Structure of dynamical condensation fronts in the interstellar medium

Kazunari Iwasaki* and Shu-ichiro Inutsuka*

Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

Accepted 2012 April 22. Received 2012 April 22; in original form 2012 March 16

ABSTRACT

In this paper, we investigate the structure of condensation fronts from warm diffuse gas to cold neutral medium (CNM) under the plane-parallel geometry. The solutions have two parameters, the pressure of the CNM and the mass flux across the transition front, and their ranges are much wider than previously thought. First, we consider the pressure range where the three phases, the CNM, the unstable phase and the warm neutral medium, can coexist in pressure equilibrium. In a wide range of the mass flux, we find solutions connecting the CNM and the unstable phase. Moreover, we find solutions in larger pressure range where there is only one thermal equilibrium state or the CNM. These solutions can be realized in shock-compressed regions that are promising sites of molecular cloud formation. We also find remarkable properties in our solutions. Heat conduction becomes less important with increasing mass flux, and the thickness of the transition layer is characterized by the cooling length instead of the Field length.

Key words: hydrodynamics – ISM: clouds – ISM: kinematics and dynamics.

1 INTRODUCTION

It is well known that in the interstellar medium (ISM), a clumpy low-temperature phase [cold neutral medium (CNM)] and a diffuse high-temperature phase [warm neutral medium (WNM)] can coexist in pressure equilibrium as a result of the balance of radiative cooling and heating owing to external radiation fields and cosmic rays (Field, Goldsmith & Habing 1969; Wolfire et al. 1995, 2003). The CNM of atomic gas is observed as H\textsc{i} cloud ($n \sim 10–100$ cm$^{-3}$, $T \sim 10^2$ K). These two phases are thermally stable. On the other hand, thermal instability (TI) arises in the temperature range between these two phases. Thus, the ISM in atomic phase can be interpreted as a bistable fluid.

Pioneering work on the TI has been done by Field (1965) who performed a linear analysis of the thermal equilibrium gas and derived a simple criterion for the TI. Focusing on a fluid element, Balbus (1986) derived a criterion for the TI of the thermal non-equilibrium gas. In the non-linear evolution, Iwasaki & Tsuribe (2009) investigated the linear stability of the self-similar solutions, and they suggested that the condensing layer will fragment in various scales as long as the transverse scale is larger than the Field length. The physics of the bistable fluid has been investigated by many authors. Zel’dovich & Pikeln’er (1969, hereafter ZP69) and Penston & Brown (1970) investigated the structure of the transition front connecting the CNM and WNM under the plane-parallel geometry. The thickness of the transition front is characterized by the Field length below which the TI is stabilized by heat conduction (Field 1965). They found that a static solution is obtained at a so-called saturation pressure. The transition front becomes a condensation (evaporation) front if the surrounding pressure is larger (less) than the saturation pressure. These properties of the transition front depend on its geometry. In the spherical symmetric geometry, Graham & Langer (1973) investigated isobaric flows. They found that spherical clouds have a minimum size below which they inevitably evaporate (a more general description is found in Nagashima, Koyama & Inutsuka 2005). Linear stability of the transition layers has been investigated by Inoue, Inutsuka & Koyama (2006) in the plane-parallel geometry, and they found that the evaporation front is unstable against corrugation-type fluctuation, while the condensation front is stable. Stone & Zweibel (2009) have considered the effect of magnetic field on the instability. The physical mechanism of the corrugation instability is analogous to the Darrieus–Landau instability (Landau & Lifshitz 1987). Taking into account the magnetic field perpendicular to the normal of the front, Stone & Zweibel (2010) investigated linear stability of transition layers.

In the above-mentioned theoretical works with respect to the bistable fluid, the phase transition proceeds in a quasi-static manner through heat conduction. However, recent multidimensional numerical simulations show a more dynamical turbulent structure. Kritsuk & Norman (2002) have investigated the non-linear development of the TI in three-dimensional hydrodynamical simulations with periodic boundary condition without any external forcing. As the initial

*E-mail: iwasaki@nagoya-u.jp (KI); inutsuka@nagoya-u.jp (SI)
condition, they set the hot ionized medium \((T = 2 \times 10^6 \text{ K})\) where cooling dominates heating. The gas is quickly decomposed into two stable phases (CNM and WNM) and the intermediate unstable phase. In the multiphase medium, the supersonic turbulence is developed by conversion from the thermal energy to the kinetic energy. They found that the turbulence decays on a dynamical time-scale. This decaying timescale is longer than that in supersonic isothermal turbulence of one-phase medium where it is smaller or comparable to the flow crossing time (Stone, Ostriker & Gammie 1998). Koyama & Inutsuka (2006) have done similar calculations on a much longer time-scale. As the initial condition, they set an unstable gas in thermal equilibrium state with density fluctuations. They found a self-sustained turbulence with velocity dispersion of \(\sim 0.2-0.4 \text{ km s}^{-1}\) for a period of at least their simulation time (several \(10 \text{ Myr}\)).

The ZP69 picture cannot be applied directly to the TI in the shock-compressed region by using a two-dimensional hydrodynamical simulation. They found that the velocity dispersion is as large as several \(\text{ km s}^{-1}\), which is larger than the sound speed of the CNM. The supersonic turbulent motion is maintained as long as the shock wave continues to propagate and provide post-shock gas. They suggested that this supersonic translational motion of the CNM is observed as the supersonic turbulence in the ISM. The cloudlets are precursors of molecular clouds because they are as dense as molecular clouds. After their work, many authors have investigated the formation of the CNM in shocked gases in two-dimensional calculations (Audit & Hennebelle 2005; Heitsch et al. 2005, 2006; Hennebelle & Audit 2007) and in three-dimensional calculations (Gazol, Vázquez-Semadeni & Kim 2005; Vázquez-Semadeni et al. 2006; Audit & Hennebelle 2010). The influence of the magnetic field on the development of the TI has been investigated by Inoue & Inutsuka (2008, 2009), Hennebelle et al. (2008) and Heitsch, Stone & Hartmann (2009).

Although the physics of the bistable fluid is developing, the physical mechanism of driving turbulence is not fully understood. As mentioned above, recent numerical simulations have found that the turbulence involving TI is dynamical compared with the ZP69 picture that predicts a very slow transition between CNM and WNM through heat conduction. Moreover, in the shock-compressed region, because of its high pressure, the bistable fluid cannot exist. The ZP69 picture cannot be applied directly to the TI in the shock-compressed region.

In this paper, as a first step to understand the dynamical turbulent structure, we develop the works of ZP69 into a more dynamical transition front. In the steady solutions, there are two parameters: the pressure of the CNM and the mass flux across the front. ZP69 considered solutions only on a line in the parameter space. Elphick, Regev & Shaviv (1992) found steady solutions with various mass fluxes. However, they used a simple cubic function of the cooling rate that enables them to investigate analytically, and they assumed spatially constant pressure. We systematically search steady solutions in larger parameter space even in the high-pressure range where the bistable fluid does not exist by using a realistic cooling rate.

This paper is organized as follows. Basic equations and numerical methods are described in Section 2. In Section 3, we briefly review the solutions connecting the CNM and WNM derived by ZP69. In Section 4, we present solutions describing the dynamical transition layer that has larger mass flux than ZP69. The results are discussed in Section 5 and are summarized in Section 6.

2 BASIC EQUATIONS AND NUMERICAL METHODS

Basic equations for radiative gas under the plane-parallel geometry are the continuity equation,

\[\frac{\partial \rho}{\partial t} + \frac{\partial (\rho v)}{\partial x} = 0, \]

the momentum conservation,

\[\frac{\partial \rho v}{\partial t} + \frac{\partial (\rho v^2)}{\partial x} = 0, \]

the energy equation,

\[\frac{\partial E}{\partial t} + \frac{\partial (E + P) v}{\partial x} = -\rho L(\rho, T), \]

and the equation of state,

\[P = R \rho T. \]

Where \(E = \rho v^2/2 + P(y - 1)\) is the total energy, \(y = 5/3\) is the ratio of specific heats, \(\kappa\) is the coefficient of heat conductivity, \(L(\rho, T)\) is the net cooling rate per unit mass, \(R = k_B/m_H\) is the gas constant and \(m_H\) is the hydrogen mass. Throughout this paper we assume that a gas consists of atomic hydrogen. For the range of temperatures considered, since the gas is almost neutral, we adopt \(\kappa = 2.5 \times 10^3 \text{ cm}^{-1} \text{ K}^{-1}\) (Parker 1953). In this paper, we adopt the following fitting formulae of the net cooling rate (Koyama & Inutsuka 2002):

\[\rho L(\rho, T) = \frac{\rho}{m_H} \left(-\Gamma + \frac{\rho}{m_H} \Delta(T) \right) \text{ erg cm}^{-3} \text{ s}^{-1}, \]

\[\Gamma = 2 \times 10^{-26} \text{ erg s}^{-1}, \]

\[\Delta(T) = 10^7 \exp \left(-\frac{118400}{T + 10^7} \right) + 1.4 \times 10^{-2} \sqrt{T} \exp \left(-\frac{92}{T} \right). \]

Fig. 1 shows the thermal equilibrium state of this net cooling rate in the \((n, P)\) plane. The gas is subject to the cooling (heating) above (below) the thermal equilibrium curve. The bistable fluid consisting of the WNM and CNM can exist in the pressure range \(P_{\text{min}} < P < P_{\text{max}}\), where \(P_{\text{min}}/k_B = 1596 \text{ K cm}^{-3}\) and \(P_{\text{max}}/k_B = 5012 \text{ K cm}^{-3}\).
The saturation pressure where the static front is realized is as large as $P_{\text{sat}} k_b = 2823$ K cm$^{-3}$ in the plane-parallel geometry.

In steady state ($\partial / \partial t = 0$), equations (1) and (2) can be integrated with respect to x to give

$$\rho v = j$$

and

$$\rho v^2 + P = M,$$

respectively. The energy equation (3) becomes

$$c_p \frac{dT}{dx} - v \frac{dP}{dx} - \frac{dT}{dx} \rho + \kappa \rho \frac{L}{2} \rho = 0,$$

where j and M denote the mass and momentum fluxes, respectively, that are spatially constant and $c_p = \gamma R/(\gamma - 1)$ is the specific heat at constant pressure. From equations (4), (8) and (9), density, pressure and velocity can be expressed by using temperature, mass flux and momentum flux as follows:

$$\rho = \frac{1}{2RT} \left(M + \sqrt{M^2 - 4Rj^2T} \right),$$

$$v = \frac{1}{2j} \left(M - \sqrt{M^2 - 4Rj^2T} \right),$$

$$P = \frac{1}{2} \left(M + \sqrt{M^2 - 4Rj^2T} \right).$$

For convenience, instead of T, we introduce a new variable θ defined by $d\theta = \kappa dT$. Using θ and equations (11)–(13), equation (10) can be rewritten as

$$\frac{d^2 \theta}{dx^2} = \frac{RJ}{2\kappa} \left[\frac{\gamma + 1}{\gamma - 1} + \frac{M}{\sqrt{M^2 - 4Rj^2T(\theta)}} \right] \frac{d\theta}{dx} + \rho \frac{L}{\rho}.$$

Shechkinov & Ibáñez (2001) and Inoue et al. (2006) described a detailed numerical method to solve equation (14). Since equation (14) is the second-order differential equation, we need two boundary conditions. At $x = -\infty$, we consider a uniform CNM with thermal equilibrium, $L(\rho, P_c) = 0$, where physical variables in the CNM are denoted by the subscript ‘c’. The boundary conditions are given by

$$\theta(x = -\infty) = \theta_c \quad \text{and} \quad \frac{d\theta}{dx} \bigg|_{x = -\infty} = 0.$$

We have two free parameters: P_c and j. Given P_c, the density and temperature can be obtained from equation (4) and the equilibrium condition $L(\rho_c, T_c) = 0$. The momentum flux is determined by P_c and j from equations (8) and (9).

The properties of differential equation (14) can be well understood as trajectories in the phase diagram (θ, $d\theta/dx$). From equation (14), one can see that the spatially uniform state with thermal equilibrium ($L = 0$) corresponds to a stationary point because $d\theta/dx = d^2 \theta/dx^2 = 0$. The topological property of the CNM at $x = -\infty$ corresponds to saddle point (Elphick et al. 1992; Ferrara & Shechkinov 1993). Given P_c and j, we numerically integrate equation (14) from $x = -\infty$ along one of the eigenvalues obtained from the Jacobi matrix of equation (14) around the stationary point of the CNM.

3 ZEL’DOVICH & PIKEL’NER SOLUTIONS

First, we review the solutions connecting two thermal equilibrium states (CNM and WNM). We call the solutions derived by ZP69 the ZP solutions. The ZP solutions exist only in the pressure range $P_{\text{min}} < P_c < P_{\text{max}}$ (see Fig. 1). Given P_c, Shechkinov & Ibáñez (2001) determine $j = j_{ZP}(P_c)$ as the eigenvalue problem so that the boundary condition $d\theta/dx = 0$ is satisfied in the WNM at $x = \infty$. For the case of a static solution, i.e. $j = v = 0$, equation (14) can be rewritten as

$$\int_{\theta_c}^{\theta} \rho L \, d\theta = \int_{T_c}^{T_w} \kappa \rho L \, dT = 0 \quad \text{(16)}$$

(ZP69), where the subscript ‘w’ denotes the physical quantities in the WNM. Equation (16) shows the balance between cooling and heating inside the transition layer. The pressure satisfying equation (16) is called saturation pressure.

In steady solutions with non-zero mass flux $j \neq 0$, integrating equation (10) from $x = -\infty$ to $+\infty$, one obtains

$$j = -\frac{q}{\epsilon_c (T_w - T_c)}, \quad \text{where} \quad q = \int_{-\infty}^{\infty} \rho L(\rho, T) \, dx,$$

and we neglect the second term of equation (10) since the flow is subsonic, and hence almost isobaric. In the saturation pressure, $q = 0$ since $j = 0$. For $P > P_{\text{sat}}$, q is positive because cooling dominates heating inside the front. Thus, $j < 0$ from equation (17), i.e. the front corresponds to condensation. In contrast, for $P < P_{\text{sat}}$, the front describes the evaporation. In the ZP solutions, the mass flux j is very small. Thus, the energy is mainly transferred by heat conduction. From equation (10), one can see that the thickness of the front is characterized by the Field length (Belgelman & McKee 1990) defined by

$$l_F = \frac{\kappa T}{|\rho L|}.$$

The typical values of l_F is as large as 10^{-3} pc in the CNM, and 10^{-1} pc in the WNM. From equation (17), the flow speed across the transition layer can be evaluated by $|u| \approx l_F/\tau_c$, where τ_c is the cooling time-scale (Ferrara & Shechkinov 1993). Since this value is very small in the actual ISM, ZP69 suggested that the transition front is almost static.

Fig. 2(a) represents properties of the ZP solutions for $P_j k_b = 3000$ K cm$^{-3}$. The corresponding mass flux is as large as $j_{ZP} = -3.2 \times 10^{-5}$ m_\odot km s$^{-1}$ ($v_{j_{ZP}} = 4.7 \times 10^{-3}$ km s$^{-1}$). The first row of Fig. 2 shows trajectories of solutions with various boundary conditions in the phase diagram (θ, $d\theta/dx$). There are three stationary points, which are indicated by filled circles. The CNM and WNM are denoted by ‘C’ and ‘W’, respectively. As mentioned in Section 2, the CNM and WNM correspond to saddle points. On the other hand, the stationary point at the intermediate θ corresponds to the unstable phase denoted by ‘U’ in Fig. 2(a), and it is the spiral point (Elphick et al. 1992; Ferrara & Shchekinov 1993). The solutions starting from the CNM are denoted by the thick solid line. The ZP solutions connect the two saddle points ‘C’ and ‘W’. The second row of Fig. 2(a) represents the temperature profile. The trajectory of the ZP solutions in the (n, P) plane is shown in the third row of Fig. 2(a).

4 DYNAMICAL TRANSITION LAYERS

4.1 Transition layers for $P_{\text{min}} < P_c < P_{\text{max}}$

In the ZP solutions, the mass flux is determined so that the CNM is connected with the WNM. Here, we consider the condensation front ($j < 0$). What happens if the mass flux is larger than $|j_{ZP}|$?
Structure of dynamical condensation fronts

Figure 2. Properties of solutions for (a) $j/j_{ZP} = 1$, (b) $j/j_{ZP} = 3$ and (c) $j/j_{ZP} = 25$. The first row indicates the trajectories of solutions with various boundary conditions. The obtained solutions satisfying equation (15) are shown by thick lines. The labels ‘C’, ‘U’ and ‘W’ denote the CNM, unstable phase and WNM, respectively. The second row shows the temperature profile in each mass flux. The third row represents trajectory of the obtained solution in the (n, P) plane.

4.1.1 Classification of solutions

It is found that solutions for larger mass flux can be divided into four types of solutions: C-U-o, C-U, C-c and C-C. We describe the property of each solution below.

C-U-o solutions. For the case with $j = 3j_{ZP}$, the solution does not reach the saddle point of the WNM but approaches the spiral point of the unstable phase (see the first row of Fig. 2b). From the second row of Fig. 2(b), one can see the oscillation of the temperature profile that corresponds to the spiral motion in the phase diagram. The third row shows the trajectory of the solution in the (n, P) plane. The solution truncates at the heating-dominated region before arriving at the WNM. The truncation point corresponds to the peak of the temperature profile near the transition front. Since the mass flux is still low, the pressure is almost constant. This type of solutions has already been found in Elphick et al. (1992) under the isobaric approximation and a more simplified cooling rate. Inoue et al. (2006) also found them as the finite extent solutions, and they truncated the solution at the first peak of the temperature profile near the transition front. We call this type of solutions the ‘C-U-o’ solutions, where ‘C-U’ means solutions connecting CNM and unstable phase, and ‘o’ means the oscillation.

C-U solutions. For larger mass flux $j = 25j_{ZP}$, the topological properties of the stationary point of the unstable phase changes from spiral to node (see the first row of Fig. 2c). Thus, from the second row of Fig. 2(c), there is no oscillation in the temperature profile, and the CNM is monotonically connected with the unstable phase. Fig. 3 shows solutions for much larger mass flux, $j/j_{ZP} = 25, 100, 2000$ and 3000. One can see that as the mass flux increases, the density (pressure) of the unstable phase at $x = \infty$ increases.

1 To be precise, before the C-U-o solution switches into the C-U solution, the spiral point changes into the node point. In this paper, we categorize solutions with temperature peak as the C-U-o solutions instead of the difference of the topological property of the unstable phase.
M = \rho_j v_j = -n_1500 (dot–dashed line).
\rho_j \simeq T_423, |2.15| = - \sqrt{P_2000} \simeq 4000 \text{ K cm}^{-2} \text{ as follows:}
\begin{align*}
\left(\frac{dP}{dx}\right)_{\text{crit}} &= -\left(\frac{2R j^2}{\sqrt{M^2 - 4R j^2 T}}\right)_{\text{crit}} \\
&= -\left(\rho L_{\text{crit}}\right) \sqrt{\frac{P_{\text{crit}}}{P_{\text{crit}}}}
\end{align*}

The pressure at the critical point can be derived from the momentum flux conservation. At the CNM (x = -\infty), since the velocity is still subsonic because of its high density, the momentum flux becomes

\begin{align*}
M &= \rho_j v_j^2 + P_j \simeq P_j.
\end{align*}

On the other hand, from equation (13), the pressure at the critical point is given by \(P_{\text{crit}} = M/2 \). Therefore, the pressure at the critical point can be expressed by \(P_j \) as follows:

\begin{align*}
P_{\text{crit}} &= \rho_j \frac{v_j^2}{2}.
\end{align*}

The density at the critical point is given by

\begin{align*}
\rho_{\text{crit}} &= \frac{j^2}{P_{\text{crit}}} \simeq 2 \frac{j^2}{P_j}.
\end{align*}

One can see that \(P_{\text{crit}} \) for \(j = 500/2 \) and \(1000/2 \) is roughly equal to \(P_j/2 = 2000 \text{ K cm}^{-3} \), and its density increases for larger mass flux as seen in equation (23). Around the critical point, since \(d\rho/\rho dx = 0 \), the trajectories in the \((n, P)\) plane approach constant temperature lines of \(T = T_{\text{crit}} \) in Fig. 4.

We investigate the topological properties at the critical point in the phase diagram. The Jacobi matrix of equation (14) around the critical point becomes infinite. Thus, there is no solution passing the critical point smoothly. In order to obtain infinite extent solutions, shock front is required. Solutions with shock front are described in Appendix A. We call this type of solutions the ‘C-c’ solutions, where ‘C-c’ means solutions connecting the CNM and the critical point.

\textbf{C-C solutions.} For much larger mass flux \(j = 1500/j_{2P} \), since the solution passes the equilibrium curve before arriving at the critical point, the solution becomes the infinite extent solution connecting the CNM and CNM (see Fig. 4). We call this type of solutions the C-C solutions, where ‘C-C’ means solutions connecting the CNM and CNM.

Fig. 5 shows classification of solutions in the parameter space \((P_j, j)\) for \(P_{\min} < P_j < P_{\max} \). The white dashed line corresponds to \(j = j_{2P}(P_j) \) on which the ZP solutions exist. The black area where \(|j| < |j_{2P}|\) is not focused in this paper. From Fig. 5, one can see that the C-c solutions exist only for \(P_j > 2P_{\min} \). This is because if \(P_j < 2P_{\min} \) the solutions meet the equilibrium state before arriving at the critical point (see equation 22).

\subsection{4.1.2 Structure of transition layers}

We investigate how the structure of transition layers depends on the mass flux. As mentioned in Section 3, in the ZP solutions, the thickness of the front is characterized by the field length because the mass flux is very small. As \(|j|\) increases, the effect of advection (the first term of equation 10) becomes important compared with

\begin{enumerate}
\item\item The inclusion of physical viscosity may change the properties and existence of these solutions.
\end{enumerate}
Figure 5. Classification diagram of obtained solutions in parameter space (P_c, j). The white dashed line corresponds to j_{ZP}. The solid line indicates the critical mass flux $j_{crit}(P_c)$. The black area where $|j| < |j_{ZP}|$ is not focused in this paper.

The heat conduction (the third term of equation (10)) in the energy transfer. We can define a critical mass flux j_{crit} where the effect of advection becomes comparable to the heat conduction as follows:

$$-c_p j_{crit} \frac{T_{m}}{L_{m}} = c_m \sqrt{\frac{\rho_m}{\rho}} \nabla T_{m} = - \frac{l_{c,m}}{\gamma p_m c_m},$$

where the subscript ‘m’ denotes a reference state in the solutions, $l_{c,m}$ is the cooling length defined by

$$l_{c,m} = \frac{c_m}{\gamma - 1} \rho_m L_{m}$$

and $c_m = \sqrt{\gamma P_m/\rho_m}$ is the sound speed. As the reference state, we consider the state where $|L|$ has the maximum value for $T > T_c$, under the constant pressure $P = P_c$. This state roughly gives minimum Field length and cooling length in the solution. Thus, the critical mass flux is a function of P_c. The actual value of j_{crit} is shown by the solid line in Fig. 7. In most ranges of P_c, j_{crit} lies in the region occupied by the C-U solutions.

For $|j| > |j_{crit}|$, advection dominates heat conduction during energy transfer. In this case, the thickness of the front is characterized by the cooling length instead of the Field length. In typical ISM, l_c/l_c is roughly as small as 10^{-2}. Therefore, as the mass flux increases, the thickness of the front increases. Fig. 6 shows the temperature profiles for $j = j_{ZP}$, j_{crit}, j_{max} and $j = 10 j_{crit}$. The CNM pressure is set to $P_c/k_B = 3000$ K cm$^{-3}$. One can see that the thickness of the layer increases with the mass flux.

4.2 Transition layers for $P_c > P_{max}$

In the previous section, we found solutions only for $P_{min} < P_c < P_{max}$. However, in actual ISM, the CNM pressure can be greater than P_{max}, for example, in shock-compressed regions. Our solutions can be directly extended for $P_c > P_{max}$.

Fig. 7 is the same as Fig. 5, but it includes the pressure range $P_c > P_{max}$. Fig. 7 shows that most of the regions are covered by the C-c solutions for $P_c > P_{max}$. The area of the C-U solutions spreads to the pressure range $P_{max} < P_c < 2P_{max}$. This is because solutions in this pressure range can connect with thermal equilibrium states before reaching at the critical point at a certain range of j. Fig. 8 shows trajectories of the solutions for $j j_{crit} = 1, 2, 5$ and 20. The CNM pressure is set to 2.65×10^4 K cm$^{-3}$. One can see that the solution terminates at the critical point where pressure is equal to $P_c/2$ and where density increases with the mass flux.

5 DISCUSSION

5.1 Implications

Koyama & Inutsuka (2006) have investigated multidimensional non-linear development of the TI without external forcing. They found that the turbulence is self-sustained by the TI. The velocity dispersion for sufficiently large simulation box is as large as ~ 0.2–0.4 km s$^{-1}$. They suggested that this velocity is much larger than the prediction in ZP69. Our solutions exist in such a large mass flux. From their simulation, the mass flux becomes $|j| \sim 0.2 m_{1/2} \text{ km s}^{-1}(n/0.5 \text{ cm}^{-3})(v/0.4 \text{ km s}^{-1})$, where we assume that the accretion velocity to the CNM is comparable to this velocity dispersion. From Fig. 5, the corresponding solutions lie in the C-U or C-U-o solutions.

Koyama & Inutsuka (2002) have investigated the TI in the shock-compressed region. They found that the velocity dispersion is as large as several km s$^{-1}$. The corresponding mass flux is $|j| \sim 20 m_{1/2} \text{ km s}^{-1}(n/10 \text{ cm}^{-3})(v/2 \text{ km s}^{-1})$, which is larger than the...
Trajectories of solutions for $f_{\text{crit}} = 1, 2, 5$ and 20. The dashed line corresponds to $P = P_{\text{crit}}/2$.

results in Koyama & Inutsuka (2006). The pressure of the shock-compressed region is larger than P_{max}, indicating that the two stable phases cannot coexist. In shock-compressed regions, the CNM clouds are embedded not by the stable WNM but by the unstable gas that is supplied continuously by shock compression. The C-c solutions in this pressure range ($P > P_{\text{max}}$) may describe dynamical condensation from the unstable gas to the CNM in shock-compression regions.

5.2 Curvature effect

Our solutions are derived by assuming the plane-parallel geometry. Nagashima et al. (2005) investigated the curvature effect of the transition front by assuming the quasi-steady approximation. They consider the cylindrical and spherical CNM cloud at the centre. In contrast to the plane-parallel solutions, the solutions have three parameters, the pressure of the CNM, the velocity of the front with respect to the centre and the cloud radius. The second parameter corresponds to the mass flux in our solutions. They solved the equations as the eigenvalue and boundary value problems so that the solutions connect the CNM and WNM. Thus, the velocity of the front, $v_f(P_c, R_c)$, is a function of P_c and cloud radius R_c. The curvature effect enhances the heat flux by thermal conduction from the CNM to WNM. Thus, smaller cloud that has larger curvature tends to evaporate quickly. On the other hand, cold gas that has a negative curvature tends to gain mass through condensation. Thus, the evolution of CNM cloud strongly depends on its shape.

By using the quasi-steady approximation, we can easily take the curvature effect into account in our solutions. It is expected that solutions with larger evaporation rate connect the unstable phase and the WNM, while solutions with larger condensation rate connect the CNM and the unstable phase.

6 SUMMARY

In this paper, we have investigated steady condensation solutions of phase transition layers in larger parameter space (P_c, j) than that in previous works. We summarize our results as follows.

(i) In the pressure range where the three thermal equilibrium phases can coexist under a constant pressure ($P_{\text{max}} < P_c < P_{\text{max}}$), we find solutions that connect the CNM and the unstable phase. The solutions can be classified into four types of solutions, C-U-o, C-U, C-c and C-C, in order of the mass flux. The C-U-o and C-U solutions connect the CNM and the unstable phase with and without the oscillation of physical quantities in the low-density side. The C-c solution is truncated at the maximum temperature above which there are no steady solutions. Combination of a C-c solution and a shock front provides an infinite extent solution. The C-C solutions connect the CNM and CNM.

(ii) We also find steady solutions in the pressure range ($P_c > P_{\text{max}}$) where only CNM can be in equilibrium. This pressure range is realized in the shock-compressed region. In this parameter space (P_c, j), most of the solutions are of C-c type.

(iii) We derive a critical mass flux j_{crit} above which the effect of advection becomes important compared with the heat conduction during energy transfer. For large mass flux, $|j| > |j_{\text{crit}}|$, the thickness of the front is characterized by the cooling length instead of the Field length, so that the thickness becomes larger.

ACKNOWLEDGMENTS

We thank the referee for valuable comments. We thank Drs. Tsuyoshi Inoue and Jennifer M. Stone for valuable discussions. This work was supported by Grants-in-Aid for Scientific Research from the MEXT of Japan (KI: 22864006; SI: 18540238 and 16077202).

REFERENCES

Audit E., Hennebelle P., 2005, A&A, 433, 1
Audit E., Hennebelle P., 2010, A&A, 511, 76
Balbus S. A., 1986, ApJ, 303, 79
Begelman M. C., McKee C. F., 1990, ApJ, 358, 375
Elphick C., Regge O., Shaviv N., 1992, ApJ, 392, 106
Ferrara A., Shchekinov Yu. A., 1993, ApJ, 417, 595
Field G. B., 1965, ApJ, 142, 531
Field G. B., Goldsmith D. W., Habing H. J., 1969, ApJ, 155, L149
Gazol A., Vázquez-Semadeni E., Kim J., 2005, ApJ, 630, 911
Graham R., Langer W. D., 1973, ApJ, 179, 469
Heitsch F., Burkert A., Hartmann L., Slyz A., Devriendt J., 2005, ApJ, 633, 113
Heitsch F., Slyz A. D., Devriendt J. E. G., Hartmann L. W., Burkert A., 2006, ApJ, 648, 1052
Heitsch F., Stone J., Hartmann L., 2009, ApJ, 695, 248
Hennebelle P., Audit E., 2007, A&A, 465, 431
Hennebelle P., Banerjee R., Vázquez-Semadeni E., Klessen R., Audit E., 2008, A&A, 486, L43
Inoue T., Inutsuka S., 2008, ApJ, 687, 303
Inoue T., Inutsuka S., 2009, ApJ, 704, 161
Inoue T., Inutsuka S., Koyama H., 2006, ApJ, 652, 1331
Iwasaki K., Tsuribe T., 2008, MNRAS, 387, 1554
Iwasaki K., Tsuribe T., 2009, A&A, 508, 725
Koyama H., Inutsuka S., 2006, ApJ, 652, 1331
Koyama H., Inutsuka S., 2002, ApJ, 564, L97
Koyama H., Inutsuka S., 2006, preprint (astro-ph/0605528)
Kritsuk A. G., Norman M. L., 2002, ApJ, 569, L127
Landau L. D., Lifshitz E., 1987, Fluid Mechanics. Pergamon, New York
Nagashima M., Koyama H., Inutsuka S., 2005, MNRAS, 361, L25
Parker E. N., 1953, ApJ, 117, 431
Penston M. V., Brown F. E., 1970, MNRAS, 150, 373
Shchekinov Yu. A., Ibáñez S. M., 2001, ApJ, 563, 209
Stone J. M., Zweibel E. G., 2009, ApJ, 696, 233
Stone J. M., Zweibel E. G., 2010, ApJ, 724, 131
Stone J. M., Ostriker E. C., Gammie C. F., 1998, ApJ, 508, L99
Vázquez-Semadeni E., Ryu D., Passot T., González R., Gazol A., 2006, ApJ, 643, 245
Wolfire M. G., Hollenbach D., McKee C. F., Tielens A. G. G. M., Bakes E. L. O., 1995, ApJ, 443, 152

© 2012 The Authors, MNRAS 423, 3638–3645
Monthly Notices of the Royal Astronomical Society © 2012 RAS
APPENDIX A: SOLUTIONS WITH SHOCK FRONT

In this appendix, we present steady solutions with shock front. Here, we assume that pre-shock gas is in thermal equilibrium state. The physical variables in the pre-shock gas are denoted by using the subscript ‘E’. The position of the shock front \(x = x_{\text{sh}} \) is determined so that the Rankine–Hugoniot relation is satisfied between the solutions and the thermal equilibrium state by the following method. Given \(x = x_{\text{sh}} \), the specific energy flux is given by

\[
\frac{\gamma P_{\text{sh}}}{(\gamma - 1) \rho_{\text{sh}}} + \frac{1}{2} v_{\text{sh}}^2 = \left(\frac{\gamma}{\gamma - 1} \right) c_{\text{sh}}^2,
\]

where the subscript ‘sh’ denotes physical variables at \(x = x_{\text{sh}} \) and \(c_{\text{sh}} \) is the effective sound speed. The simple relation among \(v_{\text{sh}} \), \(v_{\text{E}} \) and \(c_{\text{sh}} \) is given by

\[
v_{\text{sh}} v_{\text{E}} = c_{\text{sh}}^2.
\]

From equation (A2), one can get \(v_{\text{E}} \), and the Mach number \(M \) is obtained. From the Rankine–Hugoniot relations, the physical variables in the pre-shock gas (\(\rho_{\text{E}} \) and \(T_{\text{E}} \)) are obtained. In general, the pre-shock gas is not in thermal equilibrium state. The position of the shock front \(x_{\text{sh}} \) is determined iteratively until \(L(\rho_{\text{E}}, T_{\text{E}}) = 0 \) is satisfied by using the bisection method.

As examples, we consider two cases of \(j = 2 \) and \(24j_{\text{crit}} \) for \(P_{j}/k_B = 3.114 \times 10^4 \text{K cm}^{-3} \). For the \(j = 2j_{\text{crit}} \) case, the corresponding physical quantities of the pre-shock gas are \(n_{\text{E}} = 0.57 \text{ cm}^{-3} \) and \(M = 2.17 \). For \(j = 24j_{\text{crit}} \), they are \(n_{\text{E}} = 75 \text{ cm}^{-3} \) and \(M = 2.23 \). Thus, the pre-shock gases belong to WNM for \(j = 2j_{\text{crit}} \) and to CNM for \(j = 24j_{\text{crit}} \). The upper panels of Figs A1(a) and (b) show the density, temperature and pressure distributions for \(j = 2 \) and \(24j_{\text{crit}} \), respectively. The lower panels of Fig. A1 show the trajectories of the obtained solutions in the \((n, P)\) plane.

In addition, we perform one-dimensional hydrodynamical simulation in order to confirm whether the steady-state solutions with shock front are realized. We consider the situation where the gas flows collide at \(x = 0 \) with \(|v_{\text{E}} - v_c| \) from \(x = \pm \infty \). Two shock waves propagate from \(x = 0 \) outwards. Shock-heated gas quickly cools until the gas reaches the thermal equilibrium state. Then the cold layer forms and its thickness grows by gas accretion. The thick grey line in each panel of Fig. A1 indicates the results of one-dimensional simulations in the growing phase of the cold layer. One can see that the results of one-dimensional simulations are well described by the steady-state solutions.

Figure A1. Upper panels: density (solid line), temperature (dashed line) and pressure (dotted line) profiles of steady-state solutions at which \(P_{c} = 3.113 \times 10^4 \text{ K cm}^{-3} \) for (a) \(j = 2j_{\text{crit}} \) and (b) \(j = 24j_{\text{crit}} \). Lower panels: trajectories of steady-state solutions in the \((n, P)\) plane. The thick grey line in each panel shows the results of one-dimensional hydrodynamical simulation.