FREE TRANSPORT FOR CONVEX POTENTIALS

YOANN DABROWSKI, ALICE GUIONNET, DIMA SHLYAKHTENKO

Abstract. We construct non-commutative analogs of transport maps among free Gibbs state satisfying a certain convexity condition. Unlike previous constructions, our approach is non-perturbative in nature and thus can be used to construct transport maps between free Gibbs states associated to potentials which are far from quadratic, i.e., states which are far from the semicircle law. An essential technical ingredient in our approach is the extension of free stochastic analysis to non-commutative spaces of functions based on the Haagerup tensor product.

Contents

1. Introduction 2
1.1. Classical construction of transport maps 3
1.2. Construction of transport maps in free probability 6

Acknowledgements 9

2. Definitions and framework 9
2.1. Spaces of analytic functions 9
2.2. Spaces of analytic functions with expectations 11
2.3. Spaces of differentiable functions 12
2.4. Differential operators 15
2.5. Free brownian motion 16

3. Semi-groups and SDE’s associated with a convex potential 17
3.1. Convex potentials 17
3.2. Free stochastic differential equation 19
3.3. Semigroup 23

4. Construction of the transport map 27

5. Appendix 1: Cyclic Haagerup Tensor Products 31
5.1. Preliminaries 32
5.2. The cyclic Haagerup tensor product, case $n = 2$. 34
5.3. k-fold cyclic module extended Haagerup tensor products 43

6. Appendix 2: Function spaces 54
6.1. Generalized Cyclic non-commutative analytic functions 55
6.2. Analytic functions with expectations 58

YD: dabrowski@math.univ-lyon1.fr, Université de Lyon, Université Lyon 1, Institut Camille Jordan UMR 5208, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
AG: alice.guionnet@ens-lyon.fr, Université de Lyon, Ecole Normale Superieure, 46 allée d’Italie, 69007, Lyon, France. Research supported by NSF Grant DMS-1307704 and Simons foundation.
DS: shlyakht@math.ucla.edu, Department of Mathematics, UCLA, Los Angeles, CA 90095, USA. Research supported by NSF Grant DMS-1500035.
1. Introduction

A transport map between two probability measures is a function pushing the first measure onto the second. Finding transport maps which minimize a certain cost function is the central question in transportation theory. It was formalized by Monge in the eighteenth century, studied by Kantorovich during World War II and has known major advances in the last twenty years, starting with a work of Brenier [Bre91], see also the very inspiring book by Villani [Vil03]. In fact, the mere existence of a transport map is itself not completely trivial and was shown by von Neumann in 1930s, under very weak assumptions, as part of the program to classify measure spaces.

A central question is to find appropriate generalizations of this result to the non-commutative setting, where measures are replaced by non-commutative distributions, that is, tracial states. In this case, there is no notion of density but in certain instances arising in Voiculescu’s free probability theory, integration by parts makes sense. It gives the adjoint in L^2 of Voiculescu’s free difference quotient [Voi98], and is often a (cyclic) derivative of a non-commutative function that we call potential.

Non commutative laws which are characterized by such an integration by parts formula are called free Gibbs laws. In [GS12], two of the authors of this article constructed transport maps between a class of free Gibbs laws. They used ideas going back to Monge and Ampère, based on the remark that transport maps must satisfy an equation given by the change of variables formula. Solving this equation yields a transport map. Unfortunately, this equation was only solved in [GS12] in the case of potentials which are small perturbations of quadratic potentials, i.e., certain small perturbations of Voiculescu’s free semicircular law. However, already this result yielded isomorphisms between the associated C^* and von Neumann algebras in such perturbative situations, solving a number of open questions [Voi06]. In particular, this approach was used to show that the C^* and von Neumann algebras of q-Gaussian laws [BS91] are isomorphic for sufficiently small values of q.

The goal of the present article is to consider non-perturbative situations. We will see that we can tackle situations where the potential is “strictly convex” (in a sense we will make precise later in the paper). The idea is once again to use a non-commutative version of the Monge-Ampère equation, but to solve it by interpolating the potential between the two given laws. This requires to solve a Poisson type equation. The latter, in strictly convex situations, can be solved by using the associated (free) semi-group. However, this program meets several difficulties in the non-commutative setting. First, smoothness properties of the semi-group were so far not studied. Furthermore, the appropriate notion of convexity has not yet been formulated. We detail our framework in Section 2, leaving to the appendix
the elaboration of most of its properties. In Section 3 we study the semi-group defined in this framework and derive its properties. Based on this, we finally construct the transport map in Section 4.

In the rest of this section, we detail the classical construction of transport maps from which we took our inspiration, and explain how it generalizes to the case of a single non-commutative variable. We then consider the general non-commutative multi-variable case and state our main theorem.

1.1. Classical construction of transport maps. For any suitable real-valued function U from \mathbb{R}^d to \mathbb{R} we define the probability measure

$$
\mu_U(dx) = \frac{1}{Z_U} e^{-U(x)} dx, \quad Z_U = \int e^{-U(x)} dx.
$$

We let V and $V + W$ be two functions going fast enough to infinity so that Z_V and Z_{V+W} are finite. We would like to construct $F : \mathbb{R}^d \mapsto \mathbb{R}^d$ so that $\mu_{V+W} = F \# \mu_V$, i.e., so that for all test functions h

$$
\int h(F(y)) d\mu_V(y) = \int h(x) d\mu_W(x) = \int h(F(y)) \text{Jac}(F)(y) e^{-(V+W)(F(y))} dy / Z_W
$$

where $\text{Jac}(F)$ denotes the Jacobian of F. We have simply performed the change of variables $x = F(y)$ in the last line, assuming that F is C^1. We therefore deduce that F should satisfy the transport equation:

$$
V(y) = (V + W)(F(y)) - \ln \text{Jac}(F)(y) + C
$$

for almost all y where we set $C = \ln Z_{V+W} - \ln Z_V$.

If $V - W$ is small we can seek a solution F which is close to identity, so that its Jacobian stays away from the zero and therefore does not get close to the singularity of the logarithm. The resulting equation can in turn be solved by the implicit function theorem. Such arguments were extended to the non-commutative setting in [GS12].

To solve the transport equation in a non-perturbative situation, we shall in this article proceed by interpolating the potential. Namely, let us consider potentials $V_\alpha = \alpha W + V$ and seek to construct a transport map F_α of μ_V onto μ_{V_α}. The advantage of smooth interpolation is that transporting μ_{V_α} onto $\mu_{V_{\alpha+\varepsilon}}$ can a priori be solved for ε small enough by the previous pertubative arguments, and the full transport $F_1 = F$ of μ_V onto μ_W can then be recovered by integration along the interpolation.

In fact, we shall solve the transport equation (1) under the additional restriction that F evolves according to a gradient flow: $\partial_\alpha F_\alpha = \nabla g_\alpha(F_\alpha)$. It turns out that g must then be a solution of the Poisson equation

$$
L_{V_\alpha} g_\alpha = W + \partial_\alpha \ln Z_{V_\alpha},
$$

with $L_{V_\alpha} = \Delta - \nabla V_\alpha \cdot \nabla$ the infinitesimal generator of the diffusion having μ_{V_α} as its stationary measure. Solving the Poisson equation (2) amounts to inverting L_{V_α}, that is, finding the Green function of the differential operator L_{V_α}. This is a well known problem which can be solved under various boundary conditions or growth of V at infinity. To simplify we shall assume that V_α (that is V and $V + W$) are uniformly convex. This insures that the semi-group $P^\alpha_s = e^{sL_{V_\alpha}}$ converges uniformly towards the Gibbs measure μ_{V_α} as s goes to infinity.
More precisely, there exists some $c > 0$ such that for all Lipschitz functions f with bounded Lipschitz norm $\|f\|_L$ we have

$$\|P^\alpha_s f - \mu_{V_\alpha}(f)\|_\infty \leq 2e^{-cs}\|f\|_L.$$

As a consequence we can solve the Poisson equation (2) by setting

$$g_\alpha(x) = \int_0^\infty P^\alpha_s(W + \partial_\alpha \ln Z_{V_\alpha})(x)ds$$

where we noticed that $\mu_{V_\alpha}(W + \partial_\alpha \ln Z_{V_\alpha}) = 0$. Hence we see that the classical setup (2) can be solved thanks to the associated semi-group. Moreover, by smoothness of $x \mapsto P^\alpha_s(W)(x)$, we see that g_α is smooth if W is. To conclude, all that remains is to solve the transport equation $\partial_\alpha F_\alpha = \nabla \mu_{V_\alpha}(F_\alpha)$. In the rest of this article we generalize this strategy to the free probability framework.

Let us first investigate the free set-up in the one variable case. Typically, one should think about the non-commutative law of one variable as the asymptotic spectral measure of a random matrix, confined by a potential V: the joint law of these eigenvalues is given by

$$dP_N^V(\lambda_1, \ldots, \lambda_N) = \frac{1}{Z_N} \prod_{1 \leq i \neq j \leq N} |\lambda_i - \lambda_j| \exp\{-N \sum_{i=1}^N V(\lambda_i)\} \prod_{1 \leq i \leq N} d\lambda_i.$$

It is then well known (see e.g. [AGZ10]) that the spectral measure $L_N = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ converges almost surely to the equilibrium measure μ_V, which is characterized by the fact that the function

$$V(x) - 2 \int \ln |x - y| d\mu_V(y)$$

is equal to a constant c_V on the support of μ_V and is greater than this constant outside of the support. This equation implies the Schwinger-Dyson equation

$$2 \ P.V. \int \frac{1}{x - y} d\mu_V(y) = V'(x), \ \mu_V \ a.s.$$

where $P.V.$ denotes the principal value. We will call a free Gibbs law with potential V a solution to (5). It may not be unique; in fact, there is a continuum of solutions as soon as solutions have disconnected support: a solution corresponds to any choice of masses of the connected pieces of the support. This is not the case when V is uniformly convex. In this case, there is a unique solution and it has connected support. The interest in Schwinger-Dyson equation is that it can be interpreted as an integration by parts identity for the non-commutative derivative $\partial f(x, y) := \frac{f(x) - f(y)}{x - y}$ since it implies that

$$\int \int \frac{f(x) - f(y)}{x - y} d\mu_V(x)d\mu_V(y) = \int f(x)V'(x)d\mu_V(x).$$

As there is no notion of density in free probability, integration by parts can be seen as an important way to classify measures. Moreover, as we shall soon describe, there is a natural generalization of free Gibbs laws to the multi-variable setting.

Let now V, W be two potentials. We would like to construct a transport map from the Gibbs law μ_V with potential V to the Gibbs law μ_{V+W} with potential $V + W$. We can follow
the previous scheme and seek \(g_\alpha \) satisfying: \(\partial_\alpha F_\alpha = g'_\alpha(F_\alpha) \) and \(F_\alpha \# \mu_V = \mu_{V_\alpha} \). By (1), we find that \(\mu_{V_\alpha} \) almost surely we must have

\[
\Delta_{V_\alpha} g_\alpha(x) := 2 \int \frac{g'_\alpha(x) - g'_\alpha(y)}{x - y} d\mu_{V_\alpha}(y) - V'_\alpha(x)g'_\alpha(x) = W - \partial_\alpha c_{V_\alpha}.
\]

We recognize on the left hand side the infinitesimal generator \(\Delta_{V_\alpha} \) of the free diffusion driven by a free Brownian motion, [BS98]. More precisely, the infinitesimal generator of the free diffusion is given by

\[
\Delta_{V_\alpha} f(x) = 2\mathbb{E} \left[\frac{f'(x) - f(X)}{x - X} \right] - V'(x)f'(x)
\]

if \(X \) has the same law as \(x \).

The fact that this generator depends on the law of the variable complicates the resulting theory quite a lot. In particular, the operators \(e^{s \Delta_{V_\alpha}} \) acting on the obvious space of functions do not form a semigroup. To restore the semi-group property, we have to enlarge the set of test functions to be functions of not just the real variable \(x \), but also of expectations of this random variable. Our idea here is similar to the one introduced in [Ceb13]. This in turn changes the generator of the diffusion to also involve differentiation under the expectation: we denote \(\delta_V \) the derivative \(\delta_V \mathbb{E}[f] = \mathbb{E}[\Delta_V f] \). We can now check that \((e^{s(\Delta_{V_\alpha} + \delta_{V_\alpha}))}_{s \geq 0} \) is a semi-group so that we can apply the previous analysis.

Note here that when \(x \) follows the invariant measure \(\mu_{V_\alpha} \), \(\delta_{V_\alpha} \mu_{V_\alpha}(f) = 0 \) and therefore the two generators coincide. Thus invariant measures for the semi-group \((e^{s(\Delta_{V_\alpha} + \delta_{V_\alpha}))}_{s \geq 0} \) will satisfy (6).

As before, we shall solve (6) under a gradient form. Again, the natural gradient that we shall use also differentiates under expectation. Namely we let \(\mathcal{D} \) to be given for any smooth functions \(f, f_i, i \geq 0 \) by

\[
\mathcal{D}(f(x)) \prod \mathbb{E}[f_j(x)] = f'(x) \prod \mathbb{E}[f_j(x)] + \mathbb{E}[f] \sum_i f'_i(x) \prod_{j \neq i} \mathbb{E}[f_j].
\]

Then, we shall find a function \(\mathcal{D}g_\alpha \) (of the variable \(x \) and the expectation, see Lemma 14), which satisfies a gradient form of (6) (after adding \(\delta_{V_\alpha} \) to the generator and commuting \(\mathcal{D} \) with \(\Delta_{V_\alpha} + \delta_{V_\alpha} \)):

\[
\mathcal{D}(W) = (\Delta_{V_\alpha} + \delta_{V_\alpha})\mathcal{D}(g_\alpha) + V''_{\alpha} \mathcal{D}g_\alpha.
\]

Having obtained the solution \(g_\alpha \), we finally solve

\[
\partial_\alpha F_\alpha = \mathcal{D}g_\alpha(F_\alpha).
\]

To make things clearer, let us transport the measure \(P_N^V \) onto \(P_N^W \) and only afterwards take the large \(N \)-limit. Again, we consider the transport of \(P_N^V \) onto \(P_N^{V_\alpha} \). We may expect, by symmetry, the flow \(F^\alpha = (F_1^\alpha, \ldots, F_N^\alpha) \) for the transport map to be the gradient of a function of the empirical measure \(L_N = \frac{1}{N} \sum \delta_{\lambda_i} \):

\[
F^\alpha_i(\lambda) = N\partial_{\lambda_i} G_\alpha(L_N) = \mathcal{D}G_\alpha(\lambda_i, L_N).
\]
The infinitesimal generator $L_V = \Delta - \nabla V \cdot \nabla$ acting on functions of the form $F(L_N) = N \prod \frac{1}{N} \sum_{i=1}^{N} f_j(\lambda_i)$ reads

$$L_V F = \sum_k \prod_{j \neq k} \frac{1}{N} \sum_{i=1}^{N} f_j(\lambda_i) \frac{1}{N} \sum_{i=1}^{N} L_v f_k(\lambda_i) + O\left(\frac{1}{N}\right)$$

where the last term comes from differentiation of two different functions and is at most of order $1/N$. Hence, when N goes to infinity we see that functions of the distribution of the λ_i should not be taken as constant but also differentiated under the expectation. Taking the gradient in the Poisson equation (2) shows that we seek G_{α} such that for each i

$$(L_{V_{\alpha}} + \delta_{V_{\alpha}})DG_{\alpha}(\lambda_i) = DW(\lambda_i) + V''_{\alpha}(\lambda_i)DG_{\alpha}(\lambda_i) + O\left(\frac{1}{N}\right).$$

Hence, taking the large N limit, we expect G_{α} to be given at first order by the solution g_{α} of (2).

The final step to finish our construction of the transport map is to introduce a notion of uniform convexity of V such that the associated semi-group converges uniformly and sufficiently rapidly towards the invariant measure as time goes to infinity (to make sense of the integral over time from 0 to ∞), and such that if f is smooth then also $x \mapsto e^{s(\Delta_{V_k} + \delta_{V_k})} f(x)$ is smooth, uniformly in s (to be able to solve the transport equation). Our choice of the notion of uniform convexity of V is designed to guarantee such properties.

1.2. Construction of transport maps in free probability. We now want to explain our approach to the main goal of this article, which is to construct transport maps between non-commutative distributions of several non-commutative variables. In free probability theory, laws of non-commutative variables are defined as linear forms between non-commutative distributions of several non-commutative variables. In free probability theory, laws of non-commutative variables are defined as linear forms τ on the space $\mathbb{C}\langle X_1, \ldots, X_n \rangle$ of polynomials in the self-adjoint non-commutative letters X_1, \ldots, X_n with coefficients in \mathbb{C} which have mass one (so that $\tau(1) = 1$), and which satisfy the traciality property ($\tau(PQ) = \tau(QP)$) and the state property ($\tau(PP^*) \geq 0$). Here $*$ denotes the usual involution ($zX_{i_1} \cdots X_{i_k} = zX_{i_k} \cdots X_{i_1}$).

An example one should keep in mind is the asymptotic law of several interacting random matrices with joint law given by

$$d\mathbb{P}_{N}^V(X_1^N, \ldots, X_n^N) = \frac{1}{Z_N^V} \exp\{-N\text{Tr}(V(X_1^N, \ldots, X_n^N))\} dX_1^N \cdots dX_n^N$$

where dX^N is the Lebesgue measure on the space of $N \times N$ Hermitian matrices and V is a self-adjoint polynomial in $\mathbb{C}\langle X_1, \ldots, X_n \rangle$ so that Z_N^V is finite. In this case

$$\tau_{X^N}(P) = \frac{1}{N} \text{Tr}(P(X_1^N, \ldots, X_n^N))$$

is a non-commutative law for any self-adjoint matrices X_1^N, \ldots, X_n^N. So is its expectation under \mathbb{P}_{N}^V and the limit of these expected value as $N \to \infty$ (if the limit exists).

Existence of such an (almost sure and $L^1(\mathbb{P}_{N}^V)$) limit was proven when V is a small perturbation of a quadratic potential [GMS06] and when V satisfies some property of convexity [GS09].

In this paper we will introduce a more suitable notion of convexity yielding as well existence and uniqueness of a limit τ_V. We shall see that it includes the case of quartic potentials. By
integration by parts, we see that the limit τ_V must satisfy that for any polynomial P

$$
(9) \quad \tau_V \otimes \tau_V(\partial_i P) = \tau_V(\mathcal{D}_i V)
$$

where ∂_i is the free difference quotient with respect to the ith derivative from $\mathbb{C}\langle X_1, \ldots, X_n \rangle$ to $\mathbb{C}\langle X_1, \ldots, X_n \rangle \otimes \mathbb{C}\langle X_1, \ldots, X_n \rangle$ given by

$$
\partial_i(PQ) = \partial_i(P) \times 1 \otimes Q + P \otimes 1 \times \partial_i Q, \quad \partial_i X_j = 1_{i=j} 1 \otimes 1,
$$

and $\mathcal{D}_i = m \circ \partial_i$ the cyclic derivative, $m(a \times b) = ba$. When $V = \sum_{i=1}^n X_i^2$, $\sigma_n := \tau_{\sum_{i=1}^n X_i^2}$ is uniquely given recursively by (9) and is the law of n free semicircle variables. In general, we say that a non-commutative law τ_V satisfying (9) is a free Gibbs law with potential V. Alternatively we say that the conjugate variables $(\partial_i^e (1 \otimes 1))_{1 \leq i \leq n}$ are equal to the cyclic gradient $(\mathcal{D}_i V)_{1 \leq i \leq n}$.

The goal of this paper is to construct non-commutative transport maps between τ_V and σ_n, following the ideas developed in the previous section. In fact, constructing the transport map as the solution of the transport equation (8) where g_α is solution of a Poisson equation (7) is a natural analogue thanks to existence of free diffusion and free semi-groups. However, this program meets several issues that have to be addressed.

- One of the key point to construct the solution to Poisson equation was the fast convergence of the semi-group towards the free Gibbs law. In the free context, it is well known that semi-groups with deep double well potentials do not always converge. It is therefore natural to search for the appropriate notion of convexity in the non-commutative setting, which would imply convergence of the semi-group as time goes to infinity, uniformly on the initial condition. In [GS09], the notion of convexity that was used turns out to be too strong to include many examples. It assumed that for all n-tuples of self-adjoint variables (X, Y) bounded by some R,

$$
\sum_{i=1}^n ((\mathcal{D}_i V(X) - \mathcal{D}_i V(Y))(X_i - Y_i) + (X_i - Y_i)(\mathcal{D}_i V(X) - \mathcal{D}_i V(Y)))
$$

is non-negative. This is not satisfied by $V(X) = X^4$ as can be checked by taking (X, Y) to be two 2×2 matrices given by $X_{11} = 1, X_{12} = X_{21} = 0, X_{22} = -6, Y_{11} = 1, Y_{12} = Y_{21} = \sqrt{11}/4, Y_{22} = -5$. It would be more natural to assume that the Hessian of $\text{Tr} V(X_1^N, \ldots, X_n^N)$ is bounded below for any n-tuple of Hermitian matrices X_1^N, \ldots, X_n^N. However, this Hessian lives in a tensor product space and saying that it is non-negative depends on the topology with which we equip the tensor product. We shall see that a good topology is given by the extended Haagerup tensor product and prove that our definition includes the case of quartic potentials.

- As in the one variable case, we have to consider functions not only of the variables but also of the expectation and the semi-group must also differentiate under expectation. Hence, we have to develop free stochastic calculus applied to such functions.

- The solution of the Poisson equation is given in terms of the semi-group, and we need to show existence and smoothness of the transport maps which are the solution of the transport equation driven by this solution. This requires us to show that the semi-group acts smoothly on appropriate spaces of non-commutative functions, and also understand its image under the cyclic gradient.
We next state our result. In Section 2.4 we define several differential operators acting on functions of several non-commutative variables, some of them being well known in free probability, such as the difference quotient and the cyclic gradient. We extend their definition to functions which also depend on expectations, in order to define a proper semi-group on the appropriate function spaces. We then define the notion of \((c, R)\) -convexity of a function in Definition 8. It states that the Hessian of this function is bounded below by \(cI\) in the extended Haagerup tensor product, uniformly when evaluated on non-commutative variables bounded by \(R\). An important point is that this notion is stable under addition. We then show in Proposition 9 that the free SDE with strictly \(h\)-convex potential converges as time goes to infinity towards a free Gibbs law. To construct the transport map between \(\tau V\) and \(\sigma_n\), we shall need an additional technical assumption. First, as we proceed by interpolation of Consequently, \(\tau V\) is h-convex on the space of variables bounded by \(2R\). Theorem 1. Let \(c, R > 0\). Assume that \(V\) is a six times continuously differentiable \((c, R)\) -convex on the space of variables bounded by \(2R\). Assume that \((V, c\sum_{i=1}^{n} X_i^2 - V)\) satisfies the technical Assumption 7. Let \(V_\alpha = V + \alpha(c\sum_{i=1}^{n} X_i^2 - V)\).

- There exists \(\alpha_0 > 0\) and functions \(F_\alpha, \alpha \in [0, \alpha_0]\) and \(G_\alpha, \alpha \in [0, \alpha_0]\), so that for all \(\alpha \in [0, \alpha_0]\), \(\tau V\) (resp. \(\tau V_\alpha\)) is the pushforward of \(\tau V_\alpha\) (resp. \(\tau V\)) by \(F_\alpha\) (resp. \(G_\alpha\)).
- For any \(\alpha \in [0, 1]\), the von Neumann algebras associated to the free Gibbs law with potential \(V_\alpha\) are isomorphic; in particular, they are isomorphic to the von Neumann algebra generated by \(n\) free semicircular variables.

In the appendix, see Corollary 52, we show that the following perturbation of quartic potentials \(V\) satisfy all our hypotheses:

\[
\mathcal{V}(X) = V(X) + \varepsilon P \left(\sqrt{-1} + X_1, \ldots, \sqrt{-1} + X_n \right),
\]

with

\[
V(X) = \sum_{j=1}^{k} \mu_j \nu_j \left(\sum_{i=1}^{n} \lambda_{i,j} X_i \right) + \sum_{i,j=1}^{n} A_{i,j} X_i X_j.
\]

Here \(A = (A_{i,j}) \in M_n(\mathbb{R})\) is a positive matrix with \(A \geq cI_n\), \((\lambda_{i,j}) \in M_{n,k}(\mathbb{R}), \mu \in [0, \infty)^k\), \(\nu_j(x) = \nu_{j,2} \frac{x^2}{2} + \nu_{j,3} \frac{x^3}{3} + \nu_{j,4} \frac{x^4}{4} \in \mathbb{C}(X_1, \ldots, X_n)\) for \(\nu_{j,4} > 0, \nu_{j,3}^2 \leq 8 \nu_{j,2} \nu_{j,4}/3\). Furthermore, \(P\) is a self-adjoint polynomial and \(\varepsilon\) is small enough.

This is the first potential which is not a perturbation of a quadratic case for which isomorphism between the von Neumann algebras associated with its free Gibbs law and that of free semi-circle variables is proven.

In the rest of the article we will consider a more general framework where the set of polynomials in \(X_1, \ldots, X_n\) is replaced by the set of polynomials in \(X_1, \ldots, X_n\) and elements in \(B\), a von Neumann algebra. For \(D\) a von Neumann subalgebra of \(B\), we shall consider variables \(X_1, \ldots, X_n\) which commute with \(D\). Our set of test functions will be converging series in such monomials, or closures of this space arising from certain non-commutative versions of \(C^\alpha\)-norms. We shall consider the extended Haagerup tensor product of such spaces, and its
cyclic variant which allows the action of cyclic permutations on these functions, space on which the cyclic gradient acts. Indeed, this gradient appears in the right hand side of the Dyson-Schwinger equation \([9]\) and the non-commutative version of the transport equation \([8]\), and is therefore key to our analysis. Our main result in this general situation is stated in Corollary \([17]\).

Our motivation for this generalization is two-fold. The first is to consider the crossed product \(F_n \ltimes D\) of an action of the free group on \(D\), as well as its \(q\)-deformation \([JLU14]\). At this point we did not verify that these deformations correspond to potentials that satisfy our assumptions (for \(q\) small enough). The motivation to also consider the algebra \(B\) comes from the analysis of the free product \((\Gamma \ltimes D) *_D (W^*(S_t, s \leq t) \otimes D)\): then \(B = \Gamma \ltimes D\). Being able to construct transport maps in this setting would allow to construct solutions of free SDE’s with initial conditions in \(B\) as the image by transport maps of some process \(S_{t_1}, \ldots, S_{t_n}\). For instance, one would want to obtain solutions of free SDE’s similar to those considered in \([Sh09]\) in the context of crossed product and for non-algebraic cocycles. Building such solutions in free products with amalgamation could enable the use of techniques similar to those in \([DI16, Io15]\) and would lead to the study of algebras \(B\) by a free transport approach, for instance to answer questions such as uniqueness of Cartan decomposition up to unitary conjugacy for non-trivial actions when \(\Gamma\) is a group with positive first \(\ell^2\) Betti number. Such interesting applications would thus require to consider non smooth potentials \(V\), something which is still far from our reach. However, we feel that these potential applications outweigh the small additional difficulties involved in considering the more complex setting with non-trivial algebras \(B\) and \(D\). Thus our article lays the groundwork for future developments in this direction and our main example of relative algebra \(B\) is exactly the kind of crossed-product that could be interesting for the above-mentioned potential applications.

Acknowledgements. The authors would like to acknowledge the hospitality of the Focus Program on Noncommutative Distributions in Free Probability Theory held at the Fields institute in July 2013 where an early part of this work has been completed. We are also grateful to the Oberwolfach Workshop on Free Probability Theory held in June 2015 during which we were able to make further progress.

2. Definitions and framework

2.1. Spaces of analytic functions. We denote by \(M(X_1, \ldots, X_n)\) the set of monomials in \(X_1, \ldots, X_n\). Throughout this paper, \(B\) will denote a finite von Neumann algebra, and \(D\) a von Neumann subalgebra.

The extended Haagerup tensor product relative to \(D\) is denoted by \(\otimes_D^{\text{eh}}\). We denote by \(B^{\otimes_D^{\text{eh}}}\) a version of the \(n\)-th extended Haagerup tensor power of \(B\) that carries the action of the cyclic group of order \(n\).

For \(R > 0\), we define formally

\[B(X_1, \ldots, X_n : D, R) := B \oplus_{D}^{\text{eh}} \ell_{D}^{1} \left(R^{[m]} B^{\otimes_D^{\text{eh}}} (|m| + 1); m \in M(X_1, \ldots, X_n); |m| \geq 1 \right) \] .

Here \(R^{[m]} E\) means the space \(E\) with standard norm multiplied by \(R^{[m]}\). This space can be regarded as the space of power series in \(X_1, \ldots, X_n\) with coefficients in \(B\) and radius
of convergence at least R by identifying a monomial $b_0 X_i b_1 \cdots X_{i_p} b_p$ with the copy of the tensor $b_0 \otimes \cdots \otimes b_p$ indexed by the monomial $m = X_{i_1} \cdots X_{i_p}$. The definition of the Haagerup tensor product \otimes^eh_D is discussed in section 1.2 and Lemma 5 of [Dab15] (see also [P] chapter 5, [M97], [M03] for the general module case). The above definition requires a direct sum of D-modules in order that $B(X_1, ..., X_n : D, R) \otimes^\text{eh}_D B(X_1, ..., X_n : D, R)$ is well defined. Modulo this (important) property, we could have more simply considered the (ordinary operator space) $\ell^1 = \ell^1_B$ direct sum (cf. [P] section 2.6): we denote $B(X_1, ..., X_n : D, R, \mathbb{C})$ the corresponding smaller space. We will only use this sum in the cyclic case.

Its cyclic variant $B_c(X_1, ..., X_n : D, R, \mathbb{C})$ is given by:

$$(D' \cap B) \oplus^+ \ell^1 \left(R^m | B_{D,c}^\text{eh} \otimes (|m|+1); m \in M(X_1, ..., X_n), |m| \geq 1 \right),$$

where D' is the commutant of D and $\otimes^\text{eh}_{D,c}$ stands for the cyclic version of Haagerup tensor product defined in subsection 5.3. This space can be regarded as the space of power series in X_1, \ldots, X_n with coefficients in B and radius of convergence at least R, and such that variables X_j commute with D. As before, a monomial $b_0X_1 b_1 \cdots X_{i_p} b_p$ is identified with the copy of the tensor $b_0 \otimes \cdots \otimes b_p$ indexed by the monomial $m = X_{i_1} \cdots X_{i_p}$. The use of the Haagerup tensor product $\otimes^\text{eh}_{D,c}$ ensures the possibility of cyclic permutation of various terms in the power series. \mathcal{C}_{p+1} denotes the group of cyclic permutations acting on the cyclic tensor product, with generator $\rho(b_0 \otimes \cdots \otimes b_p) = b_p \otimes b_0 \cdots \otimes b_{p-1}$. We will define in subsection 6.1 the cyclic gradient: it is roughly speaking a linear map on this space. We also define the analogue $B_c(X_1, ..., X_n : D, R, \mathbb{C})$ of $B(X_1, ..., X_n : D, R, \mathbb{C})$.

$B_c(X_1, ..., X_n : D, R, \mathbb{C})$ and $B(X_1, ..., X_n : D, R)$ are Banach algebras, see [Dab15] Theorem 39 and subsection 6.1.

We let for $n, m > 0$, $i \in \{1, \ldots, n-1\}$, $\#_i : A^\otimes_{D,c} \times (D' \cap A^\otimes_{D,c} m) \to A^\otimes_{D,c} n+m-2$ the canonical extension of the map given on elementary tensors by

$$(a_1 \otimes \cdots \otimes a_n) \#_i (b_1 \otimes \cdots \otimes b_m) = a_1 \otimes \cdots \otimes a_{i-1} \otimes a_i b_1 \otimes b_2 \cdots \otimes b_m a_{i+1} \otimes \cdots \otimes a_n.$$

Having those operadic compositions, which will be crucial for non-commutative calculus, is another reason for using variants of Haagerup tensor products. The reader should note that by definition $A^\otimes_{D,c} \subset (D' \cap A^\otimes_{D,c} n)$, $A^\otimes_{D,c} m$. We will also use the restriction to cyclic variants as defined in subsection 5.3 $\#_i : A^\otimes_{D,c} n \times A^\otimes_{D,c} m \to A^\otimes_{D,c} n+m-2$ We will denote in short $\#$ for $\#_1$. We may also write for instance $\#_{(\cdot, \cdot)} : A^\otimes_{D,c} (\otimes^\neq_2) \times A^\otimes_{D,c} m \to A^\otimes_{D,c} m+1$ for $U\#(V, W) = (U \#_1 V)\# W = (U \#_2 W)\# V$ and similarly $U\#(V_1, \cdots, V_k)$.

We endow $A^\otimes_{D,c}$ with the adjunction $*$ so that $(a \otimes b)^* = a^* \otimes b^*$. Note that $(a \# b)^* = b^* \# a^*$, so that $(A^\otimes_{D,c}, *)$ is a $*$-algebra.
2.2. Spaces of analytic functions with expectations. We will need a generalization of analytic functions enabling functions of the conditional expectation E_D on D. For example, we would like to consider functions of the type

$$b_0X_{i_1}b_1 \cdots X_{i_p}b_pE_D[b_{p+1}X_{i_{p+2}} \cdots b_{p+k}E_D[b_{p+k+1}X_{i_{p+k+2}} \cdots b_{p+k+m}]]$$

$$\times E_D[b_{p+k+m}X_{i_{p+k+m+1}} \cdots b_{p+k+m+\ell}][b_{p+k+m+1}X_{i_{p+k+m+\ell+2}} \cdots b_{p+k+m+\ell+r}]$$

As the order in which conditional expectations are applied matters, we will label such a monomial by inserting an additional letter Y for each closing and opening parenthesis of the map. The matching between the closing and opening parenthesis then defines a non-crossing pair partitions of the set of positions of the letter Y. Conversely, given a non-commuting monomial in letters X_1, \ldots, X_n and Y having even degree $2k$ in Y, and a non-crossing pair partition of the positions of the letter Y, we can define a unique expression of the type above. Thus, formally we set

$$B_k \{X_1, \ldots, X_n : E_D, R \} := \ell^1_D\left(R^{m|X} B_D^{cb}(|m|+1) \right);$$

$$m \in M_{2k}(X_1, \ldots, X_n, Y), \pi \in NC_2(2k), |m| \geq 1, \quad k \geq 1$$

where $M_{2k}(X_1, \ldots, X_n, Y)$ is the set of non-commuting monomial in letters X_1, \ldots, X_n and Y having even degree $2k$ in Y, $|m|_X$ denotes the degree in the letter X_1, \ldots, X_n of m and $|m| = |m|_X + 2k$. We call $B_k \{X_1, \ldots, X_n : E_D, R, C\}$ the corresponding space with (non-module) operator space ℓ^1 sums (in the sense of [P section 2.6]). Similarly, we define

$$B_{c,k} \{X_1, \ldots, X_n : E_D, R, C\} := \ell^1\left(R^{m|X} B_D^{cb}(|m|+1) \right);$$

$$m \in M_{2k}(X_1, \ldots, X_n, Y), \pi \in NC_2(2k), |m| \geq 1 \}.$$
2.3. Spaces of differentiable functions. Let A be a finite von Neumann algebra, $B \subset A$ a von Neumann subalgebra. Set
\[
A^n_R := \{(X_1, \ldots, X_n) \in A^n : X_i = X_i^* \in A; \|X_i\| < R, \quad [X_i, D] = 0, 1 \leq i \leq n\}.
\]
Let $U \subset A^n_R$ be a closed subset of A^n_R. For convenience, we will first embed the algebra $B_\mathcal{C}(X_1, \ldots, X_n : D, R, \mathbb{C})$ into a much larger algebra $\cap_{S>R}C_0^b(U, B_c(X_1, \ldots, X_n : D, S, \mathbb{C}))$, where $C_0^b(U, B)$ stands for the space of bounded continuous functions on U with values in a Banach space B. On this space we define the norm
\[
\|P\|_{A,U} = \sup\{\|P(X_1, \ldots, X_n)\|_A : (X_1, \ldots, X_n) \in U \},
\]
where by $P(X_1, \ldots, X_n)$ we mean the value of P evaluated at $(X_1, \ldots, X_n) \in U$, itself evaluated as a power series in (X_1, \ldots, X_n) (see Proposition 29 for some details on those evaluations). We call the corresponding completion $C_u^*(A, U : B, D)$ and $C_u^*(A, R : B, D)$ when $U = A^n_R$.

For $P \in \cap_{S>R}C_0^1(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C})) \subset \cap_{S>R}C_0^0(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C}))$ the set of continuously differentiable functions on A^n_R with bounded first derivative, one can consider the differential
\[
dP \in \cap_{S>R}C_0^0(A^n_R, L(D' \cap A^n_{sa}, B_c(X_1, \ldots, X_n : D, S, \mathbb{C}))),
\]
where $L(G, G')$ is the set of bounded linear maps from G into G'. Here, $(D' \cap (A^n_{sa}))$ should be thought of as a tangent space of A^n_R. As usual, one writes for $X \in A^n_R$ and $H \in D' \cap A^n_{sa}$,
\[
D_H P(X) = dP(X).H
\]
and we see that $(D_H P : X \mapsto dP(X).H) \in \cap_{S>R}C_0^0(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C})))$. Likewise for
\[
P \in \cap_{S>R}C_0^k(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C})) \subset \cap_{S>R}C_0^0(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C}))
\]
an element of the set of k times coefficientwise continuously differentiable functions on A^n_R with bounded first k-th order differentials, one can consider the k-th order differential
\[
d^k P \in C_0^0(A^n_R, B((D' \cap (A^n_{sa}))^{\otimes k}, B_c(X_1, \ldots, X_n : D, S, \mathbb{C}))).
\]
Here \otimes denotes the projective tensor product.

In this case $D_K D_H^{-1} P(X) = d^k P(X). (K, H, \ldots, H)$ and
\[
D_K D_H^{-1} P : X \mapsto D_K D_H^{-1} P(X) \in \cap_{S>R}C_0^0(A^n_R, B_c(X_1, \ldots, X_n : D, S, \mathbb{C})).
\]

We show in Proposition 30 that on $B(X_1, \ldots, X_n : D, R)$, the i-th free difference quotient
\[
\partial_i : B(X_1, \ldots, X_n : D, R) \to B(X_1, \ldots, X_n : D, R) \overset{\text{eh}}{\overset{\otimes D}{\otimes}} B(X_1, \ldots, X_n : D, R)
\]
is defined and is a canonical derivation satisfying $\partial_i(X_j) = \delta_{i=j}1 \circ 1, \partial_i(b) = 0$. This can be extended to $B\{X_1, \ldots, X_n : E_D, R\}$ by putting $\partial_i \circ E_D = 0$.

We denote in short
\[
\partial^k_{(i_1, \ldots, i_k)} : B(X_1, \ldots, X_n : D, R) \to B(X_1, \ldots, X_n : D, R) \overset{\text{eh}}{\overset{\otimes D}{\otimes}} (k+1)
\]
the map
\[
\partial^k_{(i_1, \ldots, i_k)} = (\partial_{i_1} \circ 1_{\otimes k}) \circ (\partial_{i_2} \circ 1_{\otimes (k-1)}) \circ \ldots \circ \partial_{i_k}.
\]
Recall that D_H stands for the directional derivative of a function in $C^1_u(A, U : B, E_D)$, viewed as a function from U to the space of power series $B,(X_1, \ldots, X_n : D, R, \mathbb{C})$. However, this won’t be the most convenient differential, since the non-commutative power series part will always be evaluated at the same $X \in U$ and we will rather need the full differential which uses also the free difference quotient on the powers series part.

On the space of continuous differentiable functions $C^1(U, A)$ from U to A, denote by D_H^X the derivative in the direction $H \in A^n$. Consider the map $\eta : C^1_u(A, U : B, E_D) \to C^1(U, A)$ given for $P \in \cap_{S > R} C^0_b(A^n_R, B,(X_1, \ldots, X_n : D, S, \mathbb{C}))$ by $\eta(P) = (P(X))(X)$. Then one has

$$D_H^X(\eta(P)) = \eta(D_H(P)) + \eta(\sum_{j=1}^k (\partial_j(P)) \# H_j)).$$

We let d_X be the differential associated with D_H^X. We will also write:

$$d^p_X P(X).H = (D_H^X)^P \eta(P) = d^p[X \mapsto P(X)(X)](X). (H, \ldots, H)$$

$$= \sum_{j=0}^p \sum_{i \in [1,n]^j} (d^{p-j}[\partial_i^j P(X)].(H, \ldots, H)) \# (H_{i_1}, \ldots, H_{i_j}).$$

For $P \in \cap_{S > R} C^0_b(A^n_R, A,(X_1, \ldots, X_n : D, S, \mathbb{C}))$, $X \in A^n_R$, we set

$$\|P\|_{k,X} = \left(\|P(X)\|_A + \sum_{p=1}^k \sum_{i \in [1,n]^p} \|\partial^p_i P(X)\|_{A^D}(p+1) \right).$$

We will consider the (separation) completion of

$$\bigcap_{S > R} C^{l+1}_b(A^n_R, B,(X_1, \ldots, X_n : D, S, \mathbb{C}))$$

with respect to the seminorms for $(k, l) \in \mathbb{N}^2$ given by

$$\|P\|_{k,l,U} = \sup_{X \in U} \|P\|_{k,X} + \sum_{p=1}^l \sup_{X \in U} \left(\sup_{H \in A^n_1} (\|D^X_H\|^P \eta(P)(X)) \right)$$

$$+ \sum_{m \leq k} \sum_{i \in [1,n]^m} \|\partial^m_i \eta(P)(X)\|_{A^D(m+1)} \right).$$

This seminorm controls k free difference quotients and l full differentials.

We will denote these (separation) completions by $C^{k,l}_u(A, U : B, D)$, and $C^{k,l}_u(A, R : B, D)$ when $U = A^n_R$. Note that the above map D_H^p, for $p \leq l$ extends continuously to a map $C^{k,l}_u(A, R : B, D) \to C^{k-p,l-p}_u(A, R : B, D)$.

When in the definition of $\|\|_{k,X}$ we replace $\|\|_{A^D(m+1)}$ by $\|\|_{A^D(c)(p+1)}$, we distinguish the corresponding seminorms by a subscript c, yielding the norm $\|\|_{k,l,U,c}$ and the spaces $C^{k,l}_c(A, U : B, D)$, $C^k_c(A, U : B, D)$.

13
Note that this requires a supplementary assumption that $U \subset A_{n, UltraApp}^n$ where $A_{n, UltraApp}^n$ is defined before Proposition 32. This assumption is necessary to define evaluation into cyclic tensor products. This is crucial to see that the image of cyclic analytic functions by the free difference quotient belongs to the cyclic Haagerup tensor product, see also Proposition 30.

More precisely we define $A_{n, UltraApp}^n$ the set of $X_1, \ldots, X_n \in A, X_i = X_i^*, [X_i, D] = 0, ||X_i|| \leq R$ and such that B, X_1, \ldots, X_n is the limit in E_D-law (for the $*$-strong convergence of D) of variables in $B_c\langle X_1, \ldots, X_m : D, 2, \mathbb{C} \rangle \langle S_1, \ldots, S_m \rangle$ with S_i free semicircular variables over D. We will thus always assume $U \subset A_{n, UltraApp}^n$ when we deal with spaces with index c. Note that consistently, we will write $C_c^k(A, R : B, D)$ when $U = A_{n, UltraApp}^n$.

For convenience later in writing estimates valid when there is at least one derivative, we also introduce a seminorm

$$||P||_{k,l,U,\geq 1} = \sup_{X \in U} \left(\sum_{p=1}^{k} \sum_{i \in [1,n]^p} ||\partial_i^p(P)(X)||_{eh_{A_{tr}^B(p+1)}}^c + \sum_{m \leq k} \sup_{i \in [1,n]^m} \sum_{p=1}^{l} \sum_{H \in A_{tr}^H(m+1)} ||(D^X_H)^p\eta(P)(X)||_{eh_{A_{tr}^B(m+1)}}^c \right).$$

We next define differentiable functions depending on conditional expectations.

Using the conditional expectation $E_D : A \to D$, we can define a completely bounded map $E_{D,X} : B\langle X_1, \ldots, X_n : D, S \rangle \to D$ by sending P to $E_D(P(X_1, \ldots, X_n))$, for any $S > R$.

Consider the map ω taking $P \in B_c\langle X_1, \ldots, X_n : E_D, R^+, \mathbb{C} \rangle := \cap_{S > R} B_c\langle X_1, \ldots, X_n : E_D, S, \mathbb{C} \rangle$ to the function

$$\omega(P) : X \mapsto P(E_{D,X})(B_c\langle X_1, \ldots, X_n : E_D, R^+, \mathbb{C} \rangle) := \cap_{S > R} B_c\langle X_1, \ldots, X_n : E_D, S, \mathbb{C} \rangle.$$

We denote by $C_0^s_{b, tr}(U, B\langle X_1, \ldots, X_n : D, R \rangle)$ the image of this map.

The spaces $C^{k,l}_{tr}(A, U : B, E_D)$ (resp. $C^*_{tr}(A, U : B, E_D)$, $C^*_{tr,c}(A, U : B, E_D)$ and $C^{k,l}_{tr,c}(A, U : B, E_D)$) are defined as the closures of the space $C^0_{b, tr}(U, B\langle X_1, \ldots, X_n : D, S \rangle)$ inside $C^{k,l}(A, U : B, D)$ (respectively, $C^*(A, U : B, D)$, $C^*_c(A, U : B, D)$, $C^{k,l}_c(A, U : B, D)$)

When $U = A^r_R$, we replace the notations U by R.

We denote by $C^{k,l}(A, U : B, D)$ the closed subspace of $C^{k,l}_{tr}(A, U : B, D)$ generated by the image under ω of $B\langle X_1, \ldots, X_n : D, S \rangle$, $S > R$. We denote in short $C^k(A, R : B, D)$ for $C^{k,1}(A, U : B, D)$.

Let $H \in A^n$. Recall that D_H stands for the directional derivative of a function in $C^1(A, U : B, E_D)$, viewed as a function from U to the space of power series $B_c\langle X_1, \ldots, X_n : D, R, \mathbb{C} \rangle$. Given $P \in B_c\langle X_1, \ldots, X_n : E_D, R, \mathbb{C} \rangle$ a monomial involving E_D, we note that $D_H(\omega(P))$ amounts to replacing each sub-monomial of the form $E_D(Q)$ with $Q \in B_c\langle X_1, \ldots, X_n : D, R, \mathbb{C} \rangle$ by $E_D(\sum_j \partial_j Q \# H_j)$. For example if $H = (H_1, H_2)$, then

$$D_H(\omega(P))(X_1X_2E_D(X_1^2(E_D(X_1))E_D(X_2)))(Y_1, Y_2)$$

$$= X_1X_2E_D(H_1Y_1(E_D(Y_1))E_D(Y_2)) + X_1X_2E_D(Y_1H_1(E_D(Y_1))E_D(Y_2))$$

$$+ X_1X_2E_D(Y_1^2(E_D(H_1))E_D(Y_2)) + X_1X_2E_D(Y_1^2(E_D(Y_1))E_D(H_2)).$$

In other words, D_H corresponds to “differentiation under E_D”.
2.4. Differential operators. For \(p, P \in B_c\{X_1, \ldots, X_n : E_D, S, \mathbb{C}\} \), we define recursively the cyclic gradient \((\mathcal{D}_{i,p}(P), 1 \leq i \leq n) \) by \(\mathcal{D}_{i,p}(X_j) = 1_{j=i,p} \),

\[
\mathcal{D}_{i,p}(PQ) = \mathcal{D}_{i,Qp}(P) + \mathcal{D}_{i,pP}(Q), \quad \mathcal{D}_{i,p}(D(P)) = \mathcal{D}_{i,D(p)}(P).
\]

For instance, one computes \(\mathcal{D}_{i,p}(X_2X_3D(X_1bX_2)) = pX_2D(X_1bX_2) + bX_2D(X_1pX_2) \). Moreover, observe that for polynomials \(P \) in \(\{X_1, \ldots, X_n\} \),

\[
\rho(\partial_i P)\#Q = \mathcal{D}_{i,Q}(P).
\]

We denote in short \(\mathcal{D}_i = \mathcal{D}_{i,1} \). Its restriction to polynomials in \(\{X_1, \ldots, X_n\} \) corresponds to the usual cyclic derivative. We consider a flat Laplacian defined for \(P \in B\{X_1, \ldots, X_n : E_D, R\} \) by

\[
\Delta(P) = 2\sum_i m \circ (1_0 E_D \partial_1) \partial_i \partial_i (P).
\]

We define \(\delta_\Delta \) a derivation on \(B\{X_1, \ldots, X_n : E_D, R\} \) by requiring that it vanishes on \(B\{X_1, \ldots, X_n : D, R\} \) and satisfies

\[
\delta_\Delta(P) = 0, \quad \delta_\Delta(E_D(Q)) = E_D((\Delta + \delta_\Delta)(Q)).
\]

Likewise, for any \(V \in B\{X_1, \ldots, X_n : D, R\} \), the map

\[
\Delta_V = \Delta - \sum_i \partial_i(\cdot)\#\mathcal{D}_i V
\]

produces a map \(\delta_V \) such that \(\delta_V(P) = 0 \), for \(P \in B\{X_1, \ldots, X_n : D, R\} \). Moreover, \(\delta_V \) is a derivation and for \(Q \) monomial in \(B\{X_1, \ldots, X_n : E_D, R\} \),

\[
\delta_V(E_D(Q)) = E_D((\Delta_V + \delta_V)(Q)).
\]

\(\delta_V \) extends to \(B\{X_1, \ldots, X_n : E_D, R\} \) (see Proposition \[\ref{prop:flat_laplacian}\]). Moreover, we have for any \(g \in B_c\{X_1, \ldots, X_n : E_D, R, \mathbb{C}\} \),

\[
\mathcal{D}_i(\Delta_V + \delta_V)(g) = (\Delta_V + \delta_V)\mathcal{D}_i(g) - \sum_{j=1}^n \mathcal{D}_i,\mathcal{D}_j g \mathcal{D}_j V.
\]

We extend \(\Delta_V \) and \(\delta_V \) to \(V \in C_c^{\infty}(A, 2R : B, E_D) \) by adding the variables \(Z_i \) to be evaluated at \(\mathcal{D}_i V(X) \), letting \(V_0(Z) = \frac{1}{2} \sum Z_i^2 \) and setting for \(P \in B\{X_1, \ldots, X_n : E_D, R\} \)

\[
\Delta_V(P)(E_D, X)(X) := (\Delta_V_0(P)) \cdot (E_D, X, \mathcal{D}_V(X)) \cdot (X, \mathcal{D}_V(X)).
\]

\(\Delta_V(P) \) belongs to \(C_c^{\infty}(A, U) \). The extension of \(\delta_V \) is similar. We define, \(C^{k,l}_{tr, V}(A, U \subseteq B, E_D), k \in \{*\} \cup \mathbb{N}^*, k \geq l \) as the separation-completion of \(B_c\{X_1, \ldots, X_n; E_D, R^+\} := \cap_{S > R} B_c\{X_1, \ldots, X_n; E_D, R\} \) for the semi-norm (with \(\omega(P) = (X \mapsto P(E_X, D))\)):

\[
\|P\|_{C^{k,l}_{tr, V}(A, U : B, E_D)} = \|\omega(P)\|_{k,l,U} + 1_{k \geq 2} \|(\Delta_V + \delta_V)(P)\|_{C_c^{\infty}(A, U)}
\]

\[
+ \sum_{p=0}^{l-1} \sum_{i=1}^n \sup_{Q \in (C^{k+p}_{tr, V}(A, U^{m-1} : B, E_D)), m \geq 2} \|\mathcal{D}_{i,Q}(X)(P)\|_{k,p,U^m},
\]

where \((X)_1 \) denotes the unit ball around 0 of the normed space \(X \). We also define a first order part seminorm \(\|P\|_{C^{k,1}_{tr, V}(A, U : B, E_D), \geq 1} \) by replacing the first term in the sum with \(\|\omega(P)\|_{k,1,U, \geq 1} \).
We also define the space \(C_{tr,V,c}^{k,l}(A, U : B, E_D) \) in the same way as before but considering everywhere cyclic extended-Haagerup tensor products.

To sum up we have introduced the following spaces

\[
\begin{align*}
C^{k+l} & \quad C_{tr,V}^{k,l} \quad \to \quad C_{tr}^{k,l} \quad \subset \quad C_{u}^{k,l} \\
\cup & \quad \cup \\
C_{c}^{k+l} & \quad \subset \quad C_{tr,V,c}^{k,l} \quad \to \quad C_{tr,c}^{k,l} \quad \subset \quad C_{u,c}^{k,l}
\end{align*}
\]

where \(\subset \) means the existence of a canonical injective mapping, whereas \(\to \) means the existence of a canonical map (with conditions written in index). We shall not discuss these mappings as we will not use them and leave the reader check them.

2.5. **Free brownian motion.** \((S_t^i, t \geq 0, 1 \leq i \leq n)\) will denote \(n\) free Brownian motions. Let \(U \subset A^n_R\). We denote by \(*_D\) the free product with amalgamation over \(D\): see [VDN92] for a definition as well as for a definition of freeness with amalgamation over \(D\). Let \(\mathcal{A} = A *_D (D \otimes W^*(S_t^{(i)}, i = 1, \ldots, n, t \geq 0))\) and assume that \(A\) is big enough so that \(\mathcal{A}\) is isomorphic to \(A\). Set \(U_A = \{X \in \mathcal{A}_R^n, X \in U\} \subset A^n_R\) and \(\mathcal{B} = B *_D (D \otimes W^*(S_t^{(i)}, i = 1, \ldots, n, t \geq 0))\).

Define

\[
C_{tr,V}^{k,l}(A, U : \mathcal{B}, E_D : \{S_t^{(i)}, i = 1, \ldots, n, t \geq 0\}) \subset C_{tr,V}^{k,l}(\mathcal{A}, U_A : \mathcal{B}, E_D)
\]

as the closure of

\[
\bigcup_{0 \leq t_1 \leq \cdots \leq t_m} \eta_S(B_c\{X_1, \ldots, X_n, S_{t_1}, \ldots, S_{t_m} - S_{t_{m-1}} : E_D, \max[R, \max_{i=2,n} 2(t_i - t_{i-1})])\} \}
\]

where \(\eta_S\) is the partial evaluation of the analytic functions in \(X\)’s and \(S\)’s at \(S_{t_1}, S_{t_2} - S_{t_1}, \ldots, S_{t_m} - S_{t_{m-1}}, \) hence obtaining functions in \(\mathcal{B}_c\{X_1, \ldots, X_n : E_D, R\}\). In other words, this is the union of partial evaluation maps at the free brownian motions of analytic functions with expectations. Write in short \(\mathcal{I} = \{S_t^{(i)}, i = 1, \ldots, n, t \geq 0\}\), and similarly for \(u > 0, \mathcal{I}_u = \{S_t^{(i)}, i = 1, \ldots, n, u \leq t \geq 0\}\), \(\mathcal{I}_{\geq u} = \{S_t^{(i)} - S_u^{(i)}, i = 1, \ldots, n, t \geq u\}\).

We call accordingly, for \(U \subset A^n_R\), \(C_c^k(A, U : \mathcal{B}, D : \mathcal{I}) \subset C_{tr,V}^{k,k}(A, U : \mathcal{B}, E_D : \mathcal{I}) \cap C_c^k(\mathcal{A}, U_A : \mathcal{B}, D)\) the space generated by analytic functions (without expectations) with norm \(\|\cdot\|_{k,1},U\). We also have analogously \(C_c^k(A, U : \mathcal{B}, D : \mathcal{I}_u) \subset C_{tr,V}^{k,k}(A, U : \mathcal{B}, E_D : \mathcal{I}_u)\) (imposing above \(t_m \leq u\)). Fix a trace preserving *-homomorphism \(\theta_u : \mathcal{A} \to \mathcal{B}\) by \(\theta_u(a) = a, a \in A, \theta_u(S_a) = S_{a+u} - S_u\) with obvious induced maps

\[
\theta'_u : C_{tr,V}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}) \to C_{tr,V}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}_{\geq u}),
\]

and similarly \(\theta'_u : C_{tr}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}) \to C_{tr}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}_{\geq u})\).

For \(u \geq 0\), we denote by \(\theta_u = A *_D (D \otimes W^*(S_t^{(i)}, i = 1, \ldots, n, t \in [0, u]))\) and \(E_u\) the associated conditional expectation. We observe that when restricted to polynomial function, the conditional expectations take their values in polynomials. Under certain conditions on \(U\), see Proposition [42], we can extend \(E_u\) as an application \(C_{tr,V}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}) \to C_{tr,V}^{k,l}(A, U : \mathcal{B}, D : \mathcal{I}_u)\).
3. Semi-groups and SDE’s associated with a convex potential

3.1. Convex potentials. With obvious notations, $M_n(A_{D,e}^{\otimes 2})$ denotes the space of $n \times n$ matrices with entries in $A_{D,e}^{\otimes 2}$. For $M \in M_n(A_{D,e}^{\otimes 2})$, $(M^*)_ij := (M_{ji})^*$ with for $b \in A_{D,e}^{\otimes 2}$, b^* defined in Theorem [23] (1e). We don’t equip this space with the norm induced by its natural operator space structure as Haagerup tensor product. We rather see $M_n(A_{D,e}^{\otimes 2})$ as follows

$$M_n(A_{D,e}^{\otimes 2}) \subset \bigcap_{m=1}^{\infty} B \left(\ell^2([1,n], (A_{D,e}^{\otimes m})), \ell^2([1,n], (A_{D,e}^{\otimes m})) \right).$$

We equip it with the matrix like # multiplication map defined for $M = [M_{ij}] \in M_n(A_{D,e}^{\otimes 2})$, $X \in \ell^2([1,n], A_{D,e}^{\otimes m}) = (M_{\otimes m})^n$ by

$$(A\# X)_i = \sum_{j=1}^{n} A_{ij} \# X_j,$$

and with the norm

$$||M||_{M_n(A_{D,e}^{\otimes 2})} := \sup_{M \in M_n(A_{D,e}^{\otimes 2})} \sup_{m \geq 0} \{ ||(M\# X)||_{(A_{D,e}^{\otimes m})_n}, ||(M^* \# X)||_{(A_{D,e}^{\otimes m})_n} : ||X||_{(A_{D,e}^{\otimes m})_n} \leq 1 \}.$$

By definition $||M||_{M_n(A_{D,e}^{\otimes 2})} = ||M^*||_{M_n(A_{D,e}^{\otimes 2})}$, and

$$||M \# N||_{M_n(A_{D,e}^{\otimes 2})} \leq ||M||_{M_n(A_{D,e}^{\otimes 2})} ||N||_{M_n(A_{D,e}^{\otimes 2})}.$$

We first recall a consequence of Hille-Yosida Theorem.

Proposition 2. The following are equivalent.

1. $Q = Q^* \in M_n(A_{D,e}^{\otimes 2})$ has a semigroup of contraction e^{-tQ}.
2. $Q = Q^* \in M_n(A_{D,e}^{\otimes 2})$ has a resolvent family for all $\alpha > 0$, $\alpha + Q$ is invertible in $M_n(A_{D,e}^{\otimes 2})$ and $||\alpha||_{M_n(A_{D,e}^{\otimes 2})} \leq 1$.

In this case we say $Q \geq 0$.

Proof. We apply Hille-Yosida Theorem e.g. in the form of Theorem 1.12 in [MR], to each Banach space $\ell^2([1,n], (A_{D,e}^{\otimes m}))$ in the definition of the norm of $M_n(A_{D,e}^{\otimes 2})$.

Note that the set of non-negative $Q = Q^* \in M_n(A_{D,e}^{\otimes 2})$ is a cone. Indeed, if $\alpha \geq 0$ and $Q \geq 0$, clearly $\alpha Q \geq 0$. Moreover, $Q \geq 0$ and $\tilde{Q} \geq 0$ implies that $Q + \tilde{Q} \geq 0$. Indeed, as Q and \tilde{Q} are bounded, they are defined everywhere as well as $Q + \tilde{Q}$, and one can use [T59] to see that

$$e^{-t(Q+\tilde{Q})} = \lim_{k \to \infty} \left(e^{-\frac{t}{k}Q} e^{-\frac{t}{k}\tilde{Q}} \right)^k.$$
is a contraction as the right hand side is. Moreover, this set is closed as follows easily from the characterization (2) (notice here that the set $Q = Q^* \in M_n(A_{D,c}^{\otimes 2})$ is closed).

Observe that if $V = V^* \in C^2_c(A, R : B, D)$, $X \in A^n_{R^*}$, $(\partial_t \mathcal{D}_j V(X))_{1 \leq i, j \leq n} \in M_n(A_{D,c}^{\otimes 2})$ is self-adjoint.

Definition 3. Let $c, R > 0$. $V = V^* \in C^2_c(A, R : B, D)$ is said (c, R)-h-convex if $(\partial_t \mathcal{D}_j V(X))_{1 \leq i, j \leq n} - c \text{Id} \geq 0$ for any $X \in A^n_{R,UltraApp^*}$.

We show below that (c, R)-h-convex potentials have well behaved solutions of linear ODE.

Lemma 4. Assume V is (c, R)-h-convex. Consider a continuous self-adjoint process $(X_t)_{t \geq 0}$, $\|X_t\| \leq R$, $X_t \in D$.

(a) Let $Y \in (A_{D,c}^{\otimes m})^n$ be such that $Y_j^* = Y_j$ (with $a_1 \phi \ldots \phi a_m)^* = a_m^* \phi \ldots \phi a_1^*$). Then, there exists a unique solution $\phi_{s,t}(Y, X) \in (A_{D,c}^{\otimes m})^n$ of the following linear ODE for $t \geq s$:

$$\phi_{s,t}(Y, X) = Y - \frac{1}{2} \int_s^t du \sum_k (\partial_h \mathcal{D}_j V)(X_u)\#\phi_{s,u}(Y, X)_k.$$

It satisfies $\phi_{s,t}(Y, X)_j^* = \phi_{s,t}(Y, X)_j$. Moreover, for any $\sigma \in \mathcal{C}_n$, the solution $\sigma.(\phi_{s,t}(Y, X)_j)$ of the equation transformed by σ (that is the equation obtained by applying a cyclic permutation of the tensor indices) satisfies:

$$\|\sigma.(\phi_{s,t}(Y, X))\|_{(A_{D,c}^{\otimes m})^n} \leq e^{-(t-s)c/2}\|Y\|_{(A_{D,c}^{\otimes m})^n}.$$

(b) Let Y_s be a C^1 process with values in $(A_{D,c}^{\otimes m})^n$ such that $Y_s(t)^* = Y_s(t)_j$ (with $a_1 \phi \ldots \phi a_n)^* = a_n^* \phi \ldots \phi a_1^*$). The (unique) solution $\Phi_{s,t}(Y, X)$ of the following linear ODE for $t \geq s$:

$$\Phi_{s,t}(Y, X) = Y_s(t) - \frac{1}{2} \int_s^t du \sum_k (\partial_h \mathcal{D}_j V)(X_u)\#\Phi_{s,u}(Y, X)_k,$$

satisfies $\Phi_{s,t}(Y, X)_j^* = \Phi_{s,t}(Y, X)_j$ and

$$\|\Phi_{s,t}(Y, X)\|_{(A_{D,c}^{\otimes m})^n} \leq e^{-(t-s)c/2}\|Y\|_{s,t}$$

with

$$\|Y\|_{s,t} = \left(\sum_j \|Y_s(s)\|_{A_{D,c}^{\otimes m}}^2\right)^{1/2} + \int_s^t e^{c(t-s)/2}\left(\sum_j \|\partial_a Y_s(u)\|_{A_{D,c}^{\otimes m}}^2\right)^{1/2} du.$$

Proof. *Proof of (a).* Let X be a continuous self-adjoint process. The semigroup Θ^X associated to $Q = \frac{1}{2}(\partial_h \mathcal{D}_j V(X))_{k,j}$ gives a solution $(\Theta^X_{s,t}(Y))_{t \geq 0}$ to

$$Y_j(t) = Y_j - \frac{1}{2} \int_s^t \sum_{k=1}^n \partial_k \mathcal{D}_j V(X)\#Y_k(s)ds.$$
Therefore we can define the solution to
\[
\phi_{s,t}^p(Y, X) = Y_j - \frac{1}{2} \int_s^t du \sum_k (\partial_k \mathcal{D}_j V)(X_{\frac{u+k}{p}}) \# \phi_{s,u}^p(Y, X)
\]
in \((A^{D,c}_m)^n\) by putting
\[
\phi_{s,t+s}^p(Y, X) = \Theta \frac{X_{\frac{t+s}{p}}}{X_{\frac{s}{p}}} \circ \Theta \frac{X_{\frac{t+1}{p}}+s}{X_{\frac{t}{p}}} \circ \cdots \circ \Theta X_{\frac{t+1}{p}+s}(Y).
\]
By assumption of \((c, R) h\)-convexity, the semigroup \(e^{-(Q-\frac{t}{2})t}) = e^{\frac{t}{2}} e^{-tQ}\) is contractive, which gives the bound
\[
||\phi_{s,t}^p(Y, X)|| \leq e^{-(t-s)c/2} ||Y||.
\]
In particular, this sequence is bounded uniformly. By continuity of \(X\), we can prove similarly that this sequence is Cauchy, and hence converges towards the solution of \((16)\); the limit then clearly satisfies the bound \((17)\). Uniqueness can be proved by Gronwall Lemma, as \((\partial_k \mathcal{D}_j V)(X)\) is uniformly bounded.

Selfadjointness of \(\phi_{s,t}(Y, X)\) follows from the uniqueness of the solution to the linear ODE since \(((a \circ c) \# (b_1 \circ \ldots \circ b_n)) = (c^* a^* \circ \cdots \circ b_n)^* (\partial_0 V(X_s))_{k_j} = (\partial_0 V(X^*))_{k_j} = (\partial_0 (\mathcal{D}_j V^*)(X_s))_{k_j}\) because \(V = V^*\) and \(X^*_s = X_s\).

Proof of (b). Using the notation of (a), define:
\[
\Phi_{s,t}(Y, X) = \phi_{s,t}(Y(s), X) + \int_s^t du \phi_{u,t}(\partial_u Y_s(u), X).
\]
Differentiating in \(t\) shows that \(\Phi_{s,t}\) is a solution of \((18)\). The bounds follows readily from (a). Again, uniqueness follows from Gronwall’s Lemma.

\(\square\)

3.2. Free stochastic differential equation.

Proposition 5. Assume \(V \in C^2_c(A, R: B, D)\) is \((c, R) h\)-convex.

(a) There exists \(T > 0\) so that for any \(X_0 \in A^n_{R, UltraApp}\), there exists a unique solution to
\[
X_t(X_0) = X_0 + S_t - \frac{1}{2} \int_0^t \mathcal{D} V(X_u(X_0)) du
\]
which is defined for all times \(t < T\). Moreover, for all \(X_0, \tilde{X}_0 \in A^n_{R, UltraApp}\) and \(t \geq 0\)
\[
||X_t(X_0) - X_t(\tilde{X}_0)|| \leq e^{-ct/2} ||X_0 - \tilde{X}_0||.
\]

(b) Assume that there exists \(X^V = (X^V_1, \ldots, X^V_n) \in A^n_{R/3, UltraApp}\) for which the conjugate variables are equal to \(\mathcal{D}_j V\). Then part (a) holds with \(T = \infty\) for any solution starting at \(X_0 \in A^n_{R/3, UltraApp}\). As a consequence, there is at most one free Gibbs law with potential \(V\) uniformly in \(A^n_{R/3, UltraApp}\).
Proof. Existence of $X_t(X_0)$ for all times $t < T$ for which $\sup_{s < T} \|X_s(X_0)\| < R$ follows from the Picard iteration argument in [BSOT]. The existence of $T > 0$ (depending only on the Lipschitz constant of $\mathcal{D}V$) is also shown there.

Applying the same argument as in the proof of Lemma 4 by writing $X^1_t = X_t(\bar{X}_0)$, $X^0_t = X_t(X_0)$,

$$X^1_t - X^0_t = \bar{X}_0 - X_0 - \frac{1}{2} \int_0^t \int_0^1 \partial \mathcal{D}V(\theta X^0_u + (1 - \theta)X^1_u)\#(X^1_u - X^0_u)d\theta du$$

and arguing that $\int_0^1 \partial \mathcal{D}V(\theta X^1_u + (1 - \theta)X^0_u)d\theta - c\text{Id} \geq 0$ as the set of non-negative elements of $M_n(A^n_{R,c})$ is a closed cone, the estimate (20) follows from (17).

Assuming the Assumption of part (b), we see that the solution $X_t(X_V)$ is stationary; in particular, its norm is constant. Part (a) and the estimate (20) then imply that any other solution starting at an element of $A^n_{R/3}$ stays in A^n_{R}, which means that T can be chosen to be infinite. Also, if there were two free Gibbs law with potential V, they would be stationary laws for the dynamics and (20) would imply that they are equal. \qed

Throughout this paper we assume that

Assumption 6. Let $V, W \in C_0^0(A, 2R : B, E_D)$ be two non-commutative functions such that V and $V + W$ are $(c, 2R)$ h-convex for some $c > 0$. We assume that for any $\alpha \in [0, 1]$, there exists a solution $(X_1^{V+\alpha W}, \ldots , X_n^{V+\alpha W}) \in A^n_{R/3, UltraApp}$ with conjugate variables $(\mathcal{D}V(V + \alpha W))_{1 \leq i \leq n}$.

In subsection 6.3.9 we describe a class of quartic potentials satisfying this assumption. The existence of a solution to Schwinger-Dyson equations will be obtained from a random matrix model in the easiest case $B = \mathbb{C}$ and the convexity will be obtained by operator spaces techniques.

This Assumption insures that

$$V_\alpha = V + \alpha W$$

is $(c, 2R)$ convex for all $\alpha \in [0, 1]$.

We consider the SDE

$$X^\alpha_t = X_0 + S_t - \frac{1}{2} \int_0^t \mathcal{D}V(X^\alpha_s)ds$$

where S is the free Brownian motion relative to D (with covariance map id_D). By Proposition 4 we deduce that there exists a unique solution X_t satisfying $\|X_t\| < R$ for any $X_0 \in A^n_{R/3}$. We denote it by $X^\alpha_t(X_0, \{S_s, s \in [0, t]\}), t \geq 0$, and X^α_t in short. We set for $U \subset A^n_{R}$, U_α be the subset of its elements stable under the flow:

$$U_\alpha = \{X_0 \in U : \forall t, X^\alpha_t \in U\}$$

Lemma 7. Let $U \subset A^n_{R, UltraApp}$. Under Assumption 4 the map

$$X_0 \in U_\alpha \mapsto X^\alpha_t(X_0, \{S_s, s \in [0, t]\})$$

comes from an element in $C^{1,0}_{tr,V,c}(A, U_\alpha : \mathcal{B}, E_D : \mathcal{S})$, and we have for any $\tau < t$ the relation

$$X^\alpha_t(., \{S_s, s \in [0, t]\}) = \theta^t_\tau[X^\alpha_t(., \{S_s, s \in [0, t - \tau]\})] \circ_\tau X^\alpha_\tau(., \{S_s, s \in [0, \tau]\})$$
where \(\theta_t : C^{k,l}_{tr,V,c}(A, U_\alpha : \mathcal{B}, E_D : \mathcal{I}) \to C^{k,l}_{tr,V,c}(A, U_\alpha : \mathcal{B}, E_D : \mathcal{I}_{S_u}) \), the map induced by the shift \(\theta_u(S_s) = S_{s+u} - S_u \). Moreover, if we also assume \(V, W \in C^{k+l+2}(A, 2R : \mathcal{B}, D) \), then \(X_0 \mapsto X_t^\alpha(X_0, \{S_s, s \in [0, t]\}) \subset C^{k+l}(A, U_\alpha : \mathcal{B}, D : \mathcal{I}) \to C^{k,l}_{tr,V,c}(A, U_\alpha : \mathcal{B}, E_D : \mathcal{I}) \). Moreover, in each case \(t \mapsto X_t^\alpha \) is continuous.

Finally there exists a finite constant \(C_{k+l} \) such that, for \(k + l \geq 1 \):

\[
||X_t^\alpha||_{k+l,0,U_\alpha} \leq C_{k+l}e^{-ct/2}.
\]

Note that \(X_t^\alpha(X_0, \{S_s, s \in [0, t]\}) \) above is a non-commutative function without expectation but can be thought of as an element of this larger space of functions, hence the reference to \(l \). Note that most of the results only depends on \(k+l \).

Proof. Let \(k \geq 1, l \geq 0 \) so that \(V, W \in C^{k+l+2}(A, 2R : \mathcal{B}, D) \). We now prove that \(X^\alpha \) can be seen as a smooth function of \(X_0, S \), in the sense that it is an element of \(C^{k+l}(A, U_\alpha : \mathcal{B}, D : \mathcal{I}) \). Fix \(T \) small enough, such that in particular \(2\sqrt{T} + T \sup_{X \in A \cap r,d} ||D_V(X)||_A \leq R \). We construct by Picard iteration the process on \([0, T] \). We let \(X^{[0,m]}[0,0] = X_0 \) and for \(m \geq 1 \),

\[
X_t^{[0,m]} = S_t - \frac{1}{2} \int_0^t D_V(X_u^{[m-1]})du + X_0, \quad t \in [0, T].
\]

Because \(||X_0|| \leq R \), one checks by induction on \(m \) that \(||X_t^{[0,m]}|| \leq 2R \), and the processes are indeed well defined for all \(m \) as a \(C^{k,l}_{tr,V,c} \) function. Since \(X_t^{[0,m]} \) is obtained from \(X_t^{[0,m-1]} \) by operations of integration over a subset of \([0, T] \) and composition with \(D_V \), we may use Corollary 33 and \(D_V \in C^{k+l+1}(A, 2R : \mathcal{B}, D) \) to prove that the Picard iteration procedure is first bounded (for \(T \) small) and then converges in the norm \(||| \cdot |||_{k+l,0,U_\alpha} \) (for \(T \) even smaller so that the equation is locally lipschitz on the a priori bound obtained before in \(||| \cdot |||_{k+l,0,U_\alpha} \)).

We let \(X_s, s \leq T \) be the limit : it belongs to \(C^{k+l}(A, U_\alpha : \mathcal{B}, D : \mathcal{I}) \) and is the unique solution of \((23)\). By the definition of \(U_\alpha \), for \(X_0 \in U_\alpha, X_s \in U_\alpha \), in particular \(||X_s|| \leq R \). Hence, we can iterate the process by considering for \(s \in [0, T] \) the sequence defined recursively by \(X_t^{[s,0]} = X_s, t \leq T \) and for \(m \geq 1 \)

\[
X_t^{[s,m]} = S_t - S_s - \frac{1}{2} \int_s^t D_V(X_u^{[m-1]})du + X_s, \quad t \in [s, s + T].
\]

Again this sequence converges in the norm \(||| \cdot |||_{k+l,0,U_\alpha} \) to a limit \(X^{[s,\infty]} \). As \(V \) is \(C^{k+l+2}_{c}(A, 2R : \mathcal{B}, D) \), such construction has a unique solution so that \(X_t^{[s,\infty]} = X_t^{[s',\infty]} \) for all \(s, s' \leq t \). We denote this solution \(X^\alpha \). It satisfies \((22)\). We continue by induction to construct \(X^\alpha \in C^{k+l}(A, U_\alpha : \mathcal{B}, D : \mathcal{I}) \) for all times. The continuity of \(t \mapsto X_t \) is clear, as a uniform limit of continuous functions.

We finally show \((23)\). Using the first formula in the proof of Lemma 37 on the equation on Picard iterates and then taking the limit \(m \to \infty \), one gets for \(k \geq 1 \):

\[
\partial^k_{(j_1, \ldots, j_k)} X_t^{(i)} = -\frac{1}{2} \int_s^t du \sum_j \partial_j D_V(X_u) \# \partial^k_{(j_1, \ldots, j_k)} X_u^{(j)} + \text{l.o.t} + \partial^k_{(j_1, \ldots, j_k)} X_s
\]

where the lower order terms \(\text{l.o.t} \) are with respect to the degree \(k \) of differentiation of \(X_u \). Evaluating the differentials and using Lemma 4 (b), one gets the exponentially decreasing
Lemma 8 (Itô’s formula). Under Assumption $[\diamondsuit]$ for $P \in B\{X_1, ..., X_n : D, R\}$ we have

\begin{equation}
\Phi(E_{D,X_0^\alpha})(X_t^\alpha) = \Phi(E_{D,X_0})(X_t^\alpha) + \frac{1}{2} \int_0^t \left[(\Delta_{V_\alpha} + \delta_{V_\alpha})\Phi(E_{D,X_0})(X_s^\alpha) \right]ds
\end{equation}

Proof. For P (later called polynomial) in the algebra generated by $B, X_1, ..., X_n$ inside $B\{X_1, ..., X_n : D, R\}$, this is the standard Itô’s formula, see [BS98, BS01]. By the norm continuity of all operations appearing, the extensions to ℓ^1 direct sums are obvious, so that it suffices to extend the formula to a monomial $P \in B\{X_1, ..., X_n : D, R\}$ having only one term in the direct sum. Finally, using the standard decomposition of elements in extended Haagerup tensor products $[M97]$ thanks to which $P \in B_{\text{eh}}^D$ can be written $P = x_1 \otimes_D ... \otimes_D x_n$ with $x_1 \in M_{I_1}(D), x_i \in M_{I_{i-1}, I_i}(D)$ with I_i infinite indexing sets but $I_n = 1$. We can truncate these infinite matrices by finite matrices, giving a net of approximation P_n of P. All the terms in Itô’s formula, once evaluated at a given time, will then converge in $L^2(M)$ (while staying bounded in M). Unfortunately, to get convergence of the time integrals we have to be a bit more careful. Considering evaluations into $L^\infty([0,T], A)$ it is only possible to get a bounded net P_n of polynomials such that $P_n(X_t^\alpha), P_n(X_0^\alpha)$ converges weak-* to $P(X_t^\alpha), P(X_0^\alpha)$, in A, $\partial[P_n(X_s^\alpha)]$ converges weak-* to $\partial[P(X_s^\alpha)]$ in $A_{\text{eh}} \otimes A$. For every $s \in [0,t]$, $s \mapsto [\Delta_{V_\alpha}P_s](X_s^\alpha)$ converges weak-* to $s \mapsto [\Delta_{V_\alpha}P](X_s^\alpha)$ in $L^\infty([0,t], A)$. Then considering constant functions with value in $L^1(A)$, it is easy to deduce the first line in the right hand side of Itô formula for P_n weak-* converges to the one for P in A. To check the same result for the stochastic integral term, note that by Clark-Ocone’s formula and a priori boundedness of all the stochastic integrals, it suffices to check that for an adapted bounded U_s, we have convergence to 0 of the pairing

$$\langle \int_0^t \partial[(P_n - P)(X_s^\alpha)] #dS_s, \int_0^t U_s #dS_s \rangle = \int_0^t \langle \partial[(P_n - P)(X_s^\alpha)], U_s \rangle ds.$$

Since $(P_n - P)$ is a bounded net in $B\{X_1, ..., X_n : D, R\}$, $r = \sup_{s \in [0,t]} \|X_s^\alpha\| < R$ and X_s^α is continuous, for p large enough $\sup_{s \in [0,t]} \|X_s^\alpha - X_s^{\alpha_{ps}}/p\|$ is so small that $\|\partial[(P_n - P)(X_s^\alpha)] - \partial[(P_n - P)(X_s^{\alpha_{ps}}/p)]\| \leq \epsilon$ uniformly in n for an arbitrary $\epsilon > 0$.

Finally $U \in L^2([0,t], L^2(A)|_{\partial D} L^2(A))$ so that approximating it by a process with finitely many values and using weak-* convergence of the finitely many values of $\partial[(P_n - P)(X_s^{\alpha_{ps}}/p)]$, one gets $\int_0^t \langle \partial[(P_n - P)(X_s^{\alpha_{ps}}/p)], U_s \rangle ds \to 0$. This completes the proof of the formula for $P \in B\{X_1, ..., X_n : D, R\}$.

For P in the algebra generated by $B, X_1, ..., X_n$, notice that the previous computations show that

$$E_{D}[P(X_t^\alpha)] = E_{D}[P(X_0)] + \frac{1}{2} \int_0^t E_{D}[\Delta_{V_\alpha} P(X_s^\alpha)] ds$$
so that by induction over the number of conditional expectations, if \(P \) belongs to the algebra generated by \(B, X_1, ..., X_n, E_D \),

\[
E_D[P(X_\nu^\alpha)] = E_D[P(X_0)] + \frac{1}{2} \int_0^t \delta_{V_\alpha}(E_D(P))(X_\nu^\alpha) ds
\]

Formula (23) follows for \(P \) polynomial in the algebra generated by \(B, X_1, ..., X_n, E_D \).

The reduction from \(P \in B\{X_1, ..., X_n : E_D, R\} \) to an element of the algebra generated by \(B, X_1, ..., X_n, E_D \) is similar. Indeed, we can canonically embed \(\iota : B\{X_1, ..., X_n : E_D, R\} \to B\{X_1, ..., X_n, S_j, j \in \mathbb{N} : D, R\} \) where the \(S_i \) are free semi-circle, free with amalgamation over \(D \). Each term in \(E_D \) corresponds to a different set of \(S_i \) and

\[
P(E_D, X)(X) = E_{W^*(X_1, ..., X_n, B)}[\iota(P)(X_1, ..., X_n, S_i, i \in \mathbb{N})].
\]

We can conclude by the previous considerations and the weak-* continuity of \(E_{W^*(X_1, ..., X_n, B)} \).

\[\square\]

3.3. **Semigroup.** Hereafter, we will often need a second technical assumption on \(D \subset B \) to apply Theorem 24.(3) and Proposition 28.(2) in the appendix. The appropriate definitions are given in the appendix in subsection 5.3.

Assumption 9. Assume

- either that there exists a \(D \)-basis of \(L^2(B) \) as a right \(D \) module \((f_i)_{i \in I}\) which is also a \(D \)-basis of \(L^2(B) \) as a left \(D \) module.
- or that \(D \) is a II1 factor and that \(L^2(B) \) is an extremal \(D-D \) bimodule.

As discussed in the appendix, the easiest non-trivial example of a pair \((B, D)\) satisfying this assumption is \(B = \Gamma \ltimes D \) a crossed-product by a countable (or finite) discrete group \(\Gamma \). In particular, when \(B = D \) this assumption is obviously satisfied.

We write \(A^n_{R, \text{App}} \subset A^n_{R, \text{UltraApp}} \) the set \(A^n_{R, \text{UltraApp}} \) if \(D = \mathbb{C} \) and otherwise the set requiring additionally \(M = W^*(B, X_1, ..., X_n) \subset W^*(B, S_1, ..., S_m) = B \star_D(D \otimes W^*(S_1, ..., S_m)) \) included into the algebra generated by \(m \) semicircular variables over \(D \). Here, \(m \) can be infinite. This will be crucial when we will assume \(D \subset B \) satisfying the assumption of Theorem 24.(3) so that the conclusion of this Theorem and Proposition 28.(2) will then be available for \(M \) in the sense that \(\langle e_D, \#e_D \rangle \) will be a trace on \(D' \cap M \otimes_D M \).

We define:

\[
A^n_{R, \alpha} = (A^n_{R, \text{App}})_\alpha.
\]

Proposition 5 implies \(A^n_{R/3, \text{App}} \subset A^n_{R, \alpha} \). Let

\[
A^n_{R, \alpha, \text{conj}} = \{ X \in A^n_{R, \alpha}, \partial_i^*(1 \otimes 1) \in W^*(X, B), i = 1, ..., n \}.
\]

Using [Dab10b, Theorem 27] (first for \(V \) polynomial and then for all \(V \) by density), one gets that for any \(X \in A^n_{R, \alpha}, X^\alpha_t \in A^n_{R, \alpha, \text{conj}} \) for any \(t > 0 \). Hereafter we thus assume that \(X_0 \in A^n_{R, \alpha, \text{conj}} \).

Denote \(A^n_{R, \alpha, \text{conj}1} = A^n_{R, \alpha, \text{conj}0} = A^n_{R, \alpha} \). Hereafter, we will consider only functions of \(X \) and \(E_{D, X} \), we therefore drop the dependency in \(E_{D, X} \) in the notations. Because we will need later to apply the cyclic gradient to the image of the semi-group, we will need
the following ad’hoc space $C_{tr}^{k,l-1}(A, A_{R,a,conj}^n)$ which is the completion of $B_c\{X_1, \ldots, X_n : E_D, R, C\}$ for

$$
||P||_{C_{tr}^{k,l-1}(A,U;B,E_D)} = ||t(P)||_{k,l,U} + 1 \sum_{p=1}^{l} \sum_{i=1}^{n} ||\mathcal{F}_i(P)||_{k,p,U}
$$

Generalizations of this norm are discussed in the appendix (44).

Proposition 10. Suppose Assumptions [6] and [9] hold. Let $k \in \{2,3\}, l \geq 0$ be given and assume $V,W \in C_c^{k+l+2}(A,2R : B,D)$. The process X^α_t of Lemma [4] defines a strongly continuous semigroup φ^α_t on $C_c(A, A^*_{R,a,conj} : B,E_D)$ and, on $C_{tr}^{k,l-1}(A, A_{R,a,conj}^n : B,E_D)$, if moreover $V,W \in C_c^{k+l+3}(A,2R : B,D)$. They are given by the formula

$$
\varphi^\alpha_t(P) = E_0(P(X^\alpha_0)).
$$

It satisfies the exponential bounds:

$$
||\varphi^\alpha_t(P)||_{k,l,A_{R,a,conj}^n} = C_k \cdot ||P||_{k,l,A_{R,a,conj}^n} \geq 1 \leq e^{-ct/2},
$$

Moreover, when restricted to $C_c^{k+l}(A, A_{R,a,conj}^n : B,E_D)$, one gets strongly continuous one parameter families of maps

$$
\varphi^\alpha_t : C_c^{k+l}(A, A_{R,a,conj}^n : B,E_D) \to C_{tr}^{k,l}(A, A_{R,a,conj}^n : B,E_D),
$$

with $\varphi^\alpha_t = \iota \varphi^\alpha_t$ for the canonical map

$$
\iota : C_{tr}^{k,l}(A, A_{R,a,conj}^n : B,E_D) \to C_{tr}^{k,l}(A, A_{R,a,conj}^n : B,E_D).
$$

It satisfies

$$
||\varphi^\alpha_t(P)||_{C_{tr}^{k,l}(A, A_{R,a,conj}^n : B,E_D)} = C_k \cdot ||P||_{k,l,A_{R,a,conj}^n} \geq 1 \leq e^{-ct/2}.
$$

Proof. φ^α_t is well defined in all cases by composing the maps X^α_t from Lemma [7] the composition $(P, X_t) \to P(X_t)$, see Lemma [37] and expectations E_B from Proposition [12]. To get a semigroup we apply composition for $\tilde{\varphi}^\alpha_t$ to get $M = W^*(B, X_0) *_D (D \otimes W^*(S_t, t > 0), \tau = (\epsilon_D, \#E_D)$ is a trace on $D' \cap M^h_{\otimes D}$.

The construction of φ^α_t and the consistency follow similarly.

Let us check the semigroup property. It follows from the following formal computation:

$$
\varphi^\alpha_t(\varphi^\alpha_{t-u}(P)) = E_0(\varphi^\alpha_{t-u}(P) \circ X_u(\ldots, \{S_s, s \in [0,u]\}))
$$

$$
= E_0([E_0(P \circ X_{t-u}(\ldots, \{S_s, s \in [0,t-u]\})) \circ X_u(\ldots, \{S_s, s \in [0,u]\}))
$$

$$
= E_0(E_u(\theta^\alpha_u([P \circ X_{t-u}(\ldots, \{S_s, s \in [0,t-u]\})] \circ X_u(\ldots, \{S_s, s \in [0,u]\}))
$$

$$
= E_0(E(\theta^\alpha_u([P \circ X_{t-u}(\ldots, \{S_s, s \in [0,t-u]\})] \circ X_u(\ldots, \{S_s, s \in [0,u]\}))
$$

$$
= E_0(\theta^\alpha_u([P \circ X_{t-u}(\ldots, \{S_s, s \in [0,u]\})]
$$

$$
= \varphi^\alpha_t(P)
$$

where \circ_u is the composition defined in Proposition [12]. To justify this computation, the two first and last equations are the definitions of the “semigroup”, third, fourth and next-to
Proposition 42, allows to get the exponential bounds for P follow similarly. Then for any P we precise in the next Lemma some dense domains of this generator (without looking for the maximal one).

Proof. To compute the generator we start with Itô formula (25). Taking a conditional expectation, we deduce for ϕ we do not know if the full cyclic gradient in each representation. Indeed, we do not know if the full cyclic gradient is closable, on the contrary to the free difference quotient.

We next find the generator for the semi-group ϕ^{α}_t: it is given by $L_{\alpha} = \frac{1}{2}(\Delta_{V_\alpha} + \delta_{V_\alpha})$ and we precise in the next Lemma some dense domains of this generator (without looking for the maximal one).

Proposition 11. Assume Assumption 6 and 9 and let $k \in \{2, 3\}, l \geq 2$, be given with $V, W \in C^{k+l+2}(A, 2R : B, D)$ as before. We let ι' be the canonical map

$$\iota' : C^{k,l}_{tr,V_\alpha}(A, A^n_{R,\alpha,conj} : B, E_D) \to C^{k,2,0,-1}_{tr}(A, A^n_{R,\alpha,conj} : B, E_D),$$

then for any $P \in C^{k+1}_{tr}(A, A^n_{R,\alpha,conj} : B, E_D), k \geq 2$, $t \mapsto \iota' (\varphi^{\alpha}_t(P))$ is C^1 and

$$\frac{\partial}{\partial t} \iota' (\varphi^{\alpha}_t(P)) = L_{\alpha} (\varphi^{\alpha}_t(P)),$$

where $L_{\alpha} : C^{k,l}_{tr,V_\alpha}(A, A^n_{R,\alpha,conj} : B, E_D) \to C^{k,2,0,-1}_{tr}(A, A^n_{R,\alpha,conj} : B, E_D)$ is given by $L_{\alpha} = \frac{1}{2}(\Delta_{V_\alpha} + \delta_{V_\alpha})$.

Proof. To compute the generator we start with Itô formula (25). Taking a conditional expectation, we deduce for $P \in B_C(X_1, \ldots, X_n : E_D, R, C)$,

$$\varphi^{\alpha}_t(P)(X_0) = P(X_0) - t(\Delta_{V_\alpha} + \delta_{V_\alpha})P(X_0) = \frac{1}{2} \int_0^t (\varphi^{\alpha}_s - \varphi^{\alpha}_0)(\Delta_{V_\alpha} + \delta_{V_\alpha})P(X_0) ds.$$

We now want to check the same relation under a full cyclic gradient \mathcal{D}. We need to check that all the terms above are in $C^{k,1,-1}_{tr}(A, R : B, E_D)$ for our chosen P. But we won’t check that the relation (26) is valid in this space, we will only show this relation holds after application of the cyclic gradient in each representation. Indeed, we do not know if the full cyclic gradient is closable, on the contrary to the free difference quotient.

From the definition of $[(\Delta_{V_\alpha} + \delta_{V_\alpha})P]$ (see Def. 15) as an evaluation of

$$[(\Delta_{V_\alpha} + \delta_{V_\alpha})P] \in C^{k,1,-1}_{tr}(A, R : B, E_D).$$

The fact that the
terms below semigroups are in the expected space then follows from Proposition 10 since $V, W \in C^{k+4}(A, 2R, B, E_D)$.

Note that all our terms are known to be in our expected space, we can apply (49) so that the equation (26) under \mathcal{D} is true in any representation $X_0 \in A_{R, \alpha}$ if it is true under the differential dX_0. Integrals are dealt with thanks to continuity of the semigroup with value in $C^{k,l-1}_{tr}(A, R : B, E_D)$ from the previous Lemma. Seeing both sides of the equation (26) as a function of X_0, one can differentiate both sides of (26) under dX_0 and obtain equality of both sides in each representation. We deduce the equality under the abstract dX_0-differential in C_{tr}^* by injectivity of the map from $C^0_{tr,V^0}(A, A_{R, \alpha, conj})$ to $C^0(A_{R, \alpha, conj}, A)$ (contrary to the space $C^{k,l-1}_{tr}$ before where this is unknown). We have thus deduced the equality in each representation:

$$\mathcal{D}_{X_0,i} \varphi_{t}^{\alpha}(P)(X_0) - \mathcal{D}_{X_0,i} P(X_0) - \frac{t}{2} \mathcal{D}_{X_0,i}(\Delta V_{\alpha} + \delta V_{\alpha})P(X_0)$$

$$= \frac{1}{2} \int_0^t \mathcal{D}_{X_0,i}((\varphi_{s}^{\alpha} - \varphi_{0}^{\alpha})[(\Delta V_{\alpha} + \delta V_{\alpha})P](X_0)ds.$$

Applying Lemma 39 and seeing P as an element of $C^k_{tr,V^0}(A, A_{R, \alpha, conj})$, one knows that all the terms of the equality are in the domain of order $k - 2$ free difference quotient and without having applied cyclic derivative, also in the domain of order $k - 2$ free difference quotient (since $k, l \geq 2$). By closability, if $X_0 \in A_{R, \alpha, conj}$ we can apply the $k - 2$ order free difference quotient to the relation above and deduce corresponding relations. Therefore, the following bound extends for $k \geq 2$ to $P \in C^k_{tr,V^0}(A, A_{R, \alpha, conj})$:

$$||\frac{1}{t}(\varphi_{t}^{\alpha}(P) - P) - \frac{1}{2}(\Delta V_{\alpha} + \delta V_{\alpha})P||_{k-2,0;-1,A_{R, \alpha, conj}}$$

$$\leq \frac{1}{2t} \int_0^t ||(\varphi_{s}^{\alpha} - \varphi_{0}^{\alpha})[(\Delta V_{\alpha} + \delta V_{\alpha})P]||_{k-2,0;-1,A_{R, \alpha, conj}} \to 0$$

goes to zero when $t \to 0^+$, by the strong continuity of φ_{s}^{α} on $C^{k-2,0;-1}_{tr}(A, A_{R, \alpha, conj})$. This gives the right derivative of φ_{t}^{α} at zero.

Now for $Q \in C^{k+l}(A, A_{R, \alpha, conj}, B, E_D)$, by the semigroup property $\varphi_{s+t}^{\alpha}(Q) = \varphi_{s}^{\alpha}(\rho_{t}^{\alpha}(Q))$ and applying the reasoning above to $P = \varphi_{t}^{\alpha}(Q)$, one gets the right derivative at any time.

To compute the left derivative, we start similarly from the result of Itô Formula to $P = \varphi_{t-s}^{\alpha} Q$ starting at time $t - s$ and using also the semigroup property

$$\varphi_{t}(Q)(X_0) - \varphi_{t-s}(Q)(X_0) = \frac{s}{2}(\Delta V_{\alpha} + \delta V_{\alpha})\varphi_{t}^{\alpha}(Q)(X_0)$$

$$= \frac{1}{2} \int_{t-s}^t (\varphi_{u-t+s}^{\alpha}(\Delta V_{\alpha} + \delta V_{\alpha})\varphi_{t}^{\alpha}(Q) - (\Delta V_{\alpha} + \delta V_{\alpha})\varphi_{t}^{\alpha}(Q))(X_0)du$$

$$= \frac{1}{2} \int_{t-s}^t \varphi_{u-t+s}^{\alpha}((\Delta V_{\alpha} + \delta V_{\alpha})(\varphi_{t}^{\alpha} - \varphi_{t-s}^{\alpha})(Q))(X_0)du$$

$$+ \frac{1}{2} \int_{t-s}^t (\varphi_{u-t+s}^{\alpha} - \varphi_{0}^{\alpha})(\Delta V_{\alpha} + \delta V_{\alpha})\varphi_{t}^{\alpha}(Q))(X_0)du.$$

Thus, using strong continuities of φ^{α} and $\varphi^{\alpha'}$, and reasoning as before in the more general spaces with some free difference quotient and cyclic derivative, we conclude that the left derivative is in $C^{k-2,0;-1}_{tr}(A, A_{R, \alpha, conj})$. \qed
4. CONSTRUCTION OF THE TRANSPORT MAP

Let $F \in C^{k_l}(A,U)^n$, $k,l \geq 1$. Let $X = (X_1, \ldots, X_n) \in U$. Then we define $\partial_F = (\partial_{F_1}, \ldots, \partial_{F_n})$ on $B(F^1(X), \ldots, F^n(X))$ as the free difference quotient of the variables $F^1(X), \ldots, F^n(X)$. Assume $W^*(B, X_1, \ldots, X_n) = M \subset (A, \tau)$ and let S be a semicircle variable, free from M with amalgamation over D. Let $q \in D' \cap M_\text{eh}_D$. The adjoint ∂_F^* of ∂_F, when it exists, is given by

$$
\tau((q\#S)^*\partial_F P\#S) = \tau((\partial_F(q))^*P), \quad 1 \leq i \leq n.
$$

The Jacobian matrix is given by $\mathcal{J}(F) = (\partial_{F_i})_{ij}$. We define for $G \in C^{k_l}(A,U)^n$, $\mathcal{J}_F(G) = (\partial_F G^i)_{1 \leq i, j \leq n}$. Its adjoint is given for $q \in M_n(D' \cap M_\text{eh}_D)$ by

$$
\mathcal{J}_F^*(q) = \left(\sum_i \partial_F^*(q_{ji}) \right)_{j=1}^n.
$$

We will need the following preparatory Lemma regarding conjugate variables. We will need a temporary technical assumption, satisfied under Assumption [9] if $X_0 \in A_{R,\text{App}}^n$ as shown in the proof of Proposition [10]. This will thus be the case for semicircular variables and then via our transport map for other models with h-convex potential.

Assumption 12. Assume $W^*(B, X_0) = M \subset (A, \tau)$ is such that $X \mapsto \tau(SX\#S)$ is a trace on $D' \cap M_\text{eh}_D$ if S is a semicircle variable, free from M with amalgamation over D.

Lemma 13. Assume Assumption [12]. Fix such an $X \in U$ with $U \subset A_{R,\text{conj}}^n$. Take $l \geq 0$. Consider a C^1 map $\alpha \mapsto F_\alpha \in C^{k_l}(A,U)^n$, on $[0, \alpha_0]$ for $k \geq 2$, so that $F_0 = X_0$, $\|1 - \mathcal{J}(F_\alpha)\|_{M_n(D' \cap M_\text{eh}_D, e)} < 1$. Let $1 \otimes 1$ be the diagonal matrix with entries $1 \otimes 1$ on the diagonal. Then $\mathcal{J}_F^*(1 \otimes 1) \in M^n$ exists for any $\alpha \in [0, \alpha_0]$, $\alpha \mapsto \mathcal{J}_F^*(1 \otimes 1)$ is in $C^1([0, \alpha_0], M^n)$ and

$$(27) \quad \frac{d}{d\alpha} \mathcal{J}_F^*(1 \otimes 1) = - \mathcal{J}_F^*([\mathcal{J}_F(\partial_{\alpha} F_\alpha)]^*).$$

Proof. The existence of the conjugate variable is a technical variant of [GS12] explained in the appendix, see Lemma [13]. It is also shown there that

$$
\mathcal{J}_F^*(1 \otimes 1) = \mathcal{J}^*([\mathcal{J}_F(\partial_{\alpha} F_\alpha)]^{-1, *}).
$$

where we denoted in short $A^{-1, *}_* = (A^{-1})^*$. Let us compute the time derivative of the above right hand side. From the elementary equation $A^{-1} - B^{-1} = A^{-1}(B - A)B^{-1}$, one deduces an equation on $(\mathcal{J}_F F_{\alpha+h})^{-1}$ which after taking the adjoint reads

$$
[\mathcal{J}_F F_{\alpha+h}]^{-1, *} = [\mathcal{J}_F F_{\alpha}]^{-1, *} - h[\mathcal{J}_F F_{\alpha}]^{-1, *}[\mathcal{J}_F \partial_{\alpha} F_{\alpha}]^*[\mathcal{J}_F F_{\alpha}]^{-1, *}
$$
$$
- [\mathcal{J}_F F_{\alpha+h}]^{-1, *}[\mathcal{J}_F F_{\alpha}] - [\mathcal{J}_F F_{\alpha}] - h[\mathcal{J}_F \partial_{\alpha} F_{\alpha}]^*[\mathcal{J}_F F_{\alpha}]^{-1, *}
$$
$$
+ h([\mathcal{J}_F F_{\alpha+h}]^{-1, *}[\mathcal{J}_F F_{\alpha}] - [\mathcal{J}_F F_{\alpha}]^*[\mathcal{J}_F F_{\alpha}]^{-1, *}[\mathcal{J}_F \partial_{\alpha} F_{\alpha}]^*[\mathcal{J}_F F_{\alpha}]^{-1, *}).
$$

Since all the terms are in a matrix variant of $D(\partial_{\alpha} F_{\alpha}^h \oplus 1 \partial_{\alpha} F_{\alpha}^h)$ which is an algebra by Lemma [10] (1) and $\mathcal{J}_F F_{\alpha+h}$ is differentiable in this space (using $k \geq 2$), we can conclude from
Lemma 40 (4) to the differentiability under \mathcal{J}^* so that we conclude after letting h going to zero that

$$
\frac{d}{d\alpha}(\mathcal{J}^*_{F_\alpha} 1_0 1) = -\mathcal{J}^*[\mathcal{J} F_\alpha^{-1}][\mathcal{J} \partial_\alpha F_\alpha]^* [\mathcal{J} F_\alpha]^{-1}.
$$

We have the chain rule for any $g \in C_{tr}^{1,0}(A, U)^n$

$$
(28) \quad \mathcal{J} g(F_\alpha) = \mathcal{J} F_\alpha g \# \mathcal{J} F_\alpha,
$$
we have, by taking $g = \partial_\alpha F_\alpha$,

$$
[\mathcal{J} \partial_\alpha F_\alpha]^* = [\mathcal{J} F_\alpha \partial_\alpha F_\alpha \# \mathcal{J} F_\alpha]^* = [\mathcal{J} F_\alpha]^* [\mathcal{J} F_\alpha \partial_\alpha F_\alpha]^*.
$$

which completes the proof. \hfill \Box

We will now proceed with the construction of the transport map F_α.

Lemma 14. Assume that $V, W, B, D, X = X_0$ satisfy Assumptions 4, 4 and 12 and that $V, W \in C^0_c(A, 2R; B, D)$. Fix such an $X \in A_{R/4,conj}^n$. Let

$$
\mathcal{D} g_\alpha := -\frac{1}{2} \int_0^\infty \mathcal{D}(\varphi_\alpha' (W)) dt \in C_{tr,V_\alpha}^{2,1}(A, A_{R,\alpha,conj}^n; B, E_D).
$$

Then $\mathcal{D} g_\alpha$ satisfies the equation in $C_{tr}^{0,0}(A, A_{R,\alpha,conj}^n; B, E_D)$:

$$
(29) \quad \mathcal{D}(W) = (\Delta V_\alpha + \delta V_\alpha)(\mathcal{D} g_\alpha) - \sum_{j=1}^n \mathcal{D} \varphi_j g_\alpha \mathcal{D}_j V_\alpha.
$$

Moreover the differential equation

$$
\frac{d}{d\alpha} F_\alpha = \mathcal{D} g_\alpha(F_\alpha) = (\mathcal{D}_1 g_\alpha(F_\alpha), \ldots, \mathcal{D}_n g_\alpha(F_\alpha))
$$

has a unique solution in the space $C_{tr}^{2,2}(A, A_{R/4,conj}^n; B, E_D)$ with the initial condition $F_0 = X$ on a small time $[0, \alpha_0]$ for some $\alpha_0 \in (0, 1]$ which only depends on $c, R, \sup_{\beta \in [0, 1]} \| \mathcal{D} g_\beta \|_{C_{tr,c}^{2,1}(A, A_{R/3,conj}; B, E_D)}$, non-increasing in the last variable.

Proof. The integral defining $\mathcal{D} g_\alpha$ exists in the space $C_{tr,c}^{2,1}(A, A_{R,\alpha,conj}^n; B, E_D)$ because of the exponential bound in Proposition 44 (with $k = 2, l = 2$). From the computation of the derivative in $C_{tr,V_\alpha}^{0,0-1}(A, A_{R,\alpha,conj}^n; B, E_D)$ in Proposition 11 one gets the derivative in $C_{tr}^{0,0}(A, A_{R,\alpha,conj}^n; B, E_D)$,

$$
\frac{\partial}{\partial t} \mathcal{D}(\varphi_\alpha'(W)) = \mathcal{D}(L_{\alpha}(\varphi_\alpha'(W))) = L_{\alpha} \mathcal{D}(\varphi_\alpha'(W)) - \frac{1}{2} \sum_{j=1}^n \mathcal{D} \varphi_j (\varphi_\alpha'(W)) \mathcal{D}_j V_\alpha
$$

where the last identity comes from Lemma 39 with $g = \varphi_\alpha'(W)$ and $k = 0$. Integrating in t and since $\mathcal{D}(\varphi_\alpha'(W))$ tends to 0 when $t \to \infty$, one gets the identity in $C_{tr}^{0,0}(A, A_{R,\alpha,conj}^n; B, E_D)$:

$$
\mathcal{D}(W) = (\Delta V_\alpha + \delta V_\alpha)(\mathcal{D} g_\alpha) - \sum_{j=1}^n \mathcal{D} \varphi_j g_\alpha \mathcal{D}_j V_\alpha.
$$

28
Fix $\alpha > 0$. We next define an appropriate space on which the following map

$$\chi : F \mapsto \left(\gamma \in [0, \alpha] \mapsto \chi_\gamma = F_0 + \int_0^\gamma \mathcal{D}g_\beta(F_\beta)d\beta \right)$$

will be a contraction for α small enough. We take $F_\beta \in A_{R/3,\text{conj}}^n \subset A_{R,\beta,\text{conj}}^n$ to stay in a space independent of β. We set, for α to be chosen small enough and for any fixed $K > \|F_0\|, A_{R,\beta,\text{conj}}^n$, we have

$$\mathcal{E}_{\alpha,K} = \{ F \in C^0([0,\alpha],(C_{tr,c}^2(A,A_{R/4,\text{conj}}^n:B,E_D))^n) : F_0(X) = X, \forall \beta \in [0,\alpha]$$

$$\|1 - \mathcal{J} F_\beta\|_{M_n(M_{\mathbb{R},c} \otimes M)} \leq \frac{1}{2}, \sup_{X \in A_{R,\beta,\text{conj}}^n} \|F_\beta(X)\| \leq R/3, \|F_\beta\|_{2,0,A_{R/4,\text{conj}}^n} \leq K \}. \quad (1)$$

First, note that $\mathcal{E}_{\alpha,K}$ is a closed convex set of $C^0([0,\alpha],(C_{tr,c}^2(A,A_{R/4,\text{conj}}^n:B,E_D))^n)$, thus it is complete metric space.

By the previous Lemma (note that we don’t need at this point $\alpha \to F_\alpha C^1$), for $F \in \mathcal{E}_{\alpha,K}$, $\mathcal{J}_{F_\beta}\left(1 \otimes 1\right)$ exists for $\beta \leq \alpha$. Thus for any $X \in A_{R/4,\text{conj}}^n$, $F_\beta(X) \in A_{R/3,\text{conj}}^n$ and we are in position to apply Lemma 37 to get $\mathcal{D}g_\beta(F_\beta) \in C_{tr,c}^2(A,A_{R/3,\text{conj}}^n:B,E_D)^n$. Moreover, applying Lemma 35 and the same exponential decay as before to deal with the tail of the integral, $\beta \in [0,1] \mapsto \mathcal{D}g_\beta \in C_{tr,c}^2(A,A_{R/3,\text{conj}}^n:B,E_D)$ is continuous. Using our Lemma 37 for composition, $\alpha \in [0,1] \mapsto \mathcal{D}g_\alpha(F_\alpha) \in C_{tr,c}^2(A,A_{R,\beta,\text{conj}}^n:B,E_D)$ is also continuous so that the integral defining χ makes sense. Hence χ is well defined on $\mathcal{E}_{\alpha,K}$ with value in $C^0([0,\alpha],(C_{tr,c}^2(A,A_{R/4,\text{conj}}^n:B,E_D))^n)$. For α such that

$$\frac{R}{4} + \alpha \sup_{\beta \in [0,1]} \|\mathcal{D}g_\beta\|_{C_{tr,c}^1(A,A_{R/3,\text{conj}}^n:B,E_D)} \leq \frac{R}{3}$$

the image of χ belongs to $A_{R/3}^n$. Similarly, $\|\chi_\beta\|_{2,0,A_{R/4,\text{conj}}^n} \leq K$ if α is small enough.

Finally, by the chain rule (28), we have

$$\|\mathcal{J} \mathcal{D}g_\beta(F_\beta)\|_{M_n(M_{\mathbb{R},c})} \leq \|\mathcal{J} F_\beta\|_{M_n(M_{\mathbb{R},c})} \|\mathcal{D}g_\beta\|_{M_n(M_{\mathbb{R},c})} \leq 3/2 \|\mathcal{D}g_\beta\|_{M_n(M_{\mathbb{R},c})}.$$

Recalling $\mathcal{J} F_0 = 1$ and using the continuity of $\mathcal{J} \mathcal{D}g_\beta$ one can choose $\alpha = \alpha(K)$ small enough such that χ is valued in $\mathcal{E}_{\alpha,K}$. It remains to obtain a contraction, up to choose α even smaller.

Since $\mathcal{D}g_\beta$ lies in a bounded set in $C_{tr,c}^2(A,A_{R/3,\text{conj}}^n:B,E_D)$ and $\mathcal{E}_{\alpha,K}$ is bounded, $\mathcal{D}g_\beta$ is uniformly Lipschitz by Lemma 37, with a Lipschitz norm which does not depend on $\beta \in (0,1)$. χ is thus a contraction on $\mathcal{E}_{\alpha,K}$. It has therefore a unique fixed point which is our solution which is necessarily in $C^1([0,\alpha_0],(C_{tr,c}^2(A,A_{R,\beta,\text{conj}}^n:B,E_D))^n)$.

\[\square\]

Lemma 15. Assume the Assumption of Lemma 14. Let $\Upsilon_\alpha = \mathcal{J}_{F_\alpha(X)}^*(1 \otimes 1) - \mathcal{D}V_\alpha(F_\alpha(X))$, where F_α is constructed in Lemma 14.
Then Υ_α satisfies the differential equation in $L^\infty([0, \alpha_0), W^*(X))$:

$$\frac{d}{d\alpha} \Upsilon_\alpha = -d_{F_{\alpha}}[\mathcal{D}g(\mathcal{F}_\alpha) \cdot (\Upsilon_\alpha)].$$

As a consequence, if $\Upsilon_0 = 0$, then $\Upsilon_\alpha = 0, \forall \alpha \in [0, \alpha_0]$.

In other words, for $\alpha \in [0, \alpha_0]$, $F_\alpha(X)$ has conjugate variables $\mathcal{D}V_\alpha$.

Proof. Using our previous computation of derivative of conjugate variables in Lemma 13, we compute

$$\frac{d}{d\alpha} \Upsilon_\alpha = -\mathcal{J}_{F_\alpha}^* [\mathcal{J}_{F_\alpha} \mathcal{D}g(\mathcal{F}_\alpha)] - \mathcal{J} \mathcal{D}V_\alpha(\mathcal{F}_\alpha) \# \mathcal{D}g(\mathcal{F}_\alpha) - \mathcal{D}W(\mathcal{F}_\alpha)$$

We next rewrite the right hand side. To this end, notice that (50) yields

$$\mathcal{J}_{F_\alpha}^* \mathcal{J}_{F_\alpha} \mathcal{D}g(\mathcal{F}_\alpha) = \mathcal{J} \mathcal{D}g(\mathcal{F}_\alpha) \# (\mathcal{J}_{F_\alpha}^* (1 \otimes 1)) - \Delta(\mathcal{D}g(\mathcal{F}_\alpha)).$$

Moreover, (13) gives

$$\Delta_{V_\alpha}(\mathcal{D}g(\mathcal{F}_\alpha)) = \Delta(\mathcal{D}g(\mathcal{F}_\alpha)) - \mathcal{J} \mathcal{D}g(\mathcal{F}_\alpha) \# (\mathcal{D}V_\alpha(\mathcal{F}_\alpha)).$$

Hence, we have

$$-(\mathcal{J}_{F_\alpha}^* \mathcal{J}_{F_\alpha} \mathcal{D}g(\mathcal{F}_\alpha)) + \mathcal{J} \mathcal{D}g(\mathcal{F}_\alpha) \# (\mathcal{J}_{F_\alpha}^* (1 \otimes 1) - \mathcal{D}V_\alpha(\mathcal{F}_\alpha))$$

$$= (\Delta_{V_\alpha} + \delta_{V_\alpha}) \mathcal{D}g(\mathcal{F}_\alpha) - \delta_{V_\alpha} \mathcal{D}g(\mathcal{F}_\alpha)$$

Moreover (12) and $\partial_i \partial_j V_\alpha = \rho(\partial_j \partial_i V_\alpha)$ result with

$$\sum_j [\mathcal{D}X, \partial_j g_\alpha \partial_j V_\alpha](\mathcal{F}_\alpha) = \mathcal{J} \mathcal{D}V_\alpha(\mathcal{F}_\alpha) \# \mathcal{D}g(\mathcal{F}_\alpha).$$

Putting these equalities together give:

$$-(\mathcal{J}_{F_\alpha}^* \mathcal{J}_{F_\alpha} \mathcal{D}g(\mathcal{F}_\alpha)) + \mathcal{J} \mathcal{D}g(\mathcal{F}_\alpha) \# (\mathcal{J}_{F_\alpha}^* (1 \otimes 1) - \mathcal{D}V_\alpha(\mathcal{F}_\alpha))$$

$$- \mathcal{D}V_\alpha(\mathcal{F}_\alpha) - \mathcal{J} \mathcal{D}V_\alpha(\mathcal{F}_\alpha) \# \mathcal{D}g(\mathcal{F}_\alpha)$$

$$= (\Delta_{V_\alpha} + \delta_{V_\alpha}) \mathcal{D}g(\mathcal{F}_\alpha) - \delta_{V_\alpha} \mathcal{D}g(\mathcal{F}_\alpha) - \sum_j [\mathcal{D}X, \partial_j g_\alpha \partial_j V_\alpha](\mathcal{F}_\alpha)$$

$$= \mathcal{D}W(\mathcal{F}_\alpha) - [d \mathcal{D}g_\alpha (E_{F_\alpha,D}). (\mathcal{J}_{F_\alpha}^* (1 \otimes 1) - \mathcal{D}V_\alpha(\mathcal{F}_\alpha))](\mathcal{F}_\alpha).$$

where we have finally used equation (29) and Lemma 39(1) applied to $\mathcal{D}g_\alpha$.

Hence, (30) yields

$$\frac{d}{d\alpha} \Upsilon_\alpha = -\mathcal{D}g(\mathcal{F}_\alpha) \# \mathcal{Y}_\alpha - [d \mathcal{D}g_\alpha (E_{F_\alpha,D}). (\mathcal{Y}_\alpha)](\mathcal{F}_\alpha)$$

We thus obtain the expected equation from which we deduce the bound:

$$\|\mathcal{Y}_\alpha\|_\infty := \max \|\mathcal{Y}_\alpha\|_A \leq \|\mathcal{Y}_0\|_\infty + \int_0^\alpha \|g_\beta\|_{C^{\alpha,2}_{tr,c}(A,A_{R/3,conj})} \|\mathcal{Y}_\beta\|_\infty d\beta$$

so that Gronwall’s Lemma yields the claim.

Recall that $V_0 = \frac{1}{2} \sum_{i=1}^n X_i^2$. We have to reinforce slightly Assumption 6, a reinforcement which is still satisfied by our examples of quartic potentials.
Corollary 17. Let V, W, B, D satisfy Assumption 16 and 9 and $V, W \in C_0^0(A, 2R : B, D)$. Assume also the pair $(cV_0, V - cV_0)$ satisfy Assumption 16. Fix an $X \in A^n_{R/4,\text{conj}}$ and suppose it follows the free Gibbs law with potential V.

Let F_α, $0 \leq \alpha \leq \alpha_0$ be the solution constructed in Lemmas 14 and 15. Then:

(i) The law of $F_\alpha(X)$ is the free Gibbs law with potential $V_\alpha = V + \alpha W$;
(ii) The W^*-algebras $W^*(F_\alpha(X), B)$ are equal for all $\alpha \in [0, \alpha_0]$.

For any $\alpha \in [0, 1]$, the von Neumann algebras generated by B and generators of the free Gibbs law with potential $V_\alpha = V + \alpha W$ are isomorphic.

Proof. We first check that Assumption 12 is satisfied under our assumptions. First start with the case $V = cV_0$, in which case Assumption 12 is satisfied thanks to Assumption 9 and Proposition 28 (2). Then building the transport map for the pair $(cV_0, V - cV_0)$ the same Assumption 12 is satisfied for $X \in A^n_{R/4,\text{conj}}$.

By the previous Lemma 15 we find that $Y_\alpha = 0$, which means that $\mathcal{J}_{F_\alpha}(1 \otimes 1) = \mathcal{D}V_\alpha$ for $\alpha \in [0, \alpha_0]$. Since V_α is by assumption $(c, 2R)$-convex and $||F_\alpha|| < R/3$ it follows that the law of F_α is the free Gibbs law with potential V_α. This proves (i).

To see part (ii) fix $\alpha_1 \in [0, \alpha_0]$. Let $\hat{V}_\alpha = V_{\alpha_1} - \alpha W$, with $\alpha \in [0, \alpha_1]$, and consider the same ODE as in Lemma 14 and call \hat{F}_α the solution. V_α replaced by \hat{V}_α. Note that $F_{\alpha_1}(X) \in A^n_{R/4,\text{UltraApp}}$ by Assumption 16. It is not hard to see that $\hat{F}_\alpha(F_{\alpha_1}(X)), F_{\alpha_1 - \alpha}(X)$ are solutions to the same ODE (only W is changed into $-W$ as it should be since the time is reversed), and is thus the unique solution. Thus by what we proved, $W^*(\hat{F}_\alpha(F_{\alpha_1}(X)), B) \subset W^*(F_\alpha(X), B)$, which proves the reverse inclusion and thus $W^*(F_\alpha(X), B) = W^*(X, B)$, for $\alpha \in [0, \alpha_0]$.

Let us prove the last point of the Corollary. We have just checked the case $\alpha \in [0, \alpha_0]$. Moreover, $(V_{\alpha_0}, (1 - \alpha_0)W)$ satisfies the same assumption as (V, W) with the same constants (c, R). We can therefore perform the previous construction of a function F_α with (V, W) replaced by $(V_{\alpha_0}, (1 - \alpha_0)W)$. This can be done until a parameter α_0 which can be chosen to be equal to α_0 as the constants (c, R) are the same and the semi-groups under consideration are the same. Note also that Assumption 16 enables to check that $||F_{\alpha_0}(X)|| \leq R/4$ and thus $F_{\alpha_0}(X)$ satisfies the same assumption as X. Applying (i),(ii) in that case concludes to the isomorphism of $W^*(X^{V + \alpha W}, B)$ for $\alpha \in [\alpha_0, \alpha_0 + \alpha_0(1 - \alpha_0)]$ if $X^{V + \alpha W}$ are the unique variables with conjugate variables $\mathcal{D}_e(V + \alpha W)$.

Inductively, one concludes to the isomorphism for any $\alpha \in [0, 1]$. To complete the proof, it suffices to note that for ϵ small enough, $V, (1 + \epsilon)W$ satisfy the same assumptions (a priori with a different convexity constant and replacing $R/4 < R/3$ by any larger value).

5. Appendix 1: Cyclic Haagerup Tensor Products

Let M be a finite von Neumann algebra and $D \subset M$ be a von Neumann subalgebra. Our goal is to define a notion of n-fold cyclic tensor product $M_{n,c}^{\otimes}$ which will be a certain
subspace of the Haagerup tensor product $M_k^{\otimes n}_D$. We start by considering the case $n = 2$, and then use amalgamated free products to build the more general cyclic tensor powers.

The inspiration for the construction comes from subfactor theory. Indeed, if $M_0 \subset M_1$ is a finite-index inclusion of II$_1$ factors and if M_k denotes the k-th step in the iterated Jones basic construction, then (see e.g. [LS] Prop 4.4.1(ii)) $L^2(M_k)$ are precisely the tensor powers of $L^2(M_1)$ regarded as an M_0 Hilbert bimodule: $L^2(M_k) = L^2(M_1)^{\otimes M_0 \kappa}$. Moreover, the higher relative commutants $M'_0 \cap M_k$ are precisely the cyclic tensor powers of M_1. These ideas have been extended to the infinite-index case [El1, Pel PeL3]. In particular, the notion of Burns rotation will be useful for us to get a certain traciality property.

5.1. Preliminaries.

5.1.1. Background and basic results on tensor powers of Hilbert bimodules. Let D be a II$_1$-factor and let $_DH_D$ be a D-Hilbert bimodule, i.e., a Hilbert space carrying a pair of commuting normal actions of D. Recall that a vector $\xi \in H$ is called left (resp. right) bounded if the left (resp. right) action of D on ξ extends to an action of $L^2(M)$ on ξ. There is always a D-basis $\{\alpha\}$ of vectors for H which are both right and left bounded [Po86]. We write $H_{L^2(D)}$ the set of right bounded vectors and $L^2(D)H$ the set of left bounded vectors. We call $B_H = L^2(D)H \cap H_{L^2(D)}$ the set of vectors which are both left and right bounded.

Let us denote by $H^{D\otimes n}$ the n-fold Hilbert module relative tensor product (for convenience, we set $H^{D\otimes 0} = L^2(D)$). Denote by $P_H^n = D' \cap H^{D\otimes n}$ the set of central vectors. Following [PeL3], we denote by $\{\alpha^n\}$ the basis for $H^{D\otimes n}$ of tensors of elements of $\{\alpha\}$. Similarly, fix D-bases $\{\beta\}, \{\beta^n\}$ for H_D and $(H^{D\otimes n})_D$, respectively.

Let

$$C_{n,H} = D^{op} \cap B(H^{D\otimes n})$$

and endow it with the canonical trace

$$Tr_n = \sum_{\beta^n} \langle \beta^n, \beta^n \rangle.$$

An example of this is the Jones basic construction, that we denote $\langle M, e_D \rangle$ for $D \subset M$. Then $\langle M, e_D \rangle = D^{op} \cap B(L^2(M)) = C_{1,L^2(M)}$. Similarly, let

$$C_{n,H}^{op} = D' \cap B(H^{D\otimes n})$$

with canonical trace

$$Tr^{op}_{n} = \sum_{\alpha^n} \langle \alpha^n, \alpha^n \rangle.$$

Finally, define the centralizer algebras

$$Q_{n,H} = C_{n,H} \cap C_{n,H}^{op}.$$

We recall the following definitions from [PeL3]:

Definition 18. (i) A Hilbert bimodule H on a factor D is said to be **extremal** if $Tr_1 = Tr^{op}_{1}$ on the positive cone $Q^+_{1,H}$.

(ii) A **Burns rotation** is a map $\rho : P_H^n \to P_H^n$ such that for all $\zeta \in P_H^n, b_1, ..., b_n \in B_H$, we have:

$$\langle \rho(\zeta), b_1 \varnothing ... \varnothing b_n \rangle = \langle \zeta, b_2 \varnothing ... \varnothing b_n b_1 \rangle.$$
Examples are given in [Pe13, section 5.2]. The easiest example is when \(H \) has a two-sided basis [Pe13, Rmk 4.5].

Theorem 19. [Pe13, Theorems 4.7, 4.20] If \(H \) is extremal, \(H^{op} \) is also extremal and for all \(n \), there exists a Burns rotation \(\rho \) on \(P_H^n \) which is a unitary map.

There is also a partial converse [Pe13, Th 1.4], although it is not needed for our purposes.

5.1.2. **Haagerup tensor products and the basic construction.** With these preliminaries recalled, we now turn to the definition of cyclic Haagerup tensor product. We start by a well-known technical result concerning the Jones basic construction.

If \(A \) is an operator space, we write \(A^\ast \) for its dual as an operator space [P]. When \(A \) is a \(D - D \) bimodule, we write \(A^2 \) for the dual operator \(D' - D' \) bimodule in the sense of Magajna [M05]. We will also denote by \(A^{D\text{norm}} \) the normal dual defined when \(A \) is itself a tensor product over \(D \) in [M05, Th 3.2]. While we will not recall the general definition of the normal dual here, we will mention that in the case that \(A \) is itself a tensor product over \(D \) (and therefore its dual can be viewed as the space of certain linear maps), the normal dual corresponds to maps that satisfy a normality condition on basic tensors. In the case that \(D = \mathbb{C} \), the bimodule dual is the same as the operator space dual \(A^\ast \).

Let \(D \subset M \) be finite von Neumann algebras, let \(e_D \) be the Jones projection onto \(D \), and denote by \(\langle M, e_D \rangle \) the basic construction for \(D \subset M \). Let

\[
A(M, e_D) = \text{Span} \{ xe_Dy : x \in L^2(M)_L^2(D), y \in L^2(D) \}
\]

Denote by \(I_0(\langle M, e_D \rangle) \) the compact ideal space (cf. [Po02, section 1.3.3]). Let \(E_{D'} : I_0(\langle M, e_D \rangle) \rightarrow D' \cap I_0(\langle M, e_D \rangle) \) be the conditional expectation constructed in [Po02, Prop 1.3.2].

Lemma 20. With the above notations, \(A(M, e_D) \) is weak-* dense in \(\langle M, e_D \rangle \), dense in \(L^2(\langle M, e_D \rangle) \), \(I_0(\langle M, e_D \rangle) \) as well as \(L^1(\langle M, e_D \rangle) \).

The following hold isometrically:

\[
L^1(\langle M, e_D \rangle) \simeq L^2(M)^{\phi_{hD^\text{op}}}L^2(M) = I_0(\langle M, e_D \rangle)^{D\text{norm}} \subset I_0(\langle M, e_D \rangle)^{\ast}.
\]

The restriction of \(E_{D'} \) to a normal projection on \(I_0(\langle M, e_D \rangle) \cap L^2(M)^{\phi_{hD^\text{op}}}L^2(M) \) induces a cross-section to the quotient map \(I_0(\langle M, e_D \rangle) \rightarrow I_0(\langle M, e_D \rangle)/[D, I_0(\langle M, e_D \rangle)] \). The Dixmier conditional expectation \(E_{D'} : \langle M, e_D \rangle \rightarrow D' \cap \langle M, e_D \rangle \) is an extension of \(E_{D'} \).

The map \(E_{D'} \) is pointwise normal in \(D \) and thus its adjoint \(E_{D'}^\ast \) induces a projection \(E_{D'}^\ast : L^1(\langle M, e_D \rangle) \rightarrow D' \cap L^1(\langle M, e_D \rangle) \) agreeing with the usual projection on \(L^1(\langle M, e_D \rangle) \cap L^2(M)^{\phi_{D^\text{op}}}L^2(M) \), and giving an isomorphism

\[
D' \cap L^1(\langle M, e_D \rangle) \simeq L^1(\langle M, e_D \rangle)/[D, L^1(\langle M, e_D \rangle)].
\]

Proof. The identification

\[
L^1(\langle M, e_D \rangle) \simeq L^2(M)^{\phi_{hD^\text{op}}}L^2(M) = I_0(\langle M, e_D \rangle)^{D\text{norm}}
\]

comes from the fact that both spaces are preduals of the same von Neumann algebra as follows from the computation of their duals in [M05, Corollary 3.3], the computation of \(I_0(\langle M, e_D \rangle) \) as Haagerup tensor product below and the identification with extended Haagerup products [M05, Rmk 2.18]:

\[
L^1(\langle M, e_D \rangle) \simeq L^2(M)^{\phi_{hD^\text{op}}}L^2(M) \simeq L^2(M)^{\otimes_{D^\text{op}}}L^2(M).
\]
From [M05, Th 3.2, Ex 3.15] we have the isomorphism
\[[c(ML^2(M)_{L^2(D)})_D\phi_hDD(L^2(D)L^2(M)_{M})_D]^{D_{\text{norm}}} \simeq L^1(M, e_D)].\]

(Recall that here the operator space structure \(D(L^2(D)L^2(M)_{M})_D\) is the one of the indicated Hilbert module structure, not the one as a module over \(D^{op}\)). It remains to check
\[I_0(M, e_D) \simeq [c(ML^2(M)_{L^2(D)})_D\phi_hDD(L^2(D)L^2(M)_{M})_D] \]
\[\subseteq [c(ML^2(M)_{L^2(D)})_D \otimes_D (L^2(D)L^2(M)_{M})_D] \simeq (M, e_D) \]
but the last inclusion comes again from [M05, Th 3.2, Ex 3.15]. In this way we identify the compact ideal space with the norm closure of basic tensors in the extended Haagerup tensor product. This norm closure is exactly the Haagerup tensor product and thus we deduce the first isomorphism.

On the dense space \(I_0(M, e_D) \cap L^2(M)\phi_D L^2(M), E_{D'}\) vanishes on \([D, U]\) for any \(U\).
Since \(E_{D'}(U)\) is a limit of convex combinations of \(u^*Uu = U + [u^*U, u] \in D, E_{D'}(U)\) has the same image as \(U\) in the quotient \(I_0(M, e_D))/[D, I_0(M, e_D)]\). This gives the claimed isomorphism between the image of \(E_D, D' \cap I_0(M, e_D)\), and the quotient, as well as the identification with the Dixmier conditional expectation.

The key part of our Lemma is to check \(D\)-normality of \(d \mapsto Tr(E_{D'}(V)\xi e_{D}\eta), V \in L^1(M, e_D), \xi \in L^2(M)_{L^2(D)}, \eta \in L^2(D)L^2(M)\). Since \(E_{D'}\) is bounded, one may assume \(V \in L^2(M)\phi_D L^2(M)\) in which case obviously \(E_{D'}(V) = E_{D'}(V)\). This one is again close to \(\sum \lambda_n uVu^*\) so that since \(d \mapsto Tr(\sum \lambda_n u Vu^*\xi e_{D}\eta), \) normal, one gets our result. The second quotient statement is analogous.

The reader should note that the identification \(L^1(M, e_D) \simeq L^2(M)^{\phi_D^{op}} L^2(M)\) is given on basic tensors by:
\[(32) \quad xe_Dy \mapsto y\phi_D^{op}x.\]
This will be the key to various flips appearing naturally later.

5.2. The cyclic Haagerup tensor product, case \(n = 2\). Recall that the spaces \(L^p(M, e_D)\) are made in compatible couples in the sense of interpolation theory [P]. We can see them as the inductive limit of \(L^p(q(M, e_D)q)\) for \(q\) finite projection. Thus these spaces are realized as an interpolation pair as a subspace of the topological direct sum \(\bigoplus_{q \in P(q(M, e_D))} L^1(q(M, e_D)q).\)

We refer to [Dab15, Th 2] for a literature overview of the main algebraic operations available on module Haagerup tensor products. We will use them extensively. We single out several operations. The first is the map * (see Section 2) which is given on basic tensors by \((ab)^* = b^*oa^*\). Next, for a basic tensor \(X = a \otimes b \in M \otimes M\) and a basic product \(U = xe_Dy \in \langle M, e_D\rangle\) we write:
\[U#X = E_{D'}(bx e_Dya), \quad \text{(inner action)} \]
and if \(U \in D' \cap \langle M, e_D\rangle\):
\[X#U = axe_Dyb, \quad \text{(outer action)} \]

With these notations, we have the following statements, which we group into three Theorems for convenience of presentation.
Theorem 21. Let $D \subset (M, \tau)$ finite von Neumann algebras.

(1a) The outer action $(X, U) \mapsto X\# U$ extends to all $X \in M_{\text{eh}}^D \otimes M$ and $U \in D' \cap \langle M, e_D \rangle \subset D' \cap B(L^2(M))$, taking values in $\langle M, e_D \rangle$. The inner action $(X, V) \mapsto V\# X$ extends to all $X \in M_{\text{eh}}^D \otimes M$ and $V \in L^1(\langle M, e_D \rangle)$ with values in $D' \cap L^1(\langle M, e_D \rangle)$

(1b) If in addition $X \in D' \cap M_{\text{eh}}^D, U \in D' \cap \langle M, e_D \rangle$, then $X\# U \in D' \cap \langle M, e_D \rangle$.

(1c) The inner and outer multiplication actions give rise to inclusions σ_1, σ_2,

$$\sigma_i : D' \cap M_{\text{eh}}^D \to B(\langle M, e_D \rangle \cap L^1(\langle M, e_D \rangle), D' \cap \langle M, e_D \rangle + L^1(\langle M, e_D \rangle))$$

Proof. The M^{op}-modularity of the action on $D' \cap B(L^2(M))$ whose definition is recalled in [Dab15] Theorem 2.4 insures stability of $\langle M, e_D \rangle = (D'^{\text{op}})^\text{op} \cap B(L^2(M))$ under the outer action.

Let us give an explicit description of the predual map giving the inner action on $D' \cap L^1(\langle M, e_D \rangle)$. From the canonical map $M \otimes_{\text{eh}} L^2(M) = M \otimes_{\text{eh}} L^2(M) \to L^2(M)$ and its row analogue $L^2(M)^* \otimes_{\text{eh}} M \to L^2(M)^*$, (see [B twelve, Prop 3.1.7]), one gets a map from

$$L^2(M)^* \otimes_{\text{eh}} (M_{\text{eh}}^D \otimes M) \otimes_{\text{eh}} L^2(M) \simeq (L^2(M)^* \otimes_{\text{eh}} M) \otimes_{\text{eh}, D} (M \otimes_{\text{eh}} L^2(M))$$

into $L^2(M)^* \otimes_{\text{eh}, D} L^2(M)$, inducing in particular a map

$$m : L^2(M)^* \otimes_{\text{eh}} L^2(M) \times M_{\text{eh}}^D \otimes M \to L^2(M)^* \otimes_{\text{eh}, D} L^2(M) = L^2(M)^* \otimes_{\text{h}, D} L^2(M)$$

which is our inner multiplication. Composing with $E_{D'}$ one induces a map

$$E_{D'} \circ m : L^2(M)^* \otimes_{\text{h}, D^{\text{op}}} L^2(M) \times M_{\text{eh}}^D \otimes M \to D' \cap L^2(M)^* \otimes_{\text{eh}, D} L^2(M).$$

The latter is isomorphic to $D' \cap L^2(M)^* \otimes_{\text{eh}, D^{\text{op}}} L^2(M)$, the last inclusion following for instance from the identification of this commutant with a quotient or because $E_{D'}(dU - Ud) = 0$. Note that the last isomorphism sends $a_0 b \in D' \cap L^2(M)^* \otimes_{\text{eh}, D} L^2(M)$ to $a_0^{\text{eh}, D}$ and thus on basic tensors

$$E_{D'} \circ m(ya_0^{\text{eh}, D}x, a_0 b) = E_{D'}(ya_0^{\text{eh}, D} b x)$$

which is identified with $E_{D'}(bx_0 y a)$ in $D' \cap L^1(\langle M, e_D \rangle)$ via [322] and coincides with our inner action.

For $X \in D' \cap (M_{\text{eh}}^D)^\text{op} M, U \in D' \cap \langle M, e_D \rangle$, $X\# U \in D' \cap \langle M, e_D \rangle$. This proves (1b).

We first claim that for $V \in L^1(\langle M, e_D \rangle)$, $X \in (M_{\text{eh}}^D)^\text{op} M, U \in D' \cap \langle M, e_D \rangle$:

$$\text{Tr}(U[V\# X]) = \text{Tr}([X\# U]V).$$

To show this, it suffices to take $V \in A$ by density. We can also assume X is a finite sum. Indeed, if $X = x_0 y a$ a standard decomposition for X [M05, (2.4), (2.5)] the ultrastrong
convergence of finite families \(x_F^* \to x^* \), \(y_F \to y \) implies if \(X_F = x_F \varphi_D y_F \) \(X_F \# U \to X \# U \) ultraweakly. Likewise if \(V = \xi \varphi_D \eta \) we have the convergence

\[
\|V \# (X_F - X)\|_{L^2(M)^* \otimes \varphi_D L^2(M)} \leq 2(\xi \sum_{i \in F} x_i x_i^* ; \xi) \| y_F \eta \|_2^2 + 2\| \xi x \|_2^2 \sum_{i \notin F} y_i^* y_i \eta \eta \to 0.
\]

Now for the remaining case \(V = \xi \varphi_D \eta \), \(X = x \varphi_D y \) (without matrix tensor products), we note that the image of \(V \) in the identification with \(L^1(\langle M, e_D \rangle) \) is \(\eta e_D \xi \), as explained in (32) so that \([V \# X] = E_D'([\eta e_D \xi x]) \) and

\[
Tr(U[V \# X]) = Tr(U[\eta e_D \xi x]) = Tr([x U y] V) = Tr([X \# U] V).
\]

We have also shown the existence of an extension for the definition of our inner action, namely that for \(V \in D' \cap \langle M, e_D \rangle \cap L^1(\langle M, e_D \rangle) \), and \(x, y \in M \),

\[
(34) \quad [V \# (x \varphi_D y)] = E_D'([\varphi_D x] \# V).
\]

We now prove (1c); all we need to show is that \(\sigma_1(X)_D : U \to X \# U \), \(\sigma_2(X)_D : V \to V \# X \) give inclusions. Note that \(\sigma_1(\cdot)(e_D) \) is the canonical inclusion \(M^{\varphi_D}_D \otimes M \to \langle M, e_D \rangle = L^2(\langle M, e_D \rangle) \otimes L^2_D \otimes L^2(\langle M, e_D \rangle) \) given by the theory of extended Haagerup product (see e.g. [Dab15, Prop 14]), so that \(\sigma_1 \) is injective.

By the definition of \(\sigma_2, \sigma_2(X)(e_D) = E_D'(i(X)) \) with \(i : M^{\varphi_D}_D \otimes M \to L^2(\langle M, e_D \rangle)^* \otimes L^2_D \) since it equals \(i(X) \) for \(X \in D' \cap M^{\varphi_D}_D \); this gives injectivity of \(\sigma_2 \).

\(\square \)

Definition 22. Denote by \(M^{\varphi_D}_D \otimes M^{\varphi_D}_D \) the intersection space of the images \(\sigma_i(D' \cap M^{\varphi_D}_D) \), \(i = 1, 2 \), in the sense of interpolation theory. This space is called the cyclic extended Haagerup tensor square of \(M \).

Theorem 23. We keep the notations and assumptions of Theorem 22 and Definition 22.

(1d) **The restriction of the map \(\ast \) defined in [Dab15, Theorem 2.4] to \(M^{\varphi_D}_D \otimes M^{\varphi_D}_D \) and the map \(\sigma = \sigma_2 \circ \sigma_1^{-1} \) define two commuting isometric involutions on \(M^{\varphi_D}_D \).**

(1e) **The involution \(U \mapsto U^* := (\sigma(U))^* \) and the product induced on \(M^{\varphi_D}_D \otimes M^{\varphi_D}_D \) via \(\sigma_1 \) give rise to an involutive Banach algebra structure on \(M^{\varphi_D}_D \).**

(1f) **For each \(X \in M^{\varphi_D}_D \), \(\sigma_1^{-1}(X)^\# \cdot : D' \cap \langle M, e_D \rangle \to D' \cap \langle M, e_D \rangle \) and \(\cdot \# \sigma_2^{-1}(X) : D' \cap L^1(\langle M, e_D \rangle) \to D' \cap L^1(\langle M, e_D \rangle) \) interpolate to give an action of \(X \in M^{\varphi_D}_D \) on \(D' \cap L^2(\langle M, e_D \rangle) \).**

(1g) **There is also an outer action denoted \(X \#_{L^1} \cdot \) of \(M^{\varphi_D}_D \) on \(L^1(\langle M, e_D \rangle) \) leaving \(D' \cap L^1(\langle M, e_D \rangle) \) globally invariant and commuting with the inner action.**

36
(2a) The map $Y \in (M \otimes_D^e e_D) \mapsto Y \# e_D \in \langle M, e_D \rangle \cap L^1(\langle M, e_D \rangle)$ gives the canonical weak-* continuous inclusion of $M \otimes_D^e M$ into $L^2(\langle M, e_D \rangle) \simeq L^2(\langle M, e_D \rangle)M \otimes_D^e L^2(M)$ (cf. [Dab15, Proposition 14]).

(2b) For any $Y, Z \in D' \cap M \otimes_D^e M$ the map $X \mapsto \langle Z \# e_D, X \# Y \# e_D \rangle$ is weak-* continuous on bounded sets of $M \otimes_D^e M$.

(2c) $M_{D,e}^{\otimes^2} \# e_D$ is dense in $D' \cap L^2(M) \otimes D L^2(M)$ and $M_{D,e}^{\otimes^2}$ weak-* dense in $D' \cap M_{D}^{\otimes^2}$.

(2d) The multiplication map $(U, V) \mapsto U \# V$ is separately weak-* continuous on bounded sets in the second variable as a map
\[
(M \otimes_D^e M) \times (D' \cap M \otimes_D^e M) \to (M \otimes_D^e M),
\]
and on each variable when restricted to:
\[
(D' \cap (M \otimes_D^e M)) \times (D' \cap M \otimes_D^e M) \to (D' \cap (M \otimes_D^e M)).
\]

Proof. Note that the intersection space $M_{D,e}^{\otimes^2}$ is thus well-defined because of (1c).

We start by proving (1d). If $X \in M_{D,e}^{\otimes^2}$, let $X' = \sigma(X) \in \sigma_{2}(D' \cap M_{D}^{\otimes^2})$ so if we show $X' = \sigma'(X) := \sigma_1(\sigma_2^{-1}(X))$ we will have shown σ leaves $M_{D,e}^{\otimes^2}$ globally invariant. The adjoint relation (33) gives for $U, V \in D' \cap (M, e_D) \cap L^1((M, e_D))$
\[
Tr(X(U)V) = Tr([\sigma_1^{-1}(X) \# U]V) = Tr(U[V \# \sigma_1^{-1}(X)]) = Tr(U[\sigma(X)(V)]),
\]
\[
Tr(X(U)V) = Tr(U[\sigma_2^{-1}(X) \# V]) = Tr(U[\sigma_2^{-1}(X)\#(V)]) = Tr(U[\sigma'(X)(V)]).
\]
Since U and V are arbitrary in dense spaces this shows the desired relation and as a consequence that σ is involutive.

With the same notation and using the definitions, $\sigma = \sigma'$ and the adjoint relation (33) several times, we have:
\[
Tr([X^*(U)]V) := Tr([\sigma_1^{-1}(X)^* \# U]V)
= Tr([\sigma_1^{-1}(X)\# U^*]^*V) = Tr([\sigma_1^{-1}(X)\# U^*]^*V)
= Tr(U[V^* \# (\sigma_1^{-1}(X))]^*V) = Tr(U[\sigma_2^{-1}(X)\# V^*]^*V)
= Tr(U[\sigma_1^{-1}(X) \# V^*]V) = Tr([U \# \sigma_2^{-1}(X)\# V]) = Tr([U \# \sigma_2^{-1}(X)\# V]).
\]

This shows both the two possible inductions of $\#$ coincide and stability of $M_{D,e}^{\otimes^2}$ by $\#$. The commutation with σ also follows since we showed $\sigma_2^{-1}(X)^* = \sigma_2^{-1}(X^*)$, $\sigma_1^{-1}(X)^* = \sigma_1^{-1}(X^*)$, thus $\sigma(X^*) = \sigma_1(\sigma_2^{-1}(X^*)) = \sigma_1(\sigma_2^{-1}(\sigma(X))^*) = \sigma(X)^*$.

To prove (1e), it remains to check the composition and the adjunction $\#$ give the expected Banach algebra structure.
We can reason similarly using our formula (33) and \(\sigma = \sigma' \) to check closure under the product:

\[
\text{Tr}([[XY](U)V]) := \text{Tr}([[\sigma_1^{-1}(X)\sigma_1^{-1}(Y)]U]V) \\
= \text{Tr}([[\sigma_1^{-1}(Y)]U][V\#\sigma_1^{-1}(X)]) = \text{Tr}(U[\sigma(X)(V)\#\sigma_1^{-1}(Y)]) \\
= \text{Tr}(U[\sigma(Y)(\sigma(X)(V))]) \\
= \text{Tr}(U[\sigma_2^{-1}(Y)\#(\sigma_2^{-1}(X)V)]) = \text{Tr}([U\#\sigma_2^{-1}(Y)\sigma_2^{-1}(X)]V).
\]

The middle relation then also shows \(\sigma(XY) = \sigma(Y)\sigma(X) \). Similarly, \((UV)^* = (U)^*(V)^* \)
which gives the only missing relation between * and product to get an involutive Banach algebra.

We next prove (1f). Since commutants have conditional expectations on them \(D' \cap (L^2(\langle M, e_D \rangle)) \) is indeed an interpolation of commutants (see e.g. [P, Prop 2.7.6]). For \(X \in M_{\sigma_1^{-1}}^D \), the very definition of \(M_{\sigma_1^{-1}}^D \), give the compatibility for interpolation of the pair of maps \(\sigma_1^{-1}(X)\# : D' \cap \langle M, e_D \rangle \to D' \cap \langle M, e_D \rangle \) and \(\#\sigma_2^{-1}(X) : D' \cap L^1(\langle M, e_D \rangle) \to D' \cap L^1(\langle M, e_D \rangle) \).

We now turn to (1g). Because \(L^2(M)^* \sigma_1 L^2(M) = L^2(M)^* \sigma_1 L^2(M) \supset M_{\sigma_1} M \) (obviously weak-* continuous injection), one can extend the projection \(E_{D'} \) from \(M_{\sigma_1} M \to D' \cap M_{\sigma_1} M \) to a map \(L^2(M)^* \sigma_1 L^2(M) \to D' \cap L^2(M)^* \sigma_1 L^2(M) \).

Indeed, by construction, the projection \(E_{D'}(U) \) is built as a weak-* limit of convex combinations \(\sum \lambda_i u_i U u_i^* \) converging thanks to the embedding \(M_{\sigma_1} M \subset L^2(M)^* \sigma_1 L^2(M) \). Moreover, we have \(\| \sum \lambda_i u_i U u_i^* \|_{L^2(M)^* \sigma_1 L^2(M)} \leq \| U \|_{L^2(M)^* \sigma_1 L^2(M)} \). Because the injection is weak-* continuous, one also gets weak-* convergence of the convex combination in \(L^2(M)^* \sigma_1 L^2(M) \) and thus, for any \(U \in M_{\sigma_1} M \),

\[
\| E_{D'}(U) \|_{L^2(M)^* \sigma_1 L^2(M)} \leq \| U \|_{L^2(M)^* \sigma_1 L^2(M)}.
\]

By density, \(E_{D'} \) extends to a bounded map on \(L^2(M)^* \sigma_1 L^2(M) \) which obviously induces a map \(L^2(M)^* \sigma_1 L^2(M) \to D' \cap L^2(M)^* \sigma_1 L^2(M) \), a cross-section to the quotient map (as seen first for \(U \in M_{\sigma_1} M \) by the weak-* limit above).

Now take \(U \in L^1(\langle M, e_D \rangle) \simeq L^2(M)^* \sigma_1 L^2(M) \), \(X \in M_{\sigma_1^{-1}}^D \) write \(\sigma_2^{-1}(X) = y \sigma_1 x \), a canonical decomposition with \(y \in M_{\sigma_1} M \), \(x \in M_{\sigma_1} M \) and take \(U' = E_{D'}(U) = \sum u_j \sigma_1 v_j \in D' \cap L^2(M)^* \sigma_1 L^2(M) \) sent to \(U \) by the quotient map \(\pi : L^2(M)^* \sigma_1 L^2(M) \to L^2(M)^* \sigma_1 L^2(M) \).

Then \(X \# L^1 U := \sum_{i,j} \pi(x_i u_j \sigma_1 v_j) \) is well defined in \(L^2(M)^* \sigma_1 L^2(M) \). Indeed, if \(\sigma_2^{-1}(X) = 0 \in M_{\sigma_1} M \), by [M05] (2.5) there exists \(P \in M_I(D) \) with \(PX = x, PY = 0 \) so that \(\sum \pi(x E_{D'}(U)y) = \sum \pi(P x E_{D'}(U)y) = \sum \pi(x E_{D'}(U)y P) = 0 \). Moreover, we have a bound \(\sum_{i,j} \| x_i u_j \|_2^2 \leq \| \sum x_i^* x_i \| \sum_{i,j} \| u_j \|_2^2 \) so that \((x_i u_j) \) is indeed a row vector in \(L^2(M)^* \), and similarly \((v_j y_i) \) is a column vector in \(L^2(M) \). Thus we have indeed \(\sum_{i,j} x_i u_j \sigma_1 v_j \in L^2(M)^* \sigma_1 L^2(M) \simeq L^2(M)^* \sigma_1 L^2(M) \) as claimed.

Moreover, by the definition of the norm, it is now easy to see

\[
\| X \# L^1 U \|_{L^2(M)^* \sigma_1 L^2(M)} \leq \| \sigma(X) \| \| E_{D'}(U) \| \leq \| X \| \| E_{D'}(U) \| \leq \| X \| \| E_{D'}(U) \| \leq \| X \| \| E_{D'}(U) \|
\]

38
This gives the outer action on \(L^1(\langle M, e_D \rangle) \) as is easily seen using the identity \(\sigma_2^{-1}(XY) = \sigma_2^{-1}(Y) \# \sigma_2^{-1}(X) \). The stability and commutation are easy.

We now turn to (2a)-(2d). First note that \(\sigma_{TC} : L^2(M^{op}) \circ h_D L^2(M^{op}) \to L^2(M) \circ h_D L^2(M) \), given by \(\sigma_{TC}(a \circ_D b) = b \circ_D a \), is isometric. This uses that a row vector of \(L^2(M^{op}) \) is the same as a column vector of \(L^2(M) \).

To prove (2a) note that the canonical map \(j : M \overset{eh}{\otimes}_D M \to L^2(M)^* \overset{eh}{\otimes}_D L^2(M) \) composed with \(\sigma_{TC} \) above gives the map \(\sigma_{TC} j \) valued in \(L^2(M)^* \circ h_D L^2(M) = L^1(\langle M, e_D \rangle) \) such that \(Y \# e_D \) coincides in the canonical identification with \(\sigma_{TC} j(Y) \), proving \(Y \# e_D \in \langle M, e_D \rangle \cap L^1(\langle M, e_D \rangle) \). The statement about the agreement with canonical inclusion is then obvious.

Let us prove (2b). Since \(D' \cap L^1(\langle M, e_D \rangle) \cap \langle M, e_D \rangle \) is dense in \(D' \cap L^2(\langle M, e_D \rangle) \), by approximating \(Z \# e_D \) by \(Z' \in D' \cap L^1(\langle M, e_D \rangle) \cap \langle M, e_D \rangle \) and even \(Z' = \sum z'_i e_D z_i \in M e_D M \) in \(L^2 \) norm, we see that it suffices to prove that \(X \to \langle Z', X \# Y e_D \rangle \) is weak-* continuous on bounded sets.

For \(Y \in D' \cap M \overset{eh}{\otimes}_D M \), note that \(Y \# e_D \in D' \cap \langle M, e_D \rangle \subset \langle M^{op}, e_D \rangle \). Since \(Y \# e_D \in D' \cap L^1(\langle M, e_D \rangle) = (D' \cap \langle M, e_D \rangle)^* \subset L^1(\langle M', e_D \rangle) \), we see that \(Y \# e_D \in L^1(\langle M', e_D \rangle) \cap \langle M', e_D \rangle \). Since \(L^1(\langle M', e_D \rangle) \simeq L^2(M)^* \circ h_D L^2(M) \) we have a canonical form \(Y \# e_D = \sum (y'_k)^{op} e_D y^{op} \) with \((y'_k) \) column vector in \(L^2(M) \) and \((y_k) \) row vector in \(L^2(M)^* \). Note that for \(\xi \in M \), one can compute the evaluation with the formula above \(\langle (x' \circ_x) \# (Y \# e_D)(\xi) \rangle = \sum z_i E_D(x g_j y_k y'_k) e_k \in L^1(M) \) (one can first approximate \(y_k, y'_k \) by elements of \(M \) to establish the formula).

If we take \((g_j)_{j \in J} \) a basis of \(L^2(M) \) as a right \(D \)-module (of elements of \(M \) if we want), then one can use the well-known formula

\[
\text{Tr}(Z'[X \# (Y \# e_D)]) = \sum_j \langle g_j, Z'[X \# (Y \# e_D)(g_j)] \rangle.
\]

We compute a term in the last formula. We continue our computation by applying \(Z' \) which also gives a map on \(L^1(M) : \)

\[
Z'[(x' \circ_x) \# (Y \# e_D)(g_j)] = \sum \sum z'_i E_D(z_i \sum x' E_D(x g_j y_k y'_k) e_k) \in L^1(M).
\]

Then since \(g_j \in M \), one can compute the trace :

\[
\tau(g_j Z'[x' \circ_x] \# (Y \# e_D)(g_j)) = \sum \sum \tau(E_D(g_j z'_i) z_i \sum x' E_D(x g_j y_k y'_k) e_k)
\]

which could be expressed as a duality formula for \(Y \# e_D \in D' \cap L^1(\langle M', e_D \rangle) \) since the sum in \(i \) is finite, thus one can use its commutativity with \(D : \)

\[
\tau(g_j Z'[x' \circ_x] \# (Y \# e_D)(g_j)) = \sum \tau(z_i \sum x' E_D(x g_j E_D(g_j z'_i) y_k) y'_k) e_k = \sum \tau(z_i (x' \circ_x) \# (Y \# e_D)(g_j) E_D(g_j z'_i) y'_k),
\]

where we finally used one of our previous formulas with \(\xi = g_j E_D(g_j z'_i) \) instead of \(g_j \) before. But looking again at \((x' \circ_x) \# (Y \# e_D) \) as the bounded operator on \(L^2 \) and using the relation
for a right basis \(\sum_i g_i E_D(g_i^* z_i') = z_i' \) with convergence in \(L^2 \), one may use operator weak-* convergence to replace \((x' \circ x)\) by \(X = \sum (x_i' \circ x_i)\):

\[
Tr(Z'[X \# (Y \# e_D)]) = \sum_i \tau(z_i X \# (Y \# e_D)(z_i'))
\]

\[
= \sum_{i,k,l} \tau(z_i x_i' E_D(x_i z_i' y_k) y_k') = \langle X, \sum_{i,k} y_k' z_i \circ_D \circ_r z_i' y_k \rangle.
\]

Since \(\sum_{k,i} y_k' z_i \circ_D \circ_r z_i' y_k \in L^2(M^\ast) \otimes_{eh_D} L^2(M) \subset L^1(M)^{\text{predual}}, \) the predual of the weak-* Haagerup tensor product, one gets the claimed weak-* continuity and thus the proof of (2b) is complete.

To prove the density part in (2c), it is enough to show that for a finite sum,

\(E_D'((\sum_i x_i \circ_D y_i)) \in M^{\text{predual}}. \)

More precisely, we will show that

\[
\sigma_1(E_D'((\sum_i x_i \circ_D y_i))) = \sigma_2(E_D'((\sum_i y_i \circ_D x_i))).
\]

We thus want to prove, for any \(U, V \in D' \cap (M, e_D) \cap L^1((M, e_D))) \):

\[
Tr([E_D'((\sum_i x_i \circ_D y_i)) \# U] V) = Tr([U \# (E_D'((\sum_i y_i \circ_D x_i))) V]
\]

\[
= Tr(U[(E_D'((\sum_i y_i \circ_D x_i)) \# V]).
\]

By density (simultaneous weak-* and \(L^1 \) using the agreeing conditional expectations) it suffices to take \(U = X \# e_D, V = Y \# e_D, X, Y \in D' \cap M^{\text{predual}}. \)

But now we can use the weak-* continuity we just proved to replace the conditional expectations by the limit of a net of convex combinations of conjugates by unitaries of \(D \), and thus by commutativity with \(D \), the conditional expectations can be removed, and the relation then becomes obvious.

Finally, for (2d), taking bounded nets \(U_n \to U, V_n \to V \) we note that \(U_n \# V, U \# V_n \) are still bounded, thus weak-* precompact and it thus suffices to show that \(U \# V \) is the unique cluster point, for instance by showing the nets converge weakly in \(L^2(M) \otimes_{D} L^2(M) \) or \(D' \cap L^2(M) \otimes_{D} L^2(M) \). For \(Z \in D' \cap M \otimes_{D} M \), by (2b) we have \(\langle Z \# e_D, U_n \# V \# e_D \rangle \to \langle Z \# e_D, U \# V \# e_D \rangle \), and since the elements \(Z \# e_D \) are dense in \(D' \cap L^2(M) \otimes_{D} L^2(M) \), one deduces the wanted weak convergence in \(D' \cap L^2(M) \otimes_{D} L^2(M) \). Applying formula (33) to \((Z \# e_D)^* \in L^1((M, e_D)), \) one gets for \(Z \in M \otimes_{D} M, \)

\[
\langle Z \# e_D, U \# V \# e_D \rangle = Tr(U \# (V_n \# e_D)(Z \# e_D)^*) = Tr((V_n \# e_D)((Z \# e_D)^* \# U))
\]

\[
\to Tr((V \# e_D)(Z \# e_D)^* \# U]) = \langle Z \# e_D, U \# V \# e_D \rangle.
\]

The convergence is due to the weak-* continuity of the map \(\cdot \# e_D M \otimes_{D} M \to (M, e_D) \) (following from the corresponding one with value \(L^2((M, e_D))) \). Again, by density we deduce
the weak convergence in $L^2(M)\phi_D L^2(M)$, and since $\#e_D$ is the canonical weak-* continuous map to $L^2(M)\phi_D L^2(M)$, this concludes.

\[\square \]

Theorem 24. We keep the assumptions and notation of Theorem 21 and Definition 22.

(3) Assume either that there exists a D-basis of $L^2(M)$ as a right D module $(f_i)_{i \in I}$ which is also a D-basis of $L^2(M)$ as a left D module or that D is a II_1 factor and that $L^2(M)$ is an extremal $D-D$ bimodule. Then (writing $\sigma_1^{-1}(X)\#e_D = X\#e_D$) $\tau(X) = \langle e_D, X\#e_D \rangle$ is a trace on $D' \cap M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$ such that $L^2(M_{D,c}^{eh} \otimes_{D,c}^{eh} 2, \tau) = D' \cap L^2(M)\phi_D L^2(M)$. Moreover the involution on $M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$ coincides with the adjoint in its action on $D' \cap L^2(M)\phi_D L^2(M)$.

(4) Assuming the conclusion of (3), the inner action of $M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$ on $L^2(M_{D,c}^{eh} \otimes_{D,c}^{eh} 2, \tau) = D' \cap L^2(M)\phi_D L^2(M)$ extends to an action on $L^2(M)\phi_D L^2(M)$.

We may later identify $M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$ as a subset of $D' \cap M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$ via σ_1^{-1}.

Proof. (3) Our proof relies on the existence of a unitary Burns rotation, which exists in the extremal case. The case with a two-sided basis is an easy variant of that case and is left to the reader.

First, note that, without any assumption on M related to traciality, for $X \in M_{D,c}^{eh} \otimes_{D,c}^{eh} 2, Y \in D' \cap M_{D,c}^{eh} \otimes_{D,c}^{eh} 2$, one can apply the relation established during the proof of (1):

\[
Tr([\sigma_1^{-1}(X)^* U)V] = Tr(U[\sigma_2^{-1}(X)\#V^*])^*)
\]

to $U = e_D, V = (Y\#e_D)$ to get

\[
\tau(X^*Y) = Tr(e_D[[\sigma_1^{-1}(\sigma(X))]\#(Y\#e_D)^*])^*)
= Tr(Y\#e_D[[\sigma_2^{-1}(\sigma(X))]\#e_D]^*)^*
= Tr([[\sigma_1^{-1}(X)\#e_D]^*(Y\#e_D)]^*)
= \langle X\#e_D, Y\#e_D \rangle.
\]

(36)

In particular, this realizes canonically isometrically $L^2(M_{D,c}^{eh} \otimes_{D,c}^{eh} 2, \tau)$ as a subspace of $D' \cap L^2(M)\phi_D L^2(M)$ and as a consequence shows the agreement of the previously defined adjoint with the Hilbert space one. The density in our part (2c) give the identification

$L^2(M_{D,c}^{eh} \otimes_{D,c}^{eh} 2, \tau) = D' \cap L^2(M)\phi_D L^2(M)$.

It remains to prove traciality $\tau(XY) = \tau(YX)$; it is enough to prove it for $X, Y \in M_{D,c}^{eh} \otimes M$. Indeed, using the proof of the density and weak-* continuity in our part (2), we only need to consider $X = E_{D'}(x_1\phi x_2), Y = E_{D'}(y_1\phi y_2)$ for $x_i, y_i \in M$. But from our previous
computation, this reduces to:

\[
\langle X^* \# e_D, Y \# e_D \rangle = \langle E_{D'}(x^*_1 e_D x^*_2), E_{D'}(y_1 e_D y_2) \rangle = \langle E_{D'}(y_1 e_D y_2), E_{D'}(x_1 e_D x_2) \rangle = \langle Y^* \# e_D, X \# e_D \rangle
\]

Now the key equality in the middle line comes from the extremality of \(L^2(M)\) that gives from Theorem 19 a unitary Burns rotation. From unitarity it is easy to see that \(\rho(E_{D'}(y_1 \phi_D y_2)) = E_{D'}(y_2 \phi_D y_1)\) so that the equality in the middle line comes from

\[
\langle E_{D'}(x^*_1 e_D x^*_2), E_{D'}(y_1 e_D y_2) \rangle = \langle \rho(E_{D'}(x^*_1 \phi_D x^*_1)), \rho(E_{D'}(y_1 \phi_D y_2)) \rangle = \langle (E_{D'}(x^*_1 \phi_D x^*_1)), (E_{D'}(y_1 \phi_D y_2)) \rangle = \langle E_{D'}(x^*_2 e_D x^*_1), E_{D'}(y_2 e_D y_1) \rangle = \langle E_{D'}(y_1 e_D y_2), E_{D'}(x_1 e_D x_2) \rangle.
\]

(4) The extension of the inner action of \(M^c_{D,c}^{eh,2}\) to an action on \(L^2(M)\o_D L^2(M)\) will require more work. The action of \(X \in M^c_{D,c}^{eh,2}\) will extend for \(U \in L^1(\langle M, e_D \rangle) \cap L^2(M)\o_D L^2(M),\)

\[U \# X := \sigma(X) \#_{L^1} U,\]

with the outer action on \(L^1(\langle M, e_D \rangle)\) built at the end of (1).

We aim to construct the action of \(M^c_{D,c}^{eh,2}\) by interpolation of the previous action with a dual action on \(\langle M, e_D \rangle\), defined by duality for \(V \in \langle M, e_D \rangle\):

\[Tr((V \#_{L^\infty} X)U) = Tr(V(X \#_{L^1} U)).\]

It thus remains to see these two actions agree on a common dense subspace.

Take \(U = Y \# e_D \in L^1(\langle M, e_D \rangle) \cap \langle M, e_D \rangle\), for \(Y \in \pi(M_{\phi_D} M) \subset M_{\phi_D} M \subset M^c_{D,c}^{eh,2}\).

We already noticed they form a dense subspace in both \(L^1(\langle M, e_D \rangle)\) and (for the weak-* topology) in \(\langle M, e_D \rangle\). Note that this indeed gives (even for \(Y \in M^c_{D,c}^{eh,2}\)) the expected inner action

\[\sigma(X) \#_{L^1} U = \sigma(X) \#_{L^1} (\sigma_{TCj}(Y)) = \sigma_{TCj}(Y \# X)\]

For the last key equality, take a canonical representation of \(Y = \sum y_j \phi_D y'_j, X = \sum x_i \phi_D x'_i\) then we note that

\[\sigma(X) \#_{L^1} (\sigma_{TCj}(Y)) = \sigma(X) \#_{L^1} (\sum y'_j \phi_D y_j) = \sum x_i y'_j \phi_D y_j x_i = \sigma_{TCj}(Y \# X)\]
Now, take also $V = Z \# e_D \in L^1(\langle M, e_D \rangle) \cap (M, e_D)$, for $Z = \sum z_i \# e_D z_i \in \pi(M_{alg} M)$ to compute $V \#_{L^\infty} X$:

$$\text{Tr}((V \#_{L^\infty} X)U) = \text{Tr}((V \# e_D)((Y \# \sigma(X)) \# e_D))$$

$$= \text{Tr}((Z \# e_D)((Y \# (\sigma(X)) \# e_D)))$$

$$= \text{Tr}(((Z \# e_D) \# Y)(\sigma(X) \# e_D))$$

$$= \text{Tr}(\sum_{ij} y_j' z_i' e_D z_i y_j (\sigma(X) \# e_D))$$

$$= \text{Tr}(e_D[(E_D' \sum_{ij} y_j \# e_D y_j' z_i') \# \sigma(X) \# e_D]),$$

where we started by using the relations we just established, the adjoint relation (33) in the third line, an explicit computation in the fourth valid for finite sums and the weak-* continuity on bounded sets of our part (2b) to introduce a conditional expectation.

Now having elements in $D' \cap M^{eh} \otimes M$ we can use the traciality we just proved, the adjoint relation (33), then in the third line the definition of σ and a removal of conditional expectation since $X \# e_D \in D' \cap (M, e_D)$ and finally again explicit computations for finite sums to get:

$$\text{Tr}((V \#_{L^\infty} X)U) = \text{Tr}(e_D[\sigma(X) \# ((E_D' \sum_{ij} z_i' y_j \# e_D y_j' z_i') \# e_D)])$$

$$= \text{Tr}((e_D \# \sigma(X))(((E_D' \sum_{ij} z_i' y_j \# e_D y_j' z_i') \# e_D)))$$

$$= \text{Tr}((X \# e_D)(((E_D' \sum_{ij} z_i' y_j \# e_D y_j' z_i') \# e_D)))$$

$$= \text{Tr}((\sum_{ij} z_i' (X \# e_D) z_i)(Y \# e_D))$$

$$= \text{Tr}(((X \# X) \# e_D)(Y \# e_D)).$$

Thus $(V \#_{L^\infty} X) = (Z \# X) \# e_D = (Z \# e_D) \#_{L^1} V$ and we can thus interpolate both maps to get the desired action. Finally, the agreement with the inner action on the commutant comes from the equality $\sigma(X) \#_{L^1}(Y \# e_D) = (Y \# X) \# e_D$ we proved for $Y \in M^{eh} \otimes M$. □

5.3. k-fold cyclic module extended Haagerup tensor products. We now turn to the construction of k-fold cyclic tensor powers $M^{D, e}_k$ extending the case $k = 2$ we have just dealt with. The desired properties of these tensor powers include the action of cyclic permutations, commutation with left-right actions of D as well as compatibility with various multiplication and evaluation operations. Elements in these modules will serve as coefficients for our generalized analytic functions, on which free difference quotient and cyclic gradients will be well-defined.

We will use free products with amalgamation as a convenient trick to reduce to the case of 2-fold cyclic modules we have already considered.
We thus now fix the appropriate notation. Let $D \subset M$ finite von Neumann algebras and consider $D \subset N_\kappa = M \ast_D (D \otimes W^*(S_1, \ldots, S_\kappa))$ the free product with amalgamation with a free semicircular element S_1, \ldots, S_κ for κ an ordinal. This of course gives an isomorphic result for each ordinal of same cardinality. Note that as D-bimodules,

$L^2(N_\kappa) \simeq \bigoplus_{n=0}^{\infty} (L^2(M)_{\rho_D n} \kappa_n^{-1})^\ast$ with $\bigoplus_{k=0}^{\infty} (L^2(M)_{\rho_D n} \kappa_n^{-1})$ being the usual orthonormalisation of $\text{Span}\{(MS_1) \ldots (MS_{i-1}) M, 1 \leq n \leq k, i_j \in [1, \kappa]\}$ ("Wick words").

In particular, for any word $n = n_1 \ldots n_\kappa$ in κ letters there is an embedding

$$\iota_n : M_D^{\otimes (|n|+1)} \to L^2(N_\kappa)$$

valued in $L^2(M)_{\rho_D |n|+1} \cap N_\kappa$ obtained by first sending the tensor $x_0 \otimes \cdots \otimes x_{|n|}$ to $x_0 S_{n_1} x_1 \cdots S_{n_\kappa} x_{|n|}$ and then projecting onto the orthogonal complement of the space $\text{Span}\{(MS_1) \ldots (MS_{|n|}) M, 1 \leq k \leq |n|, i_j \in [1, \kappa]\}$. We will write

$L^2(M)^{\rho_D n} \simeq L^2(M)^{\rho_D (|n|+1)}$

for the closure of the image of ι_n.

5.3.1. Construction of intersection spaces. To handle the action of a basic cyclic permutation, we need an intersection space similar to the intersection $L^1(\langle M, e_D \rangle) \cap \langle M, e_D \rangle$ in the previous section (which corresponds to the case $|n| + 1 = 2$). For this, we will use $L^1(\langle N_\kappa, e_D \rangle) \cap \langle N_\kappa, e_D \rangle$ (for any fixed $\kappa \geq k$, e.g. $\kappa = \omega$).

Let $K_{m,m} = L^2(M)^{\rho_D m+1}$, $K_{m,n} = L^2(M)^{\rho_D |m|+1} \oplus L^2(M)^{\rho_D |n|+1}$, if $m \neq n$, considered with the right normal action of D, and consider the corresponding basic construction $B(M : D, (m,n)) = B(K_{m,n}, K_{m,n})$ with a canonical semifinite trace Tr (see e.g. [PV11 section 2.3] or the beginning of section 6.1). In our operator space terminology, we have, by [M05 Corol 3.3] (and the preceding Theorem to change the reference Hilbert space structure to compute duality), $B(M : D, (m,n)) \simeq (K_{m,n})_{L^2(D)} \otimes_{e_D} L^2(D)(K_{m,n})^\ast$. Via this isomorphism $\xi\rho_D \overline{\eta} = \xi\rho_D \overline{\eta}^\ast$ is send to $L_\xi \rho_D L_\eta^\ast = L_\xi^\ast L_\eta$, where L_ξ denotes left multiplication by ξ, see [PV11 Section 2.3]. Its predual is $\mathcal{F}C(M : D, (m,n)) := L^1(B(M : D, (m,n)), Tr) \simeq K_{m,n}^\ast \otimes_{\rho_{D\ast}} K_{m,n}$. The spaces $B(M : D, (m,n))$ and $\mathcal{F}C(M : D, (m,n))$ are considered as an interpolation pair as before.

We will be mostly interested in off-diagonal block matrices in these constructions, namely (for $k \neq l$),

$$\mathcal{F}C(M : D, k, l) := L^2(M)^{\rho_D |k|+1} \otimes_{\rho_{D\ast}} L^2(M)^{\rho_D |l|+1},$$

$$B(M : D, k, l) := B(L^2(M)^{\rho_D |k|+1}, L^2(M)^{\rho_D |l|+1})_D$$

so that $B(M : D, k, l) = \mathcal{F}C(M : D, l, k)^\ast$ and the duality can be seen as induced by Tr above when they are seen as block matrices in the space above.

Let us start with a Lemma making explicit this relation. Consider, for n a word in κ letters, $P_n \in \langle N_\kappa, e_D \rangle \cap B(L^2(N_\kappa), L^2(M)^{\rho_D n})$ the orthogonal projection on the n-th component in the decomposition $L^2(N_\kappa) \simeq \bigoplus_{k=0}^{\infty} \bigoplus_{|n| = k} L^2(M)^{\rho_D n}$. Note that we make the difference between the adjoint $P_n^* \in B(L^2(M)^{\rho_D n}, L^2(N_\kappa))$ and the map $\overline{P_n} \in B(L^2(N_\kappa), L^2(M)^{\rho_D n})$:

$$\overline{P_n}(\xi) = \overline{\xi} \circ P_n^* \circ \overline{\overline{P_n} \xi},$$

even though they may be conjugated by some isomorphisms above.
Lemma 25. (1) Let $X \in \langle N, e_D \rangle$ and $Y \in L^1(\langle N, e_D \rangle) \simeq L^2(N)^* \otimes h_{D^*} L^2(N)$. X and Y agree in the classical intersection space, if and only if for all k, l words in κ letters, $P_l X P_k^* \in B(M : D, k, l)$ and $(P_k \otimes h_{D^*} P_l)(Y)$ agree in the intersection space coming from the inclusions $B(M : D, k, l) \subset B(M : D, (k, l))$, $\mathcal{T} C(M : D, k, l) \subset \mathcal{T} C(M : D, (k, l))$.

(2) We have the inclusions:

$$
\mathcal{T} C(M : D, k, l) \subset B(L^2(M)^{\otimes k}, L^1(D) \otimes h_{D^*} L^2(M)^{\otimes l})_D \supset B(M : D, k, l)
$$

(the right module structure on $L^1(D) \otimes h_{D^*} L^2(M)^{\otimes l}$ given by right multiplication on $L^1(D)$). Moreover the intersection space of interpolation theory $\mathcal{T} C(M : D, k, l) \cap B(M : D, k, l)$ coincides with the one coming from the inclusions $B(M : D, k, l) \subset B(M : D, (k, l))$, $\mathcal{T} C(M : D, k, l) \subset \mathcal{T} C(M : D, (k, l))$, those spaces being realized as classical compatible couple for interpolation of L^p spaces of a semifinite von Neumann algebra.

Proof. (1) This point readily comes from the agreement of the trace induced by projections from $\langle N, e_D \rangle$ with the one defined on $B(M : D, (k, l))$. Thus if p finite projection in $B(M : D, (k, l))$, $P_k^* p P_k$ is finite in $\langle N, e_D \rangle$. Hence agreement of X and Y which boils down to the agreement for any finite projection of their compressions, gives $P_k^* p P_l X P_k^* p P_k = (P_k^* P_k \otimes h_{D^*} P_l)(Y)$ and thus the agreement after removing one application of P_k^*, i.e. as we said since this is for all finite projection p, $P_l X P_k = (P_k \otimes h_{D^*} P_l)(Y)$. Conversely, since $P_{\leq n} = P_0 + \ldots + \sum_{|n| = n} P_m$ increases to identity, it suffices to consider finite projection $q \in \langle N, e_D \rangle$ with $q \leq P_{\leq n}$ which readily reduces to compression by $q \wedge P_k = P_k^*(q \wedge P_k)P_k$ (on the right and $q \wedge P_k$ on the left) for a projection p on $B(M : D, (k, l))$. And we can then apply the converse reasoning.

(2) Note that

$$(L^2(M)^{\otimes k}) = (L^2(M)^{\otimes k})_{L^2(D)} \otimes L^2(D)
\simeq CB(L^2(M)^{\otimes k}, L^2(D)^{\otimes k} \otimes L^2(D))
\simeq CB(L^2(M)^{\otimes k}, L^2(D)^{\otimes k} \otimes L^2(D)) = CB(L^2(M)^{\otimes k}, L^1(D))_{D^*}.
$$

For any $\phi \in (L^2(M)^{\otimes k})$ we have a map $\phi h_{D^*} 1 : L^2(M)^{\otimes k} \otimes h_{D^*} L^2(M)^{\otimes l} \rightarrow L^1(D) \otimes h_{D^*} L^2(M)^{\otimes l}$. Moreover, take $Z = x\phi_{D^*} y$ a typical element in $L^2(M)^{\otimes k} \otimes h_{D^*} L^2(M)^{\otimes l}$, if its image vanishes, this means for all $\phi \in L^2(M)^{\otimes k}$, $\phi(x) \phi_{D^*} y = 0$, thus by formula (2.5) there is $P_\phi \in M_1(D^{op})$ such that $\phi(x) P_\phi = 0$, $P_\phi y = y$. Take $P = \bigwedge_{\phi \in L^2(M)^{\otimes k}} P_\phi$ then $Py = y$ and $\phi(x) P = \phi(x) P_\phi P = 0$ thus since ϕ is arbitrary in a space containing the dual of the space of x, $xP = 0$ and thus $x\phi_{D^*} y = 0$; thus we get the first claimed injectivity.

The agreement of intersections spaces comes from the fact that the intersection space of L^1 and L^∞ can be reduced to equality when compressed by rank 1 projections coming from elements in a fixed right-module basis. Then the agreement corresponds in the second picture to agreement when evaluating at this fixed basis (and evaluating by duality at this basis too).
5.3.2. Wick formula. We will also need a straightforward tensor variant of Wick formula. For \(k = k_1 \ldots k_{|k|}, m = m_1 \ldots m_{|m|} \) words in \(\kappa \) letters, we write \(k \circ m = k_1 \ldots k_{|k|} m_1 \ldots m_{|m|} \) for the concatenation, and also \(k \circ_i m = k_1 \ldots k_{|k|-i} m_1+i \ldots m_{|m|}; |k| \land |m| \geq i \geq 0 \) (defined only if the last \(i \) letters of \(k \) and the first \(i \) letters of \(m \) form identical words). Note that \(|k \circ_i m| = |k| + |m| - 2i \). We also write \(k = k_{|k|} \ldots k_1 \). Sometimes, we will need to emphasize the following isomorphism:

\[
\iota_{m_1 m_2, l_1 l_2} : B(M : D, m_1 m_2, l_1 l_2) \simeq (L^2(M)^{\otimes D l_1 l_2})_{L^2(D)}^{\otimes D} \otimes (L^2(M)^{\otimes D m_1 m_2 *})_{L^2(D)}^{\otimes D}
\]

given by \(\iota_{m_1 m_2, l_1 l_2}(\xi_1 \otimes_D \ldots \otimes_D \xi_{|l_1|+|l_2|+1}) \theta_D(\eta_1 \otimes_D \ldots \otimes_D \eta_{|m_1|+|m_2|+1}) = \xi_1 \otimes_D \ldots \otimes_D \xi_{|l_1|+1} \theta_D(\eta_1 \otimes_D \ldots \otimes_D \eta_{|m_1|+|m_2|+1}) \otimes_D \eta_{|m_1|+|m_2|+1} \theta_D \ldots \otimes_D \theta_{D m_1 m_2} \).

Likewise, we have:

\[
\iota_{m_1 m_2, l_1 l_2} : \mathcal{T}C(M : D, m_1 m_2, l_1 l_2) \simeq (L^2(M)^{\otimes D m_1 m_2 *})_{D \otimes D} \otimes (L^2(M)^{\otimes D l_1 l_2})_{L^2(D)}^{\otimes D}
\]

given by \(\iota_{m_1 m_2, l_1 l_2}(\eta_1 \otimes_D \ldots \otimes_D \eta_{|m_1|+|m_2|+1}) \theta_D(\xi_1 \otimes_D \ldots \otimes_D \xi_{|l_1|+|l_2|+1}) = \eta_1 \otimes_D \ldots \otimes_D \eta_{|m_1|+|m_2|+1} \theta_D(\xi_1 \otimes_D \ldots \otimes_D \xi_{|l_1|+1} \theta_D(\xi_{|l_1|+1} \otimes_D \ldots \otimes_D \xi_{|l_1|+|l_2|+1}) \).

\[\text{Lemma 26. Let } X \in (N_\kappa, \varepsilon_D), Y \in L^1((N_n, \varepsilon_D)) \text{, } k, l, m, n, p, q \text{ words in } \kappa \text{ letters, } U \in D' \cap M_D^{\ell k + |l| + 2} \text{ and } V = (\iota_k \otimes_D l_1)(U) \in D' \cap N_D^{\ell k + |l| + 2}.
\]

If we consider \(P_m X P_n^* \in B(M : D, n, m) \cap \mathcal{T}C(M : D, n, m) \), we have

\[
\iota_{n, k, m}(P_{\text{com}}[V \#(P_m X P_n^*)]P_{\text{ton}}) \in M_D^{\ell k + |l|} \otimes B(M : D, n, m) \otimes M_D^{\ell k + |l|}
\]

and \(P_p[V \#(P_m X P_n^*)]P_n^* = 0 \) for either \(|q| > |n| + |l| \) or \(|q| < |n| + |l| - 2(|l| \land |n|) \) or \(|p| < |m| + |k| - 2(|k| \land |m|) \) or \(|p| > |m| + |k| \).

Moreover, if we consider the canonical map

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]

extending:

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]

\[\text{Lemma 26. Let } X \in (N_\kappa, \varepsilon_D), Y \in L^1((N_n, \varepsilon_D)) \text{, } k, l, m, n, p, q \text{ words in } \kappa \text{ letters, } U \in D' \cap M_D^{\ell k + |l| + 2} \text{ and } V = (\iota_k \otimes_D l_1)(U) \in D' \cap N_D^{\ell k + |l| + 2}.
\]

If we consider \(P_m X P_n^* \in B(M : D, n, m) \cap \mathcal{T}C(M : D, n, m) \), we have

\[
\iota_{n, k, m}(P_{\text{com}}[V \#(P_m X P_n^*)]P_{\text{ton}}) \in M_D^{\ell k + |l|} \otimes B(M : D, n, m) \otimes M_D^{\ell k + |l|}
\]

and \(P_p[V \#(P_m X P_n^*)]P_n^* = 0 \) for either \(|q| > |n| + |l| \) or \(|q| < |n| + |l| - 2(|l| \land |n|) \) or \(|p| < |m| + |k| - 2(|k| \land |m|) \) or \(|p| > |m| + |k| \).

Moreover, if we consider the canonical map

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]

extending:

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]

\[\text{Lemma 26. Let } X \in (N_\kappa, \varepsilon_D), Y \in L^1((N_n, \varepsilon_D)) \text{, } k, l, m, n, p, q \text{ words in } \kappa \text{ letters, } U \in D' \cap M_D^{\ell k + |l| + 2} \text{ and } V = (\iota_k \otimes_D l_1)(U) \in D' \cap N_D^{\ell k + |l| + 2}.
\]

If we consider \(P_m X P_n^* \in B(M : D, n, m) \cap \mathcal{T}C(M : D, n, m) \), we have

\[
\iota_{n, k, m}(P_{\text{com}}[V \#(P_m X P_n^*)]P_{\text{ton}}) \in M_D^{\ell k + |l|} \otimes B(M : D, n, m) \otimes M_D^{\ell k + |l|}
\]

and \(P_p[V \#(P_m X P_n^*)]P_n^* = 0 \) for either \(|q| > |n| + |l| \) or \(|q| < |n| + |l| - 2(|l| \land |n|) \) or \(|p| < |m| + |k| - 2(|k| \land |m|) \) or \(|p| > |m| + |k| \).

Moreover, if we consider the canonical map

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]

extending:

\[
m_{\infty, k, k', |l|, l', D'}^{\ell k + |l|}(M_D^{\ell k + |l|} \otimes B(M : D, l \circ l', k \circ k')) \otimes M_D^{\ell k + |l|} \rightarrow B(M : D, l', k')
\]
for $|k|, |l| \geq 0$, (by convention $m^{(0,k',0,l')}_{\infty} = I_d$) then we have the relation for $P \in [0, |k| \wedge |m|], Q \in [0, |l| \wedge |n|]$

\[
\sum_{i=1}^{\ell_{Q+1,|l|\cdot \ell_{Q+1,|n|}\cdot |k|\cdot |P|\cdot m_{P+1,|m|}} (P_{koPm}(V \# (P_{m}X_{P_{m}}^{*})) P_{m}^{*} \otimes _{m} V) = \prod_{i=1}^{P} 1_{i_{k-l-(i-1)-m_{i}}} \times
\]

\[
\times \prod_{i=1}^{Q} 1_{l_{i}=n_{i}} [1^{\otimes |k|-P_{m}(P_{m},Q,m) \otimes 1^{\otimes |l|-Q}]_{\iota_{n,k,m}} (P_{kopm}(V \# (P_{m}X_{P_{m}}^{*})) P_{m}^{*})].
\]

Likewise we have:

\[
\sum_{i=1}^{\iota_{n,k,m}(P_{kopr}(Q_{m}^{D})^{\circ} P_{lom})} ([P_{n}(Q_{m}^{D})^{\circ} P_{m}]) (Y) \# V
\]

\[
\in D' \cap \{(L^{2}(M)^{\circ} D_{m} \otimes \otimes D_{n}) \otimes \otimes D_{p} \otimes \otimes D_{q}) \# (M^{2}(M)^{\circ} D_{m} \otimes \otimes D_{p} \otimes \otimes D_{q})\}
\]

and $(P_{n}(Q_{m}^{D})^{\circ} P_{m}) ([P_{n}(Q_{m}^{D})^{\circ} P_{m}]) (Y) \# V = 0$ for $|q| > |n| + |k|$ or $|q| < |n| + |k|-2(|k| \wedge |n|)$ or $|p| < |m| + |l| - 2(|l| \wedge |m|)$ or $|p| > |m| + |l|$. Moreover there is a canonical map

\[
m_{1}([l],[m],[Q],[n]) \otimes (L^{2}(M)^{\circ} D_{m} \otimes \otimes D_{n}) \rightarrow \mathcal{C}(M : D, k \circ Q, n, l \circ P, m),
\]

given on elementary tensors by:

\[
m_{1}([l],[m],[k],[Q],[n]) \otimes (\eta_{k+1} \otimes \eta_{k+1} \otimes \phi_{m} \otimes \phi_{m} \otimes \cdots \otimes \phi_{m}) =
\]

\[
[m_{1} \otimes m_{[k]-P_{m}(P_{m},Q,m) \otimes 1^{\otimes |l|-Q}]_{\iota_{n,k,m}} (P_{kopm}(V \# (P_{m}X_{P_{m}}^{*})) P_{m}^{*})].
\]

These maps satisfy:

\[
\sum_{i=1}^{\iota_{n,k,m}(P_{kopm}) (Y) \# V} = \prod_{i=1}^{Q} 1_{k_{i}=n_{i}} \prod_{i=1}^{P} 1_{l_{i}-(i-1)-m_{i}} \times
\]

\[
\times m_{1}([l],[m],[k],[Q],[n]) \iota_{n,k,m} (P_{kopm}) (Y) \# V],
\]

Proof. The definition of the map $m_{\infty}^{(k,k',l,l')}_{\infty}$ and its weak-* continuity in the variable $B(M : D, l \circ l', k \circ k')$ are easy. Thus one can assume $X \in [A_{g}(S,M)]_{D} [A_{g}(S,M)]$. Then using canonical forms for the extended Haagerup tensor product and strong convergence of corresponding finite sums, we are reduced to the case where V is a finite sum. For finite tensors, the relation reduces to the usual Wick formula. The second part of the statement is similar using norm- instead of weak-* density.
What really matters for us in the previous result is that the highest component of the product is a tensor product, while the remaining terms are then determined by applying multiplication and conditional expectations to its various components. For convenience for words m, n and $k \leq |m|$, we write:

$$m\#Kn = m_1...m_{K-1}n_1...n|mK+1...m|,$$

$$m\hat{#}K_n = m_1...mKn_1...n|mK+1...m|.$$

5.3.3. Flips and cyclic permutations. We start by interpreting a cyclic permutation $\sigma = (l + 2, l + 3, \ldots l + k + 1, 1, 2, \ldots, l + 1)$ in C_n, $n = l + k + 2$, as the flip (i.e., period two permutation) of the blocks $[l + 2, \ldots l + k + 2]$ and $[1, \ldots, l + 1]$. We mimic this point of view in terms of injections in our free product von Neumann algebra N_κ. We thus make use of our results on the two-fold cyclic Haagerup tensor product in this context to construct a suitable intersection space, using which we then construct the n-fold cyclic Haagerup tensor product.

Proposition 27. Let $D \subset M$ finite von Neumann algebras and $N = N_\kappa = M \ast_D (D \otimes W^*(S_1, \ldots, S_\kappa))$. We assume κ infinite k,l words in κ letters.

Let $\sigma \in C_n$ be a cyclic permutation as above, $n = |k| + |l| + 2$, $\sigma(1) = |l| + 2$. Using σ_i of Theorem [21] for $D \subset N_\kappa$ we have two inclusions $I_1(\sigma) = \sigma_1 \circ (\iota_k \circ \iota_l), I_2(\sigma) = \sigma_2 \circ (\iota_k \circ \iota_l)$

$$I_i(\sigma) : D' \cap M_{D\otimes n}^{_{eh}} \rightarrow B(D' \cap \langle N, e_D \rangle) \cap L^1(\langle N, e_D \rangle), D' \cap (\langle N, e_D \rangle + L^1(\langle N, e_D \rangle)).$$

The intersection space in the sense of interpolation of these inclusions, written $M_{D\otimes (k,l)}^{_{eh}}$, has a change of inclusion $I(\sigma) = I_2(\sigma^{-1}) \circ I_1(\sigma)^{-1} : M_{D\otimes (k,l)}^{_{eh}} \rightarrow M_{D\otimes (\sigma,(k,l),\sigma^{-1})}^{_{eh}}$ which satisfies $I(\sigma) = I(\sigma^{-1})^{-1}$ (with $\sigma \cdot k \circ l = l \circ k$).

Moreover, the isometric involution \ast induced on $M_{D\otimes n}^{_{eh}} \subset NCB((D')^{n-1}, B(L^2(M))$ given by $U^*(X_1, \ldots, X_{n-1}) = U(X_{n-1}, \ldots, X_1)^*$ extending $x_1 \circ \cdots x_n^* = (x_1 \cdots x_n^*)^*$ sends $M_{D\otimes (k,l)}^{_{eh}}$ to $M_{D\otimes (l,k)}^{_{eh}}$.

The product $\cdot _K : M_{D\otimes |n|+1}^{_{eh}} \times (D' \cap M_{D\otimes |m|+1}^{_{eh}}) \rightarrow M_{D\otimes (|n|+|m|+1)}^{_{eh}}$ for $K \in [1, |n|+1]$, induced by the composition in the K-th entry of $NCB((D')^{n+1}, B(L^2(M))$ corresponds on tensors to the map $(x_1 \circ \cdots \circ x_{|n|+1})^\#_K(y_1 \circ \cdots \circ y_{|m|+1}) = x_1 \circ \cdots \circ x_K \circ y_1 \circ \cdots \circ y_{|m|+1} \circ x_{K+1} \circ \cdots \circ x_{|n|+2} \circ y_{|m|+1} \circ \cdots \circ y_{|m|+2}$. The product is separately weak*-continuous on bounded sets in each variable and has the following stability properties:

- If $\sigma \in C_{|n|+2}$, $\tau \in C_{|n|+|n'|+1}$ $\sigma(1) = |n| - k' + 2$, $\tau(1) = |n| + |n'| + 1 - k'$, $k' < K - 1$, then for any $U \in M_{D\otimes (n,\sigma)}^{_{eh}}, V \in D' \cap M_{D\otimes (|n'|+1)}^{_{eh}}$ we have $U \#_K V \in M_{D\otimes (n\#_{K,n'},\tau)}^{_{eh}}$,

- If $\sigma \in C_{|n|+2}$, $\tau \in C_{|n|+|n'|+1}$ $\sigma(1) = |n| - k' + 2 = \tau(1)$, $k' \geq K$, then for any $U \in M_{D\otimes (n,\sigma)}^{_{eh}}, V \in D' \cap M_{D\otimes (|n'|+1)}^{_{eh}}$ we have $U \#_K V \in M_{D\otimes (n\#_{K,n'},\tau)}^{_{eh}}$.
• If $\sigma \in \mathcal{C}_{|n|+2}, \rho \in \mathcal{C}_{|n'|+2}, \tau \in \mathcal{C}_{|n|+|n'|+2} \sigma(1) = |n| - K + 3, \rho(1) = |n'| - k' + 2$
$\tau(1) = |n| + |n'| - K - k' + 3, k' \in [1, |n'| - 1]$, then for any $U \in M^\text{eh}_{D(n,\sigma)}, V \in M^\text{eh}_{D(n',\rho)}$
we have $U \#_{K} V \in M^\text{eh}_{D(n \#_{K} n',\tau)}$.

Similarly, the map $M^\text{eh}_{D(|n|+1)} \times (M^\text{eh}_{D}|m|+1) \rightarrow M^\text{eh}_{D(|n|+|m|+1)}$ induced by the product in $B(L^2(M))$
$NCB((D')^{|n|}, B(L^2(M))) \times NCB((D')^{|m|}, B(L^2(M))) \rightarrow NCB((D')^{|n|+|m|}, B(L^2(M)))$
and corresponds on tensors to the map $(x_1 \phi_D \cdots \phi_D x_{|n|+1}) \cdot (y_1 \phi_D \cdots \phi_D y_{|m|+1}) = x_1 \phi_D \cdots \phi_D x_{|n|+1} y_1 \phi_D y_2 \phi_D \cdots \phi_D y_{|m|+1}$. It has the following stability properties:

• If $\sigma \in \mathcal{C}_{|n|+2}, \tau \in \mathcal{C}_{|n|+|m|+2} \sigma(1) = |n| - k' + 2, \tau(1) = |n| + |m| + 2 - k'$, then for
any $U \in M^\text{eh}_{D(n,\sigma)}, V \in D' \cap M^\text{eh}_{D(|m|+1)}$ we have $UV \in M^\text{eh}_{D(n,\tau)}$.

• If $\sigma \in \mathcal{C}_{|m|+2}, \tau \in \mathcal{C}_{|n|+|m|+2} \sigma(1) = |m| - k'' + 2 = \tau(1)$, then for any $V \in M^\text{eh}_{D(m,\sigma)}, U \in D' \cap M^\text{eh}_{D(|n|+1)}$ we have $UV \in M^\text{eh}_{D(n,\tau)}$.

Proof. (i) For the first statement, we only have to prove that $I_2(\sigma^{-1}) \circ I_1(\sigma)^{-1} = I_1(\sigma^{-1}) \circ I_2(\sigma)^{-1}$. In this it becomes clear that the image of $I(\sigma)$ is indeed $M^\text{eh}_{D}{(k,\sigma)}$ and that
$I(\sigma)^{-1} = I(\sigma^{-1})$. Take $X \in M^\text{eh}_{D,c}$. We know there is $U \in D' \cap M^\text{eh}_{D}(|k|+|l|+2)$ such that
$U' = t_k \otimes t_l(U) \in D' \cap M^\text{eh}_{D}(|k|+|l|+2)$ and $U' = \sigma^{-1}_1(X)$ there is also $V \in D' \cap M^\text{eh}_{D}(|k|+|l|+2)$ such that
$V' = t_l \otimes t_k(V) \in D' \cap N_{D}^\text{eh}$ is $V' = \sigma^{-1}_2(X)$. Then by definition
$I_2(\sigma^{-1}) \circ I_1^{-1}(X) = \sigma_2(U') = \sigma(X) = \sigma_1(\sigma_2^{-1}(X)) = I_1(\sigma^{-1}) \circ I_2(\sigma)^{-1}(X)$,

using in the middle the key relation proved in Theorem 21(1) and then the definition of our maps I_i.

(ii) For the statement about the adjoint, one uses
$[(t_k \otimes t_l(U)] = [(t_l \otimes t_k(U^*)]$, and our previous results in Theorems 21 and Theorem 23(1) to deduce:
$I(\sigma)(U^*) = [I(\sigma^{-1})(U)]^*.$

(iii) For the weak-* continuity of composition products, take bounded nets $U_n \rightarrow U, V_\nu \rightarrow V$. By weak-* precompactness of $U_n \#_{K} V, U \#_{K} V_\nu$, it suffices to show that they converge weakly in $L^2(M)^{\text{eh}}(|n|+|m|+1)$ to $U \#_{K} V$. By density it is enough to check convergence dually against any $Z \in M^\text{eh}_{D}(|n|+|m|+1)$. Take any word o of length $|o| = |m| - 1$. We claim that
$(t_o \phi_D t_o)(V_\nu - V) \rightarrow 0$ weak-* in $N \cap N$. This is obvious again by the isometric embedding
at L^2 level and since it suffices to check weak convergence in $L^2(N)\varphi_D L^2(N)$. Take similarly
$n = kl$, $|k| = K - 1$, then $(t_k \varphi_D t_l)(U_n - U) \to 0$. From the result in Theorem 23.(2),
\[
[(t_k \varphi_D t_l)(U_n)]\#[(t_k \varphi_D t_l)(V)] \to [(t_k \varphi_D t_l)(U)]\#[(t_k \varphi_D t_l)(V)],
\]
\[
[(t_k \varphi_D t_l)(U)]\#[(t_k \varphi_D t_l)(V)] \to [(t_k \varphi_D t_l)(U)]\#[(t_k \varphi_D t_l)(V)],
\]
in N_2. Since from the computation below coming from Lemma 37
\[
\langle Z, U \# K V \rangle = \langle [(t_k \varphi_D t_l)(Z)]\# e_D, (\#((t_k \varphi_D t_l)(U)]\#[(t_k \varphi_D t_l)(V)]\rangle,
\]
we get the weak convergence by duality against $(t_k \varphi_D t_l)(Z)\# e_D$.
(iv) For the stability of composition products, consider first the situation of the third point,
$U \in M_D^{\oplus(n,\sigma)} = M_D^{\oplus(k_1,l_1)}$, $V \in M_D^{\oplus(n',\rho)} = M_D^{\oplus(k_2,l_2)}$ $n = k_1 l_1$, $n' = k_2 l_2$, $|k_1| = K - 1$, $|k_2| = k'$
and consider
$\quad U' = I_2(\sigma)^{-1} I_2(\sigma)(U)$, $V' = I_2(\rho)^{-1} I_2(\rho)(V)$.
But from the definitions, one easily gets for $X \in \langle N, e_D \rangle \cap L^1(\langle N, e_D \rangle)$,
\[
P_{k_1 k_2 n_2} (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*)) P_{l_2 l_1 o l} = P_{k_1 k_2 o m} (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*)) P_{l_2 l_1 o l}.
\]
and similarly:
\[
\frac{P_{k_1 k_2 n_2} (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*)) P_{l_2 l_1 o l}}{\#(P_m X P_l^*)} = \frac{P_{k_1 k_2 n_2} (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*)) P_{l_2 l_1 o l}}{\#(P_m X P_l^*)}.
\]
From the assumptions on U and V the two second lines are equal, and then, from (37) and (38), one deduces the conclusion we wanted, for all p, q:
\[
P_p (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l}) = \frac{P_p (\#(t_k \varphi_D t_l t_{k_1 l_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l})}{\#(P_m X P_l^*)}.
\]
which, using Lemma 23(1), implies our statement and :
\[
I_2(\tau)^{-1} I_1(\tau)(U \# K V) = V'\#|n'|+1-k'U'.
\]
The other statements about composition product and product are similar, the first statement in each case always following from the second using the stability by adjoint proved before. We give a few details concerning the second point for the composition product.

Take $U \in M_D^{\oplus(n,\sigma)} = M_D^{\oplus(k_1 l_1)}$, $V \in D' \cap M_D^{\oplus(n',\rho)}$, $k' \geq K$, $n = k_1 l_1$, $|k_1| = k'$ and let $U' = I_2(\sigma)^{-1} I_2(\sigma)(U)$. Note that $n \# K(n') = [k_1 \# K(n')] \circ l_1$. As before it suffices to prove :
\[
P_{k_1 \# k(n')}^{\oplus(n,\sigma)} (\#(t_k \varphi_D t_l t_{k_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l}) = \frac{P_p (\#(t_k \varphi_D t_l t_{k_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l})}{\#(P_m X P_l^*)}.
\]
But now, by assumption, we know :
\[
P_{k_1 o m} (\#(t_k \varphi_D t_l t_{k_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l}) = \frac{P_p (\#(t_k \varphi_D t_l t_{k_1} k_1 l_1)\#(P_m X P_l^*) P_{l_2 l_1 o l})}{\#(P_m X P_l^*)}.
\]
Moreover, by Lemma 26 they are valued respectively in $\mathbb{T}_{1,l,k,\kappa}(D \otimes \cdots \otimes D \otimes B(M : D,l,m)_{eh} D_{\otimes |l|})$ and $\mathbb{T}_{1,l,k,\kappa}(D \otimes ((L^2(M)^{\alpha Dl^*} \otimes \cdots \otimes D_{\otimes |l|}) \otimes D_{\otimes |l|} (M^{\otimes |l|} \otimes L^2(M)^{\alpha Dn}))].$

By Lemma 25 (2), it suffices to see that the two elements we wish to prove equal in $B(L^2(M)^{\otimes Dl^*}, L^1(D) \otimes D_{\otimes |l|} L^2(M)^{\otimes Dn})_{eh}$ have the same value on any $\xi \in L^2(M)^{\otimes Dn}$. Since $P_{k_{1m}}([t_{1l}, \#(P_m X P_n)]) P_{k_{1m}}(\xi) \in L^2(D) \otimes D_{\otimes |l|} L^2(M)^{\otimes Dn}$ the equality we want can be obtained from the one we know by applying the multiplication $\# V$ which is well defined on the appropriate extended Haagerup tensor powers of M in the range of our maps.

The reader should note that in this case, we thus actually proved

$$I_2(\tau)^{-1} I_1(\tau)(U \# K V) = U^\prime \# |n+2-K| V$$

\square

5.3.4. Cyclic Haagerup tensor products: the general case. We are now ready to introduce our cyclic extended Haagerup tensor product as an intersection space with enough compatibility to have a cyclic group action on it. Once those cyclic group actions are obtained, our various products and actions leave stable our intersection space as expected. We also obtain a density result saying that our spaces are non-trivial as soon as $D' \otimes L^2(M)^{\otimes Dn}$ are. We also obtain traciality and functoriality results crucial to build later evaluations maps.

Proposition 28. Let $D \subset M$ finite von Neumann algebras and $N_\kappa = M \ast_D (D \otimes W^*(S_1, \ldots, S_\kappa))$, κ infinite. We write n a generic word in κ letters of length N. Let $M^{\otimes n}_{ehscD(N+2)}$ the intersection space of

$$I_1(\sigma, n)^{-1}(M^{\otimes (n,\sigma)}) = I_2(\sigma^{-1}, \sigma.n)^{-1}(M^{\otimes (\sigma, n, \sigma^{-1})}) \subset (D' \otimes M^{\otimes (N+2)}_{eh})$$

for $\sigma \in C_{N+2}$, completely isometrically included via $I = \bigoplus_{n, |n| = N} (Id \oplus (J(\sigma, n))_{\sigma \in C_{n-\{Id\}}})$ into $(D' \otimes M^{\otimes (N+2)}_{eh})_{\sigma \in C_{N+2}}$, (with operator space direct sum norm) and write $J(Id) = Id$, $J(\sigma, n) = I_1(\sigma^{-1}, \sigma.n)^{-1} \circ I_2(\sigma^{-1}, \sigma.n)$, with I_i associated to n. This intersection space is independent of κ infinite.

Consider $M^{\otimes n}_{ehscD(N+2)} = \left(\bigcap_{n \neq m, |n| = |m| = N} Ker(J(\sigma, n) - J(\sigma, m)) \right) \subset M^{\otimes n}_{ehscD(N+2)}$ and on $(M^{\otimes n}_{ehscD(N+2)})_{C_{N+2}}$, P_σ the projection on the σ component and the maps $J(\sigma_1, \sigma_2) = J(\sigma_1) P_{\sigma_2 \cdots}$, with $J(\sigma) = J(\sigma, n)$ for any n, and a corresponding I without repetition over n and then define

$$M^{\otimes n+2}_{ehscD} := I^{-1} \left(\bigcap_{(\sigma_1, \sigma_2) \in C_{N+2}} Ker(J(\sigma_1, \sigma_2) - J(Id, \sigma_1 \sigma_2)) \right) \subset I^{-1}((M^{\otimes n}_{ehscD(N+2)})_{C_{N+2}}) \subset M^{\otimes n}_{ehscD(N+2)}$$

with the induced norm, for which we have equality with the previous definition when $N = 0$.

51
(1) For any $U \in M_{\text{hess}}^{N+2}, V \in M_{\text{hess}}^{M+2},$ we deduce $U^* \in M_{\text{hess}}^{N+2}, U \#_i V \in M_{\text{hess}}^{N+M+2}$ for all $i \in [1, N+1], U V \in M_{\text{hess}}^{N+M+3},$ and similarly for s replaced by S.

Moreover the maps $J(\sigma)$ induce a continuous action of \mathfrak{E}_{N+2} on $M_{D,c}^{N+2}$. For any $U \in M_{D,c}^{N+2}, V \in M_{D,c}^{M+2},$ we have: $U^* \in M_{D,c}^{N+2}, U \#_i V \in M_{D,c}^{N+M+2}$ for all $i \in [1, N+1], U V \in M_{D,c}^{N+M+3}$. Moreover, $M_{D,c}^{N+2}$ is weak-$*$ dense in $D' \cap M_{D}^{N+2}$ and dense in $D' \cap L^2(M)^{\otimes N+2}$.

(2) Assume either that there exists a D-basis of $L^2(M)$ as a right D module $(f_i)_{i \in I}$ which is also a D-basis of $L^2(M)$ as a left D module or that D is a II$_1$ factor and that $L^2(M)$ is an extremal $D-D$ bimodule. Then, the linear map $J(\sigma)$ extends to an isometry on the subspace generated $D' \cap L^2(M)^{\otimes N+1}$. As a consequence, $\tau(X) = \langle e_D, X \# e_D \rangle$ is a trace on $D' \cap N_{\kappa}^{D}$.

(3) [Partial fonctoriality] If $\phi_1 : M_{D}^{N_1+1} \to N_{\kappa}, \ldots, \phi_p : M_{D}^{N_p+1} \to N_{\kappa}$ are multiplication maps to canonical semicircular variables in N_{κ}, then

$$\phi_1 \phi_2 \ldots \phi_p : M_{D}^{N_1+1} \to N_{\kappa}^{D+1}$$

is a completely bounded map with $n = \sum n_i$. In particular, in the degenerate case $\forall i, n_i = 1$, we have a complete isometry $M_{D,c}^{N+1} \subset N_{\kappa}^{D,c}$.

Moreover if $E : N_{\kappa} \to M$ is the canonical conditional expectation, $E^{\otimes dp} : N_{\kappa}^{D,p+1} \to M_{D,c}^{D,p}$ is a completely contractive map.

Proof. The independence of the intersection space of κ infinite is obvious since any equation to check can be reduced to a countably generated algebra, and thus to countably many S_i as variables. The agreement with the previous definition in the case $N = 0$ is easy from Lemma 25(2) and left to the reader. (1) The stability of M^{hess}^{N+1} by adjoint, composition product and product are obvious from Proposition 27. The stability of $M_{D,c}^{N+1}$ comes from the equations we (could have) got on $J(\tau)(U \#_k V), J(\sigma(U^*))$ in the proof in each case. We fix n and first compute the inverse of $J(\sigma) = J(\sigma, n) = I_1(\sigma^{-1})^{-1} \circ I_2(\sigma^{-1})$ on M_{hess}^{N+2}. Note first that $J(\sigma^{-1})J(\sigma) = I_1(\sigma^{-1})^{-1} \circ I_2(\sigma^{-1}) I_1(\sigma^{-1})^{-1} \circ I_2(\sigma^{-1})^{-1} = I_1(\sigma^{-1})^{-1}I(\sigma^{-1})I_2(\sigma^{-1})^{-1}$ so that $J(\sigma^{-1})J(\sigma)$ is surjective, one gets $J(\sigma^{-1})J(\sigma) = Id$ and likewise the converse to that $J(\sigma, n)^{-1} = J(\sigma^{-1}, \sigma, n)$.

By definition as an intersection, $(J(\sigma))$ defines an action on $M_{D,c}^{N+1}$ since on the intersection of kernels we exactly have $J(\sigma_1)J(\sigma_2) = J(\sigma_1\sigma_2)$.

It mostly remains to show the density results. For, we prove that for any $x_1, \ldots, x_{N+2} \in M$, then $E_D(x_1 \circ \ldots \circ D x_{N+2}) \in M_{D,c}^{N+2}$. From the weak-$*$ continuity on bounded sets of E_D, this implies the weak-$*$ density. The L^2 density is even easier. More precisely, we show that
and on this formula one reads it is also in the intersection of kernels defining $M_{D,c}^{\otimes n}$.

Thus we can fix $\sigma \in E_{N+2}$ and $n = kl$, $\sigma(1) = |l| + 2$, $|l| = N + 1 - |k|$. We have to show for any $X \in \langle N_k, e_D \rangle \cap L^1(\langle N_k, e_D \rangle)$:

$$(\iota_k \circ D \iota_l)(E_D(x_1 \circ D \cdots \circ D x_{N+2})) \#X = X \#(\iota_k \circ D \iota_l(E_D(x_{k+1} \circ D \cdots \circ D x_k))).$$

This reduces to (35) if we show that

$$\iota_k \circ D \iota_l(E_D(x_1 \circ D \cdots \circ D x_{N+2})) = E_D(\iota_k \circ D \iota_l(x_1 \circ D \cdots \circ D x_{N+2})).$$

But we saw both sides can be further included in $L^2(M)_{\circ D}^{N+2}$ as a subspace with both E_D agreeing with the projection there. This concludes.

(2) From the action property in (1) on the dense set where $J(\sigma)$ is defined, it suffices to consider σ a generator of the cyclic group. We thus extend $J(\sigma)$ isometrically in the case σ is such that $\sigma(1) = N + 2$.

Moreover, by the density of (linear combinations of) vectors of the form $E_D(x_1 \circ D \cdots \circ D x_{N+2})$ obtained in the proof of (1), it suffices to show that the restriction of $J(\sigma)$ to those vectors is an isometry.

But note that with our fixed σ, we have obtained the relation:

$$J(\sigma)[E_D(x_1 \circ D \cdots \circ D x_{N+2})] = E_D(x_2 \circ D \cdots \circ D x_{N+2} \circ D x_1).$$

Moreover, assuming extremality, there is by Theorem 14 a unitary Burns rotation, and by its defining relation, it coincides with $J(\sigma)^{-1}$ so that $J(\sigma)$ is an isometry as stated. The case with a basis is left to the reader.

For the last statement about traciality of $\tau(X) = \langle e_D, X \# e_D \rangle$ on $D' \cap N_k^{\otimes 2}$, we start from the result we obtained using the action for a general σ. Let $U, U' \in D' \cap M_{D,c}^{N+2}$, $V = J(\sigma)(U)$, $V' = J(\sigma)(U') \in D' \cap M_{D,c}^{N+2}$. One easily gets from the isometry relation:

$$Tr(e_D[(\iota_k \circ D \iota_l(V^*) \#(\iota_k \circ D \iota_l(U^*) \# e_D)] = \langle U, U' \rangle = \langle V, V' \rangle = Tr([(\iota_k \circ D \iota_l(U^*)) \#(\iota_k \circ D \iota_l(V^*) \# e_D)] e_D)$$

and one easily gets zero for various other injections.

Finally, we know that linear combinations of $E_D(n \circ D n')$, $n, n' \in N_k$ are weak-* dense in $D' \cap N_k^{\otimes 2}$, and then using the strong density of $Span(\iota_k(M^{\otimes k}_N), k \in N)$, $N \geq 0$ in N_k, we get the same result, with n, n' in this span. But now, we already noticed that $E_D(\iota_k \circ D \iota_l(U)) = (\iota_k \circ D \iota_l(E_D(U))$ thus proving the weak-* density of $Span\{E_D(\iota_k \circ D \iota_l(D' \cap M_{D,c}^{N+2}), |k| + |l| = N \geq 0\}$ in $D' \cap N_k^{\otimes 2}$ (and even of the intersection of the unit ball in the intersection of the unit ball using moreover Kaplansky density Theorem in the reasoning above). Now, the weak-* continuity proved in Theorem 23 (2) of $X \mapsto \langle e_D, X \# (Y \# e_D) \rangle$ (and the obvious one of $Y \mapsto \langle e_D, X \# (Y \# e_D) \rangle$ using (33)) concludes.
(3) The complete boundedness statements follow from replacing \(M \) by \(M_\kappa(M) \) and checking the bounds don’t depend on \(n \). For the first statement, using Wick expansion, it suffices to prove boundedness of \(L_k \circ D \circ \cdots \circ D \circ k_{p} : M^D_{\kappa} \rightarrow N^D_{\kappa} \) for \(|k_p| = n_p - 1 \). Since the map is defined \(D' \cap M^D_{\kappa} \rightarrow D' \cap N^D_{\kappa} \) by the universal property, it suffices to check the stability of corresponding subspaces. Since \(N_\kappa \) is involved, we consider \(N' = W^*(N_\kappa, S'_1, \ldots, S'_\kappa) \) and \(L_k \) the corresponding evaluation for a word in \(\kappa \) letters (with primes), \(L_k \) the evaluation for \(M \) with a word \(k \) in \(2\kappa \) letters. If \(|l| = p - 1 \) is a word in \(\kappa \) letters with primes, and \(k_i \)'s are word in \(\kappa \) letters without prime as before, we write \(l = k_1, \ldots, k_p \) and one then notices (using some orthogonality in free products) that \(L_k \circ (L_1 \otimes D \cdots \otimes D)_{k_p} = L_k(\imath_{k_1}, \ldots, k_p) \). One easily deduces from this the stated stability, the boundedness following from the very definitions of norms involving more specific evaluation and from \((N', E_M) \simeq (N_\kappa, E_M) \) since \(\kappa \) infinite.

For the statement on conditional expectations, it suffices to prove the boundedness on \(E^{\text{cD}}_{\text{DP}} : N^{\text{chscD}}_{\kappa} \rightarrow M^{\text{chscD}}_{\kappa} \) by the symmetry of this map which induces easily the stability of kernels involving the action of the cyclic group. It suffices to check that \(I_1(\sigma) \circ E^{\text{cDP}}(X) = E^{W^*(M, S'_1, \ldots, S'_\kappa)}[I_1(\sigma)(X)]E^{W^*(M, S'_1, \ldots, S'_\kappa)} \) and \(I_2(\sigma) \circ E^{\text{cDP}}(X) = (E^{W^*(M, S'_1, \ldots, S'_\kappa)} \circ D \circ E^{W^*(M, S'_1, \ldots, S'_\kappa)})(\sigma)(X) \), which are easily checked on elementary tensors by freeness with amalgamation over \(M \) of \(N_{\kappa} \) and \(W^*(M, S'_1, \ldots, S'_\kappa) \).

6. Appendix 2: Function spaces

In this section, we study several function spaces crucial to our constructions. We start by considering spaces of analytic functions as well as cyclic analytic functions (these can be regarded as enlargements of spaces of non-commutative polynomials and cyclically symmetrizable non-commutative polynomials). We then consider analytic functions that depend on expectations, i.e., enlargements of functions of the form \(E_{X_i} E_{X_{i_1} X_{i_2}} E_{X_{i_1} X_{i_2} X_{i_3}} \), where \(E \) is a (formal) conditional expectation. Finally, we consider analogues of spaces of \(C^k \)-functions, defined as completions in certain \(C^k \) norms.

6.1. Generalized Cyclic non-commutative analytic functions. In this section we study the properties of cyclic \(B_c(X_1, \ldots, X_n : D, R, \mathbb{C}) \) and ordinary \(B(X_1, \ldots, X_n : D, R, \mathbb{C}) \) generalized analytic functions in \(n \) variables with radius of convergence at least \(R \), defined in subsection \(\Box \). Here, as before, \(D \subset B \) are finite von Neumann algebras. We will also consider a variant with several radius of convergence \(R, S \), \(B(X_1, \ldots, X_n : D, R, S) \). We will use it freely later. If \(X = (X_1, \ldots, X_n) \), we also write \(B(X : D, S) \) for \(B(X_1, \ldots, X_n : D, S) \), etc.

We have the following basic result:

Proposition 29. Let \(X = (X_1, \ldots, X_n) \), \(Y = (Y_1, \ldots, Y_m) \). Then (a) The linear spaces \(B_c(X : D, R, \mathbb{C}), B(X : D, R, \mathbb{C}) \) (resp. \(B(X : D, R) \)) are Banach *-algebras as well as operator spaces (resp. Banach algebra and strong operator D module). Moreover, \(B(X : D, R) \) are dual operator spaces when seen as (module) duals of (module) c0 direct sums of the fixed preduals of each term of the \(l^1 \) direct sum. We always equip them with this weak-* topology. Finally the algebra generated by \(B(X) \) is weak-* dense in those spaces.
(b) For $P \in B\langle X : D, R \rangle$, $Q_1, \ldots, Q_n \in D' \cap B\langle X : D, S, C \rangle$, such that $\|Q_i\| \leq R$, there is a well defined composition obtained by evaluation at Q_j: $P(Q_1, \ldots, Q_n) \in B\langle X : D, S \rangle$. The composition also makes sense on the cyclic variants and is compatible with canonical inclusion maps on these function spaces.

(c) If $B_{sk}(X : D, R, C)$ (with $C = \mathbb{C}$ or $C = D$) is the subspace of $B\langle X, Y : D, R, C \rangle$ consisting of functions linear in each Y_1, \ldots, Y_m and so that in each monomial each letter Y_j only appears to the right of all letters Y_i with $i < j$, then there are canonical maps

$$
\#(:, \ldots, :) : B_{\otimes k}\langle X : D, R \rangle \times \prod_{i=1}^{k} B_{\otimes 1}\langle X : D, R, C \rangle \to B_{\otimes (\sum_i l_i)}\langle X : D, R \rangle,
$$

$l_i \geq 0$ induced from composition in the Y variables. (Note that by definition $B_{\otimes 0}\langle X : D, R \rangle = B\langle X : D, R \rangle$.)

(d) For any $N \supseteq B$ a finite von Neumann algebra, $P \in B\langle X : D, R \rangle$ defines a map $(D' \cap N)^n_{R} \to N$, by evaluation, with $P(X_1, \ldots, X_n) \in W^*(B, X_1, \ldots, X_n)$.

Proof. The fact that $B\langle X_1, \ldots, X_n : D, R \rangle$ is a Banach algebra is obtained in [Dab15, Th 39]. The dual operator space structure and weak-* density also come from this result. The stability by adjoint only works for direct sums over \mathbb{C} (since adjoint is not a module map and would require the conjugate module structure). The stability by multiplication obtained in Proposition 28 gives the same result for $B_c\langle X_1, \ldots, X_n : D, R, C \rangle$. For the stability by composition, the well-known composition map in [Dab15, Th 2] is completely bounded in each of the middle variables and it is easy to see that the compositions built in Proposition 28 also are (since the intersection norm is obtained from Haagerup norms dealt with in the non-cyclic case). Thus, ℓ^1 direct sums are dealt with using universal property, the only key point is that we use operator space (and not module) ℓ^1 direct sum for composition in Q_i variables since the multilinear map $(P, Q_1, \ldots, Q_n) \to P(Q_1, \ldots, Q_n)$ is a $D - D$ module map only in the variable P. In this way, the previous complete contractivity can be used in each variable with the right universal property for each type of ℓ^1 direct sum. In order to use the universal property in P, one also needs to know the source and target modules are strong operator modules over D in the non-cyclic case, and they are since those extended Haagerup products are even normal dual operator modules. The statements for $B_{\otimes k}$ are obvious consequences. The evaluation map comes from the standard inclusion $B^{\otimes n}_{eh} \subset N^{\otimes n}_{eh}$ (see e.g. [Dab15, Th 2.2]), and from the multiplication maps explained e.g. in [Dab15, Th 2.4]. The reader should note that they can be applied on a larger space than the one in [Dab15, Th 39] since in general $D' \cap N \supseteq E_D \cap N$. Note the evaluation maps used here may not have any kind of weak-* continuity, contrary to those of [Dab15, Th 39].

6.1.1. Difference quotient derivations and cyclic derivatives.

Proposition 30. Let $S < R$. (a) The iterated free difference quotients $\partial^k_{(i_1, \ldots, i_k)} = (\partial_{X_{i_1}} \otimes 1) \circ \ldots \circ \partial_{X_{i_k}}$ define completely bounded maps from $B\langle X : D, R, C \rangle$ to $B_{\otimes k}\langle X : D, S, C \rangle$ (with $C = \mathbb{C}$ or $C = D$, and thus in both cases to $B\langle X : D, S \rangle$).

(b) The space $B_c\langle X : D, R, C \rangle$ is mapped by $\partial^k_{(i_1, \ldots, i_k)}$ to $B_{\otimes k c}\langle X : D, R, C \rangle$.

(c) For $d \in B_c\langle X : D, S C \rangle$, the cyclic gradient ∇_{X_d} defines a bounded map from $B_c\langle X : D, R, C \rangle$ to $B_c\langle X_1, \ldots, X_n : D, S C \rangle$.

55
(d) The following cyclic derivation relation holds:

$$\mathcal{D}_{X_i,d}(PQ) = \mathcal{D}_{X_i,Pd}(P) + \mathcal{D}_{X_i,dP}(Q).$$

(e) The following relations between derivatives and composition hold, denoting $Q = (Q_1, \ldots, Q_n)$:

$$\partial_{(j_1, \ldots, j_k)}^i(P(Q)) = \sum_{i=1}^k \sum_{1 \leq i_1 < \cdots < i_k = k} (\partial_{(n_1, \ldots, n_i)}(P))(Q)^\#$$

$$(\partial_{(j_1, \ldots, j_i)}^1Q_{n_1}, \partial_{(j_{i+1}, \ldots, j_2)}^{j_2-i_1}Q_{n_2}, \ldots, \partial_{(j_{k-1}, \ldots, j_k)}^{j_k-i_{k-1}}Q_{n_k}),$$

and

$$\mathcal{D}_{X_i,d}(P(Q)) = \sum_{j=1}^n \mathcal{D}_{X_i,dQ_j}(P(Q))(Q_j),$$

where we wrote $\mathcal{D}_{Q_j,d}(P)(Q) = [\mathcal{D}_{X_j,d}\{(X_1', \ldots, X_n')\}(P)](Q, X)$ considering $P \in B_c(X : D, R, C) \subset B_c(X, X' : D, R, C), \; d(X') \in B_c(X', X : D, R, C) \subset B_c(X, X' : D, R, C)$, so that $\mathcal{D}_{X_j,d}(X') \in B_c(X, X' : D, R, C)$ is well defined and can be evaluated at $X_i = Q_i, X_i' = X_i$.

Proof. Let us write $n_{X_i}(m)$ for the X_i degree of a monomial m, i.e., the number of times the variable X_i occurs in m. To define the free difference quotient and cyclic gradient, we start from the formal differentiation on monomial, add appropriate change of radius of convergences $S < R$ to allow boundedness of the map and then gather the monomials at the ℓ^1 direct sum level by the universal property:

$$\partial X_i : B\langle X_1, \ldots, X_n : D, R, C \rangle \to \ell^1_C \left(S^{\lceil |m|/2 \rceil} \oplus (|m| + 1) \oplus \emptyset, n_{X_i}(m); \; m \in M(X_1, \ldots, X_n), \; |m| \geq 1 \right),$$

and similarly in the cyclic cases.

In order to for the value to belong to the claimed space, we also need to specify a canonical map I with values in $B_{2\oplus 2}(X : D, S, C)$. Of course, we want it to send the j-th component in the $\oplus C n_{X_i}(m)$ direct sum to the component of the monomial $m_{X_i,j}$ which is identical to m but with the j-th X_i replaced by Y_i. Since there is a bijection between the disjoint union over monomials of $\{m\} \times [1, n_{X_i}(m)]$ and the set of monomials in X and Y linear in Y_i, it is easy to see that I extend to a complete isomorphism of ℓ^1_C direct sums. We still write ∂X_i for $I \circ \partial X_i$.

For the cyclic gradient, one can then apply a different cyclic permutation on each term of the direct sum and we gather them in a map $\sigma : B_{2\oplus 2}(X : D, S, C) \to B_{2\oplus 2}(X : D, S, C)$ and a multiplication map $m_d : B_{2\oplus 2}(X : D, S, C) \to B_c(X : D, S, C)$ (based on composition $\#$ at d on the appropriate term of the tensor product and extending $m_d(P \otimes Q) = PdQ = (P \otimes Q)\#d$) to get the expected cyclic gradient: $\mathcal{D}_{X_i,d} = m_d \sigma \partial X_i$.

For the free difference quotient, to see there is a canonical map to the range space $B\langle X_1, \ldots, X_n : D, R \rangle \otimes B\langle X_1, \ldots, X_n : D, R \rangle$, one applies the following Lemma to each term of the direct sum inductively, and then the universal property of ℓ^1 direct sums to combine them. (We of course apply after mapping ℓ^1_C to ℓ^1_D direct sums). The various relations then
follow by construction from the various associativity properties of the compositions and multiplication defined in Proposition [28]. We explain those associated to cyclic gradients. First, we obtain the derivation property of \(\partial_{X_i} \) and \(\partial_{X_i}(PQ) = \partial_{X_i}(P)Q + P \partial_{X_i}(Q) \) so that:

\[
\sigma \partial_{X_i}(PQ) = [\sigma \partial_{X_i}(P)]\#(Q \otimes 1) + [\sigma \partial_{X_i}(Q)]\#(1 \otimes P)
\]

and applying \(m_d \) one gets \([39]\). Similarly, one obtains first the relation

\[
\partial_{X_i}(P(Q)) = \sum_{j=1}^{n} \partial_{X_j}P(Q)\#(\partial_{X_i}Q_j)
\]

and then

\[
\sigma \partial_{X_i}(P(Q)) = \sum_{j=1}^{n} [\sigma (\partial_{X_i}Q_j)]\# [\sigma \partial_{X_j}(P(Q))]
\]

and applying \(m_d \) gives \([41]\). □

The following result is a module extended Haagerup variant of \([OP97, \text{Lemma 7}]\), the proof is the same using universal property of \(\ell^1 \) direct sums and \([M97, \text{Th 3.9}]\). We thus leave the details to the reader.

Lemma 31. Let \(E_1, E_2 \in \text{DSOM}_D, F_1, F_2 \in \text{DSOM}_D \), let \(X = (E_1 \oplus^1_D E_2)^{\text{eh}} (F_1 \oplus^1_D F_2) \).

Let \(S \) be the closure of the subspace obtained by injectivity of Haagerup tensor product \((E_1 \oplus^1_D F_1) + (E_2 \oplus^1_D F_2) \). Then we have:

\[
S \simeq (E_1 \oplus^1_D F_1) \oplus^1_D (E_2 \oplus^1_D F_2),
\]

completely isometrically.

We will also need a more subtle evaluation result for \(B_{\otimes,kc}^n(X_1, \ldots, X_n : D, R, \mathbb{C}) \) which require that our variables are nice functions of semi-circular variables.

We write \(A^n_{R,\text{UltraApp}} \) for the set of \(X_1, \ldots, X_n \in A, X_i = X_i^*, [X_i, D] = 0, \|X_i\| \leq R \) and such that \(B, X_1, \ldots, X_n \) is the limit in \(E_D \)-law (for the \(* \)-strong convergence of \(D \)) of variables in \(B_c(X_1, \ldots, X_m : D, 2, \mathbb{C})(S_1, \ldots, S_m) \) with \(S_i \) a family of semicircular variables over \(D \), that is of elements in the set of analytic functions evaluated in \(S_1, \ldots, S_m \). Here \(m \) is some large enough fixed integer number.

Proposition 32. For any \((X_1, \ldots, X_n) \in A^n_{R,\text{UltraApp}} \), if \(\phi_j : B^{\text{eh} n_j}_D \to M, \ j = 1, \ldots, p \) are multiplication maps \(\phi_j(Z) = Z\#(X_{1+n_1}, \ldots, X_{1+n_1}) \), \(M = W^*(B, X_1, \ldots, X_n) \), then

\[
\phi_1 \phi_2 \cdots \phi_p : B^{\text{eh} n}_D \to M^{\text{eh} p}_D
\]

is a completely bounded map of norm less than \(R^{n-p} \) with \(n = \sum n_i \). As a consequence, any \((X_1, \ldots, X_n) \in A^n_{R,\text{UltraApp}} \), induces an evaluation map

\[
B_{\otimes,kc}^n(X_1, \ldots, X_n : D, R, \mathbb{C}) \to M^{\text{eh} (k+1)}_D.
\]

Proof. Assuming first \(X_i \in B_c(X_1, \ldots, X_m : D, 2, \mathbb{C})(S_1, \ldots, S_m) \) the result is obvious in a similar way as for composition of corresponding analytic functions and from the evaluation
map to \((S_1, \ldots, S_m)\) in Proposition 28(3). At first, the result is valued in \(N_1^{D,c} \otimes_p^{eh} \) with \(N_1 = W^*(B, S_1, \ldots, S_m)\) but one easily deduces the more restricted space of value.

We now consider the more general case with

\[X_i \in C^*(B, S_1, \ldots, S_m) := C^*(ev_{S_1, \ldots, S_m}(B(X_1, \ldots, X_m : D, 2, \mathbb{C}))), \]

in the \(C^*\) algebra generated in \(W^*(B, S_1, \ldots, S_m)\) by evaluations of our analytic functions at semicircular variables. There is a map \(\phi_1 \theta_D \cdots \theta_D \phi_p\) on the extended Haagerup tensor product by functoriality and nothing is required to get a map on the intersection space \(\phi_1 \theta_D \cdots \theta_D \phi_p : B^{\text{eh} \otimes_p^{eh} D^n} \to M^{\text{eh} \otimes_p^{eh} D^p}\). To get the stated map and even first a map \(\phi_1 \theta_D \cdots \theta_D \phi_p : B^{\text{eh} \otimes_p^{eh} D^n} \to M^{\text{eh} \otimes_p^{eh} D^p}\), we have to check various stability properties of kernels appearing in their definition as an intersection space. From the formula below describing the commutation \(C^*\) becomes obvious. More precisely, let \(\sigma \) permutations on blocks and \(V \in X\) \(\in \langle N, e \rangle \cap L^2(\langle N, e \rangle)\) with \(N = W^*(M, S_1, \ldots, S_n)\):

\[(t_k \theta_D t_l)(\phi_1 \theta_D \cdots \theta_D \phi_p(U)) \# X = X \# (t_l \theta_D t_k)(\phi_{\sigma^{-1}(1)} \theta_D \cdots \theta_D \phi_{\sigma^{-1}(p)}(V))). \]

For, it suffices to evaluate them to \(Y, Z \in [B(X_1, \ldots, X_n : D, R, \mathbb{C}) \cap \langle X_1, \ldots, X_n \rangle] \langle S_1, \ldots, S_n \rangle \) \(=: C \subset L^2(N)\) as in Lemma 28(2) and to take \(X \in C \circ D C\), and see equality in \(L^1(D)\). The statement for \(X_1, \ldots, X_n\) analytic as above gives exactly this in this case. In the evaluated form, the convergence in \(E_D\)-law is clearly enough to get the general case from this one. The evaluation map is then obtained by the universal property of \(\ell^1\) direct sums. It crucially uses the bound on the norm of the completely bounded map above \(R^{n-p}\) that easily follows from the bounds on canonical evaluations and the sup norm on \(M^{\text{eh} \otimes_p^{eh} D^p}, M^{\text{eh} \otimes_p^{eh} D^c}\).

6.2. Analytic functions with expectations. For \(X = (X_1, \ldots, X_n)\), the spaces \(B_c \{X : E_D, R, \mathbb{C})\), \(B \{X : E_D, R\}\) have been defined in section 2. To prove various results on them, we need some formal notation to explain several computations combinatorially. First, since those spaces are defined as \(\ell^1\) direct sums over pairs of monomials \(m\) and non-crossing partitions \(\sigma \in NC_2(2k)\) (indexing the parentheses where conditional expectations are inserted), we can write \(\pi_{m,\sigma}\) for the projection on the corresponding component of the \(\ell^1\) direct sum, and \(c_{m,\sigma}\) for the corresponding injection.

We write \(E_D\) for the formal conditional expectation characterized for \(P \in B_{c,k} \{X_1, \ldots, X_n : E_D, R\}\) by \(E_D(P) \in B_{c,k+1} \{X_1, \ldots, X_n : E_D, R\}\) and such that the only-nonzero projections \(\pi\) are of the form

\[\pi_{Y_m Y_{\hat{\sigma}}}(E_D(P)) = \pi_{m,\sigma}(P) \]

for \(\hat{\sigma} = \{1, 2i + 2\} \cup (\sigma + 1)\) where the blocks of \(\sigma + 1\) are \(\{a + 1, b + 1\}\) if \(\{a, b\}\) are the blocks of \(\sigma\). All other components of \(\pi_{m',\sigma'}(E_D(P))\) are 0. \(E_D\) is obviously \(D - D\) bimodular and completely bounded.

The scalar case \(D = \mathbb{C}\) was considered in [Ceb13]; in this case we note the density of \(\mathbb{C} \{X_1, \ldots, X_n\} \supseteq \text{Span}\{P_0 tr(P_1) \cdots tr(P_k)\}, P_i \in \mathbb{C} \{X_1, \ldots, X_n\}\).

For \(P \in \mathbb{C} \{X_1, \ldots, X_n\}\) and a linear form \(\tau \in (\mathbb{C} \{X_1, \ldots, X_n\})^*\) there is a canonical element \(P(\tau) \in \mathbb{C} \{X_1, \ldots, X_n\}\) defined by extending linearly \([P_0 tr(P_1) \cdots tr(P_k)](\tau) = P_0 \tau(P_1) \cdots \tau(P_k)\).
In this way, one embeds
\[\mathbb{C}\{X_1, \ldots, X_n\} \hookrightarrow \mathbb{C}^0((\mathbb{C}\{X_1, \ldots, X_n\})^*, \mathbb{C}\{X_1, \ldots, X_n\}) \]
(where the continuity is coefficientwise on the range and for the weak-* topology induced by \(\mathbb{C}\{X_1, \ldots, X_n\} \) on the source).

Similarly, for \(P \in B\{X_1, \ldots, X_n; E_D, R\} \) and a unital \(D \) bimodular completely bounded linear map \(E \in UCB_{D-D}(B\{X_1, \ldots, X_n : D, R, D\}) \), there is a canonical element \(P(E) \in B\{X_1, \ldots, X_n : D, R\} \). Since \(P \mapsto P(E) \) will be completely bounded \(D-D \) bimodular on monomials, by the universal property of \(l^1 \) direct sums, it suffices to define it for monomials
\[P = \pi_{m,\sigma}(P), \sigma \in NC_2(2k). \]
It is defined by induction on \(k \). Write \(\sigma_- \in NC_2(2(k-1)) \) the unique pair partition obtained by removing from \(\sigma \) the pair \(\{i, i+1\} \) of smallest index \(i \) and re-indexing by the unique increasing bijection \([1, 2k] - \{i, i+1\} \to [1, 2(k-1)]\). Let also \(j(i) \) the index in the word \(m \) of the \(i \)-th \(Y \) (this being 1 if \(i = 1 \) and \(m \) starts by \(Y \)). Then
\[P = \pi_{m,\sigma}(P) \in B^{\otimes_c}_{l^1}(\{m+1\}), \]
then
\[P(E) = [\epsilon_{m,\sigma_-}[1^j(i) \circ E \circ \epsilon_{m,\sigma} 1^{j(i)-j(i+1)+1}](P)](E) \]
with \(m' = m_1 \ldots m_{j(i)}-1 \ldots m_{j(i)+1} \ldots m_{j(i)}, m'' = m_{j(i)+1} \ldots m_{j(i+1)-1} \). Indeed the letters between the index \(j(i) \) and \(j(i+1) \) in \(m'' \) are only \(X \)'s and we can thus apply \(E \) identifying \(B^{\otimes_{j(i)-j(i)}}_{\circ} \) via \(\epsilon_{m,\sigma} \) with the corresponding subspace of \(B\{X_1, \ldots, X_n : D, R\} \). Since \(E \) is \(D-D \) bimodular \(\epsilon_{m',\sigma_-}[1^j(i) \circ E \circ \epsilon_{m,\sigma} 1^{j(i)-j(i+1)+1}]] \) is well defined and we can apply \(E \) inductively.

In this way, we have a canonical map
\[B\{X_1, \ldots, X_n : E_D, R\} \to \mathbb{C}^0(UCB_{D-D}(B\{X_1, \ldots, X_n : D, R, D\}), B\{X_1, \ldots, X_n : D, R\}) \]
where the topology on \(UCB_{D-D}(B\{X_1, \ldots, X_n : D, R, D\}) \) is the topology of pointwise norm-wise convergence of \(id_{M_{\pi}} \circ E \) on all \(M_{\pi}(B\{X_1, \ldots, X_n : D, R\}) \) (for \(\pi \) a cardinal smaller than the cardinal of \(B \)).

To state the algebraic and differential properties we will use, we also need the following variant (for \(C = \mathbb{C} \) or \(C = D \)):
\[B_{op(l)}\{X_1, \ldots, X_n : E_D, R, C\} \]
\[:= \ell^1_C \left(R^{m|X} B^{\otimes_{l^1}} C(m+1); m \in M_{2k}(X_1, \ldots, X_n; Z_1, \ldots, Z_l; Y), \pi \in NC_2(2k), k \geq 0 \right), \]
where \(M_{2k}(X_1, \ldots, X_n; Z_1, \ldots, Z_l; Y) \) is the set of monomials linear in each \(Z_i \), without constraint on the order of appearance of \(Z_1, \ldots, Z_n \) and of order \(2k \) in \(Y \). The blocks in \(Z_i \) are made to evaluate a variable in \(D' \cap N \). We call \(B_{op(l)}\{X_1, \ldots, X_n : E_D, R, C\} \) the subspace involving monomials with \(Z_k \) ordered in increasing order of \(k \) and with all variables \(Z_i \) having an even number of \(Y \) before them and with their pair partitions unions of those restricted to the intervals between them (thus \(Z_i \)'s are interpreted as not being inside conditional expectations.) We write \(B_{op(l)c}\{X_1, \ldots, X_n : E_D, R, C\} \) the cyclic variant generalizing \(B_{op(l)c}\{X_1, \ldots, X_n : E_D, R, C\} \).

The following result is obvious:

Proposition 33. Let \(X = (X_1, \ldots, X_n) \). (a) The spaces \(B_{c}\{X : E_D, R, C\}, B\{X : E_D, R, C\} \) are Banach *-algebras for usual adjoint and multiplication, extending the ones
of $B(X : D, R, \mathbb{C})$. $B\{X : E_D, R, \mathbb{C}\}$ is a dual Banach space and the smallest algebra generated by B, X and stable by E_D is weak-* dense in it.

(b) $B\{X : E_D, R\}$ is a Banach algebra. $B\{X : E_D, R\}$ is a dual Banach space and the smallest algebra generated by B, X and stable by E_D is weak-* dense in it.

(c) There is a composition rule, for $P \in B\{X : E_D, R\}, Q_1, \ldots, Q_n \in D' \cap B\{X : E_D, S, \mathbb{C}\}$, such that $\|Q_i\| \leq 1$, then there is a composition $P(Q_1, \ldots, Q_n) \in B\{X : E_D, S\}$ extending the composition on $B\{X : D, S\}$. There are similar cyclic variants compatible with canonical maps and with the evaluation map below.

(d) For finite von Neumann algebras $N \supset B$, $P \in B\{X : E_D, R\}$ defines a map $(D' \cap N)^n_R \to N$ by evaluation, with $P(X) := P(E_{X,D})(X) \in \mathcal{W}^{**}(B, X)$, thus extending the value on $B\{X : D, R\}$ and where $E_{X,D} \in UC\mathcal{B}_{D-D}(B\{X : D, R\}, D)$ comes from the conditional expectation.

(e) Similarly there is a canonical evaluation $ev_{op}(P, E_{X,D}, X) \in \mathcal{C}(D' \cap N)^{\otimes n}_R, N)$, $P \in \mathcal{B}_{op}\{X : E_D, R\}$, where N are evaluated in the Z_i's and then each pair of Y's is replaced by a conditional expectation.

(f) There are also canonical continuous compositions (in the Z_i variables) with commuting with evaluation (with variants for $B_{\otimes (l)}\{X : E_D, R, C\}, B_{\otimes (l)}\{X : E_D, R, C\}$):

$$\circ \ldots \circ : B_{op}(k)\{X : E_D, R\} \times \prod_{i=1}^k B_{op}(l_i)\{X : E_D, R, C\} \to B_{op}(\sum_{i=1}^k(l_i))\{X : E_D, R\}.$$

(g) Finally for $(X_1, \ldots, X_n) \in A^n_{R, UltraApp}$ we in particular have an evaluation map $B_{\otimes (l)}\{X : E_D, R, C\} \to M_{D,c}^{\otimes (l+1)}$ with $M = \mathcal{W}^{**}(B, X_1, \ldots, X_n)$ as in Proposition. 6.2.1. Various derivatives of analytic functions with expectations.

Proposition 34. For $C = \mathbb{C}$ or $C = D$ and any $S < R$, (a) The free difference quotient (FDQ) derivations give rise to bounded maps

$$\partial_i : B\{X : E_D, R, C\} \to B_{\otimes (l)}\{X : E_D, S, C\}$$

extending the free difference quotient from $B\{X : D, R, C\}$ and determined by weak-* continuity of the first line and by the requirement that the composition with the formal E_D is zero: $\partial_i E_D = 0$.

(b) The iterated FDQ $\partial^{k}_{(i_1, \ldots, i_k)} : B_{c}\{X : D, R, C\} \to B_{\otimes (k)c}\{X : D, S, C\}$ and $\partial^{k}_{(i_1, \ldots, i_k)} : B\{X : D, R, C\} \to B_{\otimes k}\{X : D, S, C\}$ are also bounded maps.

(c) Let $d : B\{X : E_D, R, C\} \to B_{op}\{X : E_D, S, C\}^n$ and the operator variant $d : B_{op(l)}\{X : E_D, R, C\} \to B_{op(l+1)}\{X : E_D, R, C\}^n$ be the formal differentiation, i.e. a derivation uniquely determined among weak-* continuous maps by

$$d(B\{X, Z_1, \ldots Z_l : D, R\}) = 0$$

and for any monomial $P \in B_{op(l)}\{X : E_D, R\}$ (possibly $l = 0$):

$$dE_D(P) = E_D(d_X P), \quad d_X P := dP + (\partial_i(P)\#Z_{l+1})_i$$

and $d^{l}_{X(i_1, \ldots, i_l)} = d_{X_{i_1} \ldots X_{i_l}} : B\{X : E_D, R, C\} \to B_{op(l)}\{X : E_D, S, C\}$. Then d and d^l are bounded maps.
(d) We define the cyclic gradients on $B_c\{X : E_D, R, \mathbb{C}\} \to B_c\{X : E_D, S, \mathbb{C}\}$ for $d \in B_c\{X : E_D, S, \mathbb{C}\}, S < R$ as a natural extension of the cyclic gradient on $B_c\{X : D, R, \mathbb{C}\}$, satisfying $\mathcal{D}_{X,d}(X_j) = d_{1=j}, \[39]$ and for P, Q monomials and for d, P monomials

$$\mathcal{D}_{d, P}(E_D(P)) = \mathcal{D}_{d, E_D}(P).$$

(e) The following relation with compositions \[40], \[41] holds:

$$d_{X}(P(Q_1, \ldots Q_n)) = \sum_{i=1}^{n}((d_{X}(P))(Q_1, \ldots, Q_n)), \circ d_{X}(Q_i).$$

[Note the sum of $l_{i,j}$ in formula \[42] is only a sum over partitions, the first term of the first set being written $l_{1,1}$, the first term of the second set in the partition $l_{2,1}$, the ordering between sets in the partition being by the ordering of the smallest element]

Proof. For the most part, we only have to give a combinatorial formula for the derivations acting on monomials. Then by the bimodularity of the formula and explicit uniform bounds, the universal property of the ℓ^1 sum will extend them to module ℓ^1 direct sums. They will be moreover weak-* continuous as soon as they are weak-* continuous when restricted to monomial components since the c_0 sum of predual maps will then give a predual map. The derivation properties then determine d, ∂ on the E_D-algebra generated by B, X_1, \ldots, X_n which is weak-* dense in the ℓ^1 direct sum (actually in each monomial space by properties of the extended Haagerup product and then, the finite sum of monomial spaces are normwise dense), thus weak-* continuity determine those maps everywhere.

For $\sigma \in NC_2(2k), m \in M_{2l}(X_1, \ldots, X_n, Y)$, let us say a submonomial $m' \subset m$ (with a fixed starting indexed, m' is thus formally a pair of the monomial and the starting index) is compatible with σ and write $m' \in C(\sigma, m)$ if $m' \in M_{2l}(X_1, \ldots, X_n, Y), l \leq k$ and l' the index in m of the first Y in m', then $\sigma|_{m'} := \sigma|_{[y, y+2l-1]} \subset \sigma$ (which means there is no pairing in m broken in m' by our extraction of m'). We then write $\text{Sub}(\sigma, m') \in NC_2(2l)$ the partition $\sigma|_{[y, y+2l-1]}$ reindexed.

Then we define:

$$\partial_i(\epsilon_{m, \sigma}(P)) = \sum_{m=m'X_im''} (\epsilon_{m', \text{sub}(\sigma, m')} \Theta_D \epsilon_{m'', \text{sub}(\sigma, m'')})(P).$$

Of course the sum is 0 if its indexing set is empty, this in particular explains $\partial_i E_D = 0$ and the remaining properties are easy.

The definition of d is complementary. When m' or m'' are not both in $C(\sigma, m)$ and $m = m'X_i,m''$ (some i), we write $(m', m'') \in IC(\sigma, m)$ (and this corresponds to a differentiation of X_i below a conditional expectation).
Then we define
\[
d(\epsilon_{m,\sigma}(P)) = \left(\sum_{m=m'X_m''} (\epsilon_{m'Z_1m''}(P)) \right).
\]

For \(\sigma_1, \sigma_2 \in NC_2(2k_1)\) we define for \(i \in [0, 2k_1]\) the obvious insertion \(\sigma_1 \# i \# \sigma_2 = \sigma\) such that \(\sigma \mid [i+1,i+k_2] = \sigma_2, \sigma \mid [i+1,i+k_2]'' = \sigma_1\) the equalities being understood after increasing reindexing. Likewise \(\rho_i(\sigma_1) = \{|i_j + i, i_k + i\} : \{i_j, i_k\} \in \sigma_1\}\) addition being understood modulo \(2k_1\) so that \(\rho_{2k_1} = \rho_0 = id\), and write also \(\rho_k\) the corresponding permutation \(\rho_k(k) = k + i\) modulo \(2k_1\).

We now define the cyclic gradient as follows:
\[
\mathcal{D}_{i,\epsilon,M,\Sigma}(d)(\epsilon_{m,\sigma}(P)) = \sum_{m=m'X_m''} \epsilon_{m''m'm',\rho_{m''|m'}Y}(\sigma)\Sigma((\rho_{m''}(P))\#|m''\pi(d))
\]
and the relations are then easy. We give details for two of them involving cyclic gradients.

Let us explain (39) on spaces of monomials. We have to compute \(\mathcal{D}_{i,\epsilon,M,\Sigma}(d)(\epsilon_{m,\sigma}(P))\epsilon_{\mu,\pi}(Q)\). Here \(\sigma \cup \pi\) is merely the concatenation of non-crossing partitions and \(PQ\) the product of tensors defined in Proposition 28 (1). Note that the sum over \(m\mu = m'X_m''\) splits into two sums depending on whether \(X_i\) comes from \(m\) or \(\mu\). This gives the following computation (using relations on rotation and product such as \(\rho_{|m''\mu}.(PQ) = \rho_{|m''}(P)\#|m''\rho_1(Q)\)):
\[
\mathcal{D}_{i,\epsilon,M,\Sigma}(d)(\epsilon_{m,\sigma}(P))\epsilon_{\mu,\pi}(Q) = \sum_{m=m'X_m''} \epsilon_{m''m'm',\rho_{m''|m'}Y}(\sigma)\Sigma((\rho_{m''}(P))\#|m''\pi(d))
\]

Let us finally explain (41). By linearity (in \(P\)) and continuity (in \(P\) and \(Q\)), it suffices to consider the case of finite sums
\[
Q_k = \sum_{l} \epsilon_{M_{l,i}\sigma_{l,i}}(Q_{k,i}), \quad k = 1, ..., n
\]
and where \(P\) is replaced by a monomial \(\epsilon_{m,\sigma}(P)\). Then write \(Q_{X_{k,i}} = Q_{k,i}\) and \(Q_{Y,i} = 101\), \(M_{X_{l,k}} = Y, M_{X_{j,k}} = M_{l,k}\) and note that
\[
[\epsilon_{m,\sigma}(P)](Q) = \sum_{i_1,...,i_{|m|}} \epsilon_{M_{i_1,i_1}...M_{i_{|m|},i_{|m|}}}\Sigma(\sigma_{m_{i_1},i_1}...\sigma_{m_{i_{|m|},i_{|m|}}})\left(P\#(Q_{m_{i_1},i_1}, ..., Q_{m_{i_{|m|},i_{|m|}}})\right)
\]

62
where if \(m_{j_1}, \ldots, m_{j_2l} \) is the set of Y’s in \(m \), \(\sigma \in NC(2l) \), \(\sigma_{X_l,l} = \sigma_{k,l} \) and

\[
\sigma^m(\sigma_{m_1,i_1}, \ldots, \sigma_{m_{|m|},i_{|m|}}) = (\ldots (\sigma^2(\sigma_{m_{2l+1,i_{2l+1}}}, \ldots, \sigma_{m_{|m|},i_{|m|}}))
\]

Thus one gets in writing for short \(M_{m,i,L,+} = M_{m_{L+1},i_{L+1}} \ldots M_{m_{|m|},i_{|m|}} \):

\[
\mathcal{D}_i \mathcal{M}(d)[\epsilon_m,\sigma](P)(Q) = \sum_{L=1}^{\infty} \sum_{|m|,|m| \neq Y} \sum_{M_{m,i,L,+} = m'} \epsilon_m^m(\sigma_{m_1,i_1}, \ldots, \sigma_{m_{|m|},i_{|m|}}) \#_{|m|} M_{m,i,L,+} \| Y \Sigma
\]

and similarly:

\[
\left(\rho_{m''}^{|m''|} M_{m,i,L,+} | Y \right) \left(P \# (Q_{m_1,i_1}, \ldots, Q_{m_{|m|},i_{|m|}}) \right) \#_{|m''|} M_{m,i,L,+} | d \right) =
\]

Proposition 35. There are continuous maps \(\Delta, \delta_\Delta \) on \(B\{X : E_D, R\} \rightarrow B\{X : E_D, S\} \) for \(S < R \) uniquely defined as weak-* continuous map by the following properties (a) and (b):

(a) For \(P \in B\{X : E_D, R\} \) monomial

\[
\Delta(P) = \sum_{i} m \circ (1 \circ E_D \circ 1) \partial_i \partial_i(P)
\]

and \(\Delta E_D = 0 \)

(b) \(\delta_\Delta \) is a derivation, \(\delta_\Delta(P) = 0 \) for any \(P \in B\{X : D, R\} \), and for \(Q \) monomial in \(B\{X : E_D, R\} \), \(\delta_\Delta(E_D(Q)) = E_D((\Delta + \delta_\Delta)(Q)) \).

(c) Moreover,

\[
\mathcal{D}_i(\Delta + \delta_\Delta) = (\Delta + \delta_\Delta) \mathcal{D}_i.
\]

(d) Likewise, for any \(V \in B\{X : D, R\} \), the map \(\Delta_V = \Delta + \sum_i \partial_i(\cdot) \# \mathcal{D}_i V \) produces a derivation \(\delta_V \) such that \(\delta_V(P) = 0 \) for \(P \in B\{X : D, R\} \) and for \(Q \) monomial in \(B\{X : E_D, R\} \), \(\delta_V(E_D(Q)) = E_D((\Delta_V + \delta_V)(Q)) \). Moreover, for any \(g \in B\{X : D, R\} \):

\[
\mathcal{D}_i(\Delta_V + \delta_V)(g) = (\Delta_V + \delta_V) \mathcal{D}_i(g) + \sum_{j=1}^{n} \mathcal{D}_i \mathcal{D}_j g \mathcal{D}_j V.
\]
Proof. Again it suffices to define those $D - D$ bimodular maps on monomials spaces, i.e., at the level of extended Haagerup tensor products. Then the universal property of the direct sum will extend them as weak-* continuous maps as soon as each component map is weak-* continuous. The algebraic relation then determines the maps on the E_D algebra generated by $B, X_1, ..., X_n$ and weak-* density of this algebra implies the uniqueness of the weak-* continuous extension. For Δ we use the formula above. Let $\sigma \in NC_2(2k)$, $m \in M_{2k}(X_1, ..., X_n, Y)$.

For $m = nX_i n' X_j n''$, $n' \in C(\sigma, m)$ with the notation of the previous proof, we define
\[
\text{Add}(\sigma, n, n', n'') = \{\{|n|_Y + 1, |n|_Y + |n'|_Y + 2\} \cup \{i+1, j+1\} : i, j \in \sigma, |n|_Y < i < j \leq |n|_Y + |n'|_Y \} \cup \{i, j+2\} : i, j \in \sigma, i \leq |n|_Y < |n|_Y + |n'|_Y < j \} \cup \{i, j\} : i, j \in \sigma, i < j \leq |n|_Y \} \cup \{i+2, j+2\} : i, j \in \sigma, |n|_Y + |n'|_Y < i < j \} \in NC_2(2k + 2).
\]

Then we define for a monomial $\epsilon_{m,\sigma}(P)$:
\[
(\Delta + \delta_\Delta)(\epsilon_{m,\sigma}(P)) = \sum_{j=1}^{n} \sum_{m=nX_j n' X_j n''} \epsilon_{nY n'Y n'' \text{Add}(\sigma, n, n', n'')(P)}.
\]

All properties but the last equation (13) are easy. By definition, we have:
\[
\mathcal{D}_i((\Delta + \delta_\Delta)(\epsilon_{m,\sigma}(P)))
= \sum_{j=1}^{n} \sum_{m=nX_i n' X_j n''} \sum_{n' \in C(\sigma, m)} \epsilon_{m' n'' \rho_{m'' n''}(\text{Add}(\sigma, n, n', n''))((\rho_{m'' n''}(P))}
\]

The sums can be divided into 3 cases depending on whether $X_i \in n, n', n''$. Similarly, we have
\[
(\Delta + \delta_\Delta) \mathcal{D}_i(\epsilon_{m,\sigma}(P)) = \sum_{m'X_j n' X_j n''} \sum_{j=1}^{n} \sum_{m'' n'' = nX_i n' X_j n''} \epsilon_{nY n' Y n'' \text{Add}(\rho_{m'' n''}(\sigma), N, N', n'')}((\rho_{m'' n''}(P)))
\]

and there are also 3 cases depending X_j's are both in M'', in M' or one in each. The proof of the equality is combinatorial, we check we have a bijection of the indexing sets of the sum, with equality of the terms summed in each case.

If $X_i \in n$, then $n = oX_i o$ and $m = oX_i o' X_j n' X_j n''$ this suggests $M' = o, M'' = o' X_j n' X_j n''$ corresponding bijectively to a term where both X_j's are in M'', $N = o', N'' = n'' M', m' = o, m'' = o' Y n' Y n''$ so that $m'' n' = N Y N' Y N''$ as expected, $|M''| = |m''|$ implying the same rotation of P and $\text{Add}(\rho_{m'' n''}(\sigma), N, N', N'') = \rho_{m'' n''}(\text{Add}(\sigma, n, n', n''))$, as is easily checked with the same condition on $n' = N'$, implying the final equality. The case $X_i \in n''$ is similar corresponding bijectively to the case where both X_j's are in M'.

If $X_i \in n'$, $n' = oX_i o'$ and $m = nX_j oX_i o' X_j n''$, $m' = nY o, m'' = o' Y n''$. This suggests, $M' = nX_j o, M'' = o' X_j n''$ corresponding bijectively to a term where one X_j is in M'' the other in M' with $N = o', N'' = n'' n, n'' = o$. Since N'' is related to a complement of n', the
relations imposed on \(n', N' \) are equivalent after rotation. We also have \(m''m' = NYNYN'' \) as expected, \(|M''| = |m''| \) implying the same rotation of \(P \) and \(\text{Add}(\rho_{M''|Y}(\sigma), N, N', N'') = \rho_{|m''|Y}(\text{Add}(\sigma, n, n', n'')) \), as is easily checked, implying the final equality.

6.3. Non-commutative \(C^{k,l} \)-functions and their stability properties.

6.3.1. \(C^{k,l} \) norms. As in the main text, we consider several variants \(C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D) \), \(\epsilon_1 \in \{0,1\}, \epsilon_2 \in \{-1,0,1,2\} \):

\[
\|P\|_{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} = \|\ell(P)\|_{k,l,U} + \epsilon_1 \|\Delta_V + \delta_V\|_{C_{\ell,1}(A,U)}
\]

\[
+ 1_k \max_{L+1 \in \{1, \ldots, n\}} \sum_{i=1}^n \max \left[\left\| \mathcal{D}_{i,1}(P) \right\|_{k,p,U}, \right.
\]

\[
(0 \vee \frac{\epsilon_2}{2}) \sup_{m \geq 2} \left(\sum_{p=0}^{L-1+1 \in \{1, \ldots, n\}} \mathcal{D}_{i,1}(P) \right)_{k,p,U^m}^{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} \]

We of course also define a first order part seminorm \(\|P\|_{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D), \geq 1} \) only replacing the first term in the sum by \(\|\ell(P)\|_{k,l,U, \geq 1} \). Note that \(\|P\|_{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} = \|P\|_{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} \) enables to include our previous case in an ad-hoc way. We may write \(C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U : B, E_D) = C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U : B, E_D) \) since there is no more dependence in \(V \) in this case. Note that we wrote \(C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U : B, E_D) = C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U : B, E_D) \) for short in the text before the appendices since we only used this case \(\epsilon_1 = 0 \).

In the last seminorm we considered \(P \) in variable \(X = (X_1, \ldots, X_n) \) and \(Q \) in variable \(X' = (X'_1, \ldots, X'_{m-1}) \) \(\in U^{m-1} \) and \(U^m \subset A_{R}^m = (A_R^n)^m \). In order to get a consistent definition, we still have to check the last term is finite for \(P \in B_c(X_1, \ldots, X_n; E_D, R, \mathbb{C}) \). We gather this and a complementary estimate in the following Lemma. A variant explains the inclusion \(\mathcal{C}_c^{k,l} \subset C_{C_{k,l,V}}^{k,l} \) at the end of subsection 2.4 with norm equivalent to the restricted norm (explaining why the completions are included in one another)

Lemma 36. Assume \(U \subset A_{R,appB-E_D}^n \). For any \(P \in B_c(X_1, \ldots, X_n; E_D, R, \mathbb{C}) \), we have

\[
\sup_{m \geq 2} \left(\sum_{p=0}^{L-1+1 \in \{1, \ldots, n\}} \mathcal{D}_{i,1}(P) \right)_{k,p,U^m}^{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} \leq \infty
\]

and moreover if \(P \in B_c(X_1, \ldots, X_n; D, R, \mathbb{C}) \), for any \(p \geq 0 \) we have:

\[
\sup_{m \geq 2} \left(\sum_{p=0}^{L-1+1 \in \{1, \ldots, n\}} \mathcal{D}_{i,1}(P) \right)_{k,p,U^m}^{C_{C_{k,l,V}}^{k,l,0,\epsilon_2}(A,U:B,E_D)} \leq C \|P\|_{k+1,p,U, c \geq 1}
\]

so that we have extensions of the identity which give injective bounded linear maps:

\[
C_c^{k,l}(A,U:B,D) \rightarrow C_{C_{k,l,V}}^{k,l}(A,U:B,E_D),
\]

\[
C_c^{k,l+1}(A,U:B,D) \rightarrow C_{C_{k,l,V}}^{k,l,0,1}(A,U:B,E_D),
\]

\[\text{etc.}\]

65
and we have for some $C > 0$:

$$\|P\|_{C^{k,l}_1(A,U,B,E_D),g_1} \leq C \|P\|_{k-1,l-1,U,B,g_1}.$$

\textbf{Proof.} We can assume $Q \in B_c\{X'_1(1),...,X'_1(n),...,X'_m(1),...,X'_m(n); E_D, R^+, \mathbb{C}\}, m \geq 1$ $X' = X'_1(1),...,X'_1(n),...,X'_m(1),...,X'_m(n)$. We detail only the second estimate, since the first one mainly needs P monomial and is an easy extension.

To compute differentials we introduce partial differentials $d_s^{(X,X')}(r_1,...,r_s)$ so that a full differential is

$$\sum_{r \in [1,(m+1)n]^s} d_s^{(X,X')}(r_1,...,r_s) \mathcal{D}_{i,Q(X')}(P)(X,X').(H_1^{r_1},...,H_s^{r_s}).$$

Recall this $d_s^{(X,X')}$ is the full differential so that d_s^X applied to $P \in B_c\{X_1,...,X_n; D, R, \mathbb{C}\}$ is a certain expression involving free difference quotients but is not necessarily 0 (unlike d^s by its definition).

We have to compute as easily checked on monomials, for $s, l \leq k - 1$

$$d_s^{(X,X')}(r_1,...,r_s) \frac{\partial^{(j_1+1,...,j_k)} \mathcal{D}_{i,Q(X')}(P)}{(0+1)}(P)$$

where $R = (r_{i_1},...,r_{i_{#R}})$ with the underlying set $uR = \{r_{i_{#R}},...,r_{i_{#R}}\} = \{r_{i_{#R}},r_{i_1} \in [1,n]\}$, $i_1 < ... < i_{#R}$ and $R' = (r_{j_1-n},...,r_{j_{#R'}-n})$ with $\{r_{j_1-n},...,r_{j_{#R'}-n}\} - uR$ $j_1 < ... < j_{#R'}$ so that $d_s^{(X,X')}(R+n) = d_s^{(X,X')}$, and note there is no real sum to split the derivatives between P, Q (the sum can contain only one non-zero term) since the variables of Q and P are not the same.

Using this remark and the natural bound on products defined in Proposition 28 one gets the term in the seminorm to estimate for a fixed order s of differentials d^s:

$$\left(\left\| \sum_{r \in [1,(m+1)n]^s} d_s^{(X,X')}(r_1,...,r_s) \mathcal{D}_{i,Q(X')}(P)(X,X').(H_1^{r_1},...,H_s^{r_s})\right\|_A + \sum_{l=1}^{k} \right.$$

$$\left. \sum_{j \in [1,n(m+1)]^l} \left\| \sum_{r \in [1,(m+1)n]^s} d_s^{(X,X')}(r_1,...,r_s) \frac{\partial^{j_1+1} \mathcal{D}_{i,Q(X')}(P)}{(i,j)}(X).H_1^{r_1},...,H_i^{r_i}\right\|_{A^{D,c}(l+2)} \right)$$

$$\leq k \sum_{\mathcal{V} \subset [1,s]} \left(\left\| d_s^X \frac{\partial}{A^{D,c}} \right\|_{2} + \sum_{l=1}^{k} \sum_{j \in [1,n]^l} \left\| d_s^X \frac{\partial^{j+1} (X)}{(i,j)}(X).H_1^{r_1},...,H_i^{r_i}\right\|_{A^{D,c}(l+2)} \right)$$

$$\times \left(\left\| d_s^{X'} Q(X')(H_{j_1},...,H_{j_{k-v}})\right\|_A + \sum_{l=1}^{k} \sum_{j \in [1,n]^l} \left\| d_s^{X'} \frac{\partial^{j}}{(i,j)}(Q)(X').(H_{j_1},...,H_{j_{k-v}})\right\|_{A^{D,c}(l+2)} \right).$$

The factor k appears for the same reason as the sum over \mathcal{V}, because in the sum over j (resp. over r) the position of differentials X, X' need to be determined by a starting point for the block of X' variables (resp. a set of X variables) and in the first case the number is less than $l \leq k$.

66
Thus taking suprema in the definition of seminorms, one gets the concluding result for any p:

$$\|\mathcal{F}_{i,Q}(X)\|_{k-1,p,U^{m+1},c} \leq (k-1)2^p \|P\|_{k,p,U,c}\|Q\|_{k-1,p,U^{m},c},$$

and similarly

$$\|\mathcal{F}_{i,Q}(X)\|_{k-1,p,U^{m+1}} \leq (k-1)2^p \|P\|_{k,p,U,c}\|Q\|_{k-1,p,U^{m}}.$$

The definition of the two bounded linear maps are then straightforward and injectivity comes from the fact that the bounds enable us to get equivalent norms on the image so that the separation completion defining the first space can be computed in the second.

\[\square\]

6.3.2. Composition of functions. To understand the relationship between the Laplacian and composition of functions we need the following basic remark. Let $P, Q_1, \ldots, Q_n \in \bigcup_{R>0} \mathcal{B} \{X_1, \ldots, X_n : E_D, R, \mathbb{C}\}$. Then:

$$\Delta(P \circ Q) = \sum_{i,j} m \circ (\mathcal{R} E_D \partial_1)\partial_i \partial_1((\partial_j P) \circ Q \# \partial_i(Q_j))$$

$$= \sum_{i,j}((\partial_j P) \circ Q \# m \circ (\mathcal{R} E_D \partial_1)(\partial_i \partial_1(Q_j)))$$

$$+ \sum_{i,j,k} m \circ (\mathcal{R} E_D \partial_1)((\partial_k \partial_1 \partial_j P) \circ Q \# (\partial_i(Q_k), \partial_i(Q_j))).$$

Thus we have a lack of stability of the form of the second order term so that it is natural to introduce for $P \in \mathcal{B} \{X_1, \ldots, X_n : E_D, R\}$, $\mathcal{R} = (\mathcal{R}^{kl}) = \sum_K (R_{1,K} \circ R_{2,K})_{kl} \in [(D' \cap A^2) \cap \mathcal{R}^2)]^n$ the following expression:

$$\Delta_{\mathcal{R}}(P) = \sum_{i,j,K} m \circ (\mathcal{R} E_D \partial_1)[\partial_i \partial_1 \partial_j(P) \# (R_{1,K}^{ij}, R_{2,K}^{ij})] \in A\{X_1, \ldots, X_n : E_D, R\},$$

and similarly

$$(\partial(Q) \otimes \partial(Q))\# R^{ij} = \sum_{K,l,i}[(\partial_i(Q_k)\# (R_{1,K}^{il}))[\partial_i(Q_j)]\# (R_{2,K}^{il})].$$

In this way one gets

$$(46) \quad \Delta_{\mathcal{R}}(P \circ Q) = (\partial_{\Delta_{\mathcal{R}}(Q)}P) \circ Q + \Delta(\partial(Q)\# \partial(Q))\# \mathcal{R}(P) \circ Q.$$

As before we can also define $\delta_{\mathcal{R}}$ as a derivation

$$\delta_{\mathcal{R}} : B\{X_1, \ldots, X_n : E_D, R\} \rightarrow A\{X_1, \ldots, X_n : E_D, R\}$$

by requiring that it vanishes on $B\{X_1, \ldots, X_n : D, R\} \ni P$ and satisfies

$$\delta_{\mathcal{R}}(P) = 0, \quad \delta_{\mathcal{R}}(E_D(Q)) = E_D((\Delta_{\mathcal{R}} + \delta_{\mathcal{R}})(Q)).$$

We consider the variants $C_{\mathcal{R},(2)}^{k,\epsilon_1,\epsilon_2}(A, U : B, E_D), \; \epsilon_1 \in \{-1, 0, 1\}, \; \epsilon_2 \in \{-1, 0, 1, 2\}, \; o \in [0, \max(0, l - 2)]$:
$$\|P\|_{C_{lr}^{k,l}(A,U;B,E_D)} = \|t(P)\|_{k,l,U} + 1_{k \geq \max(e_2 - 1, -e_2)} \sum_{p=0}^{l-1+1_{odd}(e_2)} \sum_{l=1}^{n}$$

max $\left[\left\| D_{i,1}(P) \right\|_{k,p,U}, \left(0 \lor \frac{\epsilon_2}{2} \right) \sup_{Q \in \left(C_{tr}^{k,p}(A,U_{m-1}:B,E_D) \right)_{m \geq 2}} \left\| D_{i,Q(X)}(P) \right\|_{k,p,U}\right]$ $+$

max $\left[\left(0 \lor \epsilon_1 \right) \sup_{\left[\left(\Delta_R + \delta_R \right) \left(P \right) \right]_{a,o,U}} \left\| \left(\Delta + \delta \right) \left(P \right) \right\|_{0,o,U}, \left(0 \lor \left(-\epsilon_1 \right) \right) \left\| \left(\Delta + \delta \right) \left(P \right) \right\|_{0,o,U} \right]$.

Finally to deal with our universal norms we need to consider in what space of variables our functions are valued to handle composition properly. For this consider $U \subset A_R^n, V \subset A_S^n$ sets, $S \geq R$ and C a class of functions on U as before or one defined later, B_C the space of analytic function (either $B_C \{ X_1, ..., X_n; E_D, R^+, C \}$ for classes with index tr or $B_C \{ X : D, R, C \}$ or $\cap_{T > R} C_{b}^{k+1}(A_R^n, B_C \{ X_1, ..., X_n : D, T, C \})$ for classes with index u etc.) used to define it as a separation-completion with canonical map $t : B_C \rightarrow C$. We define two candidates of sets admissible for composition

$$Comp(U, V, C) = \{ Q = (Q_1, ..., Q_n) \in C^n, \forall X \in U, Q(X) \in V \},$$

$$Comp^{-}(U, V, C) = Comp(U, V, C) \cap Comp(U, V, C) \cap (t(B_C))^n \}^n,$$

which are subspaces of $Comp(U, A_R^n, C)$. We first define composition on the dense subspace of $Q_i \in \cap_{T > R} C_{b}^{k+1}(U, B_C \{ X : D, T, C \})$, with $Q(X) \in V$ for all $X \in U$, for $P \in \cap_{S > T} C_{b}^{k+1}(V, B_C \{ X : D, T, C \})$ by

$$P(Q_1, ..., Q_n) : X \in U \mapsto P[\{ Q_1(X), ..., Q_n(X) \}]\{Q_1[X], ..., Q_n[X]\}$$

where $P[\{ Q_1(X), ..., Q_n(X) \}] \in \cap_{T > S} B_C \{ X : E_D, S, C \}$ is then composed with $Q_i[X] \in B_C \{ X : E_D, R \}$, since $\|Q_i[X]\| \leq T$ for some $T > S$ one can apply the definition of composition at analytic level from Propositions 29, 33.

If $P \in B_C \{ X_1, ..., X_n; E_D, S^+, C \}$, P defines $X \mapsto P(E_D, X)$ on any $V \subset A_S^n$, so that we can define $P(Q_1, ..., Q_n)$ assuming only $\|Q_i[X]\| < S$ (case $V = A_S^n$ above).

We can now extend these maps. We first deal with the cases of stability by compositions and then deal with the variants we used in the main texts obtained via various compositions with canonical maps.

Lemma 37. Fix V, U as above with $U \subset V$ (with $V \subset A_R^n$ UltraApp as soon as a space with index c is involved). The above map $(P, Q_1, ..., Q_n) \mapsto P(Q_1, ..., Q_n)$ extends continuously to $Q_1, ..., Q_n \in Comp^{-}(U, V, C_{b}^{k+1}(A, U : B, E_D))$ to give a map

$$C_{b}^{k,l}(A, V : B, E_D) \times Comp^{-}(U, V, C_{b}^{k,l}(A, U : B, E_D)) \rightarrow C_{b}^{k,l}(A, U : B, E_D),$$
for \(k \geq 1 \). Moreover, for any \((k,l) \in \mathbb{N}^2\), it also extends continuously consistently to

\[
C^{k,l}_{tr}(A, V : B, E_D) \times \text{Comp}(U, V, (C^{k,l}_{tr}(A, U : B, E_D))) \to C^{k,l}_{tr}(A, U : B, E_D),
\]

\[
C^{k,l}_{tr,c}(A, V : B, E_D) \times \text{Comp}(U, V, (C^{k,l}_{tr,c}(A, U : B, E_D))) \to C^{k,l}_{tr,c}(A, U : B, E_D),
\]

\[
C^{k,l,0,\epsilon_2}(A, V : B, E_D) \times \text{Comp}(U, V, (C^{k,l,0,\epsilon_2}_{tr}(A, U : B, E_D))) \to C^{k,l,0,\epsilon_2}_{tr}(A, U : B, E_D),
\]

\[
C^{k,l,1,\epsilon_2}_{tr}(A, V : B, E_D) \times \text{Comp}(U, V, (C^{k,l,1,\epsilon_2}_{tr}(A, U : B, E_D))) \to C^{k,l,1,\epsilon_2}_{tr}(A, U : B, E_D),
\]

\(\epsilon_1 \in \{-1, 1\}, \epsilon_2 \in \{-1, 0, 1, 2\}, \) \(o = 0 \) and with the constraint \(k, l \geq 1 \) in case \(\epsilon_1 = 1 \). Finally, for \(P \in C^{k,l,1}_{U,n+1}(A, V : B, E_D) \) \((Q_1, ..., Q_n) \to P(Q_1, ..., Q_n)\) is Lipschitz on bounded sets of \(\text{Comp}^{-}(U, V, C^{k,l}_{U}(A, U : B, E_D)) \) with corresponding statements on all other spaces in adding to the \(P \) variable only \(1 \) more derivative to \(l \) and to \(o \). Moreover, the Lipschitz property is uniform on bounded sets for \(P \) in the space it can be taken.

Although the case \(o \in [1, \max(0, l - 1)] \) is not needed in this paper, it can be treated similarly but this is left to the reader.

Proof. Note first that for composition on \(\text{Comp}^{-} \) we can extend the first definition of composition since then we have approximate \(Q \in \iota(B)^n \) with \(Q(X) \in V \). For all extension to \(\text{Comp} \) we use the second definition since we can start from \(P \in B_c(X_1, ..., X_n; E_D, S^+, C) \) by density in the corresponding spaces. As we will see, we will always extend first in \(Q \), and for \(P \) fixed as above this extension can be done with \(V = A^{a}_{S} \) using \(\text{Comp}(U, A^{a}_{S}, C) = \text{Comp}^{-}(U, A^{a}_{S}, C) \) (since \(A^{a}_{S} \) open and using compatibility with the topology of considered \(C \)) and then restrict this first extension to our space \(\text{Comp}(U, V, C) \subset \text{Comp}(U, A^{a}_{S}, C) \). We have to estimate various norms using (10) and (12) (and its variant which is the elementary differentiation of composition of functions):

\[
d_{X(r_1, ..., r_s)}^k(\partial^k_{(j_1, ..., j_k)} P(Q_1, ..., Q_n)) = \sum_{l=1}^{k} \sum_{n_1, ..., n_l \geq 1} \sum_{1 \leq i_1 < ... < i_l = k} d_{X(r_1, ..., r_s)}^k(\partial^l_{(n_1, ..., n_l)} P)(Q_1, ..., Q_n) \#(\partial^k_{(j_1, ..., j_k)} Q_{n_1}, \partial^{k-1}_{(j_1+1, ..., j_k)} Q_{n_2}, ..., \partial^{k-1}_{(j_1+1, ..., j_k)} Q_{n_l})
\]

\[
= \sum_{l=1}^{k} \sum_{n_1, ..., n_l \geq 1} \sum_{1 \leq i_1 < ... < i_l = k} \sum_{V \in \{t_1, ..., t_{m-1}, 0\} \times \{t_1, ..., t_{m-1}, 0\}} \sum_{j_1, ..., j_{m-1}} \sum_{m=1}^{u_0} \sum_{o_1, ..., o_m \geq 1} \sum_{1 \leq j_1 < ... < j_{m-1} = u_0}
\]

\[
\left[d_{X(r_1, ..., r_s)}^{a_{(n_1, ..., n_l)}^m}(\partial^k_{(n_1, ..., n_l)} P)(Q_{n_1}, ..., Q_{n_l}) \right]
\]

\[
\circ (d_{X(r_{t_0, L_0}, ..., r_{t_0, L_0})}^{a_{(n_1, ..., n_l)}^{m-1}} Q_{(0, m)}), ..., d_{X(r_{1, u_0}, ..., r_{1, u_0})}^{a_{(n_1, ..., n_l)}^{m-1}} Q_{(0, m)})
\]

\[
\#(d_{X(r_{1, u_0}, ..., r_{1, u_0})}^{a_{(n_1, ..., n_l)}^{m-1}} \partial^k_{(j_1, ..., j_k)} Q_{n_1}, ..., d_{X(r_{1, u_0}, ..., r_{1, u_0})}^{a_{(n_1, ..., n_l)}^{m-1}} \partial^{k-1}_{(j_1+1, ..., j_k)} Q_{n_l})
\]

(the sum over \(V \) runs over partitions of \([1, s]\) (not ordered) and the sum over \(L = \{\{L_{1,1} < ... < L_{1,j_1}\}, ..., \{L_{m-1,1} < L_{m,1} < ... < L_{m,j_{m-1}}\}\}, \{L_{-1,1} < L_{-1,1} < L_{1,1}\} \) over partitions \(Part([1, u_0]) \) of \([1, u_0]\) with the extra inequalities written ordering the blocks of the partitions by the index of the smallest element). Now for \(P \in \cap_{T > S} C^{k+1}_{U}(A^{a}_{S}, B_c(X : D, T, C)) \),

69
one checks (using we started from one more derivative on U than necessary, namely $l + 1$ instead of l) that $(Q_1, ..., Q_n) \mapsto P(Q_1, ..., Q_n)$ is uniformly continuous (on balls) thus extends by uniform continuity to $\text{Comp}^{-}(U, V, C^{k,l}_{u}(A, U : B, E_D))$.

Obviously, if one does not care about constants, we have from the previous computation, a bound of the form

$$\|P(Q_1, ..., Q_n)\|_{k,l,U} \leq C(k, l, n)\|P\|_{k,l,V} \left(1 + \max_{i=1, \ldots, n} \|Q_i\|_{k,l,U}\right)^{k+l}$$

thus $P \mapsto P(Q_1, ..., Q_n)$ is Lipschitz with value in the space continuous functions with supremum norm on Q_i and thus extend to all P in the space $C^{k,l}_{u}(A, V : B, E_D)$. This concludes to the extension part. Note that one deduces from the computations above the estimate of independent interest:

(47)

$$\|P(Q_1, ..., Q_n)\|_{k,l,U ; 1} \leq C(k, l, n)\|P\|_{k,l,V ; 1} \left(1 + \max_{i=1, \ldots, n} \|Q_i\|_{k,l,U}\right)^{k+l-1} \max_{i=1, \ldots, n} \|Q_i\|_{k,l,U ; 1}$$

For the Lipschitz property, the only problematic term in the expression above is the composition $d^s_{X(r_1, \ldots, r_s)}([\partial^j_{(n_1, \ldots, n_j)}(P)](Q_1, ..., Q_n))$. We note that under the supplementary assumption of differentiability for P, it is always differentiable with differential

$$\sum_i d^{k+1}_{X(r_1, \ldots, r_s,i)}([\partial^j_{(n_1, \ldots, n_j)}(P)](Q_1, ..., Q_n))(r, ..., r, H_i).$$

The conclusion follows by the fundamental Theorem of calculus.

Now, the case of $C^{k,l}_{tr}$ spaces is obvious because $P(Q_1, ..., Q_n)$ exactly comes from the composition in Proposition 33 and the discussion at the beginning of the proof to deal with Comp. $C^{k,l}_{tr}$ is also a variant.

We now turn to the spaces $C^{k,l,0}_{tr} \varepsilon_2$ first with $\varepsilon_2 = 1$. For P fixed analytic, the extension in Q_i is as easy as before (using the estimate below), it remains to prove uniform Lipschitz property in P. Recall the basic formula (11) and since in our case $\mathcal{D}_{Q_i,R}(P)(Q_1, ..., Q_n) \in C^{k,l}_{tr}(A, U^{m-1} : B, E_D)$ we have the following bound for $p \leq l$:

(48)

$$\sup_{R \in (C^{k+p}_{tr}(A, U^{m-1} : B, E_D))_1} \|\mathcal{D}_{i,R(X')} (P(Q_1, ..., Q_n))\|_{k,p,U^m}$$

$$\leq \sum_{j=1}^n \sup_{S \in (C^{k+p}_{tr}(A, U^{m} : B, E_D))_1} \|\mathcal{D}_{i,S(X''_j)} (Q_j)\|_{k,p,U^{m+1}}$$

$$\sup_{R \in (C^{k+p}_{tr}(A, U^{m-1} : B, E_D))_1} \|\mathcal{D}_{Q_j,R(X')} (P(Q_1, ..., Q_n))\|_{k,p,U^{m}}$$

where we of course took the variables $S = \mathcal{D}_{Q_j,R(X')} (P)(Q_1, ..., Q_n), X'' = (X', X) \in U^m$, and used $\|\mathcal{D}_{i,\mathcal{D}_{Q_j,R(X')} (P)(Q_1, ..., Q_n)}(Q_j)\|_{k-1,p,U^m} \leq \|\mathcal{D}_{i,S(X''_j)} (Q_j)\|_{k-1,p,U^{m+1}}$. And from a variant with parameter of our previous estimates for the change of variable $(Q_1(X), ..., Q_n(X), X')$ (based on the fact that no additional sum related to composition is involved for the variables X' so that the constant $C(k-1, p, n)$ below only involves the number of variables of X), the
last term is bounded by
\[\|D_{Q_j,R}(X')(P)(Q_1, \ldots, Q_n)\|_{k,p,U^m} \leq C(k,p,n)\|D_{X_j,R}(X')(P)\|_{k,p,V \times U^{m-1}} \left(1 + \max_{i=1,\ldots,n} (\|Q_i\|_{k,p,U}) \right)^{p+k}. \]

This gives the expected Lipschitz bound in \(P \) (using \(U \subset V \) in taking \(Q_j(X) = X_j \)) for the part with cyclic gradients. The Lipschitz property in \(Q \) is dealt with as before.

We now consider the case \(\epsilon_2 = 0 \). In this case the norm becomes
\[\|P\|_{C_{tr,V}^{k,l+1,0}(A,U,B,ED)} = \|\ell(P)\|_{k,l,U} + \epsilon_1\|\Delta V + \delta V(P)\|_{C_{tr}(A,U)} + \sum_{p=0}^{l-1} \sum_{i=1}^n \|D_i(P)\|_{k,p,U}. \]

and thus we can use the estimate (48) with \(R = 1 \) to conclude.

We now turn to the case \(\epsilon_2 = -1 \). In this case the norm becomes
\[\|P\|_{C_{tr,V}^{k,l+1,1}(A,U,B,ED)} = \|\ell(P)\|_{k,l,U} + \epsilon_1\|\Delta V + \delta V(P)\|_{C_{tr}(A,U)} + \sum_{p=0}^{l-1} \sum_{i=1}^n \|D_i(P)\|_{k,p,U}. \]

The term \(\sum_{p=0}^{l-1} \sum_{i=1}^n \|D_i(P)\|_{k,p,U} \) is controlled by the similar term (with summation up to \(l \)) in (44) which gives the norm of \(Q \) (noting that \(\epsilon_2 \lor 1 = 1 \)). The other terms are treated as before.

Finally, we consider the case \(\epsilon_2 = 2 \). This time \(1 \lor \epsilon_2 = 2 \) and the summation over \(p \) goes up to \(l - 1 \); thus we can use essentially the same estimate as in (48) in this case.

It remains to deal with the case \(\epsilon_1 = 1 \) with \(o = 0 \). It is based on (46)
\[(\Delta_R + \delta_R)(P \circ Q) = (d_Q(X)P(E_{D,Q}(X))(\Delta_R + \delta_R)(Q)) + \left[\Delta(\partial Q \otimes \partial Q \# R) + \delta(\partial Q \otimes \partial Q \# R) \right](P)(E_{D,Q}(X))(Q(X)) \]
so that one gets:
\[
\begin{align*}
& \sup_{\|R^{kl}\| \leq 1 \atop (D' \cap A^B) \cap (D' \cap A^B)} \|\Delta_R + \delta_R\|_{C_{tr}(A,U)} \\
& \leq \sup_{\|R^{kl}\| \leq 1 \atop (D' \cap A^B) \cap (D' \cap A^B)} \|\Delta_R + \delta_R\|_{C_{tr}(A,V)} \left(\max_{i=1,\ldots,n} \|Q_i\|_{1,0,U}^2 \right) \\
& + \sup_{\|R^{kl}\| \leq 1 \atop (D' \cap A^B) \cap (D' \cap A^B)} \|\Delta_R + \delta_R\|_{C_{tr}(A,U)} \|P\|_{1,1,U}.
\end{align*}
\]

This enables the extension in \(P \) after extension in \(Q \) if \(k, l \geq 1 \) and gives the Lipschitz property in \(Q \) on bounded set as required (using \(o \) became \(o + 1 \) for dealing with the annoying new term). The case \(\epsilon_1 = -1 \) is possible because taking \(R^{kl} = 1_{k=1}(101)0(101) \) recovers the Laplacian and using a general \(R \) on the \(P \) variable enables to deal with the particular case (and remove the sup) for \(Q, P \circ Q \) variables.

Corollary 38. In the setting of the previous Lemma (in particular for \(U \subset V \subset A^n_{R,UltraApp} \)), for any \(l \geq 1 \) (and \(k \geq 2 \) in any case with \(W \)) the map \((P,Q_1,\ldots,Q_n) \mapsto P(Q_1,\ldots,Q_n)\) also
extends continuously consistently to
\[C_{c}^{k+l}(A, V) \times \text{Comp}(U, V, (C_{tr, W}^{k+l}(A, U : B, E_D))) \rightarrow C_{tr, W}^{k,l}(A, U : B, E_D), \]
\[C_{c}^{k+l}(A, V) \times \text{Comp}(U, V, (C_{tr, W, c}^{k+l}(A, U : B, E_D))) \rightarrow C_{tr, W, c}^{k,l}(A, U : B, E_D), \]
\[C_{c}^{k}(A, V) \times \text{Comp}(U, V, (C_{tr}^{k}(A, U : B, D))) \rightarrow C_{tr}^{k}(A, U : B, D) \]
\[C_{tr}^{k,l,0,-1}(A, V, B, E_D) \times \text{Comp}(U, V, (C_{c}^{k+l+1}(A, U : B, D))) \rightarrow C_{tr}^{k,l,0,-1}(A, U : B, E_D), \]

Similarly as before if we require one more derivative in \(P \) in the \(l \) variable, one gets the Lipschitz property on bounded sets in the space for \(Q \).

Proof. This is a consequence of the previous result using the canonical maps :\(C_{c}^{k+l}(A, V) : B, D) \rightarrow C_{tr, (2,0)}^{k,l,1,2}(A, V : B, E_D), C_{tr}^{k,l}(A, U : B, D) \rightarrow C_{tr, (2,0)}^{k,l,-1,2}(A, V : B, E_D), \) for \(k \geq 2, l \geq 1 \), and \(C_{c}^{k+l+1}(A, U : B, D) \rightarrow C_{tr}^{k,l,0,1}(A, U : B, E_D), \) from Lemma 36.

The last variant for \(C_{c}^{k}(A, U : B, D) \) is easy since it is defined as a subspace with equivalent norm with respect to the previous space (with \(l = 0 \)) and thus a consequence of stability of analytic functions (without expectation) by composition.

An easy computation shows that

\[(49) \quad \sum_{i=1}^{n} \tau(D_{i,X}(P)(E_{D,X})(X)H_i) = \tau(e[d_{X}P(E_{D,X}).(H_1, ..., H_n)]). \]

Note that (49) extends for \(e = 1 \) to \(C_{tr,V}^{k,l;1,2}(A, U : B, E_D), X \in U \) as soon as \(l \geq 1 \).

We will need later the following consequence of Proposition 35.

Lemma 39. Let \(U \subset A_{R,conj}^{n} \).

1. Let \(V \in C_{tr}^{k,l}(A, A_{R,conj}^{n} : B, D) \). For \(g \in B \{ X_1, ..., X_n : E_D, S, \mathbb{C} \}, X = (X_1, ..., X_n) \in A_{R,conj}^{n}, \xi = \partial_{i}^{*}(1 \otimes 1) \in W^{*}(X), i = 1, ..., n \) the conjugate variables of \(X \) relative to \(E_D \) in presence of \(B \), then

\[
(\delta_{\xi}(g))(E_{X,D}) = dg(E_{X,D}).(\xi - \partial_{V}(X_1, ..., X_n)),
\]

and this extends to \(g \in C_{tr, V}^{k,l}(A, U), k \geq 2, l \geq 1 \).

2. Let \(k \in \{0,1,2,3\}, V \in C_{c}^{k+1}(A, A_{R,conj}^{n} : B, D) \). For any \(g \in C_{tr, V}^{k+2,2}(A, U : B, E_D) \), we have \(h = (\Delta_{V} + \delta_{V})(g) \in C_{tr, V}^{k,0,0,-1}(A, U \cap A_{R,conj}^{n} : B, E_D), (\tau g) \in C_{tr, V}^{k+2,1}(A, U \cap A_{R,conj}^{n} : B, E_D) \) and we have equality in \(C_{tr}^{k,0}(A, U \cap A_{R,conj}^{n} : B, E_D) \):

\[
\mathcal{Q} h = (\Delta_{V} + \delta_{V})(\mathcal{Q} g) - \sum_{j=1}^{n} \mathcal{Q}_{j} \partial g \mathcal{Q}_{j} V.
\]

Proof. (1) Because of the norm continuity of the various maps, by density, the first assertion needs only to be checked for \(V = 0 \) and \(g = P \) a monomial. By the standard form of tensor products in extended Haagerup tensor products \([M05], (2.4), (2.5)\), one can even reduce terms in those tensor products to finite linear combinations of products. Thus it suffices to check this on the algebra generated by \(B, X_1, ..., X_n \) where this is then an easy consequence...
of the definition of conjugate variables. The extension to $C^{k,l}_{tr,V}(A,U), k \geq 2, l \geq 1$ is then obvious by norm continuity of the various maps.

(2) We first need to extend (14) to $V \in C^{k+1}_{c}(A, A^n_{R,conj} : B, D)$, still for $g = P \in B_{c}\{X_1, ..., X_n : E_D, R, C\}$. If one uses the notation after this formula extending the definition of $\Delta_V + \delta_V$ to these values of V and notes from the formula (11) for cyclic gradient of compositions above (extended beyond analytic functions since $[\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P)$ is a non-commutative analytic function with expectation and we can use the composition Lemma as in the proof of Proposition 11), one gets the expected relation:

$$D_X, ([\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P))(X, D_V(X)) = (D_X, [\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P))(X, D_V(X))$$

$$+ \sum_{j=1}^{n} (D_{X_1}, D_{Z_j}([\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P))D_{X_j}V(X))$$

$$= ([\Delta_{V_0}(Z) + \delta_{V_0}(Z)](D_{X_1}P))(X, D_V(X)) + \sum_{j=1}^{n} (D_{X_1}, D_{X_j}(P))D_{X_j}V(X)$$

where we used (14) for the extra variables Z to get

$$D_{Z_j}([\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P)) = [[\Delta_{V_0}(Z) + \delta_{V_0}(Z)](D_{Z_j}P) + \sum_{k=1}^{n} D_{Z_j, D_{Z_j}}P D_{Z_k}V_0(Z)$$

$$= D_{Z_j}P$$

since $D_{Z_j}P = 0$ and similarly

$$D_{X_1}([\Delta_{V_0}(Z) + \delta_{V_0}(Z)](P) = [\Delta_{V_0}(Z) + \delta_{V_0}(Z)]D_{X_1}(P)$$

since $D_{X_1}V_0 = 0$.

It now remains to extend the relation in P to apply it to our g.

For the second statement we check that the map $g \mapsto (\Delta_V + \delta_V)(g)$ is bounded for g analytic function with expectation between the spaces

$$\Delta_V + \delta_V : C_{tr,V}^{k,2,2}(A, U : B, E_D) \to C_{tr,V}^{k,0,0,-1}(A, U \cap A^n_{R,conj} : B, E_D),$$

where the identity has just been checked. We need to bound the k-th order free difference quotient of h and ∂h. We of course use ∂g is controlled in $C^{k+2,1}(A, U : B, E_D)$ thus by closability we can apply a k-th order free difference quotients to the relation for ∂h (using Lemma 36 for the term with second order derivative on V). We can also apply a k-th order free difference quotient to the formula for h, each time using the relation for $\delta_V(g)$ in terms of differential. The bounds are now easy using for the term $\partial \delta_V$ the identity checked before in (1) in any representation for δ_V and commutation of ∂ and d. \qed

6.4. Free Difference Quotient with value in extended Haagerup tensor products.

We now consider closability properties of the free difference quotient with value in the extended Haagerup tensor product.

For later uses we consider variants of the spaces considered in subsection 3.3 $A^n_{R,conj_0} = A^n_{R, UltraApp}, A^n_{R,conj} = A^n_{M,conj1}$ with all conjugate variables relative to B, E_D:

$$A^n_{R, conj(1/2)} = \{X \in A^n_{R,conj_0}, \partial_i^*(1\sigma 1) \in L^2(W^*(X)), i = 1, ..., n\},$$

$$A^n_{M, conj_2} = \{X \in A^n_{R,conj}, \partial_i^*(\partial_i^*(1\sigma 1)\sigma 1) \in W^*(X), i = 1, ..., n\}$$
They are motivated by the various cases in the next Lemma:

Lemma 40. Let \(M = W^*(X_1, ..., X_n, B) \) for \((X_1, ..., X_n) \in (A, \tau)\).

1. If \((X_1, ..., X_n) \in (A, \tau)\) have conjugate variables \((\partial_1^*1_01, ..., \partial_n^*1_01) \in L^2(M, \tau)\) relative to \(B, E_D\) then the unbounded densely defined operator

\[
\partial_i : M \to M \overset{\text{eh}}{\otimes} D
\]

is weak-* closable with closure \(\overline{\partial_i}^{\text{eh}}\). Moreover, \(\partial_i1_0D, 1_0D\partial_i\) are weak-* closable \(M \overset{\text{eh}}{\otimes} M \to M \overset{\text{eh}}{\otimes} M \overset{\text{eh}}{\otimes} M\), and the closures are derivations for the natural multiplication:

for \(U \in M \overset{\text{eh}}{\otimes} M, V \in D' \cap M \overset{\text{eh}}{\otimes} M\), with \(U, V \in D(\overline{\partial_i1_0D}^{\text{eh}})\) (resp. \(U, V \in D(1_0D\overline{\partial_i}^{\text{eh}})\)) so is \(U \# V\) and

\[
\overline{\partial_i1_0D}^{\text{eh}}(U \# V) = \overline{\partial_i1_0D}^{\text{eh}}(U)\#_2 V + U\# \overline{\partial_i1_0D}^{\text{eh}}(V).
\]

2. If \((X_1, ..., X_n) \in (A, \tau)\) have conjugate variables \((\partial_1^*1_01, ..., \partial_n^*1_01) \in L^2(M, \tau)\) then \((1_0E_D)\partial_i\) extends to a bounded operator from \(M\) to \(L^2(M, \tau)\) or from \(L^2(M, \tau)\) to \(L^2(M, \tau)\). If moreover \((X_1, ..., X_n) \in (A, \tau)\) have conjugates variables \((\partial_1^*1_01, ..., \partial_n^*1_01) \in M\) and second order conjugate variables \((\partial_1^*(1_0\partial_1^*1_01), ..., \partial_n^*(1_0\partial_n^*1_01)) \in M\) then \((1_0E_D)\partial_i\) extends to a bounded operator on \(L^2(M, \tau)\).

3. If \((X_1, ..., X_n) \in (A, \tau)\) have conjugate variables \((\partial_1^*1_01, ..., \partial_n^*1_01) \in M\) and second order conjugate variables \((\partial_1^*(1_0\partial_1^*1_01), ..., \partial_n^*(1_0\partial_n^*1_01)) \in M\) then the unbounded densely defined operator \(\overline{\partial_i}^{\text{eh}}_{1_1, ..., i_k} : M \to M \overset{\text{eh}}{\otimes} D^{(k+1)}\) is weak-* closable with closure \(\overline{\partial_i}^{\text{eh}}_{1_1, ..., i_k} : L^2(M, \tau) \to L^2(M, \tau)\).

Moreover, for \(k \leq 3\) (resp. \(k \leq 2\)) the conclusions about the \(\text{eh}\) extension and for \(k \leq 2\) (resp. \(k \leq 1\)) for the \(L^2\) extension hold assuming only \((\partial_1^*1_01, ..., \partial_n^*1_01) \in M\) (resp. \(L^2(M)\)).

Finally, if \(F \in C_t^{k,0}(A, A^0_{R,\text{comj}}(1g_1/2+1g_2/2+1g_3/2+1g_4/2))\) \(B, E_D\) and \(|X_i| \leq R\) then \(F(X) \in D(\overline{\partial_i}^{\text{eh}})\) and \(\overline{\partial_i}^{\text{eh}}(F(X)) = [\overline{\partial_i}^{\text{eh}}(F)](X)\)

4. If \((X_1, ..., X_n) \in (A, \tau)\) have conjugate variables \((\partial_1^*1_01, ..., \partial_n^*1_01) \in M\) then \(\partial_i^*\) is a weak-* continuous bounded operator \(D(\overline{\partial_i1_0D}^{\text{eh}} \oplus 1_0D\overline{\partial_i}^{\text{eh}}) \to M\) and if moreover they have second order conjugate variables it extends to a bounded operator \(M \overset{\text{eh}}{\otimes} M \to L^2(M)\).

Proof. (1) Using [Dab15 Prop 14, Th15], we have a canonical weak-* continuous completely contractive map \(M \overset{\text{eh}}{\otimes} M \subset L^2(M)_0D L^2(M)\). Thus closability follows from closability as a map valued in the Hilbert space \(L^2(M)_0D L^2(M)\). The densely defined adjoint is then given by Voiculescu’s formula \(B\langle X_1, ..., X_n\rangle _0D B\langle X_1, ..., X_n\rangle\):

\[
\partial_i^*(a _0D b) = a \overline{\partial_i^*1_01} b - (1_0E_D)(1_01)(\partial_i(a)) b - a(E_D1_01)(\partial_i(b)).
\]
This shows the first result. The reasoning for $\partial_1 \phi_D 1, 1, 0_D \partial_1$ is similar. To check the derivation property it suffices to take bounded nets $U_n \to U, V_n \to V$ and to use the weak-* continuity of $\cdot \cdot_\nu_\nu$, obtained in Proposition 27 from Theorem 23(2) in order to take the limit successively in n, ν of $\partial_1 \phi_D V^h(U_n \#_\nu V_n) = \partial_1 \phi_D V^h(U_n) \#_\nu V_n + U_n \#_\nu \partial_1 \phi_D V^h(V_n)$

(2) The second result is the relative variant of [Dab08, Remark 11, Lemma 12].

(3) The third result then follows similarly from the first using also the second result. It always suffices to show weak-* closability from M (or $L^2(M)$) with value an L^2 tensor product, for which one needs densely defined adjoints with value $L^1(M)$ or $L^2(M)$ respectively.

We detail only the case $k = 2, 3$. From Voiculescu’s formula, for $a, b, c, d \in B(X_1, ..., X_n)$, one deduces:

$$(\partial^2_{i_1, i_2})^*(a \phi_D b \phi_D c) = \partial^*_i (a \phi [b \phi^{-1} (1 \#_{1_1} c) - b E_D \phi 1 \phi^{-1} (c) - 1 \#_{1_1} E_D \phi b (c)])$$

where the second line is in M and the third in $L^2(M)$ by the second point as soon as the first order conjugate variables are in M (resp. both in $L^1(M)$ by the second point as soon as the first order conjugate variables are in $L^2(M)$). This gives the various statements in case $k = 2$.

Likewise, we have:

$$(\partial^2_{i_0, i_1, i_2})^*(a \phi_D b \phi_D c \phi_D d)$$

and the first term is in $L^2(M)$, the second in $L^1(M)$ by the second point and what we just proved, as soon as the first order conjugate variable are in M (resp. both in $L^2(M)$ if we have first and second conjugate variables in M).

The higher order terms are then similar to this last case when we have both first and second conjugate variables in M. All the higher adjoints are then valued in $L^2(M)$ on basic tensors from $B(X_1, ..., X_n)$.

For the compatibility with C^k spaces, the non-commutative analytic functionals are clearly in the domain and the extension by density is straightforward (even with norm instead of weak-* convergence which is used at the analytic function level though).

(4) For the fourth statement the M valued extension only involves application of canonical maps associated to Haagerup tensor product to mimic the formula above. For the second part of the fourth statement, we extend each term of the formula above. First we know that $a \phi_D b \phi_D c \phi_D d \phi_D e \phi_D f \phi_D g$ can be extended to $M \otimes D$ since $\xi_i \in D' \cap M$ (see e.g. [Dab15, Lemma 43(2)]). We next write down explicit bounds for the last $L^2(M)$ valued extension. From the Cauchy-Schwarz inequality for Hilbert modules one gets $(\sum_j a_j \xi_i b_j)^2 \sum_j a_j \xi_i b_j \leq \| \sum_j a_j a_j^* \| (\sum_j b_j^* \xi_i \xi_i b_j)$ so that

$$\| \sum_j a_j \xi_i b_j \| \leq \| \sum_j a_j a_j^* \| \| \xi_i \| \sum_j b_j^* b_j, $$

and moreover

$$\| \sum_j a_j \xi_i b_j \| \leq \| \sum_j a_j a_j^* \| \| \xi_i \| \sum_j b_j^* b_j, $$

75
Likewise we get,
\[\| \sum_j a_j (E_D \partial_i (b_j))^2 \|_2 \leq \| \sum_j a_j a_j^* \| \sum_j \| (E_D \partial_i) (b_j) \|_2^2 \]
\[\leq \| \sum_j a_j a_j^* \| \| (E_D \partial_i) \|_2^2 \sum_j \| b_j \|_2^2 \]
and replacing \(b_j \) by \(a_j^* \), \(a_j \), by \(b_j^* \):
\[\| \sum_j (1 \circ E_D) (\partial_i (a_j) b_j)^2 \|_2 \leq \| \sum_j b_j^* b_j \| \| (E_D \partial_i) \|_2^2 \sum_j \| a_j \|_2^2 \]
giving the last claimed extension (using the canonical expression for elements in the extended Haagerup product in [M05]).

We finally recall Voiculescu’s extension result for free products:

Lemma 41. Assume that the conjugate variables to \(X_1, \ldots, X_n \) exist. Consider the unique extension \(\hat{\partial}_i \) on \(B(X_1, \ldots, X_n, S_t, t > 0) \) of the free difference quotient derivations \(\partial_i \) satisfying the Leibniz rule and \(\hat{\partial}_i (S_t) = 0 \). Then \(\hat{\partial}_i (1 \circ 1) = \partial_i (1 \circ 1) \).

Let \(U \subset \mathcal{A}_n \), \(\mathcal{A} = \mathcal{A} \ast_D (D \otimes \mathcal{W}^* (S_t^{(i)}), i = 1, \ldots, n, t \geq 0) \), and recall that we defined in subsection 2.5, \(U_A = \{ X \in \mathcal{A}_n, X \in U \} \subset \mathcal{A}_n \). Given any inclusion \(i : \mathcal{A} \rightarrow A \) set \(U_A = \{ X \in \mathcal{A}_n, i(X) \in U \} \). If \(U \) is invariant under trace preserving isomorphisms (as will be the case for us), the space \(U_A \) does not depend on the choice of the inclusion \(i \).

For all spaces with cyclic variants here, \(\mathcal{A}_n \) is replaced by \(\mathcal{M} \), with \(\mathcal{M} = \mathcal{W}^* (B, X_1, \ldots, X_n, S_t, t > 0) \) so that Proposition 32 can be applied to all the variables \(X_1, \ldots, X_n, S_t \).

6.5. Conditional expectations and \(C^{k,l} \) functions

Recall the spaces \(C^{k,l}_{tr,v} (A, U : \mathcal{B}, D : \mathcal{J}) \), \(C^{k,l}_{tr} (A, U : \mathcal{B}, D : \mathcal{J}_{\geq u}) \), etc. from subsection 2.5. They are convenient spaces to define semigroups thanks to the following result. The composition maps are variants of the previous subsection and the new conditional expectations are based of the behaviour for extended Haagerup products of free difference quotients of our previous Lemma 40.

Proposition 42. (1) Let \(k, l \) (\(k \geq l \) when required in the definition of the space) and \(U \subset \mathcal{A}_n \) (resp. \(U \subset \mathcal{A}_n \) if \(k \geq 1 \), resp. \(U \subset \mathcal{A}_n \) if \(k \geq 3 \) resp. \(U \subset \mathcal{A}_n \) if \(k \geq 4 \)). Then \(E_B : \mathcal{B} = B \ast_D (D \otimes \mathcal{W}^* (S_t^{(i)}), i = 1, \ldots, n, t \geq 0) \rightarrow B \) gives rise to contractions
\[E_0 : (C^{k,l}_{tr,v} (A, U : \mathcal{B}, E_D : \mathcal{J}), \| \|_{k,l,U}) \rightarrow (C^{k,l}_{tr} (A, U : B, E_D), \| \|_{k,l,U}), \]
\[E_0 : C^{k,l}_{tr,v} (A, U : \mathcal{B}, E_D : \mathcal{J}) \rightarrow C^{k,l}_{tr,v} (A, U : B, E_D), \]
\[E_0 : C^{k,l}_{tr,v} (A, U : \mathcal{B}, E_D : \mathcal{J}) \rightarrow C^{k,l}_{tr,v} (A, U : B, E_D), \]
\[k \geq 2 \]
and likewise for cyclic variants : \(C^{k,l}_{tr,c} (A, U : \mathcal{B}, E_D : \mathcal{J}) \rightarrow C^{k,l}_{tr,c} (A, U : B, E_D), \)
\[C^{k,l}_{tr,c} (A, U : \mathcal{B}, E_D : \mathcal{J}) \rightarrow C^{k,l}_{tr,v,c} (A, U : B, E_D), \]
\[C^{k,l}_{tr,v,c} (A, U : B, E_D). \]
They are also contractions for the seminorms \(\| \|_{k,l,U} \geq 1 \) and \(\| \|_{C^{k,l}_{tr,v} (A, U : \mathcal{B}, E_D : \mathcal{J}), \geq 1} \).
We also have similarly for $u > 0$

$$E_u : C^{k,l}_1(A, U : B, E_D : \mathcal{I}) \to C^{k,l}_1(A, U : B, E_D : \mathcal{I})$$

$$E_u : C^{k,l,x_1,x_2}_1(A, U : B, E_D : \mathcal{I}) \to C^{k,l,x_1,x_2}_1(A, U : B, E_D : \mathcal{I})$$

$$E_u : C^{k,l}_1(A, U : B, E_D : \mathcal{I}) \to C^{k,l}_1(A, U : B, E_D : \mathcal{I})$$

such that $E_0 \circ E_u = E_0$ and $E_0 = E_u \circ \theta'_u = E_0 \circ \theta'_u$.

(2) Moreover, the extension result of Corollary[58] is also valid for any $U \subset A^n_{R,convj_0}, V \subset A^n_{S,conj_0}$ giving composition maps \circ:

$$\circ : C^{k,l}(A, V : B, D) \times \text{Comp}(U, V', C^{k,l}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l}_1(A, U : B, E_D : \mathcal{I}),$$

$$\circ : C^{k,l}_1(A, V : B, D) \times \text{Comp}(U, V', C^{k,l}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l}(A, U : B, E_D : \mathcal{I})$$

(here and in the next also for $(k, l) \in \mathbb{N}^2$),

$$\circ : C^{k,l,0}_1(A, V : B, D) \times \text{Comp}(U, V', C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}),$$

and as in Lemma[56] a map $\iota' : C^{k,l-1}_1(A, U : B, D : \mathcal{I}) \to C^{k,l}_1(A, U : B, E_D : \mathcal{I})$, $\iota' : C^{k,l,0,1}_1(A, U : B, D : \mathcal{I}) \to C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I})$. We also have $\circ (\iota' \circ \iota' \circ \iota' \circ \iota' \circ \iota')$ on the above spaces.

(3) Finally, we also have a similar composition map \circ_u for any $u > 0$ for $(k, l) \in \mathbb{N}^2$:

$$C^{k,l}(A, V : B, E_D : \mathcal{I}_{\geq u}) \times \text{Comp}(U, V', C^{k,l}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l}_1(A, U : B, E_D : \mathcal{I}),$$

$$C^{k,l,0,1}_1(A, V : B, E_D : \mathcal{I}_{\geq u}) \times \text{Comp}(U, V, C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}),$$

$$\epsilon_2 \in \{-1, 0, 1\} \text{ and we have: } (\iota \circ \iota \circ \iota \circ \iota \circ \iota \circ \iota) = (\iota \circ \iota \circ \iota \circ \iota \circ \iota \circ \iota) = E_u(\iota \circ \iota \circ \iota \circ \iota \circ \iota \circ \iota) : C^{k,l}_{1}(A, U : B, E_D : \mathcal{I}) \times \text{Comp}(U, V, C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}))$$

$$\to C^{k,l,0,1}_1(A, U : B, E_D : \mathcal{I}).$$

Proof. By density, it suffices to prove contractivity restricting to the polynomial variant of the space $C^0_{k,l}(U, B(X_1, ..., X_n : D, R))$. But if P is in the partial evaluation

$$\eta_S(B_c \{X_1, ..., X_n, S_{t_1}, ..., S_{t_m} - S_{t_{m-1}} : B, E_D, \max[R, \max_{i=2,n}2(t_i - t_{i-1})C]\}),$$

it is easy to see by definition of free semicircular variables with amalgamation that $E_A(P(E_D, X)) = Q_0(E_D, X)$ for some $Q \in B\{X_1, ..., X_n : B, E_D, R\}$. Q is the same as P where brownian variables are replaced by sums over formal conditional expectations.
More precisely, let $P = \epsilon_{m,\sigma}(P')$, for

$$m \in M_{2k}(X_1, \ldots, X_n, Z_1 = S_{t_1}, \ldots, Z_m = S_{t_m} - S_{t_{m-1}}, Y), \sigma \in NC_2(2k)$$

with $P' \in B^{\otimes |m|+1}$, a typical monomial in the direct sum for analytic functions with expectation in the component indexed by (m, σ). Recall that Y variables and the pairing σ indicate the position of conditional expectations. Let $\pi_m : NC_2(2k + |m|) \to NC(2k)$ the restriction to the indices of Y variables in the monomial $m(X_1 = 1, \ldots, X_n = 1, Z_1, \ldots, Z_m, Y)$ and $\pi_{m,i,k} : NC_2(2k + |m|) \to NC(|m|)_{(Z_i^{(k)})}$, $i = 1, \ldots, m, k = 1, \ldots, n$ the restriction to indices of the variables in position $(Z_i^{(k)})$. Note that this is valued in pair partitions when $(Z_i^{(k)})$ variables are only paired within themselves.

Then, the conditional expectation is obtained by replacing with pairings and conditional expectations the brownian variables in an appropriate way so that we define with for convenience $t_0 = 0$:

$$E_B(P) = Q := \sum_{\pi \in NC_2(2k + |m|)} \epsilon_{m(X_1, \ldots, X_m, Z_1 = Y, \ldots, Z_m = Y, Y), \pi} P' \prod_{i=1}^{m} (t_i - t_{i-1})^{m|z_i|/2},$$

so that the relation above $E_A(P (E_{D,X})(X)) = (E_B(P))(E_{D,X})(X)$, $X \in A^n_R$ is easy to check by definition of free Brownian motions. Note that

$$(\Delta + \delta\Delta)(E_0(P)) = E_0((\Delta + \delta\Delta)(P))$$

(where of course Δ only applies on X_i variables) since, using the definition in the proof of Proposition 35 both expressions correspond to having a supplementary sum over pairs of X_i variables giving a partition not crossing the previous ones and replaced by a formal E.

Using relation (29) with e, H_i in the smaller algebra A, one sees that for $e \in A$,

$$E_A[\mathcal{D}_{i,e}(P)](E_{D,X}(X)) = \mathcal{D}_{i,e}(Q)(E_{D,X}(X))$$

and we can extend this directly to the cyclic gradient of Proposition 31. For $e \in B\{X_1, \ldots, X_n : B, E_D, R\}$ we have

$$E_0[\mathcal{D}_{i,e}(P)] = \mathcal{D}_{i,e}(E_0(P)).$$

Indeed, for e, P monomials, since e has no dependence in S_i’s, there is a bijection between pairs of S_i’s appearing in each monomial after and before applying $\mathcal{D}_{i,e}$. Since cyclic permutations keep non-crossing partitions the result is thus an easy combinatorial rewriting.

It thus remains to check contractivity estimates to extend E_0 to spaces of C^k functions.

For $X \in U$, P as before $\partial_i^h(Q)(E_{D,X})(X) = \partial_i^h [Q(E_{D,X})(X)]$ by Lemma 10 (we only use it when $k \geq 1$, the various conditions on U also when $k \geq 4$ comes from this application), and by duality from Lemma 41 one gets it equals to $\partial_i^h [E_A(P(E_{D,X})(X))] = (E_A^{\partial_i^{h+1}})(\partial_i^h [(P(E_{D,X})(X))])$ and thus one gets by functoriality of Haagerup tensor product:

$$\|\partial_i^h (E_0(P))(X)\|_{A^{\partial_i^{h+1}}} \leq \|\partial_i^h (P))(X)\|_{A^{\partial_i^{h+1}}}. $$

Here it is crucial to note that for all cyclic variants that by Proposition 28 (3) if $\square_i^h [(P(E_{D,X})(X))]$ is in a cyclic extended Haagerup tensor product, it remains there after application of $(E_A^{\partial_i^{h+1}}).$
Likewise, the full differential commute with conditional expectation (which is a linear bounded map, we thus get the bound for all parts of the seminorm involving free difference quotients and full differentials. We thus proved contractivity on $C_{tr}^{k,l}$-spaces.

Since $(\Delta_V + \delta_V)(P) = (\Delta_0 + \delta_\Delta)(P) + d_X P.(\mathcal{D}_1 V, ..., \mathcal{D}_n V)$ the previous results give $(\Delta_V + \delta_V)(E_B(P)) = E_B((\Delta_V + \delta_V)(P))$ so that since in this case $k \geq 2$, the choice of the seminorm chosen with this term is compatible with contractivity. The contractivity of the term with cyclic gradients is also easy with the previous established commutation relation, so that one gets the stated contractivity on $C_{tr}^{k,l}$-spaces. Obtaining multiplication maps is as easy as before in this context and by arguments of stability of subspaces for C_{c}^{k}-spaces.

The variant E_u and its relations are obvious. \hfill \Box

6.6. Regular Change of variables for Conjugate variables. The computation of conjugate variables along change of variables we used to identify conjugate variables of our transport maps are explained in the next Lemma 43 with the differentiation along a path of such change of variables.

Let $M = W^*(X_1, ..., X_n, B)$ for $(X_1, ..., X_n) \in (A, \tau)$. We will soon assume those variables have enough conjugate variables relative to D in presence of B.

Lemma 43. Assume $W^*(B, X_1, ..., X_n) = M$ is such that $X \mapsto \langle e_D, X \# e_D \rangle$ is a trace on $D' \cap M \otimes M$.

Let $(X_1, ..., X_n) \in U' \subset A_{S, conj}^n, S > 0$ and thus have conjugates variables $(\partial_1^* 1 \otimes 1, ..., \partial_n^* 1 \otimes 1) \in M^n$ relative to B, E_D. Take $F = F_\ast \in (C_{tr,c}(A, U'))^n, with k \geq 2$.

Then $(Y_1, ..., Y_n) = F(X_1, ..., X_n)$ have conjugate variables in M as soon as $\|1 - F\|_{M_n(M \otimes_{D,c} M)} < 1$, with $(F)_{ij} = \partial_{j,X} Y_i$. Moreover, we have, setting $C(F) = \frac{1}{1 - \|1 - F\|_{M_n(M \otimes_{D,c} M)}}$:

\[
\|\partial_{j,X} 1 \otimes 1\| \leq C(F) \|\partial^*_j 1 \otimes 1\| + C(F)^2 \sum_{k \neq j} \|\sigma[(F)_{kj}]\| \|M \otimes_{D,c} M\| \sum_{k \neq j} \|\partial_{k,i}^* 1 \otimes 1\|
\]

\[
\quad + C(F)^2 \sum_{k,l,m \in \{1, n\}, (\epsilon, \eta) \in \{(1, 0), (0, 1)\}} \|1^{\epsilon \delta_D^{*} \partial_D \partial_k \partial_D \delta_D^{*} \eta^{* \epsilon}_{\partial_D} \partial_D \eta^{* \epsilon}_{\partial_D}}(\sigma[(F)_{lm}])\|_{M^D_{\otimes \epsilon, \eta}}.
\]

Proof. This proof is a variant relative to D of Lemma 3.1 in [GSI2].

Take $P \in B(X_1, ..., X_n, D, R, C), R \geq \max(S, \sup_{X \in U'} \|F_i(X)\|)$, then $P(Y)$ satisfies the natural extension of formula (45) from the proof of Lemma 43 and so we get the equation in $D' \cap M \otimes D$:

\[
\partial_{i,X} P(Y) = \sum_{j=1}^n (\partial_j(P))(Y) \# \partial_{i,X} Y_j.
\]
Note that from the assumption on \((\mathcal{F})_{ij}\) one deduces that \(\mathcal{F}\) is invertible in \(M_n(M \otimes M)\) so that one gets:

\[\partial_i(P)(Y) = \sum_{j=1}^{n} \partial_{jX} P(Y) \# [(\mathcal{F})^{-1}]_{ji}. \]

Thus applying the weak-* continuity of Theorem 23 (2) to introduce \(E_{D'}\) (and then remove it in the next-to-last line), the assumed traciality and applying (36) to \(X = [(\mathcal{F})^{-1}]_{ji}^{*}, Y = E_{D'}(\partial_{jX} P(Y))\), we get:

\[
\langle e_D, (\partial_i(P))(Y) \# e_D \rangle = \sum_{j=1}^{n} \langle e_D, E_{D'}(\partial_{jX} P(Y)) \# [(\mathcal{F})^{-1}]_{ji} \# e_D \rangle \\
= \sum_{j=1}^{n} \tau([(\mathcal{F})^{-1}]_{ji}^{*}E_{D'}[\partial_{jX} P(Y)]) \\
= \sum_{j=1}^{n} \langle (\mathcal{F})^{-1}]_{ji} \# e_D, E_{D'}[\partial_{jX} P(Y)] \# e_D \rangle \\
= \sum_{j=1}^{n} \langle (\mathcal{F})^{-1}]_{ji}^{*} \# e_D, \overline{\partial_{jX}}^{L^2}(P(Y)) \rangle.
\]

Thus if we check that \([(\mathcal{F})^{-1}]_{ji}^{*} \# e_D \in D(\overline{\partial_{jX}}^{*})\) we will deduce the existence of the conjugate variable and the equality

\[\partial_{iX}^{\star}(1\# 1) = \sum_{j=1}^{n} \partial_{jX}^{\star}([(\mathcal{F})^{-1}]_{ji}) \# e_D]. \]

Note that in any representation with \(X \in U\) as above

\[\overline{\partial_{iX}}^{\star} F_j(X) = [(\partial_{iX}(\chi(F)))(X) = [(\partial_{iX}(\chi(F))^{*}](X) = (\partial_{iX}(\chi(F))^{*}^{*}](X) = (\partial_{iX})^{*} F_j(X) \]

where the last \(\ast\) is the one of \(M_n \otimes M\), and one uses natural properties of evaluation extended using the one on polynomials since \(X \in A_{S,UltraApp}'\).

Now, since \((\mathcal{F})_{ij} \in M_n \otimes M\) one can note that \(\sigma(\mathcal{F}_{ij})\) is well defined in \(D' \cap M_n \otimes M\) and \((\mathcal{F})_{ij} = \sigma[(\mathcal{F})_{ij}] = \sigma((\mathcal{F})_{ij})\) \((X)\) and thus from Lemma 40 (3), the assumption \(\sigma((\mathcal{F})_{ij}) \in D(\overline{\partial_{iX}}^{\star} + \overline{\partial_{jX}}^{\star})\), Neumann series and from the derivation property in (1) of the same Lemma, one gets as expected

\[\overline{\partial_{iX}}^{\star}[(\sigma(\mathcal{F}))^{-1}]_{ij} = - \sum_{i,m} (\sigma(\mathcal{F})_{ij}^{\star}) \# [\overline{\partial_{iX}}^{\star}((\sigma(\mathcal{F}))_{jm}) \# 2(\sigma(\mathcal{F}))^{-1}]_{mj}. \]

Thus from part (4) of the same Lemma, one gets that \(\partial_{iX}^{\star}(1\# 1)\) exists and is in \(M\) and the expected bound easily follows from the proof of this statement giving the appropriate
Lemma 44. If we assume the Assumption of Lemma 7 with

$$[(\sigma(\mathcal{J}F)^{-1})_{ji}] \# \partial_j X^*(1\otimes 1)$$

$$= \sum_{N=1}^{\infty} \sum_{n=0}^{N-1} \sum_{k \neq i} [(\sigma(\mathcal{J}F - 1)^{N-n})_{jk}] [\sigma(\mathcal{J}F)]_{kk} \# [\sigma(\mathcal{J}F - 1)_{ii}]^n \# \partial_j X^*(1\otimes 1).$$

\[\square \]

6.7. Various continuity properties. We start by checking the continuity in \(\alpha \) of our various maps. Recall that \(A_{R/3}^n \subset A_{R,\alpha}^n \) independently of \(\alpha \in [0, 1] \).

Lemma 44. If we assume the Assumption of Lemma 7 with \(V,W \in C_{c, 2}^k(A, 2R : \mathcal{B}, D), U \subset A_{R/3}^n \), then \(X : \alpha \mapsto X_t(\alpha) \) is continuous on \([0, 1]\) with value \(C^0([0, T], C_c^k(A, U : \mathcal{B}, D : \mathcal{I})) \).

Proof. For the continuity in \(\alpha \) of \(X \), we have:

$$X_t(\alpha) - X_t(\alpha') = -\frac{1}{2} \int_0^t du [\mathcal{D}_\alpha - \mathcal{D}_{\alpha'}](X_u(\alpha'))$$

$$- \frac{1}{2} \int_0^t du \left[\int_0^1 d\beta \mathcal{D}_\alpha(\beta X_u(\alpha) + (1 - \beta)X_u(\alpha')) \right] \# [X_u(\alpha) - X_u(\alpha')]$$

Using the argument in Lemma 4 with \(\partial \mathcal{D}_\alpha(X_u) \) replaced by

$$\left[\int_0^1 d\beta \partial \mathcal{D}_\alpha(\beta X_u(\alpha) + (1 - \beta)X_u(\alpha')) \right] \geq c\text{Id},$$

with the positivity coming since our notion of positivity is a closed convex cone, one gets:

$$\|X_t(\alpha) - X_t(\alpha')\| \leq e^{-ct/2} \int_0^t du c\| \mathcal{D}_\alpha - \mathcal{D}_{\alpha'} \| (X_u(\alpha'))^2 \|^{1/2}$$

This converges uniformly on \([0, T]\) to 0 when \(\alpha \to \alpha' \) using the corresponding continuity of \(V_\alpha \).

Similarly, one gets bounds inductively using (24) in decomposing the higher order term

$$\partial_j \mathcal{D}_\alpha(X_u(\alpha)) \# (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha)) - \partial_j \mathcal{D}_{\alpha'}(X_u(\alpha')) \# (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha')$$

$$= (\partial_j \mathcal{D}_\alpha - \partial_j \mathcal{D}_{\alpha'})(X_u(\alpha)) \# (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha))$$

$$+ [\partial_j \mathcal{D}_\alpha(X_u(\alpha)) - \partial_j \mathcal{D}_{\alpha'}(X_u(\alpha'))] \# (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha))$$

$$+ (\partial_j \mathcal{D}_{\alpha'}(X_u(\alpha')) \# (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha)) - (\partial^k_{j_1, \ldots, j_k})X_u^{(j)}(\alpha'))$$

The last line is treated by Lemma 4, the first line and lower order terms tend to zero uniformly on compact by continuity of \(\alpha \mapsto V_\alpha \) or inductively, in the second line (and corresponding terms for lower order terms), \(V_\alpha \) is approximated (uniformly in \(\alpha \)) by analytic functions to get a Lipschitz function, and use the previous bound on \(\|X_t(\alpha) - X_t(\alpha')\| \). Note that the Lipschitz property could have been treated by explicit bounds on derivatives except for the lowest order term having highest derivative in \(V \), namely \(k + 2 \), for which it is crucial that our definition of \(C_{c, 2}^k \) imply a uniform continuity of the highest derivative via uniform approximation by analytic functions as explained. This concludes the uniform convergence statement in \(\alpha \). \[\square \]
We also obtain the corresponding result for semigroups.

Lemma 45. If we assume the Assumption of Proposition \[46\] with \(V, W \in C_{c}^{k+1+2}(A, 2R : B, D)\) \((k \in \{2, 3\}, l \geq 1)\) then for every \(T > 0\) each \(P \in C_{c}^{k+1}(A, A_{R, \text{conj}}^{n} : B, E_{D}),\) \(\phi'(P) : \alpha \mapsto \phi'(P)\) is continuous on \([0, 1]\) with value

\[C_{0}([0, T], C_{tr,V_{0}}^{k,l}(A, A_{R/3, \text{conj}}^{n} : B, E_{D})).\]

Proof. Recall that \(C_{tr,V_{0}}^{k,l}(A, A_{R/3, \text{conj}}^{n} : B, E_{D}) = C_{tr,V_{0}}^{k,l}(A, A_{R/3, \text{conj}}^{n} : B, E_{D})\) with equivalent norms for \(k \geq 2, l \geq 1.\) The result follows by composing the composition map and expectations of Proposition \[42\] with our previous Lemma since for \(X \in A_{R/3, \text{conj}}^{n}, X_{t}(X) \in A_{R, \text{conj}}^{n}\) for all \(t\) so that the composition condition is satisfied. \(\square\)

6.8. **Conjugate variables along free SDE’s.** The following result is an adaptation in free probability of (a special case of) Lemma 4.2 in [RT02], except that we have to use Ito Formula for the proof instead of Girsanov Theorem, not (yet) available in free probability. This is also an extension to our new classes of \(C^{2}\) functions of a result first explained by the first author in [Dab10a].

Proposition 46. Assume the Assumption of Proposition \[45\](a) with \(V \in C_{c}^{l}(A, R : B, D)\). Assume moreover that, for \(M = W^{*}(B, X_{0})_{*_{D}}(D \otimes W^{*}(S_{t}, t > 0), \tau = \langle e_{D}, \# e_{D} \rangle\) is a trace on \(D \cap M^{\text{lt}} \otimes M\) as in the conclusion of Theorem \[24\](3) and Proposition \[28\](2).

Consider on \([0, T]\) the unique solution obtained there:

\[X_{t}(X_{0}) = X_{0} + S_{t} - \frac{1}{2} \int_{0}^{t} V(X_{u}(X_{0})) du\]

Then \(X_{1}^{1}, ..., X_{n}^{n}\) have bounded conjugate variables in presence of \(B\) relative \(E_{D},\) and the corresponding i-th conjugate variable is given by

\[\xi_{s}^{i} = \frac{1}{s} E_{W^{*}(B, X_{1}^{1}, ..., X_{2}^{2})} \left(X_{s}^{i} - X_{0}^{i} - \int_{0}^{s} dt \frac{t}{2} F_{s} V(X_{t}^{1}, ..., X_{t}^{n}) \right) + \frac{1}{2} \partial_{s} V(X_{s}^{1}, ..., X_{s}^{n}),\]

where for \(W \in C_{c}^{l}(A, R : B, D)\) we defined:\(F_{W}(X) = \frac{1}{2} \Delta_{V}(W)(X)\).

Proof. Step 1 : Obtaining a differential equation from Ito formula.

We have to prove that \(\tau(\langle 1_{0}D, \partial P(X_{t}^{1}, ..., X_{t}^{n}) \rangle) = \tau(\xi_{s}^{1} P(X_{s}^{1}, ..., X_{s}^{n}))\) for an ordinary \(B\)-non-commutative polynomial \(P\) (in the algebra generated by \(B, X_{1}^{1}, ..., X_{n}^{n}\)). Let us write \(\delta_{s}\) the following (Malliavin) Derivation operator defined on \(B\)-non-commutative polynomials in \(X_{s}^{i}\)’s (as usual one can assume them algebraically free without loss of generality):

\[\delta_{s}(P(X_{s}^{11}, ..., X_{s}^{1n})) = \sum_{j} (\partial_{s})^{j}(P)(X_{s}^{11}, ..., X_{s}^{1n})(s \wedge s_{j}),\]

where \(\partial_{s}\) is the \(B - E_{D}\)-free difference quotient in the \(j\)-th variable for \(P\) (sending \(X_{s}^{ij}\) to \((1_{0}D)_{i}\), having only an \(i_{j}\)-th non-zero component). Obviously, \(\delta_{s} P(X_{t}^{1}, ..., X_{t}^{n}) = t \delta P(X_{t}^{1}, ..., X_{t}^{n})\) so that it suffices to show:

\[\tau(\langle 1_{0}D, \delta P(X_{t}^{1}, ..., X_{t}^{n}) \rangle) - \tau(\Xi_{s} P_{s}) = 0,\]
for $\Xi^i_s = X^i_t - X^i_0 - \int_0^t dt \frac{1}{2} F_{\partial_i V}(X^1_s, ..., X^n_s) + \frac{s}{2} \partial_i V(X^1_s, ..., X^n_s)$, and any non-commutative polynomial $P_s = P(X^1_s, ..., X^n_s)$. We will first prove using Ito formula a differential equation for the above differences.

Applying Ito formula, one gets (∂_j the ordinary difference quotient):

$$P_t = P(X^1_t, ..., X^n_t) = P(X^1_0, ..., X^n_0) + \int_0^t ds \frac{1}{2} \Delta_V(P)(X^1_s, ..., X^n_s)$$

$$+ \int_0^t \partial(P)(X^1_s, ..., X^n_s) \#dS_s.$$

Let us write for short $\beta_s = \frac{1}{2} \Delta_V(P)(X^1_s, ..., X^n_s)$.

Thus, let us compute likewise:

$$\tau(P_t(X^i_t - X^i_0)) = \int_0^t ds \tau(P_s(-\frac{1}{2} \partial_i V(X_s)) + \beta_s(X^i_s - X^i_0) + \langle 1 \phi D1, \partial_i(P)(X^1_s, ..., X^n_s) \rangle_{B(X)}).$$

$$\tau(P_t \partial_i V(X_t)) = \int_0^t ds \tau(P_s \partial_i V(X_s) + P_s s F_{\partial_i V}(X^1_s, ..., X^n_s) + \beta_s s \partial_i V(X_s))$$

$$+ \int_0^t ds \tau((\partial(P^*)(X^1_s, ..., X^n_s), \partial(s \partial_i V(X_s)))).$$

Thus

$$\tau(P_t \Xi^i_t) = \int_0^t ds \left(\tau(\beta_s \Xi^i_s) + \tau(\langle 1 \phi D1, \partial_i(P)(X^1_s, ..., X^n_s) \rangle))

- \int_0^t ds \tau((\partial(P^*)(X^1_s, ..., X^n_s), \partial(\frac{s}{2} V_i(s, X_s)))).$$

Using similarly Ito’s formula on tensor products:

$$\tau((\langle 1 \phi D1 \rangle_i, \delta_i P)) = \int_0^t ds \tau((\langle 1 \phi D1 \rangle_i, \partial_i(P)(X_s))_{L^2(B(X_s), E_D)})$$

$$+ \frac{s}{2} \tau((\langle 1 \phi D1 \rangle_i, (\Delta_V \phi 1 + 1 \phi \Delta_V) \partial P(X_s)))$$

$$= \int_0^t ds \tau((\langle 1 \phi D1 \rangle_i, \partial_i(P)(X_s))_{L^2(B(X_s), E_D)})$$

$$+ \tau((\langle 1 \phi D1 \rangle_i, \delta_i \beta_s - \sum_j \partial_j(P(X_s)) \# \frac{1}{2} \delta_s \partial_j V(X_s)))$$

where we used the elementary relation applied to a polynomial P:

$$(\Delta_V \phi 1 + 1 \phi \Delta_V) \partial(\cdot) = \partial \Delta_V(\cdot) - \sum_j \partial_j(\cdot) \# \partial \partial_j V.$$

But of course we can use the fundamental property for cyclic gradients $\partial_i \partial_j V(X_s) = \rho(\partial_j \partial_i V(X_s)) = (\partial_j \partial_i V(X_s))^*$ with the rotation $\rho(\alpha \phi b) = b \alpha \phi$ extended to cyclic Haagerup
tensor products and using $V = V^*$. Thus, one gets:

$$
\tau(((1_D 1) \otimes \sum_j \partial_j (P(X_s)) \# \delta_s \mathcal{D} V(X_s))) = \sum_j s \tau(((1_D 1), \partial_j (P(X_s)) \# (\partial_j \mathcal{D} V(X_s))^*))
$$

Rewritten with the notation of Theorem 21 so that one can use our traciality assumption, this is

$$
\sum_j s \langle e_D, \partial_j (P(X_s)) \# (\partial_j \mathcal{D} V(X_s))^* \# e_D \rangle
$$

$$
= \sum_j s \langle e_D, E_D (\partial_j (P(X_s))) \# (\partial_j \mathcal{D} V(X_s))^* \# e_D \rangle
$$

$$
= \sum_j s \langle e_D, (\partial_j \mathcal{D} V(X_s))^* \# E_D (\partial_j (P(X_s))) \# e_D \rangle
$$

$$
= \sum_j s \langle (\partial_j \mathcal{D} V(X_s))^* \# e_D, \partial_j (P(X_s)) \# e_D \rangle
$$

Note that we introduced in the second line the projection on the commutant using the
weak-* continuity obtained in Theorem 23. In the next-to-last line, after using traciality,
we used (36). In the last line we removed the conditional expectation using the fact that
weak-* continuity obtained in Theorem 23. Finally, we have ($\partial_j (P(X_s))^* = \partial_j (P^*(X_s)) \# e_D$
and $[\partial_j \mathcal{D} V(X_s)) \# e_D]^* = (\partial_j \mathcal{D} V(X_s)) \# e_D$)$V = V^*$ and thus

$$
\langle (\partial_j \mathcal{D} V(X_s))^* \# e_D, \partial_j (P(X_s)) \# e_D \rangle = \langle \partial_j (P^*(X_s)) \# e_D, (\partial_j \mathcal{D} V(X_s))^* \# e_D \rangle.
$$

We have thus obtained:

$$
\tau(((1_D 1) \otimes \delta_t P(X_1^1, ..., X_n^m))) = \int_0^t ds \tau(((1_D 1), \delta_t P(X_1^1, ..., X_n^m)))
$$

$$
+ \int_0^t ds \tau(((1_D 1) \otimes \delta_s \beta_s \delta_s)) - \int_0^t ds \tau(\partial (P^*) (X_1^1, ..., X_n^m), \delta_s V(s, X_s))
$$

Summing up, we have obtained our “differential equation”:

$$
(54) \quad \tau(P_t \Xi_s) - \tau(S_i, \delta_t P(X_1^1, ..., X_n^m))_{B(X_s)} = \int_0^t ds \tau(\beta_s \Xi_s) - \tau(S_i, \delta_s \beta_s)_{B(X_s)}.
$$

Step 2: Case with $V \in B(X_1, ..., X_n : D, R, \mathbb{C})$ of finite degree $p + 1$ (i.e. “usual”
polynomial with all terms in the ℓ^1 direct sum of order higher than $p + 2$ vanishing).

Let us write

$$
M_n := n \max_i \| \mathcal{D} V \|_{B(X_1, ..., X_n : D, 1, \mathbb{C})} = E_n.
$$

Let p be the maximum degree of $\mathcal{D} V$. Let $R \geq \sup \{ s \in [0, T], i \| X_i^i \| \}$.

Let $M_n := M_n + 2n(\frac{R^p}{R^{p+1}-1})^2 = D_n$. Finally, let θ a time such that for all monomials P, all
$t \leq \theta$ we have already established what we want (for instance at the beginning $\theta = 0$):

$$
\tau(P_t \Xi_s) - \tau(S_i, \delta_t P(X_1^1, ..., X_n^m))_{B(X_s)} = 0.
$$
Let us show quickly using \([54]\) that for \(P\) monomial of degree less than \(n = kp\) (with coefficient in extended Haagerup norm less than 1 i.e. of norm less that 1 in \(B(X_1, ..., X_n : D, 1, \mathbb{C})\)), we have for \(t \geq \theta\) (since by definition the left hand side is 0 before):

\[
\tau(P_i \Xi_t) - \tau(\langle S_t, \delta_t P(X_1^t, ..., X_n^t) \rangle_{B(X_t)}) \leq \frac{(t - \theta)^l(C + pT)F^l(k + 2l)^{2l+1}R^{(k+l)p}}{2^l(l!)^2} =: A_l(t, k),
\]

where \(C = sup_{[0,T]} ||\Xi_t|| < \infty\) and \(F = \max \left(\frac{p^2}{\theta}, Ep\right)\).

We prove this by induction on \(l\). Initialization at \(l = 0\) is obvious by boundedness of \(X_t\) by \(R \geq 1\).

To prove induction step, note that \(\beta_s = \frac{1}{2} \Delta_V(P)(X_s^1, ..., X_s^n)\) contain two types of terms. The term coming from the first order part is a finite sum monomials of degree less than \((k + 1)p\). Each of these terms will be bounded by the induction Assumption at level \(l\) by \(A_l(s, k + 1)\) times the norm of the coefficient in the extended Haagerup tensor product, which all sums up to \(max_i ||\partial V||_{B(X_1, ..., X_n : D, 1, \mathbb{C})} \leq M_{\Theta/s}/n = E\). Finally the number of sums due to derivation can always be crudely bounded by \(n = kp\), the degree of \(P\). We thus obtain a bound \(FkA_l(s, k + 1)\) for this first order term.

The other terms come from the second order derivative, we have of course at most \(n(n - 1)/2\) pairs of terms selected by the derivative, but we have to pay attention to their degrees. For sure we have at most \(n\) terms with a given space \(l \leq n\) between the two \(1 \Theta 1\) inserted by the derivative, in that case the degree is at most \(kp - l\) after taking the conditional expectation \(E_D\), and we have a bound by \(R^l\) to bound the coefficient induced by this conditional expectation (corresponding to the variables \(X_s\) inside, below \(E_D\)). Let us gather terms by taking only into account the integer part \(i\) of \(l/p\). We have thus at most \(np\) terms with such an integer part, all of degree at most \((k - i)p\), with \(R^{(k - i)p}\) plus a factor \(1, R, ..., R^{p-1}\) depending of the exact degree in the group. At the end one thus gets :

\[
\tau(P_i \Xi_t) - \tau(\langle S_t, \delta_t P(X_1^t, ..., X_n^t) \rangle_{B(X_t)}) \leq \int_\theta^t \sum_{i=0}^k A_l(s, i)kR^{(k - i)p}F^lR^p.
\]

We have just used our induction Assumption and we reorder a bit our expression to factorize powers of \(R\) and replace \(A_l\) by its value to get:

\[
\tau(P_i \Xi_t) - \tau(\langle S_t, \delta_t P(X_1^t, ..., X_n^t) \rangle_{B(X_t)}) \leq FkR^{(k+1)} \int_\theta^t \sum_{i=0}^k A_l(s, i) \frac{1}{R^{pi}} + \sum_{i=0}^k A_l(s, i) \frac{1}{R^{pi}}.
\]

\[
\leq FkR^{(k+1+l)} \int_\theta^t \sum_{i=0}^{k+1} \frac{(i + 2l)^{2l+1}(s - \theta)^l(C + pT)F^l}{2^l(l!)^2}.\]
We can now use an easy comparison to integral of a Riemann sum.
\[
\sum_{i=0}^{k+1} (i + 2l)^{2l+1} \leq \sum_{i=1}^{k+1+2l} t^{2l+1} \leq \frac{(k + 2 + 2l)^{2l+2}}{2l+2}.
\]

Computing the integral, we therefore proved:
\[
\tau(P_i, \Xi_t^i) - \tau((S, \delta_t P(X_1, ..., X_n))_{B(\mathcal{X})}) \\
\leq FkR^{p(k+1+l)}(k + 2 + 2l)^{2l+2} (t - \theta)^{1+k}(C + pT)^{2l} \leq A_{l+1}(t, k).
\]

Let us finally estimate
\[
A_l(t, k) = 2l(C + pT)R^{kp}\frac{(k/2l) + 1}{(l)^2}(4R^p F(t - \theta)/2)^l.
\]

Note that
\[
((k/2l) + 1)^{2l+1} \leq \exp((2l + 1)k/2l) \leq \exp 2k
\]
and by Stirling’s formula
\[
(l)^{2l}/(l!)^2 \sim e^{2l}/(2\pi l)
\]
we conclude that as soon as \(4R^p F(t - \theta)e^2/2 < 1\), i.e. when \(t - \theta < 2/e^24R^p F\) (independent of \(k\)), \(A_l(t, k) \rightarrow_{t \rightarrow \infty} 0\), so that one easily deduces by induction one can take \(\theta = T\).

Step 3 : Case of general \(V\).

Take a sequence \(V_n\) as in step 2 converging to \(V\) in \(C^4_c(A, R : B, D)\). Note that we can assume the \(V_n\) to be \((c', R)\) h-convex for some \(c' < c\). Let us write \(X_t(V_n), X_t(V)\) the solutions given by Proposition 5 and call \(\Xi_t(V_n), \Xi_t(V)\) the formulas from step (1) and let us show that
\[
\sup_{t \in [0, T]} \max(||X_t(V_n) - X_t(V)||, ||\Xi_t(V_n) - \Xi_t(V)||) \rightarrow_{n \rightarrow \infty} 0.
\]

This is roughly the same argument as in the previous subsection for continuity in \(\alpha\). Note that
\[
X_t(V_n) - X_t(V) = -\frac{1}{2} \int_0^t du[\partial V_n - \partial V](X_u(V)) \\\n- \frac{1}{2} \int_0^t du \left[\int_0^1 d\beta \partial \partial V_n(\beta X_u(V_n) + (1 - \beta)X_u(V))\right] (#[X_u(V_n) - X_u(V)]).
\]

Using the argument in Lemma 4 with \(\partial \partial V_n(X_u)\) replaced by
\[
\left[\int_0^1 d\beta \partial \partial V_n(\beta X_u(V_n) + (1 - \beta)X_u(V))\right] \geq c'Id,
\]
with the positivity coming since our notion of positivity is a closed convex cone, one gets:
\[
||X_t(V_n) - X_t(V)|| \leq e^{-c't/2} \int_0^t due^{c'u/2}[\partial V_n - \partial V](X_u(V))^2)^{1/2}
\]
This converges uniformly on \([0, T]\) to 0 when \(n \rightarrow \infty\) using the corresponding limit \(V_n \rightarrow V\) and the a priori bounds on the norm of the process \(X_u(V)\) on \([0, T]\). (Doing this for small \(T\) first, this in particular ensures a bound for \(X_t(V_n)\) for \(t\) huge enough without assuming the
assumption of Proposition 3(b) for ν_n.) The convergence of $\Xi(V_n)$ is then straightforward by the explicit formula. We can then take the limit in the conjugate variable equation to conclude.

6.9. Examples of h-convex potentials. We first produce an elementary example in 1 variable.

Lemma 47. If $v(X_1) = \mu X_1^2 + \lambda X_1^3 + \nu X_1^4 \in \mathbb{C}(X_1, ..., X_n) \subset B_{\nu}(X_1, ..., X_n; D, R, \mathbb{C})$ for $\nu > 0, \lambda^2 \leq 8\mu \nu/3$, then for any $B, D, v = v^* \in C^2_\nu(A, R : B, D)$ is $(0, R)$-convex for any R.

Proof. From the computation on algebraic tensor products inside cyclic tensor products, in the proof of Proposition 28, it is clear that $v(X_1) \in B_{\nu}(X_1, ..., X_n; D, R, \mathbb{C})$. Note that

$$H(X_1) = \partial_1 \mathcal{D}_1 v$$

$$= \nu(X_1^2 \otimes 1 + 1 \otimes X_1 + 1 \otimes X_1^2) + \lambda(X_1 \otimes 1 + 1 \otimes X_1) + \mu 1 \otimes 1$$

$$= \left(X_1 + \frac{\nu}{2\nu}\right)^2 \otimes 1 + \frac{\nu}{2} \otimes \left(X_1 + \frac{\lambda}{2\nu}\right)^2 + \frac{\nu}{2} \left(X_1 \otimes 1 + 1 \otimes X_1 + \frac{\lambda}{2\nu} \otimes 1\right)^2$$

$$+ \left(\mu - \frac{3\lambda^2}{8\nu}\right) 1 \otimes 1.$$

Thus let $B \subset (M, \tau)$, fix $X_1 = X_1^* \in D' \cap M$ and let us observe that

$$e^{-tH(X_1)} = \sum_{k=0}^{\infty} \frac{(-t\nu)^k}{k!} e^{-t(\nu X_1^2 + \lambda X_1 + \mu/2)} (X_1^k \otimes X_1^k) e^{-t(\nu X_1^2 + \lambda X_1 + \mu/2)}$$

belongs to $M \overset{h}{\otimes} M \subset M \overset{eh}{\otimes} M$.

Of course, the sum even converges in a projective tensor product, and we want to estimate its norm. Recall that

$$M \overset{eh}{\otimes} M \subset CB_{M', M^\nu}(D' \cap B(L^2(M)), B(L^2(M)) \subset CB(B(L^2(M)), B(L^2(M))$$

completely isometrically.

We now get an alternative integral formula. For convenience, we let

$$Y_1 = \left(X_1 + \frac{\lambda}{2\nu}\right) \frac{\sqrt{\nu}}{\sqrt{2}}.$$

Using Cauchy product formula of absolutely converging series, one gets:

$$e^{-tH(X_1)} = e^{-\left(-\frac{\nu X_1^2}{8\nu}\right)} e^{-\nu Y_1^2} \sum_{k=0}^{\infty} \frac{(-t\nu)(X_1 \otimes 1 + 1 \otimes X_1 + \frac{\lambda}{2\nu})^2/k!}{k!} e^{-\nu Y_1^2}$$

$$= e^{-t\left(-\frac{\nu X_1^2}{8\nu}\right)} \int_{\mathbb{R}} \frac{d\sigma}{\sqrt{2\pi}} e^{-\nu Y_1^2} \sum_{k=0}^{\infty} \frac{i \sqrt{2\nu \sigma}(X_1 \otimes 1 + 1 \otimes X_1 + \frac{\lambda}{2\nu})^k}{k!} e^{-\nu Y_1^2}$$

$$= \frac{e^{-t\left(-\frac{\nu X_1^2}{8\nu}\right)}}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{d\sigma}{\sqrt{2\pi}} e^{-\nu Y_1^2} e^{i \sqrt{2\nu \sigma}(X_1 \otimes 1 + 1 \otimes X_1 + \frac{\lambda}{2\nu})} e^{-\nu Y_1^2}$$

$$= \frac{e^{-t\left(-\frac{\nu X_1^2}{8\nu}\right)}}{\sqrt{2\pi}} \int_{\mathbb{R}} \frac{d\sigma}{\sqrt{2\pi}} e^{-\nu Y_1^2 + i \sqrt{2\nu \sigma}(X_1 + \frac{\lambda}{2\nu})} e^{-\nu Y_1^2 + i \sqrt{2\nu \sigma}(X_1 + \frac{\lambda}{2\nu})},$$
where the second line is obtained using moments of standard gaussian variables (and Fubini Theorem). Using Hermite polynomials $H_n(x) = \frac{(-1)^n}{\sqrt{n!}} e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}$ as orthonormal basis, and $\xi_i \in L^2(M)$, one obtains by using the orthogonal decomposition in $L^2(d\gamma), d\gamma(\sigma) = e^{-\sigma^2/2} d\sigma/\sqrt{2\pi}$,

$$\langle \xi_1, e^{-t\nu_1+i\sqrt{\nu_1}\sigma}(X_1+\frac{\lambda}{\nu})\xi_2 \rangle = \sum_{n=0}^\infty H_n(\sigma) \langle \xi_1, c_n(X_1)\xi_2 \rangle$$

which yields

$$e^{-tH(X_1)} = e^{-(\mu - \frac{3\lambda^2}{8\nu})} \sum_{n=0}^\infty c_n(X_1) \otimes c_n(X_1),$$

$$c_n(X_1) = \frac{1}{\sqrt{2\pi}} \int d\sigma e^{-\sigma^2/2} H_n(\sigma)e^{-iY^2 + i\sqrt{\nu_1}\sigma(X_1+\frac{\lambda}{\nu})}.$$

Indeed, to make this identification in $M\phi_{eh}M = CB_{M',M'}(K(L^2(M), B(L^2(M)))$ (see [BP91] for the equality), we first identify the two sides after evaluation on a finite rank operator, say in using the orthogonal decomposition recalled earlier

$$\int_{\mathbb{R}} d\gamma(\sigma) \langle \xi_1, e^{-tY_1^2 + i\sqrt{\nu_1}\sigma(X_1+\frac{\lambda}{\nu})}\xi_2 \rangle \langle \xi_3, e^{-tY_1^2 + i\sqrt{\nu_1}\sigma(X_1+\frac{\lambda}{\nu})}\xi_4 \rangle$$

$$= \sum_{n=0}^\infty \langle \xi_1, c_n(X_1)\xi_2 \rangle \langle \xi_3, c_n(X_1)\xi_4 \rangle.$$

Then, if both sides extend to compact operators, one obtains the claimed equality. We already said the left hand side does (for instance by our previous bound on $e^{-tH(X_1)}$ obtained from the series expansion) and the right hand side will by our next bound giving the contractivity property.

Thus, for instance from [M03], when $\mu \geq \frac{3\lambda^2}{8\nu}$

$$\|e^{-tH(X_1)}\|_{M\otimes_{eh} M} \leq \|\sum_{n=0}^\infty c_n(X_1) c_n(X_1)^*\|$$

But note that for $\xi \in L^2(M)$, with $(e_j)_{j\in\mathbb{N}}$ an orthonormal basis of this space, we first get using Parseval equality and Tonelli Fubini Theorem to switch the sum over j:

$$\int_{\mathbb{R}} d\gamma(\sigma) \langle e^{-tY^2 + i\sqrt{\nu}\sigma(X+\frac{\lambda}{\nu})}\xi, e^{-tY^2 + i\sqrt{\nu}\sigma(X+\frac{\lambda}{\nu})}\xi \rangle$$

$$= \sum_{j} \int_{\mathbb{R}} d\gamma(\sigma) \langle e^{-tY^2 + i\sqrt{\nu}\sigma(X+\frac{\lambda}{\nu})}\xi, e_j, e^{-tY^2 + i\sqrt{\nu}\sigma(X+\frac{\lambda}{\nu})}\xi \rangle$$

$$= \sum_{j} \sum_{n} |\langle e_j, c_n(X_1)\xi \rangle|^2$$

$$= \sum_{n} \sum_{j} |\langle e_j, c_n(X_1)\xi \rangle|^2 = \sum_{n} \|c_n(X_1)\xi\|^2 = \langle \xi, \sum_{n=0}^\infty c_n(X_1)^* c_n(X_1)\xi \rangle$$
where the third line is obtained by using Parseval equality again this time on $L^2(d\gamma)$, and again Fubini-Tonelli and Parseval. Thus, we got, since $\nu > 0$:

$$\sum_{n=0}^{\infty} c_n(X_1)^* c_n(X_1) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} d\sigma e^{-\sigma^2/2} \left(e^{-tY_1^2 + i\sqrt{\nu}\sigma(X_1 + \frac{1}{4\nu})} + e^{-tY_1^2 + i\sqrt{\nu}\sigma(X_1 + \frac{1}{4\nu})} \right)$$

is a contraction and so is $\sum_{n=0}^{\infty} c_n(X_1)c_n(X_1)^*$. Finally, from (35), it is easy to see in truncating the series that $\sigma(e^{-tH(X_1)}) = e^{-tH(X_1)}$ and this concludes to:

$$\|e^{-tH(X_1)}\|_{M_{eh} \otimes D,c} \leq 1.$$

□

In order to deduce a more general example, we need to describe more explicitly the norm structure we put on $M_n(M_{eh} \otimes D,c)$ to obtain various contractive maps.

Lemma 48. There is a completely contractive map

$$\ell^\infty([1,n], M_{eh} \otimes D,c) \to CB(\ell^2([1,n], M^\otimes_{D,c} m_{eh}), \ell^2([1,n], M^\otimes_{D,c} m_{eh}))$$

corresponding to action by diagonal matrices. Especially, there is a contractive diagonal embedding $(\ell^\infty([1,n], M_{eh} \otimes D,c)) \to M_n(M_{eh} \otimes D,c)$.

Proof. First recall that in [P], the operator space structure of $\ell^2([1,n], M^\otimes_{D,c} m_{eh})$ is described as the interpolation of $\ell^\infty([1,n]) \otimes_{eh} M^\otimes_{D,c} m_{eh} = \ell^\infty([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh}$ and $\ell^1([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh} = \ell^1([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh}$ (the first equality comes from the fact both operator space product are injective and [ER00] Lemma 9.2.4, Prop 9.3.1 that imply the same result with $\ell^\infty([1,n])$ replaced by $M_n(\mathbb{C})$, the second equality reduces to the first one after taking duals, the computation of dual of Haagerup tensor product is known in this case from [ER00] Cor 9.4.8 and for the projective tensor product see [ER00] Prop 8.1.2, 8.1.8). From the interpolation result of Haagerup tensor products [P Th 5.22, one deduces the complete isometry $\ell^2([1,n], M^\otimes_{D,c} m_{eh}) = \ell^2_{oh}([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh}$.

We will start from this description to get our map. From the universal property of the projective tensor product (and agreement of Haagerup and extended Haagerup tensor products in the finite dimensional case), it suffices to get a canonical completely contractive map

$$(\ell^\infty([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh})^2 \rightarrow \ell^2_{oh}([1,n]) \otimes_{h} M^\otimes_{D,c} m_{eh}.$$
To reach this goal, we compose several known complete contractions. First we start with the shuffle map from [Dab15, Lemma 8]:

\[(\ell_2([1, n]) \circ h M_{D,c}) \circ \phi (\ell_2([1, n]) \circ h M_{D,m}) \]

\[\to \ell_2([1, n]) \circ h \left((\ell_2([1, n]) \circ h M_{D,c}) \circ \phi M_{D,m} \right) \]

\[\to \ell_2([1, n]) \circ h \ell_2([1, n]) \circ h \left(M_{D,c} \circ h M_{D,m} \right). \]

We compose this map with a canonical multiplication map \(\ell_2([1, n]) \circ h \ell_2([1, n]) \to \ell_2([1, n]). \) It is obtained by interpolation from the map \(\ell_2([1, n]) \circ h \ell_2([1, n]) \to \ell_2([1, n]) \) from [BLM, 3.1.3, Prop 3.1.7] and the symmetric map \(\ell_2([1, n]) \circ h \ell_2([1, n]) \) which we interpolate after noticing that \(\ell_2([1, n]) \circ h \ell_2([1, n]) = \ell_2([1, n]) \circ h \ell_2([1, n]) = \ell_2([1, n]) \). This multiplication of course gives the expected diagonal matrix action.

The multiplication map we finally want \(\ell_2 \circ h \phi \to \ell_2 \circ h \phi \) is of course the one we built in Proposition 28 (1). By density of the algebraic tensor product, it suffices to get a contractivty with this target space. This decomposes in various contractivity for each flip (using the fonctoriality of nuclear tensor product). We thus have to see that \(\# : M_{D,c} \circ \phi M_{D,c} \to M_{D,c} \) and \(\# : M_{D,m} \circ \phi (D' \cap M_{D}) \to M_{D,m} \) are complete contractions. This is obvious from complete contractivty of composition of CB maps. □

Lemma 49. Let \(A = (A_{i,j}) \in M_n(\mathbb{R}) \) a positive matrix with \(A \geq cI_n \) and \((\lambda_{i,j}) \in M_{n,k}(\mathbb{R}), \mu \in [0, \infty[w, \nu_j(x) = \nu_{j,1}x^2 + \nu_{j,2}x + \nu_{j,4}x^4 \) for \(\nu_{j,4} > 0, \nu_{j,2} = 8\nu_{j,2} \nu_{j,4}/3 \). Let

\[
V(X) = \sum_{j=1}^{k} \mu_j \nu_j \left(\sum_{i=1}^{n} \lambda_{i,j} X_i \right) + \sum_{i,j=1}^{n} A_{i,j} X_i X_j.
\]

Then, for any \(B, D, V(X) \in \mathbb{C}\langle X_1, \ldots, X_n \rangle \subset B_c(X_1, \ldots, X_n; D, R, \mathbb{C}), V = V^* \in C^\#(A, R : B, D) \) is \((c, R)\)-h-convex for any \(R \).

Moreover, let \(P = P^* \in \mathbb{C}\langle u_1, \ldots, u_n \rangle \) a \(*\)-polynomial in unitary variables, and define for \(\varepsilon > 0 \)

\[
V(X) = V(X) + \varepsilon P(\sqrt{-1} + X_1, \ldots, \sqrt{-1} - X_n).
\]

Then, for any \(R > 0 \) and any \(c' \in [0, c) \), there exists \(\varepsilon_R > 0 \) so that for \(\varepsilon \in [-\varepsilon_R, \varepsilon_R], W \in C^\#(A, R : B, D) \) is \((c', R)\) h-convex.

Proof. From the additivity of positivity, the positivity elements form a cone, so that it suffices to consider \(k = 1 \) and even to show that \(W(X) = \nu_1 (\sum_{i=1}^{n} \lambda_{i,1} X_i) \) is \((0, R)\) convex. But with the notation of the previous proof

\[
\partial_i \partial_j W = \nu_{j,1} \lambda_{i,1} H(\sum_{i=1}^{n} \lambda_{i,1} X_i).
\]
Let us call \(P = \sum_i \lambda_{i,1}^2 > 0 \). From the previous proof of Lemma \(\text{[L7]} \) one deduces \(\| e^{-tH(\sum_{i=1}^n \lambda_{i,1}X_i)} \|_{M_{\text{sh}} \otimes M} \leq 1 \). Let us fix an orthogonal matrix \(O \) with \(O_{j,1} = \lambda_{j,1}/\sqrt{P} \) and write the matrix \(A = (\partial_i \mathcal{D}_j)_{j,i} \) as \(A = O(A^*AO)O^* \). Note that \((O^*AO)_{j,i} = 0 \) except for \((O^*AO)_{1,1} = PH(\sum_{i=1}^n \lambda_{i,1}X_i) \). Thus \(e^{-tA} = Oe^{-t(O^*AO)}O^* \). To conclude, note that \(O, \lambda^* \) are contractions in \(M_n(\text{sh} \hat{M}, \text{sh} \hat{M}) \) since their action coincides with \(O^* \) on \(\ell^2([1, n], M_{\text{sh}} \otimes \hat{M}) = \ell^2([1, n]) \otimes h \hat{M} \). Finally, \(e^{-t(O^*AO)} = \text{Diag}(e^{-tPH(\sum_{i=1}^n \lambda_{i,1}X_i)}, 1, \ldots, 1) \) and each term in the diagonal matrix is a contraction, so that one can apply Lemma \(\text{[48]} \) to conclude to \(\| e^{-t(O^*AO)} \|_{M_n(\text{sh} \hat{M}, \text{sh} \hat{M})} \leq 1 \).

We finally consider the case where the polynomial is perturbed. In order to check that \(\mathcal{V} \in C^6_c(A, R : B, D) \), since this space is obviously an algebra, it suffices to check \(P_t(X) = \frac{1}{\sqrt{t-1}X_i} \in C^6(A, R : B, D) \) for \(t > 0 \). For \(t \) large enough, a geometric series converging in \(C^6(A, R : B, D) \) shows this. The set of such \(t \) is thus non-empty, it is easy to check that \(C^6(A, R : B, D) \) has an equivalent Banach algebra norm, then, a Neumann series gives the set of \(t \) is open. It remains to see it is closed in \([0, \infty[\) to get the result by connectivity. An easy computation shows that \(\| P_t \|_{h \mathcal{V}, h \mathcal{V}} = \sum_{k=0}^6 \sqrt{k+1} \) as soon as we showed \(P_t \) is in the space above, since \(\partial_{(1, \ldots, 1)} P_t(X_1) = (k!) P_t(X_1) \sqrt{k+1} \). When \(t_n \to t > 0 \), and using
\[
P_t(X_1) - P_\mathcal{V}(X_1) = -P_t(X_1)(t-s)\sqrt{-1}P_\mathcal{V}(X_1)
\]
one easily gets the convergence \(\| P_n - P_t \|_{h \mathcal{V}, h \mathcal{V}} \to 0 \) (in getting a Cauchy sequence and identifying the limit with \(P_t \)). It only remains to check the stated \(h \)-convexity. It suffices to take the coefficients of \(P \) small enough so that \(b = (\partial_i \mathcal{D}_j(\mathcal{V} - \mathcal{V}))_{j,i} \) has a norm \(\| b \|_{M_n(\text{sh} \hat{M}, \text{sh} \hat{M})} < c \), and in this case \(c' = c - \| b \| \) is appropriate. Indeed, let \(a = (\partial_i \mathcal{D}_j(\mathcal{V}))_{j,i} \), we can use the Dyson series:
\[
e^{-t(a+b)} = e^{-ta} + \sum_{k=1}^\infty \int_0^t ds_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{k-1}} ds_k e^{-t(s_1-s_2)a} \cdots e^{-t(s_{k-1}-s_k)a} e^{-t(s_k)b},
\]
and one obtains:
\[
\| e^{-t(a+b)} \|_{M_n(\text{sh} \hat{M}, \text{sh} \hat{M})} \leq e^{-tc} + \sum_{k=1}^\infty \int_0^t ds_1 \int_0^{s_1} ds_2 \cdots \int_0^{s_{k-1}} ds_k e^{-tc}\| b \|^k = e^{-t(c-\| b \|)}.
\]

It remains to check the other assumptions on \(\mathcal{V} \). We need variants of results from [GMS06, Th 3.4] and [GS09].

Proposition 50. Let \(\mathcal{V} \) be of the form of \(\mathcal{V} \) in Lemma \[L9] and \((c, R) \) \(h \)-convex for all \(R > 0 \). Consider the probability on \((M_N(\mathbb{C})_{sa})^n \) given (for some normalization constant \(Z_{\mathcal{V}, N} \)) by :
\[
\mu_{\mathcal{V}, N}(dx) = \frac{1}{Z_{\mathcal{V}, N}} e^{-NTr(V(X_1, \ldots, X_n))} d\text{Leb}_{(M_N(\mathbb{C})_{sa})^n}(dX)
\]
Let $A_1^N, ..., A_n^N$ of law $\mu_{V,N}$ (on a same probability space), we have a constant $C > 0$ such that a.s.:

$$\limsup_{N \to \infty} \max_i \|A_i^N\|_\infty \leq C,$$

and for $K \in \mathbb{N}$

(55) $$\limsup_{N \to \infty} E_{\mu_{V,N}}(1_{\{\|A_i^N\|_\infty \geq C\}} \frac{1}{N} Tr((A_i^N)^{2K})) = 0.$$

Moreover, for any non-commutative polynomial $P \in \mathbb{C}\langle X \rangle \otimes_{alg} \mathbb{C}\langle X \rangle$

$$\lim_{N \to \infty} \left| E_{\mu_{V,N}}(1_{\frac{1}{N^2}(Tr \otimes Tr)(P(A_1, ..., A_k))} - \frac{1}{N^2} [(E_{\mu_{V,N}} \circ Tr) \otimes (E_{\mu_{V,N}} \circ Tr)](P) \right| = 0.$$

Proof. The proof is identical to [GMS06, Th 3.4] since $X_1, ..., X_n \mapsto \text{Tr}V(X_1, ..., X_n)$ is convex, with Hessian bounded below by c, on the space of Hermitian matrices. In fact, one can check that any h-convex function V satisfies this property. □

Theorem 51. Let V be of the form of V in Lemma 49 and $(0,R)$ h-convex for all R. Consider, the law absolutely continuous with respect to the law P_{G^N} of GUE G^N:

$$d\mu_{V,N}(X) = \frac{1}{Z_{V,N}} e^{-N\text{Tr}(V(X_1, ..., X_n))} dP_{G^N}(X).$$

Then $E_{\mu_{V,N}} \circ \frac{1}{N} \text{Tr}$ converges in law to a tracial state τ_V which is the law of self-adjoint variables $X(V)$ (of norm bounded by some R) and the unique solution with this property to the equation (SD_V), for $G(X) = \tau_X(V)$:

$$\forall P \in \mathbb{C}\langle X_1, ..., X_n \rangle, \ (\tau_V \otimes \tau_V)(\partial_{X_i}(P)) = \tau_V(X_i P) + \tau_V(D_i V P).$$

Moreover, there is a solution on \mathbb{R}^+ given by Proposition 2 with potential $V_0 + V$ and τ_V is the unique stationary R^ω-embeddable trace for this free SDE.

Note that the R^ω-embeddability assumption in the uniqueness is not really necessary but we stick to that case in order to be consistent and use our previous setting.

Proof. Step 1 : Defining limit variables in a von Neumann algebra ultraproduct.

Consider a non-principal ultrafilter ω on \mathbb{N} and the tracial von Neumann algebra ultraproducts $L^\omega = L^2(M_N(L^\infty(\mu_{V,N}))^\omega), M^\omega = M_N(L^\infty(\mu_{V,N}))^\omega$. Considering $A_1^N, ..., A_n^N$ the canonical hermitian variables in $M_N(L^\infty(\mu_{V,N}))$, we know from (55) that $\|A_i^N 1_{\{\|A_i^N\|_\infty \leq C\}} - A_i^N\|_2 \to 0$ so that $X^\omega_i = (A_i^N)^\omega = (A_i^N 1_{\{\|A_i^N\|_\infty \leq C\}})^\omega \in M^\omega$. We thus also fix $B_i^N = A_i^N 1_{\{\|A_i^N\|_\infty \leq C\}}$.

This gives a tracial state τ_{X^ω}. Let us check that any such state satisfies (SD_V).

Step 2 : Showing (SD_V).

92
As in [GMS06], we use an integration by parts formula on \(\mu_{V,N} \) which gives \(\forall P \in C\langle X_1, ..., X_m \rangle \):

\[
E_{\mu_{V,N}} \left(\frac{1}{N} \text{Tr}(A^N_i P(A^N_1, ..., A^N_m)) + \frac{1}{N} \text{Tr}(N\nabla_{A^N_i} G(A^N_1, ..., A^N_m)P(A^N_1, ..., A^N_m)) \right) = E_{\mu_{V,N}} \left(\left(\frac{1}{N} \text{Tr} \otimes \frac{1}{N} \text{Tr}(\partial_i X)P(A^N_1, ..., A^N_m) \right) \right)
\]

and the second concentration result in Proposition 50 implies that the right hand side converges when \(N \to \omega \) to \((\tau_{X^\omega} \otimes \tau_{X^\omega})(\partial_i (P)). \) One thus obtains the relation in taking of limit to \(\omega \) of the integration by parts relation. Moreover, note that this implies \(\tau_{X^\omega} \) has finite Fisher information.

Step 3 : Properties and use of the SDE.

Let \(X_0 = X^\omega \) or a \(R^\omega \)-embeddable solution of \((SD_V)\), which ensures \(X_0 \in A^n_{R/3,\text{App}} \) in the scalar case \(B = \mathbb{C} \). The application of our Proposition 5 thus gives a unique solution \(X_t(X_0) \) on \([0, \infty]\) solving

\[
X_t(X_0) = X_0 - \frac{1}{2} \int_0^t D_V(X_s(X_0))ds - \frac{1}{2} \int_0^t X_s(X_0)ds + S_t.
\]

Considering another solution starting at \(Y_0 \), one obtains:

\[
||X_t(X_0) - X_t(Y_0)||_2 \leq e^{-ct}||X_0 - Y_0||_2^2.
\]

Then exponential decay implies that the laws \(\tau_{X_t(X^\omega)} \) and \(\tau_{X_t(Y^\omega)} \) are arbitrarily close for \(t \to \infty \) and since they are equal to \(\tau_{X^\omega} \) and \(\tau_{X^{\omega'}} \) by stationarity, one deduces that \(X^\omega \) have the same law for any ultrafilter. Similarly, \((SD_V)\) has a unique \(R^\omega \)-embeddable solution and the exponential decay implies a stationary state for the SDE is unique too.

Step 4 : Conclusion on the limit of \(E_{\mu_{V,N}} \circ \tau_\cdot \).

The law \(E_{\mu_{V,N}} \circ \frac{1}{N} \text{Tr} \) is close to \(E_{\mu_{V,N}} \circ \tau_{B^N} \) for \(N \) large enough and this second law lies in the compact set \(S^n_C \) (tracial state space of the universal free product \(C([-C, C])^n \) with the weak-* topology) and from the result on ultrafilter limits the sequence has a unique limit point there (any such limit point being a \(\tau_{X^\omega} \)). We thus deduce by compactness the claimed convergence.

Corollary 52. Let \(V, V + W \) be of the form of \(V \) in Lemma 49 and thus \((c, R) \) \(h \)-convex for all \(R \) and some \(c > 0 \). Then they satisfy Assumption 46.

Proof. The application of the previous Theorem gives existence of solution of \((SD_{V,\alpha})\), \(\alpha \in [0, 1] \) which is \(R^\omega \)-embeddable or equivalently \(L(F_\infty)^\omega \)-embeddable which is a reformulation of \(A^n_{R,\text{UltraApp}} \) in the case \(B = \mathbb{C} \). Everything else comes from Lemma 49 and stability of \((c, R) \) \(h \)-convexity under taking convex combinations.

\[\square\]
References

[AGZ10] G. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cambridge University Press, 2010.

[AP02] C. Anantharaman and C. Pop, Relative tensor products and infinite C^*-algebras, J. Operator Theory 47 (2002), 389–412.

[Avs11] S. Avsec, Strong solidity of the q-Gaussian algebras for all $-1<q<1$, Preprint, 2011.

[Bia97] P. Biane, Segal–Bargmann transform, functional calculus on matrix spaces and the theory of semi-circular and circular systems, J. Funct. Anal. 144 (1997), 232–286.

[BS98] P. Biane and R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space, Probab. Theory Related Fields, 112, (1998), 373–409.

[BV01] P. Biane and D.-V. Voiculescu, A free probability analogue of the Wasserstein metric on the trace-state space, Geom. Funct. Anal. 11 (2001), no. 6, 1125–1138. MR MR1878316 (2003d:46087)

[BS91] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Commun. Math. Phys. 137 (1991), 519 – 531.

[BS92] D. Blecher and R. Smith, The dual of the Haagerup tensor product, London Math. Soc. 45 (1992), 126–144.

[BKS97] M. Bożejko, B. Kummerer, and R. Speicher, q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys 185 (1997), 129–154.

[Bre91] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math 44 (1991), 375–417.

[BS91] M. Bożejko and R. Speicher, An example of a generalized Brownian motion, Commun. Math. Phys. 137 (1991), 519 – 531.

[BS01] P. Biane and R. Speicher, Free diffusions, free entropy and free Fisher information, Ann. Inst. H. Poincaré Probab. Statist., 37 (2001), 581–606.

[B] M. Burns, Subfactors, Planar algebras and Rotations, PhD of University of California at Berkeley.

[Caf00] L. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys 214 (2000), 547–563.

[Ceb13] G. Cebron, Free Convolution Operators and Free Hall transform, J. Funct. Anal., 265 (2013), 2645–2708.

[Dab08] Y. Dabrowski, A note about proving non-Γ under a finite non-microstates free Fisher information assumption, J. Funct. Anal., 258 (2010), 3662-3674

[Dab10a] Y. Dabrowski, A non-commutative Path Space approach to stationary free Stochastic Differential Equations, Preprint arXiv:1006.4551 2010

[Dab10b] Y. Dabrowski, A free stochastic partial differential equation, Ann. Inst. Henri Poincaré Probab. Stat., 50 (2014), 1404–1455.

[DI16] Y. DABROWSKI and A. IOANA Unbounded derivations, free dilations, and indecomposability results for II_1 factors, Trans. Amer. Math. Soc., 368 (2016) 4525–4560.

[Dab15] Y. Dabrowski, Analytic functions relative to a covariance map η: I. Generalized Haagerup products and analytic relations, Preprint, 1503.05515

[VDN92] D.V Voiculescu, and K.J Dykema and A. Nica, Free random variables, CRM Monograph Series, 1, American Mathematical Society, Providence, RI, (1992)

[EK] E. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), 257?276.

[ER00] E. Effros and Z. Ruan, Operator Spaces, Clarendon Press Oxford, 2000.

[ER03] E. Effros and Z. Ruan, Operator space tensor products and Hopf convolution algebras, J. Operator Th. 50 (2003), 131?156.

[GMS06] A. Guionnet and E. Maurel-Segala, Combinatorial aspects of matrix models, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 241–279. MR 2249657 (2007g:05087)
[GMS07] A. Guionnet and E. Maurel-Segala, Second order asymptotics for matrix models, Ann. Probab. 35 (2007), 2160–2212.

[GS09] A. Guionnet and D. Shlyakhtenko, Free diffusions and matrix models with strictly convex interaction, Geom. Funct. Anal. 18 (2009), 1875–1916.

[GS12] A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math., 197 (2014), 613–661.

[Gui06] A. Guionnet, Random matrices and enumeration of maps, Proceedings Int. Cong. Math. 3 (2006), 623–636.

[Ha] HARGÉ, G. A convex/log-concave correlation inequality for Gaussian measure and an application to abstract Wiener spaces. Probab. Theory Related Fields 130, 3 (2004), 415–440.

[Gui09] A. Guionnet, Large random matrices: lectures on macroscopic asymptotics, Lecture Notes in Mathematics, vol. 1957, Springer-Verlag, Berlin, 2009, Lectures from the 36th Probability Summer School held in Saint-Flour, 2006. MR 2498298 (2010d:60018)

[Io15] A. Ioana: Cartan subalgebras of amalgamated free product II_1 factors, Annales scientifiques de l’ENS 48, 1 (2015), 71–130.

[JS] V. Jones and V.S. Sunder, Introduction to Subfactors, Cambridge University Press, 1997.

[KN11] M. Kennedy and A. Nica, Exactness of the Fock space representation of the q-commutation relations, Comm. Math. Phys. 308 (2011), 115–132.

[MR] Z-M. Ma and M. Rockner Introduction to the Theory of non-symmetric Dirichlet forms, Springer, 1992.

[M95] B. Magajna, The Haagerup norm on the tensor product of operator modules, J. Funct. Anal. 129 (1995), 325–348.

[M97] B. Magajna, Strong operator modules and the Haagerup tensor product, Proc. London Math. Soc 74 (1997), 201–240.

[M05] B. Magajna, Duality and normal parts of operator modules, J. Funct. Anal. 219 (2005), 306–339.

[JLU14] M. Junge, S. Longfield, B. Udrea, Some classification results for generalized q-Gaussian algebras, arXiv 1410.8199

[MN] J. Mingo and A. Nica Annular non-crossing permutations and partitions, and second-order asymptotics for random matrices Int. Math. Res. Not., 28 (2004), 1413–1460.

[Nou04] A. Nou, Non injectivity of the q-deformed von Neumann algebra, Math. Annalen 330 (2004), 17–38.

[OP97] T. Oikhberg and G. Pisier, The “maximal” tensor product of operator spaces, Proc. of the Edinburgh Math. Soc. 42 (1999), 267–284.

[OP10] N. Ozawa and S. Popa, On a class of II_1 factors with at most one Cartan subalgebra, Ann. of Math 172 (2010), 713–749.

[Oza04] N. Ozawa, There is no separable universal II_1-factor, Proc. Amer. Math. Soc. 132 (2004), 487–490.

[P] G. Pisier, Introduction to Operator Space Theory, Cambridge University Press, 2003.

[Pe] D. Penneys, Planar structure for inclusions of finite von Neumann algebras, PhD of University of California at Berkeley.

[Pe13] D. Penneys, A Planar calculus for infinite index subfactors, Com. Math. Phys. 319 (2013), 595–648.

[Po86] S. Popa: Corespondences, Preprint INCREST (1986).

[Po02] S. Popa: On a class of type II_1 factors with Betti numbers invariants, Ann. of Math. 163 (2006), 809–889.

[PV11] S. Popa and S. Vaes, Unique Cartan decomposition for II_1 factors arising from arbitrary actions of free groups, Acta Math., 212 (2014), 141–198.

[Ric05] E. Ricard, Factoriality of q-Gaussian von Neumann algebras, Comm. Math. Phys. 257 (2005), 659–665.

[RT02] S. Roelly and M. Thieullen, A characterization of Reciprocal Processes via an integration by parts formula on the path space, Probability Theory and Related Fields 123 (2002) 97–120.

[SS98] A. Sinclair, R. Smith Factorization of Completely Bounded Bilinear Operators and Invertibility, J. Funct. Anal. 157 (1998), 62–87.

[Shl04] D. Shlyakhtenko, Some estimates for non-microstates free entropy dimension with applications to q-semicircular families, Int. Math. Res. Notices 51 (2004), 2757–2772.

[Shl09] D. Shlyakhtenko, Lower estimates on microstates free entropy dimension, Analysis and PDE 2 (2009), 119–146.
Reference	Author(s)	Title	Details
[Śni01]	P. Śniady	Gaussian random matrix models for q-deformed Gaussian variables	Comm. Math. Phys. 216 (2001), no. 3, 515–537. MR 2003a:81096
[Śni04]	P. Śniady	Factoriality of Bozejko-Speicher von Neumann algebras	Comm. Math. Phys 246 (2004), 561–567.
[S]	A. Soshnikov	Universality at the edge of the spectrum in Wigner Random Matrices	Com. Math. Phys. 207 (1999) 697–733.
[T59]	H.F. Trotter	On the product of semi-groups of operators	Proc. Amer. Math. Soc. 10 (1959) 545-551
[Vil03]	C. Villani	Topics in optimal transportation	Graduate Studies in Mathematics, Vol. 58, AMS, Providence, RI, 2003.
[Voi94]	D.-V. Voiculescu	The analogues of entropy and of Fisher’s information measure in free probability theory II	Invent. Math. 118 (1994), 411–440.
[Voi98]	D.-V. Voiculescu	The analogues of entropy and of Fisher’s information measure in free probability, V	Invent. Math. 132 (1998), 189–227.
[Voi00]	D.-V. Voiculescu	A note on cyclic gradients	Indiana Univ. Math. J. 49 (2000), 837–841.
[Voi02a]	D.-V. Voiculescu	Cyclomorphy	Int. Math. Research Notices No. 6 (2002), 299–332.
[Voi02b]	D.-V. Voiculescu	Free entropy	Bull. London Math. Soc. 34 (2002), no. 3, 257–278. MR 2003c:46077
[Voi06]	D.-V. Voiculescu	Symmetries arising from free probability theory	Frontiers in Number Theory, Physics, and Geometry I (Pierre Cartier, Bernard Julia, Pierre Moussa, and Pierre Vanhove, eds.), Springer Berlin Heidelberg, 2006, pp. 231–243.