Cobalt(I)-Catalyzed \([6\pi + 2\pi]\) Cycloaddition of 1,2-Dienes and 1,3-Diynes to \(N\)-Carbocholesteroxyazepine in the Synthesis of Previously Undescribed Heterofunctional 9-Azabicyclo[4.2.1]nona(di)ienes

Gulnara N. Kadikova, Vladimir A. D’yakonov, and Usein M. Dzhemilev

ABSTRACT: Promising heterofunctional \((E)\)-9-azabicyclo[4.2.1]nona-2,4-dienes (79–92%) and 9-azabicyclo[4.2.1]nona-2,4,7-trienes (77–90%) containing a cholesterol fragment in the structure have been synthesized for the first time through the \([6\pi + 2\pi]\) cycloaddition reaction of terminal 1,2-dienes and symmetric 1,3-diynes with \(N\)-carbocholesteroxyazepine under the action of the \(\text{Co}(\text{acac})_2(\text{dppe})/\text{Zn}/\text{ZnI_2}\) three-component catalytic system.

INTRODUCTION

Earlier, we have first presented an efficient one-pot method for the synthesis of substituted 9-azabicyclo[4.2.1]nona-2,4,7-trienes and 9-azabicyclo[4.2.1]nona-2,4-diienes based on cobalt(I)-catalyzed cycloaddition of the simplest \(N\)-carboalkoxyazepines to alkenes, 1,3-diienes, and 1,2-dienes. It is noteworthy that research work in the field of synthesis of new derivatives of 9-azabicyclo[4.2.1]nonanes is of high practical relevance, since the 9-azabicyclo[4.2.1]nonane backbone is a key structural element of a number of important alkaloids (anatoxin-\(\alpha\), pinnamine, and bis-homoepibatidine) with diverse biological activity (Figure 1).

In particular, these alkaloids and their synthetic analogues (e.g., UB-165) exhibit pronounced activity toward the \(n\)-cholinergic receptor. Therefore, they are extremely demanded in modern studies upon creating advanced drugs for the treatment of serious mental illnesses, associated with imbalance of neurotransmitters. Thus, the development of efficient methods for the design of new biologically active molecules with a 9-azabicyclo[4.2.1]nonane backbone, in our opinion, might considerably enrich the arsenal of potential precursor compounds of innovative drugs for the treatment of socially significant human diseases.

Meanwhile, the synthesis of 9-azabicyclo[4.2.1]nonanes applying metal-promoted and metal-catalyzed cycloaddition reactions of \(N\)-substituted \(1H\)-azepines remains almost unexplored field. So far, there are only a few reported studies on the photochemical cyclocodimerization of tricarbonyl(\(\eta^6\)-\(N\)-carboalkoxyazepine)chromium(0) and tricarbonyl(\(\eta^6\)-\(N\)-cyanoazepine)chromium(0) with alkenes, 1,3-diienes, and alkynes. Moreover, before our studies started, there had been no information available on the catalytic transformations of \(N\)-substituted azepines, except for two reactions of \(\text{Cr}(0)\)-catalyzed cycloaddition of \(N\)-carbomethoxyazepine and \(N\)-carbethoxyazepine to ethyl acrylate (Scheme 1).

In the development of advanced research in the chemistry of 9-azabicyclo[4.2.1]nonanes, we have recently synthesized for the first time \(N\)-carbocholesteroxyazepine in order to obtain on its basis novel 9-azabicyclo[4.2.1]nona(di)ienes containing a...
fragment of the cholesterol molecule, an important natural steroid (Scheme 2). It should be noted that cholesterol performs a wide range of key functions in the body: it opens the biosynthetic chain of steroid hormones and corticosteroids and serves as the basis for the formation of bile acids and D vitamins, including the presence in the cell membranes, ensuring their stability. Therefore, we consider heterocycles, prepared on the basis of N-carbocholesteroxyazepine, as valuable precursors in the targeted synthesis of new drugs and other practically important biologically active molecules.

Thus, in order to develop an urgent line of research on the development of efficient methods for the synthesis of previously undescribed cholesteryl-containing 9-azabicyclo[4.2.1]nonane backbone, we have studied the catalytic cycloaddition of 1,2-dienes and 1,3-dynes to N-carbocholesteroxyazepine (Scheme 2).

RESULTS AND DISCUSSION

Initially, we have found that [6π + 2π] cycloaddition of terminal 1,2-dienes 2a−e (including functionally substituted ones) to N-carbocholesteroxyazepine 1 under the action of the three-component catalytic system Co(acac)2(dppe)/Zn/ZnI2 under the developed conditions (10 mol % Co(acac)2(dppe), 30 mol % Zn, 20 mol % ZnI2, DCE (1,2-dichloroethane), 20 h, 60 °C), proceeds to produce substituted (E)-9-azabicyclo[4.2.1]nona-2,4-dienes 3a−e in 79−92% yields. A double set of signals in a 1:1 ratio corresponding to two N−(CO)O−cholesteryl rotamers are registered in the (1H and 13C) NMR spectra of cycloadducts 3a−e, emerging as a result of limited rotation of the substituents around the C−N bond (Table 1).

In this case, both rotamers of cycloadducts 3a,c−e are characterized by the (E)-configuration of the exocyclic C(7)−C(10) double bond, as confirmed by the presence of cross-peaks between the methylene protons H2C(8) and H2C(11) in the NOESY spectra (Figure 2).

Similar nuclear Overhauser effects are observed between the ortho-positioned protons Hortho of the phenyl group and H2C(8) protons for compound 3b, indicating the (E)-configuration of the exo-double bond C(7)−C(10) (Figure 3).

Based on the observed data, we have tested the possibility of carrying out the reaction of catalytic cycloaddition of symmetric hexyl- and cyclopropyl-substituted 1,3-diynes, including those containing hydroxyl, sulfide, and trimethylsilyl functional groups, to N-carbocholesteroxyazepine 1. We have found that the interaction of N-carbocholesteroxyazepine 1 with 1,3-diynes 4a−e in the presence of the Co(acac)2(dppe)/Zn/ZnI2 catalytic system (10 mol % Co(acac)2(dppe), 30 mol % Zn, 20 mol % ZnI2, and C2H4Cl2, 20 h, 60 °C) resulted in the formation of [6π + 2π] cycloadducts, namely, substituted 9-azabicyclo[4.2.1]nona-2,4,7-trienes 5a−e in high yields (77−90%). Similar to the abovementioned reaction of N-carbocholesteroxyazepine with 1,2-dienes, 9-azabicyclo[4.2.1]-
nona-2,4,7-trienes 5a−e are formed as two N−(CO)O−cholesteryl conformational stereoisomers in a 1:1 ratio (Table 2).

CONCLUSIONS

Thus, we have performed for the first time \([6\pi + 2\pi]\) cycloaddition reactions of terminal 1,2-diienes and symmetric 1,3-diynes to N-carbocholesteroxyazepine under the action of the \(\text{Co(acac)}_2(\text{dppe})/\text{Zn/ZnI}_2\) three-component catalytic system to produce previously unreported heterofunctional (E)-9-azabicyclo[4.2.1]nona-2,4-diienes (79−92%) and 9-azabicyclo[4.2.1]nona-2,4,7-trienes (77−90%), covalently bound to an important natural metabolite, cholesterol.

EXPERIMENTAL SECTION

General Information. The \(^1\)H and \(^{13}\)C spectra were measured in CDCl\(_3\) on a Bruker AVANCE-500 spectrometer (500 MHz for \(^1\)H and 125 MHz for \(^{13}\)C). High-resolution mass spectroscopy (HRMS) spectra were measured on an instrument ("MaXis impact", Bruker) using a time-of-flight mass analyzer (TOF) with electrospray ionization (ESI). In experiments on selective collisional activation, the activation energy was set at maximum abundance of fragment peaks. A syringe injection was used for solutions in MeCN (flow rate 5 \(\mu\)L/min). Nitrogen was applied as a dry gas; the interface temperature was set at 180 °C. All solvents were dried and freshly distilled before use. All reactions were carried out under a dry argon atmosphere. N-Carbocholesteroxyazepine was...
synthesized according to reported procedures. 1,2-Dienes, 1,3-diynes, and Co(acac)2(dppe) were synthesized according to procedures described in the literature.

Cycloaddition of 1,2-Dienes and 1,3-Diynes to N-Carbocholesteroxyazepine (General Reaction Procedure). Zinc powder (30 mol %) was added to a solution of Co(acac)2(dppe) (10 mol %) in DCE (1.5 mL) in a Schlenk tube under a dry argon atmosphere, and the mixture was stirred at room temperature for 2 min. Next, 1,2-diene (or the 1,3-diyne) (1.5 mmol) in DCE (1.5 mL), and dry ZnI2 (20 mol %) (ZnI2 was weighed in a dry weighing bottle) were added successively. After heating at 60 °C for 20 h, the reaction was stopped by the addition of petroleum ether and stirring in air for 10 min to deactivate the catalyst. After filtration through a short pad of silica, the volatiles were removed under vacuum. Chromatographic purification over silica gel (petroleum ether/ethyl acetate 5:1) afforded the target products 3a–e and 5a–e.

Cholesteryl (1S*,6R*)-7-[(E)Heptylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate Equivalent with Cholesteryl (1R*,6S*)-7-[(E)Heptylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate (3a). Yield 92% (0.580 g), yellowish solid, mp 103–104 °C, [α]D24 −11.6 (c 0.50, CH2Cl2), exists as two N−(CO)−cholesteryl rotamers. Rf = 0.43 (petroleum ether/ethyl acetate 5:1). 1H NMR (500 MHz, CDCl3): δ 6.03–6.23 (m, 4H), 5.62–5.73 (m, 4H), 5.37 (d, J = 5.8 Hz, 2H), 5.19 (d, J = 7.5 Hz, 2H), 5.03 (d, J = 5.4 Hz, 1H), 4.98 (d, J = 5.5 Hz, 1H), 4.47–4.66 (m, 4H), 3.66–3.86 (m, 4H), 2.19–2.45 (m, 4H), 1.79–2.07 (m, 14H), 0.97–1.63 (m, 62H), 0.93 (d, J = 6.4 Hz, SH), 0.88 (d, J = 6.7 Hz, 21H), 0.88 (d, J = 6.7 Hz, 21H).
Table 2. Cobalt(I)-Catalyzed [6π + 2π] Cycloaddition of 1,3-Dienes 4a–e to N-Carbocholesteroyazepine

entry	1,3-diene	R	product	yield (%)
1	4a	Hex	5a	90
2	4b	SiMe3	5b	88
3	4c	(CH2)3OH	5c	78
4	4d	(CH2)3SBu	5d	83
5	4e	CH(C2H5)2	5e	77

*Reaction conditions: 1 (1 mmol), 4 (1.5 mmol), Co(acac)2(dppe) (0.10 mmol), Zn (0.3 mmol), ZnI2 (0.20 mmol), and DCE (3 mL), 60 °C, 20 h. *Yields of products isolated by column chromatography.

Cholesteryl (1S,6R*)-7-[(E)-Phenylmethylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate Equivalent with Cholesteryl (1R*,6S*)-7-[(E)-Phenylmethylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate (3b). Yield 86% (0.535 g), yellowish solid, mp 108–110 °C, [α]24 D = 7.9 Hz, 2H), 1.25–1.66 (m, 2H), 2.24–2.48 (m, 4H), 4.55–4.63 (m, 2H), 3.05–3.23 (m, 4H), 2.24–2.48 (m, 4H), 1.22–2.08 (m, 10H), 1.25–1.66 (m, 2H), 1.09–1.24 (m, 10H), 1.00–1.08 (m, 8H), 0.96 (d, J = 6.5 Hz, 8H), 0.91 (d, J = 2.1 Hz, 6H), 0.90 (d, J = 2.2 Hz, 6H), 0.71 (s, 6H) ppm. 13C NMR (125 MHz, CDCl3): δ 154.1 (2C), 147.6, 146.8, 140.3 (2C), 140.0 (2C), 137.9 (2C), 137.7 (2C), 128.5 (4C), 128.2 (1C), 128.1 (4C), 127.8 (4C), 127.5 (2C), 126.4 (1C), 124.4 (2C), 123.6 (2C), 122.5, 122.4, 121.6 (2C), 114.4 (2C), 62.3, 62.1, 57.2, 57.15, 56.7 (2C), 56.2 (2C), 50.0 (2C), 43.9, 43.4, 42.3 (2C), 39.8 (2C), 39.6 (2C), 38.7, 38.5, 37.1, 37.0, 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.94 (2C), 31.9 (2C), 28.3 (3C), 28.2, 28.0 (2C), 24.3 (2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.8 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd for C43H67NO2Na [M + Na]+, 644.4443: found, 644.4438. Cholesteryl (1S,6R*)-7-[(E)-5-Hydroxypentylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate Equivalent with Cholesteryl (1R*,6S*)-7-[(E)-5-Hydroxypentylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate (3d). Yield 79% (0.488 g), yellowish solid, mp 125–126 °C, [α]24 D = 7.9 Hz, 2H), 1.25–1.66 (m, 2H), 2.24–2.48 (m, 4H), 1.22–2.08 (m, 10H), 1.25–1.66 (m, 2H), 1.09–1.24 (m, 10H), 1.00–1.08 (m, 8H), 0.96 (d, J = 6.5 Hz, 8H), 0.91 (d, J = 2.1 Hz, 6H), 0.90 (d, J = 2.2 Hz, 6H), 0.71 (s, 6H) ppm. 13C NMR (125 MHz, CDCl3): δ 154.1 (2C), 147.6, 146.8, 140.3 (2C), 140.0 (2C), 137.9 (2C), 137.7 (2C), 128.5 (4C), 128.2 (1C), 128.1 (4C), 127.8 (4C), 127.5 (2C), 126.4 (1C), 124.4 (2C), 123.6 (2C), 122.5, 122.4, 121.6 (2C), 114.4 (2C), 62.3, 62.1, 57.2, 57.15, 56.7 (2C), 56.2 (2C), 50.0 (2C), 43.9, 43.4, 42.3 (2C), 39.8 (2C), 39.6 (2C), 38.7, 38.5, 37.1, 37.0, 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.94 (2C), 31.9 (2C), 28.3 (3C), 28.2, 28.0 (2C), 24.3 (2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.8 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd for C44H61NO2Na [M + Na]+, 658.4600; found, 658.4627. Cholesteryl (1S,6R*)-7-[(E)-2-Phenylethylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate Equivalent with Cholesteryl (1R*,6S*)-7-[(E)-2-Phenylethylidene]-9-azabicyclo[4.2.1]nona-2,4-diene-9-carboxylate (3c). Yield 89% (0.566 g), yellowish solid, mp 143–144 °C, [α]24 D = 7.9 Hz, 2H), 1.25–1.66 (m, 2H), 2.24–2.48 (m, 4H), 1.81–2.09 (m, 10H), 1.25–1.66 (m, 2H), 1.09–1.24 (m, 14H), 1.00–1.09 (m, 10H), 0.96 (d, J = 6.3 Hz, 8H), 0.91 (s, 6H), 0.90 (s, 6H), 0.72 (s, 6H) ppm. 13C NMR (125 MHz, CDCl3): δ 154.1 (2C), 147.6, 146.8, 140.3 (2C), 140.0 (2C), 137.9 (2C), 137.7 (2C), 128.5 (4C), 128.2 (1C), 128.1 (4C), 127.8 (4C), 127.5 (2C), 126.4 (1C), 124.4 (2C), 123.6 (2C), 122.5, 122.4, 121.6 (2C), 114.4 (2C), 62.3, 62.1, 57.2, 57.15, 56.7 (2C), 56.2 (2C), 50.0 (2C), 43.9, 43.4, 42.3 (2C), 39.8 (2C), 39.6 (2C), 38.7, 38.5, 37.0, 36.6 (2C), 36.2 (2C), 35.8 (2C), 31.94 (2C), 31.9 (2C), 28.3 (3C), 28.2, 28.0 (2C), 24.3 (2C), 23.9 (2C), 22.9 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.8 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcd for C45H65NO2Na [M + Na]+, 668.4600; found, 658.4627.
Cholesteryl (15\(^*\),6\(^*\))-7-([E]-5-Bromopentylidene)-9-
azabicyclo[4.2.1]nona-2,4-diene-9-carboxylic acid (4a)

Yield 84\% (0.572 g), yellow solid, mp 95–96 °C. 1\(^{H}\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 0.43 (petroleum ether/ethyl acetate 5:1). 1\(^{H}\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 6.04–6.26 (m, CH\(_2\)), 5.63–5.78 (m, CH\(_{2}\)), 5.38 (s, 2H), 5.19 (s, 2H), 5.05 (s, 1H), 4.48–4.69 (m, 4H), 3.40 (t, \(J = 6.1\) Hz, 4H), 2.66–2.87 (m, 4H), 2.02–2.44 (m, 4H), 1.79–2.10 (m, 14H), 0.96–1.68 (m, 54H), 0.93 (d, \(J = 5.8\) Hz, 8H), 0.88 (d, \(J = 5.4\) Hz, 12H), 0.69 (s, 6H) ppm. 13\(^{C}\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 154.1 (2C), 147.1, 146.3, 140.0 (2C), 138.0 (2C), 137.7 (2C), 123.7 (2C), 123.6 (2C), 122.4, 122.3, 121.0 (2C), 74.6 (2C), 60.6, 60.5, 56.7 (4C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 41.8 (2C), 39.7 (2C), 39.5 (2C), 38.7, 38.4, 37.0, 36.97, 36.6 (2C), 36.2 (2C), 35.8 (2C), 33.6 (2C), 32.2 (2C), 31.9 (4C), 28.4 (2C), 28.2 (4C), 28.0 (2C), 27.7 (2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.1 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C) ppm. HRMS (ESI-TOF): calcld for C\(_{41}\)H\(_{59}\)NO\(_2\)Na [M + Na\(^{+}\)] 722.4764; found, 722.4789.

Cholesteryl (15\(^*\),6\(^*\))-7-(4-Hydroxybutyl-1-yn-1-yl)-8-(2-hydroxyethyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylic acid (5a)

Yield 78\% (0.502 g), yellowish solid, mp 162–163 °C, \(\delta\) 24.4–21.6 (\(\alpha\), 0.50, CH\(_2\)), exists as two N–(CO)O–cholesteryl rotamers. \(R_\text{f} = 0.59\) (petroleum ether/ethyl acetate 5:1). 1\(^{H}\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 6.25–6.45 (m, 4H), 5.95 (s, 4H), 5.35 (d, \(J = 9.5\) Hz, 2H), 4.98 (d, \(J = 4.0\) Hz, 1H), 4.87–4.95 (m, 3H), 4.46 (s, 2H), 3.71–3.80 (m, 8H), 2.49–2.64 (m, 6H), 2.17–2.37 (m, 4H), 1.91–2.05 (m, 4H), 1.73–1.90 (m, 6H), 1.62–1.66 (m, 2H), 1.04–1.21 (m, 14H), 0.98–1.03 (m, 10H), 0.92 (d, \(J = 6.4\) Hz, 8H), 0.87 (d, \(J = 6.6\) Hz, 12H), 0.68 (s, 6H) ppm. 13\(^{C}\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 153.0 (2C), 139.8 (2C), 139.2 (2C), 139.1, 138.9, 137.9 (2C), 125.3 (2C), 124.3 (2C), 122.5, 122.45, 115.1, 114.9, 92.3, 92.1, 74.8 (2C), 74.4 (2C), 62.6, 62.4, 62.3, 62.1 (3C), 60.9 (2C), 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.5, 38.4, 37.0 (2C), 36.5 (2C), 36.2 (2C), 35.8 (2C), 32.1 (2C), 29.0 (2C), 28.8, 28.7 (3C), 28.5 (2C), 28.2 (4C), 28.0 (2C), 26.3, 26.1, 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (6C), 21.0 (2C), 19.6 (2C), 19.4 (2C), 18.7 (2C), 14.1 (2C), 14.0 (2C) ppm. HRMS (ESI-TOF): calcld for C\(_{47}\)H\(_{61}\)NO\(_2\)Na [M + Na\(^{+}\)] 766.4498; found, 766.4508.

Cholesteryl (15\(^*\),6\(^*\))-7-(5-(4-Butylthiophen-1-yn-1-yl)-8-(3-(4-Butylthiophen-2-yn-1-yl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylic acid (5d)

Yield 83\% (0.678 g), yellowish solid, mp 172–173 °C, \(\delta\) 24.4–21.6 (\(\alpha\), 0.50, CH\(_2\)), exists as two N–(CO)O–cholesteryl rotamers. \(R_\text{f} = 0.57\) (petroleum ether/ethyl acetate 5:1). 1\(^{H}\) NMR (500 MHz, CDCl\(_3\)): \(\delta\) 6.20–6.43 (m, 4H), 5.85–5.97 (m, 4H), 5.35 (d, \(J = 9.5\) Hz, 2H), 4.93 (d, \(J = 4.4\) Hz, 1H), 4.80–4.91 (m, 3H), 4.40–4.52 (m, 2H), 2.65 (t, \(J = 7.1\) Hz, 4H), 2.18–2.57 (m, 16H), 1.73–2.06 (m, 18H), 0.96–1.62 (m, 82H), 0.92 (d, \(J = 6.1\) Hz, 8H), 0.87 (d, \(J = 5.6\) Hz, 12H), 0.68 (s, 6H) ppm. 13\(^{C}\) NMR (125 MHz, CDCl\(_3\)): \(\delta\) 153.0 (2C), 141.3 (2C), 139.8 (2C), 139.0 (2C), 138.0 (2C), 125.0 (2C), 124.1 (2C), 122.4 (2C), 114.2, 114.1, 94.3, 94.2, 74.6 (2C), 73.4 (2C), 62.8, 62.6, 62.1 (2C), 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 42.1 (2C), 42.0 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 36.9 (2C), 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 31.0 (12H), 29.2 (2C), 29.0, 28.9, 28.3 (2C), 24.3 (2C).
Cholesteryl (15S,6R*)-7-Cyclopropyl-8-(cyclopropylethynyl)-9-azabicyclo[4.2.1]nona-2,4,7-triene-9-carboxylate
(ethyl acetate 5:1). 1H NMR (500 MHz, CDCl3): δ = 1.08 (m, 2H), 1.13−1.22 (m, 12H), 1.50−1.67 (m, 5H), 1.72 (m, 24H), 0.72 (m, 4H), 1.21 (m, 54H), 0.72 (m, 4H), 1.71 (m, 2H), 1.22−1.62 (m, 24H), 0.78−1.21 (m, 5H), 0.72−0.76 (m, 4H), 0.68 (s, 6H), 0.55−0.62 (m, 2H) ppm. 13C NMR (125 MHz, CDCl3): δ = 153.0 (2C), 145.1 (2C), 139.8 (2C), 139.1, 138.9, 138.2 (2C), 124.7 (2C), 123.9 (2C), 122.4 (2C), 113.0 (2C), 98.4 (2C), 98.2 (2C), 74.6 (2C), 63.2, 63.0, 60.5, 56.7 (2C), 56.1 (2C), 50.0 (2C), 42.3 (2C), 39.7 (2C), 39.5 (2C), 38.6, 38.4, 36.9 (2C), 36.5 (2C), 36.2 (2C), 35.8 (2C), 31.9 (4C), 28.2 (3C), 28.15, 28.0 (2C), 24.3 (2C), 23.8 (2C), 22.8 (2C), 22.6 (2C), 21.0 (2C), 19.4 (2C), 18.7 (2C), 11.9 (2C), 10.1, 9.9, 9.0 (2C), 8.8 (2C), 8.7 (2C), 7.0, 6.9, 0.4 (2C) ppm. HRMS (ESI-TOF): calcd for C44H61NO2Na [M + Na]+, 658.4600; found, 658.4601.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c03321.

Copies of 1H, 13C NMR spectra for all compounds (PDF)

■ AUTHOR INFORMATION

Corresponding Author

Vladimir A. D'yakonov — Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis of RAS (IPC RAS), 450075 Ufa, Russian Federation; orcid.org/0000-0002-7787-5054; Email: DyakonovVA@gmail.com; Fax: +7 (347) 284 2750

Authors

Gulnara N. Kadikova — Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis of RAS (IPC RAS), 450075 Ufa, Russian Federation

Usen M. Dzhemilev — Laboratory of Catalytic Synthesis, Institute of Petrochemistry and Catalysis of RAS (IPC RAS), 450075 Ufa, Russian Federation

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acsomega.1c03321

Funding

This work partially was financially supported by the Russian Science Foundation (grant no. 19-73-10116).

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The structural studies of the synthesized compounds were performed with the use of Collective Usage Centre ‘Agidel’ at the Institute of Petrochemistry and Catalysis of RAS. Partly (in terms of the production of synthesized compounds for carrying out biological activity), the work partially was carried out within approved plans for research projects at the IPC RAS State Registration no. AAAA-A19-11022290008-6 (2019–2021).

■ REFERENCES

(1) (a) D'yakonov, V. A.; Kadikova, G. N.; Nasredtynov, R. N.; Dzhemilev, L. U.; Dzhemilev, U. M. Targeted Synthesis of 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(l)-Catalyzed [6π+2π]-Cycloaddition of Alkenes to N-Substituted Azepines and Their Antitumor Activity. Eur. J. Org. Chem. 2020, 2020, 623−626. (b) Kadikova, G. N.; D'yakonov, V. A.; Nasredtynov, R. N.; Dzhemilev, L. U.; Dzhemilev, U. M. Cobalt(l)-Catalyzed [6π+2π]-cycloaddition of alkenes to N-carbethoxy(phenox)azepines for the synthesis of 9-azabicyclo[4.2.1]nona-2,4-dienes. Tetrahedron 2020, 76, 130996. (c) Kadikova, G. N.; D'yakonov, V. A.; Nasredtynov, R. N.; Dzhemilev, L. U.; Dzhemilev, U. M. Synthesis of new alkyln containing 9-azabicyclo[4.2.1]nonatrienes from diynes and azepines. Mendeleev Commun. 2020, 30, 318−319.

(2) (a) Mansell, H. L. Synthetic approaches to anatoxin-a. Tetrahedron 1996, 52, 6025−6061. (b) Devlin, J. P.; Edwards, O. E.; Gorham, P. R.; Hunter, N. R.; Pike, R. K.; Stavric, B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977, 55, 1367−1371. (c) Oh, C.-Y.; Kim, K.-S.; Ham, W.-H. A formal total synthesis of (±)-anatoxin-a by an intramolecular Pd-catalyzed aminocarbonylation reaction. Tetrahedron Lett. 1998, 39, 2133−2136. (d) Trost, B. M.; Oslob, J. D. Asymmetric Synthesis of (−)-Anatoxin-a via an Asymmetric Cyclization Using a New Ligand for Pd-Catalyzed Alkylations. J. Am. Chem. Soc. 1999, 121, 3057−3064. (e) Aggarwal, V. K.; Humphries, P. S.; Fenwick, A. A Formal Asymmetric Synthesis of (+)-Anatoxin-a Using an Enantioselective Deprotonation Strategy on an Eight-Membered Ring. Angew. Chem., Int. Ed. 1999, 38, 1985−1986. (f) Carmichael, W.; Biggs, D.; Gorham, P. Toxicology and pharmacological action of anabaena flos-aquae toxin. Science 1975, 187, 542−544. (g) Spiwak, C. E.; Witkop, B.; Albuquerque, E. X. Anatoxin-a: A Novel, Potent Agonist at the Nicotinic Receptor. Mol. Pharmacol. 1980, 18, 384−394. (h) Wegge, T.; Schwarza, S.; Seitz, G. A new and efficient synthetic route to entaniopure (+)-anatoxin-a from a (−)-cocaine hydrochloride. Tetrahedron: Asymmetry 2000, 11, 1405−1410. (i) Parsons, P. J.; Camp, N. P.; Edwards, N. R.; Ravi Sumoreeah, L. Synthesis of (±)-Anatoxin-a and Analogues. Tetrahedron 2000, 56, 309−315. (j) Brenneman, J. B.; Martin, S. F. Application of Intramolecular Enyne Metathesis to the Synthesis of Aza[4.2.1]bicycles: Enantiospecific Total Synthesis of (+)-Anatoxin-a. Org. Lett. 2004, 6, 1329−1331. (k) Hjelmgard, T.; Sotoffe, I.; Tanner, D. Total Synthesis of Pinnamine and Anatoxin-a via a Common Intermediate. A Caveat on the Anatoxin-a Endgame. J. Org. Chem. 2005, 70, 5688−5697. (l) Wonnacott, S.; Gallagher, T. The Chemistry and Pharmacology of Anatoxin-a and Related Homotropanes with respect to Nicotinic Acetylcholine Receptors. Mar. Drugs 2006, 4, 228−254. (m) Tonder, J.; Olesen, P. Agonists at the a4b2 Nicotinic Acetylcholine Receptors Relationships and Molecular Modelling. Curr. Med. Chem. 2001, 8, 651−674. (n) Sardina, F. J.; Howard, M. H.; Koskinen, A. M. P.; Rapoport, H. Chiroselective synthesis of nitrogen and side chain modified analogs of (+)-anatoxin. J. Org. Chem. 1989, 54, 4654−4660. (o) Takada, N.; Ihwasaki, M.; Suenaga, K.; Uemura, D. Pinnamine, an alkaloidal marine toxin, isolated from Pinna muricata. Tetrahedron Lett. 2000, 41, 6425−6428. (p) Kigoshi, H.; Hayashi, N.; Uemura, D. Stereoselective synthesis of pinnamine, an alkaloidal marine toxin from Pinna muricata. Tetrahedron Lett. 2001, 42, 7469−7471.
(4) Malpass, J. R.; Hemmings, D. A.; Wallis, A. L. Synthesis of epibatidine homologues: Homoeopibatidine and bis-homoeopibatidine. *Tetrahedron Lett.* 1996, 37, 3911−3914.

(5) Kanne, D. B.; Ashworth, D. J.; Cheng, M. T.; Mutter, L. C.; Aaboold, L. G. Synthesis of the first highly potent bridged nicotinoid 9-Azabicyclo[4.2.1]nona[2,3-c]pyridine (pyrido[3,4-b]homotropane). *J. Am. Chem. Soc.* 1986, 108, 7864−7865.

(6) Wright, E.; Gallagher, T.; Sharplies, C. G. V.; Wonnacott, S. Synthesis of UB-165: A novel nicotinoid ligand and anatoxin-a/epibatidine hybrid. *Bioorg. Med. Chem. Lett.* 1997, 7, 2867−2870.

(7) Sharpley, C. G. V.; Karig, G.; Simpson, G. L.; Spencer, J. A.; Wright, E.; Millar, N. S.; Wonnacott, S.; Gallagher, T. Synthesis and Pharmacological Characterization of Novel Analogues of the Nicotinic Acetylcholine Receptor Agonist (±)-UB-165. *J. Med. Chem.* 2002, 45, 3235−3245.

(8) Sutherland, A.; Gallagher, T.; Sharples, C. G. V.; Wonnacott, S. Synthesis of Two Fluoro Analogues of the Nicotinic Acetylcholine Receptor Agonist UB-165. *J. Org. Chem.* 2003, 68, 2475−2478.

(9) Gohlke, H.; Gündisch, D.; Schwarz, S.; Seitz, G.; Tilotta, M. C.; Wegge, T. Synthesis and Nicotinic Binding Studies on Enantiopure Diazine Analogues of the Novel (2-Chloro-S-pyridyl)-9-azabicyclo[4.2.1]nona-2-ene UB-165. *J. Med. Chem.* 2002, 45, 1064−1072.

(10) Kadikova, G. N.; D’yakonov, V. A.; Dzhemilev, U. M. Synthesis of New Functionally Substituted 9-Azabicyclo[4.2.1]nona-2,4,7-trienes by Cobalt(II)-Catalyzed [6+2π]-Cycloaddition of N-Carboalkoxyazepine to Alkynes. *Molecules* 2021, 26, 2932−2948.

(11) Loence, C.; Brunel, J. M.; Vidal, N.; Dherbomez, M.; Letourneau, Y. Synthesis and antifungal activity of cholesterol-hydratoyl derivatives. *Eur. J. Med. Chem.* 2004, 39, 1067−1071.

(12) Brunel, J.; Loence, C.; Vidal, N.; Dherbomez, M.; Letourneau, Y. Synthesis and antifungal activity of oxygenated cholesterol derivatives. *Steroids* 2005, 70, 907−912.

(13) Mohamed, N.; Elmegeed, G.; Abdelmalek, H.; Younis, M. Synthesis of biologically active steroid derivatives by the utility of Lawesson’s reagent. *Steroids* 2005, 70, 131−136.

(14) Schmidt, A. W.; Doert, T.; Goutal, S.; Gruner, M.; Melle, F.; Kurzchalia, T. V.; Knölker, H.-J. Regio- and Stereosepecific Synthesis of Cholesterol Derivatives and Their Hormonal Activity in Caenorhabditis elegans. *Eur. J. Org. Chem.* 2006, 2006, 3687−3706.

(15) Nes, W. D. Biosynthesis of Cholesterol and Other Sterols. *Chem. Rev.* 2011, 111, 6423−6451.
V. Cobalt(I)-catalyzed Neutral Diels-Alder Reactions of Oxygen-functionalized Acyclic 1,3-Dienes with Alkynes. *Synlett* **2002**, 2002, 1081−1084.

(13) (a) Brandsma, L. Procedures and Equipment. *Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques*; Elsevier Academic Press: Bilthoven, The Netherlands, 2004; pp 1−503.
(b) Cotton, F. A.; Faut, O. D.; Goodgame, D. M. L.; Holm, R. H. Magnetic Investigations of Spin-free Cobaltous Complexes. VI. Complexes Containing Phosphines and the Position of Phosphines in the Spectrochemical Series. *J. Am. Chem. Soc.* **1961**, **83**, 1780−1785.