MITO MEASUREMENTS OF THE SUNYAEV-ZELDOVICH EFFECT IN THE COMA CLUSTER OF GALAXIES

MARCO DE PETRIS,1 LIVIA D’ALRA,1 LUCA LAMAGNA,1 FRANCESCO MELCHIORRI,1 ANGOLA ORLANDO,1 EMILIA PALLADINO,1 YOEL REPHEAEL,1 SERGIO COLAFRANCESCO,1 ERNST KREYSA,2 AND MONIQUE SIGNORE3

Received 2002 March 21; accepted 2002 June 18; published 2002 July 2

ABSTRACT

We have measured the Sunyaev-Zeldovich (SZ) effect toward the Coma Cluster (A1656) with the Millimetre and Infrared Testagrigia Observatory experiment, a 2.6 m telescope equipped with a four-channel 17’ (FWHM) photometer. Measurements at frequency bands 143 ± 15, 214 ± 15, 272 ± 16, and 353 ± 13 GHz were made during 120 drift scans of Coma. We describe the observations and data analysis that involved extraction of the SZ signal by employing a spatial and spectral decorrelation scheme to remove a dominant atmospheric component. The deduced values of the thermal SZ effect in the first three bands are \(\Delta T_0 = -179 \pm 38, -33 \pm 81, \) and \(170 \pm 35 \) \(\mu \)K in the cluster center. The corresponding optical depth, \(\tau = (4.1 \pm 0.9) \times 10^{-3}, \) is consistent (within errors) with both the value from a previous low-frequency SZ measurement and the value predicted from the X-ray–deduced gas parameters.

Subject headings: cosmic microwave background — cosmology: observations — galaxies: clusters: individual (Abell 1656)

1. INTRODUCTION

Compton scattering of the cosmic microwave background (CMB) radiation by electrons in the hot gas in clusters of galaxies—the Sunyaev-Zeldovich (SZ) effect—has long been recognized as a uniquely important feature, rich in cosmological and astrophysical information (Zeldovich & Sunyaev 1969; Sunyaev & Zeldovich 1970a, 1970b; Boynton & Melchiorri 1979; Gunn 1978; Silk & White 1978; Cavaliere, Danese, & De Zotti 1979). Interest in the effect heightened when high-quality images of the effect were obtained with interferometric techniques on both sides of the Planckian peak. One such ground-based system is the Millimetre and Infrared Testagrigia Observatory (MITO; De Petris et al. 1996).

Accurate determinations of the Hubble constant (\(H_0 \)), cluster mass profiles, and cluster peculiar velocities from SZ and X-ray measurements require precise descriptions of the intra-cluster (IC) gas temperature and density profiles and improved control of systematic errors. These can be more optimally achieved by multifrequency SZ measurements and high-quality spectral and spatial X-ray measurements of nearby clusters.

Therefore, it is essential to develop sensitive SZ experiments operating at telescopes with effective beam sizes of a few arcminutes, equipped with bolometer arrays operating at frequencies on both sides of the Planckian peak. One such ground-based system is the Millimetre and Infrared Testagrigia Observatory (MITO; De Petris et al. 1996).

Coma is the richest nearby cluster whose IC gas properties have been determined from extensive X-ray observations. Attempts to measure the SZ effect in Coma at low frequencies were reported by Pariskij (1973), Rudnick (1978), Lake & Partridge (1980), Birkinshaw, Gull, & Northover (1981), and Herbig, Lawrence, & Readhead (1995; revised in Mason, Myers, & Readhead 2001) and at high frequencies by Silverberg et al. (1997).

2. OBSERVATIONS

2.1. MITO

MITO is a 2.6 m altitude-azimuth telescope located at an altitude of 3480 m in the Italian Alps. The telescope design, optical configuration, and electromechanical modulation system are described in De Petris, Gervasi, & Liberati (1989), Gervasi et al. (1998), and Mainella et al. (1996). The four-channel photometer (A. Orlando et al. 2002, in preparation) consists of four neutron transmutation–doped (NTD) Ge composite bolometers cooled down to 290 mK. The thermodynamic noise equivalent temperature (NET) is around 1 mK s\(^{-1}\). At the telescope focal plane, the photometer has a 17’ FWHM field of view (FOV).

Observations were made during February and March of 2000 and 2001, when data from some 120 drift scans of Coma were collected. Each scan consists of 10 minutes of measurements collected every second. A 41’ beam throw was selected for a three-field square-wave–like spatial modulation. The position of Coma in the sky covered altitude values from 50° up to 73° above the horizon. The drift scan systematics are better controlled than in source tracking mode, mainly stemming from weaker microphonics and lower changes in sidelobe spillover effects. At a data sampling rate of 1 Hz, pointing information, signals, modulation system, and photometer performance were recorded. A pointing accuracy of \(\sim 1’ \) was attained by frequent measurements of bright stars close to the source by a CCD camera. We measured beam shape, responsivity, and atmospheric transmission for each channel by means of planetary calibrators—Jupiter, Saturn, and the Moon—before each Coma observation session. In order to correct for atmospheric absorption, we measured the channels’ zenith transmission during each night.
2.2. Results from X-Ray Observations

Coma has been extensively observed, mostly in the 1–10 keV range. The most recent high spectral and spatial resolution measurements with the XMM/European Photon Imaging Camera (EPIC) experiment are best fit by $kT = 8.2 \pm 0.1$ keV (at 90% confidence level) in the central 10’ region (Arnaud et al. 2001). Analysis of the emission from a larger region of the cluster yields $kT = 8.2 \pm 0.4$ keV, which we adopt here. This value of the temperature is in very good agreement with the value deduced from Ginga observations. Since quantitative results for the gas density profile from neither XMM nor Chandra are currently available, we use the ROSAT (Briel, Henry, & Böhringer 1992) deduced values $n_e = (2.89 \pm 0.04) \times 10^{-3}$ cm$^{-3}$, $r_c = 10.5 \pm 0.6$, and $\beta = 0.75$, for the central electron density, core radius, and index in the expression for the commonly used β density profile, $n_e(r) = n_{eo}(1 + r^2/r_c^2)^{-\beta/2}$ (Cavaliere & Fusco-Femiano 1976).

3. DATA ANALYSIS

Clearly, there is no unique approach to the analysis of a noisy data set that includes a dominant, fluctuating atmospheric emission and other confusing signals. When the spatial distribution of the confusing source is unknown, such as that of CMB anisotropy, a sufficient number of channels is selected so as to allow removal of anticipated foregrounds, but the corresponding system of equations can often be numerically unstable.

Our task is made feasible largely by the known position of the source and its approximate angular extent. Therefore, to first approximation, we can fit the data with a signal of a known shape but unknown peak amplitude. The errors in measuring this amplitude approach the intrinsic detector noise if we can successfully remove the contributions of atmospheric fluctuations and CMB anisotropy whose spectral shape is known. In addition to the SZ effect, these signals were modeled separately from all others, which were collectively treated as unidentified noise. While three channels are in principle sufficient to achieve this goal, we added a fourth channel centered on the crossover frequency (where the thermal SZ effect vanishes), in order to check the separation between CMB and atmospheric emission and to possibly obtain a rough estimate on the value of the kinematic SZ effect.

We have computed the expected spectral ratios of the SZ signals in channels 2, 3, and 4 with respect to the first channel. The calculation is relativistically exact and is based on the treatment of Rephaeli (1995b; see also Rephaeli & Yankovitch 1997), taking the above quoted range of the gas temperature. At each frequency, we calculated the intensity change due to the thermal SZ effect, ΔI_{SZ}, and convolved it with the spectral response of the photometer, ϵ_i, and the atmospheric transmittance, ϵ_{atm}, which was determined from a model (Liebe 1985).

The expected ratio of the ith to the first channel is thus

\[
\frac{b_i}{b_1} = \frac{\Delta I_{SZ}(e_i(r)\epsilon_{atm}(r)\,dv)}{\Delta I_{SZ}(e_1(r)\epsilon_{atm}(r)\,dv)}
\]

where R_i is the responsivity in the ith channel as measured with sky calibrators and A_0 is the throughput, which slightly changed from channel to channel owing to the different optical paths through the telescope and photometer. Uncertainties in the evaluation of b_i are due to the relatively small error in the value of kT and the fluctuating values of atmospheric transmittance (0.5–2.0 mm of precipitable water vapor). Similarly, we have calculated the ratios, c_i, of the intensity change due to the primary CMB anisotropy in the four bands. In Table 1, all the cited ratios are listed with R_i and A_0.

The recorded data in the four channels ($\iota = 1, 2, 3, 4$) for each scan ($j = 1, \ldots, 120$) can be written as follows:

\[
\Delta S^i_j = a_i^j \Delta V_{\text{sim}}^i_j(t) + b_i^j \Delta V_{\text{SZ}}^i_j(\alpha, \delta) + c_i^j \Delta V_{\text{amb}}^i_j(\alpha, \delta) + \Delta V_{\text{offset}}^i_j(\alpha, \delta; t) + b_i^j \Delta V_{\text{spike}}(t) + \Delta V_{\text{noise}}^i_j(t).
\]

In this equation, $b_i^j \Delta V_{\text{SZ}}^i_j$ is the SZ signal, which is fitted with $w_i^j \Delta V_{\text{sim}}^i_j$, where $\Delta V_{\text{SZ, sim}}$ is the simulated SZ signal, normalized to 1 at the peak; w_i^j are the estimated peak values of SZ signals (in the absence of noise $w_i = b_i^{-1} w_i^j$, $i = 2, 3, 4$) and a_i^j are the atmospheric ratios with respect to channel 1, to be determined for each scan. The values of a_i^j could change from scan to scan owing to the atmospheric long time variations, while they are assumed to be constant within a single scan. Since atmospheric fluctuations dominate on each scan, a rough estimate of the a_i^j can be done as the ratios of the channels’ standard deviations. For this purpose, we used only the data outside the expected position of Coma. In Table 1, we have also quoted the mean values of a_i^j averaged over all the drift scans in each observational campaign. Detector and other sources of noise are collectively included in the term $\Delta V_{\text{noise}}^i_j$.

Estimated errors in the evaluation of w_i^j due to uncertainties in b_i^j constitute a small fraction of the overall error.

The data include three main sources of contamination:

1. Cosmic-ray spikes [$\Delta V_{\text{spike}}^i_j(t)$]: We observed roughly one spike in every 10 scans. A special deglitching algorithm has been applied to correct these data. However, their total removal from the analysis did not change our results apart from a slight increase of the noise. After removal of the spikes, the data were averaged over 15 s so that each drift scan consists of 37 bins roughly separated in the sky by 3/75, about one-fourth of the FOV.

2. An instrumental offset [$\Delta V_{\text{offset}}^i_j(\alpha, \delta; t)$] ranging from 0.4 μV (channel 1) up to 5 μV (channel 4): This is partly due to the residual sidelobes of the telescope and partly due to the
the thermal imbalance of the primary mirror. The telescope is stopped during each drift scan. In this way, the offset is obviously independent of position, so it is possible to remove it from each scan through a linear fit of the data; a quadratic fit did not change the rms value of the residual fluctuations. Note that the removal of the offset through a linear fit may introduce an additional effect due to the presence of large atmospheric fluctuations. The average of these along a finite drift scan will introduce an additional offset, \(\Delta W_{\text{if atm, i}} = (1/37) \sum \Delta W_{\text{if atm, i}}(t) \). This unknown offset will in turn introduce an error in the estimated value of the SZ signal; we discuss below how this offset was removed.

3. Large atmospheric fluctuations: We based our approach on minimizing their effect on the measured data in channel 4, based on the fact that \(a_4 \) is \(\sim 13 \). The efficiency of this procedure depends on the amplitude of the atmospheric fluctuations in each drift scan as well as on the degree of correlation among the various channels with channel 4. A detailed discussion of the atmospheric noise will be given elsewhere; here we briefly discuss only the essential points. In channel 2, the residuals of the signal after subtracting \(a_2 w_2 \Delta t_2 \) and minimizing the difference consist of uncorrected atmospheric fluctuations, signal due to CMB anisotropy, and only a very small SZ signal. If we fit the residuals with a simulated SZ signal of amplitude \(w_n \), we get \(\langle w_n \rangle = -0.25 \pm 0.32 \text{ nV} \). This result indicates that the SZ signal in channel 2 is consistent with zero, as expected, and the large dispersion—with respect to the final error due to the intrinsic detector noise of about 0.05 nV—around the mean suggests that there is a residual atmospheric contamination \(\Delta w_2 = a_2 \Delta t_2 \). A significant decrease in the dispersion is obtained if we remove the values of \(w_2 \) far from the mean. These values are possibly due to the presence of a large atmospheric disturbance along the line of sight (LOS) to Coma. For instance, if we remove values that are more than 4 \(\sigma \) (standard deviation) from the mean, we obtain \(\langle w_n \rangle \approx -0.04 \pm 0.09 \text{ nV} \). A similar analysis has been done for channels 1 and 3, for which we expect SZ signals at the predicted ratio \(b_1 \). Residual atmospheric fluctuations—as well as the spurious offset discussed previously—introduce an additional error. The corresponding small corrections \(\Delta w_1 \) and \(\Delta w_2 = a_2 \Delta w_1 \), which have to be added to the measured values of the SZ effect in order to get the correct value, must satisfy the relation \(\Delta w_2 = (w_1 + a_2 \Delta w_1)/b_1 \). The dispersion of \(\Delta w_1 \) is minimized by changing \(b_1^2 \) within \(\pm 1.5b_1^2 \). The dispersion decreases by a factor of 4 when \(b_1^2 \) coincides with \(b_3^2 \) within the errors.

After correcting for binning and atmospheric transmittance, we obtain \(\langle w_1 \rangle \approx -0.171 \pm 0.036 \), \(\langle w_2 \rangle \approx -0.037 \pm 0.090 \), and \(\langle w_3 \rangle \approx 0.174 \pm 0.036 \text{ nV} \). In Figure 1, we show plots of \(\Delta V_{\text{SZ}}, \Delta V_{\text{CMB}} \), and \(\Delta V_{\text{atm}} \) as derived by solving equation (2). The data have been filtered with an adaptive filter that removes spatial patterns that are not present in the expected SZ profile. The filter does not alter the SZ signal but strongly reduces CMB and atmospheric fluctuations.

The \(w \)-value has been converted to thermodynamic temperature for the \(n \)th channel by calibration based on measurements of Jupiter (Encrenaz & Moreno 2002). Integrating its spectral temperature distribution over the four channels, we determined the optical responsivities. The overall calibration error is about 10\%, dominated by the uncertainty in the brightness temperature of Jupiter (\(\pm 5\% \)) and statistical errors in the estimate of the beam size. The final values of the deduced temperature changes are \(\Delta T \approx -73.5 \pm 15.5, -13.7 \pm 33.3, \) and \(69.6 \pm 14.4 \mu \text{K} \) in the first three channels, respectively. Based on our calculated

![Figure 1](image)

Fig. 1.—SZ, CMB, and atmospheric signals extracted from eq. (2), corresponding to the 143 GHz band, averaged over the drift scans and binned in nine independent sky positions. Atmospheric fluctuations have an amplitude comparable to that of the SZ effect, even after 20 hr of integration. CMB anisotropies are averaged over various parallactic angles corresponding to the different drift scans.

value for the geometrical form factor due to beam dilution and modulation strategy, \(\eta = 0.41 \pm 0.02 \), we compute the corresponding values \(\Delta T_b \approx -179.3 \pm 37.8, -33.4 \pm 81.2, \) and \(169.8 \pm 35.1 \mu \text{K} \) for \(\Delta T \) in the cluster center.

4. DISCUSSION

MITO measurements of Coma are the first successful detection of the SZ effect in this cluster at high frequencies. Our results imply a mean Thomson optical depth \(\tau_0 = (4.1 \pm 0.9) \times 10^{-3} \) for an LOS through the center of Coma. Herbig et al. (1995) have already detected the effect at the much lower frequency of 32 GHz. Their reported central value, \(\Delta T_0 = -505 \pm 92 \mu \text{K} \), and corresponding optical depth, \(\tau_0 = (5.6 \pm 1.1) \times 10^{-3} \), were recently updated (Mason et al. 2001) with new calibration data, yielding an observed decrement \(\Delta T = -302 \pm 48 \mu \text{K} \). This value, corrected for the dilution over their 7.3 FOV and the switching amplitude of 22\%, corresponds to \(\Delta T_0 = -520 \pm 83 \mu \text{K} \) and, considering a \(kT = 8.2 \text{ keV} \), \(\tau_0 = (6.3 \pm 1.0) \times 10^{-3} \). Clearly, these two results for \(\tau_0 \) are quite consistent, given the appreciable (1 \(\sigma \)) errors. Even though our somewhat lower value is not significantly different from that of Herbig et al., it is interesting to note that the CMB anisotropy signal that we
seem to have identified along an LOS to Coma (heavily exploiting our multifrequency capability) could have possibly contributed to the SZ signal at the low- (single-) frequency Owens Valley Radio Observatory (OVRO) measurement (where the two signals cannot be spectrally separated). Irrespective of whether this is indeed the case, the great advantage of multifrequency work has been clearly demonstrated in the analysis of our measurements. In Figure 2, we show the first SZ spectrum of Coma by combining OVRO measurements with our measurements; a fit to the predicted spectrum yields \(\tau = (4.9 \pm 0.7) \times 10^{-3} \).

In addition to measurement errors, other errors include the use of a simple one-dimensional, isothermal gas density with a \(\beta \) profile. Based on the X-ray morphology of Coma, the relatively small degree of ellipticity of X-ray morphologies of other rich clusters, and the recent verification of the gas isothermality in Coma from \(\text{XMM} \) measurements (Arnaud et al. 2001), we estimate that the additional error introduced by taking the gas to be spherically symmetric and isothermal is \(\lesssim 30\% \) of the overall quoted error. Note also that the additional Comptonization by nonthermal electrons (whose existence in Coma is deduced from measurements of extended radio emission) is negligible (Shimon & Rephaeli 2002; Colafrancesco, Marchegiani, & Palladino 2001) if the energy density in these electrons is at the level deduced from measurements of high-energy (>20 keV) X-ray emission with the \(\text{ Rossi X-Ray Timing Explorer } \) (Rephaeli, Gruber, & Blanco 1999) and \(\text{BeppoSAX } \) (Fusco-Femiano et al. 1999) satellites. This result is valid also for other viable energetic electron models (Shimon & Rephaeli 2002).

The work reported here is only the first stage of an extensive project to upgrade MITO to a bolometer array consisting of 36 elements operating at four frequency bands and with beam sizes down to 4′ (Lamagna et al. 2002). Work on the upgraded system is underway, with first observations scheduled for early 2003. We plan to measure the effect in a large sample of nearby clusters, with the goal of determining \(H_0 \) and cluster masses.

REFERENCES

Arnaud, M., et al. 2001, A&A, 365, L67

Birkhshaw, M. 1999, Phys. Rep., 310, 97

Birkhshaw, M., Gull, S. F., & Northover, N. J. E. 1981, MNRAS, 197, 571

Boynton, P., & Melchiorri, F. 1979, Atti Fondazione Ronchi, 34, 55

Briel, U. G., Henry, J. P., & Böhringer, H. 1992, A&A, 259, L31

Carlstrom, J. R., Joy, M., Grego, L., Holder, G., Holzapfel, W. L., LaRoque, S., Mohr, J. J., & Reese, E. D. 2001, preprint (astro-ph/0103480)

Cavaliere, A., Danese, L., & De Zotti, G. 1979, A& A, 75, 322

Cavaliere, A., & Fusco-Femiano, F. 1976, A& A, 49, 137

Colafrancesco, S., Marchegiani, P., & Palladino, E. 2001, A& A, submitted

De Petris, M., Gervasi, M., & Liberati, F. 1989, Appl. Opt., 28, 1785

De Petris, M., et al. 1996, NewA, 1, 121

Encrenaz, T., & Moreno, R. 2002, in AIP Conf. Proc. 616, Experimental Cosmology at Millimetre Wavelengths, ed. M. De Petris & M. Gervasi (New York: AIP), 92

Lamagna, L., De Petris, M., Melchiorri, F., Battistelli, E., De Grazia, M., Luzzi, G., Orlando, A., & Savini, G. 2002, in AIP Conf. Proc. 616, Experimental Cosmology at Millimetre Wavelengths, ed. M. De Petris & M. Gervasi (New York: AIP), 92

Lamagna, L., De Petris, M., Melchiorri, F., Battistelli, E., De Grazia, M., Luzzi, G., Orlando, A., & Savini, G. 2002, in AIP Conf. Proc. 616, Experimental Cosmology at Millimetre Wavelengths, ed. M. De Petris & M. Gervasi (New York: AIP), 92

Liebe, H. J. 1985, Radio Sci., 20, 1069

Mainella, G., de Bernardis, P., De Petris, M., Mandiello, A., Perciballi, M., & Romeo, G. 1996, Appl. Opt., 35, 2246

Mason, B. S., Myers, S. T., & Readhead, A. C. S. 2001, ApJ, 555, L11

Parijskij, Yu. N. 1973, AZh, 49, 58

Rephaeli, Y. 1995a, ARA&A, 33, 541

———. 1995b, ApJ, 445, 33

Rephaeli, Y., & Blanco, P. 1999, ApJ, 511, L21

Rephaeli, Y., & Yankovitch, D. 1997, ApJ, 481, L55

Rudnick, L. 1978, ApJ, 223, 37

Shimon, M., & Rephaeli, Y. 2002, preprint (astro-ph/0204355)

Silk, J. I., & White, S. D. M. 1978, ApJ, 226, L103

Silverberg, R. F., et al. 1997, ApJ, 485, 22

Sunyaev, R. A., & Zeldovich, Ya. B. 1970a, Comments Astrophys. Space Phys., 2, 66

———. 1970b, Comments Astrophys. Space Phys., 4, 173

Zeldovich, Ya. B., & Sunyaev, R. A. 1969, Ap&SS, 4, 301