微量Nbを添加した繊維機械部品用高炭素鋼板の開発

土屋 栄司1*・松村 勝太1・細谷 泰弘1・宮本 友佳2・小林 崇2・
瀬戸 一洋3・戸村 恵子3・井上 耕治3・永井 康介1

Development of Niobium Bearing High Carbon Steel Sheet for Knitting Needles

Synopsis : Effect of Nb addition less than 0.05 mass% on the quench and tempering behavior of spheroidized eutectoid steel, which has been usually applied to knitting needles, was investigated. The results obtained are as follows. 1) Hardenability with brief heating was markedly improved by 0.01 mass% Nb addition. 2) Both quenching elongation and its standard deviation decreased with 0.01 mass% Nb addition compared to those of Nb free steel. 3) While the impact toughness but also the fatigue durability were improved with 0.01 mass% Nb addition. 4) APT (Atom Probe Tomography) analyses indicated that the precipitation of carbon in solution proceeded directly to the carbides with carbon contents of higher than 25 at% by Nb addition without going through a clustering process up to 10~15at% during low temperature tempering. 5) In spite of the same content of P, the average bulk concentration of P in the martensite phase markedly increased with the addition of Nb up to 0.05 mass%. 6) Regarding the optimum content of 0.01 mass% Nb on the various mechanical properties under the low temperature tempering of martensite, it is considered that they are dominated by the sum of the positive effect for promoting carbide precipitation during low temperature tempering with Nb addition and the negative effect for deteriorating the toughness with increasing bulk concentration of P in the martensitic phase with addition of Nb of higher than 0.02 mass%.

Key words: high carbon steel; hypereutectoid steel; Nb bearing steel; martensite; low temperature tempering; hardenability; atom probe tomography.

1. 緒言

繊維機械部品の代表であるニット編み用メリヤス針（またはベラ針）は、先端部に糸を手繰り寄せるフックとフック部を開閉するラッチ（ベラ）を取り付けられている[1]。メリヤス針の二次加工工程は、型抜き（せん断加工）、フック部の伸縮、フック先端の研削とU曲げ、ベラ挿入溝の切削、ベラのかしめなど多岐にわたり、最終形状に仕上げられた針は、高剛性、疲労耐久性、耐磨耗性などを付与するため、焼入れ・焼戻し処理によってHV：660～700の硬さに調整される[1]。

メリヤス針用素材としては一般にSK95（C：0.8～1.1 mass%）相当の過共析鋼が用いられ、冷間圧延と球状化焼鍊を複数回繰返すことによってフェライト母相中に球状セメタイトが均一かつ微細に分散した組織を形成される[2]。とくに最近では、編み機の高速化と編み目の高精細化に伴って針に高い信頼性と耐久性・耐磨耗性が求められるようになった。ハイエンドの針に対しては製鋼段階での高品質化、偏析軽減対策に加えて、焼入れ後250℃以下の低温焼戻し（以後LTT: Low Temperature Temperingと称す）によってHV：700の高硬度に調整される製品が主流になっている。

メリヤス針に対する厳しい要求に応えるため、著者らは従来不純物レベルと見なされてきた0.03 mass%未満のリン(P)の影響に着目して、LTT変冷と加えて微量Pの本質的役割について再検証した。その結果、0.005～0.023 mass%の範囲のP含有量であってもLTT時の軟化温度P量に応じて上昇する事を明らかにした[3]。しかし、現在の鉄鋼製品においてP含有量を0.005 mass%レベルまで低減するには溶融脱炭と取鉄を含む鉄鋼鍛造の必要があり、製鋼コストの上昇が極度P化のボトルネックとなっている。そこで、P含有量にによってLTT時の焼戻し変冷度を促進させる方法として、微量 Nb添加の可能性について検討した。

2018年6月22日 受付 2018年9月10日 受理 2018年10月18日 J-STAGE早刊公開（Received on Jun. 22, 2018; Accepted on Sep. 10, 2018; J-STAGE Advance published on Oct. 18, 2018）

1) JFE特殊金属新能素材研究所新機能材料開発本部（New Functional Materials R&D H.Q., Tokushu Kinzoku Excel Co., Ltd, 56 Tamagawa Tokigawamachi Hiki-gun Saitama 355-0342）
2) JFEストール（株）スチール研究所（Steel Research Laboratory, JFE Steel Corporation）
3) 東北大学金属材料研究所（Institute for Materials Research, Tohoku University）
* Corresponding author : E-mail : e-tsuchiya@tokkin.co.jp
DOI : https://doi.org/10.2355/tetsuhyo.2018-097
鋼の機械特性に及ぼすNbの影響に関しては、構造用鋼の組織微細化を担いとした多くの研究結果が集まられており、その本質は、NbがMoと同様に鋼中では偏析しやすい[10]、微量添加でαγ界面の易動性を著しく低下させる元素である点[11]、周囲のV族の金属に属するNbが侵入型元素であるCと強い引力相互作用を有する点[12]などを組織制御に有効に生かしたものである。

一方、α相中でのNbとPの相互作用に関しては、0.3～1.0 mass%程度の高P鋼の結果ではあるが、α鉄を800℃に加熱した際にMoに次いでリン化物形成傾向が大きく[13]かつα鉄中ではPの固溶限を著しく縮小させる[14]ことが知られており、従来極低P鋼種までその傾向を外挿して理解されてきた。また、γ相中ではNbが界面に偏析する際にPと斥力相互作用することも明らかにされている[15]。つまり、高炭素鋼の焼入れ・焼戻し過程での微量 Nb と微量 P の相互作用に加えて、LTZ過程での過飽和固溶Cの析出挙動に対応するPのマイナス影響[16]を軽減できるか否かを検証できれば、繊維機構部品用高炭素鋼の特性向上に有効であるばかりか、高炭素マルテンサイトのLTZ挙動の本質を理解する上で有益な指針を与える。

そこで本論文では、メリヤス針への適応を念頭に置いて、球状化焼鉄した高炭素冷延鋼板に0.05 mass%以下の微量Nbを添加した鋼の焼入れ性と焼戻し挙動、組織変化、焼戻し過程での靭性回復挙動、焼戻し後の靭性と疲労特性と、3次元アトムプローブ：Atom Probe Tomography（以後APTと称する）を用いた原子レベルでの考察実験結果を照合することで、高炭素鋼の焼入れ特性とLTZ挙動に及ぼす微量Nbの最適添加量を明らかにすると共に、高炭素鋼における微量Nb添加の本質的役割について考察する。

2. 供試材および実験方法

SK95相当の共析鋼（以後鋼Aと称す）と該成分系をベースとして0.010 mass%（以後鋼Bと称す）、0.021 mass%（以後鋼Cと称す）、0.055 mass%（以後鋼Dと称す）の3水準のNbを添加した4鋼種を30 kg真空溶解炉で溶製した。それらの化学組成をTable 1に示す。鋼塊を分塊焼戻し後、ラボ熱間圧延にて板厚：4.0 mmまで圧延した後、680℃に1時間保持後が溶して巻取り相当処理を行った。その後、冷却圧延と680～700℃での球状化焼鉄を繰り返して板厚0.4 mmの冷延鋼板とした。

Fig.1に本実験で行った熱処理条件を模式的に示す。焼入れ性の評価は、780℃と800℃の二水準の温度に保持したN2雰囲気炉にサンプルを装入し、1 min加熱後、2 min～16 min冷却し、80℃の油中に焼入れた。過共析鋼の焼入れ前の加熱は、過剰の残留γの生成を抑えるため（γ+θ）二相域で行われる。本研究では、工業的な定常条件と整合させるため800℃を基本加熱条件とし、不十分な加熱条件での焼入れ性に及ぼすNbの影響を見極めるため800℃の加熱条件を追加した。

焼入れされた全てのサンプルについて断面硬さ（HV）を荷重5 kgで測定した。さらに鋼AとBは2.5 mm×135 mmの試験片を用いて、焼入れ前後（荷重条件：800℃×12 min）の長さの変化から焼伸び量を測定し、元の長さに対する変化率を焼伸び率とした。さらに、焼入れ前後の集線組織については、圧延方向直行（TD）断面を電界放出型走査電子顕微鏡（FE-SEM）を用いた電子後方散乱回折（EDS）解析結果より（001）正極点図を得た。

LTZ過程での諸特性の変化については、全ての鋼で硬さが一定となる800℃×10 min均熱の一水準と、800℃の油で焼入れ後150～350℃の雰囲気炉中で60 min焼戻したサンプルで評価した。LTZ後の組織変化はTD断面をSEM観察すると共に荷重：5 kgfで硬さ（HV）を測定した。靭性値の評価は、10 mm×60 mmの矩形サンプルの長手方向中央部側面に先端R：0.2 mmまで、2.5 mmのVノッチをワイヤ放電加工した試験片を用いて、衝撃エネルギー：1Jの小型シャルピー衝撃試験機で行った。疲労試験は、250℃と300℃で焼戻しサンプルから平行部幅：2 mm、平行部

![Fig.1](image-url) Schematic diagram showing the heat treatment conditions composed of oil-quenching from 800℃ and following low temperature tempering from 150℃ up to 350℃.

Table 1. Chemical composition of steels used (mass%).

Steel No	C	Si	Mn	P	S	Cr	Mo	Nb	
A	1.01	0.26	0.73	0.009	0.0032	0.419	0.021	0.001	
B	0.015%Nb	1.01	0.24	0.71	0.011	0.0025	0.409	0.019	0.010
C	0.02%Nb	1.02	0.25	0.71	0.012	0.0030	0.392	0.019	0.021
D	0.05%Nb	1.01	0.25	0.72	0.011	0.0028	0.391	0.020	0.055
長さ：15 mm、つみ部の半径12.5 mmの試験片を取り、最大荷重：984 N、応力比：0.1の片振り引張条件で行った。

さらに本研究では、焼入れ過程とLTT過程におけるマクロ的な機械特性の変化について以下の考察実験を行った。

焼入れ過程については、短時間加熱時の焼入れ性の差異に及ぼすNbの影響を確認するため、加熱前のサンプル中の残留固溶炭素量を横振動法による内部摩擦測定によるSnock Peak（Q⁻¹）から推定すると共に、焼入れ後のサンプルについて透過電子顕微鏡（TEM）観察と鋼中析出物のエネルギー分散型X線（EDX）分析を行った。LTT過程については、鋼中C、PおよびNbの各原子の存在状態を、集束イオンビーム（FIB：Focus Ion Beam）加工装置で針状に加工したサンプルについてCAMECA社製LEAP4000XHRを用いてAPT分析を行った。APT測定は、温度は50 Kとし、電圧バルスモード（パルスフラクション20%）で行った。

3. 実験結果

3・1 球状化焼純後のミクロ組織と硬さに及ぼす微量Nbの影響

球状化焼純後のミクロ組織のSEM像とHV値をFig.2に、球状化セメタサイトのサイズ分布の解析結果をFig.3に示す。球状化焼純後の組織は、フェライト母相に未溶解の球状セメタイトが均一分散した組織となる。硬度も253HV～258HVの範囲内にあり、HVに及ぼす0.05 mass%以下のNb添加の影響は認められない。球状化セメタイトのサイズと分布状態に関しても、平均粒径：0.62～0.69 μmであり、Nb添加による変化は認められない。

3・2 焼入れ性に及ぼす微量Nb添加の影響

780℃と800℃で均熱後焼入れたサンプルのHVに及ぼす、均熱時間とNb添加量の影響をFig.4（a）、Fig.4（b）にそれぞれ示す。いずれの均熱温度でも、2 minの均熱で一旦硬さが低下するが、それ以上の均熱で急激に硬さが増大する。2 min以下の加熱での硬さの低下は、α→γ未変態の状態でα相が現状で程度粒成長したためと考えられる。加熱温度：780℃では、4 minの均熱で鋼BのみHV＞700に到達するのに対し、その他は鋼Aと鋼CがHV：400～500、鋼DがHV＜400となる。800℃加熱では全ての鋼でHVの上

Fig.2. SEM images of as-annealed samples showing the dispersion of spheroidized carbides in ferrite matrix. (a) Steel A: Nb free, (b) Steel B: 0.01%Nb, (c) Steel C: 0.02%Nb, (d) Steel D: 0.05%Nb.

Fig.3. Size distribution of spheroidized carbides in as-annealed samples of steels A～D. (a) Steel A: Nb free, (b) Steel B: 0.01%Nb, (c) Steel C: 0.02%Nb, (d) Steel D: 0.05%Nb.
Fig.4. Effect soaking time at 780°C on the Vickers Hardness (HV) of steels A~D. (a) soaking temperature: 780°C, (b) soaking temperature: 800°C

Fig.5. SEM images of as-quenched samples showing insufficient hardenability by quenching after insufficient soaking at 780°C for 4 min in steels A~D. (a) Steel A: Nb free, (b) Steel B: 0.01%Nb, (c) Steel C: 0.02%Nb, (d) Steel D: 0.05%Nb.

Fig.6. SEM images of fully hardened samples quenched after soaking at 800°C for 10 min in steels A~D. (a) Steel A: Nb free, (b) Steel B: 0.01%Nb, (c) Steel C: 0.02%Nb, (d) Steel D: 0.05%Nb.
イトの方がC軸の配向もランダムに近くなり、特定方向の焼結が小さくなる傾向を示唆している。

3・3 焼結変挙動に及ぼす微量Nbの影響
つぎに、150°C〜350°CでのLTTに伴う硬度の変化をFig.9
に示す。5%の鋼も150°C焼結までには焼入れままでの硬度が維持される。これに対し、150°C〜300°Cの範囲では硬度は焼結速度にほぼ比例して低下する。焼結速度の硬度はその温度に依存性に対するNb添加量の影響は殆ど認められない。因子分けミックスの焼結速度による200
〜250°Cでの硬度の差はHV:17〜17の範囲にあり、Nbの影響はほとんど認められない。

硬度の変化をマルテンサイト中の微細炭化物析出状態
と関連付けて理解するため、鋼Aと鋼Bについて、200°C〜350°Cで焼結した時のマルテンサイト中の微細炭化物の析出状態をSEM観察した結果をFig.10に示す。何れの鋼においても200°Cでは明瞭な炭化物析出は観察されないが、250°C以上で焼結するとマルテンサイトのラス界面に微細炭化物の析出が観察されるようになり、300°C以上では微細
セメントサイトが明確に観察される。焼結後燃焼用の軟化挙動と相関ある溶融Cからの微細炭化物析出が理解される
が、その析出形態に及ぼす微量Nbの影響を示唆する変化をSEMレベルでは確認されなかった。

つぎに、シャルビー衝撃值に及ぼすNb添加量と焼結速度の影響をFig.11に示す。250°C以下の焼結では高速
速度の回復は殆ど認められない。250°C以上の焼結で欠
性の回復傾向が認められる。因子分け、鋼Bでは250°C〜300°Cの温度域で他の鋼に比べて欠性回復が顕著となる。
これに対して鋼Dは他の鋼に比べて欠性回復が遅れる。
350°Cまで焼結速度を上げて600℃前後のHVまで軟化すると、欠性のレベルはNb添加量の増加に伴って低くなる。

鋼Dは全ての温度で他の鋼に比べて欠性値が最も低く、欠

![Fig.7. Effect of 0.01 mass% Nb addition on the percentage of quench elongation after soaking at 800°C for 12 min. (a) SteelA: Nb free, (b) SteelB: 0.01%Nb.](attachment:image1.png)

![Fig.9. Change in hardness as a function of tempering temperature.](attachment:image2.png)

![Fig.8. Effect of 0.01 mass% Nb addition on the crystalline texture in before and after quenching with the soaking condition of 800°C for 12 min.](attachment:image3.png)
4. 考察

以上の結果から、メリヤス針用高炭素鋼に Nb を 0.01 mass% 添加することで、短時間加熱における焼入れ性の向上のみならず LTT における韌性回復と疲労寿命の向上が確認された。従来の Nb 添加鋼に関する研究では、0.01 mass% 程度の極微量添加の効果に着目した研究例は少なく、多くのケースで 0.02 mass% ～ 0.1 mass% の範囲の Nb 添加量依存性が Nb フリー鋼まで単調に変化すると解釈されてきた[10]。

そこで、焼入れ加熱時の $\alpha \rightarrow \gamma$ 変態速度に及ぼす微量 Nb 添加の影響を、LTT 過程での過飽和固溶 C 溶出に及ぼす微量 Nb 添加の影響について、TEM 観察結果および APT 分析結果を踏まえて考察する。

Fig.4 (a), Fig.4 (b) より、0.01 mass% Nb 添加によって焼入れ加熱時の $\alpha \rightarrow \gamma$ 変態が促進されることが推定された。そこで、微量 Nb 添加によるフェライト母相中の残留固溶 C 量の違いと球状化セメントサイトの溶解速度の二点に着眼した考察実験を行った。

先ず、球状化焼純後の全ての鋼について、横観動型内部摩擦測定装置でスケーブリック (Q$^{-1}_{\text{max}}$) を測定した結果を Fig.13 に示す。その結果、Nb を添加するとスケーブリックが僅かに高温側にシフトしてビークがプローダリングし、Q$^{-1}_{\text{max}}$ が若干増大する傾向が認められた。Q$^{-1}_{\text{max}}$ は、鋼 A : 2.4×10^{-4}、鋼 B : 3.3×10^{-4}、鋼 C : 3.3×10^{-4}、鋼 D : 4.0×10^{-4} であった。便宜的に Aoki らの実験式：

$$C + N (\text{wt}) = 0.0043 \cdot T \cdot Q^{-1}_{\text{max}}^{17}$$

を用いて侵入型固溶元素量

![Fig.10. SEM images showing the effect of tempering temperature on the martensite phase in steels A and B.](image1)

![Fig.11. Effect of tempering temperature on the impact toughness values of steels A~D.](image2)

![Fig.12. Effects of both Nb addition and tempering temperature on the fatigue life of steels A~C.](image3)
Fig.14. TEM images showing the effect of Nb addition on both substructure and NbC precipitates with EDX analyses in the samples quenched from 780°C after soaking for 4 min. (a) TEM image of precipitate observed in Steel B: 0.01%Nb, (b) EDX analysis of the precipitate in Steel B: 0.01%Nb, (c) TEM image of precipitate observed in Steel C: 0.02%Nb, (d) EDX analysis of the precipitate in Steel C: 0.02%Nb, (e) TEM image of precipitate observed in Steel D: 0.05%Nb, (f) EDX analysis of the precipitate in Steel D: 0.05%Nb

を計算すると、鋼Aが約3.3 ppm、鋼Bが約4.8 ppm、鋼Cが約5.0 ppm、鋼Dが約5.9 ppmとなり、微量のNbを添加することで球状化焼純後のフェライト相中の残留固溶(C+N)が僅かに増加する。

一方、スネークピークのブロードニングに関しては明確な解釈は出来ないが、ブロードニングが顕著なる鋼C、Dでは150°C以上での加工ピークの帯野が観察されない点と、Shimotomai18によって新たに発見されたγ炭化物中のCベアによるNew Broad Peakなどを考え合わせると、0.02 mass%以上のNbを添加した鋼では固溶Cの格子間移動の素過程が変化するのではないかと思われる。それが加熱過程での球状化セメントサイトの再溶解とa→γ変態挙動にどのように作用するかについては現時点では分からない。

さらに、Nbを添加した鋼B、C、Dについて、Fig.4 (a) で焼入れ硬さに最も変化が認められた780°Cで4 min均熟後焼入れたサンプルのTEM観察像と析出物のEDX分析結果をFig.14に示す。鋼Bではマルテンサイト中に観察される析出物らしきコントラストから僅かにNbの存在が確認される程度であるのに対し、鋼C、Dでは未変態のフェライト相中にNb析出物が明瞭に観察され、Nb添加量が多いほど析出物のサイズが大きくEDX分析からNb含有量が多くなることが確認された。この結果は、Nb含有量が多いほど焼入れ前のフェライト母相中のCの一部はNbCとして存在しており、NbCの化学量論比から推定すると、鋼Bで13 ppm、鋼Cで26 ppm、鋼Dで65 ppmのCが析出固定されていることになる。

Fig.13. Effect of Nb addition on the Snoek dumping (Q-) measured by internal friction test. (a) Steel A: Nb free, (b) Steel B: 0.01%Nb, (c) Steel C: 0.02%Nb, (d) Steel D: 0.05%Nb.
以上の結果から、Nb添加量が0.01%の鋼で最も短時間でα→γ変態が起こる理由を特定することは出来ないが、少なくとも、加熱前ではNb添加によって鋼中CがNbCとして析出固定される点と後述する Nb添加によって焼入れ時のPのパルク濃度が増加する点などを考え合わせると、0.02 mass%を超えてNbを添加した場合、加熱段階でα相中へのCの再固溶を拡散が抑えられることでα→γ変態が遅れるのではないかと考えられる。一方、0.01%Nb添加によってNb無添加鋼より短時間の焼入れ性が向上する理由については、球状化焼純後のα相中の残留固溶C量がNb添加によって僅かに増加する傾向を示すことなどから、球状化セメントサイトの熱的安定性と再溶解放に微量のNbが影響を及ぼしているのではないかと推定される。

4.2 低温焼戻し挙動に及ぼす微量Nbの影響

鋼BがLTT過程においても他の鋼に比べて鉄素回復が早く、疲労寿命が延びる点に関して、APTを用いてナノスケールでの組成変化を基に考察した。

鋼AとBについて、800°Cから焼入れ温 (As-Q), 250°C焼戻し後 (QT250), 300°C焼戻し後 (QT300) のサンプルをAPT分析して得られたCのアトムマップをFig.15に示す。

焼入れ温の状態でC原子の分布には既に濃淡が認められ、Cottrellら20)が提唱したマルテンサイト変態途中であってもC原子の濃度分布が進行する事を示している。Nbを添加する事によって若干C原子の濃淡が明瞭になる傾向があらわれることがこのCのアトムマップからでは確定できない。これらに対し250°C以上で焼戻すことでC原子の濃化が明瞭となる。これは、おそらく過飽和固溶Cがα炭化物からα炭化物として析出する過程を捉えたものであり、Nb添加によってC原子の濃淡がより明瞭となる。300°C焼戻した鋼AではC原子の希薄な領域が広く観察されるのに対し、鋼BではC原子がほとんど検出されない領域が拡大し、Nb添加によるC原子の濃度変化がより明瞭になる。

そこで、C原子の濃度変化をより定量的に把握するため、Fig.15のデータを基に [5 nm × 5 nm × 200 nm]の直方体の領域に存在するC原子の200 nmの長辺に対する1次元濃度分布をFig.16に示す。何れの鋼も焼入れてまでC原子の濃度挙動を観察される。250°Cで焼戻すと、鋼AではCaballeroらの解析結果20)と同様に10~15at%程度のCのクラスタリングが多く観察されるのに対し、鋼Bでは15at%程度のクラスタリングが確認されず、10at%以下のピークに加えてθ炭化物と思われる25at%程度のピークが観察される。つぎに300°Cで焼戻すと、何れの鋼においてもθ炭化物と思われる20~30at%のピークが観察されるが、鋼Bの方が析出量が多い。さらにCの低濃度領域に着目すると、鋼Aでは依然5at%以下のCの濃度挙動が観察されるが、鋼BのCの低濃度領域はほぼ0に近い値となっている。

以下の結果は、0.01 mass%のNbを添加することでLTT過程でεおよびθ炭化物の析出が促進されることを示唆している。とくに鋼AではLTT時にεおよびθ炭化物析出の前駆過程として15at%程度のCのクラスタリングが多数観察される点は、微量Pの影響に関する著者の研究結果23)を支持するものと考えられる。
と一致している。今回、同じP含有量の鋼に微量のNbを添加することで15at%程度のCのクラスタリングが観察されなくなり、C濃度が25at%程度の炭化物が観測されたことから、 Nb添加によって微量Pの存在によるC析出の遅延が緩和されることが示唆された。このことは、微量のNbを添加した鋼Bでは、極低P鋼同様に過飽和固溶Cから直接εおよびγ炭化物が析出している可能性が考えられる。

そこで、微量Nb添加に伴う鋼中Pの挙動を確認するために、鋼A、B、Dの3鋼種についてP原子の1次元濃度分布をFig.17に示す。その結果、3鋼種のP含有量は0.010±0.001 mass%（～0.017at%）をほぼ一定であるにもかかわらず、鋼Dではマルテンサイト中のPの濃度揺らぎのみならず平均濃度が上昇することが明らかになった。3鋼種とも250°C焼戻しに伴うPの一次元濃度分布の変化は殆ど認められない。そこで、マルテンサイト中のP原子の濃度をパルク平均濃度で比較するため、分析領域を[25 nm × 25 nm × 100 nm]まで拡大して分析を行った結果をFig.18に示す。1つの試料について再現性等を確認するため複数個のAPTデータを取得しているため、Fig.18において同じ試料に対して複数個の点が存在する。焼入れまでは鋼AのP濃度は0.03at%であり、Pの化学分析値：0.010 mass%から算出される原子濃度：0.017at%より若干高めであった。Pが球状化セメンタイト中に固溶しない分マルテンサイト中に固溶していると考えると、原子レベルで平均濃度が若干上昇することは十分考えられる。一方微量Nbを添加した鋼では、鋼Bは鋼Aと顕著な濃度差は認められないが、鋼Dでは分析した3サンプルで0.05～0.12at%までPの平均濃度が上昇していた。現時点でこのメカニズムを説明できる公知文献は確認されなかったが、少なくとも焼入れ直後には既に濃度が上昇しているため、800°Cに加熱焼熱した時点でγ相中のPの平均濃度がこのレベルまで上昇していたと考えられる。これは、Nbがγ粒子やγ相と未溶解セメンタイト界面などに優先的に偏析することで、γ相へのPの偏析が促進されたとも考えられるが、これだけの濃化を説明できる過去の研究は見当たらないかった。つぎに250°C焼戻し後については、鋼Bで僅かに平均濃度が上昇するがNb量の影響に関しては焼入れままの状態が維持される。

以上の結果は、鋼Dでは焼入れままの状態で既にPがマルテンサイト中に濃化しており、特性値も他の鋼より劣位であることと符合する。マルテンサイトの特性が回復する350°C焼戻し後の特性がNb量に依存して変化する結果は、マルテンサイト中のPの平均濃度の差に起因した現象と考

A: Nb free	B: 0.01%Nb	D: 0.05%Nb
As-Q		
QT250		

![Fig.17. One-dimensional P concentration profiles analyzed by APT showing the effect of Nb addition on the LTT processes at 250°C.](image1)

![Fig.18. Change in the bulk concentration of P as a function of Nb content analyzed by APT (a) As-Q, (b) QT250.](image2)
Fig.19. Schematic diagram showing the optimum content of Nb as 0.01 mass% in view of both positive effect for promoting carbide precipitation and negative effect for deterioration of toughness caused by increase in bulk concentration of P.

5. 結論

メリアス針など繊維機械部品に使用されるSK95相当の過共析鋼の焼入れ・焼戻し処理による組織形成と機械的特性に及ぼす0.01～0.05 mass%の範囲の微量Nb添加の影響について検討した結果、以下の結論が得られた。

(1) 短時間加熱における焼入れ性は0.01 mass%Nb添加によって改善する。しかし、十分に焼きが入った状態では、硬さに及ぼす微量Nb添加の影響は認められない。

(2) 焼入れに伴う焼仲直りにおいては、Nb無添加鋼に比べて0.01 mass%Nbを添加した鋼において焼き仲直りが短くおよび焼仲直りが減少する。これによりNb添加による焼入れ前の111/ND面積集団の面内無方向化によって焼入れ後のマルテンサイトの集合組織がよりランダム化するためと推測される。

(3) 低温焼戻し過程での軟化挙動に対するNbの影響は殆ど認められないが、その間のα相回復挙動に関しては、0.01 mass%Nb添加によって250℃～300℃の弱性上昇が顕著となる。

(4) 低温焼戻し後の疲労耐久性に関しては、0.01 mass%Nb鋼の疲労寿命は、Nb無添加鋼および0.02 mass%Nb添加鋼より30%～50%延びる。

(5) APTを用いたナノスケールでの組織解析により、微量Nbを添加した鋼では低温焼戻し過程で過酸和固溶Cが10～15at%程度のクラスタリング過程を経ることなく直接α系炭化物または9炭化物として析出する可能性が考えられる。これは、Nb添加による低温焼戻しの促進を示唆している。

(6) 同一P含有量の鋼であっても、Nb添加によってマルテンサイト中的Pのバブル平均濃度が上昇する傾向が確認された。その傾向は0.05 mass%Nb添加鋼で顕著となる。

(7) 0.01 mass%Nbを添加した鋼において低温焼戻し後の諸特性が改善したのは、Nb添加による低温焼戻し過程での炭化物の析出促進によるプラウ効果と、 Nb添加に伴うマルテンサイト中のPのバブル平均濃度の増加によるマサイ効果が足し合わされた結果と考えられる。

文 献
1) O.Shibata: J. Text. Mach. Soc., 17(1964), No.5, 363.
2) Y.Hosoya: Bull. Iron Steel Inst. Jpn., 20(2015), 13.
3) JSJ: Bull. Iron Steel Inst. Jpn., 17(2012), No.5, 250.
4) Y.Matsunuma, Y.Hosoya and E.Tsuya: CAMP-ISIJ, 30(2017), 186, CD-ROM.
5) Y.Hosoya, Y.Matsunuma and E.Tsuya: CAMP-ISIJ, 30(2017), 187, CD-ROM.
6) Y.Hosoya: Proc. 83th Spring Conference of the Japan Society for Heat Treatment, Kawakami-Akami Memorial Lecture, The Japan Society for Heat Treatment, Tokyo, (2015), 15.
7) K.Kunisada and H.Iwai: Tetsu-to-Hagané, 71(1985), 63.
8) Steels and Alloying Elements, JSIJ, Tokyo, (2015), 669.
9) Proc. Int. Symposium Niobium 2001, Niobium Science & Technology, TMS, Pittsburgh, (2001).
10) M.Suehiro, Z.K.Liu and J.Agren: Acta Mater., 44(1996), 4241.
11) E.P.Abrahamson and B.S.Blackeney, Jr: Trans. Metall. Soc. AIME, 218(1960), 1101.
12) T.Nishizawa: Bull. Jpn. Inst. Met., 37(1973), 401.
13) H.Kaneko, Y.Nishizawa and K.Tamaki: J. Jpn. Inst. Met., 29(1965), 159.
14) H.Kaneko, Y.Nishizawa and K.Tamaki: J. Jpn. Inst. Met., 29(1965), 166.
15) H.G Grabke, R.Moller, H.Erhardt and S.S.Brenner: Surf. Interface Anal., 10(1987), 202.
16) K.Narita and A.Miyamoto: Tetsu-to-Hagané, 50(1964), 174.
17) K.Aoki, M.Sekino and T.Fujishima: Tetsu-to-Hagané, 48(1962), 156.
18) M.Shimotomi: Metall. Mater. Trans. A, 47(2016), 1052.
19) O.D.Sherby, J.Wadsworth, D.R.Lesuer and C.K.Syn: Mater. Trans., 49(2008), 2016.
20) F.G.Caballero, M.K.Miller and C.Garcia-Mateo: Metall. Mater. Trans. A, 42(2011), 3660.