Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge

Alina Dima, Ciprian Jurcut, François Chasset, Renaud Felten and Laurent Arnaud

Abstract: The antimalarial hydroxychloroquine (HCQ) has demonstrated several crucial properties for the treatment of systemic lupus erythematosus (SLE). Herein, we reviewed the main HCQ pharmacologic features, detailed its mechanism of action, and summarized the existing guidelines and recommendations for HCQ use in rheumatology with a systematic literature search for the randomized controlled trials focused on lupus. HCQ has been shown to decrease SLE activity, especially in mild and moderate disease, to prevent disease flare and to lower the long-term glucocorticoid need. The numerous benefits of HCQ are extended to pregnancy and breastfeeding period. Based on cohort studies, antithrombotic and metabolic HCQ’s effects were shown, including lipid-lowering properties, which might contribute to an improved cardiovascular risk. Moreover, early HCQ use in antinuclear antibodies positive individuals might delay the progression to SLE. Finally, HCQ has a significant favorable impact on long-term outcomes such as damage accrual and mortality in SLE. Based on these multiple benefits, HCQ is now the mainstay long-term treatment in SLE, recommended by current guidelines in all patients unless contraindications or side effects. The daily dose associated with the best compromise between efficacy and safety is matter of debate. The concern regarding retinal toxicity rather than proper efficacy data is the one that dictated the daily dosage of ≤5mg/kg/day actual body weight currently agreed upon.

Keywords: antimalarials, cutaneous lupus erythematosus, hydroxychloroquine, immunomodulatory, lupus nephritis, systemic lupus erythematosus

Background
Hydroxychloroquine (HCQ) is an antimalarial drug used initially for the treatment of Plasmodium parasitic infection, from where the name of the drug class came from. Beyond its initial indication as antimalarial, HCQ has been used in autoimmune and infectious diseases, as well as in metabolic or neoplastic disorders. But, as recently reviewed, clear benefits were reported mainly in systemic lupus erythematosus (SLE).

Thus, HCQ is now one of the most valuable therapies in SLE, showing multiple benefits over several outcomes associated with the disease itself, but also to its related comorbidities. HCQ is an inexpensive, generally available, well-tolerated immunomodulator. For more than a decade, different authors emphasized that all patients with SLE should be given HCQ and the latest guidelines’ recommendations also stated the HCQ importance in SLE unless there are contraindications or side effects.

The history of HCQ is supposed to start circa 1600 with the Incas in Chile, from whom the chincha bark properties were learned by the Jesuits. The main alkaloids of quinine and cinchonine were isolated in 1820 and subsequently
chloroquine (CQ) was obtained much later in 1934.12 HCQ sulfate is the hydroxylated analogue of CQ, synthesized in 1946. Due to a better safety profile, HCQ was given since 1955 as an alternative to CQ.12,13

For SLE, the first report of the antimalarials use dates back to 1894, regarding the improvement of cutaneous lupus lesions with quinine.14,15 In the United States, HCQ was approved for SLE in 1955 for symptoms like fatigue, rashes, joint pain, and mouth sores16 and, with specific approval and license characteristics for each country, is now among the main drugs used for SLE treatment worldwide.

Pharmacology of hydroxychloroquine

Molecular structure
The knowledge about the pharmacokinetics of antimalarials is not completely understood and still debated. These pharmacokinetic characteristics are complex17–19 due to the large volume of distribution,19,20 significant tissue binding,20–22 and long terminal elimination half-life.18,19,23,24 Indeed, important differences have been observed between HCQ pharmacokinetic parameters as evidenced recently by its use in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19).25 Historically, terminal elimination half-lives were considered very long, 40–50 days for HCQ18,23 and up to 60 days for CQ.19,24 More recent studies suggest a shorter half-life of about 5 days.25,26 A long HCQ half-life can be attributed to extensive tissue uptake rather than to an intrinsic inability to clear the drug. The expected delay in the attainment of steady-state concentrations (3–4 months) may be in part responsible for the slow therapeutic response observed with HCQ.27 Renal clearance is an important consideration for both drugs as reduced clearance increases the bioavailability28 and subsequently the related side effects.19,20,24 Finally, dose–response relationships and toxicity thresholds have not yet been fully defined. The main pharmacodynamic properties of antimalarials are shown in Table 1.

Galenic and commercial presentations
HCQ is commercialized as 200 mg HCQ sulfate tablets corresponding to 155 mg HCQ base for each tablet.28 The daily dosage of HCQ varies accordingly to its indication,29 with the American Academy of Ophthalmology (2016-AAO) recommending no more than 5 mg/kg/day of real body weight in SLE to decrease retinopathy occurrence,30 recommendation that has been recently reinforced by agreement of four medical societies.31 The indication is based on an ophthalmological study by Melles and Marmor32 of nearly 2500 patients in whom daily HCQ intake below 5 mg/kg/day of regular body weight was associated with a low risk of toxicity, <2% within the first 10 years of use. However, some authors highlighted that in that study, the dose of HCQ was based on pharmacy refill information and not on prescribed dose.33 Dose adjustments with 50% reduction of posology are needed for patients with renal impairment and lower than 30 ml/min filtration rate.34 For patients weighting more than 80 kg, a maximum daily dose of 400 mg is recommended in SLE. Doses for CQ were established only from extrapolation of HCQ and those lower than 2.3 mg/kg/day were considered safe.30,35

As the terminal elimination half time is not short,36 dosing can be adjusted by alternate day regimens, such as 200 mg on the first day and 400 mg on the second day, yielding a mean dose equivalent to 300 mg per day.32 Based on recent surveys, the most common daily dosage for HCQ is 400 mg daily.37,38

Mechanism of action
The mechanisms of action for HCQ are complex and still not completely understood (see Table 2 and Figure 1). Because of its high lipophilicity, lysosmotropism, and pH39,40 HCQ can pass through cell membranes and accumulate into lysosomes40 where it disrupts key important cellular functions via the inhibition of the Toll-like receptors (TLRs)41–43 and of the Cyclic GMP-AMP synthase–Stimulator of Interferon Genes (cGAS-STING) pathway.44 The main effects include the inhibition of enzyme and cytokine release,45–47 receptor recycling, plasma membrane repair, cell signaling, apoptosis,58–50 autophagy,39,51 antigen presentation,52 T-cell polarization,53–56 inhibition of the natural killer (NK) cells,57,58 energy metabolism,40 and increases photoprotection against ultraviolet (UV)-A and B.59–65
A systematic search for randomized controlled trials (RCTs) regarding HCQ treatment in SLE was performed using the medical subject headings (MeSH) terms ‘Hydroxychloroquine’ AND ‘Lupus Erythematosus, Systemic’ AND ‘Clinical Trials, Randomized’. The search was performed on Excerpta Medica/EMBASE, MEDLINE via PubMed, Cochrane Library, and Thomson Reuters’ Web of Science Core Collection using the same combination of relevant keywords (see Supplemental File 1). The four databases were systematically searched from inception to 1 February 2021, without any language, geographic, or type of article restrictions. The references and citations of the articles identified were also screened.

Reports not referring to HCQ or CQ use in SLE, not involving human subjects, not including adult cases, and presenting other types of studies than

| Efficacy in systemic lupus erythematosus |

| Table 1. Main pharmacodynamic properties of antimalarials. |

	Hydroxychloroquine (HCQ)	Chloroquine (CQ)	Quinacrine
Chemical structure	![HCQ structure](image)	![CQ structure](image)	![Quinacrine structure](image)
Chemical formula	C_{18}H_{26}ClN_{3}O	C_{18}H_{26}ClN_{3}	C_{22}H_{30}ClN_{3}O
Way of administration	Oral intake	Oral intake	Oral intake
Absorption	In upper intestinal tract after a 200 mg oral dose, HCQ reached a C\text{max} of 129.6 ng/ml with a T\text{max} of 3.26 h in the blood	In upper intestinal tract oral CQ reaches a C\text{max} of 65–128 µg/L with a T\text{max} of 0.5 h	In upper intestinal tract more details not available
Bioavailability	67–74%	67–100%	Not available
Volume of distribution	5522 liters from blood and 44,257 liters from plasma	200–800 L/kg	Not available
Protein binding	50%	46–74%	80–90%
Metabolism	In the liver, N-dealkylated by CYP3A4 to the active metabolite desethylhydroxychloroquine, as well as the inactive metabolites desethylchloroquine and bidesethylchloroquine	In the liver, N-dealkylated primarily by CYP2 C8 and CYP3A4 to N-desethylchloroquine N-dealkylated to a lesser extent by CYP3A5, CYP2D6, and to an ever lesser extent by CYP1A1	Not available
Elimination	40–50% of HCQ is excreted renally, while only 16–21% of a dose is excreted in the urine as unchanged drug 5% of a dose is sloughed off in skin and 24–25% is eliminated through the feces	Predominantly eliminated in the urine, renal excretion: 65–70%, 50% of a dose is recovered in the urine as unchanged CQ, with 10% of the dose recovered in the urine as desethylchloroquine	Less than 11% is eliminated in the urine daily
Elimination half-life	Historically, 40–50 days (chronic use) A 200 mg oral dose of HCQ: 537 h to 50 days (blood) or 32 days or 123 days in plasma	6–60 days (mean of 20 days)	5–14 days
Table 2. Mechanisms of action of hydroxychloroquine.

HCQ/CQ Mechanisms of action	Molecular mechanism(s) demonstrated	Potential consequences(s) in SLE pathogenesis	References
Inhibition of TLR-7 and TLR-9	Suppression of endosomal TLR activation direct binding of antimalarials to nucleic acids rather than inhibition of endosomal acidification	Inhibition of IFN-I production by pDC	Lamphier et al.\(^{43}\), Kužnik et al.\(^{42}\), Gardet et al.\(^{43}\)
Inhibition of cyclic GMP-AMP synthase (cGAS) activity	Inhibition of (cGAS)-STING pathway	Inhibition of IFN-I production	An et al.\(^{44}\)
Inhibition of autophagy	Blockade of autophagosome fusion with the lysosome	Inhibition of MHC class II-mediated autoantigen presentation by antigen-presenting cells to CD4+ T cells	Levy et al.\(^{51}\), Schrezenmeier and Dörner\(^{29}\)
Inhibition of antigen presentation	CQ has been shown to inhibit presentation of antigen in vitro by affecting invariant chain dissociation from MHC class II	Inhibition of MHC class II-mediated autoantigen presentation by antigen-presenting cells to CD4+ T cells	Humbert et al.\(^{52}\)
Inhibition of inflammatory cytokine production and angiogenesis	Decrease mRNA expression of IL-1β, IL-6, and TNF-α in CLE skin lesions Decrease VEGF expression in CLE skin lesion	Decrease of local inflammation Decrease of mononuclear cellular infiltrate in the skin Inhibition of angiogenesis	Wozniacka et al.\(^{45}\), Lesiak et al.\(^{46}\), Zeidi et al.\(^{47}\)
Photoprotection against UVA and UVB	Increase of c-Jun mRNA expression Decrease mRNA expression of IL-1β, IL-6, and TNF-α in CLE skin lesions Decrease UV-induced ICAM-1 expression in keratinocytes CQ inhibits lipid peroxidation and decrease UVB and induces phospholipase A2 activity in skin Decrease of the number of cutaneous HLA-DR+ and CD1a+ cells after UVB irradiation	Decrease of local inflammation, apoptosis, and necrosis of keratinocytes Decrease of the release of skin nucleic acids Decrease of the mononuclear cellular infiltrate in the skin	Nguyen et al.\(^{45}\), Sjolin-Forsberg et al.\(^{59}\), Wozniacka et al.\(^{44}\), Wozniacka et al.\(^{60}\), Bondeson and Sundler\(^{61}\), et al. Tahir et al.\(^{52}\), Segal-Eiras et al.\(^{62}\)
Decrease NET formation and circulating DNA	HCQ inhibits NETs formation in vitro Circulating DNA significantly decreases after CQ treatment	Decrease of circulating nucleic acids Inhibition of IFN-I production Decrease of LL37 formation and inflammasome activation Decrease of MMP-9 and reduced endothelial cell death	Smith et al.\(^{49}\), Smith and Kaplan\(^{49}\), Cepika et al.\(^{50}\)
Change in T-cell polarization	HCQ decreases Th17-related cytokines HCQ decreases Th22-related cytokines HCQ blood concentrations correlate negatively with the percentage of CD45RO+ CD4+ cells	Decrease of mononuclear cellular infiltrate in the skin Decrease of survival and proliferation of human B cells as well as the differentiation of B cells into antibody-producing cells Recruitment and activation of inflammatory cells with tissue damage Inhibition of angiogenesis	Silva et al.\(^{53}\), Zhao et al.\(^{54}\), Shin et al.\(^{55}\), Sailer et al.\(^{56}\)
Inhibition of NK cells	Decrease proliferation, cytotoxicity, and cytokine production of NK cells	Possible deleterious effects of NK cells in SLE: tissue infiltration, proinflammatory cytokine production: IFNγ, IL-15	Spada et al.\(^{57}\), Fox\(^{58}\)

\(^{cGAS, cyclic~GMP-AMP~synthase;~CLE,~cutaneous~lupus~erythematosus;~CQ,~chloroquine;~DC,~dendritic~cells;~HCQ,~hydroxychloroquine;~ICAM,~intercellular~adhesion~molecule~-1;~IFN,~interferon;~IL,~interleukin;~MHC,~major~histocompatibility~complex;~MMP,~matrix~metalloproteinase;~NETs,~neutrophil~extracellular~traps;~NK,~natural~killer;~SLE,~systemic~lupus~erythematosus;~STING,~stimulator~of~interferon~genes;~Th,~T~helper;~TLRs,~Toll-like~receptors;~TNF,~tumor~necrosis~factor;~VEGF,~vascular~endothelial~growth~factor.\)

RCTs were excluded. A total of eight RCTs were identified in the initial search with one more identified after the references and citations screen (see Supplemental Figure 1–Flowchart Diagram, Supplemental Table 1). For each RCT included, the following information was extracted: study design, drug posology, time of follow-up, study’s endpoints, proven efficacy, and side effects noted (as presented in Supplemental Table 2a, 2b).

To the best of our knowledge, the first RCT involving antimalarial therapy in SLE was...
published in 1991 by Canadian Hydroxychloroquine Study Group and reported a 2.5-fold increase in the risk of mild flare after HCQ withdrawal in the placebo group. In 1998, Tsakonas et al. presented an extension phase in 1991 and evaluated the risk of major flare after HCQ withdrawal. The endpoint considered, namely flare, subtype of flare, and hospitalization, were all improved under long-term HCQ therapy; however, the results did not reach statistical significance most probably due to the small sample size.

Other RCTs have also demonstrated improvement of arthralgia even if without a significant impact over arthritis, prevention of SLE flares and reduction of the corticosteroids dose, improvement of lipid metabolism with decrease in total cholesterol and triglycerides, while increase in HDL-cholesterol, and a safety profile of administration during pregnancy. Also, the PLUS (Plaquenil Lupus Systemic) failed to demonstrate that adjusted HCQ dosing schedules targeting HCQ ≥1000 ng/ml might reduce the occurrence of SLE flares. Most recently, Zanetti et al. tested the efficacy of lower HCQ doses (2–3 mg/kg/day) and found similar 6- and 12-month flare rates between groups.

For cutaneous lupus erythematosus (CLE), the first RCT by Kraak et al. in 1965 tested HCQ up to a maximum posology of 1200 mg daily. Furthermore, the efficacy of antimalarials has been tested in RCTs against placebo, acitrecin, or clofazimine in RCTs showing proven efficacy in RCT with better safety profile than clofazimine or acitrecin.

Observational data for hydroxychloroquine in systemic lupus erythematosus

Currently published RCTs do not cover the whole spectrum of SLE features. Many of the data regarding HCQ benefits are from prospective SLE cohorts, such as the Hopkins Lupus Cohort, LUMINA (Lupus in Minorities: Nature versus Nurture) Cohort, Toronto Lupus Cohort, or GLADEL (multinational Latin American lupus) Cohort (see Table 3; Supplemental Table 3).

Antimalarials: chloroquine diphosphate (CDP) or hydroxychloroquine sulfate (HCQ). The most significant HCQ effect is the control of SLE disease activity itself, which implies amelioration of active clinical involvements, decrease in serum markers, decrease in activity scores, prevention of disease flares, and sustained remission on long-term use.
Table 3. Research for antimalarials in systemic lupus erythematosus.

Effects	Randomized controlled trials	Observational studies	Systematic reviews
Decrease of disease severity	Propective study, 25 patients95	Prospective study, 25 patients95	Databases: Medline and Embase13
	Prospective LUMINA Cohort, 256 patients94	Prospective LUMINA Cohort, 256 patients94	
	Cross-sectional study, 57 patients96	Cross-sectional study, 57 patients96	
	Longitudinal study, LUMINA cohort, 35 patients95	Longitudinal study, LUMINA cohort, 35 patients95	
	Prospective study, 41 SLE patients77	Prospective study, 41 SLE patients77	
	Observational study, 28 SLE pregnant women98	Observational study, 28 SLE pregnant women98	
	Retrospective study, 165 SLE patients79	Retrospective study, 165 SLE patients79	
	Prospective study, 101 SLE patients70	Prospective study, 101 SLE patients70	
	Prospective Hopkins Lupus Cohort, 916 patients100	Prospective Hopkins Lupus Cohort, 916 patients100	
Prevent of disease flare	RCT, NCT03122431: 73 stable LN patients71	Retrospective, matched with themselves, 43/209 patients102	Databases: Medline and Embase13
	RCT, NCT00413361: 573 patients72	Retrospective, matched with themselves, 43/209 patients102	
	RCT, 24 SLE patients stable disease14	Retrospective, matched with themselves, 43/209 patients102	
	RCT, 47 clinically stable SLE patients64	Retrospective, matched with themselves, 43/209 patients102	
	RCT, 20 patients lupus pregnancy71	Retrospective, matched with themselves, 43/209 patients102	
Cutaneous lupus	RCT, NCT01551069: 103 patients Cutaneous Lupus70	Retrospective, matched with themselves, 43/209 patients102	Databases: Medline, Embase, Scopus, Cochrane14
	RCT, 20 patients lupus pregnancy71	Retrospective, matched with themselves, 43/209 patients102	
Adjuvant for lupus nephritis remission	RCT, 71 SLE patients mild SLE14	Prospective, Hopkins Lupus Cohort, 29 patients79	Databases: Medline and Embase13
	RCT, 24 SLE patients stable disease14	Retrospective study, 35 patients115	
		Retrospective study, 206 patients lupus nephritis16	
		Prospective LUMINA Cohort, 256 patients84	
		Retrospective study, 90 patients with lupus nephritis17	
Improvement of articular complaints	RCT, 71 SLE patients mild SLE14	Prospective, Hopkins Lupus Cohort, 29 patients79	Databases: Medline and Embase13
	RCT, 24 SLE patients stable disease14	Retrospective study, 35 patients115	
		Retrospective study, 206 patients lupus nephritis16	
		Prospective LUMINA Cohort, 256 patients84	
		Retrospective study, 90 patients with lupus nephritis17	
Decrease disease activity/\prevent flare during pregnancy	RCT, 20 patients lupus pregnancy71	Prospective study, 60 patients – 103 pregnancies118	Databases: Medline and Embase3
		Prospective, Hopkins Lupus Pregnancy Cohort, 282 [163 + 56 + 68] pregnancies80	Databases: Medline and Embase13
		Retrospective study, 176 patients – 396 pregnancies119	Databases: Medline and Embase13
		Retrospective study, 179 pregnancies120	Databases: Medline and Embase13
Protection against preeclampsia	Retrospective cohort, 151 pregnancies121	Retrospective cohort, 151 pregnancies121	Databases: Medline and Embase3
		Prospective cohort, 316 pregnancies122	Databases: Medline and Embase13
		114 HCQ-exposed pregnancies123	
Prevention of fetal growth restriction and prematurity	Observational study, 28 SLE pregnant women98	Observational study, 28 SLE pregnant women98	Databases: Medline and Embase13

(Continued)
Effects	Randomized controlled trials	Observational studies	Systematic reviews
Reducing antiphospholipid antibodies persistence	Retrospective study, 90 patients – 17 patients with persistent LA	Prospective cohort, 92 patients; Retrospective study, 272 patients; Prospective cohort, 232 patients; Prospective cohort, 67 SLE-aPL patients; Retrospective study, 206 patients lupus nephritis; Longitudinal, cross-sectional, 144 patients; Prospective, Tromso Lupus cohort, 158 patients; Retrospective study, 1930 patients; Nested case–control study, 54 SLE cases versus 108 controls; Prospective Hopkins Cohort, 1795 SLE patients, 193 thrombotic events, 10,508 person-years; Prospective study, 189 SLE patients; Prospective Hopkins Cohort, 739 patients	Databases: Medline and Embase
Reduce the risk of thrombosis	Prospective cohort, 92 patients; Retrospective study, 272 patients; Prospective cohort, 232 patients; Prospective cohort, 67 SLE-aPL patients; Retrospective study, 206 patients lupus nephritis; Longitudinal, cross-sectional, 144 patients; Prospective, Tromso Lupus cohort, 158 patients; Retrospective study, 1930 patients; Nested case–control study, 54 SLE cases versus 108 controls; Prospective Hopkins Cohort, 1795 SLE patients, 193 thrombotic events, 10,508 person-years; Prospective study, 189 SLE patients; Prospective Hopkins Cohort, 739 patients	Retrospective study, 90 patients – 17 patients with persistent LA	Databases: Medline and Embase
Lower fasting glucose/diabetes mellitus protection	Cross-sectional study, 149 SLE patients	Cross-sectional, 155 patients [SLE + AR]; Case-control, 18 SLE patients; Longitudinal Cohort – John Hopkins, 264 patients; Retrospective study, 382 patients; Cross-sectional study, 123 patients; Cross-sectional study, 90 subjects – 60 SLE patients; Cross-sectional study, 86 patients; Prospective study, 30 subjects – 20 SLE patients; Cross-sectional study, 185 outpatients; Prospective – Toronto Lupus Cohort – 1260 patients; Case-control, 100 lupus nephritis patients; Cross-sectional study, 24 patients; Prospective Hopkins Cohort, 51 patients, over 229 visits; Cross-sectional study, 48 patients	Databases: PubMed, Embase, Cochrane, Embase, PubMed, Embase, Web of Science, Medline/Ovid, Google Scholar, CINAHL, Cochrane, Embase, PubMed, Medline and Embase, PubMed, Medline and Embase
Improving lipidic profile	RCT, 72 SLE patients; RCT, 17/19 SLE female patients	Cross-sectional study, 221 with diabetes mellitus out of 8628 SLE patients	Databases: PubMed, Embase, PubMed, Medline and Embase, PubMed, Medline and Embase, PubMed, Medline and Embase
Reduction of atherosclerosis	Pittsburgh Lupus Registry, 220 women	Case-control, 18 SLE patients; Longitudinal Cohort – John Hopkins, 264 patients; Retrospective study, 382 patients; Cross-sectional study, 123 patients; Cross-sectional study, 90 subjects – 60 SLE patients; Cross-sectional study, 86 patients; Prospective study, 30 subjects – 20 SLE patients; Cross-sectional study, 185 outpatients; Prospective – Toronto Lupus Cohort – 1260 patients; Case-control, 100 lupus nephritis patients; Cross-sectional study, 24 patients; Prospective Hopkins Cohort, 51 patients, over 229 visits; Cross-sectional study, 48 patients	Databases: Medline and Embase
Decrease the risk of infections	Retrospective study, 206 patients lupus nephritis; A nested case–control study, Lupus-Cruces cohort, 83/166 patients; Prospective cohort, Northern California, 3030 patients; Retrospective study, Spanish Rheumatology Society Lupus Registry [RELESSER], 3658 patients; Case–control study, 65 SLE patients versus 130 controls; Prospective RELES Cohort, 282 SLE patients; Retrospective study, 339 patients; Inception cohort study GLADEL, 1243 patients; Population-based study, 24343 SLE patients		Databases: PubMed, Embase, Cochrane

Table 3. (Continued)
Effects	Randomized controlled trials	Observational studies	Systematic reviews
Improvement of bone mineral density	Prospective study, 92 patients¹⁶²	Prospective study, 34 SLE patients¹⁶³	Databases: Medline and Embase¹³
Protection against osteonecrosis	Nested matched case–control study, LUMINA cohort¹⁶⁶		Databases: Medline and Embase¹³
Decrease the corticosteroids need	RCT, 20 patients lupus pregnancy⁷¹	Retrospective, matched with themselves, 43 patients, 76 matched years¹⁰³	
Protection against accrual damage	Prospective Israeli Cohort, 151 patients¹⁴⁴	Prospective LUMINA Cohort, 256 lupus nephritis⁸⁴	Databases: Medline and Embase¹³
Protection against neoplasia	Prospective cohort, 235 patients¹⁶⁸		
Reducing SLE-related hospitalization	Retrospective study, 339 patients¹⁵⁹	Retrospective study, 526 patients¹⁶⁹	Databases: Medline and Embase¹³
Improvement of survival	Case-control, 76 matched pairs¹⁷¹	Case-control study – LUMINA L cohort, 608 patients⁹⁷	Databases: Medline and Embase¹³
Delays the evolution to SLE	Retrospective study, 130 military personal¹⁷⁹	Nested case–control study, GLADEL cohort, 265/530 patients⁸⁴	Databases: Medline and Embase¹³

CC, case-control; CLE, cutaneous lupus erythematosus; CS, cross-sectional; DLE, discoid lupus erythematosus; DS, descriptive studies; GLADEL, Grupo Latino Americano de Estudio del Lupus; HCQ, hydroxychloroquine; LAC, lupus anticoagulant; LN, lupus nephritis; LUMINA, Lupus in Minorities: Nature vs Nurture; PC, prospective cohort; RA, retrospective analysis; RC, retrospective cohort; RCT, randomized controlled trial; SCLE, subacute cutaneous lupus erythematosus; SLiCC, Systemic Lupus International Collaborating Clinics.
Therefore, decrease in disease activity,84,85,95–101 prevention of disease flares,78,100,103–105 and improvement of proinflammatory cytokine profiles85,95,97,104,180,181 have been highlighted with HCQ.

Moreover, delay of the immune clinical spectrum to overt SLE was described in antinuclear antibodies (ANA)-positive patients.94,179 A recent study showed that HCQ might suppress early mediators like the B cell activating factor (BAFF) and interferon (IFN), lowering the IFN-\(\gamma\)-induced protein 10 (IP-10) levels in incomplete or new-onset SLE, supporting the hypothesis that HCQ could influence disease progression.182

In observational studies, HCQ has been shown beneficial for cutaneous lupus,95,102,106–112 musculoskeletal involvement,99 and various other key manifestations of SLE. The management of lupus nephritis (LN) remains suboptimal183 and HCQ is adjuvant therapy to the immunosuppressive regimens in obtaining remission.79,84,115–117

HCQ decreases disease activity and prevents SLE flare during pregnancy,80,118,119,122 and furthermore, there are reports sustaining a possible protective role for preeclampsia,120–123 fetal growth restriction, and prematurity.98 Current data regarding HCQ efficacy during pregnancy are conclusive, however for other outcomes the results are contradictory. Thus, there are reports that did not found the impact of HCQ on pregnancy loss, preterm delivery or intrauterine growth retardation,119 or upon miscarriage, stillbirth, pregnancy loss, or congenital abnormality rates.80

For neonatal lupus, one retrospective study that analyzed data of a historical cohort counting more than 200 pregnancies in SLE patients with positive anti-Ro/SS-A antibodies found HCQ benefits over recurrence and outcome of the neonatal lupus.184 In another research, HCQ was not identified as independent protective factor for neonatal lupus after adjusting for confounders like age, race, antibodies status, corticosteroids, and prior cardiac-neonatal lupus risk, even if the neonatal lupus cases were less frequent in pregnancies treated by HCQ (14\% \textit{versus} 37\%).185

Despite potential benefits of HCQ during pregnancy, adherence seems to be low. A population-based registry identified 376 pregnancies in which disconnection of antimalarials occurred in 16.7\% of cases in the year prior to pregnancy, 29.8\% in the first trimester, 9.7\% in the second, and 26.0\% in the third.186

Importantly, HCQ passes the placenta and has fetal serum concentrations equal to those measured in the maternal blood. However, HCQ use during pregnancy80,119,120,123,187–189 and breastfeeding is considered safe.5,190 During lactation, HCQ passes in the maternal milk, but with lower concentrations than in maternal blood, estimated to be 0.2 mg/kg/day.5

There are reports of CQ overdose in children and, by parallel, cautions are related to HCQ. Antimalarials might be toxic in children in relatively small doses and patients should be counseled to keep these drugs out of children.5

SLE disease itself is a risk factor for thrombosis. Also, about 20\% of patients with SLE have antiphospholipid syndrome (APS).191 Antimalarials might reduce the antiphospholipid antibodies titer124 and the risk of thrombosis,116,125–135 but not all published studies reported a protective effect over thrombosis.192–194

HCQ has also some metabolic effects by lowering fasting glucose,136 yielding protection against diabetes,137 and improvement of the lipids profile in most81,90,138–147 but not all195,196 studies. However, the efficacy of HCQ upon atherosclerosis is more controversial.151,152,197,198

It is to remember that smoking might inhibit HCQ effects7,109,110,112 and determine a twofold lower response of cutaneous involvement under HCQ;199 counseling for smoking cessation is therefore important. Possible anti-neoplastic properties of HCQ have been poorly assessed in SLE.168

HCQ might inhibit the conversion of 25-(OH)-vitamin D to 1,25-(OH)\textsubscript{2}-vitamin D.200 However, data regarding the impact of HCQ on bone metabolism in SLE remain controversial.86,162,163,201,202 Many data suggest that HCQ has a protective role against infections92,116,154–160 and severe events included92,154–156 in SLE.

Corticosteroids are widely prescribed, but also important determinants of cardiovascular, gastrointestinal, and metabolic comorbidities as well as of accrual damage and impaired quality of life in SLE. Thus, another important role for HCQ in
SLE is that of corticosteroid-sparing agent.80,84,103 However, as for other outcomes, there are also studies with negative results.102

SLE is a severe disease with survival rates at 5 years of only 50\% in early studies, which now exceed 90\%.203 While mortality in early stages is usually related to severe organ involvement and SLE disease activity itself, in late, long-standing SLE, accrual damage, and cardiovascular risk are the main determinants. In spite of some contrary results,204 many studies reported HCQ protective effects for accrual damage3,83,84,87–89,164–167 and HCQ has also been associated with shorter SLE-related hospitalization length.159,169,170 And last, but not least, HCQ is one of the few treatments that has been shown to improve survival rates in SLE.87,91,93,116,127,171–178

Therefore, based on its wide spectrum of effects, HCQ should probably be considered a possible confounder in all research involving patients with SLE.

\textbf{Systematic reviews and meta-analyses on hydroxychloroquine use in systemic lupus erythematosus}

The first systematic review regarding HCQ in SLE included a total of 95 studies published between 1982 and 2007.13 All studies which considered disease activity as the main outcome (11 articles) found positive results, with more than 50\% reduction in disease activity in most reports and a decrease in corticosteroid needs in three studies;13 however, the risk of severe SLE flare was reduced only with borderline significance.13 Also, the HCQ benefits as adjuvant therapy for LN was also confirmed.13 The potential benefits upon accrual damage and survival were reported in a limited number of studies.13 This systematic review was continued by another one using a similar methodology for the 2007–2012 period.3 The authors reported further evidence thrombosis prevention, increased survival, control of disease activity, lipid profile improvement, and prevention of damage accrual3 (see Supplemental Table 4).

The protective effect of HCQ against infections was further confirmed in two systematic reviews and meta-analysis.153,161 Also, two meta-analyses reported improvement of the lipid profile under HCQ in SLE.149,150 For cutaneous involvement, Fairley \textit{et al.}114 reported in one systematic review only moderate HCQ efficacy.

A 2018 meta-analysis of observational data failed to identify any significant beneficial effect of HCQ over fetal growth restriction and prematurity. However, the authors mentioned that these results should be regarded with caution due to lack of RCTs, high heterogeneity among reported data, and of numerous missing data like those on the antiphospholipid antibodies status.205

\textbf{Overview of guidelines}

We reviewed here systematically the European League against Rheumatism (EULAR) recommendations referring to the use of HCQ. We identified all EULAR guidelines (www.eular.org) for the last 5 years and searched for HCQ-related paragraphs using the terms ‘Hydroxychloroquine’ and the respective abbreviation ‘HCQ’. All paragraphs found were extracted (see Supplemental Table 5) and data were further analyzed and summarized (see Supplemental Figure 2).

From the total 30 EULAR management guidelines published since 2016, 10 referring to HCQ were identified, and main indications were noted (see Supplemental Table 6). Recommendations addressing specifically to HCQ were found in seven guidelines8,34,206–210 while in others, HCQ was included as part of Disease Modifying AntiRheumatic Drugs (DMARDs).211–213 The EULAR Guidelines recommendations referring mainly to SLE and related conditions are summarized in Figure 2.

Tunnincliffe \textit{et al.}214 and Tamirou \textit{et al.}215 reviewed SLE recommendations published up to 2014 and between 2004 and 2017, respectively, and identified not least than 14 and 23, respectively, original clinical guidelines or original statements with focus on SLE.

The 2020 American College of Rheumatology (ACR) Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases190 advise for HCQ use during pregnancy and breastfeeding, in cases with positive anti-Ro/SS-A and anti-La/SS-B antibodies as well as additional or alternative therapy in SLE women with refractory obstetric APS. HCQ continuation is strongly recommended in men who are planning to father a pregnancy.190 The 2012 ACR Guidelines for Screening, Treatment, and Management of Lupus Nephritis specifies that all SLE patients with nephritis should be treated with HCQ as background therapy.9
The 2018 British Society for Rheumatology guideline for the management of SLE in adults identified 45 studies to sustain the recommendation of antimalarial use (<6.5 mg/kg/day) for mild disease, prevention of flare in all patients, prevention of damage, and as steroid-sparing agent (overall SIGN level of evidence 1+++ and grade A of recommendation). Finally, the Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)–Pan-American League of Associations of Rheumatology (PANLAR) stated also that antimalarials should be used in all SLE patients with exception of those who refuse or who have absolute contraindications, as first line for musculoskeletal or cutaneous involvement as well as associated with immunosuppressive treatments for other SLE organ involvements.

Hydroxychloroquine safety profile
A wide range of side effects such as cardiovascular, dermatological, digestive, hematological, metabolic, ophthalmologic, as well as other rare side effects were reported to be associated with HCQ use. The main side effects of HCQ are summarized in Table 4.

Reviewing the antimalarials’ safety profile in SLE, Ruiz-Irastorza et al. noted low prevalence of antimalarials’ toxicity, mainly mild gastrointestinal and cutaneous side effects. These were significantly more frequent under CQ when compared with HCQ, results parallel by higher discontinuation rates for CQ. Overall, the HCQ global safety was rated as high. Eljaaly et al. published recently a meta-analysis for the HCQ safety when administered for different pathologies (chronic urticaria, RA, SLE, osteoarthritis, IgA nephropathy, asymptomatic HIV infection, Alzheimer disease, cutaneous lupus) in daily doses of 200–400 mg and presented also encouraging results. Besides significant more frequent occurrence of skin pigmentation under HCQ, no other side effect reached a significant difference (rash, gastrointestinal complaints, headache, fatigue, visual troubles) and also no cardiac toxicity was reported.

Thus, for long-term HCQ use, medium uptake duration of 32 months, the skin hyperpigmentation is not rarely reported and might be favored.
by factors like ecchymosis, bruising, platelet antiaggregant, and oral anticoagulants. Beside hyperpigmentation, all other HCQ-related side effects are only rarely encountered.

On short-term use, the digestive intolerance is the most frequently encountered side effect, with occurrence possible since first HCQ administration.237,238

A wide range of mild neuropsychiatric manifestations, but also psychosis, was reported in relation to HCQ use, especially in elderly. However, this relation remains controversial as other concomitant
factors like concomitant drugs, alcohol intake, use of glucocorticoids, or background disease itself could originate the neuropsychiatric manifestations occurrence in patients with SLE under HCQ.\(^{225}\)

Retinopathy occurrence remains the most discussed and studied HCQ’s side effect in SLE. The main risk factors for HCQ-related retinopathy are the treatment duration, daily and cumulative dose, chronic kidney disease, as well as pre-existent retinal disease.\(^{34}\) Ophthalmologic screening is mandatory, yearly from baseline if there are known risk factors or at baseline, after 5 years on HCQ, and yearly therefore in patients without retinopathy risk factors.\(^{8,30,31,34}\) The current 2020 Joint Statement on HCQ\(^{31}\) reinforced the old recommendations\(^{8,30,34,32}\) of the need of sensitive testing modalities such as optical coherence tomography (OCT) and automated visual fields that could detect early toxicity.\(^{31}\) When available, quinacrine (mepacrine) might be considered as an alternative in SLE patients with HCQ-related ocular or cutaneous side effects.

As the eye side effects are dose-related, not only the duration of use but also the blood levels are predictors of retinopathy development with a statistical association in patients with [HCQ] blood levels >1200 ng/ml.\(^{226,227}\) However, association between HCQ blood concentration and retinopathy has not been confirmed in another study.\(^{240}\) For non-rheumatic diseases, doses of up to 1000 mg daily (up to 20 mg/kg daily) showed eye toxicity within 2 years in 25–40% of the patients exposed,\(^{30}\) while for the doses up to 5 mg/kg of real body weight, the risk of retinopathy within 10 years was 2%.\(^{32}\) For lifetime HCQ users, definite or probable toxicity was documented in only 0.65% even if 6.5% patients discontinued therapy because of eye-related side effects.\(^{228}\) One longitudinal study showed ophthalmological alterations confirmed by ophthalmological examination in 5.5% of cases.\(^{241}\)

When compared with HCQ, the risk of retinopathy related to CQ seems to be much higher, hence CQ is not recommended as the first-line antimalarial for the SLE treatment. One systematic review including four studies for CQ versus six studies for HCQ found definite retinal toxicity in 2.5% versus 0.1% and probable retinopathy in 2.6% versus 0.3% patients.\(^{13}\) A recent report from the Hopkins cohort showed a higher overall frequency of retinopathy of 4.3%, but the risk increased significantly after 15 years of HCQ use,\(^{226}\) namely 1% in the first 5 years, 1.8% for 6–10 years, 3.3% for 11–15 years, and 11.5% for 16–20 years.\(^{226}\)

For antimalarials cardiac toxicity, the results of 86 articles were systematically reviewed and a total of 127 patients (65.4% female) were identified, of which about 60% had taken CQ, while the rest HCQ.\(^{218}\) The most frequent cardiac side effects reported were conduction disorders (85%), followed by cardiac hypertrophy (22%), hypokinesia (9.4%), cardiac failure (26.8%), pulmonary arterial hypertension (3.9%), and valvular dysfunction (7.1%). Less than half of the patients (44.9%) recovered normal heart function after the antimalarial drug withdrawal.\(^{218}\)

Disparate cases of HCQ-related neuromyopathy, particularly manifested as insidious onset of proximal myopathy that may be later associated with peripheral neuropathy and cardiac myotoxicity, are reported. The frequency of HCQ-related myopathies is not known, but is probably extremely rare.\(^{35}\) Early recognition is important as the recovery after the drug withdrawal might be incomplete.\(^{223}\)

Different case reports presented rare and very rare sides effects attributable to HCQ in the absence of other identifiable causes, like early fulminant hepatic failure,\(^{229}\) toxic myopathy with respiratory failure,\(^{224}\) and rare cutaneous lesions.\(^{230–235,239}\)

Hydroxychloroquine blood level monitoring and withdrawal

Even if the HCQ role in SLE is acknowledged, less than half of the patients are taking HCQ as prescribed.\(^{242}\) Measurement of HCQ in whole blood was proposed to monitor both response and adherence to treatment, but an appropriate cut-off for defining efficient HCQ’s blood levels remains under debate. For CLE, one prospective multicenter study found significantly higher median blood [HCQ] levels in patients with complete remission (910 ng/ml in remission versus 692 ng/ml when partial remission and 569 ng/ml in treatment failure, $p = 0.007$).\(^{107}\) In a prospective study, improvement of cutaneous lesions was observed when [HCQ] blood levels higher than 750 ng/ml were reached.\(^{113}\) Also, one study defined subtherapeutic [HCQ] levels, associated with trend of
more disease flares, as less than 500 ng/ml. A recent report showed that low [HCQ] blood levels are associated with thrombotic events (720 ng/ml versus 935 ng/ml; \(p = 0.025\)).

On one hand, a decrease in the flare rate was not observed when [HCQ] level was maintained over 1000 ng/ml. On the other hand, decrease to 2–3 mg/kg/day did not modify serum [HCQ] levels significantly at 3 and 6 months, but only at 12 months.

One of the main reasons for using [HCQ] blood levels in daily practice is the great interindividual variability, of which determinants are not completely characterized. [HCQ] levels were found to be related to its major metabolite, N-desethylhydroxychloroquine (DHCQ), to HCQ weight-adjusted oral dose and also to the time since last dose taken.

Analyzing a longitudinal cohort, Mok et al. found that the majority of SLE patients screened had mainly [HCQ] subtherapeutic levels: <10 ng/ml (defined as total non-adherence) in 11%, 10–500 ng/ml (subtherapeutic levels) in 77%, and >500 ng/ml (therapeutic levels) in only 12% patients. Levels correlated with the dose prescribed and, importantly, higher [HCQ] levels were associated with less SLE flare occurrence over time.

Monitoring HCQ levels might allow identification of early nonadherence and improve non-adherence. HCQ levels measurement might help in counseling before the treatment change in regard to lack of adherence versus lack of treatment efficacy.

Finally, considering the HCQ’s side effects related to long-term use, one important question is how to identify the appropriate moment for stopping the treatment. The first RCT designed for HCQ showed efficacy of long-term HCQ use in sustaining remission. In this RCT, the average HCQ total treatment duration before withdrawal was about 3 years. A more recent retrospective study showed that HCQ discontinuation in patients older than 55 years with quiescent SLE and more than 5 years treatment, due to retinal toxicity, patient’s preference, cardiac toxicity, or other suspected adverse effects, did not result in significant increase in flare occurrence. Finally, a recent survey across large international sample of physicians has shown that in case of sustained remission, 49.7% maintained the same dose indefinitely, 48.3% reduced the dose, while only 2.0% discontinued antimalarials.

Conclusion

In summary, HCQ is indicated in all patients with SLE in the absence of any contraindications or side effects, with high grade evidence in case of LN, cutaneous involvement, or during pregnancy and breastfeeding. However, there is a relatively small effect size for the prevention of severe flares in SLE. Monitoring HCQ blood levels might help to overcome adherence issues, which are quite common in SLE and adjust the daily dosage based on individual pharmacokinetic variability. Still, there is a need for additional research focused on defining the optimal conditions for HCQ withdrawal.

Author contributions

Alina Dima: Conceptualization; Methodology; Writing – original draft.

Ciprian Jurcut: Conceptualization; Writing – original draft.

François Chasset: Conceptualization; Writing – original draft.

Renaud Felten: Conceptualization; Writing – original draft.

Laurent Arnaud: Conceptualization; Methodology; Supervision; Writing – review & editing.

Conflict of interest statement

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Alina Dima https://orcid.org/0000-0001-8743-3236

Renaud Felten https://orcid.org/0000-0002-4951-4032

Laurent Arnaud https://orcid.org/0000-0002-8077-8394
Supplemental material
Supplemental material for this article is available online.

References
1. Olsen NJ, Schleich MA and Karp DR. Multifaceted effects of hydroxychloroquine in human disease. Semin Arthritis Rheum 2013; 43: 264–272.
2. Dima A, Jurcut C and Arnaud L. Hydroxychloroquine in systemic and autoimmune diseases: where are we now? Jt Bone Spine 2021; 88: 105143.
3. Akhavan PS, Su J, Lou W, et al. The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus. J Rheumatol 2013; 40: 831–841.
4. Costedoat-Chalumeau N, Leroux G, Piette JC, et al. Why all systemic lupus erythematosus patients should be given hydroxychloroquine treatment. Joint Bone Spine 2010; 77: 4–5.
5. Costedoat-Chalumeau N, Dunogué B, Morel N, et al. Hydroxychloroquine: a multifaceted treatment in lupus. Press Médicale 2014; 43: e167–e180.
6. Petri M. Hydroxychloroquine: past, present, future. Lupus 1998; 7: 65–67.
7. Stojan G and Petri M. Atherosclerosis in systemic lupus erythematosus. J Cardiovasc Pharmacol 2013; 62: 255–262.
8. Fanouriakis A, Kostopoulos M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019; 78: 736–745.
9. Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res 2012; 64: 797–808.
10. Gordon C, Amissah-Arthur M-B, Gayed M, et al. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatology 2017; 57: e1–45.
11. Pons-Estel BA, Bonfa E, Soriano ER, et al. First Latin American clinical practice guidelines for the treatment of systemic lupus erythematosus: Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)-Pan-American League of Associations of Rheumatology (PANLAR). Ann Rheum Dis 2018; 77: 1549–1557.
12. Felten R, Lipsker D, Sibilia J, et al. The history of lupus throughout the ages. J Am Acad Dermatol. Epub ahead of print 4 May 2020. DOI: 10.1016/j.jaad.2020.04.150.
13. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 2010; 69: 20–28.
14. Meinao IM, Sato EI, Andrade LE, et al. Controlled trial with chloroquine diphosphate in systemic lupus erythematosus. Lupus 1996; 5: 237–241.
15. Dubois EL. Antimalarials in the management of discoid and systemic lupus erythematosus. Semin Arthritis Rheum 1978; 8: 33–51.
16. Lupus therapies continue to evolve. FDA, https://www.fda.gov/consumers/consumer-updates/lupus-therapies-continue-evolve (accessed 27 February 2021).
17. Lim HS, Im JS, Cho JY, et al. Pharmacokinetics of hydroxychloroquine and its clinical implications in chemoprophylaxis against malaria caused by Plasmodium vivax. Antimicrob Agents Chemother 2009; 53: 1468–1473.
18. Browning DJ. Hydroxychloroquine and chloroquine retinopathy. New York: Springer, 2014.
19. Ducharme J and Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Clin Pharmacokinet 1996; 31: 257–274.
20. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 1996; 5: S11–S15, https://pubmed.ncbi.nlm.nih.gov/8803904/ (accessed 4 March 2021).
21. Walker O, Birkett D, Alvan G, et al. Characterization of chloroquine plasma protein binding in man. Br J Clin Pharmacol 1983; 15: 375–377.
22. Shannon JA, Earle DP, Brodie BB, et al. The pharmacological basis for the rational use of Abatrine in the treatment of malaria. J Pharmacol Exp Ther 1944; 81: 304–330.
23. Tett S, Cutler D, Day R, et al. Bioavailability of hydroxychloroquine tablets in healthy volunteers. Br J Clin Pharmacol 1989; 27: 771–779.
24. Frisk-Holmberg M, Bergqvist Y, Termond E, et al. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. Eur J Clin Pharmacol 1984; 26: 521–530.
25. Zahr N, Urien S, Llopis B, et al. Pharmacokinetics and pharmacodynamics of hydroxychloroquine in hospitalized patients with COVID-19. Therapie 2021; 76: 285–295.

26. Munster T, Gibbs JP, Shen D, et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 2002; 46: 1460–1469.

27. Tett S, Cutler D, Day R, et al. A dose-ranging study of the pharmacokinetics of hydroxychloroquine following intravenous administration to healthy volunteers. Br J Clin Pharmacol 1988; 26: 303–313.

28. Plasma quinacrine concentration as a function of dosage and environment: joint report of the Armed Medical Research Laboratory, Fort Knox, Ky. and the Commission on Tropical Diseases, Army Epidemiological Board, Preventive Medicine Service, Office of the Surgeon General, United States Army. Arch Intern Med 1946; 78: 64–107.

29. Plaquenil (hydroxychloroquine sulfate) dosing, indications, interactions, adverse effects, and more, https://reference.medscape.com/drug/plaquenil-hydroxychloroquine-sulfate-343205 (accessed 17 June 2020).

30. Marmor MF, Kellner U, Lai TYY, et al. Recommendations on screening for chloroquine and hydroxychloroquine retinopathy (2016 revision). Ophthalmology 2016; 123: 1386–1394.

31. Rosenbaum JT, Costenbader KH, Desmarais J, et al. ACR, AAD, RDS, and AAO 2020 joint statement on hydroxychloroquine use with respect to retinal toxicity. Arthritis Rheumatol 2021; 73: 908–911.

32. Melles RB and Marmor MF. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 2014; 132: 1453–1460.

33. Costedoat-Chalumeau N, Isenberg D and Petri M. Comment on the 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus by Fanouriakis et al. Ann Rheum Dis 2020; 79: e90.

34. Fanouriakis A, Kostopoulou M, Cheema K, et al. 2019 Update of the Joint European League against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 2020; 79: 713–723.

35. Fiehn C, Ness T, Weseloh C, et al. Safety management in treatment with antimalarials in rheumatology. Interdisciplinary recommendations on the basis of a systematic literature review. Z Rheumatol 2021; 80: 1–9.

36. Rainsford KD, Parke AL, Clifford-Rashotte M, et al. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015; 23: 231–269.

37. Petidemange A, Felten R, Sibilia J, et al. Prescription strategy of antimalarials in cutaneous and systemic lupus erythematosus: an international survey. Ther Adv Musculoskelet Dis 2021; 13: 1–9.

38. Wallace DJ, Tse K, Hanrahan L, et al. Hydroxychloroquine usage in US patients, their experiences of tolerability and adherence, and implications for treatment: survey results from 3127 patients with SLE conducted by the Lupus Foundation of America. Lupus Sci Med 2019; 6: e00317.

39. Schrezenmeier E and Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 2020; 16: 155–166.

40. Ponticelli C and Moroni G. Hydroxychloroquine in systemic lupus erythematosus (SLE). Expert Opin Drug Saf 2017; 16: 411–419.

41. Lamphier M, Zheng W, Latz E, et al. Novel small molecule inhibitors of Thr7 and Thr9: mechanism of action and efficacy in vivo. Mol Pharmacol 2014; 85: 429–440.

42. Kužnik A, Benčina M, Švajger U, et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794–4804.

43. Gardet A, Pellerin A, McCarr C-A, et al. Effect of in vivo Hydroxychloroquine and ex vivo Anti-BDCA2 mAb treatment on pDC IFNα production from patients affected with cutaneous lupus erythematosus. Front Immunol 2019; 10: 275.

44. An J, Woodward JJ, Lai W, et al. Inhibition of cyclic GMP-AMP synthase using a novel antimalarial drug derivative in trex1-deficient mice. Arthritis Rheumatol 2018; 70: 1807–1819.

45. Wozniacka A, Lesiak A, Boncela J, et al. The influence of antimalarial treatment on IL-1β, IL-6 and TNF-α mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br J Dermatol 2008; 159: 1124–1130.

46. Lesiak A, Narbutt J, Kobos J, et al. Systematic administration of chloroquine in discoid lupus erythematosus reduces skin lesions via inhibition of angiogenesis. Clin Exp Dermatol 2009; 34: 570–575.
47. Zeidi M, Kim HJ and Werth VP. Increased myeloid dendritic cells and TNF-α expression predicts poor response to hydroxychloroquine in cutaneous lupus erythematosus. *J Invest Dermatol* 2019; 139: 324–332.

48. Smith CK, Vivekanandan-Giri A, Tang C, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. *Arthritis Rheumatol* 2014; 66: 2532–2544.

49. Smith CK and Kaplan MJ. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. *Curr Opin Rheumatol* 2015; 27: 448–453.

50. Cepika AM, Soldo Jureša D, Morovic ´ Vergles J, et al. Decrease in circulating DNA, IL-10 and BAFF levels in newly-diagnosed SLE patients after corticosteroid and chloroquine treatment. *Cell Immunol* 2012; 276: 196–203.

51. Levy JMM, Towers CG and Thorburn A. Targeting autophagy in cancer. *Nat Rev Cancer* 2017; 17: 528–542.

52. Humbert M, Bertolino P, Forquet F, et al. Major histocompatibility complex class II-restricted presentation of secreted and endoplasmic reticulum resident antigens requires the invariant chains and is sensitive to lysosomotropic agents. *Eur J Immunol* 1993; 23: 3167–3172.

53. Silva JC, Mariz HA, Rocha LF Jr, et al. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. *Clinics (Sao Paulo)* 2013; 68: 766–771.

54. Zhao L, Ma H, Jiang Z, et al. Immunoregulation therapy changes the frequency of interleukin (IL)-22 + CD4 + T cells in systemic lupus erythematosus patients. *Clin Exp Immunol* 2014; 177: 212–218.

55. Shin MS, Lee N and Kang I. Effector T-cell subsets in systemic lupus erythematosus: update focusing on Th17 cells. *Curr Opin Rheumatol* 2011; 23: 444–448.

56. Sailler L, Puissant B, Méliani P, et al. Blood concentrations of hydroxychloroquine and its desethyl derivative correlate negatively with the percentage of CD45RO+ cells among CD4+ lymphocytes in hydroxychloroquine-treated lupus patients. *Ann NY Acad Sci* 2007; 1108: 41–50.

57. Spada R, Rojas JM and Barber DF. Recent findings on the role of natural killer cells in the pathogenesis of systemic lupus erythematosus. *J Leukoc Biol* 2015; 98: 479–487.

58. Fox RI. Mechanism of action of hydroxychloroquine as an antirheumatic drug. *Semin Arthritis Rheum* 1993; 23: 82–91.

59. Sjolin-Forsberg G, Berne B, Eggelte TA, et al. In situ localization of chloroquine and immunohistological studies in UVB-irradiated skin of photosensitive patients. *Acta Derm Venereol* 1995; 75: 228–231.

60. Wozniacka A, Lesiak A, Narbutt J, et al. Chloroquine treatment reduces the number of cutaneous HLA-DR+ and CD1a+ cells in patients with systemic lupus erythematosus. *Lupus* 2007; 16: 89–94.

61. Bondeson J and Sundler R. Antimalarial drugs inhibit phospholipase A2 activation and induction of interleukin 1β and tumor necrosis factor α in macrophages: implications for their mode of action in rheumatoid arthritis. *Gen Pharmacol* 1998; 30: 357–366.

62. el Tahir KE. Influence of niridazole and chloroquine on arterial and myometrial prostacyclin synthesis. *Br J Pharmacol* 1987; 92: 567–572.

63. Segal-Eiras A, Segura GM, Babini JC, et al. Effect of antimalarial treatment on circulating immune complexes in rheumatoid arthritis. *J Rheumatol* 1985; 12: 87–89.

64. Wozniacka A, Carter A and McCauliffe DP. Antimalarials in cutaneous lupus erythematosus: mechanisms of therapeutic benefit. *Lupus* 2002; 11: 71–81.

65. Nguyen TQ, Capra JD and Sontheimer RD. 4-Aminoquinoline antimalarials enhance UV-B induced c-jun transcriptional activation. *Lupus* 1998; 7: 148–153.

66. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus: update focusing on Th17 cells. *Curr Opin Rheumatol* 2011; 23: 444–448.

67. Tsakonas E, Joseph L, Esdaile JM, et al. A long-term study of hydroxychloroquine withdrawal on exacerbations in systemic lupus erythematosus. *N Engl J Med* 1991; 324: 150–154.

68. Williams HJ, Egger MJ, Singer JZ, et al. Comparison of hydroxychloroquine and placebo in the treatment of the arthropathy of mild systemic lupus erythematosus. *J Rheumatol* 1994; 21: 1457–1462.

69. Meng J, Lu Y, Dong X, et al. Long-term effects of hydroxychloroquine on metabolism of serum lipids and left ventricular structure and function in patients of systemic lupus erythematosus. *Natl Med J China* 2014; 94: 965–968.
70. Kavanaugh A, Adams-Huet B, Jain R, et al. Hydroxychloroquine effects on lipoprotein profiles (the HELP trial): a double-blind, randomized, placebo-controlled, pilot study in patients with systemic lupus erythematosus. *J Clin Rheumatol* 1997; 3: 3–8.

71. Levy RA, Vilela VS, Cataldo MJ, et al. Hydroxychloroquine (HCQ) in lupus pregnancy: double-blind and placebo-controlled study. *Lupus* 2001; 10: 401–404.

72. Costedoat-Chalumeau N, Galicier L, Aumaître O, et al. Hydroxychloroquine in systemic lupus erythematosus: results of a French multicentre controlled trial (PLUS Study). *Ann Rheum Dis* 2013; 72: 1786–1792.

73. Zanetti CB, Pedrosa T, Kupa L, et al. Hydroxychloroquine blood levels in stable lupus nephritis under low dose (2–3 mg/kg/day): 12-month prospective randomized controlled trial. *Clin Rheumatol* 2021; 40: 2745–2751.

74. Kraak JH, Van Ketel W, Prakken JR, et al. The value of hydroxychloroquine (Plaquenil) for the treatment of chronic discoid lupus erythematosus; a double blind trial. *Dermatologica* 1965; 130: 293–305.

75. Yokogawa N, Eto H, Tanikawa A, et al. Effects of hydroxychloroquine in patients with cutaneous lupus erythematosus: a multicenter, double-blind, randomized, parallel-group trial. *Arthritis Rheumatol* 2017; 69: 791–799.

76. Ruzicka T, Sommerburg C, Goerz G, et al. Treatment of cutaneous lupus erythematosus with acitretin and hydroxychloroquine. *Br J Dermatol* 1992; 127: 513–518.

77. Bezerra EL, Vilar MJ, da Trindade Neto PB, et al. Double-blind, randomized, controlled clinical trial of clofazimine compared with chloroquine in patients with systemic lupus erythematosus. *Arthritis Rheum* 2005; 52: 3073–3078.

78. Babaoglu H, Li J, Goldman D, et al. Time to lupus low disease activity state in the Hopkins lupus cohort: role of African American ethnicity. *Arthritis Care Res (Hoboken)* 2020; 72: 225–232.

79. Kasitanon N, Fine DM, Haas M, et al. Hydroxychloroquine use predict complete renal remission within 12 months among patients treated with mycophenolate mofetil therapy for membranous lupus nephritis. *Lupus* 2006; 15: 366–370.

80. Clowse MEB, Magder L, Witter F, et al. Hydroxychloroquine in lupus pregnancy. *Arthritis Rheum* 2006; 54: 3640–3647.

81. Petri M, Lakatta C, Magder L, et al. Effect of prednisone and hydroxychloroquine on coronary artery disease risk factors in systemic lupus erythematosus: a longitudinal data analysis. *Am J Med* 1994; 96: 254–259.

82. Durcan L, Winegar DA, Connelly MA, et al. Longitudinal evaluation of lipoprotein variables in Systemic Lupus Erythematosus reveals adverse changes with disease activity and prednisone and more favorable profiles with hydroxychloroquine therapy. *J Rheumatol* 2016; 43: 745–750.

83. Petri MMPH, Purvey S, Fang H, et al. Predictors of organ damage in Systemic Lupus Erythematosus: the Hopkins’ Lupus cohort. *Arthritis Rheum* 2012; 64: 4021–4028.

84. Pons-Estel GJ, Alarcón GS, Mcgwin G, et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: data from LUMINA, a multiethnic U.S. Cohort NIH Public Access. *Arthritis Rheum* 2009; 61: 830–839.

85. Willis R, Seif AM, McGwin G Jr, et al. Effect of hydroxychloroquine treatment on pro-inflammatory cytokines and disease activity in SLE patients; data from LUMINA (LXXV), a multiethnic US cohort. *Lupus* 2012; 21: 830–835.

86. Calvo-Alén J, McGwin G, Tolozà S, et al. Systemic lupus erythematosus in a multiethnic US cohort (LUMINA): XXIV. Cytotoxic treatment is an additional risk factor for the development of symptomatic osteonecrosis in lupus patients: results of a nested matched case-control study. *Ann Rheum Dis* 2006; 65: 785–790.

87. Alarcón GS, McGwin G, Bertoli AM, et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). *Ann Rheum Dis* 2007; 66: 1168–1172.

88. González LA, Pons-estel GJ, Zhang J, et al. Time to neuropsychiatric damage occurrence in LUMINA (LXVI): a multi-ethnic lupus cohort. *Lupus* 2009; 18: 822–830.

89. Pons-Estel GJ, Alarcón GS, González LA, et al. Possible protective effect of hydroxychloroquine on delaying the occurrence of integument damage in lupus SLE patients: data from a multiethnic cohort. *Arthritis Care Res* 2010; 62: 393–400.

90. Nikpour M, Gladman DD, Ibanez D, et al. Variability over time and correlates of cholesterol and blood pressure in systemic lupus erythematosus: a longitudinal cohort study. *Arthritis Res Ther* 2010; 12: R125.

91. Urowitz MB, Gladman DD, Tom BD, et al. Changing patterns in mortality and disease outcomes for patients with systemic lupus erythematosus. *J Rheumatol* 2008; 35: 2152–2158.
92. Pimentel-Quiroz VR, Ugarte-Gil MF, Harvey GB, et al. Factors predictive of serious infections over time in systemic lupus erythematosus patients: data from a multi-ethnic, multi-national, Latin American lupus cohort. *Lupus* 2019; 28: 1101–1110.

93. Shinjo SK, Bonfá E, Wojdyła D, et al. Antimalarial treatment may have a time-dependent effect on lupus survival: data from a multinational Latin American inception cohort. *Arthritis Rheum* 2010; 62: 855–862.

94. Pons-Estel GJ, Alarcón GS, Hachuel L, et al. Anti-malarials exert a protective effect while mestizo patients are at increased risk of developing SLE renal disease: data from a Latin-American cohort. *Rheumatology* 2012; 51: 1293–1298.

95. Wozniacka A, Lesiak A, Narbutt J, et al. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. *Lupus* 2006; 15: 268–275.

96. Shinjo SK. Systemic lupus erythematosus in the elderly: antimalarials in disease remission. *Rheumatol Int* 2009; 29: 1087–1090.

97. Monzavi SM, Alirezaei A, Shariati-Sarabi Z, et al. Efficacy analysis of hydroxychloroquine therapy in systemic lupus erythematosus: a study on disease activity and immunological biomarkers. *Inflammopharmacology* 2018; 26: 1175–1182.

98. Balevic SJ, Cohen-Wolkowiez M, Eudy AM, et al. Hydroxychloroquine levels throughout pregnancy and implications for maternal and neonatal outcomes. *J Rheumatol* 2019; 46: 57–63.

99. Hanaoka H, Iida H, Kiyokawa T, et al. Hydroxychloroquine improves the disease activity and allows the reduction of the corticosteroid dose regardless of background treatment in Japanese patients with systemic lupus erythematosus. *Intern Med* 2019; 58: 1257–1262.

100. Miyagawa I, Nakano K, Nakayama S, et al. The additive effects of hydroxychloroquine to maintenance therapy with standard of care in patients with systemic lupus erythematosus. *Int J Rheum Dis* 2020; 23: 549–558.

101. Giannakou I, Chatzidionysiou K, Magder LS, et al. Predictors of persistent disease activity and long quiescence in systemic lupus erythematosus: results from the Hopkins Lupus Cohort. *Lupus Sci Med* 2018; 5: e000287.

102. Rudnicki GEG. The efficacy of antimalarials in systemic lupus erythematosus. *J Rheumatol* 1975; 2: 323–330.

103. Rothfield N. Efficacy of antimalarials in systemic lupus erythematosus. *Am J Med* 1988; 85: 53–56.

104. Zen M, Saccon F, Gatto M, et al. Prevalence and predictors of flare after immunosuppressant discontinuation in patients with systemic lupus erythematosus in remission. *Rheumatology* 2020; 59: 1591–1598.

105. Costedoat-Chalumeau N, Amoura Z, Hulot J-S, et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with Systemic Lupus Erythematosus. *Arthritis Rheum* 2006; 54: 3284–3290.

106. Yokogawa N, Tanikawa A, Amagai M, et al. Response to hydroxychloroquine in Japanese patients with lupus-related skin disease using the cutaneous lupus erythematosus disease area and severity index (CLASI). *Mod Rheumatol* 2013; 23: 318–322.

107. Francès C, Cosnes A, Duhaut P, et al. Low blood concentration of hydroxychloroquine in patients with refractory cutaneous lupus erythematosus: a French multicenter prospective study. *Arch Dermatol* 2012; 148: 479–484.

108. Wahie S, Daly AK, Cordell HJ, et al. Clinical and pharmacogenetic influences on response to hydroxychloroquine in discoid lupus erythematosus: a retrospective cohort study. *J Invest Dermatol* 2011; 131: 1981–1986.

109. Kuhn A, Sigges J, Biazar C, et al. Influence of smoking on disease severity and antimalarial therapy in cutaneous lupus erythematosus: analysis of 1002 patients from the EUSCLE database. *Br J Dermatol* 2014; 171: 571–579.

110. Piette EW, Foering KP, Chang AY, et al. Impact of smoking in cutaneous lupus erythematosus. *Arch Dermatol* 2012; 148: 317–322.

111. Kreuter A, Gauffullina R, Tigges C, et al. Lupus erythematosus tumidus response to antimalarial treatment in 36 patients with emphasis on smoking. *Arch Dermatol* 2009; 145: 244–248.

112. Jewell ML and McCauliffe DE. Patients with cutaneous lupus erythematosus who smoke are less responsive to antimalarial treatment. *J Am Acad Dermatol* 2000; 42: 983–987.

113. Chasset F, Arnaud L, Costedoat-Chalumeau N, et al. The effect of increasing the dose of hydroxychloroquine (HCQ) in patients with refractory cutaneous lupus erythematosus (CLE): an open-label prospective pilot study. *J Am Acad Dermatol* 2016; 74: 693–699.

114. Fairley JL, Oon S, Saracino AM, et al. Management of cutaneous manifestations of...
117. Lee JS, Oh JS, Kim YG, et al. Recovery of renal function in patients with lupus nephritis and reduced renal function: the beneficial effect of hydroxychloroquine. *Lupus* 2020; 29: 52–57.

118. Cortés-Hernández J, Ordi-Ros J, Paredes F, et al. Clinical predictors of fetal and maternal outcome in systemic lupus erythematosus: a prospective study of 103 pregnancies. *Rheumatology* 2002; 41: 643–650.

119. Al Arfaj AS and Khalil N. Pregnancy outcome in 396 pregnancies in patients with SLE in Saudi Arabia. *Lupus* 2010; 19: 1665–1673.

120. Koh JH, Ko HS, Kwok SK, et al. Hydroxychloroquine and pregnancy on lupus flares in Korean patients with systemic lupus erythematosus. *Lupus* 2015; 24: 210–217.

121. Seo MR, Chae J, Kim YM, et al. Hydroxychloroquine treatment during pregnancy in lupus patients is associated with lower risk of preeclampsia. *Lupus* 2019; 28: 722–730.

122. Saavedra MÁ, Miranda-Hernández D, Lara-Mejia A, et al. Use of antimalarial drugs is associated with a lower risk of preeclampsia in lupus pregnancy: a prospective cohort study. *Int J Rheum Dis* 2020; 23: 633–640.

123. Diav-Citrin O, Blyakhman S, Shechtman S, et al. Pregnancy outcome following in utero exposure to hydroxychloroquine: a prospective comparative observational study. *Reprod Toxicol* 2013; 39: 58–62.

124. Broder A and Putterman C. Hydroxychloroquine use is associated with lower odds of persistently positive antiphospholipid antibodies and/or lupus anticoagulant in SLE. *J Rheumatol* 2013; 40: 30–33.

125. Wallace DJ. Does hydroxychloroquine sulfate prevent clot formation in systemic lupus erythematosus. *Arthritis Rheum* 1987; 30: 1435–1436.

126. Mok MY, Chan EY, Fong DY, et al. Antiphospholipid antibody profiles and their clinical associations in Chinese patients with systemic lupus erythematosus. *J Rheumatol* 2005; 32: 622–628, https://europepmc.org/article/med/15801016 (accessed 22 February 2021).

127. Ruiz-Irastorza G, Egurbide MV, Pijoan JJ, et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. *Lupus* 2006; 15: 577–583.

128. Chooijitarom K, Verasertniyom O, Totemchokchakarn K, et al. Lupus nephritis and Raynaud’s phenomenon are significant risk factors for vascular thrombosis in SLE patients with positive antiphospholipid antibodies. *Clin Rheumatol* 2008; 27: 345–351.

129. Tektonidou MG, Laskari K, Panagiotakos DB, et al. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. *Arthritis Care Res* 2009; 61: 29–36.

130. Becker-Merok A and Nosent JC. Prevalence, predictors and outcome of vascular damage in systemic lupus erythematosus. *Lupus* 2009; 18: 508–515.

131. Kaiser R, Cleveland CM and Criswell LA. Risk and protective factors for thrombosis in systemic lupus erythematosus: results from a large, multi-ethnic cohort. *Ann Rheum Dis* 2009; 68: 238–241.

132. Jung H, Bobba R, Su J, et al. The protective effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. *Arthritis Rheum* 2010; 62: 863–868.

133. Law G, Magder L, Fang H, et al. SAT0222 hydroxychloroquine reduces thrombosis (both arterial and venous) in systemic lupus erythematosus, particularly in antiphospholipid positive patients. *Ann Rheum Dis* 2013; 71: 5471–5547.

134. Kasamatsu N, Hara K, Horikoshi K, et al. The effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. *Arthritis Rheum* 2010; 62: 863–868.

135. Tektonidou MG, Laskari K, Panagiotakos DB, et al. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. *Arthritis Care Res* 2009; 61: 29–36.

136. Kasamatsu N, Hara K, Horikoshi K, et al. The effect of antimalarial drugs on thrombovascular events in systemic lupus erythematosus. *Arthritis Rheum* 2010; 62: 863–868.
137. Chen Y-M, Lin C-H, Lan T-H, et al. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: a population-based cohort study. *Rheumatol Int* 2015; 54: 1244–1249.

138. Wallace DJ, Metzger AL, Stecher VJ, et al. Cholesterol-lowering effect of hydroxychloroquine in patients with rheumatic disease: reversal of deleterious effects of steroids on lipids. *Am J Med* 1990; 89: 322–326.

139. Hodis HN, Quismorio FP Jr, Wickham E, et al. The lipid, lipoprotein, and apolipoprotein effects of hydroxychloroquine in patients with systemic lupus erythematosus. *J Rheumatol* 1993; 20: 661–665, http://europepmc.org/article/med/8496861 (accessed 15 February 2021).

140. Rahman P, Gladman DD, Urowitz MB, et al. The cholesterol lowering effect of antimalarial drugs is enhanced in patients with lupus taking corticosteroid drugs. *J Rheumatol* 1999; 26: 325–330, http://europepmc.org/article/med/9972966 (accessed 15 February 2021).

141. Effect of antimalarial agents on the fasting lipid profile in systemic lupus erythematosus. *J Rheumatol* 2000; 27: 2142–2145, https://pubmed.ncbi.nlm.nih.gov/10990225/ (accessed 15 February 2021).

142. Borba EF and Bonfá E. Longterm beneficial effect of chloroquine diphosphate on lipoprotein profile in lupus patients with and without steroid therapy. *J Rheumatol* 2001; 28: 780–785.

143. Karimifar M, Gharibdoost F, Akbarian M, et al. Triglyceride and high-density lipoprotein levels as the markers of disease activity and their association with TNF-α and TNF receptor system in systemic lupus erythematosus. *APLAR J Rheumatol* 2007; 10: 221–226.

144. Sachet JC, Borba EF, Bonfá E, et al. Chloroquine increases low-density lipoprotein removal from plasma in systemic lupus patients. *Lupus* 2007; 16: 273–278.

145. Cardoso CRL, Signorelli FV, Papi JA, et al. Prevalence and factors associated with dyslipoproteinemias in Brazilian systemic lupus erythematosus patients. *Rheum Dis Clin North Am* 2008; 28: 323–327.

146. Chong YB, Yap DY, Tang CS, et al. Dyslipidaemia in patients with lupus nephritis. *Nephrology* 2011; 16: 511–517.

147. Cairoli E, Rebella M, Danese N, et al. Hydroxychloroquine reduces low-density lipoprotein cholesterol levels in systemic lupus erythematosus: a longitudinal evaluation of the lipid-lowering effect. *Lupus* 2012; 21: 1178–1182.

148. Ali Abdalla M, Mostafa El Desouky S and Sayed Ahmed A. Clinical significance of lipid profile in systemic lupus erythematosus patients: relation to disease activity and therapeutic potential of drugs. *Egypt Rheumatol* 2017; 39: 93–98.

149. Tao CY, Shang J, Chen T, et al. Impact of antimalarial (AM) on serum lipids in systemic lupus erythematosus (SLE) patients: a systematic review and meta-analysis. *Medicine* 2019; 98: e15030.

150. Babary H, Liu X, Ayatollahi Y, et al. Favorable effects of hydroxychloroquine on serum low density lipid in patients with systemic lupus erythematosus: a systematic review and meta-analysis. *Int J Rheum Dis* 2018; 21: 84–92.

151. Selzer F, Sutton-Tyrrell K, Fitzgerald S, et al. Vascular stiffness in women with systemic lupus erythematosus. *Hypertension* 2001; 37: 1075–1082, http://www.hypertensionaha.org.

152. Tanay A, Leibovitz E, Frayman A, et al. Vascular elasticity of systemic lupus erythematosus patients is associated with steroids and hydroxychloroquine treatment. *Ann NY Acad Sci* 2007; 1108: 24–34.

153. Pego-Reigosa JM, Nicholson L, Pooley N, et al. The risk of infections in adult patients with systemic lupus erythematosus: systematic review and meta-analysis. *Rheumatology* 2021; 60: 60–72.

154. Ruiz-Irastorza G, Olivares N, Ruiz-Arruza I, et al. Open Access Predictors of major infections in systemic lupus erythematosus. *Arthritis Res Ther* 2009; 11: 109.

155. Herrinton LJ, Liu L, Goldfien R, et al. Risk of serious infection for patients with systemic lupus erythematosus starting glucocorticoids with or without antimalarials. *J Rheumatol* 2016; 43: 1503–1509.

156. Ruá-Figueroa Í, López-Longo J, Galindo-Izquierdo M, et al. Incidence, associated factors and clinical impact of severe infections in a large, multicentric cohort of patients with systemic lupus erythematosus. *Semin Arthritis Rheum* 2018; 47: 38–45.

157. Zamora LD, Collante MTM and Navarra S. Risk factors for herpes zoster infection among Filipinos with systemic lupus erythematosus. *Int J Rheum Dis* 2020; 23: 197–202.

158. González-Echavarri C, Capdevila O, Espinosa G, et al. Infections in newly diagnosed Spanish patients with systemic lupus erythematosus:
data from the RELES cohort. Lupus 2018; 27: 2253–2261.

159. Rosa GPD, Ortega MF, Teixeira A, et al. Causes and factors related to hospitalizations in patients with systemic lupus erythematosus: analysis of a 20-year period (1995–2015) from a single referral centre in Catalonia. Lupus 2019; 28: 1158–1166.

160. Yeo KJ, Chen HH, Chen YM, et al. Hydroxychloroquine may reduce risk of pneumocystis pneumonia in lupus patients: a nationwide, population-based case-control study. BMC Infect Dis 2020; 20: 1–8.

161. Yuan Q, Xing X, Lu Z, et al. Clinical characteristics and risk factors of infection in patients with systemic lupus erythematosus: a systematic review and meta-analysis of observational studies. Semin Arthritis Rheum 2020; 50: 1022–1039.

162. Lakshminarayanan S, Walsh S, Mohanraj M, et al. Factors associated with low bone mineral density in female patients with Systemic Lupus Erythematosus. J Rheumatol 2001; 28: 102–108, www.jrheum.org (accessed 15 February 2021).

163. Mok CC, Mak A and Ma KM. Bone mineral density in postmenopausal Chinese patients with systemic lupus erythematosus. Lupus 2005; 14: 106–112.

164. Molad Y, Gorstein A, Wysenbeek AJ, et al. Protective effect of hydroxychloroquine in systemic lupus erythematosus. Prospective long-term study of an Israeli cohort. Lupus 2002; 11: 356–361.

165. Bruce IN, O’Keeffe AG, Farewell V, et al. Factors associated with damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) Inception Cohort. Ann Rheum Dis 2015; 74: 1706–1713.

166. Lim LSH, Pullenayegum E, Lim L, et al. From childhood to adulthood: the trajectory of damage in patients with juvenile-onset Systemic Lupus Erythematosus. Arthritis Care Res 2017; 69: 1627–1635.

167. Piga M, Floris A, Sebastiani GD, et al. Risk factors of damage in early diagnosed systemic lupus erythematosus: results of the Italian multicentre Early Lupus Project inception cohort. Rheumatology 2020; 59: 2272–2281.

168. Ruiz-Irastorza G, Ugarte A, Egurbide MV, et al. Antimalarials may influence the risk of malignancy in systemic lupus erythematosus. Ann Rheum Dis 2007; 66: 815–817.

169. Liang H, Pan HF, Tao JH, et al. Causes and factors associated with frequent hospitalization in Chinese patients with systemic lupus erythematosus: an ambispective cohort study. Med Sci Monit 2019; 25: 8061–8068.

170. Feldman CH, Xu C, Williams J, et al. Patterns and predictors of recurrent acute care use among Medicaid beneficiaries with systemic lupus erythematosus. Semin Arthritis Rheum 2020; 50: 1428–1436.

171. Hernández-Cruz B, Tapia N, Villa-Romero AR, et al. Risk factors associated with mortality in systemic lupus erythematosus. Clin Exp Rheumatol 2001; 19: 395–401.

172. Feng X, Zou Y, Pan W, et al. Prognostic indicators of hospitalized patients with systemic lupus erythematosus: a large retrospective multicenter study in China. J Rheumatol 2011; 38: 1289–1295.

173. Okpechi IG, Ayodele OE, Jones ESW, et al. Outcome of patients with membranous lupus nephritis in Cape Town South Africa. Nephrol Dial Transplant 2012; 27: 3509–3515.

174. Zheng ZH, Zhang LJ, Liu WX, et al. Predictors of survival in Chinese patients with lupus nephritis. Lupus 2012; 21: 1049–1056.

175. Mok CC, Tse SM, Chan KL, et al. Effect of immunosuppressive therapies on survival of systemic lupus erythematosus: a propensity score analysis of a longitudinal cohort. Lupus 2018; 27: 722–727.

176. Pakchotanon R, Gladman DD, Su J, et al. Sustained complete renal remission is a predictor of reduced mortality, chronic kidney disease and end-stage renal disease in lupus nephritis. Lupus 2018; 27: 468–474.

177. Mok CC, Ho LY, Chan KL, et al. Trend of survival of a cohort of Chinese patients with Systemic Lupus Erythematosus over 25 years. Front Med 2020; 7: 552–557.

178. Jorge A, McCormick N, Lu N, et al. Hydroxychloroquine and mortality among patients with Systemic Lupus Erythematosus in the general population. Arthritis Care Res 2021; 73: 1219–1223.

179. James JA, Kim-Howard XR, Bruner BF, et al. Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus 2007; 16: 401–409.

180. López P, Gómez J, Mozo L, et al. Cytokine polymorphisms influence treatment outcomes in SLE patients treated with antimalarial drugs. Arthritis Res Ther 2006; 8: R42.
181. Dima A, Jurcut C, Balanescu P, et al. Clinical significance of serum and urinary interleukin-6 in systemic lupus erythematosus patients. Egypt Rheumatol 2016; 39: 1–6.

182. Lambers WM, Westra J, Bootsma H, et al. Hydroxychloroquine suppresses interferon-inducible genes and B cell activating factor in patients with incomplete and new-onset Systemic Lupus Erythematosus. J Rheumatol 2021; 48: 847–851.

183. Fanourakis A and Bertsias G. Changing paradigms in the treatment of systemic lupus erythematosus. Lupus Sci Med 2019; 6: e000310.

184. Izmirly PM, Costedoat-Chalumeau N, Pisoni C, et al. Maternal use of hydroxychloroquine is associated with a reduced risk of recurrent anti-SSA/Ro associated cardiac manifestations of neonatal lupus. Circ July 2012; 3: 76–82.

185. Izmirly PM, Kim MY, Llanos C, et al. Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine. Am Rheum Dis 2010; 69: 1827–1830.

186. Zusman EZ, Sayre EC, Aviña-Zubieta JA, et al. Patterns of medication use before, during and after pregnancy in women with systemic lupus erythematosus: a population-based cohort study. Lupus 2019; 28: 1205–1213.

187. Smyth A, Oliveira GHM, Lahr BD, et al. A systematic review and meta-analysis of pregnancy outcomes in patients with Systemic Lupus Erythematosus and Lupus Nephritis. Clin J Am Soc Nephrol 2010; 5: 2060–2068.

188. Buchanan NMM, Toubi E, Khamashta MA, et al. Hydroxychloroquine and lupus pregnancy: review of a series of 36 cases. Am Rheum Dis 1996; 55: 486–488.

189. Costedoat-Chalumeau N, Amoura Z, Duhaut P, et al. Safety of hydroxychloroquine in pregnant patients with connective tissue diseases a study of one hundred thirty-three cases compared with a control group. Arthritis Rheum 2003; 48: 3207–3211.

190. Sammaritano LR, Bermas BL, Chakravarty EE, et al. 2020 American College of Rheumatology Guideline for the management of reproductive health in rheumatic and musculoskeletal diseases. Arthritis Rheumatol 2020; 72: 529–556.

191. Mok CC, Tong KH, To CH, et al. Risk and predictors of arterial thrombosis in lupus and non-lupus primary glomerulonephritis. Medicine 2007; 86: 203–209.

192. Toloza SMA, Uribe AG, McGwin G Jr, et al. Systemic Lupus Erythematosus in a multiethnic US Cohort (LUMINA) XXIII. Baseline predictors of vascular events. Arthritis Rheum 2004; 50: 3947–3957.

193. Mok CC, Tang SS, To CH, et al. Incidence and risk factors of thromboembolism in Systemic Lupus Erythematosus a comparison of three ethnic groups. Arthritis Rheum 2005; 52: 2774–2782.

194. Ho KT, Ahn CW, Aalarcon GS, et al. Systemic lupus erythematosus in a multiethnic cohort (LUMINA): XXVIII. Factors predictive of thrombotic events. Rheumatology 2005; 44: 1303–1307.

195. Tam LS, Li EK, Lam CWK, et al. Hydroxychloroquine has no significant effect on lipids and apolipoproteins in Chinese systemic lupus erythematosus patients with mild or inactive disease. Lupus 2000; 9: 413–416.

196. Antimalarials cholesterol profile of patients with systemic lupus erythematosus. Rev Bras Reumatol 2011; 51: 383–384, 386–387, https://pubmed.ncbi.nlm.nih.gov/21779713/ (accessed 25 February 2021).

197. Manzi S, Selzer F, Sutton-Tyrrell K, et al. Prevalence and risk factors of carotid plaque in women with systemic lupus erythematosus. Arthritis Rheum 1999; 42: 51–60.

198. Roman MJ, Shanker B-A, Davis A, et al. Prevalence and correlates of accelerated atherosclerosis in Systemic Lupus Erythematosus. N Engl J Med 2003; 349: 2399–2406.

199. Chasset F, Francès C, Barrete S, et al. Influence of smoking on the efficacy of antimalarials in cutaneous lupus: a meta-analysis of the literature. J Am Acad Dermatol 2015; 72: 634–639.

200. Huisman A, White KP, Algra A, et al. Vitamin D levels in women with Systemic Lupus Erythematosus and fibromyalgia. J Rheumatol 2001; 28: 2535–2539.

201. Jacobs J, Korswagen LA, Schêlder AM, et al. Six-year follow-up study of bone mineral density in patients with systemic lupus erythematosus. Osteoporos Int 2013; 24: 1827–1833.

202. Prasad R, Ibanez D, Gladman D, et al. The role of non-corticosteroid related factors in osteonecrosis (ON) in systemic lupus erythematosus: a nested case-control study of inception patients. Lupus 2007; 16: 157–162.
203. Durcan L and Petri M. Why targeted therapies are necessary for systemic lupus erythematosus. *Lupus* 2016; 25: 1070–1079.

204. Lopez R, Davidson JE, Beeby MD, *et al.* Lupus disease activity and the risk of subsequent organ damage and mortality in a large lupus cohort. *Rheumatology* 2012; 51: 491–498.

205. Guillotin V, Bouhet A, Barnetche T, *et al.* Hydroxychloroquine for the prevention of fetal growth restriction and prematurity in lupus pregnancy: a systematic review and meta-analysis. *Joint Bone Spine* 2018; 85: 663–668.

206. Andreoli L, Bertsias GK, Agmon-Levin N, *et al.* EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. *Ann Rheum Dis* 2017; 76: 476–485.

207. Tektonidou MG, Andreoli L, Limper M, *et al.* EULAR recommendations for the management of antiphospholipid syndrome in adults. *Ann Rheum Dis* 2019; 78: 1296–1304.

208. Ramos-Casals M, Brito-Zerón P, Bombardieri S, *et al.* EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. *Ann Rheum Dis* 2020; 79: 3–18.

209. Landewé RB, Machado PM, Kroon F, *et al.* EULAR provisional recommendations for the management of rheumatic and musculoskeletal diseases in the context of SARS-CoV-2. *Ann Rheum Dis* 2020; 79: 851–858.

210. Kostine M, Finckh A, Bingham CO, *et al.* EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. *Ann Rheum Dis* 2021; 80: 36–48.

211. Kloppenburg M, Kroon FPB, Blanco FJ, *et al.* 2018 update of the EULAR recommendations for the management of hand osteoarthritis. *Ann Rheum Dis* 2019; 78: 16–24.

212. Smolen JS, Landewé RBM, Bijlsma JWJ, *et al.* EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. *Ann Rheum Dis* 2020; 79: 685–699.

213. Combe B, Landewe R, Dafin CI, *et al.* 2016 update of the EULAR recommendations for the management of early arthritis. *Ann Rheum Dis* 2017; 76: 948–959.

214. Tunnicliffe DJ, Singh-Grewal D, Kim S, *et al.* Diagnosis, monitoring, and treatment of systemic lupus erythematosus: a systematic review of clinical practice guidelines. *Arthritis Care Res* 2015; 67: 1440–1452.

215. Tamirou F, Arnaud L, Talarico R, *et al.* Systemic lupus erythematosus: state of the art on clinical practice guidelines. *RMD Open* 2018; 4: e000793.

216. Doyno C, Sobieraj DM and Baker WL. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. *Clin Toxicol* 2020; 0: 1–12.

217. Nishiyama T, Kondo Y, Tsuboi H, *et al.* QTc interval prolongation in patients with systemic lupus erythematosus treated with hydroxychloroquine. *Mod Rheumatol* 2021; 31: 1107–1112.

218. Chatre C, Roubille F, Vernhet H, *et al.* Cardiac complications attributed to chloroquine and hydroxychloroquine: a systematic review of the literature. *Drug Saf* 2018; 41: 919–931.

219. Zhao H, Wald J, Palmer M, *et al.* Hydroxychloroquine-induced cardiomyopathy and heart failure in twins. *J Thorac Dis* 2018; 10: E70–E73.

220. Sames E, Paterson H and Li C. Hydroxychloroquine-induced agranulocytosis in a patient with long-term rheumatoid arthritis. *Bir J Rheumatol* 2016; 3: 91–92.

221. El-Solia A, Al-Otaibi K and Ai-Hwiesh AK. Hydroxychloroquine-induced hypoglycaemia in non-diabetic renal patient on peritoneal dialysis. *BMJ Case Rep* 2018; 2018: 2017–2019.

222. Cansu DÜ and Korkmaz C. Hypoglycaemia induced by hydroxychloroquine in a non-diabetic patient treated for RA. *Rheumatology* 2008; 47: 378–379.

223. Stein M, Bell MJ and Ang LC. Hydroxychloroquine neuromyotoxicity. *J Rheumatol* 2000; 27: 2927–2931.

224. Siddiqui AK, Huberfeld SI, Weidenheim KM, *et al.* Hydroxychloroquine-induced toxic myopathy causing respiratory failure. *Chest* 2007; 131: 588–590.

225. Mascolo A, Berrino PM, Gareri P, *et al.* Neuropsychiatric clinical manifestations in elderly patients treated with hydroxychloroquine: a review article. *Inflammopharmacology* 2018; 26: 1141–1149.

226. Petri M, Elkhalifa M, Li J, *et al.* Hydroxychloroquine blood levels predict
227. Xie W and Zhang ZL. Additional analyses to confirm relationship of hydroxychloroquine blood levels to retinopathy: comment on the article by Petri et al. *Arthritis Rheumatol* 2020; 72: 694.

228. Wolfe F and Marmor MF. Rates and predictors of hydroxychloroquine retinal toxicity in patients with rheumatoid arthritis and systemic lupus erythematosus. *Arthritis Care Res* 2010; 62: 775–784.

229. Makin AJ, Wendon J, Fitt S, et al. Fulminant hepatic failure secondary to hydroxychloroquine. *Gut* 1994; 35: 569–570.

230. Koumaki D, Koumaki V, Bertsias G, et al. Hydroxychloroquine-induced erythema multiforme. *Clin Case Reports* 2020; 8: 578–579.

231. Pai SB, Sudershian B, Kuruvilla M, et al. Hydroxychloroquine-induced erythroderma. *Indian J Pharmacol* 2017; 49: 132–134.

232. Pelechas E and Drosos AA. Hydroxychloroquine-induced dark butterfly rash in a rheumatoid arthritis patient. *Rheumatology* 2018; 57: 849.

233. Ivo R, Lopes CA and Reis R. Woman in grey: hydroxychloroquine-induced hyperpigmentation. *BMJ Case Rep* 2018; 11: 2017–2018.

234. Serre J, Buob D and Boffa JJ. Hydroxychloroquine-induced podocytopathy mimicking Fabry disease. *BMJ Case Rep* 2019; 12: 2018–2020.

235. Wu SZ, Liang X, Geng J, et al. Hydroxychloroquine-induced renal phospholipidosis resembling fabry disease in undifferentiated connective tissue disease: a case report. *World J Clin Cases* 2019; 7: 4377–4383.

236. Eldaaly K, Alireza KH, Alshehri S, et al. Hydroxychloroquine safety: a meta-analysis of randomized controlled trials. *Travel Med Infect Dis* 2020; 36: 101812.

237. Bahloul E, Jallouli M, Garbaa S, et al. Hydroxychloroquine-induced hyperpigmentation in systemic diseases: prevalence, clinical features and risk factors: a cross-sectional study of 41 cases. *Lupus* 2017; 26: 1304–1308.

238. Jallouli M, Francès C, Piette JC, et al. Hydroxychloroquine-induced pigmentation in patients with systemic lupus erythematosus: a case-control study. *JAMA Dermatol* 2013; 149: 935–940.

239. Abou Assalie N, Durcan R, Durcan L, et al. Hydroxychloroquine-induced erythema multiforme. *J Clin Rheumatol* 2017; 23: 127–128.

240. Lenfant T, Salah S, Leroux G, et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus: a case-control study with hydroxychloroquine blood-level analysis. *Rev Med* 2020; 59: 3807–3816.

241. Spinelli FR, Moscarelli E, Ceccarelli F, et al. Treating lupus patients with antimalarials: analysis of safety profile in a single-center cohort. *Lupus* 2018; 27: 1616–1623.

242. Garg S, Unnithan R, Hansen KE, et al. The clinical significance of monitoring hydroxychloroquine levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis. *Arthritis Care Res* 2021; 73: 707–716.

243. Mok CC, Penn HJ, Chan KL, et al. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. *Arthritis Care Res* 2016; 68: 1295–1302.

244. Lee JY, Lee J, Kwok SK, et al. Factors related to blood hydroxychloroquine concentration in patients with systemic lupus erythematosus. *Arthritis Care Res* 2017; 69: 536–542.

245. Fernandez-Ruiz R, Bornkamp N, Kim MY, et al. Discontinuation of hydroxychloroquine in older patients with systemic lupus erythematosus: a multicenter retrospective study. *Arthritis Res Ther* 2020; 22: 191.