Stein-Weiss inequality on product spaces

Zipeng Wang

Abstract

We give the classification between weighted norm inequalities of strong fractional integral operators and their associated multi parameter Muckenhoupt characteristics, by considering the weights to be power functions. As a result, we extend the classical Stein-Weiss theorem to product spaces.

1 Introduction

Let $0 < \alpha < N$. A fractional integral operator I_α is defined by

$$
(I_\alpha f)(x) = \int_{\mathbb{R}^N} f(y) \left(\frac{1}{|x-y|}\right)^{N-\alpha} dy.
$$

(1.1)

In 1928, Hardy and Littlewood [1] first established a weighted norm inequality for I_α in one dimensional space, by considering the weights to be suitable power functions. This result has been extended to higher dimensions by Stein and Weiss [3] and now bears the name of Stein-Weiss inequality.

Theorem A: Stein and Weiss (1958) Let $\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^\delta, \gamma, \delta \in \mathbb{R}$. We have

$$
\|\omega I_\alpha f\|_{L^q(\mathbb{R}^N)} \leq C_{p, q, \gamma, \delta, N} \|f\sigma\|_{L^p(\mathbb{R}^N)}
$$

(1.2)

for $1 < p \leq q < \infty$, if

$$
\gamma < \frac{N}{q}, \quad \delta < N \left(\frac{p-1}{p}\right), \quad \gamma + \delta \geq 0
$$

(1.3)

and

$$
\frac{\alpha}{N} = \frac{1}{p} - \frac{1}{q} + \frac{\gamma + \delta}{N}.
$$

(1.4)

Throughout, we regard C as a generic constant depending on its subindices.

In the case of $\gamma = \delta = 0$, Theorem A was proved in \mathbb{R}^N by Sobolev [2]. This is known today as Hardy-Littlewood-Sobolev inequality.

The weighted norm inequalities of fractional integrals have been extensively studied, i.e: by Muckenhoupt and Wheeden [5], Coifman and Fefferman [9], Fefferman and Muckenhoupt [8], Pérez [10] and Sawyer and Wheeden [6].
Let \(Q \) denote a cube in \(\mathbb{R}^N \). It is well known that the norm inequality (1.2) implies

\[
\sup_{Q \subset \mathbb{R}^N} |Q|^{\frac{1}{p} - \frac{1}{q}} \left\{ \frac{1}{|Q|} \int_Q \omega^\theta(x) dx \right\} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|\sigma|} \right)^{\frac{p}{p-1}}(x) dx \right\}^{\frac{p}{p-1}} < \infty. \tag{1.5}
\]

The supremum (1.5) is called the Muckenhoupt characteristic, as was first introduced by Muckenhoupt for which \(\omega^\theta \) and \(\sigma^{-\frac{p}{p-1}} \) are nonnegative and locally integrable functions.

By taking into account \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^{\delta}, \gamma, \delta \in \mathbb{R} \), we find that (1.5) implies the constraints in (1.3)-(1.4). Hence, (1.2), (1.3)-(1.4) and (1.5) are equivalent conditions.

Consider \(\mathbb{R}^N \) as a product space, by writing \(\mathbb{R}^N = \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \times \cdots \times \mathbb{R}^{N_n} \), \(n \geq 2 \). Let

\[
0 < \alpha_i < N_i, \quad i = 1, 2, \ldots, n \quad \text{and} \quad \alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n. \tag{1.6}
\]

In this paper, we give an extension of Theorem A on product spaces by studying so-called the strong fractional integral operator \(I_\alpha \) defined by

\[
(I_\alpha f)(x) = \int_{\mathbb{R}^n} f(y) \prod_{i=1}^n \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} dy, \tag{1.7}
\]

whose kernel has singularity appeared on every coordinate subspace.

Study of certain operators that commute with a multi-parameter family of dilations, dates back to the time of Jessen, Marcinkiewicz and Zygmund. During the past several decades, a number of pioneering results have been accomplished, for example, by Robert Fefferman [12]-[13], Chang and Fefferman [16], Cordoba and Fefferman [11], Fefferman and Stein [14], Müller, Ricci and Stein [15], Journé [17] and Pipher [18]. The area remains largely open for fractional integration.

\section{Statement of main result}

\textbf{Theorem A*:} Let \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^{\delta}, \gamma, \delta \in \mathbb{R} \). For \(1 < p \leq q < \infty \), the following conditions are equivalent:

1. Let \(Q = Q_1 \times Q_2 \times \cdots \times Q_n \subset \mathbb{R}^{N_1} \times \mathbb{R}^{N_2} \times \cdots \times \mathbb{R}^{N_n} = \mathbb{R}^N \) where \(Q_i \) denotes a cube in \(\mathbb{R}^{N_i} \), for every \(i = 1, 2, \ldots, n \).

\[
\sup_{Q \subset \mathbb{R}^N} \prod_{i=1}^n |Q_i|^{\frac{1}{p} - \frac{1}{q}} \left\{ \frac{1}{|Q|} \int_Q \omega^\theta(x) dx \right\} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|\sigma|} \right)^{\frac{p}{p-1}}(x) dx \right\}^{\frac{p}{p-1}} < \infty. \tag{2.1}
\]

2. \(\gamma < \frac{N}{q}, \quad \delta < \frac{p-1}{p}, \quad \gamma + \delta \geq 0 \) \quad (2.2)

and

\[
\frac{\alpha}{N} = \frac{1}{p} - \frac{1}{q} + \frac{\gamma + \delta}{N}. \tag{2.3}
\]
For $\gamma \geq 0, \delta \leq 0$,
\[
\alpha_i - \frac{N_i}{p} < \delta, \quad i = 1, 2, \ldots, n. \tag{2.4}
\]

For $\gamma \leq 0, \delta \geq 0$,
\[
\alpha_i - N_i \left(\frac{q-1}{q}\right) < \gamma, \quad i = 1, 2, \ldots, n. \tag{2.5}
\]

For $\gamma > 0, \delta > 0$,
\[
\sum_{i \in U} \alpha_i - \frac{N_i}{p} < \delta, \quad U = \left\{ i \in \{1, 2, \ldots, n\} : \alpha_i - \frac{N_i}{p} \geq 0 \right\},
\]
\[
\sum_{i \in V} \alpha_i - \left(\frac{q-1}{q}\right)N_i < \gamma, \quad V = \left\{ i \in \{1, 2, \ldots, n\} : \alpha_i - N_i \left(\frac{q-1}{q}\right) \geq 0 \right\}. \tag{2.6}
\]

3. Let I_{α} to be defined in (1.6)-(1.7). We have
\[
\|\alpha I_{\alpha}f\|_{L^q(\mathbb{R}^n)} \leq C p q \alpha \gamma \delta n N \|f\sigma\|_{L^p(\mathbb{R}^n)}. \tag{2.7}
\]

Remark 2.1 In the 2-parameter setting ($n = 2$), **Theorem A** is first proved in the joint work by Sawyer and Wang [7]. For $\gamma \geq 0, \delta \leq 0$ or $\gamma \leq 0, \delta \geq 0$, the “sandwiching” idea introduced in [7] applies to the general multi-parameter situation. However, the difficult case occurs when $\gamma > 0, \delta > 0$, whereas the method used in [7] relies on solving a system of algebraic equations, which is no longer solvable for $n > 2$.

Sketch of Proof: In section 3, we introduce a new framework, where the product space is decomposed into an infinitely many of dyadic cones. Every partial sum operator defined on a dyadic cone is essentially an one-parameter fractional integral operator, satisfying the desired regularity.

In section 4, by taking into account $\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^\delta$, $\gamma, \delta \in \mathbb{R}$, we prove that the Muckenhoupt characteristic (2.1) implies the constraints in (2.2)-(2.6).

In section 5, by using (2.2)-(2.6), we show that
\[
\prod_{i=1}^n |Q|^{-\left(\frac{1}{r}-\frac{1}{p}\right)} \left(\frac{1}{|Q|} \int_Q \omega^{pr}(x) \, dx\right)^{\frac{1}{p}} \left(\frac{1}{|Q|} \int_Q \left(\frac{1}{\sigma}\right)^{\frac{p}{r}}(x) \, dx\right)^{\frac{r-1}{p}}, \quad r > 1 \tag{2.8}
\]
decays exponentially, as the eccentricity of Q getting large, for $\alpha_i > N_i \left(\frac{1}{p} - \frac{1}{q}\right), i = 1, 2, \ldots, n$.

On the other hand, we handle the case $\alpha_i = N_i \left(\frac{1}{p} - \frac{1}{q}\right), i = 1, 2, \ldots, n$ in section 6.

We prove **Theorem A** in the last section, by decomposing I_{α} so that the resulting estimates can be reduced to either of the above two cases.

For dealing with such convolution operators with positive kernels, it is suffice to assume $f \geq 0$ in the rest of the paper.
3 Cone decomposition on product spaces

Let t denote an n-tuple $(2^{-t_1}, 2^{-t_2}, \ldots, 2^{-t_n})$ where $t_i, \ i = 1, 2, \ldots, n$ are nonnegative integers. We require $t_\nu = \min\{t_i: i = 1, 2, \ldots, n\} = 0$.

Define

$$\left(\Delta_I t f\right)(x) \doteq \int_{\Gamma_t(x)} f(y) \prod_{i=1}^n \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_i} dy$$

(3. 1)

where

$$\Gamma_t(x) \doteq \bigotimes_{i=1}^n \left\{ y_i \in \mathbb{R}^{N_i}: 2^{-t_i} \leq \frac{|x_i - y_i|}{|x_\nu - y_\nu|} < 2^{-t_i+1} \right\}.$$

(3. 2)

Observe that $\Gamma_t(x)$ in (3. 2) is a dyadic cone with vertex on x whose eccentricity depends on t. In particular, we write

$$\Gamma_0(x) \doteq \Gamma_t(x), \quad t_1 = t_2 = \cdots = t_n = 0.$$

(3. 3)

![Figure 1: dyadic cones in a 2-parameter setting.](image)

Denote an n-parameter dilation

$$t x = \left(2^{-t_1}x_1, 2^{-t_2}x_2, \ldots, 2^{-t_n}x_n\right).$$

(3. 4)
Let Q^i be a dilated of Q such that $|Q^i|^{\frac{1}{n}} = 2^{-t_i} |Q|^{\frac{1}{n}}, i = 1, 2, \ldots, n$. We have

\[
\prod_{i=1}^{n} |Q|^{\frac{\alpha}{n}} \left(\frac{1}{t} \right)^{\frac{1}{p} \left(1 - \frac{\alpha}{n} \right)} \left\{ \frac{1}{|Q|} \int_{Q} \omega^{\alpha} (tx) \, dx \right\}\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{t} \right)^{\frac{\alpha q}{n}} (tx) \, dx \} \leq \prod_{i=1}^{n} |Q^i|^{\frac{\alpha}{n}} \left(\frac{1}{t} \right)^{\frac{1}{p} \left(1 - \frac{\alpha}{n} \right)} \left\{ \frac{1}{|Q^i|} \int_{Q^i} \omega^{\alpha} (x) \, dx \right\}\{ \frac{1}{|Q^i|} \int_{Q^i} \left(\frac{1}{t} \right)^{\frac{\alpha q}{n}} (x) \, dx \} \]

for every $Q \subset \mathbb{R}^N$.

Given t, consider

\[
t^Q \subset \mathbb{R}^N : |Q|^{\frac{1}{n}} / |Q^i|^{\frac{1}{n}} = 2^{-t_i}, \; i = 1, 2, \ldots, n.
\]

For $r \geq 1$, we define

\[
A_{pqr}^\alpha (t : \omega, \sigma) = \sup_{t^Q} \prod_{i=1}^{n} |Q^i|^{\frac{\alpha}{n}} \left(\frac{1}{t} \right)^{\frac{1}{p} \left(1 - \frac{\alpha}{n} \right)} \left\{ \frac{1}{|Q^i|} \int_{Q^i} \omega^{\alpha} (x) \, dx \right\}\{ \frac{1}{|Q^i|} \int_{Q^i} \left(\frac{1}{t} \right)^{\frac{\alpha q}{n}} (x) \, dx \} \leq \prod_{i=1}^{n} 2^{t_i (\alpha - \frac{N}{p} + \frac{N}{q})} A_{pqr}^\alpha (t : \omega, \sigma) \]

by (3.5).

Suppose that Q satisfies $|Q_1|^{\frac{1}{n}} = |Q_2|^{\frac{1}{n}} = \cdots = |Q_n|^{\frac{1}{n}}$. We have $Q^i = t^Q$ and

\[
|Q|^{\frac{N}{n} - \left(\frac{1}{p} - \frac{1}{q} \right)} \left\{ \frac{1}{|Q|} \int_{Q} \omega^{\alpha} (tx) \, dx \right\}\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{t} \right)^{\frac{\alpha q}{n}} (tx) \, dx \} \leq \prod_{i=1}^{n} 2^{t_i (\alpha - \frac{N}{p} + \frac{N}{q})} A_{pqr}^\alpha (t : \omega, \sigma) \]

by (3.7).

Now, recall Sawyer-Wheeden theorem for one-parameter fractional integral operators in weighted norms, stated as Theorem 1 in [6]:

\[
\int_{\mathbb{R}^N} \left\{ \int_{\mathbb{R}^N} f(y) \left(\frac{1}{|x - y|} \right)^{N - \alpha} \, dy \right\}^{q} \omega^{\alpha}(x) \, dx \leq C_{p, q, r, \alpha, N} A_{pqr}^\alpha (\omega, \sigma) \left\{ \int_{\mathbb{R}^N} (\omega) \, dx \right\}^{\frac{1}{p}}
\]

for $1 < p \leq q < \infty$, if

\[
A_{pqr}^\alpha (\omega, \sigma) = \sup_{Q : |Q|^{\frac{1}{n}} = \cdots = |Q^i|^{\frac{1}{n}}} \prod_{i=1}^{n} |Q^i|^{\frac{\alpha}{n}} \left(\frac{1}{t} \right)^{\frac{1}{p} \left(1 - \frac{\alpha}{n} \right)} \left\{ \frac{1}{|Q^i|} \int_{Q^i} \omega^{\alpha} (x) \, dx \right\}\{ \frac{1}{|Q^i|} \int_{Q^i} \left(\frac{1}{t} \right)^{\frac{\alpha q}{n}} (x) \, dx \} \leq \infty \quad r > 1.
\]
Remark 3.1 The constant \(C_{p,q,r,n} A_{pqr}^\alpha(\omega, \sigma) \) in (3.9) is not written explicitly in the statement of Theorem 1 by Sawyer and Wheeden [6]. But it can be computed directly by carrying out the proof given in section 2 of [6].

By applying (3.9)-(3.10) and using the estimate in (3.8), we have

\[
\left\{ \int_{\mathbb{R}^n} \left(\frac{1}{|x - y|} \right)^{N-\alpha} \right\}^q \omega^q(t x) dx \leq C_{p,q,r,n} \prod_{i=1}^n 2^{t_i \left(\alpha_i + \frac{N_i}{r} + \frac{N_i}{q} \right)} A_{pqr}^\alpha(t : \omega, \sigma) \left\{ \int_{\mathbb{R}^n} (f \sigma)^p(t x) dx \right\}^{\frac{1}{p}}
\]

for \(1 < p \leq q < \infty \) and every \(t \).

Recall from (3.1)-(3.2). By changing dilations \(x \rightarrow tx, y \rightarrow ty \), we have

\[
\left\{ \int_{\mathbb{R}^n} (\Delta t f(x))^q(x) \omega^q(x) dx \right\}^{\frac{1}{q}} \leq C_{p,q,r,n} \prod_{i=1}^n 2^{-t_i \left(\alpha_i + \frac{N_i}{r} + \frac{N_i}{q} \right)} \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} f(t x) \left(\frac{1}{|x - y|} \right)^{N-\alpha} dy \right\}^q \omega^q(t x) dx \prod_{i=1}^n 2^{-t_i N_i} dx \]

\[
\leq C_{p,q,r,n} A_{pqr}^\alpha(t : \omega, \sigma) \left\{ \int_{\mathbb{R}^n} (f \sigma)^p(t x) dx \right\}^{\frac{1}{p}} \leq C_{p,q,r,n} A_{pqr}^\alpha(t : \omega, \sigma) \left\{ \int_{\mathbb{R}^n} (f \sigma)^p(x) dx \right\}^{\frac{1}{p}} \]

by (3.11)

\[
= C_{p,q,r,n} A_{pqr}^\alpha(t : \omega, \sigma) \left\{ \int_{\mathbb{R}^n} (f \sigma)^p(x) dx \right\}^{\frac{1}{p}}
\]

Observe that \(\Delta t f \) is essentially an one-parameter fractional integral operator, satisfying

\[
\left\| (\Delta t f) x \right\|_{L^q(\mathbb{R}^n)} \leq C_{p,q,r,n} A_{pqr}^\alpha(t : \omega, \sigma) \left\| f \sigma \right\|_{L^p(\mathbb{R}^n)}
\]

for \(1 < p \leq q < \infty \).
By applying Minkowski inequality, provided that
\[\sum_{t} A_{pq}^{\alpha}(t : \omega, \sigma) < \infty, \] (3. 14)
the norm inequality holds in (2. 7).

4 Necessary constraints

First, it is well known that the norm inequality (2. 7) implies
\[A_{pq}^{\alpha}(\omega, \sigma) \leq \sup_{Q \in \mathbb{R}^N} \prod_{i=1}^{n} |Q_i|^{\alpha} \left(\int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \omega^q(x) dx \right)^{\frac{1}{q}} \left(\int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \frac{1}{\sigma} dx \right)^{\frac{p}{p}} dx \right)^{\frac{p-1}{p}} \right) \] (4. 1)

Let \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^\delta, \gamma, \delta \in \mathbb{R} \). We aim to show the Muckenhoupt characteristic (4. 1) implying the constraints in (2. 2)-(2. 6).

Let \(Q^\lambda \) denote a dilated variant of \(Q \) for \(\lambda > 0 \), such that \(Q^\lambda = Q_1^\lambda \times Q_2 \times \cdots \times Q_n^\lambda \) and \(|Q_i^\lambda|^{\frac{1}{n}} = \lambda |Q_i|^{\frac{1}{n}}, i = 1, 2, \ldots, n \). Suppose \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^\delta, \gamma, \delta \in \mathbb{R} \). From (4. 1)-(??), we have
\[\prod_{i=1}^{n} |Q_i|^{\alpha} \left(\int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \omega^q(x) dx \right)^{\frac{1}{q}} \left(\int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \frac{1}{\sigma} dx \right)^{\frac{p}{p}} dx \right)^{\frac{p-1}{p}} \right) \]
\[= \lambda^{\gamma + \delta - \alpha + N(\frac{1}{p} - \frac{1}{q})} \prod_{i=1}^{n} |Q_i^\lambda|^{\alpha} \left(\int_{Q_i^\lambda} \left(\frac{1}{|Q_i^\lambda|} \int_{Q_i^\lambda} \omega^q(x) dx \right)^{\frac{1}{q}} \left(\int_{Q_i^\lambda} \left(\frac{1}{|Q_i^\lambda|} \int_{Q_i^\lambda} \frac{1}{\sigma} dx \right)^{\frac{p}{p}} dx \right)^{\frac{p-1}{p}} \right) \]
\[\leq \lambda^{\gamma + \delta - \alpha + N(\frac{1}{p} - \frac{1}{q})} A_{pq}^{\alpha} \left(|x|^{-\gamma}, |x|^\delta \right) < \infty. \]

Consider \(|Q_1|^{\frac{1}{n}} = |Q_2|^{\frac{1}{n}} = \cdots = |Q_n|^{\frac{1}{n}} = 1 \). The first line of (4. 2) is bounded from below.
Suppose \(\gamma + \delta - \alpha + N \left(\frac{1}{p} - \frac{1}{q} \right) \neq 0 \). By either taking \(\lambda \to 0 \) or \(\lambda \to \infty \), the last line of (4. 2) is vanished. Hence that we must have \(\gamma + \delta - \alpha + N \left(\frac{1}{p} - \frac{1}{q} \right) = 0 \) which is (2. 3).

We write \(x = (x_i, x_i^+) \in \mathbb{R}^N \times \mathbb{R}^{N-n}, i = 1, 2, \ldots, n \) and \(Q_i^+ = \bigotimes_{j \neq i} Q_j \). Let \(Q_i \) shrink to some \(x_i \in Q_i \) and \(|Q_i|^{\frac{1}{n}} = 1, j \neq i \) in (4. 1). Suppose \(x_i \neq 0 \) in \(\mathbb{R}^{N-i} \). By applying Lebesgue Differentiation Theorem, we have
\[\left\{ \lim_{|Q_i| \to 0} \int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \omega^q(x) dx \right)^{\frac{1}{q}} \left(\int_{Q_i} \left(\frac{1}{|Q_i|} \int_{Q_i} \frac{1}{\sigma} dx \right)^{\frac{p}{p}} dx \right)^{\frac{p-1}{p}} dx \right\} \leq A_{pq}^{\alpha} \left(|x|^{-\gamma}, |x|^\delta \right), \quad i = 1, 2, \ldots, n. \] (4. 3)
Note that $|Q_i^\gamma| = 1$ in (4.3). The boundedness of $A_{pq}^\alpha(|x|^{-\gamma}, |x|^0)$ requires
\[
\frac{\alpha_i}{N_i} \geq \frac{1}{p} - \frac{1}{q} \quad i = 1, 2, \ldots, n.
\] (4.4)
By putting together (4.4) and (2.3), we find $\gamma + \delta \geq 0$. On the other and, it is essential to require $\gamma q < N$ and $\delta \left(\frac{p}{p - 1} \right) < N$ for the local integrability of $|x|^{-\gamma q}$ and $|x|^{-\delta \left(\frac{p}{p - 1} \right)}$ respectively. These are the constraints in (2.2).

In the remaining section, we assume Q centered on the origin of \mathbb{R}^N.

Let S be a proper subset of $\{1, 2, \ldots, n\}$. We define the truncated cube $Q_i^\epsilon = Q_i \cap \{|x| \geq \epsilon\}$ for $\epsilon > 0$ and every $i \in S$. Denote $Q^\epsilon = \bigotimes_{i \in S} Q_i^\epsilon \times \bigotimes_{i \in S^c} Q_i$ and $Q_S = \bigotimes_{i \in S} Q_i$, $Q_{S^c} = \bigotimes_{i \in S^c} Q_i$. Moreover, we write $x = (x_S, x_{S^c}) \in \mathbb{R}^{NS} \times \mathbb{R}^{N-NS}$ for which $N_S = \sum_{i \in S} N_i$.

Suppose that there exists at least one $i \in S^c$ such that $\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) > 0$. Let $0 < \lambda < 1$.

Consider $|Q_i|^{\lambda N_i} = 1$ for $i \in S$ and $|Q_i|^{\lambda N_i} = \lambda$ for $i \in S^c$. We have
\[
\prod_{i=1}^n |Q_i|^{\alpha_i \left(\frac{1}{N_i} - \frac{1}{n} \right)} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\gamma q} \, dx \right\} \frac{1}{\lambda} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\delta p} \, dx \right\}^{\frac{p-1}{p}}
\]
\[
= \lim_{\epsilon \to 0} \prod_{i=1}^n |Q_i|^{\alpha_i \left(\frac{1}{N_i} - \frac{1}{n} \right)} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\gamma q} \, dx \right\} \frac{1}{\lambda} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\delta p} \, dx \right\}^{\frac{p-1}{p}}
\]
\[
= \lim_{\epsilon \to 0} \lambda^{\sum_{i \in S^c} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\gamma q} \, dx \right\} \frac{1}{\lambda} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\delta p} \, dx \right\}^{\frac{p-1}{p}}
\]
\[
= \lim_{\epsilon \to 0} 0 \times \left\{ \int \cdots \int_{\bigotimes_{i \in S} Q_i^\epsilon} \left(\frac{1}{\sum_{i \in S} |x_i|^2} \right)^{\frac{1}{2}} \prod_{i \in S} dx_i \right\} \frac{1}{\lambda} \left\{ \int \cdots \int_{\bigotimes_{i \in S} Q_i^\epsilon} \left(\frac{1}{\sum_{i \in S} |x_i|^2} \right)^{\frac{1}{2}} \prod_{i \in S} dx_i \right\}^{\frac{p-1}{p}}
\]
\[
= \lim_{\epsilon \to 0} 0 = 0.
\] (4.5)

Suppose $\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) = 0$ for every $i \in S^c$. Let Q_i shrink to the origin of \mathbb{R}^{N_i} for every $i \in S^c$ in (4.1). By applying Lebesgue differentiation theorem, we have
\[
A_{pq}^\alpha(|x|^{-\gamma}, |x|^0) \Rightarrow \prod_{i=1}^n |Q_i|^{\alpha_i \left(\frac{1}{N_i} - \frac{1}{n} \right)} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\gamma q} \, dx \right\} \frac{1}{\lambda} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{\delta p} \, dx \right\}^{\frac{p-1}{p}}
\]
\[
= \prod_{i \in S} |Q_i|^{\alpha_i \left(\frac{1}{N_i} - \frac{1}{n} \right)} \left\{ \frac{1}{|Q_S|} \int_{Q_S} \left(\frac{1}{|x_S|} \right)^{\gamma q} \, dx_S \right\} \frac{1}{\lambda} \left\{ \frac{1}{|Q_S|} \int_{Q_S} \left(\frac{1}{|x_S|} \right)^{\delta p} \, dx_S \right\}^{\frac{p-1}{p}}
\] (4.6)
where $\gamma q < N_S$ and $\delta \left(\frac{p}{p+1}\right) < N_S$ become necessities.

Case One: Consider $\gamma \geq 0, \delta \leq 0$. Let $|Q|^{\gamma q} = 1$ for $i \in \{1, 2, \ldots, n\}$ and $|Q|^{\gamma q} = \lambda$ for all $j \neq i$. Suppose $a_j - N_i \left(\frac{1}{p} - \frac{1}{q}\right) = 0$ for every $j \neq i$. We have

\[
\prod_{i=1}^{n} |Q_i|^{\frac{\alpha_j - \frac{1}{p}}{\gamma q}} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|}\right)^{\gamma q} dx \right\} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|}\right)^{\frac{\beta q}{p+1}} dx \right\}^{\frac{p-1}{p}} \]

\[
\leq C_{q \gamma n} \left\{ \int_Q \left(\frac{1}{\lambda + |x|}\right)^{\gamma q} dx \right\} \left\{ \int_Q \left(\frac{1}{|x|}\right)^{\frac{\beta q}{p+1}} dx \right\} \] \quad (\delta \leq 0) \tag{4.7}

\[
\leq C_{p q \gamma \delta n} \left\{ \int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|}\right)^{\gamma q} dx \right\} \] \quad (\delta \leq 0) \tag{4.8}

where

\[
\int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|}\right)^{\gamma q} dx \leq C_N \ln \left(\frac{\lambda + 1}{1}\right) \quad \text{if} \quad \gamma = \frac{N_i}{q},
\]

\[
\int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|}\right)^{\gamma q} dx \leq C_N \left\{ \left(\frac{1}{\lambda + 1}\right)^{\gamma q - N_i} - \left(\frac{1}{\lambda + 1}\right)^{\gamma q - N_i} \right\} \quad \text{if} \quad \gamma > \frac{N_i}{q}.
\]

From (4.7)-(4.8), as $\lambda \to 0$, we need

\[
\gamma < \frac{N_i}{q}, \quad i = 1, 2, \ldots, n \tag{4.9}
\]

in order to satisfy the inequality in (4.2).

Suppose that there exists $j \neq i$ such that $a_j - N_i \left(\frac{1}{p} - \frac{1}{q}\right) > 0$. We have

\[
\prod_{i=1}^{n} |Q_i|^{\frac{\alpha_j - \frac{1}{p}}{\gamma q}} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|}\right)^{\gamma q} dx \right\} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|}\right)^{\frac{\beta q}{p+1}} dx \right\}^{\frac{p-1}{p}} \]

\[
\geq C_{q \gamma n} \prod_{j \neq i} \lambda^{a_j - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \int_Q \left(\frac{1}{\lambda + |x|}\right)^{\gamma q} dx \right\} \left\{ \int_Q \left(\frac{1}{|x|}\right)^{\frac{\beta q}{p+1}} dx \right\} \] \quad (\delta \leq 0) \tag{4.10}

\[
\geq C_{p q \gamma \delta n} \prod_{j \neq i} \lambda^{a_j - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \int_{0 < |x| \leq \lambda} \left(\frac{1}{\lambda}\right)^{\gamma q} dx \right\} \] \quad (\delta \leq 0) \tag{4.11}

Recall the estimate in (4.5) and take $\mathcal{S} = \{i\}$. We have (4.10) equal to zero at $\lambda = 0$. Together with (4.9), we find

\[
\gamma < \frac{N_i}{q} + \sum_{j \neq i} a_j - N_i \left(\frac{1}{p} - \frac{1}{q}\right), \quad i = 1, 2, \ldots, n. \tag{4.11}
\]
Case Two: Consider $\gamma \leq 0, \delta \geq 0$. Let $|Q_i|^{\frac{1}{N_i}} = 1$ for $i \in \{1, 2, \ldots, n\}$ and $|Q_i|^{\frac{1}{N_j}} = \lambda$ for all $j \neq i$. Suppose $\alpha_j - N_j\left(\frac{p}{p} - \frac{1}{q}\right) = 0$ for every $j \neq i$. We have

$$
\prod_{i=1}^{n} |Q_i|^{\frac{\alpha_j - (\frac{p}{p} - \frac{1}{q})}{N_j}} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|} \right)^{\gamma q} dx \right\}^\frac{1}{\delta} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p}
$$

$$
\geq C_{p, \delta, n} \left\{ \int_{Q} \left(\frac{1}{|x|} \right)^{\gamma q} dx \right\}^\frac{1}{\delta} \left\{ \int_{Q} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p} \quad (\gamma \leq 0) \quad (4.12)
$$

$$
\geq C_{p, q, \gamma, \delta, n} \left\{ \int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p}
$$

where

$$
\int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \leq C_N \ln \left(\frac{1 + \lambda}{2\lambda} \right) \quad \text{if} \quad \delta = N_i \left(\frac{p-1}{p} \right),
$$

$$
\int_{\lambda < |x| \leq 1} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \leq C_N \frac{1}{\delta \left(\frac{p}{p-1} \right) - N_i} \left[\left(\frac{p}{p-1} \right) - N_i \right]^{-N_i} \quad (4.13)
$$

$$
\text{if} \quad \delta > N_i \left(\frac{p-1}{p} \right).
$$

From (4.12)-(4.13), as $\lambda \to 0$, we need

$$
\delta < N_i \left(\frac{p-1}{p} \right), \quad i = 1, 2, \ldots, n \quad (4.14)
$$

in order to satisfy the inequality in (4.2).

Suppose that there exists $j \neq i$ such that $\alpha_j - N_i\left(\frac{p}{p} - \frac{1}{q}\right) > 0$. We have

$$
\prod_{i=1}^{n} |Q_i|^{\frac{\alpha_j - (\frac{p}{p} - \frac{1}{q})}{N_i}} \left\{ \int_{Q_i} \left(\frac{1}{|x|} \right)^{\gamma q} dx \right\}^\frac{1}{\delta} \left\{ \int_{Q_i} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p}
$$

$$
\geq C_{p, \delta, n} \prod_{j \neq i} \lambda^{\alpha_j - N_i\left(\frac{p}{p} - \frac{1}{q}\right)} \left\{ \int_{Q_i} \left(\frac{1}{|x|} \right)^{\gamma q} dx \right\}^\frac{1}{\delta} \left\{ \int_{Q_i} \left(\frac{1}{\lambda + |x|} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p} \quad (\gamma \leq 0) \quad (4.15)
$$

$$
\geq C_{p, q, \gamma, \delta, n} \prod_{j \neq i} \lambda^{\alpha_j - N_i\left(\frac{p}{p} - \frac{1}{q}\right)} \left\{ \int_{0 < |x| \leq \lambda} \left(\frac{1}{\lambda} \right)^{\frac{\delta p}{p-1}} dx \right\}^\frac{p-1}{p}
$$

$$
= C_{p, q, \gamma, \delta, n} \lambda^{\left(\frac{p-1}{p}\right)N_i - \delta + \sum_{j \neq i} \alpha_j - N_i\left(\frac{p}{p} - \frac{1}{q}\right)}.
$$
Recall the estimate in (4.5) and take $S = \{i\}$. We have (4.15) equal to zero at $\lambda = 0$. Together with (4.14), we find

$$\delta < N_i \left(\frac{p - 1}{p} \right) + \sum_{j \neq i} \alpha_j - N_j \left(\frac{1}{p} - \frac{1}{q} \right),$$

(4.16)

$i = 1, 2, \ldots, n$.

Case Three: Consider $\gamma > 0, \delta > 0$. Note that (4.1) is invariant by changing dilations in one-parameter as shown in (4.2), because of (2.3).

Recall the definition of U and V from (2.6). We write $x_U \in \mathbb{R}^{N_U}$ and $x_V \in \mathbb{R}^{N_V}$ where $\mathbb{R}^{N_U} = \bigotimes_{i \in U} \mathbb{R}^{N_i}$ and $\mathbb{R}^{N_V} = \bigotimes_{i \in V} \mathbb{R}^{N_i}$.

Let $|Q_i|^{\frac{1}{N_i}} = \lambda^{-1}$ for every $i \in U$ and $|Q_i|^{\frac{1}{N_i}} = 1$ for all other $i \notin U$. We have

$$\prod_{i=1}^n |Q_i|^\frac{\alpha_i - N_i}{p} \left\{ \int_{Q_i} \left(\frac{1}{|x|} \right)^{\gamma q} dx \right\} \left\{ \int_{Q_i} \left(\frac{1}{|x|} \right)^{\delta q} dx \right\}$$

$$\geq C_{p,q,\gamma,\delta} n \prod_{i \in U} \left(\frac{1}{\lambda} \right)^{\frac{\alpha_i - N_i}{q}} \left\{ \int_{Q_i} \left(\frac{1}{1 + \sum_{i \in U} |x_i|} \right)^{\gamma q} dx \right\} \prod_{i \in U} \left(\frac{\lambda^{\delta p}}{p} \right)^{\frac{1}{q}}$$

$$\geq C_{p,q,\gamma,\delta} n \prod_{i \in U} \left(\frac{1}{\lambda} \right)^{\frac{\alpha_i - N_i}{p}} \left\{ \int_{Q_i} \left(\frac{1}{1 + \sum_{i \in U} |x_i|} \right)^{\gamma q} dx \right\} \prod_{i \in U} \left(\frac{\lambda^{\delta p}}{p} \right)^{\frac{1}{q}}$$

$$\geq C_{p,q,\gamma,\delta} n \left(\frac{1}{\lambda} \right)^{\frac{1}{\lambda}} \sum_{i \in U} \alpha_i - \frac{N_i}{p} - \delta.$$

(4.17)

In the case of $U = \{1, 2, \ldots, n\}$, since γ satisfies the first strict inequality in (2.2), we find

$$\delta = \frac{N}{q} - \gamma + \sum_{i=1}^n \alpha_i - \frac{N_i}{p} \quad \text{by (2.3)}$$

(4.18)

$$\geq \sum_{i=1}^n \alpha_i - \frac{N_i}{p} = \sum_{i \in U} \alpha_i - \frac{N_i}{p}.$$
Suppose that \(U \) is a proper subset of \([1, 2, \ldots, n]\) and there exists at least one \(i \in U \) such that \(\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) > 0 \). By applying the estimate in (4.5) with \(S = U \), we have (4.17) equal to zero at \(\lambda = 0 \). The last line of (4.17) implies

\[
\sum_{i \in U} \alpha_i - \frac{N_i}{p} < \delta. \tag{4.19}
\]

Suppose that \(U \) is a proper subset of \([1, 2, \ldots, n]\) where \(\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) = 0 \) for every \(i \in U \). Let \(S = U \). We have \(|x|^{-\gamma} \) and \(|x|^0\) satisfying the Muckenhoupt characteristic (4.6) on \(\mathbb{R}^N \setminus \bigotimes_{i \in U} \mathbb{R}^{N_i} \). Denote \(\alpha_U = \sum_{i \in U} \alpha_i \). By carrying out the same estimate in (4.2), we find

\[
\frac{\alpha_U}{N_U} = \frac{1}{p} - \frac{1}{q} + \gamma + \delta, \tag{4.20}
\]

This further implies

\[
\delta = \frac{N_U}{q} \gamma - \sum_{i \in U} \alpha_i - \frac{N_i}{p} > \sum_{i \in U} \alpha_i - \frac{N_i}{p}. \tag{4.21}
\]

Let \(|Q_i|^{-\frac{1}{N_i}} = \lambda^{-1} \) for every \(i \in \mathcal{V} \) and \(|Q_i|^{-\frac{1}{N_i}} = 1 \) for all other \(i \notin \mathcal{V} \). We have

\[
\prod_{i=1}^n \left| Q_i \right|^{-\frac{1}{N_i}} \left\{ \left(\frac{1}{|Q_i|} \int_Q \left(\frac{1}{|x|} \right)^{q_q} \, dx \right)^{\frac{1}{q_q}} \right\}^{p-1} \left\{ \left(\frac{1}{|Q_i|} \int_Q \left(\frac{1}{|x|} \right)^{q_p} \, dx \right)^{\frac{1}{q_p}} \right\}^{p-1}
\]

\[
\geq C_{p, q, \gamma} \delta n \left(\frac{1}{\lambda} \right)^{\sum_{i \in \mathcal{V}} \alpha_i \left(\frac{1}{q} - \frac{1}{q_q} \right) N_i \left\{ \prod_{i \in \mathcal{V}} \lambda^{N_i} \int_{Q_i} \cdots \int_{Q_i} \lambda^{q_q} \prod_{i \in \mathcal{V}} dx_i \right\}^{\frac{1}{q_q}}^{p-1}
\]

\[
\geq C_{p, q, \gamma} \delta n \left(\frac{1}{\lambda} \right)^{\sum_{i \in \mathcal{V}} \alpha_i \left(\frac{1}{q} - \frac{1}{q_q} \right) N_i \left\{ \prod_{i \in \mathcal{V}} \lambda^{N_i} \int_{Q_i} \cdots \int_{Q_i} \lambda^{q_q} \prod_{i \in \mathcal{V}} dx_i \right\}^{\frac{1}{q_q}}^{p-1}
\]

\[
\geq C_{p, q, \gamma} \delta n \left(\frac{1}{\lambda} \right)^{\sum_{i \in \mathcal{V}} \alpha_i \left(\frac{1}{q} - \frac{1}{q_q} \right) N_i \left\{ \prod_{i \in \mathcal{V}} \lambda^{N_i} \int_{Q_i} \cdots \int_{Q_i} \lambda^{q_q} \prod_{i \in \mathcal{V}} dx_i \right\}^{\frac{1}{q_q}}^{p-1}
\]

\[
\geq C_{p, q, \gamma} \delta n \left(\frac{1}{\lambda} \right)^{\sum_{i \in \mathcal{V}} \alpha_i \left(\frac{1}{q} - \frac{1}{q_q} \right) N_i \left\{ \prod_{i \in \mathcal{V}} \lambda^{N_i} \int_{Q_i} \cdots \int_{Q_i} \lambda^{q_q} \prod_{i \in \mathcal{V}} dx_i \right\}^{\frac{1}{q_q}}^{p-1}
\]

\[
\geq C_{p, q, \gamma} \delta n \left(\frac{1}{\lambda} \right)^{\sum_{i \in \mathcal{V}} \alpha_i \left(\frac{1}{q} - \frac{1}{q_q} \right) N_i \left\{ \prod_{i \in \mathcal{V}} \lambda^{N_i} \int_{Q_i} \cdots \int_{Q_i} \lambda^{q_q} \prod_{i \in \mathcal{V}} dx_i \right\}^{\frac{1}{q_q}}^{p-1}
\]
In the case of $V = \{1, 2, \ldots, n\}$, since δ satisfies the second strict inequality in (2.2), we find

$$
\gamma = \left(\frac{p-1}{p}\right)N - \delta + \sum_{i=1}^{n} \alpha_i - N_i \left(\frac{q-1}{q}\right)
$$

by (2.3) \hfill (4.23)

$$
> \sum_{i=1}^{n} \alpha_i - N_i \left(\frac{q-1}{q}\right) = \sum_{i \in V} \alpha_i - N_i \left(\frac{q-1}{q}\right).
$$

Suppose that V is a proper subset of $\{1, 2, \ldots, n\}$ and there exists at least one $i \in V^c$ such that $\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right) > 0$. By applying the estimate in (4.5) with $S = V$, we have (4.22) equal to zero at $\lambda = 0$. The last line of (4.22) implies

$$
\sum_{i \in V} \alpha_i - N_i \left(\frac{q-1}{q}\right) < \gamma.
$$

Suppose that V is a proper subset of $\{1, 2, \ldots, n\}$ where $\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right) = 0$ for every $i \in V^c$. Let $S = V$. We have $|x_V|^{-\gamma}$ and $|x_V|^0$ satisfying the Muckenhoupt characteristic (4.6) on $\mathbb{R}^{N_V} = \bigotimes_{i \in V} \mathbb{R}^{N_i}$. Denote $\alpha_V = \sum_{i \in V} \alpha_i$. By carrying out the same estimate in (4.2), we find

$$
\gamma < \frac{N_V}{q}, \quad \delta < N_V \left(\frac{p-1}{p}\right), \quad \frac{\alpha_V}{N_V} = \frac{1}{p} - \frac{1}{q} + \gamma + \delta.
$$

This further implies

$$
\gamma = \left(\frac{p-1}{p}\right)N_V - \delta + \sum_{i \in V} \alpha_i - N_i \left(\frac{q-1}{q}\right)
$$

$$
> \sum_{i \in V} \alpha_i - N_i \left(\frac{q-1}{q}\right).
$$

Remark 4.1 By using the formula in (2.3), we can verify that the constraints in (4.11) and (4.16) are equivalent to (2.4) and (2.5) respectively. Namely,

for $\gamma \geq 0, \delta \leq 0$,

$$
\gamma < \frac{N_i}{q} + \sum_{j \neq i} \alpha_j - N_j \left(\frac{1}{p} - \frac{1}{q}\right) \quad \iff \quad \alpha_i - \frac{N_i}{p} < \delta, \quad i = 1, 2, \ldots, n,
$$

(4.27)

for $\gamma \leq 0, \delta \geq 0$,

$$
\delta < N_i \left(\frac{p-1}{p}\right) + \sum_{j \neq i} \alpha_j - N_j \left(\frac{1}{p} - \frac{1}{q}\right) \quad \iff \quad \alpha_i - N_i \left(\frac{q-1}{q}\right) < \gamma, \quad i = 1, 2, \ldots, n.
$$

(4.28)
5 Decay estimate on varying eccentricities

Principal Lemma: Let \(\gamma, \delta \) satisfying (2.2)-(2.6). Suppose

\[
\alpha_i / N_i > \frac{1}{p} - \frac{1}{q}, \quad i = 1, 2, \ldots, n. \tag{5.1}
\]

For \(0 < \lambda_i \leq 1, i = 1, 2, \ldots, n \), define

\[
\lambda Q \subset \mathbb{R}^N : |Q|^{\frac{1}{N}} / |Q_\nu|^{\frac{1}{N}} = \lambda_\nu. \tag{5.2}
\]

There exists an \(\varepsilon > 0 \) such that

\[
\sup_{\lambda Q} \prod_{i=1}^n |Q_i|^{\frac{1}{N_i} - \frac{1}{\alpha_i}} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{qr} dx \right\}^{\frac{1}{2}} \left\{ \frac{1}{|Q|} \int_Q \left(\frac{1}{|x|} \right)^{pr} dx \right\}^{\frac{p}{2}} \leq C_{p, q, r, \gamma, \delta, n} \prod_{i=1}^n (\lambda_i)^\varepsilon \tag{5.3}
\]

for some \(r > 1 \). The values of \(\varepsilon \) and \(r \) depend only on \(p, q, \gamma, \delta, \alpha, n, N \).

Remark 5.1 Without the condition (5.1), we can only show that the Muckenhoupt characteristic in (5.3) is bounded.

Proof: By carrying out the same estimate in (4.2) and using the formula (2.3), we find that the \(r\)-bump characteristic (5.3) is invariant by changing dilations in one-parameter. Therefore, it is sufficient to consider \(|Q_i|^{\frac{1}{N_i}} = 1 \).

Let \(Q_i^0 \) and \(Q_i^* \subset \mathbb{R}^N \) to be centered on the origin of \(\mathbb{R}^N \) and

\[
|Q_i^0|^{\frac{1}{N_i}} = |Q_i|^{\frac{1}{N_i}}, \quad |Q_i^*|^{\frac{1}{N_i}} = 3|Q_i|^{\frac{1}{N_i}} = 3\lambda_i, \quad i = 1, 2, \ldots, n. \tag{5.4}
\]

Remark 5.2 Suppose \(Q_i \cap Q_i^0 = \emptyset \). We must have \(|x_i| \geq |x_i^0| / \sqrt{n} \) for every \(x_i \in Q_i \) and every \(x_i^0 \in Q_i^0 \). Otherwise, if \(Q_i \) intersects \(Q_i^0 \), then \(Q_i \subset Q_i^* \).

After a permutation on indices \(i = 1, 2, \ldots, n \), we can assume \(\nu = 1 \) and

\[
1 = \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n. \tag{5.5}
\]

Case One: Let \(\gamma \geq 0, \delta \leq 0 \) satisfy (2.2)-(2.4). By adjusting the value of \(r \), we assume

\[
\sum_{i=1}^{m-1} N_i < \gamma qr < \sum_{i=1}^m N_i, \quad \delta \leq 0, \quad 1 \leq m \leq n. \tag{5.6}
\]
Suppose that Q is centered on $z \in \mathbb{R}^N$ for some $|z| \leq 3$. We have

$$
\prod_{i=1}^{n} \left|Q_{i}\right|^{\frac{a_i}{p} - \left(\frac{1}{p} - \frac{1}{q} \right)} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|} \right)^{\frac{np}{q}} \, dx \right\}^{\frac{1}{p'}} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|} \right)^{\frac{np}{q}} \, dx \right\}^{\frac{p-1}{mp}}
\leq C_{p q r \gamma \delta} \prod_{i=1}^{n} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i} \left\{ \int \cdots \int_{\bigotimes_{j=1}^{n} Q_j} \left(\frac{1}{|x|} \right)^{\frac{np}{q} \cdot m \cdot \frac{1}{|x_m|}} \, dx_1 \cdots dx_n \right\}^{\frac{1}{p'}}
\leq C_{p q r \gamma \delta} \prod_{i=1}^{n} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i} \left\{ \int \cdots \int_{\bigotimes_{j=1}^{n} Q_j} \left(\frac{1}{|x|} \right)^{\frac{np}{q} \cdot m \cdot \frac{1}{|x_m|}} \, dx_1 \cdots dx_n \right\}^{\frac{1}{p'}}
\leq C_{p q r \gamma \delta} \prod_{i=1}^{n} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i} \left\{ \int_{Q_m} \left(\frac{1}{|x_m|} \right)^{\frac{np}{q} \cdot m \cdot \frac{1}{|x_m|}} \, dx_m \right\}^{\frac{1}{p'}}
\leq C_{p q r \gamma \delta} \prod_{i=1}^{n} \left(\lambda_i \right)^{ \frac{1}{p} \sum_{j=1}^{m} N_j - \gamma} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{n} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)}.
$$

From direct computation, the formula in the last line of (5.7) can be rewritten as

$$
\left(\lambda_m \right)^{ \frac{1}{p} \sum_{j=1}^{m} N_j - \gamma} \prod_{i=2}^{m} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=m+1}^{n} \left(\lambda_i \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \quad \lambda_1 = 1
$$

(5.8)

$$
= \left(\lambda_m \right)^{ \frac{N_1}{p} + \sum_{i=2}^{m} \left(a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \right)} \prod_{i=2}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=m+1}^{n} \left(\frac{\lambda_i}{\lambda_m} \right)^{a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)}.
$$

Recall Remark 4.1. $\gamma \geq 0$, $\delta \leq 0$ satisfy the two equivalent strict inequalities in (4.27).

Define $0 \leq \delta \leq 1$ implicitly by letting $\lambda_m = (\lambda_n)^{\delta}$. For r sufficiently close to 1, we have

$$
\delta \left[\frac{N_1}{p r} + \sum_{i=2}^{m} \left(a_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \right) - \gamma \right] + (1 - \delta) \left[\alpha_n - N_n \left(\frac{1}{p} - \frac{1}{q} \right) \right] > 0
$$

(5.9)
and

\[\alpha_i - \frac{N_i}{p} + \left(1 - \frac{1}{r}\right) \frac{N_i}{q} < 0, \quad i = 1, 2, \ldots, n. \quad (5.10) \]

Note that \(\alpha_n - N_n \left(\frac{1}{p} - \frac{1}{q}\right) > 0 \). By using (5.9)-(5.10), we find that (5.8), is bounded by \(C_{pqr} \delta \odot n \lambda \) for some \(\varepsilon = \varepsilon(p,q,r,\alpha,\gamma,\delta,n,N) > 0 \).

Case Two: Let \(\gamma \leq 0, \delta \geq 0 \) satisfy (2.2)-(2.3) and (2.5). By adjusting the value of \(r \), assume

\[\gamma \leq 0, \quad \sum_{i=1}^{m-1} N_i < \delta \left(\frac{pr}{p-1}\right) < \sum_{i=1}^{m} N_i, \quad 1 \leq m \leq n. \quad (5.11) \]

Suppose that \(Q \) is centered on \(z \in \mathbb{R}^N \) for some \(|z| \leq 3 \). We have

\[
\prod_{i=1}^{n} \left| \mathcal{Q}_{ij} \right|^{-\frac{1}{N_i} \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|}\right)^{\gamma pr} \, dx \right\} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|}\right)^{\delta \left(\frac{pr}{p-1}\right)} \, dx \right\}^{\frac{p-1}{pr}}
\]

\[\leq C_{pqr} \delta \odot n \prod_{i=1}^{n} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \prod_{i=1}^{n} \left(\frac{1}{\lambda_i}\right)^{N_i} \int \cdots \int_{\mathbb{R}^N} \left(\frac{1}{|x_1| + \cdots + |x_n|}\right)^{\delta \left(\frac{pr}{p-1}\right)} \, dx_1 \cdots dx_n \right\}^{\frac{p-1}{pr}}
\]

\[\leq C_{pqr} \delta \odot n \prod_{i=1}^{n} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \prod_{i=1}^{n} \left(\frac{1}{\lambda_i}\right)^{N_i} \int \cdots \int_{\mathbb{R}^N} \left(\frac{1}{|x_1| + \cdots + |x_n|}\right)^{\delta \left(\frac{pr}{p-1}\right) - \sum_{i=1}^{m-1} N_i} \, dx_1 \cdots dx_n \right\}^{\frac{p-1}{pr}}
\]

\[\leq C_{pqr} \delta \odot n \prod_{i=1}^{n} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \prod_{i=1}^{n} \left(\frac{1}{\lambda_i}\right)^{N_i} \int \cdots \int_{\mathbb{R}^N} \left(\frac{1}{|x_m| + \cdots + |x_n|}\right)^{\delta \left(\frac{pr}{p-1}\right) - \sum_{i=1}^{m-1} N_i} \, dx_m \cdots dx_n \right\}^{\frac{p-1}{pr}}
\]

\[\leq C_{pqr} \delta \odot n \prod_{i=1}^{n} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \left\{ \prod_{i=1}^{n} \left(\frac{1}{\lambda_i}\right)^{N_i} \int \cdots \int_{\mathbb{R}^N} \left(\frac{1}{|x_m|}\right)^{\delta \left(\frac{pr}{p-1}\right) - \sum_{i=1}^{m} N_i} \, dx_m \right\}^{\frac{p-1}{pr}} \text{ by Remark 5.2}
\]

\[\leq C_{pqr} \delta \odot n \left(\lambda_m\right)^{\frac{p-1}{pr}} \sum_{i=1}^{m} \left(\frac{1}{\lambda_i}\right)^{\delta \odot N_i} \prod_{i=1}^{m-1} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)} \prod_{i=1}^{n} \left(\lambda_i\right)^{\alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right)}.
\]

(5.12)
From direct computation, the formula in the last line of (5.12) can be rewritten as

\[
\lambda_m\left(\frac{p-1}{pr}\right)\sum_{i=1}^{m} N_i - \delta \prod_{i=2}^{m} \lambda_i \prod_{i=m+1}^{n} \lambda_i N_i \left(\frac{1}{p-1}\right) \frac{1}{\lambda_m} \prod_{i=m+1}^{n} N_i \left(\frac{1}{p-1}\right) = \lambda_m\left(\frac{p-1}{pr}\right)\sum_{i=1}^{m} N_i - \delta \prod_{i=2}^{m} \lambda_i \prod_{i=m+1}^{n} \lambda_i N_i \left(\frac{1}{p-1}\right) \frac{1}{\lambda_m} \prod_{i=m+1}^{n} N_i \left(\frac{1}{p-1}\right) (5.13)
\]

Recall Remark 4.1. \(\gamma \leq 0, \delta \geq 0\) satisfy the two equivalent strict inequalities in (4.28). Define \(0 \leq \delta' \leq 1\) implicitly by letting \(\lambda_m = (\lambda_n)^\delta\). For \(r\) sufficiently close to 1, we have

\[
\delta \left[\frac{1}{p} \left(\frac{p-1}{pr} \right) + \sum_{i=2}^{n} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) - \delta \right] + (1 - \delta) \left[\alpha_n - N_n \left(\frac{1}{p} - \frac{1}{q} \right) \right] > 0 \tag{5.14}
\]

and

\[
\alpha_i - N_i \left(\frac{q-1}{q} \right) + \left(1 - \frac{1}{r} \right) \left(\frac{p-1}{p} \right) N_i < 0, \quad i = 1, 2, \ldots, n. \tag{5.15}
\]

Note that \(\alpha_n - N_n \left(\frac{1}{p} - \frac{1}{q} \right) > 0\). By using (5.14)-(5.15), we find that (5.13) is bounded by \(c_{\gamma \delta n N} (\lambda_n)^\epsilon\) for some \(\epsilon = \epsilon(p, q, r, \alpha, \gamma, \delta, n, N) > 0\).

Suppose that \(Q\) is centered on \(x \in \mathbb{R}^N\) for which \(|x| > 3\). Since \(Q\) has a diameter 1, we have

\[
\frac{1}{2} |x| \leq |x| \leq 2|x| \tag{5.16}
\]

whenever \(x \in Q\). From (5.16), we have

\[
\prod_{i=1}^{n} \left(\frac{1}{|x_i|} \int_{Q} \left(\frac{1}{|x_i|} \right)^{\gamma qr} dx \right) \left[\frac{1}{|x|} \int_{Q} \left(\frac{1}{|x|} \right)^{\gamma (p-1)} dx \right] \leq c_{\gamma \delta} \prod_{i=1}^{n} (\lambda_i)^{\gamma qr} N_i \left(\frac{1}{p-1} \right) \leq c_{\gamma \delta} \prod_{i=1}^{n} (\lambda_i)^{\gamma qr} N_i \left(\frac{1}{p-1} \right), \quad (\gamma + \delta \geq 0) \tag{5.17}
\]

Case Three: Let \(\gamma > 0, \delta > 0\) satisfy (2.2)-(2.3) and (2.6). By adjusting the value of \(r\), assume

\[
\sum_{i=1}^{m-1} N_i < \gamma qr < \sum_{i=1}^{m} N_i, \quad 1 \leq m \leq n, \tag{5.18}
\]

\[
\sum_{i=1}^{l-1} N_i < \delta \left(\frac{pr}{p-1} \right) < \sum_{i=1}^{l} N_i, \quad 1 \leq l \leq n. \tag{5.19}
\]
We have
\[
\prod_{i=1}^{n} |Q_i|^{\frac{n}{N} - \left(\frac{1}{p} - \frac{1}{q} \right)} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|} \right)^{\alpha qr} dx \right\}^{\frac{1}{\theta'}} \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x|} \right)^{\alpha'(\frac{p}{\theta'})} dx \right\}^{\frac{p-1}{\theta'}}
\]
\[
\leq C_{p,q} \gamma \delta n \prod_{i=1}^{n} (\lambda_i)^{\gamma qr - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i \left(\frac{p-1}{\theta'} \right)}
\]
\[
\left\{ \int \cdots \int_{Q} \left(\frac{1}{|x_1| + \cdots + |x_n|} \right)^{\alpha qr - \sum_{i=1}^{m-1} N_i} dx_1 \cdots dx_n \right\}^{\frac{1}{\theta'}}
\]
\[
\left\{ \int \cdots \int_{Q} \left(\frac{1}{|x_1| + \cdots + |x_n|} \right)^{\alpha'(\frac{p}{\theta'}) - \sum_{i=1}^{m-1} N_i} dx_1 \cdots dx_n \right\}^{\frac{p-1}{\theta'}}
\]
\[
\leq C_{p,q} \gamma \delta n \prod_{i=1}^{n} (\lambda_i)^{\gamma qr - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i \left(\frac{p-1}{\theta'} \right)}
\]
\[
\left\{ \int \cdots \int_{Q} \left(\frac{1}{|x_1| + \cdots + |x_n|} \right)^{\alpha qr - \sum_{i=1}^{m-1} N_i} dx_1 \cdots dx_n \right\}^{\frac{1}{\theta'}} \left\{ \int \cdots \int_{Q} \left(\frac{1}{|x|} \right)^{\alpha'(\frac{p}{\theta'}) - \sum_{i=1}^{m-1} N_i} dx_1 \cdots dx_n \right\}^{\frac{p-1}{\theta'}}
\]
\[
\leq C_{p,q} \gamma \delta n \prod_{i=1}^{n} (\lambda_i)^{\gamma qr - N_i \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{N_i \left(\frac{p-1}{\theta'} \right)}
\]
\[
\left\{ \int_{Q_m} \left(\frac{1}{|x_m|} \right)^{\gamma qr - \sum_{i=m}^{m-1} N_i} dx_m \right\}^{\frac{1}{\theta'}} \left\{ \int_{Q_l} \left(\frac{1}{|x|} \right)^{\alpha'(\frac{p}{\theta'}) - \sum_{i=1}^{m-1} N_i} dx_l \right\}^{\frac{p-1}{\theta'}}
\]
\[
\leq C_{p,q} \gamma \delta n \prod_{i=1}^{n} (\lambda_m)^{\gamma qr - N_m \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{m} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{m} \left(\frac{1}{\lambda_i} \right)^{N_i \left(\frac{p-1}{\theta'} \right)}
\]
\[
\leq C_{p,q} \gamma \delta n \prod_{i=1}^{n} (\lambda_m)^{\gamma qr - N_m \left(\frac{1}{p} - \frac{1}{q} \right)} \prod_{i=1}^{m} \left(\frac{1}{\lambda_i} \right)^{\frac{N_i}{p'}} \prod_{i=1}^{m} \left(\frac{1}{\lambda_i} \right)^{N_i \left(\frac{p-1}{\theta'} \right)}
\]
by Remark 5.2

(5.20)
Let $0 \leq k \leq n - 1$. From direct computation, we have

$$
\frac{1}{r} \left(\frac{1}{q} + \frac{p-1}{p} \right) \sum_{i=1}^{k} N_i - (\gamma + \delta) + \sum_{i=k+1}^{n} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right)
$$

$$
= \frac{N}{r} - \frac{1}{r} \left(\frac{1}{p} - \frac{1}{q} \right) N - (\gamma + \delta) + \sum_{i=k+1}^{n} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) - N_i \left(1 - \frac{1}{r} \right) \left(\frac{1}{p} - \frac{1}{q} \right)
$$

by (2.3)

$$
= \frac{N}{r} - \alpha + N \left(1 - \frac{1}{r} \right) \left(\frac{1}{p} - \frac{1}{q} \right) + \sum_{i=k+1}^{n} \alpha_i - N_i \left(1 - \frac{1}{r} \right) \left(\frac{1}{p} - \frac{1}{q} \right)
$$

$$
= \sum_{i=1}^{k} \frac{N_i}{r} - \alpha_i + N_i \left(1 - \frac{1}{r} \right) \left(\frac{1}{p} - \frac{1}{q} \right). \tag{5.21}
$$

Suppose $l \leq m$. The formula in the last line of (5.20) can be rewritten as

$$
(\lambda_m)^{\frac{1}{q} \left(\frac{p-1}{p} \right) \sum_{i=1}^{m} N_i - (\gamma + \delta)} \left(\frac{\lambda_i}{\lambda_m} \right)^{\frac{p-1}{p} \sum_{i=1}^{n} N_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\lambda_i \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{N_i - 1} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{1}{q} \left(\frac{p-1}{p} \right) N_i}}
$$

$$
= (\lambda_m)^{\frac{1}{q} \left(\frac{p-1}{p} \right) \sum_{i=1}^{m} N_i - (\gamma + \delta)} \left(\frac{\lambda_i}{\lambda_m} \right)^{\frac{p-1}{p} \sum_{i=1}^{n} N_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\lambda_i \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{N_i - 1} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{1}{q} \left(\frac{p-1}{p} \right) N_i}}
$$

by (5.21)

$$
= (\lambda_m)^{\frac{1}{q} \left(\frac{p-1}{p} \right) \sum_{i=1}^{m} N_i - \sum_{i=m+1}^{n} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\lambda_i \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{N_i - 1} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{1}{q} \left(\frac{p-1}{p} \right) N_i}}
$$

by (5.21)

$$
= \prod_{i=m+1}^{n} \left(\frac{\lambda_i}{\lambda_m} \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\lambda_i \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{N_i - 1} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{1}{q} \left(\frac{p-1}{p} \right) N_i}}
$$

by (5.21)

$$
(\lambda_m)^{\frac{1}{q} \left(\frac{p-1}{p} \right) \sum_{i=1}^{m} N_i - \sum_{i=m+1}^{n} \alpha_i - (\gamma + \delta) \prod_{i=1}^{m} \left(\lambda_i \right)^{n_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \prod_{i=1}^{m} \left(\frac{\lambda_i}{\lambda_m} \right)^{N_i - 1} \prod_{i=1}^{n} \left(\frac{1}{\lambda_i} \right)^{\frac{1}{q} \left(\frac{p-1}{p} \right) N_i}}
$$

Recall the subset \mathcal{U} defined in (2.6) where $\alpha_i - N_i/p < 0$ for every $i \notin \mathcal{U}$.

(5.22)
Notice that $\lambda_m \leq \lambda_l$ when $l \leq m$. For r sufficiently close to 1, we have

$$
\left(\frac{\lambda_m}{\lambda_l} \right)^{\sum_{i=1}^{m-1} N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} \prod_{i=l}^{m} \left(\frac{\lambda_m}{\lambda_l} \right)^{N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} \leq \left(\frac{\lambda_m}{\lambda_l} \right)^{\sum_{i=1}^{m} N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} \prod_{i=l}^{m} \left(\frac{\lambda_m}{\lambda_l} \right)^{N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} + \delta
$$

(5.23)

By bringing the estimates in (5.22)-(5.23) back to (5.20), we find

$$
\left(\frac{\lambda_m}{\lambda_l} \right)^{\frac{1}{r} \sum_{i=1}^{m} N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} \leq \left(\frac{\lambda_m}{\lambda_l} \right)^{\frac{1}{r} \sum_{i=1}^{m} N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} \prod_{i=l}^{m} \left(\frac{\lambda_m}{\lambda_l} \right)^{N_i \frac{r}{\alpha_i} - \left(\frac{p}{\alpha_i} - 1 \right) N_i} + \delta
$$

(5.24)

Recall that $\delta > 0$ satisfies the first strict inequality in (2.6). From (5.1) and (1.6), we also have $(\frac{1}{p} - \frac{1}{q}) N_i < \alpha_i < N_i$ for every $i = 1, 2, \ldots, n$. Define implicitly $0 \leq \delta_1 \leq \delta_2 \leq 1$ by letting $\lambda_l = (\lambda_m)^{\delta_1}$ and $\lambda_m = (\lambda_m)^{\delta_2}$.

For r sufficiently close to 1, we have

$$
\delta_1 \left[\frac{N_1}{r} - \alpha_1 + \left(\frac{1}{1 - \frac{1}{p}} \right) \left(\frac{1}{1 - \frac{1}{q}} \right) N_1 \right] + (1 - \delta_2) \left(\alpha_n - N_n \left(\frac{1}{p} - \frac{1}{q} \right) \right)
$$

(5.25)

The estimate in (5.25) implies that (5.24) is bounded by a constant multiple of $(\lambda_m)^{\varepsilon}$ for some $\varepsilon = \varepsilon(p, q, r, \alpha, \gamma, \delta, n N) > 0$.

20
On the other hand, suppose \(m \leq l \). The last line of (5.20) can be rewritten as

\[
(\lambda_m)^{\frac{1}{\theta}} \sum_{i=1}^{\frac{m-1}{\theta}} N_i \gamma (\lambda_i) \left(\frac{(\frac{m-1}{\theta})}{\gamma} \right) \sum_{i=1}^{n} (\lambda_i)^{\alpha_i} - N_i (\frac{1}{\frac{m}{\theta}}) \prod_{i=1}^{m-1} \left(\frac{1}{\lambda_i} \right) \prod_{i=m}^{l} \left(\frac{1}{\lambda_i} \right)^{\frac{m-1}{\theta} N_i}
\]

\[
= (\lambda_l)^{\frac{1}{\theta}} \left(\frac{m-1}{\theta} \right) \sum_{i=1}^{n} (\lambda_i)^{\alpha_i} - N_i (\frac{1}{\frac{m}{\theta}}) \prod_{i=1}^{m} \left(\frac{1}{\lambda_i} \right) \prod_{i=m}^{l} \left(\frac{1}{\lambda_i} \right)^{\frac{m-1}{\theta} N_i}
\]

Recall the subset \(V \) defined in (2.6) where \(\alpha_i - N_i (\frac{q-1}{q}) < 0 \) for every \(i \notin V \).

Notice that \(\lambda_l \leq \lambda_m \) when \(m \leq l \). For \(r \) sufficiently close to 1, we have

\[
\left(\frac{\lambda_l}{\lambda_m} \right)^{\sum_{i=1}^{\frac{m-1}{\theta}} N_i - \alpha_i \left(1 - \frac{1}{1} \right) \left(\frac{q-1}{q} \right) N_i} \prod_{i=m}^{l} \left(\frac{1}{\lambda_i} \right)^{\frac{m-1}{\theta} N_i}
\]

\[
\leq \left(\frac{\lambda_l}{\lambda_m} \right)^{\sum_{i \in V \cap \{1,...,m-1\}} \left(\frac{q-1}{q} \right) N_i - \alpha_i - \alpha_j \left(1 - \frac{1}{1} \right) \left(\frac{q-1}{q} \right) N_i} \prod_{i=m}^{l} \left(\frac{1}{\lambda_i} \right)^{\frac{m-1}{\theta} N_i}
\]

(5.27)

\[
\leq \left(\frac{\lambda_l}{\lambda_m} \right)^{\sum_{i \in V \cap \{1,...,m-1\}} \left(\frac{q-1}{q} \right) N_i - \alpha_i - \alpha_j \left(1 - \frac{1}{1} \right) \left(\frac{q-1}{q} \right) N_i} \prod_{i=m}^{l} \left(\frac{1}{\lambda_i} \right)^{\frac{m-1}{\theta} N_i}
\]
By bringing the estimates in (5.26)-(5.27) back to (5.20), we find
\[
\lambda_m^{\frac{1}{p} \sum_{i=1}^m N_i - \gamma} \left(\lambda_i \right)^{\left(\frac{1}{p'} - \frac{1}{q'} \right) \sum_{i=1}^n N_i - \delta} \prod_{i=1}^n \left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i} = \prod_{i=1}^n \left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i}
\]
\[
\left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i}
\]
\[
\left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i - \left(\frac{1}{p} - \frac{1}{q} \right) \sum_{i=1}^n N_i - \gamma} \prod_{i=1}^n \left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i} \prod_{i=1}^n \left(\lambda_i \right)^{\left(\delta - 1 \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_i}
\]

Recall that \(\gamma > 0 \) satisfies the second strict inequality in (2.6). From (5.1) and (1.6), we also have \(\left(\frac{1}{p} - \frac{1}{q} \right) N_i < \alpha_i < N_i \) for every \(i = 1, 2, \ldots, n \). Define implicitly \(0 \leq \delta_1 \leq \delta_2 \leq 1 \) by letting \(\lambda_m = \left(\lambda_n \right)^{\delta_1} \) and \(\lambda_i = \left(\lambda_n \right)^{\delta_2} \).

For \(r \) sufficiently close to 1, we have
\[
\delta_1 \left[\frac{N_1}{r} - \alpha_1 + \left(1 - \frac{1}{r} \right) \left(\frac{1}{p} - \frac{1}{q} \right) N_1 \right] + \left(1 - \delta_2 \right) \left(\alpha_n - N_n \left(1 - \frac{1}{r} \right) \left(\frac{1}{r} - \frac{1}{q} \right) \right)
\]
\[
+ \left(\delta_2 - \delta_1 \right) \left[\sum_{i \in \psi \cup \{1, \ldots, n\}} \left(\frac{q-1}{q} \right) N_i - \alpha_i - \left(1 - \frac{1}{r} \right) \left(\frac{p-1}{p} \right) N_i + \gamma \right] > 0.
\]

The estimate in (5.29) implies that (5.28) is bounded by a constant multiple of \(\lambda_n^\varepsilon \) for some \(\varepsilon = \varepsilon(p, q, r, \alpha, \gamma, \delta, n, \mathbb{N}) > 0 \).

\[\square \]

6 One-weight inequality on product spaces

Let \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^{\delta}, \gamma, \delta \in \mathbb{R} \). Consider \(\gamma + \delta = 0 \) so that \(\omega = \sigma \).

From (2.3) and (4.4), we must have
\[
\frac{\alpha_i}{N_i} = \frac{1}{p} - \frac{1}{q}, \quad i = 1, 2, \ldots, n.
\]

Write \(x = (x_i, x_i^+) \in \mathbb{R}^{N_i} \times \mathbb{R}^{N_i} \) and \(Q_i = \bigotimes_{j \neq i} Q_i \) for every \(i = 1, 2, \ldots, n \).

Let \(Q_i \) shrink to \(x_i^+ \) in (2.1). By applying the Lebesgue Differentiation Theorem, we have
\[
\left\{ \frac{1}{|Q_i|} \int_{Q_i} \omega^\vartheta (x_i, x_i^+) dx_i \right\}^{\frac{1}{\vartheta}} \left\{ \frac{1}{|Q_i|} \int_{Q_i} \left(\frac{1}{\omega} \right)^{q-1} (x_i, x_i^+) dx_i \right\}^{\frac{p-1}{q}} < \infty.
\]
for every \(Q_i \subset \mathbb{R}^N \) and \(a \cdot e x_i^+ \in \mathbb{R}^{N-N_i}, i = 1, 2, \ldots, n \).

Observe that (6.1)-(6.2) are sufficient conditions of the Muckenhoupt-Wheeden Theorem [5] which implies

\[
\left\{ \int_{\mathbb{R}^N} \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} dy_i \right\}^{\frac{q}{q}} \leq \mathbb{C}_{p, q, N_i, \omega} \left\{ \int_{\mathbb{R}^{N-N_i}} \left(f(y_i) \right)^p (x_i, x_i^+) dx_i \right\}^{\frac{q}{p}}
\]

(6.3)

for \(1 < p < q < \infty \) and \(a.e x_i^+ \in \mathbb{R}^{N-N_i}, i = 1, 2, \ldots, n \).

By using (6.3), we have

\[
\left\{ \int_{\mathbb{R}^N} \left(\omega \right)^p (x) dx \right\}^{\frac{1}{q}} = \left\{ \int_{\mathbb{R}^N} f(y) \prod_{i=1}^n \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} dy \right\}^{\frac{q}{q}} \omega(x) dx \right\}^{\frac{1}{q}} \leq \mathbb{C}_{p, q, N_i, \omega} \left\{ \int_{\mathbb{R}^{N-N_i}} \left(f(y_i) \right)^p (x_i, x_i^+) dx_i \right\}^{\frac{q}{p}}
\]

\[
\leq \mathbb{C}_{p, q, N_i, \omega} \left\{ \int_{\mathbb{R}^{N-N_i}} \left(f(y_i) \right)^p (x_i, x_i^+) dx_i \right\}^{\frac{q}{p}} \leq \mathbb{C}_{p, q, N} \omega \left\{ \int_{\mathbb{R}^N} \left(f(x) \right)^p dx \right\}^{\frac{1}{p}}, \quad 1 < p < q < \infty.
\]

(6.4)

7 Proof of Theorem A*

Let \(\{1, 2, \ldots, n\} = I \cup J \) where

\[
I = \left\{ i \in \{1, 2, \ldots, n\} : \frac{\alpha_i}{N_i} = \frac{1}{p} - \frac{1}{q} \right\}, \quad J = \left\{ i \in \{1, 2, \ldots, n\} : \frac{\alpha_i}{N_i} > \frac{1}{p} - \frac{1}{q} \right\}. \quad (7.1)
\]

Define

\[
\alpha_I = \sum_{i \in I} \alpha_i, \quad Q_I = \bigotimes_{i \in I} Q_i, \quad \mathbb{R}^N_I = \bigotimes_{i \in I} \mathbb{R}^{N_i},
\]

\[
\alpha_J = \sum_{i \in J} \alpha_i, \quad Q_J = \bigotimes_{i \in J} Q_i, \quad \mathbb{R}^N_J = \bigotimes_{i \in J} \mathbb{R}^{N_i}, \quad (7.2)
\]

We write \(x = (x_I, x_J) \in \mathbb{R}^N_I \times \mathbb{R}^N_J \) and denote the cardinality of \(I \) and \(J \) by \(|I|\) and \(|J|\).
Suppose \(\omega(x) = |x|^{-\gamma}, \sigma(x) = |x|^\delta, \gamma, \delta \in \mathbb{R} \) satisfy the Muckenhoupt characteristic (2. 1). Consider \(Q_i \) centered on the origin of \(\mathbb{R}^N \) for every \(i \in I \). Let \(Q_i, i \in I \) shrink to the origin. By applying Lebesgue Differentiation Theorem, we have

\[
\sup_{Q \subset \mathbb{R}^N} \prod_{i \in J} |Q|^{\frac{\omega_i}{N}} \left\{ \frac{1}{|Q_i|} \int_{Q_i} \left(\frac{1}{|x_i|} \right)^{\gamma} \, dx \right\} \geq \left\{ \frac{1}{|Q|} \int_{Q} \left(\frac{1}{|x_i|} \right)^{\gamma} \, dx \right\} \frac{p-1}{p} < \infty.
\]

(7. 3)

The boundedness of \(A_{pq}^\alpha (|x|^{-\gamma}, |x|^\delta) \) requires \(\gamma q < N_f \) and \(\delta \left(\frac{p}{p-1} \right) < N_f \).

Proposition 7.1 Let \(\omega(x_f) = |x_f|^{-\gamma}, \sigma(x_f) = |x_f|^\delta \) for \(\gamma, \delta \in \mathbb{R} \) satisfying (7. 3). For a.e. \(x_f \in \mathbb{R}^N_f \), we have

\[
\left\{ \int_{\mathbb{R}^N_f} \left(\int_{\mathbb{R}^N_f} f(x_f, y_f) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} \, dy \right)^{\frac{1}{q}} \omega^\alpha(x_f) \, dx_f \right\} \leq C_{p, q, \alpha, \gamma, \delta, |J|} N_f \left(\int_{\mathbb{R}^N_f} \left(f(x_f, x_f) \right)^{\mu} \sigma^\mu(x_f) \, dx_f \right)^{\frac{1}{\mu}}, \quad 1 < p \leq q < \infty.
\]

(7. 4)

Proof: From section 4, we have the Muckenhoupt characteristic (7. 3) implying \(\gamma, \delta \) to satisfy (2. 2)-(2. 6) with \(\alpha, \beta, N \) replaced by \(\alpha_f, |J|, N_f \) respectively. Suppose \(|J| = 1 \). **Theorem A** by Stein and Weiss [3] shows that these constraints are sufficient conditions to imply (7. 4).

Consider \(|J| \geq 2 \). By applying **Principal Lemma** in the beginning of section 5, we have \(\omega(x_f) = |x_f|^{-\gamma}, \sigma(x_f) = |x_f|^\delta \) satisfying the decay estimate (5. 2)-(5. 3) for every \(Q_f \subset \mathbb{R}^N_f \) where \(\alpha_i > N_i \left(\frac{1}{p} - \frac{1}{q} \right), i \in J \).

Let \(t \) denote the \(|J| \)-tuple \(\left(2^{-t_1}, 2^{-t_2}, \ldots, 2^{-t_{|J|}} \right) \). We have

\[
\sum_t A_{pq}^{\alpha_f, \beta_f} (t : |x_f|^{-\gamma}, |x_f|^\delta) < \infty
\]

(7. 5)

as required in (3. 14) for every \(0 < s < 1 \). \(\Box \)

Let \(\gamma > 0, \delta > 0 \) satisfy (2. 2)-(2. 3) and (2. 6). In particular, we have

\[
\omega(x) = |x|^{-\gamma} \leq |x_f|^{-\gamma} = \omega(x_f), \quad \sigma(x_f) = |x_f|^\delta \leq |x|^{\delta} = \sigma(x).
\]

(7. 6)
From (7.6), we have

$$\left\{ \int_{\mathbb{R}^n} (\omega I_{\alpha f})^q(x)dx \right\}^{\frac{1}{q}} \leq \left\{ \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} f(y) \prod_{i=1}^n \left(\frac{1}{|x_i - y_i|} \right)^{N_{1-\alpha}} dy \right)^q \omega^q(x_J)dx \right\}^{\frac{1}{q}}$$

$$\leq C_{p, q, \gamma, \delta, J, N} \left\{ \int_{\mathbb{R}^n_J} \left(\int_{\mathbb{R}^n_J} f(y_I, x_J) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_{1-\alpha}} dy_I \right)^p \omega^p(x_J)dx_J \right\}^{\frac{1}{p}}$$

by Proposition 7.1

$$\leq C_{p, q, \gamma, \delta, J, N} \left\{ \int_{\mathbb{R}^n_J} \left(\int_{\mathbb{R}^n_J} f(y_I, x_J) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_{1-\alpha}} dy_I \right) dx_I \right\}^{\frac{p}{q}}$$

by Minkowski integral inequality

$$\leq C_{p, q, \gamma, \delta, J, N} \left\{ \int_{\mathbb{R}^n_J} (f \sigma)^p(x)dx \right\}^{\frac{1}{p}}, \quad 1 < p < q < \infty.$$ \hfill (7.7)

Consider \(\gamma \geq 0, \delta \leq 0\) satisfying (2.2)-(2.4) or \(\gamma \leq 0, \delta \geq 0\) satisfying (2.2)-(2.3) and (2.5). Note that it is suffice to study one of these two cases because \(I_{a}\) is self-adjoint and

$$\|\omega I_{\alpha f}\|_{L^q(\mathbb{R}^n)} \leq \|f\sigma\|_{L^q(\mathbb{R}^n)} \quad \text{if and only if} \quad \|\sigma I_{\alpha f}\|_{L^{q'}}(\mathbb{R}^n) \leq \|\omega^{-1}\|_{L^{q'}(\mathbb{R}^n)}.$$ \hfill (7.8)

Let \(\gamma \geq 0, \delta \leq 0\). Suppose that \(f\) is supported in the region where \(|x_I| \leq |x_J|\). By using (7.6) and carrying out the same estimate (7.7), we have

$$\left\{ \int_{\mathbb{R}^n} \left(\int_{|x_I| \leq |x_J|} \frac{1}{|x_i - y_i|} dy \right)^{q} d\omega(x) \right\}^{\frac{1}{q}} \leq \left\{ \int_{\mathbb{R}^n_J} \left(\int_{\mathbb{R}^n_J} f(y_I, x_J) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_{1-\alpha}} dy_I dx_I dx_J \right)^q \omega^q(x_J)dx \right\}^{\frac{1}{q}}$$

$$\leq C_{p, q, \gamma, \delta, n} \left\{ \int_{|x_I| \leq |x_J|} (f(x_I, x_J))^p \sigma^p(x_J)dx_I dx_J \right\}^{\frac{1}{p}}$$

$$\leq C_{p, q, \gamma, \delta, n} \left\{ \int_{\mathbb{R}^n} (f \sigma)^p(x)dx \right\}^{\frac{1}{p}}.$$ \hfill (7.9)

The last inequality holds in (7.9) because \(\sigma(x_J) = |x_J|^\delta \approx |x|^\delta = \sigma(x)\) for \(|x_I| \leq |x_J|\).

On the other hand, suppose \(f\) supported in the region \(|x_I| > |x_J|\). Recall that \(\gamma \geq 0, \delta \leq 0\)
By putting together (7.10) and (7.11), we find

$$\gamma + \delta = \sum_{i=1}^{n} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) = \sum_{i \in J} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) \quad \text{by (7.1)}$$

(7.10)

and

$$\alpha_i - \frac{N_i}{p} < \delta \leq 0 \quad \text{for every} \quad i \in [1, 2, \ldots, n] = I \cup J.$$

(7.11)

By putting together (7.10) and (7.11), we find

$$0 \leq \gamma + \delta = \sum_{i \in J} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q} \right) < \frac{N_J}{q}, \quad 0 < \frac{N_J}{q} \left(\frac{p}{p-1} \right).$$

(7.12)

Proposition 7.2 Let \(\rho \left(x_J \right) = |x_J|^{-(\gamma + \delta)}, \eta \left(x_J \right) \equiv 1. \) For a.e \(x_J \in \mathbb{R}^N, \) we have

$$\left\{ \int_{\mathbb{R}^N_J} \left\{ \int_{\mathbb{R}^N_J} f(x_J, y_J) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} dy_J \right\}^q \rho^q(x_J)dx_J \right\}^{\frac{1}{q}} \leq C_p q \ a_J \ y \ |J| \ N_J \ \left(\int_{\mathbb{R}^N_J} \left(f(x_J, x_J) \right)^p \eta^p(x_J)dx_J \right)^{\frac{1}{p}}, \quad 1 < p \leq q < \infty.$$

(7.13)

Proof: Observe that (7.10)-(7.12) imply the constraints in (2.2)-(2.4) with \(\gamma, \delta, \alpha, n, N \) replaced by \(\gamma + \delta, 0, \alpha_J, |J|, N_J \) respectively.

Suppose \(|J| = 1, \) From Theorem A, it follows that (7.10)-(7.12) are sufficient conditions to imply (7.13).

Consider \(|J| \geq 2. \) By applying Principal Lemma, \(\rho(x_J) = |x_J|^{-(\gamma + \delta)}, \eta(x_J) \equiv 1 \) satisfy the decay estimate in (5.2)-(5.3) for every \(Q_J \subset \mathbb{R}^N \) where \(\alpha_i > N_i \left(\frac{1}{p} - \frac{1}{q} \right), i \in J. \)

Let \(t \) denote the \(|J| \)-tuple \(\left(2^{-t_1}, 2^{-t_2}, \ldots, 2^{-t_{|J|}} \right). \) We have

$$\sum_{t} A_{pqs}^{\alpha_J} \left(t : |x_J|^{-(\gamma + \delta)}, 1 \right) < \infty$$

(7.14)

as required in (3.14) for every \(0 < s < 1. \)

Proposition 7.3 Let \(\omega(x_J) = \sigma(x_J) = |x_J|^\delta. \) For a.e \(x_J \in \mathbb{R}^N \), we have

$$\left\{ \int_{\mathbb{R}^N_J} \left\{ \int_{\mathbb{R}^N_J} f(y_J, x_J) \prod_{i \in J} \left(\frac{1}{|x_i - y_i|} \right)^{N_i - \alpha_i} dy_J \right\}^q \omega^q(x_J)dx_J \right\}^{\frac{1}{q}} \leq C_p q \ a_J \ y \ |J| \ N_J \ \left(\int_{\mathbb{R}^N_J} \left(f(x_J, x_J) \right)^p \omega^p(x_J)dx_J \right)^{\frac{1}{p}}, \quad 1 < p \leq q < \infty.$$

(7.15)
Proof: Recall (7. 1) and (7. 11). We have

\[-\delta + \delta = 0 = \sum_{i \in I} \alpha_i - N_i \left(\frac{1}{p} - \frac{1}{q}\right), \quad -\delta < \frac{N_i}{p} - \alpha = \frac{N_i}{q} \text{ for } i \in I. \tag{7. 16}\]

Note that the constraints in (7. 16) are sufficient conditions for Theorem A on every subspace \(\mathbb{R}^N, i \in I\). The norm inequality (7. 15) can be obtained by following the iteration argument given in section 6.

\[\Box\]

Let \(\rho(x_F) = |x_F|^{\gamma + \delta}\) and \(\sigma(x_F) = |x_F|^\delta\) where \(\gamma + \delta \geq 0\) and \(\delta \leq 0\). It is clear that

\[\omega(x) = |x|^{-\gamma} \leq \rho(x_F) \sigma(x_F). \tag{7. 17}\]

We have

\[\left\{ \int_{\mathbb{R}^N} \left\{ \int_{|y_i| > |y_j|} f(y) \prod_{i=1}^N \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_j} dy \right\}^{\frac{q}{p}} \alpha^q(x) dx \right\}^{\frac{1}{q}} \leq \left\{ \int_{\mathbb{R}^N} \left\{ \int_{|y_i| > |y_j|} f(y) \prod_{i=1}^N \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_j} dy \right\}^{\frac{q}{p}} \rho^q(x_F) \sigma^q(x_F) dx \right\}^{\frac{1}{q}} \text{ by (7. 17)}\]

\[= \left\{ \int_{\mathbb{R}^N} \left\{ \int_{|y_i| > |y_j|} f(y_I, y_J) \prod_{i \in I \cup J} \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_j} dy_I dy_J \right\}^{\frac{q}{p}} \rho^q(x_F) \sigma^q(x_F) dx_I dx_J \right\}^{\frac{1}{q}} \]

\[\leq C_{p, q, \gamma, \delta, \epsilon} \left\{ \int_{\mathbb{R}^N} \left\{ \int_{|y_i| > |y_j|} f(y_I, x_J) \prod_{i \in I} \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_j} dy_I \right\}^{\frac{q}{p}} \rho^q(x_F) \sigma^q(x_F) dx_I dx_J \right\}^{\frac{1}{q}} \text{ by Proposition 7.2} \]

\[\leq C_{p, q, \gamma, \delta, \epsilon} \left\{ \int_{\mathbb{R}^N} \left\{ \int_{|y_i| > |x_j|} f(y_I, x_J) \prod_{i \in I} \left(\frac{1}{|x_i - y_i|}\right)^{N_i - \alpha_j} dy_I \right\}^{\frac{q}{p}} \rho^q(x_F) \sigma^q(x_F) dx_I dx_J \right\}^{\frac{1}{q}} \text{ by Minkowski integral inequality} \]

\[\leq C_{p, q, \gamma, \delta, \epsilon} \left\{ \int_{|x_i| > |x_j|} \left(f(x_I, x_J) \right)^p \sigma^p(x_F) dx_I dx_J \right\}^{\frac{1}{p}} \text{ by Proposition 7.3} \]

\[\leq C_{p, q, \gamma, \delta, \epsilon} \left\{ \int_{\mathbb{R}^N} \left(f(x) \right)^p dx \right\}^{\frac{1}{p}}, \quad 1 < p \leq q < \infty. \tag{7. 18}\]

The last inequality holds because \(\sigma(x_F) \approx \sigma(x)\) for \(|x_F| > |x|\).

Acknowledgement:

I am deeply grateful to my advisor Elias M. Stein for those stimulating talks and unforgettable lectures.
References

[1] G. H. Hardy and J. E. Littlewood, *Some Properties of Fractional Integrals*, Mathematische Zeitschrift 27: no.1, 565-606, 1928.

[2] S. L. Sobolev, *On a Theorem of Functional Analysis*, Matematicheskii Sbornik 46: 471-497, 1938.

[3] E. M. Stein and G. Weiss, *Fractional Integrals on n-Dimensional Euclidean Space*, Journal of Mathematics and Mechanics 7: 503-514, 1958.

[4] E. M. Stein, *Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals*, Princeton University Press, 1993.

[5] B. Muckenhoupt and R. L. Wheeden, *Weighted Norm Inequality for Fractional Integrals*, Transactions of the American Mathematical Society 192: 261-274, 1974.

[6] E. T. Sawyer and R. L. Wheeden, *Weighted Inequalities for Fractional Integrals on Euclidean and Homogeneous Spaces*, American Journal of Mathematics 114: no. 4, 813-874, 1992.

[7] E. T. Sawyer and Z. Wang, *The Product Stein-Weiss Theorem*, Studia Mathematica 256: 259-309, 2021.

[8] C. Fefferman and B. Muckenhoupt, *Two Nonequivalent Conditions for Weight Functions*, Proceedings of the American Mathematical Society 45: 99-104, 1974.

[9] R. R. Coifman and C. Fefferman, *Weighted Norm Inequalities for Maximal Functions and Singular Integrals*, Studia Mathematica 51: 241-250, 1974.

[10] C. Perez, *Two Weighted Norm Inequalities for Riesz Potentials and Uniform L^p-Weighted Sobolev Inequalities*, Indiana University Mathematics Journal 39: no.1, 31-44, 1990.

[11] A. Cordoba and R. Fefferman, *A geometric Proof of the Strong Maximal Theorem*, Annals of Mathematics 102: no.1, 95-100, 1975.

[12] R. Fefferman, *Harmonic Analysis on Product Spaces*, Annals of Mathematics 126: no.1, 109-130, 1987.

[13] R. Fefferman, *Bounded Mean oscillation on the polydisc*, Annals of Mathematics 110: no.2, 395-406, 1979.

[14] R. Fefferman and E. M. Stein, *Singular Integrals on Product Spaces*, Advances in Mathematics 45: no.2, 117-143, 1982.

[15] D. Müller, F. Ricci, E. M. Stein, *Marcinkiewicz Multipliers and Multi-parameter structures on Heisenberg (-type) group, I*, Inventiones Mathematicae 119: no.2, 199-233, 1995.

[16] S. Y. A. Chang and R. Fefferman, *The Calderón-Zygmund Decomposition on Product Domains*, American Journal of Mathematics 104: no.3, 455-468, 1982.

[17] J. L. Journé, *Calderón-Zygmund Operators on Product Spaces*, Revista Mathematica Iberoamericana 1: no.3, 55-91, 1985.

[18] J. Pipher, *Journé’s Covering Lemma and Its Extension to Higher Dimensions*, Duke Mathematics Journal 53: no.3, 683-690, 1986.