Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function

G. Abbas1 and G. Farid2

Abstract: In this paper, we are interested to prove some Hadamard and Fejér–Hadamard-type integral inequalities for m-convex functions via generalized fractional integral operator containing the generalized Mittag-Leffler function. In connection with we obtain some known results.

Subjects: Science; Mathematics & Statistics; Advanced Mathematics; Pure Mathematics

Keywords: convex functions; Hadamard inequality; fractional integral operators; Mittag–Leffler function

2010 Mathematics subject classifications: Primary 26A51; 26A33; 33E12

1. Introduction
Convex functions play an important role in the study of mathematical analysis. A close generalization of convex functions is m-convex function introduced by Toader (1984).

Definition 1 A function $f:[0, b] \to \mathbb{R}$, $b > 0$ is said to be m-convex function if for all $x, y \in [0, b]$ and $t \in [0, 1]$

$$f(tx + m(1 - t)y) \leq tf(x) + m(1 - t)f(y)$$

holds for $m \in [0, 1]$.

For $m = 1$ the above definition becomes the definition of convex functions. Also a convex function $f:I \to \mathbb{R}$ is equivalently defined by the Hadamard inequality.

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq \frac{f(a) + f(b)}{2}$$

where $a, b \in I$ with $a < b$.

ABOUT THE AUTHORS
G. Abbas is working as a lecturer in Government College Bhalwal, Sargodha. Also, he is working on his PhD dissertation in the University of Sargodha, Sargodha Pakistan.

G. Farid is working as an assistant professor in the Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Pakistan.

He is interested to work in the areas of Mathematical analysis, Functional analysis, Fractional Calculus.

PUBLIC INTEREST STATEMENT
Inequalities are very useful almost in all areas of Mathematics. Fractional integral inequalities are useful in establishing the uniqueness of solutions of certain partial differential equations also provides upper and lower bounds for the solutions of fractional boundary value problems. In this paper, we have established fractional integral inequalities of Hadamard and Fejer–Hadamard type using m-convex functions. Also we have deduced some known results.
If we take \(m = 0 \), then we obtain the concept of starshaped functions on \([0, b]\). A function \(f: [0, b] \to \mathbb{R} \) is said to be starshaped if \(f(tx) \leq tf(x) \) for all \(t \in [0, 1] \) and \(x \in [0, b] \).

The set of \(m \)-convex functions on \([0, b]\) for which \(f(0) < 0 \) is denoted by \(K_m(b) \), then we have \(K_{1}(b) \subset K_{m}(b) \subset K_{2}(b) \) whenever \(m \in (0, 1) \) (Toader, 1984).

In the class \(K_{2}(b) \) there are convex functions \(f: [0, b] \to \mathbb{R} \) for which \(f(0) \leq 0 \) (see, Dragomir, 2002). There are lot of results and inequalities related to \(m \)-convex functions since they are defined, for details see for example Dragomir (2002), Dragomir and Toader (1993), Farid, Marwan, and Rehman (2015), Iscan (2013) and references there in.

The Hadamard inequality is very important and many mathematicians produced its generalization and refinements (e.g. see Bakula, Ozdemir, & Pečarić, 2008; Bakula & Pečarić, 2004; Chen & Rehman, 2015), Iscan (2013) and references there in.

Fractional calculus is an important and interesting field of mathematics. A number of authors is working to produce new results in this branch for example, N. Katugampola gives the new fractional derivative which generalizes the Riemann–Liouville fractional derivatives to a single form (Katugampola, 2014), Almeida obtained the Caputo–Katugampola fractional derivative which is generalization of Caputo and Caputo–Hadamard fractional derivatives (Almeida, 2016), Thairprayoon studied the existence and uniqueness of solutions for a problem consisting of non-linear Langevin equation of Riemann–Liouville-type fractional derivatives with non-local Katugampola fractional integral conditions (Thairprayoon, Ntouyas, & Teriboon, 2015).

As in this paper we have to prove the Hadamard and the Fejér-Hadamard-type integral inequalities for \(m \)-convex functions via generalized fractional integral operator containing Mittag-Leffler function (Salim & Faraj, 2012), we give the following definition:

Definition 2 Let \(a, b, k, l, \gamma \) be positive real numbers and \(\omega \in \mathbb{R} \). Then the generalized fractional integral operator containing Mittag-Leffler function \(e_{\alpha,\beta}^{\gamma,k,l} \) and \(e_{\alpha,\beta}^{\gamma,k,l} \) for a real valued continuous function \(f \) is defined by:

\[
\left(e_{\alpha,\beta}^{\gamma,k,l} f \right)(x) = \int_{0}^{x} (x-t)^{\delta-1} E_{\alpha,\beta}^{\gamma,k,l}(\omega(x-t)^{\delta}) f(t) \, dt,
\]

and

\[
\left(e_{\alpha,\beta}^{\gamma,k,l} f \right)(x) = \int_{x}^{b} (t-x)^{\delta-1} E_{\alpha,\beta}^{\gamma,k,l}(\omega(t-x)^{\delta}) f(t) \, dt,
\]

where the function \(E_{\alpha,\beta}^{\gamma,k,l}(t) \) is the generalized Mittag-Leffler function defined as

\[
E_{\alpha,\beta}^{\gamma,k,l}(t) = \sum_{n=0}^{m} \frac{(\gamma)_{k+1}}{\Gamma(\alpha n + \beta)} \delta_{k+1} t^{n},
\]

where \((\alpha)_{k} = (\alpha)(\alpha + 1)(\alpha + 2) \ldots (\alpha + n - 1) \), \((\alpha)_{0} = 1 \). If \(\delta = l = 1 \) in (1), then integral operator \(e_{\alpha,\beta}^{1,1,k,l} \) reduces to an integral operator \(e_{\alpha,\beta}^{1,1,1} \) containing generalized Mittag-Leffler function \(E_{\alpha,\beta}^{\gamma,k,l} \) introduced by Srivastava and Tomovski (2009). Along with \(\delta = l = 1 \) in addition if \(k = 1 \) then (1) reduces to an integral operator defined by Prabhakar (1971) containing Mittag-Leffler function \(E_{\alpha}^{\gamma} \). For \(\omega = 0 \) in (1), integral operator \(e_{\alpha,\beta}^{\gamma,k,l} \) reduces to the Riemann–Liouville fractional integral operators (Salim & Faraj, 2012),
Salim and Faraj (2012), Srivastava and Tomovski (2009) properties of generalized integral operator and generalized Mittag-Leffler function have been studied in brief. Salim and Faraj (2012) it is proved that $E^{\alpha,\beta}_{\kappa,\lambda}(t)$ is absolutely convergent for all t where $\kappa < \lambda + \alpha$.

Since
\[
|E^{\alpha,\beta}_{\kappa,\lambda}(t)| \leq \sum_{n=0}^{\infty} \left| \frac{(\gamma)_{\kappa} t^n}{\Gamma(\alpha n + \beta)(\delta)_m} \right|,
\]
we say that $\sum_{n=0}^{\infty} \left| \frac{(\gamma)_{\kappa} t^n}{\Gamma(\alpha n + \beta)(\delta)_m} \right| = S$, then
\[
|E^{\alpha,\beta}_{\kappa,\lambda}(t)| \leq S.
\]
We use this definition of S in sequel in our results.

In Farid (2016) the Hadamard and the Fejér-Hadamard inequality for generalized fractional integral operator containing Mittag-Leffler function defined in (1) are proved. The Hadamard and the Fejér-Hadamard-type inequality for several fractional integral operators are also mentioned in this paper. Also in Farid, Rehman, and Zahra (2016), Iscan (2015), Noor, Noor, and Awan (2015) authors proved the Hadamard and the Fejér-Hadamard-type inequalities for Riemann–Liouville fractional integral operator (Chen & Katugampola, 2017).

In Mubeen and Habibullah (2012) the Riemann–Liouville κ-fractional integral operator is defined, we have obtained some results for this operator.

Definition 3 Let $f \in L^1[a,b]$. Then k-fractional integrals of order $\alpha, \kappa > 0$ with $\alpha \geq 0$ are defined as:

\[
I^\alpha_\kappa f(x) = \frac{1}{\Gamma(\alpha) \Gamma(\kappa)} \int_{0}^{x} (x - t)^{\alpha-1} f(t) \, dt, \quad x > a
\]

and

\[
I^\alpha_\kappa f(x) = \frac{1}{\Gamma(\alpha) \Gamma(\kappa)} \int_{x}^{b} (t - x)^{\alpha-1} f(t) \, dt, \quad x < b,
\]

where $\Gamma(\alpha)$ is the k-Gamma function defined as:

\[
\Gamma(\alpha) = \int_{0}^{\infty} t^{\alpha-1} e^{-t} \, dt.
\]

One can note that

\[
\Gamma(\alpha + k) = \alpha \Gamma(\alpha)
\]

and $I^{\alpha,\beta}_{a,b} f(x) = I^{0,\beta}_{b-a} f(x) = f(x)$.

In this paper, we give the Hadamard and the Fejér-Hadamard-type inequalities for m-convex function via generalized fractional integral operator containing generalized Mittag-Leffler function.
The results of Dragomir and Agarwal (1998), Farid (2016), Iscan (2015), Noor et al. (2015), Sarikaya, Set, Yaldiz, and Basak (2013) are special cases of our results. It is also remarked that many integral inequalities for different kinds of integral operators can be obtained.

2. Main results

First we prove the following lemmas.

Lemma 2.1 Let \(g: [a,b] \to \mathbb{R} \) be an integrable and symmetric about \(\frac{a+b}{2} \) and \(g \in L[a,b] \). Then we have

\[
\left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) = \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(a) \]

\[
= \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) + \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(a) = \frac{mb}{2}.
\]

Proof Since \(g \) is symmetric about \(\frac{a+b}{2} \), we have \(g(a + mb - x) = g(x) \). By the definition of generalized fractional integral operator containing Mittag-Leffler function, we have

\[
\left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) = \int_a^b (mb - x)^{r-1} E_{\alpha}^{r,A,k}(\omega(mb - x)^r)g(x) \, dx,
\]

replace \(x \) by \(a + mb - x \) in Equation (6) we have

\[
\left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) = \int_a^b (x - a)^{r-1} E_{\alpha}^{r,A,k}(\omega(x - a)^r)g(x) \, dx.
\]

This implies

\[
\left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) = \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(a).
\]

By adding Equations (6) and (7) we get (5). \(\Box \)

Lemma 2.2 Let \(f: [a,b] \to \mathbb{R} \) be a differentiable mapping on \((a, b)\) and \(f' \in L[a,b] \). If \(g: [a,b] \to \mathbb{R} \) is integrable and symmetric about \(\frac{a+b}{2} \), then the following equality for generalized fractional integral operator containing Mittag-Leffler function holds

\[
\left(\frac{f(a) + f(mb)}{2} \right) \left[\left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} f \right)(mb) + \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} f \right)(a) \right]
\]

\[
- \int_a^b \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} fg \right)(mb) + \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} fg \right)(a) \, ds
\]

\[
= \int_a^b \left(mb - s \right)^{r-1} E_{\alpha}^{r,A,k}(\omega(mb - s)^r)g(s) \, ds
\]

\[
- \int_a^b \left(s - a \right)^{r-1} E_{\alpha}^{r,A,k}(\omega(s - a)^r)g(s) \, ds \right] f'(t) \, dt. \tag{8}
\]

Proof Integrating by parts we have

\[
\int_a^b \left(mb - s \right)^{r-1} E_{\alpha}^{r,A,k}(\omega(mb - s)^r)g(s) \, ds \right] f'(t) \, dt
\]

\[
= f(mb) \int_a^b \left(mb - s \right)^{r-1} E_{\alpha}^{r,A,k}(\omega(mb - s)^r)g(s) \, ds
\]

\[
- \int_a^b \left(mb - t \right)^{r-1} E_{\alpha}^{r,A,k}(\omega(mb - t)^r)fg(t) \, dt
\]

\[
= f(mb) \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} g \right)(mb) - \left(e^{r,A,k}_{a,b,\lambda,\mu,\omega} fg \right)(mb).
\]
Using Lemma 2.1, we have
\[
\int_a^b \int_a^t (mb - s)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - s)^{\alpha}) g(s) \, ds \, dt
\]
\[
= f(mb) \left[(e_{\alpha, \beta}^k mb g(mb) + (e_{\alpha, \beta}^k mb g)(a) - (e_{\alpha, \beta}^k mb f g)(mb) \right] \tag{9}
\]
In the same way we have
\[
\int_a^b \int_a^t (s - a)^{\beta - 1} E_{\alpha, \beta}^k(\omega(s - a)^{\alpha}) g(s) \, ds \, dt
\]
\[
= f(a) \left[(e_{\alpha, \beta}^k mb g(mb) + (e_{\alpha, \beta}^k mb g)(a) - (e_{\alpha, \beta}^k mb f g)(a) \right] \tag{10}
\]
Adding (9) and (10) we get (8).

Using Lemma 2.2 we prove the following theorem.

THEOREM 2.3 Let \(f : [a, b] \to \mathbb{R} \) be a differentiable mapping in the interior of \([a, b]\) with \(f' \in L[a, b], a < b \). If \(|f'| \) is m-convex function on \([a, b]\) and \(g : [a, b] \to \mathbb{R} \) is continuous and symmetric about \(\frac{a + b}{2} \), then for \(k < l + a \) the following inequality holds
\[
\left| \left(\frac{f(a) + f(mb)}{2} \right) \left(e_{\alpha, \beta}^k mb g(mb) + (e_{\alpha, \beta}^k mb g)(a) \right) - \left(e_{\alpha, \beta}^k mb f g(mb) \right) \right| \leq \|g\|_m S(mb - a)^{\beta + 1} \left(1 - \frac{1}{2^\beta} \right) \left| f'(a) + m f'(b) \right|,
\]
where \(\|g\|_m = \sup_{t \in [a, b]} |g(t)| \).

Proof Using Lemma 2.2 we have
\[
\left| \left(\frac{f(a) + f(mb)}{2} \right) \left(e_{\alpha, \beta}^k mb g(mb) + (e_{\alpha, \beta}^k mb g)(a) \right) - \left(e_{\alpha, \beta}^k mb f g(mb) \right) \right| \leq \int_a^b \int_a^t \left(mb - s \right)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - s)^{\alpha}) g(s) \, ds \, dt - \int_a^b \left(mb - t \right)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - t)^{\alpha}) g(s) \, ds \tag{11}
\]
Using m-convexity of \(|f'| \) we have
\[
|f'(t)| \leq \frac{mb - t}{mb - a} |f'(a)| + \frac{m - t - a}{mb - a} |f'(b)| \tag{12}
\]
where \(t \in [a, b] \).

Using symmetry of \(g \) one can have
\[
\int_a^b \left(mb - s \right)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - s)^{\alpha}) g(s) \, ds \]
\[
= \int_a^{mb - t} (mb - s)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - s)^{\alpha}) g(a + mb - s) \, ds \]
\[
= \int_a^{mb - t} (mb - s)^{\beta - 1} E_{\alpha, \beta}^k(\omega(mb - s)^{\alpha}) g(s) \, ds.
\]
By (11), (12), (13) and absolute convergence of Mittag-Leffler function, we have

\[
\left\| \frac{f(a) + f(mb)}{2} \left(\left(e_{\alpha,\beta}^{\gamma,\delta} \sum_{m=0}^{\infty} g(m) \right)(mb) \right) + \left(e_{\alpha,\beta}^{\gamma,\delta} \sum_{m=0}^{\infty} g(m) \right)(a) \right\| \\
- \left\| \left(e_{\alpha,\beta}^{\gamma,\delta} \sum_{m=0}^{\infty} f(m)g(mb) \right)(mb) \right\| \\
\leq \int_{0}^{mb} \int_{0}^{mb} \int_{0}^{mb} \int_{0}^{mb} \left| (mb - t)^{\beta - 1} E_{\alpha,\beta}^{\gamma,\delta}(\alpha(mb - s)^{\gamma})g(s) \right| ds dt \times \left(\frac{mb - t}{mb - a} |f'(a)| + \frac{t - a}{mb - a} |f'(b)| \right) dt \\
+ \int_{0}^{mb} \int_{0}^{mb} \int_{0}^{mb} \int_{0}^{mb} \left| (mb - t)^{\beta - 1} E_{\alpha,\beta}^{\gamma,\delta}(\alpha(mb - s)^{\gamma})g(s) \right| ds dt \times \left(\frac{mb - t}{mb - a} |f'(a)| + \frac{t - a}{mb - a} |f'(b)| \right) dt.
\]

(14)

This gives

\[
\int_{0}^{t} (mb - s)^{\beta - 1} E_{\alpha,\beta}^{\gamma,\delta}(\alpha(mb - s)^{\gamma})g(s) ds \\
- \int_{t}^{mb} (s - a)^{\beta - 1} E_{\alpha,\beta}^{\gamma,\delta}(\alpha(s - a)^{\gamma})g(s) ds \\
= \int_{\alpha+mb-t}^{a+mb-t} (mb - s)^{\beta - 1} E_{\alpha,\beta}^{\gamma,\delta}(\alpha(mb - s)^{\gamma})g(s) ds
\]

(13)
After simple calculation one can have
\[
\int_a^b \frac{(mb - t) - (t - a)}{(t - a) - (mb - t)}(mb - t) \, dt
\]
\[
= \int_a^b \frac{(t - a) - (mb - t)(t - a)}{(t - a) - (mb - t)} \, dt
\]
\[
= \frac{(mb - a)^{\beta+2}}{\beta+1} \left(\frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right),
\]
and
\[
\int_a^b \frac{(mb - t) - (t - a)}{(t - a) - (mb - t)} \, dt
\]
\[
= \int_a^b \frac{(t - a) - (mb - t)(t - a)}{(t - a) - (mb - t)} \, dt
\]
\[
= \frac{(mb - a)^{\beta+2}}{\beta+1} \left(\frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right)
\]

Using the above calculations in (14) we have
\[
\left\| \frac{f(a) + f(mb)}{2} \right\| \left[\left(\int_a^b (x^{\beta}) \frac{dx}{a} \right) (mb) + \left(\int_a^b (x^{\beta}) \frac{dx}{a} \right) (a) \right] \]
\[
- \left[\left(\int_a^b (x^{\beta}) \frac{dx}{a} \right) (mb) + \left(\int_a^b (x^{\beta}) \frac{dx}{a} \right) (a) \right]
\]
\[
\leq \|g\| \left\| \frac{mb - a}{\beta+1} \right\| \left(\frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right)
\]
\[
+ \left(\frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right) \|f'(a)\| + |f'(b)|
\]
\[
= \frac{\|g\| \left\| \frac{mb - a}{\beta+1} \right\| \left(1 - \frac{1}{2^{\beta+1}} \right) \|f'(a)\| + |f'(b)|}.
\]

This completes the proof. \(\square\)

In the following corollary, we have the Fejér-Hadamard-type inequality for the k-fractional Riemann–Liouville integral operator (Sarikaya & Kuraca, 2014).

Corollary 2.4 In Theorem 2.3 if we put \(\omega = 0\), \(\beta = \frac{a}{k}\) and \(m = 1\) then we have the following inequality

\[
a, k > 0.
\]
\[
\left(\int_a^b \frac{f(a) + f(b)}{2} \right) \left[I_{a+1}^{\beta}(g(b) + I_{b+1}^{\beta}(a)) - \left[I_{a+1}^{\beta}(fg(b) + I_{b+1}^{\beta}(a)) \right] \right]
\]
\[
\leq \frac{\|g\| \left\| I_{a+1}^{\beta}(b - a) \right\| \left(\frac{1}{k+1} \right) \|f'(a)\| + |f'(b)|},
\]

In the following corollary we obtain the Fejér-Hadamard-type inequality for Riemann–Liouville fractional integral operator.

Corollary 2.5 In Theorem 2.3 for \(\omega = 0\), \(\beta = a\) and \(k = m = 1\) we have the following inequality for Riemann–Liouville fractional integral operator.
\(\alpha > 0. \)

\[
\left(\frac{f(a) + f(b)}{2} \right) \left[I_\alpha \ g(b) + I_\alpha' \ g(a) \right] - \left[I_\alpha' \ f(b) + I_\alpha' \ fg(a) \right]
\leq \frac{\|g\|_\infty \Gamma(\alpha + 1)(b - a)^{\alpha+1}}{(\alpha + 1)} \left(1 - \frac{1}{2^\alpha} \right) \left\| f'(a) \right\| + \left\| f'(b) \right\|.
\]

Remark 2.6

(i) From Theorem 2.3 we get (Abbas, Farid, & Rehman, in press, Theorem 2.3) for \(m = 1. \)

(ii) In Theorem 2.3 for \(\omega = 0 \) and \(g(s) = 1 \) along with \(\beta = m = 1 \) we get Dragomir and Agarwal (1998, Theorem 2.2).

(iii) In Theorem 2.3 if we put \(\omega = 0 \) and \(g(s) = 1 \) with \(m = 1 \) then we get Sarikaya et al. (2013, Theorem 3).

Theorem 2.7 Let \(f:[a, b] \to \mathbb{R} \) be a differentiable mapping in the interior of \([a, b]\) with \(f' \) is integrable over \([a, b], \ a < b. \) If \(|f'|^q, \ q > 1 \) is m-convex function on \([a, b] \) and \(g:[a, b] \to \mathbb{R} \) is continuous and symmetric to \(\frac{m-b}{2}, \) then for \(k < l + a \) the following inequality holds

\[
\left(\frac{f(a) + f(mb)}{2} \right) \left[\left(e^{\frac{\alpha \lambda}{m-b}}g \right)(mb) + \left(e^{\frac{\alpha \lambda}{m-b}}g \right)(a) \right] - \left[\left(e^{\frac{\alpha \lambda}{m-b}}f \right)(mb) + \left(e^{\frac{\alpha \lambda}{m-b}}f \right)(a) \right] \\
\leq 2 \frac{\|g\|_\infty \Gamma(m-b-a)^{\alpha+1}}{\beta \l(\beta + 1 \r)(m-b-a)\l(1 - \frac{1}{2^\alpha}\r) \left\{ \left(\left| f'(a) \right|^q + m \left| f'(b) \right|^q \right) \right\}^{\frac{1}{q}}}.
\]

where \(\|g\|_\infty = \sup_{t \in [a, b]} |g(t)| \frac{1}{p} + \frac{1}{q} = 1 \) and \(\beta > 0. \)

Proof Using Lemma 2.2, Hölder inequality, (13) and m-convexity of \(|f'|^q \) respectively we have

\[
\left(\frac{f(a) + f(mb)}{2} \right) \left[\left(e^{\frac{\alpha \lambda}{m-b}}g \right)(mb) + \left(e^{\frac{\alpha \lambda}{m-b}}g \right)(a) \right] - \left[\left(e^{\frac{\alpha \lambda}{m-b}}f \right)(mb) + \left(e^{\frac{\alpha \lambda}{m-b}}f \right)(a) \right] \\
\leq \left[\left| \int_a^{mb-t} \left(mb - s \right)^{\alpha-1} E^{\frac{\alpha \lambda}{m-b}}(os) g(s) \ ds \right| \right]^{\frac{1}{\alpha}} \\
\times \left| \frac{\left(mb-t \right)}{\alpha \lambda} \left(mb-t \right)^{\frac{\alpha}{\lambda}} \left(mb-t \right)^{\frac{\alpha}{\lambda}} \right| \left(g(s) \ ds \right) \right| \left| f'(t) \right|^q.
\]

Since \(|f'|^q \) is m-convex on \([a, b], \) we have

\[
\left| f'(t) \right|^q \leq \frac{mb-t}{mb-a} \left| f'(a) \right|^q + m \frac{t-a}{mb-a} \left| f'(b) \right|^q.
\]

Using \(\|g\|_\infty = \sup_{t \in [a, b]} |g(t)|, \) and absolute convergence of Mittag-Leffler function, inequality (16) becomes

\[
\left| f'(t) \right|^q \leq \frac{mb-t}{mb-a} \left| f'(a) \right|^q + m \frac{t-a}{mb-a} \left| f'(b) \right|^q.
\]
After simplification, we get

\[
\left| \left(\frac{f(a) + f(mb)}{2} \right) \left((e_{\alpha}^{\beta} g)(mb) + (e_{\alpha}^{\beta} g)(a) \right) \right| \\
- \left| \left(e_{\alpha}^{\beta} f g \right)(mb) + \left(e_{\alpha}^{\beta} f g \right)(a) \right| \\
\leq \|g\|_{\infty} \left[\frac{\left(mb - a \right)^{\beta+1}}{\beta + 1} \left(1 - \frac{1}{2^\beta} \right) + \frac{\left(mb - a \right)^{\beta+1}}{\beta + 1} \left(1 - \frac{1}{2^\beta} \right) \right]^{1-\frac{1}{\beta}} \\
\times \int_{a}^{mb} \left(mb - t \right)^{\beta} \left(t - a \right)^{\beta} \left| f'(t) \right|^q \, dt + \int_{mb}^{b} \left((mb - t)^{\beta} - (t - a)^{\beta} \right) \left| f'(t) \right|^q \, dt.
\]

Using (17) in above inequality, we have

\[
\left| \left(\frac{f(a) + f(mb)}{2} \right) \left((e_{\alpha}^{\beta} g)(mb) + (e_{\alpha}^{\beta} g)(a) \right) \right| \\
- \left| \left(e_{\alpha}^{\beta} f g \right)(mb) + \left(e_{\alpha}^{\beta} f g \right)(a) \right| \\
\leq \|g\|_{\infty} \left[\frac{\left(mb - a \right)^{\beta+1}}{\beta + 1} \left(1 - \frac{1}{2^\beta} \right) \right]^{1-\frac{1}{\beta}} \\
\times \int_{a}^{mb} \left(mb - t \right)^{\beta} \left(t - a \right)^{\beta} \left(\frac{mb - t}{mb - a} \left| f'(a) \right|^q + m \frac{t - a}{mb - a} \left| f'(b) \right|^q \right) \, dt \\
+ \int_{mb}^{b} \left((mb - t)^{\beta} - (t - a)^{\beta} \right) \left(\frac{mb - t}{mb - a} \left| f'(a) \right|^q + m \frac{t - a}{mb - a} \left| f'(b) \right|^q \right) \, dt.
\]

After integrating and simplifying above inequality we get (15). \hfill \Box

In the following we get an inequality for the k-fractional Riemann–Liouville integral operator.
COROLLARY 2.8 In Theorem 2.7 if \(\omega = 0, \beta = \frac{\pi}{\pi} \) and \(m = 1 \) then we have the following inequality for Riemann–Liouville \(k \)-fractional integral operator

\[
\left| \left(\frac{f(a) + f(b)}{2} \right) \left[I_{a}^{\alpha}g(b) + I_{b}^{\alpha}g(a) \right] - \left[I_{a}^{\alpha}fg(b) + I_{b}^{\alpha}fg(a) \right] \right| \\
\leq 2 \frac{\|g\|_{\infty} (a - b)^{\frac{\alpha}{2} + 1}}{\Gamma(\alpha + 1) (a + 1)(b - a)^{\frac{\alpha}{2}}} \left(1 - \frac{1}{2^\alpha} \right) \left(\frac{|f'(a)|^\alpha + |f'(b)|^\alpha}{2} \right)^{\frac{1}{\alpha}} a, k > 0.
\]

COROLLARY 2.9 In Theorem 2.7 if \(\omega = 0, \beta = \alpha \) and \(k = m = 1 \) then we have the following inequality for Riemann–Liouville fractional integral operator

\[
\left| \left(\frac{f(a) + f(b)}{2} \right) \left[I_{a}^{\alpha}g(b) + I_{b}^{\alpha}g(a) \right] - \left[I_{a}^{\alpha}fg(b) + I_{b}^{\alpha}fg(a) \right] \right| \\
\leq 2 \frac{\|g\|_{\infty} (a - b)^{\frac{\alpha}{2} + 1}}{(a + 1)(b - a)^{\frac{\alpha}{2}}} \left(1 - \frac{1}{2^\alpha} \right) \left(\frac{|f'(a)|^\alpha + |f'(b)|^\alpha}{2} \right)^{\frac{1}{\alpha}} a > 0.
\]

Remark 2.10 For \(m = 1 \) in Theorem 2.3 we obtained (Abbas et al., in press, Theorem 2.6).

In the following theorem we give the Fejér-Hadamard-type inequality for \(m \)-convex function via generalized fractional integral operator containing Mittag-Leffler functions.

THEOREM 2.11 Let \(f:[a, b] \rightarrow \mathbb{R} \) be \(m \)-convex function with \(b > a \). If \(f(a + mb - x) = f(x) \) and \(g:[a, b] \rightarrow \mathbb{R} \) is integrable, non-negative and symmetric about \(\frac{a + mb}{2} \), then the following inequalities holds

\[
2f \left(\frac{a + mb}{2} \right) \left(E_{\alpha, \alpha}^{\mu, \nu} \left(\frac{a}{m} \right) \right) \leq (1 + m) \left(E_{\alpha, \alpha}^{\mu, \nu} \left(\frac{a}{m} \right) \right) \]

\[
\leq \frac{(f(a) - mf \left(\frac{a}{m} \right))}{(b - a)} \left(E_{\alpha, \alpha}^{\mu, \nu} \left(\frac{a}{m} \right) \right)
\]

\[
+ m \left(f(b) + mf \left(\frac{a}{m} \right) \right) \left(E_{\alpha, \alpha}^{\mu, \nu} \left(\frac{a}{m} \right) \right)
\]

where \(\alpha' = \frac{\alpha}{mb - a} \).

Proof Since \(f \) is \(m \)-convex function, for \(t \in [a, b] \) we have

\[
f \left(\frac{a + mb}{2} \right) = f \left(\frac{ta + mb (1 - t) + m(tb + (1 - t)) a}{2} \right)
\]

\[
\leq \frac{f(ta + m(1 - t)b + mb + (1 - t)) a}{2}.
\]

Multiplying both sides of above inequality by \(2t^{\alpha-1}g \left(tb + (1 - t) \frac{a}{m} \right) E_{\alpha, \alpha}^{\mu, \nu} (\alpha t^\nu) \) and integrating over \([0, 1] \) we have

\[
2f \left(\frac{a + mb}{2} \right) \int_{0}^{1} t^{\alpha-1}g(tb + (1 - t) \frac{a}{m} E_{\alpha, \alpha}^{\mu, \nu} (\alpha t^\nu) \) dt
\]

\[
\leq \int_{0}^{1} t^{\alpha-1}g \left(tb + (1 - t) \frac{a}{m} \right) E_{\alpha, \alpha}^{\mu, \nu} (\alpha t^\nu) f(ta + m(1 - t)b) dt
\]

\[
+ m \int_{0}^{1} t^{\alpha-1}g \left(tb + (1 - t) \frac{a}{m} \right) E_{\alpha, \alpha}^{\mu, \nu} (\alpha t^\nu) f \left(tb + (1 - t) \frac{a}{m} \right) dt.
\]
Setting \(tb + (1 - t)\frac{a}{m}\) and using \(f(a + mb - mx) = f(x)\) after simplification (18) becomes

\[
2f\left(\frac{a + mb}{2}\right)_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right) \leq (1 + m)_{\epsilon_a,b}^{\epsilon_{a,b}} (f) \left(\frac{a}{m}\right).
\] (19)

For second inequality \(m\)-convexity of \(f\) gives

\[
f(ta + m(1 - t)b) + mf\left(\frac{b + (1 - t)\frac{a}{m}}{m}\right) \leq m\left[f(b) + mf\left(\frac{a}{m}\right)\right] + \left[f(a) - mf\left(\frac{a}{m}\right)\right]t.
\] (20)

Multiplying both sides of inequality (20) with \(t^{-1}\) and integrating on \([0, 1]\), then setting \(x = tb + (1 - t)\frac{a}{m}\) using \(f(a + mb - mx) = f(x)\) after calculation we have

\[
(1 + m)_{\epsilon_a,b}^{\epsilon_{a,b}} (f) \left(\frac{a}{m}\right) \leq \left(f(a) - mf\left(\frac{a}{m}\right)\right)_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right)
\]

\[
+ m\left[f(b) + mf\left(\frac{a}{m}\right)\right]_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right).
\] (21)

Combining (19) and (21) we get the desired result.

COROLLARY 2.12 In Theorem 2.11 if we take \(m = 1\), then we get the following Fejér-Hadamard-type inequality.

\[
f\left(\frac{a + b}{2}\right)_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right) \leq \left(f_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right) + \frac{f(a) + f(b)}{2}\right)_{\epsilon_a,b}^{\epsilon_{a,b}} (g) \left(\frac{a}{m}\right).
\]

Funding

The authors received no direct funding for this research.

Author details

G. Abbas\(^1\)

E-mail: prof.abbas6581@gmail.com

G. Farid\(^2\)

E-mails: faridphdsms@gmail, ghifmfarid@hotmail.com

\(^1\) Department of Mathematics, Government College Bhalwal, Sargodha, Pakistan.

\(^2\) Department of Mathematics, COMSATS Institute of Information Technology, Attock Campus, Attock, Pakistan.

Citation information

Cite this article as: Some integral inequalities for \(m\)-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function, G. Abbas & G. Farid, Cogent Mathematics (2016), 3: 1269589.

References

Abbass, G., Farid, G., & Rehman, A. Ur. (in press). Hadamard and Fejér-Hadamard type inequalities via generalized fractional integral operator containing generalized Mittag–Leffler function.

Almeida, R. (2016). Variational problems involving a caputo-type fractional derivative. Journal of Optics A: Pure and Applied Optics. doi.org/10.1080/23311835.2016.1269589

Abbas, M. K., Ozdemir, M. E., & Petoria, J. (2008). Hadamard type inequalities for \(m\)-convex and \((a, m)\)-convex functions. Journal of Inequalities and Applications, 9, 12 pp.

Bakula, M. K., & Petori, J. (2004). Note on some Hadamard-type inequalities. Journal of Inequalities and Applications, 5, 9 pp.

Chen, H., & Katugampola, U. N. (2017). Hermit–Hadamard–Fejér type inequalities for generalized fractional integrals. Journal of Mathematical Analysis and Applications, 446, 1274–1291.

Dahmani, Z. (2010). On Minkowski and Hermit Hadamard integral inequalities via fractional integration. Annals of Functional Analysis, 1, 51–58.

Dragomir, S. S. (2002). On some new inequalities of Hermite–Hadamard type for \(m\)-convex functions. Turkish Journal of Mathematics, 33, 45–55.

Dragomir, S. S., & Agarwal, R. P. (1999). Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Applied Mathematics Letters, 11, 91–95.

Dragomir, S. S., & Toader, G. H. (1993). Some inequalities for \(m\)-convex functions. Studia Universitatis Babes-Bolyai Mathematica, 38, 21–28.

Farid, G. (2016). Hadamard and Fejér-Hadamard Inequalities for generalized fractional integrals involving special functions. Konuralp Journal of Mathematics, 4, 108–113.

Farid, G., Marwan, M., & Rehman, A. Ur. (2015). New mean value theorems and generalization of Hadamard inequality via coordinated \(m\)-convex functions. Journal of Inequalities and Applications, Article ID 283, 11 pp.

Farid, G., Rehman, A. Ur., & Zahra, M. (2016). On Hadamard inequalities for relative convex functions via fractional integrals. Nonlinear Analysis Forum, 21, 77–86.

Iscan, I. (2013). New estimates on generalization of some integral inequalities for \((a, m)\)-convex functions. Contemporary Analysis and Applied Mathematics, 1, 253–264.

Iscan, I. (2015). Hermite Hadamard Fejér type inequalities for convex functions via fractional integrals. Studia Universitatis Babes-Bolyai Mathematica, 60, 355–366.
Katugampola, U. N. (2014). A new approach to generalized fractional derivatives. Bulletin of Mathematical Analysis and Applications, 6(4), 1–15.
Mubeen, S., & Habibullah, G. M. (2012). k-Fractional integrals and applications. International Journal of Contemporary Mathematical Sciences, 7, 89–94.
Noor, M. A., Noor, K. I., & Awon, M. U. (2015). Generalized convexity and integral inequalities. Applied Mathematics & Information Sciences, 9, 233–243.
Prabhakar, T. R. (1971). A singular integral equation with a generalized Mittag—Leffler function in the kernel. Yokohama Mathematical Journal, 19, 7–15.
Salim, L. T. O., & Faraj, A. W. (2012). A generalization of Mittag—Leffler function and integral operator associated with integral calculus. Journal of Fractional Calculus and Applications, 3(1), 1–3.
Sarikaya, M. Z., & Kuraca, A. (2014). On the k-Riemann—Liouville fractional integrals and applications.
Srivastava, H. M., & Tomovski, Z. (2009). Fractional calculus with an integral operator containing generalized Mittag—Leffler function in the kernel. Applied Mathematics and Computation. doi:10.1016/j.amc.2009.01.055
Thaiprayoon, C., Ntouyas, S. K., & Tariboon, J. (2015). On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation. Advances in Difference Equations, 2015, 374.
Toader, G. H. (1984). Some generalization of convexity. Proceedings of the Colloquium on Approximation and Optimization Cluj Napoca Romania (pp. 329–338). Cluj: University of Cluj Napoca.

© 2016 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Mathematics (ISSN: 2331-1835) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com