The response by vaccine developers to the COVID-19 pandemic has been extraordinary with effective vaccines authorized for emergency use in the United States within 1 year of the appearance of the first COVID-19 cases. However, the emergence of SARS-CoV-2 variants and obstacles with the global rollout of new vaccines highlight the need for platforms that are amenable to rapid tuning and stable formulation to facilitate the logistics of vaccine delivery worldwide. We developed a “designer nanoparticle” platform using phage-like particles (PLPs) derived from bacteriophage lambda for a multivalent display of antigens in rigorously defined ratios. Here, we engineered PLPs that display the receptor-binding domain (RBD) protein from SARS-CoV-2 and MERS-CoV, alone (RBDSARS-PLPs and RBDMERS-PLPs) and in combination (hCoV-RBD PLPs). Functionalized particles possess physiochemical properties compatible with pharmaceutical standards and retain antigenicity. Following primary immunization, BALB/c mice immunized with RBDSARS- or RBDMERS-PLPs display serum RBD-specific IgG endpoint and live virus neutralization titers that, in the case of SARS-CoV-2, were comparable to those detected in convalescent plasma from infected patients. Further, these antibody levels remain elevated up to 6 months post-prime. In dose-response studies, immunization with as little as one microgram of RBDSARS-PLPs elicited robust neutralizing antibody responses. Finally, animals immunized with RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD PLPs were protected against SARS-CoV-2 and/or MERS-CoV lung infection and disease. Collectively, these data suggest that the designer PLP system provides a platform for facile and rapid generation of single and multi-target vaccines.
eukaryotic viruses (e.g., adenoviruses) has been tempered by safety concerns related to pathogenicity, immunogenicity, and toxicity. Thus, there continues to be a need for multifaceted, rapidly tunable vaccine platforms that can respond to novel emerging threats, including natural variants, that provide long-term protection, and that are amenable to industrial strategies to afford thermostable, single-shot formulations for efficient distribution in resource-limited settings.

Bacteriophage systems have been adapted as therapeutic and diagnostic (theranostic) platforms, including infectious phages and phage-like particles (PLPs) derived from phage capsid proteins, that are employed as scaffolds for genetic and chemical modification. For example, filamentous phages, such as M13 and fd, and icosahedral phages, including P22, T4, AP205, MS2, and lambda, have been used to display imaging reagents, synthetic polymers, bioactive peptides, and proteins. Phages and PLPs have also been employed as vaccine platforms to display antigens including Y. pestis, P. falciparum, and recently SARS-CoV-2, among many others. In these cases, the PLP decoration ligands are engineered using genetic and/or chemical modification of the capsid-associated proteins.

The Catalano laboratory has developed a “designer nanoparticle” platform adapted from phage lambda. Co-expression of the major capsid and “scaffolding” proteins in Escherichia coli affordsicosahedral PLP shells that can be isolated in high yield. These can then be decorated in vitro with the lambda decoration protein (gpD), which binds as trimer spikes to the 140 three-fold axes of the icosahedral shell (420 total copies; see Fig. 1b). The decoration protein can be modified genetically to display heterologous peptides and proteins that can be similarly displayed on the PLP surface. Additionally, we have engineered a mutant gpD protein that contains a Ser42->Cys mutation.

Fig. 1 Design and construction of hCoV-RBD decorated particles.

- **a** Atomistic model of the SARS-CoV-2 virion with homotrimeric spikes of the S protein shown in shades of pink. The image was generously provided by Nanographics GmbH (hello@nanographics.at).
- **b** Cryo-EM reconstruction of the phage lambda capsid with only the density from the trimeric spikes of the decoration protein, gpD, displayed, kindly provided by G. Lander. Shown to the right in the cartoon representation is the crystal structure of an isolated gpD trimer (PDB: 1C5E99) modified to contain the serine to cysteine mutation (red spheres) of the gpD variant, gpD(S42C).
- **c** Reaction schematic for the chemical crosslinking of human coronavirus RBD proteins (hCoV-RBDs) to gpD(S42C) via lysine amide coupling and thiol-maleimide chemistry. The products (gpD-RBD$_{SARS}$ and gpD-RBD$_{MERS}$) contain a PEG crosslinker, SM(PEG)$_{24}$, with a spacer arm length of 95.2 Å. PLPs are decorated with RBDs at the desired surface densities either independently (top) or in combination (bottom) with remaining gpD-binding sites filled using wildtype gpD such that all 420 binding sites are occupied.
mutation (gpD(S42C)), which enables site-specific chemical modification of the decoration protein using maleimide chemistry (Fig. 1b).66 Employing our in vitro system, PLPs can be independently or simultaneously decorated with genetically and chemically modified decoration proteins in rigorously defined surface densities.46,53 While all phage and PLP platforms have strengths and weaknesses, the lambda PLP platform has several advantages and unique features that can be harnessed for vaccine development: (i) PLPs can be decorated under defined in vitro conditions with biological and synthetic molecules in varying surface densities, simultaneously integrating genetic and chemical modification strategies. This provides a robust and expansive set of integrated genetic and chemical modification tools; (ii) modification of the particle surface is facile, fast, and can be tuned in a user-defined manner, thereby streamlining the formulation process. These two features allow rigorous and controlled ligand display that is not limited by the requirement for phage replication; (iii) intact phage and PLP shells are natural adjuvants capable of stimulating the innate immune response.60,61 Importantly, the decorated particles are monodisperse, stable, and possess physiochemical properties amenable for pharmaceutical formulation and as required to address regulatory hurdles.62–64 Indeed, we have recently demonstrated that antigen-decorated PLPs formulated in glassy dry powders are stable at 50 °C for more than one month.53 Therefore, the lambda system described here allows for substantial flexibility and rigorous control in vaccine design and development, setting the stage for the construction of an “all-in-one” vaccine platform.

In this study, we report the development of a monovalent lambda PLP-based vaccine against SARS-CoV-2 (RBDSARS-PLP) or MERS-CoV (RBDMERS-PLP) via decoration with the spike RB proteins from either virus. Additionally, we engineered bivalent PLPs that co-display spike RB proteins from both viruses (hCoV-RBDSARS-PLPs) or hCoV-RBDMERS-PLPs in mice induces robust and durable humoral immune responses, including the production of neutralizing antibodies. Moreover, immunization also protected mice against lung infection, inflammation, and pathology after virulent SARS-CoV-2 and MERS-CoV challenges.

RESULTS

Design and construction of particles decorated with human coronavirus spike RB proteins

The lambda designer PLP platform was adapted to display CoV spike RB proteins using methods established in the Catalano laboratory.46,53 Purified recombinant spike RB proteins derived from the SARS-CoV-2 and MERS-CoV isolates Wuhan-Hu-1 and EMC/2012 are referred to as RBDSARS and RBDMERS, respectively, or collectively as hCoV-RBDSARS. These proteins were cross-linked to the lambda decoration protein mutant, gpD(S42C), following a two-step procedure. First, solvent-accessible lysine residues in the hCoV-RBDSARS were modified with the N-hydroxysuccinimide ester groups of the SM(PEG)24 heterobifunctional crosslinker, as depicted in Fig. 1c; SDS-PAGE analysis reveals an apparent single predominant product for both RBDSARS and RBDMERS (Fig. 2a, d, respectively, lanes 4). Next, the maleimide groups of the crosslinker were reacted with the sole cysteine residue of gpD (S42C) to afford the gpD-RBDSARS and gpD-RBDMERS constructs (Fig. 1c); SDS-PAGE analysis reveals multiple products in each case (Fig. 2a, d, lanes 5). The reaction mixtures were fractionated by size-exclusion chromatography (SEC) (Fig. 2b, e), and the fraction containing a single predominant product for each hCoV-RB was isolated and then concentrated for use in all subsequent experiments (fraction 32, Fig. 2c, f).

The purified gpD-RBD constructs were used to decorate PLPs, alone and in combination at defined surface densities, as outlined in Fig. 1d. Complete particle decoration requires 420 copies of the decoration protein that assemble as trimeric spikes, projecting from the shell surface (see Fig. 1b); therefore, we define the number of gpD-binding sites occupied as a surface density percentage. For instance, 60% RBDSARS-PLPs denote particles that are decorated with 252 copies of gpD-RBDSARS with the remaining sites filled with wildtype (WT) gpD (168 copies). Similarly, 40% hCoV-RBD-PLPs are particles that are decorated with 168 copies of gpD-RBDSARS, 168 copies of gpD-RBDMERS, and 84 copies of WT gpD. Analysis of the reaction mixtures by agarose gel electrophoresis (AGE) demonstrated that particles can be decorated in a defined manner with either or both gpD-RBD constructs (Fig. 1d–f).

Decorated particles were purified by SEC (Fig. 3d) and characterized by multiple approaches. Electron microscopy (EM) confirmed that decorated PLPs retainicosahedral symmetry and are well dispersed. Close inspection of the micrographs revealed that particles decorated with RB densities greater than 20% are characterized by surface projections whose number increases with increasing surface decoration (Fig. 3e); we attribute these projections to RB proteins extending from the particle surface. Physiochemical characterization of PLP preparations by dynamic and electrophoretic light scattering analyses reveal that the mean hydrodynamic diameter of particles decorated with RBDs also increases as a function of RB surface density and have an overall surface charge that ranges from −12 to −29 mV (Table 1). The polydispersity index (PDI) of the decorated particles ranges from 0.156 ± 0.05 to 0.285 ± 0.09. In sum, these data indicate that these particle preparations have a high degree of homogeneity and are acceptable by pharmaceutical standards.

Having confirmed that PLPs can be decorated with varying surface densities of hCoV-RBds, we sought to determine whether the purified gpD-RBD constructs retain their antigenic characteristics following particle decoration. Thus, the antigenicity of RBDSARS-PLPs, RBDMERS-PLPs, and hCoV-RBD-PLPs was assessed using enzyme immunoassays. The data presented in Fig. 3f, g show that PLPs decorated with 20% gpD-RBDSARS and/or 20% gpD-RBDMERS retain antigenic properties, whereas no reactivity was noted for WT PLPs.

Particles decorated with gpD-RBDSARS are immunogenic following one or two immunizations

To assess the immunogenicity of RBDSARS-PLPs, 6-week-old BALB/c mice were immunized by intramuscular (i.m.) inoculation with 10 g of WT PLPs (control) or 60% RBDSARS-PLPs, followed by administration of a booster dose three weeks later (Fig. 4a). Serum samples were collected 14 days after the primary or booster immunization (day 35 post-prime) and again at days 63 and 174 post-prime. IgG responses against purified RBD protein were evaluated by ELISA (Fig. 4b). After a single immunization, 60% RBDSARS-PLPs induced RBDSARS-specific IgG titers comparable to those detected in convalescent samples from SARS-CoV-2 recovered patients (Fig. 4b, c). At 14 days post-boost (day 35), these responses were elevated 16-fold (P < 0.001). Importantly, mice immunized with 60% RBDSARS-PLPs maintained high levels of RBDSARS-specific IgG out to day 174 post-prime (Fig. 4b), indicating that these particles elicit durable humoral immune responses. In contrast, RBDMERS-specific IgG was undetectable in mice immunized with RB alone (Supplementary Fig 1) or with WT PLPs at all time points evaluated (Fig. 4b). Furthermore, IgG subclass analysis at 14 days post-prime and boost revealed that 60% RBDSARS-PLPs elicit high levels of RBDSARS-specific IgG1, IgG2a, and IgG2b (Fig. 4d).

Additionally, we evaluated serum from immunized animals for the capacity to neutralize SARS-CoV-2 infection using a live virus
focus-reduction neutralization test (FRNT). Serum from mice immunized with WT PLPs did not display neutralizing activity (Supplementary Fig 2), whereas serum from mice immunized with 60% RBDSARS-PLPs 14 days post-prime neutralized SARS-CoV-2 infection comparable to the neutralizing activity detected in convalescent samples from SARS-CoV-2 recovered patients (Fig.4e, f). Neutralizing activity was enhanced 4.7-fold following the booster immunization ($P < 0.05$), and high levels of SARS-CoV-2 antibodies were maintained out to day 174 post-prime (Fig. 4e and Supplementary Fig 2).

Vaccination with RBDSARS-PLPs protects from virulent SARS-CoV-2 challenge

We evaluated the protective activity of particles decorated with gpD-RBDSARS using a recently developed mouse-adapted strain of SARS-CoV-2 (SARS-CoV-2 MA10), which productively replicates in the mouse lung and results in clinical manifestations of disease consistent with severe COVID-19 in humans. Six-week-old BALB/c mice were immunized i.m. with WT PLPs or 60% RBDSARS-PLPs. At 184 days post-prime, mice were challenged intranasally with 10^4 plaque-forming units (PFUs) of SARS-CoV-2 MA10 (Fig. 5). Mice immunized with WT PLPs rapidly lost weight following SARS-CoV-2 infection, whereas no weight loss was observed in mice immunized with 60% RBDSARS-PLPs (Fig. 5a). At 4 days post-infection (dpi), mice were euthanized, and lungs were collected for viral burden analysis and histopathology. While high levels of infectious virus were detected in the lungs of mice immunized with WT PLPs, infectious virus was undetectable in the lungs of mice immunized with 60% RBDSARS-PLPs, as determined by plaque assay (Fig. 5b). Moreover, greatly reduced levels of genomic (Fig. 5c) and subgenomic (Fig. 5d) viral RNA were detected in the lungs of mice vaccinated with 60% RBDSARS-PLPs, as compared to those immunized with WT PLPs. Collectively, these data indicate that i.m. immunization with RBDSARS-PLPs elicits durable protection against SARS-CoV-2 lung infection.

The effect of immunization with RBDSARS-PLPs on lung inflammation and disease also was assessed by analyzing lung tissue for histopathological changes. Mice immunized with WT PLPs and challenged with SARS-CoV-2 MA10 had an abundant accumulation of immune cells in perivascular and alveolar locations, vascular congestion, and interstitial edema (Fig. 5e). Conversely, immunization with 60% RBDSARS-PLPs resulted in a marked reduction of lung-associated histopathological changes (Fig. 5e), indicative of protection against SARS-CoV-2 induced lung inflammation and injury.

Low doses of RBDSARS-PLPs remain immunogenic and protect from virulent SARS-CoV-2 challenge

We next evaluated the immunogenicity and protective efficacy of de-escalating doses of particles decorated with gpD-RBDSARS. Six-week-old BALB/c mice were immunized i.m. injection with 2.5, 1.0, or 0.25 μg of 60% RBDSARS-PLPs and received a booster dose of the same amount 3 weeks later. Control mice received two i.m. injections of 2.5 μg of WT PLPs, following the same immunization schedule. Serum samples were collected on days 14, 35 (14 days post-boost), 63, and 84 post-prime, and IgG responses against
purified RBD protein were evaluated by ELISA. At 14 days, little response was observed in mice immunized with a single injection of 0.25 μg of 60% RBD_{SARS}-PLPs, and no response was detected in control mice (Fig. 6a). In contrast, mice immunized with 2.5 or 1.0 μg of 60% RBD_{SARS}-PLPs had detectable levels of RBD_{SARS}-specific IgG which were comparable to mice immunized with a 10 μg dose (compare Figs. 4b and 6a), and to RBD_{SARS}-specific IgG detected in convalescent samples from SARS-CoV-2 recovered patients (Fig. 4c). At 14 days post-boost (day 35 post-prime), RBD_{SARS}-specific IgG responses were elevated in mice that...
received all doses of 60% RBDSARS-PLPs, although lower responses were observed for mice immunized with 0.25 μg (Fig. 6a). Additionally, mice immunized with all doses maintained high levels of RBDSARS-specific IgG up to 84 days post-prime (Fig. 6a).

We also evaluated serum from this dose de-escalation study for the capacity to neutralize SARS-CoV-2 infection (Fig. 6b and Supplementary Fig 3). Serum from mice immunized with WT PLPs did not display neutralizing activity (Supplementary Fig 3). While day 14 post-prime serum from mice immunized with all doses of 60% RBDSARS-PLPs displayed little to no neutralizing activity, day 35 (14 days post-boost) serum from mice immunized with 2.5 or 10% RBDMERS-PLPs did not result in neutralizing activity at any of the time points evaluated (Fig. 6b). Despite detectable levels of RBDSARS-specific IgG, immunization with 0.25 μg of 60% RBDSARS-PLPs did not result in neutralizing activity against puriﬁed SARS-CoV-2 and MERS-CoV RB protein were evaluated by ELISA. At each time point evaluated, mice immunized with the bivalent 20% hCoV-RBD-PLPs had similar levels of RBDSARS- and RBDMERS-speciﬁc IgG as mice immunized with the monovalent 20% RBDSARS-PLPs or 20% RBDMERS-PLPs (Fig. 7a, b). In addition, immunization with 20% hCoV-RBD-PLPs induced potent neutralizing antibody responses against both SARS-CoV-2 (Fig. 7c) and MERS-CoV (Fig. 7d). We note, however, that neutralizing titers against MERS-CoV were somewhat lower in mice immunized with the bivalent vaccine compared with the monovalent MERS vaccine (Fig. 7d).

Next, these mice were challenged with 10^4 PFU of SARS-CoV-2 MA10 or 10^5 PFU MERS-CoV at day 102 post-prime. Five days prior to the MERS-CoV challenge, mice were i.n. inoculated with Ad-hDPP4 to deliver the MERS-CoV cell entry receptor to lung cells. Compared with control mice, mice immunized with either RBDSARS-PLPs or hCoV-PLPs were protected from weight loss (Fig. 7f) and lung viral burden (Fig. 7f) associated with SARS-CoV-2 infection. Similarly, mice immunized with either RBDMERS-PLPs or hCoV-PLPs were protected from weight loss (Fig. 7g) and lung viral burden (Fig. 7h) associated with MERS-CoV infection.

DISCUSSION

Numerous vaccine strategies and platforms have been developed for current and emerging infectious diseases, and several studies support the use of CoV RBDs as vaccine immunogens. For instance, the SARS-CoV-2 RBD is immunodominant, contains multiple antigenic sites, and is the overwhelming target of the generation of memory T cells.

Vaccination with mosaic hCoV-PLPs protects from virulent SARS-CoV-2 and MERS-CoV challenge

As described above, PLPs can be decorated with multiple CoV RBDs at varying surface densities to generate mosaic PLPs. Thus, we evaluated the immunogenicity and protective efficacy of particles simultaneously decorated with gpD-RBDSARS and gpD-RBDMERS in comparison with their mono-RBD decorated counterparts (Fig. 7). Six-week-old BALB/c mice were immunized by i.m. injection with 7.5 μg of WT PLPs, 20% RBDSARS-PLPs, 20% RBDMERS-PLPs, or 20% hCoV-RBD-PLPs (note, 20% of each of gpD-RBDSARS and gpD-RBDMERS). Mice received a booster dose of the same amount three weeks later. Serum samples were collected on days 14, 35 (14 days post-boost), and 96 post-prime, and IgG responses against purified SARS-CoV-2 and MERS-CoV RB protein were evaluated by ELISA. At each time point evaluated, mice immunized with the bivalent 20% hCoV-RBD-PLPs had similar levels of RBDSARS- and RBDMERS-specific IgG as mice immunized with the monovalent 20% RBDSARS-PLPs or 20% RBDMERS-PLPs (Fig. 7a, b). In addition, immunization with 20% hCoV-RBD-PLPs induced potent neutralizing antibody responses against both SARS-CoV-2 (Fig. 7c) and MERS-CoV (Fig. 7d). We note, however, that neutralizing titers against MERS-CoV were somewhat lower in mice immunized with the bivalent vaccine compared with the monovalent MERS vaccine (Fig. 7d).

Finally, we evaluated the immunogenicity and protective efficacy of particles simultaneously decorated with gpD-RBDSARS and gpD-RBDMERS in comparison with their mono-RBD decorated counterparts (Fig. 7). Six-week-old BALB/c mice were immunized by i.m. injection with 7.5 μg of WT PLPs, 20% RBDSARS-PLPs, 20% RBDMERS-PLPs, or 20% hCoV-RBD-PLPs (note, 20% of each of gpD-RBDSARS and gpD-RBDMERS). Mice received a booster dose of the same amount three weeks later. Serum samples were collected on days 14, 35 (14 days post-boost), and 96 post-prime, and IgG responses against purified SARS-CoV-2 and MERS-CoV RB protein were evaluated by ELISA. At each time point evaluated, mice immunized with the bivalent 20% hCoV-RBD-PLPs had similar levels of RBDSARS- and RBDMERS-specific IgG as mice immunized with the monovalent 20% RBDSARS-PLPs or 20% RBDMERS-PLPs (Fig. 7a, b). In addition, immunization with 20% hCoV-RBD-PLPs induced potent neutralizing antibody responses against both SARS-CoV-2 (Fig. 7c) and MERS-CoV (Fig. 7d). We note, however, that neutralizing titers against MERS-CoV were somewhat lower in mice immunized with the bivalent vaccine compared with the monovalent MERS vaccine (Fig. 7d).

DISCUSSION

Numerous vaccine strategies and platforms have been developed for current and emerging infectious diseases, and several studies support the use of CoV RBDs as vaccine immunogens. For instance, the SARS-CoV-2 RBD is immunodominant, contains multiple antigenic sites, and is the overwhelming target of neutralizing activity in COVID-19 convalescent plasma.

Sample	Z-Avg (d.nm)	PDI	Intensity PSD (d.nm)	Volume PSD (d.nm)	ZP (mV)
Naked PLPs	66.2 ± 1.4	0.073 ± 0.01	71.8 ± 2.1	58.6 ± 1.1	−25.1 ± 0.78
WT PLPs	78.3 ± 1.3	0.081 ± 0.04	80.1 ± 3.0	65.6 ± 1.6	−17.4 ± 2.4
5% RBDSARS PLPs	82.4 ± 3.0	0.156 ± 0.05	90.8 ± 2.4	68.5 ± 0.65	−18.8 ± 2.4
20% RBDSARS PLPs	111.5 ± 6.5	0.285 ± 0.09	121.3 ± 6.0	86.8 ± 5.2	−28.5 ± 1.6
60% RBDSARS PLPs	110.7 ± 7.1	0.223 ± 0.06	131.9 ± 17.2	94.4 ± 6.7	−11.5 ± 2.6
10% RBDMERS PLPs	84.3 ± 3.3	0.164 ± 0.05	89.7 ± 1.5	70.7 ± 0.62	−11.8 ± 1.4
20% RBDMERS PLPs	94.9 ± 3.4	0.212 ± 0.06	101.7 ± 4.2	76.6 ± 1.4	−22.2 ± 2.1
40% RBDMERS PLPs	93.1 ± 3.3	0.176 ± 0.04	102.3 ± 4.8	77.7 ± 1.7	−15.2 ± 2.1
20% hCoV-RBD PLPs	115.3 ± 15.8	0.227 ± 0.11	112.9 ± 9.1	85.7 ± 5.2	−23.3 ± 2.8

*PLP preparations were diluted in 10 mM HEPES [pH 7.4], and measurements were acquired in quadruplicate at 25 °C. Values shown are mean ± standard deviation.

Particle sizing data is based on particle diameter (d.nm) as measured by dynamic light scattering from two to three independent analyses. These are reported as Z-average (Z-Ave; weighted mean hydrodynamic size), polydispersity index (PDI; a measure of sample heterogeneity), and particle size distributions (PSD; intensity, volume).

Particle charge data is based on the overall charge (Zeta potential, ZP) as measured by electrophoretic light scattering.

Table 1. Characterization of PLP preparations.
In addition, passive administration of monoclonal antibodies that target the RBD of SARS-CoV-2 and other pathogenic CoVs protects rodents, ferrets, and non-human primates from severe CoV infection17,70–79, indicating that the generation of RBD-specific antibodies is an advantageous therapeutic strategy. Moreover, the RBD is a target of cross-neutralizing antibodies69,80, and immunization with SARS-CoV-2 RBD functionalized nanoparticles can elicit cross-neutralizing antibodies against a number of SARS-related CoVs81. Nevertheless, and despite significant advancements in diagnostic and therapeutic countermeasures, continued vaccine development efforts are warranted, especially for viruses that pose a threat to global public health or to provide broad protection against multiple viruses.

In this study, we designed and constructed lambda PLPs decorated with the RBDs from extant highly pathogenic human CoVs (i.e., SARS-CoV-2, MERS-CoV) as a tunable, multivalent...
Fig. 4 RBD_SARS-PLPs are immunogenic. a Schematic of immunization protocol and sample collection. b WT BALB/c mice (n = 5 mice/group) were immunized with 10 μg of WT PLPs (control) or 60% RBD_SARS-PLPs by intramuscular (i.m.) injection on days 0 and 21. RBD_SARS-specific IgG endpoint titers on days 14, 35, 63, and 174 were determined by ELISA. Each data point represents an individual mouse. Error bars represent the mean ± SEM. P values were determined by one-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, ***P < 0.001. c RBD_SARS-specific IgG ELISA endpoint titers in plasma from pre-pandemic controls (n = 10) and convalescent SARS-CoV-2 PCR positive patients (n = 20). Each data point represents an individual plasma sample. Error bars represent the mean ± SEM. P values were determined by Mann–Whitney test. ***P < 0.001. d RBD_SARS-specific IgG subclass responses on days 14 and 35 were determined by ELISA. Each data point represents an individual mouse. Error bars represent the mean ± SEM. P values were determined by unpaired student’s t-test. *P < 0.05. e, f SARS-CoV-2 neutralizing activity was determined by a focus-reduction neutralization test (FRNT). e The dilution of serum that inhibited 50% of infectivity (FRNT50 titer) was calculated for each sample by nonlinear regression analysis, as described in Materials and Methods. Each data point represents an individual plasma sample. Error bars represent the mean ± SEM. P values were determined by Mann–Whitney test. ***P < 0.001. g Antibody avidity by ELISA and serum neutralization experiments were repeated at least two times independently to confirm reproducibility. Female BALB/c mice, 6–8 weeks of age, were randomly allocated to experimental immunization groups. Group sizes were determined by power analysis. Mice received two i.m. immunizations of the same vaccine dose on day 0 and day 21. At pre-determined time points post-primary and booster immunizations, blood was collected for immunological assays. Viral challenge studies were performed blinded. Mice were inoculated i.n.

METHODS

Study design

The objectives of this research were to evaluate the immunogenicity and protective capacity of monovalent and bivalent phage-like particle CoV vaccines. Purified phage-like particles were decorated in defined ratios with the lambda decoration protein cross-linked with the RBD of the SARS-CoV-2 and MERS-CoV spike proteins. The immunoreactivity, immunogenicity, and protective potential of PLPs was tested both in vitro and in mouse models of CoV infection. In vitro immunological assays were performed in duplicate, serum IgG titer measurements by ELISA and serum neutralization experiments were repeated at least two times independently to confirm reproducibility. Female BALB/c mice, 6–8 weeks of age, were randomly allocated to experimental immunization groups. Group sizes were determined by power analysis. Mice received two i.m. immunizations of the same vaccine dose on day 0 and day 21. At pre-determined time points post-primary and booster immunizations, blood was collected for immunological assays. Viral challenge studies were performed blinded. Mice were inoculated i.n.
immunized with 10 μg of WT PLPs 60% RBD_{SARS}-PLPs by intramuscular (i.m.) injection on days 0 and 21. At day 184, mice were challenged intranasally (i.n.) with 10⁴ PFU of SARS-CoV-2 MA10. Mice were monitored daily for weight changes. Each data point represents the mean of five mice. Error bars represent the mean ± SEM. *P values were determined by two-way ANOVA with Tukey’s multiple comparison test. **P < 0.01, ****P < 0.0001.

b-d At 4 dpi, the viral burden in the lung was quantified by plaque assay (b), RT-qPCR for viral genomic RNA (c), and RT-qPCR for N subgenomic RNA (d). Each data point represents an individual mouse. Error bars represent the mean ± SEM. *P values were determined by Mann–Whitney test in b, d; or by unpaired student’s t-test in c. **P < 0.01, ***P < 0.001.

e Histopathology in lung tissue sections was evaluated by hematoxylin and eosin staining. The images shown are representative of five mice/group (scale bars, 500 μm).

Purification of lambda PLPs
Lambda PLPs were expressed in <i>E. coli</i> BL21(DE3)[pNu3_E] cells and purified¹³. Self-assembled PLPs were extracted from cell lysates in 20 mM Tris [pH 8.0, 4 °C] buffer containing 0.4 mg/mL lysozyme and 0.04 mg/mL DNase. Following rate zonal centrifugation (10–40% sucrose density gradient), PLPs were collected, concentrated, and exchanged into 20 mM Tris [pH 8.0, 4 °C] buffer containing 15 mM MgCl₂, 1 mM EDTA, and 7 mM β-ME using centrifugal filter units (100k MWCO; Millipore Amicon Ultra). Proteins were fractionated by anion exchange chromatography employing three 5 mL HiTrap Q HP columns connected in tandem and developed with a 30-column volume linear gradient to 1 M NaCl. Fractions containing decoration protein were pooled, exchanged into 50 mM NaOAc [pH 4.8] buffer using centrifugal filter units (3k MWCO; Millipore Amicon Ultra), and loaded onto three 5 mL HiTrap SP columns connected in tandem. Bound proteins were eluted with a 30-column volume linear gradient to 0.5 M NaCl, and fractions containing decoration protein were pooled and dialyzed overnight against 20 mM Tris [pH 8.0, 4 °C] buffer containing 20 mM NaCl and 0.1 mM EDTA for storage at 4 °C. For long-term storage at −80 °C, aliquots of purified protein were supplemented with 20% glycerol.

Purification of recombinant hCoV-RBD proteins
A pCAGGS expression vector encoding the SARS-CoV-2 spike RBD was obtained from Dr. Florian Krammer, Icahn School of Medicine at Mount Sinai⁹³. This construct contains sequences encoding the native signal peptide (residues 1–14) followed by residues 319–541 from the SARS-CoV-2 Wuhan-Hu-1 spike protein (GenBank MN908947.3) and a hexa-histidine tag at the C-terminus for purification. A pTwist-CMV expression vector (Twist Biosciences Technology) encoding the MERS-CoV spike protein was kindly provided by Dr. Peter S. Kim, Stanford University⁹⁴. This construct contains sequences encoding an N-terminal human IL-2 signal peptide followed by residues 367–588 from the MERS-CoV EMC/2012 spike RBD (GenBank JX86905.2) and dual C-terminal tags (octa-histidine, AviTag) for purification. Recombinant protein expression and purification was performed by the University of Colorado Cancer Center Cell Technologies Shared Resource. Due to the involvement of glycans in the epitopes of some neutralizing antibodies^{73,95}, RBDs were expressed in Exp293F cells to retain normal glycosylation and antigenic properties. Exp293F cells were transfected with plasmid DNA using
ExpiFectamine transfection reagent (Thermo Fisher Scientific). At 72 h post-transfection, cell culture supernatants were centrifuged (4000×g) for 20 min and filtered (0.2 microns). Recombinant proteins were purified by Ni-NTA column chromatography using an ATKA purification system. Protein was eluted with 500 mM imidazole and concentrated before assessing protein purity by SDS-PAGE and Coomassie staining (see Source Data file).

Fig. 6 Immunization with RBD_{SARS}-PLPs at low doses elicits potent and durable SARS-CoV-2 antibody responses and protective immunity. a, b WT BALB/c mice (n = 5/group) were immunized with 2.5 μg of WT PLPs (control) or variable doses (2.5, 1.0, or 0.25 μg) of 60% RBD_{SARS}-PLPs by i.m. injection on days 0 and 21. Animals were bled on days 14, 35, 63, and 84. a RBD_{SARS}-specific IgG endpoint titers were determined by ELISA. Each data point represents an individual mouse. Error bars represent the mean ± SEM. P values were determined by Mann–Whitney test. **P < 0.01. b SARS-CoV-2 neutralizing activity in serum samples was determined by FRNT. FRNT50 titer was calculated for each sample by nonlinear regression analysis. Each data point represents an individual mouse. Error bars represent the mean ± SEM. P values were determined by Mann–Whitney test. **P < 0.01. c At day 90 post-prime, mice were challenged i.n. with 10⁴ PFU of SARS-CoV-2 MA10 and monitored daily for changes in weight. Each data point represents the mean of five mice. Error bars represent the mean ± SEM. P values were determined by two-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, **P < 0.01. d–g At 4 dpi, a viral burden in the lung was quantified by plaque assay (d), RT-qPCR for viral genomic RNA (e), and RT-qPCR for N subgenomic mRNA (f), and histopathology in lung tissue sections (images shown are representative of five mice/group; scale bars, 500 μm) was evaluated by hematoxylin and eosin staining (g). Each data point represents an individual mouse. Error bars represent the mean ± SEM. P values were determined by Mann–Whitney test. **P < 0.01, ***P < 0.001.
(30 min, 25 °C) for modification of solvent-accessible primary amines. Reduced gpD(S42C) was added to the mixture (1:1, molar equivalent) and incubated (1 h, 25 °C) to yield the cross-linked products (gpD-RBDSARS and gpD-RBDMERS). The reaction was quenched with the addition of 0.2% β-ME (30 min, 25 °C), and cross-linked proteins were purified by size-exclusion chromatography employing a 24 mL Superose 6 Increase 10/300 GL column equilibrated and developed with 40 mM HEPES [pH 7.4] buffer containing 150 mM NaCl, 200 mM arginine, 0.1 mM EDTA, and 2 mM β-ME.

Fig. 7 Immunization with mosaic hCoV-RBD PLPs protects against both SARS-CoV-2 and MERS-CoV challenge. a, b WT BALB/c mice (n = 5-10 mice/group) were immunized with 7.5 μg of WT PLPs (control), 20% RBDSARS-PLPs, 20% RBDMERS-PLPs, or mosaic 20% hCoV-RBD PLPs by intramuscular (i.m.) injection on days 0 and 21. At the times indicated, RBD$_{\text{SARS}}$-specific (a) and RBD$_{\text{MERS}}$-specific (b) IgG endpoint titers were determined by ELISA. Each data point represents an individual mouse. Error bars represent the mean ± SEM. Mann–Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001. c SARS-CoV-2 neutralizing activity was determined by a focus-reduction neutralization test (FRNT). The dilution of serum that inhibited 50% of infectivity (FRNT50 titer) was calculated. Each data point represents an individual mouse. Error bars represent the mean ± SEM. Mann–Whitney test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. d MERS-CoV neutralizing activity was determined by a plaque reduction neutralization test (PRNT). The dilution of serum that inhibited 50% of infectivity (PRNT50 titer) was calculated. Each data point represents an individual mouse. Error bars represent the mean ± SEM. Mann–Whitney test. **P < 0.01, ***P < 0.001, ****P < 0.0001. e–h At day 102 post-prime, mice were challenged intranasally (i.n.) with 104 PFU of SARS-CoV-2 (e, f) or 105 PFU MERS-CoV (g, h). e, g Mice were monitored daily for weight changes. Each data point represents the mean of five mice. Error bars represent the mean ± SEM. Two-way ANOVA with Tukey’s multiple comparisons test. *P < 0.05, **P < 0.01. f, h At 4 dpi, the burden of infectious SARS-CoV-2 (f) and MERS-CoV (h) in the lung was quantified by plaque assay. Each data point represents an individual mouse. Error bars represent the mean ± SEM. Mann–Whitney test. *P < 0.05, **P < 0.01.
Fractions containing cross-linked proteins were identified by SDS-PAGE and were pooled. The purified proteins were exchanged into 20 mM Tris (pH 8.0, 4 °C) buffer containing 20 mM NaCl and 0.1 mM EDTA for storage at 4 °C. Protein concentration was quantified spectrophotometrically.

In vitro PLP expansion and decoration

PLPs were expanded and subsequently decorated in vitro. Purified PLPs were expanded in 10 mM HEPES [pH 7.4] buffer containing 2.5 M urea for 30 min on ice and then exchanged into 10 mM HEPES [pH 7.4] buffer containing 200 mM urea using centrifugal filter units (100k MWCO; Millipore Amicon Ultra). Expanded shells (30 mM) were decorated in a stepwise fashion with modified WT decoration protein at 25 °C in 10 mM HEPES [pH 7.4] buffer containing 50 mM urea, 10 mM arginine, and 0.1% Tween 20. Proteins were added in the following order: (1) gpD-RBD_{SARS} (0.69–8.33 μM final concentration, 30 min incubation); (2) gpD-RBD_{MERS} (1.39–8.33 μM, 30 min incubation); (3) wildtype gpD (5.55–13.19 μM, 60 min incubation). Decorated PLPs were purified by size-exclusion chromatography employing a 24 mL Superose 6 Increase 10/300 GL column equilibrated and developed with 100 mM HEPES [pH 6.6] buffer containing 200 mM NaCl, 200 mM arginine, 1 mM EDTA, and 2 mM β-Me at a flow rate of 0.3 mL/min. Fractions containing decorated PLPs were pooled and exchanged into 50 mM HEPES [pH 7.4] buffer containing 100 mM NaCl and 10 mM MgCl₂ for storage at 4 °C.

Transmission electron microscopy

Carbon-coated copper grids (400 mesh; CF400-CU) were glow-discharged using a Peco EasiGlo system (Ted Pella, Inc.; Redding, CA, USA) with a plasma current of 13 mA, negative glow discharge head polarity, glow discharge duration of 1 min, and held under vacuum for 15 sec. PLP preparations were diluted to 10 nM using water (sterile, double-distilled) and spotted twice onto grids. Following sample adsorption (20 s), excess liquid was wicked off using a Whatman #1 filter paper. Grids were washed using water, and excess liquid was wicked off. Samples were negatively stained (20–25 s) with filtered 2% (w/v) methylamine tungstate [pH 6.7] and 30 μg/mL bacitracin (0.2 μM Nucleopore polycarbonate syringe filters). Excess stain was wicked off, and grids were allowed to air-dry for at least 1 h before transferring to a grid storage box. Samples were maintained covered throughout this procedure and stored at room temperature until imaged. Images were acquired on an FEI Tecnai G2 transmission electron microscope at an accelerating voltage of 80 kV and equipped with a 2k × 2k CCD camera. Images were processed in Fiji and measurements were based on 100 particles with values reported as mean ± standard deviation.

Particle size and charge measurements

Decorated particles were diluted to 2 nM (55–700 μL) using 10 mM HEPES [pH 7.4] for dynamic light scattering (DLS) and electrophoretic light scattering (ELS) analyses. Particle size and charge measurements were acquired on a Malvern Panalytical Zetasizer Nano ZS (He scattering (ELS) analyses. Particle size and charge measurements were done in quadruplicate with values reported as mean ± standard deviation. Successive sample measurements were done in quadruplicate with values reported as mean ± standard deviation.

Virus and cells

Vero E6 (CRL.1586, American Type Culture Collection (ATCC)) were cultured at 37 °C in Dulbecco’s Modified Eagle medium (DMEM, HyClone 11965-084) supplemented with 10% fetal bovine serum (FBS), 10 mM HEPES [pH 7.3], 1 mM sodium pyruvate, 1X non-essential amino acids, and 100 U/ml of penicillin–streptomycin. SARS-CoV-2 strain 2019 n-CoV/USA_WA1/2020 was obtained from BEI Resources. The virus was passaged once in Vero E6 cells and titrated by focus formation assay (FFA) on Vero E6 cells. The mouse-adapted SARS-CoV-2 strain MA10 (kindly provided by R. Banc, University of North Carolina at Chapel Hill), which elicits disease signs in laboratory mice similar to severe COVID-19, was used for all challenge studies. All work with infectious SARS-CoV-2 and MERS-CoV was performed in Institutional Biosafety Committee approved BSL3 and A-BSL3 facilities at the University of Colorado School of Medicine and University of Maryland School of Medicine using positive pressure air respirators and other personal protective equipment.

Mouse experiments

Animal studies were carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. The protocols were approved by the Institutional Animal Care and Use Committees at the University of Colorado School of Medicine (Assurance Number A3269-01) and the University of Maryland School of Medicine (Assurance number D16-00125 (A3200-01)). Female BALB/c mice were purchased from The Jackson Laboratory. 6–8-week-old mice were immunized with WT PLPS (control), RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, or hCoV-RBD PLPS preparations in 50 μL PBS via i.m. injection in the hind leg. Mice were boosted 3 weeks after the primary immunization using the same route. PLP preparations and immunization diluent (PBS) were evaluated for the presence of endotoxin using the Pierce Chromogenic Endotoxin Quant Kit (ThermoFisher). Samples were diluted in 50 mM HEPES buffer (pH 7.0) containing 100 mM NaCl and 10 mM MgCl₂ and tested in quadruplicate. These analyses indicated that immunizations contained less than 4 EU endotoxin. For virulent virus challenge, mice were anesthetized by intraperitoneal injection with 50 μL of a mix of xylazine (0.38 mg/mouse) and ketamine hydrochloride (1.3 mg/mouse) diluted in PBS. Immunized BALB/c mice were inoculated intranasally (i.n.) with 10⁵ PFU of SARS-CoV-2 MA10. For the MERS-CoV challenge, immunized mice were first inoculated i.n. with 2.5 × 10⁶ PFU of a replication-incompetent adenovirus vector to deliver human DPP4 (Ad5-hDPP4) into the lungs of mice. Five days later, mice were inoculated i.n. with 10³ PFU of MERS-CoV (Jordan strain). All mice were weighed and monitored for additional disease signs daily. At 4 days post-inoculation (dpi), animals were euthanized by bilateral thoracotomy, and tissues were collected for virological, immunological, and pathological analyses.

ELISA

SARS-CoV-2 and MERS-CoV RBD-specific antibody responses in mouse and human sera were measured by ELISA. Immunol 4HBX plates were coated with 0.2 μg of recombinant SARS-CoV-2 RBD protein (Wuhan-Hu-1, GenPept QHD43416) or MERS-CoV RBD protein overnight at 4 °C. Coating antigen was removed, and plates were blocked with 200 μL of 3% nonfat milk in PBS/0.1% Tween 20 (PBS-T) for 1 h at room temperature. After blocking, wells were washed once with PBS-T and then probed with serum samples diluted in PBS-T supplemented with 1% nonfat milk for 1.5 h. Samples were removed, and wells were washed three times with PBS-T and probed with secondary antibodies diluted at 1:4000 in PBS-T; goat anti-mouse IgG2b-BIOT (Southern Biotech, 1091-08), goat anti-mouse IgG2b-BIOT (Southern Biotech, 1071-08), goat anti-mouse IgG₂a, Human ads-BIOT (Southern Biotech, 1080-08), goat anti-mouse IgG₂b-BIOT (Southern Biotech, 1091-08), goat anti-mouse IgG₃ human ads-BIOT (Southern Biotech, 1100-08). Biotinylated antibodies were subsequently probed with streptavidin-HRP (Southern Biotech, 7100-05). The detection antibody was removed, and wells were washed three times with PBS-T. Plates were developed using 3,3′,5′,5′-tetramethylbenzidine (TMB; Sigma, T0440), followed by the addition of 0.3 M H₂SO₄. Plate absorbance was read at 450 nm on a Teco Infinite Mplex plate reader. Endpoint titers are reported as the reciprocal of the final dilution, in which absorbance at 450 nm was above the blank average plus three times the standard deviation of all blanks in the assay. The immunoreactivity of RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, and hCoV-RBD PLPs was measured in a similar manner. In this case, plates were coated with 0.2 μg of WT PLPS or RBD_{SARS}-PLPs, RBD_{MERS}-PLPs, and hCoV-RBD PLPS overnight at 4 °C. Following blocking and washing, wells were incubated for 1.5 h at room temperature with either chimeric human anti-SARS-CoV spike antibody clone CR3022 (Absolute Antibody, Ab61680) or mouse anti-MERS-CoV spike antibody clone D12 (Absolute Antibody, Ab60969) prepared in a twofold dilution series in PBS-T with a starting dilution of 1:200 and signal was developed as described above.

SARS-CoV-2 focus-reduction neutralization test (FRNT)

Vero E6 cells were seeded in 96-well plates at 10⁶ cells/well. The next day serum samples were heat-inactivated at 56 °C for 30 min and then serially diluted (twofold, starting at 1:10) in DMEM (HyClone, 11965-084) plus 1% FBS in 96-well plates. Approximately 100 focus-forming units (FFU) of SARS-CoV-2 USA-WA1/2020 were added to each well and the serum plus
virus mixture was incubated for 1 h at 37 °C. Following co-incubation, the
medium was removed from the cells and the serum sample plus virus
mixture was added to the cells for 1 h at 37 °C. Samples were then
removed and cells overlaid with 1% methylcellulose (MilliporeSigma,
M0512) in minimum essential media (MEM) (Gibico, 12000-063) plus 2% FBS
and incubated for 24 h at 37 °C. Cells were fixed with 1% paraformaldehyde
(PFA; Acros Organics, 416780030) and probed with 1 μg/mL of chimeric human anti-SARS-CoV spike antibody (CR3022,
Absolute Antibody, Ab10680) in Perm Wash (1X PBS/0.1% saponin/0.1%
BSA) for 2 h at room temperature. After three washes with PBS-T, cells were
incubated with goat anti-human IgG Fc-HRP (Southern Biotech, 2014-05)
diluted at 1:1000 in Perm Wash for 1.5 h at room temperature. SARS-CoV-2
positive foci were visualized with TrueBlue substrate (SeraCare, 5510-0030)
and counted using a CTA Biospot analyzer and Biospot software (Cellular
Technology Ltd, Shaker Heights, OH). The FRNT50 titer were calculated
relative to a virus-only control (no serum) set at 100%, using GraphPad
Prism 9.1.2 (La Jolla, CA) default nonlinear curve fit constrained between 0
and 100%.

MERS-CoV neutralization assay
To determine the inhibitory activity of mouse sera against MERS-CoV, 3,950
TCID50/ml of MERS-CoV-Jordan was incubated with diluted sera for 30 min
at room temperature and the inhibitory capacity of each serum dilution
was assessed by TCID50 assay27,28.

Quantification of SARS-CoV-2 genomic and subgenomic RNA
To quantify viral genomic and subgenomic RNA, lung tissue of mice challenged
with SARS-CoV-2 was homogenized in TRlzol reagent (Life
Technologies, 15596018) and total RNA was isolated using a PureLink RNA
Mini kit (Life Technologies, 12183025). Single-stranded cDNA was
generated using random primers and SuperScript IV reverse transcriptase
(Life Technologies, 18091050). SARS-CoV-2 genomic or subgenomic RNA
copies were measured by qPCR using the primer and probe combinations
listed in Supplementary Table 1 (Integrated DNA Technologies).
To quantify SARS-CoV-2 genomic RNA, we extrapolated viral RNA levels from a
standard curve generated from known FFU of SARS-CoV-2 from which
RNA was isolated and cDNA was generated26. To quantify SARS-CoV-2
subgenomic RNA, we extrapolated viral RNA levels from a standard curve
developed using defined concentrations of a plasmid containing an amplified SARS-
CoV-2 subgenomic fragment (pS-C RN TOPO). Briefly, a subgenomic RNA
fragment was amplified by RT-PCR using RNA isolated from SARS-CoV-2-
infected Vero E6 cells. The 125 bp amplicon is composed of the joining
region between the 3’ UTR and the N gene, with the inclusion of a
transcription-regulatory sequence (TRS) of the SARS-CoV-2 Wuhan-Hu-1
(NC_045512.2). This amplicon was cloned into the pCR4 Blunt TOPO vector
with Applied Biosystems QuantStudio ViiA 7 analyzer.

Plaque assay
Vero E6 cells were seeded in 12-well plates one day prior to virus
inoculation. Lung homogenates were serially diluted in DMEM supple-
mented with 2% FBS, HEPES, and penicillin-streptomycin and incubated
on cells for one hour at 37 °C. Afterward, cells were overlaid with 1% (w/v)
methylcellulose in MEM plus 2% FBS and incubated at 37 °C. At 3 dpi,
plaques were removed, and plates were fixed with 4% PFA for 20 min at
room temperature. After removal of PFA, plates were stained with 0.05%
(w/v) crystal violet in 20% methanol (10–20 min). Crystal violet was
removed, and plates were rinsed with water or PBS. Plaques were counted
manually to determine infectious virus titer.

Histopathology
Mice were euthanized at 4 days following SARS-CoV-2 MA10 or MERS-CoV
challenge. The lungs were removed and fixed with 10% formalin. Five-
micron sections were stained with H&E for histological examination. Slides
were examined in a blinded fashion for total inflammation, periarteriolar,
and peribronchial inflammation and epithelial cell denuding.

Statistical analysis
Statistical significance was assigned when P values were <0.05 using Prism
Version 9.1.2 (GraphPad). Tests, number of animals (n), median values, and
statistical comparison groups are indicated in the Figure legends.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data are available in the article and supplementary information. Source data of all
data presented in graphs within the figures will be provided with the paper.

Received: 28 November 2021; Accepted: 28 April 2022; Published online: 26 May 2022

REFERENCES

1. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019.
N. Engl. J. Med. 382, 727–733 (2020).

2. Wu, F. et al. A new coronavirus associated with human respiratory disease in
China. *Nature* 579, 265–269 (2020).

3. Coronaviridae Study Group of the International Committee on Taxonomy of V.
The species Severe acute respiratory syndrome-related coronavirus: classifying
2019-nCoV and naming it SARS-CoV-2. *Nat. Microbiol.* 5, 536–544 (2020).

4. Stemkorn, K. R. et al. Mechanisms of SARS-CoV-2-induced lung vascular disease:
potential role of complement. *Pulm. Circ.* 11, 20458940211015799 (2021).

5. Stefan, N., Birkenfeld, A. L. & Schulze, M. B. Global pandemics interconnected -
obesity, impaired metabolic health and COVID-19. *Nat. Rev. Endocrinol.* https://
doi.org/10.1038/s41574-020-00462-1 (2021).

6. Viana, R. et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in
southern Africa. *Nature* https://doi.org/10.1038/d41586-021-03832-5 (2021).

7. Tao, K. et al. The biological and clinical significance of emerging SARS-CoV-2
variants. *Nat. Rev. Genet.* 22, 757–773 (2021).

8. Plante, J. A. et al. The variant gambit: COVID-19’s next move. *Cell Host Microbe* 29,
S08–S15 (2021).

9. Memish, Z. A., Perlman, S., Van Kerkhove, M. D. & Zumla, A. Middle east
respiratory syndrome. *Lancet* 395, 1063–1077 (2020).

10. Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. & Fouchier, R. A.
Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N.
Engl. J. Med. 367, 1814–1820 (2012).

11. Petersen, E., Hui, D. S., Perlman, S. & Zumla, A. Middle East respiratory syndrome -
advancing the public health and research agenda on MERS - lessons from the
South Korea outbreak. *Int. J. Infect. Dis.* 36, 54–55 (2015).

12. Majumder, M. S., Rivers, C., Lofgren, E. & Fisman, D. Estimation of MERS-
CoV and their role in virus adaptive evolution. *Proc. Natl Acad. Sci. USA* 111,
10126–10131 (2014).

13. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and
replication: implications for SARS-CoV-2. *Nat. Rev. Microbiol.* 19, 155–170 (2021).

14. Li, F. Structure, function, and evolution of coronavirus spike proteins. *Annu. Rev.
Immunol.* 3, 237–261 (2016).

15. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and
is blocked by a clinically proven protease inhibitor. *Cell* 181, 271–280 e278 (2020).

16. Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. *Nature* 584,
115–119 (2020).

17. Zost, S. J. et al. Potently neutralizing and protective human antibodies against
SARS-CoV-2. *Nature* 584, 443–449 (2020).

18. Premkumar, L. et al. The receptor binding domain of the viral spike protein is an
immunodominant and highly specific target of antibodies in SARS-CoV-2
patients. *Sci. Immunol.* https://doi.org/10.1126/sciimmunol.abd4113 (2014).

19. Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-
CoV-2 spike. *Nature* 584, 450–460 (2020).

20. Hansen, J. et al. Studies in humanized mice and convalescent humans yield a
SARS-CoV-2 antibody cocktail. *Science* 369, 1010–1014 (2020).

21. Li, Y. et al. A humanized neutralizing antibody against MERS-CoV targeting
the receptor-binding domain of the spike protein. *Cell Res.* 25, 1237–1249
(2015).

22. Tang, X. C. et al. Identification of human neutralizing antibodies against MERS-
CoV and their role in virus adaptive evolution. *Proc. Natl Acad. Sci. USA* 111,
E2018–E2026 (2014).
ACKNOWLEDGEMENTS

The authors gratefully acknowledge Florian Krammer and Peter S. Kim for providing the expression vectors for the SARS-CoV-2 spike RBD and MERS-CoV spike RBD proteins, respectively. We thank Ralph S. Baric for providing the mouse-adapted SARS-CoV-2 strain MA10. The research reported herein was supported by the NSF #GRFP1553798 (A.C.) and #MCB2016019 (C.E.C.), funds from the University of Colorado School of Medicine (T.E.M.), and HHS ASPR-20-01495 and HHSN272201400008C (M.B.F.) and by T32 AI007524 from the National Institutes of Health (R.M.J.).