THE TRANSFORMATION OF GALAXIES WITHIN THE LARGE-SCALE STRUCTURE AROUND A \(z = 0.41 \) CLUSTER\(^1\)

TADAYUKI KODAMA,\(^2\) IAN SMAIL,\(^3\) F. NAKATA,\(^2\) S. OKAMURA,\(^2\) AND R. G. BOWER\(^3\)

Received 2001 August 29; accepted 2001 October 15; published 2001 October 30

ABSTRACT

We present deep, panoramic multicolor imaging of the distant rich cluster A851 (Cl 0939+4713, \(z = 0.41 \)) using Suprime-Cam on the Subaru Telescope. These images cover a 27\arcmin field of view, \(\sim 11 \) h\(^{-1}\) Mpc at \(z = 0.41 \), and by exploiting photometric redshifts estimated from our \(BVRI \) imaging we can isolate galaxies in a narrow redshift slice at the cluster redshift. Using a sample of \(\sim 2700 \) probable cluster members brighter than \(0.02 L_{\star} \), we trace the network of filaments and subclumps around the cluster core. The depth of our observations, combined with the identification of filamentary structure, gives us an unprecedented opportunity to test the influence of the environment on the properties of low-luminosity galaxies. We find an abrupt change in the colors of \(\leq 0.1 L_{\star} \) galaxies at a local density of 100 galaxies Mpc\(^{-2} \), with the population in lower density regions being predominantly blue while those in higher density regions are red. The transition in the color–local density behavior occurs at densities corresponding to subclumps within the filaments surrounding the cluster. Identifying the sites where the transition occurs brings us much closer to understanding the mechanisms that are responsible for establishing the present-day relationship between environment and galaxy characteristics.

Subject headings: cosmology: observations — galaxies: clusters: individual (A851, Cl 0939+4713) — galaxies: evolution

On-line material: color figures

1. INTRODUCTION

Clusters of galaxies are a very visible constituent of the structure of the universe at the present day. Redshift surveys of the local universe, \(z < 0.1 \), illustrate the filamentary nature of large-scale structure (e.g., Peacock et al. 2001) and the presence of clusters at the intersections of these filaments and walls. \(N \)-body simulations have been particularly successful in reproducing these filamentary features, showing that they are a natural consequence of gravitationally driven structure formation (e.g., Moore et al. 1998). The precursors of the filaments should be present around distant clusters, containing many of the galaxies that will subsequently infall onto the virialized core and form the cluster population we see today.

The influence of environment on the star formation histories of the galaxies is a critical question for models of galaxy evolution. The striking variation in the stellar populations of galaxies in different environments (e.g., Larson, Tinsley, & Caldwell 1980; Butcher & Oemler 1984; Balogh et al. 1999; Norberg et al. 2001) clearly indicates the importance of such environmental influences on star formation. Since clusters (which are dominated by passive galaxy populations) are continuously growing through the accretion of galaxies and groups from the field, which is dominated by actively star-forming galaxies, this activity must be quenched during the assimilation of the galaxies into the cluster. This transformation is a key process in creating the environmental dependence of galaxy properties and may also underpin the observed evolution of galaxy properties in distant clusters (e.g., Butcher & Oemler 1984; Kodama & Bower 2001). However, the physical mechanism that is responsible for these changes has not yet been identified (Moore et al. 1996; Abadi et al. 2000; Balogh, Navarro, & Morris 2000). Recent studies have begun to focus on tracing the variation of galaxy properties from the cores of clusters out to the surrounding field in an attempt to identify the environment where the decline in the star formation in accreted galaxies begins (e.g., Abraham et al. 1996; Balogh et al. 1999; Pimbblet et al. 2001).

The advent of Suprime-Cam, a revolutionary wide-field camera on the Subaru Telescope, has provided an unique new tool to tackle programs requiring deep, high-quality imaging across large fields. In this Letter, we analyze unique deep, panoramic, multicolor imaging of the \(z = 0.41 \) cluster A851. We estimate photometric redshifts for galaxies across the 27\arcmin field and isolate a narrow redshift slice around the cluster. Our two-dimensional map covers \(11 \times 11 \) Mpc, a much wider field of view than previous studies (e.g., Iye et al. 2000), allowing us to identify a wealth of filamentary structures extending from the cluster core. We use the depth and wide range in environment spanned by our observations, over 2 orders of magnitude in galaxy surface density, to investigate the dependence of faint galaxy properties on local environment.

Section 2 describes the observations and reduction, § 3 details the analysis of our photometric catalog and discusses our results, while § 4 gives our main conclusions. We adopt \(H_0 = 50 \) km s\(^{-1}\) Mpc\(^{-1}\) and a \(q_0 = 0.1 \) cosmology.

2. OBSERVATIONS, REDUCTION, AND ANALYSIS

2.1. Observations and Reduction

We obtained deep, multiband imaging of the rich cluster A851 (Cl 0939+4713), using the optical mosaic camera, Suprime-Cam, on the 8.3 m Subaru Telescope at Mauna Kea, Hawaii. These observations were undertaken on 2001 January 21–22 as a common-user program during the first semester of telescope operations. The weather conditions were good and photometric during the observations. Total exposure times of 3.6, 2.2, 4.0, and 1.3 ks were obtained in \(BVRI \), respectively, with seeing measured off the stacked frames of \(1\arcsec 1, 0\arcsec 7, 1\arcsec 0 \), and \(0\arcsec 7 \). These frames have 5 \(\sigma \) limiting magnitudes of \(B = \)}
27.0, $V = 26.5$, $R = 26.2$, and $I = 25.0$, sufficient to detect a passively evolving early-type galaxy as faint as 0.02L_\odot at $z = 0.41$ in all passbands.

We used IRAF and purpose-written software—NEKOSOFT (Yagi 1998)—developed by the Suprime-Cam team to reduce the data. This entailed bias subtraction, flat-fielding using super–sky flats constructed from the median of the dithered science frames (greater than nine frames), matching the point-spread function (PSF) between the mosaic chips, relative calibration of the fluxes between chips, mosaicicking, and photometric calibration using standard stars from Landolt (1992). We then constructed an I-band–selected sample using SExtractor v.2.1.6 (Bertin & Arnouts 1996). For each object, we use the PHOT package in IRAF to measure photometry within a 3″ diameter aperture in all the passbands, after matching the PSF. Hereafter, we employ the aperture photometry for colors and SExtractor’s MAG_BEST for total magnitudes. The final catalog used in our analysis has 15,055 galaxies brighter than $I = 23.4$ ($M_I^* + 4$ at $z = 0.41$).

2.2. Foreground/Background Subtraction

To trace the properties of galaxies inhabiting the large-scale structure around the cluster core, we need to map the distribution of cluster members out to very low density regions. The key requirement for our analysis is therefore the removal of unassociated galaxies in the foreground and background, to maximize the contrast of the cluster on the sky.

Spectroscopy is the ideal method to remove the field contamination from our sample. However, it is not practical to obtain spectroscopy for the ~15,000 very faint galaxies required for our analysis. We therefore exploit photometric redshift techniques, as an observationally efficient and reliable method to map the three-dimensional distribution and properties of faint galaxies over a large field. We apply our photometric redshift code (Kodama, Bell, & Bower 1999) to the galaxies in our BVRI catalog. To test the reliability of our photometric redshifts, we compare the predicted redshifts with spectroscopic measurements for the 67 confirmed cluster members from Dressler et al. (1999). For S/N > 10 detections, the dominant source of uncertainty in the photometric redshifts is the match between the model spectrum and the true galaxy spectrum. Thus, although the magnitude limit of our photometric sample is fainter than that of the spectroscopic sample, the error estimated from this comparison is a good indication of the uncertainties for all galaxies with $I < 23.4$. The photometric redshifts, z_{phot}, for the spectroscopic members exhibit a tail at lower redshifts, showing that they tend to be underestimated for some of the galaxies by up to $|\Delta z| \sim 0.1$. This is largely due to the lack of U-band data, which is important to discriminate the blue cluster members at $z = 0.4$ from the foreground galaxies (e.g., Kodama et al. 1999). We note that this modest photometric bias will only serve to weaken the trends we uncover in § 3.2. We adopt a range of $0.32 < z_{\text{phot}} < 0.48$ for the photometric membership to ensure that we include the bulk of the cluster population, greater than 80%, while still reducing the field contamination by a factor of ~10 at $I = 23.4$.

As a final step, we estimate the expected field contamination in our photometric redshift slice using similar observations of a blank field. This correction accounts both for field galaxies genuinely in the cluster redshift slice and for galaxies whose redshifts are misclassified by the photometric analysis. In this case, we use comparably deep BVRI′ imaging of the Subaru/XMM Deep Field over a similarly large area, 618 arcmin2 (Ouchi et al. 2001). After transforming the Sloan Digital Sky Survey i' band to Cousins I band (Fukugita, Shimasaku, & Ichikawa 1995), we apply the same photometric redshift code to the galaxies in this field observed in the same combination of passbands BVRI′ and adopt the same redshift cut of $0.32 < z_{\text{phot}} < 0.48$. We find that the averaged surface number density of field galaxies down to $I = 23.4$ that fall within this redshift range is 2.29 ± 0.06 arcmin$^{-2}$. We subtract this remaining contamination statistically (§ 3.2).

3. RESULTS AND DISCUSSION

3.1. Large-Scale Structure

Having applied our photometric redshift selection, it is straightforward to map out the distribution of galaxies that are likely to be associated with the cluster. The full field of our observations is shown in Figure 1. Several large-scale structures are visible around the cluster core: two large subclumps ~10′ (4 Mpc) to the west and south and a number of filamentary extensions coming out directly from the core. Importantly, most of these extensions from the core are aligned with the surrounding subclumps. The alignment of structures visible to the northeast, northwest, and south are all good examples, each extending out to 3–5 Mpc. Since the field contamination is only less than 20% at the lowest density contour, most of the structures traced by the contours in Figure 1 are expected to be real. The structures identified in this region are qualitatively sim-
similar to those seen in cosmological simulations of the growth of clusters that exhibit the filamentary/clumpy substructures on similar scales (e.g., GhiIl998). It appears, therefore, that we are witnessing A851 as it assembles through the accretion of galaxies and groups along the filaments onto the cluster core from the surrounding field. Many of the systems in these filaments will have been assimilated into the cluster population by the present day, given their likely infall speeds of \(\sim 1000 \) km s\(^{-1}\) (\(\sim 1 \) Mpc Gyr\(^{-1}\)).

The combination of the depth of our observations and their complete sample, compared to spectroscopic surveys, means that our map of this \(z = 0.41 \) cluster provides one of the most detailed views of large-scale structure around clusters (West, Jones, & Forman 1995; Bardelli, Zucca, & Baldi 2001; Connolly et al. 1996; Lubin et al. 2000; Clowe et al. 2000; Abraham et al. 1996). The application of the photometric redshift technique to multicolor deep, panoramic CCD imaging allows us for the first time to efficiently trace filamentary structures across large fields of view. Furthermore, because the cluster is at relatively high redshift, the contrast between the red galaxies in the cluster core and the blue colors of the field galaxy population is greatly enhanced, providing a much stronger gradient across the transition zone between these two regimes (\(\S 3.2 \)).

We have also compared the structures in Figure 1 with the X-ray emission from a 14.2 ks ROSAT Position Sensitive Proportional Counter exposure (Schindler et al. 1998). However, we cannot see any significant emission from the subclumps or filaments, except for the cluster core. This is not surprising given the steep slope of the mass–X-ray luminosity relation seen in local groups (Mulchaey 2000).

3.2. Environmental Dependence of Galaxy Properties

By exploiting the striking large-scale structure around this cluster, we can investigate the influence of environment on the photometric properties of galaxies across more than 2 orders of magnitude in local density. We define the environment for each galaxy using the local surface number density, \(\Sigma \), of members, calculated from the 10 nearest neighbors (including that galaxy) brighter than our magnitude cut, \(I = 23.4 \). Second, we correct for residual field contamination in the redshift slice. We statistically subtract galaxies based on the local number density \(\Sigma \) and the color and magnitude distribution of the galaxies in the blank field (\(\S 2.2 \)) using a Monte Carlo simulation. The density \(\Sigma \) is also corrected for the field contamination. The statistical uncertainty in the resultant color and magnitude distributions of the cluster members arising from this field correction is negligible. Even if we assume a large variation in field density of 20\%, the median color in the lowest density bin would change only by \(\sim 0.02 \) mag (Fig. 2a).

In the following, we use \((V-I) \) color and \(I \) magnitude to characterize the galaxy population. These roughly correspond to \((U-V) \) and \(V \) in the rest frame, providing a good measure of the relative importance of recent and past star formation. We divide the density distribution into three regimes, as indicated in Figure 2a. There is a close correspondence between the local density and structure: the high-density region corresponds to the cluster core within \(\leqslant 1 \) Mpc; the medium-density region includes the structures defining the filaments surrounding the cluster; and the low-density region comprises the rest of the volume (Fig. 1).

As shown in Figure 2b, the color distribution in the high-density region is strongly peaked at \((V-I)_c \sim 2 \), the color of an early-type cluster member. However, as we move to lower densities, the distribution becomes dramatically bluer. In the lowest density regions, there are only a small fraction (15\%) of galaxies as red as the early-type color-magnitude sequence seen in higher density regions, with most of the galaxies being much bluer, \((V-I)_c \sim 1.5 \), similar to the field population, which is dominated by star-forming galaxies at these redshifts (Ellis et al. 1996). Figure 2a shows that this color transition with local density occurs quite abruptly at \(\log \Sigma \sim 2 \), indicating a threshold effect in transforming galaxy properties. We performed a \(\chi^2 \) test to verify the significance of the sharpness of the color transition and found that a linear (smooth) dependence

Fig. 2—(a) Variation in color vs. local galaxy density, \(\Sigma \), for cluster members brighter than \(I = 23.4 \). The open circles and filled triangles show the galaxies brighter or fainter than \(I = 21.4 \) \((M_\odot + 2) \), respectively. The three red lines represent the loci of the 25th, 50th, and 75th percentile colors. The subscript “C” indicates that the colors are transformed to the equivalent color of an \(I = 20.4 \) galaxy to take into account the slope of the color-magnitude relation \(\Delta (V-I)/\Delta I = -0.06 \). The local number density is calculated from the 10 nearest galaxies, and we correct this for residual field contamination using the blank-field data (\(\S 3.2 \)). (b) Color distribution of cluster members as a function of local density. The lines correspond to the different density regimes—high, medium, and low—shown in (a). The dotted line gives the distribution for galaxies in the blank field with photometric redshifts placing them at \(0.32 < z_{\text{phot}} < 0.48 \). We see a trend for typically bluer colors at lower densities. (c) Field-corrected luminosity function for cluster galaxies in the three density slices from (a). The distributions are normalized at \(I = 19.4 \) \((M_\odot) \) to match the high-density curve. A clear steepening of the luminosity function is visible at lower densities. [See the electronic edition of the Journal for a color version of this figure.]
of median color on local density is rejected at greater than 3 σ confidence. The boundary corresponding to this critical density is highlighted in Figure 1. One important clue to the physical origin of this transition is that over 80% of the galaxies in the “transition zone” (1.8 < log Σ < 2.2) reside in subclumps outside the core (>1.5 Mpc from the cluster center).

The origin of the color-density correlation is hotly debated. It has been suggested that it may reflect a primordial imprint of the regions in which the galaxies were formed. However, this is unlikely to give rise to a sharp transition in the colors of galaxies at a particular density threshold at the observed epoch. Our data suggest a recent and environmentally driven transformation that is closely linked to the galaxy environment at log Σ ~ 2. This sharp color change is equivalent to suppressing the median star formation rate by a factor of 6, based on the simple “tau” models with exponentially decaying star formation histories (e.g., Kodama & Bower 2001). Our ability to pinpoint this environment is a fundamental step toward identifying the dominant mechanism.

There are three mechanisms that are favored in the literature: ram pressure stripping (where cold gas in the galaxy disk is removed as the galaxy passes through a hot intracluster medium; Gunn & Gott 1972), galaxy-galaxy collisions (which cause cold disk gas to be driven to the galaxy center, creating a starburst; Moore et al. 1996), and “suffocation” (where warm gas in the galaxy’s halo is shock-heated by the intracluster medium so that it can no longer cool and replenish the cold gas in the disk; Larson et al. 1980). The log Σ ~ 2 subclumps are unlikely to have sufficiently high gas densities (§ 3.1), or high enough relative velocities for the galaxies within them, for ram pressure stripping to operate effectively (Abadi et al. 2000). In contrast, we note that the threshold density corresponds to the point at which the dark matter halos of individual galaxies will begin to overlap (Brainerd, Blanford, & Smail 1996). Under these circumstances, galaxy-galaxy collision becomes important, as does suffocation. Our data do not distinguish directly between these possibilities, although they do suggest where to look. In particular, the two mechanisms predict very different bulge luminosity functions for the resulting galaxies. Strong galaxy interactions thicken galaxy disks and brighten bulges; in contrast, suffocation should leave the bulge luminosity function unchanged (Dressler 1980; Balogh et al. 2001).

It is important to note that the changes in galaxy properties as a function of local density are most prominent in galaxies fainter than ~0.1L∗ (Fig. 2a). This is mirrored to the dramatic change in the shape of the luminosity function with local galaxy density, where we see a steepening of the faint-end slope of the luminosity function with decreasing density (Fig. 2c). Assuming that their star formation effectively ceases, the relative absence of low-luminosity galaxies at projected densities of log Σ > 2 can be understood as they will fade by ≳1 mag as their star formation declines (e.g., Kodama & Bower 2001). This will put many of their descendants below our magnitude limit (M∗ + 4). This is also qualitatively consistent with the presence of large numbers of very low luminosity, ≳M∗ + 3, passive dwarf galaxies in local clusters (Binggeli, Sandage, & Tammann 1988; Trentham 1998).

4. CONCLUSIONS

We have presented a photometric analysis of the galaxy population in A851 at z = 0.41 using sensitive multiband observations from Subaru. These cover a 27’ (11 Mpc) field allowing us to compare galaxy properties in a wide range of environments in the cluster periphery. By using photometric redshift techniques to identify cluster galaxies as faint as M∗ + 4, we have traced the network of filaments and subclumps around this rich cluster and have been able to investigate the relation between environment and star formation in faint galaxies.

The colors of faint galaxies show a strong dependence on their local galaxy density, with an abrupt transition in galaxy colors occurring at log Σ ~ 2. Thus, for faint galaxies, the transformation of their properties seems to be almost complete before they have entered the cluster core. The changes in the color distribution and in the luminosity function as a function of local density are coupled: there is a decreasing fraction of blue, faint galaxies in higher density regions. This density threshold corresponds to the point at which galaxy halos lose their individual identity and become incorporated into groups along the filaments surrounding the cluster.

We have now identified where the transformation of these galaxies occurs. The key remaining question is to identify why. Two mechanisms—suffocation and galaxy-galaxy collisions—are both good candidates in these environments, but they can be distinguished by tracing the variation in the individual components of galaxies, bulges, and disks between the cluster and the field.

We thank the Subaru Telescope observatory staff and the Suprime-Cam team for their invaluable effort to complete the telescope and the instrument over the last 10 years. We are grateful to Y. Komiyama for his assistance during our observations. We acknowledge the Suprime-Cam team for allowing us to use the blank-field data. We also thank M. Balogh, K. Pimbblet, N. Arimoto, and K. Shimasaku for helpful discussions. T. K. and F. N. acknowledge the Japan Society for the Promotion of Science for support through its Research Fellowships for Young Scientists. I. S. acknowledges support from the Royal Society and the Leverhulme Trust.

REFERENCES

Abadi, M. G., Bower, R. G., & Navarro, J. F. 2000, MNRAS, 314, 759
Abraham, R. G., et al. 1996, ApJ, 471, 694
Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G., & Ellingson, E. 1999, ApJ, 527, 54
Balogh, M. L., Navarro, J. F., & Morris, S. L. 2000, ApJ, 540, 113
Balogh, M. L., et al. 2001, ApJ, in press
Bardelli, S., Zucca, E., & Baldi, A. 2001, MNRAS, 320, 387
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Binngelli, B., Sandage, A., & Tammann, G. A. 1988, ARA&A, 26, 509
Brainerd, T. G., Blanford, R. D., & Smail, I. 1996, ApJ, 466, 623
Butcher, H., & Oemler, A. 1984, ApJ, 285, 426
Clowe, D., Luppino, G. A., Kaiser, N., & Gioia, I. M. 2000, ApJ, 539, 540
Connolly, A. J., Szalay, A. S., Koo, D., Romer, A. K., Holden, B., Nichol, R. C., & Miyaji, T. 1996, ApJ, 473, L67
Dressler, A. 1980, ApJS, 42, 565
Dressler, A., Smail, I., Poggianti, B. M., Butcher, H., Couch, W. J., Ellis, R. S., & Oemler, A. 1999, ApJS, 122, 51
Ellis, R. S., Colless, M. M., Broadhurst, T., Heyl, J., & Glazebrook, K. 1996, MNRAS, 280, 235
Fukugita, M., Shimasaku, K., & Ichikawa, T. 1985, PASP, 107, 945
Ghigna, S., Moore, B., Governato, F., Lake, G., Quinn, T., & Stadel, J. 1998, MNRAS, 300, 146
Gunn, J. E., & Gott, J. R. 1972, ApJ, 176, 1
Iye, M., et al. 2000, PASJ, 52, 9
Kodama, T., Bell, E. F., & Bower, R. G. 1999, MNRAS, 302, 152
Kodama, T., & Bower, R. G. 2001, MNRAS, 321, 18
Landolt, A. U. 1992, AJ, 104, 372
Larson, R. B., Tinsley, B. M., & Caldwell, C. N. 1980, ApJ, 237, 692
Lubin, L. M., Brunner, R., Metzger, M. R., Postman, M., & Oke, J. B. 2000, ApJ, 531, L5
Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, ApJ, 499, L5
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613
Mulchaey, J. S. 2000, ARA&A, 38, 289
Norberg, P., et al. 2001, MNRAS, submitted
Ouchi, M., et al. 2001, ApJ, 558, L83
Peacock, J. A., et al. 2001, Nature, 410, 169
Pimbblet, K. A., Smail, I., Kodama, T., Edge, A. C., Couch, W. J., Zabludoff, A. I., & O’Hely, E. 2001, MNRAS, submitted
Schindler, S., Belloni, P., Ikebe, Y., Hattori, M., Wambsganss, J., & Tanaka, Y. 1998, A&A, 338, 843
Trentham, N. 1998, MNRAS, 293, 71
West, M. J., Jones, C., & Forman, W. 1995, ApJ, 451, L5
Yagi, M. 1998, Ph.D. thesis, Univ. Tokyo