ON THE u-INARIANT OF FUNCTION FIELDS OF CURVES OVER COMPLETE DISCRETELY VALUED FIELDS

R. PARIMALA AND V. SURESH

Abstract. Let K be a complete discretely valued field with residue field κ. If $\text{char}(K) = 0$, $\text{char}(\kappa) = 2$ and $[\kappa : \kappa^2] = d$, we prove that there exists an integer N depending on d such that the u-invariant of any function field in one variable over K is bounded by N. The method of proof is via introducing the notion of uniform boundedness for the p-torsion of the Brauer group of a field and relating the uniform boundedness of the 2-torsion of the Brauer group to the finiteness of the u-invariant. We prove that the 2-torsion of the Brauer group of function fields in one variable over K is uniformly bounded.

Let K be a complete discretely valued field with residue field κ and F a function field in one variable over K. Suppose $\text{char}(\kappa) \neq 2$. A bound for the u-invariant of F in terms of the u-invariant of function fields in one variable over κ was obtained by Harbater-Hartmann-Krashen [7] using patching techniques. This recovers the u-invariant of function fields of non-dyadic p-adic curves ([17]). Leep ([13]), using results of Heath-Brown ([9]), proved that the u-invariant of function fields of all p-adic curves (including dyadic curves) is 8. An alternate proof for function fields of dyadic curves is given in ([18]). In fact more generally we proved that if $\text{char}(K) = 0$, $\text{char}(\kappa) = 2$ and κ is perfect, then $u(F) \leq 8$. If $[\kappa : \kappa^2]$ is infinite it is easy to construct anisotropic quadratic forms over K and hence over F of arbitrarily large dimension. The question remained open whether the u-invariant of F is finite if $\text{char}(\kappa) = 2$ and $[\kappa : \kappa^2]$ is finite. The aim of this article is to give an affirmative answer to this question. More precisely we prove the following (4.3)

Theorem 1. Let K be complete discretely valued field with residue field κ. Suppose that $\text{char}(K) = 0$, $\text{char}(\kappa) = 2$ and $[\kappa : \kappa^2]$ is finite. Then there exists an integer M which depends only on $[\kappa : \kappa^2]$ such that for any finite extension F of $K(t)$, $u(F) \leq M$.

It was conjectured in ([18]) that $u(F)$ is at most $8[\kappa : \kappa^2]$. The bound we give for $u(F)$ is not effective and far from the conjectural bound.

Let L be a field of characteristic not equal to 2 with $H^M(L, \mu_2^{\otimes M}) = 0$ for some $M \geq 1$. Suppose that there exists an integer N such that for all finite extensions E of L and for any $\alpha \in H^n(E, \mu_2^{\otimes n})$, $n \geq 2$, there exists an extension E' of E of degree at most N such that $\alpha \otimes_E E' = 0$. Then a theorem of Krashen (1.5) asserts that the u-invariant of L is finite. Our aim is to prove that if K is a complete discretely valued field with residue field κ of characteristic 2 and $[\kappa : \kappa^2]$ finite and F a function field in one variable over K, then such an integer N exists for F, thereby proving the finiteness of the u-invariant of F.

We introduce the notion of uniform boundedness for the ℓ-torsion of the Brauer group $\text{Br}(L)$ of L, where L is any field. We say that the Brauer group of L is uniformly ℓ-bounded if there exists an integer N such that for any finite extension E of L and for any set of finitely many elements $\alpha_1, \ldots, \alpha_n \in \ell \text{Br}(E)$, there is a
finite extension E' of E of degree at most N such that $\alpha_i \otimes E E' = 0$ for $1 \leq i \leq n$. Using the result of Krashen (1.5), we show that if L is a field of characteristic not equal to 2 with $H^M(L, \mu_2^\otimes M) = 0$ for some $M \geq 1$ and with the Brauer group of L is 2-uniformly bounded, then $u(L)$ is finite (1.8). It looks plausible that there are fields L of finite u-invariant with the Brauer group of L not uniformly 2-bounded.

The main result of the paper is to prove the uniform p-boundedness for the Brauer group of any function field F in one variable over a complete discretely valued field K with residue field κ, where $\text{char}(\kappa) = p$, $\text{char}(F) \neq p$ and $[\kappa : \kappa^p]$ is finite. We also prove the uniform ℓ-boundedness for the Brauer group of any function field in one variable over a complete discretely valued field with residue field κ and $\ell \neq \text{char}(\kappa)$ under the assumption that the Brauer groups of κ and $\kappa(t)$ are uniformly ℓ-bounded. This result for function fields of p-adic curves ($p \neq \ell$) is due to Saltman ([19]). To prove our theorems we use the patching techniques of Harbater-Hartmann-Krashen and results of ([18]).

Acknowledgements. We thank D. Harbater for his very useful comments on the text. The authors are partially supported by National Science Foundation grants DMS-1401319 and DMS-1301785 respectively.

1. Galois cohomology, Symbol length, u-invariant and Uniform Bound

In this section we recall the recent results of Krashen and Saltman connecting the symbol length and effective index in Galois cohomology with the u-invariant of a field.

Let K be a field and ℓ a prime not equal to the characteristic of K. Let μ_ℓ denote the Galois module of ℓth roots of unity and $H^n(K, \mu_\ell^\otimes m)$ denote the nth Galois cohomology group with values in $\mu_\ell^\otimes m$. We have $H^1(K, \mu_\ell) \simeq K^*/K^{*\ell}$. For $a \in K^*$, let $(a) \in H^1(K, \mu_\ell)$ denote the image of $aK^{*\ell}$. Let $a_1, \ldots, a_n \in K^*$. The cup product $(a_1) \cdot (a_2) \cdots (a_n) \in H^n(K, \mu_\ell^\otimes n)$ is called a symbol in $H^n(K, \mu_\ell^\otimes n)$. A theorem of Voevodsky ([22]) asserts that every element in $H^n(K, \mu_\ell^\otimes n)$ is a sum of symbols.

Let $\alpha \in H^n(K, \mu_\ell^\otimes n)$. The symbol length of α, denoted by $\lambda(\alpha)$, is defined as the smallest m such that α is a sum of m symbols in $H^n(K, \mu_\ell^\otimes m)$. For any $\alpha \in H^n(K, \mu_\ell^\otimes m)$, the effective index of α, denoted by $\text{eind}(\alpha)$, is defined to be the minimum of the degrees of finite field extensions E of K with $\alpha_E = 0$, where α_E is the image of α in $H^n(E, \mu_\ell^\otimes m)$. Since $H^2(K, \mu_\ell) \simeq \ell \text{Br}(K)$, for $\alpha \in \ell \text{Br}(K)$, $\text{eind}(\alpha)$ is equal to the index of a central simple algebra A over K representing α. The following lemma asserts that this definition of effective index coincides with the definition in ([12]).

Lemma 1.1. Let K be a field and ℓ a prime not equal to $\text{char}(K)$. Let $\alpha \in H^n(K, \mu_\ell^\otimes m)$. Suppose that exists an extension L of K of degree at most N with $\alpha \otimes_K L = 0$. Then there exists a separable field extension E of K of degree at most N such that $\alpha \otimes_K E = 0$.

Proof. Let L be an extension of K of degree at most N with $\alpha \otimes_K L = 0$. Let E be the separable closure of K in L. Let p be the characteristic of K. Suppose $p > 0$. Then L/E is of degree p^r for some $r \geq 0$. Since $\ell \neq p$, the restriction map $H^n(E, \mu_\ell^\otimes m) \to H^n(L, \mu_\ell^\otimes m)$ is injective ([21, Cor. on p.12]). Hence $\alpha \otimes_K E = 0$. \square

We now recall a theorem of Krashen ([12, 4.2], cf. [20]).
Theorem 1.2. Let K be a field and ℓ a prime not equal to the characteristic of K. Let $n \geq 1$. Suppose that there exists an integer N such that for every finite extension L of K and for every element $\beta \in H^d(L, \mu_2^{\otimes d})$, $1 \leq d \leq n-1$, $\mathrm{eind}(\beta) \leq N$. Then for any $\alpha \in H^n(K, \mu_2^{\otimes n})$, $\lambda(\alpha)$ is bounded in term of $\mathrm{eind}(\alpha)$, N and n.

The following is a consequence of the above theorem.

Corollary 1.3. Let K be a field and ℓ a prime not equal to the characteristic of K. Let $n \geq 1$. Suppose that there exists an integer N such that for all finite extensions L of K and for all $\alpha \in H^d(L, \mu_2^{\otimes d})$, $1 \leq d \leq n$, $\mathrm{eind}(\alpha) \leq N$. Then there exists an integer N' which depends only on N and n such that $\lambda(\alpha) \leq N'$ for all finite extensions L of K and $\alpha \in H^n(K, \mu_2^{\otimes n})$.

Let K be a field of characteristic not equal to 2. The u-invariant of K is defined to be the supremum of dimensions of anisotropic quadratic forms over K. The following theorem is a consequence of a theorem of Orlov, Vishik, and Voevodsky ([15]) on the Milnor conjecture (cf. [10], [16]).

Theorem 1.4. Let K be a field of characteristic not equal to 2. Suppose that there exist integers $M \geq 1$ and N such that $H^M(K, \mu_2) = 0$ and $\lambda(\alpha) \leq N$ for all $\alpha \in H^d(K, \mu_2^{\otimes d})$, $1 \leq d < M$. Then the u-invariant is bounded by a function of M and N.

The following follows from (1.4) and (1.3) (cf. [12, 5.5]).

Corollary 1.5. Let K be a field of characteristic not equal to 2. Suppose that there exist integers $N \geq 1$ and $M \geq 1$ such that for all finite extensions L of K, $H^M(L, \mu_2) = 0$ and for all $n \geq 1$ and $\alpha \in H^n(L, \mu_2)$, $\mathrm{eind}(\alpha) \leq N$. Then there exists an integer N', which depends only on N and M, such that $u(K) \leq N'$.

Let K be a field and ℓ a prime not equal to the characteristic of K. We say that K is (n, ℓ)-uniformly bounded if there exists an integer N such that for any finite extension L of K and $\alpha_1, \cdots, \alpha_m \in H^n(L, \mu_2^{\otimes n})$ there is an extension E of L with $[E : L] \leq N$ and $\alpha_i \otimes \ell, E = 0$ for $1 \leq i \leq m$. Such an N is called an (n, ℓ)-uniform bound for K. We note that if N is an (n, ℓ)-uniform bound for K, then N is also an (n, ℓ)-uniform bound for any finite extension L of K.

In view of a theorem of Voevodsky ([22]) on the Bloch-Kato conjecture, every element in $H^n(K, \mu_2^{\otimes n})$ is a sum of symbols. In particular, N is an (n, ℓ)-uniform bound of K if and only if for given symbols $\alpha_1, \cdots, \alpha_m \in H^n(K, \mu_2^{\otimes n})$ there is an extension L of K with $[L : K] \leq N$ and $\alpha_i \otimes \ell = 0$ for $1 \leq i \leq m$.

Lemma 1.6. Let K be a field and ℓ a prime not equal to the characteristic of K. If N is an (n, ℓ)-uniform bound for K, then N is also a (d, ℓ)-uniform bound for K for all $d \geq n$.

Proof. Suppose N is an (n, ℓ)-uniform bound for K. It is enough to prove the lemma for $d = n + 1$. Let L be a finite extension of K and $\alpha_1, \cdots, \alpha_m \in H^{n+1}(L, \mu_2^{\otimes (n+1)})$ be symbols. Then $\alpha_i = \beta_i \cdot (a_i)$ for some symbols $\beta_i \in H^n(L, \mu_2^{\otimes n})$ and $a_i \in L^*$, $1 \leq i \leq m$. Since N is an (n, ℓ)-uniform bound for K, there exists a field extension E of L with $[E : L] \leq N$ and $\beta\otimes \ell = 0$ for $1 \leq i \leq m$. Then clearly $\alpha_i \otimes \ell = 0$ for $1 \leq i \leq m$. Thus N is also an $(n + 1, \ell)$-uniform bound for K. □

Corollary 1.7. Let K be a field and ℓ a prime not equal to the characteristic of K. Suppose that N is a $(2, \ell)$-uniform bound for K. Then for every $n \geq 2$, there
exists an integer N_n, which depends only on N and n such that $\lambda(\alpha) \leq N_n$ for all $\alpha \in H^n(K, \mu_\ell^{\otimes n})$.

Proof. Since N is $(2, \ell)$-uniform bound for K, by (1.6), N is an (n, ℓ)-uniform bound for K for all $n \geq 2$. Let $\alpha \in H^n(K, \mu_\ell^{\otimes n})$. Then, by (1.2), $\lambda(\alpha)$ is bounded in terms of $\text{eind}(\alpha)$, N and n. Since $\text{eind}(\alpha) \leq N$, $\lambda(\alpha)$ is bounded in terms of N and n. \qed

Corollary 1.8. Let K be a field of characteristic not equal to 2. Suppose that there exists an integer M such that for all finite extensions L of K, $H^M(L, \mu_2) = 0$ and N is a $(2,2)$-uniform bound for K. Then there exists N' which depends only on N and M such that for any finite extension L of K, $u(L) \leq N'$.

Proof. Since the conditions on N are also satisfied by any finite extension of K, it is enough to find an N' which depends only on N and M such that $u(K) \leq N'$.

Since N is a $(2,2)$-uniform bound for K, by (1.7) there exist integers N_n for $1 \leq n < M$, which depends only on N and n such that for all $\alpha \in H^n(K, \mu_\ell^{\otimes n})$, $\lambda(\alpha) \leq N$. Let N' be the maximum of N_n for $1 \leq n < M$. Thus the corollary follows from (1.4). \qed

Let R be a discrete valuation ring with field of fractions K and residue field κ. Let ℓ be a prime not equal to $\text{char}(\kappa)$. Then there is a residue homomorphism $\partial : H^n(K, \mu_\ell^{\otimes m}) \to H^{n-1}(\kappa, \mu_\ell^{\otimes (m-1)})$ with kernel $H^n_{\text{et}}(R, \mu_\ell^{\otimes m})$.

Let A be an integral domain with field of fractions K. Let ℓ be a prime which is a unit in A. We have the natural map $H^n_{\text{et}}(A, \mu_\ell^{\otimes m}) \to H^n(K, \mu_\ell^{\otimes m})$. An element α of $H^n(K, \mu_\ell^{\otimes m})$ is said to be unramified on A if α is in the image of ι. Suppose that A is a regular ring. For each height one prime ideal P of A, we have the residue homomorphism $\partial_P : H^n(K, \mu_\ell^{\otimes m}) \to H^{n-1}(\kappa(P), \mu_\ell^{\otimes (m-1)})$, where $\kappa(P)$ is the residue field at P. We have the following

Theorem 1.9. ([5, 7.4]) Let A be a regular two dimensional integral domain with field of fractions K and ℓ a prime which is a unit in A. The sequence

$$0 \to H^2_{\text{et}}(A, \mu_\ell) \to H^2(K, \mu_\ell) \to \oplus_{P \in \text{Spec}(A)^{(1)}} H^1(\kappa(P), \mathbb{Z}/\ell\mathbb{Z})$$

is exact, where $\text{Spec}(A)^{(1)}$ is the set of height one prime ideals of A.

We now recall a few notations from ([7]). Let R be a complete discrete valuation ring with field of fractions K and residue field κ. Let F be the function field of a curve over K. Let \mathcal{X} be a regular proper model of F over R and X its reduced special fiber. For any codimension one point η of \mathcal{X}, let F_η be the completion of F at the discrete valuation of F given by η and $\kappa(\eta)$ the residue field at η. For a closed point P of \mathcal{X}, let F_P be the field of fractions of the completion of the local ring at P and $\kappa(P)$ the residue field at P. Let U be an open subset of X. Let R_U be the ring of all those functions in F which are regular on U. Then $R \subset R_U$. Let t be a parameter in R. Let \hat{R}_U be the completion of R_U at the ideal (t). Let \hat{F}_U be the field of fractions of \hat{R}_U.

Let A be a regular integral domain with field of fractions F. For a maximal ideal m of A, let \hat{A}_m denote the completion of the local ring A_m and F_m the field of fractions of \hat{A}_m.
2. Uniform bound - bad characteristic case

Let K be a complete discretely valued field with residue field κ. Let $p = \text{char}(\kappa)$. In this section we show that there is a $(2, p)$-uniform bound for $K(t)$ which depends only on $[\kappa : \kappa^p]$.

First we recall the following two results from ([18]).

Theorem 2.1. ([18, 2.4]) Let R be a complete discrete valuation ring with field of fractions K and residue field κ. Suppose that $\text{char}(K) = 0$, $\text{char}(\kappa) = p > 0$ and $[\kappa : \kappa^p] = p^d$. Let $\pi \in R$ be a parameter and $u_1, \ldots, u_d \in R^*$ units such that $\kappa = \kappa^p(\overline{u}_1, \ldots, \overline{u}_d)$, where for any $u \in R$, \overline{u} denotes the image of u in κ. Suppose that K contains a primitive p^dth root of unity. Then any $\alpha \in H^2(K, \mu_p)$ splits over $K(\sqrt[1/p]{\pi}, \sqrt[1/p]{u_1}, \ldots, \sqrt[1/p]{u_{d-1}}, \sqrt[1/p]{u_d})$. In particular if $d > 0$, p^{2d} is a $(2, p)$-uniform bound for K and if $d = 0$, p is a $(2, p)$-uniform bound for K.

Proposition 2.2. ([18, 3.5]) Let A be a complete regular local ring of dimension 2 with field of fractions F and residue field κ. Suppose that $\text{char}(F) = 0$, $\text{char}(\kappa) = p > 0$ and $[\kappa : \kappa^p] = p^d$. Let $\pi, \delta \in A$ and $u_1, \ldots, u_d \in A^*$ such that the maximal ideal m of A is generated by π and δ, and $\kappa = \kappa^p(\overline{u}_1, \ldots, \overline{u}_d)$, where for any $u \in A$, \overline{u} denotes the image of u in κ. Suppose that F contains a primitive p^dth root of unity. Then any $\alpha \in H^2(F, \mu_p)$ which is unramified on A except possibly at (π) and (δ) splits over $F(\sqrt[1/p]{\pi}, \sqrt[1/p]{\delta}, \sqrt[1/p]{\overline{u}_1}, \ldots, \sqrt[1/p]{\overline{u}_d})$.

Lemma 2.3. Let \mathcal{X} be a regular integral two dimensional scheme and F its function field. Suppose C and E are regular curves on \mathcal{X} with normal crossings. Let \mathcal{P} be a set of closed points of \mathcal{X} with field of fractions F. Then there exist $f, g \in F^*$ such that the maximal ideal at P is generated by f and g for each $P \in \mathcal{P}$ and f (resp. g) defines C (resp. E) at each $P \in \mathcal{P} \cap C$ (resp. $P \in \mathcal{P} \cap E$).

Proof. Let R be the semi-local ring at all $P \in \mathcal{P}$. Since R is a unique factorisation domain, there exist $f_1, g_1 \in R$ such that $\text{div}_{\text{Spec}(R)}(f_1) = C \mid_{\text{Spec}(R)}$ and $\text{div}_{\text{Spec}(R)}(g_1) = E \mid_{\text{Spec}(R)}$. For each $P \in \mathcal{P}$, let m_P be the maximal ideal of the local ring R_P at P. Then for each $P \in C \cap E \cap \mathcal{P}$, $m_P = (f_1, g_1)$. Let $P \in \mathcal{P}$. Suppose $P \not\in C$. Then $P \in E$. Since E is regular on \mathcal{X}, by the choice of g_1, there exists $\theta_P \in m_P$ such that $m_P = (\theta_P, g_1)$. By the Chinese remainder theorem, there exists $\pi_P \in m_P$ such that $\pi_P \not\in m_Q$ for all $Q \in \mathcal{P}, Q \neq P$ and $\pi_P = \theta_P$ module m_Q^2. Then $m_P = (\pi_P, g_1)$. Similarly for each $P \not\in E$, choose $\delta_P \in m_P$ such that $m_P = (f_1, \delta_P)$ and $\delta_P \not\in m_Q$ for all $Q \in \mathcal{P}, Q \neq P$. Let

$$f_2 = \prod_{P \in \mathcal{P} \cap C} \pi_P, \quad f = f_1 f_2$$

and

$$g_2 = \prod_{P \in \mathcal{P} \cap E} \delta_P, \quad g = g_1 g_2.$$

Then f_2 and g_2 are units at all $P \in C \cap E$. We claim that f and g have the required properties. Let $P \in \mathcal{P}$. Suppose $P \in C \cap E$. Then by the choices f_2 and g_2, they are units at P and $m_P = (f_1, g_1)$. In particular $m_P = (f, g)$ and f, g define C and E respectively at P. Suppose that $P \not\in C$. Then f_1 and g_2 are units at P and $f_2 = \pi_P u_P$ for some unit u_P at P. Since $m_P = (\pi_P, g_1)$, we have $m_P = (f, g)$. Since g_1 defines E at P and g_2 is a unit at P, g defines E at P. Similarly if $P \not\in E$, then $m_P = (f, g)$ and f defines C at P. \qed
Theorem 2.4. Let K be a complete discretely valued field with residue field κ. Suppose that $\text{char}(K) = 0$ and $\text{char}(\kappa) = p > 0$ and $[\kappa : \kappa^p] = p^d$. Assume that K contains a primitive p^dth root of unity. Then p^{4d+4} is a $(2,p)$-uniform bound for $K(t)$.

Proof. Let F be a finite extension of $K(t)$. Let $\alpha_1, \cdots, \alpha_m \in H^2(F, \mu_p)$. Let \mathcal{X} be a regular proper model of F over the ring of integers R of K such that the support of $\text{ram}(\alpha_i)$ for all i and the special fiber is contained in $C \cup E$, where C and E are regular curves on \mathcal{X} having only normal crossings. Let η be the generic point of an irreducible component X_η of the special fiber of \mathcal{X}. Then $\kappa(\eta)$ is a function field in one variable over κ. Since $[\kappa : \kappa^p] = p^d$, $\kappa(\eta) : \kappa(\eta)^p = p^{d+1}$ ([3, A.V.135, Corollary 3]). Let π_η be a parameter at η and $u_{\eta,1}, \cdots, u_{\eta,d+1} \in F^*$ be lifts of a p-basis of $\kappa(\eta)$. Then, by (2.1), $\alpha_i \otimes F_\eta(\sqrt[p]{u_{\eta,1}}, \cdots, \sqrt[p]{u_{\eta,d}}, \sqrt[p]{u_{\eta,d+1}}, \sqrt[p]{\pi_\eta}) = 0$ for all i.

Let $f \in F^*$ be chosen such that $\nu_\eta(f) = 1$ for all η. By the Chinese remainder theorem, choose $u_1, \cdots, u_{d+1} \in F^*$ units at each η such that $u_i = u_{\eta,j} \in \kappa(\eta)$. Then $\alpha_i \otimes F_\eta(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) = 0$ for all i. By ([8, 5.8], [11, 1.17]), there exists a non-empty open set U_η of the component X_η of the special fiber, such that $\alpha_i \otimes F_{U_\eta}(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) = 0$ for all i.

Let \mathcal{P} be the finite set of closed points of \mathcal{X} which are not in U_η for any η. Let A be the semi-local ring at the points of \mathcal{P}. For $P \in \mathcal{P}$, let A_P be the local ring at P. Since the ramifications of α_i for all i are in normal crossings, for each $P \in \mathcal{P}$, the maximal ideal m_P at P is (π_P, δ_P) for some π_P and δ_P such that α_i is unramified on A_P except possibly at (π_P) and (δ_P). Since the residue field $\kappa(P)$ at P is a finite extension of κ and $[\kappa : \kappa^p] = p^d$, $\kappa(P) : \kappa(P)^p = p^d$ ([3, A.V.135, Corollary 3]). Let $v_{P,1}, \cdots, v_{P,d} \in A^*_P$ be lifts of a p-basis of $\kappa(P)$. By the Chinese remainder theorem, choose $h_1, \cdots, h_d \in A^*$ such that $h_i = v_{P,i}$ modulo the maximal ideal of P for all $P \in \mathcal{P}$ and $1 \leq i \leq d$. By (2.3), there exist $g_1, g_2 \in F^*$ such that for any point $P \in \mathcal{P}$, we have $m_P = (g_1, g_2)$ and g_1 defines C at all $P \in \mathcal{P} \cap C$, and g_2 defines E at all $P \in \mathcal{P} \cap E$. In particular, each α_i is unramified on A_P except possibly at (g_1) and (g_2).

Let $L = F(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}} \subseteq \mathcal{Y} \to \mathcal{X}$ be a proper birational morphism such that \mathcal{Y} is regular. Then \mathcal{Y} is a regular proper model of L. Let Y be the special fiber of \mathcal{Y} and $\phi : Y \to X$ be the induced morphism. Let y be a point of Y. Suppose $\phi(y) = \eta \in X$ is the generic point of an irreducible component of X. Then by the choice of L, $F_\eta(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) \subseteq L_Y$. Since $\alpha_i \otimes F_{\eta}(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) = 0$ for all i, $\alpha_i \otimes L_y = 0$ for all i. Suppose $\phi(y) = P$ is a closed point of X. Let $P \in U_\eta$ for some η. Then $F_{U_\eta} \subset F_P$. By the choice of L, $F_{U_\eta}(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) \subset F_P(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) \subseteq L_y$. Since $\alpha_i \otimes F_{U_\eta}(\sqrt[p]{u_1}, \sqrt[p]{u_2}, \cdots, \sqrt[p]{u_{d+1}}) = 0$ for all i, $\alpha_i \otimes L_y = 0$ for all i. Suppose $P \notin U_\eta$ for all η. Then $P \in \mathcal{P}$. Since $F_P(\sqrt[p]{h_1}, \cdots, \sqrt[p]{h_d}, \sqrt[p]{g_1}, \sqrt[p]{g_2}) \subseteq L_y$ and $\alpha_i \otimes F_P(\sqrt[p]{h_1}, \cdots, \sqrt[p]{h_d}, \sqrt[p]{g_1}, \sqrt[p]{g_2}) = 0$ for all i, $\alpha_i \otimes L_y = 0$ for all i.

In particular, by ([8, 9.12]), $\alpha_i \otimes L = 0$ for all i. Since $[L : F] \leq p^{4d+4}$, the theorem follows. \qed

Corollary 2.5. Let K be a complete discretely valued field with residue field κ. Suppose that $\text{char}(K) = 0$ and $\text{char}(\kappa) = p > 0$ and $[\kappa : \kappa^p] = p^d$. Let ζ be a primitive p^dth root of unity. Then $[K(\zeta) : K]p^{4d+4}$ is a $(2,p)$-uniform bound for $K(t)$.
Proof. Let $K' = K(\zeta)$. Then K' is a complete discretely valued field with residue field κ. Let F be a finite extension of $K(t)$. Let $\alpha_1, \ldots, \alpha_m \in H^2(F, \mu_{p^\infty})$. Since $F' = F(\zeta)$ is also a function field over K', by (2.4), there exists an extension L of F' of degree at most p^{4d+4} such that $\alpha_i \otimes L = 0$ for all i. Since $[L : F] = [L : F'][F' : F]$, the corollary follows.

The above corollary and (1.6) give the following

Corollary 2.6. Let K be a complete discretely valued field with residue field κ. Suppose that $\text{char}(K) = 0$ and $\text{char}(\kappa) = p > 0$ and $[\kappa : \kappa^p] = p^d$. Let ζ be a primitive p^dth root of unity. Then $[K(\zeta) : K] p^{4d+4}$ is an (n, p)-uniform bound for $K(t)$ for all $n \geq 2$.

3. Uniform bound - good characteristic case

Let F be the function field of a p-adic curve. In ([19]), Saltman proved that if ℓ is a prime not equal to p and $\alpha_1, \ldots, \alpha_m \in H^2(F, \mu_{\ell})$, then there exists an extension L of F such that $[L : F] \leq \ell^2$ and $\alpha_i \otimes L = 0$ for all i, i.e., F is $(2, \ell)$-uniformly bounded. Let K be a complete discretely valued field with residue field κ. Let ℓ be a prime not equal to $\text{char}(\kappa)$. In this section we show that $K(t)$ is $(2, \ell)$-uniformly bounded under some conditions on κ.

Theorem 3.1. Let K be a complete discretely valued field with residue field κ. Let ℓ be a prime not equal to $\text{char}(\kappa)$ and $n \geq 1$. If N is an (n, ℓ)-uniform bound for κ, then N is an (n, ℓ)-uniform bound for K.

Proof. Let L be a finite extension of K. Then L is a complete discretely valued field with residue κ'. Let R be the valuation ring of L and $\pi \in R$ be a parameter. Let $\alpha_1, \ldots, \alpha_m \in H^n(L, \mu_{\ell^m})$. Let S be the integral closure of R in $L(\sqrt[p]{\pi})$. Then S is also a complete discrete valuation ring with residue field κ'. Since S/R is ramified, $\alpha_i \otimes L(\sqrt[p]{\pi})$ is unramified at S for each i. Hence there exists $\beta_i \in H^n(S, \mu_{\ell^m})$ such that $\beta_i \otimes S \pi^{\ell^m} = \alpha_i$. Since N is an (n, ℓ)-uniform bound for κ, there exists an extension L_0 of κ' of degree at most N such that $\beta_i \otimes L_0 = 0$ for all i. Let E be the extension of L of degree equal to $[L_0 : \kappa']$ with residue field L_0. Let T be the integral closure of R in $E(\sqrt[p]{\pi})$. Then T is a complete discrete valued ring with residue field L_0 and $S \subset T$. Since $\beta_i \otimes L_0 = 0$, $\beta_i \otimes S T = 0$ for all i. In particular $\alpha_i \otimes E(\sqrt[p]{\pi}) = 0$ for all i. Since the degree of E over L is equal to the degree of L_0 over κ' and $[L_0 : \kappa'] \leq N$, we have $[E(\sqrt[p]{\pi}) : L] \leq \ell N$. \hfill \square

Lemma 3.2. Let A be a regular local ring with residue field κ and maximal ideal $m = (\pi, \delta)$. Let F be the field of fractions of A, ℓ a prime not equal to $\text{char}(\kappa)$. Let B (resp. B') be the integral closure of A in $F(\sqrt[p]{\pi}, \sqrt{\delta})$ (resp. $F(\sqrt[p]{\pi})$). Let $\alpha \in H^2(F, \mu_{\ell^m})$. If α is unramified on A except possibly at (π) and (δ) (resp. except possibly at (π)), then $\alpha \otimes F(\sqrt[p]{\pi}, \sqrt{\delta})$ is unramified on B (resp. $\alpha \otimes F(\sqrt[p]{\pi})$ is unramified on B').

Proof. By ([18, 3.3]), B is a regular local ring of dimension 2 with residue field κ. Let P be a height one prime ideal of B and $Q = P \cap A$. Then Q is a height one prime ideal of A. If $Q \neq (\pi)$ and (δ), then α is unramified at Q and hence $\alpha \otimes F(\sqrt[p]{\pi}, \sqrt{\delta})$ is unramified at P. Suppose $Q = (\pi)$ or (δ). Then Q is ramified in B and hence $\alpha \otimes F(\sqrt[p]{\pi}, \sqrt{\delta})$ is unramified at P. Since B is a regular local ring of dimension 2 and $\alpha \otimes F(\sqrt[p]{\pi}, \sqrt{\delta})$ is unramified at every height one prime ideal of B, $\alpha \otimes F(\sqrt[p]{\pi}, \sqrt{\delta})$ is unramified on B (cf. 1.9). The other case follows similarly. \hfill \square
Theorem 3.3. Let R be a complete discrete valuation ring with field of fractions K and residue field κ. Let F be the function field of a curve over K. Let ℓ be a prime not equal to $\text{char}(\kappa)$ and $\alpha_1, \cdots, \alpha_r \in H^2(K, \mu_\ell^\otimes)$. Then there exist $f, g, h \in F^*$ such that each $\alpha_i \otimes F(\sqrt[\ell]{f}, \sqrt[\ell]{g}, \sqrt[\ell]{h})$ is unramified at all codimension one points of any regular proper model of $F(\sqrt[\ell]{f}, \sqrt[\ell]{g}, \sqrt[\ell]{h})$.

Proof. Let \mathcal{X} be a regular proper model of F over R such that the union of the support of ramification locus of α_i, for $1 \leq i \leq r$, is contained in the union of regular curves C and E with $C \cup E$ having only normal crossings. Let $f \in F^*$ be such that

$$\text{div}_{\mathcal{X}}(f) = C + E + J$$

for some divisor J on \mathcal{X} which does not contain any irreducible component of $C \cup E$ and does not pass through any point of $C \cap E$. Let $g \in F^*$ be such that

$$\text{div}_{\mathcal{X}}(g) = C + G$$

for some divisor G on \mathcal{X} which does not contain any irreducible component of $C \cup E \cup J$ and does not pass through any point of $C \cap E$, $C \cap J$ and $E \cap J$. Let $h \in F^*$ be such that

$$\text{div}_{\mathcal{X}}(h) = E + H$$

for some divisor H on \mathcal{X} which does not contain any irreducible component of $C \cup E \cup J \cup G$ and does not pass through any point of $C \cap E$, $C \cap J$, $C \cap G$, $E \cap J$, $E \cap G$ and $J \cap G$.

Let $L = F(\sqrt[\ell]{f}, \sqrt[\ell]{g}, \sqrt[\ell]{h})$ and \mathcal{Y} be a regular proper model of L over R. We claim that $\alpha_i \otimes_F L$ is unramified on \mathcal{Y}. Let $y \in \mathcal{Y}$ be a codimension one point of \mathcal{Y}. Then y lies over a point x of \mathcal{X}. If x is not on C or E, then each α_i is unramified at x and hence $\alpha_i \otimes_F L$ is unramified at y. Assume that $x \in C \cup E$.

Suppose that x is a codimension one point of \mathcal{X}. Since x is on C or E, by the choice of f, f is a parameter at x and hence L/K is ramified at x. In particular $\alpha_i \otimes_F L$ is unramified at y.

Suppose that x is a closed point of \mathcal{X}. Suppose $x \in C$ and $x \notin E$. Let A_x be the local ring of \mathcal{X} at x and S_y be the local ring of \mathcal{Y} at y. Suppose $x \notin J$. Then the maximal ideal m_x at x is (f, δ_x) for some $\delta_x \in m_x$ and each α_i is unramified on the local ring at x except possibly at (f). Thus, by (3.2), each $\alpha_i \otimes_F F(\sqrt[\ell]{f})$ is unramified at the integral closure of A_x in $F[\sqrt[\ell]{f}]$. Since the integral closure of A_x in $F[\sqrt[\ell]{f}]$ is contained in S_y, each $\alpha_i \otimes_F L$ is unramified at S_y. Suppose $x \in J$. If $x \notin G$, then as above each $\alpha_i \otimes_F L$ is unramified at S_y. If $x \in J \cap G$, then by the choice h, $x \notin H$ and hence as above, each $\alpha_i \otimes_F L$ is unramified at S_y. Similarly if $x \in E$ and $x \notin C$, then each $\alpha_i \otimes_F L$ is unramified at S_y.

Suppose $x \in C \cap E$. Then $x \notin G$ and $x \notin H$. In particular, $m_x = (g, h)$ and each α_i is unramified on A_x except possibly at (g) and (h). As above each $\alpha_i \otimes_F L$ is unramified at S_y. \hfill \Box

Lemma 3.4. Let A be a semi-local regular domain with field of fractions F. For each maximal ideal m of A, let $s(m)$ be a separable finite extension of the residue field $\kappa(m)$ at m of degree N_m. Let N be a common multiple of N_m, m varying over all maximal ideals of A. Then there exists an extension E of F of degree at most N such that for each maximal ideal m of A and for each maximal ideal m' of the integral closure B_m of A_m in E, B_m/m' contains a field isomorphic to $s(m)$.
Proof. Since $s(m)$ is a finite separable extension of $\kappa(m)$, there exists $\theta_m \in s(m)$ such that $s(m) = \kappa(m)(\theta_m)$. Let $f_m(X) \in \kappa(m)[X]$ be the minimal polynomial of θ_m over $\kappa(m)$. Then the degree of $f_m(X)$ is N_m. Let $f(X) \in A[X]$ be a monic polynomial of degree N such that $f(X) = f_m(X)^{[\deg(f_m)]}$ modulo m for each maximal ideal m of A. Let $g(X)$ be any monic irreducible factor of $f(X)$ over A. Let $E = F[X]/(g(X))$. We claim that E has the required property.

Let m be a maximal ideal of A. By the choice of $f(X)$ and $g(X)$, we have $g(X) = f_m(X)^{r_m}$ modulo m for some $r_m \geq 1$. Let B_m be the integral closure of A_m in E. Since $g(X)$ is monic, $A_m[X]/(g(X))$ is isomorphic to a subring of B_m. Let $g_m(X) \in A_m[X]$ be a monic polynomial with $g_m(X) = f_m(X)$ modulo m. Since $g(X) = f_m(X)^{r_m} = g_m(X)^{r_m}$ modulo m, the ideal \bar{m} of $A_m[X]/(g(X))$ generated by m and $g_m(X)$ is a maximal ideal with $(A_m[X]/(g(X)))/\bar{m} \simeq s(m)$. Since B_m is integral over a subring isomorphic to $A_m[X]/(g(X))$, for every maximal ideal m' of B_m, B_m/m' contains a subfield isomorphic to $(A_m[X]/(g(X)))/\bar{m} \simeq s(m)$.

Corollary 3.5. Let A be a semi-local regular domain with field of fractions F. Let ℓ be a prime. Suppose that ℓ is a unit in A. Let $\beta \in H^2_{\et}(A, \mu_\ell)$. Suppose that for every maximal ideal m of A, there exists a finite separable extension $s(m)$ of $\kappa(m)$ of degree N_m such that $\beta \otimes_A s(m) = 0$. Let N be a common multiple of N_m, where m varies over maximal ideals of A. Let E be the field constructed in (3.4). Then for any maximal ideal m of A, $\beta \otimes_A (E \otimes_F F_m) = 0$.

Proof. Let B be the integral closure of A in E. Let m be a maximal ideal of A, and A_m the completion of A at m. Then, $B \otimes_A A_m$ is complete and by the choice of E, $B \otimes_A A_m$ modulo its radical is isomorphic to a product of fields with each of A be a semi-local regular domain with field of fractions F. Let ℓ be a prime not equal to $\text{char}(\kappa)$. Suppose that N_1 is a $(2, \ell)$-uniform bound for $\kappa(t)$ and N_2 is a $(2, \ell)$-uniform bound for κ. Then $\ell^3(N_1)(N_2)$ is a $(2, \ell)$-uniform bound for $K(t)$.

Theorem 3.6. Let K be complete discretely valued field with residue field κ. Let ℓ be a prime not equal to $\text{char}(\kappa)$. Suppose that N_1 is a $(2, \ell)$-uniform bound for $\kappa(t)$ and N_2 is a $(2, \ell)$-uniform bound for κ. Then $\ell^3(N_1)(N_2)$ is a $(2, \ell)$-uniform bound for $K(t)$.

Proof. Let F be a finite extension of $K(t)$. Let $\alpha_1, \ldots, \alpha_m \in H^2(F, \mu_\ell^\otimes2)$. Then, by (3.3), there exist $f, g, h \in F^*$ such that $\alpha_i \otimes F(\sqrt{f}, \sqrt{g}, \sqrt{h})$ is unramified at every codimension one point of any regular proper model of $F(\sqrt{f}, \sqrt{g}, \sqrt{h})$ over the valuation ring R of K. Let $L = F(\sqrt{f}, \sqrt{g}, \sqrt{h})$. Let \mathcal{Y} be a regular proper model of L over R and Y the reduced special fiber of \mathcal{Y}.

Let A be the semi-local ring at the generic points of all irreducible components of the special fiber Y of \mathcal{Y}. Then A is a semi-local regular ring with field of fractions L. Since each $\alpha_i \otimes_F L$ is unramified on \mathcal{Y}, there exists $\beta_i \in H^2_{\et}(A, \mu_\ell^\otimes2)$ such that $\beta_i \otimes_A L = \alpha_i$ for $1 \leq i \leq m$.

Let η be the generic point of an irreducible component Y_η of Y and m_η be the maximal ideal of A associated to η. Since $\kappa(\eta) = A/m_\eta$ is a finite extension of $\kappa(t)$ and N_1 is a $(2, \ell)$-uniform bound for $\kappa(t)$, there exists a finite extension $s(\eta)$ of $\kappa(\eta)$ of degree at most N_1 such that $\beta_i \otimes_A s(\eta) = 0$ for all i. By (1.1), we assume that $s(\eta)$ is separable over $\kappa(\eta)$. By (3.4), there exists a field extension L_1 of L of degree at most N_1 such that for every maximal ideal m'_η of the integral closure B_{m_η} of A_{m_η} in L, B_{m_η}/m'_η contains a subfield isomorphic to $s(\eta)$. Hence, by (3.5), $\alpha_i \otimes (L_1 \otimes L_\eta) = \beta_i \otimes (L_1 \otimes L_\eta) = 0$ for all i. By ([8, 5.8], [11, 1.17]), there
exists a non-empty open set U_η of the component Y_η of the special fiber Y, such that $\alpha_i \otimes L_1 \otimes L_{U_\eta} = 0$ for all i.

Let \mathcal{P} be the finite set of closed points of \mathcal{Y} which are not in U_η for any η. Let $A_{\mathcal{P}}$ be the regular semi-local ring at the closed points of \mathcal{P}. Since each α_i is unramified on \mathcal{Y}, there exists $\beta_i \in H^2_{\text{et}}(A_{\mathcal{P}}, \mu_\ell^2)$ such that $\beta_i \otimes L = \alpha_i \otimes L$ (cf. 1.9). Let $P \in \mathcal{P}$. Since the residue field $\kappa(P)$ at P is a finite extension of κ, by the assumption on κ, there exists an extension $s(P)$ of $\kappa(P)$ of degree at most N_2 such that $\beta_i \otimes s(P) = 0$ for all i. Once again, by (1.1), we assume that each $s(P)$ is a separable extension of $\kappa(P)$. Then, as above, by applying (3.4, 3.5) to A, $s(P)$ and β_i, there exists a field extension L_2 of L of degree at most N_2 such that $\alpha_i \otimes (L_2 \otimes L_P) = 0$ for all i and for all $P \in \mathcal{P}$.

Let $E = LL_1L_2$. Then arguing as in (2.4), using ([8, 9.12]), we conclude that $\alpha_i \otimes E = 0$ for all i. Since $[E : F] \leq [L : F][L_1 : L][L_2 : L] \leq \ell^3(N_1!(N_2!)$, the theorem follows.

Corollary 3.7. Let κ, ℓ, N_1 and N_2 be as in (3.6). Let ζ be a primitive ℓth root of unity. Then $[K(\zeta), K]^{\ell^3(N_1!(N_2!)}$ is a $(2, \ell)$-uniform bound of $K(t)$.

The above corollary and (1.6) gives the following

Corollary 3.8. Let κ, ℓ, N_1 and N_2 be as in (3.6). Let ζ be a primitive ℓth root of unity. Then $[K(\zeta), K]^{\ell^3(N_1!(N_2!)}$ is an (n, ℓ)-uniform bound of $K(t)$ for all $n \geq 2$.

4. Symbol length and u-invariant

Theorem 4.1. Let K be a complete discretely valued field with residue field κ. Let ℓ be a prime not equal to $\operatorname{char}(\kappa)$. Suppose that there exist integers N_1 and N_2 such that $\kappa(t)$ is $(2, \ell)$-uniformly bounded by N_1 and κ is $(2, \ell)$-uniformly bounded by N_2. Let $n \geq 2$. Then there exists an integer M, which depends only on N_1, N_2 and n such that for every finite extension F of $K(t)$ and for all $\alpha \in H^n(F, \mu_\ell^n)$, $\lambda(\alpha) \leq M_n$.

Proof. By (3.7), $K(t)$ is $(2, \ell)$-uniformly bounded by $N = (\ell - 1)^\ell(N_1!(N_2!$. Hence any finite extension F of $K(t)$ is also $(2, \ell)$-uniformly bounded by N. The theorem follows from (1.7). \qed

Theorem 4.2. Let K be a complete discretely valued field with residue field κ. Let $p = \operatorname{char}(\kappa)$. Suppose that $\operatorname{char}(K) = 0$, $p > 0$ and $[\kappa : \kappa^p] = p^d$. Then there exists an integer M, which depends only on d such that for any finite extension F of $K(t)$ and for all $\alpha \in H^n(F, \mu_p^{\otimes n})$, $n \geq 1$, $\lambda(\alpha) \leq M$.

Proof. By (2.5), $K(t)$ is $(2, p)$-uniformly bounded by $(p - 1)p^{4d + 4}$. Let F be a finite extension of $K(t)$. Then F is also $(2, p)$-uniformly bounded by $(p - 1)p^{4d + 4}$. Let $n \geq 1$. By (1.7), there exists an integer N_n, which depends only on d and n such that for all $\alpha \in H^n(F, \mu_p^{\otimes n})$, $\lambda(\alpha) \leq N_n$. Since the p-cohomological dimension of K is at most $d + 2$ ([6]) and F is a function field in one variable over K, the p-cohomological dimension of F is $d + 3$. Hence $H^n(F, \mu_p^{\otimes n}) = 0$ for all $n \geq d + 4$. Let N be the maximum of N_n for $2 \leq n \leq d + 3$. Then $\lambda(\alpha) \leq N$ for all $\alpha \in H^n(F, \mu_p^{\otimes n})$ and $n \geq 2$. \qed

Theorem 4.3. Let K be complete discretely valued field with residue field κ and F a function field of a curve over K. Suppose that $\operatorname{char}(K) = 0$, $\operatorname{char}(\kappa) = 2$ and $[\kappa : \kappa^2]$ is finite. Then there exists an integer M which depends only on $[\kappa : \kappa^2]$ such that for any finite extension F of $K(t)$, $u(F) \leq M$.

Proof. The theorem follows from (4.2) and (1.8).

We end with the following

Question 4.4. Let \(L \) be a field of characteristic not equal to 2 with \(u(L) \) finite. Is the Brauer group of \(L \) uniformly 2-bounded?

REFERENCES

[1] A. A. Albert, Structure of Algebras, Amer. Math. Soc. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, RI, 1961, revised printing.
[2] Asher Auel, Eric Brussel, Skip Garibaldi, Uzi Vishne, Open problems on central simple algebras, Transformation Groups 16 (2011), 219-264.
[3] N. Bourbaki, Algebra II, Springer-Verlag, New York, 1988.
[4] M. Cipolla, Remarks on the lifting of algebras over henselian pairs, Mathematische Zeitschrift, 152 (1977), 253–257.
[5] Auslander Maurice and Goldman Oscar, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367–409.
[6] O. Gabber and F. Orgogozo, Sur la p-dimension des corps, Invent. Math. 174 (2008), 47-80.
[7] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic forms and central simple algebras, Invent. Math. 178 (2009), 231-263.
[8] D. Harbater, J. Hartmann and D. Krashen, Local-global principles for torsors over arithmetic curves, arxiv:1108.3323v2
[9] Heath Brown, D.R., Zeros of systems of p-adic quadratic forms, Compos. Math. 146 (2010), 271-287.
[10] Kahn, B., On “horizontal” invariants attached to quadratic forms, Algebra and number theory, 21–33, Hindustan Book Agency, Delhi, 2005.
[11] M.-A. Knus, A.S. Merkurjev, M. Rost and J.-P. Tignol, The Book of Involution, A.M.S, Providence RI, 1998.
[12] Krashen, D., Period and index, symbol lengths, and generic splittings in galois cohomology, preprint 2013.
[13] Leep, D.B., The u-invariant of p-adic function fields, J. Reine Angew. Math., to appear
[14] Milne, J.S., Étale cohomology, Princeton Univ. Press, Princeton, N.J., 1980.
[15] Orlov, D., Vishik, A., Voevodsky, V., An exact sequence for \(K^*_M/2 \) with applications to quadratic forms, Ann. of Math. 165 (2007), no. 1, 1–13.
[16] Parimala, R. and Suresh, V., On the length of a quadratic form, Algebra and number theory, 147–157, Hindustan Book Agency, Delhi, 2005.
[17] Parimala, R. and Suresh, V., The u-invariant of the function fields of p-adic curves, Annals of Mathematics 172 (2010), 1391-1405.
[18] Parimala, R. and Suresh, V., Period-index and u-invariant questions for function fields over complete discretely valued fields, to appear in Invent. Math.
[19] Saltman, D.J., Division Algebras over p-adic curves, J. Ramanujan Math. Soc. 12 (1997), 25-47.
[20] Saltman, D.J., Finite u Invariant and Bounds on Cohomology Symbol Lengths, preprint, 2011.
[21] Serre, J.-P., Galois Cohomology, Springer monographs in Mathematics, 1996.
[22] Voevodsky, V., On motivic cohomology with \(\mathbb{Z}/l \)-coefficients, Ann. of Math. (2) 174 (2011), no. 1, 401–438.