Diseases of Gastropoda

Michelle F. O’Brien1* and Sarah Pellett2

1 Wildfowl & Wetlands Trust, Gloucestershire, United Kingdom, 2 Animates Veterinary Clinic, Thurlby, United Kingdom

Gastropods (class Gastropoda) form the largest of the classes in the phylum Mollusca and inhabit terrestrial, fresh water and marine environments. A large number of these species are of major conservation importance and are an essential component of ecosystems. Gastropods may be deemed as pests, having a negative impact in horticulture and agriculture, whereas others may be used as a food source for human consumption and therefore are beneficial. Gastropods are susceptible to primary diseases and also act as intermediate hosts for diseases which affect other animals, including humans. The diseases described include two that are notifiable to the World Organisation for Animal Health (OIE): Xenohaliotis californiensis and Abalone viral ganglioneuritis caused by Haliotid herpesvirus-1 (HaHV-1). Research into the diseases of gastropods has often focused on those species that act as intermediate disease hosts, those that are used in research or those cultured for food. In this paper we review the viral, bacterial, fungal, parasitic and miscellaneous conditions that have been reported in gastropods and mention some of the factors that appear to predispose them to disease. The pathogenicity of a number of these conditions has not been fully ascertained and more research is needed into specifying both the etiological agent and significance in some of the diseases reported.

Keywords: gastropod disease, mollusc, virus, bacteria, fungi

INTRODUCTION

Gastropods (class Gastropoda, phylum Mollusca) are comprised of more than 80,000 species and are differentiated from other classes of mollusca by the presence of a torsed body. They are separated into three subclasses: Prosobranchia, Opistobranchia, and Pulmonata. They are found in terrestrial, freshwater and marine environments. All gastropods possess a ventrally flattened foot that provides locomotion (1). Over 2000 species are reported in the International Union for Conservation of Nature (IUCN) Red List as critically endangered, endangered or vulnerable, with 14 species listed as extinct in the wild. Over 1500 other species cannot be classified due to a deficiency in data (2).

Gastropods can be used in a number of different types of research including animal and human parasites and neurobiological research (1). With such a diverse class of animals, environmental requirements differ greatly and can often be species specific. Gastropods can become predisposed to diseases due to living in adverse environmental conditions and therefore individuals dealing with them in captivity should be aware of the individual temperature, humidity, nutrition and aquarium/
terrarium design requirements for their particular species. Investigations into infectious diseases of gastropods have often centred on those species cultivated as food or those that act as vectors for zoonotic diseases. A sequelae to gastropods becoming more prevalent in the pet trade and zoological collections is likely to be advancement into diagnosis and treatment of their diseases.

VIRUSES

A number of viral infections have been reported in gastropods although more research is needed in many cases to identify the specific virus. Abalone viral ganglioneuritis caused by Haliotid herpesvirus-1 (HaHV-1), has been reported in farmed and free-living abalone *Haliotis rubra*, *Haliotis laevigata* and hybrid *H. laevigata x H. rubra* in Australia and cultured *Haliotis diversicolor supertexta* cohabiting with *Haliotis cracherodii*, in Taiwan. This disease is reportable to World Organisation for Animal Health (OIE) and the US Department of Agriculture (USDA) (3). High mortality rates (up to 90%) have been reported and death often occurs within 1-2 days (3). Histological signs indicative of intranuclear inclusion bodies, may be seen in the neurons. Confirmation is by conventional and real-time PCR (4, 5).

Following a mass mortality event in *Theba pisana* (an intermediate host in human and veterinary medicine), transmission electron microscopy (TEM) confirmed nuclear inclusions where unenveloped, roundish virus-like particles were observed (6) although the causal virus was not identified.

Viruses from a number of families have been identified in snails, abalone and whelks including: Bacilladnaviridae (The International Committee on Taxonomy of Viruses (7), Circoviridae, Reoviridae, Picornaviridae, Caliciviridae, Paramyxoviridae and Rhabdoviridae (8).

BACTERIA

It can be complex to determine the presence of bacteria in molluscs as pathogenic as a number of species harbour a large number of commensal bacteria (9). Commensal bacteria have also been shown to be a likely source of Tetrodotoxin in *Nassarius semiplicatus* (10). Diseases caused by bacteria will often present differently depending on the life stage affected, with larval stages often showing high mortality whereas fewer diseases of adults have been reported (9).

Xenohaliotis californiensis, a Rickettsial-like prokaryote (RLP), causes withering syndrome in abalone. This disease is notifiable to the OIE (11). The organism invades the digestive gland and the animal exhibits a loss of condition and atrophy of the foot muscle. In laboratory studies, time from infection to signs of disease was 245 days and *Haliotis cracherodii* was more severely affected than *Haliotis rufescens*. Transmission is direct between individuals (12). *Haliotis corrugata* and *Haliotis fulgens* (13) seem to be more resistant than other abalone species (14, 15). Oxytetracycline injections have been shown to halt progression of the disease in treated animals (16). Rickettsial infections in *Haliotis diversicolor supertexta* (17), caused similar symptoms, but symptoms and mortality only occurred at water temperatures of 30°C. (18) also showed that at least 2 genetic variants show a different host specificity. *Vibrio parahaemolyticus* has also been isolated from *H. diversicolor supertexta* in Taiwan showing signs of withering syndrome (19, 20).

Vibrio harveyi has caused up to 80% mortality of wild and cultured *Haliotis tuberculata* on the coast of France (21). Travers et al. (22) showed that infection was linked to ripe or just spawned individuals in water temperatures above 18°C. Juveniles did not develop disease (23), suggested that this disease occurrence may be linked to global warming.

Potentially zoonotic bacteria have been isolated from Giant African land snails, although they do not appear to cause disease in these animals (24). *P. putida* and *C. indologenes* have been associated with infections, such as bacteraemia, in hospitalised patients (25, 26).

Biomphalaria sp. are an intermediate host for *Schistosoma* sp. therefore they have been the focus of substantial research into molluscicidal bacteria (27).

Mycobacteria have shown pathogenetic activity (28) and experimental transmission has been shown to 6 species of fresh water snails. See Table 1 for further details of bacterial diseases.

FUNGI

Only a small number of fungal conditions have been reported in the literature affecting gastropods and only minimal information is available in some cases (61), reported fungal disease (potentially linked to shell boring invertebrates) causing lesions on the inside of the shell in *Haliotis iris*, *Haliotis australis* and *Haliotis virginia*. The shell length of affected animals was significantly smaller than those unaffected and fatalities occurred in captive animals. The fungus has only been provisionally suggested as *Deuteromyces* (62).

A fungal disease in *Haliotis sieboldii*, in Japan, showed tubercle-like swelling on the mantle and melanized lesions on the peduncle. This fungus was designated *Atkinsiella awabi* sp. nov. (63). *Haliotis midae*, *Haliotis rufescens* and *Haliotis sieboldii*, in Japan also showed white nodules on the mantle and mortality due to *Haliciticida noduliformans* gen. et sp. nov. by phylogenetic analysis (64).

(65) also reported lung nodules in *Pomacea canaliculata* likely caused by *Poterioochromonas* sp., a species of golden algae, although the pathogenicity of this finding was unclear.

Fungal disease has also been reported in *Haliotis sieboldii* including *Haliphthoros milfoldensis* (66), *Halocrusticida awabi* (63) and *Atkinsiella dubia* (67). The mycelium was always observed in the lesions of diseased abalone with flat or tubercle-like swelling (68).
TABLE 1 | Bacterial diseases of gastropods.

Species	Class of pathogen	Name of pathogen	Signs and symptoms	References
Haliotis spp.	Rickettsiales- like prokaryote (RLP)	Xenohaliotis californiensis	Withering syndrome	(13, 16, 17, 29–32)
Haliotis spp.	Stippled RLP	Unclassified	Non pathogenic	(3)
Haliotis tuberculata	Gram negative bacterium	Vibrio harveyi	80% mortality	(21)
Haliotis diversicolor superstexta	Gram negative bacterium	Vibrio parahaemolyticus and Vibrio alginolyticus	Post larval and adult mortality	(19, 24–38)
Haliotis rufescens	Gram negative bacterium	Vibrio alginolyticus	Larvae and post larval mortality	(39)
Haliotis tuberculata	Gram negative bacterium	Vibrio harveyi	Mortality	(40)
Haliotis asinina	Gram negative bacterium	Vibrio vulnificus Vibrio alginolyticus	Mortality	(41)
Haliotis rubra, Haliotis laevigata	Gram negative bacterium	Vibrio splendidus	Mortality	(42)
Haliotis tuberculata	Gram negative bacterium	Vibrio splendidus	Mortality	(43)
Haliotis tuberculata	Gram negative bacterium	Vibrio tubii	Mortality	(44)
Haliotis discus hannai	Gram negative bacterium	Unclassified	Septicopyaemia	(45)
Haliotis midae	Gram negative bacterium	Vibrio sp.	Mortality	(46)
Haliotis asinina	Gram negative bacterium	Pasteurella sp.	Mortality	(41)
Haliotis rubra, Haliotis laevigata	Gram negative bacterium	Flavobacterium-like bacteria	Epithelial disease	(42)
Haliotis diversicolor superstexta	Gram negative bacterium	Shewanella alga	Postlarval mass mortality	(47)
Haliotis diversicolor superstexta	Gram negative bacterium	Klebsiella oxytoca	Acute mortality larvae and postlarval juveniles	(48)
Haliotis sp.	Gram positive bacterium	Clostridium lituseberense	(49, 50)	
Haliotis midae	Gram positive bacterium	Clostridium sp.	Mortality	(48)
Haliotis gigantea	Gram negative bacterium	Francisella halioticida	Mortality and loss of adhesive strength	(51, 52)
Achatina fulica	Gram negative bacterium	Aeromonas hydrophila	Skin lesions, Cellulitis likely secondary to abrasion	(53, 54)
Biomphalaria glabrata	Gram positive bacterium	Candidatus Paenibacillus glabrata	Mass mortality and decreased egg hatching	(27)
Biomphalaria glabrata	Gram positive bacterium	Bacillus thuringiensis kurstaki	Mortality and decreased egg hatching	(55)
Biomphalaria glabrata	Gram positive bacterium	Brevibacillus laterosporus	Pathogenic in juveniles (toxicity increased in younger larvae)	(56)
Biomphalaria pfeifferi and Bulinus truncates	Gram positive bacterium	Bacillus brevis	Pathogenic in laboratory setting	(57)
Helisoma anceps	Mycobacteria	Unclassified	Pathogenic	(28)
Biomphalaria glabrata	Mycobacteria	Unclassified	Tumour – no obvious pathogenicity	(58, 59)
Bulinus jouisaumei	Gram negative bacterium	Unclassified	Tumour – no obvious pathogenicity	(60)

PARASITES

Ectoparasites

Mites can parasitise Giant African land snails and their pathogenicity varies with the species (69). High mite burdens can lead to debilitation of the snail.

Endoparasites

Protozoa

Pseudoklossia patellae, a coccidian, has been detected in the epithelial cells of the intestine, kidney, and digestive cells of the limpet, Patella vulgata, prosobranchs and Haliotis spp. (70, 71). However, the intermediate hosts from gastropods are not known and no treatment has been described (70).

Ciliates were observed in tissues of two nudibranchs. A flagellate parasitising egg masses of doridacean nudibranchs and a parasite in the Thraustochytriaceae family of marine protists, producing Yellow-spot disease in Tritonia diomedia, a dendronotacean nudibranch (72). This family of marine protists is frequently included in the lower fungi. The amoebocytes of the gastropod become flattened and form a lamellated wall around the parasitic cells to form a necrotic thick-walled acellular capsule (72).

Invertebrates are often intermediate hosts for a variety of metazoan parasites with gastropods being one of the genera that Liciophora spp. infests. Opportunistic infections may arise and their importance in causing disease varies on environmental conditions and the host species (3).

Partula turgida, is especially notable as it succumbed to a microsporidian parasite (Steinhausia sp.), and is claimed to be the first extinction caused by an infectious disease (73). The colony had declined from 296 individuals over 21 months, and post-mortem examinations showed the microsporidian present, although absence from other species suggested that it might be specific: indeed, Cunningham and Daszak raised the possibility that the parasite might also have caused its own demise.

Annelida

Shells of abalone may be infested by Annelids, worms that burrow into the matrix of the host’s shell and form tunnels, compromising the host shell’s protective and supportive functions (3).

Nematoda and Trematoda

Gastropod-borne parasites may be of concern for human and animal health. Cornu aspersum, an edible gastropod of Mediterranean origin, is an intermediate host for several metastrongyloid nematodes (74–77). Of veterinary significance, is the increasing number of cases of Angiostrongylus vasorum, the dog
lungworm, seen in the UK because of a decline in preventative treatment in 2020 as a result of Covid-19 restrictions (78). Dogs become infected by ingesting slugs and snails which are the intermediate hosts.

Gastropods are also sole hosts of Rhabditida, Mermithida and Ascaridida nematodes (77). The opportunistic parasite of slugs, *Phasmarhabditis hermaphrodita* has been formulated and developed into a biocontrol agent against slugs and commercialised.

Aquatic gastropods contribute to the distribution of trematodes, e.g. *Schistosoma*, that risk human health. The infectivity of *Schistosoma mansoni* to *Biomphalaria glabrata* has been shown to vary depending on life stage of the snail (79) and temperature (80). *Brachylaima*, an avian trematode, transmitted by the gastropod *Monacha*, is also zoonotic (81).

Occasionally gastropods may serve as a final host for trematodes and these parasites can be seen in the kidney or the lumen of the digestive gland e.g. *Proctoeces buccini* was described in the nephridial lumen of the dog whelk (70, 82).

Turbellaria
Turbellariad (flatworm) infections have been described in the haemocoel of aquaria held gastropods (1) and in the dilated renal lumen and mantle cavity in free-living dog whelk in the North Sea (70).

Copepoda
Splanchnotrophidae are endoparasitic copepods and can affect nudibranchs by producing egg sacs under the external body wall, or which project through the host’s body wall (1). There is paucity in the literature describing lesions and mortality caused by these parasites. See Table 2 for further details of bacterial diseases.

Table 2 | Parasitic diseases of gastropods.

Species	Class of pathogen	Name of pathogen	Signs and symptoms	References
Helix spp.	Mite	Riccardoella limacum	Lung pathology	(83)
Haliotis spp.	Renal coccidian	Margoliashiella haliotis	Often asymptomatic although epithelial cell hypertrophy is detected. Seen in individuals also affected with withering syndrome.	(1, 3, 84)
Buccinum undatum	Renal coccidian	Merocystis kathae	Often asymptomatic although epithelial cell hypertrophy is detected.	(1, 3, 84)
Halilots spp.	Coccidian	Pseudoklossia patellae	Unknown	(70, 71)
Patella vulgaris	Marine protist	Thraustochytriaceae family	Yellow-spot disease	(72)
Tritonia diomedia	Protozoan parasites	Labyrinthula prototzoan parasites	Mortality	(85)
Apysla sea slugs	Ciliate	Licnophora spp.	Parapodial mantle-gill complex	(86)
Haliotis iris	Sporozoan parasites	Haplosporidium spp.	Mortality in juvenile culture stocks. In wild caught adults infection was present but no clinical disease.	(1, 87)
Juvenile Haliotis tuberculata	Plasmodia	Haplosporidium montforti	Discolouration of foot. Lack of adherence to surface. Linked to rise in water temperature.	(88, 89)
Partula turgida	Microsporidian	Steinhausia spp.	Mortality	(73)
Haliots spp.	Polychaeta	Polydora spp.	Damage to matrix	(3)
Halilots rufovires	Polychaeta	Sabellic polychaete	L3 larva can be zoonotic, causing eosinophilic meningoencephalitis	(91–95)
Achatina spp.	Nematode	Angiostrongylus cantonensis	Malformed shell	(1, 90)
Slugs and snails	Nematode	Aeurostrongylus abstrusus vasonus	Intermediate host for dog, cat and fox lungworms	(96)
Milax sowerbyi	Nematode	Phasmarhabditis apulaciae	Facultative mollusc-parasites - survive long-term in decaying organic material (saprophytic phase)	(97–99)
Milax gagates	Nematode	Gigantism	(70, 100)	
Marine snails	Trematode	Digeneric trematodes	Colour changes	(1)
Hermisenda cressicornis	Ratworm	Turbellariad flatworm	Mortality	(1)
Shell lesions of unknown etiology, leading to reduced growth rate, have been reported in *Haliotis iris* (101).

Gas bubble disease was reported by (86) in *Aplysia* caused by exposure to seawater supersaturated with air. Air bubbles have also been identified in the body and cerata of captive *Hermisenda*. Death (probably caused by pressure necrosis of vital organs by the air bubbles) usually occurred (102).

Neoplasia is rarely described in invertebrates, but has been reported in *H. discus* (glioma of the pleuropedal nerve cord), *Amphullarius australis* (papilloma of the epidermis and adenoma of the digestive gland) and *Chiton tuberculatus* (papilloma of the gastrointestinal tract) (103).

Parry and Pipe (104) found that exposure to three stressors (copper, temperature, bacteria) could alter certain aspects of molluscan immune function and produce complex results.

DISCUSSION

Anthropogenic activities that pollute the environment can affect molluscan physical parameters (105). Increased ammonia or nitrite increased mortality of *H. diversicolor* infected with *V. parahaemolyticus* by reducing immune function (106, 107) and in (23), a difference of only 1°C in temperature had a highly significant impact on mortality level.

Life stage can also be an important factor in pathogenicity of gastropod infectious disease, e.g. immature abalone were insensitive to *V. harveyi*, while ripe or postspawning abalone were susceptible to infection and mortality (23). The abalone reproductive cycle was also an important factor associated with mortalities in (21, 108, 109), also suggested that susceptibility to this pathogen is driven by both climatic factors and reproductive physiology while (42), showed that stress factors had likely precipitated *Vibrio* sp. outbreaks among *H. rubra*, *H. laevigata* and their hybrids.

Life stage (79) and temperature (80) have also been shown to affect the infectivity of *Schistosoma mansoni* to *Biomphalaria glabrata*, which may lead to potential consequences for human health linked to global warming.

There have also been differences noted in mortality between wild and cultured abalone. In (23), the mortality rate due to *V. harveyi* was faster for the farmed than for the wild abalone. The reasons for this difference could include increased stress or reduced genetic diversity in farmed populations (110).

Dang et al. (111) suggested that, in *H. laevigata*, diet may enhance antibacterial activity against *Vibrio anguillarum* whereas (41) found that *Vibrio* sp. was transmitted from the seaweed (*Gracilaria changii*) used as food for the abalone which led to a mortality event in *H. asinina*. This shows that good farming and management practices as well as appropriate husbandry are vital in reducing the spread of pathogenic diseases.

As the number and variety of species of gastropod kept in captivity increases, and the conservation status of further wild populations becomes more critical, research into gastropod diseases, mitigation factors and greater depth of knowledge of those diseases already reported but not fully categorised will take place. This will benefit all gastropods, and hopefully in particular those of conservation importance.

AUTHOR CONTRIBUTIONS

The two authors (MO’B and SP) have contributed equally to this work. All authors contributed to the article and approved the submitted version.

REFERENCES

1. Smolowitz R. Gastropods. In: G Lewbart, editor. Invertebrate Medicine, 2nd edn. Ames, Iowa: Wiley Blackwell (2012). p. 95–111.
2. IUCN. (2021). Available at: https://www.iucnredlist.org/search?query= gastropod&searchType=species.
3. Newton AL, Smolowitz R. Invertebrates. In: KA Terio, D McAlloose, J St. Leger, editors. *Pathology of Wildlife and Zoo Animals*. London: Academic Press (2018). p. 1011–43.
4. Crane M, Corbeil S. Infection With Abalone Herpes-Like Virus. In: Sara Linnane, editor/s. OIE Manual of Diagnostic Tests for Aquatic Animals. Paris: Office International des Epizooties, Paris, France. (2012) 441–451. Available at: http://hdl.handle.net/102.100.100/98414?index=1.
5. Hooper C, Hardy-Smith P, Handlin ger J. Ganglioneuritis Causing High Mortalities in Farmed Australian Abalone (*Haliotis Laevigata*) and *Haliotis Rubra*). *Aust Vet J* (2007) 85:188–93. doi: 10.1111/j.1751-0813.2007.00155.x
6. De Vico G, Tate R, Maio N, Costantino A, Guida V, Villari G, et al. Early Evidence for a Virus-Like Agent Infecting the Pest Smail Theba Pisana (Gastropoda: Pulmonata) in Southern Italy. *J Invertebrate Pathol* (2017) 148:10–3. doi: 10.1016/j.jip.2017.05.005
7. The International Committee on Taxonomy of Viruses (ICTV). (2017). Available at: http://talk.ictvonline.org/taxonomy (Accessed 31st May 2021).
Bayraktar MR, Aktas E, Ersoy Y, Cicek A, Durmaz R. Postoperative

Travers M, Basuyaux O, Le Goïc N, Huchette S, Nicolas J, Koken M, et al.

Nicolas JL, Basuyaux O, Mazurie J, Thebault A.

Cruz-Flores R, Caceres-Mart

Friedman CS, Biggs W, Shield JD, Hedrick RP. Transmission of Withering

Cruz-Flores R, Caceres-Mart

Williams D, Haverson V, Chandler M. Proceedings Veterinary Invertebrate

Nishioka T, Kamaishi T, Kurita J, Mekata T, Kiryu I, Yuasa K, et al.

Hernandez Rodriguez M, Del R

Cai J, Han Y, Wang Z. Isolation of Vibrio Paraehaemolyticus From Abalone (Haliotis Diversicolor Supertexta L.) Post-Larvae Associated With Mass Mortalities. *Aquaculture* (2006) 257:161–6. doi: 10.1016/j.aquaculture.2006.03.007

Cai J, Han H, Song Z, Li C, Zhou J. Isolation and Characterization of Pathogenic Vibrio Aegiramnatis Isolated From Diseased Postlarval Abalone, Haliotis Diversicolor Supertexta (Lischke). *Aquacult Res* (2006) 37:1222–6. doi: 10.1111/j.1365-2109.2006.01552.x

Cheng L, Huang J, Shi C, Thompson KD, Mackey B, Cai J. Vibrio Paraehaemolyticus Associated With Mass Mortality of Postlarval Abalone, Haliotis Diversicolor Supertexta (L.), in Sanya, China. *J World Aquat Sococ* (2008) 39(6):746–57. doi: 10.11171/1794-7345.2008.02120.x

Angulo-Beltran C, Searcy-Bernal R, Lizarra-Partida ML. Pathogenic Effects of Vibrio Aegiramnatis on Larvae and Post-Larvae of the Red Abalone, Haliotis Rufescens. *Dis Aquat Organisms* (1998) 33:119–22. doi: 10.3354/dao033119

Pichon D, Cudennec B, Huchette S, Djeadiat C, Renaud T, Paillard C, et al. Characterization of Abalone Haliotis Tuberculata-Vibrio Harveyi Interactions in Gill Primary Cultures. *Cytotechnol* (2013) 65:759–72. doi: 10.1007/s10616-013-9583-1

Kuc BA, Ramly R, Devakie M, Groman D, Berthe CJF. Investigating a Mortality in Hatchery Cultured Tropical Abalone, Haliotis Asinina Linnaeus. *Dis Asian Aqui* (2011) 7:103–9.

Handlering J, Domachie CL, Gabor L, Taylor D. Bacterial Infection in Tasmanian Farmed Abalone: Causes, Pathology, Farm Factors and Control Options. *Dis Asian Aqui* (2005) 5:289–99.

Saunlner D, De Decker S, Haffner P, Cobert L, Robert M, Garcia C. A Large-Scale Epidemiological Study to Identify Bacteria Pathogenic to Pacific Oyster *Crassostrea Gigas* and Correlation Between Virulence and Metalloprotease-Like Activity. *Microb Ecol* (2010) 59:787–98. doi: 10.1007/s00248-009-9620-y

Travers M-A, Mersni Achorour R, Haffner P, Tourbiez D, Cassone A-L, Murray B, et al. First Description of a French V. T. Strains Pathogenic to Mussels. I. Characterization of Isolates and Detection During Mortality Events. *J Invertebrate Pathol* (2014) 123:38–48. doi: 10.1016/j.jip.2014.04.009

Ma J, Wang Q, Ma F, Liu M. A Pathogen of Septicopyemia in the Abaloe Haliotis Discus Hannai Ino. Dalian, China (Translation of Title From Wang Et Al 2004). *J Fisheries China* (1996) 4:332–6.

Dixon MG, Hecht T, Brandt CR. Identification and Treatment of a *Clostridium* and Vibrio Infection in South African Abalone, *Haliotis Midas L*. *J Fish Dis* (1991) 14:693–95. doi: 10.1111/j.1365-2761.1991.tb00629.x

Cai J, Chen H, Thompson KD, Li C. Isolation and Identification of Sheawanna Alga and its Pathogenic Effects on Post-Larvae of Abalone Haliotis Diversicolor Supertexta. *J Fish Dis* (2006) 29:505–8. doi: 10.1111/j.1365-2761.2006.00732.x

Cai J, Wang Z, Cai Z, Zhou Y. Characterization and Identifi Cation of Virulent *Klebsiella Oxytoca* Isolated From Abalone (*Haliotis Diversicolor Supertexta*) Postlarvae With Mass Mortality in Fujian, China. *J Invertebr Pathol* (2008) 97:70 – 75. doi: 10.1016/j.jip.2007.07.005

Boomer SW. Update on Emerging Abalone Diseases and Techniques for Health Assessments. *J Shellfish Res* (2003) 22:805–10.

Boomer SW. Synopsis of Infectious Diseases and Parasites of Commercially Exploited *Shellfish: Bacterial Diseases of Abalone* (2017). Available at: https://www.dfo-mpo.gc.ca/science/ahs-saa/diseases-maladies/vibrioab-eng.html (Accessed 31st May 2021).
93. Neuhausen E, Fitarelli M, Romanzini J, Teixeira CG. Low Susceptibility of Achatina Fulica From Brazil to Infection With Angiostrongylus Costaricensis and A Cantonensis. *Memorias do Inst Oswaldo Cruz* (2007) 102(1):49–52. doi: 10.1590/S0074-02762007000100007

94. Latonio AA. The Giant African Land Snail, Achatina Fulica. A New Threat to Public Health. *Trans R Soc Trop Med Hyg* (1971) 65:22.

95. Moreira VLC, Giese EG, Melo FTV, Simões RO, Maldonado JA, et al. Endemic Angiostrongyliasis in the Brazilian Amazon: Natural Parasitism of Angiostrongylus Cantonensis in Rattus Rattus and R. Norvegicus, and Sympatric Giant African Land Snails, Achatina Fulica. *Acta Tropica* (2013) 125(1):90–7. doi: 10.1016/j.actatropica.2012.10.001

96. Lange MK, Penagos-Tabares F, Hirzmann J, Failing K, Schaper R, Van Adlard and Son (1962).

97. Wilson MJ, Glen DM, George SK. The Rhabditid Nematode *Phasmarhabditis Hermaphrodita* as a Potential Biological Control Agent for Slugs. *Biocontrol Sci Technol* (1993) 3:503–11. doi: 10.1080/09583159309355306

98. Rae R, Verdun C, Grewal P, Robertson JF, Wilson MJ. Biological Control of Terrestrial Molluscs Using *Phasmarhabditis Hermaphrodita* Progress and Prospects. *Festi Manage Sci* (2007) 63:1153–64. doi: 10.1002/jfs.1424

99. Nermut J, Půža V, Mráček Z. *Phasmarhabditis Aquilae N. Sp.* (Nematoda: Rhabditidae), a New Rhabditid Nematode From Milacid Slugs. *Nematology* (2016) 18:1095–112. doi: 10.1163/15685411-0000317

100. Fretter V, Graham A. *British Prosobranch Molluscs*. Dorking, London: Adlard and Son (1962).

101. Nollens HH, Keogh JA, Probert PK. Effects of Shell Lesions on Survival, Growth, Condition and Reproduction in the New Zealand Blackfoot Abalone *Haliotis Iris*. *Dis Aquat Organ* (2003) 57:127 – 133. doi: 10.3354/dao057127

102. Dow I. *Update on Hermisenda AIdments* (2003). Available at: http://www. sealslugforum.net/hermisenda.html10478 (Accessed on 3rd July 2021).

103. Peters EC, Smolowitz RM, Reynolds TL. “Neoplasia” in Invertebrate Medicine. 2nd edn. G Lewbart, editor. Ames, Iowa: Wiley Blackwell (2012) p. 431–40.

104. Parry HE, Pipe RK. Interactive Effects of Temperature and Copper on Immunocompetence and Disease Susceptibility in Mussels (Mytilus Edulis). *Aquat Toxicol* (2004) 69:311–25.

105. Morley NJ. Interactive Effects of Infectious Diseases and Pollution in Aquatic Molluscs. *Aquatic Toxicology* (2010) 96:27–36.

106. Cheng W, Hsiao I-S, Chen J-C. Effect of Ammonia on the Immune Response of Taiwan Abalone *Haliotis Diversicolor Supertexta* and its Susceptibility to Vibrio Parahaemolyticus. *Fish Shellfish Immunol* (2004) 17:193–202. doi: 10.1016/j/fsi.2004.03.004

107. Cheng W, Hsiao I-S, Chen J-C. Effect of Nitrite on Immune Response of Taiwan Abalone *Haliotis Diversicolor Supertexta* and its Susceptibility to Vibrio Parahaemolyticus. *Dis Aquat Org* (2004) 60:157–64. doi: 10.3354/dao060157

108. Nishimori E, Hasegawa O, Numata T, Wakabayashi. Vibrio Carchariae Causes Mass Mortalities in Japanese Abalone, Sulculus Diversicolor Supertexta. *Fish Pathol* (1998) 33:495–502. doi: 10.3147/jssp.33.495

109. Burge CA, Eakin CM, Friedman CS, Froelich B, Hersberger PK, Hofmann EE, et al. Climate Change Influences on Marine Infectious Diseases: Implications for Management and Society. *Annu Rev Marine Sci* (2014) 6:249–77. doi: 10.1146/annurev-marine-012113-135029

110. Gagnaire B, Soletchnik P, Faury N, Kerudou N, Le Moine O, Renault T. Analysis of Hemocyte Parameters in Pacific Oysters, C. gigas, Reared in the Field – Comparison of Hatchery Diploids and Diploids From Natural Beds. *Aquaculture* (2007) 264:449–56. doi: 10.1016/j.aquaculture.2006.12.041

111. Dang VT, Li Y, Speck P, Benkendorff K. Effects of Micro and Macroalgal Diet Supplementations on Growth and Immunity of Greenlip Abalone, *Haliotis Laevigata*. *Aquaculture* (2011) 320:91–8. doi: 10.1016/j.aquaculture.2011.08.009

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 O’Brien and Pellett. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.