Heat conductivity of aerogel-based rolled materials for high-thermal isolation for equipment and pipelines

P P Pastushkov¹,², S I Gutnikov²,³, N V Pavlenko¹,², D Yu Zheldakov² and M D Stolyarov²

¹Research Institute of Building Physics Russian Academy of Architecture and Construction Sciences (21, Lokomotivny proezd, Moscow, 127238, Russian Federation)
²Lomonosov Moscow State University (1, Leninskie gori, Moscow, 119234, Russian Federation)
³Certification research center «Thermal insulation» (1/77, Leninskie gori, Moscow, 119234, Russian Federation)

Abstract. In this article, the general information about aerogels as well as application areas of materials based on them are presented. Scientific and technical review on heat conductivity of aerogel-based thermal insulation materials was made. It was determined, that among the Russian studies the results of behaviour of these materials under high temperatures are not presented. Comprehensive studies of thermal characteristics, including heat conductivity values in temperature range of 10–650 °C (where 650 °C is the maximal operating temperature) for the thermal insulation rolled materials based on TiO₂-aerogel DRT06-Z (Alison Aerogel) were carried out. The mathematical relationship between heat conductivity and operating temperature in range of 10–650 °C was determined. Using the obtained results, the calculation of thickness of insulation for the studied aerogel-based rolled materials was realized according to the construction rules SP 61.13330.2010, that can be applied for design of high-heat insulation for equipment and pipelines.

1. Introduction
During the last years, the products based on composite materials using aerogel of different composition as a high-porosity components are more often in available at the market of heat insulating materials. Aerogel is a gel-like material where liquid phase is fully replaced by gaseous phase. Structure of aerogel is characterized by mainly open porosity (at least, 90 % of pores are micro- and nanosized) and a high specific surface area. Structurally, aerogel is rigidly-bound particles of organic or inorganic component, that form a high-porosity framework, filled by air or any gas. Such structure of the material provides with low values of heat conductivity, light refraction coefficient, dielectric permeability and sound velocity [1].

The first mention of aerogel in scientific-technical literature was appeared in the 30s of the XX century. However, practical application of it is limited because of the industrial technology absents. At the end of the XX century, only, synthesis methods for different types of aerogels were refined that...
allowed introduction of materials based on them into different areas. Nowadays, the most popular application area for aerogels are space industry, chemistry, energetics, medicine, protection of the environment etc. [2–7]. Also, aerogels, due to unique thermal characteristic, can be applied as an isolative material from high and cold temperatures.

At present time, aerogel same as a vacuum insulated panel are the one of the most effective thermal insulative materials (with heat conductivity lower than 0.020 W/(m·°C) at room temperature). But, aerogels vs. vacuum insulated panels potentially can be exploited at high temperatures.

Nowadays there are a lot of composite materials bearing aerogels in combination this different functional components [8, 9]. To achieve heat insulative and heat protective characteristics the inorganic refractory components such as ceramics, glass and mineral fibers normally are used. As a matrix the organic and inorganic aerogel is used. But, if a high-temperature heat protection is required, inorganic aerogel is used, only. Among the inorganic aerogels, only TiO$_2$-aerogels are synthesized commercially [10–13].

But a quite high costs of aerogel-based materials vs. ordinary heatinsulative analogues leads to a limited application of them in construction industry as insulators. From the other hands, the complex of improved thermal, physical and mechanical characteristics typical for advanced aerogel-based rolled materials provides many significant advantages when a heat insulation of pipes, reservoirs, equipment. That why such materials more are often used in industry (Figure 1), although a high price. This article is focused on description of study of heat conductivity for the rolled material DRT06-Z (Alison Aerogel), consisting of glass fiber and TiO$_2$-aerogel as well as calculation of a required insulation thickness for equipment and pipeline under a high-temperature maintenance, using the obtained results.

![Figure 1](image1.png)

Figure 1. Application of aerogel-based rolled materials for heat insulation of equipment and pipelines.

2. Study background

The above review of up-to-date scientific-and-technological literature about heat conductivity of aerogel based materials demonstrates almost complete absence of such studies in Russia. Russian literature sources are focused on review of foreign studies [1, 14] or studies of heat conductivity of aerogel based materials at 25 °C [15, 16], applicable for civil application only, but not applicable for technical insulation. So, to determine thermal characteristics of construction materials the comprehensive study for rolled aerogel-based material DRT06-Z (Alison Aerogel) including the tests on such performance characteristics as steam permeability, sorption humidity, short-term and long-term water absorption, compressive strength at 10 % of deformation, tensile strength parallel to the front surfaces, radius of curvature, heat conductivity in temperature range of 10–650 °C (where 650 °C is the maximal operating temperature for this material) was carried out in the laboratory of construction thermophysics NIISF RAASN and Certification research center «Thermal insulation».
Heat conductivity test at high temperature for the studied samples was carried out with the device GHP 456 Titan (Figure 2). In the test three samples of material DRT06-Z were prepared in form of plates with size of 300x300 mm in nitrogen protective medium according to Russian Standard GOST 7076 in temperature range of 100–650 °C. The heat conductivity test in temperature range of 10–45 °C was carried out with the device ITP-MG4 «250» and the plate-like samples with size of 250x250 mm. As a result was average value of heat conductivity among all tested samples at each temperature point [17].

![Figure 2. Heat conductivity test applying machine GHP 456 Titan.](image)

Table 1 demonstrates the resulted experimental data of heat conductivity for the rolled material based on aerogel DRT06-Z (Alison Aerogel).

Average temperature of a sample, °C	Heat conductivity of dry sample, \(\lambda_0 \), W/(m·°C)
10	0,019
25	0,020
125	0,025
300	0,039
400	0,056
500	0,072
650	0,112

Figure 3 graphically presents effect of different temperature on heat conductivity for the tested materials.
Figure 3. Effect of temperature on heat conductivity of aerogel DRT06-Z.

The study result show, that at high temperatures (higher than 600 °C) the agglomeration of SiO₂-nanoparticles takes place, which, normally, leads to structure transformation of aerogel [18–20]. Variation in porosity as well as increasing of radiation effect when testing under high temperatures initiates a nonlinear growth in aerogel heat conductivity that is in agreements with the obtained data (Figure 3).

3. Using the results
The determined relationship between heat conductivity of dry roll material based on aerogel DRT06-Z (λ₀, W/(m·°C)) and average temperature (tₐ, °C) can be described by equation (1) and allow calculation a heat conductivity in all temperature range of the studied material application:

\[\lambda = 0.0182 \cdot e^{0.0028 \cdot t_{\text{aver}}} \] \hspace{1cm} (1)

Using these data, the calculation of thermal insulation thickness for roll material based on aerogel DRT06-Z was realized according to standard procedure SP 61.13330.2010 "SNiP 41-03-2003 Thermal insulation of equipment and pipelines". In addition, the thickness of the insulation layer according to the normalized heat flux density for pipelines with positive temperatures located in the open air and indoors, as well as the thickness of the insulation layer at certain temperature at the insulation surface were determined.

In Table 2 the calculating data for the insulation layer at certain temperature at the insulation surface according to standard procedure 2.3 SP 61.13330.2010 are shown taking into account thicknesses for products from rolled material based on aerogel DRT06-Z (Alison Aerogel): 3 mm, 6 mm, 10 mm. Temperatures at surface of thermal insulation were taken for insulated surfaces located in the working or serviced areas of the room according to paragraph 6.7 of SP 61.13330.2010.

Table 2. Required thickness of rolled material DRT06-Z vs. temperature of its external surface.

Pipeline diameter, mm	50	100	150	200	250	300	350	400	450	500	550	600
Temperature of thermal element, °C												
50	40	45	55									
100												
150												
200												
250												
300												
350												
400												
450												
500												
550												
600												

Insulation thickness, mm
4. Conclusions

Complex of studies of rolled material based on aerogel DRT06-Z (Alison Aerogel) allowed obtaining some performance thermal characteristics, including properties, those were studied for heat insulative aerogel based materials for the first time. The obtained values of hat conductivity in temperature range of 10–650 °C are significantly lower vs. ordinary thermal insulators, applied for technical insulation at high temperatures. Such comparative analysis will be carried out in further studies. The determined mathematical relationship between temperature and heat conductivity allowed calculation of thermal insulation thickness for roll material based on aerogel DRT06-Z to standard procedure SP 61.13330.2010 that can be used when design thermal insulation of equipment and pipelines exploited at high temperature.

References
[1] Babashov VG, Varrik N M and Karaseva T A 2019 Using of aerogels for production of heat insulative materials (review) Trudy VIAM 6(78) 32-42
[2] Ding B, Si Y, Ge J, Tang X, Huang M, Zhu J and Yu Jianyong 2013 Three-dimensional fiber-based airgel tissue engineering scaffold and production method thereof Faming Zhuanli Shenqing
[3] Tikhomirov B A 2018 Sorption of atmospheric gases (N₂, O₂, Ar, CO₂, and H₂O) by silica aerogel Atmospheric and Oceanic Optics 31(3) 232-237
[4] Baskakov S A, Manzhos R A, Lobach A S, Baskakova Y V, Kulikov A V, Martynenko V M, Kabachkov E N, Krivenko A G, Shulga Y M, Milovich F O, Kumar Y and Michtchenko A 2018 Properties of a granulated nitrogen-doped graphene oxide aerogel Journal of Non-Crystalline Solids 498 236-243
[5] Singh P and Tan C M 2018 Time evolution of packaged led lamp degradation in outdoor applications Optical Materials 86 148-154
[6] Kudryavtsev P G and Figovsky O L 2016 Nano composite organomineral hybrid materials Part III. Nanotechnologies in Construction: A Scientific Internet-Journal 8 316-49
[7] Issa A A and Luyt A S 2019 Kinetics of alkoxy silanes and organoalkoxy silanes polymerization: a review Polymers 11 3537
[8] Voronova M I, Surov O V, Rubleva N V, Kochkina N E and Zakharov A G 2019 Dispersibility of nanocrystalline cellulose in organic solvents Khimiya Rastitel' nogo Syr'ya 1 39-50
[9] Khusain B K, Shlygina I A, Brodsky A R and Zhurinov M Z 2016 Quantum chemical modeling of regents and products in the process of siloxane aerogel formation Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(5) 3073–3082
[10] Lugovskoy A A, Osipov K Yu and Tikhomirov B A 2017 Sorption of water molecules by silicon (SiO₂) aerogel nanopores Atmospheric and Oceanic Optics 2 124–127
[11] Lugovskoi A and Duchko A 2015 The D₂O absorption spectra in SiO₂ airgel pores: technical features of treatment In 21st International Symposium Atmospheric and Ocean Optics: Atmospheric Physics Vol. 9680 p 968004 SPIE
[12] Sinitsa L and Lugovskoi A 2014 The D₂O absorption spectra in the treatment surfaces SiO₂ airgel In 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics Vol. 9292, p 92920N SPIE
[13] Duchko A, Dudaryenok A, Lugovskoi A, Serdyukov V and Tikhomirov B 2016 The D₂O absorption spectra in SiO₂ airgel pores: technical features of treatment In 22nd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics Vol. 10035 p 100350H SPIE
[14] Pustovgar A P and Vedenin A D 2013 Heat insulative nanocomposites on the base of SiO₂-aerogel Scientific and Technical Volga region Bulletin 1 252-254
[15] Baikov I R, Smorodova O V, Trofimov A Y and Kuznetcova E V 2019 Experimental study of heat-insulating aerogel-based nanomaterials Nanotechnologies in Construction: A Scientific Internet-Journal 11(4) 462-477
[16] Shindryaev A V, Kozhevnikov Yu Yu, Lebedev A E, Menshutina N V 2017 Study of the process of production of thermal insulation aerogels-based materials Advances in Chemistry and Chemical Technology 31 130-132
[17] Pastushkov P P 2019 On the problems of determining the thermal conductivity of building materials Stroitel’nye Materialy 4 57-63
[18] Huang D, Guo C, Zhang M and Shi L 2017 Characteristics of nanoporous silica aerogel under high temperature from 950°C to 1200°C Materials & Design 129 82-90
[19] Lyu S, Yang X and Shi D 2017 Effect of high temperature on compression property and deformation recovery of ceramic fiber reinforced silica aerogel composites Sci. China Technol. Sci 60 1681–1691
[20] Nasibullin R T, Ponomarev Y N, Cherepanov V N 2018 Interaction potential of H₂O molecules and water layer adsorbed on surface of aerogel nanopores Proceedings of SPIE - The International Society for Optical Engineering