Two-dimensional bright and dark-in-bright dipolar Bose–Einstein condensate solitons on a one-dimensional optical lattice

S K Adhikari

Instituto de Física Teórica, UNESP—Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, Brazil

E-mail: adhikari@ift.unesp.br

Received 24 May 2016
Accepted for publication 12 June 2016
Published 1 July 2016

Abstract

We study the statics and dynamics of anisotropic, stable, bright and dark-in-bright dipolar quasi-two-dimensional Bose–Einstein condensate (BEC) solitons on a one-dimensional (1D) optical-lattice (OL) potential. These solitons mobile in a plane perpendicular to a 1D OL trap can have both repulsive and attractive contact interactions. Dark-in-bright solitons are the excited states of bright solitons. The solitons, when subjected to a small perturbation, exhibit sustained breathing oscillation. Dark-in-bright solitons can be created by phase imprinting a bright soliton. At medium velocities the collision between two solitons is found to be quasi-elastic. Results are demonstrated by a numerical simulation of the three-dimensional mean-field Gross–Pitaevskii equation in three spatial dimensions employing realistic interaction parameters for a dipolar 164Dy BEC.

Keywords: two-dimensional soliton, optical lattice

(Some figures may appear in colour only in the online journal)

1. Introduction

A bright soliton can travel with constant velocity in one dimension (1D) maintaining its shape due to a cancellation of nonlinear attraction and dispersive repulsion. Solitons have been studied in water waves, Bose–Einstein condensates (BECs) [1] and nonlinear optics [2]. Of these, solitons in BECs have drawn much attention lately because of their inherent quantum interaction. Quasi-1D bright matter-wave solitons were predicted [3] for attractive atomic interaction and created in BECs of 7Li [4, 5] and 85Rb [6] atoms by adjusting the atomic contact interaction to a suitable attractive value using a Feshbach resonance [7]. Due to collapse instability for attractive contact interaction in alkali-metal-atom BECs, (a) one cannot have a quasi-two-dimensional (quasi-2D) bright soliton for a cubic nonlinearity, and (b) the usual quasi-1D bright solitons can accommodate a small number of atoms [4, 6].

Recent observation of dipolar BECs of 52Cr [8], 164Dy [9] and 168Er [10] atoms has started a great deal of activity in this area [11–20] including a new investigation of BEC solitons in a different scenario. Apart from quasi-1D bright dipolar BEC solitons [21], asymmetric quasi-2D bright [22–28] and vortex [29, 30] solitons have been predicted. Also, in a dipolar BEC, unlike a nondipolar BEC, these solitons can be realized for a repulsive contact interaction. Consequently, one can have a robust dipolar soliton which can accommodate a large number of atoms. There have been studies of the collision of quasi-1D [21, 31] and quasi-2D [23, 26, 29] dipolar solitons.

In this paper we study the statics and dynamics of quasi-2D dipolar bright and dark-in-bright solitons mobile in the x–z plane and trapped along the y axis by a 1D periodic optical lattice (OL) potential. Dipolar atoms will always be considered polarized along the z direction. A periodic OL potential cannot localize a BEC to form a bright soliton with only repulsive contact interaction, although localized gap solitons in the band-gap of a periodic OL potential can be formed in a repulsive nondipolar [32] and dipolar [33] BEC. The gap solitons...
are trapped in all directions and hence cannot move freely like a bright soliton without a trap in a certain direction(s). Because of the anisotropic nature of the dipolar interaction and the OL potential, bright and dark-in-bright quasi-2D dipolar solitons, which we consider here, have a fully anisotropic shape. For a small strength of the OL potential, the quasi-2D soliton extends over several OL sites in the y direction. However, for a moderate strength of the OL potential and for a moderate number of dipolar atoms, compact quasi-2D solitons occupying a single OL site can be formed and we will be mostly interested in such compact solitons. For a large number of dipolar atoms with dominating dipolar interaction the quasi-2D solitons collapse due to an excess of dipolar energy as in a trapped dipolar BEC [34] and when the contact atomic repulsion dominates over the dipolar interaction the atoms escape to infinity and no soliton can be formed. The result of the present study is illustrated using the numerical solution of the time-dependent three-dimensional (3D) mean-field Gross–Pitaevskii (GP) equation [47] using realistic values of the interaction parameters of 135Rb atoms [9].

These quasi-2D dark-in-bright solitons are themselves bright solitons mobile in the x–z plane and are the excited states of quasi-2D bright solitons with a notch (zero in density), for example, along $x = 0$ or $z = 0$. Dark-in-bright solitons with zero in the middle are similar to the lowest odd-parity excited states of the harmonic oscillator potential. Dark solitons in a confined BEC have been observed experimentally [35–37]. Dark solitons with a notch imprinted [35, 38] on a trapped repulsive BEC are dynamically unstable and are destroyed by snake instability [39–46]. Such instability can be reduced as the confining trap is made weaker [39]. The present dark-in-bright solitons created on quasi-2D solitons are not subject to any confining trap in the x–z plane and do not exhibit any kind of dynamical instability.

To study the stability of the quasi-2D solitons we perform two tests. The solitons are found to exhibit sustained breathing oscillation upon a small perturbation, introduced by a change in the scattering length, confirming their stability. Such a change in scattering length can be realized experimentally by varying a uniform background magnetic field near a Feshbach resonance [7]. As a more stringent test, we demonstrate the generation of a dark-in-bright soliton by introducing an extra phase of π on one half of the wave function (phase imprinting). Such a phase can be introduced in a laboratory using the dipole potential of a far-detuned laser beam [35, 38]. In a numerical real-time simulation of the mean-field model such a phase-imprinted profile is used as the initial state, which quickly transforms into a quasi-2D dark-in-bright soliton without exhibiting any dynamical instability at long time.

At medium velocities the frontal collision between two quasi-2D solitons is found to be quasi-elastic while the two solitons come out without any visible deformation in shape. Only in 1D is the collision between two analytic solitons truly elastic. However, the inelastic nature of the collision is expected at very low velocities in the case of two quasi-2D dipolar solitons.

2. Mean-field model

At ultra-low temperatures the properties of a dipolar condensate of N atoms, each of mass m, can be described by the mean-field GP equation, for the wave function $\phi(r,t)$, with nonlocal nonlinearity of the form: [49, 50]

$$i\hbar \frac{\partial \phi(r,t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \nabla^2 + V_{\text{dip}}(r) + \frac{4\pi \hbar^2 a N}{m} |\phi(r,t)|^2 + N \int U_{\text{OL}}(r - r') |\phi(r',t)|^2 d^3r' \right] \phi(r,t),$$

where $\int d^3r |\phi(r,t)|^2 = 1$ and a is the scattering length. To study 2D solitons mobile in the x–z plane we consider the following harmonic (H) or OL potential in the y direction:

$$V^H_{\text{trap}}(r) = \frac{1}{2} m \omega^2 y^2,$$

$$V^{\text{OL}}_{\text{trap}}(r) = s E_R \sin^2 \left(\frac{2\pi}{\lambda} y \right),$$

respectively, where ω is the frequency of the harmonic trap, and s is the strength of the OL trap in units of recoil energy $E_R = \hbar^2/(2m \lambda^2)$ where λ is the wavelength of the lattice. The dipolar interaction, for magnetic dipoles, is [50]

$$U_{\text{dd}}(R) = \frac{\mu_0 l^2}{4\pi} V_{\text{dip}}(R) = \frac{\mu_0 l^2}{4\pi} \frac{1 - 3 \cos^2 \theta}{|R|^3},$$

where $R = r - r'$ determines the relative position of the dipoles and θ is the angle between R and the direction of polarization z. μ_0 is the permeability of free space and μ is the dipole moment of an atom. The strength of dipolar interaction can be expressed in terms of the dipolar length a_{dd} defined by [50]

$$a_{\text{dd}} = \frac{\mu_0 l^2 m}{12 \pi \hbar^2}.$$

For the formation of a quasi-2D soliton, mobile in the x–z plane, a dimensionless GP equation for the dipolar BEC soliton can be written as [21, 50]

$$i \partial \phi(r,t)/\partial t = \left[-\frac{\nabla^2}{2} + V(y) + g |\phi(r,t)|^2 + g_{\text{dd}} \int V_{\text{dip}}(R) |\phi(r',t)|^2 d^3r' \right] \phi(r,t),$$

with

$$V^H(y) = \frac{1}{2} y^2, \quad V^{\text{OL}}(y) = s \frac{\sin^2 y}{2},$$

for the harmonic trap (2) and the OL trap (3), respectively, where $g = 4\pi a N$, and $g_{\text{dd}} = 3N a_{\text{dd}}$. In the case of the harmonic trap, length is expressed in (6) in units of oscillator length $l = \sqrt{\hbar/(m \omega)}$, energy in units of oscillator energy $\hbar \omega$, probability density $|\phi|^2$ in units of l^{-3}, and time in units of $t_0 = 1/\omega$. In the case of the OL trap, length is expressed in units
of $l = \lambda/(2\pi)$, energy in units of recoil energy E_R, probability density $|\phi|^2$ in units of l^{-3}, and time in units of $t_0 = m\lambda^2/(2\pi\hbar)$.

3. Numerical results

We consider 164Dy atoms in this study of BEC solitons. The magnetic moment of a 164Dy atom is $\mu = 10 \mu_B$ [9] with μ_B representing the Bohr magneton leading to dipolar lengths $a_{dd}(^{164}$Dy)$ \approx 132.7a_0$, where a_0 is the Bohr radius. The dipolar interaction in 164Dy atoms is roughly eight times as large as that in 52Cr atoms with a dipolar length $a_{dd}(^{52}$Cr)$ \approx 15.3a_0$. Because of the large magnetic moment, the dipolar 164Dy BEC will facilitate the formation of bright and dark-in-bright solitons.

The time-dependent GP equation (6) can be solved by different numerical methods [48, 51]. We solve the GP equation by the split-step Crank–Nicolson method [48, 52] with real- and imaginary-time propagation in Cartesian spatial coordinates using a space step of 0.1 and a time step of 0.0002 for a soliton of smaller size and a space step of 0.2 and a time step of 0.001 for a soliton of larger size. We employ the computer programs of [47, 52–54] for this purpose. As bright and dark-in-bright solitons are the ground states with specific parity, they can be obtained by imaginary-time propagation. The stability of the solitons is studied by real-time propagation.

To obtain a bright soliton in numerical simulation we consider the following initial Gaussian wave function:

$$\phi(r) = \frac{\pi^{-3/4}}{\sqrt{w_xw_yw_z}} \exp \left[-\frac{x^2}{2w_x^2} - \frac{y^2}{2w_y^2} - \frac{z^2}{2w_z^2}\right], \quad (8)$$

where w_x, w_y, and w_z are the widths along the x, y, and z axes, respectively. For a dark-in-bright soliton, for example, with a notch along $x = 0$, we consider the initial function

$$\phi(r) = \frac{\sqrt{2}x}{\pi^{3/2}w_x^2w_yw_z} \exp \left[-\frac{x^2}{2w_x^2} - \frac{y^2}{2w_y^2} - \frac{z^2}{2w_z^2}\right]. \quad (9)$$

A quasi-2D bright soliton was obtained by solving the 3D GP equation (6) by imaginary-time propagation using the initial function (8) with different values of the number of atoms N and the scattering length a. For a dominating dipolar interaction ($a_{dd} > a$), bright solitons are possible for a moderate number of atoms. The system collapses as the number of atoms is increased beyond a critical number N_{crit} due to an excess of dipolar energy density [34]. For a dominating contact repulsion ($a_{dd} < a$), no solitons can be formed. The stability region for the formation of a quasi-2D soliton in the parameter space for 164Dy atoms is obtained from an imaginary-time propagation of (6) in the same way as in [55, 56] for a nondipolar trapped BEC. For a small number of atoms ($N < 100$) and scattering length $a >> a_{dd}$ a quasi-2D bright soliton is numerically obtained by imaginary-time propagation starting from the initial Gaussian profile (8). Then the calculation is repeated increasing the number of atoms N and keeping all other parameters fixed. No such soliton can be obtained numerically for N greater than the critical number N_{crit}.

The result is illustrated in the $N_{crit} = a$ phase plot of figure 1(a) showing the critical number N_{crit} for a harmonic trap as well as an OL trap with two strengths: $s = 8$ and 40. We also plot in this figure the critical number of the dark-in-bright soliton on the OL potential of strength $s = 40$ obtained by imaginary-time simulation starting from the initial function (9) in a similar fashion. Although the case of the harmonic potential has been studied before and in the following we present only results for the OL potential, we include the results of the harmonic potential in the phase plot of figure 1 to address the difference between the two cases. The critical number of atoms increases with the increase of scattering length a. The bright solitons are unconditionally stable and last for ever in real-time propagation without any visible change of shape. Although the stability plot of figure 1(a) is closely related to the parameters of 164Dy atoms, a more universal $g = g_{dd}$ plot as shown in figure 1(b) is applicable to any dipolar BEC. The universal stability line of figure 1(b) has the approximate straight line shape and can be easily extrapolated to the case of larger nonlinearities g and g_{dd}.

The 1D harmonic and OL potentials along the y direction are quite different and it is of interest to know how this changes the stability and shape of quasi-2D solitons. We will mostly study quasi-2D OL solitons in a deep OL trap when the quasi-2D solitons occupy a single OL site. The harmonic trap is wide and can accommodate a larger number of atoms in a larger spatial extension compared to the OL trap which
can accommodate a smaller number of atoms in a single site with a smaller spatial extension. For a large number of atoms in the same OL trap the dipolar energy density will be too high to provoke collapse instability [34], viz. figure 1. However, as the strength s of the OL is lowered from 40 to 8, some atoms can tunnel to the adjacent site. This reduces the central dipolar energy density and collapse instability, thus accommodating a larger number of atoms in a shallow OL potential as seen in figure 1. The dark-in-bright soliton is an excited state of the bright soliton with zero in the middle and has a much larger spatial extension with a smaller dipolar energy density and hence can accommodate a larger number of atoms as can be seen by comparing the plots marked ‘b’ and ‘dib’ for $s = 40$ in figure 1(a). The shape (the aspect ratio in the 2D plane and not the actual size) of quasi-2D solitons in the case of a harmonic and deep OL potential is determined completely by the dipolar interaction and not the confining trap. However, the actual size of these solitons will be determined by both the confining potential and dipolar interaction. Hence these quasi-2D solitons have a similar shape (not size) in the 2D plane, independently of the trapping potential. For a shallow OL potential quasi-2D solitons occupying a few OL sites can be formed close to the stability line in figure 1. To the right and away from the stability line, the atomic contact repulsion increases and the soliton may extend to several OL sites and eventually will be delocalized for an excess of contact repulsion. Quasi-2D solitons on a harmonic potential have been thoroughly studied before [22–26] and we present a comprehensive study of quasi-2D solitons on an OL potential in the following.

In figures 2(a–f) we display the 3D isodensity profile of the quasi-2D bright solitons for different N, a and s, obtained by imaginary-time propagation of the GP equation with the OL potential starting with the initial wave function (8). Because of the OL trap in the y direction, the solitons have a quasi-2D shape in the x–z plane, as can be seen in figure 2. In this figure we present the results for two strengths of the OL potential: $s = 8$ and 40. Of these, $s = 8$ corresponds to a weaker OL trap and the quasi-2D solitons extend over several sites of the OL potential. Compact quasi-2D solitons occupying a single site of the OL trap is possible for $s = 40$. The size of the soliton in the x–z plane is small for parameters near the stability line, viz. figures 2(e) and (f), and is large for parameters away from it, viz. figure 2(d).

The present dark-in-bright solitons are the stable excited states of bright dipolar solitons in the same sense that the usual dark solitons of a trapped nondipolar BEC are very unstable excitations of trapped BECs. There have been a large number of investigations about how to stabilize these nondipolar dark solitons [39–46]. These studies revealed beyond any doubt that the transverse snake instability of nondipolar dark solitons is an inherent property and cannot be eliminated. This casts doubt on the possibility of a decent experiment with these dark solitons. We demonstrate that the presence of dipolar interaction does not only make the dark solitons stable but also make them mobile in a plane. This opens a new scenario of performing precise experiments with the present dark-in-bright solitons. We will demonstrate how a stable dark-in-bright dipolar soliton can be realized in a laboratory by phase imprinting [35, 38] a bright soliton.

Figure 2. 3D isodensity contour $|\psi(r)|^2$ of a bright soliton of 164Dy atoms in the OL trap $V(y) = s \sin^2 \nu^2$ for (a) $a = -5\xi_0$, $N = 200$, $s = 8$, (b) $a = 85\xi_0$, $N = 1000$, $s = 8$, (c) $a = 106\xi_0$, $N = 3000$, $s = 8$, (d) $a = 40\xi_0$, $N = 100$, $s = 40$, (e) $a = 100\xi_0$, $N = 1000$, $s = 40$, and (f) $a = 115\xi_0$, $N = 3000$, $s = 40$. The dimensionless density on the contour is 0.000 001. With the present length scale $l = 1 \mu m$ this density corresponds to 10^6 atoms cm$^{-3}$. The central density of the solitons is typically 10^6 atoms cm$^{-3}$. The dimensionless density on the contour is 0.000 001.
In figures 3(a) and (b) we exhibit the 3D isodensity contour of the quasi-2D dark-in-bright solitons for \(N = 1000, s = 40 \) and \(a = 100a_0 \) with a notch along \(x = 0 \) and \(z = 0 \). The density on the contour is 0.000 001. The contour plots of the 2D density \(n_{2D}(x, z) \) of the two dark-in-bright solitons shown in (a) and (b), respectively, are shown in (c) and (d).

In figures 3(a) and (b) we exhibit the 3D isodensity contour of the quasi-2D dark-in-bright solitons for \(N = 1000, s = 40 \) and \(a = 100a_0 \) with a notch along \(x = 0 \) and \(z = 0 \), respectively, obtained by a numerical solution of the GP equation with the initial wave function (9). The notch in the density along the \(x \) and \(y \) axes is clearly visible in figures 3(a) and (b), respectively. For the same set of parameters \(N, s \) and \(a \), the dark-in-bright solitons extend over a larger domain in the \(x-z \) plane compared to the bright soliton, viz. figures 2(e) and 3. In figures 3(c) and (d) we show the contour plot of the 2D density

\[
n_{2D}(x, z) = \int_{-\infty}^{\infty} dy |\phi(r)|^2
\]

of the two dark-in-bright solitons of figures 3(a) and (b), respectively. These 2D contour plots show clearly the density maxima of the solitons.

We test the dynamical stability of the bright and dark-in-bright solitons of figures 2(e) and 3(a), respectively, with \(N = 1000, a = 100a_0 \) and \(s = 40 \) by real-time simulation with the pre-calculated stationary state. First we consider the stability of the bright soliton. During the real-time evolution of the bright soliton of figure 2(e) the scattering length was changed from \(a = 100a_0 \) to \(99a_0 \) at \(t = 0 \). The subsequent evolution of the root-mean-square (rms) sizes \(x_{rms}, y_{rms}, z_{rms} \) is shown in figure 4(a). The sustained oscillation of the rms sizes guarantees the stability of the bright soliton. Next we consider the stability of the dark-in-bright soliton. The dark-in-bright soliton of figure 3(a) has a notch at \(x = 0 \). In the time evolution (real-time simulation or experiment) of a normal trapped dark soliton, the position of the notch oscillates around the center (snake instability) and eventually the dark soliton is destroyed \([39, 40]\). It will be interesting to see if the notch moves away from the center at \(x = 0 \) during the real-time evolution of the present dark-in-bright soliton. To test this snake instability, we plot the linear (1D) density along the \(x \) direction, defined by

\[
n_{1D}(x) = \int_{-\infty}^{\infty} dy \int_{-\infty}^{\infty} dz |\phi(r)|^2
\]

in figure 4(b) at different times \(t \) during real-time evolution after a change of the scattering length \(a \) from \(100a_0 \) to \(95a_0 \) at \(t = 0 \). Because of the large perturbation, the linear density is found to oscillate, but the notch is fixed at \(x = 0 \). The rms sizes also oscillate around a mean value (not shown here) as in the case of the bright soliton shown in figure 4(a). This illustrates clearly that the notch remains intact for a long time and the dark-in-bright soliton is dynamically stable.

As the quasi-2D dipolar dark-in-bright solitons are dynamically stable without any snake instability, these can be created by real-time simulation from the following phase-imprinted Gaussian profiles:
The solitons are capable of moving in different directions along the 1D and 2D geometries. We demonstrate the possibility of creating stable quasi-2D bright and dark-in-bright solitons in dipolar BEC mobile in a plane (x–z) containing the polarization direction (z). The quasi-2D geometry is obtained by an OL trap in the y direction. The

4. Conclusion

We demonstrate the possibility of creating stable quasi-2D bright and dark-in-bright solitons in dipolar BEC mobile in a plane (x–z) containing the polarization direction (z). The quasi-2D geometry is obtained by an OL trap in the y direction. The
result and finding are illustrated by a numerical solution of
the time-dependent mean-field GP equation in 3D with realistic
values of the contact and dipolar interactions of \(^{164}\)Dy atoms.
The solitons are found to execute sustained breathing oscillation
upon a small perturbation. The dark-in-bright soliton can be created in real-time simulation starting from an initial
bright soliton, where an extra phase of \(\pi\) is introduced in
the appropriate half. No dynamical instability is found in the real-
time evolution of the dark-in-bright soliton after introducing
a small perturbation. By real-time simulation we demonstrate
the elastic nature of the frontal collision between two quasi-
2D solitons. The results and conclusions of the present paper
can be tested in experiments with present-day know-how and
technology and should lead to interesting future investigations.

Acknowledgments

The work has been supported by the Fundação de Amparo
à Pesquisa do Estado de São Paulo Project 2012/00451-0
(Brazil) and the Conselho Nacional de Desenvolvimento
Científico e Tecnológico Project 303280/2014-0 (Brazil).

References

[1] Abdullaev F K, Gammal A, Kamchatnov A M and Tomio L 2005
Int. J. Mod. Phys. B 19 3415

[2] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763

[3] Perez-Garcia V M, Michinel H and Herrera H 1998 Phys. Rev. A 57 3837

[4] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002
Nature 417 150

[5] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002. Science 256 1290

[6] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401

[7] Girouard S et al 1998 Nature 392 151

[8] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005
Phys. Rev. Lett. 94 160401

[9] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107 190401

[10] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108 210401

[11] Lahaye T, Koch T, Frohlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672

[12] Griesmaier A, Stuhler J, Koch T, Fattori M, Pfau T and Giovanazzi S 2006 Phys. Rev. Lett. 97 250401

[13] Ticknor C, Wilson R M and Bohn J L 2011 Phys. Rev. Lett. 106 065301

[14] Baillie D, Bisset R N, Ticknor C and Blakie P B 2014 Phys. Rev. Lett. 113 265301

[15] Shirley W E, Anderson B M, Clark C W and Wilson R M 2014
Phys. Rev. Lett. 113 165301

[16] Armani A, Düne R A and Stoof H T C 2013 Phys. Rev. Lett. 111 215301

[17] Wilson R M, Anderson B M and Clark C W 2013 Phys. Rev. Lett. 111 185303

[18] Bismut G, Laburthe-Tolra B, Marčhel E, Pedri P, Gorceix O and Vernac L 2012 Phys. Rev. Lett. 109 155302

[19] Maluckov A, Gilgiorić G, Hadžieliški L, Malomed B A and Pfau T 2012 Phys. Rev. Lett. 108 140402

[20] Wilson R M, Ronen S and Bohn J L 2010 Phys. Rev. Lett. 104 095301

[21] Young-S L E, Muruganandam P and Adhikari S K 2011
J. Phys. B: At. Mol. Opt. Phys. 44 101001

[22] Nath R, Pedri P and Santos L 2009 Phys. Rev. Lett. 102 050401

[23] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404

[24] Tikhonenkov I I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100 090406

[25] Köberle P, Zajec D, Wunner G and Malomed B A 2012 Phys. Rev. A 85 023630

[26] Eichler R, Zajec D, Köberle P, Main J and Wunner G 2012
Phys. Rev. A 86 053611

[27] Zhang A-X and Xue J-K 2010 Phys. Rev. A 82 013606

[28] Adhikari S K 2016 Laser Phys. Lett. 13 035502

[29] Adhikari S K and Muruganandam P 2012 J. Phys. B: At. Mol. Opt. Phys. 45 045301

[30] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 78 043614

[31] Adhikari S K 2014 Phys. Rev. A 90 055601

[32] Eiermann B, Anker Th, Albiez M, Taglieber M, Treutlein M, Marzlin K-P and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401

[33] Muruganandam P and Adhikari S K 2011 J. Phys. B: At. Mol. Opt. Phys. 44 121001

[34] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett. 98 030406

[35] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstack K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198

[36] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W and Cornell E A 2001 Phys. Rev. Lett. 86 2926

[37] Denschlag J et al 2000 Science 287 97

[38] Dobrek L, Gajda M, Lewenstein M, Sengstock K, Birkl G and Ertmer W 1999 Phys. Rev. A 60 R3381

[39] Busch Th and Anglin J R 2000 Phys. Rev. Lett. 84 2298

[40] Muryshev A, Shlyapnikov G V, Ertmer W, Sengstak K and Lewenstein M 2002 Phys. Rev. Lett. 89 110401

[41] Toikka L A and Suominen K-A 2013 Phys. Rev. A 87 043601

[42] Crosta M, Fratalocchi A and Trillo S 2011 Phys. Rev. A 84 063809

[43] Ma M, Carretero-Gonzalez R, Kevrekidis P G, Frantzeskakis D J and Malomed B A 2010 Phys. Rev. A 82 023621

[44] Efremidis N, Hizamidis K, Nistazakis H E, Frantzeskakis D J and Malomed B A 2000 Phys. Rev. E 62 7410

[45] Fedor D L, Pindzola M S, Collins L A, Schneider B I and Clark C W 2000 Phys. Rev. A 62 053606

[46] Johansson M and Kivshar Y S 1999 Phys. Rev. Lett. 82 85

[47] Kishor Kumar R, Young-S L E, Vudragović D, Balaž A, Muruganandam P and Adhikari S K 2015 Comput. Phys. Commun. 195 117

[48] Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888

[49] Goral K and Santos L 2002 Phys. Rev. A 66 023613

[50] Koch T, Lahaye T, Metz J, Fröhlich B, Griesmaier A and Pfau T 2008 Nat. Phys. 4 218

[51] Muruganandam P and Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 36 2501

[52] Vudragović D, Vidanović I, Balaž A, Muruganandam P and Adhikari S K 2012 Comput. Phys. Commun. 183 2021

[53] Young-S L E, Vudragovic D, Muruganandam P, Adhikari S K and Balaz A 2016 Comput. Phys. Commun. 204 209

[54] Satarić B, Slavinić V, Belić A, Balaž A, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200 411

[55] Loncar V, Balaž A, Bogojović A, Skrbić S, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200 406

[56] Gammal A, Frederico T and Tomio L 2001 Phys. Rev. A 64 055602

[57] Adhikari S K 2001 Phys. Rev. E 65 016703

[58] Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10 918