Hamilton-Souplet-Zhang type gradient estimates for porous medium type equations on Riemannian manifolds

WEN WANG1,2 HUI ZHOU1,2

Abstract. In this paper, by employ the cutoff function and the maximum principle, some Hamilton-Souplet-Zhang type gradient estimates for porous medium type equation are deduced. As a special case, an Hamilton-Souplet-Zhang type gradient estimates of the heat equation is derived which is different from the result of Souplet-Zhang. Furthermore, our results generalize those of Zhu. As application, some Liouvillo theorems for ancient solution are derived.

1. Introduction and Main results

In the paper, let (M^n, g) be an n-dimensional complete Riemannian manifold. We consider the porous medium type equations

$$u_t = \Delta u^m + \lambda(x,t)u^l, \quad m > 1$$

on (M^n, g), where l and m are two real numbers, and $\lambda(x,t) \geq 0$ is defined on $M^n \times [0, \infty)$ which is C^2 in the first variable and C^1 in the second variable.

The famous porous medium equations (PME for short)

$$u_t = \Delta u^m, \quad m > 1$$

are of great interest because of important in mathematics, physics, and applications in many other fields. For $m = 1$ it is the famous heat equation. As $m > 1$, it is called the porous medium equation, and it has arisen in different applications to model diffusive phenomena, such as, groundwater infiltration (Boussinesq’s model, 1903, with $m = 2$), flow of gas in porous media (Leibenzon-Muskat model, $m \geq 2$), heat radiation in plasmas ($m > 4$), liquid thin films moving under gravity ($m = 4$), and others. We can read a work by C´azqucz [19] for basic theory and various applications of the porous medium equation in the Euclidean space. In the case $m < 1$, it is said to be the fast diffusion equation.

In 1979, Aronson and Bénilan [1] obtained a famous second order differential inequality

$$\sum_i \frac{\partial}{\partial x_i} \left(mu^{m-2} \frac{\partial u}{\partial x_i} \right) \geq -\frac{\kappa}{l}, \quad \kappa = \frac{n}{n(m-1)+2},$$

for all positive solutions of (1.2) on the Euclidean space \mathbb{R}^n with $m > 1 - \frac{2}{n}$.

2010 Mathematics Subject Classification. 58J35, 35K05, 53C21.

Key words and phrases. Gradient estimate, Porous medium equation, Liouville theorem.

1. School of Mathematics and Statistics, Hefei Normal University, Hefei 230601, P. R. China.
2. School of Mathematical Science, University of Science and Technology of China, Hefei 230026, China.

Corresponding author: Wen Wang, E-mail: wwen2014@mail.ustc.edu.cn.

This work was supported by the Universities Natural Science Foundation of Anhui Province (KJ2016A310); 2017 Anhui Province outstanding young talent support project(gxyq2017048).
Generalized research on PME (1.2) also attracted many researchers’ interest. In 1993, Hui [7] considered the asymptotic behaviour for solutions to equation
\[u_t = \Delta u^m - u^p \]
(1.4)
as \(l \to \infty \). In 1994, Zhao and Yuan [23] proved the uniqueness of the solutions to equation (1.4) with initial datum a measure. In 1997, Kawanago [11] demonstrated existence and behaviour for solutions to equation
\[u_t = \Delta u^m + u'. \]
(1.5)
In 2001, E. Chasseigne [4] investigated the initial trace for the equation (1.4) in a cylinder \(\Omega \times [0,T] \), where \(\Omega \) is a regular, bounded open subset of \(\mathbb{R}^n \) and \(T > 0 \), \(m > 1 \), and \(q \) are constants. Recently, Xie, Zheng and Zhou [21] studied global existence for equation
\[u_t = \Delta u^m - u^p(x) \]
(1.6)
in \(\Omega \times (0,T) \), where \(p(x) > 0 \) is continuous function satisfying \(0 < p_- = \inf p(x) \leq p(x) \leq p_+ = \sup p(x) < \infty \).

Recently, regularity estimates of PME (1.2) on manifolds are investigated. In 2009, Lu, Ni, Vázquez and Villani [14] studied the PME on an \(n \)-dimensional complete manifold \((M^n,g) \), they obtained a local Aronson-Bénilan estimate. Huang, Huang and Li in [8] improved the part results of Lu, Ni, Vázquez and Villani. In this article, we will study Hamilton-Souplet-Zhang type gradient estimates to equation (1.1).

Let First recall some known results.

Theorem A (Hamilton [6]). Let \((M^n,g)\) be a closed Riemannian manifold with \(\text{Ricci}(M) \geq -k\) for some \(k \geq 0\). Suppose that \(u\) is arbitrary positive solution to the heat equation
\[u_t = \Delta u \]
(1.7)
and \(u \leq M\). Then
\[\frac{\nabla u^2(x,t)}{u^2(x,t)} \leq C \left(\frac{1}{T} + 2k \right) \log \frac{M}{u(x,t)}. \]
(1.8)

In 2006, Souplet and Zhang [18] generalized Hamilton’s result, and obtained the corresponding gradient estimate and Liouville theorem.

Theorem B (Souplet-Zhang [18]). Let \((M^n,g)\) be a Riemannian manifold with \(n \geq 2\) and \(\text{Ricci}(M) \geq -k\) for some \(k \geq 0\). Suppose that \(u\) is arbitrary positive solution to the heat equation (1.7) in \(Q_{R,T} \subseteq B(x_0, R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)\) and \(u \leq M\) in \(Q_{R,T}\). Then
\[\frac{\nabla u(x,t)}{u(x,t)} \leq C \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} \right) \left(1 + \log \frac{M}{u(x,t)} \right) \]
(1.9)
in \(Q_{R,T}\), where \(C\) is a dimensional constant.

In 2013, Zhu [26] deduced a Hamilton’s gradient estimate and Liouville theorem for PME (1.2) on noncompact Riemannian manifolds. Huang, Xu and Zeng in [9] improve the result of Zhu.

Theorem C (Zhu [26]). Let \((M^n,g)\) be a Riemannian manifold with \(n \geq 2\) and \(\text{Ricci}(M) \geq -k\) for some \(k \geq 0\). Suppose that \(u\) is arbitrary positive solution to the
Gradient estimates and Liouville theorem

PME (1.2) in $Q_{R,T} = B(x_0, R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)$. Let $v = \frac{m}{m-1} u^{m-1}$ and $v \leq M$. Then for $1 < m < 1 + \frac{1}{\sqrt{2m+1}}$

$$\frac{|\nabla v|}{v^{\frac{m-1}{m-2}}} \leq CM^{1+ \frac{1}{4m-3}} \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \sqrt{k} \right).$$

(1.10)

Recently, Cao and Zhu [3] obtained some Aronson and Bénilan estimates for PME (1.2) under Ricci flow.

Our results of this paper are encouraged by the work in Ref. [10, 12, 14, 15, 16, 17, 18, 21, 26]. We consider the porous medium type equation (1.1), and deduce some Hamilton-Souplet-Zhang type gradient estimates.

Our main results state as follows.

Theorem 1.1. Let (M^n, g) be a Riemannian manifold with dimensional n. Suppose that $\text{Ric}(M^n) \geq -k$ with $k \geq 0$. If $u(x, t)$ is a positive solution of the equation (1.1) in $Q_{R,T} := B_{x_0}(R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)$. Let $v = \frac{m}{m-1} u^{m-1}$ and $v \leq M$. Also suppose that there exist two positive numbers δ and ϵ such that $|x(x, t)| \leq \delta$ and $|\nabla x|^2 \leq \epsilon |x|$. Then for $1 < m < 1 + \frac{1}{\sqrt{n-1}}$ and $l \geq 1 - m$,

$$\frac{|\nabla v|}{v^{\frac{1}{2}}} (x, t) \leq C\gamma^n (m - 1) M^{1 - \frac{2}{l}} \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \frac{1}{\sqrt{k}} \right)$$

$$+ C \delta^4 M^{\frac{m+1}{m-1}} + \epsilon^4 M^{\frac{3m+2}{4(n-1)}}$$

(1.11)

in $Q_{\varphi, \frac{\varphi}{2}}$, where $\beta = -\frac{1}{m-1}$, $\gamma = \frac{8}{1 - (m-1)^2/n}$, $C = C_3(m, n, l)$ and C is a constant.

When $\lambda(x, t) = 0$, we get the following:

Corollary 1.1. Let (M^n, g) be a Riemannian manifold with dimensional n. Suppose that $\text{Ric}(M^n) \geq -k$ with $k \geq 0$. If $u(x, t)$ is a positive solution of the PME (1.2) in $Q_{R,T} := B_{x_0}(R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)$. Let $v = \frac{m}{m-1} u^{m-1}$ and $v \leq M$. Then for $1 < m < 1 + \frac{1}{\sqrt{n-1}}$

$$\frac{|\nabla v|}{v^{\frac{1}{2}}} (x, t) \leq C\gamma^n (m - 1) M^{1 - \frac{2}{l}} \left(\frac{1}{R} + \frac{1}{\sqrt{T}} + \frac{1}{\sqrt{k}} \right)$$

(1.12)

in $Q_{\varphi, \frac{\varphi}{2}}$, where $\beta = -\frac{1}{m-1}$, $\gamma = \frac{8}{1 - (m-1)^2/n}$ and C is a constant.

Take $\lambda(x, t) = 0$ and $m \geq 1$ in Corollary 1.1, the following estimate is derived.

Corollary 1.2. Let (M^n, g) be a Riemannian manifold of dimensional n. Suppose that $\text{Ric}(M^n) \geq -k$ with $k \geq 0$. If $u(x, t)$ is a positive solution of the heat equation

$$u_t = \Delta u,$$

in $Q_{R,T} := B_{x_0}(R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)$. Then we have for $u \leq M$

$$\frac{|\nabla u|}{\sqrt{u}} (x, t) \leq C \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right)$$

(1.13)

in $Q_{\varphi, \frac{\varphi}{2}}$, where C is a constant.
Theorem 1.2. Let \((M^n, g)\) be a Riemannian manifold with dimensional \(n\). Suppose that \(\text{Ric}(M^n) \geq -k\) with \(k \geq 0\). If \(u(x, t)\) is a positive solution of the equation \((1.1)\) in \(Q_{R,T} := B_{\epsilon_0}(R) \times [t_0 - T, t_0] \subset M^n \times (-\infty, \infty)\). Let \(v = \frac{m}{m-1} u^{m-1}\) and \(v \leq M\). Also suppose that there exist a positive number \(\epsilon\) such that \(|\nabla \lambda|^2 \leq \epsilon |\lambda|\). Then for
\[
1 < m < 1 + \frac{1}{n-1} \quad \text{and} \quad 2 - 3m \leq l \leq 2 - \frac{3}{2}m,
\]
\[
|\nabla v| \left(\frac{1}{l^2}\right)(x, t) \leq C \gamma^2 (m - 1) M^{1 - \frac{m}{2}} \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}}\right) + C_3 \epsilon^2 M \frac{3m + l - 2}{4m - 2} \tag{1.14}
\]
in \(Q_{R,T}\), where \(\beta = -\frac{1}{m-1}\), \(\gamma = \frac{8}{1-(m-1)^2(n-1)}\), \(C_\gamma = C_3(m, n, l)\) and \(C\) is a constant.

Remark: (a) Since \(1 + \sqrt{\frac{1}{n-1}} > 1 + \sqrt{\frac{1}{2n-1}}\), so the result of Corollary 1 in the paper generalize those of Zhu in [26].

(b) When \(\lambda(x, t) = 0\), the result of Corollary 1 in the paper is the result of Huang, Xie and Zeng in [9].

(c) (1.13) is different from Souplet-Zhang’s result in [18]. Moreover, our results in form seem to be simpler than Souplet-Zhang’s result.

2. Preliminary

In this section, we derive a lemma.

Lemma 2.1. [21] Let \(A = (a_{ij})\) be a nonzero \(n \times n\) symmetric matrix with eigenvalues \(\lambda_k\), for any \(a, b \in \mathbb{R}\), then
\[
\max_{A \in S(n) |v| = 1} \left[\frac{aA + btrAI_n}{|A|}(v, v) \right]^2 = (a + b)^2 + (n - 1)b^2.
\]

Lemma 2.2. Let \(1 < m < 1 + \sqrt{\frac{1}{n-1}}\) and \(\theta = \frac{1 - (m-1)^2(n-1)}{4(m-1)} > 0\). Then we have
\[
(m - 1)v\Delta w - w_t \geq \theta w^2 v^{\beta - 1} - 2(m-1)kwv - m\nabla w \cdot \nabla v
\]
\[+ \lambda \left[\beta (m - 1) - 2(m + l - 2) \left(\frac{m - 1}{m} \right) \right] \left(\frac{m - 1}{m} \right)^{\frac{l-1}{m-1}} w\]
\[\geq (m - 1) \left(\frac{m - 1}{m} \right) \left(|\nabla \lambda|^2 + \frac{1}{|\lambda|} \right) \cdot \left(\frac{m - 1}{m} \right)^{\frac{l-1}{m-1}}. \tag{2.1}
\]

Proof. Let \(v = \frac{m}{m-1} u^{m-1}\), then
\[
v_t = (m-1)v\Delta v + |\nabla v|^2 + \lambda(m-1) \left(\frac{m - 1}{m} \right)^{\frac{l-1}{m-1}} v^{1 + \frac{l-1}{m-1}}. \tag{2.2}
\]
Let \(w = \frac{|\nabla v|^2}{v^{\beta}}\), then
\[
w_t = \frac{2v_t v_{tt}}{v^{\beta}} - \beta \frac{v_t^2 v_t}{v^{\beta+1}}
\]
\[= \frac{2v_t \left[(m-1)v\Delta v + |\nabla v|^2 + \lambda(m-1) \left(\frac{m - 1}{m} \right)^{\frac{l-1}{m-1}} v^{1 + \frac{l-1}{m-1}} \right]}{v^{\beta}}
\]
\[= \frac{v_t^2 \left[(m-1)v\Delta v + |\nabla v|^2 + \lambda(m-1) \left(\frac{m - 1}{m} \right)^{\frac{l-1}{m-1}} v^{1 + \frac{l-1}{m-1}} \right]}{v^{\beta+1}}
\]
By (2.4) and (2.5)

\[(m-1)v\Delta w - w_t = \]

\[= 2(m-1)\frac{v_{ij}^2}{v^{\beta+1}} + 2(m-1)\frac{v_i v_{ij}}{v^{\beta+1}} - 2(m-1)v_{ij}^2 v^2 - \beta(m-1)\frac{v_i v_{ij} v^2}{v^{\beta+1}} - 4\beta(m-1)\frac{v_i v_{ij} v^2}{v^{\beta+1}}
\]

\[+ \beta\beta(\beta+1)(m-1)v_{ij}^2 + 2(m-1)v_{ij}^2 + 2(m-1)v_{ij}^2 v^2 - \beta(\beta+1)\frac{v_i v_{ij} v^2}{v^{\beta+1}} + \beta\beta(\beta+1)\frac{v_i v_{ij} v^2}{v^{\beta+1}}
\]

\[- 2\lambda(m + l - 2) \left(\frac{m - 1}{m} v \right)^{\beta-1} + 2(m - 1) \frac{v_i v_{ij} v^2}{v^{\beta+1}} - 2(m - 1) \left(\frac{m - 1}{m} v \right)^{\beta-1} + \lambda \left(\frac{m - 1}{m} v \right) v_{ij} v^2 \frac{v_i v_{ij} v^2}{v^{\beta+1}}
\]

\[+ \lambda \beta(m - 1) \left(\frac{m - 1}{m} v \right)^{\beta-1} + \lambda \beta(m - 1) \left(\frac{m - 1}{m} v \right)^{\beta-1} + \lambda \beta(m - 1) \left(\frac{m - 1}{m} v \right) v_{ij} v^2 \frac{v_i v_{ij} v^2}{v^{\beta+1}} \]

Since

\[\nabla w \cdot \nabla v = \frac{2v_i v_{ij} v_j}{v^{\beta+1}} - \frac{v_i^2 v_j^2}{v^{\beta+1}} \]

Adding \(\varepsilon \times (2.7)\) to (2.6),

\[(m-1)v\Delta w - w_t = \]

\[= 2(m-1)\frac{v_{ij}^2}{v^{\beta+1}} + 2(m-1)\frac{R_{ij} v_i v_j}{v^{\beta+1}} + [2\varepsilon - 4(1 + \beta(m - 1)) \frac{v_i v_{ij} v^2}{v^{\beta+1}} - 2(m - 1)\frac{v_{ij} v^2}{v^{\beta+1}}
\]

\[+ \beta[(\beta+1)(m-1) + 1] \frac{v_i v_{ij} v^2}{v^{\beta+1}} - 2\lambda(m + l - 2) \left(\frac{m - 1}{m} v \right)^{\beta-1} + \varepsilon \nabla w \cdot \nabla v
\]

\[+ 2\lambda(m + l - 2) \left(\frac{m - 1}{m} v \right)^{\beta-1} + \varepsilon \nabla w \cdot \nabla v
\]

\[+ \lambda \beta(m - 1) \left(\frac{m - 1}{m} v \right)^{\beta-1} \]
= 2(m - 1)\frac{|A|^2}{v^{\beta - 1}} + 2(m - 1)R_{ij}wv + [2\varepsilon - 4(1 + \beta(m - 1))] A(e, e) \frac{|A|}{|A|} w|A|

- 2(m - 1)\frac{\text{tr} A}{|A|} w|A| + \beta [(\beta + 1)(m - 1) - 1 - \varepsilon] w^2v^{\beta - 1} - \varepsilon \nabla w \cdot \nabla v

- 2\lambda(m + l - 2) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w + \lambda \beta(m - 1) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w

- 2(m - 1) \frac{m - 1}{m} v \frac{\nabla v \cdot \nabla \lambda}{v^{\beta - 1}}

= 2(m - 1)\frac{|A|^2}{v^{\beta - 1}} + \left\{ [2\varepsilon - 4(1 + \beta(m - 1))] A(e, e) \frac{|A|}{|A|} - 2(m - 1)\frac{\text{tr} A}{|A|} \right\} w|A|

+ 2(m - 1)R_{ij}wv + \beta [(\beta + 1)(m - 1) - 1 - \varepsilon] w^2v^{\beta - 1} - \varepsilon \nabla w \cdot \nabla v

+ \lambda \beta(m - 1) - 2(m + l - 2) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w - 2(m - 1) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} \frac{\nabla v \cdot \nabla \lambda}{v^{\beta - 1}}

\geq - \frac{1}{8(m - 1)} \left\{ [2\varepsilon - 4(1 + \beta(m - 1))] A(e, e) \frac{|A|}{|A|} - 2(m - 1)\frac{\text{tr} A}{|A|} \right\} w^2v^{\beta - 1}

+ 2(m - 1)R_{ij}wv + \beta [(\beta + 1)(m - 1) - 1 - \varepsilon] w^2v^{\beta - 1} - \varepsilon \nabla w \cdot \nabla v

+ \lambda \beta(m - 1) - 2(m + l - 2) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w - 2(m - 1) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} \frac{\nabla v \cdot \nabla \lambda}{v^{\beta - 1}},

where A_{ij} = (v_{ij}) and e = \nabla v / |\nabla v|$. By applying Lemma 2.1 with $a = 2\varepsilon - 4(1 + \beta(n - 1))$ and $b = -2(m - 1)$,

$$(m - 1)v\Delta w - w_t$$

\geq - \frac{1}{8(m - 1)} \left\{ [2\varepsilon - 4(1 + \beta(m - 1)) - 2(m - 1)]^2 + 4(m - 1)^2(n - 1) \right\} w^2v^{\beta - 1}

+ 2(m - 1)R_{ij}wv + \beta [(\beta + 1)(m - 1) - 1 - \varepsilon] w^2v^{\beta - 1} - \varepsilon \nabla w \cdot \nabla v

+ \lambda \beta(m - 1) - 2(m + l - 2) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w - 2(m - 1) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} \frac{\nabla v \cdot \nabla \lambda}{v^{\beta - 1}}

= - \frac{1}{8(m - 1)} f(\beta, \varepsilon) w^2v^{\beta - 1} + 2(m - 1)R_{ij}wv - \varepsilon \nabla w \cdot \nabla v

+ \lambda \beta(m - 1) - 2(m + l - 2) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} w

- 2(m - 1) \left(\frac{m - 1}{m} \right)^{\frac{l - 1}{m - 1}} \frac{\nabla v \cdot \nabla \lambda}{v^{\beta - 1}},

(2.8)
where
\[f(\beta, \varepsilon) = \left[2\varepsilon - 4(1 + \beta(m - 1)) - 2(m - 1) \right]^2 + 4(m - 1)^2(n - 1) \]
\[- 8(m - 1)\beta(\beta + 1)(m - 1)^2 + 1 - \varepsilon. \quad (2.9) \]

For the purpose of showing that the coefficient of \(w^2v^{\beta-1} \) is positive, we minimize the function \(f(\beta, \varepsilon) \) by letting \(\varepsilon = m \) and \(\beta = -\frac{1}{m-1} \), such that
\[f(\beta, \varepsilon) = 4(m - 1)^2(n - 1) - 4. \]

Then (2.8) becomes
\[
(m - 1)v\Delta w - w_t \geq \frac{1 - (m - 1)^2(n - 1)}{4(m - 1)} w^2v^{\beta-1} - 2(m - 1)kwv - m|\nabla w| \nabla v
\]
\[+ \lambda \left[\beta(m - 1) - 2(m + l - 2) \right] \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[- 2(m - 1) \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[= \theta w^2v^{\beta-1} - 2(m - 1)kwv - m|\nabla w| \nabla v \]
\[+ \lambda \left[\beta(m - 1) - 2(m + l - 2) \right] \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[- (m - 1) \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[\geq -(m - 1) \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[\geq 0. \quad (2.10)\]

where \(\theta = \frac{1 - (m - 1)^2(n - 1)}{4(m - 1)} > 0 \) as \(1 < m < 1 + \sqrt{\frac{1}{n-1}} \), and in the last inequality we utilize the fact that
\[- 2(m - 1) \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]
\[\geq - (m - 1) \left(\frac{m - 1}{m} \right) \frac{\nabla v}{v^{\beta-1}} \frac{|\nabla|}{\nabla |w|} w \]

\[\square \]

3. Proof of main results

From here, we will utilize the well-known cut-off function of Li and Yau to derive the desired bounds.

Proof of Theorem 1.1. Assume that a function \(\Psi = \Psi(x, t) \) is a smooth cut-off function supported in \(Q_{R^2, T} \), satisfying the following properties,
(1) \(\Psi = \Psi(d(x, x_0), t) \equiv \psi(r, t); \Psi(r, t) = 1 \) in \(Q_{R/2, T/2} \), \(0 \leq \Psi \leq 1. \)
(2) \(\Psi \) is decreasing as a radial function in the spatial variables.
(3) \(|\partial_r \Psi|/\Psi^a \leq C_a/R, |\partial^2_r \Psi|/\Psi^a \leq C_a/R^2 \) when \(0 < a < 1. \)
(4) \(|\partial_t \Psi|/\Psi^{1/2} \leq C/T. \)

Assume that the maximum of \(\Psi w \) is arrived at point \((x_1, t_1) \). By [13], we can suppose, without loss of generality, that \(x_1 \) is not on the cut-locus of \(M^n \). Therefore, at \((x_1, t_1) \), it yields \(\Delta(\Psi w) \leq 0, (\Psi w)_r \geq 0 \) and \(\nabla(\Psi w) = 0 \). Hence, by (2.1) and a straightforward calculation, it yields that
\[
0 \geq \left[(m - 1)v\Delta - \partial_t \right] (\Psi w)
\]
\[\begin{align*}
= & \psi \left[(m - 1) v \Delta - \partial_t \right] w + (m - 1) v w \Delta \psi - w \psi_t + 2(m - 1) \frac{v}{\psi} \nabla \psi \cdot \nabla (\psi w) \\
- & 2(m - 1) v w \frac{\left| \nabla \psi \right|^2}{\psi}
= & \psi \theta w^2 v^{\beta - 1} - 2(m - 1) \psi k w v - p \nabla (\psi w) \cdot \nabla v + m w \nabla v \cdot \nabla \psi \\
+ & \psi \lambda \left[\beta (m - 1) - 2(m + l - 2) \right] \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} w \\
- & (m - 1) \psi \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} \left(\lambda w + \frac{\left| \nabla \lambda \right|^2}{\lambda} \cdot \frac{1}{v^{\beta - 2}} \right) + (m - 1) v w \Delta \psi \\
- & w \psi_t + 2(m - 1) \frac{v}{\psi} \nabla \psi \cdot \nabla (\psi w) - 2(m - 1) v w \frac{\left| \nabla \psi \right|^2}{\psi}. \quad (3.1)
\end{align*} \]

Then (3.1) becomes at the point \((x_1, t_1)\)
\[\begin{align*}
\psi \theta w^2 v^{\beta - 1} \leq & 2(m - 1) \psi k w v - m w \nabla v \cdot \nabla \psi - (m - 1) v w \Delta \psi + 2(m - 1) v w \frac{\left| \nabla \psi \right|^2}{\psi} \\
+ & w \psi_t - \psi \lambda \left[\beta (m - 1) - 2(m + l - 2) \right] \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} w \\
+ & (m - 1) \psi \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} \left(\lambda w + \frac{\left| \nabla \lambda \right|^2}{\lambda} \cdot \frac{1}{v^{\beta - 2}} \right). \quad (3.2)
\end{align*} \]

Now setting \(\theta = \frac{3}{2} \cdot \frac{1}{m - 1} \) and \(\gamma = \frac{8}{1 - (m - 1)^2 (n - 1)} \), then (3.2) gives
\[\begin{align*}
2 \psi w^2 \leq & 2 \gamma (m - 1)^2 \psi k w v^{2 - \beta} - \gamma (m - 1) v^{1 - \beta} m w \nabla v \cdot \nabla \psi - (m - 1)^2 \gamma v^{2 - \beta} w \Delta \psi \\
+ & 2(m - 1)^2 \gamma v^{2 - \beta} w \frac{\left| \nabla \psi \right|^2}{\psi} + \gamma (m - 1) w \psi v^{1 - \beta} \\
- & (m - 1) \gamma \psi \lambda \left[\beta (m - 1) - 2(m + l - 2) \right] \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} w v^{1 - \beta} \\
+ & (m - 1)^2 \gamma \psi \left(\frac{m - 1}{m} v \right)^{\frac{1 - \beta}{\beta}} \frac{\left| \nabla \lambda \right|^2}{\lambda} \cdot \frac{v^{1 - \beta}}{v^{\beta - 2}}. \quad (3.3)
\end{align*} \]

Now, we need to search for an upper bound for each term on the right-hand side of (3.3). After a sample calculation, it is not difficult to find the following estimates.
\[\begin{align*}
2 \gamma (m - 1)^2 \psi k w v^{2 - \beta} \leq & \frac{1}{4} \psi w^2 + C \gamma^2 (m - 1)^4 M^{4 - 2\beta} k^2, \quad (3.4)
- (m - 1) \gamma v^{1 - \beta} m w \nabla v \cdot \nabla \psi \leq \frac{1}{4} \psi w^2 + C \gamma^2 (m - 1)^4 M^{4 - 2\beta} \frac{1}{R^2}, \quad (3.5)
- (m - 1)^2 \gamma v^{2 - \beta} w \Delta \psi \leq \frac{1}{4} \psi w^2 + C \gamma^2 (m - 1)^4 M^{4 - 2\beta} \left(\frac{1}{R^4} + \frac{k}{R^2} \right), \quad (3.6)
2(m - 1)^2 \gamma v^{2 - \beta} w \frac{\left| \nabla \psi \right|^2}{\psi} \leq \frac{1}{4} \psi w^2 + C \gamma^2 (m - 1)^4 M^{4 - 2\beta} \frac{1}{R^4}, \quad (3.7)
(m - 1) \gamma w \psi v^{1 - \beta} \leq \frac{1}{4} \psi w^2 + C \gamma^2 (m - 1)^4 M^{4 - 2\beta} \frac{1}{T^2}, \quad (3.8)
\end{align*} \]

where \(C \) is a constant and we used the fact that \(0 < v \leq M, \beta = -\frac{1}{m - 1} < 0. \)
Applying $0 < v \leq M$, $\beta = -\frac{1}{m-1} < 0$ and $m > 1$ we now give estimates for the last two items of (3.3).

\[-(m-1)^2 \gamma \Psi \left(\frac{m-1}{m} \right)^{\frac{2}{m-1}} \left(\frac{m-1}{m} \right)^{\frac{2}{m-1}} v^1 - \beta \]

\[\leq \frac{1}{4} \Psi w^2 + C_1 \delta^2 M^{\frac{2m+2l-2}{m-1}}, \quad (3.9)\]

where $C_1 = C_1(m,n,l)$, and inequality holds for $l \leq 1 - m$.

\[(m-1)^2 \gamma \Psi \left(\frac{m-1}{m} \right)^{\frac{2}{m-1}} |\nabla \lambda|^{2} \cdot v^1 - \beta \leq C_2 \epsilon M^{\frac{3m+l-2}{m-1}}.\]

where $C_2 = C_2(m,n,l)$, and inequality is valid for $l \geq 2 - 3m$. Hence, both (3.9) and (3.10) hold for $l \geq 1 - m$.

Substituting (3.4)–(3.10) into (3.3), we have for $l \geq 1 - m$ and $C_3 = C_3(m,n,l)$

\[2 \Psi w^2 \leq \frac{3}{2} \Psi w^2 + C_2 \gamma^2 (m-1)^4 M^{4-2\beta} \left(\frac{1}{R^4} + k^2 + \frac{1}{T^2} \right)\]

\[+ C_3 (\delta^2 M^{\frac{2m+2l-2}{m-1}} + \epsilon M^{\frac{3m+l-2}{m-1}}),\]

which gives at the point (x_1, t_1)

\[\Psi w^2 \leq C_2 \gamma^2 (m-1)^4 M^{4-2\beta} \left(\frac{1}{R^4} + k^2 + \frac{1}{T^2} \right)\]

\[+ C_3 (\delta^2 M^{\frac{2m+2l-2}{m-1}} + \epsilon M^{\frac{3m+l-2}{m-1}}) . \quad (3.12)\]

Hence, for all the point $(x,t) \in Q_{R,T}$,

\[(\Psi w^2)(x,t) \leq (\Psi w^2)(x_1,t_1) \leq (\Psi w^2)(x_1,t_1)\]

\[\leq C_2 \gamma^2 (m-1)^4 M^{4-2\beta} \left(\frac{1}{R^4} + k^2 + \frac{1}{T^2} \right)\]

\[+ C_3 (\delta^2 M^{\frac{2m+2l-2}{m-1}} + \epsilon M^{\frac{3m+l-2}{m-1}}). \quad (3.13)\]

Notice that $\Psi = 1$ in $Q_{R/2,T/2}$ and $w = \frac{|\nabla v|^2}{v^2}$. Therefore, we have for $l \geq 1 - m$,

\[\frac{|\nabla v|^2}{v^2} (x,t) \leq C_2 \gamma^2 (m-1)^4 M^{1-\frac{2}{m}} \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right)\]

\[+ C_3 (\delta^\frac{1}{2} M^{\frac{2m+1}{m-1}} + \epsilon^\frac{1}{2} M^{\frac{3m+l-2}{m-1}}). \quad (3.14)\]

\[\square\]

Proof of Corollary 1.2. By taking $\lambda(x,t) = 0$ in (1.11), we deduce that

\[\frac{|\nabla v|^2}{v^2} (x,t) \leq C_2 \gamma^2 (m-1)^4 M^{1-\frac{2}{m}} \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right) \quad (3.14)\]

Applying $v = \frac{m-1}{m-1} u^{m-1}$ to (3.14), we obtain

\[m \cdot m^{\frac{m-1}{m-1}} \frac{|\nabla u|^2}{u^2} (x,t) \leq C_2 \gamma^2 [(m-1)M]^{1+\frac{m-1}{m-1}} \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right) \quad (3.15)\]
Since \((m - 1)v = mu^{m - 1}\), we have \((m - 1)v \to 1\) as \(m \downarrow 1\). Therefore, we follow \((m - 1)M \to 1\) as \(m \downarrow 1\). A sample computation yields

\[
\lim_{m \to 1^+} [(m - 1)M]^{\frac{m-1}{2(m-1)}} = \lim_{m \to 1^+} [1 + (m - 1)M - 1]^{\frac{m-1}{2(m-1)}} \frac{(m - 1)M - 1}{2(m-1)} = e^{\frac{1}{2}},
\]

\[
\lim_{m \to 1^+} [m]^{\frac{1}{2(m-1)}} = \lim_{m \to 1^+} [1 + m - 1]^{\frac{m-1}{2}} = e^{\frac{1}{2}},
\]

\[
\lim_{m \to 1^+} \gamma = \lim_{m \to 1^+} \frac{8}{1 - (m - 1)^2(n - 1)} = 8.
\]

Hence as \(m \downarrow 1\), (3.15) becomes

\[
\frac{|\nabla u|}{v^{\frac{1}{2}}} (x, t) \leq C \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right),
\]

where \(C = C(n)\).

Proof of Theorem 1.2. Since \(\beta = -\frac{1}{m - 1} < 0\) and \(m > 1\), then \((\beta - 1)(m - 1) - 2(m + l - 2) \geq 0\) for \(l \leq 2 - \frac{3}{2}m\). Hence, (3.3) becomes

\[
2\Psi w^2 \leq 2\gamma(m - 1)^2 \Psi k w^{2 - \beta} - \gamma(m - 1)v^{1 - \beta} pw \nabla v \cdot \nabla \Psi - (m - 1)^2 v^{2 - \beta} w \Delta \Psi
\]

\[
+ 2(m - 1)^2 \gamma v^{2 - \beta} w \frac{\nabla \Psi^2}{\Psi} + \gamma(m - 1)w \Psi v^{1 - \beta}
\]

\[
+ (m - 1)^2 \gamma \Psi \left(\frac{m - 1}{m} \right) \frac{1}{m - 1} \frac{|\nabla \lambda|^2}{\lambda} \cdot \frac{v^{1 - \beta}}{w^{\beta - 2}}.
\]

(3.16)

A discussion of similar Theorem 1.1 from (3.4)-(3.8), (3.10) and (3.16), we have for \(2 - 3m \leq l \leq 2 - \frac{3}{2}m\) and \(C_3 = C_3(m, n, l)\)

\[
\frac{|\nabla u|}{v^{\frac{1}{2}}} (x, t) \leq C_3 \gamma^2 (m - 1)M^{1 - \frac{\beta}{2}} \left(\frac{1}{R} + \sqrt{k} + \frac{1}{\sqrt{T}} \right) + C_3 e^{\frac{1}{2}} M^{\frac{3m + 1 - 2}{2(m - 1)}}.
\]

\[\square\]

4. Applications

In this section, we will deduce some related Liouville type theorems.

Applying Corollary 1.1, it follows the following Liouville type theorem.

Theorem 4.1 (Liouville type theorem). Let \((M^n, g)\) be a complete, non-compact Riemannian manifold with nonnegative Ricci curvature. Suppose that \(u\) is a positive ancient solution of the equation (1.2) such that \(v(x, t) = o(d(x) + \sqrt{T})^{\frac{2(m - 1)}{2(m - 1)}}\), where \(v = \frac{m}{m - 1} u^{m - 1}\). Then \(u\) is a constant.

By utilize Corollary 1.2, the related Liouville type theorem is derived, as follows.

Theorem 4.2 (Liouville type theorem). Let \((M^n, g)\) be a complete, non-compact Riemannian manifold with nonnegative Ricci curvature. Suppose that \(u\) is a positive ancient solution of the heat equation (1.7) such that \(u(x, t) = o(d(x) + \sqrt{T})^{2}\). Then \(u\) is a constant.

The proof of Theorem 4.1 and Theorem 4.2 are the same. So we only prove Theorem 4.1.
Proof of Theorem 4.1. Fix \((x_0, t_0)\) in space time. Assume that \(u(x, t)\) is a positive ancient solution to PME \((1.2)\) such that \(v(x, t) = o(d(x) + \sqrt{T})^{2m-1} \) near infinity. Applying \((1.12)\) to \(u\) on the cube \(B(x_0, R) \times [t_0 - R^2, t_0]\), then we have

\[
v(x_0, t_0) \leq C \cdot o(R).
\]

Let \(R \to \infty\), we get \(|\nabla v(x_0, t_0)| = 0\). Therefore, the result are derived. \(\square\)

5. Acknowledgement

We are grateful to Professor Jiayu Li for his encouragement. We also thank Professor Qi S Zhang for introduction of this problem in the summer course.

References

[1] D. G. Aronson, P. Bénilan, Régularité des l’équationmilieux poreux dans \(R^n\). C. R. Acad. Sci. Paris. Sér. A-B 288 (1979), A103-A105. MR0524760 (82i:350 90)

[2] S. Asserda, A Liouville theorem forthe Schrodinger operator with drift. C. R. Acad. Sci. Paris, Ser. I, 342, 393-398 (2006)

[3] H. Cao, M. Zhu, Aronson-Bénilan estimates for the porous medium equation under the Ricci flow, Journal De Mathmatiques Pures Et Appliqus, 104(4):90-94, (2015)

[4] E. Chasseigne, Initial trace for a porous medium equation: I. The strong absorption case, Annali Di Matematica Pura Ed Applicata, 179(1):413-458, , (2001)

[5] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 525-598 (1981)

[6] R. S. Hamilton, A matrix Harnack estimates for the heat equation, Comm. Anal. Geom., 1, 113-126, (1993)

[7] K. M. Hui, Asymptotic behaviour of solutions of \(u_t = \Delta u^m - u^p\) as \(l \to \infty\), Nonlinear Anal., 21 (3): 191-195, (1993)

[8] G. Huang, Z. Huang, H. Li, Gradient estimates for the porous medium equations on Riemannian manifolds, Journal of Geometric Analysis, 23(4):1851-1875, (2011)

[9] G. Huang, R. Xie, F. Zeng, Hamilton’s gradient estimates and liouville theorems for the porous medium equations, J. Inequal. Appl., 2016, (37), (2016)

[10] X. R. Jiang, Gradient estimate for a nonlinear heat equation on Riemannian manifolds, Procrrding of the American Math. Soc. 144 (8): 3635C3642 (2016)

[11] T. Kawanago, Existence and behaviour of solutions for \(u_t = \Delta u^m + u^l\). Adv Math Sci Appl, 7 : 367-400, (1997).

[12] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equationson Riemannian manifolds. J. Func. Anal.,100, 233-256 (1991)

[13] P. Li, S. T. Yau, On the parabolic kernel of the Schröinger operator, Acta Math., 156: 153-201, (1986).

[14] A. Melas, A Liouville type theorem for the Schröinger operator. Proc. Amer. Math. Soc.,127, 58156

[15] E. Negrin, Gradient estimates and a Liouville type theorem for the Schröinger operator. J. Funct. Anal.,127, 198-203, (1995)

[16] P. Souplet and Qi S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38: 1045-1053, (2006)

[17] J. L. Vázquez, The porous medium equation, in: oxford mathematical monographs, The carendon Press , Oxford univ. Press, 2007.

[18] W. Wang, Complement of Gradient Estimates and Liouville Theorems for Nonlinear Parabolic Equations on noncompact Riemannian Manifolds, Mathematical Methods in the Applied Sciences, 40 (6): 2078-2083, (2017)
[21] X. J. Xu, Gradient estimates for $u_t = \Delta F(u)$ on manifolds and some Liouville-type theorems. J. Differ. Equ. 252, 1403-1420 (2012)
[22] Y. Xie, Z. Zheng, S. Zhou, Blow-up of porous medium equations with variable source power. Scientia Sinica Mathematica, 46(3): 265-284, (2016)
[23] Y. Yang, Gradient estimates for the equation $\Delta u + cu^\alpha = 0$ on Riemannian manifolds. Acta. Math. Sin. 26(B), 1177-1182, (2010)
[24] J. Zhao and H. Yuan, Uniqueness of the solutions of $u_t = \Delta u^m$ and $u_t = \Delta u^m - u^p$ with initial datum a measure: the fast diffusion case, Journal of PDE, 7 (2): 143-159, (1994)
[25] X. B. Zhu, Gradient estimates and Liouville theorems for nonlinear parabolic equations on noncompact Riemannian manifolds, Nonlinear Analysis, 74: 5141-5146,(2011)
[26] X. B. Zhu, Hamilton’s gradient estimates and liouville theorems for porous medium equations on noncompact Riemannian manifolds, J. Math. Anal. Appl. 402: 201-206, (2013)

(W. Wang) 1. SCHOOL OF MATHEMATICS AND STATISTICS, HEFEI NORMAL UNIVERSITY, HEFEI 230601, P.R.CHINA;
2. SCHOOL OF MATHEMATICAL SCIENCE, UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA, HEFEI 230026, CHINA
E-mail address: wwen2014@mail.ustc.edu.cn