GRAPH THEORY AS A TOOL FOR GROWING MATHEMATICAL CREATIVITY

Puput Suryah¹, S.B Waluya ², Rochmad ³, Wardono ⁴
¹IKIP PGRI Bojonegoro
email: puput.suryah@ikippgribojonegoro.ac.id
²Universitas Negeri Semarang
email: s.b.waluya@mail.unnes.ac.id
³email: rochmad_manden@mail.unnes.ac.id
⁴email: wardono@mail.unnes.ac.id

Abstract: The purpose of this research to describe about graph theory is subject can serve as a tool for growing mathematical creativity. Systematic Literature Review (SLR) is used as a method of analyzing a wide range of articles and literature were obtained through searching of data sources. The results of the analysis of various sources elaborated reviews about the open ended questions of graph theory that are used as a disclosure in growing the mathematical creativity of students based on Bahar & Maker's theory modifications are open ended questions that have characteristics such as fluency and flexibility and have been done in detail elaboration. Fluency on theory graph can be known when students do task/exercises such as isomorphic graph. Flexibility on theory graph can be known when students do task/exercises, simple about spanning trees. In this paper also we showed how can use graph theory to teach standards of NCTM (National Council of Teachers on Mathematics of America) that related with mathematical creativity.

Keyword: graph theory, mathematical creativity, fluency, flexibility

Abstrak: Tujuan penelitian ini untuk mendeskripsikan graf teori merupakan salah satu alat untuk menumbuhkan kreativitas matematika. Systematic Literature Review (SLR) digunakan sebagai metode dalam menganalisis sebagai berbagai artikel dan literatur yang diperoleh melalui pencarian sumber data. Hasil analisis dari berbagai sumber tersebut dijabarkan ke dalam ulasan tentang pertanyaan terbuka dari teori graf yang digunakan untuk mengungkaplah kreativitas matematika peserta didik berdasarkan teori modifikasi Bahar & Maker dimana pertanyaan terbuka yang memiliki karakteristik seperti fluency/kelancaran dan flexibility/kelengkapan yang dikerjakan secara elaborasi. Dimensi fluency/kelancaran pada teori graf dapat diketahui ketika peserta didik mengerjakan soal misal tentang isomorfik. Dimensi flexibility/kelengkapan pada teori graf dapat dikenali ketika peserta didik mengerjakan soal misal tentang spanning trees/pohon berentang. Dalam artikel ini ditunjukkan juga bagaimana graf teori menggunakan standar dari NCTM yang terkait dengan kreativitas matematika.

Kata kunci: teori graf, kreativitas matematika, fluency, flexibility
INTRODUCTION

The role of creativity is very important in every line in the world, especially for working and learning. Creativity ability needs to be applied because it is one of the recommended world of work (Career Center, Maine Department of Labor, 2004). Early accounts of mathematical creativity (Hadamard, 1945; Poincaré, 1948) influenced by Gestalt psychology describe the creative process as that of preparation–incubation–illumination and verification (Wallas, 1926) as cited in (Harpen, 2012).

Based on Silver (1997), Mann (2005), dan Bahar & Maker (2011), that mathematical creativity is a basic ability that students must have in learning mathematics. Graph theory is mathematics branch. It is interesting subject manner. Our claim is that this subject can serve as a tool for growing mathematical creativity. Mathematical creativity of students also needs to be grown through the provision of open ended problems that contain components of fluency and flexibility.

The open ended questions of graph theory that are used as a disclosure in growing the mathematical creativity of students based on Bahar & Maker's theory modifications are open ended questions that have characteristics such as fluency and flexibility and have been done in detail/elaboration.

METHODOLOGY

The method used in this study is Systematic Literature Review (SLR). This method is considered right to produce a synthesis or various fusion reliable academic literature and accurate (Chlakiadaki, 2018). Data collection is done with using google scholar, scopus, ERIC in the forms of article journals, books, reports and article seminar proceedings. All data that obtained is analyzed for present in a review of this article thorough and structured.

DISCUSSION

Some experts define creativity from various perspectives, Dogan (2011:16) states that creativity is a skill to find and discover new or original thoughts, or to produce new product that are flexible and original. One of the main indicators of creativity is new results in creativity are solutions that have not been taught by educators or are not found in existing books.

Including Nadafikah & Yafia (2013), creativity is the result of one’s ability to produce new ideas. New ideas are related to ideas that have never existed. New ideas generated by someone else can also come from the result of the construction of several ideas that already exist so as to produce ideas that are more complex than before. Grishober (2004) defines creativity as a result of the process of constructing mastery that consist of many aspects are fluency, flexibility and novelty. Then McIngror (2007) that creativity the result of thinking to the aquisition of new ideas in solving problems that show eloquence, flexibility and originality in thinking. According to Martin (2009), creativity is the result of a person’s ability to be flexible and original to produce new ways of problem solving.

Based on some experts opinion, mathematical creativity is constructing process of personal ideas studying mathematics that consist of fluency, flexibility, novelty, originality, and elaboration. In this paper, writer discuss about mathematical creativity on graph theory. Based on studied about graph theory, writer describe about some topics on graph theory that can imply in the mathematical learning that it can grow mathematical creativity.

Bahar & Maker’s (2011), suggested that to grow students’ mathematical creativity, it was necessary to give open ended problems that were fluency, flexibility, elaboration and were raised simultaneously as indicator bases. Then, students can be drill to do some open ended problems that contain fluency and flexibility components.
Fluency is the one of some components on mathematical creativity. Fluency is the component that describes about one algorithm on a topic has some solving problem solutions. Flexibility on graph theory can be known when students do task/exercises such as isomorphic graph. Let discuss about isomorphic on graph theory.

Isomorphism: \(G_1 = (V_1, E_1) \) and \(G_2 = (V_2, E_2) \) are isomorphic if there exists a one-to-one and onto mapping \(f \) such that \((i, j) \in E_1\) if \((f(i), f(j)) \in E_2\)

Start at vertex 1.
\(\{1\} \Rightarrow \{2, 3, 4\} \Rightarrow \{5, 6, 7\} \Rightarrow \{8, 9\}\)
Vertex 10 is not reachable from vertex 1.

Start at vertex 1.
\(\{1\} \Rightarrow \{2, 3, 4\} \Rightarrow \{5\}\)
Vertices 6, 7, 8 are not reachable from vertex 1. BFS can be used to determine the connected components of an undirected graph.

\(V = \{1, 2, 3, ..., 12\}\)
Step 1. Perform BFS starting at an arbitrary vertex (assume vertex 5).
\(\{5, 6, 7\}\) is reachable from vertex 5.
\(\{5, 6, 7\}\) is a connected component.
Step 2. Repeat Step 1 for an arbitrary vertex (assume vertex 1) from the
remaining vertices, \(\{1, 2, 3, 4\} \) is a connected component.

Step 3. Repeat Step 1 for an arbitrary vertex from the remaining vertices \(\{8, 9, 10, 11, 12\} \) is a connected component.

Depth First Search (DFS)

![Depth First Search (DFS) diagram]

Start at vertex 1.
\[1 \rightarrow 4 \rightarrow 7 \rightarrow 9 \rightarrow 8 \rightarrow 6 \rightarrow 3 \rightarrow 5 \rightarrow 2\]

Start at vertex 1.
\[1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3\]

DFS can be also used to determine the connected components of an undirected graph.

Spanning Trees

![Spanning Trees diagram]

Let \(G = (V, E) \) be an undirected graph. A subgraph \(G_1 = (V_1, E_1) \) of \(G \) is a spanning tree of \(G \) if \(V_1 = V \) and \(G_1 \) is a tree. BFS and DFS can define spanning trees, named breadth-first spanning trees and depth-first spanning trees, respectively.

\(G: \)

![Graph G diagram]

On one hand, based on Asghari (2012) the progress of Discrete-Math and Graph and its application in various sciences such as 'Chemistry, electrical fields, research in operations, computer planning, encoding and social sciences, and the other hand, the declared aims of Math-education by NCTM shows that it is necessary to include the graph theory.

CONCLUSIONS

The open ended questions of Theory Graph that are used as a disclosure in growing the mathematical creativity of students based on Bahar & Maker’s theory modifications are open ended questions that have characteristics such as fluency and flexibility and have been done in detail/elaboration. Fluency on theory graph can be known when students do task/exercises such as isomorphic graph, dual graph, and the other sub content on graph theory problem that can discuss by other writer/researcher on the next paper. Flexibility on theory graph can be known when students do task/exercises, example about colouring graph using many algorithms such as Welch Powell Algorithm, etc; and shortest path using Dijkstra Algorithm, Chinese Postman Problem.
Algorithm, and the other sub content on graph theory problem that can discuss by other writer/researcher on the next paper. In addition the selection of a learning models depends on the objectives to be achieved by the teacher needs to be discussed next to bring up mathematical creativity.

ACKNOWLEDGMENT
This article is a part of dissertation work of the first author.

BIODATA
Puput Suriyah teaches student teachers of Mathematics at the Department of Mathematics Education of IKIP PGRI Bojonegoro, East Java. She is also currently doing a PhD in Mathematics Education at Universitas Negeri Semarang based in Central Java, Indonesia. She hold an MA in Mathematics Education from Universitas Sebelas Maret Surakarta based in Central Java, Indonesia. Her research interest lie in the teaching of mathematics discrete & graph theory, bilingual learning, cooperative learning, discovery learning, and mathematical creativity

REFERENCES
Asghari, N., Shahvarani, A. R., Haghighi, A.R. 2012. Graph Theory as a Tool for Teaching Mathematical Process. International Journal For Cross-Disciplinary Subjects in Education, 3(2), 731-734.

Bahar, A. Kadir, & Maker, C. June, 2011. Exploring the Relationship between Mathematical Creativity and Mathematical Achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33 – 48.

Career Center Maine Department of Labor. 2004. Today’s Work Competence in Maine. Retrieved from http://www.maine.gov/labor/ltimis/pdf/EssentialWorkCompetencies.pdf.

Chalkiadaki, A. (2018). A Systematic Literature Review of 21st Century Skills and Competencies in Primary Education. International Journal of Instruction, 11(3), 1-16. Cilliers, E. J. (2017).

Dogan, N. 2011. Creative thinking and creativity. In New Trends in Education (Ed.Ozcan Demirel), Ankara: Pegem Akademi Publication.

Grieshober, W. E. 2004. Continuing a Dictionary of Creativity Terms & Definitions. New York: International Center for Studies in Creativity State University of New York College at Buffalo. Retrieved from http://www.buffalostate.edu/orgs/cbwr/ReadingRoom/theses/Grieseb.pdf.

Hadamard, J. (1945). Mathematician's mind: The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.

Harpen, X.Y.V., & Sriram, B. 2012. Creativity and mathematical problem posing: an analysis of high school students' mathematical problem posing in China and the USA. Educ Stud Math 82:201–211 DOI 10.1007/s10649-012-9419-5. published online: 11 July 2012, Springer Science+Business Media B.V. 2012, page 201-221

Mann, Eric L. 2005. Mathematical Creativity and School Mathematics : Indicators of Mathematical Creativity in the Middle School Students. Diakses dari https://opencommons.uconn.edu/dissertations/AAI3205573/

Martin, 2009. Convergent and Divergent Thinking. Retrieved from http://www.eruptingmind.com/convergent-divergent-creative-thinking/[20 Maret 2009]

McGregor, D. 2007. Developing Thinking Developing Learning. Poland: Open University Press.
Nadjafikhah, M., & Yaftian, N. 2013 The Frontage of Creativity and Mathematical Creativity. *Procedia - Social and Behavioral Sciences*, 90(InCULT 2012), 344–350. https://doi.org/10.1016/j.sbspro.2013.07.101

Poincaré, H. (1948). *Science and method*. New York: Dover Books.

Silver, E. 1997. *Fostering Creativity through Instruction Rich in Mathematical Problem Solving and Problem Posing*. Diakses dari https://www.emis.de/journals/ZDM/zdm973a3.pdf

Wallas, G. (1926). *The art of thought*. Harmondsworth, UK: Penguin Books Ltd.
Graph Theory as a Tool for Growing Mathematical Creativity

Originality Report

Rank	Source	Simplicity Index	Internet Sources	Publications	Student Papers
1	text-id.123dok.com	2%	2%		
2	vdocuments.mx	2%	2%		
3	link.springer.com	2%	2%		
4	Isnani, S.B. Waluya, Rochmad, Wardono. "Analysis of mathematical creativity in mathematics learning is open ended", Journal of Physics: Conference Series, 2020	1%			
5	research.curtin.edu.au	1%	1%		
6	Ismail Marzuki. "Fairy Tale Development of Creativity Skills Basic Schools Students", Journal of Social Science Studies, 2019	1%			
7	redfame.com				
L. R. FOULDS, V. J. RAYWARD-SMITH. "STEINER PROBLEMS IN GRAPHS: ALGORITHMS AND APPLICATIONS", Engineering Optimization, 2007

jurnalmahasiswa.unesa.ac.id

"Creativity and Technology in Mathematics Education", Springer Science and Business Media LLC, 2018

"Mathematical Creativity and Mathematical Giftedness", Springer Science and Business Media LLC, 2018

www.ma.rhul.ac.uk

Exclude quotes On
Exclude bibliography On