Diversity-induced plant history and soil history effects modulate plant responses to global change

Peter Dietrich1,2, Jens Schumacher3, Nico Eisenhauer2,4, Christiane Roscher1,2

1 Department of Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
2 German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
3 Institute of Mathematics, Stochastics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743 Jena, Germany
4 Institute of Biology, Experimental Interaction Ecology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
Abstract

Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to these changes and how this affects their responses to global change. To close this gap, we performed a common garden experiment testing whether plant responses to global change are influenced by the selection history of the plants and the conditioning history of soil at different levels of plant diversity. Therefore, we collected seeds and took soil samples from 14-year old plant communities of a biodiversity experiment. Offspring of plants from low- and high-diversity communities were either grown in their own soil or in soil of a different community, and were either exposed to drought, increased nitrogen input, or a combination of both. Results show that, under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, mainly soil, and to a lesser extent plant history, influenced the expression of plant traits. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which feedback on the eco-evolutionary pathways of the plants and thus their responses to global change.

Key words: plant-soil interaction, plant-soil feedback, drought, fertilization, micro-evolution, eco-evolutionary feedback, nutrient enrichment, climate change
Introduction

Human activities, such as the combustion of fossil fuels and the intensification of agriculture, are leading to global environmental changes, causing increased air temperatures, altered precipitation patterns, and rising amounts of nitrogen to ecosystems (IPCC, Pörtner et al. 2021). The consequences are more frequent extreme weather events such as droughts (Dai et al. 2018) and a growing accumulation of nitrogen in the soils (Holland et al. 2005). Both, drought and increased nitrogen input, in turn, further influence ecosystems and climatic conditions; hence, they are known as major global change drivers (Sage 2020).

Some of the most tremendous negative effects of global change are changes in ecological communities (Dornelas et al. 2014) and the extinction of species (Sage 2020), whereby plant species are particularly concerned due to their low mobility, with drastic consequences for the functioning of ecosystems. Studies in grassland biodiversity experiment have shown that low- and high-diversity plant communities significantly differ in their productivity and stability (Isbell et al. 2015; Marquard et al. 2009; Tilman et al. 2006). Low-diversity communities were shown to lose productivity over time, while high-diversity communities are more stable, so that plant diversity-productivity relationships become more positive over time (Cardinale et al. 2007; Meyer et al. 2016; Reich et al. 2012). The different development of plant-soil and plant-plant interactions at low and high diversity are assumed to be the important drivers of this strengthening biodiversity effect (Eisenhauer et al. 2019; Thakur et al. 2021). At low plant diversity, an accumulation of soil-borne pathogens might be responsible for lower plant community productivity (Mommer et al. 2018; Thakur et al. 2021), while in high-diversity communities, complementarity effects among plants inhibit such negative processes, causing a higher productivity of these plant communities (Cardinale et al. 2007; Reich et al. 2012). Consequently, these findings raise the question, whether populations of the same plant species develop differently over time when growing at high or low diversity
due to differences in eco-evolutionary feedbacks (Bailey et al. 2006; Linhart 1988; Post and Palkovacs 2009; terHorst and Zee 2016). Indeed, there is empirical evidence that plant individuals at high diversity are selected for greater niche complementarity among species leading to a more complete use of available resources (Zuppinger-Dingley et al. 2014). At low plant diversity, however, the accumulation of soil-borne pathogens may cause persistent species to adapt to this increase by producing more defense compounds, so that over time selection favors individuals that invest more in defense and less in growth (Eisenhauer et al. 2019).

Taken together, low and high plant diversity may differently affect eco-evolutionary feedbacks and thus the microevolution of plants, which could have the effect that plants selected at low diversity respond differently to global change drivers than plants selected at high diversity, due to differences in the phenotype and/or growth strategies. In a previous transplant experiment (Lipowsky et al. 2011), it was shown that some of the studied grassland species showed difference in their phenotype depending on plant history (monoculture or mixture) and soil environment (home or away soil). For example, it was shown that the species *Cirsium oleraceum* (L.) Scop. had a higher number of leaves, when originated from mixture communities, and were taller, when grown in home soil. Furthermore, several greenhouse studies showed similar results, i.e., that plants selected at low or high diversity or grown with “own” or different soil biota vary in their productivity and trait expression (Hahl et al. 2020; van Moorsel et al. 2018b; Zuppinger-Dingley et al. 2014). Such diversity-induced differences in the phenotype could lead to different responses of plants to global change drivers. For example, it is possible that, due to differences in leaf number or root structure, plants selected at low diversity have a lower resistance against drought than plants selected at high diversity. Such changes would contribute to a faster extinction of species, which makes research into these processes an essential frontier.

In summary, differences in plant-plant and plant-soil interactions at low and high diversity may lead to differences in eco-evolutionary feedbacks; however, little is known about
how rapidly and pervasively these differences occur (terHorst and Zee 2016). Moreover, it is not known whether these differences affect the response of plants to global change drivers (Pugnaire et al. 2019), such as drought, nitrogen input or a combination of both, which is assumed to be a common scenario in the future (Craven et al. 2016; Sage 2020). To address these knowledge gaps, we performed a common garden experiment using plant and soil material from a long-running biodiversity experiment (Jena Experiment). For our study, we collected seeds of four grass species and took samples of soil biota (soil samples), which both had been selected for 14 years, either at low or high diversity (communities with two or six plant species and different plant species composition). Plants were grown either in soil inoculated with their home soil biota, i.e. soil biota of the community, where the seeds had been collected, or in soil inoculated with away soil biota, i.e. with soil biota of a different plant community (differing in plant diversity or composition). The aim of the study was to test, whether plant history (origin of plants), soil history (origin of soil biota), and soil treatment (home/away) influence the response of the plants to global change. Therefore, plants were either non-treated (control), or exposed to drought, increased nitrogen input, or a combination of both, drought and nitrogen input, in a full factorial design. We hypothesized that

(I) plant and soil communities develop differently at low and high diversity over time. Therefore, we expected that offspring of plants (Ia) selected at high diversity generally shows higher biomass production compared to offspring selected at low diversity in the control, and that plants under control conditions produce more biomass (Ib) in home than in away soil and (Ic) in high-diversity than in low-diversity soil. Further, (Id) we supposed effects of plant history, soil history, and soil treatment on trait expression of control plants. For example, we expected that offspring of plants from high-diversity communities show higher values for traits related to relative growth rates (e.g., leaf greenness, specific leaf area) and nutrient economy (e.g., shoot nitrogen concentrations) than offspring of plants from low-diversity communities.
(II) global change drivers have a strong impact on biomass production and trait expression of plants. We expected that (IIa) drought reduces, and (IIb) nitrogen input increases plant biomass, while (IIc) the combination of both global change drivers has no impact on plant biomass production, because drought and nitrogen input compensate each other’s impact.

(III) because of different development of plants and soil communities at low and high diversity, offspring of plants (IIIa) selected at different diversity and grown in different soil (IIIb: home vs. away soil, IIIc: soil from low- vs. high-diversity communities) respond differently to global change drivers regarding performance and trait expression.

Results

Hypothesis 1: offspring of plants selected at different diversity and grown in different soil (high vs. low diversity, home vs. away) show differences in productivity and trait expression

Biomass production

Plants grown in soil of six-species communities tended to produce more root biomass than plants in soil of two-species communities in the control (Table 3; Fig. 2). At species-level, *A. elatius* produced more root biomass and had higher root-shoot ratio, and *D. glomerata* produced more shoot and total biomass in soil of six-species than two-species communities (Fig. 2, 3a; Appendix S3: Table S8, S10). The other two species, *P. trivialis* and *A. pratensis* did not differ significantly in biomass production dependent on soil or plant history (Fig. 2, 3a; Appendix S3: Table S9, S11). Initial shoot number showed no influence on later biomass production except for shoot biomass of *D. glomerata* and root biomass of *A. elatius*, which, however, did not change the general patterns.

Plant traits and pathogen infestation
Legacy treatments had no consistent effects across the four species on the expression of shoot, leaf, or root traits in the control (Appendix S3: Table S1). At species-level, legacy treatments did not affect trait expression in *A. elatius* (Fig. 3a; Appendix S3: Table S1). Plants of *A. pratensis* were taller in home than in away-different soil and had thicker roots (higher root diameter) in six- than in two-species soil (Fig. 3a; Appendix S3: Table S3). Plants of *D. glomerata* had higher leaf greenness and stomatal conductance, when seeds originated from two-species communities (Fig. 3a; Appendix S3: Table S4). Plants of *P. trivialis* had lower shoot nitrogen concentration and root diameter, and higher SRL in home soil than in away soil (Fig. 3a; Appendix S3: Table S5).

We found a low pathogen infestation of *A. elatius* and *A. pratensis* (0.8% ± 1.9% (SD) and 0.1% ± 0.5%, respectively), mainly by the rust species *Puccinia graminis* Pers. and *Puccinia coronata* Corda. Plants of *D. glomerata* and *P. trivialis*, in contrast, were strongly infested by the mildew *Blumeria graminis* (DC.) Speer (3.1% ± 4.2% and 8.6% ± 16.5%, respectively). Regarding legacy treatments, *D. glomerata* plants had a lower infestation when grown in home soil than in away soil, while mildew infestation of *P. trivialis* plants did not differ between legacy treatments (Fig 3a; Appendix S3: Table S6).

Hypothesis 2: global change drivers have a strong impact on biomass production and trait expression.

Biomass production

Overall, global change drivers had a strong impact on almost all response variables (Table 2; Fig. 3b-d; Appendix S2: Table S1-9). Compared to control plants, drought reduced shoot biomass production, which was found across all study species and at species-level (Fig. 4a, d). In contrast, drought did not have consistent effects on root biomass (Fig. 4a, d). Drought had positive impact on root biomass of *A. elatius* and *D. glomerata*, while root biomass of *A. pratensis* decreased under drought and did not change significantly in *P. trivialis* (Fig. 4d).
Total biomass production was decreased, when plants were exposed to drought (Fig. 4a, d) except for *D. glomerata*, where it was not different from the control (Fig. 4d). Root-shoot ratios increased under drought (Fig. 4a, d), which was found for all species except for *P. trivialis* (no significant change; Fig. 4d).

Nitrogen input increased shoot, root, and thus also total biomass across the four species (Fig. 4b) as well as in separate analyses of *A. elatius* and *A. pratensis* (Fig. 4e). Plants of *D. glomerata* and *P. trivialis* did not change in root biomass when fertilized (Fig. 3e). Nitrogen input caused a decrease in root-shoot ratio in all species (Fig. 4a, e).

When plants were treated with both global change drivers in combination, the negative impact of drought on shoot biomass was cancelled out by the positive impact of nitrogen input leading to an overall slight increase of shoot biomass (compared to control plants) that was also significant at the species-level except for *A. elatius* (Fig. 4c, f). Consistent with this, the positive impact of nitrogen input on root biomass was also cancelled out by drought when plants were treated with both global change drivers, i.e. control plants and plants treated with both global change drivers did not differ in root biomass production, across all study species (Fig. 4c). At species-level, the combination of both global change drivers had an additive effect on root biomass production of *A. elatius* and *D. glomerata*, i.e. plants of both species showed highest root biomass when treated with both global change drivers (Fig. 4f). In *A. pratensis* and *P. trivialis*, both global change drivers in combination decreased root biomass production (Fig. 3f). Taken together, the combination of both global change drivers led to a slight increase in total biomass production, across all study species and for the high-productive species *A. elatius* and *D. glomerata*, while plants of the low-productive species *A. pratensis* and *P. trivialis* had a similar total biomass production as in the control (Fig. 4c, f). Root-shoot ratios were as low as in fertilized plants, across all species and in *P. trivialis* (Fig. 4c, f). Plants of *A. elatius* and *D. glomerata* increased root-shoot ratios, similar to plants under drought (Fig. 4f). In contrast, *A.
pratensis strongly decreased root-shoot ratios resulting in the lowest values compared to the other treatments (Fig. 4f).

Plant traits and pathogen infestation

Across all study species, drought did not significantly alter growth height, but nitrogen input increased height (Appendix S2: Fig. S1). When treated with both global change drivers, drought canceled out the positive nitrogen input effect, leading to similar height of plants treated with both global change drivers and control plants. Further, drought and nitrogen input increased shoot nitrogen concentrations and leaf greenness, with additive effects when both global change drivers were applied together (Appendix S2: Fig. S1). Drought did not influence LDMC and SLA, while nitrogen input decreased LDMC and increased SLA (Appendix S2: Fig. S2). When treated with both global change drivers, drought mitigated the decrease of LDMC under nitrogen input, while the increase of SLA under nitrogen input did not change with drought (Appendix S2: Fig. S2). Stomatal conductance was increased, when plants were treated with drought, but did not change when fertilized irrespective of the drought treatment (Appendix S2: Fig. S2). In terms of root traits, we found a decrease of RLD under drought (irrespective of fertilization) and an increase in root diameter under nitrogen input (irrespective of drought; Appendix S2: Fig. S3). Results of species-specific trait expression changes under global change drivers can be found in Figure 3b-d and Appendix S2.

In D. glomerata, mildew infestation remained unchanged when treated with drought, but increased with nitrogen input. When treated with both global change drivers, mildew infestation was as high as in fertilized plants (Fig. 3b-d; Appendix S2: Fig. S4). In P. trivialis, mildew infestation was increased under drought and when fertilized, while the combination of both global change drivers led to the highest mildew infestation (Fig. 3b-d; Appendix S2: Fig. S4).
Hypothesis 3: offspring of plants selected at different diversity and grown in different soil (high vs. low diversity, home vs. away) respond differently to global change drivers

Biomass production

Plants from two- and six-species communities did not differ in shoot biomass production when treated with drought, but plants from six-species communities treated with drought tended to produce more root biomass than plants from two-species communities across all study species (Table 3; Fig. 5a, d, g). At species-level, we found no significant effects of legacy treatments under drought (Fig. 3b; Appendix S3: Table S8-S11).

When plants were fertilized, we found an impact of plant history across all study species: fertilized plants originated from six-species communities had a higher root and total biomass production than plants from two-species communities (Table 3; Fig. 5a, g). This was also found in D. glomerata plants, which tended to produce more shoot and total biomass when originated from six-species communities (Fig. 3c; Appendix S3: Table S10). In A. elatius, total biomass production of fertilized plants was significantly higher (and shoot biomass marginally significantly higher), when plants were grown in home and away-same than in away-different soil (Fig. 3c; Appendix S3: Table S8). In A. pratensis, fertilized plants grown in two-species community soil tended to produce more total biomass than in six-species community soil (Fig. 3c; Appendix S3: Table S9), while fertilized P. trivialis showed no significant differences (Fig. 3c; Appendix S3: Table S11).

When plants were treated with both global change drivers, the effects of nitrogen input were cancelled out or changed by drought, i.e. there was no significant impact of legacy treatments on biomass production across all study species and for A. elatius (Table 3; Fig. 3d; Appendix S3: Table S8). In D. glomerata, the significant influence of plant history disappeared, but plants in home and away-different soil showed higher root-shoot ratios than plants in away-same soil (Fig. 3d; Appendix S3: Table S10). Plants of P. trivialis treated with both global change drivers tended to have higher root biomass and root-shoot ratios when grown in home
than in away-same soil (Fig. 3d; Appendix S3: Table S11). In contrast to the overall trend, *A. pratensis* was the only species which showed a similar response to nitrogen input and treatment with both global change drivers: the biomass production was higher in two- than in six-species community soil (for both global change drivers: significant higher root biomass and root-shoot ratios; Fig. 3d; Appendix S3: Table S9).

Plant traits and pathogen infestation

Shoot nitrogen concentration was not influenced by plant or soil history when treated with drought, but fertilized plants in six-species soil had higher shoot nitrogen concentrations than in two-species soil (soil history effect; Appendix S3: Table S1; Fig. S1). Moreover, fertilized plants had lower shoot nitrogen concentrations in home than in away-different soil (soil treatment effect; Appendix S3: Table S1; Fig. S1). When plants were treated with both global change drivers, the nitrogen input effect on soil history was cancelled out by drought, while the impact of soil treatment did not: plants in home soil still had lower shoot nitrogen concentration than plants in away soil (Appendix S3: Table S1; Fig. S1). Other plant traits (growth height, leaf greenness, LDMC, SLA, stomatal conductance, root traits) did not significantly differ depending on legacy treatments when plants were treated with nitrogen or drought (Appendix S3: Table S1). At species level, we found a large number of different responses depending on legacy treatments and type of global change driver, which can be found in Figure 3b-d and Appendix S3.

Mildew infestation of *D. glomerata* plants exposed to drought was higher in home than in away soil, while this drought effect was cancelled out by nitrogen input (Appendix S3: Table S6). Mildew infestation of *P. trivialis* plants was not significantly influenced by legacy treatments, neither with nor without global change drivers (Appendix S3: Table S6).
Table 1 Summary list of response variables and experimental factors of the common garden experiment

Variable	Abbreviation	Unit	Description
Response variables			
Biomass production			
Total biomass	Total Bm	g_{total}	Shoot and root biomass per pot
Shoot mass	Shoot Bm	g_{shoot}	Shoot biomass per pot
Root mass	Root Bm	g_{root}	Root biomass per pot
Root-shoot ratio		g_{root} g_{shoot}⁻¹	Root biomass divided by shoot biomass per pot
Aboveground traits			
Growth height		cm	Stretched shoot length of longest vegetative shoot*
Shoot nitrogen concentration	N_{shoot}	mg N g_{shoot}⁻¹	Nitrogen mass per dry shoot mass
Leaf greenness			Unitless estimate of leaf chlorophyll concentration*
Specific leaf area	SLA	mm² mg_{leaf}⁻¹	Leaf area per dry leaf mass*
Leaf dry matter content	LDMC	mg_{leaf} g_{leaf}⁻¹	Dry leaf mass per water-saturated fresh leaf mass*
Stomatal conductance	g_s	mmol m² s⁻¹	Stomatal conductance per leaf area*
Belowground traits			
Root diameter	Dia	mm	Average root diameter of the root subsample
Specific root length	SRL	m_{root} g_{root}⁻¹	Root length per dry root biomass (subsample)
Root length density	RLD	cm_{root} cm_{soil}⁻³	Root length (extrapolated) per soil volume (pot)
Pathogen infestation		%	Percentage of infested leaf area (estimated)*
Experimental factors			
Species identity	Species ID	-	Study species
Legacy treatments			
Plant history	PH	-	Species richness of the plant community, where the seeds were collected – two or six plant species
Soil history	SH	-	Species richness of plant community, where the soil for inoculation was taken – two or six plant species
Soil treatment	ST	-	Origin of seed and soil in one pot:
- same plot origin = home soil treatment			
- different plot origin, but same species richness = away-same soil treatment			
- different plot origin, different species richness = away-different soil treatment			
Global change driver treatments	global change	global change / global change / GC	
Drought treatment	Drought / D	-	30% instead of 60% water saturation
Nitrogen input treatment	Nitrogen input / N	-	Fertilization with NH₃NO₄ (8x 95 mg)

*averaged per pot
Table 2 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input), and their interactions on plant performance (total biomass, shoot biomass, root biomass). Shown are degrees of freedom (Df), Chi^2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Total biomass	Shoot biomass	Root biomass						
Species identity (ID)									
	Df	Chi^2	P	Df	Chi^2	P	Df	Chi^2	P
Plant history	3	73.25<0.001	3	80.17<0.001	3	121.30<0.001			
Soil history	1	3.480.062	1	1.360.244	1	3.400.065			
Soil treatment	2	2.170.338	2	1.200.548	2	3.660.161			
Drought (D)	1	83.05<0.001	1	110.26<0.001	1	2.610.094			
Nitrogen input (N)	1	257.26<0.001	1	425.93<0.001	1	15.89<0.001			
Species ID x Plant history	3	0.710.872	3	1.770.621	3	0.630.890			
Species ID x Soil history	3	1.680.642	3	0.180.980	3	3.640.303			
Species ID x Soil treatment	6	4.290.638	6	6.640.355	6	2.300.891			
Species ID x D	3	52.00<0.001	3	43.11<0.001	3	98.61<0.001			
Species ID x N	3	30.46<0.001	3	33.73<0.001	3	18.28<0.001			
D x N	1	35.27<0.001	1	27.47<0.001	1	10.900.001			
Species ID x Plant history x D	4	0.920.922	4	4.420.353	4	0.720.948			
Species ID x Soil history x D	4	1.170.883	4	5.330.255	4	0.540.969			
Species ID x Soil treatment x D	8	2.810.946	8	4.780.781	8	3.300.914			
Species ID x Plant history x N	4	2.660.617	4	5.750.219	4	1.690.792			
Species ID x Soil history x N	4	6.590.159	4	3.470.482	4	5.260.262			
Species ID x Soil treatment x N	8	9.350.314	8	4.620.797	8	15.480.050			
Species ID x Plant history x D x N	4	14.85<0.005	4	27.25<0.001	4	12.610.013			
Species ID x Soil history x D x N	4	13.14<0.011	4	14.390.006	4	11.81<0.019			
Species ID x Soil treatment x D x N	8	6.190.626	8	7.910.442	8	4.810.778			
Table 3 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment), and their interactions on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio), when non-treated (control) or treated with global change drivers (drought, nitrogen input, drought and nitrogen input [D x N]). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Species ID												
Plant history (PH)	3	57.93	<0.001	3	37.43	<0.001	3	60.10	<0.001	3	27.83	<0.001
Soil history (SH)	1	2.60	0.107	1	0.44	0.507	1	1.15	0.283	1	0.10	0.756
Soil treatment (ST)	2	0.80	0.670	2	0.46	0.795	2	3.78	0.151	2	3.28	0.194
Species ID x PH	3	1.05	0.790	3	3.44	0.328	3	1.37	0.712	3	0.04	0.998
Species ID x SH	3	3.06	0.382	3	2.48	0.478	3	1.61	0.657	3	2.48	0.479
Species ID x ST	6	3.44	0.752	6	3.55	0.737	6	4.91	0.555	6	4.04	0.672

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history (PH)	3	45.01	<0.001	3	47.33	<0.001	3	64.80	<0.001	3	43.66	<0.001
Soil history (SH)	1	0.03	0.859	1	0.45	0.502	1	2.56	0.110	1	0.77	0.381
Soil treatment (ST)	2	1.57	0.211	1	0.11	0.743	1	1.97	0.161	1	0.06	0.799
Species ID x PH	3	0.18	0.980	3	6.79	0.079	3	4.34	0.227	3	0.60	0.900
Species ID x SH	3	7.50	0.058	3	2.08	0.556	3	0.06	0.996	3	0.67	0.881
Species ID x ST	6	6.46	0.374	6	2.67	0.849	6	7.67	0.263	6	2.27	0.893

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history (PH)	3	107.40	<0.001	3	93.04	<0.001	3	101.11	<0.001	3	81.40	<0.001
Soil history (SH)	1	2.79	0.095	1	1.27	0.259	1	0.05	0.828	1	0.11	0.742
Soil treatment (ST)	2	0.60	0.740	2	0.74	0.691	2	2.08	0.354	2	4.40	0.111
Species ID x PH	3	2.74	0.434	3	1.34	0.720	3	0.78	0.855	3	0.76	0.860
Species ID x SH	3	3.68	0.299	3	3.00	0.391	3	3.11	0.375	3	4.02	0.259
Species ID x ST	6	7.55	0.273	6	5.43	0.490	6	3.05	0.863	6	9.25	0.160
For each plant species (N=4)

2-species plot (N=6) 6-species plot (N=6)

Year

2002

2016/2017

Seeds

Soil

Jena Experiment

Soil treatment

Home

Away-

same*

Away-
different

Home

Away-

same*

Away-
different

*Species richness of seed and soil origin were the same, but material was collected in different research plots (different plant composition)

Control:

Drought:

N input:

Drought +
N input:

Figure 1 caption on next page
Figure 1 Overview of experimental design. In 2016, ripe seeds of four grass species were collected in two- and six-species plots of the Dominance Experiment (Jena Experiment), stored in a freezer and allowed to germinate in spring 2017. After germination, soil samples were collected from the plots and mixed with sterilized background soil (5% + 95%), filled in pots and planted with two seedlings (12 pot replicates per plot). In four pots per plot, plant and soil had the same plot origin (home soil); in four pots, species richness of plant and soil origin were the same, but plant species composition was different (away-same soil) and in four pots, species richness of plant and soil origin were different (= different origin of plant and soil; away-different soil; total Nr$_{pots}$ = 576). Plants were exposed to global change drivers: drought, nitrogen input, or the combination of drought and nitrogen input, or were not treated (control).
Figure 2 Shoot and root biomass production (a), and total biomass production (b) of plants grown either in soil originated from two-species or six-species communities across all four study species and separately for each species. Bars show mean values (± 1 SE); stars above bars indicate significant differences (P < 0.05), stars in brackets indicate marginally significant differences (P < 0.1).
Figure 3 caption on next page
Figure 3 Schematic overview of the results of the common garden experiment testing how plants with a different origin (plant history) or grown in different soil (soil history, soil treatment) differ in performance and trait expression (a) and respond to global change drivers like drought (b), nitrogen input (c), and the combination of both (c). Illustrated is the impact of legacy treatments (= “legacy effect”) and global change treatments (= “global change effect”) on shoot and root biomass production as well as on plant traits (growth height (“Height”), shoot nitrogen concentration (“N_{shoot}”), leaf greenness (“Greenness”), leaf dry matter content (“LDMC”), specific leaf area (“SLA”), stomatal conductance (“g_s”), mildew infestation (“Mildew”), root diameter (“Dia”), specific root length (“SRL”), root length density (“RLD’)) of the four study species. For legacy effects, schematic illustrations of plants indicate differences in shoot and/or root biomass, when originated from two-species (“2”) or six-species (“6”) communities (= plant history (PH)), when grown in two-species (“2”) or six-species (“6”) community soil (= soil history (SH)), or when grown in away (“a”) or home (“h”) soil (= soil treatment; “a$_s$” = away-same soil). Arrows behind traits (for legacy effects) indicate, in which treatment group the value was significant higher (arrow up) or lower (arrow down), e.g. “- SH: SLA ↑6” indicate that SLA in plants grown in six-species soil was higher than in two-species soil and “- LDMC ↑h” indicate that LDMC was higher in plants grown in home than in away soil. For global change effects, schematic illustrations of plants indicate whether shoot and/or root biomass of plants increased (blue arrow up) or decreased (blue arrow down) due to the impact of the respective global change driver (blue horizontal line indicate no change). Arrows behind traits (for global change effects) indicate and increase (arrow up) or decrease (arrow down) of the trait value due to the impact of the respective global change driver.
Figure 4 Response of plants treated with drought, nitrogen input, or a combination of both relative to non-treated plants (control) for total biomass, shoot biomass, root biomass, and root-shoot ratio across four study species (a-c) and separately for each species (d-f). Points are means and error bars are standard deviation. No symbol indicates significant differences between plants treated with global change driver and control plants, “n.s.” indicate no significant difference.
Figure 5 caption on next page
Figure 5 Total biomass (a-c), shoot biomass (d-f), and root biomass (g-i) of plants (across all four study species) originated from two- or six-species communities (plant history; a, d, g); grown in soil originated from two-species or six-species communities (soil history; b, e, h); or grown in home, away-same or away-different soil (soil treatment; c, f, i) and were either non-treated (control) or treated with drought, nitrogen input (N input) or a combination of both (D + N). Bars show mean values (± 1 SE); stars above bars indicate significant differences (P < 0.05), stars in brackets indicate marginally significant differences (P < 0.1).
Discussion

Hypothesis 1: offspring of plants selected at different diversity and grown in different soil (high vs. low diversity, home vs. away) show differences in productivity and trait expression

Our findings that *A. elatius* and *D. glomerata* plants in soil of high-diversity communities produce more biomass than in soil of low-diversity communities are in line with several greenhouse studies showing that soil conditioned by multiple plant species has a more positive impact on plant growth than soil conditioned by only one or two plant species (Guerrero-Ramírez et al. 2019; Yang et al. 2015). Plants probably suffered more from pathogens when grown in soil of low-diversity communities and/or benefitted more from interactions with soil mutualists in soil of high-diversity communities (Eisenhauer et al. 2019; Guerrero-Ramírez et al. 2019; Schnitzer et al. 2011). Interestingly, this soil legacy effect was only found in *A. elatius* and *D. glomerata*, which were both highly-productive species in the long-term field experiment. In contrast, the low-productive species *A. pratensis* and *P. trivialis* showed no significant difference when grown in differently conditioned soils. This is an indication that *A. elatius* and *D. glomerata* interact and/or benefit more, and *A. pratensis* and *P. trivialis* less, with soil mutualists, which are more abundant at high plant diversity, explaining our findings and the species-specific performance in the field experiment.

In contrast to biomass production, we did not find any significant influence of soil history on plant trait expression of *A. elatius* and *D. glomerata*. Nevertheless, we detected some other legacy treatment effects on plant trait expression, which was also found in related studies (van Moorsel et al. 2018a; van Moorsel et al. 2018b). The impact of soil history on root diameter of *A. pratensis*, and the impact of soil treatment (home/away) on the growth height of *A. pratensis*, on shoot nitrogen concentrations and root traits of *P. trivialis*, and on mildew infestation of *D. glomerata* indicate that plant-soil interactions influencing growth, defense, and resource use strategies of plants (Xi et al. 2021), while this impact is species-specific. Moreover,
D. glomerata plants had higher leaf greenness and stomatal conductance, when originated from low-diversity than from high-diversity plant communities. This could be an adaptation to higher light availability and lower soil moisture in low-diversity communities due to lower shading (Bachmann et al. 2018; Fischer et al. 2019; Lorentzen et al. 2008).

Hypothesis 2: global change drivers have a strong impact on the productivity and trait expression of plants.

In accordance with our second hypothesis, we found that drought reduced total biomass production. This was mainly caused by a loss of shoot biomass, while drought differently affected root biomass production of the studied grass species. Individuals of A. elatius and D. glomerata increased in root biomass at the expense of shoot biomass, leading to higher root-shoot ratio under drought. This is a commonly observed strategy to avoid dehydration, which enables plants to tap water from deeper soil layers (in the field) and at the same time minimizes the water loss caused by transpiration (Eziz et al. 2017). In contrast, the low-productive species either decreased instead of increased root biomass (A. pratensis) or did not change root biomass production (P. trivialis) under drought. Interestingly, the low-productive species had a three times higher loss of total biomass under drought (A. pratensis: -17.1%; P. trivialis: -15.3%) than the highly-productive species (A. elatius: -6.4%; D. glomerata: -5.7%, no significant loss of total biomass in D. glomerata). Presumably, the drought resistance strategy of A. elatius and D. glomerata is more effective, which is possibly a competitive advantage under the field conditions of the Jena Experiment, explaining the dominance of these species.

The influence of drought on the expression of plant traits was plant species-specific, except for shoot nitrogen concentrations and leaf greenness, which increased under drought in three species (except P. trivialis). Similar results were found in previous studies (Kocóń and Staniak 2014; Rolando et al. 2015) and indicate a general strategy against drought stress: plants decrease the cell density of shoot tissues, in line with the reduction of shoot biomass to minimize
the water loss, leading to an increase in the concentration of nitrogen compounds and chlorophyll (strong correlation between leaf greenness and chlorophyll concentration were found in Bachmann et al., 2018). At species-level, the low-productive species showed trait expression changes similar to biomass loss under drought, while the highly-productive species D. glomerata decreased in LDMC and increased in stomatal conductance, which is contrary to recent studies showing the opposite strategy to resist drought (high LDMC, low stomatal conductance) (Bristiel et al. 2018; Jaballah et al. 2008; Lozano et al. 2020). The results may differ because D. glomerata in our study was infested by the mildew Blumeria graminis, which may have changed the leaf structure, and thus also trait expression changes under drought.

Furthermore, our second hypothesis was confirmed by showing that nitrogen input increased biomass production. At species-level, shoot biomass was increased in all four species, while root biomass was enhanced only in A. elatius and A. pratensis. In D. glomerata and P. trivialis, there was also a slight, but non-significant increase in root biomass. Both species showed a strong increase in mildew infestation when fertilized. This confirms the nitrogen-disease hypothesis indicating that nitrogen supply increases infection severity by altering leaf properties and resources for pathogens (Dordas 2008). In D. glomerata and P. trivialis, severe infestation by powdery mildew Blumeria graminis may have led to a decrease in rates of net photosynthesis (Hibberd et al. 1996; Mandal et al. 2009), so that the reduced amount of energy was mainly invested in shoot biomass, e.g. for a higher leaf turnover, and less in root biomass.

We found consistent changes in plant trait expression over all four species in response to nitrogen input: growth height (except A. elatius), shoot nitrogen concentrations, and leaf greenness increased in all four species when fertilized, confirming an earlier study by Siebenkäs et al. (2015). Further nitrogen-induced changes in trait expression were likely affected by mildew infestation: the highly-infested species (D. glomerata, P. trivialis) showed lower LDMC and higher SLA, while LDMC and SLA of non-infested species did not change. Probably, D. glomerata and P. trivialis plants responded to the increase in mildew infestation
with a change in the leaf architecture (Cappelli et al. 2020), which could enable plants to turn over their leaves more quickly and thus produce constantly new and unaffected leaves. With regard to root traits, the non-infested species decreased in specific root length (and *A. pratensis* also in root diameter), while root traits remained unchanged in the highly-infested species. The decrease in SRL and increase in diameter (i.e. thicker and shorter roots) in combination with the increase in root biomass of the fertilized *A. elatius* and *A. pratensis* plants indicate that these plants changed the root architecture building fewer fine roots when nutrient availability is enhanced, which is in line with similar research (Siebenkäs et al. 2015).

Finally, we hypothesized that global change drivers cancel out each other’s impact when applied together. This was true for the low-productive species *A. pratensis* and *P. trivialis*, which did not change in total biomass production compared to control plants as also found in other research (Carlsson et al. 2017). However, the strong decrease in root-shoot ratios indicates that *A. pratensis* and *P. trivialis* plants changed their growth strategies. Interestingly, the high-productive species *A. elatius* and *D. glomerata* slightly increased in total biomass, which is mainly explainable by the additive positive impact of drought and nitrogen input on root biomass, resulting in increased root-shoot ratios. Obviously, dominant (or highly-productive) species in our study benefitted more strongly from the combined application of the global change drivers in comparison to subordinate (or low-productive) species. Assuming that dry periods are becoming more frequent (Ruosteenoja et al. 2018) and nitrogen deposition may steadily rise (Reay et al. 2008), our results suggest that competitive interactions change under the impact of multiple global change drivers, and subordinate species may become more severely threatened by extinction (Pugnaire et al. 2019).

Moreover, our results show that the combined effects of the two global change drivers on plant trait expression may differ from the effect of drought or nitrogen input alone, with strong negative effects for some plant species (e.g. highest mildew infestation of *P. trivialis* under combined impact of global change drivers). This suggests that plants change in
physiology and morphology and thus in their response to global change, when a combined impact becomes more frequent, with an unknown influence on community composition and ecosystem functioning in the long term. This finding underlines the need for studies investigating multiple, interacting global change drivers (Rillig et al. 2019; Thakur et al. 2018).

Hypothesis 3: offspring of plants selected at different diversity and grown in different soil (high vs. low diversity, home vs. away) respond differently to global change drivers

The soil history effect, i.e. the beneficial effect of soil biota from high-diversity plant communities on biomass production of control plants, disappeared in treatments with global change drivers, which may be explainable by a change in soil community structure under drought (Kaisermann et al. 2017; Pugnaire et al. 2019) and/or nitrogen input (Wei et al. 2018). In line with our result, similar studies have shown that drought (Fry et al. 2018; Wilschut and van Kleunen 2021) and nitrogen input (in ’t Zandt et al. 2019) can interrupt or change plant-soil interactions. As a result, the beneficial effect of soil biota from high-diversity communities in *A. elatius* and *D. glomerata* could have been lost due to the reduction of soil mutualists (Yang et al. 2021) and/or an increase in soil-borne pathogens caused by global change drivers (Delgado-Baquerizo et al. 2020; Tylianakis et al. 2008; van der Putten et al. 2016).

Next to soil history, we also found altered plant responses to global change drivers when plants originated from low- or high-diversity communities (plant history). When treated with drought, there was no significant difference, but nitrogen input had a more positive impact on plants originated from high-diversity than from low-diversity communities. One possible explanation is that plants at high diversity were selected for greater niche complementarity (Zuppinger-Dingley et al. 2014), while plants at low diversity were selected for increased defense against species-specific pathogens (Eisenhauer et al. 2019), that are often accumulate in low-diversity environments (Eisenhauer et al. 2012). Consequently, the offspring of individuals originated from high-diversity communities may be more efficient in allocating...
additional resources in increased growth, explaining our results. Interestingly, we did not find any significant plant history effect in plants treated with both global change drivers, indicating that drought had a strong impact on the growth strategy of the plants and can counteract positive diversity effects.

Finally, we found that plants in home and away soil may respond differently to global change drivers; however, this was only true for the high-productive species A. elatius: plants benefitted more from fertilization in home and away-same than in away-different soil. The home advantage supports the idea that a decrease of plant diversity can lead to changes in plant-soil interactions and thus to differences in eco-evolutionary feedbacks at low and high diversity (terHorst and Zee 2016). With our data in hand, we cannot determine the exact reason why we found the home advantage under fertilization but not under control conditions; however, our results show that plants may respond differently to global change drivers depending on the soil community with which they interact.

Similar to the biomass production results, almost all differences in trait expression found in control plants disappeared when treated with global change drivers. Instead, many other changes in trait expression occurred depending on the type of global change driver treatment and plant species identity. Taken together, these results indicate that mainly soil biota (soil history and soil treatment) and only to a lesser extent plant history play an important role in the expression of traits under the influence of global change drivers. This suggests that the soil biota composition is strongly associated with the physiology and morphology of the plants. Therefore, shifts in soil biota composition due to plant species loss and/or global change driver impact can have strong effects on the response of plants to global change, which could further accelerate plant community change and species loss (Pugnaire et al. 2019; Yang et al. 2021).

Conclusion
In the present study, we showed for the first time that offspring of plants selected at low and high plant diversity differently respond to global change and that plant-soil interactions play a significant role in this process. This suggests that not only external influences (i.e. global change drivers), but related changes within the community (i.e. changes in eco-evolutionary feedbacks) could promote a further loss of species and thus an acceleration of global change effects. To confirm this assumption, future research should test the long-term influence of global change drivers on soil biota and plants selected at low and high diversity under more realistic conditions, such as plants growing in communities under field conditions.

Materials and methods

The Jena Experiment

Seed and soil material for our common garden experiment was collected from a long-term biodiversity experiment, the Jena Experiment, which is located in the floodplain of the Saale river near Jena (Thuringia, Germany, 50° 55′N, 11° 35′E, 130 m a.s.l.) (Roscher et al. 2004; Weisser et al. 2017). Before the establishment of the Jena Experiment in 2002, the site was a highly fertilized arable field, which had been used for growing wheat and vegetables from the early 1960s until 2000. Mean annual air temperature recorded from 2007 to 2016 at the experimental site (Weather Station Jena-Saaleaue, Max-Planck-Institute for Biogeochemistry Jena, https://www.bglobal change-jena.mpg.de/wetter/) was 9.7°C, and mean annual precipitation was 587 mm. The soil of the study site is a Eutric Fluvisol, whereas soil texture changes from sandy loam to silty clay with increasing distance from the river Saale. Thus, four blocks were arranged parallel to the riverside (Roscher et al., 2004).

Material for our study was collected in a sub-experiment of the Jena Experiment, the so-called Dominance Experiment. The species pool of this experiment included nine species, which often reach dominance in Central European mesophilic grasslands of the Arrhenatherion
type (Ellenberg 1988): five grasses, two legumes, and two herbs. Sown plant species richness levels were 1, 2, 3, 4, 6, and 9 species. Each species occurred eight times in the different compositions of each species-richness level. Moreover, each possible two-species combination was present with equal frequency at each species-richness level of the mixtures (i.e. 2-9 species; more information about the design can be found in Roscher et al. 2004). In May 2002, seeds were sown with a density of 1000 viable seeds per m². Seeds from all species were purchased from a commercial supplier (Rieger-Hoffman GmBH, Blaufelden-Raboldshause, Germany). From 2002 to 2009, plants were grown in plots of 3.5 × 3.5 m; from 2010 onwards, plot size was reduced to 1 × 1 m.Plots were mown every year in June and September and mown plant material was removed. All plots were regularly weeded and never fertilized.

Seed collection, selection of study species, and experimental plots

In summer 2016, we collected seed material from the nine species in all Dominance Experiment plots (as bulk sample per species and plot) and stored them in a freezer (at -20°C) until further use. We chose four grass species (Alopecurus pratensis L., Arrhenatherum elatius (L.) P. Beauv. ex J. Presl et C. Presl, Dactylis glomerata L., Poa trivialis L.) as study species. Furthermore, we selected 12 plots per species (six two-species and six six-species plots, i.e. 48 plots in total), where sufficient seed material was available. The selected plots were evenly distributed in the four blocks of the experiment (Roscher et al. 2004). The study species differed strongly in their biomass production in the Dominance Experiment plots. In the two-species plots, all four species showed a high biomass production; however, in the six-species plots, only A. elatius and D. glomerata were highly-productive, while A. pratensis and P. trivialis showed intermediate levels and decreased in biomass production over the years (Clark et al. 2019; Roscher et al. 2007). For simplification, from here onwards, A. elatius and D. glomerata are referred to as “highly-productive” species, while A. pratensis and P. trivialis are referred to as “low-productive” species.
Preparation of background substrate and study plants

For the pot substrate, we used a sterilized sand-soil mix (= background substrate), which was then inoculated with fresh living soil (5% of the total substrate by weight) from the selected plots. This inoculation method is a common procedure to investigate plant-soil interactions and has the advantage that only low amounts of living soil are needed and that potential abiotic feedbacks are eliminated (Pernilla Brinkman et al. 2010). To produce sterile background substrate, we collected 1.6 m3 soil substrate from the Jena Experiment in May 2017. This soil substrate was a mix of excavated soil material from different experimental plots, which was stored for several years at the experimental area. The soil substrate was sieved to 10 mm, homogenized, and mixed with 0.4 m3 quartz sand (WF 33, Quarzwerke GmbH, Walbeck, Germany). Afterwards, the soil-sand mix was steam-sterilized twice for 150 minutes at ~80°C. More information about the steam-sterilization method and changes of abiotic and biotic soil properties can be found in Dietrich et al. (2020).

For the preparation of study plants, QuickPot$^\text{TM}$ trays of 20 cm3 volume (Hermann Meyer KG, Rellingen, Germany) were sterilized with a potassium hypochlorite solution (Eau de Javel: 2.6 g KClO to 100 ml water; 1:1) and filled with an autoclaved mixture of sand and soil from the Jena Experiment (1:1; sterilized twice for 40 min at 121°C) in June 2017. Each species and origin (i.e. plot) was sown with two or three seeds per pot plate cell. QuickPot$^\text{TM}$ trays were placed in an open greenhouse (Research Station Bad Lauchstädt, UFZ) to promote germination by natural daily temperature fluctuations. Trays were regularly watered (with demineralized water). On 29 June 2017, $A.$ pratensis seeds were reseeded because of low germination rate. For the other three species, one seedling per pot plate cell was removed if more than two seeds were germinated.

Common garden experiment
In July 2017, 12 soil cores (5 cm diameter, 10 cm depth) were taken in a grid of 20 x 20 cm in each Dominance Experiment plot selected for the study and stored in a cooling chamber (4°C). Soil cores were pooled per plot and sieved through a sieve with 5 mm mesh size to remove stones and coarse roots. Then, 2800 cm³ steam-sterilized background substrate was thoroughly mixed with 150 cm³ fresh-sieved living soil and filled in a heat-cleaned pot (3 L, diameter 14.9 cm, height 18 cm) with 12 replicates per plot. Seedlings per pot plate cell were separated, and two seedlings per species with same plot origin were transplanted into one pot (Fig. 1). In four pots per plot, we transplanted plants, which had the same plot origin as the inoculated soil (home soil treatment); in the other eight pots, plant and soil origin were different (away soil treatment). In four of these away pots, species richness of plant and soil origin was the same, but plant species composition was different (away-same soil treatment), and in the other four away pots, species richness of plant and soil origin was different (away-different soil treatment; Fig. 1). Seedlings of *D. glomerata* were transplanted on 18 July 2017, followed by *A. elatius* (20 July 2017), *P. trivialis* (20 and 24 July 2017), and *A. pratensis* (26–28 July 2017). Seedlings were immediately watered with 200 ml demineralized water after transplantation, and the initial number of shoots was counted. In total, the experiment consisted of 576 pots, each with two plants. The pots were placed in an open greenhouse with a roof, which automatically closes at rain, and ambient temperatures (Research Station Bad Lauchstädt, UFZ). Pots were distributed in six blocks placing the 12 pots filled with soil from one plot in one block, i.e. in each block there were 12 pots with soil of one two-species and one six-species plot per species. The position of the pots within the blocks was randomly chosen and changed once a month to avoid potential side effects by neighboring pots and edge effects of the tables.

During the first week after planting, plants were watered every day with 200 ml demineralized water. From week two to four, all pots were watered every other day with 380 ml demineralized water without further treatments to allow the establishment of plants and soil
biota in the pots (380 ml were used to achieve a water saturation of the soil of 60%; calculation can be found in Appendix S1). On 23 August 2017, treatments with the global change drivers were started. For every treatment (control, drought, nitrogen input, combination of drought and nitrogen input), we used three of the 12 pots per plot (one home, one away-same, and one away-different pot, respectively; Fig. 1).

(I) For control, pots were watered as before (380 ml; every other day) and were not fertilized.

(II) Drought was simulated by reduced water saturation (= 30% water saturation = 225 ml; calculation can be found in Appendix S1). Pots were still watered every other day but with 225 ml instead of 380 ml demineralized water.

(III) Nitrogen input was applied once a week with 95 mg NH$_3$NO$_4$ (33.125 mg nitrogen) resulting in a total nitrogen amount of 265 mg after eight fertilization events, which is equivalent to a nitrogen input of 150 kg ha$^{-1}$ year$^{-1}$ nitrogen (medium value for managed grasslands in Germany; Häußermann et al 2019). Fertilized plants were watered as before (380 ml; every other day).

(IV) For the combination of drought and nitrogen input, pots were watered with a reduced amount (225 ml) and were fertilized once a week (in the same way as for the nitrogen input treatment alone).

Once a month, all pots were weighted before watering. The measured weight per pot was subtracted from dry soil weight plus the assigned amount of water (380 or 225 ml). The difference revealed the amount of water which was then used to water the pot to keep the anticipated levels of water saturation for the drought and control treatment.

Data collection
After 11 weeks of growth with global change driver treatments, plants were harvested block-wise (between 16 October and 8 November 2018). Before harvest, aboveground traits and leaf fungal pathogen infestation were measured (Table 1). For growth height (in cm), we measured the stretched shoot length of the longest vegetative shoot per plant. Only 15% of the plants had flowered, which was neglected due to the small case number. For leaf greenness (unitless estimate of foliar chlorophyll content), three fully expanded leaves from vegetative shoots of each plant were measured with a SPAD 502 Plus Chlorophyll Meter (Spectrum Technologies, Inc.) and values were averaged per plant. Stomatal conductance (g_s; mmol m$^{-2}$ s$^{-1}$) was measured at one fully expanded leaf per plant (i.e. two leaves per pot) with a SC-1 Leaf Porometer (Decagon Devices Inc.). This was done block-wise and always one day after watering, between 10 a.m. and 3 p.m. Shortly before harvest, the percentage of total leaf area, which was infested by fungal pathogens was estimated for each plant. A subsample of leaves per species was taken to identify pathogens morphologically at the species level under a light microscope. Moreover, three fully expanded leaves per individual were cut, packed in wet paper towels to achieve water saturation, and stored overnight in a cooling chamber at 4°C. On the next day, leaves were weighed as bulk sample per pot (i.e. six leaves) after removing water droplets with tissue paper. Afterwards, total leaf area was measured with a leaf area meter (LI-3000C Area Meter equipped with LI3050C transparent conveyer belt accessory, LICOR, USA). LDMC was calculated as the ratio of dry weight to fresh weight (mg leaf g_{leaf}^{-1}) and SLA as the ratio of leaf area to dry weight (mm$^2_{leaf}$ mg$^{-1}_{leaf}$).

For biomass harvest, plants were cut at ground level, and roots were cleaned by rinsing off all soil over a 0.5 mm sieve. The fresh root biomass was weighed and a subsample of around 1-2 g fresh weight was stored at –20°C. At a later point, roots were thawed and scanned on a flatbed scanner at 800 dpi (Epson Expression 10000 XL scanner, Regent Instruments, Quebec, Canada), and root diameter and root length of the subsample were measured with an image analysis software (WinRHIZO; Regent Instruments, Quebec City, Canada). Specific root length
(SRL) was calculated as the ratio of root length to root dry biomass (of the subsample; m_{root} g_{root}^{-1}) and root length density (RLD) as the ratio of root length to soil volume in the pot (root length was extrapolated from the ratio of dry root biomass of the measured subsample to total dry root mass per pot; $cm_{\text{root}} cm_{\text{soil}}^{-3}$).

All biomass and leaf samples were dried at 70°C for 48 h and then weighed. To calculate total shoot biomass per pot (each with two individuals), dry shoot biomass and dry leaf mass of the sample used for leaf area measurements were added. To calculate total root biomass, dry biomass of the scanned subsample was extrapolated from the ratio of fresh root biomass to dry root biomass per pot and added to the weighed dry root biomass per pot.

For chemical analysis, shoot biomass of each pot was chopped, and a subsample was ground with a ball mill. Then, 10 mg milled material was used to determine shoot nitrogen concentration with near-infrared spectroscopy (MPA Multi Purpose FT-NIR Analyzer, Bruker GmbH, Ettlingen, Germany). The calibration models used to predict shoot nitrogen concentrations were derived from laboratory data generated from previous samples of grass species. The accuracy of the predictions was verified by a repeated nitrogen concentration analysis of 45 randomly selected samples with an elemental analyzer (Vario EL Element Analyzer, Elementar, Hanau, Germany). Significant positive correlation ($p < 0.001$, $r = 0.97$, $N = 45$) between concentrations resulted from near-infrared spectroscopy and analysis with the elemental analyzer demonstrate high accuracy of our predictions.

Data analysis

To test whether the plants performed differently depending on legacy treatments (plant history, soil history, soil treatment [home/away]), or type of global change treatment, linear mixed-effects models were fitted for all measured response variables per pot as summarized in Table 1. Furthermore, some variables were transformed to meet the assumptions of normality and variance homogeneity: if necessary, root biomass and RLD were square root-transformed.
and root-shoot ratio, SLA, stomatal conductance, SRL, and pathogen infestation were log-transformed. Furthermore, outlier values of LDMC of three *P. trivialis* pots (extremely low values), and LDMC and SLA of one *A. elatius* pot (extremely low LDMC, high SLA), were excluded from the analysis.

For mixed-effect model analysis, we started with a null model with the random effects only. We used seed plot identity (plot, where the seeds had been collected) and soil plot identity (plot, from which the inoculation soil had been taken) as random effects. Then, we successively added the fixed effects with species identity first, followed by the legacy treatments: plant history (species richness of the plant community, where the seeds had been collected: two or six), soil history (species richness of the plant community, where the soil for inoculation had been taken: two or six), and soil treatment (home, away-same, away-different), followed by the global change driver treatments: drought (control or drought) and nitrogen input (control or nitrogen), and finally all interactions between species identity and the other fixed effects to check whether species differ in their responses. For analysis of stomatal conductance, we used daytime and air temperature as covariates, which were entered before adding the experimental factors to account for possible effects of the measurement time.

Because of multiple significant interactions between species identity and other fixed effects (Table 2), we further analyzed the response variables separately per species. Therefore, we used the same fixed effect structure as explained above, but without species identity and additionally with the interactions between legacy treatments and global change driver treatments (which was not done in the first model, because otherwise, it would have become too complex). For pathogen infestation, we only analyzed data of *D. glomerata* and *P. trivialis*, because of very low infestation rates of *A. elatius* and *A. pratensis* plants. To test whether initial size influenced the performance of the phytometers later in the experiment, we added initial shoot number as a fixed effect before the other fixed effects in separate models for analysis of shoot and root biomass production.
Because of multiple significant interactions between legacy treatments and global change driver treatments (Appendix S2: Table S1-S10), we further analyzed the data for each global change driver treatment separately. We used plant history, soil history, and soil treatment as fixed effects for species-specific analysis, and for analyses across all four species, we extended the models by fitting species identity first and all possible interactions between species identity and legacy treatments in the end.

All models were fitted with maximum likelihood (ML), and likelihood ratio tests were used to decide on the significance of the fixed effects. Tukey's HSD test was used to test differences among soil treatment groups. All calculations and statistical analyses were done in R (version 3.6.1, R Development Core Team, http://www.R-project.org) including the package lme4 (glmer and lmer) (Bates et al. 2015) and multcomp (Tukey HSD) (Hothorn et al. 2016) for mixed-effects model analysis.

Acknowledgements

We thank the technicians of the experimental research station Bad Lauchstädt, who helped with the establishment, maintenance and harvest of the experiment. Furthermore, we are grateful to Laura Bergmann for help during the experiment, and Peter Otto for identifying the fungal pathogens. The Jena Experiment is funded by the German Research Foundation (FOR 1451), supported by the University of Jena, the Max Planck Institute for Biogeochemistry and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, funded by the German Research Foundation (FZT 118). Further support was provided by the Heinrich Böll Foundation (PhD scholarship to PD).

Data availability

The data that support the findings of this study are openly available in BExIS at https://jexis.idiv.de/ddm/data/Showdata/238
References

Bachmann D., Roscher C., Buchmann N. (2018) How do leaf trait values change spatially and temporally with light availability in a grassland diversity experiment? Oikos 127:935-948. doi: 10.1111/oik.04533

Bailey J.K., Wooley S.C., Lindroth R.L., Whitham T.G. (2006) Importance of species interactions to community heritability: a genetic basis to trophic-level interactions. Ecology Letters 9:78-85. doi: 10.1111/j.1461-0248.2005.00844.x

Bates D. et al. (2015) Package ‘lme4’. Convergence 12:2

Bristiel P., Gillespie L., Østrem L., Balachowski J., Violle C., Volaire F. (2018) Experimental evaluation of the robustness of the growth–stress tolerance trade-off within the perennial grass *Dactylis glomerata*. Functional Ecology 32:1944-1958. doi: 10.1111/1365-2435.13112

Cappelli S.L., Pichon N.A., Kempel A., Allan E. (2020) Sick plants in grassland communities: a growth-defense trade-off is the main driver of fungal pathogen abundance. Ecology Letters 23:1349-1359. doi: 10.1111/ele.13537

Cardinale B.J. et al. (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proceedings of the National Academy of Sciences of the United States of America 104:18123-18128. doi: 10.1073/pnas.0709069104

Carlsson M., Merten M., Kayser M., Isselstein J., Wrage-Mönnig N. (2017) Drought stress resistance and resilience of permanent grasslands are shaped by functional group composition and N fertilization. Agriculture, Ecosystems & Environment 236:52-60. doi: 10.1016/j.agee.2016.11.009
Clark A.T. et al. (2019) Predicting species abundances in a grassland biodiversity experiment: Trade-offs between model complexity and generality. Journal of Ecology 108:774-787. doi: 10.1111/1365-2745.13316

Craven D. et al. (2016) Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought. Philosophical Transactions of the Royal Society B: Biological Sciences 371:20150277. doi: 10.1098/rstb.2015.0277

Dai A.G., Zhao T.B., Chen J. (2018) Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports 4:301-312. doi: 10.1007/s40641-018-0101-6

Delgado-Baquerizo M. et al. (2020) The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change 10:550–554. doi: 10.1038/s41558-020-0759-3

Dietrich P., Cesarz S., Eisenhauer N., Roscher C. (2020) Effects of steam sterilization on soil abiotic and biotic properties. Soil Organisms 92:99–108. doi: 10.25674/so92iss2pp99

Dordas C. (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agronomy for Sustainable Development 28:33-46. doi: 10.1051/agro:2007051

Dornelas M. et al. (2014) Assemblage time series reveal biodiversity change but not systematic loss. Science 344:296-299. doi: 10.1126/science.1248484

Eisenhauer N. et al. (2019) Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes 5:e47042. doi: 10.3897/rio.5.e47042

Eisenhauer N., Reich P.B., Scheu S. (2012) Increasing plant diversity effects on productivity with time due to delayed soil biota effects on plants. Basic and Applied Ecology 13:571-578. doi: 10.1016/j.baae.2012.09.002

Ellenberg H. (1988) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge
Eziz A., Yan Z., Tian D., Han W., Tang Z., Fang J. (2017) Drought effect on plant biomass allocation: A meta-analysis. Ecology and evolution 7:11002-11010. doi: 10.1002/ece3.3630

Fischer C. et al. (2019) Plant species richness and functional groups have different effects on soil water content in a decade-long grassland experiment. Journal of Ecology 107:127-141. doi: 10.1111/1365-2745.13046

Fry E.L., Johnson G.N., Hall A.L., Pritchard W.J., Bullock J.M., Bardgett R.D. (2018) Drought neutralises plant–soil feedback of two mesic grassland forbs. Oecologia 186:1113-1125. doi: 10.1007/s00442-018-4082-x

Guerrero-Ramírez N.R., Reich P.B., Wagg C., Ciobanu M., Eisenhauer N. (2019) Diversity-dependent plant–soil feedbacks underlie long-term plant diversity effects on primary productivity. Ecosphere 10:e02704. doi: 10.1002/ecs2.2704

Hahl T., van Moorsel S.J., Schmid M.W., Zuppinger-Dingley D., Schmid B., Wagg C. (2020) Plant responses to diversity-driven selection and associated rhizosphere microbial communities. Functional Ecology:707-722. doi: 10.1111/1365-2435.13511

Häußermann U., Bach M., Klement L., Breuer L. (2019) Stickstoff-Flächenbilanzen für Deutschland mit Regionalgliederung Bundesländer und Kreise—Jahre 1995 bis 2017; Methodik, Ergebnisse und Minderungsmaßnahmen. Abschlussbericht TEXTE 131:2019

Hibberd J., Richardson P., Whitbread R., Farrar J. (1996) Effects of leaf age, basal meristem and infection with powdery mildew on photosynthesis in barley grown in 700 μmol mol⁻¹CO₂. New Phytologist 134:317-325. doi: 10.1111/j.1469-8137.1996.tb04636.x

Holland E.A., Braswell B.H., Sulzman J., Lamarque J.-F. (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecological Applications 15:38-57. doi: 10.1890/03-5162
Hothorn T. et al. (2016) Package ‘multcomp’. Simultaneous inference in general parametric models. Project for Statistical Computing, Vienna, Austria

in ’t Zandt D., van den Brink A., de Kroon H., Visser E.J. (2019) Plant-soil feedback is shut down when nutrients come to town. Plant and Soil 439:541-551. doi: 10.1007/s11104-019-04050-9

Isbell F. et al. (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526:574-577. doi: 10.1038/nature15374

Jaballah S., Gribaa A., Volaire F., Ferchichi A. (2008) Ecophysiological responses of perennial grasses *Stipa lagascae* and *Dactylis glomerata* under soil water deficit. Options Méditerranéennes Serie A 79:303-307

Kaisermann A., de Vries F.T., Griffiths R.I., Bardgett R.D. (2017) Legacy effects of drought on plant–soil feedbacks and plant–plant interactions. New Phytologist 215:1413-1424. doi: 10.1111/nph.14661

Kocoń A., Staniak M. (2014) Productivity and gas exchange parameters of selected pasture grasses under drought stress. Journal of Food, Agriculture and Environment 12:131-135

Linhart Y.B. (1988) Intrapopulation differentiation in annual plants. III. The contrasting effects of intra-and interspecific competition. Evolution 42:1047-1064. doi: 10.1111/j.1558-5646.1988.tb02523.x

Lipowsky A., Schmid B., Roscher C. (2011) Selection for monoculture and mixture genotypes in a biodiversity experiment. Basic and Applied Ecology 12:360-371. doi: 10.1016/j.baae.2011.03.005

Lorentzen S., Roscher C., Schumacher J., Schulze E.D., Schmid B. (2008) Species richness and identity affect the use of aboveground space in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics 10:73-87. doi: 10.1016/j.ppees.2007.12.001
Lozano Y.M., Aguilar-Trigueros C.A., Flaig I.C., Rillig M.C. (2020) Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology 34:2224-2235. doi: 10.1111/1365-2435.13656

Mandal K., Saravanan R., Maiti S., Kothari I.L. (2009) Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. Journal of Plant Diseases and Protection 116:164-168. doi: 10.1007/Bf03356305

Marquard E. et al. (2009) Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90:3290-3302. doi: 10.1890/09-0069.1

Meyer S.T. et al. (2016) Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7:e01619. doi: 10.1002/ecs2.1619

Mommer L. et al. (2018) Lost in diversity: the interactions between soil-borne fungi, biodiversity and plant productivity. New Phytologist 218:542-553. doi: 10.1111/nph.15036

Pernilla Brinkman E., Van der Putten W.H., Bakker E.J., Verhoeven K.J. (2010) Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology 98:1063-1073. doi: 10.1111/j.1365-2745.2010.01695.x

Pörtner H.O. et al. (2021) IPBES-IPCC co-sponsored workshop report on biodiversity and climate change; IPBES and IPCC. doi: 10.5281/zenodo.4782538.

Post D.M., Palkovacs E.P. (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1629-1640. doi: 10.1098/rstb.2009.0012

Pugnaire F.I. et al. (2019) Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science advances 5:eaaz1834. doi: 10.1126/sciadv.aaz1834
Reay D.S., Dentener F., Smith P., Grace J., Feely R.A. (2008) Global nitrogen deposition and carbon sinks. Nature Geoscience 1:430-437. doi: 10.1038/ngeo230

Reich P.B. et al. (2012) Impacts of biodiversity loss escalate through time as redundancy fades. Science 336:589-592. doi: 10.1126/science.1217909

Rillig M.C. et al. (2019) The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366:886-890. doi: 10.1126/science.aay2832

Rolando J.L., Ramirez D.A., Yactayo W., Monneveux P., Quiroz R. (2015) Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany 110:27-35. doi: 10.1016/j.envexpbot.2014.09.006

Roscher C. et al. (2004) The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic and Applied Ecology 5:107-121. doi: 10.1078/1439-1791-00216

Roscher C., Schumacher J., Weisser W.W., Schmid B., Schulze E.D. (2007) Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154:535-549. doi: 10.1007/s00442-007-0846-4

Ruosteenoja K., Markkanen T., Venalainen A., Raisanen P., Peltola H. (2018) Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics 50:1177-1192. doi: 10.1007/s00382-017-3671-4

Sage R.F. (2020) Global change biology: A primer. Global Change Biology 26:3-30. doi: 10.1111/gcb.14893

Schnitzer S.A. et al. (2011) Soil microbes drive the classic plant diversity–productivity pattern. Ecology 92:296-303. doi: 10.1890/10-0773.1

Siebenkäs A., Schumacher J., Roscher C. (2015) Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species. AoB Plants 7:plv029. doi: 10.1093/aobpla/plv029
terHorst C.P., Zee P.C. (2016) Eco-evolutionary dynamics in plant–soil feedbacks. Functional Ecology 30:1062-1072. doi: 10.1111/1365-2435.12671

Thakur M.P. et al. (2018) Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change 8:75-78. doi: 10.1038/s41558-017-0032-6

Thakur M.P. et al. (2021) Plant–soil feedbacks and temporal dynamics of plant diversity–productivity relationships. Trends in Ecology & Evolution. doi: 10.1016/j.tree.2021.03.011

Tilman D., Reich P.B., Knops J.M. (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629-632. doi: 10.1038/nature04742

Tylianakis J.M., Didham R.K., Bascompte J., Wardle D.A. (2008) Global change and species interactions in terrestrial ecosystems. Ecology Letters 11:1351-1363. doi: 10.1111/j.1461-0248.2008.01250.x

van der Putten W.H., Bradford M.A., Pernilla Brinkman E., van de Voorde T.F., Veen G. (2016) Where, when and how plant–soil feedback matters in a changing world. Functional Ecology 30:1109-1121. doi: 10.1111/1365-2435.12657

van Moorsel S.J. et al. (2018a) Community evolution increases plant productivity at low diversity. Ecology Letters 21:128-137. doi: 10.1111/ele.12879

van Moorsel S.J., Schmid M.W., Hahl T., Zuppinger-Dingley D., Schmid B. (2018b) Selection in response to community diversity alters plant performance and functional traits. Perspectives in Plant Ecology, Evolution and Systematics 33:51-61. doi: 10.1016/j.ppees.2018.05.002

Wei W. et al. (2018) Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Science of the Total Environment 633:796-807. doi: 10.1016/j.scitotenv.2018.03.219
Weisser W.W. et al. (2017) Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology 23:1-73. doi: 10.1016/j.baae.2017.06.002

Wilschut R.A., van Kleunen M. (2021) Drought alters plant-soil feedback effects on biomass allocation but not on plant performance. Plant and Soil 462:285-296. doi: 10.1007/s11104-021-04861-9

Xi N. et al. (2021) Relationships between plant-soil feedbacks and functional traits. Journal of Ecology. doi: 10.1111/1365-2745.13731

Yang G., Roy J., Veresoglou S.D., Rillig M.C. (2021) Soil biodiversity enhances the persistence of legumes under climate change. New Phytologist 229:2945-2956. doi: 10.1111/nph.17065

Yang L., Maron J.L., Callaway R.M. (2015) Inhibitory effects of soil biota are ameliorated by high plant diversity. Oecologia 179:519-525. doi: 10.1007/s00442-015-3351-1

Zuppinger-Dingley D., Schmid B., Petermann J.S., Yadav V., De Deyn G.B., Flynn D.F. (2014) Selection for niche differentiation in plant communities increases biodiversity effects. Nature 515:108-111. doi: 10.1038/nature13869
Calculation of irrigation water quantity per pot

1) After one week of growing, pots were watered until 100% saturation and then weighted (= Weight_{wet soil}).

2) To determine the amount of water, which is needed to get 60% water saturation (control value), we used the following equations:

(I) \[
\frac{22\% \text{ (water holding capacity)} \times 60\% \text{ saturation}}{100\% \text{ saturation}} = 13.2\%
\]

(II) \[
\text{Weight}_{\text{wet soil}} - \frac{\text{Weight}_{\text{wet soil}} \times 100\% \text{ saturation}}{13.2\% + 100} = \text{Weight}_{\text{water control}}
\]

First, we multiplied the water holding capacity of the Jena Experiment soil-sand mix (22%) times 60% saturation and then divided the result by 100% saturation. Second, Weight_{wet soil} was multiplied with 100 and then divided by 113.2. Third, the calculated weight for a 60% saturation was subtracted from Weight_{wet soil} per pot and averaged over all pots, which resulted in 380 ml water.

3) Drought was simulated by 50% lower water saturation (30% saturation), while the amount of water was calculated as followed:

(I) \[
\frac{22\% \text{ (water holding capacity)} \times 30\% \text{ saturation}}{100\% \text{ saturation}} = 6.6\%
\]

(II) \[
\text{Weight}_{\text{wet soil}} - \frac{\text{Weight}_{\text{wet soil}} \times 100\% \text{ saturation}}{6.6\% + 100} = \text{Weight}_{\text{water drought}}
\]
Appendix S2

Journal: eLife

Article: Diversity-induced plant history and soil history effects modulate plant responses to global change

Authors: Peter Dietrich, Jens Schumacher, Nico Eisenhauer, Christiane Roscher

*corresponding author: peter.dietrich@idiv.de

Hypothesis 2: global change drivers have a strong impact on biomass production and trait expression.

Plant traits (separately for each species)

The grass *P. trivialis* was the only species which growth height decreased with drought, all other species showed no significant change under drought. Under nitrogen input, the species *P. trivialis*, *A. pratensis*, and *D. glomerata* (marginally significant) increased in growth height, while under the combined impact of both global change drivers, no species significantly changed in growth height (*D. glomerata* marginally significantly increased in height; Fig. S1). The species *A. elatius*, *D. glomerata*, and *A. pratensis* increased in shoot nitrogen concentration and leaf greenness under the impact of drought and/or nitrogen input (similar to analysis across all species; Fig. S1). In *P. trivialis*, drought did not affect shoot nitrogen concentration or leaf greenness, and there was no additive impact of both global change drivers on leaf greenness (leaf greenness was as high as in fertilized plants; Fig. S1).

Global change drivers had no significant influence on LDMC or SLA of *A. elatius* and *A. pratensis* except for LDMC decrease and SLA increase of *A. elatius* plants when treated with both global change drivers (Fig. S2). Plants of *D. glomerata* decreased in LDMC and increased in SLA when treated with single global change drivers, while nitrogen input had a stronger impact than drought (Fig. S2). When treated with both global change drivers, *D. glomerata* plants had still a significantly lower LDMC and higher SLA compared to control plants. In *P. trivialis*, drought had no significant influence on LDMC and SLA, while nitrogen input
decreased LDMC and increased SLA (Fig. S2). When treated with both global change drivers, LDMC and SLA were as high as in fertilized plants.

In *D. glomerata*, stomatal conductance was increased, when plants were treated with drought, and in *A. pratensis* decreased, when treated with both global change drivers (Fig. S2). Stomatal conductance in *A. elatius* and *P. trivialis* did not change with global change treatments (Fig. S2).

In *A. elatius*, SRL decreased when fertilized, irrespective of drought, while other root traits did not change significantly (Fig. S3). In *A. pratensis*, drought, nitrogen input, and both global change drivers together had similar negative impacts on SRL and RLD (except for RLD under nitrogen input, which did not change; Fig. S3). Root diameter of *A. pratensis* plants increased under single global change drivers with additive effects under the combined application (Fig. S3). In *D. glomerata*, RLD increased and in *P. trivialis* RLD decreased and root diameter increased, when treated with both global change drivers (Fig. S3).
Figures S1 Response of plants treated with drought, nitrogen input or a combination of both (D+N) relative to non-treated plants (control) for growth height, shoot nitrogen concentrations and leaf greenness across all four study species and separately for each species. Points are means and error bars are standard deviation. Stars indicate significant differences (P < 0.05) between plants treated with GC driver and control plants.
Figure S2 Response of plants treated with drought, nitrogen input or a combination of both (D+N) relative to non-treated plants (control) for LDMC, SLA and stomatal conductance across all four study species and separately for each species. Points are means and error bars are standard deviation. Stars indicate significant differences (P < 0.05) between plants treated with GC driver and control plants.
Figure S3 Response of plants treated with drought, nitrogen input or a combination of both (D+N) relative to non-treated plants (control) for root diameter, SRL and RLD across all four study species and separately for each species. Points are means and error bars are standard deviation. Stars indicate significant differences (P < 0.05) between plants treated with GC driver and control plants.
Figure S4 Response of plants treated with drought, nitrogen input or a combination of both (D+N) relative to non-treated plants (control) for mildew infestation for *D. glomerata* and *P. trivialis*. Stars indicate significant differences (P < 0.05) between plants treated with GC driver and control plants.
Tables

Table S1 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on root-shoot ratio. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Root-shoot ratio	Df	Chi²	P
Species identity (ID)	3	133.41	<0.001
Plant history	1	1.11	0.292
Soil history	1	1.08	0.300
Soil treatment	2	1.81	0.404
Drought (D)	1	60.01	<0.001
Nitrogen input (N)	1	89.83	<0.001
Species ID x Plant history	3	0.87	0.832
Species ID x Soil history	3	4.07	0.254
Species ID x Soil treatment	6	2.79	0.835
Species ID x D	3	95.53	<0.001
Species ID x N	3	9.31	0.025
D x N	1	2.19	0.139
Species ID x Plant history x D	4	2.02	0.733
Species ID x Soil history x D	4	1.58	0.812
Species ID x Soil treatment x D	8	4.97	0.760
Species ID x Plant history x N	4	2.91	0.573
Species ID x Soil history x N	4	3.18	0.528
Species ID x Soil treatment x N	8	18.18	0.020
Species ID x Plant history x D x N	4	10.42	0.034
Species ID x Soil history x D x N	4	11.14	0.025
Species ID x Soil treatment x D x N	8	5.20	0.736
Table S2 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Total biomass	Shoot biomass	Root biomass	Root-shoot ratio								
	Df	Chi	P									
Species ID												
Plant history	1	3.48	0.062	1	1.36	0.244	1	3.40	0.065	1	1.11	0.292
Soil history	1	0.01	0.915	1	0.04	0.851	1	0.49	0.484	1	1.08	0.300
Soil treatment	2	2.17	0.338	2	1.20	0.548	2	3.66	0.161	2	1.81	0.404
Drought (D)	1	83.05	<0.001	1	110.26	<0.001	1	2.81	0.094	1	60.01	<0.001
Nitrogen input (N)	1	257.26	<0.001	1	425.93	<0.001	1	15.89	<0.001	1	89.83	<0.001
D x N	1	29.23	<0.001	1	23.02	<0.001	1	8.50	0.004	1	1.75	0.185
Plant history x D	1	0.22	0.639	1	0.21	0.643	1	0.01	0.916	1	<0.01	0.977
Soil history x D	1	<0.01	0.944	1	0.07	0.786	1	0.10	0.746	1	0.23	0.635
Soil treatment x D	2	1.79	0.409	2	0.77	0.681	2	1.37	0.503	2	1.29	0.526
Plant history x N	1	1.48	0.224	1	1.59	0.207	1	0.60	0.437	1	0.35	0.553
Soil history x N	1	3.44	0.064	1	1.33	0.249	1	2.46	0.116	1	0.83	0.363
Soil treatment x N	2	1.43	0.489	2	1.40	0.496	2	0.43	0.806	2	0.49	0.782
Plant history x D x N	1	2.12	0.146	1	0.84	0.358	1	1.78	0.183	1	1.27	0.260
Soil history x D x N	1	0.95	0.330	1	2.78	0.095	1	0.08	0.780	1	0.03	0.864
Soil treatment x D x N	2	1.37	0.504	2	1.93	0.381	2	0.91	0.635	2	0.73	0.693

54
Table S3 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant trait expression. Shown are degrees of freedom (Df), Chi^2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Growth height	Shoot nitrogen conc.	Leaf greenness						
	Df	Chi^2	P	Df	Chi^2	P	Df	Chi^2	P
Species ID									
Plant history	1	0.15	0.960	1	0.05	0.830			
Soil history	1	1.60	0.425	1	0.17	0.683			
Soil treatment	2	3.98	0.321	2	0.60	0.742			
Drought (D)	1	18.71	0.001	1	65.46	<0.001			
Nitrogen input (N)	1	32.93	<0.001	1	772.20	<0.001			
Nitrogen x N									
Plant history x D	1	2.99	0.806	1	0.01	0.950			
Soil history x D	1	0.51	0.735	1	1.57	0.210			
Soil treatment x D	2	3.54	0.990	2	0.69	0.707			
Plant history x N	1	0.50	0.246	1	0.91	0.341			
Soil history x N	1	1.41	0.666	1	1.54	0.215			
Soil treatment x N	2	1.87	0.192	2	2.42	0.299			
Plant history x D x N	1	0.80	0.645	1	0.79	0.373			
Soil history x D x N	1	0.69	0.080	1	<0.01	0.077			
Soil treatment x D x N	2	4.94	0.458	2	0.04	0.983			
LDMC									
Air temperature	-	-	-	-	-	-	1	5.34	0.021
Daytime	-	-	-	-	-	-	1	38.25	<0.001
Nitrogen input (N)									
Plant history x D	1	0.04	0.559	1	0.06	0.806			
Soil history x D	1	0.49	0.883	1	0.65	0.420			
Soil treatment x D	2	0.24	0.889	2	0.18	0.914			
Plant history x N	1	0.65	0.688	1	0.69	0.406			
Soil history x N	1	0.12	0.300	1	0.63	0.428			
Soil treatment x N	2	0.66	0.232	2	0.08	0.960			
Plant history x D x N	1	0.16	0.183	1	0.87	0.351			
Soil history x D x N	1	<0.01	0.331	1	0.02	0.887			
Soil treatment x D x N	2	2.27	0.514	2	3.73	0.155			
Root diameter									
Species ID	3	165.58	<0.001	3	174.84	<0.001			
Plant history	1	0.03	0.569	1	1.14	0.286			
Soil history	1	0.37	0.546	1	0.25	0.617			
Soil treatment	2	1.50	0.246	2	4.97	0.083			
Drought (D)	1	11.19	0.006	1	16.09	<0.001			
Nitrogen input (N)	1	19.83	<0.001	1	6.68	0.010			
Nitrogen x N									
Plant history x D	1	0.25	0.261	1	2.14	0.144			
Soil history x D	1	0.37	0.559	1	0.67	0.414			
Soil treatment x D	2	1.67	0.723	2	0.44	0.802			
Plant history x N	1	0.40	0.167	1	<0.01	0.944			
Soil history x N	1	0.42	0.703	1	0.86	0.353			
Soil treatment x N	2	0.27	0.430	2	0.08	0.959			
Plant history x D x N	1	0.20	0.270	1	0.12	0.734			
Soil history x D x N	1	1.48	0.063	1	3.94	0.047			
Soil treatment x D x N	2	0.75	0.659	2	1.02	0.600			
Table S4 Summary of mixed-effect model analyses testing the effects legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of *A. elatius* and *A. pratensis*. Shown are degrees of freedom (Df), Chi2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

A. elatius

	Total biomass	Shoot biomass	Root biomass	Root-shoot ratio
	Df Chi2	P		
Plant history	1 0.26 0.609 1 0.05 0.827 1 0.10 0.747 1 0.11 0.738			
Soil history	1 0.39 0.533 1 0.03 0.865 1 1.02 0.312 1 1.28 0.258			
Soil treatment	2 2.06 0.357 2 1.59 0.452 2 1.31 0.520 2 0.30 0.861			
Drought (D)	1 21.54 <0.001 1 50.79 <0.001 1 6.13 0.013 1 67.84 <0.001			
Nitrogen input (N)	1 125.48 <0.001 1 128.72 <0.001 1 31.68 <0.001 1 13.70 <0.001			
D x N	1 36.23 <0.001 1 45.06 <0.001 1 1.86 0.173 1 0.13 0.715			
Plant history x D	1 1.01 0.315 1 2.37 0.123 1 0.05 0.823 1 1.28 0.258			
Soil history x D	1 0.27 0.606 1 2.01 0.156 1 0.71 0.399 1 2.11 0.146			
Soil treatment x D	2 1.21 0.545 2 3.22 0.200 2 0.13 0.939 2 1.21 0.545			
Plant history x N	1 0.92 0.337 1 2.00 0.157 1 0.02 0.879 1 0.46 0.497			
Soil history x N	1 0.87 0.352 1 0.05 0.832 1 1.37 0.242 1 2.29 0.130			
Soil treatment x N	2 3.07 0.215 2 0.80 0.669 2 6.25 0.044 2 5.64 0.060			
Plant history x D x N	1 0.07 0.792 1 <0.01 0.980 1 0.15 0.696 1 0.02 0.884			
Soil history x D x N	1 0.61 0.434 1 0.05 0.822 1 0.89 0.344 1 1.17 0.279			
Soil treatment x D x N	2 3.61 0.165 2 2.25 0.326 2 1.33 0.515 2 0.56 0.757			

A. pratensis

	Total biomass	Shoot biomass	Root biomass	Root-shoot ratio
	Df Chi2	P		
Plant history	1 0.57 0.452 1 0.42 0.518 1 0.43 0.512 1 <0.01 0.985			
Soil history	1 0.68 0.408 1 <0.01 0.945 1 1.47 0.225 1 0.80 0.371			
Soil treatment	2 0.34 0.845 2 0.29 0.865 2 0.23 0.892 2 0.07 0.967			
Drought (D)	1 71.43 <0.001 1 38.06 <0.001 1 60.92 <0.001 1 0.15 0.696			
Nitrogen input (N)	1 74.74 <0.001 1 162.92 <0.001 1 9.71 0.002 1 55.50 <0.001			
D x N	1 26.47 <0.001 1 3.98 0.046 1 24.94 <0.001 1 16.49 <0.001			
Plant history x D	1 0.08 0.772 1 0.51 0.477 1 0.48 0.488 1 1.07 0.301			
Soil history x D	1 0.43 0.512 1 0.37 0.546 1 0.20 0.653 1 0.01 0.912			
Soil treatment x D	2 1.17 0.557 2 0.19 0.911 2 2.12 0.346 2 3.60 0.165			
Plant history x N	1 0.40 0.529 1 1.26 0.261 1 0.02 0.875 1 0.14 0.709			
Soil history x N	1 5.45 0.202 1 1.19 0.275 1 4.53 0.033 1 1.24 0.265			
Soil treatment x N	2 2.78 0.249 2 2.50 0.287 2 1.21 0.547 2 0.13 0.938			
Plant history x D x N	1 0.55 0.458 1 0.02 0.881 1 0.59 0.442 1 0.08 0.771			
Soil history x D x N	1 0.28 0.595 1 0.30 0.585 1 0.78 0.376 1 1.44 0.230			
Soil treatment x D x N	2 0.91 0.634 2 0.05 0.975 2 1.45 0.485 2 2.41 0.300			

Chi2 and P-values (P). Significant
Table S5 Summary of mixed-effect model analyses testing the effects legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of *D. glomerata* and *P. trivialis*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.
Table S6 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant trait expressions of *A. elatius*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

A. elatius	Growth height	Shoot nitrogen conc.	Leaf greenness						
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P
Plant history	1	0.24	0.625	1	0.12	0.725	1	0.07	0.795
Soil history	1	0.61	0.436	1	0.36	0.547	1	0.67	0.413
Soil treatment	2	2.01	0.365	2	0.80	0.670	2	0.19	0.907
Drought (D)	1	2.11	0.146	1	36.64	<0.001	1	30.19	<0.001
Nitrogen input (N)	1	5.35	0.021	1	142.97	<0.001	1	153.54	<0.001
D x N	1	0.02	0.881	1	32.71	<0.001	1	0.27	0.604
Plant history x D	1	4.68	0.030	1	1.41	0.236	1	0.48	0.487
Soil history x D	1	0.01	0.904	1	0.26	0.612	1	0.06	0.813
Soil treatment x D	2	3.10	0.212	2	0.38	0.827	2	1.58	0.453
Plant history x N	1	1.15	0.284	1	1.08	0.300	1	3.76	0.053
Soil history x N	1	0.61	0.434	1	0.20	0.656	1	1.09	0.295
Soil treatment x N	2	3.03	0.220	2	0.27	0.874	2	2.37	0.305
Plant history x D x N	1	0.59	0.443	1	1.85	0.174	1	0.37	0.545
Soil history x D x N	1	0.93	0.334	1	0.03	0.854	1	0.06	0.813
Soil treatment x D x N	2	7.64	0.022	2	0.26	0.877	2	1.95	0.377

LDMC	SLA	Stomatal conductance							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Air temperature	-	-	-	-	-	1	<0.01	0.948	
Daytime	-	-	-	-	-	1	8.05	**0.005**	
Plant history x D	1	0.46	0.500	5	1.69	0.194	1	0.49	0.486
Soil history x D	1	0.36	0.549	13	0.79	0.373	1	0.05	0.830
Soil treatment x D	2	<0.01	0.998	15	1.73	0.420	2	0.73	0.693
Plant history x N	1	0.01	0.904	16	0.08	0.782	1	0.04	0.836
Soil history x N	1	0.01	0.936	17	1.69	0.193	1	0.36	0.549
Soil treatment x N	2	2.16	0.339	19	2.01	0.367	2	0.24	0.886
Plant history x D x N	1	<0.01	0.999	20	1.96	0.162	1	0.42	0.518
Soil history x D x N	1	0.10	0.752	21	0.15	0.696	1	1.48	0.224
Soil treatment x D x N	2	0.35	0.840	23	0.50	0.781	2	1.99	0.369

Root diameter	SRL	RLD							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Plant history	1	0.08	0.783	1	0.31	0.576	1	0.09	0.767
Soil history	1	0.23	0.629	1	0.22	0.639	1	0.82	0.364
Soil treatment	2	2.89	0.236	2	5.30	0.071	2	3.35	0.187
Drought (D)	1	0.32	0.572	1	5.25	**0.022**	1	0.04	0.851
Nitrogen input (N)	1	3.46	0.063	1	13.72	**<0.001**	1	0.13	0.723
D x N	1	0.01	0.932	1	1.62	0.204	1	<0.01	0.989
Plant history x D	1	0.39	0.531	1	0.11	0.740	1	0.77	0.380
Soil history x D	1	0.01	0.938	1	0.95	0.329	1	0.29	0.590
Soil treatment x D	2	2.11	0.349	2	0.51	0.775	2	0.45	0.797
Plant history x N	1	0.09	0.764	1	1.41	0.235	1	1.29	0.256
Soil history x N	1	1.35	0.246	1	0.32	0.573	1	3.53	0.060
Soil treatment x N	2	0.68	0.711	2	1.06	0.590	2	1.76	0.416
Plant history x D x N	1	1.68	0.194	1	2.73	0.099	1	3.70	0.054
Soil history x D x N	1	4.45	**0.035**	1	0.52	0.469	1	1.46	0.227
Soil treatment x D x N	2	2.00	0.369	2	2.75	0.253	2	2.26	0.324
Table S7 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant trait expressions of *A. pratensis*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

A. pratensis	Growth height	Shoot nitrogen conc.	Leaf greenness						
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P
Plant history	1	1.35	0.246	1	0.16	0.687	1	0.49	0.485
Soil history	1	0.71	0.400	1	<0.01	0.967	1	0.11	0.745
Soil treatment	2	8.50	**0.014**	2	1.38	0.501	2	0.20	0.903
Drought (D)	1	1.07	0.300	1	15.42	**<0.001**	1	16.09	**<0.001**
Nitrogen input (N)	1	10.63	**0.001**	1	246.65	**<0.001**	1	143.35	**<0.001**
D x N	1	1.40	0.236	1	17.58	**<0.001**	1	0.86	0.353
Plant history x D	1	0.16	0.692	1	<0.01	0.979	1	0.58	0.446
Soil history x D	1	0.31	0.577	1	0.52	0.471	1	3.04	0.081
Soil treatment x D	2	1.11	0.575	2	0.50	0.778	2	3.39	0.183
Plant history x N	1	0.28	0.597	1	0.17	0.681	1	<0.01	0.994
Soil history x N	1	0.01	0.919	1	0.10	0.747	1	1.10	0.293
Soil treatment x N	2	2.42	0.299	2	6.58	**0.037**	2	0.19	0.911
Plant history x D x N	1	0.18	0.672	1	0.87	0.352	1	1.06	0.304
Soil history x D x N	1	0.45	0.501	1	0.49	0.485	1	0.03	0.863
Soil treatment x D x N	2	0.85	0.654	2	2.08	0.353	2	0.32	0.854

LDMC	SLA	Stomatal conductance							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Air temperature	-	-	-	-	-	1	0.16	0.685	
Daytime	-	-	-	-	-	1	1.78	0.182	
Plant history	1	2.82	**0.093**	1	0.19	0.665	1	0.43	0.513
Soil history	1	1.80	0.180	1	0.94	0.332	1	0.41	0.520
Soil treatment	2	3.57	0.168	2	5.69	**0.058**	2	3.67	0.159
Drought (D)	1	4.02	**0.045**	1	1.29	0.255	1	6.17	**0.013**
Nitrogen input (N)	1	0.75	0.388	1	2.93	**0.087**	1	3.64	0.056
D x N	1	0.33	0.566	1	0.41	0.524	1	3.45	0.063
Plant history x D	1	0.13	0.715	1	0.27	0.604	1	0.03	0.862
Soil history x D	1	0.16	0.685	1	<0.01	0.980	1	0.64	0.423
Soil treatment x D	2	1.40	0.497	2	1.39	0.499	2	0.01	0.993
Plant history x N	1	1.03	0.311	1	1.02	0.313	1	0.58	0.447
Soil history x N	1	<0.01	0.950	1	0.78	0.377	1	0.18	0.669
Soil treatment x N	2	0.64	0.726	2	2.56	0.278	2	0.27	0.874
Plant history x D x N	1	0.80	0.372	1	1.67	0.197	1	2.57	0.109
Soil history x D x N	1	4.17	**0.041**	1	1.01	0.315	1	0.23	0.634
Soil treatment x D x N	2	0.18	0.912	2	1.09	0.581	2	15.71	**<0.001**

Root diameter	SRL	RLD							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Plant history	1	0.01	0.935	1	0.28	0.597	1	0.06	0.809
Soil history	1	0.18	0.676	1	0.01	0.934	1	0.92	0.337
Soil treatment	2	0.54	0.763	2	0.97	0.615	2	0.12	0.940
Drought (D)	1	39.31	**<0.001**	1	5.25	**0.022**	1	82.01	**<0.001**
Nitrogen input (N)	1	51.80	**<0.001**	1	5.33	**0.021**	1	0.34	0.580
D x N	1	0.09	0.767	1	5.57	**0.018**	1	4.32	**0.038**
Plant history x D	1	0.01	0.906	1	0.30	0.587	1	0.26	0.611
Soil history x D	1	0.09	0.769	1	0.01	0.910	1	0.02	0.877
Soil treatment x D	2	2.58	0.276	2	4.88	0.087	2	0.11	0.948
Plant history x N	1	0.03	0.869	1	0.19	0.660	1	0.17	0.682
Soil history x N	1	6.39	**0.011**	1	8.14	**0.004**	1	1.63	0.426
Soil treatment x N	2	1.82	0.402	2	3.27	0.195	2	1.24	0.539
Plant history x D x N	1	0.54	0.461	1	0.15	0.700	1	0.28	0.594
Soil history x D x N	1	1.82	0.178	1	1.87	0.172	1	0.27	0.605
Soil treatment x D x N	2	3.23	0.199	2	1.63	0.443	2	0.70	0.703
Table S8 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant trait expressions of *D. glomerata*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

D. glomerata	Growth height	Shoot nitrogen conc.	Leaf greenness						
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P
Plant history	1	0.05	0.831	1	0.58	0.444	1	0.22	0.640
Soil history	1	1.56	0.212	1	1.35	0.245	1	0.27	0.606
Soil treatment	2	5.25	0.073	2	0.75	0.687	2	0.55	0.760
Drought (D)	1	<0.01	0.976	1	19.10	<0.001	1	29.41	<0.001
Nitrogen input (N)	1	11.51	**0.001**	1	183.85	**<0.001**	1	172.91	**<0.001**
D x N	1	<0.01	0.949	1	3.72	0.054	1	0.08	0.781
Plant history x D	1	0.01	0.920	1	0.05	0.828	1	2.75	0.097
Soil history x D	1	0.82	0.366	1	0.08	0.774	1	0.22	0.639
Soil treatment x D	2	0.48	0.785	2	0.25	0.880	2	0.21	0.899
Plant history x N	1	0.91	0.341	1	2.96	0.086	1	0.61	0.437
Soil history x N	1	0.23	0.633	1	0.32	0.571	1	1.75	0.186
Soil treatment x N	2	0.35	0.840	2	0.29	0.866	2	4.92	0.085
Plant history x D x N	1	0.12	0.733	1	1.62	0.204	1	0.54	0.462
Soil history x D x N	1	0.71	0.400	1	5.07	**0.024**	1	<0.01	0.998
Soil treatment x D x N	2	0.06	0.969	2	2.15	0.341	2	0.33	0.846

LDMC	SLA	Stomatal conductance							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Air temperature	-	-	-	-	-	1	0.39	0.531	
Daytime	-	-	-	-	-	1	20.31	**<0.001**	
Plant history	1	0.12	0.727	1	0.80	0.371	1	5.08	**0.024**
Soil history	1	0.58	0.445	1	0.32	0.573	1	<0.01	0.944
Soil treatment	2	0.58	0.749	2	1.20	0.548	2	0.54	0.765
Drought (D)	1	0.07	0.798	1	0.54	0.461	1	9.01	**0.003**
Nitrogen input (N)	1	55.57	**<0.001**	1	57.43	**<0.001**	1	2.72	0.099
D x N	1	20.69	**<0.001**	1	6.61	**0.010**	1	6.34	**0.012**
Plant history x D	1	0.04	0.842	1	0.46	0.498	1	0.07	0.793
Soil history x D	1	0.01	0.926	1	0.09	0.762	1	<0.01	0.991
Soil treatment x D	2	1.43	0.490	2	0.09	0.958	2	0.19	0.907
Plant history x N	1	0.99	0.320	1	0.02	0.893	1	0.32	0.571
Soil history x N	1	2.48	0.115	2	2.19	0.139	1	0.69	0.406
Soil treatment x N	2	0.13	0.938	2	1.56	0.459	2	0.09	0.958
Plant history x D x N	1	2.00	0.157	1	0.09	0.768	1	0.33	0.566
Soil history x D x N	1	1.30	0.254	1	4.99	**0.026**	1	5.98	**0.014**
Soil treatment x D x N	2	3.56	0.169	2	1.09	0.579	2	1.57	0.456

Root diameter	SRL	RLD							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Plant history	1	0.60	0.438	1	0.96	0.326	1	2.61	0.107
Soil history	1	0.06	0.805	1	0.07	0.791	1	0.01	0.933
Soil treatment	2	0.07	0.967	2	0.58	0.749	2	2.44	0.296
Drought (D)	1	0.93	0.335	1	1.16	0.281	1	9.45	**0.002**
Nitrogen input (N)	1	1.22	0.270	1	0.37	0.545	1	7.05	**0.008**
D x N	1	0.80	0.370	1	1.73	0.189	1	0.08	0.773
Plant history x D	1	3.60	0.058	1	0.64	0.425	1	0.25	0.614
Soil history x D	1	1.41	0.235	1	0.62	0.430	1	0.23	0.632
Soil treatment x D	2	0.65	0.721	2	1.95	0.377	2	2.43	0.297
Plant history x N	1	0.19	0.667	1	2.05	0.152	1	0.03	0.854
Soil history x N	1	0.60	0.437	1 <0.01	0.994	1	0.21	0.646	
Soil treatment x N	2	0.85	0.653	2	0.97	0.616	2	1.76	0.414
Plant history x D x N	1	1.49	0.222	1	0.14	0.712	1	3.11	0.078
Soil history x D x N	1	0.49	0.483	1	3.54	0.060	1	1.07	0.301
Soil treatment x D x N	2	1.65	0.438	2	1.16	0.559	2	0.20	0.907
Table S9 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on plant trait expressions of *P. trivialis*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Treatment	Growth height	Shoot nitrogen conc.	Leaf greennisness						
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P
Plant history	1	0.06	0.800	1	0.00	0.997	1	0.93	0.334
Soil history	1	2.29	0.131	1	0.05	0.824	1	1.10	0.294
Soil treatment	2	1.66	0.435	2	0.51	0.776	2	1.15	0.563
Drought (D)	1	30.17	<0.001	1	5.46	0.019	1	1.42	0.233
Nitrogen treatment (N)	1	12.16	<0.001	1	297.03	<0.001	1	108.82	<0.001
D x N	1	1.72	0.190	1	17.06	<0.001	1	1.09	0.296
Plant history x D	1	0.22	0.637	1	0.11	0.736	1	3.08	0.079
Soil history x D	1	2.28	0.131	1	0.53	0.469	1	0.06	0.806
Soil treatment x D	2	3.11	0.211	2	1.03	0.598	2	0.18	0.916
Plant history x N	1	5.16	0.023	1	0.05	0.821	1	0.13	0.719
Soil history x N	1	3.49	0.062	1	0.04	0.842	1	0.36	0.549
Soil treatment x N	2	2.08	0.354	2	1.04	0.594	2	1.98	0.371
Plant history x D x N	1	0.92	0.336	1	0.03	0.865	1	0.11	0.738
Soil history x D x N	1	0.13	0.718	1	0.18	0.669	1	0.00	0.967
Soil treatment x D x N	2	2.11	0.348	2	5.57	0.062	2	1.74	0.418

LDLC	SLA	Stomatal conductance							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Air temperature	-	-	-	-	-	-	1	38.70	<0.001
Daytime	-	-	-	-	-	-	1	18.64	<0.001
Plant history	1	<0.01	0.965	1	0.62	0.431	1	0.18	0.675
Soil history	1	0.08	0.777	1	0.49	0.485	1	0.71	0.399
Soil treatment	2	1.64	0.441	2	2.12	0.346	2	3.25	0.197
Drought (D)	1	2.85	0.091	1	2.75	0.097	1	0.22	0.636
Nitrogen input (N)	1	57.72	<0.001	1	41.44	<0.001	1	0.06	0.800
D x N	1	0.39	0.534	1	0.62	0.431	1	2.87	0.090
Plant history x D	1	1.09	0.296	1	0.38	0.540	1	2.86	0.091
Soil history x D	1	2.26	0.133	1	0.45	0.502	1	0.01	0.908
Soil treatment x D	2	0.19	0.908	2	1.33	0.515	2	0.40	0.819
Plant history x N	1	3.37	0.066	1	1.56	0.212	1	0.35	0.554
Soil history x N	1	0.54	0.461	1	0.21	0.645	1	2.45	0.118
Soil treatment x N	2	1.89	0.388	2	3.10	0.213	2	1.36	0.508
Plant history x D x N	1	0.13	0.720	1	0.58	0.446	1	0.14	0.704
Soil history x D x N	1	1.15	0.283	1	1.01	0.315	1	7.44	0.006
Soil treatment x D x N	2	3.30	0.192	2	0.99	0.610	2	2.20	0.333

Root diameter	SRL	RLD							
Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	
Plant history	1	2.10	0.147	1	2.38	0.123	1	0.04	0.840
Soil history	1	0.08	0.781	1	0.30	0.581	1	1.31	0.253
Soil treatment	2	0.13	0.938	2	0.31	0.856	2	1.13	0.568
Drought (D)	1	14.18	<0.001	1	0.89	0.347	1	18.25	<0.001
Nitrogen input (N)	1	0.17	0.677	1	3.49	0.062	1	0.03	0.872
D x N	1	0.88	0.349	1	0.25	0.618	1	1.16	0.282
Plant history x D	1	0.40	0.525	1	0.27	0.602	1	0.16	0.692
Soil history x D	1	0.48	0.487	1	0.20	0.655	1	1.36	0.244
Soil treatment x D	2	5.85	0.054	2	0.50	0.777	2	0.43	0.808
Plant history x N	1	1.28	0.258	1	0.07	0.795	1	0.28	0.594
Soil history x N	1	1.21	0.271	1	0.36	0.549	1	0.65	0.418
Soil treatment x N	2	2.99	0.225	2	9.11	0.011	2	0.33	0.846
Plant history x D x N	1	0.33	0.566	1	0.05	0.821	1	0.02	0.678
Soil history x D x N	1	4.11	0.043	1	9.74	0.002	1	2.06	0.151
Soil treatment x D x N	2	0.52	0.772	2	1.40	0.495	2	1.43	0.488
Table S10 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment), global change treatments (drought, nitrogen input) and their interactions on mildew infestation of *D. glomerata* and *P. trivialis*. Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Mildew infestation	*D. glomerata*	*P. trivialis*				
	Df	Chi²	P	Df	Chi²	P
Plant history	1	0.29	0.588	1	0.01	0.939
Soil history	1	0.24	0.622	1	4.16	0.041
Soil treatment	2	0.22	0.896	2	3.36	0.187
Drought (D)	1	2.44	0.119	1	10.69	0.001
Nitrogen input (N)	1	42.75	<0.001	1	38.76	<0.001
D x N	1	1.05	0.305	1	0.98	0.321
Plant history x D	1	0.03	0.855	1	0.02	0.889
Soil history x D	1	2.25	0.134	1	0.07	0.788
Soil treatment x D	2	5.79	0.055	2	0.25	0.884
Plant history x N	1	<0.01	0.953	1	0.25	0.614
Soil history x N	1	0.21	0.643	1	0.50	0.477
Soil treatment x N	2	0.32	0.854	2	1.22	0.544
Plant history x D x N	1	3.00	0.083	1	0.09	0.770
Soil history x D x N	1	1.69	0.193	1	0.93	0.335
Soil treatment x D x N	2	7.15	0.028	2	0.62	0.734
Hypothesis 3: offspring of plants selected at different diversity and grown in different soil (high vs. low diversity, home vs. away) respond differently to global change drivers

Plant traits and pathogen infestation (across species and for each species)

Growth height did not differ depending on soil or plant history when plants were treated with global change drivers across all study species and for D. glomerata (Table S1, S4). Plants of A. elatius in home soil were smaller than plants in away-same soil (Table S2). Nitrogen input had no influence, while plants were tallest in home soil and smallest in away-different soil when treated with both global change drivers (Table S2). Plants of A. pratensis exposed to drought were taller when grown in home than in away-different soil; however, this positive home effect was also only found in control plants (marginal significant; Table S3). When fertilized, the positive home effect on growth height disappeared (Table S3). Plants of P. trivialis were taller in two- than in six-species community soil when treated with both global change drivers, but they were not different when treated separately with drought or nitrogen input (Table S5).

Leaf greenness and shoot nitrogen concentrations were not influenced by legacy treatments when exposed to drought. When fertilized, plants still did not differ in leaf greenness but had higher shoot nitrogen concentrations in six-species than in two-species soil, found across all study species and for D. glomerata (Table S1, S4). Moreover, fertilized plants had a lower shoot nitrogen concentration in home than in away-different soil, found across all species and for A. pratensis (Table S1, S3). When plants were treated with both global change drivers, the nitrogen input effect on soil history was
cancelled out by drought (across all species and for *D. glomerata*), while the impact of soil treatment did not: plants in home soil still had lower shoot nitrogen concentration than plants in away soil (across all species and for *A. pratensis*).

Plants treated with global change drivers did not differ significantly in LDMC or SLA dependent on legacy treatments, across all study species and in *A. elatius* (Table S1, S2). Drought resulted in higher LDMC of *A. pratensis* plants grown in six-species soil, and the combined application of drought and nitrogen input resulted in lower SLA in home than in away soil (Table S3). Fertilized *D. glomerata* plants had higher SLA in six- than in two-species community soil (Table S4). Plants of *P. trivialis* treated with both global change drivers had lower LDMC in two- than in six-species community soil (Table S5).

Stomatal conductance (g$_s$) did not differ significantly depending on legacy treatments when plants were treated with global change drivers across all study species and for *A. elatius* and *P. trivialis* (Table S1, S2, S5). In *A. pratensis*, fertilized plants showed a lower g$_s$ when grown in home than in away soil. This effect was cancelled out by drought, when treated with both global change drivers (Table S3). In *D. glomerata*, plants had higher g$_s$ when originated from six-species communities and treated with both global change drivers; however, this was also found in control plants (Table S4).

Across all study species, root diameter, SRL and RLD were not influenced by legacy treatments when treated with global change drivers (Table S1). In *A. elatius*, root traits also did not differ, when treated with single global change drivers, but under the combined influence of both global change drivers, plants grown in away-different soil showed the highest SRL, and plants in away-same soil had the lowest SRL (Table S2). In *A. pratensis*, plants exposed to drought had higher SRL and RLD in two- than in six-species soil. When fertilized, we did not find an effect of legacy treatment, but the combination of both global change drivers led to higher SRL and lower root diameter when plants were grown in away-same than in away-different or home soil (Table S3). In *D. glomerata*, RLD of plants exposed to drought was higher when originated from six-species than from two-species communities. This positive diversity impact disappeared when fertilized (Table S4). In *P. trivialis*,
SRL were lower in plants grown in six-species community soil, when exposed to drought. When fertilized, this difference disappeared (Table S5).

Mildew infestation of *D. glomerata* plants exposed to drought was higher in home than in away soil, while this drought effect was cancelled out by nitrogen input (Table S6). Mildew infestation of *P. trivialis* plants was not significantly influenced by plant or soil history, neither with nor without global change drivers (Table S6).

Figures

Figure S1 Shoot nitrogen concentrations (mg N g\(_{\text{shoot}}\)\(^{-1}\)) across all four species (a) grown in soil from two- or six-species communities and (b) grown in away-different (away\(_{\text{dif}}\)), away-same or home soil, and either non-treated (“Control”), treated with drought (“Drought”), with nitrogen (“N input”) or a combination of drought and nitrogen input (“D + N”). Bars show mean values (± 1 SE); stars above bars indicate significant differences (P < 0.05).
Tables

Table S1 Summary of mixed-effect model analyses testing the effects of species identity, legacy treatments (plant history, soil history, soil treatment) and their interactions on plant trait expressions, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Species ID	Control	Drought	Nitrogen	D x N								
	Chi2	P	Chi2	P	Chi2	P						
Species ID	3	36.51	<0.001	3	46.47	<0.001						
Plant history (PH)	1	1.76	0.185	1	1.08	0.299	1	0.06	0.812	1	0.75	0.387
Soil history (SH)	1	0.48	0.488	1	0.86	0.354	1	1.52	0.217	1	1.40	0.237
Soil treatment (ST)	2	3.99	0.136	2	5.49	0.064	2	2.68	0.262	2	4.37	0.113
Species ID x PH	3	4.12	0.249	3	4.53	0.210	3	2.62	0.455	3	0.17	0.982
Species ID x SH	3	3.65	0.301	3	1.16	0.762	3	1.14	0.766	3	6.66	0.084
Species ID x ST	6	8.19	0.224	6	13.52	0.035	6	6.01	0.423	6	7.18	0.305

Shoot nitrogen concentration
Control
Species ID
Plant history (PH)
Soil history (SH)
Soil treatment (ST)
Species ID x PH
Species ID x SH
Species ID x ST

Leaf greenness
Control
Species ID
Plant history (PH)
Soil history (SH)
Soil treatment (ST)
Species ID x PH
Species ID x SH
Species ID x ST

LDMC
Control
Species ID
Plant history (PH)
Soil history (SH)
Soil treatment (ST)
Species ID x PH
Species ID x SH
Species ID x ST

SLA
Control
Species ID
Plant history (PH)
Soil history (SH)
Soil treatment (ST)
Species ID x PH
Species ID x SH
Species ID x ST
Table S1 continued

Stomatal conductance

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Temperature	1	0.75	0.388	1	1.40	0.237	1	3.18	0.074	1	0.18	0.670
Daytime	1	18.95	<0.001	1	13.20	<0.001	1	5.72	<0.001	1	16.05	<0.001
Species ID	3	45.36	<0.001	3	24.61	<0.001	3	42.88	<0.001	3	21.71	<0.001
Plant history (PH)	1	0.60	0.438	1	0.01	0.910	1	0.48	0.490	1	2.95	0.086
Soil history (SH)	1	0.10	0.757	1	0.05	0.818	1	1.15	0.283	1	0.07	0.797
Soil treatment (ST)	2	0.08	0.963	2	2.67	0.263	2	4.85	0.088	2	0.20	0.905
Species ID x PH	3	4.59	0.204	3	3.18	0.365	3	4.89	0.190	3	4.89	0.190
Species ID x SH	3	2.60	0.457	3	3.53	0.217	3	3.23	0.358	3	3.36	0.340
Species ID x ST	6	8.36	0.213	6	4.47	0.614	6	3.82	0.701	6	4.76	0.575

Root diameter

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Species ID	3	97.02	<0.001	3	103.81	<0.001	3	93.37	<0.001	3	106.66	<0.001
Plant history (PH)	1	0.87	0.352	1	0.02	0.883	1	<0.01	0.951	1	0.08	0.775
Soil history (SH)	1	0.17	0.680	1	0.22	0.643	1	1.41	0.235	1	0.03	0.873
Soil treatment (ST)	2	2.42	0.298	2	0.93	0.629	2	1.28	0.528	2	0.46	0.793
Species ID x PH	3	0.79	0.852	3	0.19	0.979	3	4.53	0.291	3	3.28	0.350
Species ID x SH	3	6.10	0.107	3	3.40	0.334	3	5.40	0.145	3	0.31	0.959
Species ID x ST	6	9.36	0.155	6	2.06	0.914	6	1.41	0.965	6	13.49	0.036

SRL

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Species ID	3	125.58	<0.001	3	123.96	<0.001	3	117.21	<0.001	3	144.90	<0.001
Plant history (PH)	1	0.31	0.579	1	0.04	0.833	1	2.81	0.094	1	0.05	0.830
Soil history (SH)	1	<0.01	0.986	1	1.17	0.279	1	1.37	0.242	1	1.48	0.224
Soil treatment (ST)	2	1.46	0.483	2	0.67	0.717	2	4.01	0.135	2	0.28	0.886
Species ID x PH	3	5.15	0.161	3	2.11	0.550	3	2.89	0.379	3	2.31	0.510
Species ID x SH	3	3.89	0.274	3	6.14	0.105	3	4.30	0.334	3	1.93	0.586
Species ID x ST	6	13.23	0.040	6	2.92	0.819	6	2.90	0.821	6	14.70	0.023

RLD

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Species ID	3	99.14	<0.001	3	101.33	<0.001	3	91.27	<0.001	3	75.25	<0.001
Plant history (PH)	1	0.00	0.956	1	3.36	0.067	1	0.11	0.742	1	0.98	0.323
Soil history (SH)	1	2.93	0.087	1	0.14	0.710	1	0.67	0.413	1	0.55	0.460
Soil treatment (ST)	2	2.50	0.286	2	2.56	0.279	2	0.03	0.983	2	4.98	0.083
Species ID x PH	3	1.35	0.716	3	5.11	0.164	3	2.59	0.459	3	0.59	0.900
Species ID x SH	3	5.42	0.144	3	2.89	0.409	3	0.45	0.929	3	0.49	0.921
Species ID x ST	6	2.77	0.838	6	4.44	0.617	6	0.91	0.989	6	6.27	0.393
Table S2 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant trait expressions of *A. elatius*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

A. elatius	Control	Drought	Nitrogen	D x N								
Plant history	Df	Chi²	P									
1	0.32	0.569	1	2.94	0.087	1	1.01	0.314	1	0.13	0.719	
1	1.50	0.221	1	0.07	0.787	1	0.14	0.706	1	0.29	0.593	
2	2.67	0.263	2	10.64	**0.005**	2	1.55	0.461	2	7.58	**0.023**	

Shoot nitrogen concentration

Df	Chi²	P										
1	0.52	0.472	1	3.46	0.063	1	<0.01	0.974	1	0.06	0.802	
1	0.89	0.347	1	0.04	0.843	1	1.64	0.200	1	0.06	0.803	
2	1.40	0.497	2	1.54	0.462	2	1.99	0.369	2	2.07	0.354	

Leaf greenness

Df	Chi²	P										
1	1.19	0.275	1	0.60	0.438	1	1.13	0.288	1	0.22	0.636	
1	1.50	0.221	1	0.99	0.321	1	0.03	0.862	1	0.15	0.699	
2	5.20	0.074	2	0.44	0.801	2	3.64	0.162	2	0.84	0.656	

LDMC

Df	Chi²	P										
1	0.01	0.942	1	1.15	0.284	1	<0.01	0.987	1	1.02	0.313	
1	0.07	0.798	1	0.13	0.718	1	0.04	0.837	1	0.31	0.580	
2	0.03	0.985	2	0.34	0.844	2	2.00	0.369	2	2.44	0.295	

SLA

Df	Chi²	P										
1	0.44	0.507	1	0.61	0.435	1	0.48	0.488	1	1.63	0.202	
1	0.04	0.836	1	0.22	0.638	1	0.88	0.348	1	1.08	0.300	
2	0.59	0.744	2	0.13	0.936	2	2.74	0.254	2	3.10	0.212	

Stomatal conductance

Df	Chi²	P										
1	0.05	0.827	1	0.53	0.465	1	0.91	0.340	1	0.09	0.763	
1	6.15	**0.013**	1	3.92	**0.048**	1	0.68	0.408	1	0.37	0.544	
1	0.49	0.484	1	0.05	0.824	1	1.23	0.267	1	0.18	0.670	
1	0.83	0.361	1	0.13	0.718	1	0.92	0.336	1	<0.01	0.998	
2	0.96	0.618	2	1.69	0.429	2	2.99	0.224	2	0.33	0.846	

Root diameter

Df	Chi²	P										
1	0.24	0.627	1	<0.01	0.972	1	0.46	0.497	1	0.45	0.503	
1	1.37	0.242	1	0.53	0.467	1	2.59	0.108	1	0.10	0.754	
2	4.85	0.089	2	0.52	0.770	2	1.00	0.605	2	3.86	0.145	

SRL

Df	Chi²	P										
1	0.80	0.371	1	0.16	0.686	1	2.32	0.128	1	0.54	0.462	
1	0.06	0.807	1	0.02	0.884	1	2.66	0.103	1	0.21	0.649	
2	2.94	0.230	2	1.81	0.404	2	4.63	0.099	2	9.49	**0.009**	

RLD

Df	Chi²	P										
1	1.02	0.313	1	0.03	0.859	1	2.42	0.120	1	1.44	0.230	
1	2.51	0.113	1	1.14	0.286	1	1.03	0.310	1	0.46	0.500	
2	4.52	0.104	2	1.24	0.539	2	0.26	0.878	2	1.40	0.497	

68
Table S3 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant trait expressions of *A. pratensis*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Plant history	Soil history	Soil treatment									
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.056	2	0.038	2	0.023	2	0.26	0.879		

Shoot nitrogen concentration	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.100	2	0.419	2	0.05	2	0.83	0.03		

Leaf greenness	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.560	2	0.743	2	0.73	2	0.22	0.332		

LDMC	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.835	2	0.492	2	0.55	2	0.39	0.14		

SLA	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.331	2	0.704	2	0.55	2	0.85	0.014		

Stomatal conductance	Temperature	Daytime	Plant history	Soil history	Soil treatment						
Df	Chi2	P									
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.308	2	0.110	2	2.55	2	0.02	0.452		

Root diameter	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.602	2	0.865	2	0.53	2	6.06	0.04		

SRL	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.073	2	0.644	2	0.95	2	6.03	0.049		

RLD	Plant history	Soil history	Soil treatment								
Df	Chi2	P	Df	Chi2	P	Df	Chi2	P			
Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N	Control	Drought	Nitrogen	D x N
Soil treatment	2	0.869	2	0.303	2	0.19	2	3.02	0.221		
Table S4 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant trait expressions of *D. glomerata*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.73	0.394	1	0.11	0.741	1	0.06	0.802	1	0.01	0.912
Soil history	1	0.69	0.405	1	0.91	0.340	1	1.25	0.263	1	0.18	0.675
Soil treatment	2	1.66	0.436	2	1.06	0.589	2	2.37	0.306	2	1.09	0.581

Shoot nitrogen concentration

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	1.13	0.289	1	0.56	0.455	1	2.38	0.123	1	0.56	0.453
Soil history	1	<0.01	0.952	1	2.18	0.140	1	8.44	0.004	1	0.05	0.818
Soil treatment	2	2.72	0.257	2	2.46	0.293	2	3.07	0.215	2	0.71	0.701

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	4.93	0.026	1	0.02	0.886	1	0.17	0.680	1	0.13	0.723
Soil history	1	1.23	0.267	1	1.17	0.279	1	0.15	0.703	1	0.01	0.908
Soil treatment	2	2.33	0.313	2	3.58	0.167	2	1.16	0.560	2	0.68	0.713

LDMC

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.86	0.353	1	1.18	0.278	1	0.37	0.540	1	0.64	0.423
Soil history	1	2.03	0.154	1	0.12	0.727	1	2.21	0.137	1	0.28	0.594
Soil treatment	2	2.36	0.307	2	0.20	0.905	2	1.74	0.418	2	3.05	0.218

SLA

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	1.41	0.235	1	0.01	0.904	1	1.50	0.220	1	0.14	0.706
Soil history	1	2.29	0.130	1	0.28	0.595	1	3.86	0.050	1	0.02	0.888
Soil treatment	2	2.60	0.272	2	1.88	0.392	2	0.09	0.956	2	0.89	0.641

Stomatal conductance

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Temperature	1	1.12	0.289	1	<0.01	0.951	1	0.04	0.843	1	0.08	0.782
Daytime	1	24.06	<0.001	1	12.16	<0.001	1	4.04	0.044	1	4.37	0.037
Plant history	1	3.77	0.052	1	1.05	0.304	1	1.79	0.181	1	4.89	0.027
Soil history	1	1.44	0.231	1	1.55	0.214	1	0.47	0.493	1	2.34	0.126
Soil treatment	2	0.43	0.805	2	1.62	0.445	2	0.27	0.872	2	1.04	0.595

Root diameter

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.64	0.422	1	0.02	0.876	1	1.83	0.176	1	2.43	0.119
Soil history	1	0.33	0.567	1	2.50	0.114	1	0.34	0.559	1	0.16	0.691
Soil treatment	2	0.60	0.741	2	3.21	0.201	2	0.16	0.924	2	2.03	0.363

SRL

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	2.55	0.111	1	0.54	0.462	1	0.08	0.777	1	0.36	0.548
Soil history	1	1.73	0.188	1	1.42	0.233	1	0.32	0.570	1	0.22	0.643
Soil treatment	2	2.23	0.329	2	0.24	0.888	2	2.28	0.320	2	2.38	0.304

RLD

Soil treatment	Growth height	Nitrogen	D x N									
	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.01	0.923	1	7.58	0.096	1	0.77	0.380	1	0.03	0.862
Soil history	1	0.27	0.602	1	0.02	0.901	1	0.54	0.464	1	0.18	0.673
Soil treatment	2	0.36	0.835	2	4.51	0.105	2	0.96	0.619	2	5.25	0.073
Table S5 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant trait expressions of *P. trivialis*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi2 and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	2.61	0.094	1	0.32	0.571	1	0.98	0.323	1	0.16	0.688
Soil history	1	0.62	0.429	1	0.92	0.338	1	1.12	0.289	1	5.02	**0.025**
Soil treatment	2	4.77	0.092	2	1.59	0.452	2	2.99	0.224	2	1.14	0.566

Shoot nitrogen concentration

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	<0.01	0.986	1	0.01	0.934	1	0.07	0.785	1	0.01	0.915
Soil history	1	0.15	0.695	1	0.57	0.452	1	0.06	0.802	1	0.45	0.503
Soil treatment	2	9.66	**0.008**	2	2.33	0.313	2	1.18	0.554	2	3.86	0.145

Leaf greenness

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	0.14	0.708	1	2.41	0.120	1	0.04	0.845	1	2.35	0.126
Soil history	1	1.41	0.236	1	1.10	0.295	1	0.38	0.537	1	0.09	0.769
Soil treatment	2	0.13	0.936	2	0.37	0.833	2	5.22	0.074	2	0.97	0.616

LDMC

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	0.81	0.369	1	0.24	0.627	1	0.05	0.826	1	1.34	0.247
Soil history	1	0.08	0.776	1	0.01	0.927	1	0.47	0.492	1	4.25	**0.039**
Soil treatment	2	3.34	0.188	2	0.72	0.696	2	3.01	0.222	2	2.64	0.268

SLA

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	0.26	0.611	1	0.21	0.643	1	1.44	0.231	1	0.80	0.372
Soil history	1	0.41	0.522	1	0.40	0.528	1	1.47	0.226	1	0.33	0.565
Soil treatment	2	2.29	0.319	2	0.53	0.769	2	3.35	0.187	2	4.08	0.130

Stomatal conductance

Temperature	Daytime	Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N				
Df	Chi2	P										
Temperature	1	10.96	**0.001**	1	8.08	**0.004**	1	7.25	**0.007**	1	4.31	**0.038**
Daytime	1	3.93	**0.047**	1	1.12	0.289	1	1.22	0.270	1	6.35	**0.012**
Plant history	1	<0.01	0.949	1	0.60	0.439	1	2.96	0.085	1	0.29	0.589
Soil history	1	0.68	0.410	1	0.95	0.330	1	2.72	0.099	1	0.14	0.704
Soil treatment	2	2.46	0.293	2	0.54	0.763	2	0.95	0.622	2	1.49	0.474

Root diameter

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	0.16	0.686	1	0.07	0.794	1	0.55	0.458	1	2.91	**0.088**
Soil history	1	3.06	0.080	1	0.31	0.579	1	0.95	0.329	1	0.06	0.800
Soil treatment	2	7.48	**0.024**	2	0.28	0.870	2	0.07	0.967	2	2.00	0.369

SRL

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	2.10	0.147	1	0.94	0.332	1	1.82	0.178	1	1.04	0.308
Soil history	1	1.63	0.177	1	3.68	0.055	1	2.26	0.133	1	0.19	0.660
Soil treatment	2	5.73	0.057	2	0.56	0.755	2	1.97	0.374	2	1.83	0.401

RLD

Plant history	Soil history	Soil treatment	Control	Drought	Nitrogen	D x N						
Df	Chi2	P										
Plant history	1	0.23	0.632	1	0.01	0.904	1	0.01	0.920	1	0.54	0.463
Soil history	1	3.38	0.066	1	0.07	0.792	1	0.01	0.926	1	0.16	0.685
Soil treatment	2	0.63	0.731	2	0.61	0.739	2	0.16	0.924	2	3.25	0.197
Table S6 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on mildew infestation of *D. glomerata* and *P. trivialis*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi\(^2\) and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Mildew infestation	Control	Drought	Nitrogen	D x N								
	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P
Plant history	1	0.58	0.447	1	1.18	0.277	1	0.88	0.348	1	0.26	0.613
Soil history	1	0.41	0.522	1	2.63	0.105	1	<0.01	0.946	1	0.11	0.746
Soil treatment	2	6.01	**0.049**	2	7.65	**0.022**	2	0.93	0.628	2	0.09	0.958

P. trivialis	Control	Drought	Nitrogen	D x N								
	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P	Df	Chi\(^2\)	P
Plant history	1	<0.01	0.996	1	<0.01	0.973	1	0.03	0.860	1	0.21	0.647
Soil history	1	1.20	0.274	1	2.66	0.103	1	1.68	0.195	1	0.05	0.817
Soil treatment	2	3.94	0.139	2	1.78	0.412	2	0.16	0.921	2	2.10	0.350
Biomass production

Table S7 Summary of mixed-effect model analyses testing the effects of species identity (N = 4), legacy treatments (plant history, soil history, soil treatment) and their interactions on root-shoot ratio, when non-treated (control) or treated with global change drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Table S8 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of A. elatius, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.
The Table S9 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of *A. pratensis*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Control	Drought	Nitrogen	D x N								
Plant history	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P
Plant history	1	0.05	0.820	1	0.27	0.603	1	1.63	0.202	1	1.44	0.230
Soil history	1	0.02	0.879	1	1.05	0.306	1	2.97	0.085	1	2.07	0.151
Soil treatment	2	3.43	0.180	2	0.17	0.917	2	1.29	0.525	2	2.80	0.247

Shoot biomass	Control	Drought	Nitrogen	D x N								
Plant history	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.11	0.741	1	0.29	0.590	1	0.65	0.421	1	2.23	0.135
Soil history	1	0.14	0.710	1	0.33	0.564	1	0.86	0.354	1	<0.01	0.971
Soil treatment	2	0.15	0.927	2	1.84	0.398	2	1.03	0.596	2	1.35	0.509

Root biomass	Control	Drought	Nitrogen	D x N								
Plant history	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.13	0.719	1	0.23	0.629	1	0.97	0.324	1	0.47	0.495
Soil history	1	0.15	0.703	1	1.16	0.281	1	1.83	0.176	1	3.98	**0.046**
Soil treatment	2	2.78	0.250	2	1.38	0.501	2	0.47	0.789	2	3.16	0.206

Root-shoot ratio	Control	Drought	Nitrogen	D x N								
Plant history	Df	Chi²	P	Df	Chi²	P	Df	Chi²	P			
Plant history	1	0.13	0.719	1	0.01	0.920	1	0.30	0.584	1	0.90	0.342
Soil history	1	0.20	0.654	1	0.31	0.579	1	0.42	0.517	1	4.57	**0.033**
Soil treatment	2	1.33	0.514	2	4.94	0.084	2	0.04	0.982	2	0.37	0.832
Table S10 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of *D. glomerata*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

Total biomass

	Control	Drought	Nitrogen	D x N					
Df	**Chi²**	**P**	**Chi²**	**P**					
Plant history	1	0.56	0.456	1	3.09	0.079	1	0.13	0.715
Soil history	1	6.28	**0.012**	1	0.76	0.384	1	0.73	0.394
Soil treatment	2	1.52	0.467	2	0.94	0.626	2	1.26	0.533

Shoot biomass

	Control	Drought	Nitrogen	D x N					
Df	**Chi²**	**P**	**Chi²**	**P**					
Plant history	1	0.02	0.885	1	1.28	0.259	1	3.18	0.075
Soil history	1	8.27	**0.004**	1	0.81	0.369	1	0.33	0.567
Soil treatment	2	3.06	0.216	2	0.44	0.801	2	3.34	0.188

Root biomass

	Control	Drought	Nitrogen	D x N					
Df	**Chi²**	**P**	**Chi²**	**P**					
Plant history	1	1.40	0.236	1	2.55	0.111	1	1.98	0.160
Soil history	1	0.90	0.343	1	0.45	0.501	1	0.99	0.319
Soil treatment	2	2.49	0.288	2	2.06	0.358	2	0.02	0.992

Root-shoot ratio

	Control	Drought	Nitrogen	D x N					
Df	**Chi²**	**P**	**Chi²**	**P**					
Plant history	1	1.65	0.199	1	1.71	0.191	1	0.93	0.335
Soil history	1	<0.01	0.983	1	0.44	0.505	1	0.43	0.514
Soil treatment	2	3.14	0.208	2	2.84	0.242	2	0.20	0.906

75
Table S11 Summary of mixed-effect model analyses testing the effects of legacy treatments (plant history, soil history, soil treatment) on plant performance (total biomass, shoot biomass, root biomass and root-shoot ratio) of *P. trivialis*, when non-treated (control) or treated with GC drivers (drought, nitrogen input, drought and nitrogen input (D x N)). Shown are degrees of freedom (Df), Chi² and P-values (P). Significant effects (P < 0.05) are given in bold, marginally significant effects (P < 0.1) in italics.

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history	1	0.12	0.732	1	1.25	0.264	1	0.28	0.599	1	0.43	0.513
Soil history	1	0.12	0.731	1	0.14	0.704	1	0.07	0.796	1	0.05	0.826
Soil treatment	2	0.01	0.995	2	1.82	0.404	2	1.69	0.430	2	4.06	0.131

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history	1	0.01	0.920	1	1.91	0.167	1	0.39	0.532	1	0.01	0.943
Soil history	1	<0.01	0.973	1	0.47	0.492	1	0.46	0.499	1	0.19	0.663
Soil treatment	2	1.34	0.511	2	0.81	0.667	2	1.22	0.545	2	2.96	0.227

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history	1	0.21	0.647	1	0.66	0.417	1	1.48	0.224	1	1.45	0.229
Soil history	1	0.33	0.566	1	1.24	0.266	1	0.74	0.389	1	0.03	0.870
Soil treatment	2	1.36	0.506	2	1.10	0.577	2	1.99	0.370	2	5.03	0.081

	Control	Drought	Nitrogen	D x N								
	Df	Chi²	P									
Plant history	1	0.23	0.630	1	0.14	0.708	1	2.00	0.158	1	2.25	0.134
Soil history	1	0.23	0.630	1	3.19	0.074	1	1.57	0.211	1	0.15	0.697
Soil treatment	2	3.61	0.164	2	0.68	0.711	2	2.16	0.340	2	5.12	0.077
For each plant species (N=4)

2-species plot (N=6) 6-species plot (N=6)

Year

2002

2016 / 2017

Seeds Soil Seeds Soil

Soil treatment

Home Away-same* Away-different Home Away-same* Away-different

*Species richness of seed and soil origin were the same, but material was collected in different research plots (different plant composition)

Global change treatment

Control:

Drought:

N input:

Drought + N input:
