Non-invasive surveys of mammalian viruses using environmental DNA

Nicolò Alfano¹,²†, Anisha Dayaram³,⁴†, Jan Axtner¹, Kyriakos Tsangaras⁵, Marie-Louise Kampmann¹,⁶, Azlan Mohamed¹,⁷, Seth T. Wong¹, M. Thomas P. Gilbert⁶,⁸, Andreas Wilting¹,¹¹*, Alex D. Greenwood³,¹⁰,¹¹*

¹ Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
² Department of Biodiversity & Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, Via Edmund Mach 1, 38010 San Michele All’adige (TN), Italy
³ Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
⁴ Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität of Berlin, Institut für Neurophysiologie, Berlin, Germany
⁵ Department of Translational Genetics, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios 2371, Cyprus
⁶ Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
⁷ WWF-Malaysia, PJCC, 46150 Petaling Jaya, Selangor, Malaysia.
⁸ The GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5A, 1352 Copenhagen, Denmark
⁹ University Museum. NTNU, 7491 Trondheim, Norway
¹⁰ Department of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, Berlin 14163, Germany
¹¹ Lead contacts

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/2041-210X.13661

This article is protected by copyright. All rights reserved
Joint Authors

Andreas Wilting. Email: wilting@izw-berlin.de. Correspondence may also be addressed to Alex D. Greenwood. Email: greenwood@izw-berlin.de
ABSTRACT

1. Environmental DNA (eDNA) and invertebrate-derived DNA (iDNA) are used to survey biodiversity non-invasively to mitigate difficulties in obtaining wildlife samples, particularly in remote areas or for rare species. Recently, eDNA/iDNA were used to monitor known wildlife pathogens, however, most wildlife pathogens are unknown and often evolutionarily divergent.

2. To detect and identify known and novel mammalian viruses from eDNA/iDNA, we used a curated set of RNA oligonucleotides as viral baits in a hybridization capture system coupled with high throughput sequencing.

3. We detected multiple known and novel mammalian RNA and DNA viruses from multiple viral families from both waterhole eDNA and leech derived iDNA. Congruence was found between detected hosts and viruses identified in leeches and waterholes.

4. Our results demonstrate that eDNA/iDNA samples represent an effective non-invasive resource for studying wildlife viral diversity and for detecting novel potentially zoonotic viruses prior to their emergence.

KEYWORDS

environmental DNA (eDNA); hybridization capture; leeches; non-invasive samples; viral diversity

INTRODUCTION

Emerging infectious viruses increasingly threaten human, domestic animal and wildlife health (Johnson et al. 2019). Sixty percent of emerging infectious diseases in humans are of zoonotic origin (Jones et al. 2008). Wildlife trade and consumption of bushmeat, especially in Africa and Asia, play a role in zoonotic emergence (Pruvot et al. 2019; Swift et al. 2007). Wildlife markets may have facilitated the spillover of pandemic SARS-CoV-2 to humans (Peeri et al. 2020; Zhou et al. 2020). The 2002–2003 SARS-CoV outbreak (Drosten et al. 2003), the Ebola outbreak in West Africa (Leroy et al. 2009) and the global emergence of HIV (Sharp & Hahn 2011) were all linked to wildlife trade and bushmeat consumption. Early detection of novel infectious agents in wildlife is key to emergence prevention. However, identification, surveillance and monitoring of emerging viruses by directly sampling wildlife often requires enormous sampling investment, particularly for viruses that have low prevalence (Hoye et al. 2010). For example, 25,000 wild birds were sampled in Germany to detect avian influenza prevalence below 1% (Wilking et al. 2009). Sampling over 8,157 animals in Poland was required to detect African swine fever virus with a 0.12% prevalence (Śmietanka et al. 2016). Developing viral surveillance and discovery methods remains challenging and is often hindered by lack of access to free ranging wildlife.

Non-invasive nucleic acid sources, such as environmental DNA (eDNA) and invertebrate-derived DNA (iDNA), can mitigate difficulties in obtaining wildlife samples under remote field conditions to complement
invasive sampling or replace it when invasive sampling is not possible. eDNA and iDNA have been mainly used to survey biodiversity, for instance water eDNA has been used to survey mammalian biodiversity in African waterholes (Seeber et al. 2019) and terrestrial haematophagous leeches have been used to survey Southeast Asian mammals (Abrams et al. 2019; Schnell et al. 2018; Tilker et al. 2020). Water is ubiquitous in most ecosystems, and, among invertebrates, leeches are abundant and easy to collect in many tropical rainforests, many of which are major hotspots of emerging infectious diseases (Daszak et al. 2000). Recently, eDNA/iDNA have been applied to monitoring specific wildlife pathogens (Gogarten et al. 2019; Mosher et al. 2017). However, previous studies focused on known pathogens, whereas most wildlife pathogens are uncharacterized, particularly in tropical emerging virus hotspots (Jones et al. 2008). To identify and characterize novel mammalian viruses from eDNA (waterhole water and sediment from Tanzania and Mongolia) and iDNA (haematophagous terrestrial leeches from Malaysia), we designed a hybridization capture system using a curated set of RNA oligonucleotides based on the ViroChip microarray assay (Chen et al. 2011) as baits to comprehensively target mammalian viral genomes (Fig. 1). Multiple known and novel viruses were identified from both eDNA and iDNA samples including a novel divergent coronavirus demonstrating that eDNA/iDNA samples can be used to survey known and unknown viral diversity.

MATERIAL AND METHODS

Sample collection

Leeches

Two types of terrestrial leeches, tiger leeches (Haemadipsa picta) and brown leeches (Haemadipsa zeylanica) were collected from February to May 2015 in the Deramakot Forest Reserve in Sabah, Malaysian Borneo as described in Axtner et al. (2019). All leeches of the same species (tiger or brown) and from the same sampling site and time were pooled and processed as one sample. The number of leeches ranged from 1 to 77 per pool (median= 7). Samples were stored in RNAlater™ and exported under the permit ‘JKM/MBS.1000-2/3 JLD.2 (8)’. A total of 68 pools (L1-L68) were selected for viral capture to maximize representation of host wildlife species identified from bloodmeals (Axtner et al. 2019).

Sediment and water

In February, June, July and October 2016 samples were collected from the Serengeti National Park (ca. 2.2° S, 34.8° E) Tanzania from waterholes. In October 2015 samples were collected from Southeast Gobi (45.5905°N, 107.1596 °E) and in between June – July 2016 samples were collected from Gobi B (45.1882°N, 93.4288°E) in Mongolia. At each waterhole, 50 ml of water was passed through a 0.22 µm Sterivex filter unit (Millipore) using a disposable 50-ml syringe to remove debris from water. In addition, 25 g of the top 1-3 cm of sediment was collected at each waterhole. The samples were stored in ice in the field, and then frozen at -20°C. In total water filtrate and sediment samples were sampled at 12 waterholes, six respectively from Mongolia and Tanzania. For each sample, 32 ml of water filtrate was ultra-centrifuged
at 28,000 rpm for 2 hours to pellet DNA and viral particles. The supernatant was then removed, the pellet re-suspended in 1 ml of cold PBS (pH 7.2) (Sigma-Aldrich) and left at 4 °C overnight.

Preparation of samples and nucleic acid extraction

Leeches

Leeches were cut into small pieces with a scalpel blade and lysed overnight (≥12 hours) at 55°C in proteinase K and ATL buffer at a 1:10 ratio; 0.2 ml per leech. Nucleic acids were extracted from leech samples using the DNeasy 96 Blood & Tissue kit (Qiagen) (see Axtner et al. 2019).

Water and sediment

500 µl of the centrifuged filtrate was used to extract viral nucleic acids using the RTP® DNA/RNA Virus Mini Kit (Stratec biomedical) with the following modifications: 400 µl of lysis buffer, 400 µl of binding buffer and 20 µl of proteinase K and carrier RNA were used per sample. Samples were eluted in 60 µl. The NucleoSpin Soil kit (Macherey-Nagel) was used to extract DNA/RNA from sediment. 500 mg of soil was extracted according to the manufactures protocol using a 100 µl elution volume.

Positive control

Positive control medical leeches (*Hirudo* spp.) were fed human blood spiked with four viruses at different concentrations (Kampmann et al. 2017). Two RNA viruses, influenza A (InfA) and measles morbillivirus (MeV), and two DNA viruses, bovine herpesvirus (BHV) and human adenovirus (HAdV), were used. The nucleic acids were extracted from the leeches 7 days after feeding and the viral concentrations measured by qPCR (see (Kampmann et al. 2017)).

Library Preparation

RNA was reverse transcribed using SuperScript III and IV (Thermo Fisher Scientific) with random hexamers prior to second-strand synthesis with Klenow fragment (New England Biolabs). The resulting double-stranded cDNA/DNA mix was sheared to an average fragment size of 200 bp using an M220 focused ultrasonicator (Covaris). Sheared product was purified using the ZR-96 DNA Clean & Concentrator-5 kit (Zymo). Dual-indexed Illumina sequencing libraries were constructed as described by Meyer and Kircher (2010) with the modifications described in Alfano et al. (2015). Each library was amplified in three replicate reactions to minimize amplification bias of individual PCRs. The three replicate PCR products for each sample were pooled and purified using the MinElute PCR Purification Kit (Qiagen). Negative control libraries were prepared from different stages of the experimental process (extraction, reverse transcription, library preparation and index PCR) and indexed separately to monitor for contamination. Amplified libraries were quantified using the 2200 TapeStation (Agilent Technologies) on D1000 ScreenTapes.
RNA oligonucleotide Bait Design

The targeted sequence capture panel was designed based on the oligonucleotide probes represented on the Virochip microarray (Wang et al. 2002). The Virochip is a pan-viral DNA microarray comprising the most highly conserved 70-mer sequences from fully sequenced reference viral genomes in GenBank, which was developed for the rapid identification and characterization of novel viruses. We retrieved the viral oligonucleotides from the 5th generation Virochip (Viro5) (Yozwiak et al. 2012), which are available at NCBI’s Gene Expression Omnibus (GEO) repository, (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GEO13323). This included ~17,500 oligonucleotides (70-mer nucleotides) from ~2,000 viral species. We excluded sequences from bacteriophage, plant viruses, viral families infecting only invertebrates and endogenous retroviruses. We included viruses that could have both vertebrate and invertebrate hosts, such as vertebrate viruses with insect vectors. Exogenous retroviruses were represented but murine leukemia viruses were removed since they can cross enrich endogenous retroviruses which can represent large portions of vertebrate genomes and mask rarer viral sequences. Control oligonucleotides, such as those from human genes, yeast intergenic sequences, and human papilloma virus sequences present in HeLa cells were also removed. Ninety-two 70-mer oligonucleotides covering (spaced end-to-end) the entire pol and gB genes of Equine herpesvirus 1 (EHV-1) were included as PCR screening of water samples indicated they were positive for this virus (Dayaram et al. 2021). The resulting 13,532 oligonucleotides were examined for repetitive elements, short repeats, and low complexity regions using RepeatMasker. Repetitive motifs were identified in 234 oligonucleotides, which were removed. The final panel consisted of 13,298 unique sequences which were synthesized (as a panel of biotinylated RNAs) by MYcroarray.

Viral Enrichment Strategy and Sequencing

In-solution target enrichment via hybridization-based capture was performed according to the manufacturer’s protocol (MYbaits® custom targeted enrichment, MYcroarray), with the following modifications: 50uL Dynabeads® M-270 Streptavidin beads (Invitrogen) instead of 30 uL Dynabeads® MyOne™ Streptavidin C1 (Invitrogen); hybridization, bead-bait binding, and wash steps at 60°C; 48 hours hybridization time; 200 ng baits per reaction; 10 μL indexed library inputs. Libraries generated from pooled leeches consisting of more than 16 individuals were captured individually, while libraries generated from pools of fewer individuals were combined to have a comparable number (15-20) of leeches per capture. This was done to ensure that each individual leech represented in each library was allocated enough bait. Water and sediment samples were pooled in groups of two, with sediment and water pooled separately. Per pooled sample, 500 ng of baits were used to ensure enough bait for each sample. The enriched libraries were re-amplified as described in Alfano et al. (2016). The re-amplified enriched libraries were purified using the MinElute PCR Purification Kit (Qiagen), quantified using the 2200 TapeStation (Agilent Technologies) on D1000 ScreenTapes and pooled in equimolar amounts for single-read sequencing on two lanes of an Illumina NextSeq 500 with the TG NextSeq® 500/550 High Output Kit v2 (300 cycles).
Data analysis and bioinformatics pipelines

A total of 219,580,903 single-end reads 300 bp long were generated (average: 3,181,781 single reads per sample; standard deviation [SD]: 1,481,098) (Suppl. Tab. 1) and sorted by dual index sequences. Cutadapt v1.16 and Trimmomatic v0.36 were used to remove adapter sequences and low-quality reads using a quality cutoff of 20 and a minimal read length of 30 nt. After trimming, 97% of the sequences were retained. Leech reads were removed from the dataset by alignment to the *Helobdella robusta* genome v1.0 (assembly GCA_000326865.1), the only complete genome of Hirudinea available in GenBank at the time of the analyses, and all GenBank leech sequences (4,957 sequences resulting from “Hirudinea” search) using Bowtie2 v2.3.5.1 (Langmead & Salzberg 2012). This left 81% of the original reads (Suppl. Tab. 1). Then, rRNA reads were removed using SortMeRNA (Kopylova et al. 2012), leaving 75% of the original reads (Suppl. Tab. 1). The filtered reads were de novo assembled using both Spades v3.11.1 (Bankevich et al. 2012) and Trinity v2.6.6 (Grabherr et al. 2011) assemblers. The obtained contigs were pooled and clustered to remove duplicated or highly similar sequences using USEARCH v11.0.667 (Edgar 2010) with a 90% threshold identity value. The centroids were then subjected to sequential BLAST searches against the NCBI RefSeq viral nucleotide (blastn, 1e-5 E-value threshold) and protein (blastx, 1e-3) databases to identify candidate viral sequences. These candidates were aligned to the complete NCBI nucleotide (blastn, 1e-10) and protein (blastx, 1e-3) databases to identify sequences with higher similarity to non-viral than to viral sequences. In parallel, the adaptor and quality trimmed data were uploaded to Genome Detective (Vilsker et al. 2019), a web base software that assembles viral genomes.

Bacteriophage, invertebrate viruses and retroviruses were excluded from subsequent steps. If our pipeline and Genome Detective generated viral contigs with overlapping sequences the longest contig was selected for analysis. Filtered reads were mapped to the viral contigs to calculate viral read numbers for each virus. Finally, the viral contigs were mapped to the reference genome of the virus corresponding to the best BLAST hit using Geneious v11.0.2 (Biomatters, Inc.). Baits were also mapped to the same references for each virus.

Phylogenetic analyses

Viral contigs were assigned to viral families according to the BLAST results. Representative sequences from these viral families were retrieved from GenBank and aligned with the contigs using MAFFT v7.450 (Katoh & Standley 2013). Phylogenetic analysis was performed using the maximum-likelihood method based on the general time reversible substitution model with among-site rate heterogeneity modelled by the Γ distribution and estimation of proportion of invariable sites available in RAxML v8 (Stamatakis 2014), including 500 bootstrap replicates to determine node support. Phylogenetic analyses were performed only on viral contigs i) showing divergence from known viruses, i.e. with both BLAST identity and coverage to the best reference below 95%, to place them into a phylogenetic context, and ii) mapping to phylogenetically relevant genomic regions. Therefore, *Circoviridae* and *Anelloviridae* contigs were excluded from phylogenetic analyses as were those identified from water.
Leech vertebrate host assignments

Host identification of leeches followed an eDNA/iDNA workflow (Axtner et al. 2019). In summary, leech samples were digested and short fragments of the mitochondrial markers 12S, 16S and cytochrome B were amplified in four PCR replicates each resulting in 12 PCR replicates per sample. We used a twin-tagging 2-step PCR protocol and PCR products were sequenced using an Illumina MiSeq (Axtner et al. 2019). After demultiplexing and read processing, each haplotype was taxonomically assigned to a curated reference database using PROTAX (Somervuo et al. 2016).

Viral detection confirmation by PCR

The PCR primers listed in Suppl. Tab. 2 were designed to confirm the viral contig sequences generated from the leech samples. For PCRs targeting RNA viruses, 50 uL of extract were digested with rDNase I (Ambion) following the manufacturer's protocol. The DNAse-digested extracts were then purified using the RNeasy MinElute Cleanup Kit (Qiagen). RNA was reverse transcribed into cDNA using iScript™ Reverse Transcription Supermix (Bio-Rad). Sediment and water samples that tested positive for EHV and JSRV were screened using previously described pan-herpes and JSRV PCRs (Dayaram et al. 2017) (Palmarini et al. 2000). Resulting amplicons were Sanger sequenced.

Identification of endogenous viral elements (EVEs)

To check if the identified viral contigs represent EVEs of leeches or vertebrate hosts, they were aligned to selected leech and vertebrate genomes (Suppl. Tab. 3) using BLAST (blastn, 1e-10 E-value and 50% query coverage thresholds). Since genome sequences are not available for the leech species and for most host species identified from the bloodmeals, we used the most closely related genomes available in GenBank.

Shotgun sequencing

A subset of 64 leech samples were shotgun sequenced to determine viral enrichment obtained by our capture system. An aliquot of pre-capture amplified genomic library of each leech sample was taken, pooled in equimolar amounts and sequenced on an Illumina MiSeq with Reagent Kit v3 (150-cycle). The shotgun reads were mapped to the viral contigs obtained by viral capture using Bowtie2 v2.3.5.1 (Langmead & Salzberg 2012).

RESULTS

Positive and negative controls

In the viral capture control experiment using medicinal leeches fed with virus-spiked blood, all four viruses were detected, with a percentage of on-target viral reads varying among viruses (HAdV> MeV> BHV> InfA) (Fig. 1) according to the viral concentrations measured as Ct values by qPCR (25 for HAdV, 28 for MeV, 29
for BHV and 33 for InfA). An adeno-associated virus (AAV), which may have been present in the HeLa cell line where the HAdV for the spike-in was cultivated, was also recovered. Most viral contigs coincided with the baits (Fig. 1). However, several BHV genomic regions covered by baits were not retrieved, and we also recovered HAdV contigs corresponding to genomic regions not targeted by baits. These regions might have been recovered by baits targeting less closely related adenoviruses or designed for other viruses.

No viral contigs were identified in the negative controls included to monitor laboratory contaminations for either the leech or water experiments. Further potential contamination from lab reagents was excluded (see Suppl. Information).

Leech viral identification

Viruses were identified in 39 of the 68 leech pools analysed (57%) (Fig. 2; Suppl. Tab. 4). In 18 of these (46%), two to three viruses were identified. Sequence data from five vertebrate-infecting viral families were detected. The most common viral group was Rhabdoviridae found in 37% of samples, followed by Coronaviridae which was identified in 24% of samples. Members of the Anelloviridae were identified in 12% of samples, and Parvoviridae and Circoviridae in 3%.

Rhabdoviridae contigs were genetically similar to three viral genera (Suppl. Tab. 4). Five contigs were most similar (69-77% nt id) to the Vesicular stomatitis Indiana virus (VSIV) (genus Vesiculovirus) as determined by BLAST searches. The limited similarity of these sequences to known rhabdoviruses suggest they may represent a new genus related to fish rhabdoviruses (Perhabdovirus and Sprivirus) or Vesiculovirus (Fig. 3A; Suppl. Fig. 1). The other contigs clustered phylogenetically, suggesting they represent two new species of a rhabdovirus related to lyssaviruses (Fig. 3A; Suppl. Fig. 1). Although in most cases one contig per sample was observed, in five samples (L4, L12, L23, L58, L68) two different viruses were found. Most of the oligonucleotide baits were specific for the L gene which encodes the RNA-dependent RNA polymerase. All recovered contigs mapped to the L gene (Suppl. Fig. 2A-C). The viral contig sequences were confirmed by PCR and Sanger sequencing for L55 and L58 (Suppl. Fig. 2D).

All Coronaviridae contigs were most similar to a bat betacoronavirus (70-73% nt id) (Suppl. Tab. 4). The resulting sequence did not cluster in any of the four clades representing the known Coronaviridae genera, suggesting it may represent a novel coronavirus genus (Fig. 3B; Suppl. Fig. 3). Each contig overlapped with the coronavirus RNA-dependent RNA polymerase gene (orf1ab), the main viral region targeted by the baits (Suppl. Fig. 4).

Anelloviridae contigs matched porcine torque teno virus (PTTV) (95-96% nt id), a giant panda anellovirus (GpAV) (81-92% nt id) or a masked palm civet torque teno virus (Pl-TTV) (83-92% nt id) (Suppl. Tab. 4). The PTTV contigs were found in two samples (L8 and L37), while the GpAV and Pl-TTV contigs were detected in six samples. GpAV was the best match in four samples (L7, L17, L36, L39) and Pl-TTV in three (L21, L25, L39). In sample L39 both were identified. Every Anelloviridae contig mapped to the non-coding region of the relative reference genome since all Anelloviridae baits targeted the same untranslated region.
Three *Circoviridae* contigs matching a porcine circovirus (PCV) (100% nt id) were identified in L7 and L59 (Suppl. Tab. 4). Two non-overlapping but adjacent contigs were retrieved from L7. A single contig overlapping with one of the two contigs determined from L7 was recovered from L59 (Suppl. Fig. 6A). The contigs mapped to the PCV replication protein (Rep), targeted by the *Circoviridae* baits (Suppl. Fig. 6A). The two overlapping contigs of L7 and L59 were confirmed by PCR and Sanger sequencing (Suppl. Fig. 6B). Since the identity of the contigs with known viral sequences in GenBank was 100%, no phylogenetic analysis was performed.

Parvoviridae contigs with the highest similarity to porcine parvovirus (PPV) were found in L8 (1 contig with 98% nt id) and L14 (2 contigs with 74-77% nt id) (Suppl. Tab. 4). The contig of L8 clustered within the *Tetraparvovirus* genus, close to ungulate paroviruses (porcine, ovine and bovine PV), while the contigs of L14 within the *Copiparvovirus* genus, close to PPV4 (Fig. 3C; Suppl. Fig. 7). Two of the three contigs mapped to the replicase gene, while one from L14 mapped to an intergenic region (Suppl. Fig. 6C). Whereas the replicase region of PPV was covered by *Parvoviridae* baits, the intergenic region was not (Suppl. Fig. 6C). This portion of the virus may have been recovered by other non-*Parvoviridae* baits.

Viral enrichment

On-target read proportion was low in both leech and waterholes samples, ranging from 0.00005% (sample L18) to 0.14% (sample L58) (average 0.01%), with a total of 12,654 viral reads out of 149,728,065 total reads (on-target proportion of 8.5E-5) found in 44 (39 leech and 5 waterhole samples) out of 89 total samples tested (68 leech and 21 waterhole samples) (Suppl. Tab. 5). We compared the results of capture of the leech samples to shotgun sequencing of a subset of 64 samples. In this subset, capture yielded 11,581 viral reads out of a total of 137,171,077 reads with an on-target proportion of 8.4E-5, whereas 4 viral reads were found by shotgun sequencing out of 4,747,786 total reads corresponding to an on-target proportion of 8.4E-7. Viral enrichment by capture resulted in a 100-fold increase in on-target viral read proportion. In addition, the viral reads obtained by capture from leeches and waterholes were not randomly distributed across the viral genomes but aligned to regions targeted by baits (Suppl. Fig. 2, 4, 5, 6, 8, 9), reaching up to 479X (sample L58) mean depth of coverage in these regions (range 1.2X-479X). This and the 100-fold increase in on-target viral reads, strongly indicates that enrichment of the viral genetic material present in the samples occurred.

Leech bloodmeal host assignments

Metabarcoding analysis detected bearded pigs (*Sus barbatus*) in all samples yielding porcine viruses, such as porcine circovirus (L7), porcine parvovirus (L8) and porcine torque teno virus (L8 and L37). Four leech samples with giant panda anellovirus (L7, L17, L36, L39) sequences yielded sun bear (*Helarctos*...
sequences. Sequences aligning to the Malayan civet (Viverra tangalunga) were identified in one of the three samples (L25) with masked palm civet torque teno virus sequences. Fourteen of the 16 samples with the potentially new coronavirus genus (87.5%) yielded deer sequences, specifically sambar (Rusa unicolor), suggesting the novel coronavirus might be a cervid virus. Similarly, the novel Lyssavirus-like Rhabdoviridae sequences were associated with cervid species (sambar or Muntiacus sp.) (16 of 22 samples, 73%). However, due to the high prevalence of deer in the samples tested (70%) we could not reject that the occurrence of viruses and deer are independent variables (Chi²Coronaviridae = 1.916, 1 df, p = 0.1663; Chi²Rhabdoviridae = 1.046, 1 df, p = 0.3064).

Identification of endogenous viral elements (EVEs)

Retroviridae contigs similar to the simian and feline foamy virus (Spumaretrovirinae subfamily, 79-82% nt id) were detected in three samples (L7, L46, L64) where Tragulus napu was identified as potential leech host species (Suppl. Tab. 4). These sequences showed high identity to the Tragulus javanicus genome by BLAST search (E-value > 1e-45; query coverage > 98%). Therefore we excluded those sequences as potential EVEs. None of the other viral sequences identified had significative blast hit (E-value > 1e-10; query coverage > 50%) to the tested leech and vertebrate host genomes. Because of lack of sample material available and sample degradation in the environment and during storage, we could not perform further PCR tests to completely exclude that some of the sequences identified represent EVEs.

Waterhole viral identification

Five waterholes from Tanzania and six from Mongolia were tested. From each waterhole, one water filtrate and one sediment sample were collected (except for one Mongolian waterhole where only sediment was collected), for a total of twenty-one samples. Five samples (two water and three sediment samples) were positive for viral sequences (23.8%). In filtered water and sediment samples collected from the same waterhole, only one virus per sample was identified and in one location (WM20 and SM20) contigs from different viral families were isolated based on sample type. Differences between sediment and water are not unexpected as the sediment likely represents a longer-term accumulation of biomaterial and the water represents more acute contamination at the surface and variable mixing throughout.

Of the 11 water filtrate samples tested, two samples from Mongolia (WM3 and WM20) (18.2%) had viral contigs with 100% nt identity to Equid herpesvirus 1 and 3 (EHV-1 and EHV-3). The contig of WM20 mapped to the membrane glycoprotein B, whereas the two contigs of WM3 to the DNA packaging protein and membrane glycoprotein G, all regions covered by the Herpesviridae baits (Suppl. Fig. 8A-D). A nested panherpes PCR targeting the DNA polymerase gene and the resulting Sanger sequences further confirmed EHV presence (Suppl. Fig. 8E). Several equine species including domestic horses inhabit the Gobi Desert (Kaczensky et al. 2015), which is consistent with the presence of these viruses. A further study performed hybridization capture on EHV positive samples using baits tiled across entire EHV genomes, enabling the recovery of the almost entire EHV-1 genome (Dayaram et al. 2021).
Of 12 sediment samples tested, two from Mongolia and one from Tanzania yielded viral sequences (25%) representing the Retroviridae, Adenoviridae and Papillomaviridae families. Four contigs mapping to the protease (pro) gene of the Jaagsiekte sheep retrovirus (JSRV) (100% nt id) were identified in Mongolian sediment (SM6) (Suppl. Fig. 9A). JSRV from SM6 was confirmed by PCR (Suppl. Fig. 9A). Mongolia sediment sample SM20 was positive for Equine adenovirus (100% nt id) with a contig mapping between the pVI and hexon capsid genes (Suppl. Fig. 9B). Multiple equine species are found in the Gobi Desert in Mongolia, therefore it is likely that the water sources sampled may have been frequented by these species (Nandintsetseg et al. 2016). Sediment sample ST38 from Tanzania was positive for a Zetapapillomavirus related to the Equus caballus papillomavirus and Equus asinus papillomavirus (74% nt id; E1-E2 genes) (Fig. 3D; Suppl. Fig. 9C; Suppl. Fig. 10), consistent with the detection of Plains zebra’s (Equus quagga) DNA from this water source (Seeber et al. 2019).

DISCUSSION

We demonstrate for the first time that both eDNA and iDNA sources can be used to survey known and novel viruses. Many of the viruses identified were highly divergent from available viral reference genomes (homology 45-100%, average 80%). DNA and RNA viruses could be detected in 57% and 23.8% of the iDNA (leech) and eDNA (waterhole) samples, respectively. Congruence of host DNA assignment for leeches and viral families identified suggests that bloodmeals are useful for determining vertebrate viral diversity. Detection of equine viruses from African and Mongolian waterholes, where intense wild equid visitation rates were directly observed, suggests eDNA derived viruses reflect host utilization of the water rather than other environmental sources such as fomites. While host assignments are difficult to establish for novel viruses from eDNA (multiple hosts sources) and, to a lesser extent, iDNA, the results narrow the possible number of taxa down to a small portion of the overall faunal diversity within the regions examined. For example, the novel coronavirus was associated, though not statistically significantly, with sambar. This suggests targeted sampling and virus specific PCRs could be used to examine prevalence in the species to establish whether they are a potential viral reservoir. Narrowing down the potential taxa that need to be screened in biodiversity hotspots will be critical, particularly for viruses hosted at low prevalence.

A recent human blood virome study (Moustafa et al. 2017) demonstrated that also not generally blood-associated viruses can be detected in blood. Therefore leech bloodmeals should not restrict viral detection exclusively to blood-borne viruses. The virome detectable in water depends on host seasonality and faunal geographical distributions determining which species are present in an environment. For example, avian influenza virus detection in aquatic environments is affected by season and site-specific density of water fowl (Densmore et al. 2017). In the current study water sampling was performed in the dry season, when animals congregate at limited water sources increasing the likelihood of detecting animal pathogens in the water. Animal viruses detected in water are expected to result from contamination from stool, urine (Rohani et al. 2009), nasal exudates and shed saliva. The viruses we identified in water are known respiratory
transmitted viruses (EHV-1, equine adenovirus, JSRV) or viruses transmitted through skin abrasions (Equus asinus papillomavirus).

PCR based approaches have been used to detect known pathogens from flies (Bitome-Essono et al. 2017; Gogarten et al. 2019) or from medicinal leeches under laboratory conditions (Kampmann et al. 2017). While major findings have resulted from such analyses, PCR based approaches are often poorly suited to the discovery of novel viruses that may be highly divergent as PCRs often fail when viral divergence exceeds 5-10%, particularly relevant to RNA viruses (Schlaberg et al. 2017). The unknown viral diversity in the wild, and the potential degradation of viral nucleic acids in bloodmeals or the environment, may affect PCR detection resulting in high false negative rates. Hybridization capture overcomes such limitations because the short baits can capture divergent and degraded DNA. With our capture system we were able to identify viral sequences with up to 55% divergence from known viral genomes. The extensive virus representation in the bait set allows for the determination of both viral presence and viral diversity. The ability of oligonucleotides with substantial divergence from the target sequence to capture more distantly related sequences is particularly useful in virology since most viruses are uncharacterized in wildlife and many evolve rapidly (Briese et al. 2015; Howard & Fletcher 2012). The overall on-target viral read recovery was low. This was not unexpected since it is unlikely that any bloodmeal was strongly viremic or that large amounts of virus were shed into water. Nevertheless, our viral capture system generated a 100 fold higher viral enrichment compared to shotgun sequencing. Furthermore, viral enrichment concentrated in regions of the viral genomes where baits were designed, leading to high coverage (up to 479X) at these positions. This allowed the assembly of viral genome fragments that could be analysed phylogenetically and further confirmed by PCR.

Using short RNA baits to capture highly conserved sequences from known vertebrate viral genomes is useful and relatively inexpensive for providing an initial viral identification (Fig. 1). However, to fully characterize each virus, the RNA oligonucleotide bait set would need to be customized to retrieve full length viral genomes which has also been done successfully for novel divergent viruses (Alfano et al. 2016). This is a possible strategy to further investigate viruses of interest, whereas initial screening with full length genomes for all viruses is currently too costly.

Several novel viruses were identified from leech bloodmeals, which is not unexpected as little is known about the virology of wildlife in Southeast Asia. Several viral contigs were phylogenetically distinct from known viruses and may represent new genera. For example, the novel coronavirus identified in leech bloodmeals did not cluster with any known Coronaviridae clades. We could also tentatively associate the novel corona- and rhabdoviruses with cervids, which are regularly sold as bushmeat in wildlife markets (Nasi et al. 2011). Both recent coronavirus epidemics (SARS-CoV (Drosten et al. 2003) and SARS-CoV-2 (Zhou et al. 2020) spilled over from wildlife. This suggests that e/iDNA-based pathogen surveillance approaches may complement efforts to proactively identify novel viruses that could potentially spillover to humans or livestock.
Collecting wild haematophagous invertebrates such as leeches or water and sediments has both advantages and disadvantages compared to invasively collected wildlife samples. Large amounts of DNA can be extracted from bloodmeals, in particular when leeches are processed in bulk. We pooled up to 77 leeches and many of our leech bulk samples contained a diverse mix of mammalian DNA. A disadvantage of leeches is that they cannot be found in all environments: for example haematophagous terrestrial species are restricted to tropical rainforests of Asia, Madagascar and Australia (Schnell et al. 2018). Leech feeding biases could influence diversity surveys (Abrams et al. 2019; Schnell et al. 2015). However, this disadvantage could be overcome in the future by employing additional invertebrates such as mosquitoes (Ng et al. 2011) or carrion flies (Hoffmann et al. 2016). Waterholes are commonly found in almost all environments. In environments with seasonal water shortages, DNA from animals can become highly concentrated due to many animals utilizing rare water sources. The disadvantages are that the dilution factor of water, depending on water body size, can obscure rare DNA sequences and mixed host species sequences are generally the rule rather than the exception. RNA degradation can be a limiting factor for the detection of RNA viruses in environmental samples. RNA virus stability depends on many factors such as temperature, pH and UV exposure (Lowen & Steel 2014). We cannot exclude that such factors may have played a role in the lack of detection of RNA viruses (except a retrovirus) in water. In contrast, both RNA and DNA viruses have been shown to be detectable in medical leeches even 50 days after ingestion, despite a gradual decline in concentration over time (Kampmann et al. 2017).

Viral enrichment by hybridization capture from eDNA and its subdiscipline iDNA, may be a useful and economical tool for viral identification and characterization prior to potential viral emergence. eDNA and iDNA may be the only option to detect viruses circulating in wild environments where direct access to animals is difficult or highly restricted. The current study suggests this approach will be successful in complementing invasive approaches or replacing them in environments where invasive approaches are impossible.

ACKNOWLEDGEMENTS
We thank Joseph DeRisi for guidance in using his oligonucleotide data. We thank Peter Seeber and Sanatana-Erini Soilemetzidou for collection of water and sediment samples in Africa and Mongolia respectively. We thank the Sabah Forestry Department, especially Johnny Kissing, Peter Lagan, and Datuk Sam Mannan, for supporting the fieldwork and the Sabah Biodiversity Council for providing research, collection, and export permits (Jkm/MBS.1000-2/3 JLD.2) for the leech work. This project received financial support from the German Federal Ministry of Education and Research (BMBF FKZ: 01LN1301A) to NA, JA, AM and AW and was supported by funds from the Leibniz Gemeinschaft, SAW-2015-IZW-1 440 to AD and ADG.

AUTHORS’ CONTRIBUTIONS
ADG and AW designed the study; AM and STW collected the leeches in the field; JA performed the leech nucleic acids extractions and the PCRs on leeches; NA and AD performed the capture experiments; NA
and KT performed the bioinformatics and phylogenetic analyses; NA, AD, ADG and AW wrote the manuscript; NA, AD, JA, KT, MLK, TPG, AW and ADG reviewed the manuscript; all authors read and approved the final manuscript.

DATA AVAILABILITY
The dataset generated and analyzed during this study is available in the NCBI Sequence Read Archive (SRA) repository under the accession number PRJNA627811 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA627811/). The consensus sequences of the viral contigs obtained in this study were deposited in GenBank under the accession numbers MT444451-MT444487. Supplementary data for this publication can be found on Dryad, Dataset, https://doi.org/10.5061/dryad.2v6wppznc.

REFERENCES
Abrams, J. F., Hörig, L. A., Brozovic, R., Axtner, J., Crampton-Platt, A., Mohamed, A., Wong, S. T., et al. (2019). ‘Shifting up a gear with iDNA: From mammal detection events to standardised surveys’, Journal of Applied Ecology, 56/7: 1637–48.
Alfano, N. Dayaram A., Axtner J., Tsangaras, K., Kampmann, M.-L., Mohamed A., Wong, S.T., Gilbert M.T., Wilting, A., Greenwood, A.D. (2021), Data from: Non-invasive surveys of mammalian viruses using environmental DNA. Methods in Ecology and Evolution, Dryad, Dataset, https://doi.org/10.5061/dryad.2v6wppznc.
Alfano, N., Michaux, J., Morand, S., Aplin, K., Tsangaras, K., Löber, U., Fabre, P.-H., et al. (2016). ‘Endogenous gibbon ape leukemia virus identified in a rodent (Melomys burtoni subsp.) from Wallacea (Indonesia)’, Journal of virology, 90/18: 8169–80. Am Soc Microbiol.
Axtner, J., Crampton-Platt, A., Hörig, L. A., Mohamed, A., Xu, C. C., Yu, D. W., & Wilting, A. (2019). ‘An efficient and robust laboratory workflow and tetrapod database for larger scale environmental DNA studies’, GigaScience, 8/4: giz029.
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., et al. (2012). ‘SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing’, Journal of computational biology, 19/5: 455–77.
Bitome-Essonon, P.-Y., Ollomo, B., Amathau, C., Durand, P., Mokoudoum, N. D., Yacka-Mouele, L., Okouga, A.-P., et al. (2017). ‘Tracking zoonotic pathogens using blood-sucking flies as’ flying syringes”, eLife, 6: e22069.
Briese, T., Kapoor, A., Mishra, N., Jain, K., Kumar, A., Jabado, O. J., & Lipkin, W. I. (2015). ‘Virome capture sequencing enables sensitive viral diagnosis and comprehensive virome analysis’, MBio, 6/5. Am Soc Microbiol.
Chen, E. C., Miller, S. A., DeRisi, J. L., & Chiu, C. Y. (2011). ‘Using a Pan-Viral Microarray Assay (Virochip) to Screen Clinical Samples for Viral Pathogens’,
Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). ‘Emerging infectious diseases of wildlife—threats to biodiversity and human health’, *Science*, 287/5452: 443–9. American Association for the Advancement of Science.

Dayaram, A., Franz, M., Schattschneider, A., Damiani, A. M., Bischofberger, S., Osterrieder, N., & Greenwood, A. D. (2017). ‘Long term stability and infectivity of herpesviruses in water’, *Scientific Reports*, 7: 46559.

Dayaram, A., Seeber, P., Courtiol, A., Soilemetzidou, S., Tsangaras, K., Franz, M., McEwen, G., et al. (2021). ‘Seasonal host and ecological drivers may promote restricted water as a viral vector’, *Science of the Total Environment*, 145446. Elsevier.

Densmore, C. L., Iwanowicz, D. D., Ottinger, C. A., Hindman, L. J., Bessler, A., Iwanowicz, L. R., Prosser, D. J., et al. (2017). ‘Molecular detection of avian influenza virus from sediment samples in waterfowl habitats on the Delmarva Peninsula, United States’, *Avian Diseases*, 61/4: 520–5. American Association of Avian Pathologists.

Drosten, C., Günther, S., Preiser, W., Van Der Werf, S., Brodt, H.-R., Becker, S., Rabenau, H., et al. (2003). ‘Identification of a novel coronavirus in patients with severe acute respiratory syndrome’, *New England Journal of Medicine*, 348/20: 1967–76.

Edgar, R. C. (2010). ‘Search and clustering orders of magnitude faster than BLAST’, *Bioinformatics*, 26/19: 2460–1.

Gogarten, J. F., Düx, A., Mubemba, B., Pléh, K., Hoffmann, C., Mielke, A., Müller-Tiburtius, J., et al. (2019). ‘Tropical rainforest flies carrying pathogens form stable associations with social nonhuman primates’, *Molecular Ecology*, 28/18: 4242–58.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., et al. (2011). ‘Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data’, *Nature Biotechnology*, 29/7: 644.

Hoffmann, C., Stockhausen, M., Merkel, K., Calvignac-Spencer, S., & Leendertz, F. H. (2016). ‘Assessing the feasibility of fly based surveillance of wildlife infectious diseases’, *Scientific Reports*, 6/1: 1–9.

Howard, C. R., & Fletcher, N. F. (2012). ‘Emerging virus diseases: can we ever expect the unexpected?’, *Emerging Microbes & Infections*, 1/1: 1–9. Taylor & Francis.

Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M., & Fouchier, R. A. (2010). ‘Surveillance of wild birds for avian influenza virus’, *Emerging Infectious Diseases*, 16/12: 1827.

Johnson, J., Howard, K., Wilson, A., Ward, M., Gilbert, G. L., & Degeling, C. (2019). ‘Public preferences for One Health approaches to emerging infectious diseases: a discrete choice experiment’, *Social Science & Medicine*, 228: 164–71.

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). ‘Global trends in emerging infectious diseases’, *Nature*, 451/7181: 990–3.

Kaczensky, P., Lkhagvasuren, B., Pereladova, O., Hemami, M., & Bouskila, A. (2015). *Equus hemionus*. The IUCN Red List of Threatened Species 2015: e. T7951A45171204.

This article is protected by copyright. All rights reserved
Kampmann, M.-L., Schnell, I. B., Jensen, R. H., Axtner, J., Sander, A. F., Hansen, A. J., Bertelsen, M. F., et al. (2017). 'Leeches as a source of mammalian viral DNA and RNA—a study in medicinal leeches', *European journal of wildlife research*, 63/2: 36.

Katoh, K., & Standley, D. M. (2013). 'MAFFT multiple sequence alignment software version 7: improvements in performance and usability', *Molecular biology and evolution*, 30/4: 772–80. Society for Molecular Biology and Evolution.

Kopylova, E., Noé, L., & Touzet, H. (2012). 'SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data', *Bioinformatics*, 28/24: 3211–7.

Langmead, B., & Salzberg, S. (2012). Fast gapped-read alignment with bowtie 2, *Nat Methods* 9 (4): 357–359. pmid: 22388286 View Article PubMed. NCBI.

Leroy, E. M., Epelboin, A., Mondonge, V., Pourrut, X., Gonzalez, J.-P., Muyembe-Tamfum, J.-J., & Formenty, P. (2009). 'Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007', *Vector-borne and zoonotic diseases*, 9/6: 723–8. Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.

Lowen, A. C., & Steel, J. (2014). 'Roles of humidity and temperature in shaping influenza seasonality', *Journal of virology*, 88/14: 7692–5. Am Soc Microbiol.

Mosher, B. A., Huyvaert, K. P., Chestnut, T., Kerby, J. L., Madison, J. D., & Bailey, L. L. (2017). 'Design-and model-based recommendations for detecting and quantifying an amphibian pathogen in environmental samples', *Ecology and evolution*, 7/24: 10952–62.

Moustafa, A., Xie, C., Kirkness, E., Biggs, W., Wong, E., Turpaz, Y., Bloom, K., et al. (2017). 'The blood DNA virome in 8,000 humans', *PLoS pathogens*, 13/3: e1006292. Public Library of Science.

Nandintsetseg, D., Kaczensky, P., Ganbaatar, O., Leimgruber, P., & Mueller, T. (2016). 'Spatiotemporal habitat dynamics of ungulates in unpredictable environments: The khulan (*Equus hemionus*) in the Mongolian Gobi desert as a case study', *Biological Conservation*, 204: 313–21. Elsevier.

Nasi, R., Taber, A., & Van Vliet, N. (2011). 'Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins', *International Forestry Review*, 13/3: 355–68.

Ng, T. F. F., Willner, D. L., Lim, Y. W., Schmieder, R., Chau, B., Nilsson, C., Anthony, S., et al. (2011). 'Broad surveys of DNA viral diversity obtained through viral metagenomics of mosquitoes', *PloS one*, 6/6.

Palmarini, M., Datta, S., Omid, R., Murgia, C., & Fan, H. (2000). 'The long terminal repeat of Jaagsiekte sheep retrovirus is preferentially active in differentiaed epithelial cells of the lungs', *Journal of virology*, 74/13: 5776–87. Am Soc Microbiol.

Peeri, N. C., Shrestha, N., Rahman, M. S., Zaki, R., Tan, Z., Bibi, S., Baghbanzadeh, M., et al. (2020). 'The SARS, MERS and novel coronavirus (COVID-19) epidemics, the newest and biggest global health threats: what lessons have we learned?', *International Journal of Epidemiology*.

Pruvot, M., Khammavong, K., Milavong, P., Philavong, C., Reinhazr, D., Mayxay, M., Rattanavong, S., et al. (2019). 'Toward a quantification of risks at the nexus of conservation and health: The case of bushmeat markets in Lao PDR', *Science of the total environment*, 676: 732–45.

This article is protected by copyright. All rights reserved
Rohani, P., Breban, R., Stallknecht, D. E., & Drake, J. M. (2009). ‘Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion’, *Proceedings of the National Academy of Sciences*, 106/25: 10365–9. National Acad Sciences.

Schlaberg, R., Queen, K., Simmon, K., Tardif, K., Stockmann, C., Flygare, S., Kennedy, B., et al. (2017). ‘Viral pathogen detection by metagenomics and pan-viral group polymerase chain reaction in children with pneumonia lacking identifiable etiology’, *The Journal of infectious diseases*, 215/9: 1407–15. Oxford University Press.

Schnell, I. B., Bohmann, K., Schultze, S. E., Richter, S. R., Murray, D. C., Sinding, M.-H. S., Bass, D., et al. (2018). ‘Debugging diversity–a pan-continental exploration of the potential of terrestrial blood-feeding leeches as a vertebrate monitoring tool’, *Molecular ecology resources*, 18/6: 1282–98.

Schnell, I. B., Sollmann, R., Calvignac-Spencer, S., Siddall, M. E., Douglas, W. Y., Wilting, A., & Gilbert, M. T. P. (2015). ‘iDNA from terrestrial haematophagous leeches as a wildlife surveying and monitoring tool–prospects, pitfalls and avenues to be developed’, *Frontiers in zoology*, 12/1: 24.

Seeber, P. A., McEwen, G. K., Löber, U., Förster, D. W., East, M. L., Melzheimer, J., & Greenwood, A. D. (2019). ‘Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes’, *Molecular ecology resources*.

Sharp, P. M., & Hahn, B. H. (2011). ‘Origins of HIV and the AIDS pandemic’, *Cold Spring Harbor perspectives in medicine*, 1/1: a006841.

Śmietanka, K., Woźniakowski, G., Kozak, E., Niemczuk, K., Frączyk, M., Bocian, Łukasz, Kowalczyk, A., et al. (2016). ‘African swine fever epidemic, Poland, 2014–2015’, *Emerging infectious diseases*, 22/7: 1201.

Somervuo, P., Koskela, S., Pennanen, J., Henrik Nilsson, R., & Ovaskainen, O. (2016). ‘Unbiased probabilistic taxonomic classification for DNA barcoding’, *Bioinformatics*, 32/19: 2920–7.

Stamatakis, A. (2014). ‘RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies’, *Bioinformatics*, 30/9: 1312–3.

Swift, L., Hunter, P. R., Lees, A. C., & Bell, D. J. (2007). ‘Wildlife trade and the emergence of infectious diseases’, *EcoHealth*, 4/1: 25. Springer.

Tilker, A., Abrams, J. F., Nguyen, A., Höring, L., Axtner, J., Louvrier, J., Rawson, B. M., et al. (2020). ‘Identifying conservation priorities in a defaunated tropical biodiversity hotspot’, *Diversity and Distributions*, 26/4: 426–40. Wiley Online Library.

Vilsker, M., Moosa, Y., Nooij, S., Fonseca, V., Ghysens, Y., Dumon, K., Pauwels, R., et al. (2019). ‘Genome Detective: an automated system for virus identification from high-throughput sequencing data’, *Bioinformatics*, 35/5: 871–3.

Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., Boushey, H. A., Ganem, D., & DeRisi, J. L. (2002). ‘Microarray-based detection and genotyping of viral pathogens’, *Proceedings of the National Academy of Sciences*, 99/24: 15687–92.

This article is protected by copyright. All rights reserved
Wilking, H., Ziller, M., Staubach, C., Globig, A., Harder, T. C., & Conraths, F. J. (2009). ‘Chances and limitations of wild bird monitoring for the avian influenza virus H5N1—detection of pathogens highly mobile in time and space’, *PLoS One*, 4/8.

Yozwiak, N. L., Skewes-Cox, P., Stenglein, M. D., Balmaseda, A., Harris, E., & DeRisi, J. L. (2012). ‘Virus identification in unknown tropical febrile illness cases using deep sequencing’, *Plos neglected tropical diseases*, 6/2.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., et al. (2020). ‘A pneumonia outbreak associated with a new coronavirus of probable bat origin’, *Nature*, 1–4.

Figure 1: Viral screening of vertebrate viruses from leech positive control and leech iDNA and waterholes eDNA samples using hybridization capture. Left panel: medical leeches which were fed human blood spiked with four viruses were used as positive controls. All four viruses were detected after capture, with different percentages of on-target viral reads. The contigs recovered for each virus (gray/black bars) were mapped to the reference genome together with the corresponding baits (blue bars). Right panel: examples of iDNA and eDNA samples: a leech feeding on a frog in a rainforest of Vietnam (courtesy Andrew Tilker; Accepted Article)
Leibniz-IZW) and an African waterhole in Tanzania (courtesy Peter Seeber, Leibniz-IZW). Viral identity of contigs found in eDNA and iDNA samples is paired with host identity determined either by mammalian metabarcoding of the leech samples, or by observation of waterhole usage.
Figure 2: Relative abundance of viruses from each family, shown as the percentage of the total number of viral reads in each leech and waterhole sample. For sample names, S stands for sediment, W for water, T for Tanzania, M for Mongolia and L for leeches. The leech host assignment for each leech sample is shown on the right (see Suppl. Tab. 4 for further details).

Figure 3: Evolutionary relationships of the viral sequence identified in leech and water samples with representatives of the main genera of the Rhabdoviridae (A), Coronaviridae (B), Parvoviridae (C) and Papillomaviridae (D) families. When nearly identical sequences of the same virus were found in multiple samples, consensus sequences were used. The sequences generated in this study are marked in red. B: the four Coronaviridae genera (Alpha-, Beta-, Gamma- and Delta-coronavirus) are indicated, together with the four (a-d) Betacoronavirus subgroups. More details are available in the corresponding Supplementary figures.

SUPPORTING INFORMATION
Supporting information is available at MEE online.