Neural correlates of ataxia severity in spinocerebellar ataxia type 3/Machado-Joseph disease

Carlos R. Hernandez-Castillo¹, Rosalinda Diaz², Aurelio Campos-Romo³ and Juan Fernandez-Ruiz²*

Abstract

Background: Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is an autosomal dominant inherited neurodegenerative disorder. Several post-mortem and imaging studies have shown cerebellar and brainstem atrophy. A number of studies have used volumetric regional information to investigate the relationship between neurodegeneration and the ataxia severity. However, regional analysis can obscure the specific location in which the degenerative process is affecting the brain tissue, which can be crucial for the development of new target treatments for this disease.

Here we explored the relationship between the gray matter degeneration and the ataxia severity on a cohort of SCA3 patients using a voxel-wise approach.

Methods: Seventeen patients with molecular diagnose of SCA3 and 17 matched healthy controls participated in this study. Magnetic resonance imaging (MRI) brain images were acquired and voxel-based morphometry was used to obtain the grey matter volume of each participant. Ataxia severity in the patient group was evaluated using the scale for the assessment and rating of ataxia (SARA).

Results: Group comparison revealed significant atrophy in SCA3 including bilateral cerebellum, vermis, brainstem, and occipital cortex. Significant negative correlations between gray matter volume and SARA scores were found in the cerebellum and the cingulate gyrus.

Conclusions: These findings highlight the specific contribution of the cerebellum and the cingulate cortex to the ataxia deficits among the other regions showing neurodegeneration in SCA3 patients.

Keywords: Atrophy, Machado-Joseph, SARA, Spinocerebellar ataxia, VBM
However, a more accurate mapping of the disease-related degeneration and its association with the symptoms is key for the development of possible treatments/therapies for this specific type of patients. Here, we assessed the ataxia severity and gray matter degeneration in a cohort of SCA3/MJD patients by using the scale for the assessment and rating of ataxia (SARA) and whole brain voxel based-morphometry (VBM) to find voxel-wise associations between brain atrophy and motor impairment.

Methods

Participants

The patient group consisted of seventeen patients with a molecular diagnosis of SCA3/MJD (10 female; right-handed; mean age/SD, 40.1/11.9 years, for more detailed information look at Table 1). Motor impairment was measured using SARA [10], which has eight items, including tests of gait, stance, sitting, and speech, as well as a finger-chase test, finger-nose test, fast alternating movements, and heel-shin test. The control group consisted of 17 healthy volunteers that were age and gender matched. All participants gave written, informed consent before entering the study. The procedures carried out were in accordance with the ethical standards of the committees on human experimentation of the Universidad Nacional Autonoma de Mexico.

Image acquisition

All images were acquired using a 32-channel quadrature head coil in a 3.0-T Achieva MRI scanner (Phillips Medical Systems, Eindhoven, The Netherlands). Foam-rubber cushion was used for fixing the head of the subject in place, so as to minimize any head movements. The high-

Table 1: Demographics of the patient group

ID	Gender	Age	Age at onset	SARA
P01	F	49	39	26
P02	M	58	47	19.5
P03	F	45	25	26
P04	M	37	32	12.5
P05	F	35	33	6.5
P06	F	23	20	6
P07	F	42	35	12
P08	F	24	20	9
P09	F	18	16	2.5
P10	F	45	39	8
P11	M	43	40	14.5
P12	M	34	29	18
P13	M	59	49	19.5
P14	M	33	28	9.5
P15	F	40	30	20
P16	M	56	46	14.5
P17	F	46	41	1.5

Fig. 1 Brain regions showing gray matter atrophy and SARA-GMV correlation. **a** Significant gray matter atrophy in patients compared with controls; **b** significant partial correlations between patients’ GMV and SARA.
resolution anatomical acquisition consisted of a 3-D T1 Fast Field-Echo sequence, with TR/TE of 8/3.7 ms, FOV of 256 × 256 mm, flip angle 25° and an acquisition and reconstruction matrix of 256 × 256, resulting in an isometric resolution of 1 × 1 × 1 mm.

Voxel-based morphometry
Gray matter volume (GMV) measurements were performed using voxel based morphometry (VBM) as implemented on FSL (FMRIB, Oxford, UK) following the standard procedure as previously reported [11]. Using the FSL randomise tool, a two-sample t test was performed between the SCA3 group and controls. Significance was defined as p < 0.05 after correcting for multiple comparisons using the randomized permutation method (TFCE). For the SCA3 group, whole-brain correlation maps were created by calculating the Pearson’s partial correlation between the GMV and SARA scores including age in the analysis. Partial correlation maps were corrected for multiple comparisons by using false discovery rate (FDR) with a p value < 0.05.

Results
VBM analysis revealed gray matter atrophy in SCA3 patients compared to the control group (Fig. 1a) involving bilateral cerebellum, vermis, brainstem and the occipital cortex (Table 2). Four significant negative correlations were found between GMV and SARA scores in the SCA3 group (Fig. 1b) in regions of the cerebellum and the cingulate gyrus (Table 3).

Table 2 Brain regions showing significant gray matter degeneration in SCA3/MJD patients

Anatomical region	X	Y	Z	Cluster	t
Left posterior cerebellum Crus II	−26	−86	−36	2633	7.73
Right posterior cerebellum Crus II	20	−88	−32	1419	7.31
Right brainstem	4	−14	−22	224	6.59
Vermis IX	−2	−54	−34	114	6.45
Pons	2	−14	−24	219	6.19
Right anterior cerebellum lobule V	12	−58	−20	160	5.1
Left lingual gyrus BA17	−12	−100	−4	132	4.42
Left anterior cerebellum lobule I-IV	−8	−46	−22	213	3.59

Coordinates in MNI space in mm. BA = Brodmann Area

SCA subtypes [7–9, 12, 13]. Accordingly, our analysis showed a significant negative correlation between GMV and the SARA score in the bilateral lobule VI, extending to lobule V, which are involved in sensorimotor processing as suggested by deficits in stroke patients [14, 15]. Lobule IX, which its GMV also correlated with SARA, is not only considered essential for visual guidance of movement [14], but its damage has been related to gait and balance impairment [15].

The only extra-cerebellar region where the GMV correlated with SARA score was the dorsal anterior cingulate, known to be critically involved in motor functions [16]. A previous report showed a significant degeneration in SCA3 in this area [6], however, our analysis also showed a negative correlation between GMV and the ataxia score, corroborating the functional relevance of this deterioration as shown by patients with lesions in this area, whom often show deficits in spontaneous initiation of movement and speech, as well as inability to suppress externally triggered motor subroutines [16].

Conclusions
In Conclusion, we report specific key areas where the GMV shows a close relationship with the ataxia impairment in SCA3. These findings add to previous reports [7, 9], while providing a more accurate localization of the SCA3/MJD ataxia-related areas.

Table 3 Brain regions showing significant correlation between GMV and SARA

Anatomical region	X	Y	Z	Cluster	PC
Right cerebellum decline lobule VI	32	−64	−14	191	−0.825
Left cerebellum culmen lobule VI	−28	−50	−18	180	−0.816
Left cerebellum tonsil lobule IX	−8	−58	−38	155	−0.792
Right paracentral lobule BA6	4	−8	48	132	−0.779

Coordinates in MNI space in mm. BA = Brodmann Area, PC = partial correlation

Abbreviations
FDR: False Discovery Rate; GMV: Gray Matter Volume; MJD: Machado-Joseph Disease; MRI: Magnetic Resonance Imaging; SARA: Scale for Assessing and Rating of Ataxia; SCA: Spinocerebellar Ataxia 3; VBM: voxel-Based Morphometry

Acknowledgements
We want to thank all the patients and their caregivers for their participation in this study.

Funding
This study was founded in part by CONACYT 220871, PAPIIT IN214716 to JFR, and CONACYT 222009 to ACR.

Availability of data and materials
Please contact the corresponding author for data requests.

Authors’ contributions
CRHC designed the study. Hernandez-Castillo et al. Cerebellum & Ataxias (2017) 4:7 Page 3 of 4

Authors’ contributions
CRHC designed the study. Hernandez-Castillo et al. Cerebellum & Ataxias (2017) 4:7 Page 3 of 4

Please contact the corresponding author for data requests.
Competition interest
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
All participants gave written informed consent before entering the study. The procedures carried out were in accordance with the ethical standards of the committees on human experimentation of the Universidad Nacional Autonoma de Mexico.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1CONACYT – Instituto de Neuroetología - Universidad Veracruzana, Xalapa, Ver, Mexico. 2Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de México, UNAM, CP 04510 Coyoacán, Ciudad de México, México. 3Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autonoma de México UNAM, CP 04510 Coyoacán, Ciudad de México, Mexico.

Received: 18 May 2017 Accepted: 29 May 2017
Published online: 06 June 2017

References
1. Matilla T, McCall A, Subramony SH, Zoghbi HY. Molecular and clinical correlations in spinocerebellar ataxia type 3 and Machado-Joseph disease. Ann Neurol. 1995;38(1):68–72.
2. Kawaguchi Y, Okamoto T, Tanikawa M, Aizawa M, CAG expansions in a novel gene for Machado-Joseph disease at. Nat Genet. 1994(8):221–8.
3. Bürk K, Abele M, Fetter M, Dichgans J, Skalej M, Llacone F, Didierjean O, Brice A, Klockgether T. Autosomal dominant cerebellar ataxia type 1 clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain. 1996;119(5):1497–505.
4. Lukas C, Schöls L, Bellenberg B, Rüb U, Przuntek H, Schmid G, Köster O, Suchan D. Dissociation of grey and white matter reductions in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408(3):230–5.
5. Goel G, Pal PK, Ravishankar S, Venkata Subramanian G, Jayakumar PN, Krishna N, Purushottam M, Saini J, Farag M, Mukherji M, Jain S. Gray matter volume deficits in spinocerebellar ataxia: an optimized voxel based morphometric study. Parkinsonism Relat Disord. 2011;17(7):521–7.
6. Guimarães RP, D’Abreu A, Yasuda CL, França MC, Silva BH, Cappabianco FA, Bergo FP, Lopes Cendes I, Cendes F. A multimodal evaluation of microstructural white matter damage in spinocerebellar ataxia type 3. Mov Disord. 2013;28(8):1125–32.
7. Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowitz M, Mariotti C, Schoefs L, Timmann D, van de Warrenburg B, Dürr A, Pandolfo M. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 3 and 6. Neuroimage. 2010;49(1):158–68.
8. Rezende TJ, D’abreu A, Guimarães RP, Lopes TM, Lopes-Cendes I, Cendes F, Castellano G, França MC. Cerebral cortex involvement in Machado – Joseph disease. Eur J Neurol. 2015;22(2):277–84.
9. D’Abreu A, Franca Jr MC, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Necortical Atrophy in Machado-Joseph disease: A Longitudinal Neuroimaging Study. J Neuroimaging. 2012;22(3):285–91.
10. Schmitz-Hübsch T, Du Montcel ST, Bocca C, Lebas J, Boesch S, Depondt C, Goebel P, Globas C, Infante J, Kang JS, Kremer B. Scale for the assessment and rating of ataxia Development of a new clinical scale. Neurology. 2006;66(11):1717–20.
11. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11(6):805–21.
12. Hernandez-Castillo CR, Galvez V, Diaz R, Fernandez-Ruiz J. Specific cerebellar and cortical degeneration correlates with ataxia severity in spinocerebellar ataxia type 7. Brain Imaging Behav. 2016;10(1):252–7.
13. Reetz K, Lencer R, Hagenah JM, Gaser C, Tadic V, Walter U, Wolters A, Steinecker S, Zühle K, Brodmann K, Klein C. Structural changes associated with progression of motor deficits in spinocerebellar ataxia 17. The Cerebellum. 2010;9(2):210–7.
14. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.
15. Ilg W, Giese MA, Gazewski ER, Schoch B, Timmann D. The influence of focal cerebellar lesions on the control and adaptation of gait. Brain. 2008;131(11):2913–27.
16. Paus T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci. 2002(6):417–24.

Submit your next manuscript to BioMed Central and we will help you at every step:
• We accept pre-submission inquiries
• Our selector tool helps you to find the most relevant journal
• We provide round the clock customer support
• Convenient online submission
• Inclusion in PubMed and all major indexing services
• Maximum visibility for your research

Submit your manuscript at www.biomedcentral.com/submit