Targeting tumor microenvironment and metastasis in children with solid tumors

Kristin M. Wessel and Rosandra N. Kaplan

Purpose of review
The prognosis of pediatric patients with metastatic solid tumors remains poor, necessitating development of novel therapeutic strategies. The biology of the pediatric tumor microenvironment (TME) presents obstacles for the efficacy of current therapeutic approaches including immunotherapies. Targeting various aspects of the TME in pediatric patients with solid tumors represents a therapeutic opportunity that may improve outcomes. Here we will discuss recent advances in characterization of the TME, and clinical advances in targeting the immune, vascular, and stromal aspects of the TME.

Recent findings
Although immunotherapies have shown limited success in the treatment of pediatric solid tumor patients thus far, optimization of these approaches to overcome the TME shows promise. In addition, there is increasing focus on the myeloid compartment as a therapeutic target. Vascular endothelial growth factor (VEGF) targeting has resulted in responses in some refractory pediatric solid tumors. There has been relatively little focus on stromal targeting; however, emerging preclinical data are improving our understanding of underlying biology, paving the way for future therapies.

Summary
Although translation of TME-targeting therapies for pediatric solid tumors is in the early stages, we are optimistic that continued exploration of approaches aimed at rebalancing the TME will lead to improved outcomes for this population.

Keywords
pediatric, solid tumors, tumor microenvironment

INTRODUCTION
Survival rates for pediatric cancer have improved over the past four decades; however, for pediatric patients with recurrent or metastatic solid tumors outcomes remain poor [1,2]. Multimodal therapy including chemotherapy, radiation, and surgery has resulted in improved survival for some pediatric solid tumors; however, these gains are mostly in patients with localized disease and current treatments are associated with significant long-term toxicity [1,3]. Given the dismal prognosis of pediatric patients with metastatic solid tumors, new therapies, which target the metastatic process are urgently needed.

Targeting the tumor microenvironment (TME) in pediatric solid tumors holds promise as a strategy for improving survival outcomes while limiting toxicity, and therapies are currently in the early stages of translation. In addition to tumor cells, the TME consists of immune cells, vasculature, stromal cells, and extracellular matrix (ECM). Characterization of these microenvironmental components is key to identifying new therapeutic targets and optimizing the efficacy of current therapeutic approaches. Here we will highlight recent work characterizing the microenvironment of pediatric solid tumors, as well as clinical advances in TME-informed therapies.
KEY POINTS

- The immune-suppressive tumor microenvironment (TME) in pediatric solid tumors presents challenges for the development of effective immunotherapies.
- Targeting myeloid cell populations in pediatric solid tumors to reverse immune suppression within the TME is an active area of research and we are seeing the beginning of translational efforts in this area.
- Normalizing tumor vasculature via the HIF1/VEGF pathway holds promise as a TME-modulating strategy, with single agents targeting this pathway showing early signs of efficacy in pediatric patients with select subtypes of refractory tumors.
- Extracellular matrix remodeling contributes to tumor progression and metastasis; however, this remains an under-studied topic in pediatric solid tumors, which warrants further study.

REVERSING THE IMMUNE-SUPPRESSIVE TUMOR MICROENVIRONMENT IN PEDIATRIC SOLID TUMORS

Immunotherapy has resulted in exciting advances in the treatment of chemotherapy-refractory cancers, including pediatric acute lymphoblastic leukemia and some adult solid tumors [4–6]. To date, efficacy of immunotherapy in pediatric solid tumors has been more limited, with the exception of monoclonal antibodies targeting the diganglioside GD2 in the treatment of neuroblastoma [7]. Understanding features of the immune TME in pediatric tumors is important for identifying barriers to effective immunotherapy. Relative to adult tumors, pediatric solid tumors are typically characterized by low mutational burden, low neoantigen expression, major histocompatibility complex (MHC) loss, and poor infiltration by T cells [8–11]. By contrast, myeloid cells, such as tumor-associated macrophages (TAM) are abundant in many pediatric solid tumor types and are associated with inferior prognosis [11–13]. Myeloid cells are highly plastic and can acquire immune-stimulatory or immune-suppressive phenotypes in response to factors present in the TME. Immune-suppressive myeloid cells in the TME dampen effector T-cell responses, inhibit antigen presentation, and promote vasculogenesis and ECM remodeling [13,14] (Fig. 1).

Recent studies of patient samples have shown that biomarkers of immune suppression in the TME are associated with inferior outcomes. Ligon et al. characterized the immune TME in primary tumor and pulmonary metastatic lesions in osteosarcoma. Relative to primary tumors, tumor-infiltrating lymphocytes in pulmonary metastases had increased expression of immune checkpoint molecules. Tumor-infiltrating lymphocytes in the metastatic samples were concentrated at the tumor–lung interface while myeloid cells infiltrated the interior. In addition, myeloid-derived suppressor cell (MDSC)-related genes at the tumor–lung interface were upregulated, suggesting myeloid-mediated immune suppression. Expression of immune checkpoint molecules lymphocyte-activation gene 3 and programmed death-ligand 1 (PD-L1) at the tumor–lung interface as well as colony-stimulating factor 1 receptor (CSF-1R) ubiquitously expressed on TAMs and monocyctic cells, were associated with inferior progression-free survival (PFS). Conversely, expression of gene sets related to effective immune response (CD8+ T cells, T-cell survival, and MHC class I) were associated with longer PFS [15**]. In a recent study utilizing RNA sequencing data of primary tumor samples from patients with high-risk neuroblastoma, Bao et al. showed that both a T-cell inflamed gene expression signature and higher neoantigen load were associated with superior event-free survival and overall survival (OS) [16]. These studies underscore the importance of immune TME characteristics as prognostic biomarkers, as well as the heterogeneity of immune features within tumor subtypes.

Immune checkpoint inhibitors are monoclonal antibodies, which block checkpoint proteins expressed by immune cells and cancer cells, which act to inhibit cytotoxic T-cell function, thereby activating antitumor immune responses. The success of immune checkpoint inhibition in treating adult solid tumors, such as melanoma and non-small cell lung cancer has led to approval by the US Food and Drug Administration (FDA) and paved the way for clinical development in pediatrics [5,6,17]. Clinical trials investigating inhibitors of programmed cell death protein 1 (PD-1), programmed cell death ligand 1 (PD-L1), and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) as single agents in pediatrics have been completed and have shown similar pharmacokinetics and toxicity profiles as in adult trials; however, efficacy has been restricted to a few tumor types including Hodgkin lymphoma and tumors with high mutational burden [18**,19–23]. Importantly, results of recent clinical trials indicate that expression of immune checkpoint molecules alone is not sufficient to predict a clinical response in pediatric solid tumor patients, highlighting the need to identify other predictive biomarkers [20–21]. Data suggest that chemotherapy, even at low doses, and combinational radiation can reverse immune suppression in the TME, potentially rendering tumors more amenable to immunotherapy. [24–27]. Pediatric studies investigating immune checkpoint
inhibitors in combination with other agents are underway [28**] (NCT03690869, NCT0344858, NCT04544995, NCT04216953, NCT03277924, NCT04239040, NCT02960230).

Chimeric antigen receptor (CAR) T cells are a type of adoptive cell therapy in which autologous T cells are engineered and expanded \textit{ex vivo} and given back to the patient to induce an antitumor immune response independent of MHC. CART cells consist of an extracellular single chain variable fragment (scFv), which recognizes tumor-specific antigen, linked to a transmembrane domain, an intracellular signaling domain (CD3\(\gamma\)) and one or more additional co-stimulatory domains. The remarkable success of CART cell therapy in treating relapsed pediatric B-cell ALL has led to FDA approval of the CD-19 CAR product tisagenlecleucel [4]. Thus far, clinical trials investigating CART cell therapy for pediatric solid tumor patients have shown limited success. Challenges for the development of adoptive cellular therapies for solid tumor patients include the identification of appropriate targets to limit on-target, off-tumor toxicity, and a TME, which promotes T-cell exhaustion and inhibits expansion and persistence [29]. Various strategies to enhance efficacy of CAR products in the setting of an immune-suppressive TME are under investigation.

Lymphodepleting preparatory regimens increase the availability of homeostatic cytokines allowing for greater expansion of CART cells. Experience from clinical trials utilizing HER2 CAR T cells in pediatric patients with advanced sarcomas suggests that lymphodepleting preparatory regimens improve CART cell expansion and efficacy [30,31,32**]. Similarly, a phase 1 clinical trial utilizing a second-generation GD2 CAR T product with CD28/CD3\(\gamma\)-signaling domains in patients with neuroblastoma showed that chemotherapy preconditioning and higher CART T-cell doses were associated with improved clinical efficacy [33*].

Exhaustion of CART cells through tonic signaling may limit their persistence and efficacy in the clinic. The 4–1BB co-stimulatory domain is associated with reduced tonic signaling and exhaustion [34]. Additionally, inhibition of tonic signaling of
CAR T cells in culture using dasatinib has been shown to reverse exhaustion, drive CAR T cells toward a memory-like state, and enhance efficacy in preclinical models [35**]. The upcoming GD2-CAR-PERSIST trial for pediatric patients with relapsed and refractory osteosarcoma and neuroblastoma incorporates the 4-1BB co-stimulatory domain into a GD2-CAR and utilizes a dasatinib-containing culture platform to enhance persistence (NCT04539366). Preclinical data showed that incorporation of interleukin-15 (IL-15) into CAR constructs results in reduced exhaustion and enhanced efficacy in murine models of neuroblastoma [36]. A phase 1 study of iC9.GD2.CAR.IL15 T-cells is ongoing (NCT03721068).

CAR-natural killer T (NKT) cells may have advantages over CAR-T cells in withstanding the immune-suppressive TME as NKT cells do not require priming to acquire cytotoxic function and can limit the immune-suppressive activity of TAMs [37]. In an interim analysis of a phase 1 clinical trial utilizing an anti-GD2 NKT CAR with IL-15 and cyclophosphamide/fludarabine preconditioning in children with relapsed or refractory neuroblastoma, Heczey et al. [38**] reported no dose-limiting toxicities, good expansion, localization to tumors, and an objective response in a patient with bone metastases.

Through continued optimization of T-cell therapies to enhance their fitness in the TME, the potential of these approaches in pediatric solid tumors can be fully realized.

The abundance of myeloid cells in the TME of pediatric solid tumors and their capacity to orchestrate immune responses make them an attractive therapeutic target. Repolarization of macrophages from an immune-suppressive to an immune-stimulatory phenotype holds therapeutic promise. The use of liposomal muramyl tripeptide phosphatidyl ethanolamine (L-MTP-PE) in the treatment of metastatic osteosarcoma is an illustration of this concept. L-MTP-PE is a synthetic analogue of the Bacille Calmette Guerin bacterial cell wall, which when encapsulated into liposomes reprograms resident lung monocytes and macrophages to become tumoricidal. The addition of adjuvant L-MTP-PE to standard chemotherapy was associated with superior OS in a randomized phase III Children’s Oncology Group trial [39]. Although L-MTP-PE has not gained FDA approval, the European Medicines Agency approved L-MTP-PE for patients aged 2–30 with osteosarcoma in conjunction with chemotherapy [40].

CSF-1R targeting is another potential strategy to reduce immune-suppressive myeloid cells in the TME. CSF-1R is important for myeloid cell trafficking to tumors, and their proliferation and survival [13]. Pexidartinib is a small molecule multityrosine kinase inhibitor (TKI), which inhibits CSF-1R, KIT, and FLT3, and is FDA-approved for adult patients with tenosynovial giant cell tumor, a mesenchymal neoplasm characterized by an abundance of infiltrating inflammatory cells, which traffic to the tumor in response to CSF-1-overexpressing neoplastic cells [41]. In a phase 1 study of Pexidartinib in pediatric and young adult patients with relapsed and refractory solid tumors, target inhibition was observed as evidenced by decreased absolute monocyte count and increased M-CSF (CSF-1) levels correlating with dose. Preliminary clinical activity was also seen, with three patients having stable disease for four or more cycles and one patient with peritoneal mesothelioma having a deep partial response [42].

Tumor cells can evade destruction by TAMs through upregulation of CD47, a ‘don’t eat me’ signal on the cell surface. CD47 interacts with signal-regulatory protein α (SIRPα) to inhibit macrophage-mediated phagocytosis [43]. Anti-CD47 antibodies are well tolerated and have shown promising clinical activity in the adult setting [44–45]. Preclinical work demonstrated a synergistic effect of anti-CD47 antibodies with anti-GD2 antibodies in murine models of neuroblastoma and osteosarcoma [46*]. On the basis of these findings, a first-in-human trial has been initiated for patients with osteosarcoma and neuroblastoma (NCT04751383).

Harnessing the ability of myeloid cells to infiltrate primary tumor and metastatic sites for adoptive cell therapy is an intriguing possibility. Klichinsky et al. utilized a chimeric adenoviral vector to engineer anti-HER2 CAR-macrophages. These ‘CAR-Ms’ showed efficacy in preclinical models and reprogrammed the TME to a pro-inflammatory state [47**]. A first-in-human study of anti-HER2 CAR-macrophages is underway in adults with HER2-over-expressing solid tumors (NCT04660929). Preclinical work has shown that myeloid cells can be used as a platform to deliver cargo to the TME. Kaczanowska et al. utilized a lentiviral vector to genetically engineer myeloid cells to express interleukin-12 (IL-12), a potent antitumor cytokine. Administration of these genetically engineered myeloid cells (GEMys) resulted in durable cures in a mouse model of embryonal rhabdomyosarcoma and reversed the immune-suppressive transcriptional signature in premetastatic lung [48**]. A first-in-human trial using IL12-GEMys to treat patients with relapsed and refractory solid tumors is in development.

TARGETING THE VASCULAR COMPARTMENT

Tumor-associated blood vessels are very different in quality than normal vasculature. They are more porous, tortuous, and constricted by surrounding tumor cells.
and stroma. This aberrant vasculature restricts the delivery of systemic drugs to the tumor, inhibits trafficking of effector immune cells into the TME, and creates hypoxic conditions, which can further drive the immune-suppressive myeloid phenotype and drive drug resistance of tumor cells [49] (Fig. 2).

Clinical trials investigating antiangiogenic agents in pediatric solid tumors have largely targeted the vascular endothelial growth factor (VEGF)-signaling pathway. Tumor-derived VEGF mediates neoangiogenesis in several pediatric solid tumors including neuroblastoma, Wilms' tumor, Ewing sarcoma, osteosarcoma, and rhabdomyosarcoma [50]. VEGF expression is induced by hypoxia within the TME via the transcriptional activator hypoxia-inducible factor 1-alpha (HIF)-1α [51]. VEGF signaling through VEGF receptor 1 has been implicated in the formation of the premetastatic niche [52]. VEGF also binds to VEGF receptor 2, which results in downstream activation of Src family kinases and mediates endothelial barrier disruption, leading to increased vascular permeability [53].

Bevacizumab, a humanized monoclonal neutralizing antibody, which binds all five human VEGF isoforms, is FDA-approved for use in several types of adult cancers. As a single agent, Bevacizumab has shown encouraging results in the treatment of pediatric central nervous system tumors, including recurrent and refractory low-grade gliomas, and has shown clinical benefit in patients with vestibular schwannomas and optic pathway gliomas [54–57]. Bevacizumab has shown limited benefit in combination with radiation in pediatric patients with high-grade gliomas [58] and in combination with chemotherapy in extracranial solid tumors [59–61]. However, clinical trials utilizing multi-TKIs targeting VEGF have shown that these agents are well tolerated and show promise particularly in the treatment of pediatric patients with advanced or metastatic osteosarcoma [62–64]. The multi-TKI
caboziantinib, which inhibits VEGF receptor 2 and hepatocyte growth factor receptor (MET), showed activity in a phase 2 trial in patients 12 and older with advanced Ewing sarcoma and osteosarcoma [65**]. An ongoing phase 2 Children’s Oncology Group trial evaluating caboziantinib for the treatment of refractory sarcomas, Wilms tumor, and rare tumors has reported clinical activity in patients with refractory osteosarcoma [66]. Given the promising single-agent activity of caboziantinib in advanced osteosarcoma, this drug is being prioritized by the Children’s Oncology Group for incorporation with upfront chemotherapy in a phase III clinical trial [67]. Revisiting how best to modulate tumor-associated vasculature and hypoxia-mediated signaling remains an area of great potential.

TARGETING THE STROMAL COMPARTMENT

Mounting evidence suggests that ECM remodeling is important for invasion and metastasis of solid tumors. The ECM is a three-dimensional network of macromolecules including collagens, glycoproteins, and proteoglycans. This network has direct effects on cell behavior including migration, differentiation, and proliferation. It also contains growth factors, which when released by matrix-remodeling enzymes, can contribute to tumor cell growth. ECM deposition by stromal and tumor cells contributes to high interstitial pressure, which constricts the tumor vasculature, exacerbating hypoxic conditions. In addition, ECM can act as a physical barrier to antitumor drugs and effector immune cell infiltration [68] (Fig. 2). Changes in stromal populations are also among the earliest events in premetastatic niche development [69].

Development of stromal-targeting therapies has lagged behind other areas of TME modulation in pediatrics; however, data are accumulating to support the impact of the stromal compartment on tumor progression and metastasis. Hawkins et al. [70*] described an association between Wnt/β-catenin activation in Ewing sarcoma cells, with enhanced ECM production and angiogenesis as a result of Wnt signaling and tumor/ECM crosstalk. In osteosarcoma, which exhibits abundant ECM deposition, studies of patient samples have identified ECM-related markers as prognostic [71–73]. Further, inhibition of the collagen-crosslinking enzyme lysyl oxidase-like 2 reduced tumor growth and metastasis in preclinical models [74***]. Simtuzumab, an antibody-targeting lysyl oxidase-like 2, has been studied in adult cancers in combination with chemotherapy; however randomized phase II trials failed to show clinical benefit [75–76]. The antihypertensive drug losartan has been shown in preclinical models to normalize tumor stroma and improve drug delivery to tumors [77–80]. Losartan is currently being studied in combination with the multi-TKI sunitinib in a phase 1/1b clinical trial for patients with recurrent or refractory osteosarcoma (NCT03900793).

CONCLUSION

Modulating the TME represents a new frontier for the treatment of metastatic pediatric solid tumors. Increasing our understanding of the crosstalk between various aspects of the TME is necessary for the design of rational combinatorial approaches. In particular, characterization of the stromal compartment and its contribution to pediatric tumor progression and metastasis is an under-studied area that warrants further research.

Acknowledgements

We thank James C. Cronk for reviewing the manuscript.

Financial support and sponsorship

R.K. and K.W. are supported by the Intramural Research Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health Grants: NIH NCI ZIA BC011332-06 ‘Tumor Microenvironment in Cancer Progression’ and NIH NCI ZIA BC011334-10 ‘Biomarkers & Therapeutic Targets in Tumor Microenvironment, Angiogenesis and Metastasis’. K.W. is supported by the Children’s Cancer Foundation.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as: of special interest;

1. Perkins SM, Shinohara ET, DeWees T, Frangouli H. Outcome for children with metastatic solid tumors over the last four decades. PLoS One 2014; 9:e100396.

2. Siegel DA, Richardson LC, Henley SJ, et al. Pediatric cancer mortality and survival in the United States, 2001–2016. Cancer 2020; 26:4379–4389.

3. Smith MA, Altekruse SF, Adamson PC, et al. Declining childhood and adolescent cancer mortality. Cancer 2014; 120:2497–2506.

4. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378:439–448.

5. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711–723.

6. Huang Z, Su W, Lu T, et al. First-line immune-checkpoint inhibitors in nonsmall cell lung cancer: current landscape and future progress. Front Pharmacol 2020; 11:578091.

7. Yu AL, Gilman AL, Ozkaynak MF, et al. Children’s Oncology Group. Anti-GD2 antibody with GM-CSF, interleukin-2 and isotretinoin for neuroblastoma. N Engl J Med 2010; 363:1524–1534.

8. Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: implications for diagnosis and treatment. Science 2019; 363:1170–1175.

9. Patel RR, Rankinsson SH, Ross J, Weintraub L. Tumor mutational burden and driver mutations: characterizing the genomic landscape of pediatric brain tumors. Pediatr Blood Cancer 2020; 67:e28338.
Navigating CAR-T cells through the solid-tumor microenvironment. Front Oncol 2020; 10:581107.

Vaddepeely RK, Khare P, Pandey R, et al. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN Guidelines with the level of evidence. ESMART, a trial of the European Innovative Therapies for Children With Cancer Programme. Cancer Discov 2020; 10:4031–4037.

21. Vaccik J, Michoel M, Lotze MT. Pediatric cancers are infiltrated predominantly by macrophages and contain a paucity of dendritic cells: a major nosologic difference with adult tumors. Clin Cancer Res 2006; 12(7 pt 1):2048–2056.

22. Kou J, Hayashi M, Vemuri MR, Lee-Sherick AB. Targeting tumor-associated macrophages in the pediatric sarcoma tumor microenvironment. Front Immunol 2020; 11:1371.

23. Ligon JA, Choi W, Gojcarac G, et al. Pathways of immune exclusion in metastatic osteosarcoma are associated with inferior patient outcomes. J Immunother Cancer 2021; 9:e001772.

24. Describes the immune TME in both primary and metastatic osteosarcoma and association of immune TME characteristics with patient outcomes.

25. Bao R, Spranger S, Hernandez K, et al. Immunogenic determinants of tumor microenvironment correlate with superior survival in high-risk neuroblastoma. Cancer Discov 2020; 10:219:00417.

26. Valdramidis PV, Felix RJ, McIvor DJ, et al. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2020; 28:633–638.

27. Meyers PA, Schwartz CL, Kralio MD, et al. Children’s Oncology Group. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2020; 28:633–638.

28. Reports safety and feasibility of treating pediatric patients with CAR-NKT cells and describes clinical activity in a heavily pretreated patient with bone metastases.

29. Meyers PA, Schwartz CL, Kralio MD, et al. Children’s Oncology Group. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2020; 28:633–638.

30. Reports safety and feasibility of treating pediatric patients with CAR-NKT cells and describes clinical activity in a heavily pretreated patient with bone metastases.

31. Meyers PA, Schwartz CL, Kralio MD, et al. Children’s Oncology Group. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2020; 28:633–638.

32. Demonstrates that CAR-T cell exhaustion can be reversed through temporary cessation of signaling and identifies incorporation of transient rest as a translatable strategy for enhancing CAR-T cell efficacy.

33. Shen Y, Sun C, Landoni E, et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res 2019; 25:2015–2024.

34. Reports results from a phase I study of a second-generation GD2 CAR for patients with relapsed/refractory neuroblastoma. The three responders in this trial received FluCyo lymphodepletion and cell doses of at least 10^15/m2, suggesting importance of lymphodepletion and cell dose for efficacy.

35. Long AH, Haos WM, Shen JP, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21:581–590.

36. Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021; 372:aeba1786.

37. Reports safety and feasibility of treating pediatric patients with CAR-NKT cells and describes clinical activity in a heavily pretreated patient with bone metastases.

38. Meyers PA, Schwartz CL, Kralio MD, et al. Children’s Oncology Group. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2020; 28:633–638.

39. Demonstrates that CAR-T cell exhaustion can be reversed through temporary cessation of signaling and identifies incorporation of transient rest as a translatable strategy for enhancing CAR-T cell efficacy.

40. Shen Y, Sun C, Landoni E, et al. Eradication of neuroblastoma by T cells redirected with an optimized GD2-specific chimeric antigen receptor and interleukin-15. Clin Cancer Res 2019; 25:2015–2024.

41. Reports results from a phase I study of a second-generation GD2 CAR for patients with relapsed/refractory neuroblastoma. The three responders in this trial received FluCyo lymphodepletion and cell doses of at least 10^15/m2, suggesting importance of lymphodepletion and cell dose for efficacy.

42._reports results from a phase I study of a second-generation GD2 CAR for patients with relapsed/refractory neuroblastoma. The three responders in this trial received FluCyo lymphodepletion and cell doses of at least 10^15/m2, suggesting importance of lymphodepletion and cell dose for efficacy.

43. Long AH, Haos WM, Shen JP, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21:581–590.

44. Weber EW, Parker KR, Sotillo E, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 2021; 372:aeba1786.
53. Eliceti BP, Paul R, Schwartzberg PL, et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4:915–924.
54. Gorsi HS, Khanna PC, Tumblin M, et al. Single-agent bevacizumab in the treatment of recurrent or refractory pediatric low-grade glioma: A single institutional experience. Pediatr Blood Cancer 2018; 65:e27234.
55. Kalra M, Heath JA, Kellie SJ, et al. Confirmation of bevacizumab activity, and maintenance of efficacy in retreatment after subsequent relapse, in pediatric low-grade glioma. J Pediatr Hematol Oncol 2015; 37:e341–e346.
56. Avery RA, Hwang EI, Jakacki RI, Packer RJ. Marked recovery of vision in patients with relapsed/refractory Ewing sarcoma and osteosarcoma. This trial described promising clinical activity of cabozantinib in heavily pretreated patients with optic pathway gliomas treated with bevacizumab. JAMA Ophthalmol 2014; 132:111–114.
57. Hochart A, Gaillard V, Baroncini M, et al. Bevacizumab decreases vestibular schwannomas growth rate in children with neurofibromatosis type 2. J Neurooncol 2015; 124:229–236.
58. Grill J, Massimino M, Bouffet E, et al. Phase II, open-label, randomized, multicenter trial (HERBYS) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. J Clin Oncol 2018; 36:951–958.
59. Navid F, Santana VM, Neel M, et al. A Phase II trial evaluating the feasibility of adding bevacizumab to standard osteosarcoma therapy. Int J Cancer 2017; 141:1469–1477.
60. Modak S, Kushner BH, Basu E, et al. Combination of bevacizumab, irinotecan, and temozolomide for refractory or relapsed neuroblastoma: results of a phase II study. Pediatr Blood Cancer 2017; 64: 10.1002/pbc.26448.
61. Chisholm JC, Merks JHM, Casanova M, et al., European paediatric Soft tissue sarcoma Study Group (EpSSG) and the European Innovative Therapies for Children with Cancer (ITCC) Consortium. Open-label, multicentre, randomised, phase II study of the EpSSG and the ITCC evaluating the addition of bevacizumab to chemotherapy in childhood and young adults with metastatic or non-resectable high-grade osteosarcoma. J Clin Oncol 2017; 83:177–184.
62. Grignani G, Palermi E, Dileo P, et al. A phase II trial of sorafenib in relapsed and unresectable high-grade osteosarcoma after failure of standard multimodal therapy: an Italian Sarcoma Group study. Ann Oncol 2012; 23:508–516.
63. Kim A, Widemann BC, Krilo M, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: A report from the Children’s Oncology Group. Pediatr Blood Cancer 2015; 62:1562–1566.
64. Davis LE, Bolejack V, Ryan CW, et al. Randomized double-blind phase II study of regorafenib in patients with metastatic osteosarcoma. J Clin Oncol 2019; 37:1424–1431.
65. Italiano A, Mir O, Mathoulin-Pelissier S, et al. Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2020; 21:446–455.
66. Ashkintala S, Widemann BC, Barkauskas DA, et al. Phase 2 trial of cabozantinib in children and young adults with refractory sarcomas, Wilms tumor, and rare tumors: Children’s Oncology Group Study (ADVL1622). J Clin Oncol 2021; 39(15_suppl):110010–110010.
67. Whittle SB, Offer K, Roberts RD, et al. Charting a path for prioritization of novel agents for clinical trials in osteosarcoma: a report from the Children’s Oncology Group. New Agents for Osteosarcoma Task Force. Pediatr Blood Cancer 2021; 68:e29118.
68. Winkler J, Abiassy-Oggunniyi A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodeling in tumour progression and metastasis. Nat Commun 2020; 11:5120.
69. Murgai M, Ju W, Eason M, et al. KLFrance-dependent perivascular cell plasticity mediates premetastatic niche formation and metastasis. Nat Med 2017; 23:1776–1785.
70. Hawkins AG, Pedersen EA, Treichel S, et al. Wnt/beta-catenin-activated Ewing sarcoma cells promote the angiogenic switch. JCI Insight 2020; 5:e135188.
71. Identifies a subset of EWS cells with low EWS-FLI1 activity and increased Wnt/beta-catenin activity, which participate in ECM remodeling and angiogenesis in the TME. This study provides new insight into the role of tumor–stroma crosstalk in EWS.
72. Mintz MB, Sowers R, Brown KM, et al. An expression signature classifies chemotherapy-resistant pediatric osteosarcoma. Cancer Res 2005; 65:1748–1754.
73. Ito K, Ishida Y, Ikuta K, et al. Overexpression of KIAA1199, a novel strong hyaluronidase, is a poor prognostic factor in patients with osteosarcoma. J Orthop Surg Res 2021; 16:439.
74. Shi K, Wang SL, Shen B, et al. Clinicopathological and prognostic values of fibronectin and integrin vW/F expression in primary osteosarcoma. World J Surg Oncol 2018; 16:23.
75. Matsuoka K, Bakin L, Wolff LI, et al. Wnt signaling and Lox2 promote aggressive osteosarcoma. Cell Res 2020; 30:895–901.
76. Provides evidence for the role of ECM remodeling in osteosarcoma progression and metastasis in GEMMs and establishes an association between Wnt signaling, Lox2 expression and outcomes in patient samples.
77. Hecht JR, Benson AB 3rd, Vyasukov D, et al. A Phase II, randomized, double-blind, placebo-controlled study of simtuzumab in combination with FOLFIRI for the second-line treatment of metastatic KRAS mutant colorectal adenocarcinoma. Oncologist 2017; 22:243–323.
78. Benson AB 3rd, Wainberg ZA, Hecht JR, et al., NCCN Pancreatic Adenocarcinoma. A Phase II randomized, double-blind, placebo-controlled study of simtuzumab or placebo in combination with gemcitabine for the first-line treatment of pancreatic adenocarcinoma. Oncologist 2017; 22:241–315.
79. Drop-Frimpont B, Chauhan VP, Krane S, et al. Losartan inhibits collagen I synthesis and improves the distribution and efficacy of nanotherapeutics in tumors. PNAS 2011; 108:2909–2914.
80. Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 2013; 4:2516.
81. Zhao Y, Cao J, Melamed A, et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. PNAS 2019; 116:2210–2219.
82. Kumar V, Boucher Y, Liu H, et al. Noninvasive assessment of losartan-induced increase in functional microvessels and drug delivery in pancreatic ductal adenocarcinoma. Transl Oncol 2016; 9:431–437.