Augmented reality technology as a tool to support chemistry learning: a scoping review

I Sari1,2*, P Sinaga1, and Hernani1

1Program Studi Pendidikan Ilmu Pengetahuan Alam, Sekolah Pascasarjana, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudi No. 229, Bandung 40154, Indonesia
2Program Studi Pendidikan Kimia, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Sultan Ageng Tirtayasa, Jl. Ciwaru Raya No.25, Serang 42121, Indonesia

*indahsari@untirta.ac.id

Abstract. The purpose of this scoping review was to provide a comprehensive overview of relevant research regarding the use of Augmented Reality, the links to pedagogy and educational outcomes, specifically in the context of chemistry learning. The scoping review is underpinned by the five-stage Arksey and O’Malley framework. First, research questions are identified. Second, the last ten years studies are explored by using the key word ‘augmented reality + chemistry learning.’ Third, studies are investigated through inclusion and exclusion criteria, and PRISMA model is utilized for article selection. PRISMA model used in the form of four-phase flow diagram, including: identification, screening, eligibility, and included. Fourth, selected articles are charted with respect to numerous dimensions and summaries. Finally, findings are reported in the light of research questions. The findings of the scoping review illustrated a set of studies that provide evidence of improved conceptual understanding, increase in students’ interest, engagement, motivation, and satisfaction through the educational environments that are enriched with AR applications. The findings of the scoping review are discussed with respect to multiple dimensions that are explored under research questions.

1. Introduction
Chemistry is a part of natural sciences that studies natural phenomena. Some basic concepts of chemistry are at the sub-microscopic level and require thinking about natural phenomena using three levels of representation namely macroscopic, sub-microscopic, and symbolic [1]. Chemists use symbols and chemical equations to present materials and describe chemical changes as the way to communicate their observations, and it becomes obstacles in chemistry learning [1, 2, 3]. Students consider chemistry as a difficult subject because it contains abstract concepts and technical language [4, 5]. Chemistry learners must be able to connect the macroscopic world that they can see with the sub-microscopic dan symbolic representation. AR can be one of the solutions to overcome these difficulties because this technology can help the visualization of abstract concepts. AR technology facilitates the realization of topics through enabling 3D representation of the invisible events, and provides an understanding of concept that students frequently find difficult [e.g. 6-10]. Applying AR applications in education especially in chemistry learning also have a positive impact on learning process and learners’ attitudes [11-15] and it can be integrated with pedagogical approaches to gain various learning outcome.

Looking from such a glimpse, this scoping review aims to capture the relevant studies in the literature about AR as a tool to support chemistry learning. This study may reveal the point that how AR
applications are integrated into the chemistry learning process, including the chemistry topics, pedagogical approaches/models, and learning outcomes/expected result.

2. Method
This study is a scoping review using Arksey and O’Malley’s five-stage framework including: identifying research questions, identifying relevant studies, study selection, charting the data, summarizing and reporting the results were utilized in this review [16]. The stages of identifying research questions, identifying relevant studies, and study selection will be presented in method section, but the stages of charting the data, summarizing and reporting the results will be presented in result and discussion section.

2.1 Identifying Research Questions
This review was focused on exploration about three aspects including: the chemistry topics that were presented in the AR applications; the pedagogical approaches/models were integrated with AR applications; and the learning outcomes/expected result that arose through chemistry learning with AR application as support tool. The following research questions are submitted to guide the research to capture literature that in line with the focus of this study: (1) What chemistry topics are presented in AR applications?; (2) What pedagogical approaches/models are integrated with AR applications?; (3) What learning outcomes/results are arising from the use of AR applications in chemistry learning?

2.2 Identifying Relevant Studies
The second step is identifying relevant studies. Keyword ‘augmented reality + chemistry learning’ is selected to capture literature regarding the use of AR in chemistry learning. The reason for selecting ‘augmented reality + chemistry learning’ as a search term was to reach out relevant studies as many as possible. Afterwards, inclusion and exclusion criteria were developed to get insights about the aspect that can be included to summarize the selected studies. Table 1 shows the inclusion and exclusion criteria.

Criteria	Inclusion	Exclusion
Time period	The last 10 years (2011-2020)	Outside these time period
Study focus	Studies relating to designed an AR application for chemistry learning or apply in educational purposes	Studies that designed an AR application not for chemistry learning
Participant	Students and teachers/lecturers in educational setting	Informal participant in which there is no educational purposes

2.3 Study Selection
The article selection process on this study followed the PRISMA model in the form of four-phase flow diagram, including: identification, screening, eligibility, and included [18]. Stages of the article selection process can be seen in Figure 1.
Figure 1 shows the fact that most of articles were irrelevant with inclusion criteria. Studies about designed an AR application for another subject are excluded, i.e. for medical and language despite having educational objectives. Moreover, full-text articles that not written in English and preview of thesis and dissertations are also exclude.

3. Result and Discussion

3.1 Charting the Data

The next step on this scoping review was charting the selected articles. The final articles included in review as many as 42 articles related to designed an AR application for chemistry learning or apply in educational purposes. After each study is perceived to be included in the inclusion criteria, summaries are developed for each article with several variables including the author, participant, chemistry topics, pedagogical approaches/models, and learning outcome/result as shown in Table 2.

Table 2. Descriptive information related to the reviewed articles

Participant	Chemistry Topics	Pedagogical Approaches/Models	Learning Outcomes/ Results	Author
Undergraduate students	Complex molecules	Computer-based learning	Conceptual understanding	Eriksen, et al. [9]
Preliminary in-course student	Bio molecules	Computer-Based Learning	Conceptual understanding, interest/excitement	Sanii [8]
Students, teachers lecturers	Periodic table of elements, chemical reaction	Inquiry-based learning	Teambuilding, motivation, communication, engagement, enjoyment	Estudante & Dietrich [19]
Undergraduate students	Bio molecules	Multimedia-based learning	Conceptual understanding, self-efficacy, spatial awareness	Sung, et al. [10]
Undergraduate students	Laboratory equipment	Internet/Web-Based Learning	Students’ attitude toward chemistry instrumentation	An, et al. [12]
Undergraduate students	Analytical instrumentation	Internet/Web-Based Learning	Conceptual understanding	Naese, et al. [20]
Undergraduate students	Organic chemistry reaction	Multimedia-based learning	Conceptual understanding	Plunkett [21]
Undergraduate students	Chemical reactions	Internet/web-based learning	Conceptual understanding and attitude	Yang, et al. [13]
Undergraduate students	Biochemistry-laboratory Safety	Inquiry-based learning	Knowledge, memory, helpfulness, enjoyment	Zhu, et al. [22]
Undergraduate students	Colorimetric titration	Multimedia-based learning	Conceptual understanding, confidence in chemical handling	Tee, et al. [23]
Junior high school students	Chemical reaction	Collaborative learning	Conceptual understanding and science interest	Chen & Liu [24]
Junior high school students	The composition of substances	Inquiry-based learning	Students’ attitude and Conceptual understanding	Cai, et al. [25]
Undergraduate students	Stereochemistry	Not mention clearly	Students’ mental rotation ability, attitudes, conceptual understanding	Habig [11]
Preliminary students	Chemical reactions	AR-based learning	Students’ attitude	Ewais & Troyer [7]
Secondary school students	Redox reaction	Not mention clearly	Conceptual understanding, interactions understanding,	Wan, et al. [26]
High school students	Redox reaction	Experimental learning	Conceptual understanding	Gan, et al. [27]
Senior high school students	Electrochemistry	Not mention clearly	Conceptual intrinsic understanding	Huwer, et al. [28]
Participant	Chemistry Topics	Pedagogical Approaches/Models	Learning Outcomes/ Results	Author
-------------	-----------------	------------------------------	---------------------------	--------
7th grade students	Composition of substances	Not mention clearly	Conceptual understanding, motivation, self-efficacy and self-determination	Chang & Chung [29]
Secondary school students	Periodic table of the elements	AR-based learning	Conceptual understanding, motivation, attitude	Pribeanu, et al. [30]
Students (not mention clearly)	Chemical reaction	Experimental learning	Conceptual understanding and lab experience	Tuli & Mantri [31]
Undergraduate students	Enzyme kinetics	Game-based learning	Conceptual understanding, engagement	Crandall, et al. [32]
Students (11-13 years old)	Periodic table of the elements	Game-based learning	Engagement, excitement,	Boletis & McCallum [33]
Second grade of lower secondary school	Acid-base reaction	Experimental learning	Students’ attitude	Wojciechowski & Cellary [34]
Secondary school students	Periodic table of the elements, chemical bonding, chemical reactions	AR-based learning	Conceptual understanding	Iordache, et al. [35]
Chemistry teacher	Chemical elements	Not mention clearly	Technology literacy	Astuti, et al. [36]
Undergraduate students	Molecular geometry	Not mention clearly	Conceptual understanding	Nazar, et al. [37]
Undergraduate students	Molecular geometry	Cooperative learning	Conceptual understanding, submicroscopic representation ability	Wulandari, et al. [38]
Teachers and senior high school students	Chemical bonding	Not mention clearly	Conceptual understanding	Fitriani, et al. [39]
Undergraduate students and lecturers	Alkanes and Cycloalkanes	Not mention clearly	Conceptual understanding, motivation	Masmui, et al. [40]
Undergraduate students	Molecular geometry	Not mention clearly	Conceptual understanding	Irvansyah, et al. [41]
Undergraduate students	Stereochemistry	STEM learning	Conceptual understanding	Behmke, et al. [42]
Secondary school students, chemistr teachers	Stereochemistry	Not mention clearly	Conceptual understanding	Swamy et al. [43]
Junior high school students	Chemical reaction	AR-based learning	Conceptual understanding	Ashida & Makino [44]
Secondary school students	Chemical bonding	AR-based teaching	Conceptual understanding	Abbasi, et al. [45]
Senior high school students	The making of oxygen experiment	Collaborative problem solving	Conceptual understanding, laboratory safety	Hou & Lin [46]
Students (not mention their level)	Chemical bonding	Not mention clearly	Conceptual understanding	Saidin, et al. [47]
Senior high school students	Hydrocarbon	Interactive 5E learning cycle-based AR system	Conceptual understanding, motivation, self-efficacy	Cheng & Chu [48]
Senior high school students	Electrochemistry	Experiential learning cycle	Conceptual understanding, motivation	Chen & Liao [49]
Senior high school students	Gases	Inquiry-based learning	Problem solving abilities, conceptual understanding	Yang, et al. [50]
3.2 Summarizing and Reporting Findings

The last step of Arksey and O’Malley’s five-stage framework is summarizing and reporting findings. The use of AR in learning activities is an emerging trend aimed at improving students’ learning outcomes and affective factors [24, 17]. AR helps in bridging the gap between the theoretical knowledge acquired through analytical activities (such as reading text-books and listening to lectures) and the practical experience gained from constructive activities [54]. AR also help students to understand the abstract concept that require spatial ability about submicroscopic representation by 3D visualizing. It corresponds to findings (see Table 2) that AR is used for chemistry learning on the topics containing abstract concepts such as complex molecules [9], bio molecules [8, 10], periodic table of the elements [19, 30, 33, 35], chemical reaction [7, 13, 19, 24, 31, 35, 44, 52], laboratory equipment [12], analytical instrumentation [20], organic chemistry reaction [21], biochemistry-laboratory safety [22], colorimetric titration [23], the composition of substances [25, 29], stereochemistry [11, 42, 43], redox reaction [26, 27], electrochemistry [28, 49], enzyme kinetics [32], acid-base reaction [34], chemical bonding [35, 39, 45, 47], chemical elements [36], molecular geometry [37, 38, 41, 53], alkanes and cycloalkanes [40], the making of oxygen experiment [46], hydrocarbon [48], gases [50], acid-base titration [51]. Based on the findings, the most widely developed chemistry topic in AR application is chemical reaction. Chemical reactions are one of the topics that become a precondition for studying the next topic, i.e. acid-base, reaction rate, thermochemistry, and electrochemistry. The findings suggest that there are chemistry topics that can be presented in AR application in the future study because the topic has an abstract concept that requires visualization, i.e. basic chemistry laws, stoichiometry, thermochemistry, reaction rate, colligative properties of solution, and chemical equilibrium.

The findings (see Table 2) also expose that AR applications for chemistry learning are developed with certain educational approach/models, i.e. game-based learning [32, 33], AR-based learning [7, 30, 35, 44, 45, 51], computer-based learning [8, 9], internet/web-based learning [12, 13, 20], inquiry-based learning [19, 22, 25, 50], multimedia-based learning [10, 21, 23], collaborative learning [24], experimental learning [27, 31, 34], cooperative learning [38], STEM learning [42], collaborative problem-solving [46], experiential learning cycle[49], and interactive 5E learning cycle-based AR system [48], although some studies do not mention clearly about it.

The findings (see Table 2) also indicate that AR has the potential to effect a transformation in learning chemistry process. It can make positive impact to various learning outcome such as conceptual understanding, submicroscopic representation ability, spatial ability, problem solving abilities, motivation, interest/excitement, engagement, attitude toward lab safety, teambuilding, communication, self-efficacy, self-determination, and also technology literacy. AR also allowing users to use hands in a direct manipulation with real and virtual objects simultaneously and enables experimental learning/laboratory activities [e.g. 12, 13, 19, 46]. The findings also show that only study no. 39 which aims to improve students’ problem-solving abilities. In the future research, the development of AR application that aims to stimulate higher order thinking skills is a good opportunity.

4. Conclusion

This scoping review exploring the studies that aims to develop AR application that are integrated into the chemistry learning process which is focus on exploration about three aspects including: the chemistry topics that were presented in the AR applications; the kind of pedagogical approaches/models
were integrated with AR applications; and the learning outcomes/expected result that arose through chemistry learning with AR application as support tool. Based on findings, future research opportunities are to develop an AR application for chemistry learning on topics i.e. basic chemistry laws, stoichiometry, thermochemistry, reaction rate, colligative properties of solution, and chemical equilibrium because these topics have abstract concepts that requires visualization. Other opportunities in the future study is design AR app in chemistry learning to improve conceptual understanding and the higher order thinking skills (i.e. critical thinking skill, problem solving skill, creative thinking skill, and decision making) as learning outcomes.

5. References
[1] Treagust D F, Chittleborough G and Mamiala T L 2003 Int. J. Sci. Educ. 25 1353–68.
[2] Liu Y and Taber K S 2016 Chem. Educ. Res. Pract. 17 3 439-451.
[3] Gilbert J K 2010 Asia-Pacific Forum on Science Learning & Teaching 11 1 1-19.
[4] Ayas A and Demirbas A 1997 J. Chem. Educ. 74 5 518-521.
[5] Holstermann N, Grube D and Bögeholz S 2010 Res. Sci. Educ. 40 5 743-757.
[6] Wu H-K, Lee S W-Y, Chang H-Y and Liang J-C 2013 Comp. & Educ. 62 41–49.
[7] Ewais A and Troyer O D 2019 J. Educ. Comp. Res. 073563311985560.
[8] Sanii B 2020 J. Chem. Educ. 97 1 253–257.
[9] Eriksen K, Nielsen B E and Pittelkow M 2020 J. Chem. Educ. 97 5 1487–1490.
[10] Sung R-J, Wilson A T, Lo S M, Crowl L M, Nardi J, St. Clair K and Liu J M 2020 J. Chem. Educ. 97 1 147-153.
[11] Habig S 2019 British J. Educ. Tech. 51 3 629–644.
[12] An J, Poly L-P and Holme T A 2020 J. Chem. Educ. 97 1 97-105.
[13] Yang S, Mei B and Yue X 2018 J. Chem. Educ. 95 6 1060-1062.
[14] Lu S J and Liu Y C 2015 Env. Educ. Res. 21 4 525-541.
[15] Martin-Gonzalez A, Chi-Poot A and Uc-Cetina V 2015 Innov. Educ. Teach. Int. 53 6 627-636.
[16] Arskey H and O’Malley L 2005 Int. J. Soc. Res. Met. 8 1 19-32.
[17] Saltan F and Arslan Ö 2017 EURASIA J. Math. Sci. Tech. Educ. 13 2 503-520.
[18] Moher D, Liberati A, Tetzlaff J and Altman D G 2009 J. Cli. Epi. 62 10 1006–1012.
[19] Estudante A and Dietrich N 2020 J. Chem. Educ. 97 5 1368-1374.
[20] Naese J A, McAteer D, Hughes KD, Kelbon C, Mugweru A and Grinias JP 2019 J. Chem. Educ. 96 3 593-596.
[21] Plunkett K N 2019 J. Chem. Educ. 96 11 2628-2631.
[22] Zhu B, Feng M, Lowe H, Kesselman J, Harisson L and Dempski R E 2018 J. Chem. Educ. 95 10 1747-1754.
[23] Tee N Y K, Gan H S, Li J, Cheong B H-P, Tan H Y, Liew O W and Ng T W 2018 J. Chem. Educ. 95 3 393–399.
[24] Chen S-Y, and Liu, S-Y 2020 Comp. Hum. Beh. 106418.
[25] Cai S, Wang X and Chiang F-K 2014 Comp. Hum. Beh. 37 31-40.
[26] Wan A T, San L Y and Omar M S 2018 Int.J. Comp. Assist. Lang. Learn.Teach. 8 4 45-64.
[27] Gan H S, Tee N Y K, Bin Mamtaaz M R, Xiao K, Cheong B H-P, Liew O W et al. 2018 Biochem. Molec. Bio. Educ. 46 3 245-252.
[28] Huwer J, Lauer L, Seibert J, Thyssen C, Dörrenbächer-Ulrich L and Perels F 2018 World J. Chem. Educ. 6 5 212-217.
[29] Chang R-C and Chung L-Y 2017 Frontier Comp. 187-195.
[30] Pribaneau C, Balog A and Iordache D D 2016 Interact. Learn. Env. 25 4 482-495.
[31] Tuli N and Mantri A 2015 J. Engineering Educ. Transf. Special Issue: Issue: 2015, 188-191.
[32] Crandall P G, Engler R K, Beck D E, Killian S A, O’Bryan C A, Jarvis N et al. 2015 J. Food Scie. Educ. 14 1 18-23.
[33] Boletsis C and McCallum S 2013 Lect. Notes in Comp. Scie. 86-95.
[34] Wojciechowski R and Cellary W 2013 Comp. & Educ. 68 570–585.
[35] Iordache D D, Priebeau C and Balog A 2012 Studies in Informatics and Control 21 3 233-240.
[36] Astuti A P, Mawarsari V D, Purnomo H and Sediyono E 2020 AIP Conference Proceedings 2215 020002.
[37] Nazar M, Aisyi R, Rahmayani R F I, Hanum L, Rusman R., Puspita K et al. 2020 Journal of Physics: Conference Series 1460 012083.
[38] Wulandari I, Irwansyah F S, Farida I and Ramdhani M A 2019 Journal of Physics: Conference Series 1280 032016.
[39] Fitriani E, Suhartono S and Mugiarti I 2019 Journal of Physics: Conference Series 1402 055058.
[40] Masmui, Windayani N, Irwansyah F S and Asyiah E N 2019 Proceedings of IEEE 5th International Conference on Wireless and Telematics (Indonesia: Yogyakarta) p. 1-5.
[41] Irwansyah F S, Yusuf Y M, Farida I and Ramdhani M A 2018 IOP Conference Series: Materials Science and Engineering 288 012068.
[42] Behmke D, Kerven D, Lutz R, Paredes J, Pennington R, Brannock E et al. 2018 The Interdisciplinary STEM Teaching and Learning Conference 2 5-11.
[43] Swamy K L N, Chavan P S and Murthy S 2018 Proceedings of the 18th International Conference on Advanced Learning Technologies (India: Mumbai) p. 252-256.
[44] Ashida R and Makino M 2018 Proceedings of International Conference on Electronics, Information, and Communication (Hawaii: Honolulu) p. 1-4.
[45] Abbasi F, Waseem A. and Ashraf E 2017 Proceedings of International Conference on Communication, Computing and Digital Systems (Pakistan: Islamabad) p. 259-264.
[46] Hou H-T and Lin Y-C 2017 Proceedings of the 6th IIAI Int. Cong. Adv. App. Inf. (IIAI-AAI) (Japan: Hamamatsu) p. 1005-1006.
[47] Saidin N F, Halim N D A and Yahaya N 2016 Proceedings of the 2nd International Colloquium of Art and Design Education Research (i-CADER 2015) (Malaysia: Langkawi Island, Kedah Darul Aman) p. 367–377.
[48] Cheng S-H and Chu H-C 2016 Proceedings of the 5th IIAI International Congress on Advanced Applied Informatics (Japan: Kumamoto) p. 357-360.
[49] Chen M-P and Liao B-C 2015 Proceedings of the 15th International Conference on Advanced Learning Technologies (Taiwan: Hualien) p. 132-136.
[50] Yang K-J, Chu H-C and Yang K-H 2015 Proceedings of the 4th IIAI International Congress on Advanced Applied Informatics (Japan: Okayama) p. 354-357.
[51] Nachairit A and Srisawadsi S 2015 Proceeding of the 23rd International Conference of Computers in Education (China: Hangzhou) p. 519-528.
[52] Andrade T F, Maier P, Quintas M R, Klinker G and Restivo M T 2014 Proceeding of the 11th International Conference on Remote Engineering and Virtual Instrumentation (Portugal: Porto) p. 217-218.
[53] Maier P and Klinker G 2013 Proceedings of the 5th International Conference on Computer Supported Education (CSEDU-2013) (Germany: Aachen) p. 294-302.
[54] Chen R and Wang X 2008 Tsinghua Sci. Tech. 13 1 13-18.

Acknowledgments
The author sincerely thanks Lembaga Pengelola Dana Pendidikan (LPDP), Kementerian Keuangan Indonesia, for providing me with the financial support during my study at Universitas Pendidikan Indonesia.