On two families of binary quadratic bent functions

J. Rifà1, V. A. Zinoviev2

May 5, 2014

Abstract

We construct two families of binary quadratic bent functions in a combinatorial way. They are self-dual and anti-self-dual quadratic bent functions, respectively, which are not of the Maiorana-McFarland type, but affine equivalent to it.

Keywords Bent function, combinatorics, quadratic function, self-dual bent function.

Mathematics Subject Classification (2000) 94C30; 94C10

1 Introduction

Let \mathbb{F}_q be the Galois field of order $q = 2^m$. We use the standard notation $[n, k, d]$ for a binary linear code C of length n, dimension k and minimum (Hamming) distance d. Denote by $\text{wt}(x)$ the Hamming weight of a vector x from \mathbb{F}_2^n. For $x, y \in \mathbb{F}_2^n$ denote by $x \cdot y$ the usual inner product over \mathbb{F}_2. Denote by \bar{x} the complementary vector of x (obtained by swapping 0 and 1).

1J. Rifà is with the Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain. (email: josep.rifa@uab.cat)

2V. A. Zinoviev is with the Institute for Problems of Information Transmission, Russian Academy of Sciences, Bol’shoy Karetniy per. 19, GSP-4, Moscow, 127994, Russia (e-mail: zinov@iitp.ru).

*This work has been partially supported by the Spanish MICINN under Grants MTM2009-08435, by the Catalan AGAUR under Grant 2009SGR1224 and also by the Russian fund of fundamental researches 12-01-00905.

vTheorem 1.1: Let $f(x) = \sum_{i=0}^{n-1} a_i x^i$ be a quadratic function over \mathbb{F}_2^n. Then $f(x)$ is bent if and only if $\sum_{i=0}^{n-1} a_i = 0$ and $\sum_{i=0}^{n-1} a_i x^i$ is balanced for all $x \neq 0$.
Let \(m \geq 2 \) be an integer and \(j \in \{0, 1, 2, 3\} \). Denote by \(S(j)_m \) the following sum:
\[
S(j)_m = \sum_{k=0,\ldots,m: \ k \equiv j \pmod{4}} \binom{m}{k}.
\]

Denote by \(S(i_1, i_2)_m \) the value \(S(i_1, i_2)_m = S(i_1)_m + S(i_2)_m \), for any two different \(i_1 \) and \(i_2 \) from \(\{0, 1, 2, 3\} \). The next proposition was used in [2] and gives all the values \(S(j)_m \) and, hence, the values of all the sums \(S(i_1, i_2)_m \), which we will use later.

Proposition 1.1 [2] For any \(m \geq 2 \) denote \(B_m = 2^{s-1} \), where \(s = \lfloor \frac{m}{2} \rfloor \). Then, the values of \(S(j)_m \) depending on \(m \equiv 0, 1, 2, 3, 4, 5, 6, 7 \pmod{8} \) are, respectively:
\[
\begin{align*}
S(0)_m &= B_m^2 + B_m & B_m^2 + B_m & 2B_m^2 - B_m & B_m^2 - B_m & 2B_m^2 - B_m & B_m^2 & 2B_m^2 + B_m \\
S(1)_m &= B_m^2 & 2B_m^2 + B_m & B_m^2 + B_m & 2B_m^2 + B_m & B_m^2 & 2B_m^2 - B_m & B_m^2 - B_m & 2B_m^2 - B_m \\
S(2)_m &= B_m^2 - B_m & 2B_m^2 - B_m & B_m^2 & 2B_m^2 + B_m & B_m^2 + B_m & 2B_m^2 + B_m & B_m^2 & 2B_m^2 - B_m \\
S(3)_m &= B_m^2 & 2B_m^2 - B_m & B_m^2 - B_m & 2B_m^2 - B_m & B_m^2 & 2B_m^2 + B_m & B_m^2 + B_m & 2B_m^2 + B_m
\end{align*}
\]

A boolean function \(f \) in \(m \) variables is any map from \(\mathbb{F}_2^m \) to \(\mathbb{F}_2 \). The weight of a boolean function \(f \) denoted by \(\text{wt}(f) \) is the Hamming weight of the binary vector of the values of \(f \), i.e., the number of \(x \in \mathbb{F}_2^m \) such that \(f(x) = 1 \). For any boolean function \(f \) we define its Walsh-Hadamard transform \(F \), such that
\[
F(a) = \sum_{x \in \mathbb{F}_2^m} (-1)^{f(x) + a \cdot x}, \quad \forall a \in \mathbb{F}_2^m.
\]

For even \(m \), a boolean function \(f \) over \(\mathbb{F}_2^m \) is bent if its Walsh-Hadamard transform is \(F(y) = \pm 2^{m/2} \), for all \(y \in \mathbb{F}_2^m \).

Two boolean functions \(f, g \) are affine equivalent if there exists a linear map \(A \in GL(m, \mathbb{F}_2) \), \(b, c \in \mathbb{F}_2^m \) and \(\epsilon \in \mathbb{F}_2 \) such that \(g(x) = f(A(x) + b) + c \cdot x + \epsilon \), where \(c \cdot x \) is the inner product of \(c \) and \(x \).

It is well known that the Walsh-Hadamard transform \(F \) of a bent function \(f \) defines a new bent function \(\tilde{f} \), such that \(F(y) = 2^{m/2}(-1)^{\tilde{f}(y)} \). The function \(\tilde{f} \) is called the dual of \(f \) and it is fulfilled that \(\tilde{f} = f \). We take the following definitions from [3].

Definition 1.2 [3] A bent function \(f \) is called self-dual, if it is equal to its dual. It is called anti-self-dual, if it is equal to the complement of its dual.
In this quoted paper [3], all self-dual bent functions in \(m \leq 6 \) variables and all quadratic such functions in \(m \leq 8 \) variables are characterized, up to a restricted form of affine equivalence. Later, Hou [5] classified all self-dual and anti-self-dual quadratic bent functions under the action of the orthogonal group \(O(m, \mathbb{F}_2) \).

A general class of bent functions is the \textit{Maiorana-McFarland} class, that is, functions of the form
\[
 x \cdot \varphi(y) + g(y),
\]
where \(x, y \) are binary vectors of length \(m/2 \), \(\varphi \) is any permutation in \(\mathbb{F}_2^{m/2} \), and \(g \) is an arbitrary boolean function.

One of the open questions concerning self-dual bent and anti-self-dual bent functions is the following one, quoted in [3]: \textit{are there quadratic self-dual (anti-self-dual) bent functions which are not of Maiorana-McFarland type?}

In the present paper we give infinite families of self-dual and anti-self-dual quadratic bent functions which are not of the Maiorana-McFarland type (but, affine equivalent to it). Since our class of bent functions includes not only self-dual and anti-self-dual quadratic bent functions we think that our class of bent functions is interesting itself and also from the point of view of secondary constructions [3]. The material is organized as follows. In Section 1 we introduce the topic and give notations and preliminary results. Section 2 contains the new constructions of quadratic bent functions and the main results of the paper.

2 A combinatorial construction of new bent functions

Throughout this section we assume that \(m \) is even.

Denote by \(H_m \) the binary matrix of size \(m \times 2^m \), where the columns are all the different binary vectors of length \(m \) and denote by \(\mathcal{H}_m \) the Hadamard \([2^m, m + 1, 2^{m-1}]\)-code, generated by \(H_m \) and the all ones vector.

For a given \(m \geq 4 \) and any \(i_1, i_2 \in \{0, 1, 2, 3\} \), where \(i_1 \neq i_2 \), denote by \(v_{i_1,i_2} = (v_0, v_{i_1}, ..., v_{n-1}) \) the binary vector whose \(j \)-th position \(v_j \) is a function of the value of weight of the column \(h_j \) in
Proposition 2.1 [2] Let \(m \) be even. Then, the weight distribution of the coset \(\mathcal{H}_m + \mathbf{v}_{i_1,i_2} \) is
\[
2^{m-1} + 2^{\frac{m}{2} - 1}, \text{ if and only if } i_1 - i_2 \equiv 1 \pmod{2}.
\]

For any \(i_1, i_2 \in \{0, 1, 2, 3\} \), where \(i_1 \neq i_2 \), define the boolean function \(f_{i_1,i_2} \) over \(\mathbb{F}_2^m \) as:
\[
f_{i_1,i_2}(x) = \begin{cases}
1, & \text{if } \text{wt}(x) \equiv i_1 \text{ or } i_2 \pmod{4} \\
0, & \text{otherwise}
\end{cases}
\]

Now we state one of the main results of the present paper.

Theorem 2.2 For any even \(m \), \(m \geq 4 \) the function \(f_{i_1,i_2} \) is bent if and only if \(i_1 - i_2 \equiv 1 \pmod{2} \). In these cases, when \(f_{i_1,i_2} \) is a bent function it is a quadratic bent function.

Proof. From Proposition 2.1 the function \(f_{i_1,i_2} \) is bent if and only if \(i_1 - i_2 \equiv 1 \pmod{2} \). Now, we show that all these bent functions are quadratic. Specifically,
\[
\begin{align*}
&f_{2,3}(x_1, x_2, \ldots, x_m) \equiv \sum_{1 \leq i < j \leq m} x_i x_j \pmod{2} \\
&f_{1,2}(x_1, x_2, \ldots, x_m) \equiv \sum_{1 \leq i \leq m} x_i + \sum_{1 \leq i < j \leq m} x_i x_j \pmod{2} \\
&f_{0,1}(x_1, x_2, \ldots, x_m) \equiv 1 + f_{2,3}(x_1, x_2, \ldots, x_m) \pmod{2} \\
&f_{0,3}(x_1, x_2, \ldots, x_m) \equiv 1 + f_{1,2}(x_1, x_2, \ldots, x_m) \pmod{2}
\end{align*}
\]

To prove the first equality is equivalent to prove that \(\binom{w}{2} \equiv 1 \pmod{2} \) if and only if \(w \equiv \{2, 3\} \pmod{4} \), where \(w \) is an integer number, \(0 \leq w \leq m \). Hence, it is enough to prove that for \(w \in \{0, 1, 2, 3\} \), we have \(\binom{w}{2} \equiv 1 \pmod{2} \) if and only if \(w \in \{2, 3\} \), which is clear.

The second equality is reduced to prove that for \(w \in \{0, 1, 2, 3\} \), we have \(w + \binom{w}{2} \equiv 1 \pmod{2} \) if and only if \(w \in \{1, 2\} \), which is also clear.
The last two equalities come from the two first.

Following [4, Ch. 15, §2], we can write a quadratic boolean function as \(f(x) = xQx^T + Lx + \epsilon \) and, for the above functions we have:

\[
\begin{align*}
 f_{2,3}(x) &= xQx^T, \\
 f_{1,2}(x) &= xQx^T + Lx^T, \\
 f_{0,1}(x) &= xQx^T + \epsilon, \\
 f_{0,3}(x) &= xQx^T + Lx^T + \epsilon,
\end{align*}
\]

where \(Q \) is the all ones upper triangular binary \(m \times m \) matrix with zeroes in the diagonal, \(L \) is the all ones binary vector of length \(m \) and \(\epsilon = 1 \).

\[\blacksquare\]

Proposition 2.3 Bent functions \(f_{i_1,i_2} \), where \(i_1 - i_2 \equiv 1 \pmod{2} \) are affine equivalent to each other. Bent function \(f_{0,1} \) is complementary to \(f_{2,3} \), as well as \(f_{0,3} \) is complementary to \(f_{1,2} \).

Proof. Straightforward from Equation (4). \[\blacksquare\]

Notice that the function \(f_{0,1} \) and its complementary \(f_{2,3} \) has been constructed in [6] in terms of abelian difference sets, known also as Menon difference sets (see [1]).

Theorem 2.4

For \(m \equiv 0, 4 \pmod{8} \), the functions \(f_{i_1,i_2} \) are neither self-dual functions nor anti-self-dual.

For \(m \equiv 2 \pmod{8} \), \(f_{2,3} \) and \(f_{0,1} \) are self-dual. The function \(f_{0,3} \) is anti-self-dual (with \(f_{1,2} \)).

For \(m \equiv 6 \pmod{8} \), \(f_{1,2} \) and \(f_{0,3} \) are self-dual. The function \(f_{2,3} \) is anti-self-dual (with \(f_{0,1} \)).

Proof. It is known [3, Th. 4.1] that if \(f \) is a self-dual bent or anti-self-dual bent quadratic boolean function then the symplectic matrix \(Q + Q^T \) associated to \(f \) (4) is an involution, hence \((Q + Q^T)^2 = I \) (\(I \) is the identity matrix of order \(m \)). Later, Hou [5, Th. 2.1], extended this property to a necessary and sufficient condition in the sense that \(f \) is self-dual or anti-self-dual if
and only if \((Q + Q^T)^2 = I\), and \((Q + Q^T)Q(Q + Q^T) + Q^T\) is an alternating matrix (so, a matrix of the form \(A + A^T\), where \(A\) is a square matrix over \(\mathbb{F}_2\)).

In all cases of our functions \(f_{i_1, i_2}\) the symplectic matrix \(Q + Q^T\) coincides with \(J + I\), where \(J\) is the \(m \times m\) matrix with ones in all the entries and \(Q\) is the all ones upper triangular binary \(m \times m\) matrix with zeroes in the diagonal (4).

Hence, \((Q + Q^T)^2 = (J + I)^2 = J^2 + I = I\) (the last equality is true since \(m\) is even).

For the second condition we have

\[
(Q + Q^T)Q(Q + Q^T) + Q^T
= (J + I)Q(J + I) + Q^T
= JQJ + JQ + QJ + Q + Q^T
= \binom{m}{2} J + JQ + QJ + Q + Q^T.
\]

Taking into account that \(m\) is even we see that \(\binom{m}{2} J\) is the zero matrix if and only if \(m \equiv 0 \pmod{4}\). In all other cases \(\binom{m}{2} J = J\). We also have \(JQ + QJ = (a_{ij})\), where \(a_{ij} = 1\) when \(i + j\) is even and \(a_{ij} = 0\) when \(i + j\) is odd. Therefore, \(JQ + QJ = A + A^T + I\), for some \(A\).

Finally,

\[
(Q + Q^T)Q(Q + Q^T) + Q^T
= \binom{m}{2} J + A + A^T + I + Q + Q^T
= \binom{m}{2} J + (A + Q) + (A + Q)^T + I,
\]

which is an alternating matrix if and only if \(m \not\equiv 0 \pmod{4}\) and so, we conclude that \(f_{i_1, i_2}\) is a self-dual or anti-self-dual quadratic bent function if and only if \(m \not\equiv 0 \pmod{4}\).

Now that we know in what cases \(f_{i_1, i_2}\) is a self-dual or anti-self-dual quadratic bent function we can check the self-duality or anti-self-duality condition, for each pair \((i_1, i_2)\). It is not necessary to check that the dual bent function \(\tilde{f}_{i_1, i_2}\) coincides with \(f_{i_1, i_2}\) or with the complement \(\overline{f}_{i_1, i_2}\), it is enough to check if the first coordinate in \(f_{i_1, i_2}\) coincides with the first coordinate in \(\tilde{f}_{i_1, i_2}\) to decide about self-duality or anti-self-duality.
Let us begin by computing
\[F_{i_1,i_2}(0) = \sum_{x \in \mathbb{F}_2^m} (-1)^{f_{i_1,i_2}(x)+0 \cdot x} = \sum_{x \in \mathbb{F}_2^m} (-1)^{f_{i_1,i_2}(x)} = 2^m - 2\text{wt}(f_{i_1,i_2}) \]
and note that wt\((f_{i_1,i_2})\) depends on the value of the pair \((i_1, i_2)\).

Using Proposition 1.1 we have the following values for wt\((f_{i_1,i_2})\) = \(S(i_1)m + S(i_2)m\), where \(B_m = 2^{(m-2)/2}\):

\[
\begin{array}{|c|c|c|}
\hline
\text{wt}(f_{i_1,i_2}) & m \equiv 2 \pmod{8} & m \equiv 6 \pmod{8} \\
\hline
(i_1, i_2) = (0,1) & 2B_m^2 + B_m & 2B_m^2 - B_m \\
(i_1, i_2) = (2,3) & 2B_m^2 - B_m & 2B_m^2 + B_m \\
(i_1, i_2) = (0,3) & 2B_m^2 - B_m & 2B_m^2 + B_m \\
(i_1, i_2) = (1,2) & 2B_m^2 + B_m & 2B_m^2 - B_m \\
\hline
\end{array}
\]

With the above results we can compute \(F_{i_1,i_2}(0)\), which is always \(\pm 2^m/2\), and also \(\hat{f}_{i_1,i_2}(0)\), which is in \(\{0,1\}\) depending on the value of \(F_{i_1,i_2}(0)\).

Now we put in the following tables the values of \(\hat{f}_{i_1,i_2}(0)\) and \(f_{i_1,i_2}(0)\). When these values coincide we conclude that \(f_{i_1,i_2}\) is self-dual, otherwise \(f_{i_1,i_2}\) is anti-self-dual.

\[
\begin{array}{|c|c|c|}
\hline
\hat{f}_{i_1,i_2}(0) & m \equiv 2 \pmod{8} & m \equiv 6 \pmod{8} \\
\hline
(i_1, i_2) = (0,1) & 1 & 0 \\
(i_1, i_2) = (2,3) & 0 & 1 \\
(i_1, i_2) = (0,3) & 0 & 1 \\
(i_1, i_2) = (1,2) & 1 & 0 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
f_{i_1,i_2}(0) & m \equiv 2 \pmod{8} & m \equiv 6 \pmod{8} \\
\hline
(i_1, i_2) = (0,1) & 1 & 1 \\
(i_1, i_2) = (2,3) & 0 & 0 \\
(i_1, i_2) = (0,3) & 1 & 1 \\
(i_1, i_2) = (1,2) & 0 & 0 \\
\hline
\end{array}
\]

\[\square\]

Theorem 2.5 For any even \(m \geq 4\) the bent functions \(f_{i_1,i_2}\), where \(i_1 - i_2 \equiv 1 \pmod{2}\) are not of the Maiorana-McFarland type, but affine equivalent to it.

Proof. Let us prove the statement by using contradiction. Assume that \(f_{i_1,i_2}\) is of Maiorana-McFarland type. This means that a binary variable vector \(z\), of length \(m\), can be divided into two subvectors \(x\) and \(y\) of the same length \(m/2\) such that
\[f_{i_1,i_2}(z) = x \cdot \varphi(y) + g(y),\]
where \(\varphi \) is a permutation of \(\mathbb{F}_{2}^{m/2} \) and \(g(y) \) is some boolean function. Note that \(x \) and \(y \) run over all the \(2^{m/2} \cdot 2^{m/2} \) possible values. Consider the set of values of \(f_{i_1,i_2}(z) \) when \(x \) runs over all the values in \(\mathbb{F}_{2}^{m/2} \) and \(y \) is fixed to be \(y = y_0 \), such that \(\varphi(y_0) \) is the zero vector. In this case \(x \cdot \varphi(y_0) = 0 \) and \(f_{i_1,i_2}(z) = g(y_0) \) is a constant. Since \(x \) is running over \(\mathbb{F}_{2}^{m/2} \) its weight takes \(m/2 + 1 > 2 \) different consecutive values. Hence, it takes more than 2 different values of weight modulo 4 and, for all these values, the function \(f_{i_1,i_2}(z) \) is constant. This contradicts the definition of the function \(f_{i_1,i_2} \).

To prove that \(f_{i_1,i_2} \) are affine equivalent to a Maiorana-McFarland type we take \(y_i = x_i + x_{i+1} \) for odd \(i \), and \(y_i = x_i + x_{i+1} + \ldots + x_m \) for \(i \) even. Now, \(y_1y_2 + y_3y_4 + \ldots + y_{m-1}y_m = f_{2,3} + x_2 + x_4 + \ldots + x_m \) and so, \(f_{2,3} \) (and, of course, \(f_{1,2}, f_{0,1}, f_{0,3} \)) is affine equivalent to \(y_1y_2 + y_3y_4 + \ldots + y_{m-1}y_m \) (Theorem 2.2). It is straightforward to see that this last form \(y_1y_2 + y_3y_4 + \ldots + y_{m-1}y_m \) corresponds to a bent function of Maiorana type.

\[\blacksquare \]

References

[1] T. Beth, D. Junickel, H. Lenz, Design Theory. Manheim, Germany: Wissenschaftverlag, 1985; Cambridge, U.K.: Cambridge Univ. Press, 1986.

[2] Joaquim Borges, Josep Rifà, Victor Zinoviev, “New families of completely regular codes and their corresponding distance regular coset graphs”. Des. Codes Cryptogr. To appear, DOI: 10.1007/s10623-012-9713-3.

[3] Claude Carlet, Lars Eirik Danielsen, Matthew G. Parker, and Patrick Sole, “Self-dual bent functions.” Int. J. Inform. and Coding Theory, vol. 1, 384-399, 2010.

[4] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, 1977.

[5] Xiang-Dong Hou, “Classification of self dual quadratic bent functions.” Des. Codes Cryptogr. vol. 63, 183-198, 2012.

8
[6] P. K. Menon, “On difference sets whose parameters satisfy a certain relation.” Proc. Amer. Math. Soc. vol. 13, 739-745, 1962.