PHOTOMETRIC VARIABILITY OF THE T2.5 BROWN DWARF SIMP J013656.5+093347: EVIDENCE FOR EVOLVING WEATHER PATTERNS

Étienne Artigau1, Sandie Bouchard2, René Doyon2, and David Lafrenière3
1 Gemini Observatory, Southern Operations Center, Association of Universities for Research in Astronomy, Inc., Casilla 603, La Serena, Chile; eartigau@gemini.edu
2 Département de Physique et Observatoire du Mont Mégantic, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, QC, H3C 3J7, Canada; bouchard@astro.umontreal.ca, doyon@astro.umontreal.ca
3 Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada; lafreniere@astro.utoronto.ca

Received 2009 March 24; accepted 2009 June 22; published 2009 August 3

1. INTRODUCTION

The study of brown dwarfs (BDs) is a very active field in astronomy. Since the discovery of the first ones less than 15 years ago (Rebolo et al. 1995; Nakajima et al. 1995), much has been learned on the nature of those objects. While spectacular advances in modeling their atmospheres have been made, understanding the physical properties of BDs straddling the L/T transition remains one of the most challenging problems. Among the unresolved issues is the intriguing increase of the J-band luminosity with decreasing temperature over the 1400–1100 K interval, just following the transition from L to T type. This odd behavior, the so-called J-band brightening (Vrba et al. 2004), is surprising as one would naively expect near-infrared brightness to decrease with temperature. The brightening coincides with the disappearance of silicate grains from the BDs’ atmospheres and is most likely a consequence of this disappearance, but a self consistent explanation is yet to be found. While dusty models containing no grain sedimentation best reproduce the behavior of late-M to mid-L dwarfs, condensed (clear) models, where the grains are entirely removed from the atmospheres, accurately describe mid-to-late-T dwarfs. Models including grain settling and precipitation (Allard et al. 2003; Burrows et al. 2006) have been able to reproduce a flattening of the J-band magnitude over the problematic temperature interval, but no single set of physical parameters can entirely reproduce the observed early-T dwarf sequence. The fundamental assumption of these models, that a single set of physical parameters can describe the photosphere of T dwarfs, might not be accurate. The problem is further complicated by the possibility that, to some extent, the J-band brightening may be caused by a high frequency of unresolved binaries over this spectral type interval (Liu et al. 2006). Tsuji (2003, 2005) proposed a set of models with dust settling that describes the whole L and T sequence with a parameterization of the cloud deck thickness. They introduced a critical temperature, \(T_{\text{cr}} \), below which the dust no longer remains in the atmosphere in the form of clouds and is removed from the atmosphere through gravitational settling. They suggest that the J-band brightening may be explained by the fact that the L-T sequence is not necessarily a \(T_{\text{eff}} \) one, but that it must instead be understood as arising from variations of both \(T_{\text{eff}} \) and \(T_{\text{cr}} \). Aside from this possibility, it has been suggested that clearings in an otherwise cloudy atmosphere may be responsible for the observed J-band brightening (Ackerman & Marley 2001; Burgasser et al. 2002). In such a scenario, where the atmosphere is not uniform, photometric variability could be observed due to the rotation and/or evolution of the cloud pattern.

There have been many observational searches for variability in ultracool dwarfs (M7 and later) in the last few years. Early searches concentrated mostly on L dwarfs in the J band and clearly established that roughly half of these objects display variability on timescales ranging from tens of minutes to weeks, with amplitudes of a few tens of mmag (Tinney & Tolley 1999; Gelino et al. 2002; Bailer-Jones & Mundt 2001; Terndrup et al. 1999; Martín et al. 2001). Several studies suggest that variability also extends to BDs at the L/T transition. Enoch et al. (2003) reported relatively large \(K_s \) variability (\(\Delta K_s \sim 190–420 \text{ mmag} \)) for three transition objects (L7, T1 and T5) with some evidence of periodic (1–3 hr) modulation. Other groups (Clarke et al. 2008; Koen et al. 2004, 2005) have detected variability for a few objects at a level of \(\sim 15 \text{ mmag} \). Recently, Goldman et al. (2008b) described a marginal detection of variability for the T2 dwarf SDSS1254 using near-infrared spectroscopy. Finally, Morales-Calderón et al. (2006) tentatively detected photometric modulations (\(\sim 10 \text{ mmag at } 4.5 \mu \text{m} \)) in the thermal infrared for two late-L dwarfs. Overall, while variability seems to be established for L/T BDs, the significance of these detections remains marginal and no clear correlation between photometric bands has been reported.

The T2.5 BD SIMP J013656.5+093347 (Artigau et al. 2006), SIMP0136 hereafter), the second brightest known T dwarf after \(\epsilon \) Indi Bab, is an ideal target for studying the
intriguing physical properties of BDs straddling the L/T transition. It falls in the middle of the J-band brightening and it does not appear to be a binary, down to separations of 0.2 and ΔK = 2 as inferred from Lick AO observations (Goldman et al. 2008a). In this paper, we report on the detection of significant near-infrared photometric variability for this object. The analysis of these observations not only provides compelling evidence for the presence of clouds at the surface of this BD but also offers an attractive explanation for the J-band brightening observed in early T dwarfs.

2. OBSERVATIONS AND DATA REDUCTION

The J-band observations were carried out at the Observatoire du Mont-Mégantic (OMM) 1.6 m telescope with the CPAPIR near-infrared camera (Artigau et al. 2004), featuring a 0.89 pixel scale and a 30′ × 30′ field of view (FOV). The observations were obtained on 2008 September 16, 18, 19 and 21, under photometric conditions. As the CPAPIR point-spread function (PSF) would be undersampled under better than 1″ seeing, and given that SIMP0136 is a relatively bright target, the camera was purposely defocused to produce 6-pixel FWHM PSFs. The individual exposure times were 14.8 s with a single co-add. The data were obtained without dithering and using a guide probe. To further minimize drifts of the field during the sequence due to flexure between CPAPIR and the guide probe in the telescope bonnette, a script was run in real time to send slow (≈10 minutes), closed-loop corrections to the guide probe. The results from the first set of observations prompted us to take consecutive J and Ks-band photometric observations on the night of 2008 December 13. The data were also obtained at the OMM but using the SIMON near-infrared spectro-imager with a 0.46 pixel scale and a 7.8 FOV. The J and Ks sequences lasted 3.0 and 2.0 hr, respectively with individual exposure times of 29 s in both bands. The observing strategy was the same as before. For all data sets, a high signal-to-noise (S/N) of 29 s in both bands. The observing strategy was the same as before. For all data sets, a high signal-to-noise (S/N) of 29 s in both bands.

Table 1

2Mass Designation	J	Ks	Separation from SIMP0136	Comment
J01365662+0933473	13.45	12.56	3/5	SIMP0136
J01370717+0935071	13.43	12.54	3/7	Comparison star
J01364524+0931540	11.82	11.54	4/3	Reference star
J01370290+0937184	12.72	12.55	4/7	Reference star
J01371368+0933327	11.85	11.18	4/7	Reference star

Notes.

1 2MASS (Skrutskie et al. 2006) point source catalog.

The above steps produced raw light curves for the target and each of the three reference stars. The raw light curves of SIMP0136 display a strong modulation unlike anything seen in the raw light curves of the reference or comparison stars (Figure 1). The raw curves of SIMP0136 and the comparison star were then corrected for systematic effects in the following manner. The light curve of SIMP0136 and the comparison star (shown in Figure 2) were obtained by dividing them by the mean normalized raw light curves of the three reference stars, see Figure 2. We obtained between 460 and 867 individual images per night and the photometric points shown in Figure 2 are binned over 5 minute intervals (11 to 14 individual measurements). Uncertainties per individual image ranged from 14 to 19 mmag for both SIMP0136 and the comparison star, corresponding to a ∼5 mmag uncertainty over a 5 minute interval for both objects. A similar analysis was done for the December 13 data and the results are shown in Figure 3.

3. DISCUSSION

The photometric variability of SIMP0136 is clearly visible from Figure 2. The variation reached a peak-to-peak amplitude of ΔJ ≈ 50 mmag. The December data (see Figure 3) clearly show that the J and Ks light curves are correlated with one another, the variations being more pronounced in the former with an amplitude ratio of ΔKs/ΔJ ≈ 0.48 ± 0.06. The September 21 light curve, covering 7.5 hr, shows a periodic, double-peaked signal. A very similar modulation is also observed on September 19. As a rough estimate of the period can be readily obtained from the September 21 light curve, and as there is an important second harmonic component in the data set, we determined the precise period by fitting a two-harmonic signal using a Levenberg–Marquardt algorithm rather than using a Lomb–Scargle period-search algorithm (Lomb 1976; Scargle 1982), which assumes a sinusoidal signal and is better suited for sparsely sampled data sets. We derived a 2.3895 ± 0.0005 hr period using either the September 19 and 21 data sets. The evolution of the light curve of SIMP0136 prevents us from deriving a more accurate period as the light curve cannot be folded over several nights. Besides, differential rotation probably renders pointless the attempt of establishing a much more precise period.

A 2.3895 hr period would correspond to a vsin i of up to ∼45 km s⁻¹ depending on the object’s rotation axis inclination with our line of sight, consistent with the fastest rotators in the Basri et al. (2000) and Zapatero Osorio et al. (2006) samples. Only a handful of BDs have a similar rotation period. The L2 dwarf Kelu-1 has a rotation period of less than 2 hr (Clarke et al. 2002). The young M8.5 dwarf S Ori 45 displays a photometric (in the J and J band) modulation with a ∼2.6 hr period but this periodicity was not detected in later observations despite hints of a yet faster (30–45 minutes) modulation (Zapatero Osorio...
et al. 2003). Strong discrete periodograms peaks have been reported for 2M1145 at periods ranging from 2 to 3.5 hr (Bailer-Jones & Mundt 2001) but the light curve of this object cannot unambiguously be folded to a single period.

The clear evolution of the light curves from night to night in Figure 4 could be due to time-varying clouds or storms in the atmosphere of SIMP0136. In that case, observations over several days can give a timescale for the evolution of those clouds/storms. The evolution of the modulation could also be attributed to a differential rotation. If such an assumption is made, a significant phase difference between the equator and the higher latitudes has to be present within our 5 day baseline (here we assume that the December observation is entirely decorrelated). Assuming a (maximum) phase difference of 180° between the equatorial and high-latitude regions of SIMP0136 over the 5-day-long observing sequence would imply a ∼1% differential rotation. This value is comparable to Jupiter showing a ∼0.8% differential rotation per period between its equator and high latitudes. It is thus possible that the evolution of the light curves in Figure 4 is the result of differential rotation. This hypothesis will require a much better temporal sampling to be confirmed.

The relative variations at J and K_s can be used for constraining the physical processes at play. Using the Allard et al. (2003) and Burrows et al. (2006) models, assuming an effective temperature of 1200 K, log $g = 5.0$ and solar metallicity, we derived $\Delta K_s/\Delta J$ for three different variability scenarios: (1) dusty clouds on a clear atmosphere with both phases at the same effective temperature; (2) inhomogeneous surface temperature, for either a dusty or a clear atmosphere; and (3) dusty clouds on a clear atmosphere with both phases at different temperatures. Here dusty and clear refer to the settled and condensed models of Allard et al. (2003) and to the cloudy and clear models of Burrows et al. (2006).
For scenarios 2 and 3, we further considered the models of Tsuji (2003, 2005), the case where dust clouds are completely absent from the atmosphere is presented only as a limiting case (called case C in Tsuji 2003, 2005), it assumes a T_{cr} equal to the condensation temperature of the dust grains.

For the first scenario, both sets of models predict that, for an atmosphere of constant temperature, the J and K_s band light curves should be anticorrelated (i.e., $\Delta K_s / \Delta T < 0$). This can easily be understood as the cloud-free models are brighter than the cloud-bearing models at J and inversely at K_s. Thus if an object evolves from, say, a 50% cloud-free and 50% cloud-bearing atmosphere toward a 51% cloud-free and 49% cloud-bearing atmosphere, it will brighten in J and dim in K_s.

In the second scenario, the variability is caused by surface temperature inhomogeneities in an entirely clear or dusty atmosphere resulting in a time-variation of the disk-averaged temperature. Numerically, this is done by taking the ratio of the relative flux increases in J and K_s for a small (i.e., $\Delta T \ll T$) temperature change,

$$\frac{\Delta K_s}{\Delta T} = \left(\frac{\partial F_s}{\partial T}\right) F_J / F_{K_s}.$$

Using all models, we derived a $\Delta K_s / \Delta T$ ranging from 1.2 to 3.4, the lower and upper limits being set respectively by the cloudy and settled models of Allard et al. (2003). The Tsuji (2003) models using a $T_{cr} = 1800$, yield a $\Delta K_s / \Delta T \sim 2.0$.

The observed $\frac{\Delta K_s}{\Delta T} = 0.48 \pm 0.06$ allows us to exclude the first two variability scenarios. We now consider the third case whereby clouds have a different temperature from the surrounding cloud-free atmosphere. Let f be the cloud filling factor and Δf the variation in cloud coverage. We assume that clear (cloud-free) regions are at a temperature $T = 1200$ K, appropriate for a T2.5 dwarf, and that clouds have a temperature of $T + \Delta T$. Let $F_d[T]$ and $F_c[T]$ be the fluxes in the photometric bandpass m as a function of temperature for the dusty and clear models. The variability is caused by the variation in cloud coverage (Δf) as the BD rotates. It can be shown that the resulting variability Δm in a photometric bandpass is

$$\Delta m = 2.5 \log \left(\frac{F_d[T+\Delta T] f + F_c[T](1-f)}{F_d[T+\Delta T](f + \Delta f) + F_c[T](1-f - \Delta f)} \right).$$

The $\Delta K_s / \Delta T$ ratios for all models and different values of f and ΔT are shown in Figure 5. As shown in this figure, the resulting $\Delta K_s / \Delta T$ varies only slightly as a function of the assumed filling factor for clouds versus cloud-free patches. Also, the overall behavior between the Allard et al. (2003) and Burrows et al. (2006) models is consistent. The observed $\Delta K_s / \Delta T = 0.48 \pm 0.06$ can be reproduced by clouds between 80 to 110 K colder than the cloud-free atmosphere. The results are mildly dependent on the temperature of the clear regions; a $T = 1300$ K would increase the derived ΔT to values ranging from 125 to 150 K. This variability scenario also gives a $\Delta K_s / \Delta T$ ratio allowing for a direct conversion of the light curve amplitude (ΔJ) into an estimate of the variation of the cloud filling factor (Δf). The derived $\Delta K_s / \Delta T$ range from 1.5 to 2.3 depending on the assumed filling factor f (between 0.25 and 0.75). This implies that for a 50 mmag variability amplitude in J, the patches involved in SIMP0136 variability cover between 7% and 16% of the visible disk. This does not constrain the overall filling factor of the dusty versus clear regions, only time differences.

In the Tsuji (2003, 2005) models, the case C (equivalent to the clear models) is not expected to cover a large fraction of the surface, we therefore examined only the case $f = 0.75$ case, where 75% of the surface would be covered by the $T_{cr} = 1800$ model (equivalent to the dusty models). The observed $\Delta K_s / \Delta T$ implies a ~ 100 K temperature difference between the case C and cloud-bearing regions, consistent with the predictions of the Allard et al. (2003) and Burrows et al. (2006) models.

Beside atmospheric phenomena, periodic modulation at a few percent level could easily be introduced by the presence of a transiting companion with a radius of 2–3 R_\oplus or by grazing transits in a roughly equal-sized binary. However, the observed night-to-night evolution of the light curves strongly disfavors any explanation of the variability in terms of transits/grazing transits. The expected light curves would be very stable from period to period and evolve extremely slowly through the evolution of the orbital elements. Also, any transit

Figure 3. J and K_s band light curves obtained on 2008 December 13. The upper panel shows the complete light curves of SIMP0136 and the comparison star while the lower one shows the light curves of SIMP0136 folded to a 2.895 hr period. The modulation observed in 2008 September is still clearly present and observed in both bands. The amplitude of the K_s modulation is correlated with the J band one but with an amplitude 0.48 ± 0.06 times smaller. The solid line in the J-band phase-folded light curve shows the smoothed curve and the continuous line in the K_s-band phase-folded light curve is the same line multiplied by 0.48. The phase-folding relative to the 2008 September observations is arbitrary.
Figure 4. Phase-folded light curve of SIMP0136 for each observing night assuming a period of 2.3895 hr. The continuous line in each epoch’s graph represents the smoothed light curve observed on 2008 September 21. An evolution of the light curve is clearly observed at successive epochs. The double-peaked feature clearly detected on September 19 and 21, and marginally on September 16, has disappeared on September 18.

Figure 5. ΔK_s vs. ΔJ band variability as a function of the temperature difference between the cloudy and cloud-free atmosphere patches. The horizontal line corresponds to the observed ΔK_s and the thickness of the line to the uncertainties on that measurement. The Allard et al. (2003) models do not extend below $\Delta T = -100$ K as the settled models have only been computed down to 1100 K. All models assume a temperature of 1200 K for the cloud-free atmosphere, $\log g = 5.0$ and solar metallicity.

scenario would imply an out-of-transit flat-top light-curve that is not observed. Furthermore, transit light curves show little wavelength dependence (apart from limb darkening effects) and one would expect a $\Delta \kappa / \Delta T \sim 1$ regardless of the geometry of the system.

4. CONCLUDING REMARKS

The observed variability of SIMP0136 suggests that atmosphere models attempting to describe its physical properties using a single set of parameters (dust settling rate, temperature, gravity, etc) are bound to be incomplete as at least two different types of regions must be present on its visible disk to produce the observed variability. The idea that early-T dwarfs could be described as objects with more than one set of physical properties and arbitrary filling factors is not new (Ackerman & Marley 2001; Burgasser et al. 2002), but the detected variability and its interpretation in terms of colder clouds in a warmer atmosphere provides empirical physical constraints of these cloudy and cloud-free regions.

It has been proposed previously that the J-band brightening may result mainly from a decrease in the fractional coverage of dust clouds against warmer, clear regions of the BDs’ atmospheres as they progress from spectral type L to T. Indeed, a brightening in J is a natural outcome of this as warmer clear regions are brighter than cooler dusty regions in J. Our observations not only bring empirical evidence for this scenario, but also provide an estimate of the temperature difference between the cloudy and clear regions of the atmosphere. The difference of ~ 100 K suggested by our results would lead to a brightening of 0.64 mag in J from a completely cloudy to a
completely clear atmosphere, assuming no temperature change for each respective model; this amplitude is similar to that of the observed J-band brightening. In reality, the L/T transition is likely accompanied by a mild change in the temperature of both types of atmosphere—cloudy and clear—but the overall behavior would be similar. The exact shape of the J-band brightening could potentially be reproduced by adjusting, as a function of spectral type, both the temperature of the clear regions and the difference of temperature between the clear and cloudy patches.

Considering that most searches for variability in early-T dwarfs resulted in non-detections or marginal detections despite sensitivities sufficient to readily detect variability at the level observed for SIMP0136, the following question naturally arises: is SIMP0136 an oddball object with unusual physical properties? or is it representative of early-Ts? The nondetection of variability in other early-Ts does not disprove the cloudy versus clear hypothesis: cloud structure on these objects could be either too small to produce significant photometric variability or distributed in bands without longitudinal inhomogeneities. The near-infrared photometric properties of SIMP0136 are typical of early-T dwarfs (see Figure 2 in Artigau et al. (2006)) and its proper motion is consistent with that of a thin disk object; it is therefore not expected to have unusually low metallicity and/or high surface gravity. The only slightly unusual property of SIMP0136, besides its photometric variability, is its relatively rapid rotation. Determining whether rapidly rotating BDs are more likely to feature larger-scale atmospheric structures would require global circulation models; this could be verified observationally by a variability survey specifically targeting rapid rotators.

The physical interpretation of the mechanisms at play is strongly dependent on the accuracy of current atmospheric models and their handling of dust settling; it is nevertheless encouraging that three major sets of models give similar temperature differences and surface coverage. The variability model proposed here leads to a number of readily testable predictions that will provide a unique input for modelers. Photometric variability in other bands is expected; \(\Delta H \) should closely match \(\Delta K_s \), while \(\Delta J \) should be \(\sim 0.8 \). Obtaining an accurate measurement of \(\Delta H / \Delta T \) would be of particular interest as this ratio is strongly dependent on the temperature difference between the cloudy and clear regions, ranging from +1.5 to \(-2 \) over the \(\Delta T = -200 \) to +40 K interval. Time-resolved spectroscopy should reveal a number of variable spectroscopic features, especially in the far-red and J bands. In particular, variability is expected for the depth and shape of the 0.78 \(\mu \)m and J-band KI doublets, the continuum slope between 1.17 and 1.22 \(\mu \)m, and the strength of the \(\sim 0.86 \mu \)m CrH and FeH bands.

We thank our referee, Victor Béjar, for useful suggestions and comments that significantly improved our manuscript. We thank Philippe Delorme for his thoughtful comments on the manuscripts and Céline Reylé for her help on determining the likely membership of SIMP0136 to the thin disk. E.A. is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America. D.L. is supported via a postdoctoral fellowship from the Fonds Québécois de la Recherche sur la Nature et les Technologies. R.D. is financially supported via a grant from the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Ackerman, A. S., & Marley, M. S. 2001, ApJ, 556, 872
Allard, F., Guillot, T., Ludwig, H.-G., Hauschildt, P. H., Schweitzer, A., Alexander, D. R., & Ferguson, J. W. 2003, in IAU Symp. 211, Brown Dwarfs, ed. E. Martin (Dordrecht: Kluwer), 325
Artigau, E., Doyon, R., Lafrenière, D., Nadeau, D., Robert, J., & Albert, L. 2006, ApJ, 651, L57
Artigau, E., Doyon, R., Vallee, P., Riopel, M., & Nadeau, D. 2004, Proc. SPIE, 5492, 1479
Bailer-Jones, C. A. L., & Mundt, R. 2001, A&A, 367, 218
Barst, G., Mohanty, S., Allard, F., Hauschildt, P. H., Delfosse, X., Martin, E. L., Forveille, T., & Goldberg, B. 2000, ApJ, 538, 363
Burgasser, A. J., Marley, M. S., Ackerman, A. S., Saumon, D., Lodders, K., Dahn, C. C., Harris, H. C., & Kirkpatrick, J. D. 2002, ApJ, 571, L151
Burrows, A., Sudarsky, D., & Hubeny, I. 2006, ApJ, 640, 1063
Clarke, F. J., Hodgkin, S. T., Oppenheimer, B. R., Robertson, J., & Haubois, X. 2008, MNRAS, 386, 2009
Clarke, F. J., Tinney, C. G., & Covey, K. R. 2002, MNRAS, 332, 361
Enoch, M. L., Brown, M. E., & Burgasser, A. J. 2003, AJ, 126, 1006
Gelino, C. R., Marley, M. S., Holtzman, J. A., Ackerman, A. S., & Lodders, K. 2002, ApJ, 577, 433
Goldman, B., Bouy, H., Zapatero Osorio, M. R., Stumpf, M. B., Brandner, W., & Henning, T. 2008a, A&A, 490, 763
Goldman, B., et al. 2008b, A&A, 487, 277
Koen, C., Matsunaga, N., & Menzies, J. 2004, MNRAS, 354, 466
Koen, C., Tanabé, T., Tamura, M., & Kusakabe, N. 2005, MNRAS, 362, 727
Liu, M. C., Leggett, S. K., Golimowski, D. A., Chiu, K., Fan, X., Geballe, T. R., Schneider, D. P., & Brinkmann, J. 2006, ApJ, 647, 1393
Lomb, N. R. 1976, Ap&SS, 39, 447
Martin, E. L., Zapatero Osorio, M. R., & Lehto, H. J. 2001, ApJ, 557, 822
Morales-Calderón, M., et al., 2006, ApJ, 653, 1454
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K., & Durrance, S. T. 1995, Nature, 378, 463
Rebolo, R., Zapatero-Osorio, M. R., & Martin, E. L. 1995, Nature, 377, 129
Scargle, J. D. 1982, ApJ, 263, 835
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Tendrul, M. D., Krishnamurthi, A., Pinsonneault, M. H., & Stauffer, J. R. 1999, AJ, 118, 1814
Tinney, C. G., & Tolley, A. J. 1999, MNRAS, 304, 117
Tsuz, T. 2003, in IAU Symp. 211, Brown Dwarfs, ed. E. Martin (Dordrecht: Kluwer), 361
Tsui, T. 2005, ApJ, 621, 1033
Vrba, F. J., et al. 2004, AJ, 127, 2948
Zapatero Osorio, M. R., Caballero, J. A., Béjar, V. J. S., & Rebolo, R. 2003, A&A, 408, 663
Zapatero Osorio, M. R., Martin, E. L., Bouy, H., Taya, R., Deshpande, R., & Wainscoat, R. J. 2006, ApJ, 647, 1405