Galerkin finite element study for mixed convection (TiO₂–SiO₂/water) hybrid-nanofluidic flow in a triangular aperture heated beneath

Fares Redouane¹, Wasim Jamshed²*, S. Suriya Uma Devi³, M. Prakash⁴, Kottakkaran Sooppy Nisar⁵, Nor Ain Azeany Mohd Nasir⁶, M. Motawi Khashan⁷, I. S. Yahia⁸,⁹,¹⁰ & Mohamed R. Eid¹¹,¹²

Fluidity and thermal transport across the triangular aperture with lower lateral inlet and apply placed at the vertical outlet of the chamber which filled with efficient TiO₂–SiO₂/water hybrid nanofluid under the parametrical influence. Several parameters are tested like the numbers of Hartmann (0 ≤ Ha ≤ 100), Richardson (0 ≤ Ri ≤ 5), and Reynolds (10 ≤ Re ≤ 1000) were critiqued through streamlines, isotherms, and Nusselt number (Nu). Numerical model has to be developed and solved through the Galerkin finite element method (GFEM) by discretized with 13,569 triangular elements optimized through grid-independent analysis. The Hartmann number (Ha), exerts minimal impact over the flow and thermal aspects while the other parameters significantly manipulate the physical nature of the flowing and thermal aspects behaviors.

List of symbols

- \(c_p \): Specific heat capacity (J kg\(^{-1}\) K\(^{-1}\))
- \(g \): Gravitational acceleration (m s\(^{-2}\))
- \(H, L \): Dimensional of triangular cavity (m)
- \(k \): Thermal conductivity (W m\(^{-1}\) K\(^{-1}\))
- \(p \): Pressure (Pa)
- \(P \): Dimensionless pressure
- \(T \): Temperature (K)
- \(u, v \): Velocity components (m s\(^{-1}\))
- \(U, V \): Dimensionless velocity components
- \(x, y \): Dimensional Cartesian coordinates (m)
- \(X, Y \): Dimensionless Cartesian coordinates

¹LGIDD, Ahmed ZABANA University, 48000 Relizane, Algeria. ²Department of Mathematics, Capital University of Science and Technology (CUST), Islamabad 44000, Pakistan. ³Department of Mathematics, KPR Institute of Engineering and Technology, Coimbatore 641407, India. ⁴Department of Mathematics, Dr. N.G.P Institute of Technology, Coimbatore 641407, India. ⁵Department of Mathematics, College of Arts and Sciences, Prince Sattam Bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia. ⁶Department of Mathematics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia. ⁷Department of Basic Sciences, Common First Year, King Saud University, Riyadh 11451, Saudi Arabia. ⁸Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia. ⁹Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia. ¹⁰Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt. ¹¹Department of Mathematics, Faculty of Science, New Valley University, Al-Kharga, Al-Wadi Al-Gadid 72511, Egypt. ¹²Department of Mathematics/Faculty of Science, Northern Border University, Arar 1321, Saudi Arabia. *email: wasiktk@hotmail.com
Nanofluids, an alluring word that fascinates thermal-based researchers over the decades. Its astounding combination of efficiency and applicability makes it the choice at the first palace. Starts from basic electrical and electronic utilities its eminence branched out in biomedical, automobile and even reached the space technology 1–6. In 1995, Choi7 was the foremost scientist to float on a new nanofluid theory. A nanofluid is known as the colloidal suspension in the traditional fluid of metal (H2O, C2H6O2, and other base fluids) nanosized (< 100 nm) which places the nanofluid as the healthy substitution for usual base fluids.

The fractional volume and thermal efficiency of the nano-sized floated particles set the characteristics of nanofluid heat transfer. Buongiorno provides a detailed overview of the thermal transmission of nanofluid and its main characteristics contributing to improved thermal transport performance8. Saleem et al.9 inspected the transport on naturally convected nanoliquid-filled substances. Through the remarkable study, the ethylene glycol-based hybrid nanoliquid was found to exert better thermal characteristics than that of nanofluid was provided by Nawaz et al.10. Mebarek-Oudina et al.11 investigated the response of entropy and convection in the case of a trapezoidal-shaped cavity filled with Cu-Al2O3/water hybrid nanofluid. The obtained findings indicated that increasing the concentration of nanoparticles enhances the heat transfer intensity inside the chamber. In the books12–15 and Journal papers16–25 it is possible to analyze more precisely the ongoing and future growth of nanofluids. Salimefendigil and Öztop 26 analyzed the behavior of CuO–water nanofluid within 3D trapezoidal enclosure with a corrugated side under a uniform magnetic field. They found that increasing the number of corrugated waves leads to reduce the heat transfer efficiency. However, using CuO nanopowder had a favorable impact on energy transport. Fares et al.27 conducted a study of magneto-free convection inside a porous cavity filled with Al2O3–Cu/water hybrid nanofluid and provided with an adiabatic rotating cylinder. They noticed that the rise of Rayleigh number improves the heat transfer. However, the heat transfer is more controlled when Hartmann number is higher. Chamkha and Salimefendigil28 numerically examined the entropy and the free convection of Cu–water nanofluid carried inside a porous corrugated enclosure. They found that the rise of Grashof number enhances the heat transfer as well as increasing Darcy number. Moreover, they noticed that the frequency of corrugation waves had a significant impact when Grashof and Darcy numbers are important. Belhadj et al.29 investigated MHD natural convection of Ag–MgO/Water Hybrid Nanofluid inside a triangular cavity equipped with a rotating circular obstacle. The obtained results depicted that the growth in nanoparticles volume fraction improves the heat transfer. However, the presence of the magnetic field has a reducing impact on energy transmission. Fares et al.30 studied the response of the entropy generation of Ag–water nanofluid within a square-shaped enclosure in the presence of inclined magnetic forces. They found that the thermal performance of nanofluid increases with the augmentation of Rayleigh number and nanoparticles concentration. However, the inclination angle impacts the reducing effect of the magnetic field on the heat transport as well as the entropy generation. Salimefendigil and Öztop31 examined the entropy generation and the natural convection of an inclined cavity provided with an inner conductive curved partition and filled with nanofluid. They noticed that the total entropy generation rate decreases as Hartmann number increased. In addition, the contribution of solid and fluid domains varied as Hartmann number increased.
Theoretical, as well as practical considerations, make it necessary for mixed convection, which is normally caused in chambers loaded with higher energy elements with one or two sides. In reality, in different engineering applications, this configuration can be found. Many experiments have been reported on mixed convective flow in cavities to analyze thermal transport and hydraulic fluid in such geometries. In nature and a variety of handy transport process equipment, including furnaces, electrical cooling, solar collectors, and processing equipment, this phenomenon is significant. In this article, interest in commercial cooling cavities is determined by the problems found. The food items exposed to it are refreshed by new air circulation. Many experiments indicate poor cooling in the higher portion of the cavity. Thereby a strict temperature regulation of conservation in this region involves the existence of a non-durable commodity, Lei and Patterson.

Reynolds et al. experimental and numerical investigated the case of a trapezoidal enclosure chamber replicates a solar-based thermal collector. The cavity's lower wall is translucent and has a directed solar-based flow. On the opposite, the upper wall simulates an exchanger, and experimental and computational findings indicate that there are recirculating cells that produce within the cavity isothermal zones. Sieres et al. conducted a computational investigation in a right angular triangular air-filled chamber class of laminated natural convectors along and in absence of surface radiation. For the maximal range of Rayleigh numbers (103 and 106), reduced slot angle, and increased slot radius, the average thermal transfer rate has been analyzed. Numerical analysis was performed at Hasnaoui et al. for dual valued Rayleigh numbers: 1.58 × 109 and 5 × 1010, on the iso-celled chamber in a triangular shape loaded with the turbulent connected air in it. The findings of this survey indicate that the fluid is unstable and that the velocity and temperature vary sharply in a small stripe along the walls. This geometry, as compared to the square cavity, has high turbulence levels, but remains constant in the cavity center for a fixed Rayleigh number.

Mixed convective configuration on the flow field ensues while the forced flow dominates flow naturally induced flow with hotter fluids upstream movement along with the cooler fluids stays at the bottom. During the forced flow, shifting side walls or force injection phenomena, such as in lid drive flows or ventilated enclosures, cause the forced flow. Besides Prandtl (Pr), Grashof (Gr), Reynald number (Re) and their Richardson number (Ri = Re/Gr2) are the dimensionless variables that represent the mixed convection. Flow situation became convectively forced for the values of Richardson number tends to zero. On other hand, it reflects the free convective flow behaviors spotted where Richardson number tends to infinity. Trending mixed convective flow studies over the closed chambers and cavity pull the researchers towards it with fascinating technical features. Louaraych et al. studied numerical analysis in the rectangular open cavity was analysed by Raji and Hasnaoui for theoretical studies on the conduct of force flowing results in boundaries movement and natural convective flowing by built heated triangular blocks fitted with an enclosure. The numerical flow profile and characteristics of the thermal transport were studied by Salimpour due to the horizontal cylinders causing convective mixtures. The convective flow (free and force) in a ventilated parallelogram enclosure is studied by Gupta and Nayak and a stronger cold regime was observed due to the inflow of power through the contaminant source. A natural convective flowing result in a hot source on the ground, with forced convective stems shaping-wall motion of an enclosure, was analysed by Abu Hamdeh et al. In a second trial, Muhammad et al. tested the mixed convective flowing inside an enclosure with a warmer middle line in ethylene glycol-dependent nanofluid. Salimfendigil et al. conducted a numerical study to investigate MHD mixed convection inside a lid-driven chamber with a flexible fin and filled with CuO–water nanofluid. Their outputs showed that as the inclination angle of the magnetic field increases, the average Nusselt number declines. This impact is more evident in the cavity with the flexible fin.

The horizontal boundary motion and heat flow association in the rectangular chamber are investigating the combination of free and forced convection. Gangawane et al. studied for theoretical studies on the conduct of force flowing results in boundaries movement and natural convective flowing by built heated triangular blocks fitted with an enclosure. Thermo-physical aspects are supposed to be fixed. Thermo-physical features of hybrid-nanofluid at many different sectors of applications have shown an interest in the mixed convection heat transfer and fluid movement that occurs in triangle enclosures. Solar engineering applications, electronic equipment cooling, geophysical fluid mechanics, and building and thermal insulation systems are just a few examples of what this technology may be used for. From the above literature review, the concluding remarks are: there has been substantial work done across the triangular aperture with lower lateral inlet and apply placed at the vertical outlet of the chamber which filled with efficient TiO2–SiO2/water hybrid nanofluid under the parametrical influence. The numerical analysis in the rectangular open cavity was analysed by Raji and Hasnaoui. In HB configuration, their outcomes indicate that the thermal transport for the critical number of Reynolds (Re = 100) passes by limit corresponding to the absence of the recycling cells. Target of this works is to study and understanding the mixed convective flow behaviors under the impact of the numbers of Hartmann (Ha), Reynolds (Re) and Richardson (Ri). As a result, the current investigation is focused on the aforementioned goals.

Mathematical formulation

Figure 1 portrays the geometrical representation of the problem along with the generated mesh structures over the insulated triangular chamber apart from the heated bottom at a fixed temperature Tt and inclined wall with cooling temperature Tc. The triangular cavity is occupied with (TiO2–SiO2/water) nanofluid beneath the impact of a horizontal magnetic field. Except for the density variance which was formed by approximation of Boussinesq in the period of buoyancy, the thermo-physical aspects are supposed to be fixed. Thermo-physical features of hybrid-nanofluid at room temperature are offered in Table 1. For a Newtonian fluid, laminar and stable-state flowing the continuity,
motion in the Boussinesq approximation, and heat equations can be written in their nondimensional procedure as the following\cite{46,47}:

\[
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0 \tag{1}
\]

\[
U \frac{\partial U}{\partial X} + V \frac{\partial U}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{\rho_{bf}}{\rho_{hf}} \frac{\mu_{hf}}{\mu_{bf}} \frac{1}{Re} \left(\frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2} \right) \tag{2}
\]

\[
U \frac{\partial V}{\partial X} + V \frac{\partial V}{\partial Y} = -\frac{\partial P}{\partial Y} + \frac{\rho_{bf}}{\rho_{hf}} \frac{\mu_{hf}}{\mu_{bf}} \frac{1}{Re} \left(\frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} \right) + \left(\frac{\rho \beta \rho_{hbf}}{\rho_{hbf} \beta_{bf}} \right) \frac{1}{Re} \left(\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right) + \rho \beta \frac{H}{Re} V \tag{3}
\]

\[
U \frac{\partial \theta}{\partial X} + V \frac{\partial \theta}{\partial Y} = \frac{\sigma_{hf}}{\sigma_{bf}} \frac{1}{Re Pr} \left(\frac{\partial^2 \theta}{\partial X^2} + \frac{\partial^2 \theta}{\partial Y^2} \right) \tag{4}
\]

Designed for nanoparticles TiO$_2$ and SiO$_2$, the properties are acquired as\cite{48}:

\[
\varphi = \psi_{TiO_2} + \psi_{SiO_2} \tag{5}
\]

\[
\rho_{np} = \frac{\psi_{TiO_2} \rho_{TiO_2} + \psi_{SiO_2} \rho_{SiO_2}}{\varphi} \tag{6}
\]

\[
(c_p)_{np} = \frac{\psi_{TiO_2} (c_p)_{TiO_2} + \psi_{SiO_2} (c_p)_{SiO_2}}{\varphi} \tag{7}
\]

\[
\beta_{np} = \frac{\psi_{TiO_2} \beta_{TiO_2} + \psi_{SiO_2} \beta_{SiO_2}}{\varphi} \tag{8}
\]

Table 1. Thermo-physical aspects of the nanoparticles and the fluid (TiO$_2$–SiO$_2$/water) (50/50)\cite{55,56,57,58}.

Physical properties	c_p (J/kg K)	k (W/m K)	ρ (kg/m3)	$\beta \times 10^{-5}$ (K$^{-1}$)	σ (S/cm)
Water	4179	0.613	997.1	21	0.05
TiO$_2$	686.2	8.954	4250	2.4	47
SiO$_2$	745	1.4	2200	42.7	10^{-12}

Figure 1. Vented cavity schematic representation with (a) boundary conditions (b) different configuration studies and mesh.
The effective dynamical viscosity depend on the Brinkmann mode is measured as:

\[
\mu_{h_{\text{f}}} = \mu_{bf} \left(1 + \frac{32.795 \varphi}{10} - 7214 \varphi^2 + 71400 \varphi^3 - 0.1941 \times 10^{8} \varphi^4 \right)
\]

\[
\frac{k_{h_{\text{f}}}}{k_{bf}} = \frac{0.1747 \times 10^7 + \varphi}{0.1747 \times 10^5 - 0.1498 \times 10^6 \varphi + 0.1117 \times 10^7 \varphi^2 + 0.1997 \times 10^8 \varphi^3}
\]

\[
\frac{\sigma_{h_{\text{f}}}}{\sigma_{bf}} = 1 + \frac{3 \left(\frac{\sigma_{bf}}{\sigma_{np}} \right) - 1 \varphi}{\left(\frac{\sigma_{bf}}{\sigma_{np}} \right) + 2 - \left(\frac{\sigma_{bf}}{\sigma_{np}} \right) - 1 \varphi}
\]

Dimensionless numbers are written as:

\[
X = \frac{x}{L}, \quad Y = \frac{y}{L}, \quad U = \frac{u}{U_0}, \quad V = \frac{v}{U_0}, \quad \theta = \frac{T - T_0}{T_c - T_0}, \quad P = \frac{p}{\rho_{bf}u_0^2}, \quad Pr = \frac{\nu_{bf}}{\rho_{bf}}, \quad Re = \frac{\rho_{bf}u_0H}{\mu_{bf}}.
\]

For the standard fluid and nanoparticles, Table 1 exhibits the thermo-physical aspects.

The boundary conditions are:

Inlet port: \(u = U_0, \quad v = 0, \quad T = T_c \).

Outlet port: \(\frac{\partial v}{\partial Y} = \frac{\partial T}{\partial Y} = 0 \).

at the inclined curved cold wall: \(u = v = 0, \quad T = T_c \).

at the adiabatic walls: \(u = v = 0, \quad \frac{\partial T}{\partial x} = 0 \).

at the bottom horizontal heater wall: \(u = v = 0, \quad T = T_H \left(1 - \cos(2\pi x) \right) \).

Computational methodology

Figure 2 evidences the result of grid autonomy analysis done for acquiring optimal count of grid elements to be adapted for mesh generation across the structure with 13,569 elements. Regarding validation of the numerical code engaged in this work were compared to results of and with that excellent agreement viewed in Fig. 3 this numerical model was employed for parametric analysis.

Modeled mathematical problems under existing situations were governed by the flow and thermal equations appendices with boundary situations. Efficient finite element technique combined with a weighted-residual process is engaged to track the solution. Geometry of the work has to be discretized with triangular elements used around 13,569 in the count. Error tolerance limit has been set to be below \(10^{-6} \).

Results discussion

Any substance enclosed by a solid wall, whether it’s liquid or solid, is said to be an enclosure. Enclosures can be used to improve or slow down heat transmission, depending on the application. To ensure that electronic components operate at temperatures less than the critical temperature for the component, heat transfer in the enclosure must be increased. An enclosure that traps air between two panes, reduces the heat transmission from the inside. Solar collectors, electrical gadgets, and structures with slanted roofs all use triangular cavities. Flow and heat transmission study of TiO2–SiO2/water hybrid-nanofluid through the triangular chamber with single inlet in the bottom which is heated and outlet placed at the higher end has been carried out. Streamlines (\(\Psi \)) and isotherms (\(T \)) were plotted for various physical parameters like the numbers of Reynolds (\(Re \)), Richardson (\(Ri \)), and Hartmann (\(Ha \)). Through the grid-independent study, the optimal elements count of 13,569 elements was fixed. Numerical model was validated through the comparative study with Varol et al. which gives excellent agreement shown in Fig. 3.

Effect of Reynolds number. Figure 4 conveys the behaviour of flow and thermal aspects in the schematized chamber for the Reynolds number (\(Re \)) through Streamlines (\(\Psi \)) and Isotherms (\(T \)) of TiO2–SiO2/water hybrid nanofluid respectively. For lower flow rates the streams started to convolute near the inlet and move...
Figure 2. Validation with grid independence at $Re = 200, Ha = 0, Ri = 1$.

Figure 3. Comparing amongst the current study [right] and the outcomes of Ref.24 [left] at $Ra = 10^6, Ha = 0$.
Figure 4. Variations of the streamlines (Ψ) and isotherms (T) with various Reynolds number (Re) at configuration 1, $Ha = 0, Ri = 1, \phi = 0.02$.
deeper into the chamber assisted with the new contour in the father end for higher of Re values. The isotherms replicate the thermal conditions across the chamber. As it is heated from below, the concentration of heat can be noted at the bottom and fades away as it propagates vertically towards an outlet. This due to the isotherms serves as exact replicas of the chamber’s thermal constraints. Heat builds up at the bottom and dissipates as it moves upward to an outlet when heated from below. Regarding Reynolds number influences, as more the flow enters through the inlet for hike values of Re, the isotherms were blown towards the edge. Nusselt number plotting for Re and Ri were characterized by the thermal transporting rate by the Nusselt number (Nu) through Fig. 5. In both cases, the heat transmission efficiency of TiO$_2$–SiO$_2$/water hybrid-nanofluid gets improved flow rate as well convection rate respectively for higher amounts of Re and Ri. Figures 6 and 7 disclose the impact of fractional volume (φ) and Hartmann number (Ha) combined with Reynolds number (Re) over the thermal transferring rate. As the particle fraction increased the thermal transferring efficiency of TiO$_2$–SiO$_2$/water hybrid nanofluid, the Hartmann number (Ha) exerts fluctuation in thermal transfer rate for higher values of Reynolds number (Re). This may be due to the dual effect of magnetic interaction and the flow turbulence accord in the chamber flow. This effect of “fluctuating” is due to the interaction between the flow velocity and the applied magnetic field.

Effect of Richardson number. Indent of this works is to analyze the mixed convective facets of TiO$_2$–SiO$_2$/water hybrid-nanofluid. Richardson number (Ri) plays a noteworthy part in manipulating the convection features of the flow stream. Curtailed values of Richardson number (Ri) reflect the forced convection ($Ri < 0.1$) followed by higher values for the mixed convective flowing ($0.1 < Ri < 10$) and free convective flowing ($Ri > 10$). Streamlines (Ψ) and isotherms (T) for Richardson number (Ri) variations were portrayed in Fig. 8. Under the forced and mixed convection stages, the streams in the chamber attain two contours, one of which dominates over the other to spreads wider and shrinks the outer contour, it might be due to crucial buoyancy alterations.
through \((Ri)\) in TiO\(_2\)-SiO\(_2\)/water hybrid nanofluid. Such coiled streams tend to swipe away the temperature from the chamber which is evident through the spiraled isotherms in the farther end of the chamber. Initially, for lower values of \(Ri\), the isotherms were elevated vertically towards the outlet.

Average Nusselt number \((\text{Nu}\,\text{avg})\) for altering Richardson number in combination with Hartmann number \((Ha)\) and fractional volume \((\varphi)\) were crafted in Figs. 9 and 10 respectively. The thermal transferring rate gets hiked for higher values of \(Ri\), especially after \(Ri = 1\) which represents the vital impact of mixed convection flow behaviour. Simultaneously for both increasing values of fractional volume \((\varphi)\) and Hartmann number \((Ha)\), the average Nusselt number \((\text{Nu}\,\text{avg})\) gets increased. Notably for larger amounts of \(Ha\) corresponds to mixed convective mode, attains few fluctuations in the average Nusselt number \((\text{Nu}\,\text{avg})\).

Effect of Hartmann number. Figure 11 elucidates the magnetic interaction effects over the streamlines \((\Psi)\) and isotherms \((T)\) through the Hartmann number \((Ha)\). Lofted values of Hartmann number \((Ha)\), breaks in stream flow velocity with the opposing magnetic fields. Initially, forced streams to enter into the chamber to form two clear contours, as the Hartmann number increases, the flow slows down and the inlet contour covers the chamber due to smooth entry of fluid. Similar trend can be found in isotherms also. Slower flow absorbs more heat from the chamber wall, as evidenced by the structural shift in isotherms from spiral to stretched shape along the bottom wall.

Average Nusselt number \((\text{Nu}\,\text{avg})\) of TiO\(_2\)-SiO\(_2\)/water hybrid nanofluid were plotted against the Hartmann number \((Ha)\) for increasing values of fractional volume \((\varphi)\) in Fig. 12. As the strength of hybrid nanofluid increased by additional volume fraction of solid particles, the average Nusselt number \((\text{Nu}\,\text{avg})\) gets improved. An increase in thermal conductivity boosts heat transfer efficiency. Nanoparticles and random fluid motion within the base fluid may both help to reduce the thermal boundary layer thickness, which may in turn aid in heat transfer improvement. In terms of Hartmann number \((Ha)\), it gets decelerates up to some extent near \(Ha = 50\). Later it gets enhanced for higher values of Hartmann number \((Ha)\).

Conclusion

Planned work on the triangular chamber with a single inlet in the bottom which is heated and outlet placed at the higher end underwent by the flow of TiO\(_2\)-SiO\(_2\)/water hybrid nanofluid has been carried out. Flow nature and thermal actions were modeled by the Streamlines \((\Psi)\) and isotherms \((T)\) respectively. Outcomes were plotted against crucial physical parameters like the numbers of Reynolds \((Re)\), Richardson \((Ri)\), and Hartmann \((Ha)\). Validation of the working procedure has been done through the comparative study of a numerical model with Varol et al.\(^{51}\). Optimal mesh count was also obtained with the grid-independent study of nearly 13,569 elements.

Streamlines \((\Psi)\) contours reflect the inflow to the triangular chamber, as part of the flow hits the further end and forms a smaller counter and remaining flows wipes upward towards the outlet was characterized by stretches in the contours towards the outlet region for all the physical parameters like \(Re\), \(Ri\), and \(Ha\). Isotherms \((T)\) portrays the thermal movements inside the triangular chamber flowed with the TiO\(_2\)-SiO\(_2\)/water hybrid nanofluid. Since the chamber is heated from the bottom, the isothermal plots exhibit the bottom-based thermal contours. Due to inflow fluid, the contours bend outward to the inlet of the chamber and elevates towards the outlet tray around the opposite wall of the chamber to the inlet.

Plots of average Nusselt number \((\text{Nu}\,\text{avg})\) depicts the heat transferring process held across the chamber. It gets increased for higher values of \(Re\), \(Ri\), \(\varphi\) and \(Ha\). Especially, for Hartmann number \((Ha)\) during higher values it gets fluctuates for values \((Ha < 100)\).
Figure 8. Variations of the streamlines (Ψ) and isotherms (T) with various Ri at configuration 1, $Re = 1000$, $Ha = 0$, $\varphi = 0.02$.
Figure 9. Variations of N_{uavg} with various Ri for Ha variations, $Re = 1000, \varphi = 0.02$.

Figure 10. Variations of N_{uavg} with various Ri for solid volume fraction variations (φ), $Re = 1000, Ri = 1$.
Figure 11. Variations of the streamlines (Ψ) and isotherms (T) with various Ha at configuration 1, Re = 200, Ri = 1, $\phi = 0.02$.
The results of this study are available only within the paper to support the data.

Received: 7 August 2021; Accepted: 8 November 2021
Published online: 25 November 2021

References

1. Redouane, F., Abderrahmane, A., Amine, M. M. & Abdekrim, A. Numerical investigation of hydrodynamic nanofluid convective flow in a porous enclosure. Nat. Technol. 10(1), 54–57 (2018).
2. Mebarek-Oudina, F., Redouane, F. & Rajashékhar, C. Convection heat transfer of MgO–Ag/water magneto-hybrid nanoliquid flow inside a special porous enclosure. Algor. J. Renew. Energy Sustain. Dev. 2(2), 84–95 (2020).
3. Hiba, R. et al. A novel case study of thermal and streamline analysis in a grooved enclosure filled with (Ag–MgO/Water) hybrid nanofluid: Galerkin FEM. Case Stud. Therm. Eng. 28, 101372 (2021).
4. Mahammed, A. B., Fares, R. & Lounis, M. Magnetohydrodynamics forced convection of a nanofluid-filled triangular vented cavity under the influence of magnetic field. J. Mater. Struct. 4, 1–11 (2020).
5. Choi, S. U. S. & Eastman, J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles (Argonne National Lab., 1995).
6. Buongiorno, J. Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006).
7. Fares, R., Naim, H., Abderrahmane, A. & Bouadi, A. Mixed convection of nanofluid flow in a vented cavity under the influence of various parameters. Int. Commun. Heat Mass Transf. 125, 105279 (2021).
8. Shenoy, A., Sheremet, M. & Pop, I. Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids (CRC Press, 2016).
9. Minkowycz, W. J., Sparrow, E. M. & Abraham, J. P. Nanoparticle Heat Transfer and Fluid Flow Vol. 4 (CRC Press, 2012).
10. Das, S. K., Choi, S. U., Yu, W. & Pradeep, T. Nanofluids: Science and Technology (Wiley, 2007).
11. Nield, D. A. & Bejan, A. Convection in Porous Media (Springer, 2017).
12. Kakaç, S. & Pramuanjaroenkij, A. Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009).
13. Wong, K. V. & De Leon, O. Applications of nanofluids: Current and future. Adv. Mech. Eng. 2, 519659 (2010).
14. Li, C. H. & Peterson, G. P. Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids), Adv. Mech. Eng. 2, 742739 (2010).
15. Rehman, K. U., Shahzadi, I., Malik, M. Y., Al-Mdallal, Q. M. & Zahri, M. On heat transfer in the presence of nano-sized particles suspended in a magnetized rotatory flow field. Case Stud. Therm. Eng. 14, 100457 (2019).
16. Alaidrous, A. A. & Eid, M. R. 3-D electromagnetic radiative non-Newtonian nanofluid flow with Joule heating and higher-order reactions in porous media. Sci. Rep. 10(1), 14513 (2020).
17. Redouane, F., Mebarek-Oudina, F., Fares, R., Assia, A., Lewis, R. W. & Abu-Hamdeh, N. H. Entropy and convection effect on magnetized hybrid nanofluid flow inside a trapezoidal cavity with zigzagged wall. Int. Commun. Heat Mass Transf. 125, 105279 (2021).
18. Alairoudy, A. A. & Eid, M. R. Dual solutions for mixed convection flow of SiO2–Al2O3/water hybrid nanofluid with Joule heating and higher-order reactions in porous materials. Adv. Mech. Eng. 10(12), 5315–5330 (2020).
19. Ahmad, S. & Nadeem, S. Analysis of activation energy and its impact on hybrid nanofluid in the presence of Hall and ion slip currents. Appl. Nanosci. 10(12), 5315–5330 (2020).
20. George, J., Sreeneesh, C., Soorej, E. S., Sreejitha, N., Noona C. A. & Sreekanth M. S. Enhancement of cooling rate using nanofluid and hybrid nanofluid in cooling hot titanium plate. Mater. Today Proc. 45, 3891–3897 (2020).
21. Rehman, K. U., Shahzadi, I., Malik, M. Y., Al-Mdallal, Q. M. & Zahri, M. Numerical investigation of hydrodynamic nanofluid convective flow in a porous enclosure. Alger. J. Renew. Energy Sustain. Dev. 2(2), 84–95 (2020).
22. Eid, M. R. Effects of NP shapes on non-Newtonian bio-nanofluid flow in suction/blowing process with convective condition: Sisko model. J. Non-Equilib. Thermodyn. 45(2), 97–108 (2020).
23. Khan, M. R., Pan, K., Khan, A. U. & Nadeem, S. Dual solutions for mixed convection flow of SiO2–Al2O3/water hybrid nanofluid near the stagnation point over a curved surface. Phys. A Stat. Mech. Appl. 547, 123959 (2020).
24. Ahmad, S. & Nadeem, S. Analysis of activation energy and its impact on hybrid nanofluid in the presence of Hall and ion slip currents. Adv. Mech. Eng. 10(12), 5315–5330 (2020).
25. George, J., Sreeneesh, C., Soorej, E. S., Sreejitha, N., Noona C. A. & Sreekanth M. S. Enhancement of cooling rate using nanofluid and hybrid nanofluid in cooling hot titanium plate. Mater. Today Proc. 45, 3891–3897 (2020).

Figure 12. Variations of NUAvg with various Ha for ϕ variations, Re = 1000, Rt = 1.
26. Selimefendigil, F. & Oztop, H. F. Role of magnetic field and surface corrugation on natural convection in a nanofluid filled 3D trepezoidal cavity. *Int. Commun. Heat Mass Transf.* 95, 182–196 (2018).

27. Radouane, F. et al. Magneto-free convective of hybrid nanofluid inside non-Darcy porous enclosure containing an adiabatic rotating cylinder. *Energy Sources Part A Recovery Util Environ Eff* [https://doi.org/10.1080/15567036.2020.1856235 (2020)].

28. Chamkha, A. J. & Selimefendigil, F. MHD free convection and entropy generation in a corrugated cavity filled with a porous medium saturated with nanofluids. *Entropy* 20(11), 846 (2018).

29. Amine, B. M. et al. Magnetohydrodynamics natural convection of a triangular cavity involving Ag–MgO/water hybrid nanofluid and provided with rotating circular barrier and a quarter circular porous medium at its right-angled corner. *Arab. J. Sci. Eng.* 46, 12573–12597 (2021).

30. Fares, R., Mebarek-Oudina, F., Aissa, A., Bilal, S. M. & Oztop, H. F. Optimal entropy generation in Darcy–Forchheimer magnetized flow in a square enclosure filled with silver-based water nanoliquids. *J. Therm. Anal. Calorim.* [https://doi.org/10.1007/s10973-020-10518-4 (2021)].

31. Selimefendigil, F. & Oztop, H. F. Effects of conductive curved partition and magnetic field on natural convection and entropy generation in an inclined cavity filled with nanofluid. *Physica A* 540, 123004 (2020).

32. Lei, C. & Patterson, J. C. Unsteady natural convection in a triangular enclosure induced by surface cooling. *Int. J. Heat Fluid Flow* 26(2), 307–321 (2005).

33. Reynolds, D. I., Jance, M. J., Behnia, M. & Morrison, G. L. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. *Sol. Energy* 76(1–3), 229–234 (2004).

34. Sieres, J., Campo, A. & Fernández-Seara, J. Effect of surface radiation on buoyant convection in vertical triangular cavities with variable aperture angles. *Int. J. Heat Mass Transf.* 50(25–26), 5139–5149 (2007).

35. Campo, A. & Hasnouai, M. Turbulent natural convection in an air-filled isoceles triangular enclosure. *Int. J. Heat Fluid Flow* 27(5), 476–489 (2006).

36. Louaraych, A. et al. Mixed convection heat transfer correlations in shallow rectangular cavities with single and double-lid driven boundaries. *Int. J. Heat Mass Transf.* 132, 394–406 (2019).

37. Gangawane, K. M., Oztop, H. F. & Ali, M. E. Mixed convection in a lid-driven cavity containing triangular block with constant heat flux: Effect of location of block. *Int. J. Mech. Sci.* 152, 492–511 (2019).

38. Selimipour, E. A numerical study on the fluid flow and heat transfer from a horizontal circular cylinder under mixed convection. *Int. J. Heat Mass Transf.* 131, 365–374 (2019).

39. Gupta, N. & Nayak, A. K. Activity of buoyancy convection and entropy generation in a parallelogram shaped mixed displacement ventilated system. *Int. J. Therm. Sci.* 137, 86–100 (2019).

40. Abu-Hamdeh, N. H., Oztop, H. F. & Alnefaie, K. A. A computational study on mixed convection in a porous media filled and partially heated lid-driven cavity with an open side. *Alex. Eng. J.* 59(3), 1735–1750 (2020).

41. Muhammad, N., Nadeem, S. & Isakhov, A. Finite volume method for mixed convection flow of Ag–ethylene glycol nanofluid in a cavity having thin central heater. *Phys. A Stat. Mech. Appl.* 537, 122738 (2020).

42. Selimefendigil, F., Oztop, H. F. & Chamkha, A. J. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall. *J. Therm. Anal. Calorim.* 135(1), 325–340 (2018).

43. Papanicolaou, E. & Jaluria, Y. Mixed convection from simulated electronic components at varying relative positions in a cavity. *J. Heat Transf.* 116, 960–970 (1994).

44. Raji, A. & Hasnouai, M. Mixed convection heat transfer in a rectangular cavity ventilated and heated from the side. *Numer. Heat Transf. Part A Appl.* 33(5), 533–548 (1998).

45. Mehryan, S. A. M., Kashkooli, F. M., Ghahambar, M. & Chamkha, A. J. Free convection of hybrid Al2O3–Cu water nanofluid in a differentially heated porous cavity. *Adv. Powder Technol.* 29(8), 2295–2305 (2017).

46. Costa, V. A. F. & Raimundo, A. M. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. *Int. J. Heat Mass Transf.* 53(5–6), 1208–1219 (2010).

47. Hussain, S. H. & Hussein, A. K. Mixed convection heat transfer in a differentially heated square enclosure with a conductive rotating cylinder at different vertical locations. *Int. Commun. Heat Mass Transf.* 38(2), 263–274 (2011).

48. Rejinders, L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. *Polym. Degrad. Stab.* 94(5), 873–876 (2009).

49. Edé, M. H., Arani, A. M., Rezaie, M., Yan, W. & Kermioupour, A. Experimental determination of thermodynamic and dynamic viscosity of Ag–MgO/water hybrid nanofluid. *Int. Commun. Heat Mass Transf.* 66, 189–195 (2015).

50. Yildiz, A., Lisesvind, S. B., Kasap, M. & Mardare, D. Electrical properties of TiO2 thin films. *J. Non. Cryst. Solids* 354(45–46), 4944–4947 (2008).

51. Gundale, S. S., Behare, V. V. & Despande, A. V. Study of electrical conductivity of Li2O–B2O3–SiO2–Li2SO4 glasses and glass-ceramics. *Solid State Ion.* 298, 57–62 (2016).

52. Asif, M., Jamshed, W. & Aziz, A. Entropy and heat transfer analysis using Cattaneo–Christov heat flux model for a boundary Layer flow of Casson nanofluid. *Res. Phys.* 10, 640–649 (2018).

53. Jamshed, W. Numerical investigation of MHD impact on maxwell nanofluid. *Int. Commun. Heat Mass Transf.* 120, 104973 (2021).

54. Varol, Y., Koca, A. & Oztop, H. F. Natural convection in a triangular enclosure with flush mounted heater on the wall. *Int. Commun. Heat Mass Transf.* 33(8), 951–958 (2006).

Acknowledgements
The authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research groups program under grant number R.G.P.2/110/41. Also, the authors extend their appreciation to the Deanship of Research & Innovation, Ministry of Education, in Saudi Arabia for funding this research work through the project number: IFP-KKU-2020/10. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research, King Saud University for its funding through the Research Unit of Common First Year Deanship.

Author contributions
F.R. and W.J. formulated the problem. F.R., W.J., and S.U.D.S. solved the problem. F.R., W.J., S.U.D.S., M.P., K.S.N., N.A.A.M.N., M.M.K., I.S.Y. and M.R.E. computed and scrutinized the results. All the authors equally contributed to the writing and proofreading of the paper. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.J.
