Antimicrobial screening of polyherbal formulations traditionally used against gastrointestinal diseases

Sakina Mussarat a, Muhammad Adnan a,*, Shaheen Begum b, Shafiq Ur Rehman a, c, Abeer Hashem c, Elsayed Fathi Abd_Allah d

a Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
b Department of Environmental Sciences, Fatima Jinnah Women University Rawalpindi, The Mall Rawalpindi 46000, Punjab, Pakistan
c Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2400, Riyadh 11451, Saudi Arabia
d Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2400, Riyadh 11451, Saudi Arabia

Original article

1. Introduction

Polyherbal therapy has been used in Ayurvedic, Chinese, and, Unani medicines, for thousands of years, yet scientific evidence of their therapeutic benefits is mostly lacking. In these systems, different chronic diseases are better managed by polyherbal formulations instead of monoherbal due to synergism and lesser side effects. The concept of polyherbal combination has been well established and achieved remarkable success in western medicine offering new hope to patients. In pharmaceutical industries, there are many research studies in which combination therapy of plants and antibiotics showed effective results for diabetes and cancer as compared to monotherapy (Patel and Saravolatz, 2006). A five-year literature review reported the in-vitro antimicrobial findings of synergy both within plant extracts and between plant extracts and antibiotics. Plant extracts and their combinations were more efficient than individual constituents (Abd El-Kalek and Mohamed, 2012; Mundy et al., 2016). In recent years, antimicrobial activities of mono herbal have been increasingly reported while there are very few studies on the biological activities of traditionally used polyherbal formulations.

Gastrointestinal diseases are common complaints caused by food poisoning and pathogenic microorganisms. Food poisoning and spoilage are mostly due to contamination with bacterial and...
fungal pathogens (Pandey and Singh, 2011; Solomakos et al., 2008). Some of the most common gastrointestinal problems in Pakistan are diarrhea, cholera, dyspepsia, stomachaches, cramps, vomiting, indigestion, colon cancer, and gastric ulcer. Every year approximately 4.0 million cases and 0.15 million deaths are reported worldwide due to gastrointestinal infections like diarrhea and cholera. Correspondingly in Pakistan, diarrhea deaths in children under 5 years remained at 0.1 million in 2015 (Ali et al., 2015). In recent years, antibiotic resistance is an emerging problem worldwide that raised the interest of the researcher to develop more potent antimicrobial agents to combat microbial resistance. Natural products remained a major source of new drugs that can offer a wide range of complex, pure secondary metabolites and structurally diverse compounds as potential antimicrobial agents (Mabona et al., 2013). These natural products regarded as nutritionally safe and easily degradable with no side effects due to antioxidant properties. An opportunity is to pharmacologically test the traditionally used polyherbal formulations being extensively used in the southern regions of Khyber Pakhtunkhwa to treat gastrointestinal tract infections. According to published literature there is scarce studies reported regarding pharmacology of traditionally used polyherbal formulation for gastrointestinal infections. There is need of time to evaluate polyherbal formulations using scientific methods such as clinical trials, possible bioactive constituents and mechanism of action for the future world. Hence, the present study has been designed with the objective to provide scientific background to the traditionally used polyherbal mixtures through in-vitro antimicrobial activities.

2. Materials and methods

2.1. Selection and preparation of polyherbal formulations

Polyherbal formulations used to treat digestive problems in rural and urban areas of district Dera Ismail Khan were selected (Mussarat et al., 2021). Plant parts of polyherbal recipes commonly used by the local people were collected and identified by Taxonomist at the Department of Botany, Kohat University of Science and Technology, Kohat. Collected plant parts were washed, cut into small pieces, shade dried, and crashed into powder form with the help of a grinder. Powder of individual plants was mixed according to the traditional description for a respective polyherbal mixture. A total of 25 plants species were combined in a different ratios, and 2–5 plants mixed to form these polyherbal formulations. *Foeniculum vulgare* was used in most of the polyherbal formulations (n = 7) followed by *Elettaria cardamomum* (n = 6) and *Cuminum cyminum* (n = 5). Fruit (n = 21) and seeds (n = 18) were the most used plants parts. Local names of all polyherbal recipes are given to the table and these are denoted by English alphabets (Table 1).

2.2. Preparation of polyherbal extract

A polyherbal mixture of 100 g of dried powder was soaked in 1000 ml methanol in 2000 ml flask and kept for seven days for allowing total extraction at room temperature by cold maceration process. After that, the soaked polyherbal mixture was filtered by Whatmann filter paper # 41. The filtrate was collected in a beaker and evaporates through a rotary evaporator. The semisolid extract was preserved for experimental purposes. For antimicrobial activity, crude extracts of polyherbal were dissolved in DMSO (50 mg/ml) to prepare a stock solution. In the present study 14 traditionally polyherbal formulations were tested for synergistic, antagonistic, and additive effects against selected pathogenic microbes.

2.3. Antibacterial activities of polyherbal mixtures

Antibacterial activities of 14 polyherbal crude extracts were checked at 50 mg/ml concentration against six bacterial strains *Vibrio cholerae*, *Shigella flexneri*, *Escherichia coli*, *Proteus mirabilis*, *Pseudomonas aeruginosa*, and *Salmonella typhi* using the agar well diffusion method. All the equipment was autoclaved at 121 °C for 30 min. According to company instructions 11.4 g Muller Hinton Agar was added in a 500 ml flask containing 300 ml distilled water. To dissolve all the ingredients, mixed and shake it well through an electric heater. After autoclaving, 20 ml of this media was poured aseptically into Petri plates and solidify for about 10 min. The bacterial strains were spread with sterile swabs on the nutrient agar. Wells was formed with a sterile cork borer. DMSO was used negative control while Meropenem standard disc (10 µg) as a positive control. To avoid any kind of contamination, all procedure was carried out in the laminar flow hood and then petri plates were incubated for 24 h at 37 °C in an incubator. Zones of inhibition were measured in mm (Heatley, 1944; Kirby et al., 1956). All experiment was repeated three times and results recorded as mean values. The Minimum inhibitory concentration (MIC) was determined using the serial dilution method (NCCLS, 2000). The minimum bactericidal concentration (MBC) of the polyherbal extract was determined following the method of Spencer & Spencer (Spencer and de Spencer, 2004).

2.4. Antifungal activities

Antifungal activities of fourteen polyherbal crude extracts were checked at 50 mg/ml concentration against six fungal pathogens *Aspergillus niger*, *Rhizopus*, *Fusarium oxysporum*, *Aspergillus fumigatus*, *Trichoderma*, and *Fusarium graminearum*. To prepare media for fungal activity, 6.5 g of SDA was taken in 100 ml of distilled water, mixed it well, autoclaved, and then cooled to 40 °C. About 20 ml of this media was poured aseptically into petri plates and solidified. A piece of 7 days old culture fungus with 4 mm diameter was placed on media and extract was poured in wells and labeled. Fluconazole was used as a standard for comparison of inhibition zone. All plates were incubated at 28 °C for 7 days. The experiment was repeated three times and the zone of inhibition was measured in mm.

2.5. Review on the antimicrobial analysis of individual plants

Selected fourteen polyherbal recipes were comprised of 25 individual medicinal plants with different ratios. Literature was searched about these individual plants online through different databases like Google Scholar, ISI Web of Knowledge, Science hub, Research gate, and Science Direct Navigator. A huge published data about the antimicrobial screening of methanolic extract of respective plant parts against selected bacterial and fungal strains were gathered. In this review table we focused on data of respective plant parts extracted with methanol solvent and whose extracts concentrations (mg/ml) were mentioned quantitatively i.e. milligrams of the extracts dissolved in milliliters. The concentration given in microgram was converted to the milligram. The review table is not only limited to antimicrobial activity, it contains phytochemicals isolated from methanolic extract of plant part which might be active constituent responsible for microbes inhibition (Table 2).

2.6. Data analysis

All results were arranged and analyzed using Microsoft 2007. The average zone of inhibition and Standard deviation were calculated. ANOVA was used to measure statistical significance (p-value) among polyherbal recipes producing inhibition zones for a single bacterial strain by Microsoft Excel.
Table 1	Polyherbal combinations used traditionally for gastrointestinal problems in Dera Ismail Khan.				
Local name/	**Individual Plants in Polyherbal formulation**	**Habit**	**Part used**	**Disease name**	
Abbreviation A	Withania coagulans (Stocks) Dunal. Solanaceae	Paneer	Shrub	Fruit	Powder used for all digestive problems including diarrhea
	Foeniculum vulgare Mill. Apiaceae	Sounf	Herb	Seeds	
	Cuminum cyminum L. Apiaceae	Jeera	Herb	Seeds	
	Terminalia chebula Retz. Combretaceae	Kachoor	Herb	Rhi zone	
(Podeena qehwa) B	Mentha piperita L. Lamiaceae	Podeena	Herb	Leaves	Decoction (tea) used for nausea, vomiting and diarrhea
	Camellia sinensis L. Kuntze Theaceae	Sabz chaey	Herb	Leaves	
	Elettaria cardamomum (L.) Maton. Zingiberaceae	Sabz illaichi	Tree	Fruit	
(Savi chah) C	Foeniculum vulgare Mill. Apiaceae	Sounf	Herb	Seeds	Decoction used for gastric pain, mensis pain, stomach ache
	Withania coagulans (Stocks) Dunal. Solanaceae	Paneer	Shrub	Fruit	
	Cuminum cyminum L. Apiaceae	Zeera	Herb	Seeds	
(Zeera sounf phakki) D	Terminalia chebula Retz. Combretaceae	Hareer	Herb	Rhi zone	Intestinal problem
	Withania coagulans (Stocks) Dunal. Solanaceae	Sounf	Herb	Seeds	
(Hazna Phakki) E	Piper nigrum L. Piperaceae	Kali mirch	Shrub	Buds/	
	Elettaria cardamomum (L.) Zingiberaceae	Choti ilai chee	Tree	Fruit	
	Plantago ovate Forsk. Plantaginaceae	Isphaghol	Herb	Fruit, husk	
(Dawai dard) F	Foeniculum vulgare Mill. Apiaceae	Saunf	Herb	Fruit	Digestive problems like constipation, gastric pain, intestinal worms
	Withania coagulans (Stocks) Dunal. Solanaceae	Sounf	Herb	Seeds	
	Piper nigrum L. Piperaceae	Kali mirch	Herb	Fruit	
	Elettaria cardamomum (L.) Zingiberaceae	Choti ilai chee	Tree	Fruit	
(Podina Sharbat) G	Syzygium aromaticum L. Myrtaceae	Lowng	Tree	Buds	
	Cinnamomum verum J. Presl Lauraceae	Dar cheeni	Tree	Bark	
	Mentha piperita L. Lamiaceae	Podina	Herb	Leaves	
	Ruscus aculeatus L. Rosaceae	Arq e Gulab	Shrub	Petal Extract	
(Safoof) H	Mentha piperita L. Lamiaceae	Podina	Herb	Leaves	Diarrhea, Dysentery
	Punica granatum L. Lythraceae	Anar sakh	Tree	Fruit cover	
(Adrak qehwa) I	Camellia sinensis L. Kuntze Theaceae	Sabz chaey	Herb	Leaves	Obesity/ Indigestion
	Citrus limon (L.) Osbeck Rutaceae	Nimbo	Herb	Fruit	
	Zingiber officinalis Ros. Zingiberaceae	Adrak/sund	Herb	Rhi zome	
(Powder) J	Syzygium cumini (L.) Skeels Myrtaceae	Jaman	Tree	Seeds	Typhoid, diarrhe a, and useful for diabetes patient
	Punica granatum L. Lythraceae	Anar	Tree	Fruit cover	
(Keero ki dawa) K	Coccos nucfera L. Areaceae	Nareal	Tree	Fruit	Intestinal worms
	Punica granatum L. Lythraceae	Anar	Tree	Seeds	
(Arq) L	Cassia fistula L. Fabaceae	Gardnali	Tree	Seeds cover	Constipation
(Chaata) M	Foeniculum vulgare Mill. Apiaceae	Sounf	Herb	Seeds	Constipation and bronchial problems
	Butea monosperma (Lam.) Kuntze Fabaceae	Chichra	Shrub	Seeds	
	Achyranthes aspera L. Amaranthaceae	Puhutkanda	Herb	Seeds	
	Elettaria cardamomum (L.)Maton. Zingiberaceae	Shz illaichi	Herb	Fruit	
(Haiza recipe) N	Ocimum basilicum L. Lamiaceae	Niaz boi	Herb	Leaves/ seeds	Diarrhea, Cholera
	Mentha piperita L. Lamiaceae	Podina	Herb	Leaves	

S. Mussarat, M. Adnan, S. Begum et al. Saudi Journal of Biological Sciences 28 (2021) 6829–6843
Table 2
Review table of individual plants in polyherbal formulations against bacterial and fungal pathogens.

Plant name/ Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds References	
A. aspera Seeds	E. coli	0.25–25	5–20	1.024	NA	Alkaloids, tannins, saponins, glycosides and flavonoids	
	K. pneumoniae	0.25–1	11.2–20	1.024	NA		
	S. flexneri	0.25–1	10.1–13.8				
	P. vulgaris	0.25–1	8.8–25				
	P. aeruginosa	0.25–1	12–20				
	S. aureus	0.25–25	1–13.7				
	A. nigar						
	Rhizopus						
	F. oxysporum						
	A. fumigatus						
	Trichoderma						
	F. graminearum						
B. monosperma Seeds	S. typhi	50	7	NA	NA	Polyphenols, glycosides, quinines, anthracyanosides, flavonic glycosides, coumarins	
	E. coli					(Maharjan et al., 2011)	
	S. flexneri						
	P. mirabilis						
	P. vulgaris						
	V. cholerae						
	F. oxysporum						
	A. fumigatus						
	Trichoderma						
	F. graminearum						
C. colocynthis Fruit	A. nigar	15–100	5–23	1–3.12		6.25	
	A. fumigatus	15–100	6–19			3.12	
	E. coli	40–60	3–16	0.5–13.9			
	P. mirabilis	0.3	2–10	1	NA		
	P. vulgaris	0.3	12.3	1			
	S. aureus	25–100	2.9–22	0.25–10.8			
	P. aeruginosa	25–100	4.9–19	0.5–13.9			
	K. pneumoniae	25–100	9.4–19	1–13.9			
	S. typhi	NA	10	1			
	F. oxysporum	25–100	10–15	NA			
	S. flexneri	NA	5	NA			
	V. cholerae	NA					
	F. oxysporum	NA					
	A. fumigatus						
	Trichoderma						
	F. graminearum						
C. cyminum Seeds	E. coli	0.5–250	2–31	0.12–20		0.25–40	
	P. aeruginosa	2–33.33	10–25	0.25–6.25		0.25–60	
	S. typhi	0.5–250	8–35	40		0.5–60	
	K. pneumoniae	0.5–250	8–22	0.12–40		0.25–60	
	S. aureus	0.5–250	9–36	0.12–40		0.25–60	
	P. mirabilis	50–100	11.5–12	NA			
	V. cholerae	0.5	8–17				
	A. nigar	0.5	17				
	A. fumigatus	0.5	15				
	P. vulgaris	NA					
	S. flexneri	NA					
	Rhizopus						
	F. oxysporum						
	Trichoderma						
	F. graminearum						
Plant name/ Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds	References
----------------------	----------------	-----------------------	----------------------	-------------	-------------	--	---
C. fistula Seeds, seed cover	E. coli	100	4.83–16	50	NA	2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one, á-D-Glucopyranoside, O-á-D-glucopyranosyl-(1,6-fwardw.3)-ß-D-fruc, d-Mannose, 5,7-Dodecadiyn-1,12-diol, 3-Trifluoroacetoxypentadecane, 3-Trifluoroacetoxypentadecane, Pterin-6-carboxylic acid, Imidazole-4-carboxylic acid, 2-fluoro-1-methoxymethyl-,ethyl ester, D-Carvone,	(Gupta et al., 2015; Kadhim et al., 2016; Subramanion et al., 2010)
	S. typhi	100	4.15–25	3.12	NA		
	S. aureus	25–100	5–18	12.5	NA		
	P. mirabilis	100	5	NA	NA		
	P. aeruginosa	100	5.73	12.5	NA		
	K. pneumoniae	100	5	NA	NA		
	A. niger	100	5.8	12.5	NA		
	F. oxysporum	100	5	NA	NA		
	A. fumigatus	100	6	NA	NA		
	Trichoderma	100	5	NA	NA		
	P. vulgaris	NA		NA	NA		
	V. cholerae	NA		NA	NA		
C. limon Fruit juice/ extract	E. coli	0.2–1	11–19	0.5–50	0.1–1	Alkaloids, flavonoids, phenols, quinines, terpenoids and carbohydrate, cyanogenetic, cardiac and steroidal glycosides, tannins, saponins, and water-soluble vitamins	(Singh et al., 2020b)
	S. aureus	0.2	14–26	0.025–25	0.05		
	K. pneumoniae	0.2	18–30	0.0035	0.05		
	S. typhi	0.1–1	6–30	0.025–12.5	0.05		
	P. aeruginosa	0.2	10–19	0.0125	0.05		
	A. niger	0.2	4–12	0.05	0.1		
	P. vulgaris	0.2	17–20	0.001–6.5	NA		
	S. flexneri	100-1000 ug/disc	9–15	NA	NA		
	V. cholerae	NA		NA	NA		
	P. mirabilis	RHizopus		NA	NA		
	F. oxysporum	A. fumigatus	Trichoderma	F. graminearum			
C. nuicifera Fruit	E. coli	0.5–1.5	0–10	NA	NA	Phenols, flavonoids, alkaloids, tannins and saponins	(Chakraborty and Mitra, 2008; Igwe and Ugwumaja, 2016)
	S. aureus	0.5–1.5	8–15	NA	NA		
	P. aeruginosa	NA	16	NA	NA		
	A. niger		12	NA	NA		
	V. cholerae			NA	NA		
	S. flexneri			NA	NA		
	P. mirabilis			NA	NA		
	K. pneumoniae			NA	NA		
	P. vulgaris			NA	NA		
	F. oxysporum	A. fumigatus	Trichoderma	F. graminearum			
C. sinensis leaves	P. aeruginosa	0.1–200	10–19	5	>5	Phenol, flavonoids, catechin, alkaloids, tannins and alkaloid	(Agbom et al., 2020; Archana and Abraham, 2011; Bashir et al., 2014; Chakrabort and Chakrabort, 2010; Dzotam and Kuete, 2017; Farooqui et al., 2015; Fazal and Rauf, 2015; Latteef, 2016; Mehta et al., 2016; Rajeswari, 2015; Roy et al., 2018; Vasudeo and Sonika, 2009)
	E. coli	0.1–200	3.6–32	3.25–100	>5		
	S. flexneri	3–48	2–26	2.5–12	>5		
	S. typhi	3–48	2.3–28.4	12	60		
	V. cholerae	3–48	1.6–30.1	6	NA		
	K. pneumoniae	NA	22	0.512	NA		
	P. mirabilis	NA	25	NA	NA		
	A. niger	NA	5	NA	NA		
	F. oxysporum	A. fumigatus	Trichoderma	F. graminearum			
	P. vulgaris	NA		NA	NA		
	RHizopus	Trichoderma		F. graminearum			
C. zedoaria Rhizome	V. cholerae	0.5	0	NA	NA		(Das and Rahman, 2012; Shahrir, 2010)
	E. coli	0.5–40	9–18	NA	NA		
	S. typhi	0.5	16	NA	NA		
	P. aeruginosa	0.5–40	5–13	NA	NA		
	K. pneumoniae	0.5	0	NA	NA		
	S. aureus	0.5–40	16	NA	NA		
	A. niger	0.5–40	11–14	NA	NA		
	A. fumigatus	40	12	NA	NA		
	Trichoderma	40	5	NA	NA		
	S. flexneri	NA		NA	NA		
Plant name/Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds	References
---------------------	---------------------------	-----------------------	----------------------	-------------	-------------	-------------------------------------	--
P. mirabilis							
P. vulgaris							
Rhizopus							
F. oxysporum							
F. graminearum							
C. zeylanicum Bark	S. aureus	10–150	11–14	25	NA	NA	(Aneja et al., 2009; Saliem and AbedSalih, 2018; Singh et al., 2020a; Vyas et al., 2015)
E. coli	0.1–10	11–14	NA				
P. aeruginosa	10–150	9–14	NA				
K. pneumoniae	1–2	9–10	NA				
A. niger	10	13					
V. cholerae							
S. flexneri							
P. mirabilis							
P. vulgaris							
S. typhi							
Rhizopus							
F. oxysporum							
A. fumigatus							
Trichoderma							
F. graminearum							
E. cardamomum Fruit/seeds	S. aureus	100	6–38	2–50	2.5–50	terpenoids flavonoids and glycosides	(Al-Judaibi et al., 2014; Aneja and Joshi, 2009; Bano et al., 2016; Islam et al., 2010; Kaushik et al., 2010; Singh et al., 2008)
S. typhi	100	6.5–22	25	50	75		
P. aeruginosa	100	8.5–16	49	50	50		
K. pneumoniae	100	14	50				
E. coli	50	8.5–16.5	NA				
V. cholerae							
S. flexneri							
P. mirabilis							
P. vulgaris							
A. niger							
Rhizopus							
F. oxysporum							
A. fumigatus							
Trichoderma							
F. graminearum							
E. jambolana Seeds	S. aureus	0.050–1	6–25	0.125	0.125	NA	(Chandrasekaran and Venkatesalu, 2004; Mehreen et al., 2016; Ogato et al., 2015; Raju et al., 2011; Saha et al., 2013a)
E. coli	0.050–1	4–15	0.250	0.5			
S. typhi	0.050–1	5–18	0.125	0.5			
P. aeruginosa	0.050–1	5–23	0.250	0.5			
K. pneumoniae	0.050–1	4	0.25	0.5			
A. niger	0.050–1	6–11	0.0625	0.125			
Rhizopus	0.050–1	10	0.0625	0.125			
A. fumigatus	0.050–1	12	0.0625	0.250			
S. flexneri	25–100	20–26	NA				
V. cholerae							
P. mirabilis							
P. vulgaris							
S. typhi							
Rhizopus							
F. oxysporum							
A. fumigatus							
Trichoderma							
F. graminearum							
F. asafetida Root/Gum resine	S. aureus	1–5	5–20	0.5	NA	Alkaloids, tannins, glycosoids, flavonoids, saponins	(Patil et al., 2015; Sharma et al., 2016; Shrivastava et al., 2012)
E. coli	1–5	16–19	1				
K. pneumoniae	2–4	14–17	1				
A. niger	1–5	14–17	1				
P. aeruginosa	1–5	13.9	NA				
S. flexneri							
V. cholerae							
P. mirabilis							
P. vulgaris							
S. typhi							
Rhizopus							
F. oxysporum							
A. fumigatus							
Trichoderma							
F. graminearum							
Plant name/ Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds	References
----------------------	----------	-----------------------	----------------------	-------------	-------------	-----------	------------
F. vulgare Seeds	S. aureus	0.05–0.4	3.33–20	0.0125–0.5	NA	terpenoids, tannins, steroids, alkaloids and glycosides, gallic acid, catechin, quercetin	(Agarwal et al., 2017; Al-Hadid, 2017; Al Akeel et al., 2014; Aliasothy, 2017; Arman et al., 2019; Beyazen et al., 2017; Chang et al., 2016; Dua et al., 2013a; Jayalakshmi et al., 2011; Salami et al., 2016; Shahid et al., 2013)
	E. coli	0.4–100	2–19	0.015–0.25	0.015–0.5	>33.33	
	S. typhi	1–15	11–25				
	P. aeruginosa	0.4–100	1.33–14–19				
	V. cholerae	0.4	4.33	NA			
	P. mirabilis	50–100	10.5–16				
	P. vulgaris	0.0044	12				
	K. pneumoniae	10–15	12–15				
	A. nigra	NA	15.6	NA			
	S. flexneri	Rhizopus					
	R. oxysporum	F. graminearum					
	A. fumigatus	Trichoderma					
	F. graminearum						
M. piperita Leaves	E. coli	0.21	0.49				(Ali et al.; Elansary et al., 2020)
	P. aeruginosa	0.16	0.47				
	S. aureus	0.17	0.37				
	A. nigra	19					
	A. fumigatus	15					
	V. cholerae	NA					
	S. flexneri						
	S. typhi						
	P. aeruginosa						
	P. vulgaris						
	K. pneumoniae						
	A. nigra	1–6					
	R. oxysporum						
	A. fumigatus						
	S. flexneri						
	P. vulgaris						
	F. oxysporum						
	Trichoderma						
	F. graminearum						
O. basilicum Seeds	S. aureus	25–100	5–11	0.125	NA	NA	(Adigüzel et al., 2005; Ahmad et al., 2016; Gajendiran et al., 2016; Kadhim et al., 2016; Saha et al., 2013b)
	E. coli	25–100	11–12	0.25	NA	NA	
	V. cholerae	300 µg/disc	10		NA		
	P. mirabilis	50–75	4–12				
	S. typhi	50–75	9–10				
	P. aeruginosa	75	16				
	K. pneumoniae	50–75	4–13	63–100%			
	A. nigra	1–6	56–100%				
	R. oxysporum	1–6	58–100%				
	A. fumigatus	1–6					
	S. flexneri						
	P. vulgaris						
	F. oxysporum						
	Trichoderma						
	F. graminearum						
P. granatum Fruit cover	S. aureus	4–100	7–29	0.1–50	>10–60	steroids, triterpenoids, alkaloids, flavonoids, saponins, tannins and carbohydrates, Anthraquinones	(Al-Zoreky, 2009; Ali, 2017; Daflham et al., 2010) (Abdollahzadeh et al., 2011; Keser et al., 2016; Mathabe et al., 2006; Raju et al., 2011) (Abdu et al., 2020; Alemu et al., 2017; Barathikannan et al., 2016; Bereksi et al., 2018; Rajeswari, 2015; RASHID et al; Sajjad et al., 2015; Salmen et al., 2016; Shafiq et al., 2013; Shabazi; 2017; Ullah et al., 2012)
	E. coli	0.03–0.05	13–27	1–12.5	>10–32	NA	
	S. typhi	14–24	1–13–37	25	>10–32	NA	
	P. aeruginosa	1–100	8–26	12.5	>10–32	NA	
	K. pneumoniae	0.125–1	7–18	2	>10–32	NA	
	P. mirabilis	0.03–0.05	12–20	NA	>10–32	NA	
	P. vulgaris	NA	6	NA	>10–32	NA	
	S. flexneri	16–25	12.5		NA		
	A. nigra	7–23	13				
	F. oxysporum	V. cholerae					
	R. oxysporum						
	A. fumigatus	Trichoderma					
	F. graminearum						

(continued on next page)
Plant name/Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds	References	
P. nigrum Seeds, fruit	*E. coli*	1–2	4-11-11.8	NA			(Sharma et al., 2016)	
	P. aeruginosa	1–200	10-16					
	K. pneumoniae	1–2	10-10.9					
	S. aureus	1–200	4-10.3-16					
	V. cholerae	NA						
	S. flexneri							
	P. mirabilis							
	P. vulgaris	1–200	10-11.8					
	S. typhi	1–200	10-11.8					
	A. niger	1–200	10-10.9					
	Rhizopus	1–200	10-10.9					
	F. oxysporum	1–200	10-10.9					
	A. fumigatus	1–200	10-10.9					
	Trichoderma	1–200	10-10.9					
	F. graminearum	1–200	10-10.9					
	S. Mussarat, M. Adnan, S. Begum et al. Saudi Journal of Biological Sciences 28 (2021) 6829–6843							
P. ovata Fruit, husk	*E. coli*	50–400	7–10	NA		saponin, tannin, flavonoids, alkaloids, steroids	(Motamedi et al., 2010)	
	P. mirabilis	50–400	0					
	P. vulgaris	5–50	8.5–12					
	S. typhi	50–400	0					
	P. aeruginosa	400	7					
	K. pneumoniae	400	7					
	S. aureus	5–400	20	9-18	>200			
	V. cholerae	NA						
	S. flexneri							
	A. niger							
	Rhizopus							
	F. oxysporum							
	A. fumigatus							
	Trichoderma							
	F. graminearum							
	R. indica Petal extract/flower	*S. aureus*	200	17–22	4.5	NA	Phenolic compounds, flavonoids, tannins, alkaloids	(Mishra et al., 2011; Pathak et al., 2019; Rikhi et al., 2015; Safdar and Malik; Sowmya et al., 2017)
	E. coli	200	12–15	3.7				
	P. aeruginosa	200	18–21	4.5				
	S. typhi	20	6–10	NA				
	K. pneumoniae	NA	22					
	V. cholerae	NA	10–17					
	S. flexneri							
	P. mirabilis							
	P. vulgaris							
	A. niger							
	Rhizopus							
	F. oxysporum							
	A. fumigatus							
	Trichoderma							
	F. graminearum							
	S. aromaticum Buds	*V. cholerae*	NA	NA	0.025	NA	alkaid, terpenoids, flavonoids, steroid, saponin, Anthraquinones, and tannin, phenolic compounds	(Abd El Azim et al., 2014; Aneja and Joshi, 2010; Dua et al., 2014; Ghalam and Ahmad, 2014; Mehrotra and Srivastava, 2010; Okinen et al., 2018; Pandey and Singh, 2011; Prajapati et al., 2018; Sharma et al., 2016; Vizhi et al., 2016; Wankhede, 2015)
	E. coli	1–500	5–24	3.12–125	12.5–125			
	S. flexneri	25–500	7–19	6.25–125	50–125			
	P. vulgaris	250–500	7–11	31.25	62.5			
	S. typhi	25–500	10–16	3.9–6.25	7.8–25			
	P. aeruginosa	1–100	10–10	1.95–12.5	50			
	K. pneumoniae	25–500	7.5–15	6–7.8	15.6–25			
	S. aureus	1–350	5–28	0.98–3.25	25			
	A. niger	NA	4–14	NA				
	F. oxysporum	NA	9					
	Trichoderma	NA	24					
	P. mirabilis	NA						
	A. fumigatus	NA						
	Rhizopus	NA						
	F. graminearum	NA						
Plant name/Part used	Pathogen	Concentration (mg/ml)	Inhibition zone (mm)	MIC (mg/ml)	MBC (mg/ml)	Compounds References		
---------------------	-----------	-----------------------	---------------------	-------------	-------------	----------------------		
T. chebula Rhizome	*V. cholerae*	10	15	0.25	1.5	Phenolic compounds, flavonoids, Alkaloid, Tannin, Steroid, Cardiac glycosides, terpenoids (Bagpai et al., 2010; Baliah and Astalakshmi, 2014; Jayalakshmi et al., 2011; Monisha et al., 2013; Mostafa et al., 2011; Rai and Joshi, 2009; Sharma et al., 2012; Singh et al., 2012; Zearah, 2014)		
	E. coli	10–500	14–30	50–100	NA			
	S. aureus	1–500	22–35	3.12–25				
	P. mirabilis	10	20.6	12.5				
	P. aeruginosa	125–500	18–30	12.5				
	F. oxysporum	1.5	23	0.5				
	S. flexneri	10	12	NA				
	S. typhi	10	16–25	25				
	K. pneumoniae	125–500	17–30	25				
	P. vulgaris	1.5	23	NA				
	A. fumigatus	NA	15	NA				
	A. nigar	NA	15	NA				
	Rhizopus	NA	15	NA				
	F. graminearum	NA	15	NA				
T. ammi Seeds	*E. coli*	10	10–21	1–12.5	25	NA (BASHYAL and GUHA, 2018; Hassan et al., 2016; Sharma et al., 2018; Sharma and Shrivastava; Shokrani et al., 2016)		
	S. aureus	10	10–21	1–12.5	25			
	P. aeruginosa	0.025	8–21	1	50			
	A. nigar	NA	15	NA				
	S. flexneri	NA	15	NA				
	P. vulgaris	NA	15	NA				
	P. mirabilis	NA	15	NA				
	V. cholerae	NA	15	NA				
	K. pneumoniae	NA	15	NA				
	Rhizopus	NA	15	NA				
	F. graminearum	NA	15	NA				
W. coagulans Fruit	*E. coli*	15	10–21	NA		terpenoids, flavonoids and tannin (Peerzade et al., 2018; Shahid et al., 2013; Sudhanshu et al., 2012)		
	S. flexneri	50–250	8–13	NA				
	P. vulgaris	50–250	0–16	NA				
	S. typhi	1–250	7–16	NA				
	P. aeruginosa	1–250	13–20	NA				
	K. pneumoniae	1–250	10–22	NA				
	S. aureus	1–250	11–19	NA				
	A. nigar	50–250.0	7–11	NA				
	A. fumigatus	0.025	29	NA				
	V. cholerae	NA	29	NA				
	P. mirabilis	NA	29	NA				
	Rhizopus	NA	29	NA				
	F. graminearum	NA	29	NA				
Z. officinales Rhizome	*E. coli*	0.025–80	2.9–22	3.5	40	alkaid, phlobotannins, flavonoids, glycosides, sapoxins, tannin and terpenoids. zingiberene, β-bisabolene, α-farnesne, β-sesquiphellandrene, α-curcumene and gingerol and shogaol (Agrawal et al., 2018; Azadpour et al., 2016; BASHIR et al., 2015; Bhargava et al., 2012; El-Mesallamy et al., 2017; Hasan et al., 2012; Iotsor et al., 2019; Kaustik and Goyal, 2011; Njobdi et al., 2018; Riaz et al., 2015; Sunilson et al., 2009; Ushimaru et al., 2007; Yadufashije et al., 2020; Yusuf et al., 2018)		
	S. aureus	0.025–50	3.75–31	0.052–1.75	0.1			
	P. aeruginosa	0.025–0.1	4–26	0.416–1.75	0.416			
	P. mirabilis	3.1–50	1.9–12	NA				
	S. typhi	0.025–0.1	6–21	NA				
	S. flexneri	0.025–50.0	11	NA				
	K. pneumoniae	0.025–50.0	11–25	NA				
	A. nigar	3	11–25	NA				
	F. oxysporum	3	11–25	NA				
	V. cholerae	NA	11–25	NA				
	P. vulgaris	NA	11–25	NA				
	Rhizopus	NA	11–25	NA				
	A. fumigatus	NA	11–25	NA				
	Trichoderma	NA	11–25	NA				
	F. graminearum	NA	11–25	NA				
3. Results

3.1. Antibacterial activities

On observation of antibacterial screening, all bacterial pathogens were sensitive towards tested polyherbal crude extracts; indicating the efficacy of these extracts, however, they vary in inhibition zone against the tested micro-organisms (Table 3). Polyherbal extract A, B and D produced the least number of colonies of bacterial strains V. cholerae, E. coli, and S. typhi on agar plate and statistically significant inhibition (p < 0.01). Polyherbal recipes B, and D showed a significant inhibition zone against Vibrio cholerae (25.63; p < 0.001).

Across all the polyherbal extracts, compared with antibiotic, polyherbal recipe E and G were very effective for four bacterial isolates P. vulgaris (28.33; p < 0.001), P. mirabilis (24.33; p < 0.001) P. aeruginosa (19.67 ± 0.5; p < 0.0001) and S. flexneri (13.67 ± 2.3). S. typhi was resilient towards recipe E with zero inhibition. Both the P. mirabilis and S. flexneri were also more sensitive to polyherbal extract K. Polyherbal recipe N showed potent activity against E. coli and S. flexneri. Among all the tested polyherbal extracts A, B, K, D, and N showed minimum inhibition and bactericidal effect at very low concentrations (3.12–6.25) (Table 4). Minimum inhibitory concentration ranges within (3.12–6.25 mg/ml) while bactericidal concentration was (12.5–50 mg/ml).

Table 3

Antibacterial activities (inhibition zone in mm) by polyherbal crude extract at the concentration of 50 mg/ml.

V. cholerae	E. coli	S. flexneri	P. mirabilis	P. vulgaris	S. typhi	P. aeruginosa
A	24.33 ± 2.1	22.66 ± 2.3	12 ± 0	11.33 ± 1.1	20.67 ± 1.1	20.67 ± 1.1
B	25.63 ± 3.5	19.33 ± 2	14 ± 3.6	15 ± 0	20.67 ± 1.1	13.33 ± 2.3
C	13 ± 3.6	20.33 ± 0.5	12 ± 1	20.67 ± 1.1	21.33 ± 1.1	27.33 ± 1.5
D	25.63 ± 0.5	18.67 ± 3.2	12 ± 1.7	21.33 ± 1.1	23.67 ± 1.1	19.67 ± 0.5
E	16 ± 1.7	19.33 ± 1.1	13.67 ± 2.3	24.33 ± 1.1	38.33 ± 0.5	0
F	12.67 ± 1.1	18.33 ± 0.5	10 ± 0	6.33 ± 5.5	15.67 ± 1.1	11.33 ± 1.1
G	17 ± 3.5	23.33 ± 4.1	8 ± 1.7	24.33 ± 1.1	20.67 ± 1.1	14 ± 2
H	25.33 ± 1	15.67 ± 4.0	4 ± 3.6	6.67 ± 5.7	25 ± 0	15.33 ± 3.5
I	21 ± 1	22 ± 0	10.67 ± 1.1	15.33 ± 0.5	15.33 ± 0.5	16.33 ± 1.5
J	24.67 ± 2.5	14.33 ± 1.1	11.67 ± 1.5	20 ± 0	15.33 ± 0.5	13 ± 2
K	21 ± 1	18 ± 2	17 ± 1	24.33 ± 1.1	14.67 ± 0.5	12.33 ± 1.5
L	16.33 ± 3.8	18.33 ± 0.5	13 ± 1.7	16.07 ± 1.1	15.33 ± 0.5	16.33 ± 1.5
M	9.33 ± 2.5	15 ± 0	6.67 ± 5.7	14 ± 1.7	13 ± 1	16.67 ± 1.1
N	15 ± 2	18.33 ± 1.1	11.67 ± 0.5	3 ± 6	17.67 ± 0.5	16.67 ± 2.8
AB	22.67 ± 3.3	19.33 ± 1.5	21.33 ± 1.1	23.33 ± 1.1	20 ± 0	23.67 ± 1.1
P value	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001	p < 0.001
DMSO	0	0	0	0	0	0

p value for ANNOVA, AB = Antibiotics.

3.2. Antifungal activities

Polyherbal crude extracts showed potential antifungal activity. Polyherbal extracts A, C, D, and F showed good inhibition than Fluconazole (Table 5). A. niger and A. fumigatus tended to be more sensitive for polyherbal extract C with the least number of colonies on SDA plate and statistically significant inhibition (28.67; p < 0.05) and (27; p < 0.01), respectively.

Rhizopus (19.67; p < 0.01) and Trichoderma (30; p < 0.001) were more sensitive and produced the least number of colonies after treatment with polyherbal recipe A. Polyherbal recipe D and F showed higher significant inhibition against F. oxysporum (31; p < 0.001) and F. graminearum (28.67; p < 0.001), respectively as compared to standard antifungal (19.67 mm). Trichoderma was resistant to polyherbal recipe G, I, K, and L and showed no inhibition.

4. Discussion

Antimicrobial resistance is an alarming threat to human health. The rate of development of novel medicine is limited and slow. In the present study, the assessment of selective polyherbal combinations showed synergistic, antagonistic, and additive interactions. Polyherbal recipes A, B, D, E, N, K, and H were more potent and showed good antimicrobial effect. Synergism of polyherbal formulation provides a direction to develop effective antibiotics with
Antifungal activities (inhibition zone in mm) by crude extract at 50 mg/ml.

Polyherbal crude extract	A. niger	Rhizopus	F. oxysporum	A. fumigatus	Trichoderma	F. graminearum	
A	24.67 ± 1.5	19.67 ± 4	17 ± 1.5	5 ± 5	30 ± 0	20 ± 0	
B	25.67 ± 6	0	17.67 ± 2.5	25.33 ± 5	29 ± 1	20 ± 0	
C	28.67 ± 1.1	1.67 ± 2.8	25.33 ± 1.1	27 ± 7	18.67 ± 1.1	25 ± 0	
D	25 ± 2	2	31 ± 1.7	14.33 ± 8.1	15.67 ± 1.1	25 ± 0	
E	24 ± 3.6	11.67 ± 10.4	24 ± 1	3.33 ± 2.8	27 ± 1.7	20 ± 0	
F	23.33 ± 12.5	13.33 ± 2.8	23.33 ± 1.5	19.33 ± 1.1	15 ± 0	28.67 ± 1.1	
G	22 ± 6	6.67 ± 5.7	23.33 ± 3	16.67 ± 10	0	20 ± 0	
H	25 ± 5	9.33 ± 1.1	24.33 ± 2	22.33 ± 2.5	19.33 ± 1.1	20 ± 0	
I	24 ± 3.3	1.1	14.55	25.33 ± 1.5	24.67 ± 4.5	0	25.67 ± 1.1
J	26.33 ± 2.8	12 ± 10.5	25.67 ± 1.1	15.67 ± 4.9	24.67 ± 0.5	25.63 ± 0.5	
K	21.33 ± 1.1	16.67 ± 5.7	20 ± 3.4	10.33 ± 8.9	0	23.33 ± 1.5	
L	22.33 ± 2.5	9.33 ± 1.1	19.85	12.67 ± 11	0	20.33 ± 0.5	
M	22.67 ± 6.8	10 ± 0	24.33 ± 0.5	15 ± 10	15.67 ± 1.1	20.33 ± 0.5	
N	23.33 ± 2.8	16.33 ± 7.0	24 ± 2	17.67 ± 2.5	29.67 ± 0.5	19.67 ± 0.5	

Fluconazole

Fluconazole	19.33 ± 0.5	16.33 ± 2.3	19.67 ± 2.5	26.67 ± 2.8	21.33 ± 1.1	22.33 ± 2.08

P-value

P-value	p < 0.5	p < 0.01	p < 0.001	p < 0.001	p < 0.001	p < 0.001

DMSO

| DMSO | 0 | 0 | 0 | 0 | 0 | 0 |

S. Mussarat, M. Adnan, S. Begum et al. Saudi Journal of Biological Sciences 28 (2021) 6829–6843

Changing ratio in active constituents. A review reported the five-year literature regarding antimicrobial activities and plant synergy concluded that synergism both within plants extracts and between plants and antibiotics can enhance the antimicrobial effect (Mundy et al., 2016).

Polyherbal recipe B, the mixture of highly used three individual plants Mentha piperita, Camellia sinensis, and Elettaria cardamomum, was more effective at least concentration against common gastrointestinal pathogens piperita. Capsules of E. cardamomum have been used since ancient times for treating various respiratory and digestive problems. In the traditional system of Chinese medicine, it was used to treat constipation, stomach ache, and dysentery in children. M. piperita and E. cardamomum individually have not been tested against the selected pathogens yet, however C. sinensis showed good effect with least concentration (Adwan et al., 2010). Adwan et al. (Adwan et al., 2010) studied the synergistic effects of plant combinations and found a decrease in MIC value against bacterial pathogens. Polyherbal formulation with S. aroumaticum, Zingiber officinalis, and T. ammi used to cure digestive ailments. Presence of 1, 8-cineole, α-terpinyl acetate, α-terpineol and sabine compounds in cardamom oil can serve as natural source of antimicrobial agent (Ashokkumar et al., 2020).

Least concentration of MIC and MBC were shown by mixture A, B, and D respectively (3.12 mg/ml) and (<25 mg/ml), respectively. Lower concentration of MIC may be due to damage of inner and outer membrane of the bacterial cell and releasing of all cell materials observed under the Transmission electron microscope. As synergistic effects of Amoxicillin with the combination of essential oil studied by El-Kalek and Mohamed (Abd El-Kalek and Mohamed, 2012). Recipe D was a mixture of three plants i.e. rhizome of Terminalia chebula (Combretaceae), seeds of Cuminum cyminum, and Foeniculum vulgare (Apiaceae) with equal ratio showed higher significant inhibition against tested pathogens. Individually F. vulgare showed good inhibition with increasing concentration but its methanolic extract was not tested yet for selected fungal and S. flexneri as well there is a lack of information available about MBC values. Methanolic extract of T. chebula and C. cyminum also have increasing inhibition with increasing concentration but lack proof for S. flexneri and fungal isolates. Essential oil from seeds of F. vulgare has potential to inhibit and kill gram-positive and gram-negative as well fungal pathogens at very low concentrations. Anethole and fenchone, are considered as the main components of its oil (Al-Hadid, 2017). MIC of anethole and fenchone reported in literature against Aspergillus species were 1.8 and 5.3 μl/ml, respectively (Mimica-Dukić et al., 2003). The mechanism of action of essential oil might be acting on the membrane integrity and releasing all the cellular contents (Diao et al., 2014). Dua et al. (Dua et al., 2013a) found that the antibacterial effect of F. vulgare is due to the presence of a higher quantity of flavonoids like gallic acid, caffeic acid, ellagic acid, quercetin, and kaempferol in its methanolic extract. As in most of the polyherbal recipes used in the present study were consists of F. vulgare with other plants so, increased in inhibition zone may be due to these diverse compounds.

Polyherbal recipe G was a mixture of Elettaria cardamomum, Syzygium aromaticum, Cinnaomonum zeylanicum, Mentha piperita, and Rosa indica with a ratio of 1:2:2:3:3, respectively, and showed good inhibition zones against E. coli, and Proteus species. C. zylincum was also a part of polyherbal formulation with A. indica, C. longa, A. sativum, O. sanctum, and T. indica studied by Bhinge et al. (Bhinge et al., 2017). This polyherbal recipe showed additive effects when mixed with synthetic base and exhibited maximum activity. Chandra et al. (Chandra et al., 2017) reported medicinal plants such as decoction of Coriandrum sativum leaves, Cinnaomonum spp., Syzygium aromaticum, which eliminate or inhibit the growth of E. coli; the most common causal agent of urinary tract infections.

Recipe E was a combination of Withania coagulans, Piper nigrum, Trachyspernum ammi, Cuminum cyminum, Foeniculum vulgare. Two plants species Cuminum cyminum, Foeniculum vulgare were belonged to Apiaceae were part of many polyherbal mixtures and reported for digestive problems and have a good antibacterial effect. Literature showed that these plants have extra amounts of essential oil and flavonoids. Piperine extracted from Piper nigrum was studied for antibacterial activity and its synergistic effect with Ciprofloxacin at a very low concentration (20 μg/ml) against Escherichia coli and Bacillus subtilis (Maira, 2017). Acetone and ethanol extract of polyherbal formulation of Trachyspernum ammi: Cinnaomonum zeylanicum: Syzygium aromaticum with the ratio of 1:1:1, 1:2:1, and 1:1:2, respectively showed enhanced activity as compared to individual plants in literature against E. coli and P. mirabilis. Phytochemical analysis confirms the presence of different secondary metabolites responsible for activity (Reji and Rajasekaran, 2015). A polyherbal formulation Laxisen found significantly effective (p < 0.003) for acute and chronic constipation is common symptom of gastrointestinal infections and badly affecting the quality of life (Sheikh et al., 2014). Polyherbal recipes that have not shown good antimicrobial effect asrecipe E showed no activity against S. typhi may have an inadequate quantity of active constituents that can kill or inhibit the bacterial population. The effectiveness of polyherbal or combination of plant extract with antibiotic may be due to modification or blocking of resistance.
mechanism so that bacterium becomes sensitive to these antibacterial extract in lower concentrations. Synergistic action of plant extract with antibiotics is a potential approach to overcome bacterial resistance (Stefanovic, 2018).

Crude methanolic extract of polyherbal mixture A, C, D and F showed statistically significant antifungal effect against A. niger, A. fumigatus and F. graminearum compared to Fluconazole (22.33 mm). These polyherbal mixtures share common plants with different ratios might be the reason for the change in the inhibition zone. It is noted that polyherbal mixture consist of plants from Apiaceae and Zingiberaceae showed maximum inhibition zone which may be due to essential oil present in the extracts. Polyherbal mixture comprised of three plants Azadirachta indica, Cichorium intybus, and Trigonella Foenum graecum; demonstrated synergistic broad spectrum antimicrobial potential for pathogenic bacterial and fungal strains (minimum inhibition concentration: 5–7 mg/ml) (Yadav et al., 2019). In literature, there is a lack of studies reported for these individual plants against selected fungal pathogens. There is less data reported for MIC and MBC against bacterial and fungal strains, that need to be tested.

5. Conclusions

The present study confirms the efficacy of polyherbal formulations used traditionally to treat different gastrointestinal infections. All the 14 selected polyherbal crude extracts showed potential antimicrobial activity; however, they vary in inhibition effect against the micro-organisms tested. Polyherbal recipes A, B, D, G, N, and H and A, C, D, F showed higher significant inhibition against tested bacterial and fungal pathogens, respectively. MIC ranges within 3.12–25 mg/ml while MBC between 12.5 and 100 mg/ml.

Foeniculum vulgare (Apiaceae) is used in most of the polyherbal formulations. Polyherbal formulations consist of Apiaceae species show good inhibition may be due to the presence of essential oil in the extract. Comparison with review table individual plants of selected polyherbal mixtures are not studied for MIC and MBC. There are scarce studies reported for these plants extracts against Fusarium species, Shigella, and Proteus species.

Antimicrobial activity in combination gives a synergistic and boosted inhibition against pathogenic bacteria and fungi and thus leading towards developing more potent drugs. Traditionally used polyherbal formulations provide new hope to solving the microbial resistance issue. So, there is a need to further evaluate these polyherbal mixtures for clinical, and in vivo trials against respective diseases. The study will also provide the basis for the isolation of bioactive synergistic compounds and drug discovery after toxicity evaluation.

Polyherbal recipes A, B and N highly used recipes for curing diarrhea at local level and were more potent against pathogenic bacteria that are highly involved in diarrhea. So, these recipes should be recommended for in vivo antidiarrheal activity.

Acknowledgments

This article is a part of Sakina Mussarat Ph. D thesis. The authors acknowledge the KUST ORIC project entitled “Diversity and Biological Efficacy of Ethnobotanically Used Polyherbal Mixtures Against gastrointestinal Infections in Khyber Pakhtunkhwa” for supporting this work. Thanks are extended to the laboratory staff at the Department of Botanical and Environmental Sciences, KUST for technical support. The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-2021/134), King Saud University, Riyadh, Saudi Arabia.

References

Abd El-Kalek, H.H., Mohamed, E.A., 2012. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Int. J. Pharmacuet. Appl. 3, 387–398.
Abd El Azim, A., El-Mesallamy, A.M., El-Gerby, M., Awad, A., 2014. Anti-tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower Buds (Syzygium aromaticum). J. Microbiob. Technol. 10, 58–907.
Abdollahzadeh, S., Mashouf, R., Mortazavi, H., Moghaddam, M., Roodzahien, N., Vaheedi, M., 2011. Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens. J. Dentistry (Tehran, Iran) 8, 1.
Abdu, O.H., Saeed, A.A., Fidhel, T.A., 2020. Polyphenols/flavonoids analysis and antimicrobial activity of pomegranate peel extracts. Electronic J. Univ. Aden Basic Appl. Sci. 1, 14–19.
Abi Beaulah, G., Mohamed Sadiq, A., Jaya Santhi, R., 2011. Antioxidant and antibacterial activity of Achyranthes aspera: An in vitro study. Ann. Biol. Res. 2, 662–670.
Adiguzel, A., Gulluce, M., Cengil, M., Ozturk, H., Sahin, F., Karaman, I., 2005. Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turkish J. Biol. 29, 155–160.
Adawa, G., Abu-Shanab, B., Adwan, K., 2010. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pacific J. Trop. Med. 3 (4), 266–269.
Agarwal, D., Sharma, L., Saxena, S., 2017. Anti-microbial properties of fennel (Foeniculum vulgare Mill.) seed extract. J. Pharmacognosy Phytochem. 6, 479–482.
Agboin, J.N., Ogbu, O., Iroha, L.R., Moses, L.B., Onuora, A.L., Kalu, A.C., Nwakaeze, E.A., Mohammad, D.I., Oke, B., Eguwu, L.H., Ajah, P.M., Okoro, C.C., Okata-Nwali, O.D., 2020. Antibacterial activities of Camellia sinensis plant extracts against uropathogenic E. coli in vitro and in vivo. African J. Pharm. Pharmacol. 14 (6), 147–156.
Agarwal, P., Katgori, D., Kolluru, V., 2018. Comparative analysis of antimicrobial activity of herbal extracts against pathogenic microbes. Adv. Biochem. Biotechnol.: ABO-163 DOI 10, 2574-7258.
Ali, S., Khalil, A.T., Yusra, Somaya, R., 2016. Antifungal, phytotoxic and hemagglutination activity of methanolic extracts of Ocimum basilicum. J. Tradit. Chin. Med. 36 (6), 794–798.
Askbar, A., Ali, I., Ullah, S., Ullah, N., Khan, S.A., Rehman, Z., Rehman, S.U., 2019. Functional, antioxidant, antimicrobial potential and food safety applications of curcuma longa and curcumin cymum. Pak. J. Bot. 51 (3), https://doi.org/10.30848/PAK-JBOTOL30848/PJBOT2019-3(30).
Al-Hadidi, K.J., 2017. Quantitative analysis of antimicrobial activity of Foeniculum vulgare: A review. Plant Omics 10 (1), 23–36.
Al-Judaidi, A., Al-Zahrani, A., Altamamar, K.A., Ismail, S.B., Darweesh, N.T., 2014. Comparative study of antibacterial activity of plant extracts from several regions of asia. Am. J. Pharmacol. Toxicol. 9 (2), 139–147.
Al-Zoreky, N.S., 2009. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 134 (3), 244–248.
Al Akeel, R., Al-Sheikh, Y., Mateen, A., Syed, R., Janardhan, K., Gupta, V.C., 2014. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi J. Biol. Sci. 21 (2), 147–151.
Alemu, F., Tilahun, A., Elias, E., 2017. In vitro antimicrobial activity screening of Punica granatum extracts against human pathogens. of 7:2.
Ali, A., Alana, M., Elmahb, H., 2013. Phytochemical analysis of some chemical metabolites of Colocynct plant (Citrus limon colchinth L.) and its activities as antimicrobial and antiplasmodial. J. Basic Appl. Sci. Res. 3, 228–236.
Ali, J., Hussain, A., Rehman, S., Khan, F.A., Sher, M., Antifungal Potential of Mentha spicata L. J. Med. Plants Stud. 5 (1), 1–6.
Ali, M., Nelson, A.R., Lopez, A.L., Sack, D.A., Remais, J.V., 2015. Updated global burden of cholera in endemic countries. PLoS Neglected Trop. Dis. 9 (6), e0003832.
Ali, M.S., 2017. In vivo antimicrobial inhibition of Punica granatum extracts as mouthwash. Russian Open Med. J. 6. Allarithy, S.A., 2017. Chemical compound of cumin and fennel seed extracts against some types of pathogenic bacteria. Iraq Med. J. 1, 1–6.
Kaussch, P., Goyal, P., 2011. Evaluation of various crude extracts of Zingiber officinale rhizome for potential antibacterial activity: A study in vitro. Adv. Microbiol. 1, 7.

Kaussch, P., Goyal, P., Chauhan, A., Chauhan, G., 2010. In vitro evaluation of antibacterial potential of dry fruit extracts of Elettaria cardamomum Maton (Chotti Elachi). Iranian J. Pharmac. Res. 6 (3), 287.

Khalaf, B., Xian, P.X., Lee, M.T.L., Siew Fern, R., Baig, M., 2013. Antimicrobial and antioxidant activities of the Seeds of Achyranthes Aspera. Phytotherapy Res.: Int. J. Devoted Pharmacol. Sci. Nutrit. 4 (1), 103–109.

Kesur, P., Gahlout, M., Chauhan, P., Prajapati, H., 2016. Evaluation of antimicrobial activities of ripen and unripe juice of Citrus limon. Int. J. Pharm. Sci. Innov. 3, 18–20.

Kirby, W., Yoshihara, G., Sundsted, K., Warren, J., 1956. Clinical usefulness of a single disc method for antibiotic sensitivity testing. Antibiotics Annual 892.

Kumar, S., Sarmah, N., Handique, A., 2014. Antioxidant and antimicrobial potential of different distillation conditions. Phytotherapy Res.: Int. J. Devoted Pharmacol. Sci. Nutrit. 4 (1), 103–109.

Kaveti, B., Xian, P.X., Lee, M.T.L., Siew Fern, R., Baig, M., 2013. Antimicrobial and antioxidant activities of Eugenia jambolana seeds against foodborne isolates. J. Sci. Innov. Res. Development 2 (2), 117–122.

Kumar, S., Sarmah, N., Handique, A., 2014. Antioxidant and antimicrobial potential of different distillation conditions. Phytotherapy Res.: Int. J. Devoted Pharmacol. Sci. Nutrit. 4 (1), 103–109.

Kumari, S., Sarmah, N., Handique, A., 2014. Antioxidant and antimicrobial potential of different distillation conditions. Phytotherapy Res.: Int. J. Devoted Pharmacol. Sci. Nutrit. 4 (1), 103–109.

Munday, Lorna, Pendry, Barbara, Rahman, Mukhlesur, 2016. Antimicrobial resistance on Escherichia coli and Staphylococcus aureus. J. Adv. Biol. Biotechnol. 19 (1), 1432.

Mundy, L., Rao, S., Prakash, A., Patel, S.M., Saravolatz, L.D., 2006. Monotherapy versus combination therapy. Med. Clin. 90 (6), 1183–1195.

Pathak, D., Dave, K.M., Aliasgar, L., 2019. Antimicrobial Properties of Rosa indica (A shrub with Name in South Asian Biodiversity). Biotechnol. Res. Asia 16 (2), 403–409.

Patil, S., Shinde, S., Kandale, P., Jain, A., 2015. Evaluation of antimicrobial activity of safasoti. Int. J. Pharmac. Res. Sci. 6, 722.

Peerzade, N., Sayed, N., Das, N., 2018. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the anti diabetic activity.

Prajapati, M., Pandya, D., Maitrey, B., 2018. Comparative Phytochemical Screening and Antibacterial activity of leaf and flowering bud of Syzygium aromaticum. Int. J. Botany Stud 3, 55–60.

Rai, A.K., Joshi, R., 2009. Evaluation of antimicrobial properties of fruit extracts of Terminalia chebula against dental caries pathogens. J. Adv. Res. 10, 261–266.
S. Mussarat, M. Adnan, S. Begum et al. Saudi Journal of Biological Sciences 28 (2021) 6829–6843

Sharma, L., Agarwal, D., Saxena, S., Kumar, H., Kumar, M., Verma, J., Singh, B., 2018. Antibacterial and Antifungal activity of ajwain (Trachyspermum ammi) in different solvent. J. Pharmacognosy Phytochem. 7, 2672–2674.

Sharma, P., Shrivastava, D. In-vitro Efficacy of Methanol and Acetone Extracts of Trigonella foenum (Fenugreek) and Trachyspermum ammi (Ajwain) Against Pathogenic Bacteria.

Sharma, V., Kumar, T., Dev, K., 2016. Effect of medicinal plant extracts on the antimicrobial activity of amoxyclyve and erythromycin against E. coli and S. aureus. Int. J. Pharmaceut. Sci. Res. 7, 4615–4625.

Sheikhi, M.I., Islam, S., Rahman, A., Rahman, M., Rahman, M., Rahman, A., Alam, M., 2010. Control of some human pathogenic bacteria by seed extracts of cumin (Cuminum cyminum L.). Agric. Conspectus Scientificus 75, 39–44.

Sheikhi, Z.A., Khan, A.A., Nawaz, A., Zahoor, A., Khan, S.S., Usmanghani, K., 2014. Development and clinical evaluation of polyherbal laxative laxixen. RADS J. Pharm. Pharmaceut. Sci. 2, 63–70.

Shete, H., Chitanda, M., 2014. Antimicrobial activity of some commonly used Indian Spices. Int. J. Curr. Microbiol. Appl. Sci. 3, 765–770.

Shokran, T., Sadat, N.S.A., Nematzadeh, G.A., Alavi, S.M., 2016. Evaluating Antibacterial Activity of In Vitro Culture of Ajwain (Trachyspermum copticum) Extract and Comparison with Seed Extract and Essential Oils.

Shrivastava, V., Bhardwaj, U., Sharma, V., Mahajan, N., Sharma, V., Shrivastava, G., 2012. Antimicrobial activities of Asafoetida resin extracts (a potential Indian spice). J. Pharm. Res. 5, 5022–5024.

Singh, D., Singh, D., Choi, S.M., Zo, S.M., Ki, S.B., Han, S.S., 2012. Therapeutical effect of extracts of Terminalia chebula in inhibiting human pathogens and free radicals. Int. J. Biosci., Biochem. Bioinform., 164–167. https://doi.org/10.7763/IJBBI.2012.V2.93.

Singh, G., Kiran, S., Marimuthu, P., Isidore, V., Vinogorova, V., 2008. Antibiotic and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pod). J. Sci. Food Agric. 88 (2), 280–289.

Singh, J., Singh, R., Parasuraman, S., Kathiresan, S., 2020a. Antimicrobial activity of extracts of bark of Cinnamomum cassia and Cinnamomum zeylanicum. Int. J. Pharmaceut. Invest. 10 (1), 141–145.

Singh, N., Jaswal, J., Tiwari, P., Sharma, B., 2020b. Phytochemicals from juice as Potential Antibacterial Agents. The Open Bioactive Compounds J. 8.

Singh, P., Tripathi, S.K., 2018. Therapeutic effect of Indian spices in the treatment of gastrointestinal diseases caused by Vibrio species.

Solomakos, N., Govaris, A., Koudis, P., Botsoglou, N., 2008. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157: H7 in minced beef during refrigerated storage. Meat Sci. 80 (2), 159–166.

Sowmya, L., Deepika, S., Geetha, S., Sri, L., 2017. Biochemical and antimicrobial analysis of rose petals (Rosa indica). Eur. J. Pharm. Med. Res. 4, 637–640.

Spencer, J.F., de Spencer, A.L.R., 2004. Public health microbiology: methods and protocols. Springer Science & Business Media.

Srinivasulu, N., Rao, B.S.B., Mallahar, P., Sudhakara, G., Prasad, T.M., Saralakumaria, D., 2016. Screening, determination of phytoconstituents and antimicrobial activity of different solvent extracts of different parts of achyranthes aspera on human pathogenic bacteria. Pharmaceut. Res. 6.

Srivastava, A., Singh, A.N., Singh, M., 2016. Antimicrobial activity of spices against Vibrio species isolated from pond water. European J. Exp. Biol. 6, 21–25.

Stefanović, O.D., 2018. Synergistic activity of antibiotics and bioactive plant extracts: a study against Gram-positive and Gram-negative bacteria. Bacterial Pathogenesis Antibacterial Control 23.

Subramanian, J., Zakaria, Z., Sreemisan, S., 2010. Antimicrobial activity and toxicity of methanol extract of Cassia fistula seeds. Res. J. Pharmaceut., Biol. Chem. Sci. 1, 391–398.

Sudhamshu, M.S., Rao, N., Menghani, E., 2012. Phytochemical and antimicrobial activity of Withania coagulans (Stocks) Dunal (Fruit). Int. J. Pharmaceut. Sci. 3, 387–389.

Sunilson, J.A.J., Suraj, R., Rejitha, G., Anandarajagopal, K., Kumar, A.A.G., Promwichit, P., 2009. In vitro antimicrobial evaluation of Zingiber officinale. Curcuma longa and Alpinia galanga extracts as natural food preservatives. Am. J. Food Technol. 4, 192–200.

Talreja, T., Kumar, M., Coswami, A., Sharma, T., 2017. In vitro Screening of Antibacterial Potentials of Achyranthes aspera Azolla pinnata and Cissus quadrangularis. Int. J. Curr. Microbiol. Appl. Sci. 6, 483–488.

Thangavel, P., Ramasamy, R.K., 2019. Phytochemical screening and antibacterial and antifungal activity of the stem, leaf and fruit extracts using different solvent of Citrullus colocynthis (L) Schrad. J. Pharmacognosy Phytochem. 7, 352–355.

Ullah, N., Ali, J., Khan, F.A., Khurrarn, M., Hussain, A., Rahman, I., Rahman, Z., Ullah, S., 2012. Proximate composition, minerals content, antibacterial and antifungal activity evaluation of pomegranate (Punica granatum L.) peels powder. Middle East J. Sci. Res. 11, 396–401.

Ushimaru, P.I., Silva, M.T.N.d., Di Stasi, L.C., Barbosa, L., Fernandes Junior, A., 2007. Antibacterial activity of medicinal plant extracts. Br. J. Microbiol. 38, 717–719.

Vasudeo, Z., Sonika, B., 2009. Antimicrobial activity of tea (Camellia sinensis) Biomed. Pharmacol. J. 2, 173.

Vizhi, D.K., Iruandi, K., Mehalingam, P., Kumar, N.N., 2016. In vitro antimicrobial activity and phytochemical analysis of fruits of Syzygium aromaticum (L.) Merrill & L.M Perry-An important medicinal Plant. J. Phytopharm. 5, 137–140.

Vyas, P., Suthar, A., Patel, D., Dayma, P., Raval, J., Joshi, D., 2015. Antimicrobial activity of extracts of Cinnamomum zeylanicum Bark and Its Combination with Antibiotics against Various Micro Organisms. J. Chem. Pharmaceut. Res. 7, 68–70.

Wankhede, T., 2015. Evaluation of antioxidant and antimicrobial activity of the Indian clove Syzygium aromaticum L. Merr. and Perr. Int. Res. J. Sci. Eng. 3, 166–172.

Yadav, S.K., Jain, G.K., Mazumder, A., Khar, R.K., 2019. Antimicrobial activity of a novel polyherbal combination for the treatment of vaginal infection. J. Adv. Pharm. Technol. Res. 10, 190.

Yadufashije, C., Niyonkuru, A., Munyeshyaka, E., Madjidi, S., Mucumbitsi, J., 2020. Antimicrobial activity of ginger extracts on bacteria isolated from digestive tract infection patients attended Muhoza Health Center. Asian J. Med. Sci. 11, 35–41.

Yassen, D., Ibrahim, A.E., 2016. Antibacterial activity of crude extracts of ginger (Zingiber officinalis Roscoe) on Escherichia coli and Staphylococcus aureus: A Study in vitro. Indo Am. J. Pharmaceut. Res. 6, 5830–5835.

Yusuf, A.A., Lawal, B., Abubakar, A.N., Berinuy, E.B., Omonije, Y.O., Umar, S.I., Shebe, M.N., Alhaji, Y.M., 2018. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin. Phytosci. 4, 12.

Zearah, S.A., 2014. Antifungal and antibacterial activity of flavonoid extract from Terminalia chebula Retz. fruits. J. Basrah Res. (Sciences) 40, 122–131.