Assessment of Adult Women With Ovarian Masses and Treatment of Epithelial Ovarian Cancer: ASCO Resource-Stratified Guideline

Verna D. Vanderpuye, MD; Jean Rene V. Clemenceau, MD; Sarah Temin, MSPH; Zeba Aziz, MD; William M. Burke, MD; Nixon Leonardo Cevallos, MD; Linus T. Chuang, MD; Terence J. Colgan, MD; Marcela G. del Carmen, MD; Keiichi Fujiwara, MD, PhD; Elise C. Kohn, MD; Jose Enrique Gonzáles Nogales, MD; Thomas Okpoti Konney, MD; Asima Mukhopadhyay, MD, PhD, MSc; Bishnu D. Paudel, MD; Icô Tóth; Sarikapan Wilailak, MD; and Rahel G. Ghebre, MD, MPH

PURPOSE To provide expert guidance to clinicians and policymakers in three resource-constrained settings on diagnosis and staging of adult women with ovarian masses and treatment of patients with epithelial ovarian cancer (including fallopian tube and primary peritoneal) cancer.

METHODS A multidisciplinary, multinational ASCO Expert Panel reviewed existing guidelines, conducted a modified ADAPTE process, and conducted a formal consensus process with additional experts.

RESULTS Existing sets of guidelines from eight guideline developers were found and reviewed for resource-constrained settings; adapted recommendations from nine guidelines form the evidence base, informing two rounds of formal consensus; and all recommendations received ≥ 75% agreement.

RECOMMENDATIONS Evaluation of adult symptomatic women in all settings includes symptom assessment, family history, and ultrasound and cancer antigen 125 serum tumor marker levels where feasible. In limited and enhanced settings, additional imaging may be requested. Diagnosis, staging, and/or treatment involves surgery. Presurgical workup of every suspected ovarian cancer requires a metastatic workup. Only trained clinicians with logistical support should perform surgical staging; treatment requires histologic confirmation; surgical goal is staging disease and performing complete cytoreduction to no gross residual disease. In first-line therapy, platinum-based chemotherapy is recommended; in advanced stages, patients may receive neoadjuvant chemotherapy. After neoadjuvant chemotherapy, all patients should be evaluated for interval debulking surgery. Targeted therapy is not recommended in basic or limited settings. Specialized interventions are resource-dependent, for example, laparoscopy, fertility-sparing surgery, genetic testing, and targeted therapy. Multidisciplinary care and palliative care should be offered.

Additional information can be found at www.asco.org/resource-stratified-guidelines. It is ASCO’s view that health care providers and health care system decision makers should be guided by the recommendations for the highest stratum of resources available. The guideline is intended to complement but not replace local guidelines.

INTRODUCTION

The purpose of this guideline is to provide expert guidance on the diagnosis and treatment of adult women 18 years of age or older with epithelial ovarian cancer (EOC) (including fallopian tube and primary peritoneal cancer) to clinicians, public health leaders, patients, and policymakers in resource-constrained settings. The target population is adult women with ovarian masses and other symptoms of ovarian cancer as well as those diagnosed with EOC at all stages in resource-constrained settings. This guideline is not intended for patients in maximal settings, as described in Table 3.

Ovarian cancer is often diagnosed at an advanced stage, stage III or IV. All women are at risk for ovarian cancer; women with genetic predisposition; personal or family history of breast, ovarian, or colon cancer; infertility; and advancing age are at higher than population-based risk. There is currently no reliable screening method or primary prevention available for ovarian cancer in any setting. Therefore, most women with ovarian cancer are diagnosed on the basis of symptomatic presentation with the majority at advanced stages across all resource settings. In basic settings, chest x-ray and abdominal ultrasound are typically the only imaging modalities available. Women with ovarian cancer report nonspecific symptoms that may be overlooked or misdiagnosed by primary care providers and contribute to delay in diagnosis. In resource-constrained settings, patients with advanced
THE BOTTOM LINE
Assessment of Adult Women With Ovarian Masses and Treatment of Epithelial Ovarian Cancer: ASCO Resource-Stratified Guideline

Key Questions
For each of the three resource-constrained settings levels (basic, limited, and enhanced):

(A) What are the optimal diagnosis and staging strategies for adult women with ovarian masses and/or EOC (including fallopian tube and primary peritoneal cancer)?
(B) What is the optimal surgery for women with stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?
(C) What is the optimal adjuvant and/or systemic therapy for stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?
(D) What is the optimal therapy for women with recurrent EOC (including fallopian tube and primary peritoneal cancer)?

Target Population
Adult women (18 years of age or older) in three resource-constrained settings levels with ovarian masses and/or diagnosed with EOC (including fallopian tube and primary peritoneal cancer)?

Target Audience
This guideline globally targets health care providers (including gynecologic oncologists, medical oncologists, radiation oncologists, obstetricians and gynecologists, surgeons, nurses, and palliative care clinicians) and nonmedical community members, including patients, caregivers, and member(s) of advocacy groups.

Methods
A multinational, multidisciplinary Expert Panel was convened to develop clinical practice guideline recommendations on the basis of a systematic review of the medical literature and an expert consensus process.

Author’s note: It is the view of the ASCO that health care providers and health care system decision makers should be guided by the recommendations for the highest stratum of resources available. The guidelines are intended to complement but not replace local guidelines. General statement about recommendations: referral to higher-resource level settings, if feasible, is preferable.

Key Recommendations—Because of the Large Number of Recommendations, Only a Summary of Key Recommendations Are in This Box

Clinical question A.
What are the optimal diagnostic strategies for adult women with ovarian masses and/or symptoms of EOC (including fallopian tube and primary peritoneal cancer)?
- General practitioners should perform a clinical assessment and family history and where available, aid diagnosis by ultrasound (abdominal and transvaginal ultrasound, Doppler-enhanced) AND/OR contrast-enhanced computed tomography (CT) of abdomen and pelvis (with or without thorax).
- In postmenopausal women with symptoms of ovarian cancer, cancer antigen 125 [CA-125] value can assist in diagnosis.
- Ovarian cancer is diagnosed with histologic confirmation in all settings.
- CT-guided biopsy or laparoscopy (with sufficient resources) is preferred instead of laparotomy to obtain histologic confirmation prior to any systemic therapy.

See Table 5 and Appendix Figures A1 and A7. *

Clinical question B.
What is the optimal surgery for women with stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?
- The purpose of surgery is to diagnose, to stage, and/or for treatment.
- Ovarian cancer surgery should be performed by trained gynecologic oncologists or surgeons with oncology surgical expertise. Refer patients to highest-resourced level oncology center with oncology surgical capacity.
- Staging: Where feasible, patients with presumed early-stage ovarian cancer should undergo surgical staging by trained surgeon(s). In basic settings, surgical staging is not feasible, thus not recommended.
- Treatment: Women with advanced ovarian cancer (stage III and IV) should receive optimal surgical debulking to remove all visible disease to improve overall survival (OS) by trained surgeon(s).

See Tables 5 and 6 and Appendix Figures A2, A8, and A9. *

General statement about chemotherapy: Access to appropriate evidence-based chemotherapy agents, contraindications to chemotherapy, and potential side effects of chemotherapy should be evaluated and managed in every patient. Basic-resource (continued on following page)
THE BOTTOM LINE (CONTINUED)

settings that most likely lack the capacity to provide safe administration of chemotherapy should refer patients to a higher-level center for evaluation. Limited settings without skilled capacity should refer patients to settings with access to specialized care.

Clinical question C.
What is the optimal adjuvant and/or systemic therapy for stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?
- Clinicians should document pathology and stage to determine eligibility for adjuvant chemotherapy. If pathology confirmation is not possible because of patient or resource limitation, alternatives can be discussed.
- Clinicians should not administer (systemic treatment) adjuvant chemotherapy to patients with ovarian low–malignant potential tumors or early-stage microinvasive borderline tumors, independent of stage.
- Combination chemotherapy with paclitaxel and carboplatin is the standard of care for adjuvant therapy in ovarian cancer.
- Single-agent carboplatin may be used because of resource limitation or patient characteristics.
- Only in enhanced settings, highly selected cases can be assessed for appropriate evidence-based intraperitoneal (IP) chemotherapy, following optimal debulking, where there are resources and expertise to manage toxicities.

See Table 6 and Appendix Figures A3, A4, and A10.*

Clinical question D.
What is the optimal treatment for women with recurrent EOC (including fallopian tube and primary peritoneal cancer)?
- For recurrent disease in limited or enhanced settings only, patients with recurrent ovarian cancer should be counseled on treatment options on the basis of a patient’s prior response to platinum-based chemotherapy, that is, platinum-sensitive, platinum-resistant, or platinum-refractory disease status. Platinum rechallenge is only recommended for patients with platinum-sensitive disease.
- In enhanced settings only, clinicians may offer maintenance systemic therapies.
- Treatment is not recommended for patients with tumor marker–positive (CA-125) only recurrent ovarian cancer.
- Early palliative care interventions benefit all patients diagnosed with ovarian cancer.
- See related ASCO guidelines in the Appendix.

See Table 7 and Appendix Figures A5, A6, and A10.*

General statement about heritable risk: For women with strong family history of breast and/or ovarian cancer, clinicians should discuss family history and refer to counseling or testing, if available.

Additional Resources
More information, including a supplement, slide sets, and clinical tools and resources, is available at www.asco.org/resource-stratified-guidelines. The Methodology Manual (available at www.asco.org/guideline-methodology) provides additional information about the methods used to develop this guideline. Patient information is available at www.cancer.net.

ASCO believes that cancer clinical trials are vital to inform medical decisions and improve cancer care and that all patients should have the opportunity to participate.

*Full list of recommendations and corresponding tables are available in the Data Supplement.
TABLE 1. Incidence and Mortality of Ovarian Cancer

HDI	No.	Crude Rate	ASR
Incidence of ovarian cancer			
All	313,959	8.1	6.6
Low	15,379	3.1	5.1
Medium	6,559,480,973	5.8	6.0
Combined low HDI, low income, low middle income, medium HDI	176,709	5.2	5.9
High	116,505	8.1	6.1
Very high	116,347	14.7	8.3

Mortality of ovarian cancer

HDI	No.	Crude Rate	ASR
All	207,252	5.4	4.2
Low	11,106	2.2	4.0
Medium	4,559,856,704	4.0	4.3
Combined low HDI, low income, low middle income, medium HDI	122,452	3.6	4.2
High	76,796	5.3	3.8
Very high	73,655	9.3	4.3

Abbreviations: ASR, age-standardized rate; HDI, Human Development Index.

Incidence and Mortality of Ovarian Cancer

Crude and ASRs per 100,000 per Cancer Today (International Agency for Research on Cancer, WHO). World Health Organization: International Agency for Research on Cancer: Cancer Today. https://gco.iarc.fr/today/home

3.8 high plus very high v 4 low plus medium [mortality]). Data are from the Cancer, American Cancer Society table, new cases, and deaths for 36 cancers and all cancers combined in 2018, page 398 and here.

However, mortality-to-incidence ratios are high in all regions, notably highest in low- to medium-HDI regions. Data regarding women from Africa and women of African descent in the United States demonstrate the highest mortality rates, attributable to less-resourced health systems. As of 2018, data showed 27% of deaths from ovarian cancer occur in low- and medium-HDI regions, whereas 25% of the estimated 295,414 new cases occur in these regions around the world. GLOBOCAN data show highest incidence and mortality rates were in high-HDI plus very high–HDI regions (Table 1) (Source: GLOBOCAN 2020). In some so-called more-developed regions, rates are decreasing.

Different regions of the world, both among and within countries, have variable access to diagnosis and treatment of EOC. Patients with cancer of the ovary ideally require the care of specialized surgical teams including gynecologic oncologists and general surgeons who have extensive training in oncology. However, outside of specialized centers within high-HDI regions, there is a paucity of specialty training with few clinicians available to skillfully manage these patients. Some of the presumptions inherent in the guideline include that chemotherapy and specialized surgery are not available in basic settings (Table 2). As a result of these disparities, the American Society of Clinical Oncology (ASCO) Resource-Stratified Guidelines Advisory Group chose epithelial cancer of the ovary as a priority topic for guideline development.

ASCO has established a process for development of resource-stratified guidelines, which includes mixed methods of evidence-based guideline development, adaptation of the clinical practice guidelines of other organizations, and formal expert consensus. This article summarizes the results of that process and presents resource-stratified recommendations (see Results section).

TABLE 2. Diagnosis/Staging/Treatment Capacities by Setting

Intervention	Basic	Limited	Enhanced
Imaging	X-ray and US and expertise for interpretation	X-ray/US/CT may be available in some regions CT-guided/US-guided biopsy available	CT/MRI available
Surgery	General practitioner with basic surgical capacity (can include some ovarian mass diagnostic procedures—not hysterectomy) General surgery facility with minor OR available with anesthesia	General surgeon, general surgery facility with OR, Ob/Gyn—by default has some oncology skills	OR, ICU, most major surgeries available, subspecialized oncologists, including surgical oncologists/gynecologic oncologists
Chemotherapy	Presume not available (for purposes of guidelines) Availability of chemotherapy drugs is unpredictable	Some chemotherapy available. Only first-line	More chemotherapy options available, targeted therapy may or may not be available. May be more than first-line available
Pathology	Sending pathology for review when needed may or may not be available	Pathology services in development, H&E usually available, IHC and molecular tests are usually not available	Pathology services usually available and IHC and molecular tests may be available
Palliative care	Palliative care service is not available. Limited medications for pain may be available	Pain and symptom management available; palliative care service is in development	Palliative care specialty service not always available

Abbreviations: CT, computed tomography; H&E, hematoxylin and eosin stain; ICU, intensive care unit; IHC, immunohistochemistry; MRI, magnetic resonance imaging; Ob/Gyn, obstetrician/gynecologist; OR, operating room; US, ultrasound.
In developing resource-stratified guidelines, ASCO has adopted its framework from the four-tier resource setting approach (basic, limited, enhanced, and maximal; Table 3) developed by Breast Health Global Initiative and modifications to that framework on the basis of the Disease Control Priorities. The framework emphasizes that variations occur not only between but also within countries with disparities, for example, between rural and urban areas.

GUIDELINE QUESTIONS

This clinical practice guideline addresses the following four overarching clinical questions:

(A) What are the optimal diagnosis and staging strategies for adult women with ovarian masses and/or EOC (including fallopian tube and primary peritoneal cancer)?

(B) What is the optimal surgery for women with stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?

(C) What is the optimal adjuvant and/or systemic therapy for stages I-IV EOC (including fallopian tube and primary peritoneal cancer)?

(D) What is the optimal therapy for women with recurrent EOC (including fallopian tube and primary peritoneal cancer)?

METHODS

Guideline Development Process

This systematic review–based guideline product was developed by an multinational, multidisciplinary Expert Panel, which included a patient representative and ASCO guidelines staff member with health research methodology expertise (Appendix Table A2). The Expert Panel met via teleconference and corresponded through e-mail. On the basis of the consideration of the evidence, the authors were asked to contribute to the development of the guideline, provide critical review, and finalize the guideline recommendations. Members of the Expert Panel were responsible for reviewing and approving the penultimate version of the guideline, which was then circulated for external review and submitted to a peer-reviewed journal for editorial review and consideration for publication.

This guideline adaptation was also informed by the ADAPTE methodology and consensus methodology together as an alternative to de novo guideline development for this guideline. Adaptation of guidelines is considered by ASCO in selected circumstances when one or more quality guidelines from other organizations already exist on the same topic. The objective of the ADAPTE process is to take advantage of existing guidelines to enhance efficient production, reduce duplication, and promote the local uptake of quality guideline recommendations.

ASCO’s adaptation process begins with a literature search by ASCO guidelines staff, to identify candidate guidelines for adaptation. Adapted guideline manuscripts are reviewed and approved by the ASCO Clinical Practice Guidelines Committee (CPGC). The review includes two parts: methodologic review and content review. The methodologic review is completed by a member of the CPGC’s Methodology Subcommittee and/or by ASCO guidelines staff. The content review is completed by an Expert Panel (Appendix Table A2). All funding for the administration of the project was provided by ASCO. Further details of the methods used for the development of this guideline are reported in the ASCO Guidelines Methodology Manual (available at www.asco.org/guideline-methodology).

This guideline was partially informed by ASCO’s modified Delphi Formal Expert Consensus methodology, during which the Expert Panel was supplemented by additional experts recruited to rate their agreement with the drafted recommendations. The entire membership of experts is referred to as the Consensus Panel (a list of members is available in Appendix Table A3). In round 1, 20 experts (plus two who were on the Expert Panel) participated; in round 2, there were a total of 25 respondents (nine of whom were on the Expert Panel). The guideline recommendations were drafted, in part, using the Guidelines Into Decision Support methodology. The guideline recommendations were sent for an open comment period of 2 weeks allowing the public to review and comment on the recommendations.

TABLE 3. Framework of Resource Stratification

Setting	Core resources or fundamental services that are absolutely necessary for any public health/primary health care system to function; basic-level services typically are applied in a single clinical interaction. Vaccination is feasible for highest-need populations
Basic	Second-tier resources or services that are intended to produce major improvements in outcome such as incidence and cost-effectiveness and are attainable with limited financial means and modest infrastructure; limited-level services may involve single or multiple interactions. Universal public health interventions feasible for greater percentage of population than primary target group
Limited	Third-tier resources or services that are optional but important; enhanced-level resources should produce further improvements in outcome and increase the number and quality of options and individual choice (perhaps ability to track patients and links to registries)
Enhanced	May use high-resource settings’ guidelines
Maximal	High-level/state-of-the-art resources or services that may be used/available in some high-resource countries and/or may be recommended by high-resource setting guidelines that do not adapt to resource constraints but that nonetheless should be considered a lower priority than those resources or services listed in the other categories on the basis of extreme cost and/or impracticality for broad use in a resource-limited environment

NOTE. Data adapted. To be useful, maximal-level resources typically depend on the existence and functionality of all lower-level resources. Maximal-level recommendations are not included in this guideline.
after submitting a confidentiality agreement. These comments were taken into consideration while finalizing the guideline. All ASCO guidelines are ultimately reviewed and approved by the Expert Panel and the ASCO Clinical Practice Guideline Committee prior to publication.

Guideline Disclaimer

The clinical practice guidelines and other guidance published herein are provided by the ASCO to assist providers in clinical decision making. The information therein should not be relied upon as being complete or accurate, nor should it be considered as inclusive of all proper treatments or methods of care or as a statement of the standard of care. With the rapid development of scientific knowledge, new evidence may emerge between the time information is developed and when it is published or read. The information is not continually updated and may not reflect the most recent evidence. The information addresses only the topics specifically identified therein and is not applicable to other interventions, diseases, or stages of diseases. This information does not mandate any particular course of medical care. Further, the information is not intended to substitute for the independent professional judgment of the treating provider, as the information does not account for individual variation among patients. Recommendations reflect high, moderate, or low confidence that the recommendation reflects the net effect of a given course of action. The use of words like “must,” “must not,” “should,” and “should not” indicate that a course of action is recommended or not recommended for either most or many patients, but there is latitude for the treating physician to select other courses of action in individual cases. In all cases, the selected course of action should be considered by the treating provider in the context of treating the individual patient. Use of the information is voluntary. ASCO provides this information on an “as is” basis, and makes no warranty, express or implied, regarding the information. ASCO specifically disclaims any warranties of merchantability or fitness for a particular use or purpose. ASCO assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of this information or for any errors or omissions.

Guideline and Conflicts of Interest

The Expert Panel was assembled in accordance with ASCO’s Conflict of Interest Policy Implementation for Clinical Practice Guidelines (“Policy,” found at http://www.asco.org/rwc). All members of the Expert Panel completed ASCO’s disclosure form, which requires disclosure of financial and other interests, including relationships with commercial entities that are reasonably likely to experience direct regulatory or commercial impact as a result of promulgation of the guideline. Categories for disclosure include employment; leadership; stock or other ownership; honoraria, consulting or advisory role; speaker’s bureau; research funding; patents, royalties, other intellectual property; expert testimony; travel, accommodations, expenses; and other relationships. In accordance with the Policy, the majority of the members of the Expert Panel did not disclose any relationships constituting a conflict under the Policy.

RESULTS

Literature Search

The recommendations were developed through a systematic review of high-quality published guidelines and clinical experience. A search for new evidence was conducted by ASCO guidelines staff to identify systematic review–based guidelines published between January 2012 and March 2019 in PubMed, Cochrane Systematic Reviews, US AHRQ database (the formerly extant) and US National Guideline Clearinghouse databases and complemented with searches of G-I-N International Guideline Library (see the Data Supplement for details on the search). The search was restricted to articles published in English, French, or Spanish. Guidelines were selected for inclusion in the systematic review on the basis of the following criteria:

1. addressed the diagnosis or treatment of ovarian masses and/or ovarian cancer,
2. developed by multidisciplinary content experts as part of a recognized organizational effort, and
3. published between 2012 and 2019 (later narrowed to 2014-2019 to capture more current information).

The Expert Panel suggested two additional guidelines for review. The Expert Panel later narrowed the date parameter to between January 2014 and December 2019 (with the addition of some Panel-suggested literature and ASCO guidelines published up to June 2020).

Articles were excluded from the systematic review if they were (1) meeting abstracts; (2) books, editorials, commentaries, letters, news articles, case reports, or narrative reviews; or (3) primary literature. After initial searches of primary literature, the panel leadership decided to primarily use guidelines to inform expert consensus. ASCO considered quality guidelines that either met the US National Guidelines Clearinghouse 2013 criteria as assessed by National Guideline Clearinghouse or met ASCO criteria for Appraisal of Guidelines for Research and Evaluation II (AGREE II) methodologic review. Searches for cost-effectiveness analyses were also conducted separately.

A total of 156 titles of guidelines were found in the literature searches. The ASCO Expert Panel reviewed nine of the guidelines that met inclusion criteria, in-depth for their currency, content, and methodology. On the basis of content and methodology reviews, the Expert Panel chose six non-ASCO guidelines and three ASCO guidelines (Scottish Intercollegiate Guidelines Network [SIGN], Belgian Health Care Knowledge Centre [KCE], ASCO and Society of Gynecologic Oncology [SGO], Ontario
SUMMARY OF ADAPTED GUIDELINES

Guidelines on Assessment of Ovarian Masses and Treatment of Patients Diagnosed With Epithelial Ovarian Cancer

The Expert Panel identified clinical questions and/or categories within the adapted guidelines that would potentially match the ASCO clinical questions. All the guidelines were developed on the basis of patients in maximal settings; therefore, the Expert Panel had to review and adapt the recommendations for resource-constrained settings on the basis of experience in resource-constrained settings and then validate the recommendations by formal consensus. All the guideline developers used different methods. Most of the maximal setting guidelines had clinical questions or key questions, including the Belgian KCE, Irish NCEC, ASCO and SGO, ASCO, OH-CCO, JSGO, BGCS, and Irish NCEC guidelines and acknowledges the effort put forth by the authors and aforementioned societies to produce evidence-based and/or consensus-based guidelines informing practitioners and institutions who provide care to patients with ovarian masses and/or ovarian cancer.

SELECTED RECOMMENDATIONS

The recommendations were developed by a multinational, multidisciplinary group of experts using evidence from existing guidelines and clinical experience as a guide. The ASCO Expert Panel underscores that health care practitioners who implement the recommendations presented in this guideline should first identify the available resources in

Downloaded from ascopubs.org by 68.49.35.173 on June 30, 2021 from 068.049.035.173
Copyright © 2021 American Society of Clinical Oncology. See https://ascopubs.org/go/authors/open-access for reuse terms.
their local and referral facilities and endeavor to provide the highest level of care possible with those resources. The authors would like to make some general points applying to recommendations throughout this guideline: outcomes should be balanced with QoL including financial toxicity; recommendations are made regarding what is feasible in resource-constrained settings.

Because of the large breadth of recommendations, the Panel elected to discuss selected areas.

OVERARCHING CLINICAL QUESTION A
What are the optimal diagnosis and staging strategies for adult women with ovarian masses and/or EOC?

Evaluation and diagnosis of adult women with ovarian masses or symptoms of EOC (Recommendations 1.1-1.4)

Recommendations on evaluation and diagnosis for women with ovarian masses are provided in Tables 5 and 6 and Appendix Figures A1, A2, A8, and A9. These recommendations are adapted, and in some cases modified from the guidelines from the developers Belgian KCE, Irish NCEC, SIGN, BGCS, and ASCO and SGO and informed by clinical expertise.

Diagnostic Strategies

Discussion. These recommendations concern assessment for adult women with ovarian masses in basic, limited, and enhanced settings.

Basic-resource settings. Women with ovarian cancer may report generalized symptoms of pain, fatigue, loss of appetite, abdominal bloating, or feeling full with small meals or early satiety. Other focal signs can include a patient’s report of a mass noted in the abdomen or symptoms of abdominal distension, abdominal or pelvic pain, and change in bowel function with diarrhea or constipation (for the latter, symptoms of <12 months duration and occurring more than 12 times per month). Women presenting with symptoms associated with possible EOC require an evaluation. The cause of underlying symptoms, generally nonspecific but potentially severe or life-impacting in nature, needs to be determined and may lead to a potential cancer diagnosis. A general practitioner in a basic-resource setting has to rely on the patient’s history and physical examination findings to determine the need for diagnostic testing. Initial assessment by a general practitioner includes a complete physical examination, focusing on the abdominal and pelvic examination, to determine the presence of any pelvic or ovarian mass. A clinical diagnosis of ovarian cancer can be discussed on the basis of certain complements of symptoms. A symptom index has been validated and may be helpful in guiding care. Measuring the serum CA-125 tumor marker alone is not validated for diagnostic use; however, if more than 300 IU/mL, can be suggestive of serous ovarian cancer. CA-125 is less useful for women who are premenopausal, with early-stage ovarian cancer, with ovarian cancer of other epithelial types, or with non-epithelial ovarian tumors.

Imaging

Women who are postmenopausal with recurrent and persistent symptoms, even in the setting of a negative physical examination, require further evaluation with pelvic ultrasound (transabdominal and transvaginal ultrasound) and referral to a higher-level center for further evaluation including a CT scan. Upon completion of the history and physical examination, where resources allow, ultrasound-based imaging including a pelvic ultrasound is a general first step in the diagnostic evaluation.

The diagnostic evaluation for an ovarian mass is most widely performed with a pelvic ultrasound. Prospective studies from the International Ovarian Tumor Analysis group have identified 10 characteristics of benign versus malignant ovarian mass that are highly accurate and reproducible for diagnosis of ovarian cancer (Table 4). Evaluation of these features via pelvic ultrasound with the designation of benign, malignant, or inconclusive, in addition to clinical assessment, provides a general practitioner guidance for a referral to treatment.

A mass is classified as probable malignant if at least one malignant feature and none of the benign features are present and vice versa. If no benign or malignant features are present or if both benign and malignant features are present, then the rules are considered inconclusive (unclassifiable mass), and clinicians should use further clinical and diagnostic testing.

The clinical presentation and imaging findings of both benign (eg, peritoneal tuberculosis) and other malignancies (eg, GI cancer) may be similar or mimic those of ovarian cancer. Patients in basic-resource settings, when feasible, should be referred to a higher-level care center with capacity for surgical and medical management of patients when there is a concern for malignancy, either of ovarian or other types. Consequently, a histopathologic diagnosis should be undertaken prior to definitive treatment, with referral for diagnosis if feasible. Histology or cytology diagnosis of EOC should be made by a certified pathologist. See the Special Commentary on pathology for further details.

(Sources: SIGN, BGCS, Irish NCEC)

Limited-resource settings. Clinicians should perform the recommendations from the basic setting and may add CT if available. CT imaging of the abdomen and pelvis to include the lower lung fields, using oral and intravenous (IV) contrast where available, can help document the extent of disease spread to solid organ structures such as the liver, detail the severity of peritoneal carcinomatosis, rule out pleural effusion, and aid clinicians in surgical treatment planning (see recommendation 1.4 and recommendations 2.1.1-2.2.3). In women with respiratory symptoms, CT of
TABLE 4. International Ovarian Tumor Analysis Simple Rules

Benign Features	Malignant Features
Unilocular tumor (B1)	Irregular solid tumor (M1)
Largest diameter of largest solid component < 7 mm (B2)	Ascites (M2)
Acoustic shadows (B3)	At least four papillary projections (M3)
Smooth multilocular tumor with largest diameter < 100 mm (B4)	Irregular multilocular solid tumor with largest diameter ≥ 100 mm (M4)
No intratumoral blood flow at color or power Doppler (B5)	Very strong intratumoral blood flow at color or power Doppler (M5)

NOTE. Irish National Clinical Effectiveness Committee; Belgian Health Care Knowledge Centre (p 23).

...the thorax provides a more complete evaluation, although this guideline does not recommend routinely performing it for all patients with suspected ovarian cancer in limited-resource settings. A chest x-ray is more accessible and cost-effective for evaluation of the thorax.

(Sources: SIGN, ASCO/SGO, Irish NCEC)

Enhanced-resource settings. In addition to recommendations from the basic and limited settings, magnetic resonance imaging provides a minimal added benefit to the assessment of an ovarian mass suspicious for diagnosis of ovarian cancer. CT imaging of the abdomen, pelvis, and thorax provides a more comprehensive evaluation of disease burden and is also beneficial in surgical treatment planning. Specific benign ovarian pathology such as fibroid disease or dermoid cyst(s) are optimally visualized with ultrasound and thus magnetic resonance imaging of the pelvis can be used only if the clinician’s decision making will be altered on the basis of radiologic findings.

(Sources: SIGN, ASCO/SGO, Irish NCEC)

Assessing heritable risk (Recommendation 1.3)

Discussion. This guideline is not focused on screening and/or genetic tests (the prespecified population in this guideline does not include asymptomatic individuals; ASCO has a maximal setting guideline for testing for women with a personal history of ovarian cancer but acknowledges that there is no global resource to inform what is available, accessible, and paid for by population-level care in each country and/or region).20 Assessing heritable risk of ovarian cancer is a part of diagnosis, but the overall population for this umbrella group of recommendations is women with ovarian masses, independent of potential individual heritable risk, and does not include populations that are asymptomatic. During the diagnosis for women with ovarian masses, the guideline stresses that the most important risk-related intervention is taking family history and related counseling, in all settings, recognizing that genetic counseling is not accessible to most women outside of maximal-resource settings. A 2015 ASCO policy statement “affirms that the recognition and management of individuals at inherited risk for cancer is a core element of oncology practice. The skills required to provide cancer risk assessment services are not specific to a discipline but rather incorporate elements from oncology, medical genetics and genetic counseling, and other disciplines. ASCO recommends continued education of oncologists and other health care professionals in the area of cancer risk assessment and management of individuals with an inherited predisposition to cancer.”25

Family history includes the patient’s age, cancer history, childbearing status and preferences, and that of close relatives (especially first- and second-degree relatives). First-degree relatives include a patient’s mother, father, sister, brother, daughter, or son; second-degree relatives are the first-degree relative(s) of a patient’s first-degree relatives (grandparents, grandchildren, parent(s)’ siblings and their children, and half-siblings). Recommendations on genetic testing and how to best manage results are still equivocal in both resource-rich and resource-constrained settings.

Basic-resource settings. Clinicians evaluating women for ovarian masses in basic-resource settings should obtain a comprehensive family cancer history. Recognizing the heritable risk of ovarian cancer, family history of ovarian cancer are key supportive data to guide diagnosis. Families of women with a diagnosis of ovarian cancer seeking genetic counseling should be referred to a higher-level center with clinicians trained in cancer risk management.

Limited-resource and enhanced-resource settings. Clinicians should be mindful that to offer genetic testing, actionable next steps should be available, for example, follow-up counseling and genetic marker–based treatment(s). Guidelines serving as this resource-stratified guideline’s evidence base, for example, SIGN, state with a low level of evidence that screening for ovarian cancer in high-risk groups without confirmed diagnosis of personal or family history of cancer should only be offered in the context of a research study.12 For additional reading, refer to evidence-based guidelines that explore the harms and benefits of BRCA testing and other genetic testing for individuals and populations at high risk, see Appendix Table A4.

(Minimally invasive techniques (Recommendation 1.4)

Discussion. Patients should be referred from basic or limited settings to higher-resourced settings wherever
TABLE 5. Summary Diagnosis Recommendations by Setting

Disease Entity and/or Point of Service	Intervention [strength of recommendation]	B/L/E Setting
Symptoms	Clinical assessment [S]	B/L/E
	Ultrasound (transabdominal ultrasound, pelvic ultrasound, and TUV), and interpret the results using the IOTA [S]	
	Family history [unrated]	
	CA-125 [M]	
	+Contrast-enhanced CT of abdomen and pelvis (with or without thorax) [S]	L/E
	+MRI [W]	E
Diagnosis	Family history [W]	All
	Histologic confirmation for diagnosis (planning for NACT or not planning for NACT) [M]	L/E
Staging (suspected early stage v advanced stage)	Referral for staging surgery [W]	B/L
	Metastatic workup [W]	L/E
	Staging surgery [W]	E

Abbreviations: B, basic; CA-125, cancer antigen 125; CT, computed tomography; E, enhanced; IOTA, International Ovarian Tumor Analysis; L, limited; M, moderate; MRI, magnetic resonance imaging; NACT, neoadjuvant chemotherapy; S, strong; TUV, transvaginal ultrasound; W, weak.

OVERARCHING CLINICAL QUESTION B

What is the optimal surgery for women with stages I-IV EOC?

Staging for suspected stage I/II ovarian cancer (Recommendation 2.1.1)

Recommendations on staging are in Table 5, Appendix Figures A2 and A8, and the Data Supplement.

Discussion. Surgery is an essential element in ovarian cancer diagnosis and initial care, necessary for accurate diagnosis of ovarian cancer. Surgical staging follows or coincides with diagnostic interventions. Invasive intervention in patients with ovarian cancer is done for three reasons: tissue pathology diagnosis, surgical staging, or tumor debulking with the goal to achieve optimal tumor cytoreduction to R0 (no gross visible disease). In apparent early-stage ovarian cancer (stage I/II), appropriate surgical management of the ovarian mass includes minimizing risk of rupture. Surgical staging in apparent early-stage ovarian cancer provides prognostic information through comprehensive staging, if available. Complete staging helps to define prognosis and may change treatment course if a patient’s disease is unexpectedly upstaged and should ideally be undertaken by a subspecialized gynecologic oncology surgeon with appropriate experience or, where limitations exist, a gynecologist or general surgeon experienced in pelvic surgery. Surgery is performed to stage and remove all visible tumors; this may involve more than one surgical procedure or more than one surgical specialist to accomplish. Because of the complexity of ovarian cancer surgery and perioperative management of patients with ovarian cancer, patients should be referred to the highest-level care center with the capacity for expert surgical and medical management.

Surgical staging involves assessment and biopsies of the pelvis and abdomen, en bloc resection of the fallopian tubes, ovaries, uterus (see the Data Supplement for options in fertility-sparing surgery), infracolic omentectomy, evaluation of the bowel serosa and peritoneal surfaces from infradiaphragmatic space to the floor of the pelvis, pericolic gutter washings, and evaluation of the inferior aspect of the diaphragm. Systematic pelvic and para-aortic lymph node dissection is controversial and is only recommended when it will upstage and change the management of a patient’s early-stage disease.26 Basic-resource settings. In the absence of capacity to perform staging, patients should be referred to the next level of care. Where that is not possible, immediate symptom control and referral for subsequent care (surgery and/or chemotherapy) should be initiated.
Limited-resource settings. Diagnostic and surgical staging should proceed as in the Discussion, provided limited settings have appropriate surgical and postoperative expertise and pathology access. Lymph node dissection as part of comprehensive surgical staging for apparent early-stage ovarian cancer includes dissection of pelvic and para-aortic lymph nodes. Comprehensive surgical assessment for suspected stage I ovarian cancer provides the most accurate information for proper pathology-based staging, as this may affect recommendations for adjuvant chemotherapy options and ultimately survival.

Depending on the histologic grade and subtype, up to 30% of the patients with apparent early-stage ovarian cancer may be upstaged after pathology results of comprehensive surgical staging.

Enhanced-resource settings. In addition to the recommendations in the basic and limited settings, positron emission tomography-CT is not validated as a diagnostic or staging tool for ovarian cancer.

Fertility-sparing surgery and laparoscopic surgery for staging

Recommendations on fertility-sparing surgery and laparoscopic surgery are in Table 6, Appendix Figures A2 and A8, and the Data Supplement.

Fertility-sparing surgery (Recommendation 2.1.2)

Discussion. A select subset of patients with stage I and low-grade ovarian cancer may qualify for fertility-sparing surgery. Where resources allow and in all resource settings, women who wish to preserve fertility options and with apparent early-stage ovarian cancer by imaging should be referred to the highest-level center for presurgery counseling and surgical management by a gynecologic oncology surgical specialist. The goal of surgery is to preserve fertility options in addition to performing a comprehensive surgical staging to exclude micrometastasis. In limited-resource settings that lack access to frozen section pathology, a secondary surgery to complete standard procedure may be recommended after confirming final pathology. In the case of stage IB, the patient’s uterus can be preserved for future assisted-reproductive options. Women wishing to preserve fertility options should be counseled on the risks of recurrent ovarian cancer on the basis of histology and surgical stage.

Recommendation for fertility-sparing surgery options on the basis of histology:

- Borderline ovarian tumors (clear cell, serous, mucinous, or endometrioid) for stage IA, B, and C
- Mucinous carcinoma for stage IA, B, and C
- Low-grade endometrioid carcinoma for stage IA and B
- Low-grade serous carcinoma for stage IA and B
- Clear cell carcinoma—not recommended for any stage
- High-grade serous or endometrioid tumors—not recommended for any stage

Limited-resource settings and enhanced-resource settings. When young women are affected by early-stage EOC (low-grade), clinicians can offer fertility-sparing surgery following thorough discussion with the patient about the potential harm of recurrent ovarian cancer.

Laparoscopic surgery for staging (Recommendation 2.1.3)

Discussion. The preferred approach to surgical staging of suspected ovarian cancer is via a midline vertical incision; data have not yet been provided to validate the safety and equivalence of minimally invasive surgery (MIS) for newly diagnosed EOC care in any resource setting. The use of laparoscopy for surgical staging in patients with apparent early-stage ovarian cancer is not recommended for basic- or limited-resource settings because of the lack of access to expert laparoscopic oncology surgeon(s) and access to necessary equipment for advanced laparoscopy. The safe selection of patients for MIS requires surgical oncology experience beyond laparoscopy surgical techniques. In enhanced settings with capacity for frozen section pathology, MIS may be offered for apparent early-stage ovarian cancer. In such select cases, patients and surgeons must be prepared to convert to a laparotomy procedure if comprehensive surgical staging cannot be completed via MIS.

Surgical debulking for patients diagnosed with stage III and IV ovarian cancer (Recommendation 2.2.1)

Recommendations on surgical debulking for patients diagnosed with stage III and IV ovarian cancer are in Table 6 and Appendix Figures A2 and A9.

Discussion. The goal of surgical management of stage III and IV ovarian cancer is to perform optimal tumor cytoreduction, which is achieved by resecting all visible tumor to < 1 cm and ideally to no visible tumor (R0). There is evidence that leaving residual disease > 1 cm is associated with a reduced chance of cure and negatively affects survival. As the benefit of surgery is diminished with suboptimal cytoreduction, all patients benefit from a multidisciplinary team (MDT) approach to their cancer care. A skilled surgeon should use clinical and radiologic examinations to determine the appropriateness of surgical intervention on the basis of patient and tumor factors with the intent to achieve complete surgical debulking with limited morbidity. Because of the inherent complexity of ovarian cancer surgery, surgeons skilled in oncologic surgery or trained gynecologic oncologists are best positioned to surgically manage patients with stage III or IV ovarian cancer. Decisions to perform surgery for these patients should take into account the health facilities’
capacity to provide safe perioperative care for patients with ovarian cancer because of the underlying risks associated with radical upper abdominal or multiorgan resections, large ascites, pleural effusion, nutritional needs, and patients’ preoperative reduced performance status (PS). PS is defined as “A measure of how well a patient is able to perform ordinary tasks and carry out daily activities.”

The extent of surgery to achieve complete cytoreduction may include bowel resection, upper abdominal exploration, and tumor debulking, or diaphragm resection and is best managed by oncology specialists and at facilities with resources to manage complex postoperative care including pain management. Decisions on bowel resection must consider potential cultural and resource limitations including management of long-term side effects. Routine pelvic and para-aortic lymphadenectomy in surgical management of advanced ovarian cancer (stage III/IV) is not indicated. Clinically enlarged lymph nodes should be removed as part of debulking procedure. As the surgical decision process for patients’ stage III and IV ovarian cancer is complex, this group of patients achieve the best disease outcome when managed by a gynecologic oncologist in the setting of a cancer center and should be referred to the highest-level cancer center for optimal cancer management.

Basic-resource settings. Because of a lack of resources at this level, the Expert Panel recommends that patients

TABLE 6. Summary Treatment Recommendations by Setting

Recommendation No.	Population	ASCO Resource Levels (B)	ASCO Resource Levels (L)	ASCO Resource Levels (E)	Strength of Recommendation
2.1.1 2.1.2	Low-risk* suspected stage I/II	Referral to L/E and/or resection if feasible	Fertility-sparing surgery if suspected unilateral stage I OR refer to higher-level cancer center and/or resection	Fertility-sparing surgery if unilateral stage I. If not, staging and debulking resection	Weak
3.1.1 3.1.3 3.2.1 3.2.3	High-risk (stage I/III)	No chemotherapy	Combination adjuvant chemotherapy	Combination adjuvant chemotherapy	Moderate/strong
2.2.2 2.2.3	Eligible for NACTb	NACT and interval debulking is not recommended in basic settings	NACT ≤ 4 cycles	(A) If OR or SD to chemotherapy, then interval cytoreductive debulking surgery	
2.2.3 A and B	Metastatic post-systemic treatment surgery (stage IIIc-IV)	Interval debulking is not recommended in basic settings		(B) If PD, alternative chemotherapy regimens, clinical trials, and/or discontinuation of active cancer therapy and initiation of end-of-life care	
3.1.1 3.1.3	Received surgery (adjuvant setting)c	Referral to higher-level cancer center	If staged and pathologically confirmed (or alternative confirmation), then adjuvant combination chemotherapy	If staged and pathologically confirmed (or alternative confirmation), then adjuvant combination chemotherapy	Weak
3.3.5	Received surgery and prior chemotherapy (maintenance) (stage III/IV)	NA	NA	May discuss maintenance systemic therapies (eg, antiangiogenic, targeted therapy). For guidance regarding the use of PARPi, please refer to the ASCO guideline	

NOTE. Table divided by modality: surgical for primary, surgical for metastatic, etc.

Abbreviations. B, basic; E, enhanced; FIGO, International Federation of Gynecology and Obstetrics; L, limited; NA, not applicable; NACT, neoadjuvant chemotherapy; OR, overall response; PARPi, poly (ADP-ribose) polymerase inhibitors; PD, progressive disease; PS, performance status; SD, stable disease.

*Exceptions: ovary appears abnormal and there is evidence of omental and/or peritoneal disease.

*Biopsy-proven FIGO stage IIIc or IV (specifically high tumor load/stage IVB), in expectantly high-morbidity surgery and patients with poor PS or unresectable disease.

*Except low-risk stage I.
requiring cytoreductive surgery be referred to higher levels of care.

Limited-resource settings and enhanced-resource settings.

Complete cytoreductive surgery for patients with stage III or IV ovarian cancer should be performed by a gynecologic oncologist, general gynecologist, or general surgeon with experience in cancer surgery. Patients should be referred to the highest-level cancer center for optimal surgical management. Access to perioperative supportive services for complex surgical patients may be necessary to optimize surgical outcomes and minimize morbidity.

Surgery after neoadjuvant chemotherapy (Recommendation 2.2.2-2.2.3)

Recommendations on interval cytoreductive surgery after NACT are available in Table 6 and Appendix Figures A3 and A9.

Discussion. Patients with stage III/IV disease with bulky disease may benefit from NACT if a gynecologic oncologist or surgical oncologist reviews the case and deems the patient’s disease as unresectable or unlikely to achieve complete cytoreduction. Additional patients appropriate for NACT consideration include those with poor PS or at high surgical risk assessed by a surgical specialist. Research is underway on assessing response to NACT using validated scoring tools and nomograms, although reviewing this literature is outside this guideline’s scope. According to the ASCO and SGO guideline on NACT in stage IIIC and IV, only patients with response to chemotherapy or stable disease following three to four cycles of platinum-based chemotherapy benefit from interval cytoreductive surgery. The goal of surgery is the same as primary surgery to achieve optimal tumor cytoreduction to < 1 cm, ideally to no visible disease (R0). For patients whose tumor progresses during chemotherapy, interval surgery is not indicated as it offers no added survival benefit. Options for these patients include alternative chemotherapy regimens, clinical trials, and/or discontinuation of active cancer therapy and initiation of end-of-life care. In general, in the setting of progressive disease, there is little role for surgery, and it is not typically advised, unless for palliation (eg, relief of bowel obstruction).

Basic-resource settings. This guideline recommends that patients at this level should be referred to higher levels of care, otherwise patients should be managed with supportive and palliative care interventions.

Limited-resource settings. Treatment response following NACT should be evaluated by an MDT and guided by imaging, tumor marker analysis, and physical examination. Response to NACT may be indicative of a greater likelihood of benefit from interval cytoreductive surgery. Patients with disease response or stable disease benefit from interval cytoreductive surgery to achieve tumor cytoreduction < 1 cm, ideally to no visible disease (R0) where feasible, otherwise achieve tumor cytoreduction to < 1 cm.

Options for patients with progressive disease with NACT are palliative systemic therapies, enrollment in clinical trials, single-agent therapies, or discontinuation of all therapies and pursuit of end-of-life care. There is a limited role for surgery in patients with poor response to chemotherapy. The decision for additional treatment in patients with progressive disease with NACT should be endorsed by the MDT, weighing the risks and benefits in patients with poor survival outcomes.

Enhanced-resource settings. The same recommendations apply as in limited settings, with added capacity for more aggressive cytoreductive procedures by experienced and specialized surgeons and/or gynecologic oncologists.

OVERARCHING CLINICAL QUESTION C

What is the optimal adjuvant and/or systemic therapy for stages I-IV EOC?

Recommendations on adjuvant and systemic therapy are in Appendix Figures A3 and A10 and Table 6.

Adjuvant chemotherapy following surgery in patients with stage I EOC (Recommendations 3.1.1-3.1.5)

Discussion. Stage I ovarian cancer is potentially curable; early and accurate treatment is fundamental to optimizing survival outcomes. Adjuvant chemotherapy may follow any attempt at best possible surgical staging and debulking. Clinicians should use information from surgical staging to guide adjuvant chemotherapy decisions and define disease prognosis. Since patients with previously presumed early-stage ovarian cancer may be upstaged, women who were previously deemed not likely to require adjuvant chemotherapy may qualify for adjuvant therapy given known benefit for OS. Patients with stage I ovarian cancer who are incompletely staged or completely staged with residual disease experience survival benefit from adjuvant chemotherapy. Adjuvant chemotherapy should not replace additional surgery where feasible.

The OS for stage I EOC is high, although a subset of women is at a higher risk of relapse. Adjuvant chemotherapy does not improve survival for women with stage IA or IB low-grade (grade 1) endometrioid, serous, or mucinous ovarian carcinoma. This subset of patients is classified as having low-risk early-stage EOC. The risk of relapse is increased with incompletely staged and any grade disease; clear cell, while not normally graded, is considered a high-grade, high-risk histology, and these subsets of patients benefit in improved OS with adjuvant chemotherapy. The international standard-of-care recommendation for adjuvant chemotherapy is a taxane plus platinum doublet on an every-three-weekly schedule (once every 3 weeks) for a total of six cycles; clinicians may use other platinum-based doublets, although there are no data showing noninferiority or superiority to platinum plus taxane doublets. Data exist on the use of three versus six cycles of treatment with nonsignificant difference in survival outcome, although six
cycles is recommended for stage I high-grade serous histology. Moderately well-differentiated or grade 2 disease can be reclassified as low-grade or high-grade by demonstration of p53 mutation by immunohistochemistry. In the absence of resources demonstration of p53 mutation by immunohistochemistry, adjuvant therapy may be offered to patients with stage I grade 2 EOC. Basic- and limited-resource settings may discuss single-agent platinum therapy for patients with poor PS or in regions with poor access to taxanes and other medications where feasible.

(Sources: SIGN, Belgian KCE, BGSC, OH-CCO, JSGO)

Basic-resource settings and limited-resource settings.

Women who have undergone some surgical procedure with diagnosis of possible stage I EOC in basic-resource setting(s) should be referred to a higher-level treatment center for discussion of adjuvant therapy or a restaging procedure. In basic settings, all efforts should be allocated to make this referral. If there are patients for whom referral to a higher level of care is not feasible, close monitoring for recurrence is warranted.

(Source: Consensus)

Limited-resource settings. If extant, an MDT should discuss all patients with stage I disease prior to any intervention. A treatment plan accounting for individual patient characteristics, surgical staging, histology type, and access to chemotherapy should be outlined. Unless contraindicated, patients with stage I eligible for adjuvant chemotherapy should receive it, in the schedule described in the Discussion in and Recommendation 3.1.4 (limited and enhanced settings). Single-agent platinum may be an alternative in select cases.

Enhanced-resource settings. In addition to recommendations under limited settings, women with stage I EOC may have been diagnosed when premenopausal and request fertility preservation. Prior to finalizing surgery and adjuvant chemotherapy treatment plans, women should be referred to a center in an enhanced-resource setting, if available. Consideration of unique management options for patients with stage I ovarian cancer, for example, fertility preservation, the impact of chemotherapy on fertility outcomes, and restaging should be referred to a cancer treatment center with access to highly trained surgeon(s) in enhanced-resource settings.

IP chemotherapy (Recommendation 3.2.2)

Discussion. IP chemotherapy for stage III ovarian cancer in this guideline is not recommended for basic- or limited-resource settings because of complexity of delivering IP/IV chemotherapy. On the basis of phase III clinical trials, IP/IV chemotherapy confers a survival benefit compared with IV chemotherapy for optimally debulked (< 1 cm) ovarian cancer, with the greatest benefit documented for those with no residual disease (RO) (see the SIGN guideline). Chemotherapy delivery with paclitaxel plus cisplatin is associated with increased side effects of renal toxicity, neuropathy, fatigue, abdominal discomfort, and infection, frequently leading to early discontinuation of the regimen and change to standard IV chemotherapy. Patients should be counseled about these complications and management options to mitigate side effects, including the need for placement of an IP catheter. IP chemotherapy can be offered in an enhanced setting, for select patients where expertise and supportive services exist to manage toxicities.

Targeted therapy for patients with stage III and IV ovarian cancer (Recommendation 3.2.3 and 3.3.4)

Discussion. This guideline is using the term targeted therapy for bevacizumab and PARPi for the management of EOC. The guideline presumes that these are not available in basic- and limited-resource settings. A modest PFS benefit and no OS benefits were seen in both randomized phase III trials examining incorporation of the antiangiogenic vascular endothelial growth factor inhibitor, bevacizumab, to platinum-based doublets and continued in maintenance therapy. The subgroups for whom the greatest, albeit still modest, benefit was observed on the basis of data from two large randomized clinical trials, GOG 0218 and ICON-7, were in subsets of patients with ascites or bulky residual disease. Bevacizumab can be offered for patients with high risk of disease (stage IV and suboptimal tumor cytoreduction stage III). Bevacizumab use should be limited to settings with the capacity to closely monitor and manage its known toxicities including hypertension, GI perforation, arterial or venous thromboembolism, or bleeding. Use of PARPi is recommended only in more-resourced settings and should follow the ASCO guidelines for use of PARPi in ovarian cancer.

Basic-resource settings. Targeted therapy is not recommended in basic settings.

Limited-resource settings. Targeted therapy is not recommended in limited-resource settings because of issues of access and toxicity, including financial toxicity.

Enhanced-resource settings. For enhanced settings, bevacizumab is an option, where feasible for appropriately selected stage III/IV patients. Cost and safety concerns with the management of toxicities may limit applicability.

Maintenance systemic therapy (Recommendation 3.3.5)

Recommendations on maintenance systemic therapy for patients with stage III/IV ovarian cancer after adjuvant chemotherapy are available in Appendix Figure A4 and Table 6.

Discussion. The benefit of maintenance chemotherapy with antiangiogenic vascular endothelial growth factor inhibitor bevacizumab in all subgroups of patients is still under debate in the absence of strong data; see the Discussion under Recommendation 3.2.3. In patients with
stage II to IV low-grade serous histology, maintenance hormonal therapy can be discussed; the data are limited, and there is no clearly documented OS benefit at the time of this writing. As new information continues to evolve, future updates of this and other ASCO guidelines will discuss other new agents including PARPi, following enough evidence of efficacy. The major limitation to maintenance therapy such as PARPi in resource-constrained settings is lack of access to biomarker testing, including identification of patients with homologous recombination repair deficiency (HRD) and, more specifically, patients with tumors exhibiting BRCA mutation. Where biomarker testing results indicate treatment, continuous access to medication and cost-effectiveness analysis specific to resource settings must be ensured.

Limited-resource settings. In limited-resource settings, maintenance therapy with antiangiogenic agents is not recommended because of cost limitations and clinician experience in toxicity management.

Enhanced-resource settings. In enhanced-resource settings, clinicians may discuss maintenance therapy with antiangiogenic agents with select patients (those with stage III/IV disease) and potentially PARPi (for latter, see ASCO PARPi guideline, *JCO*, 2020). Institutions that use maintenance treatment with antiangiogenic and/or PARPi agents need capacity for evaluation and management of side effects.

OVERARCHING CLINICAL QUESTION D
What is the optimal therapy for women with recurrent EOC? (see Table 7 and Appendix Figures A5, A6, and A10)

Discussion
Despite the initial success with first-line surgery and chemotherapy for ovarian cancer, most patients will develop recurrent disease. The risk of recurrence is highest with advanced and high-grade or clear cell disease. Recurrent ovarian cancer is stratified into platinum-sensitive or platinum-resistant on the basis of the length of time to relapse (≥ 6 months vs < 6 months, respectively) from the end of treatment with first-line platinum-based chemotherapy. Chemotherapy is the primary intervention for recurrent disease; where chemotherapy is not feasible for any reason, palliative care, if not already invoked, should be initiated.

(Source: BCGS, OH-CCO, SIGN)

Surgery for recurrent EOC (Recommendation 4.0)
Recommendations on surgery for patients with recurrence are in Table 7.

TABLE 7. Summary Treatment of Recurrent EOC Recommendations by Setting
Recommendation No.

4.0
4.1/4.4
4.1/4.2
4.2
Platinum-resistant EOC
Platinum-refractory EOC

Abbreviations: B, basic; E, enhanced; EOC, epithelial ovarian cancer; L, limited; N/A, not available; PS, performance status.
Discussion

Limitations in access to advanced therapies in resource-constrained settings support the discussion of secondary cytoreductive surgery in select patients with recurrent ovarian cancer. General agreement is that this intervention should only be considered for women with platinum-sensitive, delayed tumor recurrence, limited disease, good underlying performance and end organ status, and access to optimal surgical and postoperative support. Prognostic factors associated with best surgical outcomes are isolated site(s) of tumor recurrence and limited ascites (<500 mL).

Secondary cytoreduction can be considered for appropriately selected patients. The research describing the potential benefit of secondary debulking surgery is ongoing; however, given the level of expertise with this procedure and the need of an MDT to proceed with this type of surgery, it should not be performed in a resource setting other than maximal.

Basic-resource settings

Patients with recurrent disease should be referred to a higher-level center wherever possible and to palliative care if not already started. Although there is a limited role for secondary cytoreductive surgery in recurrent ovarian cancers, this may be the only therapeutic opportunity to ameliorate symptoms for women in basic-resource settings.

Limited-resource settings

In settings where systemic therapy is not readily available and a skilled general surgeon or gynecologist trained in appropriate skills in oncologic surgery is available, evaluation and surgical management for recurrent ovarian cancer can be considered as one approach to disease management. All patients should be evaluated by an MDT, if available, to avoid unnecessary and risky surgical intervention.

(Source: JSGO Guideline, BCGS, SIGN)

Enhanced-resource settings

The proper care for women with recurrent ovarian cancer, with the exception of very limited resource situations, is systemic therapy. Secondary cytoreductive surgery can be discussed for highly selected platinum-sensitive patients; survival benefit is limited to patients for whom clinicians can achieve complete cytoreductive surgery. For all other patients with ovarian cancer, surgery should be withheld, except for symptom management such as for limited bowel obstruction readily overcome with diversion.

(Source: BCGS)

Systemic and palliative treatment for recurrent EOC
(Recommendations 4.1-4.4)

Recommendations on systemic treatment and palliative care for patients with recurrent ovarian cancer are in Table 7.

Discussion. Systemic therapy is the cornerstone of managing patients with recurrent disease. Approaches to recurrent disease will vary with resource availability to multiple chemotherapy agents, location and severity of recurrence, and prior treatment exposures. Recurrent disease is not amenable to cure but patients with platinum sensitivity have improved PFS and OS when re-treated with platinum-based single-agent or doublet therapy. Few if any opportunities may be available to women with recurrent disease in basic-resourced areas and palliative care may be the only option. Surgery is not recommended except in select patients who had complete resection at up-front surgery, long recurrence-free survival, and limited disease at re-presentation. Decisions for surgery in recurrent EOC must take into account patient risk factors, access to qualified surgical capacity, system-based resources, and access to second-line chemotherapy agents. Systemic chemotherapy and targeted therapy recommendations depend upon resource support and platinum-free interval (Table 8).

Cost, access, and safety issues with targeted therapies such as bevacizumab are of concern in limited and enhanced settings, although there may be benefits in management of ascites. Bowel perforation, thromboembolism, fatigue, and hypertension are grade 3 and 4 toxicities occurring in patients receiving bevacizumab and are of grave concern, especially in weaker health systems. Clinical trials and newer targeted agents may be available in some limited and enhanced settings. Patients should be referred to higher-resourced settings for these and other opportunities when feasible.

Patients in the platinum-resistant group do not derive benefit from platinum rechallenge. The current standard of

TABLE 8. Risk-Stratified Groups
Platinum-Sensitive
Platinum-free interval
Patients with no prior platinum-based therapy are also in this group

NOTE. Platinum-sensitive if the platinum-free interval is 6 months or more; some guidelines have a partially sensitive group if the platinum-free interval is between 6 and 12 months. There are no approvals internationally that apply this definition (Ontario Health—Cancer Care Ontario).
TABLE 9. Selected Limitations and Future Directions From Adapted Guidelines

Item	Guideline
Role of tumor histology	JSGO
MRI for staging	Irish NCEC
Maintenance, especially with novel agents	Multiple
Diagnostic accuracy of secondary tests, including reproductibility of tests involving ultrasound	Tests in secondary care to identify people at high risk of ovarian cancer. Diagnostics guidance [DG31]. Published date: November 15, 2017. URL: https://www.nice.org.uk/guidance/dg31/chapter/6-Recommendations-for-further-research. Page last updated: NR. Accessed: June 22, 2020
Analyses of existing data sets of secondary tests	Tests in secondary care to identify people at high risk of ovarian cancer. Diagnostics guidance [DG31]. Published date: November 15, 2017. URL: https://www.nice.org.uk/guidance/dg31/chapter/6-Recommendations-for-further-research. Page last updated: NR. Accessed: June 22, 2020
Validating Chemotherapy Response Score and consequent risk stratification	ASCO/SGO
Use of (weekly) paclitaxel for NACT	ASCO/SGO
Novel agents in NACT	ASCO/SGO
Minimally invasive techniques	JSGO
Role of IP chemotherapy	Multiple

Abbreviations: IP, intraperitoneal; JSGO, Japan Society of Gynecologic Oncology; MRI, magnetic resonance imaging; NACT, neoadjuvant chemotherapy; NCEC, National Clinical Effectiveness Committee; NR, not reported; SGO, Society of Gynecologic Oncology.

care outside of a clinical trial is single-agent non–platinum-based chemotherapy with or without bevacizumab in maximal settings. An exception is the use of hormonal therapy for recurrent low-grade serous (and low-grade endometrioid) ovarian cancer, where the pathologic diagnosis and grade are confirmed. The platinum-refractory group has a poor prognosis with short disease-free intervals and should be managed with palliative intent (Table 7).

(Sources: BCGS, OH-CCO, JSGO, SIGN)

Basic-resource settings. Palliative care involvement, if not already initiated, should be the primary focus alone or along with referral to higher-resourced settings.

Limited-resource settings. Access to an MDT, systemic therapies, and oncology expertise is likely inconsistent in most limited-resource settings. Patients should be managed on the basis of platinum-free intervals, ability to tolerate additional chemotherapy, treatment and palliative support, and access to nonplatinum agents. Toxicity profiles of recommended therapies should be discussed with the patient including available options for management of toxicities.

Enhanced-resource settings. Recommendations for recurrent EOC outlined for limited-resource settings are applicable in the enhanced settings. When an MDT endorses targeted therapies, including antiangiogenic agents or PARPi (see ASCO guideline), a clinician may discuss these options with patients. The strength of the health system determines the feasibility of administering targeted agents. Outcomes should be balanced with QoL including financial toxicity. ASCO has developed new guidelines for the use of targeted therapies including PARPi in the management of ovarian cancer in maximal settings and these can be discussed in enhanced-resource settings where applicable.

SPECIAL COMMENTARY

Pathology

Pathology is an important part of diagnosing the type of EOC and guiding management of women with this disease. There is variable availability and financing for pathology services around the world. In some regions, clinicians may even have to make diagnoses without pathology. ASCO resource-stratified guidelines use the capacity framework in Table 2 to guide pathology recommendations. As resource-constrained regions develop pathology services, the Expert Panel would like to make some suggestions specific to ovarian cancer.

The clinical presentation and imaging findings of both benign (eg, peritoneal tuberculosis) and malignancies (eg, GI cancer) may be similar or mimic those of ovarian cancer. Consequently, a histopathologic diagnosis should be undertaken prior to definitive treatment. Pathologic diagnosis may be rendered on a peritoneal or omental biopsy, particularly in patients for whom there is the potential for neoadjuvant intervention, or on resection specimens following laparotomy or laparoscopy. Usually, routine histologic processing of formalin-fixed tissue is sufficient for pathologic diagnosis. Immunohistochemical studies may provide additional confirmatory evidence, but are often not critical to diagnosis. Alternatively, a cytopathologic diagnosis may be enough if this specialized service
is available. In some limited and enhanced settings, ascitic fluid can be sent to pathology for cell block in major cities. Where laboratories are of variable quality, cytology alone can be problematic. In some cases, immunohistochemical tests can be sent to a central laboratory to confirm diagnosis, especially if a sample is mucinous.

ASCO believes that cancer clinical trials are vital to inform medical decisions and improve cancer care and that all patients should have the opportunity to participate. The expansion of oncology clinical trials in limited and enhanced settings is a global oncology priority.

COST IMPLICATIONS
An ASCO literature search focusing on high-quality systematic reviews of published cost-effectiveness analyses in low-resource settings was conducted, and none were found.

LIMITATIONS OF THE RESEARCH AND FUTURE DIRECTIONS
There were limitations on the evidence to inform some of the recommendations because of many recognizable factors such as prioritization of patient care and limited funding and infrastructure for research. Limitations include insufficient research conducted in resource-constrained settings, lack of conclusive research on primary/prevention screening, lack of published data on ovarian cancer genetic risk evaluation, and management adapted to resource-constrained settings. Expert recommendations for resource-constrained settings should account for differential access to chemotherapy across basic and limited-resource settings. A shortage in human resources of trained gynecologic oncologists has led to task-shifting with variation in skill set among general practitioners, obstetricians/gynecologists, general surgeons, and oncologists able to manage patients with ovarian cancer.

There is a significant need to further ovarian cancer research in resource-constrained settings, considering issues of surgery and chemotherapy access, treatment effectiveness, and cost-effectiveness. The paucity of ovarian cancer genetic research in limited-resource settings needs further investigation, which can be achieved through collaborative research. The use of targeted therapy in adjuvant, maintenance, and recurrent ovarian cancer is actively under investigation, and further guidelines will include updates. Further limitations are listed in Table 9.

EXTERNAL REVIEW AND OPEN COMMENT
The draft recommendations were released to the public for open comment from June 29 through July 13, 2020. Response categories of “Agree as written,” “Agree with suggested modifications,” and “Disagree. See comments” were captured for every proposed recommendation with 10 written comments received. A total of 90% of the 10 respondents either agreed or agreed with slight modifications to the recommendations and 10% of the respondents disagreed. Expert Panel members reviewed comments from all sources and determined whether to maintain original draft recommendations, revise with minor language changes, or consider major recommendation revisions. All changes were incorporated prior to CPGC review and approval.

The draft was submitted to six external reviewers with content expertise; two completed the reviews. It was rated as high quality, and it was agreed it would be useful in practice. Review comments were reviewed by the Expert Panel and integrated into the final manuscript before approval by the CPGC.

GUIDELINE IMPLEMENTATION
ASCO guidelines are developed for implementation across health settings. Barriers to implementation include the need to increase awareness of the guideline recommendations among frontline practitioners and patients with ovarian cancer and to provide adequate services in the face of limited resources. The guideline Bottom Line was designed to facilitate implementation of recommendations. This guideline will be distributed widely, including through many forms of ASCO communications and the ASCO website.

ADDITIONAL RESOURCES
Additional information including a supplement, evidence tables, and clinical tools and resources can be found at www.asco.org/resource-stratified-guidelines. Patient information is available there and at www.cancer.net.

RELATED ASCO GUIDELINES
Resource-Stratified Guidelines
- Palliative Care in the Global Setting³⁰ (http://ascopubs.org/doi/10.1200/JGO.18.00026)

Non–Resource-Stratified Guidelines
- Neoadjuvant Chemotherapy for Ovarian Cancer¹⁴,¹⁵ (https://ascopubs.org/doi/full/10.1200/JCO.2016.68.6907)
- Germine and Somatic Tumor Testing in Epithelial Ovarian Cancer²⁰ (https://ascopubs.org/doi/10.1200/JCO.2019.02960)
- Integration of Palliative Care into Standard Oncology Practice⁴¹ (http://ascopubs.org/doi/10.1200/JCO.2016.70.1474)
- PARP Inhibitors in the Management of Ovarian Cancer²¹ (http://ascopubs.org/doi/10.1200/JCO.2020.01924)
- Patient-Clinician Communication²² (http://ascopubs.org/doi/10.1200/JCO.2017.75.2311)
AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by the authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/authors/open-access.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Terence J. Colgan
Consulting or Advisory Role: LifeLabs
Research Funding: MT Pharma
Expert Testimony: J and J
Other Relationship: College of American Pathologists
Open Payments Link: https://openpaymentsdata.cms.gov/physician/xxxxxx/summary

Keichi Fujiwara
Honoraria: Kyowa Hakko Kirin, Zeria Pharmaceutical, Nippon Kayaku, Chugai Pharma, Eisai, Taiho Pharmaceutical, Daiichi Sankyo, Ono Pharmaceutical, Takeda
Consulting or Advisory Role: AstraZeneca, MSD, Taiho Pharmaceutical, Eisai, Takeda, Genmb, AbbVie, Pfizer
Research Funding: Eisai, Kaken Pharmaceutical, Chugai Pharma, Shionogi, Immunogen, Oncotherapeutics, AstraZeneca, Lilly, Zeria Pharmaceutical, Ono Pharmaceutical, MSD, Genmb, Regeneron
Travel, Accommodations, Expenses: Pfizer, AbbVie, MSD

Asima Mukhopadhyay
Research Funding: Meda
Patents, Royalties, Other Intellectual Property: Royalty payment from Clovis Oncology for contribution toward development of rucaparib as a member of the Newcastle University drug development team

Icó Tóth
Honoraria: MSD, SYNLAB
Travel, Accommodations, Expenses: Roche Magyarország Kft, Roche Diagnostic Kft Hungary
Other Relationship: AstraZeneca, Roche Magyarország Kft, MSD, Roche, Roche Diagnostic Kft Hungary, SYNLAB Kft Hungary, Roche Pharma AG, GlaxoSmithKline

Rahel G. Ghebre
Stock and Other Ownership Interests: Gilead Sciences
No other potential conflicts of interest were reported.

ACKNOWLEDGMENT

The Expert Panel wishes to thank external reviewers Dr Nathalie McKenzie, Dr Rodney Rocconi, and Dr Hannah Simonds; CPGC reviewers Dr Raetasha Dabney and Dr Jamie Lee Lesnock; and the Clinical Practice Guidelines Committee for their thoughtful reviews and insightful comments on this guideline adaptation. The Expert Panel also thanks the Consensus Panel members for their review of the guideline recommendations.
REFERENCES

1. United Nations Development Programme: Human Development Reports: Human Development Index. http://hdr.undp.org/en/content/human-development-index-hdi

2. Bray F, Ferlay J, Soerjomataram I, et al: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424, 2018

3. Chornokur G, Amankwah EK, Schildkraut JM, et al: Global ovarian cancer health disparities. Gynecol Oncol 129:258-264, 2013

4. Malvezi M, Canioli G, Rodriguez T, et al: Global trends and predictions in ovarian cancer mortality. Ann Oncol 27:2017-2025, 2016

5. Oza AM, Cook AD, P

6. Al-Sukhun S, Temim S, Chavez-MacGregor M, et al: ASCO resource-stratified guidelines: Methods and opportunities. J Glob Oncol 4:1-8, 2018

7. Anderson BO, Shyian R, Eniu A, et al: Breast cancer in limited-resource countries: An overview of the Breast Health Global Initiative 2005 guidelines. Breast J 12:53-515, 2006 (suppl 1)

8. Vang R, Levine DA, Soslow RA, et al: Molecular alterations of TP53 are a de

9. Ebell MH, Culp MB, Radke TJ: A systematic review of symptoms for the diagnosis of ovarian cancer. Am J Prev Med 50:384-394, 2016

10. Schuueler JA, Trimbos JB, Hermans J, et al: The yield of surgical staging in presumed early stage ovarian cancer. Int J Gynecol Cancer 8:95-102, 1998

11. Young RC, Decker DG, Wharton JT, et al: Staging laparotomy in early ovarian cancer. JAMA 250:3072-3076, 1983

12. Liang WF, Li H, Wu JY, et al: Identi

13. Chiorean EG, Nandakumar G, Fadelu T, et al: Treatment of patients with late-stage colorectal cancer: ASCO resource-stratiﬁed guidelines: Methods and opportunities. J Glob Oncol 4:1-8, 2018

14. Shiffman RN, Michel G, Rosenfeld RM, et al: Building better guidelines with BRIDGE-Wiz: Development and evaluation of a software assistant to promote clarity, transparency, and implementability. J Am Med Inform Assoc 19:94-101, 2012

15. Guidelines International Network: International Guidelines Library. https://guidelines.ebniportal.com/ G-I-N International Guidelines Library. G-I-N.net

16. Scottish Intercollegiate Guidelines Network (SIGN): Management of Epithelial Ovarian Cancer. Edinburgh, Scotland, Scottish Intercollegiate Guidelines Network, 2013. (SIGN publication no. 135). (November 2013). http://www.sign.ac.uk, Edinburgh, 2018

17. Vergerie I, Vlajen J, Heus P: Ovarian Cancer: Diagnosis, Treatment and Follow-up. Good Clinical Practice (GCP) Brussels: Belgian Health Care Knowledge Centre (KCE), 2016. KCE Reports 268. Do2016/10.273/49

18. Wright AA, Bohike K, Armstrong DK, et al: A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365:2484-2496, 2011

19. Sl ´ainte AR, The Department of Health: Diagnosis and staging of patients with ovarian cancer (NCEC National Clinical Guideline No. 20). 2019. https://health.gov.uk/national-patient-safety-office/ncec/national/cancer-guidelines/ovarian-cancer/

20. Scottish Intercollegiate Guidelines Network (SIGN): Management of Epithelial Ovarian Cancer. Edinburgh, Scotland, Scottish Intercollegiate Guidelines Network, 2013. SIGN publication No. 135. November 2013. http://www.sign.ac.uk, Edinburgh, 2018

21. Fotopoulou C, Hall M, Cruickshank D, et al: British Gynaecological Cancer Society (BGCS) epithelial ovarian/fallopian tube/primary peritoneal cancer guidelines: Recommendations for practice. Eur J Obstet Gynecol Reprod Biol 213:123-139, 2017

22. Konstantinopoulos PA, Norquist B, Lacchetti C, et al: Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol 38:1222-1245, 2020

23. Lew WP, Lachet C, Ellis A, et al: PARP inhibitors in the management of ovarian cancer: ASCO guideline. J Clin Oncol 38:3468-3493, 2020

24. Loblaw DA, Prestrud AA, Somer MR, et al: American Society of Clinical Oncology Clinical Practice Guidelines: Formal systematic review-based consensus methodology. J Clin Oncol 30:3136-3140, 2012

25. Chioraneg E, Nandakumar G, Fadelu T, et al: Treatment of patients with late-stage colorectal cancer: ASCO resource-stratified guideline. JCO Glob Oncol 6:414-438, 2020

26. Egger MH, Culp MB, Radke TJ: A systematic review of symptoms for the diagnosis of ovarian cancer. Ann J Prev Med 50:384-394, 2016

27. Robson ME, Bradbury AB, Arun B, et al: American Society of Clinical Oncology Policy statement policy statement: Genetic and genomic testing for cancer susceptibility. J Clin Oncol 33:3660-3667, 2015

28. Harter P, Sehouli J, Lorusso D, et al: A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med 380:822-832, 2019

29. Young RC, Decker DG, Wharton JT, et al: Staging laparotomy in early ovarian cancer. JAMA 250:3072-3076, 1983

30. Schueler JA, Trimbos JB, Hermans J, et al: The yield of surgical staging in presumed early stage ovarian cancer. Int J Gynecol Cancer 8:95-102, 1998

31. National Cancer Institute: Comprehensive Cancer Information. www.cancer.gov

32. Liu WT, Li H, Wu JY, et al: Identification of ovarian cancer patients most likely to achieve chemotherapy response score 3 following neoadjuvant che

33. Garcia-Soto AE, Boren T, Wingo SN, et al: Is comprehensive surgical staging needed for thorough evaluation of early-stage ovarian carcinoma? Am J Obstet Gynecol 206:242.e1-242.e5, 2012

34. Altman AD, Nelson GS, Ghatage P, et al: The diagnostic utility of TP53 and CDKN2A to distinguish ovarian high-grade serous carcinoma from low-grade serous ovarian tumors. Mod Pathol 26:1255-1263, 2013

35. Vang R, Levine DA, Sostow RA, et al: Molecular alterations of TP53 are a defining feature of high-grade ovarian serous carcinoma: A reevaluation of cases lacking TP53 mutations in the cancer genome atlas ovarian study. Int J Gynecol Pathol 35:48-55, 2016

36. Levesque MA, Katzenstein D, Yu H, et al: Mutant p53 protein overexpression is associated with poor outcome in patients with well or moderately differentiated ovarian carcinoma. Cancer 75:1327-1338, 1995

37. Oza AM, Cook AD, Pfisterer J, et al: Standard chemotherapy with or without bevacizumab for women with newly diagnosed ovarian cancer (ICON7): Overall survival results of a phase 3 randomised trial. Lancet Oncol 16:928-936, 2015

38. Burger RA, Brady MF, Bookman MA, et al: Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365:2473-2483, 2011

39. Perren TJ, Swart AM, Pfisterer J, et al: A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med 365:2484-2496, 2011
39. Gershenson DM, Bodurka DC, Coleman RL, et al: Hormonal maintenance therapy for women with low-grade serous cancer of the ovary or peritoneum. J Clin Oncol 35:1103-1111, 2017

40. Osman H, Shrestha S, Temin S, et al: Palliative care in the global setting: ASCO resource-stratified practice guideline. J Glob Oncol 4:1-24, 2018

41. Ferrell BR, Temel JS, Temin S, et al: Integration of palliative care into standard oncology care: American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol 35:96-112, 2017

42. Gilligan T, Coyle N, Frankel RM, et al: Patient-clinician communication: American Society of Clinical Oncology consensus guideline. J Clin Oncol 35:3618-3632, 2017
APPENDIX

FIG A1. Diagnosis recommendations by resource setting. “Because of current gaps in health system and human resource availability. CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; CT, computed tomography; MRI, magnetic resonance imaging; NACT, neoadjuvant chemotherapy.
Basic	Limited	Enhanced
Basic setting recommendations	Evaluated for surgical management taking into account tumor burden, FSA, comorbidity	Complete tumor cytoreduction to no gross residual disease/remove all macroscopic visible disease OR refer to higher-level cancer center
Complete tumor cytoreduction to no gross residual disease/remove all macroscopic visible disease	If unable to travel to a distant health center, refer to palliative care recommendations	NACT and interval debulking in FIGO stage IIIc or IV, in expectantly high-morbidity surgery and patients with poor PS or unresectable disease OR refer to higher-level cancer center
Patients with apparent stage I ovarian cancer should be referred to a higher-level care center with trained experts to perform appropriate surgical staging	No role for fertility-sparing surgery in early-stage disease	Interval cytoreductive surgery after ≤4 cycles of NACT for women with stage III/IV where there is a response to chemotherapy or stable disease
Elective surgical staging for ovarian cancer is not recommended on a routine basis	Elective laparoscopic surgical staging for apparent stage I ovarian cancer is not recommended	Limited setting recommendations
If sufficient expertise exists, may perform staging surgery	Fertility-sparing surgery or referred to higher-level cancer center	In patients with progressive disease on NACT, there is little role for surgery unless for palliation

FIG A2. Staging and surgery recommendations by resource level. *Because of current gaps in health system and human resource availability. FIGO, International Federation of Gynecology and Obstetrics; FSA, functional status assessment; NACT, neoadjuvant chemotherapy; PS, performance status.*
Adjuvant/systemic therapy

Adjuvant/systemic therapy for stage I

Resource Level	Recommendations
Basic	Should not administer adjuvant chemotherapy to patients with early-stage ovarian borderline or LMP tumors or early-stage microinvasive carcinoma.
Limited	Access patient’s eligibility for adjuvant chemotherapy. Surgically staged, pathologic/clinical, ovarian, fallopian, or peritoneal cancer. If pathology confirmation not possible, cytologic confirmation, CA-125, and imaging. May discuss combination adjuvant chemotherapy. Combination chemotherapy with platinum and carboplatin.
Enhanced	Clinicians may refer to higher-level cancer center for adjuvant chemotherapy. Optimal sequence of surgery first followed by chemotherapy or refer to higher-level cancer center.

Adjuvant/systemic therapy for stage II/III who have received surgery and no chemotherapy

Resource Level	Recommendations
Basic	No role for adjuvant chemotherapy.
Limited	Combination platinum adjuvant therapy for patients with stage II and PS 0-2 unless patients have contraindications. Single-agent carboplatin for PS > 2 unless patients have contraindications to combination therapy. Basic setting recommendations.
Enhanced	Patients referred to be assessed for appropriate evidence-based intraperitoneal chemotherapy, following optimal debulking, where there are resources and expertise to manage toxicities. Targeted therapy is not recommended in limited settings on a routine basis for patients with stage II.

Adjuvant/systemic therapy for stage IV who have received surgery and no chemotherapy

Resource Level	Recommendations
Basic	Refer to higher-level cancer center for systemic chemotherapy, symptomatic therapy, and pain control. Combination platinum adjuvant therapy* for patients with stage IV B and PS 0-2 unless patients have contraindications. Single-agent carboplatin for PS > 2 unless patients have contraindications to combination therapy. Basic setting recommendations.
Limited	Carboplatin plus paclitaxel for six cycles OR refer to higher-level cancer center. Combination platinum adjuvant therapy* for patients with stage IV B and PS 0-2 unless patients have contraindications. Single-agent carboplatin for PS > 2 unless patients have contraindications to combination therapy. Basic setting recommendations. No role for targeted therapy.
Enhanced	Carboplatin plus paclitaxel for six cycles. Cost-effectiveness data are emerging, and future patients will be considered for primary therapy maintenance settings for PARPi. Targeted therapy is not recommended in limited settings on a routine basis for patients with stage IV.

*Clinicians should offer carboplatin plus paclitaxel (or single-agent carboplatin) once every 3 weeks for six cycles. CA-125, cancer antigen 125; LMP, low malignant potential; PARPi, poly (ADP-ribose) polymerase inhibitor; PS, performance status.

FIG A3. Adjuvant/systemic therapy recommendations by resource level.
Maintenance systemic therapy

Maintenance systemic therapy for stage III/IV

Basic
No role for maintenance systemic therapy

Limited
Maintenance systemic therapies (antiangiogenic, targeted therapies) are not recommended for patients who have received surgery and prior chemotherapy

Enhanced
May discuss maintenance systemic therapies (e.g., antiangiogenic, targeted therapies) for patients who have received surgery and prior chemotherapy

For guidance regarding the use of PARPi, refer to the ASCO guideline

FIG A4. Maintenance systemic therapy recommendations by resource level. PARPi, poly (ADP-ribose) polymerase inhibitor.
Surgery for recurrent epithelial ovarian cancer

For select patients with a small-volume platinum-sensitive recurrent disease, may refer to higher-level cancer center for surgical consideration.

Systemic/palliative treatment for recurrent ovarian cancer

- Clinicians may recommend treatment with second-line chemotherapy to patients with platinum-sensitive recurrent ovarian cancer or refer to higher-level cancer center.
- Combination chemotherapy with carboplatin preferably for patients with platinum-sensitive recurrent ovarian cancer or refer to higher-level cancer center.
- Single-agent nonplatinum chemotherapy or best supportive care for patients with platinum-resistant/platinum-refractory recurrent ovarian cancer or refer to higher-level cancer center.
- No systemic treatment is recommended for tumor marker–positive (CA-125) only recurrent ovarian cancer in the absence of symptoms.

Limited Setting Recommendations

- Limited setting recommendations.

FIG A5. Recurrent ovarian cancer recommendations by resource level. *Because of current gaps in health system and human resource availability. CA-125, cancer antigen 125.*
Clinicians should offer palliative care, including cancer pain and symptom management, to all patients diagnosed with ovarian cancer. Early referral to palliative care where available.

FIG A6. Palliative care recommendations by resource level.
Clinical assessment

Imaging

Combination of transabdominal, pelvic, and transvaginal ultrasound

Contrast-enhanced CT of abdomen and pelvis (with or without thorax)

Clinicians may add MRI

Biomarkers

Premenopausal

Postmenopausal

Assessing heritable risk

Histologic diagnosis

No role for minimally invasive techniques

Should discuss family history and provide or refer to appropriate counseling

Should obtain histologic confirmation for diagnosis; minimally invasive techniques could be a CT-guided biopsy

May be a role for minimally invasive surgery such as laparoscopy for initial histologic diagnosis if planning for NACT for appropriate selected patients

When a biopsy cannot be performed, cytologic evaluation combined with a serum CA-125 to CEA ratio > 25 can confirm the primary diagnosis

FIG A7. Diagnosis workup for patients with symptoms of an ovarian mass. *Because of current gaps in health system and human resource availability, CA-125, cancer antigen 125; CEA, carcinoembryonic antigen; CT, computed tomography; MRI, magnetic resonance imaging; NACT, neoadjuvant chemotherapy.
Patients with suspected stage I/II ovarian cancer

- Surgical staging
 - Patients with apparent stage I ovarian cancer should be referred to a higher-level care center with trained experts to perform appropriate surgical staging

- Metastatic workup and referral for staging surgery
 - If sufficient expertise exists, may perform staging surgery

- Elective minimally invasive laparoscopic surgery may be performed for select patients with apparent stage I ovarian cancer

- Fertility-sparing surgery

 - No role for fertility-sparing surgery in early-stage disease

 - Fertility-sparing surgery or referral to higher-level cancer center

FIG A8. Surgery for patients with suspected stage I/II ovarian cancer.
Patients with suspected stage III/IV ovarian cancer

Surgical evaluation

Evaluated for surgical management taking into account tumor burden, FSA, comorbidity

Counsel patients on treatment options and refer them to a cancer treatment center with specialized surgical services

Complete tumor cytoreduction to no gross residual disease/remove all macroscopic visible disease OR refer to higher-level cancer center

If unable to travel to a distant health center, refer to palliative care recommendations

Complete tumor cytoreduction to no gross residual disease/remove all macroscopic visible disease

If performed with curative intent, maximal effort cytoreductive surgery with the aim to remove all intra-abdominal macroscopic tumor

Patients with biopsy-proven FIGO stage IIIC or IV (specifically high tumor load/stage IVB), in expectantly high-morbidity surgery and patients with poor PS or unresectable disease

NACT

NACT and interval debulking

Patients with a response to chemotherapy or stable disease

Not feasible

Patients with progressive disease on NACT

Little role for surgery unless for palliation

Interval cytoreductive surgery after ≤4 cycles of NACT

Basic

Limited

Enhanced

Patient category

Intervention category

FIG A9. Staging and neoadjuvant therapy for patients with suspected stage III/IV ovarian cancer. *Because of current gaps in health system and human resource availability. FIGO, International Federation of Gynecology and Obstetrics; FSA, functional status assessment; NACT, neoadjuvant chemotherapy; PS, performance status.
FIG A10. Systemic therapy for patients with ovarian cancer (all stages). *Because of current gaps in health system and human resource availability. CA-125, cancer antigen 125; LMP, low malignant potential; PARPi, poly (ADP-ribose) polymerase inhibitor; PS, performance status.

TABLE A1. Adapted Guidelines and Links

Developer	Title	URL
SIGN,12 2013, Revised 2018 (Scotland)	Management of epithelial ovarian cancer (SIGN CPG 135)—reviewed in 2018	https://www.sign.ac.uk/sign-135-management-of-epithelial-ovarian-cancer.html
Belgian Health Care Knowledge Centre, 201613	Ovarian cancer: diagnosis, treatment and follow-up	https://kce.fgov.be/en/ovarian-cancer-diagnosis-treatment-and-follow-up
ASCO/SGO, October 1, 2016, Wright, JCO14,15	Neoadjuvant chemotherapy for newly diagnosed, advanced ovarian cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology clinical practice guideline	https://www.asco.org/research-guidelines/quality-guidelines/guidelines/gynecologic-cancer#/13091
Cancer Care Ontario, Toronto, ON, Program in Evidence-Based Care Guideline No.: 4-3v4, CCO PEBC4-3v4f, July 12, 2017. CCO.16	Systemic therapy for recurrent ovarian cancer	https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/37871
Komiyama et al17	Japan Society of Gynecologic Oncology (JSGO) guidelines 2015 for the treatment of ovarian cancer including primary peritoneal cancer and fallopian tube cancer	https://www.jsgo.or.jp/en/index.html
BGCS: Fotopoulou et al18	Epithelial ovarian cancer/fallopian tube/primary peritoneal cancer guidelines	https://www.ncbi.nlm.nih.gov/pubmed/28457647
Ireland: Department of Health (2019). (NCEC National Clinical Guideline No. 20).19	Diagnosis and staging of patients with ovarian cancer	https://health.gov.ie/national-patient-safety-office/ncec/nationalclinical-guidelines/
ASCO20	Germline and somatic tumor testing in epithelial ovarian cancer	https://www.asco.org/research-guidelines/quality-guidelines/guidelines/gynecologic-cancer#/142631
ASCO21	PARP inhibitors in the management of ovarian cancer	https://www.asco.org/research-guidelines/quality-guidelines/guidelines/gynecologic-cancer#/149680

Abbreviations: BGCS, British Gynecological Cancer Society; CCO, Cancer Care Ontario; CPG, Clinical Practice Guideline; NACT, neoadjuvant chemotherapy; NCEC, National Clinical Effectiveness Committee; PARPi, poly (ADP-ribose) polymerase inhibitor; SGO, Society of Gynecologic Oncology; SIGN, Scottish Intercollegiate Guidelines Network.
Name	Affiliation/Institution	Role/Area of Expertise
Jean Rene Clemenceau Valdivia, MD, Cochair (Writing Group member)	Hospital Angeles Del Pedregal, D.F., Mexico	Surgical oncology and medical oncology
Verna D. Vanderpuye, MD, Cochair (Writing Group member)	Korle Bu Teaching Hospital, Accra, Ghana	Radiation oncology
Rahel G. Ghebre, MD, MPH (Writing Group member)	University of Minnesota Medical School, Minneapolis, MN; St Paul’s Hospital Millennium Medical School, Addis Ababa, Ethiopia	Gynecologic oncology
Zeba Aziz, MD	Hameed Latif Hospital, Lahore, Pakistan	Medical oncology
William M. Burke, MD, SGO representative	Stony Brook University Hospital, Stony Brook, New York, NY	Gynecologic oncology
Nixon Leonardo Cevallos, MD	Sociedad Lucha Contra Cancer Ecuador, Machala, Ecuador	Medical oncology
Linus T. Chuang, MD	Nuvance Health System, Danbury, CT	Gynecologic oncology
Terence J. Colgan, MD, CAP representative	LifeLabs, Ontario, Canada	Pathology
Marcela G. del Carmen, MD, SGO representative	Massachusetts General Hospital, Boston, MA	Gynecologic oncology
Keiichi Fujiwara, MD, PhD	Saitama Medical University International Medical Center, Saitama, Japan	Surgical oncology
Jose Enrique González Nogales, MD	Instituto Nacional de Cancerología, La Paz, Bolivia	Medical oncology
Thomas Okpoti Konney, MD	Komfo Anokye Teaching Hospital, Kumasi, Ghana	Gynecologic oncology
Asima Mukhopadhyay, MD, PhD, MSc	Chittaranjan National Cancer Institute, Kolkata, India; Northern Gynaecological Oncology Centre, Gateshead, Newcastle, United Kingdom	Surgical oncology
Bishnu D. Paudel, MD	NAMS, Bir Hospital, Kathmandu, Nepal	Medical oncology
Icő Tóth	Mallow Flower Foundation, Dunaharaszti, Hungary	Health advocacy
Sarikapan Wilailak, MD	Ramathibodi Hospital, Mahidol University, Bangkok, Thailand	Gynecologic oncology
Sarah Temin, MSPH	American Society of Clinical Oncology, Alexandria, VA	ASCO Practice Guideline Staff (health research methods)

Abbreviations: CAP, College of American Pathology; SGO, Society of Gynecologic Oncology.
TABLE A3. Assessment of Ovarian Masses and Treatment of Epithelial Ovarian Cancer: ASCO Resource-Stratified Guideline Consensus Panel Membership

Name	Affiliation/Institution
Ahmed Elzawawy	ICEDOC, SEMCO, AORTIC, and Harvard GHC Win-Win Initiative, Egypt
Alex Mutombo Baleka	Kinshasa University Hospital, DRC
David Cibula	Charles University and General Faculty Hospital, Czech Republic
Dennis Chi	Memorial Sloan Kettering Cancer Center, United States
Dorothy C. Lombe	Cancer Diseases Hospital, Zambia
Gilberto Lopes	University of Miami, United States
Julie Ann Francis	Lakeridge Health, ON
Julie Gralow	University of Washington, United States
Lalit Kumar	All India Institute of Medical Sciences, India
Maria Del Pilar Estevez-Diz	Instituto do Câncer do Estado de São Paulo, Brazil
Marwan Ghosn	Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
Monica Malik	Nizam’s Institute of Medical Sciences, India
Nicoleta Antone	Oncology Institute Prof Dr I. Chiricuta, Romania
Olutosin A. Awolude	College of Medicine, University of Ibadan/University College Hospital, Nigeria
Rakesh Chopra	CK Birla Hospital, Delhi, India
Robert L. Coleman	MD Anderson, United States
Roselle De Guzman	Manila Central University-FDTMF Hospital, Philippines
Tanja Fehm	University of Duesseldorf, Germany

NOTE. Disclosures of potential conflicts of interest provided by the consensus panel members are available in the guideline supplement.
TABLE A4. Brief Familial Risk Tools

Genetic testing guidelines/ASCO statements
USPSTF (screening) (BRCA) 2019
NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Genetic/ Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. These NCCN Guidelines are currently available as Version 1.2020. December 14, 2019. nccn.org
ASCO—policy statement[^1]

Abbreviations: ACOG, American College of Obstetricians and Gynecologists; ESMO, European Society for Medical Oncology; NCCN, National Comprehensive Cancer Network; SGO, Society of Gynecologic Oncology; USPSTF, US Preventive Services Task Force.