PENTAQUARK SEARCHES IN H1

J.E. OLSSON

DESY, Hamburg, Germany

E-mail: jan.olsson@desy.de

Talk given on behalf of the H1 Collaboration at ICHEP06, Moscow, Russia

We report on searches in deep inelastic ep scattering for narrow baryonic states decaying into \(\Xi^\pm \pi^- \), \(\Xi^{-} \pi^+ \), \(K^0_S p \) and their charge conjugates, at centre-of-mass energies of 300 and 318 GeV. No signal for a new narrow baryonic state is observed in the mass ranges 1600-2100 MeV (\(\Xi^0 \)) and from threshold up to 1700 MeV (\(K^0_S p \)). The standard baryon (1530) is observed in the decay mode \(\Xi^{-} \pi^+ \), and mass dependent upper limits on the ratio of the hypothetical pentaquark states \(\Xi^0_{5q} \) and \(\Xi^0_{\bar{5}q} \) to the (1530) signal are given. Also for the hypothetical strange pentaquark mass dependent upper limits on \(\sigma(ep \rightarrow e\Theta^+ X) \times BR(\Theta^+ \rightarrow K^0_S p) \) are obtained.

Finally measurements of the acceptance corrected ratios \(D^p(3100) = D^p \) for the electroproduction of the anti-charmed baryon state \(D^p(3100) \) decaying into \(D^+ p \) are presented.

Keywords: pentaquark; HERA.

1. Introduction

Pentaquarks are exotic to the standard quark model of mesons and baryons, although not excluded in QCD. Combination of the meson and baryon octets leads to the anti-decuplet \(qqqq \), where \(q \) stands for the light quarks \(u, d \) and \(s \). These 5-quark states are non-minimal, colour neutral combinations. The apex states \(uudd, ssdd \) and \(uuss \) are predicted to have masses in the range 1.5 – 2.1 GeV and to be very narrow\(^1\). For two of these states decay modes are experimentally relatively easily accessible, and consequently many searches have been performed, both in fixed target and colliding beam environments. For the \(uudd \) state, called \(\Theta^+ \), a large number of observations in the mass range 1.52 – 1.54 GeV is matched by an equally large number of non-observations\(^2\). The doubly strange \(ssdd \) state, \(\Sigma^{-} \), has only been observed by one experiment so far\(^3\). Also here many non-observations have been reported\(^2\).

Pentaquarks which contain a charm quark have also been searched for. One observation\(^4\), named \(D^+(3100) \) by the H1 collaboration, has so far not been confirmed by any other experiment.

In this report the current results of searches by the H1 experiment for the \(\Theta^+ \) and \(\Sigma^{-} \) states are briefly presented. The searches have been performed in the HERA-I ep data (1996-2000), which encompass 75 – 100 pb\(^{-1}\). In the last section some details of the characteristics of the \(D^+ p(3100) \) production are presented.

2. The strange pentaquark \(\Theta^+ \)

The \(\Theta^+ \) was first seen by the LEPS collaboration\(^5\) in the decay mode \(K^+ n \), at a mass of 1.52 GeV. The H1 collaboration searched\(^6\) for a narrow state decaying to \(K^0_S p \) in the mass interval from threshold 1.48 GeV to 1.7 GeV, using DIS data with \(5 < Q^2 < 100 \text{ GeV}^2 \) and \(0.1 < y < 0.6 \). The \(K^0_S \) was identified through the decay \(K^0_S \rightarrow \pi^+ \pi^- \) and events were accepted if they contained at least one \(K^0_S \) and at least one proton\(^a\) candidate. Charged tracks had \(p_t > 0.15 \text{ GeV} \) and pseudorapidity \(|\eta| < 1.75 \), while the \(K^0_S \) candidate had \(p_t > 0.3 \text{ GeV} \). Backgrounds

\(^a\)Charge conjugation is always implied, unless otherwise stated.
from Λ and converted photons were rejected with the restrictions $M_{p\pi} > 1.125$ GeV and $M_{ee} > 0.05$ GeV on the $\pi\pi$ system. Protons were identified through the specific ionization loss dE/dx in the inner drift chambers, with efficiencies between 65 and 100%.

Mass distributions with the restrictions $M_{S} > 9$, $Q^2 < 10$ GeV, $2 < Q < 100$ GeV and proton momentum $p_{p} < 1.5$ GeV. Also in this kinematic range the H1 collaboration observes no peak, see Fig. 1d.

The search was repeated with separation of the $K_{S}^{0}p$ and $K_{S}^{0}\bar{p}$ distributions, with no significant peak as result. The obtained upper limits vary between 30 and 90 pb.

The ZEUS collaboration has reported evidence for a 1.52 GeV signal in the $K_{S}^{0}p$ mass distribution. The H1 upper limit at 1.52 GeV is $\sigma < 72$ pb, which translates to $\sigma < 100$ pb (95% C.L.) when extrapolated to the ZEUS y-range. This value is barely compatible with the ZEUS preliminary cross section, $\sigma = 125 \pm 27 \pm 36 \pm 28$ pb.

The ZEUS collaboration also found that the observed resonance is most prominent with the cuts $Q^2 > 20$ GeV and proton momentum $p_{p} < 1.5$ GeV. Also in this kinematic range the H1 collaboration observes no peak, see Fig. 1d.

3. The pentaquarks Ξ_{0q}^{-} and Ξ_{0q}^{0}

The NA49 collaboration observed a narrow resonance structure at 1862 ± 2 MeV in $\Xi(1321)\pi$ mass spectra. Both Ξ^{-} and Ξ^{0} peaks were seen, leading to the interpretation of these states being the neutral and doubly charged members of the $\Xi_{3/2}(1862)$ pentaquark multiplet. Other experiments could not yet confirm this observation.

The H1 search for this state uses the decay chain $\Xi \rightarrow \Xi(1321)\pi$, $\Xi(1321) \rightarrow \Lambda\pi$, $\Lambda \rightarrow p\pi$. DIS events were selected with $2 < Q^2 < 120$ GeV2 and $0.05 < y < 0.7$. In a mass window of ± 8 MeV $\sim 158000 \Lambda$ candidates were identified with a 3-dimensional vertex fit, using cuts on the momentum $p_{\pi,\pi} > 0.3$ GeV and decay length > 0.75 cm. $\Lambda\pi$ combinations were also subjected to a 3-dimensional vertex fit, with a further cut on the distance of closest approach to the primary vertex. The significance of the $\Xi(1321)$ signal is increased by a restriction to < 0.6 rad on the angle between secondary and tertiary vertex vectors. In the resulting mass...
distribution of Λπ, ~ 1650 Ξ(1321) form a clear narrow peak.

Finally the Ξ(1321), in a mass window of ±15 MeV, was combined with a charged pion from the primary vertex. A cut \(p_t > 1.0 \) GeV was imposed on the Ξ(1321)π combinations. Fig. 2 shows the final mass distributions.

In the neutral Ξ(1321)π combinations there is a clear signal of the well-known Ξ(1530)⁰, with ~ 170 events. The doubly charged Ξ(1321)π combinations do not show any resonant structure, in particular not at 1.86 GeV, the mass of the NA49 observation. This is also true when separating Ξ⁻π⁻ and Ξ⁺π⁺ distributions. The Ξ(1530)⁰ is well seen in both neutral charge combinations.

![Figure 2](image)

Fig. 2. Ξπ invariant mass, summed for a) two opposite and b) two equal charge combinations. Solid lines show fits of a background function, in a) including a Gaussian. Upper limits \(R_{UL} \) at 95% C.L. on the ratio of the number of events of a hypothetical Ξ(1321)π resonance to the Ξ(1530)⁰ are shown below the mass distributions.

Mass dependent upper limits are defined in terms of the ratio of a hypothetical Ξ(1321)π resonance to the Ξ(1530)⁰, using a narrow Gaussian for a possible signal in the range 1.6 – 2.1 GeV. The background is a smooth function and again the modified frequentist approach⁷ is used. Separate upper limits were obtained for neutral and doubly charged combinations, as well as for their sum. The ratio limits are shown in the lower plots of Fig. 2 and lie in the range 0.15 – 0.6, with the value \(R_{UL}(1860) \sim 0.5(0.2) \) for the neutral (doubly charged) combination. Summing all combinations, the limit \(R_{UL}(1860) \sim 0.5 \) is obtained, which is fully compatible with the upper limit value 0.29, obtained by the ZEUS experiment in a similar analysisⁱ¹.

4. \(D^*p(3100) \) production in DIS

Pentaquark multiplets containing the heavier \(c \) or \(b \) quarks have also been considered¹². If the anti-charmed pentaquark Θ⁺⁰, with the quark content \(uudd \), is heavy enough the decay \(Θ^+_c → D^+p \) would be possible. Evidence for a narrow peak, provisionally labelled \(D^*p(3100) \), in the \(D^*p \) mass distribution in DIS and photoproduction has been given by the H1 collaboration⁴. In subsequent searches, no other experiment was able to confirm this observation.

Additional preliminary information for the \(D^*p(3100) \) production is provided by the H1 collaboration¹³. Acceptance corrected yield ratios relative to inclusive \(D^* \) production, and differential distributions of the visible cross section ratio as function of event kinematics and \(D^* \) quantities are presented, the latter hinting at some features of the \(D^*p(3100) \) production mechanism.

The acceptance corrected yields ratio \(R_{cor}(D^*p(3100)/D^*) \) is defined in the visible range given by \(p_t(D^*p(3100)) > 1.5 \) GeV, \(-1.5 < \eta(D^*p(3100)) < 1.0, p_t(D^*) > 1.5 \) GeV, \(-1.5 < \eta(D^*) < 1.0 \) and \(z(D^*) > 0.2 \) (including the \(D^* \) from the \(D^*p(3100) \) decay). \(\eta \) and \(z \) are the pseudorapidity and elasticity, respectively. The acceptance corrections are calculated using RAPGAP, under the assumption that pentaquarks are produced by the fragmentation (simulated with the Lund string model). The observed yields ratio \(R(D^*p(3100)/D^*) = 1.46 \pm 0.32 \) becomes, after the acceptance correction, \(R_{cor}(D^*p(3100)/D^*) = 1.59\pm0.33^{+0.43}_{-0.45} \).
ZEUS collaboration found $R_{\text{corr}} < 0.59\%$ (at 95% C.L.), using larger statistics and a different definition of the visible range14.

$$D^*(p(3100)) = 2 \sum_{h \neq \text{charm}} (E - p_z)^{1/2}$$

is defined. The dependence of the cross section ratio $\sigma(D^*p(3100))/\sigma(D^*)$ on $x_{\text{obs}}(D^*)$ and the differential cross section $d\sigma(D^*p(3100))/dx_{\text{obs}}(D^*p(3100))$ are shown in Fig. 4a and 4b, respectively. The comparison with the RAPGAP expectation (in which D^* and $D^*p(3100)$ have the same production mechanism) shows that the D^* from the $D^*p(3100)$ decay is softer than the inclusive D^*, and that the fragmentation of $D^*p(3100)$ is harder than the inclusive D^* fragmentation.

References

1. D. Diakonov, V. Petrov and M. Polyakov, *Z. Phys. A* 359 305 (1997); hep-ex/9703373.
2. K.H. Hicks, *Prog.Part.Nucl.Phys.* 55 647 (2005); hep-ex/0504027 v2 (17.05.2006).
3. NA49 Coll., C. Alt et al., *Phys. Rev. Lett.* 92 042003 (2004); hep-ex/0310014.
4. H1 Coll., A. Aktas et al., *Phys. Lett.* B618 17 (2004); hep-ex/0403017.
5. LEPS Coll., T. Nakano et al., *Phys. Rev. Lett.* 91 012002 (2003); hep-ex/0301020.
6. H1 Coll., A. Aktas et al., *Phys. Lett.* B639 202 (2006); hep-ex/0604056.
7. T. Junk, *Nucl. Instr. Meth.* A434 435 (1999); hep-ex/9902006.
8. ZEUS Coll., S. Chekanov et al., *Phys. Lett.* B588 17 (2004); hep-ex/0403051.
9. ZEUS Coll., S. Chekanov et al., contributed paper to the 32nd International Conference on High Energy Physics, Beijing (2004), 10-0273.
10. H1 Coll., A. Aktas et al., contributed paper to the 33rd International Conference on High Energy Physics, Moscow (2006).
11. ZEUS Coll., S. Chekanov et al., *Phys. Lett.* B610 212 (2005); hep-ex/0501069.
12. See references in Ref.4.
13. H1 Coll., A. Aktas et al., contributed paper to the 22nd International Symposium on Lepton-Photon interactions at High Energy, Uppsala (20045), Abstr. 401.
14. ZEUS Coll., S. Chekanov et al., *Eur. Phys. J.* C38 29 (2004); hep-ex/0409033.