Mapping of a Cell-binding Domain in the Cell Adhesion Molecule gp80 of Dictyostelium discoideum

Rajender K. Kamboj, Lu Min Wong, Tak Yee Lam, and Chi-Hung Siu
Banting and Best Department of Medical Research and Department of Biochemistry, Charles H. Best Institute, University of Toronto, Toronto, Canada M5G 1L6

Abstract. At the aggregation stage of Dictyostelium discoideum development, a cell surface glycoprotein of Mr 80,000 (gp80) has been found to mediate the EDTA-resistant type of cell–cell adhesion via homophilic interaction (Siu, C.-H., A. Cho, and A. H. C. Choi. 1987. J. Cell Biol. 105:2523-2533). To investigate the structure–function relationships of gp80, we have isolated full length cDNA clones for gp80 and determined the DNA sequence. The deduced structure of gp80 showed three major domains. An amino-terminal globular domain composed of the bulk of the protein is supported by a short stalk region, which is followed by a membrane anchor at the carboxy terminus. Structural analysis suggested that the cell-binding domain of gp80 resides within the globular domain near the amino terminus. To investigate the relationship of the cell-binding activity to this region of the polypeptide, three protein A/gp80 (PA80) gene fusions were constructed using the expression vector pRIT2T. These PA80 fusion proteins were assayed for their ability to bind to aggregation stage cells. Binding of 125I-labeled fusion proteins PA80I (containing the Val123 to Ile514 fragment of gp80) and PA80II (Val123 to Ala258) was dosage dependent and could be inhibited by precoating cells with the cell cohesion–blocking mAb 80L5C4. On the other hand, there was no appreciable binding of PA80III (Ile174 to Ile514) to cells. Reassociation of cells was significantly inhibited in the presence of PA80I or PA80II. In addition, 125I-labeled PA80II exhibited homophilic interaction with immobilized PA80I, PA80II, or gp80. The results of these studies lead to the mapping of a cell-binding domain in the region between Val123 and Leu173 of gp80 and provide direct evidence that the cell-binding activity of gp80 resides in the protein moiety.

During development of the cellular slime mold Dictyostelium discoideum, solitary cells migrate in response to environmental cAMP to form aggregates that eventually differentiate into fruiting bodies consisting of two major cell types: spores and stalk cells (Loomis, 1975). Multicellularity during development is achieved by the expression of at least two types of cell–cell adhesion sites (Gerisch, 1980). One type is sensitive to low concentrations of EDTA. These EDTA-sensitive binding sites are expressed on the cell surface soon after the initiation of development (Knecht et al., 1987; Siu et al., 1988b). Cells begin to acquire the EDTA-resistant cell–cell binding sites ~6 h later at the onset of the aggregation stage (Rosen et al., 1973). A membrane glycoprotein of Mr 80,000 (gp80) has been implicated in mediating the EDTA-resistant binding sites by Muller and Gerisch (1978). They found that the adhesion-blocking activity of a univalent polyclonal antibody preparation can be neutralized by a highly enriched gp80 preparation. Subsequently, several polyclonal and monoclonal antibodies directed against gp80 have been reported (Murray et al., 1981; Lam and Siu, 1982; Ochiai et al., 1982a; Murray et al., 1983; Springer and Barondes, 1985).

Since they showed cross-reactivity with other glycoproteins, it has been difficult to use them to evaluate the role of gp80 in cell–cell adhesion. Recently, we succeeded in raising an mAb (80L5C4) which is monospecific for gp80 (Siu et al., 1985). 80L5C4 IgG is also capable of inhibiting the EDTA-resistant type of cell–cell adhesion at the aggregation stage of development, thus confirming the role of gp80 in cell adhesion (Siu et al., 1985). Purified gp80, when conjugated to Covaspheres, can mediate the binding of Covaspheres to cells in a stage-specific manner (Siu et al., 1987). Also, gp80-conjugated Covaspheres associate preferentially with the two polar ends of streaming cells and with filopodia. Filopodia are transient surface structures characteristic of aggregation stage cells during development (De Chastellier and Ryter, 1980). Many can be observed making direct contacts with adjacent cells, and they have been implicated in mediating the initial stages of cell–cell adhesion (Choi and Siu, 1987). These observations clearly establish that gp80 is a cell adhesion molecule. Moreover, the binding of labeled gp80 or gp80-conjugated Covaspheres to cells can be inhibited by precoating cells with 80L5C4 Fab, suggesting that gp80 mediates cell–cell binding via homophilic interaction.
Materials and Methods

Cell Strain and Culture Conditions

The wild-type strain NC4 of D. discoideum was used in all experiments. NC4 cells were cultured in association with Klebsiella aerogenes and developed as described (Sussman, 1966). Growth phase cells were collected from the partially cleared bacterial lawn, washed free of bacteria, and plated at a concentration of 2 x 10^5 cells/ml on filter paper (No. 50; Whatman Inc., Clifton, NJ) for development as described (Sussman, 1966). Growth phase cells were collected from the partially cleared bacterial lawn, washed free of bacteria, and plated at a concentration of 2 x 10^5 cells/ml on filter paper (No. 50; Whatman Inc., Clifton, NJ) for development. Under these conditions, cells began to aggregate between 6 and 8 h and aggregation was essentially complete by 12 h with the formation of round mounds. Culmination began at ~18 h. Alternatively, cells were suspended at 10^7 cells/ml in 17 mM Na/K phosphate buffer, pH 6.4, and shaken at 180 rpm for development.

Purification of gp80

gp80 was purified from the axenic strain AX2. AX2 cells were cultured in liquid medium as described by Cocucci and Sussman (1970) and then developed in 17 mM phosphate buffer, pH 6.4, for 12 h, with cAMP pulsing (2 x 10^-4 M final concentration) at 7-min intervals. Cells were then collected and homogenized for gp80 isolation as described previously (Siu et al., 1987). Purified gp80 was stored either in lyophilized form or in solution at -70°C. Samples were usually dialyzed against 0.1% octyl glucoside in PBS before use.

cDNA Cloning

A 5g11 expression library (Wong and Siu, 1986), constructed from cDNA of aggregation stage cells using the method of Young and Davis (1983), was used to screen for full length gp80 cDNA. We have previously characterized a cDNA clone bDdp80c-19, which contains a 1.0-kb insert and encodes the amino-terminal portion of gp80. A Hae III to Eco RI fragment of 770 bp derived from the bDdp80c-19 insert was used to screen the library. Positive recombinant phages were subjected to five cycles of plaque purification. Three different recombinant phages, with two containing full length cDNA inserts, were isolated. The gp80 cDNA inserts were subcloned into the Eco RI site of pEMBL18 (Dente et al., 1983). DNA sequencing was performed for both strands using the dideoxy method of Sanger et al. (1977).

Construction of Expression Vectors Containing gp80 cDNA Inserts

Standard recombinant DNA methods were followed according to Maniatis et al. (1982). gp80 cDNAs of different sizes were derived from the insert in the recombinant phage bDdp80-12. This insert was sequenced in both directions and the DNA sequence shows that it begins with the codon for Val23 at the 5' end and has a 3' untranslated sequence of 101 bases. The first gene fusion was constructed by ligating the complete insert of bDdp80-12 to the unique Eco RI site of the expression vector pRIT2T (Pharmacia Fine Chemicals Inc., Piscataway, NJ) (see Fig. 2). The second one was constructed by fusing the Eco RI-Hind III fragment to the pRIT2T vector. In this case, the Hind III end was blunt-ended by either filling in the ends with the Klenow fragment of DNA polymerase I or treatment with mungbean nuclease, followed by ligation to the Eco RI/Sma I site of the vector. Both constructs yielded identical results. To construct the third gene fusion, an Xmn I-Eco RI fragment was released from bDdp80-12 and ligated with an appropriate Eco RI linker at the 5' end before insertion into pRIT2T. The expression vector pRIT2T contains part of the coding sequence for protein A and is designed for temperature-inducible expression of fusion proteins in a suitable host cell, Escherichia coli N4830-1, which contains the temperature-sensitive l-casA repressor. When the temperature was shifted from 30 to 42°C, the repressor was inactivated and the l-casA promoter was turned on, thus initiating the expression of fusion protein. Plasmids containing gp80 cDNA inserts in the proper orientation were selected and expressed. Lysates containing the fusion protein were analyzed by SDS-PAGE and immunoblotting using the mAb 80L5C4 or an anti–gp80 polyclonal antibody.

Expression and Purification of Protein A–gp80 Fusion Proteins

Plasmid DNA was used to transform the E. coli strain N4830-1. Cells were grown at 30°C in the presence of ampicillin (50 μg/ml) until OD600 = 1.0 and the culture was shifted to 42°C by mixing the growth medium with an equal volume of medium preheated to 54°C. The culture was incubated at 42°C for 90 min before harvest. Cells were chilled immediately before collection. The cell pellet was resuspending in cold PBS containing (0.5% Tween-20, 2 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride, and 1 μg/ml leupeptin. Cells were lysed by sonication and the sample was centrifuged at 25,000 g for 20 min. The supernatant was diluted fivefold with the same buffer minus EDTA before applying to an affinity column. Fusion proteins were usually purified by two passages through an IgG–Sepharose 6F affinity column (Pharmacia Fine Chemicals Inc.). Fusion proteins were eluted with 0.5 M acetic acid, pH 3.4. Fractions containing fusion protein were neutralized with 0.5 M Na2HPO4, pooled, and dialyzed against PBS. To raise polyclonal antibodies against fusion proteins, 100 μg of purified fusion protein was emulsified with an equal volume of Freund's complete adjuvant and injected subcutaneously into New Zealand white rabbits. Animals were boosted four times with 50 μg of fusion protein emulsified in Freund's incomplete adjuvant at 2-wk intervals. Serum samples were collected after the second boost.

PAGE

SDS–polyacrylamide slab gels were prepared according to Laemmli (1970). Protein samples were solubilized and reduced in 2% SDS, 8 M urea, and 2% β-mercaptoethanol by boiling for 5 min. Electrophoresis was carried out using the minigel apparatus (Bio-Rad Laboratories, Richmond, CA) at a constant current of 20 mA for 40 min. The following proteins were used as molecular mass markers: myosin (200 kD), phosphorylase B (97 kD), BSA (68 kD), ovalbumin (42 kD), and α-chymotrypsinogen (25 kD). Gels were subjected to silver staining using the method of Morrissey (1981).

Binding of Fusion Proteins to Intact Cells

Affinity-purified protein A–gp80 fusion proteins and gp80 were dialyzed against 0.1% octyl glucoside in PBS. Samples were radioiodinated utilizing the chloramine T method, as previously described (Siu et al., 1977). Different concentrations of the [125I]-labeled protein were prepared in phosphate buffer immediately before addition to cell suspension, giving a final detergent concentration of 0.005%. Cells were developed on filter pads for 10 h and then collected for the binding assay as previously described (Siu et al., 1987). Cells were washed and resuspended in 17 mM phosphate buffer, pH 6.4, and reconstituted at 5 x 10^6 cells/ml in the same buffer plus 5 mM
ATG AAA TTG TTA GTA TGG ATA ATH TAA TAT ART ATT HCH ACH CAG CAT GAC CTA CGA ACG AGT GGT AAG ATT CTT CGA ACA

MST Lys Phe Leu Leu Val Leu Ile Leu Tyr Arg Leu Leu Ser Ala His Ser Ala Ser Ala Pro Thr Thr Ala Val Ser Arg Gly Lys Phe Val Pro Val Pro

TAT ATT ACC ATT ACA GAT GCT TTA ATC ATT ACT ATA ACT ACA CAT GAC CTA GGT CGA ACG GTA ATT CTT CGA ACA AGT GTA CGT

Thr Ile Thr Ile Thr Phe Thr Phe Thr Pro Val Thr Thr Ile Gly Gly Thr Cys Asp Pro Ile Val Ala Thr Ser Leu Ser Gly

CAC CTT CCA CCA GTA CAA TAT AAT ATT ATT

Leu Tyr Cys Cys Leu Ile Ala Cys Cys Ile Ile Ala Ala

AAG CTC ATT ATG TCA GCT GTC GTC

Arg Leu Gln Val Val

Figure 1. Nucleotide sequence of the full length cDNA and the deduced amino acid sequence of gp80. Nucleotides are numbered at the right and labeled positively in the coding and 3' untranslated regions and negatively in the 5' untranslated regions. Amino acids are also numbered at the right. The arrow under Ala at amino acid position 20 marks the beginning of the mature protein. The five potential N-glycosylation sites are marked by a black dot. The two octapeptide repeats and sequences that may serve as polyadenylation signals are underlined. The domain containing cell-binding activity is boxed.

EDTA. Samples of 0.1 ml were incubated with different concentrations of 125I-labeled protein for 45 min at 4°C on a platform shaker. Unbound material was removed by washing twice with cold phosphate buffer. As a control, cells were incubated with similar concentrations of 125I-labeled protein A and the amount of bound radioactivity was used to estimate the nonspecific background binding of fusion proteins. Background binding generally represented <5% of the total amount of radioactive counts bound.

Competition of Fusion Protein Binding to Cells by mAbs

10-h cells were washed and resuspended at 2 × 10^7 cells/ml in 17 mM phosphate buffer, pH 6.4, containing 5 mM EDTA and then precoted with different concentrations of 80LS5C5 IgG for 15 min at 4°C. Cells were washed once and resuspended at 5 × 10^7 cells/ml in EDTA/phosphate buffer containing 0.25 mg/ml goat anti-mouse IgG Fab (Cappell Laboratories, Inc., Cochraniile, PA) for 15 min at 4°C. Samples were briefly vortexed before the addition of 125I-fusion protein, followed by a 45-min incubation period at 4°C.

Filter Binding Assay

Fusion protein or gp80 samples were immobilized on nitrocellulose disks, which were blocked with 5% skim milk and 0.05% Tween-20 in PBS. The disks were then incubated with different amounts of 125I-labeled gp80 or fusion protein for 30 min at room temperature. Background binding was determined by the inclusion of a blank disk in the incubation mixture. At the end of the incubation period, disks were washed with at least three changes of 5% skim milk followed by two changes of 0.05% Tween-20 in PBS. Disks wereair dryand counted in a gamma counter. Background radioactivity was subtracted from the counts bound on the corresponding sample disk. Generally, it represented 25-35% of the total amount of radioactive bound on the sample disk.

Competition experiments using fusion proteins were carried out by immobilizing fixed amounts of gp80 (0.1 μg) on nitrocellulose disks, which were first blocked with 5% skim milk in PBS and 0.05% Tween-20. Then the disks were incubated with a mixture of 125I-labeled gp80 and unlabeled fusion protein at different molar ratios, with the concentration of the labeled gp80 kept constant at 200 ng/ml. Subsequent steps were identical to the assay protocol.

Cell Cohesion Assay

Cell-cell adhesion was measured using a method modified from Gerisch's (1961) roller tube assay (Lam et al., 1981). Cells were dissociated and suspended at 2 × 10^7 cells/ml in 17 mM phosphate buffer, pH 6.4, containing 10 mM EDTA. 200-μl samples were rotated vertically on a platform shaker at 180 rpm. Cells were counted at different time intervals using a hemacytometer. Both singlets and doublets were scored as unaggregated cells. The percentage of aggregated cells was calculated by dividing the difference of the total number of cells and the number of single cells by the total number of cells. Cells were also reassociated in the presence of different concentrations of fusion protein to assess the effect of fusion proteins on cell-cell binding.

To block cell reassociation with antibodies directed against fusion protein, the method described by Springer and Barondes (1980) was used. Cells were suspended at 2 × 10^7 cells/ml in phosphate buffer containing 10 mM EDTA and rabbit anti-fusion protein antisera. The sample was incubated at 4°C for 20 min. Cells were vortexed briefly and diluted 1:10 in phosphate buffer containing 10 mM EDTA and goat anti-rabbit IgG Fab (0.5 mg/ml) (Cappell Laboratories). Cells were incubated for another 10 min on ice and then vortexed briefly to dissociate the cells. The sample was then rotated on a platform shaker at 180 rpm at room temperature and the reassociation of cells was monitored microscopically at regular intervals. All experiments were repeated one to three times and almost identical results were obtained in all cases.
Protein Determination

Protein determination was carried out with the bicinchoninic acid protein assay kit (Pierce Chemical Co., Rockford, IL), using crystalline BSA as the standard.

Results

cDNA Sequence and Deduced Structure of gp80

Three recombinant phages carrying nearly full length cDNA inserts were isolated and characterized. The longest cDNA insert was sequenced in both directions and results were confirmed by partial sequences obtained from the other clones. A total of 1,820 bp were sequenced, containing a single open translational reading frame (Fig. 1). The 5' and 3' flanking regions are extremely AT rich and the initiation methionine codon is preceded by four A nucleotides, characteristic of D. discoideum translational starts (Kimmel and Firtel, 1983). The coding region spans 1,542 nucleotides, terminating at a TAA codon. The 3' flanking region has two poly-A tracks. Two consensus polyadenylation signals (AAT-AAA) are situated 17 and 29 nucleotides upstream from the second poly-A track, suggesting that the second polyadenylate tail was added posttranscriptionally whereas the first oligo-A track was transcribed from the gene.

The open reading frame codes for a protein of 514 amino acids with \(M_r \) 53,703 (Fig. 1). An analysis of the deduced primary structure of gp80 shows that the amino terminus has a stretch of hydrophobic amino acids, serving as the leader sequence. The first 19 amino acids are cleaved off in the mature glycoprotein, which starts with Ala at the amino terminus (Stadler et al., 1982). The deduced protein shows three major structural domains. The carboxy-terminal region is composed of 18 hydrophobic amino acids, which is a potential membrane-spanning domain. Adjacent to the carboxy-terminal domain is a hydrophilic region, located between amino acid positions 403 and 496. Within this domain is a unique Pro-rich segment, which contains two 8-amino acid repeats. Since many of the amino acids in this domain have high probabilities for turns, it may take the form of a relatively rigid stalk structure. The third domain consists of the amino-terminal 434 amino acids. This domain is characterized by many short stretches of hydrophobic segments nated by hydrophilic residues and it may have a highly folded globular structure. There are five potential N-glycosylation sites within this domain.

Expression and Purification of Fusion Proteins

We have recently found that the cell adhesion-blocking mAb 80L5C4 recognizes an epitope in the amino-terminal domain of gp80 between amino acid residues 123 and 173 (Kamboj and Siu, 1988). It is, therefore, likely that the cell binding site of gp80 resides in the close vicinity of this epitope. To test this hypothesis, gene fusions containing three different cDNA fragments were constructed using the expression vector pRIT2T (Fig. 2). These gp80 cDNA fragments were cloned into the unique Eco RI site of pRIT2T. Transformants carrying these recombinant plasmids produced soluble fusion proteins which contained the amino-terminal 31-kD fragment of Staphylococcal protein A and a portion of the gp80 polypeptide. The plasmid carrying insert I (Eco RI to Eco RI fragment) coded for a protein A/gp80 fusion protein (PA80I) of 74 kD, which contained a gp80 fragment between amino acid residues 123 and 514 (Fig. 3). Transformants carrying insert II produced a fusion protein (PA80II) of 46 kD, which contained a gp80 fragment between residues 123 and 258. Those carrying insert III produced a fusion protein (PA80III) of 68 kD, which contained a gp80 fragment between residues 174 and 514. When subjected to immunoblot analysis, both PA80I and PA80II reacted with the mAb 80L5C4, while PA80III reacted with a polyclonal antibody but not 80L5C4 (data not shown).

To purify these three fusion proteins for further characterization, cell lysates were passed twice through an IgG-Sepharose affinity column. The purified protein preparations were subjected to SDS-PAGE analysis and the silver-stained gel profiles were shown in Fig. 3. Only slight degradation was observed in these preparations and all three samples showed major bands corresponding closely to the expected molecular sizes of the three protein A/gp80 fusion proteins.

Binding of Fusion Proteins to Intact Cells

To test whether the fusion proteins have cell-binding activity, they were radioiodinated and assayed for their ability to bind to aggregation stage cells. Fusion protein samples were solubi-lized in 0.1% octyl glucoside before use. Cells were incu-bated with the \(^{125}\)I-labeled fusion protein at 4°C for 45
Figure 4. Binding of fusion proteins to aggregation stage cells. Purified fusion proteins were dialyzed against 0.1% octyl glucoside and labeled with 125I using chloramine T. NC4 cells were developed in liquid medium for 10 h and then collected for the binding assay. Cells were washed and resuspended in 5 mM EDTA and phosphate buffer at 5×10^6 cells/ml. Cells samples (0.1 ml) were incubated with different amounts of 125I-labeled protein for 45 min at 4°C. Nonspecific background binding was estimated by the binding of different concentrations of 125I-labeled protein A (sp act, 5.1×10^4 cpm/ng) to similar cell samples and the amount bound was subtracted from the corresponding samples. (●) PA80I (sp act, 2.4×10^4 cpm/ng); (○) PA80II (sp act, 5.0×10^4 cpm/ng); and (■) PA80III (sp act, 2.6×10^4 cpm/ng). Assays were performed in triplicate and the means ± SD were plotted.

min in the presence of 5 mM EDTA to slow down the kinetics of cell reassociation and thus minimize the extent of nonspecific trapping. Background binding due to protein A was also estimated by incubating cell samples with different concentrations of 125I-labeled protein A (sp act, 5.1×10^4 cpm/ng) to similar cell samples and the amount bound was subtracted from the corresponding samples. (●) PA80I (sp act, 2.4×10^4 cpm/ng); (○) PA80II (sp act, 5.0×10^4 cpm/ng); and (■) PA80III (sp act, 2.6×10^4 cpm/ng). Assays were performed in triplicate and the means ± SD were plotted.

Figure 5. Inhibition of fusion protein binding to intact cells by 80L5C4 IgG. Aggregation stage cells (10 h) were resuspended at 2×10^7 cells/ml in phosphate buffer containing 5 mM EDTA and then precoated with different concentrations of 80L5C4 IgG at 10 µg/ml for 15 min at 4°C. Cells were resuspended at 5×10^6 cells/ml in the same buffer containing 0.25 mg/ml goat anti-mouse IgG Fab before the addition of 125I-labeled fusion protein (2 µg/ml). The rest of the binding assay was carried out as described in Fig. 4. (●) PA80I; (○) PA80II; and (---) gp80. Values represent means ± SD with $n = 3$.

Figure 6. Inhibition of cell-cell adhesion by fusion proteins. Cells were developed on filter pads for 10 h and then collected for the cell cohesion assay. Cells were suspened at 2.5×10^6 cells/ml in 10 mM EDTA/phosphate buffer. At 0 min, either octyl glucoside or fusion protein was added and the sample was vortexed briefly to disperse all aggregates. Samples (0.2 ml) were rotated vertically at 180 rpm and reassociation of cells was monitored microscopically at regular intervals. (A) Cells were reassociated in the presence of 50μg/ml PA80I (●), 50μg/ml PA80II (○), or 50μg/ml PA80III (■). (A) Control sample reassociated in the presence of 0.005% octyl glucoside. (B) Cell samples were reassociated in the presence of different concentrations of PA80I (●) or PA80II (○). The data were taken from the 45-min point.

(Fig. 4). The binding of fusion proteins PA80I and PA80II to cells were both dosage dependent and saturable. The number of molecules bound per cell was estimated to be 1.7×10^4 and 1.6×10^4 for PA80I and PA80II, respectively. On the other hand, the binding of PA80III was essentially at the background level. The data thus indicate that the cell-binding domain is retained in PA80I and PA80II but not in PA80III and probably resides within the segment between Val123 and Leu173.

To further characterize the cell-binding activity of PA80I and PA80II, we tested whether they bound specifically to gp80 molecules on the cell surface. Cells were precoated with different amounts of the anti-gp80 mAb 80L5C4 before carrying out the binding assay with fusion proteins. The binding of 125I-labeled PA80I or PA80II was inhibited in a dosage-dependent manner (Fig. 5). In both cases, the amount of IgG required to achieve 50% inhibition was within a twofold difference in comparison with the control using 125I-labeled gp80 for binding. These results indicate that the binding of PA80I and PA80II to cells is similar to that of solu-
ble gp80 to surface-associated gp80 on aggregation stage cells.

Effect of Fusion Proteins on Cell–Cell Adhesion

If both fusion proteins PA80I and PA80II exist in monomeric form in solution and each monomer consists of only one gp80 binding site, binding of either fusion protein to cells should block cell–cell adhesion mediated by the homophilic interaction between membrane-associated gp80 molecules. This was tested by incubating aggregation stage cells with different concentrations of detergent solubilized PA80I or PA80II before performing the cell cohesion assay. Cell reassociation was significantly inhibited in the presence of either fusion protein at 50 μg/ml (Fig. 6A). However, the inclusion of PA80III at the same concentration had no appreciable effect on cell reassociation. The control in which cells were incubated with an equivalent amount of octyl glucoside showed the normal kinetics of reassociation. The inhibitory effect of both fusion proteins PA80I and PA80II was dosage dependent (Fig. 6B). At 100 μg/ml of PA80I or 50 μg/ml of PA80II, ~60% of the cells failed to reform aggregates and their effect was halved at 20 μg/ml and 10 μg/ml, respectively. Since the molecular mass of PA80I was ~60% higher than that of PA80II, the molar concentrations required to achieve 50% inhibition were quite comparable for these two fusion proteins. The effect of both fusion proteins became negligible at a concentration of 1 μg/ml.

The morphology of cell aggregates formed in the presence of PA80I and PA80II was quite different from that of the control (Fig. 7). Aggregates formed in the control sample were indistinguishable from those formed in the absence of detergent, while most of the aggregates were significantly smaller in samples incubated with the fusion protein.

Inhibition of Cell–Cell Adhesion by Antifusion Protein Antibody

The observation that the fusion protein PA80II was able to inhibit cell reassociation suggests that it contains the cell-binding site of gp80. It is, therefore, of interest to test whether antibodies directed against PA80II would have any effect on cell aggregation. Antibodies against PA80II were raised in rabbit and added to aggregation stage cells before the cohesion assay. Cell reassociation was inhibited by...
Homophilic Binding of Fusion Protein PA80II

It is, therefore, evident that the cell-binding site of gp80 is located within the gp80 fragment of PA80II. It remained to be determined whether PA80II was interacting with a receptor element in the same region or in a different part of gp80. To resolve this, the ability of 125I-labeled PA80II to bind to PA80II immobilized on nitrocellulose disks was assayed. For comparison, approximately equal molar amounts of protein A, PA80I, PA80III, and gp80 were immobilized separately on nitrocellulose disks for binding with 125I-labeled PA80II.

Discussion

Full length cDNAs for the cell-cell adhesion molecule gp80 were isolated and sequenced. An analysis of the gp80 cDNA sequence shows many characteristics common to other D. discoideum genes (Kimmel and Firtel, 1983). The coding region makes use of mainly codons with either an A or T in the third base. The 5' and 3' flanking regions are characterized by homopolymers of A and T. Since we have obtained several clones with recombined fragments at either 5' or 3' ends of the insert, recombination between different cDNA fragments probably occurs frequently at these poly-A tracks.

Our cDNA sequence for gp80 is similar but not identical to that reported by Noegel et al. (1986). In the coding region, differences are located at nucleotide positions 480 (G), 647 (T), 773 (C), 774 (T), 779 (C), and 780 (T), which they reported T, G, T, C, T, and C, respectively. These differences would result in three amino acid changes, involving Val, Ala, and Gly. In addition, our sequence upstream from nucleotide position −39 is completely different from the one they reported. We have obtained identical sequences from two independently isolated inserts of different sizes. Our cDNA sequence has also been confirmed by sequencing the genomic DNA for gp80 (Lam, T. Y., and C.-H. Siu, unpublished observations). While our sequence is extremely AT rich (95%), theirs is more GC rich (40%), which is typical of a coding sequence and thus might have resulted from recombination with another cDNA fragment at the poly-A tract beginning at nucleotide position −39.

We have made use of the expression vector pRIT2T which allowed us to obtain protein A/gp80 fusion proteins in soluble form. Previous attempts using other expression vectors have often resulted in the precipitation of the fusion proteins.
which was difficult to solubilize for subsequent binding studies. Another advantage of this vector is that protein A/gp80 fusion proteins can be easily purified by passage over an IgG-affinity column. Although some degradation was observed in these preparations, the cell-binding activity of the fusion protein appeared to be relatively stable.

Several in vitro binding assays have been performed with three protein A/gp80 fusion proteins. Since all three fusion proteins harbor either the cell-binding site or the hydrophobic carboxy-terminal region of gp80, they have a tendency to aggregate in the absence of detergent. Prior treatment with a mild detergent is necessary for all the assays. Two of the fusion proteins, PA80I and PA80II, can bind to aggregation stage cells. In both cases, 1.6-1.7 x 10^9 molecules are bound per cell. This value agrees closely with the number of gp80 molecules expressed on cells at this stage (Siu et al., 1988a). The binding of PA80I and PA80II to cells is inhibited by precoating cells with the mAb 80L5C4, supporting the idea that both fusion proteins are interacting with gp80 molecules on the cell surface. The binding of either one of these two fusion proteins to aggregation stage cells has an inhibitory effect on cell reassociation. This is consistent with the notion that PA80I and PA80II are competing for the cell-binding site on gp80.

Both PA80I and PA80II are capable of competing for gp80 binding in the filter binding assay. Despite the fact that PA80I contains only part of the gp80 protein moiety, native gp80 is only two to three times more effective than PA80I. Even in the case of PA80II, a molar ratio that is only eightfold higher than native gp80 is required to achieve 50% competition. Since PA80II contains a much shorter fragment of gp80 than PA80I, it is conceivable that the conformation of its cell-binding domain is less stable, resulting in a lower concentration of molecules with the proper gp80-binding site and thus a lower apparent affinity for native gp80. The protein A portion of these fusion proteins might also contribute a certain amount of steric hindrance to the cell-binding domain.

Results of the binding studies lead to the mapping of a cell-binding domain in gp80 to a 51 amino acid region between residues 123 and 173. It is of interest to note that it corresponds exactly to the region which harbors the 80L5C4 epitope (Kamboj and Siu, 1988). Since the anti-gp80 mAb 80L5C4 is a potent inhibitor of cell–cell adhesion, it is likely that 80L5C4 IgG recognizes this cell-binding site or an epitope close to it. The region between Val123 and Leu173 consists of a hydrophilic stretch of amino acids followed by a relatively hydrophobic segment. There are two potential N-glycosylation sites within this region. Therefore, this part of the gp80 molecule is most likely exposed to the surface, allowing it to participate directly in cell–cell binding. Although the precise mechanism of homophilic binding between two gp80 molecules is not known, our data suggest that the major binding force is contributed by protein–protein interaction. Future studies focusing on smaller segments of this region should lead to a better understanding of the binding mechanism.

Since PA80II contains the smallest gp80 fragment, it was used to determine whether its binding site recognizes one or more receptor elements on gp80. PA80II binds equally well with immobilized PA80I, PA80II, and gp80, but not with PA80III. It is, therefore, evident that PA80II binds to a single site on gp80 and that the homophilic binding site of gp80 is also located between Val123 and Leu173. Since labeled PA80III does not bind gp80 (Kamboj, R., and C.-H. Siu, unpublished results), it precludes the presence of another binding site between Ile174 and Ile514.

We have previously proposed three different models for gp80–gp80 interaction (Siu et al., 1987). One of them requires direct protein–protein interaction, while the other two involve the participation of oligosaccharide(s) in the binding activity. The fact that soluble PA80II is capable of undergoing homophilic binding with immobilized PA80II (Fig. 10) clearly demonstrates that the cell-binding site mapped between Val123 and Leu173 is one that involves only protein–protein interaction. Our results suggest that there are no other protein–protein interacting sites on gp80, but they do not rule out the possibility of a second binding site involving protein–carbohydrate interaction.

The role of carbohydrate in gp80 function in vivo is still an unsettled issue. gp80 has two types of N-linked oligosaccharides. Type 1 is heavily sulfated while type two is not (Hohmann et al., 1985). Type 2 carbohydrate is immunodominant and many of the reported anti-gp80 antibodies are directed against it. Several mAb that belong to this class exhibit inhibitory effect on cell reassociation (Ochiai et al., 1982a; Siu et al., 1985; Springer and Barondes, 1985). Therefore, the type 2 carbohydrate of gp80 has been implicated in mediating cell–cell adhesion. The role of type 2 carbohydrate in gp80 has been reevaluated recently using strains with mutations in the modB locus, which affects a posttranslational modification of certain membrane glycoproteins. Mutations in this locus result in the loss of the type 2 carbohydrate in gp80 (Murray et al., 1984) and mutant cells accumulate a mutant gp80 of lower molecular size (Gerisch et al., 1985; Siu et al., 1985). The amount of gp80 expressed in these mutant cells is considerably lower than that of the parental strain (Siu and Lam, 1988). However, they are capable of forming EDTA-resistant binding sites and undergo normal morphogenesis. Cell–cell adhesion among modB mutants can be blocked by the mAb 80L5C4 (Siu and Lam, 1988). These observations are consistent with the idea that the cell-binding activity of gp80 resides in its protein moiety and that the type 2 carbohydrate does not directly participate in cell–cell adhesion. Since the cell-binding domain potentially has two oligosaccharide side chains, it is conceivable that binding of immunoglobulin molecules to carbohydrate epitopes in this region would sterically hinder the cell-binding activity.

Although it is evident that the cell-binding activity of gp80 resides in the protein moiety and not the carbohydrate moiety, treatment of cells with tunicamycin, which inhibits N-glycosylation, has been found to block cell–cell adhesion (Lam and Siu, 1982; Ochiai et al., 1982b; Yamada et al., 1982). Hirano et al. (1983) found that EDTA-resistant cell–cell binding sites in tunicamycin-treated cells can be restored when tunicamycin is added in the presence of the protease inhibitor leupeptin. It is, therefore, likely that the involvement of this carbohydrate moiety in cell adhesion is indirect in that it acts to protect the protein moiety of gp80 from proteolytic degradation (Hirano et al., 1983; Hohmann et al., 1987). Since the type 1 carbohydrate of gp80 is heavily sulfated (Hohmann et al., 1985), it is conceivable that they may play a modulatory role in cell–cell adhesion similar to the model proposed for the neural cell adhesion molecule (Edel-
The role of type 1 carbohydrate should be further evaluated when specific antibodies directed against it become available.

In addition to gp80, another glycoprotein (gp69/73) has been implicated in mediating the EDTA-resistant type of cell-cell adhesion (Brodie et al., 1983). It is possible that several separate but interdependent adhesion systems are operating at the aggregation stage of development. In this regard, it is of interest to note that endoglycosidase H-resistant glycopeptides derived from 8-h cells are able to inhibit the reassociation of aggregation stage cells (Ziska and Henderson, 1988). Since these glycopeptides were derived from a mixture of plasma membrane glycoproteins, their relationship to gp80 or gp69/73 remains to be clarified. It is also possible that these glycopeptides may belong to a cell adhesion molecule yet to be identified. The purification and characterization of these molecules will be important to our future endeavor to dissect the complex phenomena of cell-cell interaction.

We are grateful to Drs. E. Holowaczuk, J. Inies, and C. J. Brandl for advice on recombant DNA techniques; J. Rodwell for participation in cDNA cloning; and L. Desbarats, P. Ma, and S. Bailey for discussion and comments on the manuscript.

This work was supported by an operating grant form the Medical Research Council of Canada.

Received for publication 27 May 1988, and in revised form 18 July 1988.

References
Brodie, C., C. Klein, and J. Swierkosz. 1983. Monoclonal antibodies: use to detect developmentally regulated antigens on D. discoideum anebea. Cell. 32:1115-1123.
Choi, A. H. C., and C.-H. Siu. 1987. Filopodia are enriched in a cell cohesion molecule of Mr 80,000 and participate in cell-cell contact formation in Dictyostelium discoideum. J. Cell Biol. 104:1373-1387.
Cocucci, S., and M. Sussman. 1980. RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J. Cell Biol. 45:399-407.
De Chastellier, C., and A. Ryter. 1986. Characteristic ultrastructural transformations upon starvation of Dictyostelium discoideum and their relationship with aggregation: study of wild type amoebae and aggregation mutants. Biol. Cell. 38:121-128.
Dente, L., G. Cesareni, and C. Riccardo. 1983. PEMBL, a new family of single stranded plasms. Nucleic Acids Res. 11:1645-1654.
Edelman, G. M. 1983. Cell adhesion molecules. Science (Wash. DC). 219:450-457.
Gerisch, G. 1961. Zellfunktionen und zellfunktionswechsel in der entwicklung von Dictyostelium discoideum. V. Standerspezifische zellkontaktbildung und ihre quantitative erfassung. Exp. Cell Res. 25:555-554.
Gerisch, G. 1980. Univalent antibody fragments as tools for the analysis of cell adhesion. In Enzyme Methods in Biology. Eds. E. Chargaff and S. N. Timasheff. 10:243-270.
Gerisch, G., U. Weinheit, G. Betholdt, M. Chavez, and J. Studler. 1984. Incomplete contact site A glycoprotein in HL220, a modB mutant of Dictyostelium discoideum. J. Cell Biol. 93:49-68.
Hirano, T., H. Yamada, and T. Miyazaki. 1983. Inhibition of cell adhesion in Dictyostelium discoideum by tunicamycin is prevented by leupeptin. J. Biochem. 93:1249-1257.
Hohmann, H.-P., S. Bozzaro, R. Merkl, E. Wallrath, M. Yoshida, U. Weinheit, and G. Gerisch. 1987. Post-translational glycosylation of the contact site A protein of Dictyostelium discoideum is important for stability but not for its function in cell adhesion. EMBO (Eur. Mol. Biol. Organ.). J. 6:3663-3671.
Hohmann, H.-P., G. Gerisch, R. H. Lee, and W. R. Hutterm. 1985. Cell-surface utilization of the contact site A glycoprotein of Dictyostelium discoideum and of a partially glycosylated precursor. J. Biol. Chem. 260:13869-13878.
Kamboj, R., and C.-H. Siu. 1988. Mapping of the monoclonal antibody 80LS5C4 epitope on the cell adhesion molecule gp80 of Dictyostelium discoideum. Cell Biol. Biophys. Acta. In press.
Kimmel, A. R., and R. A. Fintel. 1983. Sequence organization in Dictyostelium: unique structure at the S-ends of protein coding genes. Nucleic Acids Res. 11:541-552.
Knecht, D. A., D. L. Fuller, and W. F. Loomis. 1987. Surface glycoprotein, gp24, involved in early adhesion of Dictyostelium discoideum. Dev. Biol. 121:277-283.
Kamboj et al. Cell-binding Domain of gp80 in Dictyostelium

Received for publication 27 May 1988, and in revised form 18 July 1988.

References
Brodie, C., C. Klein, and J. Swierkosz. 1983. Monoclonal antibodies: use to detect developmentally regulated antigens on D. discoideum anebea. Cell. 32:1115-1123.
Choi, A. H. C., and C.-H. Siu. 1987. Filopodia are enriched in a cell cohesion molecule of Mr 80,000 and participate in cell-cell contact formation in Dictyostelium discoideum. J. Cell Biol. 104:1373-1387.
Cocucci, S., and M. Sussman. 1980. RNA in cytoplasmic and nuclear fractions of cellular slime mold amebas. J. Cell Biol. 45:399-407.
De Chastellier, C., and A. Ryter. 1986. Characteristic ultrastructural transformations upon starvation of Dictyostelium discoideum and their relationship with aggregation: study of wild type amoebae and aggregation mutants. Biol. Cell. 38:121-128.
Dente, L., G. Cesareni, and C. Riccardo. 1983. PEMBL, a new family of single stranded plasms. Nucleic Acids Res. 11:1645-1654.
Edelman, G. M. 1983. Cell adhesion molecules. Science (Wash. DC). 219:450-457.
Gerisch, G. 1961. Zellfunktionen und zellfunktionswechsel in der entwicklung von Dictyostelium discoideum. V. Standerspezifische zellkontaktbildung und ihre quantitative erfassung. Exp. Cell Res. 25:555-554.
Gerisch, G. 1980. Univalent antibody fragments as tools for the analysis of cell interactions in Dictyostelium. Curr. Top. Dev. Biol. 14:243-270.
Gerisch, G., U. Weinheit, G. Betholdt, M. Chavez, and J. Studler. 1984. Incomplete contact site A glycoprotein in HL220, a modB mutant of Dictyostelium discoideum. J. Cell Sci. 73:49-68.
 Hirano, T., H. Yamada, and T. Miyazaki. 1983. Inhibition of cell adhesion in Dictyostelium discoideum by tunicamycin is prevented by leupeptin. J. Biochem. 93:1249-1257.
Hohmann, H.-P., S. Bozzaro, R. Merkl, E. Wallrath, M. Yoshida, U. Weinheit, and G. Gerisch. 1987. Post-translational glycosylation of the contact site A protein of Dictyostelium discoideum is important for stability but not for its function in cell adhesion. EMBO (Eur. Mol. Biol. Organ.). J. 6:3663-3671.
Hohmann, H.-P., G. Gerisch, R. H. Lee, and W. R. Hutterm. 1985. Cell-surface utilization of the contact site A glycoprotein of Dictyostelium discoideum and of a partially glycosylated precursor. J. Biol. Chem. 260:13869-13878.
Kamboj, R., and C.-H. Siu. 1988. Mapping of the monoclonal antibody 80LS5C4 epitope on the cell adhesion molecule gp80 of Dictyostelium discoideum. Cell Biol. Biophys. Acta. In press.
Kimmel, A. R., and R. A. Fintel. 1983. Sequence organization in Dictyostelium: unique structure at the S-ends of protein coding genes. Nucleic Acids Res. 11:541-552.
Knecht, D. A., D. L. Fuller, and W. F. Loomis. 1987. Surface glycoprotein, gp24, involved in early adhesion of Dictyostelium discoideum. Dev. Biol. 121:277-283.