Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки

Т.А. Краснова1, Ю.Л. Сколубович2, Е.С. Гогина3, Д.Д. Волков4
1 Кемеровский государственный университет (КемГУ); г. Кемерово, Россия;
2 Новосибирский государственный архитектурно-строительный университет (Сибстрин);
г. Новосибирск-8, Россия;
3 Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); г. Москва, Россия;
4 Северо-Кузбасская энергетическая компания (СКЭК); г. Березовский, Россия

АНОТАЦИЯ
Введение. Изучены эффективность и применимость хлорсодержащих дезинфектантов, использующихся в практике водоподготовки для решения острой экологической проблемы, связанной с образованием вторичных загрязнений, образующихся при хлорировании природной воды. Данные загрязнения в основном представлены галогенорганическими соединениями, оказывающими негативное влияние на физиологическое состояние живых организмов, в том числе человека. Для решения этой проблемы предлагается при выборе реагентов для дезинфекции природной воды перейти на технический гипохлорит натрия вместо традиционного жидкого хлора. Технический гипохлорит натрия получают путем насыщения растворов диафрагменного щелочного раствора абгазным хлором на стадии сжигания производства хлора и каустической сody. Раствор гипохлорита натрия менее токсичен, не горюч и не взрывоопасен.

Материалы и методы. Проведено сравнительное исследование изменения содержания галогенорганических соединений и тяжелых металлов в воде, обработанной гипохлоритом натрия и жидким хлором в течение года. При анализе в пробах воды, обработанной жидким хлором и гипохлоритом натрия, измерялись концентрации тяжелых металлов, галогенорганических соединений и прочих показателей качества питьевой воды, регламентируемых действующими нормативными актами.

Результаты. Полученные данные показали, что использование для обеззараживания гипохлорита натрия обеспечивает более высокое качество питьевой воды, в связи с чем замена жидкого хлора техническим гипохлоритом натрия в технологии подготовки питьевой воды является целесообразной.

Выводы. Результаты проведенного исследования легли в основу многочисленных промышленных испытаний и последующего внедрения на действующих станциях водоподготовки многих крупных городов России.

КЛЮЧЕВЫЕ СЛОВА: водоподготовка, дезинфектант, гипохлорит натрия, жидкий хлор, галогенорганические соединения

ДЛЯ ЦИТИРОВАНИЯ: Краснова Т.А., Сколубович Ю.Л., Гогина Е.С., Волков Д.Д. Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки // Строительство: наука и образование. 2019. Т. 9. Вып. 3. Ст. 9. URL: http://nsno-journal.ru. DOI: 10.22227/2305-5502.2019.3.9

Investigation of the influence of chlorine-containing disinfectant type on the quality of drinking water and the effectiveness of water treatment technology

Tamara A. Krasnova1, Yuri L. Skolubovich2, Elena S. Gogina3, Dmitry D. Volkov4
1 Kemerovo State University; Kemerovo, Russian Federation;
2 Novosibirsk State University of Architecture and Civil Engineering (Sibstrin);
Novosibirsk-8, Russian Federation;
3 Moscow State University of Civil Engineering (National Research University) (MGSU);
Moscow, Russian Federation;
4 North Kuzbass energy company; Berezovskii, Russian Federation

ABSTRACT
Introduction. Effectiveness and applicability of chlorine-containing disinfectants used in the practice of water treatment were studied for the purpose of solving urgent environmental problems associated with the formation of secondary pollutants gen-
ВВЕДЕНИЕ

В современном мире качество жизни человека напрямую связано с питьевой водой. Во многих странах проблема получения питьевой воды стоит очень остро, в некоторых — ощущается нехватка воды питьевого качества, что оказывает значительное влияние на состояние здоровья человека. В нашей стране количество запасов пресной воды достаточно. Однако современный уровень развития производства, частое нарушение нормативов сброса сточных вод в водоемы вызвал ряд острых экологических проблем, связанных с загрязнением водного бассейна [1–3]. Особенно остро данная проблема стоит для тех областей РФ, где активно развивались и развиваются промышленные предприятия.

Кемеровская область является крупным территориально-производственным комплексом РФ. Производственные процессы многих промышленных предприятий водоемы, что создает особую нагрузку на водоемы области. В течение многих лет загрязнение попадала как с неочищенными сточными водами, так и с дождевыми и талыми водами селитебных территорий в грунтовые воды. Поэтому помимо природных органических веществ в водоисточниках содержатся также и техногенные органические примеси, поступающие со сточными водами промышленных предприятий. Природные органические вещества — гумусовые и фульвокислоты попадают в грунтовые воды в результате естественных процессов жизнедеятельности высшей водной растительности планктона, живых организмов и экстракции из почв [4–8]. Данные вещества содержатся в водах практически всех источников. В воде водоемов в результате микробиологической, гидролитической деструкции гумусовых соединений образуются галогенсодержащие органические соединения (ГСС).

Кроме того, в процессе водоподготовки на стадии первичного хлорирования образуются галогенорганические соединения на 80–90 %. Данные соединения в основном представлены хлороформом. Хлороформ относится к группе 2Б, оказывает токсичное и канцерогенное действие на организм человека [9–14].

Во многих исследованиях, проведенных в том числе с привлечением сотрудников медицинских учреждений, отмечается возможность развития у людей онкологических заболеваний, чаще всего рака почек, печени, поджелудочной железы, мочевого пузыря, тонкой и прямой кишки, связанных с употреблением хлорированной воды. Выявлено влияние галогенсодержащих углеродов на репродуктивную функцию у женщин. Употребление беременными женщинами воды, обеззараживания которой проводилось с применением активного хлора, может привести к рождению детей с тяжелыми врожденными дефектами, в частности, с пороками сердца и мозга.

Таким образом, вопрос замены хлора дезинфектантом, который обеспечит более высокое...
качество питьевой воды по содержанию галогенорганических соединений представляет особую актуальность. В качестве альтернативы жидкому хлору при обеззараживании природной воды нами предложен технический гипохлорит натрия.

Технический гипохлорит натрия получают путем насыщения растворов диафрагменного едкого натра абгазным хлором на стадии сжижения производства хлора и каустической соды, содержание активного хлора в нем составляет 120–160 г/дм³, а щелочи — 40–90 г/дм³. Раствор гипохлорита натрия значительно менее токсичен, не горюч и не взрывоопасен1 [18].

МАТЕРИАЛЫ И МЕТОДЫ

В ходе исследования был проведен сравнительный анализ изменения содержания галогенорганических соединений и тяжелых металлов в воде, обработанной гипохлоритом натрия и жидким хлором в течение года. При анализе в пробах воды, обработанной жидким хлором и гипохлоритом натрия, измерялись концентрации следующих веществ: цинк, свинец, медь, кадмий, марганец, серебро, никель, ртуть; определялись температура, запах, привкус, мутность, цветность, pH среды, хлориды, аммонийный азот, нитраты, нитриты, щелочность, остаточный хлор, фенолы, сульфаты, общая жесткость, фтор, сухой остаток, БПКₙ, сумма ГСС. Отдельно отслеживались концентрации хлорсодержащих веществ: хлороформ, тетрахлорметана, бромдихлорметана, дибромхлорметана, сумма летучих галогенорганических соединений (ЛГС), 1,2-дихлорметана. Исследования проводились в течение года для оценки сезонных колебаний концентраций загрязняющих веществ и продуктов их взаимодействия с дезинфектантами.

С целью выбора аппаратуарного оформления разработанной технологии проведены исследования по подбору материалов, эффективно работающих в растворах с рекомендуемыми концентрациями гипохлорита натрия. Была испытана стойкость материалов, применяемых для изготовления насосов, емкостей, прокладок, фланцев, поплавков стали марки 12 × 18 Н9Т, дюралюминия, сплава титана ВТ1-0 (сплав титана с алюминием, содержание последнего — менее 1 %), фторопласта, эбонита, полистирола, поливинилхлорида и оргстекла в растворах гипохлорита натрия с массовой дозой активного хлора 20–122 г/дм³ в течение 3–100 суток. Результаты исследования

Для выявления влияния типа дезинфектанта на качество питьевой воды осуществлено сравнительное исследование изменения содержания галогенорганических соединений и тяжелых металлов в воде, обработанной гипохлоритом натрия и жидким хлором в течение года. Результаты определения галогенорганических соединений в воде, обработанной хлором и гипохлоритом натрия, а также результаты определения токсичности при использовании биотестирования на эритроцитах приведены в табл. 1 и 2.

Для анализа и оценки перспективы внедрения технического гипохлорита натрия в технологические процессы водоподготовки было проведено комплексное исследование влияния данного дезинфектанта на качество очистки питьевой воды.

Полученные результаты (рис. 1) показывают, что в зимний период содержание галогенорганических соединений невысокое, отличается стабильностью, причем в пробах, обработанных гипохлоритом натрия, концентрация ГСС в среднем на 7,5 % ниже. В период март–август изменение содержания ГСС носит скачкообразный характер и периодически имеет значение выше ПДК. Периодически высокая концентрация ГСС отмечена и в р. Томи. Это обусловлено двумя причинами. Во-первых, при тая-

Табл. 1. Результаты определения галогенорганических соединений в воде, обработанной жидким хлором и гипохлоритом натрия

Доза активного хлора, мг/дм³	Содержание галогенорганических соединений, мг/дм³					
	Хлороформ Cl₂	NaClO	Четыреххлористый углерод Cl₂	NaClO	Бромдихлорметан Cl₂	NaClO
0,2	0,0140	0,0135	0,00056	0,0046	0,00140	0,00130
0,3	0,0159	0,0140	0,00059	0,0051	0,00155	0,00151
0,4	0,0167	0,0146	0,00065	0,0063	0,00160	0,00138
0,5	0,0178	0,0148	0,00073	0,0065	0,00167	0,00149
0,6	0,0178	0,0154	0,00077	0,0064	0,00172	0,00152
0,7	0,0182	0,0163	0,00081	0,0070	0,00175	0,00157

1 Standard Methods for the Examination of Water and Wastewater. 20th ed. // American Public Health Association. 1998.
Во-вторых, в весенне-летний период увеличивается температура воды в водоемах. Известно, что при увеличении концентрации и температуры скорость химических процессов растет, в результате в водоемах образуется больше галогенсодержащих веществ, что повышает их концентрацию в питьевой воде. При первичном хлорировании количество ГСС увеличивается. Существует обоснованное мнение, что предшественниками хлорсодержащих органических соединений являются гумусовые кислоты (ГК) и фульвокислоты (ФК). Эти соединения имеют сложный состав в виде сетки полимеризованного углерода с боковыми цепями (рис. 2, 3) [4].

В боковых цепях располагаются карбоксильные, карбонильные, метиленовые, гидроксильные и амидные группы, которые могут вступать в реакции с хлором через стадии хлорирования с промежуточной молекулярной массой. Именно наличием в молекулах гумусовых и фульвокислот различных функциональных групп объясняется появление при хлорировании целого набора галогенорганических веществ (табл. 3).

Следует отметить, что независимо от времени года, содержания органических и минеральных компонентов в р. Томи концентрация ГСС в питьевой воде на 15,7–33,6 % (в зависимости от сезона) ниже при использовании в качестве дезинфектанта...
Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки

С. 1–17

5

Вол. 9. Вып. 3 (33) Construction: Science and Education

гипохлорита натрия, чем при применении активного хлора. Натрий-ион, вероятно, обладает ингибитирующим действием и подавляет реакции образования ГСС [4].

Содержание тяжелых металлов в воде после хлорирования невелико и имеет тенденцию к уменьшению в период с марта по сентябрь, при этом концентрация всех обнаруженных металлов несколько ниже в воде, которая была обработана гипохлоритом натрия. В сентябре практически во всех пробах все тяжелые металлы не обнаружены. В октябре–декабре в небольших количествах появились свинец, медь и цинк (табл. 4, 5).

Снижение концентрации тяжелых металлов в присутствии гипохлорита натрия может быть связано с окислением металлов хлором в щелочной среде.

Рис. 2. Структурная формула гуминовой кислоты

Рис. 3. Структурная формула фульвокислот

Табл. 3. Результаты определения качества воды, обработанной хлорсодержащими окислителями

Ингредиенты, мг/дм³	Объекты исследования									
	Вода, обработанная жидким хлором	Вода, обработанная техническим гипохлоритом натрия								
	14.10	23.10	16.11	03.12	16.12	14.10	23.10	16.11	03.12	16.12
Хлороформ	0.0202	0.248	0.0293	0.0021	0.0014	0.0181	0.022	0.0268	0.0014	0.0015
Тетрахлорэтан (четыреххлористый углерод)	0.0014	0.00012	0.0001	0.00018	0.00005	0.0008	0.00006	0.00003	Следы	0.00005
Бромдихлорэтан	0.005	0.006	0.0018	0.0003	0.0002	0.003	0.0080	0.0003	0.0002	
Дихлорбромэтан	Следы	0.0004	0.0008	Не обн.						
Сумма ЛГС	0.0266	0.0313	0.038	0.00258	0.00165	0.0211	0.0211	0.0356	0.0017	0.00175
1,2-дибензилетан	Не обнаружен	Не обнаружен								
Табл. 4. Результаты определения тяжелых металлов в воде, обработанной жидким хлором

Дата отбора	Цинк	Свинец	Медь	Кадмий	Марганец	Серебро	Никель	Ртуть
01.12	Не обн.	Следы						
15.12	0,03	0,005	Не обн.	Следы				
12.01	0,04	0,01	Не обн.	Не обн.	Не обн.	Не обн.	0,02	Следы
27.01	0,04	0,005	Не обн.	Не обн.	Не обн.	Не обн.	0,001	Следы
08.02	0,048	0,005	0,12	0,0002	Не обн.	Не обн.	0,01	
22.02	0,045	Не обн.	0,05	Не обн.	Не обн.	Не обн.	0,01	
09.03	0,05	0,01	Не обн.	Не обн.	Не обн.	Не обн.	0,01	
22.03	0,008	0,005	Не обн.	Не обн.	Не обн.	Не обн.	0,01	
05.04	0,04	0,002	Не обн.	Не обн.	Не обн.	Не обн.	0,01	
19.04	0,04	0,008	0,002	Следы	Не обн.	Не обн.	0,001	0,01
06.05	0,04	0,003	0,004	Не обн.	Не обн.	Не обн.	0,001	0,01
25.05	0,02	0,003	0,004	Не обн.	Не обн.	Не обн.	Не обн.	
16.06	0,01	0,002	0,004	Не обн.	Не обн.	Не обн.	0,001	Следы
29.06	0,02	0,005	0,005	Не обн.	Не обн.	Не обн.	0,001	Следы
13.07	0,01	0,002	0,04	Не обн.	Не обн.	Не обн.	Следы	0,01
28.07	0,01	0,002	0,004	Не обн.	Не обн.	Не обн.	0,001	Следы
31.08	0,01	0,001	0,002	Не обн.	Не обн.	Не обн.	0,001	Следы
20.09	Следы	Следы	Следы	Не обн.	Не обн.	Не обн.	Не обн.	
30.09	Следы	Следы	Следы	Не обн.	Не обн.	Не обн.	Не обн.	
14.10	Следы	0,003	Следы	Не обн.	Не обн.	Не обн.	Не обн.	
23.10	Следы	0,005	Следы	Не обн.	Не обн.	Не обн.	Не обн.	
16.11	0,03	0,004	0,002	Не обн.	Не обн.	Не обн.	Не обн.	Следы
03.12	0,03	0,004	0,002	Не обн.	Не обн.	Не обн.	Следы	

Табл. 5. Результаты определения тяжелых металлов в воде, обработанной гипохлоритом натрия

Дата отбора	Цинк	Свинец	Медь	Кадмий	Марганец	Серебро	Никель	Ртуть
01.12	0,01	0,004	Не обн.	Следы				
15.12	0,01	0,004	Не обн.	Следы				
12.01	0,02	0,008	Не обн.	Следы				
27.01	0,03	0,003	Не обн.	0,0001	Не обн.	Не обн.	Не обн.	Следы
08.02	0,032	0,004	0,01	Не обн.	Не обн.	Не обн.	Не обн.	0,01
22.02	0,040	Не обн.	0,005	Не обн.	Не обн.	Не обн.	Не обн.	0,01
09.03	0,03	0,008	Не обн.	0,01				
22.03	Следы	0,002	Не обн.					
05.04	0,02	0,001	Не обн.					
19.04	0,02	0,005	0,012	Не обн.	Не обн.	Не обн.	0,001	Следы
06.05	0,03	0,002	0,004	Не обн.	Не обн.	Не обн.	0,001	Следы
25.05	0,01	0,002	0,004	Не обн.	Не обн.	Не обн.	Не обн.	
16.06	0,01	0,002	0,003	Не обн.	Не обн.	Не обн.	Не обн.	
29.06	0,01	0,005	Следы	Не обн.	Не обн.	Не обн.	0,01	
13.07	0,01	0,002	Следы	Не обн.	Не обн.	Не обн.	0,01	
28.07	0,01	0,002	0,004	Не обн.	Не обн.	Не обн.	0,001	Следы
Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки

С. 1–17

Табл. 6. Данные качества воды, подготовленной с использованием технического гипохлорита натрия (I) и хлора (II)

Показатели качества воды	Февраль	Апрель	Май	Июль	Октябрь	Декабрь
Температура, °C						
	I	II	I	II	I	II
Запах, балл	0,2	0,2	4	4	6	6
Привкус, балл	0	0	0	0	0	0
Мутность, мг/дм³	0,5	0,54	1,3	1,24	0,8	0,9
Цветность, град	7	9	11	12	10	9
pH среде	7,8	8,0	7,6	7,7	7,7	7,8
Хлориды, мг/дм³	10,2	10,1	10,5	9,8	4,5	4,28
Азот, аммиак, мг/дм³	0,12	0,1	0,38	0,3	0,05	0,045
Нитриты, мг/дм³	0,002	0,002	0,01	0,01	0,003	0,002
Нитраты, мг/дм³	0,16	0,18	0,9	1,02	0,5	0,55
Щелочность, ммоль/дм³	2,3	2,4	0,8	0,8	0,55	0,5
Остаточный хлор суммарный, мг/дм³	0,8	0,6	0,42	0,5	0,6	0,67
Остаточный хлор свободный, мг/дм³	0,7	0,57	0,3	0,11	0,6	0,61
Фенол, мг/дм³						
Сульфаты, мг/дм³	19	19,4	22	23	15	13,5
Общая жесткость, ммоль/дм³	2,1	2,0	2,2	2,25	1,5	1,55
Фтор, мг/дм³	0,09	0,92	0,1	0,11	0,16	0,14
Сухой остаток, мг/дм³	140	138	98	92	72	78
Остаточный Al, мг/дм³	–	–	0,09	0,09	0,11	0,1
Железо общее, мг/дм³	0,067	0,07	0,14	0,13	0,01	0,014
БПК-20	0,59	0,68	1,14	1,08	1,4	1,2
Сумма ГСС, мг/дм³	0,022	0,031	0,036	0,057	0,018	0,03

Полученные результаты показали, что применение для обеззараживания питьевой воды гипохлоро-

...
рита натрия обеспечивает более высокое качество, поэтому замена жидкого хлора техническим гипохлоритом натрия в технологии подготовки питьевой воды является целесообразной.

Для реализации предложенного технического решения в практике водоподготовки было проведено сравнительное комплексное исследование эффективности использования дезинфектантов на основных стадиях технологии водоподготовки: первичного обеззараживания (определение хлорпоглощаемости, коагуляции, коррозионной активности воды, качества питьевой воды).

Результаты эксперимента свидетельствуют о том, что доза активного хлора, необходимая для получения воды требуемого качества, ниже при использовании гипохлорита натрия, при этом форма остаточного хлора сохраняется (свободный хлор), в то время как при обработке воды жидким хлором форма остаточного хлора зависит от сезона из менения качества речной воды.

Тип используемого дезинфектанта не влияет на процесс коагуляции. Коррозионная стойкость стальных труб в воде, подготовленной с использованием гипохлорита натрия (в зависимости от качества воды и гидродинамического режима в трубопроводах), в реальных условиях эксплуатации системы водоснабжения г. Кемерово более чем в 4 раза ниже, чем в воде, обработанной с использованием активного хлора. Содержание ГСС в очищенной воде в среднем на 25 % ниже при использовании гипохлорита натрия, чем при применении жидкого хлора. Следует отметить, что независимо от сезона применения гипохлорита натрия стабильно обеспечивает качество воды, соответствующее требованиям СанПиН 2.1.4.1074-01 по содержанию всех нормируемых компонентов, в том числе ГСС.

Экспериментальные данные показали низкую стойкость нержавеющей стали, дюралюминия, эбонита и поливинилхлорида в концентрированных растворах гипохлорита натрия. В то же время такие материалы, как титановый сплав ВТ1-0, фторопласт, орстекло, полиэтилен за достаточно продолжительный период контакта с растворами гипохлорита натрия различных концентраций не изменили внешнего вида, прочности, веса, что позволило сделать вывод о химической стойкости этих материалов в изучаемых средах и рекомендовать их к использованию для работы в концентрированных растворах гипохлорита натрия.

ЗАКЛЮЧЕНИЕ И ОБСУЖДЕНИЕ

На основании данных, полученных в ходе настоящего исследования, и многочисленных промышленных испытаний в РФ разработана технология использования технического гипохлорита натрия в качестве дезинфектанта при подготовке питьевой воды из поверхностных и подземных источников, впервые внедренная на действующих городских очистных сооружениях в Кемеровской области. В настоящее время 93 % водоподготовительных сооружений Кузбасса используют в качестве дезинфектанта гипохлорит натрия. Кроме того, технология обеззараживания техническим гипохлоритом натрия внедрена на более 30 водоподготовительных сооружениях городов и крупных поселков Новосибирской, Томской областей и Красноярского края. Большой опыт внедрения гипохлорита натрия в качестве дезинфектанта имеется и на станциях водоподготовки г. Москвы.

ЛИТЕРАТУРА

1. Елдышев Ю.Н. В стране беда — питьевая вода. Еще об одной крупной государственной проблеме // Экология и жизнь. 2008. № 9 (82). С. 19–23.
2. Иксанова Т.И., Малышева А.Г., Растяников Е.Г., Егорова Н.А., Красовский Г.Н., Николаев М.Г. Гигиеническая оценка комплексного действия хлороформа питьевой воды // Гигиена и санитария. 2006. № 2. С. 8–12.
3. Егорова Н.А., Букшук А.А., Красовский Г.Н. Гигиеническая оценка продуктов хлорирования питьевой воды с учетом множественности путей поступления в организм // Гигиена и санитария. 2013. Т. 92. № 2. С. 18–24.
4. Славинская Г.В. Влияние хлорирования на качество питьевой воды // Химия и технология воды. 1991. Т. 13. № 11. С. 1013–1022.
5. Муганлинский Ф.Ф., Трегер Ю.А., Люшин М.М. Химия и технология галогениорганических соединений. М. : Химия, 1991. С. 91–95.
6. Краснова Т.А., Сколубович Ю.Л. Обеззараживание воды в системе питьевого водоснабжения. Novosibirsk : НГАСУ (Сибстрих), 2012. 114 с.
7. Pervov A.G., Andrianov A.P., Gorbunova T.P., Bagdasaryan A.S. Membrane technologies in the solution of environmental problems // Petroleum Chemistry. 2015. Vol. 55. Issue 10. Pp. 879–886. DOI: 10.1134/s0965544115100199
8. Orlov V. Computer simulation of optimal thickness of polyurea coating using for trenchless renovation of potable water pipes // Procedia Engineering. 2016. Vol. 165. Pp. 1168–1175. DOI: 10.1016/j.proeng.2016.11.835
INTRODUCTION

In the contemporary world, the life quality of a human being is directly associated with its access to potable water. In many countries, impeded access to potable water is a burning problem, in some of them potable quality water is deficient, and it is of detrimental influence on the well-being of the population. In our country, the reserves of fresh water are sufficient. However, the contemporary level of industrial development, frequent infringement of wastewater treatment requirements before the water is returned back to natural water basins have caused a number of acute problems for the environment due to the contamination of water basins [1–3]. This problem is especially vital for those regions of the RF where active industrial development was and is observed.

Kemerovo Region large territorial production complex of the Russian Federation. Manufacturing processes of a multitude of industrial enterprises are water-intensive, imposing extreme load on the water basins of the region. Over many years, the ingress of pollutants into the ground water has been stipulated both by untreated wastewater, and by precipitation...
and melt waters of territories intended for construction
development. That is why, along with natural organic
substances, the water sources contain also man-caused
organic admixtures coming with the wastewater of
industrial enterprises. Natural organic substances are
humus and fulvic acids, their ingress into the ground
water is caused by natural vital activities of aqueous
Embryophytes, plankton, living organisms and by ex-
traction from soils [4–8]. Such substances are contained
in the water of almost all sources. In water basins, as
a result of microbial, hydrolytic destruction of humus
compounds, halogen-containing organic compounds
(HCC) are generated.

In addition, the water treatment process generates
organohalogen compounds to 80–90 % in the stage of
the primary chlorination. These substances are mostly
represented by chloroform. Chloroform is assigned to
2B Group, being toxic and carcinogenic to the human
organism [9–14].

In multitude of studies conducted also with in-
volvelement of employees of health care institutions,
possibilities of cancer development in humans were
registered, especially that of kidneys, liver, pancreas,
bladder, small intestine and rectum, associated with the
consumption of chlorinated water. Detrimental influence
of halogen carbons on the feminine fertility was
been determined. If pregnant women consume water
disinfected using active chlorine, children can be born
with severe congenital defects, in particular, with car-
diac and cerebral lesions.

Not the last, and not the least factor is the ag-
gressiveness of the active chlorine used for water dis-
infection to the pipelines of the water supply utilities
[15–17].

Thus, the problem of replacement of chlorine with
a disinfectant which assures a higher potable water
quality in terms of organohalogen compound content is
absolutely urgent. As an alternative to liquified chlorine
as a disinfectant of natural water, we propose technical
grade sodium hypochlorite. The obtained results (Fig. 1)
demonstrate in winter a relatively low and stable content of organohalo-
gen compounds and heavy metals in water treated
with sodium hypochlorite and liquid chlorine of one
year’s duration. The determined contents of organo-
halogen compounds in water treated with chloride and
sodium hypochlorite, as well as the determined toxicity
values based on biological erythrocyte tests are shown
in Tables 1 and 2.

For the analysis and the evaluation of prospects of
the introduction of technical grade sodium hypochlorite
in water treatment processes, a comprehensive investiga-
tion of the influence of this disinfectant on the treat-
ment quality of potable water was carried out.

The obtained results (Fig. 1) demonstrate in winter a relatively low and stable content of organohalo-
gen compounds, thereby in the samples treated with
sodium hypochlorite, the average HCC concentration
was 7.5 % lower than in the samples treated with chlo-
rine. During the period from March to August, a surge-
type contents change of the halogen-containing organic
compounds is observed with regular peaks beyond the
MAC values. Regularly, high HCC concentrations were
also observed in the Tom’ River. This is stipulated by
two reasons. Firstly, considerable amounts of natural
and man-induced organic substances get into the river
during snow melting, rains, that is, when the accumu-
lated pollutants are flushed down into the river from the
streets of the city, industrial grounds, etc.
Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки

Table 1. Determined contents of organohalogen compounds in water treated with chlorine and sodium hypochlorite

Active chlorine dose, mg/dm³	Contents of organohalogen compounds, mg/dm³					
	Chloroform	Carbon tetrachloride	Bromodichloromethane			
	Cl₂	NaClO	Cl₂	NaClO	Cl₂	NaClO
0.2	0.0140	0.0135	0.00056	0.00046	0.00140	0.00130
0.3	0.0159	0.0140	0.00059	0.00051	0.00155	0.00151
0.4	0.0167	0.0146	0.00065	0.00063	0.00160	0.00138
0.5	0.0178	0.0148	0.00073	0.00065	0.00167	0.00149
0.6	0.0178	0.0154	0.00077	0.00064	0.00172	0.00152
0.7	0.0182	0.0163	0.00081	0.00070	0.00175	0.00157

Table 2. Erythrocyte biological testing, averaged data of twelve experiments

Active chlorine dose, mg/dm³	Toxicity (S)	
	Chlorine	Sodium hypochlorite
0.2	0.51	0.46
0.3	0.63	0.54
0.4	0.71	0.61
0.5	0.87	0.79
0.6	0.89	0.82
0.7	1.00	0.93

Fig. 1. Varying of the HCC sum in samples by months: 1 — river water treated with sodium hypochlorite; 2 — river water treated with liquified chlorine
Secondly, in spring and in summer, the water temperature in the water basins grows. It is well-known, that increased concentrations and temperatures accelerate the rates of chemical processes. That is, why, in water basins more halogen-containing substances are generated leading to their concentration increase in the potable water. At primary chlorination, the quantity of HCC is increased. There is a well-substantiated opinion that the precursors of chlorine-containing organic compounds are humus acids (HA) and fulvic acids (FA). These compounds have complicated compositions in form of a network of polymerized carbon with lateral chains (Fig. 2, 3) [4].

In the lateral chains, there are carboxyl, carbonyl, methylene, hydroxyl and amide groups which can react with chlorine in chlorination stages with intermediate molecular weight. It is the presence of different functional groups in the molecules of humus and fulvic acids that explains the occurrence of a spectrum of organohalogen substances during the chlorination (Table. 3).

It should be noted, that independently on the season or the contents of organic and mineral components in the Tom’ River, the concentration of halogen-containing organic compounds in the potable water is by 15.7–33.6 % (dependent on the season) lower when sodium hypochlorite is used as disinfectant, and not the active chlorine. The sodium ion obviously has inhibiting effect suppressing HCC generation reactions [4].

The contents of heavy metals in the water after chlorination are not high with a tendency to reduction within the period from March to September, thereby the concentrations of all metals detected in the water is a little bit lower in the samples treated with sodium hypochlorite. In September, all heavy metals were not detected almost in all samples. From October to December, small quantities of lead, copper and zinc appeared (Tables 4, 5).

The reduction of the concentration of heavy metals in the presence of sodium hypochlorite can be stipulated by oxidizing the metals with chlorine in alkaline medium which stimulates formation of only slightly soluble hydroxides of heavy metals.

Contents of other components in the samples subject to SanPiN 2.1.4.1074-01 at chlorination with sodium hypochlorite are either lower or have the same values (Table 6).

The obtained results demonstrate that the use of sodium hypochlorite for disinfection provides a higher quality of drinking water, therefore, it is advisable to replace

![Fig. 2. Structural formula of humus acid](image1)

![Fig. 3. Structural formula of fulvic acids](image2)
Исследование влияния типа хлорсодержащего дезинфектанта на качество питьевой воды и эффективность технологии водоподготовки

Table 3. Determined contents of organohalogen compounds in water treated with chlorine-containing oxidants

Ingredients, mg/dm³	Water treated with liquified chlorine	Water treated with technical grade sodium hypochlorite
Chloroform	0.0202	0.0181
4-chloromethane	0.0014	0.0008
(Carbon tetrachloride)	0.00081	Trace quantities
Bromodichloromethane	0.0052	Trace quantities
Dibromochloromethane	Trace quantities	Trace quantities
VOC total	0.0266	0.0211

Table 4. Determined contents of heavy metals in the water treated with liquified chlorine

Sampling date	Zinc	Lead	Copper	Cadmium	Manganese	Silver	Nickel	Mercury
01.12	Not detected	Trace quantities						
15.12	0.03	0.005	Not detected	Not detected	Not detected	Not detected	Trace quantities	
12.01	0.04	0.01	Not detected	Not detected	Not detected	Not detected	0.02	Trace quantities
27.01	0.04	0.005	Not detected	Not detected	Not detected	Not detected	0.001	Trace quantities
08.02	0.048	0.005	0.12	0.0002	Not detected	Not detected	Not detected	0.01
22.02	0.045	Not detected	0.05	Not detected	Not detected	Not detected	Not detected	0.01
09.03	0.05	0.01	Not detected	0.01				
22.03	0.008	0.005	Not detected					
05.04	0.04	0.002	Not detected					
19.04	0.04	0.008	0.002	Trace quantities	Not detected	Not detected	0.001	0.01
06.05	0.04	0.003	0.004	Not detected	Not detected	Not detected	0.001	0.01
25.05	0.02	0.003	0.004	Not detected				
16.06	0.01	0.002	0.004	Not detected				
29.06	0.02	0.005	0.005	Not detected	Not detected	Trace quantities	Trace quantities	0.01
13.07	0.01	0.002	0.04	Not detected	Not detected	Trace quantities	Trace quantities	0.01
28.07	0.01	0.002	0.004	Not detected	Not detected	Not detected	Trace quantities	0.01
31.08	0.01	0.001	0.002	Not detected	Not detected	Trace quantities	Trace quantities	0.01
20.09	Trace quantities	Trace quantities	Trace quantities	Not detected				
30.09	Trace quantities	Trace quantities	Trace quantities	Not detected				
14.10	Trace quantities	0.003	Trace quantities	Not detected				
Sampling date	Zinc (mg/dm³)	Lead (mg/dm³)	Copper (mg/dm³)	Cadmium (mg/dm³)	Manganese (mg/dm³)	Silver (mg/dm³)	Nickel (mg/dm³)	Mercury (mg/dm³)
---------------	---------------	---------------	----------------	-----------------	-------------------	----------------	----------------	-----------------
23.10 Trace quantities	23.10 Trace quantities	0.005 Trace quantities	Not detected					
16.11 0.03	0.004 Trace quantities	Not detected	Not detected	Not detected	Trace quantities			
03.12 0.03	0.004 Trace quantities	Not detected	Not detected	Not detected	Trace quantities			

Table 5. Determined contents of heavy metals in the water treated with sodium hypochlorite
Table 6. Quality data of water after treatment with technical grade sodium hypochlorite (I) and with chlorine (II)

Water quality parameters	February	April	May	July	October	December						
I	II											
Temperature, °C	0.2	0.2	4	4	6	6	22	22	8	8	0.2	0.2
Odor, points	1 chl.	2 chl.										
Flavor, points	0	0	0	0	0	0	0	0	0	0		
Turbidity, mg/dm³	0.5	0.54	1.3	1.24	0.8	0.9	0.6	0.5	0.8	0.9	0.8	0.9
Color, deg.	7	9	11	12	10	9	9	10	5.0	3.9	10.5	10
pH	7.8	8.0	7.6	7.7	7.7	7.7	6.7	6.73	7.52	7.5	7.5	7.8
Chlorides, mg/dm³	10.2	10.1	10.5	9.8	4.5	4.28	9.0	10.0	5.0	3.9	10.5	10.0
Nitrogen, ammonia, mg/dm³	0.12	0.1	0.38	0.3	0.05	0.045	0.07	0.06	0.07	0.14	0.10	0.12
Nitrites, mg/dm³	0.002	0.002	0.018	0.01	0.003	0.002	0.004	0.005	0.002	0.002	0.01	0.01
Nitrates, mg/dm³	0.16	0.18	0.9	1.02	0.5	0.55	0.28	0.32	0.48	0.46	0.3	0.4
Alkalinity, mmol/dm³	2.3	2.4	0.8	0.8	0.55	0.5	1.4	1.5	1.2	1.2	2.0	1.9
Total residual chlorine, mg/dm³	0.8	0.6	0.42	0.5	0.6	0.67	0.3	0.3	0.6	0.3	0.65	0.6
Free residual chlorine, mg/dm³	0.7	0.57	0.3	0.11	0.6	0.61	0.07	0.07	0.5	0.2	0.35	0.3
Phenol, mg/dm³	Not detected	0.001	0.002	0.002	0.002	Not detected	Not detected					
Sulphates, mg/dm³	19	19.4	22	23	15	13.5	10	10.5	18	18	22	22.5
Total hardness, mmol/dm³	2.1	2.0	2.2	2.25	1.5	1.55	0.9	0.85	1.5	1.6	1.6	
Fluorine, mg/dm³	0.09	0.92	0.1	0.11	0.1	0.96	0.09	0.09	0.08	0.08	0.09	0.06
Dry rest, mg/dm³	140	138	98	92	72	78	80	86	81	86	84	87
Residual aluminum, mg/dm³	–	–	0.09	0.09	0.11	0.1	0.1	0.08	0.04	0.07	0.08	0.07
Coli titer	333	333	333	333	333	333	333	333	333	333	333	
Total iron, mg/dm³	0.067	0.07	0.14	0.13	0.01	0.014	0.013	0.02	0.15	0.18	Not detected	Not detected
BOD-20	0.59	0.68	1.14	1.08	1.4	1.2	2.0	2.1	2.0	1.95	1.0	0.5
HCC sum, mg/dm³	0.022	0.031	0.036	0.057	0.018	0.03	0.05	0.065	0.018	0.025	0.02	0.024
Experimental data show poor chemical resistance of stainless steel, duralumin, ebonite and polyvinylchloride in concentrated sodium hypochlorite solutions. Simultaneously, such materials as BT1-0 titanium alloy, Teflon, plexiglas, polystyrene did not change their appearance, strength, weight during a prolonged period of contact with sodium hypochlorite solutions of different concentrations, being a reason for conclusions on their complete chemical resistance of these materials in the subject media and a recommendation on their use for operations in high-concentration sodium hypochlorite solutions.

SUMMARY AND DISCUSSION

Based on the data acquired in the course of the present study and numerous industrial-scale tests in the RF, a process was developed using technical grade sodium hypochlorite as disinfectant in the treatment of potable water from surface and underground water sources; for the first time, the process was integrated in the existing water treatment facilities in Kemerovo Region. For the time being, 93 % of water treatment facilities of Kuzbass use sodium hypochlorite as disinfectant. Besides, the disinfection process with technical grade sodium hypochlorite has been integrated in more than 30 water treatment facilities of cities and big settlements of Novosibirsk, Tomsk and Krasnoyarsk Regions. There is a vast experience of sodium hypochlorite disinfectant integration in water treatment stations of Moscow City.

REFERENCES

1. Eldishev Yu.N. Potable water — a trouble of the country. About another state headache task. *Ecology and Life*. 2008; 9(82):19-23. (rus.).

2. Iksanova T.I., Malysheva A.G., Rastyanikov Ye.G., Yegorova N.A., Krasovsky G.N., Nikolayev M.G. Hygienic evaluation of the combined effect of portable water chloriform. *Hygiene and Sanitation*. 2006; 2:8-12. (rus.).

3. Egorova N.A., Bukshuk A.A., Krasovskiy G.N. Hygienic assessment of the chlorination products of drinking water, taking into account the multiplicity of intake. *Hygiene and Sanitation*. 2013; 92(2):18-23. (rus.).

4. Slavinskaya G.V. Effect of chlorination on drinking water quality. *Chemistry and Technology of Water*. 1991; 13(11):1013-1022. (rus.).

5. Mugarlinskiy F.F., Treger Yu.A., Lushin M.M. *Chemistry and technology of organohalogen compounds*. Moscow, Chemistry Publ., 1991; 91-95. (rus.).

6. Krasova T.A., Skoloboviy Yu.L. *Disinfection of water in the drinking water supply system*. Novosibirsk, Novosibirsk State University of Architecture and Civil Engineering (Sibstrin) Publ., 2012; 114. (rus.).

7. Pervov A.G., Andrianov A.P., Gorbunova T.P., Bagdasaryan A.S. Membrane technologies in the solution of environmental problems. *Petroleum Chemistry*. 2015; 55(10):879-886. DOI: 10.1134/s0965544115100199

8. Orlov V. Computer simulation of optimal thickness of polyurea coating using for trenchless renovation of potable water pipes. *Procedia Engineering*. 2016; 165:1168-1175. DOI: 10.1016/j.proeng.2016.11.835

9. Orlov V.A., Shcherbakov V.I., Dezhina I.S. Investigation of hydrophobic characteristics and transferring capacity of protective coatings used for trenchless pipeline renovation. *Russian Journal of Building Construction and Architecture*. 2018; 3(39):32-42.

10. Pervov A.G. Precipitation of calcium carbonate in reverse osmosis retentate flow by means of seeded techniques — a tool to increase recovery. *Desalination*. 2015; 368:140-151. DOI: 10.1016/j.desal.2015.02.024

11. Pervov A.G., Andrianov A.P., Yurchevskiy E.B. Principles of utilization of reverse osmosis concentrate at water treatment facilities. *Petroleum Chemistry*. 2015; 55(10):871-878. DOI: 10.1134/s0965544115100187

12. Pervov A.G., Andrianov A.P., Gorbunova T.P. Yurchevskii E.B. Technology for utilization of the concentrate of reverse osmosis plants in water treatment.
systems. *Water Supply and Sanitary Equipment*. 2012; 8:20-26. (rus.).

13. Pervov A.G., Andrianov A.P., Chuhin V.A., Efremov R.V., Rudakova G.Ya., Popov K.I. Determination of the effectiveness of inhibitors of a new generation in reverse osmosis plants. *Membranes and Membrane Technologies*. 2016; 6(3):268-282. (rus.).

14. Pervov A.G., Andrianov A.P. Application of membranes to treat wastewater for its recycling and reuse: new considerations to reduce fouling and increase recovery up to 99 percent. *Desalination and Water Treatment*. 2011; 35(1-3):2-9. DOI: 10.5004/dwt.2011.3133

15. Chistyakova A.V., Chuhin V.A., Andrianov A.P. Automation of building engineering systems. *Water Supply and Sanitary Equipment*. 2013; 7:30-36. (rus.).

17. Orlov V., Andrianov A. The selection of priority pipe sections for sewer network renovation. *Applied Mechanics and Materials*. 2014; 580-583:2398-2402. DOI: 10.4028/www.scientific.net/amm.580-583.2398

18. Pervov A.G., Andrianov A.P., Chuhin V.A., Efremov R.V. The development and evaluation of new biodegradable acrylic acid based antiscalants for reverse osmosis. *International Journal of Applied Engineering Research*. 2015; 10(5):3979-3986.

Received June 31, 2019.
Adopted in its final form on August 5, 2019.
Approved for publication on August 30, 2019.

Bi o n o t e s: Tamara A. Krasnova — Doctor of Technical Science, Professor of the Technosphere Safety Department; **Kemerovo State University**: 47 boulevard Stroiteley, Kemerovo, 650056, Russian Federation; ID RISC: 522890, Scopus: 7006845214; ecolog1528@yandex.ru;

Yuri L. Skolubovich — Doctor of Technical Science, Professor, Rector; **Novosibirsk State University of Architecture and Civil Engineering (Sibstrin)**; 113 Leningradskaya st., Novosibirsk-8, 630008, Russian Federation; ID RISC: 437079, Scopus: 36880146500; viv@sibstrin.ru;

Elena S. Gogina — Candidate of Technical Sciences, Associate Professor, Vice-rector; **Moscow State University of Civil Engineering (National Research University) (MGSU)**; 26 Yaroslavskoe shosse, Moscow, 129337, Russian Federation; ID RISC: 298730, Scopus: 55841908100; goginaes@mgsu.ru;

Dmitry D. Volkov — Deputy General Director; **North Kuzbass Energy Company**; 1a Mira st., Berezovsky, 650056, Russian Federation; ecolog1528@yandex.ru.