Starobinsky-Bel-Robinson gravity

Sergei V. Ketov $^{a,b,c,\#}$

a Department of Physics, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397, Japan
b Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russia
c Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583, Japan
$\#$ ketov@tmu.ac.jp

Abstract

A novel superstring-inspired gravitational theory in four spacetime dimensions is proposed as a sum of the modified $(\mathcal{R} + \alpha \mathcal{R}^2)$ gravity motivated by the Starobinsky inflation and the Bel-Robinson-tensor-squared term motivated by the eleven-dimensional M-theory dimensionally reduced to four dimensions. The proposed Starobinsky-Bel-Robinson action has only two parameters, which makes it suitable for verifiable physical applications in black hole physics, cosmological inflation and Hawking radiation in the early universe.
1 Introduction

General relativity theory with the Einstein-Hilbert (EH) action for gravity in $D = 4$ spacetime dimensions is well confirmed by precision measurements inside the Solar system. However, the EH action has to be modified in the UV-regime (for high energies and curvatures, in early Universe), in the IR-regime (for cosmological distances), and (beyond any doubt) in quantum gravity. When preserving the general coordinate invariance and locality, the EH gravity action can only be modified (besides a cosmological constant) by extra terms of the higher order in spacetime curvature. Those higher-derivative terms in the gravitational effective action are supposed to describe quantum gravity corrections to the EH action, while they are necessary for physical applications in the UV-regime because the EH gravity is non-renormalizable. This issue is well known in the literature about gravity but the main problem is a well motivated derivation of the gravitational effective action from quantum gravity or a reasonable selection of the higher order terms because there are infinitely many of them.

Solving this problem requires a practical framework for quantum gravity in order to perform calculations, which is another problem. Superstring theory is a mathematically consistent framework for quantum gravity but its applications to observed physics are limited by the necessity of compactification of extra $(D - 4)$ spacetime dimensions and related huge uncertainties in verifiable predictions. Moreover, superstring theory in $D = 10$ dimensions is defined as a quantum perturbation theory and is not background-independent. Actually, string theory can only be formulated on Ricci-flat backgrounds and does not allow de Sitter vacua.

Nevertheless, it makes sense to use insights from superstrings/M-theory together with other insights into quantum gravity, coming from early universe cosmology, black hole physics and particle physics beyond the Standard Model, in order to motivate the leading quantum gravity corrections to the EH action of gravity.

In this letter we give a new proposal for some leading quantum corrections in the high-curvature regime, which are motivated by M-theory in $D = 11$ dimensions after its dimensional reduction to $D = 4$ dimensions, combined with the simplest viable model of cosmological inflation in four space-time dimensions, known as the Starobinsky model. The resulting modified gravity action is called the Starobinsky-Bel-Robinson (SBR) gravity.

Our paper is organized as follows. In Sec. 2 we recall the Starobinsky model of inflation in four spacetime dimensions and its possible origin from higher dimensions. In Sec. 3 we recall the low-energy effective action of M-theory in eleven dimensions and its possible contribution to the gravitational effective action in four spacetime dimensions. In Sec. 4 we formulate the novel four-dimensional SBR gravity and give our conclusion.

2 Starobinsky gravity and extra dimensions

The Starobinsky model of inflation is defined by the modified gravity action

\[S_{\text{Star}} = \frac{M_{Pl}^2}{2} \int d^4x \sqrt{-g} \left(R + \frac{1}{6m^2} R^2 \right), \]

where we have introduced the scalar curvature R, reduced Planck mass $M_{Pl} = 1/\sqrt{8\pi G_N} \approx 2.4 \times 10^{18}$ GeV, and the mass parameter m. We use the spacetime signature $(-, +, +, +)$.

In the low curvature spacetime, the R^2 term can be ignored and the action reduces to the EH action. During inflation in the early Universe (with strong spacetime curvature), the EH-term can be ignored and the action reduces to the no-scale R^2 gravity with the dimensionless coupling constant in front of the action. The R^2-term with a positive
coupling constant is the only term in a generic Lagrangian, quadratic in the curvature tensor, that does not lead to ghosts, i.e. it is well theoretically motivated. The quantized gravity theory is, however, non-renormalizable, with the UV cutoff being given by M_{Pl}, see e.g., Ref. [2] for more details.

The action is also well phenomenologically motivated due to its excellent agreement with WMAP/Planck/BICEP/KECK precision measurements of the cosmic microwave background radiation [3]. Then the parameter m is the inflaton mass that can be fixed by the COBE/WMAP normalization as

$$m \approx 3 \cdot 10^{13} \text{ GeV} \quad \text{or} \quad \frac{m}{M_{Pl}} \approx 1.3 \cdot 10^{-5}.$$

The action can be deduced from higher (D) spacetime dimensions, while preserving the hierarchy of physical scales, $H_{\text{inf}} \ll M_{\text{KK}} \ll M_{Pl}$, where H_{inf} is the Hubble scale of inflation, and M_{KK} is the Kaluza-Klein scale. The relevant field theory in $D > 4$ dimensions should have the modified gravity Lagrangian of the form $(R + \alpha R^n)$ in terms of the D-dimensional scalar curvature R, coupled to a $(p - 1)$-form gauge field A and a having cosmological constant. Then the warped compactification from D dimensions on a sphere S^{D-4} with a non-vanishing flux of the gauge field strength $F = d \wedge A$ down to four spacetime dimensions leads to the Starobinsky action (1). As was demonstrated in Refs. [4, 5], it is only possible when $n = D/2$ and $p = n$. In particular, when $D = 8$, the modulus (radius) of the hidden four-sphere S^4 of extra dimensions can be stabilized, while the modified $D = 8$ gravity can be embedded into the modified $D = 8$ (Salam-Sezgin) gauged supergravity [6]. In turn, as was argued in Ref. [5], the modified $D = 8$ supergravity may be derived by compactifying the modified 11-dimensional supergravity on a three-sphere S^3. As a result, the Starobinsky action (1) may be derivable from the 11-dimensional supergravity modified by the term quartic in the scalar curvature and compactified on the product $S^4 \times S^3$ of extra dimensions. Unfortunately, a supersymmetric completion of such action in $D = 11$ was never found. The significance of eleven dimensions is due to the fact that the supergravity theory in $D = 11$ is unique [7], while its extension to quantum gravity, known under the name of M-theory, is presumably also unique, with local supersymmetry in $D = 11$ playing the essential role.1

3 Bel-Robinson tensor squared term

Having recognized the importance of eleven spacetime dimensions, it is natural to ask what could be the next term in the effective gravity Lagrangian beyond the R^2 term in $D = 4$, when starting from M-theory beyond the supergravity action in $D = 11$, after its (flux) compactification to four spacetime dimensions.

The bosonic terms (when all fermionic fields are ignored) of M-theory in the leading order beyond the $D = 11$ supergravity action read [8, 9]

$$S_M = \frac{1}{2\kappa_{11}^2} \int d^{11}x \sqrt{-g} \left[R - \frac{1}{2} \frac{F^2}{4!} - \frac{1}{6} \cdot \frac{3!}{4!} \cdot (4!)^2 \xi_{11} C F F \right]$$

$$- \frac{T_2}{(2\pi)^4 \cdot 2^{13}} \int d^{11}x \sqrt{-g} \left(J_{11} - \frac{1}{2} E_8 \right) + T_2 \int C \wedge X_8 ,$$

where κ_{11} is the 11-dimensional gravitational constant, T_2 is the M2-brane tension,

$$T_2 = \left(\frac{2\pi^2}{\kappa_{11}^2} \right)^{1/3} ,$$

1Another possibility is to start from F-theory in $D = 12$ dimensions and compactify it on a product of two Kummer surfaces $K3 \times K3$.

3
where we have also introduced the Euler and Pontryagin topological densities in 11 dimensions. In particular, the J_{11} is given by

$$J_{11} = 3 \cdot 2^8 \left(R_{mnpq} R_{rs} R^{mnpq} R^{rs} + \frac{1}{2} R_{mnpq} R_{rs} R^{mnpq} R^{rs} \right),$$

the E_8 can be written in terms of the Euler density in eight dimensions,

$$E_8 = \frac{1}{3!} \varepsilon^{abcd} \varepsilon_{abcd} \varepsilon_{ijkl} \varepsilon_{mn} \varepsilon^{ijkl} R_{ijkl}^m R_{ijkl}^n R_{ijkl}^{mn},$$

and the X_8 is given by the gravitational 8-form

$$X_8 = \frac{1}{192 \cdot (2\pi)^4} \left[\text{tr} \hat{R}^4 - \frac{1}{4} (\text{tr} \hat{R}^2)^2 \right],$$

where \hat{R} stands for the spacetime curvature 2-form in eleven dimensions, and the traces are taken with respect to (implicit) Lorentz indices in $D = 11$ dimensions. All (latin) vector indices take values $i, j, k, \ldots = 0, 1, 2, \ldots, 10$, while they are all suppressed in Eq. (3) for simplicity. See Ref. [10] about the notation of the exterior differential forms describing gravitational quantities in any dimension.

The $D = 11$ gravity theory [3] can be compactified with the warp factor on the product $S^3 \times S^4$ of extra dimensions down to four spacetime dimensions, in the presence of fluxes needed for moduli stabilisation [11]. Being interested in the gravitational sector of the effective field theory in $D = 4$ dimensions, we can apply a simple dimensional reduction to the action (3) and ignore details of its compactification together with all moduli. Then only the terms quartic in the full $D = 4$ spacetime curvature survive, while some of them may be represented as the Bel-Robinson tensor squared [12],

$$S_4 = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R + \kappa^6 \beta T^2 \right),$$

where all quantities are now in $D = 4$ with $\kappa = 1/M_{Pl}$, and β is the new dimensionless coupling constant whose value is not determined from these simple considerations.

The BR tensor is defined by [13, 14, 15]

$$T^{iklm} = R^{ipql} R^{k} \varepsilon_{pq} \varepsilon^{iklm} + R^{ipql} R^{k} \varepsilon_{pq} \varepsilon^{iklm} + R^{ipql} R^{k} \varepsilon_{pq} \varepsilon^{iklm} - \frac{1}{2} g^{ik} R_{pqrl} R_{pqrl}^m,$$

by analogy with the energy-momentum tensor of the Maxwell theory of electromagnetism,

$$T_{ij}^{\text{Maxwell}} = F_{ik} F_{j}^k + \ast F_{ik} \ast F_{j}^k, \quad F_{ij} = \partial_i A_j - \partial_j A_i,$$

where the superscript (\ast) means the dual tensor in $D = 4$. As regards the curvature tensor, we have

$$\ast R_{iklm} = \frac{1}{2} E_{ikpq} R_{pq}^{lm},$$

where $E_{iklm} = \sqrt{-g} \varepsilon_{iklm}$ is Levi-Civita tensor.

Then one finds [15, 12]

$$T_{ijkl} = -\frac{1}{4} (R_{ijkl}^2) + \frac{1}{4} (R_{ijkl} \ast R_{ijkl})^2 = \frac{1}{4} (P_4^2 - E_4^2) = \frac{1}{4} (P_4^2 + E_4^2)(P_4 - E_4),$$

where we have also introduced the Euler and Pontryagin topological densities in $D = 4$,

$$E_4 = \frac{1}{4} \varepsilon_{ijkl} \varepsilon_{mnpq} R_{ij}^{mn} R_{kl}^{pq} = \ast R_{ijkl} \ast R_{ijkl}$$
and
\[P_A = * R_{ijkl} R^{ijkl}, \]
respectively. We use the book-keeping notation \(A^2_{ijkl} \equiv A^{ijkl} A_{ijkl} \) for any rank-4 tensor \(A \).

On-shell (by using the equations of motion in the EH gravity), one can show \([13,14]\) that the BR tensor is fully symmetric and traceless,
\[T_{ijkl} = T_{(ijkl)}, \quad T_{ikl} = 0, \]
(15)
is covariantly conserved,
\[\nabla^i T_{ijkl} = 0, \]
(16)
and has a positive "energy" density,
\[T_{000} > 0. \]
(17)
The BR tensor is also related to the symmetric gravitational Landau-Lifshitz (LL) energy-momentum pseudo-tensor \([16]\)
\[(t_{LL})^{ij} = - \eta^{ip} \eta^{jq} \Gamma^m_{pm} \Gamma^m_{qk} + \Gamma^i_{mn} \Gamma^j_{pq} \eta^{mp} \eta^{nq} - \left(\Gamma^m_{np} \Gamma^m_{mq} \eta^{pq} + \Gamma^m_{np} \Gamma^{ij} \eta^{pq} \right) + h^{ij} \Gamma^m_{np} \Gamma^m_{pq} \eta^{pq} \]
(18)
and the non-symmetric Einstein (E) gravitational energy-momentum pseudo-tensor \([17]\)
\[(t^E)^i_j = (-2 \Gamma^i_{mp} \Gamma^m_{jq} + \delta^i_j \Gamma^m_{pm} \Gamma^m_{qn}) \eta^{pq} \]
(19)
in Riemann normal coordinates as follows \([15]\):
\[T_{ijkl} = \partial_k \partial_l \left(t_{LL}^{ij} + \frac{1}{2} t^E_{ij} \right). \]
(20)

4 Conclusion

Having motivated the presence of the scalar curvature squared term from inflation and the Bel-Robinson-tensor squared term from M-theory, we propose the SBR gravity as a sum of them with the following action:

\[S_{\text{SBR}}[g_{ij}] = \frac{M_P^2}{2} \int d^4 x \sqrt{-g} \left[R + \frac{1}{6m^2} R^2 + \frac{\beta}{8M_P^6} T^2 \right], \]
(21)
where we have used Eq. (12).

Equation (21) is our proposal for the \(D = 4 \) gravitational effective action in the high-curvature regime, motivated by Starobinsky inflation and inspired by superstrings/M-theory. The high-curvature regime is defined by a situation where the values of the second and third terms in Eq. (21) are comparable or larger than the value of the first one. Of course, the action (21) is still an approximation that is not valid at the scales close to the Planck scale.

The proposed action (21) is gravitational (no matter added) and geometric, it does not have arbitrary functions and extra scalars (beyond spacetime metric and Starobinsky’s scalaron that is the physical excitation of the higher-derivative \((R + \alpha R^2)\) gravity).

The SBR action has only two parameters \((m, \beta)\), which implies its predictive power for a wide range of physical applications such as black holes entropy \([18]\), inflation \([19]\) and Hawking radiation \([20]\). These parameters should be subject to renormalization, i.e.
they should depend upon a physical scale. Being subject to the renormalization of the parameters, the action (21) may be applied at any scale.

The SBR action is superstring-inspired in the sense that its quartic terms in the curvature may be derivable from superstring/M-theory as the theory of quantum gravity that is not only renormalizable but is also unitary and ghost-free by construction [21]. In other words, the popular Lovelock-like or Horndeski-like criteria demanding the absence of the higher-derivatives (beyond the 2nd order) in the equations of motion do not apply.

The Ricci-tensor-dependent terms in the gravitational effective action of superstring/M-theory cannot be determined from the known perturbative S-matrix in superstring theory, but they are not forbidden either [22]. From the viewpoint of string theory, the coupling constants \((m, \beta)\) are supposed to be given by the vacuum expectation values of moduli fields (including dilaton) as a result of compactification. However, all those moduli and dilaton have to be stabilized, which is a difficult problem [11, 23].

The SBR action includes two topological densities (or 4-forms) \(E_4\) and \(P_4\) that can be locally represented as the wedge derivatives of the corresponding Chern-Simons 3-forms. However, they do contribute to the equations of motion in the SBR gravity because they enter the action (21) as the squared terms. Since the Euler density \(E_4\) is the same as the Gauss-Bonnet density \(G = R^2 - 4R^2_{ij} + R^{ijkl}R_{ijkl}\), when ignoring the \(P_4^2\) term in Eq. (21), the SBR action reduces to the particular modified gravity action of the type \(F(R, G)\) with the quadratic terms in \(R\) and \(G\) only, cf. Ref. [24].

Specific applications of the proposed SBR theory will be studied elsewhere.

Acknowledgements

The author was supported by Tokyo Metropolitan University, the Japanese Society for Promotion of Science under the grant No. 22K03624, the World Premier International Research Center Initiative (MEXT, Japan), and the Tomsk State University development program Priority-2030.

References

[1] A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett. B 91 no. 1, (1980) 99 – 102.

[2] S. Ketov, “On the large-field equivalence between Starobinsky and Higgs inflation in gravity and supergravity,” PoS DISCRETE 2020-2021 (2022) 014.

[3] BICEP, Keck Collaboration, P. A. R. Ade et al., “Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season,” Phys. Rev. Lett. 127 no. 15, (2021) 151301, arXiv:2110.00483 [astro-ph.CO].

[4] S. P. Otero, F. G. Pedro, and C. Wieck, “\(R + \alpha R^n\) Inflation in higher-dimensional Space-times,” JHEP 05 (2017) 058 arXiv:1702.08311 [hep-th].

[5] H. Nakada and S. V. Ketov, “Inflation from higher dimensions,” Phys. Rev. D 96 no. 12, (2017) 123530 arXiv:1710.02259 [hep-th].

[6] A. Salam and E. Sezgin, “\(d = 8\) supergravity,” Nucl. Phys. B 258 (1985) 284.

[7] E. Cremmer, B. Julia, and J. Scherk, “Supergravity Theory in Eleven-Dimensions,” Phys. Lett. B 76 (1978) 409–412.
[8] M. B. Green and P. Vanhove, “D instantons, strings and M theory,” Phys. Lett. B
408 (1997) 122–134, arXiv:hep-th/9704145.

[9] A. A. Tseytlin, “$R^{n\times n}$ terms in 11 dimensions and conformal anomaly of (2,0)
theory,” Nucl. Phys. B 584 (2000) 233–250, arXiv:hep-th/0005072.

[10] T. Eguchi, P. B. Gilkey, and A. J. Hanson, “Gravitation, Gauge Theories and
Differential Geometry,” Phys. Rept. 66 (1980) 213.

[11] M. R. Douglas and S. Kachru, “Flux compactification,” Rev. Mod. Phys. 79 (2007)
733–796, arXiv:hep-th/0610102.

[12] M. Iihoshi and S. V. Ketov, “On the superstrings-induced four-dimensional gravity,
and its applications to cosmology,” Adv. High Energy Phys. 2008 (2008) 521389,
arXiv:0707.3359 [hep-th].

[13] L. Bel, “La radiation gravitationnelle,” Colloq. Int. CNRS 91 (1962) 119–126.

[14] I. Robinson, “On the Bel-Robinson tensor,” Class. Quantum Grav. 14 (1997)
A331–A333.

[15] S. Deser, “The Immortal Bel-Robinson tensor,” in Iberian Gravity Symposium. 1,
1999. arXiv:gr-qc/9901007.

[16] L. D. Landau and E. Lifshitz, Textbook on Theoretical Physics. Vol. 2: Classical
Field Theory. 1987.

[17] J. Goldberg, in General Relativity and Gravitation. 100-Years after the Birth Albert
Einstein, Vol. 1. Plenum Press, A. Held ed., New York, 1980.

[18] Z. Elgood, T. Ortin, and D. Pereniguéz, “The first law and Wald entropy formula of
heterotic stringy black holes at first order in α',” JHEP 05 (2021) 110,
arXiv:2012.14892 [hep-th].

[19] V. R. Ivanov, S. V. Ketov, E. O. Pozdeeva, and S. Y. Vernov, “Analytic extensions of
Starobinsky model of inflation,” JCAP 03 no. 03, (2022) 058, arXiv:2111.09058
[gr-qc].

[20] S. V. Ketov and S. V. Mochalov, “Curvature cubed string correction to the Hawking
temperature of a black hole,” Phys. Lett. B 261 (1991) 35–40.

[21] C. Bachas, L. Baulieu, M. Douglas, E. Kiritsis, E. Rabinovici, P. Vanhove, P. Windey,
and L. F. Cugliandolo, eds., String theory and the real world: From particle physics
to astrophysics. Proceedings, Summer School in Theoretical Physics, 87th Session,
Les Houches, France, July 2-27, 2007. Elsevier, Amsterdam, Netherlands, 2008.

[22] S. V. Ketov, Quantum nonlinear sigma models: From quantum field theory to
supersymmetry, conformal field theory, black holes and strings. Springer-Verlag,
Berlin, Germany, 2000.

[23] S. Alexandrov, S. V. Ketov, and Y. Wakimoto, “Non-perturbative scalar potential
inspired by type IIA strings on rigid CY,” JHEP 11 (2016) 066, arXiv:1607.05293
[hep-th].

[24] M. De Laurentis, M. Paolella, and S. Capozziello, “Cosmological inflation in $F(R,G)$
gravity,” Phys. Rev. D 91 no. 8, (2015) 083531, arXiv:1503.04659 [gr-qc].