COVID-19 and the liver: overview
Mona Amin

Introduction
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen of 2019 novel coronavirus disease (COVID-19), has posed a serious threat to global public health. The WHO has declared the outbreak of SARS-CoV-2 infection an international public health emergency. Lung lesions have been considered as the major damage caused by SARS-CoV-2 infection. However, liver injury has also been reported to occur during the course of the disease in severe cases [1].

One study in China showed that up to half of people with the new coronavirus, named SARS-CoV-2, had liver dysfunction at some point during their illness. It is not clear if the reason lay with the virus or the strong medications used to fight it. Also unclear is if COVID-19 makes existing liver disease worse [2].

Liver injury is associated with COVID-19 infection
Respiratory symptoms are the most common presentation, but they are not the only early signs of COVID-19. Diarrhea, nausea, vomiting, and abdominal pain were well documented and often preceded respiratory symptoms [3].

A recently published study also indicates that COVID-19 was detected in the stool of over 50% of infected hospitalized patients. Investigators found that the lamina propria of the stomach, duodenum, and rectum was edematous with infiltrating plasma cells and lymphocytes

Viral host receptor angiotensin-converting enzyme 2 (ACE2) and viral nucleocapsid protein stained positive in specimens, making gastrointestinal infection with COVID-19 – and fecal-oral transmission – likely. Fecal shedding of viral RNA was also found in 20% of patients with COVID-19, despite real-time reverse transcriptase PCR testing from two sequential respiratory tract specimens collected at least 24 h apart being negative. These results have a clear impact regarding transmission precautions, especially in hospitalized patients [4].

A number of studies have shown that liver injury occurred in patients with SARS, which was mainly manifested in the mild and moderate elevation of alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) during the early stage of the disease. Some patients had decreased serum albumin and increased serum bilirubin levels [5,6]. The severe cases were more likely to have severe liver injury compared to mild cases [1,7].

Recent studies on COVID-19 have shown that the incidence of liver injury ranged from 14.8 to 53%, mainly indicated by abnormal ALT/AST levels accompanied by slightly elevated bilirubin levels [8,9]. The albumin is decreased in severe cases and the level of albumin is around 26.3–30.9 g/L [10].

A recent study of nearly 1100 Chinese patients, Guan et al. documented that elevated serum AST levels were observed in nearly 18% of patients with non-severe COVID-19 disease and in approximately 56% of patients with severe COVID-19 disease [11]. Moreover, in that study, elevated serum levels of ALT were also observed in nearly 20% of patients with nonsevere COVID-19 disease and in approximately 28% of patients with severe COVID disease [11].

In death cases of COVID-19, the incidence of liver injury might reach as high as 58.06 and 78% [12,13]. One study reported that serum ALT and AST levels increased up to 7590 and 1445 U/L, respectively, in a patient with severe COVID-19 [10].
Several possible mechanisms of liver injury were proposed, this novel coronavirus may produce, in some cases, relevant hepatic damage, probably through the immune interactions requiring the action of intrahepatic cytotoxic T cells and Kupffer cell [14]. Postmortem biopsies were recently performed in a death COVID-19 patient, and the results showed moderate microvascular steatosis and mild lobular and portal activity, indicating the injury could have been caused by either SARS-CoV-2 infection or drug-induced liver injury [15]. Direct cytotoxicity due to active viral replication in hepatic cells: SARS-CoV-2 binds to target cells through ACE2. Because ACE2 is expressed abundantly in the liver and in particular on biliary epithelial cells, the liver is a potential target for direct infection, which was; however, not yet demonstrated [16]. Hypoxia and shock induced by COVID-19-related complications (such as respiratory distress syndrome, systemic inflammatory response syndrome, and multiple organ failure) may also cause hepatic ischemia and hypoxia-reperfusion dysfunction [17]. A recent study reported that the liver injury observed in COVID-19 patients might be caused by lopinavir/ritonavir, which is used as antivirals for the treatment of SARS-CoV-2 infection [9].

Impact of COVID-19 in patients with chronic liver disease and cancer

No evidence suggests that patients with controlled chronic hepatitis B or C virus infection are at increased risk of SARS-CoV-2 infection. However, these patients, often have other comorbidities such as diabetes, hypertension, and cardiovascular disease which increase the risk of serious illness from COVID-19 [18].

Infection with COVID-19 may impact existing chronic liver disease in different ways: the additional hepatic injury induced by the COVID-19 could lead to hepatic decompensation in patients with compromised hepatic reserves, the potential immunosuppressive properties induced by the SARS-CoV-2 may lead to viral reactivation in patients with chronic viral hepatitis which need to be further confirm and in other studies and lastly drugs used for the treatment of COVID-19 or its complications may produce hepatotoxicity [15].

Recent study showed that patients with nonalcoholic fatty liver disease (NAFLD) had a higher risk of progression to severe COVID-19 and longer viral shedding time [19]. Obesity and NAFLD have been associated with increased production of pro-inflammatory cytokines like TNF-α by adipose cells and Kupffer cells. It remains speculative that the impaired innate immunity, manifested by derailed functional diversity of macrophages, imbalance between inflammation-promoting M1 macrophages and inflammation-suppressing M2 macrophages will lead to the progression of COVID-19 [20].

Data on the prevalence and impact of COVID-19 on cancer patients have gradually emerged. According to a prospective nationwide cohort study in China, researchers identified 18 of 1590 (1%) patients with both confirmed COVID-19 and a history of cancer. The cancer cohort experienced more severe disease and was more likely to be admitted to intensive care or die. Cancer therapy within 1 month also increased the risk of severe disease [21].

Table 1. Main characteristics related to liver disease in patients with COVID-19 infections in different regions

Author (year) Country	Sample size	Male, n (%)	Age (years)	Abnormal AST (%)	Abnormal ALT (%)	AST (IU/L)	ALT (IU/L)	Severe disease %	No severe disease %	Antibiotics %	Antifungal %	Antiviral %	History of liver disease %	Anticholestatic drugs %
Guan (2020) [11] China (Multicenter)	1099	158 (23.1)	NA	640 (58.2)	47.0 (55.0–65.0)	NA	NA	172 (15.7)	926 (84.3)	4 (2.7)	30 (2.7)	2 (2.7)	3 (2.7)	40 (37.0)
Xu (2020) [25] China (Zhejiang)	62	10 (16.1)	NA	36 (58.1)	14 (52.0–60.0)	NA	NA	22 (14–34)	36 (58.1)	7 (11.3)	92 (57.5)	83 (51.3)	1 (2.9)	14 (11.3)
Chen (2020) [10] China (Wuhan)	99	35 (35.3)	28 (26–48)	34 (32.8)	34 (26–48)	67 (68.4)	21 (72.4)	39 (22–53)	67 (68.4)	11 (11.1)	70 (70.7)	33 (33.3)	5 (17.2)	15 (51.7)
Wang (2020) [3] China (Wuhan)	138	7 (5.1)	31 (24–51)	34 (26–48)	34 (26–48)	67 (64.5)	24 (16–40)	5 (17.2)	21 (72.4)	14 (49.3)	15 (51.7)	39 (36.1)	36 (58.0)	15 (51.7)
Liu (2020) [28] China (Multicenter)	32	2 (6.2)	25 (19–28)	34 (26–48)	34 (26–48)	67 (62.5)	9 (27–46)	9 (28.1)	21 (72.4)	1 (2.9)	21 (68.8)	20 (62.5)	3 (10.0)	9 (28.1)
Huang (2020) [8] China (Wuhan)	138	7 (5.1)	31 (24–51)	34 (26–48)	34 (26–48)	67 (64.5)	24 (16–40)	5 (17.2)	21 (72.4)	14 (49.3)	15 (51.7)	39 (36.1)	36 (58.0)	15 (51.7)
Chen (2020) [29] China (Wuhan)	9	3 (33.3)	2 (2–11)	34 (26–48)	34 (26–48)	67 (62.5)	9 (27–46)	9 (28.1)	21 (72.4)	1 (2.9)	21 (68.8)	20 (62.5)	3 (10.0)	9 (28.1)
Qingxian (2020) [30] China (Shenzhen)	417	22 (52.9)	198 (47–76)	34 (26–48)	34 (26–48)	67 (62.5)	9 (27–46)	9 (28.1)	21 (72.4)	1 (2.9)	21 (68.8)	20 (62.5)	3 (10.0)	9 (28.1)

Note: Median, no interquartile range.
In a different retrospective cohort of 28 cancer patients admitted for COVID-19 infection across three hospitals in Wuhan, China, receipt of cancer therapy within 14 days was associated with a substantially higher risk of mortality [22]. Collectively, these studies raise the possibility that patients with cancer may be more susceptible to severe COVID-19 infection than the general population [21,22].

Data on COVID-19 in liver transplant patients are scarce. Whether liver transplant recipients are more susceptible to SARS-CoV-2 infection is a matter of concern, but so far there have been no specific recommendations from major societies. A case series from Italy showed that children who had received liver transplants, despite being immunosuppressed, were not at increased risk of severe pulmonary disease compared with the general population [23].

Post-transplant metabolic complications (e.g. arterial hypertension, chronic renal insufficiency, diabetes, hyperlipidemia, and weight gain) might outweigh immunosuppression as a risk factor for the development of severe COVID-19 disease in patients who have received liver transplants, in line with data from China, which suggest that comorbidities are associated with a worse prognosis [11].

In keeping with clinical insights from the American Association for the Study of Liver Diseases, immunosuppression should not be reduced or stopped in asymptomatic liver transplant recipients [24].

The summary of the published data on COVID-19 illustrating the effects on the liver is shown in Table 1.

Reference	Title
1	Chang HL, Chen KT, Lai SK, Kuo HW, Su IJ, Lin RS, Sung FC. Hematological and biochemical factors predicting SARS fatality in Taiwan. J Formos Med Assoc 2006; 105:439–450.
2	Feng G, Zheng K, Yan QQ, Rios RS, Targher G, Byrne CD, et al. COVID-19 and liver dysfunction: current insights and emerging therapeutic strategies. J Clin Transl Hepatol 2020; 8:18–24.
3	Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323:1061–1069.
4	Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158:1831–1833.e3.
5	Liu Z, Guo J. Dynamic changes of liver function and myocardial enzyme in 259 patients with severe acute respiratory syndrome. J Clin Hepatol 2003; 3:129–131.
6	Lu Y, Yin C, Tang X, et al. Clinical characteristics and mechanism of liver function injury in 250 patients with severe acute respiratory syndrome. Chin J Mod Med 2004; 23:121–123.
7	Yang Z, Xu M, Yi J. The clinic characteristics and mechanism of liver damage in patients with severe acute respiratory syndrome. Chin J Infect Dis 2003; 4:13–15.
8	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395:497–506.
9	Fan Z, Chen L, Jun L, et al. Clinical features of COVID-19 related liver damage. medRxiv 2020.
10	Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395:507–513.
11	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382:1708–1720.
12	Huang Y, Zhou H, Yang R, et al. Clinical characteristics of 36 non-survivors with COVID-19 in Wuhan, China. medRxiv 2020.
13	Zhang B, Zhou X, Oiu Y, et al. Clinical characteristics of 82 death cases with COVID-19. medRxiv 2020.
14	Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020; 5:428–430.
15	Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 5:420–422.
16	Chai X, Hu L, Zhang Y, Han W, Lu Z, Ke A, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection. bioRxiv 2020.
17	Yang L, Wang W, Wang X, Zhao J, Xiao L, Gui W, et al. Creg in hepatocytes ameliorates liver ischemia/reperfusion injury in a TAK1-dependent manner in mice. Hepatology 2019; 69:294–313.
18	Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395:1054–1062.
19	Ji D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, Lau G. Implication of nonalcoholic fatty liver diseases (NAFLD) in patients with COVID-19: a preliminary analysis. J Hepatol 2020.
20	Lefere S, Tacke F. Macrophages in obesity and non-alcoholic fatty liver disease: Crosstalk with metabolism. JHEP Ref 2019; 1:30–43.
21	Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21:335–337.
22	Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020.
23	D’Antiga L. Coronavirus and immunosuppressed patients. The facts during the third epidemic. Liver Transpl 2020.
24	American Association for the Study of Liver Diseases. Clinical insights for hepatology and liver transplant providers during the COVID-19 pandemic. 2020. https://www.aasl.org/sites/default/files/2020-04/AASLD-COVID19-ClinicalInsights-4.07.2020-Final.pdf. [Accessed April 3, 2020].
25	Xu JW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020; 366:m606.
26	Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J, et al. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020; 43:e006.
27	Pan F, Ye T, Sun P, Gui S, Liang B, Li X, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020; 295:715–721.
28	Liu C, Jiang ZG, Shao CX, Zhang HG, Yue HM, Chen ZH, et al. Preliminary study of the relationship between novel coronavirus pneumonia and liver function damage: a multicenter study. Zhonghua Gan Zhi Za Zhi 2020; 28:107–111.
29	Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395:809–815.
30	Cai Q, Huang D, Yu H, Zhu Z, Xia Z, Su Y, et al. Covid-19 abnormal liver function tests. J Hepatol 2020. In press.