Design and Comparison of Different Types of Dual-Frequency Matching Networks Used in Double-Tuned Coils for Multinuclear Magnetic Resonance Imaging and Spectroscopy

CHANG-HOON CHOI, SUK-MIN HONG, N. JON SHAH, AND JÖRG FELDER (Member, IEEE)

1 Institute of Neuroscience and Medicine-4, Forschungszentrum Jülich, 52428 Jülich, Germany
2 Institute of Neuroscience and Medicine-11, Forschungszentrum Jülich, 52428 Jülich, Germany
3 JARA—BRAIN—Translational Medicine, 52056 Aachen, Germany
4 Department of Neurology, RWTH Aachen University, 52056 Aachen, Germany
5 RWTH Aachen University, 52056 Aachen, Germany

Corresponding author: Chang-Hoon Choi (c.choi@fz-juelich.de)

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), German Research Foundation, under Grant 49111487.

ABSTRACT Multi-resonant RF coils are often used in multinuclear MR imaging and/or spectroscopy experiments, and a large variety of strategies for multi-tuning coils exist. However, designing a multi-tuned coil with good performance is challenging, and improvements in sensitivity are always desirable — particularly on the X-nucleus coil due to the intrinsically lower MR sensitivity of non-proton nuclei. In this work, various dual-frequency matching networks in double-tuned coils are compared, and their effect on the coil performance is investigated. Four different dual-frequency matching networks were designed and constructed with frequency-splitting or -blocking traps, which enable exploration of both proton-1 (1H) and sodium-23 (23Na) nuclei. Two single-frequency matching networks were also built without any additional lossy components as a reference, and their matchings were set to either the 1H or the 23Na frequency. The initial evaluation was conducted on the bench using a network analyser to examine the scattering (S)-parameters and quality factors of the connected RF coils. The performance of the attached matching networks was then further evaluated by measuring the corresponding signal-to-noise ratio (SNR) based on images obtained at a 7 T clinical MRI scanner. It was found that even though the tuning and matching conditions were nearly impeccable in the S-parameters, the actual 1H SNR decreased significantly due to the inserted traps, whereas the SNRs of the 23Na frequency were nearly maintained with the added traps and the losses were much less. The dual-frequency matching networks create additional sensitivity loss, which is dependent on the actual implementation of the matching circuit. This is in agreement with previously reported results associated with the evaluation of inserted double-tuning traps for RF coils.

INDEX TERMS Coil, double tuned, matching, MRI, MRS, X-nuclei.

I. INTRODUCTION

The increasing availability of ultra-high field (UHF) magnetic resonance imaging (MRI) systems delivers numerous benefits, especially in terms of the increased signal-to-noise ratio (SNR), which improves the MR image quality and detection sensitivity [1], [2]. This increased sensitivity further enables MR experiments that combine the established proton (1H) imaging with less abundant non-proton nuclei (X-nuclei), such as sodium-23 (23Na) or phosphorus-31 (31P). These X-nuclei facilitate access to valuable cellular and metabolic information in the human body to complement the structural / functional information afforded by proton MRI [3], [4], [5], [6], [7]. For example, sodium plays a key role in the sodium-potassium exchange process in living cells and can therefore be used to access and characterise cell
metabolism. Moreover, phosphorus shows a strong relation to tissue energy metabolism and determining the quantity of phosphorus metabolites is useful in furthering our understanding of various diseases.

In order to carry out X-nuclei MR imaging or spectroscopic measurements, a radiofrequency (RF) coil and ancillary system that include defined X-nuclei frequencies are explicitly required as the option to operate the X-nuclei experiments is not always integrated in standard MRI systems. Due to the intrinsically lower natural abundance and inferior MR sensitivity of X-nuclei compared to 1H, it is important to ensure that the SNR of the X-nuclei remains as high as possible and any improvement in sensitivity on the X-channel is favourable [3]. Thus, a single-tuned X-nucleus coil, assuming no loss, is often used [8].

However, shimming of the main magnetic field, acquiring a rapid localiser image and a high-resolution anatomical image with X-nuclei is problematic due to the low SNR, so concurrent acquisition with proton imaging is advantageous and often necessitated. It is also beneficial to enhance the sensitivity for certain nuclei, e.g. 13C and 31P, using the proton-decoupled and/or the nuclear Overhauser effect techniques [9], [10], [11]. Using these methods requires 1H signal detection capability to be integrated in the form of a multi-resonant RF coil, which is likely to be utilised for X-nuclei MR studies.

Nevertheless, designing a coil that performs well in this context is challenging, even when it is only required to generate one additional frequency. Double tuning coils requires additional units, and this is usually achieved using various techniques, e.g. using frequency-splitting or -blocking traps or using PIN-diode switches [12], [13], [14], [15], [16]. The effect of the attached circuits, required for double tuning, on coil sensitivity has been previously reported and has always resulted in a decreased SNR compared to their referenced single-tuned coils [17], [18], [19], [20], [21].

Similar to results previously presented for optimising double-tuned coil designs [12], we anticipate a trade-off, in terms of degree of SNR loss in one resonance against smaller losses in the other, will be encountered in most cases. Although the dual-frequency matching networks can enable a good matching condition by recuperating the impedance mismatch at both frequencies, it can also further engender a level of additional sensitivity degradation. In this regard, a well-designed matching network may be an important criterion when building double- or multi-tuned coils.

To the best of our knowledge, investigating the effect of an inserted dual-frequency or multi-frequency matching network on coil performance has not been carried out, although a study of a double-tuned balun has been presented [21]. In this work, we designed different dual-frequency matching networks and included them in a frequently used, double-tuned coil using inserting traps. We then compared and evaluated the influence of different design approaches.

II. METHODS

Four identical loop coils were designed and configured in a single structure, as shown in the schematic in Fig. 1 (left). They were double tuned to 1H and 23Na frequencies (corresponding to 297.2 MHz and 78.5 MHz at 7 T, respectively)
C.-H. Choi et al.: Design and Comparison of Different Types of Dual-Frequency Matching Networks Used in Double-Tuned Coils

III. RESULTS

The Q-factors of the four foundation double-tuned coils were: unloaded $Q \sim 100$ for 1H and ~ 240 for 23Na, loaded $Q \sim 50$ for 1H and ~ 140 for 23Na and unloading/loaded Q ratio ~ 2 for 1H and ~ 1.7 for 23Na, confirming that there was
no significant quality difference among the base coils within experimental error.

Fig. 3 shows 1H, 1H noise, 23Na and 23Na noise images acquired by means of the different matching networks. Using these images, the relative SNRs were calculated in the selected region-of-interest (blue dotted circle in the 1H focus image and yellow dotted circle in the 1H focus noise image).

The calculated SNR values for 1H and 23Na are summarised in Table 1. As anticipated, the reference coils focusing only on either 1H or 23Na without the addition of dual-frequency matching networks provided the highest SNR: 313.9 for 1H and 13.4 for 23Na. These values were used as a baseline to evaluate the SNR changes resulting from

the inclusion of the splitting and blocking traps. Table 1 also shows that the 23Na SNR degradation by the added splitting or blocking traps is not quite significant but that of 1H focus is much higher (up to 22% loss), while the 1H SNR degradation by the inserted traps is quite significant (up to 20% loss) but that of 23Na focus is much less ($\sim 9\%$). Importantly, even though the tuning and matching conditions were nearly impeccable in the S-parameters, the actual SNR dropped substantially, particularly at the 1H channel, as a result of the insertion of splitting or blocking traps. On the other hand, when compared to the reference, the SNRs of the 23Na channel were nearly maintained with the added traps and the losses were much less. The SNRs of the 1H images seem to be more
affected by the inserted traps. Interestingly, the coil focusing on 23Na only provided much better SNR for 1H, although the coil was not ideally but reasonably matched at the 1H frequency, which might be due to perhaps the exclusion of lossy components.

IV. DISCUSSION

This study focuses on the insertion of different dual-frequency matching networks in a single-structure, double-tuned 1H/23Na coil and compares their effect on the coil performance. This single-structure configuration is widely used since it simplifies the multi-channel extension as it does not require decoupling between nuclei within each channel and it guarantees the identical imaging field-of-view between both nuclei, enabling a straightforward post-acquisition image co-registration [12].

In general, the traditional LC traps used in double-tuned coils are lossy and degrade the quality and SNR of the coil by approximately 25% at either channel or both channels when compared to the single-tuned coil [19]. Comparable results were found in this work with the dual-frequency matching networks designed using the frequency-splitting or -blocking traps. It has also been reported that the level of degradation could be balanced at both nuclei or weighted to one of the nuclei by adjusting the value of the selected inductor in the traps [20], [24]. This means that the improvement in the quality of the non-proton channel may be traded off with that of the 1H, and this can also be further optimised to make it as good as that of the single-tuned coil [25].

Tuning and matching the coil on the imaging object is a final step to complete coil construction. While this appears to be an ordinary step, it is essential since this clearly determines the most efficient RF power transfer between the coil and the loaded object and influences the MR image or spectrum quality. As shown previously, we found that the design - 23Na focus - provided the least loss at the 1H frequency and the highest SNR at the 23Na frequency when the coil was only tuned and matched well at the 23Na frequency. This suggests that the optimisation of tuning and matching in all the nuclei of interest using, e.g. the dual-frequency matching networks, may not be required in order to improve the quality of multinuclear MR imaging and spectroscopy. Investigating other approaches introduced in double-tuned coils, e.g. using PIN-diodes [25], [26] or LCC trap circuits [27], [28] would also be useful, as these might provide less degradation in the coil sensitivity. It would also be of interest to explore whether the matching networks for coils operating at close frequencies (e.g. 1H/19F or 13C/23Na) or at other frequencies that are far apart from 1H (e.g. 17O or 39K) are affected in a similar way.

V. CONCLUSION

In conclusion, we have redesigned frequently used dual-frequency matching networks and demonstrated the effect of adding matching networks on a single-structure, double-tuned coil. In agreement with previous results in the literature associated with the evaluation of inserted double-tuning traps, the dual-frequency matching networks also create additional sensitivity loss to some extent. Therefore, it is important to choose a suitable matching network when designing double- or multi-tuned coils in order to minimise any possible loss or degradation in quality.

ACKNOWLEDGMENT

The authors would like to thank Claire Rick for English proofreading.

REFERENCES

[1] M. E. Ladd, P. Bachert, M. Meyerspeer, E. Moser, A. M. Nagel, D. G. Norris, S. Schmitter, S. Speck, S. Straub, and M. Zais, “Pros and cons of ultra-high-field MRI/MRS for human application,” Prog. Nucl. Magn. Reson. Spectrosc., vol. 109, pp. 1–50, Dec. 2018.

[2] O. Kraff, A. Fischer, A. M. Nagel, C. Mönninghoff, and M. E. Ladd, “MRI at 7 Tesla and above: Demonstrated and potential capabilities,” J. Magn. Reson. Imag., vol. 41, no. 1, pp. 13–33, Jan. 2015.

[3] W. A. Worthoff, A. Shymanskaya, C.-H. Choi, J. Felder, A. Oros-Peusquens, and N. J. Shah, “Multinuclear MR imaging and spectroscopy,” in Quantitative MRI of the Brain. Boca Raton, FL, USA: CRC Press, 2018.

[4] M. Modo, “19F magnetic resonance imaging and spectroscopy in neuroscience,” Neuroscience, vol. 474, p. 37050, Oct. 2021.

[5] D. Paech, A. M. Nagel, M. N. Schultheiss, R. Umathum, S. Regnery, M. Scherer, A. Wick, T. Platt, W. Wick, M. Bendszus, A. Unterberg, H.-P. Schlemmer, M. E. Ladd, and S. C. Niesporek, “Quantitative dynamic oxygen 17 MRI at 7.0 T for the cerebral oxygen metabolism in glioma,” Radiology, vol. 295, no. 1, pp. 181–189, Apr. 2020.

TABLE 1. Calculated SNR values.

Matching type	1H SNR	Percentage to 1H focus	23Na SNR	Percentage to 23Na focus
1H focus	313.9	100.0% (= 313.9/313.9)	10.5	78.4% (= 10.5/13.4)
23Na focus	287.6	91.6% (= 287.6/313.9)	13.4	100.0% (= 13.4/13.4)
Splitting	264.9	84.4% (= 264.9/313.9)	12.4	92.5% (= 12.4/13.4)
Blocking	251.2	80.0% (= 251.2/313.9)	12.8	95.5% (= 12.8/13.4)
[6] A. Rietzler, R. Steiger, S. Mangsiesius, L.-M. Walchhofer, R. M. Gothe, M. Schocke, E. R. Gizewski, and A. E. Grams, “Energy metabolism measured by 31P magnetic resonance spectroscopy in the healthy human brain,” J. Neuroradiol., vol. 49, no. 5, pp. 370–379, Sep. 2022.

[7] C. Kopp, P. Linz, L. Wachsmuth, A. Dahlmann, T. Horbach, C. Schöfl, W. Litz, D. Santoro, T. Niendorf, D. N. Müller, M. Neininger, A. Cavalaro, K.-U. Eckardt, R. E. Schniedner, F. C. Luft, M. Uder, and J. Titze, “23Na magnetic resonance imaging of tissue sodium,” Hypertension, vol. 59, no. 1, pp. 167–172, 2012.

[8] C.-H. Choi, S.-M. Hong, J. Felder, K. Möllenhoff, and N. J. Shah, “Design and implementation of a simple multinuclear MRI system for ultra-high-field imaging of animals,” J. Magn. Reson., vol. 273, pp. 28–32, Dec. 2016.

[9] N. Sailasuta, L. W. Robertson, K. C. Harris, A. L. Gropman, P. S. Allen, and B. D. Ross, “Clinical NOE 13C MRS for neuropsychiatric disorders of the frontal lobe,” J. Magn. Reson., vol. 195, pp. 25–219, Dec. 2008.

[10] T. H. Peeters, M. J. van Uden, A. Rijpma, T. W. J. Scheenen, and A. Heerschap, “3D 31P MR spectroscopic imaging of the human brain at 3 T with a 31P receive array: An assessment of 1H decoupling, T$_1$ relaxation times, 1H-31P nuclear overhauser effects and NAD$^+$,” NMR Biomed., vol. 34, p. e4169, Sep. 2021.

[11] J. Ren, A. D. Sherry, and C. R. Malloy, “Band inversion amplifies 31P-31P nuclear overhauser effects: Relaxation mechanism and dynamic behavior of ATP in the human brain by 31P MRS at 7T,” Magn. Reson. Med., vol. 77, no. 4, pp. 1409–1418, Apr. 2017.

[12] C.-H. Choi, S.-M. Hong, J. Felder, and N. J. Shah, “The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review,” Magn. Reson. Imag., vol. 72, pp. 103–116, Oct. 2020.

[13] B. C. Rowland, J. D. Driver, M. Tachount, D. W. J. Klomp, D. Rivera, R. Forner, A. Pham, M. Italiaander, and R. G. Wise, “Whole brain 31P MRSI at 7T with a dual-tuned receive array,” Magn. Reson. Med., vol. 83, pp. 75–756, Aug. 2020.

[14] S. Ha, M. J. Hamamura, O. Nalicgolu, and L. T. Muttler, “A PIN diode controlled dual-tuned MRI RF coil and phased array for multi nuclear imaging,” Phys. Med. Biol., vol. 55, no. 9, pp. 680–2589, 2010.

[15] F. Wetterling, M. Tabbert, S. Junge, L. Gallagher, I. M. Macrane, and A. J. Fagan, “A double-tuned 1H/23Na dual resonator system for tissue sodium concentration measurements in the rat brain via Na-MRI,” Phys. Med. Biol., vol. 55, pp. 95–7681, Nov. 2010.

[16] M. D. Schnall, V. Harirhara Subramanian, J. S. Leigh, and B. Chance, “A new dual-tuned probe for concurrent 1H and 31P NMR,” J. Magn. Reson., vol. 65, no. 1, pp. 122–129, Oct. 1985.

[17] S.-M. Hong, C.-H. Choi, and N. J. Shah, “Practical design of a double-resonant helmet coil for 1H/31P at 7T MRI of the brain,” Phys. Med. Biol., vol. 64, Jan. 2019, Art. no. 035003.

[18] M. D. Schnall, V. Harirhara Subramanian, J. S. Leigh, and B. Chance, “A new dual-tuned probe for concurrent 1H and 31P NMR,” J. Magn. Reson., vol. 42, pp. 82–173, Oct. 1999.

[19] A. Heerschap, “3D 1H decoupling, T$_1$ resonance,” J. Magn. Reson., vol. 195, pp. 41–50, 1990.

[20] G. Isaac, M. D. Schnall, R. E. Lenkinski, and K. Vogele, “A design for a double-tuned birdcage coil for use in an integrated MRI/MRS examination,” J. Magn. Reson., vol. 89, no. 1, pp. 41–50, 1990.

[21] C.-H. Choi, S.-M. Hong, Y. Ha, and N. J. Shah, “Design and construction of a novel 1H/19F double-tuned coil system using PIN-diode switches at 9.4 T,” J. Magn. Reson., vol. 279, pp. 11–15, Jun. 2017.

[22] Y. Ha, C.-H. Choi, and N. I. Shah, “Development and implementation of a PIN-diode controlled, quadrature-enhanced, double-tuned RF coil for sodium MRI,” IEEE Trans. Med. Imaging, vol. 37, no. 7, pp. 11–16, Jul. 2018.

[23] M. Meyerspeer, E. S. Roig, R. Gruetter, and A. W. Magill, “An improved trap design for decoupling multinuclear RF coils,” Magn. Reson. Med., vol. 72, pp. 90–584, Sep. 2014.

[24] T. A. van der Velden, M. Italiaander, W. J. M. van der Kemp, A. J. E. Raaijmakers, A. M. T. Schmitz, P. R. Luijten, V. O. Boer, and D. W. J. Klomp, “Radiofrequency configuration to facilitate bilateral breast 31P MR spectroscopic imaging and high-resolution MRI at 7 Tesla,” Magn. Reson. Med., vol. 74, no. 6, pp. 1803–1810, Dec. 2015.

[25] S. M. Hong, J. H. Park, M. K. Woo, Y. B. Kim, and Z. H. Cho, “New design concept of monopole antenna array for UHF 7T MRI,” Magn. Reson. Med., vol. 71, no. 5, pp. 1944–1952, May 2014.

[26] A. J. E. Raaijmakers, M. Italiaander, I. J. Voogt, P. R. Luijten, J. M. Hoogduin, D. W. J. Klomp, and C. A. T. van den Berg, “The fractionated dipole antenna: A new antenna for body imaging at 7 Tesla,” Magn. Reson. Med., vol. 75, pp. 1366–1375, May 2016.

[27] C.-H. Choi, S.-M. Hong, J. Felder, L. Tellmann, J. Scheins, E. R. Kops, C. Lerche, and N. J. Shah, “A novel J-shape antenna array for simultaneous MR-PET or MR-SPECT imaging,” IEEE Trans. Med. Imaging, vol. 41, no. 5, pp. 1104–1113, May 2022.

C.-H. Choi et al.: Design and Comparison of Different Types of Dual-Frequency Matching Networks Used in Double-Tuned Coils

SUH-MIN HONG received the Ph.D. degree in medical science from Gachon University, South Korea, in 2013. He was at the Neuroscience Research Institute, South Korea, until 2014. He is an RF Coil Expert and has been a Researcher with Forschungszentrum Juelich, Germany, since 2014.

N. JON SHAH received the Ph.D. degree from the University of Manchester. He worked on the development of methods for MRI and spectroscopy, Japan. He was at the University of Cambridge on MR and then in Germany, where he is with the Forschungszentrum Juelich. Currently, he is the Director of the Institute of Neuroscience and Medicine-4 and -11, Juelich, a Professor of MRI physics with RWTH, Aachen, and an Adjunct Professor with the MBI, Melbourne.

JÖRG FELDER (Member, IEEE) received the Diploma degree in electrical engineering and the doctoral degree from RWTH Aachen University, Aachen, Germany, in 1998 and 2004, respectively. From 2004 to 2007, he was an RF Engineer for Bruker BioSpin MRI GmbH, Ettingen, Germany. Since 2007, he has been a Team Leader with the Forschungszentrum Juelich, Germany.