Abstract—We propose a method to continuously frequency shift a target laser that is frequency stabilized by a reference laser, which is several hundreds of nanometers detuned. We demonstrate the technique using the $5S_{1/2} \rightarrow 5P_{3/2} \rightarrow 29D_{5/2}$ Rydberg transition in 87Rb vapor and lock the 482 nm target laser to the 780 nm reference laser using the cascaded electromagnetically induced transparency signal. The stabilized frequency of the target laser can be shifted by about 1.6 GHz by phase modulating the reference laser using a waveguide-type electro-optical modulator. This simple method for stable frequency shifting can be used in atomic or molecular physics experiments that require a laser frequency scanning range on the order of several GHz.

Index Terms—laser frequency stabilization, Rydberg atom, electromagnetically induced transparency, laser scanning.

I. INTRODUCTION

MANY modern atomic and molecular physics experiments require a laser with a stabilized frequency, which can be shifted or scanned over a desired amount, typically up to a few GHz, in order to address a specific transition between energy levels of interest. Usually, resonant absorption on optical transitions, frequency combs, or optical cavity resonances are used as a reference to stabilize lasers to a particular frequency. Some techniques in common use for direct frequency referencing include saturated absorption spectroscopy [1], Sagnac interferometry [2], Pound-Drever-Hall locking [3], [4], and dichroic atomic vapor laser locking [5]. In addition, techniques such as electromagnetically induced transparency (EIT) or beat note locking can be used to lock the relative frequency of two lasers [6]–[10]. The first method is widely employed in situations where it is difficult to obtain a direct absorption signal, such as the excitation of a neutral atom to a Rydberg level using a cascaded process [11]–[13]. The disadvantage of this technique is that it tends to provide discrete frequency reference shifts. Beat note locking can be used for a continuously varying frequency shift, but the target laser can only be separated from the reference laser by up to a few GHz.

Manuscript received xxx This work was supported by OIST Graduate University and JSPS Grant-in-Aid for Scientific Research (C) Grant Number 19K05316.

K.P. Subramoniam Rajasree, K. Karlsson and S. Nic Chormaic are with the Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan (e-mail: sile.nicchormaic@oist.jp).

T. Ray is with Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, 4 place Jussieu, 75005 Paris, France.

Some of the more common methods to arbitrarily shift the laser frequency from a stabilized reference point include using an acousto-optical modulator (AOM) or an electro-optical modulator (EOM). Laser stabilization using a AOM by modulating the carrier frequency has been demonstrated [14] and this method is suitable for probing very narrow absorption features. To reach GHz shifts using an AOM, a single pass is typically not sufficient. Therefore, configurations including 2-, 3-, 4-, 6-, and even 12-passes [15]–[19] have been implemented. When using an AOM, the frequency-shifted light is separated from the carrier (that is the zeroth order beam) via diffraction. However, the entire frequency range under consideration cannot be covered by a single modulator. Moreover, the change in frequency can cause a change in intensity of the frequency-shifted light if the diffraction efficiency of the modulator is not uniform over the full frequency range.

In contrast, when using an EOM, the attainable frequency shift can be much larger (for the non-resonant or broadband case); up to 40 GHz offset using a 10 GHz modulator has been demonstrated [20] by using the 4th-order sidebands and, more recently, up to 46 GHz was obtained using the 10th-order sidebands [21]. However, EOMs require a high driving voltage over the desired range and the shifted sidebands co-propagate with the carrier, meaning they cannot be spatially separated unless a narrow-band cavity is used [22].

In this letter, we demonstrate laser locking and subsequent frequency shifting up to ±800 MHz of a 482 nm target laser using EIT with a waveguide-type EOM employed for shifting the frequency of a 780 nm reference laser. The quality of the frequency stabilization achieved is demonstrated in terms of both stability and scanning range. The work was motivated by our need for a tunable, frequency-stabilized laser for cascaded Rydberg atom excitation in 87Rb [23].

II. EXPERIMENTAL DETAILS

We focused on frequency shifting a frequency stabilized laser so as to excite 87Rb atoms from the $5S_{1/2}$ ground level to the $29D_{5/2}$ Rydberg level via the $5P_{3/2}$ intermediate level using a cascaded excitation process, as shown in Fig. 1(a). The experimental setup is shown in Fig. 1(b). We used a natural abundance rubidium vapor cell to frequency lock a 780 nm laser (DL pro, Toptica) on the 85Rb $5S_{1/2}(F = 3) \rightarrow 5P_{3/2}(F' = 3, 4)$ transition using saturated absorption spectroscopy (SAS). The locked 780 nm laser acted as the...
reference while the target laser at 482 nm was derived from a frequency-doubled high power laser (TA SHG pro, Toptica). The aim was to scan the target laser across the Rydberg transition (see Fig. 1(a)), for which the direct absorption strength is very weak, hence a signal is difficult to detect.

Figure 1. (a) Simplified energy level diagram for \(^{87}\text{Rb}\) showing the relevant transitions. The ground level \(5S_{1/2}\), the intermediate level \(5P_{3/2}\) and the Rydberg level \(29D_{5/2}\) constitute the cascaded three-level system. \(\delta\) is the frequency shift on the 780 nm reference laser from the resonance condition. (b) Schematic of the experimental setup. The 482 nm target laser and the 780 nm reference laser pass through the \(^{87}\text{Rb}\)-enriched vapor cell in a counter-propagating configuration. Absorption of the 780 nm light in the absence and presence of the 482 nm light is detected on P1 and P2, respectively. The difference between the two signals yields the Doppler-free EIT signal, which is used to frequency stabilize the 482 nm laser. EOM: electro-optic modulator; H: half-wave plate; PBS: polarizing beam splitter; M: mirror; DM: dichroic mirror. The different colored arrows indicate different wavelengths of light, red for 780 nm and blue for 482 nm.

Figure 2. (a) Saturated absorption spectrum for \(^{87}\text{Rb}\) obtained from a commercial frequency locking interface (Digilock, Toptica). The frequency separation between the \(^{87}\text{Rb}\) \(5S_{1/2}(F = 3)\) \(\rightarrow\) \(5P_{3/2}(F') = 3\), \(4\)\(\text{co}\) transition and the \(5S_{1/2}(F = 2)\) \(\rightarrow\) \(5P_{3/2}(F' = 3)\) transition is 1.0662 GHz as shown. (b) A typical 780 nm probe EIT signal used for locking the 482 nm target laser to the \(^{87}\text{Rb}\) \(5P_{3/2} \rightarrow 29D_{5/2}\) transition.

III. PERFORMANCE AND DISCUSSION

The RF signal applied to the EOM was varied to ensure that the sidebands were detuned from the \(^{87}\text{Rb}\) cooling transition, \(5S_{1/2}(F = 2)\) \(\rightarrow\) \(5P_{3/2}(F' = 3)\), by \(\delta\). To satisfy the resonance condition, the frequency of the target laser shifts by an equivalent amount \(-\delta\). In fact, the RF signal to the EOM could either be kept fixed so as to lock the target laser to a specific frequency or it could be varied continuously in order to shift the frequency of the target laser. Importantly, this technique does not change the intensity of the target laser output. Figure 3 is a plot of the 482 nm target laser frequency shift as a function of the applied RF signal to the EOM. We see that the target laser shifted over about 1600 MHz (\(\pm\)800 MHz) as the RF signal was changed by 892 MHz. The lock stability demonstrated was sufficient for a typical atomic physics experiment [23].

The limitation on the frequency scanning range was \(\pm\)800 MHz. This arises from the Doppler width of the \(^{87}\text{Rb}\) cooling transition manifold. Beyond the Doppler broadened absorption, it becomes harder to obtain a EIT peak. An alternative approach would be to lock the frequency of the 482 nm laser to a reference laser using an optical phase-locked loop.
laser beams which are hundreds of nm apart. In contrast, our technique provides significantly more complicated and limited to reference and [27]. However, the implementation of this technique would be more or less arbitrarily without changing the light intensity of time when frequency locking is on.

Figure 3. Shift in the frequency of the 482 nm target laser as a function of the applied radio frequency to the EOM. The total shift achievable is on the order of 1600 MHz. The zero frequency corresponds to $\delta = 0$.

[26]. The beat note generated could be referenced to an RF signal and the frequency of the target laser could then be varied more or less arbitrarily without changing the light intensity [27]. However, the implementation of this technique would be significantly more complicated and limited to reference and target lasers with adjacent frequencies, typically not separated by more than a few GHz. In contrast, our technique provides a simple, stable method to produce a phase-coherent pair of laser beams which are hundreds of nm apart.

IV. CONCLUSION

In summary, we have shown a novel method to shift a stabilized laser by a desired frequency. A reference laser at 780 nm, which was hundreds of nanometres away from the target laser at 482 nm, was used for the frequency stabilization. This method of achieving a subnatural linewidth stable target laser with a long range frequency scan (1.6 GHz) could be used for atomic physics experiments involving Rydberg levels [23]. Other than for Rydberg experiments, this frequency locking and shifting method could provide a simple alternative when lasers with a large detuning are required, for example, in long-term precision measurements, such as frequency chirping, atom clocks, atom interferometers, and laser frequency modulation.

REFERENCES

[1] D. W. Preston, “Doppler-free saturated absorption: Laser spectroscopy,” *Am. J. Phys.*, vol. 64, no. 11, pp. 1432–1436, 1996.
[2] G. Jundt, G. T. Purves, C. S. Adams, and I. G. Hughes, “Non-linear Sagnac interferometry for pump-probe dispersion spectroscopy,” *Eur. Phys. J. D.*, vol. 27, no. 3, pp. 273–276, Dec 2003.
[3] R. D. Dyer, J. L. Hall, F. V. Kowalski, H. J., G. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” *Appl. Phys. B*, vol. 31, pp. 97–105, 1983.
[4] S. Hirata, T. Akatsuka, Y. Ohtake, and A. Morinaga, “Sub-Hertz-linewidth diode laser stabilized to an ultralow-drift high-finesse optical cavity,” *Appl. Phys. Express*, vol. 7, no. 2, p. 022705, Jan 2014.
[5] F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption,” *J. Opt. Soc. Am. B*, vol. 26, no. 7, pp. 1315–1320, Jul 2009.
[6] K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” *Phys. Rev. Lett.*, vol. 66, pp. 2593–2596, May 1991.
[7] M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” *Opt. Lett.*, vol. 23, no. 4, pp. 295–297, Feb 1998.
[8] M. Fleischhauer, A. Imamoğlu, and J. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” *Rev. Mod. Phys.*, vol. 77, p. 633, Jul 2005.
[9] S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Schoelten, “Laser frequency offset locking using electromagnetically induced transparency,” *Appl. Phys. Lett.*, vol. 90, no. 17, p. 171120, 2007.
[10] R. Islam, W. C. Campbell, T. Choi, S. M. Clark, C. W. S. Conover, S. Debnath, E. E. Edwards, B. Fields, D. Hayes, D. Hucul, I. V. Inlek, K. G. Johnson, S. Kornblit, A. Lee, K. W. Lee, T. A. Manning, D. N. Matsukevich, J. Mizrahi, Q. Quraishi, C. Senko, J. Smith, and C. Monroe, “Beat note stabilization of mode-locked lasers for quantum information processing,” *Opt. Lett.*, vol. 39, no. 11, pp. 3238–3241, Jun 2014.
[11] R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weathers, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system,” *Appl. Phys. Lett.*, vol. 94, no. 7, p. 071107, 2009.
[12] M. Langbecker, M. Noaman, N. Kjærgaard, F. Benabid, and P. Windpassinger, “Rydberg excitation of cold atoms inside a hollow-core fiber,” *Phys. Rev. A*, vol. 96, p. 041402, Oct 2017.
[13] F. Jia, J. Zhang, L. Zhang, F. Wang, J. Mei, Y. Yu, Z. Zhong, and F. Xie, “Frequency stabilization method for transition to a Rydberg state using Zeeman modulation,” *Appl. Opt.*, vol. 59, no. 7, pp. 2108–2113, Mar 2020.
[14] M. Aldous, J. Woods, A. Dragomir, R. Roy, and M. Himsworth, “Carrier frequency modulation of an acousto-optic modulator for laser stabilization,” *Opt. Express*, vol. 25, no. 11, pp. 12830–12838, May 2017.
[15] E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” *Rev. Sci. Instrum.*, vol. 76, no. 6, p. 063112, 2005.
[16] E. de Carlos-López, J. M. López, S. López, M. G. Espinosa, and L. A. Lizama, “Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations,” *Rev. Sci. Instrum.*, vol. 83, no. 11, p. 116102, 2012.
[17] B. Lu and D. Wang, “Note: A four-pass acousto-optic modulator system for laser cooling of sodium atoms,” *Rev. Sci. Instrum.*, vol. 88, no. 7, p. 076105, 2017.
[18] F. J. Buchkremer, R. Dumke, C. Buggle, G. Birkl, and W. Ertmer, “Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light,” *Rev. Sci. Instrum.*, vol. 71, no. 9, pp. 3306–3308, 2000.
[19] Z. Zhou, C. He, S.-T. Yan, Y.-H. Ji, L. Zhou, J. Wang, and M.-S. Zhan, “Laser frequency shift up to 5 GHz with a high-efficiency 12-pass 350-MHz acousto-optic modulator,” *Rev. Sci. Instrum.*, vol. 91, no. 3, p. 033201, 2020.
[20] W. Peng, L. Zhou, S. Long, J. Wang, and M. Zhan, “Locking laser frequency of up to 40 GHz offset to a reference with a 10 GHz electro-optic modulator,” Opt. Lett., vol. 39, no. 10, pp. 2998–3001, May 2014.

[21] K. Harada, T. Aoki, S. Ezure, K. Kato, T. Hayamizu, H. Kawamura, T. Inoue, H. Arikawa, T. Ishikawa, T. Aoki, A. Uchiyama, K. Sakamoto, S. Ito, M. Itoh, S. Ando, A. Hatakeyama, K. Hatanaka, K. Imai, T. Murakami, H. S. Nataraj, Y. Shimizu, T. Satoh, T. Wakasa, H. P. Yoshida, and Y. Sakemi, “Laser frequency locking with 46 GHz offset using an electro-optic modulator for magneto-optical trapping of francium atoms,” Appl. Opt., vol. 55, no. 5, pp. 1164–1169, Feb 2016.

[22] D. Gatti, R. Gotti, T. Sala, N. Coluccelli, M. Belmonte, M. Prevedelli, P. Laporta, and M. Marangoni, “Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator,” Opt. Lett., vol. 40, no. 22, pp. 5176–5179, Nov 2015.

[23] K. S. Rajasree, T. Ray, K. Karlsson, J. L. Everett, and S. Nic Chormaic, “Generation of cold Rydberg atoms at submicron distances from an optical nanofiber,” Phys. Rev. Res., vol. 2, p. 012038, Feb 2020.

[24] A. Mohapatra, T. Jackson, and C. Adams, “Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency,” Phys. Rev. Lett., vol. 98, p. 113003, Mar 2007.

[25] Y. Jiao, J. Li, L. Wang, H. Zhang, L. Zhang, J. Zhao, and S. Jia, “Laser frequency locking based on Rydberg electromagnetically induced transparency,” Chinese Phys. B, vol. 25, no. 5, p. 053201, May 2016.

[26] V. Ferrero and S. Camatel, “Optical phase locking techniques: an overview and a novel method based on single side sub-carrier modulation,” Opt. Express, vol. 16, no. 2, pp. 818–828, Jan 2008.

[27] K. Numata, J. R. Chen, and S. T. Wu, “Precision and fast wavelength tuning of a dynamically phase-locked widely-tunable laser,” Opt. Express, vol. 20, no. 13, pp. 14234–14243, Jun 2012.