Hyperdense Coding Modulo 6 with Filter-Machines

Vince Grolmusz *

Abstract

We show how one can encode \(n \) bits with \(n^{o(1)} \) “wave-bits” using still hypothetical filter-machines (here \(o(1) \) denotes a positive quantity which goes to 0 as \(n \) goes to infinity). Our present result - in a completely different computational model - significantly improves on the quantum superdense-coding breakthrough of Bennet and Wiesner (1992) which encoded \(n \) bits by \(\lceil n/2 \rceil \) quantum-bits. We also show that our earlier algorithm (Tech. Rep. TR03-001, ECCC, ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2003/TR03-001/index.html) which used \(n^{o(1)} \) multiplication for computing a representation of the dot-product of two \(n \)-bit sequences modulo 6, and, similarly, an algorithm for computing a representation of the multiplication of two \(n \times n \) matrices with \(n^{2+o(1)} \) multiplications can be turned to algorithms computing the exact dot-product or the exact matrix-product with the same number of multiplications with filter-machines. With classical computation, computing the dot-product needs \(\Omega(n^2) \) multiplications and the best known algorithm for matrix multiplication (D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9(3):251–280, 1990) uses \(n^{2.376} \) multiplications.

1 Introduction

It is one of the first tasks in any undergraduate information theory or computer science course to show that general \(n \)-bit sequences cannot be compressed to a shorter sequence or cannot be encoded by less than \(n \) bits. The proof of these results are based on the fact that any injective image of a \(2^n \)-element set must contain exactly \(2^n \) elements.

However, using some fascinating physical phenomena and different models of computation, superdense coding is possible. Bennet and Wiesner [1], using Einstein-Podolski-Rosen entangled pairs, showed that \(n \) classic bits can be encoded by \(\lceil n/2 \rceil \) quantum bits. Note, that this result is optimal in the quantum model.

Here we describe an algorithm for encoding \(n \) bits with \(n^{o(1)} \) “wave-bits”, using a different model, the filter-machines, to be defined in the next section.

2 Preliminaries

2.1 The dot-product

We have defined the alternative, and the \(0\text{-a-strong} \) and the \(1\text{-a-strong} \) representations of polynomials in [3] and [4]. Since we need only the notation of 1-a-strong representation here,
we reproduce here only that definition. Note also, that for prime or prime-power moduli, polynomials and their representations (defined below), coincide.

Definition 1 ([4]) Let \(m \) be a composite number \(m = p_1^{e_1} p_2^{e_2} \cdots p_l^{e_l} \). Let \(\mathbb{Z}_m \) denote the ring of modulo \(m \) integers. Let \(f \) be a polynomial of \(n \) variables over \(\mathbb{Z}_m \):

\[
f(x_1, x_2, \ldots, x_n) = \sum_{I \in \{0,1,2,\ldots,d\}^n} a_I x_I,
\]

where \(a_I \in \mathbb{Z}_m \), \(x_I = \prod_{i=1}^n x_i^{\nu_i} \), where \(I = \{\nu_1, \nu_2, \ldots, \nu_n\} \in \{0,1,2,\ldots,d\}^n \). Then we say that

\[
g(x_1, x_2, \ldots, x_n) = \sum_{I \in \{0,1,2,\ldots,d\}^n} b_I x_I,
\]

is a 1-a-strong representation of \(f \) modulo \(m \), if \(\forall I \in \{0,1,2,\ldots,d\}^n \exists j \in \{1,2,\ldots,\ell\} : a_I \equiv b_I \pmod{p_j^{e_j}} \), and, furthermore, if for some \(i \), \(a_I \not\equiv b_I \pmod{p_i^{e_i}} \), then \(a_I \equiv 0 \pmod{m} \).

Example 2 Let \(m = 6 \), and let \(f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 \), then \(g(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 + 3x_2^2 + 4x_2 \) is a 1-a-strong representation of \(f \) modulo 6.

In other words, for modulus 6, in the 1-a-strong representation, the non-zero coefficients of \(f \) are correct for both moduli in \(g \), but the zero coefficients of \(f \) can be non-zero either modulo 2 or modulo 3 in \(g \), but not both.

In [4] we proved the following theorem:

Theorem 3 Let \(m = p_1 p_2 \), where \(p_1 \neq p_2 \) are primes. Then a degree-2 1-a-strong representation of the dot-product \(f(x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n) = \sum_{i=1}^n x_i y_i \) can be computed as the homogeneous bilinear form:

\[
\sum_{j=1}^l \left(\sum_{i=1}^n b_{ij} x_i \right) \left(\sum_{i=1}^n c_{ij} y_i \right)
\]

where \(b_{ij}, c_{ij} \in \{0, 1\} \) and \(t = \exp(O(\sqrt{\log n \log \log n})) = n^{o(1)} \).

In other words, we have shown, that instead of the usual dot-product \(\sum_{i=1}^n x_i y_i \) we can compute a polynomial of the form

\[
\sum_{i=1}^n x_i y_i + 3g(x, y) + 4h(x, y)
\]

where both \(g \) and \(h \) has the following form: \(\sum_{i \neq j} a_{ij} x_i y_j \), \(a_{ij} \mod 6 \in \{0, 1\} \), and no term \(x_i y_j \) appears in both \(f \) and \(g \).

3 The Filter-Machine

In this short communication we give the definition only for modulo 6; for other non-prime-power composites the definition can easily be generalized.
Definition 4 Let $G(z) = f(z) + 3g(z) + 4h(z)$ be a polynomial of m variables $z = (z_1, z_2, \ldots, z_m)$, where the coefficient of every monomial in f is 1 modulo 6, and no monomial appears in two of the polynomials f, g, h with non-zero coefficients modulo 6. Then M is a mod 6 filter-machine for polynomial $G(z)$, if for inputs $G(z)$ and $\zeta \in \{0, 1, 2, 3, 4, 5\}^m$ M returns in one step the value $f(\zeta) \mod 6$.

3.1 Notes on realization and motivation

Let us consider polynomial $G(z)$, and suppose that we can increment the value of polynomials f, g, and h independently from each other. Then the period of $3g$ is 2, the period of $4h$ is 3, while the period of f is 6, all seen modulo 6. So if we were able to filter out the shorter period (that is, the higher frequency) “waves” then we were able to compute $f(\zeta)$. Note, that for doing this we may need to substitute values from \mathbb{Z}_6 instead just bits into the polynomials.

Note, that machine M does not need access to the actual values of the variables of the polynomials g and h, it just needs access to their periodically changed values. After filtering g and h out, it asks for the value (somehow similarly as the quantum machines perform an observation) of $G(\zeta)$, reduced by this “filtering”, which is just $f(\zeta)$.

Let us see the most important example: the dot-product. Let G be the polynomial of (2). Suppose that we would like to retrieve the value of $x_1 = \xi_1 \in \{0, 1\}$. Now, if we plug in $y_1 = 1, y_2 = y_3 = \cdots = y_n = 0$, then we shall get $x_1 + 3(x_{i_1} + x_{i_2} + \cdots + x_{i_s}) + 4(x_{j_1} + x_{j_2} + \cdots + x_{j_k})$, where $i_u \neq j_v, u = 1, 2, \ldots, s, v = 1, 2, \ldots, k$. Now, M assumed to have access to some values of $x_{i_1} + x_{i_2} + \cdots + x_{i_s}$ in order to filter them out, since their periodicity is at most 2 modulo 6; and also to some values of $x_{j_1} + x_{j_2} + \cdots + x_{j_k}$ to filter them out, since their periodicity is at most 3 modulo 6. Note again, that their x_{i_i} values are not needed at this phase, and, also, that typically, it is not enough to substitute 0 and 1 in the variables, 0, 1, 2, 3, 4, 5 may be needed.

After identifying the higher frequency terms, M filter them out, and returns the value of f, which is ξ_1 in our case. Note, that we ask only here for the value of a variable.

4 Hyperdense coding

Polynomial (2) can be computed in form (1). Let us consider an x, and let us compute $X = (X_1, X_2, \ldots, X_t)$, where

$$X_j = \sum_{i=1}^{n} b_{ij}x_i \mod 6$$

(3)

that is, simply a homogeneous linear function of x, determined by (1), for $j = 1, 2, \ldots, t$. However, for a given substitution $x = \xi \in \{0, 1\}^n$ it is not enough to store the mod 6 numbers (3) (since different ξ’s will lead to the same X_j values, because $t = n^{o(1)} < n$), but rather, we need to store X_j’s in a form which facilitates the independent periodicity (or frequency) testing of the filter-machine.

4.1 Hyperdense encoding algorithm

The encoding is done by linear transformations (3).
4.2 Hiperdense decoding algorithm

Suppose that we would like to decode ξ_1. Then plug in $y = (1, 0, 0, \ldots, 0)$ into (1). Then, from (2), we get

$$\xi_1 + 3g + 4h,$$

and the $3g + 4h$ sum can be cancelled out by the filter-machine (for example, as it was hinted in subsection 3.1).

5 Dot-product, matrix-vector product, matrix-product

We gave algorithms in [4] with $n^{O(1)}$, $n^{1+O(1)}$, and $n^{2+O(1)}$ multiplication for computing the 1-a-strong representation of the dot-product, matrix-vector product, matrix-product, respectively. Using filter-machines, these representations can be turned to the computing of the exact values with $1, n, n^2$ further filter-machine operations, respectively.

The best known algorithm today for matrix-multiplication was given by Coppersmith and Winograd [2], requiring only $n^{2.376}$ multiplications.

References

[1] C. Bennet and S. Wiesner, Communication via one- and two particle operators on Einstein-Podolski-Rosen states, Phys. Rev. Lett., 69 (1992), pp. 2881–2884.

[2] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9 (1990), pp. 251–280.

[3] V. Grolmusz, Computing elementary symmetric polynomials with a sub-polynomial number of multiplications, Tech. Rep. TR02-052, ECCC, 2002. ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2002/TR02-052/index.html.

[4] ———, Near quadratic matrix multiplication modulo composites, Tech. Rep. TR03-001, ECCC, 2003. ftp://ftp.eccc.uni-trier.de/pub/eccc/reports/2003/TR03-001/index.html.