Melatonin and Its Analogs for Prevention of Post-cardiac Surgery Delirium: A Systematic Review and Meta-Analysis

Yunyang Han 1†, Yu Tian 2†, Jie Wu 3, Xiaoqin Zhu 2, Wei Wang 1, Zhenhua Zeng 3* and Zaisheng Qin 1*

1 Department of Anaesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, China, 2 Department of Anaesthesiology, Guangdong Women and Children Hospital, Guangzhou, China, 3 Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China

Background: The effectiveness of melatonin and its analogs in preventing postoperative delirium (POD) following cardiac surgery is controversial. The purpose of this systematic review and meta-analysis was to confirm the benefits of melatonin and its analogs on delirium prevention in adults who underwent cardiac surgery.

Methods: We systematically searched the PubMed, Cochrane Library, Web of Science, Embase, and EBSCOhost databases, the last search was performed in October 2021 and repeated before publication. The controlled studies were included if investigated the impact of melatonin and its analogs on POD in adults who underwent cardiac surgery. The primary outcome was the incidence of delirium. The Stata statistical software 17.0 was used to perform this study.

Results: This meta-analysis included eight randomized controlled trials (RCTs) and two cohort studies with a total of 1,714 patients. The results showed that melatonin and ramelteon administration were associated with a significantly lower incidence of POD in adults who underwent cardiac surgery (odds ratio [OR], 0.46; 95% confidence interval [CI], 0.29–0.74; \(P = 0.001\)). The subgroup analyses confirmed that melatonin 3 mg (OR, 0.37; 95% CI, 0.18–0.76; \(P = 0.007\)) and 5 mg (OR, 0.34; 95% CI, 0.21–0.56; \(P < 0.001\)) significantly reduced the incidence of POD.

Conclusion: Melatonin at dosages of 5 and 3 mg considerably decreased the risk of delirium in adults who underwent cardiac surgery, according to our results. Cautious interpretation of our results is important owing to the modest number of studies included in this meta-analysis and the heterogeneity among them.

Systematic Review Registration: PROSPERO registration number: CRD42021246984.

Keywords: melatonin, cardiac, meta-analysis, ramelteon, systematic review, postoperative delirium
INTRODUCTION

Delirium, a neuropsychiatric disturbance characterized by a global impairment in cognitive capacity, including awareness and attention, deficient psychomotor activity, and a disrupted sleep-wake cycle (1), is associated with high mortality (2), cognitive decline (3), destruction of autonomy (4), an elevated hospitalization length and cost burden (5). Postoperative delirium (POD) is prevalent following cardiac surgery (6); the occurrence of post-cardiac surgery delirium ranges from 13 to 52% (7), and age, cognitive decline, weakness, complicated comorbidities, emergency operation, pain, and psychoactive medication administration are pivotal precipitating aspects (8). A recent study reported that a low left ventricular ejection fraction, atrial fibrillation, and cardiopulmonary bypass may predispose patients to post-cardiac surgery delirium (9).

The prevention of POD may play a significant role in patient recovery following cardiac surgery; although the pathophysiological pathways that cause delirium are yet unknown, The most prominent hypotheses regarding its neuropathogenesis include neuronal aging and neuroinflammation (10).

Melatonin (N-acetyl-5-methoxytryptamine), a pineal gland hormone, alleviates cognitive impairment (11, 12), protects against neurodegenerative diseases (13), and reduces neuroinflammation (14). When used for a cardioprotective medication, decreases heart dysfunction and improves the left ventricular ejection fraction in humans (15). Melatonin is commonly used in patients with sleep disorders and jetlag and has a good safety profile, even at large doses (16). Furthermore, Several melatonin analogs (tasimelteon, agomelatine, and ramelteon) are currently beneficial in the treatment of sleeplessness, depression, and circadian cycle disorders (17).

However, whether melatonin and its analogs prevent delirium in adults who underwent cardiac surgery remains unclear. Our previous meta-analysis indicated that melatonin and ramelteon (a melatonin analog) considerably decreased the occurrence of POD in adults; however, no statistically significant differences were observed in adults who underwent cardiac surgery (18). Several recent randomized controlled trials (RCTs) highlighted the advantage of melatonin for preventing post-cardiac surgery delirium (19–22). Herein, an up-to-date meta-analysis was conducted to see if melatonin and its analogs could reduce the risk of POD in cardiac surgery patients.

METHODS

This systematic review and meta-analysis of previously published research did not require ethical approval or patient permission. The PRISMA guidelines were followed for conducting and reporting this systematic review and meta-analysis (23). This study was registered on PROSPERO (CRD42021246984).

Literature Search

We searched the PubMed, Cochrane Library, Web of Science, Embase, and EBSCOhost databases for studies investigating the impact of melatonin and its analogs on delirium prevention after cardiac surgery. We used combinations of the following search terms: (“melatonin receptor agonist OR N-acetyl-5-methoxytryptamine OR melatonin OR ramelteon OR tasimelteon OR agomelatine OR Melaxen OR melatonnergics”) AND (“cardiac surgery OR cardiothoracic surgery OR coronary artery bypass OR surgical coronary revascularization OR valve surgery OR valve replacement”) AND (“delirium OR confusion OR confusional syndrome OR postoperative delirium OR cognitive disorder”). The last search was performed in October 2021 and repeated before publication (Supplementary Table 1).

Study Selection

Based on an examination of the titles and abstracts, two reviewers (YYH and YT) separately selected possibly relevant articles. Differences of opinion were settled by consensus or discussion with a leading reviewer (ZSQ). We included controlled studies that investigated the impact of melatonin and its analogs on POD in adults who underwent cardiac surgery. Given the modest number of RCTs that have examined this topic, no predetermined limits on research design or quality were utilized to select studies. A previous study showed that well-designed observational studies did not exaggerate the degree of the treatment effects vs. RCTs that investigated the same topic (24). As a result, this study included RCTs, cohort studies, and case-control studies.

Inclusion and Exclusion Criteria

The inclusion criteria were as follows:

(a) Study type: case-control studies, cohort studies, and RCTs;
(b) Publication language: Only English;
(c) Patients: Adults who underwent cardiac procedures;
(d) Intervention: Administration of melatonin and its analogs;
(e) Control: Placebos including lactose powder, sedatives including oxazepam, or a blank control;
(f) Outcomes: The primary outcome was the incidence of delirium, while the secondary outcomes were mechanical ventilation time, length of intensive care unit (ICU) stay, and length of hospitalization.

We excluded case reports, case reviews, conference reports, systematic reviews, and meta-analyses. Documentation management software (NoteExpress, version 3.4) was used to screen records and document decisions.

Data Extraction and Quality Assessment

First author, publication year, number of patients, demographic characteristics, control group, type and dose of melatonin and its analogs, follow-up duration, diagnostic criteria of delirium, study design, incidence of delirium, mechanical ventilation time, length of ICU stay, and length of hospitalization were extracted from every study included in this meta-analysis. All of the retrieved data was collected in an Excel file. The risk of bias within RCTs was assessed using the revised Cochrane Collaboration Risk of Bias Tool (version 2.0) (25). To measure the quality of non-RCTs, the Newcastle-Ottawa Scale (NOS) was utilized (26). Two
reviewers (QZS and YT) independently assessed each study, a third reviewers (HYY) was engaged in situations of disagreement.

Statistical Analysis
The Stata statistical software (version 17.0; StataCorp, College Station, TX, USA) was used to perform this study. The restricted maximum likelihood random effects model was used to calculate pooled estimates and 95% confidence intervals (CIs). Dichotomous outcomes are expressed as odds ratios (ORs) with 95% CIs, while continuous outcomes were pooled using standard mean differences (SMD; Hedges' g) with 95% CIs. The median and interquartile range were converted to mean and standard deviation based on the quantile estimation method described by McGrath et al. (27). Tests for homogeneity based on Cochran's Q and I² statistics were used; studies with an I² > 50% were defined as those with moderate heterogeneity and those with an I² > 75% were defined as those with significant heterogeneity (28). To find the origins of heterogeneity, subgroup analyses were used. Potential publication bias was assessed by visual inspection of funnel plots. In cases in which asymmetry was detected in the funnel plot, we used trim-and-fill analysis to assess publication bias. Leave-one-out meta-analysis was used to investigate the effects of each study on the overall effect size estimate and identify relevant studies. Two-tailed P < 0.05 were considered statistically significant for all analyses.

RESULTS

Study Selection
Figure 1 illustrates the process of study selection. Two independent researchers (YHY and YT) performed the literature search, data extraction, and general description of the included studies. We identified 214 studies published through October 30, 2021, including two records identified from other literature sources. We employed automated methods to eliminate 86 duplicate studies prior to screening. After analyzing the titles and abstracts, we determined that 26 full-text publications were possibly acceptable for inclusion, whereas 102 studies were excluded. Finally, eight RCTs (19–22, 29–32) and two observational studies (33, 34) were included based on the aforementioned eligibility criteria.

Study Characteristics
Ten studies (19–22, 29–34) (1,714 patients) were published in English between 2015 and 2021. The sample size ranged from 50 to 500, and the participants were mainly elderly inpatients. The interventions used included ramelteon 8 mg in two studies (31, 34) and melatonin 3 mg or 5 mg in eight studies (19–22, 29, 30, 32, 33). Nine studies (19–21, 29–34) included 1,417 patients who underwent cardiothoracic surgery, such as coronary artery bypass graft surgery, aortic valve replacement, mitral valve replacement, and elective pulmonary thromboendarterectomy. A total of 297 patients underwent percutaneous transluminal coronary intervention (22). As diagnostic methods for POD, the Intensive Care Delirium Screening Checklist (ICDSC) (32, 34), Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) (19–22, 30, 31, 33), and clinical observations (29) were employed. Table 1 presents the characteristics of the included studies.

Quality Assessment
Of the eight RCTs (19–22, 29–32), six were classified as low-risk (19, 20, 22, 30–32), and one was classified as being associated with “some concern” because the randomization process could not be blinded (21). The other study was also classified as being associated with “some concern” owing to deviations from intended interventions and outcome measurements (29) (Supplementary Table 2). The NOS scores in the two non-randomized observational studies were 8 (33) and 9 (34), respectively (Supplementary Table 3).

Primary Outcome
This meta-analysis analyzed eight RCTs (19–22, 29–32) and two cohort studies (33, 34), which reported the incidence of POD. Melatonin and ramelteon use were linked to a considerably decreased incidence of POD in adults after cardiac surgery (OR, 0.46; 95% CI, 0.29–0.74; P = 0.001; Figure 2), with moderate heterogeneity across studies that reported these findings (I² = 66.17%; P = 0.005).

Subgroup Analyses and Leave-One-Out Meta-Analysis
Figure 3 shows the outcomes of the subgroup analyses, which showed that the incidence of POD was reduced in both melatonin groups (3 mg group [OR, 0.37; 95% CI, 0.18–0.76; P = 0.007] and the 5 mg group [OR, 0.34; 95% CI, 0.21–0.56; P < 0.001]); however, no such effect was observed in the ramelteon 8 mg group (OR, 1.08; 95% CI, 0.59–1.98; P = 0.808). The subgroup analysis showed that preoperative melatonin/ramelteon administration (OR, 0.40; 95% CI, 0.22–0.74; P = 0.003) was more beneficial for POD prevention than postoperative administration (OR, 0.61; 95% CI, 0.39–0.95; P = 0.029). Significant differences in the incidence of POD were observed in the short-term (≤3 days) group (OR, 0.23; 95% CI, 0.12–0.43; P < 0.001) but not in the long-term (>3 days) group (OR, 0.72; 95% CI, 0.49–1.06; P = 0.093). Significant subgroup heterogeneity was observed in the experimental drug (P = 0.01) and postoperative duration (P < 0.01) of melatonin/ramelteon administration.

Further subgroup analysis showed that the RCT group (OR, 0.43; 95% CI, 0.24–0.80; P = 0.007) had a lower incidence of POD, but the non-RCT group did not show any significant differences (OR, 0.50; 95% CI, 0.21–1.18; P = 0.112). Additionally, a subgroup analysis based on study type, controlled drugs, diagnostic criteria for delirium, surgery, and sample size showed no significant heterogeneity. The overall results were steady, and no study was recognized as an outlier based on the leave-one-out method’s findings (Supplementary Figure 1).

Publication Bias
Some degree of asymmetry in the funnel plot suggested publication bias (Supplementary Figure 2). To estimate the missing studies, we employed the trim-and-fill procedure and
recalculated the total pooled effect estimates. The plot revealed that the two imputed studies fell in the gray and dark gray regions, corresponding to $P > 0.05$. The addition of imputed studies to the meta-analysis increased the overall OR from 0.46 to 0.58 (Supplementary Figure 3). These results support the conclusion that the small study effect is most likely attributable to publication bias.

Secondary Outcomes

Figure 4 shows the secondary outcomes of this study. Six studies (19, 21, 29, 31, 33, 34) (1,017 participants) reported the duration of postoperative mechanical ventilation, and the meta-analysis showed that mechanical ventilation time was not significantly shortened following melatonin or ramelteon administration (SMD, −0.03; 95% CI, −0.15 to 0.10; $P = 0.60$; Figure 4A).
References	Sample size	Male/ Female	Age (years)	Drugs	Dose (mg)	Duration of preoperative melatonin administration	Follow-up (days)	Diagnose criteria	Delirium (%)	Surgery	Study design
Artemiou et al. (33)	500	179/71/171/79	64.3 ± 10.1	Prolonged-release tablets of melatonin, placebo	5	The evening before the operation	3 days	CAM-ICU	8.4	CABG, AVR, MVR, OPCAB, ASD, myxoma	Prospective cohort study
Dianatkhah et al. (29)	137	53/13/52/19	60.03 ± 10.21	Melatonin, oxazepam	3	3 nights	Until the time of discharge	Clinical observation	6.1	CABG	RCT
Ford et al. (30)	210	79/26/85/25	69 (8.3)	Melatonin, placebo	3	2 nights	5 days	CAM-ICU	21.4	CABG	RCT
Hosseini Kasnavieh et al.	140	57/13/61/9	64.03± 64.5	Melatonin, placebo	3	3 days	3 days	CAM-ICU	5.7	CABG	RCT
Jaiswal et al. (31)	117	29/29/29/30	58.1 ± 14.1	Ramelteon, Placebo	8	The night before surgery	6 days	CAM-ICU	38	Elective pulmonary thromboendarterectomy	RCT
Javaherforoosh Zadeh et al.	60	20/10/22/8	60.26 ± 9.50	Prolonged-release tablets of melatonin, Placebo	3	The evening before the operation and the morning of surgery	1 day	CAM-ICU	10	CABG	RCT
Mahrose et al. (21)	110	42/13/41/14	67.0 ± 6.7	Melatonin, none	5	10 PM, the night before surgery	6 days	CAM-ICU	10.9	CABG	RCT
Sharaf et al. (32)	50	12/13/14/11	66.56 (4.79)	Melatonin, placebo	3	Once at night and once 30 min preoperatively	3 days	ICDSC	8	CABG	RCT
Shi (22)	297	93/55/89/60	71.5 ± 6.7	Melatonin, placebo	3	Postoperatively	7 days	CAM-ICU	27	PCI	RCT
Tamura et al. (34)	93	8/17/13/64	59.4 ± 12.3	Ramelteon, none	8	Postoperatively	Until the time of discharge	ICDSC	26.9	CABG	Retrospective cohort study

ASD, atrial septal defect; AVR, aortic valve replacement; CABG, coronary artery bypass graft surgery; CAM-ICU, Confusion Assessment Method for the Intensive Care Unit; ICDSC, Intensive Care Delirium Screening Checklist; MVR, mitral valve replacement; OPCAB, off-pump coronary artery bypass; PCI, percutaneous transluminal coronary intervention; RCT, randomized controlled trial.
meta-analysis of seven studies (19, 21, 29, 31, 33, 34) (1,017 patients) reported that melatonin or ramelteon administration did not significantly shorten the length of ICU stay (SMD, −0.12; 95% CI, −0.33 to 0.09; P = 0.06; Figure 4B). A pooled analysis of six studies (21, 22, 30, 31, 33, 34) (1,319 participants) showed no significant shortening of the length of hospitalization following melatonin or ramelteon administration (SMD, 0.03; 95% CI, −0.25 to 0.32; P < 0.001, Figure 4C). A subgroup analysis following melatonin and ramelteon administration revealed no significant intergroup differences in any of the secondary outcomes.

DISCUSSION

The present meta-analysis showed that the administration of melatonin 5 or 3 mg could decrease the risk of POD in adults who underwent cardiac surgery. However, the results of cardiac surgery subgroup analyses from the small sample size and restricted number of included studies may have low power to detect such a difference. The present meta-analysis included six of the most recently published studies (19–22, 31, 34) based on previous research, and the results indicated that melatonin might efficiently prevent POD in adults who underwent cardiac surgery; however, this finding is not consistent with those reported by previous studies. However, the present meta-analysis’ results were based on a bigger sample size than the prior study.

The melatonin dose varied from 0.5 to 5 mg across studies for delirium prevention (35). A recent expert consensus recommended that the administration of prolonged-release melatonin 2 mg or an immediate-release 3 or 5 mg dose before bedtime may prevent the incidence of delirium in at-risk populations (36). However, the dose of melatonin that prevents POD has not been systematically determined in adults who underwent cardiac surgery. This meta-analysis showed that melatonin 5 and 3 mg could effectively reduce the incidence of POD, while extended-release melatonin 5 and 3 mg reduced delirium risk by 12.4% (33) and 36.6% (19), respectively. None of the included studies reported serious adverse events associated with the use of melatonin, such as respiratory suppression, hemodynamic fluctuations. A network meta-analysis of six RCTs reported that the administration of melatonin 0.5 mg was associated with a better preventive effect than administration of...
Study	Number of studies	Odds ratio with 95% CI	p-value
1. Experimental drug			
Melatonin 3mg(19,20,22,29,30,32)	6	0.37 [0.18, 0.76]	0.007
Melatonin 5mg(21,33)	2	0.34 [0.21, 0.56]	0.000
Ramelteon 8mg(31,34)	2	1.08 [0.59, 1.98]	0.808
Test of group differences: $Q_a(2) = 9.15, p = 0.01$			
2. Whether preoperative melatonin/ramelteon administration			
No(22,34)	2	0.61 [0.39, 0.95]	0.029
Yes(19-21,29-33)	8	0.40 [0.22, 0.74]	0.003
Test of group differences: $Q_a(1) = 1.23, p = 0.27$			
3. The duration of postoperative melatonin/ramelteon			
≤3 days(19,20,32,33)	4	0.23 [0.12, 0.43]	0.000
>3 days(21,22,29-31,34)	6	0.72 [0.49, 1.06]	0.093
Test of group differences: $Q_a(1) = 9.32, p = 0.00$			
4. Study types			
Non-RCTs(33,34)	2	0.50 [0.21, 1.18]	0.112
RCTs(19-21,29-32)	8	0.43 [0.24, 0.80]	0.007
Test of group differences: $Q_a(1) = 0.06, p = 0.81$			
5. Diagnose criteria of delirium			
CAM-ICU(19-22,30,31)	7	0.44 [0.24, 0.81]	0.009
ICDSC(32,34)	2	0.32 [0.15, 0.89]	0.323
Clinical observations(29)	1	0.44 [0.13, 1.52]	0.196
Test of group differences: $Q_a(2) = 0.06, p = 0.97$			
6. Surgery			
Percutaneous transluminal coronary intervention(31)	1	0.56 [0.35, 0.92]	0.022
Cardiac thoracic surgery(19-21,29,30,32-34)	9	0.44 [0.25, 0.77]	0.004
Test of group differences: $Q_a(1) = 0.45, p = 0.50$			
7. Sample size			
150 to 300(22,30)	2	0.75 [0.40, 1.40]	0.360
< 150(19-21,29,31,32,34)	7	0.38 [0.19, 0.77]	0.007
> 300(33)	1	0.35 [0.20, 0.60]	0.000
Test of group differences: $Q_a(2) = 3.56, p = 0.17$			
Overall			
Heterogeneity: $t^2 = 0.35, I^2 = 66.17\%$, $H^2 = 2.96$			
Test of $\theta = 0$: $Q(9) = 23.81, p = 0.00$			
Random-effects REML model			

FIGURE 3 Forest plot of subgroup analysis for POD incidence in adults who underwent cardiac surgery.
FIGURE 4
Forest plot of the secondary outcomes; (A) Forest plot of the mechanical ventilation time, (B) Forest plot of the length of ICU stay, and (C) Forest plot of the length of hospitalization.
the same dose of melatonin in adult inpatients (37); however, the effect of low-dose melatonin on the development of delirium in patients who underwent cardiac surgery remains unclear. Therefore, further RCTs are warranted to establish the optimal melatonin dose for POD prevention.

Dexmedetomidine is also a hot topic drug in recent clinical studies on POD prevention. Melatonin and dexmedetomidine may differ in the prevention of POD as follows: (a) Dexmedetomidine is an α2-adrenoceptor agonist with sedative, anxiolytic, and sympatholytic effects. Perioperative dexmedetomidine administration was associated with an elevated risk of bradycardia and hypotension (38) resulted from sympatholytic properties. Melatonin is commonly used in patients with sleep disorders and jetlag and has a good safety profile, even at large doses (>10 mg) (16). (b) Dexmedetomidine needs to be administered intravenously under the supervision of medical personnel, and melatonin needs to be administered orally autonomously before or after surgery. (c) In contrast to dexmedetomidine, which requires a doctor's prescription, melatonin is sold as an over-the-counter drug, such as in the United States and China. (d) Multiple randomized controlled trials (RCTs) have demonstrated that the administration of dexmedetomidine is associated with a lower incidence of POD following non-cardiac surgery (39–41), however, dexmedetomidine was not associated with decreased incidence of POD following cardiac surgery (42, 43). The different pharmacological mechanisms of dexmedetomidine and melatonin may lead to different effects of dexmedetomidine and melatonin on POD.

Ramelteon, the only melatonin analog included in this meta-analysis, has a 6-fold higher affinity for melatonin 1 receptors and a 3-fold higher affinity for melatonin 2 receptors (44); ramelteon's higher affinity for melatonin receptors may contribute to its favorable benefits in delirium prevention, and previous RCTs reported that ramelteon can reduce POD after non-cardiac surgery in elderly patients (45, 46). However, in this meta-analysis, results from an RCT and an observational study showed no evidence of a preventive effect of ramelteon 8 mg on POD in adults who underwent cardiac surgery.

Ramelteon has an overall absorption rate of 84%, although its total bioavailability is just 1.8% (47); the bioavailability of oral melatonin was ~15% (48). The fasting state is an important cause of inter-individual variability in drug bioavailability (49) and a possible reason for the difference in the effectiveness of melatonin and ramelteon for POD prevention. Only two studies (31, 34) on ramelteon were included in this meta-analysis; thus, it remains unclear whether it can prevent delirium in patients who undergo cardiac surgery.

The exact mechanism of post-cardiac surgery delirium is uncertain and may be of multifactorial origin (50). But Previous studies have suggested that old age (51) and inflammation (52) are independent risk factors for POD. Neuronal aging and neuroinflammation may be the underlying mechanisms (10). Neuroinflammation disrupts the brain network of executive function after cardiac surgery (53). Aging neurons inevitably affect the brain's normal functional reserves (54). Melatonin may play an important role in the suppression of neuroinflammation (55) and the treatment of age-related neurodegenerative diseases (13).

Although different doses of melatonin show the same preventive effect on delirium, preoperative melatonin administration appears to produce a more significant effect, possible due to the following factors: (a) Sleep disorder is associated with a high risk for delirium (56), and patients with various cardiac diseases invariably experience preoperative sleep disorders secondary to anxiety, depression, breathing disorders, or other factors (57); (b) The secretion of melatonin is delayed during anesthesia and surgery (58); (c) Postoperatively given melatonin absorption kinetics are greatly slowed, and peak plasma levels are reduced (59); and (d) Anesthesia and surgery may selectively cause functional reductions in the prefrontal cortex excitatory synaptic transmission and induce delirium (60). It is reasonable to initiate melatonin supplementation the night before cardiac surgery if conditions permit. A recent study indicated that most cases of delirium occur between days 1 and 3 after cardiac surgery (61); which may explain the lack of a significant difference observed in the long-term group. The mean duration of POD was 3 days after cardiac surgery (62). Therefore, it may be appropriate to administer melatonin preoperatively and continue its administration until postoperative day 6.

In patients undergoing cardiac surgery, the incidence of delirium is strongly associated with the duration of mechanical ventilation, ICU stay, and hospitalization. POD can prolong the mechanical ventilation time, length of ICU stay, and length of hospitalization after cardiac surgery (50, 63, 64), and duration of mechanical ventilation, length of ICU stay, and length of hospitalization serve as precipitating factors for POD (65, 66). However, our meta-analysis did not show a significant difference in the aforementioned clinical outcomes based on the premise that melatonin can significantly reduce the incidence of POD. The limited number of patients included in the meta-analysis may have contributed to this observation; however, it is more likely that differences in delirium severity, duration, and subtype (including hypoactive, hyperactive, and mixed) may have resulted in the differences in clinical outcomes. A high delirium severity score (67), prolonged delirium (68), and hypoactive delirium (63, 69) were most significantly associated with the duration of mechanical ventilation, length of ICU stay, and length of hospitalization.

The potential limitations of this study are as follows: (a) Owing to the scarcity of studies that have investigated this topic, RCTs and observational studies were included to enhance the robustness of this meta-analysis. Although the subgroup analysis revealed that the non-RCT group did not overestimate the preventive effect of melatonin on POD, and the result was not changed in leave-one-out meta-analysis excluding each observational study individually, observational studies are prone to selection bias secondary to a lack of randomization. (b) Because of the inclusion of studies with small sample sizes,
and the asymmetry of the funnel plot and the trim-and-fill approach imply that the current meta-analysis may be prone to small-study effect bias. To definitively confirm the effects of melatonin and ramelteon on POD, more large-scale investigations are required. (c) The studies included in the meta-analysis showed moderate heterogeneity. The subgroup analyses indicated that “the type and dose of melatonin/ramelteon” and “whether preoperative melatonin/ramelteon was used” may have contributed to the heterogeneity. These variables may have an impact on the precision and consistency of the results. (d) No reliable laboratory parameters/biomarkers are available for the diagnosis of delirium, and the delirium screening tools used by the included studies differed. Both the CAM-ICU and the ICDSC are accurate assessment tools for identifying delirium in critically ill patients, the CAM-ICU is superior at ruling out patients without delirium in the ICU and detecting delirium in patients receiving mechanical ventilation (70), this difference may affect the incidence of POD since most patients undergoing open heart surgery require mechanical ventilation after surgery in the ICU. Additional evidence from well-designed large-scale RCTs is required to validate these findings.

CONCLUSION

This study revealed that melatonin 5 and 3 mg considerably decreased the risk of delirium in adults who underwent cardiac surgery. However, ramelteon 8 mg did not exhibit this effect. Moreover, the duration of postoperative mechanical ventilation, length of ICU stay, and length of hospitalization were not significantly affected by melatonin or ramelteon administration. A cautious interpretation of these results is necessary considering the modest number of studies included in this meta-analysis and the heterogeneity among them.

REFERENCES

1. European Delirium Association, American Delirium Society. The DSM-5 update on the criteria of delirium and the DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. (2014) 12:141. doi: 10.1186/s12916-014-0141-2
2. Witlox J, Eurelings LS, de Jonghe JF, Kalisvaart KJ, Eikelenboom P, van Gool WA. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA. (2010) 304:443–51. doi: 10.1001/jama.2010.1013
3. Salluh JI, Wang H, Schneider EB, Nagaraja N, Yenokyan G, Damilu A, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. (2015) 350:h2538. doi: 10.1136/bmj.h2538
4. Marcontonio ER, Flacker JM, Michaels M, Resnick NM. Delirium is independently associated with poor functional recovery after hip fracture. J Am Geriatr Soc. (2000) 48:618–24. doi: 10.1111/j.1532-5415.2000.tb04718.x
5. Dziegielewski C, Sked C, Canturk T, Webber C, Fernando SM, Thompson LH, et al. Delirium and associated length of stay and costs in critically ill patients. Crit Care Res Pract. (2021) 2021:6612187. doi: 10.1155/2021/6612187
6. Subramanian B, Shankar P, Shaefi S, Mueller A, O’Gara B, Banner-Goodspeed V, et al. Effect of intravenous acetaminophen vs placebo combined with propofol or dexmedetomidine on postoperative delirium among older patients following cardiac surgery: the DEXACET randomized clinical trial. JAMA. (2019) 321:686–96. doi: 10.1001/jama.2019.0234
7. Ten Broeke M, Koster S, Konings T, Hensens AG, van der Palen J. Can we predict a delirium after cardiac surgery? A validation study of a delirium risk checklist. Eur J Cardiovasc Nurs. (2018) 17:255–61. doi: 10.1177/1474515117733365
8. Steiner LA. Postoperative delirium. Part 1: pathophysiology and risk factors. Eur J Anaesthesiol. (2011) 28:628–36. doi: 10.1097/EJA.0b013e328349f715
9. Bucerus J, Gumett JA, Borger MA, Wältner T, Doll N, Falk V, et al. Predictors of delirium after cardiac surgery: effect of beating-heart (off-pump) surgery. J Thorac Cardiovasc Surg. (2004) 127:57–64. doi: 10.1016/S0022-5223(03)01281-9
10. Wang Y, Shen X. Postoperative delirium in the elderly: the potential neuropathogenesis. Aging Clin Exp Res. (2018) 30:1287–95. doi: 10.1007/s12032-018-1008-8
11. Xu J, Gao H, Zhang L, Rong S, Yang W, Ma C, et al. Melatonin alleviates cognition impairment by antagonizing brain insulin resistance in aged rats fed a high-fat diet. J Pineal Res. (2019) 67:e12584. doi: 10.1111/jpi.12584
12. Chen C, Yang C, Wang J, Huang X, Yu H, Li S, et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J Pineal Res. (2021) 71:e12774. doi: 10.1111/jpi.12774
13. Luo F, Sandhu AF, Rungratasanawich W, Williams GE, Akbar M, et al. Melatonin and autophagy in aging-related neurodegenerative diseases. Int J Mol Sci. (2020) 21:7174. doi: 10.3390/ijms21197174
14. Zhou Q, Lin L, Li H, Wang H, Jiang S, Huang P, et al. Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-Telomerase pathway in postnatal rats exposed to lipopolysaccharide. Mol Neurobiol. (2021) 58:6552–76. doi: 10.1007/s12035-021-02568-7

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

YH conceived of the study, executed a search strategy, collected and analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. YT executed a search strategy, collected and analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. JW analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. XZ and WW interpreted the findings and helped to prepare the manuscript. ZZ assisted in the execution of the study, data analysis, interpretation, and critical revision of the manuscript. ZQ assisted in the study design, data search and analysis, and critical revision of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (grant/award numbers: 81973305, 81571358, and 82172175).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2022.888211/full#supplementary-material

AUTHOR CONTRIBUTIONS

YH conceived of the study, executed a search strategy, collected and analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. YT executed a search strategy, collected and analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. JW analyzed the data, assessed the articles, interpreted the findings, and drafted the manuscript. XZ and WW interpreted the findings and helped to prepare the manuscript. ZZ assisted in the execution of the study, data analysis, interpretation, and critical revision of the manuscript. ZQ assisted in the study design, data search and analysis, and critical revision of the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by the National Natural Science Foundation of China (grant/award numbers: 81973305, 81571358, and 82172175).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2022.888211/full#supplementary-material
15. Dominguez-Rodriguez A, Abreu-Gonzalez P, Baez-Ferrer N, Reiter RJ, Avanzas P, Hernandez-Vaquero D. Melatonin and cardioprotection in humans: a systematic review and meta-analysis of randomized controlled trials. *Front Cardiovasc Med.* (2021) 8:65038. doi: 10.3389/fcmv.2021.65038

16. Menczel Schrire Z, Phillips CL, Chapman JL, Duffy SL, Wong G, D’Rozario CD, et al. Safety of higher doses of melatonin in adults: a systematic review and meta-analysis. *J Pinel Res.* (2022) 72:e12782. doi: 10.1111/jpi.12782.

17. Laudon M, Frydman-Marom A. Therapeutic effects of melatonin receptor agonists on sleep and comorbid disorders. *Int J Mol Sci.* (2014) 15:15924–50. doi: 10.3390/ijms15091592

18. Han Y, Wu Q, Qin Z, Fu W, Zhao B, Li X, et al. Melatonin and its analogues for the prevention of postoperative delirium: a systematic review and meta-analysis. *J Pinel Res.* (2020) 68:e12644. doi: 10.1111/jpi.12644.

19. Jaiswal SJ, Vyas AD, Heisel AJ, Ackula H, Aggarwal A, Kim NH, et al. Effects of melatonin on delirium after on-pump coronary artery bypass graft surgery: a randomized clinical trial. *Iran J Med Sci.* (2021) 46:120–7. doi: 10.30476/ijms.2020.82860.1146

20. Hosseini Kasnavieh F, Rezaeipandari H, Hadadzadeh M, Vakili M, Hosseini Biouki F. Effect of melatonin on incidence of delirium in elderly patients undergoing open-heart surgery without a pump: a clinical trial. *Elder Health J.* (2019) 5:32–9. doi: 10.18502/ehj.v5i1.1197

21. Mahrose R, ElSerwi H, Maurice A, Elsersi M. Perioperative effects of melatonin: a systematic review and meta-analysis. *Heart Surg Forum.* (2021) 24:E893–E897. doi: 10.1532/hsf.4049

22. Page MJ, McKenzie JE, Bossuyt PM, Brouton I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ.* (2021) 372:n71. doi: 10.1136/bmj.n71

23. Concato J, Shah N, Horwitz R. Randomized, controlled trials, observational studies, and the hierarchy of research designs. *N Engl J Med.* (2000) 342:1887–92. doi: 10.1056/NEJM200006222322507.

24. Qin C, Jiang Y, Lin C, Li A, Liu J. Perioperative dexmedetomidine administration to prevent delirium in adults after non-cardiac surgery: a systematic review and meta-analysis. *J Clin Anesth.* (2021) 73:110308. doi: 10.1016/j.jclinane.2021.110308.

25. Zhao W, Hu Y, Chen H, Wang X, Wang L, Wang Y, et al. The effect and optimal dosage of dexmedetomidine plus sufentanil for perioperative analgesia in elderly patients with postoperative delirium and early postoperative cognitive dysfunction: a single-center, prospective, randomized, double-blind, controlled trial. *Front Neurosci.* (2020) 14:549516. doi: 10.3389/fnn.2020.549516

26. Tamura K, Maruyama T, Sakurai S. Efficacy of orexin receptor agonists in the treatment of insomnia and circadian sleep disturbances in adult neuropsychiatric disorders. *Front Psychiatry.* (2021) 12:688890. doi: 10.3389/fpsych.2021.688890.

27. Yang CP, Tseng PT, Pei-Chen Chang J, Su H, Satyanarayanan SK, Su KP. Melatonergic agents in the prevention of delirium: a network meta-analysis of randomized controlled trials. *Sleep Med Rev.* (2020) 50:101235. doi: 10.1016/j.smrv.2019.101235.

28. Palagini L, Manni R, Aguglia E, Amore M, Bregnenzi R, Bioulac S, et al. International expert opinions and recommendations on the use of melatonin in the treatment of insomnia and circadian sleep disturbances in adult neuropsychiatric disorders. *Front Psychiatry.* (2021) 12:688890. doi: 10.3389/fpsych.2021.688890.

29. Blodgett TJ, Blodgett NP. Melatonin and melatonin-receptor agonists to prevent delirium in hospitalized older adults: an umbrella review. *Geriatr Nurs.* (2021) 42:1362–8. doi: 10.1016/j.gerurn.2021.10.011.

30. Palagini L, Manni R, Aguglia E, Amore M, Bregnenzi R, Bioulac S, et al. International expert opinions and recommendations on the use of melatonin in the treatment of insomnia and circadian sleep disturbances in adult neuropsychiatric disorders. *Front Psychiatry.* (2021) 12:688890. doi: 10.3389/fpsych.2021.688890.

31. Jaiswal SJ, Vyas AD, Heisel AJ, Ackula H, Aggarwal A, Kim NH, et al. Effects of melatonin on delirium after on-pump coronary artery bypass graft surgery: a randomized clinical trial. *Iran J Med Sci.* (2021) 46:120–7. doi: 10.30476/ijms.2020.82860.1146

32. Sharaf S, El-Din D, Mahran M, Ali-Nawar D, El-Naggar M, Ali-Nawar D, et al. A study of the prophylactic and curative effect of melatonin on postoperative delirium after coronary artery bypass grafting surgery in elderly patients. *Egypt J Hosp Med.* (2018) 72:4919–26. doi: 10.21608/ejhm.2018.10174.

33. Artemiou P, Kily B, Bilecova-Rabsjova M, Sabol F, Torok P, Kolarik P, et al. Melatonin treatment in the prevention of postoperative delirium in cardiac surgery patients. *Kardiochir Torakochirurgia Pol.* (2015) 12:126–33. doi: 10.5114/ktp.2015.52853

34. Greaves D, Paults PJ, Davies MEJ, Rao TJ, Ghezzi ES, Lampit A, et al. Risk factors for delirium and cognitive decline following coronary artery bypass grafting surgery: a systematic review and meta-analysis. *J Am Heart Assoc.* (2020) 9:e017275. doi: 10.1161/JAHA.120.017275.
62. Cheng HW, Liu CY, Chen YS, Shih CC, Chen WY, Chiou AF. Assessment of preoperative delirium in older patients: a prospective cohort study. *BMJ Geriatr*. (2021) 21:334. doi: 10.1136/bmjgeast-2021-00284-w

63. Stransky M, Schmidt C, Ganslmeier P, Grossmann E, Haneya A, Moritz S, et al. Incidence, predictors and outcomes of delirium in complicated Type B aortic dissection patients after thoracic endovascular aortic repair. *Clin Interv Aging*. (2021) 16:1581–9. doi: 10.2147/CIA.S328657

65. Russell MD, Pinkerton C, Sherman KA, Ebert TJ, Pagel PS. Predisposing and precipitating factors associated with postoperative delirium in patients undergoing cardiac surgery: a pilot retrospective analysis. *J Cardiothorac Vasc Anesth.* (2020) 34:2103–10. doi: 10.1093/jvca/2020.02.004

66. Visser I, Pret A, van der Laan MJ, van Leeuwen BL, Izaks GJ, Zeebregts CJ, et al. Predicting postoperative delirium after vascular surgical procedures. *J Vasc Surg.* (2015) 62:183–9. doi: 10.1016/j.jvs.2015.01.041

68. Shehabi Y, Riker RR, Bokesch PM, Wisemann W, Shintani A, Ely EW et al. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. *Crit Care Med.* (2010) 38:2311–8. doi: 10.1097/CCM.0b013e3181f85759

69. Jackel M, Aicher N, Berntgen X, Rilinger J, Zottmann V, Biever PM, et al. Advantages of score-based delirium detection compared to a clinical delirium assessment-a retrospective, monocentric cohort study. *PLoS ONE.* (2021) 16:e0259841. doi: 10.1371/journal.pone.0259841

70. Chen TJ, Chung YW, Chang HR, Chen PY, Wu CR, Hsieh SH, et al. Diagnostic accuracy of the CAM-ICU and ICDSC in detecting intensive care unit delirium: a bivariate meta-analysis. *Int J Nurs Stud.* (2021) 113:103782. doi: 10.1016/j.ijnurstu.2020.103782

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Han, Tian, Wu, Zhu, Wang, Zeng and Qin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.