The Measure of the Orthogonal Polynomials Related to Fibonacci Chains: The Periodic Case *

Wolfdieter Lang **

Institut für Theoretische Physik
Universität Karlsruhe
Kaiserstrasse 12, D-76128 Karlsruhe
Germany

ABSTRACT

The spectral measure for the two families of orthogonal polynomial systems related to periodic chains with N-particle elementary unit and nearest neighbour harmonic interaction is computed using two different methods. The interest is in the orthogonal polynomials related to Fibonacci chains in the periodic approximation. The relation of the measure to appropriately defined Green’s functions is established.

PACS numbers: 02.10Nj, 33.10Gx, 61.44.+p

* Herrn Dr. Harald Fried in Dankbarkeit gewidmet
** E-mail address: wolfdieter.lang@phys.uni-karlsruhe.de
1. Introduction

Two associated families of orthogonal polynomial systems govern longitudinal time-stationary vibrations of linear chains with nearest-neighbour harmonic interaction (springs κ_n, masses m_n).

These polynomials are defined by three-term recurrence relations appropriate for orthogonal polynomials [1]. In the case of a mono-atomic chain (mass m_0) with uniform coupling (strength κ) they are deformations of Chebyshev's $S_n(2(1-x)) \equiv U_n(1-x)$ polynomials of the second kind. $x \equiv \omega^2/2\omega^2_0$, with $\omega^2_0 = \kappa/m_0$, is a normalized frequency-squared.

Our interest is in Fibonacci-chains which have uniform coupling ($\kappa_n = \kappa$) and two masses (mass-ratio $r \equiv m_1/m_0$) distributed at site number $n = 1, 2, ...$ in accordance with the binary sequence 1, 0, 1, 1, 0, 1, 0, ... This quasi-periodic sequence is generated by the Fibonacci substitution rule 1 \to 1, 0 and 0 \to 1. Such chains have been considered as simple models for special binary alloys [2]. The same structure is encountered in the problem of the phonon spectrum of a one-dimensional Fibonacci quasicrystal [3]. In this case the associated orthogonal polynomial systems are denoted by $\{S_n^{(r)}(x)\}$ and $\{\hat{S}_n^{(r)}(x)\}$ [4]. Up to now their spectral measures (or moment functionals) have not been determined. From rigorous results on the Fibonacci Hamiltonian in the context of the one-dimensional Schrödinger equation one expects that this measure is of the singular continuous type supported by a Cantor set of zero Lebesgue measure [5].

As an approximation to the quasiperiodic problem we identify in this work the spectral measure for periodic Fibonacci chains with an elementary unit consisting of N masses following the pattern of the first N entries of the above given binary sequence. The measures for general N-periodic orthogonal polynomial systems $\{S_n(x)\}$ and $\{\hat{S}_n(x)\}$, defined by three-term recursion relations with $N-$periodic coefficients, can be found using two different methods.

The first method employs the Bloch-Floquet solutions for these periodic chains and is based on the evaluation of a (judiciously chosen) complex contour integral. This is a special application of a general method available for orthogonal polynomials with asymptotically periodic coefficients in the recursion relation [6]. For our purpose only the strictly periodic case is of interest. With this restriction a similar procedure is discussed in ref.[7]. The second method uses the fact that the continued fraction associated with orthogonal polynomials is the Stieltjes transform [8] of the spectral measure[1b,9]. For periodic systems this continued fraction can be determined as fixed-point of a certain Möbius transformation, and the measure is then obtained via the Perron-Stieltjes inversion formula (see e.g.[8,10,11]).

It turns out that the support of the absolutely continuous part of the measure (the weight function) is, for fixed $N-$periodic chain parameters κ_n, m_n, given by N, in general disjoint, $x-$intervals (bands). These are determined from the generalized Chebyshev polynomials of the first kind $T_N(x)$, the so-called trace polynomials, by the condition $|T_N(x)| \leq 1$. These bands coincide with the support of the spectral density (or density of states) of infinite chains. The weight function is, however, not given by the density of states. In general, a discrete point measure (Dirac $\delta-$function measure) is also present.
Each gap between the N intervals which support the continuous measure may contribute one point (which may lie on one of the band boundaries).

In the case of Fibonacci chains the limit $N \to \infty$ is supposed to correspond to the chains based on the quasi-periodic binary Fibonacci sequence. At present this limit is beyond our control.

The connection of the absolutely continuous part of the S and \hat{S} measures to the inverse of the imaginary part of the diagonal input Green’s functions for the periodic problem is given in an extra section. The differential spectral density (or differential density of states) is recovered, as usual, from the imaginary part of the average over the elementary N–unit of the diagonal (or local) Green’s functions.

In order to familiarise the reader with our notation we start with the dynamical equations for the displacements $q_n(t) = q_n \exp(i\omega t)$ at site number n

$$q_{n+1} - 2\left(1 + \frac{k_n}{2} - \frac{\omega_n^2}{\omega_n^2}x\right)q_n + k_n q_{n-1} = 0, \quad n \in \mathbb{Z} \quad (1.1)$$

with $\omega_n^2 \equiv \kappa_n/m_n$, $k_n \equiv \kappa_{n-1}/\kappa_n$ and the normalised frequency-squared $x \equiv \omega^2/(2\omega_0^2)$.

The spring between site number n and $n + 1$ has strength κ_n. m_n is the mass at site number n.

This recursion relation can be rewritten in terms of standard associated polynomials with the help of the transfer matrix method. The displacements are then given by (cf.[4a] (2.8),(2.10))

$$q_{n+1}(x) = S_n(x) q_1(x) - \hat{S}_{n-1}(x) q_0(x), \quad n \in \mathbb{N} \quad (1.2)$$

with arbitrary inputs $q_1(x), q_0(x)$.* This expression is obtained from the transfer matrix M_n

$$\begin{pmatrix} q_{n+1} \\ q_n \end{pmatrix} = M_n \begin{pmatrix} q_1 \\ q_0 \end{pmatrix}, \quad M_n := R_n R_{n-1} \cdots R_1, \quad (1.3a)$$

$$R_n := \begin{pmatrix} Y(n) & -k_n \\ 1 & 0 \end{pmatrix}, \quad Y_n(x) := 2\left(1 + \frac{k_n}{2} - \frac{\omega_0^2}{\omega_n^2}x\right), \quad (1.3b)$$

and the result

$$M_n = \begin{pmatrix} S_n & -\hat{S}_{n-1} \\ S_{n-1} & -\hat{S}_{n-2} \end{pmatrix}, \quad (1.4)$$

where the polynomials S_n and \hat{S}_n are defined by the following three-term recurrence relation corresponding to $M_n = R_n M_{n-1}$ with input $M_1 = R_1$

$$S_n = Y_n(x)S_{n-1} - k_n S_{n-2}, \quad S_{-1} = 0, \quad S_0 = 1 \quad (1.5a)$$

$$\hat{S}_n = Y_{n+1}(x)\hat{S}_{n-1} - k_{n+1} \hat{S}_{n-2}, \quad \hat{S}_{-1} = 0, \quad \hat{S}_0 = k_1 \quad (1.5b)$$

In the case of a *mono-atomic* chain ($m_n = m$) with equal springs ($k_n = 1$) the normalised eigenfrequencies-squared of a finite chain with N atoms and fixed boundary conditions

* We do not consider negative site numbers here. See ref.[4b] for the negative n case.
\(q_0 = 0 = q_{N+1} \) are given by the zeros of \(S_N(x) \equiv S_N(2(1-x)) = U_N(1-x) \), where \(U_N \) are Chebyshev’s polynomials of the second kind. These zeros are

\[
x_k \equiv x_k^{(N)} = 1 - \cos \frac{\pi k}{N+1} = 2 \sin^2 \frac{\pi k}{2(N+1)}, \quad k = 1, 2, \ldots, N
\]

(1.6)

The displacements for the \(k \)-th mode are \(q_{n+1} = S_n(2(1-x_k)) q_1 \), for \(n = 1, 2, \ldots, N \), with arbitrary, \(k \) dependent, input \(q_1 \).

For an infinite mono-atomic chain one finds one frequency-squared band from the condition \(|T_N(1-x)| \leq 1 \), where \(T_N(x) \) are Chebyshev’s polynomials of the first kind. The number \(N \) of atoms in the unit cell is irrelevant because due to double zeros of \(T_N(1-x) + (-1)^{k+1} \) for \(x = \xi_k^{(N-1)} \), \(k = 1, 2, \ldots, N-1 \), the \(N-1 \) gaps degenerate. The \(x \)-band is, independently of \(N \), \(B = [0, 2] \). In this case \(S_n(x) = \hat{S}_n(x) = S_n(2(1-x)) \), which are orthogonal on the intervall \([0, 2]\) with weight function

\[
w^{(1)}(x) = \frac{2}{\pi} \sqrt{x(2-x)} .
\]

Therefore there is no discrete part of the measure present in this mono-atomic case.

The general formula for the differential spectral density per particle (also called differential density of states) for an infinite chain with a unit of \(N \) atoms repeated periodically is determined from the generalized Chebyshev polynomials of the first kind, \(T_N(x) := \frac{1}{2}(S_N(x) - \hat{S}_{N-2}(x)) \). These are the trace polynomials \(\frac{1}{2}tr \ M_N \). (see eqn.(2.4) and cf.[4], eqn. (3.11))

\[
G_N(x) = \frac{1}{N\pi} \frac{(-1)^k T_N'(x)}{\sqrt{1 - (T_N(x))^2}},
\]

(1.8)

for \(x \) in one of the \(N \) bands \(B_k \), \(k = 1, 2, \ldots, N \), which are determined by \(|T_N(x)| < 1 \) and ordered with increasing \(x \). Otherwise the density vanishes.

In the mono-atomic case this becomes

\[
G_N(x) = G(x) = \frac{1}{N\pi} \frac{1}{\sqrt{x(2-x)}},
\]

(1.9)

for \(x \in [0, 2] \), and it is zero otherwise. The \(N \)-independence is due to the identities involving ordinary Chebyshev polynomials:

\[
1 - (T_N(1-x))^2 = x(2-x)(S_{N-1}(2(1-x))^2 \text{ for } x \in [0, 2] \text{ and } N \in \mathbb{N}, \text{ as well as}
\]

\[
NS_{N-1}(2(1-x)) = -T_N'(1-x) .
\]

(1.10)

(1.8) is, by accident, the weight function for Chebyshev’s \(T_N(1-x) \) polynomials (for \(N = 0 \); for other \(N \) the weight is twice this). In the general case the trace polynomials \(\{T_n(x)\} \) are no longer orthogonal (see [4a], p. 5402).

Quasiperiodic Fibonacci chains are obtained as special case with \(k_n \equiv 1 \), \(\omega_0^2/\omega_n^2 = r^{h(n)} \), with the mass-ratio \(r \equiv m_1/m_0 \) and the quasiperiodic binary Fibonacci sequence

\[
h(n) = |(n+1)/\varphi| - |n/\varphi| \text{ , } n \in \mathbb{N}_0 .
\]

(1.11)
In this case we use for the polynomials S_n and \hat{S}_n the notation $\{S_n^{(r)}(x)\}$ and $\{\hat{S}_n^{(r)}\}$.

2. Bloch-Floquet solutions and the measure

In this section we describe the computation of the measure with respect to which the polynomial system $\{S_n(x)\}$ defined in (1.5a) is orthogonal, following the general method valid for the N-periodic case (more generally for the asymptotically periodic case) described in detail in ref. [6], ch.2. The measure for the associated polynomials $\{\hat{S}_n(x)\}$ defined in (1.5b) is obtained in the same way. This method rests on the properties of the Bloch-Floquet solutions for the N-periodic problem. Directly connected to these solutions is a map $w(x)$ of the complex plane which enters the definition of a judiciously chosen complex contour integral. This integral is evaluated in two different ways $i)$ and ii). The result will be the orthogonality relation and the measure can be read off. First, however, the necessary information on the Bloch-Floquet solutions will be given.

The starting point is the recursion formula for the monic orthogonal polynomial systems (indicated by a tilde) which describe N-periodic chains with $\kappa_{n+N} = \kappa_n$ and $m_{n+N} = m_n$. *

$$\hat{S}_n(x) = (x - c_n) \hat{S}_{n-1}(x) - d_n \hat{S}_{n-2}(x) , \quad \hat{S}_{-1} = 0 , \quad \hat{S}_0 = 1$$

with

$$c_n := \frac{1 + k_n \omega_0^2}{2} , \quad d_n := \frac{k_n \omega_0^2 \omega_{n-1}^2}{4 \omega_0^2 \omega_0^2} .$$

The first-associated monic polynomials $\{\hat{S}_n(x)\}$ satisfy (2.1a) with shifted coefficients $\hat{c}_n := c_{n+1} , \quad \hat{d}_n := d_{n+1}$ and the input $\hat{S}_{-1} = 0$, and $\hat{S}_0 = k_1$.

Orthogonality with positive definite moment functional is guaranteed for all $N \in \mathbb{N}$ by Favard’s theorem, because $d_n > 0$ and the c_n are real.

The relation between the polynomials (1.5) and the monic ones is given by ($n \geq 1$)

$$S_n(x) = (-2)^n \prod_{i=1}^{n} \frac{\omega_0^2}{\omega_i^2} \hat{S}_n(x) , \quad \hat{S}_n(x) = (-2)^n k_1 \prod_{i=2}^{n+1} \frac{\omega_0^2}{\omega_i^2} \hat{S}_n(x) .$$

For the Fibonacci chains with $\kappa_n \equiv \kappa$ one uses the N–periodic binary sequence $h^{(N)}(n)$ obtained by repetition of the first N entries of the quasiperiodic sequence $\{h(n)\}$ of (1.11). The original polynomials $\{S_n^{(r)}(x)\}$ and $\{\hat{S}_n^{(r)}(x)\}$ for quasiperiodic Fibonacci chains, are then obtained in the limit $N \to \infty$, keeping always $n \leq N$.

In the N–periodic case the transfer matrix M_N of the elementary unit satisfies: $Det M_N = \kappa_0/\kappa_N = +1$. From this and $M_{n+N} = M_n M_N$ one derives, using (1.4)

$$S_{n+2N}(x) = 2 T_N(x) S_{n+N}(x) - S_n(x) ,$$

$$\hat{S}_{n+2N-1}(x) = 2 T_N(x) \hat{S}_{n+N-1}(x) - \hat{S}_{n-1}(x) ,$$

* All quantities depend on the chosen period N, $\vec{\omega}^2 \equiv (\omega_0^2, \omega_1^2, ..., \omega_{N-1}^2)$ and $\vec{k} \equiv (k_1, k_2, ..., k_N)$ with $\kappa_0 = \kappa_N$. In the sequel this dependence will be suppressed.
with the trace polynomials

\[\mathcal{T}_N(x) := \frac{1}{2} \text{tr } M_N = \frac{1}{2} (S_N(x) - \hat{S}_{N-2}(x)) . \]

(2.4)

In the Fibonacci case we use the \(N\)-periodic binary sequence \(\{ h_N(n) \} \) obtained from (1.11) by taking \(h_N(n) = h(n) \) for \(n = 1, 2, \ldots, N \) and defining \(h_N(n + N) = h_N(n) \). In this case the polynomials \(S_N, \hat{S}_{N-2} \), hence \(\mathcal{T}_N \), coincide with the corresponding quasiperiodic ones.

(2.3) implies for the general solution for the displacements (1.2)

\[q_{n+2N+1}(x) = 2 \mathcal{T}_N(x) q_{n+N+1}(x) - q_{n+1}(x) . \]

(2.5)

The two independent Bloch-Floquet solutions are, for arbitrary input \(q_0(x) \) and \(q_1(x) \),

\[q_{n,\pm}(x) := q_{n+N}(x) - \lambda_{N,\pm}(x) q_n(x) , \]

(2.6a)

with

\[\lambda_{N,\pm}(x) := \mathcal{T}_N(x) \pm \sqrt{ (\mathcal{T}_N(x))^2 - 1 } , \]

(2.6b)

which are the two eigenvalues of \(M_N \). With this definition the periodicity condition (2.5) yields \(q_{n+N,\pm}(x) = \lambda_{N,\mp}(x) q_{n,\pm}(x) \). \(\lambda_{N,\mp}(x) = \exp i\beta_{N,\mp}(x) \) for \(x \) values in any of the \(N \) intervals (bands) \(B_k \), \(k = 1, 2, \ldots, N \), defined by *

\[|\mathcal{T}_N(x)| \leq 1 , \]

(2.7)

which is necessary for harmonic vibrations. Therefore,

\[q_{n,\pm}(x) = (\lambda_{N,\mp}(x))^{\frac{1}{N}} \varphi_n(x) , \quad n \in \mathbb{N}_0 , \]

(2.8)

with periodic \(\varphi_{n+N}(x) = \varphi_n(x) \), proving that (2.6a) defines the Bloch-Floquet solutions. The integrated spectral density (or integrated density of states) is a continuous function given by appropriate branches of the Bloch-Floquet phase \(\beta_N(x) = \cos^{-1} \mathcal{T}_N(x) \) for band values \(x \) and constant pieces in the \(N-1 \) gaps between the bands. The differential spectral density (or differential density of states) (1.7) follows from this after differentiation.

In order to compute the measure with respect to which the polynomials \(\{ S_n(x) \} \) are orthogonal one considers (see ref. [6]) the following map for \(x \in \mathbb{C} \)

\[w(x) = (\lambda_{N}(x))^{\frac{1}{N}} \]

(2.9)

with the sign of the square-root in (2.6b) chosen such that for real \(x \in B_k \), \(k = 1, \ldots, N \), \(\lambda_N(x) \) runs along the unit circle from +1 to −1 for odd numbered bands and from −1 to

* From (1.5) one finds \(S_n(0) = 1 + \kappa_0 \sum_{i=1}^{n} 1/\kappa_i \), \(\hat{S}_n(0) = k_1 + \kappa_0 \sum_{i=2}^{n+1} 1/\kappa_i \). Therefore, in the \(N \)-periodic case \(\mathcal{T}_N(0) = 1 \) holds for all chains (\(\kappa_0 = \kappa_N \)). For the proof of the reality of the zeros of \(\mathcal{T}_N(x) \mp 1 \) see ref.[6], lemma 2.2.
+1 for even numbered ones. This requires the sign \((-1)^{k+1}\) for \(x \in B_k\). \(\lambda_N(x)\) is real for \(x\) in the gaps \(G_k, k = 1, ..., N-1\), and we choose the sign of the square-root as \((-1)^k\) such that \(|\lambda_N(x)| > 1\) holds. \(x \in (x_{\text{max}}, \infty)\), with the maximal band value \(x_{\text{max}}\), is taken as gap \(G_N\) with the sign choice \((-1)^N\). Such a sign choice produces for \(\omega(x)\) of (2.9) a path like the one shown for the Fibonacci chain example \(N = 5, r = 2\) in fig. 2, if \(x\) runs along the real axis from 0 to \(x_{\text{max}}\). Finally, in the \(z = 1/w(x)\) plane a closed contour is obtained if \(x\) runs also backwards from \(x_{\text{max}}\) to \(x = 0\). This contour is shown for the example in fig. 3. The starting point is at \(z = +1\). In figs. 2 (resp. 3) the \(B'_k\) (resp. \(B''_k\)) and \(G'_k\) (resp. \(G''_k\)) labels indicate the images of the bands \(B_k\) and gaps \(G_k\) under the map \(w(x)\) of (2.9) (resp. \(z = 1/w(x)\)). That the map \(w\) is of importance is clear from the Bloch-Floquet solution (2.8).

For the computation of the measure for the polynomials \(\{S_n(x)\}\) it was found in ref. [6] that one should consider the \(z\)-plane contour integral for \(m, n = 0, 1, 2, \ldots\)

\[
\mathcal{I} \equiv \mathcal{I}_{m,n} := -\frac{1}{2\pi i} \int_{\Gamma} \frac{S_m(g(z)) \, q_{n+1,\pm}(g(z))}{S_{N-1}(g(z))} \, g'(z) \, dz ,
\]

(2.11)

with \(g\) the inverse map to \(z(x) = 1/w(x)\), \textit{viz} \(x = g(z)\), and the Bloch-Floquet solution \(q_{n+1,\pm}(x)\) defined by (2.6a) and (1.2) with the choice \(q_1 = 1\) and \(q_0 = 0\). The sign is chosen as described above in the definition of \(w(x)\). In addition, for \(x_{\text{max}} < x \leq +\infty\) the sign choice is \((-1)^N\). The contour \(\Gamma\) (with negative orientation) is the union \(\Gamma = \Gamma_{B''} \cup \Gamma_{G''}\) with

\[
\Gamma_{B''} := \{z | z = \exp i\theta \ , \ \theta \neq \pm \frac{\pi}{N} k \ , \ k = 1, 2, ..., N-1\}
\]

(2.12)

and \(\Gamma_{G''}\) are the \(2(N-1)\) closed curves around the images \(G''_k\) of the gaps \(G_k\). For the Fibonacci chain example with \(N = 5, r = 2\) see figs. 1 and 3. For later use note that because \(q_{n+1,\pm}(x)\) satisfies the same recursion relation as \(S_n(x)\) one finds, after comparison of the \(n = -1\) and \(n = 0\) inputs on both sides, (remember \(q_0 = 0\))

\[
q_{n+1,\pm}(x_i)/q_{1,\pm}(x_i) = S_n(x_i) ,
\]

(2.13)

with the zeros \(x_i, i = 1, 2, ..., N-1\) of \(S_{N-1}\). The contour integral is computed in two ways \(i)\) adding the \(\Gamma_{B''}\) and \(\Gamma_{G''}\) contribution, both transformed to the \(x\)-plane, and \(ii)\) evaluating the \(z\)-plane contour integral with the help of the residue theorem.

In the \textit{first step of \(i)\)} one computes the \(\Gamma_{B''}\) contribution using, for \(x \in B_k\) with sign choice \((-1)^{k+1}\),

\[
q_{n+1,\pm}(x) = q_{n+1,\mp}(x) + (1/\lambda_N,\pm(x) - \lambda_N,\pm(x)) \, S_n(x) ,
\]

(2.14)

following from (2.6a), and with the choice \(q_1 = 1\), \(q_0 = 0\) in (1.2) one has \(q_{n+1} = S_n\). After some rewriting one finds (see appendix A1 for details)

\[
\mathcal{I}_B = -\frac{1}{2\pi i} \int_{\Gamma_{B''}} (1/\lambda_N(x) - \lambda_N(x)) \, S_m(x) \, S_n(x) \, S_{N-1}(x) \, g'(z) \, dz ,
\]

(2.15)
with \(x = g(z) \), and \(B'' \) denotes the lower half of the punctured unit circle in the \(z \)-plane. This can be restated in the \(x \)-plane (see fig.1 for the Fibonacci case \(N = 5, r = 2 \)):

\[
I_B = \frac{1}{\pi} \int_B \frac{S_m(x) S_n(x)(-1)^{k+1} \sqrt{1 - (T_N(x))^2}}{S_{N-1}(x)} \, dx .
\]

(2.16)

The second step of the computation \(i) \) is that along \(\Gamma_{G''} \). This integral is again evaluated in \(x \)-space, such that the \(N - 1 \) (positively oriented) closed contours around the gaps \(G_k \) are picked up (cf. fig.1 for the \(N = 5, r = 2 \) Fibonacci case). \(S_{N-1}(x) \) has a simple zero in each of the \(N - 1 \) gaps. This follows from orthogonality and a lemma (Ya.L. Geronimus, M. Kac and P. van Moerbeke, Lemma 2.2, page 46 in ref.[6]) about the interlacing of the zeros of \(T_N \mp 1 \), which are real, and \(S_{N-1} \) (and \(\hat{S}_{N-1} \)). Note, that \(S_{N-1} \) zeros may occur at one of the band boundaries, coinciding then with zeros of \(T_N - 1 \) or \(T_N = 1 \). The residue theorem now yields with the help of (2.13)

\[
I_G = - \int dx (\sum_{k=1}^{N-1} \delta(x - x_k) \frac{q_{1,(-)k}(x)}{S_{N-1}'(x)}) S_m(x) S_n(x) .
\]

(2.17)

with the zeros \(x_k \equiv \xi_k^{(N-1)} \) of \(S_{N-1} \).

Computation \(ii) \) of (2.11) is done in the \(z \)-plane using the residue theorem. The only possible pole inside \(\Gamma \), coming from \(g'(z) \), occurs for \(x \to \infty, \ i.e \ z = 0 \). The zeros of \(S_{N-1} \) are outside of \(\Gamma \). Therefore only the large \(x \) behaviour of the integrand is of interest.

For large \(x \) the \(S \)-polynomials behave like (see (2.2))

\[
S_m(x) \sim (-2)^m \prod_{i=1}^{m} \frac{\omega_i^2}{\omega_0^2} x^m .
\]

(2.18)

The asymptotics of \(q_{n+1,(-)N}(x) \) cannot be found from its definition (2.6a) directly. Following ref. [6], it is found from the formula, based on (2.6a) and (2.5)

\[
q_{n+1,+}(x) q_{n+1,-}(x) = (q_{n+1+N}(x))^2 - q_{n+2N+1}(x) q_{n+1}(x) .
\]

(2.19)

The r.h.s. can be rewritten, using the \(m \)-th associated polynomials \(S_n^{(m)} \) defined by

\[
S_n^{(m)}(x) = Y_{n+m}(x) S_{n-1}^{(m)}(x) - k_{n+m} S_{n-2}^{(m)}(x) ,
\]

(2.20)

with inputs \(S_{-1}^{(m)} = 0 \) and \(S_0^{(m)} = \prod_{i=1}^{m} k_i \) for \(m \in \mathbb{N} \) and \(S_0^{(0)} = S_0 = 1 \). Because \(S_{n-m}^{(m)} \) satisfies the recursion relation of \(q_{n+1} \), with the two independent solutions \(q_{n+1} \) and \(q_{n+1+N} \), with Wronskian \(q_{n+1} q_{n+N} - q_{n+1+N} q_n \) satisfying

\[
W(q_{n+1}, q_{n+1+N})/ \prod_{i=1}^{n} k_i = W(q_1, q_{N+1}) = q_1 q_{N} - q_0 q_{N+1} ,
\]

(2.21)
one finds (for general q_1 and q_0)

\[S_{n-m}^{(m)}(x) = \frac{1}{W(q_1, q_{N+1})} \{ q_{m+N}(x) \; q_{n+1}(x) - q_m(x) \; q_{n+1+N}(x) \} \quad . \quad (2.22) \]

Letting $n \to n + N$ and $m \to n + 1$, one obtains the r.h.s. of (2.19):

\[q_{n+1,+}(x) \; q_{n+1,-}(x) = W(q_1, q_{N+1}) \; S_{N-1}^{(n+1)}(x) \quad . \quad (2.23) \]

The asymptotic form of $q_{n+1,-}(x)$ can now be inferred from the one of $q_{n+1,-}(x)$ which follows without difficulty from (2.6a) *. For $q_1 = 1$, $q_0 = 0$ one finds that the leading term for large x is

\[\frac{q_{n+1,-}(x)}{S_{N-1}(x)} \sim \prod_{j=1}^{n+1} k_j / ((-2)^{n+1} \prod_{i=1}^{n+1} \omega_i^2 x^{n+1}) \quad . \quad (2.24) \]

The residue theorem can now be applied to the contour integral (2.11) in the $z-$plane. $g(z) \sim -C/z^2$ for small z due to $g(z) = x$ and $z = 1/w(x) \sim C/x$ for large x. The capacity C drops out in the calculation of the residue for $z = 0$. The result is

\[I_{m,n} = \frac{1}{2} \frac{\omega_{n+1}^2}{\omega_0^2} \prod_{j=1}^{n+1} j \; \delta_{n,m} \quad . \quad (2.25) \]

Combining both ways of calculation $i)$ and $ii)$ one ends up with the normalized measure $d\sigma$ for the orthonormal polynomials with $s_0 = 1$

\[s_n(x) := (-1)^n \sqrt{\frac{\omega_1^2}{\omega_{n+1}^2 \prod_{j=1}^{n+1} k_j}} \; S_n(x) \quad , \quad (2.26) \]

where the factor $(-1)^n$ has been inserted to guarantee positive leading coefficient.

\[\int s_m(x) \; s_n(x) \; d\sigma(x) = \delta_{m,n} \quad , \quad m, n \in N_0 \quad (2.27) \]

where

\[d\sigma(x) = w(x) \; dx - \sum_{k=1}^{N-1} \delta(x - \xi_k^{(N-1)}) \frac{2 \omega_0^2 q_{1,-k}(x)}{k \omega_1^2 S_{N-1}(x)} \; dx \quad , \quad (2.28a) \]

\[w(x) = \frac{1}{\pi} \frac{2 \omega_0^2 (-1)^{k+1} \sqrt{1 - (T_N(x))^2}}{k \omega_1^2 S_{N-1}(x)} \quad , \quad x \in B_k \; , \; k = 1, 2, ..., N \quad , \quad (2.28b) \]

\[q_{1,-k}(x) = S_N(x) - \lambda_{N,-k}(x) \quad , \quad k = 1, 2, ..., N-1 \quad , \quad (2.28c) \]

\[\lambda_{N,-k}(x) = T_N(x) + (-1)^k \sqrt{(T_N(x))^2 - 1} \quad , \quad x \in G_k \quad , \quad (2.28d) \]

* The leading coefficient of $S_{N-1}^{(n+1)}(x)$ is, for $n \in N_0$, $(-2)^{N-1} \prod_{j=1}^{n+1} k_j \prod_{i=n+2}^{n+N} \omega_0^2 / \omega_i^2$.
The absolutely continuous part of the measure, \(w(x) \, dx \), vanishes outside the \(N \) bands \(B = \bigcup B_k \). It is non-negative because the sign of \(S_{N-1} \) in band \(B_k \) is \((-1)^{k+1} \), due to the fact that \(S_{N-1}(0) \geq +2 \) and the interlacing property of its zeros with the one of \(T_N \). The Dirac-measure lives on the \(N-1 \) zeros \(\hat{\xi}_k^{(N-1)} \) of \(S_{N-1} \). The fact that also this measure is non-negative will be discussed in the section 4.

A similar computation can be performed in order to find the measure for the associated orthogonal polynomial system \(\{\hat{S}_n\} \) of (2.2b). One puts in (2.1) \(q_1 = 0 \) and \(q_0 = -1 \). In the integral (2.11) one uses \(\hat{S} \) instead of \(S \) and replaces \(q_{n+1, \pm} \) by \(q_{n+2, \pm} := \hat{S}_{n+N} - \lambda_{N, \pm} \hat{S}_n \).

In place of (2.13) one uses here

\[
q_{n+2, \pm}(\hat{x}_i)/q_{2, \pm}(\hat{x}_i) = \hat{S}_n(\hat{x}_i)/k_1 \quad \text{with the zeros } \hat{x}_i \text{ of } \hat{S}_{N-1}.
\]

The normalized measure for the orthonormal polynomials with positive leading coefficient and \(\hat{s}_0 = 1 \)

\[
\hat{s}_n(x) = (-1)^n \frac{1}{k_1} \sqrt{\frac{\omega_2^2}{\omega_{n+2}^2} \frac{k_1 k_2}{\prod_{j=1}^{n+2} k_j}} \hat{S}_n(x)
\]

is then

\[
d\hat{\sigma}(x) = \hat{w}(x) \, dx - \sum_{k=1}^{N-1} \delta(x - \hat{\xi}_k^{(N-1)}) \frac{2 \omega_2^2}{\omega_2^2} \frac{k_1 q_{2, \pm}(\hat{x}_i)/k_1}{\hat{S}_n(x)} \, dx,
\]

\[
\hat{w}(x) = \frac{2 \omega_2^2}{\pi} \frac{k_1}{\omega_2^2} \frac{(-1)^{k+1} \sqrt{1 - (T_N(x))^2}}{\hat{S}_n(x)} \quad \text{, } x \in B_k \text{, } k = 1, 2, ..., N,
\]

\[
q_{2, \pm}(\hat{x}_i)/k_1 = \hat{S}_n(\hat{x}_i)/k_1 \text{ with the zeros } \hat{x}_i \text{ of } \hat{S}_{N-1}.
\]

where \(\lambda_{N, \pm} \) is given in (2.28d), and \(\hat{\xi}_k^{(N-1)} \) are the zeros of \(\hat{S}_{N-1}(x) \).

3. Continued fraction, Stieltjes inversion formula, and the measure

The second method to compute the measure for orthogonal polynomials with periodic recursion formula coefficients relies on the fact that the continued fraction accompanying this recursion formula is the Stieltjes transform [8] of the orthogonality measure [1b,9]. In the periodic case the continued fraction can be given explicitly, and the measure is then determined with the help of the Perron-Stieltjes inversion formula [10,11].

The continued fraction which belongs to the recursion formulae for the (not necessarily \(N \)-periodic) associated orthogonal polynomials \(\{S_n(x)\} \) and \(\{\hat{S}_n(x)\} \) (see (1.5a) and (1.5b)) is

\[
-\frac{k_1 \omega_1^2}{2\omega_0^2} \chi(x) = \frac{k_1}{|Y_1(x)|} - \frac{k_2}{|Y_2(x)|} - \frac{k_3}{|Y_3(x)|} - ... - \frac{k_n}{|Y_n(x)|} - ...
\]

(3.1)
where $Y_n(x)$ is given by (1.3b). The factor $-k_1\omega_1^2/2\omega_0^2$ has been introduced for later convenience. The n-th approximation to this continued fraction is for $n \geq 1$

\[
-\frac{k_1\omega_1^2}{2\omega_0^2} \chi_n(x) = \frac{k_1}{\left| Y_1(x) \right|} - \frac{k_2}{\left| Y_2(x) \right|} - \cdots - \frac{k_n}{\left| Y_n(x) \right|} = \frac{\hat{S}_{n-1}(x)}{S_n(x)}, \tag{3.2}
\]

which follows by induction, using the recursion formulae. If the continued fraction converges $\chi(x) := \lim_{n \to \infty} \chi_n(x)$. A fundamental theorem (see e.g. [9], theorem 2.4, or [1b], p.90) states that $\chi(x)$ is the Stieltjes transform of the measure

\[
\chi(x) = \int_{-\infty}^{+\infty} \frac{d\sigma(t)}{x-t} \quad x \notin \text{supp}(d\sigma). \tag{3.3}
\]

Here $d\sigma$ is the real, positive, and normalized measure for the orthogonal $S-$ polynomials (1.5a) (cf. [9], eqs.(2.1) to (2.5))

\[
\int S_n(x) S_m(x) d\sigma(x) = \frac{\omega_n^2 + 1}{\omega_1^2 k_1} \prod_{j=1}^{n+1} k_j \delta_{n,m} = \frac{m_1}{m_{n+1}} \delta_{n,m}, \quad m, n \in \mathbb{N}_0 \tag{3.4}
\]

The Perron-Stieltjes inversion formula (see e.g.[9,10]) for a real measure of bounded variation is

\[
\sigma(t_2) - \sigma(t_1) = -\frac{1}{\pi} \lim_{\eta \to +0} \int_{t_1}^{t_2} \text{Im} \chi(t + i\eta) \, dt, \tag{3.5}
\]

with $\sigma(t_k) := \frac{1}{2}(\sigma(t_k + 0) + \sigma(t_k - 0))$ for $k = 1, 2$. $\bar{\chi}(x) = \chi(\bar{x})$ for $x \in \mathbb{C}$, and χ is analytic for non-real x.

In the $N-$periodic case $\chi(x)$ can be calculated explicitly as follows (cf. [7]). Consider, for fixed x, N and parameters k_n, ω_n^2, the map in the complex $z-$plane

\[
J_N(x; z) \equiv z' = \frac{k_1}{\left| Y_1(x) \right|} - \frac{k_2}{\left| Y_2(x) \right|} - \cdots - \frac{k_N}{\left| Y_N(x) \right|} = \chi_n(x) = \tilde{\chi}_{n-1}(x), \tag{3.6}
\]

with $Y_n(x)$ given in (1.3b). By induction, with the help of the recursion formulae, one finds

\[
J_N(x; z) = \frac{\hat{S}_{N-2}(x) z - \hat{S}_{N-1}(x)}{\hat{S}_{N-1}(x) z - \hat{S}_N(x)}, \tag{3.7}
\]

* The n-th approximation to the continued J-fraction is for $n \geq 1$ (see (2.1) and (2.2))

\[
\frac{k_1}{\left| x - c_1 \right|} - \frac{d_2}{\left| x - c_2 \right|} - \cdots - \frac{d_n}{\left| x - c_n \right|} = \chi_n(x) = \frac{\hat{S}_{n-1}(x)}{\hat{S}_n(x)}. \]
which is for real x a $SL(2, \mathbb{R})$ Möbius transformation due to

$$1 = Det M_N(x) = -S_N(x) \hat{S}_{N-2}(x) + S_{N-1}(x) \hat{S}_{N-1}(x) \quad (3.8)$$

Because of N–periodicity $-k_1 \omega_1^2 \chi(x)/2 \omega_0^2$ is a fixed point of the map (3.6), and can be computed from (3.7) as

$$-\frac{k_1 \omega_1^2}{2 \omega_0^2} \chi_{N, \pm}(x) = \left\{ \frac{1}{2}(S_N(x) + \hat{S}_{N-2}(x)) \mp \sqrt{(\mathcal{T}_N(x))^2 - 1} \right\}/S_{N-1}(x) \quad (3.9)$$

where (3.8) was used, and $\mathcal{T}_N(x)$ is given in (2.4). For $|\mathcal{T}_N(x)| < 1$, which determines N bands B_k, $k = 1, 2, ..., N$, $\chi_{N, \pm}(x)$ becomes complex. For the gaps between the N bands, G_k, $k = 1, 2, ..., N-1$, it is real. See fig.1 for the Fibonacci case $N = 5, r = 2$. Introducing $\lambda_{N, \pm}(x)$ given in (2.6b), this is rewritten as

$$-\frac{k_1 \omega_1^2}{2 \omega_0^2} \chi_{N, \pm}(x) = \left\{ S_N(x) - \lambda_{N, \pm}(x) \right\}/S_{N-1}(x) \quad (3.10)$$

$\chi_{N, (-)^N}(x)$ is for large x proportional to $1/x$.* The sign choice for x values in the bands and gaps will be given below.

The measure can now be determined from the inversion formula (3.5). The absolutely continuous part of the spectral measure, $d\sigma_{ac}(x) = w(x) \, dx$, is found from

$$w(x) = \frac{d}{dx} \sigma_{ac}(x) = -\frac{1}{\pi} \lim_{\eta \to +0} Im \chi(x + i\eta) < \infty \quad (3.11)$$

$\chi(x) \equiv \chi_N(x)$ has to be defined such that $\chi(x) = \chi(\overline{x})$ holds for complex x. This single-valued function is called $\chi(x)$. $w(x)$ lives therefore on the bands B_k and coincides with (2.28b), after the sign of the square-root (i.e. of the Riemann sheet) has been chosen such that $w(x)$ is non-negative. See section 4 for the proof that the sign choice in (2.28b) leads to positive w.

The discrete part of the spectral measure (sum of Dirac δ-functions) originates from the simple poles of $\chi(x)$ with their residues determining the height of the jumps of the measure.

$$d\sigma_{Dirac}(x) = -\frac{2 \omega_0^2}{k_1 \omega_1^2} \sum_{k=1}^{N-1} \delta(x - \xi_{k, (N-1)}) \frac{S_N(x) - \lambda_N(x)}{S_{N-1}(x)} \, dx \quad (3.12)$$

where the sign of the square-root in $\lambda_N(x)$ of (2.6b) has been chosen as $(-1)^k$ for $x \in G_k$, like in the calculation leading to (2.28c). This choice will be seen in the next section to produce positive jumps in $\sigma(x)$ at the zeros $\xi_{k, (N-1)}$ of S_{N-1}.

* The x–asymptotics cannot be found from (3.10). One uses

$$(S_N - \lambda_{N, (-)^N})/S_{N-1} = \hat{S}_{N-1}/(S_N - \lambda_{N, (-)^{N+1}})$$

which is identity (2.23) with $q_0 = 0$, $q_1 = 1$, (2.6a) and (1.2).
The measure for the orthogonal \(\{ \hat{S}_n(x) \} \) polynomials can be calculated in a similar fashion by taking into account also their first associated polynomials \(\{ S_n^{(2)}(x) \} \), defined in (2.20). Note that because of the cyclic property of the trace and \(N \)-periodicity on has:

\[
\hat{T}_N(x) := (\hat{S}_N(x) - S_{N-2}^{(2)}(x))/2 = \frac{1}{2} \text{tr} \hat{M}_N = k_1 T_N(x) \tag{3.13}
\]

whith \(\hat{M}_N := R_{N+1} R_N \cdots R_2 \). More details are found in appendix A.2.

We have thus reproduced the results of the previous section.

4. General remarks and Fibonacci chain examples

We first state a simple conclusion concerning the discrete measure (3.12), which will show its non-negativity. With the mentioned sign choice the numerator of the \(k \)-th term can be rewritten, with (2.6b), (2.4), and (3.8), like

\[
S_N - \lambda_N = \frac{1}{2}(S_N + \hat{S}_{N-2}) + (-1)^{k+1} \sqrt{\left(\frac{1}{2}(S_N + \hat{S}_{N-2}) \right)^2 - S_{N-1} \hat{S}_{N-1}}. \tag{4.1}
\]

Evaluated at the zero \(x_k \equiv \xi_k^{(N-1)} \) of \(S_{N-1} \) this becomes

\[
(S_N - \lambda_N)|_{x_k} = \begin{cases}
\Theta((-S_N + \hat{S}_{N-2})|_{x_k})(S_N + \hat{S}_{N-2})|_{x_k} & \text{for } k \text{ even} \\
\Theta((S_N + \hat{S}_{N-2})|_{x_k})(S_N + \hat{S}_{N-2})|_{x_k} & \text{for } k \text{ odd}
\end{cases} \tag{4.2}
\]

with the step function \(\Theta(x) \). Due to (3.8) \((S_N + \hat{S}_{N-2})|_{x_k} = ((S_N(x_k))^2 - 1)/S_N(x_k)\). The final result for the discrete measure is

\[
d\sigma^{(N,r)}_{\text{Dirac}}(x) = \frac{2}{k_1 \omega_1^2} \sum_{k=1}^{N-1} \delta(x - \xi_k^{(N-1)}) \Theta((-)^{k+1}(S_N(x) + \hat{S}_{N-2}(x))) \frac{S_N(x) + \hat{S}_{N-2}(x)}{-S_{N-1}'(\xi_k^{(N-1)})} \, dx, \tag{4.3}
\]

which is always non-negative because the signum of \(S_{N-1}'(\xi_k^{(N-1)}) \) is \((-1)^k\).

Two remarks are in order.

i) There will be no contribution to the discrete measure from those zeros of \(S_{N-1} \) which satisfy \(T_N(\xi_k^{(N-1)}) = \pm 1 \). In this event the zero of \(S_{N-1} \) coincides with one of the band boundaries, and from the definition of \(T_N \) and (3.8) one finds \(S_N(\xi_k^{(N-1)}) = -\hat{S}_{N-2}(\xi_k^{(N-1)}) = \pm 1 \).

ii) A comment on band degeneracy. A gap \(G_k \) will disappear whenever \(T_N + (-1)^{k+1} \) has a double zero at, say, \(x_k \). Because the zero \(\xi_k^{(N-1)} \) of \(S_{N-1} \) lies in the gap or on one of the adjacent band boundaries one has \(x_k = \xi_k^{(N-1)} \). For the same reason the \(k \)-th zero of \(\hat{S}_{N-1} \) is then also \(x_k \). Due to (3.8) \(\hat{S}_{N-2}(x_k) = 1/S_N(x_k) \), and therefore \(S_N(x_k) + 1/S_N(x_k) = 2(-1)^k \) (definition of \(T_N \)). Thus \(S_N(x_k) = (-1)^k = -\hat{S}_{N-2}(x_k) \),
and there will be no contribution to the discrete part (4.3) of the measure from such disappearing gaps G_k. *

Next, we consider some examples of Fibonacci chains.

In the N-periodic Fibonacci case $k_n \equiv 1$ and $Y_n(x) = 2(1-r^{h_N(n)}x)$, with the N-periodic binary sequence $\{h_N(n)\}$ obtained by continuing the first N entries of $\{h(n)\}$ given by (1.11) periodically. All polynomials will now depend on N and the mass-ratio $r \equiv m_1/m_0$. We shall use non-script symbols for these polynomials and the N, r labels will be clear from the context.

a) First we check the mono-atomic case $r = 1$. The results have already been given in the introduction. Remark ii) applies for all $N − 1$ disappearing gaps.

b) Put $N = 2$, $r \equiv m_A/m_B \neq 1$, i.e. AB-chains. We first show that there is no discrete part (4.3) of the measure. Here remark i) applies. The zero of $S_1(x) = 2(1-rx)$ (see [4a]) is $x_1 = 1/r$, and because

$$T_2(x) = 2rx^2 - 2(1+r)x + 1, \quad S_2(x) = 4rx^2 - 4(1+r)x + 3,$$

one has $S_2(1/r) = T_2(1/r) = -1 = -\hat{S}_0$. ** The weight function is given by

$$w(x) = \frac{2r}{\pi} \sqrt{-x(x-\frac{1}{r})(x-1)(x-1-\frac{1}{r})} /|x-\frac{1}{r}|,$$

for x in any of the two bands

$$r \geq 1 : \quad B_1 = [0, \frac{1}{r}], \quad B_2 = [1, 1 + \frac{1}{r}]$$

$$r \leq 1 : \quad B_1 = [0, 1], \quad B_2 = [\frac{1}{r}, 1 + \frac{1}{r}].$$

The weight function (2.30) for the associated polynomials $\{\hat{S}_n(x)\}$ is found to be

$$\hat{w} = \frac{|x-\frac{1}{r}|}{r|x-1|} w(x),$$

for x in the bands (4.6) and zero otherwise.

c) Put $N = 3$, $r \equiv m_A/m_B \neq 1$, i.e. infinite ABA-chains. Now the discrete measure is present because zeros of S_2 satisfy $2rx_{\mp} = 1 + r \mp \sqrt{(r-1)^2 + r}$ and $S_3(x_{\mp}) + \hat{S}_1(x_{\mp}) = 2(r-1)x_{\mp} \neq 0$. Therefore

$$d\sigma_{\text{Dirac}} = \frac{4r}{\sqrt{(r-1)^2 + r}} \left\{ \begin{array}{ll}
(r-1) \quad \delta(x-x_-) \quad dx & \text{for } r > 1 \\
(1-r) \quad \delta(x-x_+) \quad dx & \text{for } 0 < r < 1
\end{array} \right.$$

* In the N-periodic Fibonacci case an example is $N=6$ (ABA^2 chains) where one finds double zeros of $T_6 + 1$ at the zeros of T_3 for $k = 1, 3, 5$.

** This is an example where a zero of S_{N-1} coincides with a band boundary without having band degeneracy (no double zero of $T_N \mp 1$). It seems to be a counterexample to one part of the statement found in [6], lemma 2.2, top of page 47 (the "if" part).
The bands are, depending on $\text{sign}(1-r)$,

$$
\begin{align}
 r \geq 1 & \colon B_1 = [0, \frac{1}{2r}] , \quad B_2 = \left[\frac{1}{2r} b_-(r), \frac{3}{2r} \right] , \quad B_3 = \left[-\frac{2r+1}{2r}, -\frac{1}{2r} b_+(r) \right] , \quad (4.9a) \\
 r \leq 1 & \colon B_1 = [0, \frac{1}{2r} b_-(r)] , \quad B_2 = \left[\frac{1}{2r} b_+(r), \frac{2r+1}{2r} \right] , \quad B_3 = \left[\frac{3}{2r}, \frac{1}{2r} b_+(r) \right] , \quad (4.9b)
\end{align}
$$

with $b_{\pm}(r) \equiv r + \frac{3}{2} \pm \sqrt{r^2 - r + \frac{9}{4}}$.

The weight function (2.28b) becomes for $x \in B_k , \ k = 1, 2, 3$,

$$
 w(x) = \frac{2}{\pi r^2} \frac{\sqrt{-(x - \frac{2r+1}{2r})(x - \frac{3}{2r})(x - \frac{1}{2r} b_+(r))(x - \frac{1}{2r} b_-(r))}}{(-1)^{k+1}(x - \frac{1}{2r} d_-(r))(x - \frac{1}{2r} d_+(r))}, \quad (4.10)
$$

with $d_{\pm}(r) \equiv 1 + r \pm \sqrt{r^2 - r + 1}$.

d) Put $N = 4, r \equiv m_A/m_B \neq 1$, i.e. ABAA-chains. There is no contribution to the discrete measure because one finds (see [4a]) for the zeros of S_3, viz $x_1 = 1/r, 2r x_{\pm} = 1 + r \pm \sqrt{r^2 + 1}$, $S_4(x_k) + \tilde{S}_2(x_k) = 0$ for $k = 1, \pm$. Like in the $N = 3$ case one can give the bands and the weight function explicitly.

5. Green's functions and the measure*

The purpose of this section is twofold: i) to define the Green’s functions of the general N–periodic problem which satisfy specific boundary conditions appropriate to the use of the Bloch-Floquet solutions encountered in section 2. ii) to find the orthogonality measures computed in this work from these Green’s functions. We shall also give the relation of the differential spectral density (or differential density of states) (1.8) to theses Green’s functions which turns out to be the standard one. This should clarify the difference between the absolutely continuous part of the measure and the spectral density.

The Green’s functions $G_{n,m}(x)$ for the N–periodic problem are defined for $n, m \in \mathbb{N}_0$ by

**

$$
 Y_{n+1}(x) \ G_{n,m}(x) - G_{n+1,m}(x) - k_{n+1} \ G_{n-1,m}(x) = \delta_{n,m} . \quad (5.1)
$$

The Y–coefficient is defined in (1.3b). The inputs are $G_{-1,m}(x)$ and $G_{0,m}(x)$. The Green’s functions with the proper boundary conditions turn out to be the ones constructed from the Bloch-Floquet solutions (2.6). This solution is of the type

$$
 G_{n,m}(x) = a_m(x) q_{\text{max}(n,m)+1,(-1)^k(x)} q_{\text{min}(n,m)+1,(-1)^k+1}(x) . \quad (5.2)
$$

* This section is inspired by a paragraph found in ref.[7] for periodic problems.

** The dependence on $N, \{k_n\}, \{\omega_{n}\}$ is suppressed. For the monic polynomials (2.1) one uses $(x - c_{n+1}) \ G_{n,m}(x) - d_{n+1} \ G_{n-1,m}(x) - \ G_{n+1,m}(x) = \delta_{n,m}$. The relation

$$(\prod_{i=1}^{n} \omega_{i}^{2} / \omega_{i}^{2}) \ G_{n,m} = (-2)^{m-n+1}(\prod_{i=1}^{m+1} \omega_{i}^{2} / \omega_{i}^{2}) \ G_{n,m}$$

holds.
The sign choice pertains to gap G_k, for which $q_{n+1,(-1)^k} \to 0$ for $x \in G_k$ and $n \to \infty$ (see (2.8)). The coefficient a_m is found from (5.1) putting $n = m$ and using the recursion formula for the $q_{n, \pm}$. For general input q_1 and q_0 one finds with the Wronskian (2.21)

$$
\prod_{i=1}^{m+1} k_i \mathcal{G}_{n,m}(x) = \frac{1}{W(q_1,q_{N+1}) (\lambda_{N,(-1)^{k}}(x) - \lambda_{N,(-1)^{k+1}}(x))} \cdot q_{\text{max}(n,m)+1,(-1)^{k}}(x) q_{\text{min}(n,m)+1,(-1)^{k+1}}(x).
$$

This is the Bloch-Floquet Green’s function vanishing for $x-$values in gaps for $n \to \infty$ with fixed m and vice versa.

Our interest is in the diagonal Green’s functions $\mathcal{G}_{n,n}(x)$ which are in fact q_0 and q_1 independent. This is due to identity (2.23) which shows that the Wronskians drops out. The final result can be written in terms of the $m-$th associated polynomials $\{S_{n}^{(m)}(x)\}$ defined in (2.20) like

$$
(n+1) \prod_{i=1}^{n+1} k_i \mathcal{G}_{n,n}(x) = S_{N-1}^{(n+1)}(x)/\left(2\sqrt{(T_N(x))^2 - 1}\right).
$$

The sign of the square root depends on the gap and band number. For the $k-$th gap, G_k, it is $(-1)^k$, for the $k-$th band, B_k it is $(-1)^{k+1}$ in accordance with the remarks found in section 2. In particular, one has for the input quantities

$$
\mathcal{G}_{-1,-1}(x) = \frac{1}{2}S_{N-1}(x)/\sqrt{(T_N(x))^2 - 1},
$$

$$
\mathcal{G}_{0,0}(x) = \frac{1}{2k_1}S_{N-1}(x)/\sqrt{(T_N(x))^2 - 1}.
$$

The imaginary part of these input Green’s functions are inversely related to the weight functions computed in this paper. For $x \in B_k$, $k = 1, 2, ..., N$, one finds

$$
\text{Im } \mathcal{G}_{-1,-1}(x) := \lim_{\eta \to 0^+} \text{Im } \mathcal{G}_{-1,-1}(x + i\eta) = \frac{1}{2}(-1)^k S_{N-1}(x)/\sqrt{1 - (T_N(x))^2}.
$$

In the gaps the imaginary part is zero. This shows that the absolutely continuous part of the $\{S_n(x)\}$ measure (the weight function), which lives on the bands, is essentially the negative inverse of the imaginary part of the $\mathcal{G}_{-1,-1}$ Green’s function.

$$
-\text{Im } \mathcal{G}_{-1,-1}(x) = \omega_0^2/(\pi \omega_1^2 w(x)),
$$

with (2.28b) and x in the bands. Similarly

$$
-\text{Im } \mathcal{G}_{0,0}(x) = \omega_0^2/(\pi \omega_2^2 w(x)),
$$

with (2.30b). The average over the elementary N-unit of the chain for the diagonal Green’s functions $\hat{\mathcal{G}}_{n,n}(x)$, belonging to the monic polynomials $\{\hat{S}_{n}(x)\}$, can be computed
with the help of the Christoffel-Darboux identities for the Bloch-Floquet solutions (2.6). These identities follow from the recursion formula (cf. refs. [1]), and they are (remember that \(k_1 k_2 \cdots k_N = 1 \) in the \(N \)–periodic case)

\[
-2 \sum_{n=0}^{N-1} \frac{\omega_0^2}{\omega_{n+1}^2} \prod_{i=1}^{n+1} k_i q_{n+1,+}(x) q_{n+1,-}(x) = q_{n,+}(x) q'_{N+1,-}(x) - q_{N+1,+}(x) q'_{N,-}(x) + q_{1,+}(x) q'_0,-(x) - q_{0,+}(x) q'_{1,-}(x). \tag{5.9}
\]

There is an alternative version of this identity where the derivative acts on the left factor and an overall minus sign appears. This happens because the confluent Christoffel-Darboux identity implies

\[
q_{N,+}(x) q_{N,-}(x) - q_{N,+}(x) q_{N+1,-}(x) - q_{1,+}(x) q_{0,-}(x) + q_{0,+}(x) q_{1,-}(x) \equiv 0, \tag{5.10}
\]

which is in fact the Wronskian identity analogous to (2.21) for \(W(q_{N+1,+}, q_{N+1,-}) \). The connection between \(\tilde{G}_{n,n}(x) \), for the monic case, and \(G_{n,n}(x) \) is

\[
\tilde{G}_{n,n}(x) = -2 \frac{\omega_0^2}{\omega_{n+1}^2} G_{n,n}(x). \tag{5.11}
\]

Using (5.4), (2.23) for the \((n+1)\)–th associated polynomials, identity (5.9), and the definitions (2.6) with (1.2), a lengthy calculation shows that for general inputs \(q_0(x) \) and \(q_1(x) \)

\[
\sum_{n=0}^{N-1} \tilde{G}_{n,n}(x) = T'_N(x)/\sqrt{(T_N(x))^2 - 1}, \tag{5.12}
\]

with the sign convention for gaps and bands mentioned earlier. Therefore, the imaginary part produces the differential spectral density (or differential density of states) known from the differentiation of the Bloch-Floquet phase:

\[
\frac{1}{\pi} \lim_{\eta \to 0+} \text{Im} \frac{1}{N} \sum_{n=0}^{N-1} \tilde{G}_{n,n}(x + i\eta) = G_N(x), \tag{5.13}
\]

given by (1.8) for \(x \) values in the bands and zero otherwise. This result corroborates the choice of the Bloch-Floquet Green’s functions. As a by-product we find from (5.12), (5.11), and (5.4) the identity

\[
\sum_{n=0}^{N-1} \frac{\omega_0^2}{\omega_{n+1}^2} \prod_{i=1}^{n+1} k_i S^{(n+1)}_{N-1}(x) = -T'_N(x), \tag{5.14}
\]

for the \(N \)–periodic case of the general associated polynomials (2.20) which collapses to the well-known identity (1.10) for Chebyshev polynomials for the mono-atomic case.
Acknowledgements

Thanks go to Dr. A. Anzaldo for pointing out ref. [6] at an early stage of this investigation. He and Dr. B. Klaiber made helpful remarks for which the author is grateful. The Green’s functions have been discussed with Mr. D. Walther. The referees made valuable suggestions. One of them proposed to treat the general periodic case.

Appendix

A1. Derivation of eqn.(2.14) (cf. Ref.[6])

In the z–plane I_B is given by (2.11) with $\Gamma = \Gamma_{B''}$ defined by (2.12). The sign choice of $q_{n+1,\pm}$ depends on the band B_k, $k = 1, 2, \ldots, N$, where it is $(-1)^{k+1}$. $q_0 = 0$ and $q_1 = 1$ in (2.6a) with (1.2). The relation (2.14) with the appropriate sign choice for $\lambda_N(x) = \lambda_N,(-1)^{k+1}(x)$ is used in order to rewrite $q_{n+1,\pm}$ of (2.11). The piece with $q_{n+1,\mp}$ is, after a change of variable, seen to be the negative of the original integral I_B with the relevant $q_{n+1,\pm}$ choice for $x \in B_k$. The same change of variable is used to rewrite the second piece coming from (2.14) as twice the integral over only half of the contour, namely over $\Gamma_{B''}$ in the lower half of the z–plane.

A2. Continued fractions for the $\{\hat{S}_n\}$ measure calculation

The $\{\hat{S}_n(x)\}$ recursion relation is given by (1.5b). Their first associate polynomials are $\{\hat{S}_n^{(2)}(x)\}$ defined by (2.20). The normalised measure $d\hat{\sigma}$ obeys

$$
\int \hat{S}_n(x) \hat{S}_m(x) d\hat{\sigma}(x) = \frac{k_1^{n+2}}{k_2} \prod_{j=1}^{m+2} \frac{\omega_j^{n+2}}{\omega_j^2} \delta_{n,m} = \frac{k_1^2}{m_{n+2}} \delta_{n,m}, \quad m, n \in \mathbb{N}_0. \quad (A.1)
$$

The continued fraction $\hat{X}(x)$ which is related to this measure like in (3.3) has approximants

$$
\hat{X}_n(x) = \frac{\hat{S}_n^{(2)}(x)}{\hat{S}_n^{(1)}(x)} = -\frac{2\omega_0^2}{k_2\omega_2^2} \left(\frac{k_2}{Y_2(x)} - \frac{k_3}{Y_3(x)} - \cdots - \frac{k_{n+1}}{Y_{n+1}(x)} \right). \quad (A.2)
$$

The tilde quantities are monic polynomials. $S_n^{(1)} \equiv \hat{S}_n$. The corresponding Möbius transformation is

$$
\hat{J}_N(x; z) \equiv z' = \frac{k_2}{Y_2(x)} - \frac{k_3}{Y_3(x)} - \cdots - \frac{k_{N+1}}{Y_{N+1}(x) - z} = \frac{S_N^{(2)}(z) - S_N^{(2)}(x)}{S_N^{(1)}(z) - \hat{S}_N(x)}. \quad (A.3)
$$

The fixed point solution can be written like

$$
-\frac{k_2\omega_2^2}{2\omega_0^2} \hat{X}_{N,\pm}(x) = \left\{ \hat{S}_N(x) - k_1\lambda_{N,\pm}(x) \right\}/\hat{S}_{N-1}(x), \quad (A.4)
$$

where $\hat{\lambda}_{N,\pm} := \hat{T}_N(x) \pm \sqrt{(\hat{T}_N)^2 - k_1^2} = k_1\lambda_{N,\pm}$ was used which follows from (3.13) and (2.6b). The measure $d\hat{\sigma}$ is then computed like in (3.5) from \hat{X}. With the definition (2.29) of the $\{\hat{s}_n\}$ polynomials one finds $\int d\hat{\sigma} \hat{s}_n(x)\hat{s}_m(x) = \delta_{n,m}$ with $d\hat{\sigma}$ given in (2.30).
References

[1a] G. Szegö: "Orthogonal Polynomials ", Gordon and Breach, New York, 1939
[1b] T.S. Chihara: "An Introduction to Orthogonal Polynomials ", Gordon and Breach, New York, 1978
[2] F. Axel, J.P. Allouche, M. Kleman, M. Mendès- France and J. Peyrière, J. Physique Coll. 47 C3, suppl.7 (1986) 181-186
[3] J.M. Luck and D. Petritis, J. Stat. Phys. 42 (1986) 289-310
[4a] W. Lang, J. Phys.A 25 (1992) 5395-5413
[4b] W. Lang, "Two Families of Orthogonal Polynomial Systems Related to Fibonacci Chains ", pp 429-440 in "Applications of Fibonacci Numbers ", Vol.5 eds. G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1993
[5a] A. Sütő, J. Stat. Phys. 56 (1989) 525-531
[5b] J. Bellissard, B. Iochum, E. Scoppola and D. Testard, Comm. Math. Phys. 125 (1989) 527-543
[6] W. van Assche: "Asymptotics for Orthogonal Polynomials ", Lecture Notes in Mathematics, Vol. 1265, Springer, 1987
[7] S.W. Lovesey, G.I. Watson and D.R. Westhead, Int. J. Mod. Phys. B5 (1991) 1313-1346
[8] D.V. Widder: "The Laplace Transform ", Ch. VIII, Princeton University Press, 1946
[9] R. Askey and M. Ismail: Recurrence relations, continued fractions and orthogonal polynomials ", Memoirs of the Am. Math. Soc., Nr. 300, 49 (1984)1-108
[10] A. Wintner: "Spektraltheorie der unendlichen Matrizen ", Hirzel, Leipzig, 1929
[11] N.I. Akhiezer: "The Classical Moment Problem ", Oliver & Boyd, Edinburgh and London, 1965
[12] M. Reed and B. Simon:"Methods of Modern Mathematical Physics ", Vol. IV, Academic Press, New York, 1978
Fig. 1: A sketch of the bands and gaps for the Fibonacci $N = 5$, $r = 2$ chain $(ABAAB)^\infty$. A closed path in the x-plane is indicated.
Fig. 2: The map $w(x)$ of the bands and gaps in the $\mathcal{N} = 5$, $r = 2$ Fibonacci case.
Fig. 3: The map $z(x) = 1/w(x)$ in the $N = \tilde{a}$, $r = 2$ Fibonacci case. The contour Γ is indicated.