Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4–16.5%) of the global population but alleviating it for another 8.3% (6.4–15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.
Socioeconomic developments increasingly put pressure on our global freshwater resources, thereby increasing water scarcity, that is, the temporal deficits in freshwater resources compared with anthropogenic and environmental demands. Over the past 100 years, human water demand increased almost 8-fold due to the quadrupling of the global population, increases in per capita food demands and rising standards of living. Increasing volumes of water are needed to feed the global population and to drive local and global economies. To keep up with these growing demands, large-scale human interventions (HI) have taken place: land use and land cover change (LULCC), including irrigation to increase food productivity; dams and reservoirs to control the timing of streamflow; and water withdrawals from surface water bodies and groundwater to fulfill water demands. Although these HI are targeted at local to regional scales, they are known to impact the hydrological cycle and can affect streamflow on larger scales, such as in downstream areas. For example, earlier work has shown that land use conversions from forest to cropland increase river discharge, whereas irrigation increases local runoff but decreases basin-wide runoff due to increased evapotranspiration rates. Moreover, upstream water withdrawals from the streamflow may decrease water availability for downstream use, and dams and reservoirs can severely alter the timing of low- and high-flows. Having insight in the impacts of HI can help water managers to highlight locations where HI have been beneficial from a water resources perspective. Moreover, it can help to identify regions where there is still room for expansion and/or intensification of HI, given the historic and future increases in water and food demand, and the expected changes in climate conditions. Such insights also allow us to identify regions where a more optimal incorporation of HI is required in the socio-hydrological system.

The allocation of shared water resources between upstream and downstream regions has a prominent place on the global science-policy agenda, given the fact that transboundary rivers and lakes cover almost half of the global land area and are home to ~40% of the global population. Sharing water resources creates interdependencies that may lead to cooperative or conflictive events, although evidence of causality is limited. The development of event databases such as the Transboundary Fresh Water Dispute Database, the Water Conflict Chronology and the ICOW River Claims Data Set enable a more systematic assessment of water conflict and resolution processes, and provide insights into the effectiveness of cooperative arrangements. Despite the widespread recognition of the importance of upstream–downstream interactions within river basins, only limited quantitative research has been performed to unravel and understand the dominant drivers of change, linking different types of HI with water scarcity and (increased) exposure to water scarcity. At the same time, unequal impacts of upstream–downstream water use on downstream water scarcity at a yearly scale, this study incorporates different types of HI, namely LULCC, dam and reservoir operations, and upstream water consumption, and compares their impacts on freshwater availability and water scarcity to the trends in climate change impacts. The central aim of this study is therefore to quantify how HI have altered the critical dimensions of water scarcity, including the average duration, occurrence and severity of water scarcity; to evaluate whether, and to what extent, HI have led to a reshuffling of water scarcity hotspots, leading to changes in the exposure to water scarcity events; and to assess how HI over time contribute to or dominate over the trend in climate change impacts.

To do this, we performed a scenario analysis using monthly water resources simulations at a 0.5° × 0.5° (~50 × 50 km at the equator) spatial resolution for the period 1971–2010 reflecting conditions of no HI (NHI) and time-varying HI (see Methods). This study uses an ensemble of five state-of-the-art global hydrological models (GHMs) allowing for robust estimates: H08 (refs 40, 42), LPJmL43,44, MATSIRO45, PCR-GLOBWB46,47 and WaterGAP48. Each of the GHMs was driven by three global state-of-the art observation-based historical climate datasets: PGFv2 (ref. 48), GSWP3 (http://hydro.iiss.u-tokyo.ac.jp/GSWP3) and WFD/WFDEI49. The GHMs were also forced by a set of socioeconomic parameters to model historical demands: gross domestic product (GDP), population density, livestock density, land use and land cover. In this study, we used the HYDE 3—MIRCA data set50,51, assembled following Fader et al.52, for simulating the changes in irrigation and/or cropland patterns over time and their time-varying impacts on water availability and water scarcity. We introduced a spatially and temporally explicit measure of the minimum environmental flow requirement, that is, a rough global estimate of water that ecosystems need to sustain healthy conditions. By combining this with our seasonal assessment of water availability and water scarcity, accounting for seasonal variability and regional variation at a high spatial resolution, we were able to develop an updated Water Scarcity Index (WSI). This index provides a more meaningful indicator for water scarcity at the seasonal scale than those used in past studies, as it reflects both the human and environmental water need. In doing so, we build upon the latest insights from previous hydrologic research, and translate its implications into the domain of water scarcity and exposure to water scarcity events.

Our results show that HI substantially changed the critical dimensions of water scarcity between 1971 and 2010, reshuffling hotspots of water scarcity and causing a distinct pattern of beneficiaries and losers, involving more than one-third of the global population. Large differences between upstream and downstream regions exist under the limited net global impact of HI, causing water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A systematic deliberation of the spatially and temporally varying interactions among HI components and of uncertainties is therefore needed when adapting to water scarcity by HI.

Results

Impacts of HI at the global scale. HI employed to maximize the utilization of water resources have significantly changed the local water availability over the period 1971–2010 (Fig. 1 and Table 1). Although on average 20.4% (16.6–29.1%) of the global population (2010 values) experienced a significant increase in water availability due to the implementation of HI, 23.7% (18.6–39.0%) experienced a significant decrease. Consequently, HI significantly altered the critical dimensions of water scarcity (average duration, occurrence and severity) and caused a substantial reshuffling of those exposed to water scarcity, affecting a considerable share of the global population. One-third of the global population (2010) experienced a significant increase in the average duration (20.1–42.7% of the global population) and occurrence (14.4–50.4%) of water scarcity events, respectively, whereas significant decreases in average duration and occurrence due to HI were felt by 24.8% (19.0–26.4%) and 20.7% (19.4–26.8%). Whereas HI alleviated water scarcity conditions, on average, for 8.3% (6.4–15.8%) of the global population and caused 2.9% (2.2–4.5%) to move out of water scarcity, it...
resulted in aggravated water scarcity conditions for 8.8% (7.4–16.5%) and drove 3.0% (2.3–6.7%) of the population into water scarcity. As a net result, HI slightly increased (+1.2%) the global exposure of population to water scarcity. Using estimates of the relative location of impacted regions within the river basin, we find that the positive impacts of HI mostly occur in upstream areas, whereas areas located further downstream are more often impacted negatively (Fig. 2 and Table 2). For example, those populations who moved out of water scarcity due to HI have, on average, a relatively lower fraction of upstream area (0.16–0.28) compared with those who moved into water scarcity (0.23–0.35). As a result, HI caused water scarcity globally to travel downward through river basins (Fig. 2b).

Impacts of HI at the regional scale. Although the absolute numbers vary, we find the same overall patterns for most of the river basins studied in detail. Although the net impact of HI on the critical dimensions of water scarcity is often close to zero (Supplementary Fig. 1), populations of most basins either experienced increasing or decreasing water availability due to implementation of HI (Supplementary Fig. 2) and a substantial share of the population moved in or out of water scarcity (Supplementary Fig. 3). Moreover, a significant share of the population experienced a change in the average duration, occurrence and severity of water scarcity due to HI (Supplementary Figs 4 and 5). The mutual differences across the different basins with respect to the share of population being exposed to (i) an alleviation/aggravation of water scarcity conditions, (ii) movement in/out of water scarcity or (iii) significant increases/decreases in water availability can partly be clarified by the initial pressure on the available water resources under the NHI conditions. For example, a relative high share of the population in the Ganges–Brahmaputra and the Indus basin lived already in (deep) water scarce conditions and implementation of HI led predominantly to an aggravation/alleviation of these conditions. In contrast, we find that a relatively large share of the population living in the Huang He basin moved into water scarcity due to HI, whereas significant aggravations of water scarcity conditions of those living already in water scarcity conditions were experienced to a lesser extent. For the Amazonas and Congo basin, we find only limited impacts of HI on the availability of water resources, with even lower effects on the critical dimensions of water scarcity. This can be explained by the relatively low rate of HI in these basins, combined with a relatively low pressure on the available water resources in major parts of these basins. Similar to the global results, movements into water scarcity due to HI are predominantly found in more downstream regions, whereas people moving out tend to live in relatively upstream areas (Supplementary Fig. 6). This regional divide can be seen in most river basins, apart from the Paraná and the Volga, where those moving into water scarcity live relatively more upstream. An interesting pattern that is hidden in the globally aggregated numbers is that exposure to water scarcity in the majority of the river basins studied shows a distinct seasonal pattern. For example, our results show a clear seasonal pattern with relatively high exposure to water scarcity in Asia (for example, Ganges–Brahmaputra and Huang He) during the northern Hemisphere spring, before the onset of the rainy season, and high exposure to water scarcity in European and American basins (for example, Mississippi, Rhine and Paraná) during the northern Hemisphere summer and autumn (Supplementary Fig. 2). The impacts of HI follow this seasonal pattern in most river basins, with highest impacts in those months with the highest pressure on the available water resources.

Dominant drivers of change at the global and regional scale. Changes in the availability of water resources are driven by multiple mechanisms, of which its dominance varies across basins.
Table 1 shows the global long-term mean share of the global population exposed to water scarcity under the HI run; the net change in exposure to water scarcity (% of the global population) due to HI; the long-term mean share of the global population that moves into/out of water scarcity due to HI; the long-term mean share of the global population that already lives in water scarcity and experiences a significant aggravation/alleviation of its water scarcity conditions due to HI; the long-term mean share of the global population that experiences significant increases/decreases in water availability due to HI; and the long-term mean share of the global population that experiences significant increases/decreases in average duration and occurrence of water scarcity due to HI. The results presented in the table show the ensemble medians per global hydrological model or over the full ensemble, with the interquartile ranges (q25,q75) between brackets.
and seasons. Identifying the main driver (LULCC including the increase of local runoff due to irrigation and reservoirs versus upstream water consumption) of HI impacts as well as its origin (being triggered locally or in upstream areas) reveals that incoming discharge is the dominant origin of HI impacts for 61.8% (46.1–72.0%) of the global population (Fig. 3 and Table 3). In regions being impacted negatively by HI the dominance of incoming discharge is even higher (on average 87.2% of the population), which highlights the dependency of these areas on human actions and decisions being taken upstream. In contrast,
availability in the Paraná basin year-round (Supplementary LULCC and reservoir operations dominate the change in water for the Huang He and Ganges–Brahmaputra basin, respectively, driver of changes in water availability in May and December Figs 7–9). Whereas upstream water consumption is the dominant driver of change, being dominant in regions inhabited by almost half of the global population (42.0%).

The earlier observed global dominance in drivers of change is, however, not spatially uniform (Fig. 4 and Supplementary Figs 7–9). Whereas upstream water consumption is the dominant driver of changes in water availability in May and December for the Huang He and Ganges–Brahmaputra basin, respectively, LULCC and reservoir operations dominate the change in water availability in the Paraná basin year-round (Supplementary Fig. 7). Incoming discharge is relatively more often the dominant origin of change in regions that experience decreases in water availability due to HI (Supplementary Fig. 8); significant decreases in water availability due to HI (b); and significant increases in water availability due to HI (c).

Table 3 | Dominant driver of significant changes in water availability due to HI and its origin.

Dominant driver	Ensemble-median (WA dec/WA inc)	HO8 (WA dec/WA inc)	LPJmL (WA dec/WA inc)	MATSIRO (WA dec/WA inc)	PCR-GLOBWB (WA dec/WA inc)	WaterGAP (WA dec/WA inc)
Local runoff: LULCC & reservoir operations	38.2 (12.8/50.6)	28.0 (0/48.9)	29.1 (0.8/46.3)	38.6 (38.0/42.3)	42.2 (12.6/82.9)	53.9 (49.4/64.3)
Local runoff: Upstream water consumption	61.8 (87.2/49.4)	72.0 (100/51.1)	70.9 (99.2/53.7)	61.4 (62.0/57.7)	57.8 (87.4/17.1)	46.1 (50.6/35.7)
Local runoff	78.1 (58/100)	74.5 (40/100)	81.3 (49.5/100)	67.2 (59/100)	82.6 (68.7/100)	77.6 (68.1/100)

Table 3 shows for the full ensemble and per global hydrological model (GHM) the share of the global population that has local runoff or incoming discharges as dominant origin of changes in water availability due to HI. It also summarizes which share of the population (median values) has LULCC and reservoir operations or upstream water consumption as dominant driver of changes in water availability, and significant increases in water availability and their associated dominant driver of change as well as its origin. The results presented in the table show the ensemble medians per GHM or over the full ensemble, with the interquartile ranges (q25,q75) between brackets.

in regions being positively affected by the implementation of HI (increasing water availability), local runoff acts as the dominant trigger of change (50.6% of the population), highlighting the relative self-sufficiency—and its positive consequences—of these regions in managing their water resources. Reservoir operations and LULCC are the dominant drivers of all HI-driven changes in water availability in regions inhabited by 78.1% (77.6–82.6%) of the global population. At the same time, we find that upstream water consumption is a dominant driver of change in regions inhabited by 21.9% of the global population only. Focusing on the negative impacts of HI only, we find, nevertheless, that upstream water consumption becomes significantly more important as a driver of change, being dominant in regions inhabited by almost half of the global population exposed (42.0%).

The earlier observed global dominance in drivers of change is, however, not spatially uniform (Fig. 4 and Supplementary Figs 7–9). Whereas upstream water consumption is the dominant driver of changes in water availability in May and December for the Huang He and Ganges–Brahmaputra basin, respectively, LULCC and reservoir operations dominate the change in water availability in the Paraná basin year-round (Supplementary Fig. 7). Incoming discharge is relatively more often the dominant origin of change in regions that experience decreases in water availability due to HI (Supplementary Fig. 8); especially when compared with those areas where HI impacts water availability positively (Supplementary Fig. 9). Increases in water availability are controlled by reservoir operations and LULCC in all river basins, although its dominant origin differs from region to region (Supplementary Fig. 9). If we only examine the influence of reservoir operations and LULCC on the critical dimensions of water scarcity, we find a net decrease in the global population exposed to water scarcity and decreases in the average duration and occurrence of water scarcity for a relatively higher share of the global population, compared to the impacts of all HI together (Supplementary Figs 10 and 11). Nevertheless, still a substantial portion of the population experienced a significant aggravation of its water scarcity conditions, or a movement into water scarcity (Supplementary Figs 12–14), also when we only examine the impact of these two forms of HI.

Compared with those regions with a significant trend in climate change impacts on water resources over 1971–2010, affecting on average 12.1% of the global population, we find, finally, that HI impacts contributed or dominated the change in water resources over time in a significant part of the globe, inhabited by 8.2% and 1.5% of the global population, respectively (Table 4). In addition, HI impacts significantly changed the availability of water resources over time in regions not exposed to a significant trend in climate change impacts, affecting an extra 6.3% of the global population. Also here, significant differences exist in the global distribution of dominant trends and impacts between August and December (Fig. 5). For example, when looking at the relative influence of HI impacts on the availability
of freshwater resources in India, the Middle East region, Australia or Latin America between August and December.

Sensitivity to the choice of model and forcing data. The GHMs used in this study show a relative constant modelling spread in outcomes for each of the analysis performed (Tables 1–4). Whereas MATSIRO presents the high-end outcomes in all cases, the result of the other GHMs are more closely related, for example, with respect to the long-term mean exposure to water scarcity events of different forcing data sets, as shown by the relatively large differences presented for each of its outcomes.

When looking at the impact of HI we find that almost all results per GHM show to be significantly different from zero, irrespectively of the GHM used (Table 1). The impacts of HI are globally significant, both with respect to the changes in water availability, as well as regards the changes in exposure to water scarcity (movement in/out, aggravation/alleviation), and the changes in average duration and occurrence of water scarcity events. Only the estimated net changes in exposure to water scarcity as a result of HI show ambiguous outcomes, with the interquartile ranges varying from negative to positive values. This can be explained by the variation in estimated net effects between the different GHMs studied and forcing data sets used. For a majority of GHMs (PCR-GLOBWB, WaterGAP and MATSIRO), we find, on average, a relative higher share of the global population that experienced significant decreases in water availability, an alleviation of water scarcity conditions, a movement into water scarcity or an increase in the persistence of water scarcity events due to HI. H08 and LPJmL, on the other hand, show a relative higher share of the global population for

Table 4 | Relative influence of HI on changes in water availability over 1971–2010 compared with the trend in climate change impacts.

	Ensemble-median (q25–q75)	H08 (q25–q75)	LPJmL (q25–q75)	MATSIRO (q25–q75)	PCR-GLOBWB (q25–q75)	WaterGAP (q25–q75)
Sign. climate change impact trend on water availability	12.1 (7.6–15.6)	7.5 (6.1–11.0)	7.0 (6.1–8.6)	16.1 (13.1–18.0)	15.0 (13.8–15.6)	10.2 (8.5–15.5)
HI contributing to the climate change impact trend	8.2 (6.2–12.1)	6.1 (5.2–9.0)	5.7 (5.1–7.0)	10.7 (8.8–12.1)	12.3 (11.5–13.6)	7.8 (6.7–12.4)
HI dominating the climate change impact trend	1.5 (0.9–3.2)	1.1 (0.7–1.5)	0.9 (0.6–0.9)	5.4 (4.2–5.9)	1.4 (1.0–1.9)	2.4 (1.7–3.2)
Sign. climate change impact trend only	0.3 (0.0–0.7)	0.3 (0.3–0.5)	0.4 (0.4–0.7)	0.0 (0.0–0.1)	0.8 (0.7–0.8)	0.0 (0.0–0.0)
Sign. HI impact trend only	6.3 (5.4–8.3)	6.3 (5.8–6.8)	5.8 (5.5–6.0)	9.5 (8.5–9.9)	3.5 (3.4–3.5)	8.4 (7.3–8.8)

HI, human intervention.

Table 4 shows for the full ensemble and per global hydrological model (GHM) the share (% of 2010 population values) of the global population exposed to a significant trend in climate change impacts on water availability over the period 1971–2010. Moreover, it shows the share of global population living in areas where HI contribute or dominate this trend. Finally, it shows the share of global population living in areas with only a significant climate change impact trend or only a significant HI impact trend. The results presented in the table show the ensemble medians per GHM or over the full ensemble, with the interquartile ranges (q25, q75) between brackets.
which HI caused an increase in water availability, an alleviation of water scarcity conditions, a movement out of water scarcity or a decrease in the persistence of water scarcity events.

All GHMs depict changes in incoming discharges to be the largest source of decreases in water availability due to HI (Table 3), thereby providing robustness to the ensemble-median result. Local runoff as the source of change becomes significantly more dominant in all GHMs when looking at the increases in water availability due to HI only, with PCR-GLOBWB and WaterGAP, indicating here the changes in local runoff to be dominant in a slight majority of the globe. Reservoir operations and LULCC were perceived by all GHMs to be the dominant driver of changes in water availability due to HI. Although reservoir operations and LULCC drive the increases in water availability due to HI in all GHMs, they dominate the decreases in water availability for a majority of the globe in LPJmL, MATSIRO, PCR-GLOBWB and WaterGAP. Only in H08, upstream water consumption becomes a dominant influence in a majority of the globe when looking at the decreases in water availability due to HI. As reflected by the ensemble-median results, upstream water consumption becomes, nevertheless, in each of the GHMs a significantly more important driver of change when looking at the decreases in water availability only compared to all changes in water availability.

Each of the GHMs indicate, finally, that HI contribute significantly to the trend in climate change impacts over the past 40 years, affecting 5.7% (LPJmL) to 12.3% (PCR-GLOBWB) of the global population (Table 4). At the same time, we find that

Figure 5 | Relative influence of HI compared with the trend in climate change impacts. Figure 5 shows the spatial and seasonal variation in the relative influence of HI as driver of changes in water availability over the period 1971–2010, compared with the climate change impact trend. Here we show per area the number of model combinations with: a significant climate change impact trend on water availability only (a,b); HI contributing to the climate change impact trend on water availability (c,d); HI dominating over the climate change impact trend on water availability (e,f); and a significant HI trend only (g,h). Results are shown separately for the months August (a,c,e,g) and December (b,d,f,h).
HI dominate over the climate change impacts trend in regions, inhabiting 0.9% (LP)/mL to 5.4% (MATSIRO) of the global population. These cross-model variations can be explained partly by the differences in areas with a significant climate change impact trend. Whereas only 7–7.5% of the global population experienced a significant change in climate change impacts over time according to H08 and LP/mL, results are substantially higher for PCR-GLOBWB (15.0%) and MATSIRO (16.1%).

Discussion
This research is the first to provide insights on the impacts of HI (individually and altogether) on water scarcity over time, by evaluating how HI have influenced the critical dimensions of water scarcity, whether and to what extent they have led to a reshuffling of water scarcity hotspots and who are winners or losers. Using time-varying information on dam and reservoir operations, LULCC and water demands, our study identified for the first time the dominance of different drivers and sources of change, and compared them with the trend in climate change impacts. By introducing a spatially and temporally explicit measure of minimum environmental flows, combined with the inclusion of seasonality, our water scarcity estimates are more realistic and significantly lower than the monthly results presented in previous studies. Although Wada et al. and Mekonnen et al. applied spatially and temporally uniform environmental flow requirements and assumed that all people who experience water scarcity experience it at the same point in time, our results show a clear seasonal pattern for the majority of the river basins studied. It must be acknowledged, however, that this seasonal approach limits our analysis to the fluxes (runoff and discharge) of the hydrological cycle, whereas a long-term equilibrium was assumed for the storage components (lakes, aquifers and sub-surface reservoirs). In this study, we assume that all water is taken out from the river and that water users do not have the opportunity to take water from the lakes and groundwater. As a result we underestimate water availability in those regions that heavily rely on these storage components and we therefore expect the water scarcity numbers to be lower in reality. The multi-model framework of this study allowed for more robust estimates compared to previous studies executed in a single-model setting.

Our results demonstrate that HI implemented throughout the period 1971–2010 have led to substantial changes in the critical dimensions of water scarcity and significantly reshuffled global water scarcity hotspots. Although the net impact of HI on the human exposure to water scarcity appears limited at the global scale, we show that large spatial differences underlie this result. In most regions, substantial parts of the population face aggravated water scarcity conditions due to HI or move into water scarcity, although others encounter alleviations or move out of water scarcity. We also find that HI increase the average duration of water scarcity events affecting a significant share of the global population. The analysis of the dominant sources and drivers of changes in the availability of water resources highlights that those regions negatively affected by HI are located on average further downstream in river basins than areas being impacted positively, whereas they rely predominantly on actions taken upstream. This leads globally to water scarcity travelling downstream due to HI. The found spatial and seasonal variation in the dominant driver and sign (positive/negative) of HI impacts illustrate, however, that HI attribution to changes in water availability and water scarcity is complex, and that the found relations should not be considered to be homogeneous through time. This emphasizes a thorough consideration of such interactions throughout the process of design and implementation of water scarcity adaptation. The modelling spread that underlie our results is, moreover, a call for the different global models to further investigate the incorporation of HI in their modelling framework, thereby accounting for possibly interaction effects and feedback linkages.

Foreseen changes in climate change and socioeconomic developments are expected to amplify the observed trends and to reinforce the observed pattern of winners and losers. HI may alleviate/aggravate, on the one hand, the vulnerability to climate change and climate variability, especially in those regions that experience significant increases/decreases in water availability due to HI. Climate change, climate variability and changes in local water demands, on the other hand, may significantly strengthen/weaken the HI impacts in future time periods by putting more/less pressure on the water resources. Our results show a significant trend in hydro-climatic impacts on water availability over the period 1971–2010 for a substantial part of the globe, with on average 12.1% of the global population being exposed. HI impacts significantly contributed to or even dominated these historical trends in regions inhabiting 9.7% of the global population. In addition, 6.3% of the global population experienced significant changes in water resources over time due to HI only. Being sensitive to changes in either climate change, HI and/or local water demands can have substantial implications for the choices being made in the design of adaptation strategies to cope with current and future water scarcity. For example, by focusing on decreasing water demands via technical (for example, increasing efficiency), regulatory (for example, quota) or market-based measures (for example, water pricing), by targeting the increase of water supply (for example, desalination, reservoirs, water transfers and renewable groundwater) or by making sure water resources are being allocated in an equitable, sustainable way (for example, treaties). Such water management decisions should not be taken in isolation, as our study shows that the consequences of upstream measures and activities can be far-reaching in downstream areas. Coping with local problems related to the ongoing increases of human pressures on water resources therefore requires a higher level—regional or global—understanding of both the underlying mechanisms and drivers, their origin and their potential effects.

Apart from that, economic impacts, costs, but also societal perception and political willingness in decision-making processes determine greatly the local adaptation space to cope with water scarcity and often prioritize focus areas and actions being undertaken. Its complexity (incorporation of feedback loops between nature and society, and vice versa), its specific model requirements (coupling GHMs with economic welfare models, partial-equilibrium models or agent-based models) and its specific information needs (behavioural economics) require a thorough development of our global modelling principles and involve extensive research. This prohibits—at this moment—such a study at the global scale. Given its importance and necessity, we do encourage research to take this direction to facilitate studies to any of these human-nature interactions and its societal impacts in a fully integrated manner.

Methods
Testing the impact of HI on water scarcity. In this study we evaluated how time-varying HI affected water availability and water scarcity conditions in the late twentieth and early twenty-first century, how they influenced the critical dimensions of water scarcity and how they reshuffled water scarcity hotspots. To this end, we performed a scenario analysis to compare gridded (0.5° x 0.5°) monthly estimates of water availability and water scarcity conditions from the NHI run with those from a (time-varying) HI (HI) run, including the impacts of LULCC, reservoir and dam operations and upstream water consumption, altogether and separately.

Hydrological data under the ISI-MIP Phase 2 framework. An ensemble of 15 model combinations (5 GHMs forced by 3 observation-based historical climate
data sets, Supplementary Table 1) was used to evaluate for each ensemble member individually the impact of HI on water availability and water scarcity. Subsequently, we calculated ensemble median values and presented these results together with the modelling spread. The GHMs used in this analysis are: H08,41,42, LPML43,44, MATSIRO45, PCR-GLOBWB46,47 and WaterGAP.48 Each of these GHMs was forced with daily/three hourly (MATSIRO) inputs from three observation-based historical climate data sets, Supplementary Table 1) was used to evaluate for each ensemble member the impact of HI on water availability and water scarcity. The results presented here to the monthly availability of water in rivers, which consists of the locally generated runoff in each 0.5° × 0.5° grid cell and the incoming discharge from upstream cells being diminished with the upstream water consumption. In doing so, we only account for the water fluxes (streamflow, (sub-)surface runoff and baseflow) in our analysis and assume a long-term equilibrium in the storages of the hydrological system (such as lakes, aquifers and sub-surface flow). For each month the trend in HI impact on water availability over the period 1971–2010 was estimated by comparing the upstream area of a specific impact location was visualized.

Testing the sensitivity of results. Using an ensemble of 15 model-combinations (9 for GLOWBWB) and 3 forcing datasets, it was found that the global patterns of water scarcity conditions, the exposure to and average duration of water scarcity events, and the underlying changes in water availability, allows not only to make more robust estimates compared with a single-model study, it also enables the evaluation of modelling uncertainties. The results presented here in graphs of the main body of text concern the ensemble median (q50) values together with their interquartile ranges (q25–75). Gridded results were presented if the found signal was consistent and significant for a majority (>70%) of the model combinations, otherwise the number of model combinations with a significant signal was visualized.

Data availability. The hydrological data sets used in this study are generated under the framework of phase 2 of the ISI-MIP project and will be made available publicly via www.isimip.org. The historical climate data sets that have been used to force the GHMs (WW3, GSWP3 and WEF/WEFDE4)—IRICA data-set describing the historical changes in land use and land cover, and the Grand database that describes the historical development in dams and reservoirs can be downloaded from www.isimip.org.

References

1. Raskin, P., Gleick, P., Kirshen, P., Pontius, G. & Strzepek, K. Comprehensive Assessment of the Freshwater Resources of the World (Stockholm Environment Institute, Stockholm, Sweden, 1997).
2. Wada, Y. et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFAss) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).
3. Falkenmark, M. Meeting water requirements of an expanding world population. Philos. Trans. R Soc. Lond. B Biol. Sci. 352, 929–936 (1997).
4. Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environ. Change 23, 144–156 (2013).

5. Shiklomanov, I. A. Appraisal and assessment of world water resources. Water Resour. Int. 25, 11–32 (2000).

6. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. R. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

7. Wada, Y., Van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 034036 (2013).

8. Biemans, H. et al. Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Wat. Resour. Res. 47, W03509 (2011).

9. Döll, P., Friedler, K. & Zhang, J. Global-scale analysis of river flow alterations due to water withdrawals and reservoirs. Hydrol. Earth Syst. Sci. 13, 2413–2432 (2009).

10. Haddeland, I., Skaugen, T. & Lettenmaier, D. P. Anthropogenic impacts on continental surface water fluxes. Geophys. Res. Lett. 33, L08406 (2006).

11. Haddeland, I., Skaugen, T. & Lettenmaier, D. P. Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci. 11, 1035–1045 (2007).

12. Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

13. Müller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).

14. Mutanga, H. et al. Water stress in global transboundary river basins: significance of upstream use on downstream stress. Environ. Res. Lett. 11, 014002 (2016).

15. Rost, S. et al. Agricultural green and blue water consumption and its influence on the global water system. Water Resour. Res. 44, W09405 (2008).

16. Vörösmarty, C. J., Hookstra, A. Y., Bunn, S. E., Conway, D. & Gupta, J. Fresh water goes global. Science 349, 478–479 (2015).

17. Wada, Y., Van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in current and future ‘business-as-usual’ conditions. Proc. Natl Acad. Sci. USA 112, 4503–4508 (2015).

18. Kang, X. et al. Global monthly water scarcity: blue water footprints versus blue water availability. Hydrol. Earth Syst. Sci. 18, 4539–4559 (2014).

19. Alcamo, J., Flörke, M. & Märker, M. Future long-term changes in global water resources—a socio-economic perspective. Water Policy 1, 251–265 (1998).

20. Klein, A. T. Criteria for equitable allocations: the heart of international water conflict. Nat. Resour. Forum 23, 3–30 (1999).

21. Haddeland, I. et al. Anthropogenic impacts on the global water system. Water Resour. Res. 52, 7841–7858 (2016).

22. Kundzewicz, Z. W. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 15, 201–223 (2011).

23. Wada, Y., Van Beek, L. P. H. & Bierkens, M. F. P. Global monthly water stress: I. Water balance and water availability. Water Resour. Res. 47, W07517 (2011).

24. Van Beek, L. P. H., Wada, Y. & Bierkens, M. F. P. Global monthly water stress: II. Water balance and water availability. Water Resour. Res. 47, W07518 (2011).

25. Bonneau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol. 13, 679–706 (2007).

26. Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 43–67 (2017).

27. Veldkamp, T. I. E., Wada, Y., Aerts, J. C. J. H. & Ward, P. J. Toward a global water balance and water availability dataset: methodology and applications. Hydrol. Earth Syst. Sci. 20, 4391–4405 (2016).

28. Veldkamp, T. I. E., Eisner, S., Wada, Y., Aerts, J. C. J. H. & Ward, P. J. Sensitivity of water scarcity events to ENSO driven climate variability at the global scale. Hydrol. Earth Syst. Sci. 19, 4081–4098 (2015).

29. Veldkamp, T. I. E. et al. Climatic changes and water scarcity impacts of socio-economic changes and inter-annual hydro-climatic variability. Global Environ. Change 32, 18–29 (2015).

30. Veldkamp, T. I. E., Eisner, S., Wada, Y., Aerts, J. C. J. H. & Ward, P. J. Sensitivity of water scarcity events to ENSO driven climate variability at the global scale. Hydrol. Earth Syst. Sci. 19, 4081–4098 (2015).

31. Veldkamp, T. I. E. et al. Climatic changes and water scarcity impacts of socio-economic changes and inter-annual hydro-climatic variability. Global Environ. Change 32, 18–29 (2015).

32. Veldkamp, T. I. E. et al. Climatic changes and water scarcity impacts of socio-economic changes and inter-annual hydro-climatic variability. Global Environ. Change 32, 18–29 (2015).

33. Hensel, P. R. The ICORW River Claims Data Set http://paulhensel.org/icorwriver.html (2015).
65. Lehner, B. et al. High resolution mapping of the world’s reservoirs and dams for sustainable river flow management. *Front. Ecol. Environ.* **9**, 494–502 (2011).
66. Hanasaki, N., Kanaeo, S. & Oki, T. A reservoir operation scheme for global river routing models. *J. Hydrol.* **327** 1-2 22–41 (2006).
67. Adam, J. C., Haddeland, I., Su, F. & Lettenmaier, D. P. Simulation of reservoir influences on annual and seasonal streamflow changes for the Lena, Yenisei, and Ob rivers. *J. Geophys. Res.* **112**, D24114 (2007).

Acknowledgements

This work has been conducted under the framework of ISIMIP2a (www.isimip.org) and we want to thank the coordination team responsible for bringing together the different global hydrological modelling groups and for coordinating the research agenda, which resulted in this manuscript. T.I.E.V. was funded by the EU 7th Framework Programme through the projects ENHANCE (grant agreement number 308438) and Earth2Observe (grant agreement number 603608). J.C.J.H.A. received funding from the Netherlands Organisation for Scientific Research (NWO) VICI (grant number 453-14-006). Y.M. was supported by the Environment Research and Technology Development Fund (S-10) of the Ministry of the Environment, Japan. P.J.W. received funding from the Netherlands Organisation for Scientific Research (NWO) VIDI grant (number 016.161.324). H.K. and T.O. were supported by Japan Society for the Promotion of Science KAKENHI (16H06291). J.L. received funding from the National Natural Science Foundation of China (41625001).

Author contributions

T.I.E.V., J.C.J.H.A., Y.W. and P.J.W. designed the research. T.I.E.V., P.D., S.N.G., J.L., Y.M., H.K., T.O., S.O., Y.P., Y.Y. and Y.W. performed research. T.I.E.V., J.C.J.H.A., Y.W. and P.J.W. analysed data. T.I.E.V. wrote the paper. S.N.G. coordinated impact modelling experiments. All authors provided comments and guidance on the manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. *Nat. Commun.* **8**, 15697 doi: 10.1038/ncomms15697 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/