The generalized Chern character and Lefschetz numbers in W*-modules

A.A. Pavlov *

March 20, 2000

Abstract

We define N-theory being some analogue of K-theory on the category of von Neumann algebras such that $K_0(A) \subset N_0(A)$ for any von Neumann algebra A. Moreover, it turns out to be possible to construct the extension of the Chern character to some homomorphism from $N_0(A)$ to even Banach cyclic homology of A. Also, we define generalized Lefschetz numbers for an arbitrary unitary endomorphism U of an A-elliptic complex. We study them in the situation when U is an element of a representation of some compact Lie group.

Key words: N-theory, generalized Chern character, Banach cyclic homology

1991 mathematics subject classification: 46L80, 46L10

1 Introduction

For an arbitrary von Neumann algebra A we introduce an abelian group $N_0(A)$ in the following way. It is possible to define some equivalence relation between normal elements of the inductive limit $M_\infty(A) = \lim \to M_n(A)$ such that for projections it coincide with the usual stable equivalence relation. Then the set of all equivalence classes of normal elements from $M_\infty(A)$ is an abelian semigroup (with respect to the direct sum operation) and $N_0(A)$ is its symmetrization. The first part of our paper is devoted to the consideration

*The work is partially supported by the RFBR grant 99-01-01202 and INTAS grant 96-1099.
of some properties of N-groups. More detail on this subject can be found in [12].

Further, we introduce Banach cyclic homology of A as some analogue of usual cyclic homology and construct the generalized Chern character as a map from $N_0(A)$ to even Banach cyclic homology. Furthermore, this map is an extension of the classic Chern character to the group $N_0(A) \supset K_0(A)$ in some natural sense.

In the final section we define generalized Lefschetz numbers for an arbitrary unitary endomorphism U of an A-elliptic complex. Besides, in the case when U is an element of a representation of some compact Lie group we describe the connection of the generalized Lefschetz numbers with the W^*-Lefschetz numbers of the first and of the second types introduced in [14, 15, 1].

Some results of the present paper were formulated in [11].

The paper is organized as follows:

1. Introduction
2. Some properties of N-groups
3. The group $N_0(A)_{fin}$
4. Banach cyclic homology
5. The generalized Chern character
6. Generalized Lefschetz numbers
 References

2 Some properties of N-groups

Suppose A is a von Neumann algebra, $M_r(A)$ is the set of $r \times r$ matrices with entries in A, $M_\infty(A)$ is the inductive limit of the sequence $\{M_r(A)\}_{r=1}^\infty$, and $M_\infty(A)_\nu$ is the set of normal elements for $M_\infty(A)$. Denote by $\mathcal{B}(\mathbb{C})$ the family of all Borel subsets of the complex plane. If $a \in M_\infty(A)_\nu$ and $E \in \mathcal{B}(\mathbb{C})$, then by $P_a(E)$ we denote the spectral projection of a corresponding to the set E. We remark that $P_a(E) \in M_\infty(A)_\nu$ since von Neumann algebras are closed with respect to the Borel calculus. We denote the stable equivalence relation (see [9]) of projections $p, q \in M_\infty(A)$ by $p \simeq q$. Finally, let $sp(a)$ denote the spectrum of an element a.
A Borel set $E \subset \mathbb{C}$ is called admissible if zero does not belong to the closure of E. Denote by $\mathcal{B}_s(\mathbb{C})$ the family of all admissible Borel subsets of the complex plane.

Definition 1. Call elements $a, b \in M_\infty(A)$ equivalent (and denote by $a \simeq b$) if and only if $P_a(E) \simeq P_b(E)$ for all $E \in \mathcal{B}_s(\mathbb{C})$.

Note that this equivalence relation coincides with the usual stable equivalence relation whenever a, b are projections. It is easy to see that $a \oplus 0_m \simeq a$, where 0_m is the zero $m \times m$ matrix and $a \in M_\infty(A)_\nu$. We put

$$\mathcal{N}(A) = M_\infty(A)_\nu/\simeq.$$

For $a \in M_\infty(A)_\nu$ let us denote by $[a]$ the equivalence class of a in $\mathcal{N}(A)$. Since

$$P_{a \oplus b}(E) = P_a(E) \oplus P_b(E)$$

for all $a, b \in M_\infty(A)_\nu, E \in \mathcal{B}(\mathbb{C})$, this implies that the set $\mathcal{N}(A)$ is an abelian semigroup with respect to the direct sum operation.

Definition 2. The symmetrization of $\mathcal{N}(A)$ is called the N-group of A and is denoted by $N_0(A)$.

Under the previous considerations, the following result is clear.

Proposition 1. $K_0(A)$ is a subgroup of the group $N_0(A)$. □

Proposition 2. If the group $K_0(A)$ is trivial, then the group $N_0(A)$ is trivial too.

Proof. Suppose $[a] - [b] \in N_0(A)$. Since $K_0(A)$ is trivial, this implies that $P_a(E) \simeq 0 \simeq P_b(E)$ for all $E \in \mathcal{B}_s(\mathbb{C})$. Whence, $a \simeq b$. Thus the group $N_0(A)$ is trivial. □

Note that $\mathcal{N}(A)$ is a cancellation semigroup, i.e., the condition $[a] + [c] = [b] + [c]$ implies $[a] = [b]$ for any $[a], [b], [c] \in \mathcal{N}(A)$. In particular, the symmetrization homomorphism $s : \mathcal{N}(A) \longrightarrow N_0(A), s([a]) = [a] - [0]$ is injective.
Our next aim is to establish a functorial property for N_0. We recall that an arbitrary *-homomorphism of C*-algebras is a contraction, i.e., its norm does not exceed 1 [9, Theorem 2.1.7]. Besides, an arbitrary surjective *-homomorphism of von Neumann algebras is continuous with respect to the ultra-strong topology [1, Theorem 2.4.23].

Now let A, B be von Neumann algebras and $\varphi : A \to B$ an ultra-strong continuous unital *-homomorphism. By definition, put $\varphi(a) = (\varphi(a_{ij}))$ and $\varphi([a]) = [\varphi(a)]$ for each matrix $a = (a_{ij}) \in M_\infty(A)_\nu$.

Theorem 1. The map $\varphi_* : N_0(A) \to N_0(B)$ is a well defined homomorphism of abelian groups.

The following lemma is the main ingredient of the proof of Theorem 1.

Lemma 1. $P_{\varphi(a)}(E) = \varphi(P_a(E))$ for each $a \in M_\infty(A)_\nu$ and for each Borel subset $E \subset sp(a)$.

Proof. We can assume that $a \in M_r(A)$ for some $r \geq 1$. It is clear that $sp(\varphi(a)) \subset sp(a)$. It can be directly verified that $\varphi(R(a)) = R(\varphi(a))$ for an arbitrary polynomial R. Further, for any function f, which is continuous on $sp(a)$, there exists a sequence of polynomials $\{R_n\}_{n=1}^\infty$ such that it converges uniformly to f. Then

$$\varphi(f(a)) = \varphi(\lim_n R_n(a)) = \lim_n \varphi(R_n(a)) = \lim_n R_n(\varphi(a)) = f(\varphi(a)).$$

Now let χ_E be the characteristic function of E. Then we can find a sequence $\{f_n\}_{n=1}^\infty$ of continuous functions on the compact space $sp(a)$ such that $\{f_n\}_{n=1}^\infty$ converges to χ_E pointwise, i.e., with respect to the strong topology. Moreover, we can assume that the family $\{f_n\}_{n=1}^\infty$ is norm-bounded. In this case the sequence $\{f_n(a)\}_{n=1}^\infty$ of elements of the von Neumann algebra $M_r(A)$ converges strongly to the element $\chi_E(a) = P_a(E)$ and the family $\{f_n(a)\}_{n=1}^\infty$ is norm-bounded. Since strong and ultra-strong topologies coincide on bounded sets, we have the convergence with respect to the ultra-strong topology: $P_a(E) = \sigma\text{-lim}_n f_n(a)$. Finally, using the ultra-strong continuity of the *-homomorphism φ, we obtain:

$$\varphi(P_a(E)) = \varphi(\sigma\text{-lim}_n f_n(a)) = \sigma\text{-lim}_n \varphi(f_n(a)) = \sigma\text{-lim}_n f_n(\varphi(a)) = \chi_E(\varphi(a)) = P_{\varphi(a)}(E). \square$$
Proof of Theorem \[\Box]. We have to establish that \(\varphi\) is well defined. Let elements \(a, b \in M_\infty(A)_\nu\) be equivalent. Then \(\varphi(P_a(E)) \simeq \varphi(P_b(E))\) for any \(E \in \mathcal{B}_s(C)\). Now it immediately follows from Lemma \[\Box\] that the elements \(\varphi(a)\) and \(\varphi(b)\) are equivalent too. \(\Box\)

3 The group \(N_0(A)_{fin}\)

Let \(M_\infty(A)_{fin} \subset M_\infty(A)_\nu\) be the subset of all elements \(a \in M_\infty(A)\) such that their spectrum is finite. Suppose, \(N_0(A)_{fin} = \{[a] : a \in M_\infty(A)_{fin}\}\). We remark that \(N_0(A)_{fin}\) is a subsemigroup of \(N_0(A)\). By \(N_0(A)_{fin}\) we denote the symmetrization of the abelian monoid \(N(A)_{fin}\). So \(N_0(A)_{fin}\) is a subgroup of the group \(N_0(A)\). Any element of the group \(N_0(A)_{fin}\) we can represent in the form \([\bigoplus_{i=1}^n \lambda_i p_i] - [\bigoplus_{i=1}^n \lambda_i q_i]\), where \(\lambda_i \in \mathbb{C}\) and \(p_i, q_i\) are some (possibly zero) projections in \(M_\infty(A)\).

For an arbitrary map \(f : \mathbb{C} \setminus \{0\} \rightarrow K_0(A)\) let us put \(\Lambda_f = \{\lambda \in \mathbb{C} \setminus \{0\} : f(\lambda) \neq 0\}\). Let us denote by

\[\mathcal{M}_{fin; A} = \mathcal{M}_{fin; C \setminus \{0\}, K_0(A)}\]

the set of all maps from \(\mathbb{C} \setminus \{0\}\) to \(K_0(A)\) such that \(\Lambda_f\) is finite (or empty). The set \(\mathcal{M}_{fin; A}\) is an abelian group with respect to the pointwise addition of maps. Let us consider the map

\[\phi : N_0(A)_{fin} \rightarrow \mathcal{M}_{fin; A}, \quad (\phi([a] - [b]))(\lambda) = [P_a(\{\lambda\})] - [P_b(\{\lambda\})].\]

Theorem 2. The map \(\phi\) is an isomorphism of groups.

Proof. It is clear that \(\phi\) is a well defined homomorphism. Let \([a] - [b] \in N_0(A)_{fin}\), and \(\phi([a] - [b]) = 0\). Therefore for each \(\lambda \in \mathbb{C} \setminus \{0\}\) the projections \(P_a(\{\lambda\})\) and \(P_b(\{\lambda\})\) are stably equivalent. Since the spectra of elements \(a, b\) are finite, we conclude that these elements are equivalent. Hence, \(\phi\) is injective.

Let us examine a map \(f \in \mathcal{M}_{fin; A}\) such that \(\Lambda_f = \{\lambda_i\}_{i=1}^n\) and \(f(\lambda_i) = [p_i] - [q_i] \quad (1 \leq i \leq n)\), where \(p_i, q_i\) are projections from \(M_\infty(A)\). Since
\(p_i \simeq 0_k \oplus p_i \), we can assume that the projections \(\{p_i\}_{i=1}^n \) (and \(\{q_i\}_{i=1}^n \)) are pairwise orthogonal. We put \(a = \bigoplus_{i=1}^n \lambda_i p_i \) and \(b = \bigoplus_{i=1}^n \lambda_i q_i \). Then the elements \(a, b \) belong to \(M_\infty(A)_{\text{fin}} \). Furthermore, \(\phi([a] - [b]) = f \). Hence, \(\phi \) is surjective. \(\square \)

Corollary 1. The groups \(N_0(M_r(C)) \) and \(M_{\text{fin}}(C \setminus \{0\}, \mathbb{Z}) \) are isomorphic.

Proof. The spectrum of any element from \(M_\infty(C) \) is finite. Therefore, \(N_0(M_r(C)) = N_{\text{fin}}(M_r(C)) \). To complete the proof, it remains to use Theorem 2. \(\square \)

Assume \(h_{\lambda, \mu} := [p(\lambda + \mu)] - [p\lambda \oplus p\mu] \) and \(g_{\lambda, p}^{(n)} := [\lambda p \oplus n] - [n\lambda p] \), where \(n \in \mathbb{N}, \lambda, \mu \in C \) and \(p \) is a projection in \(M_\infty(A) \). Then \(h_{\lambda, \mu} \) and \(g_{\lambda, p}^{(n)} \) are elements from \(N_0(A)_{\text{fin}} \).

Let us denote by \(H \) the subgroup of \(N_0(A)_{\text{fin}} \) with the following system of generators \(\{h_{\lambda, \mu} : \lambda, \mu \in C, p \) is a projection in \(M_\infty(A)\} \), and by \(G \) the subgroup of \(N_0(A)_{\text{fin}} \) with the following system of generators \(\{g_{\lambda, p}^{(n)} : n \in \mathbb{N}, \lambda \in C, p \) is a projection in \(M_\infty(A)\} \).

Lemma 2. The group \(G \) is a subgroup of \(H \).

Proof. Take \(\lambda \in C \) and a projection \(p \) from \(M_\infty(A) \). We have to demonstrate that \(g_{\lambda, p}^{(k)} \) belongs to \(H \) for all \(k \geq 1 \). Let us prove this statement by induction over \(k \). The case \(k = 1 \) is clear. Suppose \(g_{\lambda, p}^{(k)} \in H \) for all \(k \leq n - 1 \). In particular,

\[
g_{\lambda, p}^{(n-1)} = [\lambda p \oplus (n-1)] - [(n-1)\lambda p] = y
\]

for some \(y \in H \). Therefore,

\[
g_{\lambda, p}^{(n)} = [\lambda p \oplus (n-1)] + [\lambda p] - [(n-1)\lambda + \lambda)p
\]

\[
= [(n-1)\lambda p] + y + [\lambda p] - [(n-1)\lambda + \lambda)p
\]

\[
= y - h_{(n-1)\lambda, \lambda, p}.
\]

Thus \(g_{\lambda, p}^{(n)} \in H \) and by induction we obtain the desired statement. \(\square \)

Let us consider the map

\[
h : N_0(A)_{\text{fin}} \longrightarrow K_0(A) \otimes C
\]

(1)
defined as follows
\[
h([a] - [b]) = \sum_{i=1}^{n} [P_a(\lambda_i)] \otimes \lambda_i - \sum_{j=1}^{m} [P_b(\mu_j)] \otimes \mu_j,
\]
where \(a, b \in M_{\infty}(A)_{\text{fin}}\) and \(sp(a) = \{\lambda_1, \ldots, \lambda_n\}\), \(sp(b) = \{\mu_1, \ldots, \mu_m\}\).

Proposition 3. The map \(h\) is a surjective homomorphism of groups. Besides, the kernel of \(h\) coincides with the group \(H\).

Proof. It is obvious that \(h\) is a well defined surjective homomorphism. Also, it is clear that \(H\) belongs to the kernel of \(h\). To complete the proof let us construct the inverse for \(h\) homomorphism \(t\):
\[
K_0(A) \otimes C \longrightarrow N_0(A)_{\text{fin}}/H.
\]
We put
\[
t(\sum_{i=1}^{n} ([p_i] - [q_i]) \otimes \lambda_i) = \sum_{i=1}^{n} [p_i \lambda_i] - \sum_{i=1}^{n} [q_i \lambda_i] + H.
\]
Let us demonstrate that the map \(t\) is well defined. In the other words, we have to verify that the homomorphism \(t\) is trivial on the elements \(c_{\lambda, \mu}^{(1)} = [p] \otimes (\lambda + \mu) - [p] \otimes \lambda - [p] \otimes \mu\), \(c_{\lambda, p}^{(2)} = [p] z \otimes \lambda - [p] \otimes z \lambda\), and \(c_{\lambda, q}^{(3)} = ([p] + [q]) \otimes \lambda - [p] \otimes \lambda - [q] \otimes \lambda\), where \(\lambda, \mu \in C\), \(z \in Z\) and \(p, q \in M_{\infty}(A)\) are projections. We derive \(t(c_{\lambda, \mu}^{(1)}) = h_{\lambda, \mu} + H = H\). Besides, \(c_{\lambda, -\lambda}^{(2)} = c_{\lambda, -\lambda}^{(1)}\).

Therefore it suffices to regard the elements \(c_{\lambda, z}^{(2)}\) provided \(z > 0\). In this case we conclude \(t(c_{\lambda, p}^{(2)}) = t([p] z \otimes \lambda - [p] \otimes z \lambda) = g_{\lambda, p}^{(2)} + H = H\), where we have used Lemma 2. Finally, it can be directly verified that \(t(c_{\lambda, q}^{(3)}) = 0 + H = H\). To complete the proof, it remains to note that \(t = h^{-1}\). \(\square\)

4 Banach cyclic homology

As above, let \(A\) be a von Neumann algebra. First let us recall some concepts from noncommutative geometry (see, for example, [4, 6, 13]). Consider the complex vector space \(C_n(A) = A \otimes (n+1)\), where \(A \otimes (n+1) = A \otimes A \otimes \ldots \otimes A\).
The cyclic operator $\tau_n : C_n(A) \rightarrow C_n(A)$ is defined on generators by the formula

$$\tau_n(a_0 \otimes \ldots \otimes a_n) = (-1)^n a_n \otimes a_0 \otimes \ldots \otimes a_{n-1}. $$

The cokernel of the endomorphism $1 - \tau_n : C_n(A) \rightarrow C_n(A)$ we denote by

$$CC_n(A) = A^{\otimes (n+1)}/\text{Im}(1 - \tau_n).$$

Further, we define the face operator $b_n : C_n(A) \rightarrow C_{n-1}(A)$ by the formula

$$b_n(a_0 \otimes a_1 \otimes \ldots \otimes a_n) = \sum_{i=0}^{n-1} (-1)^i a_0 \otimes a_1 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_n +$$

$$(-1)^n a_n a_0 \otimes a_1 \otimes \ldots \otimes a_{n-1}.$$

It is clear that

$$b = \sum_{i=0}^{n} (-1)^i d_i, \quad (2)$$

where the linear maps $d_i : A^{\otimes (n+1)} \rightarrow A^{\otimes n}$ are defined as follows

$$d_i(a_0 \otimes \ldots \otimes a_n) = a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_n, \quad 0 \leq i \leq n-1,$$

$$d_n(a_0 \otimes \ldots \otimes a_n) = a_n a_0 \otimes a_1 \otimes \ldots \otimes a_{n-1}. $$

It can be verified by the direct calculation that the family of linear spaces $CC_*(A) = \{CC_n(A), b_n\}$ is a chain complex. Homology of this complex is called cyclic homology of A and is denoted by $HC_n(A) = H_*(CC_*(A))$, $n \geq 0$.

The trace map $Tr : M_r(A)^{\otimes (n+1)} \rightarrow A^{\otimes (n+1)}$ is defined by the formula

$$Tr(\xi^{(0)} \otimes \xi^{(1)} \otimes \ldots \otimes \xi^{(n)}) = \sum_{i_0, \ldots, i_n = 1}^{r} \xi^{(0)}_{i_0 i_1} \otimes \xi^{(1)}_{i_1 i_2} \otimes \ldots \otimes \xi^{(n)}_{i_n i_0},$$

where $\xi^{(k)} = (\xi^{(k)}_{i,j})_{i,j=1}^{r}$ $\in M_r(A)$. It can be directly verified that the trace map $Tr : CC_*(M_r(A)) \rightarrow CC_*(A)$ is a morphism of chain complexes. Furthermore, the induced map

$$Tr_* : HC_*(M_r(A)) \rightarrow HC_*(A)$$

is an isomorphism.
Now let X, Y be normed spaces, and $x \in X, y \in Y$. A representative of the equivalence class $x \otimes y \in X \otimes Y$ we shall denote by $x \square y$. Assume

$$\| \sum_i x_i \square y_i \| := \sum_i \| x_i \| \| y_i \| \quad (x_i \in X, y_i \in Y).$$

Then the projective norm of an equivalence class $\xi \in X \otimes Y$ is defined as follows

$$\| \xi \| = \inf \{ \| \sum_i x_i \square y_i \| : x_i \in X, y_i \in Y \text{ and } \sum_i x_i \square y_i \in \xi \}.$$

Below we assume that all tensor products of normed spaces are equipped with the projective norm.

Under the previous conventions, let us set

$$CC_n(A) = A^{\otimes (n+1)} / \overline{\text{Im}(1 - \tau_n)}.$$

Note that $CC_n(A)$ is a Banach space. For $\xi \in A^{\otimes (n+1)}$ we denote by $[\xi]_{CC_n(A)}$ the quotient class of ξ in $CC_n(A)$, and by $[\xi]_{CC_n(A)}$ the quotient class of ξ in $CC_n(A)$.

Lemma 3. The face operator $b_n : A^{\otimes (n+1)} \to A^{\otimes n}$ is a continuous map.

Proof. Under equality (2), it is sufficiently to prove that all maps d_i ($0 \leq i \leq n$) are continuous. Given any $\varepsilon > 0$. For each $\xi \in A^{\otimes (n+1)}$ we can find an element $\sum_k a_0^{(k)} \square \ldots \square a_n^{(k)} \in \xi$ such that

$$\| \sum_k a_0^{(k)} \square \ldots \square a_n^{(k)} \| - \| \xi \| < \varepsilon.$$

Therefore,

$$\|d_i(\xi)\| = \| \sum_k a_0^{(k)} \otimes \ldots \otimes a_n^{(k)} \|$$

$$= \| \sum_k a_0^{(k)} \otimes \ldots \otimes a_i^{(k)} a_{i+1}^{(k)} \otimes \ldots \otimes a_n^{(k)} \|$$

$$\leq \| \sum_k a_0^{(k)} \square a_i^{(k)} a_{i+1}^{(k)} \square \ldots \square a_n^{(k)} \|$$

$$= \sum_k \| a_0^{(k)} \| \ldots \| a_i^{(k)} a_{i+1}^{(k)} \ldots \| a_n^{(k)} \|$$

$$\leq \sum_k \| a_0^{(k)} \| \ldots \| a_i^{(k)} \| \| a_{i+1}^{(k)} \ldots \| a_n^{(k)} \|$$

$$= \| \sum_k a_0^{(k)} \square \ldots \square a_n^{(k)} \| < \| \xi \| + \varepsilon$$

Therefore,
for all $\varepsilon > 0$. Hence, $\|d_i(\xi)\| \leq \|\xi\|$. □

Let us define the map $\beta_n : \mathbb{CC}_n(A) \rightarrow \mathbb{CC}_{n-1}(A)$ by the formula

$$\beta_n([x]_{\mathbb{CC}_n(A)}) = [b_n(x)]_{\mathbb{CC}_{n-1}(A)}.$$

From Lemma 3 we conclude that the family $\mathbb{CC}_*(A) = \{\mathbb{CC}_n(A), \beta_n\}$ is a well defined chain complex. Let us put

$$\mathcal{H}C_n(A) = \text{Ker } \beta_n / \text{Im } \beta_{n+1}.$$

The quotient space $\mathcal{H}C_*(A)$ we shall call Banach (cyclic) homology of A (cf. [4, 5]). Note that $\mathcal{H}C_n(A)$ is a Banach space (for each $n \geq 0$).

For $\xi \in M_r(A)^{(n+1)}$ let us denote by $\langle \xi \rangle_{\mathcal{H}C}(\mathcal{H}C_*(A))$ the cyclic homology class of ξ and by $\langle \xi \rangle_{\mathcal{H}C}(\mathcal{H}C_*(M_r(A)))$ the Banach cyclic homology class of ξ.

Let $p \in M_r(A)$ be projection. Then

$$b_{2l}(p^{\otimes(2l+1)}) = \sum_{k=0}^{2l} d_k(p^{\otimes(2l+1)}) = \sum_{k=0}^{2l} (-1)^k p^{\otimes 2l} = p^{\otimes 2l}.$$

On the other hand, we have $[p^{\otimes 2l}]_{\mathbb{CC}_r(M_r(A))} = (-1)^{(2l-1)}[p^{\otimes 2l}]_{\mathbb{CC}_r(M_r(A))}$. So $[p^{\otimes 2l}]_{\mathbb{CC}_r(M_r(A))} = 0$. Therefore $p^{\otimes(2l+1)}$ is a cycle. Now let us define the Chern character

$$Ch^0_{2l} : K_0(A) \rightarrow HC_{2l}(A)$$

by $Ch^0_{2l}([p]) = Tr_* ((-1)^l p^{\otimes(2l+1)}|_{HC})$. The Chern character is a well defined homomorphism of groups [3, Theorem 8.3.2].

Let us study the linear epimorphism $\pi_n : CC_n(A) \rightarrow CC_n(A)$, where

$$\pi_n([\xi]_{CC_n(A)}) = [\xi]_{CC_n(A)}, \xi \in A^{\otimes(n+1)}.$$

It is obvious that the family of the maps $\{\pi_n\} : CC_*(A) \rightarrow CC_*(A)$ is a chain homomorphism, i.e., $\pi_{n-1}b_n = \beta_n \pi_n$ for all $n \geq 1$. So $\pi_n(\text{Ker } b_n) \subset \text{Ker } \beta_n$ and $\pi_n(\text{Im } b_{n+1}) \subset \overline{\text{Im } \beta_{n+1}}$. Therefore,

$$\pi_* : \mathcal{H}C_*(A) \rightarrow \mathcal{H}C_*(A)$$

is a well defined map of homology spaces.

Below we shall need the following result.
Lemma 4. The trace $T r : M_r(A)^{\otimes(n+1)} \longrightarrow A^{\otimes(n+1)}$ is a continuous map.

Proof. Given any $\varepsilon > 0$. For each quotient class $\xi \in M_r(A)^{\otimes(n+1)}$ of the tensor product we can find a representative $\sum_{k=1}^{N} \xi^{(0),k} \otimes \xi^{(1),k} \otimes \ldots \otimes \xi^{(n),k}$ of ξ such that

$$\| \sum_{k=1}^{N} \xi^{(0),k} \otimes \xi^{(1),k} \otimes \ldots \otimes \xi^{(n),k} - \| \xi \| < \varepsilon.$$

Therefore,

$$\| Tr(\xi) \| = \| \sum_{k=1}^{N} Tr(\xi^{(0),k} \otimes \xi^{(1),k} \otimes \ldots \otimes \xi^{(n),k}) \|$$

$$\leq \| \sum_{k=1}^{N} \sum_{i_0, \ldots, i_n = 1}^{r} \xi^{(0),k}_{i_0 i_1} \otimes \xi^{(1),k}_{i_1 i_2} \otimes \ldots \otimes \xi^{(n),k}_{i_n i_0} \|$$

$$\leq \sum_{k=1}^{N} \sum_{i_0, \ldots, i_n = 1}^{r} \| \xi^{(0),k} \| \| \xi^{(1),k} \| \ldots \| \xi^{(n),k} \|$$

$$\leq r^{n+1} \sum_{k=1}^{N} \| \sum_{i_0, \ldots, i_n = 1}^{r} \xi^{(0),k} \otimes \xi^{(1),k} \otimes \ldots \otimes \xi^{(n),k} \| < r^{n+1}(\| \xi \| + \varepsilon)$$

for all $\varepsilon > 0$. So, $\| Tr(\xi) \| \leq r^{n+1}\| \xi \|$. □

From Lemma 4 we conclude that the map

$$Tr : CC_*(M_r(A)) \longrightarrow CC_*(A), \ [\xi]_{CC_*(M_r(A))} \longmapsto [Tr(\xi)]_{CC_*(A)} \quad (4)$$

is well defined. Furthermore, it can be directly checked up that trace map (4) is a morphism of chain complexes. By Lemma 4, this implies that the induced homomorphism

$$Tr_* : HC_*(M_r(A)) \longrightarrow HC_*(A)$$

of Banach homology is well defined.

5 The generalized Chern character

Given $l \geq 0$. We want to define a map

$$T : M_\infty(A)_\nu \longrightarrow HC_{2l}(A)$$

to the even Banach homology by the following construction. Let an element a belong to $M_\infty(A)_\nu$. Then we can suppose that $a \in M_r(A)$ for some $r \geq 1$.

For each natural number n let us consider a cover $E^{(n)} = \{ E^{(n)}_k \}_{k=1}^{k_n}$ of the
spectrum of \(a \) by disjoint Borel sets such that the diameter of each of these sets does not exceed \(1/n \). Moreover, we can assume that \(\{E_k^{(m)}\}_{k=1}^{k_n} \) is a subdivision of the cover \(\{E_k^{(n)}\}_{k=1}^{k_n} \) when \(m \geq n \). Therefore we can write

\[
E_k^{(n)} = \bigcup_{j=1}^{j(k)} E_{k,j}^{(m)},
\]

where \(E_{k,j}^{(m)} \) are some elements of the cover \(\mathcal{E}^{(m)} \). Thus, \(\mathcal{E}^{(m)} = \{E_{k,j}^{(m)}\}_{k=1;j=1}^{k_n;j(k)} \) and \(\sum_{k=1}^{k_n} j(k) = k_m \).

Also, for any \(\lambda_k^{(m)} \in E_k^{(n)} \) let us consider a sequence \(\{a_n\}_{n=1}^{\infty} \) from \(M_r(A) \), where

\[
a_n = \sum_{k=1}^{k_n} P_a(E_k^{(n)})\lambda_k^{(n)}.
\]

It follows from the spectral theorem that \(\{a_n\}_{n=1}^{\infty} \) converges uniformly to \(a \). Further, for each \(a_n \) let us examine

\[
\tilde{a}_n = \sum_{k=1}^{k_n} P_a(E_k^{(n)}) \otimes (2l+1) \lambda_k^{(n)} \in M_r(A) \otimes (2l+1).
\]

Given natural numbers \(n, m \ (m \geq n) \). Under the previous notation, we see that

\[
a_n = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(\bigcup_{j=1}^{j(k)} E_{k,j}^{(m)}) \lambda_k^{(n)} = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(E_{k,j}^{(m)}) \lambda_k^{(n)}
\]

and \(a_m = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(E_{k,j}^{(m)}) \lambda_k^{(m)} \), where \(\lambda_k^{(m)} \in E_{k,j}^{(m)} \). This yields that

\[
a_n - a_m = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(E_{k,j}^{(m)}) (\lambda_k^{(n)} - \lambda_k^{(m)}).
\] (5)

Furthermore,

\[
\begin{align*}
\tilde{a}_n &= \sum_{k=1}^{k_n} P_a(E_k^{(n)}) \otimes (2l+1) \lambda_k^{(n)} = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(\bigcup_{j=1}^{j(k)} E_{k,j}^{(m)}) \otimes (2l+1) \lambda_k^{(n)} \\
&= \sum_{k=1}^{k_n} \sum_{j_0=1}^{j(k)} \cdots \sum_{j_{2l-1}=1}^{j(k)} P_a(E_{k,j_0}^{(m)}) \otimes \cdots \otimes P_a(E_{k,j_{2l}}^{(m)}) \lambda_k^{(n)} \\
&= \sum_{k=1}^{k_n} \sum_{j_0=1}^{j(k)} \cdots \sum_{j_{2l-1}=1}^{j(k)} P_a(E_{k,j_0}^{(m)}) \otimes \cdots \otimes P_a(E_{k,j_{2l}}^{(m)}) \lambda_k^{(n)}
\end{align*}
\]
and \(\tilde{a}_m = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(E_{k,j}^{(m)})^{\otimes(2l+1)} \lambda_{k,j}^{(m)}. \)

For brevity we shall use the following notation
\[
\tilde{\sum}_{j_0,\ldots,j_{2l}=1} := \sum_{\{1 \leq j_0 \leq \ldots \leq j_{2l} \leq j(k) : \exists j_p \neq j_q\}}
\]
for the sum over \(j_0, \ldots, j_{2l} \) from one to \(j(k) \), where not all indices coincide.

So we obtain
\[
\tilde{a}_n - \tilde{a}_m = \sum_{k=1}^{k_n} \sum_{j=1}^{j(k)} P_a(E_{k,j}^{(m)})^{\otimes(2l+1)} (\lambda_k^{(n)} - \lambda_{k,j}^{(m)})
\]
\[
+ \sum_{k=1}^{k_n} \tilde{\sum}_{j_0,\ldots,j_{2l}=1} P_a(E_{k,j_0}^{(m)}) \otimes \ldots \otimes P_a(E_{k,j_{2l}}^{(m)}) \lambda_k^{(n)}
\]
\[= \alpha_{n,m} + \gamma_{n,m}, \tag{6}\]

where by \(\alpha_{n,m} \) (\(\gamma_{n,m} \)) we denote the first (the second) summand in expression (5).

The following result is the main ingredient of our definition of the map \(T \).

Theorem 3. Let \(\{p_i\}_{i=1}^N \in M_r(A) \) be a family of pairwise orthogonal projections and \(\eta = \tilde{\sum}_{j_0,\ldots,j_{2l}=1} p_{j_0} \otimes \ldots \otimes p_{j_{2l}}. \) Then the element \(\eta \) belongs to the kernel of the face operator \(\beta_{2l} \). Besides, \(\langle \eta \rangle_{HC_{2l}(M_r(A))} = 0. \)

Proof. We have
\[
\eta = (\sum_{j=1}^N p_j)^{\otimes(2l+1)} - \sum_{j=1}^N p_j^{\otimes(2l+1)}.
\]
So \(\eta \) belongs to the kernel of the face operator \(\beta_{2l} \) as a difference of elements from \(\text{Ker} \beta_{2l} \).

Now let us examine the following element
\[
\alpha := Tr_*(\langle \sum_{j=1}^N p_j \rangle^{\otimes(2l+1)})_{HC}
\]
\[
= \sum_{j=1}^N (-1)^i Ch_2^0(\sum_{j=1}^N [p_j]) = \sum_{j=1}^N (-1)^i Ch_2^0([p_j])
\]
\[
= \sum_{j=1}^N Tr_*(p_j^{\otimes(2l+1)})_{HC} = Tr_*(\sum_{j=1}^N p_j^{\otimes(2l+1)})_{HC}.
\]
On the other hand,
\[
\alpha = Tr_*(\sum_{j_0,\ldots,j_{2l}=1} p_{j_0} \otimes \ldots \otimes p_{j_{2l}})_{HC}.
\]
Thus,

\[
0 = Tr_*\langle \sum_{j_0,\ldots,j_2l=1}^N p_{j_0} \otimes \cdots \otimes p_{j_2l} \rangle_{HC} - Tr_*\langle \sum_{j=1}^N p_j^{(2l+1)} \rangle_{HC}
\]

\[
= Tr_*\langle \sum_{j_0,\ldots,j_2l=1}^N p_{j_0} \otimes \cdots \otimes p_{j_2l} - \sum_{j=1}^N p_j^{(2l+1)} \rangle_{HC}
\]

\[
= Tr_*\langle \sum_{j_0,\ldots,j_2l=1}^N p_{j_0} \otimes \cdots \otimes p_{j_2l} \rangle_{HC}.
\]

The trace map is an isomorphism. Therefore we conclude

\[
\langle \eta \rangle_{HC} = \langle \sum_{j_0,\ldots,j_2l=1}^N p_{j_0} \otimes \cdots \otimes p_{j_2l} \rangle_{HC} = 0.
\]

Whence, \(\langle \eta \rangle_{HC} = \pi_*\langle \langle \eta \rangle_{HC} \rangle = 0 \), where \(\pi_* \) is map (4). \(\square \)

Now let us return to expressions \((6), (7) \). By the previous theorem, we see that \(\langle \gamma_{n,m} \rangle_{HC} = 0 \) so \(\langle \tilde{a}_n - \tilde{a}_m \rangle_{HC} = \langle \alpha_{n,m} \rangle_{HC} \).

We claim that \(\|\alpha_{n,m}\| = \|a_n - a_m\| \). Indeed, it is clear that elements \(a_n - a_m \) and \(\alpha_{n,m} \) are normal. Besides, \(sp(a_n - a_m) \setminus \{0\} \) and \(sp(\alpha_{n,m}) \setminus \{0\} \) coincide with the set \(\{\lambda_k^{(n)} - \lambda_{k,j}^{(m)} \}_{k=1; j=1}^{n,m} \). This implies that spectral radii of these elements coincide too. Thus we obtain the desired statement.

So we can write

\[
\|\langle \tilde{a}_n - \tilde{a}_m \rangle_{HC}\| = \|\langle \alpha_{n,m} \rangle_{HC}\| \leq \|\alpha_{n,m}\| = \|a_n - a_m\|. \tag{7}
\]

By Lemma \([4] \) and inequality \((7) \), we conclude that \(\{Tr_*\langle \langle \tilde{a}_n \rangle_{HC} \rangle\}_{n=1}^\infty \) is a Cauchy sequence. Therefore it converges to some element \(T(a; \{a_n\}) \in \mathcal{HC}_{2l}(A) \).

It remains to verify that the limit \(T(a; \{a_n\}) \) does not depend on \(\{a_n\} \).

Let us regard covers \(\mathcal{E}^{(n)} = \{E_k^{(n)}\}_{k=1}^{n} \) and \(\mathcal{F}^{(n)} = \{F_j^{(n)}\}_{j=1}^{n} \) of the spectrum of \(a \) by disjoint Borel sets. Besides, we shall assume that the diameter of each of these sets does not exceed \(1/n \). Also, for any \(\mu_j^{(n)} \in F_j^{(n)} \) let us examine a sequence \(\{c_n\}_{n=1}^\infty \), where \(c_n = \sum_{j=1}^{j_n} P_a(F_j^{(n)})\mu_j^{(n)} \).

Theorem 4. The elements \(T(a; \{a_n\}) \) and \(T(a; \{c_n\}) \) coincide. Thus the map

\[
T : M_{\infty}(A)_\nu \to \mathcal{HC}_{2l}(A), \quad a \mapsto T(a; \{a_n\}) = T(a)
\]

is well defined.
Thus we obtain $X^{(n)}_{k,j} = E^{(n)}_k \cap F^{(n)}_j$. Then

$$a_n = \sum_{k=1}^{k_n} P_a(E^{(n)}_k) \lambda^{(n)}_k = \sum_{k=1}^{k_n} P_a(\bigcup_{j=1}^{j_n} E^{(n)}_k \cap F^{(n)}_j) \lambda^{(n)}_k = \sum_{k=1}^{k_n} \sum_{j=1}^{j_n} P_a(X^{(n)}_{k,j}) \lambda^{(n)}_k$$

and by the same reason $c_n = \sum_{k=1}^{k_n} \sum_{j=1}^{j_n} P_a(X^{(n)}_{k,j}) \mu^{(n)}_j$. Hence,

$$a_n - c_n = \sum_{k=1}^{k_n} \sum_{j=1}^{j_n} P_a(X^{(n)}_{k,j}) (\lambda^{(n)}_k - \mu^{(n)}_j). \quad (8)$$

If $X^{(n)}_{k,j} = \emptyset$, then $P_a(X^{(n)}_{k,j}) = 0$. Therefore we can assume that $X^{(n)}_{k,j} \neq \emptyset$ in expression (8). In this case let us consider $z \in X^{(n)}_{k,j}$. We deduce that $|\lambda^{(n)}_k - \mu^{(n)}_j| \leq |\lambda^{(n)}_k - z| + |z - \mu^{(n)}_j| \leq 1/n + 1/n = 2/n$ for all $1 \leq k \leq k_n$, $1 \leq j \leq j_n$. Note that $a_n - c_n$ is a normal element. Therefore,

$$\|a_n - c_n\| = \sup \{|\lambda^{(n)}_k - \mu^{(n)}_j| : X^{(n)}_{k,j} \neq \emptyset, 1 \leq k \leq k_n, 1 \leq j \leq j_n\} \leq 2/n. \quad (9)$$

On the other hand, we have

$$\tilde{a}_n = \sum_{k=1}^{k_n} P_a(E^{(n)}_k) \otimes (2l+1) \lambda^{(n)}_k = \sum_{k=1}^{k_n} \left(P_a(\bigcup_{j=1}^{j_n} X^{(n)}_{k,j}) \right) \otimes (2l+1) \lambda^{(n)}_k = \sum_{k=1}^{k_n} \sum_{j_0,\ldots,j_{2l+1}=1}^{j_n,\ldots,j_n} P_a(X^{(n)}_{k,j_0}) \otimes \ldots \otimes P_a(X^{(n)}_{k,j_{2l+1}}) \lambda^{(n)}_k$$

and by the same reason

$$\tilde{c}_n = \sum_{j=1}^{j_n} \sum_{k_0,\ldots,k_{2l+1}=1}^{k_n} P_a(X^{(n)}_{j,k_0}) \otimes \ldots \otimes P_a(X^{(n)}_{j,k_{2l+1}}) \mu^{(n)}_j. \quad (8)$$

Thus we obtain

$$\tilde{a}_n - \tilde{c}_n = \sum_{k=1}^{k_n} \sum_{j=1}^{j_n} P_a(X^{(n)}_{k,j}) \otimes (2l+1) (\lambda^{(n)}_k - \mu^{(n)}_j) + \sum_{k=1}^{k_n} \sum_{j_0,\ldots,j_{2l+1}=1}^{j_n,\ldots,j_n} P_a(X^{(n)}_{k,j_0}) \otimes \ldots \otimes P_a(X^{(n)}_{k,j_{2l+1}}) \lambda^{(n)}_k - \sum_{j=1}^{j_n} \sum_{k_0,\ldots,k_{2l+1}=1}^{k_n} P_a(X^{(n)}_{j,k_0}) \otimes \ldots \otimes P_a(X^{(n)}_{j,k_{2l+1}}) \mu^{(n)}_j = \gamma^{(1)}_n + \gamma^{(2)}_n - \gamma^{(3)}_n.$$

From Theorem 3 we conclude that $\langle \gamma^{(2)}_n \rangle_{HC} = \langle \gamma^{(3)}_n \rangle_{HC} = 0$. The elements $a_n - c_n$ and $\gamma^{(1)}_n$ are normal. Furtermore, the sets $sp(a_n - c_n) \setminus \{0\}$ and
$sp(\gamma_n^{(1)}) \setminus \{0\}$ coincide. Therefore, $\|a_n - c_n\| = \|\gamma_n^{(1)}\|$. Using inequality (3), we obtain

$$\|\langle \tilde{a}_n \rangle_{HC} - \langle \tilde{c}_n \rangle_{HC}\| = \|\langle \gamma_n^{(1)} \rangle_{HC}\| \leq \|\gamma_n^{(1)}\| = \|a_n - c_n\| \leq 2/n.$$

Therefore, $\|Tr_\ast(\langle \tilde{a}_n \rangle_{HC}) - Tr_\ast(\langle \tilde{c}_n \rangle_{HC})\| \leq 2\|Tr_\ast\|/n$. This estimate implies that

$$T(a, \{a_n\}) = \lim_n Tr_\ast(\langle \tilde{a}_n \rangle_{HC}) = \lim_n Tr_\ast(\langle \tilde{c}_n \rangle_{HC}) = T(a, \{c_n\}).$$

The proof is complete. \Box

Proposition 4. Suppose $a, b \in M_\infty(A)_\nu$ are equivalent in the sense of Definition [4]. Then $T(a) = T(b)$.

Proof. For each $n \in \mathbb{N}$ let us cover the space $sp(a) \cap sp(b)$ by disjoint Borel sets and enlarge this system of sets to a disjoint cover $\{E_k^{(n)}\}_{k=0}^{k_n}$ of the space $sp(a) \cup sp(b)$. As above, we suppose that $\text{diam}(E_k^{(n)}) \leq 1/n$ for all $0 \leq k \leq k_n$. Also, let us consider $\gamma_k^{(n)} \in E_k^{(n)}$. If $0 \in sp(a) \cup sp(b)$, then we shall assume that $0 \in E_0^{(n)}$ and $\gamma_0^{(n)} = 0$. In the opposite case, we put $E_0^{(n)} = \emptyset$. Furthermore, for any $1 \leq k \leq k_n$ we can assume that $E_k^{(n)}$ is an admissible Borel set.

Projections $P_a(E_k^{(n)})$ and $P_b(E_k^{(n)})$ are stably equivalent for all $k, n \geq 1$. Therefore, $Ch_{2l}[P_a(E_k^{(n)})] = Ch_{2l}[P_b(E_k^{(n)})]$. Since the trace map is an isomorphism, we conclude that $\langle P_a(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC} = \langle P_b(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC}$. Thus,

$$\langle P_a(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC} = \pi_\ast(\langle P_a(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC}) = \pi_\ast(\langle P_b(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC}) = \langle P_b(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC},$$

where π_\ast is map (3). So we obtain that

$$\langle \tilde{a}_n \rangle_{HC} = \sum_{k=0}^{k_n} \langle P_a(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC} \gamma_k^{(n)} = \sum_{k=0}^{k_n} \langle P_b(E_k^{(n)})^{\otimes(2l+1)} \rangle_{HC} \gamma_k^{(n)} = \langle \tilde{b}_n \rangle_{HC}$$

for all $n \geq 1$ so $T(a) = T(b)$. \Box
Definition 3. We define the *generalized Chern character* as the map
\[Ch_0^{2l} : N_0(A) \longrightarrow HC_{2l}(A), \quad [a] - [b] \longmapsto (-1)^l(T(a) - T(b)). \]

It follows from Proposition 4 that the generalized Chern character is well defined. An immediate verification gives us

Proposition 5. The generalized Chern character is a homomorphism of groups. \(\square\)

Theorem 5. For any \(l \geq 0\) there is a commutative diagram

\[
\begin{array}{ccc}
K_0(A) & \xrightarrow{\pi_*} & N_0(A) \\
\downarrow Ch_0^{2l} & & \downarrow Ch_0^{2l} \\
HC_{2l}(A) & \xrightarrow{\pi_*} & HC_{2l}(A),
\end{array}
\]

where \(\pi_*\) is map \((3)\).

Proof. Under the notation of the beginning of this section let us argue as follows. Let \(p \in M_\infty(A)\) be a projection. In this case the cover \(E^{(n)}\) of the spectrum of \(p\) coincide with the set \(\{\{1\}, \{0\}\}\) for all \(n \geq 1\). Therefore for all \(n \geq 1\) we have \(\tilde{p}_n = p^{\otimes(2l+1)}\). Finally, we obtain

\[
Ch_0^{2l}([p]) = \lim_n Tr_*((-1)^l \langle \tilde{p}_n \rangle_{HC_{2l}}) = \lim_n Tr_*(\langle (-1)^l p^{\otimes(2l+1)} \rangle_{HC_{2l}}) = Tr_*(\langle (-1)^l p^{\otimes(2l+1)} \rangle_{HC_{2l}}) = \langle (-1)^l Tr(p^{\otimes(2l+1)}) \rangle_{HC_{2l}} = \pi_* Ch_0^{2l}([p]).
\]

The proof is complete. \(\square\)

Theorem 6. For any \(l \geq 0\) there is a commutative diagram

\[
\begin{array}{ccc}
N_0(A)_{fin} & \xrightarrow{h} & K_0(A) \otimes \mathbb{C} \\
\downarrow Ch_0^{2l} & & \downarrow \overline{Ch}_0^{2l} \\
HC_{2l}(A) & \xleftarrow{\pi_*} & HC_{2l}(A),
\end{array}
\]

where \(h\) is map \((4)\) and \(\overline{Ch}_0^{2l}([p] \otimes \lambda) = Ch_0^{2l}([p]) \lambda.\)
Proof. Let \(a \) be an element of \(M_\infty(A)_{\text{fin}} \) such that \(sp(a) = \{ \lambda_1, \ldots, \lambda_n \} \). Assume \(p_i := P_a(\{ \lambda_i \}) \). Then we have
\[
\pi_* \widetilde{Ch}_0^{2l} h([a]) = \pi_* \widetilde{Ch}_0^{2l} \left(\sum_{i=1}^n [p_i] \otimes \lambda_i \right)
= \pi_* \left(\sum_{i=1}^n Ch_0^{2l}(p_i) \lambda_i \right)
= \sum_{i=1}^n Tr_* \left(\langle (-1)^l p_i \otimes (2l+1) \rangle_{HC} \right) \lambda_i.
\]

On the other hand, we can suppose that \(\mathcal{E}^{(k)} = \{ \{ \lambda_1 \}, \ldots, \{ \lambda_n \} \} \) and \(\tilde{a}_k = \sum_{i=1}^n p_i \otimes (2l+1) \lambda_i \) for all \(k \geq 1 \). Whence,
\[
Ch_0^{2l}([a]) = (-1)^l T(a) = (-1)^l \lim_k Tr_* \langle \tilde{a}_k \rangle_{HC}
= (-1)^l \sum_{i=1}^n Tr_* \langle (p_i \otimes (2l+1))_{HC} \rangle \lambda_i. \]
\]

In particular, Theorem 3 implies that one can extend the generalized Chern character to the map from the quotient group \(N_0(A)/\text{Ker} h \) to the even Banach homology.

6 Generalized Lefshetz numbers

Suppose \(A \), as above, is a von Neumann algebra, \(G \) is a compact Lie group, and \(X \) is a compact \(G \)-manifold. Let us denote by \(\mathcal{P}(A) \) the category of finitely generated projective modules over \(A \).

Let us recall some notation from [13]. The set of all \(G-A \)-bundles over \(X \) is an abelian semigroup with respect to the direct sum operation. The symmetrization of this semigroup is denoted by \(K_G(X; A) \). Assume \(K^G(A) := K_G(pt; A) \). In this situation there is an isomorphism
\[
K^G(A) \cong K_0(A) \otimes R(G),
\]
where \(R(G) \) is the ring of representations for \(G \).

Let us consider a sequence \(\{ E^i \} \) of \(G-A \)-bundles over \(X \) together with equivariant pseudo-differential operators \(\{ d_i : \Gamma(E^i) \longrightarrow \Gamma(E^{i-1}) \} \), where by \(\Gamma(E^i) \) we denote the Banach (with respect to the uniform topology) \(A \)-module of continuous sections of \(E^i \). Besides, let us denote by \(\sigma_i \) the symbol of \(d_i \). Then this sequence of bundles and operators is called a \(G-A \)-elliptic complex (and is denoted by \((E, d) \)) if it satisfies the following conditions:
(i) $d_i d_{i+1} = 0$,

(ii) the sequence of symbols

$$0 \longrightarrow \pi^* E^n \xrightarrow{\sigma_n} \pi^* E^{n-1} \longrightarrow \ldots \xrightarrow{\sigma_1} \pi^* E^0 \longrightarrow 0$$

is exact out of some compact neighbourhood of the zero section $X \subset T^* X$. Here $\pi : T^* X \to X$ is the natural projection.

The index of the elliptic operator $F = d + d^* : \Gamma(E_{ev}) \to \Gamma(E_{od})$ is an element of the group $K^G(A)$. Furthermore, for any $g \in G$ by computation of the character we can define the map $g : R(G) \to \mathbb{C}$. Whence, using isomorphism (10), we obtain the map

$$g : K^G(A) \to K_0(A) \otimes \mathbb{C}.$$

Then the Lefschetz number of the first type is defined as follows

$$L_1(E, g) = g(\text{index}(F)) \in K_0(A) \otimes \mathbb{C}.$$

Note that there exists a connection between these Lefschetz numbers and fixed points of g (see [14, 17]).

Now let us consider an A-elliptic complex (E, d) and its unitary endomorphism U. Furthermore, we shall assume that $U = U_g$ for some representation U_g of a compact Lie group G.

Let \mathcal{M} be a Hilbert A-module (see, for example, [10]). We denote by $\text{End}_A(\mathcal{M})$ the Banach algebra of all bounded A-homomorphisms of \mathcal{M}. Now let us consider some strongly continuous representation $G \to \text{End}_A(\mathcal{M})$. Then this representation is called unitary, if $\langle gx, gy \rangle = \langle x, y \rangle$ for any $g \in G, x, y \in \mathcal{M}$. A Hilbert A-module together with a unitary representation of the group G is called a Hilbert G-A-module. Besides, a set $\{ x \}_{\beta \in B} \subset \mathcal{M}$ is a system of generators for \mathcal{M}, if finite sums $\{ \sum_k x_k a_k : a_k \in A \}$ are dense in \mathcal{M}.

We need the following result of [7].

Theorem 7. Let \mathcal{M} be a countably generated Hilbert G-A-module. Besides, let $\{ V_\pi \}$ be a full system of pairwise not isomorphic unitary finite-dimensional irreducible representations for G. Then there exists a G-A-isomorphism

$$\mathcal{M} \cong \bigoplus_\pi \text{Hom}_G(V_\pi, \mathcal{M}) \otimes_\mathbb{C} V_\pi.$$
Here the algebra A (the group G) acts on the first (on the second) multiplier of the space $\text{Hom}_G(V_\pi, \mathcal{M}) \otimes C V_\pi$. □

Let the G-A-module \mathcal{M} belong to the class $\mathcal{P}(A)$. Then it is clear that $\mathcal{M}_\pi := \text{Hom}_G(V_\pi, \mathcal{M}) \in \mathcal{P}(A)$. Furthermore, only finite number of terms in the sum $\bigoplus \mathcal{M}_\pi \otimes C V_\pi$ is not equal to zero (see [13, 1.3.49]).

In particular, we obtain for $\mathcal{M} = A^n$ the following formula

$$A^n \cong \bigoplus_{k=1}^{M} Q_k \otimes V_k,$$

where $V_k \cong C^{L_k}$ and $Q_k \in \mathcal{P}(A)$. Therefore,

$$U_g(\sum_{k=1}^{M} x_k \otimes v_k) = \sum_{k=1}^{M} x_k \otimes u^k_g v_k = \sum_{k=1}^{M} \sum_{s=1}^{L_k} x_k \otimes e^{ix_k} v_k^s f_s. \quad (11)$$

Here f_1, \ldots, f_{L_k} is a basis for V_k such that the operator u^k_g is diagonal with respect to it; $v_k = \sum v_k^s f_s$. In this case let us define

$$\tau(U_g) = \sum_{k=1}^{M} Ch_0^{2l}(Q_k) \cdot \text{Trace}(u^k_g) \in HC_{2l}(A).$$

The following result was proved in [3].

Lemma 5. For the A-Fredholm operator $F = d + d^*: \Gamma(E_{ev}) \longrightarrow \Gamma(E_{od})$ there exists a decomposition

$$F: M_0 \oplus \tilde{N}_0 \longrightarrow M_1 \oplus \tilde{N}_1, \quad F: M_0 \cong M_1 \quad (12)$$

such that

$$\tilde{N}_0 = \bigoplus_{j=0}^{T} N_{2j}, \quad \tilde{N}_1 = \bigoplus_{j=1}^{T} N_{2j-1}, \quad N_m \subset \Gamma(E_m),$$

where N_m are projective U-invariant Hilbert A-modules. □

Now the Lefschetz number of the second type is defined as follows

$$L_{2l}(E, U_g) = \sum_{j} (-1)^j \tau(U_g|N_j) \in HC_{2l}(A).$$

20
This definition is well.

For more detail about W^*-Lefschetz numbers we refer to the works [3], [10], [17].

Now let us consider an \mathcal{A}-elliptic complex (E, d) and an arbitrary unitary endomorphism U of it (U is not necessarily an element of some representation of G). In this situation let us formulate the following

Definition 4. We define the generalized Lefschetz number L_1 as follows

$$L_1(E, U) = \sum_j (-1)^j [U|N_j] \in N_0(A).$$

Note that generalized Lefschetz numbers are well defined. This follows by the same reason that for the Lefschetz numbers of the second type (see [13], 5.2.21).

Theorem 8. Let U be a unitary endomorphism of an \mathcal{A}-elliptic complex (E, d). Besides, suppose that $U = U_g$ for some representation U_g of a compact Lie group G. Then $L_1(E, U_g)$ belongs to the group $N_0(A)_{\text{fin}}$ and $h(L_1(E, U_g)) = L_1(E, U_g)$, where h is map (1).

Proof. Let us examine decomposition (12) for F. We have shown above that there exist isomorphisms

$$N_{2j} \cong \bigoplus_{k_j=1}^{K_j} P^{(j)}_{k_j} \otimes V^{(j)}_{k_j}, \quad N_{2j-1} \cong \bigoplus_{l_j=1}^{L_j} Q^{(j)}_{l_j} \otimes W^{(j)}_{l_j},$$

where $V^{(j)}_{k_j}$ and $W^{(j)}_{l_j}$ are complex vector spaces of irreducible unitary representations of G, $P^{(j)}_{k_j}$ and $Q^{(j)}_{l_j}$ are G-trivial modules from $\mathcal{P}(A)$. Thus we get

$$\text{index}(F) = \sum_{j=0}^{T} \sum_{k_j=1}^{K_j} [P^{(j)}_{k_j}] \otimes \chi(V^{(j)}_{k_j}) - \sum_{j=1}^{T} \sum_{l_j=1}^{L_j} [Q^{(j)}_{l_j}] \otimes \chi(W^{(j)}_{l_j})$$

and

$$L_1(E, g) = \sum_{j=0}^{T} \sum_{k_j=1}^{K_j} [P^{(j)}_{k_j}] \otimes \text{Trace}(g|V^{(j)}_{k_j}) - \sum_{j=1}^{T} \sum_{l_j=1}^{L_j} [Q^{(j)}_{l_j}] \otimes \text{Trace}(g|W^{(j)}_{l_j}).$$

Here we have denoted by χ the character of the representation of G.

21
On the other hand, using expression (11), we conclude that
\[\text{sp}(U_g|P_{k_j}^{(j)} \otimes V_{k_j}^{(j)}) = \text{sp}(u^{(j),k_j}_g|V_{k_j}^{(j)}). \]
This implies that \(\mathcal{L}_1(E,U_g) \) belongs to the group \(N_0(A)_{\text{fin}} \). Furthermore, for any \(e^{i\varphi} \) from \(\text{sp}(u^{(j),k_j}_g|V_{k_j}^{(j)}) \) the spectral projection of \(U_g \) corresponding to this point is equal to \(P_{k_j}^{(j)} \). Thus we obtain
\[
\begin{align*}
 h(\mathcal{L}_1(E,U_g)) &= h(\sum_{j=0}^{2T} (-1)^j [U_g|N_j]) \\
 &= h(\sum_{j=0}^{2T} \sum_{k_j=1}^{K_j} [Id_{p_{k_j}^{(j)}} \otimes u^{(j),k_j}_g|V_{k_j}^{(j)}]) \\
 &\quad - \sum_{j=1}^{T} \sum_{l_j=1}^{L_j} [Id_{Q_{l_j}^{(j)}} \otimes u^{(j),l_j}_g|W_{l_j}^{(j)}]) \\
 &= h(\sum_{j=0}^{2T} \sum_{k_j=1}^{K_j} [P_{k_j}^{(j)} \text{Trace}(u^{(j),k_j}_g|V_{k_j}^{(j)})] \\
 &\quad - \sum_{j=1}^{T} \sum_{l_j=1}^{L_j} [Q_{l_j}^{(j)} \text{Trace}(u^{(j),l_j}_g|W_{l_j}^{(j)})]) \\
 &= \sum_{j=0}^{2T} \sum_{k_j=1}^{K_j} [P_{k_j}^{(j)} \otimes \text{Trace}(u^{(j),k_j}_g|V_{k_j}^{(j)})] \\
 &\quad - \sum_{j=1}^{T} \sum_{l_j=1}^{L_j} [Q_{l_j}^{(j)} \otimes \text{Trace}(u^{(j),l_j}_g|W_{l_j}^{(j)})].
\end{align*}
\]
Thus we establish the required statement.

Theorem 9. Under the assumptions of the previous theorem, we have
\[\pi_*(L_{2l}(E,U_g)) = \text{Ch}_{2l}^0(\mathcal{L}_1(E,U_g)). \]
Here \(\pi_* \) is map (3).

Proof. From Theorems 6, 8 we deduce that
\[\text{Ch}_{2l}^0(\mathcal{L}_1(E,U_g)) = \pi_* \text{Ch}_{2l}^0(h(\mathcal{L}_1(E,U_g))) = \pi_* \text{Ch}_{2l}^0(\mathcal{L}_1(E,g)). \]
Furthermore, it follows from [13, Theorem 5.2.22] that \(\text{Ch}_{2l}^0(L_1(E,g)) = L_{2l}(E,U_g) \). The proof is complete.

Acknowledgements. The author is grateful to Prof. E.V. Troitsky for the attention to the work and also to Dr. V.M. Manuilov and Prof. A.S. Mishchenko for helpful discussions.

22
References

[1] Bratteli O., Robinson D. Operator algebras and quantum statistical mechanics. — New York – Heidelberg – Berlin, 1979.

[2] Connes A. Non-commutative differential geometry. \(\text{Publ. Math. I.H.E.S. — 1985, V. 62, 41-144.}\)

[3] Frank M., Troitsky E.V. Lefschetz numbers and geometry of operators in \(W^*-\)modules. \(\text{Func. Anal. i Pril. — 1996, V.30, N 4, 45-57 (in Russian); English transl. in Funct. Anal. Appl. — 1996, V.30, 257-266.}\)

[4] Helemskii A.Ya. Banach cyclic (co)homology and the Connes-Tzygan exact sequence. \(\text{London Math. Soc. — 1992, V. 46, N 2, 449-462.}\)

[5] Helemskii A.Ya. Banach cyclic (co)homology in terms of Banach derived functors. \(\text{St. Petersburg Math. J. — 1992, V.3, N 5, 1149-1164.}\)

[6] Loday J.-L. Cyclic homology. — Springer-Verlag, 1992.

[7] Mishchenko A.S. Representations of compact groups on Hilbert modules over \(C^*\)-algebras. \(\text{Trudy Math. Inst. im. V.A. Steklova. — 1984, V.166, 161-176 (in Russian); English transl. in Proc. Steklov Inst. Math. — 1986, V.166, 179-195.}\)

[8] Mishchenko A.S., Fomenko A.T. The index of elliptic operators over \(C^*\)-algebras. \(\text{Izv. Akad. Nauk USSR, Ser. Math. — 1979, V. 43, N 4, 831-859 (in Russian); English transl. in Math. USSR-Izv. — 1980, V. 15, 87-112.}\)

[9] Murphy G.J. \(C^*\)-algebras and operator theory. — Academic Press, 1990.

[10] Paschke W.L. Inner product modules over \(B^*\)-algebras \(\text{Trans. Amer. Math. Soc. — 1973, V. 182, 443-468.}\)

[11] Pavlov A.A. Generalized Lefschetz numbers of unitary endomorphisms of \(W^*\)-elliptic complexes. \(\text{International Conference Dedicated to the 80th Anniversary of V.A. Rokhlin, August 19-25, 1999, St. Petersburg. Abstracts, 56-58.}\)
[12] *Pavlov A.A.* The functor N_0 over the category of von Neumann algebras and its relation to the operator K-theory. \(\text{Vestnik Mosc. Univ. Ser. 1. Mat. Meh.} \) — 2000, N 4, to appear (in Russian); English transl. in Moscow Univ. Math. Bull.

[13] *Solovyov Yu.P., Troitsky E.V.* C*-algebras and elliptic operators in differential topology. — Moscow: Factorial Publish., 1996 (in Russian); English transl. in Amer. Math. Soc., to appear.

[14] *Troitsky E.V.* The equivariant index of elliptic operators over C*-algebras. \(\text{Izv. Akad. Nauk USSR, Ser. Math.} \) — 1986, V.50, N 4, 849-865 (in Russian); English transl. in Math. USSR-Izv. — 1987, V.29, 207-224.

[15] *Troitsky E.V.* Lefschetz numbers of C*-complexes. \(\text{Springer Lecture Notes in Math.} \) — 1991, V.1474, 193-206.

[16] *Troitsky E.V.* Traces, Lefschetz numbers of C*-elliptic complexes and the even cyclic homology. \(\text{Vestnik Mosc. Univ. Ser. 1. Mat. Meh.} \) — 1993, N 5, 36-39 (in Russian); English transl. in Moscow Univ. Math. Bull. — 1993, V.48, N 5.

[17] *Troitsky E.V.* Orthogonal complements and endomorphisms of Hilbert modules and C*-elliptic complexes. \(\text{Novikov Conjectures, Index Theorems and Rigidity, V.2} \) (London Math. Soc. Lect. Notes Series V.227), 1995, 309-331.

Alexandre Pavlov
Chair of Higher Geometry and Topology
Dept. of Mech. and Mathematics
Moscow State University
Vorobjevi gori
Moscow 119899
Russia
email: pavlov@mech.math.msu.su