Faint Star Counts in the Near-Infrared

J. B. Hutchings and P. B. Stetson
Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7, Canada; john.hutchings@nrc.ca
A. Robin
Observatoire de Besançon, BP 1615, F-25010 Besançon Cedex, France; annie@obs-besancon.fr
AND
T. Webb
Department of Astronomy, University of Toronto, Toronto, ON M5S 1A1, Canada; webb@astro.utoronto.ca

Received 2002 March 11; accepted 2002 April 11

ABSTRACT. We discuss near-infrared star counts at the Galactic pole with a view to guiding the Next Generation Space Telescope and ground-based near-infrared cameras. Star counts from deep K-band images from the Canada-France-Hawaii Telescope are presented and compared with results from the 2MASS survey and some galaxy models. With appropriate corrections for detector artifacts and galaxies, the data agree with the models down to but indicate a larger population of fainter red stars. There is also a significant population of \(K \sim 18 \) compact galaxies that extend to the observational faint limit of \(K = 20.5 \). Recent galaxy models agree well down to \(K \sim 19 \) but diverge at fainter magnitudes.

1. INTRODUCTION

The projected sky density of faint stars and galaxies in the near-infrared (NIR) at high Galactic latitudes is of interest for guiding telescopes and NIR cameras. In the case of large telescopes, it is important to choose the field of view to assure high probability of finding a guide star while minimizing the size and cost of the guiding system. As these instruments can guide on stars down to \(K \sim 18 \) or fainter, it is necessary to know the densities at those and fainter magnitudes, since at present we have no NIR catalogs that go this deep.

The lowest density of stars occurs at the Galactic poles, where they are predominantly M-type stars at these magnitudes. Thus, for guide signal purposes, we need NIR star counts and catalogs to allow for best guiding, regardless of the wavelengths of observation. The Two Micron All-Sky Survey (2MASS) is limited to about \(K = 16 \); while the Hubble Space Telescope (HST) guide-star catalog goes to fainter \(V \) magnitudes, the NIR flux of these stars is not well known, since \(V - K \) for M stars is in the range of 5 mag and changes steeply with spectral type.

In this paper, we report on star counts from deep K-band images from the Canada-France-Hawaii Telescope (CFHT) IR camera and also review other models and estimates down to \(K \sim 20 \).

2. DATA

We have two deep fields from the CFHT IR camera taken with the \(K \)-band filter. The total area of sky covered is about 107 arcmin\(^2\). The fields are at Galactic coordinates \(l = 177^\circ \), \(b = -50^\circ \) and \(l = 97^\circ \), \(b = 60^\circ \). The fields were observed as follow-up observations of objects detected at 850 \(\mu \)m in two fields of the Canada-UK Deep Submillimeter Survey to identify NIR counterparts of very luminous, high-redshift, dusty galaxies.

The data were taken over four nights in 2001 January. The \(b = -50^\circ \) field is a mosaic of four contiguous individual pointings of integration times from 2.7 to 3.3 hr. The \(b = 60^\circ \) field is a mosaic of three overlapping pointings of varying depth. Two pointings were observed for 1 hr and one pointing for 4 hr. The weather was generally worse in the latter, and the image was therefore not as deep as the integration time would suggest. The final mosaic images have FWHM close to 0.9 and have fairly uniform depth of exposure.

The observations were processed using basic NIR techniques. After first removing the bias signal, sky flats were created from the program data. For each program image, the (dithered) images that bracketed it in time were combined to form a sky flat. This sky flat was normalized and used to correct its corresponding image. The remaining sky signal (a DC offset and low-order structure at a few percent) was then removed from all the images using the IRAF task BACKGROUND, and the individual images were calibrated and combined to form the final image. The HST/NICMOS faint standards were used for calibration.

Object detection and photometry was done with DAO-PHOT (Stetson 1987) and ALLSTAR (Stetson & Harris 1988). Point-spread functions (PSFs) were derived from well-exposed stars in the images, and least-squares fits of these model PSFs
Fig. 1.—Top: Image sharpness criterion with K-band magnitude for CFHT photometry. The dashed lines outline the locus of star/galaxy/noise separation. To the limit of guide-star magnitude (17.8), the sample is very complete and the star-galaxy separation fully verified by inspection. Bottom: Same for the 2MASS Galactic pole images.

Fig. 2.—Part of the CFHT field and the same area with 2MASS, both in K band. The field size shown is close to the nominal NGST FGS field in area, although it is a little more elongated. The faintest stars easily visible are $K \sim 20$ in the CFHT field and $K \sim 15$ in the 2MASS field.

were carried out to obtain relative brightnesses of the detected objects. The SHARP and CHI indices provided by ALLSTAR were used to identify obvious galaxies and image defects. The conversion from instrumental data numbers in the image to stellar magnitude used a photometric zero point for the entire mosaic of images based on the data processing and observing details.

We obtained 2MASS K-band data for an overlapping region of sky in one of the CFHT fields (2MASS data not yet released for the other). The photometric zero point was checked by the 2MASS magnitudes for 10 bright stars and found to be consistent to within 0.1 mag. The magnitude/sharpness plots are shown in Figure 1. The exercise also allowed an interesting comparison of the same piece of sky with CFHT and 2MASS (see Fig. 2).

From the two mosaic fields, we have magnitudes for some 2000 objects down to $K \sim 20.5$ (see Fig. 1). The image quality is not exceptional for CFHT but allows useful star-galaxy separation. For the cameras and telescopes in development at present, we are interested in guiding only down to about $K = 18$. At this magnitude, we have very good completeness and star-galaxy separation (checked by inspection).

Completeness goes to much fainter than this, although the asymmetrical distribution of sharpness index among the fainter objects strongly suggests that we are seeing a population of
compact galaxies that overlap the star distribution fainter than about $K = 18$. The limits of the star distribution are sketched symmetrically about a zero-sharpness index value. The negative sharpness points below the limits are noisy pixels. The boundary was established at faint magnitudes from the distribution of magnitude errors with magnitude for the negative sharpness index values, because of the extra population in the positive sharpness distribution. This was verified by inspection of the images of objects near the boundary. The boundary was also checked for positive sharpness objects by inspection. We also note that the boundary values we have derived are very typical of ALLSTAR results from many other investigations.

To obtain a star count free of compact galaxy contamination, the final values used were thus from images with negative sharpness index for magnitudes fainter than 17.5, using the defect/star boundary established, and doubled to account for the real star distribution into positive sharpness values. Table 1 shows the difference and gives an indication of the compact galaxy counts, which are also of interest.

We stress that for the stars down to magnitude $K \sim 18$—the range of interest for guiding—we have very well established star/galaxy/blemish separation. The investigation of fainter objects would benefit greatly from images in different colors and with better seeing.

The plot of star counts needs correction for Galactic latitude (and longitude) to the pole. The factor is derived for the fields from the Spagna report (Fig. 11 therein) and a similar plot generated from the Bahcall-Soneira and Besançon models (see below). A correction value of 0.75 was used for both CFHT fields as an average of these models. The range of all the individual values was about 5%.

The total number of guide stars to our approximate guide signal limits is about 60–100, so there are some small number uncertainties. The two CFHT fields separately give very similar star counts, and Figure 3 combines them. Overall, the star counts to $K = 18$ have error bars of 10%. Figure 1 shows the CFHT counts where the values for $K > 17$ are free of the probable compact galaxy counts (sharpness greater than zero for $K > 17.5$). It still appears possible that the galaxy models underpredict faint stars. Since the CFHT counts go fainter than shown in the figure, the numbers are given in Table 1.

Figure 4 shows the location in one CFHT field of stars bright enough to guide on in the most conservative case ($K = 17$), together with the baseline Fine Guidance Sensor (FGS) field. This was fudged to some extent: to simulate a Galactic pole field, the magnitude limit used is brighter by the amount that Figure 1 suggests to reduce the star counts by the factor 0.75.
i.e., from 17 to about 16.3. This probably still overestimates the guide-star counts, but the figure gives a good typical example of a high-latitude field and its usable guide stars.

3. Galaxy Models

3.1. Spagna Report

The Spagna report was written to address the Next Generation Space Telescope (NGST) guide-star availability and goes into great detail.\(^1\) In Figure 3, we show the K-band star counts that are given for the Galactic poles in Table 9 of the report. The model presented is based on that of Mendez & van Altena (1996) and checked by counts from 2MASS and some smaller fields such as the Hubble Deep Field.

The variations with Galactic latitude are shown in Figure 11 of the report and, with longitude, in Table 12. These values (and those from Ratnatunga & Bahcall 1985) were used to correct our CFHT field counts to the Galactic pole.

3.2. Bahcall-Soneira Model

Ratnatunga & Bahcall (1985) give star counts in V magnitudes in three $B-V$ color bins for many positions in the sky from the Bahcall-Soneira model. The $B-V$ bins (divided at $B-V = 0.8$ and 1.3) correspond to stars of spectral type K0 and earlier, K0–K8, and K8 and later. Assuming mean spectral types in these bins of F0, K4, and M3, we derive $V-K$ colors of 4.7, 2.5, and 1.4 (Cox 2000). We can thus convert the star counts with V magnitude from Ratnatunga & Bahcall to K-band magnitudes. These are shown in Figure 3. The unknown distribution of spectral type, particularly among faint M stars, makes these model numbers less reliable than the others shown.

These color conversions show that all spectral types give about the same FGS signal at the same K-band magnitude, which is consistent with the weighted spectral response for the FGS detectors in the 0.7–2.5 μm wavelength range. The J-band magnitudes are also similar for the same reason. Thus, counting stars in the J, H, or K bands is a reasonable way to estimate guide-star availability, whereas visible magnitudes have a strong dependence on spectral type. For this reason, catalogs in wave bands below 1 μm are not useful for NIR guide-star selection.

The plot in Figure 3 shows the sum of all stars with K-band magnitudes for a few values, using the above corrections. While this model does give important detail on the color distribution of stars, the conversion to K band involves some assumptions, as noted above.

3.3. The Besançon Model of Population Synthesis

The numbers presented in Figure 3 have been computed from a revised version of the Besançon model of population synthesis. Previous versions and the main principles were described in Bienaymé et al. (1987a, 1987b) and Haywood, Robin, & Crézé (1997). Updates of the thick-disk and spheroid parameters are given in Robin, Reylé, & Crézé (2000) and Reylé & Robin (2001). The principles are briefly recalled below.

Model principles.—The model is based on a semiempirical approach, where physical constraints and current knowledge of the formation and evolution scenario of the Galaxy are used as a first approximation for the population synthesis. The model involves four populations (disk, thick disk, halo, and bulge), each with specific treatment.

A standard evolution model is used to produce the populations, based on a set of usual parameters: an initial mass function (IMF), a star formation rate (SFR), a set of evolutionary tracks, and a metallicity distribution. A set of IMF slopes and SFRs have been tentatively assumed and tested against star counts. The evolutionary model fixes the distribution of stars in the space of intrinsic parameters: effective temperature, gravity, absolute magnitude, mass, and age. These parameters are converted into colors in various systems through stellar atmosphere models corrected to fit empirical data (Lejeune, Cuisinier, & Buser 1997, 1998).

The disk scale heights have been computed self-consistently from Poisson and Boltzmann equations, using the potential computed from the Hipparcos constraints on the local dynamical mass from Crézé et al. (1998). Therefore, the disk scale heights are not free parameters, contrary to most Galactic models, and are a function of age.

The thick-disk and spheroid populations.—In the population

\(^1\) The Spagna report is available in full at http://www.ngst.nasa.gov/public/unconfigured/doc_0422/rev_03/NGST_GS_report5.pdf.
synthesis process, the thick-disk and spheroid populations are modeled as originating from a single epoch of star formation. Bergbusch & Vandenberg (1992) oxygen-enhanced evolutionary tracks are used, with mean metallicities of -0.7 and -1.7 dex and ages of 11 and 14 Gyr, respectively. Their density laws and IMFs have been determined by model fitting to remote star counts from large data sets in the visible and near-infrared (Robin et al. 2000; Reylé & Robin 2001).

3.4. 2MASS Survey Data

The 2MASS survey is not as deep as we need but does cover large amounts of sky and is useful as a check of the brighter star counts. Jean-Francois Le Borgne of the CFHT group provided numbers based on the entire 2MASS database for Galactic latitudes greater than 80°. We obtained a smaller 2MASS data set (800 arcmin2) and performed the measurements using the same DAOPHOT software as for the CFHT data (see the plot in the bottom panel of Fig. 1).

With the same star-galaxy separation software in DAOPHOT, our counts agree with the 2MASS point-source catalog (as also noted by Spagna). The 2MASS-based counts from Le Borgne appear to include all sources in the images without star/flaw separation (as we verify from the raw 2MASS images), and we regard them as too high. The star-separated 2MASS counts are shown in Figure 3 as a single set of symbols, and it is clear that they do not go faint enough to be useful, but they agree with the other values as far as they go.

4. DISCUSSION

Overall, there is good agreement in Figure 3 on the star counts in the range where the interest lies for guiding. Current performance modeling for the NGST FGS suggests using stars down to the range of $K = 17.0$–17.8. The Spagna and Robin models agree very closely in the range of interest in this context. They diverge at fainter magnitudes, but neither approaches the numbers indicated by the CFHT data.

Color information on the stars present at these faint magnitudes is needed to determine which population is not well reproduced by the models. Star counts being dominated by M dwarfs, it is probable that the discrepancy comes from the assumed IMF at low masses for old populations.

The NGST Fine Guidance Sensor has a nominal field of view of 8.4 arcmin2. The star count estimates error on the worst number ($K = 17$) gives a count in this FGS field between three and four. Three stars are the average count required for 95% probability of finding one, and this is the lowest number in all the above estimates. The plot allows estimates of the field size required once the limiting guide signal is known and converted to NIR-band magnitude for the telescope and detector system being used. As a guide to this, we have developed a Web site that allows signal estimates for a variety of parameters.

We will need to consider whether a new Galactic pole survey should be undertaken to provide a catalog of guide stars suitable for NGST. The survey clearly needs to be done in the H or K band, since the V–K corrections for M stars (the most common ones at $K = 18$) are in the range of 5 mag and change rapidly with spectral type among such stars.

This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. We thank Jerry Kriss for useful discussion on some of this work, Mark Brodwin for participating in the CFHT observations, and Jean-Luc Beuzit for communicating some of the earlier model results.

REFERENCES

Bergbusch, P. A., & Vandenberg, D. A. 1992, ApJS, 81, 163
Bienaymé, O., Robin, A. C., & Crézé, M. 1987a, A&A, 180, 94
———. 1987b, A&A, 186, 359
Cox, A., ed. 2000, Allen’s Astrophysical Quantities (Berlin: Springer)
 Crézé, M., Chereul, E., Bienaymé, O., & Pichon, C. 1998, A&A, 329, 920
Haywood, M., Robin, A. C., & Crézé, M. 1997, A&A, 320, 440
Lejeune, T., Cusinier, F., & Buser, R. 1997, A&AS, 125, 229
Lejeune, T., Cusinier, F., & Buser, R. 1998, A&AS, 130, 65
Mendez, R. A., & van Altena, W. F. 1996, AJ, 112, 655
Ratnatunga, K., & Bahcall, J. A. 1985, ApJS, 59, 63
Reylé, C., & Robin, A. C. 2001, A&A, 373, 886
Robin, A. C., Reylé, C., & Crézé, M. 2000, A&A, 359, 103
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B., & Harris, W. E. 1988, AJ, 96, 909

2 See http://astrowww.phys.uvic.ca/~gwyn/ngst/phot.html.