Characterisation of Perovskites in a Calcium Sulfo Aluminate Cement

Gwenn Le Saout, Rachida Idir, J.C. Roux

To cite this version:

Gwenn Le Saout, Rachida Idir, J.C. Roux. Characterisation of Perovskites in a Calcium Sulfo Aluminate Cement. ICAM 2019: 14th International Congress for Applied Mineralogy, Sep 2019, Belgorod, Russia. pp.339-343, 10.1007/978-3-030-22974-0_82. hal-02436642

HAL Id: hal-02436642

https://hal.mines-ales.fr/hal-02436642

Submitted on 13 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sergey Glagolev
Editor

14th International Congress for Applied Mineralogy (ICAM2019)

Belgorod State Technological University named after V. G. Shukhov, 23–27 September 2019, Belgorod, Russia
Characterisation of Perovskites in a Calcium Sulfo Aluminate Cement

G. Le Saout¹(✉), R. Idir², and J.-C. Roux¹

¹ C2MA, IMT Mines Ales, Univ Montpellier, Ales, France
gwenn.le-saout@mines-ales.fr
² CEREMA, DIM Project Team, Provins, France

Abstract. Calcium sulfo aluminate cement (C₅A) is a promising low CO₂ footprint alternative to Portland cement. The phase assemblage of a commercial C₅A cement was investigated by a combination of XRD, SEM-EDX and selective extraction techniques. This study focused on the composition of perovskite phases present in the cement.

Keywords: Calcium sulfo aluminate cement • Perovskite • X-ray diffraction • Scanning electron microscope

1 Introduction

Calcium sulfo aluminate cements (C₅A)¹ were developed by the China Building Material Academy in the seventies. C₅A have many specific properties compared to Portland cement as fast setting, rapid hardening, shrinkage reduction. This special cement used alone or in combination with calcium sulphates and Portland cement has found applications such as airport runways and roads patching, self-leveling mortars, tile adhesives grouts… (Zhang et al. 1999). This is also a promising low CO₂ footprint alternative to Portland cement due to the difference in the amount of energy used to produce C₅A cements (lower kiln temperatures and energy at the mill to grind). The main raw materials used for making C₅A cements are bauxite, limestone, clay, and gypsum and this leads to a mineralogical composition very different than Portland cement. While many studies have been carried out on the characterization of Portland cement, few are available concerning C₅A. In this study, we report a characterization of a commercial C₅A using Rietveld quantitative analysis and scanning electron microscopy.

¹ Standard cement chemistry notation is used.

As per this simplified notation: C = CaO, A = Al₂O₃, F = Fe₂O₃, S = SiO₂, S₇ = SO₃ and T = TiO₂.

© The Author(s) 2019
S. Glagolev (Ed.): ICAM 2019, SPEES, pp. 339–343, 2019.
https://doi.org/10.1007/978-3-030-22974-0_82
2 Methods and Approaches

The C̅ŚA cement was from a commercial supplier and the chemical characteristics of the cement are given in Table 1.

Table 1. Mineralogical and chemical compositions of the C̅ŚA. Mineralogical composition determined by XRD/Rietveld analysis. Chemical analysis by X-ray fluorescence (DIN 51001)

Minerals	Mass %	Oxides	Mass %
Anhydrite	18.3	SiO₂	8.42
Gypse	2.9	Al₂O₃	19.1
Ye’elimite	31.4	Fe₂O₃	6.94
Belite	21.2	TiO₂	0.76
Perovskite	11.3	K₂O	0.08
Ferrite	5.4	Na₂O	0.02
Merwinita	1.9	CaO	44.9
Calcite	3.5	MgO	1.27
Magnesite	1.5	SO₃	15.2

*aLoss on ignition measured by calcination until 1025 °C according to ISO 12677

In order to analyze mineralogical composition, X-ray diffraction was performed on cement with a diffractometer BRUKER D8 Advance. Powder samples were analyzed using an incident beam angle (Cu Kα, λ = 1.54 Å) varying between 5 and 70°. Software X’Pert High Score was used to process diffraction patterns and crystals were identified using the Powder Diffraction File database. Rietveld analysis allowed obtaining mass fractions of crystalline phases in the cement.

For the microscopical investigations, powder samples were impregnated using a low viscosity epoxy and polished down to 0.25 µm using diamond pastes. The samples were further coated with carbon (~15 nm) and examined using a Quanta 200 FEG scanning electron microscope (SEM) from FEI coupled to an Oxford Xmax N 80 mm² energy dispersive X-ray spectroscopy (EDX) analyser.

In order to improve the characterization of the cement, two different selective dissolution methods were used. In the first method, the silicate phases were removed in a solution of acid salicylic in methanol (Hjorth and Lauren 1971). In addition, a second selective dissolution method was used to get mainly perovskite phases in C̅ŚA by removing ye’elimite, anhydrite, gypsum with 5% Na₂CO₃ solution (Wang 2010). The method was modified to prevent precipitation of CaCO₃ by washing the filtered suspension with 6% acetic acid. The filter paper and contents were placed in an oven at 105 °C until a constant weight was reached.
3 Results and Discussion

The main phases observed in the experimental diffraction pattern (Fig. 1a) are the orthorhombic ye’elimite C₄A₃S with small amount of the pseudo cubic form, belite β and α’H. C₂S and perovskites from the C₅A clinker. Anhydrite II C₅S is also present as mineral addition. Perovskite family has crystal structures related to the mineral perovskite CT. Ferrite phase Ca₂(AlₓFe₁₋ₓ)₂O₅ is usually present in C₅A and its structure is derived from that of perovskite by the substitution of Al and Fe for Ti, together with ordered omission of oxygen atoms, which causes onehalf of the sheets of octahedral in perovskite to be replaced by chains of tetrahedral (Taylor 1997). To obtain a good Rietveld refinement, it is also necessary to add a perovskite phase CT (Alvarez- Pinazo et al. 2012). The titanium dioxide is present by the use of bauxite, which usually contains some TiO₂, as raw materials in the manufacturing process of C₅A clinker. The peaks associated with this cubic phase are confirmed in the XRD pattern of the C₅A after the extraction of the main phases (Fig. 1b).

Fig. 1. Diffraction pattern of the cement as received (a), after extraction (b)

However, with the assumed stoichiometry of perovskite CT, the elemental oxide composition TiO₂ calculated from phase content deduced by Rietveld analysis is strongly overestimated in comparison with XRF analysis.

EDX analysis on polished section of C₅A (Fig. 2a) and C₅A after extraction revealed an average composition of ferrite Ca₁.₉₉Al₀.₃₉Si₀.₁₀Fe₁.₃₅Ti₀.₀₈Mg₀.₀₇O₅.₀₀ not far from the brownmillerite series Ca₂(Fe₂₋ₓAlₓ)O₅. However, the average composition of perovskite Ca₂.₀₀Al₀.₃₀Si₀.₂₂Fe₁.₀₆Ti₀.₄₀Mg₀.₀₅O₅.₃₁ is very different to the Ca₅Ti₂O₄ composition. These compositions were similar to those observed in the ferrite/perovskite phases of a calcium aluminate cement (Gloter et al. 2000). We also observed in some grains perovskite lamellae with high amount of Ti on the scale of few micrometers (Fig. 2b).
4 Conclusions

The phase assemblage of a commercial calcium sulfo aluminate cement has been investigated with a special attention to the ferrite-perovskite phases. The ferrite composition is closed to the brownmillerite Ca$_2$(Fe$_{2-x}$Al$_x$)O$_5$ whereas the perovskite shows heterogeneity with important substitution of Ti by Fe, Al and Si.

Acknowledgements. The authors acknowledge A. Diaz (C2MA, IMT Mines Ales) for sample preparation for SEM experiments.

References

Alvarez-Pinazo G, Cuesta A, Garcia-Maté M, Santacruz I, Losilla ER, De la Torre AG, Leon-Reina L, Aranda MAG (2012) Rietveld quantitative phase analysis of Yeelimite-containing cements. Cem Concr Res 42:960–971

Gloter A, Ingrin J, Bouchet D, Scrivener K, Colliex C (2000) TEM evidence of perovskite-brownmillerite coexistence in the Ca(Al$_x$Fe$_{1-x}$)O$_{2.5}$ system with minor amounts of titanium and silicon. Phys. Chem. Miner 27:504–513

Hjorth L, Lauren K-G (1971) Belite in Portland cement. Cem Concr Res 1:27–40

Taylor HFW (1997) Cement Chemistry. Thomas Telford, London

Wang J (2010) Hydration mechanism of cements based on low-CO$_2$ clinkers containing belite, ye’elimite and calcium alumino ferrite. PhD dissertation, University of Lille I, France

Zhang L, Su M, Wang Y (1999) Development of the use of sulfo- and ferroaluminate cements in China. Adv Cem Res 11:15–21
