Changes in Mechanical and Microstructural Characteristics of Demineralized Tooth Enamel after Conventional and Modified Infiltration Techniques

O S Gileva1,*, A D Levitskaya1, O A Mudrova1, F Y Daurova2 and A L Zuev3,4

1 Acad. Wagner Perm State Medical University, Perm, Russia
2 People's Friendship University of Russia, Moscow, Russia
3 Institute of Continuous Media Mechanics, Perm Federal Research Center of Ural Branch of Russian Academy of Sciences, Perm, Russia
4 Perm National Research Polytechnic University, Perm, Russia

E-mail: *o.s.gileva@yandex.ru

Abstract. The research carried out a comparative assessment of the physical and mechanical properties of tooth enamel: healthy; demineralized; demineralized and subsequently infiltrated with a flowable composite according to a standard or modified technique. An original in vitro model of artificial caries of human tooth enamel was used for the study, the clinical-topographic, color-textural and physical-mechanical properties of which correspond to the characteristics of enamel caries in vivo. Comparative analysis of the results of kinetic microindentation of enamel samples allows to characterize the biomaterial from the standpoint of physical materials science, to determine the advantages and disadvantages of different regimens of resin infiltration. The advantages of the modified infiltration technique are illustrated by significantly greater, as compare with classic method, increase in microhardness and elasticity against background of a decrease in a creep index of the infiltrated enamel in its deep zones. The results reflect the fact of incomplete obturation of microporous in the deep layers of enamel after classical treatment.

1. Introduction

In recent years, the early detection, prevention and treatment of enamel demineralization (ED) or enamel caries (EC) has become an increasingly important problem of modern cariology and orthodontics [1-14]. High quality of EC treatment can be provide by microinvasive resin infiltration technique (RIT), carried out as monotherapy or in combination with other methods [15-18]. This technique is based on the properties of liquid-flow composite (LFC) to diffuse into demineralized area with subsequent obturation of enamel microporosities [16, 19]. The problematic issues associated with the late complications of RIT (more often caries progression), indicate the need for more in-depth research of conventional, modified or combined infiltration techniques in in vitro studies [18, 20, 21]. The highly controversial issue of the usefulness (completeness, depth) of resin obturation of microporous enamel with standard infiltration regimen [22-27]. The mechanisms of EC progression before and after different infiltration techniques are mainly due to changes in the physical and mechanical properties of enamel (microhardness, elasticity, etc.) under the influence of cariogenic risk factors (unsatisfactory oral hygiene, constant consumption of carbohydrate and sugar-containing foods, etc.), as well as due to the emergence and spread of a stress-strain state at the boundaries of the lesion and intact enamel [28-34].

Methods of micro- or nanoindentation are used to assess the physical and mechanical properties of intact or affected enamel, as well as their dynamics during or after performing various therapeutic and prophylactic treatments [18, 35]. Certification of the physical and mechanical properties of enamel with an assessment of the possibility and features of its remodeling after various treatment modalities requires the use of optimal models of artificial enamel caries (AEC), the development of adequate methods for their
reproduction in vitro and the creation of appropriate hardware and technological support, since existing methodological approaches are not always universal.

The aim of this in vitro study was to analyze in a comparative aspect the physical and mechanical properties of tooth enamel: healthy; demineralized; demineralized and subsequently treated according to standard and modified infiltration techniques.

2. Materials and methods
The study was approved by the Ethic Committee of Perm State Medical University and executed at the support of RFBR (grant № 17-48-590562-r-ural). The material for the in vitro study was 18 intact (without visible defects of the crown) first and second premolars of the upper and lower jaws, removed according to orthodontic indications, with patients consent. The teeth were subjected to atraumatic mechanochemical cleaning according to an original technique (Gileva O.S. et al., 2001). Artificial enamel caries lesion was created on the vestibular surface of the crown according original protocol, using special lab equipment, instruments and solutions: “A device for modeling experimental caries in the stain stage using the enamel window method” (utility model patent № 172561 from 17.07.2017) and “Separator for storing dental biopreparations for artificial caries modeling” (utility model patent № 171409 from 05.30.2017), as well as demineralizing gel of the original composition (rationalization proposal № 2757 from 05.17.2018) (see figure 1). The development of AEC was confirmed using computed tomography, stereomicroscopy, scanning electron and atomic force microscopy (AFM).

The method of kinetic continuous microindentation was used to certify the physical and mechanical properties of enamel using a high-precision Micro-combi tester (MCT, CSM Instruments SA, Switzerland) equipped with a combined microindentation module, an automated sample stage (along the X, Y, Z axes), precision depth and acoustic emission sensors, a video microscope with three accessory lenses and a progressive scan CCD camera (figure 2). The tests were carried out in accordance with the International Standard ISO 14577, which regulates the indentation of the material with the simultaneous registration of three parameters: the load on the indenter, the movement of the indenter, and the indentation time during the elastic and plastic deformation of the material.

Figure 1. Immersion of the teeth samples in melted wax, installation in a separator, subsequent immersion in a demineralizing gel.

Figure 2. Micro-combi tester (CSM Instruments SA, Switzerland) for the study of physical and mechanical properties of the tooth sample.

The objects of the study – 12 teeth samples with artificially induced EC were randomized into two groups depending on the type of RIT reproduced in vitro: standard technique (ICON technology) or modified version. The standard resin infiltration (SRI) treatment reproduced in vitro involves the stage of 2 min. conditioning of the enamel lesion before its actual infiltration with a composite. For the second group samples, a modified resin infiltration (MRI) technique, with 4 min. enamel conditioning was applied. In addition, in a separate series of studies (6 samples) the microhardness of intact and demineralized enamel was determined. Cross sections of teeth were prepared for testing and then subjected to gentle mechanically and ultrasonically cleaning. Optical microscopic images of demineralized enamel with indenter’s traces presented on figure 3 and figure 4.
The following physical and mechanical parameters of enamel slices: microhardness (HIT, GPa) – by the Oliver-Farr technique; elastic modulus (EIT, GPa); creep (CIT, %); relaxation (RIT, %) and elastic component of indentation work (ηIT, %) were studied for the area of intact enamel (undamaged enamel zone that does not have direct contact with the focus of demineralization) – zone I, for the perifocal area of the lesion, at the border of intact and demineralized enamel – zone II, as well as for enamel in the center of demineralization infiltrated according to SRI or MRI technique.

Microindentation of demineralized enamel, infiltrated with a light composite according to the SRI and MRI methods, was carried out in two zones on transverse slices (figure 5): 1) in the subsurface layer of the enamel; 2) at a distance of 85% from the vestibular surface towards the enamel-dentin border, which ensured the penetration of the indenter into the transitional zone, not densely obturated with the infiltrant after SRI. The depth of the zone was calculated using the formula (1):

$$z_1 = k \times 0.85 \text{ (micron)}$$

where k is the depth of the lesion (determined by computed tomography); z – the depth of filling the demineralized enamel with the infiltrant according to the standard technique (determined by computed tomography); z_1 – zone of indentation both for SRI and MRI techniques.

All teeth samples were examined on a computed tomography scanner to determine the depth of the AEC focus and the level of its filling with the infiltrant (Table 1).

The parameters of enamel: microhardness (HIT, GPa), elastic modulus (EIT, GPa), creep (CIT, %), relaxation (RIT, %) and elastic component of indentation work (ηIT, %) were analyzed by the microindentation method. At all stages, microindentation was carried out with a step of 10 to 30 μm in both directions (X, Y). At each object of the study, 20-40 microindentations were carried out in an automatic mode. The value of the force applied to the indenter was 0.5 N, which ensured microindentation in the surface layers of the enamel. The amount of microindentations performed was 480 measurements.
Comparative assessment of the depth of filling the AEC focus with a light composite according to the standard and modified infiltration treatment.

Tooth No.	Depth of AEC zone, µm	Depth of AEC filling (Z, µm)	Thickness of non-infiltrated area, µm	Z = k × 0.85 (µm)
SRI				
1	506.0	405.8	100.2	430.1
2	461.1	360.1	101.0	392.0
3	316.4	191.1	125.3	269.0
4	423.8	298.0	125.8	360.2
5	442.3	319.3	123.0	376.0
6	352.1	213.4	138.7	299.3
MRI				
7	513.9	513.9	—	436.8
8	460.3	460.3	—	391.0
9	328.3	328.3	—	279.1
10	409.5	409.5	—	348.1
11	437.2	437.2	—	371.6
12	349.9	349.9	—	297.4

3. Results

Multilevel analysis of the microstructure and surface topology of the enamel in the AEC focus, created according to the original technology, established its compliance with the characteristics of demineralized enamel in vivo according to the data of clinical examination, stereomicroscopy, computed tomography, scanning electron microscopy (SEM) and AFM: code K02.0 MKB-10; code 2 ICDAS; zones of destruction of enamel, with a heterogeneous, highly rough surface relief of typical triangular shape, with a surface layer thickness of 43.1±31.2 µm and a depth of 423.8±107.4 µm; X-ray transparent dark areas with uneven optical density and multilevel (zonal) decrease in mineral density from 1.47±0.17 g/cm³ in the dark, to 2.03±0.15 g/cm³ in the transparent zone (by 53.1% and 73.4% of the density of intact enamel) (figure 6). The developed AEC model corresponded to enamel caries in vivo characteristics, what predetermined the indications for infiltration treatment.

The average depth of filling demineralized enamel with an infiltrant according to the SRI technique was 298.0±44.5 µm (p>0.05), whereas the average thickness of non-infiltrated area was 125.8±62.9 µm (p<0.05). The demineralized enamel was filled with the LFC only by 70.4±9.8% (figure 7).

Measurements of microindentation of demineralized zones after resin infiltration according to SRI or MRI did not differ significantly (p>0.001) in the subsurface layer.

Figure 6. Axial tomogram of 1.4d with a focus of artificial enamel caries:
- surface zone (AB) – 1.56±0.12 g/cm³;
- “body” of the lesion (BC) – 1.86±0.17 g/cm³;
- dark zone (CD) – 1.47±0.17 g/cm³;
- transparent zone (DE) – 2.03±0.15 g/cm³.

Figure 7. Axial tomogram of 2.4d with an area of not filtered demineralized enamel.
The microhardness of intact enamel in the perifocal zone (II), when exposed to the indenter with a force of 0.5 N, was 5.01±0.54 GPa; the average penetration depth was 2.38 μm, which is significantly (p <0.05) lower in comparison with the indicators of intact enamel in areas (I) distant from the lesion (5.86±0.25 GPa; 1.92 μm). The microhardness of demineralized enamel 0.96±0.015 GPa, the average penetration value of the indenter – 6.2 μm, which is significantly (p<0.01) lower than the indices of intact enamel in both zones (I, II). The microhardness of demineralized enamel after SRI does not significantly (p<0.05) exceed the values of demineralized enamel before treatment (1.21±0.36 GPa). The average value of indenter penetration 5.0 μm, which is significantly (p<0.01) higher than the values of intact enamel in addition, the microhardness of enamel after SRI is significantly (p<0.01) 4.0-4.8 times lower than that of both zones of intact enamel (II, I). The microhardness of demineralized enamel after treatment with the use of MRI technique (4 min of conditioning) increased 2 times in comparison with the indicators of demineralized enamel before treatment (1.93±0.40 GPa). The average indenter penetration 3.8 μm; microhardness significantly (p<0.05) 1.6 times higher than the values of enamel after SRI, but at the same time significantly (p<0.01) 2.6-3.0 times lower than of both zones of intact enamel.

The modulus of elasticity of intact perifocal (II) enamel 83.8±14.4 GPa and is not significantly (p<0.05) reduced in comparison with the indices of intact enamel (85.4±6.6 GPa) in areas remote from the lesion. The modulus of elasticity of demineralized enamel 10.35±1.35 GPa, which is significantly (p<0.001) lower for both indicators of intact (I, II) enamel. The modulus of elasticity of the enamel after SRI is significantly (p<0.01) higher than that of demineralized enamel (20.26±4.12 GPa), but significantly (p<0.01) 4.2 times lower than the indicators of intact enamel (II, I). The modulus of elasticity of the enamel after MRI is significantly (p<0.05) 1.7 times higher than the parameters of the enamel after SRI (33.8±12.0 GPa), and in comparison with the indicators of intact enamel zones is 2.5 times reduced (p<0.05).

In the course of the experiments the fundamentally new data were obtained on the physical and mechanical properties of enamel (intact and treated with various infiltration techniques), which are not presented in the available literature. Thus, the creep (CIT, %) of enamel – a slow deformation occurring over time under the influence of a constant mechanical load or stress – was determined. The creep index of perifocal intact (II) enamel was 2.08±1.18% and did not significantly (p<0.05) exceed the values of intact (I) enamel in areas remote from the lesion (1.92±1.03%). The creep index of demineralized enamel with a high degree of reliability (p<0.001) was 11.4-12.3 times higher than that of intact enamel, both perifocal and distant from the lesion (23.68±1.70%). The creep index of enamel treated with the SRI technique (6.58±0.82%) was significantly (p<0.05) 3.6 times lower than that of demineralized enamel, but 3.2 times higher (p<0.05) than indicators of intact enamel. The enamel creep after MRI was 1.6 times lower (p<0.05) than the same index after SRI (4.09±0.67%), but 2.0 times higher (p<0.05) than of intact enamel.

The values of the relaxation index (RIT, %) of enamel as a process of achieving static equilibrium under the influence of load in time were also analyzed. Thus, the relaxation index of intact (I) enamel (–0.07±0.31%) did not significantly (p<0.05) exceed that of perifocal, visually intact enamel (–0.09±0.02%). The relaxation index of demineralized enamel (–0.17±0.18%) was significantly (p<0.05) 1.8-2.3 times lower than that of intact enamel in both zones. The enamel relaxation index after SRI (–0.11±0.13%) was significantly (p<0.05) 1.5 times higher than the values of the demineralized enamel, but 1.2–1.5 times lower than the intact enamel (II, I). The relaxation index of demineralized enamel after MRI (–0.10±0.10%) did not significantly (p<0.05) exceed that after SRI, approaching the values of perifocal intact enamel.

Finally, the values of the elastic component of the indentation work (ηIT, %) of the enamel were analyzed as the ratio of the elastic deformation work to the total indentation work. The elastic component of the work of indentation of intact (I) enamel – 47.30±2.87%; intact perifocal enamel – 43.15±3.91%; demineralized enamel – 26.84±0.92%; enamel after SRI technique– 28.40±2.27%; enamel after MRI – 29.33±4.46%, which, respectively, was 1.6, 1.5 and 1.5 times less than that of perifocal intact enamel. Comparison of the ratio of the elastic component of the indentation work to the general indentation work in the AEC focus and in the affected enamel zones, treated according to SRI or MRI, did not reveal significant differences.
4. Conclusion

The results of the in vitro study of the physical and mechanical properties of intact enamel characterize it as a high-strength and highly elastic biomaterial (HIT$_1 = 5.86\pm0.25$ GPa, EIT$_1 = 85.43\pm6.61$ GPa; HIT$_2 = 5.01\pm0.54$ GPa, EIT$_2 = 83.82\pm14.42$ GPa, respectively), capable of withstanding the directional deformation loads during the chewing loads. The data analysis shows that intact enamel in terms of microhardness fits into the characteristics of structural steels with surface carburizing, and the modulus of elasticity is comparable to the indicators of deformational aluminum alloys. In the course of microindentation studies, new, updated and more broader data were obtained on microhardness (HIT, GPa), elastic modulus (EIT, GPa), creep (CIT, %), relaxation (RIT, %) and elastic component of indentation work (ηIT, %) of intact and demineralized enamel, as well as of demineralized enamel treated with conventional or modified resin infiltration techniques and both in its surface layer and at a depth of 85% towards the enamel-dentin border.

The data of a principle importance that microhardness indices in the subsurface layers of demineralized enamel treated with SRI (HIT = 1.95±0.17 GPa) and MRI (HIT = 1.98±0.15 GPa) techniques did not differ significantly (p<0.001), whereas at a depth of 85% towards the enamel-dentin border according to SRI (HIT = 1.21±0.36 GPa) and MRI (HIT = 1.93±0.40 GPa) methods were significantly (p<0.05) differed. This confirms the fact of incomplete obturation of micropores at a depth of $z_1 = k \times 0.85$ (μm) and below, indicates the absence of the formation of “strengthening matrix “ in the interprismal spaces of the enamel after resin infiltration using the SRI technique. The results of this in vitro study clearly objectify the advantages of the MRI technique over the classical mode of infiltration treatment.

The results of physical and mechanical studies indicate the need to protect the perifocal zones of treated enamel at the border of its infiltrated areas to reduce the risk of stress and strain during functioning of the dental-maxillofacial system. So, it may be useful to combine caries infiltration technology with appropriate remineralizing techniques to reduce the risk of the secondary caries appearance at the border of visually intact and infiltrated enamel.

Acknowledgments

The authors gratefully acknowledge financial support provided by the Ministry of Science and High Education of Russia (theme no. 121031700169-1).

References

[1] Akin M and Basciifei F A 2012 Can white spot lesions be treated effectively? The Angle Orthodontist82 770-775
[2] Baelum V, Heidmann J and Nyvad B 2006 Dental caries paradigms in diagnosis and diagnostic research European J. of Oral Sciences114(4) 263-277
[3] Bishara S E and Ostby A W 2008 White spot lesions: formation, prevention, and treatment Seminars in Orthodontics14174-82
[4] Chapman J A, Roberts W E and Eckert G J 2010 Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances American J. of Orthodontics and Dentofacial Orthopedics138(2) 188-94
[5] Chen H, Liu X, Dai J, Jiang Z, Guo T and Ding Y 2013 Effect of remineralizing agents on white spot lesions after orthodontic treatment: a systematic review American J. of Orthodontics and Dentofacial Orthopedics143376-382
[6] Ismail A I (ed.) 2005 International caries detection and assessment system coordinating committee. Rationale and evidence for the international caries detection and assessment system(USA: ICDAS II Baltimore Workshop)
[7] Fisher J, Johnston S and Hewson N 2012 FDI Global caries initiative. Implementing a paradigm shift in dental practice and the global policy context Int. Dental J.62 169-174
[8] Gileva O S, Levitskaya A D, Syutkina E Sand Khalyavina I N 2019 Multilevel analysis of enamel microstructure in the substantiation of microinvasive technologies for the treatment of focal demineralization of enamel in orthodontic patients Endodontics Today17(3) 17-20 (in Russian)
[9] Gomez J 2015 Detection and diagnosis of the early caries lesion BMC Oral Health15(1) S3
[10] Gomez J, Tellez M, Pretty I A, Ellwood R P and Ismail A 2012 Non-cavitated carious lesions detection methods: a systematic review Community Dentistry and Oral Epidemiology41(1) 55-66

[11] Kielbassa A M 2006 Current challenges in caries diagnosis Quintessence Int.37421

[12] Benson P E, Pender N and Higham S M 2003 Quantifying enamel demineralization from teeth with orthodontic brackets – a comparison of two methods. Part 1: repeatability and agreement European J. of Orthodontics25149-158

[13] Petersen P E (ed.) 2003 World Oral Health Report 2003. Continuous improvement of oral health in the 21th century – the approach of the WHO Global Oral Health Program.(Switzerland, Geneva: World Health Organization)

[14] Bergstrand F and Twetman S 2011 A review on on prevention and treatment of post-orthodontic white spot lesions – evidence-based methods and emerging technologies The Open Dentistry J.5 158-162

[15] Paris S and Meyer-Lueckel H 2010 Infiltrants inhibit progression of natural caries lesions in vitroJ. of Dental Research89 1276-1280

[16] Meyer-Lueckel H, Paris S and Schult A 2017 Kariesinfiltration – Update 2017 Zahndmedizin2017(03) 267-290

[17] Kielbassa A M, Leimer M R, Hartmann J, Harm S, Pasz tromek M and Ulrich I B 2020 Ex vivo investigation on internal tunnel approach/internal resin infiltration and external nanosilver-modified resin infiltration of proximal caries exceeding into dentin PLoS One28(15) e0228249.

[18] Gileva O S, Muravyeva M A, Svidskov A L, Izyumov R I and Levitskaya A D 2017 Experimental study of the tooth enamel surface under various therapeutic and prophylactic effects Bulletin of Perm Scientific Center of UB RAS3 15-21 (in Russian)

[19] Perdiguio J 2020 Resin infiltration of enamel white spot lesions: An ultramorphological analysis J. of Esthetic and Restorative Dentistry32(3) 317-324

[20] Galkin S, Levitskaya A, Gileva O, Libik T and Lomiashvili L 2020 The combined approach to evaluation of mechanical behavior of tooth enamel in artificially induced caries lesions BIO Web of Conferences22 02027 2-9

[21] Prajapati D, Pai D, Upadhya N and Nayak R 2017 Effect of resin infiltration on artificial caries: an in vitro evaluation of resin penetration and microhardness Int. J. of Clinical Pediatric Dentistry10(3) 250-256

[22] Paris S, Meyer-Lueckel H, Coefen H and Kielbassa A M 2007 Penetration coefficients of commercially available and experimental composites intended to infiltrate enamel carious lesions Dental materials23(6) 742-78

[23] Levitskaya A D, Gileva O S, Izyumov R I and Syutkina E S 2019 Experimental evaluation of the penetrating ability of a flowable composite into demineralized enamel Dental Forum4 56-57 (in Russian)

[24] Robinson C, Brookes S J, Kirkham J, Wood S R and Shore R C 2001 In vitro study of the penetration of adhesive resins into artificial caries-like lesions Caries Research35136-141

[25] Skucha-Nowak M, Machorowska-Pieniacka and Tanasiwicz M 2016 Assessing the penetrating abilities of experimental preparation with dental infiltrant features using optical microscope: preliminary study Advances in Clinical and Experimental Medicine25(5) 961-969

[26] Subramaniam P, Babu K G and Lakhota D 2014 Evaluation of penetration depth of a commercially available resin infiltrate into artificially created enamel lesion: An in vitro study J. of Conservative Dentistry17(2) 146-9

[27] Bertacci A, Lucchese A, Taddel P, Gherlone E F and Chersoni S 2014 Enamel structural changes induced by hydrochloric and phosphoric acid treatment J. of Applied Biomaterials and Functional Materials12(3) 240-247

[28] Belyaev A Y, Zuev A L, Gileva O S and Muravyeva M A 2014 Experimental studies of elastic properties of dental enamel and photopolymer used for early caries treatment Key Engineering Materials592-593 358-361
[29] Torres C R, Rosa P C, Ferreira N S and Borges A B 2012 Effect of caries infiltration technique and fluoride therapy on microhardness of enamel carious lesions Oper. Dent. 37(4) 363-369

[30] Belli R, Rahiotis C, Schubert E W, Baratieri L N, Petschelt A and Lohbauer U 2011 Wear and morphology of infiltrated white spot lesions J. of Dental Research 39 376-385

[31] Morozov I A, Svistkov A L, Gileva O S and Erofeeva E S 2010 Experimental study of the effect of clinical whitening on the microstructure of the tooth enamel surface Russian J. of Biomechanics 14(1) 56-64 (in Russian)

[32] Denis M, Atlan A, Vennat E, Tirlet G and Attal J-P 2013 White defects on enamel. Diagnosis and anatomopathology: Two essential factors for proper treatment (Part 1) Int. orthodontics 11 139-165

[33] Gileva O S, Muravyeva M A, Simakina N I, Sokolov A K and Terpugov V N 2012 Computational modeling of the initial stage of dental caries: geometric modeling of the tooth enamel Perm University Bulletin. Series: Mathematics. Mechanics. Informatics 2(10) 20-25 (in Russian)

[34] Panfilov P, Zaytsev D, Antonova O V, Alpatova V and Kiselnikova L P 2016 The difference of structural state and deformation behavior between teenage and mature human Int. J. of Biomaterials 6073051

[35] Belyaev A Y, Gileva O S, Muravyeva M A, Svistkov A L and Skachkov A P 2012 Investigation of the mechanical properties of healthy and caries-damaged tooth enamel using microindentation Russian J. of Biomechanics 16(3) 57-64 (in Russian)