Nuclear positioning in the gonadal distal tip cells of C. elegans

Hon-Song Kim and Kiyoji Nishiwaki*
Department of Bioscience; Kwansei Gakuin University; Sanda, Japan

Keywords: spectraplakin, cytoskeleton, VAB-10B1, nuclear migration, cell migration
Submitted: 01/11/12
Revised: 01/20/12
Accepted: 01/26/12
http://dx.doi.org/10.4161/worm.19500

Correspondence to: Kiyoji Nishiwaki; Email: nishiwaki@kwansei.ac.jp

Morphogenesis of the hermaphrodite gonad of Caenorhabditis elegans is directed by the U-shaped migration of the gonadal leader cells, which are called distal tip cells (DTCs). The nuclei of migrating DTCs are always positioned at the leading edge of the cells, even as these cells turn dorsally to contact the hypodermis and intestine. When the DTCs turn dorsally, VAB-10B1/spectraplakin acts in nuclear translocation by regulating the polarized growth of microtubules. The function of spectraplakin in nuclear positioning may be evolutionarily conserved. Here we discuss the possible reason for leading-edge positioning of the DTC nucleus.

VAB-10B1/Spectraplakin Acts in Nuclear Positioning

It is interesting to note that the DTCs consistently position their nuclei at the leading edge throughout their migration. When the DTCs turn dorsally, their nuclei are relocated to the dorsal side of the DTCs (Fig. 1). The DTCs extend lamellipodia at the onset of this turn and thus place their nuclei near the leading edge. This nuclear translocation requires the action of VAB-10B1, one of the spectraplakin isoforms in C. elegans. Spectraplakins are large cytoplasmic proteins that regulate the cytoskeleton. Nuclear translocation in DTCs is suppressed in mutants lacking VAB-10B1. Although the network of F-actin is mostly normal in these animals, the microtubule (MT) network is severely disrupted. VAB-10B1 has an N-terminal actin-binding domain (ABD), which is followed by a plakin domain, spectrin repeats, and an MT-binding domain (MTBD). Spectraplakins are known as the linker protein that bridges actin and MT filaments, because mini-genes containing only the ABD and MTBD domains can rescue the defects in the MT cytoskeleton in cultured cells, and in axonal growth in Drosophila that occur in the absence of functional endogenous spectraplakins.

Commentary to: Kim HS, Murakami R, Quintin S, Mori M, Ohkura K, Tamai KK, et al. VAB-10 spectraplakin acts in cell and nuclear migration in Caenorhabditis elegans. Development 2011; 138:4013–23; PMID:21831923; http://dx.doi.org/10.1242/dev.059568
DTC-specific expression of the \textit{vab-10B1} mini-gene also rescued defective nuclear translocation in \textit{vab-10B1} mutant larvae, suggesting a similar linker activity for VAB-10B1.3

F-actin and MTs are often aligned along the migratory axis of DTCs, and MTs grow toward the nucleus in the leading edge of the migrating DTCs. This polarized outgrowth of MTs is compromised in \textit{vab-10B1} mutants. Disruption of kinesin, a plus-end motor of MTs, also results in nuclear translocation defects in DTCs (Kim and Nishiwaki, unpublished data). These results suggest that, via its linker activity, VAB-10B1 functions in polarized outgrowth of MTs along the actin filaments, which are arrayed in parallel to the migratory axis of DTCs, and that the DTC nuclei are carried over the MT fibers toward the migratory leading edge in a kinesin-dependent manner (Fig. 2). Spectraplakin is reported to regulate MT outgrowth along actin bundles in mammalian cultured cells.7

\textbf{Is the Function of Spectraplakin in Nuclear Positioning Evolutionarily Conserved?}

The functions of spectraplakins in F-actin and MT regulation (localization, alignment, polarity and outgrowth) have been studied mainly in cell migration and axon extension.7,9 Kim et al. (2011) for the first time showed that spectraplakin is actively engaged in nuclear translocation via its function in MT regulation. The function of spectraplakin in nuclear positioning was, however, noticed early on in naturally occurring mutant mice. In mice with the neurodegenerative disorder \textit{dystonia musculorum}, the causative gene was found to encode the spectraplakin Bpag1.10,11 Among the characteristic pathological features detected in \textit{dystonia} mice is the eccentricity of neuronal nuclei.12-14 The
zebrafish mutant magellan, which affects the spectraplakin microtubule-actin cross-linking factor 1 (MACF1), is also defective in nuclear positioning in oocytes. In the zebrafish mutant, although abnormal MT localization is found in the oocytes, it is not known if this MT mislocalization affects nuclear positioning. As there are many studies that have shown an involvement of MT activity in the migration or positioning of cellular nuclei in various developmental contexts, it is possible that the role of spectraplakin in directional MT alignment to achieve appropriate positioning of nuclei in cells is conserved evolutionarily.

Why is the Nucleus of the DTC Placed at the Leading Edge of These Migrating Cells?

Nuclear migration occurs during the differentiation and morphogenesis of diverse cell types. For example, the migration of the nucleus into the bud neck in S. cerevisiae is important for normal distribution of chromosomes between mother and daughter cells. The interkinetic nuclear migration seen in vertebrate neuroepithelia is correlated with the cell cycle and is thought to regulate the fates of daughter cells. In Drosophila early embryos, the migration of nuclei to the cell cortex is essential for forming the syncytial blastoderm. In mammalian cultured cells, nuclei are actively moved away from the migratory leading edge. This nuclear replacement is important for positioning the microtubule-organizing center (MTOC) and Golgi apparatus in front of the nucleus, which may facilitate the delivering of membrane precursors and actin regulators to the leading edge. In contrast, the nuclei of migrating DTCs are positioned at the leading edge. It is unclear why the nuclei of DTCs are actively translocated to this region of the migrating cell. The absence of UNC-83/KASH, a nuclear membrane protein required for DTC nuclear translocation, also affects DTC cell migration, albeit weakly. These mutant DTCs exhibit weak path-finding defects during their migration (Kim and Nishiwaki, unpublished data; ref. 24). Thus, it is possible that nuclear positioning at the leading edge may play some role in guiding DTC migration. Because the guidance of DTCs during their dorsal migration depends on UNC-6/netrin signaling, it might be possible that the UNC-6 receptors UNC-5 and/or UNC-40 may be expressed in the membrane region at the leading edge of DTCs. If the nucleus was positioned close to the leading edge under these circumstances, this would allow the efficient transduction of the lamellipodium of the DTC. Further analysis of cell and nuclear migration of DTCs is required to determine a detailed understanding of nuclear positioning at the leading edge.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas to K.N.

References

1. Lu P., Werb Z. Pattern recognition mechanisms of branched organs. Science 2008; 322:1506-9; PMID:19056977; http://dx.doi.org/10.1126/science.1162783
2. Lints R, Hall DH. Reproductive System. In Altun ZF, Atlas. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press, 2008:245-258.
3. Kim HS, Murakami R, Quinn S, Mori M, Okhara K, Tamao K, et al. VAB-10 spectraplakin acts in cell and nuclear migration in Caenorhabditis elegans. Development 2011; 138:4013-23; PMID:21831923; http://dx.doi.org/10.1242/dev.059568
4. Karakasisoglou I, Yang Y, Fuchs E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. J Cell Biol 2000; 149:195-208; PMID:10747079; http://dx.doi.org/10.1083/jcb.149.1.195
5. Leung CL, Sun D, Zheng M, Knowles DR, Liem RK. Microtubule actin cross-linking factor (MACF): a hybrid of dystrofin and dystrophin that can interact with the actin and microtubule cytoskeleton. J Cell Biol 1999; 147:1275-86; PMID:10601340; http://dx.doi.org/10.1083/jcb.147.6.1275
6. Sun D, Leung CL, Liem RK. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): identification of a novel group of microtubule associated proteins. J Cell Sci 2001; 114:161-72; PMID:11127170
7. Wu X, Kodama A, Fuchs E. ACF7 regulates cytoskeletal-focal adhesion dynamics and migration and has ATPase activity. Cell 2008; 135:137-48; PMID:18854161; http://dx.doi.org/10.1016/j.cell.2008.07.045
8. Kodama A, Karakasisoglou I, Wong E, Varei A, Fuchs E. ACF7: an essential integrator of microtubule dynamics. Cell 2003; 115:343-54; PMID:14636561; http://dx.doi.org/10.1016/S0092-8674(03)00813-4
9. Lee S, Kolodka PA. Short Stop provides an essential link between F-actin and microtubules during axon extension. Development 2002; 129:1195-204; PMID:11874915
10. Brown A, Bernier G, Mathieu M, Rossant J, Kothary R. The mouse dystonia musculorum gene is a neural isoform of bullous pemphigoid antigen 1. Nat Genet 1995; 10:301-6; PMID:7670746; http://dx.doi.org/10.1038/ng/979.301
11. Gao L, Degenstein L, Dowling J, Yu QC, Wollmann R, Perman B, et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 1995; 81:233-43; PMID:7736575; http://dx.doi.org/10.1016/0092-8674(95)90313-X
12. Duchen LW, Strich SJ, Falconer DS. Clinical and pathological studies of an hereditary neuropathy in mice. J Neuropathol Exp Neurol 1981; 40:23-42; PMID:17560964; http://dx.doi.org/10.1016/j.brainres.2007.05.021
13. Boye LM, Link BA. Nuclear migration during retinal development. Brain Res 2008; 1192:29-36; PMID:17560964; http://dx.doi.org/10.1016/j.brainres.2007.05.021
14. Hanker JS, Peach R. Histochemical and ultrastructural studies of primary sensory neurons in mice with abnormal hydrolases. Neuropathol. Appl. Neurobiol 1976; 27:403-24; PMID:3217000; http://dx.doi.org/10.1080/030636774.1976.11557007; http://dx.doi.org/10.1016/0092-8674(95)90313-X
15. Gapp TA, Markov FL, Fertulla D, Mackiewicz K, Dapprich J, Monos D, et al. Microtubule actin crosslinking factor 1 regulates the Balbiani body and animal-vegetal polarity of the zebrafish oocyte. PLoS Genet 2010, 6:e1001073; PMID:20808893; http://dx.doi.org/10.1371/journal.pgen.1001073
23. Prigozhina NL, Waterman-Storer CM. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr Biol 2004; 14:88-98; PMID:14738729; http://dx.doi.org/10.1016/j.cub.2004.01.003

24. Malone CJ, Fixsen WD, Horvitz HR, Han M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 1999; 126:3171-81; PMID:10375507

25. Culotti JG, Merz DC. DCC and netrins. Curr Opin Cell Biol 1998; 10:609-13; PMID:9818171; http://dx.doi.org/10.1016/S0955-0674(98)80036-7

26. Hedgecock EM, Norris CR. Netrins evoke mixed reactions in motile cells. Trends Genet 1997; 13:251-3; PMID:9242842; http://dx.doi.org/10.1016/S0168-9525(97)01177-3