Characterization of the Structure of 2-(4-methyl-2-phenyl-4, 5-dihydrooxazol-4-ylmethyl)-isoindole-1, 3-dione by 1D, COSY and HSQC 2D NMR Spectroscopy

Khadim Dioukhane¹, Younas Aouine¹,², Asmae Nakkabi³, Salaheddine Boukhssas¹, Hassane Faraj¹ and Anouar Alami¹*

¹Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University, Fez, Morocco.
²Team of Organic Chemistry and Valorization of Natural Substances, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
³Laboratory of Chemistry of Materials and Biotechnology of Natural Products, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.

Authors’ contributions
This work was carried out in collaboration among all authors. Author KD performed the experiments; Authors HF and AA conceived and designed the experiments. Authors YA, AN, SB and AA analyzed the data. Authors AA and YA wrote the paper. All authors read and approved the final manuscript.

ABSTRACT
The identity of the 2-(4-methyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl)-isoindole-1,3-dione, previously synthesized in our laboratory, was proven without doubt by means of 1D and 2D NMR spectroscopy. Two-dimensional NMR spectroscopy played a major role. The analysis of the 2D-COSY spectrum of isoindoline-1,3-dione derivative shows a perfect correlation between neighboring protons. Thus, a correlation was noted between the protons of the phthalimide, H(8) and H(9) on the one hand and H(8’) and H(9’) on the other hand. The analysis of the 2D-HSQC spectrum of the studied compound indicates a faultless correlation between protons and adjacent carbons, and no correlation in the case of all quaternary carbons.
Keywords: Isoindoline; 1,3-dione; 1D NMR, 2D COSY; 2D HSQC.

1. INTRODUCTION

The synthesis of heterocyclic molecules has today become inevitable given its importance in human life. The biological interest [1,2,3] of these molecules is very broad and diversified. Several families of heterocyclic molecules are used as antiviral [4,5], anti tuberculosis [6,7], anti cancer [8,9,10], anti tuberculosis [11,12], anti malaria [13], anti fungus [14]. However, it is essential to have methods of analysis, which make it possible to elucidate the structure of these molecules.

Nuclear Magnetic Resonance Spectroscopy (NMR), which is a technique that exploits the magnetic properties of certain atomic nuclei, remains the most powerful spectroscopic technique in the study of the structural and dynamic aspects of organic molecules in solution. Its field of application is very broad. It is used to evaluate the pore size distribution [15], in food processing with dairy products [16]. Despite its advantages (being non-destructive and a highly reproducible form of analysis), it suffers from certain limitations, such as the problems of low sensitivity of the 13C core (resulting in a very long measurement time) and overlapping peaks [17]. However, there are new methods for perfecting it [18] at low field strength and low cost [19].

To obtain more accurate structural mapping, especially with complex molecules, the two-dimensional NMR complements the 1D NMR [20]. The 2D NMR resides from the correlation of two 1D NMR spectra. If two 1D NMR spectra of the same nucleus are correlated, the resulting spectrum is called 2D homonuclear NMR spectrum and the most commonly used technique is the COSY experiment (homonuclear COrelation SpectroscopY). If it is two 1D NMR spectra of two different nuclei, the spectrum obtained is called 2D hetero-nuclear NMR spectrum, and the most common is the HSQC (Heteronuclear Single Quantum Correlation) technique [21]. There is also the HMBC (Heteronuclear Multiple Bond Connectivity) technique, which has a spectrum of lower couplings 2J, 3J and higher. It allows to establish connectivity without having to interpret the coupled spectrum. For example, HSQC, HMQC, and HMBC are among the most commonly used sequences for reverse detection. This sequence family allows to reach the same type of information provided by the HETCOR sequence. However, it is now a case of reverse detection, which ensures a much better sensitivity.

In view of these observations and in the continuity of our work corresponding to the synthesis and determination of the crystal structure of $2\-(4\-Methyl-2\-phenyl-4,5\-dihydrooxazol-4\-ylmethyl)\-isoindole\-1,3\-dione$ by X-rays [22], we present in this paper the 2D NMR characterization of the isoindoline,1,3-dione derivative, we have chosen to use the COSY sequence and also HSQC rather than HMBC. Indeed, this heteronuclear 2D NMR experiment is the most sensitive, because it correlates the chemical displacements of the hydrogens to those of the carbons to which they are bound. However, it does not give any information on quaternary carbons.

2. MATERIALS AND METHODS

The melting points have been measured with an Electrothermal device and are not corrected. The NMR spectra were recorded on a Bruker AC-300 MHz spectrometer in the CDCl$_3$ with tetramethysilane (TMS) as the internal standard. Chemical offsets (δ) and coupling constants (J) are given in parts per million (ppm) and Hertz (Hz), respectively. Multiplicities were recorded as s (singlet), br.s (broad signal), d (doublet), dd (double-double), t (triplet), q (quadruplet) or m (multiplet). Assignments given for the NMR spectra of the compound were carried out on the basis of COSY 1H/1H (standard procedures) and COSY 1H/13C (gHSQC) experiments.

All reactions were monitored by TLC performed on Merck’s silica pre-coated aluminium-backed plates (0.2 mm, 60F$_{254}$). For the column chromatography, Merck silica gel (70-230 mesh) was used.

$2\-(4\-Methyl-2\-phenyl-4,5\-dihydrooxazol-4\-ylmethyl)\-isoindole\-1,3\-dione$

The isoindoline-1,3-dione derivative was resynthesized according to the method described by Khdiam et al. [22]. This compound crystallizes in the monoclinic system (P21/c, Z = 4) with the unit cell parameters: $a = 14.3728$ (13) Å, $b = 9.6829$ (10) Å, $c = 11.8964$ (12) Å and $\beta = 107.384$ (3). The refinement of the structure by the least-squares method with complete matrix leads to the following reliability factors R/Rw are 0.044/0.130.
Yield = 65% (white solid); m.p. = 148-150°C; Rf = 0.51 (Ethyl acetate/Hexane 1:4); 1H-NMR (CDCl$_3$, δ ppm): 1.46 (s, 3H, CH$_3$); 3.85-4.01 (AB, 2H, J = 14.1 Hz, CH$_2$-phtalimide); 4.03-4.71 (AB, 2H, J = 9.0 Hz, CH$_2$O(4,5-dihydro-oxazole)); 7.34 (AB, 2H, 7.91 (m, 9Harom).

1C-NMR (CDCl$_3$, δ ppm): 25.00 (CH$_3$); 38.5-39.0 (6C, phenyl ring + 6C, phtalimide); 46.08 (1C, CH$_2$-phtalimide); 71.87 (1C, 4,5-dihydro-oxazole); 76.63 (1C, CH$_2$-(4,5-dihydro-oxazole)); 123.39; 127.53; 128.28; 128.42; 131.42; 131.86 and 134.07 (6C, phenyl ring + 6C, phtalimide); 163.70 (1C, C=N); 168.65 (2C, 2C=O).

MS–El: [M+1]$^{+}$ = 321.

3. RESULTS AND DISCUSSION

The title compound (Fig. 1) was obtained with a satisfactory yield, through N-alkylation reaction of the corresponding O-tosyl oxazoline derivative by heating in N,N-dimethylformamide, and was recrystallized from ether and was obtained in the form of a single crystal [22]. Its structure was established based on (1H, 13C) NMR, IR spectroscopy, MS data and X-ray diffraction [22]. According the NMR spectra, the definite assignment of the chemical shifts of protons and carbons are shown in Table 1.

Table 1. 1H (300 MHz) and 13C (75 MHz) NMR spectral data for titled compound in CDCl$_3$, including results obtained by homonuclear 2D shift-correlated and heteronuclear 2D shift-correlated HSQC. Chemical shifts (δ in ppm) and coupling constants (J in Hz)

Position	δ$_H$	δ$_C$	Correlation H-H	Correlation C-H
1	1.46	25.00	3H1-3H1	C3-3H1
2	-	71.9	-	-
3	4.03-4.71 (AB, J = 9)	76.6	2H2-2H3	C3-2H3
4	-	163.7	-	-
5	3.85-4.01 (AB, J = 14.1)	46.1	2H3-2H5	C5-2H3
6; 6'	-	168.7	-	-
7; 7'	-	131.9	-	-
8; 8'	7.68-7.84 (AB, J = 3)	123.4	1H5-1H8; 1H5-1H9; 1H5-1H8; 1H5-1H9	C8-1H5; C9-1H5
9; 9'	7.70-7.83 (AB, J = 3)	134.7	1H5-1H8; 1H5-1H9; 1H6-1H8; 1H6-1H9; 1H7-1H8; 1H7-1H9; 1H8-1H9; 1H8-1H9	C8-1H5; C9-1H5
10	-	127.5	1H13-1H15; 1H13-1H15; 1H14-1H15; 1H14-1H15; 1H15-1H15; 1H15-1H15	C15-1H13; C15-1H13
11; 15	7.34-7.38 (m)	128.3	1H13-1H15; 1H13-1H15; 1H14-1H15; 1H14-1H15; 1H15-1H15; 1H15-1H15	C15-1H13; C15-1H13
12; 14	7.88-7.91 (m)	128.4	1H13-1H15; 1H13-1H15; 1H14-1H15; 1H14-1H15; 1H15-1H15; 1H15-1H15	C15-1H13; C15-1H13
13	7.42-7.48 (m)	131.4	1H13-1H15; 1H13-1H15; 1H14-1H15; 1H14-1H15; 1H15-1H15; 1H15-1H15	C15-1H13
The 1H NMR spectrum (Fig. 2. and Fig. 3.) of the titled compound shows the following signals:
- A singlet at 1.46 ppm corresponding to three protons of methyl radical.
- An AB system around 3.85-4.01 ppm corresponding to two protons of methylene groups -CH$_2$(Phthalimide) with a coupling constant $J = 14.1$ Hz.
- An AB system around 4.03-4.71 ppm corresponding to two protons of methylene groups -CH$_2$(Oxaz) with a coupling constant $J = 9.0$ Hz.
- Three multiplets around 7.34-7.42, 7.43-7.46 and 7.88-7.92 ppm corresponding respectively to 2H$_{ar}^{(11+15)}$, 1H$_{ar}^{(13)}$ and 2H$_{ar}^{(12+14)}$.
- An AB system around 7.68-7.85 ppm corresponding to two protons of phthalimide ring 2H$_{ar}^{(8+8')}$ with a coupling constant $J = 3.0$ Hz.
- An AB system around 7.70-7.83 ppm corresponding to two protons of phthalimide ring 2H$_{ar}^{(9+9')}$ with a coupling constant $J = 3.0$ Hz.

Whereas, its 13C-JMOD NMR spectrum (Fig. 4) shows the following signals:
- A signal at 25.0 ppm corresponding to the carbon of methyl radical.
- A signal at 46.1 ppm corresponding to the carbon of methylene -CH$_2$(Phthalimide).
- A signal at 71.9 ppm corresponding to the quaternary carbon of oxazoline ring.
- A signal at 76.6 ppm corresponding to the carbon of methylene of oxazoline ring.
- A signal at 123.4 ppm corresponding to two carbons of phthalimide ring 2C$_{ar}^{(8+8')}$.
- A signal at 127.5 ppm corresponding to the carbon of phenyl cycle 1C$_{ar}^{(10)}$.
- A signal at 128.3 ppm corresponding to two carbons of phenyl cycle 2C$_{ar}^{(11+15)}$.
- A signal at 128.4 ppm corresponding to two carbons of phenyl cycle 2C$_{ar}^{(12+14)}$.
- A signal at 131.4 ppm corresponding to the carbon of phenyl cycle 1C$_{ar}^{(13)}$.
- A signal at 131.9 ppm corresponding to two carbons of phthalimide ring 2C$_{ar}^{(7+7')}$.
- A signal at 134.7 ppm corresponding to two carbons of phthalimide ring 2C$_{ar}^{(9+9')}$.
- A signal at 163.7 ppm corresponding to the quaternary carbon C=N of oxazoline ring.
- A signal at 168.7 ppm corresponding to two quaternary carbons of carbonyl 2C=O.

Furthermore, the analysis of the 2D-COSY spectrum (Fig. 5. and Fig. 6) also shows a perfect correlation between neighboring protons.

Thus, a correlation is noted between the protons of the phthalimide, H$_{(8)}$ and H$_{(9)}$ on the one hand and H$_{(8')}^{}$ and H$_{(9')}^{}$ on the other hand.

![Fig. 2. 1H NMR spectrum of titled compound](image)
The analysis of the 2D-HSQC spectrum (Fig. 7 and Fig. 8) of the studied compound indicates a faultless correlation between protons and adjacent carbons and no correlation in the case of all quaternary carbons. Thus, we notice, in the aliphatic part (Fig. 7), the presence of the following correlations:

- A correlation between the C(5) carbon and the two protons of methylene –CH₂-Pht; H₁-C(5) and H₂-C(5).
- A correlation between the C(3) carbon and the two protons of methylene –CH₂-(Oxaz); H₁-C(3) and H₂-C(3).

Similarly, in the aromatic part (Fig. 8), the presence of the following correlations is also noted:

- A correlation between the carbon C(8) and the proton H(8).
- A correlation between the carbon C(8) and the proton H(8').
- A correlation between the carbon C(9) and the proton H(9).
- A correlation between the carbon C(9) and the proton H(9').
- A correlation between the carbon C(11) and the proton H(11).
- A correlation between the carbon C(12) and the proton H(12).
- A correlation between the carbon C(13) and the proton H(13).
- A correlation between the carbon C(14) and the proton H(14).
- A correlation between the carbon C(15) and the proton H(15).
Fig. 5. 2D COSY spectrum (Aliphatic Part) of titled compound

Fig. 6. 2D COSY spectrum (Aromatic Part) of titled compound

Fig. 7. 2D HSQC spectrum (Aliphatic Part) of titled compound
Fig. 8. 2D HSQC spectrum (Aromatic Part) of titled compound

4. CONCLUSION

In summary, although the structure of 2-(4-Methyl-2-phenyl-4,5-dihydrooxazol-4-ylmethyl)-isoindole-1,3-dione was previously confirmed by us [22], by X-ray single crystal structure determination, its identity was also determined on the basis of a spectroscopic study using 1D NMR of the proton and carbon 13, as well as 2D NMR using COSY and HSQC sequences. The evaluation of the corrosion and biological activities of this isoindolone derivative is the subject of ongoing work.

ACKNOWLEDGEMENTS

This work was supported by Sidi Mohammed Ben Abdellah University (USMBA) and National Center for Scientific and Technical Research (CNRST).

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Nagaraja O, Bodke YD, Pushpavathi I, Ravi Kumar S, Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon. 2020;6(6):04245. DOI: 10.1016/j.heliyon.2020.e04245.

2. Kraiem J, Kacem Y, Bahy A, Ben Hassine B. Réaction des N-oxydes de 2-hydroxybenzylidènealkylamines avec l’isocyanate de chlorosulfonyle: Synthèse de nouveaux composés hétérocycliques. Comptes Rendus Chim. 2007;10(9):827-831. DOI: 10.1016/j.crct.2007.03.014.

3. Hamou N, Ibrahim S, Salem M, Mokhtar E, Amzazi S, Benjouad A. Synthèse et propriétés biologiques benzodiazepines. 2001;4:917-924. DOI: 10.1016/S1387-1609(01)01302-0.

4. Zniber. Heterocycles from benzimidazole. Tetrahedon Letters. 1990;31:5467.

5. Kim D et al. Antagonists : Effects of fused heterocycles on antiviral activity and pharmacokinetic properties. 2005;15:2129-2134. DOI: 10.1016/j.bmcl.2005.02.030.

6. Maaliki C et al. Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorganic Med. Chem. 2020;28(13):115579. DOI: 10.1016/j.bmc.2020.115579.

7. Kumar S, Verma R, Verma S, Vaishnav Y. European journal of medicinal chemistry anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives : A key review. Eur. J. Med. Chem. 2021;209:112886. DOI: 10.1016/j.ejmech.2020.112886.

8. Murthy PK et al. Towards the new heterocycle based molecule: Synthesis, characterization and reactivity study. J. Mol. Struct. 2017;1137:589–605. DOI: 10.1016/j.molstruc.2017.02.071.
9. Chakraborty B, Chetri E. Results in chemistry mechanochemical synthesis of some heterocyclic molecules using Sonogashira cross-coupling reaction and their anticancer activities. Results Chem. 2020;2:100037. DOI: 10.1016/j.rechem.2020.100037.

10. Aouad MR, Almehmadi MA, Rezki N, Al Blewi FF, Messali M, Ali I. Design, click synthesis, anticancer screening and docking studies of novel benzothiazole-1,2,3-triazoles appended with some bioactive benzfused heterocycles. J. Mol. Struct. 2019;1188;153-164. DOI: 10.1016/j.molstruc.2019.04.005.

11. Maaliki C et al. Synthesis and evaluation of heterocycle structures as potential inhibitors of Mycobacterium tuberculosis UGM. Bioorganic Med. Chem. 2020;28 (13):15579 DOI: 10.1016/j.bmc.2020.115579.

12. Kumar S, Verma R, Verma S, Vaishnav Y. European journal of medicinal chemistry anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem. 2021;209;112886. DOI: 10.1016/j.ejmech.2020.112886.

13. Patel TS, Bhatt JD, Dixit RB, Chudasama CJ, Patel BD, Dixit BC. Green synthesis, biological evaluation, molecular docking studies and 3D-QSAR analysis of novel phenylalanine linked quinazoline-4(3H)-one-sulphonamide hybrid entitiesdistorting the malarial reductase activity in folate pathway. Bioorganic Med. Chem. 2019; 27(16):3574–3586 DOI: 10.1016/j.bmc.2019.06.038.

14. Andrejević TP et al. Zinc(II) complexes with aromatic nitrogen-containing heterocycles as antifungal agents: Synergistic activity with clinically used drug nystatin. J. Inorg. Biochem., 2020;208:111089

15. Ma X, Wang H, Zhou S, Feng Z, Liu H, Guo W. Insights into NMR response characteristics of shales and its application in shale gas reservoir evaluation. J. Nat. Gas Sci. Eng. 2020;84:103674. DOI: 10.1016/j.jngse.2020.103674.

16. Song YQ. A 2D NMR method to characterize granular structure of dairy products. Prog. Nucl. Magn. Reson. Spectrosc. 2009;55(4):324–334. DOI: 10.1016/j.pnmrs.2009.07.001.

17. Jiang L, Howlett K, Patterson K, Wang B. Introduction of a new method for two-dimensional NMR quantitative analysis in metabolomics studies. Anal. Biochem. 2020;597:113692 DOI: 10.1016/j.ab.2020.113692.

18. Snyder DA. Covariance NMR: Theoretical concerns, practical considerations, contemporary applications and related techniques. Prog. Nucl. Magn. Reson. Spectrosc. 2021;122:1-10 DOI: 10.1016/j.pnmrs.2020.09.001.

19. Michal CA. Low-cost low-field NMR and MRI: Instrumentation and applications. J. Magn. Reson. 2020;319:106800. DOI: 10.1016/j.jmr.2020.106800.

20. Kaiser CR. 2D NMR: Inverse detection and field gradient in structure determination of organic compounds. Quim. Nova. 2000;23 (2):231–236. DOI: 10.1590/S0100-4042200000200014.

21. Riegel SD, Leskowitz GM. TrAC, 2016;8327-38.

22. Dioukhane K et al. Synthesis, crystal structure and IR spectrum studies of 2-(4-methyl-2-phenyl-4,5-dihydro-oxazol-4-ylmethyl)-isoindole-1,3-dione. Medit. J. Chem. 2019;9(2):116-124.