Research Article

A Class of Variable-Order Fractional $p(\cdot)$-Kirchhoff-Type Systems

Yong Wu 1, Zhenhua Qiao 2, Mohamed Karim Hamdani $3,4,5$, Bingyu Kou 6, and Libo Yang 7

1School of Tourism Date, Guilin Tourism University, Guilin 541006, China
2School of Electronic and Information Engineering, Jiangxi Industry Polytechnic College, Nanchang 330095, China
3Science and Technology for Defense Laboratory LR19DN01, Military Research Center, Aouina, Tunisia
4Military School of Aeronautical Specialities, Sfax, Tunisia
5Mathematics Department, University of Sfax, Faculty of Science of Sfax, Sfax, Tunisia
6Department of Basic Courses, The Army Engineering University of PLA, Nanjing 211101, China
7Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai’an 223003, China

Correspondence should be addressed to Bingyu Kou; koubei@163.com

Received 15 January 2021; Revised 22 January 2021; Accepted 16 February 2021; Published 27 February 2021

Academic Editor: Yoshihiro Sawano

Copyright © 2021 Yong Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with an elliptic system of Kirchhoff type, driven by the variable-order fractional $p(x)$-operator. With the help of the direct variational method and Ekeland variational principle, we show the existence of a weak solution. This is our first attempt to study this kind of system, in the case of variable-order fractional variable exponents. Our main theorem extends in several directions previous results.

1. Introduction

In this article, we discuss the following variable-order fractional $p(\cdot)$-Kirchhoff-type system:

$$
\begin{align}
& M_1 \left(\iint_{\mathbb{R}^N} \frac{1}{p(x,y)} |u(x,y)|^{p(x)} \, dx \, dy \right) \left(-\Delta_{p(x)}^{\mu(x)} u(x) = f(u, v) + a(x) \right) \quad x \in \Omega,
& M_2 \left(\iint_{\mathbb{R}^N} \frac{1}{p(x,y)} |v(x,y)|^{p(x)} \, dx \, dy \right) \left(-\Delta_{p(x)}^{\mu(x)} v(x) = g(u, v) + b(x) \right) \quad x \in \Omega,
& u = v = 0 \quad \text{in} \quad \mathbb{R}^N \setminus \Omega,
\end{align}
$$

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain with $N > p(x,y)$, $s(x,y)$ for any $(x,y) \in \Omega \times \Omega$. Here, the main operator $(-\Delta_{p(x)}^{\mu(x)})$ is the variable-order fractional $p(\cdot)$-Laplacian given by

$$
(-\Delta_{p(x)}^{\mu(x)}) \phi(x) = \mathcal{P}(x, V) \int_{\mathbb{R}^N} \frac{|\phi(x) - \phi(y)|^{p(x,y)-2} \phi(x) - \phi(y)}{|x-y|^{N+p(x,y)}(x,y)} \, dy, \quad x \in \mathbb{R}^N,
$$

along any $\phi \in C_0^\infty(\mathbb{R}^N)$, where P.V. denotes the Cauchy principal value.

From now on, in order to simplify the notation, we denote

$$
p^+ = \min_{(x,y) \in \mathbb{R}^N} p(x,y), \quad p^- = \max_{(x,y) \in \mathbb{R}^N} p(x,y), \quad s^+
$$

$$
= \min_{(x,y) \in \mathbb{R}^N} s(x,y), \quad s^- = \max_{(x,y) \in \mathbb{R}^N} s(x,y).
$$

We will assume that $M_1, M_2 : \mathbb{R}^+ \to \mathbb{R}^+$ are continuous functions satisfying the condition

$$(M): \quad \text{there exist} \ m > 0 \text{ and } \gamma > 1/p^- \text{ such that}
$$

$$
M_1(t), M_2(t) > mt^{p^-1}, \text{ for all } t > 0.
$$

Note that the Kirchhoff functions M_1, M_2 may be singular at $t = 0$ for $p \in (0, 1)$.

Moreover, \(H : \mathbb{R}^2 \rightarrow \mathbb{R} \) is a \(C^1 \)-function verifying
\[
(\text{Z1}): \frac{\partial H}{\partial u}(u, v) = f(u, v) \text{ and } \frac{\partial H}{\partial v}(u, v) = g(u, v) \text{ for all } (u, v) \in \mathbb{R}^2; \tag{5}
\]
\[
(\text{Z2}): \text{there exists } K > 0 \text{ such that }
H(u, v) = H(u + K, v + K) \text{ for all } (u, v) \in \mathbb{R}^2. \tag{6}
\]

Finally, we suppose that
\[
\begin{align*}
(AB): & \quad a(x), b(x) \in L^{1,q(x)}(\Omega), (1/p(x)) + (1/q(x)) = 1, 1 < q < q^*(x), \\
& \quad \text{where } p^*_b(x) = Np(x)/(N - s(x)p(x)), p(x) = p(x, s(x)), s(x) = s(x, y). \tag{7}
\end{align*}
\]

The paper is organized as follows. In “Abstract Framework,” we state some interesting properties of variable exponent Lebesgue spaces and variable-order fractional Sobolev spaces with variable exponent. In “The Main Result,” we prove the functional \(I \) is bounded from below and give the proof of Theorem 1.

1. **Abstract Framework**

In this section, first of all, we recall some basic properties about the variable exponent Lebesgue spaces in [22] and variable-order fractional Sobolev spaces. Secondly, we give some necessary lemmas that will be used in this paper. Finally, we introduce the definition of weak solutions for problem (1) and build the corresponding energy functional. Consider the set
\[
C_+(\Omega) = \{ p \in C(\Omega), p(x) > 1 \text{ for all } x \in \Omega \}. \tag{8}
\]

For any \(p \in C_+(\Omega) \), we define the variable exponent Lebesgue space as
\[
L^{p(x)}(\Omega) = \left\{ u : \text{the function } u : \Omega \rightarrow \mathbb{R} \text{ is measurable, } \int_{\Omega} |u(x)|^{p(x)} \, dx < \infty \right\}, \tag{9}
\]
the vector space endowed with the Luxemburg norm
\[
\| u \|_{p(x)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \frac{|u(x)|^{p(x)}}{\lambda} \, dx \leq 1 \right\}. \tag{10}
\]

Then, \((L^{p(x)}(\Omega), \| \cdot \|_{p(x)})\) is a separable reflexive Banach space (see [23], Theorem 2.5). Let \(q \in C_+(\Omega) \) be the conjugate exponent of \(p \), that is
\[
\frac{1}{p(x)} + \frac{1}{q(x)} = 1, \text{ for all } x \in \Omega. \tag{11}
\]

Then, we have the following Hölder inequality, whose proof can be found in [23], (Theorem 2.1).
Lemma 2. Assume that $u \in L^p(\Omega)$ and $v \in L^q(\Omega)$, then
\[
\left\| \int_\Omega u v dx \right\| \leq \left(\frac{1}{p} + \frac{1}{q} \right) \|u\|_p \|v\|_q \leq 2 \|u\|_p \|v\|_q. \tag{12}
\]

The variable-order fractional Sobolev spaces with variable exponent is defined by
\[
W^{s,p}(\Omega) = \left\{ u \in L^p(\Omega) : \int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^{p(x,y)}}{|x-y|^{N+p(x,y)}} dx dy < \infty \right\},
\]
with the norm $\|u\|_{s,p} = \|u\|_p + [u]_{s,p}$, where
\[
[u]_{s,p} = \inf \left\{ \lambda > 0 : \int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^{p(x,y)}}{\lambda^{p(x,y)} |x-y|^{N+p(x,y)}} dx dy < 1 \right\}.
\tag{14}
\]

For a more detailed introduction of this space, we refer to [24]. For the reader’s convenience, we now list some of the results in reference [24] which will be used in our paper. We define the new variable-order fractional Sobolev spaces with variable exponent
\[
X = \left\{ u : \mathbb{R}^N \rightarrow \mathbb{R} : u|_\Omega \in L^p(\Omega), \int_\Omega q \right\}
\]
\[
\left. \frac{|u(x) - u(y)|^{p(x,y)}}{\lambda^{p(x,y)} |x-y|^{N+p(x,y)}} dx dy < \infty \right\}
\tag{15}
\]
where $Q = \mathbb{R}^{2N} \setminus (\Omega \times \Omega)$. The space X is endowed with the norm
\[
\|u\|_X = \|u\|_{s,p} + [u]_X,
\tag{16}
\]
where
\[
[u]_X = \inf \left\{ \lambda > 0 : \int_\Omega q \right\}
\]
\[
\frac{|u(x) - u(y)|^{p(x,y)}}{\lambda^{p(x,y)} |x-y|^{N+p(x,y)}} dx dy < 1 \right\}. \tag{17}
\]

We know that the norms $\|\cdot\|_{s,p}$ and $\|\cdot\|_X$ are not the same due to the fact that $\Omega \times \Omega \subset Q$ and $\Omega \times \Omega \neq Q$. This makes the variable-order fractional Sobolev space with variable exponent $W^{s,p}(\Omega) \times W^{s,p}(\Omega)$ not sufficient for investigating the class of problems like (1).

For this, we set space as
\[
X_0 = \{ u \in X : u = 0 a.e. in \Omega \setminus \Omega \}. \tag{18}
\]

The space X_0 is a separable reflexive Banach space, see [25], with respect to the norm
\[
\|u\|_{X_0} = \inf \left\{ \lambda > 0 : \int_\Omega q \right\}
\]
\[
\frac{|u(x) - u(y)|^{p(x,y)}}{\lambda^{p(x,y)} |x-y|^{N+p(x,y)}} dx dy < 1 \right\}, \tag{19}
\]
where last equality is a consequence of the fact that $u = 0$ a.e. in $\mathbb{R}^N \setminus \Omega$.

In the following Lemma, we give a compact embedding result. For the proof, we refer the reader to [24].

Lemma 3. Let $\Omega \subset \mathbb{R}^N$ be a smooth bounded domain and $s(\cdot \mid 0, 1)$. Let $p(x, y)$ be continuous variable exponents with $s(x, y)p(x, y) < N$ for $(x, y) \in \Omega \times \Omega$. Assume that $q : \Omega \rightarrow (1, \infty)$ is a continuous function such that
\[
p_q^*(x) > q(x) \geq q^- > 1, \text{ for all } x \in \Omega. \tag{20}
\]

Then, there exists a constant $C = C(N, s, p, q, \Omega)$ such that for every $u \in X_0$, it holds that
\[
\|u\|_{s,p} \leq C \|u\|_{X_0}. \tag{21}
\]

The space X_0 is continuously embedded in $L^{s,p}(\Omega)$. Moreover, this embedding is compact.

We define the fractional modular function $\rho_{s,p} : X_0 \rightarrow \mathbb{R}$, by
\[
\rho_{s,p}(u) = \int_{\Omega \times \Omega} \frac{|u(x) - u(y)|^{p(x,y)}}{|x-y|^{N+p(x,y)}} dx dy. \tag{22}
\]

We also have the next result of ([24], Proposition 2.2).

Lemma 4. Assume that $u \in X_0$ and $\{ u_j \} \subset X_0$, then
\[
\|u\|_{X_0} < 1 (\text{resp. } = 1) \Rightarrow \rho_{s,p}(u) < 1 (\text{resp. } = 1), \tag{23}
\]
\[
\|u\|_{X_0} < 1 \Rightarrow \|u\|_{X_0}^p \leq \rho_{s,p}(u) \leq \|u\|_{X_0}^p, \tag{24}
\]
\[
\|u\|_{X_0} > 1 \Rightarrow \|u\|_{X_0}^p \leq \rho_{s,p}(u) \leq \|u\|_{X_0}^p, \tag{25}
\]
\[
\lim_{j \to \infty} \|u_j\|_{X_0} = 0 (\text{resp. } \Omega) \Rightarrow \lim_{j \to \infty} \rho_{s,p}(u_j) = 0 (\text{resp. } \Omega), \tag{26}
\]
\[
\lim_{j \to \infty} \|u_j - u\|_{X_0} = 0 \Rightarrow \lim_{j \to \infty} \rho_{s,p}(u_j - u) = 0. \tag{27}
\]

Finally, we define our workspace $S = X_0 \times X_0$ which is endowed with the norm
\[
\|(u, v)\|_S = \|u\|_{X_0} + \|v\|_{X_0}. \tag{28}
\]
We say that a pair of functions \((u, v) \in S\) is the weak solution of problem (1), if for all \((\phi, \psi) \in S\) one has

\[
M_1(\delta_{\rho_1}(u)) \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^{p(x,y)-2}(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{N[p(x,y)]+1}} \, dx dy
= \int_{\Omega} ((f(u, v) + a(x))\phi dx,
\]

\[
M_2(\delta_{\rho_1}(v)) \int_{\mathbb{R}^N} \frac{|v(x) - v(y)|^{p(x,y)-2}(v(x) - v(y))(\phi(x) - \phi(y))}{|x - y|^{N[p(x,y)]+1}} \, dx dy
= \int_{\Omega} ((g(u, v) + b(x))\phi dx,
\]

where

\[
\delta_{\rho_1}(u) = \int_{\mathbb{R}^N} \frac{1}{p(x,y)} \frac{|u(x) - u(y)|^{p(x,y)}}{|x - y|^{N[p(x,y)]+1}} \, dx dy.
\]

Let us consider the following functional associated to problem (1), defined by \(\mathcal{J} : S \rightarrow \mathbb{R}\)

\[
\mathcal{J}(u, v) = M_1(\delta_{\rho_1}(u)) - M_2(\delta_{\rho_1}(v)) - \int_{\Omega} H(u, v) dx
- \int_{\Omega} a(x)udx - \int_{\Omega} b(x)vdx,
\]

for all \((u, v) \in S\), where \(\widetilde{M}_1(t) = \int_0^t M_1(r) dr\). Obviously, the continuity of \(M\) yields that \(\mathcal{J}\) is well defined and of class \(C^1\) on \(S \setminus \{0, 0\}\). Furthermore, for every \((u, v) \in S \setminus \{0, 0\}\), the derivative of \(\mathcal{J}\) is given by

\[
\langle \mathcal{J}'(u, v), (\phi, \psi) \rangle
= M_1(\delta_{\rho_1}(u)) \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^{p(x,y)-2}(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{N[p(x,y)]+1}} \, dx dy
+ M_2(\delta_{\rho_1}(v)) \int_{\mathbb{R}^N} \frac{|v(x) - v(y)|^{p(x,y)-2}(v(x) - v(y))(\phi(x) - \phi(y))}{|x - y|^{N[p(x,y)]+1}} \, dx dy
- \int_{\Omega} ((f(u, v) + a(x))\phi dx - \int_{\Omega} (g(u, v) + b(x))\phi dx,
\]

for any \((\phi, \psi) \in S\). Therefore, the weak solution \((u, v) \in S \setminus \{0, 0\}\) of problem (1) is a nontrivial critical point of \(\mathcal{J}\).

Now, we recall the following well-known Ekeland variational principle found in [7], which will be used to prove our conclusion, that is Theorem 1.

Theorem 5. Let \(X\) be a Banach space and \(\mathcal{F} : X \rightarrow \mathbb{R}\) be a \(C^1\) function which is bounded from below. Then, for any \(\varepsilon > 0\), there exists \(\varphi_\varepsilon \in X\) such that

\[
\mathcal{F}(\varphi_\varepsilon) \leq \inf_{X} \mathcal{F} + \varepsilon \text{ and } \|\mathcal{F}'(\varphi_\varepsilon)\|_X \leq \varepsilon.
\]

Throughout the paper, for simplicity, we use \(\{c_i, i \in \mathbb{N}\}\) to denote different nonnegative or positive constant.

3. The Main Result

Lemma 6. Under the same assumptions of Theorem 1, then \(\mathcal{J}\) is coercive and bounded from below.

Proof. Firstly, we know that functional \(\mathcal{J}\) is well defined. Indeed, it is sufficient to prove that the functional \(T : S \rightarrow \mathbb{R}\), \(T(u, v) = \int_{\Omega} H(u, v) dx\), is well defined. Since \(H\) is continuous on \([0, K] \times [0, K]\) and \(H(u, v) = H(u + K, v + K)\) for all \((u, v) \in \mathbb{R}^2\), we get \(|H(u, v)| \leq c_1\) for all \((u, v) \in \mathbb{R}^2\). Thus,

\[
|T(u, v)| \leq \int_{\Omega} |H(u, v)| dx \leq c_1 |\Omega|,
\]

i.e., \(T\) is well defined, where \(|\Omega|\) is the Lebesgue measure of \(\Omega\). Next, we will prove that \(\mathcal{J}\) is coercive and bounded from below. Let \((u, v) \in S\), and we have

\[
\mathcal{J}(u, v) = M_1(\delta_{\rho_1}(u)) - M_2(\delta_{\rho_1}(v)) - \int_{\Omega} H(u, v) dx
- \int_{\Omega} a(x)udx - \int_{\Omega} b(x)vdx
\geq \widetilde{M}_1(\delta_{\rho_1}(u)) - \widetilde{M}_2(\delta_{\rho_1}(v)) - c_1 |\Omega|
- \int_{\Omega} a(x)udx - \int_{\Omega} b(x)vdx.
\]

By the condition (AB) and Lemma 2, we get

\[
\mathcal{J}(u, v) \geq M_1(\delta_{\rho_1}(u)) - M_2(\delta_{\rho_1}(v)) - c_1 |\Omega|
- 2\|a(x)\|_{q(x)} \|u\|_p - 2\|b(x)\|_{q(x)} \|v\|_p.
\]

It follows from (M) and Lemmas 3 and 4 that

\[
\mathcal{J}(u, v) \geq M \left(\int_0^{\rho_{\rho_1}(u)} r^{-1} dr + \int_0^{\rho_{\rho_1}(v)} r^{-1} dr - c_3 \|u\|_{X_0} \right.
- c_4 \|v\|_{X_0} + c_2 r \left(\frac{m}{\gamma(p^*)^p} \right)^{\rho_{\rho_1}(u)} + \left(\frac{m}{\gamma(p^*)^p} \right)^{\rho_{\rho_1}(v)}
- c_3 \|u\|_{X_0} + c_4 \|v\|_{X_0} - c_2
\geq \frac{m}{\gamma(p^*)^p} \left(\min \left\{ \|u\|_{X_0}^p, \|v\|_{X_0}^p \right\} + \min \left\{ \|u\|_{X_0} \|v\|_{X_0}^p \right\} \right)

\text{max} \{c_3, c_4\} \{|\|u\|_{X_0} + \|v\|_{X_0} \} - c_2.
\]
Since $\gamma p^+ > \gamma p^- > 1$, when $\| (u, v) \|_S \to +\infty$, at least one of $\|u\|_{X_0}$ and $\|v\|_{X_0}$ converges to infinity. So, \mathcal{F} is coercive and bounded from below. The proof of Lemma 6 is complete.

Proof of Theorem 1. Obviously, since $\mathcal{F} \in C^1(S, \mathbb{R})$ is weakly lower semicontinuous and bounded from below, by means of the Ekeland variational principle, we have $(u_j, v_j) \in S$ such that

$$\mathcal{F}(u_j, v_j) = \inf_{S} \mathcal{F} \text{ and } \mathcal{F}'(u_j, v_j) \to 0.$$ \hfill (34)

Furthermore, by the above expression, we get $|\mathcal{F}(u_j, v_j)| \leq c_\delta$. Thus, it follows from (33) that

$$c_\delta \leq |\mathcal{F}(u_j, v_j)| \leq c_\delta,$$ \hfill (35)

which implies that the sequences $\{u_j\}$ and $\{v_j\}$ are bounded in X_0. So, without the loss of generality, there exist subsequences $\{u_j\}$ and $\{v_j\}$ such that $u_j \rightharpoonup u_0$ and $v_j \to v_0$ in X_0, and thus

$$\int_\Omega a(x)u_j \, dx \to \int_\Omega a(x)u_0 \, dx \text{ and } \int_\Omega b(x)v_j \, dx \to \int_\Omega a(x)v_0 \, dx.$$ \hfill (36)

According to compact embedding theorem, which is Lemma 3, we obtain

$$u_j(x) \to u_0(x) \text{ and } v_j(x) \to v_0(x), \ a.e., x \in \Omega.$$ \hfill (37)

Again, by continuity of H, we get

$$H(u_j(x), v_j(x)) \to H(u_0(x), v_0(x)) \text{ a.e., } x \in \Omega.$$ \hfill (38)

And because H is bounded, we get the following convergence from the Lebesgue dominated convergence theorem:

$$\int_\Omega H(u_j, v_j) \, dx \to \int_\Omega H(u_0, v_0) \, dx.$$ \hfill (39)

By (34), we note that

$$\inf_{S} \mathcal{F} = \lim_{S} \mathcal{F}(u_j, v_j) = \lim \left(\mathcal{M}_1 \left(\delta_{p^+}(u_j) \right) - \mathcal{M}_2 \left(\delta_{p^-}(v_j) \right) \right)$$
$$- \int_\Omega H(u_j, v_j) \, dx - \int_\Omega a(x)u_j \, dx - \int_\Omega b(x)v_j \, dx.$$ \hfill (40)

In view of Fatou’s lemma, we have

$$\delta_{p^+}(u_0) \leq \liminf \delta_{p^+}(u_j) \text{ and } \delta_{p^-}(v_0) \leq \liminf \delta_{p^-}(v_j).$$ \hfill (41)

By the continuous monotone increasing property of \mathcal{M}_1 and \mathcal{M}_2, we get

$$\mathcal{M}_1 \left(\delta_{p^+}(u_0) \right) \leq \lim \mathcal{M}_1 \left(\delta_{p^+}(u_j) \right) \text{ and } \mathcal{M}_2 \left(\delta_{p^-}(v_0) \right) \leq \lim \mathcal{M}_2 \left(\delta_{p^-}(v_j) \right).$$ \hfill (42)

In conclusion,

$$\inf_{S} \mathcal{F} \geq \lim \mathcal{M}_1 \left(\delta_{p^+}(u_0) \right) - \lim \mathcal{M}_2 \left(\delta_{p^-}(v_0) \right) - \int_\Omega H(u_0, v_0) \, dx$$
$$- \int_\Omega a(x)u_0 \, dx - \int_\Omega b(x)v_0 \, dx = \mathcal{F}(u_0, v_0),$$ \hfill (43)

which implies $\mathcal{F}(u_0, v_0) = \inf_{S} \mathcal{F}$. Thus, $(u_0, v_0) \in S$ is a weak solution of problem (1) if \mathcal{F} is differentiable at (u_0, v_0). The proof is complete.

Data Availability

We do not involve any data in our work.

Conflicts of Interest

The authors declare that they have no competing interests.

Acknowledgments

The third author Hamdani is supported by the Tunisian Military Research Center for the scientific and technological laboratory LR19DN01, and he would like to express his deepest gratitude to the Military School of Aeronautical Specialties, Sfax (ESA), for providing an excellent atmosphere for work.

The fourth author is supported by the Fundamental Research Funds for Youth Development of The Army Engineering University of PLA (Grant No. KYJBQJZL2003). The fifth author is supported by the Natural Science Foundation of Huaiyin Institute of Technology (Grant/Award Number: 20HGZ002).

References

[1] E. Acerbi and G. Mingione, "Regularity results for stationary electro-rheological fluids," Archive for Rational Mechanics and Analysis, vol. 164, no. 3, pp. 213–259, 2002.

[2] V. V. Zhikov, "Averaging of functionals of the calculus of variations and elasticity theory," Mathematics of the USSR-Izvestiya, vol. 9, pp. 33–66, 1987.

[3] Y. Chen, S. Levine, and M. Rao, "Variable exponent, linear growth functionals in image restoration," Journal of Applied Mathematics, vol. 66, no. 4, pp. 1383–1406, 2006.

[4] S. Boulaaras and A. Allahem, "Existence of positive solutions of nonlocal $p(x)$-Kirchhoff evolutionary systems via sub-super solutions concept," Symmetry, vol. 11, no. 2, p. 253, 2019.

[5] Z. Yucedag, M. Avci, and R. Mashiyev, "On an elliptic system of $p(x)$-Kirchhoff-type under neumann boundary condition,"
[6] S. Boulalaar, R. Guefaïja, and K. Zennir, “Existence of positive solutions for nonlocal $p(\cdot)p(\cdot)$-Kirchhoff elliptic systems,” *Advances in Pure and Applied Mathematics*, vol. 10, no. 1, pp. 17–25, 2019.

[7] G. Dai and X. Li, "On nonlocal elliptic systems of $p(\cdot)$-Kirchhoff-type under Neumann boundary condition," *Journal of Mathematical Research with Applications*, vol. 33, pp. 443–450, 2013.

[8] B. Abdelmalek, A. Djellit, and S. Tas, "Existence of solutions for an elliptic $p(\cdot)$-Kirchhoff-type Systems in unbounded domain," *Boletim da Sociedade Paranaense de Matemática*, vol. 3, pp. 193–205, 2018.

[9] M. K. Hamdani and D. D. Repovš, "Existence of solutions for systems arising in electromagnetism," *Journal of Mathematical Analysis and Applications*, vol. 486, no. 2, 2020.

[10] C. F. Lorenzo and T. T. Hartley, "Initialized fractional calculus," *International Journal of Applied Mathematics*, vol. 3, pp. 249–265, 2000.

[11] M. Xiang, B. Zhang, and D. Yang, "Multiplicity results for variable-order fractional Laplacian equations with variable growth," *Nonlinear Analysis*, vol. 178, pp. 190–204, 2019.

[12] L. Wang and B. Zhang, "Infinitely many solutions for Kirchhoff-type variable-order fractional Laplacian problems involving variable exponents," *Applicable Analysis*, 2019.

[13] J. Zuo, L. Yang, and S. Liang, "A variable-order fractional $p(\cdot)$-Kirchhoff type problem in \mathbb{R}^N," *Mathematical Methods in the Applied Sciences*, 2020.

[14] M. Xiang, B. Zhang, and V. D. Rădulescu, "Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian," *Nonlinearity*, vol. 29, pp. 3186–3205, 2016.

[15] E. Azroul, A. Benkirane, and A. Boumazourh, "Three solutions for a nonlocal fractional p-Kirchhoff type elliptic system," *Applicable Analysis*, pp. 1–18, 2019.

[16] K. Saoudi, "A fractional Kirchhoff system with singular nonlinearities," *Analysis and Mathematical Physics*, vol. 9, no. 3, pp. 1463–1480, 2019.

[17] J. M. do Ó, J. Giacomoni, and P. K. Mishra, "Nehari manifold for fractional Kirchhoff systems with critical nonlinearity," *Milan Journal of Mathematics*, vol. 87, pp. 201–231, 2019.

[18] A. Fiscella, P. Pucci, and B. Zhang, "p-Fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities," *Advances in Nonlinear Analysis*, vol. 8, pp. 1111–1131, 2019.

[19] J. Zuo, T. An, L. Yang, and X. Ren, "The Nehari manifold for a fractional p-Kirchhoff system involving sign-changing weight function and concave-convex nonlinearities," *Journal of Function Spaces*, vol. 2019, 9 pages, 2019.

[20] P. K. Mishra and K. Sreenadh, "Fractional p-Kirchhoff system with sign changing nonlinearities," *Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A Matemáticas*, vol. 111, pp. 281–296, 2017.

[21] G. Kirchhoff, *Mechanik*, Teubner, Leipzig, 1883.

[22] V. D. Rădulescu and D. D. Repovš, *Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis*, CRC Press, Boca Raton, 2015.

[23] O. Kováčik and J. Rákosník, "On spaces $L^{p(\cdot)}$ and $W^{1,p(\cdot)}$," *Czechoslovak Mathematical Journal*, vol. 41, no. 5, pp. 592–618, 1991.

[24] J. Zuo, T. An, and A. Fiscella, “A critical Kirchhoff-type problem driven by a $p(\cdot)$-fractional Laplace operator with variable $s(\cdot)$-order," *Mathematical Methods in the Applied Sciences*, vol. 44, no. 1, pp. 1071–1085, 2021.

[25] R. Biswas and S. Tiwari, “Variable order nonlocal Choquard problem with variable exponents,” *Complex Variables and Elliptic Equations*, 2020.