Superconductivity near a quantum critical point in Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\)

K. Ahilana, F.L. Ninga, T. Imaia,b, A.S. Sefatc, M.A. McGuirec, B.C. Salesc, D. Mandrusc,2, P. Chended, B. Shend, H.-H. Wend,3

a Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S4M1
b Canadian Institute for Advanced Research, Ontario, Canada M5G1Z8
c Materials Science and Technology Division, Oak Ridge National Laboratory, TN 37831, USA
d National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China

ARTICLE INFO

Article history:
Accepted 17 November 2009
Available online 26 November 2009

Keywords:
Iron based high temperature superconductor
Phase diagram
Spin fluctuations
Quantum critical point
Pressure effects
NMR

ABSTRACT

We will examine the possible link between spin fluctuations and the superconducting mechanism in the iron-based high temperature superconductor Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) based on NMR and high pressure transport measurements.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Over the last year, Co-doped BaFe\(_2\)As\(_2\) [1] has emerged as an ideal platform for detailed investigation into the physical properties of iron-based high temperature superconductors. The advantages of electron-doped Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) are manifold. First and foremost, it is relatively straightforward to grow homogeneous single crystals [1]. These single crystals allowed us to conduct a systematic NMR [2–5] and transport measurements [2,6,7] throughout a broad range of the phase diagram [2]. Availability of high quality single crystals also led many other researchers to concentrate their efforts on investigating Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\). Thanks to these concerted efforts, we can compare experimental results obtained by different techniques and build a comprehensive physical picture. Furthermore, the existence of an overdoped non-superconducting metallic regime [8] allows us to investigate the fate of spin fluctuations when overdoping suppresses superconductivity [5].

In this invited paper, we will provide a perspective on the physical properties of Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) focusing on two key issues. First, we will extend our earlier transport measurements in ambient and applied pressure [2,6,7], establish a new complete electronic phase diagram of Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) under pressure of 2.4 GPa up to the overdoped regime, and discuss its implications. Second, we will also deduce the temperature dependence of antiferromagnetic spin fluctuations (AFSF) in optimally doped Ba(Fe\(_{0.92}\)Co\(_{0.08}\))\(_2\)As\(_2\) based on a phenomenological two component analysis of our \(^{75}\)As NMR data [3], and explain why AFSF may be the glue of superconducting Cooper pairs.

2. Phase diagram

In Fig. 1, we reproduce the electronic phase diagram of Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\) in ambient pressure \(P = 0\) reported first by Ning et al. [2] with newer data points for the overdoped region \(x \geq 0.1\) [5]. A striking aspect of the phase diagram is that the superconducting dome is adjacent to an underdoped regime with magnetically ordered ground states. Analogous proximity between superconducting and magnetic phases has been encountered in many unconventional superconductors in the past, including the high \(T_c\) cuprates.

Also shown in Fig. 1 are the magnetic phase transition temperature \(T_{SDW}\) and the superconducting \(T_c\) under 2.4 GPa of hydrostatic pressure, as determined by resistivity measurements. We refer readers to Refs. [6,7] for the details of experimental procedures. We note that this is the first report on the effects of pressure on \(T_c\) in the overdoped region of Ba(Fe\(_{1-x}\)Co\(_x\))\(_2\)As\(_2\). Application of
2.4 GPa pushes the SDW phase boundary toward smaller \(x \), and extends the superconducting dome. One can certainly argue that this is evidence for competition between superconductivity and magnetism. However, such a viewpoint may be too simplistic, because suppression of the SDW ordered regime is accompanied by the creation of a new paramagnetic regime with enhanced paramagnetic spin fluctuations; the latter may cause the expansion of the superconducting dome to smaller values of \(x \).

In passing, it is worth noting that \(T_c \) increases by \(\Delta T_c \approx 2 \) K under pressure for both \(x = 0.12 \) (\(T^{\text{cond}}_c = 15.0 \) K in \(P = 0 \)) and \(x = 0.14 \) (\(T^{\text{cond}}_c = 6.0 \) K in \(P = 0 \)). Although the pressure coefficient is only modest in the overdoped regime (e.g. \(dT_c/dP = -0.71 \) K/GPa for \(x = 0.12 \)), \(dT_c/dP \) is always positive in the entire phase diagram. Our finding is in contrast with the case of hole-doped \(K_x Sr_{1-x}Fe_2As_2 \), where \(dT_c/dP \) changes its sign from positive to negative in the overdoped regime [9]. The results for \(K_x Sr_{1-x}Fe_2As_2 \) were interpreted in the context of transfer of holes from \(K_x Sr_{1-x} \) charge reservoir layers to FeAs layers under pressure. In the present case, we are doping electrons directly into FeAs layers by substituting Fe with Co.

3. Spin fluctuations

The exact nature of the magnetically ordered ground state under the presence of Co is still somewhat controversial, but there is a consensus that the magnetic phase transition is second order in \(Ba(Fe_{1-x}Co_x)_{2}As_2 \) for \(x > 0 \). In fact, we observe a divergent signature toward \(T^{\text{cond}}_c \) in the temperature dependence of \(1/T_c \), i.e. the NMR Knight shift [3]. The enhancement of \(1/T_c \) at the NMR frequency \(\omega_0/2\pi \approx 50 \) MHz,

\[
1/T_c \propto \sum_{\mathbf{q} \in \text{B.Z.}} |A(\mathbf{q})|^2 \chi^{\text{AFM}}(\mathbf{q}, \omega_0)/\omega_0,
\]

where \(A(\mathbf{q}) \) is the hyperfine form factor, and \(\chi^{\text{AFM}}(\mathbf{q}, \omega_0) \) is the imaginary part of the dynamical electron spin susceptibility. The divergent behavior of \(1/T_c \) towards a magnetic phase transition signals the critical slowing down of spin fluctuations expected for second order magnetic phase transitions. In other words, near the SDW phase boundary, low frequency spin fluctuations are highly enhanced.

In view of the proximity between the SDW and superconducting phases in Fig. 1, a natural question is if spin fluctuations are enhanced even in the normal metallic state above \(T_c = 22 \) K of the optimally doped \(Ba(Fe_{0.92}Co_{0.08})_{2}As_2 \). Our earlier NMR measurements answered this question [2,3,5]. Fig. 2 summarizes the key physical properties of \(Ba(Fe_{0.92}Co_{0.08})_{2}As_2 \) [3,6]. Our 75As NMR data in Fig. 2c indeed captured a clear signature of enhancement of \(1/T_c \) from \(\sim 100 \) K to \(T_c \). The enhancement of \(1/T_c \) toward \(T_c \) is stronger when we apply the external magnetic field \(B_{\text{ext}} \) along the ab-plane rather than the c-axis. This is because the ab-plane components of the hyperfine magnetic fields transferred from Fe layers accidentally cancel out at 75As sites for commensurate antiferromagnetic wave vectors. \(1/T_c \) probes spin fluctuations orthogonal to the quantization axis of nuclear spins, and the latter is along...
the direction of B_{ext}. Accordingly, $1/T_1 T$ with B_{ext}/c is less efficient in capturing AFSF.

Since the divergent behavior of $1/T_1 T$ at T_{sdw} for $x \leq 0.06$ arises from slowing of AFSF for the wave vector modes $Q_{AF} = (\pi/a, 0)$ and $(0, \pi/a)$, we can infer that the same (or similar) modes of AFSF near Q_{AF} are enhanced in the optimal superconducting composition toward T_c.

Another interesting point in Fig. 2c is that the temperature dependence of $1/T_1 T$ is not monotonic; the overall spin fluctuations integrated over the entire first B.Z. decrease with temperature from 290 K down to about 100 K. Furthermore, the temperature dependence of static uniform ($q = 0$) spin susceptibility deduced from the spin contribution to the NMR Knight shift χ is less efficient in Fig. 2d. Very small θ is consistent with a viewpoint that the optimally doped Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ is in the vicinity of a quantum critical point [2]. Also notice that our results of $\chi'(q \approx Q_{AF}, \omega_0)$ deduced as $(1/T_1 T)_{AF}$ in Fig. 2d shows almost identical behavior to the neutron scattering data integrated near $q \sim Q_{AF}$ for energy transfer $\omega = 3$ meV [12].

4. Conclusions

We have demonstrated that the optimal high T_c superconducting phase Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ exists in close proximity with magnetically ordered ground state, and that low frequency antiferromagnetic spin fluctuations are still enhanced near $T_c = 22$ K. Based on a phenomenological two-component model analysis, we also explained that the pseudogap like behavior above ~ 100 K arises from the suppression of temperature with a background spin susceptibility spread over a broad range of q values away from Q_{AF}.

The NMR results for the optimal superconducting phase alone do not necessarily prove that spin fluctuations are the cause of superconductivity. One can, in principle, argue that T_c is as low as 22 K in Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ because the residual antiferromagnetic spin fluctuations are disrupting the formation of Cooper pairs. However, there are two pieces of strong evidence which support the idea that AFSF help the formation of Cooper pairs. First, the suppression of superconductivity in the overdoped region above $x \sim 0.15$ is accompanied by that of AFSF [5]. If AFSF tend to suppress T_c for $x \sim 0.08$, the suppression of AFSF would have to enhance T_c for $x > 0.08$ instead. Second, we also found in the related compound FeSe that the application of pressure enhances T_c and AFSF simultaneously [11].

References

[1] A.S. Sefat et al., Phys. Rev. Lett. 101 (2008) 117004.
[2] F.L. Ning et al., J. Phys. Soc. Jpn. 79 (2009) 013711.
[3] F.L. Ning et al., J. Phys. Soc. Jpn. 78 (2009) 103705.
[4] F.L. Ning et al., Phys. Rev. B 79 (2009) 140506.
[5] F.L. Ning et al., arXiv:0907.3875.
[6] K. Ahilan et al., J. Phys. Condens. Matter 20 (2008) 472201.
[7] K. Ahilan et al., Phys. Rev. B 79 (2009) 214520.
[8] N. Ni et al., Phys. Rev. B 79 (2009) 140506.
[9] D.S. Inosov et al., Phys. Rev. B 78 (2008) 100501.
[10] T. Imai et al., Phys. Rev. Lett. 102 (2009) 177005.
[11] K. Ahilan et al., Phys. Rev. B 78 (2008) 100501.