Application of Nanotechnology in the COVID-19 Pandemic

Abstract: COVID-19, caused by SARS-CoV-2 infection, has been prevalent worldwide for almost a year. In early 2000, there was an outbreak of SARS-CoV, and in early 2010, a similar dissemination of infection by MERS-CoV occurred. However, no clear explanation for the spread of SARS-CoV-2 and a massive increase in the number of infections has yet been proposed. The best solution to overcome this pandemic is the development of suitable and effective vaccines and therapeutics. Fortunately, for SARS-CoV-2, the genome sequence and protein structure have been published in a short period, making research and development for prevention and treatment relatively easy. In addition, intranasal drug delivery has proven to be an effective method of administration for treating viral lung diseases. In recent years, nanotechnology-based drug delivery systems have been applied to intranasal drug delivery to overcome various limitations that occur during mucosal administration, and advances have been made to the stage where effective drug delivery is possible. This review describes the accumulated knowledge of the previous SARS-CoV and MERS-CoV infections and aims to help understand the newly emerged SARS-CoV-2 infection. Furthermore, it elucidates the achievements in developing COVID-19 vaccines and therapeutics to date through existing approaches. Finally, the applicable nanotechnology approach is described in detail, and vaccines and therapeutic drugs developed based on nanomedicine, which are currently undergoing clinical trials, have presented the potential to become innovative alternatives for overcoming COVID-19.

Keywords: COVID-19, SARS-CoV-2, antiviral drug, vaccines, nanoparticles, nanotechnology

Introduction
At the end of 2019, viral infectious disease emerged in China, which spread worldwide in months. The World Health Organization (WHO) officially declared that the coronavirus outbreak is turning into a pandemic on March 11, 2020.1,2 The WHO named this novel coronavirus to SARS-CoV-2 and the disease as COVID-19.3,4 Coronaviruses (CoVs) are RNA viruses, 27–32 kb in size, and belong to the Coronaviridae family of viruses, which includes the genera Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. It is known as “corona” virus because all CoV particles consist of crown-like peplomer spikes. The CoV particles are pleomorphic and approximately 80 to 160 nm in diameter.5,6 CoVs are known to infect humans and various types of animals. In particular, human coronaviruses (HCoVs), a notable group of CoVs, give rise to several respiratory diseases, including bronchiolitis, pneumonia, and common cold.7 HCoVs are currently the most instantly evolving viruses because of their high...
genomic nucleotide recombination rates. To date, seven known HCoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2) have been classified. In addition, HCoVs are divided into two categories, the Alphacoronaviruses (including HCoV-NL63 and HCoV-229E) and Betacoronaviruses (including HCoV-HKU1, HCoV-OC43, MERS-CoV, SARS-CoV, and SARS-CoV-2). Virus species belonging to the Coronavirus are very diverse and reported to be the main pathogens causing upper respiratory infections, including cold, along with rhinoviruses. Studies showed that between 30% and 80% of viral colds are infections of rhinoviruses, and approximately 15% are infections of HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1. In general, HCoVs have been reported to cause upper respiratory tract infections, including cold symptoms; however, the scope of HCoV infection is not limited to the upper respiratory tract alone. In severe infections, HCoVs tend to attack the lungs directly, which is one of the unique characteristics of HCoVs that cause dyspepsia.

HCoVs are one of the top 10 known viruses fatal to human beings, with mortality rates of up to 10% for SARS-CoV and 36% for MERS-CoV. Currently, approximately 79.2 million people have already been infected, and 1,754,493 people worldwide died within 354 days of the appearance of SARS-CoV-2 (the WHO on December 27, 2020).

SARS-CoV-2 infection is characterized by serious problems, such as in an incubation period of approximately 2 weeks mild to moderate symptoms develop in infected patients, and a high infection rate. Therefore, vaccines are important, as the data show asymptomatic transmission of SARS-CoV-2. Moreover, development of vaccines and therapeutics is the most attractive option to fight SARS-CoV-2 infection and treat infected patients. Globally, scientists and doctors are working continuously to investigate and decipher the exact viral structure, mode of infection, mode of transmission, prevention, immunopathogenic mechanisms, and the most effective treatment strategies.

Furthermore, nanotechnology tools can provide a broader overview of the new vaccine design strategies. For instance, a nano-based formulation for SARS-CoV-2 therapeutics is being developed as a delivery vehicle, along with a novel nano-vaccine metastasis platform and useful nano drugs for treating SARS-CoV-2 infections. Therefore, until now, scientists are working hard to rapidly identify and develop appropriate nano-vaccines and treatment options, including new nano-based technologies.

SARS-CoV

Earlier, SARS-CoV has caused a major pandemic in the new millennium. SARS-CoV has been classified as a new virus in the group II CoVs (Beta-CoVs) of the Coronaviridae family, which originated from the zoonotic pool of viruses. Owing to its epidemiological association with wild game animals and occurrence of human cases early in the 2003 pandemic, the SARS-CoV strain has been thought to mutate from the bat-related virus through an intermediate civet host (Figure 1A). The spike (S) protein in SARS-CoV assembles peplomers, which are located outside the lipid envelope (Figure 1B). Moreover, the S proteins of SARS-CoV, MERS-CoV, and SARS-CoV-2 have surprisingly high amino acid sequence homogeneity with each other (Figure 1C). The S protein directly interacts with the host’s cellular receptor, angiotensin-converting enzyme 2 (ACE2). With the binding of the S protein to ACE2, the transmembrane protease serine 2 (TMPRSS2) and furin in the host cell membrane simultaneously cleave the S protein to activate SARS-CoV (Figure 1D). The variability of the interaction between the S protein and ACE2 is particularly crucial for cross-species transmission. SARS-CoV is spread by direct contact with the mucous membrane, respiratory droplet nuclei, or fomites. Viral pneumonia with rapid respiratory deterioration is the most representative clinical manifestation of SARS-CoV infection. The major symptoms include chills, fever, muscle pain, discomfort, and nonproductive cough, and rhinitis and sore throat appear less frequently. Rapidly and newly occurring viral infections, such as SARS-CoV infections, are difficult to treat using vaccination, even though no reagents are required for vaccine development. Moreover, diseases that have not been observed earlier in human beings develop and spread quickly. Novel zoonotic viruses are particularly capricious, as vaccines and remedies focused against formerly derived strains do not work against the strains related to current infectious diseases. Recently, technological advances, such as memory B cell immortalization and phage display, have achieved rapid development of human monoclonal antibodies (hu-mAbs) for SARS-CoV in just a single epidemic year. However, despite the ongoing efforts made by scientists and doctors, there exists no effective method for SARS-CoV treatment.
treatment for SARS. Antibiotics are not effective against viruses, and antiviral drugs do not show much benefit. RNA interference (RNAi) has been proposed as a new therapeutic strategy for SARS-CoV because it can degrade specific mRNAs. In addition, the inhibition of SARS-CoV by RNAi in cultured cells and animal tissues has been reported. In an experiment using Vero cells, plasmid-based siRNAs designed specifically for the viral RNA polymerase have been shown to inhibit the SARS-CoV cytopathic effect. In primate cells, siRNA duplexes targeting SARS-CoV genomic RNA have been found to block viral replication and infection. Since developing effective vaccines and achieving social immunity takes too long, the therapeutic strategy using broadly neutralized hu-mAbs targeting SARS-CoV is also a useful direction to follow at present. The 80R, a hu-mAb targeting SARS-CoV, has been reported to neutralize the civet (SZ3) S protein effectively in vivo. In the case of the hu-mAb m396, it has been reported to neutralize SARS-CoV equipped with GD03 S protein (icGD03-S) completely. Furthermore, animal experimental data have already been accumulated, which show that hu-mAbs can protect against SARS-CoV infection. Additionally, there have been some notable advances in development of small molecules targeting SARS-CoV and the design of polypeptides. However, no effective results have been published strengthening the applicability of new concepts, such as nanotechnology-based development of SARS-CoV vaccines.

The SARS-CoV epidemic is characterized by vulnerabilities in the elderly population, with a mortality rate of 25–55% among people aging 65 years and higher. Existing research suggests that the influenza virus vaccine for a young adult population is very inefficient in the elderly population at 17–53% compared with the record high level of 70–90%, which seems to be the result of an aging-related immune system dysfunction. Currently, in order to overcome some deficiencies pertaining to the aging immune system, co-administration of adjuvants (MF59, CpG DNA) or cytokines (IL-2) that completely
activate Antigen-presenting cells (APC)/Th cells during vaccination has been attempted, and consequently, the probability of achieving a successful preventive effect has increased. Therefore, if a basic strategy aimed at developing vaccines for the elderly is continually developed, it will make a significant contribution to the research on effective SARS-CoV vaccines.

MERS-CoV

Middle East respiratory syndrome (MERS) is a novel virus-associated infectious disease identified in elderly male patients with breathing difficulties in Saudi Arabia in mid-2012. Most of the early MERS infections occurred in West Asia, and later MERS spread to Southeast Asia, North America, Europe, and North Africa. MERS-CoV has also been classified as a new virus of the group II CoVs (Beta-CoVs) in the Coronaviridae family. In order to enter host cells, MERS-CoV, similar to SARS-CoV, requires a receptor for the S protein. In the case of MERS-CoV, candidate proteins that act as receptors have been identified as tetopeptidases, such as dipeptidyl peptidase 4 (DPP4). When the S protein interacts with DPP4, the next step is the activation of the infection by TMPRSS2 and furin expressed on the host cell membrane (Figure 1D). MERS-CoV has shown little variation, except for a single mutation during the infection process between human populations. It has also been reported that this single mutation is independent of the process of binding to DPP4. Another characteristic of MERS-CoV is its ability to bind DPP4 of multiple species. Therefore, it is possible to infect other animals with MERS-CoV, except camels and humans (Figure 1A).

About 60% of all MERS cases are estimated to occur via human-human transmission of MERS-CoV, and for the remaining cases, the cause of MERS-CoV infection has not been identified. Furthermore, the risk of virus transmission has been reported to be significantly reduced for the second case. Research has shown that MERS is fatal to the elderly and patients with underlying diseases, such as kidney or lung disease, chronic heart disease, high blood pressure, and diabetes. One of the most persuasive animals is the one-humped camel (Camelus dromedarius) that propagates MERS-CoV to humans, as antibodies that neutralize MERS-CoV have been detected in camel herds in the Middle East and Africa. Humans with MERS usually begin to develop symptoms after an incubation period of 2 weeks, which include respiratory infections, fever, shortness of breath, and dry or productive cough. To date, MERS-specific therapeutic drugs have not been developed. In vitro studies have shown that some potential drugs are effective for treating MERS; however, unfortunately, most of these drugs have not been proven effective using animal models closely related to humans. Therefore, clinical treatment of MERS comprises symptomatic treatment and supportive care.

Unlike other host animals, replication of MERS-CoV is impossible in mice. This is because, mouse DPP4 (mDPP4) has two amino acid sequences different from that of human DPP4 (hDPP4), which prevents the binding of the S protein in MERS-CoV. Therefore, the mouse model has been developed as a strategy for replacing mDPP4 with hDPP4 or a mutant of mDPP4 so that it can bind to the viral S protein. Initially developed mouse models have frequently failed to reproduce the disease observed in humans with MERS-CoV infection. However, recently, several transgenic mouse models have been reported to reproduce the human disease caused by MERS-CoV infection relatively well. Therefore, it is thought that the development of such a mouse model can contribute greatly to testing the efficacy of the candidate MERS-CoV vaccine.

Since DPP4 is a specific receptor for MERS-CoV, it represents a good strategic target for designing therapeutic agents. The therapeutic agents targeting DPP4, such as DPP4 and DPP4 antagonists and specific antibodies, mainly inhibit the interaction or binding between DPP4 and MERS-CoV receptor-binding domain (RBD), thereby suppress the MERS-CoV infection. In developing therapeutics against MERS, it is essential to consider the function and structure of the S protein. Therefore, specific regions of the S1 and S2 subunits, RBD, and N-terminal domain related to S proteins are the main targets. Almost all MERS-CoV-neutralizing antibodies have been designed to target RBD. In particular, RBD-specific monoclonal antibodies have stronger neutralizing activity than that of antibodies made with other targets.

SARS-CoV-2

In Wuhan, being the most largely populated in central China, patients began to develop severe pneumonia due to an unknown cause at the end of 2019. Rapid research resulted in identifying the cause of the disease to be a type of coronavirus. To date, the number of infected people continues to increase rapidly.
SARS-CoV-2 belongs to the genus Betacoronavirus, and its sequence is 79% identical to the genomic sequence of SARS-CoV. Similar to other human betacoronaviruses, it is estimated that more than 90% of the genes in the SARS-CoV-2 genome match with those from bats, and there are several candidates for intermediate hosts existing before transmission to humans, but these are still unknown. Until now, there has been a strong hypothesis that the transmission occurred to humans by accident, such as that for SARS-CoV. Public health measures that can be used to control the transmission of SARS-CoV-2 across individuals are as much as passive approaches, such as isolation, social distancing, and refraining from small indoor gatherings. Moreover, there is a high likelihood of another major crisis occurring in the near future, as there is no vaccine or specific treatment available for SARS-CoV-2 even after an alleviation of the situation.

Like SARS-CoV, SARS-CoV-2 binds to the receptor ACE2 using the RBD of the S protein. Subsequently, the processes of fusion of cell membranes and entry of the virus into the host cell occur, similar to the mechanisms underlying other virus infections. The process by which TMPRSS2 and furin activate the S protein plays a critical role in SARS-CoV-2 infection and its spread throughout the patient’s body. Therefore, the host and host cell affinity depend on the amino acid sequence and distribution of ACE2, TMPRSS2, and furin (Figure 1D). In addition, in smokers or people with heart diseases, ACE2 levels are higher than that in healthy people, thereby increasing the susceptibility to SARS-CoV-2 infection and fastening the disease progression.

SARS-CoV-2 infection is not limited to any particular class, and people of all age groups are vulnerable. The virus is mainly transmitted through droplets from symptomatic patients; however, there are many cases of infection from asymptomatic people, wherein the virus is transmitted even before the symptoms appear. SARS-CoV-2, present in the droplets from symptomatic patients, can usually survive on the contact surface for several days but is easily degraded by commonly available disinfectants, such as hydrogen peroxide and sodium hypochlorite. This droplet can cause infection via its inhalation through the respiratory tract during conversation with a SARS-CoV-2-infected individual or by touching the mucous membrane area with the hand that touched a surface contaminated by the droplet. In general, infection is caused by droplets containing SARS-CoV-2 at least less than 2 m, and the risk of airborne transmission has not been reported. SARS-CoV-2 can survive for up to 3 h in droplets, and it has been known to have a survival period of about 4 h on copper compared with other metals and materials.

Initially, after SARS-CoV-2 infection, symptoms such as dry cough, fever, and fatigue appear. Although not common, symptoms such as body aches, headaches, conjunctivitis, diarrhea, and sore throat may also appear. Currently, respiratory symptoms caused by SARS-CoV-2 vary widely, ranging from mild to severe hypoxia due to acute respiratory distress syndrome (ARDS). Epidemiological studies have shown that the incidence rate is significantly lower in children, and the mortality rate is very high in the elderly population. As the mortality rate in more severely ill patients increases, the disease can also be fatal to the elderly population. When infected with SARS-CoV-2, macrophages and monocytes move to the site of infection, and T and B cells together induce an immune response and begin to remove virus particles. In most healthy individuals, this immune response is used as a defense mechanism against viral infection; however, in patients with immunomodulatory disorders, a cytokine storm occurs, leading to severe organ failure, damaging multiple organs. This can also lead to death.

When SARS-CoV-2 was first discovered, the most commonly searched genome was clade L, corresponding to NC_045512.2. In early 2020, the first mutant virus clades S and O appeared to have been identified. Clades V and G have appeared around the same time in mid-January. Subclades GH and GR have been reported one month after appearance of clade G. In general, clades S and GH have been observed in America, including the United States, and G and GR clades are widespread in Europe. While the appearance of clade G (including GH and GR) continues to increase gradually, that of clades L and V is gradually declining. The most common clades of the SARS-CoV-2 genome currently spread worldwide are the G clades and their derivative GH and GR clades (Figure 2). In particular, the GR clade (Nucleocapsid RG203KR mutations and the combination of the spike D614G) with high infectivity is currently the most common form of SARS-CoV-2 across the globe. According to a recently published study, the high mortality associated with the G clade (including GH and GR) is due to carrying the D614G mutation in the S protein, which causes SARS-CoV-2 to enter the cells at a rate more than double and be more resistant to anti-serum neutralization.
Therapeutic Strategies

Antiviral Drugs

Currently, COVID-19 has increasing number of disease determinants worldwide without availability of approved treatment options, and thus, researchers are urgently developing effective vaccines and treatments. In addition, attempts of using existing medicines that have been approved for other uses may benefit COVID-19 patients to a limited extent. In vitro studies have shown that several drugs approved for other applications have some effect on SARS-CoV-2, but the results were different in small-scale non-randomization trials. These include remdesivir, which was developed as an experimental drug against Ebola virus (EBOV) during the Ebola epidemic in West Africa, chloroquine (CQ) and hydroxychloroquine (HCQ) for malaria, and lopinavir/ritonavir (LPV/r), which is used as an acquired immunodeficiency syndrome (AIDS) treatment.

First, remdesivir, a nucleotide analog prodrug that inhibits the function of the viral RNA polymerases, has been reported to reduce SARS-CoV-2 infection remarkably in Vero cells (Figure 3). Another study has found that expanded access to remdesivir in severely ill COVID-19 patients improves clinically in 36 of 53 patients. However, trials in severely ill COVID-19 patients in China have shown statistically insignificant clinical results.

Second, HCQ and CQ are representative drugs for the treatment and prevention of malaria. HCQ and CQ have been shown to be effective against SARS-CoV-2 infection in an in vitro study (Figure 3). However, in a prospective randomized trial on COVID-19 patients in China, there was no effect of HCQ on the patients compared with those receiving conventional treatment. Rather, it has been found that a patient in the HCQ treatment group developed a serious illness. In clinical adjuvant therapy trials on SARS-CoV-2-infected patients, two high- and low-dose patients among patients administered 50 different CQ doses have shown a 50% lower mortality rate than that of low-dose patients.

Finally, LPV/r is an antiretroviral drug, which is a protease inhibitor used for treating human immunodeficiency virus (HIV). In vitro studies have reported that LPV/r displays the effect of inhibiting SARS-CoV-2 replication (Figure 3). In addition, another clinical study has reported the administration of LPV/r and ribavirin in patients to reduce the risk of death and ARDS caused by COVID-19.
However, the clinical effect of LPV/r against SAR-CoV-2 is yet to be confirmed.

The S Protein and ACE2 Interaction Inhibitors

The S protein is associated with the binding to host cell receptors and membrane fusion. Therefore, inhibitors that interfere with this process are used to prevent virus transmission from infected patients. In particular, interfering with the interaction of ACE2 with certain motifs in the S2 subunit of the S protein of SARS-CoV-2, which is involved in the virus fusion with the host cell, may be effective. According to recent in vitro research, the EK1 peptide, a pan-CoV fusion inhibitor, inhibits receptor-mediated infection and fusion between SARS-CoV-2 particles and host cell membrane, thereby prevents the formation of 6-helix bundles through interaction with heptad repeat 1, which is located in the S2 subunit of the S protein of SARS-CoV-2 (Figure 3).

Neutralizing Antibodies

Unlike vaccines, monoclonal antibodies provide immediate protection; therefore, administering purified monoclonal antibodies with neutralizing capacity could be another SARS-CoV-2 treatment strategy. Currently, the development of effective neutralizing antibodies mainly focuses on the S protein immobilized on SARS-CoV-2. Two potent neutralizing camelid single-domain antibodies against SARS-CoV and MERS-CoV isolated from llama can cross-react with SARS-CoV-2, disrupting the receptor binding interface. Recently, it was confirmed that the 47D11 human antibody that binds to the S protein RBD can neutralize SARS-CoV-2 infection (Figure 3). The S309 antibody, also known as the SARS-CoV monoclonal antibody, also potently inactivates SARS-CoV-2 by acting on the S protein. Therefore, the use of various monoclonal antibody cocktails, which can target the listed non-RBD and RBD simultaneously, can be a good alternative for effective and safe COVID-19 prevention and treatment.
Immunotherapy
Excessive cytokine serum levels (cytokine storm) leading to multiple organ damage in severely ill COVID-19 patients are closely related to ARDS following exacerbation of COVID-19. Therefore, prevention and treatment of cytokine storms can be a good alternative that can interfere with COVID-19 progression. Clinical studies have shown that the main cause of inflammation is an increase in the levels of IL-6. The complex produced by binding of IL-6 with soluble IL-6 receptor (sIL-6R) or membrane IL-6 receptor (mIL6R) activates the inflammatory response through interaction with gp130. Tocilizumab (monoclonal antibody against IL-6) can block the signal transduction that triggers the inflammatory responses by selectively acting on sIL-6R and mIL6R (Figure 3). A recent study reported that HCQ and CQ can block the development of proinflammatory cytokines, such as IL-6, which are involved in the generation of cytokine storms. However, the cost and safety aspects can hinder the use of tocilizumab in COVID-19 treatment. Based on a recently published study, sarilumab, another IL-6 receptor antagonist, may aid in rapid recovery in severely ill COVID-19 patients characterized by systemic hyperinflammation (Figure 3).

Convalescent Plasma Therapy
Convalescent plasma (CP) therapy is another effective method; however, the CP should be used within at least 2 weeks post recovery to ensure high neutralizing antibody titers. According to a recent study, SARS-CoV-2 obtained from patients with severe respiratory disease can be neutralized by serum from several other patients (Figure 3). In another study, it was thought that the clinical status of five severely ill COVID-19 patients, who were administered CP containing neutralizing antibodies, would improve. Even today, many clinical trials are testing CP for COVID-19 treatment globally.

Preventive Vaccination Strategies
To develop effective SARS-CoV-2 vaccines, a multifaceted strategic approach to vaccine development is being attempted worldwide. Since the genomic and structural information of SARS-CoV-2 has become available much faster than that of other HCoVs, there is a possibility of rapid vaccine development. Moreover, data generated from vaccine development for SARS-CoV and MERS-CoV, which have been studied so far, are also helpful for developing a vaccine candidate for SARS-CoV-2.

Inactivated or Live-Attenuated Vaccines
Inactivated or live-attenuated vaccines have advantages, such as stimulation of pattern recognition receptors and high immunogenicity. The viruses are alive and replicable but non-toxic. However, due to the risk of live viruses, long-term surveillance is required for assessing the safety of the vaccine. Several inactivated virus vaccines are currently being developed against SARS-CoV-2, and the first clinical trials by Sinovac Biotech, Beijing, China, have recently begun (Figure 4). More recently, recombinant SARS-CoV-2 has been synthesized from viral DNA fragments using synthetic genomics. Based on these findings, it is possible to approach a slightly more rapid generation of live-attenuated vaccines against SARS-CoV-2. Additionally, Codagenix, Farmingdale, NY, USA is exploring vaccine candidates against SARS-CoV-2 using a “codon-optimized off” strategy for virus attenuation (Figure 4).

Recombinant Vaccines
Recombinant vaccines allow live viruses to retain some additional genes derived from pathogens through genetic manipulation, thereby translating the target protein and triggering the desired immune response. The advantages of recombinant vaccines are sufficient target protein expression, prolonged stability, and induction of strong immune responses.

Vaccinia virus vector-based vaccines are currently being evaluated for use in many clinical trials based on the studies that have shown that they can induce very strong immune responses to foreign antigens. Another advantage of the vaccinia virus vector-based vaccine could be the availability of a large-scale manufacturing method, as in the case where Bavarian Nordic A/S produced and provided large amounts of its own smallpox vaccine IMVAMUNE® to the US government. The broad spectrum viral affinity and infectivity in dividing and non-dividing cells has made it possible to use a wide range of adenovirus (Ad) vectors to our advantage. Among the human Ad sera identified to date, human Ad serotype 5 (Ad5), which can be easily produced at high titers, is the most widely studied gene transfer vector. However, pre-existing immunity against Ad induced in many people who have already been exposed to the Ad serotype is a disadvantage of Ad vectors.
Adeno-associated virus (AAV) is a non-pathogenic, low immunogenic, vector-enclosed, single-stranded DNA virus. AAV has both the characteristics and advantages of Ads. AAV vectors require a very efficient large-scale production method, such as the baculovirus system, which has been developed because of their low titer production efficiency.142,143 AAV is better than Ad when continuous transgene expression is required for treatment.144,145 The capsid modification vector is an alternative to overcome the low immunogenicity of AAV vectors. Mixed capsids generated from different serotypes provide effective gene transfer and tropism to host cells.146 Since AAV vectors often require integration with the host genome for viral gene expression, genotoxicity risk assessment must be considered when using AAV vectors.147

ChAdOx1 nCoV-19 (AZD1222), an Ad-based recombinant vaccine developed at the University of Oxford, Oxford, UK, was found to be resistant in the Phase I/II COV001 trial, and a strong immune response to SARS-CoV-2 was generated in all participants (Figure 4).148 Almost all participants receiving AZD1222 showed a four-fold increase in the antibody neutralizing activity against the SARS-CoV-2 S protein.148 In addition, no serious side effects were reported with the use of AZD1222.148

Application of Nanotechnology in COVID-19 Therapeutics

Scientists in the field of nanomedicine have steadily conducted research on linking the gene delivery ability of various nanosystems and viral vectors to high infectivity. Nanomedical researchers have studied the molecular mechanisms of vectors to develop delivery systems that can be used in a variety of fields.149,150 Nanoparticles (NPs) and viruses act at the same scale, which makes the nanotechnology approach very powerful in vaccine development and immunoengineering.151 NPs are tools that can reproduce the structural and functional properties of viruses, and nanomedicine can be the best alternative to innovative vaccine development technologies.151–153 From the perspective of vaccine technology development, the present time, wherein SARS-CoV-2 is a major threat worldwide, is most important, and nanotechnology and nanomedicine are presented as new therapeutic technologies and approaches that can have a clinical impact.154–157

Theranostic Nanoparticles

Recently, the application of NPs has emerged as groundbreaking in the medical field and allows accurate diagnosis.
and specific treatment of several diseases at once. The small size, low toxicity, electrical charge, and chemical plasticity make it possible to overcome several barriers encountered in various routes of administration of a generic drug. Treatment with NPs can target the SARS-CoV-2 entry and life cycle. The S protein is the most important factor in preventing the entry of SARS-CoV-2 via the first process of membrane fusion. Thus, therapeutic NPs can be designed to pre-block SARS-CoV-2 entry by inhibiting the S protein from binding to host cells. Since the introduction of nanotechnology in the treatment of general viral infections, nanomedicines that can effectively treat viruses, including Influenza A and B viruses (IAV and IBV), EBOV, HIV1 and HIV2, Herpes simplex virus type 1 and 2 (HSV1 and HSV2), hepatitis B virus (HBV), hepatitis C virus (HCV), and human norovirus (HuNoV), have been developed and commercialized in various ways (Table 1). In particular, a few months ago, the first SARS-CoV-2 therapeutic drug, dexamethasone has been developed using nanotechnology. It has been reported of treating infections caused by SARS-CoV-2 using an anti-edema and anti-fibrotic mechanism, and effective delivery and treatment can be expected using various nano-formulating dexamethasone.

Intranasal Delivery Therapy

Currently, many studies are being conducted on developing a method for delivering nanoparticles into the nasal cavity as a safe and more effective countermeasure against viral infection and treatment. Since SARS-CoV-2 initiates infection on the mucosal surface of the eye or nasal cavity, mucosal therapy is the most important strategy for treating such infectious diseases. Delivery through the nasal cavity is not only simple and inexpensive but also non-invasive, and the NP is rapidly absorbed due to the cavity’s abundant capillary plexus and large surface area. The properties of the NPs, such as the surface charge, size, and shape, are important factors to be considered while optimizing the method of delivery to the nasal cavity and play a critical role in effective and safe treatment. Studies have been conducted using small animals to evaluate the system that is delivered to the lungs by administering NPs to the nasal cavity. Therefore, findings of these animal studies cannot be easily generalized to humans. To date, three types of NPs (organic, inorganic, and virus-like NPs) have been designed with delivery capabilities that are suitable for therapeutic purposes, which can also be administered intranasally for effective delivery.

Treatment Using Organic NPs

Lipid nanoparticles (LNPs) are biocompatible due to their lipid properties; hence, they can be selectively applied in fields such as biomedical science. Among the various LNPs, liposomes in the form of spherical capsules, which are hydrophilic on the inside and consist of a phospholipid bilayer on the outside, are most suitable for intranasal delivery. The advantages obtained by using liposomes have been summarized (Table 2). Using lipid-coated mesoporous silica nanoparticles, a form of LNPs, an antiviral molecule ML336, which is unstable and highly hydrophilic against Venezuelan equine encephalitis virus (VEEV), has been delivered into VEEV-infected mice. The suitability, cycle time, and viral titer have been shown to improve. Drug candidates in the form of nucleic acids, such as siRNA, have a significant limitation of being unstable during systemic circulation. However, transporting siRNA using LNPs can target specific organs and has the great advantage of preventing degradation during systemic circulation.

Polymer nanoparticles (PNs) are an effective choice of delivery systems because their properties and functions can be adjusted according to their specific application. Conjugation of a therapeutic compound to chitosan-made PNs can improve penetration of the mucosal tissue and the persistence of PNs in the mucosal environment. Antibody-drug conjugates using auristatin are used for relatively safe treatment of blood cancer by eliminating the risk of high toxicity but have a critical disadvantage of the drug payload being too low. To overcome this limitation, nanoparticle-drug conjugates of monomethyl auristatin E, developed using PN technology, enable the availability of a large amount of auristatin payload, and have high safety. In addition, in the case of accurin PNs encapsulating the Aurora B kinase inhibitor AZD2811, the toxicity has been observed to reduce significantly and the efficacy has been found to increase compared with that before introducing PNs, which has been shown to cause decisive side effects in a Phase 2 clinical trial.

Dendrimer nanoparticles (DNs) have strong interactions with viruses. The resulting system improves antiviral activity and has a powerful effect in preventing infection in the host. In addition, effective cases have been reported, wherein DNPs are used as a treatment for viral infectious
Viruses	Characteristics of Viruses	Disease	Medications for the Treatment	Nano Technology Applied Medications: Antiviral Mechanism
IAV and	Sudden high fever, headache, and muscle pain	Influenza (flu)	Oseltamivir, zanamivir, peramivir, baloxavir marboxil	STP702 (FluquitTM):¹⁵⁸ RNA interference
IBV	Antigenic drift			Titanium dioxide (TiO₂) nanoparticles:¹⁵⁹
				Photocatalytic inactivation of the virus
EBOV	A lethal viral hemorrhagic fever	Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF)	None	TKM-130803:¹⁶¹ RNA interference
HIV1	Targeting CD4-positive T cells to attack the immune system, resulting in acquired immunodeficiency syndrome (AIDS)	AIDS	24 approved drugs belonging to the class of Nucleoside Reverse transcriptase inhibitors (NRTIs), The non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors, Tat TAR interaction inhibitors	Indinavir loaded Soluton[®] HS15 nanocapsules:¹⁶²
HIV2				Enhancing drug distribution
HSV1	Herpes simplex	Herpes	Acyclovir	Acyclovir-loaded nanoparticles:^{158,159} Enhancing drug distribution
HSV2			Valacyclovir	Silver nanoparticles:¹⁶⁰ inhibit HSV-1 infections by blocking the attachment
			Famiclovir	VivaGel:¹⁶¹ Blocking the interaction between viral spike proteins and the human cell proteins
			Herpes DNA polymerase inhibitors	
			Helicase primase inhibitors	

(Continued)
Viruses	Characteristics of Viruses	Disease	Medications for the Treatment	Nano Technology Applied Medications: Antiviral Mechanism
HBV	No subjective symptoms	Hepatitis B	Lamivudine	Interferon (IFN)-α: inhibit HBV replication
			Adefovir Dipivoxil	Pegylated IFN (Pegasys): unknown
			Entecavir	Lamivudine (Epivir): inhibit the reverse transcriptase of HBV
			Telbivudine	Adefovir (Hepsera): blocking reverse transcriptase
			Tenofovir disoproxil	Entecavir (Baraclude): inhibits reverse transcription, DNA replication and transcription in the viral replication process
			Tenofovir alafenamide	Telbivudine (Tyzeka): impair DNA replication
				Tenofovir (Viread): inhibit the reverse transcriptase of HBV
HCV	A high genetic diversity	Hepatitis C	Peginterferon α-2a (Pegasys) Peginterferon α-2b (Pegasys)	PEGylated IFN and Ribavirin: Enhancing Ribavirin’s antiviral effect
HuNoV	Nausea, vomiting, watery diarrhea, and abdominal pain	Norovirus infection	None	Gold/copper sulfide (AuCuS) core-shell Nanoparticles: degradation of the RNA and destruction of the capsid
SARS-CoV-2	Fever, cough, and difficulty breathing	COVID-19	HCQ and CQ, Lopinavir/ritonavir, Umifenovir, Camostat mesylate (TMPRSS2 inhibitor), Tocilizumab, Mepilazumab	Nano-formulating dexamethasone: anti-oedema activity and anti-fibrotic effects
diseases, such as influenza virus and HIV. The advantages and disadvantages obtained by applying PNs and DNs are summarized (Table 2).

Table 2 Advantages and Disadvantages of Nanomedicine on Therapeutic Strategies for COVID-19

NPs	Advantages	Disadvantages
Liposomes	Reduced toxicity¹⁸⁴	Low drug entrapment¹⁸⁹
	Selective target specificity¹⁸⁵	Difficulty of sterilization¹⁹⁰
	Enhancement of drug activity against pathogens^{186,187}	Short shelf life due to instability¹⁹¹
	Improved pharmacokinetics and pharmacodynamics¹⁸⁸	Rate of removal from the bloodstream¹⁹²
Polymer Nanoparticles (PNs)	High stability^{203,204}	Difficult scalability²¹³
	Various preparation methods^{205,206}	Inadequate toxicological assessment²¹⁴
	Control and persistence of drug release^{204,207}	
	Adjustability of chemical and physical properties²⁰⁸	
	Suitability for hydrophilic and hydrophobic drugs²⁰³	
Dendrimer Nanoparticles (DNs)	High cell penetration^{209,210}	High production cost²⁰⁹
	High structural homogeneity²⁰⁹	Difficulty of clinical application in basic research²¹⁵
	High miscibility and solubility²¹¹	The need for quality management improvement²¹⁰
	Controllable synthesis and degradation^{209,210,212}	
Gold Nanoparticles (GNs)	High biocompatibility²¹⁰	Nanoparticle aggregation²¹¹
	Controllable particle size²¹⁰	Impossible biodegradation^{220,221}
	Convenience of synthesis and conjugation of various bioactive agents²¹⁰	High cost of large-scale production²²²
Virus Like Particles (VLPs)	Stabilization by disulfide bonds^{227,228}	Low stability²²⁷
	Produced by cell-free protein synthesis^{227,229}	Phagocytic avoidance²³⁴
	Small molecule, nucleic acid and protein loading capacity^{230,231}	Extrasalate from blood vessel²³⁵
	Functionalization of antibody fragment display for specific cell targeting^{232,233}	
Cell-Derived Vesicles	Low inherent toxicity²⁴⁶	Promoting metastasis formation in tumor cells^{249–252}
	Low apparent risk of aneuploidy²⁴⁷	contribution to tumor cell survival^{253,254}
	Low immune rejection²⁴⁸	

Treatment Using Inorganic NPs
The ability of gold nanoparticles (GNs) to induce an immune response by antigen-presenting cells easily is attractive for use in vaccine development. GNs have the advantage of being easily transformed for delivery through the nasal cavity. It also has the advantage of activating the immune response associated with CD8+ (cytotoxic) T cells by spreading to the lymph nodes. The advantages and disadvantages of applying GNs to nanomedicine have been separately summarized (Table 2).

Treatment Using Virus-Like Nanoparticles
Virus-like nanoparticles (VLPs) are capsids, comprising virus-derived structural proteins and adjuvants. VLPs can generate a potential immunogenic epitope, resulting in higher immunogenicity. Furthermore, since VLPs are small, they can act as adjuvants, and changing adjuvants can induce a much more effective immune response than viruses. As a result of intranasal delivery of VLPs using influenza virus, it has been found that VLP functions as a vaccine by producing a very large number of T cells and antibodies that can induce various types of immune reactions to improve immunity and prevent further infection. The advantages and disadvantages of applying VLPs in terms of drug delivery or treatment have been summarized separately (Table 2).

Treatment Using Cell-Derived Vesicles
Cell membrane nanovesicles and exosomes have been reported to have the ability to bind and neutralize bacterial toxins by previous studies. In addition, recently, the development of cell membrane nanovesicles containing proteins having the same structure and activity as native
cells is being made by biomimetic synthesis technology that includes the synthesis and display of proteins on the cell surface.239-241 Cell membrane nanovesicles, built to display high levels of ACE2 and abundant cytokine receptors, are nanodecoys that can compete with host cells for viral and cytokine binding. Studies have shown that nanodecoy significantly inhibited the replication and infection of SARS-CoV-2 and efficiently binds and neutralizes inflammatory cytokines such as IL-6 and GM-CSF.242,243 Therefore, a treatment method using cell membrane nanovesicles can be an effective alternative to SARS-CoV-2 and cytokine storms.

Exosomes are tiny nanovesicles with a size of 30nm to 150nm, secreted for all types of cell-to-cell communication, and are emerging nanomaterials in recent cell regeneration, treatment, and diagnostic research.244 It has already been reported that exosomes containing the S protein of SARS-CoV induced an accelerated neutralizing antibody titer by priming with a vaccine of the S protein of SARS-CoV and then increasing with an adenovirus vector vaccine.245 Therefore, this strategy using exosomes has the potential to be sufficiently applied to treatment for SARS-CoV-2. The advantages246-248 and disadvantages249-254 of applying cell-derived vesicles to nanomedicine have been separately summarized (Table 2).

Pulmonary Delivery Using NP Inhalation Aerosols

If the advantage of drug delivery through the nasal cavity is to act on the mucous membrane area where the infection occurs, then the lungs are an important organ for drug delivery because they are another target for treating SARS-CoV-2 infection, which infects primarily through the respiratory tract (the upper airways and lung).255-257 Therefore, the use of inhaled aerosols is suggested as an effective non-invasive mode of administration. Additionally, the delivery of inhalable NPs to the lungs overcomes disadvantages, such as side effects caused by high drug concentrations in the serum with conventional oral or intravenous drug administration methods. Various nanotechnologies have been applied to develop NPs that can function as lung inhalation aerosols. These respirable NPs can be encapsulated by microparticles manufactured down to five microns to fit the aerodynamic size range or agglomerate into an aerodynamic size range. Most NPs are delivered directly to the lungs either by spraying colloidal dispersions or via dry powder inhalers and pressurized metered dose inhalers in solid form.255

The LNs mentioned previously are also one of the most widely studied NPs for effective delivery of drugs into the lungs.258 Due to the unique advantages of LNs, which include their production from substances present in the lungs, such as components of lung surfactants, they are the highest priority candidates for delivering therapeutics to the lungs.259 Liposomes are generally liquid, and the application of aerosol through a nebulizer has mainly been attempted to deliver them to the lungs in the early days;260 however, drug stability and nebulizer leakage have been pointed out as the disadvantages.261 Therefore, to compensate for these shortcomings, various studies have been conducted on the development of liposome formulations in the form of dry powder.262-264 Moreover, cationic liposomes, which have the advantage of self-assembly with nucleic acids, are attracting the most attention as systems that deliver genes to the lungs and are known to be suitable for transporting peptides and substances having high molecular weight.265

PNs play important roles in drug delivery to the lungs by achieving efficient delivery of drugs, maintaining the stability of drugs, and controlling the release of drugs.266 Currently, cationic LNs have many clinical advantages over PNs; however, cationic PNs are one of the important carriers for pulmonary delivery of genes.267,268

Although studies on delivery through the nasal cavity using DNs have already been mentioned above, many studies on pulmonary delivery using DN are also being conducted for delivering DNA drugs to the cell nucleus, with properties similar to that of liposomes.269 Research has already focused on drug delivery to the lungs as one of the applications of the method of delivering high molecular weight substances into the body using DNs.270,271 In order to use DNs effectively while delivering drugs to the lungs, additional studies are needed that consider aspects such as the biocompatibility and cytotoxicity.

Nanotechnology-Based Diagnosis

Nano biosensors have the advantage of selectively detecting all types of analytes by combining the excellent electrical and optical properties of nanomaterials with biological or synthetic molecules used as receptors.272 Using these advantages, various methods of detecting SARS-CoV-2 are being studied.273

Currently, using a Silicon-on-insulator nanowire sensor made using complementary metal-oxide-semiconductor compatible technology, the SARS-CoV-2 antibody can be detected in 5–15 minutes with an expected sensitivity of 10^{-12}–10^{-15} M.274

In the case of applying Graphene, the detection of SARS-CoV-2 in clinical samples was attempted with a sensor.
produced by coating the graphene sheet of the field-effect transistor with a specific antibody against the SARS-CoV-2 spike protein. As a result of the study, it was possible to detect SARS-CoV-2 spike protein at a concentration of 1 fg/mL in phosphate-buffered saline and 100 fg/mL clinical transport medium.

The SARS-CoV-2 biosensor using thiol-modified anti-sense oligonucleotides-capped GNs can diagnose positive COVID-19 cases with the naked eye through color change within 10 minutes from total RNA isolated from infected biosamples. As another application method for GNs, the glycan bond between the polymer-stabilized multivalent GNs bearing sialic acid derivative and the S protein of SARS-CoV-2 was identified using a glyconanoparticle platform. Applying these characteristics has the advantage of building a low-cost detection platform that can be detected in less than 30 minutes with a lateral flow diagnostic device.

Nanotechnology-Based Vaccine Development
Subunit Vaccines
Subunit vaccine candidates are required to enhance immunogenicity effectively by eliciting an immune response when co-administered with molecular adjuvants using specific parts of the structural components of SARS-CoV-2. Therefore, developing a vaccine that targets the subunit of the SARS-CoV-2 S protein is a top priority. This is because membrane fusion and receptor-binding sites are present on the S protein. Vaccines based on the S protein inhibit viral infection by activating antibodies that prevent viral binding and subsequent membrane fusion. The SARS-CoV-2 S protein, which interacts with ACE2, is a notable candidate sufficient for both vaccine and therapeutic development.

In addition, NPs similar to immunogenic viruses have been developed and produced with the Novavax proprietary recombinant nanoparticle vaccine technology with the S protein (Figure 4). The University of Queensland, Brisbane, Australia is also developing a new SARS-CoV-2 subunit vaccine using a “molecular clamp” technology that pre-blocks the binding of viral proteins. As an alternative, the development of subunit vaccines using NPs, such as VLPs and protein NPs, is also actively underway. A higher binding affinity of RBD in SARS-CoV-2 for ACE2 than that of RBD in SARS-CoV has been found. Therefore, the RBD-based SARS-CoV vaccine can help prevent SARS-CoV-2 infection and be important for SARS-CoV-2 vaccine development. Moreover, RBD-based vaccines are effective in preventive and therapeutic strategies and are currently being developed by many research institutes and multinational pharmaceutical companies. RBD-based vaccines also have the advantage of minimizing host immunity enhancement.

Nucleic Acid Vaccines
When viruses enter the host cell by infection, the antigen encoded by the nucleic acid is expressed, which induces a cell-mediated reaction with the antibody. Based on this principle, nucleic acid vaccination is another effective immunization method that uses artificially synthesized nucleic acids to elicit an immune response, such as that induced by live-attenuated vaccines. The improved immunogenic properties that mimic the infectious process are the potential advantages of mRNA vaccines. To maximize the effect, several mRNAs are mixed into a single vaccine. An RNA vaccine candidate against SARS-CoV-2 is now known as mRNA-1273 (Moderna, Cambridge, MA, USA) (Figure 4). This vaccine comprises a synthetic mRNA strand such that the binding site for ACE2 can be translated to the previously modified SARS-CoV-2 S protein. After inoculation with intramuscular injection, a specific antiviral response to the SARS-CoV-2 S protein is induced. Moreover, the synthesis of nucleic acid vaccines does not require viruses, unlike conventional vaccines made of small subunits of inactivated or live pathogens. Therefore, as the safety is guaranteed, only the passing of the Phase I trial for mRNA-1273 will help a continuous evaluation of efficacy to progress quickly. mRNA-1273 is designed based on the LN platform; however, new nanotechnology is being introduced for the effective delivery of nucleic acid vaccines. In the case of mRNA-based vaccines, not only LNs but also DNs and PNs are being used for effective delivery and high stability. BNT162b1, under development by Pfizer, New York, NY, USA, is a codon-optimized mRNA vaccine encoding the SARS-CoV-2 RBD (Figure 4). This vaccine uses the RBD antigen to which the trimORIZATION domain of T4 fibritin has been added to increase immunogenicity. Coalition for Epidemic Preparedness Innovation had begun developing vaccines as soon as the first gene sequence was released through partnership with a group developing vaccines using a novel platform. As a result, the mRNA-based SARS-CoV-2 candidate progressed to the human clinical trial stage. In addition, INO-4800, developed by Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA, USA, is a candidate DNA vaccine among nucleic acid vaccines (Figure 4). Similar to RNA vaccines, INO-4800 is a nucleic acid vaccine that can induce an immune response by being translated into proteins within human cells. Compared with
conventional vaccines, nucleic acid vaccines have great advantages in terms of production cost and purification methods. Furthermore, the nucleic acid-only structure also prevents the production of misfolded proteins that can occur in recombinant vaccines. However, the immunogenicity of nucleic acid vaccines is greatly influenced by the amount of plasmid injected into the cell and the appropriate administration interval and route. Through nanotechnology, NPs, including cationic liposomes, DNAs, or PNs, have been applied to the development of nucleic acid-based vaccines to enhance the delivery efficacy and stability.

NP-Based Vaccines

Unlike SARS-CoV, MERS-CoV has been utilized multiple times to introduce nanotechnology into vaccines or therapeutic research. Importantly, it has been recently reported that VLPs are suitable for the development of vaccines or treatments for symptoms of MERS-CoV infection. Nano-sized VLPs, which have the characteristic function of the virus, have the advantage of being better delivered through the lymph and capillaries than other small vaccines. In addition, it has the effect of reducing the systemic inflammatory response, and similar to viruses, has the advantage of being able to very easily enter cells. Furthermore, the delivery of many antigens makes the antigen-presenting cell functioning more effective. Therefore, the synthesized complex recognized by the T cell receptor increases the vaccine’s immunogenicity and efficacy, thereby ensuring patient safety. Nano-sized VLPs entering the host cell are directly involved in B cell activation and boosting the immune system. Indeed, the characteristics of these synthetic nano-sized VLPs are principle to developing vaccine platforms.

Nano-sized VLPs have also been reported to overcome viruses by increasing the immune response effectively in animal experiments. Recently, the MERS-CoV S protein has been synthesized using silkworm larvae. This has then been applied to the nano-sized VLPs, which exhibit native conformational epitopes produced via incubation with surfactant and cell membrane vesicles. In another study, the development of nano-sized VLPs capable of acting as a nanocarrier in red blood cells has been achieved by single compression of red blood cells through a 1-μm filter. MERS-CoV nano-sized VLPs have been synthesized using the recombinant S, membrane, and envelope proteins, tested in animal models, and linked to having increased immunogenicity. Nano-sized VLPs have a wide range of applications, can enhance vaccine safety and effectiveness, and have tremendous advantages that can be utilized for specific purposes. Since these findings have been derived for the S protein commonly present in MERS-CoV and SARS-CoV, they can be effectively applied for treating SARS-CoV-2 infection.

Inactivation of SARS-CoV-2 in the External Environment Using Nanotechnology

SARS-CoV-2 is activated at temperatures ranging from 1 to 35°C and is easily inactivated under UV, highly alkaline, or acidic conditions. In addition, the degree of stability of SARS-CoV-2 varies greatly depending on the components that make up the surface of the infectious particle, and SARS-CoV-2 can be easily inactivated with commonly available disinfectants. The activation of SARS-CoV-2 in aerosols and on surfaces is similar to that of SARS-CoV; therefore, surface treatment using NPs that have been proven effective against SARS-CoV will be sufficiently applicable to SARS-CoV-2. The use of nanotechnology can provide alternatives more effective than conventional disinfection protocols for viruses used in general or medical settings that typically rely on chemical, physical, and biological strategies. Moreover, by using NPs, one can freely control the release rate of metal ions, which have proven to be antibacterial, on the surface of substances requiring antibacterial action. Because NPs can accumulate in cells owing to their nature, they can overcome the disadvantages of antimicrobial substances or metal ions that easily leak out of cells. Silver, which has been used as an antibacterial agent since ancient times, is now applied to paints and food trays. Silver nanoparticles (Ag-NPs) have already been proven to display antiviral effects against various viruses. Ag-NPs exert antiviral activity by dissolving and releasing Ag+ ions with microbial toxicity. Ag+ ions can interact with proteins present on the surface of the virus or infiltrate and accumulate in host cells, disrupting the function of proteins that play an important role in virus replication, such as enzymes involving thiols. Another antiviral function of Ag-NPs has been hypothesized, wherein they competitively interfere with virus binding to host cells because of their physical interactions with the viral surface, depending on their size. As a result, it has been found that Ag-NPs with a size of about 10 nm show the strongest physical interaction and antiviral effect compared with that of particles in other sizes. In addition, Ag-NPs have an antiviral effect of damaging the virus structure using reactive oxygen species that are released after binding to the virus surface. Ag-NPs have already been applied to and used in medical equipment.
When applied to face masks and air filters, they can be used to inactivate SARS-CoV-2 via the antiviral effect of Ag⁺ ions. Currently, it has been reported that bacteriophage MS2 from dust can effectively be blocked by applying Ag-NPs to filters.312

Copper, which has recently been proven to exhibit antiviral effect against HuCoV-229E, may be a suitable candidate for the inactivation of SARS-CoV-2.313 When a virus incubates on a surface coated with Cu, the virus genome is degraded and inactivated.313 This antiviral mechanism involves the inactivation of virions by disrupting the function of certain viral proteins using hydroxyl radicals produced by Cu²⁺ ions present on the surface of the material and inactivation by direct contact with the surface.314 Similarly, studies have reported that SARS-CoV-2 is easily deactivated on the surface of Cu-loaded materials.98 Furthermore, Cu is far more advantageous in terms of economy than Ag, and it can easily be used to produce PNs and has excellent stability. Therefore, the development and application of NPs with Cu or copper oxide (CuO) is the most suitable strategy to inactivate SARS-CoV-2 in the external environment. For example, in an experiment using a mask containing CuO-NPs, the influenza virus has been shown to be inactivated remarkably.315

Graphene derivatives (GDs), together with metal NPs, can effectively inactivate viruses.316 The antiviral mechanism of GDs involves electrostatic interactions, wherein the negative charge on the coated surface of the GDs promotes its binding to the positively charged viral particles.317 When GDs are applied to antibodies against viruses using nanotechnology, they show excellent effects on rotavirus and influenza virus infections.318–320 In addition, this characteristic of GDs can also be applied to the prevention, diagnosis, and treatment of SARS-CoV-2, according to recent studies.321

Iron oxide nanoparticles (IONPs) have already proven antibacterial activity through many studies.322,323 It has also been approved by the US Food and Drug Administration (FDA) for the treatment of anemia because of the excellent biocompatibility of IONPs.324 The interaction between IONPs and the S protein of SARS-CoV-2 has been identified in recent studies and the potential antiviral activity of IONPs has been reported.325 In addition, the ability of IONPs to produce ROS can be applied to inactivate SARS-CoV-2 in the external environment.326,327

Conclusion

In the past, treatment and vaccine candidates for SARS and MERS have not been fully researched and developed, as they have not been recognized for adequate investment and effectiveness due to the significantly lower infection rates than that for COVID-19. However, unlike the case of SARS or MERS, COVID-19 has been a worldwide threat for almost a year. Research and development using innovative methods, such as nanotechnology, is essential to end this pandemic effectively in a short time. Various treatments using nanotechnology have been developed and commercialized for common viral infections, such as IAV and IBV,158–160 EBOV,161 HIV1 and 2,162–165 HSV1 and 2,166–169 HBV and HCV,170–177 and HuNoV.178 The accumulated advancements in these virus-fighting nanotechnologies can play an important role in taking SARS-CoV-2 treatment and vaccine development to the next level. The tedious COVID-19 pandemic, which has not yet been put to end, is now moving in the direction of overcoming the virus in a step-by-step fashion with the help of nanomedicine. Currently, several companies are moving away from traditional SARS-CoV-2 treatment and prevention strategies and using nanotechnology to develop various types of vaccines and therapeutics and conduct clinical evaluations. For example, dexamethasone, a COVID-19 therapeutic agent that has introduced via various nano-formulations, has led to a big turn in the treatment of COVID-19.179 In addition, the clearance of Phase 3 clinical trials of the liposomal mRNA vaccine (BNT162b) developed by Pfizer can be considered a great achievement of nanomedicine.328 Moreover, the technology that deactivates SARS-CoV-2 in the external environment using nanomaterials, such as Ag-NPs,307–310 NPs with Cu or CuO,314 and GDs,316 and diagnostic technology that can quickly detect SARS-CoV-2 without the use of expensive equipment by applying GNs,329 are also contributing towards the prevention and control of COVID-19. Nonetheless, owing to the complex situation caused by COVID-19, it is believed that the existing platform needs to be modified in order for the research in various fields globally to be more efficient. Therefore, nanotechnology and nanomedicine can be suitable alternatives to this change in the research and development paradigm.

Acknowledgment

This work was supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF), funded by the Korea government (MSIT) (NRF-2018R1D1A1B07041381).

Disclosure

The author declares that they have no conflicts of interest for this work.
References

1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395(10233):470–473. doi:10.1016/S0140-6736(20)30185-9
2. Perlman S. Another decade, another coronavirus. J Clin Microbiol. 2005;43(11):5452–5456. doi:10.1128/JCM.43.11.5452-5456.2005
3. Pene F, Merlat A, Vabret A, et al. Coronavirus 229E-related pneumonia in immunocompromised patients. Clin Infect Dis. 2003;37(7):929–932. doi:10.1086/377612
4. Vigen L, Keyaerts E, Moes E, Maes P, Duson G, Van Ranst M. Development of a one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronavirus OC43 and 229E. J Clin Microbiol. 2005;43(11):5452–5456. doi:10.1128/JCM.43.11.5452-5456.2005
5. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen KY. Middle East respiratory syndrome in Wuhan, China: a modelling study (vol 395, pg 689, 2020). Lancet. 2020;395(10225):E41. doi:10.1016/S0140-6736(20)30260-9
6. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the outbreak and epidemic size of the 2019 novel coronavirus (2019-nCoV) using a seasonal SARS-CoV-2 transmission model. MedRxiv. 2020;2001.0204.2001126
7. Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome-coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544.
8. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the outbreak and epidemic size of the 2019 novel coronavirus (2019-nCoV) using a seasonal SARS-CoV-2 transmission model. MedRxiv. 2020;2001.0204.2001126
9. Seto WH, Tang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363–13372. doi:10.1128/JVI.05300-11
10. Shi H, Han X, Zheng C. Evolution of CT manifestations in a patient recovered from 2019 novel Coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. 2020;295(1):20. doi:10.1148/radiol.2020200269
11. Seto WH, Tang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363–13372. doi:10.1128/JVI.05300-11
12. Liu K, Yang X, Wang L, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289. doi:10.1086/jpath.11440
13. Liu K, Yang X, Wang L, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289. doi:10.1086/jpath.11440
14. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi:10.3390/pathogens9030231
15. Lotfi M, Hamblin MR, Rezaei N. COVID-19: transmission, prevention, and potential therapeutic opportunities. Clin Chim Acta. 2020;508:254–266. doi:10.1016/j.cca.2020.05.044
16. Shi H, Han X, Zheng C. Evolution of CT manifestations in a patient recovered from 2019 novel Coronavirus (2019-nCoV) pneumonia in Wuhan, China. Radiology. 2020;295(1):20. doi:10.1148/radiol.2020200269
17. Su S, Song G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016;24(6):490–502. doi:10.1016/j.tim.2016.03.003
18. Wolfe ND, Dunavan CP, Diamond J. Origins of major human infectious diseases. Nature. 2007;447(7142):279–283. doi:10.1038/nature05775
19. Day M. Covid-19: four fifths of cases are asymptomatic, China figures indicate. BMJ. 2020;369:m1375. doi:10.1136/bmj.m1375
20. Sutton D, Fuchs K, D’Alton M, Goffman D. Universal screening for SARS-CoV-2 in women admitted for delivery. N Engl J Med. 2020;382(22):2163–2164. doi:10.1056/NEJMc2009316
21. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill. 2020;25(10). doi:10.2807/1560-7917.ES.2020.25.10.2000180
22. Seto WH, Tang D, Yung RWH, et al. Effectiveness of precautions against droplets and contact in prevention of nosocomial transmission of severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol. 2011;85(24):13363–13372. doi:10.1128/JVI.05300-11
23. Liu K, Yang X, Wang L, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289. doi:10.1086/jpath.11440
24. Rabi FA, Al Zoubi MS, Kasasbeh GA, Salameh DM, Al-Nasser AD. SARS-CoV-2 and Coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi:10.3390/pathogens9030231
25. Liu K, Yang X, Wang L, et al. The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289. doi:10.1086/jpath.11440
37. Shi Y, Yang DH, Xiong J, Jia H, Huang B, Jin YX. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res. 2005;15(3):193–200. doi:10.1038/sj.cr.7290286

38. Wu CJ, Huang HW, Liu CY, Hong CF, Chan YL. Inhibition of SARS-CoV replication by siRNA. Antivir Res. 2005;65(1):45–48. doi:10.1016/j.antiviral.2004.09.005

39. Qin ZL, Zhao P, Zhang XL, et al. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem Biophys Res Commun. 2004;324(4):1166–1173. doi:10.1016/j.bbrc.2004.09.180

40. Zheng B, Guan Y, Tang Q, et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir Ther. 2004;9(3):365–374.

41. Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol. 2004;78(14):7523–7527. doi:10.1128/JVI.78.14.7523-7527.2004

42. Zhang Y, Li T, Fu L, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett. 2004;560(1–3):141–146. doi:10.1016/S0014-5793(04)00870-0

43. Li T, Zhang Y, Fu L, et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 2005;12(9):751–761. doi:10.1038/sj.gt.3302479

44. Ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. Antivir Ther. 2004;9(7):662–673. doi:10.1038/sj.antivir.3601820

45. Wang Z, Ren L, Zhao X, et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol. 2004;78(14):7523–7527. doi:10.1128/JVI.78.14.7523-7527.2004

46. Zhang Y, Li T, Fu L, et al. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett. 2004;560(1–3):141–146. doi:10.1016/S0014-5793(04)00870-0

47. Li T, Zhang Y, Fu L, et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 2005;12(9):751–761. doi:10.1038/sj.gt.3302479

48. Ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. Antivir Ther. 2004;9(7):662–673. doi:10.1038/sj.antivir.3601820

49. Li T, Zhang Y, Fu L, et al. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther. 2005;12(9):751–761. doi:10.1038/sj.gt.3302479

50. Ter Meulen J, van den Brink EN, Poon LL, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. Antivir Ther. 2004;9(7):662–673. doi:10.1038/sj.antivir.3601820

51. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine. 2006;24(8):1159–1169. doi:10.1016/j.vaccine.2005.08.105

52. Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL. Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol. 2004;172(9):5194–5199. doi:10.4049/jimmunol.172.9.5194

53. Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006;124(4):849–863. doi:10.1016/j.cell.2006.02.019

54. Thompson JM, Whitmore AC, Konopka JL, et al. Mucosal and systemic adjuvant activity of alphavirus replicon particles. Proc Natl Acad Sci U S A. 2006;103(10):3722–3727. doi:10.1073/pnas.0600287103

55. Aki J, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel Coronavirus from a man with pneumonia in Saudi Arabia. New Engl J Med. 2012;367(19):1814–1820. doi:10.1056/NEJMoa1211721

56. Bialek SR, Allen D, Alvarado-Ramy F, et al. First confirmed cases of middle east respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities May 2014. Am J Transplant. 2014;14(7):1693–1699.

57. Cauweneers S, Van Kerckhove MD, Riley S, Donnelly CA, Fraser C, Ferguson NM. Transmission scenarios for middle east respiratory syndrome coronavirus (MERS-CoV) and how to tell them apart. Eurosurveillance. 2013;18(24):7–13.

58. Drosten C, Seilmaier M, Corman VM, et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection. Lancet Infect Dis. 2013;13(9):745–751. doi:10.1016/S1473-3099(13)70154-3

59. Mailles A, Blanckaert K, Chaud P, et al. First cases of Middle East respiratory syndrome Coronavirus (MERS-CoV) infections in France, investigations and implications for the prevention of human-to-human transmission, France, May 2013. Eurosurveillance. 2013;18(24):2–6.

60. Tahir M, Gajraj R, Bardhan M, et al. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013. Eurosurveillance. 2013;18(11):4–10.

61. Puzelli S, Azzi A, Santini MG, et al. Investigation of an imported case of Middle East respiratory syndrome Coronavirus (MERS-CoV) infection in Florence, Italy, May to June 2013. Eurosurveillance. 2013;18(34):2–5. doi:10.2807/1560-7917.ES.2013.18.34.20564

62. Tsiodras S, Baka A, Mentis A, et al. A case of imported Middle East respiratory syndrome coronavirus infection and public health response, Greece, April 2014. Eurosurveillance. 2014;19(16):5–10. doi:10.2807/1560-7917.ES.2014.19.16.20782

63. de Groote RJ, Baker SC, Baric RS, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J Virol. 2013;87(14):7799–7792. doi:10.1128/JVI.01244-13

64. Raj VS, Mou HH, Smits SL, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature. 2013;495(7440):251–254. doi:10.1038/nature12005

65. Barlan A, Zhao JC, Sarkar MK, et al. Receptor variation and susceptibility to middle east respiratory syndrome Coronavirus. J Virol. 2014;88(9):4953–4961. doi:10.1128/JVI.00161-14

66. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214–15219. doi:10.1073/pnas.1407087111

67. Cheung G, Blumberg S, Simonsen L, Miller MA, Viboud C. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission. Epidemics. 2014;9:40–51. doi:10.1016/j.epidem.2014.09.011

68. Assiri A, Al-Tawfiq JA, Al-Rabeaah AA, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13(9):752–761. doi:10.1016/S1473-3099(13)70204-4

69. Memish ZA, Al-Tawfiq JA, Markood IQ, et al. Screening for Middle East respiratory syndrome coronavirus infection in hospital patients and their healthcare worker and family contacts: a prospective descriptive study. Clin Microbiol Infect. 2014;20(5):469–474. doi:10.1111/1469-0691.12562
143. Kotin RM. Large-scale recombinant adeno-associated virus production. *Hum Mol Genet*. 2011;20(2):R2–R6. doi:10.1093/hmg/ddr141

144. Flotte TR. Gene therapy progress and prospects: recombinant adeno-associated virus (rAAV) vectors. *Gene Ther*. 2004;11(10):805–810. doi:10.1038/sj.gt.3302223

145. Monahan PE, Samulski RJ. AAV vectors: is clinical success on the horizon? *Gene Ther*. 2000;7(1):24–30. doi:10.1038/sj.gt.3301109

146. Choi WK, McCarty DM, Samulski RJ. AAV hybrid serotypes: improved vectors for gene delivery. *Curr Gene Ther*. 2005;5(3):299–310. doi:10.2153/156665200520316496

147. Li HH, Malani N, Hamilton SR, et al. Assessing the potential for AAV vector genotoxicity in a murine model. *Blood*. 2011;117(12):3311–3319. doi:10.1182/blood-2010-08-302729

148. Folegatti PM, Ewer KJ, Aley PK, et al. Safety, tolerability, and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a Phase 1/2, single-blind, randomised controlled trial. *Lancet*. 2020;396(10249):347–355. doi:10.1016/S0140-6736(20)31604-4

149. Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. *Nat Rev Genet*. 2014;15(8):541–555. doi:10.1038/nrg3763

150. Vincent M, de Lazaro I, Costarelos K. Graphene materials as 2D nanomaterials and gene delivery to cells and tissue. *Adv Drug Deliver Rev*. 2019;13(1):14–27. doi:10.1016/j.addr.2018.10.007

151. Gregory AE, Tritball R, Williamson D. Vaccine delivery using nanoparticles. *Front Cell Infect Microbiol*. 2013;3.

152. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug delivery. *Adv Drug Delivery Rev*. 2003;55(3):329–347. doi:10.1016/S0169-409X(02)00228-4

153. Shen YB, Hao TY, Ou SY, Hu CR, Chen L. Applications and perspectives of nanomaterials in novel vaccine development. *Med Chem Comm*. 2018;9(2):226–238. doi:10.1039/C7MD00158D

154. Qi F, Wu J, Li H, Ma GH. Recent research and development of PLGA/PLA microspheres/nanoparticles: a review in scientific and industrial aspects. *Front Chem Sci Eng*. 2019;13(1):14–27. doi:10.1007/s11705-018-1729-4

155. Sainz V, Conniot J, Matos AI, et al. Regulatory aspects on biodegradable nanoparticles. *Biochem Biophys Res Commun*. 2015;468(3):504–510. doi:10.1016/j.bbrc.2015.08.023

156. Mogroa J, da Costa CA, Gaspar R, Florindo HF. Modulation of dendritic cells by nanotechnology-based immunotherapeutic strategies. *J Biomed Nanotechnol*. 2016;12(3):405–434. doi:10.1166/jbnn.2016.2157

157. Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. *Nano Today*. 2021;36:101051. doi:10.1016/j.nantod.2020.101051

158. Barik S. New treatments for influenza. *BMJ Med*. 2012;10. doi:10.1136/bmj.7105-10-104

159. Levina AS, Repkova MN, Mazurkova NA, Zarytova VF. Nanoparticle-mediated nonviral DNA delivery for effective inhibition of influenza a viruses in cells. *IEEE T Nanotechnol*. 2016;15(2):248–254. doi:10.1109/TNNANO.2016.2516561

160. Hendricks GL, Weirich KL, Viswanathan K, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. *J Biol Chem*. 2013;288(12):8061–8073. doi:10.1074/jbc.M112.437202

161. Dunning J, Sahr F, Rojek A, et al. Experimental treatment of ebola virus disease with TKM-130803: a single-arm Phase 2 clinical trial. *PLoS Med*. 2016;13(4):e1001997. doi:10.1371/journal.pmed.1001997

162. Pereira de Oliveira M, Garcia E, Venisse N, Benoît JP, Coutet W, Olivier JC. Tissue distribution of indinavir administered as solid lipid nanoparticle formulation in mdrla (+/+) and mdrla (-/-) CF-1 mice. *Pharm Res*. 2005;22(11):1898–1905. doi:10.1007/s11095-005-7147-6

163. Rodriguez B, Asmuth DM, Matining RM, et al. Safety, tolerability, and immunogenicity of repeated doses of DermaVir, a candidate therapeutic HIV vaccine, in HIV-infected patients receiving combination antiretroviral therapy: results of the ACTG 5176 trial. *J Acquir Immune Defic Syndr*. 2013;64(4):351–359. doi:10.1097/QAI.0b013e3182a95990

164. Orkin C, Squires KE, Molina JM, et al. Doravirine/Lamivudine/Tenofovir disoproxil fumarate is non-inferior to Efavirenz/Emtricitabine/Tenofovir Disoproxil fumarate in treatment-naive adults with human immunodeficiency Virus-1 infection: week 48 results of the DRIVE-AHEAD trial. *Clin Infect Dis*. 2019;68(4):535–544. doi:10.1093/cid/ciy540

165. Price CF, Tysyen S, Sonza S, et al. SPL7013 gel (VivaGel(R)) retains potent HIV-1 and HSV-2 inhibitory activity following vaginal administration in humans. *PLoS One*. 2011;6(9):e24095. doi:10.1371/journal.pone.0024095

166. Cavalli R, Donaliso M, Bisazza A, et al. Enhanced antiviral activity of acyclovir loaded into nanoparticles. *Nanomedicine*. 2012;509:1–19.

167. Lembo D, Swaminathan S, Donaliso M, et al. Encapsulation of Acyclovir in new carboxylated cyclodextrin- based nanospheres improves the agent’s antiviral efficacy. *Int J Pharm*. 2013;443(1–2):262–272. doi:10.1016/j.ijpharm.2012.12.031

168. Hu RL, Li SR, Kong FJ, Hou RJ, Guan XL, Guo F. Inhibition effect of silver nanoparticles on herpes simplex virus 2. *Genet Mol Res*. 2014;13(3):7022–7028. doi:10.4238/2014.March.19.2

169. Rupp R, Rosenthal SL, Stanberry LR. VivaGel(TM) (SPL7013 Gel): a candidate dendrimer microbicide for the prevention of HIV and HSV infection. *Int J Nanomed*. 2007;2(4):561–566.

170. Wieland SE, Vega RG, Muller R, et al. Searching for interferon-induced genes that inhibit hepatitis B virus replication in transgenic mouse hepatocytes. *J Virol*. 2003;77(2):1227–1236. doi:10.1128/JVI.77.2.1227-1236.2003

171. Liang TJ, Block TM, McMahon BJ, et al. Present and future therapies of Hepatitis B: from discovery to cure. *Hepatology*. 2015;62(6):1893–1908. doi:10.1002/hep.28025

172. Lingala S, Lau DTY, Koh C, Auh S, Ghany MG, Hoofnagle JH. Long-term lamivudine therapy in chronic hepatitis B. *Aliment Pharm Ther*. 2016;44(4):380–389. doi:10.1111/apt.13707

173. Marcellin P, Chang TT, Lim SG, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. *N Engl J Med*. 2003;348(9):808–816. doi:10.1056/NEJMoa026081

174. Dimou E, Papadimitropoulos V, Hadziyannis SJ. The role of entecavir in the treatment of chronic hepatitis B. *Ther Clin Risk Manag*. 2007;3(6):1077–1086.

175. Matthews SJ. Telbivudine for the management of chronic hepatitis B virus infection. *Clin Ther*. 2007;29(12):2625–2635. doi:10.1016/j.clinthera.2007.12.032

176. Manzoor S, Saalim M, Imran M, Resham S, Ashraf J. Hepatitis B virus-like particles. *Copper Sulfide Core/Shell nanoparticles against human Norovirus virus-like particles. *PLoS One*. 2015;10(10):e0141050. doi:10.1371/journal.pone.0141050
218. Ding Y, Jiang Z, Saha K, et al. Gold nanoparticles for nucleic acid delivery. Mol Ther. 2014;22(6):1075–1083. doi:10.1038/mt.2014.30

219. Roca M, Haes AJ. Probing cells with noble metal nanoparticle aggregates. Nanomedicine (Lond). 2008;3(4):555–565. doi:10.2217/17435889.3.4.555

220. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: the phagocyte problem. Nano Today. 2015;10(4):487–510. doi:10.1016/j.nantod.2015.06.006

221. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):Mr17–Mr71. doi:10.1116/1.2815690

222. Bansal SA, Kumar V, Karimi J, Singh AP, Kumar S. Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv. 2020;2(9):3764–3787.

223. Kato T, Takami Y, Deo VK, Park EY. Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol. 2019;306:177–184. doi:10.1016/j.jbiotec.2019.10.007

224. Bundy BC, Swartz JR. Efficient disulfide bond formation in recombinant hepatitis C virus-like particles. Proc Natl Acad Sci U S A. 2003;100(11):6753–6758. doi:10.1073/pnas.1131929100

225. Quan FS, Compans RW, Nguyen HH, Kang SM. Induction of innate immune responses conferring cross-protection against heterosubtypic influenza viruses. PLoS One. 2018;13(1).

226. Lee YT, Ko EJ, Lee Y, et al. Intranasal vaccination with M2e5x of recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci U S A. 2011;108(24):9766–9771. doi:10.1073/pnas.1104520108

227. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):Mr17–Mr71. doi:10.1116/1.2815690

228. Yang Y, Hovlid ML, Lau JL, Breitenkamp K, et al. Encapsidated of diverse cargos by bacteriophage MS2 virus-like particles. Nano Today. 2011;5(7):5729–5745. doi:10.1021/nn201397z

229. Ashley CE, Carnes EC, Phillips GK, et al. Cell-Specific delivery of recombinant hepatitis C virus-vaccinia infection. Proc Natl Acad Sci U S A. 2003;100(11):6753–6758. doi:10.1073/pnas.1131929100

230.保管 BC, Franciszkowicz MJ, Swartz JR. Escherichia coli-based cell-free synthesis of virus-like particles. Biotechnol Bioeng. 2008;100(1):28–37. doi:10.1002/bit.21716

231. Ashley CE, Carnes EC, Phillips GK, et al. Cell-Specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. ACS Nano. 2011;5(7):5729–5745. doi:10.1021/nn201397z

232. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):Mr17–Mr71. doi:10.1116/1.2815690

233. Cordis MG, Hove SB, Hove SB, et al. Engineered liposomes sequester bacterial exotoxins and protect from severe infections in mice. Nat Biotechnol. 2015;33(1):81–88. doi:10.1038/nbt.3037

234. Hu CMJ, Fang RH, Coppel J, Luk BT, Zhang LF. A biomimetic nanosponge that absorbs pore-forming toxins. Nat Nanotechnol. 2013;8(5):336–340. doi:10.1038/nnano.2013.54

235. Keller MD, Chung KL, Liang FX, et al. Decay exosomes provide protection against bacterial toxins. Nature. 2020;579(7798):260. doi:10.1038/s41586-020-2066-6

236. Henry BD, Neill DR, Becker KA, et al. Engineered liposomes with Tumor growth control imposed by the three-dimensional extracellular matrix. J Med. 2014;53(4):450–459. doi:10.1016/S0301-472X(02)00791-9

237. Gasser O, Hess C, Miot S, Decon C, Sanchez JC, Schiffert JA. Characterisation and properties of exosomes released by human polymorphonuclear neutrophils. Exp Cell Res. 2003;285(2):243–257. doi:10.1006/s0014-4827(03)00557-7

238. Horstman LL, Wy J, Jimenez JJ, Bidd, C, Ahn YS. New horizons in the analysis of circulating cell-derived microvesicles. Keio J Med. 2004;53(4):210–230. doi:10.2302/kjm.53.210

239. Baj-Czyzewicka M, Majka M, Pratico D, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30(5):450–459. doi:10.1016/S0301-472X(02)00797-X

240. Safaei R, Larson BJ, Cheng TC, et al. Abnormal lysosomal trafficking and enhanced exosomal export of exisplatin in drug-resistant human ovarian carcinoma cells. Mol Cancer Ther. 2005;4(10):1595–1604. doi:10.1158/1535-7163.MCT-05-0102
254. Sheddon K, Xie XT, Chandaroy P, Chang YT, Rosania GR. Expulsion of small molecules in vesicles shed by cancer cells: association with gene expression and chemosensitivity profiles. Cancer Res. 2003;63(15):4331–4337.

255. Yang W, Peters JI, Williams RO 3rd. Inhaled nanoparticles—a current review. Int J Pharm. 2008;356(1–2):239–247. doi:10.1016/j.ijpharm.2008.02.011

256. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74. doi:10.1038/nrd2153

257. Cavalcanti IDL, de Fatima Ramos Dos Santos Medeiros SM, Dos Santos Macedo DC, Ferro Cavalcanti IM, de Britto Lira Nogueira MC. Nanocarriers in the delivery of hydroxychloroquine to the respiratory system: an alternative to COVID-19? Carr Drug Deliv. 2020;17. doi:10.2174/156720182021100445

258. Zeng XM, Martin GP, Marriott C. The controlled delivery of drugs to the lung. Int J Pharm. 1995;124(2):149–164. doi:10.1016/0378-5173(95)00104-Q

259. Justo OR, Moraes AM. Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Deliv. 2003;10(3):201–207. doi:10.1080/1071340401

260. Schreier H, Gonzalezrothi RJ, Stecenko AA. Pulmonary delivery of liposomes. J Control Release. 1993;24(1–3):209–223. doi:10.1016/0168-3659(93)90180-D

261. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system: an alternative to COVID-19?. Curr Drug Deliv. 2020;17. doi:10.2174/156720182021100445

262. Cryan SA, Devocelle M, Moran PJ, Hickey AJ, Kelly JG. Inhaled antibiotic nanoparticles induce coronavirus neutralizing antibodies in mice. PLoS One. 2016;11(10). doi:10.1371/journal.pone.0167262

263. Shao W, Wang Q, Zhang N. Spray-freeze-dried dry powder inhalation of insulin-loaded liposomes for enhanced pulmonary delivery. J Drug Target. 2008;16(9):639–648. doi:10.1080/1061186080221134

264. De Smedt SC, Demeester J, Hennink WE. Cationic polymer drugs to the lung. Int J Pharm. 1995;124(2):149–164. doi:10.1016/0378-5173(95)00104-Q

265. Moitra P, Alafeef M, Dighe K, Frieman MB, Pan D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmomic nanoparticles. ACS Nano. 2020;14(6):7617–7627. doi:10.1021/acsnano.0c03882

266. Baker AN, Richards SJ, Guy CS, et al. The SARS-COV-2 spike protein binds sialic acids and enables rapid detection in a lateral flow point of care diagnostic device. ACS Cent Sci. 2020;6(11):2046–2052. doi:10.1021/acscentsi.0c00855

267. Zeng JY, Zeng H, Gu J, Li HB, Zheng LX, Zou QM. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines-Basel. 2020;8(2).

268. Jiang SB, Bottazzi ME, Du LY, et al. Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. Expert Rev Vaccines. 2012;11(12):1405–1413. doi:10.1586/erv.12.126

269. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. Lancet. 2020;395(10224):565–574. doi:10.1016/S0140-6736(20)30251-8

270. Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial molecular clamp: a novel device for synthetic polymers. Angew Chem Int Ed Engl. 2011;50(33):7524–7528. doi:10.1002/anie.201102834

271. Lu RJ, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi:10.1016/S0140-6736(20)30251-8

272. Liu C, Zhou QQ, Li YZ, et al. Research and development on coronavirus rampages and prospects on vaccine development against SARS-CoV-2. J Nanotechnol. 2020;22(9). doi:10.1155/2020/6383–6406. doi:10.1016/j.acsncs.0c03697

273. Cavalcanti IDL, Nogueira MCDL. Pharmaceutical nanotechnology: which products are been designed against COVID-19? J Nanopart Res. 2020;22(9). doi:10.1007/s11051-020-05100-6

274. Ivanov YD, Malsagova KA, Pleshakova TO, et al. Ultrasensitive detection of 2,4-dinitrophenol using nanowire biosensor. J Nanotechnol. 2018;2018.

275. Seo G, Lee G, Kim MJ, et al. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor (vol 14, pg 5135, 2020). ACS Nano. 2020;14(9):12257–12258. doi:10.1021/acsnano.0c06726

276. Lu RJ, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi:10.1016/S0140-6736(20)30251-8

277. Coleman CM, Liu YV, Mu HY, et al. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice. Vaccine. 2014;32(26):3169–3174. doi:10.1016/j.vaccine.2014.04.016

278. Takashima Y, Osaki M, Ishimaru Y, Yamaguchi H, Harada A. Artificial molecular clamp: a novel device for synthetic polymers. Angew Chem Int Ed Engl. 2011;50(33):7524–7528. doi:10.1002/anie.201102834

279. Tai WB, He L, Zhang XJ, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17(6):613–620. doi:10.1038/s41423-020-0400-4

280. Liu C, Zhou QQ, Li YZ, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–331. doi:10.1021/acscentsi.0c00272

281. Tu YF, Chien CS, Yarmishyn AA, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7):2657. doi:10.3390/ijms21072657

282. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279.

283. Zeng C, Hou X, Yan J, et al. Leveraging mRNA sequences to express SARS-CoV-2 antigens in vivo. bioRxiv. 2020. doi:10.1101/2020.04.01.019877

284. Mulligan MJ, Lyke KE, Kitchin N, et al. Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;584(7830):589–593. doi:10.1038/s41586-020-2639-4

285. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid-19 vaccines at pandemic speed. Nat Rev Microbiol. 2020;18(1):539–550. doi:10.1038/s41586-020-2639-4

286. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(4). doi:10.1038/s41467-019-13940-6.
291. Lee JW, Gupta N, Serikov V, Matthay MA. Potential application of mesenchymal stem cells in acute lung injury. Expert Opin Biol Ther. 2009;9(10):1259–1270. doi:10.1517/14712590903213651

292. Reddy ST, van der Vlies AJ, Simeoni E, et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol. 2007;25(10):1159–1164. doi:10.1038/nbt1332

293. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2010;10(11):787–796. doi:10.1038/nr8268

294. Reddy ST, Berk DA, Jain RK, Swartz MA. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol. 2006;101(4):1162–1169.

295. Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol. 2014;14(7):495–504. doi:10.1038/nri3689

296. Amanna IJ, Raue HP, Slifka MK. Development of a new hydrodynamic peroxide-based vaccine platform. Nat Med. 2012;18(6):974. doi:10.1038/nm.2763

297. Hanson MC, Crespo MP, Abraham W, et al. Nanoparticle STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest. 2015;125(6):2532–2546. doi:10.1172/JCI79915

298. Moon JJ, Suh H, Bershteyn A, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral immunity. Nat Commun. 2020;11(9):1162–1169.

299. Ma CQ, Wang LL, Tao XR, et al. Searching for an ideal vaccine candidate among different MERS coronavirus receptor-binding fragments-The importance of immunofocusing in subunit vaccine design. Vaccine. 2014;32(46):6170–6176. doi:10.1016/j.vaccine.2014.08.086

300. Wang LS, Shi W, Joyce MG, et al. Evaluation of candidate vaccine approaches for MERS-CoV. Nat Commun. 2015;6:5.

301. Gangadaran P, Hong CM, Oh JM, et al. In vivo non-invasive imaging of radio-labeled exosome-mimetics derived from red blood cells in mice. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00817

302. Darnell MER, Subbarao K, Feinstone SM, Taylor DR. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J Virol Methods. 2004;121(1):85–91. doi:10.1016/j.jviromet.2004.06.006

303. Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020;1(1):e10. doi:10.1016/S2666-5247(20)30003-3

304. Sim W, Barnard RT, Blaskovich MT, Ziaa ZM. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017). Antibiotics Basel. 2018;7(4). doi:10.3390/antibiotics7040093

305. Sohal IS, O’Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol. 2018;15. doi:10.1186/s12989-018-0265-1

306. Kaiser JP, Zuin S, Wick P. Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci Total Environ. 2013;442:282–289. doi:10.1016/j.scitotenv.2012.10.009

307. Echechiquerra JL, Kurt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3:6. doi:10.1186/1477-1755-3-6

308. De Gussemse B, Sintubin L, Baert L, et al. Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microbiol. 2010;76(4):1082–1087. doi:10.1128/AEM.02433-09

309. Orłowski P, Tomaszewska E, Giniadk M, et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus Type 2 infection. PLoS One. 2014;9(8):e104113. doi:10.1371/journal.pone.0104113

310. Du T, Liang JG, Dong N, et al. Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding. ACS Appl Mater Interfaces. 2018;10(5):4369–4378. doi:10.1021/acsami.7b13811

311. Zodrow K, Brunet L, Mahendra S, et al. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009;43(3):715–723. doi:10.1016/j.watres.2008.11.014

312. Joe YH, Park DH, Hwang J. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: anti-viral efficiency with dust loading. J Hazard Mater. 2016;301:547–553. doi:10.1016/j.jhazmat.2015.09.017

313. Wares SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. Mbio. 2015;6(6). doi:10.1128/mBio.01697-15

314. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microb. 2011;77(5):1541–1547. doi:10.1128/AEM.02766-10

315. Borkow G, Zhou SS, Page T, Gabay J. A novel anti-influenza copper oxide containing respiratory face mask. PLoS One. 2010;5(6):e11295. doi:10.1371/journal.pone.0011295

316. Tu ZX, Guday G, Adeli M, Haag R. Multivalent Interactions between 2D nanomaterials and biointerfaces. Adv Mater. 2018;30(33).

317. Song ZY, Wang XY, Zhu GX, et al. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small. 2015;11(10–11):1171–1176. doi:10.1002/smll.201401706

318. Xie ZX, Huang JL, Luo SS, et al. Ultrasensitive electrochemical immunoassay for avian influenza subtype H5 using nanocomposite. PLoS One. 2014;9(4).

319. Jung HJ, Cheon DS, Liu F, Lee KB, Seo TS. A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed. 2010;49(33):5707–5711. doi:10.1002/anie.201001428

320. Singh R, Hong S, Jang J. Label-free detection of influenza viruses using a reduced graphene oxide-based electrochemical immuno-sensor integrated with a microfluidic platform. Sci Rep. 2017;7.

321. Palmieri V, Papi M. Can graphene take part in the fight against COVID-19? Nano Today. 2020;33:100883. doi:10.1016/j.nantod.2020.100883

322. Arias LS, Pessan JP, Vieira APM, Lima TMT, Delbem ACB, Monteiro DR. Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics (Basel). 2018;7(2). doi:10.3390/antibiotics7020046

323. Abo-Zeid Y, Williams GR. The potential anti-infective applications of metal oxide nanoparticles: a systematic review. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(2):e1592. doi:10.1002/wnn.1592.

324. Coyne DW. Ferumoxtol for treatment of iron deficiency anemia in patients with chronic kidney disease. Expert Opin Pharmacother. 2009;10(15):2563–2568. doi:10.1517/14656560903224998

325. Abo-Zeid Y, Ismail NSM, McLean GR, Hmdy NM. A molecular docking study repurposes FDA approved iron oxide nanoparticles to treat and control COVID-19 infection. Eur J Pharm Sci. 2020;153:153. doi:10.1016/j.ejps.2020.105465

326. Ahamed M, Alhadaq HA, Alam J, Khan MA, Ali D, Alarafi S. Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Curr Pharm Des. 2013;19(37):6681–6690. doi:10.2174/1064126113970011

327. Ahamed M, Alhadaq HA, Khan MAM, Akhtar MJ. Selective killing of cancer cells by iron oxide nanoparticles mediated through reactive oxygen species via p53 pathway. J Nanopart Res. 2013;15(1). doi:10.1007/s11051-012-1225-6
328. Rab S, Afjal A, Javaid M, Haleem A, Vaishya R. An update on the global vaccine development for coronavirus. *Diabetes Metab Syndr.* 2020;14(6):2053–2055. doi:10.1016/j.dsx.2020.10.023

329. Yadavalli T, Shukla D. Role of metal and metal oxide nanoparticles as diagnostic and therapeutic tools for highly prevalent viral infections. *Nanomed Nanotechnol.* 2017;13(1):219–230. doi:10.1016/j.nano.2016.08.016