Methods for Citizen Involvement in New Governance. Reflections Based on Three Empirical Cases

by Ângela Guimarães Pereira & Silvio Funtowicz, European Commission – Joint Research Centre – IPSC

It is being increasingly recognised that knowledge for addressing societal issues should be scrutinised by the relevant community. Experience from three projects, about sustainable planning with different scopes and scales, is discussed as to illustrate the argument: VISIONS, ULYSES and GOUVERNe. The paper analyses the role of context, the setting of participatory processes and their dependency on targeted audiences, the communication and exchange of knowledge. It also comments on the outcomes of such participatory exercises.

1 Background: New Governance, Citizens’ Participation and Scenarios

The typical focus of activities to increase citizen participation in decision and policy making has been on informing and getting consent from the public. This goal was to be achieved either through increasing public understanding of science or by increasing access to information (Irwin 1995). There has been, however, an evolution, also including European legislation, which encourages more active and collaborative involvement (De Marchi et al. 2001). The process is being reframed as a way to enhance quality and effectiveness in governance.

The emerging agendas for extended governance and inclusionary decision processes are also the result of several initiatives, such as the reflection on governance in Europe (CEC 2001a), the democratisation of expertise report (CEC 2001b), the guidelines for the use of expertise (CEC 2002) and, in general, the extension of participation in decision and policy making processes (CEC water framework directive, etc). These are all elements of an ideal Knowledge Society placing heavy demands on the role and usage of knowledge, and an increase in the need for ever more rigorous quality evaluation processes in an extended peer review framework (Funtowicz & Ravetz, 1992 and 1993). New trends for extended governance acknowledge that scientific expertise is only one of a variety of contributions to framing a specific policy issue. To be effective, scientific knowledge should be articulated with other types of knowledge perspectives, so that we can legitimately talk about accountable and inclusive policy processes.

Making extended processes of this sort requires the creation of interfaces between the usually separate worlds of meaning and understanding. This entails the creation of spaces of shared meaning and shared understanding. At the KAM – Knowledge Assessment Methodologies sector, we believe that scientific supports can help to establish and to develop such shared spaces.

Scenarios can be used as supports to illustrate scientific arguments. Gallopín (2000) pointed out that “Scenarios are used to look into the future. To ‘look into’ is not necessarily the same as ‘to predict’, and most scenario analysts are very careful in emphasizing that scenarios are not predictions, but explorations of the future, and that even discussing which scenario is more probable is not very fruitful. Scenarios are ‘what if...’ stories, plausible courses of events leading to some resulting future image of the world.” – For more information about scenarios see Gallopín et al. (1997).

Scenarios are interesting supports because although they can be local in scale, they are always embedded in a wider perspective. Scenarios may be the point of departure for building useful shared input to policy. Clearly, as any type of input, their deployment requires the design and development of appropriate interfaces, both as inputs for the debates and dialogues, as well as for informing policy making. They should be tangible (make real some very esoteric issues) and resonate with the audiences (relating those issues to lifestyle or to community concerns). Scenarios could then be conceived as the basis for envisioning futures (desirable or not) and plans, and simultaneously as the space for carrying out such activities in an extended fashion.

In the next section we briefly describe three European projects where scenarios have
been used as supports for debates on sustainability and planning options.

2 Three European Examples of Scenario Use

2.1 ULYSSES

In the ULYSSES project – Urban Lifestyles, Sustainability and Integrated Environmental Assessment – the main purpose was to explore the integration of computer models with participatory methods involving lay citizens, as part of an advanced Integrated Assessment methodology. The issues of urban lifestyles and sustainability, particularly in relation to climate change, informed the discussions. Amongst other supports (see De Marchi et al. 1998; Guimarães Pereira et al. 1999), scenarios from the model IMAGE 2 were used during the discussions with citizens on climate change as a global issue. IMAGE 2 (Integrated Model to Assess the Greenhouse Effect), is a global scale Integrated Assessment Model that calculates potential causes and impacts of climate change up to the year 2100. It was developed at the National Institute of Public Health and the Environment (RIVM) in the Netherlands (Alcamo, Kreileman 1996; Alcamo et al. 1996) and is one of the models available within the ULYSSES project. The social research process consisted of six groups of nine people, each meeting for 5 sessions over a total of seven weeks. The format of an in-depth group (for example, see Burgess et al. 1988a; Burgess et al. 1988b; Harrison et al. 1996) was chosen to allow a thorough discussion of the complex issues of lifestyles, sustainability and climate change and to allow time for the participants to have hands-on access to computer tools.

2.2 VISIONS

In the VISIONS Project – Integrated Visions for a Sustainable Europe3 – the main objective was to bring together both physical and social science tools and techniques in order to assist, broaden and deepen the process of policy making for sustainable development. Its ambition was to raise awareness of sustainable development by increasing the understanding of the inter-linkages among social, cultural, economic and environmental processes, and by improving the integrated assessment of the policy consequences for Europe. The ultimate aim of the project was to develop integrated visions for a sustainable Europe, as qualitative narratives with some quantitative ingredients. The project developed scenarios for the whole of Europe and for three regions (Venice, Manchester and the Green Heart in the Netherlands) as metaphors of places in Europe. New and existing scientific tools and participatory methods for scenario building were tested as part of the Integrated Assessment operational objectives.

Four scenarios for Venice were first imagined by expert scenario developers. Points of departure were the local driving forces (interacting with higher scale forces) determining Venice’s historical trajectory into alternative futures. The four images for Venice in 2050 (see Gallopín 2000 or Guimarães Pereira et al. 2001) were: Gotham City (a decadent version of Venice); City Machine (engineering approaches to solve the problematiques of Venice); Venice Inc. (Venice as a theme park) and Cyberia (information technology to establish a new type of economy).

Those images were intended as plausible future states of Venice, states coming into being through the unfolding of causal and casual chains of events. The images were not specific forecasts or predictions; rather, they symbolised possible classes of situations for Venice. Quite independently of the details, they dramatise the inner significance of the situation and allude to the kind of world within which they belong.

Four focus groups with a total of 50 participants – see for instance Morgan (1998) – and 25 in-depth interviews were conducted in Venice, deploying the scenarios for 2050 in several formats. A number of materials were produced depending on the relevant audiences (see Guimarães Pereira et al. 2001), ranging from simulated pages of newspapers in the future through multi-media animations. The involvement of citizens and stakeholders aimed at integrating local knowledge with expert knowledge for tuning the scenarios, eventually reaching a shared sustainable vision for Venice and also for Europe.
2.3 **GOVERNE**

The **GOVERNE** project – Guidelines for the Organisation, Use and Validation of Information Systems for Evaluating Aquifer Resources and Needs – aimed at developing a quality assured information system for the improved governance of groundwater resources at the catchment and sub-catchment levels. This entailed the design and implementation of a Tool to Inform Debates, Dialogues & Deliberations (TIDDD) for two different regions in Europe, the Middle Hérault Valley, France, and the Argolid, Greece (see for instance Corral Quintana et al. 2002). The TIDDD combines traditional features of decision support systems (such as organisation of the information and tools for exploitation of the information) with innovative concepts derived from the management and governance context in which it will be used. Both the information contents and the “exploration” tools follow the principle of *progressive disclosure of information*, i.e. the TIDDD does not assume expert use but it progressively allows exploring scientific and technical information as users become in need of them. The communication style is in a transparent fashion and all materials are quality assured both in terms of scientific validation, as well as by the community of users. This is achieved through an appropriate quality assurance protocol of tools produced for participatory decision and policy making contexts. In this project scenarios were constructed through the combination of drivers, identified through a social research project with local stakeholders and public consultation. The scenarios proposed in the **GOVERNE** case studies are for 2015, being characterised by hydro-geological model parameters and geo-referenced simulated information. The TIDDD and scenarios were subsequently proposed in three different contexts, to a peer review context, to a group of stakeholders of the Hérault valley and to a third group of water management stakeholders in Germany to explore the effects of context in the use of such tools. Clearly, the “decision culture” is utterly important to both initiate the dialogues and to deploy tools, such as scenarios and TIDDD.

2.4 **Lessons from the Scenario Experiences**

In all these projects, scenarios or scenario information were used as a means to initiate a debate about a specific *problematique* and to discuss options for policy and planning. In **ULYSSES**, they were global climate change scenarios, and therefore with rather remote links with local perceptions. It was quite frequent for participants to request that they would like to see climate change scenarios for their own region.

In **VISIONS**, scenarios were a good starting point of debate about futures for Venice, but they were generally rejected by the participants because they were too extreme, and for some, they did not capture the actual dynamics of the city. For instance, in an in-depth interview, a local politician said “one can see that these visions were not developed by someone from Venice”. Hence, although these scenarios concerned the people involved in the social process they were not “appropriated” by them, mainly because they could not go beyond the fact that the scenarios were not produced by locals. Yet, the discussion about the future, although tending to ignore the scenarios, was very rich and effective. So, scenarios were a trigger of such processes and therefore useful supports.

In **GOVERNE**, scenarios are actually a product of a social research process. Although their final vision is a combination of the very drivers identified together by researchers and by stakeholders, the scenarios have been further refined using hydro-geological and economic simulation models, to be finally used in the context of extended debates about river basin and aquifer planning and management. Since they were a combination of drivers, they were able to be simulated immediately in response to requests during the meetings, and they could therefore be used in an exploration mode. Indeed, in **GOVERNE**, scenarios fully supported the discussions.

Three lessons can be derived from these experiences. First, learning about problems of legitimacy and trust, that is, if the scenarios are not a product of a social enquiry process, their legitimacy is questioned. They become the subject of the discussion in a perverse mode, they are not “appropriated” by the participants and
we can hardly talk about scenario usage as a basis of extended planning processes. The second learning relates to the use of pre-configured scenarios as a lock-in process, since the space of options can be constrained by the initial input. This problem can be minimised if the scenarios are generated through the participation of all those concerned. Finally, scenarios that seem to be far removed from people’s wishful thinking, can somehow be the provocative ingredient of useful and effective debates. And there are visions which people prefer to ignore but at the same time prompt stimulating daring debates about unthinkable futures.

3 Two Interfaces: Science – Society and Society – Policy

3.1 Creating the interfaces between science and society

In the projects described in section 2, the ways in which scenarios were introduced in social processes was a fundamental task and research topic.

The basic assumption is that scientific issues, such as the generation of images of the future, have to be placed into a context that efficiently attaches people to the elements that scientists and non-scientists might want to explore together. At the same time – because we are dealing with coherent imaginary revelations of the future – we have to provide the tangible elements that originated the stories we are telling, the ways in which the storylines were produced, etc. That can be achieved through metaphors, immersions into imaginary virtual worlds, but basically through the explorations of spaces where both the story plot and the reasoning behind it are explicitly embedded into the scenario’s interface (Guimarães Pereira et al. 2001).

Neither marketing solutions nor science education approaches were appropriate, because the objective was to engage people not in the product of the research but rather in making them part of the process. New Information and Communication Technology was produced, in these situations, in order to facilitate the creation of a virtual context for a shared ground, making possible the assemblage of concerted actions, decisions and choices.

Hence, in these projects the conditions for introducing scientific tools into a social discourse were explored. This was done in the context of initiating a debate with major actors and citizens on sustainability issues, futures visions and planning perspectives. In practice, the process consisted of the identification, in each case, of elements that make scenarios a valuable instrument for carrying out a meaningful debate about sustainable development for each and all of the social actors.

This implied the design of interfaces tailored for each audience: interfaces for meaning, interfaces promoting familiarity with the instrument so that the audience can adopt it. The process, from design to implementation, consists of:

- The visualisation of the issues (using, for instance, ICT),
- Mechanisms to access further information,
- An effective organisation of the debates by means of focused questions (both on the subject being addressed and for the people being interviewed).

Thus, the creation of interfaces between scientific issues and society is the process enabling an effective and meaningful participation of the civil society in many public issues, including sustainable development and planning.

In GOVERNe, ICT was a means to bring together those affected by or affecting a governance issue. TIDDD are conceived as interfaces for different flows of knowledge co-existing in an extended dialogue, i.e. a sort of platform to structure information created by organised or non-organised actors in order to ensure the quality of the dialogue. This is achieved through the integration of knowledges other than the technical and scientific. Indeed, participation is seen as a quality assurance mechanism of governance processes. The processes of dialogue are themselves “tuning contexts” where convivial TIDDD are proposed through a variety of social enquiry methods.

In a sense, the extended production of scenarios is also the construction of a shared ground where multiple perspectives are translated into drivers and visions that can enhance public debates and deliberations in inclusionary policy processes. The activity embeds the concepts of what Funtowicz & Ravetz (1990) called “ex
tended peer review”, as a means to deliver socially robust knowledge (Gibbons 1999), contributing to enhance the credibility and legitimacy of scientific inputs in social discourse.

3.2 Creating the Interfaces between society and policy

We have briefly explored the conceptual justifications for considering scenarios as good initiators of extended decision and planning processes, as well as a tool for extended quality assurance of planning activities. Yet, as noted before, the creation of interfaces for incorporating the outcomes of scenario construction in a shared way, is another essential step to attain extended processes. Contexts for the co-production of knowledge have to be organised and are strongly dependent on institutional arrangements. Creating ears for policy making requires appropriate institutional arrangements to ensure that the processes are inclusive and legitimate.

Twenty years were required to evolve from the first legislation provisions to inform the public to the actual involvement of citizens in extended governance processes (De Marchi et al. 2001). The extension of policy dialogues relates directly to the setting of agendas, the creation of appropriate spaces and the willingness to promote knowledge partnerships. The shape of institutional frameworks encouraging such partnerships is yet another subject of further research.

4 Summary and Reflections

Scenarios and visions were used in three different projects with the aim of initiating a debate on sustainability, planning and policy needs. In each case participants and researchers have tried to establish a shared ground and insights to understand what the problematiques in each region were. Scenarios were either tuned with local knowledge, or were co-produced using technical, practical and local knowledge. In each case, both product and process underwent an extended quality assurance procedure.

The context determined the ways in which scenarios were used. The co-production of scenarios, however, seems to favour concerted visions, as well as useful deliberations. The context, together with the relevant community, determines also the type of participatory processes that can be put in place, the ways in which scenarios are explored and how the outcomes of such knowledge exchanges are actually incorporated in the decision processes.

It is being increasingly recognised that knowledge for addressing societal issues should be scrutinised by the relevant community, and this was clearly evident from the experiences gathered through the three projects described above. These experiences suggest that involvement of stakeholders and those concerned (performing quality assurance by extended peer review) should be implemented at every stage of any planning process, from the framing of issues through the evaluation of options. Only in this case, is it meaningful to talk about accountable processes, and the delivery of shared visions and planning.

Notes

1) Knowledge Assessment Methodologies sector is part of the Institute for the Protection and Security of the Citizen at the European Commission’s Joint Research Centre.
2) Funded by the European Commission under the 4th Framework Programme, Theme 4 Human Dimensions of Environmental Change (contract no. ENV4-CT96-0212). http://alba.jrc.it/ulysses.
3) Funded by DG RTD of the European Commission – contract no. ENV4-CT97-0462. http://alba.jrc.it/visions.
4) Shared Cost Action funded by DG RTD, under Framework Programme 5 of Research – Contract. No. EVK1-1999-00032; co-ordinated by the University of Versailles – Saint-Quentin-en-Yvelines. http://neptune.c3ed.uvsq.fr/gouverne/ and http://alba.jrc.it/gouverne.

Literature

Alcamo, J.; Kreileman, E., 1996: Emission scenarios and global climate protection. Global Environmental Change 6(4), pp. 305-334
Alcamo, J.; Kreileman, G.J.J.; Bollen, J.C.; van den Born, G.J.; Gerlagh, R.; Krol, M.S.; Toet, A.M.C.; de Vries, H.J.M., 1996: Baseline Scenarios of Global Environmental Change. Global Environmental Change 6(4), pp. 261-303
Burgess, J.; Limb, M.; Harrison, C., 1988a: “Exploring Environmental Values Through the Medium of Small Groups - 1: Theory and Practice.” Environment and Planning A 20, pp. 309-326
Burgess, J.; Limb, M.; Harrison, C., 1988b: “Exploring Environmental Values Through the Medium of Small Groups - 2: Illustrations of a Group at Work.” Environment and Planning A 20, pp. 457-476
CEC (Commission of the European Communities) – Working Group 1B, 2001b: Democratising Expertise And Establishing Scientific Reference Systems. Document of 2/07/2001. See also: http://europa.eu.int/comm/governance/areas/index_en.htm
CEC (Commission of the European Communities), 2001a: European Governance: A White Paper; Com (2001) 428, Brussels, 25.7.2001, available at: http://europa.eu.int/comm/governance/white_paper/index_en.htm
CEC (Commission of the European Communities), 2002: Improving the knowledge base for better policies. Communication From The Commission On The Collection And Use Of Expertise By The Commission: Principles And Guidelines. 2002 COM(2002) 713 final
Corral Quintana, S.; Funtowicz, S.; Giraud, F.; Guimarães Pereira, Â.; Logozzo, R.; Martinino, R.; Musone A.; Pettit, V.; Renda, O.; Rinaudo, J.D.; Silva Blasques, J., 2002b: Tools to inform debates, dialogues and deliberations: information technology for new governance processes on water issues. In: del Moral Ituarte, L. (ed.) Proceedings of the III Congreso Ibérico sobre Gestión y Planificación del Agua, Sevilla, Spain, 13-17 November 2002. Seville: Fundacion Nueva Cultura del Agua, pp. 570-574
De Marchi, B.; Funtowicz, S.; Guimarães Pereira, Â., 1997: Branch Points: Global Scenarios and Human Choice. Polestar series Report no. 7. Stockholm: Stockholm Environment Institute
Gibbons, M., 1999: Science’s new social contract with society. Nature 402, pp. C81-C84
Guimarães Pereira, Â.; Corral Quintana, S.; Funtowicz, S.; Gallopín, G.; De Marchi, B.; Maltoni, B., 2001: Visions – Adventures into the future. The VISIONS project at the JRC. European Commission. EUR 19926 EN
Guimarães Pereira, Â.; Gough, C.; De Marchi, B., 1999: Computers, citizens and Climate change: The Art of communicating technical issues. In: Int. Journal Environment and Pollution, 11(3), pp. 266-289
Harrison, C., Burgess, J.; Filius, P., 1996: Rationaising environmental responsibilities. A comparison of lay publics in the UK and the Netherlands. Global Environmental Change 6(3), pp. 215-234
Irwin, A. (ed.), 1995: Citizen Science: A Study of People, Expertise and Sustainable Development. London: Routledge
Morgan, D.L., 1998: The Focus Group Guidebook. London: SAGE Publications

Contact

Silvio Funtowicz
European Commission
Joint Research Centre – IPSC
I - 21020 Ispra (VA), Italy
E-Mail: silvio.funtowicz@jrc.it
Ángela Guimarães Pereira
E-Mail: angela.pereira@jrc.it

Report to contract ISIS – JRC, European Commission
Contract no. 15072-1999-06 F1EI ISP SE
Gallopín, G.; Hammond, A.; Raskin, P.; Sart, R., 1997: Branch Points: Global Scenarios and Human Choice. Polestar series Report no. 7. Stockholm: Stockholm Environment Institute
Gibbons, M., 1999: Science’s new social contract with society. Nature 402, pp. C81-C84
Guimarães Pereira, Â.; Corral Quintana, S.; Funtowicz, S.; Gallopín, G.; De Marchi, B.; Maltoni, B., 2001: Visions – Adventures into the future. The VISIONS project at the JRC. European Commission. EUR 19926 EN
Guimarães Pereira, Â.; Gough, C.; De Marchi, B., 1999: Computers, citizens and Climate change: The Art of communicating technical issues. In: Int. Journal Environment and Pollution, 11(3), pp. 266-289
Harrison, C., Burgess, J.; Filius, P., 1996: Rationaising environmental responsibilities. A comparison of lay publics in the UK and the Netherlands. Global Environmental Change 6(3), pp. 215-234
Irwin, A. (ed.), 1995: Citizen Science: A Study of People, Expertise and Sustainable Development. London: Routledge
Morgan, D.L., 1998: The Focus Group Guidebook. London: SAGE Publications

Contact

Silvio Funtowicz
European Commission
Joint Research Centre – IPSC
I - 21020 Ispra (VA), Italy
E-Mail: silvio.funtowicz@jrc.it
Ángela Guimarães Pereira
E-Mail: angela.pereira@jrc.it

Report to contract ISIS – JRC, European Commission
Contract no. 15072-1999-06 F1EI ISP SE
Gallopín, G.; Hammond, A.; Raskin, P.; Sart, R., 1997: Branch Points: Global Scenarios and Human Choice. Polestar series Report no. 7. Stockholm: Stockholm Environment Institute
Gibbons, M., 1999: Science’s new social contract with society. Nature 402, pp. C81-C84
Guimarães Pereira, Â.; Corral Quintana, S.; Funtowicz, S.; Gallopín, G.; De Marchi, B.; Maltoni, B., 2001: Visions – Adventures into the future. The VISIONS project at the JRC. European Commission. EUR 19926 EN
Guimarães Pereira, Â.; Gough, C.; De Marchi, B., 1999: Computers, citizens and Climate change: The Art of communicating technical issues. In: Int. Journal Environment and Pollution, 11(3), pp. 266-289
Harrison, C., Burgess, J.; Filius, P., 1996: Rationaising environmental responsibilities. A comparison of lay publics in the UK and the Netherlands. Global Environmental Change 6(3), pp. 215-234
Irwin, A. (ed.), 1995: Citizen Science: A Study of People, Expertise and Sustainable Development. London: Routledge
Morgan, D.L., 1998: The Focus Group Guidebook. London: SAGE Publications

Contact

Silvio Funtowicz
European Commission
Joint Research Centre – IPSC
I - 21020 Ispra (VA), Italy
E-Mail: silvio.funtowicz@jrc.it
Ángela Guimarães Pereira
E-Mail: angela.pereira@jrc.it

Report to contract ISIS – JRC, European Commission
Contract no. 15072-1999-06 F1EI ISP SE
Gallopín, G.; Hammond, A.; Raskin, P.; Sart, R., 1997: Branch Points: Global Scenarios and Human Choice. Polestar series Report no. 7. Stockholm: Stockholm Environment Institute
Gibbons, M., 1999: Science’s new social contract with society. Nature 402, pp. C81-C84
Guimarães Pereira, Â.; Corral Quintana, S.; Funtowicz, S.; Gallopín, G.; De Marchi, B.; Maltoni, B., 2001: Visions – Adventures into the future. The VISIONS project at the JRC. European Commission. EUR 19926 EN
Guimarães Pereira, Â.; Gough, C.; De Marchi, B., 1999: Computers, citizens and Climate change: The Art of communicating technical issues. In: Int. Journal Environment and Pollution, 11(3), pp. 266-289
Harrison, C., Burgess, J.; Filius, P., 1996: Rationaising environmental responsibilities. A comparison of lay publics in the UK and the Netherlands. Global Environmental Change 6(3), pp. 215-234
Irwin, A. (ed.), 1995: Citizen Science: A Study of People, Expertise and Sustainable Development. London: Routledge
Morgan, D.L., 1998: The Focus Group Guidebook. London: SAGE Publications

Contact

Silvio Funtowicz
European Commission
Joint Research Centre – IPSC
I - 21020 Ispra (VA), Italy
E-Mail: silvio.funtowicz@jrc.it
Ángela Guimarães Pereira
E-Mail: angela.pereira@jrc.it