Intelligent Automation of Student Performance Assessment Based on Cloud Services

https://doi.org/10.3991/ijet.v16i02.18827

Xinyu Cai
Capital University of Economics and Business, Beijing, China
xinyucai75@gmail.com / cxy96201@163.com

Natalya Garnova, Alla Filippova, Sergey Glushkov
Sechenov First Moscow State Medical University (Sechenov University),
Moscow, Russia

Abstract—The purpose of the study is to analyze the modern approach to the student performance assessment system and propose options for its improvement by automating the student result processing system. An experiment to analyze the implementation of an automated student result processing system based on the Power BI service developed by Microsoft and compare the results of the control and experimental groups was conducted at Sechenov University and the Capital University of Economics and Business. In total, 12 departments took part in the experiment (there were 6 departments that used the Power BI service and 6 departments that relied on the electronic university journal). The group that worked with Microsoft Power BI received visual results of student performance, which graphically displayed the dynamics. In turn, the group that created analytics with the help of the electronic university journal could not see most indicators of the student performance dynamics; in addition, it took 6 times more time to create such incomplete analytics compared to the analysis performed in the Power BI service. The practice of other educational institutions and organizations has shown that automation tools are being actively implemented at universities; however, the experience of using Microsoft Power BI in the educational environment is quite limited due to its recent introduction.

Keywords—Efficiency improvement; information technologies; innovative approaches; Power BI; process automation; student performance

1 Introduction

Student performance assessment is one of the final steps in the long process of teaching a student. It is at this stage that information on the effectiveness and quality of education is collected and based on the data obtained, an analysis of the whole system of student learning is performed. A qualitative and objective analysis of student performance helps the academic administration and the university faculty change and adjust training programs, as well as use new and more effective methods or approaches to improve the quality of education [1]. Academic performance is traditionally defined as
the measurement of student achievement across various disciplines for a certain period of study [2]. Academic performance is measured based on the evaluated student learning outcomes. The assessment is most often performed through tests and exams.

Nowadays almost all universities are digitizing student performance results. For example, electronic journals have already been implemented at such educational institutions as Kazan Federal University [3], St. Petersburg State University [4] and Volgograd State University [5]; this provides both the teacher and the student with the comprehensive idea of student progress. Electronic journals have a number of advantages that a conventional paper-based academic journals. In digital option, it is easier to make changes, adjust data or analyze the overall progress status. In addition, all changes are immediately displayed to interested users on any device. However, unfortunately, electronic journals have a number of disadvantages. For example, all data on student performance should be entered manually by the teacher, which takes a lot of time. An electronic journal usually provides grade point average statistics or student rank by a specific group. These data are not the indicators to evaluate the general quality of education at the university. Additional analytics is not available or requires extra costs. It is for this reason that the present study discusses one of the options to automate student assessment based on the Microsoft Power BI tool in order to make the process of building analytics easier and more efficient.

1.1 Literature review

Student performance assessment is the comparison of the current student or group performance indicators with the previous ones. This stage is one of the most important stages in the educational process. This raises a number of issues related to the most effective type of assessment, its frequency, rigor, and refinement, etc. [6].

Academic performance is affected by many factors, including student absenteeism levels; the level of professional training of the academic staff and students; the educational process structure; university facilities and resources. However, it should be noted that according to scientists, the approach to assessing student performance as a measure of assessing their knowledge and competencies is a very ineffective methodology that does not reflect real knowledge [7-9].

The statement is proved by the following arguments:

- The assessment system provides for the theoretical knowledge assessment of the student. At the same time, there is no mechanism that assesses student competency and the ability to apply the acquired knowledge in practice.
- Real knowledge is often inaccurately evaluated during exams, and especially when testing a large group of students, due to cheating, deceiving, or bribery.
- Student assessment is often influenced by the subjective teacher attitude. Thus, the same assignment may be differently assessed due to the professional training of the teacher, their exacting attitude, and prejudice towards the student. Undertrained teachers tend to overestimate student's grades [10].

Testing and examinations are the most common methods to assess student knowledge. Testing involves multiple-choice questions; there are usually 4 or 5 options
given. The student selects the option; the results are summed up, and the teacher sees the overall test result. This method is time-consuming; the teacher spends a lot of time to write the test, although checking takes much less time. The question is whether the result of the test reflects real student knowledge and competencies. Another issue is whether it is important to know the name of the principle or method, or it is crucial to understand its essence.

Examination is one of the popular assessment methods. This option is more reliable as the student is expected to give a detailed answer to the question. In this case, the student may not remember particular terms or principles while perfectly understanding the essence of the problem. However, this method is time-consuming; the teacher spends a lot of time to check and read the answers [1].

In the context of the "five-point" scale, the system is actually "four-point" as "one" is never given. In addition, "two" is given formally and temporarily as it is not included into any document. That is, in fact, the teacher does not have a variety of options: satisfactory, good, or excellent. The approach does not ensure qualitative and objective student assessment as the line between the transition from one point to another is blurred. At the same time, the transition to the 10-point scale will not greatly improve the situation; it will be even more difficult to choose between close points [6,11].

Another problem is the fact that every country in the world has its own student assessment system. However, most countries basically rely on the Bologna system which assesses student performance on a 100-point scale or based on letter grades. In fact, the introduction of the system is not a solution as each country interprets the assessment option differently, which creates heterogeneous assessment systems. This does not allow measuring student performance in relation to a similar student from another country. To study abroad, the student also has to spend time and effort converting their grades to another grading system [12,13].

1.2 Setting objectives

There is a need for significant changes in the modern student performance assessment system due to the big number of its shortcomings and limitations. In order to find a new approach to the problem solution and increase efficiency, the established assessment system should be completely changed. It is estimated that this process will take at least two years [14]. Thus, the implementation of innovations should begin with the analysis of the current academic performance. Continuous monitoring of student performance is a complex and time-consuming task; in order to facilitate it, the process should be automated. The relevance of the research topic, as well as its theoretical and practical significance, led to further research in this area.

The purpose of the study is to analyze the modern approach to the student performance assessment system and propose options for its improvement by automating the student result processing system. An experiment to analyze the implementation of an automated student result processing system based on the Power BI service developed by Microsoft and compare the results of the control and experimental groups was conducted at Sechenov University and the Capital University of Economics and Business.

The relevance of this issue determined the research objectives, namely:
• To identify the mechanism of the modern student assessment system;
• To determine the disadvantages of the system;
• To test the implementation of the automation tools to assess student performance based on Microsoft Power BI and compare the results of the control and experimental groups;
• To compare the results obtained with the assessment automation experience of other universities and companies.

2 Methods and Materials

As has been mentioned, to analyze student performance universities mainly use electronic journals, which convert student assessments into electronic form. However, electronic journals do not provide the comprehensive idea of the overall student performance at the university. As a result, based on the data obtained, it is impossible to draw generalized conclusions about the changes to be made in order to improve the quality of education. Thus, it was proposed to automate student performance assessment based on Microsoft PowerBI. The Power BI analytics add-in is a special tool that converts all tabular data into visual and descriptive reports [15].

An experiment to analyze the implementation of an automated student result processing system based on the Power BI service was conducted at two universities, namely Sechenov University and the Capital University of Economics and Business. The experiment involved 3 departments from each of the universities (the names of the departments are not disclosed for the objectivity of the results), which used the Power BI add-in to analyze student performance for one term or 5 months (from February till June 2020). To assess the final results of the experiment, a control group at each university was selected; it consisted of 3 departments and continued to analyze academic performance based on the electronic university journal. In total, 12 departments took part in the experiment (there were 6 departments that used the Power BI service and 6 departments that relied on the electronic university journal). There was a representative at each department who directly analyzed student performance either based on the Power BI service or the electronic journal. Before the start of the experiment, the analysts who implement Power BI connected the Power BI service to the electronic journals of the departments and provided instructions to work with the new tool. During the experiment, the participants could ask a Power BI expert for help.

3 Results and Discussion

In order to influence student performance and take measures to change the approach to teaching, student achievements and results should be collected and analyzed. At this stage, big data processing and aggregation become a challenging task. Microsoft Power BI was used as an analysis tool. The add-in is a relatively new tool; however, it has already been actively introduced in the business environment. The advantage of the service is its versatility as it can be used both in analytics and in other areas, for
example, marketing, HR or education, in particular, the higher education system. The Power BI service allows building dynamic reports that help analyze and monitor student progress in real time. All data are displayed on the dashboard (Fig. 1).

Visualization of student performance data provides clear progress dynamics according to the selected criterion, as well as describes the overall student progress. The dashboard demonstrates the dynamics of grades, the grade point average, student rank, the dynamics of absenteeism, student performance in a particular discipline and many other factors that are established in the context of the selected group, cohort, faculty, or the university over a certain period of time. That is, when the teacher needs specific information, for example, the data on the grade point average dynamics for a selected period, Power BI can automatically build a report and display all the information on the Dashboard by the selected criteria.

After the experiment to introduce the Power BI analytics tool at 6 departments, the supervisors of the experiment, namely the analysts regularly implementing the service, talked to the teachers who compiled reports with the help of the add-in. Those participants who analyzed student performance with the help of the electronic journal were also asked the same questions. All questions were generalized and displayed in Table 1.

Fig. 1. Power BI dashboard (sample)
Based on the results obtained, it can be concluded that the group that used the Power BI service received visual data on the student performance dynamics. This showed correlation between the teaching method and student performance, the relationship between the results and the period, etc. In turn, the group that created analytics exclusively with the help of the electronic university journal could not see most indicators of the student performance dynamics; in addition, it took 6 times more time to create such incomplete analytics compared to the analysis performed in the Power BI service.

The integration with Power BI is configured only once, and further processes are automated; this significantly saves teacher time and university resources (both financial resources and time). The report provides the teacher with the general information on the overall student performance and visually describes connections between the teaching method and academic performance. For example, the case study approach to processing theoretical knowledge ensures better test results compared to the question-and-answer method.

The experiment showed that the PowerBI service has significant advantages over the conventional electronic journal. Microsoft PowerBI is an add-in; it can be integrated in the electronic journal of the university, which does not prevent access to it. The only PowerBI disadvantage is that it is not free; thus, this may stop some universities from using this tool.

BI (or Business Intelligence) systems are special software that systematizes, analyzes and visualize a large amount of data, regardless of their origin [16]. Power BI is one of such services. It has already been actively implemented in the business environment; however, in education, namely in the higher education system, it is an innovation

Table 1. Survey results

Question	Generalized questions
Did you see the data on student performance in visual format (graphs, diagrams)?	Yes
Did you see the dynamics of student performance?	Yes
Did you see the grade point average of each individual student?	Yes
Did you see the grade point average of each particular group/cohort/faculty or the university?	Yes
Was it possible to track student performance in relation to the teaching method used?	Yes
Was it possible to compare the dynamics of student results?	Yes
How much time did it take you to create a monthly report for one group?	30 min
Did you experience any technical difficulties when working with the tool?	Yes - 1 representative
Are you satisfied with the analytics you received?	Yes
Would you like to continue working with the tool?	Yes

Partially, only by certain criteria

154 http://www.i-jet.org
that is not widely used. For comparison, Fig. 2 shows a diagram that describes the ratio of the areas of activity that use any business analytics tool, in particular Power BI (Fig. 2).

![Diagram showing the ratio of areas of activity using business analytics tools]

Fig. 2. The use of BI systems in different areas of activity [own development based on [17]]

As can be seen, BI systems are most commonly used in trade and financial services (17% and 21%, respectively). In contrast, they are the least commonly used in the energy sector (5%) and education (4%). It can be concluded that education and science practically do not apply innovative systems of automation and data analysis.

The introduction and implementation of the Power BI service in higher educational institutions can be compared to its implementation in the small business industry as there are more barriers to the use of innovative solutions in these areas of activity. Given the limited experience of using PowerBI in the educational environment, there is only one real example found in Kazakhstan [18].

Al-Farabi Kazakh National University uses Power BI to extract data from the internal university sources and visualize them. At the same time, the service is also used to make reports on finance, scientific activity of teachers, the location of students, applicants and graduates. According to the university practice, the use of Power BI is not centered around making student performance reports. The university has automated a number of its activities, which has made the university more innovative and successful [19].

At the same time, in general, university activity automation systems are more common than BI systems. Thus, for example, if we consider the experience of domestic universities, a complex system of process automation was introduced at South Ural State University, which included the interaction of the managerial, administrative, economic, educational and scientific activities [17]. A similar process automation system has been implemented at Irkutsk State Medical University. Fourteen special modules have been created to automate the management processes of all university resources [20].
When considering the automation experience of foreign universities, it can be concluded that the university automation system is highly developed and widely used. Thus, the following types of system automation can be distinguished: information management, learning process management, university resource management system, personal account system. That is, these systems correlate with domestic automation systems, but cover more areas [19,21].

In Greece, the automation of student assessment takes place based on the Quiz program. The program automatically generates tests for each student on a unit basis; then the test results are automatically checked and evaluated. As a result, the student is provided with the information on the test results indicating correct and incorrect answers. The teacher, in turn, receives a graphic visualization of the results of all students, which will help to conduct a detailed analysis [22,23]. This approach to the visualization of student performance is very similar to the visualization obtained with the help of the PowerBI tool. The practice of modern universities shows that the automation of processes considers all areas of the university activity and is not reduced to the educational process. The introduction of automation is a huge university advantage that significantly saves resources (time and financial resources) and increases the efficiency of university activities as the results can be quickly tracked in real-time and the adjustments can be made.

4 Conclusion

Student performance assessment is the comparison of the current student or group performance indicators with the previous ones. The modern approach to student performance assessment has a number of disadvantages, such as the variety of grading systems in different countries, the format of student assessment, and a subjective approach to assessment. In order to analyze student performance universities mainly use electronic journals, which convert student assessments into electronic form. However, electronic journals do not provide the comprehensive idea of the overall student performance at the university. As a result, based on the data obtained, it is impossible to draw generalized conclusions about the changes to be made in order to improve the quality of education. It is for this reason that the present study focuses on the automation of student assessment based on the Microsoft Power BI tool. An experiment to analyze the integration of the Power BI service with the electronic journals was conducted at two universities, namely Sechenov University and the Capital University of Economics and Business. Based on the results obtained, it can be concluded that the group that used the Power BI service received visual data on the student performance dynamics. In turn, the group that created analytics with the help of the electronic university journal could not see most indicators of the student performance dynamics; in addition, it took 6 times more time to create such incomplete analytics compared to the analysis performed in the Power BI service. The use of the PowerBI service has significant advantages over the conventional electronic journal. The practice of other educational institutions and organizations has shown that automation tools are being actively
implemented at universities; however, the experience of using Microsoft Power BI in the educational environment is quite limited due to its recent introduction.

Further scientific research should be focused on the description of the new experience of using student performance automation tools; this area of activity is being actively developed and the introduction of new practices can be of interest to both business and scientific environment representatives.

5 Acknowledgement

Supported by the “Russian Academic Excellence Project 5-100” (“Sechenov First Moscow State Medical University Program 5-100”).

6 References

[1] Nguyen, T.H.F., Nguyen, T.H. (2018). Valid score is an update of the student progress scores at the Pedagogical University. Problemy pedagogiki, 2(34): 1-4.
[2] Makushkina, L.A., Fadeva, M.V. (2017). Development of the educational activity monitoring system on the basis of competence-based approach. Educational environment, 21(3): 29-38. https://doi.org/10.21686/1818-4243-2017-3-29-38
[3] Kazan Federal University. Official website. Retrieved from https://students.kpfu.ru/learning/distance-learning
[4] Saint Petersburg State University. Official website. Retrieved from https://spbu.ru/student-tam/obuchenie
[5] Volgograd State University. Official website. Retrieved from https://volsu.ru/do/
[6] Bugaev, K.V. (2017). Systems of estimation of progress of students: problems and prospects. Bulletin of Siberian Institute of Business and Information Technologies, 2(22): 107-113.
[7] Misut, M., Misutova, M. (2017). Software Solution Improving Productivity and Quality for Big Volume Students’ Group Assessment Process. International Journal of Emerging Technologies in Learning, 12(04): 175-190. https://doi.org/10.3991/ijet.v12i04.6608
[8] Shabashev, V.A. (2012). On the system approach to the gain score of high school students. Bulletin of the Kemerovo State University, 2(50): 83-85.
[9] Azis, A. (2012). Teachers’ conceptions and use of assessment in student learning. Indonesian Journal of Applied Linguistics, 2(1): 40-52.
[10] William, D. (2013). Assessment: The bridge between teaching and learning. Voices from the Middle, 21(2): 15-20.
[11] Pustovoitov, Yu.L. (2015). Assessing students in non-profile disciplines: issues, criteria, approaches. Humanities scientific research, 6(1): 1-5.
[12] Karran, T. (2004). Achieving Bologna Convergence: Is ECTS failing to make the grade? Higher education in Europe, 29(3): 411-421. https://doi.org/10.1080/0379772042000331688
[13] Dahl, B., Lien, E., Lindberg-Sand, Å. (2008). Changing grading-scales in higher education as a part of the Bologna Process—the case of Denmark, Norway and Sweden. In 36th NERA Congress, pp. 1-20. https://doi.org/10.3167/latiss.2009.020103
[14] Mohiuddin, K., Islam, A., Mohd, S., Shariff, M. (2019). Evaluation of an Academic Program: The Case of Computing Accreditation Commission Framework in Higher Education. International Journal of Emerging Technologies in Learning, 14(11): 70-91. https://doi.org/10.3991/ijet.v14i11.10178
[15] Power BI. Retrieved from https://powerbi.microsoft.com/ru-ru/
[16] Silakova, L.V., Maharramov, P.A., Semkina, M.A. (2019). Automation of integrated business analysis for SME organizations. ITMO University Scientific Journal Economics and Ecological Management, 3: 101-108. https://doi.org/10.17586/2310-1172-2019-12-3-101-108

[17] Naumov, V.N., Lychagina, E.B., Sharabaeva, L.Yu. (2016). Use of BI-systems for ensuring information and analytical activity of public authorities. Management consulting, 3: 144-152.

[18] Kazakh National University named after Al-Farabi (2018). The use of cloud business analytics services in university management. Retrieved from https://customers.microsoft.com/en-us/story/al-farabi-kazakh-national-university-powerbi-office365-russian-kazakhstan, https://doi.org/10.17501/biotech.2018.3101

[19] Ronzhin, A.L., Zhelezny, M. (2018). Digitalization of management processes in scientific and educational organizations Management consulting. Administrative Consulting, 10: 109-117.

[20] Bykov, Yu.N. (2013). The system of electronic accounting of resource providing in a corporate information system of the Irkutsk State Medical University. Quality management system: experience and prospects, 2: 16-18.

[21] Panfilova, E., Borisova, V., Demidov, L., Ushanov, A., & Maramygin, M. (2019). The assessment and management of credit risk of commercial banks. Opcion, 35(23): 613-627.

[22] Pachoulakis, I. (2005). Automated Tools for Real-Time Student Assessment. In 4th International Conference on New Horizons in Industry, Business and Education, At Corfu, Greece, pp. 204-209.

[23] Marks, A., Al-Ali, M., Rietsema, K. (2016). Learning Management Systems: A Shift Toward Learning and Academic Analytics. International Journal of Emerging Technologies in Learning, 11(4): 77-82. https://doi.org/10.3991/ijet.v11i04.5419

7 Authors

Cai Xinyu is a Doctoral candidate of the School of Labor Economics, Capital University of Economics and Business, Beijing, China. cxy96201@163.com / xinyucai75@gmail.com

Garnova Natalya Yuiryevna is a Candidate of Pedagogics, Associate Professor of the Department of Chemistry, Institute of Pharmacy A.P. Nelyubina, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.

Filippova Alla Anatolievna is a Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry, Institute of Pharmacy A.P. Nelyubina, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.

Glushkov Sergey Vladimirovich is a Candidate of Military Sciences, Associate Professor of the Department of Medical Informatics and Statistics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.

Article submitted 2020-09-28. Resubmitted 2020-11-13. Final acceptance 2020-11-14. Final version published as submitted by the authors.