Ultra Structural Alterations in the Brain of Fetuses from Schizophrenic Mothers

Summary

There are increasing evidences that favor the prenatal beginning of schizophrenia. These evidences point toward intra-uterine environmental factors that act specifically during the second pregnancy trimester producing a direct damage of the brain of the fetus. The current available technology doesn't allow observing what is happening at cellular level since the human brain is not exposed to a direct analysis in that stage of the life. In 1977 we began a direct electron microscopic research of the brain of fetuses of schizophrenic mothers in order to finding differences at cellular level in relation to controls. In these studies we have observed within the nuclei of neurons the presence of complete and incomplete viral particles that reacted in positive form with antibodies to herpes simplex hominis type I [HSV1] virus, and mitochondria alterations. The importance of these findings can have practical applications in the prevention of the illness keeping in mind its direct relation to the aetiology and physiopathology of schizophrenia. A study of amniotic fluid cells in women at risk of having a schizophrenic offspring is considered. Of being observed the same alterations that those observed previously in the cells of the brain of the studied foetuses, it would intend to these women in risk of having a schizophrenia descendant, previous information of the results, the voluntary medical interruption of the pregnancy or an early anti HSV1 viral treatment as preventive measure of the later development of the illness.

Keywords: Schizophrenia; Electron microscopy; Virus; Mitochondria; Brain; Foetus

Introduction

There are two aspects of development that may be involved in the pathogenesis of schizophrenia: a) the presence of non-specific factors, presumably genetic (developmental instability), and b) any insult experienced during development. The insults that are associated to critical periods of brain development are likely to be associated with the development of schizophrenia. The fact that genetically identical twins can be discordant for schizophrenia suggests a non genetic mechanism or a mechanism involving an interaction of genotype and environment. Differential exposure to such early risk factors may contribute to twin discordance for psychotic disorder. The hypothesis that viruses cause schizophrenia and other neurological disorders was proposed in the 19th century and it is still accepted as one of the most common associations [1]. In many studies, influenza infection and fever, particularly during the second trimester, have been implicated as factors in the development of the condition [2,3]. However, recent studies have shown no evidence of direct invasion of the foetus by the influenza virus [4]. PCR experiment found no evidence for mRNA for three H1N1 viral genes in the placenta or in the brains of exposed offspring. In nearly all studies of prenatal influenza and schizophrenia, the presence of the exposure was based solely on whether an individual was in gestation at the time of an influenza epidemic, with no confirmation of maternal influenza infection during pregnancy.

Direct viral invasion of the embryo or foetus appears unlikely to be the cause. Although serological evidence of influenza infection has been found in mothers of offspring affected with schizophrenia there was no microbiological or histopathological evidence that the virus had infected the foetus in these cases [5]. Presumptive evidence for a viral aetiology of schizophrenia requires the demonstration of a virus, antigen or viral antibody. In previous works we have obtained results that constitute direct evidence in two of three of these requirements, virus and antigen: a) in post-mortem studies of the brain of young schizophrenic adults, b) in animals experimentally inoculated with cerebrospinal fluid from schizophrenic patients and c) in the temporal lobe of foetuses from schizophrenic mothers. Until our report, evidence supporting the concept of virus-cell interaction in the neurodevelopment hypothesis of schizophrenia had been indirect. Virus particles had never been demonstrated. In our studies of foetuses from schizophrenic mothers we have also observed mitochondrial structural anomalies. In the last years mitochondria have been objects of study in schizophrenia by several researches. There is increasing interest in the possibility that defects in the mitochondrial genome may play an important role in psychiatric illness. The study in mitochondrial DNA [mtDNA] of common polymorphisms, somatic mutations, and rare mutations in larger populations may lead to a better understanding of the pathophysiology of psychiatric disorders [6,7]. Viruses can localize in mitochondria and disrupt their integrity. Therefore, their action, in cooperation with other cellular products, already viral or induced, is able to commit the functionality of the mitochondrial membranes of the infected cells. The present paper is related to our electron microscopic findings in the temporal lobe of foetuses from schizophrenic mothers, some of them with strong familial antecedents of schizophrenia.
Subjects

Previous informed consent written by the relatives or legal representatives and the patients, when their clinical condition allowed them to make it and with the approval of the Committee of Ethics. There should also be a clear ethics statement that appropriately states the institution and ethical license number, as well as a proper description of the number of human subjects included in the study. This is currently lacking as the description is difficult to follow.

Institution, a brain sample 16 weeks gestational age was obtained corresponding from the tip of the left temporal lobe of five foetuses from schizophrenic mothers [DSM-IV diagnostic criteria] whose pregnancy was interrupted for medical indications and are viral infections reported in similar-prepared material from non-schizophrenic fetuses? neurological illness. The diagnosis in the schizophrenic mothers was: hebephrenic schizophrenia, 1 case, paranoid schizophrenia, 3 cases. In one of the paranoid schizophrenic mothers the samples were obtained from two aborted foetuses [monozygotic, monochorionic and biamniotic twins]. One of the twins presented cryptorchidism. The other samples were obtained from one hebephrenic schizophrenic mother and two paranoid schizophrenic mothers. In the cases of schizophrenic mothers it was verified strong family antecedents of the illness.

Staining Process

The obtained samples were fixed in glutaraldehide - paraformaldehide for 1 hour proceeded later on to the blockade of the endogenous peroxide with methanol and hydrogen peroxide during thirty minutes to ambient temperature and washed with several volumes of PBS and TRIS. Normal goat serum was used diluted at the 1:5. It was added the antiserum anti-herpes simplex hominis type I [HSV1, DAKO LAB] during 24 hours and washing with TRIS. Diaminobenzidine [DAB] was used to ambient temperature and washed with TRIS. Post-fixation was carried out with osmium tetroxide and washed with buffer phosphate. Ethanol, absolute ethanol, and propylene oxide were applied: being proceeded to the inclusion in Epon I during sixty minutes, Epon II during the whole night. The definitive inclusion was made for blocks with dilutions from the antiserum to 1/10 and 1/20 with blocks controls of each dilution.

Results

In one of the monozygotic twin studied fetuses [the one that presented cryptorchidism] it was observed within the nucleus of neurons the presence of incomplete viral particles of 100 nm occupying the center of an electron lucid area (Figure 1, 2A & 2B). The inclusions with particles appeared in number from 2 to 8 for nucleus, with great incidence in their appearance. In the rest of the studied fetuses a smaller number of what percentage of neuronal nuclei have these viral inclusions? - does this alter depending on familial genotypic background of the fetuses?

intranuclear particles were observed with the same characteristics of being surrounded of a clear halo (Figure 2C & 2D). The viral particles were not observed in the rest of the cells of the nervous system, neither the Are schizophrenic fetuses seen without viral inclusions?

immunologic reaction. In the other monozygotic twin fetus the viral intranuclear particles was not observed (Figure 2E). In the immuno-electromicroscopic study a positive reaction was observed against the virus herpes simplex hominis type I in mature particles in the cytoplasm of the neurons and within the nucleus (Figure 3). Besides the viral particles mitochondria alterations were observed in the affected twin, being observed an increased number of large mitochondria in the cytoplasm of the neurons corresponding to the granular layer of the temporal cortex (Figure 4). The general appearance of the affected mitochondria showed lost of the internal membranes that presented as empty mitochondria. These structural anomalies were observed only in the foetuses from schizophrenic mothers. None signs or clinical symptoms of infection were observed in the Do the mothers from which fetal material is obtained in the study report positive viral infection? mothers neither in the fetus.
Ultra Structural Alterations in the Brain of Fetuses from Schizophrenic Mothers

Figure 2: Electron microscopic findings in the brain of fetuses from schizophrenic mothers.

Figure 3: Intranuclear incomplete viral particles [white arrows] and intracytoplasmic complete viral particles labelled with anti-herpes simplex hominis type I virus immuno-peroxidase antisera [black arrows]. Ax = axon. Monozygotic fetus.

Citation: Mesa S (2015) Ultra Structural Alterations in the Brain of Fetuses from Schizophrenic Mothers. MOJ Cell Sci Rep 2(4): 00035. DOI: 10.15406/mojcsr.2015.02.00035
Discussion

Schizophrenia has been considered a neurodevelopment disorder that is associated with a variety of prenatal environmental insults on the brain that include infections [8-10]. Although the infectious agents have been proposed as one of the factors of prenatal risk for schizophrenia there are no evidence of the association of a specific infectious agent and cerebral damage in that stage of neurodevelopment [11,12]. In addition to this fact it is not clear when the prenatal abnormalities are originated in patient with schizophrenia although the biggest quantity of data guides toward the second pregnancy trimester. The knowledge of that moment in the appearance of the structural abnormalities would allow us a better identification of the processes of neurodevelopment that contribute to the risk of suffering schizophrenia. In the last decades it has been observed in the medical literature an increment in the interest in prenatal studies related with the etiology of schizophrenia [13-24], especially in subjects on high risk of suffering the illness [25-28] and are included in this study the offsprings of schizophrenic mothers to be observed in them a bigger probability to suffering schizophrenia [29,30].

Hypothesis

We have considered the hypothesis that the brains of fetuses from schizophrenic mothers would have alterations at cellular level that would allow to differing them of healthy controls. Unfortunately the human brain is not exposed to a direct observation in that stage of the life. Only an eventual circumstance as it is the interruption of a pregnancy for medical reasons that would allow us to observe possible alterations at cellular level. The magnitude of the obtained results depends on the resolution of the technique that is used.

Electron microscopic studies

The only direct studies of the brain of fetuses from schizophrenic mothers with electron microscopic techniques carried out in the world up to where we know were carried out by us. In our studies of electron microscopy of the brain of fetuses from schizophrenic mothers whose pregnancies were interrupted for medical reasons we had the opportunity to observe at cellular level the possible alterations that we had outlined in hypothetical form that included a possible viral infection [31,32]. Our observation of viral particles within the nucleus of neurons, identified by imuno-electromicroscopy related to the herpes simplex hominis.
We have seen herpes virus particles and herpes virus antigen in three experiences: foetuses of schizophrenic mothers [38,39], adult schizophrenics and animals inoculated with CSF from schizophrenic patients. A viral hypothesis can coexist with the clear evidence for genetic factors in schizophrenia since viruses can integrate into the genome and be transmitted to offspring as genetic material or could interact with cells in events occurring prenatally. Viruses like herpes simplex may remain latent and transmitted from generation to generation in a pattern that would make it appear to be a genetic disease. The concept of latent viral infections with periodic reactivation is now well established. The property of latency of the herpes virus in relation to other viruses [influenza, retrovirus] and their reactivation for factors of different nature could explain the appearance of the symptoms in later stages after an initial aggression in the intra-uterine stage [40,41]. The presence of virus particles in the brain of studied fetuses from schizophrenic mothers favors the possibility of virus insult to the brain at crucial times in the growth and differentiation of areas of limbic regions.

Twin studies

An important aspect to be considered in our studies is that related with twins [see family history]. Only one of the twins presented viral infection and mitochondria alterations. An element in favor of prenatal environmental factors in the etiology of the illness is the one derived of epidemiological studies that indicate that only 45% of both twins suffer the illness in spite of sharing a single genome. A case is described of monzygotic twins discordant for schizophrenia that illustrates possible causal events of prenatal underdevelopment, morphological changes in the brain, poor premorbid functioning, and the development of schizophrenia. The affected twin was born with a birth weight of 1620 g, whereas the unaffected twin weighed 2300 g at birth. Marked differences in sociability and intelligence were observed between the twins from early childhood. Magnetic resonance imaging of the brain revealed high-intensity signals in the white matter and enlarged ventricles in the affected twin, while no such abnormality was detected in the well twin [42]. In our studies the affected twin had cryptorchidism. Cryptorchidism is a disease state with a spectrum of associated findings rather than an isolated malformation [43] and that malformation could be also in our study the result of the active viral infection observed in the neurons. The grey matter decrease in schizophrenic patient has been observed in the so-called regions of interest [ROIs] and has been correlated to functional disturbances. In a functional magnetic resonance imaging twin study was observed that the affected twin displayed relative bilateral decrease in N-acetylaspartate/creatin concentration in the anterior hippocampus compared with the healthy one. The authors concluded that this is an evidence for non-genetic impairment of cerebral lateralization in monzygotic twin with schizophrenia [44]. In other studies the brains of 15 monzygotic and 14 same-sex dizygotic twins discordant for schizophrenia (patients) and 29 healthy twins pair-wise matched for zygosity, sex, age, and birth order were studied using high-resolution magnetic resonance imaging scans. Intracranial and whole-brain corrected frontal lobe volumes were smaller (4.6% and 2.7%, respectively) in discordant monzygotic twins as compared with healthy monzygotic twins. Irrespective of zygosity, discordant twins had smaller whole-brain (2%), parahippocampal (9%), and hippocampal (8%) volumes than healthy twins. Moreover, patients had smaller whole-brain volumes (2.2%) than their no schizophrenic co twins, which in turn had smaller brains (1%) than healthy twins. Lateral and third-ventricle volumes were increased in discordant dizygotic twins as compared with healthy dizygotic twins (60.6% and 56.6%, respectively). Finally, within discordant twins, lateral ventricles were larger (14.4%) in patients than in their no schizophrenic co twins. The authors concluded that “smaller intracranial volumes in the monzygotic patients and their co twins suggest that increased genetic risk to develop schizophrenia is related to reduce brain growth early in life. The additional reduction in whole-brain volume found in the patients suggests that the manifestation of the disorder is related to (neurodegenerative) processes that are most likely no genetic in origin” [45]. However in our opinion the possibility that both twins have been affected in different degree by a common aggressor agent [virus] it should be kept in mind. Other studies have found variation in hippocampal and ventricular volumes within discordant monzygotic pairs and relate these findings to inheritance [46]. However in our opinion it should be considered the possibility that the environmental factors [virus] exercised a bigger impact in the brain during the intra-uterine stage of those twins that later on suffer the illness and it is in agreement with the results obtained by others authors who consider that the quantitative results of diminished hemisphere volume and length in the twins with schizophrenia suggest that this is a bilateral phenomenon that may be dependent, at least in part, on environmental factors [47-49]. In studies of twins discordant for schizophrenia have been observed that the twins discordant for schizophrenia had significantly greater absolute intra pair differences in total finger ridge count and significantly greater percent intra pair differences than the normal twins; i.e., their fingerprints were significantly less “twin-like.” This study suggested that various second-trimester prenatal disturbances in the epigenesis of one twin in a pair discordant for schizophrenia may be related to the fact that only one of the twins expresses his or her genetic predisposition toward schizophrenia. They expressed that it is consistent with a “two-strike” etiology of schizophrenia: a genetic diathesis plus a second-trimester environmental stressor [50]. In other works dermatoglyphic markers of prenatal growth were obtained by established procedures from 26 monzygotic twin pairs discordant for schizophrenia, 13 monzygotic twin pairs concordant for schizophrenia, and several normal monzygotic twin samples. The a-b ridge count differences between the affected and well co-
twins were greater than those found for concordant and normal monozygotic pairs. In comparison with their well co-twins, the affected twins, in discordant pairs, had developed fewer epidermal ridges in the a-b inter digital area of their right palms. In contrast, no significant differences were found between the affected twins and their well co-twins on markers associated with foetal development before 13 or after 15 weeks estimated gestational age. The authors arrived to the following conclusion: “Because the a-b ridges are known to complete development between 13 and 15 weeks estimated gestational age, the results provide physical evidence suggesting that the schizophrenia-affected monozygotic twins alone experienced a time-specific and time-limited dysgenesis during this time” [51]. As mentioned only 45-50% of monozygotic twins suffers of both the illness that led in 1967 to the hypothesis that the schizophrenia phenotype was an expression of the genotypic vulnerability that interacts with prenatal environmental experiences [52]. Our observations of discordance of viral infection in one of the monozygotic studied fetuses not only favor the prenatal origin of the illness and the viral etiology, but also the discordance of the illness observed near 50% in monozygotic twins [53]. The observation of HSV1 in our immune-electron microscopy post-mortem studies in the temporal lobe of the brain in the three experiences already mentioned makes us to consider this virus as the etiological agent since the postulates of Koch have been partially fulfilled [54]. According to Rutten et al. [55]: “Of particular note is the high degree of discordance between monozygotic (MZ) twins for virus observed is a risk factor for suffering schizophrenia later on.

Evidences accumulated in the last decade suggest a role for mitochondrial dysfunction in the pathogenesis of schizophrenia, bipolar disorder and other psychiatric diseases [58]; nevertheless there are few studies of mitochondria in schizophrenia by electron microscopic techniques. Most studies have used indirect methods to find mitochondrial dysfunction in schizophrenia and bipolar disorders. Among these methods stands out quantification of total mitochondrial DNA and mitochondrial common deletion with contradictory results [59]. Most of these studies were limited to the frontal cortex [60]. In relation to methods of direct analysis there are few publications. The unique electron microscopic studies that offered details on the ultra structure of the nervous system in schizophrenia began in the 1970s. Especially in the studies of embryos of schizophrenic mothers almost all the studies were carried by Russian researches [61,62]. In these studies they stand out the alterations found in the brain of embryos in different evolution stages from 7 up to 12 weeks. The characteristics of the cellular changes in the brains of embryos of schizophrenic mothers consisted on a bigger development of the membrane system. The mitochondria alterations were very evident with increases in their number, in their size and with destruction of the crests [63,64]. The mitochondria alterations have been interpreted as part of a general process of membrane alterations in schizophrenia [65].

Evidences accumulated in the last decade suggest a role for mitochondrial dysfunction in the pathogenesis of schizophrenia, bipolar disorder and other psychiatric diseases [58]; nevertheless there are few studies of mitochondria in schizophrenia by electron microscopic techniques. Most studies have used indirect methods to find mitochondrial dysfunction in schizophrenia and bipolar disorders. Among these methods stands out quantification of total mitochondrial DNA and mitochondrial common deletion with contradictory results [59]. Most of these studies were limited to the frontal cortex [60]. In relation to methods of direct analysis there are few publications. The unique electron microscopic studies that offered details on the ultra structure of the nervous system in schizophrenia began in the 1970s. Especially in the studies of embryos of schizophrenic mothers almost all the studies were carried by Russian researches [61,62]. In these studies they stand out the alterations found in the brain of embryos in different evolution stages from 7 up to 12 weeks. The characteristics of the cellular changes in the brains of embryos of schizophrenic mothers consisted on a bigger development of the membrane system. The mitochondria alterations were very evident with increases in their number, in their size and with destruction of the crests [63,64]. The mitochondria alterations have been interpreted as part of a general process of membrane alterations in schizophrenia [65].

Conclusion

When an infectious agent is observed in an illness of unknown etiology it has been always considered: if the discovered agent is etiologically related or not with the illness in question. Related to our results: lead to the question whether prenatal exposure to the virus observed is a risk factor for suffering schizophrenia later on. We must consider:

(i) It can be a viral infection in the patients that affected the fetuses and not related with the etiology of the illness.

(ii) It can be a viral infection in the fetuses and the patients related with the etiology of the illness. In this sense several favorable circumstances converge:

(a) Second pregnancy trimester

(b) Family antecedents of schizophrenia and of severe neurodevelopmental disturbances
(c) Presence of an incomplete viral form
(d) Affectation of the neurons and of the nucleus mainly
(e) Discordance of infection in monozygotic twins
(f) Ultra high risk. Familial aggregation of schizophrenia. Mother and grandmother schizophrenics and two schizophrenic’s aunts in twins. Congenital malformations in two uncles.
(g) None signs or clinical symptoms of infection were observed in the mothers neither in the fetuses
(h) Not inflammatory reaction in the brain tissue
(i) Similar previous findings in adult schizophrenics and in experimental animals
(j) Samples from the tip of the left temporal lobe
(k) Relationship with the herpes simplex hominis type 1 virus
(l) Similar findings in other fetuses from schizophrenic mothers not controls
(m) Similar findings in the placenta in one study

Recommendations

Since the first version of the mild encephalitis (ME) hypothesis was proposed, many new findings and further hypotheses have been published that fit in with or support the ME hypotheses [71,72]. That is in agreement with our findings and it means that intervention in the early stages of the disease has become important, that period is called the critical period. It is believed that the prognosis of the disease will be different if that period is missed [73]. In this sense the importance of our findings, it could have practical applications in the prevention of the illness keeping in mind its direct relation to the aetiology and physiopathology of schizophrenia. The possibility to study the amniotic fluid cells by means of virological or electron microscopic techniques is suggested in women at risk of having a schizophrenia offspring with the objective of applying preventive measures, previous information of the results, it would intend the voluntary pregnancy interruption or an early anti HSV1 treatment, if this viral infection is demonstrated in early neurodevelopment stages in the amniotic fluid cells.

Acknowledgement

We thanks the Psychiatric Hospital of Havana and the National Institute for Scientific Research Research of Cuba for the financial support for this work. The author has declared that there are no conflicts of interest in relation to the subject of this study.

References

1. Yolken RH, Torrey EF (1995) Viruses, schizophrenia and bipolar disorders. Clin Microbiol Rev 8(1): 131-145.
2. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, et al. (2004) Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 61(8): 774-780.
3. Irving WL, James DK, Stephenson T, Laing P, Jameson C, et al. (2000) Influenza virus infection in the second and third trimesters of pregnancy: a clinical and seroepidemiological study. BJOG 107(10): 1262-1269.
4. Fatemi SH, Folsom TD, Rooney RJ, Mori S, Kornfeld TE, et al. (2012) The viral theory of schizophrenia revisited: Abnormal placental gene expression and structural changes with lack of evidence of H1N1 viral presence in placenta of infected mice or brains of exposed offspring. Neuropsychology 62(3): 1290-1298.
5. Shi L, Tu N, Patterson PH (2005) Maternal influenza infection is likely to alter fetal brain development indirectly: The virus is not detected in the fetus. Int J Dev Neurosci 23(2-3): 299-305.
6. Sequeira A, Martin MV, Rollins B, Moon EA, Bunney WE, et al. (2012) Mitochondrial mutations and polymorphisms in psychiatric disorders. Front Genet 3: 103.
7. Anglin RE, Mazureck MF, Tarapolsky MA, Rosebusch PI (2012) The mitochondrial genome and psychiatric illness. Am J Med Genet B Neuropsychiatr Genet 159B(7): 749-759.
8. Weinberger D (1997) The biological basis of schizophrenia. J Clin Psychiatry Monograph 15: 4-6.
9. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25: 409-432.
10. Radoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10(5): 434-449.
11. Brown AS (2011) Further evidence of infectious insults in the pathogenesis and pathophysiology of schizophrenia. Am J Psychiatry 168(8): 764-766.
12. Brown AS (2011) Exposure to Prenatal Infection and Risk of Schizophrenia. Front Psychiatry 2: 63.
13. Geddes JR, Lawrie SM (1995) Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 167(6): 706-739.
14. Verdoux H, Geddes JR, Takei N, Lawrie SM, Bovet P, et al. (1997) Obstetric complications and age at onset in schizophrenia: an international collaborative meta-analysis of individual patient data. Am J Psychiatry 154(9): 1220-1227.
15. Buka SL, Tsuang MT, Lipsitt LP (1993) Pregnancy/delivery complications and psychiatric diagnosis: a prospective study. Arch Gen Psychiatry 50(2): 151-156.
16. Done DJ, Johnstone EC, Frith CD, Golding J, Shepherd PM, Crow TJ (1991) Complications of pregnancy and delivery in relation to psychosis in adult life: data from the British perinatal mortality survey sample. BMJ 302(6792): 1576-1580.
17. Sacker A, Done DJ, Crow TJ, Golding J (1995) Antecedents of schizophrenia and affective illness. Obstetric complications. Br J Psychiatry 166(6): 734-741.
18. McNeil TF, Cantor-Graae E, Nordström LG, Rosenlund T (1996) Are reduced head circumference at birth and increased obstetric complications associated only with schizophrenia psychosis? A comparison with schizo-affective and unspecified functional psychoses. Schizophr Res 22(1): 41-47.
19. Ericson A, Eriksson M, Westerholm P, Zetterström R (1984)
Pregnancy outcome and social indicators in Sweden. Acta Paediatr 73(1): 69-74.

20. Jones PB, Rantakallio P, Hartikainen AL, Isohanni M, Spila P (1998) Schizophrenia as a long-term outcome of pregnancy, delivery, and perinatal complications: a 28-year follow-up of the 1966 North Finland general population birth cohort. Am J Psychiatry 155(3): 355-364.

21. Kunugi H, Takei N, Murray RM, Saito K, Nanko S (1996) Small head circumference at birth in schizophrenia. Schizophr Res 20(1-2): 165-170.

22. Bennedsen BE (1998) Adverse pregnancy outcome in schizophrenic women: occurrence and risk factors. Schizophr Res 33(1-2): 1-26.

23. Van Os J, Selten JP (1998) Prenatal exposure to maternal stress and subsequent schizophrenia. Br J Psychiatry 172: 324-326.

24. Wright P, Takei N, Rifkin L, Murray RM (1995) Maternal influenza, obstetric complications, and schizophrenia. Am J Psychiatry 152(12): 1714-1720.

25. Gilmore HJ, Kang Ch, Evans DD, Wolfe MH, Smith Keith J, et al. (2010) Prenatal and Neonatal Brain Structure and White Matter Maturation in Children at High Risk for Schizophrenia. Am J Psychiatry 167(9): 1083-1091.

26. Hultman CM, Ohman A, Cnattingius S, Wieselgren IM, LindstrVam LH (1997) Prenatal and neonatal risk factors for schizophrenia. Br J Psychiatry 170: 126-133.

27. Hultman MOH, Sparén Pår, Takei N, Murray MR, Cnattingius S (1999) Prenatal and perinatal risk factors for schizophrenia. BMJ 318(7181): 421-426.

28. McNeil TF (1995) Perinatal risk factors and schizophrenia: selective review and methodological concerns. Epidemiol Rev 17(1): 107-112.

29. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Bernstein D, et al. (2001) Maternal infections and subsequent psychosis among offspring. Arch Gen Psychiatry 58(11): 1032-1037.

30. Dalmán Ch, Allebeck P, Cullberg J, Grunewald Ch, Köster M (1999) Obstetric Complications and the Risk of Schizophrenia. A Longitudinal Study of a National Birth Cohort. Arch Gen Psychiatry 56(3): 234-240.

31. Mesa-Castillo S (2001) An ultrastructural study of the temporal lobe and peripheral blood in schizophrenic patients. Rev Neurol 33(7): 619-623.

32. Mesa CS (2007) Presencia de virus en el sistema nervioso central en fetos de madres esquizofrénicas. Disponible en la Sección de Educación de la Asociación Psicóptica Mundial.

33. Mesa CS, Gómez BH, González NJ (2008) Estudio ultraestructural en muestras del lóbulo temporal izquierdo en cerebros de fetos de madres esquizofrénicas. Interplus.

34. Mesa CS (1986) Electron microscope studies of brain tissue in psychosis. BioPsy 5: 1092-1094.

35. Cleator GM, Klapper PE (2004a) Herpes Simplex. In: Zuckerman AJ, et al. (Eds.), Principles and Practice of Clinical Virology. John Wiley and Sons Ltd., USA, pp. 27-51.

36. Cleator GM, Klapper PE (2004b) The Herpesviridae. In: Zuckerman A, et al. (Eds.), Principles and Practice of Clinical Virology. John Wiley and Sons Ltd., USA, pp. 23-26.

37. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49(1-2): 1-52.

38. Mesa CS (2006) The Human Brain & Schizophrenia [II].

39. Mesa CS (1998) Inoculation of Chicken Embryos with the Cerebrospinal Fluid of Schizophrenic Patients. Rev Hosp Psiq Habana 29: 17-27.

40. Prasad MK, Banne MN, Shirs BH, Goradia D, Mannali V, et al. (2010) Grey matter changes associated with host genetic variation and exposure to Herpes Simplex Virus 1 (HSV1) in first episode schizophrenia. Schizophr Res 118(1-3): 232-239.

41. Dickerson F, Stallings C, Sullens A, Orioni A, Leister E, et al. (2008) Association between cognitive functioning, exposure to Herpes Simplex Virus type 1, and the COMT Val158Met genetic polymorphism in adults without a psychiatric disorder. Brain Behav Immun 22(7): 1103-1107.

42. Kunugi H, Urushibara T, Murray RM, Nanko S, Hirose T (2003) Prenatal underdevelopment and schizophrenia: a case report of monozygotic twins. Psychiatry Clin Neurosci 57(3): 271-274.

43. Kolon TF Cryptorchidism.

44. Spaniel F, Hajek T, Tintera J, Harantova P, Dezortova M, et al. (2003) Differences in fMRI and MRS in a monozygotic twin pair discordant for schizophrenia (case report). Acta Psychiatr Scand 107(2): 155-158.

45. Baare WF, van Oel CJ, Hulshoff Pol HE, Schnack HG, Durston S, et al. (2001) Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry 58(1): 33-40.

46. van Haren NE, Picchioni NM, McDonald C, Marshall N, Davis N, et al. (2004) A controlled study of brain structure in monozygotic twins discordant and discordant for schizophrenia. Biol Psychiatry 56(6): 454-461.

47. Noga JT, Bartley AJ, Jones DW, Torrey EF, Weinberger DR (1996) Cortical gyrual anatomy and gross brain dimensions in monozygotic twins discordant for schizophrenia. Schizophr Res 22(1): 27-40.

48. van Erp TG, Saleh PA, Huttunen M, Lonnqvist J, Kaprio J, et al. (2004) Hippocampal volumes in schizophrenia twins. Arch Gen Psychiatry 61(4): 346-353.

49. Cantor-Graae E, McNeil TF, Wickler KE, Sjostrom K, Rawlings R, et al. (1994) Are neurological abnormalities in well discordant monozygotic co-twins of schizophrenic subjects the result of perinatal trauma? Am J Psychiatry 151(8): 1194-1199.

50. Bracha HS, Torrey EF, Gottesman II, Bigelow LB, Cunniff C (1992) Second-trimester markers of fetal size in schizophrenia: a study of monozygotic twins. Arch Gen Psychiatry 49(10): 1355-1361.

51. Davis JO, Bracha HS (1996) Prenatal growth markers in schizophrenia: a monozygotic co-twin control study. Am J Psychiatry 153(9): 1166-1172.

52. Stabenau JR, Pollin W (1993) Heredity and environment in schizophrenia, revisited. The contribution of twin and high-risk studies. J Nerv Ment Dis 181(5): 290-297.

53. Mesa CS (2010) Discordance of brain viral infection in one monozygotic twin from a schizophrenic mother and grandmother, prenatal study.

54. Koch R (2012) Postulados de Koch.
55. Rutten BP, Mills J (2009) Epigenetic Mediation of Environmental Influences in Major Psychotic Disorders. Schizophr Bull 35(6): 1045-1056.

56. Maric NP, Svrakic DM (2012) Why schizophrenia genetics needs epigenetics: a review. Psychiatr Danub 24(1): 2-18.

57. Khandaker GM, Zimbron J, Lewis G, Jones PB (2013) Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population based studies. Psychol Med 43(2): 239-257.

58. Karry R, Klein E, Ben Shachar D (2004) Mitochondrial complex I subunits expression is altered in schizophrenia: a post-mortem study. Biol Psychiatry 55(7): 676-684.

59. Munakata K, Iwamoto K, Bundo M, Kato T (2005) Mitochondrial DNA 3243A>mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57(5): 525-532.

60. Sabunciyani S, Kirches E, Krause G, Bogerts B, Mawrin C, et al. (2007) Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J Neural Transm 114(5): 665-674.

61. Orlovskaja DD, Solov’eva ZhV, Zimina IS (1975) Ultrastructural features of brain cells from embryos of schizophrenic women. Zh Nevropatol Psikhiatr Im S S Korsakova 75(7): 1041-1044.

62. Orlovskaja DD, Solov’eva ZhV (1976) Changes in the ultra-fine structure of capillaries of the embryonic brain in the presence of schizophrenia in the mother. Zh Nevropatol Psikhiatr Im S S Korsakova 76(7): 1043-1046.

63. Orlovskaja DD, Solov’eva ZhV (1980) Relationship between ultrastructural pathology of the embryonal brain and features of the course and treatment of schizophrenic mothers. Zh Nevropatol Psikhiatr Im S S Korsakova 80(11): 1682-1687.

64. Solov’eva ZhV (1980) Lamellar formations in the brain cells of embryos of schizophrenic mothers. Zh Nevropatol Psikhiatr Im S S Korsakova 80(7): 1055-1058.

65. Urankova N, Orlovskaya D, Vikhreva O, Zimina I, Kulesheva L, et al. (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55(5): 597-610.

66. Alesci S, Abu-Asab M, Perera SM, Tsokos M, Morris JC, et al. (2007) Mitochondrial localization of human recombinant adenovirus: from evolution to gene therapy. Neuroimmunomodulation 14(5): 221-223.

67. McCormick AL (2008) Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol1325: 281-295.

68. Tsao CH, Su HL, Lin YL, Yu HY, Kuo SM, et al. (2008) Japanese encephalitis virus infection activates caspase-8 and -9 in FADD-independent and mitochondrion-dependent manner. J Gen Virol 89(8): 1930-1941.

69. Clippinger AJ, Bouchard MJ (2008) Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol 82(14): 6798-6811.

70. Safran HA, Pare JM, Corcoran JA, Weller SK, Smiley JR (2007) Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep 8(2): 188-193.

71. Hagberg H, Gressens P, Mallard C (2012) Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neurol 71(4): 444-457.

72. Bechter K (2013) Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 42: 71-91.

73. Iritani S (2013) What happens in the brain of schizophrenia patients?: an investigation from the viewpoint of neuropathology. Nagoya J Med Sci 75(1-2): 11-28.