Purinergic signalling and immune cells

Geoffrey Burnstock · Jean-Marie Boeynaems

Received: 4 September 2013 / Accepted: 12 September 2013 / Published online: 29 October 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5′-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.

Keywords ATP · UTP · Lymphocytes · Neutrophils · Mast cells · Microglia · Macrophages · Purinoceptors

Introduction

Purinergic signalling in the main subsets of immune cells

Polymorphonuclear leukocytes
Neutrophils
Eosinophils
Basophils
Mast cells
Section summary

Monocytes, macrophages and microglia
Monocytes
Macrophages
Microglia
Section summary

Dendritic cells
P1 receptors
P2 receptors
Section summary

Lymphocytes
T and B lymphocytes
Natural killer (NK and NKT) cells
Section summary

Concluding remarks
Introduction

Although nucleotides, such as adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP), are mainly intracellular, they are released into the extracellular fluids by various mechanisms. One of them is cell damage and death: both necrotic and apoptotic cells release ATP and other nucleotides that thus constitute “danger signals” or damage associated molecular pattern [1–3]. In the absence of cell death, they are also released in response to various types of stress: mechanical stimulation (stretch, shear stress) [4], hypoxia or pathogen invasion [5, 6]. Specific mechanisms of release include: exocytosis of secretory granules, vesicular transport [7, 8] and membrane channels, such as ATP-binding cassette transporters, connexins [9–11] and connexins [12]. In particular, nucleotides are released by exocytosis during platelet aggregation and synaptic transmission. For many years, cells of the immune system were not considered to be innervated, but there is increasing recognition that nerves can influence the immune system and the field of neuroimmunology is growing rapidly [13–15].

Once in the extracellular fluids, nucleotides are rapidly degraded by a variety of ectonucleotidases [16], such as the ENTPDases, like CD39 that degrades ATP into adenosine 5'-diphosphate (ADP) and ADP into adenosine monophosphate (AMP) and CD73/5'-nucleotidase that converts AMP into adenosine. Receptors for extracellular nucleotides and their degradation products such as adenosine have been progressively characterized. Subdivision of purinergic receptors between P1 (adenosine) and P2 (ATP, ADP) was proposed by Burnstock in 1978 [17]. A further subdivision of P2 receptors between P2Y and P2X was made in 1985 [18]. It is now well established that signalling by extracellular nucleotides is mediated by these two families of receptors, the molecular structure of which has been characterized: P2Y receptors are metabotropic G protein-coupled while P2X receptors are oligomeric ion channels.

Numerous reviews on various aspects of purinergic signalling in the immune system are available (Table 1). In the history and development of knowledge about purinergic signalling, early workers focussed on adenosine, while those concerned with ATP rarely referred to adenosine. This is obviously an inadequate approach since the effects of ATP and adenosine, its breakdown product that is rapidly produced by ectonucleotidases, are intimately related. In this review, purinergic signalling in immune cells will be covered in a comprehensive and historical way, following the increase in knowledge from the early discoveries to current understanding. The review will consider the major subsets of immune cells and, for each of them, address the mechanisms of nucleotides release and adenosine generation, as well as the repertoire of functional P1 and P2 receptors that they express.

Purinergic signalling in the main subsets of immune cells

Polymorphonuclear leukocytes

Neutrophils

P1 receptors Ectoenzymes that hydrolyse ATP have been observed on guinea pig polymorphonuclear leukocytes [19–21]. In particular, both CD39 and CD73 ectonucleotidases are present on neutrophil membranes [22]. Furthermore, neutrophils express mRNA for A1, A2A, A2B and A3 receptors [23], but the mRNA for A2A and A3 receptors are the most abundant [24]. Adenosine was shown to be a physiological modulator inhibiting the generation of superoxide (O2−) anion by neutrophils via A2 receptors [25–29]. Not surprisingly, dipyridamole, which prevents the uptake of adenosine, thereby increasing extracellular levels, inhibits O2− generation by neutrophils [30]. Adenosine also inhibited the degranulation induced by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine (fMLP) [28], phagocytosis [31] and the bactericidal function of neutrophils [32]. It was proposed that the inhibitory actions of adenosine on neutrophils were due to calcium entry blockade [33–35]. Adenosine inhibited neutrophil respiratory bursts in association with an increase in cyclic AMP (cAMP) and reduction in [Ca2+]i [36, 37]. Occupancy of A2A receptors by adenosine inhibits fMLP-induced neutrophil activation via cAMP and protein kinase A regulated events [38]. Caffeine intake results in increase in cAMP accumulation and decrease in O2− anion production in human neutrophils, mediated by A2A receptors [39]. Activation of A2A receptors also inhibited the expression and release of various cytokines and chemokines after lipopolysaccharide (LPS) stimulation of neutrophils [40]. But other studies showed that both the A2A and the A3 receptors

Table 1 Reviews on the role of purinergic signalling in the immune system

| General reviews on purinergic signalling in the immune system [474, 537–543] |
| Immune regulation by extracellular nucleotides [544–551] |
| Immune regulation by adenosine [552–563] |
| Ectonucleotidases and immune responses [426, 564–566] |
| Purinergic signalling in neutrophils [567–569] |
| Purinergic signalling in eosinophils [570] |
| Purinergic signalling in mast cells [571, 572] |
| Purinergic signalling in monocytes [573] |
| Purinergic signalling in macrophages [574] |
| Purinergic signalling in microglia [344, 575, 576] |
| Purinergic signalling in dendritic cells [577, 578] |
| Purinergic signalling in lymphocytes [579–586] |
| P2X7 receptors and immune cells [383, 503, 587–589] |
| P2X7 receptors, macrophage function and bacteria [590–594] |
can also play a role in these inhibitory actions. Tumour necrosis factor-\(\alpha\) (TNF-\(\alpha\)) production by neutrophils following renal ischemia-reperfusion was increased in A2B-deficient mice [41]. Activation of A2B receptors also inhibited fMLP-induced O2\(^{-}\) production [42]. The A2 receptor is also involved in the inhibition of O2\(^{-}\) production [43] and of degranulation [44]. Adenosine downregulated ligand-stimulated leukotriene B4 biosynthesis in neutrophil suspensions [45], but it potentiated neutrophil cyclooxygenase-2 via A2A receptors [46].

In contrast, there are discrepant reports concerning the action of adenosine on neutrophil chemotaxis. It was claimed in 1982 that adenosine had no effect on the chemotaxis of neutrophils, although it did enhance the inhibition of chemotaxis by 3-deaza-(\(\pm\))aristeromycin [47]. However, it was reported later that adenosine promotes neutrophil chemotaxis [48], perhaps via A1 receptors [49]. It was shown recently that the recruitment of neutrophils and other leukocytes in the lung during influenza infection is reduced in A1-deficient mice [50]. In contrast, LPS-induced recruitment of neutrophils in the lung was increased in A2A-deficient mice and experiments with chimeric mice revealed that this involves a direct inhibitory effect of the A2A receptor in myeloid cells [51]. Similar results were obtained in A2B-deficient mice [52]. Interestingly, in A2A-deficient mice, neutrophils were increased in the alveolar space [51], whereas they were increased in the interstitium of A2B-deficient mice [52]. Chen et al. [24] showed that adenosine stimulates neutrophil migration and amplifies the action of chemotactic signals through A3 receptors that are recruited to the leading edge (see Fig. 1). In A3-deficient mice, the recruitment of neutrophils was reduced in the lung during sepsis [53] and in the colon after induction of colitis by dextran sulphate [54]. Interestingly neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells. This inhibitory signal at the back might be mediated by adenosine acting on A2A receptors [55] (Fig. 1).

There is evidence that adenosine can modulate the interaction of neutrophils with pathogens. A3 receptors aggregate in highly polarised immunomodulatory microdomains of human neutrophil membranes. They promote the formation of filopodia-like projections (cytonemes) that can extend up to 100 \(\mu\)m to tether pathogens. Exposure to bacteria or an A3 agonist stimulates the formation of these projections and bacterial phagocytosis, whereas an A3 antagonist inhibits cytoneme formation [56].

Neutrophil adherence to endothelium was enhanced via A1 receptors and inhibited via A2 receptors [57, 58]. It is now believed that adenosine generated from ATP by CD39 and CD73 on the vascular surface functions as an anti-adhesive signal for neutrophil binding to microvascular endothelia through activation of neutrophil adenosine A2A and A2B receptors [59]. Activation of A2A receptors also inhibits expression of \(\alpha4/\beta1\) integrin on human neutrophils [60]. Human neutrophils activated by fMLP increased the number of cell surface \(\beta2\) integrins on endothelial cells and induced the shedding of L-selectin. These effects were inhibited by adenosine, most likely via the A2A receptor [61]. A2 receptor activation inhibited neutrophil injury to coronary endothelium [62]. Adenosine also acts on endothelial receptors, thereby promoting vascular barrier function, providing a mechanism to dampen vascular leak syndrome during neutrophil–endothelial interactions [63] and regulating neutrophil chemotaxis [64]. Exposure of human endothelial cells to hypoxia/re-oxygenation caused increased neutrophil adhesion, an effect prevented by adenosine [65]. Adenosine also reduced the stimulatory effect of neutrophils

![Proposed model of neutrophil chemotaxis](image-url)

**Fig. 1** Proposed model of neutrophil chemotaxis. As previously reported, stimulation of chemoattractant receptors induces local release of ATP through PANX1 channels at the site that first encounters the chemotactic signal. Autocrine feedback via P2Y2 receptors amplifies the chemotactic signal and triggers cell polarization, whereby cells assume an elongated shape, and PANX1, CD39 (NTPDase1) and A1 adenosine receptors accumulate at the leading edge. In the current study, we found that A2A receptors are translocated from the leading edge toward the back of polarized neutrophils and that inhibitory signaling via A2A receptor-dependent cAMP accumulation inhibits excitatory chemotactic signalling by blocking FPR-dependent ERK and p38 MAPK activation globally with the exception of the leading edge. *ALP* alkaline phosphatase, *ADO* adenosine, *PIP3* phosphatidylinositol (3,4,5)-triphosphate. (Reproduced from [55], with permission from the American Society for Biochemistry and Molecular Biology)
on tissue factor-dependent coagulant activity of endothelial cells as a result of the inhibition of neutrophil adhesion to endothelial cells mediated by A2 receptors [66].

Adenosine might also play a role in the regulation of neutrophil number. Synergistic effects of granulocyte colony-stimulating factor and dipyridamole increased neutrophil production in mice [67]. Both effects were inhibited by adenosine deaminase (ADA). Theophylline has an immunomodulatory action on neutrophil apoptosis via A2A receptor antagonism [68].

The expression of adenosine receptors on neutrophils can be modulated in pathological conditions and following various interventions. A2A receptors on freshly isolated human neutrophils are upregulated after stimulation by LPS or TNF-α, and this may represent a feedback mechanism to control inflammation [69]. A2B receptor activity in neutrophils is reduced in patients with systemic sclerosis [70]. A 4.6-fold decrease in adenosine-mediated inhibition of neutrophils from patients with septic shock was reported [71]. Hypertonic saline upregulates A3 receptor expression on activated neutrophils and increases acute lung injury after sepsis [72]. Alterations in the functional expression of both A2A and A3 receptors in human neutrophils treated with pulsing electromagnetic fields have been reported [73, 74].

P2 receptors ATP induces an increase in [Ca2+]i in human [75] and mouse [76] neutrophils. ATP and UTP, acting via P2U (i.e. P2Y2 and/or P2Y4) receptors, coupled to the inositol 1,4,5-trisphosphate pathway and increased [Ca2+]i [37]. This was associated with a priming of neutrophils for enhanced O2− generation when stimulated by other agonists [37, 77, 78]. The release of Ca2+ from thapsigargin-sensitive intracellular stores is essential for this nucleotide-induced priming in human neutrophils [79], indicating mediation via P2Y receptors. Enhanced O2− responses of rat neutrophils stimulated by formyl chemotactic peptide were evoked by ATP and ADP, whereas adenosine and AMP were inhibitory [80–82]. ATP and UTP also stimulated granule secretion from human neutrophils [83, 84] and potentiated the secretion induced by chemotactic peptides [78]. They also induced neutrophil aggregation [78, 85].

Human neutrophils release ATP from the leading edge of the cell surface to amplify chemotactic signals and direct cell orientation by feedback via P2Y2 receptors (Fig. 1) [24, 55, 86]. The importance of this mechanism in pathology is demonstrated by studies showing that the infiltration of neutrophils in the smoke-injured lung [87] and in the liver damaged by toxic agents [88] is decreased in P2Y2 knockout (−/−) mice. Chen et al. [24] also showed that neutrophil ectonucleotidases hydrolyze ATP to adenosine, which, via A3 receptors, also promoted cell migration (Fig. 1). In agreement with this concept, both P2Y2 and A3 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis [53]. Neutrophil chemotaxis requires excitatory signals at the front and inhibitory signals at the back of cells that regulate cell migration. P2Y2 receptors, as well as A3 receptors, were shown to contribute to excitatory signals at the front, while adenosine acting on A2A receptors contributed to the inhibitory signal at the back [55] (Fig. 1).

The P2Y14 receptor was shown to be functionally expressed on human neutrophils [89], and uridine-diphosphate (UDP)-sugars promoted Rho-mediated signalling and chemotaxis in human neutrophils [90], which was blocked by a P2Y14 antagonist [91].

Neutrophil apoptosis induced by ATP was inhibited by P2Y11 receptor activation, and it was suggested that targeting of P2Y11 receptors could retain the immune functions of neutrophils and reduce the injurious effects of increased neutrophil longevity during inflammation [92]. A later paper showed that P2Y11 receptors mediate ATP-enhanced chemotactic responses of rat neutrophils [93].

RT-PCR and Northern blot analysis revealed the presence of P2X7 receptors on neutrophils and 2'(3')-O-(4-benzoylbenzoyl) ATP (BzATP), a potent P2X7 receptor agonist, stimulated production of O2− [23, 94]. A role of P2X5 in protection against neutrophil apoptosis has been reported [95, 96]. Neutrophil accumulation in the skin during croton oil-induced irritant contact dermatitis was reduced in P2X5-deficient mice [97]. However, it was claimed more recently that human neutrophils do not express P2X7 receptors [98]. In an RT-PCR study of human neutrophils, mRNA for P2X1 was strongly expressed, while mRNA for P2X4 and P2X5 was weakly expressed and P2X7 mRNA was not detected.

Fig. 2 P2 receptors expressed by human eosinophils. a P2Y receptors. b P2X receptors. (Reproduced from [110], with permission from Elsevier)
P2X₇ receptors mediate neutrophil chemotaxis via Rho kinase activation [100]. A study using P2X₇ receptor knockout mice led to the conclusion that P2X₇ receptors play a protective role in endotoxaemia by negatively regulating systemic neutrophil activation, thereby limiting the oxidative response, coagulation, and organ damage [101].

**Eosinophils**

P₁ receptors A₃ receptors were identified on human eosinophils and their activation led to increased [Ca²⁺], [102]. However, the role of adenosine and A₃ receptor signalling on this cell type remains controversial with both pro- and anti-inflammatory activities of adenosine being reported. Adenosine was shown to potentiate the production of O₂⁻ by guinea pig pulmonary eosinophils [103]. However, an inhibition of degranulation and O₂⁻ anion release from human eosinophils was observed later and shown to be mediated by A₁ receptors [104]. In human eosinophils, adenosine inhibits chemotaxis via the A₁ receptor [105, 106], whereas a stimulatory effect has been observed in eosinophils of ADA-deficient mice [107].

P2 receptors Nucleotides were shown to stimulate human eosinophils, and it was suggested that since ATP is released from autonomic nerves and activated platelets, it could modulate the migration and other activities of eosinophils in vivo [76]. Thrombin-stimulated platelets secrete ATP, a chemotactic factor that attracts eosinophils [108]. ATP was shown to be a potent activator of eosinophils, suggesting a role for ATP in the pathogenesis of eosinophilic inflammation as an activator of pro-inflammatory effector functions [109]. Expression of P₂Y₁, P₂Y₂, P₂Y₄, P₂Y₆, P₂Y₁₁ and P₂X₁, P₂X₄, P₂X₅ and P₂X₇ receptor mRNA has been observed in human eosinophils (see Fig. 2) [99, 110]. It was also shown in this paper that purinoceptors mediate increase in [Ca²⁺], and the production of reactive oxygen intermediates. The functional characterization of P₂Y and P₂X receptors on human eosinophils was undertaken, and it was shown that UTP and ATP had a greater stimulatory effect on the production of reactive oxygen metabolites, actin polymerization and chemotaxis than the selective P₂X receptor agonists α,β-methylene ATP and BzATP, suggesting a predominant role of P₂Y receptors [111]. However, P₂Y and P₂X agonists had similar effects regarding intracellular calcium transients and the adhesion molecule CD11b. In a study of human eosinophils, ATP was shown to trigger secretion of eosinophil cationic protein, probably via P₂Y₂ receptors, while ATP induced interleukin (IL)-8, probably via P₂Y₆, P₂X₁ and P₂X₇ receptors [112]. Autocrine release of ATP and P₂ receptors, presumably P₂Y₂, were shown to play a pivotal role in human eosinophil degranulation and production of pro-inflammatory cytokines in response to the endogenous danger signal, crystalline uric acid [113]. Human eosinophils respond also to ADP via P₂Y₁₂ to elicit eosinophil secretion of peroxidase [114]. The use of knockout mice has allowed us to demonstrate the crucial role of P₂Y₂ receptors in the accumulation of eosinophils in the lungs during allergic inflammation. This involves both a direct chemotactic effect of ATP mediated by the eosinophil P₂Y₂ receptor [115] and an indirect effect on endothelial cells, where ATP via P₂Y₂ stimulates the expression of VCAM-1 that mediates eosinophil adherence and infiltration, and its soluble form that is chemotactic for eosinophils [116].

**Basophils**

P₁ receptors It was reported that human basophils have a receptor for adenosine that mediates inhibition of immunoglobulin (Ig)E-mediated histamine release [117, 118]. In later papers, it was shown that the inhibitory effect of adenosine is mediated by an A₂ receptor and cAMP increase [119–121].

P2 receptors Activation of permeabilised rat basophilic leukaemia cells (RBL-2H3) by adenosine-5′-O-(3-thio)triphosphate led to secretion of allergic and inflammatory mediators [122]. In a recent paper, it was shown that degranulation and histamine release from human basophils, associated with type 1 allergy, was evoked by UTP and particularly UDP, suggesting mediation by P₂Y₂ and/or P₂Y₄ and P₂Y₆ receptors [123].

**Mast cells**

P₁ receptors Potentiation of A23187 calcium ionophore-induced mast cell release of histamine by adenosine was initially reported [124]. Anti-IgE-induced release of histamine from mast cells was also enhanced by adenosine [125–130], as was β-hexosaminidase release from bone marrow-derived mast cells [131]. Histamine release from human adenoidal mast cells induced by concanavalin A or acetylcholine was also enhanced by adenosine [132]. Although other mechanisms have been proposed [133, 134], the potentiation of histamine release by adenosine appears to be mediated by A₁ receptors, since it was mimicked by selective A₁ agonists [135, 136] and abolished in A₁-deficient mice [137]. Furthermore, it was shown that the increase of cutaneous vascular permeability and extravasation of plasma proteins in response to adenosine was abolished in mast cell-deficient mice as well as in A₁-deficient mice [138]. Similarly, adenosine-induced bronchoconstriction was attenuated in mast cell-deficient and A₁-deficient mice [139].

The response of human lung mast cells to adenosine was biphasic: low concentrations of adenosine potentiated release of histamine, while high concentrations elicited inhibition...
Adenosine also inhibited IgE-dependent degranulation of human skin mast cells via A2A receptors [141]. Both A2A and A2B receptors were identified on mouse bone marrow-derived mast cells [142]. Using knockout mice, it was demonstrated that the inhibition of mast cell degranulation by adenosine in mediated by the A2B receptor, while the combined action of A2B and A2A receptors is responsible for the inhibition of cytokine production [143]. However, the role of adenosine receptors in mast cell regulation is more complex, since the stimulatory effect of adenosine on the release of angiogenic factors such as vascular endothelial growth factor (VEGF) was shown to involve a cooperation between A2B and A3 receptors [144, 145]. Furthermore, in umbilical cord blood-derived mast cells, IL-4 increased the potentiating effect of adenosine on degranulation via an upregulation of A2B receptors, whereas these receptors were shown previously to be inhibitory in murine mast cells [146].

P2 receptors ATP was reported early to evoke calcium-dependent histamine release with degranulation of rat mast cells [147–152]. It was suggested that the source of ATP may be innervating nerve fibres [153, 154], as discussed below. A correlation was shown between the ATP levels in rat peritoneal mast cells and histamine released by the anaphylactic reaction and compound 48/80 [155, 156]. ATP was shown to induce cytokine expression and apoptosis via P2X7 receptors on murine mast cells [157], supporting the earlier recognition of ATP-induced pore formation in rat peritoneal mast cells [158]. Interestingly, colitis was improved in mast cell-deficient mice as well as in those mice reconstituted with P2X7−/− mast cells, showing the role of mast cell activation by ATP via the P2X7 receptor in intestinal inflammation [159]. ATP-induced cytokine and chemokine expression could also be mediated by P2X1 and P2X3 receptors on murine mast cells [160]. Functional expression of P2X1, P2X3 and P2X7 receptors in human lung mast cells was presented [161]. Mast cells are a major source of protein arginine deiminase, and it was shown that ATP induced protein arginine deiminase 2-dependent citrullination in mast cells via P2X7 receptors [162].

G protein-coupled P2Y receptors were also shown to mediate mast cell activation [163, 164]. UDP-glucose acting via P2Y14 receptors was shown to be a mediator of mast cell degranulation and considered as a potential therapeutic target for allergic conditions [165]. In a recent paper, all P2Y receptor subtypes were shown to be expressed in variable levels by human LAD2 mast cells [166]. Although P2Y4 and P2Y11 receptors were highly expressed, they did not appear to play a major role in degranulation, whereas P2Y14 receptors did.

Autonomic nerves as well as sensory-motor nerves innervate immune cells and release ATP as a cotransmitter in close vicinity of immune cells [167]. Indeed in accordance with the definition of the autonomic neuroeffector junction, close contact of nerve varicosities with effector cells in effect constitutes innervation, albeit of a transient nature [168, 169]. Mast cells were the first claimed to be innervated [170]. Antidromic stimulation of sensory nerves increased degranulation of mast cells in the skin, and this effect was mimicked by ATP [171]. Close opposition of nerve varicosities containing small and large vesicles and mast cells in the mucosa of intestine was shown with electron microscopy [154, 172] and also in cerebral blood vessels [173] (Fig. 3). Synovial mast cell activity that contributes to inflammation in joints was shown to be influenced by both unmyelinated afferent and sympathetic efferent nerves [174]. Sympathetic and trigeminal sensory nerve fibres influence rat dural mast cells and have been shown to play a role in the pathophysiology of vascular headache [175]. Functional interactions between sensory nerves and mast cells of the dura mater have been described in both normal and in inflammatory conditions [176]. Vagus

![Fig. 3](image-url)
nerve stimulation modulates histamine content in mast cells in the rat jejunal mucosa [177]. From a study of co-cultures of nerves and mast cells, it was concluded that ATP released from activated mast cells was an important mediator to activate nerves [178, 179]. While substance P released from nerves activated mast cells, ATP released from mast cells in response to anti-IgE antibody activated superior cervical ganglia neurons. Few investigations have been carried out about the influence of nerves on non-mast cell immune cells, but evidence has been presented that nerve fibres form close relationships with other immune cells, such as eosinophils [180], macrophages [181], and T and B lymphocytes [182–184].

Section summary

Adenosine and ATP have opposite effects on O$_2^-$ generation and other functions of neutrophils: adenosine has an inhibitory effect, mediated mainly by A$_{2A}$ and A$_{2B}$ receptors, while ATP has a potentiating effect. On the other hand, ATP and adenosine cooperate to amplify the migration of neutrophils induced by chemotactic signals: this involves a stimulatory effect mediated by P2Y$_2$ and A$_3$ receptors expressed at the front of the neutrophils and an inhibitory effect of A$_{2A}$ receptors expressed at the back of the cells.

ATP via P2Y$_2$ receptors also plays an important role in the migration of eosinophils and their accumulation in the lungs during allergic inflammation. Adenosine exerts a dual effect on mast cell degranulation: stimulation through A$_3$ receptors and inhibition via A$_{2A}$ and A$_{2B}$ receptors.

Monocytes, macrophages and microglia

Monocytes

P$_1$ receptors Adenosine was initially reported to inhibit the production of the second complement component (C2) of human monocytes [185], and this effect was later shown to be mediated by A$_2$ receptors [186]. Subsequently, it was also shown that A$_1$ receptors were expressed on cultured human monocytes and rheumatoid synovial fluid mononuclear phagocytes [187]. Enhancement of FcR receptor-mediated phagocytosis was induced via A$_1$ receptors, while A$_2$ receptors mediated reduction of FcR phagocytosis in cultured...
monocytes. TNF-α production in human monocytes was inhibited by P1 receptor agonists [188]. Both A2A and A2B receptors were shown to be involved in the inhibition of TNF-α production [189]. Activation of A2A receptors also inhibited IL-12 and stimulated IL-10 production by human monocytes [190, 191]. These actions may contribute to suppression of Th1 responses. However, the effect of P1 receptor agonists on cytokine release from human mononuclear cells was shown to depend on the specific Toll-like receptor (TLR) subtype used for stimulation: the A2A agonist CGS21680 inhibited TLR4-mediated TNF-α release, but potentiated TLR3- and TLR5-mediated IL-6 release [192]. Activation of A2A receptors also inhibited LPS-induced IL-18 production, expression of adhesion molecules and production of TNF-α in human monocytes [193, 194]. Activation of A1 receptors promoted multinucleated giant cell formation by human monocytes [195]. Adenosine analogues were shown to produce apoptosis of human mononuclear cells via A2A and A3 receptors [196].

**P2 receptors** ATP and ADP were initially shown to increase [Ca2+]i in monocytes and to regulate the activity of adhesion receptors CD11b/CD18 [197]. ATP and ADP activated human promonocytic U-937 cells apparently via different P2 receptor subtypes [198]. mRNA for P2X7 and P2Y2 receptors was shown to be expressed by human THP-1 monocyctic cells and monocytes, and the presence of these receptors was supported by pharmacological data [199–201]. P2X7 receptor expression in THP-1 monocytes was positively modulated by pro-inflammatory stimuli and negatively modulated by cAMP, a classic anti-inflammatory second messenger [202]. P2X7 receptors mediated ATP-induced IL-1β release from human and canine monocytes [203–205], an effect requiring priming by LPS [206]. This mechanism plays a major role in the physiological control of IL-1β secretion by monocytes. Indeed microbial components acting on different pathogen-sensing receptors, as well as the danger signals uric acid and C3a, induced the activation of human monocytes and their secretion of IL-1β and IL-18 through a process involving, as an initial event, the release of ATP [207–209]. This was followed by the autocrine stimulation of P2X7 receptors and inflammasome activation [210] (Fig. 4). Indeed, IL-1β secretion was inhibited by apyrase as well as by P2X7 antagonists. Additional evidence in favour of the involvement of P2X7 was the observation that the P2X7 receptor polymorphism Glu496Ala, which is associated with a loss of function, impaired ATP-induced IL-1β release from human monocytes [211].

ATP was initially described as a chemoattractant for monocytes [212, 213]. More recently apoptotic thymocytes were found to release nucleotides leading to the recruitment of monocytes [3]. This release is mediated by pannexin 1 channels, as demonstrated by the use of pharmacological inhibitors and small interfering RNA (siRNA), and involves the activation of pannexin 1 by caspases [9]. Monocyte recruitment by apoptotic cells supernatants, demonstrated *inter alia* in the murine air-pouch model, was decreased in P2Y2−/− mice, leading to impaired clearance of the apoptotic cells. These data clearly identify ATP as a find-me signal acting through the P2Y2 receptor that recruits monocytes in order to clear apoptotic cells.

Other effects of extracellular nucleotides on monocytes include increased surface expression of Mac-1 integrin [214], secretion of IL-8 that might involve P2Y2 and P2Y6 receptors [215, 216], inhibition of soluble HLA-G secretion [217], secretion of VEGF [218] and modulation of phagocytosis [219]. These last 3 effects involve P2X7 receptors. In human monocytes, ATP was reported to increase cAMP via the P2Y11 receptor, and thereby to inhibit proinflammatory cytokines production and to increase the release of IL-10 [213].

**Macrophages**

**P1 receptors** Chemotaxis and lysosomal secretion were shown to be inhibited by adenosine and analogues in the mouse macrophage cell line RAW 264 or murine peritoneal macrophages [220, 221]. Adenosine was reported to inhibit TNF-α expression, induced by LPS in the mouse macrophage cell lines J774.1 [222] and RAW264.7 [223], whereas it potentiated nitric oxide synthase (NOS) expression induced by LPS in RAW 264.7 mouse macrophages [224, 225]. Interferon (IFN)-γ upregulated A2B receptor expression in macrophages [226], while TNF-α or LPS induced A2A expression via nuclear factor-κB, as part of a feedback mechanism for macrophage deactivation [227, 228]. TNF-α release from macrophages was inhibited by adenosine via A2A and A2B receptors [229–232] and IL-10 production was augmented by adenosine acting through A2B [233] or A2A [234, 235] receptors. Interestingly, it was shown that pro-inflammatory macrophages (M1 cells that release TNF-α) have a low expression of ecto-nucleotidases and rate of ATP hydrolysis as compared to anti-inflammatory macrophages (M2 cells that release IL-10) [236]. A2A receptors also upregulated the expression of peroxisome proliferator-activated receptors [237] and hypoxia-inducible factor 1 [238]; this could contribute to the anti-inflammatory and tissue-protecting action of adenosine. A2A receptors mediated upregulation of vascular endothelial growth factor expression in murine [239] and human [240] macrophages. On the other hand, activation of A3 receptors stimulates matrix metalloproteinase-9 secretion by macrophages [241], and glucocorticoids promote survival of macrophages through stimulation of A3 receptors [242].

**P2 receptors** Early reports showed that ATP permeabilised the plasma membrane to fluorescent dyes [243, 244],
promoted cation fluxes [245–247], increased \[Ca^{2+}\]_i induced a respiratory burst and O_2 generation [248, 249], inhibited phagocytosis [250] and induced cytotoxicity [251] and cell lysis [252] in a variety of macrophage populations. ATP was also shown to stimulate phosphoinositides hydrolysis and eicosanoid synthesis in mouse peritoneal macrophages [253]. Oxidized ATP (oxATP) was shown to irreversibly inhibit the permeabilization of the plasma membrane, but not the fast mobilization of Ca^{2+} induced by ATP in macrophages, supporting the expression of P2X_7, then called P2_r, receptors in the J774 macrophage cell line [254]. P2X_7 receptors were also shown to be expressed by BAC1.2F5 mouse macrophages, mediating both pore-forming and phospholipase (PL)-D activity [255], and in human monocyte-derived macrophages [256, 257].

Later studies demonstrated the involvement of the P2X_7 receptor in several responses of macrophages to danger, in particular the proinflammatory response mediated by IL-1β secretion, bacterial killing and the associated macrophage death. ATP was shown to promote the maturation and release of IL-1β from macrophages [258, 259], via P2X_7 receptors [260, 261]. ATP-induced secretion of IL-1β was abolished in macrophages from P2X_7-deficient mice and involved inflammasome assembly and caspase-1 activation [262–264]. Activation of the inflammasome and release of IL-1β in macrophages dying through autophagy [265] or stimulated by serum amyloid A [266] involved the release of ATP and the activation of P2X_7. P2X_7−/− mice showed increased survival after lung adenoviral infection, resulting from a decreased production of IL-1β by macrophages [264]. These mice were also protected against smoke-induced lung inflammation and emphysema, as a result of decreased activation of lung macrophages [267].

P2X_7-mediated ATP-induced killing of mycobacteria by human macrophages was initially reported in 1997 [268]. This seminal observation was later confirmed in numerous studies. Mycobacterial killing involved phagosome–lysosome fusion [269] that was induced by the rise of Ca^{2+} and the activation of PLD resulting from P2X_7 activation [270]. It was decreased in macrophages from P2X_7−/− mice [271]. Infection by mycobacteria upregulated the expression of P2X_7 and its activation by ATP not only enhanced intracellular bacterial killing but also induced the apoptosis of macrophages [272] or autophagy [273]. This dual response was missing in macrophages from P2X_7−/− mice [271]. ATP-induced bacterial killing was abrogated in macrophages from individuals homozygous for a loss of function P2X_7 polymorphism [274] and reduced by 50% in heterozygous subjects [275]. Additional polymorphisms leading to similar consequences were described later [276]. Furthermore, the pattern of gene expression in response to ATP was different in patients with tuberculosis and controls, suggesting that a defective function of P2X_7 might lead to the development of tuberculosis [277].

Infection by parasites, such as *Leishmania amazonensis* [278, 279] and *Toxoplasma gondii* [280, 281], also increased the expression of P2X_7 that mediated a dual response of parasite killing and macrophage apoptosis.

The P2X_7 receptor is also involved in various additional responses of macrophages. ATP released by LPS increased NOS expression and NO production in RAW 264.7 macrophages via P2X_7 receptors [282–288]. The P2X_7 receptor was also associated with the generation of reactive oxygen species (ROS) [289–291] and leukotriene B_4 [279, 292]. Activation of P2X_7 receptors on macrophages induces the activation and release of tissue factor and thus favours thrombosis [293, 294]. Phagocytosis of nonopsonised beads and heat-killed bacteria was increased by P2X_7 over-expression, showing that it can behave as a scavenger receptor, but this effect was inhibited by ATP [219, 295]. Loss of function polymorphisms of P2X_7 and P2X_4 receptors were associated with reduced phagocytosis and were overrepresented in patients with macular degeneration [296]. P2X_7 receptors play a role in the generation of macrophage-derived giant cells, a hallmark of chronic inflammation [297]. Spontaneous cell fusion was indeed described in macrophage cultures expressing high levels of the P2X_7 receptors [298]. Furthermore, the formation of multinucleated giant cells was inhibited by P2X_7 antagonists and in macrophages from P2X_7-deficient mice [299, 300].

Despite the dominant role of P2X_7 in macrophages, evidence has accumulated to support the role of additional receptors. Multiple P2X and P2Y receptor subtypes were identified in mouse J774, spleen and peritoneal macrophages [301]. In an extensive study, mRNA for P2X_1, P2X_4, P2X_5, P2X_7, P2Y_2, P2Y_4, P2Y_6, P2Y_11, P2Y_13 and P2Y_14 receptors were all expressed by human alveolar macrophages [302]. It was suggested that other P2X receptor subtypes, in addition to P2X_7 receptors, were involved in the ATP-mediated current in human macrophages [303]. In particular it was shown that a small slowly-desensitising ATP-induced current was abolished in P2X_4−/− mice [304]. This P2X_4 response might contribute to the P2X_7-induced cell death that was reduced by siRNA against P2X_4 [305, 306]. It has been reported that HIV binding to macrophages stimulates the release of ATP and that P2X_1 is necessary for the entry of HIV in macrophages [307]. P2Y receptors are also expressed and functional. Low concentrations of ATP were shown to activate PLC and IL-6 transcription [308]. Studies of P2Y_2 and P2Y_4 receptor knockout mice led to the conclusion that P2Y_2 receptors are the dominant P2Y receptor subtype in mouse peritoneal macrophages [309]. Nucleotides, released by apoptotic cells, through pannexin 1 [310], act as ‘find-me’ signals to promote P2Y_2-dependent recruitment of phagocytic macrophages (as well as monocytes and dendritic cells.
(DCs)) and this recruitment is reduced in P2Y<sub>2</sub>-deficient mice [3]. The chemoattractant effect of C5a on macrophages was amplified by the release of ATP and the autocrine stimulation of P2Y<sub>2</sub> and also P2Y<sub>12</sub> receptors [311]. P2Y<sub>2</sub> receptors also mediate potentiation of prostaglandin E<sub>2</sub> release involved in the induction of NOS [312, 313] and stimulate the production of monocyte chemoattractant protein-1 (MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) [314]. Furthermore LPS potentiated nucleotide-induced inflammatory gene expression via upregulation of P2Y<sub>2</sub> receptors [315]. P2Y<sub>6</sub> receptor expression also increased following macrophage activation [309]. Indeed the amount of IL-6 and macrophage inflammatory protein-2 released in response to LPS was significantly enhanced in the presence of UDP, and this effect was lost in the macrophages of P2Y<sub>6</sub> knockout mice [316]. Activation of P2Y<sub>6</sub> receptors increased the clearance of Escherichia coli and improved survival to peritonitis through the release of MCP-1 and enhancement of macrophage chemotaxis [317]. The P2Y<sub>11</sub> receptor was also reported to be functional in macrophages [318]. These authors observed that ATP released from LPS-activated macrophages by vesicular exocytosis

Fig. 5 Independence of P2Y<sub>12</sub> receptor-mediated migration and P2Y<sub>6</sub> receptor-mediated phagocytosis in microglia. a Release/leakage of adenine nucleotides/nucleosides and uridine nucleotides from injured neurons. When neurons or cells are injured or dead, high concentrations of ATP (~mM) and UTP at a concentration of less than 10% are leaked. Compared with ATP/ADP/adenosine, UTP/UDP should be transient and localized signals. b Changes in P2Y<sub>12</sub> and P2Y<sub>6</sub> receptors in microglia according to their activation stages. Insert shows pharmacological characterization of P2Y<sub>6</sub> receptor. UDP is a selective agonist to the P2Y<sub>6</sub> receptor, and thus, it does not stimulate P2Y<sub>12</sub>, P2X<sub>4</sub>, A<sub>1</sub>, or A<sub>2A</sub> receptors. Similarly, the P2Y<sub>6</sub> receptor is a very selective receptor for UDP, and therefore, is not activated by ATP, ADP, or adenosine (Ado). Resting microglia express no or only faint P2Y<sub>6</sub> receptors; whereas, they express P2Y<sub>12</sub> receptors adequately. When microglia are activated, they increase P2Y<sub>6</sub> receptors; whereas, they decrease P2Y<sub>12</sub> receptors. Only when activated microglia meet UDP at the injured sites do they sense UDP as an eat-me signal. c Microglial migration and phagocytosis are controlled by distinct P2 receptors. When microglia sense ATP/ADP by P2Y<sub>12</sub> receptors, they extrude their processes, followed by migration toward the injured sites. These microglial motilities are not affected by UDP/P2Y<sub>6</sub> receptors. When activated, microglia upregulate P2Y<sub>6</sub> receptors, and if they sense the eat-me signal UDP, they start to phagocytose the dead cells or debris. The phagocytic responses are not affected by the activation of P2Y<sub>12</sub> receptors nor by other P2 or P1 receptors. (Reproduced from [344], with permission from Springer)
activated the P2Y\textsubscript{11} receptor, leading to a M1 polarisation characterized by an increased production of IL-12 [318].

**Microglia**

**P1 receptors** The first evidence of a role of adenosine and its receptors in microglia was derived from the observation of effects of propentophylline, a neuroprotective xanthine derivative that increases the extracellular concentration of adenosine by inhibiting its transport into cells [319]. Propentophylline was shown to inhibit the production of ROS by microglial cells [320, 321], their uptake of amyloid precursor protein [322, 323] and their proliferation and release of TNF-\(\alpha\) [324]. Further studies showed that microglia express all subtypes of adenosine receptors. Enhanced activation of microglia associated with worsened demyelination and axonal damage was observed in A\(_1\) receptor knockout mice subjected to experimental allergic encephalomyelitis [325]. ATP-triggered migration of microglia was inhibited in A\(_1\) \(-/-\) as well as CD39\(-/-\) mice [326]. The A\(_3\) receptor is also involved in microglial process extension and migration [327]. On the other hand, ATP acted as a repellent for LPS-treated microglia and induced process retraction; these actions were associated with the upregulation of A2A receptors [328]. A2A receptor knockout mice also displayed enhanced microglial activation in a model of experimental autoimmune encephalomyelitis (EAE) [329].

**P2 receptors** It was initially reported that ATP, but not ADP, induced an inward current in microglia [330], associated with an increase in cytosolic Ca\(^{2+}\) [331]. Further pharmacological studies suggested that these responses were mediated by P2Y receptors [332, 333]. It was later shown that the ATP effect on Ca\(^{2+}\) influx was mimicked by BzATP and inhibited by oxATP, supporting the role of the P\(_{2x}\) or P2X\(_7\) receptor [334]. This receptor was shown to mediate the secretion of IL-1\(\beta\) induced by ATP or by LPS via the release of ATP [335], and to induce microglia cell death [336] as well as microglia-mediated injury of neurons [337]. The P2X\(_7\) receptor was shown to be involved in microglial activation by amyloid \(\beta\) [338]. After nerve injury, the P2X\(_4\) receptor was upregulated in the spinal cord and selectively expressed in microglia [339]. The tactile alldynia induced by nerve injury was suppressed by antisense oligodeoxynucleotides silencing P2X\(_4\) receptors. Knockdown of the P2X\(_4\) receptor by siRNA inhibited migration of microglia [340].

Following brain injury, microglia extrude processes and migrate toward sites of tissue damage. Polarisation, process extension and chemotaxis did not occur in P2Y\(_{12}\)-deficient mice, while baseline motility was normal [341]. Furthermore, in living P2Y\(_{12}\)-deficient mice, branch extension toward sites of cortical damage was decreased. Microglial activation leads to the downregulation of P2Y\(_{12}\) receptors and the upregulation of P2Y\(_6\) receptors [342, 343]. Activation of P2Y\(_6\) receptors by UDP stimulates phagocytosis and the uptake of microspheres. In vivo an upregulation of P2Y\(_6\) was observed following administration of kainic that damages neurons, leading to microglia activation. Taken together these findings show that ADP, acting through P2Y\(_{12}\), is a find-me signal for microglia, whereas UDP, acting on P2Y\(_6\), behaves as an eat-me signal [344] (Fig. 5).

**Section summary**

ATP released from apoptotic cells constitutes a find-me signal that attracts monocytes/macrophages, an action mediated by the P2Y\(_2\) receptor. It stimulates bacterial killing and macrophage apoptosis thereby contributing to decrease the bacterial and parasite burden: this action is mediated by the P2X\(_7\) receptor. ATP also exerts a proinflammatory effect through the secretion of IL1-\(\beta\), which is mediated by the P2X\(_7\) receptor and NLRP3 inflammasome.

In contrast, adenosine exerts an inhibitory effect on monocytes/macrophages mediated by A\(_{2A}\) and A\(_{2B}\) receptors.

Multiple P1 and P2 receptors have been shown to play a role in microglia. The P2X\(_7\) receptor is involved in IL-1\(\beta\) secretion and cell death. P2Y\(_{12}\), P2X\(_4\), A\(_1\) and A\(_3\) receptors stimulate process extension and migration, whereas the A\(_{2A}\) receptor is inhibitory. On the other hand the P2Y\(_6\) receptor is upregulated in activated microglia and triggers microglial phagocytosis.

**Dendritic cells**

**P1 receptors**

CD39 and CD73 ectonucleotidases [345] as well as A\(_1\), A\(_{2A}\) and A\(_3\) but not A\(_{2B}\) receptors [346] are expressed by human monocyte-derived DCs. In immature DCs, adenosine induced calcium transients but no increase in cAMP. This resulted in actin polymerization, chemotaxis [346] and increased expression of co-stimulatory molecules [347]. Maturation of DCs by LPS resulted in downregulation of A\(_1\) and A\(_3\) receptor mRNA, whereas A\(_{2A}\) receptors were still expressed [346]. In these mature DCs, adenosine increased cAMP and inhibited IL-12 and TNF-\(\alpha\) production, whereas it enhanced IL-10 secretion [346, 347]. These results show that adenosine can act as a chemotaxin for immature human DCs and induce their semi-maturation, characterized by a reduced capacity to induce a Th1 polarisation of CD4\(^+\) T lymphocytes [347]. Adenosine via cAMP also decreased the capacity of human DCs to prime CD8\(^+\) T cells [348].

In murine monocyte-derived DCs, adenosine also impaired maturation and inhibited the production of IL-12, leading to
tolerance: this effect was mediated by the A2B receptor instead of the A2A receptor active in human cells [349–351]. IL-27 is a cytokine produced by DCs that suppresses Th1 and Th17 responses and limits inflammation in several experimental models. The suppressive action of IL-27 was mediated at least in part by the induction of CD39 in DCs and the resulting accumulation of adenosine [352]. However, the observation that adenosine could also promote the development of murine Th17 cells, via the A2B receptor-mediated production of IL-6, added an additional complexity [353]. The A2B receptor was upregulated in EAE and A2B knockout mice developed less severe EAE than wild-type mice [354]. In human plasmacytoid DCs, adenosine plays a dual role by initially recruiting immature cells to sites of inflammation, an effect mediated by A1 receptors, and by subsequently inhibiting the production of IL-6 and IFN-α, via the A2A receptor [355].

The physiological importance of the inhibitory effect of adenosine on DCs is supported by observations on the role of ADA. Indeed the high ADA activity of DCs might help to maintain them in an active state [356]. ADA has been shown to be upregulated in DCs from non-obese diabetic (NOD) mice leading to their spontaneous activation and autoimmune T cell activation [357]. Paradoxically DCs from CD39−/− mice exhibited impaired antigen-presenting capacity and ability to induce a Th2 response [358, 359]. This resulted in decreased allergic contact hypersensitivity [358] and allergic airway inflammation [359]. This was explained not by a defect in adenosine formation but by an increased accumulation of ATP leading to the desensitization of P2Y receptors (see below).

Finally it must be mentioned that inosine has been reported to induce DCs chemotaxis independently from adenosine receptors [360]. On the other hand AMP was shown to mimic the inhibitory effects of adenosine on DCs, and these effects were maintained in CD73-deficient mice and could not be explained by adenosine contamination of AMP [361]. The mechanisms of these effects remain unknown.

**P2 receptors**

Human DCs express mRNA for almost all known P2 receptors [345, 362–364] and extracellular nucleotides exert multiple effects on them ranging from chemotaxis to control of cytokine release and induction of cell death. P2Y but not P2X agonists are potent chemotactic stimuli for immature but not mature DCs [364]. Chemotaxis was associated with a rise in intracellular Ca2+ and actin polymerization and involved the activation of Gq. Allergen challenge was shown to cause acute accumulation of ATP in the airways of asthmatic subjects and mice with experimentally induced asthma that resulted in the recruitment of DCs [1]. That recruitment was mediated by the P2Y2 receptor. Indeed, in vitro the ATP-induced migration of P2Y2-deficient DCs was strongly decreased compared to DCs from wild-type mice [115]. The attraction of DCs to the lungs in a model of allergic inflammation induced by ovalbumin was also decreased in P2Y2−/− mice [115]. Decreased attraction of DCs to the airways might also explain the higher mortality of P2Y2−/− mice with lung infection by pneumonia virus of mice, as a consequence of lowered immune response and viral clearance [365]. Interestingly, the formation of ATP gradients at a site of inflammation can also inhibit transiently the migration of human DCs, via the P2Y11 receptor, and thereby prolong the time of encounter with antigens [366]. Conversely, antagonism of the P2Y11 receptor might improve the migration of antigen-loaded DCs to the lymph nodes. In addition to these direct effects on migration, ATP modulated the expression of chemokine receptors, with an induction of CXCR4 and a reduction of CCR5 [367], and inhibited the release of CCL2 and CCL3 chemokines [368].

Nucleotides were also shown to modulate the maturation of DCs. Schnurr et al. [369] initially reported that ATP stimulates the expression of CD83 and the secretion of IL-12 by human monocyte-derived DCs. This action was shown to be mediated by the P2Y11 receptor and a rise in cAMP [370]. However, la Sala et al. [371] confirmed that ATP stimulates the maturation of DCs but observed an inhibitory effect on the release of IL-12 stimulated by LPS, leading to an impaired ability to initiate Th1 responses. These apparent discrepancies were resolved by the demonstration that ATP, via P2Y11, increased IL-12p40 but inhibited the production of IL-12p70 [372]. Furthermore ATP synergized with LPS and sCD40L to stimulate IL-10 production. This led to the conclusion that ATP, via the P2Y11 receptor, induces a semi-maturation of DCs, characterized by an increased expression of co-stimulatory molecules and a decreased production of bioactive IL-12, leading to increased Th2 responses or tolerance. Additional studies showed that ATP via the P2Y11 receptor produced an impressive upregulation of the expression of thrombospondin-1 and indoleamine 2,3-dioxigenase that could play a major role in tolerance [373]. A systematic study of the effect of ATP on gene expression in DCs revealed a P2Y11-mediated stimulatory effect on the expression of VEGF-A, that has immunosuppressive effects in addition to its angiogenic action [374], and amphiregulin, that can exert an angiogenic and tumorigenic action [375].

Other P2Y receptors were found to be expressed on monocyte-derived DCs. ATP can modulate the function of DCs directly via a cAMP increase mediated by P2Y11 receptors and indirectly via its degradation into ADP, which acts on P2Y1 receptors; these distinct mechanisms combine to inhibit inflammatory cytokine production,
particularlly IL-12, but have a differential effect on IL-10 [376]. P2Y$_{12}$ receptors are also expressed by murine DCs and their activation increased antigen endocytosis with subsequent enhancement of T cell activation [377]. UDP, but not UTP, stimulated the release of CXC-chemokine 8 from mature human DCs, via P2Y$_{6}$ receptors [378]. UTP and UDP also acted on murine DCs to mobilize intracellular Ca$^{2+}$ and to induce cytokine production [379]. Human immature monocyte-derived DCs express P2Y$_{14}$ receptors that mediate an increase in [Ca$^{2+}$], in response to agonists [380]. In plasmacytid DCs, UTP, UDP and UDP-glucose were shown to inhibit IFN-α production [381].

Like in macrophages, ATP induced in DCs the NLRP3/ASC inflammasome signalling complexes that drive proteolytic maturation and secretion of the proinflammatory cytokines IL-1β and IL-18 [382, 383]. This action was mediated by the P2X$_{7}$ receptor, which is functionally expressed on DCs [384]. P2X$_{7}$ receptors were shown to be present in microvesicles shed from DCs together with IL-1β and caspase-1 and caspase-3 [385]. P2X$_{7}$-deficient DCs fail to release IL-1β in response to LPS and ATP [386]. This might explain the resistance to allergic contact dermatitis observed in P2X$_{7}$-deficient mice [386]. Additional P2X$_{7}$-mediated effects of ATP on DCs include shedding of CD23 [387], release of tissue factor-bearing microparticles [388] and apoptosis [389, 390].

In the intestine ATP released from commensal bacteria induced the differentiation of Th17 CD4$^+$ cells via the activation of lamina propria CD11c$^+$ antigen-presenting cells, apparently via a P2X receptor [391]. The number of Th17 cells was increased in mice deficient in ENTPDase7, which is preferentially expressed on epithelial cells of the small intestine [392].

**Section summary**

ATP can exert multiple actions on DCs, mediated by distinct receptors: chemotaxis mediated mainly by the P2Y$_{2}$ receptor; semi-maturation, characterized by increased expression of co-stimulatory molecules and inhibition by IL-12, which is mediated by the P2Y$_{11}$ receptor and associated with a Th2 response or tolerance; induction of NLRP3/ASC inflammasome signalling complexes, mediated by the P2X$_{7}$ receptor, that leads to secretion of IL-1β and a proinflammatory effect; and enhanced antigen endocytosis mediated by the P2Y$_{12}$ receptor.

Adenosine acting on the A$_{2A}$ or A$_{2B}$ receptor exerts complex effects on DCs: as ATP it impairs Th1 polarisation and favours Th2 and/or tolerance, but it can also favour Th17 cell development.

Lymphocytes

**T and B lymphocytes**

**P1 receptors** Adenosine was reported to cause an increase in cAMP in lymphocytes as well as in thymocytes [393-396] and to have powerful inhibitory effects on lymphocyte proliferation [397] and the immune response in humans, particularly those who have inherited deficiency of ADA [398]. The destruction of tumour cells by mouse lymphocytes was shown to be inhibited by adenosine, and this effect was potentiated by an inhibitor of ADA [399]. It was suggested that this effect of adenosine may contribute to the lack of immune response associated with ADA deficiency.

ATPase, ADPase, 5′-nucleotidase and ADA have been shown to be present on human lymphocytes [400-403]. Although it was claimed that adenosine release results from the intracellular degradation of ATP to adenosine, later studies showed that extracellular adenosine is generated following the release of ATP and its extracellular breakdown [404, 405]. Human B lymphocytes showed high degrading activity, while T lymphocytes were reported to be unable to degrade extracellular nucleotides [404]. However, ecto-ATPase activity was reported on cytolytic T lymphocytes [406], and E-NTPDase activity was upregulated within 15 min of T cell stimulation [407]. Furthermore, a subset of T regulatory (Treg) cells expresses CD39 and CD73 ectonucleotidases (see below). However it was suggested that CD39 is not the exclusive switch of the immune system to trigger immunosuppression, and that an alternative adenosine-generating axis is operating [408]. This axis involves the enzymes CD38 (a nicotinamide adenine dinucleotide (NAD$^+$) nucleosidase) and CD303a (an ecto nucleotide pyrophosphatase).

A$_{2A}$ receptors were shown to be expressed on T lymphocytes [409-411]. A$_{2B}$ receptors were also shown to be expressed on human T lymphocytes, and it was suggested that they play a role in lymphocyte deactivation by adenosine [412]. In another study, it was suggested that A$_{2A}$ receptors vary in their expression on T cell functional subsets and may regulate cytokine production in activated T lymphocytes [413]. There was lower expression of A$_{2A}$ receptors on B cells. A$_{3}$ receptor mRNA and protein were shown to be expressed in both resting and activated human lymphocytes and under activating conditions they are upregulated [414]. Stimulation of A$_{1}$ and A$_{3}$ receptors were reported to block the inhibitory action mediated by A$_{2A}$ receptors [415]. Exposure to adenosine prior to antigenic stimulation also induced a desensitization of cAMP accumulation leading to a stronger response to antigenic stimulation [416].

Conclusive evidence for the major role of A$_{2A}$ receptor in the regulation of T lymphocytes came out of the study of A$_{2A}$-deficient mice. cAMP accumulation in response to adenosine...
was decreased in T cells from A2A+/− mice and almost abolished in those of A2A−/− mice [417]. In CD4+ T cells, a selective A2A agonist had a major inhibitory effect on the T cell receptor (TCR)-mediated production of IFN-γ and this effect was decreased by 50 % in cells of A2A+/− mice and completely abolished in those from A2A−/− mice [418]. A2A receptor activation inhibited T cell proliferation and IL-2 production whether the cells were expanded under Th1 or Th2-skewing conditions, and again this inhibition was abolished in A2A-deficient mice [419]. Furthermore, TCR stimulation caused a rapid increase in A2A mRNA, both in Th1 and Th2 cells [418, 419].

Adenosine via A2A receptors exerts other effects on T cells. The apoptotic effect of adenosine on resting T cells was inhibited in A2A−/− mice [417, 420]. On the other hand, adenosine via A2A receptor inhibited activation-induced cell death of already activated T cells [421]. Furthermore, the A2A receptor contributes to the maintenance of a normal number of naive T cells by inhibiting TCR-induced activation [422]. Adenosine also inhibits T cell mobility [423], migration to lymph nodes [424] and adhesion to the endothelium [425].

The importance of the A2A-mediated inhibitory effect of adenosine on T cells was underscored by the discovery that CD39 is selectively expressed on Treg cells (see Fig. 6) [426] that are essential for maintaining peripheral tolerance [427, 428]. In human T cells, CD39 is expressed primarily by immunosuppressive Treg cells that express the Foxp3 transcription factor, and its activity is enhanced by TCR ligation [429]. CD73 is also expressed on CD4+/CD25+/Foxp3 Treg cells [430–432]. However, subsets of Treg cells expressing CD39, but not CD73, have been identified [433]. Inhibition of ADA activity further enhanced Treg-mediated immunosuppression [432].

Several studies have shown the impact of adenosine-mediated inhibition of T cells in various models of disease. Defective adenosine-induced cAMP accumulation and

---

**Fig. 6** The CD39/CD73 pathway modulates regulatory T cell (Treg) activity. The activation of T cell receptor (TCR), expressed on Tregs, induces CD39 activity. This increment of ATP-metabolizing activity is critical for the immunosuppressive activity of Tregs because it facilitates the pericellular generation of adenosine, a substantial component of the immunosuppressive and anti-inflammatory functions of Tregs. The inhibitory action of Treg-derived adenosine can be ascribed to the activation of A2A receptors expressed on T effector cells, which undergo reduced immune activity. In addition, adenosine generation triggers a self-reinforcing loop of Treg functions because the stimulation of A2A receptors expressed on these cells elicits their expansion and increases their immunoregulatory activity. (Reproduced from [426], with permission from Elsevier)
immunosuppression were reported in T lymphocytes of patients with systemic lupus erythematosus [434, 435]. A2A receptor activation during reperfusion after ischemia protected the myocardium from infarction and this effect was dependent on an inhibition of T cell accumulation [436, 437]. A2A receptor agonists attenuated allograft rejection and alloantigen recognition by an action on T lymphocytes [438], suppressed the development of graft-versus-host disease [439, 440] and attenuated experimental autoimmune myasthenia gravis [441]. CD39 and CD73 expressed on Treg cells led to a local accumulation of adenosine that protected against Helicobacter induced gastritis [442]. Treg cells suppressed contact hypersensitivity reactions by a CD39 and adenosine-dependent mechanism [425]. In other models, the action of adenosine proved to be deleterious. A2A-deficient mice were protected from the lethal effect of sepsis, due to preserved lymphocyte function and decreased immunosuppressive IL-10 [443]. CD39 and CD73 expressed on ovarian cancer cells generate adenosine that exerts an immunosuppressive effect, which was relieved by siRNAs against CD39 and CD73 and by an A2A antagonist [444]. In HIV infection, Treg inhibitory effects were relieved by CD39 downregulation and reproduced by an A2A agonist [445, 446]. Furthermore, a polymorphism of the CD39 gene was identified, that is associated with downregulation of CD39 and slower progression to AIDS [446].

Few studies have been performed on B lymphocytes. Accumulation of cAMP produced by adenosine in B cells stimulated by Staphylococcus aureus suppressed IgM production [447]. On the other hand B cells coexpress CD39 and CD73 and adenosine inhibited B cell proliferation and cytokine expression [448]. Activated B cells also inhibited T cell proliferation and cytokine production [448].

**P2 receptors** Early reports showed that ATP protected rat lymphocytes against the loss of intracellular enzymes into the medium [449, 450] and that receptors for ATP were present on lymphocytes [451]. The action of ATP on lymphocytes is complex: ATP was reported to

---

**Fig. 7** Purinergic signalling in T cell activation. Antigen recognition by T cells involves the formation of an immune synapse between a T cell and an antigen-presenting cell (APC). The immune synapse contains a large number of signalling molecules that are required for T cell activation, including T cell receptors (TCRs), MHC molecules, co-stimulatory receptors and the purinergic signalling receptors P2X1, P2X4 and P2X7. In response to TCR and CD28 stimulation, pannexin 1, P2X1 receptors and P2X4 receptors translocate to the immune synapse. ATP released through pannexin 1 promotes autocrine signalling via the P2X receptors. Confinement of ATP in the immune synapse results in a powerful autocrine feedback mechanism that facilitates the signal amplification required for antigen recognition. P2 receptors expressed and ATP released by APCs may also have important roles in regulating the antigen recognition process. NFAT nuclear factor of activated T cells. (Reproduced from [474], with permission from Springer)
stimulate DNA synthesis in a subpopulations of T cells [452, 453], but ATP was also shown to be highly toxic to human lymphocytes and to thymocytes, causing permeabilization of the plasma membrane and cell death [454, 455]. It was later shown that ATP increased cytosolic Ca\(^{2+}\) in mouse thymocytes [456–458] and stimulated the PLC pathway in human B lymphocytes [459]. On the other hand, an ATP\(^{4}\) receptor-operated sodium channel was identified on human lymphocytes [460, 461]. ATP-gated channels were also identified in human lymphoblasts [462].

Important advances were made in 1994 and the following years with the identification on human lymphocytes of P\(_{2}\)X\(_{7}\), now called P2X\(_{7}\), receptors antagonised by oxATP [463] and by the isooquinoline derivative KN-62 [464]. P2X\(_{7}\) receptors were also identified specifically in human B lymphocytes [465, 466] and murine T lymphocytes [467]. P2X\(_{7}\) receptors were implicated in the mitogenic stimulation of human T lymphocytes purified from peripheral blood [468]. ATP and the selective P2X\(_{7}\) agonist BzATP caused plasma membrane depolarization and a Ca\(^{2+}\) influx in T lymphocytes. ATP or BzATP alone had no effect on lymphocyte proliferation but potentiated the action of mitogens such as anti-CD3 [468]. Transfection of lymphoid cells lacking P2X\(_{7}\) receptors with P2X\(_{7}\) cDNA increased their proliferation [469]. Later studies showed that TCR stimulation triggers the release of ATP through pannexin-1 hemichannels [470] and vesicular exocytosis [471], and upregulates P2X\(_{7}\) expression [472]. siRNA silencing of P2X\(_{7}\) inhibited T cell activation, which was also lower in C57BL/6 mice that express a poorly functional P2X\(_{7}\) receptor as compared to BALB/c mice that express fully functional P2X\(_{7}\) receptors [472]. Shockwaves increased T cell proliferation through ATP release and P2X\(_{7}\) activation [473]. Thus ATP released through pannexin 1 channels enhances T cell activation in an autocrine manner (Fig. 7; [474]). But it is also involved in a paracrine communication that leads to calcium waves in neighbouring lymphocytes and a reduction of T cell motility in lymph nodes that would favour T cell scanning of antigen-loaded DCs [475]. However, P2X\(_{7}\) receptors also induced the shedding of L-selectin (CD62L) from T cells, which accompanies T cell activation and allows T cells to move away from lymph nodes and enter the circulation [476–482].

ATP induced the lysis of CD4\(^{+}\) thymocytes and peripheral CD4\(^{+}\) T cells [483] and the apoptosis of murine thymocytes [484, 485]. T lymphocyte subsets express different levels of P2X\(_{7}\) and high levels are associated with ATP-induced cell death [486]. P2X\(_{7}\) receptor-mediated cell death was also shown to differ between different stages of murine T cell maturation [487]. Interestingly mouse Treg cells express a higher level of P2X\(_{7}\) and their activation by ATP leads to their depletion [488, 489]. P2X\(_{7}\)\(^{−/−}\) mice have increased levels of Treg cells [490]. The P2X\(_{7}\) receptor was also involved in T cell death induced by NAD\(^{+}\) through the ADP-ribosylating ectoenzyme, ART2. Indeed ART2-catalyzed ADP-ribosylation activates P2X\(_{7}\) receptors [491–493]. In particular Treg cells express ART2 and can be depleted by intravenous injection of NAD\(^{+}\) [494]. However, ATP (1 mM) enhanced the proliferation and immunosuppressive ability of human Treg cells, whereas it induced apoptosis of CD4\(^{+}\) T cells [495]. The dual action of the P2X\(_{7}\) receptor on growth versus death clearly depends on the concentration of ATP, with stimulatory effects at 250 nM and inhibition at 1 mM [495]. This could be related to the existence of two states of activation of the P2X\(_{7}\) receptor: cation-selective channel or large conductance non-selective pore [496].

Numerous studies have shown the importance of the lymphocyte P2X\(_{7}\) receptor in various models of inflammatory diseases. In some of these models, inhibition or deficiency of P2X\(_{7}\) was associated with decreased immune reactions. Mycobacterium tuberculosis infected P2X\(_{7}\)\(^{−/−}\) mice had an increased microbial burden in the lung and pulmonary infiltrates contained a higher number of Treg cells [497]. oxATP was shown to inhibit T cell-mediated autoimmunity in models of autoimmune type 1 diabetes and encephalitis in mice [498]. CD38 knockout NOD mice develop accelerated type 1 diabetes. This was corrected by coablation of P2X\(_{7}\) [499], oxATP delayed islet allograft rejection [500] and increased cardiac transplant survival in mice [501]; these effects were associated with decreased T cell activation. However in other models P2X\(_{7}\) deficiency was associated with increased immune reactions, illustrating the dual role of P2X\(_{7}\) receptors emphasized previously. Following oral infection with Listeria monocytogenes, P2X\(_{7}\)−/− deficient mice showed enhanced CD8 responses in the intestinal mucosa, which can be explained by the proapoptotic effect of P2X\(_{7}\) on intestinal CD8 cells [502]. Graft versus host disease was enhanced in P2X\(_{7}\)−/− mice, and this is associated with T cell expansion and reduced Treg cells [503]. EAE was also exacerbated in P2X\(_{7}\)−/− mice as a result of decreased apoptosis of T lymphocytes [504] and increased T cell cytokine production [505].

P2X receptors other than P2X\(_{7}\) have been shown to play a role in T cell control. RT-PCR studies had shown that P2X\(_{1}\), P2X\(_{2}\) and P2X\(_{6}\) were expressed by murine thymocytes in addition to P2X\(_{7}\) [506]. ATP released through pannexin hemichannels following TCR stimulation amplified T cell activation not only through P2X\(_{7}\) receptors [472] but also via P2X\(_{1}\) and P2X\(_{4}\) receptors, as demonstrated by the use of siRNA [474, 507]. Hypertonic saline is known to increase T cell function [508]; it acts through the release of ATP and the activation of P2X\(_{1}\), P2X\(_{4}\) and P2X\(_{7}\) receptors, as shown also by gene silencing [509]. Both P2X\(_{7}\) and P2X\(_{4}\) are also involved in the activation of unconventional \(\beta Y\) T cells [510, 511].

© Springer
Table 2 Expression profiles and functional responses of the purinergic receptor subtypes in different immune cells

| Inflammatory cell type | Functional response to purines | P2 receptor subtype (expression profile and/or involvement in functional response) |
|------------------------|-------------------------------|-----------------------------------------------------------------------------------|
| Neutrophils             | Undefined roles               | P2Y1, P2Y4, P2Y11, P2Y14 and P2X7                                                  |
|                        | Calcium mobilization          | P2Y2                                                                               |
|                        | Actin polymerization          | P2Y2                                                                               |
|                        | Primary granule release       | P2Y2                                                                               |
|                        | Chemotaxis                    | P2Y2, P2Y6 and P2X1                                                                 |
|                        | Reduced cAMP accumulation     | P2Y14                                                                              |
|                        | Delay in constitutive neutrophil apoptosis | P2Y11 |
| Macrophages            | Undefined roles               | P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, P2Y14 and P2X6-12                                    |
|                        | Intracellular calcium increase| P2X7                                                                               |
|                        | IL-1β/IL-18 maturation/release via the NLRP3 inflammasome, caspace-1 and cytosolic K⁺ depletion | P2X7 |
|                        | Release of cathepsins, PGE₂, MMP-9 phosphatidilserine (caspase independent) | P2X7 |
|                        | Promoting chemotaxis/phagocytosis | P2Y2, P2X12, P2X1 and P2X3 |
|                        | Regulation of autophagy       | P2X4 and P2X7                                                                       |
|                        | Multinucleated giant cells formation | P2X7 |
| Dendritic cells        | Undefined roles               | P2X11                                                                              |
|                        | Regulation in cytokine release | P2X11, P2Y12 and P2Y14                                                            |
|                        | DC maturation                 | P2X7                                                                               |
|                        | Apoptosis                     | P2X7                                                                               |
|                        | DC migration                  | P2Y2 and P2Y11                                                                     |
| Lymphocytes            | B and T cells                 | P2X6, P2X8, P2X9, P2X10 and all P2Y                                                 |
|                        | Undefined roles               | P2X1, P2X4, and P2X7                                                               |
|                        | T cell activation (p38 MAPK activation and IL-2 gene transcription) | P2X7 |
|                        | T cell activation (CD62L shedding) | P2Y14 |
|                        | cAMP accumulation             | P2X7                                                                               |
|                        | Inhibition of immunosuppressive potential of Tregs | P2X7 |
| Natural killer cells   | Regulation of NK cytotoxicity and chemotaxis | P2Y11 |
| Eosinophils            | Undefined roles               | P2Y11, P2Y4, P2Y6, P2Y11, P2Y14, P2X1, P2X4 and P2X7                                |
|                        | Chemotaxis                    | P2Y2                                                                               |
|                        | Release of chemokines and cytokines | P2Y2, P2X1, P2X2, and P2Y6 |
| Mast cells             | Undefined roles               | P2X1, P2X4, P2X6, P2X7, P2Y1, P2Y2, P2Y11, P2Y12 and P2Y13                         |
|                        | Degranulation                 | P2Y13 and P2Y14                                                                     |

Although P2X receptors and particularly P2X7 play a major role in lymphocytes, there is some evidence for the role of P2Y receptors as well. Uregulation of P2Y2 receptor mRNA expression was described as an immediate early gene response in activated thymocytes [512] and P2Y2 receptors were shown to be involved in ATP-induced T cell migration [495]. The P2Y6 receptor was shown to be expressed in activated T cells infiltrating in inflammatory bowel disease [513]. Antagonists of the P2Y6 receptor blocked murine T cell activation [514], but these results must be interpreted with caution since T cells of P2Y6-deficient mice exhibited an increased activity in a model of allergic pulmonary inflammation, suggesting that the P2Y6 receptor plays an inhibitory rather than a stimulatory role [515]. P2Y14 receptors were shown to be functionally expressed by mouse spleen-derived T lymphocytes [516]. Adenine nucleotides inhibited CD4+ T cell activation via an increase in cAMP induced by an unidentified P2Y receptor [517].

Reproduced from [550], with permission from Springer
Natural killer (NK and NKT) cells

P1 receptors NK cell activity was shown to be inhibited by adenosine and A2 receptor agonists that increase cAMP [518]. Later studies demonstrated the involvement of A2A receptors [519]. Adenosine via the A2A receptor inhibited IFN-γ production by NKT cells, a subset of T cells with natural killer activity [520], but increased their production of IL-4 and IL-10 [521]. Mice were protected against liver reperfusion injury and concanavalin A (ConA)-induced hepatitis by adenosine acting on the A2A receptor on NKT cells, and this protection was abolished in A2A−/− mice [520, 522]. Sickle cell disease results in disseminated microvascular ischemia and reperfusion injury that leads to the activation of NKT cells and the upregulation of A2A receptors [523–525]. Activation of A2A receptors in NY1DD mice with sickle cell disease reduced pulmonary inflammation and injury [523]. In a phase I study, the A2A agonist regadenoson was administered to patients with sickle cell disease and was shown to inhibit the activation of NKT cells [524]. A2A−/− mice were protected against tumor metastasis, and this protection was associated with increased NK cell maturation and cytotoxic function [526]. On the other hand, an A3 receptor agonist was shown to potentiate NK cell cytotoxic activity [527] and IFN-γ production [528].

P2 receptors Inhibition of human and mouse NK cell reactivity via nucleotide receptors was reported [529–532]. It was later shown that ATP inhibits cell killing by NK cells via the P2Y1 receptor and an increase in cAMP [533]. On the other hand, NKT cells express the P2X7 receptor, the activation of which can lead to either apoptosis or cell activation [534–536]. In vitro NAD induced rapid apoptosis of NKT cells that was mediated by the P2X7 receptor, but its injection in Con A-treated mice enhanced cytokine production by NK cells and liver injury, that was decreased in P2X7 knockout mice [534]. In CD39-deficient mice, apoptosis of NKT cells was increased leading to protection against ConA-induced liver injury [535] or hyperoxic lung injury [536].

Section summary

The release of ATP through pannexin hemichannels or vesicular exocytosis amplifies in an autocrine way the TCR-mediated activation of T lymphocytes. This amplification is mediated by the P2X7 receptor, and also by P2X1 and P2X4 receptors. But activation of P2X7 can also induce T cell death. The resulting effect (activation or death) depends on the particular subset of T cells and on the concentration of ATP.

Adenosine exerts inhibitory effects on T lymphocytes, which are mediated by the A2A receptor. Treg cells overexpress the ectonucleotidases CD39 and CD73 that sequentially convert ATP into AMP and adenosine, and their immunosuppressive action is partially mediated by adenosine.

Concluding remarks

Extracellular nucleotides and adenosine exert a variety of effects on distinct subsets of immune cells via a wide spectrum of receptor subtypes (Table 2). These actions can be both stimulatory and inhibitory, and the balance between the two critically depends on the amount and time course of nucleotide release. This is consistent with the role of ATP and its degradation product adenosine as danger signals that stimulate the immune response following injury but moderate this response when it becomes excessive and deleterious.

Neutrophils and eosinophils

ATP released from neutrophils amplifies their attraction by chemotactic signals via the P2Y2 receptor and after its degradation to adenosine via the A3 receptor, one example of cooperation between P1 and P2 receptors. The P2Y3 receptor is also involved in the recruitment of eosinophils in the lung during allergic inflammation. On the other hand ATP and adenosine have opposite effects on O2− production and other functions of neutrophils: potentiation by ATP and inhibition by adenosine.

Monocytes/macrophages and microglia

ATP released from apoptotic cells constitutes a find-me signal that attracts monocytes and macrophages, an action mediated by the P2Y2 receptor. Via the P2X7 receptor, ATP stimulates NLRP3 inflammasome activation and IL-1β secretion by macrophages, their killing of bacteria and their apoptosis.

ADP acting on the P2Y12 receptor induces the polarisation and migration of microglia. UDP acting on the P2Y6 receptor stimulates their phagocytic activity. ADP and UDP have, thus, a complementary action of find-me and eat-me signals, respectively, involving a cooperation between two distinct P2Y receptor subtypes. The P2X4, A1 and A3 receptors have also been shown to play a role in microglia migration, whereas the A2A receptor is inhibitory.

Dendritic cells

ATP can exert an immunostimulatory effect on DCs via P2X7 receptor activation. But it can also activate the P2Y11 receptor leading to a semi-maturation state characterized by the upregulation of co-stimulatory molecules and the inhibition of IL-12 production, which impairs the Th1 response and favours tolerance or a Th2 response. The balance between these
opposite effects depends on the amount of ATP released and the time course of this release.

Other specific functions of DCs can be activated by nucleotides via distinct P2Y receptor subtypes: chemotaxis by the P2Y₂ receptor and antigen endocytosis by the P2Y₁₂ receptor. Adenosine acting on the A₂₅A (human) or A₂₅B (mouse) receptors exerts complex effects on DCs: as ATP it impairs Th1 polarisation and favours Th2 and/or tolerance, but it also favours Th17 cell development.

Lymphocytes

The release of ATP through pannexin hemichannels or vesicular exocytosis amplifies in an autocrine way the TCR-mediated activation of T lymphocytes. This amplification is mediated by the P2X₇, P2X₄ and P2X₇ receptors. On the other hand, Treg cells over-express the ectonucleotidases CD39 and CD73 that sequentially convert ATP into AMP and adenosine, which binds to A₂₅A receptors on effector T cells and suppresses their function.

Neuroimmunology

Contrary to earlier beliefs, the evidence that immune cells are innervated, albeit by nerve varicosities that form occasional close appositions, is convincing. This will be important for future studies of neuroimmunology that might reveal additional roles of ATP and purinergic signalling.

Acknowledgments We are greatly indebted to the superb supporting work in the preparation of this manuscript by Dr. Gill Knight.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, Virchow JC Jr, Lambrecht BN (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13:913–919
2. Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513
3. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RJ, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Lettinger N, Ravichandran KS (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286
4. Homolya L, Steinberg TH, Boucher RC (2000) Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol 150:1349–1360
5. McNamara N, Khong A, McKemy D, Caterina M, Boyer J, Julius D, Basbaum A (2001) ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. Proc Natl Acad Sci U S A 98:9086–9091
6. Seror C, Melki MT, Subra F, Raza SQ, Bras M, Saidi H, Nardacci R, Voisin L, Paletti A, Law F, Martins I, Amendola A, Abdul-Sater AA, Ciccossanti F, Deelelo N, Ouedergang F, Thierry S, Said-Sadier N, Laazole C, Metivier D, Estiquier J, Fimia GM, Falasac L, Casetti R, Modjathedi N, Kanellopoulos J, Mouscadet JF, Ojeus IM, Piarentini M, Gougeon ML, Kroemer G, Perfettini JL (2011) Extracellular ATP acts on P2Y purinergic receptors to facilitate HIV-1 infection. J Exp Med 208:1823–1834
7. Lazarowski ER, Shea DA, Boucher RC, Harden TK (2003) Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol 63:1190–1197
8. Zhong X, Malhotra R, Guidotti G (2003) ATP uptake in the Golgi and extracellular release require Mcd4 protein and the vacuolar H⁺-ATPase. J Biol Chem 278:33436–33444
9. Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ, Penuela S, Laird DW, Salvesen GS, Isakson BE, Bayliss DA, Ravichandran KS (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867
10. Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA (2011) Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc Natl Acad Sci U S A 108:10986–10991
11. Kim JE, Kang TC (2011) The P2X₁ receptor-pannexin-1 complex decreases muscarinic acetylcholine receptor-mediated seizure susceptibility in mice. J Clin Invest 121:2037–2047
12. Anselmi F, Hernandez VH, Crispino G, Seydel A, Ortolano S, Roper SD, Kessaris N, Richardson W, Rickegit G, Filipov MA, Monyer R, Hamman F (2008) ATP release through connexin hemichannels and gap junction transfer of second messenger propagate Ca²⁺ signals across the inner ear. Proc Natl Acad Sci U S A 105:18770–18775
13. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve - an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52:595–638
14. Serafim A, Gordon J (2001) The immune system gets nervous. Curr Opin Pharmacol 1:398–403
15. Bienenstock J, Goetzl EJ, Blennerhassett MG (2003) Autonomic Neuroimmunology. Taylor & Francis, London, pp 139–204
16. Deaglio S, Robson SC (2011) Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol 61:301–332
17. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. Raven Press, New York, pp 107–118
18. Burnstock G, Kennedy C (1985) Is there a basis for distinguishing two types of P₂-purinoceptor? Gen Pharmacol 16:433–440
19. DePierre JW, Karnovsky ML (1974) Ecto-enzymes of the guinea pig polymorphonuclear leucocyte. I. Evidence for an ecto-5’-nucleotidase) and ecto-(non-specific phosphatase) in cyanide-induced hemolysis in peroxidase and extracellular release require Mcd4 protein and the vacuolar H⁺-ATPase. J Biol Chem 278:33436–33444
23. Chen Y, Shukla A, Namiki S, Insel PA, Junger WG (2004) A putative osmoreceptor system that controls neutrophil function through the release of ATP, its conversion to adenosine, and activation of A2 adenosine and P2 receptors. J Leukoc Biol 76:245–253
24. Chen Y, Corriden R, Inoue Y, Yap L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314:1792–1795
25. Cronstein BN, Kramer SB, Weissmann G, Hirschhorn R (1983) Adenosine: a physiological modulator of superoxide anion generation by human neutrophils. J Exp Med 158:1160–1177
26. Cronstein BN, Rosenstein ED, Kramer SB, Weissmann G, Hirschhorn R (1987) Adenosine: a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A3 receptor on human neutrophils. J Immunol 135:1366–1371
27. Cronstein BN, Kubersky SM, Weissmann G, Hirschhorn R (1987) Engagement of adenosine receptors inhibits hydrogen peroxide (H2O2) release by activated human neutrophils. Clin Immunol Immunopathol 42:76–85
28. Schrier DJ, Imre KM (1986) The effects of adenosine agonists on human neutrophil function. J Immunol 137:3284–3289
29. Sun WC, Moore JN, Hurley DJ, Vandenplas ML, Murray TF (2007) Effects of stimulation of adenosine A2A receptors on lipopolysaccharide-induced production of reactive oxygen species by equine neutrophils. Am J Vet Res 68:649–656
30. Colli S, Tremoli E (1991) Multiple effects of dipyridamole on neutrophils and mononuclear leukocytes: adenosine-dependent and adenosine-independent mechanisms. J Lab Clin Med 118:136–145
31. Mirecevová L, Viktora L, Hermanová E (1984) Inhibition of phagocytosis of polymorphonuclear leukocytes by adenosine and HCl in vitro. Med Biol 62:326–330
32. Hardart GE, Sullivan GW, Carper HT, Mandell GL (1991) Adenosine and 2-phenylaminoadenosine (CV-1808) inhibit human neutrophil bactericidal function. Infect Immun 59:885–889
33. Laghi Pasini F, Capecchi PL, Ceccatelli L, Orrico A, Pasqui AL, Di Perri T (1986) Effect of extracellular Ca2+ on in vitro adenosine-dependent inhibition of neutrophil function. Int J Immunotherapy 11:225–232
34. Laghi Pasini F, Capecchi PL, Pasqui AL, Ceccatelli L, Mazza S, Gistri A, Di Perri T (1990) Adenosine system and cell calcium translocation: interference of calcium channel blockers. Exp Gerontol 25:383–391
35. Tsuruta S, Ito S, Mikawa H (1992) Adenosine inhibits divalent cation influx across human neutrophil plasma membrane via surface adenosine A2 receptors. Cell Signal 4:543–551
36. Nielson CP, Vestal RE (1989) Effects of adenosine on polymorphonuclear leukocyte function, cyclic 3’:5’-adenosine monophosphate, and intracellular calcium. Br J Pharmacol 97:882–888
37. Zhang Y, Palmblad J, Fordholm BB (1996) Biphasic effect of ATP on neutrophil functions mediated by P2 and adenosine A2A receptors. Biochem Pharmacol 51:957–965
38. Thibault N, Burelloit C, Harbour D, Borgeat P, Naccache PH, Bourgoin SG (2002) Occupancy of adenosine A2a receptors promotes fMLP-induced cyclic AMP accumulation in human neutrophils: impact on phospholipase D activity and recruitment of small GTPases to membranes. J Leukoc Biol 71:367–377
39. Varani K, Portaluppi F, Gessi S, Merighi S, Vincenzi F, Cattabriga E, Dalpiaz A, Bortolotti F, Belardinni L, Borea PA (2005) Caffeine intake induces an alteration in human neutrophil A2A adenosine receptors. Cell Mol Life Sci 62:2350–2358
40. McColl SR, St-Onge M, Dussault AA, Laflamme C, Bouchard L, Boulanger L, Pouliot M (2006) Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J 20:187–189
41. Grenz A, Kim JH, Bauerle JD, Tak E, Eltzschig HK, Clambeey ET (2012) Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release. J Immunol 189:4566–4573
42. van der Hoeven D, Wan TC, Gizewski ET, Kreckler LM, Maas JE, Van Orman J, Ravid K, Auchampach JA (2011) A role for the low-affinity A2B adenosine receptor in regulating superoxide generation by murine neutrophils. J Pharmacol Exp Ther 338:1004–1012
43. van der Hoeven D, Wan TC, Auchampach JA (2008) Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol 74:655–696
44. Bouma MG, Jeunhomme TM, Doyle DL, Dentener MA, Voitenok NN, van den Wildenberg FA, Buurman WA (1997) Adenosine inhibits neutrophil degranulation in activated human whole blood: involvement of adenosine A2 and A3 receptors. J Immunol 158:5400–5408
45. Kump E, Picard S, Mancini J, Borgeat P (1997) Suppression of leukotriene B4 biosynthesis by endogenous adenosine in ligand-activated human neutrophils. J Exp Med 186:1401–1406
46. Cadieux JS, Leclerc P, St-Onge M, Dussault AA, Laflamme C, Picard S, Ledent C, Borgeat P, Pouliot M (2005) Potentiation of neutrophil cyclooxygenase-2 by adenosine: an early anti-inflammatory signal. J Cell Sci 118:1437–1447
47. Garcia-Castro I, Matlo JM, Vasanthakumar G, Wiesmann WP, Schillmann E, Chiang PK (1983) Paradoxical effects of adenosine on neutrophil chemotaxis. J Biol Chem 258:4345–4349
48. Rose FR, Hirschhorn R, Weissmann G, Cronstein BN (1988) Adenosine promotes neutrophil chemotaxis. J Exp Med 167:1186–1194
49. Salmon JE, Cronstein BN (1990) Fcy Receptor-mediated functions in neutrophils are modulated by adenosine receptor occupancy. A1 receptors are stimulatory and A2 receptors are inhibitory. J Immunol 145:2235–2240
50. Aeffner F, Woods PS, Davis IC (2014) Activation of A1-adenosine receptors promotes leukocyte recruitment to the lung and attenuates acute lung injury in mice infected with influenza A/WSN/33 (H1N1) virus. J Virol 88:10214–10227
51. Reuttersh J, Cagnina RE, Chang D, Linden J, Ley K (2007) Therapeutic anti-inflammatory effects of myeloid cell adenosine receptor A2a stimulation in lipopolysaccharide-induced lung injury. J Immunol 179:1254–1263
52. Konrad FM, Witte E, Vollmer I, Stark S, Reuttersh J (2012) Adenosine receptor A2b on hematopoietic cells mediates LPS-induced migration of PMNs into the lung interstitium. Am J Physiol Lung Cell Mol Physiol 303:L425–L438
53. Inoue Y, Chen Y, Hirsh MI, Yap L, Junger WG (2008) A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30:173–177
54. Butler M, Sammugalingam D, Burton VJ, Wilson T, Pearson R, Watson RP, Smith P, Parkinson SJ (2012) Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo. Eur J Immunol 42:3358–3368
55. Bao Y, Chen Y, Lederosse C, Li L, Junger WG (2013) Pannexin 1 channels link chemoattractant receptor signalling to local excitation and global inhibition responses at the front and back of polarized neutrophils. J Biol Chem 288:22650–22657
56. Corriden R, Self T, Akong-Moore K, Nizet V, Kellam B, Briddon SJ, Hill SJ (2013) Adenosine-A3 receptors in neutrophil microdomains promote the formation of bacteria-tethering cytonemes. EMBO Rep 14:726–732
57. Cronstein BN, Levin RI, Philips M, Hirschorn R, Abramson SB, Weissmann G (1992) Neutrophil adherence to endothelium is
enhanced via adenosine A_2 receptors and inhibited via adenosine A_3 receptors. J Immunol 148:2201–2206
58. Asako H, Wolf RE, Granger DN (1993) Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 104:31–37
59. Eltzschig HK, Thompson LF, Karhausen J, Cotta RJ, Ibla JC, Robson SC, Colgan SP (2004) Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104:3986–3992
60. Sullivan GW, Lee DD, Ross WG, DiVietro JA, Lappas CM, Lawrence MB, Linden J (2004) Activation of A_2A adenosine receptors inhibits expression of a4β1 integrin (very late antigen-4) on stimulated human neutrophils. J Leukoc Biol 75:127–134
61. Thiël M, Chambers JD, Chouker A, Fischer S, Zoureliéd Cis, Bardenheuer HJ, Arfors KE, Peter K (1996) Effect of adenosine on the expression of β_2 integrins and L-selectin of human polymorphonuclear leukocytes in vitro. J Leukoc Biol 59:671–682
62. Zhao QZ, Sato H, Williams MW, Fernandez AZ, Vinten-Johansen J (1996) Adenosine A_2A-receptor activation inhibits neutrophil-mediated injury to coronary endothelium. Am J Physiol 271:1456–1464
63. Eltzschig HK, MacManus CF, Colgan SP (2008) Neutrophils as sources of extracellular nucleotides: functional consequences at the vascular interface. Trends Cardiovasc Med 18:103–107
64. Corriden R, Chen Y, Inoue Y, Beldi G, Robson SC, Insel PA, Junger WG (2008) Ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1/CD39) regulates neutrophil chemotaxis by hydrolyzing released ATP to adenosine. J Biol Chem 283:28480–28486
65. Kilian JG, Nakbla S, Sieveking DP, Celermajer DS (2005) Adenosine prevents neutrophil adhesion to human endothelial cells after hypoxia/reoxygenation. Int J Cardiol 105:322–326
66. Watanabe T, Tokuyama S, Yasuda M, Sasaki T, Yamamoto T (2002) ATP stimulates interleukin-dependent cultured mast cells and eosinophils through calcium mobilization. Int Arch Allergy Appl Immunol 149:68–70
67. Kuhns DB, Wright DG, Nath J, Kaplan SS, Basford RE (1988) ATP induces transient elevations of [Ca^{2+}]_i in human neutrophils and primes these cells for enhanced O_2− generation. Lab Invest 58:448–453
68. Seifert R, Wenzel K, Eckstein F, Schulz G (1989) Purine and pyrimidine nucleotides potentiate activation of NADPH oxidase and degranulation by chemotactic peptides and induce aggregation of human neutrophils via G proteins. Eur J Biochem 181:277–285
69. Tulsic F, Bredeteanu OA, Brailoiu E, Mekhi J, Garcia A, Dun NJ, Kunapuli SP (2005) The priming effect of extracellular UTP on human neutrophils: Role of calcium released from thapsigargin-sensitive intracellular stores. Purinergic Signal 1:359–368
70. Ward PA, Cunningham TW, McCulloch KK, Phan SH, Powell J, Johnston KJ (1988) Platelet enhancement of O_2− responses in stimulated human neutrophils. Identification of platelet factor as adenosine nucleotide. Lab Invest 58:37–47
71. Ward PA, Cunningham TW, McCulloch KK, Johnson KJ (1988) Regulatory effects of adenosine and adenosine nucleotides on oxygen radical responses of neutrophils. Lab Invest 58:438–447
72. Axtell RA, Sandborg RR, Smolen JE, Ward PA, Boxer LA (1990) Exposure of human neutrophils to exogenous nucleotides causes elevation in intracellular calcium, transmembrane calcium fluxes, and an alteration of a cytosolic factor resulting in enhanced superoxide production in response to FMLP and arachidonic acid. Blood 75:1324–1332
73. Cockcroft S, Stutchfield J (1989) The receptors for ATP and fMetLeuPhe are independently coupled to phospholipases C and A_2 via G-protein(s). Relationship between phospholipase C and A_2 activation and oxytocis in HL60 cells and human neutrophils. Biochem J 263:715–723
74. Cockcroft S, Stutchfield J (1989) ATP stimulates secretion in human neutrophils and HL60 cells via a pertussis toxin-sensitive guanine nucleotide-binding protein coupled to phospholipase C. FEBS Lett 245:25–29
75. Ford-Hutchinson AW (1982) Aggregation of rat neutrophils by aggregating substances: Methods. J Leukoc Biol 23:107–134
76. O’Grady SM (2012) Purinergic signaling and immune cell chemotaxis. Focus on “the UDP-sugar-sensing P2Y14 receptor promotes Rho-mediated signaling and chemotaxis in human neutrophils”. Am J Physiol Cell Physiol 303:C486–C487
77. Cicko S, Lucattelli M, Muller T, Lombacketsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Durk T, Zissel G, Boeynaems JM, Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungsella G, Idzko M (2010) Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J Immunol 185:688–697
78. Ayata CK, Ganal SC, Hockensjo B, Willim K, Vieira RP, Grimm M, Robaye B, Boeynaems JM, Di Virgilio F, Pellegrati F, Drischler A, Idzko M, Hasselblatt P (2012) Purinergic P2Y_14 receptors promote neutrophil infiltration and hepatocyte death in mice with acute liver injury. Gastroenterology 143:1620–1629
79. Scrivens M, Dickenson JM (2006) Functional expression of the P2Y_14 receptor in human neutrophils. Eur J Pharmacol 543:166–173
80. Sesma JJ, Kreda SM, Steinick-Chesnjon N, Dang H, Garcia-Mata R, Harden TK, Lazarowski ER (2012) The UDP-sugar-
sensing P2Y<sub>14</sub> receptor promotes Rho-mediated signaling and chemotaxis in human neutrophils. Am J Physiol Cell Physiol 303: C490–C498.

91. Barrett MO, Sesma JJ, Ball CB, Jayasekara PS, Jacobson KA, Lazarowski ER, Harden TK (2013) A selective high-affinity antagonist of the P2Y<sub>14</sub> receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmacol 84:1–49.

92. Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2<sub>Y</sub><sub>11</sub> receptor. J Immunol 179:8544–8553.

93. Alkayed F, Kashimata M, Koyama N, Hayashi T, Tamura Y, Azuma Y (2012) P2<sub>Y</sub><sub>11</sub> purinoreceptor mediates the ATP-enhanced chemotactic response of rat neutrophils. J Pharmacol Sci 120:288–295.

94. Suh BC, Kim JS, Namgung U, Ha H, Kim KT (2001) P2X<sub>7</sub> nucleotide receptor mediation of membrane pore formation and superoxide production in human promyelocytes and neutrophils. J Immunol 166:6754–6763.

95. Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X<sub>7</sub>. J Immunol 176:3044–3052.

96. Christensen K, Björkman L, Tångemo C, Bylund J (2008) Serum amyloid A inhibits apoptosis of human neutrophils via a P2X<sub>7</sub>-sensitive pathway independent of formyl peptide receptor-like 1. J Leukoc Biol 83:139–148.

97. da Silva GL, Sperotto ND, Borges TJ, Bonorino C, Takuya CM, Coutinho-Silva R, Campos MM, Zanin RF, Morrone FB (2013) P2X<sub>7</sub> receptor is required for neutrophil accumulation in a mouse model of irritant contact dermatitis. Exp Dermatol 22:184–188.

98. Martel-Gallegos G, Rosales-Saavedra MT, Reyes JP, Casas-Pruneda G, Toro-Castillo C, Pérez-Cornejo P, Arreola J (2010) Human neutrophils do not express purinergic P2X<sub>7</sub> receptors. Purinergic Signal 6:297–306.

99. Mohany JT, Raible DG, McDermott LJ, Pellegr A, Schulman ES (2001) Effects of pyrine and pyrimidine nucleotides on intracellular Ca<sup>2+</sup> in human eosinophils: activation of purinergic P2Y receptors. J Allergy Clin Immunol 107:849–855.

100. Lecut C, Frederix K, Johnson DM, Deroanne C, Thiry M, Lecut C, Faccinetto C, Delierneux C, van Oerle R, Spronk HM, Dichmann S, Panther E, Ferrari D, Heryou Y, Virchow C Jr, Luttmann W, Virchow C F, Norgauer J (2000) Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca<sup>2+</sup> mobilization and actin reorganization in human eosinophils. Blood 95:973–978.

101. Ferrari D, Idzko M, Dichmann S, Purlis D, Virchow C, Norgauer J, Chiozzi P, Di Virgilio F, Luttmann W (2000) P2 purinergic receptors of human eosinophils: characterization and coupling to oxygen radical production. FEBS Lett 486:217–224.

102. Idzko M, Dichmann S, Patel T, Cooper R, Virchow C, C498–C498.

103. Burgers JA, Schweizer RC, Koenderen L, Bruijnzaeel PL, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.

104. Dichmann S, Idzko M, Zimpfer U, Hofmann C, Ferrari D, Luttmann W, Virchow C Jr, Di Virgilio F, Norgauer J (2000) Adenosine triphosphate-induced oxygen radical production and CD11b up-regulation: Ca<sup>2+</sup> mobilization and actin reorganization in human eosinophils. Blood 95:973–978.

105. Nakano M, Kudo F, Nakamura T, Kasai K, Ito K, Takami H, Ito K, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.

106. Nakano M, Kudo F, Nakamura T, Kasai K, Ito K, Takami H, Ito K, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.

107. Walker BA, Jacobson MA, Knight DA, Salvatore CA, Weir T, Zhou D, Bai TR (1997) Adenosine A<sub>3</sub> receptor expression and function in human eosinophils. J Leukoc Biol 62:465–468.

108. Nakano M, Kudo F, Nakamura T, Kasai K, Ito K, Takami H, Ito K, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.

109. Nakano M, Kudo F, Nakamura T, Kasai K, Ito K, Takami H, Ito K, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.

110. Nakano M, Kudo F, Nakamura T, Kasai K, Ito K, Takami H, Ito K, Akkerman JW (1993) Human platelets secrete chemotactic activity for eosinophils. Blood 81:49–55.
rat mast cells induced by ionophore A23187. Biochem Pharmacol 32:2729–2732

126. Hughes PJ, Holgate ST, Church MK (1984) Adenosine inhibits and potentiates IgE-dependent histamine release from human lung mast cells by an A2-purinoceptor mediated mechanism. Biochem Pharmacol 33:3847–3852

127. Church MK, Hughes PJ (1985) Adenosine potentiates immunological histamine release from rat mast cells by a novel cyclic AMP-independent cell-surface action. Br J Pharmacol 85:3–5

128. Church MK, Hughes PJ, Vardey CJ (1986) Studies on the receptor mediating cyclic AMP-independent enhancement by adenosine of IgE-dependent mediator release from rat mast cells. Br J Pharmacol 87:233–242

129. Leoutsakos A, Pearce FL (1986) The effect of adenosine and its analogues on cyclic AMP changes and histamine secretion from rat peritoneal mast cells stimulated by various ligands. Biochem Pharmacol 35:1373–1379

130. Campos BG, Ferreira RR, Gomes JC (2000) The potentiation of the actions of adenosine on rat peritoneal mast cells. Naunyn Schmiedebergs Arch Pharmacol 355:555–560

131. Marquardt DL, Walker LL, Wasserman SI (1984) Adenosine receptors on mouse bone marrow-derived mast cells: functional significance and regulation by aminophylline. J Immunol 133:932–937

132. Delmich K, Eichelberg D, Schmutzler W (1985) The effects of adenosine and of some adenosine analogues on the concanavalin A- or acetylcholine-induced histamine release from human adenosal mast cells. Agents Actions 16:141–143

133. Lohse MJ, Maurer K, Genschheimer HP, Schwabe U (1987) Dual actions of adenosine on rat peritoneal mast cells. Naunyn Schmiedebergs Arch Pharmacol 335:555–560

134. Auchampach JA, Jin X, Wan TC, Caughhey GH, Linden J (1997) Canine mast cell adenosine receptors: cloning and expression of the A2 receptor and evidence that degranulation is mediated by the A2B receptor. Mol Pharmacol 52:846–860

135. Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268:16887–16890

136. Fozard JR, Pfannkuche HJ, Schuurman HJ (1996) Mast cell degranulation following adenosine A3 receptor activation in rats. Eur J Pharmacol 298:293–297

137. Zhang H, Sibykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, Blackburn MR (2003) Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol 171:338–345

138. Tilley SL, Wagoner VA, Salvatore CA, Jacobson MA, Koller BH (2000) Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. J Clin Invest 105:361–367

139. Tilley SL, Tsai M, Williams CM, Wang ZS, Erickson CJ, Galli SJ, Koller BH (2003) Identification of A3 receptor- and mast cell-dependent and -independent components of adenosine-mediated airway responsiveness in mice. J Immunol 171:331–337

140. Peachell PT, Lichtenstein LM, Schleimer RP (1991) Differential regulation of human basophil and lung mast cell function by adenosine. J Pharmacol Exp Ther 256:717–726

141. Gomez G, Nandone V, Lotfi-Emran S, Zhao W, Schwartz LB (2013) Intracellular adenosine inhibits IgE-dependent degranulation of human skin mast cells. J Clin Immunol 33:1349–1359

142. Marquardt DL, Walker LL, Heinemann S (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol 152:4508–4515

143. Hua X, Chason KD, Jania C, Acosta T, Ledent C, Tilley SL (2013) Gs-coupled adenosine receptors differentially limit antigen-induced mast cell activation. J Pharmacol Exp Ther 344:426–435

144. Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I (2003) Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 92:485–492

145. Ryzhov S, Zaynagetdinov R, Goldstein AE, Novitskiy SV, Dikov MM, Blackburn MR, Biaggioni I, Feoktistov I (2008) Effect of A2B adenosine receptor gene ablation on proinflammatory adenosine signaling in mast cells. J Immunol 180:7212–7220

146. Hua X, Chason KD, Patl YJ, Naselsky WC, Tilley SL (2011) IL-4 amplifies the pro-inflammatory effect of adenosine in human mast cells by changing expression levels of adenosine receptors. PLoS One 6:e24947

147. Keller R (1966) Tissue mast cells in immune reactions. Monogr Allergy 2:1–144

148. Diamant B, Kröger PG (1967) Histamine release from isolated rat peritoneal mast cells induced by adenosine 5'-triphosphate. Acta Physiol Scand 71:291–302

149. Dahliquist R, Diamant B (1970) Further observations on ATP-induced histamine release from rat mast cells. Acta Pharmacol Toxicol (Copenh) 28:43

150. Sugiyama K (1971) Calcium-dependent histamine release with degranulation from isolated rat mast cells by adenosine 5'-triphosphate. Jpn J Pharmacol 21:209–226

151. Kröger G, Bloom D, Diamant B (1974) Structural aspects of histamine release in rat peritoneal mast cells. Effects of adenosine 5'-triphosphate and role of calcium. Int Arch Allergy Appl Immunol 47:1–13

152. Cockcroft S, Gomperts BD (1979) Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol 296:229–243

153. Kiernan JA (1972) Effects of known and suspected neurotransmitter substances and of some nucleotides on isolated mast cells. Expierientia 28:653–655

154. Bienenstock J, MacQueen G, Sestini P, Marshall JS, Stead RH, Perdue MH (1991) Mast cell/nerve interactions in vitro and in vivo. Am Rev Respir Dis 143:555–58

155. Grosman N, Diamant B (1975) Effects of adenosine 5'-triphosphate (ATP) on rat mast cells: influence on anaphylactic and compound 48/80-induced histamine release. Agents Actions 5:108–114

156. Johansen T, Chakravarty N (1975) The utilization of adenosine triphosphate in rat mast cells during histamine release induced by anaphylactic reaction and compound 48/80. Naunyn Schmiedebergs Arch Pharmacol 288:243–260

157. Bulanova E, Budagian V, Ornska Z, Hein M, Petersen F, Thon L, Adam D, Bullone-Paus S (2005) Extracellular ATP induces cytokine expression and apoptosis through P2X7 receptor in murine mast cells. J Immunol 174:3880–3890

158. Tatham PE, Lindau M (1990) ATP-induced pore formation in the plasma membrane of rat peritoneal mast cells. J Gen Physiol 95:459–476

159. Kurashima Y, Amiya T, Nochi T, Fujisawa K, Haraguchi T, Iba H, Tsutsui H, Sato S, Nakajima S, Iijima H, Kubo M, Kunisawa J, Kiyono H (2012) Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 3:1034

160. Bulanova E, Budagian V, Ornska Z, Koch-Nolte F, Haag F, Bullone-Paus S (2009) ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X4 and P2X7 receptors in murine mast cells. J Leukoc Biol 85:692–702

161. Wareham K, Vial C, Wykes RC, Bradding P, Seward EP (2009) Mast cell mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. J Pharmacol Exp Ther 325:619–627

162. Arandjelovic S, McKenney KR, Leming SS, Mowen KA (2012) ATP induces protein arginine deiminase 2-dependent citrullination in mast cells through the P2X7 purinergic receptor. J Immunol 189:4112–4122.
lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 157:5627–5637

200. Rassendren F, Buell GN, Virgilio C, Collo G, North RA, Surprenant A (1997) The permeabilizing ATP receptor, P2X7, Cloning and expression of a human cDNA. J Biol Chem 272: 5482–5486

201. Ama G, Johnson CJ, Hart AP, Guadarrama AG, Suresh M, Svenner J, Bertsic PJ, Darien BJ (2002) Modulation of monocyte signalling and pore formation in response to agonists of the nucleotide receptor P2X7. J Leukoc Biol 72:222–232

202. Humphreys BD, Dubyak GR (1998) Modulation of P2X7 nucleotide receptor expression by pro- and anti-inflammatory stimuli in THP-1 monocytes. J Leukoc Biol 64:265–273

203. Grahames CB, Michel AD, Chessell JP, Humphrey PP (1999) Pharmacological characterization of ATP- and LPS-induced IL-1β release in human monocytes. Br J Pharmacol 127: 1915–1927

204. Warren AJ, Harvey L, Shaw RW, Khan RN (2008) Interleukin-1β secretion from cord blood mononuclear cells in vitro involves P2X7 receptor activation. Reprod Sci 15:189–194

205. Jallian I, Peranec M, Curtis BL, Seavers A, Spilrejorde M, Sluyter AH, Heeg KM, Robaye B, Hanley PJ (2005) “Host tissue damage” lipopolysaccharide and IFN-γ in the human THP-1 monocytic cell line. J Immunol 185:3028–3034

206. Hill LM, Gavala ML, Lenertz LY, Bertsic PJ (2010) Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol 185:3028–3034

207. Rizzo R, Ferrari D, Melchiorri L, Stignani M, Gulinielli S, Baricordi OR, Di Virgilio F (2009) Extracellular ATP acting at the P2X7 receptor inhibits secretion of soluble HLA-G from human monocytes. J Immunol 183:4302–4311

208. Gu BJ, Saunders BM, Jursik C, Wiley JS (2010) The P2X7-nonmuscle myosin membrane complex regulates phagocytosis of nonopsonized particles and bacteria by a pathway attenuated by extracellular ATP. Blood 115:1621–1631

209. Aksamit RR, Backlund PS Jr, Cantonii GL (1983) Chemotaxis and the synthesis of specific proteins are inhibited by 3-deazaadenosine and other adenosine analogs in a mouse macrophage cell line. J Biol Chem 258:20–23

210. Riches DW, Watkins JL, Henson PM, Stanworth DR (1985) Regulation of macrophage lysosomal secretion by adenosine, adenosine phosphate esters, and related structural analogues of adenosine. J Leukoc Biol 37:545–557

211. McWhinney CD, Dudley MW, Bowlin TL, Peet NP, Schook L, Bradshaw M, De M, Borcherd DR, Edwards CK III (1996) Activation of adenosine A2 receptors on macrophages inhibits tumor necrosis factor-α. Eur J Pharmacol 310:209–216

212. Nèmeth ZH, Leibovich SJ, Deitch EA, Vizi ES, Szabó C, Haskó G (2003) cDNA microarray analysis reveals a nuclear factor-kB-independent regulation of macrophage function by adenosine. J Pharmacol Exp Ther 306:1042–1049

213. Hon WM, Moocchhala S, Khoo HE (1997) Adenosine and its receptor agonists potentiate nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Life Sci 60:1327–1335

214. Zidek Z, Kmonickova E, Holy A (2004) Involvement of adenosine A1 receptors in upregulation of nitric oxide by acyclic nucleotide analogues. Eur J Pharmacol 501:79–86

215. Xaus J, Mirabet M, Lloberas J, Soler C, Llios C, Franco R, Celada A (1999) IFN-γ up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

216. Murphyee LJ, Sullivan GW, Marshall MA, Linden J (2005) Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem J 391:575–580

217. Chen H, Yang D, Carroll SH, Eltzschig HK, Ravid K (2009) Activation of the macrophage A2b adenosine receptor regulates tumour necrosis factor-α levels following vascular injury. Exp Hematol 37:533–538

218. Elson G, Eisenberg M, Garg C, Outram S, Ferrante CJ, Hasko G, Leibovich SJ (2013) Induction of murine adenosine A2A receptor expression by LPS: analysis of the 5' upstream promoter. Genes Immun 14:147–153

219. Kreckler LM, Tan WC, Ge ZD, Auchampach JA (2006) Adenosine inhibits tumor necrosis factor-α release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 317:172–180

220. Ezeamuzie CI, Khan I (2007) The role of adenosine A2 receptors in the regulation of TNF-α production and PGF2α release in mouse peritoneal macrophages. Int Immunopharmacol 7:483–490

221. Chen H, Yang D, Carroll SH, Eltzschig HK, Ravid K (2009) Activation of the macrophage A2b adenosine receptor regulates tumour necrosis factor-α levels following vascular injury. Exp Hematol 37:533–538

222. Buenestado A, Grassin Delyle S, Arnould I, Besnard F, Naline E, Blouquit-Laye S, Chapelier A, Bellapier C, Bellamy JF, Devillier P (2010) Extracellular ATP promotes monocyte invasion in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem J 391:575–580

223. Xaus J, Mirabet M, Lloberas J, Soler C, Llios C, Franco R, Celada A (1999) IFN-γ up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

224. Murphyee LJ, Sullivan GW, Marshall MA, Linden J (2005) Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-κB in A2A adenosine receptor induction. Biochem J 391:575–580

225. Zídek Z, Kmonickova E, Holy A (2004) Involvement of adenosine A2B receptors in upregulation of nitric oxide by acyclic nucleotide analogues. Eur J Pharmacol 501:79–86

226. Xaus J, Mirabet M, Lloberas J, Soler C, Llios C, Franco R, Celada A (1999) IFN-γ up-regulates the A2B adenosine receptor expression in macrophages: a mechanism of macrophage deactivation. J Immunol 162:3607–3614

227. Ezeamuzie CI, Khan I (2007) The role of adenosine A2 receptors in the regulation of TNF-α production and PGF2α release in mouse peritoneal macrophages. Int Immunopharmacol 7:483–490

228. Elson G, Eisenberg M, Garg C, Outram S, Ferrante CJ, Hasko G, Leibovich SJ (2013) Induction of murine adenosine A2A receptor expression by LPS: analysis of the 5' upstream promoter. Genes Immun 14:147–153
augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol 175: 8260–8270

234. Csóka B, Németh ZH, Selmeczy Z, Koscsó B, Pacher P, Vizi ES, Deitch EA, Haskó G (2007) Role of A3A adenosine receptors in regulation of opsonized E. coli-induced macrophage function. Purinergic Signal 3:447–452

235. Csóka B, Németh ZH, Virág L, Gergely P, Leibovich SJ, Pacher P, Sun CX, Blackburn MR, Vizi ES, Deitch EA, Haskó G (2007) A2A adenosine receptors and C/EBPβ are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–2695

236. Zanin RF, Braganhol E, Filho AZ, Moreira JC, Arrone FB, Sévigny J, Schetinger MR, de Souza Wyse AM, Battastini AM (2012) Differential macrophage activation alters the expression profile of NTPDase and ecto-5’-nucleotidase. PLoS One 7:e31205

237. Soledade CS, Franchini KG, Linden J, Hsu Y (2007) Stimulation of adenosine A2A receptor regulates peroxisome proliferator activated receptors in macrophages. FASEB J 21:A1035

238. De Ponti C, Carini R, Alchera E, Nitti MP, Locati M, Albano E, Sun CX, Blackburn MR, Vizi ES, Deitch EA, Haskó G (2007) Adenosine A2A receptor-mediated, normoxic induction of HIF-1 through PKC and PI-3 K-dependent pathways in macrophages. J Leukoc Biol 82:392–402

239. Leibovich SJ, Chen JF, Pinhal-Enfield G, Belen PM, Elson G, Rosania A, Ramanathan M, Montesinos C, Jacobson M, Schwartzchild MA, Fink JS, Cronstein B (2002) Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am J Pathol 160:2231–2244

240. Ermens I, Leonard F, Vassort M, Rolland-Turner M, Devaux Y, Wagner DR (2010) Adenosine up-regulates vascular endothelial growth factor in human macrophages. Biochim Biophys Acta 1892:356–366

241. Velot E, Haas B, Leonard F, Ermens I, Rolland-Turner M, Schwartz C, Longrois D, Devaux Y, Wagner DR (2008) Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovasc Res 80:246–254

242. Barczyk K, Ehrchen J, Tenbrock K, Ahlmann M, Kneidl J, Viemann D, Roth J (2010) Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 116:446–455

243. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1985) Extracellular ATP permeabilizes the plasma membrane of mouse macrophages to fluorescent dyes. J Biol Chem 262:8884–8888

244. Buismán HP, Steinberg TH, Fischbach J, Silverstein SC, Vogelzang SA, Ince C, Ypey DL, Leijh PC (1988) Extracellular ATP induces a large nonselective channel induced by extracellular ATP in macrophage plasma membranes. Proc Natl Acad Sci U S A 85:7988–7992

245. Steinberg TH, Silverstein SC (1987) Extracellular ATP promotes cation fluxes in the J774 mouse macrophage cell line. J Biol Chem 262:3118–3122

246. Greenberg S, Di Virgilio F, Steinberg TH, Silverstein SC (1988) Extraglacial nucleotides mediate Ca2+ fluxes in J774 macrophages by two distinct mechanisms. J Biol Chem 263:10337–10343

247. Coutinho-Silva R, Alves LA, Savino W, Persechini PM (1996) A cation non-selective channel induced by extracellular ATP in macrophages and phagocytic cells of the thymic reticulum. Biochim Biophys Acta 1278:125–130

248. Nakaniishi M, Takahara H, Minoru Y, Yagawa K (1991) Extracellular ATP itself elicits superoxide generation in guinea pig peritoneal macrophages. FEBS Lett 282:91–94

249. Murphy JK, Livingston FR, Gozal E, Torres M, Forman HJ (1993) Stimulation of the rat alveolar macrophage respiratory burst by extracellular adenosine nucleotides. Am J Respir Cell Mol Biol 9: 505–510

250. Sung SS, Young JD, Origlio AM, Heiple JM, Kaback HR, Silverstein SC (1985) Extracellular ATP perturbs transmembrane ion fluxes, elevates cytosolic [Ca2+]i, and inhibits phagocytosis in mouse macrophages. J Biol Chem 260:13442–13449

251. Murgia M, Pizzo P, Steinberg TH, Di Virgilio F (1992) Characterization of the cytotoxic effect of extracellular ATP in J774 mouse macrophages. Biochem J 288:897–901

252. Blanchard DK, McMillen S, Djeu JY (1991) IFN-γ enhances sensitivity of human macrophages to extracellular ATP-mediated lysis. J Immunol 147:2579–2585

253. Pleischlitter J, Thüring B, Festa F (1989) Extracellular ATP stimulates polyinositol phospholipid hydrolysis and eicosanoid synthesis in mouse peritoneal macrophages in culture. Eur J Biochem 186: 509–513

254. Murgia M, Hanau S, Pizzo P, Rippa M, Di Virgilio F (1993) Oxidized ATP. An irreversible inhibitor of the macrophage purinergic P2x receptor. J Biol Chem 268:8199–8203

255. el-Moattassim C, Dubyak GR (1993) Dissociation of the pore-forming and phospholipase D activities stimulated via P2x purinergic receptors in BAC1.2 F5 macrophages. Product inhibition of phospholipase D enzyme activity. J Biol Chem 268:15571–15578

256. Hickman SE, El Khoury J, Greenberg S, Schieren I, Silverstein SC (1994) P2Z adenosine triphosphate receptor activity in cultured human monocytederived macrophages. Blood 84:2452–2456

257. Falzoni S, Munerati M, Ferrari D, Spisani S, Moretti S, Di Virgilio F (1995) The purinergic P2x receptor of human macrophage cells. Characterization and possible physiological role. J Clin Invest 95: 1207–1216

258. Perregaux D, Gabel CA (1994) Interleukin-1β maturation and release in response to ATP and nigericin. Evidence that potassium depolarization mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203

259. Griffiths RJ, Stam EJ, Downs JT, Ottemess IG (1995) ATP induces the release of IL-1 from LPS-primed cells in vivo. J Immunol 154: 2821–2828

260. Ferrari D, Chiozzi P, Falzoni S, dal Susino M, Melchiorri L, Barocci OR, Di Virgilio F (1997) Extracellular ATP triggers IL-1β release by activating the purinergic P2Z receptor of human macrophages. J Immunol 159:1451–1458

261. Brough D, Le Feuvre RA, Wheeler RD, Solovyova N, Hilfiker S, Rothwell NJ, Verkhratsky A (2003) Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1β and IL-1α from murine macrophages. J Immunol 170:3029–3036

262. Qu Y, Franchi L, Neznez G, Dubyak GR (2007) Nonclassical IL-1β secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol 179:1913–1925

263. Pelegrin P, Barroso-Gutierrez C, Surprenant A (2008) P2X7 receptor differentially couples to distinct release pathways for IL-1β in mouse macrophage. J Immunol 180:7147–7157

264. Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ, Hu J (2012) Activation of P2X7 receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One 7:e35812

265. Petrovski G, Ayna G, Majai G, Hodrea J, Benko S, Mádi A, Fésüs L, Öörni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Extracellular ATP itself elicits superoxide generation in guinea pig peritoneal macrophages. Autophagy 7:321

266. Niemi K, Teirilä L, Lappalainen J, Rajamäki K, Baumann MH, Ööni K, Wolff H, Kovanen PT, Matikainen S, Eklund KK (2011) Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol 186:6119–6128

267. Lucattelli M, Cicko S, Muller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Durk T, Zissel G,
Sorichter S, Ferrari D, Di Virgilio F, Virchow JC, Lungarella G, Idzko M (2011) P2X7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 44:423–429

268. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchaligam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z (P2X7) receptors. Immunity 7:433–444

269. Kusner DJ, Barton JA (2001) ATP stimulates human macrophages to kill intracellular virulent Mycobacterium tuberculosis via calcium-dependent phagosome-lysosome fusion. J Immunol 167:3308–3315

270. Kusner DJ, Adams J (2000) ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D. J Immunol 164:379–388

271. Fairbairn IP, Stober CB, Kumarratne DS, Lammas DA (2001) ATP-mediated killing of intracellular mycobacteria by macrophages is a P2X7-dependent process inducing bacterial death by phagosome-lysosome fusion. J Immunol 167:3300–3307

272. Placidio R, Auricchio G, Falzoni S, Battistini L, Colizzi V, Brunetti E, Di Virgilio F, Mancino G (2006) P2X7 purinergic receptors and extracellular ATP mediate apoptosis of human monocytes/macrophages infected with Mycobacterium tuberculosis reducing the intracellular bacterial viability. Cell Immunol 244:10–18

273. Biswas D, Quezhi OS, Lee WY, Croudec JE, Mura M, Lammas DA (2008) ATP-induced autophagy is associated with rapid killing of intracellular mycobacteria within human monocytes/macrophages. BMC Immunol 9:35

274. Saunders BM, Fernando SL, Slayter R, Britton WJ, Wiley JS (2003) A loss-of-function polymorphism in the human P2X7 receptor abolishes ATP-mediated killing of mycobacteria. J Immunol 171:5442–5446

275. Fernando SL, Saunders BM, Slayter R, Skarratt KK, Wiley JS, Britton WJ (2005) Gene dosage determines the negative effects of polymorphic alleles of the P2X7 receptor on adenosine triphosphate-mediated killing of mycobacteria by human macrophages. J Infect Dis 192:149–155

276. Shennon AN, Slayter R, Fernando SL, Clarke AL, Dao-Ung LP, Skarratt KK, Saunders BM, Tan KS, Gu BJ, Fuller SJ, Britton WJ, Petrovi S, Wiley JS (2006) A Thr357 to Ser polymorphism in homozygous and compound heterozygous subjects causes absent or reduced P2X7 function and impairs ATP-induced mycobacterial killing by macrophages. J Biol Chem 281:2079–2086

277. Franco-Martinez S, Niño-Moreno P, Bernal-Silva S, Baranda L, Rocha-Meza M, Portales-Cervantes L, Layseca-Espinosa E, González-Amaro R, Portales-Pérez D (2006) Expression and function of the purinergic receptor P2X7 in patients with pulmonary tuberculosis. Clin Exp Immunol 146:253–261

278. Chaves SP, Torres-Santos EC, Marques C, Figliuolo VR, Persechini PM, Coutinho-Silva R, Rossi-Bergmann B (2009) Modulation of P2X7 purinergic receptor in macrophages by Leishmania amazonensis and its role in parasite elimination. Microbes Infect 11:842–849

279. Chaves MM, Marques-da-Silva C, Monteiro AP, Canetti C, Coutinho-Silva R (2014) Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J Immunol 192:4765–4773

280. Corrêa G, Marques da Silva C, de Abreu Moreira-Souza AC, Vommaro RC, Coutinho-Silva R (2010) Activation of the P2X7 receptor triggers the elimination of Toxoplasma gondii tachyzoites from infected macrophages. Microbes Infect 12:497–504

281. Lees MP, Fuller SJ, McLeod R, Boullier NR, Miller CM, Zakrzewski AM, Mui EJ, Witola WH, Coyne JJ, Hargrave AC, Jamieson SE, Blackwell JM, Wiley JS, Smith NC (2010) P2X7 receptor-mediated killing of an intracellular parasite, Toxoplasma gondii, by human and murine macrophages. J Immunol 184:7040–7046

282. Tonetti M, Sturla L, Bistolfi T, Benatti U, De Flora A (1994) Extracellular ATP potentiates nitric oxide synthase expression induced by lipopolysaccharide in RAW 264.7 murine macrophages. Biochem Biophys Res Commun 203:430–435

283. Tonetti M, Sturla L, Giovine M, Benatti U, De Flora A (1995) Extracellular ATP enhances mRNA levels of nitric oxide synthase and TNF-α in lipopolysaccharide-treated RAW 264.7 murine macrophages. Biochem Biophys Res Commun 214:125–130

284. Denlinger LC, Fisette PL, Garis KA, Kwon G, Vazquez-Torres A, Simon AD, Nguyen B, Proctor RA, Bertsic PJ, Corbett JA (1996) Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J Biol Chem 271:337–342

285. Hu Y, Fisette PL, Denlinger LC, Guadarrama AG, Sommer JA, Proctor RA, Bertsic PJ (1998) Purinergic receptor modulation of lipopolysaccharide signaling and inducible nitric-oxide synthase expression in RAW 264.7 macrophages. J Biol Chem 273:27170–27175

286. Sperlágh B, Haskó G, Németh Z, Vizi ES (1998) ATP released by LPS increases nitric oxide production in raw 264.7 macrophage cell line via P2Z/P2X7 receptors. Neurochem Int 33:209–215

287. Sommer JA, Fisette PL, Hu Y, Denlinger LC, Guerra AN, Bertsic PJ, Proctor RA (1999) Purinergic receptor modulation of LPS-stimulated signaling events and nitric oxide release in RAW 264.7 macrophages. J Endotoxin Res 5:70–74

288. Chen YJ, Hsu KW, Chen YL (2006) Acute glucose overload potentiates nitric oxide production in lipopolysaccharide-stimulated macrophages: the role of purinergic receptor activation. Cell Biol Int 30:817–822

289. Pfeiffer ZA, Guerra AN, Hill LM, Gavala ML, Prabhu U, Aga M, Hall DJ, Bertsic PJ (2007) Nucleotide receptor signaling in murine macrophages is linked to reactive oxygen species generation. Free Radic Biol Med 42:1506–1516

290. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871–2879

291. Lenertz LY, Gavala ML, Hill LM, Bertsic PJ (2009) Cell signaling via the P2X7 nucleotide receptor: Linkage to ROS production, gene transcription, and receptor trafficking. Purinergic Signal 5:175–187

292. Costa-Junior HM, Mendes AN, Davis GH, da Cruz CM, Ventura AL, Serezani CH, Faciolii LH, Nomizo A, Freire-de-Lima CG, Bisagno RC, Persechini PM (2009) ATP-induced apoptosis involves a Ca2+-independent phospholipase A2 and 5-lipoxygenase in macrophages. Prostaglandins Other Lipid Mediat 88:51–61

293. Moore SF, MacKenzie AB (2007) Murine macrophage P2X7 receptors support rapid prothrombotic responses. Cell Signal 19:855–866

294. Furlan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W (2011) P2X7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest 121:2932–2944

295. Gu BJ, Duce JA, Valova VA, Wong B, Bush AI, Petrov S, Wiley JS (2012) P2X7 receptor-mediated scavenger activity of mononuclear phagocytes toward non-opsonized particles and apoptotic cells is inhibited by serum glycoproteins but remains active in cerebrospinal fluid. J Biol Chem 287:17318–17330

296. Gu BJ, Baird PN, Vessey KA, Skarratt KK, Fletcher EL, Fuller SJ, Richardson AJ, Guymer RH, Wiley JS (2013) A rare functional haplotype of the P2X4 and P2X7 genes leads to loss of innate kinesin in murine macrophages. FASEB J 27:1479–1487

297. Di Virgilio F, Falzoni S, Chiozzi P, Sanz JM, Ferrari D, Buell GN (1999) ATP receptors and giant cell formation. J Leukoc Biol 66:723–726

298. Chiozzi P, Sanz JM, Ferrari D, Falzoni S, Aldeotti A, Buell GN, Collo G, Di Virgilio F (1997) Spontaneous cell fusion in...
macrophage cultures expressing high levels of the P2Z/P2X7 receptor. J Cell Biol 138:697–706

299. Lemaire I, Falzoni S, Leduc N, Zhang B, Pellegratti P, Adinolfi E, Chiozzi P, Di Virgilio F (2006) Involvement of the purinergic P2X7 receptor in the formation of multinucleated giant cells. J Immunol 177:7257–7265

300. Lemaire I, Falzoni S, Zhang B, Pellegratti P, Di Virgilio F (2011) The P2X7 receptor and Pannexin-1 are both required for the formation of multinucleated macrophages by the inflammatory cytokine GM-CSF. J Immunol 187:3878–3887

301. Coutinho-Silva R, Ojcius DC, Gorecki DC, Persechini PM, Bisagio RC, Dunn PM, Burnstock G (2005) Multiple P2X and P2Y receptor subtypes in mouse J774, spleen and peritoneal macrophages. Biochem Pharmacol 69:641–655

302. Myrtvik D, Müller T, Geyer V, Derr N, Ferrari D, Zissel G, Dürk T, Sorichter S, Luttmann W, Kuepper M, Norgauer J, Di Virgilio F, Virchow JC Jr, Idzko M (2008) Activation of human alveolar macrophages via P2 receptors: coupling to intracellular Ca2+ increases and cytokine secretion. J Immunol 181:2181–2188

303. Eschke D, Wüst M, Hauschulte S, Nieber K (2002) Pharmacological characterization of the P2X7 receptor on human macrophages using the patch-clamp technique. Naunyn Schmiedebergs Arch Pharmacol 365:168–171

304. Bröne B, Moechars D, Marrannes R, Mercken M, Meert T (2007) P2X currents in peritoneal macrophages of wild type and P2X7−/− mice. Immunol Lett 113:83–89

305. Kawano A, Tsukimoto M, Mori D, Noguchi T, Harada H, Takenouchi T, Kitani H, Kojima S (2012) Regulation of P2X7-dependent inflammatory functions by P2X4 receptor in mouse macrophages. Biochem Biophys Res Commun 420:102–107

306. Kawano A, Tsukimoto M, Noguchi T, Hotta N, Harada H, Takenouchi T, Kitani H, Kojima S (2012) Involvement of P2X4 receptor in P2X7 receptor-dependent cell death of mouse macrophages. Biochem Biophys Res Commun 419:374–380

307. Hazleton JE, Berman JW, Eugenin EA (2012) Purinergic receptors are required for HIV-1 infection of primary human macrophages. J Immunol 188:4488–4495

308. Hanley PJ, Musset B, Remigunta V, Limberg SH, Dalpke AH, Sus R, Heeg KM, Preissig-Müller R, Daut J (2004) Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A 101:9479–9484

309. del Rey A, Remigunta V, Dalpke AH, Leipziger J, Matos JE, Robaye B, Zuzarte M, Kavelaars A, Hanley PJ (2006) Knock-out mice reveal the contributions of P2Y and P2X receptors to nucleotide-induced Ca2+ signaling in macrophages. J Biol Chem 281:35147–35155

310. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammatory activation. J Immunol 186:6553–6561

311. Kronlage M, Song J, Sorokin L, Isfort K, Schwerdtle T, Leipziger J, Robaye B, Conley PB, Kim HC, Sargin S, Schön P, Schwab A, Hanley PJ (2010) Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci Signal 3:ra55

312. Chen BC, Chou CF, Lin WW (1998) Pyrimidinoceptor-mediated potentiation of inducible nitric-oxide synthase induction in J774 macrophages. Role of intracellular calcium. J Biol Chem 273:29754–29763

313. Chen BC, Lin WW (2000) Pyrimidinoceptor potentiation of macrophage PGE2 release involved in the induction of nitric oxide synthase. Br J Pharmacol 130:777–786

314. Stokes L, Surprenant A (2007) Purinergic P2Y2 receptors induce increased MCP-1/CCL2 synthesis and release from rat alveolar and peritoneal macrophages. J Immunol 179:6016–6023

315. Eun SY, Seo J, Park SW, Lee JH, Chang KC, Kim HJ (2014) LPS potentiates nucleotide-induced inflammatory gene expression in macrophages via the upregulation of P2Y2 receptor. Int Immunopharmacol 18:270–276

316. Bar I, Guns PJ, Metallo J, Cammarata D, Wilkin F, Boeynams JM, Bult H, Robaye B (2008) Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol Pharmacol 74:777–784

317. Zhang Z, Wang Z, Ren H, Yue M, Huang K, Gu H, Liu M, Du B, Qian M (2011) P2Y6 agonist uridine 5’-diphosphate promotes host defense against bacterial infection via monocyte chemoattractant protein-1-mediated monocytes/macrophages recruitment. J Immunol 186:5376–5387

318. Sakaki H, Tsukimoto M, Harada H, Moriyama Y, Kojima S (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8:e59778

319. Parkinson FE, Paterson AR, Young JD, Cass CE (1993) Inhibitory effects of propentofylline on [3H]adenosine influx. A study of three nucleoside transport systems. Biochem Pharmacol 46:891–896

320. Banaei RB, Schubert P, Rothe G, Gehmann J, Rudolphi K, Vater G, Kreutzberg GW (1994) Modulation of intracellular formation of reactive oxygen intermediates in peritoneal macrophages and microglia/braain macrophages by propentofylline. J Cereb Blood Flow Metab 14:145–149

321. Schubert P, Rudolphi KA, Fredholm BB, Nakamura Y (1994) Modulation of nerve and glial function by adenosine - role in the development of ischemic damage. Int J Biochem 26:1227–1236

322. McRae A, Rudolphi KA, Schubert P (1994) Propentofylline depresses amyloid and Alzheimer's CSF microglial antigens after ischaemia. Neuroreport 5:1193–1196

323. McRae A, Ling EA, Schubert P, Rudolphi K (1998) Properties of activated microglia and pharmacologic interference by propentofylline. Alzheimer Dis Assoc Disord 12(Suppl 2):S15–S20

324. Schubert P, Ogata T, Rudolphi K, Marchini C, McRae A, Ferroni S (1997) Support of homeostatic glial cell signaling: a novel therapeutic approach by propentofylline. Ann N Y Acad Sci 826:337–347

325. Tsutsui S, Schernmann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, Warren K, Power C (2004) A2A adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neurosci 24:1521–1530

326. Färber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, Bechmann I, Enjyoji K, Robson SC, Kettenmann H (2008) The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56:331–341

327. Ohswala K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2012) Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 121:217–227

328. Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF (2009) Adenosine A2A receptor mediates microglial process retraction. Nat Neurosci 12:872–878

329. Yao SQ, Li ZZ, Huang QY, Li F, Wang ZW, Augusto E, He JC, Wang XT, Chen JF, Zheng Y, McRae A, Ferroni S (2004) Knockout mice reveal the contributions of P2Y and P2X receptors to nucleotide-induced Ca2+ signaling in macrophages. J Biol Chem 281:35147–35155
332. Langosch JM, Gebicke-Haerter PJ, Nörenberg W, Illes P (1994) Characterization and transduction mechanisms of purinoceptors in activated rat microglia. Br J Pharmacol 113:29–34

333. Nörenberg W, Langosch JM, Gebicke-Haerter PJ, Illes P (1994) Characterization and possible function of adenosine 5′-triphosphate receptors in activated rat microglia. Br J Pharmacol 111:942–950

334. Ferrari D, Villalba M, Chiozzi P, Falzoni S, Ricciardi-Castagnoli P, Di Virgilio F (1996) Mouse microglial cells express a plasma membrane pore gated by extracellular ATP. J Immunol 156:1531–1539

335. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-β release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

336. Brough D, Le Feuvre RA, Ikawa Y, Rothwell NJ (2001) Characterization and transduction mechanisms of purinoceptors in microglia: involvement of the A2B receptor. J Neurosci 19:272–280

337. Skaper SD, Facci L, Evans NA, Chessell I, Davis JB, Koizumi S, Ohsawa K, Tsuda M, Nasu-Tada K, Shinozaki Y, Challier J, Bruniquel D, Sewell AK, Laugel B (2013) Adenosine receptor signalling and immune responsiveness. Nat Med 8:358–365

338. Desrosiers MD, Cembrola KM, Fakir MJ, Stephens LA, Jama FM, Shameli A, Mehal WZ, Santamaria P, Shi Y (2007) Adenosine deamination sustains dendritic cell activation in inflammation. J Immunol 179:1884–1892

339. Ghaemi Oskouie F, Shameli A, Yang A, Desrosiers MD, Mucsi AD, Blackburn MR, Yang Y, Santamaria P, Shi Y (2011) High levels of adenosine deaminase on dendritic cells promote autoreactive T cell activation and diabetes in nonobese diabetic mice. J Immunol 186:6798–6806

340. Mizumoto N, Kumamoto T, Robson SC, Sèvigny J, Matsue H, Enjyoji K, Takashima A (2002) CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modular roles in inflammation and immune responsiveness. Nat Med 8:358–365

341. Idzko M, Ayata K, Müller T, Dürk T, Grimm M, Baudiss K, Vieira RP, Cicko S, Boehlke C, Zech A, Sorichter S, Pelletier J, Sèvigny J, Rothenfusser S, Mucsi AD, Ferrari D, la Sala A, Girolomoni G, Norgauer J (2000) The P2 receptor regulates cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. J Cell Physiol 199:149–156

342. Idzko M, Herouy Y, Fleischmann BK (1999) Expression and a role of functionally active 5′-nucleotidase in human dendritic cells. J Immunol 161:1095–1102

343. Idzko M, Ayata K, Müller T, Dürk T, Grimm M, Baudiss K, Vieira RP, Cicko S, Boehlke C, Zech A, Sorichter S, Pelletier J, Sèvigny J, Rothenfusser S, Mucsi AD, Ferrari D, la Sala A, Girolomoni G, Norgauer J (2000) The P2 receptor regulates cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. J Cell Physiol 199:149–156

344. Idzko M, Herouy Y, Fleischmann BK (1999) Expression and a role of functionally active 5′-nucleotidase in human dendritic cells. J Immunol 161:1095–1102

345. Idzko M, Herouy Y, Fleischmann BK (1999) Expression and a role of functionally active 5′-nucleotidase in human dendritic cells. J Immunol 161:1095–1102
chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2Y receptors. Blood 100:925–932

365. Vanderstocken G, Van de Paar E, Robaye B, Di Pietrantonio L, Bondue B, Boeynaems JM, Desmecht D, Commini D (2012) Protective role of P2Y11 receptor against lung infection induced by pneumonia virus of mice. PLoS ONE 7:e50385

366. Schnurr M, Toy T, Stoitzner P, Cameron P, Shin A, Beecroft T, Davis ID, Cebon J, Maraskovsky E (2003) ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y1 receptor signaling. Blood 102:613–620

367. la Sala A, Sebastiani S, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2002) Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood 99:1715–1722

368. Horckmans M, Marbet B, Marteau F, Bulté F, Maho A, Parmentier M, Boeynaems JM, Communi D (2006) Extracellular adenosine nucleotides inhibit the release of major monocyte recruiters by human monocytoid-derived dendritic cells. FEBS Lett 580:747–754

369. Schnurr M, Then F, Galambos P, Scholz C, Siegmund B, Endres S, Eigler A (2000) Extracellular ATP and TNF-α synergize in the activation and maturation of human dendritic cells. J Immunol 165:4704–4709

370. Wilkin F, Duhan X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocytoid-derived dendritic cells. J Immunol 166:7172–7177

371. la Sala A, Ferrari D, Corinti S, Cavani A, Di Virgilio F, Girolomoni G (2001) Extracellular ATP induces a distorted maturation of dendritic cells and inhibits their capacity to initiate Th1 responses. J Immunol 166:1611–1617

372. Wilkin F, Sterorde P, Goldman M, Boeynaems JM, Robaye B (2002) Extracellular adenosine nucleotides modulate cytokine production by human monocytoid-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10. Eur J Immunol 32:2409–2417

373. Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM, Communi D (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106:3860–3866

374. Bles N, Horckmans M, Lefort A, Libert F, Macours P, El Houssi H, Marteau F, Boeynaems JM, Communi D (2007) Gene expression profiling defines ATP as a key regulator of human dendritic cell functions. J Immunol 179:3550–3558

375. Bles N, Di Pietrantonio L, Boeynaems JM, Communi D (2010) ATP confers tumorigenic properties to dendritic cells by inducing amphiregulin secretion. Blood 116:3219–3226

376. Marteau F, Communi D, Boeynaems JM, Suarez Gonzalez N (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenosine nucleotides diphasophates on human monocytoid-derived dendritic cells. J Leukoc Biol 76:796–803

377. Ben Addi A, Cammarata D, Conley PB, Boeynaems JM, Robaye B (2010) Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J Immunol 185:5900–5906

378. Idzko M, Panther E, Sorichter S, Herouy Y, Berod L, Geissler M, Mckennonhampt M, Elnser P, Girolomoni G, Norgauer J (2004) Characterization of the biological activities of uridine diphasophate in human dendritic cells: Influence on chemotaxis and CXCL8 release. J Cell Physiol 201:286–293

379. Marriott I, Inshoe EW, Bost KL (1999) Extracellular uridine nucleotides initiate cytokine production by murine dendritic cells. Cell Immunol 195:147–156

380. Skelton L, Cooper M, Murphy M, Platt A (2003) Human immature monocytoid-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucone. J Immunol 171:1941–1949

381. Shin A, Toy T, Rothenfusser S, Robson N, Vorac J, Dauer M, Stuplich M, Endres S, Cebon J, Maraskovsky E, Schnurr M (2008) P2Y1 receptor signaling regulates phenotype and IFN-α secretion of human plasmacytoid dendritic cells. Blood 111:3062–3069

382. Qu Y, Ramachandra L, Mohr S, Franco L, Harding CV, Nunez G, Dubyak GR (2009) P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLPR3 inflammasome but is independent of caspase-1. J Immunol 182:552–562

383. Dubyak GR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14:1697–1706

384. Mutini C, Falzoni S, Ferrari D, Chiozzi P, Morelli A, Baricordi OR, Collo G, Ricciardi-Castagnoli P, Di Virgilio F (1999) Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J Immunol 163:1958–1965

385. Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandonà D, Savaglio E, Di Virgilio F (2007) Stimulation of P2 receptors causes release of IL-1β-loaded microvesicles from human dendritic cells. Blood 109:3856–3864

386. Weber FC, Esser PR, Müller T, Ganesan J, Pellegratti P, Simon MM, Zeiser R, Idzko M, Jakob T, Martin SF (2010) Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. J Exp Med 207:2609–2619

387. Sluyter R, Wiley JS (2002) Extracellular adenosine 5'-triphosphate induces a loss of CD23 from human dendritic cells via activation of P2X7 receptors. Int Immunol 14:1415–1421

388. Baroni M, Pizzirani C, Pinotti M, Ferrari D, Adinolfi E, Calzavarini S, Caruso P, Bernardi F, Di Virgilio F (2007) Stimulation of P2 (P2X7) receptors in human dendritic cells induces the release of tissue factor-bearing microparticles. FASEB J 21:1926–1933

389. Coutinho-Silva R, Persechini PM, Bisagno RD, Perfettini JL, Neto AC, Kanellopoulos JM, Motta-Ly I, Dautry-Varsat A, Ojcius DM (1999) P2Y2/P2X7 receptor-dependent apoptosis of dendritic cells. Am J Physiol 276:C1139–C1147

390. Nihei OK, de Carvalho AC, Savino W, Alves LA (2000) Pharmacologic properties of P2Y2/P2X7 receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 96:996–1005

391. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Momoe M, Yagiita H, Ishii N, Evans R, Honda K, Takeda K (2008) ATP drives lamina propria T(H)17 cell differentiation. Nature 455:808–812

392. Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y, Okumura R, Saiga H, Kurakawa T, Ikeda K, Maeda Y, Nishimura J, Arima Y, Atarashi K, Honda K, Murakami M, Kunisawa J, Kiyono H, Okumura M, Yamamoto M, Takeda K (2013) Ectonucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 190:774–783

393. Fredholm BB, Sandberg G, Ernström U (1978) Cyclic AMP in freshly prepared thymocyte suspensions. Evidence for stimulation by endogenous adenosine. Biochem Pharmacol 27:2675–2682

394. Marone G, Plaut M, Lichtenstein LM (1978) Characterization of a specific adenosine receptor on human lymphocytes. J Immunol 121:2153–2159

395. Schwartz AL, Stern RC, Polmar SH (1978) Demonstration of adenosine receptor on human lymphocytes in vitro and its possible role in the adenosine deaminase-deficient form of severe combined immunodeficiency. Clin Immunol Immunopathol 9:499–505

396. Fredholm BB, Sandberg G (1983) Inhibition by xanthine derivatives of adenosine receptor-stimulated cyclic adenosine 3’,5’-monophosphate accumulation. Springer
monophosphate accumulation in rat and guinea-pig thymocytes. Br J Pharmacol 80:639–644

397. Fishman RF, Rubin AL, Novogrodsky A, Stenzel KH (1980) Adenosine deaminase and 5'-nucleotidase activity of human peripheral T lymphocytes and lymphoblastoid cell lines. Adv Exp Med Biol 165:–261–266

398. Pechán I, Rendeková V, Niks M, Pechánová E, Krizko J (1984) Expression of A2A adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

399. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini M, Fortini C, Leung E, Mac LS, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

400. Smith GP, Shah T, Webster AD, Peters TJ (1981) Studies on the kinetic properties and subcellular localization of adenosine diphosphatase activity in human peripheral blood lymphocytes. Clin Exp Immunol 46:321–326

401. Cuschieri A, Mughal S, Kharbat BA (1982) Ultrastructural localization of adenosine triphosphatase activity in lymphocytes activated in vitro by phytohaemagglutinin. Histochim J 14:593–607

402. Langston HP, Ke Y, Gewirtz AT, Dombrowski KE, Kapp JA (2003) Characterization of A2A adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

403. Barankiewicz J, Dosch HM, Cohen A (1984) Extracellular nucleotide catabolism in human B and T lymphocytes. The source of adenosine production. J Biol Chem 269:7094–7098

404. Barankiewicz J, Ronlov G, Jimenez R, Gruber HE (1990) Selective adenosine release from human B but not T lymphoid cell line. J Biol Chem 265:15738–15743

405. Filipinni A, Taffs RE, Agui T, Sitkovsky MV (1990) Ecto-ATPase activity in cytolytic T-lymphocyte. s Protection from the cytolytic effects of extracellular ATP. J Biol Chem 265:334–340

406. Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, Serra S, Malavasi F (2013) A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2: e26246

407. Huang S, Apasov S, Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) Selective suppression of blastogenesis induced by noncyclic adenosine-containing compounds. Cell Immunol 240:130–140

408. Horenstein AL, Chillemi A, Zaccarello G, Bruzzone S, Quarona V, Zito A, Serra S, Malavasi F (2013) A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2: e26246

409. Huang S, Apasov S, Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) Selective suppression of blastogenesis induced by noncyclic adenosine-containing compounds. Cell Immunol 240:130–140

410. Fishman RF, Rubin AL, Novogrodsky A, Stenzel KH (1980) Adenosine deaminase and 5'-nucleotidase activity of human peripheral T lymphocytes and lymphoblastoid cell lines. Adv Exp Med Biol 165:–261–266

411. Varani K, Gessi S, Dalpiaz A, Ongini E, Borea PA (1997) Characterization of A2A adenosine receptors in human lymphocyte membranes by [3H]-SCH 58261 binding. Br J Pharmacol 122:386–392

412. Barankiewicz J, Dosch HM, Cohen A (1984) Extracellular nucleotide catabolism in human B and T lymphocytes. The source of adenosine production. J Biol Chem 269:7094–7098

413. Cuschieri A, Mughal S, Kharbat BA (1982) Ultrastructural localization of adenosine triphosphatase activity in lymphocytes activated in vitro by phytohaemagglutinin. Histochim J 14:593–607

414. Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac LS, Borea PA (2004) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65:711–719

415. Takahashi HK, Iwagaki H, Hamano R, Kanke T, Liu K, Sadamori H, Yagi T, Yoshino T, Sendo T, Tanaka N, Nishibori M (2007) Effect of adenosine receptor subtypes stimulation on mixed lymphocyte reaction. Eur J Pharmacol 564:204–210

416. Yang A, Musci AD, Desrosiers MD, Chen JF, Schermer NB, Blackburn MR, Shi Y (2010) Adenosine mediated desensitization of cAMP signaling enhances T-cell responses. Eur J Immunol 40: 449–459

417. Armstrong JM, Chen JF, Schwarzchild MA, Apasov S, Smith PT, Caldwell C, Chen P, Figler H, Sullivan G, Fink S, Linden J, Sitkovsky M (2001) Gene dose effect reveals no G1-coupled A2A adenosine receptor reserve in murine T-lymphocytes: studies of cells from A2A-receptor-genec-deficient mice. Biochem J 354:123–130

418. Lappas CM, Rieger JM, Linden J (2005) A2A adenosine receptor induction kinetics and adenosine uptake 5'-nucleotidase and adenosine deaminase activities in human peripheral blood lymphocytes. Clin Exp Immunol 80:639–644

419. Cuschieri A, Mughal S, Kharbat BA (1982) Ultrastructural localization of adenosine triphosphatase activity in lymphocytes activated in vitro by phytohaemagglutinin. Histochim J 14:593–607

420. Domnac J, Bonnafous JC, Favero J, Gartner A, Mani JC (1984) 5'-Nucleotidase and adenosine deaminase activities in human lymphocytes and lymphoblastoid cell lines. Adv Exp Med Biol 165:–261–266

421. Himer L, Csóka B, Selmeczy Z, Koscsó B, Pócza T, Pacher P, Németh ZH, Deitch EA, Spolarics Z, Németh ZH, Haskó G (2008) Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function. FASEB J 22:3491–3499

422. Himer L, Csóka B, Selmeczy Z, Kocsó B, Pócoza T, Pacher P, Németh ZH, Deitch EA, Vizi E, Cronstein BN, Haskó G (2010) Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J 24:2631–2640

423. Cekic C, Sag D, Day YJ, Linden J (2013) Extracellular adenosine regulates naive T cell development and peripheral maintenance. J Exp Med 210:2693–2706

424. Chimote AA, Hajdu P, Kucher V, Boiko N, Kuras Z, Szilagyi O, Yun YH, Conforti L (2013) Selective inhibition of KCa3.1 channels mediates adenosine regulation of the motility of human T cells. J Immunol 190:6273–6280

425. Takedachi M, Qu D, Ebisu Y, Oohara H, Joachims ML, McGee ST, Maeda E, McEvyr RP, Tanaka T, Miyasaka M, Murakami S, Krahn T, Blackburn MR, Thompson LF (2008) CD73-generated adenosine restricts lymphocyte migration into draining lymph nodes. J Immunol 180:6288–6296

426. Ring S, Oliver SJ, Cronstein BN, Enk AH, Mahnek K (2009) CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent mechanism. J Allergy Clin Immunol 123:1287–1296

427. Antonioli L, Pacher H, Vizi ES, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19:355–367

428. Ernst PB, Garrison JC, Thompson LF (2010) Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol 185:1993–1998

429. Whiteside TL, Mandapathil M, Schuler P (2011) The role of the adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg). Curr Med Chem 18:5217–5223

430. Borsellino G, Kleineveldt M, Di Mitri D, Sterneck A, Diamantini A, Giometto R, Hopner S, Centonze D, Bernardi G, Dell’Acqua ML, Rossini PM, Battistini L, Rotschke O, Falk K (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:2255–2232

431. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR (2006) T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5'-
adenosine monophosphate to adenosine. J Immunol 177:6780–6786

431. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Ouakka M, Kuchroo VK, Strom TB, Robson SC (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

432. Mandapathil M, Hildurbor D, Szczepanski MJ, Czysztowska M, Szajnik M, Ren J, Lang S, Jackson EK, Gorelik E, Whiteside TL (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 285:7176–7186

433. Dwyer KM, Handyarz D, Putheti P, Hill PA, Pommey S, McRae JL, Winterhalter A, Doherty G, Deaglio S, Koulmanda M, Gao W, Robson SC, Strom TB (2010) Expression of CD39 by human peripheral blood CD4+CD25+ T cells denotes a regulatory memory phenotype. Am J Transplant 10:2410–2420

434. Mandler R, Birch RE, Polmar SH, Kammer GM, Rudolph SA (1982) Abnormal adenosine-induced immunosuppression and cAMP metabolism in T lymphocytes of patients with systemic lupus erythematous. Proc Natl Acad Sci U S A 79:7542–7546

435. Schultz LA, Kammer GM, Rudolph SA (1988) Characterization of the human T lymphocyte adenosine receptor: comparison of normal and systemic lupus erythematous cases. FASEB J 2:244–250

436. Yang Z, Day YJ, Toufektsian MC, Ramos SI, Marshall M, Wang XQ, French BA, Linden J (2005) Infarct-sparing effect of A2A - adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 111:2190–2197

437. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J (2006) Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–2064

438. Sevigny CP, Li L, Awad AS, Huang L, McDuffie M, Linden J, Lobo PJ, Okusa MD (2007) Activation of adenosine 2A receptors attains allograft rejection and alloantigen recognition. J Immunol 178:4240–4249

439. Han KL, Thomas SV, Koontz SM, Changpinroa CM, Ha SK, Malech HL, Kang EM (2013) Adenosine A2A receptor agonist-mediated increase in donor-derived regulatory T cells suppresses development of graft-versus-host disease. J Immunol 190:458–468

440. Wang L, Fan J, Chen S, Zhang Y, Curiel TJ, Zhang B (2013) Graft-versus-host disease is enhanced by selective CD73 blockade in mice. PLoS One 8:e58397

441. Li N, Mu L, Wang J, Zhang J, Xie X, Kong Q, Tang W, Yao X, Liu Y, Wang L, Wang G, Wang D, Jin L, Sun B, Li H (2012) Activation of the adenosine A2A receptor attenuates experimental autoimmune myasthenia gravis severity. Eur J Immunol 42:1140–1151

442. Alam MS, Kurtz CC, Rowlatt RM, Reuter BK, Wiznerezowicz E, Das S, Linden J, Crowe SE, Ernst PB (2009) CD73 is expressed by human regulatory T helper cells and suppresses proinflammatory cytokine production and Helicobacter felis-induced gastritis in mice. J Infect Dis 199:494–504

443. Németh ZH, Csóka B, Wilmanski J, Xu D, Lu Q, Ledent C, Deitch EA, Pacher P, Spolarics Z, Haskó G (2006) Adenosine A2A receptor inactivation increases survival in polymicrobial sepsis. J Immunol 176:5616–5626

444. Häusler SF, Montalbán del Barrio I, Strohschein J, Anoop CP, Engel JB, Höning A, Ossadnik M, Horn E, Fischer B, Krokenberger M, Heuer S, Seida AA, Junker M, Kneitz H, Kloer D, Klotz KN, Dietl J, Wischhusen J (2011) Ectonucleotidases CD39 and CD73 on OvCa cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity. Cancer Immunol Immunother 60:1405–1418

445. Nikolova M, Carriere M, Lelièvre J, Muhtarova M, Bensussan A, Lévy Y (2009) Regulatory T cells inhibit CD8 T cell proliferation in HIV-1 infection through CD39/adenosine pathway. Retrovirology 6:202

446. Nikolova M, Carriere M, Jenabian MA, Limou S, Younas M, Kök A, Hué S, Seddiki N, Hulin A, Delanoue O, Schuitemaker H, Herbeck JT, Mullins JI, Muhtarova M, Bensussan A, Zagury JF, Lelièvre JD, Lévy Y (2011) CD39/adenosine pathway is involved in AIDS progression. PLoS Pathog 7:e1002110

447. Sakowicz-Burkiewicz M, Kocbuch K, Grden M, Maciejewska I, Szutowicz A, Pawelczyk T (2012) Impact of adenosine receptors on immunoglobulin production by human peripheral blood B lymphocytes. J Physiol Pharmacol 63:661–668

448. Saue Z, Schuler PJ, Hong CS, Cheng D, Jackson EK, Whiteside TL (2013) Adenosine production by human B cells and B cell-mediated suppression of activated T cells. Blood 122:9–18

449. Wilkinson JH, Robinson JM (1974) Effect of ATP on release of intracellular enzymes from damaged cells. Nature 249:662–663

450. Hallak GJ, Wilkinson JH (1977) Action of adenosine phosphates on the release of intracellular lactate dehydrogenase from human and rat lymphocytes. Enzyme 22:361–369

451. Wollberg G, Zimmerman TP, Duncan GS, Singer KH, Elion GB (1978) Inhibition of lymphocyte-mediated cytosis by adenosine analogs. Biochemical studies concerning mechanism of action. Biochem Pharmacol 27:1487–1495

452. Ikehara S, Pahwa RN, Lunzer DG, Good RA, Modak MJ (1981) Adenosine 5'-triphosphate- (ATP) mediated stimulation and suppression of DNA synthesis in lymphoid cells. I. Characterization of ATP responsive cells in mouse lymphoid organs. J Immunol 127:1834–1838

453. Gregory SH, Kern M (1981) Mitogenic response of T-cell subclasses to agarose-linked and to free ribonucleotides. Immunology 42:451–457

454. Di Virgilio F, Bronte V, Collavo D, Zanovello P (1989) Responses of mouse lymphocytes to extracellular adenosine 5'-triphosphate (ATP). Lymphocytes with cytotoxic activity are resistant to the permeabilizing effects of ATP. J Immunol 143:1955–1960

455. Zheng LM, Zychlinsky A, Liu CC, Ojcius DM, Young JD (1991) Extracellular ATP as a trigger for apoptosis or programmed cell death. J Cell Biol 112:279–288

456. Lin J, Krishnaraj R, Kemp RG (1985) Exogenous ATP enhances calcium influx in intact thymocytes. J Immunol 135:3403–3410

457. el-Moatassim C, Dornand J, Mani JC (1987) Extracellular ATP increases cytotoxic free calcium in thymocytes and initiates the blastogenesis of the phorbol 12-myristate 13-acetate-treated medulary population. Biochim Biophys Acta 927:437–444

458. Ross PE, Ehrling GR, Cahalan MD (1997) Dynamics of ATP-induced calcium signaling in single mouse thymocytes. J Cell Biol 138:977–988

459. Padhe S, Cohen A, Roifman CM (1991) ATP-induced activation of human B lymphocytes via P2-purinoceptors. J Immunol 146:1626–1632

460. Wiley JS, Chen R, Wiley MJ, Jamieson GP (1992) The ATP+ receptor-operated ion channel of human lymphocytes: inhibition of ion fluxes by amiloride analogs and by extracellular sodium ions. Arch Biochem Biophys 292:411–418

461. Wiley JS, Chen R, Jamieson GP (1993) The ATP+ receptor-operated channel (P,Z class) of human lymphocytes allows Ba2+ and ethidium+ uptake: inhibition of influxes by suramin. Arch Biochem Biophys 305:54–60

462. Ferrari D, Munerati M, Melchiorri L, Hanau S, Di Virgilio F, Baricordi OR (1994) Responses to extracellular ATP of lymphoblastoid cell lines from Duchenne muscular dystrophy patients. Am J Physiol 267:C886–C892

463. Wiley JS, Chen JR, Snook MB, Jamieson GP (1994) The P2Z-purinoceptor of human lymphocytes: actions of nucleotide agonists
and irreversible inhibition by oxidized ATP. Br J Pharmacol 112: 946–950

464. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 is a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 120:1483–1490

465. Bretschneider F, Klapperstück M, Löhn M, Markwardt F (1995) Nonselective cationic currents elicited by extracellular ATP in human B-lymphocytes. Pflugers Arch 429:691–698

466. Markwardt F, Löhn M, Böhm T, Klapperstück M (1997) Purinoreceptor-operated cationic channels in human B lymphocytes. J Physiol 498:143–151

467. Chused TM, Apasov S, Sitkovsky M (1996) Murine T lymphocytes modulate activity of an ATP-activated P2X-type purinoceptor during differentiation. J Immunol 157:1371–1380

468. Baricordi OR, Ferrari D, Melchiorri L, Chiozzi P, Hanau S, Chiari E, Baricordi OR, Melchiorri L, Adinolfi E, Falzoni S, Chiozzi P, Buell钢筋

469. Gargett CE, Wiley JS (1997) The isoquinoline derivative KN-62 is a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 112:946–950

470. Scheuplein F, Schwarz N, Adriouch S, Krebs C, Bannas P, Rissiek B, Seman M, Haag F, Koch-Nolte F (2009) NAD+ and ATP released from injured cells induce P2X7-dependent shedding of CD62L and externalization of phosphatidylserine by murine T cells. J Immunol 182:2898–2908

471. Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, Zeng Y, Liu J, Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, Zeng Y, Liu J (2010) Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Physiol Cell Physiol 298:C457–C464

472. Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A (2014) ATP-induced apoptosis of thymocytes is mediated by activation of P2X7 receptor and involves de novo ceramide synthesis and mitochondrial apoptosis. Biochim Biophys Acta 1761:73–82

473. Yu T, Junger WG, Yuan C, Jin A, Zhao Y, Zheng X, Zeng Y, Liu J (2010) Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am J Physiol Cell Physiol 298:C457–C464

474. Takahata M, Takeda K, Kishimoto T, Ishii M, Iwatsuki S, Shizuda M, Takahata M, Takeda K, Kishimoto T, Ishii M, Iwatsuki S, Shizuda M (1998) Adenosine triphosphate acts as a paracrine signaling molecule to induce activation and proliferation of T-helper cells. J Immunol 159:3075–3083

475. Jamieson GP, Snook MB, Thurlow PJ, Wiley JS (1996) The isoquinoline derivative KN-62 is a potent antagonist of the P2Z-receptor of human lymphocytes. Br J Pharmacol 112:3075–3083

476. Williams TJ, Fadok VA, Briley WN, Reed JC, Marchesi VT (1995) Receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177:2842–2850

477. Schenk U, Rasmussen H, Casati A, Ferro M, Fumagalli M, Verderio C, Buer J, Scanziani E, Grassi F, Detmers W, Pinsker K (2003) Purinergic control of T cell activation by ATP release through pannexin-1 hemichannels. Sci Signal 1:ra6

478. Lu G, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA, Junger WG (2009) Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J 23:1685–1693

479. Junger WG (2011) Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol 11:201–212

480. Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A (2014) Adenosine triphosphate acts as a paracrine signaling molecule to reduce the mobility of T cells. EMBO J 33:1354–1364

481. Castano V, Wright KL, Tandon P, Fornace AJ, Jr (2005) Membrane phosphatidylserine distribution is a non-apoptotic signalling mechanism in lymphocytes. Nat Cell Biol 7:808–816

482. Foster JG, Carter E, Kilty I, MacKenzie AB, Ward SG (2013) Mitochondrial superoxide generation enhances P2X7-mediated loss of cell surface CD62L on naive human CD4+ T lymphocytes. J Immunol 190:1551–1559

483. Apasov SG, Koshiba M, Chused TM, Sitkovsky MV (1997) Effects of extracellular ATP and adenosine on different thymocyte subsets. Possible role of ATP-gated channels and G protein-coupled purinergic receptor. J Immunol 158:5095–5105

484. Nagy PV, Fehér T, Marga S, Matkó J (2000) Apoptosis of murine thymocytes induced by extracellular ATP is dose- and cytosolic pH-dependent. Immunol Lett 72:23–30

485. Lépine S, Le Stunff H, Lakatos B, Sulpice JC, Giraud F (2006) ATP-induced apoptosis of thymocytes is mediated by activation of P2X7 receptor and involves de novo ceramide synthesis and mitochondrial apoptosis. Biochim Biophys Acta 1761:73–82

486. Aswad F, Demert G (2005) P2X7 receptor expression levels determine lethal effects of a purine based danger signal in T lymphocytes. Cell Immunol 243:58–65

487. Tsukimoto M, Maehata M, Harada H, Ikari A, Takagi K, Degawa M (2006) P2X7 receptor-dependent cell death is modulated during murine T cell maturation and mediated by dual signaling pathways. J Immunol 177:2842–2850

488. Schenk U, Frascoli M, Proietti M, Geffers R, Traggiai E, Buer J, Ricordi C, Westendorf AM, Grassi F (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4:ra12

489. Aswad F, Dennert G (2005) High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 175:3075–3085

490. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD+-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytosolic P2X7 purinoceptor. Immunity 19:571–582

491. Kawamura H, Aswad F, Minagawa M, Malone K, Kaslow H, Koch-Nolte F, Schott WH, Leiter EH, Dennert G (2005) P2X7 receptor-dependent and -independent T cell death is induced by nicotinamide adenine dinucleotide. J Immunol 174:1971–1979

492. Adriouch S, Hubert S, Fehrbach S, Koch-Nolte F, Haag F, Seman M, Adriouch S, Hubert S, Fehrbach S, Koch-Nolte F, Haag F, Seman M, Adriouch S, Hubert S, Fehrbach S, Koch-Nolte F, Haag F, Seman M (2007) NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J Immunol 179:186–194

493. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, Koch-Nolte F, Boyer O, Seman M, Adriouch S (2010) Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med 207:2561–2568

494. Trabaneli S, Ocakliaková D, Gulinelli S, Curti A, Salvestrini V, Vieira RP, Izdzo M, Di Virgilio F, Ferrari D, Lemoli RM (2012) Extracellular ATP exerts opposite effects on activated and regulatory CD4+ T cells via purinergic P2 receptor activation. J Immunol 189:1303–1310

495. Adinolfi E, Callegari MG, Ferrari D, Bolognesi C, Minelli M, Wieczkowski MR, Pinton P, Rizzuto R, Di Virgilio F (2005) Basal activation of the P2X7 ATP receptor elevates mitochondrial calcium and potential, increases cellular ATP levels, and promotes serum-independent growth. Mol Biol Cell 16:3260–3272

496. Santos AA Jr, Rodrigues-Junior V, Zanin RF, Borges TJ, Bonorino C, Coutinho-Silva R, Takayia CM, Santos DS, Campos MM, Monroe FB (2013) Implication of purinergic P2X7 receptor in M. tuberculosis infection and host interaction mechanisms: a mouse model study. Immunobiology 218:1104–1112
504. Chen L, Brosnan CF (2006) Exacerbation of experimental autoimmunity. Eur J Immunol 40:2401–2408

505. Freedman BD, Liu QH, Gaulton G, Kotlikoff MI, Hescheler J, Loomis WH, Namiki S, Ostrom RS, Insel PA, Junger WG (2003) ATP release and autocrine signaling through P2X4 receptors regulate T cell activation in allergic pulmonary inflammation. J Immunol 178:1486–1495

511. Manohar M, Hirsh MI, Chen Y, Woehrle T, Karande AA, Bergman G, Mittrücker HW (2008) High sensitivity of intestinal CD8+ T cells to nucleotides indicates P2X7 as a regulator for intestinal T cell responses. J Immunol 181:3861–3869

521. Nowak M, Lynch L, Yue S, Ohta A, Sitkovsky M, Balk SP, Exley M, Sitkovsky O (2014) Extracellular adenosine receptor agonist potentiates natural killer cell activity. J Exp Med 203:2639–2648

522. Subramanian M, Kini R, Madasu M, Ohta A, Nowak M, Exley M, Sitkovsky M, Ohta A (2014) Extracellular adenosine controls NK-cell-dependent hepatitis induction. Eur J Immunol 44:1119–1129

529. Henriksson T (1983) Inhibition of natural killing by adenosine and modulation of natural killer cell activity by purine nucleosides. Acta Med Scand 193:285–289

530. Schmidt A, Ortaldo JR, Herberman RB (1984) Inhibition of human natural killer cell activity by purinoceptors. 1. Effect of exogenous adenosine triphosphate. Cell Immunol 144:11–16

531. Krishnaraj R (1992) Negative modulation of human NK cell activity by purinoceptors. 1. Effects of exogenous adenosine triphosphate. Cell Immunol 141:306–322
581. Goding JW, Howard MC (1998) Ecto-enzymes of lymphoid cells. Immunol Rev 161:5–10
582. Gessi S, Varani K, Merighi S, Fogli E, Sacchetto V, Benini A, Leung E, Mac-Lennan S, Borea PA (2007) Adenosine and lymphocyte regulation. Purinergic Signal 3:109–116
583. Leavy O (2007) Regulatory T cells: Adding adenosine to the mix. Nat Rev Immunol 7:493
584. Zarek PE, Powell JD (2007) Adenosine and anergy. Autoimmunity 40:425–432
585. Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A (2008) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(Suppl 1):S457–S464
586. Linden J, Cekic C (2012) Regulation of lymphocyte function by adenosine. Arterioscler Thromb Vasc Biol 32:2097–2103
587. Di Virgilio F, Vishwanath V, Ferrari D (2001) On the role of the P2X7 receptor in the immune system. In: Abbracchio MP, Williams M (eds) Handbook of Experimental Pharmacology, Volume 151/II. Purinergic and Pyrimidinergic Signalling II - Cardiovascular, Respiratory, Immune, Metabolic and Gastrointestinal Tract Function. Springer-Verlag, Berlin, pp 356–374
588. Haag F, Adiouch S, Brass A, Jung C, Möller S, Scheuplein F, Bannas P, Serman M, Koch-Nolte F (2007) Extracellular NAD and ATP: Partners in immune cell modulation. Purinergic Signal 3:71–81
589. Costa-Junior HM, Marques-da-Silva C, Vieira FS, Monção-Ribeiro LC, Coutinho-Silva R (2011) Lipid metabolism modulation by the P2X7 receptor in the immune system and during the course of infection: new insights into the old view. Purinergic Signal 7:381–392
590. Yamada T, Chakrabarty AM (2004) ATP-utilizing enzymes, purinergic receptor modulation, cupredoxins and mammalian cell death. In: Ramos JL (ed) Pseudomonas. Kluwer Academic/Plenum Publishers, New York, pp 47–67
591. Coutinho-Silva R, Monteiro da Cruz C, Peniche PM, Ojcius DM (2007) The role of P2 receptors in controlling infections by intracellular pathogens. Purinergic Signal 3:83–90
592. Coutinho-Silva R, Corrêa G, Sater AA, Ojcius DM (2009) The P2X7 receptor and intracellular pathogens: a continuing struggle. Purinergic Signal 5:197–204
593. Wewers MD, Sarkar A (2009) P2X7 receptor and macrophage function. Purinergic Signal 5:189–195
594. Bald D, Koul A (2010) Respiratory ATP synthesis: the new generation of mycobacterial drug targets? FEMS Microbiol Lett 308:1–7