Eccentric harmonic index of a graph

M. I. Sowaitya, M. Pavithraa, B. Sharadab and A. M. Najic

ABSTRACT
In this paper, we introduce the eccentric harmonic index $H_e = H_e(G)$ of a graph G, so that it is the sum of the terms $\frac{1}{d(u,v)}$ for the edges u/v, where e is the eccentricity of the ith vertex of the graph G. We compute the exact values of H_e for some standard graphs. Bounds for H_e are established. Relationships between H_e and the eccentric connectivity index $\varepsilon_c(G)$ are derived.

1. Introduction
In this paper, all graphs are assumed to be finite simple connected graphs. A graph $G = (V,E)$ is a simple graph, that is, having no loops, no multiple and directed edges. As usual, we denote n to be the order and m to be the size of the graph G. A vertex $v \in V$, the open neighborhood of v in a graph G, denoted $N(v)$, is the set of all vertices that are adjacent to v and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The degree of a vertex v_i in G is $d_i = d(v_i) = |N(v_i)|$. A vertex of degree one is called pendant vertex. A graph G is said to be k-regular graph if $d(v) = k$ for every $v \in V(G)$. The distance $d(u,v)$ between any two vertices u and v in a graph G is the length of the shortest path connecting them.

The eccentricity of a vertex $v \in V(G)$ is $e(v) = \max\{d(u,v) : u \in V(G)\}$. The radius of G is $r = \min\{e(v) : v \in V(G)\}$ and the diameter of G is $\text{diam}(G) = \max\{e(v) : v \in V(G)\}$. Hence $r(G) \leq e(v) \leq \text{diam}(G)$, for every $v \in V(G)$.

A vertex v in a connected graph G is central vertex if $e(v) = r(G)$, while a vertex v in a connected graph G is peripheral vertex if $e(v) = \text{diam}(G)$. A graph G is called a self-centered graph if $e(v) = r(G) = \text{diam}(G)$ for all $v \in V(G)$. If G is a regular graph with $e(v) = r(G) = \text{diam}(G)$ for all $v \in V(G)$, then G is a regular self-centered graph. We denote the eccentricity of a vertex v_i by e_i. As usual we use the characters $T, P_n, C_n, K_{a,b}, K_{1,n-1}, K_n$ for the tree, path, cycle, complete bipartite, star and complete graph, respectively. All the definitions and terminologies about the graph in this paragraph are available in Harary, (1969).

A single number representing a chemical structure, by means of the corresponding molecular graph, is known as topological descriptor. Topological descriptors play a prominent role in mathematical chemistry, particularly in studies of quantitative structure property and quantitative structure activity relationships. Moreover, a topological descriptor is called a topological index if it has a mutual relationship with a molecular property. Thus, since topological indices encode some characteristics of a molecule in a single number, they can be used to study physicochemical properties of chemical compounds (Hernndez-Gmez, Mndez-Bermdez, Rodriguez, & Sigarreata, 2018).

After the seminal work of Wiener (Wiener, 1947), many topological indices have been defined and analyzed. Among all topological indices, probably the most studied is the Randić connectivity index (R) (Randić, 1975). Several hundred papers and, at least, two books report studies of R (see, e.g. Gutman & Furtula, 2008; Li & Gutman, 2006 and references therein). Moreover, with the aim of improving the predictive power of R, many additional topological descriptors (similar to R) have been proposed. In fact, the first and second Zagreb indices, M_1 and M_2, respectively, can be considered as the main successors of R. They are defined as
Both M_1 and M_2 have recently attracted much interest (see, e.g. Borovičanin & Furtula, 2016; Das, 2020; Das, Gutman, & Furtula, 2011; in particular, they are included in algorithms used to compute topological indices).

Another remarkable topological descriptor is the harmonic index, defined in Fajtlowicz (1987) as

$$H(G) = \sum_{v \in V(G)} \sum_{v \in V(G)} \frac{2}{d_i + d_j}.$$

This index has attracted a great interest in the last years (see, e.g. Deng, Balachandran, Ayyaswamy, & Venkatakrishnan, 2013; Li & Shi, 2014; Rodriguez & Sigarreta, 2017; Swetha Shetty, Lokesha, & Ranjini, 2015; Wu, Tang, & Deng, 2013; Zhong, 2012). In particular, in Swetha Shetty et al. (2015) it appears relations for the harmonic index of some operations of graphs.

Sharma et al. introduced the eccentric connectivity index of a graph (Sharma, Goswami, & Madan, 1997), where they defined it for a graph with n vertices and m edges, as

$$\xi^c = \xi^c(G) = \sum_{v \in V(G)} e_v = \sum_{v \in V(G)} d_v.$$

In analogy with the harmonic index and its applications, we introduce the eccentric harmonic index as an eccentric version of the harmonic index. Also, the relation between the eccentric harmonic index and the eccentric connectivity index motivates us to study the eccentric connectivity index and its applications in another way.

2. Eccentric harmonic index of a graph

In this section, we define the eccentric harmonic index $H_e(G)$ of a graph G. The eccentric harmonic index of some well-known graphs are computed. The starting is with the definition of $H_e(G)$ which is explained in the following definition.

Definition 2.1. Let G be a graph with n vertices and m edges. Then the eccentric harmonic index $H_e(G)$ of G is defined as

$$H_e(G) = \sum_{v \in V(G)} \frac{2}{d_i + e_j}.$$

Theorem 2.2. Let G be a self-centered graph of order n and size m. Then

$$H_e(G) = \frac{m}{\text{diam}(G)}.$$

Proof. Let G be a self-centered graph of order n and size m. Then

$$H_e(G) = \sum_{v \in V(G)} \frac{2}{d_i + e_j}.$$

Corollary 2.3. For the cycle C_n, the eccentric harmonic index is

$$H_e(C_n) = \left\{ \begin{array}{ll} 2, & \text{if } n \text{ is even} \\ \frac{2n}{n-1}, & \text{if } n \text{ is odd} \end{array} \right.$$

Proof. Let $G = C_n$ and assume n is even. It is clear that C_n is a self-centered graph with $\text{diam}(G) = \frac{n}{2}$. Thus, by Theorem 2.2

$$H_e(C_n) = \frac{m}{\frac{n}{2}} = \frac{2m}{n}.$$

But, $m = n$, so

$$H_e(C_n) = 2.$$

Let n be odd. Then $\text{diam}(G) = \frac{n-1}{2}$. Thus, by Theorem 2.2

$$H_e(C_n) = \frac{m}{\frac{n-1}{2}} = \frac{2m}{n-1}.$$

Since $m = n$, then

$$H_e(C_n) = \frac{2n}{n-1}.$$

Example 2.4. The following are two examples of $H_e(G)$ for a self-centered graphs.

1. The complete graph K_n is a self-centered graph with $\text{diam}(K_n) = 1$. Thus, by Theorem 2.2

$$H_e(K_n) = \frac{m}{\frac{n(n-1)}{2}}.$$

2. The complete bipartite graph K_{ab} is a self-centered graph with $\text{diam}(K_{ab}) = 2$. Thus, by Theorem 2.2

$$H_e(K_{ab}) = \frac{m}{\frac{ab}{2}}.$$

Theorem 2.5. Let P_n be a path of order n, $n \geq 2$. Then

$$H_e(P_n) = \left\{ \begin{array}{ll} \frac{1}{n} + \frac{n-2}{2} + \frac{1}{i=2}, & \text{if } n \text{ is even} \\ \frac{2}{n-1} + \frac{1}{i=2}, & \text{if } n \text{ is odd} \end{array} \right.$$

Proof. Let P_n be a path with vertex set $\{v_1, v_2, \ldots, v_n\}$, $n \geq 2$ and assume that n is odd.
Then, for \(n = 3, \)
\[
\frac{H_e(P_3)}{2} = \frac{1}{2(1) + 1} = \frac{2}{3}.
\]
Assume that it is true for \(n = k, \) \(k \) is odd, i.e.
\[
\frac{H_e(P_k)}{2} = 2^{\frac{k-1}{2}} \frac{1}{2(1) + 1},
\]
where \(r \) is the radius of \(G. \)
For \(n = k + 2, \) the radius is \(r = \frac{k + 2 - 1}{2} = \frac{k + 1}{2}, \) so
\[
\frac{H_e(P_{k+2})}{2} = 2^{\frac{k-2}{2}} \frac{1}{2(1) + 1} \frac{1}{(k + 2) - 2 + (k + 2) - 1} + \frac{1}{(k + 2) - 2 + (k + 2) - 1}
\]
\[= 2^{\frac{k-2}{2}} \frac{1}{2(1) + 1} \frac{1}{(k + 2) - 2 + (k + 2) - 1}
\]
\[= 2^{\frac{k-2}{2}} \frac{1}{2(1) + 1}.
\]
Thus, we show the part when \(n \) is odd. For the part, when \(n \) is even, the proof is similar with a little difference for the \(\frac{n}{2}, \frac{n}{2} + 1 \) vertices; which are the central vertices of the path with eccentricities \(\frac{n}{2}, \frac{n}{2}. \)
By putting this term, which equals to \(\frac{1}{\frac{n}{2} + 1} = \frac{1}{n} \) outside the summation, then the result follows.

3. Bounds for eccentric harmonic index of a graph

In this section, we derive upper and lower bounds for \(H_e(G) \) of a graph \(G. \) Relations between \(H_e(G) \) and the eccentric connectivity index \(\xi_e(G) \) are established.

Theorem 3.1. Let \(G \) be a graph of order \(n \) and size \(m. \) Then
\[
\frac{m}{\text{diam}(G)} \leq H_e(G) \leq \frac{m}{r},
\]
with equality holds if and only if \(G \) is a self-centered graph.

Proof. Let \(G \) be a graph of order \(n \) and size \(m. \) Then, for \(v, v_j \in E \)
\[
2r \leq e_i + e_j \leq 2\text{diam}(G).
\]
So,
\[
\frac{1}{2\text{diam}(G)} \leq \frac{1}{e_i + e_j} \leq \frac{1}{2r}.
\]
By taking the summation over the edges of the graph, we get
\[
\frac{m}{2\text{diam}(G)} \leq H_e(G) \leq \frac{m}{2r}.
\]
Hence the result follows.

To show the equality, it is clear that the equality holds if and only if \(e_i + e_j = 2r = 2\text{diam}(G), \) which holds if and only if \(G \) is a self-centered graph.

Theorem 3.2. Let \(G \) be a graph with \(n \) vertices and \(m \) edges. Then
\[
H_e(G) \geq m(1 - \ln (\text{diam}(G))),
\]
with equality holds if and only if \(G \) is a complete graph.

Proof. Let \(G \) be a graph of order \(n \) and size \(m. \) Assume the function \(f(x) = x - \ln x - 1. \) Easy calculations gives \(f(x) \geq 0. \)

Hence, for \(v, v_j \in E \)
\[
\frac{2}{e_i + e_j} - \ln \left(\frac{2}{e_i + e_j} \right) - 1 \geq 0.
\]
So,
\[
\frac{2}{e_i + e_j} \geq 1 + \ln \left(\frac{2}{e_i + e_j} \right).
\]
By taking the summation over the edges of the graph, we get
\[
H_e(G) \geq m + \sum_{v, v_j \in E} \ln \left(\frac{2}{e_i + e_j} \right)
\]
\[= m + \ln \left(\prod_{v, v_j \in E} \frac{2}{e_i + e_j} \right)
\]
\[\geq m + \ln \left(\frac{1}{(\text{diam}(G))^m} \right)
\]
\[= m - m \ln (\text{diam}(G)).
\]
Hence,
\[
H_e(G) \geq m(1 - \ln (\text{diam}(G))).
\]

To show the equality, let \(f(x) = 0, \) then \(x = 1. \) So \(\frac{2}{e_i + e_j} = 1, v, v_j \in E. \) Hence \(e_i + e_j = 2, \) which holds if and only if \(e_i = e_j = 1 \) for all \(i, j = 1, \ldots, n. \) Thus \(G \) is complete.

Theorem 3.3. Let \(G \) be a graph with \(n \) vertices \(n \geq 2 \) and \(m \) edges. Then
\[
H_e(G) \geq 2m - \frac{\xi_e(G)}{2}
\]
with equality holds if and only if \(G \) is a complete graph.

Proof. Let \(G \) be a graph of order \(n, n \geq 2 \) and size \(m. \) Assume the function \(f(x) = x + \frac{1}{x} - 2. \) Easy calculations gives \(f(x) \geq 0. \)

Thus, for \(v, v_j \in E \)
\[
\frac{2}{e_i + e_j} + \frac{1}{2} - 2 \geq 0.
\]
By taking the summation over the edges of the graph \(G, \) we get
By Cauchy-Schwarz inequality we obtain,

\[H_e(G) + \frac{\xi_c(G)}{2} - \sum_{v \neq w \in E} 2 \geq 0. \]

Hence,

\[H_e(G) \geq 2m - \frac{\xi_c(G)}{2}. \]

To show the equality, let \(f(X) = 0 \), then \(x = 1 \). The rest of the proof is similar to that in Theorem 3.2.

Theorem 3.4. Let \(G \) be a graph with \(n \geq 2 \) vertices and \(m \) edges. Then

\[H_e(G) \leq H_e(K_n). \]

Proof. Let \(G \) be a graph of order \(n \), \(n \geq 2 \) and size \(m \). Then for \(v, w \in E \)

\[\frac{2}{e_i + e_j} \leq 1. \]

By taking the summation over the edges, we get

\[H_e(G) \leq m \]

with equality holds if and only if \(G = K_n \). Thus

\[H_e(G) \leq m = H_e(K_n). \]

Theorem 3.5. Let \(G \) be a graph with \(n \geq 2 \) vertices and \(m \) edges. Then

\[H_e(G) \leq \frac{2m^2}{\xi_c(G)} \tag{3.1} \]

The bound is sharp and the self-centered graph satisfies it.

Proof. Let \(G \) be a graph of order \(n \geq 2 \), and size \(m \). By Cauchy-Schwarz inequality we obtain,

\[
\left(\sum_{v, w \in E} \frac{2}{e_i + e_j} \sqrt{\frac{e_i + e_j}{2}} \right)^2 \leq \sum_{v, w \in E} \left(\frac{e_i + e_j}{2} \right)^2 \sum_{v, w \in E} \left(\frac{2}{e_i + e_j} \right)^2. \tag{3.2}
\]

Thus, 3.2 becomes

\[m^2 \leq \sum_{v, w \in E} \frac{e_i + e_j}{2} \sum_{v, w \in E} \frac{2}{e_i + e_j} \}

\[= \frac{1}{2} \xi_c(G)H_e(G). \]

Hence,

\[H_e(G) \geq \frac{2m^2}{\xi_c(G)}. \]

To show that the inequality is sharp, let \(G \) be a self-centered graph with \(\text{diam}(G) = r \). Then

\[H_e(G)\xi_c(G) = \sum_{v, w \in E} \frac{2}{e_i + e_j} \sum_{v, w \in E} e_i + e_j \]

\[= \sum_{v, w \in E} \frac{2}{2r} \sum_{v, w \in E} 2r \]

\[= \frac{1}{r} m2rm \]

\[= 2m^2. \]

On the other hand, let

\[H_e(G)\xi_c(G) = m^2. \tag{3.3} \]

Also we have

\[\frac{r}{\text{diam}(G)} m^2 \leq H_e(G) \frac{\xi_c(G)}{2} \leq \frac{\text{diam}(G)m^2}{r} \tag{3.4} \]

and 3.4 is sharp if and only if \(r = \text{diam}(G) \). Thus, by using 3.3 the result follows.

In case of \(G \) is a tree of order \(n \) and size \(m \), we find that the maximum eccentric harmonic index holds for the star. The following theorem explains this.

Theorem 3.6. Let \(T \) be a tree with \(n \) vertices and \(m \) edges. Then

\[H_e(T) \geq \frac{2}{3} m \]

with equality holds if and only if \(T = S_{1,n-1} \)

Proof. Let \(T \) be a tree of order \(n \) and size \(m \). Then we assume the following cases.

Case 1. There exist \(v_i \in V(T) \) such that \(d(v_i) = n - 1 \), then \(T = S_{1,n-1} \) and hence \(e_i = 1, e_j = 2 \) for all \(j = 1, 2, \ldots, i-1, i+1, \ldots, n \). Thus

\[H_e(T) = H_e(S_{1,n-1}) = \sum_{v, w \in E} \frac{2}{e_i + e_j} = \frac{2}{3} m. \]

Case 2. There is no such \(v_i \) with \(d(v_i) = n - 1 \), then \(e_i \geq 2 \) for all \(i = 1, 2, \ldots, n \). So, \(e_i + e_j \geq 4 \) for all \(v, w \in E \).

Hence,

\[H_e(T) \leq \frac{1}{2} m < \frac{2}{3} m. \]

\[\square \]

Acknowledgment

The authors would like to thank the editors and reviewers of Arab Journal of Basic and Applied Sciences for their healthy comments and suggestions in this paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

National Institute on Aging (US).
References

Borovičanin, B., & Furtula, B. (2016). On extremal Zagreb indices of trees with given domination number. *Applied Mathematics and Computation*, 279, 208–218. doi:10.1016/j.amc.2016.01.017

Das, K. C. (2010). On comparing Zagreb indices of graphs. *MATCH Communications in Mathematical and in Computer Chemistry*, 63(2), 433–440.

Das, K. C., Gutman, I., & Furtula, B. (2011). Survey on geometric-arithmetic indices of graphs. *MATCH Communications in Mathematical and in Computer Chemistry*, 65(3), 595–644.

Deng, H., Balachandran, S., Ayyaswamy, S. K., & Venkatakrishnan, Y. B. (2013). On the harmonic index and the chromatic number of a graph. *Discrete Applied Mathematics*, 161(16-17), 2740–2744. doi:10.1016/j.dam.2013.04.003

Faštlowicz, S. (1987). On conjectures of graffiti-II. *Congressus Numerantium*, 60, 187–197.

Gutman, I., & Furtula, B. (2008). *Recent results in the theory of Randić index*. Kragujevac, Serbia: University Kragujevac.

Harary, F. (1969). *Graph theory*. Reading, MA: Addison-Wesley Publishing Co.

Hernández-Gómez, J., Mndez-Bermúdez, J., Rodríguez, J., & Sigarreta, J. (2018). Harmonic index and harmonic polynomial on graph operations. *Symmetry*, 10(10), 456. doi:10.3390/sym10100456

Li, X., & Gutman, I. (2006). Mathematical aspects of Randić-type molecular structure descriptors. Kragujevac, Serbia: University of Kragujevac.

Li, J., & Shiu, W. C. (2014). The harmonic index of a graph. *Rocky Mountain Journal of Mathematics*, 44(5), 1607–1620. doi:10.1216/RMJ-2014-44-5-1607

Randić, M. (1975). On characterization of molecular branching. *Journal of the American Chemical Society*, 97, 6609–6615.

Rodríguez, J. M., & Sigarreta, J. M. (2017). New results on the harmonic index and its generalizations. *MATCH Communications in Mathematical and in Computer Chemistry*, 78, 387–404.

Sharma, V., Goswami, R., & Madan, A. K. (1997). Eccentric connectivity index: A novel highly discriminating topological descriptor for structure- property and structure- activity studies. *Journal of Chemical Information and Computer Sciences*, 37(2), 273–282. doi:10.1021/ci960049h

Shwetha Shetty, B., Lokesha, V., & Ranjini, P. S. (2015). On the harmonic index of graph operations. *Transactions on Combinatorics*, 4(4), 5–14.

Wiener, H. (1947). Structural determination of paraffin boiling points. *Journal of the American Chemical Society*, 69(1), 17–20. doi:10.1021/ja01193a005

Wu, R., Tang, Z., & Deng, H. (2013). A lower bound for the harmonic index of a graph with minimum degree at least two. *Filomat*, 27(1), 51–55. doi:10.2298/FIL1301051W

Zhong, L. (2012). The harmonic index for graphs. *Applied Mathematics Letters*, 25(3), 561–566. doi:10.1016/j.aml.2011.09.059