Original Research Article

Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan

Wahid Hussain¹, Manzoor Ullah²*, Ghulam Dastagir³, Lal Badshah³,

¹ Department of Botany, GPGC Parachinar Kurram agency Pakistan
² Department of Botany, University of Science and Technology Bannu KP, Pakistan
³ Department of Botany, University of Peshawar, KP, Pakistan

Article history:
Received: Dec 23, 2016
Received in revised form: Dec 05, 2017
Accepted: Feb 02, 2018
Vol. 8, No. 4, Jul-Aug 2018, 313-329.

* Corresponding Author:
Tel: +928 653212
+923139221942
Fax: +92928633821
Manzoorkhan536@yahoo.com

Keywords: Artemisia absinthium, Nannorrhops ritchiana, Seriphidium kurramense, Traditional knowledge, Pakistan.

Abstract
Objective: Medicinal plants are used for treatment of ailments throughout rural and urban areas of the world. Such use of plants varies from one region to another and is measured using quantitative techniques. The current research which was conducted from March to October 2015, is the first explorative study of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan.

Materials and Methods: Field trips were done to 20 location of lower Kurram and information regarding medicinal use of plants was collected from the locals through semi-structured interviews.

Results: A total of 52 plant species that were reported by the people from the region, to have medicinal value, fall within 48 genera and 35 families. The family Asteraceae comprised most of these herbs (6 species) followed by the family Lamiaceae (4 species) and Solanaceae (3 species). Leaves (24.3%) and fruits (21.6%) were the frequently used parts in preparation of remedies. The reported plants were used for treatment of 50 ailments with most of these plants (35 species; 30.97%) being used for treatment of digestive problems. Seriphidium kurramensis had the highest relative frequency of citation (66.18) and use value (1.10). Fidelity level of Caralluma tuberculata and Artemisia scoparia for diabetes was (61.22) and (55.56), respectively. The highest fidelity level for malaria was reported for Artemisia absinthium (43.66) and S. kurramensis (40.00).

Conclusion: The inhabitants of lower Kurram still practice medicinal plants and few of the plants were used for treatment of fatal diseases like malaria, hepatitis and blood cancer. Haphazard cutting of plants and overgrazing are major threats that can affect plants biodiversity.

Please cite this paper as:
Hussain W, Ullah M, Dastagir G, Badshah L. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna J Phytomed, 2018; 8 (4): 313-329.

Introduction
One important aspect of quantitative ethnobotany survey is the use of quantitative techniques to assess the medicinal use of plants in a specific area. Quantitative ethnobotany survey involves the use of quantitative techniques for direct analysis of the data on utilization of the
existing plants (Phillips et al., 1994). This is a relatively new idea and the term was coined by Prance and coworkers in 1987 (Pepin., 1999). These approaches are useful in explaining the variables quantitatively (Hoffman and Gallagher 2007). Quantitative studies create quality information, which in turn leads to conservation and development of resources (Phillips and Oliver., 1996). So, considering methodological issues not only strengthens the discipline of ethnobotany but also improves the image of ethnobotany among other scientists (Phillips et al., 1994). This is also helpful to realize the importance of the environment for people (Atran & Medin, 2008). Such efforts are now made by ethnobotanists to present quantitative profiles of indigenous use of plants for medicinal purpose.

Medicinal plants are used for treatment of ailments all over the world and are regarded as natural treasures of each region. Usually, these sources are abundantly available and can be used in safe, stable, standardized, and effective galenical products to be utilized in primary health care (Farnsworth et al., 1985). An estimated 50,000 medicinal plant species provide primary health benefits to 80% of world population (Gewali and Awale, 2008; Wangchuk et al., 2011). They are integral part of healthcare in less-developed countries where 3.3 billion people utilize medicinal plants on a regular basis (Davidson-Hunt, 2000). Medicinal use of plants has become more popular due to dynamic nature of traditional knowledge as it is passed to the following generations through oral or discipleship practices in communities (Rastogi & Dhawan, 1982). Documentation of historically tested traditional knowledge from people is necessary before loss because much of the information remains intact with tribal people. A part of modern medicine research is based on ethnobotanical studies and traditional knowledge and many drugs have been derived from plants and several plants are currently undergoing investigation to ascertain their therapeutic efficacies (Torres et al., 2012). An estimated 25% of the drugs prescribed worldwide are derived from plants, and 121 such active compounds are currently in use (Sahoo et al., 2010). The documented traditional knowledge provides a comprehensive basis for the novel phytochemical, pharmacological and clinical studies necessary to secure sustainable and rational use of these plants as therapeutic resources (Srithi et al., 2009). It is also helpful in preservation of cultural and ecological value of plants.

Medicinal plants are still an important component of healthcare in Pakistan. This is largely due to poverty, inadequacy of health services, and availability of indigenous remedies and shortage of health-care provider. Medicinal plants have been traditionally used in various parts of Pakistan (Bano et al., 2014; Barkatullah & Ibrar, 2013; Bibi et al., 2014; Hussain et al., 2013; Jan et al., 2016; Marwat, 2008; Sarangzai et al., 2013; Shinwari & Khan, 2000; Tareen et al., 2010; M. Ullah et al., 2013; R. Ullah et al., 2010). However, limited quantitative assessment of the ethnomedicinal properties of these plants, has been done. Such information has been documented from upper Kurram agency (Ajaib et al., 2014; Gilani et al., 2003; Hussain et al., 2012) without quantitative appraisal as no systematic approach has been made to investigate the quantitative aspect of the indigenous uses of medicinal plants.

Lower Kurram is a rich diversified area extending from Thall in Hangu district to Sadda of Kurram agency. Due to inadequate medical facilities and lack of modern medicines, the inhabitants use available medicinal plants. Along these, instability and terrorist activities have limited developmental strategies for promotion of health, education, and infrastructure facilities. Most villages of the area are located on sides of rivers Kurram where plenty of medicinal plants are available. In the present research work, we
collected ethnomedicinally important plants information from inhabitants of lower Kurram, an ethnobotanically unexplored area. The study also focuses on indigenous knowledge and performs a quantitative analysis of the medicinal plants used by the inhabitant of lower Kurram.

Materials and Methods

Study area description

Kurram Agency is a remote tribal territory of Pakistan, (https://en.wikipedia.org/wiki/Kurram_Agency), which lies on Pakistan-Afghanistan border with geographic co-ordinates 33°45’0” N and 70°19’60” E. The agency is bounded on the north and west by Afghanistan provinces Ningarhar and Pukthia, respectively, on the east by Orakzai and Khyber Agencies, on the southeast by Hangu district and on the south by North Waziristan Agency. The agency takes its name from the river Kurram which passes through it. Major tribes living in the agency are Bangash, Turi, Orakzai, Zazai, Mangal, Ghilzai and Para Chamkani. The total length of agency is 115 kilometers and the total surface is 3.380 Km². The total forest area cover of the agency both artificial and natural, make 22% of the total forest area of the Federally Administered Tribal Areas (FATA) of Pakistan (https://www.fata.gov.pk). The agency is further divided into three administrative units namely, upper, central and lower Kurram.

![Map of Pakistan](image1.png)

![Map of Kurram agency](image2.png)

![Map of the study area (Lower Kurram)](image3.png)

Figure 1. Map of (I) Pakistan (II) Kurram agency (III) Study area (Lower Kurram).

Sampling technique and data collection method

Field trips were done to 20 locations including Ahmadi shama, Manduri (Upper), Bagann, Alizai Chardhiwar, Alizai Bagizai, Manduri (Lower), Bilyamin, Marokhel, Arawali, GhamKot, Wali China, Ahmadishama kila, Shasi, Sadda, Satin, Ibrahimzai, Toppaki, Yaqubi, Mahora and Amalkot of lower Kurram agency from March to October 2015 (Figure 1 III). Informants were selected according to purposive sampling technique, a technique which is now actively employed in ethnobotany (Tongco, 2007) with a number of data gathering methods (Godambe,
The criteria for selection of informants were being an inhabitant of over 40 years old and having cultivated garden plants, or sold or collected wild plants. Totally, 68 informants were selected including farmers, pastoralists, traditional healers, shopkeepers, drivers and gardeners. Ethnomedicinal plants data was collected through semi-structured interviews. Among the 68 informants interviewed, 59 were males and 9 were females. Traditional knowledge of medicinal plants mainly transferred through oral means to younger generations.

Collection, identification and preservation of medicinal plants

During field trips, samples of the plant and the part(s) of the plant used were collected with the help of the informants who were asked to share their information about indigenous medicinal plants. They were dried, preserved by using (1% CuSO₄) as 1g CuSO₄ dissolved in 99 ml distilled water and mounted on herbarium sheets. A voucher number was given to each plant sample. The plant specimens were identified by taxonomists at Botany Department University of Peshawar and compared with Flora of Pakistan (Ali & Qaiser, 1995) and were deposited in the Herbarium of Botany Department University of Peshawar for future references.

Quantitative analysis of data

Relative frequency citation (RFC)

Relative frequency citation was calculated by using the following formula:

\[\text{RFC} = \frac{\text{FC}}{\text{N}} \]

Where FC is the number of informants reporting the use of species divided by the total number of informants participating in the survey (N), without consideration of the use categories.

Use Value (UV)

The relative importance of each species was calculated according to formula \[\text{UV}_i = \frac{\sum \text{UV}_i}{\text{Ni}} \], proposed by (Phillips & Gentry, 1993). Where ‘\(\text{UV}_i \)’ represents use value for a given species among the informants participated and ‘\(\text{Ni} \)’ represents the total number of informants.

Fidelity level (FL)

Fidelity level of plant was determined to find which plant is preferably used against specific ailments (Friedman, Yaniv, Dafni, & Palewitch, 1986). The following formula was used: \[\text{FL} = \frac{\text{Ip}}{\text{Iu}} \times 100 \]

Where FL = Fidelity level, Ip = number of informants who cited the plant for a specific ailment, Iu = total number of informants who used the plant for treatment of any illness. Plants having higher FL value are considered biologically dynamic compared to those having less FL value (Canales et al., 2005).

Results

Medicinal plants diversity, life forms, uses and threats

During the present explorative survey, informants mentioned 52 plants and their use for medicinal purposes (Table 1). These plants falling within 48 genera and 35 families included herbs (36 species), shrubs (8 species) and trees (8 species). These included six species belonging to family Asteraceae, as an exceedingly large and widespread family of angiosperms (Kadereit and Jeffrey, 2007) four species were from the family Lamiaceae and three species from the family Solanaceae. The results show an agreement with highest number of medicinal plants of family Asteraceae reported by (Ajaib, Anjum, Malik, & Sidiqui, 2015) and both family Asteraceae and Lamiaceae were reported as major families by (Andrade-Cetto, 2009; Bano et al., 2014; Castro., 2011). From each of the following seven families namely, Arecaceae, Asclepiadaceae, Liliaceae, Moraceae, Plantaginaceae, Polygonaceae, and Rosaceae, two species were found. The other species belonged to 25 families including Aizoaceae (1), Berberidaceae (1), Brassicaceae (1), Cannabaceae (1), and...
Quantitative ethnobotanical appraisal of medicinal plants of lower Kurram, Pakistan

Chenopodiaceae (1) Ephedraceae (1) Equisetaceae (1) Fabaceae (1) Fagaceae (1) Fumariaceae (1) Malvaceae (1) Meliaceae (1) Oleaceae (1) Oxalidaceae (1) Papaveraceae (1) Poaceae (1) Polydociaceae (1) Punicaceae (1) Ranunculaceae (1) Scrophulariaceae (1) Thymelaeaceae (1) Ulmaceae (1), Umbelliferae (1), Violaceae (1) and Zygophyllaceae (1).

The inhabitants that were professionally agropastoralists, collected medicinal plants from the wild and sold them in local market (e.g. Withania coagulans, Caralluma tuberculata, etc.). Overgrazing has affected the flora; however, deforestation is the major cause of loss of biodiversity in this area. Most people excessively cut plants such as Dodonaea viscosa, Prosopisspecies and Nannorrhops ritchiana for fuel, construction and making rope that can raise concerns regarding loss of biodiversity in this area.

Table 1. Medicinal plants diversity, voucher number, part used, FC, RFC and UV

Plant species	Voucher number	Family	Local name	Habit	Part used	FC	RFC	UV
Adiantum capillus-veneris L.	Bot.Huss.01 (PUP)	Polydociaceae	Lailazuli	Herb	Leaves	17	25.00	0.25
Allium sativum L.	Bot.Huss.02 (PUP)	Liliaceae	Wooga	Herb	Bulb	41	60.29	0.74
Artemisia absinthium	Bot.Huss.03 (PUP)	Asteraceae	Mastya	Herb	Whole plant	39	57.35	1.04
Waldis&Kitam	Bot.Huss.04 (PUP)	Asteraceae	Derang	Herb	Root	20	29.41	0.53
Artemisia scoparia L.	Bot.Huss.05 (PUP)	Liliaceae	Speragais	Herb	Leaves, branches	17	25.00	0.40
Asparagus officinalis Royle	Bot.Huss.06 (PUP)	Poaceae	Karyanra	Herb	Fruit	26	38.24	0.46
Berberis lyceum Royle	Bot.Huss.07 (PUP)	Berberidaceae	Sarasghay	Shrub	Fruit, bark	41	60.29	0.88
Calotrops procera (wild) R.Br.	Bot.Huss.08 (PUP)	Asclepiadaceae	Sperboti	Shrub	Stem, leaves	33	48.53	0.76
Cannabis sativa L.	Bot.Huss.09 (PUP)	Cannabaceae	Bang	Herb	Leaves, branches	44	64.71	0.90
Caralluma tuberculata N. E. Brown	Bot.Huss.10 (PUP)	Apocynaceae	Pawanay	Herb	Stem	30	44.12	0.72
Celtis australis L.	Bot.Huss.11 (PUP)	Ulmaceae	Togh	Tree	Fruit	14	20.59	0.21
Chenopodium album L.	Bot.Huss.12 (PUP)	Chenopodiaceae	Sarmay	Herb	Aerial parts	12	17.65	0.66
Cichorium intybus L.	Bot.Huss.13 (PUP)	Asteraceae	Sheenuli	Herb	Leaves, branches, root	24	35.29	0.59
Cotoneaster horizontalis Dene	Bot.Huss.14 (PUP)	Rosaceae	Kherawa	Shrub	Fruit	17	25.00	0.25
Daphne mucronata Royle	Bot.Huss.15 (PUP)	Thymelaeaceae	Lahghony	Shrub	Leaves, flower	16	23.53	0.24
Datura stramonium L.	Bot.Huss.16 (PUP)	Solanaceae	Tura	Herb	Leaves, seeds	32	47.06	0.57
Ephedra intermedia Wall.ex.stapf	Bot.Huss.17 (PUP)	Ephedraceae	Mawa	Shrub	Branches	21	30.88	0.31
Equisetum arvensis L.	Bot.Huss.18 (PUP)	Equisetaceae	Bandoky	Herb	Stem, branches	17	25.00	0.25
Foeniculum vulgare Mill	Bot.Huss.19 (PUP)	Apiaceae	Hogelanay	Herb	Aerial parts	37	54.41	1.01
Fumaria indica (Hauusk) pugil	Bot.Huss.20 (PUP)	Fumariaceae	Shatara	Herb	Whole plant	20	29.41	0.40
Lepidium sativum L.	Bot.Huss.21 (PUP)	Brassicaceae	Sugarboori	Herb	Leaves, branches	15	22.06	0.22
Malva parviflora L.	Bot.Huss.22 (PUP)	Malvaceae	Takalay	Herb	Aerial parts	25	36.76	0.66
Melia azedarach L.	Bot.Huss.23 (PUP)	Meliaceae	Daraka	Tree	Leaves, flower	11	16.18	0.24
Mentha piperita (L.) Huds	Bot. Huss. 24 (PUP)	Lamiaceae	Walay	Herb	Leaves, branches	37	54.41	0.54
Mentha viridis L.	Bot. Huss. 25 (PUP)	Lamiaceae	Podina	Herb	Fruit	21	30.88	0.82
Morus alba L.	Bot. Huss. 26 (PUP)	Moraceae	Spreentoot	Tree	Fruit	22	32.35	0.32
Morus nigra L.	Bot. Huss. 27 (PUP)	Moraceae	Toortoot	Tree	Fruit	18	26.47	0.40
Nannorrhops ritchiana H. Wendt.	Bot.Huss.28 (PUP)	Arecaceae	Mazaray	Tree	Fruit	22	32.35	0.56
Olea ferruginea (Wall. Ex G. Don) Ciff.	Bot.Huss.29 (PUP)	Oleaceae	Hawney	Tree	Aerial parts	41	60.29	0.75

AJP, Vol. 8, No. 4, Jul-Aug 2018 317
Plants parts used in formulation of remedies

Parts of the plants that were reported to have therapeutic effect were leaves (24.3%) and fruits (21.6%) being the most frequently used followed by branches (10.8%), aerial parts (9.5%) and seeds (8.1%) (Table 2). The more frequent use of leaves and fruits in treatment of ailments is attributed to the fact that they are easily collected and could be directly used (Dolatkahi et al., 2014). The use of a single or few parts of the same species is also clear and that were easily collected due to availability. The locals used various parts of the same species in treatment of a variety of ailments e.g. leaves, branches and root of *Cichorium intybus* were all cited by informants as blood purifier, antipyretic and anti-malarial agents. Aerial parts of *Seriphidium kurramensis* were used as anthelmintic, anti-malarial and antipyretic medicines. The other plants with two parts used or aerial parts used in formulation of remedies are shown in Table 1.

Plant part	Absolute value	Frequency (%)
Leaves	18	24.3%
Fruits	16	21.6%
Branches	8	10.8%
Aerial parts	7	9.5%
Seeds	6	8.1%
Flowers	5	6.8%
Whole plant	5	6.8%
Root	3	4.1%
Stem	3	4.1%
Bark	1	1.4%
Bulbs	1	1.4%
Rhizome	1	1.4%
Total	74	100

Medicinal applications of the plants

In the current report, 50 medicinal applications were documented for 52 medicinal plants (Table 3 and Figure 2). The highest number of species (35 species) that represented (30.97%) of total species were used for treatment of disorders of digestive system. The use of medicinal...
plants in treatment of digestive disorders is also an important application of the min other rural areas of Iran and Pakistan (Dolatkhahi et al., 2014; Rahman et al., 2016; M. Ullah et al., 2013). Moreover, 16 plants (14.15%) were used for problems of circulatory system and the same number of plants (16) (14.15%) were used against pain and fever. Eight species (7.07%) were used for problems of Integumentary system and another eight species (7.07%) were used against respiratory conditions. Five species (4.42%) were used for wound healing and as antidotes, 5 species (4.42%) against urologic problems 3 species (2.65%) for hepatitis/jaundice, 3 species (2.65%) for reproductive system disorders 3 species (2.65%) as narcotic/sedatives, 3 species (2.65%) had antiseptic/antibacterial properties and 1 species (0.88%) for ophthalmological problem.

Figure 2. Relative value or percentage (%) use of medicinal plants.
Table 3. Medicinal applications, number of plants used and relative value (%).

Medicinal use applications	A. V for group of symptom or ailment	Relative value (%)	Symptom or ailment	A. V or symptom or ailment	Name of plants used
Integumentary system	8	7.07%	Skin allergy	7	Adiantum capillusveneris, Artemisia absinthium, Daphne macrantha, Fumaria indica, Melia azedarach, Ramex dentatus, Mentha piperita, Melia azedarach
					Strongthen hairs
			Blood pressure	2	Allium sativum, Olea ferruginea
			Blood cancer	1	Artemisia scoparia
			Blood purifier	6	Artemisia absinthium, Artemisia scoparia, Cichorium intybus, Foeniculum vulgare, Fumaria indica, Teucrium stocksianum
			Bleeding control	1	Verbascum thapsus
			Diabetic	5	Artemisia absinthium, Carallium tuberculata, Lepidium sativum, Quercusbaloet, Solanum nigrum, Celsis australis
Circulatory system	16	14.15%	Blood pressure	2	Allium sativum, Olea ferruginea
			Blood cancer	1	Artemisia scoparia
			Blood purifier	6	Artemisia absinthium, Artemisia scoparia, Cichorium intybus, Foeniculum vulgare, Fumaria indica, Teucrium stocksianum
			Bleeding control	1	Verbascum thapsus
			Diabetic	5	Artemisia absinthium, Carallium tuberculata, Lepidium sativum, Quercusbaloet, Solanum nigrum, Celsis australis
Digestive system	35	30.97%	Intestinal tonic	1	Asparagus officinalis
			Dysentery	1	Plantago major
			Laxative	5	Asparagus officinalis, Chenopodium album, Nannorrhops Ritchiana, Morus alba, Morus nigra
			Stomachic	6	Avena sativa, Cotoneaster horizontalis, Mentha viridis, Portulaca oleracea, Thymus linearis, Withania coagulans
			Intestinal flatulence	2	Carallium tuberculata, Foeniculum vulgare
			stomach pain	5	Carallium tuberculata, Foeniculum vulgare, Oxalis corniculata, Plantago lanceolata, Solanum nigrum, Plantago lanceolata
			stomach acidity	1	Mentha piperita
			Carminative	1	Mentha viridis, Thymus linearis
			Colic	2	Malva parviflora, Rumex dentatus, Withania coagulans
			Constipation	3	Malva parviflora
			Intestinal pain	1	Nannorrhops Ritchiana, Rosa moschata
			Purgative	2	Equisetum arvensis, Plantago lanceolata, Panica granatum
			Diarhhea	3	Calotropis procera, Cannabis sativa, Mentha viridis, Morus nigrum, Papaver somniferum, Thymus linearis
Respiratory system	8	7.07%	Analhmiteic cough	2	Seriphidium karramensis, Talipia stellis
			Asthma	1	Calotropis procera
			Flu	1	Thymus linearis
			Wound healing	3	Calotropis procera, Plantago major Ramex dentatus
Wound healing and Bite (Antidote)	5	44.2%	Snake Bite	1	Datura stramonium
			Honey bees	1	Allium sativum
			biting		
Urologic problems	5	4.42%	Renal pain	3	Berberis lyceum, Polygonum plebeum Xanthium strumarium
			Kidney stone	1	Oxalis corniculata
			Strengthen	1	Chenopodium album
			urinary tract wall		
Pain and Fever	16	14.15%	Analgesic	4	Calotropis procera, Datura stramonium, Papaver somniferum, Ranunculus muricatus
			Chest pain	3	Berberis lyceum, Mentha viridis, Rosa moschata
			Rheumatism	1	Carallium tuberculata
			Antipyretic	4	Cichorium intybus, Fumaria indica, Seriphidium karramensis, Teucrium stocksianum
			Malaria	4	Artemisia absinthium, Cichorium intybus, Seriphidium karramensis, Teucrium stocksianum
			Hepatitis/Jaundice		Taraxicum officinale
			Hepatitis/Jaundice		Chenoepodium album, Solanum nigrum
Hepatitis/Jaundice	3	2.65%	Hepatitis	1	Calotropis procera, Datura stramonium, Papaver somniferum, Ranunculus muricatus
Reproductive system	3	2.65%	Jaundice	2	Chenoepodium album, Solanum nigrum
Ophthalmological Disorders	1	0.88%	Eye sight	1	Foeniculum vulgare
			Aphrodisiac	3	Chenoepodium album, Foeniculum vulgare, Cannabis sativa
Narcotic	3	2.65%	Narcotic	2	Cannabis sativa, Datura stramonium
Sedative	3	2.65%	Sedative	1	Datura stramonium
Medicinal plants applications, as well as their formulation and route of administration

The applications of medicinal plants as well as their formulation and route of administration are given in Table 4. In traditional medicine, the methods of preparation of herbal remedies vary and are based upon the plant utilized and symptom being treated. The plant parts used in preparation of remedies were either fresh, dried or a combination of both forms. The main method of preparation of remedies was extract (22 species) followed by powder (14 species), intact (7 species), as a vegetable (4 species), decoction (3 species) and infusion (3 species) (Table 4). Extract was also reported as the main method of preparation in ethnobotanical studies conducted by researchers (Asase et al., 2005; M. Khan et al., 2012). The locals also kept dried parts of plants that were either boiled to prepare an extract or grounded into powder before application. Some plants recipes were used for treatment of fatal diseases like malaria, hepatitis and blood cancer. Most diseases were usually treated with a single plant remedy; however, the inhabitants also prepared herbal mixtures of two plants. A concoction of whole plant of *E. arvensis* and leaves of *M. viridis* was used for the treatment of diarrhea. The leaves of *S. kurramensis* and *T. linearis* were boiled in water to prepare a concoction for treatment of cough and malaria. The concoction of *C. intybus* root and leaves of *A. absinthium* was used against malaria and fever as well as a blood purifier. A concoction of the bark of *P. granatum* and aerial parts of *T. linearis* are boiled in water for treatment of cough. A concoction of *D. mucronata* and *A. capillus-veneris* are applied on skin for treatment of skin allergy. The inhabitants practiced the remedies both orally and topically. Forty plants were used orally, eight plants were used both orally and topically and the other four plants were applied topically (Figure 3).

![Figure 3. Route of administration of remedies.](image-url)
Table 4. Medicinal plants application as well as their formulation and route of administration.

Medicinal plant	Method of formulation of remedies	ROA	Medicinal use
Adiantum capillus veneris	Ext	T	Extract of leaves is topically applied on skin for treatment of skin allergy.
Allium sativum	Dir, veg, ext	O, T	Bulb is either directly eaten or cooked as vegetable for lowering blood pressure.
Artemisia absinthium	Pow, ext	O, T	Extract of bulb topically applied on skin as antidote for honey bees biting.
Artemisia scoparia	Dec	O	Decoction of root is used for blood cancer and as blood purifier.
Asparagus officinalis	Pow	O	Powder of leaves and branches is used as intestinal tonic and laxative.
Avena sativa	Ext	O	Fruit extract is considered CNS tonic and stomachic.
Berberis lycium	Pow, dec, Dir	O	Bark is grinded into powder or boiled in water to get decoction. These powder and decoction are orally taken for chest pain and renal pain. Fruit is directly consumed as antiseptic.
Calotropis procera	Lat, smo.	O, T	Latex of stem and leaves is applied as wound healing agent. Smoke of these part is useful for cough asthma analgesic.
Cannabis sativa	Ext	O	Extract of leaves and branches is narcotic, analgesic, sedative and aphrodisiac.
Caralluma tuberculata	Dir, veg	O	Stem is directly used or cooked as vegetable for diabetic, stomach pain, rheumatism and as intestinal flatulence.
Celtis australis	Dir	O	Fruit is directly consumed as cardio-tonic.
Chenopodium album	Veg, Pow	O	Leaves are cooked as vegetable for jaundice and as aphrodisiac and laxative. Powder of seeds used to strengthen wall of urinary tract.
Cichorium intybus	Veg	O	Leaves and branches are cooked and consumed as blood purifier, antipyretic and anti-malaria.
Cotoneaster horizontalis	Dir	O	Fruit is consumed as stomachic.
Daphne macronota	Ext	T	Leaves and flower extract is used as skin allergy.
Daturastramonium	Ext	O, T	Leaves and seeds extract is sedative, analgesic and also applied topically as antidote on snake bite part.
Ephedra intermedia	Ext	O	Extract of leaves is used as antiseptic.
Equisetum arvensis	Pow	O	Powder of stem and branches is useful in diarrhea.
Foeniculum vulgare	Dir, Pow	O	Fruit is directly eaten or grinded into powder for its medicinal properties like stomach pain, flatulence, aphrodisiac, improving eye sight and as blood purifier.
Fumaria indica	Pow, Dir	O, T	Powder of the aerial parts is used as blood purifier and antipyretic. Fresh plant is used in skin allergy.
Lepidium sativum	Pow	O	Powder of leaves and branches is used as antidiabetic agent.
Malva parviflora	Ext	O	Extract of aerial parts is useful in constipation. Intestinal pain and as stimulant.
Melia azedarach	Ext	T	Leaves and flower extract is useful in skin allergy and hair strength.
Mentha piperita	Veg, ext	O, T	Leaves are cooked as vegetable for its carminative affect. Fresh leaves extract topically used in skin infections.
Mentha viridis	Dir, ext	O	Leaves and branches are consumed as stochastic and colic while its extract is considered useful in cough and chest pain.
Morus alba	Dir	O	Fruit is directly consumed as laxative.
Morus nigra	Dir	O	Fruit is useful as laxative and against cough.
Nannorrhops richtiana	Dir	O	Fruit is directly consumed for its laxative and purgative properties.
Olea europaea	Dir	O	Fruit is considered useful in high blood pressure and as blood purifier.
Oxalis corniculata	Ext	O	Extract of aerial parts is useful in stomach pain and kidney stone.
Papaver somniferum	Ext, Dir	O	Fruit extract is useful in cough and as analgesic. Seeds are nutritious.
Peganum harmala	Pow	O	Seeds powder is useful in weight loss.
Plantago lanceolata	Ext, Pow	O	Leaves extract and fruit powder is useful in stomach pain, diarrhea stomach acidity and as tonic.
Plantago major	Ext	O, T	Extract of aerial parts is useful in healing of wounds and dysentery.
Polygonum plebejum	Ext	O	Extract of aerial part is useful in renal pain and as tonic.
Portulaca oleracea.	Veg	O	Leaves, branches and seeds are cooked as vegetable that possess flatulent and stomachic properties.
Prosopis juliflora	Pow	O	Powder of fruit is used for increasing milk production.
Punica granatum	Pow	O	Powder of fruit peel is used in diarrhea and chronic cough treatment.
Quercus baldot	Pow	O	Powder of fruit and seed is antidiabetic.
Ranunculus muricatus	Ext	O	Leaves extract is analgesic.
Rosa moschata	Dir, ext	O	Dry leaves purgative and extract is useful in chest pain and cough.
Rumex dentatus	Ext	O, T	Leaves, roots and seeds extract were used in healing of wounds, skin allergy and constipation.
Seriphidium kurramensis	Ext	O	Whole plant extract is mixed with sugar and is used as anthelmintic, anti-malarial and antipyretic agent.

Hussain et al.

AJP, Vol. 8, No. 4, Jul-Aug 2018 322
Solanum nigrum Veg O Leaves and fruit are cooked for Jaundice, stomach pain and diabetes.
Taraxicum officinale Ext O Extract of plant is used against hepatitis.
Teucrium stocksianum Inf O Infusion of leaves is used as blood purifier, anti-diabetic, anti-pyretic and for control of obesity.
Thymus linearis Inf O Infusion of aerial parts is considered useful for cough, flu and as stomachic and colic.
Tulipa stellata Dec O Decoction of rhizome is used as anthelmintic.
Verbascum thapsus Ext T Leaves extract is topically applied on skin to control bleeding and as antibacterial agent.
Viola canescens Inf O Infusion of leaves is drink for cough.
Withania coagulans Pow O Fruit is grinded powder and taken orally for constipation and as stomachic.
Xanthium strumarium Ext O Extract of fruit is useful in renal pain.

Abbreviations: ‘ROA’ ‘Route Of Administration’ ‘Dec’ Decoction, ‘Dir’ Directly, ‘Ext’ Extract, ‘Inf’ Infusion, ‘Pow’ Powder, ‘Veg’ Vegetable, ‘Lat’ Latex, ‘Smo’ Smoke, ‘O’ Orally, ‘T’ Topically.

Relative frequency and use value of medicinal plants

The relative frequency index shows that the highest relative frequency of citation was for S. kurramensis (66.18) followed by Cannabis sativa (64.71), Berberis lycium (60.29), Olea ferruginea (60.29), Allium sativum (60.29), Artemisia absinthium (57.35), Foeniculum vulgare (54.41), Mentha piperita (54.41) and Withania coagulans (51.47). The lowest relative frequency of citation was calculated for Tulipa stellata (10.29). Use value of plant was calculated according to the method of Phillips and Gentry (Phillips & Gentry, 1993) formula in order to assess the importance of plant in the studied area. A highest use value was recorded for S. kurramensis (1.10) followed by A. absinthium (1.04), F. vulgare (1.01), Cannabis sativa (0.90) Berberis lycium (0.88) and M. viridis (0.82). T. Stellata attained the lowest use value of 0.10 (Table 1).

Fidelity level

Fidelity level was calculated to highlight the importance of each plant for each ailment. For this purpose we analyzed the data whiles species with a single application were not considered. For treatment of diabetes with respect to fidelity level, the most important species were Caralluma tuberculata (FL=61.22) and Artemisia scoparia (FL=55.56). Species with high fidelity level for malaria were A. absinthium (FL=43.66) and S. kurramensis (FL=40.00). The fidelity level for cough treatment had the highest value for P. somniferum (56.41) followed by Thymus linearis (56.25), Morus nigra (37.04), Calotropis procera (25.00), Rosa moschata (20.00), Punica granatum (18.18) and M. viridis(10.71) (Table 5).

Table 5. Fidelity level of plants.

Medicinal application	Plant species	FL	Ailment	Plant species	FL
Analgesic	Ranunculus muricatus L.	100.00	Eye sight	Foeniculum vulgare Mill	11.59
Papaver somniferum L.	33.33	Flu	Thymus linearis Benth.	31.25	
Cannabis sativa L.	32.79	Hepatitis	Taraxacum officinale L.	100.00	
Calotropis procera (wild) R.Br	7.69	Honey bees biting	Allium sativum L.	20.00	
Datura stramonium L.	5.13	Intestinal flatulence	Portalaca oleracea L.	55.17	
Anthelmintic	Tulipa stellata L.	100.00	Foeniculum vulgare Mill	21.74	
Seriphidium kurramensis Qazilb.	41.33	Caralluma tuberculata N. E. Brown	4.08		
Antibacterial	Verbascum thapsus L.	29.41	Intestinal pain	Asparagus officinalis Royle	55.56
Antidiabetic	Quercus baloot Roxb	100.00	Intestinal tonic	Solanum nigrum L.	47.62
Lepidium sativum L.	100.00	Jaundice	Chenopodium album L.	24.44	
Caralluma tuberculata N. E. Brown	61.22	Kidney stone	Oxalis corniculata L.	50.00	
Ethnomedicinal relevance

The medicinal importance of plants included in the present study has been documented from other parts of Pakistan or the world. In some research report a single species has been found with multiple medicinal uses indicating that some of the reported plants in the present article are...
preferred for their medicinal value in other cultures around the globe. A decoction of the aerial parts of *A. capillaris-veneris* is used for treatment of asthma and dyspnea. *Malva parviflora* root and flowers have been used for stomach ulcers. *Peganum harmala* fruit powder and decoction is used for toothache, gynecological infections and menstruation disorders (Mosaddegh et al., 2012). The dried leaves and inflorescence paste of *A. absinthium* is used to cure stomach pain and intestinal worms. Paste prepared from fresh fruit of *Berberis lycium* is used to heal wounds (Malik et al., 2011) and against diabetes (Jouad et al., 2001). Bulb of *A. sativum* is used against rheumatism while its seed vessel mixed with hot milk is useful for the prevention of tuberculosis and high blood pressure. Bark and fruit bark of *P. granatum* are used in a herbal mixture prepared for intestinal problems (Tumpa et al., 2014). *Avena sativa* decoction is used for skin diseases including eczema, wounds, irritation, inflammation, erythema, burns, itching and sunburn (Zari and Zari, 2015). *F. vulgare* and *Lepidium sativum* are used for treatment of diabetes and renal diseases (Jouad et al., 2001). *Viola canescens* flower is used as a purgative (Shinwari and Khan, 2000). *Verbascum thapsus* leaves and flower can be used to reduce mucous formation and stimulate the coughing up of phlegm. Externally, *V. thapsusis* used as a good emollient and wound healer. Leaves of *Thymus linearis* are effective against whooping cough, asthma and round worms as well as an antiseptic agent (M. Ullah et al., 2013). *Berberis lycium* decoction of wood with sugar is the best treatment for jaundice. *Chenopodium album* has anthelmintic, diuretic, and laxative properties and its roots decoction is effective against jaundice. *Fumaria indica* whole plant decoction is used for blood purification. *Oxalis corniculata* roots are anthelmintic and powder of *Chenopodium album* is used for headache and seminal weakness (Devi et al., 2013). *Cichorium intybus* boiled leaves are used as stomachic and laxative while boiled leaves of *Plantago major* is used against gastralgia (Dogan and Ugulu, 2013). The above ethnomedicinal information confirms the therapeutic importance of the reported plants.

Pharmacological relevance

The reported plant species have been investigated by researchers for their biological activities and were found to be beneficial or of therapeutic importance. The aqueous extract of *A. sativum* has been studied for its lipid-lowering ability and was found to be effective at 200 mg/kg body weight. It also has significant antioxidant effect and normalizes the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase in the liver (Shrivastava et al., 2012). The extract of *A. absinthium* showed antinociception in mice and this effect was linked to its effects on cholinergic, serotonergic, dopaminergic, and opioidergic systems (Zeraati et al., 2014). The hepatoprotective activity of crude extract of aerial parts of *Artemisia scoparia* was investigated against carbon tetrachloride (CCl₄)-produced hepatic damage. The data showed that crude extract of *A. scoparia* has hepatoprotective activities (Zeraati et al., 2014). Ethanolic and aqueous extracts of Asparagus exhibited strong hypolipidemic and hepatoprotective actions when administered at a daily dose of 200 mg/kg for 8 weeks to hyperlipidemic mice (Zhu et al., 2010). The anti-tumor potential of the root extracts of *Calotropis procera* prepared in methanol, hexane, water and ethyl acetate, were found to inhibit proliferation of HEp2 cells (Zhu et al., 2010). Cannabidiol from *C. sativa* was found as an anxiolytic, antipsychotic and schizophrenic agent (Zuardi et al., 2014). The aqueous and methanol crude extract of *Celtis australis*, traditionally used in Indian medicine, was screened for its antibacterial activity against *S. aureus* and *P. aeruginosa* (Ahmad et al., 2012). The two new aromatic esters Horizontoate A and B
and a one new sphingolipid C were isolated from *Cotoneaster horizontalis*. Compounds Horizontoate A and Horizontoate B showed significant inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in a dose-dependent manner, while sphingolipid C was inactive. The IC50 values of compounds Horizontoate A and B were 1.54 and 3.41 mM, respectively against AChE and 5.97 and 6.84 mM, respectively against BChE (S. Khan et al., 2014). The alkaloids found in *D. stramonium* are organic esters clinically used as anticholinergic agents (Soni et al., 2012). The anti-inflammatory potential of *Malva sylvestris* was also tested in mice following administration of an oral dose of 100 mg/kg of the aqueous extract. The extract reduced inflammation by 60% in both the acute and chronic inflammation models (Gasparetto et al., 2012). The study evaluated antifungal activity of *Nannorrhops ritchiana* against fungal strains; *Aspergillus flavus, Trichophyton longifusis, Trichophyton mentagrophytes, and Microsporum canis* by agar tube dilution method and found these fungi susceptible to the extracts with inhibition percentage of 70-80% (Rashid et al., 2014). The inhibitory effects of *Olea ferruginea* crude leaves extract on bacterial and fungal pathogens has been investigated (Amin et al., 2013). The ethyl acetate extract of *Teucrium stocksianum* possesses hypoglycemic effect in alloxanized rabbits which confirms its traditional use against diabetes. The antifungal activity of *Viola canescens* acetone, ethanol, petroleum ether and water extract on the development of *Fusarium oxysporum f. sp. Lycopersici* which was carried out using paper disc diffusion assay. The highest antifungal activity (17.62 mm inhibition zone) was observed in case of 1000 mg/ml acetone extract of *Viola canescens*. The other solvents were moderately effective. The highest MIC (100 mg/ml) was found for ethanol and petroleum ether solvents (Rawal et al., 2015). Methanolic extract of *X. strumarium* leaf was evaluated for antibacterial activities against eight pathogenic bacteria. The extract of *X. strumarium* (50 and 100 mg/ml) showed inhibition of (Rajashekar et al., 2011).

In the current research work, for the first time, we documented the ethnopharmacological knowledge from lower Kurram, Kurram agency, Pakistan. The use of medicinal plants is observable in lower Kurram where the locals use plants for 50 medicinal purposes. A few of the plants reported from this area was not documented in ethnobotanical literature. The remedies preparation was mostly formulated using a single species instead of a mixture. The historical use of the reported plants can be confirmed by scientific evidence and their efficacy and efficiency can be evaluated by further pharmacological research. The documented traditional knowledge can provide evidence for development of novel, safer and more affordable drugs.

Acknowledgment

The authors acknowledge the inhabitants of lower Kurram, Kurram agency for sharing their valuable information about ethnomedicinal plants.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

Ahmad S, Sharma R, Mahajan S, Gupta A. 2012. Antibacterial Activity of *Celtis australis* by in vitro study. Int J Pharm and Pharma Sci, Vol 4, Issue 2, 629-631.

Ajaib M, Anjum M, Malik NZ, Siddiqui MF. 2015. Ethnobotanical Study of Some Plants of Darguti, Tehsil Khuiratta, Azad Jammu and Kashmir. Int. j. biol. res, 3: 101-107.

Ajaib M, Haider S K, Zikrea A, Siddiqui MF. 2014. Ethnobotanical Studies of Herbs of Agra Valley Parachinar, Upper Kurram Agency, Pakistan. Int J Biol Biotechnol, 11: 71-83.
Quantitative ethnobotanical appraisal of medicinal plants of lower Kurram, Pakistan

Ali S & Qaiser M. 1995. 2015. Flora of Pakistan. Department of Botany, University of Karachi.

Amin A, Khan MA, Shah S, Ahmad M, Zafar M, Hameed A. 2013. Inhibitory effects of Olea ferruginea crude leaves extract against some bacterial and fungal pathogen. Pak J Pharm Sci 26: 251-254.

Andrade-Cetto A. 2009. Ethnobotanical study of the medicinal plants from Tlanchinol, Hidalgo, México. J ethnopharmacol, 122: 163-171.

Asase A, Oteng-Yeboah AA, Odamten GT, Simmonds MS. 2005. Ethnobotanical study of some Ghanaian anti-malarial plants. J ethnopharmacol, 99: 273-279.

Atran S & Medin DL. 2008. The native mind and the cultural construction of nature: Mit Press Cambridge.

Bano A, Ahmad M, Hadda TB, Saboor A, Sultana S, Zafar M, Ashraf MA. 2014. Quantitative ethnomedicinal study of plants used in the skardu valley at high altitude of Karakoram-Himalayan range, Pakistan. J Ethnobiol Ethnomed, 10: 1.

Barkatullah B, & Ibrar M. 2013. Plants profile of Malakand Pass Hills, District Malakand, Pakistan. Afr. J. Biotechnol., 10: 16521-16535.

Bibi T, Ahmad M, Tareen RB, Tareen NM, Jabeen R, Rehman SU, Yaseen G. 2014. Ethnobotany of medicinal plants in district Mastung of Balochistan province-Pakistan. J ethnopharmacol, 157:79-89.

Canales G, Coles B, Cornejo C, Fletcher T, Manganyi T, Owuso K, Wilsey D. 2005. Perceptions and attitudes of smallholder farmers in north central Florida regarding the potential usefulness of seasonal climate forecasts: Southeast Climate Consortium.

Castro JA, Brasileiro BP, Lyra DH, de Almeida Pereira D, Chaves JL. 2011. Ethnobotanical study of traditional uses of medicinal plants: The flora of caatinga in the community of Cravolndia-BA, Brazil. J Med Plant Res, 5:1905-1917.

Davidson-Hunt I. 2000. Ecological ethnobotany: stumbling toward new practices and paradigms. MASA J, 16: 1-13.

Devi U, Seth M, Sharma P, Rana J. 2013. Study on ethnomedicinal plants of Kibber Wildlife Sanctuary: A cold desert in Trans Himalaya, India. J Med Plant Res, 7: 3400-3419.

Dogan Y & Ugulu I. 2013. Medicinal plants used for gastrointestinal disorders in some districts of Izmir province, Turkey. STUD ETHNO-MED, 7: 149-161.

Dolatkhahi M, Dolatkhahi A, Nejad JB. 2014. Ethnobotanical study of medicinal plants used in Arjan–Parishan protected area in Fars Province of Iran. Avicenna J PhytoMed, 4: 402.

Farnsworth NR, Akerele O, Bingle AS, Soejarto DD, Guo Z. 1985. Medicinal plants in therapy. Bull. World Health Organ, 63:965.

Friedman J, Yaniv Z, Dafni A, Palewitch D. 1986. A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. J ethnopharmacol, 16: 275-287.

Gasparetto JC, Martins CAF, Hayashi SS, Otuky MF, Pontarolo R. 2012. Ethnobotanical and scientific aspects of Malva sylvestris L. a millennial herbal medicine. J. Pharm. Pharmacol, 64: 172-189.

Gewali MB, & Awale S. 2008. Aspects of traditional medicine in Nepal. Japan: Institute of Natural Medicine. University of Toyama.

Gilani SS, Abbas SQ, Shinwari ZK, Hussain F, Nargis K. 2003. Ethnobotanical studies of Kurram Agency, Pakistan through rural community participation. Pak J Biol Sci.

Godambe V. 1982. Estimation in survey sampling: robustness and optimality. J Am Stat Assoc, 77: 393-403.

Hoffman B. & Gallaher T. 2007. Importance indices in ethnotobony. Ethnobotany Research and Applications, 5:201–218.

Hussain W, Hussain J, Ali R, Hussain S, Khan MA, Khan I, Lopes WA. Nascimento IA, 2012. Phytomedicinal Studies of Kurram Agency in the Federally Administered Tribal Areas (FATA) of Pakistan. J. appl. pharm. sci, 2: 81.

Hussain W, Hussain J, Hussain S, Shinwari ZK, Ali R, Basir A. 2013. Ethnomedicinal Study of Parachinar, Kurram Valley (FATA) KPK, Pakistan. J. appl. pharm. sci, 3: 85.

Jan R, Khan RU, Rehman HU, Khan AZ, Waheed M, Khan IU, Shah NA, Khan RU, Asaf S, Khan J. 2016). Ethnobotanically important flora of Tehsil Tangi, District Charsadda, Pakistan. J Chem Pharm Res, 8: 108-116.
Hussain et al.

Jouad H, Haloui M, Rhiouani H, El Hilaly J, Eddouks M. 2001. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J ethnopharmacol, 77: 175-182.

Kadereit JW & Jeffrey C. 2007. Flowering Plants. Eudicots: Asterales (Vol. 8): Springer Science & Business Media.

Khan M, Khan MA, Mujtaba G, Hussain M. 2012. Ethnobotanical study about medicinal plants of Poonch valley Azad Kashmir. J Anim. Plant Sci., 22:493-500.

Khan S, Wang Z, Wang R, & Zhang L. 2014. Horizontoates A–C: New cholinesterase inhibitors from Cotoneaster horizontalis. Phytochem Lett, 10: 204-208.

Kim H & Song MJ. 2013. Ethnomedicinal practices for treating liver disorders of local communities in the southern regions of Korea. Evid Based Complement Alternat Med.http://dx.doi.org/10.1155/2013/869176

Malik AH, Khuroo AA, Dar G, Khan Z. 2011. Ethnomedicinal uses of some plants in the Kashmir Himalaya. IJTET, 10: 362-366.

Marwat SK. 2008. Ethnophytomedicines for treatment of various diseases in DI Khan district. Sarhad J. Agric, 24: 293-303.

Mosaddegh M, Naghibi F, Moazzzeni H, Pirani A, Esmaeili S. 2012. Ethnobotanical survey of herbal remedies traditionally used in Kohg hiluyeh va Boyer Ahmad province of Iran. J ethnopharmacol, 141: 80-95.

Pepin B. 1999. Epistemologies, beliefs and conceptions of mathematics teaching and learning: The theory, and what is manifested in mathematics teachers’ work in England, France and Germany. TNTEE Publications, 2: 127-146.

Phillips O & Gentry AH. 1993. The useful plants of Tambopata, Peru: I. Statistical hypotheses tests with a new quantitative technique. Econ. Bot, 47: 15-32.

Phillips O, Gentry AH, Reynel C, Wilkin P, Galvez Durand B. 1994. Quantitative ethnobotany and Amazonian conservation. Conserv Biol, 8: 225-248.

Phillips O. 1996. Some quantitative methods for analyzing ethnobotanical knowledge. Adv Econ. Bot, 10: 171-198.

Rahman IU, Ijaz F, Afzal A, Iqbal Z, Ali N, Khan SM. 2016. Contributions to the phytotherapies of digestive disorders: Traditional knowledge and cultural drivers of Manoor Valley, Northern Pakistan. J ethnopharmacol, 192: 30-52.

Rajashekar PSV. 2011. Srinivas P, Rajashekar V, Upender Rao E, Venkateshwarulu L, Anil KC. Phytochemical screening and in vitro antimicrobial investigation of the methanolic extract of Xanthium strumarium leaf. Int. J. drug dev. res. 3 : 286-293.

Rashid R, Mukhtar F, Khan A. 2014. Antifungal and cytotoxic activities of Nannorrhops ritchiana roots extract. Acta Pol Pharm, 71: 789.

Rastogi R. & Dhawan B. 1982. Research on medicinal plants at the Central Drug Research Institute, Lucknow (India). Indian J Med Res, 76: 27-45.

Rawal P, Adhikari R, & Tiwari A. 2015. Antifungal activity of Viola canescens against Fusarium oxysporum f. sp. lycopersici. Int. J. Curr. Microbiol. App. Sci, 4: 1025-1032.

Sahoo N, Manchikanti P, Dey S. 2010. Herbal drugs: Standards and regulation. Fitoterapia, 81: 462-471.

Sarangzai AM, Ahmed A, Laghari SK. 2013. Traditional uses of some useful medicinal plants of Ziarat District Balochistan, Pakistan. PUUST Journal of Biology, 3: 101.

Shinwari MI, & Khan MA. 2000. Folk use of medicinal herbs of Margalla hills national park, Islamabad. J ethnopharmacol, 69: 45-56.

Shrivastava A, Chaturvedi U, Singh SV, Saxen JK, Bhatia G. 2012. A mechanism based pharmacological evaluation of efficacy of Allium sativum in regulation of Dyslipidemia and oxidative stress in hyperlipidemic rats. Asian J Pharm Clin Res, 5: 123-126.

Son P, Siddiqui AA, Dwivedi J, Soni V. 2012. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview. Asian Pac J Trop Biomed, 2: 1002-1008.

Srihti K, Balslev H, Wangpakapattanawong P, Srisanga P, Trisonthi C. 2009. Medicinal plant knowledge and its erosion among the Mien (Yao) in northern Thailand. J ethnopharmacol, 123: 335-342.

Tareen RB, Bibi T, Khan MA, Ahmad M, Zafar M. 2010. Indigenous knowledge of folk medicine by the women of Kalat and
Quantitative ethnobotanical appraisal of medicinal plants of lower Kurram, Pakistan

Khuzdar regions of Balochistan, Pakistan. Pak J Bot, 42: 1465-1485.

Tongco MDC. 2007. Purposive sampling as a tool for informant selection. Ethnobotany Research and applications. 5:147-58.

Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., Batra, S. K. (2012). Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer Lett, 323: 29-40.

Tumpa SI, Hossain MI, Ishika T. 2014. Ethnomedicinal uses of herbs by indigenous medicine practitioners of Jhenaidah district, Bangladesh. J Pharmacogn Phytochem, 3(2).

Ullah M, Khan MU, Mahmood A, Malik RN, Hussain M, Wazir SM, Shinwari ZK. 2013. An ethnobotanical survey of indigenous medicinal plants in Wana district south Waziristan agency, Pakistan. J ethnopharmacol, 150: 918-924.

Ullah R, Iqbal ZH, Hussain J, Khan FU, Khan N, Muhammad Z, Ayaz S, Ahmad S, Rehman NU, Hussain I. 2010. Traditional uses of medicinal plants in Darra Adam Khel NWFP Pakistan. Journal of Medicinal Plants Research, 4: 1815-1821.

Wangchuk P, Keller PA, Pyne SG, Taweechotipatr M, Tonsomboon A, Rattanajak R, Kamchonwongpaiboon S. 2011. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities. J ethnopharmacol, 137: 730-742.

Zari ST, Zari TA. 2015. A review of four common medicinal plants used to treat eczema. J Med Plant Res, 9: 702-711.

Zeraati F, Esna-Ashari F, Araghchian M, Emam AH, Rad MV, Seif S, Razaghi K. 2014. Evaluation of topical antinociceptive effect of Artemisia absinthium extract in mice and possible mechanisms. Afr J Pharm Pharmacol, 8: 492-496.

Zhu X, Zhang W, Zhao J, Wang J, Qu W. 2010. Hypolipidaemic and hepatoprotective effects of ethanolic and aqueous extracts from Asparagus officinalis L. by products in mice fed a high fat diet. J Sci Food Agric, 90: 1129-1135.

Zuardi AW, Crippa J, Hallak J, Moreira F Guimaraes F. 2006. Cannabidiol, a Cannabis sativa constituent, as an antipsychotic drug. Braz J Med Biol Res, 39: 421-429.