Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 pandemic: Can fasting plasma glucose and HbA1c replace the oral glucose tolerance test to screen for hyperglycaemia in pregnancy?

Charlotte Nachtergaele a, Eric Vicaut a, Sara Pinto b, Sopio Tatulashvili c, Hélène Bihan c, Meriem Salc, Narimane Berkane c, Lucie Allard c, Camille Baudry c, Lionel Carbillon d, Emmanuel Cosson c,e,*

a AP-HP, Unité de Recherche Clinique St-Louis-Lariboisière, Université Denis Diderot, Paris, France
b AP-HP, Jean Verdier Hospital, Paris 13 University, Sorbonne Paris Cité, Department of Endocrinology-Diabetology-Nutrition, CRNH-IdF, CINFO, Bondy, France
c AP-HP, Avicenne Hospital, Paris 13 University, Sorbonne Paris Cité, Department of Endocrinology-Diabetology-Nutrition, CRNH-IdF, CINFO, Bobigny, France
d AP-HP, Jean Verdier Hospital, Paris 13 University, Sorbonne Paris Cité, Department of Obstetrics and Gynecology, Bondy, France
e Paris 13 University, Sorbonne Paris Cité, UMR U557 INSERM/U11125 INRAE/CNAM/Université Paris13, Unité de Recherche Epidémiologique Nutritionnelle, Bobigny, France

A R T I C L E I N F O

Article history:
Received 14 August 2020
Received in revised form 9 December 2020
Accepted 17 December 2020
Available online 13 January 2021

Keywords:
Collège National des Gynécologues Obstétriciens Français (CNGOF)
COVID-19
HbA1c
Oral glucose tolerance test
Société Francophone du Diabète (SFD)

A B S T R A C T

Aims: To evaluate proposals considering HbA1c and fasting plasma glucose (FPG) measurement as a substitute for oral glucose tolerance test (OGTT) to diagnose hyperglycaemia in pregnancy (HIP) during COVID-19 pandemic.

Methods: Of the 7,334 women who underwent the OGTT between 22 and 30 weeks gestation, 966 had HIP (WHO diagnostic criteria, reference standard). The 467 women who had an available HbA1c were used for analysis. French-speaking Society of Diabetes (SFD) proposal to diagnose HIP during COVID-19 pandemic was retrospectively applied: HbA1c ≥5.7% (39 mmol/mol) and/or FPG level ≥5.1 mmol/l. SFD proposal sensitivity for HIP diagnosis and the occurrence of HIP-related events (preeclampsia, large for gestational age infant, shoulder dystocia or neonatal hypoglycaemia) in women with false negative (FN) and true positive (TP) HIP-diagnoses were evaluated.

Results: The sensitivity was 57% [95% confidence interval 52–62]. FN women had globally lower plasma glucose levels during OGTT, lower HbA1c and body mass index than those TP. The percentage of HIP-related events was similar in FN (who were cared) and TP cases.
1. Introduction

To slow the spread of Coronavirus Disease 19 (COVID-19), it is critical to practice social distancing and to reduce contacts, including in phlebotomy centres. This is crucial regarding pregnant women and screening for hyperglycaemia in pregnancy (HIP). The oral glucose tolerance test (OGTT) - reference standard test- requires measurement of fasting (FPG), 1-hour (1h-PG), 2-hour (2h-PG) and sometimes 3-hour plasma glucose [1–6], time that the patient may spent waiting in the crowded phlebotomy centres. In this context, UK [7], France [8] and Japan [9] proposed to temporarily replace OGTT by FPG and HbA1c measurement. The rationale behind this proposal is to combine tests and to reduce the time spent in phlebotomy centres.

Such a proposal should be balanced by the need to provide appropriate care to ensure the best possible pregnancy outcomes for women and their infants. Therefore, screening procedures based on FPG and HbA1c measurement should be sufficient enough to diagnose most of the women with HIP. As a matter of fact, not looking for HIP might lead to a doubling of the rate of events during pregnancy [10,11]. However, missing a few HIP diagnoses could be less deleterious than expected if the false negative cases were at lower risk of HIP-related adverse events than the true positive ones.

The aim of the study was to retrospectively evaluate in a large cohort of women with HIP [12,13] (i) the sensitivity of the French-speaking Society of Diabetes (SFD: Société Francophone du Diabète) / French National College of Obstetricians and Gynecologists (CNGOF: Collège National des Gynécologues et Obstétriciens Français) temporary COVID-19 proposal for HIP diagnosis and (ii) the occurrence of HIP-related events in false negative and true positive cases of HIP when applying this proposal.

2. Material and methods

2.1. Data collection

We have conducted this observational study in our University hospital in a suburban area of Paris, Bondy, France, where medical electronic records of maternal and neonatal events at birth have been routinely collected between January 2012 and October 2016 [12,13]. In addition, data on HIP screening were available for all women. Women were informed that their medical records could be used for research, unless they opposed [12,13]. We analyzed the data anonymously. Our database was declared to the French Committee for computerized data (CNIL: Commission Nationale de l’Informatique et des Libertés, number 1704392v0).

2.2. Screening for and management of hyperglycaemia in pregnancy

In our centre, we have been following the French recommendations for HIP screening, except that our policy is to universally screen every woman, both at the beginning of pregnancy and after 24 weeks of gestation (WG) if prior screening was normal or not done. Early screening during pregnancy is based on FPG measurement. Women with FPG level ≥5.1 mmol/L are diagnosed with HIP and immediately managed appropriately [3]. Those without early-diagnosed HIP are planned to undergo a 75 g OGTT between 24 and 28 WG, with measurement of FPG, 1h-PG and 2h-PG [3]. International Association of Diabetes Pregnancy Study Group (IADPSG) [1] / World Health Organization (WHO) [2] criteria are used for HIP diagnosis, as they have been endorsed in France [3]. Accordingly, gestational diabetes mellitus (GDM) is defined by FPG 5.1–6.9 mmol/L and/or 1h-PG ≥10.0 mmol/L and/or 2h-PG 8.5–11.0 mmol/L during OGTT, whereas diabetes in pregnancy (DIP) is defined by FPG ≥7.0 and/or 2h-PG value ≥11.1 mmol/L [3].

After HIP diagnosis, all women are referred to our multidisciplinary team including a diabetologist, an obstetrician, a midwife, a dietician and a nurse educator and are managed according to French recommendations. They receive individualized dietary advice, education for performing self-monitoring of blood glucose levels six times per day and visit the diabetologist every 2–4 weeks. At the beginning of this educational program, HbA1c level is centrally measured in our hospital (turbidimetric inhibition immunoassay for the in vitro determination of hemoglobin A1c and total hemoglobin in whole blood; Cobas 6000; Roche). Insulin treatment is initiated when pre-prandial or 2-hour post-prandial glucose levels are respectively above 5.0 or 6.7 mmol/L during follow up, according to the French guidelines [3]. Obstetrical care also is also managed according to the French recommendations [3].

Inclusion criteria were age 18–50 years, singleton pregnancies, no personal history of either diabetes or bariatric surgery, no early HIP during this current pregnancy, OGTT performed between 22 and 30 WG.

2.3. Reference standards and selection criteria

We then selected among the women who had HIP according to IADPSG/WHO criteria (as described earlier in the article; respectively 19.5 and 16.9% (p = 0.48). We observed similar results when women at high risk for HIP only were considered.

Conclusion: The SFD proposal has a poor sensitivity to detect HIP. Furthermore, it fails to have any advantages in predicting adverse outcomes.

© 2020 Elsevier B.V. All rights reserved.
reference standard) those who had an HbA1c level measurement (additional Fig. 1).

2.4. Description of tested algorithm

According to SFD/CNGOF COVID-19 proposal [8], no OGTT is performed and women with either HbA1c ≥5.7% (39 mmol/mol) or FPG ≥5.1 mmol/l are diagnosed with HIP.

We then explored whether the results would be similar if selective screening would be applied, which is recommended by SFD/CNGOF proposal. For this sensitivity analysis, we only selected the women who had any of the following risk factors (reference standard in case of selective screening): body mass index ≥25 kg/m²; age ≥35 years; first-degree relative with history of diabetes; previous pregnancy with HIP or with macrosomic infant [3].

2.5. HIP-related events

The main predefined endpoint was the occurrence of a HIP-related event. This composite criterion included at least one of the following events: (i) preeclampsia (blood pressure ≥140/90 mmHg on two recordings four hours apart and proteinuria at or above 300 mg/24 h or 3+ on dipstick testing in a random urine sample), (ii) large-for-gestational-age infant (birth weight greater than the 90th percentile for a standard French population [12,13]), (iii) shoulder dystocia defined as the use of obstetrical manoeuvres (McRoberts manoeuvre, episiotomy after delivery of the foetal head, suprapubic pressure, posterior arm rotation to an oblique angle, rotation of the infant by 180 degrees, or delivery of the posterior arm) and neonatal hypoglycaemia, defined as at least one blood glucose value below 2.2 mmol/l during the first two days of life [12,13]. We also considered each one of the previous events separately, the need for insulin during pregnancy, a preterm delivery (delivery before 37 completed weeks) and admission to a neonatal intensive care unit.

2.6. Statistics

Baseline continuous variables were expressed as mean ± standard deviation. Categorical variables were expressed as frequencies (percentages). To explore the presence of any selection bias, the baseline characteristics of the women who were included were compared to those who were not. To compare continuous variables ANOVA and the Student t test or the Mann Whitney test for Gaussian or non-Gaussian continuous variables respectively were used, and chi-squared (X^2) test or the Fisher-exact tests for categorical variables.

All tests were two-sided and used a significance level of p value at 0.05. Analyses were conducted using and R 3.6.3 software (www.r-project.org).

3. Results

3.1. Population characteristics

As shown in the flow chart (Additional Fig. 1), 467 women were included, and their characteristics are described in Table 1.

The baseline characteristics of these included women and the non-included women were compared with the ones of the 88 women who had HbA1c measured >6 weeks after the OGTT and the 441 who had no HbA1c measured (additional Table 1). Globally, the highest 1h-PG and 2h-PG levels during diagnostic OGTT was observed in the study population. HbA1c level was higher in the women who had HbA1c measured greater than 6 weeks after OGTT (non-included women) than in those for whom HbA1c was measured within 6 weeks. The included women were also slightly older and were more prone to have had hyperglycaemia in previous pregnancy.

For sensitivity analyses, 397 women with risk factors (selective screening) were included. Table 2 shows the characteristics of these women.

3.2. Sensitivity of SFD-CNGOF COVID-19 proposal to diagnose HIP cases

Using universal screening, SFD-CNGOF COVID-19 proposal would have identified 266/467 women with HIP (sensitivity 57% [95% confidence interval 52–62]). Out of the 32 women having DIP according to OGTT (reference standard), 9 women would have been classified as not having HIP, 18 women with GDM and 5 women with DIP.

Using selective screening (sensitivity analysis), SFD-CNGOF COVID-19 proposal would have identified 232/397 women with HIP (sensitivity 58% [95% confidence interval 53–64]). Out of the 30 women having DIP according to OGTT, 8 women would have been classified as not having HIP, 17 women with GDM and 5 women with DIP.

Additional Table 2 shows (i) the sensitivity of HbA1c ≥5.7% (39 mmol/mol) (15% [95% confidence interval 12–19]) or FPG ≥5.1 mmol/l alone (54% [95% confidence interval 50–59]) for HIP diagnosis and (ii) that the results were globally similar when only women for whom HbA1c was measured within 4 weeks after OGTT were considered (sensitivity analysis).

3.3. Sensitivities applying different thresholds of FPG or HbA1c to diagnose HIP cases

Tables 3 and 4 show to what extent applying lower thresholds of FPG (Table 3) or HbA1c (Table 4) would increase the sensitivities of SFD/CNGOF COVID-19 proposal to diagnose HIP cases.
Table 1 – Characteristics of the women by true positive and false negative HIP diagnoses applying universal screening.

	Total n = 467	True positive diagnoses n = 266	False negative diagnoses n = 201	p
OGTT between 22 and 30 WG				
Fasting plasma glucose (mmol/L)	5.1 (0.6)	5.5 (0.5)	4.5 (0.4)	<0.001
Fasting plasma glucose ≥ 5.1 mmol/L	254 (54.4)	254 (95.5)	0 (0.0)	<0.001
1-hour plasma glucose (mmol/L)	0.6 (1.9)	9.6 (2.2)	10.1 (4.3)	<0.001
2-hour plasma glucose (mmol/L)	8.4 (1.9)	8.1 (2.2)	8.8 (1.3)	<0.001
Gestational age when OGTT (WG)	26.2 (1.9)	26.1 (1.9)	26.3 (1.9)	0.46
HbA1c (%)	5.2 (0.5)	5.3 (0.5)	5.0 (0.4)	<0.001
HbA1c (mmol/mol)	33 (6)	34 (6)	31 (4)	<0.001
HbA1c ≥ 5.7% (39 mmol/mol)	70 (15)	70 (26.3)	0 (0.0)	<0.001
Gestational age when HbA1c (WG)	29.3 (2.4)	29.2 (2.3)	29.4 (2.4)	0.35
Glycaemic status (reference standard: IADPSG/WHO criteria)				0.08
GDM	435 (93.1)	243 (91.4)	192 (95.5)	
DIP	32 (6.9)	23 (8.6)	9 (4.5)	
Characteristics				
Age (years)	33.2 (5.4)	33.2 (5.4)	33.0 (5.5)	0.70
Preconception body mass index (kg/m²)	26.8 (5.8)	27.6 (6.1)	25.8 (6.1)	0.001
Preconception hypertension	9 (1.9)	5 (1.9)	4 (2.0)	1
Family history of diabetes	139 (29.8)	82 (30.8)	57 (28.5)	0.56
Employment	201 (43.2)	118 (44.7)	83 (41.5)	0.46
Smoking before pregnancy	37 (7.9)	23 (8.6)	14 (7.0)	0.51
Parity (n)	2.3 (1.2)	2.3 (1.2)	2.2 (1.2)	0.30
Previous pregnancy(ies)				
History of hyperglycaemia in pregnancy				0.83*
First child	145 (31.0)	72 (27.1)	73 (36.3)	
No	243 (52.0)	148 (55.6)	95 (47.3)	
Yes	79 (16.9)	46 (17.3)	33 (16.4)	
History of macrosomia				0.12*
First child	145 (31.0)	72 (27.1)	73 (36.3)	
No	298 (63.8)	176 (66.2)	122 (60.7)	
Yes	24 (5.1)	18 (6.8)	6 (3.0)	
History of hypertensive disorders				0.72*
First pregnancy	105 (22.5)	50 (18.8)	55 (27.4)	
No	344 (73.7)	205 (77.1)	139 (69.2)	
Yes	18 (3.9)	11 (4.1)	7 (3.5)	
History of fetal death				0.20*
First pregnancy	105 (22.5)	50 (18.8)	55 (27.4)	
No	347 (74.3)	205 (77.1)	142 (70.6)	
Yes	15 (3.2)	11 (4.1)	4 (2.0)	
Ethnicity				0.053
North African	156 (33.5)	85 (32.2)	71 (35.3)	
European	103 (22.2)	55 (20.8)	48 (23.9)	
Sub-Saharan African	63 (13.5)	39 (14.8)	24 (11.9)	
Indian-Pakistan-Sri Lankan	79 (17.0)	50 (18.9)	29 (14.4)	
Caribbean	24 (5.2)	19 (7.2)	5 (2.5)	
Asian	19 (4.1)	8 (3.0)	11 (5.5)	
Other	21 (4.5)	8 (3.0)	13 (6.5)	
Events during pregnancy				
HIP-related event	86 (18.4)	52 (19.5)	34 (16.9)	0.47
Preeclampsia	19 (4.1)	9 (3.4)	10 (5.0)	0.38
Large for gestational age infant	56 (12.0)	36 (13.5)	20 (10.0)	0.24
Shoulder dystocia	0	0	0	0
Neonatal hypoglycaemia	14 (3.0)	8 (3.0)	6 (3.0)	0.99
Preterm delivery	42 (9.0)	25 (9.4)	17 (8.5)	0.72
Offspring hospitalization	116 (24.9)	75 (28.2)	41 (20.6)	0.06
Insulin therapy during pregnancy	252 (54.0)	168 (63.2)	84 (41.8)	<0.001

Data are n (%) or mean (standard deviation).

DIP: diabetes in pregnancy; GDM: gestational diabetes mellitus; HIP: hyperglycaemia in pregnancy; OGTT: oral glucose tolerance test; WG: weeks of gestation.

HIP-related event is a composite endpoint: preeclampsia or LGA infant or shoulder dystocia or neonatal hypoglycaemia.

*Yes vs No.
Table 2 – Characteristics of the women by true positive and false negative HIP diagnoses applying selective screening (sensitivity analysis).

	Total n = 397	True positive diagnoses n = 232	False negative diagnoses n = 165	p
OGTT between 22 and 30 WG				
Fasting plasma glucose (mmol/L)	5.1 (0.6)	5.5 (0.5)	4.6 (0.4)	<0.001
Fasting plasma glucose ≥ 5.1 mmol/L	221 (55.7)	221 (95.3)	0 (0.0)	<0.001
1-hour plasma glucose (mmol/L)	9.8 (1.8)	9.5 (2.1)	10.2 (1.3)	<0.001
2-hour plasma glucose (mmol/L)	8.5 (1.9)	8.2 (2.3)	8.7 (1.3)	0.01
Gestational age when OGTT (WG)	26.2 (1.9)	26.1 (1.9)	26.3 (1.9)	0.41
HbA1c (%)	5.2 (0.5)	5.3 (0.5)	5.0 (0.4)	<0.001
HbA1c > 5.7%(39 mmol/mol)	62 (15.6)	62 (26.7)	0 (0.0)	<0.001
Gestational age when HbA1c (WG)	29.2 (2.3)	29.1 (2.3)	29.4 (2.4)	0.35
Glycemic status (Gold standard: IADPSG/WHO criteria)				0.09
GDM	367 (92.4)	210 (90.5)	157 (95.2)	
DIP	30 (7.6)	22 (9.5)	8 (4.8)	
Characteristics				
Age (years)	33.9 (5.3)	33.9 (5.3)	33.9 (5.5)	0.99
Preconception body mass index (kg/m²)	27.7 (5.7)	28.4 (6.0)	26.7 (5.1)	0.003
Preconception hypertension	9 (2.3)	5 (2.2)	4 (2.4)	1
Family history of diabetes	139 (35.0)	82 (35.3)	57 (34.5)	0.87
Employment	180 (45.5)	108 (46.8)	72 (43.6)	0.54
Smoking before pregnancy	30 (7.6)	19 (8.2)	11 (6.7)	0.57
Parity	2.4 (1.2)	2.4 (1.2)	2.4 (1.3)	0.87
Previous pregnancy(ies)				0.93*
History of hyperglycaemia in pregnancy				
First child	106 (26.7)	57 (24.6)	49 (29.7)	
No	212 (53.4)	129 (55.6)	83 (50.3)	
Yes	79 (19.9)	46 (19.8)	33 (20.0)	
History of macrosomia				0.16*
First child	106 (26.7)	57 (24.6)	49 (29.7)	
No	267 (67.3)	157 (67.7)	110 (66.7)	
Yes	24 (6.0)	18 (7.8)	6 (3.6)	
History of hypertensive disorders				0.81*
First pregnancy	72 (18.1)	37 (15.9)	35 (21.2)	
No	307 (77.3)	184 (79.3)	123 (74.5)	
Yes	18 (4.5)	11 (4.7)	7 (4.2)	
History of fetal death				0.17*
First pregnancy	72 (18.1)	37 (15.9)	35 (21.2)	
No	312 (78.6)	185 (79.7)	127 (77.0)	
Yes	13 (3.3)	10 (4.3)	3 (1.8)	
Ethnicity				0.11
North African	141 (35.6)	78 (33.8)	63 (38.2)	
European	83 (21.0)	47 (20.3)	36 (21.8)	
Sub-Saharan African	52 (13.1)	33 (14.3)	19 (11.5)	
Indian-Pakistan-Sri Lankan	65 (16.4)	40 (17.3)	25 (15.2)	
Caribbean	23 (5.8)	19 (8.2)	4 (2.4)	
Asian	14 (3.5)	7 (3.0)	7 (4.2)	
Other	18 (4.5)	7 (3.0)	11 (6.7)	
Events during pregnancy				
HIP-related event	80 (20.2)	48 (20.7)	32 (19.4)	0.75
Preeclampsia	18 (4.5)	8 (3.4)	10 (6.1)	0.22
Large for gestational age infant	52 (13.1)	34 (14.7)	18 (10.9)	0.28
Shoulder dystocia	0	0	0	
Neonatal hypoglycaemia	12 (3.9)	7 (3.0)	6 (3.6)	0.73
Preterm delivery (<37 weeks)	40 (10.1)	24 (10.3)	16 (9.7)	0.83
Offspring hospitalization	99 (25.0)	63 (27.2)	36 (22.0)	0.24
Insulin therapy during pregnancy	223 (56.2)	150 (64.7)	73 (44.2)	<0.001
3.4. Characteristics of true positive and false negative cases of HIP applying SFD-CNGOF COVID-19 proposal

Table 1 shows the comparison of HIP true positive and false negative case subgroups with universal screening, while Table 2 shows the results with selective screening (sensitivity analysis). When universal or selective screening were used, lower FPG and HbA1c levels, as well as a lower mean body mass index; and higher 1h-PG and 2h-PG were found in the false negative case subgroup compared to the true positive case subgroup. The percentage of women who needed insulin therapy during pregnancy was also lower.

3.5. Prognosis of true positive and false negative HIP case subgroups applying SFD-CNGOF COVID-19 proposal

The percentage of HIP-related events was similar in true positive and false negative case subgroups of HIP considering universal (Table 1) or selective screening (Table 2). The percentage of each outcome was also similar in both groups in case of universal screening (Table 1). The results were similar when selective screening was used (Table 2, sensitivity analysis).

4. Discussion

OGTT is the cornerstone of the diagnosis of HIP. Besides its inconvenience and a high variability of 2h-PG [14], it is time-consuming and not appropriate for social distancing. The results show that the SFD/CNGOF proposal to substitute OGTT for HbA1c and FPG measurement in the context of COVID-19 pandemic has a poor sensitivity to detect HIP. Furthermore, screening based on HbA1c and FPG does not appear to select women with the highest rate of adverse events during pregnancy.

Several studies have explored the accuracy of FPG [19–21] and HbA1c measured between 24 and 28 GW for HIP diagnosis defined according to IADPSG/WHO criteria [22–25]. Like in our study, FPG measurement alone, with a threshold of 5.1 mmol/
and that WHO criteria and were therefore managed for this condition. Women included in this study had HIP according to IADPSG/WHO criteria after 100 g OGTT (59%), as recently reported in Japan (39%) [9]. We found only one published study exploring whether associating both parameters (sensitivity analysis) or universal screening for reference Standard. Our evaluation was limited to women who underwent OGTT in the late second and early third trimester (22–30 WG). Finally, our study could compare not only characteristics but also prognosis of true positive and false negative cases of HIP. We however have to consider while interpreting the results that all included women were cared for HIP in our observational series.

Our study has limitations. Actually, HbA1c level was measured in our centre only in women with HIP according to IADPSG/WHO criteria. Therefore, sensitivity but not specificity, nor positive and negative predictive values of COVID-19 proposals could be investigated. Another issue could be that HbA1c was not measured at the same time as FPG. In pregnant women, the time course of HbA1c is actually biphasic with a decrease during the second trimester, a nadir at 24 WG and an increase during the last trimester [15–18]. This is the reason why women for whom HbA1c was measured more than 6 weeks after OGTT were not included. Indeed, these non-included women had higher HbA1c level than women who had their HbA1c measured within 6 weeks after the OGTT. Our sensitivity analysis showed that sensitivity was similar when women had their HbA1c measured either within 4 weeks or 6 weeks after OGTT. Finally, around one half of women with HIP had no HbA1c measured but their characteristics were globally similar as those of women who were included.

To conclude, due to their low sensitivities, even during current and future pandemics, we do not recommend the routine application of SFD/CNGOF current proposals, i.e. to use FPG and HbA1c measurement with proposed thresholds as a substitute for OGTT. This proposal should all the more be temporary and other options might be considered [36,37]. As shown in our study, considering lower FPG [21,25,32] and HbA1c thresholds [22–24] would increase sensitivity. However, it would also decrease specificity, which is an issue during pandemics. Indeed, it is critical to practice social distancing not only at OGTT testing centres but also within the health care setting -where false positive cases of HIP would be managed. Limiting the proportion of women addressed for OGTT according to FPG [27,36] and/or HbA1c level [22–24] might be better options. For example, FPG thresholds of ≤4.4 mmol/L have been reported to rule out HIP in 50–65% of women with a sensitivity of 80–95% [19–21]. Also, as suggested in the case of a personal history of bariatric surgery [38], women could self-monitor their blood glucose at home but this implies education to do so [37]. Thus, there is an urgent need to validate new methods to diagnose and manage HIP in order to be ready to face future pandemics/lockdowns.

Author contributions

C.N. prepare and made statistic, and wrote manuscript; S.P., S. T., H.B., M.S., N.B. and L.C. contributed to discussion, reviewed/edited manuscript; E.V. co-directed research and reviewed/edited manuscript; E.C. directed research and wrote manuscript.

Acknowledgements

Emmanuel Cosson and Lionel Carbillon are the guarantors of this work. The authors thank Lilly France for funding. The
Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.diabres.2020.108640.

REFERENCES

[1] International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE, Gabbe SG, Persson B, Buchanan TA, Catalanio PA, et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycaemia in pregnancy. Diabetes Care 2010;33:676–82. https://doi.org/10.2337/dc09-1848.

[2] Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract 2014;103:341–63. https://doi.org/10.1016/j.diabres.2013.10.012.

[3] Expert consensus on gestational diabetes mellitus. Summary of expert consensus. Diabetes Metab 2010;36:695–9. https://doi.org/10.1016/j.diabet.2010.11.019.

[4] Benhalima K, Mathieu C, Van Assche A, Damm P, Devlieger R, Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, Mathiesen ER, et al. Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes. Diabetes Technology and Therapeutics 2008;10:717–23. https://doi.org/10.1080/14628720801840709.

[5] Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2015;131 (Suppl 3):S173–211. https://doi.org/10.1002/ijgo.2015.131 (Suppl 3):S173–211.

[6] American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020;43:S14–31. https://doi.org/10.2337/dc20-S002.

[7] 2020 03 30-guidance-for-maternal-medicine-in-the-evolving-coronavirus-covid-19-pandemic.pdf n.d.

[8] Vambergue A, Jacqueminet S, Lamotte M-P, Lamiche-Lorenzini F, Brunet C, Deruelle P, et al. Three alternative ways to screen for hyperglycaemia in pregnancy during the COVID-19 pandemic. Diabetes Metab 2020. https://doi.org/10.1016/j.diabet.2020.04.005.

[9] Kasuga Y, Saisho Y, Ikenoue S, Ochiai D, Tanaka M. A new diagnostic strategy for gestational diabetes during the COVID-19 pandemic for the Japanese population. Diabetes Metab Res Rev n.d.;n/a:e3351. https://doi.org/10.1002/dmr.3351.

[10] Landon MB, Spong CY, Thom E, Carpenter MW, Ramin SM, Carey B, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009;361:1339–48. https://doi.org/10.1056/NEJMoa0902430.

[11] Crowther CA, Hiller JE, Moss JR, McPhee AJ, Jeffries WS, Robinson JS, et al. Effect of treatment of gestational diabetes mellitus on pregnancy outcomes. N Engl J Med 2005;352:2477–86. https://doi.org/10.1056/NEJMoa042973.

[12] Cosson E, Vicaut E, Sandre-Banon D, Gary F, Pharisien I, Portal J-J, et al. Early screening for gestational diabetes mellitus is not associated with improved pregnancy outcomes: an observational study including 9795 women. Diabetes Metab 2019;45:465–72. https://doi.org/10.1016/j.diabet.2018.11.006.

[13] Cosson E, Vicaut E, Sandre-Banon D, Gary F, Pharisien I, Portal J-J, et al. Performance of a selective screening strategy for diagnosis of hyperglycaemia in pregnancy as defined by IADPSG/WHO criteria. Diabetes Metab 2019. https://doi.org/10.1016/j.diabet.2019.09.002.

[14] Selvin E, Crainiceanu CM, Brancati FL, Coresh J. Short-term variability in measures of glycaemia and implications for the classification of diabetes. Arch Intern Med 2007;167:1545–51. https://doi.org/10.1001/archinte.167.14.1545.

[15] Mendes N, Tavares Ribeiro R, Serrano F. Beyond self-monitored plasma glucose and HbA1c: the role of non-traditional glycaemic markers in gestational diabetes mellitus. J Obstet Gynaecol 2018;38:762–9. https://doi.org/10.1080/01443615.2017.1412409.

[16] Phelps RL, Honig GR, Green D, Metzger BE, Frederiksen MC, Freinkel N. Biphasic changes in hemoglobin A1c concentrations during normal human pregnancy. Am J Obstet Gynecol 1983;147:651–3. https://doi.org/10.1016/0002-9378(83)90443-x.

[17] Worth R, Potter JM, Drury J, Fraser RB, Cullen DR. Glycosylated haemoglobin in normal pregnancy: a longitudinal study with two independent methods. Diabetologia 1985;28:76–9. https://doi.org/10.1007/BF00279919.

[18] Law GR, Gilthorpe MS, Secher AL, Temple R, Bilous R, Mathiesen ER, et al. Translating HbA1c measurements into estimated average glucose values in pregnant women with diabetes. Diabetologia 2017;60:618–24. https://doi.org/10.1007/s00125-017-4205-7.

[19] Agarwal MM, Weigl B, Hod M. Gestational diabetes screening: the low-cost algorithm. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2011;115(Suppl 1):S30–3. https://doi.org/10.1002/ijgo.2011.115(Suppl 1):S30–3.

[20] et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet 2015;131 (Suppl 3):S173–211. https://doi.org/10.1002/ijgo.2015.131 (Suppl 3):S173–211.

[21] Ye M, Liu Y, Cao X, Yao F, Liu B, Li Y, et al. The utility of HbA1c in the diagnosis of gestational diabetes mellitus. Diabetes Metab Res Rev n.d.;n/a:e3351. https://doi.org/10.1002/dmr.3351.

[22] Ruetschi JR, Jornayvaz FR, Rivest R, Huhn EA, Irion O, Jornayvaz FR, et al. Early screening for gestational diabetes mellitus is not associated with improved pregnancy outcomes: an observational study including 9795 women. Diabetes Metab 2019;45:465–72. https://doi.org/10.1016/j.diabet.2018.11.006.

[23] Soumya S, Rohilla M, Chopra S, Dutta S, Bhansali A, Parthan G, et al. HbA1c: A Useful Screening Test for Gestational Diabetes Mellitus. Diabetes Technol Ther 2015;17:899–904. https://doi.org/10.1089/dia.2015.0041.

[24] Rajput R, Yadav null Y, Rajput M, Nanda S. Utility of HbA1c for diagnosis of gestational diabetes mellitus. Diabetes Res Clin Pract 2012;98:104–7. https://doi.org/10.1016/j.diabres.2012.02.018.

[25] Pastakia SD, Njuguna B, Onyango BA, Washington S, Christoffersen-Deb A, Kosgei WK, et al. Prevalence of gestational diabetes mellitus based on various screening strategies in western Kenya: a prospective comparison of point of care diagnostic methods. BMC Pregnancy Childbirth 2017;17:226. https://doi.org/10.1186/s12884-017-1415-4.
[26] Ikomi A, Mannan S, Simon G, Khan R, Smith S, Robbins J, et al. Diagnosis of gestational diabetes during the pandemic: what is the risk of falling through the net? Diabet Med n.d.;n/a. https://doi.org/10.1111/dme.14346.

[27] Gemert TE van, Moses RG, Pape AV, Morris GJ. Gestational diabetes mellitus testing in the COVID-19 pandemic: The problems with simplifying the diagnostic process. Aust N Z J Obstet Gynaecol n.d.;n/a. https://doi.org/10.1111/ajo.13203.

[28] Hanna FW, Duff CJ, Shelley-Hitchen A, Hodgson E, Fryer AA. Diagnosing gestational diabetes mellitus: implications of recent changes in diagnostic criteria and role of glycated haemoglobin (HbA1c). Clin Med Lond Engl 2017;17:108–13. https://doi.org/10.7861/clinmedicine.17-2-108.

[29] Sinha N, Mishra TK, Singh T, Gupta N. Effect of iron deficiency anemia on hemoglobin A1c levels. Ann Lab Med 2012;32:17–22. https://doi.org/10.3343/alm.2012.32.1.17.

[30] Bleyer AJ, Hire D, Russell GB, Xu J, Divers J, Shihabi Z, et al. Ethnic variation in the correlation between random serum glucose concentration and glycated haemoglobin. Diabet Med J Br Diabet Assoc 2009;26:128–33. https://doi.org/10.1111/j.1464-5491.2009.02646.x.

[31] Herman WH, Ma Y, Uwaifo G, Haffner S, Kahn SE, Horton ES, et al. Differences in A1C by race and ethnicity among patients with impaired glucose tolerance in the Diabetes Prevention Program. Diabetes Care 2007;30:2453–7. https://doi.org/10.2337/dc06-2003.

[32] Kwon SS, Kwon J-Y, Park Y-W, Kim Y-H, Lim J-B. HbA1c for diagnosis and prognosis of gestational diabetes mellitus. Diabetes Res Clin Pract 2015;110:38–43. https://doi.org/10.1016/j.diabres.2015.07.014.

[33] Dubey D, Kunwar S, Gupta U. Mid-trimester glycosylated hemoglobin levels (HbA1c) and its correlation with oral glucose tolerance test (World Health Organization 1999). J Obstet Gynaecol Res 2019;45:817–23. https://doi.org/10.1111/jog.13916.

[34] McIntyre HD, Gibbons KS, Ma RCW, Tam WH, Sacks DA, Lowe J, et al. Testing for gestational diabetes during the COVID-19 pandemic. An evaluation of proposed protocols for the United Kingdom, Canada and Australia. Diabetes Res Clin Pract 2020;167:108353. https://doi.org/10.1016/j.diabres.2020.108353.

[35] 1 Recommendations | Diabetes in pregnancy: management from preconception to the postnatal period | Guidance | NICE n.d. https://www.nice.org.uk/guidance/ng3/chapter/1-Recommendations#gestational-diabetes-2 [accessed May 2, 2020].

[36] ADIPSADCOVID-19GDMDiagnosisUpdated250420Website. pdf n.d.

[37] Ardilouze A, Bouchard P, Hivert M-F, Simard C, Allard C, Garant M-P, et al. Self-Monitoring of Blood Glucose: A Complementary Method Beyond the Oral Glucose Tolerance Test to Identify Hyperglycemia During Pregnancy. Can J Diabetes 2019;43:627–35. https://doi.org/10.1016/j.cjdi.2019.02.004.

[38] Cosson E, Pigeyre M, Ritz P. Diagnosis and management of patients with significantly abnormal glycaemic profiles during pregnancy after bariatric surgery: PRESAGE (Pregnancy with significantly abnormal glycaemic exposure — bariatric patients). Diabetes Metab 2018;44:376–9. https://doi.org/10.1016/j.diabet.2017.08.001.