Advances and bottlenecks in microbial hydrogen production
Stephen, Alan J.; Archer, Sophie A.; Orozco, Rafael L.; Macaskie, Lynne E.

DOI: 10.1111/1751-7915.12790
License: Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Stephen, AJ, Archer, SA, Orozco, RL & Macaskie, LE 2017, 'Advances and bottlenecks in microbial hydrogen production', Microbial Biotechnology, vol. 10, no. 5, pp. 1120-1127. https://doi.org/10.1111/1751-7915.12790

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

• Users may freely distribute the URL that is used to identify this publication.
• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
• Users may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
• Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 11. Mar. 2020
Advances and bottlenecks in microbial hydrogen production

Alan J. Stephen,¹ Sophie A. Archer,¹ Rafael L. Orozco² and Lynne E. Macaskie²*
Schools of ¹Chemical Engineering, ²Biosciences,
University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Summary

Biological production of hydrogen is poised to become a significant player in the future energy mix. This review highlights recent advances and bottlenecks in various approaches to biohydrogen processes, often in concert with management of organic wastes or waste CO₂. Some key bottlenecks are highlighted in terms of the overall energy balance of the process and highlighting the need for economic and environmental life cycle analyses with regard also to socio-economic and geographical issues.

Introduction

Hydrogen provides a CO₂-free sustainable alternative to fossil fuels. A pioneering global initiative, the ‘Hydrogen Council’, comprising thirteen leading energy, transport and related industries, intends to increase investment in the hydrogen and fuel cell sectors (currently €1.4 Bn year⁻¹) to stimulate hydrogen as a key part of the future energy mix via new policies and schemes (Anon, 2017).

Hydrogen is currently obtained mainly by steam reforming of hydrocarbons, releasing multiple greenhouse gas emissions (DOE, 2013). Hence, new H₂ production methods are required such as biological production (bio-H₂; Dincer and Acar, 2015). H biotechnologies are maturing towards benchmarking against established clean energy from electrolysis of water, solar photovoltaics and wind farms. Biohydrogen can be made fermentatively from wastes, providing a simultaneous method of organic waste management (Chang et al., 2011). This short review highlights progress and bottlenecks of bio-H₂ towards a sustainable development goal to ensure access to affordable, reliable, sustainable and modern energy for all. Biohydrogen has been reviewed in comparison with other hydrogen production processes (Nikolaidis and Poullikkas, 2017).

Biohydrogen embraces any H₂ production involving biological material (Mohan and Pandey, 2013). The energy source can be solar or can come from conversion of fixed carbon substrates (or both, in various combinations). An approach to CO₂-end of pipe treatment (e.g. from flue gas from fossil fuel combustion or carbon-neutral fermentation of biomass) is to grow algae on waste CO₂. Algal biohydrogen production is well-described, but O₂ from algal oxygenic photosynthesis inhibits the hydrogenase that makes H₂. A key study (Kubas et al., 2017) will open the way to developing O₂-resistant hydrogenase. Emerging technology uses cyanobacteria (blue-green algae) that make H₂ via hydrogenase and also nitrogenase; their O₂-sensitivity is managed by temporal separation of photosynthetic O₂ evolution and nitrogenase action, and by compartmentalization into microanaerobic heterocysts (Tiwari and Pandey, 2012). Despite a note that cyanobacterial biohydrogen is probably uneconomic (Singh et al., 2016), an environmental life cycle analysis (LCA) has shown for the first time that cyanobacterial bio-H₂ has the potential to be a competitor to desulfurized natural gas; the associated environmental impact of producing and extracting each gas, including use in a solid oxide fuel cell, was calculated and simulated respectively using the LCA software SIMAPRO (Archer et al., 2017). This research used published data from a raceway growth system (James et al., 2009). However, at latitudes above ~40°N, the generally low incident solar energy makes stand-alone photobiological H₂ systems seasonal and uneconomic without some form of process intensification. Boosting light delivery (e.g. LEDs, quantum dots) can be effective, but these may risk photopigment saturation and inhibition; this approach may be questionable economically and would be best addressed by a life cycle analysis. In sunny countries, light is plentiful, but in this case, ‘delivering cold’ is needed to extend crop product and food life; cooling is energy-demanding and a global challenge (Strahan, 2017).

Another challenge is organic materials from agri-food and municipal wastes, which must be managed to avoid landfills which yields methane, a potent greenhouse gas. Current practices use anaerobic digestion (AD) with
biogas — methane used for power. We review some options for combining waste treatments with bio-H₂ technology as possibly the best approach to tackling effectively these dual socio-economic problems; stand-alone biohydrogen is possibly uneconomic, but this awaits a life cycle analysis, currently in progress.

Biohydrogen production from waste: fermentation strategies for sustainable ‘waste to hydrogen energy’

Fermentation is the disposal of excess metabolic reductant (NADH) onto organic compounds in the absence of alternative electron acceptors such as O₂ and NO₃ (Guo et al., 2010). The mixed-acid fermentation (‘dark fermentation’) pathway of the paradigm *Escherichia coli* (Fig. 1A) is simple, has high rates of H₂ production but has limitations (Saratate et al., 2013; Fig. 1A inset). Hexose sugars can stoichiometrically deliver 12 mol H₂ mol hexose⁻¹. The mixed-acid fermentation, while irreversible, is thermodynamically limited to 2–4 mol H₂ mol hexose⁻¹ (Hallenbeck, 2012). The ‘NADH pathway’ of some microorganisms (Hallenbeck, 2012, 2017) can deliver a higher H yield, but is reversible under a positive H₂ partial pressure, which is required for with a downstream H fuel cell. Thermophilic bacteria have advantages but require input of heat energy. Hence, the focus has been mainly on mesophilic bacteria (Balachandar et al., 2013).

Most mixed-acid fermentations follow a similar schematic: the cell forms reduced metabolic end-products: organic acids (including toxic formate) and alcohol (Fig. 1A). Up to 2 mol H₂ mol⁻¹ hexose (Hallenbeck and Ghosh, 2007) is produced via the activity of formate hydrogen lyase (which splits formate to H₂ + CO₂), that is < 20% of the theoretical maximum H₂. Sustained bio-H₂ production is limited by end-product (ethanol) toxicity and acidification of the medium by accumulating organic acids (Redwood, 2007).

Fig. 1. Mixed-acid fermentation (MAF) of *E. coli* (A) and use of purple non-sulfur bacteria (B) in photofermentation (PF) of organic acids (OAs) into H₂. The organic acids are taken up by (e.g.) *R. sphaeroides*, and reducing power is generated as NADH (not shown). This reducing power can either be used for polyhydroxybutyrate synthesis or growth to maintain cellular redox or alternatively can be used for H₂ production under light when growth is restricted by limitation of N or P source. Italicized bottlenecks are those overcome by use of the dual system (see text).
The organic acids provide a means to overcome the thermodynamic limitation via their use in a coupled photofermentation reactor (Redwood et al., 2012a,b; Hallenbeck, 2013, 2017) via electrodialysis (Fig. 2). If organic acid mixtures are fed to purple non-sulfur bacteria (e.g. *Rhodobacter sphaeroides*), the off-gas (typically > 90% H) is suitable for direct use in fuel cells (Nakada et al., 1999). This anoxicogenic photofermentative H₂ process (Fig. 1B) requires input of light energy (to help overcome the thermodynamic barrier in converting organic acids into H₂ (Hallenbeck, 2013)). Nitrogen-deficient conditions are essential; in purple non-sulfur bacteria, H₂ biogenesis is a side reaction of nitrogenase, which normally fixes N₂ and is downregulated in the presence of fixed nitrogen. Utilizable organic acids also feed a competing pathway to make polyhydroxybutyrate which detracts from the H₂ yield (Fig. 1B). Redwood *et al.* (2012a,b) incorporated an electrodialysis step to concentrate the organic acids (by ~eightfold) and link the mixed-acid and photofermentation steps (Fig. 2). Electrodialysis separates anions (negatively charged organic acids in the dark fermentation medium), removing them and also preventing the transfer of inhibitory NH₄⁺ into the photofermentation medium. This continuous dual fermentation process combines high H₂ production rates and yield (Redwood *et al.*, 2012b); the electrical energy demand of electrodialysis is counterbalanced, in part, by a third H₂ stream from electrolysis of water.

Redwood (2007) calculated the break-even current efficiency to quantify the role played by specific organic acids (Table 1). Butyrate is the most attractive organic acid for electrodialysis with the lowest break-even current efficiency at 13% (Table 1). Butyrate is a neglected organic acid product from *E. coli* which can predominate under some conditions (Redwood, 2007; R.L. Orozco unpublished). Using this example (Figs 1 and 2), the energy balance for bio-H₂ (via fermentation of food wastes) was calculated with some assumptions. The electrical energy required for organic acid transport via electrodialysis relates to the number of charges and number of carbons; butyrate (4 carbons, 1 charge) is the most favourable and also has the highest proportion of charged butyrate (c.f. butyric acid) according to the *pKₐ*. HPP is hydrogen production potential of the dual system as defined by Eroglu *et al.* (2004).

Table 1. Properties of organic acids relevant to their separation from spent medium by electrodialysis.

Organic acid	Carbons	Valence	*pKₐ*	HPP mol⁻¹	BCE (%)
Butyrate	4	1	4.81	10	13
Lactate	3	1	3.86	6	21.6
Formate	1	1	3.75	2	N/A
Acetate	2	1	4.76	7	32.5
Succinate	4	2	4.19	7	27.1

The break-even current efficiency (BCE: (energy expended/energy gained) x 100)) was calculated for individual organic acids. The lower the BCE, the less energy required to transport the organic acid. The electrical energy required for organic acid transport via electrodialysis relates to the number of charges and number of carbons; butyrate (4 carbons, 1 charge) is the most favourable and also has the highest proportion of charged butyrate (c.f. butyric acid) according to the *pKₐ*. HPP is hydrogen production potential of the dual system as defined by Eroglu *et al.* (2004).

Fig. 2. System for energy delivery from wastes via biohydrogen. A fusion of chemical and biochemical engineering for conversion of waste into electricity via integrated biohydrogen technology. Electrodialysis (ED) separates the organic acid (OA) products from the mixed-acid fermentation (OA) product from *E. coli* (formate is converted to H₂ + CO₂ via formate hydrogen lyase). OAs pass from the dark fermentation medium to the photofermentation, typically being concentrated by ~eightfold via electrodialysis for dilution into the photofermentation vessel. Alcohol is not removed by ED; this would require a catalytic oxidation stage to give the corresponding organic acid; this has been achieved via using Au(0) nanoparticle catalyst made on *E. coli* cells (Deplanche *et al.*, 2007). Two bio-H₂ streams are formed from the combined dark- and photofermentations, with a third H₂ stream from electrolysis of water. The maximum H₂ yield from the mixed-acid fermentation is 2 mol sugar⁻¹; hence, the dark fermentation can be viewed as a generator of OAs rather than as the primary H supply. A schematic of upstream waste conversion into sugar feed is shown (see text), and downstream use of hydrogen in a fuel cell for electricity production. Note that bio-H₂ is free of catalyst poisons, which extends fuel cell life. Not all wastes (e.g. sugary fruits, bakery products) require extensive upstream treatment. The main box is the biotechnology; the grey flow sheet is the chemical engineering required to realize the positive energy balance. Both are equally important.

© 2017 The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology, *Microbial Biotechnology*, 10, 1120–1127.
waste) exceeded that from anaerobic digestion, wind and solar power, even without factoring in the additional electrochemically made \(\text{H}_2 \). (Redwood et al., 2012b). Although half of the organic acid is available (anionic) at the pH of the fermentation (according to the \(pK_a \) values: Table 1), the electrodialysis chamber itself is alkaline due to \(\text{OH}^- \) release.

Two key findings are salient. First, the role of the dark fermentation is more important as a supply of organic acids into the photofermentation than for its bio-\(\text{H}_2 \) per se. Second, recent work (R.L. Orozco and A.J. Stephen, unpublished) showed that the \(\text{H}_2 \) yield in the photofermentation was largely independent of the actual organic acid proportions in the feed from the mixed-acid fermentation and was optimal at ~40 mM organic acids. Hence, any source of organic acids could be potentially used from a dual system or, indeed, in a stand-alone photofermentation.

Bacterial photofermentation

Purple non-sulfur photosynthetic bacteria produce \(\text{H}_2 \) from a variety of organic substrates including organic acids (Lazaro et al., 2012), sugars (Keskin and...)

Table 2. Some approaches to increase photofermentation \(\text{H}_2 \) productivity (Reviewed by Adessi et al., 2017).

Approach/Rationale	Outcomes/comments	References
'Black box' mathematical relationships between input and output streams	Permits multivariable analysis: measures cause and effect; hence can be empirical SCE (glycerol) > doubled (R.palustris)	Abo-Hashesh et al. (2013), Show et al. (2013) and Ghosh et al. (2012a, b, c)
Box-behrenk statistical design/methods	Guided interventions: success using lactate but not malate or acetate	Golomysova et al. (2010) and Hadicke et al. (2011)
Modelling metabolic fluxes		
Deletion of polyhydroybutyrate synthesis pathway	Increased \(\text{H}_2 \) yield (by 1.5-fold c.f. wild type)	Kim et al. (2011)
Reducing pigment concentration	Allows greater light penetration\(^a\)	Ma et al. (2012)
Use of quantum dots to ‘upgrade’ light	Doubled photosynthetic efficiency	M.D. Redwood, unpublished\(^d\)

SCE, substrate conversion efficiency.

\(^a\) 27% increase in \(\text{H}_2 \) yield was obtained.

\(^b\) Collaborative study with Photon Science Institute, University of Manchester: M.D. Redwood, L.E. Macaskie and D.J. Binks, unpublished work. But note: current commercial quantum dots would be grossly uneconomic at scale.

Table 3. Options for delivery of bio-\(\text{H}_2 \) into power, all via electro-photofermentation (Figs 1 and 2; M.D. Redwood, R.L. Orozco and L.E. Macaskie, unpublished work)\(^a\).

Feedstock (upstream)	Power (downstream)	Comments
Fermentation of food wastes	Fuel cell electricity\(^b\) or combined heat and power\(^c\)	Food wastes (FW) required (tonnages). Anaerobic digestion (AD) has monopoly on FW. Bio-\(\text{H}_2 \) can power a fuel cell directly.
Fermentation of cellulosic wastes	Fuel cell electricity or CHP	Comminution/maceration energy demand adversely affects overall energy balance\(^c\). Upstream hydrolysis is required.
OAs obtained from anaerobic digestion (AD)	‘Hythane’: mix of \(\text{CH}_4 \) (AD) + bio-\(\text{H}_2 \); CHP	AD interrupted at acetogenesis stage; organic acids diverted into a bolt-on photofermentation. Overall AD residence time is reduced. This increases process complexity but gives a higher energy output. Gas is compatible with current infrastructure. Scenario 1: 20% more power\(^d\). Scenario 2: 70% more power\(^d\). Organic acid waste streams (tonnage scale) are (e.g.) vinasse (from bioethanol production) and municipal wastewater treatment plants (see text).
OAs used directly from wastes (e.g. wastewaters) or CHP	Fuel cell electricity	

\(^a\) Calculations were made independently of incentivization schemes as these tend to be ephemeral and skew the longer term picture. Likewise, increasing/decreasing feed-in tariffs would complicate economic assessments.

\(^b\) Fuel cell technology is still emergent at large scale, and FCs fail prematurely (see Rabis et al., 2012).

\(^c\) Combined heat and power (CHP: well-established technology). In this scenario, the methane stream from anaerobic digestion can be supplemented with photofermentatively derived \(\text{H}_2 \) to make ‘hythane’ for CHP.

\(^d\) Scenario 1: diversion of 10% of the organic acids into photofermentation and use of hythane in CHP. Scenario 2: diversion of 80% of the organic acids into photofermentation and use of AD-methane in CHP plus use of the photofermentation \(\text{H}_2 \) in a fuel cell would give 70% more power (R.L. Orozco, unpublished). The proportion of flow diverted from the acetogenesis step of anaerobic digestion (via electroseparation) could be simply ramped in response to incident light intensity to feed the photofermentation; at night the flow would pass to the methanogenic reactor as normal. By combining the two processes, the residence time in the system would also be reduced as compared to traditional anaerobic digestion due to reduced flow entering the methanogenesis reactor daily.

\(^e\) Using Miscanthus as an example, the energy demand of comminution to 4 mm particles is 184 kJ kg dry matter\(^-1\); energy from H is 10 kJ l\(^{-1}\) (at 1 atm and 125°C); that from the dark fermentation was only 110 kJ kg cellulose; hydrolysate; hence the PF (4 times the \(\text{H}_2 \) as the dark fermentation) is key to a positive energy balance from complex substrates.

© 2017 The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology, *Microbial Biotechnology*, 10, 1120–1127
Hallenbeck, 2012) and industrial and agricultural effluents (Saratale et al., 2013), with high H2 yields from acetic, butyric and lactic acids (Hallenbeck, 2013). Bacteria used include *Rhodobacter sphaeroides* (Han et al., 2013), *R. rubrum* (Zürrer and Bachofen, 1979), *R. palustris* (Oh et al., 2004; Xiaobing, 2012) and *R. capsulatus* (Zhang et al., 2016); despite some differences, they all follow a similar general scheme (Fig. 1B), metabolizing organic acids to reduce NAD+ to the cellular reductant NADH (Oh et al., 2013). Excess reductant must be dissipated to reoxidize NADH and maintain cellular redox balance. This is achieved via cellular growth, channelling of carbon into cellular reserves (synthesis of polyhydroxybutyrate) or via H2 production under nitrogen-deficient conditions, via nitrogenase, which produces H2 as an electron sink for excess reducing power (as with cyanobacteria: above). Nitrogenase normally fixes N2 into NH3 under light (to supply the large energy demand of N-fixation, via ATP). Without N, the enzyme uses the reductant and ATP to produce H2 (2H+ + 2e− + 4 ATP ⇌ H2 + 4ADP + Pi). NADH is not a sufficiently strong reductant for this reaction; it is ‘upgraded’ to the stronger reductant ferredoxin via the input of energy, which is supplied by light through the action of the photosynthetic apparatus, via reverse electron transport. This apparatus also produces the ATP required for nitrogenase action (Hallenbeck, 2011). Various papers have studied the role of light (e.g. Uyar et al., 2007; Nath, 2009), showing that optimum light conversion efficiency occurs at light intensities much lower than light saturation points; e.g. Uyar et al. (2007) showed light saturation for *R. sphaeroides* at 270 W m−2 but similar substrate conversion efficiency could be achieved at light intensities as low 88 W m−2. Furthermore, optimum light intensities can be species specific; e.g. *R. sphaeroides* and *R. palustris* under similar conditions (Light intensity = 2500 Lux) had substrate...
conversion efficiencies of 60–70% and 47% respectively (Han et al., 2013; Oh et al., 2013).

Hallenbeck and Liu (2015) reviewed advances in the field, highlighting various approaches to improve substrate conversion efficiency (Table 2), while recent publications provide an up-to-date overview of recent developments for photobiological biohydrogen technologies (Adessi et al., 2017; Hallenbeck, 2017).

Towards an economically competitive biohydrogen process from waste

Table 3 summarizes various options for a biohydrogen process. In the UK, food wastes at scale are generally centralized and ‘committed’ by agreements into anaerobic digestion and a ‘bolt-on’ addition into existing anaerobic digestion and combined heat and power (CHP) processes is one option as there is insufficient waste available for a realistic stand-alone bio-H\(_2\) process (unpublished survey; Sustainable Resource Solutions Ltd). Agricultural wastes are currently unattractive due to high energy demands of comminution/maceration and upstream hydrolysis. A survey of wastes has indicated that vinasse (from bioethanol production) and in-process streams from UK Utility companies contain sufficient organic acids to warrant trialling for data into a full life cycle analysis.

The organic acid content of a typical vinasse waste is >40 g l\(^{-1}\) (Ryznar-Luty et al., 2008; Esapa-Gamboa et al., 2012); the high concentration of betaine (trimethylglycine, a zwitterionic osmoprotectant; 20 g l\(^{-1}\)) is not potentially problematic because at the low pH of vinasse (pH 3–4), it would be protonated (i.e. inaccessible to the anion transfer in electroseparation). Moreover, betaine was reported to stimulate nitrogenase activity, but it was not used as a nitrogen source (Igeno et al., 1995).

Selected UK utility company wastewaters were trialled as potential targets for hydrogen bioenergy following filtration to remove debris but with no other modifications (Fig. 3). The energy production potential from biohydrogen via photofermentation was twice that from biogas (Fig. 3). Hence, H\(_2\) energy from organic acid wastes is a viable option for energy production by heavily populated, industrialized countries but may be limited seasonally by available natural sunlight. Stand-alone photobiological hydrogen production has major potential in solar-rich countries with the option to also treat wastes in areas of high population density. An environmental life cycle analysis has been developed for cyanobacterial bio-H\(_2\) (Archer et al., 2017). The next step is to apply a similar LCA for various options with respect to geographical location, other socio-economic factors and the global increase in demand for cooling to safeguard food supplies for expanding populations.

Acknowledgements

AJS and SAA acknowledge with thanks studentships from the EPSRC Doctoral Training Centre ‘Fuel Cells and their Fuels’. The work was supported in part by NERC (grant NE/L014076/1) to LEM.

Conflict of Interest

None declared.

References

Abo-Hashesh, M., Desaunay, N., and Hallenbeck, P.C. (2013) High yield single stage conversion of glucose to hydrogen by photofermentation with continuous cultures of Rhodobacter capsulatus JP91. *Biores Technol* **128**: 513–517.

Adessi, A., Corneli, E., and Philippi, S. (2017) Photosynthetic purple nonsulfur bacteria in hydrogen production systems: new approaches in the use of well known and innovative substrates. In *Modern Topics in the Phototrophic Prokaryotes*. Hallenbeck, P.C. (ed.). Cham, Switzerland: Springer, pp. 321–350.

Anon (2017) URL http://www.hydrogeneurope.eu/wp-content/uploads/2017/01/170113-Hydrogen-Council-InternationaloI-Press-Releases.pdf.

Archer, S.A., Murphy, R.J. and Steinberger-Wilckens, R. (2017). Systematic review and life cycle analysis of biomass derived fuels for solid oxide fuel cells. In *Proceedings: Fuel Cell and Hydrogen Technical Conference 2017. 31st May – 1st June 2017. Birmingham, UK*.

Balachandar, G., Khanna, N., and Das, D. (2013) Biohydrogen production from organic wastes by dark fermentation. In *Biohydrogen*. Pandey, A., Chang, J.-S., Hallenbeck, P.C., and Larroche, C. (eds). Burlington, MA, USA: Elsevier, pp. 103–144.

Chang, A.C.C., Chang, H.-F., Lin, F.-J., Lin, K.-H., and Chen, C.-H. (2011) Biomass gasification for hydrogen production. *Int J Hydrogen Energy* **36**: 14252–14260.

Deplanche, K., Attard, G.A., and Macaskie, L.E. (2007) Biorecovery of gold from jewellery waste by *Escherichia coli* and biomanufacture of active Au-nanomaterial. *Adv Mater Res* **20–21**: 647–652.

Dincer, I., and Acar, C. (2015) Review and evaluation of hydrogen production methods for better sustainability. *Int J Hydrogen Energy* **40**: 11110–11111.

DOE (2013). Report of the hydrogen production expert panel: a subcommittee of the hydrogen and fuel cell technical advisory committee. URL https://www.hydrogen.energy.gov/pdfs/hpep_report_2013.pdf.

Eroğlu, E., Gündüz, U., Yücel, M., Türker, L., and Eroğlu, I. (2004) Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. *Int J Hydrogen Energy* **29**: 163–171.

Esapa-Gamboa, E., Mijangos-Cortés, J.O., Hernández-Zárate, G., Maldonado, J.A.D., and Alzate-Gaviria, L.M. (2012) Methane production from hydrous ethanol using a modified UASB. *Biotechnol Biofuels* **5**: 82–92.
Pandey, A., Chang, J.-S., Hallenbeck, P.C., and Larroche, C. (eds.). Burlington, MA, USA: Elsevier, pp. 185–221.
Show, K.Y., and Lee, D.J. (2013) Bioreactor and bioprocess design for biohydrogen production. In Biohydrogen. Pandey, A., Chang, J.-S., Hallenbeck, P.C., and Larroche, C. (eds.). Burlington, MA, USA: Elsevier, pp. 317–337.
Singh, J.S., Kumar, A., Rai, A.N., and Singh, D.P. (2016) Cyanobacteria: a precious bio-resource in agriculture, ecosystem and environmental sustainability. Front Microbiol 7: 1–19. article 529
Strahan, D. (ed.) (2017) Clean cold and the global goals. URL www.birmingham.ac.uk/Documents/college-eps/energy/Publications/Clean-Cold-and-the-Global-Goals.pdf.
Tiwari, A., and Pandey, A. (2012) Cyanobacterial hydrogen-a step towards clean environment. Int J Hydrogen Energy 37: 139–150.
Uyar, B., Eroglu, I., Yücel, M., Gündüz, U., and Türker, L. (2007) Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors. Int J Hydrogen Energy 32: 4670–4677.
Xiaobing, W. (2012) Enhanced photo-fermentative hydrogen production from different organic substrate using hupL inactivated Rhodopseudomonas palustris. Afr J Microbiol Res 6: 5362–5370.
Zhang, Y., Yang, H., and Guo, L. (2016) Enhancing photo-fermentative hydrogen production performance of Rhodobacter capsulatus by disrupting methylmalonate-semialdehyde dehydrogenase gene. Int J Hydrogen Energy 41: 190–197.
Zürrer, H., and Bachofen, R. (1979) Hydrogen production by the photosynthetic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 37: 789–793.