An Automatic Detection of Breast Cancer Diagnosis and Prognosis based on Machine Learning Using Ensemble of Classifiers

Usman Naseem¹, Junaid Rashid², Liaqat Ali³, Jungeun Kim⁴, Qazi Emad Ul Haq⁵, Mazhar Javed Awan⁶, Muhammad Imran⁷

¹School of Computer Science, University of Sydney, Sydney, Australia
²Department of Computer Science and Engineering, Kongju National University, Cheonan 31080, Korea
³Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan
⁴Department of Software, Department of Computer Science and Engineering, Kongju National University, Cheonan 31080, Korea
⁵College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
⁶Department of Software Engineering, University of Management and Technology, Pakistan
⁷School of Engineering, Information Technology and Physical Sciences, Federation University, Brisbane, QLD 4000, Australia

Corresponding author: Junaid Rashid (Email: junaidrashid062@gmail.com) and Jungeun Kim (Email: jekim@kongju.ac.kr).

This research was partly supported by the Technology Development Program of MSS [No. S3033853] and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A1031509).

I. INTRODUCTION

Breast cancer is one of the most dangerous and prevalent cancers among women, causing the deaths of large numbers of women worldwide. Breast cancer accounts for 8.4% of diagnosed cancers and 6.6% of cancer-related deaths worldwide, according to a World Health Organization (WHO) report [1]. Breast cancer accounted for 15.9% of all reported cancers among Saudi citizens and 28.7% of all reported cancers among women of all ages, according to the Saudi Health Council [2]. Breast cancer is more common in women with dense breasts, and there is a relationship between density and age, with younger women having denser breasts than older women [3]. The American College of Radiology developed the Breast Imaging Data and Reporting System (BI-RADS). Table 1 presents the four BI-RADS assessment categories. Despite recent developments in computer
vision, screening mammography is still read and interpreted manually under the supervision of a radiologist. However, the enormous number of screening images is difficult for radiologists to handle accurately.

Recently, medical imaging researchers have used state-of-the-art techniques to solve problems with breast cancer analysis [4]. Several research has been carried out on the automatic identification of breast cancer. According to the World Health Organization, BC is the most frequently diagnosed cancer in women, accounting for approximately one in four newly diagnosed cancer cases. According to the World Cancer Research Fund International, only 1.7 million new cases were reported in 2012 (WCRF). Despite its high incidence and even the absence of early signs [5], early identification of BC can considerably improve the chances of survival. According to the WCRF, patients identified with stage I/II BC have a five-year survival rate of 80-90 percent, while patients diagnosed with stage III/IV BC have a survival rate of only 24 percent. As a result, it is obvious that the proper classification of benign tumors is essential to encourage patients to seek appropriate therapy and obtain a better prognosis. As a result, considerable research in the diagnosis of BC focuses on accurately identifying individuals as malignant or benign. Many machine learning (ML) algorithms and neural network (NN) approaches have been used in the BC Wisconsin diagnostic and prognostic dataset.

For the classification challenge, researchers have presented a large number of ML techniques in previous articles. We fully describe the various classification algorithms used to classify BC in this investigation. We mainly focus on artificial neural network (ANN) methods based on deep learning (DL), as well as support vector machines (SVM) based on traditional machine learning (ML) and k-nearest neighbor (KNN) and decision tree (DT) algorithms.

BC data has lots of varieties, open-source and private included. In the 1990s, a Wisconsin hospital collected three datasets, one of which was WBCD, which has strong representation and comparability due to having many algorithms applied to it. 94.36% to 99.90% is the range within which the classification accuracies of different algorithms are achieved. Developing different ML algorithms that are better improved is still needed to obtain alternative answers to complex BC data in the real world or other medical data, even though very high accuracies are achievable with a significant number of already existing algorithms. Though not the only criterion, classification accuracy is intuitive and especially important. The need for new algorithms to be developed to improve the existing techniques, considering that they still have drawbacks despite having their specific advantages. Accuracy in physicians’ decision-making is greatly aided by these algorithms once used to build healthcare systems that can provide second opinions. Open-source benchmark databases beginning with ANNs, then SVM, DTs, and k-NNs are analyzed by the ML algorithms highlighted in the coming subsections. In this paper, our main contributions are:

- We presented an ensemble of machine learning-based methods for breast cancer diagnosis and prognosis using an ensemble of machine learning classifiers.
- We presented a comprehensive comparison of the performance of various machine learning and ensemble machine learning-based classifiers.
- We evaluated different sampling methods to address the class imbalance issue in our datasets.
- We demonstrated that the proposed method outperforms various state-of-the-art methods for the detection of breast cancer.
- Analysis with and without sampling techniques is performed.

The rest of this paper is organized as follows: the background on breast cancer and computer-assisted diagnostics is presented in Section 2. The literature review is presented in Section 3. The proposed methodology is described in Section 4. The results and analysis of the experiments are discussed in Section 5. In Section 6, we conclude our work.

II. BACKGROUND

A. BREAST CANCER

Breast cancer is a disease in which malignant (cancer) cells grow in the breast tissues. A tumor is a mass of diseased tissue. There are two types of breast tumors: non-cancerous, "benign," and cancerous, or "malignant." Cancer starts in the cells that are the basic building blocks in the breast or other body parts that make up tissue. Occasionally the way of cell outgrowth goes fault, and new cells form or old or damaged cells would not die as they do when the body does not need them [7]. Any new breast, lump, or breast changes should then be monitored by a health care professional experienced in the diagnosis of breast disease that is commonly a sign of breast cancer [8]. No treatment has yet been discovered for cancer tumors. However, early detection of breast cancer is
crucial to minimize the number of cancer deaths and enhance patients’ quality of life. On a mass can be ‘circumscribed’, ‘Micro-lobulated’, ‘Obscured’, ‘Indistinct’, or ‘Speculated’ as shown in Figure 2.

The most widespread and recognized factors increasing the risk of breast cancer are female sex, age, genetics, and having dense breasts. Breast density is a measure used to depict the extent of the distinctive tissues that form a woman’s breasts and how the breasts look on a mammogram. Breast cancer is more common in women with dense breasts, and there is a relationship between densities and women’s age, with younger women having denser breasts than older women [3]. The American College of Radiology created ‘BI-RADS,’ which stands for Breast Imaging Data and Reporting System [9]. Figure 3 illustrates the ‘BI-RADS evaluation categories. ‘BI-RADS’ advantageously encourages radiologists to consider which category is most appropriate.

B. COMPUTER-AIDED DIAGNOSIS (CAD)
A computer-aided diagnostic (CAD) system analyzes radiographic evidence to determine the likelihood that a feature represents a certain disease process.” (eg benign vs. malignant) [10]. CAD systems for breast cancer utilize various pattern recognition techniques.

In general, there are three main modules in a CAD system: mammogram, the shape of a specific breast mass can be ‘Round,’ ‘Oval,’ ‘Lobular,’ ‘Irregular,’ or ‘architectural distortion’ as shown in Figure 1.

‘Circumscribed oval’- and ‘round-shaped’ masses strongly suggest that a lesion is benign. In contrast, masses of irreg-
TABLE 2. Summary of Breast Cancer Classification

Reference	Problem	Features	Classifier	Dataset	Accuracy
Shastri et al. [11]	mass vs. Normal	(HOT)	(SVM)	MIAS/150 DDSM/2576	MIAS overall acc 97.33% DDSM overall acc 84.84%
Benign vs. Malignant		(PB-DCT)			
Chokri and Farida [12]	Benign vs. Malignant	(SGLDM)	(MLP)	DDSM/480	88.02%
		(RDM)			
Textural and intensity					
Jothilakshmi et al. [13]	Benign vs. Malignant	(GLCMs)	(SVM)	MIAS/50	94%
Li et al. [14]	Benign vs. Malignant	intensity histogram, shape, and texture	(ANN) (SVM) (KNN)	DDSM/323	99.66%
Gedik [15]	abnormal vs. Normal	shearlet transform, t-test statistic and dynamic thresholding	(SVM)	MIAS/228	98.29%
Benign vs. Malignant			DDSM/228	96.89%	
			MIAS/228	97.39%	
			DDSM/228	98.08%	
Chisako et al. [16]	Benign vs. Malignant	(RLTP)	(ANN) (SVM) (RF)	private/376 ROIs	not given
		(GLCMs)			
Lima et al. [17]	malignant vs. benign vs. normal	wavelets and Zernike moments	(SVM)	IRMA/355	94.11%
Rahimeh et al. [18]	Benign vs. Malignant	statistical and (GLCMs)	(MLP)	MIAS/57	90.94%
Rabidas et al. [19]	Benign vs. Malignant	statistical (GLCMs)	(LDA) (SVM)	MIAS/58 DDSM/200	87.28% 75.60%
Yanfeng Li et al. [20]	Benign vs. Malignant	Texton	(KNN)	DDSM/114	85.96%
Beura et al. [21]	abnormal vs. Normal	Multiresolution analysis using (2D-DWT) and (GLCMs)	(BPNN)	MIAS/322	98%
Benign vs. Malignant			DDM/ 550	98.80%	
			MIAS/115	94.20%	
			DDSM/ 250	97.40%	

ular shape usually raise suspicion of malignancy, the edges of breast detection, segmentation, and classification. Mass detection is a challenging issue but plays a significant role in the diagnosis of breast cancer. The detection task is to find the location of a lesion on a mammogram if one exists. Detection generally comprises three modules: (1) detecting suspicious regions (i.e., by density, micro-calcifications, and mass), (2) extracting features, and (3) eliminating false positive regions. Mass segmentation is the next stage, which is the process of partitioning mammogram images into regions possessing identical characteristics. Mass classification is the last stage, categorizing the input regions of interest (ROIs) as Mass or Normal, depending on abnormality. Mass lesions are then categorized as benign or malignant. Breast mass classification can be grouped for the data training stage. Breast mass detection and breast density classification would greatly help treat breast cancer. One problem with using CAD systems for mass detection is the high false-positive rate since masses and normal dense tissue is comparable on a mammogram.

III. LITERATURE REVIEW

Many automatic systems for breast cancer classification have emerged in recent years; these systems use different approaches. Breast cancer categorization is a classification problem that requires the extraction of discriminatory features and then classification. State-of-the-art strategies for breast cancer staging that have been proposed are discussed in the following paragraphs.

Shastri et al. [10] suggested a two-stage patch classification technique for mammography using two texture descriptors: "Histogram of Oriented Texture (HOT)" and "Pass Band Discrete Cosine Transform (PB-DCT)." In the first stage, mammogram patches are classified as normal or abnormal. The second stage uses a support vector machine (SVM) to classify aberrant mammographic regions as benign or malignant. Jothilakshmi and Raaza [13] developed a texture-based strategy to identify malignant and benign using multiple SVMs, with features retrieved using "grey-level co-occurrence matrices (GLCM)." In [14] proposed a new approach to classify benign and malignant breast masses. The approach converts two-dimensional contours of breast
masses on mammography into a one-dimensional signature.

DT is a popular classification method that is easy to learn and interpret while improving human readability. On the diagnostic data set, the researchers used 10-fold cross-validation to discover the optimal combination of parameters, and this model had an accuracy of 93.62% and a specificity of 90.66% [22]. In a multidimensional feature space filled with known instances of a training dataset, nearest neighbor algorithms classify the data by discovering its nearest neighbors [23]. The better the dimension ratios for the nearest neighbors, the higher the predictive efficiency. Because the results of this algorithm depend on how the distance between the data is measured, both approaches, the Manhattan distance, and the Euclidean distance were examined this time. SVM is a supervised learning technique for classifying, predicting, and detecting outliers. They are cheap and effective, particularly in high-dimensional areas, because they only require a subset of training points on support vectors. On diagnostic data, SVM achieved 98 percent accuracy [24] and 78.35 percent accuracy using the polynomial kernel.

Since NNs are capable of capturing the relationships between attributes, it is largely used for BC detection. Liu et al. [25] presented a DT algorithm for BC detection and used an under-sampling approach to address the issue of an imbalanced training class, which improved the results. Quinlan et al. [26] presented a better DT method for BC detection and achieved a performance accuracy of 94%. However, one classifier cannot learn all the features of the BC detection and recurrence rate [27]. Considering the drawback of a single classifier, various ensemble-based algorithms are proposed. Akay et al. [28] used the hybrid method proposed by Chen et al. [29] where the authors presented a hybrid classifier with various sets of features and used SVM for classification. The fuzzy approach for feature selection and the fuzzy nearest neighbor method for BC detection are combined into a hybrid classification system for BC detection [24].

Data can be effectively classified using classification and data mining methods. Such methods have prevalent use in the medical field for analysis and diagnosis so decisions can be made. Classification techniques [30] such as AdaBoost, KNN, and K Tree, as well as neural networks, feature selection methods, and SVM [29], [31] have been used in a variety of study domains. Goodman et al. [31] used three different approaches, including artificial immune recognition system (AIRS), optimized learning vector quantification (LVQ), and large LVQ, with an accuracy of 97.2%, 96.7%, and 96. 8% respectively. Using the SVM class possibility based kernel (CPBK) algorithm, Li and Liu [32] achieved a classification accuracy of 93.26%. The accuracy of an SVM-based classifier reported in [33] was 97.60%.

Ensemble of classifiers is another essential method to improve the performance of a single classifier [34]. The predictions by a single classifier are combined by various techniques in the ensemble-based classifiers, which improves the overall prediction and makes more accurate predictions than a single classifier [35]. In typical settings of the ensemble-based classifiers, training data is replicated by k times and then build k classifiers by re-sampling the original data [36]. Similarly, various voting methods exist for classification. To make the qualifier run multiple times, take a training set and a qualifier and change the distribution of instances in the training set. To arrive at the final classification, the results of the constructed classifiers [37] are concatenated. The most prevalent voting approach is to combine the results of the base-level classifiers using a plurality. However, this strategy does not use metal fetching, and all training sets and classifiers use the same voting technique [38].

The one-dimensional signature is then segmented into subsections to extract local contour features. Finally, these features are fed to an SVM classifier. Kumar et al. [39] Proposed two CAD systems for the classification of mammograms breast density for two and four “BI-RADS” classes consisting of features computed using different Law filters of varying lengths. The feature vectors are then fed to classifiers ‘PNN,’ ‘NFC,’ and ‘SVM’ to classify tissue density. The literature reports several studies indicating the utility of hand-crafted features for breast cancer classification. Previous works have shown promising results using various classifiers. However, previous studies have demonstrated that using an ensemble of classifiers improves the results. In this work, we address this gap and present a method that uses different classifiers, i.e., an ensemble of classifiers, to improve the results of breast cancer detection. An overview of techniques is given in Table 2 for breast cancer classification methods.

IV. METHODOLOGY

This section presents the method used for an ensemble of ML classifiers. This architecture is composed of four different ML models. They are stacked and then further trained as an ensemble. After training, the ANN model is used for the outcome. The illustration of our proposed DL network is shown in Figure 4. The performance is compared with the several ML classifiers individually with and without up-sampling techniques. We also compared the performance of the proposed ensemble model with other ensemble models.

A. PROPOSED APPROACH

In this study, we design a classification framework by an ensemble of four ML-based classifiers named SVM, LR, NB, and DT. An ensemble model is stacked, and predictions are concatenated and then fed to the ANN model for final prediction. Each of the algorithms used in our study is also briefly explained next section. The steps of the proposed model can be summarized below:

1) We used machine learning based classifiers on a training dataset
2) In the second step, the K-fold method retrieves the most common outcome from these classifiers.
3) In third step, we concatenated results from machine learning classifiers
4) New training dataset streamlined as a result
5) In this step, we input the new dataset into the default ANN
6) Result and evaluation of outputs

1) Support vector machine (SVM)
A supervised ML-based technique, SVM selects the moderate number of samples called support vectors and builds a linear discriminant function. SVM solved the restriction of linear limits [40]. SVM can be considered a two-class data set that can be partitioned linearly to show a maximum hyperplane margin. The new samples are linearly fit or appear linearly separable in the high-level plane following the selection of the appropriate mapping. The SVM tries to find the most advantageous hyperplane that minimizes the distance between two groups [41].

2) Logistic regression (LR)
The LR method is created by replicating the posterior probability of K groups across linear roles in x while ensuring they equal one and stay within the range [0, 1]. Logit shifts K - 1, or log probabilities can be used to describe LR. Although the final group is used as the denominator in the odds ratio, the choice of the denominator is indeterminate because the counts are divided evenly. Since there is only one linear role when K = 2, the style is direct. This technique is often used in biostatic tasks where binary responses are repeated.

3) Naive bayes (NB) Bayes theorem [42] is used to suggest the NB algorithm. The NB classifier can be revised in the following ways using Bayes’ theorem and the exact procedures [43]. We conclude that there is a training set of instances \(T \). There are group marks on these specimens. \(C_1, C_2, \ldots, C_k \) are the names of the groups. Each specimen is an n-dimensional agent represented by the formula \(X = x_1, x_2, \ldots, x_n \). It states that \(X \) has \(n \) features since it has \(n \) dimensions. A specimen \(X \) is predicted to be a member of group \(C_i \) if the probability that group \(i \) depends on \(X \) is greater than the probability that each of the other groups depends on \(X \), or formally:

\[
p(C_i|X) > P(C_j|X) \quad \text{for} \quad 1 \leq j \geq k, j \neq i
\]

Using Bayes’ Theorem \(P(C_i|X) \) is calculated as follows:

\[
P(C_i|X) = P(X|C_i)P(C_i)/P(X) \quad (2)
\]

4) Decision tree (DT):
DT that begins with huge groupings of specimens within clearly defined categories [44]. Specimens are used for patterns that allow groups to be accurately characterized by combining nominal and numerical features. These markers are then represented as models, resulting in decision frameworks or sets of if-then processes that can be used to distinguish new samples, emphasizing making designs understandable and accurate. To determine the ‘goodness’ of
a test, the C4.5 calculus uses equations based on theoretical data; specifically, they choose the test that takes the most data from a collection of specimens while limiting themselves to evaluating a single characteristic.

The limitation of DT is how to handle the issue of over-fitting and unknown values. C4.5 method of DT can address the issue of unknown values, especially the samples with unknown values are ignored. A classifier that categorizes all samples in the training data may not be as effective as a DT. To circumvent this, C4.5 uses an error rate-based pruning mechanism for all subtrees, and the subtree is removed when the computed error is raw. This strategy is more effective and produces better results [44].

5) Artificial neural network (ANN):
In the past decades, ANNs have been utilized by researchers, thus making them a relevant research area. Greatly, the network has enabled great success, especially in BC classification and early-stage prognosis [45]. ANN models usually have three layers: input, hidden, and output [31]. The layers comprise interconnected neurons with nonlinear switching activation functions to enhance nonlinear capacity. First, the input layer gets the data, then passes it to a hidden layer for analysis and returns the results to the output layer. Results shows are now displayed through the output layer. However, given the constraints, training an ANN will likely require long informal chains of computing processes. There are three dense layers and two dropout levels in the ANN structure used in this study. The DNN, on the other hand, is made up of five dense layers and three dropout layers.

V. EXPERIMENTAL RESULTS
In this section, we present the datasets used in this study and the experimental evaluations to demonstrate the usefulness of our proposed model. In this study, following previous studies, we used accuracy to evaluate the performance. Classification results are analyzed using a 10-fold cross-validation technique.

1) Dataset details
The Breast cancer Wisconsin (Diagnosis) and Breast cancer Wisconsin (Prognosis) databases are used in this study.

Wisconsin Breast Cancer (Diagnosis) contains 569 instances and 32 attributes (an ID and a target variable). Wisconsin Breast Cancer (Prognosis) contains 198 instances and 34 attributes (containing an ID and a target variable). The forecast dataset also had four missing attribute values, which were removed; furthermore, the forecast data set is considerably skewed, with 151 non-recurring and 47 recurring outcomes. Dataset distribution is given in Table 3. In the BC Wisconsin Diagnostic and Prognostic data sets, two additional strategies (algorithm approach and data approach) were implemented to solve the problem of an unbalanced classification problem. To start with, we used cost-sensitive learning or a misclassification penalty as a misclassification penalty while training the model to improve performance in minority classes.

TABLE 3. Dataset Distribution
Diagnosis
malignant
2

This is achieved by adding the misclassification cost to the error or using it to weight the error. Second, the dataset can be resampled, making this approach more versatile. Upsampling and downsampling are used to increase the number of minority classes in the resampling. Data standardization was done to ensure that the data was consistent. Each type of data had the same content and format.

2) Evaluation metric
We have used accuracy as a evaluation metric is this study. All reported results are the average results. Accuracy is defined as follows:

\[
\text{Accuracy} = \frac{\text{Number of correct predictions}}{\text{All samples}} \quad (3)
\]

3) Experimental results and discussion
This section describes the results and presents the baseline models used to compare our proposed model. To evaluate the performance of the proposed model, we compare it with various machine learning classifiers and other methods. All the algorithms were used with their default parameters in this study. Table 4 and Table 5 show the results of all ML classifiers and DL classifiers used in our study.

It can be observed from Table 4 that SVM outperforms all ML-based classifiers on both diagnosis BC with 98.10% accuracy and prognosis BC dataset with 78.35% accuracy. In contrast, the worst classifier on the diagnosis dataset is DT with 91.22% accuracy and NB on the prognosis dataset with 70.71%. For DL-based classifiers, ANN performs well on both datasets, with 98.24% accuracy on the diagnosis dataset and 90.22% accuracy on the prognosis dataset compared to DNN, which can be seen in Table 5. We also tested a combination of ML and DL-based models. Furthermore, to address the problem caused by uneven data distribution and small sample size, each model combination is upsampled and the results compared, as shown in Table 6.

Comparing all the different ensemble models in Table 6 shows which model performed best for each dataset. The best ensemble model is the ensemble of (SVM + LR + NB + DT) in both cases (without 97.67% and with upsampling 98.83%). In contrast, the worst-performing combination is (SVM+LR+RF) in both cases (95.91% for without sampling and 98.14% for upsampling) on the diagnosis.
TABLE 4. Comparison of ML classifiers. Average accuracy (%) is reported as evaluation metric

Machine Learning Models	Diagnosis	Prognosis
Decision Tree	91.22	76.26
Random Forest	97.07	76.26
Logistic Regression	98.00	75.24
Support Vector Machine	98.10	78.35
Naive Bayes	93.56	70.71

TABLE 5. Comparison of DL classifiers

Deep Learning Models	Diagnosis	Prognosis
Deep Neural Network	95.36	87.5
Artificial Neural Network	98.24	90.22

TABLE 6. Ensemble of ML classifiers with ANN with and without sampling

Model	Diagnosis	Prognosis		
	Without Sampling	With Sampling	Without Sampling	With Sampling
(SVM+LR+NB+DT)+ANN	97.67%	98.83%	81.35%	84.70%
(SVM+LR+NB+RF)+ANN	97.07%	98.24%	83.05%	88.13%
(SVM+LR+RF+DT)+ANN	97.66%	98.24%	83.00%	84.74%
(SVM+LR+RF+NB) + ANN	97.07%	98.24%	83.15%	88.33%
(SVM+LR+RF) + ANN	95.91%	98.14%	81.36%	77.96%
(SVM+LR) + ANN	96.46%	96.46%	76.27%	76.27%

dataset. For prognosis, the best ensemble model combines (SVM+LR+RF+NB) in both cases (without 83.15% and with upsampling 88.33%). In contrast, the worst-performing combination is (SVM+LR) in both cases (76.27% for without and 76.27% with up-sampling) on prognosis. The increment of 1.16% was observed on diagnosis and 5.18% on the prognosis dataset when the upsampling technique was used. The confusion matrix and train/test accuracy of best-performing ensemble classifiers can be seen in Figure 5 and Figure 6, respectively.

4) Analysis

We also analyzed the effects of applying balanced class weights with sampling and measured the performance when applying different K values, as shown in Figure 7 and Figure 8. We observed that performance increased substantially for all tested combinations of classifiers when compared with upsampling on the prognosis dataset. We also note that the confusion matrices below show that when K is 5 instead of 10, the model (SVM + LR + RF + DT) trained on the forecast outperforms.

FIGURE 5. Illustration of confusion matrix (Diagnosis).

VI. CONCLUSION

We proposed a method for breast cancer diagnosis and prognosis using machine learning techniques in this research.
Benchmark datasets are used for the experiments. Classifiers based on machine learning and deep learning have shown their exceptional potential to increase classification and prediction accuracy. Several ensembles of different ML-based classifiers were also tested for the classification of BC. We found out that SVM outperforms both datasets compared to all ML classifiers and ANN from DL classifiers when used individually. For the ensembling method, \((SVM + LR + NB + DT)\) performs well without and with upsampling on the diagnosis dataset, whereas \((SVM+LR+RF+NB)\) outperforms all other combinations on the prognosis dataset when ANN is used as a final layer. We also observed an increase in performance when balanced class weights are used along with the upsampling technique as compared to without, and the upsampling technique is used individually. The performance was also analyzed using a different number of K-fold for the best ensemble classifier. In the future, we intend to apply more advanced models for the automatic detection of BC.

REFERENCES

[1] World Health Organization et al. Cancer burden rise to 18.1 million new cases and 9.6 million cancer deaths in 2018. Int Agency Res Cancer, 2018:3, 2018.

[2] Wedad Saeed Alqahtani, Nawaf Abdulrahman Almufareh, Dalia Mostafa Domiaty, Gadah Albusher, Manal Abdulllah Alduwishi, Hadia Alkhafaf, Bader Almuzzaini, Salma Sanhaat Al-Marshidy, Rgya Alfraihi, Abdel-baset Mohamed Elasbali, et al. Epidemiology of cancer in saudi arabia thru 2010–2019: a systematic review with constrained meta-analysis. AIMS public health, 7(3):679, 2020.

[3] Jun Wei, Heang-Ping Chan, Yi-Ta Wu, Chuan Zhou, Mark A Helvie, Alexander Tsodikov, Lubomir M Hadjiiski, and Berkman Sahiner. Association of computerized mammographic parenchymal pattern measure with breast cancer risk: a pilot case-control study. Radiology, 260(1):42–49, 2011.

[4] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mobsen Ghafoorian, Jeroen Awn Van Der Laak, Bram Van Ginneken, and Clara I Sanchez. A survey on deep learning in medical image analysis. Medical image analysis, 42:60–88, 2017.

[5] Marina Milosevic, Dragan Jankovic, Aleksandar Milenkovic, and Dragan Stojanov. Early diagnosis and detection of breast cancer. Technology and Health Care, 26(4):729–759, 2018.

[6] B Surendiran and A Vadivel. Mammogram mass classification using various geometric shape and margin features for early detection of breast cancer. International Journal of Medical Engineering and Informatics, 4(1):36–54, 2012.

[7] Ronald A Castellino. Computer aided detection (cad): an overview. Cancer Imaging, 5(1):17, 2005.

[8] Ellie Darcey, Nina McCarthy, Eric K Moses, Christobel Saunders, Gemma Cadby, and Jennifer Stone. Is mammographic breast density an endophenotype for breast cancer? Cancers, 13(15):3916, 2021.

[9] Wendie A Berg, Cristina Campassi, Patricia Langenberg, and Mary J Sexton. Breast imaging reporting and data system: inter-and intraobserver variability in feature analysis and final assessment. American Journal of Roentgenology, 174(6):1769–1777, 2000.

[10] Katrina Whitaker. Earlier diagnosis: the importance of cancer symptoms. The Lancet Oncology, 21(1):6–8, 2020.

[11] Aditya A Shastri, Deepti Tamrakar, and Kapil Ahuja. Density-wise two stage mammogram classification using texture exploiting descriptors. Expert Systems with Applications, 99:71–82, 2018.

[12] Ferkous Chokri and Merouani Hayet Farida. Mammographic mass classifi-
cation according to bi-rads lexicon. IET Computer Vision, 11(3):189–198, 2017.

[13] GR Jothilikshmi and Arun Raaza. Effective detection of mass abnormalities and its classification using multi-svm classifier with digital mammogram images. In 2017 International Conference on Computer, Communication and Signal Processing (ICCCSP), pages 1–6. IEEE, 2017.

[14] Haixia Li, Xianjing Meng, Tngwen Wang, Yuchun Tang, and Yilong Yin. Breast masses in mammography classification with local contour features. Biomedical engineering online, 16(1):1–12, 2017.

[15] Nebi Gedik. A new feature extraction method based on multi-resolution representations of mammograms. Applied Soft Computing, 44:128–133, 2016.

[16] Chisako Muramatsu, Takeshi Hara, Tokiko Endo, and Hiroshi Fujita. Breast mass classification on mammograms using radial local ternary patterns. Computers in biology and medicine, 72:43–53, 2016.

[17] Sidney ML de Lima, Abel G da Silva-Filho, and Wellington Pinheiro Dos Santos. Detection and classification of masses in mammographic images in a multi-kernel approach. Computer methods and programs in biomedicine, 134:11–29, 2016.

[18] Rahimeh Rouhi and Mehdi Jafari. Classification of benign and malignant breast tumors based on hybrid level set segmentation. Expert Systems with Applications, 46:45–59, 2016.

[19] Rinku Rabidas, Jayasree Chakraborty, and Abhishek Midya. Analysis of 2d singularities for mammographic mass classification. IET Computer Vision, 11(1):22–32, 2017.

[20] Yanfeng Li, Houjin Chen, Gustavo Kunde Rohde, Chang Yao, and Lin Cheng. Texton analysis for mass classification in mammograms. Pattern Recognition Letters, 52:87–93, 2015.

[21] Shradhananda Beura, Banshidhar Majhi, and Ratnakar Dash. Mammogram classification using two dimensional discrete wavelet transform and gray-level co-occurrence matrix for detection of breast cancer. Neurocomputing, 154:1–14, 2015.

[22] Raafat Alam Khan, Nasir Ahmad, and Nasru Minallah. Classification and regression analysis of the prognostic breast cancer using generation optimizing algorithms. International Journal of Computer Applications, 68(25):42–47, 2013.

[23] Robert Nisbet, John Elder, and Gary D Miner. Handbook of statistical analysis and data mining applications. Academic press, 2009.

[24] Ayuğ Onan. A fuzzy-rough nearest neighbor classifier combined with consistency-based subset evaluation and instance selection for automated diagnosis of breast cancer. Expert Systems with Applications, 42(20):6848–6852, 2015.

[25] Ya-Qin Liu, Cheng Wang, and Lu Zhang. Decision tree based predictive models for breast cancer survivability on imbalanced data. In 2009 3rd international conference on bioinformatics and biomedical engineering, pages 1–4. IEEE, 2009.

[26] J Ross Quinlan. Improved use of continuous attributes in c4.5. Journal of artificial intelligence research, 4:77–90, 1996.

[27] Haifeng Wang, Bichen Zheng, Sang Won Yoon, and Hoo Sang Ko. A support vector machine-based ensemble algorithm for breast cancer diagnosis. European Journal of Operational Research, 267(2):687–699, 2018.

[28] Mehmet Fatih Akay. Support vector machines combined with feature selection for breast cancer diagnosis. Expert systems with applications, 36(2):3240–3247, 2009.

[29] Bichen Zheng, Sang Won Yoon, and Sarah S Lam. Breast cancer diagnosis based on feature extraction using a hybrid of k-means and support vector machine algorithms. Expert Systems with Applications, 41(4):1476–1482, 2014.

[30] Adam G Dunn, Julie Leask, Xujuan Zhou, Kenneth D Mandl, and Enrico Coiera. Associations between exposure to and expression of negative opinions about human papillomavirus vaccines on social media: an observational study. Journal of medical Internet research, 17(6):e1343, 2015.

[31] Donald E Goodman, Lois Bogoss, and Andrew Watkins. Artificial immune system classification of multiple-class problems. Proceedings of the artificial neural networks in engineering ANNIE, 2(2002):179–183, 2002.

[32] Der-Chiang Li and Chiao-Wen Liu. A class possibility based kernel to increase classification accuracy for small data sets using support vector machines. Expert Systems with Applications, 37(4):3104–3110, 2010.

[33] Hakan Cevikalp, Bill Triggs, Hasan Serhan Yavuz, Yalçın Küçük, Mahide Küçük, and Atalay Barkana. Large margin classifiers based on affine hulls. Neurocomputing, 73(16-18):3160–3168, 2010.
JUNAID RASHID is a Postdoctoral researcher at Kingu National University, South Korea, from August 2021. He worked as an Honorary Senior Postdoctoral Research Fellow at the Center for AI and Data Science, Edinburgh Napier University, Scotland, UK, since November 2020 and awarded the Fellowship in 2022. He received his Ph.D. degree from the Department of Computer Science, University of Engineering and Technology, Taxila, Pakistan, in 2020 and respectively his M.S and B.S degrees in Computer Science from COMSATS Institute of Information Technology, Wah Campus, Pakistan in 2016 and 2014. He worked as a Lecturer in the Department of Computer Science at AIR Islamabad University, Kamra Campus, Pakistan, from January 2020 to July 2021. He served as Research Associate and Lecturer from March 2017 to January 2020 at the University of Engineering and Technology, Taxila, Pakistan. He has served as Lecturer (Visiting) from September 2019 to February 2020, September 2016 to January 2017 and September 2015 to January 2016 in COMSATS University Islamabad, Wah, Pakistan. He received a fully funded scholarship for his Ph.D. degree. He has been working as an Academic Editor in PLOS One. He has served/been serving as a reviewer of various reputed journals and conferences. He has published many research papers in prestigious journals and conferences. His research interest includes Data Science, Machine Learning, Natural Language Processing, Topic Modeling, Text Mining, Information Retrieval, Big Data, Pattern Recognition, Fuzzy Systems, Medical Informatics, Biomedical Text Analytics and Software Engineering.

JUNGWEN KIM received the PhD degree in knowledge service engineering from KAIST. He is an assistant professor of computer science and engineering with Kongju National University (KNU). Before joining KNU, he was a senior researcher of the artificial intelligence research laboratory with Electronics and Telecommunications Research Institute (ETRI). His research interests include data mining, big data analysis with distributed processing platforms, and open data platforms.

QAZI EMAD-UL-HAQ received his Ph.D. degree from King Saud University, Riyadh, Saudi Arabia. He is currently working as an Assistant Professor at Naif Arab University for Security Sciences (NAUSS), Riyadh, Saudi Arabia. His research interests include Security Analytics, Cyber Security, Network Security, Deep Learning, Artificial Intelligence, Machine Learning and Pattern Recognition.

MAZHAR JAVED AWAN is an Assistant Professor of Software Engineering Department at the University of Management Technology (UMT). Lahore. He has overall 17 years of teaching experience in various Institutes. Currently he is pursuing his Ph.D at the University Teknologi Malaysia (UTM). He earned his MS (CS) degree from the University of Central Punjab (UCP), Lahore. His areas of research interest include Data sciences, Big Data Analytics, Deep learning in medical images, Natural language processing and Machine learning. He published in high standard ISI journals, such as IEEE Access, Diagnostics and Computers, Materials Continua (CMC). He reviewed many WOS and Scopus Indexed journals like IEEE Internet of things and CMC Journals. Besides research he is also a keynote speaker at National and International level at various conferences and workshops related to Data Science and Big Data. He is IEEE Professional member and advisor of UMT branch of IEEE ComSoc.

MUHAMMAD IMRAN is working as a Senior Lecturer in the School of Engineering, IT and Physical Sciences, Federation University Australia. His research interests include mobile and wireless networks, Internet of Things, cloud and edge computing, and information security. He has published more than 300 research articles in reputable international conferences and journals. His research is supported by several grants. He serves as an associate editor for many top ranked international journals including IEEE Network Magazine, Future Generation Computer Systems, and IEEE Access.

LIAQAT ALI is currently working as assistant professor in Department of Electrical Engineering, University of Science and Technology Bannu, Pakistan. He has completed his doctorate study from University of Electronic Science and Technology of China (UESTC), China in information and communication engineering. His research interests are in Biomedical and Health Informatics, Machine Learning, Data Science, and Soft Computing. More specifically, his research is concentrated on the development of automated disease detection (decision making/prediction) systems by using novel feature selection and extraction methods for improving the performance of conventional machine learning models. Most of his research work has been published in top ranked (mostly Q1 ranked) journals. Additionally, he is an active reviewer of many top-tier journals including Expert Systems with Applications (Elsevier), Artificial Intelligence in Medicine, IRBM Journal, Medical amp; Biological Engineering and Computing etc. Currently he is serving as a lead editor of a special issue open for submission in Journal of Healthcare Engineering.