata, Goodnight et Goodnight [1947] stated that the species exhibits, posterior to the eye tubercle, "an elevation equal in height to the eye tubercle, but somewhat constricted in the middle". Posteriorly, they describe "A white dot in the median portion of the third free tergite". By examination of the holotype of A. leucobunus (Figs 2, 3A,B), and comparing with the holotype (Fig. 3C) and topotypic material of A. albiornata (Fig. 1), we propose the synonymy.

Avima intermedia (Goodnight et Goodnight, 1947) Figs 3D, 4, 5.

Trinella intermedia Goodnight et Goodnight, 1947: 3, fig. 8. Trinella intermedia — Soares, Avram, 1981: 95; Soares, Avram, 1982: 19; Pinto-da-Rocha, 1996: 317; Kury, 2003: 33.

Avima intermedia: Villarreal-M., Kury, 2009: 66.

Leiostenus leiobuniformis Silhavy, 1973: 131, figs 46–50. syn.n.

Leiostenus leiobuniformis — Soares, Avram, 1981: 75; Soares, Avram, 1987: 76; Avram, 1987: 81.

Trinella leiobuniformis: Pinto-da-Rocha, 1996: 317; Kury, 2003: 33.

Avima leiobuniformis: Villarreal-M., Kury, 2009: 66.
The original description of Leiosteninae state that it comprises individuals with unarmed eye mound, inconspicuous scutal areas and first mesotergal area with or without median line, first coxae with a row of hair pointed tubercles, very long and fine legs, third femur longer than body size and pedipalps relatively long (Šilhavý, 1973). The idea that different harvestmen genera were “Leiosteninae-like”, was used by some authors as a criteria to allocate them in the subfamily, genera were “Leiosteninae-like”, was used by some authors as a criteria to allocate them in the subfamily, e.g., García & Villarreal [2020] for Leptostygnus Mello-Leitão, 1940; Garcia & Kury [2020] for Vima; Ahumada et al. [2020] for Barinas González-Sponga, 1987; Villarreal & García [2021] for Muscopolio Villarreal et García, 2021.

Here we have made an effort to detect diagnostic characters for Avima with the aim of defining the core of the genus and enable future studies that may delimit the real composition of this complex group. So, we propose the Avima albiornata species group whose members inhabit Northeastern Venezuela, Trinidad and Tobago, and Suriname (Fig. 5) and that share some characters above listed (see diagnosis). A similar distribution with species occurring in the Caribbean (Venezuela and Minor Antilles) and Guyana is found in the genus Stygnopus Simon, 1879 as defined in Villarreal et al. [2021b]. Not surprisingly, Trinidad shares some harvestmen species with the northeastern region of Venezuela, as recorded by González-Sponga [1992], Kury [2003] and Townsend et al. [2012] e.g. Phareicraeus calcariferus (Simon, 1879) (Cranaidae), Rhopalocranaus albilineatus Roewer, 1932 (Manaosbiidae) and Paeclaelma ingeli Goodnight et Goodnight, 1947 (Cosmetidae).

When comparing the diagnostic characters of the group within other genera/species of Leiosteninae, we found that:

1) A large to very large body size occurs mainly in Andrescava Roewer, 1957, some “Avima” species from Andean caves e.g. A. checkleyi (Rambla, 1978), A. bombardii (Muñoz-Cuevas, 1976), A. falconensis (González-Sponga, 1987), A. troglodia (Pinto-da-Rocha, 1996), A. tuttisfrutti García et Pastrana, 2021, and Paravima.

2) The mesotergum is poorly delimitmed in the majority of Leiosteninae, except Andrescava, “Avima” bubonica (González-Sponga, 1987), Barinas, Barlovento, Leptostygnus, Muscopolio and Sahanilla.

3) The pedipalps length in Leiosteninae tend to be less than 5 mm, except in the core of Avima (mentioned above), Avima venezuelica (Soares et Avram, 1981), and the “Avima” species from caves, including troglomorphic forms (A. azulita (Rambla, 1978), A. bordoni, A. chapmani (Rambla, 1978), A. checkleyi, A. falconensis, A. troglodia). Elongation of appendages, such as antennae, legs, pedipalps, etc. have been referred to strictly cave species, so it could be an independently acquired condition.

4) The ocularium is low in the Leiosteninae, except in A. chiguaransis (González-Sponga, 1987), A. flavomaculata (González-Sponga, 1987), A. granulosa (González-Sponga, 1998), and A. substrapamera (González-Sponga, 1987); the ocularium is smooth in Leiosteninae, with the exception of Muscopolio and Barinas piragua Ahumada et García, 2020; the median concavity is present only in the ocularium of Muscopolio, Leptostygnus, Ocoita, Paravima, and some “Avima” species, as A. palpogranulosa (González-Sponga, 1981), A. plana (Goodnight et Goodnight, 1949), A. quirozi (González-Sponga, 1981), A. severa (Soares et
Avram, A.F. García et al.

Avram (1981) and A. virgirina (Villarreal-M.et Rodriguez-M., 2003).

5) The yellowish spots on DS appear in particular cases in Leiosteninae, i.e., Leptostygus marchantiarum (González-Sponga, 1987) and L. yarigui García et Villarreal; 2020; Avima albimaculata, A. subparamera, A. tutitifruti, A. venezuelica; and Vima insignis.

6) The penis with rounded distal corners of the LP is a character observed in Nemastygus, A. matintapera, A. palpogranulosa, A. severa, as well as Ocoita, A. checkeleyi, A. falconensis and A. venezuelica [García, Villarreal, 2020].

7) The straight or sub-straight stylus with a smooth dorsal keel is a character found in the majority of the Leiosteninae, with exception of A. tutitifruti and A. soaresorum, as well as Barinas, Ocoita, Paravima, Vima and Vimming [García, Villarreal, 2020].

Except the species here defined as Avima albiornata species group, the remaining 31 species currently included in the genus should be reviewed on a case-by-case basis to determine their affinities within the family. So, probably, a cladistic analysis would be conducive to resolving this issue.

Disclosure statement. No potential conflict of interest was reported by the authors.

Acknowledgments. We are thankful to Peter Jäger (SMF) who loaned the type material of A. leucobasus. We are grateful to Jérôme Murienne and Sébastien Call (CNRS-Centre National de la Recherche Scientifique, France) who kindly donated material of A. albiornata from Trinidad and Tobago, and to Ricardo Pinto-da-Rocha for sharing with us the photographs of the holotypes of A. checkeleyi, A. flavomaculata, A. subparamera, A. tutitifruti, A. venezuelica; and Vima insignis.

References

Ahumada-C. D., García A.F., Navas-S. G.R. 2020. The spiny agoristenid genus Barinas (Achrichtina: Opiliones), with the description of a new species from the Colombian Caribbean // Arachnology. Vol.18. Pt.6. P.632–641.

Avram Ş. 1987. Opiliones du Venezuela. IV. // Fauna hipogea y de otros países de América del Sur. Buenos Aires: Edición Academica Republica Socialista de la Unión. Vol.1. No.8. P.51–88.

Avram Ş., Soares H.E.M. 1979. Novas descobertas na morphologie das organes copulateurs femelles chez les Opilionides du sous-ordre Laniatores // Travaux de l’Institut de Spéologie «Emile Racovitza». Bucharest. Vol.18. P.85–95.

Castruccio L., de 1951. Studi sugli Aracnidi del Venezuela raccolti dalla Sezione di Biologia (Università Centrale del Venezuela-lato). I Parte: Scorpiones, Opiliones, Solifugae y Chernetae // Acta Biologica Venezuelae. Vol.1. No.1. P.1–46.

Florez-D E., Sánchez-C.H. 1995. La diversidad de los arácnidos en Colombia — aproximación inicial. // Rangel O. (ed.). Colombia, Diversidad Biótica I. UN, Inderena, Fes, Fen. Santafé de Bogotá: Instituto de Ciencias Naturales. P.327–372.

García A.F., González Vargas A., Gutiérrez Estrada M. 2022. Ne records and a new cave-dwelling species of Agoristenidae (Achrichtina, Opiliones) from Colombia // Zoosystematics and Evolution. Vol.98. No.1. P.55–63. doi: 10.3897/zse.98.78202.

García A.F., Kury A.B. 2020. The Neotropical harvestman genus Vima Hirst, with description of a new species from Colombia // Acta Arachnologica. Vol.48, No.1. P.67–76.

García A.F., Pastrana-M. R. 2021. A remarkable new species of Agoristenidae (Achrichtina, Opiliones) from Córdoba, Colombia // Papéis Avulsos de Zoológia. Vol.61. Art.e20216127. P.1–8. doi: 10.11606/1807-0205/2021.61.27.

García A.F., Villarreal O. 2020. Description of a new species of Leptostygus Mello-Leitão, 1940 and notes on the male genitalia in the subfamily Leiosteniinae (Opiliones: Agoristenidae) // Studies on Neotropical Fauna and Environment. P.1–15. doi: 10.1080/01650521.2020.1724496.

González-Sponga M.A. 1987. Arácnidos de Venezuela. Opiliones Laniator I. Familias Phalangodidae y Agoristenidae. Caracas: Academia de Ciencias Físicas, Matemáticas y Naturales. 562 p.

González-Sponga M.A. 1992. Arácnidos de Venezuela. Opiliones Laniator I. Familia Cosmetidae. Caracas: Academia de Ciencias Físicas, Matemáticas y Naturales. 432 p.

González-Sponga M.A. 1998. Arácnidos de Venezuela. Cuatro nuevas especies de la familia Agoristenidae (Opiliones, Laniatores) // Acta Biológica Venezuelae. Vol.18. No.3. P.21–33.

Goodnight C.J., Goodnight M.L. 1947. Studies on the phalangid fauna of Trinidad // American Museum Novitates. No.1351. P.1–13.

Hadley A. 2015. CombineZP. Image stacking software [online]. Website https://alan-hadley.software.informer.com/ [accessed 27 June 2018].

Jaffter A. 2001. NBS/ISC Centroids // Color-Name Dictionaries [online]. Website http://people.csail.mit.edu/jaffter/Color/ColourDictionaries#nbs-iscc [accessed 17 October 2020].

Kury A.B. 1997. A new subfamily of Agoristenidae, with comments on suprageneric relationships of the family (Achrichtina, Opiliones, Laniatores) // Tropical Zoology. Vol.10. No.2. P.333–346.

Kury A.B. 2003. Annotated catalogue of the Laniatores of the New World (Achrichtina, Opiliones) // Revista Ibérica de Aracnología. Vol. especial monográfico 1. P.1–337.

Kury A.B. 2013. Order Opiliones Sundevall, 1833 // Zhang Z.-Q. (ed.). Animal Biodiversity: An Outline of Higher-level Classification and Survey of Taxonomic Richness (Addenda 2013). Zootaxa. Vol.3703. No.1. P.27–33.

Kury A.B., Alonso-Zarazaga M.A. 2011. Addenda and corrigenda to the “Annotated catalogue of the Laniatores of the New World (Achrichtina, Opiliones)” // Zootaxa. Vol.3034. P.47–68.

Kury A.B., Medrano M. 2016. Review of terminology for the ventral plate in Gonyleptoidea (Arachnida, Opiliones, Laniatores) // Journal of Arachnology. Vol.48. No.1. P.67–76.

Kury A.B., Medrano M. 2017. Remarks on suprageneric relationships of the family (Arachnida, Opiliones, Laniatores I. Familias Phalangodidae y Agoristenidae) // Tropical Zoology. Vol.10. No.2. P.333–346.

Kury A.B., Medrano M. 2019. Arácnidos de Venezuela. Opiliones Laniator I. Familia Cosmetidae. Caracas: Academia de Ciencias Físicas, Matemáticas y Naturales. 432 p.

Muñoz-Cuevas A. 1976. Notes on Arachnida, Opiliones // Bolletin de la Seccion de Biologia (Universidad del Zulia). Vol.1. P.1–46.

Muñoz-Cuevas A. 1977. Phalangezza bordoni, nuovo gênero e espécie de Opiliones cavernícolas de Venezuela, da família Phalangodidae (Achrichtina; Opilionida) // Boletin de la Sociedad Venezolana de Paleontología. No.6. No.12. ["1975"]. P.87–94.

Pinto-da-Rocha R. 1996. Notes on Vima insignis Hirst, 1912, revalidation of Trinella Goodnight et Goodnight, 1947 with description of three new species (Achrichtina, Opiliones, Agor-
Chasing the identity of *Avima* Roewer, 1949

istenidae) // Revista Brasileira de Entomologia. Vol.40. No.2. P.315–323.
Rambla M. 1978. Opiliones cavernícolas de Venezuela (Arachnida, Opiliones Laniatores) // Speleon. Vol.24. P.5–22.
Rambla M., Juberthie C. 1994. Opiliones // C. Juberthie, V. Decu (eds.). Encyclopaedia Biospeologica I. P.215–230.
Roewer C.F. 1923. Die Weberknechte der Erde. Systematische Bearbeitung der bisher bekannten Opiliones. Jena: Gustav Fisher. 1116 S.
Roewer C.F. 1949. Über Phalangodiden I. (Subfam. Phalangodi- nae, Tricommatinae, Samoinae) // Weitere Weberknechte XIII // Senckenbergiana. Bd.30. H.1/3. S.11–61.
Roewer C.F. 1963. Opiliones aus Peru und Colombien. [Arachniden Arthogastra aus Peru V] // Senckenbergiana Biologica. Bd.44. H.1. S.5–72.
Šilhavý V. 1973. Two new systematic groups of gonyleptomorph phalangids from the Antillean-Caribbean Region, Agoristenidae Fam. N., and Caribbiantinae Subfam. N. (Arachn.: Opilionidea) // Věstník československé Společnosti zoologické [Acta societatis zoologicae bohemoslovacae]. Vol.37. No.2. P.110–143.
Šilhavý V. 1979. Opilionids of the suborder Gonyleptomorphi from the American caves, collected by Dr. Pierre Strinati // Revue suisse de Zoologie. T.86. Fasc.2. P.321–334.
Soares H.E.M., Avram Ş. 1981. Opiliones du Venezuela // Travaux de l’Institut de Spéologie «Émile Racovitza». Vol.20. P.75–95.
Soares H.E.M., Avram Ş. 1982. Opiliones du Venezuela. II // Travaux de l’Institut de Spéologie «Émile Racovitza». Vol.21. P.19–27.
Soares H.E.M., Avram Ş. 1987. Opiliones du Venezuela. III // Decu V., Orghidan T., Dancau D., Bordon C., Linares O., Urbani F., Tronchon J., Bosque C. (eds.). Fauna hipogea y hemiedafica de Venezuela y de otros paises de America del Sur. Bucurest: Editura Academiei Republicii Socialiste România. P.73–80.
Townsend V.R., Jr., Moore M.K., Proud D.N., Young V.A. 2012. A preliminary survey of the harvestmen (Arachnida: Opiliones) of Tobago, West Indies // Living World, Journal of the Trinidad and Tobago Field Naturalists’ Club. P.41–53.
Turk F.A. 1948. Records and descriptions of new and little-known Opiliones, mostly cavernicolous // Annais and Magazine of Natural History. Ser.12. Vol.1. No.4. P.254–262.
Villarreal O., García A.F. 2021. On the phylogenetic relationships of *Mascopilus*, a new Andean genus of basibiont harvestmen (Opiliones: Agoristenidae) // Zoologischer Anzeiger. Vol.292. P.150–162. doi: 10.1016/j.jcz.2021.03.006
Villarreal O., García A.F., Kury A.B. 2021a. Fine-tuning the diversity in four families of Gonyleptoidea (Arachnida: Opiliones) in Venezuela // Revista Mexicana de Biodiversidad. Vol.92. Art.e923633. doi: 10.22201/bh.20078709e.2021.92.3633
Villarreal O., Kury A.B., Colmenares P.A. 2021b. Contributions to the taxonomy of some Amazonian Stigndae (Opiliones: Laniatores: Gonyleptoidea) // Zootaxa. Vol.4984. No.1. P.218–227. doi: 10.11646/zootaxa.4984.1.17
Villarreal-Manzanilla O., Kury A.B. 2009. A new generic homonym in the Agoristenidae (Arachnida: Opiliones) // Zootaxa. Vol.2045. P.65–68.

Responsible editor K.G. Mikhailov