On the speed of uniform convergence in Mercer’s theorem

RUSTEM TAKHANOV*, School of Sciences and Humanities, Republic of Kazakhstan

The classical Mercer’s theorem claims that a continuous positive definite kernel \(K(x, y) \) on a compact set can be represented as

\[
\sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(y)
\]

where \((\lambda_i, \phi_i) \) are eigenvalue-eigenvector pairs of the corresponding integral operator. This infinite representation is known to converge uniformly to the kernel \(K \). We estimate the speed of this convergence in terms of the decay rate of eigenvalues and demonstrate that for 2m times differentiable kernels the first \(N \) terms approximate \(K \) as \(O((\sum_{i=N+1}^{\infty} \lambda_i^m)^{1/m}) \) or \(O((\sum_{i=N+1}^{\infty} \lambda_i^m)^{\infty/m}) \). Finally, we demonstrate some applications of our results to a spectral characterization of integral operators with continuous roots and other powers.

Additional Key Words and Phrases: Mercer’s theorem, Mercer kernel, uniform convergence, RKHS, Gagliardo-Nirenberg inequality.

ACM Reference Format:
Rustem Takhanov. 2022. On the speed of uniform convergence in Mercer’s theorem. 1, 1 (September 2022), 11 pages.

1 INTRODUCTION
Mecer kernels play an important role in machine learning and is a mathematical basis of such techniques as kernel density estimation and spline models [14], Support Vector Machines [11], kernel principal components analysis [10], regularization of neural networks [13] and many others. According to Aronszajn’s theorem, any Mercer kernel induces a reproducing kernel Hilbert space (RKHS) and vice versa, any RKHS corresponds to a kernel. A relationship between the latter two notions is described in the classical Mercer’s theorem. A goal of this note is to refine the theorem and give some estimates on the speed of uniform convergence stated in it.

Let \(\Omega \subseteq \mathbb{R}^n \) be a compact set, \(\Omega : \Omega \times \Omega \rightarrow \mathbb{R} \) be a continuous Mercer kernel [6] and \(L_p(\Omega) \), \(p \geq 1 \) be a space of real-valued functions \(f \) on \(\Omega \) with \(\|f\|_{L_p(\Omega)} = (\int_{\Omega} |f(x)|^p \, dx)^{1/p} \). Let \(O_K : L_2(\Omega) \rightarrow L_2(\Omega) \) be defined by \(O_K(\phi)(x) = \int_{\Omega} K(x, y) \phi(y) \, dy \). By \(C(\Omega) \) we denote a space of continuous functions. From Mercer’s theorem we have that there is an orthonormal basis \(\{\psi_i(x)\}_{i=0}^{\infty} \) in \(L_2(\Omega) \) such that \(O_K[\psi_i] = \lambda_i \psi_i \). Some of eigenvalues of \(O_K \) can be equal to zero, therefore, let us assume that natural numbers \(i_1 < i_2 < \cdots \) are such that \(\{\lambda_{i_j}\}_{j=1}^{\infty} \) is a set of positive eigenvalues, and we denote \(\lambda_i = \lambda'_{i_j} \) and \(\phi_j = \psi_{i_j} \), \(j \in \mathbb{N} \). It is well-known that \(\{\phi_i(x)\}_{i=0}^{\infty} \subseteq C(\Omega) \) and \(L_2^{\infty} = \|K(x, y) - \sum_{i=1}^{N} \lambda_i \phi_i(x) \phi_i(y)\|_{L_2(\Omega \times \Omega)}^2 = \sum_{i=N+1}^{\infty} \lambda_i^2 \). Analogously, for diagonal elements we have

\[
S_N = \|K(x, x) - \sum_{i=1}^{N} \lambda_i \phi_i(x)^2\|_{L_2(\Omega)} = \sum_{i=N+1}^{\infty} \lambda_i.
\]

Thus, the behaviour of eigenvalues completely characterizes the speed of convergence of \(\sum_{i=1}^{N} \lambda_i \phi_i(x) \phi_i(y) \) to \(K \) in \(L_2(\Omega \times \Omega) \) and of \(\sum_{i=1}^{N} \lambda_i \phi_i(x)^2 \) to \(K(x, x) \) in \(L_2(\Omega) \). For the supremum norm, Mercer’s theorem implies only the uniform convergence, i.e.

\[
C_N = \sup_{x, y \in \Omega} |K(x, y) - \sum_{i=1}^{N} \lambda_i \phi_i(x) \phi_i(y)| \rightarrow 0
\]
as \(N \rightarrow \infty \). We are interested in upper bounds on \(C_N \).

Author’s address: Rustem Takhanov, rustem.takhanov@nu.edu.kz, School of Sciences and Humanities, 53 Kabanbay Batyr Ave, Nur-Sultan city, Republic of Kazakhstan, 010000.

© 2022
For \(\alpha = (\alpha_1, \cdots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n \), \(|\alpha| \) denotes \(\sum_{i=1}^n \alpha_i \). \(\partial^\alpha f(x) \) denotes \(\frac{\partial^{\alpha_i} f(x)}{\partial x_i^{\alpha_i}} \). The symbol \(\mathcal{C}^m(\Omega) \) denotes a set of functions \(f : \Omega \to \mathbb{R} \) such that \(\partial^\alpha f \in \mathcal{C}(\Omega) \) for \(|\alpha| \leq m \). We prove the following theorems.

Theorem 1.1. Let \(\Omega \) have a Lipschitz boundary, \(K \in C^{2m}(\Omega \times \Omega) \) and \(p > \frac{n}{m} \). \(\rho \geq 1 \). Then,

\[
\mathcal{C}^2_K \leq C_{\Omega, p}^m(\max_{|\alpha|=m} \left(\sum_{\beta \leq \alpha} \theta \right) \|D^\beta \partial_{\alpha-\beta}f\|_{L^p(\Omega)}^\theta \left(\sum_{i=N+1}^\infty \lambda_i \right)^{-1}) + C_{\Omega, p}^m \sum_{i=N+1}^\infty \lambda_i
\]

where \(D_\alpha(x) = \partial_\alpha^\alpha \partial_\beta^\beta K(x, y) \). \(\theta = (1 + \frac{m}{n} - \frac{1}{p})^{-1} \) and

\[
C_{\Omega, p}^m = \sup_{u \in L^1(\Omega)} \frac{\|u\|_{L^1(\Omega)}}{\|u\|_{L^p(\Omega)}}
\]

is an optimal constant in the Gagliardo-Nirenberg inequality for the domain \(\Omega \).

Note that in the latter theorem one can set \(p = +\infty \) and obtain that \(\mathcal{C}^2_K = O((\sum_{i=N+1}^\infty \lambda_i)^{\frac{m}{n}}) \). Thus, infinitely differentiable kernels satisfy \(\mathcal{C}^2_K = O((\sum_{i=N+1}^\infty \lambda_i)^{1-\epsilon}) \) for any \(\epsilon > 0 \).

Theorem 1.2. Let \(\Omega \) have a Lipschitz boundary, \(K \in C^{2m}(\Omega \times \Omega) \) and \(p > \frac{n}{m} \). \(\rho \geq 1 \). Then,

\[
\mathcal{C}^2_K \leq D_{\Omega, p}^m(\sum_{i=N+1}^\infty \lambda_i^{2}(1-\theta)^{1/2}) \max_{|\alpha|=m} \|D^\alpha u\|_{L^p(\Omega)} \|D^\alpha f\|_{L^p(\Omega)}^\theta + D_{\Omega, p}^m \sum_{i=N+1}^\infty \lambda_i^{2}^{-1/2}
\]

where \(\theta = (1 + \frac{m}{n} - \frac{2}{p})^{-1} \) and

\[
D_{\Omega, p}^m = \sup_{u \in L^1(\Omega)} \frac{\|u\|_{L^1(\Omega)}}{\|u\|_{L^2(\Omega)}}
\]

is an optimal constant in the Gagliardo-Nirenberg inequality for the domain \(\Omega \times \Omega \).

For \(p = +\infty \) we have \(\mathcal{C}^2_K = O((\sum_{i=N+1}^\infty \lambda_i^{2})^{\frac{m}{n}}) \). For infinitely differentiable kernels, the latter implies \(\mathcal{C}^2_K = O((\sum_{i=N+1}^\infty \lambda_i^{2})^{1-\epsilon}) \) for any \(\epsilon > 0 \).

Proof of the Main Theorem

Let \(\mathcal{H}_K \) be a reproducing kernel Hilbert space (RKHS) defined by \(K \). This space is a completion of the span of \(\{K(x, \cdot) \mid x \in \Omega\} \) with the inner product \(\langle K(x, \cdot), K(y, \cdot) \rangle_{\mathcal{H}_K} = K(x, y) \). Also, it can be characterized by the following proposition, which is equivalent to Theorem 4.12 from [3] and whose original version can be found in [2].

Proposition 2.1 ([2, 3]). Let \(\{\lambda_i\}_{i=1}^{\infty} \) be the set of all positive eigenvalues of \(\mathcal{O}_K \) (counting multiplicities) with corresponding orthogonal unit eigenvectors \(\{\phi_i\}_{i=1}^{\infty} \). Then, \(\mathcal{H}_K \) equals

\[
\mathcal{O}_K^{1/2}[L^2(\Omega)] = \left\{ \sum_{i=1}^{\infty} a_i \phi_i \mid \left[\frac{a_i}{\sqrt{\lambda_i}} \right]_{i=1}^{\infty} \in l^2 \right\} \subseteq \mathcal{C}(\Omega)
\]
with the inner product \(\langle \sum_{i=1}^{\infty} a_i \varphi_i, \sum_{i=1}^{\infty} b_i \varphi_i \rangle_{\mathcal{H}_K} = \sum_{i=1}^{\infty} \frac{a_i b_i}{\| u \|_\alpha} \). For any \(f \in \mathcal{H}_K \),
\[
\| f \|_{L_\infty(\Omega)} \leq C_K \| f \|_{\mathcal{H}_K},
\]
where \(C_K = \max_{x, y \in \Omega} K(x, y) \).

We will use that proposition throughout our proof.

For any \(f \in C(\Omega) \), an internal point \(x \in \Omega \), \(h \in \mathbb{R}^n \) and \(\alpha \in (\mathbb{N} \cup \{0\})^n \), let us denote
\[
\delta^{(\alpha, \beta)}_h[f](x) = \sum_{\beta \leq \alpha} (-1)^{\beta} \binom{\alpha}{\beta} f(x_1 + \beta_1 h_1, \ldots, x_n + \beta_n h_n)
\]
where \(\binom{n}{\beta} \) denotes \(\beta_i \leq \alpha_i, i = 1, \ldots, n \). For a kernel \(K \in C(\Omega \times \Omega) \), we have
\[
\delta^{(\alpha, \beta)}_{(h, h')}[K](x, x) = \sum_{\beta, \beta' \leq \alpha, \beta' \leq \alpha} (-1)^{|\beta| + |\beta'|} \binom{\alpha}{\beta} \binom{\alpha}{\beta'} K(x_1 + \beta_1 h_1, \ldots, x_n + \beta_n h_n, x_1 + \beta'_1 h_1, \ldots, x_n + \beta'_n h_n)
\]
If \(\delta^{(\alpha, \beta)}_h \) exists, let us denote
\[
D_\alpha(x) = \delta^{(\alpha, 0)}_h K(x, y)_{y=x}.
\]
Note that \(\delta^{(\alpha, \beta)}_h \) is a finite difference operator of a higher order. Its well-known property is given below.

Proposition 2.2. If \(f \in C^{(\alpha)}(\Omega) \), then \(\delta^{(\alpha)}_h[f](x) = \partial^\alpha f(x) h^\alpha + r(x, h) \) where \(|r(x, h)| \leq C(x, h) \| h \|^{(\alpha)} \) and
\[
\lim_{h \to 0} C(x, h) = 0.
\]

For symmetric functions, \(\delta^{(\alpha, \alpha)}_{(h, h')} [F](x, x) \) satisfies a finer property.

Lemma 2.3. Let \(F \in C^{(\alpha)}(\Omega \times \Omega) \) satisfy \(F(x, y) = F(y, x) \). Then, for any \(\alpha \in (\mathbb{N} \cup \{0\})^n : |\alpha| = k \), we have
\[
\delta^{(\alpha, \alpha)}_{(h, h')} [F](x, x) = \partial^{(\alpha)}_x \partial^{(\alpha)}_y F|_{(x, x)} h^\alpha (h')^\alpha + r(x, h, h'),
\]
where
\[
|r(x, h, h')| \leq C_1(\alpha, \alpha) \| h \|^{(\alpha)} \| h' \|^{(\alpha)} + C_2(\alpha, \alpha) \| h \|^{(\alpha)} \| h' \|^{(\alpha)} + C(\alpha, \alpha) \| h \|^{(\alpha)} \| h' \|^{(\alpha)}
\]
and
\[
\lim_{(h, h') \to (0, 0)} C_1(\alpha, \alpha) = 0, \lim_{(h, h') \to (0, 0)} C_2(\alpha, \alpha) = 0, \lim_{(h, h') \to (0, 0)} C(\alpha, \alpha) = 0.
\]

Proof. A symbol \(f(h, h') = o(g(h, h')) \) denotes \(\lim_{(h, h') \to (0, 0)} \frac{f(h, h')}{g(h, h')} = 0. \) Let us denote
\[
q(h, h') = F(x + h, x + h') - \sum_{|\eta|, |\gamma|, |\eta'|, |\gamma'| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma - \sum_{|\eta|, |\gamma| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma - \sum_{|\eta|, |\gamma| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma
\]
\[
\sum_{|\eta|, |\gamma| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma
\]
\[
\sum_{|\eta|, |\gamma| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma
\]
\[
\sum_{|\eta|, |\gamma| \leq k} \frac{1}{\eta! \gamma!} \partial^{(\eta)}_x \partial^{(\gamma)}_y F|_{(x, x)} h^\eta h'^\gamma
\]
We will prove that \(q(h, h') = o(\|h'\|^k \|h\|^k) \). First, note that \(\partial_h^\alpha q(h, h') \), for \(|\alpha| \leq k\), reads as

\[
\partial_h^\alpha q(h, h') = \partial_h^\alpha F|_{(x+h,x+h')} - \sum_{q:|q| \leq k} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} - \sum_{q:|q| \leq k} \frac{(\partial_x^{q+\alpha} F|_{(x+h,x)} - \sum_{q:|q| \leq k} \frac{1}{\gamma!} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q)}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} - \sum_{\gamma:|\gamma| \leq k} \frac{(\partial_x^\gamma \partial_y^\gamma F|_{(x+h,x)} - \sum_{q:|q| \leq k} \frac{1}{\gamma!} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q)}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!}
\]

and therefore,

\[
\partial_h^\alpha q(0, h') = \partial_h^\alpha F|_{(x,x+h')} - \sum_{\gamma:|\gamma| \leq k} \frac{\partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} - \sum_{\gamma:|\gamma| \leq k} \frac{(\partial_x^\gamma \partial_y^\gamma F|_{(x,x+h)} - \sum_{q:|q| \leq k} \frac{1}{\gamma!} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q)}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} = 0
\]

Using \(q(\cdot, h') \in C^k(\Omega) \) and Taylor’s expansion around \(h = 0 \), we obtain

\[
q(h, h') = \sum_{|\alpha| = k} \partial_h^\alpha q(\chi h, h') \frac{h^\alpha}{\alpha!}
\]

where \(\chi \in (0, 1) \).

For \(|\alpha| = k\), we have

\[
\partial_h^\alpha q(\chi h, h') = \partial_h^\alpha F|_{(x+\chi h,x+h')} - \sum_{\gamma:|\gamma| \leq k} \frac{\partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} - \sum_{\gamma:|\gamma| \leq k} \frac{(\partial_x^\gamma \partial_y^\gamma F|_{(x+\chi h,x)} - \sum_{q:|q| \leq k} \frac{1}{\gamma!} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x)} h^q)}{\gamma!} \partial_y^q F|_{(x,x)} \frac{h^q h'^y}{\eta!} - \sum_{\gamma:|\gamma| \leq k} \frac{(\partial_x^\gamma \partial_y^\gamma F|_{(x+\chi h,x+h')} - \sum_{q:|q| \leq k} \frac{1}{\gamma!} \partial_x^{q+\alpha} \partial_y^q F|_{(x,x+h')} h^q)}{\gamma!} \partial_y^q F|_{(x,x+h')} \frac{h^q h'^y}{\eta!}
\]

If we denote \(R(h') = \partial_h^\alpha F|_{(x+\chi h,x+h')} - \partial_h^\alpha F|_{(x,x+h')} \), then, by Taylor’s expansion theorem, we have \(R(h') - \sum_{\gamma:|\gamma| \leq k} \frac{\partial_x^\gamma R(0) h'^y}{\gamma!} = o(\|h'\|^k) \). The latter expression for \(\partial_h^\alpha q(\chi h, h') \) exactly equals \(R(h') - \sum_{\gamma:|\gamma| \leq k} \frac{\partial_x^\gamma R(0) h'^y}{\gamma!} \) and we conclude

\[
q(h, h') = \sum_{|\alpha| = k} \partial_h^\alpha q(\chi h, h') \frac{h^\alpha}{\alpha!} = o(\|h\|^k \|h'\|^k).
\]
Thus, we proved that

\[
F(x + h, x + h') = \sum_{\eta ; |\eta| \leq k} A_{\eta, y} h^\eta (h')^\eta + \sum_{y ; |y| \leq k} a_{y}(h) h^y + \sum_{\eta ; |\eta| \leq k} a_{\eta}(h') h^\eta + q(h, h'),
\]

where \(A_{\eta, y} = \frac{1}{\eta y!} \frac{\partial^2 \partial y F(y, x)}{x^0 \partial y} \) and \(a_{y}(h) = \frac{\partial^2 \partial y F(y, x)}{x^0 \partial y} \). After plugging in the expression (4) into (3), we have \((\odot \text{ denotes the Hadamard product})\)

\[
\delta^{(a, a)} [(x, x)] = \sum_{\beta, \beta' : \beta, \beta' \leq a, \beta' \leq h} (-1)^{|\beta| + |\beta'|} \left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha'}{\beta'} \right) a_{y}(y) h^y + o(||h||^k ||h'||^k).
\]

Note that

\[
\sum_{\beta, \beta' : \beta, \beta' \leq a, \beta' \leq h} (-1)^{|\beta| + |\beta'|} \left(\frac{\alpha}{\beta} \right) \left(\frac{\alpha'}{\beta'} \right) h^\eta = \frac{1}{\eta!} \frac{\partial^2 \partial y F(y, x)}{x^0 \partial y} h^\eta + o(||h||^k ||h'||^k).
\]

The expression that is in the RHS is just a finite difference of order \(a_i \) of \(f(x) = x^\eta \) for \(h = 1 \), due to \(\delta^{(a_i)} [x^\eta](0) = \sum_{\beta_i = 0}^{a_i} (1 - \beta_i) \beta_i^\eta \cdot \beta^{\eta'}(\beta')^\eta' \). It is well-known that \(\delta^{(a_i)} [x^\eta](x) = 0 \), if \(\eta_i < a_i \) and \(\delta^{(a_i)} [x^\eta](x) = \eta_i! \), if \(\eta_i = a_i \). Thus, we have

\[
\sum_{\beta, \beta' : \beta, \beta' \leq a, \beta' \leq h} (-1)^{|\beta| + |\beta'|} \left(\frac{\alpha}{\beta} \right) h^\eta = \frac{1}{\eta!} \frac{\partial^2 \partial y F(y, x)}{x^0 \partial y} h^\eta + o(||h||^k ||h'||^k).
\]
Therefore,
\[
\delta((a|\infty)_{(h_1, \ldots, h_n)}[F](x, x) = \frac{(\hat{a})^2}{(\hat{a})^2} \delta_{(h_1, \ldots, h_n)} K(x, y) \bigr|_{y=x} h^a (h^a) + o(|h^n| h^a + o(|h^n| h^a) + o(|h^n| h^a)
\]
From the latter, the statement of Lemma directly follows. \]

The following lemma is a direct consequence of Theorem 1 from [16]. We give here its proof for the sake of completeness.

Lemma 2.4. Let \(K \in C^2(\Omega \times \Omega) \) and \(x \in \Omega \) be fixed. Let \(\lambda_{i} \) be a multiset of all positive eigenvalues of \(\Omega_K \) (counting multiplicities). Then, \(\partial_{\varphi}^2 K(x, \cdot) \in \mathcal{H}_K \) and \(\|\partial_{\varphi}^2 K(x, \cdot)\|^2_{\mathcal{H}_K} = D_\alpha(x) = \sum_{i=1}^\infty \lambda_i (\partial_{\varphi}^2 \phi_i(x))^2. \)

Proof. Let us choose some sequence \(\{h_i\}_{i=1}^\infty \) such that \(\lim_{i \to \infty} h_i = 0 \) and let
\[
f_i(y) = \delta((a|\infty)_{(h_1, \ldots, h_i)} [K(z, y)](x) \in \mathcal{H}_K
\]
where the finite difference operator \(\delta_h \) is applied onto the first argument. The inner product between \(f_i \) and \(f_j \) equals:
\[
\langle f_i, f_j \rangle_{\mathcal{H}_K} = \frac{\delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, x)}{h_i^{a|\infty} h_j^{a|\infty}}.
\]
Therefore,
\[
\|f_i - f_j\|^2_{\mathcal{H}_K} = \frac{\delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, x)}{h_i^{a|\infty} h_j^{a|\infty}} + \frac{\delta((a|\infty)_{(h_1, \ldots, h_j)} [K](x, x)}{h_j^{a|\infty} h_j^{a|\infty}} - 2 \frac{\delta((a|\infty)_{(h_1, \ldots, h_i, h_j)} [K](x, x)}{h_i^{a|\infty} h_j^{a|\infty}}.
\]
From Lemma 2.3 we obtain that for any \(\varepsilon > 0 \) there exists \(N_\varepsilon > 0 \) such that \(\frac{\delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, x)}{h_i^{a|\infty}} - D_\alpha(x) < \varepsilon \) and \(\frac{\delta((a|\infty)_{(h_1, \ldots, h_i, h_j)} [K](x, x)}{h_j^{a|\infty}} - D_\alpha(x) < \varepsilon \) whenever \(i > N_\varepsilon, j > N_\varepsilon \). Therefore, \(\|f_i - f_j\|^2_{\mathcal{H}_K} \leq 4 \varepsilon \) if \(i > N_\varepsilon, j > N_\varepsilon \). The latter means that \(\{f_i\} \subseteq \mathcal{H}_K \) is a Cauchy sequence. From the completeness of \(\mathcal{H}_K \) we conclude that \(f_i \to \mathcal{H}_K f \) where \(f \in \mathcal{H}_K \). From Proposition 2.1 we conclude that \(f_i \) uniformly converges to \(f \). By construction, the pointwise limit of \(f_i = \delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, y)](x) \) is \(\partial_{\varphi}^2 K(x, \cdot) \). Therefore, \(f_i \to \mathcal{H}_K \partial_{\varphi}^2 K(x, \cdot) \) and \(\partial_{\varphi}^2 K(x, \cdot) \in \mathcal{H}_K \).

Let \(f_\varepsilon(y) = \delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, y)](x) \) for \(h = (h_1, \ldots, h) \). In fact, we have just proved that \(\lim_{h \to 0} \delta((a|\infty)_{(h_1, \ldots, h_i)} [K](x, y)](x) = \partial_{\varphi}^2 K(x, \cdot) \) in \(\mathcal{H}_K \). According to Mercer’s theorem, we have
\[
\lim_{N \to \infty} \sup_{z, y \in \Omega} |K(z, y) - \sum_{i=1}^N \lambda_i \phi_i(z) \phi_i(y)| = 0.
\]
A sum of k uniformly convergent function series equals a uniformly convergent series of the corresponding k-sums, i.e.
\[
\frac{f_k(y)}{h_{|x|}} = \frac{\delta_{|x|}^\infty}{h_{|x|}} \left[\frac{\lim_{N \to \infty} \sum_{i=1}^N \lambda_i \phi_i(z) \phi_i(y)}{h_{|x|}} \right](x) = \lim_{N \to \infty} \sum_{i=1}^N \lambda_i \left(\frac{\delta_{|x|}^\infty}{h_{|x|}} \phi_i \right)(y)
\]

Therefore, \(\frac{f_k(y)}{h_{|x|}} = \sum_{i=1}^\infty \lambda_i \left(\frac{\delta_{|x|}^\infty}{h_{|x|}} \phi_i \right)(y) \) and the latter convergence is uniform over y.

Therefore, \(\int \frac{f_k(y)}{h_{|x|}} \phi_i(y) d\mu(y) = \lambda_i \left(\frac{\delta_{|x|}^\infty}{h_{|x|}} \phi_i \right)(x) \). A uniform convergence of \(\frac{f_k(y)}{h_{|x|}} \) to \(\delta_x^\infty K(x, y) \) as $h \to 0$ implies
\[
\lambda_i \partial_x^\alpha \phi_i(x) = \lim_{h \to 0} \frac{\delta_{|x|}^\infty [\phi_i(x)]}{h_{|x|}} = \int \delta_x^\infty K(x, y) \phi_i(y) d\mu(y).
\]

Since \(\delta_x^\infty K(x, \cdot) \in \mathcal{H}_K \), using Proposition 2.1, we conclude:
\[
\| \delta_x^\infty K(x, \cdot) \|_{\mathcal{H}_K}^2 = \sum_{i=1}^\infty \lambda_i^2 \left(\frac{\partial_x^\alpha \delta_x^\infty \phi_i(x)}{\lambda_i} \right)^2
\]

Since \(\lim_{h \to 0} \left(\frac{f_k}{h_{|x|}}, \frac{f}{h_{|x|}} \right)_{\mathcal{H}_K} = \lim_{h \to 0} \frac{\Delta^\infty_{|x|}(K)(x)}{h_{|x|}} = D_\alpha(x) \) we finally obtain
\[
D_\alpha(x) = \| \partial_x^\infty K(x, \cdot) \|_{\mathcal{H}_K}^2 = \sum_{i=1}^\infty \lambda_i (\partial_x^\alpha \phi_i(x))^2
\]

Lemma 2.5. Let \(K(x, y) \in C^{2m}(\Omega \times \Omega) \) and \(\{\lambda_i\} \) be a multiset of all positive eigenvalues of \(O_K \) (counting multiplicities). Then,
\[
\partial_x^\alpha \partial_y^\beta K(x, y) = \sum_{i=1}^\infty \lambda_i \partial_x^\alpha \phi_i(x) \partial_y^\beta \phi_i(y)
\]

for $|\alpha| \leq m$ and $|\beta| \leq m$.

Proof. Again, since \(\lambda_i \phi_i(x) = \int \Omega K(x, y) \phi_i(y) d\mu \), we conclude \(\lambda_i \partial_x^\alpha \phi_i(x) = \int \Omega \partial_x^\alpha K(x, y) \phi_i(y) d\mu \in C(\Omega) \) for $|\alpha| \leq m$. From Lemma 2.4 and Dini’s theorem we conclude that the series
\[
\sum_{i=1}^\infty \lambda_i |\partial_x^\alpha \phi_i(x) | \partial_y^\beta \phi_i(y)| \leq \frac{1}{2} \sum_{i=1}^\infty \lambda_i (\partial_x^\alpha \phi_i(x))^2 + \lambda_i (\partial_y^\beta \phi_i(y))^2
\]

is absolutely and uniformly convergent. Therefore, we can differentiate the function series, and conclude
\[
\sum_{i=1}^\infty \lambda_i \partial_x^\alpha \phi_i(x) \partial_y^\beta \phi_i(y) = \partial_x^\alpha \partial_y^\beta \left(\sum_{i=1}^\infty \lambda_i \phi_i(x) \phi_i(y) \right) = \partial_x^\alpha \partial_y^\beta K(x, y).
\]

Let us denote
\[
K_N(x, y) = K(x, y) - \sum_{i=1}^N \lambda_i \phi_i(x) \phi_i(y)
\]

and
\[
K_N^\alpha\beta(x, y) = \partial_x^\alpha \partial_y^\beta K(x, y) - \sum_{i=1}^N \lambda_i \partial_x^\alpha \phi_i(x) \partial_y^\beta \phi_i(y)
\]
Lemma 2.6. Let $K(x, y) \in C^{2m}(\Omega \times \Omega)$ for compact $\Omega \subseteq \mathbb{R}^n$ and $\{\lambda_i\}$ be a multiset of all positive eigenvalues of O_K (counting multiplicities). Then, for any $|\alpha| \leq m$, $|\beta| \leq m$, we have

$$|K_N^{\alpha,\beta}(x, y)| \leq K_N^{\alpha,\alpha}(x, x)^{1/2} K_N^{\beta,\beta}(y, y)^{1/2} \leq D_\alpha(x)^{1/2} D_\beta(y)^{1/2}.$$

Proof. From Lemmas 2.4 and 2.5 we have

$$\partial_x^\alpha K_N(x, \cdot) = \sum_{i=N+1}^\infty \lambda_i \partial_x^\alpha \phi_i(x) \phi_i(y) \in \mathcal{H}_K.$$

Using Proposition 2.1, and again, Lemma 2.5, we obtain

$$\partial_x^\alpha \partial_y^\beta K_N(x, y) = \sum_{i=N+1}^\infty \lambda_i \partial_x^\alpha \phi_i(x) \partial_y^\beta \phi_i(y) = \langle \partial_x^\alpha K_N(x, \cdot), \partial_y^\beta K_N(y, \cdot) \rangle_{\mathcal{H}_K}.$$

Finally, the Cauchy-Schwartz inequality gives us

$$|\langle \partial_x^\alpha K_N(x, \cdot), \partial_y^\beta K_N(y, \cdot) \rangle_{\mathcal{H}_K}| \leq \|\partial_x^\alpha K_N(x, \cdot)\|_{\mathcal{H}_K} \cdot \|\partial_y^\beta K_N(y, \cdot)\|_{\mathcal{H}_K} = K_N^{\alpha,\alpha}(x, x)^{1/2} K_N^{\beta,\beta}(y, y)^{1/2}.$$

Note that

$$K_N^{\alpha,\alpha}(x, y) = \sum_{i=N+1}^\infty \lambda_i \partial_x^\alpha \phi_i(x)^2 \leq \sum_{i=1}^\infty \lambda_i \partial_x^\alpha \phi_i(x)^2 = D_\alpha(x).$$

Therefore, we have

$$|K_N^{\alpha,\beta}(x, y)| \leq D_\alpha(x)^{1/2} D_\beta(y)^{1/2}.$$

\[\square\]

Proof of Theorem 1.1. The tightness of our bounds strongly depends on the constant $C_{\Omega, \rho}$ in the Gagliardo-Nirenberg inequality, which reads as [1, 9]

$$\|u\|_{L^\infty(\Omega)} \leq C_{\Omega, \rho} \|u\|_{L^1(\Omega)}^{1-\theta} \cdot \|D^m u\|_{L^\rho(\Omega)}^\theta + C_{\Omega, \rho} \|u\|_{L^1(\Omega)},$$

where $\theta(\frac{\rho}{n} - m) + (1 - \theta)n = 0$ and $\|D^m u\|_{L^\rho(\Omega)} = \max_{|\alpha| \leq m} \|\partial_\alpha u(x)\|_{L^\rho(\Omega)}$. Thus, $\theta = \frac{\rho}{n-m \rho + m} = (1 + \frac{m}{n} - \frac{1}{\rho})^{-1}$.

Using $\sup |K_N(x, y)| \leq \sup K_N(x, x)^{1/2} K_N(y, y)^{1/2} = \sup K_N(x, x)$ and the Gagliardo-Nirenberg inequality we have

$$C_{\Omega, \rho} = \|K_N(x, x)\|_{L^\infty(\Omega \times \Omega)} = \|K_N(x, x)\|_{L^\infty(\Omega)} \leq C_{\Omega, \rho} \|K_N(x, x)\|_{L^1(\Omega)}^{1-\theta} \cdot \|D^m K_N(x, x)\|_{L^\rho(\Omega)}^\theta + C_{\Omega, \rho} \|K_N(x, x)\|_{L^1(\Omega)} \leq C_{\Omega, \rho} \left(\sum_{i=N+1}^{\infty} \lambda_i \right)^{1-\theta} \cdot \|D^m K_N(x, x)\|_{L^\rho(\Omega)}^\theta + C_{\Omega, \rho} \sum_{i=N+1}^{\infty} \lambda_i.$$

Lemma 2.6 gives us

$$|\partial_x^\alpha \partial_y^\beta [K_N(x, x)]| = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} k_{N}^{\beta,\alpha-\beta}(x, x) \leq \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} D_\beta(x)^{1/2} D_{\alpha-\beta}(x)^{1/2}. $$
Therefore, we have
\[
C_K^N \leq C_{\Omega,p} \left(\sum_{i=N+1}^{\infty} \lambda_i \right)^{1-\theta} \cdot \max_{\alpha,|\alpha|=m} \left(\sum_{\beta \leq \alpha} \left(\frac{a}{\beta} \right) \right) \|D_{\beta}D_{\alpha-\beta}\|_{L_p(\Omega)}^{\theta} + C_{\Omega,p} \sum_{i=N+1}^{\infty} \lambda_i.
\]

Theorem proved. \(\square \)

Proof of Theorem 1.2. Another version of the Gagliardo-Nirenberg inequality, now for the domain \(\Omega \times \Omega \), is
\[
\|u\|_{L^\infty(\Omega \times \Omega)} \leq D_{\Omega,p}\|u\|_{L^2(\Omega \times \Omega)}^{1-\theta} \cdot \|D^m u\|_{L^\infty(\Omega \times \Omega)}^\theta + D_{\Omega,p}\|u\|_{L^2(\Omega \times \Omega)},
\]
where \(\theta(\frac{n}{p} - m) + (1 - \theta) \frac{n}{2} = 0 \). Therefore, \(\theta = (1 + \frac{2m}{n} - \frac{2}{p})^{-1} \). For \(u(x,y) = K_N(x,y) \), we have
\[
C_K^N = \|K_N(x,y)\|_{L^\infty(\Omega \times \Omega)} \leq D_{\Omega,p}\|K_N\|_{L^2(\Omega \times \Omega)}^{1-\theta} \cdot \|D^m K_N\|_{L^\infty(\Omega \times \Omega)}^\theta + D_{\Omega,p}\|K_N\|_{L^2(\Omega \times \Omega)}.
\]
Using Lemma 2.6 we obtain
\[
\|D^m K_N\|_{L^p} = \max_{|\alpha|+|\beta|=m} \|\partial_x^\alpha \partial_y^\beta [K_N(x,y)]\|_{L^p} \leq \max_{|\alpha|+|\beta|=m} \|\sqrt{D_{\alpha}}\|_{L^p} \|\sqrt{D_{\beta}}\|_{L^p}.
\]
Therefore,
\[
C_K^N \leq D_{\Omega,p} \left(\sum_{i=N+1}^{\infty} \lambda_i^{2(1-\theta)/2} \cdot \max_{|\alpha|+|\beta|=m} \|\sqrt{D_{\alpha}}\|_{L^p} \|\sqrt{D_{\beta}}\|_{L^p} + D_{\Omega,p} \left(\sum_{i=N+1}^{\infty} \lambda_i^2 \right)^{1/2}.
\]
Theorem proved. \(\square \)

3 APPLICATIONS

Bounding the kernel of \(O_K^\gamma \). For \(\gamma > 0 \), let us denote
\[
K^\gamma(x,y) = \sum_{i=1}^{\infty} \lambda_i^\gamma \phi_i(x)\phi_i(y).
\]
In general, checking the condition \(\sup_{x \in \Omega} K^\gamma(x,x) < \infty \) requires the study of eigenvectors \(\phi_i \). For kernels that appear in applications [3, 5], a concrete form of eigenvectors is known only in few cases [4]. In the current paper we are interested in information that can be extracted from a behavior of eigenvalues \(\{\lambda_i\} \). Let us formulate one example of such a sufficient condition.

Note that if \(\sum_{i=1}^{\infty} \lambda_i^2 y < \infty \), then \(\sum_{i=1}^{\infty} \lambda_i^\gamma \phi_i(x)\phi_i(y) \in L^2(\Omega \times \Omega) \). In a special case \(\gamma = \frac{1}{2} \) we have \(\sum_{i=1}^{\infty} \lambda_i^{y} = \text{Tr}(O_K) < \infty \). Therefore, \(K^\gamma \in L^2(\Omega \times \Omega) \) for \(\gamma \in [\frac{1}{2}, 1] \). The boundedness of \(K^\gamma \) on the diagonal, i.e. \(\sup_{x \in \Omega} K^\gamma(x,x) < \infty \) is equivalent to \(K^\gamma \in C(\Omega \times \Omega) \). Indeed, if \(K^\gamma(x,x) < C \), then \(f_N(x) = \sum_{i=1}^{\infty} \lambda_i^\gamma \phi_i(x)^2 \) is a monotonically increasing sequence of nonnegative continuous functions on a compact set \(\Omega \), bounded by \(C \). Then, by monotone convergence theorem, \(\{f_N\} \) uniformly converges to a continuous function \(K^\gamma(x,x) \). From the uniform convergence of the series \(\sum_{i=1}^{\infty} \lambda_i^\gamma \phi_i(x)^2 \) it is straightforward that \(\sum_{i=1}^{\infty} \lambda_i^\gamma \phi_i(x)^2 < \frac{1}{2} \sum_{i=1}^{\infty} \lambda_i^\gamma (\phi_i(x)^2 + \phi_i(y)^2) \) is also uniformly convergent to a continuous function.
Theorem 3.1. Let $K \in \mathcal{C}^{2m}(\Omega \times \Omega)$ and $\gamma \in (0, 1)$. Then, for $\sup_{x \in \Omega} K^{1-\gamma}(x, x) < \infty$ it is sufficient to have

$$\sum_{i=N+1}^{\infty} \lambda_i^2 = o\left(\frac{m_{\gamma}}{m}\right)$$

and

$$\sum_{N=1}^{\infty} \left(\sum_{i=N+1}^{\infty} \lambda_i^2 \right)^{\frac{m}{m_{\gamma}}} \left(\lambda_{N+1}^{-\gamma} - \lambda_N^{-\gamma} \right) < \infty.$$

Proof. Let us denote $K_N(x) = \sum_{i=N}^{\infty} \lambda_i \phi_i(x)^2$. Then

$$K^{1-\gamma}(x, x) = \sum_{i=1}^{\infty} \lambda_i^{-\gamma} \lambda_i \phi_i(x)^2 = \sum_{i=1}^{\infty} \lambda_i^{-\gamma} (K_i(x) - K_{i+1}(x)) =$$

using summation by parts formula

$$= \lambda_1^{-\gamma} K_1(x) - \lim_{N \to +\infty} \lambda_N^{-\gamma} K_{N+1}(x) + \sum_{i=2}^{\infty} K_i(x) (\lambda_i^{-\gamma} - \lambda_{i-1}^{-\gamma}) \leq$$

$$\lambda_1^{-\gamma} D_K^2 + \lim_{N \to +\infty} \lambda_N^{-\gamma} (C_N^K)^2 + \sum_{N=1}^{\infty} (C_N^K)^2 (\lambda_{N+1}^{-\gamma} - \lambda_N^{-\gamma})$$

In Theorem 1.2 it was shown that for $K \in \mathcal{C}^{2m}(\Omega \times \Omega)$ we have $(C_N^K)^2 \leq C \left(\sum_{i=N+1}^{\infty} \lambda_i^2\right)^{\frac{m}{m_{\gamma}}}$. Therefore,

$$\lim_{N \to +\infty} \lambda_N^{-\gamma} (\sum_{i=N+1}^{\infty} \lambda_i^2)^{\frac{m}{m_{\gamma}}} = 0$$

and

$$\sum_{N=1}^{\infty} \left(\sum_{i=N+1}^{\infty} \lambda_i^2 \right)^{\frac{m}{m_{\gamma}}} \left(\lambda_{N+1}^{-\gamma} - \lambda_N^{-\gamma} \right) < \infty$$

is sufficient for $\sup_{x \in \Omega} K^{1-\gamma}(x, x) < \infty$. \hfill \qed

Let us show how to apply the latter bound for infinitely differentiable kernels. In the case of an infinitely differentiable kernel, we have

$$(C_N^K)^2 \leq C \sum_{i=N+1}^{\infty} \lambda_i^2 \lambda_i^{-\gamma}$$

for any $\gamma > 0$. Let us additionally assume that eigenvalues of O_K are rapidly vanishing, i.e. $\sum_{i=N+1}^{\infty} \lambda_i^2 = O(\lambda_{N+1}^2)$ and $\sum_{i=1}^{\infty} \lambda_i^2 < \infty$ for any $\epsilon > 0$. Note that these conditions are satisfied for the Gaussian kernel on a box or a ball in \mathbb{R}^n, analytic kernels on a finite interval [7]. Let $\gamma \in (0, 1)$. We have $\lambda_N^{-\gamma} (C_N^K)^2 \leq C \lambda_N^{-\gamma} (\sum_{i=N+1}^{\infty} \lambda_i^2)^{\frac{m}{m_{\gamma}}} = O(\lambda_{N+1}^2 \lambda_N^{-\gamma}) \to 0$, since γ can be chosen to satisfy $\gamma < 1-2\epsilon$. Also, $\sum_{i=N+1}^{\infty} (C_N^K)^2 (\lambda_{N+1}^{-\gamma} - \lambda_N^{-\gamma}) \leq C \sum_{N=1}^{\infty} (\sum_{i=N+1}^{\infty} \lambda_i^2)^{\frac{m}{m_{\gamma}}} \lambda_{N+1}^{-\gamma} \leq C \sum_{N=1}^{\infty} \lambda_{N+1}^{-\gamma} \lambda_{N+1}^{-\gamma} < \infty$. Thus, for $\gamma \in (0, 1)$, K^γ is bounded and continuous.

Bounding the supremum norm of eigenvectors. The condition

$$\sup_N \| \phi_N \|_{L^\infty(\Omega)} < \infty$$

is popular in various statements concerning Mercer kernels, though it is believed to be hard to check. Discussions of that issue can be found in [8, 12, 15].

Since $\lambda_{N+1} \phi_{N+1}(x)^2 \leq K(x, x) - \sum_{i=1}^{N} \lambda_i \phi_i(x)^2$, we conclude

$$\| \phi_{N+1} \|_{L^\infty(\Omega)} \leq \lambda_{N+1}^{-1/2} \sqrt{C_N^K}.$$
Thus, any upper bound for C_N^N leads to an upper bound of $\|\phi_{N+1}\|_{L^\infty(\Omega)}$. For a uniform boundedness of $\|\phi_{N+1}\|_{L^\infty(\Omega)}$ we need $C_N^N = O(\lambda_{N+1})$. Unfortunately, RHS of our bounds are not $O(\lambda_{N+1})$, though they can be used to show a moderate growth rate of $\|\phi_{N+1}\|_{L^\infty(\Omega)}$.

REFERENCES

[1] Brezis, H. Function Analysis, Sobolev Spaces and Partial Differential Equations. 01 2010.
[2] Cucker, F., and Smale, S. On the mathematical foundations of learning. Bulletin of the American Mathematical Society 39 (2001), 1–49.
[3] Cucker, F., and Zhou, D.X. Learning Theory: An Approximation Theory Viewpoint. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, 2007.
[4] De Vito, E., Mücke, N., and Rosasco, L. Reproducing kernel hilbert spaces on manifolds: Sobolev and diffusion spaces. Analysis and Applications 19 (08 2020).
[5] Guo, X., Li, L., and Wu, Q. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing 3, 4 (2020), 263–277.
[6] König, H. Eigenvalue Distribution of Compact Operators. Eigenvalue Distribution of Compact Operators. Birkhäuser Basel, 1986.
[7] Little, G., and Reade, J. B. Eigenvalues of analytic kernels. SIAM Journal on Mathematical Analysis 15, 1 (1984), 133–136.
[8] Mendelson, S., and Neeman, J. Regularization in kernel learning. The Annals of Statistics 38, 1 (2010), 526 – 565.
[9] Nieberg, L. An extended interpolation inequality. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze Ser. 3, 20, 4 (1966), 733–737.
[10] Schölkopf, B., Smola, A., and Müller, K.-R. Kernel principal component analysis. In Artificial Neural Networks — ICANN’97 (Berlin, Heidelberg, 1997), W. Gerstner, A. Germond, M. Hasler, and J.-D. Nicoud, Eds., Springer Berlin Heidelberg, pp. 583–588.
[11] Steinwart, I., and Christmann, A. Support Vector Machines. Information Science and Statistics. Springer New York, 2008.
[12] Steinwart, I., and Download C. Mercer’s theorem on general domains: On the interaction between measures, kernels, and rkhs. Constructive Approximation 35, 3 (Jun 2012), 365–417.
[13] Takhanov, R. Dimension reduction as an optimization problem over a set of generalized functions, 2019.
[14] Wahba, G. Spline Models for Observational Data. Society for Industrial and Applied Mathematics, 1990.
[15] Zhou, D.-X. The covering number in learning theory. J. Complex. 18, 3 (Sept. 2002), 739–767.
[16] Zhou, D.-X. Derivative reproducing properties for kernel methods in learning theory. Journal of Computational and Applied Mathematics 220, 1 (2008), 456–463.