Selective Inhibition and Recruitment in Linear-Threshold Thalamocortical Networks

Michael McCreesh and Jorge Cortés, Fellow, IEEE

Abstract—Neuroscientific evidence shows that for most brain networks, all pathways between cortical regions either pass through the thalamus or a transthalamic parallel route exists for any direct corticocortical connection. This article seeks to formally study the dynamical behavior of the resulting thalamocortical brain networks with a view to characterizing the inhibitory role played by the thalamus and its benefits. We employ a linear-threshold mesoscale model for individual brain subnetworks and study both hierarchical and star-connected thalamocortical network topologies. By using tools from singular perturbation theory and switched systems, we show that selective inhibition and recruitment can be achieved in such networks through a combination of feedback and feedforward control. Various simulations throughout the exposition illustrate the benefits resulting from the presence of the thalamus regarding failsafe mechanisms, required control energy, and network performance.

Index Terms—Linear-threshold dynamics, singular perturbations, switched systems, thalamocortical brain networks.

I. INTRODUCTION

The brain is a complex network composed of billions of individual neurons, with their interconnections forming subnetworks that perform a myriad of different functions. Communication of information between regions and its subsequent processing is one such function. Brain regions, such as the neocortex, for example, have a hierarchical structure in which different cognitive levels operate on distinct timescales. Within this hierarchy, information travels from faster lower level sensory brain regions to slower higher level cognitive brain regions (bottom-up communication). Upon processing in the higher level regions, information regarding decisions made by these regions is passed back down the hierarchy to perform some task (top-down communication). In this process, certain regions are selectively recruited to perform the given task, while other areas are selectively inhibited to ignore other inputs into the brain network.

Such hierarchies are not restricted to the neocortex, and neither top-down and bottom-up communications occur entirely inside the neocortex. In fact, most, if not all, direct corticocortical communications have a parallel transthalamic pathway upon which the information is transmitted and modulated [1]. Our goal here is to understand the role of transthalamic communication in enabling selective attention, with a view to characterizing its benefits. We seek to provide a dynamical explanation of this phenomena and validate the hypothesis that selective inhibition and recruitment are feasible in thalamocortical networks via feedback and feedforward mechanisms.

Literature Review: The hierarchical organization of the brain has been known for decades [2], [3] and has been extensively studied from different viewpoints [4], [5], [6]. The role of the communication between the thalamus and cortical regions in a thalamocortical hierarchy is a more recently studied problem. Historically, the thalamus has been viewed as a relay of sensory signals to the cortex. However, in recent literature, it has been shown to also play a further role in cognitive processes [7]. In particular, the authors in [1] and [8] showed that the thalamus transfers both sensory signals to the cortex using first-order relays, but that for most direct corticocortical connection, there exists a parallel transthalamic path made of higher order thalamic relays. Further evidence is given that these paths operate using feedforward inhibitory control to communicate information from thalamic to cortical areas [9], [10], [11]. The works [12] and [13] show that depending on the purpose (e.g., visual, auditory, somatomotor) of the hierarchical network, the thalamus connects to the hierarchy at different levels. In general, little theoretical understanding is available about the network properties of thalamocortical structures and their role in the hierarchical nature of the brain. To address this gap, here, we employ linear-threshold dynamics [14] as a mesoscale model for the behavior of neuronal populations and build on the hierarchical selective recruitment framework introduced in [15] and [16] for strictly cortical networks. Our results here expand the validity of this framework to a larger class of brain topologies that include the thalamus. We also rely on results from switched piecewise and affine systems [17] and singular perturbation theory [18], [19].

Statement of Contributions: We deal with thalamocortical brain networks where each brain region is modeled as a state-dependent switched system governed by a linear-threshold rate dynamics. Focusing on selective attention, the neuronal populations in each region are divided into task-relevant and task-irrelevant nodes. Inspired by the types of pathways in thalamic circuitry, we consider two interconnections topologies, multi-layer hierarchical networks, and star-connected networks. Our
first contribution provides an analysis from a control perspective of the mechanisms involved in the selective inhibition and recruitment in hierarchical thalamocortical network topologies. Using singular perturbation theory for nonsmooth differential equations, and the piecewise-affine nature of the linear-threshold dynamics, we provide conditions for the existence of feedback–feedforward control laws that achieve selective inhibition and recruitment of the network to a desired equilibrium trajectory. Our second contribution expands our results to star-connected thalamocortical networks, both with and without a temporal hierarchy between regions. For the latter class, we build on a generalization of stability results on slowly varying nonlinear systems to the case of exponential stability to provide conditions for the existence of a feedback–feedforward controller providing selective inhibition and recruitment. We achieve analogous results for the case of star-connected networks with a temporal hierarchy again using singular perturbation theory. Examples illustrate the beneficial role played by the thalamus interconnections in these networks for metrics, such as failsafe mechanisms, control energy, and network performance. Taken together, our results provide a dynamical explanation from a systems and control perspective of the mechanisms involved in the emergence of selective attention in the brain and the role of the thalamus. Given the state-dependent switched nature of the dynamics, the results on stabilizability and distributed feedforward/feedforward design are also of independent interest for the control of complex network systems.

II. NEUROSCIENTIFIC BACKGROUND

Here, we provide a summary of the neuroscientific background behind the modeling assumptions adopted in this article. We focus on observations about brain organization, information transmission among brain regions, and the role that the thalamus is believed to play.

Task-Relevant and Task-Irrelevant Neuron Populations: In the nervous system, stimuli are represented using a series of electric spikes generated by neurons that travel down nerve fibres [20]. A given stimulus is defined by a characteristic pattern of spikes traveling between neurons, which can also be represented as the firing rate of the neurons over time. In such a representation, some neurons generate spikes (have a nonzero firing rate) during the transmission of the stimuli, known as being excited, while other neurons do not (have a firing rate of zero), which is referred to as being inhibited. We refer to the subset of neuron populations that are excited during the transmission of a stimulus as the “task-relevant” nodes and the remaining populations as the “task-irrelevant” nodes.

Information Pathways: In the brain, there exist information pathways between different spatial regions allowing for the transmission of stimuli between processing areas. The transmission of information can be seen as the activity in one region (that is, the firing rates of the neuron populations defined by the stimuli) driving the activity in the following region by exciting the task-relevant nodes and inhibiting the task-irrelevant nodes to propagate the stimuli (and any processing of it) through the pathway. This enables the brain to generate appropriate responses to the stimuli by propagating a response through the information pathway. This response, with its own set of task relevant/irrelevant nodes, selectively recruits (excites) the task-relevant nodes, and selectively inhibits the task-irrelevant nodes. Information pathways between brain regions form both spatial and temporal hierarchies, allowing for different levels of processing occurring in different regions [21]. The temporal timescale separation is directly related to the complexity of processing occurring in a given region. For a low-level sensory area, where the inputs are brief and are processed quickly, the timescales are fast. Meanwhile, further up the information pathway, in regions, such as the prefrontal cortex, higher level cognitive processes use more complex inputs from earlier in the pathway by integrating them over time, resulting in slower timescales [14]. In strictly cortical networks, cf. Fig. 1(a), selective inhibition and recruitment through these pathways has been studied [15], [16]. There, it is shown that achieving selective inhibition and recruitment in such a network is highly dependent on both the individual regions dynamics and its interconnections with neighboring regions. Our motivation here stems from the fact that elements of such networks also have multiple connections to the thalamus while maintaining a temporal hierarchy [1], and there does not exist an analysis from a systems and control viewpoint of selective inhibition and recruitment in network topologies with these additional information pathways.

Pathways Between the Thalamus and Cortical Regions: In studying thalamocortical networks, we consider two topologies of interest, cf. Fig. 1(b) and (c). Both share the common trait that each cortical layer is connected to the thalamus layer; however, connections between cortical layers differ in each case. These topologies are inspired by the fact that pathways in thalamic circuitry can be identified into two classes [22]. The first represents the role of the thalamus as a modulator of information being passed between cortical regions along a transthalamic route parallel to the existing corticocortical information pathways (higher order relay) [1]. Since these cortical regions then form a temporal hierarchy, this leads to the hierarchical thalamocortical network shown in Fig. 1(a). The second class represents the thalamus as the main route for the transfer of information between two (or more) brain areas. In this case, the thalamus is relaying an input to the cortical regions (first-order relay) [1], which gives rise to the star-connected network shown in Fig. 1(b). The cortical regions to which information is being relayed can be parts of separate temporal hierarchies; however, as the regions in the network do not form a temporal hierarchy themselves, the timescales of the subnetworks are not directly related.

Role of the Thalamus: The neuroscientific literature [10] discusses a number of potential roles for the thalamus. The thalamus can significantly increase the information contained in signals both being transmitted to and between cortical regions [1]. In hierarchical networks within the cortex, transthalamic pathways allow for layers near the top of the hierarchy to directly receive the outputs from the lower levels, in addition to the more processed inputs they receive from other cortical regions [10]. Thalamic signals into the higher cortical regions can

1In network models, individual nodes are frequently considered to be populations of neurons with similar firing rates. Our discussion is not impacted by considering individual neurons or populations.
also allow for receiving further details of motor signals, such as distinguishing between self-induced stimuli (such as those generated by eye movements) and stimuli from the external environment [1]. The thalamus also has a role in controlling recurrent cortical dynamics, as the cortical networks in Fig. 1(a) are not able to self-sustain activity [9]. Other roles include contributions to learning, memory, decision-making, and inhibitory control [23].

III. PROBLEM SETUP

We start by providing details on the dynamic modeling of the thalamocortical network layers, then describe the effect that the interconnection topology has on the input to each layer, and finally formalize the problem under consideration.

A. Network Modeling

We consider a thalamocortical network \(\mathcal{N} \) composed of \(N \) cortical layers and the thalamus. We use linear-threshold rate dynamics to model the evolution of each region in the network. These dynamics provide a mesoscale model of the evolution of the average firing rate of populations of neurons, rather than individual spike trains, by looking at the electrical currents flowing through synaptic connections, see [20]. The dynamics of cortical layer \(\mathcal{N}_i \) composed of \(n_i \) nodes are

\[
\tau_i \dot{x}_i = -x_i + [W_i x_i + d_i(t)]_{0}^{m_i} \quad 0 \leq x_i(0) \leq m_i \quad (1)
\]

where \(x_i \in \mathbb{R}_{\geq 0}^{n_i} \) represents the state of the nodes within the layer, and each component of \(x_i \) represents a population of neurons with similar firing rate. The matrix \(W_i \in \mathbb{R}^{n_i \times n_i} \) is the synaptic connectivity between neuron populations within the layer and \(d_i(t) \in \mathbb{R}^{n_i} \) encapsulates the input into the model

\[
d_i(t) = w_i(t) + B_i u_i(t) + c_i. \quad (2)
\]

Here, \(w_i(t) \) models the interconnections between layers, \(u_i(t) \) is the control used for the \(n_i \) nodes in \(\mathcal{N}_i \), and \(c_i \) includes unmodeled background activity or external inputs. The firing rate threshold is \(m_i \in \mathbb{R}_{>0}^{n_i} \) and \(\tau_i \in \mathbb{R}_{>0}^{n_i} \) is the timescale.

In our study, the control \(u_i \) inhibits \(r_i \leq n_i \) task-irrelevant nodes (drives their state to zero), while the remaining terms in (2) recruit the remaining \(n_i - r_i \) nodes and determine the desired equilibrium or trajectory. To distinguish between task-relevant and task-irrelevant nodes, we use the following partition of network variables in each layer \(\mathcal{N}_i \):

\[
x_i = \begin{bmatrix} x_i^0 \\ x_i^1 \end{bmatrix}, \quad W_i = \begin{bmatrix} W_i^{00} & W_i^{01} \\ W_i^{10} & W_i^{11} \end{bmatrix}, \quad B_i = \begin{bmatrix} B_i^0 \\ 0 \end{bmatrix}, \quad c_i = \begin{bmatrix} c_i^0 \\ c_i^1 \end{bmatrix}, \quad m_i = \begin{bmatrix} m_i^0 \\ m_i^1 \end{bmatrix}, \quad (3a, 3b)
\]

where \(x_i^0 \in \mathbb{R}_{\geq 0}^{n_i} \) represent the task-irrelevant nodes, \(x_i^1 \in \mathbb{R}_{>0}^{n_i - r_i} \) the task-relevant nodes, and \(B_i \in \mathbb{R}^{n_i \times p_i} \) is such that the task-relevant nodes are not impacted by the control term \(u_i \in \mathbb{R}^{p_i} \). Throughout, we shall assume that \(p_i \geq r_i \), and that the matrices \(B_i^0 \) have full rank.
The thalamus layer \(\mathcal{N}_T \) is modeled in the same way as the cortical layers with the difference appearing in the interconnection term \(w_{\tau_T} \).

A final word about the brain mechanisms for the inhibition of regions [24]. Feedforward inhibition between two layers, \(\mathcal{N}_i \) and \(\mathcal{N}_j \), refers to when \(\mathcal{N}_i \) sends an inhibitory signal to \(\mathcal{N}_j \) to achieve its goal activity pattern for \(\mathcal{N}_j \) regardless of the current state of \(\mathcal{N}_j \). In contrast, feedback inhibition refers to when the inhibition applied in a layer \(\mathcal{N}_i \) is dependent upon the current activity level of the nodes desired to be inhibited [24]. We employ a combination of feedback and feedforward inhibition.

B. Interconnection Topology Among Network Layers

We detail here the dynamical interconnection between the network layers for the topologies in Fig. 1(b) and (c).

Hierarchical Thalamocortical Networks: Consider the hierarchical thalamocortical network depicted in Fig. 1(a). The hierarchical structure is encoded by the ordered timescales of the layers: \(\tau_1 \gg \tau_2 \gg \cdots \gg \tau_N \), prescribing progressively faster dynamics as one moves down the hierarchy. For generality, the timescale \(\tau_T \) of the thalamus might fit anywhere within the hierarchy. For each cortical layer \(\mathcal{N}_i \), the interconnection term \(w_i(t) \) in (2) takes the form

\[
w_i(t) = W_{i,i-1}x_{i-1}(t) + W_{i,i+1}x_{i+1}(t) + w_{\tau_T}x_T(t).
\]

(4)

Here, the terms \(W_{i,i-1}, W_{i,i+1}, \) and \(w_{\tau_T} \) represent the weights of the synaptic connections between layers \(\mathcal{N}_i \) and \(\mathcal{N}_{i-1}, \mathcal{N}_{i+1}, \) and \(\mathcal{N}_T \), respectively. It is important to note that since the thalamus impacts the cortical regions using feedforward inhibition, the interconnection matrix between the thalamus and the cortical layer satisfies \(w_{\tau_T} \leq 0 \). Substituting (4) into the linear-threshold dynamics (1), we get the dynamics for a cortical layer \(\mathcal{N}_i \)

\[
\tau_i x_i = -x_i + [W_{i,i-1}x_{i-1} + W_{i,i+1}x_{i+1} + w_{\tau_T}x_T + B_iu_i(t) + c_i]_0^{m_i}
\]

(5)

for \(i \in \{1, \ldots, N\} \). For consistency \(W_{1,0} = 0 = W_{N, N+1} \), and we assume that \(r_1 = 0 \), meaning no nodes are being inhibited in the top layer of the network.

For the thalamus layer, to reflect the different connectivity it has in the network, the interconnection term \(w_{\tau_T} \) is

\[
w_{\tau_T}(t) = \sum_{i=1}^{N} W_{\tau_T,i}x_i(t).
\]

(6)

Here, \(W_{\tau_T,i} \) represents the weight of the synaptic connections between layers \(\mathcal{N}_T \) and \(\mathcal{N}_i \) for \(i \in \{1, \ldots, N\} \). Then, substituting (6) into (1), the dynamics for the thalamus layer is

\[
\tau_T x_T = -x_T + [W_T x_T + \sum_{i=1}^{N} W_{\tau_T,i}x_i + B_T \tau_T x_T + c_T]_0^{m_T}.
\]

(7)

We denote the timescale ratio between layers by \(\epsilon = (\epsilon_1, \ldots, \epsilon_N, \epsilon_T) \), where \(\epsilon_i = \tau_i/\tau_{i-1} \) and \(\epsilon_T = \tau_T/\tau_T \). For a subnetwork \(\mathcal{N}_i \) such that the thalamus timescale fits in the hierarchy directly above it, i.e., \(\tau_T > \tau_i \), but there does not exist \(j \) such that \(\tau_T > \tau_j > \tau_i \), we let the timescale ratio between \(\mathcal{N}_T \) and \(\mathcal{N}_i \) be given by \(\epsilon_i = \tau_i/\tau_T \).

Star-Connected Thalamocortical Networks: Consider the star-connected thalamocortical network depicted in Fig. 1(b). In contrast to the hierarchical network, this topology does not form a hierarchical timescale and, as such, there is no direct relationship satisfied by the timescales. The lack of an explicit relation encodes the thalamus’ role as a sensory relay to multiple brain regions, each part of potentially unrelated temporal hierarchies. Without loss of generality, we assume subnetwork \(\mathcal{N}_i \) represents a subcortical structure and provides the input to the network for the thalamus to relay to the other brain regions. As such, there are no nodes in \(\mathcal{N}_i \) that are desired to be inhibited, meaning \(r_1 = 0 \). We model the subcortical input subnetwork with a linear-threshold dynamics, but without an independent control term, instead modeling input changes by allowing \(c_1 \) to be time-varying. That is

\[
\tau_1 x_1 = -x_1 + [W_{1,1}x_1 + W_{1,T}x_T + c_1(t)]_0^{m_1}.
\]

(8)

For the cortical regions \(\mathcal{N}_i, i \in \{2, \ldots, N\} \), the interconnection term \(w_i(t) \) is given by \(w_i(t) = W_{i,T}x_T(t) \), and we recall that as the thalamus utilizes feedforward inhibition, \(w_{\tau_T} \leq 0 \). Meanwhile, the interconnection of the thalamus with the cortical regions is defined with \(w_T(t) = \sum_{i=1}^{N} W_{T,i}x_i(t) \). Then, from (1), for \(i \in \{2, \ldots, N\} \), the dynamics takes the form

\[
\tau_i x_i = -x_i + [W_{i,i}x_i + W_{i,T}x_T + B_iu_i(t) + c_i]_0^{m_i}
\]

\[
\tau_T x_T = -x_T + \left[W_T x_T + \sum_{i=1}^{N} W_{T,i}x_i + B_T u_T(t) + c_T \right]_0^{m_T}.
\]

(9)

C. Problem Statement

For a purely cortical hierarchical brain network, as in Fig. 1(a), selective inhibition and recruitment can be achieved [15, 16]: using a combination of feedback and feedforward control, dependent on the subnetwork dynamics satisfying a set of stability properties. However, with the thalamus mediating in the network topology and its impact on the dynamics of the individual subnetworks, such results are inapplicable for the hierarchical thalamocortical network topology considered here. In addition, for the star-connected thalamocortical topology, the results do not apply, as the assumption of a hierarchical relationship between subnetwork timescales no longer holds. These observations motivate our study of control mechanisms to achieve selective inhibition and recruitment for both hierarchical and star-connected thalamocortical networks, formalized next.

Problem III.1. Consider a thalamocortical network with the interconnection topologies described in Section III-B. For each topology, determine conditions on the individual subnetworks \(\mathcal{N}_i, \mathcal{N}_T, i \in \{1, \ldots, N\} \) and the connections between them such that a feedback–feedforward control \(u(t) = Kx(t) + \tilde{u}(t) \) exists making the network converge to an equilibrium trajectory...
Further, we study differences between the hierarchical and star-connected topologies, particularly in how the latter can be considered as a failsafe topology for the former. In addition, we seek to evaluate how the addition of the thalamus subnetwork to strictly cortical networks results in improved performance. In particular, we investigate how the thalamus layer impacts the control speed needed to achieve selective inhibition and the convergence speed of the network.

IV. HIERARCHICAL THALAMOCORTICAL NETWORKS

In this section, we consider a hierarchical multilayer thalamocortical network, cf. Fig. 1(a), where the cortical layers are governed by (5) and the thalamus layer is governed by (7).

A. Equilibrium Maps for Individual Layers

We note that for a general linear-threshold dynamics (1) with \(W \in \mathbb{R}^{n \times n} \), its equilibrium map \(h : \mathbb{R}^n \rightarrow \mathbb{R}_{\geq 0}^n \)

\[
h(c) = h_{W,m}(c) = \{ x \in \mathbb{R}^n_{\geq 0} \mid x = [Wx + c]^m \}\] \hspace{1cm} (11)

maps a constant input \(c \in \mathbb{R}^n \) to the set of equilibria of (1). For thalamocortical networks, the timescale of the thalamus layer impacts the specific form of the equilibrium maps. For simplicity, we assume the thalamus lies inside the hierarchy, i.e., there exist \(a, b \in \{1, \ldots, N\} \) such that \(b = a + 1 \) and \(\tau_a \gg \tau_T \gg \tau_b \). This choice results in a layer \(N_a \) with an equilibrium map different than any that appear in the cases when the thalamus timescale is on the boundary of the hierarchy. Our results can also be stated for the latter case with appropriate adjustments to the derived control law for selective inhibition and recruitment.

The hierarchical nature of the topology plays an important role in defining these equilibrium maps. At the theoretical limit of timescale separation between two layers, the state of a given layer becomes constant at the timescale of layers lower in the hierarchy as well as being a static function of the above layer’s states. As such, when defining the equilibrium maps for a given layer, the constant input into an equilibrium map can represent the state of layers higher in the hierarchy, given that they are relative constants at that level of the dynamics. The equilibrium maps for the layers fall into three categories: below or above the thalamus, and the thalamus itself. In all cases, the maps are defined recursively from the bottom to the top of the network. At each layer, the equilibrium map takes a constant input, representing the inputs from higher levels in the hierarchy along with any external inputs to the system, and outputs the set of equilibrium values.

We next give explicit expressions for the equilibrium maps of the task-relevant component of a layer in each of the categories, denoted as \(h_i : \mathbb{R}^{n_i-\tau_i} \rightarrow \mathbb{R}_{\geq 0}^{n_i-\tau_i} \), by combining the hierarchical model described in Section III-B with (11).

Equilibrium Maps for Layers Below Thalamus: We begin by considering layers below the thalamus, i.e., with \(i \geq b \). Given values of \(x_T \in \mathbb{R}^{n_T} \) and \(c_{i+1}^{1} \in \mathbb{R}^{n_{i+1}-\tau_{i+1}} \)

\[
h_i^1(c) = \{ x_i^1 \mid x_i^1 = [W_{i,i}^{1}x_i + W_{i,i+1}^1h_{i+1}^1(W_{i+1,i}^{1}x_{i+1}^1) + W_{i,T}^1x_{i,T} + c_{i+1}^1 + c_{i+1}^1] \} \] \hspace{1cm} (12)

We note that since \(W_{N,N+1} = 0 \) by convention, this recursion is well defined for \(N_a \), the bottom layer in the network. In particular, for layer \(N \), (12) reduces to (11), the standard equilibrium map for linear-threshold models.

Equilibrium Map for Thalamus: Since the thalamus is connected to all the cortical layers, the recursive definition of its equilibrium map is dependent on the equilibrium maps of all of the layers below it. Using the notation of (12) for writing the recursion then becomes intractable for large networks. Instead, we use the following notation. For layer \(N_a \), \(i \in \{1, \ldots, N\} \), in the thalamocortical hierarchy, let \(x_{i+1}^{1} \in \mathbb{R}^{n_{i+1}-\tau_{i+1}} \) be such that

\[
x_{i+1}^1 = h_i^1 \left(W_{i,T}^{11}x_{i,T}^1 + W_{i,i}^{11}x_i^1 + c_i^1 \right) \] \hspace{1cm} (13)

Equilibrium Maps for Layers above Thalamus: We note that, in the recursive definition for the equilibrium maps above the thalamus, the inputs to the thalamus equilibrium map (13) will include equilibrium values of layers above the thalamus in the hierarchy, in addition to the equilibrium values from lower in the hierarchy. To distinguish which maps are inputting equilibrium maps in a condensed manner, we introduce the following notation. For \(i \in \{1, \ldots, a\} \), let \(x_{T_{i,i}}^1 \in \mathbb{R}^{n_{T_{i,i}}-\tau_{i,i}} \) denote a value inside the thalamus equilibrium set satisfying

\[
x_{T_{i,i}}^1 \in h_T^1 \left(\sum_{j=1}^{i} W_{T,j}^{11}x_j^1 + \sum_{j=a+1}^{N} W_{T,j}^{11}x_j^1 + c_T^1 \right) \] \hspace{1cm} (14)

Using this notation, we define the remaining equilibrium maps. We first provide the equilibrium maps for layers \(\{N_i\}_{i=1}^{a-1} \) and finish with the map for \(N_a \). For \(i \in \{1, \ldots, a - 1\} \), given \(c_{i+1}^{1} \in \mathbb{R}^{n_{i+1}-\tau_{i+1}} \), the equilibrium map \(h_i^1 : \mathbb{R}^{n_{i}-\tau_{i}} \rightarrow \mathbb{R}_{\geq 0}^{n_{i}-\tau_{i}} \) is

\[
h_i^1(c) = \{ x_i^1 \mid x_i^1 = [W_{i,i}^{1}x_i + c_i^{1}] + W_{i,i+1}^1h_{i+1}^1(W_{i+1,i}^{1}x_{i+1}^1) + W_{i,T}^1x_{i,T} + c_{i+1}^{1} + c_{i+1}^{1} \} \]

The expression for the equilibrium map of the layer \(N_a \), which is directly above the thalamus, differs from the other layers due to the specific timescale separation between thalamus and cortex.
to the fact that it depends directly on a layer below the thalamus in addition to being dependent on the thalamus. Given $c_i^0 \in \mathbb{R}^{n_a - r_h}$, the equilibrium map $h_i^1 : \mathbb{R}^{n_a - r_h} \rightarrow \mathbb{R}^{n_a - r_h}$ is
\[
h_i^1(c) = \left\{ \mathbf{x}^1_a | x^1_a = \left[W_{11}^{11} x^1_a + W_{12}^{11} h_x^1 \left(W_{1a}^{11} x^1_a \right) + e_i^1 \right] + W_{1a}^{11} x^{11} T_{c_i(a)} + c_i^0 \right\}.
\]

We conclude this section by establishing that all the equilibrium maps in the thalamocortical network (12)–(15) are piecewise-affine and use this fact to justify they are globally Lipschitz too. To begin, we note that since general linear-threshold dynamics are switched affine, their equilibrium map (11) can be written in a piecewise-affine form. In particular, this equilibrium map can be written as follows:
\[
h(c) = \{ F_\sigma c + f_\sigma | G_\sigma c + g_\sigma \geq 0, \sigma \in \{0, \ell, s\} \} \quad (16)
\]
for some matrices and vectors of the form
\[
F_\sigma = (I - \Sigma^* W)^{-1}, \quad f_\sigma = (I - \Sigma^* W)^{-1} \Sigma^* m
\]
\[
G_\sigma = \left[\Sigma^* + \Sigma^* - I \right]^{\top} F_\sigma
\]
\[
g_\sigma = \left[f_\sigma \left(\Sigma^* + \Sigma^* - I \right) \right]^{\top} (m - f_\sigma)^{\top} \Sigma^* f_\sigma
\]
where Σ^* is a diagonal matrix with $\Sigma^*_i = 1$ if $\sigma_i = 1$ and zero otherwise, and Σ^* is defined analogously. Now, since $W_{N,N+1} = 0$, the equilibrium map for the bottom layer in the hierarchy h_N^1 has the same form as (11), and hence can be written in the form (16). The following result generalizes [16, Lemma IV.1] and shows that all the equilibrium maps in the hierarchical thalamocortical network are piecewise-affine.

Lemma IV.1. (Piecewise-affinity of equilibrium maps in hierarchical thalamocortical linear-threshold models): Let $h_i : \mathbb{R}^n \rightarrow \mathbb{R}^n, i \in \{1, \ldots, k\}$, be piecewise-affine functions
\[
h_i(c) = F_{\lambda_i} c + f_{\lambda_i}, \quad \forall \sigma_i \in \Psi_{\lambda_i} \Delta \{ c | G_{\lambda_i} c + g_{\lambda_i} \geq 0 \}
\]
for $\lambda_i \in \Lambda_i$, where Λ_i is a finite index set such that $\bigcup_{\lambda_i \in \Lambda_i} \Psi_{\lambda_i} = \mathbb{R}^n$. Define $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_k$, $\lambda = (\lambda_1, \ldots, \lambda_k)$ and $\Psi = (\Psi_{\lambda_1}, \ldots, \Psi_{\lambda_k})$. Given matrices W_1, W_2, W_3 and vectors e_i, c_i' for all $i \in \{1, \ldots, k\}$ assume
\[
x = \left[W_1 x + \sum_{i=1}^k W_2^i h_i(W_3^i x + e_i) + c_i' \right]^m \quad (17)
\]
is known to have a unique solution $x' \in \mathbb{R}^n$ for each $c' \in \mathbb{R}^n$, and let $h'(c')$ be this solution. Then, there exists a finite index set Λ' and $\left\{ (F_{\lambda'}^i, f_{\lambda'}^i, G_{\lambda'}^i, g_{\lambda'}^i) \right\}_{\lambda' \in \Lambda'}$ such that
\[
h'(c') = F_{\lambda'}^i c' + f_{\lambda'}^i, \quad \forall c' \in \Psi_{\lambda'} \Delta \{ c' | G_{\lambda'} c' + g_{\lambda'} \geq 0 \}
\]
for $\lambda' \in \Lambda'$ and $\bigcup_{\lambda' \in \Lambda'} \Psi_{\lambda'} = \mathbb{R}^n$.

The equilibrium maps for the hierarchical thalamocortical network satisfy Lemma IV.1 with $r = 1$, $r = N - b$, and $r = 2$ for the layers below the thalamus, the thalamus, and the layers above the thalamus, respectively, and therefore the maps are piecewise-affine. Finally, the fact that these maps are globally Lipschitz follows from [16, Lemma IV.2]. This property is necessary to be able to apply later the generalization of the Tikhonov’s singular perturbation stability theorem to nonsmooth ordinary differential equations (ODEs) given in [19, Proposition 1] to take advantage of the timescale separation between the layers.

B. Stability Assumptions and Conditions

In the hierarchical thalamocortical model described in Section III, only the task-irrelevant components of the dynamics are directly controlled over, cf. (3b). This means that assumptions on the stability of the task-relevant components of the dynamics are needed to guarantee their stability and recruitment to an equilibrium trajectory. In particular, we are interested in the reduced-order task-relevant dynamics, that is, the system dynamics in which the inputs from layers lower in the hierarchy have been replaced by their equilibrium values. Here, we provide details on these assumptions and identify sufficient conditions for them to hold.

Top Layer of the Hierarchy: The top layer N_1 in the hierarchy does not have any nodes that are to be inhibited. In addition, its role is in driving the selective recruitment in the lower levels, rather than being recruited itself. As such, we only require that the trajectories of its dynamics are bounded. Formally, for all sets of constants $c_1 \in \mathbb{R}^{n_1}, c_i \in \mathbb{R}^{n_i-r_i}, i \in \{2, \ldots, N\}$, and $c_T \in \mathbb{R}^{N_T-r_T}$, we assume
\[
t_i x_i = -x_i + W_{11}^{11} h_i(W_{21}^{11} x_i + c_i) + W_{11}^{11} x_T^{11} + c_i^0 \quad (18)
\]
has bounded solutions. We note that our earlier assumption that the thalamus is in the middle of the hierarchy makes the top layer a cortical one. If, instead, the thalamus was the top layer, one would instead assume here that its dynamics has bounded solutions, replacing (18) accordingly.

Lower Layers in the Hierarchy: In each of the layers below the top one, we seek to accomplish selective inhibition and recruitment by having the dynamics converge to a parameter-dependent equilibrium trajectory. For the task-irrelevant components, we aim to use a control law to stabilize them to zero. In such a case, an additional challenge is then to identify conditions on the interconnected network layers that ensure the coupled system displays the desired behavior. Due to the different reduced-order dynamics throughout the network, we provide the details for this assumption in four categories: 1) layers above the thalamus, 2) layer directly above the thalamus, 3) thalamus, and 4) layers below the thalamus.

Layers Above the Thalamus: For each layer N_i, with $i \in \{1, \ldots, a - 1\}$, above the thalamus, the dynamics are directly dependent on two layers below it, and hence the reduced-order dynamics are dependent on two equilibrium maps. For achieving

3To apply the result to a nonsmooth ODE, such as (1) we need to justify the following: 1) Lipschitzness of the dynamics uniformly in t, 2) Existence, uniqueness, and Lipschitzness of the equilibrium map of the fast dynamics, 3) Lipschitzness and boundedness of the reduced-order model, 4) asymptotic stability of the fast dynamics uniformly in t and the slow variable, and 5) global attractiveness of the fast dynamics for any fixed slow variable.
selective inhibition and recruitment, we assume that, for all sets of constants $c_{i+1}^1 \in \mathbb{R}^{n_{i+1} - r_{i+1}}$, $c_i^1 \in \mathbb{R}^{n_i - r_i}$, and $c_j^1 \in \mathbb{R}^{n_j - r_j}$, $j \in \{i + 2, \ldots, N\}$, T, the reduced-order dynamics

$$
\tau_t x_i^1 = -x_i^1 + \left[W_{i+1,i}^1 x_i^1 + W_{i+1,i+1}^1 h_{i+1}^1 \right] (W_{i+1,i}^{1,1} x_i^1 + c_{i+1}^1) + W_{i,T}^1 x_T (c_i^1)^{m_i} + c_{i+1}^1 \right]_0
$$

are globally exponentially stable (GES) to an equilibrium trajectory defined by the constants.

Layer Directly above the Thalamus: For the layer N_{i} directly above the thalamus, while still dependent on two layers below it in the hierarchy, one of these layers is below the thalamus. In the reduced-order model, this changes the equilibrium maps. Thus, for all constants $c_{i+1}^1 \in \mathbb{R}^{n_{i+1} - r_{i+1}}$, $c_i^1 \in \mathbb{R}^{n_i - r_i}$, and $c_j^1 \in \mathbb{R}^{n_j - r_j}$, $i \in \{b + 1, \ldots, N\}$, T, we assume its reduced-order dynamics

$$
\tau_a x_a^1 = -x_a^1 + \left[W_{a,a}^1 x_a^1 + W_{a,b}^1 c_i + W_{a,T}^1 x_T (c_i)^{m_i} \right]_0
$$

are GES to an equilibrium trajectory determined by the chosen constants.

Thalamus Layer: Since the thalamus layer depends on all the other layers in the network, its reduced-order dynamics are dependent on the $N - b$ equilibrium maps of all the layers (from N_b to N_N) below the thalamus. For all constants $c_{i+1}^1 \in \mathbb{R}^{n_{i+1} - r_{i+1}}$, $c_i^1 \in \mathbb{R}^{n_i - r_i}$, and $c_j^1 \in \mathbb{R}^{n_j - r_j}$, we assume the reduced-order dynamics

$$
\tau_T x_T^1 = -x_T^1 + \left[W_{T,T}^1 x_T + \sum_{j=1}^{N} W_{T,j} x_j^1 + c_T^1 \right]_0
$$

are GES to an equilibrium trajectory defined by the constants c_{1}^1, \ldots, c_N^1 and c_T^1.

Layers Below the Thalamus: Finally, the layers below the thalamus are directly dependent on only one layer below them in the hierarchy. For all constants $c_{i+1}^1 \in \mathbb{R}^{n_{i+1} - r_{i+1}}$ and $c_i^1 \in \mathbb{R}^{n_i - r_i}$, we assume its reduced-order dynamics

$$
\tau_t x_i^1 = -x_i^1 + \left[W_{i+1,i}^1 x_i^1 + W_{i+1,i+1}^1 h_{i+1}^1 \right] (W_{i+1,i}^{1,1} x_i^1 + c_{i+1}^1) + W_{i,T}^1 x_T (c_i^1)^{m_i} \right]_0
$$

and we assume they are GES to an equilibrium trajectory dependent upon the constants c_{i+1}^1 and c_i^1.

The stability of task-relevant dynamics in specific regions (subnetworks) is a reasonable assumption, given that this phenomenon has been widely observed within the brain [25]. In our model above, we do not fully control the task-relevant components of these dynamics since they are mediated through the interconnection with other subnetworks. This is why we next turn our attention to identifying conditions under which the reduced-order dynamics for layers N_2, \ldots, N_N, N_T are indeed GES. The following result makes use of the fact that the equilibrium maps are piecewise-affine, cf. Lemma IV.1.

Lemma IV.2. (Sufficient condition for existence and uniqueness of equilibria and GES in multilayer linear-threshold networks with parallel connections): Let $h_i: \mathbb{R}^n \to \mathbb{R}^n$, $i \in \{1, \ldots, K\}$, be piecewise-affine functions

$$
h_i(c) = f_i^c + f_i^c, \quad \forall c \in \Psi_i, \quad \Psi_i \triangleq \{ c \mid \Gamma_i, c + g_i \}
$$

for all $\lambda_i \in \Lambda_i$ where Λ_i is a finite index set such that $\bigcup_{\lambda_i \in \Lambda_i} \Psi_i = \mathbb{R}^n$. Define $F_i^\lambda \triangleq \max_{x \in \Lambda_i} [F_i^\lambda]_i$ as the matrix made of the entrywise maximum of the elements in $[F_i^\lambda]_{i \in \Lambda_i}$. For $i \in \{1, \ldots, K\}$ let the matrices W_i^1, W_2^i be arbitrary and also consider arbitrary matrix W_i. Then, if $\rho([W] + \sum_{i=1}^{K} [W_i^1] [F_i] [W_2^i]) < 1$, the dynamics

$$
\tau x = -x + \left[W x + \sum_{i=1}^{K} W_i^1 h_i(W_2 x + c_i) + c \right]_0
$$

is GES to a unique for all constants c_i, c.

Lemma IV.2 generalizes [16, Th. IV.4] to thalamocortical networks and its proof follows a similar line of arguments. The application of this result to our setting results in, if $\rho([W] + [W_i^1] [F_i] [W_2]) < 1$ for $i \in \{1, \ldots, K\}$, $\rho([W_i^1] + [W_i^1] [F_i] [W_2]) < 1$ for $i \in \{1, \ldots, K\}$, and $\rho([W] + \sum_{i=1}^{K} [W_i^1] [F_i] [W_2]) < 1$, then the dynamics (19)–(22) are GES to an equilibria.

Remark IV.3. (Comparison with conditions for a strictly cortical hierarchical network): Sufficient conditions for GES of the reduced-order dynamics of a strictly cortical network can be obtained from the above by allowing $W_i^1 = 0$ for all i, and then these conditions reduce to those found in [16], as expected. These sufficient conditions to guarantee GES, for layers above the thalamus, are harder to satisfy in the thalamocortical network than in a cortical one. However, as the conditions are only sufficient, this does not mean that it is in fact more difficult to achieve GES of the reduced-order dynamics in the thalamocortical case, as the proof above does not explicitly invoke the inhibitory nature of the thalamus.

C. Selective Inhibition and Recruitment

We are ready to illustrate how selective inhibition and recruitment can be achieved in the hierarchical thalamocortical network model. Here, we first formalize the concept mathematically and then provide a feedforward–feedback control that achieves it. Recall that selective inhibition corresponds to the task-irrelevant components of the network converging to zero, and recruitment corresponds to having the task-relevant components converge to an equilibrium trajectory. The timescale ratio between layers, ϵ, must approach zero to encode the separation of timescales observed in the brain. As such, we require convergence of the task-relevant components of the network to an equilibrium as this ratio approaches zero. Formally, selective inhibition and recruitment is achieved if the following equations are satisfied for any $0 < t_1 < t_2 < \infty$: first, for all layers N_i,
\(i \in \{2, \ldots, N\} \cup \{T\} \), it holds that:
\[
\text{[inhibition]: } \lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \| x_i^0(t) \| = 0. \tag{23a}
\]
Second, for the top layer \(\mathcal{N}_1 \) in the hierarchy
\[
\text{[driving layer]: } \lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \| x_1^1(t) - x_1^0(t) \| = 0 \tag{23b}
\]
for all layers \(\{\mathcal{N}_i\}_{i=2}^N \) above the thalamus
\[
\text{[recruitment]: } \lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \| x_i^1(t) - h_i^1(\mathbf{W}_{i,i-1}^1 x_{i-1}(t) + c_i^1) \| = 0 \tag{23c}
\]
for the thalamus layer
\[
\text{[recruitment]: } \lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \| x_1^1(t) - x_{T(a)} \| = 0 \tag{23d}
\]
and finally, for the layers \(\{\mathcal{N}_i\}_{i=b}^N \) below the thalamus,
\[
\text{[recruitment]: } \lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \| x_1^1(t) - h_i^1(\mathbf{W}_{i,i-1}^{1,\text{all}} x_{i-1}(t) + \mathbf{W}_{i,T}^{1,\text{all}} x_T(t) + c_i^1) \| = 0. \tag{23e}
\]
Intuitively, we note from (23) that achieving selective inhibition and recruitment means that one can make the error between the network trajectories and the equilibrium trajectories arbitrarily small if the timescale ratio is small enough. The following result shows that selective inhibition and recruitment can be achieved in the hierarchical thalamocortical network by means of a combination of feedback-forward and feedback control.

Theorem IV.4. *(Selective inhibition and recruitment in hierarchical thalamocortical networks with Feedbackforward–Feedback Control):* Consider an \(N \)-layer thalamocortical network, as shown in Fig. 1(a), with layer dynamics given by (5) and (7). Without loss of generality, let \(\tau_1 \gg \tau_2 \gg \cdots \gg \tau_T \gg \cdots \gg \tau_N \) and \(a, b \in \{1, \ldots, N\} \) such that \(\tau_a \gg \tau_T \gg \tau_b \), with \(b = a + 1 \). Assume the stability conditions (18)–(22) for the reduced-order subnetworks are satisfied. Then, for \(i \in \{1, \ldots, N\} \cup \{T\} \) and constants \(c_1 \in \mathbb{R}^{n_1} \) and \(c_T \in \mathbb{R}^{n_T} \), there exist control laws \(u_i(t) = \mathbf{K}_i x_i(t) + \bar{u}_i(t) \), with \(\mathbf{K}_i \in \mathbb{R}^{n_i \times n_1} \) and \(\bar{u}_i : \mathbb{R}_+ \to \mathbb{R}_+^{m_1} \), such that the closed-loop system achieves selective inhibition and recruitment (23).

Proof: We prove the result by constructing a control and iteratively applying the generalization of the Tikhonov’s theorem from [19]. Throughout the proof, we make use of the following notation. For \(i \leq a \), let \(x_{1:i}^1 = [x_1^1 \ldots x_i^1]^\top \) and, for \(i \geq b \), let \(x_{1:T} = [x_1^1 \ldots x_i^1 x_{T:T}^1 x_{T+1}^1 \ldots x_N^1]^\top \). We first define the control for layer \(\mathcal{N}_N \). Let \(\mathbf{K}_N \) and \(\bar{u}_N(t) \) be such that
\[
\mathbf{B}_N^0 \mathbf{K}_N \leq -\mathbf{W}_{N,\text{all}}^{0,\text{all}}, \tag{24a}
\]
\[
\mathbf{B}_N^0 \bar{u}_N(t) \leq -\mathbf{W}_{N,N-1}^{0,\text{all}} x_{N-1}(t) - \mathbf{W}_{N,T}^{0,\text{all}} x_T(t) - c_N^0. \tag{24b}
\]
The inequalities (24) can be satisfied due to our assumption that the matrices \(\mathbf{B}_N^0 \) have full rank and \(p_i \geq \tau_i \) for all \(i \in \{1, \ldots, N\} \cup \{T\} \). Substituting (24) into the dynamics
\[
\tau_1 \dot{x}_1 = -x_1 + \left[\mathbf{W}_{1,1} x_1 + \mathbf{W}_{1,2} x_2 + \mathbf{W}_{1,T} x_T + c_1^0 \right]_{m_1} \tag{25}
\]
Taking \(\epsilon_N \to 0 \) then provides a separation of timescales between \(x_N \) and \(x_{1:T} \). Note that, by assumption, the reduced-order dynamics (22) is GES. Using then the fact that the cascaded interconnection of a GES system with an exponentially vanishing system is also GES, cf. [15, Lemma A.1], we deduce that, for any constants \(x_{N-1} \) and \(x_T \), \(x_N \) is GES to \(\{0_{r_N}, h_N^1(\mathbf{W}_{N,N-1}^{\text{all}} x_{N-1} + \mathbf{W}_{N,T}^{\text{all}} x_T + c_N^1)\} \). Recalling that, by Lemma IV.1 and [16, Lemma IV.2], the equilibrium maps \(h_i^1 \) are globally Lipschitz for all \(i \in \{1, \ldots, N\} \cup \{T\} \), and noting that the entire network is Lipschitz due to the Lipschitzness of the linear-threshold function \(|\cdot|_0^{m_1} \), we can apply [19, Proposition 1], giving for \(0 \leq t_1 < t_2 < \infty \)
\[
\lim_{\epsilon_1 \to 0} \sup_{t_1 \leq t \leq t_2} \| x_N^0(t) \| = 0
\]
where \(x_N^{(1)}_{1:T} \) represents the first-step reduced-order model coming from replacing \(x_N \) by its equilibrium value \(\{0_{r_N}, h_N^1(\mathbf{W}_{N,N-1}^{\text{all}} x_{N-1} + \mathbf{W}_{N,T}^{\text{all}} x_T + c_N^1)\} \). We continue the proof by iterating the above process for each network layer, utilizing constructed control laws and applying [19, Proposition 1] to the corresponding reduced-order models built from substitution of the equilibrium values.

We now construct control laws for layers \(\mathcal{N}_i \) with \(i \in \{b, \ldots, N-1\} \). We choose \(\mathbf{K}_i \) and \(\bar{u}_i(t) \) such that
\[
\mathbf{B}_i^0 \mathbf{K}_i \leq -\mathbf{W}_{i,i+1}^{0,\text{all}} - \mathbf{W}_{i,i+1}^{0,\text{all}} \mathbf{F}_{i+1} + \mathbf{W}_{i,i+1}^{1,\text{all}} \tag{26a}
\]
\[
\mathbf{B}_i^0 \bar{u}_i(t) \leq -\mathbf{W}_{i,i-1}^{0,\text{all}} x_{i-1}(t) - \mathbf{W}_{i,i+1}^{0,\text{all}} x_T(t) - c_i^0
\]
\[
- \mathbf{W}_{i,i+1}^{0,\text{all}} \mathbf{F}_{i+1} + \mathbf{W}_{i,i+1}^{1,\text{all}} x_T(t) + c_i^1 \tag{26b}
\]
in which \(\mathbf{F}_i \in \mathbb{R}^{(n_i-r_i) \times (n_i-r_i)} \) is the entrywise maximal gain of the equilibrium map \(h_i^1(\cdot) \), as defined in Lemma IV.2. We use the control law (26) to construct the reduced-order model, consider the timescale separation by letting \(\epsilon_i \to 0 \) for \(i \in \{b, \ldots, N-1\} \).
1}, and finally apply [19, Proposition 1] to obtain

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) - h_1^i \left(W_{i,i-1}^{1,all} x_{i-1}^{(N-i)}(t) + W_{i,T}^{1,all} x_T^{(N-i)}(t) + c_1^i \right) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) - x_{i}^{(N-i+1)}(t) \right\| = 0
\]

for all \(i \in \{b, \ldots, N - 1\}\). For the thalamus layer, we note that provided the initial conditions lie in \([0, m_i]\) for all \(i \in \{1, \ldots, N\} \cup \{T\}\), by the properties of the linear-threshold dynamics, we have that \(x_i(t) \leq m_i\) for all \(t \geq 0\). Utilizing these bounds, we define the control for the thalamus layer such that it satisfies

\[
B_{i}^{0} K_{T} \leq -|W_{i}^{0,all}| - \sum_{j=b}^{N} |W_{i,j}^{1,all}| F_{j} |W_{j,T}^{1,all}|
\]

\[
B_{i}^{0} \tilde{u}_{T}(t) \leq \frac{1}{N} \sum_{j=b}^{N} |W_{i,j}^{0,all} F_{j} W_{j,j-1}^{1,all} m_{j-1} + c_{j}^{1}|
\]

\[
-|W_{i,b}^{0,all} F_{b} W_{b,a}^{1,all} x_{a}(t) + c_{b}^{1}|
\]

\[
- \sum_{j=b+1}^{N} |W_{i,j}^{0,all} F_{j} W_{j,j-1}^{1,all} m_{j-1} + c_{j}^{1}|
\]

Then, after constructing the reduced-order model using the control laws (27a) and (27b) and letting \(\epsilon T \to 0\) to create the timescale separation, we again apply [19, Proposition 1] to get

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(T)}(t) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(T)}(t) - h_1^i \left(\sum_{j=1}^{a} W_{i,j}^{1,all} x_{j}^{(T)}(t) + c_1^i \right) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(T)}(t) - x_{i}^{(N-b+1)}(t) \right\| = 0
\]

What remains is to consider the layers above the thalamus. These layers maintain the same form of control law except for the layer immediately above the thalamus. For layer \(N_i\), we define terms \(K_a\) and \(u_a(t)\) such that

\[
B_{i}^{0} K_{a} \leq -|W_{a,a}^{0,all}| - |W_{a,b}^{0,all} F_{b} W_{b,a}^{1,all}|
\]

\[
B_{i}^{0} \tilde{u}_{a}(t) \leq -|W_{a,a-1}^{0,all}| x_{a-1}(t) - |W_{a,b}^{0,all} F_{b} W_{b,a}^{1,all} x_{T}(a) + c_{a}^{1}|
\]

Now, for layers \(N_i, i \in \{2, \ldots, a - 1\}\), we let the controls \(K_i\) and \(u_i(t)\) be such that the following hold:

\[
B_{i}^{0} K_{i} \leq -|W_{i,i+1}^{0,all}| - |W_{i,i+1}^{0,all} F_{i+1} W_{i+1,i}^{1,all}|
\]

\[
B_{i}^{0} \tilde{u}_{i}(t) \leq -|W_{i,i+1}^{0,all}| x_{i+1}(t) - |W_{i,i+1}^{0,all} F_{i+1} x_{i+1}^{(N-i)}(t) + c_{i}^{1}|
\]

Once the reduced-order models are constructed, letting \(\epsilon_i \to 0\) for \(i \in \{2, \ldots, a\}\), applying [19, Proposition 1] gives

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) - h_1^i \left(W_{i,i-1}^{1,all} x_{i-1}(t) + c_1^i \right) \right\| = 0
\]

\[
\lim_{\epsilon \to 0} \sup_{t \in [t_1, t_2]} \left\| x_{i}^{(N-i)}(t) - x_{i}^{(N-i+1)}(t) \right\| = 0
\]

for \(i \in \{2, \ldots, a\}\). Equations (23) for selective inhibition and recruitment, are then obtained through repeated application of the triangle inequality, completing the proof.

Fig. 2 illustrates Theorem IV.4. While the result is for the case in which the thalamus has a timescale inside the hierarchy, it still holds when this timescale is at the top or bottom of the hierarchy [the proof remains the same, with the appropriate modifications to the inequalities derived in (24)–(29)].

Remark IV.5. *(Comparison with strictly cortical networks):* Regarding selective inhibition and recruitment, Theorem IV.4 is to multilayer thalamocortical networks what [16, Th. IV.3] is to multilayer cortical networks. Despite the analytical similarities, the consideration of the thalamus provides a significant generalization from a biological perspective, as transthalamic connections exist in most brain networks [1]. Technically, the addition of the thalamus, while only adding a layer, significantly complicates the analysis due to its connection with all of the cortical layers. These connections result in every layer having connections from timescales not simply immediately above or below it in the hierarchy, which impacts the determination of convergence to equilibrium values for layers above the thalamus. The control laws (24)–(29) allow for smaller energy sufficient
controls than for the strictly cortical networks in [16] due to the inhibitory properties of the thalamic connection matrices \(W_{i,T} \), cf. Section VI.

Remark IV.6. (Timescale separation): The assumption of timescale separation between layers in Theorem IV.4 allows us to use singular perturbation theory and is justified by the different complexities involved in processing information along pathways in the brain, cf Section II. Such temporal hierarchies naturally occur in many other network systems, e.g., social networks or electric circuits [18]. In practice, a ratio of timescales as small as 0.5 can provide selective recruitment within a small error bound, see, e.g., [16, Example III.4] and our simulation results in Section VI.

V. STAR-CONNECTED THALAMOCORTICAL NETWORKS

In this section, we consider star-connected thalamocortical networks, cf. Fig. 1(b), where the cortical regions are each connected only to the thalamus and the dynamics are governed by (8) and (9). In this topology, there is no direct relationship between the timescales of each layer and as such, no hierarchical structure. Without timescale separation, the specifics of selective inhibition and recruitment, both in terms of equilibria and stability criteria, differ from the hierarchical case.

A. Equilibria and Stability Conditions

With the lack of timescale separation, the decomposition described in Section IV-A of the network equilibrium map as a collection of equilibrium maps for each layer, with the state of layers higher in the hierarchy represented by a constant input, no longer holds. As such, equilibrium values must be determined concurrently for all the layers. Since the task-irrelevant components get selectively inhibited to zero, the equilibrium for the task-relevant components is given by the solution \(x^{\perp}_{i} \), \(i \in \{1, \ldots, N\} \cup \{T\} \) to the system of equations

\[
\begin{align*}
 x^{\perp}_1 &= [W_{1,i}^{\perp} x_i + W_{1,T}^{\perp} x_T + c_T^{\perp}] m_i, & i = 1, \ldots, N \\
 x^{\perp}_T &= [W_{T}^{\perp} x_T + \sum_{i=1}^{N} W_{T,i}^{\perp} x_i] + c_T^{\perp} m_T. & (30)
\end{align*}
\]

The task-equivalent system is dependent upon \(c_i \in \mathbb{R}^{m_i - r_i}, i \in \{1, \ldots, N\} \) and \(c_T \in \mathbb{R}^{m_T - r_T} \), and so we represent it by \(x^{\perp}_{i} (c_1, \ldots, c_N, c_T) \). In keeping with the role of layer \(N_T \) as driving the selective recruitment in the other layers, rather than being recruited itself, we consider in what follows an input signal \(c_1 : \mathbb{R}^{\geq 0} \rightarrow \mathbb{R}^{m_1 - r_1} \), rather than a constant, that gives rise to an equilibrium trajectory \(x^{\perp}_{i} (c_1(t), \ldots, c_N, c_T) \) for the dynamics.

As per the description of the star-connected thalamocortical network, cf Section III, only the task-irrelevant component of the dynamics is directly controlled, and as such the ability to achieve selective inhibition and recruitment is dependent on the stability properties of the task-relevant components. To ensure this, we employ in the following the fact [15, Th. IV.8] that, for a generic linear-threshold network mode \(\tau x = -x + |W x + e_i^{\perp}| \), the condition \(\rho(|W|) < 1 \) is sufficient to ensure that, for all \(c \in \mathbb{R}^{n} \), the dynamics is GES to an equilibrium.

B. Selective Inhibition and Recruitment

We are ready to formalize selective inhibition and recruitment for star-connected networks and provide conditions for its achievement. We recall that the subnetwork \(N_T \) corresponds with a subcortical region applying a sensory input signal to the thalamus to be relayed to the cortical regions. As such, we do not inhibit any components in this subnetwork and instead assume that it is stable to a trajectory \(x_T(c_1(t)) \) dictated by its own input signal. For the remaining layers, we wish to inhibit the task-irrelevant components to zero and recruit the task-relevant components to the equilibria trajectory \(x^{\perp}_{i} (c_1(t), \ldots, c_N, c_T) \), \(i \in \{2, \ldots, N\} \cup \{T\} \). This can be formalized to selective inhibition and recruitment is achieved if for the input layer \(N_1 \)

\[
[\text{driving layer}]: \lim_{t \to \infty} ||x_1(t) - x_1(c_1(t))|| = 0 \quad (31a)
\]

and for all layers \(\{N_i\}_{i=2}^{N} \) and \(N_T \)

\[
[\text{inhibition}]: \lim_{t \to \infty} ||x^{\perp}_i(t)|| = 0 \quad (31b)
\]

\[
[\text{recruitment}]: \lim_{t \to \infty} ||x^{\perp}_i(t) - x^{\perp}_i(c_1(t), \ldots, c_N, c_T)|| = 0. \quad (31c)
\]

We also employ a weaker notion, referred to as \(\epsilon \)-selective inhibition and recruitment, which is met if there exists \(t^* \) such that the functions in (31) are all upper bounded by \(\epsilon > 0 \) for \(t > t^* \).

For convenience, we also introduce the notation

\[
\begin{bmatrix}
 W_{1,1} & 0 & \ldots & 0 & W_{1,T}^{11} \\
 0 & W_{2,2}^{11} & \ldots & 0 & W_{2,T}^{11} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \ldots & W_{N,N}^{11} & W_{N,T}^{11}
\end{bmatrix}
\]

\[
\mathbf{W}^{11} = \begin{bmatrix}
 W_{1,1} & 0 & \ldots & 0 & W_{1,T}^{11} \\
 0 & W_{2,2}^{11} & \ldots & 0 & W_{2,T}^{11} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \ldots & W_{N,N}^{11} & W_{N,T}^{11}
\end{bmatrix}
\]

Note the Schur decomposition \(\mathbf{W}^{11} = \mathbf{Q}^\top (\mathbf{D}^{11} + \mathbf{N}^{11}) \mathbf{Q} \), where \(\mathbf{Q} \) is unitary, \(\mathbf{D}^{11} \) is diagonal, and \(\mathbf{N}^{11} \) is upper triangular with a zero diagonal [26]. The next result establishes conditions to achieve selective inhibition and recruitment in star-connected systems without a hierarchy of timescales.

Theorem V.1. (Selective inhibiton and recruitment of star-connected networks): Consider an \(N \)-layer star-connected thalamocortical network, as shown in Fig. 1(b), with layer dynamics given by (8) and (9). Suppose the following hold for all values of \(c_i \in \mathbb{R}^{n_i}, i \in \{1, \ldots, N\} \) and \(c_T \in \mathbb{R}^{n_T} \).

1) The input layer \(N_1 \) has no nodes to be inhibited, \(\rho(|W_{1,1}|) < 1 \), and the input \(c_1(t) \) lies in a compact set and has a bounded rate derivative.

2) For each \(i \in \{2, \ldots, N\} \cup \{T\} \), the matrix \(W_{i,i}^{11} \) satisfies \(\rho(|W_{i,i}^{11}|) \leq \alpha_i, \) with \(\alpha_i < 1 \).
3) If \(\rho \left(\sum_{i=1}^{N} |W_{i,1}^{11}W_{j,i,1}^{11}W_{i,j,1}^{11}| \right) \neq 0 \), then \(\alpha + \max(\delta, \delta^{1/p}) < 1 \), where \(p \) is the dimension of \(N_{W,1} \) and

\[
\alpha = \max_{i \in \{2, \ldots, N\} \backslash \{T\}} \{\alpha_i\}, \quad \delta = \gamma \sum_{j=1}^{p-1} \|N_{W,1}\|^{2/j},
\]

\[
\gamma = \max \left\{ \sum_{i=1}^{N-1} W_{i,T,i}^{11}, W_{i,T,i}^{11\top}, \sum_{i=1}^{N-1} W_{i,T,i}^{11}, W_{i,T,i}^{11\top} \right\}.
\]

Then, there exist control laws \(u_i(t) = K_i x_i(t) + \bar{u}_i(t) \), with \(K_i \in \mathbb{R}^{p_i \times n} \) and \(\bar{u}_i : \mathbb{R}^{p_i} \rightarrow \mathbb{R}^{p_i} \), and \(\epsilon > 0 \) such that the cortical and thalamic regions within the closed-loop system achieve \(\epsilon \)-selective inhibition and recruitment. Furthermore, if \(\|c_1(t)\| \rightarrow 0 \) as \(t \rightarrow \infty \), then the network achieves selective inhibition and recruitment (31).

Proof: First, for cortical region \(N_i, i \in \{2, \ldots, N\} \), define the control laws \(u_i(t) = B_i K_i x_i(t) + B_i \bar{u}_i(t) \) such that

\[
B_i K_i \leq -W_{i,1}^{10},
\]

\[
B_i \bar{u}_i(t) \leq -W_{i,T}^{10} x_T(t) - c_0.
\]

In a similar fashion, define the control law for the thalamus, \(N_T \) by \(u_T(t) = B_T K_T x_T(t) + B_T \bar{u}_T(t) \) such that it satisfies

\[
B_T K_T \leq -W_T^{10},
\]

\[
B_T \bar{u}_T(t) \leq -W_{T,T}^{10} x_T(t) - c_T.
\]

Now, we permute the system variables and define corresponding timescale matrices as follows:

\[
\bar{x} = \begin{bmatrix} x^0 \bar{x}^0 \end{bmatrix}, \quad x^0 = \begin{bmatrix} x_2^0 & \ldots & x_N^0 \end{bmatrix}^T,
\]

\[
\bar{x}^1 = \begin{bmatrix} x_1^1 & x_2^1 & \ldots & x_N^1 \end{bmatrix}^T,
\]

\[
\tau^0 = \text{diag}(\tau_2, \ldots, \tau_N, \tau_T),
\]

\[
\tau^1 = \text{diag}(\tau_1, \tau_2, \ldots, \tau_N, \tau_T).
\]

Substituting in the control laws (33) and (34), we have the following controlled system dynamics:

\[
\dot{x}^{0} = -x^{0},
\]

\[
\dot{\tau}^0 = \text{diag}(\tau_2, \ldots, \tau_N, \tau_T),
\]

\[
\dot{\tau}^1 = \text{diag}(\tau_1, \tau_2, \ldots, \tau_N, \tau_T).
\]

Note that in addition to requiring the stability of the task-relevant dynamics of each network layer when considered independently, Theorem V.1 relies on two main assumptions. First, the result requires that the time derivative of the input is bounded. This is reasonable, as it corresponds to the physical input to the network not changing instantaneously. Second, Theorem V.1 requires that the magnitude of the combination of thalamocortical and corticothalamic interconnections does not exceed a certain stability margin. This aligns with neuroscientific observations: in fact, enhanced corticothalamic feedback may result in pathological behavior [28], [29].

Remark V.2. Remote synchronization is a phenomenon observed in the brain in which distant brain regions with similar structure synchronize their activity despite the lack of a direct link [30]. This should then naturally arise in star-connected networks if there is morphological symmetry between cortical regions, as this topology directly shows regions without direct links. From (30), we note that if any two cortical regions \(N_i \) and \(N_j \) have identical task-relevant dynamics, i.e., \(W_{i,1}^{10} = W_{j,1}^{10}, \)

\[
W_{i,T}^{10} = W_{j,T}^{10}, \quad c_0 = c_1,
\]

it follows that the equilibrium points will satisfy \(x_1^0 = x_1^0 \), meaning that remote synchronization is achieved provided that the conditions of Theorem V.1 are satisfied. Remarkably, this conclusion seems to be independent of the particular dynamics of the individual layers. In fact, the work [31] studies remote synchronization in star-connected brain networks, cf. Fig. 1(b), with layer dynamics given by the Kuramoto oscillator dynamics

\[
\dot{\theta}_i = \omega_0 + \sum_{i=1}^{N} K_i \sin(\theta_i - \theta_0 - \xi),
\]

\[
\dot{\theta}_i = \omega + A_i \sin(\theta_0 - \theta_i - \xi), \quad i = 1, \ldots, N.
\]

According to [31], the outer cortical regions in star-connected brain networks can remotely synchronize despite no direct links between the regions provided the network dynamics satisfy conditions that parallel those required for the star-connected linear-threshold networks studied above. In particular, to be able to achieve remote synchronization, the network weights must satisfy \(A_i \geq (N-1)K_i \) for all \(i \in \{1, \ldots, N\} \). This condition guarantees the existence of a locally stable equilibrium point, and is equivalent to the requirement of the matrices defining the task-relevant components of the linear-threshold network being individually stable.

We conclude by noting that the thalamus, as a relay, can function as a failsafe for the hierarchical thalamocortical network, allowing for selective inhibition and recruitment even if corticocortical connections become damaged. In fact, the hierarchical topology where the matrices \(W_{i,i-1} \) and \(W_{i,i+1} \) are equal to zero for all \(i \) reduces to the star-connected topology, while maintaining the timescale separation between layers. Therefore, the star-connected topology with a hierarchical timescale structure can be considered as a failsafe for the hierarchical network. The next result provides conditions for selective inhibition and recruitment for this topology.
Trajectories of the network in Fig. 2 with the connections between the cortical regions removed. The star-connected topology allows for successful selective inhibition of the desired set of nodes despite the lack of connections between cortical regions (cf. Corollary V.3), providing a failsafe topology.

Corollary V.3. (Selective inhibition of a star-connected hierarchical thalamocortical network): Consider a hierarchical star-connected thalamocortical network of the form shown in Fig. 1(b) with timescales $\tau_1 \gg \tau_2 \gg \cdots \gg \tau_N$ and layer dynamics given by (5) and (7). Without loss of generality let τ_T be such that $\tau_1 \gg \tau_T \gg \tau_N$ and let $a, b \in \{1, \ldots, N\}$ such that $\tau_a \gg \tau_T \gg \tau_b$. Assume the stability assumptions (18)–(22) for the reduced-order subnetworks are satisfied.

Then, for $i \in \{1, \ldots, N\} \cup \{T\}$ and constants $c_i \in \mathbb{R}^{n_i}$ and $c_T \in \mathbb{R}^{n_T}$, there exist control laws $u_i(t) = K_i x_i(t) + \bar{u}_i(t)$, with $K_i \in \mathbb{R}^{n_i \times n_i}$ and $\bar{u}_i : \mathbb{R}_0^+ \to \mathbb{R}^n_0$, such that the closed-loop system achieves selective inhibition and recruitment (23).

The proof of the result is similar to that of Theorem IV.4, with differences occurring in the constructed control laws on the basis that $W_{i,i+1} = W_{i,i-1} = 0$ for all $i \in \{1, \ldots, N\}$. The loss of these connections plays a significant role in the form of the control. In particular, the amount of feedforward control coming from the thalamus to the cortical regions increases, due to the fact that direct feedforward control between cortical regions is not possible. Fig. 3 illustrates Corollary V.3 on the star-connected network obtained by removing the direct connections between cortical regions in the network of Fig. 2.

VI. QUANTITATIVE COMPARISON OF CORTICAL AND THALAMOCORTICAL NETWORKS

This section seeks to quantitatively illustrate ways in which the presence of the thalamus might have a beneficial effect in the behavior and performance of the dynamic models for brain networks adopted here. Fig. 3 has already illustrated the failsafe role played by the thalamus in hierarchical thalamocortical networks. Here, we focus on two other beneficial impacts of the thalamus we observed in simulation: the control energy required to achieve selective inhibition and the convergence time in thalamocortical networks versus cortical ones.

Example VI.1. (Reduced average control energy in thalamocortical vs cortical networks): We investigate the control energy required to achieve selective inhibition. Control energy here refers to the aggregate of the inputs at all layers integrated over time and averaged across trials. We consider hierarchical pairs of thalamocortical and cortical networks, where the latter is obtained by disconnecting the thalamus in the former. Fig. 4 shows that thalamocortical networks require a lower control energy to achieve selective inhibition in the cortical regions relative to the corresponding strictly cortical networks, matching...
the intuition that they are easier to selectively inhibit due to the thalamus impacting the cortical regions in an inhibitory fashion.

Example VI.2. (Convergence time of thalamocortical and cortical networks): We consider the speed at which thalamocortical networks converge to an equilibrium as another metric to evaluate the role of the thalamus. We compare the convergence time for a cortical network with that of a thalamocortical network maintaining the same cortical regions. While performing the comparison is interesting as a function of multiple network parameters (e.g., network size, layer size, ratio of excitatory-inhibitory nodes), we focus specifically on the thalamus and, in particular, on varying its timescale with respect to the cortical regions. Thalamocortical networks with varying timescales are of particular interest, as even restricting only to the visual thalamus, the thalamus operates at both slow and fast timescales. Fig. 5 shows that thalamocortical networks have faster average convergence time, with the margin between the two networks decreasing as the timescale τ_T increases. This validates the beneficial role played by the thalamus, with faster thalamus dynamics (smaller τ_T) helping the cortical regions converge faster, leading to overall decreased convergence time.

VII. Conclusion

In this article, we have studied the properties of both multilayer hierarchical and star-connected thalamocortical brain networks modeled with linear-threshold dynamics. Our primary motivation was understanding the role played by the thalamus in achieving selective inhibition and recruitment of neural populations. For both types of interconnection topologies, we have described how the equilibria at each layer depends on the rest of the network and identified suitable stability conditions. For hierarchical networks, these take the form of GES requirements of the reduced-order dynamics of individual layers. For star-connected thalamocortical network without a hierarchy of timescales, these take the form of stability of the task-relevant dynamics of each layer when considered independently and the magnitude of the combination of thalamocortical and corticothalamic interconnections not exceeding a certain stability margin. We note that, while we have shown these properties for thalamocortical networks using linear-threshold dynamics, we expect them to also hold for other rate dynamics models, as they also share the underlying hierarchical and star-connected topologies, which are key to the results. Future work will seek to analytically characterize the robustness and performance of thalamocortical networks, study the role of the thalamus in other cognitive tasks beyond selective attention (e.g., sleep consciousness, oscillations, and learning), and explore the impact of the addition and deletion of neuronal populations in the performance and expressivity of brain networks.

References

[1] S. M. Sherman, “Thalamocortical interactions,” *Curr. Opin. Neurobiol.*, vol. 22, no. 4, pp. 575–579, 2012.

[2] N. Tinbergen, “The hierarchical organization of nervous mechanisms underlying instinctive behaviour,” in *Proc. Symp. Soc. Exp. Biol.*, vol. 4, 1950, pp. 305–312.

[3] A. R. Luria, “The functional organization of the brain,” *Sci. Amer.*, vol. 222, no. 3, pp. 66–79, 1970.

[4] S. J. Kriebel, J. Daunizeau, and K. J. Friston, “A hierarchy of time-scales and the brain,” *PLOS Comput. Biol.*, vol. 4, no. 11, 2008, Art. no.e1000209.

[5] U. Hasson, J. Chen, and C. J. Honey, “Hierarchical process memory: Memory as an integral component of information processing,” *Trends Cognit. Sci.*, vol. 19, no. 6, pp. 304–313, 2015.

[6] M. I. Rabinovich, I. Tristán, and P. Varona, “Hierarchical nonlinear dynamics of human attention,” *Neurosci. Biobehavioral Rev.*, vol. 55, pp. 18–35, 2015.

[7] K. Hwang, M. A. Bertolero, W. B. Liu, and M. D’Esposito, “The human thalamus is an integrative hub for functional brain networks,” *J. Neurosci.*, vol. 37, no. 23, pp. 5594–5607, 2017.

[8] R. D. D’Souza and A. Burkhalter, “A laminar organization for selective cortico-cortical communication,” *Front. Neuroanat.*, vol. 11, 2017, Art. no. 71.

[9] J. M. Alonso and H. A. Swadlow, “Thalamus controls recurrent cortical dynamics,” *Nature Neurosci.*, vol. 18, no. 12, pp. 1703–1704, 2015.

[10] S. M. Sherman and R. W. Guillery, *Exploring the Thalamus and Its Role in Cortical Function*, Cambridge, MA, USA: MIT Press, 2011.

[11] L. Cabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, “Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition,” *Neuron*, vol. 48, no. 2, pp. 315–327, 2005.

[12] J. A. Harris et al., “Hierarchical organization of cortical and thalamic connectivity,” *Nature*, vol. 575, no. 7781, pp. 195–202, 2019.

[13] M. M. Halassa and L. Acády, “Thalamic inhibition: Diverse sources, diverse scales,” *Trends Neurosci.*, vol. 39, no. 10, pp. 680–693, 2016.

[14] R. Chaudhuri, K. Knoblauch, M. Gariel, H. Kennedy, and X. Wang, “A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex,” *Neuron*, vol. 88, no. 2, pp. 419–431, 2015.

[15] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-threshold brain networks. Part I: Intra-layer dynamics and selective inhibition,” *IEEE Trans. Autom. Control*, vol. 66, no. 3, pp. 949–964, Mar. 2021.

[16] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-threshold brain networks. Part II: Inter-layer dynamics and top-down recruitment,” *IEEE Trans. Autom. Control*, vol. 66, no. 3, pp. 965–980, Mar. 2021.

[17] D. Liberzon, *Switching in Systems and Control (Systems & Control: Foundations & Applications)*, Basel, Switzerland: Birkhäuser, 2003.

[18] P. V. Kokotovic and H. K. Khalid, eds., *Singular Perturbation Methods in Control: Analysis and Design*, Philadelphia, PA, USA: SIAM, 1999.

[19] V. Veliov, “A generalization of the Tikhonov theorem for singularly perturbed differential inclusions,” *J. Dynamical Control Syst.*, vol. 3, no. 3, pp. 291–319, 1997.

[20] P. Dayan and L. F. Abbott, *Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems*, Computational Neuroscience, Cambridge, MA, USA: MIT Press, 2001.

[21] J. Chen, U. Hasson, and C. Honey, “Processing timescales as an organizing principle for primate cortex,” *Neuron*, vol. 88, no. 2, pp. 244–246, 2015.

[22] S. M. Sherman and R. W. Guillery, “Distinct functions for direct and transthalamic corticocortical connections,” *J. Neurophysiol.*, vol. 106, no. 3, pp. 1068–1077, 2011.

[23] A. S. Mitchell, S. M. Sherman, M. A. Sommer, R. G. Mair, R. P. Vertes, and Y. Chudasama, “Advances in understanding mechanisms of thalamic relays in cognition and behavior,” *J. Neurosci.*, vol. 34, no. 46, pp. 15340–15346, 2014.

[24] J. S. Isaacson and M. Scanziani, “How inhibition shapes cortical activity,” *Neuron*, vol. 72, no. 2, pp. 231–243, 2011.

[25] J. A. Gallego, M. G. Perich, R. H. Chowdhury, S. A. Solla, and L. E. Smith, “Long-term stability of cortical population dynamics underlying consistent behavior,” *Nature Neurosci.*, vol. 23, no. 2, pp. 260–270, 2020.

[26] K. E. Chu, “Generalization of the Bauer–Fike theorem,” *Numerische Mathematik*, vol. 49, no. 6, pp. 685–691, 1986.

[27] M. McCreesh and J. Cortés, “Selective inhibition and recruitment of linear-threshold thalamocortical networks,” 2022, arXiv:2201.00850.
[28] K. George and J. M. Das, “Neuroanatomy, thalamocortical radiations,” in StatPearls [Internet]. Tampa, FL, USA: StatPearls, Jan. 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK546699/
[29] G. K. Kostopoulos, “Involvement of the thalamocortical system in epileptic loss of consciousness,” Epilepsia, vol. 42, pp. 13–19, 2001.
[30] V. Vuksanović and P. Hövel, “Functional connectivity of distant cortical regions: Role of remote synchronization and symmetry in interactions,” NeuroImage, vol. 97, pp. 1–8, 2014.
[31] Y. Qin, Y. Kawano, and M. Cao, “Stability of remote synchronization in Star networks of Kuramoto oscillators,” in Proc. IEEE Conf. Decis. Control, Miami Beach, FL, USA, 2018, pp. 5209–5214.
[32] Z. Ye et al., “Fast and slow inhibition in the visual thalamus is influenced by allocating GABA_A receptors with different γ subunits,” Front. Cellular Neurosci., vol. 11, 2017, Art. no. 95.

Michael McCreesh received the B.A.Sc. and M.A.Sc. degrees in mathematics and engineering from Queen's University, Kingston, ON, Canada, in 2017 and 2019, respectively. He is currently working toward the Ph.D. degree with the Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, USA.

His research interests include control theory and its application to theoretical neuroscience, in particular, the application of dynamical systems to model brain networks.

Jorge Cortés (Fellow, IEEE) received the Licenciatura degree in mathematics from Universidad de Zaragoza, Zaragoza, Spain, in 1997, and the Ph.D. degree in engineering mathematics from Universidad Carlos III de Madrid, Madrid, Spain, in 2001.

He held postdoctoral positions at the University of Twente, Twente, The Netherlands, and the University of Illinois at Urbana-Champaign, Urbana, IL, USA. From 2004 to 2007, he was an Assistant Professor at the Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA, USA. He is currently a Professor with the Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, USA. His research interests include distributed control and optimization, network science, nonsmooth analysis, reasoning and decision making under uncertainty, network neuroscience, and multiagent coordination in robotic, power, and transportation networks.

Dr. Cortés is a Fellow of SIAM and IFAC.