On the fecundity of the bogue Boops boops (Linnaeus, 1758) in the Turkish Aegean Sea

Burcu Taylan, Bahar Bayhan
Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey

1. Introduction

The bogue, Boops boops (L., 1758) (B. boops), is a teleost belonging to the Sparid family. It is an important species in the Mediterranean Sea and geographically distributes from Norwegian to Angolan coasts along the east Atlantic and from Mexican Gulf to Caribbean Sea as well as in the Mediterranean and Black seas[1].

B. boops is captured across all Turkish seas, mainly in Aegean Sea all the year round and regularly presented to local fish markets. The total production amount of the species in Turkish seas is 2 226.2 tones, 1 662.2 of which comes from the Aegean Sea[2]. An efficient fisheries method is necessary to protect natural sources and ensure their sustainability. It is of great importance that knowledge of biological studies be reconfirmed in terms of optimal economic evaluation of present stocks. Most studies on age and growth biology of B. boops have been conducted in the Mediterranean region over the last 30–35 years[3-10]. However, the studies regarding its reproduction are very limited[6,11-13]. Reproduction studies are given great importance in recent years especially the ones concerning the maintenance of the continuity of fish stocks and a good fisheries management. Sex ratio studies provide information on the number of eggs in the ovary before the next spawning season[15]. Studies on fecundity of fish species are pertinent and useful for systematics in racial studies related to total population estimation and productivity[16].

However, there has not been any studies on the reproductive biology of the species in Turkish coasts. In this research that we conducted to the end, certain reproductive features of bogue such as spawning amount and egg size were identified for Izmir Bay, one of the major fishing areas in the Aegean Sea. It is hoped that the information obtained from this study will contribute to our knowledge of the reproductive biology of B. boops and will be useful for management of fisheries.

2. Materials and methods

In total, 470 specimens of B. boops were collected monthly from November in 2008 to October in 2009 in Izmir Bay (central Aegean Sea). Samples were obtained from commercial fishermen who generally use gill nets, trammel nets and gill net-trammel net combination to capture fish. Captured fish were placed in iceboxes and transported to the laboratory where total length of each fish

Keywords: Bogue, Boops boops, Fecundity, Reproduction, Izmir Bay, Aegean Sea
was measured to the nearest millimetre, and total weight of each specimen was measured with a digital balance to an accuracy of 0.01 g. The maturity stages of gonads of female individuals were based on 8 development stages\(^{[17]}\) (Table 1). According to previous study\(^{[10]}\), the reproduction period of the boug-e species in the Izmir Bay was late winter and early spring. The maximum gonadosomatic index value was 5.121 (February) for male individuals and 4.500 (February) for female individuals. According to these results, 30 ovaries from mature female individuals in the reproductive stage were fixed in 4% formalin solution to determine fecundity. Sub-specimens were taken, accounting for 2%–5% of the ovary weight, eggs were counted by using gravimetric method and egg diameters were measured with Olympus SZ60 model binocular microscope. Only oocytes between 530 and 740 \(\mu\)m were considered as mature. After oocytes were counted with gravimetric method, the following formula was used to calculate the total egg count in ovarium:

\[
\text{Fecundity} = \text{Weight of ovary} \times \frac{\text{Number of eggs in the sample}}{\text{weight of sample}}. \tag{17}
\]

Table 1

Stages	State	Macroscopic characteristics of ovaries and testes
I	Virgin	Sexual organs are very small, situated close to vertebral column. Testis and ovary are transparent, colourless or grey. Eggs are not visible to naked eye.
II	Maturating virgin	Testis and ovary are translucent, grey–red. Length of gonads is 1/2, or slightly more, of length of ventral cavity. Individual eggs can be seen with magnifying glass.
III	Developing	Testis and ovary are opaque, reddish with blood capillaries, occupying about 1/2 of ventral cavity. Eggs are visible to naked eye as whitish granular material.
IV	Developed	Testis is reddish–white, with no milt produced under pressure. Ovary is orange–red. Eggs are clearly discernible, and opaque. Testis and ovary occupy about 2/3 of ventral cavity.
V	Gravid	Sexual organs fill ventral cavity. Testis is white, with drops of milt produced under pressure. Eggs are completely round, and some already translucent and ripe.
VI	Spawning	Roe and milt run under slight pressure. Most eggs are translucent with few opaque eggs left in ovary.
VII	Spent	Not completely empty, and no opaque eggs are left in ovary.
VIII	Resting	Testis and ovary are red and empty. A few eggs are in state of resorption.

examined ranged from 19.6–27.6 cm (mean: 23.5), while the total weight ranged from 78.5–260.2 g (mean: 152.7). The total length of 30 mature females (20 in winter, 10 in spring) per specimen was measured with a digital balance to an accuracy of 0.01 g. The maturity stages of gonads of female individuals were based on 8 development stages (Table 1). According to previous study\(^{[10]}\), the reproduction period of the boug-e species in the Izmir Bay was late winter and early spring. The maximum gonadosomatic index value was 5.121 (February) for male individuals and 4.500 (February) for female individuals. According to these results, 30 ovaries from mature female individuals in the reproductive stage were fixed in 4% formalin solution to determine fecundity. Sub-specimens were taken, accounting for 2%–5% of the ovary weight, eggs were counted by using gravimetric method and egg diameters were measured with Olympus SZ60 model binocular microscope. Only oocytes between 530 and 740 \(\mu\)m were considered as mature. After oocytes were counted with gravimetric method, the following formula was used to calculate the total egg count in ovarium:

\[
\text{Fecundity} = \text{Weight of ovary} \times \frac{\text{Number of eggs in the sample}}{\text{weight of sample}}. \tag{17}
\]

Table 3

Fish number	Total length (cm)	total weight (g)	Fecundity
1	19.6	78.53	33072
2	20.3	80.54	37802
3	20.5	83.79	41946
4	21.0	88.45	41980
5	21.0	96.22	42000
6	21.0	98.53	42980
7	21.1	98.67	42112
8	21.8	109.99	41999
9	22.1	116.78	42509
10	22.2	116.98	42600
11	22.5	117.88	42609
12	23.2	128.55	44570
13	23.5	145.87	52682
14	23.6	148.41	43530
15	23.8	156.20	44100
16	24.0	164.3	46716
17	24.0	170.0	44000
18	24.2	178.4	44062
19	24.5	182.5	58807
20	24.6	183.5	53899
21	24.6	185.2	62752
22	24.7	189.1	52602
23	25.0	189.5	64418
24	25.1	190.4	61232
25	25.2	191.8	53876
26	26.0	198.0	60500
27	26.0	199.9	61562
28	26.2	202.7	52906
29	26.7	231.4	50279
30	27.6	260.2	66123

The Chi-square (\(\chi^2\)) test was used in order to determine whether there was a statistically significant difference between the female-male ratio. To establish the relationship between fecundity and total length and total weight, \(y = ae^{-bx}\) regression model was used.

Results

It was found in the research that out of 470 examined boug-e, 210 were female (44.7%), 226 were male (48.1%) and 34 were hermaphroditic (7.2%). Total length of all B. boops specimens ranged between 11.3 to 27.9 cm. The weight distribution of specimens varied between 11.3 and 261.8 g. The sex ratio (female: male) of the sampled specimens was 0.93:1.00. Chi–square test (\(\chi^2\)) was performed to determine whether there were statistically differences in ratio between female and male and the difference was determined in autumn and spring (Table 2). In this study, only three stages of gonadal development were observed in female B. boops, which were stages IV and V (Table 1).

The total length of 30 mature females (20 in winter, 10 in spring)
4. Discussion

The female: male ratio of bogue was estimated as 1:25:1 by Livadas[18]. In most fish species in nature and produced under normal circumstances, the sex is determined genotypically by using gonadal sex determination. According to this mechanism, tiddlers’ distribution of sex is almost equal to the ratio of 1:1 (female: male)[19]. In bogue population, numbers of females and males are usually similar. It is found the reproductive period to be February and April for both males and females by Hassan[20]; February and March[6]; February, March and April[12], which is similar to our findings.

In his study, the biological features of Boops boops and Boops salpa species belonging to the Sparidae family were compared[20], and the fecundity in individuals belonging to Boops boops species was investigated with total length between 13.0–22.0 cm and the total fecundity of the species was found to be 5 185–52 208 eggs. In a study that he conducted in the Mediterranean[13], it was found that the fecundity was 1 296–51 528 in 462 individuals with total length of 10.6–20.8 cm of Boops boops. That is similar to our study. Gordo investigated the fecundity for Boops boops species seen in Portuguese coast with 75 ovariiums (total length between 14–36 cm) using volumetric method and found it to be 11 550–357 800[6], which is significantly higher compared to our study. This is due to the different methods used to determine fecundity.

In his study, El-Agamy, et al. determined these relationships as Fa = -61688 + 5037L, Fa = -12398 + 730.33W respectively (Fa is the absolute fecundity and L is the mean total length in cm and W is the mean weight in grams)[12], and identified eggs with a diameter between 0.51-0.68 mm as highly mature, which is similar to our study. In studies undertaken on some other species of the Sparidae family, similar results were observed by Hadj Taieb, et al. for Diplodus vulgaris; and by Talet Lotfi, et al. for Pagellus acarne[21,22].

Conflict of interest statement

We declare that we have no conflict of interest.

References

[1] Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonne E. Fishes of the North-eastern Atlantic and the Mediterranean. Paris: UNESCO; 1984.
[2] TÜİK. Fishery statistics, 2013. Ankara: Turkish Statistical Institute; 2013, p. 61.
[3] Vidalis E. Contribution to the study of the biology of the bogue (Boops boops Lin.) in Greek waters. Prak Hell Hidrobiol Inst 1950; 4: 51-71.
[4] Girardin M, Quignard JP. Croissance de Boops boops Linné. 1758 (poissons, Sparidé) dans le Golfe du Lion. J Appl Ichthyol 1986; 2(1): 22-32. French.
[5] Tsangridis A, Filippousis N. Use of length-frequency data in the estimation of growth parameters of three Mediterranean fish species: bogue (Boops boops L.), picarel (Spicara smaris L.) and horse mackerel (Trachurus trachurus L.). Fish Res 1991; 12(4): 283-97.
[6] Gordo LS. On the fecundity of the bogue, Boops boops (L., 1758) from the Portuguese coast. J Appl Ichthyol 1996; 12(1): 27-30.
[7] El-Hawee A, Hegazy M, AbuHnafa H, Sabry E. Validation of length frequency analysis for Boops boops (Bogue) growth estimation. Egypt J Aquat Res 2005; 31(1): 399-408.
[8] Khemir S, Gaamour A, Zylberberg L, Meunier F, Romdhane MS. Age and growth of bogue, Boops boops, in Tunisian waters. Acta Adriat 2005; 46(2): 159-75.
[9] Manasrili M, Avşar D, Yeldan H, Çiček E, Özyurtt CE. [Estimation of growth, mortality and the exploitation rate of the bogue (Boops Boops LINNAEUS, 1758) population from the Babadilman (Mersin) Bight]. J Fish Aquat Sci 2006; 23: 461-3. Turkish.
[10] Kara A, Bayhan B. Age and growth of Boops boops (Linnaeus, 1758) in İzmir Bay, Aegean Sea, Turkey. J Appl Ichthyol 2015; 31: 620-6.
[11] Lahnsteiner F, Patzner RA. Sperm mobility of the marine teleosts Boops boops, Diplodus sargus, Mullus barbatus and Trachurus mediterraneus. J Fish Biol 1998; 52(4): 726-42.
[12] El-Agamy A, Zaki MI, Awad GS, Negm RK. Reproductive biology of Boops boops (family Sparidae) in the Mediterranean environment. Egypt J Aquat Res 2004; 30(8): 241-54.
[13] Zaki MI, Negm RK, El-Agamy A, Awad GS. Ultrastructure of male germ cells and character of spermatozoa in Boops boops (family Sparidae) in Alexandria Coast, Egypt. Egypt J Aquat Res 2005; 31: 293-313.
[14] Vicentini RN, Araujo FG. Sex ratio and size structure of Micropegonias furnieri (Desmarest, 1823) (Perciformes, Sciaenidae) in Sepetiba bay, Rio deJaneiro, Brazil. J Biol 2003; 63(4): 559-66.
[15] Bagenal TB. Methods of assessment of fish production in fresh waters. Oxford: Blackwell Scientific Publication Ltd; 1978.
[16] Adikeyi FA. The sex ratio, gonadosomatic index, stages of gonadal development and fecundity of sompat grunt, Pomadasys jubelini (Cuvier, 1830). Pak J Zool 2013; 45(1): 41-6.
[17] Holden MJ, Raith DFS. Manual of fisheries science. Part 2- Methods of resource investigation and their application. Rome: Food and Agriculture Organization of the United Nations; 1974.
[18] Livadas R. The growth and maturity of bogue (Boops boops). Family Sparidae, in the water of Cyprus. In: Savini M, Caddy JF, editors. Report of the second Technical Consultation on Stock Assessment in the Eastern Mediterranean, Athens, Greece, 28 March - 1 April 1988. FAO fisheries report no. 412. Rome: Greece; 1989. p. 52-7.
[19] Bull JJ. Evolution of environmental sex determination from genotypic sex determination. Heredity 1981; 47: 173-84.
[20] Hassan MWA. Comparative biological studies between species of family Sparidae, Boops boops and Boops salpa in Egyptian Mediterranean waters. [dissertation]. Alexandria: Alexandria University; 1990.
[21] Hadj Taieb A, Gharbel M, Ben Hanj Hamida N, Jarboui O. Reproductive biology of Diplodus vulgaris (Teleostei, Sparidae) in the southern Tunisian waters (Central Mediterranean). Acta Adriat 2012; 53(3): 437-46.
[22] Talet Lotfi B, Salim M, Talet Ahmed B, Zitouni B. On the fecundity of the seabream, Pagellus acarne (Risso, 1827) of the western Mediterranean Sea, Algerian Coasts. Thalassia 2013; 29(2): 9-13.