COMPUTATION OF SOME LEAFWISE COHOMOLOGY RING

SHOTA MORI

Abstract. Let G be the group $SL(2, \mathbb{R})$, $P \subset G$ be the parabolic subgroup of upper triangular matrices and $\Gamma \subset G$ be a cocompact lattice. A right action of P on $\Gamma \backslash G$ defines an orbit foliation \mathcal{F}_P. We compute the leafwise cohomology ring $H^*(\mathcal{F}_P)$ by exploiting non-abelian harmonic analysis on G.

1. Introduction and main result

In the rigidity theory of C^∞ foliations, the leafwise cohomology is a fundamental tool (see Asaoka’s survey[2]). Specifically, in many cases the 1-dimensional leafwise cohomology group plays a crucial role to analyze the properties of C^∞ foliations. For example, set $G = SL(2, \mathbb{R})$. Let $P \subset G$ be the subgroup of all upper triangular matrices, \mathfrak{p} be the Lie algebra of P and $\Gamma \subset G$ be a cocompact lattice. Also set $M_\Gamma = \Gamma \backslash G$. Let \mathcal{F}_P be the orbit foliation induced from the natural action of P on M_Γ and $(\Omega^*(\mathcal{F}_P), d_{\mathcal{F}_P})$ be the leafwise complex. Let $Z^*(\mathcal{F}_P)$ be the space of cocycles and $B^*(\mathcal{F}_P)$ be the space of coboundaries. Also $H^*(\mathcal{F}_P)$ denote its cohomology group. Then, Matsumoto-Mitsumatsu[7, Theorem 1] proved that

\begin{equation}
H^1(\mathcal{F}_P) \cong H^1_{\text{Lie}}(\mathfrak{p}) \oplus H^1_{\text{dR}}(M_\Gamma).
\end{equation}

On the other hand, not many examples of higher leafwise cohomology groups are known, except for a linear foliation on a torus[1]. Recently, Maruhashi-Tsutaya[5, Theorem 66] provided a new example. They proved that

\begin{equation}
H^2(\mathcal{F}_P) \cong H^2_{\text{dR}}(M_\Gamma).
\end{equation}

They identified the total leafwise cohomology group $H^*(\mathcal{F}_P)$ as a linear space; however the ring structure remained unknown.

In this paper, we determine the ring structure of $H^*(\mathcal{F}_P)$ by exploiting non-abelian harmonic analysis, which method is totally independent of theirs. Let g be the multiplicity of the irreducible unitary
representation U^{-1} whose lowest weight is 1 in $L^2(M_{\Gamma})$ with the G-invariant measure. The finiteness is ensured by a duality theorem\cite[Theorem 1.4.2]{3}. This theorem says that the multiplicity of U^1 whose highest weight is -1 is also g. Then, our theorem below holds.

Theorem 1. There exist 1-cocycles $x, y_1, ..., y_{2g}$ such that

$$H^*(\mathcal{F}_p) \cong \bigwedge [x, y_1, ..., y_{2g}]/\{ y_i \wedge y_j \}_{1 \leq i, j \leq 2g}. \quad (3)$$

In the proof of Theorem 1 we also prove following: let $C_{\Gamma k} = O(25^k)$ be the constant defined in \cite[28]{} for each $k \in \mathbb{N}$. Then, for each $\eta \in B^*(\mathcal{F}_p)$, there exists $\xi \in \Omega^*(\mathcal{F}_p)$ with $\eta = d_{\mathcal{F}_p} \xi$ such that

$$||\xi||_k^2 \leq C_{\Gamma k+3} ||\eta||_{k+3}^2. \quad (4)$$

for each $k \in \mathbb{N}$, where $|| \cdot ||_k$ is a L^2-Sobolev norm of k-th order. This satisfies a tame estimate introduced in \cite[Definition II.2.1.1.]{4}. Thus our method is expected to help the further study of foliations using tameness.

The following describes the flow of this paper. First, in Section 2 we provide tools for discussion. Notations of representation theory, L^2-Sobolev norm, and the constants $C_{\Gamma k}$ are provided here. Second, in Section 3 and 4 we compute all explicit generators of $H^*(\mathcal{F}_p)$ in terms of representation theory. We also make a explicit estimations of L^2-Sobolev norms. Third, we determine the ring structure by computing eigenvalues in section 5.

Finally, the author acknowledges helpful comments from Hirokazu Maruhashi, Shuhei Maruyama, and Hitoshi Moriyoshi. Especially, the author thanks Shuhei Maruyama for pointing out Massey’s paper \cite{6}.

2. Preliminary

We summarize computation formulae.

2.1. From representation theory. Let \hat{G} be the unitary dual of G. It is sufficient for us to compute $d_{\mathcal{F}_p}$ on each $\pi \in \hat{G}$ by using the differential representation. Indeed, $L^2(M_{\Gamma})$ decomposes into a countable sum of irreducible unitary representations\cite[Theorem 1.2.3]{3}. Set $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$ and take elements

$$X_0 = \begin{pmatrix} 0 & 1 \\ -\frac{1}{2} & 0 \end{pmatrix}, X_1 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \quad (5)$$
from \mathfrak{g}. When we regard X_0, X_1, X_2 as vector fields on M_Γ, let $\omega_0, \omega_1, \omega_2 \in \Omega^1(M_\Gamma)$ be the dual forms of them. We put

$$Y = -X_0 + X_2 = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & 0 \end{pmatrix}.$$

For $\pi \in \hat{\mathcal{G}}$, let π' be the derivative of π, set

$$H = -i\pi'(X_0),\ E = \pi'(X_1) + i\pi'(Y),\ F = -\pi'(X_1) + i\pi'(Y).$$

When we regard π' as the representation of a complex Lie algebra $\mathfrak{sl}(2, \mathbb{C})$, H, E and F are given by

$$H = \pi'(0, -\frac{i}{2}, \frac{1}{2}),\ E = \pi'(\frac{i}{2}, \frac{1}{2}, \frac{1}{2}),\ F = \pi'(\frac{i}{2}, \frac{1}{2}, -\frac{1}{2}).$$

We set

$$C = \pi'(X_0)^2 - \pi'(X_1)^2 - \pi'(Y)^2$$

which is called the Casimir element. We state the structure theory of $\hat{\mathcal{G}}$. Here, \mathbb{N} denotes the set of all non-negative integers and $\frac{1}{2}\mathbb{Z}$ denotes the set of all integers and half-integers.

Theorem 2. (see [9, Proposition 6.13, Theorem 6.2, 6.4, 6.5])

For $\pi \in \hat{\mathcal{G}}$, let $M \subset \frac{1}{2}\mathbb{Z}$ and $q \in \mathbb{R}$ be given in the table below. Then, there exists an orthonormal basis $\{\phi_m\}_{m \in M}$ of π such that

$$C\phi_m = q\phi_m,$$

$$H\phi_m = m\phi_m,$$

$$E\phi_m = \sqrt{q + m(m + 1)}\phi_{m+1},$$

$$F\phi_m = \sqrt{q + m(m - 1)}\phi_{m-1}$$

for each $m \in M$.

π	M	q	conditions
$V^{0,\frac{1}{2}+\nu}$	\mathbb{Z}	$\frac{1}{4} + \nu^2$	$\nu \geq 0$
$V^{\frac{1}{2},\frac{1}{2}+\nu}$	$\frac{1}{2} + \mathbb{Z}$	$\frac{1}{4} + \nu^2$	$\nu > 0$
$V_{+}^{\frac{1}{2},\frac{1}{2}}$	$\frac{1}{2} + \mathbb{N}$	$\frac{1}{4}$	-
$V_{-}^{\frac{1}{2},\frac{1}{2}}$	$-\frac{1}{2} - \mathbb{N}$	$\frac{1}{4}$	-
U^n	$n - \mathbb{N}$	$n(1 - n)$	$n \in \frac{1}{2}\mathbb{Z}$ with $n \geq 1$
U^{-n}	$n + \mathbb{N}$	$n(1 - n)$	$n \in \frac{1}{2}\mathbb{Z}$ with $n \geq 1$
V^σ	\mathbb{Z}	$\sigma(1 - \sigma)$	$\frac{1}{2} < \sigma < 1$
I	$\{0\}$	0	-
The notations M and q are sometimes denoted as M_π and q_π, respectively. By applying Theorem 2 we write down $d_{\mathcal{F}_P}: \Omega^0(\mathcal{F}_P) \to \Omega^1(\mathcal{F}_P)$. Let h be a C^∞ vector of some $\pi \in \hat{G}$. We have the Fourier expansion

$$h = \sum_{m \in M} h_m \phi_m.$$ \hspace{1cm} (14)

Set $f_1 \omega_1 + f_2 \omega_2 = d_{\mathcal{F}_P} h$. Then, Fourier coefficients of f_1 and f_2 are given by

$$f_1 m = \frac{h_{m-1}}{2} \alpha_{q-1} - \frac{h_{m+1}}{2} \beta_{q+1}$$ \hspace{1cm} (15)

and

$$f_2 m = -\frac{ih_{m-1}}{2} \alpha_{q-1} + imh_m - \frac{ih_{m+1}}{2} \beta_{q+1},$$ \hspace{1cm} (16)

where

$$\alpha_{q} = \sqrt{q + m(m+1)},$$ \hspace{1cm} (17)

$$\beta_{q} = \sqrt{q + m(m-1)}. \hspace{1cm} (18)$$

Next, we write down $d_{\mathcal{F}_P}: \Omega^1(\mathcal{F}_P) \to \Omega^2(\mathcal{F}_P)$. Let f_1, f_2 be C^∞ vectors of some $\pi \in \hat{G}$. Set $g \omega_1 \wedge \omega_2 = d_{\mathcal{F}_P}(f_1 \omega_1 + f_2 \omega_2)$. Then, g’s Fourier coefficients are given by

$$g_m = \frac{if_{1m-1} + f_{2m-1}}{2} \alpha_{q-1} - (imf_{1m} + f_{2m}) + \frac{if_{1m+1} - f_{2m+1}}{2} \beta_{q+1}.$$ \hspace{1cm} (19)

For convenience, we replace h by $-4h$, $f_1 m$ by $2f_1 m$, $f_2 m$ by $2if_2 m$, and g by ig. Then we always assume

$$f_1 m = -h_{m-1} \alpha_{q-1} + h_{m+1} \beta_{q+1},$$ \hspace{1cm} (20)

$$f_2 m = h_{m-1} \alpha_{q-1} - 2mh_m + h_{m+1} \beta_{q+1},$$ \hspace{1cm} (21)

or

$$g_m = (f_{1m-1} + f_{2m-1}) \alpha_{q-1} - 2(mf_{1m} + f_{2m}) + (f_{1m+1} - f_{2m+1}) \beta_{q+1}.$$ \hspace{1cm} (22)
2.2. From Sobolev space theory. In this paper, we construct formal functions by using (20), (21), and (22). To ensure their smoothness, we use L^2-Sobolev norms. In general, let M be a compact Riemannian manifold and $(\lambda_s)_{s=0}^{\infty}$ be the sequence consisting of eigenvalues of the Laplace-Beltrami operator:

\begin{equation}
0 = \lambda_0 \leq \lambda_1 \leq \ldots \leq \lambda_s \leq \ldots \to \infty.
\end{equation}

Then, for each $k \in \mathbb{N}$, the L^2-Sobolev norm of k-th order with respect to the Bessel potential is given by

\begin{equation}
||f||_k^2 = \sum_{s=0}^{\infty} (1 + \lambda_s)^k |f_s|^2,
\end{equation}

where $f \in C^\infty(M)$ and $(f_s)_{s=0}^{\infty}$ is the Fourier coefficients of f. (For example, see [8, Definition 4.1]).

We apply this fact to our case. We define the Riemannian metric on M_Γ whose orthogonal frame is $\{X_0, X_1, Y\}$. Then the Laplace-Beltrami operator is $\Delta = -X_0^2 - X_1^2 - Y^2$. (See [10, Theorem 1]. Since G is connected unimodular, we have $\text{Trace}(\text{ad}(\cdot)) = 0$.) We transform with $\Delta = C - 2X_0^2$. Then we get

\begin{equation}
\Delta \phi_m = (q + 2m^2) \phi_m.
\end{equation}

Thus a L^2-Sobolev norm of k-th order is given by

\begin{equation}
||f||_k^2 = \sum_{\pi \subset L^2(M_\Gamma), \, m \in M_\pi} (1 + q + 2m^2)^k |f_{\pi m}|^2
\end{equation}

for each $k \in \mathbb{N}$ and $f \in C^\infty(M_\Gamma)$.

We estimate the L^2-Sobolev norms (20) in Sections 3 and 4. We provide constants for this purpose. Observe the behavior of number q:

Lemma 3. The sequence $(q_{\pi})_{\pi \subset L^2(M_\Gamma)}$ has no accumulation points, where q_{π} is the number of π.

Proof. The non-existence of accumulation points is derived from the fact that eigenvalues of Δ diverge. \qed

Set

\begin{equation}
q_\Gamma = \inf \{|q_{\pi}| \mid \pi \subset L^2(M_\Gamma), \, \pi \neq I, U^{-1}, U^1\} > 0 \text{ (Lemma 3)}.
\end{equation}

If $q_\Gamma > 1$, then we replace $q_\Gamma = 1$.

For each $k \in \mathbb{N}$, set

\begin{equation}
C_{\Gamma k} = \left(\frac{3!}{q_\Gamma^2}\right)^2 2^{5k+8}.
\end{equation}
The estimation is performed using this constant $C_{\Gamma k}$ under replacing h, f_1, f_2, and g. When a special cocycle $\eta \in Z^*(\mathcal{F}_P)$ is given, we construct $\xi \in \Omega^*(\mathcal{F}_P)$ which satisfies $\eta = d_{\mathcal{F}_P} \xi$ formally and prove
\begin{equation}
||\xi||_{k}^2 \leq C_{\Gamma k+3} ||\eta||_{k+3}^2
\end{equation}
for each $k \in \mathbb{N}$.

3. COMPUTING SECOND COCYCLES

To prove the lemmata below, we solve a linear equation for all Fourier coefficients on each $\pi \in \hat{G}$. The symbol $|_{\pi}$ means “restricted to π”.

3.1. Trivial representation. We get the following lemma directly.

Lemma 4. $H^2(\mathcal{F}_P)|_I = \{0\}$.

3.2. Corresponding to the lowest weight 1. We characterize the coboundary space.

Lemma 5. The following holds.
\begin{equation}
B^2(\mathcal{F}_P)|_{U^{-1}} = \left\{ g \omega_1 \wedge \omega_2 \left| \sum_{m=1}^{\infty} \sqrt{m} g_m = 0 \right. \right\}.
\end{equation}

Specially, $Z^2(\mathcal{F}_P)|_{U^{-1}}$ is spanned by $\phi_1 \omega_1 \wedge \omega_2$ and $B^2(\mathcal{F}_P)|_{U^{-1}}$.

Proof. Proving that the right hand side contains $B^2(\mathcal{F}_P)|_{U^{-1}}$ is easy. To prove opposite, let N be a positive integer. We put
\begin{equation}
f_{1m}^{(N+1)} = \frac{N + 1 - m}{\sqrt{m(N + 1)}} \quad (1 \leq m \leq N),
\end{equation}
\begin{equation}
f_{1N+1}^{(N+1)} = 0,
\end{equation}
\begin{equation}
f_1^{(N+1)} = \sum_{m=1}^{N} f_{1m}^{(N+1)} \phi_m.
\end{equation}

We have
\begin{equation}
d_{\mathcal{F}_P}(f_1^{(N+1)} \omega_1) = (-\sqrt{N + 1} \phi_1 + \phi_{N+1}) \omega_1 \wedge \omega_2.
\end{equation}
by \cite{22}. To check it, put $g^{(N+1)} \omega_1 \wedge \omega_2 = d_{F_p}(f_1^{(N+1)} \omega_1)$. For each $2 \leq m \leq N$,

(35) \begin{align*}
g_m^{(N+1)} &= f_1^{(N+1)} \alpha_{q_m} - 2m f_1^{(N+1)} + f_1^{(N+1)} \beta_{q_{m+1}} \\
&= \frac{N+1-(m-1)}{\sqrt{(m-1)(N+1)}} \sqrt{(m-1)m-2m} \frac{N+1-m}{\sqrt{m(N+1)}} + \frac{N+1-(m+1)}{\sqrt{(m+1)(N+1)}} \sqrt{m(m+1)} \\
&= \sqrt{\frac{m}{N+1}} (N+1-(m-1) - 2(N+1-m) + N+1-(m+1)) \\
&= 0.
\end{align*}

Next,

(36) \begin{align*}
g_1^{(N+1)} &= -2 \cdot 1 \cdot f_1^{(N+1)} + f_1^{(N+1)} \beta_{q_2} \\
&= -2 \frac{N+1-1}{\sqrt{1 \cdot (N+1)}} + \frac{N+1-2}{\sqrt{2 \cdot (N+1)}} \sqrt{1 \cdot 2} \\
&= -\sqrt{N+1}.
\end{align*}

Finally,

(37) \begin{align*}
g_{N+1}^{(N+1)} &= f_1^{(N+1)} \alpha_N - 2(N+1)f_1^{(N+1)} \\
&= \frac{N+1-N}{\sqrt{N(N+1)}} \sqrt{N(N+1)} - 0 \\
&= 1.
\end{align*}

Thus the formula \cite{33} is valid. We put $\xi^{(N+1)} = f_1^{(N+1)} \omega_1$.

Then let $\eta = g \omega_1 \wedge \omega_2$ be an element from the right hand side. Put

(38) \[\xi = \sum_{N=1}^{\infty} g_{N+1} \xi^{(N+1)} \]

We obtain $\eta = d\xi$ formally. This is determined to be smooth 2-coboundary after the Sobolev estimation (Lemma 6). \hfill \Box

Lemma 6. Let η be an element from the right hand side in Lemma 5 and put ξ as (38). Then, for each $k \in \mathbb{N}$, we have

(39) \[||\xi||_k^2 \leq ||\eta||_{k+3}^2. \]
Proof. Fix $k \in \mathbb{N}$. It is enough to prove
\begin{equation}
\sum_{m=1}^{\infty} (1 + 2m^2)^k \left| \sum_{N=m}^{\infty} g_{N+1} \frac{N + 1 - m}{\sqrt{m}(N + 1)} \right|^2 \leq \sum_{N=1}^{\infty} (1 + 2(N + 1)^2)^{k+3} |g_{N+1}|^2.
\end{equation}
First, we estimate each term in the left hand side. Put
\begin{equation}
g'_{N+1} = (1 + 2(N + 1)^2)g_{N+1}.
\end{equation}
Then
\begin{equation}
\sum_{N=m}^{\infty} \frac{g_{N+1}}{\sqrt{m(N + 1)}} \frac{N + 1 - m}{\sqrt{m}(N + 1)} \leq \left(\sum_{N=m}^{\infty} \frac{1}{(1 + 2(N + 1)^2)^2 m(N + 1)} \right)^{\frac{1}{2}} \sum_{N=m}^{\infty} |g'_{N+1}|^2 \quad \text{(Cauchy-Schwartz)}
\end{equation}
\begin{equation}
\leq \left(\sum_{N=m}^{\infty} \frac{1}{1 + 2(N + 1)^2} \right)^{\frac{1}{2}} \sum_{N=m}^{\infty} |g'_{N+1}|^2
\end{equation}
\begin{equation}
\leq 1 \cdot \sum_{N=m}^{\infty} (1 + 2(N + 1)^2)^2 |g_{N+1}|^2.
\end{equation}
Next, we estimate the whole term in the left hand side.
\begin{equation}
\sum_{m=1}^{\infty} (1 + 2m^2)^k \left| \sum_{N=m}^{\infty} g_{N+1} \frac{N + 1 - m}{\sqrt{m}(N + 1)} \right|^2
\end{equation}
\begin{equation}
\leq \sum_{m=1}^{\infty} (1 + 2m^2)^k \sum_{N=m}^{\infty} (1 + 2(N + 1)^2)^2 |g_{N+1}|^2
\end{equation}
\begin{equation}
= \sum_{N=1}^{\infty} (1 + 2(N + 1)^2)^2 \left(\sum_{m=1}^{N} (1 + 2m^2)^k \right) |g_{N+1}|^2
\end{equation}
\begin{equation}
\leq \sum_{N=1}^{\infty} (1 + 2(N + 1)^2)^2 N(1 + 2N^2)^k |g_{N+1}|^2
\end{equation}
\begin{equation}
\leq \sum_{N=1}^{\infty} (1 + 2(N + 1)^2)^{k+3} |g_{N+1}|^2.
\end{equation}
3.3. **Corresponding to the highest weight -1.** Similar argument also holds in this case.

Lemma 7. The following holds.

\[
B^2(F_P)|_{U^1} = \left\{ g_1 \wedge g_2 \mid \sum_{m=-\infty}^{-1} (-1)^{-m} \sqrt{-m} g_m = 0 \right\}.
\]

Specially, \(Z^2(F_P)|_{U^1}\) is spanned by \(\phi_{-1} \omega_1 \wedge \omega_2\) and \(B^2(F_P)|_{U^1}\).

Proof. Proving that the right hand side contains \(B^2(F_P)|_{U^1}\) is easy. To prove opposite, let \(N\) be a positive integer. We put

\[
f^{-(N+1)}_{1m} = \frac{1}{\sqrt{-m(N+1)}} \left(\begin{array}{c} N + 1 + m \\ -N \leq m \leq -1 \end{array} \right),
\]

\[
(46) \quad f^{-(N+1)}_{1-(N+1)} = 0,
\]

\[
(47) \quad f^{-(N+1)}_{1} = \sum_{m=-N}^{-1} (-1)^{N-m} f^{-(N+1)}_{1m} \phi_m.
\]

Then, we have

\[
d_{F_p}(f^{-(N+1)}_{1} \omega_1) = (\phi^{-(N+1)}_{-1} \omega_1 + (-1)^{N+1} \sqrt{N+1} \phi_{-1} \omega_1) \omega_2
\]

by (22). To check it, put \(g^{-(N+1)} \omega_1 \wedge \omega_2 = d_{F_p}(f^{-(N+1)}_{1} \omega_1)\). For each \(-N \leq m \leq -2,\)

\[
(49) \quad (-1)^{N-(m-1)} g^{-(N+1)}_m
\]

\[
= f^{-(N+1)}_{1m-1} \alpha_{qm-1} + 2m f^{-(N+1)}_{1m} + f^{-(N+1)}_{1m+1} \beta_{qm+1}
\]

\[
= \frac{N + 1 + (m-1)}{\sqrt{|m-1|(N+1)}} \sqrt{(m-1)m} + \frac{2m(N+1+m)}{\sqrt{|m|(N+1)}} + \frac{N + 1 + (m+1)}{\sqrt{|m+1|(N+1)}} \sqrt{m(m+1)}
\]

\[
= \sqrt{\frac{|m|}{N+1}} \left(N + 1 + (m-1) - 2(N+1+m) + N + 1 + (m+1) \right)
\]

\[
= 0.
\]
Next,
\[
\begin{align*}
g_{-N+1}^{-N} &= -2(-N+1)(-N)^{N+1}f_{1-N+1}^{N+1} + (-1)^{N+N}f_{1-N+1}^{N+1}/\beta_q-N \\
&= 0 + \frac{N+1-N}{\sqrt{N \cdot (N+1)}}(-N-1)(-N) \\
&= 1.
\end{align*}
\]

Finally,
\[
\begin{align*}
g_{-1}^{-N+1} &= (-1)^{N+2}f_{-2}^{N+1}\alpha_{-2} - 2(-1)(-1)^{N+1}f_{-1}^{N+1} \\
&= (-1)^{N+1} \left(-\frac{N+1-2}{\sqrt{2 \cdot (N+1)}} \sqrt{2 \cdot 1 + 2 \frac{N+1-1}{1 \cdot (N+1)}} \right) \\
&= (-1)^{N+1}\sqrt{N+1}.
\end{align*}
\]

Thus the formula (50) is valid. This fact proves the result as in Lemma 5. The Sobolev estimation is the same as Lemma 6:
\[
||\xi||_k^2 \leq ||\eta||_{k+3}^2.
\]

\[\square\]

3.4. The other cases. Set \(\pi \neq I, U^{-1}, U^1\) and fix \(m_\pi \in \mathbb{M}\). To begin with, we observe a behaver of \(d_{F_P,\pi}\). Put \(f_1 = f_2 = f_1, f_2 = 0\) for any \(m \in \mathbb{M}\) which satisfies \(m \equiv m_\pi\) (mod 4). We consider the linear map
\[
(f_{1+m_1}, f_2, f_{1+m_2}, f_2) \mapsto (g_m, g_{m+1}, g_{m+2}, g_{m+3})
\]
for all \(m \equiv m_\pi\) by (22). The coefficient matrix is a block diagonal matrix whose block is a 4 \(\times\) 4 matrix. Each block is represented as
\[
\begin{align*}
\left(\begin{array}{cccc}
ge_m & g_{m+1} & g_{m+2} & g_{m+3} \\
\end{array} \right) &= \left(\begin{array}{cccc}
\beta_{q_{m_1}} & -\beta_{q_{m+1}} & 0 & 0 \\
-2(m+1) & -2 & \beta_{q_{m+2}} & -\beta_{q_{m+2}} \\
\alpha_{q_{m_1}} & \alpha_{q_{m+1}} & -2(m+2) & -2 \\
0 & 0 & \alpha_{q_{m+2}} & \alpha_{q_{m+2}} \\
\end{array} \right) \left(\begin{array}{c}
f_1 \\
f_2 \\
f_1 \\
f_2 \\
\end{array} \right).
\end{align*}
\]
We denote this 4 \(\times\) 4 matrix as \(A_m\). Its determinant \(\gamma_{q_m} = \det A_m\) is
\[
\gamma_{q_m} = -4q\sqrt{m^2 + m + q\sqrt{m^2 + 5m + 6}}.
\]
This value is always non-vanishing when \(m, m+3 \in \mathbb{M}\) by the lemma below.
Lemma 8. The following holds:

\[|\gamma_{qm}| \geq 4 \min\{q^2, 1\}. \]

Especially, we obtain \(|\gamma_{qm}| \geq 4q^2 \).

Proof. When \(\pi \neq I, U^{-n}, U^n \), since \(M \subset \frac{1}{2}\mathbb{Z} \), we have

\[
|\gamma_{qm}| = 4q\sqrt{(m + \frac{1}{2})^2 - \frac{1}{4} + q}\sqrt{(m + \frac{5}{2})^2 - \frac{1}{4} + q} \\
\geq 4q^2.
\]

When \(\pi = U^{-n} \) \((n \geq \frac{3}{2})\), \(|\gamma_{qm}| \) takes the minimum at \(m = n \):

\[
|\gamma_{qm}| \geq 4q\sqrt{n^2 + n + n(1 - n)\sqrt{n^2 + 5n + 6 + n(1 - n)}} \\
= 4q\sqrt{2n\sqrt{6(n + 1)}} \\
\geq 4 \cdot \frac{3}{2} \cdot \frac{1}{2} \sqrt{3}\sqrt{15} \\
\geq 4 \cdot 1.
\]

When \(\pi = U^n \) \((n \geq \frac{3}{2})\), \(|\gamma_{qm}| \) takes the minimum at \(m + 3 = -n \):

\[
|\gamma_{qm}| \geq 4q\sqrt{(n + 3)^2 - (n + 3) + n(1 - n)\sqrt{(n + 3)^2 - 5(n + 3) + 6 + n(1 - n)}} \\
= 4q\sqrt{6(n + 1)\sqrt{2n}} \\
\geq 4 \cdot 1.
\]

Therefore, we can determine the values \(f_{1m+1}, f_{2m+1}, f_{1m+2}, f_{2m+2} \) which satisfy (54).

Then take any \(\eta = g\omega_1 \wedge \omega_2 \in Z^2(F_P)|_\pi \). Put \(f_1m = f_2m = f_{1m+3} = f_{2m+3} = 0 \) for any \(m \in M \) which satisfies \(m \equiv m_\pi \pmod{4} \). We determine \(f_{1m+1}, f_{2m+1}, f_{1m+2}, f_{2m+2} \) in (54) and set

\[
\xi = f_1\omega_1 + f_2\omega_2.
\]

We get \(\eta = d_{F_P}\xi \) formally. We last the Sobolev estimations (Lemma 9 and 11).

Lemma 9. When \(\pi \neq I, U^{-n}, U^n \), we have

\[
||\xi||_k^2 \leq \left(\frac{3!}{q_T^2} \right)^2 2^{5(k+3)+8} ||\eta||_{k+3}^2
\]

for each \(k \in \mathbb{N} \), where \(q_T \) is defined in (27).
Proof. Fix \(k \in \mathbb{N} \) and \(m \equiv m_\pi \). Each entry of \(A_{q,m} \) is bounded from \(2\sqrt{q+m^2} \) or \(2\sqrt{q+(m+3)^2} \). Once we assume the latter. Here, a cofactor of \(A_{q,m} \) is degree 3 polynomial of entries of \(A_{q,m} \). Thus any entry of the cofactor matrix of \(A_{q,m} \) is bounded from \(3!2^3(q+(m+3)^2)^{\frac{3}{2}} \).

Then, for each \(l = 1, 2 \) and \(m' = m + 1, m + 2 \),

\[
|f_{lm'}| \leq \frac{1}{|\gamma_{q,m}|} 3!2^3(q+(m+3)^2)^{\frac{3}{2}} \left(\sum_{m''=m}^{m+3} |g_{m''}| \right)
\]
\[
\leq \frac{3!}{4q_\pi^2} 2^3(q+(m+3)^2)^{\frac{3}{2}} \left(4 \sqrt{\sum_{m''=m}^{m+3} |g_{m''}|^2} \right)
\]
\[
\leq \frac{3!}{q_\pi^2} 2^3(1+q+2(m+3)^2)^{\frac{3}{2}} \left(\sum_{m''=m}^{m+3} |g_{m''}|^2 \right)
\]

from Lemma \(\S \).

Claim 10. For each \(s', s'' \in \{0, 1, 2, 3\} \), we have

\[
1 + q + 2(m + s')^2 \leq 2^5(1 + q + 2(m + s'')^2).
\]

We continue by assuming this claim.

\[
(1 + q + 2m'^2)^k |f_{tm'}|^2
\]
\[
\leq \left(\frac{3!}{q_\pi^2} \right)^2 2^6(1 + q + 2m'^2)^k(1 + q + 2(m + 3)^2)^{\frac{3}{2}} \sum_{m''=m}^{m+3} |g_{m''}|^2
\]
\[
\leq \left(\frac{3!}{q_\pi^2} \right)^2 2^{5(k+3)+6} \sum_{m''=m}^{m+3} (1 + q + 2m'^2)^{k+3} |g_{m''}|^2 \quad \text{(Claim \[\S\])}.
\]

Add together for \(l = 1, 2 \) and \(m' = m + 1, m + 2 \), and get

\[
\sum_{l=1,2, m'=m+1, m+2} (1 + q + 2m'^2)^k |f_{lm'}|^2
\]
\[
\leq \left(\frac{3!}{q_\pi^2} \right)^2 2^{5(k+3)+8} \sum_{m''=m}^{m+3} (1 + q + 2m''^2)^{k+3} |g_{m''}|^2
\]

Finally, the desired inequality is obtained by adding up for \(m \equiv m_\pi \). \(\square \)

Proof of Claim \[\S\]. We find a constant \(c > 1 \) which satisfies

\[
1 + q + 2(m + s)^2 \leq c(1 + q + 2(m + s'')^2).
\]
By transposition, we obtain

$$2c(m + s'')^2 - 2(m + s')^2 + (c - 1)(1 + q) \geq 0.$$

(68)

Since $\pi \neq I, U^{-n}, U^n$, q is positive. Then it is enough to satisfy

$$2c(m + s'')^2 - 2(m + s')^2 + c - 1 \geq 0.$$

(69)

In the left hand side, we obtain

$$2c(m + s'')^2 - 2(m + s')^2 = 2(c - 1) \left(m + \frac{cs'' - s}{c - 1} \right)^2 - 2c \frac{(s'' - s)^2}{c - 1} \geq - \frac{18c}{c - 1}.$$

Then it is enough to satisfy

$$- \frac{18c}{c - 1} + c - 1 \geq 0$$

or

$$-18c + (c - 1)^2 \geq 0.$$

(72)

Roughly, this is valid for $c \geq 20$. Thus we can set $c = 2^5$. \square

Lemma 11. When $\pi = U^{-n}, U^n (n \geq \frac{3}{2})$, we have

$$||\xi||_k^2 \leq \left(\frac{3!}{q^2} \right)^2 25(k+3) + 8 ||\eta||_{k+3}$$

(73)

for each $k \in \mathbb{N}$.

Proof. We prove the case $\pi = U^{-n}$. (The proof for case $\pi = U^n$ is similar.) Fix $k \in \mathbb{N}$ and $m \equiv m_\pi$. Each entry of A_{qm} is bounded from $2(m + 3)$. Then any entry of the cofactor matrix of A_{qm} is bounded from

$$3!2^3(m + 3)^3.$$

(74)

Then, for each $l = 1, 2$ and $m' = m + 1, m + 2,$

$$|f_{lm'}| \leq \frac{1}{|\gamma_{qm}|} 3!2^3(m + 3)^3 \left(\sum_{m''=m}^{m+3} |g_{m''}| \right)$$

(75)

$$= \frac{3!}{q^2} 2^3(m + 3)^3 \sqrt{\sum_{m''=m}^{m+3} |g_{m''}|^2}$$

from Lemma. ☐
Claim 12. The following holds.

\[m + 3 \leq \sqrt{1 + n(1 - n) + 2(m + 3)^2}. \]

We continue by assuming this claim.

\[|f_{lm'}| \leq \frac{3!}{q_{E}} 2^3 (1 + n(1 - n) + 2(m + 3)^2)^{\frac{3}{2}} \sum_{m''=m}^{m+3} |g_{m''}|^2 \quad (\text{Claim 12}). \]

Claim 13. For each \(s', s'' \in \{0, 1, 2, 3\} \), we have

\[1 + n(1 - n) + 2(m + s')^2 \leq 2^5 (1 + n(1 - n) + 2(m + s'')^2). \]

Assume this claim. The rest is the same as after Claim [10] of the proof of Lemma [9]. \qed

Proof of Claim 12. Transforming the desired inequality, we obtain

\[1 + n(1 - n) + (m + 3)^2 \geq 0. \]

The left hand side takes the minimum if \(m = n \). Then

\[1 + n(1 - n) + (n + 3)^2 = 7n + 10. \]

This is positive. \qed

Proof of Claim 13. We find a constant \(c > 13 \) which satisfies

\[1 + n(1 - n) + 2(m + s')^2 \leq c(1 + n(1 - n) + 2(m + s'')^2). \]

By transposition, we obtain

\[2c(m + s'')^2 - 2(m + s')^2 + (c - 1)(1 + n(1 - n)) \geq 0. \]

Since \(c > 3 \) and \(m \geq n \geq \frac{3}{2} \), we have

\[2c(m + s'')^2 - 2(m + s')^2 \geq 2cm^2 - 2(m + 3)^2 \]

\[= 2(c - 1) \left(m - \frac{3}{c - 1} \right)^2 - \frac{18c}{c - 1} \]

\[\geq 2cn^2 - 2(n + 3)^2. \]

Then it is enough to satisfy

\[2cn^2 - 2(n + 3)^2 + (c - 1)(1 + n(1 - n)) \geq 0. \]
Since $c > 13$ and $n \geq \frac{3}{2}$, the left hand side is estimated by the below:

\begin{align*}
2cn^2 - 2(n + 3)^2 + (c - 1)(1 + n(1 - n)) \\
= (c - 1)n^2 + (c - 13)n + (c - 19) \\
\geq (c - 1)\left(\frac{3}{2}\right)^2 + (c - 13)\frac{3}{2} + (c - 19) \\
= \frac{19}{4}c - \frac{163}{4}.
\end{align*}

This is positive under $c > 13$. Thus we can set $c = 2^5$ roughly. \qed

Then the following holds.

Lemma 14. $H^2(\mathcal{F}_P)\mid_\pi = \{0\}$.

3.5. The whole sum

For any $\eta \in B^2(\mathcal{F}_P)$ and $\pi \subset L^2(M_1)$, let η_π be the π-component. Then we can get smooth cochain $\xi_\pi \in \Omega^1(\mathcal{F}_P)\mid_\pi$ such that

\begin{equation}
||\xi_\pi||^2_k \leq C_{\Gamma k+3}||\eta_\pi||^2_{k+3}
\end{equation}

for each $k \in \mathbb{N}$. Thus we get $\eta = d_{\mathcal{F}_P} \xi$ and

\begin{equation}
||\xi||^2_k \leq C_{\Gamma k+3}||\eta||^2_{k+3},
\end{equation}

where $\xi = \sum_\pi \xi_\pi$.

We summarize the discussion so far. We put

\begin{equation}
x = \omega_1,
\end{equation}

\begin{equation}
y_j = \phi_1(\omega_1 - \omega_2) \text{ in } j\text{-th } U^{-1},
\end{equation}

\begin{equation}
y_{g+j} = \phi_{-1}(\omega_1 + \omega_2) \text{ in } j\text{-th } U^1.
\end{equation}

These are 1-cocycles. Then, we got the following.

Proposition 15. The set $\{x \wedge y_1, \ldots, x \wedge y_{2g}\}$ is basis for $H^2(\mathcal{F}_P)$, where the number g is the multiplicity of U^{-1} and U^1.

Remark 16. This recovers the result [2] by Maruhashi-Tsutaya.

4. Computing first cocycles

We also solve a linear equation.

4.1. Trivial representation

We get the following lemma directly.

Lemma 17. $H^1(\mathcal{F}_P)\mid_I = C\omega_1$.
4.2. **Corresponding to the lowest weight 1.** We also characterize the coboundary space. Before that, we prove that the special 1-cocycles are trivial.

Lemma 18. If \(f_1 \omega_1 \in Z^1(\mathcal{F}_P)|_{U^{-1}} \), then \(f_1 = 0 \).

Proof. Put \(g \omega_1 \wedge \omega_2 = d_{\mathcal{F}_P}(f_1 \omega_1) \) and \(f_{10} = 0 \). Using (22), for any positive integer \(N \geq 3 \), we compute

\[
\sum_{m=1}^{N-1} \sqrt{m} g_m
\]

\[
= \sum_{m=1}^{N-2} \sqrt{m} \left(f_{1m-1} \sqrt{m(m-1)} - 2mf_1 + f_{1m+1} \sqrt{m(m+1)} \right)
\]

\[
= \sum_{m=0}^{N-2} \sqrt{m+1} f_{1m} \sqrt{m(m+1)} + \sum_{m=1}^{N-1} \sqrt{m} (-2mf_1) + \sum_{m=2}^{N} \sqrt{m-1} f_{1m} \sqrt{(m-1)m}
\]

\[
= \sum_{m=0}^{N-2} (m+1) \sqrt{m} f_{1m} + \sum_{m=1}^{N-1} (-2m) \sqrt{m} f_{1m} + \sum_{m=2}^{N} (m-1) \sqrt{m} f_{1m}
\]

\[
= 0 + \sum_{m=N-1}^{N-1} (-2m) \sqrt{m} f_{1m} + \sum_{m=N-1}^{N} (m-1) \sqrt{m} f_{1m}
\]

\[
= -N \sqrt{N-1} f_{1N-1} + (N-1) \sqrt{N} f_{1N}.
\]

Since \(g = 0 \), it means

\[
f_{1N} = \sqrt{\frac{N}{N-1}} f_{1N-1}.
\]

Thus we obtain

\[
f_{1N} = \sqrt{N} f_{11}.
\]

Then \(f_1 = 0 \) because \(\sum_{N=1}^{\infty} |f_{1N}|^2 < \infty \). □

Lemma 19. The following holds.

\[
B^1(\mathcal{F}_P)|_{U^{-1}} = \left\{ f_1 \omega_1 + f_2 \omega_2 \in Z^1(\mathcal{F}_P)|_{U^{-1}} \mid \sum_{m=1}^{\infty} \sqrt{m} f_{2m} = 0 \right\}.
\]

Specially, \(Z^1(\mathcal{F}_P)|_{U^{-1}} \) is spanned by \(\phi_1(\omega_1 - \omega_2) \) and \(B^1(\mathcal{F}_P)|_{U^{-1}} \).
Proof. Proving that the right hand side contains $B^1(\mathcal{F}_P)|_{U^{-1}}$ is easy. To prove opposite, let N be a positive integer. We put
\begin{equation}
 h_m = \frac{N + 1 - m}{\sqrt{m(N + 1)}} \quad (1 \leq m \leq N),
\end{equation}
\begin{equation}
 h = \sum_{m=1}^{N} h_m \phi_m.
\end{equation}
Then, we have
\begin{equation}
 d_{\mathcal{F}_P} h = (\text{some function}) \omega_1 + (-\sqrt{N+1} \phi_1 + \phi_{N+1}) \omega_2
\end{equation}
by (21). This formula and Lemma 18 prove the result. \qed

As in Section 3.2, the following Sobolev estimation holds:
\begin{equation}
 |||\xi||^2_k \leq |||\eta||^2_{k+3},
\end{equation}
where $\eta = f_1 \omega_1 + f_2 \omega_2$ is an element of the right hand side in Lemma 19 and $\xi = h$ is a 0-cochain constructed as Lemma 5.

4.3. Corresponding to the highest weight -1. Similar argument also holds in this case.

Lemma 20. The following holds.
\begin{equation}
 B^1(\mathcal{F}_P)|_{U^1} = \left\{ f_1 \omega_1 + f_2 \omega_2 \in Z^1(\mathcal{F}_P)|_{U^1} \left| \sum_{m=-\infty}^{-1} (-1)^{-m} \sqrt{-m} f_{2m} = 0 \right. \right\}.
\end{equation}
Specially, $Z^1(\mathcal{F}_P)|_{U^1}$ is spanned by $\phi_{-1}(\omega_1 + \omega_2)$ and $B^1(\mathcal{F}_P)|_{U^1}$.

As in Section 3.3, the following Sobolev estimation holds:
\begin{equation}
 |||\xi||^2_k \leq |||\eta||^2_{k+3},
\end{equation}
where $\eta = f_1 \omega_1 + f_2 \omega_2$ is an element of the right hand side in Lemma 20 and $\xi = h$ is some 0-cochain.

4.4. The other cases. Set $\pi \neq I, U^{-1}, U^1$ and fix $m_\pi \in \mathbb{M}$. We still start with proving the trivialness of the special 1-cocycles.

Lemma 21. Let $f_1 \omega_1 + f_2 \omega_2 \in Z^1(\mathcal{F}_P)|_{\pi}$. Assume $f_{1m} = f_{2m} = f_{1m+3} = f_{2m+3} = 0$ for any $m \in \mathbb{M}$ which satisfies $m \equiv m_\pi \pmod{4}$. Then, $f_1 = f_2 = 0$.
Proof. Under the assumption, 1-cocycle conditions (22) is realized as the kernel of the linear map
\[(f_1 m_{+1}, f_2 m_{+1}, f_1 m_{+2}, f_2 m_{+2}) \mapsto (g m, g m_{+1}, g m_{+2}, g m_{+3})\]
for each \(m \equiv m_\pi\). (See (54).) Recall that the determinant \(\gamma_{q m}\) is not 0. Thus \(f_1 = f_2 = 0\). □

We consider the linear map
\[(h_m, h_{m+1}, h_{m+2}, h_{m+3}) \mapsto (f_1 m_{+1}, f_2 m_{+1}, f_1 m_{+2}, f_2 m_{+2})\]
for each \(m \equiv m_\pi + 2\) in (20) and (21). The coefficient matrix is also a block diagonal matrix whose block is a \(4 \times 4\) matrix. Each block is represented as
\[
\begin{pmatrix}
-\alpha_{q m} & 0 & \beta_{q m+2} & 0 \\
\alpha_{q m} & -2(m + 1) & \beta_{q m+2} & 0 \\
0 & -\alpha_{q m+1} & 0 & \beta_{q m+3} \\
0 & \alpha_{q m+1} & -2(m + 2) & \beta_{q m+3}
\end{pmatrix}
\begin{pmatrix}
h_m \\
h_{m+1} \\
h_{m+2} \\
h_{m+3}
\end{pmatrix}
\]
Its determinant is also \(\gamma_{q m}\) defined in (55).

Lemma 22. \(H^1(\mathcal{F}_P)|_\pi = \{0\}\).

Proof. Take any \(f_1 \omega_1 + f_2 \omega_2 \in Z^1(\mathcal{F}_P)|_\pi\). From (102), we can construct \(h\) such that \(f_1 \omega_1 + f_2 \omega_2 - d_{\mathcal{F}_P} h\) satisfies the assumption of Lemma 21. Then \(f_1 \omega_1 + f_2 \omega_2 = d_{\mathcal{F}_P} h\). □

As in Section 3.4, the following Sobolev estimation holds:
\[(104) \quad ||\xi||_k^2 \leq \left(\frac{3!}{q_P}\right)^2 25(k+3)+8 ||\eta||_{k+3}^2,\]
where \(\eta = f_1 \omega_1 + f_2 \omega_2\) is any 2-cocycle and \(\xi = h\) is some 0-cochain.

4.5. The whole sum. As in Section 3.5, for each \(\eta \in B^1(\mathcal{F}_P)\), we have \(\xi \in \Omega^0(\mathcal{F}_P)\) such that
\[(105) \quad ||\xi||_k^2 \leq C_{r, k+3} ||\eta||_{k+3}^2.\]
The following holds.

Proposition 23. The set \(\{x, y_1, \ldots, y_g\}\) is basis for \(H^1(\mathcal{F}_P)\), where the number \(g\) is the multiplicity of \(U^{-1}\) and \(U^1\).

Remark 24. This recovers the result (7) by Matsumoto-Mitsumatsu.
5. Determining the ring structure

We can prove our main theorem by combining the above preparation with the following lemma.

Lemma 25. Let $\phi_1, \phi'_1 \in L^2(M_\Gamma)$ be weight vectors of U^{-1}. Here, ϕ_1 and ϕ'_1 do not necessarily belong to the same irreducible component. Also, let $\phi_{-1}, \phi'_{-1} \in L^2(M_\Gamma)$ be weight vectors of U^1. Then,

\begin{align}
(106) & \quad (X_0^2 - X_1^2 - Y^2)(\phi_1 \phi'_1) = -2\phi_1 \phi'_1, \\
(107) & \quad (X_0^2 - X_1^2 - Y^2)(\phi_{-1} \phi'_{-1}) = -2\phi_{-1} \phi'_{-1}, \\
(108) & \quad X_0(\phi_1 \phi_{-1}) = 0.
\end{align}

Especially, $\phi_1 \phi'_1, \phi_{-1} \phi'_{-1}$ and $\phi_1 \phi_{-1}$ orthogonal to U^{-1} and U^1.

Proof. Formulae are proved easily. The first two of them mean that $\phi_1 \phi'_1$ and $\phi_{-1} \phi'_{-1}$ are eigenvectors corresponding to -2 of the Casimir element. On the other hand, the Casimir element vanishes on U^{-1} and U^1. Then, they orthogonal to U^{-1} and U^1. Also $\phi_1 \phi_{-1}$ does by (108). Indeed, the set \mathbb{M} of U^{-1} and U^1 does not contain 0. □

Proof of Theorem 1 Generators of $H^*(F_\mathbb{P})$ are given in Proposition 15 and 23. The vanishing of $y_i \wedge y_j$ in $H^2(F_\mathbb{P})$ follows from Lemma 25 for each $1 \leq i, j \leq 2g$. □

Remark 26. When Γ is the fundamental group of a closed orientable hyperbolic surface, the vanishing of $y_i \wedge y_j$ is implied by the ring structure of $H^*_{dR}(M_\Gamma)$. In fact, we get the embedding $H^*_{dR}(M_\Gamma)/H^3_{dR}(M_\Gamma) \subset H^*(F_\mathbb{P})$ as rings from (1) and (2). The ring structure of $H^*_{dR}(M_\Gamma)$ is determined by the Thom-Gysin sequence and [6, Lemma 1].

References

[1] J. L. Arraut, N. M. dos Santos, Linear foliations of T^n, Bol. Soc. Bras. Mat. 21(2) (1991), 189-204.

[2] M. Asaoka, Local rigidity problem of smooth group actions, Sugaku Expositions 30 (2017), 207-233.

[3] I. M. Gel’fand, M. I. Graev, I. I. Pyatetskii-Shapiro, Representation theory and automorphic functions, W. B. Saunders Company, 1969.

[4] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 65-222.

[5] H. Maruhashi, M. Tsutaya, De Rham cohomology of the weak stable foliation of the geodesic flow of a hyperbolic surface, arXiv:2103.12403.

[6] W. S. Massey, On the cohomology ring of a sphere bundle, J. math. mech. 7(2) (1958), 265-289.

[7] S. Matsumoto, Y. Mitsumatsu, Leafwise cohomology and rigidity of certain Lie group actions, Ergod. Th. & Dynam. Sys. 23 (2003), 1839-1866.
[8] R. S. Strichartz, Analysis of the Laplacian on a complete Riemannian manifold, J. Funct. Anal. 52 (1983), 48-79.

[9] M. Sugiura, Unitary representations and harmonic analysis, North-Holland, 1990.

[10] H. Urakawa, On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan 31 (1979), 209-226.

(Shota MORI) Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan

Email address: mori.shouta.g1@smn.nagoya-u.ac.jp