Spinal Hemangiopericytoma Which Needed Intraoperative Embolization due to Unexpected Bleeding

Chang-Hyun Lee, M.D., Ki-Jeong Kim, M.D., Ph.D., Tae-Ahn Jahng, M.D., Hyun-Jib Kim, M.D.

Department of Neurosurgery, Spine Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea

INTRODUCTION

Hemangiopericytoma is a highly vascularized, aggressive neoplasm that is classified as a mesenchymal nonmeningothelial tumor with uncertain malignant potential or borderline malignancy. This tumor develops in the pericytes of soft tissue and is usually located in subcutaneous tissue and skeletal muscle. Hemangiopericytomas of the central nervous system are rare, comprising 2% to 4% of all meningeal tumors. Hemangiopericytoma rarely occurs in the spine, with only approximately 60 previously reported cases of which 10 were located in the intradural extramedullary (IDEM) region. Hemangiopericytomas sometimes look like aggressive hemangiomas such as arteriovenous shunting or congested spinal vessels. Local recurrence and metastasis of hemangiopericytoma were reported to 60% and 23%, respectively. Therefore, differential diagnosis between hemangiopericytoma and other benign tumors is very important. Radiologic images of hemangiopericytoma typically show a diffusely enhancing tumor with a broad-based meningeal attachment, which is also observed in meningioma. A few characteristics of hemangiopericytoma were known, however, they are not definite and are also observed in aggressive meningioma. Here, we describe a patient with an unexpected intradural hemangiopericytoma in the cervical spine, and we describe an unexpected hemangiopericytoma case with large bleeding and management of the tumor.

CASE REPORT

A 21-year-old man visited complaining of neck pain and a tingling sensation in both hands. The intensity of neck pain had progressed over 1 year. The tingling sensation in the hands had developed 1 month prior and had worsened. Motor function and reflexes did not decrease. His magnetic resonance imaging of his spine revealed a ventral intradural mass. When the dura was opened, the intradural tumor was placed behind spinal accessory nerves. The tumor was partially exposed only after some accessory nerves had been cut. When internal debulking was performing, unexpected bleeding was noted and it was difficult to control because of narrow surgical field and hypervascularity. Intraoperative spinal angiography and embolization were performed. The tumor was completely removed after embolization. Pathological diagnosis was consistent with hemangiopericytoma. When surgeons meet a flesh-red tumor that bleeds unexpectedly during surgery, hemangiopericytoma may be considered. When feeder control is hard due to reciprocal location of spinal cord, the tumor, and feeders, intraoperative angiography and embolization may be a possible option.

Key Words: Hemangiopericytoma · Intradural · Spine · Surgery · Angiography.
The patient underwent left hemilaminectomy at C1, left partial hemilaminectomy at C2, and partial resection of the foramen magnum. When the dura was opened, an IDEM tumor was placed behind spinal accessory nerves. The plane between the spinal cord and the mass placed well defined, and the flesh-red tumor was observed (Fig. 2). The tumor was partially exposed only after some accessory nerves had been cut. Because of narrow surgical field, we planned internal debulking first. While performing internal debulking by ultrasonic aspirator to remove the ventral IDEM tumor, unexpected tumor bleeding developed and was difficult to stop. Tumor bleeding could not be controlled by bipolar coagulator, and was stopped after compressing the lesion using microfibrillar collagen (Avitene™) for some minutes. It is difficult to find feeding arteries because of narrow surgical field. We halted the surgery and checked the spinal angiography at the angiography suite, which revealed two major feeders of the deep cervical branch from the vertebral artery (Fig. 3). Two main feeders were embolized by titanium coil or particles. After endovascular embolization of the feeder vessels, the tumor resection was resumed. The tumor was completely removed with minimal bleeding. The patient had a fast postoperative course, and the tingling sensation in his hands and his neck pain disappeared. He was discharged without symptoms and has been recurrence-free for the past 1 year (Fig. 4).
Pathologic findings
A gross specimen revealed a nodular mass of soft tissue measuring 2×2 cm. The cut surface of the mass was reddish yellow. Hematoxylin and eosin staining showed a highly cellular neoplasm growing in patternless sheets and with high mitotic activity. There was proliferation of the tumor cells with oval nuclei, and the tumor was surrounded by abundant blood vessels resulting in the "staghorn" appearance typical of hemangiopericytoma (Fig. 5). After immunostaining, the tumor cells were negative for CD34 and epithelial membrane antigen. On the basis of these findings, we made a final diagnosis of hemangiopericytoma.

DISCUSSION
Hemangiopericytoma is distinguished from meningioma by multilobulated lesion, expanding/eroding spinal canal, large soft tissue component, or no calcification. Ross et al. addressed that malignant, invasive meningioma may be very hard to distinguish from hemangiopericytoma. However, hemangiopericytomas need to be distinguished from other tumors because they sometimes bleed substantially, recur frequently, and metastasize. In this case, the tumor showed no lobulation, no bony erosion, and no soft tissue invasion on MR images like meningioma. Hence, our presumptive diagnosis, meningioma or schwannoma, was wrong. Hemangiopericytoma has a chance of missing diagnosis by radiologic studies.

In the review of previous reports, 7 of 10 papers reported hemangiopericytomas were presented as red mass in surgical field in Table 1. One tumor was described as having the gross appearance of a meningioma, and the others were not described. Although hemangiopericytoma could not be distinguished by radiologic studies in preoperative state, hemangiopericytoma seems to be distinguished by the gross feature (red color) on surgical field, which means a hypervascular tumor. Surgeons had better take extra precaution and suspect hemangiopericytoma when they watch a flesh-red mass during surgeries of IDEM tumors. Hemangiopericytoma sometimes makes large bleeding, although not in all. In case of unexpected large bleeding, feeding vessels of the tumor have to be controlled first. When feeder control is hard due to reciprocal location of spinal cord, the tumor, and feeders, intraoperative angiography and embolization may be a possible option.

In intracranial hemangiopericytoma patients, adjuvant radiotherapy or radiosurgery was usually recommended. In spinal hemangiopericytoma patients, the evidence of adjuvant radiotherapy or radiosurgery was not yet clear. In 10 previously reported cases of IDEM spinal hemangiopericytoma, 1 of 2 patients who had undergone radiotherapy recurred at 2 years after treatment. Two of 7 patients who had not undergone radiotherapy showed tumor recurrence. The data on radiation for...
spinal intradural lesions remains unclear because of few cases. In addition, neither radiotherapy nor radiosurgery has demonstrated protection against neuroaxis.

Therefore, we recommend closely following patients with a hemangiopericytoma clinically with serial MR imaging.

CONCLUSION

Intradural spinal hemangiopericytoma is rare but need to be distinguished from other benign tumors because it is aggressive. When surgeons meet a flesh-red tumor that bleeds unexpectedly during surgery, hemangiopericytoma may be considered. When feeder control is hard due to reciprocal location of spinal cord, the tumor, and feeders, intraoperative angiography and embolization may be a possible option.

References

1. Ackerman PD, Kahlid A, Shea JF: Intradural hemangiopericytoma of the thoracic spine : a case report. Spine J 11 : e9-e14, 2011
2. Betchen S, Schwartz A, Black C, Post K: Intradural hemangiopericytoma of the lumbar spine : case report. Neurosurgery 50 : 654-657, 2002
3. Ciappetta P, Celli P, Palma L, Mariottini A: Intraspinall hemangiopericytomas. Report of two cases and review of the literature. Spine (Phila Pa 1976) 10 : 27-31, 1985
4. Dufour H, Metellus P, Fuentes S, Murraciole X, Régis J, Figarella-Branger D, et al.: Meningeal hemangiopericytoma: a retrospective study of 21 patients with special review of postoperative external radiotherapy. Neurosurgery 48 : 756-762; discussion 762-763, 2001
5. Fitzpatrick D, Mahajan J, Lewkowitz M, Black K, Setton A, Woldenberg R: Intradural hemangiopericytoma of the lumbar spine: a rare entity.
6. Guthrie BL, Ebersold MJ, Schiehauer BW, Shaw EG: Meningeal hemangiopericytoma: histopathological features, treatment, and long-term follow-up of 44 cases. Neurosurgery 25 : 514-522, 1989
7. Jang JH, Rhim SC, Lee DG, Roh SW: Multiple spinal metastases of hemangiopericytoma: case report. J Korean Neurosurg Soc 32 : 380-383, 2002
8. Jääskeläinen J, Servo A, Wahlanström T, Valtonen S: Intracranial hemangiopericytoma: radiology, surgery, radiotherapy, and outcome in 21 patients. Surg Neurol 23 : 227-236, 1985
9. Kashiwazaki D, Hida K, Yano S, Seki T, Iwasaki Y: Subpial hemangiopericytoma with marked extramedullary growth: case report. Neurosurgery 61 : E1336-E1337; discussion E1337, 2007
10. Kruse F Jr: Hemangiopericytoma of the meninges (angioblastic meningioma of Cushing and Eisenhardt). Clinico-pathologic aspects and follow-up studies in 8 cases. Neurology 11 : 771-777, 1961
11. Mena H, Ribas JL, Pezeshkpour GH, Cowan DN, Parisi JE: Hemangiopericytoma of the central nervous system: a review of 94 cases. Hum Pathol 22 : 84-91, 1991
12. Moscovici S, Ramirez-DeNoriega F, Fellig Y, Rosenthal G, Cohen JE, Itshayek E: Intradural extramedullary hemangiopericytoma of the thoracic spine infiltrating a nerve root: a case report and literature review. Spine (Phila Pa 1976) 36 : E1534-E1539, 2011
13. Osborne DR, Dubois P, Drayer B, Sage M, Burger P, Heinzer ER: Primary intracranial meningeal and spinal hemangiopericytoma: radiologic manifestations. AJNR Am J Neuroradiol 2 : 69-74, 1981
14. Pitlyk PJ, Dockery MB, Miller RH: Hemangiopericytoma of the spinal cord: report of three cases. Neurology 15 : 649-653, 1965
15. Ross JS, Brant-Zawadzki M, Moore KR, Crim J, Chen MZ, Katzman GL: Diagnostic imaging: Spine, ed 1. Utah: Amirsys, 2004, ppIV:1.82-85
16. Soyuer S, Chang EL, Sulek U, McCutcheon IE, Maor MH: Intracranial meningeal hemangiopericytoma: the role of radiotherapy: report of 29 cases and review of the literature. Cancer 100 : 1491-1497, 2004