Spinal metastases are a major burden for oncological care, as they will affect 30%–40% of patients with cancer.1 Primary bone tumors of the spine are far less common than metastatic spinal tumors, but their behavior can also be aggressive and malignant.2 Management of metastatic tumors and primary tumors involving the spine must be individualized. Factors such as tumor histology, radiosensitivity, tumor location, presenting symptoms, neurological status, and prior surgery, or adjuvant treatment at the diseased level, impact treatment strategy. Surgical intervention may be needed for oncological cytoreduction, histological diagnosis, treatment of mechanical pain, decompression of the neural elements, or correction of instability and/or deformity.

Radiation therapy (RT) is often administered as a definitive or adjuvant therapy during spinal tumor treat-
ment. In patients with limited oligometastatic or epidural spinal cord compression from metastatic spine disease, combined surgery and RT is an established practice. With primary bone tumors, the combination of surgery and RT can be considered for high-grade malignancies, recurrent tumors, or in cases in which satisfactory oncological margins cannot be achieved.3

When surgical intervention in the spinal oncology population requires stabilization with spinal hardware, conventional implant materials can be problematic. Commonly used metallic implant materials such as titanium alloys produce substantial artifacts on imaging that interfere with proper planning and delivery of RT. The presence of metals with a high number of atomic protons in the nucleus (high-Z materials), such as titanium or cobalt, can cause severe artifacts on CT images, which can have a significant impact on radiation dose calculation.4 Furthermore, the scattering effect from titanium hardware can compromise the therapeutic effect of RT and lead to unwanted irradiation of neighboring healthy tissues, particularly when particles are used.5–7 Artifacts from metallic implants also interfere with postoperative surveillance imaging, which are used to rule out disease progression.5,7

Recently, carbon fiber–reinforced PEEK (CFRP) composite implants have garnered attention as an alternative to conventional titanium implants for spinal oncology patients. Previously, numerous clinical papers in the orthopedic literature have described the utility of CFRP implants in nonspine orthopedic trauma procedures.8–10 Those reports cited several beneficial characteristics of CFRP, including biocompatibility and durability.

In the spine, screws, rods, plates, and vertebral body replacement CFRP implants have been used for use in the cervical, thoracic, and lumbar spine segments.3,5,6,11–13 Authors have previously highlighted the advantages of CFRP over titanium systems, including reduced amounts of imaging artifacts, more facile RT planning, and potentially greater safety and quality of radiotherapy.8–10

However, the number of clinical papers on CFRP remains limited, and to our knowledge no clinical series has described greater than 40 patients stabilized with CFRP instrumentation. The aim of this paper is to describe an additional clinical series, highlighting feasibility and clinical outcomes. An illustrative case demonstrates the advantages of CFRP implants. Technical nuances to one of the currently available CFRP systems, CarboClear (CarboFix Orthopedics Ltd.), are also discussed.

Methods

The study was conducted at a single, tertiary, academic medical center in Phoenix, Arizona. Approval from the Institutional Review Board was obtained.

Starting in December 2018, spinal surgeons considered using CFRP hardware in all spinal oncology patients undergoing instrumented fusions. The treatment teams were also anticipating postoperative radiation treatment or ongoing imaging surveillance in patients treated with CFRP hardware. Because the precontoured rods in the CFRP system cannot be bent, patients with constructs needing custom intraoperative rod contouring were excluded. Patients needing hardware not currently available in CFRP, such as occipital plates, were also excluded.

Twenty-eight patients who had undergone instrumentation with the CFRP fixation system CarboClear from December 2018 to October 2020 were retrospectively identified in our Spine Tumor Quality Database.

Clinical data were retrospectively collected, including age, sex, tumor pathology, preoperative symptoms, Spine Instability Neoplastic Score (SINS), surgical procedure, date of surgery, presence of intraoperative or postoperative surgical complications, length of clinical and radiographic follow-up, type of radiation treatment, preservation of neurological status during clinical follow-up period, local control, and patient survival. Data are presented with descriptive statistics (Table 1).

Intraoperative neuromonitoring was used during all procedures. Spinal fixation was associated with tumor resection and vertebral column reconstruction using PEEK cages in 5 patients and decompression with tumor debulking in the remaining 23 patients.

All patients were managed collaboratively by surgical and oncology teams. The standard follow-up routine for the surgeons’ team included clinical and radiographic follow-up at 3, 6, and 12 months, and yearly thereafter, in order to assess hardware stability and local recurrence.

Surgical Technique

Unlike standard titanium alloy spinal implant systems, insertion of the fully CFRP pedicle screw system involves technical nuances for planning, insertion, and stabilization. First, the selection of pedicle screw starting points must be meticulous to ensure that the final positions of the pedicle screw tulip heads are well aligned. The pedicle screws are polyaxial with 15° of rotation at the center, allowing for a small amount of deviation in screw alignment. The carbon-based microfiber manufacturing of the rods allows for highly cycle-resistant rods but makes for a more challenging fixation to the pedicle screws given the inability to bend the rods. There are multiple different precurved rods available, which can be selected preoperatively based on the curvature of the spine and cut intraoperatively to appropriate length. Well-aligned pedicle screws allow the tulip heads to capture the rod with locking elements. A top-loading press-fitting device functions as a final locking mechanism, akin to final tightening endcaps with titanium alloy systems.

Pedicle placement is performed using standard free-hand direct or anatomical trajectories. Given the closer modulus of the instrumentation to bone, full-length tapping into the vertebral body is needed to allow for appropriate screw placement. The quality of the bone involved also determines the tapping strategy. In osteoblastic bone—seen with metastatic prostate and other specific metastases—tapping to screw diameter for the full length of the screw is recommended. Otherwise, a half-size smaller tap is often used, again to full length, to help facilitate screw placement.

Placement is often confirmed with intraoperative CT imaging, given the near full lucency of the hardware on radiographs; in the lumbar spine, the spinal titanium reinforced shell is often visible, which may obviate the need
for high-definition imaging. At this time, no systems exist to coordinate CFRP pedicle screws with an image-guidance platform, although pedicle probing and tapping can be performed with image-guided systems.

Illustrative Case

A 43-year-old woman presented to an outside institution 6 weeks prior with progressive thoracic myelopathy and severe thoracic pain. She was found to have a dorsal T4 mass with destruction of the posterior elements and extension to the ribs and T4 vertebral body (Fig. 1). She was taken urgently for a posterior thoracic subtotal tumor resection and stabilization using titanium hardware. Tumor pathology was consistent with grade 2 chondrosarcoma.

After consultation with the radiation oncology department at our institution, proton-beam RT (PBRT) was recommended to deliver high-dose radiation while minimizing exposure to surrounding tissues, in particular the spinal cord and esophagus. To maximize the safety and efficacy of the PBRT, resection of residual tumor and replacement of the titanium hardware with CFRP hardware were recommended. The patient recovered well from surgery, and our radiation oncology team proceeded with adjuvant curative-intent postoperative PBRT. Her simulation CT is demonstrated in Fig 2. Nineteen months after surgery, follow-up imaging revealed no signs of residual or recurrent disease (Figs. 3–5). CT allows for excellent evaluation of the hardware integrity and loosening at the bone-screw interface, while MRI allows for detection of tumor mass and assessment of surrounding tissues.

Results

The study population included 14 females and 14 males with a mean age of 60 years (range 30–86 years). All patients had a preoperative histological diagnosis. Five patients had primary bone tumors and the remaining patients had metastatic tumors. Breast cancer was the most common metastatic tumor.

Patients often presented with multiple symptoms. The most common presenting symptom was axial spine pain (25 patients, 89%), followed by myelopathy (12 patients, 43%) and radiculopathy (8 patients, 29%). One patient was asymptomatic, but she had radiographic progression of disease. The most common SINS was 7 (range 6–14) of indeterminate stability.

Two patients in this series had anterior cervical procedures. The remaining patients underwent posterior thoracolumbar procedures.
columbar fixation. Nineteen patients had fixation within the thoracic spine, 4 patients had fixation spanning the thoracolumbar spine, and 3 patients had lumbar or lumbar-sacral fixation. The average fusion length included 4.6 vertebral segments (range 3–8).

The mean clinical follow-up time with the surgical or oncology team at our institution was 6.5 months (range 1–23 months), and the mean interval for the last follow-up imaging study (CT or MRI) was 6.5 months (range 1–22 months). Eighteen patients received postoperative RT at our institution (16 with photon therapy, 2 with PBRT). Fourteen of the 16 patients treated with photon therapy received stereotactic body RT. Of the 10 patients who had not been treated with RT at the time of submission of this paper, 2 patients were pending radiation treatment, 4 patients chose alternative adjuvant treatments, 3 patients did not thrive, and 1 patient was lost to follow-up.

FIG. 2. Simulation CT scans for PBRT.

FIG. 3. Postoperative sagittal thoracic CT scan demonstrating minimal artifact surrounding the CFRP pedicle screw.

FIG. 4. Postoperative sagittal thoracic T2-weighted MR image demonstrating minimal artifact surrounding the CFRP hardware.
Eleven of the patients (39%) in this series have subsequently died of their primary disease or a complication. At the last clinical follow-up, 26 patients (93%) had stable or improved neurological function compared with their preoperative status. At the last imaging follow-up, local disease control was observed in 25 patients (89%). Results are presented in Table 1.

Two patients required reoperation in the immediate postoperative period, one for surgical site infection and the other for epidural hematoma. One patient was noted to have lucencies around the most cephalad screws 3 months after surgery. The screws were implanted in a diseased vertebral body, and the patient’s condition was managed expectantly. No patients required delayed surgery for hardware loosening, fracture, or other failure. Of the 5 patients with primary bone tumors, 3 patients demonstrated arthrodesis on postoperative CT imaging. The other 2 patients had had surgery more recently and were scheduled to have future CT imaging to assess arthrodesis.

Early tumor recurrence was detected in 3 patients, which may have been facilitated by favorable imaging characteristics of CFRP hardware. In the 3 patients with early tumor recurrence, 2 patients had metastases and 1 patient had a primary tumor. The recurrences were detected at 4, 4.2, and 7 months. One patient with metastasis had palliative RT, and the other patient chose hospice care. The elderly patient with the primary tumor was scheduled for revision surgery. While awaiting surgery, he had unexpected cardiac arrest and died.

Discussion

Surgical management of spinal tumors often requires instrumentation to restore spinal stability and prevent kyphosis after neural decompression. In this population, CFRP hardware has been introduced as an alternative to conventional titanium hardware. A small body of evidence demonstrates the viability and benefits of CFRP spinal implant material.

Radiographic Advantages of CFRP Hardware

Multiple studies have shown the clear radiographic advantage of CFRP over titanium hardware on postinstrumentation spinal imaging. In vitro evaluations have shown reduced total artifact volume and median artifact area on MRI scans for CFRP intervertebral test spacers compared with titanium spacers. Another in vitro study found that a CFRP rod-and-screw phantom substantially reduced the susceptibility to artifacts on both CT and MRI compared with a titanium phantom. Fleege et al. compared the accessibility of the spinal canal, the neuroforamina, and the surrounding bony and soft-tissue structures after the lumbar spine was instrumented in patients with titanium and CFRP hardware. The authors concluded that the CFRP pedicle screws exhibited smaller artifact areas on vertebral body surfaces and their surrounding tissues, which improved the radiographic assessibility.

The radiolucency and reduced artifact occurrence with CFRP hardware allow for much better interpretation of follow-up imaging. Consequently, more precise radiation planning and more sensitive surveillance for tumor progression or recurrence are possible. Early detection of tumor progression was possible for several patients in this series.

Biomechanical Properties of CFRP Hardware

Testing has shown favorable biomechanical properties for CFRP hardware. CFRP rods have been shown to have mechanical properties, including mean bending yield load, bending ultimate load, cycling capacity, and stiffness that are comparable to commercially available titanium systems.

In osteoporotic human spine cadaver models, CFRP rod-and-screw constructs demonstrated similar or less microscopic loosening than titanium constructs after cyclic loading tests. Cement augmentation significantly enhanced anchorage of the CFRP screws.

Our experience demonstrated favorable biomechanical properties for CFRP hardware, as no hardware fractures occurred at the rod or screw-rod interfaces. We had only 1 case with hardware loosening, which was primarily attributed to a diseased spinal segment with poor bone integrity.

Clinical Series Demonstrating Feasibility of CFRP Hardware

A limited number of clinical papers have been published describing the safety and noninferiority of CFRP compared with titanium hardware. Cofano et al. retrospectively compared the safety and effectiveness of CFRP devices with standard titanium implants in patients with spinal metastases. Thirty-six patients underwent CFRP fixation, while titanium implants were used for 42. No significant differences were found between the two groups.
Advantages of CFRP Hardware With Radiotherapy

There are many potential advantages of CFRP hardware with RT planning, including improved imaging, which allows for better target and normal tissue delineation. Particularly for lesions involving the spine, identification of the spinal cord is critical, as it represents the primary dose-limiting structure. Tumors requiring high radiation doses for local control, such as chondrosarcoma, chordoma, or those treated with ablative doses of stereotactic body radiation, require precise tumor and normal tissue delineation. In these cases, CFRP hardware is advantageous. In addition to imaging, there are radiation dose calculation advantages. Charged particle radiation such as proton-beam therapy and carbon ion radiotherapy are sensitive to high-Z materials where dose calculation can be affected, and the presence of titanium hardware may increase the risk of local recurrence. Thus, CFRP is preferred over titanium for these indications.

Numerous studies have demonstrated the benefits of CFRP hardware for postoperative RT. Using simulations and retrospective analysis of real spinal oncology cases, Mastella et al. assessed the dosimetry of postoperative particle therapy between patients stabilized with titanium versus CFRP hardware. They found that CFRP hardware, compared with titanium hardware, had very slight beam perturbation, which led to a lower degree of dose degradation. Other photon therapy simulations have also found that CFRP systems result in superior dosimetric quality compared with titanium systems. In another simulation study involving a 6-MV photon beam, investigators found that the maximum dose perturbation was less than 5% for CFRP screws, compared with more than 30% perturbation for the titanium screws.

Limitations

This is a retrospective review, and data collection was limited to availability in the electronic medical record. For many patients, our facility is a destination medical center. A proportion of patients sought postoperative oncology care at different facilities and medical records were not accessible. Rates of local recurrence and neurological deterioration may be higher if all patients completed follow-up care at our facility.

Furthermore, this study did not include standardized pain scores. Therefore, we are not able to quantify improvement in pain or compare pain levels of patients treated with titanium hardware, which has different mechanical properties. We plan to address this question with future prospective studies.

The study included a relatively small number of patients with limited mean clinical and radiographic follow-up intervals. A larger patient cohort with extended follow-up would enhance our understanding of perioperative and postoperative complications. Also, the high mortality rate (39%) in this series raises the question about the survival benefit with CFRP hardware. Longer-term studies with more patients will clarify the impact of CFRP hardware on quality of oncological care, determined by complications, survival, and other patient-reported outcome measures.

Conclusions

CFRP spinal implants appear to be safe and comparable to conventional titanium implants, in terms of functionality. The superior imaging characteristics of CFRP hardware facilitate radiation planning and assessment of surveillance imaging. CFRP hardware may enhance safety and efficacy, particularly with particle therapy. Larger patient populations with longer-term follow-up are needed to manifest the value of CFRP spinal implants.

References

1. Di Perna G, Cofano F, Mantovani C, et al. Separation surgery for metastatic epidual spinal cord compression: a qualitative review. J Bone Oncol. 2020;25:100320.
2. Charest-Morin R, Fisher CG, Sahgal A, et al. Primary bone tumor of the spine-an evolving field: what a general spine surgeon should know. Global Spine J. 2019;9(1)(suppl):108S–116S.
3. Boriani S, Tedesco G, Ming L, et al. Carbon-fiber-reinforced PEEK fixation system in the treatment of spine tumors: a preliminary report. Eur Spine J. 2018;27(4):874–881.
4. Jia Y, Zhao L, Cheng CW, et al. Dose perturbation effect of metallic spinal implants in proton beam therapy. J Appl Clin Med Phys. 2015;16(5):333–343.
5. Tedesco G, Gasbarrini A, Bandiera S, et al. Composite PEEK/Carbon fiber implants can increase the effectiveness of radiotherapy in the management of spine tumors. J Spine Surg. 2017;3(3):323–329.
6. Boriani S, Pipola V, Cecchirotto R, et al. Composite PEEK/carbon fiber rods in the treatment for bone tumors of the cervical spine: a case series. Eur Spine J. 2020;29(12):3229–3236.
7. Ringel F, Ryang YM, Kirschke JS, et al. Radiolucent carbon-fiber-reinforced pedicle screws for treatment of spinal tumors: advantages for radiation planning and follow-up imaging. World Neurosurg. 2017;105:294–301.
8. Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskel Disord. 2015;8:33–45.
9. Mugnai R, Tarallo L, Capra F, Catani F. Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures. Orthop Traumatol Surg Res. 2018;104(6):877–882.
10. Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon-fiber-reinforced composite implants in orthopedic surgery. *Orthopedics*. 2014;37(12):825–830.

11. Cofano F, Di Perna G, Monticelli M, et al. Carbon fiber reinforced vs titanium implants for fixation in spinal metastases: a comparative clinical study about safety and effectiveness of the new “carbon-strategy”. *J Clin Neurosci*. 2020;75:106–111.

12. Adler D, Akbar M, Spicher A, et al. Biomechanical study of a novel, expandable, non-metallic and radiolucent CF/PEEK vertebral body replacement (VBR). *Materials (Basel)*. 2019;12(17):E2732.

13. Milavec H, Kellner C, Ravikumar N, et al. First clinical experience with a carbon fibre reinforced PEEK composite plating system for anterior cervical discectomy and fusion. *J Funct Biomater*. 2019;10(3):E29.

14. Fridley J, Gokaslan ZL. The evolution of surgical management for vertebral column tumors. *J Neurosurg Spine*. 2019;30(4):417–423.

15. Ernstberger T, Buchhorn G, Heidrich G. Artifacts in spine magnetic resonance imaging due to different intervertebral test spacers: an in vitro evaluation of magnesium versus titanium and carbon-fiber-reinforced polymers as biomaterials. *Neuroradiology*. 2009;51(8):525–529.

16. Ernstberger T, Buchhorn G, Baums MH, Heidrich G. In-vitro MRI detectability of interbody test spacers made of carbon fibre-reinforced polymers, titanium and titanium-coated carbon fibre-reinforced polymers. *Acta Orthop Belg*. 2007;73(2):244–249.

17. Cuzzocrea F, Ghiara M, Gaeta M, et al. Carbon fiber screws in spinal tumor and metastasis: advantages in surgery, radio-diagnostic and hadrontherapy. *J Biol Regul Homeost Agents*. 2019;33(4):1249–1257.

18. Ernstberger T, Heidrich G. Postfusion magnetic resonance imaging artifacts caused by a titanium, cobalt-chromium-molybdenum, and carbon intervertebral disc spacer. *J Spinal Disord Tech*. 2007;20(2):154–159.

19. Krätzig T, Mende KC, Mohme M, et al. Carbon fiber-reinforced PEEK versus titanium implants: an in vitro comparison of susceptibility artifacts in CT and MR imaging. *Neurosurg Rev*. Published online September 15, 2020. doi:10.1007/s10143-020-01384-2

20. Fleege C, Makowski M, Rauschmann M, et al. Carbon fiber-reinforced pedicle screws reduce artifacts in magnetic resonance imaging of patients with lumbar spondylodesis. *Sci Rep*. 2020;10(1):16094.

21. Verburg JM, Seco J. Dosimetric accuracy of proton therapy for chordoma patients with titanium implants. *Med Phys*. 2013;40(7):071727.

22. Bruner HJ, Guan Y, Yoganandan N, et al. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbar instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. *J Neurosurg Spine*. 2010;13(6):766–772.

23. Uri O, Folman Y, Laufer G, Behrbalk E. A novel spine fixation system made entirely of carbon-fiber-reinforced PEEK composite: an in vitro mechanical evaluation. *Adv Orthop*. 2020;2020:4796136.

24. Lindtner RA, Schmid R, Nydegger T, et al. Pedicle screw anchorage of carbon fiber-reinforced PEEK screws under cyclic loading. *Eur Spine J*. 2018;27(8):1775–1784.

25. Oikonomidis S, Greven J, Bredow J, et al. Biomechanical effects of posterior pedicle screw-based instrumentation using titanium versus carbon fiber reinforced PEEK in an osteoporotic spine human cadaver model. *Clin Biomech (Bristol, Avon)*. 2020;80:105153.

26. Mastella E, Molinelli S, Magro G, et al. Dosimetric characterization of carbon fiber stabilization devices for post-operative particle therapy. *Phys Med*. 2017;44:18–25.

27. Müller BS, Ryang YM, Oechsner M, et al. The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon-fiber-reinforced PEEK systems. *J Appl Clin Med Phys*. 2020;21(8):6–14.

28. Novelsky A, Borzov E, Daniel S, Bar-Deroma R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. *J Appl Clin Med Phys*. 2017;18(2):62–68.

Disclosures

Dr. Neal: consultant for Medtronic. Dr. Kalani: consultant for CarboFix, NuVasive, and Medtronic.

Author Contributions

Conception and design: Neal, Ashman. Acquisition of data: Neal, Richards, Patel, Ashman, Vora, Kalani. Analysis and interpretation of data: Neal, Ashman, Vora, Kalani. Drafting the article: Neal. Critically revising the article: all authors. Statistical analysis: Neal. Reviewed submitting version of manuscript: all authors. Statistical analysis: Neal. Administrative/technical/material support: Neal, Richards, Curley, Patel. Study supervision: Neal.

Supplemental Information

Videos

Video Abstract. https://vimeo.com/525067554.

Correspondence

Matthew T. Neal: Mayo Clinic Hospital, Phoenix, AZ. neal.matthew@mayo.edu.