Research Article

Gibberellic Acid Production from Corn Cob Residues via Fermentation with Aspergillus niger

Mariel Monrroy and José Renán García

1Research Center in Biochemistry and Applied Chemistry, Faculty of Natural and Exact Sciences, Autonomous University of Chiriqui, Chiriqui, Panama
2Department of Chemistry, Faculty of Natural and Exact Sciences, Autonomous University of Chiriqui, Chiriqui, Panama

Correspondence should be addressed to José Renán García; joregam@gmail.com

Received 26 March 2022; Accepted 13 May 2022; Published 28 May 2022

Academic Editor: Isabel Mafra

Copyright © 2022 Mariel Monrroy and José Renán García. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Following numerous biotechnological innovations, a variety of agricultural by-products can now be employed as low-cost substrates for the production of secondary metabolites, such as antibiotics, phytohormones, biofuels, pesticides, and organic acids. As an example, gibberellin (GA) growth phytohormones can be obtained by such means, wherein gibberellic acid (GA3) is of great interest worldwide in the agricultural sector. The central aspect of this research therefore focused on the bioconversion of agricultural by-products, such as corn cob, to obtain GA3 phytohormone via solid-state fermentation (SSF) with Aspergillus niger.

The chemical characterization of the obtained material showed that the corn cob possessed glucose, mannose, arabinose, and lignin contents of 34, 26, 8, and 16%, respectively. Our results also indicated an appreciable carbon content (47%), in addition to the mineral elements of nitrogen (4%), potassium (1.2%), iron (0.03%), sodium (0.01%), calcium (0.06%), and Al (0.02%). Following SSF for 11 d in the presence of A. niger at pH 5, 30 °C, and 24% sample consistency, a GA3 production of >6.1 g·kg⁻¹ was obtained. This value is higher than those previously reported for different by-products of the food industry, such as coffee husk, wheat bran, cassava, pea pods, and sorghum straw (i.e., 0.25–5.5 g·kg⁻¹) following SSF. The production of GA3 from corn cob residues not only contributes to reducing the negative impact of agricultural by-products but also represents a new source of a key raw material for phytohormone production, thereby contributing to the development of processes to convert agricultural residues into biologically active compounds of commercial interest.

1. Introduction

The gibberellin (GA) growth phytohormones are a large family of isoprenoid phytohormones that are of great interest in the agricultural sector [1, 2]. Among the gibberellins of greater industrial and economic importance, gibberellic acid (GA3), a tetracyclic dihydroxy lactonic acid, is widely employed in worldwide agriculture due to its ability to increase the germination rate of seeds, increase the size of seedless plants, increase vegetative growth, stimulate cell division, and promote flowering, sex expression, enzyme induction, and senescence of fruits [3–8].

Industrially, GA3 is produced via fermentation with the fungus Gibberella fujikuroi, which is also known as Fusarium fujikuroi [4], although other microorganisms such as Fusarium moniliforme, Bacillus siamensis, and Aspergillus niger are also capable of producing this desired product [9–11]. Due to its widespread usage, the annual production of GA3 is 100 tons, with prices ranging from 150 to 500 U.S. dollars per kilogram [12]. The main fermentation process used to obtain GA3 is submerged fermentation (SmF); however, the production costs of this process are high owing to low yields and extensive separation steps. In addition, although GA3 can be isolated from plant tissues and by chemical synthesis, these processes are complicated, give low yields, and are not profitable in an industrial context [13]. Thus, in recent years, the possibility of using solid-state fermentation (SSF) has attracted significant attention,
autoclaved for 121°C for 1h. After this time, the residual mixture was transferred to a 250mL Erlenmeyer flask and 1h with stirring every 10min. Subsequently, the hydrolyzed (3mL). Hydrolysis was performed in a water bath at 30°C for glass filter (no.4). F’he solid fraction, i.e., the insoluble lignin, 2.1.4 T’he Raw Material.

2. Materials and Methods

A. niger account diverse operational parameters and using the fungus phytohormones from corncobs by means of SSF, taking into characterization techniques can be found as follows.

The carbohydrate contents of the samples were determined using the methodology described by Ferraz et al. [21]. More specifically, in a test tube, the extractive-free milled (40/60 mesh) were extracted with acetone (90% v/v) according to the TAPPI method T280 pm-99. The extracted samples were analyzed for their carbohydrate, nitrogen, and mineral contents. All analyses were performed in triplicate. All samples were also analyzed by Fourier transform infrared (FTIR) spectroscopy. Further details regarding these characterization techniques can be found as follows.

The carbohydrate contents of the samples were determined using the methodology described by Ferraz et al. [21]. More specifically, in a test tube, the extractive-free milled (300 mg) was weighed and 72% (w/w) H2SO4 was added (3 mL). Hydrolysis was performed in a water bath at 30°C for 1 h with stirring every 10 min. Subsequently, the hydrolyzed was diluted to 4% (w/w) with distilled water (79 mL), and the mixture was transferred to a 250 mL Erlenmeyer flask and autoclaved for 121°C for 1h. After this time, the residual material was cooled at 25°C and filtered through a sintered glass filter (no. 4). The solid fraction, i.e., the insoluble lignin, was then dried at 105°C and weighed. The concentration of monomeric sugars in the soluble fraction was determined using high-performance liquid chromatography (HPLC) with a refractive index detector (Hitachi High-Tech D-7000-L-7490, Tokyo, Japan) and an Aminex HTX-87H column (Bio-Rad, Hercules, CA, USA) at 45°C and with elution at 0.6 mL/min using a 5 mM aqueous H2SO4 solution. Glucose and xylose + mannose were used as external calibration standards.

The carbon and nitrogen contents were measured using an elemental analyzer (Fisons Instrument EA 1108, Milano, Italy), wherein sulfanilamide was used as the standard. To determine the mineral content, the sample was digested in an acid solution and analyzed using inductively coupled plasma optical emission spectroscopy (Perkin Elmer Optima 5300 DV, USA).

The FTIR spectra of the samples incorporated into KBr pellets were measured using the direct transmittance mode. The spectra were recorded between 4000 and 500 cm−1 using a Shimadzu IRAffinity-1 FTIR spectrometer equipped with a deuterated L-alanine-doped triglycine sulfate detector. The background was recorded using a freshly prepared KBr pellet. All spectra were measured at a resolution of 2 nm, and 32 scans were taken per sample.

2.2. Chemical Characterization. The milled samples (40/60 mesh) were extracted with acetone (90% v/v) according to the TAPPI method T280 pm-99. The extracted samples were analyzed for their carbohydrate, nitrogen, and mineral contents. All analyses were performed in triplicate. All samples were also analyzed by Fourier transform infrared (FTIR) spectroscopy. Further details regarding these characterization techniques can be found as follows.

The carbohydrate contents of the samples were determined using the methodology described by Ferraz et al. [21]. More specifically, in a test tube, the extractive-free milled (300 mg) was weighed and 72% (w/w) H2SO4 was added (3 mL). Hydrolysis was performed in a water bath at 30°C for 1 h with stirring every 10 min. Subsequently, the hydrolyzed was diluted to 4% (w/w) with distilled water (79 mL), and the mixture was transferred to a 250 mL Erlenmeyer flask and autoclaved for 121°C for 1h. After this time, the residual material was cooled at 25°C and filtered through a sintered glass filter (no. 4). The solid fraction, i.e., the insoluble lignin, was then dried at 105°C and weighed. The concentration of monomeric sugars in the soluble fraction was determined using high-performance liquid chromatography (HPLC) with a refractive index detector (Hitachi High-Tech D-7000-L-7490, Tokyo, Japan) and an Aminex HTX-87H column (Bio-Rad, Hercules, CA, USA) at 45°C and with elution at 0.6 mL/min using a 5 mM aqueous H2SO4 solution. Glucose and xylose + mannose were used as external calibration standards.

The carbon and nitrogen contents were measured using an elemental analyzer (Fisons Instrument EA 1108, Milano, Italy), wherein sulfanilamide was used as the standard. To determine the mineral content, the sample was digested in an acid solution and analyzed using inductively coupled plasma optical emission spectroscopy (Perkin Elmer Optima 5300 DV, USA).

The FTIR spectra of the samples incorporated into KBr pellets were measured using the direct transmittance mode. The spectra were recorded between 4000 and 500 cm−1 using a Shimadzu IRAffinity-1 FTIR spectrometer equipped with a deuterated L-alanine-doped triglycine sulfate detector. The background was recorded using a freshly prepared KBr pellet. All spectra were measured at a resolution of 2 nm, and 32 scans were taken per sample.

2.3. Growth and Inoculum Preparation of the A. niger Strain. The employed A. niger ATCC 6275 strain was conserved in Petri dishes containing 4 wt/vol% potato dextrose agar incubated at 30°C. To obtain the inoculum, spores were harvested from PDA cultures after 7 d of growth using a 0.1% Tween 80 solution. The resulting suspensions were used as the inocula. Spore counting was carried out in a Neubauer chamber until the required final concentration of 106 mL−1 was obtained. The inoculum mass was determined by gravimetry, and a determined volume of the spore suspension was placed on a filter paper. The remaining residue was dried at 105°C for 1 h, and the dry weight was calculated.

2.4. Solid-State Fermentation (SSF). The SSF process was carried out at a range of sample consistencies (10–30%) and pH values (4–6) in an Erlenmeyer flask (25 mL, the fermenter). For this purpose, the fermenter was charged with the sample (0.75 g, dry base), a nutrient solution previously autoclaved at 121°C for 15 min (50 mL; NH4Cl (1 g L−1), KH2PO4 (3 g L−1), MgSO4·7H2O (2.2 g L−1)), and the inoculum solution (1 mL, containing 15 mg of the inoculum). The effects of the pH and sample consistency were evaluated using a central composite design to optimize the GAg yield. The reaction mixture was incubated at 30°C and 150 rpm for 11 d.

2.5. GAg Extraction and Determination. Following completion of the 11-day fermentation process, a small volume of water (5 mL) was added to the fermentation culture, stirred at 150 rpm for 30 min, and filtered through Whatman No. 41 filter paper. The supernatant volume was then adjusted to 25 mL using water and subjected to centrifugation
at 3500 rpm for 10 min. Subsequently, the samples were acidified to pH 2 using HCl and extracted with ethyl acetate [22]. The organic (ethyl acetate) extract was then evaporated, and the residue was resuspended in ethanol. Finally, the GA$_3$ content was determined by ultraviolet (UV) spectrophotometry at a wavelength of 254 nm and using a calibration curve prepared from the GA$_3$ standard.

2.6. Statistical Analysis. The influences of the various experimental design variables were determined using the response surface methodology approach [23, 24]. The models were based on a circumscribed composite central design consisting of factorial design and star points. The second-order function that best described the system behavior was determined using the multiple linear regression method. Statistical validation was carried out using an ANOVA test at a 95% confidence level. The generation and evaluation of the experimental design were performed using the MODDE® program, version 12 (Umetrics, USA).

3. Results and Discussion

3.1. Chemical Composition of the Corn Cob. The chemical composition of the corn cob raw material employed in this study is given in Table 1. As indicated, corn cob is a lignocellulosic material composed mainly of glucose (from cellulose), mannose, arabinose (from hemicellulose), and lignin. However, we note that the obtained glucose and xylose contents were slightly lower than those reported by other authors. More specifically, Van Dongen et al. [25] and Lili et al. [26] reported values of 34–34.6 and 27–31.1 for glucose and xylose, respectively, in corn cobs. However, the arabinose contents (2.4–3.6) reported by these authors were lower than the value determined in our study. In addition, the determined lignin content given in Table 1 is higher than that reported by Lili et al. (9.4) but lower than that reported by Van Dongen et al. (18.3).

In addition, elemental analysis indicated that corn cobs have an appreciable carbon content but a low nitrogen content, thereby giving a high C/N ratio, which is favorable for the production of GA$_3$. In addition, the mineral content of the corn cob was low, as previously reported by Berber-Villamar et al. [16]. The above results are also consistent with those of other studies, which indicate that the main components of corn cob are cellulose, hemicellulose, and lignin.

The FTIR spectra of the corn cob are shown in Figure 1, wherein the characteristic bands of lignocellulosic materials can be seen. More specifically, the peak at 3424 cm$^{-1}$ was attributed to the O–H stretching vibrations of the phenol, alcohol, and carboxylic acid functional groups [27], while those at 2927 and 1645 cm$^{-1}$ represent the C–H and OH$^-$ stretching vibrations, respectively [28]. In addition, the peak at 1549 cm$^{-1}$ was assigned to N–H bending mixed with C–N stretching, which is characteristic of the protein amide I band [28]. Furthermore, the peaks observed at 1456 and 1397 cm$^{-1}$ corresponded to C–C stretching in the lignin aromatic ring and C–H asymmetric deformation, respectively, while those at 1456–1251 cm$^{-1}$ were assigned to C–O stretching and O–H deformation vibrations; according to Lu et al. [29], the peak at 1251 cm$^{-1}$ represents the C–O stretching band of the hemicellulose structure. Moreover, the band at 1038 cm$^{-1}$ corresponds to the cellulose (polysaccharide) C–O stretching [27], while that at 610 cm$^{-1}$ was attributed to the O–H out-of-plane vibrations.

3.2. GA$_3$ Production via SSF with A. niger. As given in Table 2, the production of GA$_3$ in the presence of A. niger varied from 2.1 to 6.2 g kg$^{-1}$ depending on the fermentation conditions employed during the SSF process (Table 2). As mentioned above, the effects of the pH and sample consistency on GA$_3$ production were evaluated because pH is one of the most important factors affecting the biomass and yield obtained using A. niger, and the sample consistency is related to the amount of substrate available for GA$_3$ production [13]. According to Omajasola and Adejoro [13], a balanced amount of substrate is necessary for good GA$_3$ production. These authors indicate that GA$_3$ production and maintenance of biomass require low glucose concentration (<4%) in the culture medium.

Based on the experimental design data and GA$_3$ content obtained under each condition, a quadratic polynomial was determined (equation (1)), which was subsequently validated using ANOVA.

$$\text{GA}_3(g \text{kg}^{-1}) = 6.1 \pm 0.2 + 0.3 \pm 0.1X_1$$
$$+ 0.44 \pm 0.1X_2 - 1.4 \pm 0.1X_1^2 - 0.5 \pm 0.1X_2^2,$$

(1)

where X_1 is the pH and X_2 is the consistency (%). The error values correspond to a 95% confidence level.

The linear terms showed a positive coefficient for pH and consistency, indicating that GA$_3$ production increased with an increase in these variables until a maximum value was reached, as shown by the negative quadratic terms for the two variables. According to the polynomial, pH was the main determining factor for maximizing GA$_3$ production. In addition, considering the confidence intervals, the interaction between the variables did not have a significant effect on GA$_3$ production. Thus, the effects of these fermentation conditions on GA$_3$ production are shown in the response surfaces for the polynomials shown in Figure 2.

Based on the experimental conditions employed during experimental design, the polynomial was used to predict GA$_3$ production, and the responses were close to the experimental values given in Table 2, with a correlation coefficient (r^2) of 0.99 being obtained. These values, together with the ANOVA test (Table 3), statistically validated this model. The response surface methodology (RSM) model p value for the production of GA$_3$ was 0.000, which demonstrated the high significance of the model. In addition, the p value for the lack-of-fit was 0.141, which indicates no significant difference compared to the pure error.

Subsequently, the optimum values of the various experimental variables to maximize the amount of GA$_3$ production were determined by the Simplex method using the maximum values of the response surface, wherein the
Table 1: Chemical composition of the corn cob employed.

Glucose	Xylose	Arabinose	Lignin	C (wt%)	N (wt%)	C/N
31 ± 1	22.5 ± 0.4	7.8 ± 0.2	16.5 ± 0.2	47 ± 0.2	3.9 ± 0.3	12

Mineral content (%) wt
K
1.19 ± 0.03

Note: the values provided for all sugars are expressed in terms of their anhydrous contents within the polymer.

Figure 1: FTIR spectrum of the corn cob sample.

Table 2: GA₃ yields obtained from corn cob via SSF in the presence of A. niger.

Exp. no.	pH	Consistency (%)	GA₃ (g kg⁻¹)
1	4	10	3.16
2	6	10	3.4
3	4	30	4.06
4	6	30	4.56
5	3.6	20	2.1
6	6.4	20	3.22
7	5	5.9	4.31
8	5	34.1	5.46
9	5	20	6.13
10	5	20	6.2
11	5	20	6.03

Figure 2: Response surfaces for the amount of GA₃ produced from corn cob upon variation in the pH and sample consistency (%).
maximum predicted GA$_3$ content was 6.2 ± 0.2 g·kg$^{-1}$. More specifically, the predicted values for the optimal extraction variables were a pH of 5.1 and a consistency of 24%. Importantly, the experimental GA$_3$ content obtained under these conditions was 6.1 ± 0.3 g·kg$^{-1}$, which agrees well with the predicted value.

It should also be noted that the level of GA$_3$ production obtained in this study using *A. niger* was similar to and in some cases higher, with previous reports describing the production of GA$_3$ from different substrates using *Fusarium* species under similar conditions (Table 4). For example, Machado et al. [32], Bandelier et al. [3], and Tomasini et al. [33] reported values of 0.49, 3, and 0.25 g·kg$^{-1}$ of GA$_3$ production from coffee husk, wheat bran, and cassava after 6, 3, and 1.4 d, respectively, using *F. fujikuroi* as the main GA$_3$ production strain on an industrial level. Considering the current study, it should be noted that Satpute et al. [31] reported one of the few previous works related to the use of corn cob to obtain GA$_3$, wherein they obtained values of 5.2–6.1 g·kg$^{-1}$ GA$_3$ via SSF with *F. proliferatum* after 10 d. In contrast to the previous study, the growth of GA$_3$ phytohormones from corn cob via SSF using the fungus *A. niger* presents great advantages because this microorganism is the most abundant mold found in the environment. In addition, it is easy to handle and can be used to ferment various by-products in high yields, and its strains can be improved to create industrial strains for use in commercial production [34].

4. Conclusions

The production of gibberellic acid (GA$_3$), a growth phytohormone, via the solid-state fermentation (SSF) of corn cob by *Aspergillus niger* is described in this study. This process is of particular interest, since corn cob is a low-cost agroindustrial by-product that is produced and discarded on a large scale every year. The optimal yield of GA$_3$ produced by *A. niger* upon variation in the pH and sample consistency was 6.1 g·kg$^{-1}$, which is among the highest values reported in the literature, thereby demonstrating that corn cobs can be used for the efficient production of GA$_3$ when combined with the most abundant mold found in the environment. The production of GA$_3$ from corn cob residues not only contributes to reducing the negative impact of agricultural by-products but also represents a new source of a key raw material for phytohormone production.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Acknowledgments

The authors thank the analysts Glenda Maldonado and Samuel Flores and PhD. Juanita Freer of the Renewable Resources Laboratory, Biotechnology Center, Universidad de Concepción, Chile, and Nicomedes Jaramillo and Yovelys Sandoval of the School of Chemistry, Autonomous University of Chiriquí (UNACHI), for their collaboration with a number of the experimental tests. This study was funded by the National Secretariat of Science, Technology, and Innovation (SENACYT) as a member of the Panamá Research National System (SNI) and the Research Grant Program of the Research and Postgraduate Vice-Rectory of the UNACHI.
References

[1] A. Pandey, C. R. Soccol, and D. Mitchell, "New developments in solid state fermentation: I-bioprocesses and products," Process Biochemistry, vol. 35, no. 10, pp. 1153–1169, 2000.

[2] K. R. Kildegaaard, J. A. Arnesen, B. Adiego-Pérez et al., "Tailored biosynthesis of gibberellic plant hormones in yeast," Metabolic Engineering, vol. 66, pp. 1–11, 2021.

[3] S. Bandelier, R. Renaud, and A. Durand, "Production of gibberellic acid by fed-batch solid state fermentation in an aseptic pilot-scale reactor," Process Biochemistry, vol. 32, no. 2, pp. 141–145, 1997.

[4] R. Shukla, S. Chand, and A. K. Srivastava, "Improvement of gibberellic acid production using a model based fed-batch cultivation of Gibberella fujikuroi," Process Biochemistry, vol. 40, no. 6, pp. 2045–2050, 2005.

[5] V. Ghodrat and M. J. Rousta, "Effect of priming with gibberellic acid (GA₃) on germination and growth of corn (Zea mays L.) under saline conditions," The International Journal of Agriculture and Crop Sciences, vol. 13, pp. 882–885, 2012.

[6] C. Rodrigues, L. P. D. S. Vandenberghe, J. de Oliveira, and C. Soccol, "New perspectives of gibberellic acid production: a review," Critical Reviews in Biotechnology, vol. 32, no. 3, pp. 263–273, 2012.

[7] Y.-X. Zang, I.-J. Chun, L.-L. Zhang, S.-B. Hong, W.-W. Zheng, and K. Xu, "Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry," Scientia Horticulturae, vol. 200, pp. 13–18, 2016.

[8] M. C. Camara, L. P. S. Vandenberghe, C. Rodrigues et al., "Current advances in gibberellic acid (GA₃) production, patented technologies and potential applications," Planta, vol. 248, no. 5, pp. 1049–1062, 2018.

[9] C. Rodrigues, L. P. D. S. Vandenberghe, J. Teodoro, J. F. Oss, A. Pandey, and C. R. Soccol, "A new alternative to produce gibberellic acid by solid state fermentation," Brazilian Archives of Biology and Technology, vol. 52, no. spe, pp. 181–188, 2009.

[10] M. S. Ambawade and G. R. Pathade, "Production of gibberellic acid by Bacillus subtilis BE 76 isolated from banana plant (Musa spp.)," International Journal of Scientific Research, vol. 4, no. 7, pp. 394–398, 2015.

[11] I. Bilkay, K. Sude, and N. Aksoz, "Indole-3-acetic acid and gibberellic acid production in Aspergillus niger," Turkish Journal of Biology, vol. 34, pp. 313–318, 2010.

[12] M. C. Camara, L. P. S. Vandenberghe, G. C. Sextos, V. O. A. Tanobe, A. I. Magalhães Junior, and C. R. Soccol, "Alternative methods for gibberellic acid production, recovery and formulation: a case study for product cost reduction," Bioresource Technology, vol. 309, Article ID 123295, 2020.

[13] P. P. Omojasola and D. O. Adejoro, "Submerged fermentation of orange albedo to produce gibberellic acid using Fusarium moniliforme and Aspergillus niger," Jordan Journal of Biological Sciences, vol. 11, no. 2, pp. 187–194, 2018.

[14] T. Robinson, D. Singh, and P. Nigam, "Solid-state fermentation: a promising microbial technology for secondary metabolite production," Applied Microbiology and Biotechnology, vol. 55, no. 3, pp. 284–289, 2001.

[15] J. A. V. Costa, H. Treichel, V. Kumar, and A. Pandey, "Chapter 1 - advances in solid-state fermentation," in Current Developments in Biotechnology and Bioengineering, A. Pandey, C. Larroche, and C. R. Soccol, Eds., pp. 1–17, Elsevier, Amsterdam, Netherlands, 2018.

[16] N. K. Berber-Villamar, A. R. Netzhautatl-Muñoz, L. Morales-Barrera, G. M. Chávez-Camarillo, C. M. Flores-Ortiz, and E. Cristiani-Urbina, "Corn cob as an effective, eco-friendly, and economic biosorbent for removing the azo dye Direct Yellow 27 from aqueous solutions," PLoS One, vol. 13, no. 4, Article ID e0196428, 2018.

[17] P. P. Singh-Nee Nigam and Ashok, "Production of bioactive secondary metabolites," in Biotechnology for Agro-Industrial Residues Utilisation, P. Singh-Nee Nigam, Ed., pp. 129–145, Springer, Berlin, Germany, 2009.

[18] C. R. Soccol, E. S. F. D. Costa, L. A. J. Letti, S. G. Karp, A. L. Wociejchowski, and L. P. D. S. Vandenberghe, "Recent developments and innovations in solid state fermentation," Biotechnology Research and Innovation, vol. 1, no. 1, pp. 52–71, 2017.

[19] A. S. Qureshi, I. Khushk, C. H. Ali, Y. Chisti, A. Ahmad, and H. Majeed, "Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass," Biocatalysis and Agricultural Biotechnology, vol. 8, pp. 146–151, 2016.

[20] G. S. Dhillon, G. M. Lea Rosine, S. Kaur et al., "Novel biomaterials from citric acid fermentation as biosorbents for removal of metals from waste chromated copper arsenate wood leachates," International Biodeterioration & Biodegradation, vol. 119, pp. 147–154, 2017.

[21] A. Ferraz, J. Baesa, J. Rodriguez, and J. Freer, "Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis," Bioresource Technology, vol. 74, no. 3, pp. 201–212, 2000.

[22] S. Ates, S. Ozenir, and M. Gökdere, "Effect of silicone oil on gibberellic acid production by Gibberella fujikuroi and Aspergillus Niger," Applied Biochemistry and Microbiology, vol. 42, no. 5, pp. 500–501, 2006.

[23] M. Monroy, E. García, K. Ríos, and J. R. García, "Extraction and physicochemical characterization of mucilage from Opuntia cochenillifera (L.) Miller," Journal of Chemistry, vol. 2017, Article ID 4301901, 9 pages, 2017.

[24] M. Monroy, L. Rueda, A. L. Aparicio, and J. R. García, "Fermentation of Musa paradisiaca peels to produce citric acid," Journal of Chemistry, vol. 2019, Article ID 8356712, 8 pages, 2019.

[25] F. E. M. Van Dongen, D. Van Eylen, and M. A. Kabel, "Characterization of substrits in xylans from corn cobs and stover," Carbohydrate Polymers, vol. 86, no. 2, pp. 722–731, 2011.

[26] W. Lili, J. Yijun, L. Chunhu et al., "Microwave-assisted hydrolysis of corn cob for xylose production in formic acid," in Proceedings of the International Conference on Materials for Renewable Energy & Environment, pp. 332–335, Shanghai, China, May 2011.

[27] E. Padilla, G. Nakashima, A. Larissa et al., "Thermogravimetric and FTIR analyzes of corn cob pyrolysis," Quimica Nova, vol. 42, no. 5, pp. 566–569, 2019.

[28] A. Piñana-Barrera, O. G. Meza-Márquez, G. Osorio-Revilla, and T. Gallardo-Velázquez, "Identification and quantification of corn cob as adulterant in corn dough and tortilla by MIR–FTIR spectroscopy and multivariate analysis," CyTA—Journal of Food, vol. 12, no. 1, pp. 65–72, 2014.

[29] T. Lu, Y. Hou, W. Wu, M. Niu, and Y. Wang, "Formic acid and acetic acid production from corn cob by catalytic oxidation using O₂," Fuel Processing Technology, vol. 171, pp. 133–139, 2018.

[30] J. de Oliveira, C. Rodrigues, L. P. S. Vandenberghe, M. C. Câmara, N. Libardi, and C. R. Soccol, "Gibberellin acid
production by different fermentation systems using citric pulp as substrate/support,” *BioMed Research International*, vol. 2017, Article ID 5191046, 8 pages, 2017.

[31] D. Satpute, V. Sharma, K. Murarkar, M. Bhotmange, and D. Dharmadhikari, “Solid-state fermentation for production of gibberellic acid using agricultural residues,” *International Journal of Environment and Pollution*, vol. 43, no. 1/2/3–3, pp. 201–213, 2010.

[32] C. M. M. Machado, C. R. Soccol, B. H. de Oliveira, and A. Pandey, “Gibberellic acid production by solid-state fermentation in coffee husk,” *Applied Biochemistry and Biotechnology*, vol. 102-103, no. 1–3, pp. 179–192, 2002.

[33] A. Tomasini, C. Fajardo, and J. Barrios-González, “Gibberellic acid production using different solid-state fermentation systems,” *World Journal of Microbiology and Biotechnology*, vol. 13, no. 2, pp. 203–206, 1997.

[34] P. L. Show, K. O. Oladele, Q. Y. Siew, F. A. Aziz Zakry, J. C.-W. Lan, and T. C. Ling, “Overview of citric acid production from *Aspergillus niger*,” *Frontiers in Life Science*, vol. 8, no. 3, pp. 271–283, 2015.