Stress, non-restorative sleep, and physical inactivity as risk factors for chronic pain in young adults: A cohort study

Maja Lindell¹, Anna Grimby-Ekman¹,²*

¹ Chronic Pain, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden, ² Biostatistics, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden

* Anna.ekman@gu.se

Abstract

Background

Chronic pain is a common condition which causes patients much suffering and is very costly to society. Factors known to be associated with chronic pain include female gender, acute pain, depression, and anxiety. This study investigated whether stress, sleep disturbance, and physical inactivity were risk factors for developing chronic pain among young adults, and whether there were any interactions between these.

Methods

This retrospective longitudinal study was based on an existing database from a cohort study on IT use and health, called Health 24 Years. A questionnaire was sent to students aged 19–24 in Sweden for five consecutive years, containing questions on pain, stress, sleep, physical activity, technology use, health, and more. In logistic regressions, stress, sleep, and physical activity at baseline were potential predictors of chronic pain one and four years later. In addition, a new variable including all possible interactions between potential predictors was created to test for effect modification between risk factors.

Results

At the one-year follow-up, stress, non-restorative sleep, and physical inactivity showed odds ratios of 1.6 (95% CI: 1.0–2.4), 1.5 (95% CI: 1.0–2.3), and 1.8 (95% CI: 1.1–3.0) respectively after adjusting for confounders, the reference being non-stressed, having restorative sleep and being active. At the four-year follow-up, stress showed an adjusted odds ratio of 1.9 (95% CI: 1.3–2.9), while non-restorative sleep and physical inactivity were statistically insignificant. At the one-year follow-up, the interaction between risk factors were significant. The most clear example of this effect modification was to be inactive and not have restorative sleep, compared to individuals who were active and had restorative sleep, showing an adjusted odds ratio of 6.9 (95% CI: 2.5–19.2) for developing chronic pain one year after...
baseline. This in comparison of odds ratios for only inactive respectively only non-restorative sleep being 1.7 (95% CI: 0.6–5.3) respectively 1.6 (95% CI: 0.7–3.5).

Conclusions

Stress, non-restorative sleep, and physical inactivity were risk factors for developing chronic pain one year after baseline, and stress were also a risk factor four years after baseline. These findings suggest that non-restorative sleep and inactivity are risk factors in the short term while stress is a risk factor in both the short and the long term. In addition to the independent effects of non-restorative sleep and inactivity, their combination seems to further increase the odds of chronic pain.

Introduction

Chronic pain is a common public health problem and has a prevalence of approximately 20% in general populations [1]. It has a severe impact on individuals’ quality of life and productivity [2–4], and is also a burden for society in terms of health care costs and inability to work [5]. The International Association for the Study of Pain (IASP) defines chronic pain as “pain that lasts or recurs for longer than 3 months”, and hence differs from acute pain [6]. Chronic pain is likely both developed from and maintained by a combination of neurobiological, psychological, and social factors, and is associated with older age, female gender, socio-economic background, smoking, high comorbidity, mental health issues, obesity, sleep disorders, genetics, and adverse life events in early life [7, 8]. This complex process of developing and maintaining chronic pain is the reason why we want to focus on the factors of stress, sleep and physical activity and how they may interact.

It is widely believed that psychosocial distress, earlier traumas or abuse, depression or sleep problems matter in the development of chronic pain [9, 10], and that perceived stress may have an important role. Individuals with perceived high stress have a higher risk of developing chronic pain in the neck and shoulders as well as persistent back pain, specifically investigated as stress at work [11–16]. Also among younger age groups perceived stress is known to be associated with neck pain and headaches [17]. Acute and chronic emotional distress is associated with the development of fibromyalgia [11], and early life stressors, such as child abuse, have an impact on the probability of developing chronic pain syndromes [9, 18–20]. In the present study stress is defined as perceived stress to capture not the stressors, but rather the experience of stress, incorporated in the psychological stress cycle [21].

The association between chronic pain and sleep disturbance has been well known for a long time [22, 23]. Studies point to a bidirectional occurrence of sleep disturbance and chronic pain, with sleep disturbance preceding the onset and worsening of pain, as well as sleep disturbance resulting from pain [24]. It is likely that sleep disturbance predicts chronic pain to a higher extent than pain predicts sleep disturbance. Sleep disturbance has been shown to precede chronic headaches, fibromyalgia syndrome, and musculoskeletal pain, both widespread and regional [9, 25–29]. It also predicts the probability of pain improvement in chronic pain patients and pain levels on the next day. Pain intensity does not seem to influence sleep disturbance in the far future [26]. One night of complete sleep deprivation has been shown to induce hyperalgesia in healthy subjects, as well as increased anxiety. Sleep quality affects the likelihood of the resolution of chronic widespread pain [30]. In chronic pain patients, sleep and pain can
Physical activity has previously been shown to be an important health factor in numerous chronic diseases [32]. It is also used as treatment for a number of conditions, such as depression and some chronic pain syndromes [33]. Physical function and pain intensity in chronic pain patients have been shown to improve when treated with physical activity, although the quality of the evidence is relatively low. Exercise is considered a safe treatment option, with few adverse events reported [34]. There are few studies on physical activity as a protective factor for developing chronic pain. One study in mice found that rats with running wheels in their home cages were less likely to develop chronic pain conditions [35]. Some studies on physical activity and lower back/neck/shoulder pain have found that physical activity may be protective [36, 37], while others have shown inconsistent results regarding how leisure-time physical activity affects the risk of lower back pain [38, 39]. One study found that a higher level of physical activity could increase the function of the endogenous pain inhibitory systems [40] which are involved in the pathogenesis of chronic pain syndromes. Physical activity is used to treat different pain syndromes, but has not been thoroughly studied as a protective factor in the development of chronic pain. More research on the subject is needed. Physical activity could be seen as a health factor both for preventing and decreasing pain symptoms. Physical inactivity is a risk factor for health and also a possible risk factor for chronic pain. In younger groups physical inactivity is increasing and hence important to understand as a possible risk factor for chronic pain development.

To our knowledge, prior longitudinal studies investigating the development of chronic pain included persons with pain at baseline, and only excluded those with chronic pain. In this study we specifically focus on chronic pain in young adults. This is of importance due to the fact that stress, sleep disturbance and physical inactivity among young adults are increasing [41–43].

The aim of this study was to investigate whether stress, sleep disturbance, and physical inactivity were risk factors of chronic pain among young adults. Specifically, to see if these risk factors modified the effect of each other.

Materials and methods

Cohort data

The data were drawn from a retrospective longitudinal study, the Health 24 Years study, with data collected during 2002–2008, with two recruitment years, one in 2002 and one in 2004. The Health 24 Years study was approved by the local ethics committee at Gothenburg University (ref: Ö-491-01) and followed the Helsinki declaration. All participants were informed of the nature of the study and gave written consent to participate.

In 2002 participants were recruited from the enrollment lists of medical programs and computer science programs of different universities in Sweden. Those attending medical school were from the University of Gothenburg, Lund University, and Linköping University, while those attending computer science programs were from the University of Gothenburg, Chalmers University of Technology, the University of Borås, and the University of Skövde. In 2004, the recruitment also included other programs such as nursing and civil engineering. Students were invited by letter, and two tickets to the cinema were offered as compensation. Reminders were sent to those who did not answer. The invitation and information letter was sent to 1728 people in 2002 and 1697 in 2004; 2471 of these 3425 individuals responded, giving a response rate of 72%.
Study sample

Criteria for inclusion in this study were to be university students, age 19–25 and not having pain at baseline. From the 2471 responders in the cohort data, twenty seven individuals were excluded, as they did not fulfill the inclusion criterion of being aged 19–25 years. Hence, from the cohort 2444 individuals were present at baseline. Of these 2444, 11 individuals were excluded as they had been miss-classified as university students, and another 674 were excluded as they fulfilled the exclusion criterion of having pain at baseline, leaving 1759 individuals included in the study at baseline (1029 men and 730 women). We used the data from the one-year and four-year follow-ups and as this study uses already collected data the variables to analyze were chosen among existing questionnaires from the mentioned cohort. At the one-year follow-up 1567 answered the questionnaires and at the four-year follow-up 1275 answered (Fig 1).

Questionnaire and study variables

The questionnaires from the cohort, on which our present study is based on, contained questions about demographic factors, nicotine and alcohol consumption, use of computers and other technology, physical activity, stress and demands in school, general health, sleep quality
and pain in the back, neck, or upper extremities. A more thorough description of the cohort and the included questions in the questionnaire are described elsewhere [44–46].

The original questions chosen for the main variables are given in Table 1 (translated from Swedish to English). These variables were dichotomized before being analyzed.

The general definition used for when acute pain becomes chronic is three months, or 90 days [7]. We defined chronic pain by pain in any of the locations above for more than 89 days.

The question about stress [47], validated by Elo et al [48], was dichotomized in its original version.

The sleep questions, based on a sleep and wakefulness form [49], all had answers dichotomized by categorizing “Never”, “A couple of times a year”, and “A couple of times a month” as “No” and “A couple of times a week” and “Every day” as “Yes”. A previous study [27] found that non-restorative sleep was the strongest predictor of chronic widespread pain, and hence this was chosen as the main variable for assessing sleep in the present study. Hence, we used a variable defined on the question “Not feeling rested when you wake up” (“Never” to “a couple of times a month” were marked as “No” and “a couple of times a week” and “every day” were marked as “Yes”). For a sensitivity analysis additional variables was created to further investigate how different sleep-related issues affected chronic pain. Frequent awakenings and difficulty falling asleep were merged into one binary variable called “sleep disturbance”, where “Yes” stood for having problems with at least one of them, and “No” stood for not having a direct sleep disturbance. Non-restorative sleep and daytime tiredness were merged into another binary variable called “tiredness”, just like the previous one. These alternative sleep variables were run in a model which also included stress and physical inactivity.

Physical activity is a health promoting factor, while inactivity or sedentary behavior is a risk factor for cardiovascular disease, type 2 diabetes, and mortality [50]. In the present questionnaire, the question regarding exercise did only ask about the hours per week for physical activity or exercise, but not if the activity was of moderate or high intensity. We could therefore not define a variable related to the World Health Organization 2020 guidelines on physical activity and sedentary behavior, of exercising for at least 150 minutes at moderate intensity or 75 minutes at high intensity every week [51]. We therefore focused on the risk factor and defined a variable of “inactivity”. Respondents who had done any amount of exercise in the past week were classified as “Inactivity = No”, and those who stated they had taken zero hours of exercise were classified as “Inactivity = Yes”.

Table 1. Original questions selected for the main variables.

Chronic pain: Are you experiencing any of the following at present? If yes, give the number of days that this period of symptoms has lasted.
Pain/ache from the upper spine/neck
Pain/ache in the lower part of the spine
Pain/ache in the shoulder/arm/wrist/hands
Stress: Stress is defined as “a condition where you feel tense, restless or anxious or can’t sleep at night because you keep thinking about problems”.
In the past 12 months, have you experienced such stress for more than 7 consecutive days? [Yes/No]
Sleep: Have you had any of the following problems during the past six months?
Difficulty falling asleep
Frequent awakenings
Not feeling rested when you wake up
Feeling tired or sleepy during the day
[Never/A couple of times a year/A couple of times a month/A couple of times a week/Every day]

Physical activity: Approximately how much time did you spend on the following activities in the past 7 days?
[…] Physical activity/Exercise [hours/week]

https://doi.org/10.1371/journal.pone.0262601.t001
Statistical analysis

The data were analyzed using version 26 of SPSS for Mac, with the significance level set to 0.05. The results are shown as odds ratios (ORs) with 95% confidence intervals (CIs). Frequency tables including numbers of observations and percentages were created to assess the levels of stress, physical activity, and sleep disturbance in the study population. Descriptive statistics for age and BMI is presented as median, and minimum and maximum value. Logistic regression was used to investigate whether stress, physical inactivity, and sleep disturbance could be predictors for chronic pain. Adjustment for confounders was performed by first adding all potential confounders and then removing them one at a time with the highest p-value first. Confounders with $p < 0.250$ were not removed, and those with $0.250 \leq p \leq 0.300$ were removed only if this did not affect the OR by more than 10% [52]. All potential confounders presented in Table 2 were checked for in the process described above.

Chronic pain at the one-year follow-up and at the four-year follow-up were used as dependent variables. One model was created with stress, non-restorative sleep, and physical inactivity as independent variables, and another with a variable including the interaction as independent variable. A variable with eight categories combining stress, sleep, and physical activity in all possible ways was constructed to check for interactions. In a statistical context, “interaction” refers to the possibility that the effect of a risk factor can vary depending on whether another risk factor is present. In our case we look at whether the OR presenting the effect of one risk factor, depends on the level of another factor.

The analyses were performed both with and without controlling for confounders.

Results

At baseline, 1759 participants answered the questionnaire. There were more men (58.5%) than women in the study sample. The median age was 23 years (min: 19, max: 25) for both men and women. Median BMI was 22.8 (min: 15.2, max: 38.8) among men, 21.3 (min: 15.2, max: 40.4) among women, and 22.2 in the total group.

Table 2. Frequencies of confounders used in the analysis.

Confounders	Men	Women	Total				
	58.5%, n = 1029	41.5%, n = 730	n = 1759				
	%	n	%	n	%	n	
Education							
Computer science	61%	630	32%	236	49%	866	
Educational program at University level							
Medical	35%	359	59%	432	45%	791	
Nurse	1%	8	7%	52	3%	60	
Others	3%	32	1%	10	2%	42	
Using nicotine	Yes (ref. No)	19%	191	7%	51	14%	242
Asthma	Yes (ref. No)	7%	73	6%	47	7%	120
Diabetes	Yes (ref. No)	1%	10	2%	11	1%	21
PC use, nr of times >4h	0	42%	431	74%	543	55%	974
without a break	1	17%	176	10%	73	14%	249
in the previous week	2–4	25%	260	9%	68	19%	328
≥5	16%	162	6%	46	12%	208	
Watching TV/video, nr of times >4h	0	66%	675	75%	544	69%	1219
without a break	1	15%	152	13%	97	14%	249
in the previous week	2–4	14%	142	8%	59	11%	201
≥5	6%	60	4%	30	5%	90	

https://doi.org/10.1371/journal.pone.0262601.t002
Frequencies of possible confounders are given in Table 2. Gender has been shown in previous studies to affect the probability of having chronic pain [53]. In a previous analysis of this database, the use of a computer for more than 4 hours without a break was shown to affect the probability of acute pain in the upper limbs [54]. Having watched TV/video for more than 4 hours without a break was also used as a confounder. Asthma and diabetes were the only comorbidities included in the questionnaire, and therefore were the only ones adjusted for. Body mass index (BMI) and nicotine use have been shown to affect pain levels [53]. University program was also used as a potential confounder.

Nearly half of the participants had experienced stress for more than 7 days in the past year. In the group, 14% reported inactivity, as they did not report any physical activity/exercise in the past week. Just over half had answered at least one of the sleep questions with “Several times a week” or “Every day”. Chronic pain in at least one of the locations was reported by 7% at the one-year follow-up and 8% at the four-year follow-up. More details of the baseline characteristics of the study population are given in Table 3.

Results from regression analysis of one-year follow-up

Results from the regression model including main effects showed effect of all the three factors of interest (stress, non-restorative sleep and inactivity). Participants who reported stress for more than 7 consecutive days in the past 12 months had an adjusted OR of 1.6 (95% CI: 1.0–2.4) for developing chronic pain, those reporting non-restorative sleep a couple of times a week or every day had an adjusted OR of 1.5 (95% CI: 1.0–2.3), and those who said they had spent zero hours on exercise in the past week had an adjusted OR of 1.8 (95% CI: 1.1–3.0) (Table 4, Model 1).

In model 2, Table 4, the model includes two-way interactions of the three factors to understand possible modifications. The reference group in the interaction model comprised those who had not been stressed, had reported restorative sleep, and had not been inactive. Strongest effect modifications were seen for those who had non-restorative sleep and were inactive, but had not been stressed (n = 30 at baseline), the adjusted OR for developing chronic pain at the

Table 3. Characteristics of the study population.

	Men	Women	Total
	58.5%, n = 1029	41.5%, n = 730	n = 1759
Stress	%	%	%
Yes (ref. No)	42% 436	59% 428	49% 864
Physical activity, h/w			
Zero (Inactivity)	17% 175	10% 72	14% 247
0.1–2.4	23% 227	26% 185	24% 412
≥2.5	60% 602	64% 457	62% 1059
Sleep			
Difficulty falling asleep	13% 138	11% 82	13% 220
Frequent awakenings	2% 23	5% 38	4% 61
Non-restorative sleep	37% 381	37% 273	37% 654
Tired during the day	43% 447	46% 335	45% 782
Pain, one-year follow-up			
Chronic pain upper back	2% 22	7% 44	4% 66
Chronic pain lower back	3% 26	3% 18	3% 44
Chronic pain arm	2% 17	4% 24	3% 41
Chronic pain anywhere	6% 52	9% 60	7% 112
Pain, four-year follow-up			
Chronic pain upper back	4% 31	5% 27	5% 58
Chronic pain lower back	4% 25	3% 17	3% 42
Chronic pain arm	4% 26	2% 12	2% 38
Chronic pain anywhere	8.6% 62	8% 45	8% 107

https://doi.org/10.1371/journal.pone.0262601.t003
one-year follow-up was 6.9. Those who reported all three conditions (stress, non-restorative sleep, and inactivity; n = 70 at baseline) showed an adjusted OR of 5.2, Table 4.

As a sensitivity analysis we also analyzed an alternative sleep variable model including sleep disturbance and tiredness. In the one-year follow-up stress and physical inactivity had similar ORs as in the model with non-restorative sleep. The variable “Sleep disturbance” did not show statistically significant results. “Tiredness” showed an adjusted OR of 1.9 for developing chronic pain, model 3 in Table 4.

The parametrization in the interaction model compares all combinations of stress, non-restorative sleep and physical inactivity with the group not being stressed, having restorative sleep and being active. To illustrate the models results for other group comparisons results are presented in Table 5. In the absence of stress, the OR for inactivity when non-restorative sleep was present was 4.3, and the OR for inactivity when non-restorative sleep was absent was 1.7. Again in the absence of stress, the OR for non-restorative sleep when inactivity was present was 4.1, and the OR for non-restorative sleep when inactivity was absent was 1.6, Table 5.

Results from regression analysis of four-year follow-up

Results at the four-year follow-up regression model including main effects only stress was a statistically significant predictor of chronic pain at this follow-up, Table 6. Exposure to stress at baseline showed an adjusted OR of 1.9 for developing chronic pain.

| Table 4. Results from logistic regression analysis of the outcome chronic pain at the one-year follow-up. |
|---|---------------------------------|---------------------------------|
| | Unadjusted | Adjusted* |
| Model 1 | OR | CI | p | OR | CI | p |
| n = 1523, n = 1523 | | | | | | |
| Stress | Yes (ref. No) | 1.7 | 1.1–2.6 | 0.010 | 1.6 | 1.0–2.4 | 0.029 |
| Non-restorative sleep | Yes (ref. No) | 1.5 | 1.0–2.3 | 0.036 | 1.5 | 1.0–2.3 | 0.037 |
| Inactivity | Yes (ref. No) | 1.7 | 1.1–2.7 | 0.029 | 1.8 | 1.1–3.0 | 0.016 |
| Model 2 | | | | | | |
| n = 1523, n = 1523 | | | | | | |
| Interaction variable | Only stress | 2.3 | 1.3–4.1 | 0.007 | 2.2 | 1.2–4.0 | 0.010 |
| Interactions (ref. no stress, no non-restorative sleep, no inactivity) | Only non-rest. sleep | 1.5 | 0.7–3.2 | 0.298 | 1.6 | 0.7–3.5 | 0.228 |
| | Only inactivity | 1.7 | 0.6–5.1 | 0.360 | 1.7 | 0.6–5.3 | 0.345 |
| | Stress+inactivity | 1.4 | 0.4–5.0 | 0.575 | 1.5 | 0.4–5.2 | 0.535 |
| | Stress+non-rest. sleep | 2.6 | 1.4–4.7 | 0.002 | 2.4 | 1.3–4.4 | 0.006 |
| | Inact.+non-rest. sleep | 6.2 | 2.3–17.0| 0.001 | 6.9 | 2.5–19.2| <0.001 |
| | All three | 5.1 | 2.4–11.1| <0.001 | 5.2 | 2.4–11.5| <0.001 |
| Model 3 | | | | | | |
| n = 1523, n = 1523 | | | | | | |
| Stress | Yes (ref. No) | 1.7 | 1.1–2.5 | 0.016 | 1.6 | 1.0–2.4 | 0.042 |
| Inactivity | Yes (ref. No) | 1.7 | 1.0–2.7 | 0.039 | 1.8 | 1.1–2.9 | 0.024 |
| Sleep disturbanceb | Yes (ref. No) | 0.9 | 0.5–1.6 | 0.671 | 0.8 | 0.5–1.5 | 0.518 |
| Tirednessc | Yes (ref. No) | 1.9 | 1.2–2.9 | 0.004 | 1.9 | 1.2–2.9 | 0.004 |

* Included confounders in all models (Model 1-Model 3): gender, education
b Yes = presence of at least one of “frequent awakenings” and “difficulty falling asleep”.
c Yes = presence of at least one of “non-restorative sleep” and “tired during the daytime”.
OR = odds ratio, CI = confidence interval. The sample size in the unadjusted and adjusted model is given.
In model 5, the model includes two-way interactions of the three factors to understand possible modifications. The reference group in the interaction model comprised those who had not been stressed, had reported restorative sleep, and had not been inactive. At the four-year follow-up, the interaction variable was not statistically significant ($p = 0.127$), Table 6. Though, the OR = 2.1 of stress compared to reference group and all the factors present at the same time compared to reference group, were statistically significant, model 5, Table 6.

As a sensitivity analysis, we also analyzed an alternative sleep variable model including sleep disturbance and tiredness. In the four-year follow-up neither sleep disturbance nor tiredness showed statistically significant results ($p = 0.848$ and $p = 0.305$), Table 6.

Sub-analysis of specific upper body pain locations
In the one-year follow-up when using chronic pain in the upper extremity as the dependent variable, stress was the only statistically significant predictor, with an adjusted OR of 2, Table 7.

In the four-year follow-up when using chronic pain in the lower back as a dependent variable, stress was the only statistically significant predictor, with an adjusted OR of 2.9. Stress was also a statistically significant predictor for chronic pain in the upper extremity, with an adjusted OR of 2.5. Inactivity was a statistically significant predictor for pain in the upper extremity when unadjusted (OR 2.1), but not when adjusted. Results are given in, Table 8.

Discussion
The results of this study showed that stress, non-restorative sleep, and inactivity were risk factors for chronic pain. Four years after baseline, only stress was a risk factor for chronic pain.

Reporting stress both at baseline and at the one-year follow-up increased the OR for developing chronic pain at the four-year follow-up, pointing to stress as a risk factor for chronic pain.
pain. This is in line with prior research [11] identifying stress as a short- and long-term risk factor [12, 55]. Several earlier studies [11–15] found stress to be a risk factor for neck and shoulder pain; our findings support a relation with pain in the upper extremity, but not specifically neck and shoulder pain.

Non-restorative sleep was a risk factor for chronic pain at the one-year follow-up, but at the four-year follow-up there were no statistically significant results, or even tendencies. These results imply that non-restorative sleep is a risk factor of chronic pain in the short term, but not in the long term. Earlier studies found that sleep disturbance predicts chronic pain in the short term [9], which is in line with our findings, but also in the long term [27, 29], which we could not show. There are a number of possible reasons for this discrepancy in results. Firstly, few other studies excluded individuals with any pain at baseline. Some excluded chronic pain, but not any pain [29], which may leave a risk of contamination by individuals who are close to developing chronic pain. Secondly, different results may have been due to different ways of measuring sleep disturbance. Our findings suggest that non-restorative sleep and daytime tiredness are predictors of chronic pain, while difficulty falling asleep and frequent awakenings are not. This may be because non-restorative sleep and daytime fatigue are effects of sleep disturbance, and the presence of effects may be a stronger predictor than sleep disturbance itself. Non-restorative sleep and daytime fatigue might stand for a more severe sleep disturbance. Another possible reason for not finding a relation between sleep disturbance and chronic pain

Table 6. Results from logistic regression analysis of the outcome chronic pain at the four-year follow-up.

	Unadjusted	Adjusted*					
	OR CI	p	OR CI	p			
Model 4							
n = 1251, n = 1245							
Stress	Yes (ref. No)	1.8	1.2–2.6	0.008	1.9	1.3–2.9	0.002
Non-restorative sleep	Yes (ref. No)	1.0	0.7–1.6	0.858	1.1	0.7–1.6	0.813
Inactivity	Yes (ref. No)	1.3	0.8–2.2	0.340	1.2	0.7–2.0	0.615
Model 5							
n = 1251, n = 1245							
Interaction variable	Only stress	1.9	1.1–3.3	0.026	2.1	1.2–3.7	0.011
	Only non-rest. sleep	1.2	0.6–2.5	0.668	1.2	0.6–2.6	0.581
	Only inactivity	1.3	0.4–3.9	0.658	0.9	0.3–3.3	0.928
	Stress+inactivity	2.0	0.7–5.4	0.194	2.1	0.8–6.0	0.146
	Stress+non-rest. sleep	1.7	0.9–3.1	0.080	1.9	1.0–3.4	0.041
	Inact.+non-rest. sleep	1.2	0.3–5.2	0.842	1.2	0.3–5.6	0.780
	All three	2.9	1.2–6.9	0.015	2.8	1.2–6.7	0.022
Model 6							
n = 1251, n = 1245							
Stress	Yes (ref. No)	1.7	1.1–2.6	0.013	1.9	1.2–2.9	0.005
Inactivity	Yes (ref. No)	1.3	0.8–2.2	0.373	1.1	0.7–1.9	0.668
Sleep Disturbanceb	Yes (ref. No)	1.0	0.5–1.7	0.918	0.9	0.5–1.7	0.848
Tirednessc	Yes (ref. No)	1.2	0.8–1.9	0.356	1.3	0.8–1.9	0.305

* Included confounders in all models (Model 4—Model 6): education, nicotine use
b Yes = presence of at least one of “frequent awakenings” and “difficulty falling asleep”.
c Yes = presence of at least one of “non-restorative sleep” and “tired during the daytime”.

OR = odds ratio, CI = confidence interval. The sample size in the unadjusted and adjusted model is given.

https://doi.org/10.1371/journal.pone.0262601.t006
Table 7. Results from logistic regression analysis of the outcome chronic pain at the one-year follow-up.

Model 7	Upper back/neck	Unadjusted	Adjusted*
Stress	Yes (ref. No)	1.8	1.5
Non-restorative sleep	Yes (ref. No)	1.8	1.9
Inactivity	Yes (ref. No)	1.7	2.1

Model 8	Lower back		
Stress	Yes (ref. No)	1.0	1.0
Non-restorative sleep	Yes (ref. No)	1.2	1.2
Inactivity	Yes (ref. No)	1.9	1.8

Model 7: \(n = 1526, n = 1519 \)
Model 8: \(n = 1532, n = 1532 \)

* Included confounders in Model 7: gender, education, nicotine use, watching TV/video, Model 8: education, computer use, Model 9: gender, education

Table 8. Results from logistic regression analysis of the outcome chronic pain at the four-year follow-up.

Model 10	Upper back/neck	Unadjusted	Adjusted*
Stress	Yes (ref. No)	1.2	1.2
Non-restorative sleep	Yes (ref. No)	1.0	1.0
Inactivity	Yes (ref. No)	1.4	1.4

Model 11	Lower back		
Stress	Yes (ref. No)	2.5	2.3
Non-restorative sleep	Yes (ref. No)	1.1	1.1
Inactivity	Yes (ref. No)	1.3	1.4

Model 10: \(n = 1251, n = 1251 \)
Model 11: \(n = 1251, n = 1251 \)

* Included confounders in Model 10: no confounders, Model 11: education, nicotine use. *Yes = presence of at least one of “frequent awakenings” and “difficulty falling asleep”.

OR = odds ratio, CI = confidence interval. The sample size in the unadjusted and adjusted model is given.

https://doi.org/10.1371/journal.pone.0262601.t007

https://doi.org/10.1371/journal.pone.0262601.t008

Stress, non-restorative sleep and physical inactivity as risk factors for chronic pain

PLOS ONE | https://doi.org/10.1371/journal.pone.0262601 January 21, 2022 11 / 16
could be that the stress question included difficulty falling asleep: "stress is defined as a condition where you feel tense, restless or anxious or can’t sleep at night because you keep thinking about problems". However, if this was the true explanation then the OR for sleep disturbance would have been greater than 1 when stress was not included in the model and close to 1 when stress was included. In our study, the model without stress had an OR of 1.0 for sleep disturbance while the model which did include stress had an OR of 0.8.

Inactivity showed an OR of 1.8 for chronic pain at the one-year follow-up, but the results were not statistically significant at the four-year follow-up. Nevertheless, this suggests that inactivity may be a risk factor in the short term. Prior research is scarce on the subject, but the studies that do exist point in the same direction [36, 37]. Moreover, physical activity has been shown to have a moderate positive effect on sleep [56], which in turn might protect against the development of chronic pain.

Interaction effects were seen between non-restorative sleep and inactivity at the one-year follow-up in that they enhanced each other’s effects, making this an adverse combination. The negative effect of stress on chronic pain was strongest when none of the other factors were present; that is, in combination with good restorative sleep and activity.

Strengths of this study include the large number of participants and low drop-out rate. The longitudinal study design allowed us to make risk estimations for the development of chronic pain. The study sample consisted of only young people, who have not previously been thoroughly studied in this way and who have fewer comorbidities that may confound the results. Many previous studies focused on specific locations of chronic pain, while this study aimed to find more general results.

This study is based on a data from an earlier cohort study. Hence, its limitation is that we were only able to use already existing questions on pain, stress, and physical activity to fit our aim. This means that phrasing of questions, answer alternatives and periods over time that the questions covered, were already chosen before we planned our study.

One drawback of this is that the questionnaire did not ask about pain sites covering the whole body. We could only use the pain locations mentioned in the questionnaire (Pain/ache in the neck or upper part of the spine, Pain/ache in the lower part of the spine, Pain/ache in the shoulder/arm/wrist/hands) and the variable having pain in any of these sites. Hence, we did not have data on pain below the lower back. Therefore, at baseline in this study participants were pain free in all body parts above the lower extremities, while in lower extremities we had no knowledge if pain was present or not.

As mentioned above the definition of stress used in the questionnaire included “lying awake, thinking about problems”, which could imply a possible overlap with the sleep questions. Although we consider the overlap to be small, this should be remembered in the interpretation of our results.

The question on physical activity only took into account the last seven days, which may not have been representative of the participants’ usual level of exercise. It also did not specify intensity of activity, which made it hard to investigate whether level of exercise had an impact on pain development. It is possible that 75 minutes of high-intensity exercise could be equally favorable as 150 minutes at moderate intensity.

In the present study there was only information on asthma and diabetes diagnosis, but more comorbidity information and information on medication for the participants could have been valuable. Though, as this is a population study of a young cohort of university students the prevalence of co-morbidities and medications can be expected as low.

The data used in this study were collected over ten years ago, and it is possible that the prevalence of stress, sleep disturbance, and inactivity has changed since then. It is plausible that...
young adults today live slightly more stressed, sedentary lives [57]. However, there is no reason to believe that the effect of these factors on chronic pain would have changed.

Conclusions
Stress, non-restorative sleep, and physical inactivity were risk factors for developing chronic pain one year after baseline, in a sample of young adults. Stress was also a risk factor four years after baseline. These findings suggest that non-restorative sleep and inactivity were risk factors in the short term and stress were a risk factor in both the short and the long term. A combination of non-restorative sleep and inactivity seems to additionally increase the odds for chronic pain.

This knowledge is important when working to decrease the incidence of chronic pain. As chronic pain is quite difficult to treat, prevention efforts are central. More research is required to fully understand how stress, sleep, and physical activity affect the development of chronic pain. For example, studies with a more diverse age group and different degrees of stress, sleep disturbance, and physical activity would be valuable.

Acknowledgments
The authors are grateful for the generosity of Mats Hagberg, Professor, cohort PI and Ewa Gustafsson, PhD, at Occupational and Environmental Medicine at Gothenburg University in sharing the data that made this study possible.

Author Contributions
Conceptualization: Anna Grimby-Ekman.
Data curation: Maja Lindell.
Formal analysis: Maja Lindell.
Methodology: Maja Lindell, Anna Grimby-Ekman.
Project administration: Anna Grimby-Ekman.
Supervision: Anna Grimby-Ekman.
Writing – original draft: Maja Lindell.
Writing – review & editing: Anna Grimby-Ekman.

References
1. Goldberg DS, McGee SJ. Pain as a global public health priority. BMC public health. 2011; 11:770. Epub 2011/10/08. https://doi.org/10.1186/1471-2458-11-770 PMID: 21978149; PubMed Central PMCID: PMC3201926.
2. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. European journal of pain. 2006; 10(4):287–333. https://doi.org/10.1016/j.ejpain.2005.06.009 PMID: 16095934
3. Bergman S, Hernström P, Högström K, Pettersson IF, Svensson B, Jacobsson LT. Chronic musculoskeletal pain, prevalence rates, and sociodemographic associations in a Swedish population study. The Journal of rheumatology. 2001; 28(6):1369. PMID: 11409133
4. Fayaz A, Croft P, Langford RM, Donaldson LJ, Jones GT. Prevalence of chronic pain in the UK: a systematic review and meta-analysis of population studies. BMJ Open. 2016; 6(6). https://doi.org/10.1136/bmjopen-2015-010364 PMID: 27324708
5. Gustavsson A, Bjorkman J, Ljungcrantz C, Rhodin A, Rivano-Fischer M, Sjolund KF, et al. Socio-economic burden of patients with a diagnosis related to chronic pain—register data of 640,000 Swedish
patients. European Journal Of Pain (London, England). 2012; 16(2):289–99. https://doi.org/10.1016/j.ejpain.2011.07.006 PMID: 2323381

6. Treede R-D, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). 2019; 160(1):19–27. https://doi.org/10.1097/j.pain.000000000001384 00006396-201901000-00003. PMID: 30586067

7. Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. British journal of anaesthesia: BJA. 2019; 123(2):e273–e83. https://doi.org/10.1016/j.bja.2019.03.023 PMID: 31079836

8. Bergman S, Herrström P, Jacobsson LT, Persson IS, Herrstrom P. Chronic widespread pain: A three year followup of pain distribution and risk factors. Journal Of Rheumatology. 2002; 29(4):818–25. PMID: 11950027

9. Gupta A, Silman AJ, Ray D, Morriss R, Dickens C, Macfarlane GJ, et al. The role of psychosocial factors in predicting the onset of chronic widespread pain: results from a prospective population-based study. Rheumatology. 2007; 46(4):666–71. https://doi.org/10.1093/rheumatology/kel363 PMID: 17085772

10. Crofford LJ. Psychological aspects of chronic musculoskeletal pain. Best practice & research Clinical rheumatology. 2015; 29(1):147–55. https://doi.org/10.1016/j.berh.2015.04.027 PMID: 26267008

11. Fanaavoll R, Nilsen TIL, Holtermann A, Mork PJ. PSYCHO SOCIAL WORK STRESS, LEISURE TIME PHYSICAL EXERCISE AND THE RISK OF CHRONIC PAIN IN THE NECK/SHOULDERS: LONGITUDINAL DATA FROM THE NORWEGIAN HUNT STUDY. (ORIGINAL PAPER)(Clinical report). International Journal of Occupational Medicine and Environmental Health. 2016; 29(4):585. https://doi.org/10.13075/ijom eh.1896.00606 PMID: 27443755

12. Bongers P, Ijmker S, van den Heuvel S, Blatter B. Epidemiology of work related neck and upper limb problems: Psychosocial and personal risk factors (Part I) and effective interventions from a bio behavioural perspective (Part II). Journal of Occupational Rehabilitation. 2006; 16(3):273–95. https://doi.org/10.1007/s10926-006-9044-1 PMID: 16850279

13. Schmelzer CA, Salt JE, Wiggins MA, Crofford ML, Bush MH, Mannino MD. Role of Stress and Smoking as Modifiable Risk Factors for Nonpersistent and Persistent Back Pain in Women. The Clinical Journal of Pain. 2016; 32(3):232–7. https://doi.org/10.1097/AJP.000000000000245 PMID: 25882868

14. Hjern A, Alfven G, Ostberg V. School stressors, psychological complaints and psychosomatic pain. Acta Pædi trica. 2008; 97(1):112–7. https://doi.org/10.1111/j.1651-2227.2007 .00585.x PMID: 18076714

15. Bendixen M, Muus KM, Schei B. The impact of child sexual abuse—A study of a random sample of Norwegian students. Child abuse & neglect. 1994; 18(10):837–47. https://doi.org/10.1016/0145-2134(94) 90063-9 PMID: 7804891

16. Walling KM, O'hara WM, Reiter CR, Milburn KA, Lilly DG, Vincent DS. Abuse History and Chronic Pain in Women: II. A Multivariate Analysis of Abuse and Psychological Morbidity. Obstetrics & Gynecology. 1994; 84(2):200–6.

17. Burke NN, Finn DP, McGuire BE, Roche M. Psychological stress in early life as a predisposing factor for the development of chronic pain: Clinical and preclinical evidence and neurobiological mechanisms. 2017. p. 1257–70. https://doi.org/10.1002/jnr.23802 PMID: 27402412

18. Cohen S, Janicki-Deverts D, Miller GE. Psychological Stress and Disease. JAMA. 2007; 298(14):1685–7. https://doi.org/10.1001/jama.298.14.1685 JAMA. PMID: 17925521

19. Pilowsky I, Crettenden I, Townley M. Sleep disturbance in pain clinic patients. Pain (Amsterdam). 1985; 23(1):27–33. https://doi.org/10.1016/0304-3959(85)90227-1 PMID: 4058926

20. Morin MC, Gibson MD, Wade MJ. Self-Reported Sleep and Mood Disturbance in Chronic Pain Patients. The Clinical Journal of Pain. 1998; 14(4):311–4. https://doi.org/10.1097/00002508-199812000-00007 PMID: 9874009
24. Nitter AK, Pripp AH, Forseth KØ. Are sleep problems and non-specific health complaints risk factors for chronic pain? A prospective population-based study with 17 year follow-up. Scandinavian journal of pain. 2012; 3(4):210–7. https://doi.org/10.1016/j.sjpain.2012.04.001 PMID: 22913872

25. Mork PJ, Nilsen TIL. Sleep problems and risk of fibromyalgia: Longitudinal data on an adult female population in Norway. Arthritis & Rheumatism. 2012; 64(1):281–4. https://doi.org/10.1002/art.33346 PMID: 22081440

26. Finan PH, Goodin BR, Smith MT. The Association of Sleep and Pain: An Update and a Path Forward. The journal of pain. 2013; 14(12):1539–52. https://doi.org/10.1016/j.jpain.2013.08.007 PMID: 24290442

27. Aili K, Andersson M, Bremander A, Haglund E, Larsson I, Bergman S. Sleep problems and fatigue as predictors for the onset of chronic widespread pain over a 5- and 18-year perspective. Bmc Musculoskeletal Disorders, 2018, Vol 19. 2018; 19.

28. Uhlig BL, Sand T, Nilsen TI, Mork PJ, Hagen K. Insomnia and risk of chronic musculoskeletal complaints: longitudinal data from the HUNT study, Norway. (Report). BMC Musculoskeletal Disorders. 2018; 19(1). https://doi.org/10.1186/s12891-018-2035-5 PMID: 29699540

29. Mork PJ, Vik KL, Moe B, Lier R, Bardal EM, Nilsen TIL. Sleep problems, exercise and obesity and risk of chronic musculoskeletal pain: The Norwegian HUNT study. The European journal of pain. 2014; 24(6):924–9. https://doi.org/10.1007/s10050-014-1680-7 PMID: 24293504

30. Davies KA, Macfarlane GJ, Nicholl BI, Dickens P, Ray D, et al. Restorative sleep predicts the resolution of chronic widespread pain: results from the EPIFUND study. Rheumatology (Oxford, England). 2008; 47(12):1809. https://doi.org/10.1093/rheumatology/ken389 PMID: 18842606

31. Nijs J, Mairesse O, Neu D, Leysen L, Danneels L, Cagnie B, et al. Sleep Disturbances in Chronic Pain: Neurobiological, Assessment, and Treatment in Physical Therapist Practice.(Perspective)(Disease/Disorder overview). Physical Therapy. 2018; 98(5):325. https://doi.org/10.1093/ptj/pzy020 PMID: 29425327

32. Booth F, Roberts C, Laye M. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012; 2(2). https://doi.org/10.1002/cphy.c110025 PMID: 23798298

33. Dinas P, Koutedakis Y, Flouris A. Effects of exercise and physical activity on depression. Irish Journal of Medical Science. 2011; 180(2):319–25. https://doi.org/10.1007/s11845-010-0633-9 PMID: 21076975

34. Geneen L, Moore R, Clarke C, Martin D, Colvin L, Smith B. Physical activity and exercise for chronic pain in adults: an overview of Cochrane Reviews. Cochrane Database Of Systematic Reviews. 2017; 1(1). https://doi.org/10.1002/14651858.CD001279.pub2 PMID: 28087891

35. Sluka KA, O’Donnell JM, Danielson J, Rasmussen LA. Regular physical activity prevents development of chronic pain and activation of central neurons. Journal of applied physiology (Bethesda, Md: 1985). 2013; 114(6):725. https://doi.org/10.1152/japplphysiol.01317.2012 PMID: 23271699

36. Shiri R, Falah-Hassani K. Does leisure time physical activity protect against low back pain? Systematic review and meta-analysis of 36 prospective cohort studies. British Journal of Sports Medicine. 2017; 51(19). https://doi.org/10.1136/bjsports-2016-097352 PMID: 28615218

37. Nilsen TIL, Holtermann A, Mork PJ. Physical Exercise, Body Mass Index, and Risk of Chronic Pain in the Low Back and Neck/Shoulders: Longitudinal Data From the Nord-Trøndelag Health Study. American Journal of Epidemiology. 2011; 174(3):267–73. https://doi.org/10.1093/aje/kwq087 PMID: 21633119

38. Henewer H, Staes F, Aufdenkampe G, Rijn M, Vanhees L. Physical activity and low back pain: a systematic review of recent literature. European Spine Journal. 2011; 20(6):826–45. https://doi.org/10.1007/s00586-010-1680-7 PMID: 21221663

39. Hoogendoorn W, van Poppel M, Bongers P, Koes B, Bouter L. Physical load during work and leisure time as risk factors for back pain. Scandinavian journal Of Work Environment & Health. 1999; 25(5):387–403. https://doi.org/10.1080/07040818.1999.16020658

40. Naugle MK, Ohlman ET, Naugle AK, Riley RZ, Keith RN. Physical activity behavior predicts endogenous pain modulation in older adults. PAIN. 2017; 158(3):383–90. https://doi.org/10.1007/j.pain.0000000000000769 PMID: 28181702

41. Sweeting H, Young R, West P. GHQ increases among Scottish 15 year olds 1987–2006. Social psychiatry and psychiatric epidemiology. 2009; 44(7):579–86. Epub 2008/11/28. https://doi.org/10.1007/s00127-008-0462-6 PMID: 19037574; PubMed Central PMCID: PMC2693777.

42. Twenge JM, Cooper AB, Joiner TE, Duffy ME, Binau SG. Age, period, and cohort trends in mood disorder indicators and suicide-related outcomes in a nationally representative dataset, 2005–2017. Journal of abnormal psychology. 2019; 128(3):185–99. Epub 2019/03/15. https://doi.org/10.1037/abn0000410 PMID: 30869927.
43. Ford ES, Cunningham TJ, Giles WH, Croft JB. Trends in insomnia and excessive daytime sleepiness among U.S. adults from 2002 to 2012. Sleep medicine. 2015; 16(3):372–8. Epub 2015/03/10. https://doi.org/10.1016/j.sleep.2014.12.008 PMID: 25747141; PubMed Central PMCID: PMC4763609.

44. Eriksson J, Delle L, Eklof M, Hagberg M. Early inequalities in excellent health and performance among young adult women and men in Sweden. Gender Medicine: Official Journal Of The Partnership For Gender-Specific Medicine At Columbia University, 2007, Vol 4, Iss 2, pp 170–82. 2007;4(2):170–82. https://doi.org/10.1016/s1550-8579(07)80030-1 PMID: 17707850

45. Grimby-Ekman A, Hagberg M, Andersson EM. Analyzing musculoskeletal neck pain, measured as present pain and periods of pain, with three different regression models: a cohort study. BMC Musculoskeletal Disorders, 2009, Vol 10, Iss 73. 2009;10(73). https://doi.org/10.1186/1471-2474-10-73 PMID: 19545386

46. Grimby-Ekman A, Hagberg M. Simple neck pain questions used in surveys, evaluated in relation to health outcomes: a cohort study. BMC Research Notes, 2012, Vol 5. 2012;5. https://doi.org/10.1186/1756-0500-5-587 PMID: 23102060

47. Dallner M, Lindström K, Elo A. Anvandarm anual for QPS Nordic [User manual for QPS Nordic]. Arbetslivsrappor t; 2000.

48. Anna-Liisa E, Anneli L, Antti J. Validity of a single-item Measure of Stress Symptoms . Scandinavian Journal of Work, Environment & Health. 2003; 29(6):444–51. https://doi.org/10.5271/sjweh.752 PMID: 14712852

49. Keklund G, Åkerstedt T. Objective components of individual differences in subjective sleep quality. Journal of Sleep Research. 1997; 6(4):217–20. https://doi.org/10.1111/j.1365-2869.1997.00217.x PMID: 9493520

50. Gibbs BB, Hergenroeder AL, Katzmartzky PT, Lee IM, Jakicic JM. Definition, measurement, and health risks associated with sedentary behavior. Medicine and science in sports and exercise. 2015; 47 (6):1295–300. https://doi.org/10.1249/MSS.0000000000000517 PMID: 25222816.

51. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. 2020; 54(24):1451–62. https://doi.org/10.1136/bjosports-2020-102955 British Journal of Sports Medicine. PMID: 33239350

52. Bursac Z, Gauss CH, Williams DK, Hosmer DW. Purposeful selection of variables in logistic regression. Source Code for Biology and Medicine. 2008; 3(1):17–. https://doi.org/10.1186/1751-0473-3-17 PMID: 19087314

53. van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology–where do lifestyle factors fit in? British journal of pain. 2013; 7(4):209–17. https://doi.org/10.1177/2049463713493264 PMID: 26516524

54. Grimby-Ekman A. Epidemiological aspects of musculoskeletal pain in the upper body analyzing common and recurrent binary outcomes. Göteborg: Diss. (sammanfattning) Göteborgs universitet, 2010; 2010.

55. Miranda H, Viikari-Juntura E, Martikainen R, Takala EP, Riihimäki H. Physical exercise and musculoskeletal pain among forest industry workers. Scandinavian Journal of Medicine & Science in Sports. 2001; 11(4):239–46. https://doi.org/10.1034/j.1600-0838.2001.110408.x PMID: 11476430

56. Kredlow M, Capozzoli M, Hearon B, Calkins A, Otto M. The effects of physical activity on sleep: a meta-analytic review. Journal of Behavioral Medicine. 2015; 38(3):427–49. https://doi.org/10.1007/s10865-015-9617-6 PMID: 25596964

57. Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE. Sedentary Behavior: Emerging Evidence for a New Health Risk. Mayo Clinic proceedings. 2010; 85(12):1138–41. https://doi.org/10.4065/mcp.2010.0444 PMID: 21123641