Zinc supplementation modulates NETs release and neutrophils’ degranulation

Weronika Kuźmicka1,2, Aneta Manda-Handzlik2, Adrianna Cieloch2, Agnieszka Mroczek2, Urszula Demkow2, Małgorzata Wachowska2, Olga Ciepiela3

1 - Postgraduate School of Molecular Medicine, Medical University of Warsaw, Zwirki i Wigury 61 Street, 02-091 Warsaw, Poland

2 - Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Zwirki i Wigury 63a Street, 02-091 Warsaw, Poland

3 - Department of Laboratory Medicine, Medical University of Warsaw, Banacha 1a Street, 02-097, Warsaw, Poland

Corresponding authors: Olga Ciepiela and Małgorzata Wachowska
e-mail: olga.ciepiela@wum.edu.pl; malgorzata.wachowska@wum.edu.pl
telephone number: 22 317 95 03
Supplementary Figure 1. **Zinc concentration in serum and body weight of mice fed low-zinc and high-zinc content diet.** (a) Mice were sacrificed, and blood was collected by cardiac puncture in order to analyze zinc serum concentration. (b) Mice were weighted. Data are shown as means (a, b) + SEM and were analyzed by one-way ANOVA with post hoc Dunnett’s test; (a) n=10, (b) n=5 for low-Zn content diet and n=6 for adequate and high-Zn content diet.