Transcriptional Profile Alteration of Peripheral Blood in Chronic Hypoxia

Tingting Wang¹, Junyue Xing¹, Lijing Zhang³, Hao Zhang¹,²*

¹State Key Laboratory of Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
²Heart Center and Shanghai Institution of Pediatric Congenital Heart Diseases, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
³Children's Heart Center, the Second Affiliated Hospital and Yuying Children's Hospital, Institute of Cardiovascular Development and Translational Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China

Key words: chronic hypoxia; RNA-Seq; peripheral blood; cyanotic congenital heart diseases

Objective Many physiological and pathological conditions, including cyanotic congenital heart diseases (CCHD), are accompanied by chronic hypoxia, which might interfere with the transcription process. However, the transcriptome profile in peripheral blood under hypoxia is still unidentified. The present work aimed to explore the transcriptional profile alteration of peripheral blood in chronic hypoxia.

Methods The present study used a chronic hypoxia rat model to simulate the hypoxic state of CCHD patients. Two groups of Sprague-Dawley rats (n=6 per group) were either exposed to hypoxia (10% O₂) or normoxia (21% O₂) for 3 weeks. Body weight was measured weekly. Peripheral blood was collected and total RNA was extracted for RNA-Seq at the end of the hypoxia treatment. After quality assessment, the library was sequenced by the Illumina Hiseq platform. The differentially expressed genes

Received May 20, 2019. Published online January 20, 2020.
*Corresponding author E-mail: drzhanghao@yahoo.com

This study was supported by the National Science Fund for Distinguished Young Scholars (81525002, 2016-2020).
(DEGs) were screened (false discovery rate<0.05 and fold change>2). The functional annotation analysis and cluster analysis of DEGs were performed based on the adjusted P-value ($padj<0.05$).

Results Compared with the control group, the body weight of the rats in the hypoxia group was significantly lowered ($P<0.01$). RNA-Seq results showed that the transcriptome patterns of the two groups had significant differences. In total, 872 genes were identified as differentially expressed. Among all, 803 genes were down-regulated, while only 69 genes were up-regulated in the hypoxia group. The functional enrichment analysis of the 872 genes showed that multiple biological processes were involved, such as porphyrin-containing compound metabolic process, hemoglobin complex and oxygen transporter activity.

Conclusions Our study demonstrated the transcriptional profile alteration in peripheral blood of chronic hypoxia rat model. This study provided basic data and directions to further understand the physiological and pathological changes in patients with CCHD.

Oxygen is a basic factor involved in numerous developmental processes and tissue homeostasis, and it is essential for oxidative metabolism, energy supply, and cell survival.$^{[1]}$ Insufficient oxygen supply inevitably results in disturbance of energy metabolism, tissue function, or morphological structure.$^{[2]}$ When the oxygen demand and oxygen supply are unbalanced, the organism will suffer from hypoxia. Different from acute hypoxia, chronic hypoxia is a general stress that involved in many disease,$^{[3, 4]}$ such as cyanotic congenital heart diseases (CCHD),$^{[5]}$ myocardial infarction,$^{[6]}$ stroke,$^{[7]}$ cancer,$^{[8]}$ bronchopulmonary dysplasia$^{[9]}$ and pulmonary obstruction.$^{[10]}$ Instead of passing through the lungs for oxygenation, parts of the venous blood were mixed with the systemic arterial blood through abnormal shunts, resulting in long-term chronic hypoxia in children with CCHD.$^{[11]}$

Gene transcription is a strictly controlled process. In line with the principle of economy and efficiency, only the genes needed by the tissues or cells could be
expressed.\[12\] There is no doubt that chronic hypoxia affects transcriptional processes, and a lot of evidence support this concept.\[13, 14\] Herein, we introduced the transcriptome analysis to elucidate the pathological process under hypoxia.

We choose the peripheral blood as research material since blood flowed through the whole body and associated with all tissues. Genes expression pattern in peripheral blood is more than 80% similar to those expressed in other tissues or cells.\[15\] Additionally, blood samples are convenient to obtain from subjects and cause less damage to subjects. Currently, most studies of chronic hypoxia were carried on tumors\[16\] and high altitude populations.\[17\] The effect of chronic hypoxia alone on the whole blood transcriptome is undetermined.

Here, 2 weeks old rats were exposed to 10% O_2 for 3 weeks to simulate the chronic hypoxic state of CCHD patients.\[18, 19\] Given that hypoxia animal models have been widely demonstrated to share similarities in both physiological and myocardial metabolism with CCHD,\[20\] this study may help us to unveil the alteration of peripheral blood-derived gene expressions in rat models undergoing hypoxia exposure, whereby a list of homologous genes changing in expression likely vary analogously in CCHD.

MATERIALS AND METHODS

Study design and animal model

Two weeks old Sprague-Dawley rats were purchased from Beijing Vital River Laboratory Animal Technology Co., Ltd. (Beijing, China) and randomly divided into 2 groups ($n=6$ per group, female: male=3: 3). They were either exposed to hypoxia ($10\% O_2$, Biospherix, USA) or normoxia ($21\% O_2$) for 3 weeks. The body weight was measured weekly. All treatments were conducted in accordance with humane animal care standards approved by the Institutional Animal Care Committee of Fuwai Hospital and Fuwai Hospital Ethics Committee (Beijing, China).
Blood sampling and RNA extraction

At the end of the experiment, whole blood samples were collected in tubes containing heparin (Vacuette, Austria). Total RNA was extracted from the blood samples with Trizol LS (Invitrogen, USA) following the manufacturer's instructions. In detail, 150 μl of whole blood was pipetted and diluted with RNase free water at a volume ratio of 1:1 to make a 300 μl sample. Then 900 μl of Trizol LS (Invitrogen, USA) was added into the mixed sample and homogenized. Two minutes later, 240 μl of chloroform was added and mixed by vortex. After 5 minutes’ incubation at room temperature, the sample was centrifuged at 12 000×g for 15 minutes at 4°C. The upper transparent liquid was transferred to a new tube, followed by adding 600 μl of isopropanol. After 10 minutes’ incubation at room temperature, the sample was centrifuged at 12 000×g for 10 minutes at 4°C. The liquid was removed and the pellet was washed with 75% ethanol. At last, the RNA pellet was dissolved in 50 μl of RNase free water. The concentration of the RNA was determined by NanoDrop spectrophotometer (Thermo Fisher, USA). RNA quality was confirmed by Agilent 2100 Bioanalyzer (Agilent Technologies, USA). Samples with RNA integrity number (RIN) ≥ 8.5 were used for further analysis.

RNA library preparation and deep sequencing

The NEBNext® Ultra™ RNA Library Prep Kit (New England BioLabs, USA) was used for sequencing library preparation. In brief, mRNA was purified by magnetic beads with polyT attachment. The mRNA was fragmented and used as the template for the first strand synthesis of cDNA. The RNA strand was degraded with RNaseH and then the second strand of cDNA was synthesized. The double-stranded cDNA was purified, and subjected to end repair and adaptor connection. The cDNA fragments of 200-300 bp in length were filtered with AMPure XP beads (Beckman Coulter, UK). After library preparation, the quantity was measured by Qubit 2.0 Fluorometer (Life Technologies, USA), and all samples were diluted to the same concentration. Library quality was assessed on the Agilent 2100 Bioanalyzer system (Agilent Technologies, USA). The library was sequenced on an Illumina Hiseq platform (Illumina, USA) by
Novogene Bioinformatics Technology Co., Ltd., (Beijing, China) and 150 bp paired-end reads were generated.

Quality control and reads mapping

The raw sequencing data were filtered by removing the reads with adapters, reads containing N (N means that base information cannot be determined), and low quality reads. Through the above process, clean data was obtained. All the downstream analyses were based on clean data with high quality. The reference genome of rat (RGSC6.0/rn6) was downloaded from the National Center for Biotechnology Information (NCBI, https://www.ncbi.nlm.nih.gov). All the clean data reads were aligned against the reference genome annotation file to get the BAM format file.

Quantification of gene expression level and differential expression analysis

FeatureCounts software (v1.5.0-p3, https://sourceforge.net/projects/subread/) was used to quantify the gene expression level. And the FPKM (fragments per kilobase of transcript per million mapped reads) of each gene was calculated based on the length of the gene and the reads count mapped to this gene. Differential expression analysis between the two groups was performed using the DESeq2 package (Version 1.16.1) in R software (https://www.r-project.org/). And false discovery rate (FDR)<0.05 & fold change (FC)>2 were considered significantly different.

Functional annotation and enrichment of differentially expressed genes

Gene Ontology (GO) analysis (molecular function, cellular component, and biological process) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of differential expressed genes (DEGs) were performed by the clusterProfiler package in R software. And FDR<0.05 was considered to be significantly different.

Protein-Protein Interaction analysis of DEGs

Protein-protein interaction analysis of DEGs was based on the STRING database.
(https://string-db.org/), which is known for predicted protein-protein interactions. We chose two types of evidence (evidence comes from actual experiments or databases) as evidence sources for protein-protein interaction analysis. Confidence scores (scaled between 0 and 1) were provided to weigh the interaction. The confidence score was divided into four grades: highest confidence (>0.900), high confidence (0.700-0.900), medium confidence (0.400-0.700) and low confidence (<0.400).[21] The analysis result was visualized with the Cytoscape software (Version 3.3.0, https://cytoscape.org/). Meanwhile, the complex network was clustered by the MCODE (Molecular Complex Detection) plug-in to build the functional modules.[22]

Statistical analysis

Statistical analyses related to animal information were performed by SPSS Statistics 22.0 (IBM Corp. USA). The differences between groups were analyzed by Student’s t-test. All data were presented as the mean ± standard deviation. P<0.05 was considered to be significantly different.

Statistical analyses related to gene expression were performed in R software (R Version 3.5.2). Benjamini-Hochberg (BH) procedure was applied to control the false positive rate in multiple comparisons. FDR<0.05 was considered to be significantly different.

RESULTS

The characteristics of the studied rats

Rats were exposed to hypoxia (n=6) or normoxia (n=6) for 3 weeks. As shown in Figure 1, the growth rate of the hypoxia group rats was significantly lowered during the hypoxia exposure (3 weeks, t=-9.271, P<0.001; 4 weeks, t=-9.132, P<0.001; 5 weeks, t=-6.225, P<0.001). There was no difference between the two groups at the baseline (t=-0.628, P=0.544). These data indicated that the weight gain of the rat in the hypoxia group was limited by oxygen deficiency.
Figure 1. The dynamic change of body weight.
Data were shown as mean±SD, and statistical significance was analyzed by Student’s t-test ($n=6$ per group, **$P<0.01$).

Quality of RNA-Seq analysis
The raw base data was more than 12GB. And the Q20 (ratio of bases with a Phred quality value greater than 20 to the total base) was greater than 91%. The distribution of the raw reads in the two groups was exhibited in Figure 2. The clean reads in the two groups were approximate 97%, while low quality reads accounted for 1% only. More than 99% reads distributed in the exon region of the gene (Table 1). To sum up, the quality of the RNA-Seq data was reliable.

Figure 2. Distribution of raw reads in the control group (A) and the hypoxia group
Table 1. Distribution of clean reads in genes (%)

Sample ID	Exon	Intron	Intergenic
C1	99.61	0.18	0.20
C2	99.22	0.44	0.34
C3	99.48	0.27	0.25
C4	99.45	0.28	0.27
C5	99.07	0.54	0.39
C6	99.48	0.27	0.25
H1	99.26	0.40	0.34
H2	99.26	0.38	0.36
H3	99.26	0.40	0.34
H4	99.34	0.33	0.32
H5	99.06	0.53	0.41
H6	99.03	0.51	0.46

C1-6 for control1-6 and H1-6 for hypoxia1-6.

Differential gene expression analysis between two groups

To quantify the expression level of the gene, the gene reads counts were normalized and expressed in FPKM value. Principal Component Analysis (PCA) and hierarchical cluster analysis were performed based on the FPKM value. As shown in Figure 3A, the first two principal components of PCA were 63.5% and 8.9% respectively.

Hierarchical cluster analysis (Figure 3B) showed that the samples in the same group were clustered together, and similar gene expression patterns were displayed in the same groups, while the expression patterns of the two groups were significantly different from each other.

Further analysis showed that a total of 872 genes displayed significantly different between the two groups (FDR<0.05 and FC>2). As shown in Figure 3C, the red dot represented down-regulated genes and the blue dot represented up-regulated genes in the hypoxia group. The number of down-regulated genes was 92.09% of the total DEGs (803/872), while the up-regulated genes only accounted for 7.91% (69/872; Figure 3D). In sum, chronic hypoxia inhibits gene transcription at the whole transcriptome level.
Figure 3. Differential analysis of gene expression.

A. Principal Component Analysis (PCA) of transcriptome data. B. Heatmap of the differential expressed genes (DEGs) for the two groups. C. Volcano plot the DEGs for the two groups. Red dot represents down-regulated genes, and blue dot represents up-regulated genes and gray dot represents not changed genes in the hypoxia group. D. The pie chart of DEGs.

Functional enrichment analysis of DEGs

GO analysis showed that the DEGs were mainly enriched in oxygen transporter activity, hemoglobin complex and porphyrin-containing compound metabolic process, respectively (Figure 4A, marked in red box). These genes were also involved in iron ion binding, organelle disassembly, and antigen processing and presentation (Figure
The KEGG pathways analysis demonstrated that these genes were involved in mitophagy, porphyrin and chlorophyll metabolism and ferroptosis (Figure 4B, marked in black box).
Figure 4. Functional enrichment of DEGs.

A. Gene Ontology (GO) terms (biological process, cellular component and molecular function) for DEGs. B. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for DEGs.

padj: adjusted P-value.

Gene interaction network and functional modules

Further analysis removed 11 new genes, 137 non-protein coding genes or pseudogenes, and 1 mitochondrial from 872 DEGs, 723 protein-coding genes remained for the protein-protein interaction network analysis. With the confidence score cutoff of 0.7, the final network contained 283 nodes (genes in the network) and 908 edges (interactions between genes) (Figure 5A). The top 30 high-degree (the number of adjacent links of nodes) nodes and their FC was shown in Table 2. The top six functional modules are demonstrated in Figure 5B-G. They might be related to protein degradation, cytoskeleton, transcriptional regulation, immunity, cell cycle and body weight, respectively.
Figure 5. Gene protein-protein interaction network analysis.

A. The network of DEGs. B-G. The top 6 functional modules identified from the network. Red circles represent up-regulated genes. Blue circles represent down-regulated genes. The circle size reflects the fold change of genes.

FC: fold change.

Table 2. The top 30 high-degree nodes in the protein-protein interaction network

Gene	Degree	Log₂FC
Ubb	56	1.54
Cdc20	37	1.84
Anapc2	31	1.25
Fzr1	30	1.36
Dctn2	26	1.37
Dctn3	25	1.11
Ube2l6	25	1.94
Aurka	23	1.48
Ube2o	23	1.20
Nedd4l	23	1.17
Asb11	22	1.66
Fbxo7	22	1.75
Rnf114	22	2.17
DISCUSSION

In the present study, we described the characteristics of the transcriptome profile in peripheral blood from chronic hypoxia juvenile rats. The rats’ growth was limited by chronic hypoxia exposure, with the transcriptome pattern changed dramatically. GO, KEGG pathway and protein-protein interaction analysis revealed a series of related alterations to further understanding the effects of chronic hypoxia.

In this study, the growth of rats in the hypoxia group was significantly inhibited. The results are consistent with previous studies.\[^{23}\] Under the condition of chronic hypoxia, the rats often have insufficient energy intake due to feeding difficulties.\[^{24}\] The energy production switches from aerobic oxidation to glycolysis, which depletes less oxygen with inefficient energy production. Many studies have shown that patients with CCHD are accompanied by poor growth\[^{25,26}\] and neurodevelopmental disorders.\[^{27}\]

In addition to insufficient energy intake and low metabolic efficiency, the transportation of the patient's oxygen and nutrient is abnormal due to structural malformations.\[^{28}\] These are considered to be the main causes of deficient growth and
development in the condition of chronic hypoxia.

Compared to the normoxia group, the down-regulated genes in the hypoxia group accounted for more than 90% of all DEGs. This indicated that hypoxia reduced the activity of global transcription. Similar findings have been reported in previous studies, hypoxia significantly inhibited total RNA and mRNA synthesis in mouse hepatoma cells, which is independent of Hif1. The extent of inhibition was determined by both the duration and the severity of hypoxia.[29] Under hypoxia, ATP production is insufficient to support growth requirements, the body preferentially provides ATP to the housekeeping gene to maintain normal function instead of other luxury genes.[30] This helps the body survives under low ATP conditions and is an adaptive response of the body to hypoxia.

The functional enrichment analysis revealed that the down-regulated DEGs were associated with the hemoglobin biosynthesis, which is contradicting with other studies that chronic hypoxia is often accompanied by higher production of hemoglobin. Modification of hemoglobin function usually plays a key role in hypoxia adaptation.[31] Under hypoxic conditions, arterial oxygen saturation was reduced. In order to provide sufficient oxygen to the body, the volume of blood cells would be increased with the enhanced affinity of hemoglobin to oxygen.[32, 33] In addition, the hemoglobin concentration increases due to the decreased plasma volume.[34] The transcription level of hemoglobin will decrease rapidly at the initial stage of hypoxia, then rise briefly, and continue to decline slowly.[35] In sum, the high level of hemoglobin in hypoxia patients is not due to increased transcription of hemoglobin related genes, but rather due to the decrease of the plasma volume.

Hemoglobin is an iron-bound protein. It is taken for granted that many DEGs may associate with iron homeostasis. GO and KEGG analysis revealed that iron homeostasis was disturbed after long-term hypoxia exposure. Studies have shown that maintenance of iron homeostasis depends on proper oxygen supply.[36] Under hypoxic
conditions, the iron storage protein in the skeletal muscle was down-regulated, and the utilization of iron by other cells and tissues was increased to upregulate the synthesis of heme.\[^{37}\] Besides, iron deficiency exacerbated the increase in pulmonary artery systolic pressure under hypoxia exposure, while iron supplement effectively reversed the increase of pulmonary artery systolic pressure.\[^{38}\] In summary, hypoxia disturbed the iron homeostasis, and the disequilibrdation affected the response of organisms to hypoxia.

Another interesting finding from this study was that hypoxia affects many major histocompatibility complex (MHC) genes. The MHC of rats, also known as the RT1 complex, is primarily involved in the antigen processing and presentation and plays an important role in inflammatory responses and immune regulation.\[^{39}\] In our study, many MHC class I family genes (mainly involved in endogenous antigen presentation) were downregulated, while lots of MHC class II family genes (mainly involved in exogenous antigen presentation) were upregulated, indicated that hypoxia has different impacts on the presentation of different types of antigens. In some tumor-related studies, it was found that hypoxia inhibits upregulation of IFN-γ-dependent MHC class I expression, and hyperoxia upregulated MHC class I at the transcriptional level. Downregulation of MHC class I affects anti-tumor immune responses and helps tumor cells to escape from the recognition of anti-tumor cells and cause immune escape. And radiotherapy can increase the anti-tumor immune response by alleviating hypoxia in the tumor.\[^{40,41}\] However, other tumor-related studies have shown that hypoxia enhances the antigen presentation of MHC class I.\[^{42}\] The relationship between hypoxia and the MHC class II family is not identified. MHC class II expression was inhibited in most short-term hypoxia, such as in trauma or in-vitro studies.\[^{43-46}\] The reasons for these contradictions perhaps due to differences in cell lines or the severity of hypoxia. Therefore, further exploration is needed to address this issue.

Hypoxia affects the function of oxygen-related organelles, such as mitochondria,
endoplasmic reticulum and peroxisomes.[47] Our study also showed that many DEGs are related to organelle disassembly and enriched in the mitophagy pathway. Under chronic hypoxic conditions, mitochondrial assembly is disrupted.[48, 49] Mitophagy is an adaptive response of cells to hypoxia, which prevents cell death by degrading damaged mitochondria.[50] Previous studies have revealed that mitophagy is activated during hypoxia, and related gene is up-regulated. With the increase of hypoxia, mitophagy is inhibited.[51, 52] Our study revealed that the mitophagy-related genes, such as \textit{Map1lc3a, Map1lc3b, Bnip3l} or \textit{Pink1} were widely down-regulated after a long period of hypoxia, which coincides with previous studies.[51] It also shows that chronic hypoxia severely affects the normal function of organelles. For patients with chronic hypoxia, timely correction of hypoxia might be extremely important.

Gene network analysis showed that the functions of DEGs were mainly involved in protein degradation, cytoskeleton remodeling, and cell cycle regulation. Under anaerobic conditions, protein degradation was blocked due to insufficient energy supply. The accumulation of metabolites in glycolysis might further inhibit energy production and protein degradation.[53] As a result, the organism cannot rely on protein degradation to repair damage caused by hypoxia, resulting in long-term irreversible changes. Another classic response to hypoxia is cytoskeleton disruption and remodeling. Hypoxia affects the dynamic process of actin, which has been verified to occur in various cells.[54-56] Compared with cells cultured in normoxia, the cell morphology, adhesion, and movement of hypoxic cells have changed dramatically.[57-59] During prolonged hypoxia, the destruction of the microtubule gradually increased,[60] and the formation of the centrosome is blocked, leading to the dysfunction of cell mitotic activity.[61] In our study, microtubule-associated genes, such as \textit{Tubb4b, Tuba4a, Dctn2, Dctn3} were inhibited, together with alteration of cell cycle-related genes, leading to cell cycle arrest. Inhibition of protein degradation, mitotic dysfunction, and cell cycle arrest may be another important reason for the slow growth of young rats in the hypoxic group.

Our study focused on the young chronic hypoxia model to simulate the hypoxic state
of children with CCHD, while most previous research explored the process in adult animal models or cells.\cite{40-46} Since the children are in the process of growth and development, sharing different physiological and pathological processes with the adults, the study is necessary and important.\cite{62-64} In addition, our research uses whole blood as the research material which could reflect the state of the whole body and is convenient to obtain in the clinic for further study. Furthermore, in our study, subjects experienced long-term persistent hypoxia, the situation is more similar to that experienced by patients with CCHD.

The study still has limitations. In order to fully understand the impact of hypoxia on the transcription, larger sample size studies are necessary. In addition, the subject of this study is peripheral blood only. Although different tissues share more than 80% of the genes, the transcriptome profiles are tissue-specific, and whether peripheral blood can mirror systemic transcriptome patterns change remains to be further studied. The third limitation of our study is the lack of further validation, and only bioinformatics analysis of the sequencing data was performed.

In conclusion, we demonstrated the transcriptional profile alteration in peripheral blood of rat chronic hypoxia model. Our research firstly revealed the effect of hypoxia on the whole blood transcriptome. Meanwhile, the study provided basic data and directions for the study of chronic hypoxia. In addition, the study helps clinical researchers to further understand the physiological and pathological changes in patients with CCHD.

Statement of conflict of interests

The authors declare that they have no competing interests.

REFERENCES

1. Lopez-Barneo J, Pardal R, Ortega-Sáenz P. Cellular mechanism of oxygen sensing. Annu Rev Physiol 2001; 63:259-87. doi:
1. Palmer BF, Clegg DJ. Oxygen sensing and metabolic homeostasis. Mol Cell Endocrinol 2014; 397(1-2):51-8. doi: 10.1016/j.mce.2014.08.001.

2. Bayer C, Shi K, Astner ST, et al. Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 2011; 80(4):965-8. doi: 10.1016/j.ijrobp.2011.02.049.

3. Zayour D, Azar ST, Azar N, et al. Endocrine changes in a rat model of chronic hypoxia mimicking cyanotic heart disease. Endocr Res 2003; 29(2):191-200. doi: 10.1081/erc-120022301.

4. Zabala LM, Guzzetta NA. Cyanotic congenital heart disease (CCHD): focus on hypoxemia, secondary erythrocytosis, and coagulation alterations. Paediatr Anaesth 2015; 25(10):981-9. doi: 10.1111/pan.12705.

5. Burke AP, Virmani R. Pathophysiology of acute myocardial infarction. Med Clin North Am 2007; 91(4):553-72; ix. doi: 10.1016/j.mcna.2007.03.005.

6. Nathaniel TI, Williams-Hernandez A, Hunter AL, et al. Tissue hypoxia during ischemic stroke: adaptive clues from hypoxia-tolerant animal models. Brain Res Bull 2015; 114:1-12. doi: 10.1016/j.brainresbull.2015.02.006.

7. Marchiq I, Pouyssegur J. Hypoxia, cancer metabolism and the therapeutic benefit of targeting lactate/H⁺ symporters. J Mol Med (Berl) 2016; 94(2):155-71. doi: 10.1007/s00109-015-1307-x.

8. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163(7):1723-9. doi: 10.1164/ajrccm.163.7.2011060.

9. Barjaktarevic I, Cooper CB. Supplemental oxygen therapy for patients with chronic obstructive pulmonary disease. Semin Respir Crit Care Med 2015; 36(4):552-66. doi: 10.1055/s-0035-1556058.

10. Waldman JD, Wernly JA. Cyanotic congenital heart disease with decreased pulmonary blood flow in children. Pediatr Clin North Am 1999; 46(2):385-404. doi: 10.1016/S0031-3955(05)70125-5.

11. Chelly J, Concordet JP, Kaplan JC, et al. Illegitimate transcription: transcription of any gene in any cell type. Proc Natl Acad Sci U S A 1989; 86(8):2617-21. doi:
10.1073/pnas.86.8.2617.

13. Ning W, Chu TJ, Li CJ, et al. Genome-wide analysis of the endothelial transcriptome under short-term chronic hypoxia. Physiol Genomics 2004; 18(1):70-8. doi: 10.1152/physiolgenomics.00221.2003.

14. Ord JJ, Streeter EH, Roberts IS, et al. Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer. Br J Cancer 2005; 93(3):346-54. doi: 10.1038/sj.bjc.6602666.

15. Liew CC, Ma J, Tang HC, et al. The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 2006; 147(3):126-32. doi: 10.1016/j.lab.2005.10.005.

16. Tawk B, Schwager C, Deffaa O, et al. Comparative analysis of transcriptomics based hypoxia signatures in head- and neck squamous cell carcinoma. Radiother Oncol 2016; 118(2):350-8. doi: 10.1016/j.radonc.2015.11.027.

17. Yuhong L, Tana W, Zhengzhong B, et al. Transcriptomic profiling reveals gene expression kinetics in patients with hypoxia and high altitude pulmonary edema. Gene 2018; 651:200-5. doi: 10.1016/j.gene.2018.01.052.

18. Satoh K, Kagaya Y, Nakano M, et al. Important role of endogenous erythropoietin system in recruitment of endothelial progenitor cells in hypoxia-induced pulmonary hypertension in mice. Circulation 2006; 113(11):1442-50. doi: 10.1161/circulationaha.105.583732.

19. Jung F, Weiland U, Johns RA, et al. Chronic hypoxia induces apoptosis in cardiac myocytes: a possible role for Bcl-2-like proteins. Biochem Biophys Res Commun 2001; 286(2):419-25. doi: 10.1006/bbrc.2001.5406.

20. Corno AF, Milano G, Samaja M, et al. Chronic hypoxia: a model for cyanotic congenital heart defects. J Thorac Cardiovasc Surg 2002; 124(1):105-12. doi: 10.1067/mtc.2002.121302.

21. Von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic acids Res 2005; 33(Database issue):D433-7. doi: 10.1093/nar/gki005.

22. Cline MS, Smoot M, Cerami E, et al. Integration of biological networks and gene
expression data using Cytoscape. Nat Protoc 2007; 2(10):2366-82. doi: 10.1038/nprot.2007.324.

23. Radom-Aizik S, Zaldivar FP, Nance DM, et al. Growth inhibition and compensation in response to neonatal hypoxia in rats. Pediatr Res 2013; 74(2):111-20. doi: 10.1038/pr.2013.80.

24. Clemente C, Barnes J, Shinebourne E, et al. Are infant behavioural feeding difficulties associated with congenital heart disease? Child Care Health Dev 2001; 27(1):47-59. doi: 10.1046/j.1365-2214.2001.00199.x.

25. Costello CL, Gellatly M, Daniel J, et al. Growth restriction in infants and young children with congenital heart disease. Congenit Heart Dis 2015; 10(5):447-56. doi: 10.1111/chd.12231.

26. Varan B, Tokel K, Yilmaz G. Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child 1999; 81(1):49-52. doi: 10.1136/adc.81.1.49.

27. Matos SM, Sarmento S, Moreira S, et al. Impact of fetal development on neurocognitive performance of adolescents with cyanotic and acyanotic congenital heart disease. Congenit Heart Dis 2014; 9(5):373-81. doi: 10.1111/chd.12152.

28. McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol 2010; 29(2):79-85. doi: 10.1016/j.ppedcard.2010.06.011.

29. Johnson AB, Denko N, Barton MC. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008; 640(1-2):174-9. doi: 10.1016/j.mrfmmm.2008.01.001.

30. Masuo S, Terabayashi Y, Shimizu M, et al. Global gene expression analysis of Aspergillus nidulans reveals metabolic shift and transcription suppression under hypoxia. Mol Genet Genomics 2010; 284(6):415-24. doi: 10.1007/s00438-010-0576-x.

31. Storz JF, Moriyama H. Mechanisms of hemoglobin adaptation to high altitude hypoxia. High Alt Med Biol 2008; 9(2):148-57. doi: 10.1089/ham.2007.1079.
32. Nikinmaa M. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir Physiol 2001; 128(3):317-29. doi: 10.1016/S0034-5687(01)00309-7.

33. Storz JF. Hemoglobin-oxygen affinity in high-altitude vertebrates: is there evidence for an adaptive trend? J Exp Biol 2016; 219(Pt 20):3190-203. doi: 10.1242/jeb.127134.

34. Siebenmann C, Robach P, Lundby C. Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol (1985) 2017; 123(4):957-66. doi: 10.1152/japplphysiol.00118.2017.

35. Xia M, Chao Y, Jia J, et al. Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. J Comp Physiol B 2016; 186(8):1033-43. doi: 10.1007/s00360-016-1013-1.

36. Simpson RJ, McKie AT. Iron and oxygen sensing: a tale of 2 interacting elements? Metallomics 2015; 7(2):223-31. doi: 10.1039/c4mt00225c.

37. Robach P, Cairo G, Gelfi C, et al. Strong iron demand during hypoxia-induced erythropoiesis is associated with down-regulation of iron-related proteins and myoglobin in human skeletal muscle. Blood 2007; 109(11):4724-31. doi: 10.1182/blood-2006-08-040006.

38. Frise MC, Cheng HY, Nickol AH, et al. Clinical iron deficiency disturbs normal human responses to hypoxia. J Clin Invest 2016; 126(6):2139-50. doi: 10.1172/jci85715.

39. Dressel R, Walter L, Gunther E. Genomic and functional aspects of the rat MHC, the RT1 complex. Immunol Rev 2001; 184:82-95. doi: 10.1034/j.1600-065x.2001.1840108.x.

40. Sethumadhavan S, Silva M, Philbrook P, et al. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells. PLoS One 2017; 12(11):e0187314. doi: 10.1371/journal.pone.0187314.

41. Murthy A, Gerber SA, Koch CJ, et al. Intratumoral hypoxia reduces IFN-γ-mediated immunity and MHC Class I induction in a preclinical tumor
model. Immunohorizons 2019; 3(4):149-60. doi:
10.4049/immunohorizons.1900017.

42. Kajiwara T, Tanaka T, Kukita K, et al. Hypoxia augments MHC class I antigen presentation via facilitation of ERO1-alpha-mediated oxidative folding in murine tumor cells. Eur J Immunol 2016; 46(12):2842-51. doi: 10.1002/eji.201646525.

43. Wang Q, Liu C, Zhu F, et al. Reoxygenation of hypoxia-differentiated dendritic cells induces Th1 and Th17 cell differentiation. Mol Immunol 2010; 47(4):922-31. doi: 10.1016/j.molimm.2009.09.038.

44. Ayala A, Ertel W, Chaudry IH. Trauma-induced suppression of antigen presentation and expression of major histocompatibility class II antigen complex in leukocytes. Shock 1996; 5(2):79-90.

45. Yang JB, Zhao ZB, Liu QZ, et al. FoxO1 is a regulator of MHC-II expression and anti-tumor effect of tumor-associated macrophages. Oncogene 2018; 37(9):1192-204. doi: 10.1038/s41388-017-0048-4.

46. Wu X, Kong X, Chen D, et al. SIRT1 links CIITA deacetylation to MHC II activation. Nucleic Acids Res 2011; 39(22):9549-58. doi: 10.1093/nar/gkr651.

47. Schonenberger MJ, Kovacs WJ. Hypoxia signaling pathways: modulators of oxygen-related organelles. Front Cell Dev Biol 2015; 3:42. doi: 10.3389/fcell.2015.00042.

48. Kubli DA, Gustafsson AB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012; 111(9):1208-21. doi: 10.1161/circresaha.112.265819.

49. Fuhrmann DC, Wittig I, Heide H, et al. Chronic hypoxia alters mitochondrial composition in human macrophages. Biochim Biophys Acta 2013; 1834(12):2750-60. doi: 10.1016/j.bbapap.2013.09.023.

50. Zhang H, Bosch-Marce M, Shimoda LA, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 2008; 283(16):10892-903. doi: 10.1074/jbc.M800102200.

51. Wu H, Chen Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal 2015; 22(12):1032-46. doi:
52. Band M, Joel A, Hernandez A, et al. Hypoxia-induced BNIP3 expression and mitophagy: in vivo comparison of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi. FASEB J 2009; 23(7):2327-35. doi: 10.1096/fj.08-122978.

53. Chua B, Kao RL, Rannels DE, et al. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J Biol Chem 1979; 254(14):6617-23.

54. Chang JM, Hwang DY, Chen SC, et al. B7-1 expression regulates the hypoxia-driven cytoskeleton rearrangement in glomerular podocytes. Am J Physiol Renal Physiol 2013; 304(1):F127-36. doi: 10.1152/ajprenal.00108.2012.

55. Bouvry D, Planès C, Malbert-Colas L, et al. Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells. Am J Respir Cell Mol Biol 2006; 35(5):519-27. doi: 10.1165/rcmb.2005-0478OC.

56. VanWinkle WB, Snuggs M, Buja LM. Hypoxia-induced alterations in cytoskeleton coincide with collagenase expression in cultured neonatal rat cardiomyocytes. J Mol Cell Cardiol 1995; 27(12):2531-42. doi: 10.1006/jmcc.1995.0040.

57. Coucha M, Abdelsaid M, Li W, et al. Nox4 contributes to the hypoxia-mediated regulation of actin cytoskeleton in cerebrovascular smooth muscle. Life Sci 2016; 163:46-54. doi: 10.1016/j.lfs.2016.08.018.

58. Huang D, Cao L, Xiao L, et al. Hypoxia induces actin cytoskeleton remodeling by regulating the binding of CAPZA1 to F-actin via PIP2 to drive EMT in hepatocellular carcinoma. Cancer Lett 2019; 448:117-27. doi: 10.1016/j.canlet.2019.01.042.

59. Zieseniss A. Hypoxia and the modulation of the actin cytoskeleton—emerging interrelations. Hypoxia (Auckl) 2014; 2:11-21. doi: 10.2147/hp.s53575.

60. Guo H, Zheng H, Wu J, et al. The key role of microtubules in hypoxia preconditioning-induced nuclear translocation of HIF-1alpha in rat cardiomyocytes. PeerJ 2017; 5:e3662. doi: 10.7717/peerj.3662.

61. Fischer MG, Heeger S, Hacker U, et al. The mitotic arrest in response to hypoxia and of polar bodies during early embryogenesis requires Drosophila Mps1. Curr
Biol 2004; 14(22):2019-24. doi: 10.1016/j.cub.2004.11.008.

62. Kyle UG, Earthman CP, Pichard C, et al. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr 2015; 69(12):1298-305. doi: 10.1038/ejcn.2015.86.

63. Pelkonen O. Metabolism and pharmacokinetics in children and the elderly. Expert Opin Drug Metab Toxicol 2007; 3(2):147-8. doi: 10.1517/17425255.3.2.147.

64. Pascual V, Medrano LM, López-Palacios N, et al. Different gene expression signatures in children and adults with celiac disease. PLoS One 2016; 11(2):e0146276. doi: 10.1371/journal.pone.0146276.