Case Report

Extradadular Hematopoiesis Presenting with Thoracic Spinal Cord Compression in a Young Adult with Thalassemia Major: A Case Report

Prasheelkumar Premnarayan Gupta, Salman T. Shaikh1, Richa Premnarayan Goyal2, Deepak Premnarayan Gupta3

Department of Neurosurgery, Mahatma Gandhi Institute of Medical Sciences, Sevagram, 1Division of Neurosurgery, Tata Memorial Centre, Mumbai, 2Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sevagram, 3Department of Anaesthesia, Jawaharlal Nehru Medical College and Acharya Vinoba Bhave Rural Hospital, Sawangi, Wardha, Maharashtra, India

ABSTRACT

Background: Extradadular hematopoiesis (EMH) refers to the production of blood cellular components at sites other than the bone marrow, namely liver, spleen, and lymph nodes. The common sites associated with this condition are the liver, spleen, and lymph nodes whereas the common conditions associated with it are myelofibrosis, myelodysplasia, thalassemia, sickle cell anemia, and polycythemia vera. **Case Description:** This report describes a young male with thalassemia major, who presented with symptomatic cord compression due to a thoracic intraspinal lesion. It was surgically excised and diagnosed as a case of EMH. The boy recovered fully and has been asymptomatic for six months now. **Conclusion:** The occurrence of EMH in the thoracic spine is uncommon, whereas symptomatic cord compression as a result of it is even more unusual. Magnetic resonance imaging (MRI) is the diagnostic imaging of choice and treatment options that can be offered are surgical decompression, radiotherapy, hydroxyurea, and transfusion of packed red blood cells (RBCs).

KEYWORDS: Cord compression, extradadular, hematopoiesis, spine, thalassemia

INTRODUCTION

EMH occurs as a result of reduction in the functional RBCs due to myeloproliferative neoplasms and non-neoplastic hematological pathologies such as thalassemia, sickle cell anemia, and myelofibrosis. The common non-hepatosplenic sites of EMH are the central nervous system (CNS), ovaries, pericardium, pleura, vertebral column, etc.[1] Since the first description of the EMH in 1954 by Gatto et al.[2] in a patient with thalassemia, several treatment options have been proposed in literature, which include surgical excision, focal radiotherapy (RT), hypertransfusion of RBCs, hydroxyurea, etc. However, a consensus on an ideal treatment modality is yet to be reached.[3]

CASE REPORT

An 18-year-old boy presented with complaints of back pain and progressive weakness in bilateral lower limbs for one month. He was a known case of thalassemia major since four years, and he had been receiving regular RBC transfusion. On examination, the power in bilateral knee extensors, ankle plantar flexors, and ankle dorsiflexors was 2/5. Knee reflex and ankle reflex was exaggerated in both lower limbs (4+), and the plantar reflex was extensor. There was no sensory abnormality, and bladder function was normal. Liver was palpable and a previous scar over the splenic area was seen, consistent with a past history of splenectomy. A complete blood count (CBC) analysis showed hemoglobin of 9.5 gm/dl, hematocrit of 27.6%, RBC count of 3.32 million/ul, and platelet count of 3,95,000. Peripheral smear analysis showed anisopoikilocytosis, predominantly normocytic normochromic RBCs with the presence of a few macrocytes, polychromasia, the presence of nucleated red cells (68% of total nucleated cells), and target cells. Chest x-ray showed a widening...
of diploic spaces in all the thoracic ribs with a thinning of their inner table along with prominent widening of anterior ends of the ribs.

A MRI of the dorsal spine showed the presence of a large T2 hyperintense paravertebral mass extending from thoracic 4 to thoracic 10 (T4-T10) vertebrae. The lesion was homogenously enhancing, involving the epidural fat and caused a complete obliteration of the corresponding subarachnoid space, leading to marked cord compression [Figure 1]. The differential diagnoses considered were a hematological malignancy or an EMH. An emergency spinal cord decompression was planned. A T5 to T10 laminectomy was performed. The lesion was soft, completely extradural, and grayish white in color. The bony tissue was firm with an abnormal marrow appearance. Complete resection was done to achieve adequate decompression. Intraoperatively, the patient received two pints of packed RBC transfusion. On histopathology, the dorsal lamina of the spine showed fibrocollagenous hyperplastic bone marrow and the mass showed erythroid hyperplasia. By the time of discharge, the patient was able to walk with support [Figure 2] and at a follow-up of 6 months, he showed complete recovery.

DISCUSSION

The EMH is a compensatory mechanism occurring in chronic anemia, whereby the body attempts to maintain erythropoiesis. Hence, even though the occurrence of EMH is seen in younger age groups, symptoms tend to develop, if at all, later on in life. A database review of 1933 EMH cases from Mayo clinic found that approximately 83% of cases were associated with myeloproliferative neoplasms. Among the EMH cases with non-myeloproliferative neoplasms (n = 309), the majority occurred concurrently with myelodysplastic syndrome (13%), whereas thalassemia was seen in 7% of cases.
of cases, Paraspinal occurrence of EMH has been reported to vary from an incidence of 11% to 26%, with the thoracic spine being the most common location. The majority of EMH patients are asymptomatic (80%), and the lesion is more often than not incidental in nature. However, the EMH occurring in the thoracic spine has a high propensity to cause severe neurological deficits due to the narrow spinal canal and the relatively limited mobility of the thoracic spine.

Pathologically, the plausible hypothesis suggested for occurrence of paraspinal EMH are:

i) Direct extension of erythrogenesis from adjacent vertebral bone marrow

ii) Common embryonic origin from thoracic hematopoietic tissue masses

iii) Development from branches of the intercostal veins

iv) Arterial embolus

History of myeloproliferative disorders or hematological pathologies should be ruled out in any young patient presenting with lower limb weakness. A MRI is the diagnostic imaging of choice and it shows the presence of a lobulated mass, hyperintense on T1 and T2-weighted images with minimal post-contrast enhancement if the disease is early or in late phase and marked enhancement if the lesion is active. This feature helps to differentiate it from the more commonly occurring epidural lesions, namely abscess, tumors (lymphoma) etc.

Although many treatment options have been described in literature, immediate surgical decompression is imperative to reverse the myelopathy in cases presenting with acute cord compression. Care must be taken to prevent the complication of bleeding from an incompletely resected mass since this might deteriorate

Table 1: Review of English literature mentioning cases with pediatric thalassemia and with extramedullary hematopoeisis causing cord compression

Sr no.	Author	Year	Age (years)	sex	Presentation	Lesion	Treatment	Recovery
1	Issaragrisil et al.	1981	17/M		Paraparesis	T4-12	RT + BT	Partial
2	Ahmed et al.	1981	17/M		Paraparesis	N/A	Surgery	Partial
3	Ibrahim et al.	1983	17/M		Back pain	T4-8	Surgery	Complete
4	Amirjamshidi et al.	1991	14/M 16/F		Paraparesis	Male T5-T11	Male given	Complete in both
						Female T9-T10	adjuvant RT 1500 rad + multiple BT	
5	Khandelwal et al.	1992	14/M		Paraparesis + hesitancy in micturition	D8-11	BT	Complete
6	Mancuso et al.	1993	15/M		Foot weakness + urinary retention	L2-4	BT	Complete
7	Parsa et al.	1995	16/F		Paraparesis	T9-10	BT + 1500 rad RT	Complete
8	Tan et al.	2002	17/F		Paraparesis + difficulty in micturition	T5-8	BT + Surgery + RT 2000 rads RT in 10 fractions	Complete
9	Tai et al.	2006	15/F		Paraparesis	T2-10	BT	Complete
10	Moncef et al.	2008	18/M		Back pain	T12	Surgery + BT + RT (2000 cGy)	Complete
11	Ileri et al.	2009	9/M		Lower limb pain	L4-S1	RT. 2400 cGy in 10 fractions, + HU 15 mg/kg oral	Complete
12	Soman et al.	2009	16/M		Gait disturbance due to sensory symptoms in lower limbs Paraparesis	T5-7	BT + 1500 cGy RT	Complete
13	Bukhari et al.	2016	18/M			T6-L3	Surgery – recurrence after 4 months – surgery + two cycles of RT	Complete
14	Current case	18/M	18/M		Back pain + paraparesis	T4-10	Surgery + BT	Complete

RT = radiation, BT = blood transfusion, HU = hydroxyurea

the hematological profile further. Low-dose focal spine RT (200cGy x 10 doses) has a higher risk of recurrence, which is variably reported in literature to be as close to 30%. The RT may be reserved for spinal EMH cases that are associated with myelofibrosis-myelodysplastic syndrome. Medical management with hydroxyurea (stimulates fetal hemoglobin production) and with packed RBCs has also been described in literature in cases where surgical treatment is either not warranted or contraindicated. Asymptomatic, incidental cases can be conservatively managed with regular monitoring. An extensive review of English literature shows that 13 cases with pediatric thalassemia and with EMH causing cord compression have been reported so far [Table 1]. Among them, the majority (9/13) have had combination therapy. Recurrence within four months was seen in a single case in whom only surgical excision was initially performed. Subsequently, redo surgery with adjuvant radiation was then given.

CONCLUSION

The EMH is a common condition occurring in patients with ineffective erythropoiesis. It must be considered as a strong differential diagnosis in young adults with a history of hematopoietic disorder, presenting with acute cord compression and an epidural hyperintense lesion enhancing on contrast MRI. Consensus on treatment protocol is not yet defined, with data limited to isolated case reports or small series. Surgery or radiation therapy can be offered to patients with symptomatic spinal cord compression with surgery, offering the possibility of rapid reversal of neurological deficits. Literature favors a multipronged approach in these patients.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Koch CA, Li CY, Mesa RA, Tefferi A. Nonhepatosplenic extramedullary hematopoiesis: associated diseases, pathology, clinical course, and treatment. Mayo Clin Proc 2003;78:1223-33.
2. Gatto I, Terrana V, Biondi L. [Compression of the spinal cord due to proliferation of bone marrow in epidural space in a splenectomized person with Cooley’s disease]. Haematologica 1954;38:61-76.
3. Ghieda U, Elshimy M, El Beltagi AH. Progressive spinal cord compression due to epidural extramedullary hematopoiesis in thalassemia intermedia. A case report and literature review. Neuroradiol J 2013;26:111-7.
4. Fan N, Lava S, Hanson CA, Tefferi A. Extramedullary hematopoiesis in the absence of myeloproliferative neoplasm: Mayo Clinic case series of 309 patients. Blood Cancer J 2018;8:119.
5. Dore F, Cianciulli P, Rovasio S, Oggiorno L, Bonfigli S, Murineddu M, et al. Incidence and clinical study of ectopic erythropoiesis in adult patients with thalassemia intermedia. Ann Ital Med Int 1992;7:137-40.
6. Haidar R, Mhaidli H, Taher AT. Paraspinal extramedullary hematopoiesis in patients with thalassemia intermedia. Eur Spine J 2010;19:871-8.
7. Alorainy IA, Al-Asmi AR, del Carpio R. MRI features of epidural extramedullary hematopoiesis. Eur J Radiol 2000;35:8-11.
8. Fareed S, Soliman AT, De Sanctis V, Kohla S, Soliman D, Khirfan D, et al. Spinal cord compression secondary to extramedullary hematopoiesis: a rareness in a young adult with thalassemia major. Acta Biomed 2017;88:237-42.
9. Ileri T, Azik F, Ertem M, Uysal Z, Gozdasoglu S. Extramedullary hematopoiesis with spinal cord compression in a child with thalassemia intermedia. J Pediatr Hematol Oncol 2009;31:681-3.
10. Mancuso P, Zingale A, Basile L, Chiaramonte I, Tropea R. Cauda equina compression syndrome in a patient affected by thalassemia intermedia: complete regression with blood transfusion therapy. Childs Nerv Syst 1993;9:440-41.
11. Issagarisil S, Piankigam A, Wasi P. Spinal cord compression in thalassemia. Report of 12 cases and recommendations for treatment. Arch Intern Med 1981;141:1033-6.
12. Ahmed F, Tobin MS, Cohen DF, Gomez-Leon G. Beta thalassemia: spinal cord compression. NY State J Med 1981;81:1505-8.
13. Ibrahim AW, Ibrahim EM, Mitry NM, Abdul-Satir A, Kuppa A. Spinal cord compression due to intrathoracic extramedullary haematopoiesis in homozygous thalassaemia. J Neurol Neurosurg Psychiatry 1983;46:780-2.
14. Amirjamshidi A, Abbassioun K, Ketabchi SE. Spinal extradural hematopoiesis in adolescents with thalassemia. Report of two cases and a review of the literature. Childs Nerv Syst 1991;7:223-5.
15. Khandelwal N, Malik N, Khoaia VK, Suri S. Spinal cord compression due to epidural extramedullary haematopoiesis in thalassemia. Pediatr Radiol 1992;22:70-1.
16. Parsa K, Oreizy A. Nonsurgical approach to paraparesis due to extramedullary hematopoiesis. Report of two cases. J Neurosurg 1995;82:657-60.
17. Tan TC, Tsa0 J, Cheung FC. Extramedullary haemopoiesis in thalassemia intermedia presenting as paraplegia. J Clin Neurosci 2002;9:721-5.
18. Tai SM, Chan JS, Ha SY, Young BW, Chan MS. Successful treatment of spinal cord compression secondary to extramedullary hematopoietic mass by hypertransfusion in a patient with thalassemia major. Pediatr Hematol Oncol 2006;23:317-21.
19. Moneef B, Hafez M. Management of spinal cord compression caused by extramedullary hematopoiesis in beta-thalassemia. Intern Med 2008;47:1125-8.
20. Soman S, Rosenfeld DL, Roychowdhury S, Drachman RA, Cohler A. Cord compression due to extramedullary hematopoiesis in an adolescent with known beta thalassemia major. J Radiol Case Rep 2009;3:17-22.
21. Bukhari SS, Junaid M, Rashid MU. Thalassemia, extramedullary hematopoiesis, and spinal cord compression: a case report. Surg Neurol Int 2016;7:S148-52.