Comprehensive analysis of omics data identifies relevant gene networks for Attention-Deficit/Hyperactivity Disorder (ADHD)

Judit Cabana-Domínguez1,2,3,4✉, Maria Soler Artigas1,2,3,4, Lorena Arribas1,2, Silvia Alemany1,2, Laura Vilar-Ribó1,2,3, Natalia Llonga1,2, Christian Fadeuilhe1,2,3,5, Montse Corrales1,2,3,5, Vanesa Richarte1,2,3,5, Josep Antoni Ramos-Quiroga1,2,3,5 and Marta Ribasés1,2,3,4✉

© The Author(s) 2022

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that affects around 5–6% of children and adolescents worldwide, and in 40–65% of cases persist into adulthood [1]. It is mainly characterized by inattention and/or hyperactivity and high levels of impulsivity.

ADHD is a complex disorder that results from the interaction of both genetic and environmental risk factors, with an estimated heritability of 70–80% throughout the lifespan [2]. Several studies support the role of both common and rare genetic variants in the development of ADHD, although its etiology and pathogenesis still remain largely unknown [2]. The first genome-wide association study (GWAS) meta-analysis identifying genetic risk variants for ADHD (20,183 cases and 35,191 controls) was published in 2019 [3]. They identified 12 independent ADHD risk loci and estimated that common variants account for 22% of the total ADHD heritability. In addition, very recently, a larger GWAS meta-analysis on ADHD reported 21 new loci and a reduced estimated SNP heritability ($h^2_{SNP} = 14\%$) [4]. These data highlight that part of the genetic variance still needs to be explained, which may be accounted, in part, for gene by environment interactions [5].

Epigenetic processes (i.e. histone modifications, DNA methylation and microRNAs) are potential mechanisms by which environmental risk factors lead to changes on gene expression and long-lasting alterations in the neuronal circuits found in psychiatric disorders like ADHD [6]. Recently, the first epigenome-wide association study (EWAS) in peripheral blood mononuclear cells (PBMCs) from adults with ADHD was published, identifying four regions differentially methylated and located in genes previously related to autoimmune disorders, cancer, or neuroticism [7]. Additional EWAS in saliva and whole blood have been performed both in adults and children with ADHD diagnosis or ADHD symptoms, however, results among studies are not consistent and further studies with larger sample sizes are needed [8–12].

Although genetic and epigenetic factors that contribute to the etiology of ADHD have started to be identified through GWAS and EWAS, their biological relevance is difficult to characterize, in part, because genetic risk loci were usually associated with the nearest gene, which may not be necessarily the true causal one. In contrast, the analysis of gene expression profiles provides a closer physiological picture of the disorder that is easier to interpret, and reduces the burden of multiple testing. Transcriptome studies in ADHD, nevertheless, are limited by the inaccessibility of brain samples and have been focused on whole blood or PBMCs. To date, eight transcriptomic studies on ADHD have been performed, highlighting alterations in genes involved in several neuronal functions and the immune system [13–20]. However, the studies performed so far were based on differential gene expression...
analyses between ADHD cases and controls, which assume that every gene acts as an independent unit in the expression landscape and select genes based on statistical significance. In contrast, gene co-expression network analyses use an unsupervised framework to identify groups of genes with similar expression patterns (co-expressed genes) independently of any phenotype and then correlate these gene modules with a phenotype of interest. This approach has been widely used to characterize patterns of co-expression in normal brain [21, 22] and both in brain and blood samples from several psychiatric disorders [23–28].

In the present study, we aimed to perform a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using expression data from PBMCs of ADHD cases and controls. To further understand the biological relevance and provide a more accurate picture of the regulatory mechanisms, we performed a comprehensive characterization of genes in each module and combined genomic and transcriptomic data to identify loci that may regulate the ADHD-associated co-expressed genes.

MATERIALS AND METHODS

Study design

A comprehensive and multi-step approach was applied to identify and characterize modules of co-expressed genes in PBMCs. In the first step we ran a Weighted Gene Correlation Network Analysis (WGCNA) on the processed transcriptomic data from 270 ADHD cases and 279 controls and assessed the association of the resulting co-expression modules with ADHD status. Subsequently, we disentangled the biological relevance of the ADHD-associated co-expression modules by (i) performing enrichment analyses in brain expression, functional pathways, druggable genes and miRNA target genes, (ii) combining results with ADHD genetic, transcriptomic, and epigenetic signatures, and (iii) running a co-expression module eQTL analysis to identify loci regulating the ADHD-associated modules of co-expressed genes (Fig. 1).

Participants

Analysis of co-expression modules was performed in an in-house sample of 270 ADHD cases (59.3% male, mean age = 34.2 years, s.d = 11.7) and 279 controls (56.9% male, mean age = 36.6 years, s.d = 9.9). All subjects were of European ancestry. Clinical assessment was conducted by structured interviews and self-reported questionnaires as previously described [19]. Detailed information is available in Supplementary Information. The study was approved by the Clinical Research Ethics Committee (CREC) of Hospital Universitari Vall d’Hebron, methods were performed in accordance with the relevant guidelines and regulations and written informed consent was obtained from all subjects before inclusion in the study.

Transcriptome profiling and weighted gene correlation network analysis (WGCNA)

RNA from PBMCs was isolated, hybridized to GeneChip Human Gene 1.1 ST 96-Array plate (Affymetrix) and data were analyzed as previously described [19] (Supplementary Information). Modules of co-expressed genes were identified from processed transcriptomic data by the WGCNA R-package [29]. A soft-thresholding power of 4 was selected (Fig. S1) and one-step network construction and module detection was performed considering an unsigned network type with default values (additional details in Supplementary Information). Gene expression for each module was represented by a module eigengene, derived from its first principal component and treated as a quantitative trait in the downstream analyses. The association between the module eigengenes and ADHD status or potential confounding factors (age, sex, RNA integrity number (RIN), and batch) was tested using regression analyses. Bonferroni correction was applied to correct for multiple testing considering the overall number of co-expression modules constructed (P < 0.05/27 modules <1E-03).

Within each module we examined the correlation between module membership (an indicator of the intramodular connectivity of a gene based on the association between its expression and the module eigengene) and gene significance (effect size of the association between each gene and ADHD) using Pearson correlation (Fig. S2).

Enrichment analyses in the ADHD-associated co-expression modules

We assessed whether genes in each ADHD-associated co-expression module were expressed in specific brain regions at different developmental stages using data from the Allen Human Brain Atlas with ABAmirnhert R-package [30] (additional details in Supplementary Information). Then, enrichment analyses with the webtool WebGestAlt (WEB-based GEne SeT AnaLysis Toolkit, http://www.webgestalt.org/) [31] were performed on: (i) Gene Ontology non-redundant Biological Process (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome, (ii) target genes of pharmacological drugs based on the information from PharmGKB and (iii) miRNA target genes. False discovery rate (FDR < 0.05 and fold change (FC) > |1.15| were considered differentially expressed and were used to test for enrichment in the ADHD transcriptomic, genetic and epigenetic data from GWAS meta-analysis [3] and EWAS [7] on ADHD; and (iii) running a co-expression module eQTL analysis to identify loci regulating the ADHD-associated modules of co-expressed genes.

Integrative analysis of ADHD-associated co-expression modules and ADHD omics data

ADHD transcriptomic signatures. After quality control and sample processing, differential gene expression profiles between the 270 ADHD cases and 279 controls used in the WGCNA analysis were obtained with Limma R-package [32]. Only genes with P_{adj}<0.05 and fold change (FC) > |1.15| were considered differentially expressed and were used to test for enrichment in the ADHD-associated co-expression modules using a F-Fisher test and Bonferroni correction across all modules (P < 0.05/7 modules <7.1E-03).

ADHD genetic signatures. The identified ADHD-associated co-expression modules were used as gene sets to test for enrichment in ADHD genetic
signatures, considering the European ancestry GWAS summary statistics on ADHD described by Demontis et al. [3]. Gene-based analyses were run in MAGMA_v1.08 [33] using the SNP-wise mean model, and SNPs were assigned to genes based on a positional-approach and eMAGMA [34, 35]. Competitive gene-set analysis was performed using P-values obtained from each gene-based analysis. Bonferroni correction was applied to correct for multiple testing (P < 7.1E−03; Supplementary Information).

ADHD methylation signatures. To test for enrichment in ADHD epigenetic marks in modules of co-expressed genes we used the summary statistics of an EWAS on PBMCs from 103 ADHD patients and 100 controls [7] (90% sample overlap with the in-house sample used in WGCNA), setting the unadjusted P-value < 0.01 to select differentially methylated probes (n = 3967 CGP sites). We considered enrichment in epigenetic signatures in a co-expression module when the three approaches used (methylglm, methylRRA and gsameth [36]) were significant after applying the Bonferroni correction for multiple comparison corrections (P < 7.1E−03; Supplementary Information).

Gene-module eQTL analysis and functional annotation

Genetic information was available from a subset of 231 ADHD subjects and 264 controls included in the WGCNA. A GWAS with each module eigengene as the dependent variable was performed to identify genetic variants associated with each co-expression module. After ascertain normality of module eigengene (Table S1), seven gene-module eQTL analyses were run under an additive linear regression model using PLINK_1.09, adding as covariates the first 10 principal components, sex, age, and the genotyping wave. Lead SNPs were identified in each eQTL analysis considering a P-value < 1E−06 and functionally annotated using the FUMA protocol (Functional Mapping and Annotation of Genome-Wide Association Studies, https://fuma.ctglab.nl/) [37] (Supplementary Information).

Raw data from this article are not publicly available because of limitations in ethical approvals and the summary data will be available upon request.

RESULTS

The WGCNA identified a total of 27 modules of co-expressed genes with size ranging from 33 to 2191 genes (Fig. S1). 42.7% of genes (N = 8114) were not assigned to any module and remained in the module M0. Seven co-expression modules were associated with ADHD after multiple testing correction (modules M1–M7, Table S2). No association between module eigengenes and potential confounders, including age, sex, RIN, or batch, was detected for any module (Table S2). All modules were consistent across samples and have characteristic band structures suggestive of well-defined modules (Fig. S2). Interestingly, modules M1, M3, and M6 showed high module membership—gene significance correlation (r > 0.4), suggesting that the higher the connectivity of a gene within the module, the stronger the association with ADHD (Fig. S3).

Different patterns of gene expression in the brain at different developmental stages were found across ADHD-associated co-expression modules. M2 genes are broadly expressed in the whole brain during the lifespan, while genes in M7 are expressed in a specific brain area, the M1C primary motor cortex, only during the prenatal stage. Besides, genes in modules M1 and M4 show broader expression in different areas from the telencephalon during the prenatal period and are mainly expressed in the cerebellar cortex after birth (Table 1 and S3).

To explore the biological relevance of ADHD-associated co-expression modules further, we performed a functional enrichment analysis in genes in each module and found that several of them were enriched in genes involved in pathways previously related to psychiatric disorders [38], including the posttranscriptional regulation of gene expression and epigenetics (M1 and M7), covalent chromatin remodeling (M4) or immune system and inflammatory response (M5), among others (Table 1 and S4-6). We also performed an enrichment analysis in druggable genes in the ADHD-associated co-expression modules. For six out of the seven modules we identified enrichment in target genes of at least one drug, being Antiinfective for systemic use and Anti-neoplastic and immunomodulating agents the most common Anatomical Therapeutic Chemical classification categories across all modules (Table 1 and S7-8). Interestingly, module M5, enriched in genes involved in the immune system and inflammatory response, showed enrichment in drugs from all Anatomical Therapeutic Chemical categories, especially those related to the immune response, as expected.

Enrichment in miRNA target genes was identified in modules M1 and M7. Genes in M1 were targeted by 24 families of miRNAs, resulting on 40 mature miRNAs, and genes in M7 were targeted by five mature miRNAs (Table 1 and S9). Consistently, a significant correlation between the eigengene profile of module M1 and the expression of four out of 27 of these miRNAs (hsa-miR-142–5p, hsa-miR-181a–5p, hsa-miR-192–5p, and hsa-miR-215–5p) was found in a subset of 310 individuals (150 ADHD cases and 160 controls) from which miRNA and gene expression from PBMCs was available (Fig. S4 and Table S10).

Then, we further explored the ADHD-associated co-expression modules by integrating transcriptomics with genetic and epigenetic data on ADHD. We explored whether genes differentially expressed between ADHD cases and controls were grouped in any of the identified ADHD-associated modules of co-expressed genes, and found a significant enrichment in module M5 (P < 2.2E−16), which also remained significant when considering only highly connected genes (module membership > 0.8; Table 1). In addition, we found module M4 significantly enriched in genetics (P = 1.8E−03; P_mragen = 4.2E−03) and epigenetics (P_methyglm = 1.6E−04; P_methylRRA = 1.1E−03; P_methylglm = 8.1E−05) signatures for ADHD, using data from GWAS meta-analysis [3] and EWAS [7] on ADHD (Table 1 and S11).

We performed a co-expression module eQTL analysis to identify loci regulating ADHD-associated modules in a subset of 495 individuals included in the WGCNA (91.3%) from whom genomic and gene expression profiles were available. After strict quality control criteria, we ran a GWAS on module eigengenes of each of the seven ADHD-associated co-expression modules independently (M1–M7; Fig. S5). QQ plots indicate minimal effects of genomic inflation, and consequently population substructure, on the analyses (Fig. S6). No SNP overcame the genome-wide significance threshold, but 12 independent genomic loci showed suggestive evidence of association (P < 1E−06) with different module eigengenes (Table 2 and Fig. S7). Functional annotations revealed that these loci lay on regions of open chromatin and that most of the signals were intergenic or intronic (Fig. 2). Several SNPs in these genomic risk loci were likely to affect the binding of transcription factors (RBD score = 2b; rs73866266, rs59928606, rs10830974 and rs36098630), had CADD scores > 12.37, suggesting high deleteriousness (rs73170573, rs13408514, rs1508617, rs9565360, and rs10830974; Fig. 2, Table 2 and S12) or were located in regulatory regions of the brain (rs73170578, rs62096513, and rs12583109), according to the information of enhancer and promoter histone marks from the HaploReg webtool [39] (Table 2). In addition, four SNPs, rs62096513, rs6707596, rs66506812 and rs2462337, lay in nearby genes encoding transcription factors (ZSCAN30, SP3, CSRNP3 and CUX1, respectively; Table 2). Of them, rs6707596 nearby SP3 and rs62096513 located in intron 1 of ZSCAN30 were cis-eQTL of these genes in PBMCs in our sample (Fig. 3). Interestingly, the co-expression module M1, which showed suggestive evidence of association with rs62096513 that lies in blood and brain regulatory regions of ZSCAN30 and is cis-eQTL in PBMCs, is enriched in target genes for this specific transcription factor (P = 1.27E−07), which suggest that ZSCAN30 may be upstream regulator of the M1 module of co-expressed genes.
Table 1. Summary of the main results from the analyses on the ADHD-associated modules of co-expressed genes.

Module	No. genes	Association with ADHD*	Brain expression	Main biological function	ATC1 drug categories	miRNA target genes	ADHD transcriptomic signature	ADHD genetic signatureb	ADHD epigenetic signaturec
M1	1546	Effect = 9.53	Prenatal—telencephalon Postnatal—cerebellum	Posttranscriptional regulation of gene expression Methylation	A, B, C, L	40 miRNAs (24 miR families)	–	–	–
M2	1239	Effect = −6.49	Whole brain	mRNA processing Metabolism	A, B, C, D, J, L	–	–	–	mglm = 5.2E−03
M3	63	Effect = 7.87	–	–		–	–	–	gsam = 0.0269 mglm = 7.9E−03
M4	885	Effect = −7.82	Prenatal—telencephalon Postnatal—cerebellum	Regulation of gene expression Covalent chromatin modification	B, L	–	–	MA = 1.8E−03 eM = 4.2E−03	
M5	133	Effect = −11.17	–	Immune response	A, B, C, D, H, J, L, M, N, R, S	–	P = 2.2E−16	–	–
M6	258	Effect = 11.58	–	mRNA processing	J	–	–	–	–
M7	185	Effect = 8.66	Prenatal—M1C	Posttranscriptional regulation of gene expression Epigenetics	B	5 miRNAs	–	–	gsam = 0.0157

In bold results from gene-set analyses that overcome multiple testing corrections for each method.

ATC1 (Anatomical Therapeutic Chemical) categories: A = Alimentary system and metabolism; B = Blood and hematopoietic organs; C = Heart therapy; D = Dermatics; H = Hormone preparations excl. sex; J = Antiinfective for systemic use; L = Antineoplastic and immunomodulating agents; M = musculo-skeletal system; N = Nervous system; R = Respiratory tract; S = Sensory organs. MA = MAGMA; eM = eMAGMA; mglm = methylglm; gsam = gsameth; mRRA = methylRRA; DE = differentially expressed; M1C = human primary motor cortex.

*Logistic regression Effect = log(OR).

bDemontis et al. Nat Genet. 2019;51(1):63–75.

cRovira et al. Transl Psychiatry. 2020;10(1):199.
Table 2. Top hits from GWAS on the module eigengenes from the seven ADHD-associated co-expression modules.

Module	SNP	GWAS P-value	MAF	intra/intergenic	Nearby genes	TF a	Enrichment on target genes b	Regulator region in c	eQTL in PBMCs d	eQTL whole blood e
M1	rs73170578	2.17E-07	0.061	intra	CNTNAP2	–	–	–	SNP in LD (rs73170573)	–
M1	rs62096513	5.40E-07	0.066	intra	ZSCAN30	YES	YES	YES	YES	YES
M3	rs75370437	2.56E-07	0.055	intra	ACSM1, ACSM3	–	–	–	–	ACSM1
M4	rs6707596	5.53E-07	0.344	intra	SP3	YES	NO	SNP in LD (rs13010038)	YES	AC106900.6
M4	rs72873859	5.65E-07	0.296	intra	HEATR58	–	–	–	–	STRN, PRK3, RP11–288C18.1
M5	rs66506812	3.35E-07	0.055	intra	CSRNP3	YES	NA	–	–	–
M5	rs10839074	7.21E-07	0.360	inter	SLC36A4, MTNR1B	–	–	–	–	–
M6	rs73866245	1.35E-07	0.023	inter	PCOLCE2, PAQR9, U2SURP	–	–	–	–	–
M6	rs114943986	1.37E-07	0.037	inter	PRK16	–	–	–	–	–
M6	rs2462337	3.52E-07	0.271	inter	CUX1	YES	NO	YES	–	–
M6	rs72806699	6.39E-07	0.010	intra	MEAK7	–	–	–	–	–
M7	rs12583109	6.00E-07	0.153	intra	NBEA, MAB21L1	–	–	SNP in LD (rs9565360)	–	–

aTF: the nearby gene is a transcription factor.
bEnrichment analysis of transcription factor’s target genes in their corresponding module using F-Fisher test. NA: list of TF target genes not available.
cHaploreg v4.1 tool (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php), when one SNP in high LD ($r^2 > 0.8$) is located in a regulatory region is indicated.
dResults from the eQTL analysis in our samples.
eGTEx v8 (https://www.gtexportal.org/home/).
DISCUSSION

In the present study, we used a network-based approach to identify novel ADHD-associated modules of co-expressed genes in PBMCs. To further investigate the biological significance of the ADHD-associated networks identified, we performed a comprehensive characterization of each module by performing enrichment analysis in biological pathways and drug or miRNA target genes. We also performed an integrative analysis by combining transcriptomic, genetic and epigenetic data on ADHD and run an eQTL analysis to identify genetic variants that could regulate the ADHD-associated modules of co-expressed genes. Our results identified seven ADHD-associated modules of co-expressed genes and support that the study of gene correlation networks may improve our understanding of the complex molecular systems underlying ADHD.

Two of the ADHD-associated co-expression modules identified (M1 and M7), were enriched in genes involved in posttranscriptional regulation of gene expression and epigenetic modifications, two relevant pathways in the pathogenesis of ADHD [6]. In the same line, we found enrichment in target genes for several miRNAs in these two modules. In particular, the expression of four of them (hsa-miR-142–5p, hsa-miR-181a-5p, hsa-miR-192–5p and hsa-miR-215–5p) also correlates with the eigengene profile of module M1, pointing them as potential upstream regulatory mechanisms underlying the M1 co-expression network. Some of these miRNAs have been previously related to ADHD, like miR-192–5p upregulated in PBMCs of ADHD patients [16], and comorbid psychiatric disorders, such as miR-192–5p and miR-215–5p that were differentially expressed in the dorsolateral prefrontal cortex of major depression patients [40] or miR-181a-5p extensively related to drug addiction both in mice and human studies [41–45]. Interestingly, these miRNAs share many target genes, suggesting a complex and redundant regulatory system, particularly in the case of miR-291–5p and miR-215–5p which recognize the same seed sequence. Several of these miRNAs may regulate a number of central genes (those with high intramodular connectivity) from module M1, such as CPSF6 encoding a subunit of a cleavage factor required for the RNA cleavage and polyadenylation processing, which was previously related to externalizing behaviors including ADHD [46], and RICTOR, which plays an essential role during the neurodevelopment and has been associated with hyperactivity and reduced anxiety-like behavior in conditional knock-out mice in the dorsal neural progenitor cells [47].

Module M1, as well as M2 and M6, were also enriched in genes that encode proteins involved in the processing of messenger RNA (mRNA), which includes any process related to the conversion of a primary mRNA transcript into one or more mature mRNAs, mRNA processing and alternative splicing are key processes for both the diversification of protein isoforms and the spatio-temporal control of transcripts, essential for the neuronal development, maturation, and synaptic function [48], and genetic variants in genes encoding these proteins have been related to rare neurodevelopmental disorders [49], as well as common psychiatric disorders like schizophrenia [50].

Module M5 was enriched in genes involved in immune system and inflammatory response, pathways known to play an important role in the development of neuropsychiatric disorders [38, 51, 52], particularly in ADHD [53]. Moreover, genes in module M5, and to a less extent in module M2, are targeted by a great variety of known therapeutic drugs, especially by those that target the immune system (including the Anatomical Therapeutic Chemical categories Antiinfective for systemic use and Antineoplastic and immunomodulating agents), pointing to genes in these co-expression networks as potential therapeutic targets. Importantly, a recent study that explored the druggable genome in ADHD also pointed to drugs to treat autoimmune disorders and malignancies as a potential novel path for the treatment of ADHD [54]. Besides, in module M5 we also found an enrichment in genes differentially expressed in ADHD patients compared with controls, suggesting that differentially expressed genes in ADHD cases are co-expressed and participate in the same biologic pathways. Furthermore, this enrichment was also significant when considering only highly connected genes, highlighting that the genes differentially expressed are central nodes highly connected in this network, reinforcing their relevance in the pathophysiology of ADHD.

The integrative analysis of transcriptomics, genomics, and epigenomics data on ADHD revealed that genes in module M4, also involved in the regulation of gene expression and epigenetic mechanisms, were enriched in both genetic and epigenetic signatures previously described for ADHD [3, 7]. We used two complementary approaches to assign ADHD-associated SNPs to genes, based on position or eQTL results, and found consistent results. PNPLA2 and IQSE1 were the central genes in the module more significantly associated with ADHD using both methods. PNPLA2 encodes an enzyme involved in the hydrolysis of triglycerides in adipose tissue, and has been related to obesity [55], a highly comorbid disorder in ADHD [56]. In addition, a recent study pointed PNPLA2 as one of the most high-confidence causal genes for ADHD, after combining GWAS, eQTL and gene expression data [57]. IQSE1 encodes a guanine nucleotide exchange factor, essential for the maintenance of glutamatergic synapses [58], one of the key neurotransmitter systems involved in the pathophysiology of ADHD in combination with dopamine [59, 60].

The eQTL analysis did not reveal any genetic variant that overcame the genome-wide significance threshold, but we found 12 independent genomic loci that showed suggestive evidence of association (P < 1e–06) with the different module eigengenes. We identified a genetic variant associated with the co-expression module M1, rs62096513, which is located in a blood and brain variability...
regulatory region of a transcription factor, ZSCAN30, and regulates its expression in PBMCs. Interestingly, module M1 was enriched in target genes for ZSCAN30 that is also included in the same module, suggesting that this transcription factor is an upstream regulator of the co-expressed genes in the module. Besides, we identified another genetic variant associated with the M1 module eigengene, rs73170578, located in CNTNAP2, which encodes a neuronal transmembrane protein member of the neurexin superfamily that function as cell adhesion molecules and receptors. Both rare and common genetic variants in CNTNAP2 have been associated with neurodevelopmental disorders [61, 62], with a special relevance in ADHD and autism [63, 64]. In addition, module M4 was associated with rs6707596, that is an eQTL of the SP3 gene in PBMCs, a transcription factor involved in synaptic plasticity [65]. Finally, we identified four genetic variants associated with M6 module, among them, rs2462337 is located in a blood regulatory region upstream the CUX1 gene, a transcription factor involved in the control of neuronal differentiation and the regulation of dendritic branching, spine development, and synapse formation in cortical neurons [66].

Gene networks analyses reduce the dimensionality of genome-wide gene expression data without losing important biological information and alleviate the multiple testing burden associated with the traditional gene-based methods. Similar network-based studies have been performed using gene expression data in both brain and blood in several psychiatric disorders like autism, schizophrenia and bipolar disorder [23–28]. These studies were usually performed in small sample sizes (n < 100 individuals), limiting their statistical power. In contrast, we improved the resolution and robustness of gene networks by considering more than 500 subjects, which allowed the identification of seven ADHD-associated modules enriched in relevant and highly significant biological pathways. However, although our transcriptional analyses were performed mainly in medication-naive ADHD patients without comorbid disorders (93.7% of all ADHD cases), we cannot discard that these conditions may have influenced the results of the present study. So, further studies in the same cell type are required to confirm our results. Additionally, the identified modules were based on expression data from PBMCs, a non-invasive peripheral tissue whose expression profile has been proposed as a surrogate for expression profiling in the central nervous system [67], and further evidence in the brain is required to confirm their role in the pathophysiology of the disorder.

In summary, we conducted a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using expression data from PBMCs in ADHD cases and controls. We identified seven ADHD-associated modules of co-expressed genes, some of them being enriched in both genetic and epigenetic signatures for ADHD and on biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetic mechanisms and immune signaling. We also found preliminary evidence for some potential regulatory mechanisms, including microRNAs and genetic variants, for some of the ADHD-associated modules of co-expressed genes identified. These results pinpoint promising genes and pathways for ADHD, support the use of peripheral blood to assess gene expression signatures for the disorder and highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying the disorder.

REFERENCES

1. Sayal K, Prasad V, Daley D, Ford T, Coghill D. ADHD in children and young people: prevalence, care pathways, and service provision. Lancet Psychiatry. 2018;5:175–86.
2. Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019;24:562–75.
3. Demontis D, Walters RK, Martin J, Mattheisen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.
Genome-wide analyses of ADHD identify 27 risk loci, reflecting new perspectives. Psychiatr Genet. 2019;29:63–78.

Mirkovic B, Chagraoui A, Gerardin P, Cohen D. Epigenetics and attention-deficit/hyperactivity disorder: new perspectives? Front Psychiatry. 2020;11. https://doi.org/10.3389/fpsyt.2020.00579.

Rovira P, Sánchez-Mora C, Pagerols M, Richarte V, Corrales M, et al. Epigenome-wide association study of attention-deficit/hyperactivity disorder in adults. Transl Psychiatry. 2020;10:1–12.

Wilmot B, Fry R, Smeester L, Musser ED, Mill J, Nigg JT. Methylation analysis of salivary DNA in ADHD identifies altered DNA methylation in VIPR2. J Child Psychol Psychiatry Allied Discip. 2016;57:152–60.

Walten E, Pingault JB, Cecil CAM, Gaunt TR, Relton CL, Mill J, et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylation-wide study. Mol Psychiatry. 2017;22:250–6.

Mooney MA, Ryabinin P, Wilmot B, Bhatt P, Mill J, Nigg JT. Large epigenome-wide association study of childhood ADHD identifies peripheral DNA methylation associated with disease and polygenic risk burden. Transl Psychiatry. 2020;10:1–12.

Meijer M, Klein M, Hannon E, van der Meer D, Hartman C, Oosterlaan J, et al. Co-expression network of neural-differentiation genes shows specific pattern in ADHD. Brain Sci. 2019;9:288.

Sánchez-Mora C, Soler Artigas M, Garcia-Martínez I, Pagerols M, Rovira P, Richarte V, et al. Epigenome-wide analyses of ADHD symptoms trajectories: a prospective, methylation-wide study. Mol Psychiatry. 2017;22:250–6.
63. Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. Rare structural variants
62. Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex
64. Vecchia ED, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, et al.
66. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S,
68. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al.
59. Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in
60. Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, et al. The neurodevelopmental role of
61. Poot M. Connecting the CNTNAP2 networks with neurodevelopmental disorders.
56. Cortese S. The association between ADHD and obesity: Intriguing, progressively
53. Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention
deficit hyperactivity disorder. Pharmacol Biochem Behav. 2019;182:22–34.
55. La Cruz-Color LD, Hernández-Nazará ZH, Maldonado-González M, Navarro-Muriz
60. Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, et al. The neurodevelopmental role of
dopaminergic signaling in neurological disorders. Neurosci Lett. 2021;741. https://doi.org/10.1016/j.neulet.2020.135540.
61. Poot M. Connecting the CNTNAP2 networks with neurodevelopmental disorders.
56. Cortese S. The association between ADHD and obesity: Intriguing, progressively
51. Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, et al. The neurodevelopmental role of
dopaminergic signaling in neurological disorders. Neurosci Lett. 2021;741. https://doi.org/10.1016/j.neulet.2020.135540.
52. Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroin-
flammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–79.
53. Dunn GA, Nigg JT, Sullivan EL. Neuroinflammation as a risk factor for attention
deficit hyperactivity disorder. Pharmacol Biochem Behav. 2019;182:22–34.
54. Hegvik TA, Waloen K, Pandey SK, Faraone SV, Haavik J, Zayats T. Druggable
genome in attention deficit/hyperactivity disorder and its co-morbid conditions.
New avenues for treatment. Mol Psychiatry. 2021;26:4004–15.
55. La Cruz-Color LD, Hernández-Nazará ZH, Maldonado-González M, Navarro-Muriz
E, Domínguez-Rosales JA, Torres-Baranda JR, et al. Association of the PNPLA2,
SCD1 and leptin expression with fat distribution in liver and adipose tissue from
obese subjects. Exp Clin Endocrinol Diabetes. 2020;128:715–22.
56. Cortese S. The association between ADHD and obesity: Intriguing, progressively
more investigated, but still puzzling. Brain Sci. 2019;9. https://doi.org/10.3390/
brains9100256.
57. Fahira A, Li Z, Liu N, Shi Y. Prediction of causal genes and gene expression
analysis of attention-deficit hyperactivity disorder in the different brain region, a
comprehensive integrative analysis of ADHD. Behav Brain Res. 2019;364:183–92.
58. Scholz R, Berberich S, Rathgeber L, Kolleker A, Köhr G, Kornau HC. AMPA receptor
signaling through BRAC2 and Arf6 critical for long-term synaptic depression.
Neuron. 2010;66:768–80.
59. Huang X, Wang M, Zhang Q, Chen X, Wu J. The role of glutamate receptors in
attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med
Genet Part B Neuropsychiatr Genet. 2019;180:272–86.
60. Cai Y, Xing L, Yang T, Chai R, Wang J, Bao J, et al. The neurodevelopmental role of
dopaminergic signaling in neurological disorders. Neurosci Lett. 2021;741. https://doi.org/10.1016/j.neulet.2020.135540.
61. Poot M. Connecting the CNTNAP2 networks with neurodevelopmental disorders.
Mol Syndromol. 2015;6:7–22.
62. Rodenas-Cuadrado P, Ho J, Vernes SC. Shining a light on CNTNAP2: complex
functions to complex disorders. Eur J Hum Genet. 2014;22:171.
63. Elia J, Gai X, Xie HM, Perin JC, Geiger E, Glessner JT, et al. Rare structural variants
found in attention-deficit hyperactivity disorder are preferentially associated with
neurodevelopmental genes. Mol Psychiatry. 2010;15:637.
64. Vecchia ED, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, et al.
Cross-species models of attention-deficit/hyperactivity disorder and autism
spectrum disorder: Lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet.
2019;29:1–17.
65. Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, et al. The transcription
factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity
in neurons. Cell Rep. 2017;20:1319–34.
66. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E, Kim S,
et al. Cux1 and Cux2 regulate dendritic branching, spine morphology, and
synapses of the upper layer neurons of the cortex. Neuron. 2010;66:533–35.
67. Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression
in blood and brain. Am J Med Genet - Neuropsychiatr Genet. 2006;141 B:261–8.
68. Boyle AP, Hong EL, Harinaran M, Cheng Y, Schaub MA, Kasowski M, et al.
Annotation of functional variation in personal genomes using RegulomeDB.
Genome Res. 2012;22:1790–7.

ACKNOWLEDGEMENTS
The authors are grateful to patients and controls who kindly participated in this
research. The microarrays service was carried out at High Technology Unit (UAT) at
Vall d’Hebron Research Institute (VHIR), Barcelona (Spain).

AUTHOR CONTRIBUTIONS
JCD, MR, and MSA conceived the project. CF, MC, VR, JARQ participated in the clinical
assessment and in the recruitment of patients. JCD, LA, and LVR participated in the
RNA isolation and preparation of samples. JCD undertook the statistical analyses. JCD,
LVR, NL, SA, MR, and MSA participated in the study design and the discussion of
results. JCD, MR, and MSA participated in the manuscript preparation. All authors
contributed to the interpretation of the findings and revised and approved the final
version of the manuscript.

FUNDING
This work was supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca
(AGAUR, 2017SGR-1461), the Instituto de Salud Carlos III (PI18/01788, P19/01224,
P120/00041 and FI18/00285 to LVR), the Ministry of Science, Innovation and
Universities (UI2018-035346-I to M.S.A), the Network Center for Biomedical Research
(CIBER) to J.C.D.; the European Regional Development Fund (ERDF), the European
Union H2020 Programme (H2020/2014-2020) under grant agreements no. 728018
(Eat2beNICE), no. 848228 (DISCOvERIE) and no. 2020604 (TIMESPAN) and the ECNP
Network ‘ADHD across the Lifespan’.

CONFLICT OF INTEREST
JARQ was on the speakers bureau and/or acted as consultant for Janssen-Cilag,
Novartis, Shire, Takeda, Bial, Shionogi, Sincrolab, Novartis, BMS, Medice, Technofarma,
Rubió and Raffles in the last 3 years. He also received travel awards (air tickets + hotel)
for taking part in psychiatric meetings from Janssen-Cilag, Rubiú, Shire, Takeda,
Shionogi, Bial, and Medice. The Department of Mental Health chaired by him received
unrestricted educational and research support from the following companies in the
last 3 years: Janssen-Cilag, Shire, Orlyxon, Roche, Psious, and Rubiú. C.F. and V.R. have
received fees to give talks for Shire/Takeda and Rubiú. All other authors declare no
biomedical financial interests or conflicts of interest.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41398-022-02182-8.
Correspondence and requests for materials should be addressed to Judit Cabana-
Dominguez or Marta Ribañes.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022