Abstract

Introduction: The aim of this review is to summarize the current understanding of the gut-brain axis (GBA), its impact on neurosurgery, and its implications for future treatment.

Background: An abundance of research has established the existence of a collection of pathways between the gut microbiome and the central nervous system (CNS), commonly known as the GBA. Complicating this relationship, the gut microbiome bacterial diversity appears to change with age, antibiotic exposure and a number of external and internal factors.

Methods: In this paper, we present the current understanding of the key protective and deleterious roles the gut microbiome plays in the pathogenesis of several common neurosurgical concerns.

Results: Specifically, we examine how spinal cord injury, traumatic brain injury and stroke may cause gut microbial dysbiosis. Furthermore, this link appears to be bidirectional as gut dysbiosis contributes to secondary CNS injury in each of these ailment settings. This toxic cycle may be broken, and the future secondary damage rescued by timely, therapeutic, gut microbiome modification. In addition, a robust gut microbiome appears to improve outcomes in brain tumour treatment. There are several primary routes by which microbiome dysbiosis may be ameliorated, including faecal microbiota transplant, oral probiotics, bacteriophages, genetic modification of gut microbiota and vagus nerve stimulation.

Conclusion: The GBA represents an important component of patient care in the field of neurosurgery. Future research may illuminate ideal methods of therapeutic microbiome modulation in distinct pathogenic settings.

Graphical Abstract

There is a strong bidirectional link between gut microbiome dysbiosis and worsening secondary injury post-stroke, SCI, and TBI. These deficits may be rescued by timely rejuvenation of the gut.
microbiome. The maintenance of a healthy microbiome plays a protective role in the setting of tumor chemotherapy and immunotherapy. The future of gut microbiome modulation for neurosurgical therapeutic goals appears increasingly promising.

Keywords
faecal transplant; microbiome; neurosurgery; probiotics

1 INTRODUCTION

Microbiome dysregulation has been implicated in the pathogenesis and prognosis of a wide range of conditions, from type 2 diabetes to Parkinson’s disease.1-3 Recent research in the field of microbiome study has shown a particular interest in the gut-brain axis (GBA), as numerous studies have suggested that gut microbiota modulate neuroendocrine signalling pathways via the production of neurotransmitters (e.g. serotonin, norepinephrine, dopamine, glutamate and gamma-aminobutyric acid) and metabolites (e.g. tryptophan).4-6 Although the direct relationship between the gut and the brain is not obvious, research has established evidence on the GBA bidirectional communication via different systems.7 For instance, the gut microbiome is known to communicate to the central nervous system (CNS) via the myenteric systems and the entero-endocrine cells using various neuropeptides (5-Hydroxytryptamine, Peptide YY and Cholecystokinin) and directly influence behavioural changes and cerebral cortical excitability.8 On the other hand, the CNS, using the parasympathetic fibres from the vagus nerve (VN), directly influences the composition of the gut microbiome by either activating anti-inflammatory macrophages (M2) or inhibiting proinflammatory macrophages (M1), hence modulating intestinal permeability.9

The diversity of the microbiota in early life is influenced by a variety of factors, including the route of birth delivery, breast milk consumption, genetics, nutrition, infection history, antibiotic history and environmental stressors.10-13 As the host ages, microbiota diversity is believed to generally trend towards a less diverse microbiome, with potential consequences of increased inflammation.14,15

In either acute or chronic settings, dysbiosis describes an overall decrease in microbiota diversity with an inability to regulate pathogenic gut microbes, promoting a proinflammatory state.16,17 The bidirectional GBA impact of CNS injury and malignancy resulting in gut microbiome dysregulation and increased intestinal permeability may further drive systemic inflammation and secondary CNS injury.18-20 Dysbiosis in the setting of neural injuries such as strokes and traumatic brain injuries (TBIs) has been indicated in the differentiation and migration of immune cells into the CNS, and ultimately the upregulation of maladaptive CNS inflammation.19,21 Depending on the predominate microbiota, the GBA may promote an inflammatory or anti-inflammatory reaction via the upregulation of specific cytokines and antioxidants.22 Spinal cord injury (SCI), TBI, stroke and brain tumours appear to have a significant impact on the GBA, influencing dysbiosis with secondary consequences on CNS dysregulation.22-25
2 | THE GUT MICROBIOME

The human gut microbiome is home to many species, including bacteria, viruses, fungi, protozoa and some eukaryotes, more so than any other anatomical region. These microorganisms colonize the digestive tract just after birth and have been implicated in several significant functions in the human body, ranging from enhancing the immune system, colonizing mucosal surfaces, playing vital roles in digestion and metabolism, modifying insulin resistance and influencing the GBA, which influences the neurological function of the host. Consequently, there is an abundance of evidence supporting the concept that gut microbiota plays a crucial role in maintaining normal gut physiology and health within several body systems.

2.1 | Microbiome diversity

The composition of the gut microbiome varies across different areas of the digestive tract, but the majority of the microorganisms are bacteria, specifically anaerobic bacteria. The total microbiome also includes fungi, protozoa, and viruses, but much less is known about their specific roles. The colon is the most densely populated area of the digestive tract, with 10^{12} cells per gram of intestinal substance comprised of up to 1000 different species. However, a majority (99%) of those bacterial species originate from a central group of about 40 species. While most of the digestive tract is colonized by anaerobic bacteria, there is a high concentration of aerobic bacteria in the cecum. The most common bacterial genera include Bacteroides, Clostridium, Peptococcus, Bifidobacterium, Eubacterium, Ruminococcus, Faecalibacterium and Peptostreptococcus, with Bacteroides being the most prevalent as it comprises about 30% of gut bacteria. Bacterial categorization is commonly established by phyla, as the ratio of certain phylae has significant implications for research results and the conclusions that can be drawn regarding gut health. More than 50 different phyla have been recorded, with Bacteroidetes and Firmicutes followed by Proteobacteria, Fusobacteria, Tenericutes, Actinobacteria and Verrucomicrobia being the most common.

2.2 | Age and the gut microbiome composition

The gut microbiome changes composition throughout life, as it is affected by several factors, including host genetics, age, diet, mode of birth, exercise, lifestyle and antibiotic use. In healthy adults, there are generally high quantities of Firmicutes and Bacteroidetes and also lesser proportions of Verrucomicrobia, Actinobacteria and Proteobacteria. However, this composition does not remain constant as natural ageing significantly affects the microbiota’s composition (see Figure 1). Initially, aerobic bacterial strains (e.g. Proteobacteria) colonize the gut and consume oxygen, which sets up the optimal environment for anaerobic strains to subsequently colonize (examples include Firmicutes, Actinobacteria and Bacteroides). The first year after birth is quite crucial in establishing the optimal microbiome, as taxonomic diversity initially is low, but develops over time. During childhood, the more common phyla, such as Bacteroidetes and Firmicutes, begin to multiply, leading to a more stable microbiome that can produce butyrates. The pre-adolescent years (7–12 years old) then allow for folate and vitamin B12 synthesis. The primary difference during adolescent years (11–18 years old) is the increasing abundance of Clostridium
and Bifidobacterium genera, at higher levels compared to those of healthy adults. As humans age, the Bacteroidetes:Firmicutes ratio lowers, as Enterobacteriaceae quantities seem to increase. Although there is no consensus on the reason for this change, prevalent hypotheses include a decrease in diet diversity and an increase in inflammatory factors. Furthermore, along with a significant reduction in bifidobacteria levels, there is also a decrease in amylolytic activity and short-chain fatty acid (SCFA) production, due to the reduction of Bacteroides levels. There is a corresponding increase in the number of facultative anaerobes, fusobacteria, clostridia and eubacteria. Ultimately, due to the decrease in biodiversity and SCFA-producing species, clinical manifestations include more opportunistic pathogen infections, a decline in dentition, salivary function and digestion/absorption function overall.

2.3 | Diet and the gut microbiome composition

In addition to natural ageing, a human’s dietary intake plays a crucial role in regulating the gut microbiome, by increasing or decreasing quantities of certain bacterial species, which may alter gut metabolite production. For example, shortly after birth, the microbiome’s metagenome is enriched in genes that metabolize oligosaccharides found in breast milk. With time, this transforms into an upregulation of genes suited for the metabolization of polysaccharides and vitamins. Furthermore, the method of feeding has been shown to strongly influence the microbiome composition, with breastfeeding leading to a high abundance of Actinobacteria and an inhibition of Firmicutes and Proteobacteria, while formula leads to an abundance of Clostridia, Streptococci, Bacteroides and Enterobacteria. Certain adult diets have also been associated with certain microbiome compositions. For instance, vegetarian diets are correlated with the dominance of Firmicutes and Bacteroidetes. In addition, increased fibre intake has been shown to protect the gut mucosal barrier and improve glucose control, leading to a healthier metabolic profile in T2DM patients. On the other hand, diets rich in protein and fats (most associated with diets consumed in European countries), are correlated with Bacteroides, Bilophila and Alistipes (bile-tolerant species) and inhibition of Firmicutes. Predominance of this diet type is also associated with lowered immune function (and hence, susceptibility to infection and metabolic diseases).

2.4 | Lifestyle and the gut microbiome composition

Another major factor believed to modulate microbiome composition is a lifestyle, which encompasses a plethora of factors from host genetics to exercise to habits such as smoking. Exercise appears to enhance the diversity of the microbiome and is positively correlated with protein intake and creatine kinase levels. Athletes display greater quantities of Firmicutes and lower levels of Bacteroidetes in relation to non-athletes. In general, exercise seems to increase certain taxa (e.g. Clostridiales and Roseburia) that increase butyrate production and SCFA production (a general indicator of gut health).

While their exact mechanisms remain uncertain, both intrinsic and extrinsic factors clearly play a role in microbiome composition. Intrinsic adaptations include decreased blood flow and tissue hypoxia while extrinsic factors include the general environmental biosphere.
Smoking is one example of an extrinsic factor which has been shown to significantly influence gut microbiota.61

2.5 | Inflammation and the gut microbiome

While several phyla mentioned thus far are said to be beneficial for physiological health, there are known bacteria with pro-inflammatory properties, which have been correlated with several diseases, including metabolic syndrome, inflammatory bowel disease (IBD), obesity and more.62 Enterobacteriaceae is one such class of gramnegative facultative bacteria that is believed to contribute to an inflammatory state.62,63 In general, bacteria mediate pro-inflammatory effects by acting on macrophages (differentiating between M1 and M2 phenotypes) through the production of Gram-negative bacterial lipopolysaccharides (LPS), bile acids, and pro-inflammatory cytokines (e.g. IL-8, IL-12, IL-18, IL-23, TNF-α and IL-1β).62,64

2.6 | The GBA

Another significant relationship between the microbiome and human health is through the GBA, whereby the enteric and CNS are bidirectionally linked.51,65 The GBA’s primary function is to connect the emotional centres of the brain with the peripheral intestinal functions such as the enteric reflex, intestinal permeability, immune activation and enteroendocrine signalling.66,67 A plethora of evidence point to this connection, and dysfunction of the GBA has been implicated in several neurological and psychiatric diseases (e.g. anxiety, depression, autism and Alzheimer’s disease).68 The GBA is disrupted in IBD and microbial dysbiosis.69 In these pathological states, intestinal motility and secretion are disrupted, leading to visceral hypersensitivity or hyperalgesia.70

Additionally, a leading hypothesis is that a “leaky” gut allows for metabolites and pro-inflammatory molecules to leak into the bloodstream, which can then alter neuroimmune and neuroendocrine systems, leading to the pathogenesis of autism and other alterations of physiologic neurodevelopment.71,72

To further explore the GBA, neurodevelopment has been studied extensively in mice, as mice share two major phyla of bacteria with humans (Bacteroidetes and Firmicutes) and are one of the best living GBA models, despite several differences in microbiome composition amongst mice and humans.73 Specifically, germ-free (GF) mice, those devoid of any microbiota, have been used to study the impact of an absent microbiome and the host’s physiological response.74 Typical experimental groups can compare GF mice, conventionally raised mice and mice raised devoid of specific disease-causing organisms.75 One study comparing GF and conventionally raised mice indicated a number of behavioural changes, including stress and anxiety-related responses, affected learning, memory and motor control skills, which seemed to parallel behaviour seen in autism spectrum disorder.76 Another study showed a significant decrease in neuronal firing rate and increase in synaptic density in GF neonate mice when compared to conventional neonate mice.77 This substantial role of bacteria in neuronal development was further supported by Lu et al. who demonstrated that GF mice colonized by faecal samples from preterm human infants with poor growth compared to GF mice colonized by faecal samples from infants with...
good growth showed a significant reduction in neuronal markers, neurofilament-L, and myelination markers.78

Other studies have explored how the integrity of the blood-brain barrier (BBB) could be affected by the GBA. It was found that increased levels of circulating SCFAs produced by the gut microbiome led to increased production of tight junction proteins, causing increased BBB integrity, and preventing entry of unwanted metabolites into brain tissue.79 Moreover, the effect of pro-inflammatory bacteria via altered autoimmune function was also supported via GF mice. More specifically, there is evidence that LPS stimulate cytokine release, which then cross the BBB, and alter neurological function, resulting in modulated mood and behaviour.80 Ultimately, GF mice have allowed for further study of the correlation between gut microbiome alterations and neurodevelopment. However, it is important to note the limitations given that a GF environment is not plausible in real life, limiting the transitional value of such studies to human therapeutics or reaching clinically relevant conclusions.75

3 SPINAL CORD INJURY

SCI affects approximately 250,000–500,000 people per year worldwide and is associated with significant morbidity and mortality.81 Emerging evidence has demonstrated a bidirectional effect of SCI and the microbiome as SCI can result in gut dysbiosis which can negatively impact recovery following SCI (see Figure 2). Thus, understanding the interaction between the gut microbiome and SCI is necessary, as preventing gut dysbiosis could become an important component of post-SCI care. SCI is a combined upper and lower motor neuron CNS injury that can result in dysfunctional somatic and autonomic nervous systems.82-84 Lesions of upper and lower motor neurons in these systems, along with the enteric nervous system, control gastrointestinal (GI) function can result in neurogenic bowel and reduced stool transit time, colon motility, mucosal secretions, vascular tone, gastric dilation, intestinal barrier integrity and immune functioning.85,86 This can, in turn, lead to microbiome dysbiosis.85,86 Additionally, the gastrointestinal-associated lymphoid tissue (GALT), which prevents the gut microbes from invading GI mucosa, is normally innervated and suppressed by the sympathetic nervous system. Consequently, loss of sympathetic tone in the setting of SCI increases the antimicrobial function of GALT, further contributing to gut dysbiosis.87

SCI patients suffer from defective immune system function, resulting in recurrent infections requiring frequent use of antibiotics, which leads to antimicrobial resistance of some colonized bacteria in the GI tract and alterations in the populations of microbes present in the gut.85,87-91 After SCI, there is a loss of diversity in the gut microbiome.92-98 The changes in specific microbiota populations are variable in preclinical rodent studies due to differences in injury type, severity and location as well as post-op care protocols.99-102 Generally, there is a decrease in anti-inflammatory bacteria and an increase in pro-inflammatory, potentially pathogenic microbiota.92,93,103-109 In human studies, changes in bacteria are also variable between individuals due to variations in injury levels and severity as well as antibiotic usage, age, diet, lifestyle, prolonged stress and GI dysfunction.98,17 However, human studies have demonstrated a reduction in butyrate-producing microbiota after SCI.84,98
3.1 Gut dysbiosis and secondary SCI perturbation

Gut microbiome dysbiosis can negatively impact injury severity and inflammation. Mice with SCI and gut dysbiosis have more severe lesions104,109,110 with less white matter sparing.104,110 Mice with SCI treated with faecal microbiota transplantation (FMT) from an uninjured mouse have a significant increase in motor neurons relative to mice with SCI without FMT, suggesting that cell survival is improved by ameliorating microbiome dysbiosis.93,110 Gut dysbiosis may result in a more severe secondary injury due to a more pronounced proinflammatory state, thus worsening lesion severity and reducing white matter sparing. Inflammation is a key component of the secondary injury in SCI and is mediated through pro-inflammatory cytokines and pathways, microgliosis, astrogliosis, and infiltrating immune cells.111-114 Mice with SCI and gut dysbiosis have increased peak inflammation at 14 days.104 Spinal cord injury results in intestinal permeability changes that allow for bacteria in the gut and their metabolites to invade the gut mucosa and enter circulation, resulting in systemic inflammation.86,111 Additionally, loss of sympathetic innervation of GALT results in changes in immune cell composition which results in increased expression of pro-inflammatory and immunoregulatory cytokines.104,111 Rong et al. found that at 7 days post-injury, mice with SCI and gut dysbiosis have increased proinflammatory cytokines such as TNF-\(\alpha\), IL-1\(\beta\) and IL-6 and decreased anti-inflammatory cytokines such as TGF-\(\beta\), IL-4 and IL-10.109 Jing et al. found that 4 weeks post-injury, mice with SCI have elevated NF\(\kappa\)B and IL-1\(\beta\) which can be impeded through treatment with FMT from a sham mouse. O’Connor et al. found that elevations in pro-inflammatory cytokines IL-1\(\beta\), IL-12 and MIP-2 correlate with microbiome changes following SCI.92 Mice with gut dysbiosis after SCI have increased immunofluorescent staining for GFAP and IBA-1 as well as increased astrocytes and microglia with activated morphology, indicating increased astrogliosis and microgliosis.104,109,110 Treatment with FMT from a sham mouse reduces the activated morphology of astrocytes and microglia indicating that ameliorating gut dysbiosis in SCI prevents the overactivation of glia.110 While glia are important in the response to SCI, there is a delicate balance between pro- and anti-inflammatory states, which if unbalanced can worsen the secondary injury.111,115,116 Microglia in the M1 state are pro-inflammatory and can further contribute to secondary injury.111,116 The reduction of butyrate-producing microbes seen after SCI can result in more microglia with the M1 phenotype.117 M1 microglia release proinflammatory cytokines and recruit immune cells to the injury, altogether leading to inflammation, cell death, demyelination, nociceptive activation, and hypersensitivity.117 The mice with both SCI and dysbiosis have an increased total number of infiltrating lymphocytes.104 These mice also have increased expression of the spinal cord and colon TLR4, MyD88, p-p65 and p-1\(\alpha\)xB\(\alpha\), important molecules in the inflammatory pathway that responds to LPS.109

3.2 Neuronal recovery and gut dysbiosis

Gut dysbiosis in SCI results in worsened locomotive recovery.93,104 Gut dysbiosis may dampen the potential for neuroplasticity after SCI, thus reducing the potential for functional recovery. The mechanisms for neural plasticity after SCI and how to enhance that plasticity to improve rehabilitation are still being elucidated. The increased inflammation may blunt the potential for neuroplasticity.118-121 Gut dysbiosis post-SCF could also impact important molecules involved in neuroplasticity after SCI, such as BDNF and other neurotrophic
factors. The intestinal microbiome modulates BDNF messenger RNA affecting the capacity for long-term potentiation in the hippocampus. Additionally, inflammatory cytokines such as IL-1β, which is overexpressed in SCI, especially with gut dysbiosis, can suppress BDNF-dependent pathways of synaptic plasticity. Mice with SCI have a significant decrease in expression of BDNF, NT-3 and NGF in the spinal cord, 4 weeks postinjury. Mice with SCI treated with FMT from a sham mouse, have BDNF, NT-3 and NGF expression levels that are significantly improved relative to that of SCI mice without FMT and are not significantly different from that of non-SCI mice. The gut microbiome also mediates the biosynthesis of tryptophan, vitamin B6 and folate which are important to CNS repair and neuroplasticity. Tryptophan and vitamin B6 are important in the synthesis of serotonin, and the gut is responsible for a large amount of the serotonin supply in the CNS. Serotonin is another molecule implicated in a pathway important for neuroplasticity after SCI. It is not yet known how the microbiome perturbation post-SCI affects serotonin or serotonin-mediated neuroplasticity pathways. Future research should be performed to determine how SCI and the resulting gut dysbiosis modulate key players in neuroplasticity pathways such as serotonin, adenosine, BDNF and mTOR and how those changes impact the capacity for plasticity. In addition to worsened inflammation and recovery, gut dysbiosis post-SCI can also contribute to the development of comorbidities such as stress and mood disorders, immune dysfunction and infections, metabolic disease and fatigue.

3.3 FMT in the setting of SCI

As modern research continues to highlight the importance of the microbiome in SCI prognosis, it is clear that gut dysbiosis should be considered a target for post-SCI care. Probiotics work by reintroducing specific, beneficial bacteria to the GI tract. VSL#3 is a commercial, medical-grade probiotic cocktail that contains four strains of Lactobacillus (L. casei, L. plantarum, L. acidophilus and L. delbrueckii), three strains of Bifidobacterium (B. longum, B. breve and B. infantis) and one strain of Streptococcus (S. salivarius). In a mouse study, VSL#3 transiently but significantly altered the microbiome composition in faecal samples, and notably increased the abundance of Lactobacillus and Bifidobacterium. Mice treated with VSL#3 starting at the time of SCI and continued for 35 days have significantly improved locomotor recovery, increased activation of anti-inflammatory T-regulatory cells, and reduced lesion volume and axon/myelin pathology as compared to SCI mice without probiotic treatment. FMT involves transferring faeces or faecal microbiota from the GI tract of a healthy donor to the GI tract of the recipient. In mice studies of FMT after SCI, FMT treated mice had less severe injuries with more white matter sparing, greater locomotive recovery, enhanced vascular repair, upregulated neurotrophic factors, reduced neuroinflammation and decreased blood-spinal cord barrier disruption as compared to untreated SCI mice. Melatonin is another potential therapeutic in addressing gut dysbiosis in SCI. Mice treated with melatonin after SCI have a more normalized gut microbiome and significantly improved GI function. Ursolic acid has also been shown to improve the gut microbiome diversity and composition following SCI, decrease the pro-inflammatory
response, and promote cell survival. It is likely that melatonin and ursolic acid work through mechanisms, both related and unrelated to the microbiome. Future work should aim to uncover the optimal treatment strategy for addressing gut dysbiosis in SCI and preventing the gut microbiome’s contribution to increased secondary injury and limited plasticity and recovery.

4 | TRAUMATIC BRAIN INJURY

TBI is a significant public health issue, accounting for an estimated third of deaths related to trauma or injury. Recently, the gut microbiome has been a focus of interest in the context of TBI following a number of findings supporting the codependent influence of brain injury on the health of the microbiome and vice versa. Here, we describe these findings (see Figure 3) and interweave a discussion of the modulation of the gut microbiome as a therapeutic target to reduce secondary neurodegeneration following TBI.

4.1 | The gut microbiome impacts recovery after TBI

It is becoming increasingly evident that the gut microbiome plays a key role in the regulation of neural recovery following TBI. One recent study investigated the effect of gut dysbiosis on recovery with an antibiotic-treated mouse model subjected to an impact model of TBI. Compared to control animals, antibiotic-treated mice displayed increased hippocampal neurodegeneration and altered cognition in the form of a fear memory freezing task following TBI. Despite this, the underlying mechanisms to which these dysbiotic neurodegenerative changes may be attributed are not fully understood. However, three possible mechanisms include microbiome-induced regulation of BBB integrity, neuroinflammation and oxidative stress. BBB dysfunction with resultant increased permeability is a well-known sequela of TBI. Further, the gut microbiome is known to regulate the permeability of the BBB: GF mice have decreased expression of tight junction proteins (with high BBB permeability) and faecal transplant of healthy gut flora to these mice results in reduced BBB permeability. These findings were supported in a study of TBI impact model mice, where intragastric Clostridium butyricum (Cb) treated mice not only rescued BBB permeability but also improved neurological deficits compared to the control group not treated with Cb. Neuroinflammation contributes to degeneration following TBI and is also influenced by gut flora. Cb treatment has also been shown to reduce the expression of proinflammatory cytokines such as IL-6. Furthermore, elevated oxidative stress in the neural environment plays a significant role in inducing apoptosis after TBI. The gut microbiome has also been found to regulate this mechanism of neurodegeneration. In one study, rats were subjected to an impact model of TBI, and a faecal transplant was performed for one week following injury. Fecal transplant was associated with reduced ROS and elevated antioxidant enzymes such as superoxide dismutase and catalase, corroborated with improved neurological function following transplant.

The mechanism of TBI-induced GBA dysfunction is not fully understood, but the VN is one proposed major component. Recent studies suggest the bidirectional nature of the VN allows it to function as a major pathway of communication between the GBA.
the VN may play an integral role in the promotion of decreased gut mucosal integrity, inflammatory upregulation, and apoptosis in the setting of TBI-induced dysbiosis.

4.2 The influence of TBI on the microbiome

Just as the state of the microbiome influences neurological outcomes in TBI, neurological injury can have several effects on the microbiome itself. One study comparing mice subjected to an impact model of TBI to sham mice analyzed the stool microbiome 24 hours following injury. This study reported changes in the microbiome composition in the TBI-induced mice, attesting to the acute changes in the microbiome following TBI. These changes may not be limited to the immediate postinjury period: TBI could have long-lasting effects on the gut flora profile, as discovered in a study comparing the microbiome composition of 22 patients who suffered moderate-to-severe TBI with 18 age-matched controls. Nevertheless, controversy regarding the long-term implications of TBI on the gut microbiome exists and warrants further research. Though this study compared microbiome profiles to age-matched controls, other recent work has implicated age difference as a critical influence on the post-TBI gut microenvironment. Notably, older mice subjected to TBI displayed different gut flora environments than younger mice. Indeed, the microbiome may undergo a spectrum of changes over time following TBI, making analysis of gut flora a possible venue for injury prognostication. However, TBI-induced changes in the gut microbiome may be alleviated through faecal transplant which, again, has been demonstrated to improve cognitive performance in mice.

5 BRAIN TUMOR PATHOGENESIS

Many studies report an existing relationship between the gut microbiome and human cancer development, including brain tumours. Animal models demonstrated that gut microbiome-driven changes to microglia in the CNS have a direct impact on CNS disease. Such changes are either direct or indirect. For instance, GF mice seem to have a higher propensity of having microglia abnormalities leading to CNS disease and cancer development. Interestingly, when treated with faecal implantation, such effects are hampered. It appears that secreted specific SCFA from gut microbes act as neurotransmitters to act on the CNS microglia. Gliomas account for 80% of all brain cancers and are one of the most aggressive. It is reported that gut microbiomes directly affect their growth and their response to therapy; mostly, either by leading to an increase in NK cell subtypes (CD27+/CD11b+) or by modulating oncogenes.

5.1 The GBA

Cancer therapy has come to know a new era with the use of immunotherapy and is being met with tremendous success. Multiple factors have been demonstrated to significantly influence the results of such therapy ranging from modifiable ones, such as lifestyle, to non-modifiable ones, such as genetic inheritance. Recently, the implication of the gut microbiome in cancer response to therapy became an area of research interest in the field of immunooncology and is being investigated as a possible tool to enhance therapeutic efficacy.
5.2 The gut microbiome and efficacy of chemotherapeutics and immunotherapeutics

Unfortunately, the direct action of chemotherapeutic drugs leads to significant gastrointestinal side effects by affecting the microbiome diversity. Therefore, there is a decrease in the bioavailability of those drugs. Regulating the gut microbiome by providing external probiotics can hamper those toxicities and improve chemotherapeutic agent efficacy. Furthermore, genetically altered bacteria species can help in drug metabolism and even secrete anti-tumour agents that benefit the function of chemotherapy. Animal and human models have also demonstrated how the gut microbiome affects the response to cancer immunotherapy. Although the mechanism is not completely understood, Cytotoxic T Lymphocytes Associated Antigen 4 and PD-1 targeted therapy success depends greatly on the host’s gut microbiome. It is believed that if these areas are further investigated, understanding the gut microbiome can greatly assist in prognostication and guide therapeutic intervention against cancer.

Programmed Death 1 (PD-1) is a transmembrane protein in the family of immunoglobulins found mostly on lymphocytes that play a role in immunoregulation. PD-1 has two main ligands, PDL1 and PDL2, to which naturally occurring, or biologically engineered molecules can attach. When molecules are attached to the ligands, CD4+ naive cells are transformed into regulatory T-cells and subsequently lead to the induction of Akt-mammalian target of rapamycin (mTOR) and activation of Phosphatase and Tensin homolog (PTEN). Such events are immunosuppressive and, therefore, decrease the ability of the organism to counteract pro-inflammatory states and malignancies. This explains why various tumour-infiltrating lymphocytes have a higher rate of recurrence and poor prognosis. Some molecules, however, act as PD-1 inhibitors. Naturally occurring molecules include Anoectochilus formonasus, Curcumin and Resveratrol. Studies have also demonstrated that in certain patients, the presence of some species of bacteria in the patients’ microbiome confers primary anti-tumour immunity and were also found to improve the efficacy of the immune checkpoint inhibitors utilized in cancer treatment. Species like Clostridium, Lactobacillus and Syntrophococcus as well as bacteria like Alistipes putredinis, Bifidobacterium longum and Prevotella copri have been cited. Particular attention was given to Bifidobacterium spp. after Sivan et al. elegantly demonstrated that its presence in certain melanoma-affected mice contributes to spontaneous antitumour immunity and synergistically works with immune checkpoint inhibitors to decrease disease burden, while its absence correlates with the lack of such responses. The mechanisms by which Bifidobacterium spp. produces these effects are not well elucidated. However, the direct correlation between Bifidobacterium spp. presence and CD8+ concentration within the tumour and in the host’s circulation as well as the increased production of IFN-γ suggest gene-expression-related activities. This is postulated to be the results of yet-to-be-determined signalling, as there was no observed evidence of bacterial translocation. Other proposed mechanisms include biotransformation assisting in prodrug conversion into active metabolites and competition with cancer cells, reducing the nutrients available for cancer growth (see Figure 4).
A stroke is defined as brain tissue injury resulting from inadequate blood flow due to either vascular occlusions and stenosis in about 85% of cases or vascular rupture in 15% of cases.188-191 Recent evidence suggests that the bidirectional GBA may play a significant role in stroke pathophysiology and post-stroke secondary injury.192,193 Since the gut microbiome is also responsible for regulating T-cell homeostasis and immune cell maturation, alterations in the composition and abundance of microbes resulting in gut dysbiosis may disrupt GBA signalling and GBA-mediated immune responses.194-197

6.1 Stroke-related gut dysbiosis

Stroke-related gut dysbiosis is well documented in the literature. Compared to healthy controls and those with gastrointestinal conditions such as ulcerative colitis, stroke patients have been shown to have an: 1) altered Firmicutes-to-Bacteroidetes ratio, 2) increased abundance of opportunistic pathogens and 3) decreased abundance of SCFA-producing bacteria.198-202 The degree of stroke-related gut dysbiosis has also been shown to be strongly and positively associated with stroke severity based on the National Institute of Health Stroke Score and post-stroke disability based on the Modified Rankin Scale.199 Those with poor post-stroke outcomes were found to have the same three major changes in gut microbiome composition but to a greater extent.203 Understanding this phenomenon is important, as gut dysbiosis has been associated with diminished survival. Spychala et al. used stroke mice models to show that aged mice or those with aged gut microbiota had an elevated Firmicutes to Bacteroidetes (F:B) ratio which was associated with lessened survival and post-stroke recovery.204

6.2 Proinflammatory effect of stroke-related gut dysbiosis

Gut dysbiosis and its role in the progression of inflammatory events post-stroke have been well studied (see figure 5). Xu et al. showed in a middle cerebral artery occlusion (MCAO), a murine model that brain infarction size was associated with gut Enterobacteriaceae overgrowth, and through RNA sequencing found these microbial species to have upregulated genes involved in immune responses.205 Specifically, they showed increased interferon, NOD-like receptor and toll-like receptor signalling. Further serum testing also demonstrated increased systemic inflammatory markers including IL-6, LPS and TNF-\(\alpha\).

Post-stroke systemic inflammation is believed to be driven through various mechanisms, with a major source being stroke-related changes in intestinal mucosal permeability. Multiple studies have shown decreased expression of occludins, claudins and cadherins within intestinal mucosa following stroke.206-209 Without proper cell-to-cell adhesion and tight junctions, mucosal integrity is compromised. MicroRNA has also been shown to be involved in changes in intestinal permeability. MiR-21-5p is one specific microRNA that has been shown to be elevated in stroke patient serum and is associated with increased intestinal epithelial permeability via upregulation of the ADP-ribosylation factor.210,211 The resultant “leaky gut” allows opportunistic pathogens that bloom as a result of gut dysbiosis to produce and release harmful metabolites and toxins into the systemic circulation. Kurita et al. showed in an MCAO murine model that infarct volumes were associated with

\textit{Clin Transl Discov. Author manuscript; available in PMC 2022 December 01.}
both gut dysbiosis—especially increased Gram-negative Enterobacteriaceae—and increased lipopolysaccharide, an inflammatory stimulus and endotoxin, near the ischemic insult. Accordingly, Stanley et al. have shown in humans and animals, that microbes detected in post-stroke infections were innate to the gastrointestinal tract, and that microbe translocation occurred after stroke-related changes in intestinal permeability.

Ultimately, the proinflammatory pathogenic microbes in the gut and subsequent activation of the gut immune cells drive systemic inflammation and contribute to inflammation at the site of ischemia. This is due to the mechanism by which brain tissue injury following ischemia also results in the localized release of damage-associated molecular patterns and proinflammatory cytokines that can attract gut immune cells. This was studied by Singh et al. who fluorescently labelled immune cells in Peyer’s patches and tracked these cells 3 days later to the ischemic hemisphere in MCAO mice models. Interestingly, these cells - mostly consisting of TH1 and TH17 cells - accounted for 25% of the total T cells at the site of ischemia. Additionally, proinflammatory factors released from gut immune cells can disrupt the BBB and allow gut-lumen-derived pathogens to reach the brain and trigger further neuroinflammation.

Certain endotoxins released by opportunistic microbes such as LPS have even been associated with microgliosis, neurotoxicity and increased cognitive impairment.

7 | THE FUTURE OF MICROBIOME THERAPEUTICS

Treating neurological pathology via directed modulation of gastrointestinal microbiota is an ongoing field of research. Current and theorized interventions may be grossly categorized into the transferring of wild-type gut microbes, such as with FMT and Probiotics; the elimination of endogenous gut microbes via virulent bacteriophages; and either the introduction of exogenously engineered microbes or the genetic modification of endogenous ones. Research has also demonstrated the potential for individualized gut microbiota diagnostics using engineered bacteria, which could lead to personalized microbiota-targeted therapies. However, further research is required to fully implement these methods in the clinical setting.

7.1 | Faecal microbiota transplant

FMT is the transplantation of faecal material from a donor with apparent healthy gastrointestinal flora into a diseased recipient to correct dysbiosis. Records of FMT date back as far as 4th-century China, where it was used to treat severe diarrhoea. In the modern era, FMT has been explored as a highly effective treatment for recurrent Clostridium difficile infection (CID). Other potential indications for FMT have been studied in clinical trials, but have yielded heterogeneous results. However, in the setting of induced TBI in rat-based models, FMT has demonstrated efficacy in the amelioration of both gut microbiota dysbiosis and neurological deficits. The exact therapeutic mechanism by which FMT treats CID is still not fully realized, but the most current evidence points towards its ability to repopulate and revitalize the diseased gut with diverse and healthy microbiota.
7.2 | Probiotics

Probiotic is a general term used when referring to specific health-promoting microbes, commonly found in certain foods, that have demonstrated some beneficial effect on human health. Probiotics as a food supplement are largely considered safe and have been shown to improve intestinal health by modulating the immune system, producing organic acids and improving gut barrier function. The specific means by which probiotics exert these effects are still being investigated, but it is thought to function similarly to FMT by introducing healthy microbiota. Both Du et al. and Yi et al., in two independent meta-analyses comprising 39 and 18 clinical trials, respectively, found that probiotics supplementation in enteral nutrition resulted in a decreased risk of mortality, infection and gastrointestinal complications in patients suffering from a severe head injury.

7.3 | Bacteriophages

Bacteriophages (commonly referred to as “phages”) are a class of prokaryotic viruses that have evolved specifically to infect and replicate within bacteria. These viruses are naturally found within the gut, and there is evidence to suggest that the gut phageome is individual-specific and plays an active role in healthy gut function similar to bacteria. One study even showed that gut phages may play a causal role in FMT’s treatment of CDI. As such, there is a growing body of research investigating the use of virulent phages in gut microbiota-related diseases through the direct elimination of targeted communal strains. Duan et al. successfully treated alcohol-related liver disease in mice via directed targeting and subsequently reducing populations of cytolysin-producing E. faecalis with a cocktail of virulent phages. Further research in human trials would be required to validate these results, but this study lends support to using phages in the treatment of other conditions by directly reducing the population of specific bacteria within the gut microbiome. Additionally, a randomized controlled trial is currently underway studying the use of engineered phages to treat catheter-associated UTIs in patients with SCI.

7.4 | Genetic modification of gut microbiota

Treating disease through the use of genetically engineered bacteria is an active field of research, indicating promising results for conditions such as type I diabetes, phenylketonuria, hyperammonemia, fungal infection and colorectal cancer. Therapeutic interventions of genetically modified bacteria vary, but methods may be grossly organized into either engineering bacteria in vitro and introducing them into the host exogenously or genetically modifying endogenous gut microbiota in vivo. In addition to directly modifying gut microbiota, genetically engineered bacteria have also been studied for use as a non-invasive in vivo diagnostic modality for current gut health. Research on this topic is still developing, but the future implementation of these diagnostic methods could lead to personalized microbiota-targeted therapies. Looking towards the future, further research is required to demonstrate the use of engineered bacteria in the greater context of neurological injury. However, we propose that individualized gut microbiota diagnosis and specific genetically engineered bacteria could be an option for personalized microbiota-targeted therapies in the context of neurological illnesses in the future.
7.5 VN Stimulation

There is evidence that gut dysbiosis-induced pro-inflammatory effects are significantly reliant on VN perturbation. In addition, a plethora of recent research has focused on the use of VN stimulation (VNS) in the rehabilitation of stroke and TBI patients. These studies have shown promising evidence that VNS may rescue decreased gut mucosal integrity by upregulation of enteric glial cells, reduce systemic proinflammatory cytokines and promote recovery.

8 CONCLUSION

The consortium of current scientific literature has demonstrated a strong bidirectional link between gut microbiome dysbiosis and worsening secondary injury post-stroke, SCI and TBI (see summary Figure 6). Furthermore, there is evidence that these deficits may be rescued by timely rejuvenation of the gut microbiome. In addition, the maintenance of a healthy microbiome has been shown to play a protective role in the setting of tumour chemotherapy and immunotherapy. While the future of gut microbiome modulation for neurosurgical therapeutic goals appears increasingly promising, more research is needed to discover the best routes of microbial modification in the setting of specific neurosurgical illnesses.

FUNDING INFORMATION

This article was not funded by any financing groups, commercial, not-for-profit, or public.

REFERENCES

1. Lubomski M, Xu X, Holmes AJ, et al. The gut microbiome in Parkinson’s Disease: a longitudinal study of the impacts on disease progression and the use of device-assisted therapies. Front Aging Neurosci. 2022;14:875261. https://www.frontiersin.org/articles/10.3389/fnagi.2022.875261 [PubMed: 35656540]
2. Tanase DM, Gosav EM, Neculae E, et al. Role of gut microbiota on onset and progression of microvascular complications of type 2 diabetes (T2DM). Nutrients. 2020;12(12):3719. 10.3390/nu12123719
3. Pitocco D, Di Leo M, Tartaglione L, et al. The role of gut microbiota in mediating obesity and diabetes mellitus. Eur Rev Med Pharmacol Sci. 2020;24(3):1548–1562. 10.26355/eurrev_202002_20213 [PubMed: 32096204]
4. Strandwitz P Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–133. 10.1016/j.brainres.2018.03.015 [PubMed: 29903615]
5. Baj A, Moro E, Bistoletti M, Orlandi V, Crema F, Giaroni C. Glutamatergic signaling along the microbiota-gut-brain axis. Int J Mol Sci. 2019;20(6):1482. 10.3390/ijms20061482
6. Gao K, Mu CL, Farzhi A, Zhu WY. Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr. 2020;11(3):709–723. 10.1093/advances/nmz127 [PubMed: 31825083]
7. Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front Neurosci. 2018;12:49. 10.3389/fnins.2018.00049 [PubMed: 29467611]
8. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16(1):53. 10.1186/s12974-019-1434-3 [PubMed: 30823925]
9. Yuan PQ, Taché Y. Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: prevention by central vagal activation in rats. Am J Clin Transl Discov. Author manuscript; available in PMC 2022 December 01.
10. Cryan JF, O’Riordan KD, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877–2013. 10.1152/physrev.00018.2018 [PubMed: 31460832]
11. Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for Life: early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2):423. 10.3390/nu13020423 [PubMed: 33525617]
12. Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients. 2020;12(4):E1039. 10.3390/nu12041039 [PubMed: 32283875]
13. Rios-Covian D, Langella P, Martin R. From short- to long-term effects of C-Section delivery on microbiome establishment and host health. Microorganisms. 2021;9(10):2122. 10.3390/microorganisms9102122 [PubMed: 34683443]
14. Badal VD, Vaccariello ED, Murray ER, et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients. 2020;12(12):E3759. 10.3390/nu12123759 [PubMed: 33297486]
15. Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53:239–261. 10.1146/annurev-genet-112618-043650 [PubMed: 31487470]
16. Gómez de Cedrón M, Ramírez de Molina A. Chapter 28 - Precision nutrition to target lipid metabolism alterations in cancer. In: Faintuch J, Faintuch S, eds. Precision Medicine for Investigators, Practitioners and Providers. Academic Press; 2020:291–299. 10.1016/B978-0-12-819178-1.00028-9
17. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–2977. 10.1007/s00018-017-2509-x [PubMed: 28352996]
18. Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis is a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44. 10.1016/j.bbi.2017.05.009 [PubMed: 28526435]
19. Hanscom M, Loane DJ, Shea-Donohue T. Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest. 2021;131(12):e143777. 10.1172/JCI143777
20. Li XJ, You XY, Wang CY, et al. Bidirectional brain-gut-microbiota axis in increased intestinal permeability induced by central nervous system injury. CNS Neurosci Ther. 2020;26(8):783–790. 10.1111/cns.13401 [PubMed: 32472633]
21. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis. Science. 2021;374(6571):1087–1092. 10.1126/science.abi6087 [PubMed: 34822299]
22. Dehghahi M, Kazemi Shariat Panahi H, Heng B, Guillemín GJ. The gut microbiota, Kynurenine pathway, and immune system interaction in the development of brain cancer. Front Cell Dev Biol. 2020;8:562812. 10.3389/fcell.2020.562812 [PubMed: 33330446]
23. Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: a review. Life Sci. 2021;266:118865. 10.1016/j.lfs.2020.118865 [PubMed: 33301807]
24. Celorrio M, Abellanas MA, Rhodes J, et al. Gut microbial dysbiosis after traumatic brain injury modulates the immune response and impairs neurogenesis. Acta Neuropathol Commun. 2021;9(1):40. 10.1186/s40478-021-01137-2 [PubMed: 33691793]
25. Pluta R, Januszewski S, Czuczwar SJ. The role of gut microbiota in an ischemic stroke. Int J Mol Sci. 2021;22(2):E915. 10.3390/ijms22020915 [PubMed: 33477609]
26. Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol. 2013;9(9):560–569.
27. Passos M do CF, Moraes-Filho JP. Intestinal microbiota in digestive diseases. Arq Gastroenterol. 2017;54(3):255–262. 10.1590/S0004-2803.201700000-31 [PubMed: 28723981]
28. Mills S, Stanton C, Lane JA, Smith GJ, Ross RP. Precision nutrition and the microbiome, part i: current state of the science. Nutrients. 2019;11(4):E923. 10.3390/nu11040923 [PubMed: 31022973]
29. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–215. 10.1038/nature25973 [PubMed: 29489753]
30. Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe. 2015;17(5):662–671. 10.1016/j.chom.2015.03.005 [PubMed: 25865369]

31. Zheng P, Zeng B, Liu M, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5(2):eaau8317. 10.1126/sciadv.aau8317 [PubMed: 30775438]

32. Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–519. 10.1016/S0140-6736(03)12489-0 [PubMed: 12583961]

33. Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek. 2020;113(12):2019–2040. 10.1007/s10482-020-01474-7 [PubMed: 33136284]

34. Shapira M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol. 2016;31(7):539–549. 10.1016/j.tree.2016.03.006 [PubMed: 27039196]

35. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688–693. 10.1038/sj.embor.7400731 [PubMed: 16819463]

36. Robles-Alonso V, Guarner F. Progress in the knowledge of the intestinal human microbiota. Nutr Hosp. 2013;28(3):553–557. 10.3305/nh.2013.28.3.6601 [PubMed: 23848071]

37. Jethwan. Gut microbiota in health and diseases – a review. Int J Curr Microbiol Appl Sci. 2019;8(8):1586–1599. 10.20546/ijcmas.2019.808.187

38. Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 2016;16:90. 10.1186/s12866-016-0708-5 [PubMed: 27220822]

39. Nagpal R, Tsuji H, Takahashi T, et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: a quantitative bird’s-eye view. Front Microbiol. 2017;8:1388. 10.3389/fmicb.2017.01388 [PubMed: 28785253]

40. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. 10.7717/peerj.7502 [PubMed: 31440436]

41. Reyes A, Haynes M, Hanson N, et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature. 2010;466(7304):334–338. 10.1038/nature09199 [PubMed: 20631792]

42. Del Chierico F, Vernocchi P, Petrucca A, et al. Phylogenetic and metabolic tracking of gut microbiota during perinatal development. PLoS One. 2015;10(9):e0137347. 10.1371/journal.pone.0137347 [PubMed: 26332837]

43. Schanche M, Avershina E, Dotterud C, et al. High-Resolution analyses of overlap in the microbiota between mothers and their children. Curr Microbiol. 2015;71(2):283–290. 10.1007/s00284-015-0843-5 [PubMed: 26049992]

44. Fouhy F, Watkins C, Hill CJ, et al. Perinatal factors affect the gut microbiota up to four years after birth. Nat Commun. 2019;10(1):1517. 10.1038/s41467-019-09252-4 [PubMed: 30944304]

45. Hollister EB, Riehle K, Luna RA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36. 10.1186/s40168-015-0101-x [PubMed: 26306392]

46. Agans R, Rigsbee L, Kenche H, Michail S, Khamis HJ, Paily O. Distal gut microbiota of adolescent children is different from that of adults. FEMS Microbiol Ecol. 2011;77(2):404–412. 10.1111/j.1574-6941.2011.01120.x [PubMed: 21539582]

47. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. 10.1186/1471-2180-9-123 [PubMed: 19508720]

48. Voeades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol. 2014;5:494. 10.3389/fmicb.2014.00494 [PubMed: 25295033]

49. Thompson AL, Montagudo-Mera A, Cadenas MB, Lampl ML. Azcarate-Peril MA. Milk-and solid-feeding practices and daycare attendance are associated with differences in bacterial diversity, predominant communities, and metabolic and immune function of the infant gut microbiome. Front Cell Infect Microbiol. 2015;5:3. 10.3389/fcimb.2015.00003 [PubMed: 25705611]
50. Biagi E, Rampelli S, Turroni S, Quercia S, Candela M, Brigidi P. The gut microbiota of centenarians: signatures of longevity in the gut microbiota profile. Mech Ageing Dev. 2017;165(Pt B):180–184. 10.1016/j.mad.2016.12.013 [PubMed: 28049008]

51. Hills RD, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: profound implications for diet and disease. Nutrients. 2019;11(7):E1613. 10.3390/nu11071613 [PubMed: 31315227]

52. Bäckhed F, Roswall J, Peng Y, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703. 10.1016/j.chom.2015.04.004 [PubMed: 25974306]

53. Azad MB, Konya T, Maughan H, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394. 10.1503/cmaj.121189 [PubMed: 23401405]

54. Lee SA, Lim JY, Kim BS, et al. Comparison of the gut microbiota profile in breast-fed and formula-fed Korean infants using pyrosequencing. Nutr Res Pract. 2015;9(3):242–248. 10.4162/nrp.2015.9.3.242 [PubMed: 26060535]

55. Ray K Gut microbiota: filling up on fibre for a healthy gut. Nat Rev Gastroenterol Hepatol. 2018;15(2):67. 10.1038/nrgastro.2018.2 [PubMed: 29339808]

56. Zhao L, Zhang F, Ding X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359(6380):1151–1156. 10.1126/science.aao5774 [PubMed: 29590046]

57. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. 10.1038/nature12820 [PubMed: 24336217]

58. Forouhi NG, Krauss RM, Taubes G, Willett W. Dietary fat and cardiometabolic health: evidence, controversies, and consensus for guidance. BMJ. 2018;361:k2139. 10.1136/bmj.k2139 [PubMed: 29898882]

59. Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–1920. 10.1136/gutjnl-2013-306541 [PubMed: 25021423]

60. Allen JM, Mailing LJ, Niemiro GM, et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc. 2018;50(4):747–757. 10.1249/MSS.0000000000001495 [PubMed: 29166320]

61. Biedermann L, Zeitz J, Mwinyi J, et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260. 10.1371/journal.pone.0059260 [PubMed: 23516617]

62. Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: an overview. Int J Environ Res Public Health. 2020;17(20):E7618. 10.3390/ijerph17207618 [PubMed: 33086688]

63. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10(1):18–26. 10.1038/mi.2016.75 [PubMed: 27554295]

64. Wang J, Chen WD, Wang YD. The relationship between gut microbiota and inflammatory diseases: the role of macrophages. Front Microbiol. 2020;11:1065. 10.3389/fmicb.2020.01065 [PubMed: 32582063]

65. Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain–gut–enteric microbiota axis. Nat Rev Gastroenterol Hepatol. 2009;6(5):306–314. 10.1038/nrgastro.2009.35 [PubMed: 19404271]

66. Chen X, Eslamfam S, Fang L, Qiao S, Ma X. Maintenance of gastrointestinal glucose homeostasis by the gut-brain axis. Curr Protein Pept Sci. 2017;18(6):541–547. 10.2174/138920371766616027083604 [PubMed: 27356933]

67. Soty M, Gautier-Stein A, Rajas F, Mitjouls G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 2017;25(6):1231–1242. 10.1016/j.cmet.2017.04.032 [PubMed: 28591631]

68. Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol. 2016;32(2):96–102. 10.1097/MOG.0000000000000244 [PubMed: 26760398]

69. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209. [PubMed: 25830558]
70. Quigley EMM. The gut-brain axis and the microbiome: clues to pathophysiology and opportunities for novel management strategies in irritable bowel syndrome (IBS). J Clin Med. 2018;7(1):E6. 10.3390/jcm7010006 [PubMed: 29301380]

71. Fowlie G, Cohen N, Ming X. The perturbance of microbiome and gut-brain axis in autism spectrum disorders. Int J Mol Sci. 2018;19(8):E2251. 10.3390/ijms19082251 [PubMed: 30071612]

72. De Angelis M, Francavilla R, Piccolo M, De Giacomo A, Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6(3):207–213. 10.1080/19490976.2015.1035855 [PubMed: 25835343]

73. Reinoso Webb C, Koboziev I, Furr KL, Grisham MB. Protective and pro-inflammatory roles of intestinal bacteria. Pathophysiology. 2016;23(2):67–80. 10.1016/j.pathophys.2016.02.002 [PubMed: 26947707]

74. Stillings RM, Ryan FJ, Hoban AE, et al. Microbes & neurodevelopment – absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun. 2015;50:209–220. 10.1016/j.bbi.2015.07.009 [PubMed: 26184083]

75. Warner BB. The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatr Res. 2019;85(2):216–224. 10.1038/s41390-018-0191-9 [PubMed: 30283047]

76. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49. 10.1146/annurev-neuro-072116-031347 [PubMed: 28301775]

77. Luck B, Engevik MA, Ganesh BP, et al. Bifidobacteria shape host neural circuits during postnatal development by promoting synapse formation and microglial function. Sci Rep. 2020;10(1):7737. 10.1038/s41598-020-64173-3 [PubMed: 32385412]

78. Lu J, Lu L, Yu Y, Cluette-Brown J, Martin CR, Claud EC. Effects of intestinal microbiota on brain development in humanized gnotobiotic mice. Sci Rep. 2018;8(1):5443. 10.1038/s41598-018-0191-9 [PubMed: 29615691]

79. Mohajeri MH, La Fata G, Steinert RE, Weber P. Relationship between the gut microbiome and brain function. Nutr Rev. 2018;76(7):481–496. 10.1093/nutrit/nuy009 [PubMed: 29708180]

80. Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–576. 10.1016/j.chom.2015.04.011 [PubMed: 25974299]

81. Spinal cord injury. Accessed August 10, 2022. https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury

82. Henke AM, Billington ZJ, Gater DR. Autonomic dysfunction and management after spinal cord injury: a narrative review. J Pers Med. 2022;12(7):1110. 10.3390/jpm12071110 [PubMed: 35887607]

83. Stiens SA, Bergman SB, Goetz LL. Neurogenic bowel dysfunction after spinal cord injury: clinical evaluation and rehabilitative management. Arch Phys Med Rehabil. 1997;78(3):S86–102. 10.1016/s0003-9993(97)90416-0.Suppl. [PubMed: 9084372]

84. Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M. Intestinal microbiota in patients with spinal cord injury. PLOS ONE. 2016;11(1):e0145878. 10.1371/journal.pone.0145878 [PubMed: 26752409]

85. Kigerl KA, Mostacaka K, Popovich PG. Gut microbiota are disease-modifying factors after traumatic spinal cord injury. Neurotherapeutics. 2018;15(1):60–67. 10.1007/s13311-017-0583-2 [PubMed: 29101668]

86. Musleh-Vega S, Ojeda J, Vidal PM. Gut microbiota-brain axis as a potential modulator of psychological stress after spinal cord injury. Biomedicines. 2022;10(4):847. 10.3390/biomedicines10040847 [PubMed: 35453597]

87. Kigerl KA, Zane K, Adams K, Sullivan MB, Popovich PG. The spinal cord-gut-immune axis as a master regulator of health and neurological function after spinal cord injury. Exp Neurol. 2020;323:113085. 10.1016/j.expneurol.2019.113085 [PubMed: 31654639]

88. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–1273. 10.1126/science.1223490 [PubMed: 22674334]

89. Francino MP. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2015;6:1543. 10.3389/fmicb.2015.01543 [PubMed: 26793178]
90. Pérez-Cobas AE, Gosalbes MJ, Friedrichs A, et al. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut. 2013;62(11):1591–1601. 10.1136/gutjnl-2012-303184 [PubMed: 23236009]

91. Montgomery JZ. Infections in patients with spinal cord injuries. Clin Infect Dis. 1997;25(6):1285–1290. 10.1086/516144 quiz 1291-1292. [PubMed: 9431366]

92. O’Connor G, Jeffrey E, Madorma D, et al. Investigation of microbiota alterations and intestinal inflammation post-spinal cord injury in rat model. J Neurotrauma. 2018;35(18):2159–2166. 10.1089/neu.2017.5349 [PubMed: 29566601]

93. Jing Y, Yu Y, Bai F, et al. Effect of faecal microbiota transplantation on neurological restoration in a spinal cord injury mouse model: involvement of brain-gut axis. Microbiome. 2021;9(1):59. 10.1186/s40168-021-01007-y [PubMed: 33678185]

94. Zhang C, Zhang W, Zhang J, et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J Transl Med. 2018;16(1):353. 10.1186/s12967-018-1735-9 [PubMed: 30545398]

95. Zhang C, Jing Y, Zhang W, et al. Dysbiosis of gut microbiota is associated with serum lipid profiles in male patients with chronic traumatic cervical spinal cord injury. Am J Transl Res. 2019;11(8):4817–4834. [PubMed: 31497202]

96. Li J, Van Der Pol W, Eraslan M, et al. Comparison of the gut microbiome composition among individuals with acute or long-standing spinal cord injury vs. able-bodied controls. J Spinal Cord Med. 2022;45(1):91–99. 10.1080/10790268.2020.1769949 [PubMed: 32496944]

97. Lin R, Xu J, Ma Q, et al. Alterations in the faecal microbiota of patients with spinal cord injury. PLoS One. 2020;15(6):e0236470. 10.1371/journal.pone.0236470 [PubMed: 32750057]

98. Bazzocchi G, Turroni S, Bulzamini MC, et al. Changes in gut microbiota in the acute phase after spinal cord injury correlate with severity of the lesion. Sci Rep. 2021;11:12743. 10.1038/s41598-021-94057-2 [PubMed: 34140572]

99. Valido E, Bertolo A, Fränkl GP, et al. Systematic review of the changes in the microbiome following spinal cord injury: animal and human evidence. Spinal Cord. 2022;60(4):288–300. 10.1038/s41393-021-00737-y [PubMed: 34992210]

100. Jogia T, Ruitenbeek MJ. Traumatic spinal cord injury and the gut microbiota: current insights and future challenges. Front Immunol. 2020;11. Accessed August 3, 2022. https://www.frontiersin.org/articles/10.3389/fimmu.2020.00704

101. Yuan B, Lu XJ, Wu Q. Gut microbiota and acute central nervous system injury: a new target for therapeutic intervention. Front Immunol. 2021;12:800796. 10.3389/fimmu.2021.800796 [PubMed: 35003127]

102. Pattanakuhar S, Kaewchur T, Satyasit N, Chattipakorn N, Chattipakorn SC. Level of injury is an independent determining factor of gut dysbiosis in people with chronic spinal cord injury: a cross-sectional study. Spinal Cord. 2022. 10.1038/s41393-022-00832-8. Published online.

103. Du J, Zayed AA, Kigerl KA, Zane K, Sullivan MB, Popovich PG. Spinal cord injury changes the structure and functional potential of gut bacterial and viral communities. mSystems. 2021;6(3):e01356–20. 10.1128/mSystems.01356-20 [PubMed: 33975974]

104. Kigerl KA, Hall ICE, Wang L, Mo X, Yu Z, Popovich PG. Gut dysbiosis impairs recovery after spinal cord injury. J Exp Med. 2016;213(12):2603–2620. 10.1084/jem.20151345 [PubMed: 27810921]

105. Myers SA, Gobejishvili L, Saraswat Ohri S, et al. Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia. Neurobiol Dis. 2019;124:353–363. 10.1016/j.nbd.2018.12.008 [PubMed: 30557659]

106. Jing Y, Yang D, Bai F, et al. Melatonin treatment alleviates spinal cord injury-induced gut dysbiosis in mice. J Neurotrauma. 2019;36(18):2646–2664. 10.1089/neu.2018.6012 [PubMed: 30693824]

107. Schmidt EKA, Torres-Espin A, Raposo PJF, et al. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS One. 2020;15(1):e0226128. 10.1371/journal.pone.0226128 [PubMed: 31940312]
108. Schmidt EKA, Raposo PJF, Torres-Espin A, Fenrich KK, Fouad K. Beyond the lesion site: minocycline augments inflammation and anxiety-like behavior following SCI in rats through action on the gut microbiota. J Neuroinflammation. 2021;18(1):144. 10.1186/s12974-021-02123-0 [PubMed: 34174901]

109. Rong Z, Huang Y, Cai H, et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway. Front Nutr. 2021;8:702659. 10.3389/fnut.2021.702659 [PubMed: 34589510]

110. Jing Y, Bai F, Wang L, et al. Fecal microbiota transplantation exerts neuroprotective effects in a mouse spinal cord injury model by modulating the microenvironment at the lesion site. Microbiol Spectr. 2022;10(3):e0017722. 10.1128/spectrum.00177-22 [PubMed: 34948371]

111. Lukacova N, Kissucka A, Kiss Bimbova K, et al. Glial-neuronal interactions in pathogenesis and treatment of spinal cord injury. Int J Mol Sci. 2021;22(24):13577. 10.3390/ijms22413577 [PubMed: 34948371]

112. Orr MB, Gensel JC. Spinal cord injury scarring and inflammation: therapies targeting glial and inflammatory responses. Neurotherapeutics. 2018;15(3):541–553. 10.1007/S13311-018-0631-6 [PubMed: 29717413]

113. Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15–26. 10.3171/jns.1991.75.1.0015 [PubMed: 2045903]

114. Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol. 1995;5(4):407–413. 10.1111/j.1750-3639.1995.tb00619.x [PubMed: 8974623]

115. Wang R, Zhou R, Chen Z, Gao S, Zhou F. The glial cells respond to spinal cord injury. Front Neurol. 2022;13:844497. 10.3389/fneur.2022.844497 [PubMed: 35599739]

116. David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011;12(7):388–399. 10.1038/nrn3053 [PubMed: 21673720]

117. Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: microbiome control of spinal cord injury pain in humans and rodents. Neurobiol Pain. 2021;9:100059. 10.1016/j.ynpai.2020.100059 [PubMed: 33426367]

118. Samejima S, Henderson R, Pradarelli J, Mondello SE, Moritz CT. Activity-dependent plasticity and spinal cord stimulation for motor recovery following spinal cord injury. Exp Neurol. 2022;357:114178. 10.1016/j.expneurol.2022.114178 [PubMed: 35878817]

119. Agosto-Marlin IM, Nichols NL, Mitchell GS. Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling. J Neurophysiol. 2018;119(6):2176–2185. 10.1152/jn.00378.2017 [PubMed: 29513151]

120. Lynch MA. Neuroinflammatory changes negatively impact on LTP: a focus on IL-1β. Brain Res. 2015;1621:197–204. 10.1016/j.brainres.2014.08.040 [PubMed: 25193603]

121. Huxtable AG, Smith SMC, Vinit S, Watters JJ, Mitchell GS. Systemic LPS induces spinal inflammatory gene expression and impairs phrenic long-term facilitation following acute intermittent hypoxia. J Appl Physiol. 2013;114(7):879–887. 10.1152/japplphysiol.01347.2012 [PubMed: 23329821]

122. Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci. 2004;7(1):48–55. 10.1038/nn1166 [PubMed: 14699417]

123. Fan B, Wei Z, Feng S. Progression in translational research on spinal cord injury based on microenvironment imbalance. Bone Res. 2022;10(1):1–26. 10.1038/s41413-022-00199-9 [PubMed: 34975148]

124. Namiki J, Kojima A, Tator CH. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats. J Neurotrauma. 2000;17(12):1219–1231. 10.1089/neu.2000.17.1219 [PubMed: 11186234]

125. Elliott Donaghue I, Tator CH, Shoichet MS. Local delivery of Neurotrophin-3 and Anti-NogoA promotes repair after spinal cord injury. Tissue Eng Part A. 2016;22(9–10):733–741. 10.1089/ten.TEA.2015.0471 [PubMed: 27056081]

126. Elliott Donaghue I, Tator CH, Shoichet MS. Sustained delivery of bioactive neurotrophin-3 to the injured spinal cord. Biomater Sci. 2015;3(1):65–72. 10.1039/c4bm00311j [PubMed: 26214190]

Clin Transl Discov. Author manuscript; available in PMC 2022 December 01.
127. Sherwin E, Sandhu KV, Dinan TG, Cryan JF. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs. 2016;30(11):1019–1041. 10.1007/s40263-016-0370-3 [PubMed: 27417321]

128. Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–173. 10.1016/j.bbi.2015.04.004 [PubMed: 25866195]

129. Distrutti E, O’Reilly JA, McDonald C, et al. Modulation of intestinal microbiota by the probiotic VSL#3 resents brain gene expression and ameliorates the age-related deficit in LTP. PLoS One. 2014;9(9):e106503. 10.1371/journal.pone.0106503 [PubMed: 25202975]

130. Tong L, Prieto GA, Kramár EA, et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci. 2012;32(49):17714–17724. 10.1523/JNEUROSCI.1253-12.2012 [PubMed: 23223292]

131. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–742. [PubMed: 23000955]

132. Baker-Herman TL, Mitchell GS. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–742. 10.1038/nrmicro2876 [PubMed: 23000955]

133. Collins SM, Surette M, Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol. 2012;10(11):735–742. 10.1038/nrmicro2876 [PubMed: 23000955]

134. Tong L, Prieto GA, Kramár EA, et al. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci. 2012;32(49):17714–17724. 10.1523/JNEUROSCI.1253-12.2012 [PubMed: 23223292]

135. Baker-Herman TL, Mitchell GS. Phrenic long-term facilitation requires spinal serotonin receptor activation and protein synthesis. J Neurosci. 2002;22(14):6239–6246. 10.1523/JNEUROSCI.22-14-06239.2002 [PubMed: 12122082]

136. Ling L, Fuller DD, Baker KB, Kinkead R, Olson EB, Mitchell GS. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci. 2001;21(14):5381–5388. [PubMed: 11438615]

137. Fuller DD, Zabka AG, Baker TL, Mitchell GS. Phrenic long-term facilitation requires 5-HT receptor activation during but not following episodic hypoxia. J Appl Physiol (1985). 2001;90(5):2001–2006. 10.1152/jappl.2001.90.5.2001. discussion 2000. [PubMed: 11299296]

138. Hoffman MS, Mitchell GS. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation. J Physiol. 2011;589(Pt 6):1397–1407. 10.1113/jphysiol.2010.201657 [PubMed: 21242254]

139. Jana T, Acker BW, Cash BD. Chapter 42 - Probiotics and prebiotics, including fibers and medicinal foods. In: Rao SSC, Lee YY, Ghoshal UC, eds. Clinical and Basic Neurogastroenterology and Motility. Academic Press; 2020:587–600. 10.1016/B978-0-12-813037-7.00042-X

140. Parian AM, Mullin GE, Langhorst J, Brown AC. Inflammatory bowel disease. In: Rakel D, ed. Integrative Medicine. 4th ed. Elsevier; 2018:501–516. 10.1016/B978-0-323-35868-2.00050-5

141. Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158–263ra158. 10.1126/scitranslmed.3009757

142. Li H, Sun J, Du J, et al. Clostridium butyricum exerts a neuroprotective effect in a mouse model of traumatic brain injury via the gut-brain axis. Neurogastroenterol Motil. 2018;30(5):e13260. 10.1111/nmo.13260 [PubMed: 29193450]

Clin Transl Discov. Author manuscript; available in PMC 2022 December 01.
145. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W. Inflammation and white matter degeneration persist for years after a single traumatic brain injury. Brain. 2013;136(1):28–42. 10.1093/brain/aws322 [PubMed: 23365092]

146. Cornelius C, Crupi R, Calabrese V, et al. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal. 2013;19(8):836–853. 10.1089/ars.2012.4981 [PubMed: 23547621]

147. Du D, Tang W, Zhou C, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev. 2021;2021:e5816837. 10.1155/2021/5816837

148. Tang Y, Dong X, Chen G, et al. Vagus nerve stimulation attenuates traumatic brain injury by regulating the NF-κB/NLRP3 signaling pathway. Neurorehabil Neural Repair. 2020;34(9):831–843. 10.1177/1545968320948065 [PubMed: 32772884]

149. Zhang J, Ma L, Chang L, Pu Y, Qu Y, Hashimoto K. A key role of the subdiaphragmatic vagus nerve in the depression-like phenotype and abnormal composition of gut microbiota in mice after lipopolysaccharide administration. Transl Psychiatry. 2020;10(1):1–13. 10.1038/s41398-020-00878-3 [PubMed: 32066695]

150. Treangen TJ, Wagner J, Burns MP, Villapol S. Traumatic brain injury in mice induces acute bacterial dysbiosis within the fecal microbiome. Front Immunol. 2018;9:2757. https://www.frontiersin.org/articles/10.3389/fimmu.2018.02757 [PubMed: 30546361]

151. You W, Zhu Y, Wei A, et al. Traumatic brain injury induces gastrointestinal dysfunction and dysbiosis of gut microbiota accompanied by alterations of bile acid profile. J Neurotr. 2022;39(1–2):227–237. 10.1089/neu.2020.7526

152. Urban RJ, Pyles RB, Stewart CJ, et al. Altered fecal microbiome years after traumatic brain injury. J Neurotr. 2020;37(8):1037–1051. 10.1089/neu.2019.6688

153. Brenner LA, Stamper CE, Hoisington AJ, et al. Microbial diversity and community structures among those with moderate to severe TBI: a United States-veteran microbiome project study. J Head Trauma Rehab. 2020;35(5):332–341. 10.1097/HTR.0000000000000615

154. Davis BT, Islam MBAR, Das P, Gilbert JA, Ho KJ, Schwulst SJ. Differential fecal microbiome dysbiosis after equivalent traumatic brain injury in aged versus young adult mice. J Exp Neurol. 2021;23(3):120–130. 10.33696/neur.2.044 [PubMed: 34825244]

155. Nicholson SE, Watts LT, Burmeister DM, et al. Moderate traumatic brain injury alters the gastrointestinal microbiome in a time-dependent manner. Shock. 2019;52(2):240–248. 10.1097/SHK.0000000000001211 [PubMed: 29953417]

156. Davis BT, Chen Z, Islam MBAR, Timken ME, Procissi D, Schwulst SJ. Fecal microbiota transfer attenuates gut dysbiosis and functional deficits after traumatic brain injury. Shock. 2022;57(6):251–259. 10.1097/SHK.0000000000001934 [PubMed: 3579305]

157. Sadrekarimi H, Gardanova ZR, Bakhshesh M, et al. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. J Transl Med. 2022;20(1):301. 10.1186/s12976-022-0439-2 [PubMed: 35794566]

158. Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–344. 10.3322/caac.21398 [PubMed: 28481406]

159. Deshpande RP, Sharma S, Watabe K. The confounders of cancer immunotherapy: roles of lifestyle, metabolic disorders and sociological factors. Cancers. 2020;12(10):2983. 10.3390/cancers12102983

160. Erny D, Hrabé de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–977. 10.1038/nn.4030 [PubMed: 26030851]

161. D’Alessandro G, Antonangeli F, Marrocco F, et al. Gut microbiota alterations affect glioma growth and innate immune cells involved in tumour immuno-surveillance in mice. Eur J Immunol. 2020;50(5):705–711. 10.1002/eji.201948354 [PubMed: 32034922]

162. Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020;11:25. 10.3389/fendo.2020.00025

163. Weller M, Wick W, Aldape K, et al. Glioma. Nat Rev Dis Primers. 2015;1(1):15017. 10.1038/nrdp.2015.17 [PubMed: 27188790]
164. Salmon H, Idoyaga J, Rahman A, et al. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity. 2016;44(4):924–938. 10.1016/j.immuni.2016.03.012 [PubMed: 27096321]

165. Wei H, Chen L, Lian G, et al. Antitumour mechanisms of bifidobacteria. Oncol Lett. 2018;16(1):3–8. 10.3892/ol.2018.8692 [PubMed: 29963126]

166. Fuertes MB, Kacha AK, Kline J, et al. Host type I IFN signals are required for antitumour CD8+ T cell responses through CD8α+ dendritic cells. J Exp Med. 2011;208(10):2005–2016. 10.1084/jem.20101159 [PubMed: 21930765]

167. Koury J, Lucero M, Cato C, et al. Immunotherapies: exploiting the immune system for cancer treatment. J Immunol Res. 2018;2018:9585614. 10.1155/2018/9585614 [PubMed: 29725606]

168. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14(6):356–365. 10.1038/nrgastro.2017.20 [PubMed: 28270698]

169. Oh B, Boyle F, Pavlakis N, et al. emerging evidence of the gut microbiome in chemotherapy: a clinical review. Front Oncol. 2021;11:706331. 10.3389/fonc.2021.706331 [PubMed: 34604043]

170. Ervin SM, Ramanan SV, Bhatt AP. Relationship between the gut microbiome and systemic chemotherapy. Dig Dis Sci. 2020;65(3):874–884. 10.1007/s10620-020-06119-3 [PubMed: 32026181]

171. Montassier E, Gasticme T, Vangay P, et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment Pharmacol Ther. 2015;42(5):515–528. 10.1111/apt.13302 [PubMed: 26147207]

172. Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536(7614):81–85. 10.1038/nature18930 [PubMed: 27437587]

173. Yuvaraj S, Al-Lahham SH, Somasundaram R, Figaroa PA, Peppelenbosch MP, Bos NA. E. coli-produced BMP-2 as a chemopreventive strategy for colon cancer: a proof-of-concept study. Gastroenterol Res Pract. 2012;2012:1–6. 10.1155/2012/895462

174. Stancu AL. Gut microbiome and the response to immunotherapy in cancer. Discoveries. 2018;6(3):e84. 10.15190/d.2018.4 [PubMed: 32309602]

175. Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33(4):570–580. 10.1016/j.ccell.2018.03.015 [PubMed: 29634945]

176. Zak KM, Grudnik P, Guzik K, et al. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget. 2016;7(21):30323–30335. 10.18632/oncotarget.8730 [PubMed: 27083005]

177. Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med. 2009;206(13):3015–3029. 10.1084/jem.20090847 [PubMed: 20008522]

178. Haxhinasto S, Mathis D, Benoist C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med. 2008;205(3):565–574. 10.1084/jem.20071477 [PubMed: 18283119]

179. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trend Mol Med. 2015;21(1):24–33. 10.1016/j.tmm.2014.10.009

180. Nomi T, Sho M, Akahori T, et al. Clinical significance and therapeutic potential of the programmed death-1 lig- and programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res. 2007;13(7):2151–2157. 10.1158/1078-0432.CCR-06-2746 [PubMed: 17404099]

181. Ohigashi Y, Sho M, Yamada Y, et al. Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res. 2005;11(8):2947–2953. 10.1111/1078-0432.CCR-04-1469 [PubMed: 15837746]

182. Shi F, Shi M, Zeng Z, et al. PD-1 and PD-L1 upregulation promotes CD8+ T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–896. 10.1002/ijc.25397 [PubMed: 20473887]
183. Yang YCSH, Li ZL, Shih YJ, et al. Herbal medicines attenuate PD-L1 expression to induce anti-proliferation in obesity-related cancers. Nutrients. 2019;11(12):E2979. 10.3390/nu11122979 [PubMed: 31817534]

184. Watanabe S, Kikuchi T. Does the gut microbiota play a key role in PD-1/PD-L1 blockade therapy? Transl Lung Cancer Res. 2020;9(3):438–440. 10.21037/tlcr.2020.03.31 [PubMed: 32676307]

185. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumour immunity and facilitates anti–PD-L1 efficacy. Science. 2015;350(6264):1084–1089. 10.1126/science.aac4255 [PubMed: 12844383]

186. Oikarinen S, Heinonen S, Karpipinen S, et al. Plasma enterolactone or intestinal Bifidobacterium levels do not explain adenoma formation in multiple intestinal neoplasia (Min) mice fed with two different types of rye-bran fractions. Br J Nutr. 2003;90(1):119–125. 10.1079/BJN2003883 [PubMed: 12844383]

187. Rowland I. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis. 1998;19(2):281–285. 10.1093/carcin/19.2.281 [PubMed: 9498277]

188. Li X, Li X, Lin H, et al. Metabolic syndrome and stroke: a meta-analysis of prospective cohort studies. J Clin Neurosci. 2017;40:34–38. 10.1016/j.jocn.2017.01.018 [PubMed: 28268148]

189. Hossmann KA. Pathophysiology and therapy of experimental stroke. Cell Mol Neurobiol. 2006;26(7–8):1057–1083. 10.1007/s10571-006-9008-1 [PubMed: 16710759]

190. Parr E, Ferdinand P, Roffe C. Management of acute stroke in the older person. Geriatrics. 2017;2(3):27. 10.3390/geriatrics2030027

191. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67–e492. 10.1161/CIR.0000000000005558 [PubMed: 29386200]

192. Chidambaram SB, Rathipriya AG, Mahalakshmi AM, et al. The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke. Cells. 2022;11(7):1239. 10.3390/cells11071239 [PubMed: 35406804]

193. Yamashiro K, Kurita N, Urabe T, Hattori N. Role of the gut microbiota in stroke pathogenesis and potential therapeutic implications. Ann Nutr Metab. 2021;77(2):36–44. 10.1159/000516398.Suppl. [PubMed: 34107468]

194. Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455. 10.1038/nature12726 [PubMed: 24226773]

195. Singh V, Sadler R, Heindl S, et al. The gut microbiome primes a cerebroprotective immune response after stroke. J Cereb Blood Flow Metab. 2018;38(8):1293–1298. 10.1177/0271678X18780130 [PubMed: 29846130]

196. Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γ6T cells. Nat Med. 2016;22(5):516–523. 10.1038/nm.4068 [PubMed: 27019327]

197. Mayer EA, Tillisch K. The brain-gut axis in abdominal pain syndromes. Annu Rev Med. 2011;62:381–396. 10.1146/annurev-med-012309-103958 [PubMed: 21090962]

198. Yin J, Liao SX, He Y, et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc. 2015;4(11):e002699. 10.1161/JAHA.115.002699 [PubMed: 26597155]

199. Xia GH, You C, Gao XX, et al. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol. 2019;10:397. 10.3389/fneur.2019.00397 [PubMed: 31068891]

200. Tan C, Wu Q, Wang H, et al. Dysbiosis of gut microbiota and short-chain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes. JPEN J Parenter Enteral Nutr. 2021;45(3):518–529. 10.1002/jpen.1861 [PubMed: 32473086]

201. Li N, Wang X, Sun C, et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019;19(1):191. 10.1186/s12866-019-1552-1 [PubMed: 31426765]
202. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:124–5. 10.1038/ncomms2266

203. Sun H, Gu M, Li Z, Chen X, Zhou J. Gut microbiota dysbiosis in acute ischemic stroke associated with 3-month unfavorable outcome. Front Neurol. 2021;12:799222. 10.3389/fneur.2021.799222 [PubMed: 35153980]

204. Spychala MS, Venna VR, Jandzinski M, et al. Age-related changes in the gut microbiota influence systemic inflammation and stroke outcome. Ann Neurol. 2018;84(1):23–36. 10.1002/ana.25250 [PubMed: 29733457]

205. Xu K, Gao X, Xia G, et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut. Published online: Feb 8, 2021. 10.1136/gutjnl-2020-323263.gutjnl-2020-323263.

206. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809. 10.1038/nri2653 [PubMed: 19855405]

207. Suzuki T Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci. 2013;70(4):631–659. 10.1007/s00018-012-1070-x [PubMed: 22782113]

208. Ye D, Hu Y, Zhu N, et al. Exploratory investigation of intestinal structure and function after stroke in mice. Mediators Inflamm. 2021;2021:1315797. 10.1155/2021/1315797 [PubMed: 33642941]

209. Xia ZY, Luo C, Liu BW, et al. Shengui Sansheng Pulvis maintains blood-brain barrier integrity by vasoactive intestinal peptide after ischemic stroke. Phytomedicine. 2020;67:153158. 10.1016/j.phymed.2019.153158 [PubMed: 31999981]

210. Wu J, Fan CL, Ma LJ, et al. Distinctive expression signatures of serum microRNAs in ischaemic stroke and transient ischaemic attack patients. Thromb Haemost. 2017;117(5):992–1001. 10.1160/TH16-08-0606 [PubMed: 28251236]

211. Nakata K, Sugiyama Y, Narabayashi H, et al. Commensal microbiota-induced microRNA modulates intestinal epithelial permeability through the small GTPase ARF4. J Biol Chem. 2017;292(37):15426–15433. 10.1074/jbc.M117.788596 [PubMed: 28760826]

212. Kurita N, Yamashiro K, Kuroki T, et al. Metabolic endotoxemia promotes neuroinflammation after focal cerebral ischemia. J Cereb Blood Flow Metab. 2020;40(12):2505–2520. 10.1177/0271678X19899577 [PubMed: 31910709]

213. Stanley D, Mason LJ, Mackin KE, et al. Translocation and dissemination of commensal bacteria in post-stroke infection. Nat Med. 2016;22(11):1277–1284. 10.1038/nm.4194 [PubMed: 27694934]

214. Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135–157. 10.1080/19490976.2019.1638722 [PubMed: 31368397]

215. Zhao J, Bi W, Xiao S, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep. 2019;9(1):5790. 10.1038/s41598-019-42286-8 [PubMed: 30962497]

216. Jing Y, Bai F, Yu Y. Spinal cord injury and gut microbiota: a review. Life Sciences. 2021;266:118865. 10.1016/j.lfs.2020.118865 [PubMed: 33301807]

217. Duan Y, Llorente C, Lang S, et al. Bacteriophage targeting of gut bacteria attenuates alcoholic liver disease. Nature. 2019;575(7783):505–511. 10.1038/s41586-019-1742-x [PubMed: 31723265]

218. Landry BP, Tabor JJ, Engineering diagnostic and therapeutic gut bacteria. Microbiol Spectrum. 2017;5(5):5.5.15. 10.1128/microbiolspec.BAD-0020-2017

219. Tanna T, Ramachandran R, Platt RJ. Engineered bacteria to report gut function: technologies and implementation. Curr Opin Microbiol. 2021;59:24–33. 10.1016/j.mib.2020.07.014 [PubMed: 32828048]

220. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012;9(2):88–96. 10.1038/nrgastro.2011.244

221. Jacenik D, Zielinska M, Fichna J. A Comprehensive Overview of Irritable Bowel Syndrome. Academic Press; 2020. 10.1016/B978-0-12-821324-7.00005-8

222. Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation. Off J Am Coll Gastroenterol. 2012;107(11):1755. 10.1038/ajg.2012.251
223. Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol. 2012;5(6):403–420. 10.1177/1756283X12453637

224. Tamilarasan AG, Krishnananthan T. Faecal microbiota transplantation: what’s beyond Clostridium difficile infection? Eur J Gastroenterol Hepatol. 2021;33(4):487–494. 10.1097/MEG.0000000000001938 [PubMed: 33177380]

225. D Goldenberg S, Merrick B. The role of faecal microbiota transplantation: looking beyond Clostridioides difficile infection. Ther Adv Infect Dis. 2021;8:2049936120981526. 10.1177/20499361209814028

226. Du D, Tang W, Zhou C, et al. Fecal microbiota transplantation is a promising method to restore gut microbiota dysbiosis and relieve neurological deficits after traumatic brain injury. Oxid Med Cell Longev. 2021;2021:5816837. 10.1155/2021/5816837 [PubMed: 33628361]

227. van Nood E, Vrieze A, Nieuwdorp M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. New Engl J Med. 2013;368(5):407–415. 10.1056/NEJMoa1205037 [PubMed: 33628361]

228. Lawley TD, Clare S, Walker AW, et al. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLOS Pathogens. 2012;8(10):e1002995. 10.1371/journal.ppat.1002995 [PubMed: 23133777]

229. Kumar H, Salminen S. Probiotics. In: Caballero B, Finglas PM, Toldrá F, eds. Encyclopedia of Food and Health. Academic Press; 2016:510–515. 10.1016/B978-0-12-384947-2.00570-5

230. Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol. 2019;16(10):605–616. 10.1038/s41575-019-0173-3 [PubMed: 31296969]

231. Du T, Jing X, Song S, et al. Therapeutic effect of enteral nutrition supplemented with probiotics in the treatment of severe craniocebral injury: a systematic review and meta-analysis. World Neurosurg. 2020;139:e553–e571. 10.1016/j.wneu.2020.04.083 [PubMed: 32339732]

232. Yi LJ, Tian X, Shi B, Pi YP, Chen WQ. Early enteral nutrition supplemented with probiotics improved the clinical outcomes in severe head injury: some promising findings from Chinese patients. Medicine. 2019;98(17):e15426. 10.1097/MD.00000000000015426 [PubMed: 31027144]

233. Moineau S. Bacteriophage. In: Maloy S, Hughes K, eds. Brenner’s Encyclopedia of Genetics. 2nd ed. Academic Press; 2013:280–283. 10.1016/B978-0-12-374984-0.00131-5

234. Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe. 2020;28(5):724–740. 10.1016/j.chom.2020.08.003.e8. [PubMed: 32841606]

235. Shkoporov AN, Clooney AG, Sutton TDS, et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe. 2019;26(4):527–541. 10.1016/j.chom.2019.09.009.e5. [PubMed: 31600503]

236. Ott SJ, Waetzig GH, Rehman A, et al. Efficacy of Sterile Fecal Filtrate Transfer for Treating Patients With Clostridium difficile Infection. Gastroenterology. 2017;152(4):799–811. 10.1053/j.gastro.2016.11.010.e7. [PubMed: 27866880]

237. Leitner L, McCallin S, Kessler TM. Bacteriophages: what role may they play in life after spinal cord injury? Spinal Cord. 2021;59(9):967–970. 10.1038/s41393-021-00636-2 [PubMed: 33963272]

238. Adaptive Phage Therapeutics, Inc. A phase I/II study of bacteriophage therapy to evaluate safety, tolerability, and efficacy of targeted “personalized” bacteriophage treatments in patients with bacterial infection of the urinary tract. 2021. Accessed August 14, 2022. https://clinicaltrials.gov/ct2/show/NCT04287478

239. Hwang IY, Koh E, Wong A, et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat Commun. 2017;8(1):15028. 10.1038/ncomms15028 [PubMed: 28398304]

240. Ho CL, Tan HQ, Chua KJ, et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat Biomed Eng. 2018;2(1):27–37. 10.1038/s41551-017-0181-y [PubMed: 31015663]
241. Zhou Z, Chen X, Sheng H, et al. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microbial Cell Factories. 2020;19(1):56. 10.1186/s12934-020-01318-z [PubMed: 32131831]

242. Chien T, Doshi A, Danino T. Advances in bacterial cancer therapies using synthetic biology. Curr Opin Sys Biol. 2017;5:1–8. 10.1016/j.coisb.2017.05.009

243. Sheth RU, Cabral V, Chen SP, Wang HH. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 2016;32(4):189–200. 10.1016/j.tig.2016.01.005 [PubMed: 26916078]

244. Bonaz B Anti-inflammatory effects of vagal nerve stimulation with a special attention to intestinal barrier dysfunction. Neurogastroenterol Motil. 2022;34(10):e14456. 10.1111/nmo.14456 [PubMed: 36097404]

245. Costantini TW, Krzyzaniak M, Cheadle GA, et al. Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am J Pathol. 2012;181(2):478–486. 10.1016/j.ajpath.2012.04.005 [PubMed: 22688057]

246. Go YY, Ju WM, Lee CM, Chae SW, Song JJ. Different transcutaneous auricular vagus nerve stimulation parameters modulate the anti-inflammatory effects on lipopolysaccharide-induced acute inflammation in mice. Biomedicines. 2022;10(2):247. 10.3390/biomedicines10020247 [PubMed: 35203459]

247. Srihagulang C, Vongsfak J, Vaniyapong T, Chattipakorn N, Chattipakorn SC. Potential roles of vagus nerve stimulation on traumatic brain injury: evidence from in vivo and clinical studies. Exp Neurol. 2022;347:113887. 10.1016/j.expneurol.2021.113887 [PubMed: 34624329]

248. Liu Y, Zhang L, Zhang X, Ma J, Jia G. Effect of combined vagus nerve stimulation on recovery of upper extremity function in patients with stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2022;31(6):106390. 10.1016/j.jstrokecerebrovasdis.2022.106390 [PubMed: 35334250]

249. Ramos-Castaneda JA, Barreto-Cortes CF, Losada-Floriano D, Sanabria-Barrera SM, Silva-Sieger FA, Garcia RG. Efficacy and safety of vagus nerve stimulation on upper limb motor recovery after stroke: a systematic review and meta-analysis. Front Neurol. 2022;13:889953. 10.3389/fneur.2022.889953 [PubMed: 35847207]

250. Mogilevski T, Rosella S, Aziz Q, Gibson PR. Transcutaneous vagal nerve stimulation protects against stress-induced intestinal barrier dysfunction in healthy adults. Neurogastroenterol Motil. 2022;34(10):e14382. 10.1111/nmo.14382 [PubMed: 35481691]
FIGURE 1.
Age appears to influence gut biodiversity, with neonates beginning with low biodiversity that increases into adulthood and decreases again in old age. Parts of the figure were drawn by using modified pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
FIGURE 2.
Spinal cord injury (SCI) and gut dysbiosis is a bidirectional pathway that results in secondary SCI and disruption of the healing process.
FIGURE 3.
Overview of gut flora changes following traumatic brain injury (TBI) as well as the gut microbiome’s impact on recovery following TBI. Figure created with BioRender.com
FIGURE 4.
Proposed tumour suppressive effects of *Bifidobacterium* through immune activation, cancer cell competition, and chemotherapeutic and Immunotherapeutic activation.
FIGURE 5.
Strokes cause a loss of mucosal integrity and gut dysbiosis which results in systemic inflammation and secondary brain central nervous system (CNS) injury through proinflammatory pathways and immune perturbation. Parts of the figure were drawn by using modified pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)
FIGURE 6.
Graphical Abstract: Gut microbiome modulation has clinical and therapeutic implications in a plethora of neurosurgical scenarios including spinal cord injury (SCI), traumatic brain injury (TBI), stroke, and tumour pathogenesis.