A transiting extrasolar giant planet around the star
OGLE-TR-113

Maciej Konacki1, Guillermo Torres2, Dimitar D. Sasselov2, Grzegorz Pietrzyński3,4, Andrzej Udalski4, Saurabh Jha5, Maria Teresa Ruiz6, Wolfgang Gieren3, and Dante Minniti7

ABSTRACT

We report the independent discovery of a new extrasolar transiting planet around OGLE-TR-113, a candidate star from the Optical Gravitational Lensing Experiment. Small radial-velocity variations have been detected based on observations conducted with the MIKE spectrograph on the Magellan I (Baade) telescope at the Las Campanas Observatory (Chile) during 2003. We have also carried out a light-curve analysis incorporating new photometry and realistic physical parameters for the star. OGLE-TR-113b has an orbital period of only 1.43 days, a mass of $1.08 \pm 0.28 \, M_{\text{Jup}}$, and a radius of $1.09 \pm 0.10 \, R_{\text{Jup}}$. Similar parameters have been obtained very recently in an independent study by Bouchy et al., from observations taken a year later. The orbital period of OGLE-TR-113b, and also that of the previously announced planet OGLE-TR-56b ($P_{\text{orb}} = 1.21$ days) —the first two found photometrically— are much shorter than the apparent cutoff of close-in giant planets at 3-4-day periods found from high-precision radial velocities surveys. Along with a third case reported by Bouchy et al. (OGLE-TR-132b, $P_{\text{orb}} = 1.69$ days), these objects appear to form a new class of “very hot Jupiters” that pose very interesting questions for theoretical study.

Subject headings: planetary systems — line: profiles — stars: evolution — stars: individual (OGLE-TR-113) — techniques: radial velocities

1California Institute of Technology, Div. of Geological & Planetary Sciences 150-21, Pasadena, CA 91125, USA; e-mail: maciej@gps.caltech.edu

2Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138

3Universidad de Concepción, Departamento de Física, Astronomy Group, Casilla 160-C, Concepción, Chile

4Warsaw University Observatory, AL. Ujazdowskie 4, 00-478, Warsaw Poland

5Department of Astronomy, University of California, Berkeley, CA 94720, USA

6Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile

7Pontificia Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Casilla 306, Santiago 22, Chile
1. Introduction

In recent years the field of extrasolar planet research has seen significant developments in the ability to discover and measure these objects using a variety of techniques. High-precision Doppler searches (e.g., Fischer et al. 2003; Naef et al. 2004) have yielded the vast majority of the discoveries, and measurements in at least one case have even been made astrometrically (Benedict et al. 2002). Transit searches had their first success with HD 209458 (Henry et al. 2000; Charbonneau et al. 2000), a bright star ($V = 7.65$) that was known previously to harbor a planet in a 3.5-day period orbit from its radial-velocity signature. Numerous photometric programs are monitoring large samples of stars looking for small dips in the brightness of the central object at the \sim1% level (see Horne 2003), which might indicate a planet-size object crossing in front of the star. These studies are very important for the additional information they bring to bear on the nature of the companion, namely, the inclination angle of the orbit ($\sim 90^\circ$) and the absolute radius of the planet. The inclination angle complements the spectroscopic information and allows a direct determination of the mass.

Dozens of transiting planet candidates among faint stars have already been reported by several teams including OGLE (Udalski et al. 2002a), EXPLORE (Mallén-Ornelas et al. 2003), MACHO (Drake & Cook 2004), and others. Multiple efforts are underway to follow-up on these candidates, a necessary step given the high incidence of false positive detections, particularly among fainter stars in crowded fields. The first case to be confirmed was that of OGLE-TR-56, a star with $V = 16.6$ located in the direction of the Galactic center (Udalski et al. 2002b; Konacki et al. 2003a; Torres et al. 2004). The very short orbital period of this planet (only 1.21 days) makes it extremely interesting, and has provided theorists the opportunity to explore the effects of strong irradiation from the central star as well as evaporation (e.g., Burrows, Sudarsky & Hubbard 2003; Baraffe et al. 2003, 2004).

In this paper we report the detection of a Doppler signature induced by a giant planet orbiting OGLE-TR-113, another faint transit candidate ($I = 14.42$) in the constellation of Carina reported recently by the OGLE project (Udalski et al. 2002c). This star shows periodic dips in brightness of about 3%, and has a photometric period of 1.43 days. OGLE-TR-113 was originally identified as a very promising candidate from our low-resolution spectroscopic observations conducted in 2002 (see Konacki et al. 2003b). This reconnaissance showed it to be a star of late spectral type with no obvious velocity variations at the level of a few km s$^{-1}$, which would have otherwise disqualified it for implying a stellar companion. Subsequently it was placed on our program for high-resolution follow-up, and the observations were carried out in early 2003. As this paper was being prepared we learned of a very recent independent detection of radial velocity variations in OGLE-TR-113 by Bouchy et al.
(2004), based on observations taken in 2004. That study found yet another case of a very short-period transiting planet (OGLE-TR-132, $P_{\text{orb}} = 1.69$ d), which brings the number of such objects to three. It appears, therefore, that they form a new class of “very hot Jupiters” not previously seen in high-precision radial-velocity surveys.

2. Observations and reductions

Our high-resolution spectroscopic observations were carried out with the MIKE spectrograph (Bernstein et al. 2003) on the Magellan I (Baade) telescope at the Las Campanas Observatory in Chile. Seven spectra of OGLE-TR-113 were obtained from February to April of 2003. The resolving power of these observations is $\lambda/\Delta \lambda \approx 54,000$, and the wavelength coverage is from 450 to 725 nm. Only 22 of the 29 echelle orders were used, since the others had low signal or were affected by telluric lines. The average signal-to-noise ratios achieved in our 30–40 minute exposures range from about 15 to 20 per pixel. In addition to OGLE-TR-113 we observed several brighter stars with known planets each night as radial velocity standards. The wavelength reference for all observations was determined from exposures of a hollow-cathode Thorium-Argon lamp taken immediately before and after each stellar exposure.

The spectra were reduced using standard tasks in IRAF1, as well as rectification tools developed by Kelson (2003). Radial velocities were obtained by cross-correlation against a calculated template that was tuned to match the star. For OGLE-TR-113 the stellar parameters we determined are $T_{\text{eff}} = 4800 \pm 150$ K, $\log g = 4.5^{+0.5}_{-0.8}$, $[\text{Fe/H}] = 0.0^{+0.1}_{-0.3}$, macroturbulent velocity $\zeta_{\text{RT}} = 2 \pm 1$ km s$^{-1}$, and $v \sin i = 9 \pm 3$ km s$^{-1}$. These were derived by careful comparison of calculated LTE model spectra against features such as the Hα, Hβ, and Na D lines, in addition to numerous other metal lines, which taken together provide strong constraints on the effective temperature and surface gravity of the star. The parameters for the standards were adopted from detailed analyses in the literature. The velocity results from the different orders were combined for each star, and the scatter between orders was used to derive an estimate of the uncertainty. Instrumental shifts during the night were monitored and corrected for by using telluric lines present in the spectrum. Typical corrections average 100-150 m s$^{-1}$ with occasionally larger values, and they are found to improve the accuracy of the velocities significantly.

The results for one of our standards, τ Boo (HD 120136), are shown in Figure 1. The

1IRAF is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.
measured radial velocities are in excellent agreement with the known spectroscopic orbit for this star from Butler et al. (1997), which has a semi-amplitude of about $470 \, \text{m s}^{-1}$. The RMS residual from the published orbit is $85 \, \text{m s}^{-1}$, and the only parameter adjusted to match the observations is a velocity offset. This demonstrates that the instrumental setup allows us to clearly detect small velocity changes at the level of a few hundred m s$^{-1}$.

3. Spectroscopic results

Our velocity measurements for OGLE-TR-113 are listed in Table 1 and shown in Figure 2. Typical measurement errors are $\sim 100 \, \text{m s}^{-1}$. We fitted a Keplerian orbit to these observations holding the well-determined period and epoch fixed from the photometry (see §4), and adjusting only the velocity semi-amplitude (K) and the center-of-mass velocity (γ). A circular orbit was assumed, based on the extremely short orbital period and the likelihood that tidal forces have reduced the eccentricity to zero. We obtained $K = 229 \pm 58 \, \text{m s}^{-1}$ and $\gamma = -7.939 \pm 0.043 \, \text{km s}^{-1}$, with an RMS residual from the fit of $108 \, \text{m s}^{-1}$ (Table 2). The semi-amplitude is significantly different from zero and it is robust. The minimum mass of the companion derived from our best orbital fit is $M_p \sin i = (0.00121 \pm 0.00031)(M_\star + M_p)^{2/3} \, \text{M}_\odot$, where M_\star is the mass of the primary star. Formally our systemic velocity for OGLE-TR-113 agrees very well with the value of $\gamma = -7.944 \pm 0.027 \, \text{km s}^{-1}$ by Bouchy et al. (2004). For our standard τ Boo we obtain $\gamma = -16.632 \pm 0.033 \, \text{km s}^{-1}$, which also compares favorably with the determination by Nidever et al. (2002) of $-16.542 \, \text{km s}^{-1}$, referred to a well-defined velocity system. However, we do not claim here that the accuracy of our zero point is much better than $\sim 100 \, \text{m s}^{-1}$, partly because of the small number of observations. Nevertheless, the similarity of the systemic velocity we derive for OGLE-TR-113 with that of Bouchy et al. (2004) places at least some constraint on the presence of additional massive planets in wider orbits around the star.

Among the phenomena that can mimic the photometric and spectroscopic signatures of transit candidates, the presence of an eclipsing binary along the same line of sight (a “blend”) is one of the most common. Deep eclipses in the binary can be strongly diluted by the main star, and appear with depths of only a few percent that are very similar to those produced by a Jupiter-size planet around a solar-type star. Furthermore, light from one of the stars in the eclipsing binary can contaminate the spectrum of the main star, and introduce line asymmetries that could lead to spurious velocity variations. To examine this possibility we quantified the asymmetries by computing the line bisector spans (see, e.g., Gray 1992). This was done directly from the cross-correlation function of OGLE-TR-113 co-added over all echelle orders, following Santos et al. (2002) and Torres et al. (2004). The results are
shown as a function of phase in Figure 3. Within the errors we detect no significant variation, indicating that line asymmetries cannot be the source of the velocity variations (∼500 m s⁻¹, peak to peak) since these two quantities should be of the same order.

4. Light curve solution

The discovery of a transit signature in OGLE-TR-113 was reported by (Udalski et al. 2002c), and was based on observations collected during the 2002 observing season in which 10 transit events were recorded. Since then further measurements spanning two additional seasons have been made (for a total of 1517), and 4 more transits have been detected. We have incorporated these new measurements into our analysis. The internal errors of 0.003 mag, possibly a bit optimistic, were rescaled to 0.006 mag for consistency with the out-of-eclipse variations and also to provide a reduced χ² near unity in the light curve solution. The best fit transit model, computed following Mandel & Agol (2002), is shown in Figure 4 together with the observations. The resulting parameters along with the period and transit epoch, which were adjusted simultaneously, are given in Table 2. The improved period and transit epoch are $P_{\text{orb}} = 1.4324758 \pm 0.0000046$ days and $T(\text{HJD}) = 2,452,325.79823 \pm 0.00082$. The limb-darkening coefficient in the I band (linear law), $u_I = 0.586 \pm 0.015$, was derived from models consistent with the physical properties of the star.

The photometric observations provide strong constraints on the model fit and the χ² surface has a well-defined minimum (Figure 5). The statistical error on the radius of the planet, R_p, is only 0.02 R_{Jup}. However, the dominant contribution to the total error in R_p is the uncertainty in the stellar radius, R_\star. For a fixed stellar mass of $M_\star = 0.79 M_\odot$ the value of R_\star (∼0.78 R_\odot) can be determined to about ±0.02 R_\odot from stellar evolution models. But the stellar mass itself is uncertain by ∼0.06 M_\odot, and this propagates directly into R_\star because the star must presumably conform to a model isochrone. When this increased error for the stellar radius is accounted for the uncertainty in the planet radius is $R_p = 1.09 \pm 0.10$ R_{Jup}. This is larger than the uncertainty reported by Bouchy et al. (2004), but we believe it is much more realistic.

5. Discussion

From the combination of the spectroscopic and photometric solutions we have derived the key physical parameters of the planet. OGLE-TR-113b has an orbital period of only 1.43 days, a mass of $1.08 \pm 0.28 M_{\text{Jup}}$, and a radius of $1.09 \pm 0.10 R_{\text{Jup}}$ (Table 2). These values
are consistent at the 1-σ level with the determinations by Bouchy et al. (2004). Perhaps
the most interesting parameter in this case is the very short orbital period. OGLE-TR-
56b, OGLE-TR-113b, and also the recently announced OGLE-TR-132b (Bouchy et al. 2004,
$P_{\text{orb}} = 1.69$ days) all have orbital periods much shorter than the apparent cutoff of close-in
 giant planets at around 3-day periods, determined from the radial velocities surveys. Thus,
 OGLE-TR-56b (the first of these discoveries) can no longer be considered an oddity among
 the extrasolar planets, and it appears these new cases point toward an extremely interesting
 new class of “very hot” Jupiters.

It is worth pointing out that these three short-period planets are the result of just
the first two campaigns conducted by the OGLE team, in relatively small fields toward the
Galactic center and Carina. If these or similar surveys were to continue producing candidates
at the current rate for a period of operation similar to that of the Doppler surveys, it is not
unreasonable to expect that the number of very hot Jupiters could increase significantly
and even exceed the number of 3-4-day period planets from the radial velocity searches.
The frequency of occurrence of very hot Jupiters, however, appears to be much lower than
that of the shortest-period Doppler planets, as discussed by Bouchy et al. (2004). Thus,
the apparent inconsistency with the lack of any Doppler discoveries having periods as short
as those of the OGLE planets may simply be due to a combination of their lower rate of
occurrence and the much higher sensitivity to these objects in the photometric surveys. The
latter is the result of the relatively short duration of the OGLE photometric campaigns (a
few weeks) and the increased probability of transits from geometry, such that the chance of
finding longer-period transiting planets actually falls off dramatically beyond P_{orb} of 3-4 days.
The extreme conditions of proximity to the parent stars in these very hot Jupiters opens up
the possibility of very interesting theoretical studies into their structure and evolution, as
well as migration scenarios.

MK acknowledges partial support by the Polish Committee for Scientific Research,
Grant No. 2P03D 001 22.. GT acknowledges support for this work from the NASA’s Ke-
pler mission, STScI program GO-9805.02-A, and the Keck PI Data Analysis Fund (JPL
1257943). AU was partly supported by the Polish KBN grant 2P03D02124 and the grant
‘Subsydium Profesorskie’ of the Foundation for Polish Science. GP, MTR, WG and DM
gratefully acknowledge support for this research from the Chilean Center for Astrophysics
FONDAP 15010003. SJ thanks the Miller Institute for Basic Research in Science at UC
Berkeley for support through a research fellowship. We are grateful for a generous telescope
time allocation and support at the Las Campanas Observatory. This research has made use
of NASA’s Astrophysics Data System Abstract Service.
REFERENCES

Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701

Baraffe, I., Selsis, F., Chabrier, G., Barnam, T. S., Allard, F., Hauschidt, P. H., & Lammer, H. 2004, A&A, in press (astro-ph/0404101)

Benedict, G. F., McArthur, B. E., Forveile, T. et al. 2002, ApJ, 581, L115

Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S., & Athey, A. E. 2003, in Instrument Design and performance for Optical/Infrared Ground-based Telescopes, Proc. SPIE, 4841, eds. I. Masanori & Moorwood, A. F. M., p. 1694

Bevington, P. R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill), p. 200

Bouchy, F., Pont, F., Santos, N. C., Melo, C., Mayor, M., Queloz, D., & Udry, S. 2004, A&A, in press (astro-ph/0404264)

Burrows, A., Sudarsky, D., & Hubbard, W. B. 2003, ApJ, 594, 545

Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., & Shirts, P. 1997, ApJ, 474, L115

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45

Drake, A. J., & Cook, K. H. 2004, ApJ, 604, 379

Fischer, D. A., Butler, R. P., Marcy, G. W., Vogt, S. S., & Henry, G. W. 2003, ApJ, 590, 1081

Gray, D. F. 1992, The Observation and Analysis of Stellar Photospheres, 2nd Ed. (Cambridge: Cambridge Univ. Press), 417

Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000, ApJ, 529, L41

Horne, K. 2003, in Scientific Frontiers of research on Extrasolar Planets, eds. D. Deming and S. Seager (San Francisco: ASP), ASP Conf. Ser., 294, 361

Kelson, D. D. 2003, PASP, 115, 688

Konacki, M., Torres, G., Jha, S., & Sasselov, D. D. 2003a, Nature, 421, 507

Konacki, M., Torres, G., Sasselov, D. D., & Jha, S. 2003b, ApJ, 597, 1076
Kruszewski, A., & Semeniuk, I. 2003, Acta Astronomica, 53, 241

Mallén-Ornelas, G., Seager, S., Yee, H. K. C., Minniti, D., Gladders, M. D., Mallén-Fullerton, G. M., & Brown, T. M. 2003, ApJ, 582, 1123

Mandel, K., & Agol, E. 2002, ApJ, 580, L171

Naef, D., Mayor, M., Beuzit, J. L., Perrier, C., Queloz, D., Sivan, J. P., & Udry, S. 2004, A&A, 414, 351

Nidever, D. L., Marcy, G. W., Butler, R. P., Fischer, D. A., & Vogt, S. S. 2002, ApJS, 141, 503

Santos, N. C., Mayor, M., Naef, D., Pepe, F., Queloz, D., Udry, S., Burnet, M., Clausen, J. V., Helt, B. E., Olsen, E. H., & Pritchard, J. D. 2002, A&A, 392, 215

Torres, G., Konacki, M., Sasselov, D. D., & Jha, S. 2004, ApJ, in press (astro-ph/0310114)

Udalski, A., Paczyński, B., Żebruń, K., Szymański, M., Kubiak, M., Soszyński, I., Szewczyk, O., Wyrzykowski, Ł., & Pietrzyński, G. 2002a, Acta Astronomica, 52, 1

Udalski, A., Żebruń, K., Szymański, M., Kubiak, M., Soszyński, I., Szewczyk, O., Wyrzykowski, Ł., & Pietrzyński, G. 2002b, Acta Astronomica, 52, 115

Udalski, A., Szewczyk, O., Żebruń, K., Pietrzyński, G., Szymański, M., Kubiak, M., Soszyński, I., & Wyrzykowski, Ł. 2002c, Acta Astronomica, 52, 317

This preprint was prepared with the AAS LATEX macros v5.2.
Fig. 1.— Radial velocity measurements for τ Boo as a function of orbital phase, along with the orbit determined by Butler et al. (1997). The only parameter we have adjusted is the velocity of the center of mass.

Fig. 2.— Radial velocity measurements and fitted velocity curve for OGLE-TR-113, as a function of orbital phase. Only the semi-amplitude and center-of-mass velocity have been adjusted. The transit ephemeris is adopted from the photometry (see text).
Fig. 3.— Bisector span used to quantify the line asymmetry for each of our spectra of OGLE-TR-113, plotted as a function of orbital phase. The error bars are determined from the agreement between different echelle orders. There is no obvious correlation with phase.

Fig. 4.— OGLE photometry for OGLE-TR-113 in the I band, with our best fit transit light curve. The resulting parameters are listed in Table 2.
Fig. 5.— χ^2 surface corresponding to the light curve solution for OGLE-TR-113, in the plane of orbital inclination vs. planet radius. The number of degrees of freedom in the fit is 1512.
Table 1. Radial velocities measurements for OGLE-TR-113, in the barycentric frame.

HJD (2,400,000+)	Phase	Velocity (km s\(^{-1}\))	Error\(^a\) (km s\(^{-1}\))
52690.6259	0.683	-7.797	0.105
52691.7230	0.449	-8.008	0.114
52692.7873	0.192	-8.195	0.118
52692.8128	0.210	-8.257	0.116
52693.7298	0.850	-7.837	0.122
52694.7927	0.592	-7.707	0.104
52754.7244	0.430	-7.845	0.127

\(^a\)Internal errors have been scaled to provide a reduced \(\chi^2\) of unity in the orbital solution.

Table 2. Orbital and physical parameters for OGLE-TR-113b.

Parameter	Value
Orbital period (days)	1.4324758 ± 0.0000046
Transit epoch (HJD−2,400,000)	52325.79823 ± 0.00082
Center-of-mass velocity (km s\(^{-1}\))	-7.939 ± 0.043
Eccentricity (fixed)	0
Velocity semi-amplitude (m s\(^{-1}\))	229 ± 58
Inclination angle (deg)	88.4 ± 2.2
Stellar mass (M\(_{\odot}\)) (adopted)	0.79 ± 0.06
Stellar radius (R\(_{\odot}\)) (adopted)	0.78 ± 0.06
Limb darkening coefficient (\(I\) band)	0.586 ± 0.015
Planet mass (M\(_{\text{Jup}}\))	1.08 ± 0.28
Planet radius (R\(_{\text{Jup}}\))	1.09 ± 0.10
Planet density (g cm\(^{-3}\))	1.0 ± 0.4
Semi-major axis (AU)	0.02299 ± 0.00058