Higher frequency of comorbidities in fully vaccinated patients admitted to the ICU due to severe COVID-19: a prospective, multicentre, observational study

To the Editor:

The coronavirus disease 2019 (COVID-19) vaccination campaign in Spain began on 27 December 2020 [1]. To date, more than 36 million people have been fully vaccinated, with most of the population, namely 25.3 million people (69.1%), receiving BNT 162b2 (Pfizer/BioNTech) [1]. With respect to other vaccines and figures, 4.8 million (13.2%) people have received AZD1222 (Oxford/AstraZeneca); 4.5 million (12.3%) mRNA-1273 (Moderna); and 2.0 million (5.4%) JNJ-78436735 (Janssen) [1].

Vaccination uptake has radically changed how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has impacted healthcare systems [2, 3]. Since the initiation of the campaign, a total of 19 705 patients with severe COVID-19 have required admission to intensive care unit (ICU) in Spain, the vast majority with no vaccination or an incomplete regimen [1]. Although vaccination has been shown to be notably effective, a few fully vaccinated patients can develop severe COVID-19 requiring ICU admission. To our knowledge, there is no description of this cohort of patients.

Within the CIBERESUCICVID consortium [4], we reported a prospective, multicentre and observational study that characterised fully vaccinated patients admitted to seven Spanish ICUs for severe COVID-19 between 25 January and 14 September 2021. These patients developed COVID-19 symptoms at least 2 weeks after administration of either a single-dose COVID-19 vaccine (JNJ-78436735) or the second dose of a two-dose vaccine. Exclusion criteria for this study included unconfirmed SARS-CoV-2 infection; ICU admission due to other causes; or incomplete vaccination status. Data was collected as previously described [4]. For the purpose of comparison, we included 105 consecutive, non-vaccinated adult patients with laboratory-confirmed SARS-CoV-2 infection requiring admission to the same seven ICUs between 25 January and 13 May 2021.

Continuous variables are reported as median (interquartile range) and compared between groups using the Mann–Whitney test. Categorical variables are reported as frequencies (percentages) and compared using Fisher’s exact test.

The study received approval by the institution’s internal review board (Comité Ètic d’Investigació Clínica, registry number HCB/2020/0370), and we obtained informed consent from either patients or their relatives.

During the study period, a total of 1585 patients were admitted to ICUs across seven Spanish hospitals due to COVID-19. Of those, 1314 (82.9%) were unvaccinated; 161 (10.2%) had not completed the vaccination regimen; and 110 (6.9%) were fully vaccinated. Data from 81 (73.6%) fully vaccinated patients were available for the analysis.

Demographics and clinical characteristics of the fully vaccinated population are detailed in table 1. In summary, the median age was 68.0 (60.0–74.0) years; 35 (43.2%) patients were aged ≥70 years, whilst only five patients were <50 years. 72% (n=58) of these patients were male. All of the patients but two had at least one comorbidity, whereas 69.1% (n=56) had three or more. The most frequent comorbidity was...
TABLE 1 Characteristics of fully and non-vaccinated, intensive care unit (ICU)-admitted patients with COVID-19

	Fully vaccinated patients (n=81)	Non-vaccinated patients (n=105)	p-value
Baseline characteristics			
Age, years	68.0 (60.0–74.0)	65.0 (55.0–73.0)	0.24
Male	58 (71.6%)	71 (67.6%)	0.63
BMI, kg·m⁻²	27.6 (24.9–31.7)	30.1 (26.5–33.7)	0.010
Comorbidities			
Number of comorbidities	3 (2–4)	2 (1–4)	0.005
Hypertension	61 (75.3%)	52 (49.5%)	<0.001
Chronic cardiac disease	15 (18.5%)	15 (14.3%)	0.55
Chronic respiratory disease	21 (25.9%)	16 (15.2%)	0.095
Chronic renal disease	16 (19.8%)	10 (9.5%)	0.055
Obesity (BMI >30 kg·m⁻²)	30 (37.0%)	57 (54.3%)	0.026
Diabetes mellitus	35 (43.2%)	26 (24.8%)	0.011
Immunosuppression	28 (34.6%)	11 (10.5%)	<0.001
Solid organ transplant	13 (46.4%)	8 (27.7%)	
Active malignancy	11 (39.3%)	0	
Autoimmune disease	3 (10.7%)	2 (18.2%)	
Chronic immunosuppressor treatment	1 (3.6%)	1 (5.6%)	
Active or former smoker	30 (37.0%)	42 (40.0%)	0.76
Disease chronology			
Days from last vaccine dose to COVID-19 symptoms	75.0 (47.0–95.0)		
Days from COVID-19 onset to hospital admission	6.0 (4.0–8.0)	8.0 (6.0–10.0)	<0.001
Days from hospital admission to ICU admission	1.0 (0–3.0)	1.0 (0–3.0)	0.20
Days from ICU admission to IMV	1.0 (0–3.0)	0 (0–1.0)	0.001
ICU admission			
APACHE II score	12 (9–17)	10 (8–13)	0.003
SOFA score	4 (3–5)	4 (3–6)	0.64
Adjuvant treatments			
COVID-19 therapies	28 (34.6%)	12 (11.4%)	<0.001
Remdesivir	21 (75.0%)	7 (58.3%)	
Tocilizumab	14 (50.0%)	3 (25.0%)	
Convalescent plasma	3 (10.7%)	2 (16.7%)	
Subcutaneous heparin	77 (95.1%)	104 (99.0%)	0.17
Low dose (≤1 mg·kg⁻¹ per day)	61 (75.3%)	76 (73.1%)	
High dose (>1 mg·kg⁻¹ per day)	16 (19.8%)	28 (26.9%)	
Vasopressor treatment	37 (45.7%)	58 (55.2%)	0.24
Continuous neuromuscular blockers	39 (48.1%)	70 (66.7%)	0.016
Corticosteroids	76 (93.8%)	104 (99.0%)	0.087
Supportive therapies			
High-flow oxygen cannula	65 (80.2%)	56 (53.3%)	<0.001
NIMV	21 (25.9%)	25 (23.8%)	0.86
IMV	45 (55.6%)	76 (72.4%)	0.020
Prone position	42 (51.9%)	62 (59.0%)	0.23
ECMO support	1 (1.2%)	1 (1.0%)	1.00
Renal replacement therapy	10 (12.3%)	4 (3.8%)	0.047
Limitation of life-sustaining care	16 (19.7%)	7 (6.7%)	0.012
Complications			
Nosocomial bacterial pneumonia	22 (27.2%)	45 (42.9%)	0.032
Ventilator-associated pneumonia	16 (29.7%)	35 (32.8%)	0.76
Microbiological diagnosis	41 (81.8%)	42 (93.3%)	0.21
Pseudomonas aeruginosa	7 (10.9%)	10 (23.8%)	
Klebsiella spp.	4 (22.2%)	2 (4.8%)	
Staphylococcus aureus	3 (16.7%)	11 (26.2%)	
Acinetobacter baumannii	2 (11.1%)	2 (4.8%)	
Other	5 (27.8%)	20 (47.6%)	
Acute renal injury	23 (28.4%)	25 (23.8%)	0.50
Pulmonary embolism	6 (7.4%)	8 (7.6%)	1.00
Myocardial infarction	1 (1.2%)	1 (1.0%)	1.00
Heart failure	3 (3.7%)	2 (1.9%)	0.65
Stroke	0 (0%)	2 (1.9%)	0.51
Liver dysfunction	32 (39.5%)	32 (30.5%)	0.22

Continued
hypothesis, being present in 61 (75.3%) patients. 28 (34.6%) patients had an immunocompromised status. The percentage of obese (BMI ≥ 30 kg·m$^{-2}$) patients was 37.0% (n=30). Patients required ICU admission after a median time of 82.0 (55.0–101.0) days since vaccination, and APACHE II (Acute Physiology and Chronic Health Evaluation II) and SOFA (Sepsis-related Organ Failure Assessment) scores at this time point were 12 (9–17) and 4 (3–5), respectively. All patients showed bilateral pulmonary infiltrates. Additionally, 35 of 81 (43.2%) vaccines administered were BNT 162b2; 26 (32.1%) JNJ-78436735; 16 (19.8%) mRNA-1273; and four (4.9%) AZD1222.

Amongst the fully vaccinated population, 45 (55.6%) received invasive mechanical ventilation. 42 (51.9%) patients were placed in the prone position, and only one patient received extracorporeal membrane oxygenation support. All but five (93.8%) patients received corticosteroids. Furthermore, all patients but four (95.1%) received subcutaneous anticoagulation; 72 (88.9%) underwent antimicrobial therapies. 22 (27.2%) patients were diagnosed with nosocomial bacterial pneumonia, whilst 23 (28.4%) patients suffered acute kidney failure.

The in-hospital mortality rate was 34.6%, and the main causes of death included respiratory failure (n=19, 27.2%) patients were diagnosed with nosocomial bacterial pneumonia, whilst 23 (28.4%) patients suffered acute kidney failure.

To our knowledge, this study is the first descriptive report of fully vaccinated patients requiring ICU admission due to severe COVID-19. The main finding of this study is that patients with specific comorbidities and full vaccination regimen may be at risk of developing severe COVID-19, even though vaccines have proven to be greatly effective in the general population [2, 3, 5]. Importantly, only 7% of patients with severe COVID-19 were fully vaccinated. We observed a notably high incidence of comorbidities in this population, especially as they relate with vascular disease (i.e., hypertension, diabetes mellitus and chronic renal disease) and immunosuppression status. When we compared this incidence with that of a non-vaccinated group of patients requiring ICU admission during coinciding periods, we observed a three-fold increase in immunosuppression; chronic respiratory disease, renal disease, diabetes mellitus and hypertension rates almost doubled. Of note, the median time between the onset of symptoms and hospital admission was significantly shorter for fully vaccinated cases than unvaccinated patients with COVID-19.

Contou et al. [6] have described a second-wave French cohort of non-vaccinated patients. This cohort had similar or slightly increased comorbidity rates compared to those of our non-vaccinated group, albeit lower than that of our fully vaccinated patients. Juthani et al. [7] and Brosh-Nissimov et al. [8] have reported small series of fully vaccinated patients that required hospitalisation, including mild to severe patients. Like our study, both investigations found a high rate of comorbidities amongst severe or critically ill patients [7, 8].
In a case–control study including 35 fully vaccinated patients admitted to the ICU, TENFORDE et al. [9] found that the significant association between hospitalisation for COVID-19 and decreased likelihood of vaccination was weaker in immunocompromised patients than immunocompetent patients.

The implications of our findings are manifold. First, these findings encourage discussion on the possible need for further interventions, such as the use of COVID-19 vaccine boosters, in this population. Some recent studies have already debated the practicality of a third dose of the vaccine [10–12]. Our data suggest that patients with comorbidities may benefit from these strategies.

Secondly, the substantial number of immunocompromised patients also suggests a poorer immune response in this population. Previous data have already demonstrated that some of these patients had low antibody levels after full vaccination [13, 14]. In this context, more personalised management of immunosuppressed patients, e.g. measuring antibody levels after vaccination, could prove to be a reasonable option.

Lastly, an increase in comorbidities directly impacts ICU management and the clinical outcomes of a fully vaccinated population. Some studies have already discussed prognosis in patients with previous comorbidities who develop COVID-19 [15, 16]. Indeed, we still observed high ICU mortality rate in fully vaccinated patients, reaching similar levels to previous reports, including those in fully vaccinated patients [6–8, 17, 18]. Worsening of underlying illnesses and/or lower vaccine effectiveness in those patients may provide an explanation for these high rates [8]. Nevertheless, we observed no differences in mortality between both groups, despite higher rates of comorbidities in fully vaccinated patients. Of note, a final decision to not increase supportive measures was made in 16 (19.8%) fully vaccinated patients.

Our study has some limitations, however. First, we collected data from a small cohort. A larger sample size would be ideal to confer a more robust generalisation of our results. Second, our control group was a small sample of the large, non-vaccinated population. As both study periods partially overlapped, it is also worth considering the role of emerging SARS-CoV-2 variants in these scenarios. Finally, we were not able to know the SARS-CoV-2 viral load and variant, or antibody titres before COVID-19 onset.

To conclude, only 7% of patients with severe COVID-19 were fully vaccinated. Nonetheless, a clinical scenario of severe COVID-19 disease requiring ICU admission is possible amongst the vaccinated population, especially in those with comorbidities and/or immunosuppression. Therefore, further interventions to improve vaccine response, including an additional dose, might be necessary for this population.

Anna Motos1,2,16, Alexandre López-Gavín2,16, Jordi Riera 3, Adrián Ceccato1, Laia Fernández-Barat1,2, Jesús F. Bermejo-Martin4,5, Ricard Ferrer 1, David de Gonzalo-Calvo1,6, Rosario Menéndez7, Raquel Pérez-Arnal9, Dario García-Gasulla 5, Alejandro Rodríguez2, Oscar Peñuelas1,10, José Ángel Lorente3,10, Raquel Almansa4,5, Albert Gabarrús2, Judith Marin-Corral1, Pilar Ricart12, Ferran Roche-Campo13, Susana Sancho Chinesta14, Lorenzo Socías15, Ferran Barbé1,6 and Antoni Torres 1,2 on behalf of the CIBERESUCICOVID Project (COV20/00110, ISCIII)

1Centro de Investigación Biomédica En Red – Enfermedades Respiratorias (CIBERES), Barcelona, Spain. 2Institut d’Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Universitat de Barcelona, Barcelona, Spain. 3Intensive Care Dept, Hospital Universitari Vall d’Hebron, Vall d’Hebron Institut de Recerca, Barcelona, Spain. 4Hospital Universitario Río Hortega de Valladolid, Valladolid, Spain. 5Instituto de Investigación Biomédica de Salamanca (IBSAL), Gerencia Regional de Salud de Castilla y León, Salamanca, Spain. 6Translational Research in Respiratory Medicine, Respiratory Dept, Hospital Universitari Aranu de Vilanova and Santa Maria; IRBLleida, Lleida, Spain. 7Pulmonary Dept, University and Polytechnic Hospital La Fe, Valencia, Spain. 8Barcelona Supercomputing Centre (BSC), Barcelona, Spain. 9Critical Care Dept, Hospital Joan XXIII, Tarragona, Spain. 10Hospital Universitario de Getafe, Universidad Europea, Madrid, Spain. 11Critical Care Dept, Hospital del Mar-IMIM, Barcelona, Spain. 12Servei de Medicina Intensiva, Hospital Universitari Germans Trias, Badalona, Spain. 13Critical Care Dept, Hospital Verge de la Cinta, Tortosa, Spain. 14Servicio de medicina intensiva, Hospital Universitario y Politécnico La Fe, Valencia, Spain. 15Intensive Care Unit, Hospital Son Llàtzer, Palma de Mallorca, Spain. 16A. Motos and A. López-Gavín equally contributed to the manuscript.

Corresponding author: Antoni Torres (atorres@clinic.cat)

Acknowledgements: The authors are indebted to Maria Arguimbau, Raquel Campo, Natalia Jarillo, Javier Muñoz, Elisabeth Sancho and Manuel Sanchez for their extensive support in project management and article preparation.
CIBERESUCICOVID collaborator group: Berta Adell-Serrano, Alexander Agrifoglio, María Aguilar Cabello, Luciano Aguilara, Victoria Alcaraz-Serrano, Cesar Aldecoa, Cynthia Alegre, Sergio Álvarez, Antonjo Álvarez Ruiz, Rut Andrea, José Ángel, Marta Arrieta, J Ignacio Ayestárriz, Joan Ramon Badia, Mariona Badia, Ovville Bázé Pravía, Ana Balan Marifo, Begoña Balsera, Laura Barbena, Carme Barberà, José Barberán, Enric Barbeta, Tommaso Baridi, Patricia Barral Segade, Marta Barroso, Aaron Blandino Ortiz, José Ángel Berezó García, Judit Bigas, Rafael Blancas, Maria Luisa Blasco Cortés, María Boado, María Bodí Saera, Neus Bofill, Marína Teresa Bouza Vieiro, Leticia Bueno, Elena Bustamante-Munguira, Juan Bustamante-Munguira, Jesús Caballero, Lucía Cachafeiro, David Campi Hermoso, Sandra Campos Fernández, Iosune Cano, María Luisa Cantón-Buñes, Cristina Carbajales, Nieves Carbonell, Pablo Cardina Fernández, Laura Carrión García, Sula Carvalho, Núria Cascaburta-Barberá, Manuel Castellá, Andrea Castellví, Pedro Castro, Mercedes Catalán-Caballero, Ramon Cucuendez Ávila, Catia Cilíñiz, LUISA Clar, Cristina Climent, Jordi Codina, Pamela Conde, Sofía Contreras, María Cruz Martín, María del Carmen de la Torre, Raul de Pablo Sánchez, Diego De Mendoza, Cecilia del Busto Martinez, Yolanda Díaz, Emili Díaz, María Digna Rivas Vilas, Cristina Dólera Moreno, Irene Dot, Pedro Enriquez Giraudo, Inés Esmorís Arijón, Ángel Estella, Teresa Farre Monjo, Javier Fernández, Carlos Ferrando, Albert Figueras, Eva Forcadell-Ferrerers, Lorena Forcelledo Espina, Nieves Franco, Ángels Furro, Cristòbal Galbán, Elena Gallego, Eugenia García, Felipe García, Beatriz García, Emilio García Prieto, Carlos García Redruello, Amaia Garcia Sagastume, José Luis García Garmendia, José Garnacho-Montero, José M. Gómez, Maria Luisa Gascón Castillo, Gemma Gomà, Vanesa Gómez Casal, Silvia Gómez, Carmen Gómez Gonzalez, Jessica González, Federico Gordo, Maria Pilar Gracia, Victor D. Gumucio- Sanguino, Alba Herráiz, Arturo Huerta, Rubén Herrán-Monge, Mercedes Ibarz, Silvia Iglesias, María Teresa Janer, Gabriel Jiménez, Ruth Noemí Jorge García, Mar Juan Díaz, Karsa Kiarostami, Juan I Lazo Álvarez, Miguel León, Ana López Lago, Ana Loza-Vázquez, Desire Macías Guerrero, Nuria Mamoler Herrera, Rafael Mañez Mendiluce, Cecilia L Mantellini, Gregorio Marco Naya, Pilar Marcos, Enrique Marmol Peis, Cinta Marsà-Fadurdo, Paula Martín Vicente, María Martínez, Amalia Martínez de la Cándara, Carmen Eulalia Martinez Fernández, María Dolores Martinez Juan, Ignacio Martínez Varela, Juan Fernando Masa Jimenez, Joan Ramon Masclans, Emilio Maseda, Eva María Menor Fernández, Juan Lopez Messa, Mar Miraibés, Josman Monclou, Juan Carlos Montejo-Gonzalez, NeusMontserrat, María Mora Aznar, Pedro Moral-Parras, Dulce Morales, Sara Guadalupe Moreno Cano, David Mosquera Rodríguez, Guillermo M Albaiceta, Rosana Muñoz-Bermúdez, José María Nicolás, Ramon Nogueu Bou, Rafaela Nogueras Salinas, Mariana Andrea Newo, Marta Ocón, Ana Ortega, Sergio Osma, Pablo Pagliarani, Yhivian Peñasco, Anna Parera Pous, Francisco Parrilla, Leire Pérez Bastida, Purificación Pérez, Gloria Pérez Planelles, Eva Pérez Rubio, David Pestaña Laguna, Ángels Piñol-Tena, Juan Carlos Pozo-Laderas, Javier Prados, Andrés Pujol, Núria Ramon Coll, Gloria Leonardo Sanchez-Giron, Laura Rodríguez, Felipe Rodríguez de Castro, Silvia Rodríguez, Covadonga Rodríguez Ruiz, Jorge Rubin, Alberto Rubio López, Miriam Ruiz Miralles, Pablo Ryan Murúa, Eva Sabordio Paz, Ana Salazar Degracia, Inmaculada Salvador-Adell, Miguel Sanchez, Ana Sánchez, Angel Sanchez-Miralles, Bitor Santacoloma, Maria Teresa Sariñena, Marta Segura Pensado, Lidia Serra, Mireia Serra-Fortuny, Ainhoa Serrano Lázaro, Luis Serviá, Jordi Solé-Violan, Laura Soliva, Carla Speziale, Fernando Suáres Sipmann, Luis Tamayo Lomas, Daniel Tognetti, Adrián Tormos, Mateu Torres, Sandra Trefler, José Trenado, Javier Trujillano, Alejandro Úbeda, Luis Urrelo-Cerrón, Estela Val, Luis Valdivia Ruiz, Montse Vallverdú, María Van der Hofstadt Martin-Montalvo, Sabela Vara Adrio, Nil Vázquez, Javier Vengoechea, Pablo Vidal Cortes, Clara Vilà-Vilardel, Judit Vilanova, Tatiana Villada Warrington, Hua Yang, Minlan Yang, Ana Zapatero.

Data sharing: The datasets used and/or analysed during the current study are available from the corresponding author per reasonable request.

Author contributions: A. Motos, A. López-Gavín, J. Riera and A. Torres participated in protocol development, study design, study management, statistical analysis and data interpretation, and wrote the first draft of the report. A. Ceccato, L. Fernández-Barat, R. Pérez-Amal, D. García-Gasulla, O. Peñuelas, JÁ. Lorente, A. Rodriguez, D. de Gonzaolo-Calvo, R. Almansa, R. Menéndez, J.F. Bermejo-Martin, R. Ferrer and F. Barbé participated in study design, study management and interpretation, and provided critical review of the first draft of the report. A. Gabarrus performed statistical analysis and provided critical review of the first draft of the report. J. Marin-Corral, P. Ricart, F. Roche-Campo, S. Sancho Chinesta and L. Socias participated in data collection.

Conflict of interest: The authors have disclosed that they do not have any conflicts of interest.

Support statement: Financial support was provided by the Instituto de Salud Carlos III de Madrid (COV20/00110, ISCIII), Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, and Centro de Investigación Biomedica En Red – Enfermedades Respiratorias (CIBERES). D. De Gonzalez-Calvo has received financial support from the Instituto de Salud Carlos III (Miguel Servet 2020: CP20/00041), co-funded by European Social Fund (ESF)/“Investing in your future”. Funding information for this article has been deposited with the Crossref Funder Registry.

https://doi.org/10.1183/13993003.02275-2021
References

1. Ministerio de Sanidad - Gobierno de España. Enfermedad por nuevo coronavirus, COVID-19. www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/home.htm Date last updated: 2 October 2021. Date last accessed: 2 October 2021.

2. Bergwerk M, Gonen T, Lustig Y, et al. Covid-19 breakthrough infections in vaccinated health care workers. N Engl J Med 2021; 385: 1474–1484.

3. Tenforde MW, Patel MM, Ginde AA, et al. Effectiveness of SARS-CoV-2 mRNA vaccines for preventing Covid-19 hospitalizations in the United States. Clin Infect Dis 2021; in press [https://doi.org/10.1093/cid/ciab687].

4. Torres A, Arguimbau M, Bermejo-Martín J, et al. CIBERESUCICOVID: a strategic project for a better understanding and clinical management of COVID-19 in critical patients. Arch Bronconeumol 2021; 57: Suppl. 2, 1–2.

5. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384: 403–416.

6. Contou D, Fraisse M, Pajot O, et al. Comparison between first and second wave among critically ill COVID-19 patients admitted to a French ICU: no prognostic improvement during the second wave? Crit Care 2021; 25: 3.

7. Juthani PV, Gupta A, Borges KA, et al. Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infect Dis 2021; 21: 1485–1486.

8. Brosh-Nissimov T, Orenbuch-Harroch E, Chowers M, et al. BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. Clin Microbiol Infect 2021; 27: 1652–1657.

9. Tenforde MW, Self WH, Adams K, et al. Association between mRNA vaccination and COVID-19 hospitalization and disease severity. JAMA 2021; 326: 2043–2054.

10. Benotmane I, Gautier G, Perrin P, et al. Antibody response after a third dose of the mRNA-1273 SARS-CoV-2 vaccine in kidney transplant recipients with minimal serologic response to 2 doses. JAMA 2021; 326: 1063–1065.

11. Mahase E. Covid-19: third vaccine dose boosts immune response but may not be needed, say researchers. BMJ 2021; 373: n1659.

12. Werbel WA, Boyarsky BJ, Ou MT, et al. Safety and immunogenicity of a third dose of SARS-CoV-2 vaccine in solid organ transplant recipients: a case series. Ann Intern Med 2021; 174: 1330–1332.

13. Boyarsky BJ, Werbel WA, Avery RK, et al. Antibody response to 2-dose SARS-CoV-2 mRNA vaccine series in solid organ transplant recipients. JAMA 2021; 325: 2204–2206.

14. Havlin J, Svorcova M, Dvorackova E, et al. Immunogenicity of BNT162b2 mRNA COVID-19 vaccine and SARS-CoV-2 infection in lung transplant recipients. J Heart Lung Transplant 2021; 40: 754–758.

15. Fang X, Li S, Yu H, et al. Epidemiological, comorbidity factors with severity and prognosis of COVID-19: a systematic review and meta-analysis. Aging (Albany NY) 2020; 12: 12493–12503.

16. Grasselli G, Greco M, Zanella A, et al. Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy, Italy. JAMA Intern Med 2020; 180: 1345–1355.

17. Grasselli G, Zaninotto A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA 2020; 323: 1574–1581.

18. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med 2021; 47: 60–73.