ORIGINAL ARTICLE

Interacting with α7 nAChR is a new mechanism for AChE to enhance the inflammatory response in macrophages

Etta Y.L. Liua,b,c, Yingjie Xiab,c, Xiangpeng Kongb, Maggie S.S. Guob,c, Anna X.D. Yub,c, Brody Z.Y. Zhengb,c, Shinghung Makb,c, Miranda L. Xub,c, Karl W.K. Tsimb,c,*

aKey Laboratory of Food Quality and Safety of Guangdong Province, College of Food Science, South China Agricultural University, Guangzhou 510642, China
bShenzhen Key Laboratory of Edible and Medicinal Bioresources, the Hong Kong University of Science and Technology, Shenzhen 518057, China
cDivision of Life Science, Center for Chinese Medicine, the Hong Kong University of Science and Technology, Hong Kong, China

Received 22 February 2020; received in revised form 16 March 2020; accepted 22 April 2020

KEY WORDS
Macrophage; AChE; Cholinergic anti-inflammatory pathway; α7 nAChR

Abstract Acetylcholine (ACh) regulates inflammation via α7 nicotinic acetylcholine receptor (α7 nAChR). Acetylcholinesterase (AChE), an enzyme hydrolyzing ACh, is expressed in immune cells suggesting non-classical function in inflammatory responses. Here, the expression of PRiMA-linked G4 AChE was identified on the surface of macrophages. In lipopolysaccharide-induced inflammatory processes, AChE was upregulated by the binding of NF-κB onto the ACHE promotor. Conversely, the over-expression of G4 AChE inhibited ACh-suppressed cytokine release and cell migration, which was in contrast to that of applied AChE inhibitors. AChEmt, a DNA construct without enzymatic activity, was adopted to identify the protein role of AChE in immune system. Overexpression of G4 AChEmt induced cell migration and inhibited ACh-suppressed cell migration. The co-localization of α7 nAChR and AChE was found in macrophages, suggesting the potential interaction of α7 nAChR and AChE. Besides, immunoprecipitation showed a close association of α7 nAChR and AChE protein in cell

Abbreviations: AChE, acetylcholinesterase; ACh, acetylcholine; BChE, butyrylcholinesterase; CDC42, cell division cycle; CAP pathway, cholinergic anti-inflammatory pathway; ChAT, choline acetyltransferase; DPZ, donepezil; GAL, galantamine hydrobromide; IL, interleukin; LPS, lipopolysaccharides; MLA, methyllycaconitine citrate salt; MMP, matrix metalloproteinase; nAChR, nicotinic AChR; NF-κB, nuclear factor-κB; PHA, PHA-543613; PRiMA, proline-rich membrane anchor; TNF-α, tumor necrosis factor α.

*Corresponding author. Tel.: +852 23587332; fax: +852 23581552.
E-mail address: botsim@ust.hk (Karl W.K. Tsim).

Peer review under the responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2020.05.005
2211-3835 © 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Acetylcholine (ACh) is the first identified neurotransmitter that defines the chemical nature of neurotransmission both in the central nervous system and the periphery. Besides neurotransmission, ACh is able to play anti-inflammatory roles in immune responses\(^1\) and synthesized by immune cells, \textit{e.g.}, T/B cell, macrophage, dendritic cell, and neutrophil. The ACh-activated responses could attenuate the release of interleukin (IL)-1\(\beta\), IL-6 and tumor necrosis factor \(\alpha\) (TNF-\(\alpha\)) in human macrophages, suggesting its direct inhibitory effect in pro-inflammation\(^1,2\). In parallel, choline acetyltransferase (ChAT), the enzyme that produces ACh, is expressed in B cells, dendritic cells and macrophages\(^3\). Indeed, the efferent vagus nerve is being suggested to interplay between nervous and immune systems, which is known as cholinergic anti-inflammatory pathway (CAP). Today, CAP is the most notably for cholinergic signaling in regulating immune responses.

Nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated, pentameric ion channels. The \(\alpha7\) subunit of the nAChR was reported to be expressed in macrophages\(^2,4\). Indeed, CAP plays a critical role in regulating inflammatory response via interacting with peripheral \(\alpha7\) subunit-containing nAChR (\(\alpha7\) nAChR). During inflammation, the activation of \(\alpha7\) nAChR by ACh was associated with Ca\(^{2+}\) influx and inhibited production of pro-inflammatory cytokines by modulating nuclear factor \(\kappa\)B (NF-\(\kappa\)B) stimulation\(^5\). Besides, the activation of \(\alpha7\) nAChR inhibited lipopolysaccharides (LPS)-induced pro-migratory gene production, \textit{e.g.}, matrix metalloproteinase (MMP) 9, MMP2, cell division cycle 42 (CDC42), and macrophage migration via the JAK2/STAT3 signaling pathway\(^6,7\).

Acetylcholinesterase (AChE) is primarily responsible for its cholinergic function, \textit{i.e.}, the rapid hydrolysis of ACh into choline and acetate\(^7,9\). Alternative mRNA processing of the \textit{ACHE} gene yields four transcripts encoding peptides, which differ only at their carboxyl termini but with same catalytic domain. This leads to different post-translational modifications, cellular localization and anchoring\(^10,11\). Four different types of \textit{ACHE} transcripts are AChE\(\beta\), AChE\(\alpha\), AChE\(\gamma\) and AChE\(\tau\).\(^8,12,13\). In the brain and muscle, AChE\(\tau\) was reported as predominant subunit\(^10,15\). In the brain, AChE\(\tau\) localized and oligomerized with an anchoring protein, proline-rich membrane anchor (PRIMA), as PRIMA-linked tetrameric globular form (G4) \textit{ACHE}, which is the major and functional form\(^14\).

The existence of AChE has been widely reported in non-neural areas, where no cholinergic function is known to take place, suggesting the non-classical enzymatic functions of AChE in various systems\(^9,15,16\). High levels of AChE expression were found in activated B- and T-lymphocytes and thymocytes\(^17\), suggesting the possible function of AChE in inflammatory responses. In line to this notion, the binding site of NF-\(\kappa\)B was revealed in mammalian \textit{ACHE} gene\(^18\), which therefore suggested the potential role of NF-\(\kappa\)B transcriptional factor in directing \textit{ACHE} expression during immune responses. Here, murine macrophage-like RAW 264.7 cells, peritoneal macrophages and bone marrow-derived macrophages were adopted to investigate the role of AChE in inflammatory responses.
2.4. PCR and real-time quantitative PCR

RNAzol reagent (Molecular Research Center, Cincinnati, OH, USA) was used to extract the total RNA from cell cultures. Equal amounts of RNAs were reverse transcribed to cDNAs (Thermo Fisher Scientific; Waltham, MA, USA). PCR was performed to amplify targets in a 20 μL reaction mixture containing 1/50 reverse transcribed product, 0.4 U KAPA Taq DNA polymerase and 0.4 μmol/L of 5′–3′ primers. Samples were run in triplicate. Amplification was performed in a GeneAmp 9700 PCR System for 35 cycles. Ten μL of the PCR products were separated by electrophoresis on 1% agarose gel. DNA sequencing was performed to confirm the identity of PCR products. Real-time quantitative PCR was performed by using Roche SYBR Green technology.

2.5. ELISA analysis

A commercial ELISA kit (R&D System, Minneapolis, MN, USA) was employed to measure the protein release of TNF-α. Cell cultured medium was added to a 96-well plate with coating of anti-mouse TNF-α antibody, incubated at 37 °C for 2 h. Then, wells were washed by 400 μL wash buffer 4 times. Added biotinylated anti-mouse TNF-α antibody and incubated at 37 °C for 2 h. Then, washed 3 times by washing buffer. Followed by added 100 μL of substrate solution to each well and incubated for 30 min at room temperature in dark. Applied the stop solution and immediately measured the absorbance at 450 nm.

2.6. Sucrose density gradient analysis

Different molecular isoforms of AChE were separated by sucrose density gradient analysis. Briefly, two hundred of cell extracts containing 200 mg protein were mixed with ALP and β-galactosidase standard, which the sedimentation coefficient is 6.1 and 16 S, respectively. Prepared continuous sucrose gradients from 5% to 20% with low salt lysis buffer (1 mmol/L EDTA, 1 mmol/L EGTA, 10 mmol/L HEPES, 150 mmol/L NaCl, and 0.2% Triton X-100, pH 7.5) in 12 mL centrifuge tubes. The mixtures were gently layered onto the top of prepared tubes. Centrifuged at 38,000 rpm (CP80WX, Hitachi, Hitachinaka, Japan) 4 °C for 16 h. Then, about 45 fractions (each ~200 μL) were collected from the bottom of the sucrose gradients and tested the activity of AChE, β-galactosidase and ALP. Based on the known sedimentation coefficient of ALP and β-galactosidase, the sedimentation coefficients of each fractions could be calculated. And, the sedimentation coefficients of G1 and G4 isoforms has already known, which were approximately 4.3 S and 10.2 S, respectively. The molecular isoforms of AChE could be determined.

2.7. Immunofluorescent staining

Cells were seeded on glass coverslip for 48 h and washed by PBS. Then, after fixed with 4% paraformaldehyde for 15 min, cells were blocked by 5% FBS with or without 0.2% Triton X-100 for 1 h. Stained with anti-AChE antibody at 1:100 for 16 h at 4 °C. After intensive washing, cells were labeled by secondary antibody (Alexa Fluor 488-conjugated anti-goat antibody) together with 4',6-diamidino-2-phenylindole (DAPI) for 2 h. Cells were also stained with anti-NF-κB antibody, anti-α7 nAChR antibody, or anti-TLR4 antibody, followed with Alexa Fluor 555-conjugated anti-rabbit antibody (Sigma) or Alexa Fluor 647-conjugated anti-mouse antibody (Sigma). Glass coverslip were examined by a confocal fluorescence microscope (LSM710; Carl Zeiss Micro-Imaging, Jena, Germany).

2.8. Transwell® motility assay

RAW 264.7 cells were seeded on the top side of polycarbonate Transwell® filter of upper chamber in serum free medium with or without testing chemicals. Meanwhile, the culture medium (with 10% FBS) with or without testing chemical was added in the lower chamber. After 24 h, the cells on the top side of the chamber were gently scraped by cotton swabs. Cells migrated to the opposite side were fixed and stained by DAPI. The fluorescent images (Ex/Em 358/461 nm) were randomly captured for each well under Leica confocal software by 10× objective.

2.9. SDS-PAGE and western blot assay

Total protein of cell cultures was collected with the low salt lysis buffer added with 10 μmol/L aprotinin, 5 mmol/L benzamidine HCl, and 10 μmol/L leupeptin. Then, centrifuged at 13,200 rpm (5415R, Eppendorf, Hamburg, Germany) for 15 min at 4 °C. The supernatant was total protein from cell cultures. Homogenized samples to the same concretizations of protein. Lysed the homogenates by 2× lysis buffer and boiled for 10 min before performing on the gel electrophoresis. Then, electrophoresis separated proteins in SDS-PAGE were transferred to nitrocellulose membrane by 1× transfer buffer, containing 0.192 mol/L glycine, 24 mmol/L Tris, and 15% ethanol. Stained the membrane to confirm the transfer and blocked with 5% dry milk in TBS-T for 1 h at room temperature. After washed by TBS-T, the membrane was incubated in primary anti-AChE antibody (1:500, Santa Cruz Biototechnology, Santa Cruz, CA, USA), anti-flotillin-2 antibody (1:1,000, Cell Signaling Technology; Danvers, MA, USA), anti-α7 nAChR antibody (1:1000, Cell Signaling Technology), anti-Toll-like receptor 4 (TLR 4) antibody (1:1000, Abcam, Cambridge, UK), anti-transferrin receptor antibody (1:500, Santa Cruz Biototechnology), anti-IKKα antibody (1:1000, Cell Signaling Technology), anti-IKKβ antibody (1:1000, Cell Signaling Technology), anti-NF-κB antibody (1:1000, Abcam), anti-IκBα antibody (1:1000, BD Biosciences, San Jose, CA), anti-IκBζ antibody (1:1000, BD Biosciences), and anti-α-tubulin antibody.
AChE enhances inflammation via interacting with α7 nAChR

(1:10,000, Sigma) for overnight at 4 °C. Washed three times by TBS-T, the membrane was incubated with 1:5000 diluted HRP-conjugated anti-goat, anti-mouse or anti-rabbit secondary antibody (Thermo Fisher Scientific) for 2 h at room temperature. Visualized the membrane by ECL method.

2.10. DNA construction and transfection

The cDNA encoding AChET or PRiMA was described previously14. Human NF-κB P65 was constructed in pCMV4 (Addgene, Watertown, MA, USA; ID: 21,966). The DNAs encompassing human AChE promoter with or without the NF-κB-binding site were sub-cloned into pGL3 vector (BD Biosciences) upstream of a luciferase reporter gene, described as pAChE-Luc and pAChEΔNF,-κB-Luc. AChEmut (AChEWT residues S234, E365 and H478 were mutated to alanine) was described previously25. Transient transfection of RAW 264.6 cells or peritoneal macrophages with DNA constructs was performed by jetPRIMEr reagent. A β-galactosidase gene under a cytomegalovirus enhancer promoter was used to determine transfection efficiency. A commercial kit (Tropix, Bedford, MA, USA) was employed in luciferase assay. Briefly, washed cell cultures with PBS and resuspended in 100 mmol/L KH2PO4 (pH 7.8) supplemented with 1 mmol/L dithiothreitol and 0.2% Triton X-100. Tropix TR717 microplate luminometer was used to quantify the luminescent reaction. Luciferase activity was expressed as absorbance (up to 560 nm)/mg of protein.

2.11. Determination of ACh

ACh in culture medium were determined by a choline/acetylecholine assay kit (Abcam, ab65345). This choline/acetylecholine assay kit quantified ACh by a fluorometric or colorimetric method. Fluorometric method is higher sensitivity than colorimetric method, which was employed here. The free choline could turn to products, which reacted with the choline probe to generate fluorescence (Ex/Em 535/587 nm). To detect ACh in samples, AChE was added to the reaction, which converted ACh to choline. Then, the total choline can be measured. The concentration of ACh should be: total choline—free choline.

2.12. Preparation of lipid raft

Cells were collected for membrane raft preparation21. The preparation was carried at 4 °C. Briefly, washed cells with PBS and resuspended in buffer A (150 mmol/L NaCl, 50 mmol/L Tris-HCl, 10 μmol/L aprotinin, and 10 μmol/L leupeptin, pH 8.0). Then, sonicated the samples at low intensity 0.5 s three times. Between each sonication, the samples were stand on ice for 3 s to avoid heating. To get rid of the debris and nucleus, the samples were centrifuged at 500 × g, 5 min. The supernatant was collected and placed on ice for at least 1 h. One mL of the preparation was gradually mixed with 1 mL 80% sucrose in buffer A. The resulted 40% sucrose sample was loaded at the bottom of 12-ml centrifugation tube. Subsequently, 30% sucrose (4 mL) and 5% sucrose (5 mL) in buffer A were loaded in order. The gradient was centrifuged at 39,000 rpm (CP80WX, Hitachi) for 16 h. Collected 1 mL of each fraction from top to bottom. The activity of ALP and AChE were detected. Precipitated the proteins from fractions by 20% (final) trichloroacetic acid. Placed the samples on ice for 30 min and centrifuged at 13,200 rpm (5415 R, Eppendorf, Hamburg, Germany), 15 min. Saved the pellet and washed twice by cold acetone air dried to make sure no acetone was left. Then, dissolved and boiled the protein pellet in 1× lysis buffer, which was ready for Western blot assay.

2.13. Chromatin immunoprecipitation (ChIP) assay

ChIP kit (Abcam, ab500) was employed here. Gently fixed the cells with 4% formaldehyde and sonicated by using Q125 Sonicator (Qsonica, Melville, NY, USA). The specific NF-κB—DNA complex was immune-precipitated using anti-NF-κB antibody (Abcam). Primers flanking the NF-κB binding site of AChE promoter was used as follows: sense: 5'-CAA AAC TGC ACA CTT CCC ACA -3'; anti-sense: 5'-ATG CTA CAA TGG TGC ACT CTG C-3'. The products were run at 1% agarose gel electrophoresis.

2.14. Co-immunoprecipitation

Anti-mouse AChE antibody E-19 (1:50; Santa Cruz), anti-α7 nAChR antibody (1:50, Cell Signaling Technology) or IgG (1:50; Santa Cruz) covalently coupled to 100 μL protein G-agarose beads (Thermo Fisher Scientific) overnight at 4 °C. Washed the beads 3 times with ice-cold extraction buffer. One hundred μL of antibody conjugated beads were incubated together with 200 μL (50 μg) of cell lysates extracted from AChET and PRiMA co-transfected RAW 264.7 cells. After the intensively washing with cold extraction buffer, the activity of AChE from the supernatant with protein G beads were determined. Then, centrifuged and discarded the supernatant. The beads were re-suspended and boiled in 100 μL 1× lysis buffer before performing on Western blot analysis.

2.15. Laser confocal fluorescent microscopy

Fluorometric measurements were performed by using a Leica Sp8 Confocal Microscope (Wetzlar, Germany), equipped with a 63 × objective. To measure the ion influx, Ca2⁺ concentration was monitored by using the fluorescent calcium indicator Fluo-4 AM (Invitrogen). RAW 264.7 cells were seeded on the SPL confocal dish (100350, Gyeonggi-Do, Korea). After 48 h, cells were incubated in a normal physiological solution (NPSS, 10 mmol/L glucose, 5 mmol/L KCl, 140 mmol/L NaCl, 1 mmol/L MgCl2, 1 mmol/L CaCl2, and 5 mmol/L HEPES, pH 7.4) containing 5 μmol/L Fluo-4 AM, 30 min, 37 °C. A23187 (Sigma; purity >98%), a Ca2⁺ ionophore, was used as a positive control. The amount of Ca2⁺ influx was evaluated by measuring the fluorescence intensity at Ex/Em 488/525 nm. The Ca2⁺ influx was displayed as a ratio of fluorescence relative to the intensity (F/F0).

2.16. Statistical analyses

All the result was represented as the mean ± standard error of mean (SEM) of at least three independent experiments. Statistical significance was determined by Student’s t-test, one-way or two-way ANOVA with subsequent application of different multiple comparisons methods. Significant values were indicated by ∗P < 0.05; ∗∗P < 0.01; and ∗∗∗P < 0.001.

3. Results

3.1. AChE is expressed on the surface of macrophages

The splicing variant of AChE in macrophage was determined. Here, we quantified the AChE variants using real-time PCR
coupled with standard curves, as described previously\(^\text{16}\). The amplicon of each AChE isoform was sub-cloned into pcDNA4; the generated plasmids were used for construction of standard curve. Data are expressed as numbers of copies (middle panel). Protein lysates of the RAW 264.7 cells were collected for AChE and BChE activity assay in arbitrary unit (right panel). Statistical significance was analyzed by Student’s \(t\)-test. *** \(P < 0.001\). All values are the mean ± SEM, \(n = 4\), each with triplicate samples. (B) Equal amount of proteins from RAW 264.7 cells (Left panel) or peritoneal macrophages (right panel) were incubated with Con A or agarose or PRiMA antibody. Supernatant was subjected to sucrose density gradient analysis. AChE activities are expressed in arbitrary unit. (C) Peritoneal macrophages and RAW 264.7 cells were cultured. Cells were fixed with 4% PFA for 15 min and stained with anti-AChE antibody, followed with goat Alexa Fluor 488-conjugated antibody. Nucleus was stained with DAPI. (D) AChE activity from RAW 264.7 cells in detergent-resistant (raft; fractions 6–8) and detergent-soluble (non-raft) fractions was determined after flotation in discontinuous sucrose gradients with 0.5% cold Triton X-100. Aliquots of each even fraction were analyzed by 8% SDS-PAGE. The expressions of flotillin-2 and transferrin receptor (TIR) are shown in Western blots as controls. Enzymatic activities of AChE and ALP are expressed in arbitrary units. ALP serves as control to identify raft-enriched fractions.

In precursor and mature AChE, the glycan chains were abundant. Immobilized Con A precipitated most of the AChE activity in RAW 264.7 cell and peritoneal macrophage, which suggested the full glycosylation of AChE in both cells (Fig. 1B), as in other cells\(^\text{18}\). In addition, PRiMA antibody precipitated most of the AChE activity, suggesting the identity of PRiMA-linked G4 AChE (Fig. 1B). The surface expression of AChE in peritoneal macrophage and RAW 264.7 cell were recognized by anti-AChE antibody in absent of detergent (Fig. 1C). Probing the location of AChE, α7 nAChR and TLR4, the isolation of lipid raft was performed. The raft-enriched fractions (fractions 6–8) contained 60%–70% of total membrane-bound alkaline phosphate (ALP), serving as a membrane raft marker (Fig. 1D). Western blot of the raft-enriched fractions showed the abundance of raft-associated protein, flotillin-2\(^\text{20}\). The transferrin receptor, a non-lipid raft marker\(^\text{21}\), could not be detected in raft-enriched fractions.
expressions of AChE, α7 nAChR and TLR4 could be detected in the raft-enriched fractions, suggesting part of these cholinergic molecules was located in the raft fractions (Fig. 1D).

3.2. LPS positively regulates AChE transcription via NF-κB

LPS acts as the prototypical endotoxin, promoting the secretion of pro-inflammatory cytokines, especially in monocytes, dendritic cells, macrophages and B cells, including the secretion of TNF-α. In cultured macrophage, LPS induced AChE activity in a dose-dependent manner (Fig. 2A). At the same time, G4 AChE was the major isoform being induced (Fig. 2A). AChE protein was induced by over 100% at 20 ng/mL of LPS treatment, which was in a time-dependent manner (Fig. 2B). The mRNA expressions of AChE, PRiMA and TNF-α were normalized with 18S rRNA (left panel). Cultured cells were transiently transfected with promoter construct, pAChE-Luc, for 24 h. Then, cells were induced by LPS as in (A). Cell lysates were collected for luciferase assay. The expression of AChE was upregulated during inflammatory process.

To further demonstrate the inductive effect of NF-κB on AChE expression, an overexpression system was employed. In NF-κB cDNA-transfected RAW 264.7 cells, the amounts of two cytokines, TNF-α and IL-6, were significantly induced at ~10- and ~40-fold, respectively (Fig. 3A). The induction of TNF-α and IL-6 mRNA were ~15- and ~30-fold, as compared to control, respectively (Fig. 3A). Under the overexpression of NF-κB, AChE protein was induced in a time-dependent manner with the maximal induction at 100%, as compared to control (Fig. 3B). In parallel, the enzymatic activity of AChE was induced in a time-dependent manner in the NF-κB cDNA-transfected RAW 264.7 cells (Fig. 3C). Sucrose density gradient assay showed the induced AChE was G4 isoform (Fig. 3C).

Figure 2 | LPS induces expression of AChE. (A) Cultured RAW 264.7 cells were challenged by LPS at various concentrations for 3 days. Cell lysates were collected for AChE activity assay (left panel) and sucrose density gradient analysis (right panel). (B) Cultured RAW 264.7 cells were induced by LPS at 20 ng/mL for different hours. Protein lysates of the cultures were performed Western blot assay (left panel). Quantification plot was shown in histograms (right panel). (C) Total RNAs was extracted from cultures as in (B) to perform quantitative PCR. The mRNA expressions of AChE, PRiMA and TNF-α were normalized with 18S rRNA (left panel). Values are expressed as the fold, or percentage, of increase to basal reading, and are in means ± SEM, n = 4, each with triplicate samples.
The NF-κB binding sequences in promoters of various mammalian AChE genes are conserved in human, mouse and rat (Fig. 4A). To determine the function of NF-κB in AChE gene, pAChE-DNF-κB-Luc, having mutation on NF-κB-binding site of human AChE promoter, was used to transfected into RAW 264.7 cells (Fig. 4A). The NF-κB-binding site sequence (GGG GAC CCC C) was mutated into AAT GAC CCC C on human AChE promoter. The application of LPS, even in high dose, in transfected RAW 264.7 cells showed no induction on pAChE-DNF-κB-Luc signal (Fig. 4B), as well as no induction by NF-κB over expression (Fig. 4C). As a control, pAChE-Luc activity was activated by the challenge of LPS. In parallel, the co-transfection of NF-κB cDNA with pAChE-Luc, or pAChE-DNF-κB-Luc, robustly induced the release of TNF-α, as a control for over expression of NF-κB in DNA-transfected cells (Fig. 4C). Moreover, the binding of NF-κB with human AChE gene promoter was determined by chromatin immunoprecipitation (ChIP). In the input control group, the NF-κB occupancy at human AChE promoter was barely detected (Fig. 4D). However, NF-κB occupancy was induced to ~4-fold of enrichment after the application of LPS, as compared to the control (Fig. 4D). The primers flanking NF-κB-binding site of the AChE promoter were used for DNA amplification. The upregulation of AChE transcription via NF-κB binding site on the promotor during inflammatory process therefore was proposed here.

3.3. AChE enhances LPS-induced inflammation

In order to investigate the immunological role of ACh and/or AChE in cultured macrophage, the existence of ACh in culture medium is of critical importance. The content of ACh in culture medium was dramatically decreased after the incubation with RAW 264.7 cells. After 4 h of incubation, ACh declined to only half of the initial culture medium, at ~100 pmol/mL (Fig. 5A, left panel). Until to 12 h, ACh decreased to ~30 pmol/mL, close to the detection limit of this assay. Beyond 24 h, ACh was negligible. In order to ignore the impact of ACh deriving from the medium, the experiment was performed after 16 h of seeding. Besides, the culture medium did not show AChE/BChE activity. Here, the release of TNF-α was measured in LPS-treated macrophage. ACh is known to inhibit the LPS-induced TNF-α release in macrophage2. In cultured macrophages, the suppression of LPS-induced the release of TNF-α reached to a maximum at 1 μmol/L of applied ACh, ~60% of reduction (Fig. 5A, middle panel). This outcome was similar as previous reports2. In addition, the pre-treatment of methyllycaconitine citrate salt (MLA), an α7 nAChR antagonist, blocked the anti-inflammation effect triggered by ACh (Fig. 5A, middle panel). Overexpression of PRiMA-linked G4 AChE in the cultures reduced ACh level in medium, which thereafter blocked the anti-inflammation, as mediated by ACh. The suppression of TNF-α release by ACh was almost fully
recovered by overexpression of PRiMA-linked G4 AChE (Fig. 5A, middle panel). In parallel, the treatment of donepezil, an AChE inhibitor, suppressed LPS-induced TNF-α release in a dose-dependent manner: the maximal suppression of TNF-α release by donepezil was at ~40% (Fig. 5A, right panel). The aforementioned results therefore could be fully accounted by the amount of ACh in the medium.

ACh binds and activates α7 nAChR, and thereafter inhibits degradation of IκBα and NF-κB nuclear translocation. NF-κB, a protein complex consisting of P65 protein subunit, regulates the transcription of various inflammation-related genes.

Figure 4 LPS regulates AChE transcription via NF-κB binding site. (A) A schematic diagram of human AChE promoter with key transcription elements was shown. The NF-κB-binding site sequence (GGG GAC CCC C) was mutated into AAT GAC CCC C on the human promoter. (B) Cultured RAW 264.7 cells were transiently transfected with pAChE-Luc and its mutant pAChEΔNF-κB-Luc for 24 h before application of LPS for 2 days. The cultures were collected for luciferase assay. Statistical significance was analyzed by two-way ANOVA with subsequent application of Bonferroni’s multiple comparisons test. ***P < 0.001 vs. pAChEΔNF-κB-Luc at different LPS concentrations. (C) Cultured RAW 264.7 cells were transiently co-transfected pAChE-Luc or pAChEΔNF-κB-Luc with or without cDNA encoding NF-κB. The cultures were collected 2 days later for luciferase assay (Left panel), as well as for ELISA assay of TNF-α (Right panel). Statistical significance was analyzed by two-way ANOVA with subsequent application of Bonferroni’s multiple comparisons test. ***P < 0.001. (D) RAW 264.7 cells were treated with or without LPS at 20 ng/mL for 3 days. The ChIP assay was performed. The primers flanking the NF-κB-binding site of the AChE promoter were used: sense: ATG CTA CAA TGC ACT CTG C; antisense: CAA AAC TGC ACA CTT CCC ACA. Results were normalized with each pull-down. Statistical significance was analyzed by two-way ANOVA with subsequent application of Bonferroni’s multiple comparisons test. ***P < 0.001. ###P < 0.001 vs. LPS IgG group. All the values are expressed as the fold of basal value, mean ± SEM, n = 4, each with triplicate samples.
transcription of DNA, cytokine production and cell survival. The dynamic translocation of NF-κB into the nucleus could contribute to the inflammatory gene expression. LPS application induced the expressions of IKKa, IKKβ, and the phosphorylation of IKKβ, in time-dependent manners. These inductions could be completely blocked by co-treatment of donepezil (Fig. 5B). Donepezil indirectly increased the concentration of ACh by inhibiting its hydrolysis. The expression of total NF-κB was not altered in the treatment of LPS or donepezil (Fig. 5B). Moreover, LPS suppressed expression of IkBa and induced expression of phosphorylated IkBa in time-dependent manners. These effects were reversed by co-treatment with donepezil (Fig. 5B). Using immunofluorescence staining, NF-κB and nucleus were identified by red and blue color, respectively (Fig. 6). LPS application in the cultures significantly induced the nuclear accumulation of NF-κB by ~2-fold (Fig. 6). Co-treatment with

Figure 5 The effects of AChE on TNF-α release and NF-κB translocation in RAW 264.7 cells. (A) Culture medium of RAW 264.7 cells were collected at different hours. Dried by nitrogen and resolved in 100 μL choline assay buffer for ACh assay. Statistical significance was analyzed by one-way ANOVA with subsequent application of Dunnett’s multiple comparisons test. **P < 0.001 vs. control (left panel). RAW 264.7 cells were transiently transfected with pcDNA3, or AChE, with PRI cDNA, for 24 h before the pre-treatment with or without MLA (5 μmol/L). Then, application of LPS (20 ng/mL) with ACh at different concentrations onto transfected RAW 264.7 cells. The culture medium was performed ELISA assay to determine the release of TNF-α. Statistical significance was analyzed by two-way ANOVA with subsequent application of Tukey’s multiple comparisons test. **P < 0.001 vs. control; ***P < 0.001 vs. pcDNA3 group (middle panel). RAW 264.7 cells were co-treated with LPS 20 ng/mL, ACh at 1 μmol/L and donepezil (DPZ) at various concentrations. Statistical significance was analyzed by one-way ANOVA with subsequent application of Dunnett’s multiple comparisons test. **P < 0.01, ***P < 0.001 vs. control; **P < 0.01, ***P < 0.001 vs. pcDNA3 group (right panel). (B) Cultured RAW 264.7 cells were treated with LPS 20 ng/mL, ACh at 1 μmol/L together with or without DPZ at 100 μmol/L for various hours. The amounts of p-IKKβ (~87 kDa), IKKα (~87 kDa), IKKα (~85 kDa), IkBa (~39 kDa), p-IkBa (~40 kDa), and NF-κB P65 subunit (65 kDa) were determined by using specific antibodies. α-Tubulin served as a loading control (Left panel). The band intensity was calibrated (Right panel). Statistical significance was analyzed by two-way ANOVA with subsequent application of Tukey’s multiple comparisons test. **P < 0.01, ***P < 0.001 vs. control; **P < 0.01, ***P < 0.001 vs. LPS without DPZ group. Data are percentage of control or in fold of change (X basal) to control. Values are shown mean ± SEM, n = 4, each with triplicate samples.
donepezil significantly reduced the LPS-induced NF-κB nuclear accumulation.

3.4. AChE enhances the migration of RAW 264.7 cells

Activation of macrophage induces inflammatory reactions, including the migration of macrophages. The migration of macrophage within the brain is of critical importance in causing neuro-inflammatory diseases. CDC42 and MMP2 are two promigratory genes, which can be elevated by LPS application in RAW 264.7 cells. Application of LPS significantly induced the number of migrated RAW 264.7 cells, as well as the mRNA expressions of MMP2 and CDC42, in a dose-dependent manner (Supporting Information Fig. S1). Here, the applied LPS at 100 ng/mL in cultured macrophages significantly increase the mRNA expressions of CDC42 and MMP2, which were ~4- and ~13-fold higher, respectively, as compared to control (Fig. 7A). ACh has been shown to inhibit LPS-induced MMP-9 production and cell migration via α7 nAChR in RAW 264.7 cells. In line to this observation, applied ACh markedly suppressed the LPS-induced mRNA upregulation of CDC42 and MMP2 in the cultures. The suppression was ~30% and ~50%, respectively (Fig. 7A). PHA-543613 (PHA), an α7 nAChR agonist, was found to markedly suppress the LPS-induced mRNA upregulation of CDC42 and MMP2 in RAW 264.7 cells, similar as that of ACh (Fig. 7A). Donepezil and galantamine were shown to enhance the effect of ACh, or PHA, in suppressing the LPS-induced mRNA expressions of CDC42 and MMP2 (Fig. 7A).

The Transwell motility assay was performed to quantify the motility of cell migrating vertically from one side of membrane to the opposite side. LPS treatment significantly promoted the migration of RAW 264.7 cells (Fig. 7B). After 24 h of treatment with LPS in the culture, the migrated cells were ~8-fold higher than that of control (Fig. 7B). After LPS and ACh co-treatment, the number of migrated cells was significant less than the LPS-treated group. At the same time, the application of PHA decreased the number of migrated RAW 264.7 cells. In addition, the treatment of donepezil, or galantamine, further enhanced the effect of ACh and PHA in inhibiting cell migration (Fig. 7B).

To investigate whether AChE enzymatic activity playing role in inflammatory responses, a DNA mutant of AChE subunit without enzymatic activity was constructed. AChEWT residues S234, E365, and H478 of the catalytic triad contributing to its enzymatic activity were all mutated to alanine (A) to generate AChEmt (S234A, E365A, H478A) cDNA construct (Fig. 8A). This mutated AChE protein contained same protein size as the wild type AChE but showed no enzymatic activity (Fig. 8B and C). Recognized by immunostaining, the PRiMA-linked AChEmt protein was being expressed on the surface of cultured RAW 264.7 cells, similar as that of AChEWT (Fig. 8D). LPS at 20 ng/mL, a sub-maximal concentration,

Figure 6 Immunofluorescent staining of NF-κB translocation. (A) Cultured RAW 264.7 cells were treated with LPS 20 ng/mL, ACh at 1 μmol/L together with or without donepezil at 100 μmol/L, for 24 h. Immunofluorescence staining localization of NF-κB P65 by antibody, and nuclei staining by DAPI in RAW 264.7 cells. Asterisks indicate nuclei with NF-κB staining, also the enlarged cells in bottom right corner. (B) The co-localizing pixel for NF-κB P65 in channel 1 (Ch1) was calculated relative to the total number of pixels for the nuclei (T1) by using Zeiss co-localization coefficient function software. Statistical significance was analyzed by one-way ANOVA with subsequent application of Tukey’s multiple comparisons test. **P < 0.01. All values are expressed as the mean ± SEM. n = 4, each with triplicate samples.
was used in the following experiments. In LPS-induced RAW 264.7 cells, the induced MMP2 and CDC42 expressions were markedly abolished by the application of PHA (Fig. 8E). The overexpression of AChEWT or AChEmut in cultured macrophages reversed, almost by half, the suppression of PHA in the mRNA expressions of MMP2 and CDC42 (Fig. 8E). The constructs of AChEWT and AChEmut showed similar magnitude of suppression, suggesting the enzymatic activity might not be relevant in this scenario. In Transwell motility assay, the overexpression of AChEWT and AChEmut further induced the LPS-induced cell migration by over 30% (Fig. 8F). The application of PHA on LPS-induced RAW 264.7 cells significantly suppressed the migration of RAW 264.7 cells, as compared to control. Overexpression of AChEWT and AChEmut reversed, almost to complete, the suppression of PHA in migration of RAW 264.7 cells (Fig. 8F).

3.5. Protein interference of AChE with α7 nAChR

The results of the aforementioned experiments showed AChE, α7 nAChR and TLR4 proteins located, at least partially, in lipid raft of RAW 264.7 cells. Together with the result of AChE protein enhancing migration of RAW 264.7 cells, the potential interactions of AChE with α7 nAChR, or TLR4, was proposed. We investigated the co-localization of AChE with α7 nAChR and TLR4 in cultured RAW 264.7 cells (Fig. 9A), peritoneal macrophages (Fig. 9B) and bone marrow-derived macrophages (Supporting Information Fig. S2B). Immunofluorescence staining of AChE, α7 nAChR and TLR4 by their primary antibody was performed, which was shown as green, red and magenta, respectively. Nuclei were stained by DAPI, shown as blue color. AChE, α7 nAChR and TLR4 were located at surface of these cells. In merged images, as shown by arrows, the co-localization of AChE, α7 nAChR and TLR4 was identified (Fig. 9).

Since the co-localization of AChE and α7 nAChR was determined, the possible association of the two proteins aroused our curiosity. Cultured RAW 264.7 cells were transiently transfected with AChEWT and PRiMA cDNA for 24 h. The cell lysate of transfected RAW 264.7 cells were undergone Co-IP assay. Western blot analysis showed a clear background in the bead of IgG control group. In anti-α7 nAChR antibody group, the band of

Figure 7 AChE activity regulates the migration of RAW 264.7 cells. (A) RAW 264.7 cells were treated with LPS together with or without ACh (1 μmol/L), donepezil (DPZ, 100 μmol/L), galantamine (GAL, 10 μmol/L) and PHA-543613 (PHA, 10 μmol/L) for 24 h. The expression of MMP2 (left panel) and CDC42 (right panel) mRNAs were determined by quantitative PCR analysis. (B) Cells were treated as in (A), Transwell motility assay was performed. The migrated RAW 264.7 cells were counted. A representative image of the migrated cells is shown. The quantification data is shown in right panel. Statistical significance was analyzed by one-way ANOVA with subsequent application of Tukey’s multiple comparisons test. “P < 0.05, “P < 0.001. Data are expressed as the migration cell number or the fold of basal value where control value is set as 1, mean ± SEM, n = 4, each with triplicate samples.
AChE was detected from the beads (Fig. 10). Vice versa, a7 nAChR (\(\sim 42 \) kDa) was also detected from the beads in anti-AChE antibody group (Fig. 10). Thus, it suggested that AChE and a7 nAChR could be Co-IP together.

The nAChR has been known to be differentially permeable to Ca\(^{2+} \) influx, and indeed a7 nAChR is a very efficient way to raise cytoplasmic Ca\(^{2+} \) level\(^{33} \). By having an association of AChE with a7 nAChR, we hypothesized the influx of Ca\(^{2+} \) could be altered by this association. In order to eliminate the role of enzymatic activity in this process, we employed wild type AChEWT and mutated AChEmt cDNAs in transfected RAW 264.7 cells. The Ca\(^{2+} \) influx was investigated in the cultures by using Fluo-4 AM, a Ca\(^{2+} \) indicator. Serving as a positive control, A23187, a calcium ionophore, was applied onto the transfected cells. The applied A23187 induced Ca\(^{2+} \) increase in pcDNA3, AChEWT and AChEmt + PRiMA transfected cells, suggesting overexpression of G4 AChE with or without enzymatic activity did not affect the ability of calcium change (Fig. 11A). The Ca\(^{2+} \) influx was investigated after treatment of PHA in transfected RAW 264.7 cells. The increase of Ca\(^{2+} \) influx was found after 1-min of PHA treatment. The maximal induction was over 15% (Fig. 11B). Overexpression of G4 AChE with or without enzymatic activity completely inhibited the PHA-induced Ca\(^{2+} \) influx (Fig. 11B). As to eliminate the error in DNA transfection efficiency, low magnification was used to determine the Ca\(^{2+} \) change, and which showed similar result as that in high magnification.
The above-mentioned results supported the interaction of AChE with a7 nAChR on the surface of cells, and AChE protein could inhibit the downstream Ca2+ influx of activated a7 nAChR.

4. Discussion

Vigilant defense is necessary for survival during injury and attack. In the presence of invaders, immune system continuously surveys the body. CAP is a complicated interplay between immune and nervous systems, which dominantly happens in blood and mucosa. This signaling pathway is acting on a7 nAChR locating on the surface of blood’s macrophages. In view of possible clinical application of CAP, the potential usage of neural input to control immune responses attracted more and more attention today.

Exposure of human macrophages to nicotine or ACh effectively inhibited the release of TNF-α, IL-1, IL-6 and IL-18 in response to LPS. Tissue macrophages produce most of TNF-α that appears systemically during an excessive inflammatory response. The binding of cholinergic receptor with its ligand in macrophage decreased the synthesis of proinflammatory cytokines (TNF-α, IL-1 and IL-18) but not for anti-inflammatory cytokines, IL-10; this cholinergic effect was similar to our findings that application of ACh decreased markedly the LPS-induced TNF-α release in RAW 264.7 cells. However, the mRNA level of TNF-α was not inhibited by ACh, which suggested the inhibited cytokine synthesis should be at post-transcriptional level. Contrary to the robust sensitivity of macrophage to ACh, the cytokine-inhibiting action of ACh in monocytes was less effective than macrophages; because the synthesis of cytokines in monocytes could only be triggered by very high concentration of the agonists. Hence, macrophage should be a good model in investigating the role of AChE in immune system.

In primitive plants and unicellular organisms, the widely distribution of ACh was reported. It suggested the ACh expressed its biological function in non-nervous system. Not surprisingly, the detection of ACh in blood has been reported; although ACh was unlikely to be present in blood due to high activity of cholinesterase, i.e., AChE and BChE. The quantification of ACh in blood was determined in various species, including dog, horse, rabbit and human: the concentration was ranged from 10 pmol/mL–150 nmol/mL according to different species and measurements. The measurement of ACh in human blood was performed by using different methods, such as polarography, pyrolysis-gas chromatography—mass spectrometry. Thus, the existence of

Figure 9 AChE, a7 nAChR and TLR4 are co-localized on surface of RAW 264.7 cells and peritoneal macrophages. Immunofluorescence staining of AChE, a7 nAChR and TLR4 by their primary antibody, and nuclei staining by DAPI (blue), was performed. AChE was followed with the Alexa Fluor 488-conjugated anti-goat antibody (green). a7 nAChR was followed with the Alexa Fluor 555-conjugated anti-rabbit antibody (red). TLR4 was followed with the Alexa Fluor 647-conjugated anti-mouse antibody (Magenta). (A) Representative images of RAW 264.7 cells were shown. Bar = 5 μm. (B) Representative images of peritoneal macrophages were shown. Bar = 10 μm, n = 4.

(Supporting Information Fig. S3).
ACh in blood suggests a possible role of which in regulating immune system.

The presence of ACh in immune cells was proposed to contribute to the blood circulating ACh. Firstly, the fraction from human peripheral blood mononuclear leukocyte, consisting mainly of lymphocyte and a small fraction of monocyte, was confirmed having ACh. Subsequently, the existence of ACh in immune cells has been detected in various human leukemic cell lines, also rat lymphocytes, including T and B cells. ACh was identified in spleen, though it should not be cholinergically innervated. These findings provided a proper explanation for ACh function in immune responses. Moreover, human T cell line has higher ACh concentration than pre-lymphoma, monocytic and B cells. ACh was found in spleen, though it should not be cholinergically innervated. These findings suggested a possible role of ACh in regulating immune system.

The intracellular ACh content in macrophage and dendritic cell has not been fully understood. Only one study showed low level of ACh was released and could be measured from lung macrophages; but these levels were very close to the detection limit of assay. In accordance with higher ACh content, higher activity of ChAT was observed in rat T cell, as compared to that in B cell. ChAT mRNA of human lung and alveolar macrophages was analyzed using RT-PCR of a rather long cycles (45 cycles), suggesting a marginal expression of ChAT mRNA. In addition, splenic macrophage also expressed ChAT, which is expressed in transgenic mice. Upon activation with LPS, macrophage has the possibility for ChAT-catalyzed ACh synthesis in a cell-intrinsic manner. In macrophage, application of LPS and Toll-like receptor agonists induced expressions of ChAT mRNA and enzyme protein. Hence, the release of ACh from macrophage upon activation with LPS needs to be further confirmed. Thus, ACh synthesized in macrophages might regulate innate immune responses by modulating cytokine production, including TNF-α.

The expression of AChE in rat lymphocytes, including T and B cells, has been reported to decrease adhesion of osteoblastic cells. Our current results support the notion that AChE expression was tightly regulated by inflammatory action, triggered by endotoxin. The transcription of AChE was significantly induced during inflammation in RAW 264.7 cells, which was upregulated by the binding of NF-κB with AChE promoter. Such regulation will surely be relevant for the action of ACh within the context of CAP. Moreover, AChE, even in the absent of enzymatic activity, affected the cell migration suggesting possible adhesion properties of the enzyme. Indeed, AChE possesses similar sequence with a protein family known as cholinesterase-like adhesion molecules, e.g. neurotactin, gliotactin, glutacon and neurolins. The putative sites of AChE responsible for AChE adhesive properties have been proposed, and the specific inhibitors for these sites have been reported to decrease adhesion of osteoblastic cells.

For over a decade, α7 nAChR and AChE has been known physically interacted during development. In neuronal proliferation and differentiation, the two proteins played an integral role. Fossier envisaged the non-hydrolytic action of AChE caused up-regulation of the AChR. Then, Bond demonstrated...
that peptides derived from the C-terminus of AChE selectively bond with α7 nAChR and upregulated its expression. Meanwhile, activation of α7 nAChR reciprocally upregulated the expression of AChE. Here, we indicated for the first time that the spatial co-localization and interaction of α7 nAChR and AChE was identified in immune cells. The intracellular Ca²⁺ increase, triggered by α7 nAChR activation, could be inhibited by overexpression of AChE. Hypothetically, the tertiary structure of AChE might be too bulky, which could interfere the binding sites of α7 nAChR with its agonists. Alternatively, the structure of AChE may constrain α7 nAChR into a conformation, which occludes the residues necessary for its agonist’s binding. All the mentioned evidences supported our findings on the association of AChE with α7 nAChR.

Inflammation clearly occurs as a major risk factor underlying aging and age-related diseases, such as AD, cancer and arthritis61. It had been reported that AChE was upregulated in pathologically vulnerable regions of AD. But, the involvement of AChE in inflammation in this area has not been seriously considered. In immune cells, the role of AChE in CAP was complex and involved in dual processes. On one hand, AChE directly hydrolyzes ACh to promote inflammation via inhibition of CAP. In parallel, NF-κB transcription factor bound to ACHE gene promoter, which triggered the transcription of AChE during inflammation. On the other hand, AChE protein enhanced the inflammatory responses via interacting with α7 nAChR, which firstly indicated the direct role of AChE in CAP, independent of hydrolyzing ACh. As such,
AChE could serve as a novel target to treat age-related diseases by anti-inflammatory responses.

Acknowledgments

This study was supported by Shenzhen Science and Technology Committee Research Grant (JCYJ20170413173747440, ZDSYS 201707281432317, JCYJ20180306174903174, CKFW20160829 16015476, China), Post-doctoral Science Foundation (2019M653087), Zhongshan Municipal Bureau of Science and Technology (ZST202SC03, China), Guangzhou Science and Technology Committee Research Grant (GZST116SC02 and GZST117SC02, China), Hong Kong RGC Theme-based Research Scheme (T13-607/12R, China); Hong Kong Innovation Technology Fund (UIM/340, UIM/385, ITS/500/18FP, TCPD/17/19, PD18SC01 and HMRF18SC06, China).

Author contributions

Eitta Y.L. Liu designed and performed most of the experiments and wrote the paper. Yingjie Xia and Miranda L. Xu cultured the mouse peritoneal macrophages and prepared the slides for immunofluorescent staining. Xiangpeng Kong performed the immunofluorescent staining. Xiangpeng Kong performed the Western blot assay. Anna X.D. Yu amplified parts of the acetylcholinesterase gene for Western blot assay. Brody Z.Y. Zheng helped to culture the gel for Western blot assay. Anna X.D. Yu amplified parts of the acetylcholinesterase gene and wrote the paper with Etta Y.L. Liu.

Conflicts of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Appendix A. Supporting information

Supporting data to this article can be found online at https://doi.org/10.1016/j.apsb.2020.05.005.

References

1. Fernández-Cabezudo MJ, George JA, Bashir G, Mohamed YA, Al-Mansori A, Qureshi MM, et al. Involvement of acetylcholine receptors in cholinergic pathway-mediated protection against autoimmune diabetes. Front Immunol 2019;10:1038.
2. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458–62.
3. Reardon C, Duncan GS, Brüstle A, Brenner D, Tüsche MW, Olofsen PS, et al. Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc Natl Acad Sci U S A 2013;110:1410.
4. Kiguchi N, Kobayashi D, Saika F, Matsuzaki S, Kishioka S. Inhibition of peripheral macrophages by nicotinic acetylcholine receptor agonists suppresses spinal microglial activation and neuropathic pain in mice with peripheral nerve injury. J Neuroinflammation 2018;15:96.
5. Lone BA, MMP-9, MMP-2 profile in different mouse tissues and LPS induced MMP-9 and MMP-2 expression in RAW 264.7 cells, down regulated by emodin treatment. IRJMS 2014;1:1–7.
6. Yang YH, Li DL, Bi XY, Sun L, Yu XJ, Fang HL, et al. Acetylcholine inhibits LPS-induced MMP-9 production and cell migration via the α7 nAChR-JAK2/STAT3 pathway in RAW264.7 cells. Cell Physiol Biochem 2015;36:2025–38.
7. Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 1982;5:57–106.
8. Massoulie J, Pezzementi L, Bon S, Kreici E, Vallette FM. Molecular and cellular biology of cholinesterases. Prog Neurobiol 1993;41:31–91.
9. Xu ML, Luk WKW, Bi CWC, Liu EYL, Wu KQY, Yao P, et al. Erhythropoietin regulates the expression of dimeric form of acetylcholinesterase during differentiation of erythroblast. J Neurochem 2018;146:390–402.
10. Bon S, Massoulie J. Quaternary associations of acetylcholinesterase. I. Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J Biol Chem 1997;272:3007–15.
11. Shaked I, Meerson A, Wolf Y, Avni R, Greenberg D, Gilboa-Geffen A, et al. MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009;31:965–73.
12. Massoulie J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 2002;11:130–43.
13. Mishra N, Friedson L, Hanin G, Bekenstein U, Volovich M, Bennett ER, et al. Antisense miR-132 blockade via the AChE-R splice variant mitigates cortical inflammation. Sci Rep 2017;7:42755.
14. Chen VP, Choi RC, Chan WK, Leung KW, Guo AJ, Chan GK, et al. The assembly of proline-rich membrane anchor (PRiMA)-linked acetylcholinesterase enzyme: glycosylation is required for enzymatic activity but not for oligomerization. J Biol Chem 2011;286:32948–61.
15. Mor I, Sklan EH, Podoly E, Pick M, Kirschner M, Yogev L, et al. Acetylcholinesterase-R increases germ cell apoptosis but enhances sperm motility. J Cell Mol Med 2008;12:479–95.
16. Wu Q, Fung AHY, Xu ML, Poon K, Liu EYL, Kong XP, et al. Microphthalmia-associated transcription factor up-regulates acetylcholinesterase expression during melanogenesis of murine melanoma cells. J Biol Chem 2018;293:14417–28.
17. Richier P, Arpagaus M, Tontout JP. Glycolipid-anchored acetylcholinoesterases from rabbit lymphocytes and erythrocytes differ in their sensitivity to phosphatidylinositol-specific phospholipase C. BBA Biomembranes 1992;1112:3–8.
18. Getman DK, Muterö A, Inoue K, Taylor P. Transcription factor repression and activation of the human acetylcholinesterase gene. J Biol Chem 1995;270:23511–9.
19. He G, Zhang X, Chen Y, Chen J, Li L, Xie Y. Isoalantolactone inhibits NF-κB inactivation in peritoneal macrophages and improves survival in sepsis. Biomed Pharmacother 2017;90:598–607.
20. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.
21. Winer J, Jung CKS, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem 1999;270:41–9.
22. Liu EYL, Xu ML, Jin Yan, Wu QY, Dong TTX, Tsim KWK, Geiniste, a phytoestrogen in soybean, induces the expression of acetylcholinesterase via G protein–coupled receptor 30 in PC12 Cells. Front Mol Neurosci 2018;11:19.
23. Xie HQ, Liang D, Leung KW, Chen VP, Zhu KY, Chan WK, et al. Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons. J Biol Chem 2010;285:31537–46.
24. Da A, Xie J, Guo K, Yang L, Wan Y, OuYang Q, et al. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov 2015;1:15002.
25. Neumann-Giesen C, Falkenbach B, Reicht P, Claessen S, LÜErs G, Stuermer CA, et al. Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochem J 2004;378:509.
26. Harder T, Simons K. Clusters of glycolipid and glycosylphosphatidylinositol-anchored proteins in lymphoid cells;
