CONTACT Vipin M. Vashishtha vipinipsita@gmail.com Director and Consultant Pediatrician, Mangla Hospital & Research Center, Bijnor, Uttar Pradesh, India

© 2020 Taylor & Francis Group, LLC
BCG vaccination. Moreover, the hot and humid climatic conditions resist intense transmission of respiratory viruses and may suppress the severity of the current pandemic. Another argument against this hypothesis is the waning of BCG-induced immunity. According to many studies, the BCG induced protection against TB wanes following infant immunization, and some studies have shown that it almost completely disappears by 10–15 years of age. There is still inadequate evidence to prove that the BCG induced non-tuberculous protective immunity persists for an exceedingly long time, i.e. till adulthood.

BCG vaccine-induced heterologous, nonspecific effects

BCG vaccine mainly works through induction of cell-mediated immunity whereas almost all other childhood vaccines offer protection primarily through induction of humoral immunity, i.e. production of antibodies. BCG is only moderately efficacious against pulmonary TB, but it is known to provide ‘nonspecific’ (heterologous) protection against certain respiratory infections and sepsis caused by viruses (e.g. vaccinia virus, herpes, and influenza), bacteria (e.g. Shigella flexneri), and protozoa (e.g. malaria). In Guinea-Bissau, vaccination with BCG reduced neonatal mortality in live birth weight babies by 48%. In Spain, the BCG vaccine reduced non-TB hospital admissions in infants by 32% for respiratory infections and by 53% for sepsis. Additionally, it has been shown that BCG vaccination was responsible for the reduction of all-cause mortality by approximately 50% among under-5-year old children.

Most of the studies on nonspecific effects of BCG were done by Abay P et al. mainly in Guinea-Bissau. Some of these studies were observational, non-randomized with questionable methodology, hence, with low-level evidence. The WHO had also reviewed these trials and concluded that BCG appeared to lower overall mortality in children but graded the evidence as ‘low’. It suggested the need for more randomized trials to demonstrate these effects. It was only after a few recent studies mainly by Netea MG et al. that provided evidence on the nonspecific effects of the BCG through human studies with the explanatory mechanism. In 2018, Netea MG et al. conducted a randomized placebo-controlled human challenge study in which it was shown that the BCG induced genome-wide epigenetic reprogramming of monocytes and offered protection against experimental infection with an attenuated yellow fever virus vaccine strain. Additionally, it has been shown that BCG administration enhances immune responses of other vaccines like hepatitis-B, poliovirus type-1, IPV, PCVs, with significantly higher production of antibodies.

Protective effects of BCG in adults

BCG is found useful in many non-TB conditions of adults also. This vaccine has been licensed for the treatment of superficial bladder cancer, for which it also exerts nonspecific effects. Thus far, it has not been surpassed by any other drug in terms of its ability to reduce disease recurrence and progression. BCG provides anti-tumor effects by a complex immune cascade that induces antitumor activity (via cytokine release) mediated by cytotoxic T lymphocytes, natural killer cells, neutrophils, and macrophages. BCG has also been shown to be useful in some autoimmune disorders such as Insulin-dependent diabetes mellitus (IDDM) and multiple sclerosis. In a study from Harvard Medical School, adults with longstanding Type-1 diabetes showed a remarkable recovery of serum HbA1c levels to near normal with no episodes of severe hypoglycemia at the end of three years which remained stable for the next five years. It has been previously documented that regulatory T cells (Tregs) play a key role in preventing various autoimmune disorders. The BCG vaccine probably works by upregulating these Tregs. Some observational studies suggest BCG-vaccination is associated with some protection against allergies, eczema, and asthma, although these findings have been inconsistent. Additionally, BCG has also been shown to be associated with protection against melanoma and may play a role in its treatment. Recently, a retrospective review has shown a lower risk of development of lung cancer among those who had received BCG vaccination during childhood.

The mechanism behind the generation of BCG-induced nonspecific effects

Unlike the ‘adaptive’ immunity, the ‘innate’ immune system is supposed to have no memory responses. But BCG, which can remain alive in the human skin for up to several months, triggers not only Mycobacterium-specific memory B and T cells but also stimulates the cells of the innate system (monocytes, neutrophils, macrophages, natural killer, dendritic cells, etc.) for a prolonged period. The process by which BCG imparts immune memory to the innate system is known as ‘trained innate immunity’ which in turn is elicited by a phenomenon known as ‘epigenetic effect’. The ‘epigenetic effect’ is produced by the modification of gene expression rather than alteration of the genetic code or nucleotide sequencing. This effect is brought about by two main mechanisms, DNA methylation and histone modifications, that alter innate immunity. BCG does epigenetic reprogramming in the training of innate cells, particularly monocytes. Upon pathogen X recognition by a receptor, ‘naïve’ monocytes undergo epigenetic reprogramming and a metabolic shift and convert into ‘trained’ monocytes, primed to respond more vigorously to nonspecific (Pathogens X, Y, and Z) secondary stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Later on, these ‘trained’ monocytes have a significantly higher production of several proinflammatory cytokines like interferon-gamma (IFN-γ), TNF-alfa, interleukins (IL-1β, IL-6, etc.) upon heterologous challenges, particularly T helper cell type 1 polarizing and typically monocyte-derived proinflammatory cytokines that helps in rapid clearance of infection (Figure 1). These modified, activated, ‘trained’ cells can be stimulated by various non-related infectious (viruses, bacteria, fungi and their components, parasites) or noninfectious agents such as nanoparticles which leads to potent immune memory responses. This response explains the BCG nonspecific protection against sepsis, pneumonia, and other pathogens. Both epigenetic changes and increased
nonspecific immune responses could be detected up to one year after BCG vaccination. 12

Effect of BCG strains and scar rates on its nonspecific effects

The BCG vaccine strains that are employed in the immunization programs of different countries vary widely. Over the years, more than 14 sub-strains of BCG have been used as BCG vaccine in different parts of the world. 11 Not all strains of BCG have similar potential to induce ‘trained immunity’ in vaccinated individuals; as a result, they have different propensities to induce ‘non-specific’ effects. 29 Most of the studies on beneficial effects of BCG against sepsis and pneumonia were done with Danish strain. 13–15 Whether other strains do have similar ‘non-specific’ responses is not yet ascertained. The ‘nonspecific effects’ of BCG are greater when there is a setback. Different strains of BCG have different scar rates. Scar formation rate is higher around >90% with BCG-Danish and BCG-Tokyo strains whereas it is only 52% with BCG–Moscow. 30 Among BCG-vaccinated children in a setting with low scar prevalence, having a scar is associated with lower mortality and morbidity. Revaccination with BCG confers little or no extra protection against TB, but it may increase the beneficial nonspecific effects of BCG. 30

Can BCG offer any protection against ongoing COVID-19 pandemic?

Even after almost 100 years of its invention, it is still a mystery, how exactly the BCG vaccine works. 31 It would be ironic if we were to discover that BCG protects against TB via a ‘nonspecific’ effect mediated by innate immunity. Nevertheless, at least we know that BCG elicits heterologous, ‘non-specific’ effects against a variety of infectious diseases, and SARS-CoV-2 shall not be an exception. Its beneficial effects are also well documented in adults albeit with some potential for toxicity. 23, 24 Notwithstanding the recent statement of WHO that there is no evidence of BCG-induced protection against SARS-CoV-2 infection, 32 still, the BCG may have some utility owing to the induction of strong, ‘non-specific’, innate immune responses in the vaccinated subjects. BCG may not be able to exert significant inhibitory responses against the SARS-CoV-2 virus, but even ‘stopgap’ protection and some attenuation of the disease may be expected. An extra dose of BCG to the healthcare workers and older people with comorbid conditions would be worth investigating. BCG is generally safe and well tolerated; however, it is contraindicated in immunocompromised individuals, so one needs to be extra careful while administering BCG to these individuals. Apart from safety, there are other issues like the selection of proper strain of the vaccine, and quantum of the immune responses elicited in older and high-risk individuals in comparison to the young and healthy population that need deliberation before employing the vaccine in these groups. One argument against the protective effects of childhood BCG vaccination on COVID-19 susceptibility is the waning of BCG-induced immunity. However, if the heterologous, ‘non-specific’ effects persist even for a few months, they should be able to offer some protection through modulation of innate immunity to the front-line health workers and high-risk individuals till a specific anti-SARS-CoV-2 vaccine becomes available.

Acknowledgments

The author would like to acknowledge Dr Stanley A. Plotkin for his intellectual inputs in developing the manuscript.

Conflicts of interest

None

Disclosure of potential conflicts of interest

I hereby declare that there exist no commercial or financial relationships that could, in any way, lead to a potential conflict of interest.

Funding

None

ORCID

Vipin M. Vashishtha http://orcid.org/0000-0003-1097-117X

References

1. World Health Organization. Coronavirus disease (COVID-19) pandemic; 2020 [accessed 2020 May 28]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
2. Thanh Le T, Andreadakis Z, Kumar A, Román RG, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:305-06.
3. Ella KM, Mohan VK. Coronavirus vaccines: light at the end of the tunnel. Indian Pediatr. 2020;57(5):407-10. doi:10.1007/s13312-020-1812-z.
4. Mahase E. Covid-19: what do we know so far about a vaccine? BMJ. 2020;369:m1679. doi:10.1136/bmj.m1679.
5. Reducing health care workers absenteeism in Covid-19 pandemic through BCG vaccine (BCG-CORONA); 2020 [accessed 2020 Apr 14]. https://clinicaltrials.gov/ct2/show/NCT04328441.
6. BCG vaccination to protect healthcare workers against COVID-19 (BRACE); 2020 [accessed 2020 Apr 14]. https://clinicaltrials.gov/ct2/show/NCT04372206.

7. Austell J. Can an oral polio vaccine help stop COVID-19? [blog]. Global Virus Network (GVN); 2020 [accessed 2020 Apr 14]. https://gvn.org/dr-robert-gallo-exclusive-broadcast-interview-with-walter-isacson-of-amanpour-co/.

8. Shanker V. Measles immunization: worth considering containment strategy for SARS-CoV-2 global outbreak. Indian Pediatr. 2020;57(4):380. doi:10.1007/s13332-020-1804-z.

9. PGI to test leprosy vaccine on Covid-19 patients. 2020. Hindustan Times. 2020 Apr 22 [accessed 2020 Apr 27]. https://www.hindustantimes.com/chanidgarh/pgi-to-test-leprosy-vaccine-on-covid-19-patients/story-0DH4H4S8mANbUZNRRj2kyK.html.

10. Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, Du M, Min Liu M. Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries. Sci Total Environ. 2020;729:139051. doi:10.1016/j.scitotenv.2020.139051.

11. World Health Organization. SAGE working group on BCG vaccines and WHO secretariat. Report on BCG vaccine use for protection against mycobacterial infections including tuberculosis, leprosy, and other nontuberculous mycobacteria (NTM) infections; 2017 [accessed 2020 Apr 18]. https://www.who.int/immunization/sage/meetings/2017/october/1_BCG_report_revised_version_online.pdf.

12. Uthayakumar D, Paris S, Chapat L, Freyburger L, Poulet H, De Luca K. Non-specific effects of vaccines illustrated through the BCG example: from observations to demonstrations. Front Immunol. 2018;9:2869. doi:10.3389/fimmu.2018.02869.

13. Aaby P, Roth A, Ravn H, Napirna BM, Rodrigues A, Lisse IM, Stensballe L, Diness BR, Lausch KR, Lund N, et al. Randomized trial of BCG vaccination at birth to low-birthweight children: beneficial non-specific effects in the neonatal period? J Infect Dis. 2011;204(2):245–52. doi:10.1093/infdis/jir240.

14. Biering-Sørensen S, Aaby P, Napirna BM, Roth A, Ravn H, Rodrigues A, Whittle H, Benn CS. Small randomized trial among low-birth-weight children receiving bacillus Calmette-Guérin vaccination at first health center contact. Pediatr Infect Dis J. 2012;31 (3):306–8. doi:10.1097/INF.0b013e3182458289.

15. Aaby P, Kollmann TR, Benn CS. Non-specific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol. 2014;15(10):895–99. doi:10.1038/ni.2961.

16. de Castro MJ, Pardo-Seco J, Martinón-Torres F. Non-specific (Heterologous) protection of neonatal BCG vaccination against hospitalization due to respiratory infection and sepsis. Clin Infect Dis. 2015;60(11):1611–19. doi:10.1093/cid/civ144.

17. Jensen KJ, Larsen N, Biering-Sørensen S, Andersen A, Eriksen HB, Monteiro I, Hougaard D, Aaby P, Netea MG, Flanagan KL, et al. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J Infect Dis. 2015;211(6):956–67. doi:10.1093/infdis/jiu508.

18. Higgins JP, Soares-Weiser K, López-López JA, Kakourou A, Chaplin K, Christensen H, Martin NK, Sternje JAC, Reingold AL. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 2016;355:i5170. doi:10.1136/bmj.i5170.

19. Pollard AJ, Finn A, Curtis N. Non-specific effects of vaccines: plausible and potentially important, but implications uncertain. Arch Dis Child. 2017;102(11):1077–81. doi:10.1136/archdischild-2015-310282.

20. Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, Kumar V, Xavier RJ, Wijmenga C, Joosten LAB, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89–100. doi:10.1016/j.chom.2017.12.010.

21. Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(12):1473–78. doi:10.1016/j.cmi.2019.04.020.

22. Zimmermann P, Curtis N. The influence of BCG on vaccine responses - a systematic review. Expert Rev Vaccines. 2018;17 (6):547–54. doi:10.1080/14760587.2018.1483727.

23. Fuge O, Vasdev N, Alchporre P, Green JS. Immunotherapy for bladder cancer. Res Rep Urol. 2015;7:65–79. doi:10.2147/RRU.S63447.

24. Kühtreiber WM, Tran L, Kim T, Dybala M, Nguyen B, Plager S, Huang D, Janes S, Defusco A, Baum D, et al. Long-term reduction in hyperglycemia in advanced type 1 diabetes: the value of induced aerobic glycolysis with BCG vaccinations. NPJ Vaccines. 2018;3 (1):23. doi:10.1038/s41541-018-0062-8.

25. Usher NT, Chang S, Howard RS, Martinez A, Harrison LH, Santosh M, Aronson NE. Association of BCG vaccination in childhood with subsequent cancer diagnoses: A 60-year follow-up of a clinical trial. JAMA Netw Open. 2019;2(9):e191204. doi:10.1001/jamanetworkopen.2019.12014.

26. Saeed S, Quintin J, Kerstens HHD, Rao NA, Aghajanianefah A, Matarase F, Cheng SC, Ratter J, Berensken K, van der Ent MA, et al. Epigenetic programming during monocyte to macrophage differentiation and trained innate immunity. Science. 2014;345 (6204):1251086. doi:10.1126/science.1251086.

27. Mehta S, Jeffrey KL. Beyond receptors and signaling: epigenetic factors in the regulation of innate immunity. Immunol Cell Biol. 2015;93(3):233–44. doi:10.1038/icb.2014.101.

28. Italiani P, Boraschi D. Induction of innate immune memory by engineered nanoparticles: a hypothesis that may become true. Front Immunol. 2017;8:734. doi:10.3389/fimmu.2017.00734.

29. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A. 2007;104(13):5596–601. doi:10.1073/pnas.0700869104.

30. Shann F. Editorial commentary: different strains of bacillus Calmette–guérin vaccine have very different effects on tuberculosis and on unrelated infections. Clin Infect Dis. 2015;61(6):960–62. doi:10.1093/cid/civ454.

31. Moliva JL, Turner J, Torrelles JB. Immune responses to Bacillus Calmette-Guérin vaccination: why do they fail to protect against mycobacterium tuberculosis? Front Immunol. 2017;8:407. doi:10.3389/fimmu.2017.00407.

32. World Health Organization. Bacille Calmette-Guérin (BCG) vaccination and COVID-19. Scientific Brief, 12 April 2020; 2020 [accessed 2020 April 14]. https://www.who.int/news-room/com comments/detail/bacille-calamette-gu%C3%A9rin-(bcg)-vaccination-and-covid-19.