Pre-Stability of Fixed Point

Abedal-Hamza Mahdi Haza(1), Ameer M. Sahi(2)

1,2Department of Mathematics, Faculty of Computer Sciences and Mathematics, University of Kufa, Iraq.

(1) abdulhamza.hamza@uokufa.edu.iq (2) ameersahi89@gmail.com

Abstract. In this paper, we introduced certain types of stability of the fixed points in discrete dynamical systems which are pre-stability, pre-c-stability, and pre-ic-stability. We studied the relationships among these types of stability, also the relationships among these types of stability and certain types of stability which are stability, c-stability, and ic-stability

Keywords: pre-open, Fixed point, Pre-stable fixed point, Orbit, and dynamical System.

1. Introduction

A discrete dynamical system consists of a non-empty set X which is called the phase space and compositions f^t, $t \in \mathbb{N}$ of a map $f: X \to X$ where $f^t = f \circ f \circ \ldots \circ f$ (n-times). These iterates form a group or semi group. A dynamical system could be a measure space and a function that preserves measure; a metric space with an isometry; or a topological space and a continuous function, etc. In this paper, we considered phase spaces which are topological spaces [3]. A strong concept of stability for dynamical system was first formulated by N.E. Zhukovskii [10]. He introduced in 1882 a strong orbital stability concept which is based on a reparametrisation of the time variable [11]. On the 12 October 1892 (by modern calendar) Alexander Mikhailoich Lyapunov defined his doctoral thesis the general problem of the stability of motion (at Moscow university) [13]. Lyapunov defined a fixed point x_0 to be stable if for every neighborhood U of x_0, there is a neighborhood $V \subseteq U$ such that every solution $x(t)$ starting in $V (x(t))$ remains in U for all $t \geq 0$. Otherwise, x_0 is unstable [12]. In 2014 Mohammed F. Al-Ali and A.M. Hamza introduced and studied new types of stability which are c-stability and ic-stability of the fixed points [9].

In this paper, \mathbb{P}, \mathbb{R}, \mathbb{Z}, \mathbb{N}, $\overline{\mathbb{R}}$ and $\overline{\mathbb{Z}}$ will denote the family of (p-o) sets, the set of real numbers, the set of integer numbers, the set of non-negative integers, the closure of the interior of \mathbb{R} and the interior of the closure of \mathbb{R}, respectively. For any non-empty set X, we denote by τ_{UR}, τ_{ID}, τ_{IND} and τ_{C}, the usual topology on \mathbb{R}, the discrete topology, the indiscrete topology and the cofinite topology respectively. Finally we denote by A_{c} and $O(x)$, the complement of the set A and the orbit of x. We used space, map, and DDS to refer to a topological space, continuous function and discrete dynamical system, respectively.

2. Preliminaries

2.1 Definition [3]

A DDS consists of a phase space X and iterates f^t, where t belong to \mathbb{N} of a map $f: X \to X$, the nth iterate of f is the t-fold composition $f^t = f \circ f \circ \ldots \circ f$; we define f^0 to be the identity map. If f satisfy the invertible properties then $f^{-t} = f^{-1} \circ f^{-1} \circ \ldots \circ f^{-1} (n$ times). Since $f^{t+m} = f^t \circ f^m$, these iterates form a group if f is invertible, and semi group otherwise.

Pre-Stability of Fixed Point
Although we have defined DDS in a completely abstract setting, where X is simply a set, in practice X usually has additional structure that is preserved by the map f. For example, (X, f) could be a measure space and a measure-preserving map; a space and a continuous map; a metric space and an isometry; or a smooth manifold and a differentiable map.

2.2 Definition [1]
Let (X, τ) be a space, and $f: X \rightarrow X$ be a function. A point $x \in X$ is said to be fixed point of f if $f(x) = x$.

2.3 Definition [1]
Let (X, τ) be a space, and $f: X \rightarrow X$ be a map. For all $x \in X$, the orbit of x under f is the set \{ $x, f(x), f^2(x), \ldots, f^n(x), \ldots$ \}, and it is denoted by $O(x)$, where $O(x) \subseteq X$.

2.4 Definition [5]
A subset A of a space X is called a pre-open (p-o) set if and only if $A \subseteq \overline{A}$. A is called a pre-closed if and only if A^c is (p-o) and it's easy to see that A is pre-closed if and only if $\overline{A} \subseteq A$.

2.5 Remark [6]
If A is a dense subset in X, Then it is a (p-o) set.

2.6 Theorem [7]
Let X be a space. If A is a (p-o) set in X, Then $A = U \cap B$, where U is an open set in X and B is a dense set in X.

2.7 Theorem [8]
The arbitrary union of (p-o) set is also (p-o).

2.8 Definition [1]
Let (X, τ) be a space, $f: X \rightarrow X$ be a map, $x_0 \in X$ is called stable if for every open set $U \subseteq X$ containing x_0, there exists an open set $V \subseteq U$ containing x_0 such that $O(x) \subseteq U$, $\forall x \in V$.

Otherwise, x_0 is called unstable fixed point.

2.9 Theorem [9]
Let (X, τ) be a space, B_τ is a basis for τ, $f: X \rightarrow X$ be a map, and x_0 be a fixed point of f. If x_0 is stable point with respect to B_τ, then x_0 is stable point with respect to τ.

2.10 Definition [9]
Let (X, τ) be a space, $f: X \rightarrow X$ be a map. A fixed point x_0 of f is called c-stable if for any open set U containing x_0, there exists an open set $V \subseteq U$ containing x_0 such that $O(x) \subseteq U$, $\forall x \in V$.

Otherwise, we say that x_0 is not c-stable fixed point.
2.11 Theorem [9]

Let \((X, \tau)\) be a space, \(B_{\tau}\) is a basis for \(\tau\), \(f: X \rightarrow X\) be a map and \(x_0\) is a fixed point of \(f\). If \(x_0\) is c-stable with respect to \(B_{\tau}\), then \(x_0\) is c-stable with respect to \(\tau\).

2.12 Example

Consider the space \((\mathbb{R}, \tau_u)\), and \(f: \mathbb{R} \rightarrow \mathbb{R}\) be a function defined by \(f(x) = \frac{4}{3}x\). The DDS is \(\left\{\left(\frac{1}{3}\right)^n \cdot x\right\}_{n \in \mathbb{N}}\), and 0 is the fixed point of \(f\). \(B_{\tau_u} = \{(a, b); a, b \in \mathbb{R}\}\) is a basis for \(\tau_u\).

Let \(U = (x_0, x_1) \in B_{\tau_u}\), where \(0 \in U\). Choose \(V = (-a, a) \in B_{\tau_u}\), where \(0 \in V \subseteq U\), \(a = \min\{|x_0|, |x_1|\}\). Note that \(O(x) \subseteq V \subseteq \overline{U}, \forall x \in V\). Then, 0 is c-stable.

2.13 Example

Consider the space \((\mathbb{R}, \tau_u)\) and \(f : \mathbb{R} \rightarrow \mathbb{R}\) is the function defined by \(f(x) = -5x\).

\(B_{\tau_u} = \{(a, b); a, b \in \mathbb{R}\}\) is a basis for \(\tau_u\). The DDS is \(\{(-5)^n x\}_{n \in \mathbb{N}}, \) and 0 is the fixed point of \(f\).

Let \(U = (-1, 1) \in B_{\tau_u}\). Note that, for any open subset \(V\) of \(U\) containing 0, and for any \(x \in V\), \(O(x) \not\subseteq U\).

Hence, 0 is not c-stable fixed point.

2.14 Theorem [9]

Let \((X, \tau)\) be a space, \(f : X \rightarrow X\) be a map and \(x_0\) is a fixed point of \(f\). If \(x_0\) is stable, then it is c-stable.

2.15 Definition [9]

Let \((X, \tau)\) be a space, \(f: X \rightarrow X\) be a map. \(x_0 \in X\) is called ic-stable if for every open set \(U \subseteq X\) containing \(x_0\), there exists an open set \(V \subseteq U\) containing \(x_0\) such that, \(O(x) \subseteq U\), \(\forall x \in V\).

Otherwise, we say that \(x_0\) is not ic-stable fixed point.

2.16 Theorem [9]

Let \((X, \tau)\) be a space, \(B_{\tau}\) is a basis for \(\tau\), \(f: X \rightarrow X\) be a map and \(x_0\) is a fixed point of \(f\). If \(x_0\) is ic-stable with respect to \(B_{\tau}\), then \(x_0\) is ic-stable with respect to \(\tau\).

2.17 Theorem [9]

Let \((X, \tau)\) be a space, \(f : X \rightarrow X\) be a map and \(x_0\) is a fixed point of \(f\). If \(i\)- \(x_0\) is stable, then it is ic-stable.

\(ii\)- \(x_0\) is ic-stable, then it is c-stable.
3. Main Results

3.1 Definition

Let \((X, \tau)\) be a space in a DDS \(\{f^n\}_{n\in\mathbb{N}}\), and let \(x_0\) be a fixed point of \(f\). We say that \(x_0\) is pre-stable if for any (p-o) set \(U \subseteq X\) containing \(x_0\), there exists a (p-o) set \(V \subseteq U\) containing \(x_0\) such that \(O(x) \subseteq U; \forall x \in V\).

Otherwise, \(x_0\) is called not pre-stable fixed point.

3.2 Example

Consider the space \((\mathbb{R}, \tau)\), \(\tau = \{R, \emptyset, Z, R\setminus Z\}\) and \(f : R \to R\) is the function defined by

\[
f(x) = \begin{cases} x^2, & x \in Z \\ x + 1, & \text{o.w.} \end{cases}
\]

The fixed points of \(f\) are 0 and 1.

0 is pre-stable:

Let \(U\) be any (p-o) set containing 0. Choose \(V = \{0\} \subseteq U\). \(V\) is (p-o) subset of \(U\) containing 0 with \(O(0) \subseteq U\).

So, 0 is pre-stable.

Similarly, 1 is pre-stable.

3.3 Example

Consider the space \((\mathbb{R}, \tau_c)\), and \(f : R \to R\) is the function defined by \(f(x) = \frac{1}{5}x\). The fixed point of \(f\) is 0, and the DDS is \(\{(\frac{1}{5})^n x\}_{n\in\mathbb{N}}\).

\(U = \{0\} \cup [10,15]\) is a (p-o) set in \((\mathbb{R}, \tau_c)\) containing 0. Let \(V\) be any (p-o) subsets of \(U\) containing 0. \(O(x) \subseteq U, \forall x \in V\).

Hence, 0 is not pre-stable fixed point.

3.4 Remark

A stable fixed point needs not be pre-stable. (Example 3.5)

3.5 Example

Let \((X, \tau)\) be a space, \(X = \{a, b, c\}\), \(\tau = \{X, \emptyset, \{a,c\}\}\) and \(f : X \to X\) is the function defined by, \(f(a) = c, f(b) = b\) and \(f(c) = a\).

The fixed point of \(f\) is \(b\) and the DDS is given by the following table.
The First International Conference of Pure and Engineering Sciences (ICPES2020)

The only open set containing \(b\) is \(U = X \in \tau\).

The only open subset of \(U\) that containing \(b\) is \(U\) itself, i.e. \(V = U\).

\[O(x) \subseteq U, \forall x \in V.\] So, \(b\) is stable fixed point.

\(U = \{a, b\}\) is a (p-o) set and \(b \in U\).

The only (p-o) subset of \(U\) that containing \(b\) is \(U\) itself, i.e. \(V = U\).

\[O(a) = \{a, c, a, c, ...\} \not\subseteq U.\]

So, \(b\) is not pre-stable.

Hence, stability \(\not\Rightarrow\) pre-stability.

In the following theorem, we shall give a condition that make stability implies pre-stability and pre-stability implies stability.

3.6 Theorem

Let \((X, \tau)\) be a space, \((f^n)_{n \in \mathbb{N}}\) be a DDS with a fixed point \(x_0\) such that every open set containing \(x_0\). Then \(x_0\) is pre-stable if and only if it is stable.

\[\Rightarrow\text{Proof:}\] Let \(x_0\) be a pre-stable fixed point and \(U\) be any open set containing \(x_0\). Then \(U\) is (p-o) set and \(x_0 \in U\), so there exists (p-o) set \(V\); \(x_0 \in V \subseteq U\), and \(O(x) \subseteq U, \forall x \in V\).

\(V^*\) is open set containing \(x_0\) and \(V^* \subseteq V \subseteq U\) with \(O(x) \subseteq U; \forall x \in V^*\). Hence, \(x_0\) is stable.

\[\Leftarrow\text{Proof:}\] Let \(U\) be any (p-o) set containing \(x_0\). Note that \(U^*\) is open set. Since \(x_0\) is stable, then there exists an open set \(V, V \subseteq U^*\) such that \(O(x) \subseteq U^*, \forall x \in V\). Now, \(V\) is (p-o) set with \(O(x) \subseteq U^* \subseteq U, \forall x \in V\).

Hence, \(x_0\) is pre-stable fixed point.

3.7 Theorem

Let \((X, \tau)\) be a space. In any DDS with the topology \(\tau = \{X, \emptyset, U, U^c\}\), \(U \subseteq X\), every fixed point is a pre-stable.

\[\text{Proof:}\] In such space, every non-empty subset \(A\) of \(X\) is (p-o):
\[\overrightarrow{A} = \begin{cases} U, & \text{if } A \subseteq U \\ U^c, & \text{if } A \subseteq U^c \\ X, & \text{if } A = A_1 \cup A_2, \ A_1 \subseteq U \text{ and } A_2 \subseteq U^c \end{cases} \]

So,

\[\overrightarrow{A} = \begin{cases} U, & \text{if } A \subseteq U \\ U^c, & \text{if } A \subseteq U^c \\ X, & \text{if } A = A_1 \cup A_2, \ A_1 \subseteq U \text{ and } A_2 \subseteq U^c \end{cases} \]

So, in such DDS, every fixed point \(x_0 \) is pre-stable, for \(V = \{ x_0 \} \) is a (p-o) subset of any (p-o) set \(U \) containing \(x_0 \) and \(O(x_0) \subseteq U \). Hence, \(x_0 \) is pre-stable.

3.8 Theorem

If the phase space \(X \) of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is pre-stable.

Proof: Let \(B = \{ A_a \}_{a \in A} \) be a basis for the topology of the phase space \(X \) in a DDS with \(A_i \cap A_j = \emptyset, \forall \ i \neq j \).

Let \(x_0 \in X \) be a fixed point. Then \(x_0 \in A_{a_0}, \ A_{a_0} \in B \).

Now, let \(U \) be any (p-o) set containing \(x_0 \). Put \(A = \{ x_0 \} \). Then \(\overrightarrow{A} \subseteq A_{a_0} \), so \(A \) is (p-o) set. We have, \(x_0 \in A \subseteq U \) with \(O(x_0) \subseteq U \).

So, \(x_0 \) is pre-stable fixed point. \(\square \)

3.9 Theorem

If \(\{ f^n \}_{n \in \mathbb{N}} \) is a DDS with \(\tau = \{ X, \emptyset, A \}, A \subseteq X, \) then any fixed point in \(A \) is pre-stable.

Proof: Let \(x_0 \in A \) be a fixed point and \(U \) be any (p-o) set containing \(x_0 \). Then \(V = \{ x_0 \} \) is (p-o) set containing \(x_0 \) and \(V \subseteq U \) with \(O(x_0) \subseteq U \).

Hence, \(x_0 \) is pre-stable fixed point. \(\square \)

3.10 Definition

Let \((X, \tau)\) be a space in a DDS \(\{ f^n \}_{n \in \mathbb{N}} \), and let \(x_0 \) be a fixed point of \(f \). \(x_0 \) is called pre-c-stable if for any (p-o) set \(U \subseteq X \) containing \(x_0 \), there exists a (p-o) set \(V \subseteq U \) containing \(x_0 \) such that \(O(x) \subseteq \overline{U}; \ \forall x \in V \).

Otherwise, \(x_0 \) is called not pre-c-stable fixed point.

3.11 Example

Consider the space \((R, \tau_{ind})\), and \(f : R \rightarrow R \) is the function defined by \(f(x) = 4x - 1 \). The fixed point of \(f \) is \(\frac{1}{3} \), and the DDS is \(\{ 4^n x - 4^{n-1} + 4^{n-2} + \cdots + 1 \}_{n \in \mathbb{N}} \).

Let \(U \) be any (p-o) sets in \((R, \tau_{ind})\) contains \(\frac{1}{3} \). \(V = \{ \frac{1}{3} \} \), is a (p-o) subset of \(U \); \(\frac{1}{3} \in V \). Note that, \(O(x) \subseteq \overline{U} = R, \forall x \in V \).
Hence, $\frac{1}{3}$ is pre-c-stable

3.12 Example

Let (X, τ) be a space and $\tau = \{X, \emptyset, \{1,3\}, \{2,4\}, \{1,3,4\}\}$. Let $\tau' = \tau \cup \{\{1\}, \{3\}, \{4\}, \{1,2\}, \{1,4\}, \{3,4\}, \{1, 2, 3\}, \{2, 3, 4\}\}$.

The fixed point of f is 2 and the DDS is given by the following table.

x	$f(x)$	$f^2(x)$...	$f^n(x)$...
1	4	2	...	2	...
2	2	2	...	2	...
3	4	2	...	2	...
4	2	2	...	2	...

The (p-o) set $U = \{1, 2\}$ is containing 2. The only (p-o) subset of U containing 2 is $V = U$. $O(1) \not\subseteq \overline{U}$.

Hence, 2 is not pre-c-stable fixed point.

3.13 Theorem

Let (X, τ) be a space, $(\{f^n\}_{n \in \mathbb{N}})$ be a DDS with a fixed point x_* such that every open set containing x_*. Then x_* is pre-c-stable if and only if it is c-stable.

⇒Proof: Let x_* be a pre-c-stable fixed point and U be any open set containing x_*. Then U is (p-o) set and $x_* \in U$. So, there exists (p-o) set V; $x_* \in V \subseteq U$, and

$O(x) \subseteq \overline{U}, \ \forall x \in V$.

V^* is open set containing x_0 with $V^* \subseteq V \subseteq U$.

So, $O(x) \subseteq \overline{U}, \ \forall x \in V^*$.

Hence, x_* is c-stable.

⇐ proof: Let U be any (p-o) set containing x_0. Note that, U^* is open set containing x_0. Since x_0 is c-stable, then there exists an open set V, $V \subseteq U^*$ such that $O(x) \subseteq \overline{U^*}, \ \forall x \in V$. Now, V is (p-o) set with $O(x) \subseteq \overline{U} \subseteq \overline{U}, \ \forall x \in V$.

Hence, x_0 is pre-c-stable fixed point.

3.14 Theorem

Let (X, τ) be a space, $(\{f^n\}_{n \in \mathbb{N}})$ be a DDS with a fixed point x_0. If x_0 is pre-stable, then it is pre-c-stable.

Proof: Let U be a (p-o) set; $x_0 \in U$. Since x_0 is pre-stable, then there exists (p-o) set V; $x_0 \in V \subseteq U$ such that, $O(x) \subseteq U, \ \forall x \in V$. So, $O(x) \subseteq \overline{U}, \ \forall x \in V$.

\[\square\]
Hence, x_0 pre-c-stable.

The converse of above theorem isn't true generally.

3.15 Example

Consider the space (R, τ_c), and $f : R \to R$ be a function define by,

$$f(x) = \begin{cases} 2x, & x < 1 \\ x + 2, & x \geq 1 \end{cases}$$

The fixed point of f is 0.

0 is not pre-stable fixed point. Let $U = (-7, 5)$ is a (p-o) set in (R, τ_c) containing 0.

Let V be any (p-o) sub set of U containing 0. Then, $O(x) \not\subseteq U$, for some $x \in V$.

Hence, 0 is not pre-stable fixed point.

But 0 is pre-c-stable:

Let U be any (p-o) set of R containing 0. $V = (-2, 5)$ is (p-o) set and $0 \in V \subseteq U$, Thus, $O(x) \subseteq \overline{U} = R$. Hence, 0 is pre-c-stable fixed point.

3.16 Theorem

If the phase space X of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is pre-c-stable.

Proof: it is clear [Theorem 3.8] and[Theorem 3.14].

3.17 Definition

Let (X, τ) be a space in a DDS $\{f^n\}_{n \in \mathbb{N}}$, and let x_0 be a fixed point of f. x_0 is called pre-ic-stable if for any (p-o) set $U \subseteq X$ containing x_0, there exists a (p-o) set $V \subseteq U$ containing x_0, such that $O(x) \subseteq \overline{U} ; \forall x \in V$.

Otherwise, x_0 is called not pre-ic-stable fixed point.

3.18 Example

Let (X, τ) be a space and $\tau = \{1, 2, 3, 4\}$, $\tau = \{X, \emptyset, \{1,3\}, \{2,4\}\}$ and $f : X \to X$ be a function defined by, $f(1) = f(3) = 1$ and $f(2) = f(4) = 3$.

The fixed point of f is 1 and the DDS is given by the following table.

x	$f(x)$	$f^2(x)$...	$f^n(x)$...
1	1	1	...	1	...
2	3	1	...	1	...
3	1	1	...	1	...
4	3	1	...	1	...

$\tau^p = P(X)$

Let U be any (p-o) set containing 1. $V = \{1\}$ is a (p-o) set and $1 \in V \subseteq U$ with $O(1) \subseteq U$. So, $O(1) \subseteq \overline{U}^p$.

Hence, 1 is pre-ic-stable fixed point.

3.19 Example

Let \((X, \tau)\) be a space and \(X = \{a, b, c\}\), \(\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}\}\) and \(f : X \to X\) be a function defined by, \(f(a) = f(b) = b, f(c) = a\).

The fixed point of \(f\) is \(b\) and the DDS is given by the following table.

	\(f(x)\)	\(f^2(x)\)	\(f^3(x)\)	\(f^n(x)\)
\(a\)	\(b\)	\(b\)	\(b\)	\(b\)
\(b\)	\(b\)	\(b\)	\(b\)	\(b\)
\(c\)	\(a\)	\(b\)	\(b\)	\(b\)

\(\tau^p = \tau\).

Let \(U = \{b, c\}\) is a \((p-o)\) set with \(b \in U\). The only \((p-o)\) subset of \(U\) contains the fixed point \(b\) is \(U\) itself.

\(O(c) = \{c, a, b, \ldots\}\)

So, \(O(c) \notin \overline{U}\).

Hence, \(b\) is not pre-ic-stable fixed point.

3.20 Theorem

Let \((X, \tau)\) be a space, \(\{f^n\}_{n \in \mathbb{N}}\) be a DDS with a fixed point \(x_s\) such that every open set containing \(x_s\). Then \(x_s\) is pre-ic-stable if and only if it is ic-stable.

\(\Rightarrow\) Proof: Let \(x_s\) be a pre-ic-stable fixed point and \(U\) be any open set containing \(x_s\). Then \(U\) is a \((p-o)\) set and \(x_s \in U\). So, there exists \((p-o)\) set \(V; x_s \in V \subseteq U\), and

\[O(x) \subseteq \overline{U}, \forall x \in V.\]

\(V^*\) is open set containing \(x_0\) with \(V^* \subseteq V \subseteq U\).

So, \(O(x) \subseteq \overline{U}, \forall x \in V^*\).

Hence, \(x_s\) is ic-stable fixed point.

\(\Leftarrow\) Proof: Let \(U\) be any \((p-o)\) set containing \(x_0\). Note that, \(U^*\) is open set. Since \(x_0\) is ic-stable, then there exists an open set \(V\) containing \(x_0\), \(V \subseteq U^*\) such that \(O(x) \subseteq \overline{U^*}, \forall x \in V\). Now, \(V\) is \((p-o)\) set with \(O(x) \subseteq \overline{U^*} \subseteq \overline{U}, \forall x \in V\).

Hence, \(x_0\) is pre-ic-stable fixed point.

3.21 Theorem

Let \((X, \tau)\) be a space, \(\{f^n\}_{n \in \mathbb{N}}\) be a DDS with a fixed point \(x_0\). If \(x_0\) pre-stable, then it is pre-ic-stable.
Let \(U \) be a \((p-o)\) set; \(x_0 \in U \). Since \(x_0 \) is pre-stable, then there exists a \((p-o)\) set \(V \); \(x_0 \in V \subseteq U \) such that, \(O(x) \subseteq U \), \(\forall x \in V \). Since \(U \) is \((p-o)\) set, then \(U \subseteq \overline{U} \), and so \(O(x) \subseteq \overline{U}^o \), \(\forall x \in V \). Hence, \(x_0 \) pre-ic-stable.

Proof : Let \(U \) be a \((p-o)\) set; \(x_0 \in U \). Since \(x_0 \) is pre-stable, then there exists a \((p-o)\) set \(V \); \(x_0 \in V \subseteq U \) such that, \(O(x) \subseteq U \), \(\forall x \in V \). Since \(U \) is \((p-o)\) set, then \(U \subseteq \overline{U} \), and so \(O(x) \subseteq \overline{U}^o \), \(\forall x \in V \).

3.22 **Theorem**

Let \((X, \tau)\) be a space, \(\{f^n\}_{n \in \mathbb{N}} \) be a DDS with a fixed point \(x_0 \). If \(x_0 \) pre-ic-stable, then it is pre-c-stable.

Proof : Let \(U \) be a \((p-o)\) set; \(x_0 \in U \). Since \(x_0 \) is pre-ic-stable, then there exists a \((p-o)\) set \(V \); \(x_0 \in V \subseteq U \) such that, \(O(x) \subseteq U \), \(\forall x \in V \). Since \(\overline{U} \subseteq U \), then \(O(x) \subseteq \overline{U} \), \(\forall x \in V \).

Then, \(x_0 \) pre-c-stable.

3.23 **Theorem**

If the phase space \(X \) of a DDS has a basis of pairwise disjoint basic open sets, then every fixed point is pre-ic-stable.

Proof : it is clear [Theorem 2.8] and [Theorem 2.21]

3.24 **Theorem**

If \(\{f^n\}_{n \in \mathbb{N}} \) is a DDS with \(\tau = \{X, \emptyset, A\}, A \subseteq X \), then any fixed point in \(A \) is pre-ic-stable, and so it is pre-c-stable.

Proof : Let \(x_0 \) be a fixed point. Let \(x_0 \in A \), and \(U \) be any \((p-o)\) set containing \(x_0 \). Then \(V = \{x_0\} \) is a \((p-o)\) set containing \(x_0 \) and \(V \subseteq U \) with \(O(x_0) \subseteq U \) with \(O(x_0) \subseteq \overline{U}^o \).

Hence, \(x_0 \) is pre-c-stable.

Now, if \(x_0 \in A^c \), then any \((p-o)\) set containing \(x_0 \) is of the form \(U = A^c \cup B \), where \(\emptyset \neq B \subseteq A \).

Choose \(V = A^c \cup \{x_0\} \). Then \(V \) is a \((p-o)\) set containing \(x_0 \), \(V \subseteq U \).

Then, \(O(x) \subseteq \overline{U}^o = X \), \(\forall x \in V \). Hence, \(x_0 \) is pre-ic-stable.

4. **Conclusion**

Certain types of stability which depend on the pre-open sets had been discussed. Since every open set is \((p-o)\) set, so these types of stability had been discussed the stability in phase spaces in which the collection of \((p-o)\) sets is at most finer than the collection of open sets. This means that we gave a stability in larger phase spaces.
Figure (1): Relationships among certain types of pre-stability of a fixed point x_0.

Reference

[1] Adams, C. C., & Franzosa, R. D. (2008). Introduction to topology: pure and applied. Upper Saddle River: Pearson Prentice Hall.

[2] Lee, J. B. (2013). Topological fixed point theory. Asia Pacific Mathematics Newsletter, 3.

[3] Brin, M., & Stuck, G. (2002). Introduction to dynamical systems. Cambridge university press.

[4] Sharma, P., & Nagar, A. (2010). Topological dynamics on hyperspaces. Applied general topology, 11(1), 1-19.

[5] Mashhour, A. S. (1982). On preconlinuo us and weak precontinuous mappings. In Proc. Math. Phys. Soc. Egypt. (Vol. 53, pp. 47-53).
[6] Hosny, R. A., & Al-Kadi, D. (2013). Types of generalized open sets with ideal. *International Journal of Computer Applications, 80*(4).

[7] Dontchev, J. (1998). Survey on preopen sets. *arXiv preprint math/9810177*.

[8] Jun, Y. B., Jeong, S. W., Lee, H. J., & Lee, J. W. (2008). Applications of pre-open sets. *Applied general topology, 9*(2), 213-228.

[9] Hamza, A. H. M. (2014). On The Stability Of Fixed Points In Topological Spaces. *Journal of Kufa for Mathematics and Computer, 2*(2), 11-19.

[10] Fuller, A. T. (1992). Lyapunov centenary issue. *International Journal of Control, 55*(3), 521-527.

[11] Leine, R. I. (2010). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. *Nonlinear Dynamics, 59*(1-2), 173.

[12] Holmes Philip, The dynamical legacy of Liapunov and Poincar, Princeton University, Conference, San Diego, Aug 31 Sept 2, 2009.

[13] Parks, P. C. (1992). AM Lyapunov's stability theory—100 years on. *IMA journal of Mathematical Control and Information, 9*(4), 275-303.