Resonances and Unitarity in Weak Boson Scattering at the LHC

Jürgen Reuter

DESY Hamburg

Alboteanu/Kilian/JR, arXiv:0806.4145 (JHEP); M. Mertens, 2005;
Kilian/Kobel/Mader/JR/Schumacher, work in progress;
Beyer/Kilian/Krstonošić/Mönig/JR/Schmitt/Schröder, EPJC 48 (2006), 353 [ILC version]

Seminar, BNL, N.Y., Nov. 1st, 2012
Doubts on the Standard Model

- describes microcosm (too good?)
- 28 free parameters

Hierarchy Problem

chiral symmetry: \(\delta m_f \propto v \ln(\Lambda^2/v^2) \)

no symmetry for quantum corrections to Higgs mass

\[
\delta M_H^2 \propto \Lambda^2 \sim M_{\text{Planck}}^2 = (10^{19})^2 \text{GeV}^2
\]

20000 GeV^2 = (10000000000000000000000000) GeV^2
Open Questions

– Unification of all interactions (?)

– Baryon asymmetry $\Delta N_B - \Delta N_{\bar{B}} \sim 10^{-9}$
 missing CP violation

– Flavour: three generations

– Tiny neutrino masses: $m_\nu \sim \frac{\nu^2}{M}$

– Dark Matter:
 ▶ stable
 ▶ only weakly interacting
 ▶ $m_{DM} \sim 100$ GeV

– Quantum theory of gravity

– Cosmic inflation

– Cosmological constant
Ideas for New Physics since 1970
Model-Independent Description of the EW sector

- The "IT" boson is observed ... Higgs ?
- Aim: describe any physics beyond the SM as generically as possible
- Implement what we know about the SM
- Implements $SU(2)_L \times U(1)_Y$ gauge invariance
- Building blocks (including longitudinal modes):

\[\psi \ (\text{SM fermions}), \quad W^a_\mu \ (a = 1, 2, 3), \quad B_\mu, \quad \Sigma = \exp \left(\frac{-i}{v} w^a \tau^a \right) \]

- Minimal Lagrangian including gauge interactions

\[\mathcal{L}_{\text{min}} = \sum_\psi \overline{\psi}(i\gamma^\mu)\psi - \frac{1}{2g^2} \text{tr} [W_{\mu\nu} W^{\mu\nu}] - \frac{1}{2g'2} \text{tr} [B_{\mu\nu} B^{\mu\nu}] + \frac{v^2}{4} \text{tr} [(D_\mu \Sigma)(D^\mu \Sigma)] \]
The Fundamental Building Blocks

- \(V = \Sigma (D \Sigma)^\dagger \) (longitudinal vectors), \(T = \Sigma \tau^3 \Sigma^\dagger \) (neutral component)

- **Unitary gauge** (no Goldstones): \(w \equiv 0 \), i.e., \(\Sigma \equiv 1 \).

\[
V \rightarrow -\frac{ig}{2} \left[\sqrt{2}(W^+ \tau^+ + W^- \tau^-) + \frac{1}{c_w} Z \tau^3 \right]
\]

\[
T \rightarrow \tau^3
\]

- **Gaugeless limit** (only Goldstones) \((g, g' \rightarrow 0)\):

\[
V \rightarrow \frac{i}{v} \left\{ \sqrt{2} \partial w^+ \tau^+ + \sqrt{2} \partial w^- \tau^- + \partial z \tau^3 \right\} + O(v^{-2})
\]

\[
T \rightarrow \tau^3 + 2\sqrt{2} \frac{i}{v} (w^+ \tau^+ - w^- \tau^-) + O(v^{-2})
\]

So \(T \) projects out the neutral part:

\[
\text{tr} [TV] = \frac{2i}{v} \left[\partial z + \frac{i}{v} (w^+ \partial w^- - w^- \partial w^+) \right] + O(v^{-3})
\]
Electroweak Chiral Lagrangian

Complete Lagrangian contains infinitely many parameters

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{min}} - \sum_{\psi} \overline{\psi} L \Sigma M \psi + \beta_1 L' + \sum_i \alpha_i L_i + \frac{1}{v} \sum_i \alpha_i^{(5)} L^{(5)} + \frac{1}{v^2} \sum_i \alpha_i^{(6)} L^{(6)} + \ldots \]

\[L' = \frac{v^2}{4} \text{tr} [T V_{\mu}] \text{tr} [T V^\mu] \]

\[L_1 = \text{tr} [B_{\mu\nu} W^{\mu\nu}] \quad L_6 = \text{tr} [V_{\mu} V_{\nu}] \text{tr} [T V^\mu] \text{tr} [T V^\nu] \]

\[L_2 = \text{itr} [B_{\mu\nu} [V^{\mu}, V^{\nu}]] \quad L_7 = \text{tr} [V_{\mu} V^{\mu}] \text{tr} [T V_{\nu}] \text{tr} [T V^\nu] \]

\[L_3 = \text{itr} [V_{\mu\nu} V^{\mu \nu}] \quad L_8 = \frac{1}{4} \text{tr} [T W_{\mu\nu}] \text{tr} [T W^{\mu\nu}] \]

\[L_4 = \text{tr} [V_{\mu} V_{\nu}] \text{tr} [V^{\mu} V^{\nu}] \quad L_9 = \frac{1}{2} \text{tr} [T W_{\mu\nu}] \text{tr} [T [V^{\mu}, V^{\nu}]] \]

\[L_5 = \text{tr} [V_{\mu} V^{\mu}] \text{tr} [V_{\nu} V^{\nu}] \quad L_{10} = \frac{1}{2} (\text{tr} [T V_{\mu}] \text{tr} [T V^{\mu}])^2 \]

Indirect info on new physics in \(\beta_1, \alpha_i, \ldots \) (Flavor physics only in \(M \))

Electroweak precision observables (LEP I/II, SLC):

\[\Delta S = -16\pi \alpha_1 \quad \alpha_1 = 0.0026 \pm 0.0020 \]

\[\Delta T = 2\beta_1 / \alpha_{\text{QED}} \quad \beta_1 = -0.00062 \pm 0.00043 \]

\[\Delta U = -16\pi \alpha_8 \quad \alpha_8 = -0.0044 \pm 0.0026 \]
Anomalous triple and quartic gauge couplings

\[\mathcal{L}_{TGC} = i e \left[g_1^\gamma A_\mu \left(W^- W^{+\mu\nu} - W^+ W^{-\mu\nu} \right) + \kappa^\gamma W^- W^+ A^{\mu\nu} + \frac{\lambda^\gamma}{M_W^2} W^- W^+ W^{\mu\nu} A^\rho A^\mu \right] \\
+ i e \frac{c_w}{s_w} \left[g_1^Z Z_\mu \left(W^- W^{+\mu\nu} - W^+ W^{-\mu\nu} \right) + \kappa^Z W^- W^+ Z^{\mu\nu} + \frac{\lambda^Z}{M_W^2} W^- W^+ W^{\mu\nu} Z^\rho A^\mu \right] \]

SM values: \(g_1^{\gamma,Z} = \kappa^{\gamma,Z} = 1, \lambda^{\gamma,Z} = 0 \) and \(\delta Z = \frac{\beta_1 + g'^2 \alpha_1}{c_w^2 - s_w^2} \)

\(g_{1/2}^{VV'} = 1, h^{ZZ} = 0 \)

\(\Delta g_1^{\gamma} = 0 \)

\(\Delta g_1^{Z} = \delta Z + \frac{g^2}{c_w^2} \alpha_3 \)

\(\Delta g_2^{\gamma} = \frac{g^2}{c_w^2} \alpha_3 \)

\(\Delta g_2^{Z} = \frac{g^2}{c_w^2} \alpha_3 \)

\(\Delta g_1^{ZZ} = \Delta g_2^{ZZ} = 0 \)

\(\Delta g_1^{WZ} = \Delta g_2^{WZ} = \delta Z + \frac{g^2}{c_w^2} \alpha_3 \)

\(\Delta g_1^{W^Z} = \Delta g_2^{W^Z} = \delta Z + \frac{g^2}{c_w^2} \alpha_3 \)

\(\Delta g_1^{ZZ} = 2 \Delta g_2^{ZZ} - \frac{g^2}{c_w^2} (\alpha_5 + \alpha_7) \)

\(\Delta g_1^{W^W} = 2 c_w^2 \Delta g_1^{\gamma Z} + 2 g^2 (\alpha_9 - \alpha_8) + g^2 \alpha_4 \)

\(\Delta g_2^{W^W} = 2 c_w^2 \Delta g_1^{\gamma Z} + 2 g^2 (\alpha_9 - \alpha_8) - g^2 (\alpha_4 + 2 \alpha_5) \)

\(h^{ZZ} = g^2 [\alpha_4 + \alpha_5 + 2 (\alpha_6 + \alpha_7 + \alpha_{10})] \)
Anomalous triple and quartic gauge couplings

\[\mathcal{L}_{QGC} = e^2 \left[g_1^{\gamma\gamma} A^{\mu} A^{\nu} W_{\mu}^- W_{\nu}^+ - g_2^{\gamma\gamma} A^{\mu} A^{\nu} W_{\mu}^- W_{\nu}^+ \right] + e^2 \frac{c_w}{s_w} \left[g_1^{\gamma Z} A^{\mu} Z^{\nu} (W_{\mu}^- W_{\nu}^+ + W_{\mu}^+ W_{\nu}^-) - 2g_2^{\gamma Z} A^{\mu} Z_{\mu} W_{\nu}^- W_{\nu}^+ \right] + e^2 \frac{c_w^2}{s_w^2} \left[g_1^{ZZ} Z^{\mu} Z^{\nu} W_{\mu}^- W_{\nu}^+ - g_2^{ZZ} Z^{\mu} Z_{\mu} W_{\nu}^- W_{\nu}^+ \right] + \frac{e^2}{2s_w^2} \left[g_1^{WW} W^{-\mu} W^{+\nu} W_{\mu}^- W_{\nu}^+ - g_2^{WW} (W^{-\mu} W_{\mu}^+)^2 \right] + \frac{e^2}{4s_w^2 c_w^4} h^{ZZ} (Z^{\mu} Z_{\mu})^2 \]

SM values: \(g_1^{\gamma,Z} = \kappa^{\gamma,Z} = 1 \), \(\lambda^{\gamma,Z} = 0 \) and \(\delta Z = \frac{\beta_1 + g' \alpha_1}{c_w^2 - s_w^2} \) \(g_{1/2}' = 1 \), \(h^{ZZ} = 0 \)

\[\Delta g_1^{\gamma} = 0 \quad \Delta \kappa^{\gamma} = g^2 (\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2 (\alpha_9 - \alpha_8) \]

\[\Delta g_1^{Z} = \delta Z + \frac{g^2}{c_w^2} \alpha_3 \quad \Delta \kappa^{Z} = \delta Z - g' (\alpha_2 - \alpha_1) + g^2 \alpha_3 + g^2 (\alpha_9 - \alpha_8) \]

\[\Delta g_{1/2}^{\gamma} = 0 \quad \Delta g_{1/2}^{ZZ} = 2\Delta g_1^{\gamma} - \frac{g^2}{c_w^2} (\alpha_4 + \alpha_7) \]

\[\Delta g_1^{\gamma Z} = \Delta g_2^{\gamma Z} = \delta Z + \frac{g^2}{c_w^2} \alpha_3 \]

\[\Delta g_1^{ZZ} = 2\Delta g_1^{\gamma Z} + \frac{g^2}{c_w^2} (\alpha_4 + \alpha_6) \quad \Delta g_1^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) + g^2 \alpha_4 \]

\[\Delta g_1^{WW} = 2c_w^2 \Delta g_1^{\gamma Z} + 2g^2 (\alpha_9 - \alpha_8) - g^2 (\alpha_4 + 2\alpha_5) \]

\[h^{ZZ} = g^2 [\alpha_4 + \alpha_5 + 2 (\alpha_6 + \alpha_7 + \alpha_{10})] \]
Parameters and Scales, Resonances

\(\alpha_i \) measurable at ILC

- \(\alpha_i \ll 1 \) (LEP)
- \(\alpha_i \gtrsim 1/16\pi^2 \approx 0.006 \) (renormalize divergencies, \(16\pi^2 \alpha_i \gtrsim 1 \))

Translation of parameters into new physics scale \(\Lambda \): \(\alpha_i = v^2/\Lambda^2 \)

- Operator normalization is arbitrary
- Power counting can be intricate

To be specific: consider resonances that couple to EWSB sector

Resonance mass gives detectable shift in the \(\alpha_i \)

- Narrow resonances \(\Rightarrow \) particles
- Wide resonances \(\Rightarrow \) continuum

\(\beta_1 \ll 1 \Rightarrow SU(2)_c \) custodial symmetry (weak isospin, broken by hypercharge \(g' \neq 0 \) and fermion masses)

\(I \)	\(J = 0 \)	\(J = 1 \)	\(J = 2 \)
0	\(\sigma^0 \) (Higgs ?)	\(\omega^0 \) (\(\gamma'/Z' \) ?)	\(f^0 \) (Graviton ?)
1	\(\pi^\pm, \pi^0 \) (2HDM ?)	\(\rho^\pm, \rho^0 \) (\(W'/Z' \) ?)	\(a^\pm, a^0 \)
2	\(\phi^{\pm\pm}, \phi^\pm, \phi^0 \) (Higgs triplet ?)	—	\(t^{\pm\pm}, t^\pm, t^0 \)

accounts for weakly and strongly interacting models
Model-Independent Way – Effective Field Theories

How to clearly separate effects of heavy degrees of freedom?

Toy model: Two interacting scalar fields φ, Φ

$$Z[j, J] = \int \mathcal{D}[\Phi] \mathcal{D}[\varphi] \exp \left[i \int dx \left(\frac{1}{2} (\partial \varphi)^2 - \frac{1}{2} \Phi (\Box + M^2) \Phi - \lambda \varphi^2 \Phi - \ldots + J \Phi + j \varphi \right) \right]$$

Low-energy effective theory \Rightarrow integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

Completing the square:

$$\Phi' = \Phi + \frac{\lambda}{M^2} \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2 \Rightarrow \quad \rightarrow$$

$$\frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} M^2 \Phi^2 - \lambda \varphi^2 \Phi = -\frac{1}{2} \Phi' (M^2 + \partial^2) \Phi' + \frac{\lambda^2}{2M^2} \varphi^2 \left(1 + \frac{\partial^2}{M^2} \right)^{-1} \varphi^2.$$
Effective Dim. 6 Operators

\[O_{JJ}^{(I)} = \frac{1}{F^2} \text{tr} [J^{(I)} \cdot J^{(I)}] \]

\[O'_{h,1} = \frac{1}{F^2} ((Dh)^\dagger h) \cdot (h^\dagger (D^h)) - \frac{v^2}{2} |Dh|^2 \]

\[O'_{hh} = \frac{1}{F^2} (h^\dagger h - v^2/2) (Dh)^\dagger \cdot (Dh) \]

\[O'_{h,3} = \frac{1}{F^2} \frac{1}{3} (h^\dagger h - v^2/2)^3 \]
\[O'_{WW} = -\frac{1}{F^2} \frac{1}{2} (h^\dagger h - v^2/2) \text{tr} [W_{\mu\nu} W^{\mu\nu}] \]
\[O_B = \frac{1}{F^2} \frac{i}{2} (D_{\mu} h)^\dagger (D_{\nu} h) B^{\mu\nu} \]
\[O'_{BB} = -\frac{1}{F^2} \frac{1}{4} (h^\dagger h - v^2/2) B_{\mu\nu} B^{\mu\nu} \]

\[O_{Vq} = \frac{1}{F^2} \bar{q} h (\bar{\Psi} h) q \]
Oblique Corrections: S, T, U

$Z_L \rightarrow Z_L \Delta T \sim \Delta \rho \sim \Delta M_Z^2 Z \cdot Z$

$Z_T \rightarrow Z_T \Delta S \sim W^0_{\mu \nu} B^{\mu \nu}$, $\Delta U \sim W^0_{\mu \nu} W^0_{\mu \nu}$

- All low-energy effects order v^2/F^2 (Wilson coefficients)
- Low-energy observables with low-energy input G_F, α, M_Z affected by non-oblique contributions:

\[G_F = \frac{1}{v} \longrightarrow \frac{1}{v} \left(1 - \alpha \Delta T + \delta \right) , \]

\[\delta \equiv -\frac{v^2}{4} f_J^{(3)} \]

$S_{\text{eff}} = \Delta S$

$T_{\text{eff}} = \Delta T - \frac{1}{\alpha} \delta$

$U_{\text{eff}} = [\Delta U = 0] + \frac{4s_w^2}{\alpha} \delta$

- non-oblique flavour-dependent corrections \Rightarrow enforce flavour-dependent EW fit
Integrating out resonances

Consider leading order effects of resonances on EW sector:

\[
\mathcal{L}_\Phi = z \left[\Phi \left(M_\Phi^2 + DD \right) \Phi + 2 \Phi J \right] \quad \Rightarrow \quad \mathcal{L}_\Phi^{\text{eff}} = -\frac{z}{M^2} JJ + \frac{z}{M^4} J(DD)J + \mathcal{O}(M^{-6})
\]

- Simplest example: scalar singlet \(\sigma \):

\[
\mathcal{L}_\sigma = -\frac{1}{2} \left[\sigma \left(M_\sigma^2 + \partial^2 \right) \sigma - g_\sigma v \sigma \text{tr} \left[V_\mu V^\mu \right] - h_\sigma \text{tr} \left[TV_\mu \right] \text{tr} \left[TV^\mu \right] \right]
\]

- Effective Lagrangian

\[
\mathcal{L}_\sigma^{\text{eff}} = \frac{v^2}{8 M_\sigma^2} \left[g_\sigma \text{tr} \left[V_\mu V^\mu \right] + h_\sigma \text{tr} \left[TV_\mu \right] \text{tr} \left[TV^\mu \right] \right]^2
\]

- leads to anomalous quartic couplings

\[
\alpha_5 = g_\sigma^2 \left(\frac{v^2}{8 M_\sigma^2} \right) \quad \alpha_7 = 2 g_\sigma h_\sigma \left(\frac{v^2}{8 M_\sigma^2} \right) \quad \alpha_{10} = 2 h_\sigma^2 \left(\frac{v^2}{8 M_\sigma^2} \right)
\]

- Special case: SM Higgs with \(g_\sigma = 1 \) and \(h_\sigma = 0 \)
Coupl. strengths, Anomal. Couplings, Power Counting

Scalar resonance width ($M_\sigma \gg M_W, M_Z$):

$$\Gamma_\sigma = \frac{g_\sigma^2 + \frac{1}{2}(g_\sigma^2 + 2h_\sigma^2)^2}{16\pi} \left(\frac{M_\sigma^3}{v^2}\right) + \Gamma(\text{non} - WW, ZZ)$$

Largest allowed coupling for a broad continuum: $\Gamma \sim M \gg \Gamma(\text{non} - WW, ZZ) \sim 0$

translates to bounds for effective Lagrangian (e.g. scalar with no isospin violation):

$$\alpha_5 \leq \frac{4\pi}{3} \left(\frac{v^4}{M_\sigma^4}\right) \approx \frac{0.015}{(M_\sigma \text{ in TeV})^4} \Rightarrow 16\pi^2 \alpha_5 \leq \frac{2.42}{(M_\sigma \text{ in TeV})^4}$$

Scalar: $\Gamma \sim g^2 M^3$, $\alpha \sim g^2 / M^2$ \quad \Rightarrow \quad $\alpha_{\text{max}} \sim 1 / M^4$

Vector: $\Gamma \sim g^2 M$, $\alpha \sim g^2 / M^2$ \quad \Rightarrow \quad $\alpha_{\text{max}} \sim 1 / M^2$

Tensor: $\Gamma \sim g^2 M^3$, $\alpha \sim g^2 / M^2$ \quad \Rightarrow \quad $\alpha_{\text{max}} \sim 1 / M^4$

Vector triplet (simplified)

$$L_\rho = -\frac{1}{8} \text{tr} [\rho_{\mu\nu} \rho^{\mu\nu}] + \frac{M_\rho^2}{4} \text{tr} [\rho_{\mu} \rho^{\mu}] + \frac{ig_\rho v^2}{2} \text{tr} [\rho_{\mu} V^{\mu}]$$

$1/M^2$ term renormalizes kinetic energy (i.e. v), hence unobservable:

$$L_{\rho}^{\text{eff}} = \frac{g_\rho^2 v^4}{4M_\rho^2} \text{tr} [(D_\mu \Sigma)(D^\mu \Sigma)] + O(1/M_\rho^4)$$
Vector Resonances

\[\mathcal{L}_\rho = -\frac{1}{8} \text{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] + \frac{M_\rho^2}{4} \text{tr} \left[\rho_{\mu} \rho^{\mu} \right] + \frac{\Delta M_\rho^2}{8} \left(\text{tr} \left[T \rho_{\mu} \right] \right)^2 + i \frac{\mu_\rho}{2} g \text{tr} \left[\rho_{\mu} W^{\mu\nu} \rho_{\nu} \right] \]

\[+ i \frac{\mu_\rho}{2} g' \text{tr} \left[\rho_{\mu} B^{\mu\nu} \rho_{\nu} \right] + i g_\rho v^2 \frac{1}{2} \text{tr} \left[\rho_{\mu} V^{\mu} \right] + i h_\rho v^2 \frac{1}{2} \text{tr} \left[\rho_{\mu} T \right] \text{tr} \left[TV^{\mu} \right] \]

\[+ \frac{g' v^2 k'_\rho}{2 M_\rho^2} \text{tr} \left[\rho_{\mu} \left[B^{\nu\mu}, V_{\nu} \right] \right] + \frac{g v^2 k'_\rho}{4 M_\rho^2} \text{tr} \left[\rho_{\mu} \left[T, V_{\nu} \right] \right] \text{tr} \left[TV^{\nu\mu} \right] \]

\[+ \frac{g v^2 k''_\rho}{4 M_\rho^2} \text{tr} \left[T \rho_{\mu} \right] \text{tr} \left[\left[T, V_{\nu} \right] W^{\nu\mu} \right] + i \frac{\ell_\rho}{M_\rho^2} \text{tr} \left[\rho_{\mu\nu} W^{\nu\rho} W^{\rho\mu} \right] \]

\[+ i \frac{\ell'_\rho}{M_\rho^2} \text{tr} \left[\rho_{\mu\nu} B^{\nu\rho} W^{\rho\mu} \right] + i \frac{\ell''_\rho}{M_\rho^2} \text{tr} \left[\rho_{\mu\nu} T \right] \text{tr} \left[TW^{\nu\rho} W^{\rho\mu} \right] \]

all \(\alpha_i \sim 1/M_\rho^4 \), except for \(\beta_1 \sim \Delta \rho \sim T \sim h_\rho^2 / M_\rho^2 \)

4-fermion contact interaction \(j_\mu j^{\mu} \sim 1/M_\rho^2 \) (eff. \(T \) and \(U \) parameter)

vector coupling \(j_\mu V^{\mu} \sim 1/M_\rho^2 \) (eff. \(S \) parameter)

Mismatch: measured fermionic vs. bosonic coupling \(g \) \(\text{Nyffeler/Schenk, 2000; Kilian/JR, 2003} \)

Effects on Triple Gauge Couplings

- \(\mathcal{O}(1/M^2) \): Renormalization of \(ZWW \) coupling
- \(\mathcal{O}(1/M^4) \): shifts in \(\Delta g_1^Z, \Delta \kappa^\gamma, \Delta \kappa^Z, \lambda^\gamma, \lambda^Z \)

Effects on Quartic Gauge Couplings

- \(\mathcal{O}(1/M^4) \), orthogonal (in \(\alpha_4-\alpha_5 \) space) to scalar case
WHIZARD

- Multi-Purpose event generator for collider and astroparticle physics
- Acronym: W, Higgs, Z, And Respective Decays (deprecated)
 - Fast adaptive multi-channel Monte-Carlo integration
 - Very efficient phase space and event generation
 - Optimized/-al matrix elements
- Recent version: 2.1.1 (18.09.2012)

 http://projects.hepforge.org/whizard
 und
 http://whizard.event-generator.org

- Parton shower (k^\perp-ordered and analytical)
- Underlying Event: preliminary (for 2.1)
- Arbitrary processes: matrix element generator (O’Omega)
- 2.0 Features: ME/PS matching, cascades, versatile new steering syntax, WHIZARD as shared library

- Interface to FeynRules
- Versatile input language: SINDARIN
Multi-Purpose event generator for collider and astroparticle physics

Focus: LHC, ILC, CLIC, SM, QCD, BSM

MODEL TYPE	with CKM matrix	trivial CKM
QED with e, μ, τ, γ	QED	QED
QCD with d, u, s, c, b, t, g	QCD	QCD
Standard model	SM	SM
SM with anomalous couplings	SM_ac	SM_ac
SM with anomalous top couplings	SM_top	SM_top
SM with K matrix	SM_KM	SM_KM
MSSM	MSSM	MSSM
MSSM with Gravitinos	MSSM_Grav	MSSM_Grav
NMSSM	NMSSM	NMSSM
extended SUSY models	PSSSM	PSSSM
Littlest Higgs	Littlest	Littlest
Littlest Higgs with ungauged $U(1)$	Littlest_Eta	Littlest_Eta
Littlest Higgs with T parity	Littlest_Tpar	Littlest_Tpar
Simplest Little Higgs (anomaly free)	Simplest	Simplest
Simplest Little Higgs (universal)	Simplest_univ	Simplest_univ
UED	UED	UED
3-Site Higgsless Model	Threeshl	Threeshl
Noncommutative SM (inoff.)	NCSM	NCSM
SM with Z'	Zprime	Zprime
SM with Gravitino and Photino	GravTest	GravTest
Augmentable SM template	Template	Template

easy to implement new models

Interface to FeynRules

Versatile input language: SINDARIN
Anomalous Gauge Couplings at LHC

ILC: Beyer/Kilian/Krstonošić/Mönig/JR/Schröder/Schmidt, 2006
LHC: Mertens, 2006; Kilian/Kobel/Mader/JR/Schumacher

Anomalous quartic gauge couplings, by chiral EW Lagrangian:

\[\mathcal{L}_4 = \frac{\alpha_4 g^2}{2} \left\{ \left[(W^+ W^-) (W^- W^-) + (W^+ W^-)^2 \right] + \frac{2}{c_W^2} (W^+ Z) (W^- Z) + \frac{1}{2 c_W^4} (Z Z)^2 \right\} \]

\[\mathcal{L}_5 = \frac{\alpha_5 g^2}{2} \left\{ (W^+ W^-)^2 + \frac{2}{c_W^2} (W^+ W^-) (Z Z) + \frac{1}{2 c_W^4} (Z Z)^2 \right\} \]

(all leptons, incl. \(\tau \)):

\[pp \rightarrow jj (Z Z / W W) \rightarrow jj \ell^- \ell^+ \nu_\ell \bar{\nu}_\ell \]

\(\sigma \approx 40 \text{ fb} \)

Background:
- \(tt \rightarrow WbWb, \sigma \approx 52 \text{ pb} \)
- Single \(t \), misrec. jet: \(\sigma \approx 4.8 \text{ pb} \)
- QCD: \(\sigma \approx 0.21 \text{ pb} \)
Tagging and Cuts:

- $\ell\ell jj$-Tag, $\eta_{\text{tag}}^{\text{min}} < \eta_{\ell} < \eta_{\text{tag}}^{\text{max}}$, b-Veto
- $|\Delta\eta_{jj}| > 4.4$, $M_{jj} > 1080$ GeV
- Minijet-Veto: $p_T,j < 30$ GeV
- $E_j > 600, 400$ GeV, $p_T^{1,j} > 60, 24$ GeV

Improves S/\sqrt{B} from 3.3 to 29.7
Results: (1σ Sensitivity to α_s)

Coupl.	ILC (1 ab$^{-1}$)	LHC (100 fb$^{-1}$)
α_4	0.0088	0.00160
α_5	0.0071	0.00098

Limits for Λ [TeV]:

Spin	$I = 0$	$I = 1$	$I = 2$
0	1.39	1.55	1.95
1	1.74	2.67	–
2	3.00	3.01	5.84
Isospin decomposition

- Lowest order chiral Lagrangian (incl. anomalous couplings)

\[\mathcal{L} = -\frac{v^2}{4} \text{tr} [V_\mu V^\mu] + \alpha_4 \text{tr} [V_\mu V_\nu] \text{tr} [V^\mu V^{\nu}] + \alpha_5 (\text{tr} [V_\mu V^\mu])^2 \]

- Leads to the following amplitudes:

\[A(s, t, u) = \begin{cases}
A(w^+w^- \rightarrow zz) &= \frac{s}{v^2} + 8\alpha_5 \frac{s^2}{v^4} + 4\alpha_4 \frac{t^2 + u^2}{v^4} \\
A(w^+z \rightarrow w^+z) &= \frac{t}{v^2} + 8\alpha_5 \frac{t^2}{v^4} + 4\alpha_4 \frac{s^2 + u^2}{v^4} \\
A(w^+w^- \rightarrow w^+w^-) &= -\frac{u}{v^2} + (4\alpha_4 + 2\alpha_5) \frac{s^2 + t^2}{v^4} + 8\alpha_4 \frac{u^2}{v^4} \\
A(w^+w^+ \rightarrow w^+w^+) &= -\frac{s}{v^2} + 8\alpha_4 \frac{s^2}{v^4} + 4(\alpha_4 + 2\alpha_5) \frac{t^2 + u^2}{v^4} \\
A(zz \rightarrow zz) &= 8(\alpha_4 + \alpha_5) \frac{s^2 + t^2 + u^2}{v^4} \end{cases} \]

- (Clebsch-Gordan) Decomposition into isospin eigenamplitudes

\[A(I = 0) = 3A(s, t, u) + A(t, s, u) + A(u, s, t) \]
\[A(I = 1) = A(t, s, u) - A(u, s, t) \]
\[A(I = 2) = A(t, s, u) + A(u, s, t) \]
Unitarity of Amplitudes

UV-incomplete theories could violate unitarity

Cross section:
\[\sigma = \int d\Omega \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2 s} |\mathcal{M}|^2 \]

Optical Theorem (Unitarity of the S(cattering) Matrix):
\[\sigma_{\text{tot}} = \text{Im} [\mathcal{M}_{ii}(t = 0)] / s \quad t = -s(1 - \cos \theta)/2 \]

Partial wave amplitudes:
\[\mathcal{M}(s, t, u) = 32\pi \sum_{\ell} (2\ell + 1) A_{\ell}(s) P_{\ell}(\cos \theta) \]

Assuming only elastic scattering:
\[\sigma_{\text{tot}} = \sum_{\ell} \frac{32\pi(2\ell + 1)}{s} |A_{\ell}|^2 = \sum_{\ell} \frac{32\pi(2\ell + 1)}{s} \text{Im} [A_{\ell}] \quad \Rightarrow \quad |A_{\ell}|^2 = \text{Im} [A_{\ell}] \]

Argand circle
\[|A(s) - \frac{i}{2}| = \frac{1}{2} \]

Resonance:
\[\mathcal{A}(s) = \frac{-M\Gamma_{\text{el}}}{s - M^2 + iM\Gamma_{\text{tot}}} \]

Counterclockwise circle, radius \(\frac{x_{el}}{2} \)

Pole at \(s = M^2 - iM\Gamma_{\text{tot}} \)
Unitarity in the EW sector: SM

- Project out isospin eigenamplitudes

\[A_\ell(s) = \frac{1}{32\pi} \int_{-s}^{0} \frac{dt}{s} A(s, t, u) P_\ell(1 + 2t/s) \quad \cos \theta = 1 + 2t/s \]

Remember Legendre polynomials:

\[P_0(s) = 1 \quad P_1(s) = \cos \theta \quad P_2(s) = (3\cos^2 \theta - 1)/2 \]

- SM longitudinal isospin eigenamplitudes (\(A_{I,\text{spin}=J} \)):

\[
\begin{align*}
 A_{I=0} &= 2 \frac{s}{v^2} P_0(s) \\
 A_{I=1} &= \frac{t - u}{v^2} = \frac{s}{v^2} P_1(s) \\
 A_{I=2} &= -\frac{s}{v^2} P_0(s)
\end{align*}
\]

\[
\begin{array}{|c|}
\hline
A_{0,0} = \frac{s}{16\pi v^2} \\
A_{1,1} = \frac{s}{96\pi v^2} \\
A_{2,0} = -\frac{s}{32\pi v^2} \\
\hline
\end{array}
\]

exceeds unitarity bound \(|A_{I,J}| \lesssim \frac{1}{2}\) at:

- \(I = 0 \): \(E \sim \sqrt{8\pi v} = 1.2 \) TeV
- \(I = 1 \): \(E \sim \sqrt{48\pi v} = 3.5 \) TeV
- \(I = 2 \): \(E \sim \sqrt{16\pi v} = 1.7 \) TeV

Higgs exchange:

\[A(s, t, u) = -\frac{M_H^2}{v^2} \frac{s}{s - M_H^2} \]

Unitarity:

\[M_H \lesssim \sqrt{8\pi v} \sim 1.2 \text{ TeV} \]
K-Matrix Unitarization and friends

K-Matrix unitarization

\[A_K(s) = \frac{A(s)}{1 - iA(s)} = A(s) \frac{1 + iA(s)}{1 + A(s)^2} \]

Unitarization by infinitely heavy and wide resonance

- Low-energy theorem (LET): \(\frac{s}{v^2} \)
- K-Matrix amplitude:
 \[|A(s)|^2 = \frac{s^2}{s^2 + v^4} \xrightarrow{s \to \infty} 1 \]
- Poles \(\pm iv \): \(M_0, \Gamma \) large

Padé unitarization

separates higher chiral orders

\[A_P(s) = \frac{A^{(0)}(s)^2}{A^{(0)}(s) - A^{(1)}(s) - iA^{(0)}(s)^2} \]

each partial wave dominated by single resonance

“Naive” Unitarization

Extreme case:

\[A_N(s) = e^{iA(s)} \sin A(s) \]

Infinitely many resonances
becoming denser for \(s \to \infty \)
BSM Unitarized Resonances: e.g. Scalar Singlet

Assumptions:

- LHC is able to detect a resonance in the EW sector
- Further resonances might exist, but out of reach or not detectable
- Describe 1st resonance by correct amplitude
- Use K-matrix unitarization to define a consistent model

Example: Scalar Singlet

- \(\mathcal{L}_\sigma = -\frac{1}{2} \sigma \left(M^2_\sigma + \partial^2 \right) \sigma + \frac{g_\sigma v}{2} \sigma \text{tr} \left[V_\mu V^{\mu} \right] \)
- Feynman rules: \(\sigma w^+ w^- : -\frac{2ig_\sigma}{v} (k_+ \cdot k_-) \) \(\sigma z z : -\frac{2ig_\sigma}{v} (k_1 \cdot k_2) \)
- Amplitude (\(s \)-channel exchange):
 \[A^\sigma (s, t, u) = \frac{g_\sigma^2}{v^2} \frac{s^2}{s-M^2} \]
- Isospin eigenamplitudes:
 \[
 A^0 (s, t, u) = \frac{g_\sigma^2}{v^2} \left(3 \frac{s^2}{s-M^2} + \frac{t^2}{t-M^2} + \frac{u^2}{u-M^2} \right) \\
 A^1 (s, t, u) = \frac{g_\sigma^2}{v^2} \left(\frac{t^2}{t-M^2} - \frac{u^2}{u-M^2} \right) \\
 A^2 (s, t, u) = \frac{g_\sigma^2}{v^2} \left(\frac{t^2}{t-M^2} + \frac{u^2}{u-M^2} \right)
 \]
Unitarizing the scalar singlet

\[A^\sigma_{00}(s) = 3 \frac{g^2}{v^2} \frac{s^2}{s-M^2} + 2 \frac{g^2}{v^2} S_0(s) \]
\[A^\sigma_{02}(s) = 2 \frac{g^2}{v^2} S_2(s) = A^\sigma_{22}(s) \]
\[A^\sigma_{11}(s) = 2 \frac{g^2}{v^2} S_1(s) \]
\[A^\sigma_{13}(s) = 2 \frac{g^2}{v^2} S_3(s) \]
\[A^\sigma_{20}(s) = 2 \frac{g^2}{v^2} S_0(s) \]

\[\Delta A_{IJ}(s) = 32\pi i \left(1 + \frac{i}{32\pi} A_{IJ}^{(0)}(s) + \frac{s - M^2}{i \frac{G_{IJ}(s)}{s - M^2}} \right) \]
Implementation and Taxonomy of Resonances

- Explicit “time arrow” in WHIZARD

$$\Delta A_{IJ} \left(\sum p \right)$$

- trace back pairs of momenta at quartic vertices to external legs
- guarantee for only s-channel insertions

Consider the following resonances:

$$\mathcal{L}_\sigma = -\frac{1}{2} \sigma \left(M^2_\sigma + \partial^2 \right) \sigma + \sigma j_\sigma$$

$$\mathcal{L}_\phi = -\frac{1}{2} \left[\frac{1}{2} \text{tr} \left[\phi \left(M^2_\sigma + \partial^2 \right) \phi \right] + \text{tr} \left[\phi j_\phi \right] \right]$$

$$\mathcal{L}_\rho = \frac{1}{2} \left[\frac{M^2_\rho}{2} \text{tr} \left[\rho \mu \rho^\mu \right] - \frac{1}{4} \text{tr} \left[\rho_{\mu \nu} \rho^{\mu \nu} \right] + \text{tr} \left[j_\mu \rho \rho^\mu \right] \right]$$

$$\mathcal{L}_f = \mathcal{L}_{\text{kin}} - \frac{M^2_f}{2} f^{\mu \nu} f_{\mu \nu} + f^{\mu \nu} j_f^{\mu \nu}$$

$$\mathcal{L}_a = \mathcal{L}_{\text{kin}} - \frac{M^2_a}{4} \text{tr} \left[t^{\mu \nu} t^{\mu \nu} \right] + \frac{1}{2} \text{tr} \left[t^{\mu \nu} j_a^{\mu \nu} \right]$$

$$j_\sigma = \frac{g_\sigma v}{2} \text{tr} \left[V_{\mu} V^{\mu} \right]$$

$$j_\phi = -\frac{g_\phi v}{2} \left(V_{\mu} \otimes V^{\mu} - \frac{\tau_{aa}}{6} \text{tr} \left[V_{\mu} V^{\mu} \right] \right)$$

$$j_\rho = ig_\rho v^2 V^{\mu}$$

$$j_f^{\mu \nu} = -\frac{g_f v}{2} \left(\text{tr} \left[V^{\mu} V^{\nu} \right] - \frac{g_{\mu \nu}}{4} \text{tr} \left[V_{\rho} V^{\rho} \right] \right)$$

$$j_a^{\mu \nu} = -\frac{g_a v}{2} \left[\frac{1}{2} \left(V^{\mu} \otimes V^{\nu} + V^{\nu} \otimes V^{\mu} \right) - \frac{g_{\mu \nu}}{4} V_{\rho} \otimes V^{\rho} \right.$$

$$- \frac{\tau_{aa}}{6} \text{tr} \left[V^{\mu} V^{\nu} \right] + \frac{g_{\mu \nu} \tau_{aa}}{24} \text{tr} \left[V_{\rho} V^{\rho} \right] \right]$$
Taxonomy of resonances/Loops

Resonance	σ	ϕ	ρ	f	a
$\Gamma[g^2 M^2 / (64\pi v^2)]$	6	1	$\frac{4}{3} \left(\frac{v^2}{M^2} \right)$	$\frac{1}{5}$	$\frac{1}{30}$
$\Delta \alpha_4 [(16\pi \Gamma / M) (v^4 / M^4)]$	0	$\frac{1}{4}$	$\frac{3}{4}$	$\frac{5}{2}$	$-\frac{5}{8}$
$\Delta \alpha_5 [(16\pi \Gamma / M) (v^4 / M^4)]$	$\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{3}{4}$	$-\frac{5}{8}$	$\frac{35}{8}$

- Loop corrections to LET can be switched on/off:
 (μ renormalization scale)

 \[A_{C}^{1\text{-loop}}(s, t, u) = \frac{1}{16\pi^2} \left[\left(\frac{1}{2} \ln \frac{\mu^2}{|s|} + 8C_5 \right) \frac{s^2}{v^4} + \left(\frac{t(s + 2t)}{6v^4} \ln \frac{\mu^2}{|t|} + 4C_4 \frac{t^2}{v^4} \right) + (t \leftrightarrow u) \right], \]

- Finite scheme-dep. matching coefficients/NLO counterterms
 (e.g. heavy Higgs regulator $\mu = M_H$)

\[
C_4 = -\frac{1}{18} \approx -0.056, \quad C_5 = \frac{9\pi}{16\sqrt{3}} - \frac{37}{36} \approx -0.0075.
\]

\[
\alpha_4^{(1)} = \frac{1}{16\pi^2} \left(C_4 - \frac{1}{12} \ln \frac{\mu^2}{\mu_0^2} \right),
\]

\[
\alpha_5^{(1)} = \frac{1}{16\pi^2} \left(C_5 - \frac{1}{24} \ln \frac{\mu^2}{\mu_0^2} \right).
\]
Eigenamplitudes

\[A_{00}, \text{with K matrix} \]

\[A_{02}, \text{with K matrix} \]

\[A_{11}, \text{with K matrix} \]

\[A_{13}, \text{with K matrix} \]

\[A_{20}, \text{with K matrix} \]

\[A_{22}, \text{with K matrix} \]

\[A_{\text{res}}, \text{angular dependence} \]

\[\text{Re}(A), \text{with K matrix} \]
Eigenamplitudes

\[A_{00}, \text{ with K matrix} \]

\[A_{02}, \text{ with K matrix} \]

\[A_{11}, \text{ with K matrix} \]

\[A_{13}, \text{ with K matrix} \]

\[A_{20}, \text{ with K matrix} \]

\[A_{22}, \text{ with K matrix} \]

\[A_{\text{res}}, \text{ angular dependence} \]

\[\text{Re}(A), \text{ with K matrix} \]
“Partonic” cross sections (I)

- Cross sections (in nb)
"Partonic" cross sections (I)

- Cross sections (in nb)
“Partonic” cross sections (II)

- $\sigma(VV \rightarrow VV)$ in nb $M_R = 500$ GeV
- all amplitudes K-matrix unitarized
- Cut of 15° around the beam axis
“Partonic” cross sections (II)

- $\sigma (VV \rightarrow VV)$ in nb $M_R = 500$ GeV
- all amplitudes K-matrix unitarized
- Cut of 15° around the beam axis
The Effective W approximation

- M_V, \hat{t}_i small corrections, V nearly onshell:

$$\sigma(q_1 q_2 \to q_1' q_2' \nu_1' \nu_2') \approx \sum_{\lambda_1, \lambda_2} \int dx_1 \, dx_2 \, F_{q_1 \to q_1'}^{\lambda_1} (x_1) \, F_{q_2 \to q_2'}^{\lambda_2} (x_2) \, \sigma_{\nu_1 \nu_2 \to \nu_1' \nu_2'}^{\lambda_1 \lambda_2} (x_1 x_2 s)$$

- In addition to Weizsäcker-Williams: longitudinal polarisation

$$F_{q \to q'}^{\nu_1} (x) = \frac{(V - A)^2 + (V + A)^2 (1 - x)^2}{16 \pi^2 \, x} \left[\ln \left(\frac{p_{\perp,\text{max}}^2 + (1 - x) m_V^2}{(1 - x) m_V^2} \right) - \frac{p_{\perp,\text{max}}^2}{p_{\perp,\text{max}}^2 + (1 - x) m_V^2} \right]$$

$$F_{q \to q'}^{-\nu_1} (x) = \frac{(V + A)^2 + (V - A)^2 (1 - x)^2}{16 \pi^2 \, x} \left[\ln \left(\frac{p_{\perp,\text{max}}^2 + (1 - x) m_V^2}{(1 - x) m_V^2} \right) - \frac{p_{\perp,\text{max}}^2}{p_{\perp,\text{max}}^2 + (1 - x) m_V^2} \right]$$

$$F_{q \to q'}^{\nu_1} (x) = \frac{V^2 + A^2}{8 \pi^2} \frac{2 (1 - x)}{x} \frac{p_{\perp,\text{max}}^2}{p_{\perp,\text{max}}^2 + (1 - x) m_V^2}$$

- Dominant contribution from small V virtualities
- Transverse momentum cutoff $p_{\perp,\text{max}} \leq (1 - x) \sqrt{s}/2$:
 - longitudinal pol.: finite for $p_{\perp,\text{max}} \to \infty$
 - Transversal pol.: logarithmic singularity
EWA structure functions: W (left) and Z (right)

- Emission from u, $\sqrt{s} = 2$ TeV
- preferred at high energy: transversal emission

Problem: Irreducible background to weak-boson scattering

- Double ISR/FSR
- t-channel like diagrams

Coulomb-singularity (peak): cut on $p_{T,V} \gtrsim 30$ GeV
- Effective W approx. vs. WHIZARD full matrix elements
- Shapes/normalization of distributions heavily affected
- EWA: Sideband subtraction completely screwed up!
LHC Example: Vector Isovector

- Example: 850 GeV vector resonance, coupling $g_\rho = 1$

- (Theory) Cuts:
 - $p_\perp (\ell \nu) > 30$ GeV
 - $|\delta R(\ell \nu)| < 1.5$
 - $\theta(u/d) > 0.5^\circ$

- Integrated luminosity: 225 fb$^{-1}$

- Discriminator: angular correlations $\Delta \phi(\ell \ell)$

- Ongoing ATLAS study

 Kobel/JR/Schumacher

 - Cut analysis/NN
 - More kinematic observables
 - Geant4 FullSim (special points)
 - all resonances, parameter scans
ILC Results: Triboson production

\[e^+e^- \rightarrow W W Z/Z Z Z \], dep. on \((\alpha_4 + \alpha_6), (\alpha_5 + \alpha_7), \alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10})\)

Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Kilian/Ohl/JR

1 TeV, 1 ab\(^{-1}\), full 6-fermion final states, SIMDET fast simulation

Observables: \(M_{WW}^2, M_{WZ}^2, \angle(e^-, Z)\)

A) unpol., B) 80% \(e^-_R\), C) 80% \(e^-_R\), 60% \(e^+_L\)

32 % hadronic decays

Durham jet algorithm

Bkgd. \(t\bar{t} \rightarrow 6\) jets

Veto against \(E_{\text{mis}}^2 + p_{\perp,\text{mis}}^2\)

No angular correlations yet
ILC Results: Triboson production

\[e^+ e^- \rightarrow WWZ/ZZZ, \ \text{dep. on} \ (\alpha_4 + \alpha_6), (\alpha_5 + \alpha_7), \alpha_4 + \alpha_5 + 2(\alpha_6 + \alpha_7 + \alpha_{10}) \]

Polarization populates longitudinal modes, suppresses SM bkgd.

Simulation with WHIZARD Kilian/Ohl/JR

1 TeV, 1 ab\(^{-1}\), full 6-fermion final states, SIMDET fast simulation

Observables: \(M_{WW}^2, M_{WZ}^2, \langle e^-, Z \rangle \)

A) unpol., B) 80\% \(e^-_R \), C) 80\% \(e^-_R \), 60\% \(e^+_L \)

32 \% hadronic decays

Durham jet algorithm

Bkgd. \(t\bar{t} \rightarrow 6 \) jets

Veto against \(E_{\text{mis}}^2 + p_{\perp,\text{mis}}^2 \)

No angular correlations yet
Vector Boson Scattering

1 TeV, 1 ab$^{-1}$, full 6f final states, 80% e^-_R, 60% e^+_L polarization, binned likelihood

Contributing channels: $WW \rightarrow WW$, $WW \rightarrow ZZ$, $WZ \rightarrow WZ$, $ZZ \rightarrow ZZ$

Process	Subprocess	σ [fb]
$e^+e^- \rightarrow \nu_e \bar{\nu}_e q\bar{q}q\bar{q}$	$WW \rightarrow WW$	23.19
$e^+e^- \rightarrow \nu_q \bar{\nu}_q q\bar{q}q\bar{q}$	$WW \rightarrow ZZ$	7.624
$e^+e^- \rightarrow \nu_q \bar{\nu}_q q\bar{q}q\bar{q}$	$V \rightarrow VVV$	9.344
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$WZ \rightarrow WZ$	132.3
$e^+e^- \rightarrow e^+e^- q\bar{q}q\bar{q}$	$ZZ \rightarrow ZZ$	2.09
$e^+e^- \rightarrow b\bar{b}X$	$e^+e^- \rightarrow t\bar{t}$	414.
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow W^+W^-$	3560.108
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	$e^+e^- \rightarrow ZZ$	173.221
$e^+e^- \rightarrow e^+e^- \nuq\bar{q}$	$e^+e^- \rightarrow e^+e^- W$	279.588
$e^+e^- \rightarrow e^+e^- \nuq\bar{q}$	$e^+e^- \rightarrow e^+e^- Z$	134.935
$e^+e^- \rightarrow X$	$e^+e^- \rightarrow q\bar{q}$	1637.405

$SU(2)_c$ conserved case, all channels

Coupling	σ^-	σ^+
$16\pi^2\alpha_4$	-1.41	1.38
$16\pi^2\alpha_5$	-1.16	1.09

$SU(2)_c$ broken case, all channels

Coupling	σ^-	σ^+
$16\pi^2\alpha_4$	-2.72	2.37
$16\pi^2\alpha_5$	-2.46	2.35
$16\pi^2\alpha_6$	-3.93	5.53
$16\pi^2\alpha_7$	-3.22	3.31
$16\pi^2\alpha_{10}$	-5.55	4.55
Interpretation as limits on resonances

Consider the width to mass ratio, $f_\sigma = \Gamma_\sigma/M_\sigma$

$SU(2)$ conserving scalar singlet

$M_\sigma = v \left(\frac{4\pi f_\sigma}{3\alpha_5} \right)^{\frac{1}{4}}$

$SU(2)$ broken vector triplet

needs input from TGC covariance matrix

$M_{\rho^\pm} = v \left(\frac{12\pi\alpha_4 f_{\rho^\pm}}{\alpha_4^2 + 2(\alpha_2^\lambda)^2 + s_\text{w}^2(\alpha_4^\lambda)^2/(2c_\text{w}^2)} \right)^{\frac{1}{4}}$

$f = 1.0$ (full), 0.8 (dash), 0.6 (dot-dash), 0.3 (dot)

Final result:

Spin	$I = 0$	$I = 1$	$I = 2$
0	1.55		1.95
1		2.49	
2	3.29		4.30

Spin	$I = 0$	$I = 1$	$I = 2$
0	1.39	1.55	1.95
1	1.74	2.67	
2	3.00	3.01	5.84
Summary/Conclusions

- New Physics generically encoded in EW Chiral Lagrangian
- Triple/Quartic gauge couplings measured either
 - via triple boson production
 - via vector boson scattering
- Interpreted as resonances coupled to EW bosons
- “Correct” description for first resonance (also [very] broad)
- Beyond that: assure unitarity (K matrix)
- Sensitivity rises with number of intermediate states:
 - LHC sensitivity limited in pure EW sector: 0.6 – 2 TeV
 - ILC: 1.5 – 6 TeV
- Full analysis including all channels/backgrounds with WHIZARD
- Complete ATLAS study is under way
One Ring to Find them ... One Ring to Rule them Out
One Ring to Find them ... One Ring to Rule them Out