Supplement of

Introducing noisi: a Python tool for ambient noise cross-correlation modeling and noise source inversion

Laura Ermert et al.

Correspondence to: Laura Ermert (lermert@fas.harvard.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1: Model domain, seismic stations, and velocity model used in the comparison with SPECFEM3D globe. Red triangles show the stations. Color map shows the deviation of S40RTS shear wave velocity from PREM. S40RTS velocity perturbations were obtained from SubMachine (https://www.earth.ox.ac.uk/~smachine/cgi/index.php), see Hosseini et al. (2018).
Figure S2: Showing the correlation traces shown in Figure 2 of the main manuscript, but here with a common amplitude normalization (preserving relative amplitude).

Figure S3: Influence of the grid step, i.e. the integral discretization, on the outcome. The grid step used for the comparison in Figure 2 of the main manuscript is 10 km. The fit with SPECFEM3D_globe can be improved by using a 5 km grid step. However, a 10 km grid step produces an accuracy that is probably satisfactory for most applications, while a coarser step of 20 km clearly degrades the result.