ATOMIC CARBON IS A TEMPERATURE PROBE IN DARK CLOUDS
KEN’ICHI TATEMATSU,1,2 D. T. JAFFE, RENÉ PLUMÉ,3 AND NEAL J. EVANS II
Department of Astronomy, University of Texas, Austin, TX 78712
AND
JOCELYNE KEENE
California Institute of Technology, 320-47, Pasadena, CA 91125
Received 1999 March 22; accepted 1999 July 7

ABSTRACT
We have mapped the C I $^{3}P_{1} \rightarrow ^{3}P_{0}$ line at 492 GHz in three molecular clouds immersed in weak ultraviolet radiation fields, TMC-1, L134N, and IC 5146. In all three clouds, the C I peak $T^{*}_{A} \sim 1$ K, with very small dispersion. The spatial C I distribution is extended and rather smooth. The $J = 2 \rightarrow 1$ transitions of CO isotopomers were observed at the same angular resolution as C I. The C I peak T^{*}_{A} is typically one-third of the peak T^{*}_{A} of 13CO $J = 2 \rightarrow 1$, and the C I emission is usually more extended than emission in 13CO or 18O $J = 2 \rightarrow 1$. The C I line width is close to the 13CO $J = 2 \rightarrow 1$ line width, larger than the 13CO $J = 2 \rightarrow 1$ line width and smaller than the 12CO $J = 2 \rightarrow 1$ line width. The shapes of these lines occasionally differ significantly, probably because of the combined effects of differing opacities and the physical separation of the line-forming regions. The uniformity of the C I peak T^{*}_{A} is remarkable for a line in the Wien portion of the Planck function and indicates a very uniform excitation temperature. This uniformity is best explained if the line is opaque and thermalized. If so, the C I line probes kinetic temperature in clouds exposed to low-ultraviolet fluxes. This conclusion has significant implications for the thermal balance in such clouds. At $A_{V} \approx 2$, these clouds have a remarkably constant temperature from place to place and from cloud to cloud (7.9 ± 0.8 K). Photodissociation region models of clouds immersed in the mean interstellar radiation field tend to predict stronger lines than we see, but this may be an artifact of assumptions about the temperature.

Subject headings: ISM: abundances — ISM: atoms — ISM: individual (TMC-1, L134N, IC 5146) — ISM: molecules

1. INTRODUCTION

Neutral atomic carbon (12C) plays an important role in interstellar physics and chemistry. 12C was recognized long ago as a potentially important coolant for the interstellar medium (Werner 1970; Penston 1970). Furthermore, the abundance of 12C may reflect the physical structure of molecular clouds (e.g., Stutzki et al. 1988).

Most observations of the submillimeter lines of atomic carbon (C I) have been carried out toward H II regions or reflection nebulae, i.e., toward giant molecular clouds (GMCs) with nearby O and B stars. Such regions, where the ultraviolet (UV) radiation is strong, are good targets to test PDR (“photodissociation region” or “photon-dominated region”) models. Recent PDR models for uniform clouds predict that 12C exists in the surface layer sandwiched between layers where 12C and CO are the dominant carriers of gas-phase carbon (see Keene et al. 1997 for a review). Observationally, however, the C I distribution is often similar to the CO and 13CO distribution. Most steady state models predict a very low abundance for neutral carbon in the interior of the cloud (12C/CO < 0.04 for A_{V} > 2.5–4, Jansen et al. 1995; Sternberg & Dalgarno 1995), but Le Bourlot et al. (1993) have argued that a second solution to the chemical equilibrium equations exists at low densities in which the neutral carbon abundance is substantially higher (12C/CO = 0.1–0.3). Because of strong emission from the PDR, these models cannot be tested in dense, strongly irradiated molecular cores. In principle, one might test them in clouds with low-UV fluxes. If substantial 12C exists in the interiors, it may contribute to the formation of carbon chain molecules, which are abundant in some dark clouds (Suzuki et al. 1992).

Our goals in this work are to determine how 12C is distributed in clouds exposed to low-UV fluxes and to assess the contribution of such clouds to C I emission from galaxies. Molecular clouds that are not illuminated by strong UV sources have been observed by several researchers (Keene, Blake, & Phillips 1987; Stark & van Dishoeck 1994; Ingalls, Bania, & Jackson 1994; Ingalls et al. 1997; Schilke et al. 1995; Stark et al. 1996). In these studies, fewer than 10 positions toward each were observed with small (1015") beams. The maps of C I emission almost all cover scales of less than 1° toward objects with a size of hundreds of square arcminutes.

In this paper, we present more extensive C I maps and maps of emission from various CO isotopomers toward three clouds immersed in weak UV fields. TMC-1 and L134N contain no internal sources of UV radiation. The third source, a molecular cloud associated with IC 5146, contains an H II region, but the portion of the cloud we observed was 1°–1.5 (20–30 pc) east of the exciting stars. One can parametrize the intensity of UV radiation field incident on the clouds in terms of the average field in the
solar neighborhood, \(I_{\text{UV}}\) (Draine 1978). By comparing the 100 \(\mu\m\) intensity observed toward TMC-1 and L134N to the intensity predicted from models of opaque clouds exposed to a UV field with a strength comparable to the field in the solar neighborhood (Boulanger & Péralt 1988; Bernard, Desert, & Boulanger 1990; Hollenbach et al. 1991), we infer that \(I_{\text{UV}} \sim 1\) for these two clouds. A similar analysis for the region we mapped in IC 5146 leads to the conclusion that \(I_{\text{UV}} \sim 30\). By studying these sources with weak incident UV fields, we hope to increase our understanding of how UV radiation affects the chemistry and energetics of molecular clouds with low column densities or of the outer portions of more opaque molecular structures.

2. OBSERVATIONS

Observations were carried out with the 10.4 m telescope of the Caltech Submillimeter Observatory (CSO)\(^4\) between 1994 January and 1994 April, and in 1994 June, 1995 June, and 1998 March. We observed the ground-state fine structure line of neutral carbon \(^4P_1 \rightarrow ^2P_0\), \(\nu = 492.1607\, \text{GHz}\), Frerking et al. (1989) as well as the \(J = 2 \rightarrow 1\) transitions of \(^{12}\text{CO}, \, ^{13}\text{CO}, \, ^{14}\text{O}, \text{and} \, ^{17}\text{O}\) at 219–230 GHz, and the \(J = 3 \rightarrow 2\) transitions of \(^{12}\text{CO}\) and \(^{18}\text{O}\) at 329–346 GHz. For simplicity, we call these two latter frequency bands 230 and 345 GHz. To make \(C\) and \(O\) observations of large areas on the sky in a limited time, we employed a reimaging device for the Caltech Submillimeter Observatory (CSO), with which the 492 GHz receiver illuminates only one panel of the main dish (Plume & Jaffe 1995; see also Plume, Jaffe, & Keene 1994 and Plume et al. 1999 for studies of molecular clouds with local UV sources with this instrument). With the reimaging device, the measured telescope beam size \(\theta_b\) and Moon efficiency \(\eta_M\) are the same at both 492 and 230 GHz: \(\theta_b = 2.5\) and \(\eta_M = 0.8\). At 345 GHz, these parameters have not been measured but are assumed to be the same as those at 492 and 230 GHz. Since the emission is very widespread and smooth, \(\eta_M\) is the appropriate efficiency. Some positions toward L134N were also observed in the on-the-fly (OTF) mapping mode (without the reimaging device), and then the data were convolved to match the resolution of the reimaging device. Because the results of the OTF observations are consistent with those of the observations with the reimaging device, the obtained spectra are co-added to improve the signal-to-noise (S/N) ratio. For selected positions toward TMC-1, observations without the reimaging device were also carried out on 1994 March 3 and 1994 March 7. For this work, the beam size was 15s and the main-beam efficiency was 0.53 at 492 GHz, and the beam size was 32s and the main-beam efficiency was 0.76 at 230 GHz.

A technical description of the 230 GHz, 345 GHz, and 492 GHz front-end receivers is given by Kooi et al. (1992, 1994) and Walker et al. (1992), respectively. The single-sideband system temperature was 700–5000 K, 700–1100 K, and 180–500 K at 492, 345, and 230 GHz, respectively. The receiver back end was a 1024 channel acousto-optic spectrometer. The total bandwidth, channel width, and spectral resolution were 49.7 MHz, 48.5 kHz, and 140 kHz, respectively. C I spectra were binned to 195 kHz (0.12 km s\(^{-1}\)) or 390 kHz (0.24 km s\(^{-1}\)) channels depending on the S/N ratio. Data were obtained by position switching against a position shown to have no emission. The spacing interval employed for mapping was 3. The line temperature scale was calibrated by using the standard chopper-wheel method. Throughout this paper, we give intensities on the corrected antenna temperature \(T_A^*\) scale (see Kutner & Ulich 1981 for definition). The calibration assumes that the signal and image sidebands have equal gain.

We observed the classical “dark” clouds, TMC-1 and L134N (a.k.a L183) and a portion of the cloud associated with IC 5146. In addition, we use data toward regions with local UV sources, Orion A (this work), Cep A, NGC 2024, S140, and W3 (Plume et al. 1999), for comparison. The reference center, off position, and observed lines for each object are listed in Table 1.

3. RESULTS

For all the observations, we removed a first order baseline, determined an integrated intensity from the area under the line, and fitted a Gaussian to determine peak \(T_A^*\). While some lines were non-Gaussian, the fits always provided a good estimate of the peak \(T_A^*\).

3.1. TMC-1

The distance to TMC-1 is 140 pc (Elias 1978; Cernicharo, Bachiller, & Duvert 1985). At this distance, the beam size of the reimager (2.5") corresponds to 0.10 pc. Figures 1a and 1b show the distribution of the C I and \(^{13}\text{CO}\) \(J = 2 \rightarrow 1\) spectra on the sky. The map center (Table 1) is the cyanopolyne peak (Churchwell, Winnewisser, & Walmsley 1978), and the

\begin{table}[h]
\centering
\caption{Reference Center and Off Position}
\begin{tabular}{llllll}
\hline
Reference Center & \multicolumn{2}{c}{\textbf{Off Position}} & & & \\
Source & \(\alpha(1950)\) & \(\delta(1950)\) & \textbf{\(\Delta\alpha\)} & \textbf{\(\Delta\delta\)} & \textbf{Observed Line} \\
\hline
TMC-1 & 4 38 38.6 & 25 36 00 & 2400 & 0 & \(C\, J = 2 \rightarrow 1\) \(^{12}\text{CO}\) \(^{13}\text{CO}\) \(^{18}\text{CO}\) \\
Orion A & 5 32 47 & -5 24 23 & 1800 & 1800 & \(C\, J = 2 \rightarrow 1\) \(^{13}\text{CO}\) \(^{18}\text{CO}\) \\
L134N & 15 51 30 & -2 43 31 & -660 & 660 & \(C\, J = 2 \rightarrow 1\) \(^{13}\text{CO}\) \(^{18}\text{CO}\), \(^{17}\text{CO}\), \(J = 3 \rightarrow 2\) \(^{13}\text{CO}\) \\
... & ... & ... & ... & ... & \\
... & ... & -1800 & 0* & \(J = 3 \rightarrow 2\) \(^{12}\text{CO}\) \\
IC 5146 & 21 51 54 & 47 01 12 & -3000 & 0 & \(C\, J = 2 \rightarrow 1\) \(^{12}\text{CO}\) \(^{13}\text{CO}\) \(^{18}\text{CO}\) \\
\hline
\end{tabular}
\footnote{Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.}
\end{table}

Note. — Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

* Off position is in \((\Delta\alpha, \Delta\delta)\) for this line only.

\(^4\) The CSO is operated by the California Institute of Technology under funding from the National Science Foundation, contract AST 96-15025.
Fig. 1a

Fig. 1b

The (0, 0) position was $\alpha(1950) = 4^{h}38^{m}38^{s}$, $\delta(1950) = 25^\circ36'00"$. These data were taken with the reimager with a 150$''$ beam. The intensity scale is T_A^* (a) $C_1^3P_1 \rightarrow ^3P_0$, rebinned to 0.24 km s$^{-1}$ channel spacing. (b) 13CO $J = 2 \rightarrow 1$.

The map size is 18$'$ (east-west) \times 33$'$ (north-south) (or 0.7 pc \times 1.3 pc). The peak line temperature decreases slowly away from the map center, except to the south. The mean $\int T_A^*(C I) dV$ is 1.7 \pm 0.3 K km s$^{-1}$. (Throughout the paper, the uncertainty reflects the standard deviation of the distribution, not the error in the mean.) The corresponding values for T_A^* are 1.1 \pm 0.3 K (Fig. 12). The “TMC-1 ridge”, which is a $\sim 2'$-wide northwest-southeast ridge passing through the map center in high-density tracers such as NH$_3$, CCS, and HC$_3$N (Little et al. 1979; Hirahara et al. 1992), is not prominent in C$\,^1$ or 13CO. Figure 2a shows the distribution of the $\int T_A^* dV$ along $\Delta \alpha = 0'$ and Figure 2b along $\Delta \delta = 0'$. The distribution of $\int T_A^*(C I) dV$, like that of 13CO $J = 2 \rightarrow 1$, is fairly flat across the source, while the
shows the average spectra of CO \(J = 13 \) TMC-1 map, the C\(^1 \) cores themselves (Keene et al. 1997). In our large-scale observations of UV-illuminated molecular clouds (Plume et al. 1999) and the even stronger correlations in the cloud distributions (correlation coefficient 0.85) found in large-scale \(^{13} \)CO \(J = 2 \rightarrow 1 \), C\(^18 \)O \(J = 2 \rightarrow 1 \), and C\(^1 \)\(^2 \)P\(1 \) \(\rightarrow \) P\(0 \), respectively. The error bars reflect only the rms noise level.

This poor correlation contrasts with the strong correlations (correlation coefficient 0.85) found in large-scale observations of UV-illuminated molecular clouds (Plume et al. 1999) and the even stronger correlations in the cloud cores themselves (Keene et al. 1997). In our large-scale TMC-1 map, the C\(^1 \) profile does not always resemble the \(^{13} \)CO profile. To see the difference in the line shape more clearly, we averaged the spectra of three positions: \((\Delta x, \Delta \delta) = (0', -1260')\), \((0', -1080')\), and \((0', -900')\). Figure 3 shows the average spectra of CO \(J = 2 \rightarrow 1 \), \(^{13} \)CO \(J = 2 \rightarrow 1 \), C\(^18 \)O \(J = 2 \rightarrow 1 \), and C\(^1 \). The C\(^1 \) profile is flat-topped with almost constant temperature from 5.3 to 7 km s\(^{-1} \). The \(^{13} \)CO \(J = 2 \rightarrow 1 \) profile has a sharp peak at 5.5 km s\(^{-1} \), a broad plateau, and then a second peak at \(\sim 6.8 \) km s\(^{-1} \).

If some of the C\(^1 \) emission arises in high column density molecular cores and if the C\(^0 \) abundance depends on the local chemistry, changes in that chemistry might affect the strength of the C\(^1 \) emission. To investigate this possibility, we measured the \(\int T^*_A(dV) \) of C\(^1 \) and \(^{13} \)CO at the cyanopolyne peak \((0', 0')\) and at the ammonia peak \((\Delta x, \Delta \delta) = (-290', 380')\) (e.g., Hirahara et al. 1992; Pratap et al. 1997). Because the ammonia peak position does not match our observation grid, we averaged the spectra at \((-360', 360')\) and \((-180', 360')\). \(\int T^*_A(dV) \) is 2.0 and 1.8 km s\(^{-1} \) at the cyanopolyne and ammonia peaks, respectively, while the \(^{13} \)CO \(\int T^*_A(dV) \) is 4.6 and 4.9 K km s\(^{-1} \). There is no significant peak of the C\(^1 \) line at the cyanopolyne peak; if deep C\(^0 \) contributes to long chain carbon molecules, it is not visible in this line.

To see the C\(^1 \) line temperature and spectral variation on smaller scales, we observed the detailed line emission distribution across the TMC-1 ridge with the fully illuminated CSO (beam size 15' for C\(^1 \), 32' for C\(^18 \)O 2 \(\rightarrow \) 1). Figure 4 shows C\(^1 \) and C\(^18 \)O \(J = 2 \rightarrow 1 \) spectra. The grid spacing was \(\sqrt{2} \times 20' \) from northeast to southwest. The C\(^1 \) and C\(^18 \)O \(\int T^*_A(dV) \) distribution is rather featureless on this (1') scale. The mean value of \(\int T^*_A(dV) \) is 2.18 K km s\(^{-1} \) with a standard deviation of \(\pm 0.36 \) K km s\(^{-1} \). For C\(^18 \)O \(J = 2 \rightarrow 1 \), we find \(\int T^*_A(dV) = 1.31 \pm 0.19 \) K km s\(^{-1} \). The
The C I profile is broader than that of 18O: $\langle \Delta V (\text{C} \, \text{I}) \rangle / \Delta V (\text{C}^{18}\text{O}) = 1.9 \pm 0.5$. Our results are consistent with those of Schilke et al. (1995), who observed the region with the same telescope but with a somewhat different reference center.

3.2. L134N

The distance to L134N is 110 ± 10 pc (Franco 1989). The cloud is isolated, and it shows no star-forming activity in far-infrared observations (Sargent et al. 1983; IRAS Point Source Catalog 1985). L134N has been extensively observed in various molecular lines (Swade 1989). Phillips & Huggins (1981) previously detected C I at one position, and Keene (1995) has made a 20' long strip-map of C I in this source. Figure 5 shows spectra obtained in an area of 12' (east-west) \times 30' (north-south) (0.4 pc \times 1.0 pc). The beam size using the reimager corresponds to 0.08 pc. For C I, the $\langle T_A^* \rangle$ distribution is remarkably uniform; the mean and standard deviation are 1.5 ± 0.5 K km s$^{-1}$. The mean T_A^* is 1.1 \pm 0.2 K (Fig. 12).

Figures 6a and 6b compare the C I and CO isotopomer spectra at the map center. The C I profile peaks at 6.8 km s$^{-1}$ and has a prominent blue wing extending to $v_{LSR} = 0$ km s$^{-1}$. The 12CO, 18O, and 17O $J = 2 \rightarrow 1$ and 12CO and 18O $J = 3 \rightarrow 2$ lines differ significantly in their widths, shapes, and central velocities. These differences imply that line opacity and/or isotopic fractionation effects influence the shapes of most of these lines.

Figure 7 shows the $\langle T_A^* \rangle dV$ distribution along $\Delta \phi = 180^\circ$. The C I distribution is very flat, varying by only 20% along a strip more than half a degree (1 pc) long. As in TMC-1, the correlation between the C I and 13CO $\langle T_A^* \rangle dV$, based on the entire map, is poor:

$$
\int T_A^*(\text{C} \, \text{I})dV = (0.94 \pm 0.29) + (0.14 \pm 0.07)
$$

$$
\times \int T_A^*(^{13}\text{CO})dV
$$

where the correlation coefficient was 0.41. Stark et al. (1996) observed six positions along a 10'-long east-west strip in L134N with the James Clerk Maxwell Telescope. They found that the distribution of $\langle T_A^*(\text{C} \, \text{I})dV$ is similar to those of 13CO $J = 3 \rightarrow 2$ and $J = 2 \rightarrow 1$ but not to 18O $J = 2 \rightarrow 1$. Our result shows that the distribution of $\langle T_A^*(\text{C} \, \text{I})dV$ is flatter than those of 13CO and 18O $J = 2 \rightarrow 1$. Ratios of 13CO / C I $\langle T_A^* \rangle dV$ vary from 1.8 to 3.0 along this strip. The distribution of $\langle T_A^*(\text{C} \, \text{I})dV$ is also substantially more extended than the emission in the many molecular transitions observed by Swade (1989), including 18O $J = 0 \rightarrow 0$, 3S $J = 2 \rightarrow 1$, 3S $J = 1 \rightarrow 0$, and 3P_2, 3P_0, $J = 2 \rightarrow 1$ emission.

3.3. Cases with Local Ultraviolet Sources

3.3.1. IC 5146

IC 5146 (distance = 1.0 kpc, Walker 1959) is an open cluster with an H II region. At 1 kpc distance, the beam size of the reimager corresponds to 0.7 pc. A neutral cloud associated with the H II region has been observed in molecular lines by Dobashi et al. (1992), Lada et al. (1994), and Kramer et al. (1999). Figure 8 shows spectra obtained in an area of 39' (east-west) \times 21' (north-south) (11.8 pc \times 6.4 pc). The reference center is the position of IC 5146. We have observed a region $\sim 60'$ - 90' away from the H II region. Observations of this portion of IC 5146 serve as a bridge between the study of clouds immersed in the weak ambient UV field and regions illuminated by prominent local UV sources. $\langle T_A^*(\text{C} \, \text{I})dV$ is 2.0 ± 0.9 K km s$^{-1}$ over the mapped region. The peak T_A^* is typically about 1 K (0.9 \pm 0.3, Fig. 12). Despite our estimates of somewhat higher I_{UV} in this region, the lines are not significantly stronger.

Figure 9 shows the $\langle T_A^* \rangle dV$ distribution along $\Delta \phi = 1380^\circ$. The C I and 13CO intensities are poorly correlated. From all the IC 5146 data, we obtain

$$
\int T_A^*(\text{C} \, \text{I})dV = (1.18 \pm 0.53) + (0.22 \pm 0.12)
$$

$$
\times \int T_A^*(^{13}\text{CO})dV
$$

with a correlation coefficient of 0.44.

3.3.2. Other Sources

In order to understand the differences between C I emission from sources with different I_{UV}, we make use of large-scale C I and CO isotopomer maps of high-I_{UV} sources. The data include points from the maps of Cep A, NGC 2024, S140, and W3 made with the reimager by Plume et al. (1999). In addition, as part of the present work, we have mapped a 15' \times 25' region in Orion A with the reimaging device. Figure 10 shows the $\langle T_A^* \rangle dV$ maps of Orion A in the C I $^3P_1 \rightarrow ^3P_0$ and 13CO $J = 2 \rightarrow 1$ emission. I_{UV} for regions 2' - 15' from θ^1 C Orion ranges from 10 to 105
(Stacey et al. 1993). The T_A^* is much higher and more variable than that in the clouds with low-UV fluxes: mean T_A^* is 3.8 ± 1.1. White & Sandell (1995) observed a smaller part of the Orion A cloud in C I with the James Clerk Maxwell Telescope. With its smaller beam, they found that the distribution of C I is often different from that of 13CO. Nonetheless, Keene et al. (1997) show that C I emission correlates well with 13CO emission in Orion at moderate intensity levels. In our data, the C I emission on the map is doubly peaked around (Δa, Δd) = (0°, -30°) and (0°, 0°), while the 13CO emission does not show double peaks. Our map is consistent with the map of White & Sandell (1995), if the difference in beam size is taken into account.

Figure 11 plots the C I $\int T_A^*dV$ versus the 13CO $\int T_A^*dV$ for the three dark clouds (low-I_{UV}) as well as for the five high-I_{UV} molecular clouds. A least-squares fit to the data from all of the high-I_{UV} sources gives

$$\int T_A^*(C I)dV = (3.8 \pm 0.3) + (0.25 \pm 0.02) \int T_A^*(^{13}CO)dV,$$

with a correlation coefficient of 0.75, clearly a stronger correlation than found for the low-I_{UV} clouds. The dark cloud points cluster among the points from the high-I_{UV} clouds with the lowest C I and 13CO $J = 2 \to 1$ $\int T_A^*dV$. The overlapping points from the high-I_{UV} clouds mostly represent regions near the edges of the clouds and often those parts of the clouds with the smallest amounts of incident UV radiation (Plume et al. 1999). Even in aggregate, the dark clouds show little or no correlation of C I and 13CO $\int T_A^*dV$.

3.4. Intensity and Line Width

Since the mean T_A^* is similar in all the low-UV clouds, including IC 5146, we combined them to find the distribution in Figure 12; the mean T_A^* is 1.0 ± 0.3. This is a far lower value and a tighter distribution than is seen in clouds exposed to higher UV fluxes.

In contrast, the line widths, relative to CO isotopes, are similar to those in high-I_{UV} clouds. Plume et al. (1999) obtained $\langle \Delta V(C I)/\Delta V(^{13}CO) \rangle = 1.08 \pm 0.3$ and $\langle \Delta V(C^{18}O)/\Delta V(^{13}CO) \rangle = 0.78 \pm 0.2$ for massive star forming regions with local UV. For TMC-1, L134N, and IC 5146, we measured the line-width ratio in the same way to be $\langle \Delta V(C I)/\Delta V(^{13}CO) \rangle = 0.97 \pm 0.21$ and $\langle \Delta V(C^{18}O)/\Delta V(^{13}CO) \rangle = 0.58 \pm 0.16$, which are similar to the results for sources with stronger local UV. Here, we used spectra toward (Δa, Δd) = (0°, -720°)–(0°, 180°) in TMC-1, (0°, 0°) and (180°, -540°)–(180°, 360°) in L134N, and (−5580°, 1380°)–(−5220°, 1380°) and (−4320°, 1380°)–(−3960°, 1380°) in IC 5146 where both lines were observed and the

Fig. 4.—C I $^5P_1 \to ^5P_0$ (left) and 18O $J = 2 \to 1$ (right) spectra obtained toward TMC-1 with the full CSO telescope (beam size 15” for C I and 32” for 18O $J = 2 \to 1$).
line shape is not so much different from a Gaussian profile. The absolute values of the line width are \(\Delta V(C) = 1.3 \pm 0.4 \text{ km s}^{-1} \), \(\Delta V(C^{18}O) = 0.7 \pm 0.2 \text{ km s}^{-1} \), and \(\Delta V(^{13}CO) = 1.3 \pm 0.2 \text{ km s}^{-1} \) for TMC-1 and L134N. Those for IC 5146 are \(\Delta V(C) = 1.5 \pm 0.4 \text{ km s}^{-1} \), \(\Delta V(C^{18}O) = 1.3 \pm 0.5 \text{ km s}^{-1} \), and \(\Delta V(^{13}CO) = 1.8 \pm 0.4 \text{ km s}^{-1} \). When we compare the C I line width with the \(^{12}CO\) line width, we obtain \(\langle \Delta V(C) / \Delta V(^{12}CO) \rangle = 0.62 \pm 0.05 \) for \((\Delta x, \Delta \delta) = (0', -720') - (0', 180')\) in TMC-1.

4. DISCUSSION

We have detected widespread, remarkably uniform C I emission from TMC-1 and L134N, and from a portion of the IC 5146 cloud far from the OB star cluster. The C I emission is more extended than the emission in the \(J = 2 \rightarrow 1 \) transitions of \(^{13}CO\) and \(^{18}CO\) and the strength of the C I line correlates poorly with the \(\int T^*_A dV \) for these two CO isotopomers. In this section, we examine the implications of these observations of clouds with low-\(I_{UV} \) for the origin of the C I emission, for cloud chemistry, and for the thermal structure of dark clouds.

4.1. Photodissociation Regions Explain the Observed C I Emission

In our previous paper (Plume et al. 1999), we studied the C I \(^3P_1 \rightarrow ^3P_0\) emission from GMCs bathed in radiation fields 10–1000 times stronger than the mean interstellar field in the solar neighborhood. We showed that this emission arises from a neutral atomic carbon layer in a photo-dissociation region at the cloud surface. The measured column densities and intensities agree well with the values predicted by the theoretical models. Both the independence of C I \(\int T^*_A dV \) from the strength of the UV field and the higher C I/\(^{13}CO\) ratios at the cloud edges also support the conclusion that the C I emission comes from the photodissociated material at the atomic/molecular interface. We would now like to use the C I and CO isotopomer maps of TMC-1 and L134N, clouds with \(I_{UV} \sim 1 \), to examine the case for PDR’s as the source for the C I emission from clouds immersed in lower UV fields than those incident on the GMCs.

Figure 11 plots the C I \(\int T^*_A dV \) versus the strength of the \(^{13}CO\) \(J = 2 \rightarrow 1 \) line for the positions we have observed in TMC-1 and L134N and, for comparison, the positions in IC 5146 and other clouds illuminated by stronger local UV fields. The figure shows that the C I \(\int T^*_A dV \) in TMC-1 and L134N are comparable to those observed in IC 5146, and comparable to those at the weakest points observed in the extended molecular clouds near OB stars observed by Plume et al. (1999). In this figure, we also present theoretical C I and \(^{13}CO\) \(\int T^*_A dV \) calculated on the basis of column densities predicted by models of translucent clouds illuminated by UV radiation (van Dishoeck & Black 1988). The models include the effects of isotope-selective photodissociation and isotopic fractionation and assume a carbon depletion factor, \(\delta_c \), of 0.4. The open squares represent models T3–T6, clouds illuminated by \(I_{UV} = 1 \) and total cloud extinction, \(A^\text{tot}_{CO} \), from 2.0 to 5.1. The open circles represent models I4–I7, clouds illuminated by \(I_{UV} = 10 \) and total cloud extinction, \(A^\text{tot}_{CO} \), from 2.7 to 9.0. We calculated the \(\int T^*_A dV \) from the model \(^{13}C\) and \(^{13}CO\) column densities using a large velocity gradient (LVG) (Scoville & Solomon 1974; Goldreich & Kwan 1974) non-LTE excitation and radiative transfer code to account, in a crude way, for excitation and opacity effects. We used the rate coefficients for collisional excitation of C I from Schröder et al. (1991). The \(^{13}CO\) and \(^{18}CO\) column densities in the models do not depend strongly on the kinetic temperature \(T_k \) assumed by van Dishoeck & Black (see their models T6A and T6B). Uncertainties in predicted intensities from our LVG calculations therefore depend directly on the assumed kinetic temperature rather than indirectly through line-width-dependent photochemical effects. In this rough comparison, we have used \(T_k = 10 \text{ K} \) to be consistent with measures of core temperatures in dark clouds (e.g., Benson & Myers 1980). We set the column density per unit velocity in the radiative transfer model equal to the \(^{13}C\) or \(^{13}CO\) column density from the theoretical model divided by the typical line width in the clouds. The results in Figure 11, where we have multiplied the model \(\int T^*_A dV \) by the beam efficiency to compare to the observations, show that the van Dishoeck and Black models for \(I_{UV} = 1 \) correctly predict the C I \(\int T^*_A dV \) we observe in the maps of TMC-1 and L134N. The observed \(^{13}CO\) \(\int T^*_A dV \) are comparable to the values for the models with the largest \(A^\text{tot}_{CO} \).

The morphology of the C I and molecular emission from the clouds with \(I_{UV} \sim 1 \) also supports the idea that the C I line arises in material at the cloud surface. In both L134N and TMC-1, the C I \(\int T^*_A dV \) distribution is broader and flatter than that of \(^{13}CO\) and significantly broader than the \(^{13}CO\) \(J = 2 \rightarrow 1 \) distribution.

4.2. Why Do Not C I and Molecular Line Intensities Correlate in Low-\(I_{UV} \) Clouds?

If the C I emission arises in a thin layer near the cloud surface and emission from molecular lines less opaque than
the lowest few transitions of 12CO arise throughout the bulk of the cloud, there is no a priori reason to expect the C I and 13CO or 13O or 18O $T_A^* dV$ to correlate. Nevertheless, the C I and CO isotopomer $T_A^* dV$ correlate astonishingly well in high column density cloud cores illuminated by powerful UV fields like M17 SW (Keene et al. 1997). There is a clear difference in the $T_A^* dV$ correlation between high-I_{UV} clouds (correlation coefficient $= 0.85$ for C I versus
\[\int T_A^4 \, dV \]

Fig. 7.—Distribution of $\int T_A^4 \, dV$ along $\Delta \alpha = 180^\circ$ in L134N. The symbols are the same as those used in Fig. 2.

13CO $\int T_A^4 \, dV$ (Plume et al. 1999) and the low-I_{UV} dark clouds studied here (correlation coefficient = 0.32 and 0.41 for CI versus 13CO in TMC-1 and L134N, respectively).

For cloud cores, Plume et al. (1999) point out the similarity of the clump/interclump structure needed to produce

Fig. 8.—CI line profiles toward IC 5146. The (0, 0) position for this map was $\alpha(1950) = 21^h51^m50^s(1950) = 47^\circ01'12''$.

Fig. 9.—Distribution of the $\int T_A^4 \, dV$ along $\Delta \delta = 1380''$ in IC 5146. The symbols are the same as those used in Fig. 2.

Fig. 10.—Map of $\int T_A^4 \, dV$ of CI $^3P_1 \rightarrow ^3P_0$ (solid lines) and 13CO $J = 2 \rightarrow 1$ (dotted lines) toward Orion A. The contour interval is 3 K km s$^{-1}$ for CI and 10 K km s$^{-1}$ for 13CO.

Fig. 11.—Plot of CI $\int T_A^4 \, dV$ against that of 13CO $J = 2 \rightarrow 1$. The filled diamonds, triangles, and boxes represent values observed toward TMC-1, L134N, and IC 5146, respectively. The dots represent points from the GMCs observed for this paper and by Plume et al. (1999). The connected open symbols represent CI and 13CO $\int T_A^4 \, dV$ predicted by an LVG model and column densities from the PDR chemistry models of van Dishoeck & Black (1988). The open squares represent models T3-T6 for $I_{UV} = 1$ and total cloud extinction, A_V, from 2.0 to 5.1. The open circles represent models I4-I7, for $I_{UV} = 10$ and total cloud extinction, A_V, from 2.7 to 9.0.
the observed extent of the C II 158 \(\mu \)m line emission to the kind of structure that would produce the high degree of spatial correlation between C I and \(^{13}\)CO seen by Keene et al. (1997); in both cases the \(\int T_A^* dV \) reflect the number of clumps in the beam. Plume et al. argue that in extended GMC material, unlike the high column density cores, the C I lines arise predominantly in a global layer over the entire face of the cloud. They explain the somewhat weaker C I–\(^{13}\)CO \(\int T_A^* dV \) correlation as a conspiracy of edge effects and the correlation of temperature and density variations with total column density. The lack of intensity correlations in TMC-1 and L134N, then, results from an absence of temperature variations as well as from higher opacities in C I \(^3P_1 \rightarrow ^3P_0\) and the lowest transitions of \(^{13}\)CO and \(^{13}\)CO at low temperature (see below). As is so dramatically illustrated in the small-scale C I–molecular line comparisons toward the TMC-1 ridge (Fig. 4 and Schilke et al. 1995), the C I observations toward clouds illuminated by \(I_{UV} \sim 1 \) external fields do not contain any information about high column density molecular regions.

4.3. Thermal Balance: The Meaning of Constant C I Line Brightness

The most striking feature of the data are the very narrow distributions of \(T_A^* \) seen in Figure 12. Such tight distributions are not seen in any molecular line besides CO, which is opaque and thermalized. We suggest that the C I lines are also opaque and thermalized; thus the values of \(T_A^* \) provide a probe of \(T_K \) in the PDR layer with \(\tau \sim 1 \).

There are both observational and theoretical arguments for a high opacity in the C I \(^3P_1 \rightarrow ^3P_0\) line. The large line width and, in TMC-1, flat-topped shape of the C I lines are both indications that the opacity is high. Furthermore, the peak intensity does not vary strongly despite significant variations in line width (Figs. 1a, 5, and 8). If the lines were not thermalized, \(T_A^* \) would be very sensitive to density fluctuations and the tight distribution seen in Figure 12 would be extremely unlikely. To investigate the C I opacity more thoroughly, we also computed spherical Monte Carlo models (Choi et al. 1995) for photodissociated clouds. The temperature and C I abundance versus distance output from a plane parallel PDR model with \(I_{UV} = 1 \) and \(n_{\text{H}_2} = 10^3 \text{ cm}^{-3} \) was mapped onto a spherical cloud (see Pak et al. 1998; van Dishoeck & Black 1987) with a microturbulent velocity dispersion of 0.65 km s\(^{-1}\) and \(T_K = 10 \text{ K} \). The model, which has a line center opacity \(\sim 2 \), correctly reproduces the line widths seen in the \(^3P_1 \rightarrow ^3P_0\) spectra. Assumptions about the cloud core temperature (see below) may mean that the C I opacity is even higher. Because the critical density for the \(^3P_1 \rightarrow ^3P_0\) transition is only 800 cm\(^{-3}\) and the photon escape probabilities are substantially
lower than unity, it is very likely that the transition is thermalized \(T_{\text{ex}} = T_k \).

If the C I line is opaque and thermalized, it provides a probe of \(T_k \) deep in the PDR layer, where \(\tau \sim 1 \). The distribution of \(T_k \) is shown in Figure 13 for all the dark clouds and for Orion A. The distribution for the dark clouds is remarkably tight: mean \(T_k \) is \(7.9 \pm 0.8 \) K, a 10% variation.

The high frequency of the C I \(3P_1 \rightarrow 3P_0 \) transition means that it is in the Wien limit for the temperatures we derive; thus a tight distribution in \(T_k^* \) (30% variation) becomes even tighter in \(T_k \). Small variations in temperature would lead to an enormous fractional change in observed \(T_k^* \) (\(T_k = 8 \pm 3 \) K implies, for thermalized gas, a \(T_k^* \) range from 0.17 to 2.5 K, a factor of 15). In comparison, the range of \(T_k \) inferred for Orion is much broader, consistent with a lower and more variable opacity; thus the values of \(T_k \) in Orion are lower limits.

Do these values of \(T_k \) agree with predictions of PDR models for low-\(I_{UV} \)? The PDR models discussed above produce \(T_k \sim 11.5 \) K in the line-forming region. This higher \(T_k \) results in a \(\sim 3 \) K C I line. The high predicted temperature may be, in part, an artifact of the assumption that the asymptotic cloud core temperature was 10 K or of slight differences between the actual and theoretical thermal balance. Recent models by Kaufman et al. (1999) find that \(T_k \) drops below 10 K for very small ratios of \(I_{UV} \) to density. Comparison to their predictions of intensity finds agreement with our observations only at low \(I_{UV} \) and quite high density \(n > 10^4 \text{ cm}^{-3} \). Is there other evidence for such low \(T_k \) in low-\(I_{UV} \) clouds? Clemens, Yun, & Heyer (1991) found that 74% of a sample of such clouds have \(T_k = 8.5 \) K.

Why do the C I layers have such a constant temperature? Given the inevitability of density fluctuations, what causes the thermal balance to choose this temperature? One strong possibility is that neutral carbon itself provides the thermostat. The fact that the C I line is in the Wien portion of the Planck function at these low \(T_k \) means that the cooling power in the 492 GHz line rises very rapidly with temperature in the 5–10 K range. In the specific layer where C I is present, the higher opacity of the \(^{13}\text{CO} \) line and low abundance of \(^{13}\text{CO} \) may keep the rotational lines of CO isotopomers from contributing strongly to the cooling. Indeed models by Hollenbach et al. (1991) indicate that C I cooling does dominate in the layer where neutral atomic carbon is abundant.

If our interpretation is correct, the higher transition of C I, \(3P_2 \rightarrow 3P_1 \) at 809 GHz, will be very weak toward these clouds. An upper limit can be obtained by assuming that the higher transition is also opaque and thermalized. In this case, the radiation temperature (or \(T_k^*/\eta_m \)) is 0.3 K. However, the higher line is very unlikely to be opaque. Even if the levels are thermalized, the optical depth in the higher line will be only 0.16 that of the lower line. More realistic estimates can be obtained from models of clouds in weak UV fields, combined with LVG calculations. Model T6 \((n = 10^4 \text{ cm}^{-3}, A_W = 5.1 \text{ mag})\) of van Dishoeck & Black (1988) and LVG calculation with \(T_k = 8 \text{ K} \) predict the \(3P_1 \rightarrow 3P_0 \) and \(3P_2 \rightarrow 3P_1 \) radiation temperatures to be 0.9 K and 0.02 K, respectively. Model T6C with higher density \((n = 10^4 \text{ cm}^{-3})\) and LVG calculation with \(T_k = 8 \text{ K} \) predict the \(3P_1 \rightarrow 3P_0 \) and \(3P_2 \rightarrow 3P_1 \) radiation temperatures to be 1.1 and 0.04 K, respectively. The expected ratio of \(3P_2 \rightarrow 3P_1 \) to \(3P_1 \rightarrow 3P_0 \) is thus less than 0.05. To the authors’ knowledge, no observations of C I \(3P_2 \rightarrow 3P_1 \) toward molecular clouds in weak UV fields have been reported in the literature.

4.4. Overall Cooling by C I

The C I \(3P_1 \rightarrow 3P_0 \) line was expected to play an important role in interstellar gas cooling (Penston 1970). The relevant quantity here is \(F = \int v^3 T^*_k dV \); because \(F \propto v^3 \int T^*_k dV \), C I may be more important than one might guess from the ratios of \(\int T^*_k dV \). We derive \(F (\text{C I})/F (^{12}\text{CO} J = 2 \rightarrow 1) = 1.9 \pm 0.3 \) for TMC-1 and 1.0 \pm 0.5 for IC 5146. The ratio \(F (\text{C I})/F (^{13}\text{CO} J = 3 \rightarrow 2) \) in L134N is 0.8 \pm 0.2. In these dark clouds, the cooling power of the C I \(3P_1 \rightarrow 3P_0 \) line is as important as low-\(J \) \(^{12}\text{CO} \) lines. The flux ratios in the average spectrum of the Galaxy (Wright et al. 1991) are \(F (\text{C I})/F (^{12}\text{CO} J = 2 \rightarrow 1) = 2.3 \) and \(F (\text{C I})/F (^{13}\text{CO} J = 3 \rightarrow 2) = 1.6 \).

5. SUMMARY

We have mapped the C I \(3P_1 \rightarrow 3P_0 \) transition in three clouds with low-\(I_{UV} \) values at their surfaces. The C I emission is more extended than emission in low-\(J \) \(^{12}\text{CO} \) isotopomer lines and the intensity is very uniform. C I line widths are significantly larger than \(^{13}\text{O} \) line widths and comparable to or larger than the widths of low-\(J \) \(^{13}\text{CO} \) lines. The uniform intensity and large line width of the C I lines, as well as models of low-\(I_{UV} \) photodissociation regions imply that the C I \(3P_1 \rightarrow 3P_0 \) transition is therma-
lized and optically thick. The uniform $T_A^* = 1.0 \pm 0.3$ K, together with the high frequency of the C I line, means that the kinetic temperature in the emitting layer is remarkably constant, $T_K (C I \text{ layer}) = 7.9 \pm 0.8$ K. We suggest that the C I emission itself acts as a thermostat in controlling the temperature of this layer in low-I_{UV} clouds.

The authors would like to thank Wenbin Li for his help during the observations and the CSO staff for their technical assistance. Thanks are also due to Jill Knapp, Ken Young, Mercé Crosas, and Zeljko Ivezic for letting us use a part of their telescope time. This work was partially supported by the NSF grants AST 90-17710 and AST 95-30695 to the University of Texas and by the David and Lucile Packard Foundation. K. T. was supported by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (07740180 and 11440067) and by a grant from the Sumitomo Foundation (950570).

REFERENCES

Benson, P. J., & Myers, P. C. 1980, ApJ, 242, L87
Bernard, J. P., Desert, F.-X., & Boulanger, F. 1990, in The Interstellar Medium in External Galaxies, ed. D. Hollenbach & H. Thronson (NASA CP-3084), 105
Boulanger, F., & Pérault, M. 1988, ApJ, 330, 964
Cernicharo, J., Bachiller, R., & Duvert, G. 1985, A&A, 149, 273
Choi, M., Evans, N. J., II, Gregersen, E. M., & Wang, Y. 1995, ApJ, 448, 742
Churchwell, E., Winnewisser, G., & Walmsley, C. M. 1978, A&A, 67, 139
Clemens, D. P., Yun, J. L., & Heyer, M. H. 1991, ApJS, 75, 877
Dobashi, K., Yonekura, Y., Mizuno, A., & Fukui, Y. 1992, AJ, 104, 1525
Draine, B. T. 1978, ApJS, 36, 595
Elias, J. M. 1978, ApJ, 224, 857
Franco, G. P. 1989, A&A, 223, 313
Frerking, M. A., Keene, J., Blake, G. A., & Phillips, T. G. 1989, ApJ, 344, 311
Goldreich, P., & Kwan, J. Y. 1974, ApJ, 189, 441
Hirahara, Y., et al. 1992, ApJ, 394, 539
Hollenbach, D. J., Takahashi, T., & Tielens, A. G. G. M. 1991, ApJ, 377, 192
Ingalls, J. G., Bania, T. M., & Jackson, J. M. 1994, ApJ, 431, L139
Ingalls, J. G., Chamberlin, R. A., Bania, T. M., & Jackson, J. M. 1997, ApJ, 479, 296
IRAS Point Source Catalog. 1985, Joint IRAS Science Working Group (Washington, DC: GPO)
Jansen, D. J., van Dishoeck, E. F., Black, J. H., Spaans, M., & Sosin, C. 1995, A&A, 302, 223
Kauffman, M. J., Wolfire, M. G., Hollenbach, D. J., & Luhman, M. L. 1999, ApJ, in press
Keene, J. 1995, in The Physics and Chemistry of Interstellar Molecular Clouds, ed. G. Winnewiser & G.C. Pelz (Berlin: Springer), 186
Keene, J., Blake, G. A., & Phillips, T. G. 1987, ApJ, 313, 396
Keene, J., Lis, D. C., Phillips, T. G., & Schilke, P. 1997, in Molecules in External Galaxies, ed. D. Hollenbach & H. Thronson (Kluwer), 129
Kooi, J. W., Chan, M., Bumble, B., Phillips, T. G., Schaffer, P. L., & LeDuc, H. G. 1994, Int. J. Infrared Millimeter, 15, 783
Kooi, J. W., Chan, M., Phillips, T. G., Bumble, B., & LeDuc, H. G. 1992, IEEE Trans. Microwave Theory Tech., 40, 812
Kramer, C., Alves, J., Lada, C. J., Lada, E. A., Sievers, A., Ungerechts, H., & Walmsley, M. 1999, A&A, 342, 257
Kutter, M. L., & Ulrich, B. L. 1981, ApJ, 250, 341
Lada, C. J., Lada, E. A., Clemens, D. P., & Bally, J. 1994, ApJ, 429, 694
Langer, W. D., Velusamy, T., Kuiper, T. B. H., Levin, S., Olsen, E., & Mignoni, V. 1995, ApJ, 453, 293
Le Bourlot, J., Pineau des Forêts, G., Roueff, E., & Schilke, P. 1993, ApJ, 416, L87
Little, L. T., MacDonald, G. H., Riley, P. W., & Matheson, D. N. 1979, MNRAS, 189, 539
Pak, S., Jaffe, D. T., van Dishoeck, E. F., Johansson, L. E. B., & Booth, R. S. 1998, ApJ, 498, 735
Penston, M. V. 1970, ApJ, 162, 771
Phillips, T. G., & Huggins, P. J. 1981, ApJ, 251, 533
Plume, R., & Jaffe, D. T. 1995, PASP, 107, 488
Plume, R., Jaffe, D. T., & Keene, J. 1994, ApJ, 425, 149
Plume, R., Jaffe, D. T., Tatematsu, K., Evans, N. J., II, & Keene, J. 1999, ApJ, 512, 768
Pratap, P., Dickens, J. E., Snell, R. L., Miralles, M. P., Bergin, E. A., Irvine, W. M., & Schloerb, F. P. 1997, ApJ, 486, 862
Sargent, A. I., van Duinen, R. J., Nordh, H. L., Fridlund, C. V. M., Aalders, J. W. G., & Beintema, D. 1983, AJ, 88, 88
Schilke, P., Keene, J., Le Bourlot, J., Pineau des Forêts, G., & Roueff, E. 1995, A&A, 294, L17
Schröder, K., Staemmler, V., Smith, M. D., Flower, D. R., & Jaquet, R. 1991, J. Phys. B, 24, 2487
Scoville, N. Z., & Solomon, P. M. 1974, ApJ, 187, L67
Stacey, G. J., Jaffe, D. T., Geis, N., Genzel, R., Harris, A. I., Poglitsch, A., Stutzki, J., & Townes, C. H. 1993, ApJ, 404, 219
Stark, R., & van Dishoeck, E. F. 1994, A&A, 286, 143
Stark, R., Wesselius, P. R., van Dishoeck, E. F., & Laureijs, R. J. 1996, A&A, 311, 282
Sternberg, A., & Dalgarno, A. 1995, ApJS, 99, 565
Strutzki, J., Stacey, G. J., Genzel, R., Harris, A. I., Jaffe, D. T., & Lugten, J. B. 1988, ApJ, 332, 379
Suzuki, H., Yamamoto, S., Ohishi, M., Kaino, N., Ishikawa, S., Hirahara, Y., & Takano, S. 1992, ApJ, 392, 551
Swade, D. A. 1989, ApJS, 71, 219
Walker, M. F. 1959, ApJ, 130, 57
Walker, C. K., Kooi, J. W., Chan, M., LeDuc, H. G., Carlstrom, J. E., & Phillips, T. G. 1992, Int. J. Infrared Millimeter Waves, 15, 785
Werner, M. W. 1970, Astrophys. Lett., 6, 81
White, G. J., & Sandell, G. 1995, A&A, 299, 179
Wright, E. L., et al. 1991, ApJ, 381, 200