Impact of Vaccine Prioritization Strategies on Mitigating COVID-19: An Agent-Based Simulation Study using an Urban Region in the United States

Hanisha Tatapudi¹, Rachita Das², and Tapas K. Das ¹

¹ Department of Industrial and Management System Engineering, University of South Florida, Tampa, Florida, USA.
² Miller School of Medicine, University of Miami, Miami, Florida, USA.

Corresponding author: Hanisha Tatapudi
Background

Approval of novel vaccines for COVID-19 has brought hope and expectations, but not without additional challenges. One central challenge is how to appropriately prioritize the use of limited supply of vaccines. This study evaluates various prioritization strategies and the efficacy of the vaccination campaign underway in the U.S.

Methods

The study develops a granular agent-based simulation model for mimicking community spread of COVID-19 under various social interventions including full and partial closures, isolation and quarantine, use of face mask and contact tracing, and vaccination. The model is populated with demographic and societal data for an urban community in the U.S. with 2.8 million residents as well as viral parameters. The model tracks daily numbers of infected, hospitalized, and deaths for all census age-groups. Model is calibrated using parameters for viral transmission and level of community circulation of individuals. Published data from the Florida COVID-19 dashboard is used to validate the model. Vaccination strategies are compared using hypothesis test for pairwise comparisons.

Results

Three prioritization strategies examined are: a close variant of the CDC recommendation, an age-stratified strategy, and a random strategy. The impact of vaccination is also contrasted with a no vaccination scenario. The comparison shows that the ongoing campaign in the U.S. using vaccines developed by Pfizer/BioNTech and Moderna is expected to 1) reduce the cumulative number of infection by 10% and 2) help the pandemic to subside below a small threshold of 100 daily new reported cases sooner by approximately a month. The prioritization strategies when compared with each other showed no significant difference in their impacts on pandemic mitigation.

Conclusions

Recent explosive growth of the number of new COVID-19 cases in the U.S. continues to shrink the susceptible population. This, we believe, will likely limit the expected number of people that could be prevented from getting infected due to vaccination. A shrinking susceptible pool may also be an attributable reason for the observed lack of statistical difference among the outcomes of the prioritization strategies. However, the invariance of the strategies should give more latitude for decision makers in COVID-19 vaccine distribution.

Keywords: Vaccination strategies, COVID-19, Agent-based simulation model, Vaccination policies, Vaccination prioritization
LIST OF ABBREVIATIONS

AB – Agent-based
SEIR – Susceptible – exposed – infected – recovered/removed
SARS-CoV-2 – Severe acute respiratory syndrome coronavirus 2
COVID-19 – Coronavirus Disease 2019
USFDA – United States Food and Drug Administration
CDC – Centers for Disease Control
NAESM – National Academy of Sciences, Engineering, and Medicine
QALY – Quality of Life Years
DECLARATIONS

Ethics approval and consent to participate: Individual human data was not used in our study. Only aggregate data made available in Florida COVID-19 Dashboard was used.

Consent for publication: Not applicable

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests

Funding: Not applicable

Authors' contributions:

Hanisha Tatapudi: Conceived and designed the model, Selection of model input parameters and data gathering, Coding and testing of the model, Design and perform the experiments, Output analysis and review, Manuscript preparation and review

Rachita Das: Selection of model input parameters and data gathering, Output analysis and review, Manuscript preparation and review

Tapas K Das: Conceived and designed the model, Selection of model input parameters and data gathering, Coding and testing of the model, Design and perform the experiments, Output analysis and review, Manuscript preparation and review

Acknowledgements: Not applicable

Authors' information:

Corresponding author:

Hanisha Tatapudi – corresponding author
e-mail: tatapudi@mail.usf.edu.
Telephone: +1 (813) 453-3577

Rachita Das
e-mail: rachi95@gmail.com
Telephone: +1 (813) 527-1133

Tapas K. Das
e-mail: das@usf.edu
Telephone: +1 (813) 843-0285
INTRODUCTION
SARS-CoV-2 and resulting COVID-19 disease has been raging world-wide since early 2020, killing over 2.0
million globally and nearly 450,000 in the United States by the end of January 2021 [12]. A significant winter swell
in cases is underway in the U.S. despite protective measures in place such as face mask usage, limited contact
tracing, travel restrictions, social distancing practices, and partial community closures. To combat this, many
promising novel vaccines have been under development, of which two (Pfizer/BioNTech and Moderna) have been
authorized for emergency use since mid-December 2020 by the U.S. Food and Drug Administration (USFDA) [26].
Data from initial trials of cohorts greater than 30,000 people showed that these vaccines, given in two doses, are safe
and have ~95% effectiveness in preventing COVID-19 [23]. Vaccine deployment in the U.S. began soon after
USFDA approval.
Implementing an effective vaccination campaign will be essential to dramatically reduce the infection,
hospitalization, and death rates, but it poses many unique challenges. Vaccine prioritization and allocation strategy
is at the forefront of the challenges to effectively vaccinate communities. Strategy is influenced by a number of key
factors: 1) limited initial vaccine supply in the months following release, 2) transmission and severity of COVID-19
varying by segment of the population, 3) vaccine approvals only for adults, and 4) acceptability and compliance in
the community for two dose vaccination [4].
U.S. Centers for Disease Control (CDC) has released an outline prioritizing healthcare personnel, first responders,
persons with high risk medical conditions for COVID-19, and older adults >65 years. These groups will be given
priority for vaccination in phase 1, defined as when vaccine supply is still limited. In phase 2 (supply increases to
begin to meet demand) and phase 3 (supply is greater than demand), other population groups begin to be vaccinated
based on age and availability [25]. Vaccine allocation structures with basic similarities and some key differences are
being used by countries around the world. For example, after healthcare workers, France’s vaccine allocation is
scheduled to include other general workers regardless of age who they have determined to be at high risk of
contracting and spreading the virus due to contact with the general public. This includes retail, school,
transportation, and hospitality staff [17]. Such differences in vaccine prioritization structures are as of yet untested and warrant modeling and examination.

The goal of this paper is to investigate the impact of vaccination on the pandemic via outcome measures of numbers of infected, hospitalized, and dead in the months following December 15, 2020, when vaccination began in the U.S. Two specific objectives of our investigation are: 1) to assess the expected impact of the vaccination program that is currently underway on mitigating COVID-19, and 2) to inform public health officials on the comparative benefits, if any, of the different vaccine prioritization strategies. We conduct our investigation by using our agent-based (AB) simulation model for COVID-19 that was presented recently in [19]. We first extended calibration of our model till December 30, 2020 to ensure that our model appropriately tracks the explosive increase in cases that started with the onset of winter and the year-end holiday period. We then enhanced the model by adding a framework for vaccination. This included: vaccination priorities for people based on attributes including profession and age, use of two different vaccines by Pfizer/BioNTech and Moderna with their contracted quantities and approximate delivery timelines, acceptability of vaccines to prioritized cohorts (approximately 60% based on national survey data [3,18]), transition period between each priority group, vaccination rate, and immunity growth for vaccinated starting with the first dose.

As in [19], we implement our calibrated AB model, augmented with vaccination, for Miami-Dade County of the U.S. with 2.8 million population, which has been an epicenter of COVID-19 in the U.S. We conduct our investigation by implementing four different strategies (including no vaccination) and obtaining the corresponding numbers of total infections, reported infections, hospitalizations, and deaths. We compare and contrast the numbers to assess vaccination efficacy and relative performances of the priority strategies. The vaccination strategies that we investigate are a close variant of the CDC recommended strategy, an age-stratified strategy, and finally a random strategy. We make a number of key observations from the results, which we believe will help public health officials around the world to choose effective vaccine prioritization strategies to mitigate the negative impacts of COVID-19.

LITERATURE REVIEW
Vaccine prioritization and allocation are among the key challenges to strategically vaccinate communities during a pandemic outbreak. On a global scale, equitable and ethical distribution of vaccines for all (low, medium, and high-income) countries is an important question. As the world leader in promoting global health, WHO released an evidence-based framework for vaccine-specific recommendations [24]. WHO proposed vaccine prioritization for three potential scenarios of transmission: community transmission, sporadic cases or cluster of cases, and no cases. Each scenario has three stages and focuses on different risk groups. COVID-19 pandemic resembles “community transmission.” For this, the first stage focuses on healthcare workers and older adults with highest risk; second stage continues the focus on older adults and people with comorbidities, sociodemographic groups, and educational staff; and the third stage focuses on essential workers and social/employment groups unable to physically distance themselves.

National Academy of Sciences, Engineering, and Medicine (NAESM) developed a more comprehensive phased framework for equitable allocation of COVID-19 vaccine [29]. The first phase prioritizes healthcare workers and first responders, people with high risk comorbidities, and older adults in overcrowded living conditions; second phase focuses on K-12 school staff and child care workers, essential workers, people with moderate risk comorbidities, people living in shelters, physically and mentally disabled people and staff that provide care, employment settings where social distancing is not possible, and remaining older adults; third phase prioritizes young adults, children, and workers; and fourth phase includes everyone else. No specific studies have yet been presented to the literature that evaluate the efficacy of the proposed vaccination priorities for mitigating COVID-19.

A number of studies can be found in the literature on vaccination strategies for controlling outbreaks of other viruses. The work presented in [8] analyzes the effect of both CDC guided targeted vaccination strategy as well as a mass vaccination strategy for seasonal Influenza outbreaks in the U.S. The study found that a mass vaccination policy reaped the most benefits both in terms of cost and quality-of-life years (QALYs) lost. Authors in [15] use a genetic algorithm to find optimal vaccine distribution strategies that minimize illness and death for influenza pandemics with age specific attack rates similar to the 1957–1958 A(H2N2) Asian influenza pandemic and the 1968–1969 A(H3N2) Hong Kong influenza pandemic. They consider coverage percentage under varying vaccine availability and develop an optimal vaccination approach that is 84% more effective than random vaccination. A study reported in [14] examined vaccination to prevent interpandemic influenza for high-risk groups and children,
and recommended concentrating on schoolchildren, most responsible for transmission, and then extend to high-risk
groups. A compartmental model in [13] was used to develop optimal strategies to reduce the morbidity and mortality
of the H7N9 pandemic. The study found that age specific vaccination schedules had the most beneficial impact on
mortality.

It can be concluded from the above review of relevant literature that there is no ‘one size fits all’ strategy for
vaccination to either prevent a pandemic outbreak or mitigate one. Virus epidemiology and corresponding disease
characteristics, as well as the efficacy and supply of the vaccine must be considered in developing an effective
vaccination prioritization strategy. Our paper aims to address this need by presenting a detailed AB simulation
modeling approach and using it to assess efficacy of vaccine prioritization strategies for COVID-19.

METHODOLOGY

Published COVID-19 modeling approaches are either data-driven models, as in [2, 5, 7, 9, 20], or variants of SEIR
type compartmental models as in [1, 11, 16, 21, 22]. Data driven models are very well suited for understanding the
past progression of a pandemic and also for estimating parameters characterizing virus epidemiology. However, these
models offer limited ability to predict the future progression of a pandemic that is dynamically evolving with regards
to virus epidemiology, disease manifestations, and sociological conditions. Compartmental models, on the other hand,
are aggregate in nature and do not adapt well to changing dynamics of disease transmission. An AB modeling approach
is considered to be more suitable for a detailed accounting of individual attributes, specific disease natural history,
and complex social interventions [6].

We use an enhanced version of our AB simulation model that was developed to examine various social intervention
strategies for COVID-19 [19]. The AB simulation model replicates the dynamics of the pandemic outbreak by
incorporating: 1) population demography of the outbreak region for all age groups and employment categories, 2)
numbers, sizes, and compositions of households, schools, workplaces, and community places, 3) daily schedules for
people of all age groups before and during the intervention orders (e.g., stay-at-home), 4) isolation of infected and
quarantine of household members, 5) closure and reopening of schools, workplaces, and community places, 6)
compliance to isolation and quarantine requirements, 7) face mask usage, 8) contact tracing, 9) prioritization of people
for vaccination, 10) vaccinating those willing to receive based on supply and priority windows, 11) epidemiological
parameters of the virus, 12) infection spread, and 13) disease natural history. The key epidemiological parameters
include: disease natural history with average lengths of latent, incubation, symptomatic, and recovery periods;
distribution of infectiousness; percent asymptomatic; and fatality rate.

As in the model presented in [19], each day our model tracks the following for each person: 1) hourly movements and
locations based on their daily schedules that depend on age, employment status, prevailing social intervention orders,
and quarantine/isolation status; 2) hourly contacts with other susceptible and infected; 3) vaccination status and
immunity, 4) force of infection accumulation; 5) start of infection; 6) visit/consult with a doctor (if symptomatic and
insured); 7) testing (if infected and visited/consulted a doctor or asymptomatic chosen for testing either randomly or
via contact tracing); 8) test reporting delay; 9) disease progression (if infected); 10) hospitalization (if infected and
acutely ill); and 11) recovery or death (if infected). The AB model reports daily and cumulative values of actual
infected, reported infections, hospitalized, and dead, for each age category. A schematic diagram depicting the
algorithmic sequence and parameter inputs for the AB simulation model is presented in Figure 1.

The AB simulation-based methodology is particularized using data for Miami Dade County of Florida, with 2.8
million population, an epicenter for COVID-19 spread in the South-Eastern United States. A step by step approach
for building such a model for another region can be found in [19]. The methodology begins by generating the
individual people according to the U.S. census data that gives population attributes including age (see Table A1 in
[19]) and occupational distribution (see Table A4 in [19]). Thereafter, it generates the households based on their
composition characterized by the number of adults and children (see Table A2 in [19]). The model also generates, per
census data, schools (see Table A3 in [19]) and the workplaces and other community locations (see Table A4 in [19]).
Each individual is assigned a household, while maintaining the average household composition, and, depending on
the age, either a school or a workplace (considering employment levels). A daily (hour by hour) schedule is assigned
to every individual, chosen from a set of alternative schedules, based on their attributes. The schedules vary between
weekdays and weekends and also depend on the prevailing social intervention orders (see Table A5 in [19]).
Figure 1: Schematic of the AB model for mimicking COVID-19 spread under social interventions and vaccination in the U.S.
Simulation begins on the day when one or more infected people are introduced to the region (referred to as simulation day 1). Simulation model tracks hourly movements of each individual (susceptible and infected) every day, and records for each susceptible the number of infected contacts and their identification at each location. Based on the level of infectiousness of each infected contact (which depends on the day of his/her infectiousness period), the model calculates the daily force of infection received by each susceptible from all infected contacts at all hours of the day [10]. Since the exact immune response from vaccine is not known yet, we assume a linearly increasing partial immunity for susceptibles after they receive the first dose, attaining full immunity after seven days after the second dose; we have so far only considered vaccines made by Pfizer/BioNTech and Moderna. Following the assumption made in [19], the daily force of infection is considered to accumulate. However, it is assumed that if a susceptible does not gather any additional force of infection (i.e., does not come in contact with any infected) for two consecutive days, the cumulative force of infection for the susceptible reduces to zero. At the end of each day, the model uses cumulative force of infection to calculate the probability of infection for each susceptible. The model updates the infection status of all individuals to account for new infections as well as disease progressions of infected individuals. A pseudo-code in Figure 2 depicts the major elements and structure of the AB simulation program.
Main
1 for simulation_day = 0, ..., max_day
2 if simulation_day = 0
3 generateEntities()
4 generate_businesses() // Introduces a small number of infected individuals who are contagious
5 initialize_outbreak() // Begin interaction among infected and susceptible and start community spread
6 begin_outbreak() // Keeps track of daily age specific numbers
7 report (infected, tested, reported, hospitalized, death)

Function: Generate entities
1 // Generates population in the region based on census and assigns them to household and workplace/school (including those unemployed who stay at home)
2 for household = 1, ..., total_household_types
3 n1 = number of adults
4 n2 = number of children
5 for i = 1, ..., n1
6 assign_age_household_workplace()
7 for j = 1, ..., n2
8 assign_age_household_school()

Function: Generate businesses
1 // Generates businesses in the region based on census data and classifies them as essential and non-essential industries and community places
2 for business = 0, ..., total_business_types
3 initialize_mixing_groups() // Creates smaller mixing groups (departments) within each business and assigns employees

Function: Begin outbreak
1 // Assigns daily schedules based on prevailing social intervention, tracks hourly social mixing, accounts for viral transmission, creates new infections, tests and reports infected, tracks disease progress for infected, monitors stay at home/hospitalization, and records recovery and death
2 if simulation_day < lockdown_day
3 schedule = schedule_1 // Pre-pandemic schedule
4 if (simulation_day >= lockdown_day) and (simulation_day < Phase_1)
5 schedule = schedule_2 // Schedule after lockdown begins (closure of non-essential places and schools and partial opening of essential places with limited capacity)
6 if (simulation_day >= Phase_1) and (simulation_day < Phase_2)
7 schedule = schedule_3 // Schedule during Phase I of reopening (schools remain closed, partial opening of essential and non-essential with limited capacity)
8 if (simulation_day >= Phase_2) and (simulation_day < Full_reopening)
9 schedule = schedule_4 // Schedule during Phase II of reopening (schools remain closed, increased partial opening of essential and non-essential places)
10 for hour = 1, ..., 24
11 disease_progress() // Monitors disease condition along disease natural history on an hourly basis for each infected individual
12 tracking_individuals() // Tracks infected and susceptible in the same location (mixing group) by the hour and calculates added force of infection for susceptible and tracks viral accumulation
13 infection_process() // At the end of each day, infection status of each susceptible with any viral accumulation is determined
14 testing() // Tests symptomatic and some selected asymptomatic based on test availability and reports outcome considering test sensitivity and reporting delays
15 hospitalization() // Tracks hospitalization of symptomatic developing acute condition
16 if (simulation_day = vaccination_begin_day)
17 assign_vaccination_willingness() // We assume 60% of the population is willing to be vaccinated
18 assign_vaccine_priority() // Vaccine priority is assigned by chosen criteria (age and profession)
19 if (simulation_day >= vaccination_begin_day)
20 for each willing and priority eligible individual
21 if (received first dose)
22 administer_dose_2() // Dose 2 is administered 21 days after first dose for Pfizer vaccine and 28 days for Moderna vaccine
23 else
24 administer_dose_1()
25 reduce_transmission_coefficient() // Reduce coefficient of transmission to reach zero seven days after dose #2
26 recovery() or death() // Tracks recovery or death for individuals in home/hospitals

Figure 2: Pseudo-code for agent-based simulation model of COVID-19 with implementation of two-dose vaccines
The infected people are considered to follow a disease natural history as shown in Figure 3, parameters of which can be found in Table A6 of [19]. The model assumes that the recovered cases become fully immune to further COVID-19 infections. However, since this assumption is not fully supported yet by data, people recovered from COVID-19 are also considered candidates for vaccination. The duration and intensity of infectiousness is considered to be guided by a lognormal density function (see Figure 4). The function is truncated at the average length of the infectiousness period (which is considered to be 9.5 days). Asymptomatic cases are assumed to follow a similar infectiousness intensity profile but scaled by a factor C_k in the force of infection calculation (1) (see Table A7 in [19]).

$$\lambda_i = \sum_{k|h_k = h_i} \frac{I_k \beta_k(t - \tau_k) \rho_k [1 + C_k (\omega - 1)]}{n_i^b} + \sum_{j,k|l_k = l_i} \frac{I_k \beta_k(t - \tau_k) \rho_k [1 + C_k (\omega - 1)]}{m'_j}. \quad (1)$$
Equation (1) is a modified version of the force of infection equation given in [10], parameters of which can be found in Table A7 of [19]. The force of infection is gathered by a susceptible individual each day from all infected contacts in his/her mixing groups (home, school/workplace, and community places). The cumulative value of λ_i is used at the end of each day to calculate the probability of infection as $1 - e^{-\lambda_i}$.

The AB model incorporates all applicable intervention orders like stay-at-home, school and workplace closure and reopening, isolation of symptomatic cases at home, and quarantine of household members of those who are infected. The model also considers: varying levels of compliances for isolation and quarantine, lower on-site staffing levels of essential work and community places during stay-at-home order, restricted daily schedule of people during various social intervention periods, phased lifting of interventions, use of face masks, contact tracing with different target levels to identify asymptomatic and pre-symptomatic cases, and vaccination. The timeline for social interventions implemented in the model are summarized in Table 1. For many other salient features of our AB simulation model, such as percentages of asymptomatic and uninsured with no access to doctor referral needed for testing during early days of the pandemic, CDC’s changing testing guidelines, test sensitivity and specificity, test result reporting delay, etc., readers are referred to [19].

Intervention policy implemented at Miami-Dade County, Florida, U.S.	Date of implementation	Day of Simulation
Stay at home policy	March 17 2020	35
Phase I reopening	May 18 2020	97
Phase II reopening	June 5 2020	115
Mandatory usage of Face mask	June 25 2020	135
Contact tracing (assumed to begin)	June 30 2020	140
Phase III reopening	September 25 2020	227
School reopening	September 30 2020	232
Vaccination begin day	December 15 2020	308

Table 1: Social intervention order timeline for Miami-Dade County [27]

As observed in [19], though it is implemented for a specific region, our model is quite general in its usability for other urban regions with similar demography, societal characteristics, and intervention measures. In our model, demographic inputs (age and household distribution, number of schools for various age groups, and number of workplaces of various types and sizes) are curated from both national and local census records. Social interventions vary from region to region and the related parameters can be easily updated. Similarly, the data related to epidemiology...
of COVID-19 are unlikely to be significantly vary from one region to another, though some adjustments of these based on population demographics may be needed.

Model Calibration

The AB model utilizes a large number of parameters, which are *demographic, epidemiological, and social intervention parameters*. We kept almost all of the above parameters fixed at their respective chosen values and calibrated the model by changing values for only a few. The calibrated parameters include the transmission coefficients used in calculating force of infection at home, work, school, and community places (β_h and β_p^j). The choice of the values of transmission coefficients was initially guided by [10] and thereafter adjusted at different points in time during the calibration period (until December 30, 2020). The only other parameters that were calibrated are the number of errands in the daily schedules under various intervention conditions and the percentage of workers in essential (e.g., healthcare, utility services, and grocery stores) and non-essential (e.g., offices and restaurants) workplaces who physically reported to work during different intervention periods. Calibration of the above parameters was done so that the daily cumulative numbers of reported infected cases from the AB simulation model closely match the values published in the Florida COVID-19 dashboard until December 30, 2020. Figure 5 shows the daily cumulative average values (with 95% confidence intervals) for the reported infected cases, hospitalizations, and deaths as obtained from the simulation model. The dotted lines represent the actual numbers reported in the Florida COVID-19 dashboard for Miami-Dade County [28].
Figure 5: Validation graphs with average daily cumulative values of infected, reported, and death calibrated until Dec 30, 2020
VACCINE PRIORITIZATION STRATEGIES

We used our AB model to examine the expected benefits of the ongoing vaccination in the U.S. using the limited supply of two types of vaccines developed by Pfizer/BioNTech and Moderna, which currently have the emergency approvals for distribution. We considered the number of vaccine doses that the two companies are contracted by the U.S. government to supply, which include the initial contracts for 100 million doses from each company and the more recent contract for an additional 100 million doses from Pfizer/BioNTech. That makes it a total of 300 million doses which can inoculate 150 million people, as both vaccines require two doses to be administered 21 days and 28 days apart, respectively for Pfizer/BioNTech and Moderna. To our knowledge, the total supply is being apportioned among the states and the counties depending on the population. Florida has approximately 6.5% of the U.S. population and the Miami Dade County has 13% of Florida’s population. Hence, we assumed that Miami Dade County will receive approximately 2.54 million doses and be able to vaccinate 1.27 million people out of the total 2.8 million population. We also assumed that the vaccine deliveries will occur in batches starting in late December 2020 till late June 2021. Our study goal was to first determine the extent of reduction in the number of infections, hospitalizations, and deaths that we can expect to realize from the vaccination process in comparison with if no vaccines were available. Thereafter, we conducted a comparative study between three different vaccination priority schemes to determine if the outcomes (number of reported cases, hospitalized, and dead) from those are statistically significant.
Figure 6: Vaccine prioritization strategies examined using AB simulation model for COVID-19 in the U.S. The priority strategies that were examined are broadly described here; a more complete description is presented in Figure 6. In the absence of a declared timeline for transition of eligibility from one priority group to the next, we assumed 30 days between transition. This period was extended to allow all eligible and willing to be vaccinated when the phased vaccine supply fell short of the number of people in the eligible priority group. The first strategy that we implemented is a close variant of the CDC recommended strategy: Priority 1: healthcare providers and nursing home residents; Priority 2: first responders, educators, and people of ages 75 and over; Priority 3: people of ages 65 to 74; Priority 4: people of ages 16 to 64. The CDC recommended strategy also includes in priority 3 people of ages 16 to 64 with specific health conditions. Since we did not track health conditions in our AB model, we limited our priority 3 to people of ages 65 and above only. The second strategy that we implemented is an age-stratified strategy: Priority 1: healthcare providers and nursing home residents; Priority 2: people of ages 65 and over; Priority 3: people of ages 55 to 64; Priority 4: people of ages 45 to 54; Priority 5: people of ages 16 to 44. The third strategy that we implemented is a random strategy: Priority 1: healthcare providers and nursing home residents; Priority 2: all people of ages 16 and over. People with prior COVID-19 history were not excluded and 60% of the people were considered willing to vaccinate [3, 18].

Age-stratified strategy	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5
Healthcare providers	Jan 14	Feb 13	Mar 15	Apr 14	
Nursing home residents	Feb 12	Mar 14	Apr 13	Jul 15	
Dec 15, 2020 – Jan 13, 2021	Jan 14 – Feb 12, 2021	Feb 13 – Mar 14, 2021	Mar 15 – Apr 13, 2021	Apr 14 – Jul 15, 2021	

Minor CDC variant strategy	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5
Healthcare providers	First responders	People of ages 65 to 74	People of ages 65 to 64	NA	
Nursing home residents	Educators	People of ages 75 and over	People of ages 16 to 64	NA	
Dec 15, 2020 – Jan 13, 2021	Jan 14 – Feb 12, 2021	Feb 13 – Mar 30, 2021	Apr 1 – Jul 15, 2021	NA	

Random strategy	Priority 1	Priority 2	Priority 3	Priority 4	Priority 5
Healthcare providers and nursing home residents	All people of ages 16 and over	NA	NA	NA	
Dec 15, 2020 – Jan 13, 2021	Jan 14 – Jul 15, 2021	NA	NA	NA	

RESULTS
The strategy based on the CDC recommendation achieves a reduction of 9%, 10%, 9%, and 11% for total infected, reported cases, hospitalized, and dead, respectively, compared to the outcomes with no vaccination. According to our model, with the close variant of CDC strategy the pandemic is likely to subside below a small threshold (100) of new reported cases by May 16, 2021 compared to June 12, 2021 if no vaccines were available (see Figure 7). Hence the likely net impact of vaccination in the urban Miami-Dade County of Florida will include sparing approximately 5.6% of the population from infection and achieving normalcy about a month sooner. This seemingly low impact of vaccination may be attributed to the fact that the trend of explosive growth of new cases in the winter months will have significantly reduced the pool of susceptible people by late spring, possibly approaching the ‘herd immunity’ state. Figure 7 presents the plots of AB model predicted outcomes for four scenarios: no vaccination and the three vaccine prioritization strategies. The plots show the average cumulative cases for infected (actual number of infected, which is not observed and can only be assessed through a model), reported cases, hospitalizations, and deaths. As can be seen, vaccination, irrespective of the strategy for prioritization, yields a significant reduction in the pandemic impact. Per our model, with no vaccination, the percentage of infected population will reach nearly 61% by mid-June of 2021.
The performances of the three vaccine prioritization strategies, as seen in Figure 7 are comparable. Simple pairwise comparisons of the reported number of cases using a test of hypothesis showed that the variant of the CDC policy produces a statistically significant lower number of reported cases than the no vaccination (p-value 0.0204). Age-stratified and random strategies also yield statistically significantly lower numbers of reported cases compared to no vaccination. However, comparison among the three vaccine prioritization strategies showed no significant statistical...
difference for reported cases between strategies (p-values near 0.4). The numbers for hospitalizations and deaths also had a similar trend. The model predicted values of the cumulative numbers of infected cases, reported cases, hospitalized, and dead from the three policies and their 95% confidence intervals are presented in Table 2. The table also provides the time frame when the pandemic falls below the threshold of 100 new reported cases. We observed from the Florida COVID-19 dashboard that reported numbers of deaths are the most inconsistent of all reported data due to reasons like: the timeline for deaths occurring from COVID-19 is highly variable, and deaths occur at homes, hospitals, long term care facilities for which the reporting mechanism is perhaps not as streamlined. Hence, we applied the percentages of deaths of those hospitalized in various age groups in the month of November 2020 to all the subsequent months of our simulation study (till end of July 2021). As expected, CDC variant strategy produced statistically significant lower numbers of hospitalized and deaths compared to no vaccination (p-values 0.0014 and 0.0015, respectively). The differences among the three vaccination strategies, however, are not statistically significant (p-values range from 0.08 to 0.3).

Outcome Prioritization Strategy	Infected Cases	Reported Cases	Hospitalized	Deaths	Date when new reported cases fall below 100
No vaccination	1.71M (1.66M – 1.76 M)	732K (695K – 770K)	18.7K (18.3K – 19.1K)	9K (8.8K – 9.3K)	June 12, 2021
Minor variant of CDC	1.55M (1.38M – 1.73 M)	659K (567K – 752K)	17K (15.7K – 18.3k)	8K (7.2K – 8.8K)	May 17, 2021
Age stratified	1.58M (1.43M – 1.73M)	672K (589K – 754K)	17.6K (16.6k – 18.5k)	8.5K (7.9k – 8.9k)	May 22, 2021
Random	1.54M (1.32M – 1.75M)	649K (538K – 761K)	17.3K (15.9K – 18.7K)	8.4K (7.6K – 9.1K)	May 7, 2021

Table 2. Summary of expected cumulative values (with 95% confidence intervals) on July 31, 2021 obtained by the AB model for the vaccine prioritization strategies
We have developed a detailed AB simulation model for mimicking the spread of COVID-19 in an urban region (Miami-Dade County, Florida) of the U.S. The model is calibrated using transmission coefficients and daily schedules of the people and validated using the data reported in the Florida COVID-19 dashboard till December 30, 2020 (see Figure 5). On this validated model we have incorporated the vaccination process that started in the U.S. on December 15, 2020 using two different vaccines developed by Pfizer/BioNTech and Moderna with an estimated 2.54 million doses for Miami-Dade county to inoculate 1.27 million people on a 2 dose regimen, based on government contracts at the time of study.

Model results indicate that the use of the available vaccines can reduce the spread of the virus and help the pandemic to subside below a small threshold of daily new cases by mid-May 2021, approximately a month sooner than if no vaccines were available. Also, the vaccination is expected to reduce number of infections by approximately 10% compared to no vaccination, which translates to sparing 5.6% of the total population from being infected.

We note that, even though the vaccines were developed and approved for human use at a much faster rate than ever accomplished before, the accelerated growth of the infections, especially with the onset of the winter in the northern hemisphere, reduced the opportunities for benefits that the vaccines could have delivered. For example, by end of January 2021 a large proportion (over 41%) of the Miami-Dade population is expected to be infected, significantly reducing the pool of susceptible for vaccines to work on.

Another noteworthy finding of this study was that there was no statistical difference in number of reported cases between vaccination prioritization strategies tested: CDC recommendation based strategy, strictly age-based strategy, and random strategy. This information can help give more latitude for decision makers in COVID-19 vaccine distribution, as this research suggests that adhering strictly to priority groups may not be as paramount to vaccination campaign success as simply distributing the vaccines.

Though our AB model is well suited to study future progression of COVID-19, it has some limitations. As mentioned under vaccination strategies, our model did not include health conditions that are relevant to COVID-19 (like pulmonary disease, obesity, heart problems) as attributes for people. Hence, we were not able to implement one element of the CDC recommended prioritization strategy that includes people aged 16-64 years with underlying
medical conditions in priority 3. Also, we did not consider any vaccine wastage due to complexities associated with refrigeration, distribution, and human error. We also assumed that vaccination of all priority groups will occur uniformly over the eligibility periods considered, which may not reflect the reality. Also, since, to our knowledge, there is little available literature on the rate of immunity growth each day from the two dose vaccines, we assumed a linear growth starting with the first dose and culminating (full immunity) seven days after the second dose. Lastly, as the pandemic progresses, new strains of the virus are being identified with slightly different viral parameters that may not receive full coverage from the vaccine. It is unclear how this will impact the pandemic projection presented in this model, though latest research shows that those vaccinated are likely to be protected from the new strains.

Unlike highly aggregated compartmental models that are relatively easy to apply to multiple regions/countries, agent-based models are highly granular and require extensive data collection for the application region. The data include population in all age groups, household compositions of adults and children, essential and non-essential businesses and factories of different sizes as places for employment, schools and colleges of different sizes for different age groups, peoples schedule on weekdays and weekends during different social intervention phases, intervention timelines, testing availability and reporting delays, quarantine, isolation, and mask usage compliance, and level of contact tracing. Hence, implementing the AB model to another region is a major task (see [19] for a step-by-step approach).

As vaccination is ramping up in earnest in the U.S. at the time of our study, we believe that our results will provide useful information for the healthcare policy makers not only for Miami-Dade County but for similar urban regions in the U.S. and perhaps elsewhere in the world with a similar demography.

BIBLIOGRAPHY

1. Aleta A, Martin-Corral D, Piontti A, AJelli M, Litvinova M, Chinazzi M. Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the COVID-19 epidemic. Medrxiv. 2020 May 18;

2. Barmparis G, Tsironis G. Estimating the infection horizon of COVID-19 in eight countries with a data-driven approach. 135. 2020 May;109842.

3. Beusokem M. Survey: COVID vaccine willingness waned since April. Center for Infectious Disease Research and Policy [Internet]. 2020 Dec 30 [cited 2021 Jan 28]; Available from: https://www.cidrap.umn.edu/news-perspective/2020/12/survey-covid-vaccine-willingness-waned-april
4. Buckner J, Chowell G, Springborn M. Optimal Dynamic Prioritization of Scarce COVID-19 Vaccines. Medrxiv. 2020 Sep;

5. Candido D, Claro I, Jesus J, Marciel de Souza W, Moreira F, Dellicour S. Evolution and epidemic spread of SARS-CoV-2 in Brazil. Science. 2020 Sep 4;369(6508):1255–60.

6. Chao D, Halloran E, Obenchain V, Longini I. FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol. 2010 Jan 29;6(1):e1000656.

7. Chintalapudi N, Battinemi G, Amentaa F. COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: A data driven model approach. J Microbiol Immunol Infect. 2020 Jun;53(3):396–403.

8. Clements K, Chancellor J, Kristin N, DeLong K, Thompson D. Cost-Effectiveness of a Recommendation of Universal Mass Vaccination for Seasonal Influenza in the United States. Value in Health. 2011 Sep;14(6):800–11.

9. Fang Y, Nie Y, Penny M. Transmission dynamics of the COVID-19 outbreak and effectiveness of government interventions: A data-driven analysis. J Med Virol. 92(6):645–59.

10. Ferguson N, Cummings D, Fraser C, Cajka J, Cooley P, Burke D. Estimating disease burden of a potential A(H7N9) pandemic influenza outbreak in the United States. Nature. 2006 Apr 26;442(7101):448–52.

11. Hou C, Chen J, Zhou Y, Hua L, Yuan J, He S. The effectiveness of quarantine of Wuhan city against the Corona Virus Disease 2019 (COVID-19): A well-mixed SEIR model analysis. J Med Virol. 2020 Jul;92(7):841–8.

12. Jordan A, Almukhtar S, Aufrichtig A, Barnard A, Bloch M, Cahalan S, et al. Coronavirus in the U.S.: Latest Map and Case Count. NYtimes.com [Internet]. 2021 Jan 25 [cited 2021 Jan 25]; Available from: https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

13. Knippl D, Röst G. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Math Biosci Eng. 2011 Jan;8(11):123–39.

14. Longini I, Halloran E. Strategy for Distribution of Influenza Vaccine to High-Risk Groups and Children. American Journal of Epidemiology. 2005 Feb 15;161(4):303–6.

15. Patel R, Longini I, Halloran E. Finding optimal vaccination strategies for pandemic influenza using genetic algorithms. Journal of Theoretical Biology. 2005 May 21;234(2):201–12.

16. Peng L, Yang W, Zhang D, Zhuge C, Hong L. Epidemic analysis of COVID-19 in China by dynamical modeling. MedRxiv. 2020 Feb 18;

17. Roope L, Clarke P, Duch R. Who should get the coronavirus vaccine first? France and the UK have different answers. The Conversation [Internet]. 2020 Nov 16 [cited 2021 Jan 25]; Available from: https://theconversation.com/who-should-get-the-coronavirus-vaccine-first-france-and-the-uk-have-different-answers-149875

18. Saad L. U.S. Readiness to Get COVID-19 Vaccine Steadies at 65%. Gallup News [Internet]. 2021 Jan 12 [cited 2021 Jan 28]; Available from: https://news.gallup.com/poll/328415/readiness-covid-vaccine-steadies.aspx

19. Tatapudi H, Das R, Das T. Impact assessment of full and partial stay-at-home orders, face mask usage, and contact tracing: An agent-based simulation study of COVID-19 for an urban region. Global Epidemiology. 2020 Nov 1;2(100036).
20. Yang S, Cao P, Du P, Wu Z, Zhang Z, Yang L. Early estimation of the case fatality rate of COVID-19 in mainland China: a data-driven analysis. Ann Transl Med. 2020 Feb;8(4):128.

21. Yang Z, Zeng Z, Wang K, Wong S, Liang W, Zanin M. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020 Mar;12(3):165–74.

22. Zhang Y, Jiang B, Yuan J, Tao Y. The impact of social distancing and epicenter lockdown on the COVID-19 epidemic in mainland China: A data-driven SEIQR model study. MedRxiv. 2020 Mar 6;

23. Pfizer and BioNTech conclude Phase 3 study of COVID-19 vaccine candidate, meeting all primary efficacy endpoints. Pfizer [Internet]. 2020 Nov 18 [cited 2021 Jan 25]; Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine

24. Evidence to recommendations for COVID-19 vaccines: Evidence framework. WHO [Internet]. 2020 Dec 10 [cited 2020 Jan 25]; Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-SAGE-Framework-Evidence-2020-1

25. How CDC Is Making COVID-19 Vaccine Recommendations. CDC [Internet]. 2020 Dec 30 [cited 2021 Jan 25]; Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations-process.html

26. COVID-19 Vaccines. US Food & Drug Administration [Internet]. 2021 Jan 12 [cited 2021 Jan 25]; Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine

27. Florida. COVID-19 Updates [Internet]. The City of Miami. [cited 2021 Jan 26]. Available from: https://www.miamigov.com/Notices/News-Media/COVID-19-Updates

28. Florida's COVID-19 Data and Surveillance Dashboard,. Florida Department of Health, Division of Disease Control and Health Protection.

29. Framework for equitable allocation of COVID-19 vaccine [Internet]. The National Academy Press; [cited 2021 Jan 25]. Available from: https://www.nap.edu/read/25917/chapter/1