Existence of infinitely many solutions for the fractional Schrödinger-Maxwell equations

Zhongli Weia,b

School of Sciences, Shandong Jianzhu University, Jinan, Shandong, 250101, People’s Republic of China

b School of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China.

Abstract

In this paper, by using variational methods and critical point theory, we shall mainly study the existence of infinitely many solutions for the following fractional Schrödinger-Maxwell equations

\begin{align*}
(-\Delta)^\alpha u + V(x)u + \phi u &= f(x, u), \text{ in } \mathbb{R}^3, \\
(-\Delta)^\alpha \phi &= K_\alpha u^2 \text{ in } \mathbb{R}^3
\end{align*}

where $\alpha \in (0, 1]$, $K_\alpha = \frac{\pi^{-\alpha}\Gamma(\alpha)}{\pi^{-(3-2\alpha)/2}\Gamma((3-2\alpha)/2)}$, $(-\Delta)^\alpha$ stands for the fractional Laplacian. Under some more assumptions on f, we get infinitely many solutions for the system.

Key words Fractional Laplacian, Schrödinger-Maxwell equations, infinitely many solutions.

2000 MR. Subject Classification 35B40, 35B45, 35J55, 35J60, 47J30.

1 Introduction and the Main Result

In this paper, we study the fractional Schrödinger-Maxwell equations

\begin{align*}
(-\Delta)^\alpha u + V(x)u + \phi u &= f(x, u), \text{ in } \mathbb{R}^3, \\
(-\Delta)^\alpha \phi &= K_\alpha u^2 \text{ in } \mathbb{R}^3
\end{align*}
where \(u, \phi : \mathbb{R}^3 \to \mathbb{R} \), \(f : \mathbb{R}^3 \times \mathbb{R} \to \mathbb{R} \), \(\alpha \in (0, 1] \), \(K_\alpha = \frac{1}{\pi^{-(3-2\alpha)/2}} \frac{\pi^{-\alpha}\Gamma(\alpha)}{\Gamma((3-2\alpha)/2)} \), \((-\Delta)^\alpha\) stands for the fractional Laplacian. Here the fractional Laplacian \((-\Delta)^\alpha\) with \(\alpha \in (0, 1] \) of a function \(\phi : \mathbb{R}^3 \to \mathbb{R} \) is defined by:

\[
\mathcal{F}((-\Delta)^\alpha \phi)(\xi) = |\xi|^{2\alpha} \mathcal{F}(\phi)(\xi), \ \forall \alpha \in (0, 1],
\]

where \(\mathcal{F} \) is the Fourier transform, i.e.,

\[
\mathcal{F}(\phi)(\xi) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} \exp\{-2\pi i \xi \cdot x\} \phi(x) dx.
\]

If \(\phi \) is smooth enough, \((-\Delta)^\alpha\) can also be computed by the following singular integral :

\[
(-\Delta)^\alpha \phi(x) = c_{3,\alpha} \text{P.V.} \int_{\mathbb{R}^3} \frac{\phi(x) - \phi(y)}{|x - y|^{3+2\alpha}} dy.
\]

Here P.V. is the principal value and \(c_{3,\alpha} \) is a normalization constant. Such a system \((1.1)\) is called Schrödinger-Maxwell equations or Schrödinger-Poisson equations which is obtained while looking for existence of standing waves for the fractional nonlinear Schrödinger equations interacting with an unknown electrostatic field. For a more physical background of system \((1.1)\), we refer the reader to [1, 2] and the references therein.

When \(\alpha = 1 \), system \((1.1)\) was first introduced by Benci and Fortunato in [1], and it has been widely studied by many authors; The case \(V \equiv 1 \) or being radially symmetric, has been studied under various conditions on \(f \) in [3]-[9]; When \(V(x) \) is not a constant, the existence of infinitely many large solutions for \((1.1)\) has been considered in [10]-[14] via the fountain theorem (cf. [15, 16].)

In system \((1.1)\), we assume the following hypotheses on potential \(V \) and nonlinear term \(f \):

\((\forall)\) \(V \in C(\mathbb{R}^3, \mathbb{R}) \), \(\inf_{x \in \mathbb{R}^3} V(x) \geq a_1 > 0 \), where \(a_1 \) is a positive constant. Moreover,

\[
\lim_{|x| \to \infty} V(x) = +\infty.
\]

\((H_1)\) \(f \in C(\mathbb{R}^3 \times \mathbb{R}, \mathbb{R}) \), and there exist \(c_1, c_2 > 0, p \in (4, 2^*_\alpha) \) such that

\[
|f(x,u)| \leq c_1 |u| + c_2 |u|^{p-1}, \ \forall \ x \in \mathbb{R}^3, \ u \in \mathbb{R},
\]

where, \(2^*_\alpha = \frac{6}{3-2\alpha}, \ \alpha > \frac{3}{4} \), \(f(x,u)u \geq 0 \) for \(u \geq 0 \).

\((H_2)\) \(\lim_{|u| \to \infty} \frac{F(x,u)}{u^p} = +\infty \) uniformly for \(x \in \mathbb{R}^3 \), here \(F(x,u) = \int_0^u f(x,t) dt \).

\((H_3)\) Let \(G(x,u) = \frac{1}{2} f(x,u)u - F(x,u) \), there exist \(a_0 > 0 \), and \(g(x) \geq 0 \) such that \(\int_{\mathbb{R}^3} g(x) dx < +\infty, G(x,u) \geq -a_0 g(x), \ \forall (x,u) \in \mathbb{R}^3 \times \mathbb{R} \).

\((H_4)\) \(f(x,-u) = -f(x,u) \ \forall \ x \in \mathbb{R}^3, \ u \in \mathbb{R} \).

Now, we are ready to state the main result of this paper.
Remark 1.1. Assume that (\mathcal{V}) and $(\mathcal{H}_1) - (\mathcal{H}_4)$ satisfy. Then system (1.1) possesses infinitely many nontrivial solutions.

Theorem 1.1. Assume that (\mathcal{V}) and $(\mathcal{H}_1) - (\mathcal{H}_4)$ satisfy. Then system (1.1) possesses infinitely many nontrivial solutions.

Remark 1.1. (i) : There are functions \(f \) satisfying the assumptions $$(\mathcal{H}_1) - (\mathcal{H}_4)$$, for example (1) : \(f(x, u) = 4u^3 \ln(u^2 + 1) + \frac{2u^5}{u^2 + 1} \), then \(a_0 = 0 \), $$(\mathcal{H}_3)$$ is satisfied; (2) : \(f(x, u) = e^{-\sum_{i=1}^{3} |x_i|} u + |u|^{p-2} u, \ p \in (4, 2^*_\alpha), \ \alpha > \frac{3}{4} \), then \(a_0 = \frac{\alpha}{4}, g(x) = e^{-\sum_{i=1}^{3} |x_i|}, r_0 = \left(\frac{p}{p-4} \right)^{1/(p-2)} + 1 \), $$(\mathcal{H}_3)$$ is satisfied.

(ii) : the assumption $$(\mathcal{H}_3)$$ is weaker than the assumptions $$(f_4)$$ in paper [12] and $(f3')$ in paper [14].

2 Variational settings and preliminary results

Now, let's introduce some notations. For any \(1 \leq r < \infty \), \(L^r(\mathbb{R}^3) \) is the usual Lebesgue space with the norm

\[
\|u\|_{L^r} = \left(\int_{\mathbb{R}^3} |u(x)|^r \, dx \right)^{\frac{1}{r}}.
\]

The fractional order Sobolev space:

\[
H^\alpha(\mathbb{R}^3) = \left\{ u \in L^2(\mathbb{R}^3) : \int_{\mathbb{R}^3} (|\xi|^{2\alpha} \hat{u}^2 + \hat{u}^2) \, d\xi < \infty \right\},
\]

where \(\hat{u} = \mathcal{F}(u) \), The norm is defined by

\[
\|u\|_{H^\alpha(\mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} (|\xi|^{2\alpha} \hat{u}^2 + \hat{u}^2) \, d\xi \right)^{\frac{1}{2}}.
\]

The spaces \(D^\alpha(\mathbb{R}^3) \) is defined as the completion of \(C_0^\infty(\mathbb{R}^3) \) under the norms

\[
\|u\|_{D^\alpha(\mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} (|\xi|^{2\alpha} \hat{u}^2 + \hat{u}^2) \, d\xi \right)^{\frac{1}{2}} = \left(\int_{\mathbb{R}^3} |(-\Delta)^{\alpha/2} u(x)|^2 \, dx \right)^{\frac{1}{2}}.
\]

Note that, by Plancherel’s theorem we have \(\|u\|_2 = \|\hat{u}\|_2 \), and

\[
\int_{\mathbb{R}^3} |(-\Delta)^{\frac{\alpha}{2}} u(x)|^2 \, dx = \int_{\mathbb{R}^3} ((-\Delta)^{\frac{\alpha}{2}} \hat{u}(\xi))^2 \, d\xi = \int_{\mathbb{R}^3} (|\xi|^{\alpha} \hat{u}(\xi))^2 \, d\xi = \int_{\mathbb{R}^3} |\xi|^{2\alpha} \hat{u}^2 \, d\xi < \infty, \ \forall u \in H^\alpha(\mathbb{R}^3).
\]

It follows that

\[
\|u\|_{H^\alpha(\mathbb{R}^3)} = \left(\int_{\mathbb{R}^3} \left(|(-\Delta)^{\frac{\alpha}{2}} u(x)|^2 + u^2 \right) \, dx \right)^{\frac{1}{2}}.
\]

In our problem, we work in the space defined by

\[
E := \left\{ u \in H^\alpha(\mathbb{R}^3) \mid \left(\int_{\mathbb{R}^3} \left(|(-\Delta)^{\frac{\alpha}{2}} u(x)|^2 + V(x) u^2 \right) \, dx \right)^{\frac{1}{2}} < \infty \right\}.
\]
Thus, E is a Hilbert space with the inner product
\[(u, v)_E := \int_{\mathbb{R}^3} ((-\Delta)^{\frac{\alpha}{2}} u(x) \cdot (-\Delta)^{\frac{\alpha}{2}} v(x) + V(x) uv) \, dx. \]
and its norm is $\|u\| = (u, u)^{\frac{1}{2}}$. Obviously, under the assumptions (\mathcal{V}), $\|u\|_E \equiv \|u\|_{H^\alpha}$.

Lemma 2.1 (see [17] Lemma 2.2 and [18]). $H^\alpha(\mathbb{R}^3)$ is continuously embedded into $L^p(\mathbb{R}^3)$ for $p \in [2, 2\alpha^*_\alpha];$ and compactly embedded into $L^p_{loc}(\mathbb{R}^N)$ for $p \in [2, 2\alpha^*_\alpha)$ where $2\alpha^*_\alpha = \frac{6}{3 - 2\alpha}$. Therefore, there exists a positive constant C_p such that
\[\|u\|_p \leq C_p \|u\|_{H^\alpha(\mathbb{R}^3)}. \]

Lemma 2.2 (see [19]). Under the assumption (\mathcal{V}), the embedding E is compactly embedded into $L^p(\mathbb{R}^3)$ for $p \in [2, 2\alpha^*_\alpha)$.

Lemma 2.3 (see [20]). For $1 < p < \infty$ and $0 < \alpha < N/p$, we have
\[\|u\|_{L^\frac{pN}{N-\alpha'}(\mathbb{R}^N)} \leq B \|((-\Delta)^{\alpha/2} u)\|_{L^p(\mathbb{R}^N)} \tag{2.2} \]
with best constant
\[B = 2^{-\alpha} \pi^{-\alpha/2} \frac{\Gamma((N-\alpha)/2)}{\Gamma((N+\alpha)/2)} \left(\frac{\Gamma(N)}{\Gamma(N/2)} \right)^{\alpha/N}. \]

Lemma 2.4. For any $u \in H^\alpha(\mathbb{R}^N)$ and for any $h \in D^{-\alpha}(\mathbb{R}^N)$, there exists a unique solution $\phi = ((-\Delta)^{\alpha} + u^2)^{-1} h \in D^\alpha(\mathbb{R}^N)$ of the equation
\[(-\Delta)^{\alpha} \phi + u^2 \phi = h, \]
(being $D^{-\alpha}(\mathbb{R}^N)$ the dual space of $D^\alpha(\mathbb{R}^N)$). Moreover, for every $u \in H^\alpha(\mathbb{R}^N)$ and for every $h, g \in D^{-\alpha}(\mathbb{R}^N)$,
\[\langle h, ((-\Delta)^{\alpha} + u^2)^{-1} g \rangle = \langle g, ((-\Delta)^{\alpha} + u^2)^{-1} h \rangle \tag{2.3} \]
where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $D^{-\alpha}(\mathbb{R}^N)$ and $D^\alpha(\mathbb{R}^N)$.

Proof. If $u \in H^\alpha(\mathbb{R}^N)$, then by Hölder inequality and (2.2)
\[\int_{\mathbb{R}^N} u^2 \phi^2 \, dx \leq \|u\|^2_{2p} \|\phi\|^2_{2q} \leq B^2 \|u\|^2_{2p} \|\phi\|^2_{D^\alpha}, \tag{2.4} \]
where $\frac{1}{p} + \frac{1}{q} = 1$, $q = \frac{N}{N-2\alpha}$, $2q = 2\alpha^*_\alpha$. Thus $\left(\int |((-\Delta)^{\alpha/2} \phi)|^2 + \int u^2 \phi^2 \right)^{1/2}$ is a norm in $D^\alpha(\mathbb{R}^N)$ equivalent to $\|\phi\|_{D^\alpha}$. Hence, by the application of Lax-Milgram Lemma, we
obtain the existence part. For every \(u \in H^\alpha(\mathbb{R}^N) \) and for every \(h, g \in D^{-\alpha}(\mathbb{R}^N) \), we have \(\phi_g = ((-\Delta)^\alpha + u^2)^{-1} g, \phi_h = ((-\Delta)^\alpha + u^2)^{-1} h. \) Hence,

\[
\langle h, ((-\Delta)^\alpha + u^2)^{-1} g \rangle = \int h ((-\Delta)^\alpha + u^2)^{-1} g dx = \int h \phi_g dx = \int ((-\Delta)^\alpha + u^2)^{-1} h, \phi_g dx = \int ((-\Delta)^\alpha + u^2)^{-1} g, \phi_h dx = \int g ((-\Delta)^\alpha + u^2)^{-1} h dx = \langle g, ((-\Delta)^\alpha + u^2)^{-1} h \rangle.
\]

So, we get (2.3). \(\square \)

Lemma 2.5 (see [21]). Let \(f \) be a function in \(C_0^\infty(\mathbb{R}^N) \) and let \(0 < \alpha < n. \) Then, with \(c_{n-\alpha} = \pi^{-\alpha/2} \Gamma(-\alpha/2), \)

\[
c_{n-\alpha} \int_{\mathbb{R}^n} |x - y|^{2n - 2\alpha} f(y) dy.
\]

(2.5)

Lemma 2.6. For every \(u \in H^\alpha \) there exists a unique \(\phi = \phi(u) \in D^\alpha \) which solves equation (1.2). Furthermore, \(\phi(u) \) is given by

\[
\phi(u)(x) = \int_{\mathbb{R}^3} |x - y|^{2\alpha - 3} u^2(y) dy.
\]

(2.7)

As a consequence, the map \(\Phi : u \in H^\alpha \mapsto \phi(u) \in D^\alpha \) is of class \(C^1 \) and

\[
[\Phi(u)]'(v)(x) = 2 \int_{\mathbb{R}^3} |x - y|^{2\alpha - 3} u(y)v(y) dy, \quad \forall u, v \in H^\alpha.
\]

(2.8)

Proof. The existence and uniqueness part follows by Lemma 2.4. By Lemma 2.5 and the Fourier transform of equation (1.2), the representation formula (2.7) holds for \(u \in C_0^\infty(\mathbb{R}^3); \) by density it can be extended for any \(u \in H^\alpha. \) The representation formula (2.8) is obvious. \(\square \)

System (1.1) and (1.2) are the Euler-Lagrange equations corresponding to the functional \(J : H^\alpha(\mathbb{R}^3) \times D^\alpha(\mathbb{R}^3) \to \mathbb{R} \) is

\[
J(u, \phi) = \frac{1}{2} \int_{\mathbb{R}^3} \left(|(-\Delta)^{\frac{\alpha}{2}} u(x)|^2 + V(x)u^2 - \frac{1}{2} |(-\Delta)^{\frac{\alpha}{2}} \phi(x)|^2 + K_{\alpha} \phi^2 \right) dx - \int_{\mathbb{R}^3} F(x, u) dx,
\]

where \(F(x, t) = \int_0^t f(x, s) ds, \quad t \in \mathbb{R}. \)
Evidently, the action functional J belongs to $C^1(H^\alpha(\mathbb{R}^3) \times D^\alpha(\mathbb{R}^3), \mathbb{R})$ and the partial derivatives in (u, ϕ) are given, for $\xi \in H^\alpha(\mathbb{R}^3)$ and $\eta \in D^\alpha(\mathbb{R}^3)$, by
\[
\left\langle \frac{\partial J}{\partial u}(u, \phi), \xi \right\rangle = \int_{\mathbb{R}^3} \left((-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} \xi(x) + V(x)u\xi + K_{\alpha}\phi u\xi \right) \, dx - \int_{\mathbb{R}^3} f(x, u)\xi \, dx,
\]
\[
\left\langle \frac{\partial J}{\partial \phi}(u, \phi), \eta \right\rangle = \frac{1}{2} \int_{\mathbb{R}^3} \left((-\Delta)^{\frac{\alpha}{2}} \phi(x)(-\Delta)^{\frac{\alpha}{2}} \eta(x) + K_{\alpha}u^2\eta \right) \, dx.
\]
Thus, we have the following result:

Proposition 2.1. The pair (u, ϕ) is a weak solution of system (1.1) and (1.2) if and only if it is a critical point of J in $H^\alpha(\mathbb{R}^3) \times D^\alpha(\mathbb{R}^3)$.

So, we can consider the functional $J : H^\alpha(\mathbb{R}^3) \to \mathbb{R}$ defined by $J(u) = J(u, \phi(u))$.

After multiplying (1.2) by $\phi(u)$ and integration by parts, we obtain
\[
\int_{\mathbb{R}^3} |(-\Delta)^{\alpha/2} \phi(u)|^2 \, dx = K_{\alpha} \int_{\mathbb{R}^3} \phi(u)u^2 \, dx.
\]
Therefore, the reduced functional takes the form
\[
J(u) = \frac{1}{2} \int_{\mathbb{R}^3} |(-\Delta)^{\frac{\alpha}{2}} u(x)|^2 + V(x)u^2 \, dx + \frac{1}{4} K_{\alpha} \int_{\mathbb{R}^3} u^2 \phi(u) \, dx - \int_{\mathbb{R}^3} F(x, u) \, dx. \tag{2.9}
\]

Lemma 2.7. Assume that there exist $c_1, c_2 > 0$ and $p > 1$ such that
\[
|f(s)| = c_1 |s| + c_2 |s|^{p-1}, \quad \forall s \in \mathbb{R}. \tag{2.10}
\]

Then the following statements are equivalent:

i) $(u, \phi) \in (H^\alpha \cap L^p) \times D^\alpha$ is a solution of the system (1.1) – (1.2);

ii) $u \in H^\alpha \cap L^p$ is a critical point of J and $\phi = \phi(u)$.

Proof. By the assumption (2.10), the Nemitsky operator $u \in H^\alpha \cap L^p \mapsto F(x, u) \in L^1$ is of class C^1. Hence, by Lemma 2.6 for every $u, v \in H^\alpha$
\[
J'(u)[v] = \int_{\mathbb{R}^3} (-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} v(x) \, dx + \int_{\mathbb{R}^3} V(x)uv \, dx + \frac{1}{2} K_{\alpha} \int_{\mathbb{R}^3} uv \int_{\mathbb{R}^3} |x-y|^{2\alpha-3} u^2(y) \, dy \, dx
\]
\[
+ \frac{1}{2} K_{\alpha} \int_{\mathbb{R}^3} u^2 \int_{\mathbb{R}^3} |x-y|^{2\alpha-3} u(y)v(y) \, dy \, dx - \int_{\mathbb{R}^3} f(x, u)vdx
\]
\[
= \int_{\mathbb{R}^3} (-\Delta)^{\frac{\alpha}{2}} u(x)(-\Delta)^{\frac{\alpha}{2}} v(x) \, dx + \int_{\mathbb{R}^3} V(x)uv \, dx + K_{\alpha} \int_{\mathbb{R}^3} uv \phi(u) \, dx - \int_{\mathbb{R}^3} f(x, u)vdx.
\]

By Fubini-Tonelli’s Theorem, we can obtain the conclusion. \qed

6
If $1 \leq p < \infty$ and $a, b \geq 0$, then

$$(a + b)^p \leq 2^{p-1}(a^p + b^p).$$ \hspace{1cm} (2.11)$$

From (1.2) and (2.2), for any $u \in E$ using Hölder inequality we have

$$\|\phi(u)\|^2_{L^p} = K_\alpha \int_{\mathbb{R}^3} \phi(u)u^2dx \leq K_\alpha \|\phi(u)\|_q\|u\|^{2p}_{2p} \leq C\|\phi(u)\|_{L^p}\|u\|^2_{2p}.$$

where $\frac{1}{p} + \frac{1}{q} = 1$, $q = 2_\alpha = \frac{6}{3-2\alpha}$, $\alpha > \frac{3}{4}$. Here and subsequently, C denotes an universal positive constant. This and lemma 2.2 implies that

$$\|\phi(u)\|_{L^p} \leq C\|u\|^2_{2p} \leq C\|u\|^2_E,$$ \hspace{1cm} (2.12)$$

$$\int_{\mathbb{R}^3} \phi(u)u^2dx \leq C\|u\|^4_{2p} \leq C\|u\|^4_E.$$ \hspace{1cm} (2.13)$$

Lemma 2.8. Assume that a sequence $\{u_n\} \subset E$, $u_n \rightharpoonup u$ in E as $n \to \infty$ and $\{u_n\}$ be a bounded sequence. Then

$$\left|\int_{\mathbb{R}^3} (\phi(u_n)u_n - \phi(u)u)(u_n - u)dx\right| \to 0, \text{ as } n \to \infty.$$

Proof. Let $\{u_n\}$ be a sequence satisfying the assumptions $u_n \rightharpoonup u$ in E as $n \to \infty$ and $\{u_n\}$ is bounded. Lemma 2.2 implies that $u_n \to u$ in $L^r(\mathbb{R}^3)$, where $2 \leq r < 2_\alpha^*$, and $u_n \to u$ for a.e. $x \in \mathbb{R}^3$. Hence $\sup_{n \in \mathbb{N}} \|u_n\|_r < \infty$ and $\|u\|_r$ is finite. By Hölder inequality, (2.11), (2.12) and (2.14)

$$\left|\int_{\mathbb{R}^3} (\phi(u_n)u_n - \phi(u)u)(u_n - u)dx\right|$$

$$\leq \left(\int_{\mathbb{R}^3} (\phi(u_n)u_n - \phi(u)u)^2dx\right)^\frac{1}{2} \left(\int_{\mathbb{R}^3} (u_n - u)^2dx\right)^\frac{1}{2}$$

$$\leq \left\{2 \int_{\mathbb{R}^3} (|\phi(u_n)u_n|^2 + |\phi(u)u|^2)dx\right\}^{\frac{1}{2}} \|u_n - u\|_2$$

$$\leq C(\|u_n\|^6_E + \|u\|^6_E)^\frac{1}{2} \|u_n - u\|_2 \to 0, \text{ as } n \to \infty.$$

3. **Proof of Theorem 1.1**

We say that $J \in C^1(X, \mathbb{R})$ satisfies the $(C)_c$-condition if any sequence $\{u_n\}$ such that

$$J(u_n) \to c, \quad \|J'(u_n)\|(1 + \|u_n\|) \to 0$$

has a convergent subsequence, where X is a Banach space.
Lemma 3.1. Assume that (V) and (H1) – (H4) satisfy. Then any sequence \(\{u_n\} \subset E \) satisfying
\[
J(u_n) \to c > 0, \quad \langle J'(u_n), u_n \rangle \to 0,
\]
is bounded in \(E \). Moreover, \(\{u_n\} \) contains a converge subsequence.

Proof. To prove the boundedness of \(\{u_n\} \), arguing by contradiction, suppose that \(\|u_n\| \to \infty \) as \(n \to \infty \). By (H3) for sufficiently large \(n \in \mathbb{N} \)
\[
c + 1 \geq J(u_n) - \frac{1}{4} \langle J'(u_n), u_n \rangle = \frac{1}{4} \|u_n\|^2 + \int_{\mathbb{R}^3} G(x, u_n)dx \\
\geq \frac{1}{4} \|u_n\|^2 - a_0 \int_{\mathbb{R}^3} g(x)dx \to +\infty.
\]
Thus \(\sup_{n \in \mathbb{N}} \|u_n\| < \infty \), i.e. \(\{u_n\} \) is a bounded sequence.

Now we shall prove \(\{u_n\} \) contains a subsequence, without loss of generality, by Eberlein-Shmulyan theorem (see for instance in [22]), passing to a subsequence if necessary, there exists a \(u \in E \) such that \(u_n \rightharpoonup u \) in \(E \), again by Lemma [22], \(u_n \to u \) a.e. \(x \in \mathbb{R}^3 \). By (H1) and using Hölder inequality we have
\[
\left| \int_{\mathbb{R}^3} (f(x, u_n) - f(x, u))(u_n - u)dx \right| \\
\leq \int_{\mathbb{R}^3} |c_1(|u_n| + |u|) + c_2(|u_n|^{p-1} + |u|^{p-1})| |u_n - u|dx \\
\leq c_1(\|u_n\|_2 + \|u\|_2)\|u_n - u\|_2 + c_2(\|u_n\|_p^{p-1} + \|u\|_p^{p-1})\|u_n - u\|_p \\
\to 0, \quad \text{as} \quad n \to \infty.
\]
Since \(J \in C^1(E) \), we have \(J'(u_n) \rightharpoonup J'(u) \) in \(E^* \). i.e.
\[
\langle J'(u_n) - J'(u), u_n - u \rangle \to 0, \quad \text{as} \quad n \to \infty.
\]
This together with Lemma 2.8 implies
\[
\|u_n - u\|^2 = \langle J'(u_n) - J'(u), u_n - u \rangle - K_n \int_{\mathbb{R}^3} (\phi(u_n)u_n - \phi(u)u)(u_n - u)dx \\
+ \int_{\mathbb{R}^3} (f(x, u_n) - f(x, u))(u_n - u)dx \to 0, \quad \text{as} \quad n \to \infty.
\]
That is \(u_n \to u \) in \(E \).

Lemma 3.2. Suppose that assumptions (V), (H1) and (H2) satisfy, for any finite dimensional subspace \(\bar{E} \subset E \), there holds
\[
J(u) \to -\infty, \quad \|u\| \to \infty, \quad u \in \bar{E}.
\] (3.1)
Proof. Arguing indirectly, assume that for some sequence \(\{ u_n \} \subset \tilde{E} \) with \(\| u_n \| \to \infty \), there is \(M > 0 \) such that \(J(u_n) \geq -M, \forall n \in \mathbb{N} \). Set \(v_n = \frac{u_n}{\| u_n \|} \), then \(\| v_n \| = 1 \). Passing to a subsequence, we may assume that \(v_n \rightharpoonup v \) in \(E \). Since \(\dim E < \infty \), then \(v_n \to v \in \tilde{E} \), \(v_n(x) \to v(x) \) a.e. on \(x \in \mathbb{R}^3 \), and so \(\| v \| = 1 \). Let \(\Omega := \{ x \in \mathbb{R}^3 : v(x) \neq 0 \} \), then \(\text{meas}(\Omega) > 0 \) and for a.e. \(x \in \Omega \), we have \(\lim_{n \to \infty} | u_n(x) | \to \infty \).

It follows from (2.9), (2.13) that
\[
\lim_{n \to \infty} \frac{4}{\| u_n \|^4} \int_{\mathbb{R}^3} F(x, u_n) \, dx = \lim_{n \to \infty} \frac{2\| u_n \|^2 + K \alpha \int_{\mathbb{R}^3} \phi(u_n) u_n^2 \, dx - 4J(u_n)}{\| u_n \|^4} \leq C. \tag{3.2}
\]

But by the non-negative of \(F \), (\((H_2)\) and Fadous Lemma, for large \(n \) we have
\[
\lim_{n \to \infty} \frac{4}{\| u_n \|^4} \int_{\mathbb{R}^3} F(x, u_n) \, dx \geq \lim_{n \to \infty} \int_{\Omega} \frac{4F(x, u_n) v_n^4}{u_n^4} \, dx
\geq \liminf_{n \to \infty} \int_{\Omega} \frac{F(x, u_n) v_n^4}{u_n^4} \, dx
= \int \liminf_{n \to \infty} \frac{F(x, u_n)}{u_n^4} [\chi_{\Omega}(x)] v_n^4 \, dx \to \infty, \quad n \to \infty.
\]
This contradicts to (3.2). \(\Box \)

Corollary 3.1. Under assumptions \((\mathcal{V})\), \((H_1)\) and \((H_2)\), for any finite dimensional subspace \(\tilde{E} \subset E \), there is \(R = R(\tilde{E}) > 0 \) such that
\[
J(u) \leq 0, \quad \forall u \in \tilde{E}, \quad \| u \| \geq R. \tag{3.3}
\]

Let \(\{ e_j \} \) is an orthonormal basis of \(E \) and define \(X_j = \mathbb{R} e_j \),
\[
Y_k = \oplus_{j=1}^{k} X_j, \quad Z_k = \oplus_{j=k+1}^{\infty} X_j, \quad k \in \mathbb{N}. \tag{3.4}
\]

Lemma 3.3. Under assumptions \((\mathcal{V})\), for \(2 \leq r < 2^* \), we have
\[
\beta_k(r) = \sup_{u \in Z_k, \| u \| = 1} \| u \|_r \to 0, \quad k \to \infty. \tag{3.5}
\]

Proof. Since the embedding from \(E \) into \(L^r(\mathbb{R}^3) \) is compact, then Lemma 3.3 can be proved by a similar way as Lemma 3.8 in \([15]\).

By Lemma 3.3, we can choose an integer \(m \geq 1 \) such that
\[
\| u \|^2 \leq \frac{1}{2c_1} \| u \|^2, \quad \| u \|^p \leq \frac{p}{4c_2} \| u \|^p, \quad \forall u \in Z_m. \tag{3.6}
\]
Lemma 3.4. Suppose that assumptions (V) and (H$_1$) are satisfied, there exist constants $\rho, \delta > 0$ such that $J|_{\partial B_\rho \cap Z_m} \geq \delta > 0$.

Proof. By (H$_1$), we have

$$F(x, u) \leq \frac{c_1}{2} u^2 + \frac{c_2}{p} |u|^p, \quad \forall (x, u) \in \mathbb{R}^3 \times \mathbb{R}.$$

Hence, by (2.9) and (3.6), we have

$$J(u) = \frac{1}{2} \|u\|^2 + \frac{1}{4} K_\alpha \int_{\mathbb{R}^3} \phi(u) u^2 dx - \int_{\mathbb{R}^3} F(x, u) dx$$

$$\geq \frac{1}{2} \|u\|^2 - \int_{\mathbb{R}^3} F(x, u) dx$$

$$\geq \frac{1}{2} \|u\|^2 - \frac{c_1}{2} \|u\|^2 - \frac{c_2}{p} \|u\|^p$$

$$\geq \frac{1}{4} (\|u\|^2 - \|u\|^p).$$

Hence for any given $0 < \rho < 1$, let $\delta = \frac{1}{4}(\rho^2 - \rho^p)$, then $J|_{\partial B_\rho \cap Z_m} \geq \delta > 0$. This complete the proof.

Lemma 3.5 (see[23]). Let X be an infinite dimensional Banach space, $X = Y \oplus Z$, where Y is finite dimensional. If $J \in C^1(X, \mathbb{R})$ satisfies (C)$_c$-condition for all $c > 0$, and

(J1) $J(0) = 0$, $J(-u) = J(u)$ for all $u \in X$;

(J2) there exist constants $\rho, \delta > 0$ such that $J|_{\partial B_{\rho} \cap Z_m} \geq \delta > 0$;

(J3) for any finite dimensional subspace $\widetilde{E} \subset E$, there is $R = R(\widetilde{E}) > 0$ such that $J(u) \leq 0$, $\forall u \in \widetilde{E} \setminus B_{R}$;

then J possesses an unbounded sequence of critical values.

Proof of Theorem 1.1. Let $X = E, Y = Y_m$ and $Z = Z_m$. By Lemmas 3.2 3.3 and Corollary 3.1 all conditions of Lemma 3.5 are satisfied. Thus, problem (1.1) and (1.2) possesses infinitely many nontrivial solutions.

References

[1] T. D’Aprile, D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (2004), 893–906.
[2] V. Benci, D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonl. Anal. 11 (1998) 283–293.

[3] A. Ambrosetti, D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10 (2008) 391-404.

[4] G.M. Coclite, A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Commun. Appl. Anal. 7 (2003) 417-423.

[5] T. D’Aprile, Non-radially symmetric solution of the nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2 (2002) 177-192.

[6] H. Kikuchi, On the existence of solution for elliptic system related to the Maxwell-Schrödinger equations. Nonlinear Anal. 27 (2007) 1445-1456.

[7] D. Ruiz, The Schrödinger-Possion equation under the effect of a nonlinear local term. J. Funct. Anal. 237 (2006) 655-674.

[8] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \mathbb{R}^N. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 787-809.

[9] L. Zhao, F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, Nonlinear Anal. 70 (2009) 2150-2164.

[10] A. Azzollini, A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345 (2008) 90-108.

[11] Chen, S.J., Tang, C.-L.: High energy solutions for the superlinear Schrödinger-Maxwell equations. Nonlinear Anal. 71(2009) 4927-4934.

[12] Li, Q., Su, H., Wei, Z.: Existence of infinitely many large solutions for the nonlinear Schrödinger-Maxwell equations. Nonlinear Anal. 72 (2010) 4264-4270.

[13] Sun, J: Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 390 (2012) 514-522.

[14] Wen-nian Huang, X.H. Tang, The existence of infinitely many solutions for the nonlinear Schrödinger-Maxwell equations. Results. Math. 65(2014) 223-234.

[15] Willem, M.: Minimax Theorems. Birkhauser, Boston (1996).
[16] Zou, W.: Variant fountain theorems and their applications. Manuscripta Math. 104 (2001) 343-358.

[17] X. Chang, Ground state solutions of asymptotically linear fractional Schrödinger equations. J Math Phys. 54 (2013) 061504.

[18] P. Felmer, A. Quaas, and J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Proc. - R. Soc. Edinburgh, Sect. A: Math. 142 (2012) 1237-1262.

[19] Zifei Shen and Fashun Gao, On the Existence of Solutions for the Critical Fractional Laplacian Equation in \mathbb{R}^N. Abstract and Applied Analysis, 2014, Article ID 143741, 10 pages.

[20] Hajaiej H, Yu X, Zhai Z. Fractional Gagliardo-Nirenberg and Hardy inequalities under Lorentz norms. J. Math. Anal. Appl. 396 (2012) 569-577.

[21] Elliott H. Lieb, Michael Loss, Analysis, Second edition (Graduate Studies in Mathematics 14)-AMS Bookstore (2001).

[22] Yosida, K.: Functional Analysis, 6th edn. Springer-Verlag, New York (1999).

[23] Bartolo, T., Benci, V., Fortunato, D.: Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity. Nonlinear Anal. 7, 241-273 (1983).