Microbial Epitopes Act as Altered Peptide Ligands to Prevent Experimental Autoimmune Encephalomyelitis

By Pedro J. Ruiz,* Hideki Garren,* David L. Hirschberg,* Annette M. Langer-Gould,* Mia Levite,‡ Marcela V. Karpuj,‡ Scott Southwood,‖ Alessandro Sette,‖ Paul Conlon,§ and Lawrence Steinman*

From the *Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94305; the ‡Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel; §Neurocrine Biosciences, Inc., San Diego, California 92121; and ‖Epimmune, Inc., San Diego, California 92121

Summary

Molecular mimicry refers to structural homologies between a self-protein and a microbial protein. A major epitope of myelin basic protein (MBP), p87–99 (VHFFKNIVTPRTP), induces experimental autoimmune encephalomyelitis (EAE). VHFFK contains the major residues for binding of this self-molecule to T cell receptor (TCR) and to the major histocompatibility complex. Peptides from papilloma virus strains containing the motif VHFFK induce EAE. A peptide from human papilloma virus type 40 (HPV 40) containing VHFFR, and one from HPV 32 containing VHFFH, prevented EAE. A sequence from Bacillus subtilis (RKVVTDFFKNIPQRI) also prevented EAE. T cell lines, producing IL-4 and specific for these microbial peptides, suppressed EAE. Thus, microbial peptides, differing from the core motif of the self-antigen, MBPp87–99, function as altered peptide ligands, and behave as TCR antagonists, in the modulation of autoimmune disease.

Key words: experimental autoimmune encephalomyelitis • mimicry • altered peptide ligand • autoimmunity • multiple sclerosis

When certain neurotropic viruses trigger inflammation in the central nervous system (CNS), immune cells in the inflammatory infiltrate attack neighboring myelin antigens in the CNS. This immune response then spreads to various epitopes on various myelin antigens, a process known as epitope spreading (2–4). Certain altered peptide ligands (APLs) actually resemble the immunogenic portion of certain neurotropic viruses, and can be used to subvert epitope spreading. Indeed, we have been able to suppress the spreading response by administering various APLs that mimic the structure of both certain microbes and a component of myelin. These APLs induce IL-4 and either prevent or reverse experimental autoimmune encephalomyelitis (EAE). Administration of such APLs may clear an entire inflammatory infiltrate that contains a diverse collection of T cells and B cells from the brain (2, 3, 5–7).

In the (PLSJL/J)F1 mouse there are numerous pathogenic epitopes of myelin antigens that induce EAE. These include several on myelin basic protein (MBP): pAc1–11, restricted by I-Au; p35–47, restricted by I-Eu; and p87–99, restricted by I-As (8–13). Moreover, the immune response to other epitopes in MBP is actually restricted by hybrid determinants where the \(\alpha\) chain is encoded by I-Au, and the \(\beta\) chain by I-As (8). In the (PLSJL/J)F1, the dominant immunogenic and pathogenic epitope of MBP is pAc1–11. MBPp87–99 is restricted by I-As and is a minor determinant (9, 10). Furthermore, after immunization of SJL mice with spinal cord homogenate, other myelin antigens such as proteolipid protein (PLP) are actually more pathogenic than MBP (14, 15).

MBPp87–99 is an immunodominant epitope for T cells and autoantibodies in MS brain lesions (16–19). The main region of MBP recognized by T cells and autoantibodies found in MS brain, is the core motif, HHFFK, from MBPp84–102 in patients who are HLA-DR2B1*1501 DQB1*0602 (HLA-DR2). R recently, Smith et al. solved the crystal structure of HLA-DR2 with MBPp84–102, and confirmed that K91 is the major TCR contact site, while F90 is a major anchor to MHC, binding the hydrophobic P4 pocket (20).

Abbreviations used in this paper: APL, altered peptide ligand; CNS, central nervous system; EAE, experimental autoimmune encephalomyelitis; gpSCH, guinea pig spinal cord homogenate; HPV, human papilloma virus; HSV, herpes simplex virus; HVS, herpes virus Saimiri; MBP, myelin basic protein; MOG, myelin oligodendroglial glycoprotein; MS, multiple sclerosis.
Previously, we have compared the structural requirements for autoantibody recognition to those of T cell clones reactive to MBPp87–99. MBP autoantibodies were affinity-purified from CNS lesions of 12 postmortem cases studied. The MBPp87–99 peptide was immunodominant in all cases and it inhibited autoantibody binding to MBP by >95%. Residues contributing to autoantibody binding were located in a 10-amino acid segment p86–95 (VHVFFKIVNT) that also contained the MHC–TCR residues for T cells recognizing M BP in the context of DR B1*1501 and DQB1*0602. In the epitope center, the same residues, VHVFFK, were important for T cell binding and MHC recognition. Based on the antibody binding motif, microbial peptides that were bound by purified autoantibodies were identified. Autoantibody binding of microbial peptides required sequence identity at four or five contiguous residues in the epitope center VHVFFK. Papilloma viruses (types 7, 13, 40, and 32), EBV, cytomegalovirus, Dohri virus, herpes simplex virus (HSV) type 1, influenza type A, hepatitis A, and adenovirus were efficient at binding autoantibodies to MBP autoantibodies to MBP found in brain, and it stimulated a human MBP-specific T cell clone from an MS patient (19, 21).

In this report we have chosen microbial peptides that bear chemical similarities with MBPp87–99 and demonstrate how these epitopes derived from microbial sequences, can function like an APL, and suppress EAE. In a companion patient (19, 21).

Materials and Methods

Animals. 6- to 8-wk-old female (PLSJL/J) F1 mice were purchased from The Jackson Laboratory.

Antigens. Peptides were synthesized on a peptide synthesizer (model 9050: MilliGen) by standard 9-fluorenylmethoxy carbonyl chemistry. Peptides were purified by HPLC. Structure was confirmed by amino acid analysis and mass spectroscopy. Peptides used for the experiments were ENPVHFFKNIVTPR (MBP p85-99); AASQKRPSQRHG (MBPAc1-11); IGGRVHFFKDISPIA (HPV 7); IGGRVHFFKDISPI (HPV 13); IGGRVHFFKDISPI (HPV 17); IGGRVHFFKDISPI (HPV 20); IGRVHFFKDISPI (HPV 32); RKVVTDDFKNIPQRI (Balbusus sp. hyp protein X13); and DMTPADALDDRLEMS (HSV VP16).

Peptide Treatment. For the peptide treatment a solution of 2 mg/ml of peptide dissolved in PBS, emulsified 1:1 (vol/vol) in IFA was prepared. Mice were injected intradermally with 0.1 ml of the antigen emulsion, twice with a 10-d interval. 10 d after the last injection experimental animals were challenged for EAE.

EAE Induction. Lyophilized guinea pig spinal cord (gpSCH) was dissolved in PBS to a concentration of 5 mg/ml and emulsified with an equal volume of IFA, supplemented with 4 mg/ml heat-killed Mycobacterium tuberculosis H37Rvr (Difco Labs.). Mice were injected subcutaneously with 0.1 ml of the peptide emulsion, and again on the same day and then 48 h later were injected intravenously with 0.1 ml of a solution of 4 µg/ml Bordetella pertussis toxin in PBS. Experimental animals were scored as follows: 0, no clinical disease; 1, tail weakness or paralysis; 2, hind limb weakness; 3, hind limb paralysis; 4, forelimb weakness or paralysis; 5, moribund or dead.

T Cell Lines. Lymph node cells from experimental animals were taken 20 d after challenge for EAE. Cells (5·10^10/ml) were incubated in enriched RPMI 1640 supplemented with l-glutamine [2 mM], sodium pyruvate [1 mM], nonessential amino acids [0.1 mM], penicillin [100 U/ml], streptomycin [0.1 mg/ml], and 2-ME [5·10^{-5} M]), supplemented with 1% syngeneic mouse sera with 10 µg/ml peptide for 3 d. After incubation, cells were washed and resuspended for 10 d in enriched RPMI 1640 completed with 10% FCS and 10% supernatant of spleen cells activated with concanavalin A (Con A sup). After this period of culture the cells were then activated in the presence of syngeneic irradiated spleen cells (10^7/ml) and 10 µg/ml peptide for 3 d, washed and incubated for 10 d in enriched RPMI 1640 completed with 10% FCS and 10% Con A sup. The cells were continuously grown in the above conditions for 2-wk cycles. The peptide-specific T cells were used for assays 1 wk after antigen stimulation.

T Cell Line Proliferation Assay. T cells (10^6) were incubated in 96-well flat-bottomed plates (Corning) with 5·10^7 irradiated syngeneic APC in a total volume of 200 µl of enriched RPMI and 10% FCS, and different concentrations of the peptide. After 24 h 100 µl were removed from each well for cytokine secretion analysis in a sandwich ELISA. The remaining cells were incubated for an additional 24 h, pulsed with [3H]thymidine (0.5 µCi/ml) of 5 Ci/mmol), harvested, and counted in a beta counter.

Class II Peptide Binding Assay. Peptide binding assays were performed as described elsewhere (22). In brief, the B cell lymphoma LS102.9 was used as a source of I-A^k. The cell line was maintained in vitro by culture in enriched RPMI. Cells were lysed at a concentration of 10^6 cells/ml in PBS containing 1% N-P-40, 1 mM PM SF, 5 mM Na-o-orthovandate, and 25 mM iodoacetamide. The lysates were cleared of debris and nuclei by centrifugation at 10,000 g for 20 min.

Mouse class II molecules were purified as previously described (22) using the mAb y3P (I-A^k-specific), coupled to Sepharose 4B beads. Purified mouse class II molecules (5–500 nM) were incubated with 1–10 nM 125I-radioabeled peptides for 4 h in PBS containing 5% DM SO in the presence of a protease inhibitor cocktail. Purified peptides were iodinated using the chloramine-T method.

Peptide inhibitors were typically tested at concentrations ranging from 120 µg/ml to 1.2 ng/ml. The data were then plotted and the dose yielding 50% inhibition (IC_50) was measured. Intermediate binding was equivalent to IC_50 in the range of 100–1,000 nM. In appropriate stoichiometric conditions, the IC_50 of an unlabeled test peptide to the purified MHC is a reasonable approximation of the affinity of interaction (K_d). Peptide tests were in two to four completely independent experiments.

Class II peptide complexes were separated from free peptide by gel filtration on TSK 2000 columns (TosoHaas 16215), and the fraction of bound peptide calculated as previously described (22). In preliminary experiments, each of the I-A^k prep was titered in 10-fold dilutions in a 96-well plate to obtain the IC_50. The concentration of free peptide was determined as previously described (23).

TCR Antagonist Assay. TCR antagonism was tested as previously described (23). In brief, irradiated syngeneic spleen cells
were pulsed with a 0.005 μM concentration of MBPp85–99 for 3 h at 37°C. Spleen cells were then washed and used as APCs to the MBPp85–99 (L35) specific T cell line in the presence of different inhibitor concentrations. Proliferative responses were measured by [3H]thymidine incorporation. Percentage of inhibition was calculated by the formula described in Table III.

Results

Microbial Peptides Block EAE Induction with gpSCH in the (PLSJL/J)F1 Mouse. We asked whether microbial peptides with structural similarities to the self-peptide MBPp85–99 would block EAE. We made slight modifications of a protocol used previously to prevent EAE by APLs (23). Mice were injected intradermally twice at 10-d intervals with 0.1 mg of peptide in IFA. 10 d after the last injection the animals were challenged with gpSCH in order to induce EAE. As seen in Table I, the incidence, mean day of onset, and mean peak severity were significantly lower for papilloma virus 40 (VHFFR), papilloma virus 32 (VHFFH), and Bacillus subtilis open reading frame (ORF) (DFFK) than for the IFA alone control or the MBPp85–99/IFA control (P < 0.001). Mice injected with HPV 7 VHFFK, HPV 13 VHFFK, or the native peptide MBPp85–99 have had increased disease incidence, compared with microbial sequences mutated at the H88 or 91K respec-

Table I. Clinical Parameters in (PLSJL/J)F1 Mice Immunized with Microbial Mimicry Peptides and Challenged for EAE Induction with gpSCH

IFA immunization*	EAE challenge	Percentage of incidence	Mean day of disease onset	Mean peak disease severity
IFA alone	gpSCH	100	9 ± 1	5
MBPp85–99 (ENPVVHFFKNIYTPR)	gpSCH	95	16 ± 2\(^\text{‡}\)	3.6 ± 0.9\(^\text{‡}\)
HPV 7 (IGGR VHFFKDISPIA\(^\text{¶}\))	gpSCH	60	17 ± 2\(^\text{‡}\)	2.3 ± 1.2\(^\text{‡}\)
HPV 13 (IGGR VHFFKDISPIS)	gpSCH	60	16 ± 3\(^\text{‡}\)	2.3 ± 0.4\(^\text{‡}\)
HPV 40 (IGGR VHFFDISPIG)	gpSCH	20	21\(^\text{‡}\)	1\(^\text{‡}\)
Bacillus subtilis ORF (RKVTDFFKNIPQR1)	gpSCH	0	0\(^\text{‡}\)	0\(^\text{‡}\)
HPV 32 (IGGR VHFFHDISPIT)	gpSCH	20	13\(^\text{‡}\)	3\(^\text{‡}\)

* Groups of 20 animals were used for data analysis.

\(^\text{i}\) P < 0.01 by Student’s t test compared with immunization with IFA alone.

\(^\text{i}\) Amino acid homologies with the peptide MBPp87–99 are in bold.

\(^\text{i}\) Note that the HPV 7 sequence we use is three amino acids shorter at its NH\(_{2}\) terminus than that used by Ufret-Vincenty et al. (1).

\(^\text{i}\) P < 0.001 by Student’s t test compared with immunization with MBPp87–99.

1277 Ruiz et al.
duction of autoimmune disease versus maintenance of self-tolerance when mutations are made at TCR contact sites; allow these microbial mutant peptides to be called APLs.

T Cell Lines Isolated from Mice Immunized with Mimicry Microbial Peptides Produce IL-4 and γ-IFN and Do Not Cross-react with the Native MBPp87–99. To analyze the immune responses in the protected animals, T cell lines specific for the viral peptides were generated. After the mice recovered from the acute phase of disease, draining lymph node cells were isolated and restimulated in vitro with either MBP or various viral peptides. Table II shows cytokine profiles of T cell lines isolated from the experimental animals. T cell lines stimulated with HPV 13 and Bacillus subtilis ORF produced both IL-4 and γ-IFN, whereas the T cell line stimulated with MBPp85–99 produced IL-4, but not γ-IFN. T cells stimulated with HSV VP16 peptide, used as a control, lacking the HHFK motif (DMTPADALDDRMLE), failed to proliferate or produce IL-4 or γ-IFN. These experiments demonstrate that IFA is not critical in the protective effect of these viral peptides, as the T cell lines were derived from animals injected with CFA and antigen. It also indicates that within these animals it is possible to select for lines that can be stimulated by sequences from these viral peptides. Once these lines have been selected, there is no cross-reactivity between the viral peptides and MBP. However, in draining lymph nodes from mice injected with CFA MBPp85–99, T cell responses to MBPp85–99 can be inhibited by viral peptides mutated at the main TCR contact site 91K, but retaining the capacity to bind to MHC class II, I-A^d (see Table III below).

Table II. Proliferative Responses and Cytokine Profile of T Cell Lines Specific for Microbial Mimicry Peptides

T cell line specificity	Stimulus*	Proliferation	IL-4 ‡	γ-IFN ‡
MBPp85–99	MBPp85–99	52,580	0.14	BD
MBPp85–99	HSV VP16	4,691	BD	BD
MBPp85–99	none	3,479	BD	BD
HPV 13	HPV 13	95,834	0.16	0.295
HPV 13	MBPp85–99	12,955	BD	BD
HPV 13	none	11,938	BD	BD
Bacillus subtilis ORF	Bac sub ORF	8,626	0.14	0.251
Bacillus subtilis ORF	ORF	2,430	BD	BD
Bacillus subtilis ORF	ORF	1,557	BD	BD

* T cells were isolated from experimental mice after recovery from the acute phase of disease and expanded in vitro by stimulation with the specific peptide. Proliferative responses are shown for each line responding to an antigen concentration of 0.01 mg/ml. Cytokine concentration was measured from supernatants collected after 48 h of in vitro stimulation assays of T cell lines with a peptide concentration of 0.01 mg/ml. Levels <0.01 ng/ml are reported as below detection limits (BD).

Figure 1. Prevention of EAE by passive transfer of T cell lines specific for microbial mimicry peptides. Mice were injected intraperitoneally with 5 × 10^6 T cells specific for either MBPp85–99 (□). HPV 13 peptide (○), Bacillus subtilis ORF peptide (△), or HSV VP16 peptide (△). 10 d after cell transfer, mice were challenged for EAE by immunization with gpSCH. Results are expressed as mean disease score in groups of five animals.
Microbial Peptides Protect from EAE in an Epitope-specific Manner: Lack of a Bystander Effect.

To rule out a bystander effect by the microbial mimicry peptides, we compare the protective effect in EAE induced by either gpSCH or MBPpAc1–11. In Fig. 2, we show that the Bacillus subtilis peptide injected into IFA inhibits induction of EAE induced by gpSCH, but does not inhibit disease induced by MBPpAc1–11. Therefore, the regulatory effect of mimicry peptides requires the presence of the MBPp85–99 epitope in the EAE-inducing antigen.

HPV 40 Peptide Acts as a TCR Antagonist.

We tested for TCR antagonism using an assay by Karin et al. (23). In this assay we inhibit the proliferative response to wild-type MBPp85–99 by prepulsing irradiated splenic APCs with 0.005 mM of MBPp85–99, then washing and using these APCs to stimulate an MBPp85–99–specific T cell line in the presence of a putative antagonist. The peptide HPV 40 (containing the motif VHFFR) inhibited proliferation by 40%, whereas a control peptide lacking the HFFK motif did not inhibit proliferation at all (Fig. 3).

Discussion

"In MS—as in other autoimmune diseases—there has been feverish debate between those who believe that the disease is triggered by an environmental agent and those who champion a genetic basis. But there is actually a reasonable reconciliation of these opposing views. Certain genes conferring susceptibility to the disease and certain factors in the environment are both critical for the development of autoimmunity, and this is particularly true for MS" (7).

Table III. Inhibition of Lymph Node Cell Proliferation to MBPp85–99 by Microbial Mimicry Peptides

Peptide	Sequence	Relative affinity* for I-A\(^{\text{b}}\)	Inhibition of LNC responses\(^{\text{c}}\)
MBPp85–99	ENP VHF KITR	667\(^{*}\)	-
HPV 7	IGGR VHFFKDI	208	62
HPV 40	IGGR VHFFR DISPIG	180	39
Herpes simplex DNA pol	GRR R LFFVKAHVE	551	39
Herpes simplex VP16	DMT PADALDDR DLEM	N D	29

*Peptide binding assays on purified I-A\(^{\text{b}}\) molecules were performed as described in reference 22. Results are expressed as IC\(_{50}\) in nanomolars. E. coli E7 peptide bound at an IC\(_{50}\) of 76 nM.

\(^{\text{c}}\)For inhibition of lymph node cell (LNC) proliferative responses by microbial mimicry peptides, LNCs from (PLSJ/L)F1 mice immunized with the MBPp85–99 peptide were incubated in vitro in the presence of both the MBPp85–99 peptide and a molecular mimicry peptide at a molar ratio of 1:1 (final concentration of each peptide was 0.01 mg/ml). CPM incorporation of the LNCs incubated with MBPp85–99 at 0.01 mg/ml were 5,792 in the absence of inhibitor and CPM of LNCs incubated with medium alone was 1,010. Percentage of inhibition was calculated with the formula:

\[
\text{% of inhibition} = \left(1 - \frac{\text{SI with inhibitor}}{\text{SI without inhibitor}}\right) \times 100.
\]

Molecular mimicry provides a scheme whereby viral sensitization in the blood leads to activation of T cells (26). These enter the brain where they encounter their cognate mimic in myelin. We have detected a number of microbes whose amino acid sequences can activate anti-myelin T cells from MS patients, as well as bind to anti-myelin antibodies eluted from MS brain material (19, 21). Molecular mimicry also allows for reconciliation of the genes versus the environment debate: genomic searches for genes linked to MS susceptibility reveal that the most important gene in determining susceptibility to MS is HLA (28–30). HLA is of course critical for selecting the appropriate mimic and presenting it to the immune system. Moreover, many different viruses mimic various parts of the myelin sheath, so...
Inflammation in the white matter of the brain may ensue from an immune response to a variety of microbes. Thus, the hope of finding the virus that triggers MS may remain elusive forever (7).

Our study shows how molecular mimics may modulate autoimmune disease. Earlier work by Gautam et al. (31) had demonstrated that a polyalanine peptide with only five native MBP residues is able to induce EAE in (PLSL/J)F1 mice. Further analysis also showed that an 11-amino acid peptide, consisting mostly of alanines with only four native Ac1-11 residues, was able to induce T cell hybridoma proliferation. Taking an approach of introducing either d-amino acids or unnatural amino acids in place of l-amino acids into MBPpAc1-11 analogues, we showed that T cells recognize only a short stretch of six or seven amino acids. More importantly, this stretch contains only four native MBPpAc1-11 residues. We also tested T cell recognition in vivo, using EAE as a measure of activation. We show that a short peptide of six amino acids with a core of only five native Ac1-11 amino acids induces EAE (31, 32).

A herpes virus Vls (HVS) peptide, AAQRPRSPR PFA, with a limited homology to MBP1-11 peptide, ASQKRPRSP-QRHG, (bold letters show homology) can stimulate a panel of MBP1-11-specific T cell hybridomas, and more importantly cause EAE in mice. We demonstrate that this is due to cross-recognition of these two peptides by TCRs. This HSV peptide with homology at just five amino acids with a self-peptide can induce clinical signs and histologic evidence of EAE in mice (33).

Relapsing EAE has been induced with two peptides bearing the HFFK motif containing the primary TCR and MHC contact for I-E in the Lewis rat, I-A in the SJL mouse, and DR B1*1501 in humans (5, 17, 18, 23). Using a passive transfer protocol, T cells specific for an HPV 7 peptide (IGGRVHFFKDISPIASSE) were found to induce relapsing EAE. These T cells could be activated by MBPp87-99 to induce EAE, and MBPp87-99 T cells could also be stimulated by the HPV 7 peptide to induce EAE. Active EAE with this papilloma peptide was also induced. Another viral peptide from EBV (RAHPVy-FFKSACPPA) could activate the papilloma virus-specific T cells and induce EAE by passive transfer (1).

These results have practical significance for the success of APL therapy in MS patients. The APLs now in Phase II clinical trials in MS (2) have a K→A substitution at position 91 and thus neither bind anti-MBP antibody nor trigger MBP-specific T cells. Administration of soluble native versions of myelin antigens may have dangerous consequences. Genain et al. showed that EAE induced in marmosets by immunization with myelin oligodendroglial glycoprotein (MOG) could be delayed by intraperitoneal treatment with soluble MOG; however, treated animals developed a severe late form of the disease (34). In these animals, MOG-specific T cell proliferative responses were transiently suppressed, cytokine profiles were shifted from a Th1- to a Th2-type pattern, titers of autoantibodies to MOG were enhanced, and autoimmune disease was exacerbated (34). This implies that provoking a vigorous anti-myelin reaction with a native peptide could have dangerous consequences in a clinical setting (35).

APLs work in part by altering cytokine production in T cells that respond to self-antigens (36-40). For example, in the Lewis rat administration of MBPp87-99 (K91→A), an APL altered at the primary TCR contact residue K91, reversed paralysis in EAE, and reduced production of the proinflammatory cytokine TNF-α (23). Another APL, MBPp87-99 (96P→A), reversed paralysis in EAE and increased production of IL-4 at the site of disease (5). The effect of this APL was reversed by the in vivo administration of anti-IL-4 antibody (5).

In the studies presented here, T cell lines with specificity for viral sequences that resemble MBPp85-99, but were not identical to MBPp85-99, produced IL-4 and γ-IFN, two cytokines known to suppress EAE (5, 41-45). Despite the fact that systemic administration of γ-IFN is protective in EAE, γ-IFN can induce MHC class II on astrocytes (46), and allow these glial cells to present myelin antigens to encephalitogenic T cells. Although in EAE systemic administration of γ-IFN is protective, in MS administration of γ-IFN provokes exacerbation of disease (47).

Interestingly, a T cell line specific for MBP that produced IL-4 was also able to suppress EAE (Fig. 1). Both IL-4 and γ-IFN are capable of suppressing EAE. Thus, lines specific for microbial sequences like HPV 13 or Bacillus subtilis ORF produce both IL-4 and γ-IFN and suppress EAE, whereas a T cell line specific for MBP producing IL-4 and no γ-IFN also protects. From previously published work we know that antibody to γ-IFN and antibody to IL-4 both exacerbate EAE (5, 48). Thus, the production of anti-inflammatory cytokines like IL-4 by T cells responding to microbes, whose sequences resemble but are not identical to the self-epitope MBPp87-99, has potent effects on in vivo disease. These T cell lines can inhibit EAE in (PLSL/J)F1 animals, induced by gpSCH. This homogenate contains
References

1. Ufret-Vincenty, R., L. Quigley, N. Tresser, S.H. Pak, A. Gado, S. Hausmann, K.W. Wucherpfennig, and S. Brocke. 1998. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. J. Exp. Med. 188:1725–1738.

2. Steinman, L., and P. Conlon. 1997. Viral damage and the breakdown of self-tolerance. N. Atl. Ed. 3:1085–1087.

3. Miller, S.D., C.L. Vanderblugt, W.S. Begolks, W. Pao, R.L. Y auch, K.L. Neville, Y. Katz-Levy, A. Carriozza, and B.S. Kim. 1997. Persistent infection with Th cell virus leads to CNS autoimmunity via epitope spreading. N. Atl. Ed. 3:1133–1136.

4. Lehmann P., T. Forshuber, A. Miller, and E.E. Sercarz. 1992. Spreading of T cell autoimmunity to cryptic determinants of an autoantigen. N. Atl. Ed. 358:155–157.

5. Brocke, S., K. Gijbels, M. Allegretta, I. Ferber, C. Piercy, T. Blankenstein, R. Martin, U. Utz, N. Karin, D. Mitchell, et al. 1996. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. N. Atl. Ed. 379:343–345.

6. Steinman, L. 1996. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. C. Ed. 85:299–302.

7. Steinman, L., and M.B.A. Oldstone. 1997. More mayhem from molecular mimics. N. Atl. Ed. 3:1231–1232.

8. Zamvil, S.S., D.J. Mitchell, A.C. Moore, K. Kitamura, L. Steinman, and J. Rothbard. 1986. T cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. N. Atl. Ed. 324:258–260.

9. Sakai, K., A. Sinha, D.J. Mitchell, S.S. Zamvil, H.O. McDonald, J.B. Rothbard, and L. Steinman. 1988. Involvement of distinct T cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc. Natl. Acad. Sci. U. S. A. 85:8608–8612.

10. Sakai, K., S.S. Zamvil, D.J. Mitchell, M. Lim, J.B. Rothbard, and L. Steinman. 1988. Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J. Neuroimmunol. 19:21–32.

11. Zamvil, S.S., D.J. Mitchell, M. Power, K. Sakai, J. Rothbard, and L. Steinman. 1988. Multiple discrete epitopes of the autoantigen myelin basic protein. J. Exp. Med. 168:1181–1186.
12. Acha-Orbea, H., D.J. Mitchel, L. Timmerman, D.C. Wrath, M.K. Waldor, G.S. Taush, S.S. Zanvil, H.O. MCDevitt, and L. Steinman. 1988. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54:263–273.

13. Wrath, D.C., D.E. Smilee, D.J. Mitchel, L. Steinman, and H.O. MCDevitt. 1989. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide mediated immunotherapy. C. 59:247–255.

14. Yu, M., J.M. Johnson, and V.K. Touchy. 1996. A predictable sequentiel determinant spreading cascade invariably accompanies progression of EAE: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183:1771–1778.

15. Nicholson, L.B., A. Murtaza, D.A. Hafler, A. Sette, and V.J.触手. 1989. Structural analysis of peptides capable of binding to HLA DR2 isotypes and for its recognitions by human T cell clones. J. Exp. Med. 176:605–609.

16. Gautam, A.M., C. Lock, D.E. Smilee, C.L. Pearson, L. Steinman, and H.O. MCDevitt. 1994. Minimum structural requirement for peptide presentation by major histocompatibility complex class II molecules in induction of autoimmune encephalomyelitis. J. Immunol. 151:2165–2173.

17. Wucherpfennig, K.W., A. Sette, S. Southwood, C. Oseroff, M. Matsui, J.L. Strominger, and D.A. Hafler. 1994. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 179:279–290.

18. Vogt, A.B., H. Kropshofer, M. Kalbacher, H. Kubas, H.G. Rothbard, C.C.A. Bernard, and L. Steinman. 1993. Selection for T cell receptor Vβ-DJβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362:68–70.

19. Wucherpfennig, K.W., A. Sette, S. Southwood, C. Oseroff, M. Matsui, J.L. Strominger, and D.A. Hafler. 1994. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J. Exp. Med. 179:279–290.

20. Smith, K.J., J. Pyrdol, L. Gauthier, D.C. Wiley, and K.W. Wucherpfennig. 1998. Crystal structure of HLA-DR2 and DRB1*0101 molecules delineated from self-peptides. J. Immunol. 151:1665–1673.

21. Wucherpfennig, K.W., I. Catz, S. Hausmann, J.L. Strominger, and K.G. Warren. 1997. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2 restricted T cell clones from multiple sclerosis patients: identity of key contact residues in the B cell and T cell epitopes. J. Clin. Invest. 100:1114–1122.

22. Smith, K.J., J. Pyrdol, L. Gauthier, D.C. Wiley, and K.W. Wucherpfennig. 1998. Crystal structure of HLA-DR2 (DR A*0101, DR B1*1501) complexed with a peptide from human myelin basic protein. J. Exp. Med. 188:1511–1520.

23. Wucherpfennig, K.W., and J.L. Strominger. 1995. Molecular mimicry in T cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:695–705.

24. Sette A., S. Buus, S.M. Colon, C. Miles, and H.M. Grey. 1989. Structural analysis of peptides capable of binding to more than one Ia antigen. J. Immunol. 142:35–40.

25. Kuhn, N., D. Mitchel, N. Ling, S. Brocke, and L. Steinman. 1994. Reversal of experimental autoimmune encephalomyelitis by a soluble variant of a myelin basic protein epitope: T cell receptor antagonism and reduction of interferon-γ and tumor necrosis factor α production. J. Exp. Med. 180:2227–2237.

26. Sloan-Lancaster, J., and P.M. Allen. 1996. Altered peptide ligand-induced partial T cell activation: molecular mechanism and role in T cell biology. Annu. Rev. Immunol. 14:1–27.

27. Kersh, E.N., A. Shaw, and P.M. Allen. 1998. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281:572–575.

28. Oldstone, M.B.A. 1987. Molecular mimicry and autoimmune disease. Cell 50:819–820.

29. Oldstone, M.B.A. 1997. Viruses and autoimmune diseases. Sand. J. Immunol. 46:320–325.

30. Karpuj, M.V., L. Steinman, and J.R. Oksenberg. 1997. Multiple sclerosis: a polygenic disease involving epitopic interactions, germline rearrangements and environmental effects. N eurogenetics. 1:21–28.

31. Wucherpfennig, K.W., A. Sette, D.A. Hafler, and V.J. Touchy. 1996. A predictable sequential determinant spreading cascade invariably accompanies progression of EAE: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183:1771–1778.
kine-induced immune deviation as a therapy for inflammatory autoimmune disease. J. Exp. Med. 180:1961–1966.

42. Billiau, A., H. Hereman, F. Vanderkerckhove, R. Dijkmans, H. Sobis, E. Meulepas, and H. Carton. 1988. Enhancement of EAE in mice by antibodies to IFN-γ. J. Immunol. 140:1506–1510.

43. Krakowski, M., and T. Owens. 1996. Interferon-γ confers resistance to EAE. Eur. J. Immunol. 26:1641–1646.

44. O’Garra, A., L. Steinman, and K. Gijbels. 1997. CD4+ T cell subsets in autoimmunity. Curr. Opin. Immunol. 9:872–883.

45. Ferber, I., S. Brocke, C. Taylor-Edwards, W. Ridgway, C. Dinisco, L. Steinman, D. Dalton, and C.G. Fathman. 1996. Mice with a disrupted IFN-γ gene are susceptible to the induction of EAE. J. Immunol. 156:5–7.

46. Fierz, W., B. Endler, K. Reeske, H. Wekerle, and A. Fontana. 1985. Astrocytes as antigen-presenting cells. I. Induction of Ia antigen expression in astrocytes by T cells via immune interferon and its effect on antigen presentation. J. Immunol. 134:3785–3793.

47. Panitch, H.S., R.L. Hirsch, J. Schindler, and K.P. Johnson. 1987. Treatment of multiple sclerosis with gamma interferon: exacerbation associated with activation of the immune system. Neurology. 37:1097–1101.

48. Gijbels, K., S. Brocke, J. Abrams, and L. Steinman. 1995. Administration of neutralizing antibodies to IL-6 reduces EAE and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation. Mol. Med. 1:795–805.

48a. Ruiz, P.J., H. Garren, I.U. Ruiz, D.L. Hirschberg, L.V. Nguyen, M.V. Karpuj, M.J. Cooper, D.J. Mitchell, C.G. Fathman, and L. Steinman. 1999. Suppressive immunization with DNA encoding a self-peptide prevents autoimmune disease: modulation of T cell costimulation. J. Immunol. 162:3336–3341.

49. Cohen, I.R., and L. Steinman. 1997. Exploring the potential of DNA vaccination. Hosp. Pract. (Off. Ed.). 32:169–178.

50. Waisman, A., P.J. Ruiz, D.L. Hirschberg, A. Gelman, J.R. Oksenberg, S. Brocke, F. Morel, I.R. Cohen, and L. Steinman. 1996. Suppressive vaccination with DNA encoding a variable region gene of the T cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat. Med. 2:899–906.

51. Fujinami, R.S., and M.B.A. Oldstone. 1985. Amino acid homology between the encephalitogenic site of myelin basic protein and virus mechanism for autoimmunity. Science. 230:1043–1045.

52. Zhao, Z., F. Granule, L. Yeah, P. Schooner, H. Cantor. 1988. Molecular mimicry by herpes simplex virus type 1: autoimmune disease after viral infection. Science. 279:1344–1347.

53. Hemmer, B., B.T. Fleckenstein, M. Vergelli, G. Jung, H. McFarland, R. Martin, and K. Wiesmuller. 1997. Identification of high potency microbial and self-ligands for a human autoreactive class II–restricted T cell clone. J. Exp. Med. 185:1651–1659.