Discovery of interstellar CF$^+$

David A. Neufeld1, Peter Schilke2, Karl M. Menten2, Mark G. Wolfire3, John H. Black4, Frédéric Schuller2, Holger S. Müller2,5, Sven Thorwirth3, Rolf Güsten2, and Sabine Philipp2

1 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
2 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
3 Department of Astronomy, University of Maryland, College Park, MD 20742, USA
4 Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden
5 I. Physikalisches Institut, Universität zu Köln, 50937 Köln, Germany

Received [date]; accepted [date]

Abstract. We discuss the first astronomical detection of the CF$^+$ (fluoromethylidylium) ion, obtained by observations of the $J = 1 - 0$ (102.6 GHz), $J = 2 - 1$ (205.2 GHz) and $J = 3 - 2$ (307.7 GHz) rotational transitions toward the Orion Bar region. Our search for CF$^+$ – carried out using the IRAM 30m and APEX 12m telescopes – was motivated by recent theoretical models that predict CF$^+$ abundances of few $\times 10^{-10}$ in UV-irradiated molecular regions where C$^+$ is present. The CF$^+$ ion is produced by exothermic reactions of C$^+$ with HF. Because fluorine atoms can react exothermically with H$_2$, HF is predicted to be the dominant reservoir of fluorine, not only in well-shielded regions but also in the surface layers of molecular clouds where the C$^+$ abundance is large. The observed CF$^+$ line intensities imply the presence of CF$^+$ column densities $\geq 10^{12}$ cm$^{-2}$ over a region of size $\lesssim 1''$, in good agreement with theoretical predictions. They provide support for our current theories of interstellar fluorine chemistry, which suggest that hydrogen fluoride should be ubiquitous in interstellar gas clouds and widely detectable in absorption by future satellite and airborne observatories.

1. Introduction

Of the ~ 120 interstellar molecules that have been detected to date1 (e.g. Müller et al. 2005), more than 95% involve just six elements – hydrogen, carbon, nitrogen, oxygen, silicon, and sulfur – all of which have moderately high abundances ($\geq 10^{-5}$ relative to hydrogen in the Sun). Of the molecules that are formed in the interstellar medium, only four species containing other elements have been reported previously: HF (Neufeld et al. 1997), PN (Turner & Bally 1987), HCl (Blake, Keene & Phillips 1987) and FeO (Walmsley et al. 2002). In the case of those elements of relatively low abundance (F, Cl, and P with solar abundances of 3×10^{-8}, 3×10^{-7} and 3×10^{-7} respectively with respect to H$_2$), the detected molecules are all stable species with large dissociation energies ($D_0^0 = 5.87$, 4.43 and 7.05 eV respectively for HF, HCl and PN2). Not surprisingly, our understanding of the chemistries of interstellar fluorine-, chlorine-, phosphorus- and iron-bearing molecules is limited by the paucity of detected species that might help constrain theoretical models.

Notwithstanding this lack of observational constraints, the chemistry of fluorine-bearing molecules in the interstellar medium has been the subject of a recent theoretical study (Neufeld, Wolfire & Schilke 2005a; hereafter NWS). The principal conclusions of that investigation were: 1) that hydrogen fluoride is formed rapidly by the exothermic reaction of F atoms with H$_2$ and becomes the dominant reservoir of gas-phase F nuclei over a wide range of conditions; (2) that HF is abundant even close to UV-irradiated cloud surfaces where C$^+$ is the dominant reservoir of gas-phase carbon; and (3) that reaction of HF with C$^+$ can lead to potentially-measurable column densities of CF$^+$, a very stable molecule (dissociation energy, $D_0^0 = 7.71$ eV) that is isoelectronic with CO.

NWS showed that the chemistry of interstellar fluorine is qualitatively different from that of other elements because fluorine atoms can react exothermically with H$_2$, the dissociation energy of hydrogen fluoride being the largest of any neutral diatomic hydride and HF being the only such molecule more strongly bound than H$_2$. Fluorine is therefore unique among the elements in having a neutral atom that reacts exothermically with H$_2$.

\[\text{C} + \text{H}_2 \rightarrow \text{CF}^+ + \text{H} \]
1. CF$^+ \ J = 1–0$ spectra observed at each of the positions in the Orion Bar, with the observed position for each observation indicated on a 13CO $J = 3–2$ map of the source (grayscale map, from Lis & Schilke 2003). For the strip centered on (α, δ) = (05h 35m 22.8s, $-$05$^\circ$ 25' 01") (J2000) (the “Orion Bar (CO)” position), the integrated CF$^+ \ J = 1–0$ antenna temperatures are 33 ± 6, 45 ± 8, 86 ± 10, 125 ± 13 and 57 ± 8 mK km s$^{-1}$ from NW to SE (quoted uncertainties are 1σ statistical errors); for the strip centered on (05h 35m 25.3s, $-$05$^\circ$ 24' 34'') (J2000) (the “Orion Bar (HCN)” position), the corresponding values are < 19.5, < 15.8, 72 ± 8, 119 ± 15, and 140 ± 30 mK km s$^{-1}$. Motivated by the predictions of NWS, we used the 30m IRAM telescope and the 12m APEX3 telescope to search for the $J = 1–0$, $J = 2–1$, and $J = 3–2$ rotational transitions of CF$^+$ toward the Orion Bar, a well-studied photodissociation region (PDR) with an edge-on geometry favorable for the detection of molecular species of small abundance. The observations are described in §2 below, and the results of those observations presented in §3. A discussion follows in §4.

2. Observations

The $J = 1–0$ rotational transition of CF$^+$ at 102.58748 GHz (Plummer et al. 1986) was observed in two five-position strip maps in the Orion Bar, centered on the “Orion Bar (CO)” and “Orion Bar (HCN)” positions defined by Schilke et al. (2001; see our Figure 1 caption for coordinates). The $J = 2–1$ line at 205.17445 GHz and the $J = 3–2$ line at 307.74438 GHz were observed at the central “Orion Bar (CO)” and “Orion Bar (HCN)” positions for each strip.

The observations of CF$^+ \ J = 1–0$ and $J = 2–1$ were carried out at the IRAM 30 m telescope, using the A100, B100, A230 and B230 receivers in position-switching mode, with an OFF-position located 10' away in azimuth. The backend employed was the VESPA correlation spectrometer; care was taken to move the known backend defects away from the observed lines. The CF$^+ \ J = 3–2$ transition was observed using the APEX 12m telescope, located at an altitude of 5100 m on the Chajnantor plateau in the Atacama desert of Chile, using the APEX-2a receiver. The observing mode was the same as at the 30 m, with the same OFF-Position. As backend, the MPIIR Fast Fourier Spectrometer was used. Calibration at both telescopes is performed using a dual load scheme and an atmospheric model. The beam sizes were 24′′, 12′′ and 21′′ (HPBW), respectively. Since the emission is extended, in the following antenna temperature units are used.

Table 1. Observations of the Orion Bar

$J_{\text{Orion Bar (CO)}} - J_{\text{Orion Bar (HCN)}}$	Line strengtha (\(\int J_d v\) in mK km s$^{-1}$)	Line centroid (km s$^{-1}$ w.r.t. the LSR)	Line width (km s$^{-1}$ FWHM)	Column density (units of 10^{13} cm$^{-2}$)	Estimated total
$J = 1 − 0$	86 ± 10	72 ± 8	10.5 ± 0.15	9.6 ± 0.15	3.7
$J = 2 − 1$	337 ± 13	215 ± 13	10.7 ± 0.05	9.8 ± 0.05	6.0
$J = 3 − 2$	428 ± 34	183 ± 26	10.6 ± 0.1	10.0 ± 0.1	4.7

a Errors given are 1σ statistical errors. We estimate the systematic uncertainties as $\pm 20\%$.

The Atacama Pathfinder Experiment (APEX) is a collaboration of the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.
are located further away from the ionization front than these three species. In particular, the density - and this behavior reflects the di-
ture of the rotational diagrams, we assumed here that the slope
1
in the CF
positions. Given our model predictions for the typical tempera-
tions, any reasonable extrapolation of the rotational diagram
skeletal uncertainties, which we estimate as $\pm 20\%$. The solid
curves show a fit to the data, in which the critical density for
each transition is assumed proportional to the radiative decay rate.

3. Results

Figure 1 shows the CF$^+$ $J = 1 - 0$ spectra observed at each of
the positions in the Orion Bar, with the observed position for each observation indicated on a 13CO $J = 3 - 2$ map of
the source. Emission in the $J = 1 - 0$ line is evident at 8 of the
10 observed positions. Like other optically-thin emission
lines such as SiO $J = 2 - 1$ (Schilke et al. 2001), the CF$^+$ $J = 1 - 0$ line peaks southeast (i.e. further from the Trapezium stars) than 13CO $J = 3 - 2$. Rather than indicating that CF$^+$ and SiO
are located further away from the ionization front than 13CO,
this behavior reflects the different sensitivity to temperature and
density - and the different optical depths - of the lines from
these three species. In particular, the 13CO $J = 3 - 2$ line is of
moderate optical depth ($\tau > 1$), so its intensity probes the
temperature at the $\tau \sim 1$ surface and is relatively insensitive to
the total line-of-sight column density. Figure 2 shows the $J = 1 - 0$, $J = 2 - 1$ and $J = 3 - 2$ spectra obtained at the central Orion Bar (CO) and Orion Bar (HCN) positions. Table
1 lists the integrated antenna temperature, line centroid, and
line width for each observed transition at these two positions.

Figure 3 shows a rotational diagram for the two positions
toward which all three transitions have been observed, com-
puted for an assumed dipole moment of 1.07 D (Peterson et al.
1990). Here, we assumed that the line emission is optically-
thin, as suggested by the observed line strengths unless the cov-
ering factor of the emission is implausibly small. The column
densities for $J = 1, 2$ and 3 are given in Table 1. At both pos-
tions, any reasonable extrapolation of the rotational diagram
implies that the $J = 1, J = 2$, and $J = 3$ states are the three
most highly-populated rotational states; thus the total column
density we infer is only weakly dependent upon the extrapola-
tion procedure adopted. The solid lines show the best fits to the
rotational diagrams, which imply total CF$^+$ column densities
$N(\text{CF}^+) = 1.9 \times 10^{12}$ cm$^{-2}$ and 1.1×10^{12} cm$^{-2}$ respectively for the lines-of-sight to the Orion Bar (CO) and Orion Bar (HCN) positions. Given our model predictions for the typical tempera-
ture in the CF$^+$ emitting region, and as suggested by the curva-
ture of the rotational diagrams, we assumed here that the slope
is mainly controlled by the density rather than the tempera-
ture, the former being insufficient for collisional deexitation of $J = 3$ to dominate spontaneous radiative decay.

4. Discussion

The results presented in Figure 1 and Table 1 indicate that CF$^+$
column densities $\sim 10^{12}$ cm$^{-2}$ are present over an extended
region within the Orion Bar. Such column densities are in good
agreement with theoretical predictions (NWS), which predict
CF$^+$ to be produced by the reaction sequence:

\[
\begin{align*}
H_2 + F & \rightarrow HF + H \quad (R1) \\
HF + C^+ & \rightarrow CF^+ + H \quad (R2)
\end{align*}
\]

and destroyed primarily4 by dissociative recombination

\[
CF^+ + e \rightarrow C + F \quad (R3)
\]

Because the reaction (R1) is exothermic and moderately
rapid even at low temperature (Zhu et al. 2002), HF becomes
the dominant reservoir of fluorine in the gas phase, even rela-
tively close to cloud surfaces. Beneath the surface of the UV-
illuminated cloud, HF forms at precisely the point at which hy-
drogen becomes molecular, and long before carbon gets incor-
porated into CO (see NWS, Figure 2). Thus there is a substan-
tial area of overlap between C$^+$ and HF where reaction (R2) can
produce CF$^+$ abundances $\sim \text{few} \times 10^{-10}$; here CF$^+$ accounts for $\sim 1\%$ of the solar abundance of fluorine.

Figure 4a shows the CF$^+$ column density predicted by the
NWS model, as a function of the gas density, n_H, and the in-
cident radiation field χ_{UV} (again for the case of one-sided il-
illumination at normal incidence). The results apply to the case
where fluorine depletion is estimated using the simple treat-
ment given in NWS §3.2. The predicted and observed results are
in good agreement, although the remarkable agreement sug-
gested by Figure 4a is undoubtedly fortuitous for several rea-
sons: (1) Figure 4a compares the predicted column densities
for a photodissociation region (PDR) viewed face-on with the
observed column densities in a nearly edge-on PDR (in which
optically-thin lines are significantly limb-brightened); (2) the
theoretical predictions are based upon several parameters that
are substantially uncertain: e.g. the reaction rate coefficients for
(R2) and (R3), and the gas-phase F abundance (see footnote 4).

The CF$^+$ column densities plotted in Figure 4a are found to
track the corresponding C$^+$ column densities remarkably well,
with the $N(\text{CF}^+)/N(\text{C}^+)$ column density ratio (Figure 4b) lying
within a factor ~ 2 of 1.7×10^{-6} for every case represented in
Figure 4. This behavior can be understood by considering the
rates of CF$^+$ formation and destruction via reactions (R2) and
(R3). In equilibrium, we expect a ratio

\[
\frac{n(\text{CF}^+)}{n(\text{C}^+)} = \frac{k_3 n(\text{HF})}{k_1 n(\text{CF}^+)} = 4 \times 10^{-6} \left(\frac{T}{300 \text{ K}} \right)^{0.35} \frac{n(\text{HF}) n_e}{n(\text{CF}^+)} n_e
\]

4 Reaction with H_2 to form HCF$^+$, considered by Morino et al.
(2000) to dominate the destruction of interstellar CF$^+$, is in fact sub-
stantially endothermic2 (by ~ 2 eV) and therefore of negligible impor-
tance (NWS).

\[\text{Fig. 3.} \text{ Rotational diagram for CF}^+. \text{ The error bars include system-}
\text{atic uncertainties, which we estimate as } \pm 20\%. \text{ The solid curves show a fit to the data, in which the critical density for each transition is assumed proportional to the radiative decay rate.}\]
where \(k_2 \) and \(k_3 \) are the rate coefficients given by NWS for (R2) and (R3), and \(n_F/n_H = 1.8 \times 10^{-8} \) and \(n_C/n_H = 1.6 \times 10^{-4} \) are the assumed gas-phase abundances of F and C. In the region where the C\(^+\) and CF\(^+\) abundances are large, \(n_C \sim n(C^+) \sim n_C \) and \(n(HF) \sim n_F \).

Kuiper Airborne Observatory (KAO) observations of the C\(^+\) \(2P_{3/2} - 2P_{1/2} \) (158\(\mu \)m) fine-structure line carried out toward the Orion Bar (Herrmann et al. 1997) permit us to compare our theoretical prediction for \(N(C^+)/N(C^+) \) with the measured value. Since both the C\(^+\) and CF\(^+\) transitions are optically-thin, such a comparison has the merit of eliminating any limb-brightening effects, all the observed lines being enhanced by the same factor. Based upon their observations of the Orion Bar, Herrmann et al. inferred a line-of-sight C\(^+\) column density of \(3 \times 10^{18} \) cm\(^{-2}\), averaged over a 55\(^\circ\) beam. Given our estimates of \(N(C^+) \) at two separate positions along the midline of the bar, we may estimate the \(N(C^+)/N(C^+) \) ratio as \(5 \times 10^{-7} \), a factor of \(\sim 4 \) smaller than the theoretical prediction. This discrepancy may suggest (weakly, in light of all the uncertainties) that the F abundance assumed by NWS is too large and/or that the reaction (R2) proceeds less rapidly than was assumed.

Despite these uncertainties, our detection of CF\(^+\) lends support to our theoretical model of fluorine chemistry. In particular, the observed CF\(^+\) column density argues strongly for a substantial region of overlap between C\(^+\) and HF. This, in turn, supports our contention that HF becomes abundant very close to cloud surfaces, and suggests that HF may prove a valuable tracer of molecular material in diffuse clouds. Observations of HF and CF\(^+\) may also provide an important tool for studying the elemental abundance and nucleosynthetic origin of fluorine\(^5\). As noted by NWS, absorption line observations of the 1232 GHz HF \(J = 1 - 0 \) transition will be possible with the Herschel Space Observatory and the Stratospheric Observatory for Infrared Astronomy; in addition, observations of HF at certain redshift ranges beyond \(z = 0.3 \) are possible at ground-based observatories and will be greatly facilitated by ALMA.

Acknowledgements. We thank the staff of IRAM Granada, in particular Sergio Martin, for their help with the observations. D.A.N. and M.G.W. gratefully acknowledge the support of grants NAG5-13114 and NNG05GD64G respectively from NASA’s Long Term Space Astrophysics (LTSA) Research Program. H.S.P.M. is supported by the Deutsche Forschungsgemeinschaft (DFG) through grant SFB 494. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).

References

Blake, G. A., Keene, J., & Phillips, T. G. 1985, ApJ, 295, 501
Herrmann, F., Madden, S. C., Nikola, T., Poglitsch, A., Timmermann, R., Geis, N., Townes, C. H., & Stacey, G. J. 1997, ApJ, 481, 343
Lis, D. C., & Schilke, P. 2003, ApJL, 597, L145
Jorissen, A., Smith, V. V., Lambert, D. L. 1992, A&A, 261, 164
Marston, A. P., Welzlmiiller, J., Bransford, M. A., et al. 1999, ApJL, 518, 769
Marston, A. P. 2001, ApJ, 563, 875
Morino, I., Yamada, K. M. T., Belov, S. P., Winnewisser, G., & Herbst, E. 2000, ApJ, 532, 377
H. S. P. Müller, F. Schlöder, J. Stutzki, and G. Winnewisser 2005, J. Mol. Struct. 742, 215; on the web at cdxms.de
Neufeld, D. A., Zmuidzinas, J., Schilke, P., & Phillips, T. G. 1997, ApJ, 488, L141
Neufeld, D. A., Wolfire, M. G., & Schilke, P. 2005a, ApJ, 628, 260 (NWS)
Neufeld, D. A., et al. 2005b, in IAU Symp. No. 231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C. Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press), in press.
Palacios, A., Arnould, M., Meynet, G. 2005, A&A, 443, 243
Peterson, K. A., Woods, R. C., Rosnus, P., Werner, H.-J. 1990, JCP, 93, 1889
Plummer, G. M., Anderson, T., Herbst, E., & Delucia, F. C. 1986, JCP, 84, 2427
Renda, A., Fenner, Y., Gibson, B. K., et al. 2004, MNRAS, 345, 575
Rizzo, R. J., Martín-Pintado, J., Desmurs-J.-F. 2003, A&A, 411, 465
Schilke, P., Pineau des Forêts, G., Walmsley, C. M., & Martin-Pintado, J. 2001, A&A, 372, 291
Turner, B. E., & Bally, J. 1987, ApJ, 321, L75
Walmsley, C. M., Bachiller, R., Forêt, G. P. d., & Schilke, P. 2002, ApJ, 566, L109
Werner, K., Rauch, T., Kruk, J. W. 2005, A&A, 433, 641
Zhu, C., Krems, R., Dalgarino, A., & Balakrishnan, N. 2002, ApJ, 577, 795

\(^5\) The elemental abundance of fluorine is of particular interest because the nucleosyntetic origin of fluorine remains controversial. Fluorine is produced in stars on the asymptotic giant branch (Jorissen, Smith, & Lambert 1992; Werner, Rauch, & Kruk 2005), but there is no consensus on the relative contributions of other sources such as Wolf-Rayet stars and type II supernovae (e.g. Renda et al. 2004; Palacios, Arnould, & Meynet 2005). Because AGB stars exhibit a large enhancement in the fluorine abundance (up to a factor \(\sim 250 \)), it will be interesting to search for CF\(^+\) in circumstellar envelopes as well as in the wind-blowen bubbles surrounding Wolf-Rayet stars (Marston et al. 1999, Marston 2001, Rizzo et al. 2003).