Supplemental Material

Evaluation of a Gene–Environment Interaction of PON1 and Low-Level Nerve Agent Exposure with Gulf War Illness: A Prevalence Case–Control Study Drawn from the U.S. Military Health Survey’s National Population Sample

Robert W. Haley, Gerald Kramer, Junhui Xiao, Jill A. Dever, and John F. Teiber

Table of Contents

Table S1. Agreement among the GWI Research, CDC, Kansas with no exclusions, and Kansas with exclusions case definitions in the prevalence case-control sample (n = 1,016). Kappa (95% confidence interval) measures the level of agreement beyond that expected by chance alone, where kappa ≤ 0 indicates no agreement, 0.01–0.20 none to slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 almost perfect agreement. The original Kansas case definition excluded veterans with certain comorbid conditions, but as the population aged, the exclusions became extreme, excluding many valid GWI cases. For this reason, in recent years the Kansas case definition has been applied either with no exclusions or with fewer comorbid conditions excluded. Cross-tables designated as “Cases only” are limited to studying agreement among case definitions in the 508 GWI cases used in the present prevalence case-control sample.

Table S2. Comparison of unadjusted RERI’s and correct asymmetrical 95% confidence intervals for the interaction of PON1 RR vs QQ genotype and having heard nerve agent alarms, computed from 1,016 Gulf War illness cases and controls with the SAS macro of Richardson & Kaufman and our adaptation of Zou’s method.

Table S3. Definition of the method used in our SAS macro to perform the sensitivity analysis to estimate the effect of misclassification of veterans’ recall of having heard nerve gas alarms on our estimate of the strength of the GxE interaction.

Table S4. Validation of our SAS macro for automating sensitivity testing to correct the odds ratio for misclassification of the environmental variable by reproducing Greenland and Lash’s published resins-lung cancer example.1

Table S5. Numerical values for Figure 4. The association of GWI with measures of low-level nerve agent exposure and genetic predisposition.
Table S6. Interaction on the additive and multiplicative scales of having been located in the Khamisiyah plume and PON1 Q192R genotype on GWI.

Table S7. Interaction on the additive and multiplicative scales of having been located in the Khamisiyah plume and PON1 Q192R type Q isoenzyme activity level on GWI.

Table S8. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and butytylccholinesterase (BChE) genotype on GWI.

Table S9. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and butytylccholinesterase (BChE) enzyme activity level on GWI.

Table S10. Interaction on the additive and multiplicative scales of having taken pyridostigmine bromide and butytylccholinesterase (BChE) genotype on GWI.

Table S11. Interaction on the additive and multiplicative scales of having taken pyridostigmine bromide and butytylccholinesterase (BChE) enzyme activity level on GWI.

Table S12. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 Q192R type R isoenzyme activity level on GWI.

Table S13. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 paraoxonase enzyme activity level on GWI.

Table S14. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 arylesterase (phenylacetate) enzyme activity level on GWI.

Table S15. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 diazoxonase enzyme activity level on GWI.

Table S16. Sensitivity analysis for correcting for unmeasured confounding the adjusted RERI for the effect of the GxE interaction of hearing alarms and PON1 RR vs QQ genotype on GWI on the additive scale.

Table S17. Sensitivity analysis for correcting for unmeasured confounding the adjusted prevalence odds ratio for the effect of the GxE interaction of hearing alarms and PON1 RR vs QQ genotype on GWI on the multiplicative scale.

Table S18. Methods and results of prior epidemiologic and clinical studies of the association of chemical weapons with GWI.

Table S19. Prior studies identifying biochemical mechanisms by which low-level subclinical sarin exposure similar to that experienced in the 1991 Persian Gulf War causes chronic cellular pathology with behavioral changes resembling GWI.
Table S20. Prior experimental evidence establishing that the PON1 Q192R type Q isoenzyme activity is the property of the PON1 gene that best protects the brain from the neurotoxic effects of low-level sarin nerve agent.

Figure S1. Mean (SE) butyrylcholinesterase (BChE) serum activity by BChE genotype. All variant genotype groups were significantly (p<0.001) different from the U/U group except for the U/A group. The number at the base of each bar is the group sample size in the full USMHS genotyping sample (n=1,923).

Figure S2. Prediction of irreversible or long-lasting health effects in soldiers exposed to airborne nerve agent above the U.S. Environmental Protection Agency’s Acute Exposure Guideline Level 2 (AEGL-2) but below the detection threshold of the widely deployed U.S. M8A1 nerve agent alarm device. On the basis of current science, the AEGL levels define the airborne concentration-time thresholds (expressed as mg/m\(^3\) per min) of a chemical as the level above which the general population, especially genetically susceptible individuals, could be expected to experience the following adverse effects: above AEGL-1 = notable discomfort, irritation, or certain asymptomatic nonsensory effects that are not disabling and are transient and reversible upon cessation of exposure; above AEGL-2 = irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape; above AEGL-3 = life threatening health effects or death. As tens of thousands of M8A1 detection alarms sounded repeatedly following U.S. and Coalition bombing of Iraqi chemical weapon storage sites throughout the conflict period, most soldiers donned mission oriented protective posture (MOPP) impervious suits, masks and gloves. Since, however, the AEGL-2 threshold (0.087 mg/m\(^3\) for 10 min, 0.05 mg/m\(^3\) for 30 min, etc.) was substantially below the M8A1 detection threshold (0.11 mg/m\(^3\)), there were undoubtedly periods of time before and after alarms sounded when solders were unprotected and exposed to AEGL-2 concentrations of nerve agent over the short times sufficient to cause irreversible or serious, long-lasting health effects, particularly for more genetically susceptible individuals. Thus, the detection threshold of the M8A1 detector would have prevented incapacitating or fatal nerve agent exposures (above AEGL-3) if they had occurred, but not AEGL-2 exposures, which did occur but in 1991 were not yet known to have long-lasting effects. The greater sensitivity of the Czech GSP-11 (0.05 mg/m\(^3\)) and the French AP2C/APACC (0.01 mg/m\(^3\)) detection devices explains the repeated Czech and French detections not detected by the ubiquitous U.S. M8A1 detectors. Figure reproduced from *Neuroepidemiology* 2013; 40: 160-177 by permission of S. Karger AG, Basel.

References
Table S1. Agreement among the GWI Research, CDC, Kansas with no exclusions, and Kansas with exclusions case definitions in the prevalence case-control sample (n = 1,016). Kappa (95% confidence interval) measures the level of agreement beyond that expected by chance alone, where kappa ≤ 0 indicates no agreement, 0.01–0.20 none to slight, 0.21–0.40 fair, 0.41–0.60 moderate, 0.61–0.80 substantial, and 0.81–1.00 almost perfect agreement. The original Kansas case definition excluded veterans with certain comorbid conditions, but as the population aged, the exclusions became extreme, excluding many valid GWI cases. For this reason, in recent years the Kansas case definition has been applied either with no exclusions or with fewer comorbid conditions excluded. Cross-tables designated as “Cases only” are limited to studying agreement among case definitions in the 508 GWI cases used in the present prevalence case-control sample.
Table S2. Comparison of unadjusted RERI’s and correct asymmetrical 95% confidence intervals for the interaction of *PON1* RR vs QQ genotype and having heard nerve agent alarms, computed from 1,016 Gulf War illness cases and controls with the SAS macro of Richardson & Kaufman and our adaptation of Zou’s method.

Method for calculating correct asymmetric 95% confidence intervals	SAS macro source	RERI	95% Confidence interval
Likelihood-based asymmetric CI calculated directly from a linear odds ratio model	Richardson and Kaufman 2009²	5.0423	1.6722 – 10.8654
Method of variance estimates recovery (MOVER) for asymmetric CI calculated from logistic regression parameters	Zou 2008³	5.0422	1.6757 – 10.8579

Abbreviation: RERI, relative excess risk due to interaction; CI, confidence interval
Table S3. Definition of the method used in our SAS macro to perform the sensitivity analysis to estimate the effect of misclassification of veterans’ recall of having heard nerve gas alarms on our estimate of the strength of the GxE interaction.

4x2 table from cross-table analysis of the original data

	G 0	G 1	Total
E			
Yes	a₀	a₁	Ncases₀
No	b₀	b₁	Ncases₁
Cases			
Controls	c₀	c₁	Ncontrols₀
	d₀	d₁	Ncontrols₁

4x2 table corrected for misclassification in E by the formulas below

	G 0	G 1	Total
E			
Yes	A₀	A₁	
No	B₀	B₁	
Cases			
Controls	C₀	C₁	
	D₀	D₁	

\[
\begin{align*}
A₀ &= \frac{a₀ - Ncases₀ (1 - Sp₀)}{Se₀ - (1 - Sp₀)} \\
B₀ &= Ncases₀ - A₀ \\
C₀ &= \frac{c₀ - Ncontrols₀ (1 - Sp₀)}{Se₀ - (1 - Sp₀)} \\
D₀ &= Ncontrols₀ - C₀ \\
A₁ &= \frac{a₁ - Ncases₁ (1 - Sp₁)}{Se₁ - (1 - Sp₁)} \\
B₁ &= Ncases₁ - A₁ \\
C₁ &= \frac{c₁ - Ncontrols₁ (1 - Sp₁)}{Se₁ - (1 - Sp₁)} \\
D₁ &= Ncontrols₁ - C₁
\end{align*}
\]

Abbreviations: G, has the risk genotype; E, exposed to the environmental risk; N, number of cases or controls with (1) or without (0) G; POR, prevalence odds ratio; Se and Sp, sensitivity and specificity of recall of E in case or control groups stipulated to model levels of recall bias; subscripted numbers indicate having the risk genotype (1) or not (0).

Note: This approach extends to GxE interaction the standard method for correcting the strength of association of a risk factor from the stipulated Se and Sp of its measurement in cases and controls,¹ simplified by Pearce.⁴

¹ This table, corrected for misclassification, was analyzed by 2 approaches: first, our SAS macro called Zou’s SAS macro to estimate the strength of the GxE interaction on the additive scale with Rothman’s synergy index, and second, our macro estimated it on the multiplicative scale by exponentiating the coefficient of the interaction term from logistic regression to obtain the POR for the GxE interaction. When Se=Sp=1 is stipulated in the call statement for the macro, the analysis returns the baseline value of the GxE interaction uncorrected for misclassification in E; whereas, other values for Se and Sp correct it for misclassification. When the same values of Se and Sp are used for case and control groups, the model corrects for nondifferential misclassification; when different values are used, it corrects for differential misclassification. Since this approach is ecological, it cannot support subject-level covariate adjustment.
Table S4. Validation of our SAS macro for automating sensitivity testing to correct the odds ratio for misclassification of the environmental variable by reproducing Greenland and Lash’s published resins-lung cancer example.\(^1\)

Cases	Controls				
	Se: 1.00	0.90	0.80	0.90	0.80
	Sp: 1.00	0.90	0.90	0.80	0.80

Greenland and Lash’s published results\(^a\)

1.00	0.90	0.80	0.90	0.80
2.83	1.29	1.57		

Results from our SAS macro\(^b\)

1.00	0.90	0.80	0.90	0.80
2.83	1.29	1.57		

Abbreviations: Se, sensitivity; Sp, specificity

\(^a\) Values in this panel are the odds ratio from logistic regression of the association of the binary environmental variable (occupational resins exposure) and the binary outcome variable (lung cancer) adjusted for the expected values of the sensitivity and specificity of measurement of the environmental variable in the cases and controls.

\(^b\) Inputs into each run of the SAS macro include SAS dataset name, the names of the outcome and environmental variables, and the 4 values of the expected sensitivity and specificity of measurement of the environmental variable in the cases and the controls based on background knowledge of possible reasons for misclassification.
Table S5. Numerical values for Figure 4. The association of GWI with measures of low-level nerve agent exposure and genetic predisposition.

Characteristic	Cases (N = 508)	Controls (N=508)	POR (95% CI)
A. No. of nerve agent alarms ^a			
0	111	287	1.00
1	80	62	2.45 (1.57-3.81)
2-9	187	119	4.15 (3.01-5.72)
≥10	130	40	8.57 (5.64-13.04)
B. In modeled Khamisiyah plume (days)			
0	354	386	1.00
1	95	43	2.41 (1.63-3.55)
≥2^a	25	13	2.10 (1.06-4.16)
Missing (unit location unavailable)	34	66	
C. PON1 Q192R genotype			
QQ	172	234	1.00
QR	227	216	1.43 (1.09-1.88)
RR	109	58	2.56 (1.76-3.72)
D. PON1 Q isoenzyme quartile			
Q1	174	92	2.81 (1.97-4.01)
Q2	113	127	1.32 (0.93-1.89)
Q3	118	136	1/29 (0.91-1.83)
Q4	103	153	1.00
E. PON1 R isoenzyme quartile			
Q1	173	233	1.00
Q2	52	52	1.35 (0.88-2.07)
Q3	140	116	1.63 (1.19-2.23)
Q4	143	107	1.80 (1.31-2.48)
F. BChE genotype			
UU	26	36	1.00
UA	156	148	0.71 (0.42-1.21)
Rare	322	318	1.04 (0.79-1.37)
Missing	4	6	
G. BChE enzyme quartile			
Q1	142	119	1.00
Q2	118	145	0.68 (0.48-0.96)
Q3	116	127	0.77 (9.54-1.09)
Q4	132	117	0.95 (0.67-1.34)
H. BChE dibucaine number quartile			
Q1	137	123	1.00
Q2	137	121	1.016 (0.72-1.44)
Q3	111	126	0.79 (0.56-1.13)
Q4	122	138	0.79 (0.56-1.12)
Missing	1	0	

Abbreviations: BChE, butyrylcholinesterase; CI, confidence interval; GWI, POR, prevalence. odds ratio. Statistics are unadjusted.

^a No subject in our case-control sample was classified as in the computer-modeled nerve agent plume from Khamisiyah ammunition dump on all 3 days.
Table S6. Interaction on the additive and multiplicative scales of having been located in the Khamisiyah plume and *PON1 Q192R genotype* on GWI.

PON1 Q192R genotype	QQ	QR	RR	PORs for PON1 Q192R genotypes within strata of Khamisiyah plume exposure			
	N cases/controls	N cases/controls	POR (95%CI)	N cases/controls	POR (95%CI)	QR vs QQ	RR vs QQ
Located in Khamisiyah plume							
No	123/172	159/168	1.32 (0.96-1.82)	72/46	2.19 (1.42-3.39)	1.32 (0.96-1.82)	2.19 (1.42-3.39)
	p=0.08	p=0.08	p<0.001	p<0.001	p<0.001		
Yes	36/27	53/22	3.37 (1.95-5.83)	31/7	6.19 (2.64-14.52)	1.81 (0.89-3.65)	3.32 (1.27-8.68)
	p=0.001	p<0.001	p<0.001	p=0.10	p=0.01		

POR (95%CI) for plume within strata of genotypes

- Located in Khamisiyah plume: 1.86 (1.08-3.23) p=0.03
- Unadjusted: 1.0
- Adjusted for confounders: 1.0

Additive scale: Synergy index (95%CI)

- Unadjusted: 1.0
- Adjusted for confounders: 1.0 (Inestimable)

Multiplicative scale: POR (95%CI) from LR interaction term

- Unadjusted: 1.0
- Adjusted for confounders: 1.0

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the POR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. Because of missing values on Khamisiyah plume exposure due to classified or missing unit location information for 34 cases and 66 controls, the analyses included 474 cases and 442 controls. Abbreviations: CI, confidence interval; PON1, paraoxonase-1; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

* Adjusted RERI = 1.20 (95% CI -0.93 – 6.08)
Table S7. Interaction on the additive and multiplicative scales of having been located in the Khamisiyah plume and PON1 Q192R type Q isoenzyme activity level on GWI.

PON1 Q192 type Q isoenzyme activity level	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)	POR (95% CI) for PON1 type Q activity quartiles within strata of alarms								
N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI) for 3rd vs 4th quartile	POR (95% CI) for 2nd vs 4th quartile	POR (95% CI) for 1st vs 4th quartile						
Located in Khamisiyah plume													
No	79/115	1.0	84/102	1.20 (0.80-1.80)	p=0.38								
Yes	16/20	1.17 (0.57-2.39)	p=0.68	3.93 (1.80-8.57)	p<0.001	3.38 (1.27-8.98)	p=0.01	2.86 (1.15-7.09)	p=0.02	4.69 (1.88-11.71)	p<0.001	2.41 (1.60-3.62)	p<0.001
PORs (95% CI) for alarms within strata of PON1 type Q activity	1.17 (0.57-2.39)	p=0.68	3.28 (1.50-7.16)	p=0.17	3.08 (1.53-6.19)	p=0.002	2.27 (1.13-4.57)	p=0.02					
Additive scale: Synergy index (95% CI)													
Unadjusted	1.0												
Adjusted for confounders	1.0	(inestimable)	(inestimable)										
Multiplicative scale: POR (95% CI) from LR interaction term													
Unadjusted	1.0												
Adjusted for confounders	1.0												

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. Because of missing values on Khamisiyah plume exposure due to classified or missing unit location information for 34 cases and 66 controls, the analyses included 474 cases and 442 controls. Abbreviations: CI, confidence interval; PON1, paraoxonase-1; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

* Adjusted RERI = 1.65 (95% CI -0.44 – 5.88)
Table S8. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and butyrylcholinesterase (BChE) genotype on GWI.

	BChE genotype			
	UU	UK	Rare genotypesa	Pors for BChE genotypes within strata of alarms
	N cases/controls	N cases/controls	POR (95%CI)	UK vs UU
				Rare vs UU
Heard nerve agent alarms				
No	75/175	31/87	0.83 (0.51-1.36)	0.56 (0.20-1.53)
			p=0.46	0.26
Yes	247/143	125/61	4.78 (3.18-7.19)	3.27 (1.60-6.68)
			p=0.001	p=0.001
POR (95%CI) for plume within strata of genotypes	4.03 (2.87-5.66)	5.75 (3.45-9.59)	5.88 (1.81-19.12)	
				P<0.001

Additive scale: Synergy index (95%CI)

Unadjusted

| | 1.0 | 1.32 (0.79-2.20) | 0.88 (0.31-2.46) | |
| | | p=0.29 | p=0.81 | |

Adjusted for confounders

| | 1.0 | 1.03 (0.50-2.13) | 0.80 (0.17-3.87) | |
| | | p=0.94 | p=0.79 b | |

Multiplicative scale: POR (95%CI) from LR interaction term

Unadjusted

| | 1.0 | 1.43 (0.77-2.64) | 1.46 (0.43-4.98) | |
| | | p=0.26 | p=0.55 | |

Adjusted for confounders

| | 1.0 | 1.33 (0.63-2.81) | 2.58 (0.58-11.50) | |
| | | p=0.45 | p=0.22 | |

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the POR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 504 cases and 502 controls; 4 cases and 6 controls were excluded for missing genotype data. Abbreviations: BChE, butyrylcholinesterase; CI, confidence interval; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

a Rare AChE genotypes include K/K, K/UK, U/A, and U/AK; other rare genotypes were not represented in the study sample.

b Adjusted RERI = -0.46 (95% CI -2.57 – 3.23)
Table S9. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and butyrylcholinesterase (BChE) enzyme activity level on GWI.

BChE activity level	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)	POR (95% CI) for BChE activity quartiles within strata of alarms			
N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI) for alarms within strata of BChE activity			
Yes	102/46	87/61	89/59	119/65	3rd vs 4th quartile	2nd vs 4th quartile	1st vs 4th quartile	
No	30/71	29/66	29/86	23/64	0.80 (0.44-1.45)	0.64 (0.40-1.04)	0.68 (0.42-1.10)	0.98 (0.61-1.57)

Additive scale: Synergy index (95% CI)

	Unadjusted	Adjusted for confounders		
	1.0	0.55 (0.29-1.05)	0.64 (0.33-1.22)	1.01 (0.54-1.86)
	p=0.07	p=0.07	p=0.17	p=0.99

Multiplicative scale:
POR (95% CI) from LR interaction term

	Unadjusted	Adjusted for confounders		
	1.0	0.62 (0.28-1.34)	0.85 (0.40-1.84)	1.15 (0.52-2.54)
	p=0.22	p=0.02	p=0.68	p=0.74

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: BChE, butyrylcholinesterase; CI, confidence interval; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

a Adjusted RERI = 0.720 (95% CI -1.98 – 3.31)
Table S10. Interaction on the additive and multiplicative scales of having taken pyridostigmine bromide and butyrylcholinesterase (BChE) genotype on GWI.

BChE K variant genotype	UK	Rare genotypes^a	POR for BChE genotypes within strata of pyridostigmine							
	UU	UK	N cases/controls	POR (95%CI)	N cases/controls	POR (95%CI)	N cases/controls	POR (95%CI)	UK vs UU	Rare vs UU
Took pyridostigmine										
No	97/175	1.0	45/77	1.06 (0.68-1.64) p=0.81	6/21	0.52 (0.20-1.32) p=0.17	1.06 (0.68-1.64) p=0.81	0.52 (0.20-1.32) p=0.17		
Yes	225/143	2.84 (2.05-3.93) p<0.001	111/71	2.82 (1.91-4.16) p<0.001	20/15	2.41 (1.18-4.91) p=0.02	0.99 (0.69-1.43) p=0.97	0.85 (0.42-1.71) p=0.64		
POR (95%CI) for pyridostigmine within strata of genotypes	2.84 (2.05-3.93) p<0.001	2.68 (1.67-4.29) p<0.001	4.67 (1.51-14.41) p=0.007							

Additive scale: Synergy index (95%CI)

	Unadjusted	Adjusted for confounders
Unadjusted	1.0	0.96 (0.52-1.77) p=0.91
Adjusted for confounders	1.0	0.82 (0.37-1.84) p=0.64

Multiplicative scale: POR (95%CI) from LR interaction term

	Unadjusted	Adjusted for confounders
Unadjusted	1.0	0.94 (0.53-1.67) p=0.84
Adjusted for confounders	1.0	0.87 (0.43-1.78) p=0.71

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the POR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 504 cases and 502 controls; 4 cases and 6 controls had missing BChE genotypes.

Abbreviations: BChE, butyrylcholinesterase; CI, confidence interval; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

^a Rare AChE genotypes include K/K, K/UK, U/A, and U/AK; other rare genotypes were not represented in the study sample.

^b Adjusted RERI = -0.67 (95% CI -2.39 – 1.22)
Table S11. Interaction on the additive and multiplicative scales of *having taken pyridostigmine bromide* and *butyrylcholinesterase (BChE) enzyme activity level* on GWI.

BChE activity level	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)	POR (95% CI) for BChE activity quartiles within strata of pyridostigmine						
	N cases/controls	POR (95% CI)	3rd vs 4th quartile	2nd vs 4th quartile	1st vs 4th quartile						
Took pyridostigmine											
No	42/68	1.0	36/61	0.96 (0.54-1.68) p=0.87	37/83	0.72 (0.42-1.25) p=0.24	34/62	0.89 (0.50-1.57) p=0.68	0.96 (0.54-1.68) p=0.87	0.72 (0.42-1.25) p=0.24	0.89 (0.50-1.57) p=0.68
Yes	90/49	2.97 (1.77-5.00) p<0.001	80/66	1.96 (1.19-3.25) p=0.009	81/62	2.12 (1.27-3.51) p=0.004	108/57	3.07 (1.86-5.06) p=0.001	0.66 (0.41-1.06) p=0.09	0.71 (0.44-1.15) p=0.16	1.03 (0.64-1.66) p=0.90

PORs (95% CI) for alarms within strata of BChE activity

Additive scale: Synergy index (95% CI)

Unadjusted	Adjusted for confounders
1.0	1.0
0.69 (0.33-1.45) p=0.33	0.69 (0.33-1.45) p=0.33

Adjusted RERI = -0.17 (95% CI -2.29 – 1.19)

Multiplicative scale: POR (95% CI) from LR interaction term

Unadjusted	Adjusted for confounders
1.0	1.0
0.69 (0.33-1.45) p=0.33	0.69 (0.33-1.45) p=0.33

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: BChE, butyrylcholinesterase; CI, confidence interval; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.
Table S12. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 Q192R type R isoenzyme activity level on GWI.

	PON1 Q192R type R isoenzyme activity level	POR (95% CI) for PON1 type R activity quartiles within strata of alarms																	
	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)	3rd vs 4th quartile	2nd vs 4th quartile	1st vs 4th quartile												
	N cases/controls	POR (95% CI)																	
Heard nerve agent alarms																			
No	25/61	1.0	30/67	1.09 (0.58-2.06)	p=0.78	13/30	1.06 (0.48-2.35)	p=0.89	43/129	0.81 (0.46-1.45)	p=0.48								
Yes	118/46	6.26 (3.52-11.14)	p<0.001	110/49	5.48 (3.08-9.73)	p<0.001	39/22	4.33 (2.15-8.71)	p<0.001	130/104	3.05 (1.79-5.19)	p<0.001							
PORs (95% CI) for alarms within strata of PON1 type R activity												6.26 (3.52-11.14)	p<0.001	5.01 (2.90-8.66)	p<0.001	4.09 (1.78-9.43)	p<0.001	3.75 (2.44-5.77)	p<0.001
Additive scale: Synergy index (95% CI)												Unadjusted	1.0	0.84 (0.47-1.50)	p=0.56	0.63 (0.28-1.39)	p=0.25	0.40 (0.23-0.72)	p=0.002
	Adjusted for confounders	1.0	0.83 (0.39-1.74)	p=0.63	0.59 (0.21-1.70)	p=0.34	0.36 (0.17-0.78)	p=0.009 a											
Multiplicative scale: POR (95% CI) from LR interaction term												Unadjusted	1.0	0.80 (0.36-1.77)	p=0.58	0.65 (0.24-1.80)	p=0.41	0.60 (0.29-1.23)	p=0.16
	Adjusted for confounders	1.0	0.83 (0.32-2.17)	p=0.71	0.56 (0.16-1.94)	p=0.36	0.50 (0.21-1.20)	p=0.12											

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: CI, confidence interval; PON1, paraoxonase-1; POR, prevalence odds ratio; RERI, relative excess risk due to interaction.

a Adjusted RERI = -1.46 (95% CI -5.34 – 0.21)
Table S13. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 paraoxonase enzyme activity level on GWI.

PON1 paraoxonase enzyme activity level	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)	POR (95% CI) for PON1 paraoxonase activity quartiles within strata of alarms	
	N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI)	N cases/controls	POR (95% CI)
Heard nerve agent alarms						
No	26/66	1.0	32/68	1.20 (0.64-2.22) p=0.57	29/77	0.96 (0.51-1.78) p=0.89
	24/76	0.80 (0.42-1.53) p=0.50				
Yes	124/45	7.00 (3.97-12.34) p<0.001	102/53	4.89 (2.78-8.57) p<0.001	79/61	3.29 (1.87-5.78) p<0.001
PORs (95% CI) for alarms within strata of PON1 paraoxonase activity	7.00 (3.97-12.34) p<0.001	4.09 (2.39-6.98) p<0.001	3.44 (2.00-5.91) p<0.001	4.70 (2.68-8.23) p<0.001		
Additive scale: Synergy index (95% CI)						
Unadjusted	1.0	0.63 (0.35-1.12) p=0.11	0.38 (0.20-0.72) p=0.003	0.48 (0.26-0.88) p=0.02		
Adjusted for confounders	1.0	0.69 (0.35-1.34) p=0.28	0.40 (0.19-0.86) p=0.02	0.46 (0.22-0.95) p=0.04 a		
Multiplicative scale: POR (95% CI) from LR interaction term						
Unadjusted	1.0	0.58 (0.27-1.28) p=0.18	0.49 (0.22-1.08) p=0.08	0.67 (0.30-1.49) p=0.33		
Adjusted for confounders	1.0	0.53 (0.21-1.38) p=0.19	0.48 (0.19-1.20) p=0.11	0.59 (0.22-1.60) p=0.30		

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch [Army [referent], Navy, Air Force, Marines], rank [officer, enlisted], active duty vs Guard/Reserve, special strata [yes, no], Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: CI, confidence interval; PON1, paraoxonase-1; POR, prevalence odds ratio; RERI, relative excess risk due to interaction. Serum paraoxonase catalytic activity for sarin is mediated mostly by the R isoenzyme.

a Adjusted RERI = -4.02 (95% CI -12.47 – 0.28)
Table S14. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 arylesterase (phenylacetate) enzyme activity level on GWI.

PON1 arylesterase (phenylacetate) enzyme activity level	4th quartile (lowest risk)	3rd quartile (mid-low risk)	2nd quartile (mid-high risk)	1st quartile (highest risk)			
N cases/controls	POR (95% CI)						
Heed nerve agent alarms							
No	25/71	31/82	27/70	28/64	1.07 (0.58-1.99) p=0.82	1.10 (0.58-2.07) p=0.78	1.24 (0.66-2.35) p=0.50
Yes	89/59	107/55	87/59	114/48	4.28 (2.44-7.52) p=0.001	5.53 (3.16-9.67) p<0.001	4.19 (2.39-7.35) p<0.001
PORs (95% CI) for alarms within strata of PON1 arylesterase activity					4.28 (2.44-7.52) p=0.001	5.15 (3.04-8.71) p<0.001	3.82 (2.20-6.65) p=0.001
Additive scale: Synergy index (95% CI)							
Unadjusted	1.0	1.35 (0.73-2.50) p=0.35	0.94 (0.50-1.77) p=0.87	1.63 (0.88-3.00) p<0.12			
Adjusted for confounders	1.0	1.42 (0.62-3.28) p=0.42	1.31 (0.58-2.96) p=0.53	1.59 (0.75-3.35) p=0.23 a			
Multiplicative scale: POR (95% CI) from LR interaction term					1.20 (0.56-2.59) p=0.64	0.89 (0.41-1.96) p=0.78	1.27 (0.57-2.80) p=0.56
Unadjusted	1.0	1.38 (0.56-3.44) p=0.49	1.80 (0.68-4.76) p=0.23	1.30 (0.50-4.42) p=0.59			
Adjusted for confounders	1.0				1.27 (0.57-2.80) p=0.56	1.27 (0.57-2.80) p=0.56	

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: CI, confidence interval; PON1, paraoxonase-1; POR, prevalence odds ratio; RERI, relative excess risk due to interaction. Serum arylesterase catalytic activity for sarin is mediated by both Q and R isoenzymes.

a Adjusted RERI = 1.92 (95% CI -1.61 – 6.81)
Table S15. Interaction on the additive and multiplicative scales of hearing nerve agent alarms and PON1 diazoxonase enzyme activity level on GWI.

N cases/controls	POR (95% CI) for 4th quartile (lowest risk)	N cases/controls	POR (95% CI) for 3rd quartile (mid-low risk)	N cases/controls	POR (95% CI) for 2nd quartile (mid-high risk)	N cases/controls	POR (95% CI) for 1st quartile (highest risk)						
	Unadjusted	Adjusted for confounders		Unadjusted	Adjusted for confounders		Unadjusted	Adjusted for confounders					
		Summary Statistics			Summary Statistics			Summary Statistics					
	N cases/controls	POR (95% CI)											
Heard nerve agent alarms	Yes	79/61	3.48 (2.06-5.89)	p=0.001	92/73	3.39 (2.04-5.64)	p<0.001	89/43	5.56 (3.23-9.60)	p=0.001	137/44	8.36 (4.93-14.21)	p<0.001
	No	32/86	1.0	22/84	0.70 (0.38-1.31)	p=0.27	28/64	1.18 (0.64-2.15)	p=0.60	29/53	1.47 (0.80-2.70)	p=0.21	
Additive scale: Synergy index (95% CI)	Unadjusted	1.0	1.09 (0.53-2.27)	p=0.82	1.72 (0.86-3.42)	p=0.12	2.50 (1.32-4.71)	p=0.005					
	Adjusted for confounders	1.0	1.18 (0.45-3.09)	p=0.75	1.89 (0.76-4.71)	p=0.17	2.84 (1.22-6.59)	p=0.02					
Multiplicative scale: POR (95% CI) from LR interaction term	Unadjusted	1.0	1.38 (0.64-2.98)	p=0.41	1.36 (0.62-2.96)	p=0.44	1.63 (0.76-3.54)	p=0.21					
	Adjusted for confounders	1.0	1.67 (0.68-4.12)	p=0.26	1.80 (0.68-4.72)	p=0.23	2.40 (0.94-6.11)	p=0.07					

Note: The synergy index is a measure of interaction on the additive scale; it has the same distribution as the OR, viz., 0 to plus infinity with 1.0 as the equivalency point indicating no association. The ratio of the PORs, obtained from the interaction term in a logistic regression analysis, is a measure of interaction on the multiplicative scale. The potential confounders controlled for in the adjusted models include: age (years), sex (M, F), service branch (Army [referent], Navy, Air Force, Marines), rank (officer, enlisted), active duty vs Guard/Reserve, special strata (yes, no), Combat Exposure Scale (0=missing, 1=light [referent], 2=light to moderate, 3=moderate to heavy and heavy). One subject’s missing age was imputed to the mean age of the sample. The analyses included 508 cases and 508 controls. Abbreviations: CI, confidence interval; OR, prevalence odds ratio; RERI, relative excess risk due to interaction. Serum diazoxonase catalytic activity for sarin is mediated mostly by the Q isoenzyme.

Adjusted RERI = 4.17 (95% CI 1.15 – 10.04)
Table S16. Sensitivity analysis for correcting for unmeasured confounding the adjusted RERI for the effect of the GxE interaction of hearing alarms and PON1 RR vs QQ genotype\(^a\) on GWI on the additive scale.

Stipulated	Calculated	Stipulated	Calculated								
\(P_0\)	\(P_1\)	\(PRR_{Ud}\)	\(k\)	\(aRERI_c\)	95% CI	\(P_0\)	\(P_1\)	\(PRR_{Ud}\)	\(k\)	\(aRERI_c\)	95% CI
1	1.0	1	1.000	7.69\(^b\)	3.64-18.64\(^a\)	0.3	0.9	5	2.714	2.81	1.23-6.68
0.5	0.7	1	1.000	7.69	3.64-18.64	0.3	0.9	7	3.250	3.34	0.95-5.58
0.5	0.7	3	1.250	6.15	2.91-14.86	0.3	0.9	9	3.667	3.07	0.80-4.93
0.5	0.7	5	1.364	5.63	2.65-13.60	0.1	0.3	1	1.000	7.69	3.64-18.64
0.5	0.7	7	1.429	5.37	2.53-12.96	0.1	0.3	3	1.167	6.59	3.12-15.94
0.5	0.7	9	1.471	5.22	2.46-12.57	0.1	0.3	5	1.211	6.35	3.00-15.35
						0.1	0.3	7	1.231	6.24	2.95-15.09
0.5	0.9	1	1.000	7.69	3.64-18.64	0.1	0.3	9	1.242	6.18	2.93-14.95
0.5	0.9	3	1.667	4.60	2.17-11.07	0.1	0.5	1	1.000	7.69	3.64-18.64
0.5	0.9	5	2.143	3.57	1.63-8.55	0.1	0.5	3	1.400	5.48	2.55-13.23
0.5	0.9	7	2.500	3.05	1.36-7.28	0.1	0.5	5	1.533	5.00	2.36-12.03
0.5	0.9	9	2.778	2.74	1.196-53	0.1	0.5	7	1.600	4.79	2.26-11.53
0.3	0.5	1	1.000	7.69	3.64-18.64	0.1	0.5	9	1.640	4.67	2.21-11.25
0.3	0.5	3	1.200	6.40	3.03-15.49						
0.3	0.5	5	1.267	6.06	2.87-14.66	0.1	0.7	1	1.000	7.69	3.64-18.64
0.3	0.5	7	1.300	5.91	2.79-14.28	0.1	0.7	3	1.750	4.38	2.06-10.53
0.3	0.5	9	1.320	5.82	2.75-14.07	0.1	0.7	5	2.091	3.66	1.68-8.77
0.3	0.7	1	1.000	7.69	3.64-18.64	0.1	0.7	9	2.412	3.17	1.42-7.55
0.3	0.7	3	1.500	5.11	2.42-12.32						
0.3	0.7	5	1.727	4.44	2.08-10.68	0.1	0.9	1	1.000	7.69	3.64-18.64
0.3	0.7	7	1.857	4.12	1.91-9.93	0.1	0.9	3	2.333	3.27	1.49-7.81
0.3	0.7	9	1.941	3.94	1.82-9.50	0.1	0.9	5	3.286	2.31	0.94-5.52
0.3	0.9	1	1.000	7.69	3.64-18.64	0.1	0.9	7	4.000	1.89	0.71-4.51
0.3	0.9	3	2.000	3.83	1.769-20						

Abbreviations: \(PRR_{Ud}\), stipulated prevalence rate ratio in the underlying population for the association of the unmeasured confounder (U) with GWI; \(P_0\), stipulated probability of U in those in the underlying population who did not hear alarms; \(P_1\), stipulated probability of U in those in the underlying population who heard alarms; \(PRR_U\), the association of U with hearing alarms, assumed equal to \(PRR_{Ud}\); \(k\), adjustment factor calculated by the first equation below; aOR, the odds ratio from a logistic regression for the gene-environment interaction adjusted for the measured confounders; \(aRERI_c\), relative excess risk due to interaction on the additive scale, adjusted for measured confounders and corrected for unmeasured confounding, calculated by the second equation below; 95% CI, asymmetrical 95% confidence limits of \(aRERI_c\) calculated by bootstrapping with 5,000 repetitions; plausible values of \(P_0\) and \(P_1\) are \(>0\) to \(<1\) and of \(PRR_U\), \(>1\) to \(<10\).

Assumption: \(PRR_{Ud} = PRR_U\)

\(^a\) Equations for calculating \(aRERI_c\) adapted from Corollary 3B in section 5 and the second example in section 6 of VanderWeele et al.\(^5\)

\[k = \frac{1+(1/PRR_{EU}-1)(P_0)}{1+(1/PRR_{EU}-1)(P_1)}\]

\[aRERI_c = \frac{1}{k} aOR_{11} - aOR_{10} - \frac{1}{k} aOR_{01} + 1\]

\(^b\) This row, using 1.0 for the 3 stipulated parameters for validation, represents the values uncorrected for unmeasured confounding. This \(aRERI\) agrees exactly with the RERI adjusted for measured confounders in Table 2 calculated by Zou’s SAS macro; whereas, its asymmetrical 95% CI from bootstrapping is slightly less conservative than that from Zou’s method.
Table S17. Sensitivity analysis for correcting for unmeasured confounding the adjusted prevalence odds ratio for the effect of the GxE interaction of hearing alarms and PON1 RR vs QQ genotype on GWI on the multiplicative scale.

Stipulated	Calculated	Stipulated	Calculated								
P0	P1	PRRUD	Bmult	aPORc	95% CI	P0	P1	PRRU	Bmult	aPORc	95% CI
1.0	1.0	1.000	3.41b	1.20 - 9.72b	0.3	0.9	5.000	1.26	0.44 - 3.58		
0.5	0.7	1.250	2.73	0.96 - 7.77	0.3	0.9	9.000	0.93	0.33 - 2.65		
0.5	0.7	1.364	2.50	0.88 - 7.13	0.1	0.3	1.000	3.41	1.20 - 9.72		
0.5	0.7	1.429	2.39	0.84 - 6.80	0.1	0.3	3.000	2.92	1.03 - 8.33		
0.5	0.7	1.471	2.32	0.81 - 6.61	0.1	0.3	5.000	2.82	0.99 - 8.03		
0.5	0.9	1.000	3.41	1.20 - 9.72	0.1	0.3	7.000	2.77	0.97 - 7.90		
0.5	0.9	1.667	2.05	0.72 - 5.83	0.1	0.3	9.000	2.74	0.96 - 7.82		
0.5	0.9	2.143	1.59	0.56 - 4.53	0.1	0.5	1.000	3.41	1.20 - 9.72		
0.5	0.9	2.500	1.36	0.48 - 3.89	0.1	0.5	3.000	2.44	0.85 - 6.94		
0.5	0.9	2.778	1.23	0.43 - 3.50	0.1	0.5	5.000	2.22	0.78 - 6.34		
0.3	0.5	1.000	3.41	1.20 - 9.72	0.1	0.5	9.000	2.08	0.73 - 5.93		
0.3	0.5	1.200	2.84	1.00 - 8.10	0.1	0.7	1.000	3.41	1.20 - 9.72		
0.3	0.5	1.267	2.69	0.94 - 7.67	0.1	0.7	3.000	1.95	0.68 - 5.55		
0.3	0.5	1.300	2.62	0.92 - 7.47	0.1	0.7	5.000	1.63	0.57 - 4.65		
0.3	0.7	1.000	3.41	1.20 - 9.72	0.1	0.7	7.000	1.49	0.52 - 4.25		
0.3	0.7	1.500	2.27	0.80 - 6.48	0.1	0.7	9.000	1.41	0.50 - 4.03		
0.3	0.7	1.727	1.97	0.69 - 5.63	0.1	0.9	1.000	3.41	1.20 - 9.72		
0.3	0.7	1.857	1.84	0.64 - 5.23	0.1	0.9	3.000	1.46	0.51 - 4.16		
0.3	0.7	1.941	1.76	0.62 - 5.01	0.1	0.9	5.000	1.04	0.36 - 2.96		
0.3	0.9	1.000	3.41	1.20 - 9.72	0.1	0.9	7.000	0.85	0.30 - 2.43		
0.3	0.9	2.000	1.71	0.60 - 4.86	0.1	0.9	9.000	0.75	0.26 - 2.13		

Abbreviations: PRRUD, stipulated prevalence rate ratio in the underlying population for the association of the unmeasured confounder (U) with GWI; P0, stipulated probability of U in those in the underlying population who did not hear alarms; P1, stipulated probability of U in those in the underlying population who heard alarms; PRRU, the association of U with hearing alarms, assumed equal to PRRUD; Bmult, estimate of the bias from unmeasured confounding on the multiplicative scale; aPORc, prevalence odds ratio of the interaction term of logistic regression estimating interaction on the multiplicative scale, adjusted for measured confounders and corrected for unmeasured confounding by dividing the aPOR by Bmult; 95% CI, asymmetrical 95% confidence limits of aPORc calculated by dividing the original 95% CI of the aPOR by Bmult; plausible values of P0 and P1 are >0 to <1 and of PRRU, >1 to <10.

Assumption: PRRUD = PRRU

a Adapted from Corollary 2A in section 4 of VanderWeele et al.5

b This row, using 1.0 for the 3 stipulated parameters for validation, represents the values uncorrected for unmeasured confounding. Both the aPOR and its 95% CI agree exactly with the POR from the LR interaction term adjusted for measured confounding in Table 2.
Reference	Ascertainment method	Study design	Reported question	Outcome association
Haley and Kurt 1997⁶	Written questionnaire	Supervised survey of a battalion sample	“experienced likely chemical weapons attack”	PRR 7.8 (2.3-25.9) for GWI (syndrome 2)
Nisenbaum et al. 2000⁷	Written questionnaire	Study of an Air National Guard unit and airmen at 3 U.S. Air Force bases	“belief that biological or chemical weapons were being used against them”	OR 6.05 (3.43-19.68 for severe GWI; 2.52 (1.83-3.48) for mild-moderate GWI
White et al. 2001⁸	Written questionnaire	Supervised survey and neuropsycho-logical testing and interviews of 3 cohorts: 2 Gulf-deployed and 1 deployed to Germany	“poison gas or germ warfare”	Neuropsychological measures of mood, memory, and attention/executive function, P<0.05
Kang et al. 2002⁹	Mailed questionnaire survey	Mailed survey of random sample of GWV population	Checklist of exposures: “Nerve gas”	RR 9.17 (7.69-10.93) for GWI (4 most typical symptoms)
Lindem et al. 2003¹⁰	Written questionnaire	Supervised survey and neuropsycho-logical testing and interviews in a subset from the White et al. study	Checklist: “Chemical or biological warfare agents”	Neuropsychological measures of attention, executive function, and memory, p<0.01
Proctor et al. 2006¹¹	Khamisiyah computer exposure plume model	Supervised survey and neuropsycho-logical testing and interviews in a subset from the White et al. study	Not applicable (nerve agent exposure estimated by unit location in computer-modeled atmospheric dispersion from demolition of ammunition depot)	Neuropsychological measures of psychomotor function and visuospatial abilities, P<0.01
Heaton et al. 2007¹²	Khamisiyah computer exposure plume model	Volumetric analysis of brain MRI in GWI cases and controls from White et al. study	Not applicable	White matter and brain volume reduction associated with estimated sarin/cyclosarin exposure
Steele et al. 2012¹³	Telephone interview questionnaire	Cases and controls recruited from Kansas GW veterans	“Heard chemical alarms sounded”	OR 1.31 (0.83-2.07) for GWI
Haley and Tuite 2013¹⁴	CATI questionnaire telephone interview	National telephone interview survey (USMHS) of a random sample of 1991 U.S. military population	“Did the alarms on the chemical warfare detection devices in areas where you were living or working ever go off while you were present there?” if yes, “on how many days . . .”	aOR 4.13 (2.51-6.80) Trend test p<0.001 for overall GWI
Chao et al. 2010,2011, 2014,2015,2016,2018¹⁵⁻²⁰	Written questionnaire	Volunteer GW veterans recruited by public ads in Northern California	“Did you hear chemical alarms sound?” If yes, “How many days did you hear chemical alarms?”	Various measures of abnormal brain structure and function and white matter integrity in those who recalled hearing alarms
Barth et al. 2017²¹	Khamisiyah computer exposure plume model	National random sample survey	Not applicable	aRR for brain cancer 2.71 (1.25-5.87)
Reference(s)	Experimental model	Finding		
------------	-------------------	---------		
Spiegelberg 196122	Hypothesis- raising clinical description	Description of a previously unsuspected chronic encephalopathic symptoms similar to GWI in workers who had repetitive subclinical sarin exposures in German nerve agent factories during World War II.		
Duffy et al. 197923	Hypothesis- raising clinical description	Description of a previously unsuspected chronic encephalopathic symptoms similar to GWI in workers who had repetitive subclinical sarin exposures in U.S. nerve agent factories during the Cold War, associated with unusual EEG changes.		
Burchfiel et al. 1976, 198224,25	Laboratory experiments	Administration of subclinical doses of sarin to Rhesus monkeys (1 μg/kg i.m. weekly x 10) produced chronic electroencephalographic (EEG) changes similar to those reported in the Duffy et al. study.		
Henderson et al. 2001, 200226,27	Laboratory experiments	Inhalation administration of subclinical doses of sarin to rats (0, 0.2, or 0.4 mg/m3 of sarin for 1 h/day for 1, 5, or 10 days; follow-up at 30 d) produced persistent alteration in the numbers of muscarinic cholinergic M1 and M3 receptors in cortical and hippocampal brain regions, compatible with cognitive dysfunction.		
Kassa et al. 2001,200128,29	Laboratory experiments	Inhalation administration of subclinical doses of sarin to rats (1.25 μL/L x 3 over 7 d; follow-up at 3 mo) resulted in increased CNS excitability and impaired gait and mobility, memory and cognitive behavior and altered immune function.		
Scremin et al. 200330	Laboratory experiments	Administration of subclinical doses of sarin to rats (62.5 μg/kg [0.5 LD\textsubscript{50}] s.c. 3x per wk x 3 wks; follow-up at 16 wks) altered behavioral measures associated with down-regulation of muscarinic receptors in hippocampus, caudate putamen, and mesencephalon, not seen after PB alone or PB plus sarin.		
Pena-Phillippides et al. 200731	Laboratory experiments	Inhalation administration of subclinical doses of sarin to rats (0.4 mg/m3/day x 5d; follow-up at 2-4 wks) suppressed serum corticosterone and ACTH levels.		
Van Helden et al. 2003,200432,33	Laboratory experiments	Inhalation administration of sarin vapor to marmosets at concentration-time doses below the dose producing miosis or detectable by military field devices (≤150 μg/m3 for 5 h; follow-up at 1 yr) produced persisting EEG changes like those reported by Duffy and Burchfiel (above) that increased in severity over time.		
Mach et al.200834	Laboratory experiments	Administration of subclinical doses of sarin (64 μg/kg [0.4 LD\textsubscript{50}] s.c. daily x 3; follow-up at 21 d) with shaker stress to rats produced delayed behavioral change and catecholamine depletion in adrenal glands, suggesting autonomic dysfunction.		
Morris et al.200735	Laboratory experiments	Administration of subclinical doses of sarin to mice (8 μg/kg [0.05 LD\textsubscript{50}] s.c. on 2 consecutive days; follow-up at 10 wks) produced delayed chronic reduction in high frequency heart rate variability and increased tyrosine hydroxylase mRNA in locus coeruleus and dorsal vagal complex of brain, indicating abnormal central autonomic activity similar to that in GWI36,37.		
Shewale et al. 201238	Laboratory experiments	Administration of subclinical doses of sarin to mice (64 μg/kg [0.4 LD\textsubscript{50}] s.c. on 2 consecutive days; follow-up at 8-12 wks) produced reduced cardiac responsive-ness to beta-adrenergic stimulation, reduced adrenal tyrosine hydroxylase mRNA, corticosterone, and stress response in HPA axis indicating autonomic impairment.		
Oswal et al. 201339	Laboratory experiments	Administration of subclinical doses of sarin to mice (64 μg/kg [0.4 LD\textsubscript{50}] s.c. on 2 consecutive days; follow-up at 4-8 wks) produced alterations in dopamine turnover in the frontal cerebral cortex, amygdala and caudate nuclei of the brain capable of mediating long-term behavioral and neuropsychological changes.		
O’Callaghan et al. 2015; Ashbrook et al. 2018; Belgrad et al. 2019; Michalovich et al. 202040-43	Laboratory experiments	Administration of corticosterone in drinking water daily x 5 or 7 d followed by sarin surrogate DFP (diisopropyl fluorophosphate, 1.5 mg/kg s.c.) initiated chronic neuroinflammation in the brains of mice with adverse effects on oligodendrocytes and epigenetic modification of genes related to the brain’s immunologic and cognitive systems.		
Alsheh et al. 202044	Clinical study	Neuroinflammation was recently demonstrated in veterans with GWI by in vivo positron-emission-tomography (PET) imaging of the brain.		
Deshpande et al. 2010, 2016, 2018, 202045-48	Laboratory experiments	Administration of a subclinical dose of DFP to rats (0.5 mg/kg daily s.c. x 5d; follow-up at 3-6 mo) was followed by behavioral abnormalities analogous to chronic depression, anxiety and memory impairment as well as hippocampal neuronal damage leading to a chronic elevation of intracellular calcium concentration, all largely corrected by 2 previously FDA-approved drugs.		
Table S20. Prior experimental evidence establishing that the PON1 Q192R type Q isoenzyme activity is the property of the PON1 gene that best protects the brain from the neurotoxic effects of low-level sarin nerve agent.

Reference(s)	Experimental model	Finding
Davies et al. 1996\(^{50}\)	In vitro assays	From assays of the rate of hydrolysis of sarin by the plasma from 93 human volunteers, plasma from PON1 QQ homozygotes had a mean hydrolysis rate of sarin 9.3 times that of RR homozygotes.
La Du et al. 2001\(^{51}\)	In vitro assays	Sera from 25 veterans with GWI and 20 well control veterans were assayed for rate of hydrolysis of sarin (sarinas activity) as well as serum hydrolytic activity of the PON1 Q and R isoenzymes. Sarinase activity was correlated with Q isoenzyme activity but not with R isoenzyme activity. The catalytic efficiency of the purified Q isoenzyme with sarin was over 4-fold greater than with the R isoenzymes. This study is particularly relevant because it shows that the Q isoenzyme can effectively hydrolyze sarin in blood at the low physiologic concentrations expected with low-level sub-symptomatic sarin exposure.
Kanamori-Kataoka and Seto 2009\(^{52}\)	In vitro assays	The maximum rate of hydrolysis of sarin with purified PON1 Q and R isoenzymes from plasma of 63 civilian volunteers was 3.5 times greater with the Q isoenzyme than with the R isoenzyme, confirming the finding of Davies et al.
Valiyyaveetti et al. 2010\(^{53}\)	In vitro assays	Acetylcholinesterase (AChE) is exceptionally sensitive to inhibition by sarin nerve agent and considered its primary target. In a series of vitro assays, purified human PON1 type Q isoenzyme, at physiological concentrations present in blood, was shown to potently prevent inhibition of AChE by sub-micromolar concentrations of sarin.
Valiyyaveetti et al. 2011\(^{54,55}\)	In vivo experiments	Intravenous treatment of guinea pigs with purified human PON1 type Q isoenzyme significantly increased survival, reduced physiologic signs of nerve agent exposure, and attenuated brain AChE inhibition after microinstillation inhalation exposure to 1.2 x LC\(_{50}\) of sarin.
Figure S1. Mean (SE) butyrylcholinesterase (BChE) serum activity by $BChE$ genotype. All variant genotype groups were significantly ($p<0.001$) different from the U/U group except for the U/A group. The number at the base of each bar is the group sample size in the full USMHS genotyping sample ($n=1,923$).
Figure S2. Prediction of irreversible or long-lasting health effects in soldiers exposed to airborne nerve agent above the U.S. Environmental Protection Agency’s Acute Exposure Guideline Level 2 (AEGL-2) but below the detection threshold of the widely deployed U.S. M8A1 nerve agent alarm device. On the basis of current science, the AEGL levels define the airborne concentration-time thresholds (expressed as mg/m³ per min) of a chemical as the level above which the general population, especially genetically susceptible individuals, could be expected to experience the following adverse effects: above AEGL-1 = notable discomfort, irritation, or certain asymptomatic nonsensory effects that are not disabling and are transient and reversible upon cessation of exposure; above AEGL-2 = irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape; above AEGL-3 = life-threatening health effects or death. As tens of thousands of M8A1 detection alarms sounded repeatedly following U.S. and Coalition bombing of Iraqi chemical weapon storage sites throughout the conflict period, most soldiers donned mission oriented protective posture (MOPP) impervious suits, masks and gloves. Since, however, the AEGL-2 threshold (0.087 mg/m³ for 10 min, 0.05 mg/m³ for 30 min, etc.) was substantially below the M8A1 detection threshold (0.11 mg/m³), there were undoubtedly periods of time before and after alarms sounded when soldiers were unprotected and exposed to AEGL-2 concentrations of nerve agent over the short times sufficient to cause irreversible or serious, long-lasting health effects, particularly for more genetically susceptible individuals. Thus, the detection threshold of the M8A1 detector would have prevented incapacitating or fatal nerve agent exposures (above AEGL-3) if they had occurred, but not AEGL-2 exposures, which did occur but in 1991 were not yet known to have long-lasting effects. The greater sensitivity of the Czech GSP-11 (0.05 mg/m³) and the French AP2C/APACC (0.01 mg/m³) detection devices explains the repeated Czech and French detections not detected by the ubiquitous U.S. M8A1 detectors. Figure reproduced from Neuroepidemiology 2013; 40: 160-177 by permission of S. Karger AG, Basel.
REFERENCES

1. Greenland S, Lash TL. 2008. Bias analysis. In: Modern Epidemiology. Rothman KJ, Greenland S, Lash TL, eds. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, 352-357.

2. Richardson DB, Kaufman JS. 2009. Estimation of the relative excess risk due to interaction and associated confidence bounds. Am J Epidemiol 169:756-760, PMID: 19211620, https://doi.org/10.1093/aje/kwn411.

3. Zou GY. 2008. On the estimation of additive interaction by use of the four-by-two table and beyond. Am J Epidemiol 168:212-224, PMID: 18511428, https://doi.org/10.1093/aje/kwn104.

4. Pierce N. 2012. Why we should become Bayesians (and often already are without realising it). https://csmlshtmacuk/wp-content/uploads/sites/6/2016/04/Neil-Pearce-27-04-2012pdf; [accessed 19 February 2022].

5. Vanderweele TJ, Mukherjee B, Chen J. 2012. Sensitivity analysis for interactions under unmeasured confounding. Stat Med 31:2552-2564, PMID: 21976358, https://doi.org/10.1002/sim.4354.

6. Haley RW, Kurt TL. 1997. Self-reported exposure to neurotoxic chemical combinations in the Gulf War. A cross-sectional epidemiologic study. J Am Med Assoc 277:231-237, PMID: 9005273, https://doi.org/10.1001/jama.1997.03540270057027.

7. Nisenbaum R, Barrett DH, Reyes M, Reeves WC. 2000. Deployment stressors and a chronic multisymptom illness among Gulf War veterans. J Nerv Ment Dis 188:259-266, PMID: WOS:000087028500002, https://doi.org/10.1097/00005053-200005000-00002.

8. White RF, Proctor SP, Heeren T, Wolfe J, Krengel M, Vasterling J, et al. 2001. Neuropsychological function in Gulf War veterans: relationships to self-reported toxicant exposures. Am J Ind Med 40:42-54, PMID: 11439396, https://doi.org/10.1002/ajim.1070.

9. Kang HK, Mahan CM, Lee KY, Murphy FM, Simmons SJ, Young HA, et al. 2002. Evidence for a deployment-related Gulf War Syndrome by factor analysis. Arch Environ Health 57:61-68, PMID: WOS:000176181200009, https://doi.org/10.1080/00039890209602918.

10. Lindem K, Heeren T, White RF, Proctor SP, Krengel M, Vasterling J, et al. 2003. Neuropsychological performance in Gulf War era veterans: Traumatic stress symptomatology and exposure to chemical-biological warfare agents. J Psychopathol Behavioral Assess 25:105-119, PMID: WOS:000182304700004, https://doi.org/10.1023/A:1023394932263.

11. Proctor SP, Heaton KJ, Heeren T, White RF. 2006. Effects of sarin and cyclosarin exposure during the 1991 Gulf War on neurobehavioral functioning in US army veterans. Neurotoxicology 27:931-939, PMID: 16982099, https://doi.org/10.1016/j.neuro.2006.08.001.

12. Heaton KJ, Palumbo CL, Proctor SP, Killiany RJ, Yurgelon-Todd DA, White RF. 2007. Quantitative magnetic resonance brain imaging in US army veterans of the 1991 Gulf War potentially exposed to sarin and cyclosarin. Neurotoxicology 28:761-769, PMID: 17485118, https://doi.org/10.1016/j.neuro.2007.03.006.

13. Steele L, Sastre A, Gerkovitch MM, Cook MR. 2012. Complex factors in the etiology of Gulf War illness: wartime exposures and risk factors in veteran subgroups. Environ Health Perspect 120:112-118, PMID: 21930452, https://doi.org/10.1289/ehp.1003399.

14. Haley RW, Tuite JJ. 2013. Epidemiologic evidence of health effects from long-distance transit of chemical weapons fallout from bombing early in the 1991 Persian Gulf War. Neuroepidemiology 40:178-189, PMID: 23258108, https://doi.org/10.1159/000345124.

15. Chao LL, Rothlind JC, Cardenas VA, Meyerhoff DJ, Weiner MW. 2010. Effects of low-level exposure to sarin and cyclosarin during the 1991 Gulf War on brain function and brain structure in US veterans. Neurotoxicology 31:493-501, PMID: 20580739, https://doi.org/10.1016/j.neuro.2010.05.006.
16. Chao LL, Abadjian L, Hlavin J, Meyerhoff DJ, Weiner MW. 2011. Effects of low-level sarin and cyclosarin exposure and Gulf War Illness on brain structure and function: a study at 4T. Neurotoxicology 32:814-822, PMID: 21741405, https://doi.org/10.1016/j.neuro.2011.06.006.

17. Chao LL, Kriger S, Buckley S, Ng P, Mueller SG. 2014. Effects of low-level sarin and cyclosarin exposure on hippocampal subfields in Gulf War Veterans. Neurotoxicology 44:263-269, PMID: WOS:000342654500028, https://doi.org/10.1016/j.neuro.2014.07.003.

18. Chao LL, Zhang Y, Buckley S. 2015. Effects of low-level sarin and cyclosarin exposure on white matter integrity in Gulf War Veterans. Neurotoxicology 48:239-248, PMID: 25929683, https://doi.org/10.1016/j.neuro.2015.04.005.

19. Chao LL, Reeb R, Esparza IL, Abadjian LR. 2016. Associations between the self-reported frequency of hearing chemical alarms in theater and regional brain volume in Gulf War Veterans. Neurotoxicology 53:246-256, PMID: WOS:0003734238000028, https://doi.org/10.1016/j.neuro.2016.02.009.

20. Chao LL, Zhang Y. 2018. Effects of low-level sarin and cyclosarin exposure on hippocampal microstructure in Gulf War Veterans. Neurotoxicol Teratol 68:36-46, PMID, https://doi.org/https://dx.doi.org/10.1016/j.ntt.2018.05.001.

21. Barth SK, Dursa EK, Bossarte RM, Schneiderman AI. 2017. Trends in brain cancer mortality among U.S. Gulf War veterans: 21 year follow-up. Cancer Epidemiol 50:22-29, PMID: 28780478, https://doi.org/10.1016/j.canep.2017.07.012.

22. Spiegelberg U. 1961. Psychopathologisch-neurologische Schaden nach Einwirkung synthetischer Gifte. Wehrdienst und Gesundheit, Vol III; https://sites.google.com/a/ortera.press/abisaigrisha/psychopathologisch-neurologische-schaden-nach-einwirkung-synthetischer-gifte [accessed 19 February 2022].

23. Duffy FH, Burchfiel JL, Bartels PH, Gaon M, Sim VM. 1979. Long-Term Effects of an Organophosphate Upon the Human Electroencephalogram. Toxicol Appl Pharmacol 47:161-176, PMID: WOS:A1979GL98900019, https://doi.org/10.1016/0041-008x(79)90083-8.

24. Burchfiel JL, Duffy FH, Van Sim M. 1976. Persistent effects of sarin and dieldrin upon the primate electroencephalogram. Toxicol Appl Pharmacol 35:365-379, PMID: 817419, https://doi.org/https://doi.org/10.1016/0041-008x(76)90296-9.

25. Burchfiel JL, Serpa KA, Duffy FH. 1982. Further-Studies of Antagonism of Seizure Development between Concurrently Developing Kindled Limbic Foci in the Rat. Exp Neurol 75:476-489, PMID: WOS:A1982NB24200017, https://doi.org/10.1016/0014-4886(82)90175-3.

26. Henderson RF, Barr EB, Blackwell WB, Clark CR, Conn CA, Kalra R, et al. 2001. Response of F344 rats to inhalation of subclinical levels of sarin: exploring potential causes of Gulf War illness. Toxicol Ind Health; doi: 10.1191/0748233701th105oa; https://www.ncbi.nlm.nih.gov/pubmed/12539875 [accessed 19 February 2022].

27. Henderson RF, Barr EB, Blackwell WB, Clark CR, Conn CA, Kalra R, et al. 2002. Response of rats to low levels of sarin. Toxicol Appl Pharmacol; https://www.ncbi.nlm.nih.gov/pubmed/12408950 [accessed 19 February 2022].

28. Kassa J, Koupilova M, Herink J, Vachek J. 2001. The long-term influence of low-level sarin exposure on behavioral and neurophysiological functions in rats. Acta Medica (Hradec Kralove); https://www.ncbi.nlm.nih.gov/pubmed/11367887 [accessed 19 February 2022].

29. Kassa J, Koupilova M, Vachek J. 2001. Long-term effects of low-level sarin inhalation exposure on the spatial memory of rats in a T-maze. Acta Medica (Hradec Kralove); https://www.ncbi.nlm.nih.gov/pubmed/11811083 [accessed 19 February 2022].

30. Scremin OU, Shih TM, Huynh L, Roch M, Booth R, Jenden DJ. 2003. Delayed neurologic and behavioral effects of subtoxic doses of cholinesterase inhibitors. J Pharmacol Exp Ther 304:1111-1119, PMID: WOS:000181176900026, https://doi.org/10.1124/jpet.102.044818.
31. Pena-Philippides JC, Razani-Boroujerdi S, Singh SP, Langley RJ, Mishra NC, Henderson RF, et al. 2007. Long- and short-term changes in the neuroimmune-endocrine parameters following inhalation exposures of F344 rats to low-dose sarin. Toxicol Sci 97:181-188, PMID: 17301067, https://doi.org/10.1093/toxsci/kfm017.
32. Van Helden HP, Trap HC, Oostdijk JP, Kuijpers WC, Langenberg JP, Benschop HP. 2003. Long-term, low-level exposure of guinea pigs and marmosets to sarin vapor in air: lowest observable effect level. Toxicol Appl Pharmacol 189:170-179, PMID: 12791302, https://doi.org/10.1016/s0041-008x(03)00131-5.
33. van Helden HP, Vanwersch RA, Kuijpers WC, Trap HC, Philippens IH, Benschop HP. 2004. Low levels of sarin affect the EEG in marmoset monkeys: a pilot study. J Appl Toxicol 24:475-483, PMID: 15558834, https://doi.org/10.1002/jat.1001
34. Mach M, Grubbs RD, Price WA, Nagaoka M, Dubovicky M, Lucot JB. 2008. Delayed behavioral and endocrine effects of sarin and stress exposure in mice. J Appl Toxicol 28:132-139, PMID: 17503400, https://doi.org/10.1002/jat.1001.
35. Morris M, Key MP, Farah V. 2007. Sarin produces delayed cardiac and central autonomic changes. Exp Neurol 203:110-115, PMID: 16996499, https://doi.org/10.1016/j.expneurol.2006.07.027.
36. Haley RW, Vongpatanasin W, Wolfe GI, Bryan WW, Armitage R, Hoffmann RF, et al. 2004. Blunted circadian variation in autonomic regulation of sinus node function in veterans with Gulf War syndrome. Am J Med 117:469-478, PMID: 15464703, https://doi.org/10.1016/j.amjmed.2004.03.041.
37. Haley RW, Charuvastra E, Shell WE, Buhner DM, Marshall WW, Biggs MM, et al. 2013. Cholinergic autonomic dysfunction in veterans with Gulf War illness: confirmation in a population-based sample. JAMA Neurol 70:191-200, PMID: 23407784, https://doi.org/10.1001/jamaneurol.2013.596.
38. Shewale SV, Anstadt MP, Horenziak M, Izu B, Morgan EE, Lucot JB, et al. 2012. Sarin causes autonomic imbalance and cardiomyopathy: an important issue for military and civilian health. J Cardiovasc Pharmacol 60:76-87, PMID: 22549449, https://doi.org/10.1097/FJC.0b013e3182580b75.
39. Oswal DP, Garrett TL, Morris M, Lucot JB. 2013. Low-dose sarin exposure produces long term changes in brain neurochemistry of mice. Neurochem Res 38:108-116, PMID: 23054072, https://doi.org/10.1007/s11064-012-0896-9.
40. O’Callaghan JP, Kelly KA, Locker AR, Miller DB, Lasley SM. 2015. Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness. J Neurochem 133:708-721, PMID: 25753028, https://doi.org/10.1111/jnc.13088.
41. Ashbrook DG, Hing B, Michalovicz LT, Kelly KA, Miller JV, de Vega WC, et al. 2018. Epigenetic impacts of stress priming of the neuroinflammatory response to sarin surrogate in mice: a model of Gulf War illness. J Neuroinflammation 15:86, PMID: 29549885, https://doi.org/10.1186/s12974-018-1113-9.
42. Belgrad J, Dutta DJ, Bromley-Coolidge S, Kelly KA, Michalovicz LT, Sullivan KA, et al. 2019. Oligodendrocyte involvement in Gulf War Illness. Glia 67:2107-2124, PMID: 31339622, https://doi.org/10.1002/glia.23668.
43. Michalovicz LT, Kelly KA, Sullivan K, O’Callaghan JP. 2020. Acetylcholinesterase inhibitor exposures as an initiating factor in the development of Gulf War illness, a chronic neuroimmune disorder in deployed veterans. Neuropsychopharmacology 171:108073, PMID: 32247728, https://doi.org/10.1016/j.neuropsychopharmacology.2020.108073.
44. Alshelh Z, Albrecht DS, Bergan C, Akeju O, Clauw DJ, Conboy L, et al. 2020. In-vivo imaging of neuroinflammation in veterans with Gulf War illness. Brain Behav Immun 87:498-507, PMID: 32027960, https://doi.org/10.1016/j.bbi.2020.01.020.
45. Deshpande LS, Carter DS, Blair RE, DeLorenzo RJ. 2010. Development of a prolonged calcium plateau in hippocampal neurons in rats surviving status epilepticus induced by the organophosphate
diisopropylfluorophosphate. Toxicol Sci 116:623-631, PMID: 20498005, https://doi.org/10.1093/toxsci/kfq157.

46. Phillips KF, Deshpande LS. 2016. Repeated low-dose organophosphate DFP exposure leads to the development of depression and cognitive impairment in a rat model of Gulf War Illness. Neurotoxicology 52:127-133, PMID: 26619911, https://doi.org/10.1016/j.neuro.2015.11.014.

47. Phillips KF, Deshpande LS. 2018. Chronic Neurological Morbidities and Elevated Hippocampal Calcium Levels in a DFP-Based Rat Model of Gulf War Illness. Mil Med 183:552-555, PMID: 29635560, https://doi.org/10.1093/milmed/usx148.

48. Deshpande LS, DeLorenzo RJ. 2020. Novel therapeutics for treating organophosphate-induced status epilepticus co-morbidities, based on changes in calcium homeostasis. Neurobiol Dis 133:104418, PMID: 30872159, https://doi.org/10.1016/j.nbd.2019.03.006.

49. Phillips KF, Deshpande LS. 2018. Chronic Neurological Morbidities and Elevated Hippocampal Calcium Levels in a DFP-Based Rat Model of Gulf War Illness. Mil Med 183:552-555, PMID: 29635560, https://doi.org/10.1093/milmed/usx148.

50. Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowalla J, Furlong CE. 1996. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334-336, PMID: 8896566, https://doi.org/10.1038/ng1196-334.

51. La Du BN, Billecke S, Hsu C, Haley RW, Broomfield CA. 2001. Serum paraoxonase (PON1) isozymes: the quantitative analysis of isozymes affecting individual sensitivity to environmental chemicals. Drug Metab Dispos 29:566-569, PMID: 11259353.

52. Kanamori-Kataoka M, Seto Y. 2009. Paraoxonase activity against nerve gases measured by capillary electrophoresis and characterization of human serum paraoxonase (PON1) polymorphism in the coding region (Q192R). Anal Biochem 385:94-100, PMID: 18952040, https://doi.org/10.1016/j.ajhg.2014.07.014.

53. Valiyaveettil M, Alamneh Y, Biggemann L, Soojhawon I, Doctor BP, Nambiar MP. 2010. Efficient hydrolysis of the chemical warfare nerve agent tabun by recombinant and purified human and rabbit serum paraoxonase 1. Biochem Biophys Res Commun 403:97-102, PMID: WOS:000285226500017, https://doi.org/10.1016/j.bbrc.2010.10.125.

54. Valiyaveettil M, Alamneh Y, Rezk P, Biggemann L, Perkins MW, Sciuto AM, et al. 2011. Protective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs. Biochem Pharmacol 81:800-809, PMID: 21219877, https://doi.org/10.1016/j.bcp.2010.12.024.

55. Valiyaveettil M, Alamneh Y, Rezk P, Perkins MW, Sciuto AM, Doctor BP, et al. 2011. Recombinant paraoxonase 1 protects against sarin and soman toxicity following microinstillation inhalation exposure in guinea pigs. Toxicol Lett 202:203-208, PMID: 21329748, https://doi.org/10.1016/j.toxlet.2011.02.007.

56. National Research Council. 2012. Acute exposure guideline levels for selected airborne chemicals, volume 3. Washington, DC:National Academy Press, PMID: 25032325, "https://doi.org/10.17226/12018

57. U.S. Senate Committee on Banking Housing and Urban Affairs. 1994. U.S. chemical and biological warfare-related dual use exports to Iraq and their possible impact on the health consequences of the Persian Gulf War. http://people.cryst.bbk.ac.uk/~toxin/riegle/riegle1.html [accessed 19 February 2022].

58. Tuite JJ, Haley RW. 2013. Meteorological and intelligence evidence of long-distance transit of chemical weapons fallout from bombing early in the 1991 Persian Gulf War. Neuroepidemiology 40:160-177, PMID: 23257977, https://doi.org/10.1159/000345123.

59. Defense Science Board. 1994. Report of the Defense Science Board Task Force on Persian Gulf War Health Effects. Office of the Under Secretary of Defense for Acquisition and Technology, Washington, D C; https://gulflink.health.mil/dsbrpt/ [accessed 19 February 2022].