AR-COMPONENTS FOR GENERALIZED BEILINSON ALGEBRAS

JULIA WORCH

(Communicated by Birge Huisgen-Zimmermann)

Abstract. We show that the generalized W-modules defined in 2013 determine $\mathbb{Z}A_\infty$-components in the Auslander-Reiten quiver $\Gamma(n, r)$ of the generalized Beilinson algebra $B(n, r), n \geq 3$. These components entirely consist of modules with the constant Jordan type property. We arrive at this result by interpreting $B(n, r)$ as an iterated one-point extension of the r-Kronecker algebra K_r, which enables us to generalize findings concerning the Auslander-Reiten quiver $\Gamma(K_r)$ presented in 2013 to $\Gamma(n, r)$.

INTRODUCTION

Motivated by work of Carlson, Friedlander, Pevtsova and Suslin on modular representations of elementary abelian p-groups (cf. [4], [5]), we introduced in a foregoing paper [12] modules with the equal images property, the equal kernels property and modules of constant Jordan type for the generalized Beilinson algebra $B(n, r)$, the path algebra of the quiver

\[
\begin{align*}
0 & \xrightarrow{\gamma_1} 1 \\
& \vdots \\
& \gamma_{r-1} \\
& \gamma_r \\
& \gamma_1 \\
& \gamma_{r-1} \\
& \gamma_r \\
& \vdots \\
& \gamma_{r-1} \\
& \gamma_r \\
& \vdots
\end{align*}
\]

modulo commutativity relations $\gamma_i \gamma_j = \gamma_j \gamma_i$. These classes are defined such that a faithful exact functor $\mathfrak{F}: \text{mod } B(n, r) \to \text{mod } kE_r$ maps a $B(n, r)$-module with one of the above properties to a module that satisfies the respective property over an elementary abelian p-group E_r of rank $r \geq 2$ [12 2.3]. We moreover gave a generalization of the so-called W-modules, a special class of kE_2-modules with the equal images property defined in [5] via generators and relations, to elementary abelian p-groups of arbitrary rank and showed that these modules might as well be considered modules with the equal images property over $B(n, r)$ via \mathfrak{F}.

The Auslander-Reiten quiver constitutes an important invariant of the Morita equivalence class of an algebra. While in general it is hard to compute the components of this quiver, one has a good knowledge of the Auslander-Reiten components for group algebras of finite groups and hereditary algebras. In particular, by work of Ringel [2] and Erdmann [6], the regular Auslander-Reiten components of wild hereditary algebras and of p-elementary abelian groups are of tree class A_∞.

Received by the editors January 23, 2014 and, in revised form, June 22, 2014.

2010 Mathematics Subject Classification. Primary 16G20, 16G70; Secondary 16S90, 16S37.

The author’s research was partly supported by the D.F.G. priority program SPP 1388 “Darstellungstheorie”.

©2015 American Mathematical Society
On the contrary, not much is known about the Auslander-Reiten theory of generalized Beilinson algebras. These algebras, however, constitute an interesting class of algebras of global dimension \(\geq 2 \) for \(n \geq 3 \) [13, 3.7].

In the present paper, we interpret \(B(n, r) \) as an iterated one-point extension of the hereditary path algebra \(B(2, r) \) of the \(r \)-Kronecker by duals of generalized \(W \)-modules. As a consequence, we can make use of certain lifting properties of Auslander-Reiten sequences [10, 2.5] in combination with torsion theoretic arguments to generalize our findings from [12] as follows:

Theorem. Let \(r \geq 2, m > n \geq 2 \).

(i) If \((n, r) \neq (2, 2) \), then the generalized \(W \)-module \(W_{m,n}^{(r)} \) is a quasi-simple module in a \(\mathbb{Z}A_\infty \)-component \(C_m \) of \(\Gamma(n, r) \) which contains two disjoint cones: one consisting of modules with the equal images property and one consisting of modules with the equal kernels property. Moreover, all modules in \(C_m \) have constant Jordan type.

(ii) If \(r > 2 \), then the two cones in (i) are adjacent. In case \(r = 2 \), there is exactly one quasi-simple module that has neither the equal images nor the equal kernels property.

For \(r > 2 \), these components can be visualized as follows with \(W = W_{m,n}^{(r)} \) being the uniquely determined generalized \(W \)-module of the component.

![Figure 1](image-url)

The gray and black bullets refer to modules with the equal images property and the equal kernels property, respectively.

Throughout, we denote by \(k \) an algebraically closed field and we let \(n, r \geq 2 \). We assume the reader to be familiar with the concept of an algebra given by a quiver with relations and refer to [1] and [2] for basic notions of Auslander-Reiten theory.
1. Module categories for $B(n, r)$ and the case $n = 2$

In this section, we recall the module categories we defined in [12] and provide the reader with the relevant information we have on the Auslander-Reiten quiver of $B(2, r)$.

Let $E(n, r)$ be the path algebra of the quiver $Q(n, r)$ with n vertices and r arrows between the vertices i and $i + 1$ for all $0 \leq i \leq n - 2$:

$\begin{align*}
0 & \quad 1 & \quad 2 & \quad \cdots & \quad n - 2 & \quad n - 1 \\
\gamma_0^{(0)} & \quad \gamma_1^{(0)} & \quad \gamma_1^{(1)} & \quad \gamma_1^{(n-2)} & \quad \gamma_r^{(n-2)}
\end{align*}$

The generalized Beilinson algebra $B(n, r)$ is the factor algebra $E(n, r)/I$ where I is the ideal generated by the commutativity relations $\gamma_s^{(i+1)} \gamma_t^{(i)} - \gamma_t^{(i+1)} \gamma_s^{(i)}$ for all $s, t \in \{1, \ldots, r\}$ and $i \in \{0, \ldots, n - 1\}$. These algebras generalize the algebras of the form $B(n) = B(n, n)$ introduced by Beilinson in [3]. We denote by $S(i)$, $P(i)$, $I(i)$ and e_i the simple, the projective and the injective indecomposable $B(n, r)$-module and the primitive orthogonal idempotent corresponding to the vertex $i \in \{0, \ldots, n - 1\}$. For $\alpha \in k^r \setminus 0$ and $M \in \text{mod} B(n, r)$, we consider the linear operator $\alpha_M : M \rightarrow M$ given by left-multiplication with the element $\sum_{i=0}^{n-2} (\alpha_1 \gamma_1^{(i)} + \cdots + \alpha_r \gamma_r^{(i)}) \in B(n, r)$.

Definition 1.1 (cf. [12]). We denote by

(i) $\text{EIP}(n, r) := \left\{ M \in \text{mod} B(n, r) \mid \forall \alpha \in k^r \setminus 0 : \text{im}(\alpha_M) = \bigoplus_{i=1}^{n-1} (e_i \cdot M) \right\}$,

(ii) $\text{EKP}(n, r) := \left\{ M \in \text{mod} B(n, r) \mid \forall \alpha \in k^r \setminus 0 : \text{ker}(\alpha_M) = e_{n-1} \cdot M \right\}$,

(iii) $\text{CR}^J(n, r) := \left\{ M \in \text{mod} B(n, r) \mid \exists c_j \in \mathbb{N}_0 \forall \alpha \in k^r \setminus 0 : \text{rk}(\alpha_M)^j = c_j \right\}$,

(iv) $\text{CJT}(n, r) := \bigcap_{j=1}^n \text{CR}^j(n, r)$

the categories of modules with the equal images property and the equal kernels property, and the categories of modules of constant j-rank and of constant Jordan type, respectively.

Due to the fact that $B(n, r) \cong B(n, r)^\text{op}$, there is a duality $D : \text{mod} B(n, r) \rightarrow \text{mod} B(n, r)$ induced by taking the linear dual and relabelling the vertices of the quiver $Q(n, r)$ in the reversed order. The functor D is compatible with the Auslander-Reiten translation τ in the sense that $D \tau \cong \tau^{-1} D$ [13 3.3] and restricts to a duality between the categories $\text{EIP}(n, r)$ and $\text{EKP}(n, r)$. Note, moreover, that $\text{EIP}(n, r) \cup \text{EKP}(n, r) \subseteq \text{CJT}(n, r)$. The following is a direct consequence of Definition 1.1.

Remark 1.2. Let $M \in \text{EIP}(n, r)$, $N \in \text{EKP}(n, r)$.

(i) If $e_0 \cdot M = 0$, then $M = 0$.

(ii) If $e_{n-1} \cdot N = 0$, then $N = 0$.

A homological characterization of these categories [12 2.5] yields that the category $\text{EIP}(n, r)$ is the torsion class \mathcal{T} of a torsion pair $(\mathcal{F}, \mathcal{F})$ in $\text{mod} B(n, r)$ with $\text{EKP}(n, r) \subseteq \mathcal{F}$ that is closed under the Auslander-Reiten translation τ and
contains all preinjective modules [12, 2.7]. In particular, there are no non-trivial maps $EIP(n, r) \to EKP(n, r)$. This yields [12, 2.9]:

Theorem 1.3. Let C be a regular $\mathbb{Z}A_\infty$-component of $\Gamma(n, r)$. If $EIP(n, r) \cap C \neq \emptyset$, then either $C \subseteq EIP(n, r)$ or there exists a quasi-simple module W_C such that $(\to W_C) = C \cap EIP(n, r)$. Dually, if $EKP(n, r) \cap C \neq \emptyset$, then either $C \subseteq EKP(n, r)$ or there exists a quasi-simple module M_C such that $(M_C \to) = C \cap EKP(n, r)$.

Here, for $M \in \text{mod } B(n, r)$ indecomposable, we denote by $(M \to)$ and $(\to M)$ the sets consisting of M and all successors and all predecessors of M in $\Gamma(n, r)$, respectively. In case C contains both modules with the equal images and the equal kernels property, we define $W(C)$ by the property

$$\tau^{W(C)+1}M_C = W_C;$$

i.e. $W(C)$ is the number of quasi-simple modules in C that satisfy neither the equal images nor the equal kernels property. In [12, 3.4] it is shown that the width $W(C)$ can in general be arbitrarily large.

We furthermore denote by $R = k[X_1, \ldots, X_r]$ the polynomial ring in r variables and by $I = (X_1, \ldots, X_r)$ the ideal generated by X_1, \ldots, X_r. There is an equivalence of categories $B(n, r) \cong C_{[0, n-1]}$; where $C_{[0, n-1]}$ denotes the category of \mathbb{Z}-graded R-modules with support contained in $\{0, \ldots, n-1\}$. We denote by $[-]$ the shift to the right in the category of \mathbb{Z}-graded R-modules. Via this identification the \mathbb{Z}-graded R-module

$$M^{(r)}_{m,n} = (I^{m-n}/I^n)[n-m],$$

$m \geq n$, is an indecomposable object in $EKP(n, r)$ with $W^{(r)}_{m,n} := D M^{(r)}_{m,n} \in EIP(n, r)$ [13, 3.6]. In case $m < n$, we define $M^{(r)}_{m,n} := M^{(r)}_{n,n}$. We call modules of the form $W^{(r)}_{m,n}$ generalized W-modules, since for $n \leq p$ and $r = 2$, these modules correspond to the kE_2-modules defined by Carlson, Friedlander and Suslin in [5] via generators and relations. The module $M^{(3)}_{3,2} \in EKP(2, 3)$, for example, can be depicted as follows:

The dots represent the canonical basis elements given by the monomials in degree one and two and \to, \longrightarrow and \leadsto denote the action of $\gamma^{(0)}_1$, $\gamma^{(0)}_2$ and $\gamma^{(0)}_3$, respectively.

The algebra $B(2, r)$ is the path algebra K_r of the r-Kronecker quiver. Whenever $r > 2$, $B(2, r)$ is wild, and due to a result by Ringel [9] all regular components are of type $\mathbb{Z}A_\infty$. In [12, §3], we have shown that the module $W^{(r)}_{m,2}$ is quasi-simple in a $\mathbb{Z}A_\infty$-component C_m of $\Gamma(2, r)$ with $W_{c_m} = W^{(r)}_{m,2}$ and $W(C_m) = 0$. Thus the module $W^{(r)}_{m,2}$ is in the rightmost position in the equal images cone of $C_m \subseteq \Gamma(2, r)$; i.e. C_m can be visualized as in Figure 1 with $W = W^{(r)}_{m,2}$. The dual statement holds for modules of the form $M^{(r)}_{m,2}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. One-point extensions

We will now provide the necessary theoretical framework and notation for the theory of one-point extensions. For a general introduction, the reader is referred to [10] or [11, XV.1].

Definition 2.1 (Ringel [10]). Let A be an algebra, M in $\text{mod} \ A$. The algebra $A[M] = \begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$ with usual matrix addition and multiplication is referred to as the **one-point extension** of A by M.

If $A = kQ_A/I$ is a basic algebra, we obtain the quiver $Q_{A[M]}$ of $A[M]$ by adding a source vertex together with some arrows to Q_A. A module over $A[M]$ so fits the form $(N V) \varphi$, where $N \in \text{mod} \ A$, $V \in \text{mod} \ k$ and $\varphi \in \text{Hom}_k(V, \text{Hom}_A(M, N))$. The $A[M]$-module structure is then given via $(a m 0 \lambda)(n v) = (a.n + \varphi(v)(m) \lambda v)$.

Given $\tilde{X} = \begin{pmatrix} X \\ V \end{pmatrix} \varphi$, $\tilde{Y} = \begin{pmatrix} Y \\ W \end{pmatrix} \psi \in \text{mod} A[M]$, a morphism $\tilde{X} \to \tilde{Y}$ in mod $A[M]$ corresponds to a pair (f_0, f_1), where $f_0 \in \text{Hom}_A(X, Y)$, $f_1 \in \text{Hom}_k(V, W)$ and $\text{Hom}_A(M, f_0) \circ \varphi = \psi \circ f_1$. Since A is a factor algebra of $A[M]$, there is a full exact embedding $\iota_A : \text{mod} A \to \text{mod} A[M]$, sending $N \in \text{mod} A$ to the $A[M]$-module $\begin{pmatrix} N \\ 0 \end{pmatrix}$.

There is a simple injective module $\tilde{S} = \begin{pmatrix} 0 \\ k \end{pmatrix}_0 \in \text{mod} A[M]$. The indecomposable projective $A[M]$-modules are exactly the images of the projective indecomposables of A under ι_A together with the module $P(\tilde{S}) = \begin{pmatrix} M \\ k \end{pmatrix}_{\lambda \to \lambda \text{id}_M}$.

The following lemma due to Ringel gives information on how almost split sequences in mod A “lift” to mod $A[M]$ [10, 2.5].

Lemma 2.2. Let A be an algebra, M an A-module. Furthermore let $0 \to \tau N \xrightarrow{f} E \xrightarrow{g} N \to 0$ be an Auslander-Reiten sequence in mod A. Then

$$0 \to \begin{pmatrix} \tau N \\ \text{Hom}_A(M, \tau N) \end{pmatrix} \xrightarrow{(f, \text{id})} \begin{pmatrix} E \\ \text{Hom}_A(M, \tau N) \end{pmatrix} \xrightarrow{g} \begin{pmatrix} N \\ 0 \end{pmatrix} \to 0$$

is an Auslander-Reiten sequence in mod $A[M]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
3. **BEILINSON ALGEBRAS AS ITERATED ONE-POINT EXTENSIONS**

The simple module \(S(0) \in \text{mod}\, B(n, r) \) is injective. In view of [11 XV.1], we hence obtain

\[
B(n, r) \cong (1 - e_0)B(n, r)(1 - e_0)[\text{rad}\, P(0)].
\]

Since \(B(n - 1, r) \) is isomorphic to the algebra \((1 - e_0)B(n, r)(1 - e_0) \), we can thus regard \(B(n, r) \) as a one-point extension of \(B(n - 1, r) \) and consider \(\text{rad}\, P(0) \) an object in \(\text{mod}\, B(n - 1, r) \). By [13 3.23], we have isomorphisms \(M^{(r)}_{n,n} \cong P(0) \) in \(\text{mod}\, B(n, r) \) and \(\text{rad}\, P(0) \cong M^{(r)}_{n,n-1} \) in \(\text{mod}\, B(n - 1, r) \). Inductively, we obtain

\[
B(n, r) \cong B(n - 1, r)[M^{(r)}_{n,n-1}] \cong \mathcal{K}_r[M_{3,2}^{(r)} \cdots M^{(r)}_{n,n-1}].
\]

For \(n = 3, r = 2 \), we can visualize this as follows: Extending the path algebra \(\mathcal{K}_2 \) of the quiver

![Quiver Diagram]

by the module \(M^{(2)}_{3,2} \)

yields the path algebra of

![Extended Quiver Diagram]

with relations \(\gamma_2 \cdot x_1 = \gamma_1 \cdot x_2 \), which is easily seen to be isomorphic to \(B(3, 2) \).

From now on, we will identify the algebras \(B(n, r) \) and \(B(n - 1, r)[M^{(r)}_{n,n-1}] \). Note that when writing \(\tilde{M} \in \text{mod}\, B(n, r) \) in the form

\[
\tilde{M} = \left(\begin{array}{c} M \\ V \end{array} \right), \quad \varphi \in \text{mod}\, B(n - 1, r)[M^{(r)}_{n,n-1}],
\]

the dimension vector \(\dim \tilde{M} \) coincides with the vector \((\dim_k V, \dim M)\).

We want to study the Auslander-Reiten quiver \(\Gamma(n, r) \) by making use of the information on \(\Gamma(2, r) \) presented in Section 2. An application of Lemma 2.2 yields [13 5.6]:

Proposition 3.1. Let \(m \geq n \geq 3 \). We have

(i) \(t_{B(n-1,r)}^{-1} M^{(r)}_{m,n-1} M^{(r)}_{n,n-1} \cong \tau_{B(n,r)}^{-1} M^{(r)}_{m,n} \),

(ii) \(t_{B(n-1,r)}^{-1} W^{(r)}_{m,n-1} W^{(r)}_{n,n-1} \cong \tau_{B(n,r)}^{-1} W^{(r)}_{m+1,n} \).

Hence the Auslander-Reiten sequences in \(\text{mod}\, B(n - 1, r) \) starting in \(M^{(r)}_{m,n-1} \) and \(W^{(r)}_{m,n-1} \) lift to Auslander-Reiten sequences in \(\text{mod}\, B(n, r) \) that start in \(M^{(r)}_{m,n} \) and \(W^{(r)}_{m+1,n} \), respectively.
4. Occurrence of Generalized W-modules in $\Gamma(n, r)$

We now show that generalized W-modules determine ZA_∞-components in $\Gamma(n, r)$, $n \geq 3$, $r \geq 2$ that entirely consist of modules with the constant Jordan type property.

Let us consider the case $r = 2$. On the level of the Auslander-Reiten quiver $\Gamma(2, 2)$ of the tame algebra K_2, we do not have any ZA_∞-components to start out with, and due to [7, 4.2.2], the W-modules correspond to the preinjective K_2-modules. With the use of tilting theory one can show that all regular components of $\Gamma(3, 2)$ are of type ZA_∞, as has been communicated to me by Otto Kernser [5]: There exists a preprojective tilting module T over the path algebra of the extended Kronecker quiver

$$
\begin{array}{ccc}
0 & \rightarrow & 1 \\
\uparrow & & \downarrow \\
& \circlearrowright & 2
\end{array}
$$

such that $\text{End}(T)$ is isomorphic to $B(3, 2)$. The regular components of $\Gamma(\text{End}(T))$ are of type ZA_∞, while there is a preprojective and preinjective component consisting of the τ- and τ^{-1}-shifts of all projective indecomposables and injective indecomposables, respectively.

Proposition 4.1. For $m > 3$, the module $W^{(2)}_{m, 3}$ is quasi-simple in a ZA_∞-component C_m of $\Gamma(3, 2)$ with $W(C_m) = 1$. Dually, $M^{(2)}_{m, 3}$ is quasi-simple in a ZA_∞-component of $\Gamma(3, 2)$.

Proof. Consider $W^{(2)}_{m-1, 2} \in \text{mod } K_2$. Due to Proposition [3.1] (ii), we have an isomorphism $\tau_{B(3,2)}^{-1} W^{(2)}_{m, 3} \cong \iota_{B(2,2)} \tau_{K_2}^{-1} W^{(2)}_{m-1, 2}$. Note that for $k \geq 1$, the module $W^{(2)}_{k, 2}$ is the preinjective K_2-module with dimension vector $(k - 1, k)$ [7, 4.2.2]. It is well-known that there is an Auslander-Reiten sequence

$$
0 \rightarrow W^{(2)}_{m-1, 2} \rightarrow W^{(2)}_{m-2, 2} \oplus W^{(2)}_{m-2, 2} \rightarrow W^{(2)}_{m-3, 2} \rightarrow 0
$$

in $\text{mod } K_2$. We hence obtain

$$
\tau_{B(3,2)}^{-1} W^{(2)}_{m, 3} \cong \iota_{B(2,2)} W^{(2)}_{m-3, 2}.
$$

Remark [12] yields that $\iota_{B(2,2)} W^{(2)}_{m-3, 2} \notin \text{EIP}(3, 2)$ since $e_0 \cdot (\iota_{B(2,2)} W^{(2)}_{m-3, 2}) = 0$. Hence we have $\tau_{B(3,2)}^{-1} W^{(2)}_{m, 3} \notin \text{EIP}(3, 2)$ and in view of [12, 2.7], this implies that $W^{(2)}_{m, 3}$ is neither preinjective nor preprojective. Thus $W^{(2)}_{m, 3}$ is a regular module with the equal images property and therefore contained in a ZA_∞-component C_m of $\Gamma(3, 2)$. Due to the fact that $e_0 \cdot \tau_{B(3,2)}^{-1} W^{(2)}_{m, 3} = 0$, the module $\tau_{B(3,2)}^{-1} W^{(2)}_{m, 3}$ cannot contain a non-trivial module with the equal images property and is hence torsion-free with respect to the torsion pair $(\text{EIP}(3, 2), F)$, where $\text{EKP}(3, 2) \subseteq F$; cf. [12, 2.7]. This yields that there is no non-trivial map $W^{(2)}_{m, 3} \rightarrow \tau_{B(3,2)}^{-1} W^{(2)}_{m, 3}$, and hence $W^{(2)}_{m, 3}$ is quasi-simple in C_m. Since $W^{(2)}_{m, 3} \in \text{EIP}(2, 2)$, we obtain $W^{(2)}_{m-3, 2} \notin \text{EKP}(2, 2)$ by [12, 2.7], which yields that $\iota_{B(2,2)} W^{(2)}_{m-3, 2} \notin \text{EKP}(3, 2)$ by [13, 3.32]. Furthermore, due to the fact that $e_0 \cdot (\tau_{B(3,2)}^{-1} W^{(2)}_{m, 3}) = 0$, the dual of [12, 2.10] yields that $\tau_{B(3,2)}^{-2} W^{(2)}_{m, 3} \in \text{EKP}(3, 2)$ and hence $V(C_m) = 1$. The dual statement holds in view of the duality D on mod $B(n, r)$, which is compatible with τ. \[\square\]
In the proof, we made use of the fact that for $m > 3$, we have $\tau_{B(3,2)}^{-1} W_{m,3}^{(2)} \cong \tau_{B(2,2)} W_{m-3,2}^{(2)}$. Proposition 3.1 (ii) now inductively yields for $m > n \geq 3$,

$$\tau_{B(n,2)}^{-1} W_{m,n}^{(2)} \cong \tau_{B(n-1,2)} \cdots \tau_{B(2,2)} W_{m-n,2}^{(2)}$$

and dually

$$\tau_{B(n,2)} M_{m,n}^{(2)} \cong D \tau_{B(n-1,2)} \cdots \tau_{B(2,2)} W_{m-n,2}^{(2)}.$$

In particular, we have

$$\tau_{B(n,2)} M_{n+1,n}^{(2)} \cong S(1).$$

An alternative proof for the fact that generalized W-modules determine ZA_{∞}-components in $\Gamma(n, 2), n \geq 3$, can be found in [13] 5.7.

Suppose now that for general $r \geq 2$, we have a ZA_{∞}-component C in $\Gamma(n - 1, r)$ with $EKP(n - 1, r) \cap C \neq \emptyset$ which is not completely contained in the category $EKP(n - 1, r)$. It is not known whether, in general, there exist ZA_{∞}-components that entirely consist of modules with the equal kernels property. At the level of the Kronecker quiver, however, this cannot happen [12 3.3]. By Theorem 1.3 the component C contains an equal kernels cone $(M_C \rightarrow) = C \cap EKP(n,r)$ consisting of a distinct quasi-simple module $M = M_C \in EKP(n,r)$ and all its successors:

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2}
\caption{}
\end{figure}

Proposition 4.2. Let C be a component of $\Gamma(n - 1, r)$ as above and let

$$0 \rightarrow \tau N \rightarrow E \rightarrow N \rightarrow 0$$

be an Auslander-Reiten sequence in the subcone $(\tau^{-1} M_C \rightarrow)$ of the equal kernels cone $(M_C \rightarrow)$. Then

$$0 \rightarrow \tau_{B(n-1,r)} N \rightarrow \tau_{B(n-1,r)} E \rightarrow \tau_{B(n-1,r)} N \rightarrow 0$$

is an Auslander-Reiten sequence in $\Gamma(n,r)$.
Proof. In order to determine the lift of (3) to mod $B(n, r)$, we need to compute

$$\text{Hom}_{B(n-1, r)}(M_{n, n-1}^{(r)}, \tau N)$$

in view of Lemma 2.2. We have $\tau^2 N \in \text{EKP}(n-1, r)$, since $\tau N \in (\tau^{-1} M_n \to)$. For $r > 2$, we have $\tau M_{n, n-1}^{(r)} \in \text{EIP}(n-1, r)$ according to 12.11, whereas in view of (2) we have $\tau M_{n, n-1}^{(2)} \cong S(1) \in \text{mod } B(n-1, 2)$. In either case, $\tau M_{n, n-1}^{(r)}$ does not contain a non-trivial factor module with the equal kernels property, and in view of (2), we obtain

$$0 = \text{Hom}_{B(n-1, r)}(\tau M_{n, n-1}^{(r)}, \tau^2 N).$$

The Auslander-Reiten formula yields an isomorphism of vector spaces

$$(4) \quad 0 = \text{Hom}_{B(n-1, r)}(\tau M_{n, n-1}^{(r)}, \tau^2 N) \cong \text{Hom}_{B(n-1, r)}(M_{n, n-1}^{(r)}, \tau N).$$

The module $M_{n, n-1}^{(r)}$ is indecomposable, non-projective and generated by $e_0 \cdot M_{n, n-1}^{(r)}$, while $e_0 \cdot P(i) = 0$ for $0 < i \leq n - 1$ and furthermore $\dim_k (e_0 \cdot P(0)) = 1$. Hence we have $\text{Hom}_{B(n-1, r)}(M_{n, n-1}^{(r)}, P(i)) = 0$ for all $0 \leq i \leq n - 1$. In view of (4), we thus obtain $\text{Hom}_{B(n-1, r)}(M_{n, n-1}^{(r)}, \tau N) = 0$, and due to Lemma 2.2, the sequence (3) lifts to the Auslander-Reiten sequence

$$0 \to \left(\frac{\tau N}{0} \right)_0 \to \left(\frac{E}{0} \right)_0 \to \left(\frac{N}{0} \right)_0 \to 0$$

in mod $B(n, r)$. \hfill \Box

Note that Proposition 3.1 implies that the component \hat{D}_n of $\Gamma(n-1, r)$ that contains the module $M_{n, n-1}^{(r)}$ gives rise to a component D_n of $\Gamma(n, r)$ containing the projective module $P(0) \cong M_{n, n}^{(r)} \in \text{mod } B(n, r)$. We now prove our main result:

Theorem 4.3. If $(n, r) \neq (2, 2)$, then the module $W_{m, n}^{(r)}$ is quasi-simple in a ZA_∞-component C_m of $\Gamma(n, r)$ which contains two non-empty disjoint cones $\text{EIP}(n, r) \cap C_m$ and $\text{EKP}(n, r) \cap C_m$. Moreover, all modules in C_m have constant Jordan type while $W(C_m) = 1$ for $r = 2$ and $W(C_m) = 0$ in case $r > 2$.

Proof. We consider the dual component $D_m = D C_m$ containing the module $D W_{m, n}^{(r)} = M_{m, n}^{(r)}$. In view of the duality between $\text{EIP}(n, r)$ and $\text{EKP}(n, r)$, the compatibility between τ and D and in view of the fact that the notion of constant Jordan type is self-dual 13.15, it suffices to prove the assertion for D_m.

As mentioned in Section 1, the statement holds for $n = 2$ and $r > 2$ and due to Proposition 4.1 for $(n, r) = (3, 2)$. Now let $n \geq n(r)$ with $n(2) = 4$ and $n(3) = 3$ if $r > 2$ and assume that the statement is true for $n - 1$. In view of Proposition 3.1 the regular ZA_∞-component \hat{D}_m of $\Gamma(n-1, r)$ containing the quasi-simple module $M_{m, n}^{(r)}$ lifts to the component D_m in which $M_{m, n}^{(r)}$ is quasi-simple and the cone $(\tau^{-1} M_{m, n}^{(r)} \to)$ coincides via $\iota_{B(n-1, r)}$ with the cone $(\tau^{-1} M_{m, n-1}^{(r)} \to) \subseteq \hat{D}_m$ by Proposition 4.2.

Let $\mathcal{D} = \{ \iota^k X \mid X \in (M_{m, n}^{(r)} \to), \ k \in \mathbb{Z} \} \subseteq D_m$. Due to the fact that $m > n$, \mathcal{D} does not contain $P(0)$, and hence \mathcal{D} does not contain any projective vertices since all modules in $(\tau^{-1} M_{m, n-1}^{(r)} \to)$ are regular $B(n-1, r)$-modules. Furthermore, \mathcal{D} is τ-stable as well as τ^{-1}-stable, and for $X \in \mathcal{D}$, we have $Y \in \mathcal{D}$ if there is an
irreducible map $X \to Y$ or $Y \to X$. Since \mathcal{D}_m is connected, we have $\mathcal{D}_m = \mathcal{D}$ while \mathcal{D}_m is of type $Z\mathcal{A}_\infty$ since it is induced by the cone $(\tau^{-1}M_{m,n}^{(r)})$.

According to [12, 2.11], we have $\tau M_{m,n}^{(r)} \in \text{EIP}(n, r)$ in case $r > 2$. In view of (4), we have $\tau_{B(n,2)} M_{m,n}^{(2)} \cong D t_{B(n-1,2)} \cdots t_{B(2,2)} W_{m-n,2}^{(2)}$. This implies that $\tau_{B(n,2)} M_{m,n}^{(2)} \notin \text{EIP}(n, 2)$ due to the fact that $D W_{m-n,2}^{(2)} \in \text{EKP}(2, 2)$. However, since $D W_{m-n,2}^{(2)} \in \text{CJT}(2, 2)$, we obtain that $D t_{B(n-1,2)} \cdots t_{B(2,2)} W_{m-n,2}^{(2)} \in \text{CJT}(n, 2)$. Moreover, we have $e_{n-1} \cdot (\tau_{B(n,2)} M_{m,n}^{(2)}) = 0$, which implies that $\tau_{B(n,2)} M_{m,n}^{(2)} \notin \text{EKP}(n, 2)$ by Remark [12, 2.10]. Since in either case all quasi-simple modules in \mathcal{D}_m are of constant Jordan type, we have $\mathcal{D}_m \subset \text{CJT}(n, r)$ by [13, 3.27]. The foregoing observations yield that $\mathcal{W}(\mathcal{D}_m) = 0$ if $r > 2$ and $\mathcal{W}(\mathcal{D}_m) = 1$ if $r = 2$.

The distribution of equal images and equal kernels modules in \mathcal{C}_m for $r > 2$ is hence as in Figure 1.

Acknowledgements

The results of this paper are part of the author’s doctoral thesis, which she wrote at the University of Kiel. The author thanks her advisor, Rolf Farnsteiner, for his continuous support and for helpful remarks on a preliminary version of this paper.

References

[1] Ibrahim Assem, Daniel Simson, and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 1, Techniques of representation theory. London Mathematical Society Student Texts, vol. 65, Cambridge University Press, Cambridge, 2006. MR2197389 (2006j:16020)

[2] Maurice Auslander, Idun Reiten, and Sverre O. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, vol. 36, Cambridge University Press, Cambridge, 1995. MR1314422 (96c:16015)

[3] A. A. Beilinson, Coherent sheaves on \mathbf{P}^n and problems in linear algebra (Russian), Funkcional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69. MR509388 (80c:14010b)

[4] Jon F. Carlson, Eric M. Friedlander, and Julia Pevtsova, Modules of constant Jordan type, J. Reine Angew. Math. 614 (2008), 191–234, DOI 10.1515/CRELLE.2008.006. MR2376286 (2008j:20135)

[5] Jon F. Carlson, Eric M. Friedlander, and Andrei Suslin, Modules for $\mathbb{Z}/p \times \mathbb{Z}/p$, Comment. Math. Helv. 86 (2011), no. 3, 609–657, DOI 10.4171/CMH/236. MR2803855 (2012d:20017)

[6] Karin Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Mathematics, vol. 1428, Springer-Verlag, Berlin, 1990. MR1064107 (91c:20016)

[7] R. Farnsteiner, Categories of modules given by varieties of p-nilpotent operators. Preprint: arXiv:1110.2706.

[8] O. Kernér, Private communication, June 2013.

[9] Claus Michael Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z. 161 (1978), no. 3, 235–255, DOI 10.1007/BF01214506. MR501169 (80c:16017)

[10] Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR774589 (87f:16027)

[11] Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 3, Representation-infinite tilted algebras. London Mathematical Society Student Texts, vol. 72, Cambridge University Press, Cambridge, 2007. MR2382332 (2008m:16001)

[12] Julia Worch, Categories of modules for elementary abelian p-groups and generalized Beilinson algebras, J. Lond. Math. Soc. (2) 88 (2013), no. 3, 649–668, DOI 10.1112/jlms/jdt039. MR3145125
[13] J. Worch, Module categories and Auslander-Reiten theory for generalized Beilinson algebras. http://macau.uni-kiel.de/receive/dissertationdiss00013419, 2013.

Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany

E-mail address: jworch@gmx.net