Suppression of ferromagnetic order by Ag-doping: a neutron scattering investigation on Ce$_2$(Pd$_{1-x}$Ag$_x$)$_2$In ($x = 0.20, 0.50$)

A Martinelli$^1$, M Giovannini$^2$, J G Sereni$^3$ and C Ritter$^4$

$^1$ SPIN-CNR, C.so Perrone 24, I-16152 Genova, Italy
$^2$ Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
$^3$ Div. Bajas Temperaturas, Centro Atómico Bariloche (CNEA) and Conicet, 8400 S.C. Bariloche, Argentina
$^4$ Institut Laue–Langevin, 71 Avenue des Martyrs, F-38042 Grenoble Cedex 9, France

E-mail: alberto.martinelli@spin.cnr.it

Received 7 March 2018, revised 21 May 2018
Accepted for publication 24 May 2018
Published 8 June 2018

Abstract
The ground state magnetic behaviour of Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In and Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In, found in the ferromagnetic branch of Ce$_3$Pd$_3$In, has been investigated by neutron powder diffraction at low temperature. Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In is characterized by a ferromagnetic structure with the Ce moments aligned along the $c$-axis and values of 0.96(2) $\mu_B$. The compound retains the $P4/mbm$ throughout the magnetic transition, although the magnetic ordering is accompanied by a significant decrease of the lattice strain along [0 0 $l$], suggesting a magnetostructural contribution. The magnetic behaviour of Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In is very different; this compound exhibits an extremely reduced magnetic scattering contribution in the diffraction pattern, that can be ascribed to a different kind of ferromagnetic ordering, with extremely reduced magnetic moments (~0.1 $\mu_B$) aligned along [0 $l$ 0]. These results point to a competition between different types of magnetic correlations induced by Ag-substitution, giving rise to a magnetically frustrated scenario in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In.

Keywords: magnetic frustration, Ce compound, neutron diffraction, magnetic structure

((Some figures may appear in colour only in the online journal)

1. Introduction
Among the rare-earth-based intermetallic compounds, those with Ce and Yb exhibit unusual physical properties due to their $f$-electrons [1–3]. The members of the class of compounds with chemical formula $R_2T_2X$ ($R$: rare earth or U; $T$: Fe, Co, Ni, Ru, Rh, Pd; $X$: In, Sn, Pb) display a multiplicity of complex and interesting behaviours, depending on composition [4–6]. For instance, the Ce$_2$Pd$_2$In compound, isotypic with Mo$_2$FeB$_2$, shows a significant range of solubility with two branches corresponding to a ferromagnetic (FM) and antiferromagnetic (AFM) arrangement of the magnetic moments, depending on the electron/hole concentration on the Pd/In layer [7]. In the AFM branch the hole concentration is increased by an excess of Pd substituting In vacancies, whereas in the FM branch the electronic concentration is driven by an excess of Ce. Since both magnetic structures, based on the competition between FM and AFM types of RKKY interactions, are comparable in energy, a large variety of magnetic behaviours have been observed in this family of alloys. Among different possibilities, the FM Ce$_3$Pd$_3$In$_3$ composition on the FM branch was studied by doping the ‘hole-like’ Pd lattice with ‘electron-like’ Ag [8]. In this series of alloys the FM character of their ground state, together with the low value of the paramagnetic temperature $\theta_P = -14$ K and the observed magnetic moment $\mu_{eff} = 2.56 \mu_B$/Ce$_{at}$, confirm the Ce$^{3+}$ character of the magnetic ion avoiding any relevant role of Kondo effect.

This change in the Coulomb potential sign on Pd$^+$ doped sites was shown to weaken the FM magnetic structure by changing FM interplane interaction into AFM through Ag$^+$ ions. As a result of the triangular Ce–Ce coordination in the basal plane, the growing AFM interactions...
leads to the formation of a frustrated phase maximized at Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In. This phase is characterized by the rise of a specific heat ($C_m$) anomaly centred at $T_m \sim 1$ K, which increases with Ag concentration while the FM transition decreases in temperature and intensity of the $C_m$ jump till vanishing at the [Pd]/[Ag] = 1 concentration.

Whereas the behaviour of the intermediate Ce$_2$(Pd$_{1-x}$Ag$_x$)$_2$In ($0 < x < 0.5$) compounds was described as due to the competition between a decreasing FM component versus an increasing frustrated component, the limit of solubility ($x = 0.5$) was shown to fully fit into the systematic of frustrated systems [9]. Therefore, neutron scattering experiments, showing the evolution of the magnetic structure of these alloys, are expected to provide relevant information on the microscopic transference of degrees of freedom from the magnetically ordered to the frustrated configuration. This scenario provides a unique possibility to compare the evolution of ordered and frustrated configurations on the same system.

Only a few Ce$_2$T$_x$X compounds have been investigated by neutron powder. In Ce$_2$Ge$_2$In no evidence for magnetic Bragg scattering was observed down to 0.36 K [10]. For the composition Ce$_2$Ge$_{1.95}$In$_{0.9}$, the excess of Ce is located at the In 4a site [5]; moreover, a ferromagnetic ordering of the Ce$^{3+}$ moments takes place below $T_m \sim 3.8$ K at both 4h and 2a sites. Conversely, in Ce$_{1.95}$Pd$_{1.5}$In$_{0.83}$ the excess of Pd partially occupies the 4e site [5]; remarkably, this composition displays an incommensurate antiferromagnetic ordering below $T_m \sim 4.0$ K, similar to that observed in Ce$_2$Pd$_2$Sn [11].

In this work we present a neutron scattering investigation on the alloys Ce$_2$Pd$_{1-x}$Ag$_x$In$_{0.9}$ ($x = 0.20$ and 0.50) prepared in the FM branch. For simplicity’s sake we will refer to them as Ce$_2$(Pd$_{1-x}$Ag$_x$)$_2$In.

2. Experimental

The two polycrystalline samples with nominal compositions Ce$_2$(Pd$_{1-x}$Ag$_x$)$_2$In$_{0.9}$ ($x = 0.20$, 0.50) were prepared by argon arc melting the elements on a water cooled copper hearth with a tungsten electrode. The buttons were flipped over and remelted several times in order to ensure good homogeneity. The samples were then annealed at 750 °C for 168 h and finally water quenched.

The microstructure of the samples was observed after metallographic preparation by means of a scanning electron microscope (SEM; EVO 40 Carl Zeiss) equipped with an energy-dispersive x-ray spectrooscope (EDS). Further details on starting materials, preparation and chemical characterization are reported in [8].

Neutron powder diffraction (NPD) analysis was carried out using a file describing the instrumental resolution high-resolution data were collected at the D2B diffractometer ($\lambda = 1.5940$ Å), whereas high-intensity data were collected at the D20 diffractometer ($\lambda = 2.4162$ Å) between 7.0 and 1.45 K using an orange cryostat; for the sample with $x = 0.50$, NPD data were also collected down to 100 mK using a $^3$He dilution cryostat at the same D20 diffractometer. Structural refinement was carried out according to the Rietveld method [12] using the program FULLPROF [13]; refinements were carried out using a file describing the instrumental resolution function. The microstructural evolution was investigated by refining the anisotropic strain parameters and analysing the broadening of diffraction lines by means of the Williamson–Hall plot method [14]. By means of representation analysis [15], possible spin orderings were evaluated, using the programs BASIREPS[16, 17] and SARAH [18].

3. Results

3.1. SEM analysis and structural properties

SEM-EDS analysis reveals that the experimental stoichiometry of the investigated samples is in good agreement with the nominal one (table 1). Trace amounts of a secondary phase with composition Ce$_{42}$Ag$_{52}$ have been observed in the Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In sample.

From the structural point of view, the $R_2$X$_3$ compounds crystallize in the tetragonal system and are isotypic with Mo$_2$FeB$_2$ (space group $P4/mnbm$; number 127), an ordered
derivative of the U₃Si₂-type structure. In particular, in the nominally stoichiometric Ce₂Pd₂In the Ce, Pd and In atoms are located at the 4h, 4g and 2a sites, respectively, with Ce at the centre of a trigonal prism, coordinating 6 Pd atoms (figure 1).

3.2. NPD analysis of Ce₂(Pd₀.₈Ag₀.₂)₂In

Rietveld refinements reveal that Ce₂(Pd₀.₈Ag₀.₂)₂In crystallizes in the tetragonal P4/mmb space group down to 1.45 K (table 2 lists the structural data).

Below ~3.5 K neutron magnetic scattering is observed in the NPD data. The magnetic Bragg peaks can be successfully indexed according to the propagation vectors \( k = (0,0,0) \). As expected, magnetic ordering involves only the \( R \) atomic species (located at the 4h site) in the \( R₂T₂X \) structure. By means of the representation analysis of magnetic structures [15], the allowed magnetic moments \( m \) orderings at the 4h site were calculated. For a magnetic propagation vectors \( k = (0, 0, 0) \), the symmetry analysis using the representation theory provides the little group \( Gₖ = P₄/mmb \). Table 3 lists the resulting 10 irreducible representation (irrep) of \( Gₖ \); eight irreps are of dimension 1, whereas two irreps are of dimension 2. \( Γₐ \) has the characters: \( χ(Γₐ = 4h) = (12, 0, 0, 0, −2, −2, 0, 0, 0, −4, 0, 0, −2, −2, 0, 0, 0) \) and decomposes in terms of the irreps as \( Γₐ(4h) = 1 Γ₂ ⊕ 1 Γ₄ ⊕ 1 Γ₆ ⊕ 1 Γ₇ ⊕ 1 Γ₈ ⊕ 1 Γ₉ ⊕ 2 Γ₁₀ \). This means that there is only 1 free parameter (the value of the magnetic moment) if a single \( Γₐ \) describes the magnetic structure, where \( I = 2, 3, 4, 6, 7, 8 \). Conversely, \( Γ₉ \) and \( Γ₁₀ \) have dimension 2 and are present once and twice in \( Γₐ(4h) \), respectively; hence, 2 and 4 parameters, respectively, are needed for their description (table 4).

Figure 2 shows the Rietveld refinement plot obtained with NPD data collected at 1.45 K, whereas the inset illustrates the superposition of the data collected at 7.0 K and 1.45 K in the \( Q \) range where main magnetic peaks are observed; the ferromagnetic structure is illustrated in figure 3.

The fit of the experimental data has been obtained by applying the irrep \( Γ₇ \) for \( Gₖ \), corresponding to a ferromagnetic ordering at the Ce (4h) sub-lattice with magnetic moments \( m = 0.96(2) \muₜ \) parallel to the tetragonal c-axis. This magnetic structure belongs to the Shubnikov magnetic space group \( P₄/mmb’m’ \) (magnetic space group number: 127.393).

Remarkably, the refined magnetic moment value is notably reduced in comparison with the saturation moment of the free Ce³⁺ ion (2.54 \( \muₜ \)) expected for the six-fold Hund’s rules ground state (GS) for a total angular momentum \( J = 5/2 \). At low temperatures (i.e. 1.45 and 7 K) only a doublet GS is expected to contribute to the magnetic signal due to crystal field effects and Kondo interactions. From the low paramagnetic temperature values \( θ_P \approx −10 \text{ K} \) no significant Kondo effects are expected in this system [5].

The thermal dependence of the ordered magnetic moment (figure 4) which represents the Landau order parameter in a FM system, agrees with the magnetization curve obtained from DC susceptibility measurements. These features are consistent with a 2nd order nature of the magnetic transition shown by the specific heat jump at \( Tₐ = 3.3 \text{ K} \). The Landau fit of the thermal dependence of the ordered magnetic moment extrapolates at the same temperature (see figure 4).

The ferromagnetic ordering observed in Ce₂(Pd₀.₈Ag₀.₂)₂In is similar to that observed in Ce₂Pd₂(In₀.₆Ce₀.₄), where the exceeding Ce atoms are located at the In 2a site [5]. The main difference is that in Ce₂Pd₂(In₀.₆Ce₀.₄) the magnetic moments of Ce order at both 4h and 2a sub-lattices, whereas in Ce₂(Pd₀.₈Ag₀.₂)₂In the amount of Ce at the 2a site is extremely low and hence its coherent magnetic scattering contribution, if present, is negligible.

The occurrence of the magnetic ordering is accompanied by a remarkable decrease of the lattice strain along [001], as evidenced by the net decrease on cooling of the slope of the straight line connecting the 001 data in the Williamson–Hall plots reported in figure 5.

3.3. NPD analysis of Ce₂(Pd₀.₈Ag₀.₂)₂In

Figure 6 shows the Rietveld refinement plot obtained using NPD data collected at room temperature. Rietveld refinement reveals that the secondary phase detected by SEM-EDS analysis is constituted of cubic CeAg (space group \( Pm₃m \)); in particular, this secondary phase constitutes about 10%–15% wt of the sample.

Also for this composition, no structural transformation can be detected in the inspected thermal range (table 5 lists the structural data at room temperature and 1.45 K).
Table 3. Small irreducible representations of the little group $G_k = P4/mmb$ for $k = (0,0,0)$ (symmetry operations are numbered according to the space group n° 127 of the international tables for crystallography [19]; the reader is deferred to this table for details).

| Irrep | $\Gamma_1$ | $\Gamma_2$ | $\Gamma_3$ | $\Gamma_4$ | $\Gamma_5$ | $\Gamma_6$ | $\Gamma_7$ | $\Gamma_8$ | $\Gamma_9$ | $\Gamma_{10}$ |
|-------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-------------|
|       | 1          | 1          | 1          | 1          | 1          | 0          | 1          | 1          | 0         | 1           |
|       | 2          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1         | 1           |
|       | 5          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1         | 1           |
|       | 6          | 1          | 1          | -1         | -1         | -1         | -1         | 1          | 1         | 1           |
|       | 7          | 1          | 1          | -1         | -1         | -1         | -1         | -1         | -1        | -1          |
|       | 8          | 1          | 1          | -1         | -1         | -1         | -1         | -1         | -1        | -1          |
|       | 9          | 1          | 0          | -1         | 0          | 1          | 0          | 1          | 0         | 1           |
|       | 10         | 1          | 0          | -1         | 0          | 1          | 0          | 1          | 0         | 1           |

Symmetry operations

| Symmetry operations | $\Gamma_1$ | $\Gamma_2$ | $\Gamma_3$ | $\Gamma_4$ | $\Gamma_5$ | $\Gamma_6$ | $\Gamma_7$ | $\Gamma_8$ | $\Gamma_9$ | $\Gamma_{10}$ |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|-----------|-------------|
|                    | 1          | 1          | 1          | 1          | 1          | 0          | 1          | 1          | 0         | 1           |
|                    | 2          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1         | 1           |
|                    | 5          | 1          | 1          | 1          | 1          | 1          | 1          | 1          | 1         | 1           |
|                    | 6          | 1          | 1          | -1         | -1         | -1         | -1         | -1         | -1        | -1          |
|                    | 7          | 1          | 1          | -1         | -1         | -1         | -1         | -1         | -1        | -1          |
|                    | 8          | 1          | 1          | -1         | -1         | -1         | -1         | -1         | -1        | -1          |
|                    | 9          | 1          | 0          | -1         | 0          | 1          | 0          | 1          | 0         | 1           |
|                    | 10         | 1          | 0          | -1         | 0          | 1          | 0          | 1          | 0         | 1           |
Table 4. Fourier coefficients obtained from the basis vectors for the different coordinates of the 4h site; $u, v, p, w$ represent the free parameters of the possible magnetic structures.

| Site 4h | $\Gamma_2$ | $\Gamma_3$ | $\Gamma_4$ | $\Gamma_6$ | $\Gamma_7$ | $\Gamma_8$ | $\Gamma_9$ | $\Gamma_{10}$ |
|---------|------------|------------|------------|------------|------------|------------|------------|-------------|
| $x$     | $x + \frac{1}{2}$ | $\frac{1}{2}$ | $u$       | $u$        | $0$        | $0$        | $u$        | $-u$        |
| $\bar{x}$ | $\bar{x} + \frac{1}{2}$ | $\frac{1}{2}$ | $-u$       | $-u$       | $0$        | $0$        | $u$        | $-u$        |
| $\bar{x} + \frac{1}{2}$ | $\frac{1}{2}$ | $-u$       | $u$        | $0$        | $0$        | $-u$       | $-u$       | $0$        |
| $x + \frac{1}{2}$ | $\frac{1}{2}$ | $u$       | $-u$       | $0$        | $0$        | $-u$       | $u$        | $0$        |
Data collected using the orange cryostat reveal that the magnetic ordering corresponding to the irrep $\Gamma_7$ observed in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In is completely suppressed in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In. A closer inspection reveals that NPD data collected at 1.6 K evidence no significant coherent magnetic scattering, whereas at 1.45 K a very faint magnetic contribution can be detected at $Q \sim 1.6$ Å$^{-1}$. Despite the paucity of the data, we tentatively succeed in determining a possible magnetic ordering at the Ce sub-lattice consistent with the irrep $\Gamma_{10}$ (figure 7, on the left): an in-plane ferromagnetic ordering results (figure 7, on the right), with extremely reduced magnetic moments $m \sim 0.12(1) \mu_B$ aligned along the $b$-axis. Actually, the extremely reduced value of the ordered magnetic moment indicates that this is not a classical ferromagnetic state, but rather that a very faint resultant emerges from a disordered arrangement of the magnetic moments. This scenario is confirmed by the data subsequently collected down to 0.1 K using the $^3$He dilution cryostat, as illustrated in figure 8 showing the progressive increase of the magnetic 001 peak located at $Q \sim 1.6$ Å$^{-1}$.

Regrettably, the statistic of these data is strongly decreased on account of the experimental set-up. In addition, the frustration characterizing this composition yields an extremely reduced coherent scattering contribution to the NPD pattern and the refined magnetic moment at 0.1 K is $m \sim 0.17(6) \mu_B$, consistent with the results obtained with orange cryostat at 1.45 K.

The analysis of the Williamson-Hall plots collected at 7 K and 1.45 K (figure 5) reveals that the lattice strain is constant in this thermal range, conversely to what observed in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In, where the rearrangement of the magnetic moments determines a significant increase of the strain along [001].
Figure 5. Superposition of the Williamson-Hall plots (data from selected families of crystallographic planes with different orders) obtained using the NPD data collected at 7.0 K and 1.45 K for Ce₂(Pd₀.₈Ag₀.₂)₂In (on the left) and Ce₂(Pd₀.₅Ag₀.₅)₂In (on the right); in the lower field the corresponding indexed Bragg peaks are listed. The straight lines are a guide to the eye connecting the 00l reflections.

Figure 6. Rietveld refinement plot for Ce₂(Pd₀.₅Ag₀.₅)₂In (NPD data collected at D2B); in the upper field the continuous red line is the calculated fit superposed to the experimental intensity data (black points); the blue line in the lower field is the difference curve; the vertical bars indicate Bragg reflections for the Ce₂(Pd₀.₅Ag₀.₅)₂In (green) and CeAg (purple) phases.

Table 5. Structural data of Ce₂(Pd₀.₅Ag₀.₅)₂In (space group: P4/nmm) as obtained by Rietveld refinement of NPD data collected at 300 K (D2B data) and 1.45 K (D20 data).

| Atomic site | x       | y       | z       | x       | y       | z       |
|-------------|---------|---------|---------|---------|---------|---------|
| Ce          | 4h      | 0.1767(2)| 0.6767(2)| ½       | 0.1777(1)| 0.6777(1)| ½      |
| (Pd,Ag)     | 4g      | 0.3752(2)| 0.8752(2)| 0       | 0.3737(1)| 0.8736(1)| 0      |
| In1         | 2a      | 0       | 0       | 0       | 0       | 0       |

| R_Bragg (%) | 4.99    | 8.61    |
| R_F (%)     | 3.63    | 5.20    |
4. Discussion

Figure 9 shows how the crystal structure of Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In is distorted by increasing the Ag content up to the Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In composition. The Ag plane are displaced in the plane and the resulting structural distortion induces a displacement of the Ce atoms towards the (Pd,Ag) positions themselves, determining an increase of the shortest Ce–Ce bond distance (the Ce(1)–Ce(5) bond length in table 6 below). Useful insights can be gained by comparing the crystal structures of both compounds at 7.0 K and 1.45 K, that is above and below the magnetic transition; table 6 lists the bond lengths at 7.0 K and 1.45 K as described in figure 10, whereas the atomic displacements are depicted in figure 11. In both compounds the Ce(1)–Ce(5) bond length exhibits an anomalous change, undergoing a remarkable elongation in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In (~0.014 Å) and a likewise sizeable shrinking in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In (~0.012 Å). Likely, this different behaviour is originated by the different magnetic interactions at play in these compounds.

The magnetic and thermal properties of Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In and Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In were previously investigated in [8] by magnetization measurements and specific heat analysis. Figure 12 compares specific heat and ac-susceptibility bulk measurements; complementary results on dc-magnetization can be found in [8]. While Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In shows a clear magnetic transition in specific heat and AC-susceptibility (left and right scales of figure 12(a)), Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In only shows a specific anomaly with a very weak magnetic pinch transition associated at 1 K (figure 12(b)). This vanishing signal coincides with the extrapolation of $T_c(x)$ to $x = 0.5$. Notably, the specific heat of Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In already show the incipient contribution of the anomaly at $T^* \sim 1$ K.

Independently, DC-magnetization (M) measurements on Ce2(Pd0.5Ag0.5)2In at 1.8 K, e.g. above $T^* \sim 1$ K, reveal a remanent FM contribution reflected in the $M$ versus $H$ hysteresis depicted in figure 13. This indicates the presence of two components, a weak FM and a paramagnetic one, in agreement with the NPD results that confirm the coexistence of these contributions.

Although specific heat measurements contained in figure 12 clearly evidence the competition between two
different components (one associated to a decreasing FM contribution and the other attributed to an arising magnetic frustration [8]), the FM signal detected by $M(H)$ and NPD measurements cannot be associated to the former one because it exhibits a different magnetic structure as depicted in figure 7. The origin of this weak in-plane FM arrangement is not evident, however small inhomogeneities in the atomic distribution of Pd and/or Ag may be responsible for the formation of small FM clusters involving the neighbouring Ce atoms.

Table 6. Selected bond length in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In and Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In at 7.0 K and 1.45 K; atoms numbering is depicted in figure 10.

| Bond                  | Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In | Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In |
|-----------------------|------------------------------------|------------------------------------|
| Ce(1)–Ce(2,3,4,6)     | 4.0567(2) 4.0697(5)                 | 4.1059(5) 4.1042(4)               |
| Ce(1)–Ce(5)           | 3.9142(2) 3.8933(5)                 | 3.9247(5) 3.9371(4)               |
| Ce(1)–Ce(7,8)         | 3.9094(1) 3.9168(1)                 | 3.9308(1) 3.9300(1)               |
| Ce(1)–Pd(1,4)         | 2.9078(1) 2.9258(3)                 | 2.9529(3) 2.9484(3)               |
| Ce(1)–Pd(2,3,5,6)     | 3.1004(1) 3.0961(4)                 | 3.1119(3) 3.1151(3)               |
| Ce(1)–In(1,2,3,4)     | 3.4712(1) 3.4809(3)                 | 3.5062(3) 3.5049(2)               |

Figure 10. Coordination around the Ce atom; atoms are numbered as in table 6.

Figure 11. Structural distortion in the Ce$_2$Pd$_2$(In$_{0.6}$Ce$_{0.4}$) and Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In compounds throughout the magnetic transition; atomic displacements are arrowed.
According to [7], the substitution of Pd with Ag is expected to increase the density of the conduction electrons and consequently to strengthen the ferromagnetism. Conversely, a weakening is experimentally observed, since in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In the ordered ferromagnetic moment is significantly reduced, compared to Ce$_2$Pd$_2$(In$_{0.6}$Ce$_{0.4}$)$_2$In, whereas in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In it is almost suppressed. Nonetheless, it is worth to note that both Ce$_2$Pd$_2$(In$_{0.6}$Ce$_{0.4}$)$_2$In and Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In display the same type of ferromagnetic arrangement, with ordered moments aligned along the c-axis (figure 3), whereas in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In the weak moments are ordered along the b-axis (figure 7). This result suggests that: (1) Ag weakens the FM interactions; (2) favours a different kind of magnetic interaction than those taking place in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In. On these bases, it can be concluded that a competition between different types of magnetic correlations arises after Ag-substitution, giving rise to a magnetically frustrated component up to a limit observed in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In.

5. Conclusions

Neutron powder diffraction data collected at low temperature reveal a very different magnetic ground state in Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In than in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In, found in the ferromagnetic branch of Ce$_2$Pd$_2$In. The Ce$_2$(Pd$_{0.8}$Ag$_{0.2}$)$_2$In compound exhibits the same ferromagnetic ordering observed in Ce$_4$Pd$_7$In$_{16}$ (Ce$_{2.22}$Pd$_{1.85}$In$_{0.78}$, see [5]), with Ce moments aligned along the c-axis and a significant reduction of the ordered magnetic moment. With further increase of the Ag content, a different kind of ferromagnetic ordering emerges in Ce$_2$(Pd$_{0.5}$Ag$_{0.5}$)$_2$In. Due to its extremely reduced signal, it is not clear whether this magnetic ordering is a bulk property or it is actually related to sample inhomogeneities. In any case, these results indicate that Ag-substitution induces a competition between different types of magnetic correlations. As a consequence, ferromagnetic and frustrated states coexist at the microscopic scale and the magnetically frustrated component becomes dominant at the highest level of Ag content. These observations confirm that the specific heat anomaly emerging at $T \sim 1$ K reported in [8] has a completely different origin than the vanishing ferromagnetic transition.

Acknowledgments

Authors acknowledge the 2014–2016 MAE bilateral project Italy-Argentina titled ‘Synthesis and study of magnetically frustrated systems with high anisotropy’ for the financial support.

ORCID iDs

A Martinelli https://orcid.org/0000-0001-8391-3486

References

[1] Steglich F and Wirth S 2016 Rep. Prog. Phys. 79 084502
[2] Carretta P, Giovannini M, Horvatic M, Papinutto N and Rigamonti A 2003 Phys. Rev. B 68 2204041
[3] Carretta P, Pasero R, Giovannini M and Baines C 2009 Phys. Rev. B 79 020401
[4] Muramatsu T et al 2011 Phys. Rev. B 83 180404
[5] Giovannini M et al 2000 Phys. Rev. B 61 4044
[6] Wu L S et al 2016 Science 352 1206
[7] Sereni J G, Giovannini M, Gomez Berisso M and Saccone A 2011 Phys. Rev. B 83 064419
[8] Sereni J G, Giovannini M, G- Berisso M and Gastaldo F 2016 J. Phys.: Condens. Matter 28 475601
[9] Sereni J G 2018 J. Low Temp. Phys. 190 1
[10] Adroja D T, Matsuoka E, Hillier A D, Kockelmann W, Takabatake T, Jung M H and Taylor J W 2005 Physica B 359/61 314
and basis functions for axial and polar vector properties
Part of the FullProf Suite of programs (www.ill.eu/sites/fullprof/)
[17] Ritter C 2011 Solid State Phenom. 170 263
[18] Wills A S 2000 Physica B 276–8 680
[19] International Union of Crystallography 2016
International Tables for Crystallography vol A, ed M I
Aroyo p 454
[20] Toledano J C and Toledano P 1987 The landau theory of
phase transitions World Scientific Lecture Notes in Physics
(Singapore: World Scientific) p 3