Diagonal and collinear incommensurate spin structures in underdoped La$_{2-x}$Ba$_x$CuO$_4$

S. R. Dunsiger, Y. Zhao, B. D. Gaulin, Y. Qiu, P. Bourges, Y. Sidis, J. R. D. Copley, A. Kallin, E. M. Mazurek, and H. A. Dabkowska

1Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada L8S 4M1
2Canadian Institute for Advanced Research, 180 Dundas Street W., Toronto, Ontario, Canada MSG 1Z8
3National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, USA
4University of Maryland, College Park, Maryland 20742, USA
5Laboratoire Léon Brillouin, CEA-Saclay (UMR12 CEA-CNRS), 91191 Gif-sur-Yvette Cedex, France
6National Institute of Standards and Technology, 100 Bureau Drive, MS 6100, Gaithersburg, Maryland 20899-6100, USA

We have studied incommensurate spin ordering in single-crystal underdoped La$_{2-x}$Ba$_x$CuO$_4$ with $x \sim$ 0.08, 0.05, and 0.025 using neutron-scattering techniques. Static incommensurate magnetic order is observed in the La$_{2-x}$Ba$_x$CuO$_4$ (x=0.05 and 0.025) compounds with ordering wave vectors which are rotated by 45° about the commensurate (0.5,0.5,0) position, with respect to that in the superconducting x=0.08 material. These spin modulations are one dimensional in the x=0.05 and 0.025 samples, with ordering wave vectors lying along the orthorhombic b' direction. Such a rotation in the orientation of the static spin ordering as a function of increasing Ba doping, from diagonal to collinear, is roughly coincident with the transition from an insulating to a superconducting ground state and is similar to that observed in the related La$_{2-x}$Sr$_x$CuO$_4$ system. This phenomenon is therefore a more generic property of underdoped La-214 cuprates.

DOI: 10.1103/PhysRevB.78.092507

PACS number(s): 74.72.Dn, 75.25.+z, 75.30.Fv

Lamellar copper oxides exhibit a wealth of fascinating phenomena which are a sensitive function of doping, evolving from an antiferromagnetic insulating Néel state through a Mott-Hubbard metal-insulator transition into a superconducting phase with increasing hole density. A heterogeneous electronic phase composed of itinerant charges now appears to be a generic feature of the cuprates, although the true nature of the incommensurate spin ordered states is the subject of ongoing debate. In an itinerant picture, the spin dynamics are described in terms of electron-hole pair excitations about an underlying Fermi surface. Alternatively, within the “stripe” picture of doped, two-dimensional Mott insulators, the nonmagnetic holes in these materials organize into quasi-one-dimensional stripes which separate antiferromagnetic insulating antiphase domains. Adjacent antiferromagnetic regions are π out of phase with each other giving rise to a magnetic structure with incommensurate periodicity, where the supercell dimension is twice the hole stripe periodicity.

The static spin structure in the undoped, parent compound La$_2$CuO$_4$ has been determined by neutron scattering to be a simple two sublattice antiferromagnet characterized by a commensurate ordering wave vector of (0.5,0.5,0) in reciprocal-lattice units, or at the (π, π) position within the tetragonal basal plane. On hole doping with Sr$^{2+}$ substituting for La$^{3+}$ in La$_{2-x}$Sr$_x$CuO$_4$, the magnetic scattering moves out to incommensurate wave vectors. Lightly doped La$_{2-x}$Sr$_x$CuO$_4$ displays elastic incommensurate magnetic Bragg peaks which first appear split off from the (0.5,0.5,0) position in diagonal directions relative to a tetragonal unit cell, that is at (0.5 ± δ_1, 0.5 ± δ_2, 0) and (0.5 ± δ_1, 0.5 ± δ_2, 0), ordering wave vectors. At higher doping in the underdoped superconducting regime, the Bragg peaks rotate by 45° to lie along directions parallel to or collinear with, the tetragonal axes or Cu-O-Cu bonds, such that elastic magnetic scattering appears at (0.5 ± δ_1,0.5,0) and (0.5,0.5 ± δ_1,0). For optimal and higher doping the static order disappears, but dynamic incommensurate correlations nevertheless persist.

Surprisingly, La$_{2-x}$Ba$_x$CuO$_4$, the original high-temperature superconductor, has been much less extensively studied than its sister compound, La$_{2-x}$Sr$_x$CuO$_4$ due to the difficulty of growing single crystals, which has only been recently achieved. In this Brief Report, we report the observation using neutron diffraction of the transition from a diagonal to a collinear incommensurate spin ordering as an increasing function of doping in La$_{2-x}$Ba$_x$CuO$_4$. Elastic “collinear” incommensurate magnetic Bragg peaks are observed at T=1.5 K in superconducting La$_{2-x}$Ba$_x$CuO$_4$ (x=0.08). In marked contrast, “diagonal” satellite peaks are observed at low temperature at reciprocal space positions rotated by 45° within the (H,K,0) plane for La$_{2-x}$Ba$_x$CuO$_4$ (x<0.025 and 0.05). This is analogous to the behavior observed in the La$_{2-x}$Sr$_x$CuO$_4$ materials and shows that such a rotation of the spin structure is a generic feature of the transition from insulating spin-glass ground state to superconducting ground state in the underdoped La-214 cuprates.

We have grown high quality single crystals of La$_{2-x}$Ba$_x$CuO$_4$ with x=0.08, 0.05, and 0.025 using floating zone image furnace techniques with a four-mirror Crystal Systems Inc. optical furnace. Samples of La$_{2-x}$Ba$_x$CuO$_4$ near x=0.125 display a sequence of crystal structures on lowering the temperature, evolving progressively from high-temperature tetragonal (HTT) (I4/mmm) through midtemperature orthorhombic (MTO) (Bmab) to low-temperature tetragonal (LTT) (P4$_2$/ncm). The HTT to MTO structural phase transition at T_{d1} is a sensitive indication of the precise Ba doping level, from which we have determined the Ba concentration in the x=0.08 sample (T_{d1} ~ 305 K). It is more difficult to precisely quantify the doping levels in the x=0.05 and x=0.025 samples, where the crystals remain...
orhombic at low temperature. As shown in Fig. 1, the
diamagnetic superconducting volume fraction in the \(x = 0.05 \)
sample is roughly 2 orders of magnitude smaller than the \(x = 0.08 \) sample, placing constraints on the doping level in the
nominally \(x = 0.05 \) sample. Similarly, no signature of long-
range antiferromagnetic order is observed up to 300 K in the
\(x = 0.025 \) sample, setting a lower limit on the doping level of
\(x > 0.02 \), by comparison with the suppression of the Néel
order in La\(_{2-x}\)Sr\(_x\)CuO\(_4\).

We explore both the spin-glass-like and superconducting
regimes of the phase diagram. At the highest Ba concentra-
tion, SQUID magnetization measurements indicate a bulk
superconducting phase transition occurs around 20 K, as evi-
denced by the weak diamagnetic response

\[
\text{Superconducting phase transition occurs around 20 K, as evi-
denced by the weak diamagnetic response.}
\]

indicating a spin-glass ground state. Finally, at the lowest Ba
concentration, dc magnetization measurements indicate the
\(x = 0.025 \) sample also undergoes a spin-glass-like transition
below \(~10 \) K, as shown in Fig. 1(d).

Time-of-flight neutron-scattering measurements were per-
duced using the NG4 disk chopper spectrometer

\[
\text{neutrons for the $La_{2-x}Ba_xCuO_4$ sample as the anticipated low}
\text{incommensurability δ required higher Q resolution. Definitive}
\text{measurements of the incommensurate spin structure are pro-
geressively more difficult at lower doping, as the incommen-
surability δ is proportional to the doping level x (Ref. 5).}
\]

The measurements were carried out using an Institut Laue-
Langevin (ILL) orange cryostat with \(^{3}He \) exchange gas to
ensure good thermal contact and each sample was aligned
with the (H,K,0) plane coincident with the horizontal scatter-
ing plane.

Reciprocal space maps at \(T \sim 1.5 \) K are shown in Fig. 2,
where in all cases we have integrated over the elastic scatter-
ing between \(-0.1 \) meV \(\leq \hbar \omega \leq 0.1 \) meV. To compare the
universal incommensurability in higher doping
La\(_{2-x}\)Sr\(_x\)CuO\(_4\) and the La\(_{2-x}\)Sr\(_x\)CuO\(_4\) system, \(^{7}\) we use HTT notation to illustrate the (H,K,0) scattering plane in
Fig. 2, where \(a = b = 3.78 \) Å \(\approx a_{\text{ortho}}/\sqrt{2} \). Figure 2(a) shows the elastic reciprocal space map from the lightly doped
La\(_{2-x}\)Sr\(_x\)CuO\(_4\) \((x = 0.025) \) compound. These measurements
were taken with both 6.2 and 8 Å incident neutrons, in two
different Brillouin zones, which gave consistent results [the
6.2 Å data and the zone centered on \((0.5,0.5,0) \) are shown
here]. A remarkable, isolated pair of diagonal incommensu-
rative magnetic Bragg peaks are evident near
\((0.5-\frac{1}{4},0.5+\frac{1}{4},0) \) with an incommensurability $\delta = 0.017(1)$, in
tetragonal notation. This is clear evidence for a static, one
dimensional, diagonal incommensurate spin modulation
along b_{ortho}. Nuclear Bragg peaks associated with four MTO

![Figure 1](image1.png)

FIG. 1. Zero field cooled and field cooled susceptibilities of
La\(_{2-x}\)Ba\(_x\)CuO\(_4\). (a) \(x = 0.08 \), (b) \(x = 0.05 \), and (d) \(x = 0.025 \) single
crystals.

![Figure 2](image2.png)

FIG. 2. (Color online) Reciprocal lattice space maps in the
(H,K,0) plane, integrating over \(-0.1 \) meV \(\leq \hbar \omega \leq 0.1 \) meV and
taken at \(T \sim 1.5 \) K in La\(_{2-x}\)Ba\(_x\)CuO\(_4\) (a) \(x = 0.025 \), (b) 0.05, and (c) 0.08, respectively. Diagonal magnetic Bragg scattering near
\((0.5 \pm \frac{1}{4}, 0.5 \pm \frac{1}{4}, 0) \) in the \(x = 0.05 \) sample (b) and collinear mag-
netic Bragg scattering near \((0.5, 0.5, 0) \) and \((0.5, 0.5, \delta, 0) \) in the
\(x = 0.08 \) sample (c) have been circled for clarity. (d) Incommens-
urability, δ vs Ba/Sr concentration, \(x \), plotted using the current
results and those from the literature, as described in the text. The
transition from diagonal to collinear incommensuration in the
La\(_{2-x}\)Sr\(_x\)CuO\(_4\) system near \(x = 0.055 \) (Ref. 6) is shown as the shaded
vertical line.
twin domains in the $x=0.025$ sample are visible near $(1,1,0)$ ($\lambda=4.8$ Å). The integrated intensity of the majority twin peak is approximately four times larger than the minority peaks. This accounts for the single pair of incommensurate magnetic Bragg peaks: the magnetic scattering from this $x=0.025$ sample closely resembles that from a detwinned MTO structure with a unique b direction.

The same type of reciprocal space map is shown in Fig. 2(b) for the $x=0.05$ sample, now using $\lambda=4.8$ Å incident neutrons. Two nuclear Bragg peaks are now clear, centered around the tetragonal $(1,-1,0)$ position, associated with two out of four possible twin domains in the sample of La$_{2-x}$Ba$_x$CuO$_4$ ($x=0.05$) at $T=1.5$ K in its MTO phase. The relative intensities of the two $(1,-1,0)$ peaks indicate that the two twin domains have comparable volume fractions. Magnetic Bragg peaks arising from static incommensurate spin order are again observed along the diagonal directions that are along each of the b_{ortho} axes. One pair of magnetic Bragg peaks is associated with each twin domain, such that a one-dimensional spin modulation occurs only along the orthorhombic b axis, as clearly illustrated in Fig. 2(b) of Ref. 7.

Such diagonal stripes have been predicted theoretically15 and have also been observed in insulating La$_{2-x}$Sr$_x$NiO$_4$. The pattern is very similar to that observed in underdoped La$_{2-x}$Sr$_x$CuO$_4$ ($0.02 \leq x \leq 0.055$)6,7, where the diagonal spin modulation is also along the orthorhombic b axis and is considered to be an intrinsic property of the entire insulating spin-glass region, in contrast to the parallel spin modulation observed in the superconducting phase of La$_{2-x}$Sr$_x$CuO$_4$.

By contrast, magnetic Bragg peaks in the La$_{2-x}$Ba$_x$CuO$_4$ $x=0.08$ occur at $(0.5 \pm \delta,0.5,0)$ and $(0.5,0.5 \pm \delta,0)$ with $\delta =0.107(3)$, as shown in the map of reciprocal space in Fig. 2(c), again measured using $\lambda=4.8$ Å incident neutrons. This indicates static collinear incommensurate spin order, with ordering wave vectors parallel to a_{tetr}. A single $(1,-1,0)$ structural Bragg peak is evident in Fig. 2(c), indicating the $x=0.08$ sample is in its LTT phase at 1.5 K. Complementary thermal triple axis neutron measurements are described elsewhere.18

The magnetic incommensurate ordering wave vectors, δ determined from the data in Figs. 2(a)–2(c) are plotted vs Ba concentration, x, in Fig. 2(d), along with the x dependence of δ in La$_{2-x}$Sr$_x$CuO$_4$. Data from $x=0.095$ and 0.125 samples of La$_{2-x}$Ba$_x$CuO$_4$ (Ref. 18) are also included. While minor differences are evident, the overall δ vs x behavior is very similar in this range of underdoped La$_{2-x}$Ba$_x$CuO$_4$ and La$_{2-x}$Sr$_x$CuO$_4$. The same transition, from diagonal to collinear incommensurate spin ordering is roughly coincident with the transition from an insulating spin-glass ground state to a superconducting ground state near $x_c \sim 0.055$ for both La$_{2-x}$Ba$_x$CuO$_4$ and La$_{2-x}$Sr$_x$CuO$_4$ families, as shown by the vertical line in Fig. 2(d). The complex low-temperature structural phase diagram of La$_{2-x}$Ba$_x$CuO$_4$ with LTT phase and near-complete suppression of superconductivity near $x=0.125$, clearly does not interfere with the rotation of the incommensurate spin ordering as a function of doping.

Complementary cold triple axis neutron-scattering experiments were undertaken on the same La$_{3-y}$Ba$_y$CuO$_4$ ($x=0.05$) single crystal using the 4F1 spectrometer at the Laboratoire Leon Brillouin, France. The (002) reflection of pyrolytic graphite was used for both monochromator and flat analyzer ($E_i=E_f=5$ meV). We employed open-60º–60º’-open collimation along the beam path from source through sample to detector, yielding an energy resolution at $\hbar \omega=0$ of 105 µeV. Cooled Be filters were placed in both the incident and scattered beams to remove contamination from higher order neutrons. The spectrometer was aligned to concentrate on a single twin domain. Representative elastic scans along the orthorhombic and tetragonal b' axes are shown in Figs. 3(a) and 3(b), respectively, using an orthorhombic coordinate system ($a_{\text{ortho}}=5.3380$ Å, $b_{\text{ortho}}=5.4125$ Å). Well resolved elastic magnetic peaks at an incommensurability $\delta =0.0389(6)$ ruu in tetragonal notation are clearly visible in Fig. 3(a), corresponding to the static spin modulation along the b' direction. By contrast, the intensity centered on the commensurate position in Figs. 3(b) is due to the tails of the incommensurate peaks coming from the b' modulation. There is no evidence of any coexistence of diagonal and collinear spin ordering.

Quantitatively, the data in Fig. 3(a) have been analyzed using a resolution convolution of four, one-dimensional Lorentzian functions

$$S(K) = \frac{\Delta}{\pi} \sum_{n=1}^{4} \frac{\kappa}{(K-K_n)^2 + \kappa^2}$$

(1)

to extract values for the incommensurate wave vector δ and inverse correlation length κ. K_n, Δ, and κ are determined from the four incommensurate wave vectors

$$(1, \pm \sqrt{2} \delta, 0) \text{ and } (0.987 \pm \sqrt{2} \delta \cos \theta, 0.0075 \pm \sqrt{2} \delta \sin \theta, 0) \text{,}$$

where the latter contribution arises from the wings of the second domain, char-
characterized by a nuclear Bragg peak centered at \((1.974, 0.015, 0.0)\), such that \(\theta = 0.015 / 1.974\). The inverse of the static correlation length in the basal plane is defined as the peak half width at half maximum (HWHM) \(\kappa\). This functional form assumes that the magnetic scattering consists of rods running along the \(c^*\) axis. The magnetic peaks are relatively sharp and practically resolution limited, with a HWHM of 0.0038(10) \(\text{Å}\) in tetragonal notation, equivalent to a correlation length of 159(50) \(\text{Å}\) within the basal plane. This is of a comparable magnitude as that observed in the superconducting state of \(\text{La}_2-x\text{Ba}_x\text{CuO}_4\) \((x=0.095, 0.08)\).\(^\text{18}\)

However, it should be noted that the values quoted for the related \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\), \(x=0.05\) compound are much shorter,\(^\text{7,19}\) between 25–35 \(\text{Å}\).

The temperature dependence of the incommensurate magnetic elastic scattering is shown in Fig. 4 for the \(x=0.05\) and 0.025 samples, which display the diagonal incommensurate spin structures. Triple axis measurements of the magnetic Bragg intensity at \((1, -0.053, 0)\) in the \(x=0.05\) sample may be compared with DCS measurements of the intensity integrated between \(-0.1 \leq h\omega \leq 0.1\) meV, as the energy resolution is similar. Figure 4 shows the decrease of the static incommensurate magnetic Bragg intensity in the \(x=0.05\) sample on warming to \(T=10\) K, consistent with the temperature dependence of the break between the field cooled (FC) and zero field cooled (ZFC) susceptibilities shown in Fig. 1(b). For temperatures beyond 10 K, a continued weak fall off of the intensity with increasing temperature is observed to \(\sim 25\) K, beyond which no vestiges of the static signal are easily observable. Our data for the temperature dependence of the incommensurate magnetic scattering in the \(x=0.025\) sample is less extensive, but qualitatively similar to that of the \(x=0.05\) sample, as may be expected due to the similarity in the temperature dependence of their ZFC vs FC susceptibilities and therefore their spin-glass ground states.

In conclusion, we have observed static, diagonal, one-dimensional incommensurate spin ordering in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4\) with \(x=0.05\) and \(x=0.025\), evolving into \textit{collinear} incommensurate order in the superconducting \(x=0.08\) sample. This result is very similar to the evolution of incommensurate spin order in the well studied underdoped system, \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\), implying the phenomenon is a generic feature of the underdoped \(\text{La}_{214}\) cuprates.

This work utilized facilities supported in part by the National Science Foundation under agreement No. DMR-0454672, and was supported by NSERC of Canada. It is a pleasure to acknowledge the contribution of A. Dabkowski to this work.

1. M. A. Kastner et al., Rev. Mod. Phys. \textbf{70}, 897 (1998); J. M. Tranquada, arXiv:cond-mat/0512115 (unpublished); R. J. Birgeneau et al., J. Phys. Soc. Jpn. \textbf{75}, 111003 (2006).
2. N. Bulut et al., Phys. Rev. Lett. \textbf{64}, 2723 (1990); N. Bulut and D. J. Scalapino, Phys. Rev. B \textbf{53}, 5149 (1996); M. R. Norman, \textit{ibid.} \textbf{61}, 14751 (2000).
3. S. A. Kivelson et al., Rev. Mod. Phys. \textbf{75}, 1201 (2003).
4. D. Vaknin et al., Phys. Rev. Lett. \textbf{58}, 2802 (1987).
5. K. Yamada et al., Phys. Rev. B \textbf{57}, 6165 (1998).
6. M. Matsuda et al., Phys. Rev. B \textbf{62}, 9148 (2000).
7. S. Wakimoto et al., Phys. Rev. B \textbf{61}, 3699 (2000).
8. T. Suzuki et al., Phys. Rev. B \textbf{57}, R3229 (1998).
9. H. Kimura et al., Phys. Rev. B \textbf{59}, 6517 (1999).
10. S. Wakimoto et al., Phys. Rev. Lett. \textbf{92}, 217004 (2004).
11. J. G. Bednorz and K. A. Muller, Z. Phys. B: Condens. Matter \textbf{64}, 189 (1986).
12. T. Adachi, T. Noji, and Y. Koike, Phys. Rev. B \textbf{64}, 144524 (2001).
13. Y. Zhao et al., Phys. Rev. B \textbf{76}, 184121 (2007).
14. J. D. Axe et al., Phys. Rev. Lett. \textbf{62}, 2751 (1989).
15. K. Machida, Physica C \textbf{158}, 192 (1989); M. Kato et al., J. Phys. Soc. Jpn. \textbf{59}, 1047 (1990); D. Poilblanc and T. M. Rice, Phys. Rev. B \textbf{39}, 9749 (1989); H. Schulz, J. Phys. (France) \textbf{50}, 2833 (1989); J. Zaanen and O. Gunnarsson, Phys. Rev. B \textbf{40}, 7391 (1989).
16. J. M. Tranquada, D. J. Buttrey, and V. Sachan, Phys. Rev. B \textbf{54}, 12318 (1996); H. Yoshizawa et al., \textit{ibid.} \textbf{61}, R854 (2000).
17. S. Wakimoto et al., Phys. Rev. B \textbf{60}, R769 (1999).
18. S. R. Dunsiger et al., Phys. Rev. B \textbf{77}, 224410 (2008).
19. W. Bao et al., Phys. Rev. B \textbf{76}, 180406(R) (2007).