Oxidative Stress Is Associated With Diastolic Dysfunction in Women With Ischemia With No Obstructive Coronary Artery Disease

Mohamad Raad, MD*; Ahmed AlBadri, MD*; Janet Wei, MD; Puja K. Mehta, MD; Jenna Maughan, BA; Adit Gadh, MD; Louise Thomson, MBChB; Dean P. Jones, PhD; Arshed A. Quyyumi, MD; Carl J. Pepine, MD; C. Noel Bairey Merz, MD

BACKGROUND: Women with signs and symptoms of ischemia and no obstructive coronary artery disease often have evidence of diastolic dysfunction. Oxidative stress (OS) is associated with cardiovascular risk factors and adverse outcomes. The relationship between systemic OS and diastolic dysfunction is unknown.

METHODS AND RESULTS: A subgroup of women (n=75) with suspected ischemia and no obstructive coronary artery disease who had both cardiac magnetic resonance imaging and OS measurements were enrolled in the WISE-CVD (Women Ischemia Syndrome Evaluation—Coronary Vascular Dysfunction) study. Left ventricular end-diastolic pressure was measured invasively. Left ventricular end-diastolic volume and peak filling rate were assessed using cardiac magnetic resonance imaging. Aminothiol levels of plasma cystine and glutathione were measured as markers of OS. Spearman correlation and linear regression analyses were conducted. The group mean age was 54±11 years, and 61% had a resting left ventricular end-diastolic pressure >12 mm Hg. Cystine levels correlated negatively with the peak filling rate (r=−0.31, P=0.007) and positively with left ventricular end-diastolic pressure (r=0.25; P=0.038), indicating that increased OS was associated with diastolic dysfunction. After multivariate adjustment including multiple known risk factors for diastolic dysfunction and cardiovascular medications, cystine levels continued to be associated with peak filling rate (β=−0.27, P=0.049) and left ventricular end-diastolic pressure (β=0.25; P=0.035). Glutathione levels were not associated with indices of diastolic function.

CONCLUSIONS: OS, measured by elevated levels of cystine, is associated with diastolic dysfunction in women with evidence of ischemia and no obstructive coronary artery disease, indicating the role of OS in patients with ischemia and no obstructive coronary artery disease. Its role in the progression of heart failure with preserved ejection fraction should be explored further.

Key Words: cardiac MRI ■ diastolic dysfunction ■ INOCA ■ oxidative stress

Two thirds of women undergoing clinically indicated coronary angiography in the original WISE (Women Ischemia Syndrome Evaluation) study had signs and symptoms of ischemia in the setting of no obstructive coronary artery disease (INOCA). These women often have coronary vascular dysfunction, which is associated with future adverse cardiovascular outcome. We previously demonstrated that diastolic function is often impaired in women with evidence of INOCA as assessed by cardiac magnetic resonance imaging (CMRI). Elevation of resting left-ventricular end-diastolic pressure (LVEDP) is also a marker of diastolic dysfunction and associated with a higher mortality in ischemic heart disease independent of left ventricular systolic function. Furthermore, diastolic dysfunction can progress to heart failure...
with preserved ejection fraction (HFrEF),7 decreased ejection fraction,8 and increased mortality.7–9 While there are well-defined associated clinical risk factors for the development of diastolic dysfunction,8 the specific pathophysiology is not completely understood.

Oxidative stress (OS) occurs when cellular pro-oxidants overwhelm cellular anti-oxidant defense mechanisms and disrupt redox signaling and control. Systemic OS can be readily estimated by measurement of circulating aminothiol levels.10 In the intracellular space, glutathione plays an essential role to help eliminate peroxides and other oxidants and preserve the redox state of numerous biomolecules.11 In the extracellular space, cysteine plays a critical role as an antioxidant, and cystine, its oxidized disulfide form, serves as an important measure of systemic OS. Therefore, lower circulating levels of glutathione and higher levels of cystine reflect a relative deficiency of the anti-oxidants and overproduction of oxidants and vice versa.12–14 Higher OS using these measures is associated with increased age, diabetes mellitus, smoking, impaired endothelial function, increased arterial stiffness, carotid atherosclerosis, myocardial stiffness, and higher rates of adverse cardiovascular events.13–19

We investigated the hypothesis that OS, measured using circulating levels of aminothiols cystine and glutathione, is associated with diastolic dysfunction measured invasively and noninvasively in women with evidence of INOCA.

METHODS

Study Population

Women with INOCA and normal left ventricular ejection fraction (defined as ejection fraction ≥55%), referred for coronary angiography, were enrolled as part of the National Heart, Lung, and Blood Institute–sponsored WISE-CVD study (NCT00832702). The data that support the findings of this study are available from the corresponding author upon reasonable request. INOCA is defined as symptoms (usually angina and/or dyspnea) with signs suggesting ischemia (ECG changes during exercise, and wall motion or perfusion abnormalities during echocardiography or nuclear imaging)20 and absence of obstructive coronary artery disease by core laboratory (epicardial coronary artery diameter stenosis <50%). Invasive functional measurements (ie, fractional flow reserve and instantaneous wave-free ratio) were performed, as clinically indicated, at the discretion of the interventional cardiologist. Women with primary cardiomyopathies and valvular heart disease were excluded.21 A subgroup of subjects (n=75 women) who had complete cardiac catheterization, CMRI, and OS assessment were included in this analysis. The definition of clinical risk factors is as previously published in the WISE-CVD study.22

Subjects provided written informed consent as approved by the institutional review board at Cedars-Sinai Medical Center, Los Angeles and the University of Florida, Gainesville. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki as reflected in a priori approval by the institution’s research committee.

Diastolic Function Assessments

Subjects undergoing catheterization were referred for evaluation of their symptoms and comprehensive coronary reactivity assessment.23 The catheterization preparation protocols are as previously described.23,24 Subjects fasted for 12 hours and

CLINICAL PERSPECTIVE

What Is New?

• Elevated levels of serum cystine, a marker of oxidative stress, are associated with diastolic dysfunction in women with ischemia and no obstructive coronary artery disease.

• This is the first human study to demonstrate that oxidative stress is associated with diastolic dysfunction using cardiac magnetic resonance imaging and resting left-ventricular end-diastolic pressure.

What Are the Clinical Implications?

• The study paves way for further investigation into the prognostic and therapeutic implications of oxidative stress in diastolic dysfunction and heart failure with preserved ejection fraction.

Nonstandard Abbreviations and Acronyms

CMD coronary microvascular dysfunction
CMRI cardiac magnetic resonance imaging
HFrEF heart failure with preserved ejection fraction
INOCA ischemia and no obstructive coronary artery disease
LVEDP left-ventricular end-diastolic pressure
OS oxidative stress
PFR peak filling rate
WISE-CVD Women's Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction
withheld any nicotine or sublingual nitroglycerin for 4 hours and any vasoactive agents or caffeine for 24 hours before catheterization. After confirming the absence of obstructive coronary artery disease by clinically indicated angiography, women underwent evaluation of resting LVEDP using a pig-tail catheter positioned in the left ventricle. Left ventricular diastolic dysfunction is defined as LVEDP >12 mm Hg. Diastolic function was also assessed noninvasively by CMRI. All CMRIs were performed using the same equipment and protocol at both centers (1.5 T Magnetom Avanto, Siemens Healthcare, Erlangen, Germany) with ECG gating and a phase-array surface coil (CP Body Array Flex, Siemens Medical Systems, Erlangen, Germany). Analyses of CMRI data were performed at the WISE-CVD CMRI Core Lab at Cedars-Sinai Medical Center, Los Angeles using the Argus software (Siemens Medical) by 1 experienced analyst (L.E. Thomson) who traced the endocardial contours manually from end-systole to end-diastole and measured end-systolic volume and end-diastolic volume; protocol details have been previously published.21 End-diastolic frames were used to calculate septal wall thickness and left ventricle mass, while stroke volume was calculated as the difference between end-diastolic volume and end-systolic volume, and ejection fraction was calculated as stroke volume divided by end-diastolic volume. Volume–time curves were used to derive indices of diastolic dysfunction, including early peak filling rate (PFR). PFR increases with diastolic dysfunction grade, similar to E/e’ by echocardiography.25,26 The exception is the progression from normal to grade I diastolic dysfunction, as PFR mildly decreases (compared with echocardiography, where E/e’ ratio mildly increases).27 Therefore, PFR normalized for end-diasstolic volume is used and has been demonstrated to be a useful index for evaluating diastolic function.

Measurement of OS

At the time of cardiac catheterization, arterial blood was collected from the femoral sheath. Blood samples were transferred into Eppendorf tubes containing preservatives to prevent auto-oxidation, centrifuged, and stored at −80°C. We have shown previously that samples are stable under these conditions for ≈1 year.15,28,29 Plasma levels of cystine and glutathione were measured using high-performance liquid chromatography after dansyl derivatization on a 3-aminopropyl column with fluorescence detection.29 Metabolites were identified by co-elution with standards and quantified by integration relative to the internal standards, with validation relative to external standards.15,28,29 The coefficients of variation for these metabolites are 5% for glutathione and 3.2% for cystine.

Statistical Analysis

Clinical variables are summarized using mean±SD or a count (%) for categorical variables. Data normality were evaluated using the Kolmogorov–Smirnov criterion. Differences between groups were assessed using the t test. For non-normally distributed variables, the Mann–Whitney U test was used to compare groups in unadjusted analyses. Relationships between the plasma aminothiols and diastolic function measurements were examined using the Spearman’s correlation analyses. Tests to see whether our data met the assumption of collinearity indicated that multicollinearity was not a concern (none of the tolerance values were <0.1 and all the variance inflation factors were <1.5). Multivariate linear regression analyses were performed to examine the relationship between OS, diastolic function, and clinical variables. Clinical

Table 1. Baseline Characteristics

Variables	Mean±SD or %
Age, y	54±11
Race (nonwhite), N (%)	21 (28)
Diabetes mellitus, N (%)	8 (11)
Hypertension, N (%)	26 (35)
History of smoking, N (%)	34 (45)
Body mass index, kg/m²	30±8
Cholesterol, mg/dL	182±34
Low-density lipoprotein, mg/dL	100±36
High-density lipoprotein, mg/dL	57±15
Triglyceride, mg/dL	120±67
Oxidative stress	
Cystine, μmol/L	70±21.7
Glutathione, μmol/L	2.5±1.4
Left ventricular function	
Ejection fraction, %	69±7
EDV, mL/m²	126±22
PFR (EDV/s)	3.1±0.6
Time to PFR, ms	197±39.3
LVEDP, mm Hg	16±6

Medications

Aspirin, N (%)	60 (80)
Statin, N (%)	41 (65)
Beta blockers, N (%)	36 (48)
Calcium channel blockers, N (%)	15 (20)
ACEI/ARB, N (%)	19 (25)
Nitrites, N (%)	37 (79)

ACEI indicates angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; EDV, end-diastolic volume; LVEDP, left ventricular end-diastolic pressure; and PFR, peak filling rate.
variables entered in this regression model were age, body mass index, race, history of hypertension, diabetes mellitus, smoking, hyperlipidemia, and cardiovascular medications. A significance level of 0.05 was used for all analyses. Analyses were performed using IBM SPSS software version 24 (IBM, New York, NY).

RESULTS
Baseline characteristics are summarized in Table 1. The mean age was 54±11 years, 11% had diabetes mellitus, 35% hypertension, and 45% a history of previous smoking. The cystine, but not glutathione level, correlated with age (r=0.38; P<0.001) and hypertension (r=0.25; P=0.031).

Diastolic Function
Forty-six subjects (61%) had an elevated LVEDP of >12 mm Hg at cardiac catheterization. There was no correlation between the LVEDP and PFR (r=−0.04, P=0.74). PFR was inversely correlated with age (r=−0.36; P=0.002) and hyperlipidemia (r=−0.23; P=0.047). LVEDP was not associated with age, history of hypertension, diabetes mellitus, or hyperlipidemia.

Relationship Between OS and Diastolic Function
Cystine levels inversely correlated with the PFR (r=−0.31, P=0.007) and positively correlated with LVEDP (r=0.25; P=0.038) (Figure 1), indicating that higher OS is associated with increased diastolic dysfunction. Cystine levels were significantly higher in subjects with high LVEDP (>12 mm Hg) versus those with low LVEDP (both P=0.02) (Figure 2). In multivariate regression analyses adjusted for the aforementioned clinical covariates, the plasma cystine level remained associated with a higher LVEDP (Table 2). For every unit increase in the PFR, the plasma cystine was lower by 14.5 μmol/L and for every unit increase in LVEDP, plasma cystine was higher by 0.8 μmol/L. We found no significant associations between plasma glutathione level and diastolic parameters (ie, PFR and LVEDP) in this cohort using both univariate and multivariate analyses.

DISCUSSION
We demonstrate that systemic OS, measured as cystine levels, is associated with diastolic dysfunction, assessed invasively and noninvasively, even after adjusting for common comorbidities affecting diastolic function. Glutathione levels did not correlate with PFR or LVEDP. To our knowledge, this is the first study to investigate the relationship between OS and diastolic dysfunction using PFR derived from CMRI in humans.

We have previously reported that women with evidence of INOCA have impaired diastolic dysfunction compared with healthy reference subjects as assessed by CMRI.4 We also have shown that 40% of these women have elevated LVEDP.5 We have now extended our prior findings by demonstrating that subclinical diastolic dysfunction is frequently prevalent in women with INOCA and that it is associated with higher levels of systemic OS.

The role of OS in the pathophysiology of diastolic function is poorly understood in humans. Oxidative stress is also a complex with multiple interplays between extracellular and intracellular (both cytosolic
and compartmental levels of different OS markers. In cardiac myocytes, experimental studies demonstrate that with increasing OS, myocytes exhibit alterations in myocardial structure and function, increased myocardial collagen content, elevated passive myocyte stiffness, increased left ventricular end-diastolic stiffness, and increased E/A ratio as measured by CMRI.\(^{16,30}\)

The sarcoplasmic proteins, including myosin binding protein-C, are phosphorylated by reactive oxygen species sensitive enzymes\(^ {31}\) that in turn leads to increased myofilament Ca\(^ {2+}\) sensitivity\(^ {32,33}\) and impaired cardiac relaxation.\(^ {34}\) This is also seen with decreased levels of nitric oxide, which modulates cardiac relaxation via phosphorylation of downstream molecules and subsequent sarcomere stiffening\(^ {35,36}\) and hypertrophic signaling.\(^ {37}\)

In our study, LVEDP did not correlate with PFR, as previously observed.\(^ {3}\) The most likely explanation is that the LVEDP and PFR were measured at 2 different time-points. Given that our study excluded patients with clinical heart failure, both LVEDP and PFR were likely in their early phase and small fluctuations in other physiological parameters at 2 different time-points may explain why they did not correlate.

We have previously demonstrated that the majority of women with INOCA in the original WISE cohort with no obstructive coronary artery disease had coronary microvascular dysfunction (CMD).\(^ {38}\) Other work has demonstrated that CMD is associated with OS\(^ {39}\) and is also associated with diastolic dysfunction and development of clinical HFpEF.\(^ {40}\) Our current study results demonstrate a correlation between OS and diastolic dysfunction. Given the cross-sectional nature of our study, we cannot confer causality between OS and diastolic dysfunction. Furthermore, it is unclear whether OS and CMD lie within the same linear sequence to develop diastolic dysfunction. While 1 previous study has shown that OS precedes CMD,\(^ {39}\) this is an area that requires further prospective investigation, as the link between OS, CMD, and development of HFpEF will be critical to define as it is.

Strengths and Limitations

This is the first study in humans to demonstrate that high systemic OS, measured by plasma aminothiol, cystine, is associated with measures of diastolic dysfunction using CMRI. Limitations of the study are that the cohort consists of only female subjects with signs and symptoms of ischemia undergoing clinically indicated cardiac catheterization, and thus the findings may not generalize to other groups. Furthermore, we did not find an association between glutathione levels and diastolic function, perhaps because it is an intracellular moiety and accurate measurements are not possible in a study like ours. We only measured cystine and glutathione as an indicator of OS. However, these 2 markers have been shown to be correlated with subclinical cardiovascular disease and its progression.\(^ {15,19,41}\) During angiography, LVEDP can be affected by various vasoactive and sedative agents. Per protocol,\(^ {23}\) women were instructed to hold off taking long-acting nitrates, ranolazine, short-acting calcium, channel blockers, \(\alpha\)-blockers, \(\beta\)-blockers, and angiotensin receptor blocker.\(^ {2}\)

ACEI indicates angiotensin-converting enzyme inhibitor; and ARB, angiotensin receptor blocker.

\(^ {*}\)P value is statistically significant.
aldosterone inhibitors, and angiotensin-converting enzyme I/angiotensin II receptor antagonists for 24 hours, and long-acting calcium channel blockers were held for 48 hours before invasive coronary angiography. Additionally, most women received moderate sedation as clinically indicated during cardiac catheterization. However, previous study showed that conscious sedation does not alter indices of the left ventricular diastolic function in healthy individuals and those with pre-existing diastolic dysfunction. Finally, because of the cross-sectional nature of our study, we cannot infer causality between OS and diastolic dysfunction. Therefore, future investigations are needed to prove causality. The strength of the study includes addressing the area of development of diastolic dysfunction and HFpEF in patients with CMD, which remains poorly understood.

CONCLUSIONS

OS, measured as elevated plasma cystine levels, is associated with diastolic dysfunction, measured by resting LVEDP and CMRI PFR in women with INOCA. Whether OS is related mechanistically to progression to HFpEF in women with evidence of INOCA needs further exploration.

ARTICLE INFORMATION

Received December 13, 2019; accepted April 3, 2020.

Affiliations

From the Emory Clinical Cardiovascular Research Institute (M.R., A.A., P.K.M., A.A.G.) and Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine (D.P.J.), Emory University School of Medicine, Atlanta, GA; Barbra Streisand Women’s Heart Center, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA (J.W., J.M., A.G., L.T., C.N.B.M.); Division of Cardiology, University of Florida, Gainesville, FL (C.J.P.).

Acknowledgments

All authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Sources of Funding

AIBadri is supported by American Heart Association Postdoctoral Fellowship Award Grant (18POST34080330). This work was also supported by contracts from the National Heart, Lung, and Blood Institute nos. N01-HV-68161, N01-HV-68162, N01-HV-68163, N01-HV-68164, grants U0164829, U01 HL649141, U01 HL649241, K23HL105787, T32HL09751, R01 HL090957, IR03AA032631 from the National Institute on Aging, GCRC grant M01-RR00425 from the National Center for Research Resources, the National Center for Advancing Translational Sciences Grant UL1TR000124 and UL1TR001427, and grants from the Gustavus and Louis Pfeiffer Research Foundation, Danville, NJ, the Edythe L. Broad and the Constance Austin Women’s Heart Research Fellowships, Cedars-Sinai Medical Center, Los Angeles, California, the Barbra Streisand Women’s Cardiovascular Research and Education Program, Cedars-Sinai Medical Center, Los Angeles, The Linda Joy Pollin Women’s Heart Health Program, and the Enka Glazer Women’s Heart Health Project, Cedars-Sinai Medical Center, Los Angeles, California. Dr Pepine is supported by the Gatorade Trust and the PCONnet-One Florida Clinical Research Consortium CDRN-1501-26692, University of Florida, Gainesville, FL. Quyumi is supported by National Institutes of Health (NIH) grants 5P01HL101398-02, 1P20HL113451-01, 1R56HL126558-01, 1RF1AG051633-01, R01NS064162-01, R01 HL88650-01, HL055479-01, U10HL110302-01, 1DP3DK094346-01, and 2P01HL086773-06A1. This work is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, and Blood Institute or National Institutes of Health.

Disclosures

Dr Mehta has received research grants from Gilead and General Electric. Dr Bairey Merz has received an honorarium from Abbott Diagnostics and serves as a Board Director for iRhythm. Dr Pepine receives support from the NHHLBI–HL087366 (UFRC for the Cardiovascular Cell Therapy Research Network), HL132448 (Brain-Gut Microbiome-Immune Axis in Hypertension), HL033610 (Angiotensin and Neuroimmune Activation in Hypertension), and HL146158 (WISE HFpEF); the Gatorade Trust through funds distributed by the University of Florida, Department of Medicine; NIH NCATS—University of Florida Clinical and Translational Science; UL1TR000124; PCONnet-OneFlorida Clinical Research Consortium CDRN-1501-26692; and US Department of Defense PR161603 (WARRIOR). The remaining authors have no disclosures to report. Dr Pepine reports grants from NIH/ NHLBI, NIH/NCATS, grants from BioCardia BC-14-001-02; Mesolectib, Inc. MSB-MPC-CHF001; Ventrix, Inc.; Athtery Inc. AMI Multi Stem; Verity Life Sciences LLC-Project Baseline OSMB; Ironwood MSB-MPC-CHF00-DMC, Imbria Pharmaceuticals Inc.; Milestone Pharmaceuticals Inc.; Caladrius Biosciences, Inc.; Gatorade Trust; and McJunkin Family Foundation.

REFERENCES

1. Buchthal SD, den Hollander JA, Merz CN, Rogers WJ, Pepine CJ, Reichek N, Sharaf BL, Reis S, Kelsey SF, Pohost GM. Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Engl J Med. 2000;342:829–835.
2. AIBadri A, Bairey Merz CN, Johnson BD, Wei J, Mehta PK, Cook-Wiens G, Reis SE, Kelsey SF, Bittner V, Sopko G, et al. Impact of abnormal coronary reactivity on long-term clinical outcomes in women. J Am Coll Cardiol. 2019;73:684–693.
3. Wei J, Mehta PK, Shutef C, Yang Y, Gill E, Kahlon R, Cook-Wiens G, Minissian M, Kar S, Thomson L, et al. Diastolic dysfunction measured by cardiac magnetic resonance imaging in women with signs and symptoms of ischemia but no obstructive coronary artery disease. Int J Cardiovasc. 2016;220:775–780.
4. Nelson MD, Szczepaniak LS, Wei J, Haftabdaradaren A, Bharadwaj M, Sharif B, Mehta P, Zhang X, Thomson LE, Berman DS, et al. Diastolic dysfunction in women with signs and symptoms of ischemia in the absence of obstructive coronary artery disease: a hypothesis-generating study. Circ Cardiovasc Imaging. 2014;7:510–516.
5. Li YY, Bush CA, Orsini A, Mi Z, Leier CV. Predictors of inpatient outcomes in hospitalized patients after left heart catheterization. Am J Cardiol. 2009;103:486–490.
6. Salem R, Denault AY, Couture P, Belisle S, Fortier A, Guertin MC, Carrier M, Martineau R. Left ventricular end-diastolic pressure is a predictor of mortality in cardiac surgery independently of left ventricular ejection fraction. Br J Anaesth. 2006;97:292–297.
7. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC Jr, Jacobsen SJ, Rodeheffer RJ. Progression of left ventricular diastolic dysfunction and risk of heart failure. JAMA. 2011;306:856–863.
8. Aljaroudi W, Alaires MC, Hailey C, Rodriguez L, Grimm RA, Thomas JD, Jaber WA. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation. 2012;125:782–788.
9. Hailey CM, Houghtaling PL, Khalil MK, Thomas JD, Jaber WA. Mortality rate in patients with diastolic dysfunction and normal systolic function. Arch Intern Med. 2011;171:1082–1087.
10. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5:9–19.
11. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T. Activation of stress signaling pathways by the end product of lipid peroxidation. J Biol Chem. 1999;274:2234–2242.
12. Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865–1879.
13. Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintraub WS, Hooper WC, Vaccarino V, Alexander RW, Harrison DG, Quyyumi AA. Endothelial dysfunction and aminoalcohol biomarkers of oxidative stress in healthy adults. Hypertension. 2006;52:80–85.
27. Mendoza DD, Abramson JL, Jones DP, Rhodes SD, Weintrob WS, Hooper WC, Vaccarino V, Harrison DG, Quyyumi AA. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol. 2006;47:1005–1011.

25. Kawaji K, Codella NC, Prince MR, Chu CW, Shakoor A, LaBounty TM, Min JK, Swaminathan RV, Devereux RB, Wang Y, et al. Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening. Cardiovasc Res. 2018;114:954–964.

24. Wei J, Mehta PK, Johnson BD, Samuels B, Kar S, Anderson RD, Quesada O, AlBadri A, Wei J, Shufelt C, Mehta PK, Maughan J, Suppogu N, Aldiwani H, Cook-Wiens G, Nelson MD, et al. Design, methodology and baseline characteristics of the Women’s Ischemia Syndrome Evaluation (WISE)-CVD. J Am Coll Cardiol. 2013;62:263–271.

23. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey Jr BL, Sopko G. The Women’s Ischemia Syndrome Evaluation (WISE) study: protocol design, methodology and feasibility report. J Am Coll Cardiol. 1999;33:1453–1461.

22. Quesada O, AlBadri A, Wei J, Shufelt C, Mehta PK, Maughan J, Suppogu N, Aldiwani H, Cook-Wiens G, Nelson MD, et al. Design, methodology and baseline characteristics of the Women’s Ischemia Syndrome Evaluation-Coronary Vascular Dysfunction (WISE-CVD). Am Heart J. 2020;220:224–236.

21. Thomson LE, Wei J, Agarwal M. Cardiac magnetic resonance myocardial perfusion reserve index is reduced in women with coronary microvascular dysfunction. A National Heart, Lung, and Blood Institute-sponsored study from the Women’s Ischemia Syndrome Evaluation. Circ Cardiovasc Imaging. 2015;8:e002481.

20. Anderson JL, Adams CD, Antman EM, Bridges CR, Califf RM, Casey Jr BL, Sopko G. The Women’s Ischemia Syndrome Evaluation (WISE) study: protocol design, methodology and feasibility report. J Am Coll Cardiol. 1999;33:1453–1461.

19. Ghasemzadeh N, Patel RS, Eapen DJ, Veledar E, Al Kassem H, Manocha P, Khayata M, Zafari AM, Sopko G, Bairey Merz CN. Coronary microvascular dysfunction and plaque vulnerability. J Am Coll Cardiol. 2015;62:263–271.

18. Schutte R, Schutte AE, Huisman HW, van Rooyen JM, Malan NT, Peter SJ, Mehta PK, Maughan J, Suppogu N, Aldiwani H, Cook-Wiens G, Nelson MD, et al. Design, methodology and baseline characteristics of the Women’s Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol. 2013;62:263–271.

17. Ozguner F, Koyu A, Cesur G. Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol In Vitro. 2005;21:21–26.

16. Sorop O, Heinonen I, van Kranenburg M, van de Wouw J, de Beer VJ, Nguyen ITN, Octavia Y, van Duin RWB, Stam K, van Geuns RJ, et al. Decrease in reactive oxygen species production affects regional contractile function in ischemic heart failure. Antioxid Redox Signal. 2013;18:1009–1020.

15. Patel RS, Ghasemzadeh N, Eapen DJ, Sher S, Arshad S, Ko YA, Veledar E, Samady H, Zafari AM, Sopko G, et al. Novel biomarker of oxidative stress is associated with risk of death in patients with coronary artery disease. Circulation. 2016;133:361–369.

14. Ashfaq S, Abramson JL, Jones DP, Rhodes SD, Weintrob WS, Hooper WC, Vaccarino V, Harrison DG, Quyyumi AA. The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults. J Am Coll Cardiol. 2006;47:1005–1011.

13. Patel BG, Wilder T, Solaro RJ. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C. Front Physiol. 2013;4:399.

12. Lovelock JD, Monaskey MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, et al. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res. 2012;110:841–850.

11. Silberman GA, Fan TH, Liu H, Jiao Z, Xiao XD, Lovelock JD, Boulden BM, Wilder J, Fredd S, Bernstein KE, et al. Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation. 2010;121:519–528.

10. Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B. Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res. 2008;102:242–249.

9. Paulus WJ, Tschop C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–271.

8. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–2832.

7. Dhawan SS, Estehardi P, McDaniel MC, Fike LV, Jones DP, Quyyumi AA, Samady H. The role of plasma aminothiols in the prediction of coronary microvascular dysfunction and plaque vulnerability. Atherosclerosis. 2011;219:266–272.

6. Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, Hainer J, Bibbo CF, Durbala S, Blankstein R, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39:840–849.

5. Samman Tahhan A, Sandsesara PB, Hayek SS, Alkhoder A, Chivukula K, Hammadah M, Mohamed-Keli H, O’Neal WT, Topel M, Ghasemzadeh N, et al. Association between oxidative stress and atrial fibrillation. Heart Rhythm. 2017;14:1849–1855.

4. Gare M, Parai A, Milosavljic D, Kersten JR, Warltier DC, Pagel PS. Conscious sedation with midazolam or propofol does not alter left ventricular diastolic performance in patients with preexisting diastolic dysfunction: a transmital and tissue Doppler transthoracic echocardiography study. Anesth Analg. 2001;93:865–871.

3. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–2832.

2. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP. Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med. 1998;24:699–704.

1. Jones DP, Liang Y. Measuring the poise of thiol/disulfide couples in vivo. Free Radic Biol Med. 2009;47:1329–1338.