Commutative Associative Binary Operations on a Set with Five Elements

Amit Sehgal1, Sunil Kumar2, Sarita3, Yashpal4

1Govt. College, Birohar (Jhajjar), Haryana, India
2Govt. College, Jassia (Rohtak), Haryana, India
3Govt. College, Matanhail (Jhajjar), Haryana, India
4Govt. P.G. College for Women, Rohtak, Haryana, India

1amit_sehgal_iit@yahoo.com
2sunilramdua@gmail.com3sehgalsarita7@gmail.com4ykatatri700@gmail.com

Abstract. The main goal of this paper is to count commutative as well as associative binary operation on five element set, by using partition and composition of mapping. This is achieved using algorithm based on partition

Introduction
There is easy calculation to counting binary operation on a set with n element which is \(n^{n^2}\). If set has only five elements, then number of binary operations is as very large \(298,023,223,876,953,125\). Similarly, there is easy calculation to counting commutative binary operation on a set with n element which is \(n^{n(n+1)/2}\). If set has only five elements, then number of commutative binary operations is also large \(30,517,578,125\). In [9] authors count associative binary operations on five element set which comes as 183,732. But no easy calculation and no educated guess, seems to give the answer to following question:-

“How many binary operations on a five elements are associative as well as commutative?”

The objective of this paper is to answer this question. In other words, how many of the 30,517,578,125 different commutative binary operations on five-element set are associative or how many of the 183,732 different associative binary operations on five-element set are commutative.

Operations on a set with two, three and four elements set
Form [2, 3, 7, 10], we have following results
\begin{itemize}
\item Associative binary operation on a set of two elements is 8
\item Associative binary operation on a set of three elements is 113
\item Associative binary operation on a set of four elements is 3492
\item Commutative Associative binary operation on a set of two elements is 6
\item Commutative Associative binary operation on a set of three elements is 63
\item Commutative Associative binary operation on a set of four elements is 1140
\end{itemize}
Operations on a set with five elements set

As mentioned in the introduction, the number of possible binary operations on a set of four elements is $4,294,957,296$. Of these $1,048,576$ are commutative. We now proceed to answer the question: How many binary operations on a set of four elements are associative as well as commutative?

Algorithm for finding number of commutative as well as associative binary operation on n-element

Algorithm given below is taken from [3, 4, 10]. The analysis of the commutative associative binary operations on n-element set S will now divide into 3 steps:-

1). Partition the set of n^2 mappings in such a way that element of same partition can be obtained by using one-one and onto mapping from S onto S.
2). Rearrange the partition according to their order of any element of the partition. (Say order as k).
3). Calculate the contribution towards number of associative as well as commutative binary operations when one row is fill by the first element of i^{th} partition which can also fill $k-1$ more rows and remaining row $n-k$ can be filled by i^{th} and onwards partitions (if any) with two conditions given below.

Conditions: - Before starting calculation, firstly we insured that no commutative associative table counted twice. For this, we make some rules:-

(i) If we fixed r^{th} row from any element i^{th} partition (which has order k) then we can fill at least $k-1$ more rows. Remaining unfilled rows can be filled with element of i^{th} and onwards partition (if any) however selected element of i^{th} partition cannot fill the unfilled rows before selected row.

(ii) If table contains n different entry of i^{th} partition then contribution towards number of commutative associative operations counted is $1/n$.

4.1 Step 1st

If set S has n elements, then total number of mapping possible from set S to $S = n^n$

In our problem $n=5$, then total number of mapping possible from set S to $S = 3125$

Here we consider $S=\{0,1,2,3,4\}$ and first digit of each mapping comes from 0, second comes from 1, third comes from 2, fourth comes from 3 and fifth comes from 4.

Partition No	First element of Partition	Total number of element in partition	
1	00000	5	
2	00001	60	
3	00004	20	
4	00011	60	
5	00012	60	
6	00013	120	
7	00014	120	
8	00033	60	
9	00034	30	
10	00043	30	
11	00111	20	
12	00112	120	
13	00114	60	
14	00122	60	
Partition No	First element of Partition	Order of an element of partition	Generated elements belongs to partition
-------------	---------------------------	----------------------------------	--
1	10342	6	1,2,1,40,21,1,47
2	12340	5	2,2,2,2,47
3	00123	4	3,27,25,46
4	10023	4	4,23,34,41
5	12003	4	5,15,42,15
6	12300	4	6,35,6,45
7	02341	4	7,39,7,47
8	00013	3	8,25,46
9	00112	3	9,25,46
10	00124	3	10,22,44
11	02113	3	11,42,33
12	02311	3	12,12,45
13	10002	3	13,41,34

4.2 Step 2nd
14	10012	3	14, 41, 34
15	12001	3	15, 15, 42
16	00122	3	16, 26, 46
17	00143	3	17, 43, 36
18	10022	3	18, 41, 34
19	12000	3	19, 19, 43
20	00342	3	20, 20, 45
21	01342	3	21, 21, 47
22	00014	2	22, 44
23	00133	2	23, 41
24	00322	2	24, 42
25	00001	2	25, 46
26	00011	2	26, 46
27	00012	2	27, 46
28	00114	2	28, 44
29	00134	2	29, 43
30	00243	2	30, 45
31	01322	2	31, 45
32	02211	2	32, 43
33	02112	2	33, 42
34	10001	2	34, 41
35	10043	2	35, 45
36	00043	2	36, 43
37	00111	2	37, 46
38	10000	2	38, 44
39	02143	2	39, 47
40	01243	2	40, 47
41	00033	1	41
42	00224	1	42
43	00034	1	43
44	00004	1	44
45	00234	1	45
46	00000	1	46
47	01234	1	47

4.3 3rd Step

Partition-No	First element of Partition	Assumed row	Contribution towards number of commutative as well as associative
1	10342	1	0
	10342	2	0
	10342	3	0
	10342	4	0
	10342	5	0
2	12340	1	6
	12340	2	6
	12340	3	6
	12340	4	6
	12340	5	6
		1	0
---	-----	-----	-----
3	00123	2	0
	00123	3	0
	00123	4	120
	00123	5	120
4	10023	1	0
	10023	2	0
	10023	3	0
	10023	4	120
	10023	5	120
5	12003	1	0
	12003	2	0
	12003	3	0
	12003	4	120
	12003	5	120
6	12300	1	120
	12300	2	60
	12300	3	60
	12300	4	60
	12300	5	0
7	02341	1	0
	02341	2	15
	02341	3	15
	02341	4	15
	02341	5	15
8	00013	1	0
	00013	2	0
	00013	3	0
	00013	4	660
	00013	5	360
9	00112	1	0
	00112	2	0
	00112	3	300
	00112	4	0
	00112	5	240
10	00124	1	0
	00124	2	0
	00124	3	240
	00124	4	240
	00124	5	0
11	02113	1	0
	02113	2	0
	02113	3	0
	02113	4	120
---	---	---	---
	02113	5	120
12	02311	1	0
	02311	2	120
	02311	3	60
	02311	4	60
	02311	5	0
13	10002	1	0
	10002	2	0
	10002	3	300
	10002	4	120
	10002	5	360
14	10012	1	0
	10012	2	0
	10012	3	480
	10012	4	180
	10012	5	180
15	12001	1	120
	12001	2	120
	12001	3	60
	12001	4	0
	12001	5	0
16	00122	1	0
	00122	2	0
	00122	3	360
	00122	4	60
	00122	5	0
17	00143	1	0
	00143	2	0
	00143	3	0
	00143	4	0
	00143	5	0
18	10022	1	0
	10022	2	0
	10022	3	360
	10022	4	60
	10022	5	0
19	12000	1	420
	12000	2	30
	12000	3	30
	12000	4	0
	12000	5	0
20	00342	1	0
	00342	2	0
	00342	3	40
---	---	---	
21	01342	1	
	01342	2	
	01342	3	
	01342	4	
	01342	5	
22	00014	1	
	00014	2	
	00014	3	
	00014	4	
	00014	5	
23	00133	1	
	00133	2	
	00133	3	
	00133	4	
	00133	5	
24	00322	1	
	00322	2	
	00322	3	
	00322	4	
	00322	5	
25	00001	1	
	00001	2	
	00001	3	
	00001	4	
	00001	5	
26	00011	1	
	00011	2	
	00011	3	
	00011	4	
	00011	5	
27	00012	1	
	00012	2	
	00012	3	
	00012	4	
	00012	5	
28	00114	1	
	00114	2	
	00114	3	
	00114	4	
	00114	5	
29	00134	1	
	00134	2	
---	---	---	---
00134	3	480	
00134	4	0	
00134	5	0	
30	00243	1	0
00243	2	0	
00243	3	0	
00243	4	420	
00243	5	420	
31	01322	1	0
01322	2	0	
01322	3	720	
01322	4	360	
01322	5	0	
32	02111	1	0
02111	2	600	
02111	3	60	
02111	4	0	
02111	5	0	
33	02112	1	0
02112	2	180	
02112	3	180	
02112	4	0	
02112	5	0	
34	10001	1	960
10001	2	360	
10001	3	0	
10001	4	0	
10001	5	0	
35	10043	1	40
10043	2	20	
10043	3	0	
10043	4	20	
10043	5	20	
36	00043	1	0
00043	2	0	
00043	3	0	
00043	4	270	
00043	5	270	
37	00111	1	0
00111	2	600	
00111	3	20	
00111	4	0	
00111	5	0	
38	10000	1	1300
---	---	---	
10000	2	20	
10000	3	0	
10000	4	0	
10000	5	0	
39	02143	1	
02143	2	5	
02143	3	5	
02143	4	5	
02143	5	5	
40	01243	1	
01243	2	0	
01243	3	0	
01243	4	90	
01243	5	90	
41	00033	1	
00033	2	0	
00033	3	0	
00033	4	1040	
00033	5	0	
42	00224	1	
00224	2	0	
00224	3	270	
00224	4	0	
00224	5	0	
43	00034	1	
00034	2	0	
00034	3	0	
00034	4	70	
00034	5	70	
44	00004	1	
00004	2	0	
00004	3	0	
00004	4	0	
00004	5	75	
45	00234	1	
00234	2	0	
00234	3	0	
00234	4	0	
00234	5	0	
46	00000	1	
00000	2	0	
00000	3	0	
00000	4	0	
00000	5	0	
Conclusion
The conclusion of this paper is that among the 30,517,578,125 different commutative binary operations on a Five-element set, $S=\{0,1,2,3,4\}$, there are exactly 30730 operations which are associative. In other words, there exist exactly 30730 five-element commutative semi groups.

Reference
[1] Man-Keung Siu 2008, Which Latin Squares are Cayley Tables, AMS Monthly , 98 (1991) 625-627
[2] Friðrik Diego and KristínHallaJónsdóttir , Associative Operations on a Three-Element Set, TMME, 5(2&3), pp 257-268.
[3] Amit Sehgal and ManMohan, Associative Binary operation on a set with Three elements, International Journal of Essential Sciences, 5(1), pp1-8,2011
[4] Sarita and Amit Sehgal 2010, Using Partition Calculation for number of associative operation is reduced. International Conference on Mathematics and Soft Computing (Application in Engineering) pp437-446 Dec 4-5
[5] George E. Forsythe, Swac Computers 126 distinct semi groups of order 4 Proc. Amer. Math. Soc. 6 (1955), 443-447.
[6] Lyle Ramshaw, The On-Line Encyclopedia of Integer Sequences -A023815 (Number of binary operations on n-set that are commutative and associative)
[7] Amit Sehgal, Sarita and Sunil Dua, Associative Binary operation on a set with Four elements, International Journal of Computer Science and Communication Engineering Volume 1 Issue 2 paper id IJCSCE 121204, 2013
[8] A.Distler and T. Kelsey2013, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv: 1301.6023
[9] Amit Sehgal, Ravinder Kumar and OmbirDahiya, , Associative Binary operation on a set with Five elements, International Journal of Computer Applications, 76(6), (2013), 27-33
[10] Yogesh Kumar and Sarita 2013 , Commutative Associative Binary Operations on a Set with Three Elements, International Journal of Innovative Research in Science, Engineering and Technology, 2(10). pp 5499-5504
[11] Sunil Kumar, Sarita and Amit Sehga 2017I, Commutative Associative Binary Operations on a Set with Four Elements, International review of Pure and Applied Mathematics, 13(1), pp-85-94