Design and Monitoring of 1kva Distribution Transformer

Praveenkumar Chandran, Pradeep E, Srivathsa M, Venkatasalam M.P.V, Vivek R

Abstract: Transformers are vital part of transmission and distribution system. Generally, the lifetime of the transformer varies from 40 to 50 years. Regular monitoring and maintenance must be done to increase its lifetime. The existing monitoring system can acquire, process, analyse and communicate the critical parameters viz., voltage, current, frequency, temperature, oil level, etc. and sends the values to a central hub and indicates the fault to the concerned person. These parameters are required by the operators to ensure reliable power delivery and to assist the day-to-day decision-making activities. A single phase, 1 KVA, 50 Hz, 230/115 V, oil-immersed distribution transformer is designed, and the above-mentioned parameters are monitored and displayed in mobile phones/personal computers. The values from the monitoring system is displayed in website or mobile application using cloud services. With the data available, various processes can be performed to obtain information. The proposed system can be installed in any available transformers with little modification in sensors. When a severe fault occurs secondary circuit-breaker is tripped thereby isolating the transformer and an official is alerted using a text message.

Index Terms: Cloud services, Distribution Transformer, GSM Module, Transformer monitoring system

I. INTRODUCTION

A transformer is a static device which transfers electrical energy from one circuit to another through the process of electromagnetic induction. It is most commonly used to increase (step up) or decrease (step down) voltage levels between circuits. It is widely used in transmission and distribution sector as there is a need to change the voltage levels to improve the efficiency. Transformers are generally costly equipment and should be worked within the specified limits. They also require frequent changing of coolant oil. Embedded technology is used to monitor some of the critical parameters viz., primary and secondary voltages and currents, oil level and oil temperature. The results are displayed in cloud services and a text alert will be sent in faulty conditions to the concerned person.

II. DESIGN OF DISTRIBUTION TRANSFORMER

The transformer designed has the following specifications KVA RATING : 1 KVA

PRIMARY SIDE:
VOLTAGE : 230 V
CURRENT : 4.34 A
COIL SWG : 20 (0.9 mm2) 448 TURNS

SECONDARY SIDE:
VOLTAGE : 115 V
CURRENT : 8.7 A
COIL SWG : 17 (1.42 mm2) 224 TURNS

STAMPING:
TYPE : 43
THICKNESS : 2 inches INSULATION : CLASS F
(C160 °C)
COOLANT : Oil immersed

III. MONITORING AND CONTROLLING OF DISTRIBUTION TRANSFORMER

The high-level design of the proposed system and the block diagram of the Monitoring and Controlling Unit are shown in the Fig 1 and Fig 2 respectively.

A. Operation of The Proposed System

The proposed system receives the primary and secondary values of voltage and current from potential and current transformers placed at the terminals of the 1 KVA distribution transformer.
The values of oil temperature is measured from temperature sensor and oil level from the float sensor. The voltage and current values are sent to a signal conditioning unit so that the values are converted into DC and limited to the range as per requirement of the microcontroller. The values from various sensors are then processed by the microcontroller and updated into the cloud via Node MCU. Text alert is sent using GSM module during certain fault conditions. The various faults that are identified in this module along with the conditions are mentioned in the Table -1.

| S.No | Fault          | Condition for occurrence                      |
|------|----------------|-----------------------------------------------|
| 1.   | Overvoltage    | >115% of rated voltage                        |
| 2.   | Undervoltage   | <85% of rated voltage                         |
| 3.   | Winding fault  | \( V_s = (0.95-1.05) \times V_p \times \text{Turns ratio} \) |
| 4.   | Overload       | 110% of rated current                         |
| 5.   | Short-circuit  | >150% of rated current                        |
| 6.   | Low oil        | Oil level < 50% of tank capacity              |
| 7.   | High temperature | Coolant temperature > 40° C           |

IV. SIMULATION

The simulation of the firmware dumped in the microcontroller is executed in the Simulink. It is divided into two parts as shown in the Fig -3.

- Logic
- Dashboard

LOGIC produces the processed values that is to be displayed in Thingspeak. It is further split into three subsystems- Voltage Measurement, Current Measurement and Temperature. In these subsystems, the various processes are done to the input signal to get the apt values that are to be sent. Further the calculation to find the faults are also included within these subsystems. This screen is shown in Fig -4.

The seven lamps are for seven faults that are identified in this module- Overvoltage, Undervoltage, Winding problem, Overload, Short-circuit, Low Oil level and High coolant temperature. The screenshot of the dashboard is in shown in Fig -5.

Table -1 Faults identified in the module

The following table 2 shows the different inputs given to the logic. The input values are assumed to be the input voltages available from the sensors.

Table -2: Simulation inputs

| PARAMETER       | INPUT VALUE |
|-----------------|-------------|
| Primary Voltage | 2.3         |
| Secondary Voltage | 1.15     |
| Primary Current | 2.88        |
| Secondary Current | 2.88    |
| Oil Level       | 0           |
| Oil Temperature | 0.1         |

The parameter values are displayed using gauges. The lamps are included to show the faults. When a fault occurs, the lamp glows red. The comparison between the expected output and the observed output is shown in table 3

Table -3: Comparison between Expected Output and Obtained Output

| PARAMETER          | EXPECTED OUTPUT | OBTAINED OUTPUT |
|--------------------|-----------------|-----------------|
| Primary Voltage    | 230             | 230             |
| Secondary Voltage  | 115             | 115             |
| Primary Current    | 4.8             | 4.8             |
| Secondary Current  | 9.6             | 9.6             |
| Oil Temperature    | 10 °C           | 10 °C           |
| Overvoltage        | Unlit           | Unlit           |
| Undervoltage       | Unlit           | Unlit           |
| Winding problem    | Unlit           | Unlit           |
| Overload           | Lit             | Lit             |
| Short-circuit      | Unlit           | Unlit           |
| Low Oil Level      | Unlit           | Unlit           |
| High Temperature   | Unlit           | Unlit           |

The screenshot of the simulation output is shown in Fig 6.
V. HARDWARE

The snapshot of the hardware setup is shown in the Fig 7.

VI. CONCLUSION

Transformers are an integral part of Transmission and Distribution sectors. Proper maintenance of transformer can increase the lifetime of the transformer. Having a monitoring and controlling system helps in timely maintenance of the transformer. The parameter values displayed can be viewed anywhere and anytime if the person has reliable internet connection. The text alert that is given during the certain faults aids in speedy recovery from faulty conditions thus maintaining the environment and condition of the transformer.

VII. FUTURE SCOPE

1. Prediction of period in which oil levels must be changed
2. Embedded solution to perform Dissolved Gas Analysis in a remote transformer without human intervention
3. Development of a website which shows transformer in various locations and ability to monitor the parameters of the transformers displayed

REFERENCES

1. Rahul Turkar et al., “Design and fabrication of a Single-phase 1KVA Transformer with automatic cooling system”, International Research Journal of Engineering and Technology, Volume: 05 Issue: 04 | Apr-2018.
2. Ahmed Rubaai, Mohamed Chouikha, Donatus Cobbinah and Abdul Ofoli, “Design and Analysis of Single-Phase Power Transformers for Undergraduate Engineering Students”, Proceedings of the 2004 American Society for Engineering Education Annual Conference & Exposition.
3. Vivek Landage, Ashish Kshirshe, Vadirajacharya. K, Harish Kulkarni, “Transformer health condition monitoring through GSM Technology”, International Journal of Scientific &Engineering Research, Vol 3, Issue 12, December-2012, ISSN 2229-5518.

4. V. Sanjeeva, E. Ramyasankari, A. Vidhya, “Real Time Transformer Health Monitoring System using IOT Technology”, IJSTE Volume 4 Issue 09 March 2018 ISSN: 2349-784X.

AUTHORS PROFILE

Venkatasalam M P V is working as a Data Analyst in Whirldata Labs, Chennai. He has completed his undergraduate degree in the Department of Electrical and Electronics Engineering at Sri Ramakrishna Engineering College, Coimbatore. He is a certified Automation Service engineer in the field of PLC and industrial Automation. He has published 1 paper in National conference. He has received the Best Paper award for the paper presented in national conference. He has working experience as a Developer and as a Data engineer and currently working in a project where integration of different data sources is done and creating a dashboard for further analysis. His Areas of interest are in the field of data analysis and data integration which provides data needed for visualization and further analysis. He has worked in the field of Website developing, Data analysis and Data integration and cleaning. He is well versed in the ETL (Extract the data, Transform the data, Load the data). He is familiar in Angular6, Flask, MSSQL, MYSQL, SSIS, Word press, PLC Ladder Programming, Qlik Sense, Python, Java, HTML, C.

Mr. R. Vivek is a Model-based Systems Design (MBD) Engineer at Altran Technologies India Private Limited. He is currently working under Automotive Embedded Systems domain. He completed his undergraduate degree in the Department of Electrical and Electronics Engineering at Sri Ramakrishna Engineering College, Coimbatore. He has attended more than 10 workshops and seminars conducted by colleges across India. He has also participated in TECHGIUM 2018 conducted by L&T Technology Services Limited at Chennai, Innovation Pavilion at MELTINGPOT2020 INNOVATION SUMMIT conducted in the year 2017 at Hyderabad and Texas Instruments project contest. He has also been a member of Institute of Electrical and Electronics Engineers (IEEE), Indian Society for Technical Education (ISTE) and Renewable Energy Club (REC). His areas of interest are Embedded Systems and Model-based Systems Engineering.

Mr. C. Praveenkumar is an Assistant Professor (Senior Grade) in the Department of EEE, Sri Ramakrishna Engineering College, Coimbatore. He has more than 10 years of teaching experience. He is an Expert Panel Member for Institute for Innovation in Science and Technology, Hyderabad. He is a Member of IEEE, IEEE-PES, NaMPET, IAENG, IAENG-ISEE. He received Best Teacher Award in 2018 from IEAE. His areas of interest are Power Electronics and Drives.

Mr. Pradeep E is a Model-based Systems Design (MBD) Engineer at Altran Technologies India Private Limited. He completed his BE-EEE at Sri Ramakrishna Engineering College, Coimbatore. He has attended more than 10 workshops and seminars conducted by colleges across India. Member of ISTE. His areas of interest are Embedded Systems and Automation.

Mr. M. Srivaths is a Model-based Systems Design (MBD) Engineer at Altran Technologies India Private Limited. He is currently working under Automotive Embedded Systems domain. He completed his BE-EEE at Sri Ramakrishna Engineering College, Coimbatore. He has attended more than 10 workshops and seminars conducted by colleges across India. He has been awarded GRADE B in Business English Certificate Vantage. He has also been Vice Chairperson of Institute of Electrical and Electronics Engineers, Member of ISTE. His areas of interest are Embedded Systems and Automation.