Abstract

There are many Language Models for the English language according to its worldwide relevance. However, for the Spanish language, even if it is a widely spoken language, there are very few Spanish Language Models which result to be small and too general. Legal slang could be think of a Spanish variant on its own as it is very complicated in vocabulary, semantics and phrase understanding. For this work we gathered legal-domain corpora from different sources, generated a model and evaluated against Spanish general domain tasks. The model provides reasonable results in those tasks.

1 Introduction

Legal Spanish (or Spanish Legalese) is a complex slang that is away from the language spoken by the society. Language Models, generally, are pre-trained on large corpora for later fine-tuning them on different tasks. Language Models are widely used due to their transfer learning capabilities. If the corpora used for training the Language Models are aligned with the domain of the tasks they provide better results.

In this work we gathered different corpora and we trained a Language Model for the Spanish Legal domain.

2 Corpora

Our corpora comprises multiple digital resources and it has a total of 8.9GB of textual data. Part of it has been obtained from previous work [9]. Table I shows different resources gathered. Most of the corpora were scraped, some of them in PDF format. We then transformed and cleaned the data. Other corpora like the COPPA patents corpus were requested.

As a contribution of this work we publish all publishable corpora we gathered in Zenodo[2].

3 Model

We trained a RoBERTa[7] base model, using the hyper-parameters proposed in the original work. As vocabulary, we used Byte-Level BPE or training, we use the Fairseq[8] library, and for fine-tuning, Huggingface Transformers[12], but with a vocabulary size of 52,262. For training, we used the Fairseq[8] library, and for fine-tuning, Huggingface.

[1] https://www.wipo.int/export/sites/www/patentscope/en/data/pdf/wipo-coppa-technicalDocumentation.pdf
[2] https://zenodo.org/record/5495529
Corpus name	Size (GB)	Tokens (M)
Procesos Penales	0.625	0.119
JRC Acquis	0.345	59.359
Códigos Electrónicos Universitarios	0.077	11.835
Códigos Electrónicos	0.080	12.237
Doctrina de la Fiscalía General del Estado	0.017	2.669
Legislación BOE	3.600	578.685
Abogacía del Estado BOE	0.037	6.123
Consejo de Estado: Dictámenes	0.827	135.348
Spanish EURLEX	0.001	0.072
UN Resolutions	0.023	3539.000
Spanish DOGC	0.826	132.569
Spanish MultiUN	2.200	352.653
Consultas Tributarias Generales y Vinculantes	0.466	77.691
Constitución Española	0.002	0.018
COPPA Patents Corpus	0.002	-
Biomedical Patents Corpus	0.083	-

Table 1: List of individual sources constituting the legal corpus. The number of tokens refers to white-spaced tokens calculated on cleaned untokenized text.

Transformers [12]. We trained the model until convergence with 8 Nvidia Tesla V100 GPUs with 16GB of VRAM. The model was trained with a peak learning rate of 0.0005 and 2,048 of batch size. The model is available in HuggingFace.

4 Embeddings

Additionally, following previous work in the Natural Language Processing for Spanish Legal texts [9] we computed FastText word and subword embeddings, with 50, 100 and 300 dimensions, using CBOW and Skip-gram methods. For the word embeddings, we computed both cased and uncased word embeddings, and for the subword embeddings we computed Byte-level Byte-Pair-Encoding (BBPE) embeddings with 30k vocabulary size. The embeddings can be freely downloaded from Zenodo.

5 Evaluation

We compare our RoBERTaLex model with the Spanish RoBERTa-base (RoBERTa-b) [5] and multilingual BERT (mBERT) [4]. Due to the lack of domain specific evaluation data, he models are evaluated on general domains tasks, where RoBERTaLex obtains reasonable performance. We fine-tuned each model in the following tasks:

- Part of Speech from Universal Dependencies (UD-POS).
- Named Entity Recognition from Conll2002 (Conll-NER) [11].
- Part of Speech from the Capitel Corpus (Capitel-POS) [6].
- Named Entity Recognition from the Capitel Corpus (Capitel-NER) [7].
- Semantic Textual Similarity (STS) from 2014 [2] and 2015 [1].
- The Multilingual Document Classification Corpus (MLDoc) [10] [6].
- The Cross-lingual Adversarial Dataset for Paraphrase Identification (PAWS-X) [13].
- The Cross-Lingual NLI Corpus (XNLI) [3].

Table 2 shows the evaluation results of the three models. RoBERTaLex was evaluated with a fixed set of hyperparameters, while the results reported in [5] were obtained by conducting a grid search and picking the best value.

References:

- https://huggingface.co/BSC-TeMU/RoBERTaLex
- https://zenodo.org/record/5036147
- https://universaldependencies.org/
- https://sites.google.com/view/capitel2020#h.p_eFTF8UCJXFp
- https://sites.google.com/view/capitel2020#h.p_CbqX2kD3XEip
based on the development set. We plan to evaluate RoBERTalex using the same grid search in order to make the results fully comparable, and also we plan to evaluate the model in domain-specific tasks.

Dataset	Metric	RoBERTalex	RoBERTa-b	mBERT
UD-POS	F1	0.9871	0.9907	0.9886
Conll-NER	F1	0.8323	0.8851	0.8691
Capitel-POS	F1	0.9788	0.9846	0.9839
Capitel-NER	F1	0.8394	0.8960	0.8810
STS	Combined	0.7374	0.8533	0.8164
MLDoc	Accuracy	0.9417	0.9623	0.9550
PAWS-X	F1	0.7304	0.9000	0.8955
XNLI	Accuracy	0.7337	0.8016	0.7876

Table 2: Evaluation table of models.

6 Conclusions & Future Work

Our language model is, to our knowledge, the first of its kind (Spanish legal domain). We extensively evaluated our model by performing general domain evaluation. Results show that it behaves reasonably positive in general domain. We are planning to gather more resources, try to continue the pre-training of the models from [5] with legal domain and train generative models.

Acknowledgements

This work was funded by the Spanish State Secretariat for Digitalization and Artificial Intelligence (SEDIA) within the framework of the Plan-TL.

References

[1] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre, W. Guo, I. Lopez-Gazpio, M. Maritxalar, R. Mihalcea, et al. Semeval-2015 task 2: Semantic textual similarity, english, spanish and pilot on interpretability. In Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015), pages 252–263, 2015.
[2] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre, W. Guo, R. Mihalcea, G. Rigau, and J. Wiebe. Semeval-2014 task 10: Multilingual semantic textual similarity. In Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014), pages 81–91, 2014.
[3] A. Conneau, R. Rinott, G. Lample, A. Williams, S. R. Bowman, H. Schwenk, and V. Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2018.
[4] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805, 2018.
[5] A. Gutiérrez-Fandiño, J. Armengol-Estapé, M. Pámies, J. Llop-Palao, J. Silveira-Ocampo, C. P. Carrino, A. Gonzalez-Agirre, C. Armentano-Oller, C. Rodriguez-Penagos, and M. Villegas. Spanish language models, 2021.
[6] D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.
[7] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach, 2019.
[8] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and M. Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of NAACL-HLT 2019: Demonstrations, 2019.
[9] D. Samy, J. Arenas-García, and D. Pérez-Fernández. Legal-ES: A set of large scale resources for Spanish legal text processing. In Proceedings of the 1st Workshop on Language Technologies for Government and Public Administration (LT4Gov), pages 32–36, Marseille, France, May 2020. European Language Resources Association.
[10] H. Schwenk and X. Li. A corpus for multilingual document classification in eight languages. In N. C. C. chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga, editors, *Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)*, Paris, France, may 2018. European Language Resources Association (ELRA).

[11] E. F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-independent named entity recognition. In *COLING-02: The 6th Conference on Natural Language Learning 2002 (CoNLL-2002)*, 2002.

[12] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*, pages 38–45, Online, Oct. 2020. Association for Computational Linguistics.

[13] Y. Yang, Y. Zhang, C. Tar, and J. Baldridge. PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification. In *Proc. of EMNLP*, 2019.