REGULAR AND BIREGULAR PLANAR CAGES

GABRIELA ARAUJO-PARDO 1, FIDEL BARRERA-CRUZ 2, AND NATALIA GARCÍA-COLÍN 3

Abstract. We study the Cage Problem for regular and biregular planar graphs. A \((k, g)\)-graph is a \(k\)-regular graph with girth \(g\). A \((k, g)\)-cage is a \((k, g)\)-graph of minimum order. It is not difficult to conclude that the regular planar cages are the Platonic Solids. A \({\{r, m\}; g}\)-graph is a graph of girth \(g\) whose vertices have degrees \(r\) and \(m\). A \({\{r, m\}; g}\)-cage is a \({\{r, m\}; g}\)-graph of minimum order. In this case we determine the triplets of values \({\{r, m\}; g}\) for which there exist planar \({\{r, m\}; g}\)-graphs, for all those values we construct examples. Furthermore, for many triplets \({\{r, m\}; g}\) we build the \({\{r, m\}; g}\)-cages.

Keywords: Cages, Planar Graphs.
MSC2010: 05C35, 05C10.

1. Introduction

We only consider finite simple graphs. The girth of a graph is the length of a smallest cycle. A \((k, g)\)-graph is a \(k\)-regular graph with girth \(g\). A \((k, g)\)-cage is a \((k, g)\)-graph of minimum order, \(n(k, g)\). These graphs were introduced by Tutte in 1947 (see [14]). The Cage Problem consists of finding the \((k, g)\)-cages for any pair integers \(k \geq 2\) and \(g \geq 3\). However, this challenge has proven to be very difficult even though the existence of \((k, g)\)-graphs was proved by Erdös and Sachs in 1963 (see [10]).

There is a known natural lower bound for the order of a cage, called Moore’s lower bound and denoted by \(n_0(r, g)\). It is obtained by counting the vertices of a rooted tree, \(T_{(g-1)/2}\) with radius \((g-1)/2\), if \(g\) is odd; or the vertices of a “double-tree” rooted at an edge (that is, two different rooted trees \(T_{(g-3)/2}\) with the root vertices incident to an edge) if \(g\) is even (see [9, 11]). Consequently, the challenge is to find \((k, g)\)-graphs with minimum order. In each case, the smallest known example is called a record graph. For a complete review about known cages, record graphs, and different techniques and constructions see [11].

As a generalization of this problem, in 1981, Chartrand, Woud and Kapoor introduced the concept of biregular cage [8]. A biregular \({\{r, m\}; g}\)-cage, for \(2 \leq r < m\), is a graph of girth \(g \geq 3\) whose vertices have degrees \(r\) and \(m\) and are of the smallest order among all such graphs. See [11, 2, 5, 12] for record biregular graphs and the bounds given by those.

Let \(n_0({\{r, m\}; g})\) be the order of an \({\{r, m\}; g}\)-cage. There is also a Moore lower bound tree construction for biregular cages (see [8]), which gives the following bounds:
Theorem 1. For \(r < m \) the following bounds hold.

\[
n_0(\{r, m\}; g) \geq 1 + \sum_{i=1}^{t-1} m(r-1)^i \quad \text{for } g = 2t + 1
\]

\[
n_0(\{r, m\}; g) \geq 1 + \sum_{i=1}^{t-2} m(r-1)^i + (r-1)^{t-1} \quad \text{for } g = 2t
\]

Also, in the same paper Chartrand, et.al. proved that:

Theorem 2. For \(2 < m \) the following hold:

\[
n(\{2, m\}; g) = \frac{m(g-1) + 2}{2} \quad \text{for } g = 2t + 1
\]

Theorem 3. For \(r < m \), \(n(\{r, m\}; 4) = r + m \).

Finally, we would like to mention the closely related degree diameter problem; determine the largest graphs or digraphs of given maximum degree and given diameter. This problem has also been studied in the context of embeddability, namely:

Let \(S \) be an arbitrary connected, closed surface (orientable or not) and let \(n_{\Delta, D}(S) \) be the largest order of a graph of maximum degree at most \(\Delta \) and diameter at most \(D \), embeddable in \(S \).

For a good survey on both the degree diameter problem and it’s embedded version see [13].

1.1. Contribution. In this paper we study a variation of the cage problem, for when we want to find the minimum order planar \((r, g)\)-graphs or regular planar cages and \((\{r, m\}; g)\)-graphs or biregular planar cages.

The \(g \) parameter of a planar cage is a lower bound for the minimum length of a face in the graph’s embedding. It is not difficult to prove that the regular planar cages are the Platonic Solids. [Section 2]

For \((\{r, m\}; g)\)-graphs we denote as \(n_p(\{r, m\}; g) \) the order of a \((\{r, m\}; g)\)-planar cage. In Section 3, we discover that the set of triads \((\{r, m\}; g)\) for which planar \((\{r, m\}; g)\)-graphs may exist is

\[
\{(r, m), 3)|2 \leq r \leq 5, r < m\} \quad \{(r, m), 4)|2 \leq r \leq 3, r < m\} \\
\{(r, m), 5)|2 \leq r \leq 3, r < m\} \quad \{(2, m), g)|, 2 < m, 6 \leq g\}.
\]

We provide upper and lower bounds for all \(n_p(\{r, m\}; g) \). We construct planar \((\{r, m\}; g)\)-graphs for all possible triads and construct planar \((\{r, m\}; g)\)-cages for

\[
(\{2, m\}, 3), (\{3, m\}, 3), (\{4, m\}, 3), (\{5, 6\}, 3), (\{5, 7\}, 3) \\
(\{2, m\}, 4), (\{3, 4 \leq m \leq 13\}, 4), (\{3, m = 5k - 1\}, 4) \text{ with } k \geq 3, \\
(\{2, m\}, 5) \text{ and } (\{2, m\}, 6).
\]
We also remark that, for the triplets of the form \((\{5, m\}; 3)\) and \((\{3, m\}; 4)\) for which we cannot assert that we have found a planar biregular cage, we provide constructions with a small excess (i.e., the upper bounds provided by the constructions and the lower bounds for \(n_p(\{5, m\}; 3)\) and \(n_p(\{3, m\}; 4)\), respectively, differ only by a small constant).

In Section 4 we provide the proofs for some technical lemmas that we will use throughout the paper. Finally, in Section 5 we state some conclusions and further research directions.

2. Regular planar cages

The \((2, g)\)-graphs are cycles on \(g\) vertices. Since these graphs are both planar and known to be cages, it follows that these graphs are the \((2, g)\)-planar cages. In this section we will investigate the existence of \((k, g)\)-planar graphs for \(k \geq 3\), and find smallest ones.

It is well known that any planar graph has at least one vertex of degree at most 5, hence \(3 \leq k \leq 5\). Recall that if \(G\) is a planar \((k, g)\)-graph, then its planar dual \(G^*\) is also planar, all its faces are of size \(k\), and its girth is bounded above by \(k\); while the degree of its vertices is bounded below by \(g\). Using these we can deduce that \(g \leq 5\). Thus, \(3 \leq g \leq 5\), and \((k, g)\)-planar graphs may only exist for \(k, g \in \{3, 4, 5\}\).

We would like to highlight that if \(G\) is a \((k, g)\)-graph, then \(G^*\) is not necessarily a \((g, k)\)-graph.

Let \(G\) be an embedded planar graph, then we will denote as \(v = v(G)\) its order, as \(e = e(G)\) its size and its number of faces as \(f = f(G)\). We will now argue that:

Theorem 4. The planar \((k, g)\)-cages are the five platonic solids: the tetrahedron, the cube, the octahedron, the dodecahedron and the icosahedron.

\[\text{Figure 1. The five platonic solids.}\]

Proof. Let \(G\) be a planar \((k, g)\)-cage. From our discussion above \(k, g \in \{3, 4, 5\}\). By the handshaking lemma \(e = \frac{vk}{2}\). Using the Euler’s characteristic equation, we find...
that the number of faces of an embedding is such that \(f = \frac{v(k-2)}{2} + 2 \). Also note that the face lengths (i.e. the number of edges of each face) are bounded below by \(g \) and the sum of the lengths of all faces of the embedding equals \(2e \), this is:
\[
2e \geq g \left(\frac{v(k-2)}{2} + 2 \right).
\]

Hence \(v, k \) and \(g \) have to satisfy the inequality
\[
(1) \quad v(2k - g(k - 2)) - 4g \geq 0.
\]

Thus we must have
\[
(2) \quad 2k - g(k - 2) > 0.
\]

It is easy to check that if \(k, g \in \{3, 4, 5\} \), then only the pairs \((k, g)\) satisfying (2) are \((3, 3), (3, 4), (3, 5), (4, 3) \) and \((5, 3)\).

Note that (1) can be rewritten as
\[
v \geq \frac{4g}{2k - g(k - 2)}.
\]

Also, note that each of the feasible pairs from above provides a lower bound for \(v \). We argue that these lower bounds are in fact tight and the resulting \((k, g, v)\) triplet possibilities for \((k, g)\)-cages are:

- (a) \((3, 3, 4)\)
- (b) \((3, 4, 8)\)
- (c) \((3, 5, 20)\)
- (d) \((4, 3, 6)\)
- (e) \((5, 3, 12)\).

This follows as, \(v(2k - g(k - 2)) - 4g = 0 \) if and only if the size of all faces is precisely \(g \). Thus, case (a) corresponds to a map on the plane with vertex degree 3 and face size 3, this an embedding of the tetrahedron. Similarly, we can see that cases (b), (c), (d) and (e) are the cube, the dodecahedron the octahedron and the icosahedron, respectively.

\[\Box\]

3. Biregular planar cages

Now, we turn our attention to planar \(\{r, m\}; g \)-cages. We may assume without loss of generality that \(2 \leq r < m \) and \(3 \leq g \), as we only consider simple graphs. Also, as we have argued before, a planar graph must have a vertex of degree less than or equal 5, thus, \(2 \leq r \leq 5 \).

Here we start again by noticing that if \(y \) is the number of vertices of \(G \) with degree \(r \) and \(x \) is the number of vertices of degree \(m \) then, by the handshaking lemma, \(2e = yr + xm \). Also, as before, we have \(2e \geq gf \) and, \(f = 2 - v + e \). Combining these three equations together we have:
\[
(3) \quad y[r(2-g) + 2g] + x[m(2-g) + 2g] - 4g \geq 0
\]

Using this equation, we may prove the following Lemma:

Lemma 5. An \(\{r, m\}, g \)-graph can be planar if and only if the triplet \(\{r, m\}, g \) is in one of the sets:

\[
\begin{align*}
\{\{r, m\}, 3\} & \mid 2 \leq r \leq 5, r < m \} & \{\{r, m\}, 4\} & \mid 2 \leq r \leq 3, r < m \} \\
\{\{r, m\}, 5\} & \mid 2 \leq r \leq 3, r < m \} & \{\{2, m\}, 6\} & \mid 2 < m, 6 \leq g \}
\end{align*}
\]
The curve is the graph of the function \(f(\alpha) = 2 + \frac{1}{\alpha - 2} \).
The dots represent the integer pairs \((\alpha, \beta)\) for which \(y < f(\alpha), \alpha \geq 2, \beta \geq 2 \).

Proof. Notice that, for equation (3) to hold, we need at least one of the following:
\[
2r(2-g) + 2g > 0 \text{ or } 2m(2-g) + 2g > 0.
\]
This is, an inequality of the form \(y < 2g \) must be satisfied for either \(y = r \) or \(y = m \). As \(r < m \), if the equation is satisfied by \(m \), then it is automatically satisfied by \(r \). Hence, \(r \) satisfies the inequality.

From these inequalities, it is easy to compute that the triplets \((\{r,m\}; g)\) ∈ \(\mathbb{N}^3 \) for which \(r < 2 + \frac{4}{g-2} \), with \(2 \leq r \) and \(2 \leq g \) are as stated (See Figure 2).

3.0.1. Lower bounds for planar biregular cages

Recall that \(n_p(\{r,m\}; g) \) denotes the order of a \((\{r,m\}; g)\)-planar cage. In this section we will provide some easy lower bounds on \(n_p(\{r,m\}; g) \).

Lemma 6. For all \((\{r,m\}; g)\) triplets in Lemma 5, \(n_p(\{r,m\}; g) \) increases as the number of vertices of degree \(m \) necessary to build a \((\{r,m\}; g)\)-planar cage increases.

Proof. Recall Equation 3: \(y[r(2-g) + 2g] + x[m(2-g) + 2g] - 4g \geq 0 \), where \(x \) is the number of vertices of degree \(m \) and \(y \) is the number of vertices of degree \(r \). Here we may write \(y = n_p - x \), were \(n_p = n_p(\{r,m\}; g) \), to obtain:

\[
n_p \geq \frac{4g + (\lfloor r(2-g) + 2g \rfloor - \lfloor m(2-g) + 2g \rfloor)x}{\lfloor r(2-g) + 2g \rfloor}.
\]

As we have mentioned before, since \(r < m \) then \(\lfloor m(2-g) + 2g \rfloor < \lfloor r(2-g) + 2g \rfloor \). Also, from Lemma 5 we have \(\lfloor r(2-g) + 2g \rfloor > 0 \) for the triplets allowed. Given that \(x > 0 \), this implies that the right handside of Equation 4 is positive, furthermore \(n_p \) increases as \(x \) increases.

As an easy corollary of Lemma 6, we have the following general lower bound:

Corollary 7. For all \((\{r,m\}; g)\) triplets in Lemma 5,

\[
n_p(\{r,m\}; g) \geq 1 + \frac{m(g-2) + 2g}{r(2-g) + 2g}.
\]
Corollary 8. The following lower bounds for $n_p\{(r, m); g\}$ hold for the triplets (r, m, g) in Lemma 5:

(a)	2	3	m
(b)	3	3	m
(c)	4	3	m
(d)	5	3	m
(e)	2	4	m
(f)	3	4	m
(g)	2	5	m
(h)	3	5	m
(i)	2	$6 \leq g$ even	$\geq \frac{m(a-2)+4}{2}$
(j)	2	$6 \leq g$ odd	$\geq \frac{m(a-1)+2}{2}$

Proof. For each case, will enlist the lemma or theorem that implies the better bound.

(a) Theorem 1
(b) Theorem 1
(c) Theorem 1 and Corollary 7
(d) Corollary 7
(e) Theorem 1
(f) Corollary 7
(g) Theorem 1
(h) Corollary 7
(i) Theorem 2
(j) Theorem 2

3.1. Some properties of planar graphs. In this section we will state some technical properties of planar graphs, which will come in handy when presenting the biregular planar cages in later sections. We include the proofs to all properties in Section 4.

Lemma 9. A planar graph of order $m+1$, at least one vertex of degree $m \geq 3$ satisfies exactly one of the following:

a. It has four vertices of degree m and $m = 3$.

b. It has three vertices of degree m and $m = 4$.

c. It has at most two vertices of degree m.

An outerplanar graph is a graph that has a planar drawing for which all vertices belong to the outer face of the drawing.

Lemma 10. Let G be a $\{(r, m); g\}$-planar graph, then the subgraph of G induced by all the vertices in the faces incident to a vertex x, $\text{link}_G(x)$, is an outer planar graph consisting of a (not necessarily disjoint) union of cycles (with or without chords) and paths, with at least $\deg(x)$ vertices.

Let $\text{link}_G(x) = (\cup_{i=1}^k C_i) \cup (\cup_{j=1}^{k'} P_j)$, where the C_i are the maximal induced cycles of $\text{link}_G(x)$ and P_j are its maximally induced trees in the sense that they cannot be extended further without acquiring edges of some other P_j or C_i. Define the intersection graph of $\text{link}_G(x)$, I_x; whose set of vertices is $\{c_1, \ldots, c_k, p_1, \ldots, p_{k'}\}$ and where we put an edge $c_i c_j$ or $c_i p_k$ every time the cycles C_i, C_j or C_i, P_j intersect in a vertex. Here we note that we do not consider P_i to P_j incidences as it would be redundant by the definition of the P_j's.

Lemma 11. The intersection graph, I_x, where $\deg(x) = m$ is a simple graph, furthermore it is a forest.
Lemma 12. If G is an outerplanar graph of order ≥ 4, such that all of its vertices have degree at least 2 then it has at least two non-adjacent vertices of degree exactly 2.

3.2. Girth 3. The next theorem states bounds for the $((r,m);3)$-cages and mentions the record graphs. The proofs and descriptions of each graph family are distributed in the following subsections.

Theorem 13. The $((r,m);3)$-cages are as follows:

r	m	$n_p((r,m),3)$	Graphs	Full list
2	m	$= m + 1$	T_{m-1}, T_{m+1}	yes
3	m	$= m + 1$	W_m, M_m, W_3 for $m = 4$	yes
4	m	$= m + 2$	W_{m+2}	-
5	$m = 6, 7$	$= 2m + 2$	I_m	-
5	$8 \leq m \leq 13$	$m + 7 \leq n_p((r,m),3) \leq 2m + 2$	I_m	-
5	$14 \leq m$	$m + 7 \leq n_p((r,m),3) \leq m + 15$	A_m	-

3.2.1. Planar $((2,m);3)$-cages. First note that $((2,m);3)$-cage has at least $m + 1$ vertices. Let $m = 2l$, and let T_l be the graph consisting of l triangles sharing a common vertex, we will refer to it as the windmill graph. (See Figure 3). Then $V(T_l) = 2l + 1 = m + 1$, and T_l has exactly one vertex of degree m, m vertices of degree 2 and by construction it has girth 3.

Let l be even or odd, we denote by T'_l the graph consisting of $l-1$ triangles sharing a common edge, which we will refer to as the pinwheel graph. (See Figure 3). Then $V(T'_l) = l + 1$, and T'_l has exactly two vertices of degree l, $l-1$ vertices of degree 2 and by construction it has girth 3.

Figure 3. The graphs T_3 and T'_4 respectively.

Both T'_l and T_l are clearly planar graphs, thus, they are clearly $((2,m);3)$-cages. Furthermore they are the only planar cages.

Lemma 14. Let $m \geq 3$. The graphs T''_{m-1} and $T_{m/2}$ for m even are the only possible planar $((2,m);3)$-cages.

Proof. The graphs are clearly planar $((2,m);3)$-cages. To prove that they are unique we can argue, by Lemma 9 that any planar $((2,m);3)$-cage has at most two vertices of degree m.

Assume the graph G, a planar $((2,m);3)$-cage, has exactly one vertex of degree m. Then $G - \{v\}$ is a 1-regular graph with m vertices. Hence $G - \{v\}$ is a perfect matching, and necessarily m is even. Clearly, G must be isomorphic to $T_{m/2}$.
Now, assume the planar \((\{2, m\}; 3) \)-cage, \(G \), has two vertices of degree \(m \), say \(u, v \) then \(G - \{u, v\} \) is a 0-regular graph with \(m - 1 \) vertices. That is, an independent set of size \(m - 1 \), where each vertex is adjacent to both \(u \) and \(v \) in \(G \) and \(uv \) is also an edge of \(G \). Clearly, \(G \) must be isomorphic to \(T_m' \).

3.2.2. Planar \((\{3, m\}; 3) \)-cages.

We denote by \(W_l \) the wheel graph on \(l + 1 \) vertices, see Figure 4. This graph has one vertex of degree \(l \) and \(l \) vertices of degree 3.

![Figure 4. From left to right, wheels \(W_5, W_6 \) and \(W_7 \) respectively.](image)

Let \(W_l \) be the a graph obtained from the wheel graph \(W_l \) by duplicating its vertex of degree \(l \); we will refer to \(W_l \) as a biwheel. Notice that, \(W_3 \) is isomorphic to \(K_5 \) minus one edge.

Let \(M_l \), the double windmill, be the graph obtained from the windmill graph \(T_{l-1} \) by duplicating its vertex of degree \(l - 1 \) and making these two vertices adjacent.

Lemma 15. Let \(m \geq 4 \), then, the only possible planar \((\{3, m\}; 3) \)-cages are the double wheel \(W_3 \) when \(m = 4 \), the double windmill \(M_m \) for \(m \) odd and; the wheels \(W_m \), for all \(m \).

Proof. Let \(G \) be a planar \((\{3, m\}; 3) \)-cage with \(m + 1 \) vertices. By Lemma 9 we may have the following cases:

1. **Case 1.** \(G \) has three vertices of degree 4, \(m = 4 \) and it has two vertices of degree 3. Hence \(G \) is the biwheel, \(W_3 \).
2. **Case 2.** \(G \) has two vertices of degree \(m \), say \(\{u, v\} \), and \(m - 1 \) vertices of degree 3. Then \(G - \{u, v\} \) is a 1-regular graph. This is only possible if \(G - \{u, v\} \) is a perfect matching, hence \(m - 1 \) is even and \(G \) is the double windmill \(M_m \).
3. **Case 3.** \(G \) has one vertex of degree \(m \), say \(v \), and \(m \) vertices of degree 3. Then \(G - \{v\} \) is a 2-regular graph with \(m \) vertices, this is an \(m \)-cycle. Then \(G \) is clearly the wheel \(W_m \).

3.2.3. Planar \((\{4, m\}; 3) \)-cages.

Lemma 16. The graph \(W_{m+2} \) is a planar \((\{4, m\}; 3) \)-cage, with \(m \geq 5 \).

Proof. It is clear that \(W_{m+2} \) is a planar \((\{4, m\}; 3) \)-graph on \(m + 2 \) vertices. Thus it remains to argue that \(m + 2 \) is indeed the minimum number of vertices that a planar \((\{4, m\}; 3) \)-graph can have.

Suppose for a contradiction that there exists a planar \((\{4, m\}; 3) \)-cage \(G \) that has fewer than \(m + 2 \) vertices. Thus, \(G \) has exactly \(m + 1 \) vertices. By Lemma 9, since
For each case, all vertices in the boundary are adjacent to an external vertex, to complete the graph.

$m \geq 5$, the graph G must either have two vertices of degree m and $m - 1$ vertices of degree 4, or one vertex of degree m and m vertices of degree 4. We will deal with each case separately.

Case 1. Suppose that G has two vertices of degree m, say u and v, and $m - 1$ vertices of degree 4, say x_1, \ldots, x_{m-1}. Note that in this case $uv \in E(G)$ and $ux_i, vx_i \in E(G)$ for $1 \leq i \leq m - 1$. Since $G - \{u, v\}$ is a 2-regular graph then it must contain a cycle C, which is also a cycle in G. We successively contract edges of C in G until we obtain a triangle, say a, b, c in the graph G'. But now note that $G'[u, v, a, b, c]$ is isomorphic to K_5, thus G contains K_5 as a minor, which contradicts the planarity of G.

Case 2. Now assume that G has exactly one vertex u of degree m. Observe that $H = G - u$ is a planar 3-regular graph. Furthermore, H is outerplanar since in any planar drawing of G every vertex is visible from u, thus all vertices of H are incident to the region of the plane that contained vertex u. Thus H is a 3-regular outerplanar graph and this contradicts Lemma 12.

3.2.4. Planar $\{5, m\}$-cages. We start by describing the family I_m of planar $\{5, m\}$-graphs. In Figure 5 we show schematics for I_m for $m = 6, 7, 8$.

Let I_m be the graph on $2m + 2$ vertices, $V(I_m) = \{x, x_0, \ldots, x_{m-1}, x', x_0', \ldots, x'_{m-1}\}$ with set of edges

$$E(I_m) = \{x, x_i|0 \leq i \leq m - 1\} \cup \{x, x_{i+1} \mod m|0 \leq i \leq m - 1\} \cup \{x', x'_i|0 \leq i \leq m - 1\} \cup \{x', x'_{i+1} \mod m|0 \leq i \leq m - 1\} \cup \{x_i, x'_{i+1} \mod m|0 \leq i \leq m - 1\}.$$

This construction proves that:

Proposition 17. For all $6 \leq m$, $n_p(\{5, m\}; 3) \leq 2m + 2$.

An extensive computer search proves the non-existence of planar $\{5, 6\}$-graphs with 13 vertices and planar $\{5, 7\}$-graphs with 14 vertices, showing that in both of these cases $n_p(\{5, m\}; 3) = 2m + 2$. These computations were performed using Magma [?] and within it B. McKay’s geng graph generator.

Additionally, consider the family of graphs depicted in Figure 6, A'_m, each of this graphs has 10 vertices at each end and $l = m - 8$ vertices in between the ends. It
total it has \(m + 14\) vertices of which \(m\) have degree 4 and 14 have degree 5. Let \(A_m\) be the graph constructed by adding a vertex to \(A'_m\) which is connected to all vertices of degree 4. This construction proves that:

Proposition 18. For \(m \geq 13\), \(n_p(\{5, m\}, 3) \leq m + 15\).

In addition \(2m + 2 \geq m + 15\) when \(m \geq 13\). This completes the proof of the bounds. Finally, we remark that the families given in Proposition 17 and 18 give two non-isomorphic \((\{5, 13\}; 3)\)-planar cages of order 28.

3.3. Girth 4

Theorem 19. The \((\{r, m\}; 4)\)-cages are as follows:

\(r\)	\(m\)	\(n_p(\{r, m\}, 4)\)	\(K_{2,m}\)	Full list
2	\(m\)	\(m + 2\)	yes	
3	\(4 \leq m \leq 13\)	\(n_p(\{3, m\}, 4) = 2m + 2\)		
3	\(14 \leq m\)	\(m + \left\lfloor \frac{m+1}{2} \right\rfloor + 3 \leq n_p(\{3, m\}, 4) \leq m + 4\left\lfloor \frac{m+1}{2} \right\rfloor + 3\)	-	-
3	\(m = 5k - 1\) for \(k \geq 3\)	\(n_p(\{3, m\}, 4) = m + \left\lfloor \frac{m+1}{2} \right\rfloor + 3\)	\(Z_k\)	-

The statement of the theorem is a summary of the results presented in the coming subsections. We may begin by remarking that Lemma 5 implies that \(2 \leq r \leq 3\), \(r < m\) and Corollary 8 points that \(m + 2 \leq n_p(\{2, m\}, 4)\) and \(m + 5 \leq n_p(\{3, m\}, 4)\).

3.3.1. Planar \((\{2, m\}; 4)\)-cages

Lemma 20. The complete bipartite graph \(K_{2,m}\) is the \((\{2, m\}; 4)\)-planar cage.

Proof. Corollary 8 proves that \(n_p(\{2, m\}, 4) \geq m + 2\). Therefore, we require at least \(m + 2\) vertices and this bound is achieved by the complete bipartite graph \(K_{2,m}\), which is clearly planar.

To prove uniqueness, it suffices to prove that if \(G\) is a \((\{2, m\}, 4)\)-planar cage then it must have two vertices of degree \(m\). Assume, to the contrary, that it only has one vertex of degree \(m, v\). Then \(G \setminus \{v\}\) would be a graph with \(m\) vertices of degree 1 and one vertex of degree 2, where two vertices adjacent to \(v\) in \(G\) cannot be adjacent, or there would be a triangle. It’s obvious that such a graph doesn’t exist. Thus \(G\) has at least two vertices of degree \(m, m\) vertices of degree 2, and it has no triangles, which characterizes \(K_{2,m}\). \(\square\)
Lemma 21. Let m be a regular planar graph, and then we will introduce families of graphs for which the lower bounds of x hold.

3.3.2. Planar $(\{3,m\};4)$-cages. In this section we will first show the lower bound for all cases and then we will introduce families of graphs for which the lower bounds are attained for some values of m.

Lemma 21. Let G be a $(\{3,m\};4)$-planar graph, x be the unique vertex of degree m in G, k be the number of cycles in the decomposition of $l(G) = (\cup_{i=1}^{k} C_{i}) \cup \cup_{j=1}^{k'} P_{j}$, c the number of connected components of $l(G)$ and $\text{ends}(I_{x})$ be the number of ends of I_{x}, then $v(G) \geq 2m - k + c + \text{ends}(I_{x}) + 1$.

Proof. Notice that in $l(G)$ two consecutive vertices can’t both be neighbours of x, this implies that each of the cycles and trees in the decomposition $l(G) = (\cup_{i=1}^{k} C_{i}) \cup \cup_{j=1}^{k'} P_{j}$, inherits this property. Hence, for each C_{i} and P_{j} we have that $v(C_{i}) \geq 2m_{i}$ and $v(P_{j}) \geq 2m_{j} + 1$, respectively, where m_{i}, m_{j} represent the number of vertices adjacent to x. Here $\sum_{i=1}^{k} m_{i} + \sum_{j=1}^{k'} m_{j} = m$

By Lemma 11 we know that I_{x} is a forest, this implies that the number of vertices belonging to the pairwise intersections $C_{i} \cap P_{j}$ or $C_{i} \cap C_{j}$ is exactly $k + k' - c$. Thus, we have: $v(l(G)) \geq \sum_{i=1}^{k} v(C_{i}) + \sum_{j=1}^{k'} v(P_{j}) - (k + k' - c) = 2m + k' - (k + k' - c) = 2m - k + c$.

As $v(G) = v(l(G)) + v(G \setminus l(G))$, we now look at how the structure of I_{x} helps bound $v(G \setminus l(G))$.

Claim 1. The end vertices of I_{x} are vertices that represent a cycle-type component.

Else, there would be terminal vertices in $l(G)$, which would be vertices of degree 2 in G.

Claim 2. In I_{x} edges only exist among pairs of vertices representing one tree and one cycle.

If two components representing cycles in the decomposition of $l(G)$ intersect, the intersecting vertex would have degree four, but the vertices in $l(G)$ have degree 3 or 2. Recall that, by Lemma 11, cycles can’t intersect in more than one vertex.

Claim 3. $v(G \setminus l(G)) \geq \text{ends}(I_{x}) + 1$.

Notice that for each C_{i} we have at least m_{i} vertices of degree 2 which are not adjacent to x. This implies that in the embedding of the graph there must be some edges emanating from said vertices, either reaching some other vertices in C_{i}, vertices in the components of $l(G)$ adjacent to C_{i} or some vertices not in C_{i} (lying in the area enclosed by C_{i} in the embedding).
Suppose there are some chords (non-crossing in the embedding) among the vertices of C_i non adjacent to x. As, there are no triangles in G, these vertices have to be at distance at least three in the cycle. So, there would have to be at least two vertices in C_i not adjacent to x and not adjacent to any other vertex in C_i. Thus, if there are no additional vertices of G in the area enclosed by C_i, then C_i has exactly $2m_i$ vertices, $m_i - 2$ which are paired by non-crossing chords and two which have to be connected to other parts of $link_G(x)$. (See the graphs in the center and right side in Figure 7).

Thus, for C_i to represent an end vertex of I_x there is no remedy but to have one additional vertex of G in the area enclosed by C_i, connected to three vertices of C_i non adjacent to x and exactly one vertex of C_i non adjacent to x which, connects to another part of $link_G(x)$. (See the leftmost graph in Figure 7). The result follows from this claim.

\textbf{Corollary 22.} Let G be a $((3, m), 4)$-planar graph then for $4 \leq m \leq 13$, $2m + 2 \leq v(G)$ and for $14 \leq m$, $\frac{9m + 19}{5} \leq v(G)$.

\textit{Proof.} As we have proved that $v(G)$ increases as the number of vertices of degree m increases, then we will assume for this lower bound that G has exactly one vertex of degree m, x. Let G be a $((3, m), 4)$-planar graph and x be a vertex of degree m in G. From the equation $v(G) \geq 2m - k + c + ends(I_x) + 1$ in the previous lemma, we can observe that, when G is the smallest possible $((3, m), 4)$-planar graph, then G is connected, has big k and small $ends(I_x)$.

As $ends(I_x) \geq 1$ we have that $v(G) \geq 2m - k + ends(I_x) + 2$. Obviously this bound will decrease as k increases.

For I_x to have few ends the optimal case is when it is a path where each P_j represents a path of length two or one. Thus, we observe that, for the extremally small $((3, m), 4)$-planar graphs, $ends(I_x) = 1$ or 2.

\textbf{Claim 1.} For $4 \leq m \leq 13$, $2m + 2 \leq v(G)$.

From the proof of the Lemma \textbf{21} we can observe that the smallest C_i that can represent an end vertex of I_x has 9 vertices and $m_i = 4$ and the smallest C_i that can represent a non-end of I_x has 8 vertices and $m_i = 4$. (See Figure 7). That is, if m is small enough we have no alternative but to have $k = 1$, $ends(I_x) = 1$, and $v(G) \geq 2m + 2$, this also holds if $k = 2$, $ends(I_x) = 2$, for example.

On the other hand, for $2m - k + ends(I_x) + 2 < 2m + 1$ to be satisfied we need $k \geq 3$. As each C_i is followed by P_j then, for a given m, the best possible situation is to have as many P_j of length 2 between each C_i of size 8. This implies that for $k \geq 3$ we must be able to have at least three cycles of size 8 and two paths of length two in the decomposition of $link_G(x)$. Thus, the total degree of x is $m \geq 4(3) + 2 = 14$. This implies the claim.

\textbf{Claim 2.} For $14 \leq m$, $\frac{9m + 19}{5} \leq v(G)$.

Here, by Claim 1, we may have $k \geq 3$ and $ends(I_x) = 2$. Thus, we need to find the greatest k such that $m \geq 4k + (k - 1) = 5k - 1$ or, equivalently, the greatest $k \leq \frac{m + 1}{5}$ and the result follows by plugging in this values into the bound’s equation. □
Let D_m be the graph whose set of vertices is $\{x_0, \ldots, x_{2m-1}, y_0, y_1\}$ and whose set of edges is $\{x_{i}x_{i+1} | i = 0, \ldots, 2m - 2\} \cup \{x_1, x_{2m-1}\} \cup \{y_0x_2j | j = 0, \ldots, m\} \cup \{y_1x_{2j-1} | j = 0, \ldots, m\}$. See Figure 8. This graph is clearly a $((3, m), 4)$-planar graph with $2m + 2$ vertices, implying:

Proposition 23. For $4 \leq m \leq 13$, $n_p((3, m), 4) = 2m + 2$.

![Figure 8. D_m graphs for m = 4, 5. In each case, all vertices of degree two in the boundary are adjacent to an external vertex.](image)

Let F be the graph whose set of vertices is $\{x, x_0, \ldots, x_7\}$ and whose set of edges is $\{x_i x_{i+1} | i = 0, \ldots, 6\} \cup \{x_0x_7\} \cup \{xx_{2i} | i = 0, 1, 2\}$. Let E_4 be the graph whose set of vertices is $\{x_0, \ldots, x_7\}$ and whose set of edges is $\{x_i x_{i+1} | i = 0, \ldots, 6\} \cup \{x_0x_7\} \cup \{x_0x_4\}$. A depiction of these graphs can be found in Figure 7.

For $k \geq 3$, let Z'_k be the graph resulting from joining two copies of F, $k - 2$ copies of E_4 and $k - 1$ paths of length 2, P as follows: start with a copy of F, and join it to a copy of the path P by identifying its only even labeled vertex of degree two with an end of P, join the remaining end of P to a copy of E_4 by one of it’s two even labeled vertices of degree two, now repeat this procedure subsequently joining copies of E_4 to copies of P and ending with the second copy of F. This graph has $9k + 1$ vertices, out of which $5k - 1$ have degree two and the remaining vertices have degree three. A depiction of Z'_k can be found in Figure 9.

![Figure 9. A graph Z'_k with k = 4. In order to build Z_k we may join all degree two vertices in Z'_k to the same vertex of degree m = 9k + 1.](image)

Let Z_k be the graph whose set of vertices is $V(Z'_k) \cup \{x^*\}$ and whose set of edges is $E(Z'_k) \cup \{x^*y | y \in V(Z'_k) \text{ and } deg(y) = 2\}$. Observe that Z_k has $9k + 2$ vertices, out of which one has degree $5k - 1$ and the remaining vertices have degree 3. This construction proves:

Proposition 24. $n_p((3, m), 4) \leq \frac{9m+10}{5}$, for $m = 5k - 1$ and $k \geq 3$.

Finally, note that in the previous construction we may delete up to two degree 2 (diametrically opposite) vertices from each E_4 or F, without violating the girth condition in Z'_k. Thus, for $m > 14$ we may find the smallest m^* such that $m < m^*$
and $m^* = 5k^* - 1$ for some k^*, make the construction Z'_k, and then remove $m^* - m$ degree two vertices from such construction to obtain an improved upper bound for any m. A simple computation proves $m^* = 5\lceil \frac{m+1}{5} \rceil - 1$ and the number of vertices of such construction will be $m + 4\lceil \frac{m+1}{5} \rceil + 3$. Hence, we have:

Proposition 25. $n_p(\{3, m\}, 4) \leq m + 4\lceil \frac{m+1}{5} \rceil + 3$, for $m > 14$.

3.4. Girth 5

Theorem 26. The $(\{r, m\}; 5)$-cages are as follows:

r	m	$n_p(\{r, m\}, 5)$	Graphs	Full list
2	m	$2m + 1$	$O_{m,5}$	yes
2	m even	$2m + 1$	$F_{m,5}$	yes
3	$4 \leq m \leq 5$	$3m + 11 \leq n_p(\{3, m\}, 5) \leq 6m + 2$	P_m	-
3	$6 \leq m$, m even	$3m + 11 \leq n_p(\{3, m\}, 5) \leq 3m + 2\lceil \frac{m-6}{4} \rceil + 21$	B_m	-
3	$6 \leq m$, m odd	$3m + 11 \leq n_p(\{3, m\}, 5) \leq 3m + 2\lceil \frac{m-5}{4} \rceil + 22$	B'_m	-

The proof of the theorem and description of each graph family is split in the following subsections. However, we may remark that Lemma 5 implies that $2 \leq r \leq 3$, $r < m$ and Corollary 8 points that $n_p(\{2, m\}, 4) \geq 2m + 1$ and $n_p(\{3, m\}, 4) \geq 3m + 11$.

3.4.1. Planar $(\{2, m\}; 5)$-cages

This case will follow as a consequence of a more general construction in the next section. We will define the graphs $O_{m,g}$ and $F_{m,g}$ for $g \geq 3$, and prove that they are the only planar cages in Lemma 31.

3.4.2. Planar $(\{3, m\}; 5)$-cages

Note that, if we allow two vertices of degree m in $(\{3, m\}; 5)$-graphs, from Lemma 6 we obtain that such graphs must have at least $6m + 2$ vertices. Here we present an infinite family of $(\{3, m\}; 5)$-graphs, P_m, meeting that bound, see Figure 10. This proves that indeed:

Proposition 27. For $4 \leq m$, $n_p(\{3, m\}, 5) \leq 6m + 2$.

Furthermore, consider the family of graphs graph B'_m depicted in Figure 11. This family has $v = 3m + 2\lceil \frac{m-6}{4} \rceil + 20$ of which $m = 2l + 6$ vertices and $l \geq 0$, have degree two and the rest have degree 3. Let B_m be the graph in which we add a vertex to B'_m joined to all its vertices of degree two. This construction proves that:

Proposition 28. For $6 \leq m$, even, $n_p(\{3, m\}, 5) \leq 3m + 2\lceil \frac{m-6}{4} \rceil + 21$.

Figure 10. A family of planar $(\{3, m\}; 5)$-graphs. In all cases, the vertices of degree two in the boundary are adjacent to an external vertex.
Finally, note that in the construction of B_m there’s several degree two vertices that can be deleted without decreasing the girth. Thus for even $m \geq 7$ we may construct B_{m+1} and then delete one vertex to obtain a graph with $3m + 2\lfloor \frac{m-5}{4} \rfloor + 22$ vertices.

Proposition 29. For $7 \leq m$, odd, $n_p(\{3, m\}, 5) \leq 3m + 2\lfloor \frac{m-5}{4} \rfloor + 22$.

3.5. Girth $g \geq 6$.

Theorem 30. The ($\{r, m\}; g$)-planar cages with $g \geq 6$ are as follows:

r	g	$n_p(\{r, m\}, 6)$	Graphs	Full list
2 even	$\frac{m(g-2)+4}{2}$	$O_{m,g}$	yes	
2 odd	$\frac{m(g-1)+2}{2}$	$O_{m,g}, F_{m,g}$ for even m	yes	

By Lemma 31 we know that the only possible cases are when $r = 2$ and $m \geq 3$.

For any g and $m \geq 3$, let $O_{m,g}$ be the graph on $(m - 1)\lfloor \frac{g-2}{2} \rfloor + \lfloor \frac{g-2}{2} \rfloor + 2$ vertices that consists of m independent paths between two vertices u, v, $(m - 1)$ being of length $\lfloor \frac{g}{2} \rfloor$ and one of length $\lfloor \frac{g}{2} \rfloor$. It is easy to see that this is a ($\{2, m\}; g$)-graph which is embeddable in the plane.

For any g and m even let $F_{m,g}$ be the graph formed by $\frac{m}{2}$ cycles of length g all incident in one vertex. See Figure (reference). This graph has $\frac{m}{2}(g - 1) + 1$ vertices and is clearly planar.

Lemma 31. The only possible ($\{2, m\}; g$)-planar cages are $O_{m,g}$ for any $2 < m$ and $g \geq 6$, and $F_{m,g}$ for any $2 < m$ even and $g \geq 5$ odd.

Proof. It is not difficult to check that the numbers of vertices of $O_{m,g}$ and $F_{m,g}$ reach the lower bounds in Corollary 8 for the cases mentioned.

Now, for the characterization part, we will first argue that the number of vertices x of degree m is at most two. We will proceed by contradiction. By Corollary 8 if $x \geq 3$ then the number of vertices necessary to have a planar ($\{2, m\}; g$)-graph, v is such that:

$$v \geq \frac{3(g-2)m-2g}{4} + 3.$$

It is easy to check that this number is always higher than the number of vertices of $O_{m,g}$ and $F_{m,g}$. Thus, a ($\{2, m\}; g$)-planar cage has at most 2 vertices of degree m.
Let $x = 1$, G be a planar cage and v be the vertex in G of degree m. Then $G \setminus \{v\}$ is a graph with m vertices of degree 1 and $V(G) - m - 1$ vertices of degree two. Hence, $G \setminus \{v\}$ has to be exactly the union of $\frac{m}{2}$ disjoint paths. This clearly implies that G is $F_{m,g}$.

Let $x = 2$, G be a planar cage and v, u be the vertices in G of degree m. Then $G \setminus \{v, u\}$ is a graph with $2m$ vertices of degree 1 and $V(G) - 2m - 1$ vertices of degree two. Hence, $G \setminus \{v, u\}$ has to be exactly the union of m disjoint paths. This clearly implies that G is $O_{m,g}$.

4. PROOFS OF LEMMAS IN SECTION 3.1

4.1. Proof of Lemma 9

Lemma. A planar graph with at least one vertex of degree $m \geq 3$ that has exactly $m + 1$ vertices satisfies one of the following:

a. It has four vertices of degree m and $m = 3$

b. It has three vertices of degree m and $m = 4$

c. It has at most two vertices of degree m

Proof. Assume G is such a graph.

a. Assume that G has four vertices, say $\{v_1, v_2, v_3, v_4\}$ of degree m. The graph induced by this four vertices is K_4. If $m = 3$, G is the tetrahedron. If $m \geq 4$ then every vertex in $v \in V(G - \{v_1, v_2, v_3, v_4\})$ is connected to all of $\{v_1, v_2, v_3, v_4\}$. Hence $\{v, v_1, v_2, v_3, v_4\}$, induces a K_5, making G non planar. Thus this is only possible when $m = 3$.

b. Assume that G has exactly three vertices of degree m, say $\{v_1, v_2, v_3\}$. Then the graph induced by these three vertices is K_3. Also, every vertex in $v \in V(G - \{v_1, v_2, v_3\})$ is connected to all of $\{v_1, v_2, v_3\}$. If $|V(G - \{v_1, v_2, v_3\})| = 1$, then $m = 3$ and we would have the previous case, where all of the four vertices have degree m. Hence $m \geq 4$. We will argue that $m = 4$.

First assume that $m \geq 5$ then $|V(G - \{v_1, v_2, v_3\})| \geq 3$, then for all triplets $\{u_1, u_2, u_3\} \in V(G-\{v_1, v_2, v_3\})$ we have that the graph induced by $\{u_1, u_2, u_3\}\cup\{v_1, v_2, v_3\}$ contains $K_{6,6}$, hence G would not be planar.

Finally, if $m = 4$ then $|V(G - \{v_1, v_2, v_3\})| = 2$, and G would be the 1-skeleton of a double pyramid with triangular base. Clearly, a planar graph.

c. Clearly, the graph must have at most two vertices of degree m.

4.2. Proof of Lemma 10

Lemma. Let G be a $\{(r, m); g\}$-planar graph, then the subgraph of G induced by all the vertices in the faces incident to a vertex x, link$_G(x)$, is an outer planar graph consisting of a (not necessarily disjoint) union of cycles (with or without chords) and paths, with at least $\text{deg}(x)$ vertices.
Proof. We may assume without loss of generality that \(G \setminus x \) has only one connected component.

Let \(X = \{x_1, \ldots, x_l\} \) be an ordered set that labels the vertices in \(\text{link}_G(x) \), in the order they appear around \(x \) in the embedding. Here, by assumption, we need to have \(\deg(x) \leq l \) where there may be some repetitions of vertices.

Assume that there are indeed some repetitions in \(X \), say \(x_i = x_j \) and \(x_i' = x_j' \) then we can never have \(i < i' < j < j' \), where all subindices are taken \(\mod l \), otherwise we would violate the planarity of \(G \). This proves the lemma.

\(\Box \)

4.3. Proof of Lemma 11

Lemma. The intersection graph, \(I_x \), with \(\deg(x) = m \) is a simple graph, furthermore it is a forest.

Proof. We may assume without loss of generality that \(\text{link}_G(x) \) is connected, as the result easily generalizes from the connected case to the disconnected case. Hence, we need to prove that \(I_x \) is a simple graph which is a tree.

a. We will begin by arguing that there are no multiple edges.

Suppose \(c_i c_j \) is a multiple edge, then \(C_i, C_j \) intersect in more than one vertex, say they are \(u \) and \(v \).

- If this vertices are adjacent in both cycles, then we could have considered the union of \(C_i, C_j \) as a single cycle with a chord.
- Hence, we may assume that \(u \) and \(v \) are non adjacent in at least one of the two cycles. This is, there are at least three paths of length at least two between \(u \) and \(v \). These paths divide the plane in at least three regions, thus the union of \(C_i, C_j \) wouldn’t be outerplanar, contradicting the outerplanarity of \(\text{link}_G(x) \).

The case where we suppose \(c_i p_j \) is a multiple edge is proved similarly.

b. We will now argue that there are no cycles in \(I_x \).

Suppose, to the contrary, that there is a cycle \(C \) in \(I_x \), then there is a cycle of \(G \) contained in the union of the cycles and paths corresponding to each of the vertices in \(C \). This cycle divides the plane in two connected components, say \(C^+ \) and \(C^- \). We may assume without loss of generality that \(x \in C^+ \), by construction there can be no vertices of \(\text{link}_G(x) \) in \(C^- \) and all vertices of \(\text{link}_G(x) \) have to be visible from \(x \) in \(C^+ \). Hence there is a cycle induced by the cycles and paths corresponding to the vertices of \(C \) which necessarily contains all the vertices of the cycles corresponding to vertices in \(C \), otherwise outerplanarity would be violated, but this contradicts the maximality of the cycles represented in \(I_x \).

\(\Box \)

4.4. Proof of Lemma 12

Lemma. If \(G \) is an outerplanar graph of order \(\geq 4 \), such that all of its vertices have degree at least 2 then it has at least two non-consecutive vertices of degree exactly 2.
Proof. We will denote the number of vertices of G as n. We will proceed by induction on n. Note that the graph may have different connected components and that the result holds trivially for cycles.

a. $n = 4$. If G is a cycle the result follows. Assume that G is not a cycle and let (v_1, v_2, v_3, v_4) be the cycle in G that bounds the outerface of the drawing. Then, the only additional edge of G not in (v_1, v_2, v_3, v_4) is either v_1v_3 or v_2v_4. In the first instance the two non consecutive vertices of degree two are v_2, v_4, and in the second instance they are v_1, v_3.

b. $n \leq k$. Assume that any outer planar graph of order at most k such that all of its vertices have degree at least 2, contains at least two non consecutive vertices of degree 2.

c. $n = k + 1$. If G is a cycle the result follows trivially. Also, if G has at least two connected components the result follows.

Thus, we may assume that G has a unique connected component. Let (v_1, v_2, \ldots, v_n) be the cycle that bounds the outerface of the drawing. As G is not a cycle, there is an edge v_iv_j that splits the graph in to two smaller outerplanar subgraphs G_1 and G_2, which both contain a copy of the edge v_iv_j.

If both G_1 and G_2 are of order at least 4, then each graph contains a vertex of degree 2, different from v_i and v_j, and the result follows.

Thus we only have to prove it for when either G_1 or G_2 are of order 3. We can assume without loss of generality that G_1 is of order 3. Here the vertex in G_1 different from v_i and v_j, has degree two. As for G_2, if its order is ≥ 4 then the result follows, by the induction hypothesis. Otherwise, the vertex in G_2 different from v_i and v_j, has degree two.

\[\square\]

5. Conclusions

For the $(\{3, m\}; 4)$– graphs where we have not reached the lower bound, we believe it to be unlikely that other constructions can improve the bounds provided. For all the other cases where there is still room for improvement it would be nice to see such improvements, either in the form of improved lower bounds or constructions.

Finally we consider that studying the biregular planar cage problem for other surfaces, oriented or non-oriented, will lead to nice discoveries.

Acknowledgements. The authors would like to thank D. Leemans for his help performing the Magma computations in Subsection 3.2.4.

The research was partially supported by projects PAPIIT-México IN107218 and IN106318, CONACyT-México 282280 and UNAM-CIC ‘Construcción de Jaulas Mixtas’.

References

[1] M. Abreu, G.Araujo-Pardo, C. Balbuena, D. Labbate, G. López-Chávez. Biregular cages of girth five. *Electron. J. Combin.* 20 (2013), no. 1, Paper 71, 14 pp.
[2] G. Araujo-Pardo, C. Balbuena, G. López-Chávez, L. Montejano, Bi-regular small graphs of even girth at least 8, *Aequationes Math.* 86 (2013), no. 3, 201-216.

[3] M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate, J. Salas. Small regular graphs of girth 7, *The electronic journal of combinatorics* 22(3), (2015), # P3.5

[4] M. Abreu, G. Araujo-Pardo, C. Balbuena, D. Labbate, An alternate description of a \((q+1; 8)\)-cage. (In press).

[5] Araujo-Pardo, G. Exoo, G., Jajcay, R. Small bi-regular graphs of even girth. *Discrete Math.* 339 (2016), no. 2, 658?667.

[6] F. Harary, P. Kovács Regular graphs with given girth pair. *J. Graph Theory*, 7 (1983) 209–218.

[7] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265.

[8] Chartrand *Graphs with prescribed degree sets and girth*

[9] G. Chartrand, L. Lesniak *Graphs and Digraphs,*

[10] P. Erdős, H. Sachs H. Regulare Graphen gegebener Taillenweite mit minimaler Knotenzahl, *Wiss. Z. Martin- Luther-Univ. Halle-Wittenberg Math-Naturwiss. Reihe.* 12 (1963) 251–258.

[11] G. Exoo, R. Jajcay, Dynamic Cage Survey, *The electronic journal of combinatorics* 15

[12] G. Exoo and R. Jajcay, Bi-regular cages of odd girth, *Journal of Graph Theory* 81 (2016) no. 1. 50-56.

[13] M. Miller, J. Sirán. Moore Graphs and Beyond: A survey of the Degree/Diameter Problem (2000). The Electronic Journal of combinatorics. Dynamic Survey DS14: May 16, 2013.

[14] W. T. Tutte, A family of cubical graphs. *Proc. Cambridge Philos. Soc.*, (1947) 459–474.

[15] D.B. West. Introduction to Graph Theory (2nd Edition). Prentice Hall. (2000). Chapter 6, page 239.

1 Instituto de Matemáticas, UNAM

E-mail address: garaujo@math.unam.mx

2 Sunnyvale, CA

E-mail address: fidel.barrera@gmail.com

3 CONACYT Research Fellow - INFOTEC Centro de Investigación en Tecnologías de la Información y Comunicación, México. Corresponding Author.

E-mail address: natalia.garcia@infotec.mx