Assessment of the hydraulic structures’ technical condition by means of the amplitude-frequency characteristics’ analysis

G V Degtyarev1*, F K Abdrazakov2, N P Lavrov3

1Kuban State Agrarian University, 13, Kalinina Str., Krasnodar, 350044 Russia
2Saratov State Agrarian University Named After N.I. Vavilov, 1, Teatralnaya sq., Saratov, 410012, Russia
3Peter the Great St.Petersburg Polytechnic University, 29, Polytechnicheskaya, St.Petersburg, 195251, Russia

E-mail: cst2007@mail.ru

Abstract. Based on the numerical simulation of the structure, a decrease in the frequency was revealed with an increase in the number of defective sections. A change in the deformed oscillation pattern at the corresponding frequencies is observed. The method clearly makes it possible to increase the hydraulic structures’ efficiency.

Introduction

The hydraulic structures’ safe operation is impossible without timely diagnosis of their technical condition [1, 2, 3, 4].

Assignment of the technical condition categories to structures, buildings, including soil base, is carried out on the basis of the inspection results and verification calculations, depending on the type of object. At the same time, the following control methods were widely used:

– method of evaluating structures by the external features;
– mechanical methods for determining the strength of concrete;
– ultrasonic method for determining the strength of concrete;
– magnetic and radiation control methods;
– laboratory control methods.

The structures of the building, including soil base, are divided into:

– in normative technical condition;
– in working condition;
– in limited working condition;
– in disrepair.

Recently, the dynamic method has been actively developing [5, 6, 7, 8]. This method examines the amplitude-frequency characteristics (AFC): the frequencies and forms of natural vibrations, vibration damping characteristics, as well as the dynamic stiffness analysis; dynamic geophysical parameters of structures. The dynamic method can be used both in express diagnostics of a technical condition and as a method of continuous monitoring of a structure [10, 11]. The dynamic control method makes it possible to determine the technical condition category of the object under examination within a few hours, while the performers group composition is minimal and can consist of 3 specialists - the work manager, engineers for measuring the frequency response and photo fixation works.
Material and technology

However, today there is a significant drawback that limits the widespread adoption of the amplitude-frequency response method - insufficient knowledge of the structures interacting with the liquid, including their amplitude-frequency characteristics, while the regulatory documents establish restrictions of no more than 10% for the frequency response of the structure, this range of 10% is clearly does not allow to determine the presence of damage, because based on the numerous hydraulic structures’ field vibration dynamic studies, in most cases, when the frequency response changes from 0–10%, damage or defects are absent or are insignificant.

In order to develop a classification of the damage degrees depending on the change in frequency response, as well as the criteria for assessing the technical condition of hydraulic structures, we perform the mathematical modeling of the hydraulic structure [12, 13, 14].

Let us consider the types of the most common damage (defects) of the supporting structures for this type of structure:

a) individual small chips, hair cracks;

b) force cracks, presence of decompression of reinforced concrete structures caused by corrosion of concrete, reinforcement;

c) partial or complete structural failure.

The following degrees of damage to the hydraulic structures are proposed for consideration, depending on the changes in amplitude-frequency response:

– no damage – 0 – 10 % – regulatory technical condition;

– permissible damage – 11 – 30% – working condition;

– severe damage – 31 – 60% – limited working condition;

– critical damage – 61 – 100 % – emergency condition.

Methods of modeling defects of the type (a) - we carry out by the local reduction of the elastic modulus of concrete; type (b) - a local decrease in the elasticity modulus of concrete, a change in the density of concrete, a change in the thickness of the structure; type (c) - a local decrease in the elastic modulus of concrete, a change in the density of concrete, a change in the thickness of the structure, with the exception of individual structural elements or the structure as a whole.

It should be noted that the lowest form is the most indicative for the damage analysis.

We determine the frequency response of the hydraulic structure in the absence of defects, the analysis is performed for the first three forms.

The amplitude-frequency characteristics and the visualized deformed model of the structure for various forms are presented in the following Figures 1-3.

The AC characteristics: \(W = 53.38 \text{ rad/s}; f = 8.495 \text{ Hz}; T = 0.1177 \text{ s} \)

Figure 1. Frequency response and visualized deformed model of the structure for form 1
The AC characteristics: $W = 79.66 \text{ rad/s}; f = 12.68 \text{ Hz}; T = 0.07888 \text{ s}$.

Figure 2. Frequency response and visualized deformed model of the structure for form 2

The AC characteristics: $W = 84.34 \text{ rad/s}; f = 13.42 \text{ Hz}; T = 0.0745 \text{ s}$

Figure 3. Frequency response and visualized deformed model of the structure for form 3

Based on the presented deformed schemes, we can conclude that the weakest zones in the structure for these zones are characterized by the greatest deformations in the corresponding shapes. Based on the foregoing, the defects presented above will be assigned precisely in these areas.

Max displacement = 2.08349 mm at node 13292

Figure 4. Full movement
Min SeM = 0.658903 kN/m², Max SeM = 6466.32 kN/m²

Figure 5. The equivalent stresses

Let us consider the effect of the defect (a) on AFC, the calculation results are presented in Table 1.

Table 1. The results of the impact calculation of the defect (a) on AFC water structures

AFC forms	Visualized deformed water structures	AFC characteristics
Form 1	![Form 1](image)	W = 44.93 [rad/s]
		f = 7.151 [Hz]
		T = 0.1398 [s]
Form 2	![Form 2](image)	W = 69.78 [rad/s]
		f = 11.11 [Hz]
		T = 0.09004 [s]
Form 3

W = 75.38 [rad/s]
f = 12 [Hz]
T = 0.08335 [s]

Max moving = 2.52233 mm in knot 13292

Figure 6. Full movement

Min SeM = 0.373806 kN/m², Max SeM = 6945.57 kN/m²

Figure 7. Equivalent stresses

Summary
It follows from the presented data, that the previously considered assumption about the effect of defect (a) on the change in frequency response in the range of 11–30% is confirmed by the numerical simulation. It should be noted that there is a decrease in frequency with an increase in the number of defective areas. A change in the deformed oscillation pattern at the corresponding frequencies is observed. Analysis of the stress-strain state (SSS) indicates a slight increase in displacements and stresses in the building structures, which indicates the possible operation of the structure and the statement that damage (defects) of this type are permissible. Based on the foregoing, it is necessary to assign the intermediate repair measures.

References
[1] Abdrazakov F K, Orlova S S, Pankova T A, Mirkina E N, Fedyunina T V 2018 The monitoring of condition of hydraulic structures Journal of Advanced Research in Dynamical and Control Systems 10 (13) 1952-1958.
[2] Degtyareva O G, Degtyarev G V, Lavrov N L, Aliev D U 2018 Constructive -technological decisions in regulating the flow of atmospheric precipitation Magazine of Civil Engineering 82 (6) 32–48. doi: 10.18720/MCE.82.4.
[3] Degtyarev G V, Belokur K A, Sokolova I V 2018 Modeling of the Building by Numerical Methods at Assessment of the Technical Condition of Structures International conference on Construction and Architecture: theory and practice of industry development (CATPID-2018). Trans Tech Publications, Switzerland 931 141-147.
[4] Khashirova T Yu, Ksenofontov A S, Lamerdonov Z G, Edgulova E K, Nartokov H S 2018 Information technologies at the choice of an optimum bank protection structures for highways in emergency situations Proceedings of the 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT&QM&IS). 656-658.
[5] Olgarenko V I, Olgarenko I V, Olgarenko V I 2019 Technical condition diagnostics of the water supply facilities in the irrigation systems IOP Conference Series: Materials Science and Engineering The International Scientific Conference “Construction and Architecture: Theory and Practice for the innovation development” (CATPID-2019) 022060.
[6] Degtyareva O G, Datsyo D A, Chebanova E F, Krylova N N, Khatkhokhu E I 2019 Numerical analysis of engineering geological elements while strengthening the base of a construction site Research Journal of Pharmaceutical, Biological and Chemical Sciences 10 (1) 1554–1558.
[7] Degtyarev G V, Datsyo D A 2019 The seasonal regulation basin dam basis deformation forecast IOP Conf. Series: Materials Science and Engineering 698 022013. doi:10.1088/1757-899X/698/2/022013.
[8] Degtyareva O G, Degtyarev V G, Naydenov S Yu 2019 Seismic resistance of hydraulic structures taking into account the work of structures beyond the elastic limit Scientific journal of the Russian Research Institute of Land Reclamation, Novocherkassk 1 (33) 92-108
[9] Degtyarev G V, Degtyarev V G, Degtyareva O G, Kozhenko N V, Datsyo D A 2018 Modeling and calculation of reinforced concrete building structures in the STARK ES software complex Under the general, edit by G.V. Degtyareva, Krasnodar.
[10] Degtyarev G V, Kenebas S S, Degtyarev V G, Pat. 2 460 861 Russian Federation, IPC E04G23/02. The method of reconstruction of industrial and civil buildings, applicant and patentee Kuban State Agrarian University (RU). № 2011105233; declared 02/11/2011; publ. 09/10/2012, Bull. № 25.
[11] Degtyarev G V, Molotkov G S, Sekisov A N, Datsjo D A 2018 Numerical modeling of condition of the bridge structure based on the results of national surveys International Journal of Engineering and Technology (UAE) 7 (2.13) (13) 226-230.
[12] Degtyarev G V, Takhumova O V 2019 Designing an additional freshwater source infrastructure to ensure the environmental sustainability of coastal areas IOP Conference Series: Earth and Environmental Science 395 012001. doi:10.1088/1755-1315/395/1/012001.
[13] Degtyareva O G, Datsyo D A, Degtyarev G V, Gumbarov A D 2017 Modeling in the SAE system for settling the slab foundation of a low-pressure dam Proceedings of the Kuban State Agrarian University, Krasnodar 1 (64) 221–226.

[14] Degtyareva O G, Degtyarev V G 2018 Dams in the regulation system of runoff of atmospheric precipitation on the Black Sea coast of the Krasnodar Territory, monograph, Krasnodar, Ecoinvest.