Leptogenesis in a seesaw model
with Fritzsch type lepton mass matrices

Y. H. Ahn1,*, Sin Kyu Kang2†, C. S. Kim1,‡ and Jake Lee1,§

1 Department of Physics, Yonsei University, Seoul 120-749, South Korea
2 School of Liberal Arts, Seoul National University of Technology, Seoul 139-743, South Korea

(Dated: February 2, 2008)

Abstract

We investigate how the baryon asymmetry of our universe via leptogenesis can be achieved within the framework of the seesaw model with Fritzsch type lepton mass matrices proposed by Fukugita \textit{et al.} We study the cases with CP-violating phases in charged lepton Yukawa matrix, however, with and without Dirac neutrino Yukawa phases. We consider both flavor independent and flavor dependent leptogenesis, and demonstrate how they lead to different amounts of lepton asymmetries in detail. In particular, it is shown that flavor dependent leptogenesis in this model can be worked out only when the CP phases in Dirac neutrino Yukawa matrix become zero at the GUT scale. In addition to the CP phases, for successful leptogenesis in the model it is required that the degeneracy of the heavy Majorana neutrino mass spectrum should be broken and we also show that the breakdown of the degeneracy can be radiatively induced.

PACS numbers: 14.60.Pq, 11.30.Fs, 98.80.Cq, 13.35.Hb

* E-mail: yhahn@cskim.yonsei.ac.kr
\† E-mail: skkang@snut.ac.kr
\‡ E-mail: cskim@yonsei.ac.kr
\§ E-mail: jilee@cskim.yonsei.ac.kr
I. INTRODUCTION

Recent precise neutrino experiments appear to show robust evidence for the neutrino oscillation. The present neutrino experimental data \[1, 2, 3\] exhibit that the atmospheric neutrino deficit points toward a maximal mixing between the tau and muon neutrinos. However, the solar neutrino deficit favors a not-so-maximal mixing between the electron and muon neutrinos. In addition, although we do not have yet any firm evidence for the neutrino oscillation arisen from the 1st and 3rd generation flavor mixing, there is a bound on the mixing element \(U_{e3}\) from CHOOZ reactor experiment, \(|U_{e3}| < 0.2\) \[4\]. Although neutrinos have gradually revealed their properties in various experiments since the historic Super-Kamiokande confirmation of neutrino oscillations \[1\], properties related to the leptonic CP violation are completely unknown yet. To understand the neutrino mixings observed in various oscillation experiments is one of the most interesting issues in particle physics.

The phenomenon of lepton flavor mixing can be described by a \(3 \times 3\) unitary matrix \(U\), the Maki-Nakagawa-Sakata (MNS) matrix \[5\], which contains three mixing angles (\(\theta_{12}, \theta_{23}, \theta_{13}\)) and three CP-violating phases (\(\delta, \rho, \sigma\)). Four of these six parameters (i.e., \(\theta_{12}, \theta_{23}, \theta_{13}\) and \(\delta\)), together with two neutrino mass-squared differences (\(\Delta m_{21}^2 \equiv m_2^2 - m_1^2\) and \(\Delta m_{32}^2 \equiv m_3^2 - m_2^2\)), can be extracted from the measurements of neutrino oscillations. At present, a global analysis of current experimental data yields \[6\]

\[
0.26 \leq \sin^2 \theta_{12} \leq 0.40, \quad 0.34 \leq \sin^2 \theta_{23} \leq 0.67, \quad \sin^2 \theta_{13} \leq 0.050
\]
\[
2.0 \leq \Delta m_{\text{Atm}}^2[10^{-3}\text{eV}^2] \leq 2.8, \quad 7.1 \leq \Delta m_{\text{Sol}}^2[10^{-5}\text{eV}^2] \leq 8.3,
\]

at the 3\(\sigma\) confidence level, but the Dirac CP-violating phase \(\delta\) is entirely unrestricted at present. More accurate neutrino oscillation experiments are going to determine the size of \(\theta_{13}\), the sign of \(\Delta m_{32}^2\) and the magnitude of \(\delta\). The proposed precision experiments for the tritium beta decay \[7\] and the neutrinoless double-beta decay \[8\] will help to probe the absolute mass scale of three light neutrinos and to constrain the Majorana CP-violating phases \(\rho\) and \(\sigma\).

To understand the neutrino mass spectrum and the neutrino mixing pattern indicated by Eq. (1), Fukugita, Tanimoto and Yanagida (FTY) have proposed \[9\] an interesting ansätze to account for current neutrino oscillation data by combining the Fritzsch texture \[10\] in the seesaw mechanism \[11\] with three degenerate right-handed Majorana neutrinos. In the
FTY ansätze, charged-lepton and Dirac neutrino Yukawa coupling matrices are also of the Fritsch texture, but the heavy Majorana neutrino mass $M_R = MI$ with I being the 3×3 unit matrix ($i.e.$, $M_i = M$ for $i = 1, 2$ and 3) has been assumed. Then the effective (left-handed) neutrino mass matrix m_{eff} in the FTY ansatz is no more of the Fritsch form. Ref. [9] has shown that the FTY ansätze is compatible very well with current experimental data on solar and atmospheric neutrino oscillations. And also there have been many phenomenological analysis [12] of FTY model compatible with current neutrino data.

It is also worthwhile to examine if baryon asymmetry of our universe (BAU) [13] can be viable in the context of FTY model. In this work, we study how BAU via leptogenesis can be achieved within the framework of FTY model with possible CP-violating phases in Dirac neutrino Yukawa matrix and charged lepton Yukawa matrix. We consider both flavor independent and dependent leptogenesis, and show how they lead to different amounts of lepton asymmetries in detail. As will be shown later, in particular, flavor dependent leptogenesis in the FTY model can be worked only when the CP phases in Dirac neutrino Yukawa matrix becomes zero at GUT scale. In addition to the CP phases, for successful leptogenesis in the FTY model, it is required that the degeneracy of the heavy Majorana neutrino mass spectrum should be broken and we show that it can be radiatively induced.

II. FTY MODEL REALIZED AT GUT SCALE AND CP VIOLATION

Let us begin by considering the Standard Model (SM) of the seesaw mechanism, which is given by

$$\mathcal{L} \supset e^{cT} Y_L L \cdot \varphi + N^{cT}_R Y_{\nu} \nu L - \frac{1}{2} N^{cT}_R M_R N^c_R + h.c. \tag{2}$$

where the family indices have been omitted and $L_{\alpha} (\alpha = e, \mu, \tau)$ stand for the left-handed lepton doublets, $(e^{c}_R)_{\alpha}$ are the charged lepton singlets, $N_{R\alpha}$ the right-handed neutrino singlets and φ is the Higgs doublet fields. In the above lagrangian, Y_L and Y_{ν} are the 3×3 charged lepton and neutrino Dirac Yukawa matrices, respectively. After spontaneous symmetry breaking, the seesaw mechanism leads to a following effective light neutrino mass term,

$$m_{\text{eff}} = -Y^{cT}_\nu M^{-1}_R Y_{\nu} \nu^2, \tag{3}$$

where ν is a vacuum expectation value of the Higgs field φ with $\nu \simeq 174$ GeV.
Let us assume that the charged-lepton mass matrix $m_l = v Y_l$ and the Dirac neutrino mass matrix $m_D = v Y_\nu$ are both symmetric and of the Fritzsch texture, at the high energy scale, where

$$
Y_l = \begin{pmatrix}
0 & A_t e^{i \phi_A} & 0 \\
A_t e^{i \phi_A} & 0 & B_t e^{i \phi_B} \\
0 & B_t e^{i \phi_B} & C_l
\end{pmatrix}
\quad Y_\nu = \begin{pmatrix}
0 & A_\nu e^{i \phi_A} & 0 \\
A_\nu e^{i \phi_A} & 0 & B_\nu e^{i \phi_B} \\
0 & B_\nu e^{i \phi_B} & C_\nu
\end{pmatrix}.
$$

Here $A_{l(\nu)}, B_{l(\nu)}, C_{l(\nu)}, \phi_A, \phi_B, \phi_A$ and ϕ_B are taken to be all real and positive without loss of generality and then only the off-diagonal elements of $Y_{l(\nu)}$ are complex. Following the FTY ansatz, we take the right-handed Majorana neutrino mass matrix to be,

$$
M_R = M I.
$$

In the basis where the charged lepton Yukawa coupling matrix and the mass matrix of the right-handed neutrino singlets are diagonal,

$$
e_R \rightarrow V_R e_R, \quad \nu_L \rightarrow V_L \nu_L,
$$

and the Yukawa matrices of Y_l and Y_ν transform as

$$
Y_l \rightarrow V_R^T Y_l V_L, \quad Y_\nu \rightarrow Y_\nu V_L
$$

where $V_{R(L)}$ are the unitary matrices to diagonalize Y_l. Since the charged-lepton Yukawa matrix Y_l is symmetric in the present framework, only one unitary matrix, $V_L = V_R \equiv V$, is sufficient to diagonalize Y_l. Then, the transformed Yukawa matrices Y_l' and Y_ν' are given by

$$
Y_l' = V^T Y_l V = \begin{pmatrix}
Y_e & 0 & 0 \\
0 & Y_\mu & 0 \\
0 & 0 & Y_\tau
\end{pmatrix}, \quad Y_\nu' = \begin{pmatrix}
0 & A_\nu e^{i \phi_A} & 0 \\
A_\nu e^{i \phi_A} & 0 & B_\nu e^{i \phi_B} \\
0 & B_\nu e^{i \phi_B} & C_\nu
\end{pmatrix} V.
$$

In addition, Y_l can be decomposed as $Y_l = P^T \hat{Y}_l P$ with $P = \text{diag}(e^{i (\phi_A - \phi_B)}, e^{i \phi_B}, 1)$ and

$$
\hat{Y}_l = \begin{pmatrix}
0 & A_l & 0 \\
A_l & 0 & B_l \\
0 & B_l & C_l
\end{pmatrix}.
$$
Then, the mass matrix Y_l can finally be diagonalized by the unitary matrix $V = PO$ where the elements of the orthogonal matrix O can be presented in terms of two parameters $x \equiv y_e/y_\mu$ and $y \equiv y_\mu/y_\tau$ as follows,

$$
O_{11} = + \left[\frac{1 - y}{(1 + x)(1 - xy)(1 - y + xy)} \right]^{1/2}, \quad O_{12} = -i \left[\frac{x(1 + xy)}{(1 + x)(1 + y)(1 - y + xy)} \right]^{1/2}, \\
O_{13} = + \left[\frac{xy^3(1 - x)}{(1 - xy)(1 + y)(1 - y + xy)} \right]^{1/2}, \quad O_{21} = + \left[\frac{x(1 - y)}{(1 + x)(1 - xy)} \right]^{1/2}, \\
O_{22} = +i \left[\frac{1 + xy}{(1 + x)(1 + y)} \right]^{1/2}, \quad O_{23} = + \left[\frac{y(1 - x)}{(1 - xy)(1 + y)} \right]^{1/2}, \\
O_{31} = - \left[\frac{xy(1 - x)(1 + xy)}{(1 + x)(1 - xy)(1 - y + xy)} \right]^{1/2}, \quad O_{32} = -i \left[\frac{y(1 - x)(1 - y)}{(1 + x)(1 + y)(1 - y + xy)} \right]^{1/2}, \\
O_{33} = + \left[\frac{(1 - y)(1 + xy)}{(1 - xy)(1 + y)(1 - y + xy)} \right]^{1/2}.
$$

(10)

The Dirac neutrino Yukawa matrix can also be written in the basis we consider as,

$$
Y'_\nu = B_{\nu} \begin{pmatrix}
0 & \omega e^{i\phi_A} & 0 \\
\omega e^{i\phi_A} & 0 & e^{i\phi_B} \\
0 & e^{i\phi_B} & \kappa
\end{pmatrix} \begin{pmatrix}
e^{i(\phi_A - \phi_B)} & 0 & 0 \\
0 & e^{i\phi_B} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
O_{11} & O_{12} & O_{13} \\
O_{21} & O_{22} & O_{23} \\
O_{31} & O_{32} & O_{33}
\end{pmatrix}
$$

(11)

where the parameters ω and κ are defined by

$$
\omega \equiv \frac{A_{\nu}}{B_{\nu}}, \quad \kappa \equiv \frac{C_{\nu}}{B_{\nu}}.
$$

(12)

Then, we are led to the effective light neutrino mass matrix as follows,

$$
m_{\text{eff}} = -v^2 M^{-1} Y^T_{\nu} Y'_{\nu} = \frac{-B_{\nu}^2 v^2}{M} O \begin{pmatrix}
e^{2i(\phi_A + \phi_B - \phi_B)} \omega^2 & 0 & e^{i(\phi_A + \phi_B + \phi_A - \phi_B)} \omega \\
0 & e^{2i\phi_B} (e^{2i\phi_B} + e^{2i\phi_A} \omega^2) & e^{i(\phi_B + \phi_B)} \kappa \\
e^{i(\phi_A + \phi_B + \phi_A - \phi_B)} \omega & e^{i(\phi_B + \phi_B)} \kappa & e^{2i\phi_B} + \kappa^2
\end{pmatrix}.
$$

(13)

Concerned with CP violation, we notice from Eq. (13) that the CP phases $\phi_{A,B}$ coming from Y_{ν} as well as the CP phases $\varphi_{A,B}$ from Y_l obviously take part in low energy CP violation because low energy CP violation is associated with the form $Y'^T_{\nu} Y'_{\nu}$. On the other hand, flavor independent leptogenesis is associated with the form given by

$$
Y'_{\nu} Y'^T_{\nu} = Y_{\nu} Y^T_{\nu} = B_{\nu}^2 \begin{pmatrix}
\omega^2 & 0 & \omega e^{i(\phi_A - \phi_B)} \\
0 & 1 + \omega^2 & \kappa e^{i\phi_B} \\
\omega e^{-i(\phi_A - \phi_B)} & \kappa e^{-i\phi_B} & 1 + \kappa^2
\end{pmatrix}.
$$

(14)
From this, we find that only the phases ϕ_A, ϕ_B in Y_ν take part in leptogenesis. However, the situation is changed when we consider the scenario of \textit{flavored leptogenesis} \cite{14}, where flavor effects become important. As will be shown later, the magnitude of CP asymmetry in the scenario of flavored leptogenesis crucially depends on the following quantity

\[
\text{Im}\{[Y_\nu, Y_\nu^\dagger]_{jk}(Y_\nu)_{j\alpha}(Y_\nu)^\dagger_{\alpha k}\}
= \text{Im}[Y_\nu, Y_\nu^\dagger]_{jk}\text{Re}[(Y_\nu)_{j\alpha}(Y_\nu)^\dagger_{\alpha k}] + \text{Re}[Y_\nu, Y_\nu^\dagger]_{jk}\text{Im}[(Y_\nu)_{j\alpha}(Y_\nu)^\dagger_{\alpha k}].
\]

This quantity implies that both CP phases in Y_ν and Y_l take part in flavored leptogenesis. Contrary to the case of flavor independent leptogenesis, flavored leptogenesis can be realized without the CP phases appeared in $Y'_\nu Y'_\nu^\dagger$ as long as the phases $\varphi_{A,B}$ are non-zero. In addition, we expect that in the FTY model, there may exist a connection between flavored leptogenesis with low energy CP violation, contrary to the observation from the generic seesaw model with three generations \cite{15}.

\section{III. CONFRONTING WITH LOW-ENERGY NEUTRINO DATA}

Before discussing how to achieve leptogenesis in FTY model, we first examine if it is consistent with low energy neutrino data. To do so, we need renormalization group (RG) evolution \cite{16, 17, 18} of neutrino Dirac-Yukawa matrix and heavy Majorana neutrino masses with the FTY forms from the GUT scale to the seesaw scale by numerically solving all the relevant RG equations presented in Ref. \cite{17}. For our purpose, we consider two cases, one is the case with non-vanishing CP phases in both Y_ν and Y_l, $\phi_{A,B} \neq 0$ and $\varphi_{A,B} \neq 0$, and the other is the case that only the phases $\varphi_{A,B}$ are non-zero, \textit{i.e.} $\phi_{A,B} = 0$ and $\varphi_{A,B} \neq 0$. Then, we solve the RGE’s by varying input values of the parameter set \{\[B_\nu, \kappa, \omega, \varphi_A, \varphi_B, \phi_A, \phi_B, M\]\}, and \{\[B_\nu, \kappa, \omega, \varphi_A, \varphi_B, \varphi_A, \varphi_B, M\]\} given at the GUT scale, respectively, and determine the parameter set which is in consistent with low energy neutrino data. In our numerical calculation, we use five experimental results for neutrino mixing parameters and mass squared differences at 3σ \cite{6} by Eq. (11) as inputs.

In Fig. (11) the two figures of upper panel exhibit how the parameter ω (left-panel) and the mixing angle θ_{23} (right-panel) are related with the phase φ_B for the case of $\phi_{A,B} = 0$ at the GUT scale. In this case we find that the parameters κ and ω strongly depend on the phase φ_B, not φ_A. The two figures of lower panel present the predictions of θ_{23} (left-panel) and
\(\theta_{12} \) (right-panel) in terms of \(\omega \). The horizontal lines correspond to the bounds of present experimental values for \(\theta_{23} \) and \(\theta_{12} \) given at 3\(\sigma \) range, Eq. (1), respectively. From the results, it is interesting to see that most predictions of \(\theta_{23} \) lie below 45\(^{\circ} \). In fact, the experimental result for \(\theta_{12} \) gives at 3\(\sigma \) constraint the values of parameter 0.4 \(\lesssim \omega \lesssim 1.05 \). We find that the constraint of \(\omega \) prevents the prediction of \(\theta_{23} \) from lying above 45\(^{\circ} \).

Fig. 2 shows how the mixing angle \(\theta_{13} \) is predicted in terms of the parameters \(\kappa, \omega \) (upper-panel) and \(\varphi_{B} \) (lower-panel) whose sizes are constrained, as in Fig. 1, by the experimental results of \(\theta_{23} \) and \(\theta_{12} \). In each figures, we draw the current reactor experimental upper bound on \(\theta_{13} \). We see from Fig. 2 that very small values of \(\theta_{13} \) are not predicted in FTY model. In

![Graphs showing mixing angles and phases](image)

FIG. 1: (Upper-panel:) Left-figure represents that the parameter \(\omega \) over the charged lepton phase \(\varphi_{B} \). Right-figure represents the relation between the mixing angle \(\theta_{23} \) and the charged-lepton phase \(\varphi_{B} \). Here the horizontal dotted lines represent the experimental lower and upper bounds of the mixing angle \(\theta_{23} \). (Lower-panel:) Left-figure shows the mixing angle \(\theta_{23} \) as a function of the parameter \(\omega \). Here the horizontal dotted lines represent the experimental upper and lower bounds of the mixing angle \(\theta_{23} \). Right-figure shows the mixing angle \(\theta_{12} \) as a function of the parameter \(\omega \).
lower right panel, we present the predicted regions for θ_{13} and θ_{23} in FTY model.

Fig. 3 shows the parameter spaces allowed by the 3σ experimental constraints given in Eq. (1) for $10^6 \lesssim M[GeV] \lesssim 10^{12}$ when the CP phases ϕ_A and ϕ_B are turned on at the GUT scale. The upper left panel plots the correlation between κ and ω, and the upper right panel presents the predictions of θ_{23} in terms of ϕ_B. The lower left (right) panel shows the prediction of $\theta_{23}(\theta_{12})$ in terms of ω. Contrary to the previous case with vanishing CP phases $\phi_{A,B}$, the values above 45° for θ_{23} are possibly predicted.

FIG. 2: In the case of $\phi_{A,B} = 0$, $\varphi_{A,B} \neq 0$ at the GUT scale, the parameter regions allowed by the 3σ experimental constraints for $10^6 \lesssim M[GeV] \lesssim 10^{12}$. (Upper-panel:) Left-figure represents that the parameter κ over the mixing angle θ_{23} and right-figure ω over θ_{23}, where the vertical dotted line indicates the upper bound of θ_{13}. (Lower-panel:) Left-figure shows the charged-lepton phase φ_B over the mixing angle θ_{13}, and the vertical line corresponds to the upper bound on θ_{13}. Right-figure shows the predicted parameter space for θ_{13} and θ_{23} in FTY model and the horizontal dotted lines indicate the experimental upper bound on θ_{13} and the vertical dotted line represents the experimental lower and upper bound on θ_{23}.
Similar to Fig. 2, we present in Fig. 4 how the mixing angle θ_{13} is predicted in terms of the parameters κ, ω (upper-panel) and φ_B (down-panel), whose sizes are constrained, as in Fig. 3, by the experimental results of θ_{23} and θ_{12}. In each figures, we draw the current reactor experimental upper bound on θ_{13}. We see from Fig. 4 that very small values of θ_{13} are allowed in FTY model, which is contrary to the previous case with $\phi_{A,B} = 0$. In lower right panel, we present the predicted regions for θ_{13} and θ_{23} in FTY model.

![Fig. 3: (Upper-panel:) Left-figure represents the allowed parameter space, κ vs. ω. Right-figure represents the mixing angle θ_{23} as a function of φ_B. (Lower-panel:) Left-figure shows how the mixing angle θ_{23} predicted in terms of ω. Right-figure shows how θ_{12} predicted in terms of ω. Here the horizontal dotted lines represent the experimental upper and lower bound of the mixing angle θ_{23} and θ_{12}, respectively.](image-url)
IV. RADIATIVELY INDUCED RESONANT LEPTOGENESIS

It is well known that if heavy Majorana neutrinos are exact degenerate as in FTY model, the generated lepton asymmetry is zero [19]. A non-zero leptonic asymmetry can be generated if and only if the CP-odd invariant $\Delta_{CP} = \text{Im} \text{Tr}[Y_\nu Y_\nu^\dagger M_R M_R^\dagger M_R^* Y_\nu^T M^R]$ does not vanish [20]. The exact mass degeneracy of three right-handed neutrinos implies that the CP-odd invariant

$$\Delta_{CP} = 2 \sum_{i<j} \left\{ M_i M_j (M_j^2 - M_i^2) \text{Im}[H_{ij}] \text{Re}[H_{ij}] \right\}, \quad H \equiv Y_\nu Y_\nu^\dagger,$$

(16)

which is relevant for leptogenesis [21], is actually vanishing. In order to accommodate leptogenesis, it requires not only $M_i \neq M_j$ but also $\text{Im}[H_{ij}] \text{Re}[H_{ij}] \neq 0$. Even if we have exactly degenerate heavy Majorana neutrinos at a certain high energy scale, it is likely that some splitting in the mass spectrum could be induced at a different scale through RG running effect. If this is the case, we will get the splittings of heavy Majorana neutrino masses i.e. a slightly broken $SO(3)$ symmetry in the right-hand sector with $|M_1| \simeq |M_2| \simeq |M_3|$. And

\[0.2\]

\[0.2\]

\[0.2\]

\[0.2\]

FIG. 4: The same as Fig. 2 except for $\phi_{A,B} \neq 0$ at the GUT scale.
the Dirac neutrino Yukawa matrix Y_{ν} is also modified by the same RG effect, which is very important to get non-zero $\text{Im}[H_{ij}]\text{Re}[H_{ij}] \neq 0$, as will be shown later.

Let us consider the evolution of the right-handed heavy Majorana neutrinos masses and the matrix Ω which diagonalizes the heavy Majorana mass matrix M in lagrangian Eq. (2), whose RGEs can be written by Ref. \[18\]:

\[
\frac{d}{dt}M = (Y'_{\nu}Y'^{\dagger}_{\nu})M + M(Y'_{\nu}Y'^{\dagger}_{\nu})^T, \tag{17}
\]
\[
\frac{d}{dt}\Omega = \Omega A, \tag{18}
\]

where $t = \frac{1}{16\pi^2}\ln(\mu/\Lambda)$ with renormalizable scale μ and degenerate seesaw scale Λ and Y'_{ν} is the re-basing form in Eq. (8). With the use of unitary transformation $N_j \rightarrow \Omega_{ji}N_i$, one can obtain

$$\Omega^T M \Omega = \text{diag}(M_1, M_2, M_3). \tag{19}$$

Since $(d/dt)\Omega = \Omega A$, A satisfies $A + A^\dagger = 0$, and then from Eq. (19) we can obtain:

$$\frac{dM_{ij}\delta_{ij}}{dt} = A_{ij}^T M_j + M_i A_{ij} + \{\Omega^T([(Y'_{\nu}Y'^{\dagger}_{\nu})M + M(Y'_{\nu}Y'^{\dagger}_{\nu})^T]\Omega)_{ij}. \tag{20}$$

Thus, the RG evolutions for the right-handed heavy Majorana neutrino masses are governed by the diagonal part in the above equation:

$$\frac{dM_i}{dt} = 2M_i(Y_{\nu}Y^\dagger_{\nu})_{ii}, \quad \text{with } Y_{\nu} = \Omega^T Y'_{\nu} \tag{21}$$

and the anti-hermitian property of the imaginary part of the matrix A leads to

$$\text{Im}[A_{ii}] = 0. \tag{22}$$

In addition, the off-diagonal part in Eq. (20) leads to

$$A_{jk} = \frac{M_k + M_j}{M_k - M_j} \text{Re}[(Y_{\nu}Y^\dagger_{\nu})_{jk}] + i\frac{M_j - M_k}{M_j + M_k} \text{Im}[(Y_{\nu}Y^\dagger_{\nu})_{jk}] = -A^*_{kj}, \quad (j \neq k). \tag{23}$$

The RG equation for the Dirac neutrino Yukawa matrix is given by

$$\frac{dY_{\nu}}{dt} = Y_{\nu}[(T - \frac{3}{4}g_Y^2 - \frac{9}{4}g_2^2) - \frac{3}{2}(Y_l^\dagger Y_l - Y_{\nu}^\dagger Y_{\nu})] + A^T Y_{\nu}, \tag{24}$$

\footnote{Actually, Ref. $[18]$ follows bottom-up approach, that is, from electroweak scale to seesaw scale. On the contrary, we apply top-down approach.}
where $T = Tr(3Y_u^\dagger Y_u + 3Y_d^\dagger Y_d + Y_\nu^\dagger Y_\nu + Y_l^\dagger Y_l)$, Y_u (Y_d) and Y_l are the Yukawa matrices for up-type (down-type) quarks and charged leptons and $g_{2,Y}$ are the $SU(2)_L$ and $U(1)_Y$ gauge coupling constants. The RG evolution for the quantity H relevant for leptogenesis can be written as

$$\frac{d}{dt}H = 2Y_\nu\{Q + P_\nu\}Y_\nu^\dagger + A^T H + HA^*, \quad (25)$$

where

$$Q = T - \frac{3}{4}g_2^2 - \frac{9}{4}g_1^2, \quad P_\nu = -\frac{3}{2}(Y_{l_1}^\dagger Y_l - Y_{\nu_1}^\dagger Y_\nu).$$

From Eq. (22), we see that there exists a singularity in A_{jk}. The singularity in A_{jk} can be eliminated with the help of an appropriate rotation between degenerate heavy Majorana neutrino states. Such a rotation does not change any physics and it is equivalent to absorb the rotation matrix R into the neutrino Dirac Yukawa matrix Y_ν,

$$Y_\nu \rightarrow \tilde{Y}_\nu = RY_\nu, \quad (26)$$

where the matrix R is an 3×3 orthogonal matrix which can be parameterized in terms of angles θ_i as $R(\theta_i, \theta_j, \theta_k) = R(\theta_i) \cdot R(\theta_j) \cdot R(\theta_k)$

$$R(\theta_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_1 & s_1 \\ 0 & -s_1 & c_1 \end{pmatrix}, \quad R(\theta_2) = \begin{pmatrix} c_2 & 0 & s_2 \\ 0 & 1 & 0 \\ -s_2 & 0 & c_2 \end{pmatrix}, \quad R(\theta_3) = \begin{pmatrix} c_3 & s_3 & 0 \\ -s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (27)$$

where $s_i \equiv \sin \theta_i$, $c_i \equiv \cos \theta_i$. Then, the singularity in real part of A_{jk} can be indeed removed when the rotation angles θ_i are taken to be satisfied with the condition,

$$\text{Re}[(\tilde{Y}_\nu \tilde{Y}_\nu^\dagger)_{jk}] = 0 \quad \text{for any pair } j, k \text{ corresponding to } M_j = M_k. \quad (28)$$

At the degeneracy scale of M_R there is a freedom to rotate the right-handed neutrino fields $N_{1,2,3}$ with a real orthogonal matrix that does not change M_R, but rotates Y_ν to the appropriate basis, which allows the use of an $SO(3)$ transformation to remove the off-diagonal elements of $\text{Re}[H]$, and thus we can obtain a matrix \tilde{H} satisfying the condition Eq. (28) as follows,

$$\tilde{H} \equiv (\tilde{Y}_\nu \tilde{Y}_\nu^\dagger) = RHR^T = B_\nu^2 \begin{pmatrix} \tilde{h}_{11} & i\text{Im}[\tilde{h}_{12}] & i\text{Im}[\tilde{h}_{13}] \\ -i\text{Im}[\tilde{h}_{12}] & \tilde{h}_{22} & i\text{Im}[\tilde{h}_{23}] \\ -i\text{Im}[\tilde{h}_{13}] & -i\text{Im}[\tilde{h}_{23}] & \tilde{h}_{33} \end{pmatrix}, \quad (29)$$
where \(\tilde{h}_{jj} \) and \(\text{Im}[\tilde{h}_{jk}] \) \((j \neq k = 1, 2, 3)\) are given by
\[
\tilde{h}_{11} = \omega^2 + \sin^2 \theta_3 + q_1 \tan \theta_2,
\]
\[
\tilde{h}_{22} = (\omega^2 + \cos^2 \theta_3) \cos^2 \theta_1 + \{1 + \kappa^2 - q_1 \tan \theta_2\} \sin^2 \theta_1 + q_2 \frac{\sin 2\theta_1}{\cos \theta_2},
\]
\[
\tilde{h}_{33} = (\omega^2 + \cos^2 \theta_3) \sin^2 \theta_1 + \{1 + \kappa^2 - q_1 \tan \theta_2\} \cos^2 \theta_1 - q_2 \frac{\sin 2\theta_1}{\cos \theta_2},
\]
\[
\text{Im}[\tilde{h}_{12}] = \cos \theta_3 \{\omega \sin(\phi_A - \phi_B) \sin \theta_1 - \kappa \sin \phi_B \cos \theta_1 \sin \theta_2\}
+ \sin \theta_3 \{\kappa \sin \phi_B \sin \theta_1 + \omega \sin(\phi_A - \phi_B) \cos \theta_1 \sin \theta_2\},
\]
\[
\text{Im}[\tilde{h}_{13}] = \cos \theta_3 \{\omega \sin(\phi_A - \phi_B) \cos \theta_1 + \kappa \sin \phi_B \sin \theta_1 \sin \theta_2\}
+ \sin \theta_3 \{\kappa \sin \phi_B \cos \theta_1 - \omega \sin(\phi_A - \phi_B) \sin \theta_1 \sin \theta_2\},
\]
\[
\text{Im}[\tilde{h}_{23}] = \cos \theta_3 \{\kappa \sin \phi_B \cos \theta_3 - \omega \sin(\phi_A - \phi_B) \sin \theta_3\}. \tag{30}
\]

Here, the parameters \(q_1 \) and \(q_2 \) are given by
\[
q_1 = \kappa \cos \phi_B \sin \theta_3 + \omega \cos(\phi_A - \phi_B) \cos \theta_3,
\]
\[
q_2 = \kappa \cos \phi_B \cos \theta_3 - \omega \cos(\phi_A - \phi_B) \sin \theta_3. \tag{31}
\]

The angle \(\theta_i \) in the real \(3 \times 3 \) orthogonal matrix \(R \) and CP-violating parameters \(\phi_A, \phi_B \) in the matrix \(Y_\nu \) make \(d\tilde{Y}/dt \) non-singular, \(i.e. \) when the degeneracy is exact, \(Y_\nu \) changes rapidly from its unperturbed form at \(t = 0 \) to a stable form that makes \(d\tilde{Y}_\nu/dt \) non-singular in Eq. \(\text{(24)} \). In the case of exact degenerate heavy Majorana neutrinos, \(i.e. \), \(M_R = M_I \), the rotation matrix \(R \) must be used to remove singularities at the degeneracy scale, therefore \(\theta_i \) \((i = 1, 2, 3)\) is no longer free parameters, \(i.e. \), it is constrained by the conditions Eq. \(\text{(28)} \) from which we can obtain the following relations,
\[
\tan 2\theta_1 = \frac{2q_2}{\cos \theta_2(\omega^2 + \cos^2 \theta_3 + q_1 \tan \theta_2 - 1 - \kappa^2)},
\]
\[
\tan 2\theta_2 = \frac{2q_1}{\omega^2 + \sin^2 \theta_3 - 1 - \kappa^2}, \quad \text{(or} \quad \tan \theta_2 = -\frac{\sin 2\theta_3}{2q_2} \text{)}, \tag{32}
\]
which show the initial stable conditions of angles at the GUT scale. Note that \(\theta_1, \theta_2 \) and \(\theta_3 \) have scale dependence when RG running from GUT to seesaw scale, Eq. \(\text{(18)} \).

\textbf{A. Flavor Independent Leptogenesis}

In a basis where the right-handed Majorana neutrino mass matrix is diagonal, ignoring flavor effects in the Boltzmann evolution of charged leptons, the CP asymmetry generated
through the interference between tree and one-loop diagrams of heavy singlet Majorana neutrino decay is given by \[22, 23\]:

\[
\varepsilon_i = \frac{\sum_\alpha [\Gamma(N_i \to l_\alpha \varphi) - \Gamma(N_i \to \bar{l}_\alpha \varphi^\dagger)]}{\sum_\alpha [\Gamma(N_i \to l_\alpha \varphi) + \Gamma(N_i \to \bar{l}_\alpha \varphi^\dagger)]} = \frac{1}{8\pi (Y_\nu Y_\nu^\dagger)_{ii}} \sum_{j \neq i} \text{Im}\{ (Y_\nu Y_\nu^\dagger)_{ij}^2 \} g\left(\frac{M_j^2}{M_i^2} \right), \quad (33)
\]

where the function \(g(x)\) is given by

\[
g(x) = \sqrt{x} \left[\frac{1}{1-x} + 1 - (1+x) \ln \frac{1+x}{x} \right] \quad (34)
\]

with \(x = M_j^2/M_i^2\). In the case that the mass splitting of the heavy Majorana neutrinos is very small, the CP asymmetries \(\varepsilon_i\) can be simplified by \[23, 24\] as

\[
\varepsilon_i \simeq \frac{\text{Im}\{ (Y_\nu Y_\nu^\dagger)_{ij}^2 \}}{16\pi (Y_\nu Y_\nu^\dagger)_{ii} \delta_{N}^{ij}} \left(1 + \frac{\Gamma_j^2}{4M_j^2\delta_{N}^{jj}} \right)^{-1}, \quad \text{with} \quad \Gamma_j = \frac{(Y_\nu Y_\nu^\dagger)_{jj} M_j}{8\pi} \quad (i \neq j = 1, 2, 3), \quad (35)
\]

where \(j\) denotes a generation number and \(\Gamma_j\) is the decay width of the \(j\)th-generation right-handed neutrino. We notice from Eq. \(35\) that \(\varepsilon_i\) is resonantly enhanced when \(\Gamma_j \simeq (M_i^2 - M_j^2)/M_i\). Here, the parameter \(\delta_{N}^{jk} (= 1 - |M_k|/|M_j| \ll 1)\) reflecting the mass splitting of the degenerate heavy Majorana neutrinos is governed by the following RGE derived from Eq. \(20\),

\[
\frac{d\delta_{N}^{jk}}{dt} = 2(1 - \delta_{N}^{ik})[\tilde{H}_{jj} - \tilde{H}_{kk}], \quad (36)
\]

which represents that radiative corrections induce mass-splittings proportional to the neutrino couplings. In the limit \(\delta_{N}^{jk} \ll 1\), the leading-log approximation for \(\delta_{N}^{jk}\) can be easily found to be

\[
\delta_{N}^{jk} \simeq 2[\tilde{H}_{jj} - \tilde{H}_{kk}] \cdot t. \quad (37)
\]

In order for Eq. \(33\) to give successful leptogenesis, not only the degeneracy of right-handed neutrinos should be broken but also the non-vanishing \(\text{Im}\{ (Y_\nu Y_\nu^\dagger)_{ik}^2 \}\) is required at seesaw scale \(M\).

To see how leptogenesis can successfully be achieved, let us first consider the case that \(\phi_A = \phi_B = 0\) in \(Y_\nu\) Eq. \(4\) at the GUT scale, while keeping CP phases arisen from the charged-lepton Yukawa matrix \(Y_l\) which move to \(Y_\nu\) through re-basing, \(i.e., \tilde{Y}_\nu = RY'_\nu = RY_\nu V\). In this case, the off-diagonal elements of \(\tilde{H} \equiv (\tilde{Y}_\nu \tilde{Y}_\nu^\dagger)\) becomes zero, so that CP
asymmetry could not be generated. However, the RG effects mainly due to Y_τ lead to non-vanishing off-diagonal elements in \tilde{H}_{jk}, whose forms are approximately given by

$$\text{Re}[\tilde{H}_{jk}(t)] \simeq -\frac{3}{2}y_\tau^2 \text{Re}[\tilde{Y}_\nu^\dagger j3(\tilde{Y}_\nu^\dagger)_{3k}] \cdot t,$$

$$\text{Im}[\tilde{H}_{jk}(t)] \simeq -3y_\tau^2 \text{Im}[\tilde{Y}_\nu^\dagger j3(\tilde{Y}_\nu^\dagger)_{3k}] \cdot t. \quad (38)$$

From these results, we see that CP-violating effects are induced by RG corrections due to the charged-lepton Yukawa couplings, which can play a crucial role in leptogenesis [25]. With the help of Eqs. (33,38), the CP-asymmetry for each heavy Majorana neutrino is given as

$$\varepsilon_i \simeq \frac{9y_\tau^4}{512\pi^3 \tilde{H}_{ii}} \cdot \ln \left(\frac{M_i}{\Lambda} \right) \sum_j \text{Re}[\tilde{Y}_\nu^j j3(\tilde{Y}_\nu^j)_{3i}] \text{Im}[\tilde{H}_{ji}] \tilde{H}_{jj} - \tilde{H}_{ii}. \quad (39)$$

Now, let us consider the case that $\phi_A \neq 0$ and $\phi_B \neq 0$ of Y_ν in Eq. (4) at the GUT scale. In this case, from Eq. (25), it is easy to find that $\text{Re}[\tilde{H}_{jk}(0)] = 0$ and $\text{Im}[\tilde{H}_{jk}(0)] \neq 0$, and thus RG effects on the off-diagonal elements \tilde{H}_{jk} may be prominent in the real part as given by

$$\text{Re}[\tilde{H}_{jk}] \simeq -\frac{3}{2}y_\tau^2 \text{Re}[\tilde{Y}_\nu^j j3(\tilde{Y}_\nu^j)_{3k}] \cdot t. \quad (40)$$

With the help of Eqs. (33,40), the CP-asymmetry can be written as

$$\varepsilon_i \simeq \frac{3y_\tau^2}{32\pi \tilde{H}_{ii}} \sum_j \text{Re}[\tilde{Y}_\nu^j j3(\tilde{Y}_\nu^j)_{3i}] \text{Im}[\tilde{H}_{ji}] \tilde{H}_{ji} - \tilde{H}_{ii}. \quad (41)$$

In addition to ε_i, it is well-known that he baryon asymmetry depends on the parameters

$$K_i \equiv \frac{\tilde{m}_i}{m_*}, \quad \tilde{m}_i \equiv \frac{\tilde{H}_{ii}}{M_i} y^2, \quad (42)$$

where $m_* \simeq 10^{-3}eV$ is the so-called equilibrium neutrino mass and the effective neutrino mass \tilde{m}_i is a measure of the strength of the coupling of N_i to the thermal bath. After reprocessing by sphaleron transitions, the baryon asymmetry is related to the $(B-L)$ asymmetry by $Y_B = (12/37)(Y_{B-L})$ [26]. In flavor independent leptogenesis we are always in the strong wash-out regime with $K_i \gg 1$ and the right-handed neutrinos N_i’s are nearly in thermal equilibrium. Then, the generated $B-L$ asymmetry in the strong wash-out regime is given [27] as

$$Y_{B-L} \simeq \sum_i 0.3 \frac{\varepsilon_i}{g_*} \left(\frac{0.55 \times 10^{-3}eV}{\tilde{m}_i} \right)^{1.16}, \quad (43)$$

15
where g_* is the effective number of degrees of freedom. Therefore, the resulting baryon-to-photon ratio becomes

$$
\eta_B = 7.0394 \cdot Y_B,
$$

where

$$
Y_B \simeq 7.0394 \cdot \frac{0.55 \times 10^{-3} eV}{m_i}^{1.16}.
$$

(44)

Here the value 7.0394 comes out from the present ratio of entropy density to photon density [28].

B. Flavor Dependent Leptogenesis

Considering flavor effects, the CP asymmetry generated through the interference between tree and one-loop diagrams of heavy singlet Majorana neutrino N_i decay is given for each lepton flavor $\alpha (= e, \mu, \tau)$ by [14, 29]:

$$
\varepsilon_\alpha^i = \frac{\Gamma(N_i \rightarrow l_\alpha \varphi) - \Gamma(N_i \rightarrow \bar{l}_\alpha \varphi^\dagger)}{\sum_\alpha [\Gamma(N_i \rightarrow l_\alpha \varphi) + \Gamma(N_i \rightarrow \bar{l}_\alpha \varphi^\dagger)]} = \frac{1}{8\pi (Y_\nu Y_\nu^\dagger)_{ii}} \sum_j \text{Im} \left\{ (Y_\nu Y_\nu^\dagger)_{ij} (Y_\nu)_{ia} (Y_\nu^*)^{ja} \right\} g \left(\frac{M_j^2}{M_i^2} \right),
$$

(45)

where j runs over 1, 2 and 3 but $i \neq j$ and the function $g(M_j^2/M_i^2)$ is given by Eq. (34). We note that the total CP asymmetries ε_i in Eq. (33) are obtained by summing over the lepton flavors α. From Eq. (44), we see that leptogenesis reflecting flavor effects depends not only on $Y_\nu Y_\nu^\dagger$ but also on the individual Y_ν, which makes it different from the conventional leptogenesis. The CP asymmetry ε_i^α is resonantly enhanced when the decay width of the jth-generation right-handed neutrino $\Gamma_j \simeq (M_j^2 - M_i^2)/M_i$. Once the initial values of ε_α^i are fixed, the final result of η_B or Y_B will be governed by a set of flavor-dependent Boltzmann equations including the (inverse) decay and scattering processes as well as the nonperturbative sphaleron interaction [14, 30, 31].

In the case of $\phi_A = \phi_B = 0$ at the GUT scale, the CP-asymmetry of a single flavor α including RG effects from high-energy scale to seesaw scale is approximately written as

$$
\varepsilon_i^\alpha \simeq \frac{3g^2}{32\pi H_{ii}} \sum_j \text{Im} \left[(Y_\nu Y_\nu^*)_{ij} (Y_\nu^*)_{ja} \right] \frac{\text{Re} \left[(Y_\nu)_{ia} (Y_\nu^*)^{ja} \right]}{H_{jj} - H_{ii}} + \frac{3g^2}{64\pi H_{ii}} \sum_j \text{Re} \left[(Y_\nu Y_\nu^*)_{ij} (Y_\nu^*)_{ja} \right] \frac{\text{Im} \left[(Y_\nu)_{ia} (Y_\nu^*)^{ja} \right]}{H_{jj} - H_{ii}}.
$$

(46)
Here, we note that \((Y_\nu)_{ia}(Y_{\nu}^\dagger)_{ai}\) contains the CP-phases \(\varphi_A\) and \(\varphi_B\) which may enhance the CP asymmetry.

On the other hand, in the case of \((\phi_A \neq 0, \phi_B \neq 0)\) at the GUT scale, the imaginary part in Eq. (45) including RG effects becomes

\[
\text{Im}\left\{\tilde{H}_{jk}(Y_{\nu})_{ja}(Y_{\nu}^\dagger)_{ka}\right\} \\
\simeq \text{Im}[\tilde{H}_{jk}]\frac{\text{Re}[(\tilde{Y}_{\nu})_{ja}(\tilde{Y}_{\nu}^\dagger)_{ka}]{\text{Im}[\tilde{H}_{ij}]} \\
\times \text{Re}[(\tilde{Y}_{\nu})_{ja}(\tilde{Y}_{\nu}^\dagger)_{ka}]}{\tilde{H}_{ii}} - \frac{3y_\tau^2}{2} \text{Re}[(\tilde{Y}_{\nu})_{ja}(\tilde{Y}_{\nu}^\dagger)_{ka}]}{t} \quad (j \neq k),
\]

where the first term in the second line dominates over the second one. We see from Eq. (47) that CP asymmetry can be generated without the CP phases \(\varphi_{A,B}\) in this case. Neglecting the second term in Eq. (47), the CP-asymmetry of a single flavor \(\alpha\) is approximately written as

\[
\varepsilon_{i}^{\alpha} \approx \frac{\pi}{2\tilde{H}_{ii} \cdot \text{ln}(M_i/\Lambda)} \sum_{j} \frac{\text{Re}[(\tilde{Y}_{\nu})_{ja}(\tilde{Y}_{\nu}^\dagger)_{ja}]{\text{Im}[\tilde{H}_{ij}]} }{\tilde{H}_{ii} - \tilde{H}_{jj}}.
\]

In order to estimate the washout effects, one may introduce the parameter \(K_i^{\alpha}\) which is the washout factor due to the inverse decay of the Majorana neutrino \(N_i\) into the lepton flavor \(\alpha(= e, \mu, \tau)\) [27]

\[
K_i^{\alpha} = \frac{\Gamma(N_i \to l_{\alpha}\varphi) + \Gamma(N_i \to \bar{l}_{\alpha}\varphi)}{\sum_{\alpha}[\Gamma(N_i \to l_{\alpha}\varphi) + \Gamma(N_i \to \bar{l}_{\alpha}\varphi)]} K_i = \frac{(Y_{\nu})_{ia}(Y_{\nu}^\dagger)_{ai}^{\alpha}}{(Y_{\nu}^\dagger)_{ii}} K_i,
\]

where

\[
K_i = \sum_{\alpha=e,\mu,\tau} K_i^{\alpha} = \frac{\Gamma_i}{H(T = M_i)}, \quad K^{\alpha} = \sum_{i=1}^{3} K_i^{\alpha},
\]

with \(\Gamma_i = \sum_{\alpha} \Gamma^{\alpha}\) denoting the total decay width of \(N_i\) at tree level where \(\Gamma^{\alpha}_i\) is the partial decay rate of the process \(N_i \to l_{\alpha} + \varphi\). The washing out of a given flavor \(l_{\alpha}\) is operated by the \(\Delta L = 1\) scattering involving all three right-handed neutrinos, which is parameterized by

\[
\tilde{m}_{i}^{\alpha} = (Y_{\nu}^\dagger)_{\alpha i} (Y_{\nu})_{ia} \frac{v^2}{M_i}, \quad \tilde{m}_{i}^{\alpha} = \frac{\Gamma(N_i \to \varphi l_{\alpha})}{H(M_i)},
\]

where \(\tilde{m}_{i}^{\alpha}\) parameterizes the decay rate of \(N_i\) to the leptons of flavor \(l_{\alpha}\) and the trace \(\sum_{\alpha} \tilde{m}_{i}^{\alpha}\) coincides with the \(\tilde{m}_{i}\) parameter defined in the previous section. The each lepton asymmetries are washed out differently by the corresponding washout parameter which is given by Eq. (49), and appear with different weights in the final formula for the baryon.
asymmetry \[27\], as will be shown later (see Eqs. \((54, 55)\)). Indeed the lepton asymmetry for each flavor \(l_\alpha\) generated through \(N_i\) decay is given by

\[
Y_i^\alpha \simeq 0.3 \frac{\varepsilon_i^\alpha}{g_*} \left(\frac{0.55 \times 10^{-3} \text{eV}}{\tilde{m}_i^\alpha} \right)^{1.16}
\]

in the strong wash-out regime (\(K_i^\alpha \gg 1\)), and

\[
Y_i^\alpha \simeq 1.5 \frac{\varepsilon_i^\alpha}{g_*} \left(\frac{\tilde{m}_i^\alpha}{3.3 \times 10^{-3} \text{eV}} \right) \left(\frac{\tilde{m}_i^2}{3.3 \times 10^{-3} \text{eV}} \right)
\]

in the weak wash-out regime (\(K_i^\alpha \ll 1\)).

For temperatures \(10^9 \text{ GeV} \lesssim T \sim M_i \lesssim 10^{12} \text{ GeV}\), the interactions mediated by the \(\tau\) Yukawa coupling are in equilibrium, whereas those by the other Yukawa couplings are out of equilibrium. Then, the lepton asymmetries for the electron and muon flavors can be treated as a linear combination: \(Y_i^2 \equiv Y_i^e + Y_i^\mu\). Finally, the baryon asymmetry is given by \[27\]

\[
Y_B \simeq \frac{12}{37} \sum_{N_i} \left[Y_i^2 \left(\varepsilon_i^2, \frac{417}{589} \tilde{m}_i^2 \right) + Y_i^\tau \left(\varepsilon_i^\tau, \frac{390}{589} \tilde{m}_i^\tau \right) \right],
\]

where \(\varepsilon_i^2 = \varepsilon_i^e + \varepsilon_i^\mu\), and the corresponding wash-out parameter is \(K_i^2 = K_i^e + K_i^\mu\).

Below temperatures \(T \sim M_i \lesssim 10^9 \text{ GeV}\), muon and tau charged lepton Yukawa interactions are much faster than the Hubble expansion parameter rendering the \(\mu\) and \(\tau\) Yukawa couplings in equilibrium. Then, in this case the final baryon asymmetry is given \[27\] as

\[
Y_B \simeq \frac{12}{37} \sum_{N_i} \left[Y_i^e \left(\varepsilon_i^e, \frac{151}{179} \tilde{m}_i^e \right) + Y_i^\mu \left(\varepsilon_i^\mu, \frac{344}{537} \tilde{m}_i^\mu \right) + Y_i^\tau \left(\varepsilon_i^\tau, \frac{344}{537} \tilde{m}_i^\tau \right) \right].
\]

Notice that the CP-asymmetries of a single flavor given in Eqs. \((54, 55)\) are weighted separately due to the different values of \(\tilde{m}_i^\alpha\).

In the strong washout regime, which corresponds to our case, given the initial thermal abundance of \(N_i\) and the condition \(K_i^\alpha \gg 1\), the baryon asymmetry including lepton flavor effects is given \[31\] as

\[
\eta_B \simeq -0.96 \times 10^{-2} \sum_i \sum_\alpha \varepsilon_i^\alpha \frac{K_i^\alpha}{K_i K_i^\alpha}.
\]

The ratio of \(\eta_B\), generated through flavor independent leptogenesis, to \(\eta_B^{\text{flavor}}\), generated through flavor dependent leptogenesis, in \(10^9 \text{ GeV} \lesssim M \lesssim 10^{12} \text{ GeV}\) region yields

\[
\frac{\eta_B}{\eta_B^{\text{flavor}}} \simeq \frac{\varepsilon_3}{\varepsilon_3^3} \frac{K_3}{K_3} \approx \frac{y_T^2}{8\pi^2} \ln \left(\frac{M}{\Lambda} \right) \frac{K_3}{K_3^3},
\]

18
where the orders of magnitude of K^τ and K_3^τ are $\sim O(100)$ and $\sim O(1)$, respectively. Thus, without taking lepton flavor effects into account, in this region the prediction of η_B is suppressed by $4 \sim 5$ orders of magnitude compared with η_B^{flavor}.

Below the temperature $M \sim 10^9$ GeV, all cases of parameter spaces can contribute to leptogenesis with different washout-factors. As indicated in Eqs. (39,48), the CP-asymmetries ε_i and ε^α_i are weakly dependent on the heavy Majorana neutrino scale M. Without taking account of wash-out factors, since there is no CP-violation phases at the degeneracy scale, in this case we can obtain approximately $\varepsilon_i \propto y_i^4 t$ and $\varepsilon^\alpha_i \propto y^2_t$, see Eqs. (39,46), and the CP-asymmetry ε^α_i gets enhanced by $\varepsilon^\alpha_i/\varepsilon_i \sim 1/y^2_t$ due to flavor effects.

V. NUMERICAL ANALYSIS

Confronting neutrino masses and mixing in the context of our scheme with low energy neutrino experimental data given in Eq. (1), we determine the allowed regions of the model parameters for which we estimate the lepton asymmetry. For the case of $\phi_A = \phi_B = 0$ at the GUT scale, in left figure of Fig. 5, we plot the predictions of baryon asymmetry η_B for $10^6 \lesssim M[\text{GeV}] \lesssim 10^{12}$. The horizontal dotted lines correspond to the bounds on η_B measured from current astrophysical observations, $(2 \times 10^{-10} < \eta_B < 10 \times 10^{-10})$. The asters
FIG. 6: The predictions of the BAU η_B for $10^6 \lesssim M\,[\text{GeV}] \lesssim 10^{12}$. The horizontal dotted lines correspond to the current observation from WMAP \cite{13}. The crosses correspond to flavored leptogenesis and the triangles correspond to flavor independent leptogenesis.

correspond to flavored leptogenesis, whereas the crosses correspond to flavor independent leptogenesis. We see from left figure of Fig. 5 that successful leptogenesis in the FTY model is possible only when lepton flavor effects are included, and the required values of η_B can be achievable for the temperature ranges of $M \gtrsim 10^9 \text{GeV}$. As explained before, for $10^9 \lesssim M\,[\text{GeV}] \lesssim 10^{12}$, only the interactions mediated by the τ Yukawa coupling are in equilibrium and thus only the τ-flavor is treated separately in the Boltzmann equations while the e and μ flavors are indistinguishable. Left-figure of Fig. 5 shows that FTY structure reaches maximal η_B near 10^7GeV (seesaw scale) running down from GUT scale, corresponding to $M_1 \lesssim M_2 \lesssim M_3$, which is related with the stable angle θ_i in Eq. (18) (see also \cite{18}).

For $10^9 \lesssim M\,[\text{GeV}] \lesssim 10^{12}$, right figure of Fig. 5 represents how the predictions of η_B in flavored leptogenesis depend on the initial value of the phase φ_B imposed at GUT scale. In the same region of M, we find that η_B^τ dominates over $\eta_B^e = \eta_B^\mu + \eta_B^\tau$, and thus the successful leptogenesis in the FTY model is approximately equal to tau-resonant leptogenesis \cite{31}.

In the case of $\phi_A \neq 0$ and $\phi_B \neq 0$ at the GUT scale, Fig. 6 presents the predictions of η_B generated through flavor independent leptogenesis (the triangles) and those of η_B^{flavor} through flavor dependent leptogenesis (the crosses) for $10^6 \lesssim M\,[\text{GeV}] \lesssim 10^{12}$. Note that we vary the values of $\phi_{A,B}$ as well as $\varphi_{A,B}$ from 0 to 2π without fixing certain values. The horizontal dotted lines correspond to the current bounds on η_B. We see from Fig. 6 that
flavor independent leptogenesis leads to the right amount of baryon asymmetry required from the current observational result, whereas the predictions for η_B^{flavor} are too large for flavor dependent leptogenesis to be a desirable candidate for baryogenesis. The reason why η_B^{flavor} get enhanced compared with η_B generated through flavor independent leptogenesis is that the first contribution in Eq. (47) dominates over the second one, so that $\varepsilon_i^x / \varepsilon_i \sim 1/y^2 t$ which is much less than one.

VI. SUMMARY

As a summary, we have considered FTY model [9] realized at the GUT scale. By considering RG evolution from GUT scale to low energy scale, we have confronted light neutrino masses and mixing with low energy experimental data, and found the allowed parameter space. We have investigated how BAU can be achieved via leptogenesis in FTY model. In particular, we considered two scenarios, one is to include lepton flavor effects and the other is to ignore them. In FTY model we consider, there are two types of CP phases, $\phi_{A,B}$ appeared in Y_ν and $\varphi_{A,B}$ in Y_l. Besides those CP phases, we need to splitting of the heavy Majorana neutrino spectrum in order to generate lepton asymmetry in FTY model. We have shown that the desirable splitting of the heavy Majorana neutrino spectrum could be radiatively induced at the seesaw scale by using the RG evolution from GUT to seesaw scale. In the case of $\phi_A = 0, \phi_B = 0$ at GUT scale, we have found that the predictions of η_B through flavor independent leptogenesis are not enough to achieve successful baryogenesis, whereas it can be achieved by flavor dependent leptogenesis for $10^9 \lesssim M[\text{GeV}] \lesssim 10^{12}$.

In the case of the phases $\phi_A \neq 0, \phi_B \neq 0$ at the GUT scale, contrary to the previous case, the successful leptogenesis can be achieved by ignoring the lepton flavor effects because flavor effects greatly enhance the lepton asymmetry so that they are not desirable to achieve baryon asymmetry of our universe.

We note that in both cases of our work, leptogenesis can be viable for

$$10^9 \lesssim M[\text{GeV}] \lesssim 10^{12}. \tag{58}$$

In particular, in the FTY model, flavor dependent leptogenesis can be worked when Y_ν does not contain CP-phases, but Y_l contains CP-phases.
YHA was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) No. KRF-2005-070-C00030. CSK was supported in part by CHEP-SRC Program and in part by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) No. KRF-2005-070-C00030. JL was supported in part by Brain Korea 21 Program and in part by Grant No. F01-2004-000-10292-0 of KOSEF-NSFC International Collaborative Research Grant. SKK was supported by KRF Grant funded by the Korean Government (MOEHRD) No. KRF-2006-003-C00069.

[1] Y. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998) [arXiv:hep-ex/9807003].

[2] S. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 86, 5656 (2001) [arXiv:hep-ex/0103033]; S. Fukuda et al. [Super-Kamiokande Collaboration], Phys. Lett. B 539, 179 (2002) [arXiv:hep-ex/0205075]. Y. Ashie et al. [Super-Kamiokande Collaboration], Phys. Rev. Lett. 93, 101801 (2004) [arXiv:hep-ex/0404034].

[3] Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 87, 071301 (2001) [arXiv:nucl-ex/0106015]; Q. R. Ahmad et al. [SNO Collaboration], Phys. Rev. Lett. 89, 011301 (2002) [arXiv:nucl-ex/0204008]; S. N. Ahmed et al. [SNO Collaboration], Phys. Rev. Lett. 92, 181301 (2004) [arXiv:nucl-ex/0309004].

[4] M. Apollonio et al. [CHOOZ Collaboration], Phys. Lett. B 420, 397 (1998) [arXiv:hep-ex/9711002].

[5] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[6] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004) [arXiv:hep-ph/0405172].

[7] V. M. Lobashev, Nucl. Phys. A 719 (2003) 153.

[8] F. T. Avignone, Nucl. Phys. Proc. Suppl. 143, 233 (2005).

[9] M. Fukugita, M. Tanimoto and T. Yanagida, Phys. Lett. B 562, 273 (2003) [arXiv:hep-ph/0303177].

[10] H. Fritzsch, Nucl. Phys. B 155, 189 (1979).
[11] P. Minkowski, Phys. Lett. B 67, 421 (1977); T. Yanagida, in Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe, edited by O. Sawada and A. Sugamoto (KEK, Tsukuba, 1979), p. 95; M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D. Freedman (North Holland, Amsterdam, 1979), p. 315; S.L. Glashow, in Quarks and Leptons, edited by M. Lévy et al. (Plenum, New York, 1980), p. 707; R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[12] Z. z. Xing, Phys. Lett. B 550, 178 (2002) arXiv:hep-ph/0210276; Z. z. Xing and S. Zhou, Phys. Lett. B 593, 156 (2004) arXiv:hep-ph/0403261; S. Zhou and Z. z. Xing, Eur. Phys. J. C 38, 495 (2005) arXiv:hep-ph/0404188; M. Randhawa, G. Ahuja and M. Gupta, Phys. Lett. B 643, 175 (2006) arXiv:hep-ph/0607074; Z. z. Xing and S. Zhou, Phys. Lett. B 606, 145 (2005) arXiv:hep-ph/0411044; M. Obara and Z. z. Xing, Phys. Lett. B 644, 136 (2007) arXiv:hep-ph/0608280.

[13] WMAP Collaboration, D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003); M. Tegmark et al., Phys. Rev. D 69, 103501 (2004); C. L. Bennett et al., Astrophys. J. Suppl. 148, 1(2003).

[14] A. Abada, S. Davidson, A. Ibarra, F. X. Josse-Michaux, M. Losada and A. Riotto, JHEP 0609, 010 (2006) arXiv:hep-ph/0605281; S. Blanchet and P. Di Bari, JCAP 0703, 018 (2007) arXiv:hep-ph/0607330; S. Antusch, S. F. King and A. Riotto, JCAP 0611, 011 (2006) arXiv:hep-ph/0609038; S. Pascoli, S. T. Petcov and A. Riotto, Phys. Rev. D 75, 083511 (2007) arXiv:hep-ph/0609125; S. Pascoli, S. T. Petcov and A. Riotto, Nucl. Phys. B 774, 1 (2007) arXiv:hep-ph/0611338; G. C. Branco, R. Gonzalez Felipe and F. R. Joaquim, Phys. Lett. B 645, 432 (2007) arXiv:hep-ph/0609297; G. C. Branco, A. J. Buras, S. Jager, S. Uhlig and A. Weiler, JHEP 0709, 004 (2007) arXiv:hep-ph/0609067.

[15] J. Ellis, M. Raidal and T. Yanagida, Phys. Lee. B 546, 228 (2002) arXiv:hep-ph/0206300.

[16] P. H. Chankowski and Z. Pluciennik, Phys. Lett. B 316, 312 (1993) arXiv:hep-ph/9306333; K. S. Babu, C. N. Leung and J. T. Pantaleone, Phys. Lett. B 319, 191 (1993) arXiv:hep-ph/9309223; M. Tanimoto, Phys. Lett. B 360, 41 (1995) arXiv:hep-ph/9508247; N. Haba and N. Okamura, Eur. Phys. J. C 14, 347 (2000) arXiv:hep-ph/9906481; P. H. Chankowski and S. Pokorski, Int. J. Mod. Phys. A 17, 575 (2002) arXiv:hep-ph/0110249.

[17] S. Antusch, J. Kersten, M. Lindner, M. Ratz and M. A. Schmidt, JHEP 0503, 024 (2005) arXiv:hep-ph/0501272.
[18] J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B 573, 652 (2000) [arXiv:hep-ph/9910420]; J. A. Casas, J. R. Espinosa, A. Ibarra and I. Navarro, Nucl. Phys. B 569, 82 (2000) [arXiv:hep-ph/9905381].

[19] J. Liu and G. Segre, Phys. Rev. D 49, 1342 (1994) [arXiv:hep-ph/9310248]; A. Pilaftsis, Int. J. Mod. Phys. A 14, 1811 (1999) [arXiv:hep-ph/9812256].

[20] A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004) [arXiv:hep-ph/0309342].

[21] A. Pilaftsis, Phys. Rev. D 56, 5431 (1997) [arXiv:hep-ph/9707235]; G. C. Branco, T. Morozumi, B. M. Nobre and M. N. Rebelo, Nucl. Phys. B 617, 475 (2001) [arXiv:hep-ph/0107164]; G. C. Branco and M. N. Rebelo, New J. Phys. 7, 86 (2005) [arXiv:hep-ph/0411196].

[22] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).

[23] L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384, 169 (1996) [arXiv:hep-ph/9605319].

[24] See also, Y. H. Ahn, Sin Kyu Kang, C. S. Kim, J. Lee, Phys. Rev. D 73, 093005 (2006) [arXive:hep-ph/0602160]; S. K. Kang and C. S. Kim, Phys. Lett. B 646, 248 (2007) [arXiv:hep-ph/0607072].

[25] K. Turzynski, Phys. Lett. B 589, 135 (2004) [arXiv:hep-ph/0401219]; R. Gonzalez Felipe, F. R. Joaquim and B. M. Nobre, Phys. Rev. D 70, 085009 (2004) [arXiv:hep-ph/0311029]; G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim and B. M. Nobre, Phys. Lett. B 633, 336 (2006) [arXiv:hep-ph/0507092]; Y. H. Ahn, C. S. Kim, S. K. Kang and J. Lee, Phys. Rev. D 75, 013012 (2007) [arXiv:hep-ph/0610007].

[26] J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990).

[27] A. Abada, S. Davidson, F. X. Josse-Michaux, M. Losada and A. Riotto, JCAP 0604, 004 (2006) [arXiv:hep-ph/0601083].

[28] W. Buchmuller, P. Di Bari and M. Plumacher, Nucl. Phys. B 643, 367 (2002) [arXiv:hep-ph/0205349].

[29] T. Endoh, T. Morozumi, Z. Xiong, Prog. Theor. Phys. 111, 123 (2004) [arXive:hep-ph/0308276]; T. Fujihara, S. Kaneko, S. Kang, D. Kimura, T. Morozumi, M. Tanimoto, Phys. Rev. D 72, 016006 (2005) [arXive:hep-ph/0505076].

[30] R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Nucl. Phys. B 575, 61 (2000) [arXiv:hep-ph/9911315].

[31] A. Pilaftsis, Phys. Rev. Lett. 95, 081602 (2005) [arXiv:hep-ph/0408103]; A. Pilaftsis and
T. E. J. Underwood, Phys. Rev. D 72, 113001 (2005) [arXiv:hep-ph/0506107].