The use of haemoglobin concentrations to assess physiological condition in birds: a review

Piotr Minias*

Department of Teacher Training and Biodiversity Studies, University of Łódź, Banacha 1/3, Łódź 90–237, Poland

*Corresponding author: Email: pminias@op.pl

Total blood haemoglobin concentration is increasingly being used to assess physiological condition in wild birds, although it has not been explicitly recognized how reliably this parameter reflects different components of individual quality. Thus, I reviewed over 120 published studies linking variation in haemoglobin concentrations to different measures of condition and other phenotypic or ecological traits. In most of the studied avian species, haemoglobin concentrations were positively correlated with other commonly used indices of condition, such as body mass and fat loads, as well as with quality of the diet. Also, chick haemoglobin concentrations reliably reflected the intensity of nest infestation by parasitic arthropods, and haemoglobin was suggested to reflect parasitism by haematophagous ectoparasites much more precisely than haematocrit. There was also some evidence for the negative effect of helminths on haemoglobin levels in adult birds. Finally, haemoglobin concentrations were found to correlate with such fitness-related traits as timing of arrival at breeding grounds, timing of breeding, egg size, developmental stability and habitat quality, although these relationships were not always consistent between species. In consequence, I recommend the total blood haemoglobin concentration as a relatively robust indicator of physiological condition in birds, although this parameter is also strongly affected by age, season and the process of moult. Thus, researchers are advised to control fully for these confounding effects while using haemoglobin concentrations as a proxy of physiological condition in both experimental and field studies on birds.

Key words: Bird, condition, fitness, haematology, haemoglobin concentration, parasite

Introduction

Although animal physiologists have long relied on different blood markers to assess animal–environment interactions, the measurement of physiological parameters of blood is now increasingly being adopted to explain ecological and evolutionary processes occurring within vertebrate populations. The wide application of physiological approaches in basic ecology provided a tool that became of key importance in solving conservation problems, which laid the foundation for a new discipline called conservation physiology (Cooke and O’Connor, 2010; Cooke et al., 2013). One of the most common applications of physiological methods in ecological studies and wildlife surveillance is to assess different components of individual condition and health (Stoot et al., 2014). While many blood physiological parameters have been proposed to serve as proxies of condition in birds (e.g. plasma concentrations of different metabolites, reviewed by Brown, 1996), there is little consensus on which markers are sufficiently robust to reflect varying physiological condition reliably across different avian taxa. Among others, total blood haemoglobin concentration (usually expressed as the mass of haemoglobin per unit of blood) was suggested to be a condition-dependent trait that may be related to fitness in
Haemoglobin is encountered in all five kingdoms of organisms, ranging from single-chain globins in bacteria, algae, protozoa and plants to large, multisubunit and multidomain molecules in some invertebrates (Weber and Vinogradov, 2001). In the animal kingdom, haemoglobin occurs widely but sporadically in non-vertebrate species, being found in some 33% of presently known animal classes. In vertebrates, total blood haemoglobin concentration is considered to be the most important determinant of oxygen-carrying capacity. Although in mammals the amount of oxygen supplied to the tissues per unit time (measured by the amount of haemoglobin per total surface area of erythrocytes) is of greater physiological importance than the oxygen-carrying capacity of the blood (Kostelecka-Myrcha, 2002), the opposite situation is found in birds. The amount of haemoglobin per total surface area of erythrocytes remains constant among all avian species, even in differing physiological and environmental situations, as the changes in the number and size of erythrocytes always proceed in proportion to the changes in haemoglobin concentration. Such an adaptation seems to be optimal for the process of blood oxygen saturation in the lungs of birds, which is maintained at a relatively constant rate via the presence of air sacs and the cross-current exchange of gas between the air and the blood in the pulmonary capillaries (Schmidt-Nielsen, 1975; Kostelecka-Myrcha, 1997). Taking all this into account, the total blood haemoglobin concentration most appropriately reflects the potential of an avian organism to satisfy its oxygen requirements.

In consequence, high concentrations of haemoglobin improve aerobic capacity, whereas low concentrations are associated with the poor states of regenerative or non-regenerative anaemias. In birds, regenerative anaemias are usually caused by haemorrhage and haemolysis, most commonly attributed to parasitism (Boyd, 1951), injuries (Jaensch and Clark, 2004) and intoxication (Leighton et al., 1983). In this kind of anaemia, the reductions in blood oxygen-carrying capacity typically result in increased erythropoiesis, resulting in the rapid production of large quantities of immature red blood cells (reticulocytes). In contrast, non-regenerative anaemias (with no response of bone marrow to the increased need for erythrocytes) are caused by chronic diseases, but also from nutritional deficiencies or starvation (Harrison and Harrison, 1986). For these reasons, haemoglobin concentration has been proposed as a robust indicator of physiological condition in birds (e.g. Baibura et al., 2007) and is increasingly being used to assess individual quality (sensu Wilson and Nussey, 2010) in this group of vertebrates (Pryke et al., 2011; Crossin et al., 2013; Minias et al., 2015b).

The physiological condition of birds has also been commonly assessed using haematocrit (packed cell volume), which is the percentage of blood volume occupied by erythrocytes (Harrison and Harrison, 1986). However, reliability of haematocrit as a general measure of condition has recently been questioned. It has been acknowledged that haematocrit may not accurately reflect the concentration of erythrocytes in the blood, because it depends largely on the size of erythrocytes, and thus, it may not represent well the physiological condition of birds and other vertebrates (Fair et al., 2007). In fact, haematocrit was shown not to be condition dependent in some of the studied avian species (Dawson and Bortolotti, 1997a; Hanssen et al., 2003; Dzialowski and Sotherland, 2004). Consequently, alternative haematological parameters, including total blood haemoglobin concentration, have been proposed as potentially more reliable indicators of physiological condition and health in birds (O’Brien et al., 2001). Although haematocrit and haemoglobin concentrations are expected to be correlated in birds (Velguth et al., 2010), the strength of this correlation may be weak, because both parameters show different sensitivity to ecological factors (Kalinski et al., 2011). In fact, haematocrit and haemoglobin concentration are based on different biological principles (blood cytology and blood biochemistry, respectively), and consequently, they may be indicative of different environmental and physiological processes (Baribura et al., 2007).

The aim of this review was to evaluate whether total blood haemoglobin concentration may be used reliably as an indicator of physiological condition in birds. The second objective of the study was to identify phenotypic and ecological factors that could affect haemoglobin concentrations, potentially reducing its applicability as a proxy of individual quality. For these purposes, I reviewed over 120 published studies linking variation in haemoglobin concentrations to age, sex, season, moult, nutritional state/condition, parasitism and other fitness-related traits.

Age-related variation

Data on the changes in haemoglobin concentration throughout the post-hatching development of chicks were collected for 20 avian species (Supplementary material Table S1), mainly passerines (10 species) and seabirds (five species). All the studies that covered the entire period of chick development showed increases in haemoglobin concentration from hatching to fledging. Such patterns result from the process of haematopoiesis (production of blood cellular components) taking place in the liver, spleen and bone marrow, which starts at the embryonic stage of development and continues after hatching (Campbell, 1994). There was, however, considerable variation in developmental patterns of blood oxygen-carrying capacity between species (Simmons and Lill, 2006). In most altricial species, haemoglobin concentration tends to increase in a linear manner throughout nesting development (Kostelecka-Myrcha et al., 1970, 1971, 1973; Bolton et al., 1999). In some other altricial species (e.g. in Hirundininae) and some precocial species, haemoglobin concentration changes in a non-linear manner, because it increases rapidly during first days after hatching and thereafter the rate of change gradually slows down (Kostelecka-Myrcha and Jaroszewicz, 1993; Simmons and Lill, 2006). In these species, peak values of haemoglobin concentrations may be attained.
well before fledging and, afterwards, they decrease slightly to reach the adult level (Simmons and Lill, 2006). In contrast, the haemoglobin concentration in Procellariiformes shows an initial decrease, which is followed by relative stability during the most intensive growth period, and it starts to increase rapidly during mass recession, i.e. the period of body mass loss before fledging (Arnold et al., 1999; O’Dwyer et al., 2007). Similar patterns were also recorded in other seabirds, e.g. a slight decrease in haemoglobin concentration was found in Arctic tern (Sterna paradisea) chicks during the first days after hatching (Bech and Klaassen, 1996).

It seems that in many species the haemoglobin concentration attained at the time of fledging increases gradually until adulthood. In most of the analysed species (72.2%), adult individuals were reported to have a significantly higher haemoglobin concentration in comparison to juveniles. Only one study on captive Masai ostriches (Struthio camelus) investigated changes in haemoglobin concentration throughout the entire first year of life (Samour et al., 2011). The authors demonstrated that the haemoglobin concentration initially decreased slightly, but from the third month of life it started to increase at a constant rate until the age of at least 1 year, with the total increase being ∼40% (Samour et al., 2011). Such patterns of changes may be characteristic for long-lived species with a long period of development. In fact, the only two studies on short-lived passerines found no differences in haemoglobin concentration between juveniles and adults (Puerta et al., 1995; Archawaranon, 2005). There is little empirical data on the changes in haemoglobin concentration during the period of adulthood in birds. While three of four studied species showed no clear patterns of changes in haemoglobin concentrations throughout adulthood (Table 1), the study on feral pigeons (Columbia livia f. domestica) demonstrated a significant decrease in haemoglobin concentration after the ninth year of age (Prinzinger and Misovic, 2010). In conclusion, more data are needed to establish the patterns of haemoglobin changes with age.

Sex-related variation

Data on differences in haemoglobin concentration between sexes in adult birds were available for 36 species (Supplementary material Table S2), mainly Charadriiformes (nine species) and Passeriformes (six species). In the large

| Table 1: Seasonal changes of haemoglobin concentrations in birds |

Common name	Specific name	Order	Haemoglobin concentration	Reference
Zebra finch	Taenopygia guttata*	PAS	Decreased during egg laying (F)	Wagner et al. (2008b)
Zebra finch	T. guttata*	PAS	Decreased during egg laying (F)	Willie et al. (2010)
Crimson finch	Neochmia phaeton	PAS	Decreased during egg laying and incubation (F)	Milenkaya et al. (2013)
Cory’s shearwater	Calonectris diomedea	PRO	Increased from pre-laying to chick-rearing period (F)	Navarro et al. (2007)
Short-tailed shearwater	Puffinus tenuirostris	PRO	Increased from pre-laying to chick-rearing period	Davey et al. (2000)
Feral pigeon	Columba livia f. domestica	COL	Increased during egg laying	Kaspzak et al. (2006)
House sparrow	Passer domesticus	PAS	Increased between June and September (adults)	Puerta et al. (1995)
Noisy miner	Manorina melanocephala	PAS	Increased between breeding season and winter	Powell et al. (2013)
Four passerine species*		PAS	No changes between breeding season and winter	Breuer et al. (1995)
Superb fairywren	Malurus cyaneus	PAS	Decreased from breeding season to winter	Box et al. (2002)
Black-necked swan	Cygnus melancoryphus	ANS	Decreased from August to February	Artacho et al. (2007)
Feral pigeon	C. livia f. domestica	COL	Increased over winter	Pavlak et al. (2005)
Mallard	Anas platyrhynchos*	ANS	Highest during winter and pre-laying period	Shave and Howard (1976)
Giant Canada goose	Branta canadensis maxima*	ANS	Highest during winter and pre-laying period	Shave and Howard (1976)
Common snipe	Gallinago gallinago	CHA	Increased over autumn migratory period	Minias et al. (2014)
Bar-tailed godwit	Limosa lapponica	CHA	Increased over spring migratory period	Piersma et al. (1996)

Abbreviations: ANS, Anseriformes; CHA, Charadriiformes; COL, Columbiformes; PAS, Passeriformes; PRO, Procellariiformes. Studies conducted in captivity are marked with an asterisk. Results valid for females only are marked with an ‘F’. *Brown thornbill (Acanthiza pusilla), red-browed firetail (Emblema temporalis), eastern yellow robin (Eopsaltria australis) and superb fairywren (Malurus cyaneus).
majority of species (86.1%), there was no significant difference between the sexes in the haemoglobin concentration of adult individuals, and this conclusion is consistent with the general patterns recorded for haematocrit (Fair et al., 2007). In species where between-sex differences in haemoglobin concentration were found, females tended to have higher levels of haemoglobin, as found in two passerine (Kaliński et al., 2012) and one procellariiform species (Mycrcha and Kostecka-Myrcha, 1980). A higher haemoglobin concentration in males compared with females was found in only one study on feral pigeons (Gayathri and Hegde, 1994), but two other studies on this species did not confirm the observation (Pavlak et al., 2005; Kasprzak et al., 2006).

Thus, it seems that any observed differences in haemoglobin concentrations between sexes may result primarily from temporal physiological processes associated with reproduction or molting. In fact, a study on the crimson finch (Neochmia phaeton) indicated that such differences may appear only during specific reproductive stages, such as egg laying or incubation, although in general males and females have similar haemoglobin concentrations (Milenkaya et al., 2013). Between-sex differences in haemoglobin concentration were found relatively often in nestlings, but it seems likely that these patterns could result largely from the different ages of male and female chicks sampled for the analyses.

Seasonal changes

Decreasing haemoglobin concentrations during egg laying were recorded in females of at least two bird species (Table 1). Similar symptoms of anaemia during egg production, indicated by reduced haematocrit, have been documented in a wider range of avian taxa (DeGraw et al., 1979; Jones, 1983; Gayathri and Hegde, 2006). The exact mechanisms responsible for these changes have not been explicitly recognized, and a few non-exclusive explanations have been proposed (Williams, 2004). A reduction in haemoglobin concentration during egg laying was hypothesized to result from transient suppression of erythropoiesis, so that energy for red blood cell production could be redirected to meet the elevated metabolic demands of the reproductive organs (Jones, 1983) and because components normally allocated to erythropoiesis could be required for egg production (Gayathri and Hegde, 2006; Kasprzak et al., 2006). Decreased haemoglobin concentration during egg laying may also be caused by the production of yolk precursors and concurrent osmoregulatory adjustments (Salvante and Williams, 2002), which trigger an increase in plasma volume (haemodilution) due to osmotic movement of water from extracellular spaces into the blood (Reynolds and Waldron, 1999). In such circumstances, the haematocrit and blood haemoglobin concentration would be decreased, although the number of red blood cells would remain constant. Finally, anaemia during egg production may develop as a consequence of elevated levels of oestrogens (Williams et al., 2005; Wagner et al., 2008a), which suppress haemopoiesis by inhibiting proliferation and survival of blood cell precursors in bone marrow (Clermont and Schrar, 1979; Blöbel and Orkin, 1996). In spite of these predictions, one of the studies on female feral pigeons showed an increased haemoglobin concentration during the period of egg laying, but this pattern was attributed to dehydration (Kasprzak et al., 2006). Likewise, there was no pronounced decrease in haemoglobin concentrations of two procellariiform species during the egg-laying phase when compared with the pre-laying period (Davey et al., 2000; Navarro et al., 2007). In these species, levels of haemoglobin increased at a constant rate from the pre-laying to the chick-rearing period, which was attributed to the high costs of the very long foraging trips undertaken by parents when feeding nestlings and the preparation for migration that is undertaken soon after the conclusion of reproductive activities (Davey et al., 2000).

Migratory behaviour was, indeed, found to have a strong effect on haemoglobin concentration in birds. For example, haemoglobin concentrations increased considerably over the migratory period in two studied wader species, which was associated with increasing fat loads necessary for long-distance flights (Piersma et al., 1996; Minias et al., 2014). In other avian taxa, a requirement for improved oxygen-carrying capacity during migration was suggested by elevated haematocrit levels (Bairlein and Torzke, 1992; Prats et al., 1996). In contrast, changes in haemoglobin concentration during the autumn period proceeded in a different manner in non-migratory species. In the superb fairywren (Malurus cyaneus), haemoglobin concentration was found to decrease from summer to winter (Box et al., 2002), although the other study on this species found no changes over autumn (Breuer et al., 1995). In other non-migratory passerine species, there were no changes in haemoglobin levels between seasons (Breuer et al., 1995). There is also little empirical support for increased haemoglobin concentrations during winter. It has been hypothesized that birds should have the highest oxygen-carrying capacity of blood during winter period, because oxygen uptake should be elevated during increased thermogenesis (Swanson, 1990). The only evidence for such relationships comes from free-living feral pigeons (Pavlak et al., 2005) and noisy miners (Manorina melanocephala; Powell et al., 2013), as well as from captive waterfowl (Shave and Howard, 1976).

Moult

Data on the changes of haemoglobin concentration in relationship to moult were collected for 11 bird species, including only two species of passersines (Table 2). The general pattern emerging from these studies indicates that the haemoglobin concentration in blood decreases at the beginning of moult, but it tend to increase as the moult progresses to reach premoult levels after the completion of feather replacement. Given that moult is associated with extensive vascularization of growing quills, plasma volume must increase substantially during this period. Thus, the decreased haemoglobin concentration during moult initiation may be explained by increasing plasma volume that is not accompanied by a compensatory
Table 2: Changes of haemoglobin concentrations in response to moult in birds

Common name	Specific name	Order	Moulт	Haemoglobin concentration	Reference
Common snipe	G. gallinago	CHA	Post-juvenile	Low at the beginning of moult, increased as moult progressed	Minias et al. (2014)
Emperor penguin	Aptenodytes forsteri*	SPH	Post-juvenile	Higher in post-moult period than in pre-moult period	Ponganis et al. (1999)
Bar-tailed godwit	L. lapponica	CHA	Pre-breeding	Higher during moult	Piersma et al. (1996)
Dunlin	Calidris alpina	CHA	Pre-breeding	Decreased as moult progressed	Verhulst et al. (2002)
Mallard	A. platyrhynchos	ANS	Post-breeding	Lower during moult	Driver (1981)
Feral pigeon	C. livia f. domestica	COL	Post-breeding	Lower during moult	Kasprzak et al. (2006)
Pale-breasted thrush	Turdus leucolomelas	PAS	Post-breeding	Lower during moult	Lobato et al. (2011)
Little penguin	Eudyptula minor	SPH	Post-breeding	Lower during moult, increased after moult	Mortimer and Lill (2007)
Rockhopper Penguin	Eudyptes chrysom eliae	SPH	Post-breeding	No effect of moult, decreased after moult	Hawkey et al. (1989)
Common starling	Sturnus vulgaris	PAS	Post-breeding	No effect of moult	Prinzinger and Hakimi (1997)
Common snipe	G. gallinago	CHA	Post-breeding	Low at the beginning of moult, increased as moult progressed	Minias et al. (2014)
Magellanic penguin	Spheniscus magellanicus	SPH	Post-breeding	Lower in post-moult period than in pre-moult period	Hawkey et al. (1989)

Abbreviations: ANS, Anseriformes; CHA, Charadriiformes; COL, Columbiformes; PAS, Passeriformes; SPH, Sphenisciformes. Studies conducted in captivity are marked with an asterisk.

increase in the total number of erythrocytes (Chilgren and DeGraw, 1977). Erythropoiesis is unlikely to be suppressed though, because there is no evidence for a reduction in total the number of erythrocytes during the period of feather replacement in birds (Chilgren and DeGraw, 1977; DeGraw and Kern, 1983).

Decreased haemoglobin levels at the beginning of moult were recorded for young (partial post-juvenile moult) and adult (complete post-breeding moult) common snipe (Gallinago gallinago; Minias et al., 2014). However, post-breeding moult in this species was associated with much greater change in haemoglobin concentration. Adult snipe had 12% higher haemoglobin concentrations after moult compared with birds at the beginning of moult. In contrast, the haemoglobin concentration of juvenile snipe decreased by only 2% at the beginning of post-juvenile moult (Minias et al., 2014).

Despite the fact that most of the studies indicated lower haemoglobin concentrations during moult, some exceptions to this general pattern were also observed. In two species, no moult-related changes in haemoglobin concentration were recorded (Hawkey et al., 1989; Prinzinger and Hakimi, 1997). In bar-tailed godwits (Limosa lapponica), individuals moulting breast feathers at a spring stopover site had a higher haemoglobin concentration in comparison to non-moulting individuals; however, early moult of body feathers was associated with high individual quality, so this relationship could be purely correlative in nature (Piersma et al., 1996).

Nutritional state and condition

There is fairly sound empirical evidence that haemoglobin concentration may be considered a reliable proxy of condition (defined in a broad sense as a composite of factors including nutritional state, level of health and physiological performance) in free-living birds. In 12 avian species, positive correlations were found between haemoglobin concentration and size-corrected or uncorrected body mass and fat loads, while no relationship has been reported for only one species (Table 3). Fat loads were found to be a good predictor of haemoglobin concentrations in migratory waders at both intra- and interspecific levels (Minias et al., 2013a). Given that migrants have to accumulate large fat reserves before departure on long-distance flights, elevated haemoglobin concentrations may be necessary to meet the high metabolic costs of travelling with a large fat burden. Thus, the relationship between haemoglobin concentration and body mass or fat loads may not be purely correlative but may reflect physiological adjustments. A positive relationship between body mass and haemoglobin concentrations may also result from suppressed erythropoiesis during starvation (Campbell, 1994).

Strong support for the reliability of haemoglobin concentrations as a predictor of condition comes from experimental studies on captive passerines, where haemoglobin concentration was positively affected by the quality of diet in both nestlings (Pryke et al., 2011; Pryke and Rollins, 2012) and adults (Pryke et al., 2012). In contrast, the only one study on captive zebra finches (Taeniopygia guttata) showed no effect of diet
on haemoglobin concentration (Wagner et al., 2008b). No effect of food supplementation on haemoglobin concentration was also found for a free-living population of great tits (Parus major), although it was probably due to non-restrictive abundance of natural food resources (Barbura et al., 2011). It must be acknowledged, however, that haemoglobin concentration may not provide a good indication of body condition during serious dehydration of an organism, as was shown for fasting Adélie penguins (Pygoscelis adeliae; Vleck and Vleck, 2002).

Much less consistent are relationships between the concentrations of haemoglobin and different plasma metabolites. The only reported positive correlations were found for the common snipe, where haemoglobin concentration was correlated with the plasma concentration of total proteins (Minias et al., 2014). No significant relationships were found in other species (Navarro et al., 2007; Milenkaya et al., 2013), and in the whiskered tern (Chlidonias hybrid) a negative correlation between haemoglobin concentration and plasma glucose level was recorded (Minias, 2014); this pattern was attributed to the oxidative stress associated with hyperglycaemia, which may reduce synthesis of erythropoietin, a hormone responsible for red blood cell production (Winkler, et al. 1999).

Parasitism

Data on the effects of haematophagous nest ectoparasites on haemoglobin concentrations in nestlings are fully consistent
among studied taxa and unequivocally indicate negative effects of parasitism on the haematological condition of chicks. In total, all but one reviewed study on passerines ($n = 12$) demonstrated negative relationships between chick haemoglobin concentration and the intensity of nest infestation by parasitic arthropods, such as Protocalliphora and Philornis fly larvae or mites (Table 4). There was only one study that found no reduction in haemoglobin concentration

Table 4: Changes of haemoglobin concentrations in response to parasite pressure in birds

Common name	Specific name	Order	Age	Parasite	Haemoglobin concentration	Reference
Magpie	Pica pica	PAS	Pull.	Blow fly larvae (Protocalliphora asiavora)	-	Whitworth and Bennett (1992)
Pied flycatcher	Ficedula hypoleuca	PAS	Pull.	Blow fly larvae (Protocalliphora azurea)	-	Belskii et al. (2005)
Bank swallow	Riparia riparia	PAS	Pull.	Blow fly larvae (Protocalliphora chrysorrhoea)	-	Whitworth and Bennett (1992)
House wren	Troglodytes aedon	PAS	Pull.	Blow fly larvae (Protocalliphora parorum)	-	O’Brien et al. (2001)
Eastern bluebird	Sialia sialis	PAS	Pull.	Blow fly larvae (Protocalliphora sp.)	-	Hannam (2006)
Medium ground finch	Geospiza fortis	PAS	Pull.	Fly larvae (Philornis downsi)	-	Fessl et al. (2006)
Small ground finch	Geospiza fuliginosa	PAS	Pull.	Fly larvae (P. downsi)	-	Fessl et al. (2006)
Small ground finch	G. fuliginosa	PAS	Pull.	Fly larvae (P. downsi)	-	Dudaniec et al. (2006)
Great tit	P. major	PAS	Pull.	Parasitic arthropods (fleas, blow flies and mite)	-	Słomczyński et al. (2006)
Eastern bluebird	Sialia sialis	PAS	Pull.	Mite (Dermanyssus prognephilus)	-	Carleton (2008)
Common starling	S. vulgaris	PAS	Pull.	Mite (Ornithonyssus sylvianum)	-	Clark and Mason (1988)
Common starling	S. vulgaris	PAS	Pull.	Mite (Ornithonyssus bursa)	(-)	Powlesland (1977)
Herring gull	Larus argentatus*	CHA	Pull.	Tapeworm (Diphyllobothrium dendriticum)	-	Mazur et al. (2007)
Skylark	Alauda arvensis	PAS	Ad.	Gastrointestinal helminths (Heterakis gallinae and Ascaridia galli)	-	Khan et al. (2006)
Robin	Erithacus rubecula	PAS	Ad.	Ticks	-	Norte et al. (2013)
Little penguin	Eudyptula minor	SPH	Ad.	Babesia	-	Sergent et al. (2004)
Superb fairywren	M. cyaneus	PAS	Ad.	Haemoproteus	(-)	Colombelli-Négrel and Kleindorfer (2008)
Black-fronted piping-guan	Aburria jacutinga*	GAL	Ad.	Haemoproteus, Plasmodium	(-)	Motta et al. (2013)
107 passerine species		PAS	Ad.	Haemoproteus, Plasmodium, Leucocytozoan, Trypanosoma, microfilariae	(-)	Booth and Elliott (2002)
Great tit	P. major	PAS	Ad.	Haemoproteus, Plasmodium, Leucocytozoan, Trypanosoma, Hepatozoan	(-)	Dufva (1996)
Great tit	P. major	PAS	Pull.	Haemoproteus, Plasmodium, Leucocytozoan	-	Krams et al. (2013)
Feral pigeon	C. livia f. domestica*	COL	Pull.	Trypanosoma evansi	-	Mandal et al. (2008)

Abbreviations: Ad., adult; CHA, Charadriiformes; COL, Columbiformes; GAL, Galliformes; Juv., juvenile; PAS, Passeriformes; Pull., pullus; SPH, Sphenisciformes. Studies conducted in captivity are marked with an asterisk. Note: ‘−’ indicates a decrease in haemoglobin concentration; and ‘(−)’ indicates no change in haemoglobin concentration.
in response to infestation by the mite *Ornithonyssus bursa* (Arachnida) on the common starling (*Sturnus vulgaris*; Powlesland, 1977); however, a more recent study on this species demonstrated a negative effect of infestation by *Ornithonyssus sylviarum* on chick haemoglobin levels (Clark and Mason, 1988).

In contrast, the response of nesting haematocrit to the parasitism by nest arthropods follows no clear pattern (reviewed by Fair et al., 2007). Although some of the studies indicated a negative impact of parasitic burden on chick haematocrit (Moreno et al., 1999; Potti et al., 1999; Simon et al., 2004), a relatively large number of the studied species did not show any significant relationships. It has been reported that parasitism by *Carmus haemapterus* (Diptera: Carnidae) had no effect on haematocrit of American kestrel (*Falco sparverius*) chicks (Dawson and Bortolotti, 1997b), the presence of the hen flea (*Ceratophyllus gallinae*; Ceratophyllidae) did not reduce haematocrit in blue tits (*Cyanistes caeruleus*; Triet and Richner, 1999), and experimental infestation of nesting barn swallows (*Hirundo rustica*) with hippoboscid louse flies (*Ornithonyxia biloha*; Diptera: Hippoboscidiae) also had no impact on this parameter (Saino et al., 1998). Taking all these findings into account, it may be concluded that haemoglobin concentration seems to reflect parasitism by haematophagous ectoparasites much more precisely than haematocrit. This hypothesis was first put forward by O’Brien et al. (2001), who demonstrated that house wren (*Troglodytes aedon*) nestlings heavily parasitized by larvae of the blow fly (*Protocalliphora parorum*) showed no reduction in haematocrit, but a significant 28% reduction in haemoglobin level. This confirmed the earlier observations of Johnson and Albrecht (1993), who found that heavily parasitized house wren nestlings retained normal haematocrits. These observations suggested that haemoglobin concentration and haematocrit may respond in a different manner to blood loss. In fact, blood loss in birds is immediately followed by production of immature blood cells, reticulocytes, which rapidly complement haematocrit. However, the quantity of haemoglobin synthesized in reticulocytes does not exceed 20% of the level found in the mature red blood cells, so blood haemoglobin concentration is complemented with a substantial delay. The higher sensitivity of haemoglobin concentration to infestation by ectoparasites clearly indicates that it should be preferred over haematocrit in studies investigating the health consequences of parasitic pressure in birds.

Only two studies investigated the impact of helminths on blood haemoglobin concentration in birds, and both demonstrated reduced haemoglobin levels in response to parasitic infection (Khan et al., 2006; Mazur et al., 2007). Detrimental effects of intestinal nematodes *Ascaridia galli* on the haematological condition of birds were confirmed by reduced haematocrits in experimentally infected young male red jungle fowl (*Gallus gallus*; Johnsen and Zuk, 1998). In contrast, there is little support for the effects of haematozoan infections on blood haemoglobin concentrations in birds (Table 4). A robust study by Booth and Elliott (2002) found no within-family and within-species relationships between infections by haematozoa and blood haemoglobin concentrations in 688 Neotropical passerines from over 100 species during spring migration. Likewise, no negative effect of haematozoa on haemoglobin concentrations was found in breeding great tits (Dufva, 1996) and superb fairywrens (Colombelli-Nègre and Kleindorfer, 2008). In contrast, reduced haemoglobin concentration was found in nesting great tits infected with haematozoa (Krams, et al., 2013), and a similar effect was found in captive feral pigeon nestlings infected with *Trypanosoma evansi* (Mandal et al., 2008). Thus, the possibility cannot be excluded that haematozoan infections have more detrimental consequences for nestlings, when compared with adult birds, but more empirical studies are needed to confirm this hypothesis. There is much more information on the impact of haematozoa on haematocrit in free-living birds; nevertheless, the results are also inconsistent among the studied taxa (reviewed by Fair et al., 2007). It also remains unclear whether anaemic states are caused directly by haematozoan infections or indirectly by the blood loss caused by their vectors.

Other fitness-related traits

There is little and inconsistent information on whether haemoglobin concentration correlates with reproductive performance of adult birds. There is some evidence that individuals with higher haemoglobin concentrations return earlier from wintering quarters to breeding grounds (Crossin et al., 2013) and initiate breeding earlier in the season (Minias, 2014); however, in some other species no such relationships were found (Crossin et al., 2012). Likewise, breeding grey-headed albatrosses (*Thalassarche chrysostoma*) had higher haemoglobin concentrations in comparison to non-breeders (Crossin et al., 2013), but there was no such association in the black-browed albatross (*Thalassarche melanophris*; Crossin et al., 2012). It was also found that adult whiskered terns with higher haemoglobin concentrations had clutches with larger eggs (Minias, 2014). Surprisingly, there are no data on whether the physiological condition of adult birds as assessed by blood haemoglobin concentration is correlated with such basic reproductive parameters as clutch size, hatching success or breeding output.

There are similar inconsistencies in physiological data collected for nestlings. In most studied species, chick haemoglobin concentration did not vary with brood size (Table 5). In contrast, there was a significant negative correlation between these traits reported for the Montagu’s harrier (*Circus pygargus*; Liimñana et al., 2009) and a positive correlation reported for the common tern (*Sterna hirundo*; Minias et al., 2015b). A negative relationship between chick haemoglobin concentration and brood size may be explained by increased competition for food in larger broods, resulting in reduced physiological condition of the offspring. Nevertheless, brood size is usually correlated with adult quality, because high-quality parents are capable of rearing more offspring per breeding attempt, due to better foraging efficiency and higher
Table 5: Relationships of haemoglobin concentrations with different fitness-related traits in birds

Common name	Specific name	Order	Age	Parameter	Haemoglobin concentration	Reference
Grey-headed albatross	T. chrysotoma	PRO	Ad.	Timing of arrival at breeding grounds	–	Crossin et al. (2013)
Black-browed albatross	Thalassarche melanophris	PRO	Ad.	Timing of arrival at breeding grounds	(−)	Crossin et al. (2012)
Whiskered tern	C. hybrida	CHA	Ad.	Breeding date	–	Minias (2014)
Grey-headed albatross	T. chrysotoma	PRO	Ad.	Breeding status	Breeders > non-breeders	Crossin et al. (2013)
Back-browed albatross	T. melanophris	PRO	Ad.	Breeding status	(−)	Crossin et al. (2012)
Whiskered tern	C. hybrida	CHA	Ad.	Egg size	+	Minias (2014)
Common tern	S. hirundo	CHA	Pull.	Hatching date	–	Minias et al. (2015b)
White stork	C. ciconia	CIC	Pull.	Brood size	(−)	Kaminski et al. (2014)
Blue tit	Cyanistes caeruleus	PAS	Pull.	Brood size	(−)	Baribura et al. (2008)
Tree swallow	Tachycineta biolor	PAS	Pull.	Brood size	(−)	Burness et al. (2000)
Montagus’s harrier	Circus pygargus	ACC	Pull.	Brood size	–	Limiñana et al. (2009)
Common tern	S. hirundo	CHA	Pull.	Brood size	+	Minias et al. (2015b)
Blue tit	C. caeruleus	PAS	Pull.	Survival	+	Baribura et al. (2007)
Great tit	P. major	PAS	Pull.	Survival	(−)	Nadoński et al. (2006)
Great tit	P. major	PAS	Pull.	Survival	(−)	Eeva et al. (2000)
Pied flycatcher	Ficedula hypoleuca	PAS	Pull.	Survival	(−)	Eeva et al. (2000)
Blue tit	C. caeruleus	PAS	Pull.	Habitat	Parkland < woodland	Baribura et al. (2007)
Great tit	P. major	PAS	Pull.	Habitat	Parkland < woodland	Kalirski et al. (2009)
Noisy miner	M. melanopephala	PAS	Ad.	Habitat	Urban < rural	Powell et al. (2013)
House sparrow	Passer domesticus	PAS	Ad.	Habitat	Urban < rural	Herrera-Dueñas et al. (2014)
13 passerine species*	C. melanocoryphus	ANS	Ad.	Habitat quality and fragmentation	(−)	Amos et al. (2013)
Black-necked swan	S. hirundo	CHA	Pull.	Social environment (colony size)	–	Minias et al. (2015b)
Gouldian finch	E. gouldiae*	PAS	Pull.	Social environment (level of aggression)	–	Pryke and Griffith (2009)
Common snipe	G. gallinago	CHA	Juv.	Developmental stability	(moult symmetry)	Minias et al. (2013b)
Common snipe	G. gallinago	CHA	Juv.	Developmental stability	(wing shape symmetry)	Minias et al. (2014)
Whiskered tern	C. hybrida	CHA	Ad.	Heterozygosity	(−)	Minias et al. (2015a)

Abbreviations: ACC, Accipitriformes; Ad., adult; ANS, Anseriformes; CHA, Charadriiformes; CIC, Ciconiiformes; Juv., juvenile; PAS, Passeriformes; PRO, Procellariiformes; Pull., pullus. Studies conducted in captivity are marked with an asterisk. Note: ‘+’ indicates a positive relationship; ‘−’ indicates a negative relationship; and ‘(−)’ indicates no relationship. *Buff-rumped thornbill (Acanthiza reguloides), dusky woodswallow (Artamus cyanopterus), brown tree creeper (Climacteris picumnus), grey shrike thrush (Colluricinclia harmonica), eastern yellow robin (Eopsaltria australis), fuscous honeyeater (Lichenostomus fuscus), yellow-tufted honeyeater (Lichenostomus melanophris), white-plumed honeyeater (Lichenostomus melanophris), striated pardalote (Pardalotus punctatus), super fairywren (Malurus cyaneus), brown-headed honeyeater (Meliphagus brevirostris), spotted pardalote (Pardalotus punctatus), striated pardalote (Pardalotus striatus) and weebill (Sturnus vitticeps).
breeding experience. In such circumstances, we could expect that intensified within-brood competition for food may be well compensated by higher feeding capacities of adults, explaining the lack of significant relationships between brood size and chick haemoglobin concentrations or even leading to increased haemoglobin concentrations in larger broods. Finally, only one out of four studies on passerine species showed a significant positive correlation between the haemoglobin concentration of nestlings and their survival (Table 5). A seasonal decline in chick haemoglobin concentration was reported for only one species (Minias et al., 2015b).

Some empirical evidence has been presented for habitat-related differences in haemoglobin concentrations within passerine populations. Nestlings of two tit species were found to have higher haemoglobin concentrations in woodland in comparison to parkland, and these differences were suggested to reflect variation in food availability (Banbura et al., 2007; Kalinski et al., 2009). In two other passerines, adults from rural populations had higher blood haemoglobin concentrations in comparison to urban birds (Herrera-Dueñas et al., 2014; Powell et al., 2013). Given that haemoglobin is considered a reliable oxidative stress marker, these patterns were explained by differences in pollution between rural and urban areas. In contrast, no evidence for a relationship between haemoglobin concentrations and habitat fragmentation were found for 13 woodland passerines (Amos et al., 2013).

Only two studies investigated the effects of different social environments on haemoglobin concentrations in birds. A cross-fostering experiment conducted on a colonial wader species demonstrated that offspring raised in larger nesting aggregations had lower haemoglobin concentrations, probably due to increased social stress, although the effects of increased parasitism could not be excluded (Minias et al., 2015b). The second study, on Gouldian finches (Erythrura gouldiae), showed that offspring raised in experimentally manipulated highly competitive environments had lower haemoglobin concentrations in comparison to offspring whose parents were subject to reduced levels of competition and aggression (Pryke and Griffith, 2009).

Blood haemoglobin levels were also found to covary with developmental stability (defined as the ability of individuals to undergo stable development of their phenotype in a range of environmental conditions, following Möller, 1997), although the evidence for such a relationship came only from studies on common snipe. It was demonstrated in young snipe that a low haemoglobin concentration had a negative effect on post-juvenile moult symmetry (Minias et al., 2013b). This relationship was speculated to be causal, because low oxygen-carrying capacity of the blood may cause organismal hypoxia during long migratory flights, leading to disruptions in developmental homeostasis (Minias et al., 2013b). In contrast, in adult snipe the haemoglobin concentration was associated with symmetry in the wing shape, but this relationship was suggested purely to be correlative, indicating lower genetic and phenotypic quality of birds with lower levels of developmental stability (Minias et al., 2014). Relationships between other measures of genetic quality, such as heterozygosity, and haemoglobin concentrations were investigated only in the whiskered tern, but no significant correlation has been reported (Minias et al., 2015a).

Conclusions

On the basis of the reviewed literature, it seems safe to conclude that the total blood haemoglobin concentration may be used as a relatively robust indicator of physiological condition in birds. In most of the studied taxa, the concentration of haemoglobin was correlated with other commonly used indices of condition, such as body mass (corrected and uncorrected for size) and fat loads. Haemoglobin concentrations were also found to increase with a high-quality diet, suggesting that they may directly reflect the nutritional state of individuals. Haemoglobin concentrations reliably reflected parasitic pressure from haematophagous ectoparasites and they correlated with a number of fitness-related traits, although these relationships were not always consistent between species. In spite of this, there are additional sources of variation in haemoglobin levels, which have to be taken into account while using this parameter as a proxy of physiological condition. Due to increasing erythropoesis, haemoglobin concentrations were found to increase rapidly with age, especially at the nestling stage and possibly also during the post-fledging period. Although in general there was no difference in haemoglobin concentration between sexes, some intersexual variation may appear during specific reproductive stages, such as egg laying or incubation. In fact, anaemic states associated with egg production are primarily responsible for seasonal patterns in haemoglobin concentrations. In contrast, the requirement for improved oxygen-carrying capacity in migrating birds is responsible for increased haemoglobin concentrations often recorded during the spring and autumn periods. Haemoglobin concentrations were also found to be affected by the process of feather replacement, usually decreasing at the beginning of moult and then gradually increasing to the pre-moult level. In conclusion, factors such as age, season and moult are recommended to be controlled for fully, if haemoglobin concentrations are expected to reflect variation in the physiological condition of birds reliably. It remains to be established whether and how strongly condition assessed by haemoglobin concentration may affect direct fitness components, i.e. reproductive output and survival, in natural bird populations and whether it is related to the genetic quality of individuals.

Supplementary material

Supplementary material is available at Conservation Physiology online.

Acknowledgements

I thank the anonymous reviewers whose thoughtful comments helped to improve the manuscript.
References

Amos JN, Balasubramaniam S, Grootendorst L, Harrisson KA, Lill A, Mac Nally R, Pavlova A, Radford JQ, Takeuchi N, Thomson JR et al. (2013) Little evidence that condition, stress indicators, sex ratio, or homozygosity are related to landscape or habitat attributes in declining woodland birds. J Avian Biol 44: 45–54.

Archawaranon M (2005) Hematological investigations of captive Hill Mynah Gracula religiosa in Thailand. Int J Poultry Sci 4: 679–682.

Arnold G, Lill A, Baldwin J (1999) Development of some aspects of blood oxygen transport in nestling short-tailed shearwaters. Aust J Zool 47: 479–487.

Artacho P, Soto-Gamboa M, Verduco C, Nespolo RF (2007) Using haematological parameters to infer the health and nutritional status of an endangered black-necked swan population. Comp Biochem Physiol A Mol Integr Physiol 147: 1060–1066.

Bairlein F, Totzke U (1992) New aspects on migratory physiology of trans-Saharan passerine migrants. Osm Scand 23: 244–250.

Barbura J, Barbüra M, Kalinški A, Skwarska J, Slomczyński R, Wawrzyniak J, Zieéliński P (2007) Habitat and year-to-year variation in haemoglobin concentration in nestling blue tits Cyanistes caeruleus. Comp Biochem Physiol A Mol Integr Physiol 148: 572–577.

Barbura J, Skwarska J, Kalinški A, Wawrzyniak J, Slomczyński R, Barbura M, Zieéliński P (2008) Effects of brood size manipulation on physiological condition of nestling Blue Tits Cyanistes caeruleus. Acta Ornithol 43: 129–138.

Barbura J, Barbura M, Gładalski M, Kalinški A, Markowski M, Michalski M, Nadolski J, Skwarska J, Zieéliński P (2011) Body condition parameters of nestling Great Tits Parus major in relation to experimental food supplementation. Acta Ornithol 46: 207–212.

Bech C, Klaassen M (1996) Blood hemoglobin content and metabolic performance of Arctic Tern chicks Sterna paradisaea. J Avian Biol 27: 112–117.

Belski EA, Lugas’kova NV, Karfdova AA (2005) Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russ J Ecol 36: 329–335.

Blobel GA, Orkin SH (1996) Estrogen-induced apoptosis by inhibition of the erythroid transcription factor GATA-1. Mol Cell Biol 16: 1687–1694.

Bolton AJ, Lill A, Baldwin J (1999) Haematological changes during development of the noisy miner: implications for oxygen transport. Aust J Zool 47: 455–461.

Booth CE, Elliott PF (2002) Hematological responses to haematozoa in North American and neotropical songbirds. Comp Biochem Physiol A Mol Integr Physiol 133: 451–467.

Box J, Lill A, Baldwin J (2002) Seasonal variation in body mass and blood oxygen carrying capacity of the superb fairy-wren (Malurus cyaneus). Aust J Zool 50: 313–323.

Boyd EM (1951) The external parasites of birds: a review. Wilson Bull 63: 363–369.

Breuer K, Lill A, Baldwin J (1995) Hematological and body-mass changes of small passerines overwintering in South-Eastern Australia. Aust J Zool 43: 31–38.

Brown ME (1996) Assessing body condition in birds. In Nolan V, Ketterson ED, eds. Current Ornithology, Vol 13. Plenum Press, New York, pp 67–135.

Burness GP, McClelland GB, Wardrop SL, Hochachka PW (2000) Effect of brood size manipulation on offspring physiology: an experiment with passerine birds. J Exp Biol 203: 3513–3520.

Campbell TW (1994) Cytology. In Ritchie BW, Harrison GJ, Harrison LR, eds, Avian Medicine: Principles and Applications. Winger, Lake Worth, pp 199–221.

Carleton RE (2008) Ectoparasites affect hemoglobin and percentages of immature erythrocytes but not hemocrit in nestling eastern bluebirds. Wilson J Ornithol 120: 565–568.

Chilgren JD, DeGraw WA (1977) Some blood characteristics of White-crowned Sparrows during molt. Auk 94: 169–171.

Clark L, Mason JR (1988) Effect of biologically active plants used as nest material and the derived benefit to starling nestlings. Oecologia 77: 174–180.

Clermont CP, Schrar H (1979) Effect of estrogen on rate of 59Fe uptake by hematopoietic tissue in Japanese quail. Am J Physiol 236: E342–E346.

Colombelli-Négrel D, Kleindorfer S (2008) In superb fairy wrens (Malurus cyaneus), nuptial males have more blood parasites and higher haemoglobin concentration than eclipsed males. Aust J Zool 56: 117–121.

Cooke SJ, O’Connor CM (2010) Making conservation physiology relevant to policy makers and conservation practitioners. Conserv Lett 3: 159–166.

Cooke SJ, Sack L, Franklin CE, Farrell AP, Beardall J, Wikelski M, Chown SL (2013) Conservation physiology: perspectives on an increasingly integrated and essential science. Conserv Physiol 1: doi:10.1093/conphys/cot001.

Crossin GT, Phillips RA, Trathan PN, Fox DS, Dawson A, Wynne-Edwards KE, Williams TD (2012) Migratory carryover effects and endocrinological correlates of reproductive decisions and reproductive success in female albatrosses. Gen Comp Endocrinol 176: 151–157.

Crossin GT, Phillips RA, Wynne-Edwards KE, Williams TD (2013) Postmigratory body condition and ovarian steroid production predict breeding decisions by female gray-headed albatrosses. Physiol Biochem Zool 86: 761–768.

Davey C, Lill A, Baldwin J (2000) Variation during breeding in parameters that influence blood oxygen carrying capacity in shearwaters. Aust J Zool 48: 347–356.

Dawson RD, Bortolotti GR (1997a) Are avian hemocrits indicative of condition? American kestrel as a model. J Wildlife Manage 61: 1297–1306.

Dawson RD, Bortolotti GR (1997b) Ecology of parasitism of nestling American kestrels by Carnus haemapterus (Diptera: Carnidae). Can J Zool 75: 2021–2026.
DeGraw WA, Kern MD (1985) Changes in the blood and plasma volume of Harris’ sparrows during postnuptial molt. *Comp Biochem Physiol A Comp Physiol* 81: 888–891.

DeGraw WA, Kern MD, King JR (1979) Seasonal changes in the blood composition of captive and free-living white-crowned sparrows. *J Comp Physiol* 129: 151–162.

Driver EA (1981) Hematological and blood chemical values of mallard, *Anas p. platyrhynchos*, drakes before, during and after remigial moult. *J Wildlife Dis* 17: 413–421.

Dudaniec RY, Klein dorfer S, Fessel B (2006) Effects of the introduced ectoparasite *Philornis downsi* on haemoglobin level and nestling survival in Darwin’s small ground finch (*Geospiza fuliginosa*). *Aust Ecol* 31: 88–94.

Dufva R (1996) Blood parasites, health, reproductive success, and egg volume in female Great Tits *Parus major*. *J Avian Biol* 27: 83–87.

Dzialowski EM, Sutherland PR (2004) Maternal effects of egg size on emu *Dromaius novaehollandiae* egg composition and hatching phenotype. *J Exp Biol* 207: 597–606.

Eeva T, Tanhuanpää S, Räbergh C, Airaksinen S, Nikinmaa M, Leikhoinen E (2000) Biomarkers and fluctuating asymmetry as indicators of pollution-induced stress in two hole-nesting passerines. *Func Ecol* 14: 235–243.

Fair J, Whitaker S, Pearson B (2007) Sources of variation in haematocrit in birds. *Ibis* 149: 535–552.

Fessel B, Klein dorfer S, Tebbich S (2006) An experimental study on the effects of an introduced parasite in Darwin’s finches. *Biol Conserv* 127: 55–61.

Gayathri KL, Hegde SN (1994) Sexual differences in blood values of the pigeon, *Columbia livia*. *Comp Biochem Physiol B 109*: 219–224.

Gayathri KL, Hegde SN (2006) Alteration in haematocrit values and plasma protein fractions during the breeding cycle of female pigeons, *Columbia livia*. *Anim Reprod Sci* 91: 133–141.

Hannam K (2006) Ectoparasitic blow flies (*Protocalliphora* sp.) and nesting Eastern Bluebirds (*Sialia sialis*): direct effects and compensatory strategies. *Can J Zool* 84: 921–930.

Hanssen SA, Folstad I, Erikstad KE (2003) Reduced immunocompetence and cost of reproduction in common eiders. *Oecologia* 136: 457–464.

Harrison GL, Harrison LR (1986) *Clinical Avian Medicine and Surgery*. W.B. Saunders, London.

Hawkey C, Horsley DT, Keymer IF (1989) Haematology of wild penguins (*Sphenisciformes*) in the Falkland Islands. *Avian Pathol* 18: 495–502.

Herrera-Dueñas A, Pineda J, Antonio MT, Aguirre JI (2014) Oxidative stress of House Sparrow as bioindicator of urban pollution. *Ecol Indic* 42: 6–9.

Jaensch S, Clark P (2004) Haematological characteristics of response to inflammation or traumatic injury in two species of black cockatoos: *Calyptorhynchus magnificus* and *C. funereus*. *Comp Clin Pathol* 13: 9–13.

Johnsen TS, Zuk M (1998) Parasites, morphology, and blood characters in male red jungle fowl during development. *Condor* 100: 749–752.

Johnson LS, Albrecht DJ (1993) Effects of haematophagous ectoparasites on nestling house wrens, *Troglydytes aedon*: who pays the cost of parasitism? *Oikos* 66: 255–262.

Jones PJ (1983) Haematocrit values of breeding red-billed queleas *Quelea quelea* (Aves: Ploceidae) in relation to body condition and thymus activity. *J Zool* 201: 217–222.

Kalirski A, Wawrzyniak J, Barbura M, Skwar ska J, Zielinski P, Barbura J (2009) Haemoglobin concentration and body condition of nestling Great Tits *Parus major*: a comparison of first and second broods in two contrasting seasons. *Ibis* 151: 667–676.

Kalinski A, Markowski M, Barbura M, Mikus W, Skwarska J, Wawrzy niak J, Gladowski M, Zielinski P, Barbura J (2011) Weak correlation between haemoglobin concentration and haematocrit of nestling Great Tits *Parus major* and Blue Tits *P. caeruleus*. *Ornis Fennica* 88: 234–240.

Kalinski A, Barbura M, Skwarska J, Wawrzy niak J, Zielinski P, Gladowski M, Markowski M, Barbura J (2012) Parallel variation in haemoglobin concentration in nestling-rearing Blue Tits *Cyanistes caeruleus* and Great Tits *Parus major*. *Acta Ornithol* 47: 129–136.

Kaminski P, Jerzak L, Sparks TH, Johnston A, Bochen ski M, Kasprzak M, Winiwska E, Mroczkowski S, Tryjanowski P (2014) Sex and other sources of variation in the haematological parameters of White Stork *Ciconia ciconia* chicks. *J Ornithol* 155: 307–314.

Kasprzak M, Hetman i ski T, Kulcyzkowska E (2006) Changes in hematological parameters in free-living pigeons (*Columba livia f. urbana*) during the breeding cycle. *J Ornithol* 147: 599–604.

Khan MA, Razamara SA, Younus M, Khan MS, Khan I, Abbas T (2006) Prevalence and effect of helminthiasis on haematological parameters in the migratory sparrows (*Alauda arvensis*) and treatment with an antihelmin tic, fenbendazole. *Pakistan J Zool* 38: 105–108.

Koste lecka-Myrcha A (1997) The ratio of amount of haemoglobin to total surface area of erythrocytes in birds in relation to body mass, age of nestlings and season of the year. *Physiol Zool* 70: 278–282.

Koste lecka-Myrcha A (2002) The ratio of amount of haemoglobin to total surface area of erythrocytes in mammals. *Acta Theriol* 47: 209–220.

Koste lecka-Myrcha A, Jaroszewicz M (1993) The changes in the values of red blood indices during the nestling development of the House Martin *Delichon urbica*. *Acta Ornithol* 28: 39–46.

Koste lecka-Myrcha A, Pinowski J, Tomek T (1970) Changes in respiratory function of the blood of nestling Tree Sparrows (*Passer m. montanus L*) during their development. *Bull Acad Pol Sci* 18: 717–722.

Koste lecka-Myrcha A, Pinowski J, Tomek T (1971) Changes of the respiratory function of blood of nestling common sparrows *Passer domesticus L* during their development. *Bull Acad Pol Sci* 19: 639–645.

Koste lecka-Myrcha A, Pinowski J, Tomek T (1973) Changes in the hematological values during the nestling period of the Great Tit (*Parus major L*). *Bull Acad Pol Sci* 21: 725–732.

Krams IA, Suraka V, Rantala MJ, Sepp T, Mierauskas P, Vrublevska J, Krama T (2013) Acute infection of avian malaria impairs concentration of haemoglobin and survival in juvenile altricial birds. *J Zool* 291: 34–41.
Landys-Giannelli MM, Jukema J, Piersma T (2002) Blood parameter changes during stopover in a long-distance migratory shorebird, the bar-tailed godwit Limosa lapponica taymyrensis. J Avian Biol 33: 451–455.

Leighton FA, Peakall DB, Butler RG (1983) Heinz-body hemolytic anemia from the ingestion of crude oil: a primary toxic effect in marine birds. Science 220: 871–873.

Lill A, Rajchl K, Yachou-Wos L, Johnstone CP (2013a) Are haematocrit and haemoglobin concentration reliable body condition indicators in nestlings: the Welcome Swallows as a case study. Avian Biol Res 6: 57–66.

Lill A, Yachou-Wos L, Johnstone CP (2013b) Are haematocrit and haemoglobin concentration reliable indicators of body condition in adult Welcome Swallows? Emu 113: 93–98.

Limiñana R, López-Olvera JR, Gallardo M, Fordham M, Urios V (2009) Blood chemistry and hematological values in free-living nestlings of Montagu’s Harriers (Circus pygargus) in a natural habitat. J Zoo Wildlife Med 40: 687–695.

Mazur OE, Pronin NM, Tolochko LV (2007) Hematological and immunological properties of herring gull (Larus argentatus) nestlings experimentally infected with Diphyllobothrium dendriticum (Cestoda: Pseudophyllidae). Biol Bull 34: 346–352.

Milenkaya O, Weinstein N, Legge S, Walters JR (2013) Variation in body mass, nest site quality and productivity in a colonial waterbird, the whiskered tern (Chlidonias hybrida, Aves: Sternidae). J Zool Syst Evol Res 53: (in press). doi:10.1111/jzs.12084.

Minias P, Włodarczyk R, Janiszewski T (2015b) Opposing selective pressures may act on the colony size in a waterbird species. Evol Ecol 29: 283–297.

Møller AP (1997) Developmental stability and fitness: a review. Am Nat 149: 916–932.

Moreno J, Merino S, Potti J, de Leoñ A, Rodríguez R (1999) Maternal energy expenditure does not change with flight costs or food availability for nestlings. Behav Ecol Sociobiol 46: 244–251.

Mortimer L, Lill A (2007) Activity-related variation in blood parameters associated with oxygen transport and chronic stress in little penguins. Aust J Zool 55: 249–256.

Motta ROC, Marques MVR, Junior FCF, Andery DdA, Horta RS, Peixoto RB, Lacorte GA, Moreira PdA, Paes Leme FoD, Melo MM et al. (2013) Does haemoporicidin infection affect hematological and biochemical profiles of the endangered Black-fronted piping-guan (Aburria jacobina)? PeerJ 1: e45. doi:10.7717/peerj.45.

Myrcha A, Kostecka-Myrcha A (1980) Hematological studies on Antarctic birds. I. Hematological indices in some species of the birds studied during Australian summer. Pol Polar Res 1: 169–173.

Nadolski J, Skwarska J, Kaliniska A, Baribura M, Śniegula R, Baribura J (2006) Blood parameters as consistent predictors of nesting performance in great tits (Parus major) in the wild. Comp Biochem Physiol A Mol Integr Physiol 143: 50–54.

Navarro J, González-Solis J, Visco G (2007) Nutritional and feeding ecology in Cory’s shearwater Calonectris diomedea during breeding. Mar Ecol Prog Ser 351: 261–271.

Norambuena MC, Bozinovic F (2009) Health and nutritional status of a perturbed Black-necked Swan (Cygnus melancoercypus) population: diet quality. J Zoo Wildlife Med 40: 607–616.

Norte AC, Lobato DNC, Braga EM, Antonini Y, Lacorte G, Gonçalves M, Lopes de Carvalho I, Gern L, Núncio MS, Ramos JA (2013) Do ticks and Borrelia burgdorferi s.l. constitute a burden to birds? Parasitol Res 112: 1903–1912.

O’Brien EL, Morrison BL, Johnson LS (2001) Assessing the effects of haematoporicid ectoparasites on the health of nestling birds: haematocrit vs haemoglobin levels in House Wrens parasitized by blow fly larvae. J Avian Biol 32: 73–76.

O’Dwyer TW, Buttner WA, Priddel DM (2007) Differential rates of offspring provisioning in Gould’s petrels: are better feeders better breeders? Aust J Zool 55: 155–160.

Pavlak M, Vlahović K, Jeričić J, Dovć A, Župančić Ž (2005) Age, sexual and seasonal differences of haematological values and antibody status to Chlamydoëphila sp. in feral and racing pigeons (Columba livia forma domestica) from an urban environment (Zagreb, Croatia). Eur J Wildlife Res 51: 271–276.

Piersma T, Everaarts JM, Jukema J (1996) Build-up of red blood cells in refuelling bar-tailed godwits in relation to individual migratory quality. Condor 98: 363–370.
Ponganis PJ, Starke LN, Horning M, Kooyman GL (1999) Development of diving capacity in Emperor Penguins. *J Exp Biol* 202: 781–786.

Potti J, Moreno J, Merino S, Frías O, Rodríguez R (1999) Environmental and genetic variation in the haematocrit of fledgling pied flycatchers. *Oecologia* 120: 1–8.

Powell C, Lill A, Johnston CP (2013) Body condition and chronic stress in urban and rural Noisy Miners. *Open Ornithol J* 6: 25–31.

Powlesland RG (1977) Effects of the haematophagous mite *Omnithonyssus bursa* on nestling starlings in New Zealand. *New Zeal J Zool* 4: 85–94.

Prats MT, Palacios L, Gallego S, Riera M (1996) Blood oxygen transport properties during migration to higher altitude of wild quail, *Coturnix coturnix coturnix*. *Physiol Zool* 69: 912–929.

Prinzinger R, Hakimi GA (1997) The influence of moulting on blood parameters in the Starling *Sturnus vulgaris*. *J Ornithol* 138: 233–234.

Prinzinger R, Misovic A (2010) Age-correlation of blood values in the rock pigeon (*Columbia livia*). *Comp Biochem Physiol A Mol Integr Comp Physiol* 156: 351–356.

Pryke SR, Rollins LA (2012) Mothers adjust offspring sex to match the quality of the rearing environment. *Proc Biol Sci* 279: 4051–4057.

Pryke SR, Rollins LA, Griffith SC (2011) Context-dependent sex allocation: constraints on the expression and evolution of maternal effects. *Evolution* 65: 2792–2799.

Pryke SR, Astheimer LB, Griffith SC, Buttemer WA (2012) Covariation in life-history traits: differential effects of diet on condition, hormones, behavior, and reproduction in genetic finch morphs. *Am Nat* 174: 455–464.

Puerta M, Nava MP, Venero C, Veiga JP (1995) Hematometry and plasma chemistry of house sparrows (*Passer domesticus*) along the summer months and after testosterone treatment. *Comp Biochem Physiol A* 110: 303–307.

Reynolds SJ, Waldron S (1999) Body water dynamics at the onset of egg-laying in the zebra finch *Taeniopygia guttata*. *J Avian Biol* 30: 1–6.

Saino N, Calza S, Møller AP (1998) Effects of a dipteran ectoparasite on immune response and growth trade-offs in barn swallow, *Hirundo rustica*, nestlings. *Oikos* 81: 217–228.

Salvante KG, Williams TD (2002) Yolk vitellogenin dynamics during egg-laying: daily variation, repeatability and relationship with egg size. *J Avian Biol* 33: 391–398.

Samour J, Naldo J, Libanah N, Rahman H, Sakkir M (2011) Age-related hematology and plasma chemistry changes in captive Masai ostriches (*Struthio camelus massaicus*). *Comp Clin Pathol* 20: 659–667.

Schmidt-Nielsen K (1975) Recent advances in avian respiration. *Symp Zool Soc Lond* 35: 33–47.

Sergent N, Rogers T, Cunningham M (2004) Influence of biological and ecological factors on hematochemical values in wild Little Penguins, *Eudyptula minor*. *Comp Biochem Physiol A Mol Integr Physiol* 138: 333–339.

Shave HJ, Howard V (1976) A hematologic survey of captive waterfowl. *J Wildlife Dis* 12: 195–201.

Simmons P, Lill A (2006) Development of parameters influencing blood oxygen carrying capacity in the welcome swallow and fairy martin. *Comp Biochem Physiol A Mol Integr Physiol* 143: 459–468.

Simon A, Thomas D, Blondel J, Perret P, Lambrechts MM (2004) Physiological ecology of Mediterranean blue tits: effects of ectoparasites (*Protocalliphora* spp.) and food abundance on metabolic capacity of nestlings. *Physiol Biochem Zool* 77: 492–501.

Smolczyński R, Kalirski A, Wawrzyniak J, Barbirua M, Skwarska J, Zielinski P, Barbirua J (2006) Effects of experimental reduction in nest micro-parasite and macro-parasite loads on nestling hemoglobin level in blue tits *Parus caeruleus*. *Acta Oecol* 30: 223–227.

Stoot LJ, Cairns NA, Cull F, Taylor JJ, Jeffrey JD, Morin F, Mandelman JW, Clark TD, Cooke SJ (2014) Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review. *Conserv Physiol* 2: doi:10.1093/conphys/cou011.

Swanson DL (1990) Seasonal variation of vascular oxygen transport in the Dark-eyed Junco. *Condor* 92: 62–66.

Tripet F, Richner H (1999) Density-dependent processes in the population dynamics of a bird ectoparasite *Ceratophyllum gallinae*. *Ecology* 80: 1267–1277.

Velguth KE, Payton ME, Hoover JP (2010) Relationship of hemoglobin concentration to packed cell volume in avian blood samples. *J Avian Med Surg* 24: 115–121.

Verhulst S, Oosterbeek K, Bruinzeel LW (2002) Haematological parameters, mass and moult status in dunlins *Calidris alpina* preparing for spring migration. *Avian Sci* 2: 199–206.

Vleck CM, Vleck D (2002) Physiological condition and reproductive consequences in Adélie penguins. *Integr Comp Biol* 42: 76–83.

Wagner EC, Prevolek JS, Wynne-Edwards KE, Williams TD (2008a) Hematological changes associated with egg production: estrogen dependence and repeatability. *J Exp Biol* 211: 400–408.

Wagner EC, Stables CA, Williams TD (2008b) Hematological changes associated with egg production: direct evidence for changes in erythropoiesis but a lack of resource dependence? *J Exp Biol* 211: 2960–2968.

Weber R, Vinogradov SN (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. *Physiol Rev* 81: 569–628.

Whitworth TL, Bennett GF (1992) Pathogenicity of larval *Protocalliphora* (Diptera: Calliphoridae) parasitizing nestling birds. *Can J Zool* 70: 2184–2191.

Williams TD (2004) What causes the decrease in haematocrit during egg production? *Funct Ecol* 18: 330–336.

Williams TD, Ames CE, Kiparissis Y, Wynne-Edwards KE (2005) Sequence-specific variation in yolk oestrogen levels, and relationship between oestrogen levels and nestling growth in the zebra finch, *Taeniopygia guttata*. *Symp Zool Soc Lond* 35: 33–47.
to plasma oestrogen in female zebra finches (Taeniopygia guttata).
Proc Biol Sci 272: 173–177.

Willie J, Travers M, Williams TD (2010) Female zebra finches (Taeniopygia
guttata) are chronically but not cumulatively ‘anemic’ during
repeated egg laying in response to experimental nest predation.
Physiol Biochem Zoal 83: 119–126.

Wilson AJ, Nussey DH (2010) What is individual quality? An evolutionary
perspective. Trends Evol Evol 25: 207–214.

Winkler AS, Marsden J, Chaudhuri KR, Hambley H, Watkins PJ (1999)
Erythropoietin depletion and anaemia in diabetes mellitus. Diabet
Med 16: 813–819.