Search for $B^\pm \to [K^\mp \pi^\pm]_D K^\pm$ and upper limit on the $b \to u$ amplitude in $B^\pm \to D K^\pm$

B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Coudere,1 J.-M. Gaillard,1 A. Hicheur,1 Y. Karyotakis,1 J. P. Lees,1 V. Tisserand,1 A. Zghiche,1 A. Palano,2 A. Pompili,2 J. C. Chen,3 N. D. Qi,3 G. Rong,3 P. Wang,3 Y. S. Zhu,3 G. Eigen,4 I. Ofte,4 B. Stugu,4 G. S. Abrams,5 A. W. Borgland,5 A. B. Breon,6 D. N. Brown,6 J. Button-Shafer,5 R. N. Cahn,5 E. Charles,5 C. T. Day,5 M. S. Gill,5 A. V. Gritsan,5 Y. Groyzman,5 R. G. Jacobsen,5 R. W. Kadel,5 J. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 C. LeClerc,5 G. Lynch,5 A. M. Merchant,5 L. M. Mir,5 P. J. Oddone,5 T. J. Orimoto,5 M. Pripostin,5 N. A. Roe,5 M. T. Ronan,5 V. G. Shelkov,5 A. V. Tehlov,5 W. A. Wenzel,5 K. Ford,6 T. J. Harrison,6 C. M. Hawkes,6 S. E. Morgan,6 A. T. Watson,6 M. Fritsch,7 D. C. Goettman,7 M. G. Wilson,7 J. Albert,18 E. Chen,18 G. P. Dubois-Felsmann,18 A. Dvoretski,18 D. G. Hitlin,18 I. Narsky,18 T. Piatenko,18 F. C. Porter,18 A. Ryd,18 A. Samuel,18 S. Yang,18 S. Jayatilleke,19 G. Mancinelli,19 B. T. Meadows,19 M. D. Sokoloff,19 T. Abe,20 F. Blanc,20 P. Bloom,20 S. Chen,20 P. J. Clark,20 W. T. Ford,20 U. Naumentev,20 A. Olivas,20 P. Rankin,20 J. G. Smith,20 L. Zhang,20 A. Chen,21 J. L. Harton,21 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 Q. L. Zeng,21 D. Altenberg,22 T. Brandt,22 J. Brose,22 T. Colberg,22 M. Dickopp,22 E. Feltrei,22 A. Hauke,22 H. M. Lacker,22 E. Maly,22 R. Müller-Pfefferkorn,22 R. Fogwski,22 S. Otto,22 A. Petzold,22 J. Schubert,22 K. R. Schubert,22 R. Schwierz,22 B. Spaan,22 J. E. Sundermann,22 D. Bernard,23 G. R. Bonneaud,23 F. Brochard,23 P. Grenier,23 S. Schrenk,23 Ch. Thiebaux,23 G. Vasileiadis,23 M. Verderi,23 D. J. Bard,24 A. Khan,24 D. Lavin,24 F. Muheim,24 S. Playfer,24 M. Andreotti,25 V. Azzolini,25 D. Bettoni,25 C. Bozzi,25 R. Calabrese,25 G. Cibinetto,25 E. Luppi,25 M. Negrini,25 A. Sarti,25 E. Treadwell,26 R. Baldini-Ferroli,27 A. Calcaberta,27 R. de Sangro,27 G. Finocchiaro,27 P. Patteri,27 M. Piccolo,27 A. Zallo,27 A. Buzzo,28 R. Capara,28 R. Contri,28 G. Crosetti,28 M. Lo Vetere,28 M. Macri,28 M. R. Monge,28 S. Passaggio,28 C. Patrigiani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 S. Bailey,29 G. Brandenburg,29 M. Morii,29 E. Won,29 R. S. Dubitzky,30 U. Langenegger,30 W. Bhimji,31 D. A. Bowerman,31 P. D. Dauncey,31 U. Egede,31 J. R. Gaillard,31 G. W. Morton,31 J. A. Nash,31 G. P. Taylor,31 J. G. Grenier,32 U. Mallik,32 J. Cochran,33 H. B. Crawley,33 J. Lambs,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 J. Yi,33 M. Davier,34 G. Grosdidier,34 A. Höcker,34 S. Laplace,34 F. Le Diberder,34 V. Lepeltier,34 A. M. Lutz,34 T. C. Petersen,34 S. Plaszczynski,34 M. H. Schune,35 L. Santot,34 G. Wormser,34 C. H. Cheng,35 D. J. Lange,35 M. C. Simani,35 D. M. Wright,35 A. J. Bevan,36 J. P. Coleman,36 J. R. Fry,36 E. Gabathuler,36 R. Gamet,36 R. J. Parry,36 D. J. Payne,36 R. J. Sloane,36 C. Touramanis,36 J. J. Back,37 P. F. Harrison,37 G. B. Mohanty,37 C. L. Brown,38 G. Cowan,38 R. L. Flack,38 H. U. Flaecher,38 M. G. Green,38 C. E. Marker,38 T. R. McMahon,38 S. Ricciardi,38 F. Salvatore,38 G. Vaitis,38 M. A. Winter,38 D. Brown,39 C. L. Davis,39 J. Allison,40 R. N. Barlow,40 R. J. Barlow,40 P. A. Hart,40 M. C. Hodgkinson,40 G. D. Lafferty,40 A. J. Lyon,40 J. C. Williams,40 A. Farbin,41 W. D. Hulsbergen,41 A. Jawahery,41 D. Kovalsky,41 C. K. Lae,41 V. Lillard,41 D. A. Roberts,41 G. Blaylock,42 C. Dallapiccola,42 K. T. Flood,42 S. S. Hertzbach,42 R. Kolfer,42 V. B. Koptchek,42 T. B. Moore,42 S. Saremi,42 H. Stangiel,42 S. Willocq,42 R. Cowan,43 G. Sciolla,43 F. Taylor,43 R. K. Yamamoto,43 D. J. Mangeol,44 P. M. Patel,44 S. H. Robertson,44 A. Lazzaro,45 F. Palombo,45 J. M. Bauer,46 L. Cremaldi,46 V. Eschenburg,46 R. Godang,46 R. Kroeger,46 J. Reidy,46 D. A. Sanders,46 D. J. Summers,46 H. W. Zhao,46 S. Brunet,47 D. Côté,47 P. Taras,47 H. Nicholson,48 N. Cavall,49 F. Fabozzi,49 C. Gatto,49 L. Lista,49 D. Monorchio,49 P. Paolucci,49
Number	Institution 1	Address 1	Number	Institution 2	Address 2
20	University of Colorado	Boulder, CO 80309, USA	22	Technische Universität Dresden, Institut für Kern- und Teilchenphysik	D-01062 Dresden, Germany
21	Colorado State University	Fort Collins, CO 80522, USA	23	École Polytechnique	LLR, F-91128 Palaiseau, France
24	University of Edinburgh	Edinburgh EH9 3JZ, United Kingdom	25	Università di Ferrara, Dipartimento di Fisica e INFN	I-44100 Ferrara, Italy
26	Florida AE&M University	Tallahassee, FL 32307, USA	27	Laboratori Nazionali di Frascati dell’INFN	I-00044 Frascati, Italy
28	Università di Genova, Dipartimento di Fisica e INFN	I-16146 Genova, Italy	29	Harvard University	Cambridge, MA 02138, USA
30	Universität Heidelberg	Physikalisches Institut, Philosophenweg 12	31	Imperial College London	London, London, SW7 2AZ, United Kingdom
32	Technische Universität Dresden, Institut für Kern- und Teilchenphysik	D-01062 Dresden, Germany	33	Ohio State University	Columbus, OH 43210, USA
34	Massachusetts Institute of Technology, Laboratory for Nuclear Science	Cambridge, MA 02139, USA	35	McGill University	Montréal, QC, Canada H3A 2T8
36	University of Notre Dame	Notre Dame, IN 46556, USA	37	University of Padova	I-35131 Padova, Italy
38	University of London	Royal Holloway and Bedford New College	39	Université Paris VI et VII, Lab de Physique Nucléaire	F-75252 Paris, France
40	University of Michigan	College Park, MD 20742, USA	41	Università di Milano, Dipartimento di Fisica e INFN	I-20133 Milano, Italy
42	University of Massachusetts	Amherst, MA 01003, USA	43	University of Mississippi	MS 38677, USA
44	Mount Holyoke College	South Hadley, MA 01075, USA	45	Université de Montréal	QC, Canada H3C 3J7
46	Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN	I-80126 Napoli, Italy	47	University of Oregon	Eugene, OR 97403, USA
48	Princeton University	Princeton, NJ 08544, USA	49	University of Perugia	I-06100 Perugia, Italy
50	NIKHEF, National Institute for Nuclear Physics and High Energy Physics	NL-1009 DB Amsterdam, The Netherlands	51	University of Padova	I-35131 Padova, Italy
52	Oak Ridge National Laboratory	Oak Ridge, TN 37831, USA	53	Université de Pisa	I-56127 Pisa, Italy
54	Ohio State University	Columbus, OH 43210, USA	55	Carnegie Mellon University	Pittsburgh, PA 15213, USA
56	Università di Roma	La Sapienza, I-00185 Roma, Italy	57	University of Padova	I-35131 Padova, Italy
58	University of Oxford	Oregon, OR 97403, USA	59	Università di Trieste	I-34127 Trieste, Italy
60	Vanderbilt University	Nashville, TN 37235, USA	61	University of Pennsylvania	Columbia, SC 29208, USA
62	University of Rochester	D-18051 Rostock, Germany	63	Stanford Linear Accelerator Center	Stanford, CA 94309, USA
64	Rutherford Appleton Laboratory	Chilton, Didcot, Oxon, UK 011 0QX, United Kingdom	65	University of Pennsylvania	Pittsburgh, PA 15213, USA
66	DAPNIA/Dapnia, CEA/ Saclay	F-91191 Gif-sur-Yvette, France	67	University of South Carolina	Columbia, SC 29208, USA
68	Stanford Linear Accelerator Center	Stanford, CA 94309, USA	69	University of Texas at Austin	Austin, TX 78712, USA
70	University of Texas at Dallas	Richardson, TX 75083, USA	71	University of Vienna	I-10125 Torino, Italy
72	University of Tennessee	Knoxville, TN 37996, USA	73	Carnegie Mellon University	Pittsburgh, PA 15213, USA
74	University of Trieste	I-34127 Trieste, Italy	75	University of Oxford	Oregon, OR 97403, USA
76	Vanderbilt University	Nashville, TN 37235, USA	77	University of Victoria	Victoria, BC, Canada V8W 3P6
78	University of Wisconsin	Madison, WI 53706, USA	79	Yale University	New Haven, CT 06511, USA

(Dated: November 26, 2021)
We search for $B^\pm \rightarrow (K^\mp \pi^\pm)\rho\rho$ decays, where $[K^\mp \pi^\pm]_D$ indicates that the $K^\mp \pi^\pm$ pair originates from the decay of a D^0 or \overline{D}^0. Results are based on 120×10^6 $\Upsilon(4S) \rightarrow BB$ decays collected with the BABAR detector at SLAC. We set an upper limit on the ratio

$$\mathcal{R}_{K} = \frac{\Gamma(B^+ \rightarrow [K^\mp \pi^\pm]_D K^\pm)}{\Gamma(B^+ \rightarrow [K^\mp \pi^\pm]_D K^\pm)} < 0.026 \ (90\% \ C.L.)$$

This constrains the amplitude ratio $r_B \equiv |A(B^+ \rightarrow \overline{D}^0 K^-)/A(B^+ \rightarrow D^0 K^-)| < 0.22 \ (90\% \ C.L.)$, consistent with expectations. The small value of r_B favored by our analysis suggests that the determination of the CKM phase γ from $B \rightarrow DK$ will be difficult.

PACS numbers: 13.25.Hw, 14.40.Nd

Following the discovery of CP violation in B-meson decays and the measurement of the angle β of the unitarity triangle [1] associated with the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix, focus has turned towards the measurements of the other angles α and γ. The angle α is $\arg(-V_{ub}V_{td}^*/V_{cb}V_{td})$, where V_{ij} are CKM matrix elements; in the Wolfenstein convention [2], $\gamma = \arg(V_{ub}^*)$.

Several proposed methods for measuring γ exploit the interference between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$ (Fig. 1) which occurs when the D^0 and the \overline{D}^0 decay to common final states, as first suggested in Ref. [3].

![Feynman diagrams for $B^- \rightarrow D^0 K^-$ and $\overline{D}^0 K^-$. The latter is CKM- and color-suppressed with respect to the former.](image)

FIG. 1: Feynman diagrams for $B^- \rightarrow D^0 K^-$ and $\overline{D}^0 K^-$. The latter is CKM- and color-suppressed with respect to the former.

Following the proposal in Ref. [4], we search for $B^- \rightarrow \overline{D}^0 K^-$ followed by $\overline{D}^0 \rightarrow K^+ \pi^-$, as well as the charge conjugate sequence, where the symbol \overline{D}^0 indicates either a D^0 or a \overline{D}^0. Here the favored B decay followed by the doubly CKM-suppressed D decay interferes with the suppressed B decay followed by the CKM-favored D decay. We use the notation $B^- \rightarrow [h_1^+ h_2^-]_D h_3^-$, with each $h_i = \pi$ or K for the decay chain $B^- \rightarrow D^0 h_3^-$, $\overline{D}^0 \rightarrow h_1^+ h_2^-$. We also refer to h_3 as the bachelor π or K. Then, ignoring D mixing,

$$\mathcal{R}^{\pm}_{K} \equiv \frac{\Gamma([K^\mp \pi^\pm]_D K^\pm)}{\Gamma([K^\mp \pi^\pm]_D K^\pm)} = r_B^2 + r_D^2 + 2r_B r_D \cos(\pm \gamma + \delta),$$

where

$$r_B \equiv \frac{|A(B^- \rightarrow \overline{D}^0 K^-)|}{|A(B^- \rightarrow D^0 K^-)|}, \quad \delta \equiv \delta_B + \delta_D,$$

and δ_B and δ_D are strong phase differences between the two B and D decay amplitudes, respectively. The expression for \mathcal{R}^{\pm}_{K} neglects the tiny contribution to the $[K^\mp \pi^\pm]_D K^\pm$ mode from the color suppressed B-decay followed by the doubly-CKM suppressed D-decay.

Since r_B is expected to be of the same order as r_D, CP violation could manifest itself as a large difference between \mathcal{R}^{+}_{K} and \mathcal{R}^{-}_{K}. Measurements of \mathcal{R}^{\pm}_{K} are not sufficient to extract γ, since these two quantities are functions of three unknowns: γ, r_B, and δ. However, they can be combined with measurements for other \overline{D}^0 modes to extract γ in a theoretically clean way [2].

The value of r_B determines, in part, the level of interference between the diagrams of Fig. 1. In most techniques for measuring γ, high values of r_B lead to better sensitivity. Since \mathcal{R}^{\pm}_{K} depend quadratically on r_B, measurements of \mathcal{R}^{\pm}_{K} can constrain r_B. In the Standard Model, $r_B = |V_{ub}V_{cs}^*/V_{cb}V_{ts}| F_{cs} \approx 0.4 F_{cs}$, and $F_{cs} < 1$ accounts for the additional suppression, beyond that due to CKM factors, of $B^- \rightarrow \overline{D}^0 K^-$ relative to $B^- \rightarrow D^0 K^-$. Naively, $F_{cs} = 1/3$, which is the probability for the color of the quarks from the virtual W in $B^- \rightarrow \overline{D}^0 K^-$ to match that of the other two quarks; see Fig. 1. Early estimates gave $F_{cs} \approx 0.22$, leading to $r_B \approx 0.09$; however, recent measurements [5] of color suppressed $b \rightarrow c$ decays ($B \rightarrow D^{(*)}h^0$; $h^0 = \pi^0, \rho^0, \omega, \eta, \eta'$) suggest that F_{cs}, and therefore r_B, could be larger, e.g., $r_B \approx 0.2$ [8]. A study by the Belle collaboration [9] favors a large value of r_B: $r_B = 0.26^{+0.11}_{-0.15}$.

Our results are based on $120 \times 10^6 \Upsilon(4S) \rightarrow BB$ decays, corresponding to an integrated luminosity of 109 fb$^{-1}$, collected between 1999 and 2003 with the BABAR detector [10] at the PEP-II B Factory at SLAC. A 12 fb$^{-1}$ off-resonance data sample, with a CM energy 40 MeV below the $\Upsilon(4S)$ resonance, is used to study continuum events, $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s$, or c).

The event selection was developed from studies of simulated BB and continuum events, and off-resonance data. A large on-resonance data sample of $B^- \rightarrow D^0 \pi^-$,
$D^0 \rightarrow K^-\pi^+$ events was used to validate several aspects of the simulation and analysis procedure. We refer to this mode and its charge conjugate as $B \rightarrow D\pi$.

Kaon and pion candidates in $B^\pm \rightarrow [K\pi]_D K^\pm$ must satisfy K or π identification criteria that are typically 90% efficient, depending on momentum and polar angle. Misidentification rates are at the few percent level. The invariant mass of the $K\pi$ pair must be within 18.8 MeV (2.5σ) of the mean reconstructed D^0 mass. The remaining background from other $B^\pm \rightarrow [h_1 h_2]_{0\pi\pi}$ modes is eliminated by removing events where any $h_1^+ h_2^-$ pair, with any particle-type assignment except for the signal hypothesis for the $h_1 h_2$ pair, is consistent with D^0 decay. We also reject B candidates where the D^0 paired with a π^0 or π^\pm in the event is consistent with $D^\star \rightarrow D\pi$ decay.

After these requirements, backgrounds are mostly from continuum, mainly $e^+e^- \rightarrow c\bar{c}$, with $c \rightarrow D^0 \rightarrow K^+\pi^-$ and $c \rightarrow D \rightarrow K^-$. These are reduced with a neural network based on nine quantities that distinguish continuum and $B\bar{B}$ events: (i) A Fisher discriminant based on the quantities $L_0 = \sum_i p_i$ and $L_2 = \sum_i p_i \cos^2 \theta_i$ calculated in the CM frame. Here, p_i is the momentum and θ_i is the angle with respect to the thrust axis of the B candidate of tracks and clusters not used to reconstruct the B. (ii) $|\cos \theta_T|$, where θ_T is the angle in the CM frame between the thrust axes of the B and the detected remainder of the event. (iii) $\cos \theta_B$, where θ_B is the polar angle of the B in the CM frame. (iv) $\cos \theta_D^0$ which is the decay angle in $D^0 \rightarrow K\pi$, i.e., the angle between the direction of the K and the line of flight of the D^0 in the D^0 rest frame. (v) $\cos \theta_D^0$, where θ_D^0 is the decay angle in $B \rightarrow D^0 K$. (vi) the difference ΔQ between the sum of the charges of tracks in the D^0 hemisphere and the sum of the charges of the tracks in the opposite hemisphere excluding the tracks used in the reconstructed B. For signal, $\langle \Delta Q \rangle = 0$, while for the $c\bar{c}$ background $\langle \Delta Q \rangle \approx 1 \times Q_B$, where Q_B is the B candidate charge. The ΔQ RMS is 2.4. (vii) $Q_B \cdot Q_K$, where Q_K is the sum of the charges of all kaons not in the reconstructed B. Many signal events have $Q_B \cdot Q_K \leq -1$, while most continuum events have no kaons outside of the reconstructed B, and hence $Q_K = 0$. (viii) the distance of closest approach between the bachelor track and the trajectory of the D^0. This is consistent with zero for signal events, but can be larger in $c\bar{c}$ events. (ix) the existence of a lepton (e or μ) and the invariant mass ($m_{K\ell\nu}$) of the lepton and the bachelor K. Continuum events have fewer leptons than signal events. Moreover, most leptons in $c\bar{c}$ events are from $D \rightarrow K\ell\nu$, where K is the bachelor kaon, so that $m_{K\ell\nu} < m_D$.

The neural net is trained with simulated continuum and signal events. We find agreement between the distributions of all nine variables in simulation and in control samples of off-resonance data and of $B \rightarrow D\pi$. The neural net requirement is 66% efficient for signal, and rejects 96% of the continuum background. An additional requirement, $\cos \theta_D^0 > -0.75$, rejects 50% of the remaining $B\bar{B}$ backgrounds and is 93% efficient for signal.

A B candidate is characterized by the energy-substituted mass $m_{ES} \equiv \sqrt{\left(\frac{E}{2} + \vec{p}_B \cdot \vec{p}_B\right)^2/E_B^2 - p_B^2}$ and energy difference $\Delta E \equiv E_B - \frac{1}{2}\sqrt{s}$, where E and p are energy and momentum, the asterisk denotes the CM frame, the subscripts 0 and B refer to the $\Upsilon(4S)$ and B candidate, respectively, and s is the square of the CM energy. For signal events $m_{ES} = m_B$ within the resolution of about 2.5 MeV, where m_B is the known B mass.

We require ΔE to be within 47.8 MeV (2.5σ) of the mean value of -4.1 MeV found in the $B \rightarrow D\pi$ control sample. The yield of signal events is extracted from a fit to the m_{ES} distribution of events satisfying all of the requirements discussed above.

Our selection includes contributions from backgrounds with m_{ES} distributions peaked near m_B (peaking backgrounds). We distinguish those with a real $D^0 \rightarrow K^+\pi^\pm$ and those without, e.g., $B^+ \rightarrow h^+ h^- h^-$. The latter are estimated from events with $K^+\pi^\pm$ mass in a sideband of the D^0. The former are from $B^- \rightarrow D^0\pi^-$, followed by the CKM-suppressed decay $D^0 \rightarrow K^+\pi^-$, with the bachelor π misidentified as a K. These are estimated as $N_{peak}^D = r_D^2 N_{D\pi}$, where $N_{D\pi}$ is the number of observed $B \rightarrow D\pi$ events with the π misidentified as a K. The technique used to measure $N_{D\pi}$ is described below. Studies of simulated $B\bar{B}$ events indicate that other peaking background contributions are negligible.

Because of the small number of events, we combine the B^+ and B^- samples. We define the quantity

$$\mathcal{R}_{K\pi} = \frac{\Gamma(B^- \rightarrow [K^+\pi^-]_D K^-) + \Gamma(B^+ \rightarrow [K^-\pi^+]_D K^+)}{\Gamma(B^- \rightarrow [K^-\pi^+]_D K^-) + \Gamma(B^+ \rightarrow [K^+\pi^-]_D K^+)}$$

assuming no CP violation in $[K^+\pi^\pm]_D K^\mp$.

We determine $\mathcal{R}_{K\pi} = c N_{sig}/N_{DK}$, where N_{sig} is the number of $B^\pm \rightarrow [K^+\pi^\mp]_D K^\mp$ signal events and N_{DK} is the number of $B^\pm \rightarrow [K^\mp\pi^\pm]_D K^\pm$ events, a mode which we denote by $B \rightarrow DK$. Most systematic uncertainties cancel in the ratio. The factor $c = 0.93 \pm 0.04$, determined from simulation, accounts for a difference in the event selection efficiency between the signal mode and $B \rightarrow DK$. This difference is mostly due to a correlation between the efficiencies of the $\cos \theta_D^0$ requirement and the D^0 veto constructed using the bachelor track and the oppositely-charged track in the $[K\pi]$ pair. This correlation depends on the relative sign of the kaon and the bachelor track, and is different in the two modes.

The value of $\mathcal{R}_{K\pi}$ is obtained from a simultaneous unbinned maximum likelihood fit to four m_{ES} and three ΔE distributions. These distributions are used to extract the parameters needed to calculate $\mathcal{R}_{K\pi}$ (e.g., N_{sig}) or to
constrain the shapes of other distributions. The likelihood is expressed directly in terms of $R_{K\pi}$.

The m_{ES} distribution for signal candidates is fit to the sum of a threshold background function and a Gaussian centered at m_B. The m_{ES} distribution for events passing all signal requirements, but with m_{ES} in a sideband of $|\Delta E| < 4.1$ MeV, is also fit to a Gaussian and a threshold function. The number of events in the Gaussian is $N_{sig} + N_{peak}^D + N_{peak}^{hh}$, where N_{peak}^D and N_{peak}^{hh} are the number of peaking background events with and without a real D^0, respectively. The Gaussian parameters are constrained by the fit to the m_{ES} distribution of candidates in a sideband of $|\Delta E| < 200$ MeV, excluding the signal region. The m_{ES} distribution for events passing all signal requirements, but with $K^{+}\pi^{\pm}$ mass in the sideband of the D^0 is fit in the same manner. We estimate N_{peak}^{hh} from the Gaussian yield of the last fit, accounting for the different sizes of the signal and sideband D^0 mass ranges. The m_{ES} distributions for signal and D^0 sideband candidates are shown in Fig. 2a,b.

The m_{ES} distribution for $B \to D K$ candidates with $|\Delta E| < 48.7$ MeV (see Fig. 2c) is also fit to a Gaussian and a threshold function. The number of events in the Gaussian is $N_{DK} + N_{D\pi}$, where, as previously defined, N_{DK} is the number of $B \to D K$ events and $N_{D\pi}$ is the number of $B \to D \pi$ events with the bachelor π misidentified as a K. The ratio $N_{DK}/N_{D\pi}$ is obtained by fitting the ΔE distribution for $B \to D K$ candidate events with $m_{ES} > 5.27$ GeV (see Fig. 2d). This is modeled as the sum of a combinatoric background function, a double-Gaussian for the $B \to D \pi$ background, and a Gaussian for the $B \to D K$ signal. The parameters of the Gaussians in the ΔE fit are constrained from fits to the ΔE distributions of well-identified $B \to D \pi$ events with the bachelor π assumed to be a π or a K.

We find $R_{K\pi} = (4 \pm 12) \times 10^{-3}$, consistent with zero. The number of signal, normalization, and peaking background events are $N_{sig} = 1.1 \pm 3.0$, $N_{DK} = 261 \pm 22$, and $N_{peak}^{hh} = 0.38 \pm 0.07$, and $N_{peak}^{hh} = 0.4 \pm 1.1$. The uncertainties are mostly statistical. From the likelihood, we set a Bayesian limit $R_{K\pi} < 0.026$ at the 90% confidence level (C.L.), assuming a constant prior probability for $R_{K\pi} > 0$ (see Fig. 3).

In Fig. 4 we show the dependence of $R_{K\pi}$ on r_B, together with our limit. This is shown allowing a $\pm 1\sigma$ variation on r_B, for the full range $0^\circ < \gamma < 180^\circ$ and δ, as well as with the restriction $48^\circ < \gamma < 73^\circ$ suggested by global CKM fits. The least restrictive limit on r_B is computed assuming maximal destructive interference: $\gamma = 0^\circ$, $\delta = 180^\circ$ or $\gamma = 180^\circ$, $\delta = 0^\circ$. This limit is $r_B < 0.22$ at 90% C.L.

In summary, we find no evidence for $B^\pm \to [K^{\mp}\pi^{\pm}] D K^{\mp}$. We set a 90% C.L. limit on the ratio $R_{K\pi}$ of rates for this mode and the favored mode $B^\pm \to [K^{\mp}\pi^{\pm}] D K^{\mp}$. Our limit is $R_{K\pi} < 0.026$ at 90% C.L. With the most conservative assumption on the values of γ and of the strong phases in the B and D decays, this results in a limit on the ratio of the magnitudes of the $B^- \to D^0 K^-$ and $B^- \to D^0 K^-$ amplitudes $r_B < 0.22$ at 90% C.L. Our analysis suggests that r_B is
smaller than the value reported by the Belle collaboration, \(r_B = 0.26^{+0.11}_{-0.15} \), but given the uncertainties the two results are not in disagreement. A small value of \(r_B \) will make it difficult to measure \(\gamma \) with other methods [3][12] based on \(B \to \bar{D}K \).

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

* Also with Università della Basilicata, Potenza, Italy
† Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
‡ Deceased
[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002); Belle Collaboration, K. Abe et al., Phys. Rev. D66, 071102 (2002).
[2] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[3] M. Gronau and D. Wyler, Phys. Lett. B265, 172 (1991); M. Gronau and D. London, Phys. Lett. B253, 483 (1991).
[4] D. Atwood, I. Dunietz, and A. Soni, Phys. Rev. Lett. 78, 3257 (1997); Phys. Rev. D63, 036005 (2001).
[5] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 171801 (2003).
[6] See, for example, M. Neubert and B. Stech, in Heavy Flavors, 2nd Edition, edited by A.J. Buras and M. Lindner, World Scientific, Singapore, 1997.
[7] CLEO Collaboration, T.E. Coan et al., Phys. Rev. Lett. 88, 062001 (2001). Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 88, 052002 (2002); A. Satpathy et al., Phys. Lett. B553, 159 (2003). BABAR Collaboration, B. Aubert et al., Phys. Rev. D69, 032004 (2004).
[8] M. Gronau, Phys. Lett. B557, 198 (2003).
[9] Belle Collaboration, K. Abe et al., Nucl. Instr. and Methods A479, 1 (2002).
[10] BABAR Collaboration, B. Aubert et al., Nucl. Instr. and Methods A479, 1 (2002).
[11] A. Höcker, H. Lacker, S. Laplace, and F. Le Diberder, Eur. Phys. J. C21, 225 (2001); updated results can be found in http://ckmfitter.in2p3.fr.
[12] A. Giri, Yu. Grossman, A. Soffer, and J. Zupan, Phys. Rev. D68, 054018 (2003); Yu. Grossman, Z. Ligeti, and A. Soffer, Phys. Rev. D67, 071301 (2003).