Vervoort, J; Baraniak, A; Gazin, M; Sabirova, J; Lammens, C; Kazma, M; Grabowska, A; Izdebski, R; Carmeli, Y; Kumar-Singh, S; Gniadkowski, M; Goossens, H; Malhotra-Kumar, S; MOSAR WP2, ; SATURN WP1 study groups, (2012) Characterization of two new CTX-M-25-group extended-spectrum -lactamase variants identified in Escherichia coli isolates from Israel. PloS one, 7 (9). e46329. ISSN 1932-6203 DOI: https://doi.org/10.1371/journal.pone.0046329

Downloaded from: http://researchonline.lshtm.ac.uk/4646995/

DOI: 10.1371/journal.pone.0046329

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Characterization of Two New CTX-M-25-Group Extended-Spectrum β-Lactamase Variants Identified in *Escherichia coli* Isolates from Israel

Jascha Vervoort, Anna Baraniak, Muriel Gazin, Julia Sabirova, Christine Lammens, Meital Kazma, Anna Grabowska, Radoslaw Izdebski, Yehuda Carmeli, Samir Kumar-Singh, Marek Gniadkowski, Herman Goossens, Surbhi Malhotra-Kumar, on behalf of the MOSAR WP2 and SATURN WP1 study groups

Abstract

Objectives: We characterized two new CTX-M-type extended-spectrum β-lactamase (ESBL) variants in *Escherichia coli* isolates from stool samples of two elderly patients admitted at the Tel Aviv Sourasky Medical Center, Israel. Both patients underwent treatment with cephalosporins prior to isolation of the *E. coli* strains.

Methods: ESBLs were detected by the double-disk synergy test and PCR-sequencing of β-lactamase genes. The *bla*$_\text{CTX-M}$ gene was cloned into the pCR-BluntII-TOPO vector in *E. coli* TOP10. The role of amino-acid substitutions V77A and D240G was analyzed by site-directed mutagenesis of the *bla*$_\text{CTX-M-94}$ and *bla*$_\text{CTX-M-100}$ genes and comparative characterization of the resulting *E. coli* recombinants. MICs of β-lactams were determined by Etest. Plasmid profiling, mating experiments, replicon typing and sequencing of *bla*$_\text{CTX-M}$ flanking regions were performed to identify the genetic background of the new CTX-M variants.

Results: The novel CTX-M β-lactamases, CTX-M-94 and -100, belonged to the CTX-M-25-group. Both variants differed from CTX-M-25 by the substitution V77A, and from CTX-M-39 by D240G. CTX-M-94 differed from all CTX-M-25-group enzymes by the substitution F119L. Glycine-240 was associated with reduced susceptibility to ceftazidime and leucine-119 with increased resistance to ceftriaxone. *bla*$_\text{CTX-M-94}$ and *bla*$_\text{CTX-M-100}$ were located within ISecs1 transposition units inserted into ~93 kb non-conjugative IncFI and ~130 kb conjugal IncA/C plasmids, respectively. The plasmids carried also different class 1 integrons.

Conclusions: This is the first report on CTX-M-94 and -100 ESBLs, novel members of the CTX-M-25-group.

Introduction

CTX-Ms are the most prevalent extended-spectrum β-lactamases (ESBLs) in Enterobacteriaceae causing hospital- and community-acquired infections [1–3]. The *bla*$_\text{CTX-M}$ genes are usually located on plasmids, and are derivatives of chromosomal β-lactamase genes of the *Klebsiella* genus due to multiple mobilization events [1,4]. Usually, these plasmids easily spread in microbial populations, also carrying other resistance genes such as those coding for aminoglycoside acetyltransferases, dihydropteroate synthases or other β-lactamases [3]. New CTX-M variants arise rapidly and so far 131 different enzymes of this family have been identified (http://www.labhe.org/studies). They can all be assigned to five different subfamilies, based on amino acid identity: the CTX-M-1, -2, -8, -9, and -25 groups [1]. New CTX-M variants within these groups emerge by the gradual accumulation of mutations, some of which affect enzyme activity and resistance phenotype, and are being selected by antibiotic pressure [5,6]. Unlike the CTX-M-1, -2 and -9 groups, the CTX-M-25-like β-lactamases have been rarely observed worldwide [7–9]. However, the situation in Israel is in stark contrast as a remarkable number of CTX-M-25-group enzymes, namely CTX-M-25, -26, 39 and -
41, have been previously reported in there [10,11]. We recently identified two new CTX-M-25-group variants, CTX-M-94 and -100, in Escherichia coli isolates from patients admitted at the Tel Aviv Sourasky Medical Center, Israel. The aim of this study was to characterize CTX-M-94 and -100 and to understand the phylogenetic relationships between the novel and the known CTX-M-25-group variants.

Methods

Bacterial Strains

Two E. coli clinical strains were recovered in 2008-2009 during an epidemiological study from screening stool samples of two elderly patients hospitalized at the Tel Aviv Sourasky Medical Center, Israel. These isolates were identified using mass spectrometry (MALDI-TOF, BrukerDaltonics, Bremen, Germany). E. coli TOP10 electrocompetent cells (Invitrogen, Carlsbad, CA, USA) were utilized as hosts for cloning and site-directed mutagenesis experiments, and rifampicin-resistant E. coli A15 was used as a recipient in mating tests [12].

Phenotypic ESBL Detection and Susceptibility Testing

The ESBL phenotype of the two clinical isolates was confirmed by the double-disc synergy test using cefotaxime, ceftazidime, cefepime and amoxicillin/clavulanate disks [13]. Susceptibility to β-lactam antibiotics (amoxicillin, amoxicillin/clavulanate, ampicillin, aztreonam, cefepime, cefotaxime, cefotixin, cefazidime, ceftazidime/clavulanate, ceftriaxone, imipenem, piperacillin, and piperacillin/tazobactam) was tested by disk diffusion (disks from Oxoid, Basingstoke, UK) and by Etest (bioMérieux, Marcy l’Etoile, France) according to the CLSI guidelines [14].

Genotypic ESBL Detection and blaCTX-M Characterization

Total DNA was extracted from the isolates by alkaline lysis as described previously [15]. Plasmid DNA was obtained from the isolates with the PureLink HiPure Plasmid Miniprep Kit according to the manufacturer’s protocol (Invitrogen). β-lactamase genes blaCTX-M, blavSHV, and blatem were detected by PCR using universal primers with modified cycling conditions: 10 min at 95°C, 30 cycles of 30s at 95°C, 30s at 59°C, and 1 min at 72°C, and 10 min at 72°C [16–18]. The entire blaCTX-M-94 and blatem-100 genes were amplified using previously described primers CTX-M-25-F (specific for the IS

Site-directed Mutagenesis

Single point mutations were introduced into pCR-CTX-M-94 and -100 with the QuikChange II Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA) according to the manufacturer’s protocol. Mutagenic primer pairs (available on request) were designed to replace alanine at position 77 with valine (A77V) and glycine at position 240 with aspartic acid (G240D). The mutagenized pCR-CTX-M-94 and -100 plasmids were electrotransformed into E. coli TOP10, and cloned on LB agar supplemented with kanamycin (50 mg/L) and ceftaxime (2 mg/L). Transformants (pCR-CTX-M-94 and -100) were screened for presence of the blaCTX-M genes by PCR and sequencing using M13 primers according to the manufacturer’s protocol.

Plasmid Typing

Total plasmid DNA obtained from the clinical isolates was electroporated into E. coli TOP10 to separate coexisting multiple plasmids. Unique plasmids were identified by screening the transformants for presence of bla genes, including blaCTX-M, blatem and blamy-2, by PCR. Plasmid profiles of the transformants carrying unique plasmids were determined by restriction digestion of their plasmid DNA with HpaI (New England Biolabs, Ipswich, MA, USA). Restriction products were separated along with a 1 Kb DNA Extension Ladder (Invitrogen) on a 0.7% agarose gel for 10 h at 2.5 V/cm with 0.5x Tris-borate-EDTA buffer. Plasmid sizes were estimated by relative mobility calculations. Presence of bla genes was confirmed by hybridization with blaCTX-M-25-specific, blatem and blamy-2-specific DIG-labeled probes and a DIG Luminescent Detection Kit (Roche Applied

Strain Typing and Phylogrouping

Sequence types (STs) of the E. coli strains were determined by multilocus sequence typing (MLST) [20], using the MLST database at the ERI, University College Cork (http://mlst.ucc.ie/mlst/dbs/Ecoli). Phylogenetic grouping was performed by PCR [21].

Detection of Enzymatic Activity and Isoelectric Focusing of β-lactamases

The presence of functional β-lactamases was evidenced by a qualitative method utilizing the chromogenic cephalosporin nitrocefin (Calbiochem, Merek Chemicals, Nottingham, UK). Hydrolysis of nitrocefin by β-lactamases results in a distinct colour shift from yellow ($\lambda_{max} = 390$ nm at pH 7.0) to red ($\lambda_{max} = 486$ nm at pH 7.0). A nitrocefin solution (500 mg/L) was added to crude bacterial sonicates to show presence of functional β-lactamases. Sonicates positive for β-lactamase activity were subjected to isoelectric focusing (IEF) as described previously [12], in a Model 111 Mini IEF Cell (Bio-Rad, Hercules, CA, USA). The IEF gel was homogeneously covered with the nitrocefin solution to mark all bands corresponding to the different β-lactamases present in the bacterial cell extracts.

Cloning of blaCTX-M genes

Blunt-ended amplicons consisting of blaCTX-M genes and ~30 bp upstream regions were produced using Platinum Pfx DNA Polymerase (Invitrogen) and the primer pair CTX-M-25-F/R with modified cycling conditions: 10 min at 94°C, 30 cycles of 15 s at 94°C, 30 s at 55°C, and 1.5 min at 68°C, and 10 min at 68°C. PCR products were cloned into the pCR-BluntII-TOPO vector (Invitrogen), electrotransformed into E. coli TOP10, and selected on LB agar supplemented with kanamycin (50 mg/L) and ceftaxime (2 mg/L). Transformants (pCR-CTX-M-94 and -100) were screened for presence of the blaCTX-M genes by PCR and sequencing using M13 primers according to the manufacturer’s protocol.

AmpC Detection

Production of AmpC-like β-lactamases was assessed by the combination disk test with cefotaxime and ceftazidime disks, with and without phenylboronic acid (20 μl of 20 mg/mL solution per disk), A±5 mm increase in zone diameter after addition of boronate indicated the higher-level expression of AmpC. Genes coding for acquired AmpC types were identified by PCR-sequencing analysis on plasmid DNA with target-specific primer pairs [19].
Science, Indianapolis, IN, USA) according to the manufacturer’s protocols. Replicon types of all unique plasmids were identified by PCR-based replicon typing as described previously [22]. Conjugation was carried out as described previously [12], utilizing the clinical strains producing CTX-M-94 and -100 as donors and rifampicin-resistant E. coli A15 strain as a recipient. Transconjugants were selected on LB agar with cefotaxime (2 mg/L) and rifampicin (128 mg/L), and confirmed by the phenotypic disk tests, PCR of bla genes, and MLST against the donors and recipient. Transfer efficiencies were calculated based on the ratio of CFUs/mL of transconjugants per donor cell.

Nucleotide Sequence Accession Numbers

bla_{CTX-M-94} and bla_{CTX-M-100} nucleotide sequences were assigned GenBank accession numbers HM167760 and FR682582, respectively.

Results and Discussion

E. coli Isolates Harbouring Novel CTX-M Variants

We recovered the CTX-M-94 and -100-producing E. coli strains from screening stool samples of two elderly hospitalized patients. The patients received various antibiotics, including cephalosporins (ceftriaxone), β-lactam/β-lactamase combinations (pipercillin/tazobactam), cephems and carbapenems (imipenem). The CTX-M-94-producing E. coli belonged to ST131 and phylogroup B2. ST131 is a uropathogenic clone that has spread worldwide, usually associated with ESBLs, in particular with CTX-M-15 of the CTX-M-1 group [3,23,24]. Along with CTX-M-94, the E. coli isolate also harboured two other acquired β-lactamases, TEM-1 and the AmpC-like cephalosporinase CMY-2. The CTX-M-100-producing E. coli belonged to ST88 (clonal complex ST25) and phylogroup A. Strains belonging to phylogroup A are generally more common in the intestinal flora, and both the complex ST25 and the clone ST88 belong to the globally spread members of the phylogroup [25]. The CTX-M-100-harbouring isolate did not express any other acquired β-lactamase.

MICs of β-lactams for the CTX-M-94- and -100-producing isolates are shown in Table 1. The CTX-M-94 harbouring isolate exhibited four- to approximately 200-fold higher MICs of amoxicillin/clavulanate, cefoxitin, cefotaxime, ceftriaxone, ceftazidime (alone and with clavulanate), cefepime and aztreonam, when compared to the CTX-M-100 producer. According to the current CLSI guidelines [14], both isolates were highly resistant to β-lactams had not been studied before and was therefore investigated in this study by cloning experiments (see next section). Furthermore, silent nucleotide substitutions were absent in either bla_{CTX-M-94} or bla_{CTX-M-100} when compared with bla_{CTX-M-25} and bla_{CTX-M-39}. Genetic relatedness of all known CTX-M-25-group enzymes, calculated using MEGA 5 (Figure 2) [28], suggested earlier branching of the CTX-M-94 branch, possibly due to the F119L substitution. It also indicated that the CTX-M-100 is most closely related to CTX-M-39. IEF showed double bands, with pI values of 7.3 and 7.5, for both CTX-M-94 and -100 enzymes. A similar pattern has been shown previously for CTX-M-39, with pIs of 6.8 and 7.0, while CTX-M-25 has a pI of 7.5 [8,10].

Functional Characterization of Wild-type and Mutagenized CTX-Ms

To determine the resistance patterns conferred by the new CTX-M variants and the specific role of the F119L substitution, bla_{CTX-M-94} and bla_{CTX-M-100} with upstream regions were cloned in pCR-BluntII-TOPO and expressed in the isogenic background of E. coli TOP10 (Table 1). The analysis revealed high-level resistance towards amoxicillin, ampicillin, pipercillin, cefotaxime and ceftazidime for both CTX-M-94 and -100 producers without significant differences in MIC values, except for a four-fold lower ceftazidime MIC in the CTX-M-100 producer (12 mg/L) when compared to that with CTX-M-94 (48 mg/L).

To investigate the role of the V77A and D240G substitutions in the sequence background of CTX-M-25-group β-lactamases, reverse mutations were introduced separately into the bla_{CTX-M-94} and bla_{CTX-M-100} genes. In CTX-M-100, the replacement of alanine-77 with valine and glycine-240 with aspartic acid resulted in a reproduction of the protein sequences of CTX-M-25 and -39, respectively. When compared with CTX-M-94 and -100 wild-type strains, the G240D revertants conferred, as expected, a remarkable decrease in the MICs of ceftazidime (4–3 vs. 0.50–0.38 mg/L), and a more moderate decrease in the MICs of aztreonam (48 vs. 12–4 mg/L). In addition, the G240D substitution caused a remarkable decrease in the MICs of piperacillin (>256 vs. >64 mg/L) in CTX-M-100, while having no effect in CTX-M-94. These data fit well with previous crystallographic studies showing that glycine-240, located in the B3 β-strand which lines the active site, is a major contributor to ceftazidime resistance. When aspartic acid at position 240 is replaced by glycine, the
Table 1. MICs of β-lactams of the CTX-M-94- and -100-producing *E. coli*, *E. coli* TOP10 transformed with wild-type pCR-CTX-M-94 and -100 and mutagenized pCR-CTX-M-94 and -100.

Antibiotics	Minimum inhibitory concentrations (mg/L)	E. coli (clinical isolate)	E. coli (clinical isolate)	pCR-CTX-M-94 (wild type)	pCR-CTX-M-94 (mutagenized)	pCR-CTX-M-100 (wild type)	pCR-CTX-M-100 (mutagenized)	pCR-CTX-M-100 (mutagenized)
Amoxicillin	>256*	>256*	>256*	>256*	>256*	>256*	>256*	>256*
Amoxicillin/clavulanate	8**	2	3	3	3	3	3	3
Ampicillin	>256*	>256*	>256*	>256*	>256*	>256*	>256*	>256*
Aztreonam	6**	2	4	4	1.50	4	4	1.50
Ceftazidime	12-16**	1.50	4	4	1.50	4	3	3
Ceftriaxone	>256*	0.06	0.25	0.25	0.19	0.25	0.25	0.19
Cefotaxime	>256*	8	48	24	12	12	32	4
Ceftazidime/clavulanate	>4	0.06	0.25	0.25	0.19	0.25	0.25	0.19
Cefoxitin	>256*	1.50	4	4	1.50	4	3	3
Cefquinome	>256*	0.75 1.50	0.38	0.38	0.25	0.25	0.38	0.38
Piperacillin	>256*	>256*	>256*	>256*	>256*	>256*	>256*	>256*
Piperacillin/tazobactam	0.75	0.50	1.50	1	1	1.50	2	1.50

*Indicates high-level resistance. **Indicates intermediate resistance. doi:10.1371/journal.pone.0046329.t001
mobility of the B3 β-strand is increased, resulting in enhanced protein flexibility and facilitation of hydrolysis of β-lactams with bulkier side chains. However, this increased mobility is not only associated with increased activity, but also with decreased stability of the CTX-M enzyme [5,29]. A recent in vitro-evolution study demonstrated that cefotaxime and ceftazidime probably acted as diversifying agents in the evolution of CTX-M-1 group enzymes [6]. One of the three distinct trajectories analyzed was the D240G route wherein CTX-Ms carrying glycine-240 exhibited moderate increases in ceftazidime MICs, while maintaining high cefotaxime MICs. It was proposed that D240G allows for better adaptation of CTX-M producers to the concurrent exposure to both drugs. Most probably, CTX-M-94 and -100 illustrate this phenomenon in the evolution of the CTX-M-25-group enzymes.

The A77V substitution caused a two-fold increase in cefoxitin MICs (2 vs. 4 mg/L) in CTX-M-94 and-100, and only a minor increase in cefotaxime MICs (16 vs. 24 mg/L) in CTX-M-100. It had no effect on the MICs of ceftazidime. In contrast to our

Figure 1. Comparison of the amino acid sequences of the novel CTX-M-25-group variants (CTX-M-94 and -100), with the known CTX-M-25-group enzymes (CTX-M-25 and -39). Differences are highlighted in bold.

doi:10.1371/journal.pone.0046329.g001

Figure 2. Phylogenetic tree of CTX-M-25-group subtypes. Scale: amino acid substitutions per 100 residues.

doi:10.1371/journal.pone.0046329.g002
Similar distances were previously reported for \(\text{bla} \) separating the genes from IS in K. georgiana genes from the \(\text{bla} \) evolutionary paths of the CTX-M-25-group enzymes. It is not possible to make more global assumptions on the selective events. Because of limited publicly available sequence data, from other CTX-M-25-group members by independent mutational events might be explained by differences between CTX-M-1- and -25-group enzymes in amino acid residues that line the highly conserved active site. CTX-M-15, a prototypal CTX-M-1 group enzyme, differs from CTX-M-94 and -100 at positions 103 (valine and isoleucine, respectively) and 133 (valine and threonine, respectively) that lie in the structural domain of the CTX-M enzyme and in close proximity to the \(\Omega \) loop (based on the active site structure described in Delmas et al. [30]). Finally, the A77V substitution caused a two-fold decrease (MICs, 48 vs. 12 mg/L) and a three-fold increase in MICs (12 vs. 32 mg/L) in ceftiraxone MICs in CTX-M-94 and -100, respectively.

Plasmid Typing

Replicon typing and \(HpaI \) plasmid profiling (Figure 3) revealed that \(\text{bla}_{\text{CTX-M-94}} \) was located on a ~95 kb IncFI plasmid and \(\text{bla}_{\text{CTX-M-100}} \) on a ~130 kb IncA/C plasmid. The \(\text{bla}_{\text{CMY-2}} \) gene, which was also present in the CTX-M-94-producing isolate, was located on a second ~98 kb IncI1 plasmid. The \(\text{bla}_{\text{CTX-M-100}} \) harbouring plasmid was transferred to recipient cells with a high efficiency (5.4 \(\times \) 10^7 per donor cell). On the other hand, the \(\text{bla}_{\text{CMY-2}} \) harbouring plasmid did not transfer. Instead, the \(\text{bla}_{\text{CMY-2}} \) harbouring plasmid was transferred with an efficiency of 3.8 \(\times \) 10^7 per donor cell.

Genetic Environment of \(\text{bla}_{\text{CTX-M}} \) Genes

Both \(\text{bla}_{\text{CTX-M-94}} \) and \(\text{bla}_{\text{CTX-M-100}} \) were located 36 bp downstream of \(\text{ise}_{\text{Ecp1}} \), the most probable factor of mobilization of these genes from the K. georgiana chromosome [31], and sequences separating the genes from \(\text{ise}_{\text{Ecp1}} \) were identical to each other. Similar distances were previously reported for \(\text{bla}_{\text{CTX-M-25}} \) and \(\text{bla}_{\text{CTX-M-26}} \) identified in Canada and the UK, respectively [8]. Interestingly, other \(\text{bla}_{\text{CTX-M-25}} \)-like genes identified in Israel were found to be located 126–128 bp downstream of \(\text{ise}_{\text{Ecp1}} \) [11]. These findings suggest that CTX-M-94 and -100 might not have emerged from other CTX-M-25-group members identified in Israel so far, but from an independent \(\text{ise}_{\text{Ecp1}} \)-mediated mobilization of a precursor \(\text{k. georgiana} \) gene.

This assumption seems to be further supported by the lack of the direct association of \(\text{bla}_{\text{CTX-M-94}} \) and \(\text{bla}_{\text{CTX-M-100}} \) with a class 1 integron, demonstrated by a PCR-sequencing based class 1 integron analysis as described previously [11]. Unlike the above mentioned \(\text{bla}_{\text{CTX-M-25}} \)-like genes identified in Israel, which were inserted into a class 1 integron [11], the \(\text{ise}_{\text{Ecp1}} \)-\(\text{bla}_{\text{CTX-M-94}} \) and \(\text{ise}_{\text{Ecp1}} \)-\(\text{bla}_{\text{CTX-M-100}} \) transposition modules were not present in the variable regions of the integrons identified in the \(\text{bla}_{\text{CTX-M-94}} \) and \(\text{bla}_{\text{CTX-M-100}} \)-containing plasmids. These integrons significantly differed from each other. The one present on the plasmid with \(\text{bla}_{\text{CTX-M-94}} \) harboured \(\text{aadC1} \) (aminoglycoside acetyltransferase; resistance to gentamicin), \(\text{ermC} \) (hypothetical protein), \(\text{orfQ} \) (hypothetical protein) and \(\text{aadA1} \) (aminoglycoside adenylyltransferase; resistance to spectinomycin and streptomycin) gene cassettes, while the one on the plasmid with \(\text{bla}_{\text{CTX-M-100}} \) harboured \(\text{aadB} \) (aminoglycoside adenyltransferase; resistance to gentamicin/kamycin/tobramycin), \(\text{ereA} \) (erythromycin esterase type 1; resistance to erythromycin) and \(\text{aadA1} \). For now, it is unclear whether CTX-M-94 and -100 have emerged from each other or from other CTX-M-25-group members by independent mutational events. Because of limited publicly available sequence data, it is not possible to make more global assumptions on the evolutionary paths of the CTX-M-25-group enzymes.

![Figure 3. HpaI plasmid profiles of \(\text{bla}_{\text{CTX-M-94}} \), \(\text{bla}_{\text{CMY-2}} \) and \(\text{bla}_{\text{CTX-M-100}} \)-hbouring plasmids. A 0.7% agarose gel was loaded with HpaI restricted plasmid DNA purified from three recombinant \(\text{E. coli} \) TOP10 strains containing the (A) \(\text{bla}_{\text{CTX-M-94}} \), (B) \(\text{bla}_{\text{CMY-2}} \) and (C) \(\text{bla}_{\text{CTX-M-100}} \)-hbouring plasmids, respectively, and stained with GelRed. Relative mobility calculations, based on known band sizes of the 1 Kb DNA Extension Ladder (M), estimated total plasmid sizes to be (A) 93 kb, (B) 98 kb and (C) 130 kb. doi:10.1371/journal.pone.0046329.g003](image)

Conclusions

This is the first report describing two novel ESBL variants of the CTX-M-25-group, CTX-M-94 and -100, identified in two \(\text{E. coli} \) isolates belonging to different clones, ST131 and ST88, respectively. Both \(\text{bla}_{\text{CTX-M-94}} \) and \(\text{bla}_{\text{CTX-M-100}} \) were found within \(\text{ise}_{\text{Ecp1}} \) transposition units, located on ~93 kb non-conjugative IncFI and ~130 kb conjugative IncA/C plasmids, respectively. CTX-M-94 is the first CTX-M-25-group member carrying leucine-119, which was shown here to be associated with increased resistance to ceftriaxone. We have also confirmed the role of the D240G substitution in the increase of enzyme activity against ceftriazone in the context of the CTX-M-25-type enzymes.
Acknowledgments

We are grateful to the STEC Center at Michigan State University for providing the ECOR-01, -30, -39, and -65 strains, and also to the Health Protection Agency in London for providing the AmpC control strains.

References

1. Bonnet R (2004) Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 48: 1–14.
2. Canton R, Novais A, Valverde A, Machado E, Peixe L, et al. (2008) Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect 14 Suppl 1: 144–153.
3. Woodford N, Carattoli A, Karaisk E, Underwood A, Ellington MJ, et al. (2009) Complete nucleotide sequences of plasmids pEK304, pEK495, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H1-ST131 clone. Antimicrob Agents Chemother 53: 4472–4482.
4. Barlow M, Reik RA, Jacobs SD, Medina M, Meyer MP, et al. (2008) High rate of mobilization for blaCTX-Ms. Emerg Infect Dis 14: 423–428.
5. Gniadkowski M (2008) Evolution of extended-spectrum beta-lactamases by mutation. Clin Microb Infect Suppl 1: 11–32.
6. Novais A, Comas I, Baquero F, Canton R, Coque TM, et al. (2010) Evolutionary trajectories of beta-lactamase CTX-M-1 cluster enzymes: predicting antibiotic resistance. PLoS Pathog 6: e1000735.
7. McGrattan SE, Hu B, Andreacchio K, Nachamkin I, Edelestein PH (2009) Prevalence of CTX-M beta-lactamases in Philadelphia, Pennsylvania. J Clin Microbiol 47: 2970–2974.
8. Munday CJ, Boyd DA, Brenwald N, Miller M, Andrews JM, et al. (2004) Complete nucleotide sequence of a 9kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 48: 3750–3764.
9. Zhang Z, Guo X, Zhang Q (2009) Prevalence characterization of extended-spectrum beta-lactamases among Escherichia coli isolates collected in Zhenzhou. J Clin Lab Anal 23: 404–407.
10. Chmelítsky I, Carmeli Y, Leavitt A, Swaerber MJ, Navon-Venezia S (2005) CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Antimicrob Agents Chemother 49: 4745–4750.
11. Navon-Venezia S, Chmelítsky I, Leavitt A, Carmeli Y (2008) Dissemination of the CTX-M-25 family beta-lactamases among Klebsiella pneumoniae, Escherichia coli and Enterobacter cloacae and identification of the novel enzyme CTX-M-41 in Proteus mirabilis in Israel. J Antimicrob Chemother 62: 289–295.
12. Bauer-Fladner A, Grün H, Schweigart H (1990) A new plasmidic cephalosporinase in a clinical isolate of Escherichia coli. Infection 18: 294–298.
13. Driexs L, Broissier F, Sospolakow W, Jarler V (2008) Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14 Suppl 1: 90–103.
14. Clinical and Laboratory Standards Institute (2012) Performance Standards for Antimicrobial Susceptibility Testing. 22nd Informational Supplement M100-S22. Wayne, PA, USA: CLSI.
15. Malhotra-Kumar S, Wang S, Lammens C, Chapelle S, Gossens H (2003) Bacitracin-resistant chronic of Streplococcus pyogenes isolated from pharyngitis patients in Belgium. J Clin Microbiol 41: 5202–5204.
16. Boyd DA, Tyler S, Christianson S, McGee A, Moller MP, et al. (2004) Complete nucleotide sequence of a Skilhase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase in a clinical isolate as a putative origin of CTX-M-25 subgroup. Antimicrob Agents Chemother 54: 3070–3071.

Characterization of Two Novel CTX-M Variants

Author Contributions

Conceived and designed the experiments: JV AB CL M. Gniadkowski JS SMK. Performed the experiments: JV AB. Analyzed the data: JV AB M. Gazin M. Gniadkowski SMK. Contributed reagents/materials/analysis tools: CL MK AG RI YC M. Gniadkowski. Wrote the paper: JV M. Gazin M. Gniadkowski HG SMK.