Nonlinear thermoelectricity in point-contacts at pitch-off: a catastrophe aids cooling

Robert S. Whitney

1 Laboratoire de Physique et Modélisation des Milieux Condensés (UMR 5493), Université Grenoble I, Maison des Magistères, B.P. 166, 38042 Grenoble, France.

Dated: September 18, 2012

We consider refrigeration and heat engine circuits based on the nonlinear thermoelectric response of point-contacts at pinch-off, allowing for electrostatic interaction effects. We show that a refrigerator can cool to much lower temperatures than predicted by the thermoelectric figure of merit ZT (which is based on linear-response arguments). The lowest achievable temperature has a discontinuity, called a fold catastrophe in mathematics, at a critical driving current $I = I_c$. For $I > I_c$, one can in principle cool to absolute zero, when for $I < I_c$ the lowest temperature is about half the ambient temperature. Chargeless particles (typically phonons and photons) stop cooling at a temperature above absolute zero, and above a certain threshold also modify the discontinuity. More generally, we show that any system with a high figure of merit should have its nonlinear response analyzed; since its figure of merit gives little indication of its potential as a refrigerator or heat-engine.

Introduction. Nanostructures often have thermoelectric responses, with electrical-currents causing heat-currents, and vice-versa [14]. There have recently been a number of proposals for systems with large thermoelectric responses [5–12] which could have engineering applications for efficient thermoelectric power-generation and refrigeration. In particular, it is hoped that they could efficiently cool electrons well below the temperature of standard cryostats [13], which are increasingly inefficient at sub-Kelvin temperatures.

Here we calculate the fully nonlinear thermoelectric response of a point-contact at pinch off. This system’s linear (and nearly linear) thermoelectric response is well-studied experimentally [14,15] and theoretically [14,16–18]. However a refrigerator which cools to significantly below the temperature of its environment will typically be far outside the linear regime [13,19]; since the temperature difference is not small compared with the average temperature. Here, we apply the nonlinear version of the Landauer-Büttiker scattering theory [20,24] to thermoelectric heat-transport [25] through point-contacts. This shows that the dimensionless figure of merit, ZT, ceases to be an accurate measure of the thermoelectric response outside the linear regime. Electricity generation is worse than linear-response theory indicates, but refrigeration is better (achieving much lower temperatures than linear-response theory predicts). Indeed, the lowest temperature of the refrigerator is a discontinuous function of the electrical current. This discontinuity — a fold catastrophe in mathematical language — occurs at a critical current I_c, and is beneficial to refrigeration. For currents $I < I_c$ the refrigerator cannot cool below a finite temperature (of order half the ambient temperature for $I \to I_c$), while for $I > I_c$ it passes the catastrophe point and can in principle cool to absolute zero (see Fig. 1).

In practice, a thermoelectric device’s quality is reduced by heat flow carried by chargeless particles; usually phonons and photons. In the nonlinear regime, we show the weak phonon or photon effects do not significantly affect the catastrophe, I_c, but do stop the cooling at a temperature above absolute zero. However at a critical value of the thermal transport due to chargeless particles, the catastrophe becomes a discontinuity in the derivative of the curve lowest temperature versus I.

Nearly-linear analysis and its breakdown. The usual “nearly-linear” analysis [1] takes linear response theory plus a Joule heating term, and enables one to quantify devices in terms of their dimensionless figure of merit $ZT = GS^2T/(\Theta_{el} + \Theta_{ph})$, where T is the device temperature, S is its Seebeck coefficient, G and Θ_{el} are electrical and thermal conductances of electrons, while Θ_{ph} is the thermal conductivity of chargeless excitations, principally phonons and photons. This nearly-linear analysis predicts electric power generation (when the island is heated) with an efficiency

$$
\eta = \frac{\sqrt{ZT+1} - 1}{\sqrt{ZT+1} + 1} \left(1 - \frac{T_0}{T_{isl}} \right),
$$

Figure 1: Heat-current $J(T_{isl}, I)$ through a point-contact when driven with a current I, for negligible phonon or photon heating. Blue indicates cooling of the island in Fig. 2, while red indicates heating. The solid curve is the steady-state ($J = 0$), with the catastrophe at I_c. The straight line is the maximum current, I_{max}, corresponding to infinite bias.
where \(T_{\text{isl}} \) and \(T_0 \) are the island and environment temperatures. Typically, \(ZT \) is taken at the temperature \(\frac{1}{2}(T_0 + T_{\text{isl}}) \). Carnot efficiency corresponds to \(ZT \to \infty \). For refrigeration, it predicts that the lowest achievable temperature, \(T_{\text{min}} \), is given by

\[
T_{\text{min}}/T_0 = 1 - \frac{1}{2}ZT.
\]

The origin of Eq. (2) is easily seen, and enlightens us about the breakdown of the nearly-linear analysis. One starts with the heat-current out of the island [11]

\[
J(T_{\text{isl}}, I) \approx \Pi I - \Theta_+ (T_0 - T_{\text{isl}}) - \frac{1}{2}R_+ I^2,
\]

for Peltier coefficient difference \(\Pi = (\Pi_2 - \Pi_1) \), sum of thermal conductances \(\Theta_+ = \Theta_1 + \Theta_2 + \Theta_{\text{ph}} \) and sum of electrical resistances \(R_+ = G_1^{-1} + G_2^{-1} \). The first two terms are linear-response terms, while the last is the Joule heating. The steady-state curve, \(J = 0 \), shows that the lowest \(T_{\text{isl}} \) is a quadratic function of \(I \). The parabola’s minimum is \(T_{\text{min}} \) in Eq. (2) — using the Onsager relation \(\Pi = S/T \) to note \(ZT = G_+ I^2/(\Theta_+ T) \).

For our model of a point-contact at pinch-off (detailed below, linear-response scattering theory [25][29][34] gives \(G_1 = (e^2/h)(1/2), \Pi_1 = -(k_B T_0/e)2\ln(2), \) and \(\Theta_1 = (k_B T_0/h)(\pi^2/6 - 2[\ln(2)]^2) \) [35]. This gives \(ZT \approx 1.4 \), which would imply that \(\eta = 0.22(1 - T_0/T_{\text{isl}}), \quad T_{\text{min}} = 0.3 T_0. \)

However, this analysis fails when nonlinear effects are too strong to start from Eq. (3). Typically this occurs when the leading nonlinear Peltier term [17], of the form \(\Pi I^2 \), is larger than the Joule heating term \(\frac{1}{2}R_+ I^2 \). For the point-contact this is so, since \(\Pi = (h/e^2)3\ln[2] \). Then including this term in Eq. (3) changes the sign of the prefactor on \(I^2 \); which means we must look beyond \(I^2 \) to find the steady-state curve’s minimum. Our fully nonlinear analysis below, shows that expanding about equilibrium to any order [17] will not give this minimum.

Nonlinear analysis. The thermoelectricity literature [13] discusses \(J(T_{\text{isl}}, I) \) — as in Eq. (3) above — rather than \(J(T_{\text{isl}}, I) \) for voltage drop, \(V \). This is because different thermoelectric devices are arranged in series electrically (see Fig. 2a,b), so \(I \) is the same in all of them (unlike voltage drops). Thus it is easier to get response of a series of elements from each element’s \(J(T_{\text{isl}}, I) \) than from each element’s \(J(T_{\text{isl}}, V) \). For complicated non-linear responses, the former is straight-forward while the latter is extremely difficult; thus we consider \(J(T_{\text{isl}}, I) \).

We take the island to be classical; i.e. big enough for particles entering it to thermalize to a Fermi distribution at temperature \(T_{\text{isl}} \) before escaping. See Refs. [20][28] for cases where there is a quantum dot in place of the classical island. In our case, each point-contact can be treated by a separate Landauer-Büttiker scattering matrix analysis [25], see also Refs. [29][34]. We generalize these heat currents to the nonlinear regime [36], including electrostatic (Hartree-like) interaction effects in a self-consistent and gauge-invariant manner; as Refs. [21][24] did for charge-current, see also [37][38]. To go beyond the voltage-squared contributions to transport (which Ref. [21] treated in detail), we use a simple model of interactions, which is none the less gauge-invariant and self-consistent. The heat-current into lead \(i \) of a given nanostructure is

\[
J_i = -\int_{-\infty}^{\infty} \frac{d\epsilon}{\hbar} \sum_j (\epsilon - qV_i) A_{ij} \left((\epsilon - qV_k) \right) f_j(\epsilon),
\]

where \(f_j(\epsilon) = (1 + \exp[(\epsilon - qV_j)/(k_B T_j)])^{-1} \) is the Fermi function, and \(q \) is the charge of the carriers; electrons with \(q = -e \) in point-contact 1 and holes with \(q = e \) in point-contact 2. The energy \(\epsilon \) and all voltages \(V_k \) are measured from the same external reference. The formula for the charge-current \(I_i \) into lead \(i \) is the same but with \(q \) in...
place of \((\epsilon - qV_i)\) as the first factor in the integrand. The transmission function \(A_{ij}\) of a particle through the nanostructure from lead \(j\) to lead \(i\) is
\[
A_{ij}((\epsilon - qV_{k})) = \text{Tr} \left[1_s \delta_{ij} - S^\dagger_{ij}((\epsilon - qV_{k})) S_{ij}((\epsilon - qV_{k})) \right],
\]
where \(S_{ij}\) is the scattering matrix from lead \(j\) to lead \(i\), and the trace is over all modes of those leads. Here \(S_{ij}\) must be found self-consistently: it depends on the charge distribution in the nanostructure, which in turn depends on \(S_{ij}\).

Point-contact 1 is a two-lead nanostructure with electron charge-carriers \((q = -e)\). Having established the gauge-invariance, we are free to measure all energies \(\epsilon\) and all voltages \(V_{k}\) (including \(V_g\)) from the chemical potential of the island (the point-contact’s M lead). When \(V_L\) is non-zero, we assume that a proportion \((1 - a)\) of this bias is screened by the electrostatic gates a long way from the narrowest-point of the point-contact, while the rest is screened self-consistently by the electron-gas (Fig. 2c) close to the point contact. Then the screened point-contact induces a potential barrier of height, \(E_{pc}\) (measured from the island’s chemical potential), typically obeying \(E_{pc} - E_g = g_{scr}(aqV_L)\), where \(g_{scr}\) is due to screening. Here \(E_g\) can be tuned at will, since it is \(eV_g\) minus a geometry-dependent constant. Assuming a long enough point-contact that there is negligible tunnelling, one has \(A_{LM}(\epsilon - E_{pc} > 0) = -1\) (perfect transmission) and \(A_{LM}(\epsilon - E_{pc} < 0) = 0\) (no transmission) \[40\]. As an example, the Supplementary Material gives a simple model of screening for which we derive \(g_{scr}(aqV_L)\) self-consistently. However, in what follows we allow the nature of screening (both \(a\) and the form of \(g_{scr}(aqV_L)\)) to be completely arbitrary. Gauge-invariance is satisfied, as seen by noting that \(\epsilon - E_{pc}\) is a function of \((\epsilon - qV_{k})\), since \(V_{L-g}\) are biases relative to the M lead.

To operate at pinch-off, we tune \(V_g\) so that \(E_{pc} = 0\) for any given \(V_L\). If the electrostatic gates dominate screening \((a \rightarrow 0)\), then \(E_{pc}\) is independent of \(V_L\), making it easy to tune to pinch-off. Otherwise the point-contact should be calibrated prior to use; finding the pinch-off point (the \(V_g\) at which current starts to flow), as a function of \(V_L\). Then the charge and heat-currents from point-contact 1 into the metal island are

\[
I(T_{isl}, V_L) = \frac{ek_B}{\hbar} T_{isl} \ln(2) - T_0 \ln \left(1 + e^{-\epsilon V_L/k_BT_0} \right),
\]

\[
J_1(T_{isl}, V_L) = -\frac{k^2_B T_0^2}{\hbar} T_{isl}^2 \frac{\pi^2}{12} + L_{k2} \left(-e^{-\epsilon V_L/k_BT_0} \right),
\]

for a dilogarithm function \(L_{k2}(z) = \int_0^\infty t dt/(e^t/z - 1)\). From Eqs. \[47\], we get

\[
J_1(T_{isl}, I) = -\frac{k^2_B T_0^2}{\hbar} \frac{\pi^2}{12T_0^2} + L_{k2} \left(1 - \exp \left[\beta(T_{isl}, I) \right] \right),
\]

where we define \(J = h \left[I_{max}(T_{isl}) - I \right] / (ek_BT_0) \) and note that \(I \leq I_{max}(T_{isl}) = ek_BT_{isl} \ln(2)/\hbar\). This function is given by the color plot in Fig. 1 Fig. 1 for point-contact 2 (in which the carriers are holes not electrons) we take \(-e \leftrightarrow e\), then \(J_2(T_{isl}, I) = J_1(T_{isl}, I) \) since \(I_2 = -I\).

For \(I \ll 1\), we can use \(L_{k2}(z) = z + O(z^2)\) to write

\[
J_1 = \left(k^2_B T_0^2 / h \right) \left[3 - (\pi^2/12)(T_{isl}/T_0)^2 + O(1) \right],
\]

so \(J_1\) as a quadratic in temperature and linear in current; the reverse of the nearly-linear theory in Eq. \[3\]. This approximation captures the features of the exact result plotted in Fig. 1 except the top-left corner. This corner is the linear-response regime (small \((T_0 - T_{isl})\) and \(I\), where one has Eq. \[6\] with \(L_{k2}(-1 + z) \approx -\pi^2/12 + \ln(2)/z\).

Refrigeration neglecting phonons or photons. Heat flow into the island is \(J_{total} \propto J_1\) for the devices in Fig. 2a, b; \(J_{total} = 2J_1\) for the thermocouple. The black curves in Fig. 1 are \(J_{total} = 0\), giving the steady-state temperature (solid for stable steady-states and dashed for unstable ones). Solid curves give the temperature the island will be cooled to by a current \(I\). Eq. \[9\] tells us the steady-state has \(I\) as a quadratic function of \(T_{isl}\); this approximation gives the catastrophe at \(I_{c} / (ek_BT_0) = 3(\ln(2)/\pi)^2 \approx 0.14\) with \(T_{isl}/T_0 = 6\ln(2)/\pi^2 \approx 0.42\), which is very close to the exact solution in Fig. 1.

Refrigeration with phonons or photons. Assume that chargeless particles carry heat ballistically from hot to cold (a reasonable assumption for phonons in clean samples below a few Kelvins \[41\]), then \(J_{ph} = \alpha(T_{isl}^2 - T_0^2)\) where \(\alpha = A \sigma_{SB}\) for an island with surface area \(A\) and emissivity \(\epsilon\), where \(\sigma_{SB}\) is the Stefan-Boltzmann constant for the phonons or photons. Fig. 3 shows that this moves the catastrophe to higher \(I\) and lower \(T_{isl}\), until at \(\alpha \propto h^3 T_0 / (k_BT_0)^2 \approx 1/8\) it is replaced by a discontinuity in the derivative of the steady-state curve. The effect remains qualitatively unchanged, if we take \(J_{ph} = \alpha(T_0^2 - T_{isl}^2)\) as for some photonic transmission \[42\].

The transition to a continuous response. A transition from the response in Fig 1 to a continuous one (evolving towards the nearly-linear response in Eq. \[4\]) occurs upon reducing the \(\epsilon\)-dependence of \(A_{ij}\). This reduces the thermoelectric response compared to the normal electrical response. We do this by putting the point-contact in parallel with another system with \(\epsilon\)-independent transmission; e.g. a tunnel-barrier. Fig. 3 shows the steady-state response of the point-contact in parallel with a load with conductance \(G_{load} \sim (e^2 / \hbar) \times g\) for various \(g\). For \(g \gtrsim 1\), the usual nearly-linear theory works. However for \(g = 1/4\) we see the deviations (cf. solid and dashed curves) predicted by the rule of thumb below Eq. \[4\], since \(\Pi\) of the combined system is larger than \(1/2\) when \(g < (3\ln(2) - 1)/2 \approx 0.53\) \[43\]. A transition in the steady-state’s behaviour occurs at \(g = g_c \sim 1/200\). For \(g < g_c\), the curve ceases to be single-valued, so \(T_{min}\) becomes a discontinuous function of \(I\).
Heat-engine efficiency. For $T_{isl} > T_0$, the circuit in Fig. 2 provides electrical power $P = IV$ to any load connected between L and R. Fig. 3 shows the ratio of the optimized-power (load chosen to maximize P) to the heat-current; a nonlinear method for finding this is outlined in the Supplementary Material.

For $T_{isl} \gg T_0$ we find that both the heat-flow carried by electrons and the electrical power go like $(T_{isl}/T_0)^2$, and the optimal efficiency saturates at $1 - \sqrt{1 - 6\ln[2]/\pi} \approx 15.9\%$ in the absence of phonons or photons. We have no simple argument why this curve is slightly peaked at $T_{isl}/T_0 \approx 0.88$. For finite coupling to ballistic phonons or photons, the curves decay to zero at large T_{isl}, because J_{ph} goes like $(T_{isl}/T_0)^4$. If instead $J_{ph} \to \alpha(T_{isl}/T_0)^2$ [12], the optimal efficiency saturates at $1 - \sqrt{1 - 6\ln[2]^2/[\pi^2 + 6\alpha]}$, less than Eq. 1 predicts.

Concluding remark. The principle experimental challenges to observing the discontinuity in Fig. 4 are minimizing phonon and photon effects, and keeping the point-contact at pinch-off. However, irrespective of whether this is easily achievable, our results give an important message for all works on systems [8][12] showing large figures of merit, ZT. Having $ZT \gg 1$ is a strong hint that the nonlinear Peltier coefficient Π may be larger than $\frac{1}{2} R$. If so, optimal response will occur deep in the non-linear regime, where ZT ceases to give insight into the device’s true potential as a refrigerator or heat-engine. This is already the case for the point-contact whose ZT is only 1.4; so we can certainly expect the same for systems with $ZT \gg 1$. In some cases (such as the point-contacts studied here) the device may be much better than its ZT would imply.

Acknowledgements. I thank F. Hecking, G. Rastelli and C. Stafford, with particular thanks going to Ph. Jacquod, for their insightful comments at various stages of this work.

[1] H.J. Goldsmid, *Thermoelectric Refrigeration* (Temple Press, London, 1964). H.J. Goldsmid, *Introduction to Thermoelectricity* (Springer, Heidelberg, 2009).
[2] F.J. DiSalvo, Science **285**, 703 (1999).
[3] A. Shakouri and M. Zebarjadi Chapt 9 of *Thermal nanosystems and nanomaterials*, S. Volz (Ed.) (Springer, Heidelberg, 2009). A. Shakouri , Annu. Rev. Mater. Res. **41**, 399 (2011).
[4] F. Giazotto, T.T. Heikkila, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. **78**, 217 (2006). J.T. Muhonen, M. Meschke, J.P. Pekola, Rep. Prog. Phys. **75**, 046501 (2012).
[5] G. Casati, C. Mejía-Monasterio, and T. Prosen, Phys. Rev. Lett. **101**, 016601 (2008).
[6] D. Nozaki, H. Sevincli, W. Li, R. Gutierrez, and G. Cuniberti, Phys. Rev. B **81**, 235406 (2010).
[7] K.K. Saha, T. Markussen, K.S. Thygesen, and B.K. Nikolić, Phys. Rev. B **84**, 041412(R) (2011).
[8] M. Wierzbicki and R. Swirkowicz, Phys. Rev. B **84**, 075410 (2011).
[9] O. Karlström, H. Linke, G. Karlström, and A. Wacker, Phys. Rev.. B **84**, 113415 (2011).
[10] T. Gunst, T. Markussen, A.-P. Jauho, and M. Brandbyge, Phys. Rev. B **84**, 155449 (2011).
[11] G. Rajput, and K.C. Sharma, J. Appl. Phys. **110**, 113723 (2011).
[12] P. Trocha and J. Barnaś, Phys. Rev. B **85**, 085408 (2012).
[13] S. Rajauria, P.S. Luo, T. Fournier, F.W.J. Hecking, H. Courtois, and B. Pannetier, Phys. Rev. Lett. **99**, 047004 (2007). S. Rajauria , P. Gandit , F.W.J. Hecking, B. Pannetier , H. Courtois, J. Low Temp. Phys. **154**, 211 (2009).
[14] L.W. Molenkamp, Th. Gravier, H. van Houten, O.J.A. Buikj, M.A.A. Mabesoone, and C.T. Foxon, Phys. Rev. Lett. **68**, 3765 (1992). H. van Houten, L.W. Molenkamp, C.W.J. Beenakker, and C.T. Foxon, Semicond. Sci. Technol. **7**, B215 (1992).
[15] U. Ghoshal, S. Ghoshal, C. McDowell, L. Shi, S. Cordes,
and M. Farinelli, Appl. Phys. Lett. 80, 3006 (2002)

[16] E.N. Bogachev, A.G. Scherbakov and U. Landman, Solid State Comm. 108, 851 (1998). This work calculates the non-linear differential Peltier coefficient \(\Pi_{\text{diff}} = dJ/dI \), even though some formulas assume linear behaviour.

[17] M.A. Çiğiloğlu, S. Turgut and M. Tomak, Phys. Stat. Sol. (b) 241, 2075 (2004).

[18] N. Nakpathomkun, H.Q. Xu, and H. Linke, Phys. Rev. B 82 235428 (2010).

[19] A.S. Vasenko, E.V. Bezuglyi, H. Courtois, F.W.J. Hekking, Phys. Rev. B 81, 094513 (2010). A. S. Vasenko, F. W. J. Hekking, J. Low Temp. Phys. 154, 221 (2009).

[20] M. Moskalets, JETP Lett. 62, 719 (1995).

[21] T. Christen and M. Büttiker, Europhys. Lett. 35, 523 (1996).

[22] D. Sanchez and M. Buttiker, Phys. Rev. Lett. 93, 106802 (2004).

[23] J. Mair and Ph. Jacquod, preprint [arXiv:1205.2705].

[24] D. Sanchez, and R. Lopez, preprint [arXiv:1209.1264].

[25] P.N. Butcher, J. Phys.: Condens. Matter, 2, 4869 (1990).

[26] B. Sothmann, R. Sánchez, A.N. Jordan, and M. Büttiker, Phys. Rev. B 85, 205301 (2012).

[27] B. Sothmann, and M. Büttiker, EPL 99, 27001 (2012).

[28] R. Sánchez and M. Büttiker, preprint [arXiv:1207.2557].

[29] H.-L. ENGQUIST and P.W. ANDERSON, Phys. Rev. B 24, 1151 (1981).

[30] U. Sivan and Y. Imry, Europhys. Lett. 91, 67009 (2010).

[31] Ph. Jacquod and R.S. Whitney, Europhys. Lett. 91, 67009 (2010).

[32] Y.-S. Liu, B.C. Hsu, and Y.C. Chen, J. Phys. Chem. C 115, 6111 (2011).

[33] Ph. Jacquod, R.S. Whitney, J. Mair, and M. Büttiker, preprint [arXiv:1207.1629].

[34] \(q \) is the thermal conductance for \(I = 0 \) (not \(V = 0 \)).

[35] R.S. Whitney, in preparation.

[36] M. Büttiker, J. Phys. Condens. Matter, 5, 9361 (1993). M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114 (1993); Z. Phys. B, 94, 133 (1994). T. Christen and M. Büttiker, Phys. Rev. Lett. 77, 143 (1996).

[37] C. Petitjean, D. Waltner, J. Kuipers, I. Adagideli, K. Richter, Phys. Rev. B, 80,115310 (2009).

[38] J.S. Heron, T. Fournier, N. Mingo, O. Bourgeois, Nano Lett. 9, 1861 (2009).

[39] The results are unchanged if a little bit of tunnelling means that \(A_{\text{LM}}(\epsilon) \) goes smoothly from 0 to \(-1 \) on a scale less than \(k_{\text{B}}T_{\text{is}} \).

[40] W. Holmes, J.M. Gildemeister, P.L. Richards, and V. Kotsubo, Appl. Phys. Lett. 72, 2250 (1998). H.F.C. Hoovers, M.L. Ridder, A. Germeau, M.P. Brujin, P.A.J. de Korte, and R.J. Wiegerink, Appl. Phys. Lett. 86, 251903 (2005).

[41] L.M.A. Pascal, H. Courtois, and F.W.J. Hekking, Phys. Rev. B 83, 125113 (2011).

[42] This is similar to the para- to ferro-magnetic crossover of a magnet in a B-field upon reducing temperature. In \(\phi^2 \)-theory, the cross-over occurs when the \(\phi^2 \) term becomes negative, so the minimum is given by terms beyond \(\phi^2 \).

SUPPLEMENTARY MATERIAL

Self-consistent solution for linear screening. We model the point-contact as a one-dimensional scattering problem (along the x-axis), with the potential sketched in Fig. 2L. Close to the point-contact, this takes the form \(q V(x) = E_g - \kappa x^2 + q V_{\text{scr}}(x - x_{\text{pc}}) \) with energy measured from the chemical potential of the island. The transverse confinement generates the \((E_g - \kappa x^2)\)-term, where \(E_g \) can be tuned, since it equals \(eV_g \) minus a geometry-dependent constant. The \(q V_{\text{scr}} \)-term is the screening due to the electron gas, which we take to be of the form

\[
V_{\text{scr}}(x) = \begin{cases}
 a V_L (l_{\text{scr}} - x) / (2l_{\text{scr}}) & \text{for } x < -l_{\text{scr}} \\
 0 & \text{for } x > l_{\text{scr}}
\end{cases}
\]

with \(x_{\text{pc}} \) self-consistently determined peak of \(q V(x) \). A little algebra gives \(x_{\text{pc}} = -aqV_L / (4l_{\text{scr}}) \), thus the energy at the peak is \(E_{\text{pc}} = q V_L (x_{\text{pc}}) = E_g + \frac{a}{2} q V_L (1 - a q V_L / (8k \sqrt{\kappa})). \) Finally we note that both \(a \) and \(l_{\text{scr}} \) depend on the scattering matrix of the junction, which in turn depends on \(E_{\text{pc}} \). To solve this problem self-consistently, we assume we are in the regime where \(eV_g = E_{\text{pc}} - E_g \) is small enough to approximate \(a = a_0 (1 + b_0 eV_g) \) and \(l_{\text{scr}} = l_{\text{scr0}} (1 + b_0 eV_g) \). If necessary, \(a_0, l_{\text{scr0}}, b_0 \) can be found by simulating Poisson’s equation; typically \(eV_g \) is small for small \(a \). Then \(E_{\text{pc}} \) is equal to a linear function of itself; re-arranging this gives

\[
E_{\text{pc}} = E_g + \frac{aqV_L / 2 - C(qV_L)}{1 - a_0 b_0 qV_L + 2C(qV_L) [b_0 - b_1]},
\]

where we define \(C(qV_L) = (aqV_L / l_{\text{scr0}})^2 / (16\kappa) \). As mentioned earlier, we assume that tunnelling at energies \(\epsilon < E_{\text{pc}} \) is negligible, so \(A_{\text{LM}}(\epsilon - E_{\text{pc}} > 0) = -1 \) and \(A_{\text{LM}}(\epsilon - E_{\text{pc}} < 0) = 0 \). To see that this respects gauge-independence, we recall that \(\epsilon, E_{\text{pc}}, V_{\text{L,k}} \) are all measured relative to the island’s potential, and replace them by quantities measured from a fixed external reference, so the island is at \(V_M \). For clarity, here (unlike in the paragraph containing Eq. 5) it is necessary to use a tilde to explicitly indicate quantities measured from the external reference. We make the replacement \(qV_L = (\tilde{\epsilon} - qV_M) - (\epsilon - qV_L) \). From this, we see that \(A_{\text{LM}}(\epsilon - E_{\text{pc}}) \) is only a function of the set of differences \(\{\tilde{\epsilon} - qV_k\} \), and so respects gauge-invariance.

Voltage and power dependence of cooling. Earlier we explained that it is best to consider the nonlinear response of thermoelectric devices as a function of current. However, for completeness we give the response of a single point-contact as a function of voltage or power. In Fig. 5L, the dashed-lines are contours of \(V(I, T_{\text{is}}) \) and solid-curves are contours of \(P(I, T_{\text{is}}) = IV(I, T_{\text{is}}) \); both \(V \) and \(P \) increase from top to bottom (with infinite voltage and power on the boundary of the red-triangle).

\[
E_{\text{pc}} = E_g + \frac{aqV_L / 2 - C(qV_L)}{1 - a_0 b_0 qV_L + 2C(qV_L) [b_0 - b_1]},
\]
as in Fig. 1, but with white used for all state, \(J = 0 \), marked by the black-curve. The color-scales are as in Fig. 1, but with white used for all \(hJ/(k_B T_0)^2 \) < -0.25, and the darkest color used for all \(hJ/(k_B T_0)^2 \) > 0.18.

These curves show that the steady-state is a continuous function of \(V \), but a discontinuous function of power; the former is clearly seen in the plot of Eq. (7) in Fig. S1. However one cannot extract the voltage-dependence of cooling for a circuit from this \(J(T_{\text{isl}}, V) \), because the relative voltage drop across each thermoelectric element depends nonlinearly on \(T_{\text{isl}} \). In general, the only way to get that response is to use \(J_{\text{total}} = \sum_j J_j(T_{\text{isl}}, I) \) where we sum \(j \) over each thermoelectric element. One can then use \(V(T_{\text{isl}}, I) \) for each element, to find the total voltage drop that generates \(I \) at a given \(T_{\text{isl}} \).

Heat-engine efficiency in the non-linear regime.

To calculate the maximum electrical power \(P(T_{\text{isl}}, I) \) that a heat engine can extract from a heat flow \(J(T_{\text{isl}}, I) \), one assumes a Ohmic load — so \(V(T_{\text{isl}}, I) = I/G_{\text{load}} \) is connected across its terminals, and adjust \(G_{\text{load}} \) to optimize the ratio of the power at the load \(P(T_{\text{isl}}, I) = I V(T_{\text{isl}}, I) \) to the heat flow \(J(T_{\text{isl}}, I) \). This corresponds to finding the \(I = I_{\text{opt}} \) which maximizes \(P(T_{\text{isl}}, I)/J(T_{\text{isl}}, I) \). The saddlepoint of \(P/J \) is given by \(P'J = PJ' \) where primed indicates \((\text{d}/\text{d}I) \). If we have \(V(T_{\text{isl}}, I) \) and \(J(T_{\text{isl}}, I) \) we can solve this to find the optimal value of the charge-current \(I_{\text{opt}} \). The optimal efficiency is \(\eta = P(I_{\text{opt}})/J(I_{\text{opt}}) \); although one also has \(\eta = P'(I_{\text{opt}})/J'(I_{\text{opt}}) \), which is often easier to evaluate.

As a warm-up, we consider the usual linear problem, with \(V(T_{\text{isl}}, I) = S(T_{\text{isl}} - T_0) - G^{-1} I \) and \(J(T_{\text{isl}}, I) = \Theta(T_{\text{isl}} - T_0) + \Pi I \), with \(\Pi = \Gamma/G \) and \(S = B/G \). Using these equations to calculate the optimal efficiency in the manner described above, we find

\[
I_{\text{opt}} = \left(\Theta/\Pi \right) \sqrt{Z(T_{\text{isl}})T_{\text{isl}} + 1 - 1} (T_{\text{isl}} - T_0). \quad \text{Assuming } ZT \text{ is approximately } T \text{-independent, we get Eq. (1).}
\]

Now we use the same method to get the efficiency in the nonlinear regime. Unfortunately, in general we cannot get an analytic solution of \(P'J = PJ' \) from Eqs. (9,8), so we solve it numerically to find \(I_{\text{opt}} \) for different \(T_{\text{isl}}/T_0 \), and plot \(\eta \) against \((T_{\text{isl}} - T_0)/T_{\text{isl}} \) in Fig. 3c. However we can get an analytic result for large \((T_{\text{isl}}/T_0)\), using the fact (confirmed by the numerics) that in this limit

\[
V_1(T_{\text{isl}}, I) \approx \frac{k_B T_0}{e} \left[-t_{\text{isl}} \ln[2] + \frac{h I}{e k_B T_0} \right],
\]

\[
J_1(T_{\text{isl}}, I) \approx -\frac{(k_B T_0)^2}{h} \left[\frac{\kappa^2}{2} \ln[2] + \ln[2] \left(\frac{h I}{e k_B T_0} \right) t_{\text{isl}} - \frac{1}{2} \left(\frac{h I}{e k_B T_0} \right)^2 \right],
\]

where we define \(t_{\text{isl}} = T_{\text{isl}}/T_0 \) and \(\kappa = \pi^2/6 - \ln[2] \approx 1.16 \). The heat-current from the hot source into the device is \(J(T_{\text{isl}}, I) = -J_1(T_{\text{isl}}, I) \), and \(P = -V_1(T_{\text{isl}}, I) I \) (given that \(V_1 < 0 \)). In this case \(P'(T_{\text{isl}}, I_{\text{opt}}) J(T_{\text{isl}}, I_{\text{opt}}) = P(T_{\text{isl}}, I_{\text{opt}}) J'(T_{\text{isl}}, I_{\text{opt}}) \) is a quadratic equation for \(I_{\text{opt}} \), which we solve to find

\[
\frac{h I_{\text{opt}}}{e k_B T_0} = \frac{\kappa}{\ln[2]} \left[\sqrt{1 + \ln^2[2]/\kappa} - 1 \right] \frac{T_{\text{isl}}}{T_0},
\]

from which we get the optimal efficiency given in the text.