Draft Genome Sequence of the Fruiting Myxobacterium *Nannocystis exedens* DSM 71

Anke Treuner-Lange, Marc Bruckskotten, Oliver Rupp, Alexander Goesmann, Lotte Søgaard-Andersen

Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany

ABSTRACT In response to starvation, members of the order *Myxococcales* form morphologically very different fruiting bodies. To determine whether fruiting myxobacteria share a common genetic program that leads to fruiting body formation, we sequenced and assembled the genome of *Nannocystis exedens* DSM 71 as two contigs with a total GC content of 72%.

Most members of the order *Myxococcales* initiate a developmental program in response to starvation that results in the formation of a multicellular fruiting body, inside which the rod-shaped cells differentiate to spores (1, 2). Based on phylogenetic analyses using 16S rRNA sequences, a deep trifurcation of members of the order *Myxococcales* has repeatedly been observed (3–5). Accordingly, this order is divided into three suborders, i.e., *Cystobacterineae*, *Sorangineae*, and *Nannocystineae*. Currently, the order includes 28 genera and 55 species (6).

While fruiting body formation in the model organism *Myxococcus xanthus*, a member of the suborder *Cystobacterineae*, is relatively well understood (7, 8), much less is known about the genetic basis underlying fruiting body formation in the remaining suborders. Of the 20 complete (9–26) and 36 draft *Myxococcales* genomes (27–34), only 4 are from members of the suborder *Nannocystineae*. Members of this suborder form fruiting bodies that are either solitary or aggregated sporangioles. To generate an additional resource for accurate genome comparisons, we sequenced and annotated the complete genome of *Nannocystis exedens* strain DSM 71, which was obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.

After verifying the ability of *N. exedens* DSM 71 to form irregularly shaped sporangia containing myxospores as described previously (35), we collected genomic DNA (36) from liquid cultures and sequenced it using PacBio single-molecule real-time (SMRT) sequencing (37) on the PacBio RSII platform at the Max Planck-Genome-Centre, Cologne, Germany. Eight SMRT cells were used. Additionally, 11,834,547 100-bp paired-end Illumina reads were obtained using the HiSeq2000 platform. After quality evaluation and filtering of 282,467 PacBio subreads, assembly using the Hierarchical Genome Assembly Process (38) resulted in two contigs with a 94-fold coverage. These two contigs cover approximately 12.1 Mb (11.3 Mb and 0.8 Mb) with a similar GC content of 72%. Additionally, the Illumina reads were applied to correct the assembled contigs using the Pilon tool (39). Due to complex and large repetitive regions in at least two areas of the genome, as well as missing coverage in these regions, we were unable to fully close the genome. The genome annotation was prepared using Prokka (40). A total of 9,278 protein-coding sequences were identified, together with 107 tRNAs and 9 rRNA operons. BLASTp searches against the RefSeq database were used to assign functional annotation and identify possible frameshifts in genes. The corresponding genes were removed from the annotation.
Alignment of the *N. exedens* DSM 71 genome with other genomes from the order *Myxococcales* using NUCmer (41) revealed overall synteny to the *N. exedens* ATCC 25963 genome, with 97% of the sequences aligning. The remaining three *Nannocystinea* genomes did not match significantly.

The *N. exedens* DSM 71 genome sequence offers valuable data for studying the evolution of the genetic programs leading to fruiting body formation and also provides a resource for identifying the novel genetic determinants that are important for fruiting body formation and morphology.

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number NETK000000000. The version described in this paper is the first version, NETK01000000.

ACKNOWLEDGMENTS

The Max Planck Society supported this work. Bioinformatics support by the BMBF-funded project “Bielefeld-Gießen Center for Microbial Bioinformatics–BiGi” (grant number 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged.

REFERENCES

1. David W. 2000. Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427. https://doi.org/10.1111/j.1574-6976.2000.tb00548.x
2. Reichenbach H. 1999. The ecology of the myxobacteria. Environ Microbiol 1:15–21. https://doi.org/10.1046/j.1462-2920.1999.00016.x
3. Garcia R, Gerth K, Studler M, Dogma UJ, Jr, Müller R. 2010. Expanded phylogeny of myxobacteria and evidence for cultivation of the ‘unculturables’. Mol Phylogenet Evol 57:878–887. https://doi.org/10.1016/j.ympev.2010.08.028.
4. Shimkets L, Woeser CR. 1992. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc Natl Acad Sci U S A 89:9495–9463. https://doi.org/10.1073/pnas.89.20.9495.
5. Spröer C, Reichenbach H, Stackebrandt E. 1999. The correlation between morphological and phylogenetic classification of myxobacteria. Int J Syst Bacteriol 49:1255–1262. https://doi.org/10.1099/ijs.0.020771-3.49-3.1255.
6. Landwehr W, Wolf C, Wink J. 2016. Actinobacteria and myxobacteria—two of the most important bacterial resources for novel antibiotics. Curr Top Microbiol Immunol 398:15–21.
7. Konovalova A, Petters T, Søgaard-Andersen L. 2010. Extracellular biology of *Myxococcus xanthus*. FEMS Microbiol Rev 34:89–106. https://doi.org/10.1111/j.1574-6976.2009.00194.x.
8. Kroos L. 2017. Highly signal-responsive gene regulatory network governing *Myxococcus development*. Trends Genet 33:5–15. https://doi.org/10.1016/j.tig.2016.10.006.
9. Hwang C, Copeland A, Lucas S, Lapidus A, Barry K, Glavina Del Rio T, Dalen E, Tice H, Pittuck S, Sims D, Brettin T, Bruce DC, Detter JC, Han CS, Schmutz J, Larimer FW, Land ML, Hauser LJ, Kyrpides N, Lykidis A, Richardson P, Belev A, Sanford RA, Löffler FE, Fields MW. 2015. Complete genome sequence of *Anaeromyxobacter* sp. Fw109-5, an anaerobic, metal-reducing bacterium isolated from a contaminated subsurface environment. Genome Announc 3(1):e01449-14. https://doi.org/10.1128/genomeA.01449-14.
10. Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Eisen JA. 2001. The complete genome of the aerobic marine mesophilic bacterium *Minicystis rosea* nov., a polyunsaturated fatty acid-rich and steroid-producing soil myxobacterium. Int J Syst Evol Microbiol 51:3733–3742. https://doi.org/10.1099/ijs.0.068270-0.
22. Yamamoto E, Muramatsu H, Nagai K. 2014. *Vulgatibacter incompexus* gen. nov., sp. nov. and *Labilithrix lutulenta* gen. nov., sp. nov., two myxobacteria isolated from soil in Yakushima Island, and the description of *Vulgatibacteraceae* fam. nov., *Labilithricicaceae* fam. nov. and *Anaeromyxobacteraceae* fam. nov. Int J Syst Evol Microbiol 64:3360–3368. https://doi.org/10.1099/ijs.0.063198-0.

23. Sharma G, Subramanian S. 2017. Unravelling the complete genome of *Archangium gephyra* DSM 22617 and evolutionary insights into myxobacterial chitinases. Genome Biol Evol 9:1304–1311. https://doi.org/10.1093/gbe/evx066.

24. Sharma G, Khatri I, Subramanian S. 2016. Complete genome of the starch-degrading myxobacteria *Sandaracinus amylopticus* DSM 53668T. Genome Biol Evol 8:2520–2529. https://doi.org/10.1093/gbe/evw151.

25. Sharma G, Narwani T, Subramanian S. 2016. Complete genome sequence and comparative genomics of a novel myxobacterium *Myxococcus hansopus*. PLoS One 11:e0148953. https://doi.org/10.1371/journal.pone.0148953.

26. Zaburannyi N, Bunk B, Maier J, Overmann J, Müller R. 2016. Draft genome sequence of *Archangium vulgatibacter* sp. strain PSR-1, an arsenate-resisting bacterium isolated from arsenic-contaminated soil. Genome Announc 3(3):e00472-15. https://doi.org/10.1128/genomeA.00472-15.

27. Kudo K, Yamaguchi N, Makino T, Ohtsuka T, Kimura K, Dong DT, Amachi V. 2015. Draft genome sequence and comparative genomics of a novel myxobacterium *Archangium vulgatibacter* sp. strain Cb. Genome Announc 3(3):e00392-13. https://doi.org/10.1128/genomeA.00392-13.

28. Müller S, Willett JW, Bahr SM, Darnell CL, Hummels KR, Dong CK, Vlamakis HC, Kirby JR. 2013. Draft genome sequence of *Myxococcus xanthus* wild-type strain DZ2, a model organism for predation and development. Genome Announc 1(3):e00217-13. https://doi.org/10.1128/genomeA.00217-13.

29. Stevens DC, Young J, Carmichael R, Tan J, Taylor RE. 2014. Draft genome sequence of gephycronic acid producer *Cystobacter violaceus* strain Cb vi/76. Genome Announc 2(6):e01299-14. https://doi.org/10.1128/genomeA.01299-14.

30. Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. 2014. ReSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res 42:D553–D559. https://doi.org/10.1093/nar/gkt1274.

31. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badrerdin A, Bao Y, Blinkova O, Brover V, Chetverin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McFarley KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shked a A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD. 2016. Reference sequence (ReSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189.

32. Adalipoh B, Dowd SE, Stevens DC. 2017. Draft genome sequence of *Archangium sp.* strain CB G32. Genome Announc 5(8):e01678-16. https://doi.org/10.1128/genomeA.01678-16.

33. Reichenbach H. 2005. Order VIII. *Myxococcales* Tchan, Pochon and Prévot 1948, vol 398AL, p 1059–1144. In Brenner DJ, Krieg NR, Staley JT (ed), Bergey’s manual of systematic bacteriology, vol. 2 Springer-Verlag, New York, NY.

34. Wilson K. 2001. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2.4. https://doi.org/10.1002/0471142727.mb0204s56.

35. Au KF, Underwood JG, Lee L, Wong WH. 2012. Improving PacBio long read accuracy by short read alignment. PLoS One 7:e46679. https://doi.org/10.1371/journal.pone.0046679.

36. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Koriach J. 2013. Non-hybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. https://doi.org/10.1038/nmeth.2474.

37. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

38. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153.

39. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. https://doi.org/10.1186/gb-2004-5-2-r12.