High Eddington accreting quasar spectra as discovery tools: current state and challenges

Swayamtrupta Panda\(^1\)* and Paola Marziani\(^2\)

\(^1\)Laboratório Nacional de Astrofísica, MCTIC, R. dos Estados Unidos, 154, Itajubá, 37504-364, Brazil.
\(^2\)Astronomical Observatory of Padova, INAF, Vicolo dell’Osservatorio, 5, Padova, 35122, Italy.

*Corresponding author. E-mail: spanda@lna.br; Contributing author: paola.marziani@inaf.it;

Abstract

Broad emitting line regions (BLR) in the active galaxies are primarily emitted by photoionization processes that are driven by the incident continuum arising from the underlying, complex geometrical structure, i.e. accretion disk and corona around a supermassive black hole. Modelling the broad-band spectral energy distribution (SED) effective in ionizing the gas-rich BLR is key to understanding the various radiative processes at play and their importance that eventually leads to the emission of emission lines from diverse physical conditions. Photoionization codes are a useful tool to investigate the two aspects - the importance of the shape of the SED, and the physical conditions in the BLR. In this work, we provide the first results focusing on a long-standing issue pertaining to the anisotropic continuum radiation from the very centres (few 10-100 gravitational radii) of these active galaxies. The anisotropic emission is a direct consequence of the development of a geometrically and optically thick structure at regions very close to the black hole due to a marked increase in the accretion rates. Incorporating the radiation emerging from such a structure in our photoionization modelling, we are successful in replicating the observed emission line intensities, in addition to the remarkable agreement on the location of the BLR with current reverberation mapping estimates. This study took advantage of the look at the diversity of the Type-1 active galactic nuclei (AGNs) provided by the main sequence of quasars. The main sequence permitted to locate the super Eddington
sources in an observational parameter space and to constrain the distinctive physical conditions of their line-emitting BLR. This feat will eventually allow us to use the fascinating super Eddington quasars as probes to understand better the cosmological state of our Universe.

Keywords: galaxies: active, quasars: emission lines; quasars: supermassive black holes; quasars: accretion, accretion disks; quasars: reverberation mapping; cosmology

1 Active galactic nuclei - a brief introduction

Active galactic nuclei (AGNs) are among the brightest cosmic objects known to us \[1, 2\]. They harbor a supermassive black hole (SMBH) at their very centers which due to its immense gravitational potential allows for the infalling of matter. This in-falling matter loses angular momentum while being accreted onto the black hole. This accreted matter manifests in the form of a multi-color accretion disk which gets heated up and radiates \[3–6\]. The photon energy of the dissipated radiation spans a wide range in energies (from sub-eV to 100s of eVs) which then illuminates the material surrounding the accretion disk. This then leads to the formation and emission of strong, broad emission lines \[7–11\].

AGNs show variations in their continuum and emission line intensities that can range in the order of minutes/days for the continuum to days/weeks/months timescales for the BLR region. This crucial feature led to the estimation of black hole masses of hundreds of nearby AGNs and relatively distant quasars\(^1\) using the technique of reverberation mapping \[12–15\]. The estimation of black hole masses is perhaps the most sought-after analysis when it comes to AGN studies \[16, 17\]. With the knowledge of the location of the line emitting region from the central SMBH\(^2\), coupled with the information of the velocity profiles from single/multi-epoch spectroscopy \[18–20\] and with a basic knowledge of the geometry of the emitting region \[21, 22\], we are well poised to derive the black hole masses using the virial relation. There are various other ways to estimate the black hole masses discussed in the literature \[23, 24\].

1.1 Spectral Energy Distribution (SED) of AGNs

AGN are observed over the entire range of the electromagnetic spectrum from radio regime up to MeV-GeV-TeV energy emitting gamma-rays \[25–27\]. Different components of the spectral energy distribution (SED) arise due to different radiation mechanisms and at different distances, notably among them: (1) The X-ray emission is produced when the UV photons from the disk undergo inverse

\(^1\)quasars, or QSOs, are brighter AGNs discovered at larger redshifts

\(^2\)In actuality, the difference in the light travel time is estimated by making a cross correlation between the continuum light directly reaching us and the light that bounces of first at the BLR region and then comes to us. The continuum light is produced very close to the SMBH - at the accretion disk [see e.g., 3, 5].
Compton scattering by hot electrons in a corona close to the SMBH [e.g., 28] which manifests in the form of a coronal power-law; and (2) The characteristic ‘Big Blue Bump’ [4, 5] that is formed by the optical and ultraviolet radiation produced due to thermal emission from the accretion disk. In addition to these two components of the broad-band SED of an AGN, the observed AGN spectra usually contain (3) another spectral component, observationally described as a “soft X-ray excess” [e.g., 29]. This component helps bridge the absorption gap between the UV downturn and the soft X-ray upturn [e.g., 25, 30, 31], and changes the far-UV and soft X-ray parts of the spectrum. Thus, it can affect the line production in the BLR. The “intrinsic” AGN continuum at photon energies high enough to ionize Hydrogen is therefore made of the thermal emission from the accretion disk, the coronal power-law, and soft X-ray excess [32–35].

Intrinsic to the AGN is also (4) synchrotron radiation from relativistic jets that accounts for most of the radio emission in the AGN. In the NIR domain, as the low energy tail of the AD emission fades, extrinsic emission is (4) reprocessed emission from the dusty torus which surrounds the accretion disk becomes the dominant emission, along with the polar dust in the direction of SMBH spin axis [11, 36]. In the FIR, the SED might be dominated by dust heated by host galaxy star formation, more than by the AGN itself [37]. This is occurring in systems with high accretion rate [38].

1.2 What an AGN multi-frequency spectrum can reveal to us?

Going back to the AGN spectrum, and looking at it from an observer’s point of view, we can largely quantify the spectrum into two primary components: (1) the emission lines originating from the BLR/NLR clouds; and (2) the AGN continuum, prominent beyond the Lyman limit, that can photoionize the surrounding gas leading to line emission. The ionizing photon flux can be estimated by a careful analysis of the AGN SED, which then gives us a rough idea of the expected line fluxes for the multitude of ionic species (in their various ionization states) that we see in an AGN spectrum. A careful assessment of the density of these ionized clouds and their locations, in addition to the incident photon flux received by them, allows us to estimate the strengths of these lines. Important information about density, ionization conditions, and dynamics in the broad line emitting region of AGN can be inferred from UV spectroscopic observations which are crucial to understanding these line-emitting regions. Past studies have illustrated the use of certain line diagnostic ratios from observed spectra of quasars in order to estimate these (density, ionization condition and metallicity) parameters [39–42, and references therein]. Hence, the combined information obtained from the spectrum can provide us insight on the dynamics (velocity profiles and FWHMs), energetics (emission line intensities) and composition of the immediate surroundings around the SMBH.
1.3 Dichotomy in ionization in emission lines

Historically, the BLR clouds were modelled as single clouds where the different lines arise from different parts of the same cloud - a picture that is still widely accepted. In the mid-1980s, propositions were made to explain the BLR as two distinct components [43, 44]. The broad emission spectrum in AGNs can be divided into two parts: the first set of lines that include Lyα, C iii, C iv, He i, He ii, and N v emitted by a highly ionized region that has a relatively low density (≲10^{10} \text{ cm}^{-3}). These are known as High Ionization Lines (HILs). The upper limit to the density of the media emitting these HILs is set by the semi-forbidden CIII] in order not to be collisionally de-excited. The second set of lines include the bulk of the Balmer lines, Mg ii, Fe ii, O i and Ca ii, emitted by a mildly ionized medium having a much higher density (≳10^{10} \text{ cm}^{-3}). The real scenario is more convoluted and the search for a global unified picture is still ongoing. Although, this representation - dichotomy into LILs and HILs of the line emission, originating from the vicinity of the SMBH due to the inherent radiation of the accretion disk, has been instrumental to identify a low-ionization virialized component and the contribution of a high ionization wind [45, 46].

2 Imminent challenges and opportunities

A better understanding of the inner workings of AGN can pave the road to far reaching applications. One of them is the standardization of quasars (or QSOs) for measuring the cosmological parameters. Two methods that involve quasar intrinsic properties resort to the radius-luminosity scaling laws (Section 2.1), and to a law analogous to that of Faber-Jackson, connecting velocity dispersion and luminosity (Section 3.1). Both methods face challenges.

2.1 Scatter in the R-L relation, standardizing QSOs for cosmological studies:

An important aspect of the reverberation mapping studies comes from the empirical relation - the power-law radius -luminosity relation, R_{BLR} \propto L_{5100}^{\alpha} between the BLR radius (or time delay) and the AGN monochromatic luminosity\(^3\). [18] found a best-fit for a sample of 41 AGNs covering four orders of magnitude in luminosity with a power-law slope value, \(\alpha=0.533^{+0.035}_{-0.033}\), very close to the adopted theoretical value [10, 48, 49]. This function is shown using a dashed line in Figure 1. One can then combine the R_{BLR}-L_{5100} relation with the line widths for the broad emission lines estimated from single/multi-epoch spectroscopy to estimate the black hole masses which makes it especially useful for large statistical surveys of sources throughout cosmic history [16, 17].

Looking at the bigger picture, the R_{BLR}-L_{5100} relation, can allow us to infer the luminosity distances:

\(^3\)here, the relation assumes the BLR radius for the H\textbeta and the nearest continuum luminosity at 5100Å
Fig. 1 BLR radius (of Hβ emitting region) versus the AGN monochromatic luminosity at 5100Å. The sources are colored with respect to their Eddington ratios \(\frac{L_{\text{bol}}}{L_{\text{Edd}}} \). The dashed line shows the classical relation from [18]. The linear best-fit relation (black solid line) for the sources has the form: \(\log R_{\text{H}\beta} = 0.387 \times \log L_{5100} - 15.702 \), with a Spearman’s correlation coefficient \(\rho = 0.733 \) and \(p \)-value \(2.733 \times 10^{-21} \). The shaded region in light blue marks the 99% confidence interval about the linear best-fit relation. The shaded ellipse highlights the sources with relatively high Eddington ratio values that also deviate away from the classical relation, i.e., towards shorter BLR radii. Data are from [47].

\[
D_L = \sqrt{\frac{L_{5100}}{4\pi F}}
\]

(1)

where, the \(L_{5100} \) is the AGN monochromatic luminosity that can be estimated using the \(R_{\text{BLR}}-L_{5100} \) relation, and the flux \(F \) can be independently estimated from the observed AGN spectrum for a given source. This way we can avoid the circularity and can have a robust estimate of the luminosity distance \(D_L \). Thereafter, we can construct the Hubble diagram with the luminosity distances and the corresponding redshifts for each source. Hence, reverberation-mapped AGNs can be used as cosmological candles [50–54]. This further allows us to study the evolution of the cosmological parameters as a function of the redshift allowing for the reconciliation of the Hubble-tension - the disparity between the measured value of the Hubble constant in the local and the early Universe (see Figure 2).

Recent observations have led to populate the \(R_{\text{BLR}}-L_{5100} \) observational space and taken the total count over 100, especially the sources monitored under the SEAMBH project (Super-Eddington Accreting Massive Black Holes, [19, 55–59]), and from the SDSS-RM campaigns [60, 61]. But this has introduced us to a new challenge - the inherent dispersion in the \(R_{\text{BLR}}-L_{5100} \) relation after the introduction of these new sources. Figure 1 is an abridged version...
Fig. 2 This graphic lists the variety of techniques that have been used to measure the expansion rate of the universe, known as the Hubble constant (H\(_0\)). One set of observations looked at the very early universe (or the early route, shown in the bottom half of the graphic) and the second set of observation strategies analyzed the universe’s expansion in the local universe (or the late route, shown in the upper half of the graphic). The letters corresponding to each technique are plotted on the bridge on the right. The location of each dot on the bridge road represents the measured value of the H\(_0\), while the length of the associated bar shows the estimated amount of uncertainty in the measurements. The combined average from the seven methods from the late route yield a H\(_0\) value of 73 km s\(^{-1}\) Mpc\(^{-1}\). This number is at odds with the combined value of the techniques used to calculate the universe’s expansion rate from the early route. Their combined value for the H\(_0\) is 67.4 km s\(^{-1}\) Mpc\(^{-1}\).

Abridged version. Original graphic credit: NASA, ESA, and A. James (STScI).

from [47, 62] where the R\(_{\text{BLR-L}5100}\) observational space for 117 reverberation mapped AGNs is shown. The sources are colored with respect to their Eddington ratios (L\(_{\text{bol}}\)/L\(_{\text{Edd}}\)). The best-fit relation for this sample is, log R\(_{H\beta}\) = 0.387×(log L\(_{5100}\)) - 15.702, with a Spearman’s correlation coefficient (\(\rho\)) = 0.733 and p-value = 2.733×10\(^{-21}\), thus making the overall slope of the relation much shallower than obtained from the previous studies by [18] and bringing the validity of the empirical R\(_{\text{BLR-L}5100}\) relation into question. But interestingly, the sources that eventually led to the increase in the scatter in the relation, show an interesting trend with Eddington ratio - larger the dispersion of a source from the empirical R\(_{\text{BLR-L}5100}\) relation, higher is its Eddington ratio! In [47], we found that this dispersion can be accounted for in the standard R\(_{\text{BLR-L}5100}\) relation with an added dependence on the Eddington ratio (L\(_{\text{bol}}\)/L\(_{\text{Edd}}\)). [63] exploited this further in their work and realized that with an
additional correction term, the relation can be reverted back to the original relation with a slope \(\sim 0.5 \). This additional correction term is an observational parameter - the relative strength between the optical Fe\(\text{II} \) emission and the corresponding H\(\beta \) emission (or R\(\text{FeII} \)), which has been shown in earlier studies to be reliable observational proxy for the Eddington ratio [34, 63–67] which we touched upon in earlier sections. The form of the relation as shown in [63], takes the form:

\[
\log \left(\frac{R_{\text{BLR}}}{1 \text{ light-day}} \right) = \kappa + \alpha \log \left(\frac{L_{5100}}{10^{44}} \right) + \gamma R_{\text{FeII}}
\]

where, \(\kappa = 1.65 \pm 0.06 \), \(\alpha = 0.45 \pm 0.03 \), and \(\gamma = -0.35 \pm 0.08 \). Clearly, the introduction of the R\(\text{FeII} \) term and for sources with strong Fe\(\text{II} \) emission, is able to account for their shorter time-lags and hence, smaller R\(\text{BLR} \) sizes.

2.2 Quasar Main Sequence, division of Type-1 AGNs into Population A and Population B

2.2.1 Narrow-line Seyfert 1s - a special class of AGNs?

Narrow Line Seyfert Type-1 galaxies (or NLS1s)\(^4\) are a special class of Type-1 AGNs that are characterized with “narrower” broad emission lines - especially having FWHM(H\(\beta \text{broad} \)) \(\leq 2,000 \text{ km s}^{-1} \), and the ratio of [OIII]\(\lambda 5007 \) to the H\(\beta \) less than 3 [71, 72]. In addition to these, the NLS1s exhibit strong Fe\(\text{II} \) emission and the relative strength of the optical Fe\(\text{II} \) (within 4434-4684 \(\AA \)) to the H\(\beta \), or R\(\text{FeII} \), \(\gtrsim 1 \) [34, 64, 66]. NLS1s have been used to analyze the Fe\(\text{II} \) emission since the late 1970s (Phillips 1978) and has been regarded among the most noticeable cooling agents of the BLR, emitting about \(\sim 25\% \) of the total energy in the BLR [48]. The Fe\(\text{II} \) is a strong contaminant owing to a large number of emission lines and without proper modelling and subtraction, it may lead to a wrong description of the physical conditions in the BLR [73–77]. More prominently, the parameter R\(\text{FeII} \) is central to the Eigenvector 1 schema which consists of the dominant variable in the principal component analysis presented by [78]. This is now well understood to be associated with important parameters of the accretion process in the AGNs [34, 63–67]. We will return to this issue in the next section.

NLS1s also show stronger blueshifts (blueward asymmetries) especially in the HILs [e.g., 64, 79, 80] and tend to be more variable than their “broader” counterparts in the X-ray regime [81–83], although the scales of their variability is not as pronounced in the optical and infrared regime [84, 85]. NLS1s, typically host black holes with lower masses (\(\lesssim 10^7 \text{ M}_\odot \)), tend to be less luminous and have low radio jet power - which has led many authors [86, 87] to link them to an evolutionary scheme of BHs. These authors have suggested that

\(^4\)Type 1/Type 2 classification is based on the observation of the broad emission line features in an AGN spectrum. According to unified model [11, 68–70], the presence of the dusty, obscuring torus impedes/allows the direct view to the central engine of the SMBH and the BLR region - that is located closer to the SMBH. This then manifests in the AGN spectrum - where the broad emission lines originating from the BLR are either seen (Type-1) or not (Type-2).
the NLS1s are the younger versions of more evolved, more massive SMBHs that are constitute the bulk of the population of AGNs. This is a summary of the conventional view of NLSy1s. A more exhaustive view is reached by the contextualization offered by the Eigenvector 1 Main Sequence.

2.2.2 The Eigenvector 1 / Main Sequence

The study of [78] brought together the spectral diversity of Type-1 AGNs under a single framework. Their paper is fundamental for two reasons: (A) It provides one of the first template for fitting the FeII pseudo-continuum. The FeII emission manifests itself as a pseudo-continuum owing to the many, blended multiplets over a wide wavelength range, extracted from the spectrum of a prototypical Narrow Line Seyfert Type-1 (NLS1) source, I ZW 1; and more importantly, (B) for introducing the Quasar Main Sequence to unify the diverse group of AGNs. They used principal component analysis - a conventional dimensionality reduction technique on observed properties of a sample of optically bright quasars to obtain this main sequence, specifically the optical plane which showed the connection between the FWHM of the broad H\textbeta and the strength of the FeII blend between 4434-4684 Å to the H\textbeta (or R\textsubscript{FeII}). We now are familiar that this optical plane of the main sequence of quasars is primarily driven by the Eddington ratio [e.g., 64–66] among other physical properties of the BH and the BLR [6, 34, 62, 88].

In addition, a classification based on the narrowness or broadness of the H\textbeta emission line profile in an AGN spectrum was introduced, i.e., into Population A and Population B classes. Population A sources contain local NLS1s as well as more massive high accretors which are mostly classified as radio-quiet [e.g., 89] and that have FWHM(H\textbeta) ≤ 4000 km s-1. While Population B sources are those with broader H\textbeta (≥ 4000 km s-1), and are predominantly “jetted” sources [e.g., 36]. The cut off in the FWHM of H\textbeta at 4000 km s-1 was suggested by [64, 66] who found that AGN properties appear to change more significantly at this broader line-width cutoff. The usefulness of a fixed FWHM limit – let it 2000 km s-1 or 4000 km s-1 is questionable, as the FWHM is dependent on \(M_{\text{BH}} \) (or luminosity), viewing angle, and Eddington ratio [66]. It makes sense if the limit is applied to samples in a narrow range of luminosity or \(M_{\text{BH}} \).

Reiterating the question posed by a few years ago [90]:

Are population A and B simply two extreme ends of the main sequence or do they represent two distinct quasar populations? Or are they tied via a smooth transition in the accretion mode?

This question is very relevant to our quest to use quasars as standard, or standardizable candles, since the shape of the emission line profiles and continuum strength is directly connected to the central engine, especially to the black hole mass, and, the accretion rate, in addition to the black hole spin and the angle at which the central engine is viewed by a distant observer [34, 66, 77, 91, 92].
2.3 Coming back to the AGN SED problem

Another equally important aspect in this regard is the ionizing continuum produced by the central engine. This is primary radiation that is incident on the BLR and as a result, and is ultimately responsible for line emission. The study and analysis of the spectral energy distribution (SED) is a key element in understanding how the BLR responds to the continuum - hence essential to our understanding how these ionized media respond to the continuum and its temporal variations which is key to the reverberation mapping technique. Through the study and modelling of the emission lines originating from these dense, ionized media can help us answer how much of this incoming radiation is intercepted by the BLR and how much of this intercepted radiation leads to the line-formation and emission [77, 93–97]. The characterization of the ionizing SED, the part of it that comes from regions closer than the BLR, is important for our study of the emission lines\(^5\). From the photoionization point of view, this fraction of the broad-band SED is closely related to the number of ionizing photons that eventually lead to the line production that has led to many authors to estimate the photoionization radius of the line-emitting region of the BLR [40, 77, 97–99].

We tested the variation in the low-ionization emitting regions of the BLR, by accounting for the changes in the shape of the ionizing continuum (the SED) and the location of the H\(\beta\)-emitting BLR from the central ionizing source (or R\(_{\text{BLR}}\)) from the reverberation mapping, in the context of Main Sequence of Quasars [97]. In this and previous work [77], we have found that in order to estimate the correct physical conditions for these low-ionization line emitting regions in the BLR, it is not sufficient to only retrieve the flux ratios (e.g., R\(_{\text{FeII}}\)) but to also have agreement with the corresponding modelled and observed line strengths (or line equivalent widths, EWs). Compared to the results that are directly obtained from the photoionization theory, these new results highlight the shift in the overall location of the line-emitting R\(_{\text{BLR}}\) - in terms of the ionization parameter (\(U\)) and the local cloud density (\(n_{\text{H}}\)) recovered from the analyses towards lower values (by up to 2 dex) compared to the R\(_{\text{BLR}}\) values estimated from the photoionization theory. This brings the modelled location in agreement to the reverberation mapping results, especially for the high-accreting NLS1s which show shorter time-lags/smaller emitting regions. A corollary result that is obtained is that to retrieve such physical conditions, the BLR should “see” a different, filtered SED with only a very small fraction (~1-10%) of the total ionizing photon flux. This analysis was performed on selective sources where their broad-band SEDs were readily available, and had archival spectroscopic measurements. In addition, we had assumed source-specific metallicities that were derived using the UV diagnostic lines from earlier studies [see e.g., 100]. There is a need to extend this analysis to larger number of reverberation mapped sources. We therefore need synchronous multi-wavelength observations to build robust SEDs that can be

\(^5\)especially that carry photon energy at or above 1 Rydberg. This threshold marks the minimum energy required to ionize neutral hydrogen.
used to confirm this scenario. Also, there is a need to bring together a global picture where a combined analysis of the UV and optical emitting regions can be put together - this would allow us to gauge the salient differences in the low- and high-ionization line emitting regions.

![Fig. 3](image)

Fig. 3 Schematic view of the inner sub-parsec region around the SMBH for a high accreting AGN. Abridged version from [101]; not drawn to scale.

3 Possible avenues

NLS1s with high accretion rates are typically shown to have a soft-X-ray excess [29] in their broadband SED [33, 35, 102, 103]. The interstellar medium blocks our view of this spectral region, thus requiring the use of indirect (modelling) methods to predict the emission from this part of the radiation field [33, and references therein]. This component helps to bridge the absorption gap between the UV downturn and the soft-X-ray upturn [25, 30, 31] and changes the far-UV and soft-X-ray part of the spectrum, affecting the Fe II line production [88].

Wang et al. [101] derived the analytical solutions (steady-state) for the structure of “slim” accretion discs from sub-Eddington accretion rates to extremely high, super-Eddington rates. They notice the appearance of a funnel-like structure very close - few gravitational radii from the SMBH, and attribute this change in the accretion disk structure to the high accretion rates that are realized from the solutions of the slim accretion disks wherein the structure of the geometrically thin, optically thick accretion disk as per the [3] prescription does not hold [101, 104, 105]. We show an illustration of this scenario in the right panel of Figure 3. Such modifications to the disk structure strongly affect the overall anisotropic emission of ionizing photons from the disk in addition to just inclination effects - that arises due to the axisymmetric nature of these
systems. Therefore, with a rise in the accretion rates a viewing-angle dependent anisotropy needs to be accounted for in the modelling, one which then leads to the shrinking in the position of the line emitting BLR and brings the modelled location in agreement to the observed estimates from the reverberation mapping campaigns [see 77, for more details].

![Figure 4](image_url)
Fig. 4 Spectral energy distributions (SEDs) obtained for slim accretion disks for a representative black hole mass, $M_{BH} = 10^8 M_\odot$. LEFT: SEDs are shown for a range of viewing angle cases for a representative dimensionless accretion rate, $\dot{\mathcal{M}} = 100$. RIGHT: SEDs are shown for a range of $\dot{\mathcal{M}}$ for a representative viewing angle, $i = 40^\circ$. In both panels, the vertical dash-dotted line marks the 1 Rydberg threshold.

i	ratio (%)
10°	100.00
30°	87.91
40°	77.92
50°	26.11
60°	7.95
70°	1.91
75°	0.78
80°	0.23

The left panel in Figure 4 shows the slim-disk SEDs (Jian-Min Wang, priv. comm.) for a representative BH mass of $10^8 M_\odot$, accreting at $\dot{\mathcal{M}} = 100$ for a range of viewing angles6. The right panel shows the distribution of slim-disk SEDs as a function of $\dot{\mathcal{M}}$ for a representative BH mass of $10^8 M_\odot$ observed at a viewing angle ($i = 40^\circ$). We also report the relative area under the SEDs

6this is the dimensionless accretion rate introduced by [55]. In [97] we provide a analytical form to convert $\dot{\mathcal{M}}$ to Eddington ratio (L_{bol}/L_{Edd}, see equation 13 in their paper). This relation additionally depends on the BH mass and the bolometric correction. For a BH mass of $10^8 M_\odot$ with $\dot{\mathcal{M}} = 100$, for a $L_{5100} = 10^{45} \text{ erg s}^{-1}$, the Eddington ratio is ~ 0.1
High Eddington AGNs: current state and challenges

Table 2 Relative area (in %) under the slim disk SEDs shown in the right panel of Figure 4 (wrt the case with $\dot{M} = 1000$)

\dot{M}	ratio (%)	$\dot{M}_i / \dot{M}_{i-1}$
1	0.44	...
10	5.71	12.98
50	32.40	5.67
100	51.49	1.59
500	89.48	1.74
1000	100.00	1.12

shown in Figure 4. These values are tabulated in Tables 1 and 2 corresponding to the left and right panels of Figure 4, respectively. We estimate the area under the SEDs accounting only for the fluxes corresponding to a frequency ≥ 1 Rydberg. We then compute the relative area (a) with respect to the SED case with the viewing angle, $i = 10^\circ$ (Table 1 and left panel of Figure 4); and (b) with respect to the SED case with the dimensionless accretion rate, $\dot{M} = 1000$ (Table 2 and right panel of Figure 4). From the left panel of Figure 4, we can notice that going from the SED viewed at $i = 10^\circ$ to 80°, keeping the BH mass and accretion rate constant, the extended region receives only a very small fraction of the actual photon flux (only 0.23%), meaning almost all of the ionizing photons (99.77%) never make it to the BLR. This ~ 2 dex reduction in the photon flux results in an equal reduction in the ionization parameter (U) which was confirmed already in Panda (2021). On the other hand, changing the accretion rate, going from $\dot{M} = 1$ to 1000 and keeping the BH mass and viewing angle constant (right panel of Figure 4), we find that an accretion rate $\dot{M} = 1$ relates to only a 0.44% of the total photon flux.

This, indirectly confirms the results previous works have been pointing to, that, the main sequence of the quasars is driven by the Eddington ratio and the orientation [34, 65, 66, 106]. The shape of the SED thus plays an important role in explaining the trends in the quasar main sequence wherein the information of the fundamental BH parameters - BH mass, Eddington ratio, orientation and the BH spin, are embedded [see 62, for more details]. In a subsequent work, we will incorporate these slim disk SEDs into our photoionization modelling setup and recover the trends for the low- and high-ionization emission lines, their relative strengths (e.g., R_{FeII}) and the EWs, with respect to these fundamental BH parameters.

3.1 An avenue for cosmological studies?

The application of quasars radiating at or above the Eddington limit has been proposed since several years although the method not yet been exploited to its full potential [38, 107, and references therein]. The method is conceptually simple: the accretion luminosity of a quasar is proportional to the line width to the 4th power i.e., $L \propto \text{FWHM}^4$.\(^8\) The value of the exponent comes from the

\(^7\) Rydberg $\approx 3.29 \times 10^{15}$ Hz

\(^8\) The equation is equivalent to the original formulation of the Faber-Jackson law [108], and is equivalent to other relations linking virialized systems to the amount of radiation emitted.
virial relation for the black hole mass, the assumptions of constant Eddington ratio ($L/M_{\text{BH}} \approx \text{const.}$), and of radius scaling rigorously with luminosity as $r \propto L^{0.5}$. The last assumption is likely to be verified for sources radiating close to the Eddington limit: they are identified by spectral similarity ($R_{\text{FeII}}>1$), and so the physical properties of the emitting regions need to be similar.

More in detail, the equation connecting luminosity and line width can be written as:

$$L = \frac{\mathcal{L}_*}{4} \left(\frac{L}{L_{\text{Edd}}} \right)^2 \frac{\kappa_{i,0.5}}{h\nu_{i,100eV}} \frac{1}{(n_HU)_{10^9 \text{ cm}^{-3}}} \left[\frac{1}{3} \left(\frac{\delta v_{\text{iso}}}{\delta v_K} \right)^2 + \sin^2 \theta \right] \text{erg s}^{-1} (3)$$

where $\mathcal{L}_* = 7.88 \cdot 10^{44}\text{erg s}^{-1}$, the energy value has been normalized to 100 eV ($\nu_{i,100eV} \approx 2.42 \cdot 10^{16} \text{ Hz}$), $\kappa_{i,0.5}$ is the fraction of bolometric luminosity belonging to the ionizing continuum scaled to 0.5, the product density times ionization parameters (n_HU) has been scaled to the typical value $10^{9.6} \text{ cm}^{-3}$ [39, 109, 110], and the FWHM of the $\text{H}\beta$ broad component is expressed in units of 1000 km s$^{-1}$. Here the effect of orientation can be quantified by assuming that the line broadening is due to an isotropic component + a flattened component whose velocity field projection along the line of sight is $\propto 1/\sin \theta$:

$$\delta v_{\text{obs}}^2 = \frac{\text{FWHM}^2}{4} = \frac{\delta v_{\text{iso}}^2}{3} + \delta v_K^2 \sin^2 \theta. \quad (4)$$

Deviations between the virial estimates and luminosity estimated from redshift and assumed concordance cosmology can be fully explained by the effect of orientation [111]. The distributions of the viewing angles from the Negrete et al. sample based on $\text{H}\beta$ at low z peaks at about 17 degrees, with only a very small fraction of quasars observed at $\theta \gtrsim 30$. This means that the effect of anisotropy on the computation of the luminosity should introduce a small dispersion. Table 2 shows that the fraction of ionizing photons at very high accretion rate tends to saturate, with only a 10% increasing from the doubling of the accretion rate, from $\dot{M} = 500$ to 1000. At such \dot{M} the Eddington ratio should converge toward a limiting value of $\mathcal{O}(1)$. The product (n_HU) is also little affected by changes in SED in the cases shown in Fig. 5. Therefore even if anisotropy effects in line widths are strong, anisotropy in continuum emission and differences in SEDs might not be so strong as to compromise an application to cosmology of Eq. 3 that is – we stress it – generally valid for all AGNs but in practice exploitable for high accretors only.

4 Concluding remarks

There will be an immense potential of the ideas and results presented in this work in the near future, serving as test-beds for the vast number of AGNs that will be explored with the ongoing and upcoming ground-based 10-metre-class
High Eddington AGNs: current state and challenges

Fig. 5 SEDs appropriate for high accretors. Upper left panel: comparison between SEDs of Marziani & Sulentic [89], Ferland et al. [35], high and highest Eddington ratio SEDs. The Mathews & Ferland [112] is also shown for comparison. Upper right panel: composite spectrum for xA from Marziani et al. [113], with the Wang et al. SED superimposed for $\dot{M} = 500$. The inset shows the same spectrum as a function of wavelength. Bottom left panel: simplified model for the "high" SED of Ferland et al. using the $\dot{M} = 500$ SED and an X-ray emitting corona (power law with exponential breaks). Bottom right: same, with an additional component (blue dashed) to improve the fit accuracy. Note that the high-energy turnover at $\log \nu \sim 20$ [Hz] is actually poorly known, and in the most extreme case the hard X-ray SED may show no flattening and no break ("highest" case (magenta line) in the upper left panel).

[e.g. Maunakea Spectroscopic Explorer, 114] and 40 metre-class [e.g. The European Extremely Large Telescope, 115] telescopes; and space-based missions such as the JWST [116, 117] and the Nancy Grace Roman Space Telescope [118]. Increased availability of high-quality, multi-wavelength photometric, spectroscopic and interferometric measurements extending to higher redshifts is a necessity to help develop our ever-growing theoretical understanding of how these massive, energetic cosmic sources work and evolve.

Acknowledgments. SP acknowledges financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) Fellowship (164753/2020-6). SP further acknowledges the organizers of the SPIG - 31st Summer School and International Symposium on the Physics of Ionized Gases,
held between 05th - 09th September 2022, for giving the opportunity to present our work as an invited contribution. We are grateful to Prof. Jian-Min Wang for providing his slim disk SED models, and to Prof. Bożena Czerny for fruitful discussions.

Declarations

- **Funding:** The funding details are listed in Acknowledgement section.
- **Conflict of interest/Competing interests:** The authors declare they have no financial interests.
- **Ethics approval:** Not applicable
- **Consent to participate:** All authors contributed to the work and approved sending the paper for publication.
- **Consent for publication:** All authors agree for the work to be published in The European Physical Journal D (EPJ D).
- **Availability of data and materials:** Data can be available on request.
- **Authors’ contributions:** All authors contributed to the study conception and design.

References

[1] Weedman, D.W.: Luminosities of Seyfert galaxies and QSOs. The Astrophysical Journal \textbf{208}, 30–36 (1976). https://doi.org/10.1086/154577

[2] Weedman, D.W.: Seyfert galaxies. Annual Review of Astronomy and Astrophysics \textbf{15}, 69–95 (1977). https://doi.org/10.1146/annurev.aa.15.090177.000441

[3] Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astronomy and Astrophysics \textbf{24}, 337–355 (1973)

[4] Shields, G.A.: Thermal continuum from accretion disks in quasars. Nature \textbf{272}(5655), 706–708 (1978). https://doi.org/10.1038/272706a0

[5] Czerny, B., Elvis, M.: Constraints on quasar accretion disks from the optical/ultraviolet/soft X-ray big bump. The Astrophysical Journal \textbf{321}, 305–320 (1987). https://doi.org/10.1086/165630

[6] Panda, S., Czerny, B., Adhikari, T.P., Hryniewicz, K., Wildy, C., Kuraszkiewicz, J., Śniegowska, M.: Modeling of the Quasar Main Sequence in the Optical Plane. The Astrophysical Journal \textbf{866}, 115 (2018) https://arxiv.org/abs/1806.08571 [astro-ph.HE]. https://doi.org/10.3847/1538-4357/aae209

[7] Schmidt, M.: 3C 273 : A Star-Like Object with Large Red-Shift. Nature \textbf{197}(4872), 1040 (1963). https://doi.org/10.1038/1971040a0
[8] Greenstein, J.L., Schmidt, M.: The Quasi-Stellar Radio Sources 3C 48 and 3C 273. The Astrophysical Journal 140, 1 (1964). https://doi.org/10.1086/147889

[9] Schmidt, M., Green, R.F.: Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. The Astrophysical Journal 269, 352–374 (1983). https://doi.org/10.1086/161048

[10] Osterbrock, D.E., Ferland, G.J.: Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, (2006)

[11] Netzer, H.: Revisiting the Unified Model of Active Galactic Nuclei. Annual Review of Astronomy and Astrophysics 53, 365–408 (2015) https://arxiv.org/abs/1505.00811. https://doi.org/10.1146/annurev-astro-082214-122302

[12] Blandford, R.D., McKee, C.F.: Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. The Astrophysical Journal 255, 419–439 (1982). https://doi.org/10.1086/159843

[13] Peterson, B.M., Ferrarese, L., Gilbert, K.M., Kaspi, S., Malkan, M.A., Maoz, D., Merritt, D., Netzer, H., Onken, C.A., Pogge, R.W., Vestergaard, M., Wandel, A.: Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. The Astrophysical Journal 613(2), 682–699 (2004) https://arxiv.org/abs/astro-ph/0407299 [astro-ph]. https://doi.org/10.1086/423269

[14] Peterson, B.M.: Emission-Line Variability in Seyfert Galaxies. Publications of the Astronomical Society of the Pacific 100, 18 (1988). https://doi.org/10.1086/132130

[15] Peterson, B.M.: Reverberation Mapping of Active Galactic Nuclei. Publications of the Astronomical Society of the Pacific 105, 247 (1993). https://doi.org/10.1086/133140

[16] Vestergaard, M., Peterson, B.M.: Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. The Astrophysical Journal 641(2), 689–709 (2006) https://arxiv.org/abs/astro-ph/0601303 [astro-ph]. https://doi.org/10.1086/500572

[17] Shen, Y., Richards, G.T., Strauss, M.A., Hall, P.B., Schneider, D.P., Snedden, S., Bizyaev, D., Brewington, H., Malanushenko, V., Malanushenko, E., Oravetz, D., Pan, K., Simmons, A.: A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7. The
[18] Bentz, M.C., Denney, K.D., Grier, C.J., Barth, A.J., Peterson, B.M., Vestergaard, M., Bennert, V.N., Canalizo, G., De Rosa, G., Filippenko, A.V., Gates, E.L., Greene, J.E., Li, W., Malkan, M.A., Pogge, R.W., Stern, D., Treu, T., Woo, J.-H.: The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. The Astrophysical Journal 767, 149 (2013) https://arxiv.org/abs/1303.1742. https://doi.org/10.1088/0004-637X/767/2/149

[19] Du, P., Hu, C., Lu, K.-X., Wang, F., Qiu, J., Li, Y.-R., Bai, J.-M., Kaspi, S., Netzer, H., Wang, J.-M., SEAMBH Collaboration: Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign. The Astrophysical Journal 782, 45 (2014) https://arxiv.org/abs/1310.4107. https://doi.org/10.1088/0004-637X/782/1/45

[20] Kaspi, S., Smith, P.S., Netzer, H., Maoz, D., Jannuzi, B.T., Giveon, U.: Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. The Astrophysical Journal 533(2), 631–649 (2000) https://arxiv.org/abs/astro-ph/9911476 [astro-ph]. https://doi.org/10.1086/308704

[21] Pancoast, A., Brewer, B.J., Treu, T., Park, D., Barth, A.J., Bentz, M.C., Woo, J.-H.: Modelling reverberation mapping data - II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set. Monthly Notices of the Royal Astronomical Society 445(3), 3073–3091 (2014) https://arxiv.org/abs/1311.6475 [astro-ph.CO]. https://doi.org/10.1093/mnras/stu1419

[22] Li, Y.-R., Wang, J.-M., Bai, J.-M.: A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping. The Astrophysical Journal 831(2), 206 (2016) https://arxiv.org/abs/1608.03741 [astro-ph.IM]. https://doi.org/10.3847/0004-637X/831/2/206

[23] Shen, Y.: The mass of quasars. Bulletin of the Astronomical Society of India 41(1), 61–115 (2013) https://arxiv.org/abs/1302.2643 [astro-ph.CO]

[24] Czerny, B., Nikolajuk, M.: Mass of black holes: . The state of the art. Memorie della Società Astronomica Italiana 81, 281 (2010) https://arxiv.org/abs/0910.0313 [astro-ph.HE]

[25] Richards, G.T., Lacy, M., Storrie-Lombardi, L.J., Hall, P.B., Gallagher, S.C., Hines, D.C., Fan, X., Papovich, C., Vanden Berk, D.E., Trammell,
High Eddington AGNs: current state and challenges

G.B., Schneider, D.P., Vestergaard, M., York, D.G., Jester, S., Anderson, S.F., Budavári, T., Szalay, A.S.: Spectral Energy Distributions and Multiwavelength Selection of Type 1 Quasars. The Astrophysical Journal Supplements 166, 470–497 (2006) https://arxiv.org/abs/astro-ph/0601558. https://doi.org/10.1086/506525

[26] Harrison, C.: Observational constraints on the influence of active galactic nuclei on the evolution of galaxies. PhD thesis, Durham University (September 2014)

[27] Yang, G., Boquien, M., Brandt, W.N., Buat, V., Burgarella, D., Ciesla, L., Lehmer, B.D., Malek, K., Mountrichas, G., Papovich, C., Pons, E., Stalevski, M., Theulé, P., Zhu, S.: Fitting AGN/Galaxy X-Ray-to-radio SEDs with CIGALE and Improvement of the Code. The Astrophysical Journal 927(2), 192 (2022) https://arxiv.org/abs/2201.03718 [astro-ph.GA]. https://doi.org/10.3847/1538-4357/ac4971

[28] Zdziarski, A.A., Ghisellini, G., George, I.M., Svensson, R., Fabian, A.C., Done, C.: Electron-Positron Pairs, Compton Reflection, and the X-Ray Spectra of Active Galactic Nuclei. The Astrophysical Journal Letters 363, 1 (1990). https://doi.org/10.1086/185851

[29] Arnaud, K.A., Branduardi-Raymont, G., Culhane, J.L., Fabian, A.C., Hazard, C., McGlynn, T.A., Shafer, R.A., Tennant, A.F., Ward, M.J.: EXOSAT observations of a strong soft X-ray excess in MKN 841. Monthly Notices of the Royal Astronomical Society 217, 105–113 (1985). https://doi.org/10.1093/mnras/217.1.105

[30] Elvis, M., Wilkes, B.J., McDowell, J.C., Green, R.F., Bechtold, J., Willner, S.P., Oey, M.S., Polomski, E., Cutri, R.: Atlas of quasar energy distributions. The Astrophysical Journal Supplements 95, 1–68 (1994). https://doi.org/10.1086/192093

[31] Laor, A., Fiore, F., Elvis, M., Wilkes, B.J., McDowell, J.C.: The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars. II. Final Results. The Astrophysical Journal 477, 93–113 (1997) https://arxiv.org/abs/astro-ph/9609164. https://doi.org/10.1086/303696

[32] Collinson, J.S.: Spectral and temporal studies of supermassive black holes. PhD thesis, Durham University, UK (January 2016)

[33] Kubota, A., Done, C.: A physical model of the broad-band continuum of AGN and its implications for the UV/X relation and optical variability. Monthly Notices of the Royal Astronomical Society 480, 1247–1262 (2018) https://arxiv.org/abs/1804.00171 [astro-ph.HE]. https://doi.org/10.1093/mnras/sty1890
High Eddington AGNs: current state and challenges

[34] Panda, S., Marziani, P., Czerny, B.: The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. The Astrophysical Journal 882(2), 79 (2019) https://arxiv.org/abs/1905.01729 [astro-ph.HE]. https://doi.org/10.3847/1538-4357/ab3292

[35] Ferland, G.J., Done, C., Jin, C., Landt, H., Ward, M.J.: State-of-the-art AGN SEDs for photoionization models: BLR predictions confront the observations. Monthly Notices of the Royal Astronomical Society 494(4), 5917–5922 (2020) https://arxiv.org/abs/2004.11873 [astro-ph.HE]. https://doi.org/10.1093/mnras/staa1207

[36] Padovani, P., Alexander, D.M., Assef, R.J., De Marco, B., Giommi, P., Hickox, R.C., Richards, G.T., Smolčić, V., Hatziminaoglou, E., Mainieri, V., Salvato, M.: Active galactic nuclei: what’s in a name? Astronomy and Astrophysics Reviews 25, 2 (2017) https://arxiv.org/abs/1707.07134. https://doi.org/10.1007/s00159-017-0102-9

[37] Kirkpatrick, A., Pope, A., Sajina, A., Roebuck, E., Yan, L., Armus, L., Díaz-Santos, T., Stierwalt, S.: The Role of Star Formation and an AGN in Dust Heating of z = 0.3-2.8 Galaxies. I. Evolution with Redshift and Luminosity. The Astrophysical Journal 814(1), 9 (2015) https://arxiv.org/abs/1510.02806 [astro-ph.GA]. https://doi.org/10.1088/0004-637X/814/1/9

[38] Marziani, P., Śniegowska, M., Panda, S., Czerny, B., Negrete, C.A., Dultzin, D., Garnica, K., Martínez-Aldama, M.L., del Olmo, A., D’Onofrio, M., Machado, A.D., Ganci, V., Extreme Team: The Main Sequence View of Quasars Accreting at High Rates: Influence of Star Formation. Research Notes of the American Astronomical Society 5(2), 25 (2021). https://doi.org/10.3847/2515-5172/abe46a

[39] Negrete, A., Dultzin, D., Marziani, P., Sulentic, J.: BLR Physical Conditions in Extreme Population A Quasars: a Method to Estimate Central Black Hole Mass at High Redshift. The Astrophysical Journal 757, 62 (2012) https://arxiv.org/abs/1107.3188 [astro-ph.CO]

[40] Negrete, C.A., Dultzin, D., Marziani, P., Sulentic, J.W.: A photoionization method for estimating BLR “size” in quasars. Advances in Space Research 54(7), 1355–1361 (2014). https://doi.org/10.1016/j.asr.2013.11.037

[41] Śniegowska, M., Marziani, P., Czerny, B., Panda, S., Martínez-Aldama, M.L., del Olmo, A., D’Onofrio, M.: High Metal Content of Highly Accreting Quasars. The Astrophysical Journal 910(2), 115 (2021) https://arxiv.org/abs/2009.14177 [astro-ph.HE]. https://doi.org/10.3847/1538-4357/abe1c8
[42] Garnica, K., Negrete, C.A., Marziani, P., Dultzin, D., Śniegowska, M., Panda, S.: High Metal Content of Highly Accreting Quasars: Analysis of an Extended Sample. arXiv e-prints, 2208–02387 (2022) https://arxiv.org/abs/2208.02387 [astro-ph.GA]

[43] Collin-Souffrin, S., Dyson, J.E., McDowell, J.C., Perry, J.J.: The environment of active galactic nuclei - I. A two-component broad emission line model. Monthly Notices of the Royal Astronomical Society 232, 539–550 (1988). https://doi.org/10.1093/mnras/232.3.539

[44] Gaskell, C.M.: A redshift difference between high and low ionization emission-line regions in QSO’s-evidence for radial motions. The Astrophysical Journal 263, 79–86 (1982). https://doi.org/10.1086/160481

[45] Leighly, K.M.: Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. II. Modeling and Interpretation. The Astrophysical Journal 611(1), 125–152 (2004) https://arxiv.org/abs/astro-ph/0402452 [astro-ph]. https://doi.org/10.1086/422089

[46] Marziani, P., Sulentic, J.W., Negrete, C.A., Dultzin, D., Zamfir, S., Bachev, R.: Broad-line region physical conditions along the quasar eigenvector 1 sequence. Monthly Notices of the Royal Astronomical Society 409(3), 1033–1048 (2010) https://arxiv.org/abs/1007.3187 [astro-ph.CO]. https://doi.org/10.1111/j.1365-2966.2010.17357.x

[47] Martínez-Aldama, M.L., Czerny, B., Kawka, D., Karas, V., Panda, S., Zajaček, M., Życki, P.T.: Can Reverberation-measured Quasars Be Used for Cosmology? The Astrophysical Journal 883(2), 170 (2019) https://arxiv.org/abs/1903.09687 [astro-ph.CO]. https://doi.org/10.3847/1538-4357/ab3728

[48] Wills, B.J., Netzer, H., Wills, D.: Broad emission features in QSOs and active galactic nuclei. II - New observations and theory of Fe II and H I emission. The Astrophysical Journal 288, 94–116 (1985). https://doi.org/10.1086/162767

[49] Davidson, K.: On photoionization analyses of emission spectra of quasars. The Astrophysical Journal 218, 20–32 (1977). https://doi.org/10.1086/155653

[50] Collier, S., Horne, K., Wanders, I., Peterson, B.M.: A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Monthly Notices of the Royal Astronomical Society 302(1), 24–28 (1999) https://arxiv.org/abs/astro-ph/9811278 [astro-ph]. https://doi.org/10.1046/j.1365-8711.1999.02250.x
[51] Elvis, M., Karovska, M.: Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars. The Astrophysical Journal Letters 581(2), 67–70 (2002) https://arxiv.org/abs/astro-ph/0211385 [astro-ph]. https://doi.org/10.1086/346015

[52] Horne, K., Korista, K.T., Goad, M.R.: Quasar tomography: unification of echo mapping and photoionization models. Monthly Notices of the Royal Astronomical Society 339(2), 367–386 (2003) https://arxiv.org/abs/astro-ph/0210539 [astro-ph]. https://doi.org/10.1046/j.1365-8711.2003.06036.x

[53] Panda, S., Martínez-Aldama, M.L., Zajaček, M.: Current and future applications of Reverberation-mapped quasars in Cosmology. Frontiers in Astronomy and Space Sciences 6, 75 (2019) https://arxiv.org/abs/1909.05572 [astro-ph.HE]. https://doi.org/10.3389/fspas.2019.00075

[54] Khadka, N., Martínez-Aldama, M.L., Zajaček, M., Czerny, B., Ratra, B.: Do reverberation-measured Hβ quasars provide a useful test of cosmology? Monthly Notices of the Royal Astronomical Society 513(2), 1985–2005 (2022) https://arxiv.org/abs/2112.00052 [astro-ph.CO]. https://doi.org/10.1093/mnras/stac914

[55] Wang, J.-M., Du, P., Hu, C., Netzer, H., Bai, J.-M., Lu, K.-X., Kaspi, S., Qiu, J., Li, Y.-R., Wang, F., SEAMBH Collaboration: Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. II. The Most Luminous Standard Candles in the Universe. The Astrophysical Journal 793(2), 108 (2014) https://arxiv.org/abs/1408.2337 [astro-ph.HE]. https://doi.org/10.1088/0004-637X/793/2/108

[56] Hu, C., Du, P., Lu, K.-X., Li, Y.-R., Wang, F., Qiu, J., Bai, J.-M., Kaspi, S., Ho, L.C., Netzer, H., Wang, J.-M., SEAMBH Collaboration: Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. III. Detection of Fe II Reverberation in Nine Narrow-line Seyfert 1 Galaxies. The Astrophysical Journal 804, 138 (2015) https://arxiv.org/abs/1503.03611. https://doi.org/10.1088/0004-637X/804/2/138

[57] Du, P., Hu, C., Lu, K.-X., Huang, Y.-K., Cheng, C., Qiu, J., Li, Y.-R., Zhang, Y.-W., Fan, X.-L., Bai, J.-M., Bian, W.-H., Yuan, Y.-F., Kaspi, S., Ho, L.C., Netzer, H., Wang, J.-M., SEAMBH Collaboration: Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion. The Astrophysical Journal 806, 22 (2015) https://arxiv.org/abs/1504.01844. https://doi.org/10.1088/0004-637X/806/1/22

[58] Du, P., Lu, K.-X., Zhang, Z.-X., Huang, Y.-K., Wang, K., Hu, C., Qiu, J., Li, Y.-R., Fan, X.-L., Fang, X.-E., Bai, J.-M., Bian, W.-H., Yuan, Y.-F., Ho, L.C., Wang, J.-M., SEAMBH Collaboration: Supermassive
Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region. The Astrophysical Journal 825, 126 (2016) https://arxiv.org/abs/1604.06218. https://doi.org/10.3847/0004-637X/825/2/126

[59] Du, P., Zhang, Z.-X., Wang, K., Huang, Y.-K., Zhang, Y., Lu, K.-X., Hu, C., Li, Y.-R., Bai, J.-M., Bian, W.-H., Yuan, Y.-F., Ho, L.C., Wang, J.-M., SEAMBH Collaboration: Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags. The Astrophysical Journal 856, 6 (2018) https://arxiv.org/abs/1802.03022. https://doi.org/10.3847/1538-4357/aaae6b

[60] Grier, C.J., Trump, J.R., Shen, Y., Horne, K., Kinemuchi, K., McGreer, I.D., Starkey, D.A., Brandt, W.N., Hall, P.B., Kochanek, C.S., Chen, Y., Denney, K.D., Greene, J.E., Ho, L.C., Homayouni, Y., I-Hsiu Li, J., Pei, L., Peterson, B.M., Petitjean, P., Schneider, D.P., Sun, M., AlSayyad, Y., Bizyaev, D., Brinkmann, J., Brownstein, J.R., Bundy, K., Dawson, K.S., Eftekharzadeh, S., Fernandez-Trincado, J.G., Gao, Y., Hutchinson, T.A., Jia, S., Jiang, L., Oravetz, D., Pan, K., Paris, L., Ponder, K.A., Peters, C., Rogerson, J., Simmons, A., Smith, R., Wang, R.: The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry. The Astrophysical Journal 851, 21 (2017) https://arxiv.org/abs/1711.03114. https://doi.org/10.3847/1538-4357/aa98dc

[61] Shen, Y., Hall, P.B., Horne, K., Zhu, G., McGreer, I., Simm, T., Trump, J.R., Kinemuchi, K., Brandt, W.N., Green, P.J., Grier, C.J., Guo, H., Ho, L.C., Homayouni, Y., Jiang, L., I-Hsiu Li, J., Morganson, E., Petitjean, P., Richards, G.T., Schneider, D.P., Starkey, D.A., Wang, S., Chambers, K., Kaiser, N., Kudritzki, R.-P., Magnier, E., Waters, C.: The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization. The Astrophysical Journal Supplements 241(2), 34 (2019) https://arxiv.org/abs/1810.01447 [astro-ph.GA]. https://doi.org/10.3847/1538-4365/ab074f

[62] Panda, S.: Physical Conditions in the Broad-line Regions of Active Galaxies. PhD thesis, Polish Academy of Sciences, Institute of Physics (September 2021)

[63] Du, P., Wang, J.-M.: The Radius-Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei. The Astrophysical Journal 886(1), 42 (2019) https://arxiv.org/abs/1909.06735 [astro-ph.GA]. https://doi.org/10.3847/1538-4357/ab4908

[64] Sulentic, J.W., Marziani, P., Dultzin-Hacyan, D.: Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annual Review of
Astronomy and Astrophysics 38, 521–571 (2000). https://doi.org/10.1146/annurev.astro.38.1.521

[65] Shen, Y., Ho, L.C.: The diversity of quasars unified by accretion and orientation. Nature 513, 210–213 (2014) https://arxiv.org/abs/1409.2887. https://doi.org/10.1038/nature13712

[66] Marziani, P., Dultzin, D., Sultetic, J.W., Del Olmo, A., Negrete, C.A., Martínez-Aldama, M.L., D’Onofrio, M., Bon, E., Bon, N., Stirpe, G.M.: A main sequence for quasars. Frontiers in Astronomy and Space Sciences 5, 6 (2018) https://arxiv.org/abs/1802.05575. https://doi.org/10.3389/fspas.2018.00006

[67] Martínez-Aldama, M.L., Panda, S., Czerny, B., Marinello, M., Marziani, P., Dultzin, D.: The CaFe Project: Optical Fe II and Near-infrared Ca II Triplet Emission in Active Galaxies. II. The Driver(s) of the Ca II and Fe II and Its Potential Use as a Chemical Clock. The Astrophysical Journal 918(1), 29 (2021) https://arxiv.org/abs/2101.06999 [astro-ph.GA]. https://doi.org/10.3847/1538-4357/ac03b6

[68] Antonucci, R.: Unified models for active galactic nuclei and quasars. Annual Review of Astronomy and Astrophysics 31, 473–521 (1993). https://doi.org/10.1146/annurev.aa.31.090193.002353

[69] Urry, C.M., Padovani, P.: Unified Schemes for Radio-Loud Active Galactic Nuclei. Publications of the Astronomical Society of the Pacific 107, 803 (1995) https://arxiv.org/abs/astro-ph/9506063 [astro-ph]. https://doi.org/10.1086/133630

[70] Marin, F.: A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements. Monthly Notices of the Royal Astronomical Society 441, 551–564 (2014) https://arxiv.org/abs/1404.2417. https://doi.org/10.1093/mnras/stu593

[71] Osterbrock, D.E., Pogge, R.W.: The spectra of narrow-line Seyfert 1 galaxies. The Astrophysical Journal 297, 166–176 (1985). https://doi.org/10.1086/163513

[72] Goodrich, R.W.: Spectropolarimetry of “Narrow-Line” Seyfert 1 Galaxies. The Astrophysical Journal 342, 224 (1989). https://doi.org/10.1086/167586

[73] Verner, E.M., Verner, D.A., Korista, K.T., Ferguson, J.W., Hamann, F., Ferland, G.J.: Numerical Simulations of Fe II Emission Spectra. The Astrophysical Journal Supplements 120, 101–112 (1999). https://doi.org/10.1086/313171
[74] Sigut, T.A.A., Pradhan, A.K.: Predicted Fe II Emission-Line Strengths from Active Galactic Nuclei. The Astrophysical Journal Supplements 145(1), 15–37 (2003) https://arxiv.org/abs/astro-ph/0206096 [astro-ph]. https://doi.org/10.1086/345498

[75] Sigut, T.A.A., Pradhan, A.K., Nahar, S.N.: Theoretical Fe I-III Emission-Line Strengths from Active Galactic Nuclei with Broad-Line Regions. The Astrophysical Journal 611(1), 81–92 (2004) https://arxiv.org/abs/astro-ph/0401168 [astro-ph]. https://doi.org/10.1086/422027

[76] Baldwin, J.A., Ferland, G.J., Korista, K.T., Hamann, F., LaChuzyé, A.: The Origin of Fe II Emission in Active Galactic Nuclei. The Astrophysical Journal 615, 610–624 (2004) https://arxiv.org/abs/astro-ph/0407404. https://doi.org/10.1086/424683

[77] Panda, S.: The CaFe Project: Optical Fe II and Near-Infrared Ca II triplet emission in active galaxies: (II) synthetic EWs, co-dependence between cloud sizes and metal content. arXiv e-prints, 2004–13113 (2020) https://arxiv.org/abs/2004.13113 [astro-ph.HE]

[78] Boroson, T.A., Green, R.F.: The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. The Astrophysical Journal Supplements 80, 109 (1992). https://doi.org/10.1086/191661

[79] Leighly, K.M., Moore, J.R.: Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. I. Data and Analysis. The Astrophysical Journal 611(1), 107–124 (2004) https://arxiv.org/abs/astro-ph/0402453 [astro-ph]. https://doi.org/10.1086/422088

[80] Sulentic, J.W., Bachev, R., Marziani, P., Negrete, C.A., Dultzin, D.: C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. The Astrophysical Journal 666, 757–777 (2007) https://arxiv.org/abs/0705.1895. https://doi.org/10.1086/519916

[81] Grupe, D.: A Complete Sample of Soft X-Ray-selected AGNs. II. Statistical Analysis. The Astronomical Journal 127, 1799–1810 (2004) https://arxiv.org/abs/arXiv:astro-ph/0401167. https://doi.org/10.1086/382516

[82] Leighly, K.M.: A Comprehensive Spectral and Variability Study of Narrow-Line Seyfert 1 Galaxies Observed by ASCA. II. Spectral Analysis and Correlations. The Astrophysical Journal Supplements 125(2), 317–348 (1999) https://arxiv.org/abs/astro-ph/9907295 [astro-ph]. https://doi.org/10.1086/313287

[83] McHardy, I.M., Koerding, E., Knigge, C., Uttley, P., Fender, R.P.: Active
galactic nuclei as scaled-up Galactic black holes. Nature **444**(7120), 730–732 (2006) https://arxiv.org/abs/astro-ph/0612273 [astro-ph]. https://doi.org/10.1038/nature05389

[84] Giannuzzo, M.E., Mignoli, M., Stirpe, G.M., Comastri, A.: A search for variability in Narrow Line Seyfert 1 Galaxies. II. New data from the Loiano monitoring programme. Astronomy and Astrophysics **330**, 894–900 (1998) https://arxiv.org/abs/astro-ph/9710307 [astro-ph]

[85] Ai, Y.L., Yuan, W., Zhou, H., Wang, T.G., Dong, X.-B., Wang, J.G., Lu, H.L.: A Comparative Study of Optical/Ultraviolet Variability of Narrow-line Seyfert 1 and Broad-line Seyfert 1 Active Galactic Nuclei. The Astronomical Journal **145**(4), 90 (2013) https://arxiv.org/abs/1301.4739 [astro-ph.CO]. https://doi.org/10.1088/0004-6256/145/4/90

[86] Fraix-Burnet, D., Marziani, P., D’Onofrio, M., Dultzin, D.: The phylogeny of quasars and the ontogeny of their central black holes. Frontiers in Astronomy and Space Sciences **4**, 1 (2017) https://arxiv.org/abs/1702.02468 [astro-ph.GA]. https://doi.org/10.3389/fspas.2017.00001

[87] Berton, M., Foschini, L., Caccianiga, A., Ciroi, S., Congiu, E., Cracco, V., Frezzato, M., La Mura, G., Rafanelli, P.: An orientation-based unification of young jetted active galactic nuclei: the case of 3C 286. Frontiers in Astronomy and Space Sciences **4**, 8 (2017) https://arxiv.org/abs/1705.07905 [astro-ph.GA]. https://doi.org/10.3389/fspas.2017.00008

[88] Panda, S., Czerny, B., Done, C., Kubota, A.: CLOUDY View of the Warm Corona. The Astrophysical Journal **875**, 133 (2019) https://arxiv.org/abs/1901.02962 [astro-ph.HE]. https://doi.org/10.3847/1538-4357/ab11cb

[89] Marziani, P., Sulentic, J.W.: Highly accreting quasars: sample definition and possible cosmological implications. Monthly Notices of the Royal Astronomical Society **442**(2), 1211–1229 (2014) https://arxiv.org/abs/1405.2727 [astro-ph.GA]. https://doi.org/10.1093/mnras/stu951

[90] Sulentic, J., Marziani, P.: Quasars in the 4D Eigenvector 1 Context: a stroll down memory lane. Frontiers in Astronomy and Space Sciences **2**, 6 (2015) https://arxiv.org/abs/1506.01276. https://doi.org/10.3389/fspas.2015.00006

[91] Czerny, B., Li, Y.-R., Hryniewicz, K., Panda, S., Wildy, C., Sniegowska, M., Wang, J.-M., Sredzińska, J., Karas, V.: Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution. The Astrophysical Journal **846**, 154 (2017) https://arxiv.org/abs/1706.07958. https://doi.org/10.3847/1538-4357/aa8810
High Eddington AGNs: current state and challenges

[92] Panda, S., Czerny, B., Wildy, C.: The physical driver of the optical Eigenvector 1 in Quasar Main Sequence. Frontiers in Astronomy and Space Sciences 4, 33 (2017) https://arxiv.org/abs/1710.10180 [astro-ph.HE]. https://doi.org/10.3389/fspas.2017.00033

[93] Korista, K.T., Goad, M.R.: What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei. The Astrophysical Journal 606(2), 749–762 (2004) https://arxiv.org/abs/astro-ph/0402506 [astro-ph]. https://doi.org/10.1086/383193

[94] Czerny, B., Hryniewicz, K.: The origin of the broad line region in active galactic nuclei. A&A 525, 8 (2011) https://arxiv.org/abs/1010.6201. https://doi.org/10.1051/0004-6361/201016025

[95] Marziani, P., del Olmo, A., Martínez-Carballo, M.A., Martínez-Aldama, M.L., Stirpe, G.M., Negrete, C.A., Dultzin, D., D’Onofrio, M., Bon, E., Bon, N.: Black hole mass estimates in quasars. A comparative analysis of high- and low-ionization lines. Astronomy & Astrophysics 627, 88 (2019) https://arxiv.org/abs/1905.00617 [astro-ph.GA]. https://doi.org/10.1051/0004-6361/201935265

[96] Czerny, B.: Modelling broad emission lines in active galactic nuclei. arXiv e-prints, 1908–00742 (2019) https://arxiv.org/abs/1908.00742 [astro-ph.GA]

[97] Panda, S.: Parameterizing the AGN Radius–Luminosity Relation from the Eigenvector 1 Viewpoint. Frontiers in Astronomy and Space Sciences 9, 850409 (2022) https://arxiv.org/abs/2202.05782 [astro-ph.GA]. https://doi.org/10.3389/fspas.2022.850409

[98] Wandel, A., Peterson, B.M., Malkan, M.A.: Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques. The Astrophysical Journal 526(2), 579–591 (1999) https://arxiv.org/abs/astro-ph/9905224 [astro-ph]. https://doi.org/10.1086/308017

[99] Martínez-Aldama, M.L., Dultzin, D., Marziani, P., Sulentic, J.W., Bressan, A., Chen, Y., Stirpe, G.M.: O I and Ca II Observations in Intermediate Redshift Quasars. The Astrophysical Journal Supplements 217, 3 (2015) https://arxiv.org/abs/1501.04718. https://doi.org/10.1088/0067-0049/217/1/3

[100] Marziani, P., Olmo, A.d., Negrete, C.A., Dultzin, D., Picconcelli, E., Vietri, G., Martínez-Aldama, M.L., D’Onofrio, M., Bon, E., Bon, N., Deconto Machado, A., Stirpe, G.M., Buendia Rios, T.M.: The Intermediate-ionization Lines as Virial Broadening Estimators for Population A Quasars. The Astrophysical Journal Supplements 261(2),
[101] Wang, J.-M., Qiu, J., Du, P., Ho, L.C.: Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: The Diverse Appearance of the Broad-line Region. The Astrophysical Journal 797, 65 (2014) https://arxiv.org/abs/1410.5285. https://doi.org/10.1088/0004-637X/797/1/65

[102] Jin, C., Ward, M., Done, C.: A combined optical and X-ray study of unobscured type 1 active galactic nuclei - II. Relation between X-ray emission and optical spectra. Monthly Notices of the Royal Astronomical Society 422, 3268–3284 (2012) https://arxiv.org/abs/1203.0239 [astro-ph.HE]. https://doi.org/10.1111/j.1365-2966.2012.20847.x

[103] Jin, C., Ward, M., Done, C., Gelbord, J.: A combined optical and X-ray study of unobscured type 1 active galactic nuclei - I. Optical spectra and spectral energy distribution modelling. Monthly Notices of the Royal Astronomical Society 420, 1825–1847 (2012) https://arxiv.org/abs/1109.2069 [astro-ph.HE]. https://doi.org/10.1111/j.1365-2966.2011.19805.x

[104] Abramowicz, M.A., Czerny, B., Lasota, J.P., Szuszkiewicz, E.: Slim accretion disks. The Astrophysical Journal 332, 646–658 (1988). https://doi.org/10.1086/166683

[105] Sadowski, A.: Slim accretion disks around black holes. arXiv e-prints, 1108–0396 (2011) https://arxiv.org/abs/1108.0396 [astro-ph.HE]

[106] Sun, J., Shen, Y.: Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties. The Astrophysical Journal Letters 804, 15 (2015) https://arxiv.org/abs/1503.08364. https://doi.org/10.1088/2041-8205/804/1/L15

[107] Dultzin, D., Marziani, P., de Diego, J.A., Negrete, C.A., Del Olmo, A., Martínez-Aldama, M.L., D’Onofrio, M., Bon, E., Bon, N., Stirpe, G.M.: Extreme quasars as distance indicators in cosmology. Frontiers in Astronomy and Space Sciences 6, 80 (2020) https://arxiv.org/abs/2001.10368 [astro-ph.CO]. https://doi.org/10.3389/fspas.2019.00080

[108] Faber, S.M., Jackson, R.E.: Velocity dispersions and mass-to-light ratios for elliptical galaxies. The Astrophysical Journal 204, 668–683 (1976). https://doi.org/10.1086/154215

[109] Padovani, P., Rafanelli, P.: Mass-luminosity relationships and accretion rates for Seyfert 1 galaxies and quasars. Astronomy & Astrophysics 205, 53–70 (1988)
High Eddington AGNs: current state and challenges

[110] Matsuoka, Y., Kawara, K., Oyabu, S.: Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O I and Ca II Lines. The Astrophysical Journal 673(1), 62–68 (2008) https://arxiv.org/abs/0710.2954 [astro-ph]. https://doi.org/10.1086/524193

[111] Negrete, C.A., Dultzin, D., Marziani, P., Esparza, D., Sulentic, J.W., del Olmo, A., Martínez-Aldama, M.L., García López, A., D’Onofrio, M., Bon, N., Bon, E.: Highly accreting quasars: The SDSS low-redshift catalog. Astronomy & Astrophysics 620, 118 (2018) https://arxiv.org/abs/1809.08310 [astro-ph.GA]. https://doi.org/10.1051/0004-6361/201833285

[112] Mathews, W.G., Ferland, G.J.: What heats the hot phase in active nuclei? The Astrophysical Journal 323, 456–467 (1987). https://doi.org/10.1086/165843

[113] Marziani, P., Sulentic, J.W., Planchu-Frayn, I., del Olmo, A.: Low-Ionization Outflows in High Eddington Ratio Quasars. The Astrophysical Journal 764(150) (2013) https://arxiv.org/abs/1301.0520 [astro-ph.CO]

[114] Marshall, J., Bolton, A., Bullock, J., Burgasser, A., Chambers, K., DePoy, D., Dey, A., Flagey, N., Hill, A., Hillenbrand, L., Huber, D., Li, T., Juneau, S., Kaplinghat, M., Mateo, M., McConnachie, A., Newman, J., Petric, A., Schlegel, D., Sheinis, A., Shen, Y., Simons, D., Strauss, M., Szeto, K., Tran, K.-V., Yêche, C.: The Maunakea Spectroscopic Explorer. In: Bulletin of the American Astronomical Society, vol. 51, p. 126 (2019)

[115] Evans, C., Puech, M., Afonso, J., Almaini, O., Amram, P., Aussel, H., Barbuy, B., Basden, A., Bastian, N., Battaglia, G., Biller, B., Bonifacio, P., Bouché, N., Bunker, A., Caffau, E., Charlot, S., Cirasuolo, M., Clenet, Y., Combes, F., Conselice, C., Contini, T., Cuby, J.-G., Dalton, G., Davies, B., de Koter, A., Disseau, K., Dunlop, J., Epinat, B., Fiore, F., Feltzing, S., Ferguson, A., Flores, H., Fontana, A., Fusco, T., Gadotti, D., Gallazzi, A., Gallego, J., Giallongo, E., Gonçalves, T., Gratadour, D., Guenther, E., Hammer, F., Hill, V., Huertas-Company, M., Ibata, R., Kaper, L., Korn, A., Larsen, S., Le Fèvre, O., Lemasle, B., Maraston, C., Mei, S., Mellier, Y., Morris, S., Östlin, G., Paumard, T., Pello, R., Pentericci, L., Peroux, C., Petitjean, P., Rodrigues, M., Rodríguez-Muñoz, L., Rouan, D., Sana, H., Schaerer, D., Telles, E., Trager, S., Tresse, L., Welikala, N., Zibetti, S., Ziegler, B.: The Science Case for Multi-Object Spectroscopy on the European ELT. arXiv e-prints, 1501–04726 (2015) https://arxiv.org/abs/1501.04726 [astro-ph.GA]

[116] Gardner, J.P., Mather, J.C., Clampin, M., Doyon, R., Greenhouse,
M.A., Hammel, H.B., Hutchings, J.B., Jakobsen, P., Lilly, S.J., Long, K.S., Lunine, J.I., McCaughrean, M.J., Mountain, M., Nella, J., Rieke, G.H., Rieke, M.J., Rix, H.-W., Smith, E.P., Sonneborn, G., Stiavelli, M., Stockman, H.S., Windhorst, R.A., Wright, G.S.: The James Webb Space Telescope. Space Science Reviews 123(4), 485–606 (2006) https://arxiv.org/abs/astro-ph/0606175 [astro-ph]. https://doi.org/10.1007/s11214-006-8315-7

[117] Jakobsen, P., Ferruit, P., Alves de Oliveira, C., Arribas, S., Bagnasco, G., Barho, R., Beck, T.L., Birkmann, S., Böker, T., Bunker, A.J., Charlot, S., de Jong, P., de Marchi, G., Ehrenwinkler, R., Falcolini, M., Fels, R., Franx, M., Franz, D., Funke, M., Giardino, G., Gnata, X., Holota, W., Hommen, K., Jensen, P.L., Jentsch, M., Johnson, T., Jollet, D., Karl, H., Kling, G., Köhler, J., Kolm, M.-G., Kumari, N., Lander, M.E., Lenke, R., López-Caniego, M., Lützgendorf, N., Maiolino, R., Manjavacas, E., Marston, A., Maschmann, M., Maurer, R., Messerschmidt, B., Moseley, S.H., Mosner, P., Mott, D.B., Muzerolle, J., Pirzkal, N., Pittet, J.-F., Plitzke, A., Posselt, W., Rapp, B., Rauscher, B.J., Rawle, T., Rix, H.-W., Rödel, A., Rumler, P., Sabbi, E., Salvignol, J.-C., Schmid, T., Sirianni, M., Smith, C., Strada, P., te Plate, M., Valenti, J., Wettmann, T., Wiehe, T., Wiesmayer, M., Willott, C.J., Wright, R., Zeidler, P., Zincke, C.: The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astronomy & Astrophysics 661, 80 (2022) https://arxiv.org/abs/2202.03305 [astro-ph.IM]. https://doi.org/10.1051/0004-6361/202142663

[118] Spergel, D., Gehrels, N., Breckinridge, J., Donahue, M., Dressler, A., Gaudi, B.S., Greene, T., Guyon, O., Hirata, C., Kalirai, J., Kasdin, N.J., Moos, W., Perlmutter, S., Postman, M., Rauscher, B., Rhodes, J., Wang, Y., Weinberg, D., Centrella, J., Traub, W., Baltay, C., Colbert, J., Bennett, D., Kiessling, A., Macintosh, B., Merton, J., Mortonson, M., Penny, M., Rozo, E., Savransky, D., Stapelfeldt, K., Zu, Y., Baker, C., Cheng, E., Content, D., Dooley, J., Foote, M., Guilloud, R., Grady, K., Jackson, C., Kruk, J., Levine, M., Melton, M., Peddie, C., Ruffa, J., Shaklan, S.: Wide-Field InfraRed Survey Telescope Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report. arXiv e-prints, 1305–5422 (2013) https://arxiv.org/abs/1305.5422 [astro-ph.IM]