penetration using the ratio of ELF/serum AUC_{0-t} was 33.0% for ASN-1 and 20.3% for ASN-2 following the selected clinical dose of 3,600 mg.

Conclusion. A population PK model adequately described the time-course of ASN-1 and ASN-2 in ELE. ELF penetration was 20–33% following administration of the ASN100 clinical dose. These results should be interpreted with caution given the limited sample size (six subjects per dose group) and limitations of area-based normalization of BALF to ELF volume.

Disclosures. S. A. Van Wart, Arsanis, Inc.: Research Contractor, Research support. C. Stevens, Arsanis, Inc.: Employee and Shareholder, Salary and stock options. Z. Magyarsics, Arsanis Biosciences GmbH: Employee and Shareholder, Salary and stock options. S. A. Iuperchio, Arsanis, Inc.: Employee and Shareholder, Salary and stock options. C. M. Rubino, Arsanis, Inc.: Research Contractor, Research support. P. G. Ambrose, Arsanis, Inc.: Research Contractor, Research support.

1409. Evaluation of Alternative Piperacillin-tazobactam Dosing Strategies Against ESBL-Producing Enterobacteriaceae Using a Hollowfiber Infection Model

Hennieta Abodakpi, Pharm.D1, Kai-Tai Chang, Ph.D2, Ana Maria Sánchez-Díaz, Ph.D3, Rafael Cantón, Pharm.D, Ph.D1 and Vincent Tam, Pharm.D1, 2Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, 3Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, 4Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, 5Hospital Universitario Ramón y Cajal, Madrid, Spain and 6Pharmacological and Pharmaceutical Sciences, Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas

Session: 145. PK/PD Studies
Friday, October 5, 2018: 12:30 PM

Background. Extended-spectrum β-lactamase (ESBLs) presents a serious challenge in the treatment of Gram-negative pathogens. ESBLs confer resistance to most β-lactams which may be reversed with the addition of an active β-lactamase inhibitor (such as tazobactam, relebactam and avibactam). However, various ESBLs may display different susceptibilities to these inhibitors, which could impact efficacy. We propose a framework for comparing the efficacy of these inhibitors when combined with the same β-lactam.

Methods. Three clinical isolates of *K. pneumoniae* harboring CTX-M-15 and one *E. coli* with SHV-12 were used. The susceptibility of each isolate to piperacillin was determined using escalating concentrations of tazobactam, relebactam and avibactam. Similar experiments were subsequently conducted with ceftazidime. The resulting minimum inhibitory concentrations (MICs) were mapped as response to inhibitor concentration using an inhibitory E_{inhib} model. The best-fit model parameters were compared for each isolate–inhibitor combination.

Results. In all scenarios, MIC reductions were observed in the presence of increasing inhibitor concentrations. The MIC reduction for each isolate was well fitted to inhibitor concentrations (r^2 ≥ 95%). IC_{50} estimates captured the sensitivity of the isolates to each inhibitor, while IC_{max} captured the maximum extent of MIC reduction. With piperacillin, IC_{50} values ranged from 1.36 to 25.25 μg/mL for tazobactam, 2.32–15.82 μg/mL for relebactam and 0.62–2.37 μg/mL for avibactam. IC_{max} values were 4.75–6.99, 6.56–9.77 and 7.83–11.22 for tazobactam, relebactam and avibactam, respectively. Similar trends in IC_{50} and IC_{max} were observed with ceftazidime as the β-lactam.

Conclusion. We illustrated a simple structural model capable of comparing the performance of different inhibitors. This platform may be used to identify the optimal pairing of various β-lactams and β-lactamase inhibitors for individual isolates.

Disclosures. Y. Tam, European Union’s Seventh Framework Programme: Grant Investigator, Research grant.

1411. Tecioplanin (TEI) vs. Vancomycin (VAN) in Combination with Piperacillin-Tazobactam (TZP) or Meropenem (MER) as a Cause of Acute Kidney Injury (AKI)

Abdullah Tarik Aslan, RESIDENT1; Tural Pashayev, RESIDENT1; Osman Dag, INVESTIGATOR and Murat Akova, PROF2, Internal Medicine, Hacettepe University, Ankara, Turkey, 2Biostatistics, Hacettepe University, Ankara, Turkey, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Turkey

Session: 145. PK/PD Studies
Friday, October 5, 2018: 12:30 PM

Background. VAN has been shown to cause increased incidence of AKI when combined with TZP. The reason is unknown. TEI is a glycopeptide which may be less nephrotoxic. We compared both glycopeptides in combination with TZP or MER for AKI.

Methods. A retrospective cohort study was performed between May 2015 and December 2017 in a large tertiary care setting. Evaluation of AKI was made by using RIFLE criteria. Patients ≥ 18 years were included if they had a baseline serum creatinine value, presence of sepsis or septic shock, residing in intensive care unit at the time of antibiotic therapy and number of days of antibiotic therapy. AKI incidence was significantly higher in patients receiving TZP-VAN than those receiving TZP-TEI and also in patients receiving TZP-VAN than those with MER-VAN. No difference

Results. For the reference strain, a clinical regimen of 4 g piperacillin and 0.5 g tazobactam administered every 8 hours resulted in a T > MIC of 39.6% and bacterial regrowth. An exposure equivalent to 1.5 g tazobactam (T > MIC of 55.1%) was needed to suppress growth. These regrowth findings were validated with the two other ESBL-producers with tazobactam exposures characterized by T > MIC of 36.8 and 43.8%.

Conclusion. Improved bacterial killing was observed with increasing tazobactam exposures. As a novel PK/PD index, T > MIC may be used to characterize response to a β-lactamase inhibitor and provide efficacy targets to guide the development and clinical dosing of these inhibitors.

Disclosures. A. M. Sánchez-Díaz, European Union’s Seventh Framework Programme: Grant Investigator, Research grant. R. Cantón, European Union’s Seventh Framework Programme: Grant Investigator, Research grant. V. Tam, European Union’s Seventh Framework Programme: Grant Investigator, Research grant.