Device Independent Random Number Generation

Matej Pivoluskaa,1 and Martin Plescha,b,2

a Faculty of Informatics, Masaryk University, Brno, Czech Republic
b Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

Randomness is an invaluable resource in today’s life with a broad use reaching from numerical simulations through randomized algorithms to cryptography. However, on the classical level no true randomness is available and even the use of simple quantum devices in a prepare-measure setting suffers from lack of stability and controllability. This gave rise to a group of quantum protocols that provide randomness certified by classical statistical tests – Device Independent Quantum Random Number Generators. In this paper we review the most relevant results in this field, which allow the production of almost perfect randomness with help of quantum devices, supplemented with an arbitrary weak source of additional randomness. This is in fact the best one could hope for to achieve, as with no starting randomness (corresponding to no free will in a different concept) even a quantum world would have a fully deterministic description.

PACS: 03.67.Ac, 03.67.Dd, 03.67.Hk

KEYWORDS: Quantum Information, Bell Inequalities, Device Independent Certification, Non-locality, Violation of Local Causality, Randomness

1E-mail address: pivoluska@fi.muni.cz
2E-mail address: martin.plesch@savba.sk
Contents

1 Introduction 602

2 Preliminaries 605
 2.1 Notation .. 605
 2.2 Introduction to weak randomness 605
 2.2.1 Von Neumann sources 607
 2.2.2 Santha-Vazirani sources 609
 2.2.3 Min-entropy sources 610
 2.3 Randomness extractors .. 613
 2.3.1 Seeded extractors .. 613
 2.3.2 Extraction from several independent sources 615
 2.4 Weak sources with quantum side information 617

3 Bell inequalities and randomness 620
 3.1 The local set and determinism 620
 3.2 Bell inequalities .. 622
 3.3 The set of quantum behaviors and the no-signaling set 626

4 Randomness expansion 628
 4.1 Quadratic expansion ... 628
 4.2 Exponential expansion .. 631
 4.3 Exponential expansion against full quantum adversaries 633
 4.4 Concatenation of protocols and unbounded expansion 635
 4.5 Experimentally feasible adversaries 637

5 Randomness amplification 639
 5.1 Santha-Vazirani amplification with many devices 639
 5.2 Santha-Vazirani amplification with eight devices 642
 5.3 Min-entropy amplification with many devices 645
 5.4 Min-entropy amplification with a single device 651

6 Conclusion 658

Acknowledgement 658

References 659
1 Introduction

Randomness is one of the key concepts of modern science, finding many applications in both hard and soft sciences. At the same time, it is a very controversial topic. This fruitful controversy comes from the fact that the notion of “randomness” is not universally and uniquely defined and in different fields of science can mean different things. In fact, it is even not clear whether randomness shall be considered as an objective fact. In such a case there shall exist fundamentally unpredictable processes in nature, which, if used correctly, could serve as perfect randomness generators.

The other approach says that randomness as such is only a subjective concept representing incomplete knowledge about a process or system. In this approach no perfect randomness and randomness generators exist. However it still makes sense to speak about randomness perceived by a given observer – even a perfectly deterministic process can be seen as perfectly random by an observer not having access to underlying information about the process.

In spite of this ambiguity, randomness has been shown to be an important resource with a variety of applications such as statistical sampling, numerical simulations, algorithm design [62] and cryptography [57] to name a few.

Random statistical sampling is a common way to avoid bias in deductions in cases such as marketing polls or clinical trials of drugs. Sample space is here usually taken as small as possible, as it is directly connected with costs of the survey or the time needed for clinical test. It is thus crucial to cover homogenously different parameters of the underlying set with as few instances as possible. Even more, many parameters are not easily accessible and thus directly disallow proper selecting of the best sample space. Perfect randomness, if used correctly, was proven to overcome this complications in most of the common cases.

Numerical simulations of real world phenomena use randomness to predict processes that are too complicated to be fully simulated. Common example are the weather forecasts – as a chaotic phenomenon the reliability of their results exponentially depends on the preciseness of the starting point and the simulation itself. Perfect randomness helps to choose sample space for the simulation that brings the best results.

A slightly different example for utilization of randomness are randomized algorithms. These involve a randomized component in their design and often have better performance and are easier to develop and analyze in comparison to their deterministic counterparts.

However, the usefulness of randomness is perhaps most evident in the case of cryptography. In order to break the symmetry between legitimate users of cryptographic protocols and potential adversaries, the legitimate users have to be given some advantage. The advantage is typically modeled as the knowledge of some randomly generated secret. This is the reason why many cryptographic tasks, such as encryption (both the private and public key), secret sharing or bit commitment require randomness for each use.

Typically, in most of the applications an access to a perfect random source – uniformly distributed bits independent of any other existing data – is assumed. This assumption is silently hidden in the analysis of the performance of algorithms and protocols – random number number generators are assumed to produce uniform randomness.
Unfortunately, it turns out to be very difficult to show that given source of randomness is sufficiently unpredictable and adding a requirement of uniform distribution of its outputs given any other existing data seems downright impossible. Consequently, this fact raises an important question of whether or not weak random sources – non-uniform random processes only partially independent of other relevant data – can be effectively used in different applications.

The problems that arise when one is forced to use a weak source of randomness are well identified and have been extensively studied in classical information processing. It has been shown that some information processing tasks can be realized reasonably well with bounded weak sources of randomness [90, 77]. However, many other tasks are infeasible without an access to an almost perfect random source [55, 30]. Yet again, cryptography is the best example of how considering the use of weak sources instead of nearly perfect sources of randomness can change the picture. Already the classical result of Shannon [81] shows that to obtain perfect secrecy in private key cryptography, communicating parties have to use perfectly random key. Later it was analyzed whether at least some amount of secrecy can be salvaged in private key encryption scenario with weakly random keys. The outcome of this effort was that to guarantee secrecy, one has to use secret keys that are almost perfectly random [55, 8]. Even in practice, many security holes in the existing implementations of cryptographic protocols can be traced back to imperfect random number generators. For example, it has been estimated that around two out of every thousand RSA moduli used on the Internet are insecure, as they share a factor with another RSA key [50]. This points to an imperfect random number generator used for the generation of large prime numbers used as the private key in RSA encryption.

However, up until recently (see e.g. [11, 42]) there has been little analysis of the impact of weak randomness in quantum information processing (QIP). This is a surprising fact, since randomness plays a vital role in a variety of quantum protocols. A possible reason for this lack of research seems to be the Copenhagen interpretation of Quantum theory, by which randomness is an objective property of each quantum system. The simplest manifestation of this randomness is a projective measurement of a qubit being in a perfectly balanced superposition of two canonical basis states. Outcome of such a measurement is considered as fundamentally undetermined – the outcomes are chosen at random during the measurement. Therefore perfect randomness is essentially seen as an ever present and free resource in QIP. In fact this line of thoughts culminated in commercially available quantum random number generators (QRNG) [1].

In practice, however, perfect randomness cannot be expected even from measurement-based quantum random number generators. What one can reasonably guarantee is only a relatively high entropy of the outcomes of QRNG, which then requires post-processing [83, 35]. Moreover, it has recently been shown that even the state of the art QRNGs do not pass certain standard statistical tests for randomness [43].

Worse still, the relatively limited weakness of random bits produced by some implementations of QRNGs can become much more severe if the QRNG is deliberately attacked by an adversary. Such attacks range from changes of the device temperature, which affects the laser wavelength, leading to biased beam splitters, right through voltage changes in the electricity input.
For this reason we have to weaken the assumptions and ask, if the randomness production is possible without knowing the precise specification of the quantum devices. Quantum protocols with unspecified black-box devices are called device independent protocols.

The problem of device independent randomness production was first studied in a setting, where the user of the protocol starts with a uniformly distributed string and uses black-box quantum devices to produce random string as large as possible — hence the name — device independent randomness expansion[21, 70, 91, 24, 60]. The main idea behind using black-box devices for randomness expansion is to use random bits as inputs and collect the outputs of the devices. The fact that input-output statistics violate certain kind of inequalities — called Bell-type inequalities — can certify that inner workings of the black-boxes are genuinely quantum and therefore the outcomes are fundamentally random. We describe here the most relevant results in this area, allowing in the most elaborated setting an unbounded expansion. We also discuss a slightly stronger limitations for the adversary that allow easier and more efficient production of randomness.

Other group of protocols is devoted to a different version of device independent randomness expansion, often called also randomness amplification[22, 36, 14, 9, 19]. Here the starting randomness is not provided as a short perfectly random string, but rather as a source of partially random bits. This source does not provide a uniform distribution, but their outputs fulfill some criteria given by conditional probability of individual output bits or entropy of the outcome as a whole. Here we also review relevant work in the area, concluding with a protocol that can amplify any source of randomness (i.e. source that doesn’t have deterministic outcome), at the cost of unbounded number of devices used.

The paper is organized as follows. In the second Section we define the notation and measures of weak random sources and present the results from classical theory. In the Section 3 we relate Bell inequalities and randomness production. Sections 4 and 5 include the results for randomness expansion and amplification using quantum devices, concluded with remarks in Section 6.
2 Preliminaries

This section serves as a technical introduction for the two main sections of this paper. We start by formally defining the notion of weak random sources together with a short history of their most studied types. In Subsection 2.3, randomness extractors – algorithms for post-processing weak random sources into almost perfect ones are introduced. The last Subsection 2.4 discusses weak random sources in the presence of quantum side information. Quantum proof extractors are shortly discussed as well.

2.1 Notation

In the rest of this paper random variables are denoted by capital letters \((X, Y, Z, \ldots)\) and their domain by corresponding calligraphic letters \((\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \ldots)\). Outcomes of these random variables are then denoted by lower case letters \((x, y, z, \ldots)\). Uniform distribution over \(s\)-bit strings is denoted \(U_s\). The probability of the random variable \(X\) having value \(x\) is denoted \(\Pr[X=x]\) especially in the introductory part of the paper, later to shorten the notation we use \(p_X(x)\) and sometimes, when the random variable in question is clear from the context we even drop the subscript and use simply \(p(x)\). This notation extends to conditional probabilities and \(\Pr[AB=ab|XY=xy]\) is often denoted \(p_{AV|XY}(ab|xy)\) and sometimes even \(p(ab|xy)\), mainly in the context of randomness production protocols, which is in accordance with the convention used in the most of the relevant literature on the topic.

The reader is expected to be familiar with basics of quantum mechanics. If this is not the case, introductory chapters of any of the well-known textbooks on quantum information \([65, 40]\) should be consulted.

2.2 Introduction to weak randomness

In this subsection we will first introduce the notion of weak randomness generally and then proceed to a short review of the most studied types of weak randomness sources.

We will take an operational approach and formally define randomness by random variables. Because the nature of the randomness bias of the source is typically unknown, it is insufficient to define a weak source by a random variable \(X\) with a given probability distribution \(p_X\). Instead, we model weak randomness by a random variable with unknown probability distribution. To guarantee at least some randomness we suppose that the probability distribution \(p_X\) of the variable \(X\) comes from a set \(\mathcal{S}\); the level of randomness is then given by the properties of the set, or more specifically, by the property of the least random probability distribution(s) in the set.

If we say that a protocol or an algorithm uses randomness from a weak source \(X\) of a given type, we mean that the randomness is distributed according to an arbitrary (unknown) distribution \(p_X \in \mathcal{S}\). Analysis of a protocol or an algorithm with weak randomness then boils down to proving some desired property in the worst case scenario. That is finding a set of distributions \(W \subseteq \mathcal{S}\), for which the protocol or algorithm manifest the worst case performance, followed by the proof of the desired property with the
assumption that the randomness is distributed according to a probability distribution
\(p_X \in W \).

Different types of weak randomness differ in the definition of the set \(S \). The set \(S \)
is usually given by a specific property of allowed distributions, often motivated by the
properties of the physical source, but in principle any set of probability distributions can
be seen as a weak randomness source.

Alternative way to arrive at the definition of a weak source \(X \) by a set of possible
probability distributions \(S \) is to consider another randomness variable \(E \) interpreted
as the information the relevant entity has about \(X \). As an example consider a user
running statistical tests to determine the quality of his random number generator. If
the generator passes all the tests, then, according to the users knowledge, the random
variable \(X \) describing the outcomes of the generator is very close to uniformly distributed.
However, in most applications the user’s knowledge about the random number generator
is irrelevant. The random number generator output is typically required to be random
against specific entity – examples being the adversary in cryptographic scenarios, or input
data in randomized algorithms. Statistical tests therefore correctly asses the usefulness
of randomness only with an assumption (which is very reasonable most of the time) that
these relevant entities do not have more precise information about the random number
generator than the user.

The notion of weak randomness questions this assumption. In fact, the entities for
whom the random data used in applications needs to be unpredictable are assumed to
have more information about it than the user. This information can be characterized
by a random variable \(E \) and the set \(S \) that contains distributions \(p_{X|E=e} \) for each \(e \).
As the user doesn’t know the concrete piece of information \(e \) and therefore the concrete
distribution \(p_{X|E=e} \) the source \(X \) has from the adversarial point of view, the algorithms
or protocols have to work correctly with all of them. Note that a string can be random
for some entities and completely known for another entities. Therefore, in this view
randomness is not a property of a string, rather is it a subjective property of a process
creating the string. This is in a sharp contrast with algorithmic view of randomness [51],
which can be seen as measure of string’s compressibility.

The view of weak randomness sources as randomness sources with side information
available to the adversary, although nicely illustrating the motivation behind the notion
of weak randomness, is rarely used in the classical (as opposed to quantum) literature
about weak sources. In fact, usually a definition presented before – the adversary knows
the distribution \(p_X \in S \) of \(X \) and the user doesn’t – is used in vast majority of the
classical literature. In fact however, these two notions are completely equivalent in
classical world and if one would go through a trouble of rephrasing all the classical
results into the formalism where conditioned probability distributions are used instead
of the unconditioned ones, one would obtain identical results.

The situation gets much more complicated, when one acknowledges the existence of
quantum mechanics. According to the Copenhagen interpretation of quantum mechanics,
randomness is an objective property and there exist genuinely unpredictable events.
Therefore, at least in theory, a device producing objectively random outcomes – i.e.
there exists no information in the Universe that would help us predict them – can be
constructed. However to construct such device we would need perfect control over the

quantum devices – a feat that is presently not possible. Therefore, in practice our view of randomness produced by quantum devices is a mixture of two qualitatively different types of randomness – objective randomness coming from a genuinely unpredictable quantum process and classical randomness coming from our imprecise implementation of these quantum processes. Alternatively, quantum random number generators might leak the information about their outputs after they have been produced, i.e. during the post processing phase. Another possibility is that the adversary might be a part of the process producing the outcomes, as in the case of some applications like quantum key distribution [7, 76]. In the light of this discussion, the view that the adversary might have more information about the random process than the user is still valid even in the setting with quantum mechanics.

Another complication that comes with quantum mechanics in the picture is that the adversary is allowed to hold quantum information (i.e. quantum state ρ_E instead of classical random variable E) about X. It has been shown that such adversary is in some cases stronger than the adversary holding classical information only. This is the reason why the side information understanding of the weak sources is prevalent in quantum literature. We will define and discuss weak sources with quantum side information in Subsection (2.4).

Another topic discussed in this section is the most common approach to tackle with the problem of weak randomness. Because perfect randomness is expected by most of the applications, it is natural to attempt to post–process weak randomness into nearly perfect randomness, which can be subsequently used in algorithms and protocols. This process is called randomness extraction and it is widely studied for all types of weak sources.

With respect to this task, we can divide weak sources of randomness into two classes – extractable sources and non-extractable sources. From extractable sources one can obtain by a deterministic procedure nearly perfect randomness. Although various examples of non-trivial extractable sources do exist (see Subsection 2.2.1 or [87, 44] and references therein), most natural sources, for example defined by the entropy of allowed distributions (see Subsections 2.2.2 and 2.2.3), are non-extractable. In such cases non-deterministic randomness extractors (see Subsection 2.3) have to be used.

In what follows we will introduce some of the most studied types of weak randomness sources.

2.2.1 Von Neumann sources

Historically, the first consideration of weak random source is due to von Neumann [92]. The so called von Neumann source produces a string of equally biased independent coin flips.

Definition 1 (Von Neumann source). The von Neumann source is defined as a sequence X_1, X_2, \ldots of binary independent random variables with fixed but unknown bias. That is, $\forall i \in \mathbb{N}, \Pr[X_i = 0] = \varepsilon$ and $\Pr[X_i = 1] = 1 - \varepsilon$, for some (unknown) $0 \leq \varepsilon \leq 1$.

The parallel with our general definition of the weak sources as sets of probability distributions over the same domain is clear, when we consider n-bit string produced by
a von Neumann source. Such string can be described by a set of joint random variables
\(Y = X_1 \ldots X_n \), characterized by a parameter \(\varepsilon \) (see Fig. 2.1).

In his paper, von Neumann designed a deterministic procedure to extract random
bits from any von Neumann source. The procedure takes outputs of neighboring random
variables \(X_{2m-1} \) and \(X_{2m} \) and compares them. If they are equal, they are both discarded,
otherwise \(X_{2m} \) is added to the output string. Formally, von Neumann extractor \(Ext \) is
defined as follows:

\[
Ext(X_1, \ldots, X_n) = Y_1, \ldots Y_k,
\]
where \(Y_i = X_{2m_i} \) and \(m_1 < m_2 < \cdots < m_k \) are all indices \(m < n \) such that \(X_{2m-1} \neq X_{2m} \)
(see Fig. 2.2).

The von Neumann extractor has all the expected properties of randomness extractors.
First of all, the output bits are uniformly distributed for any bias \(\varepsilon \). This is quite
straightforward to see, because \(\Pr[X_i = 1 \land X_{i+1} = 0] = \varepsilon(1 - \varepsilon) = \Pr[X_i = 0 \land X_{i+1} = 1] \).
Secondly, independence of the output bits is implied by the independence of input bits.

\[
\begin{align*}
X_1 & \quad X_2 & \quad X_3 & \quad X_4 & \quad X_5 & \quad X_6 & \quad X_7 & \quad X_8 \\
\text{Input:} & \quad \begin{array}{c}
0 \\
1 \\
0 \\
0 \\
1 \\
1 \\
1 \\
0 \\
\ldots
\end{array} & \quad \begin{array}{c}
0 \\
1 \\
0 \\
0 \\
1 \\
1 \\
1 \\
0 \\
\ldots
\end{array} & \quad \begin{array}{c}
1 \\
discard \\
discard \\
0 \\
\ldots
\end{array}
\end{align*}
\]

Fig. 2.2. *A schematic drawing of von Neumann extractor. Random output bits are generated
from pairs of input bits. Pairs with equal values are discarded, while the second bit of a non-equal
pair is used as the output.*
Fig. 2.3. An example of a distribution of a SV-source with $n = 3$ and $\varepsilon = \frac{1}{4}$. This example maximizes the probability of outputting a string with odd parity. Note that each string appears with non-zero probability.

One of the most important drawbacks of this simple procedure is that it discards non-negligible portion of randomness. The procedure was later improved by Peres [69], who showed how to efficiently extract the amount of random bits that is close to the entropy of the source by exploiting the discarded bits.

The von Neumann source is rarely regarded in the literature nowadays. The reason for this is that the assumption of independence of bits X_i is considered to be very strong and unrealistic. However the von Neumann source is worth mentioning, because it conveys one important message: The set of probability distributions in the von Neumann source is uncountable (ε is a real parameter), yet the source is extractable. This hints on the fact that in the question of extractability the size of the source is less relevant than it’s structure and the structure of von Neumann source is too strong in this sense.

2.2.2 Santha-Vazirani sources

More general notion of weak sources randomness are so called Santha-Vazirani sources (SV-sources) [78].

Definition 2 (Santha-Vazirani source). A Santha–Vazirani source with a parameter $0 \leq \varepsilon \leq \frac{1}{2}$ is defined as a sequence of binary random variables X_1, X_2, \ldots, such that

$$\forall i \in \mathbb{N}, \forall x_1, \ldots, x_{i-1} \in \{0, 1\},$$

$$\Pr [X_i = 1 | \forall i-1 = x_{i-1} \ldots X_1 = x_1] \in \left(\frac{1}{2} - \varepsilon, \frac{1}{2} + \varepsilon\right).$$

Note that in this model the bias can change for each bit X_i to some extent, and what is more, the bias can depend on previously generated bits. Informally, we suppose that each bit contains some amount of randomness (bounded from below) even conditioned on the previous ones. Here again, for fixed n and ε, SV-source can be interpreted as a set of probability distributions over n-bit strings (see Fig. 2.3). However, the restriction on the allowed distributions is much less stringent comparing to the von Neumann source due to the allowed correlations between bits. For example, for $\varepsilon = \frac{1}{2}$ every probability distribution over n-bit strings is in the set of allowed distributions \mathcal{S}. On the other hand,
SV-source with $\varepsilon = 0$ contains only a single distribution – the uniform distribution U_n.

Another important property that we will use in the Section 5 is that for SV-sources with $\varepsilon < \frac{1}{2}$ every n-bit string appears with non-zero probability.

Because the SV-sources are less restricted than von Neumann sources, they are more suitable for modeling real world random number generators. The price to pay are several negative results that have been proven for Santha-Vazirani sources. Santha and Vazirani [78] themselves have shown that it is impossible to extract even a single unbiased bit from an SV-source. More precisely, any compression of bits from SV-source with ε, in a form of a boolean function $f : \{0, 1\}^m \rightarrow \{0, 1\}$ cannot produce another, improved SV source with $\varepsilon' < \varepsilon$. More importantly it has been shown by various authors [55, 29] that even slightly biased SV-sources, i.e. sources with low ε, are not suitable for many cryptographic purposes. On the other hand Vazirani and Vazirani [90] have shown how to simulate a class of bounded error randomized algorithms with a single SV-source.

However, even though the deterministic extraction fails, there is a possibility to post-process SV-sources with the help of additional randomness. An example of such additional resource is another independent SV-source. In this setting Vazirani [89] has shown that for any ε and two independent sources with SV parameter ε there exists an efficient procedure to extract a single almost perfect bit. More precisely, if $X = (X_1, \ldots, X_n)$ is the outcome of the first source and $Y = (Y_1, \ldots, Y_n)$ is the outcome of the second source, post-processing function Ext is defined as

$$Ext(X, Y) = (X_1 \cdot Y_1) \oplus (X_2 \cdot Y_2) \oplus \cdots \oplus (X_n \cdot Y_n),$$

where \oplus denotes sum modulo 2. In other words the function Ext is a scalar product between the two n-bit strings X and Y. This function is very useful in other randomness extractor constructions as we will see in the remainder of this section and in the Section 5. Extraction for SV-sources is sometimes called randomness amplification, as it can be interpreted as transforming two ε SV-sources into another ε' SV-source with $\varepsilon' < \varepsilon$, at the rate of $\frac{1}{m}$ (i.e. m bits of the original sources are transformed into a single bit of the new, improved source). Note that in general compressing more bits will result in a lower ε' of the resulting SV-source.

This extraction function for SV-sources nicely demonstrates some important concepts in the area of randomness extraction. First of all, in order to be able to extract, we need an additional, independent source of randomness, be it another weak source or a short random seed. Second, the quality of the output depends on both the length and quality of the input. We will discuss these concepts in more detail in Subsection 2.3.

2.2.3 Min-entropy sources

Santha-Vazirani sources require that each produced bit contains some amount of randomness even conditioned on the previous ones. In order to generalize this definition Chor and Goldreich [18] introduced sources, where the randomness is not guaranteed in every single bit, but instead it is guaranteed in each n-bit block. The randomness in blocks is guaranteed by it’s min-entropy defined as
Definition 3 (Min-entropy). A min-entropy $H_\infty(X)$ of a n-bit random variable X is defined as:

$$H_\infty(X) = \min_{x \in \{0,1\}} (-\log_2(\Pr[X = x])).$$

Informally min-entropy is minus logarithm of the probability of the most probable element. The randomness in blocks is therefore guaranteed by the restriction of the most probable n-bit string appearing as the outcome of the block. The most probable element of a distribution is of a special interest as it also constitutes the best strategy in trying to guess the outcome of the variable – simply guessing the most probable element. This leads us to the following formal definition:

Definition 4 (Block source). A (n,k)-block source is modeled by a sequence of n-bit random variables X_1, X_2, \ldots, such that

$$\forall i \in \mathbb{N}, \forall x_1, \ldots, x_{i-1} \in \{0,1\}^n, \quad H_\infty(X_i | X_{i-1} = x_{i-1}, \ldots, X_1 = x_1) \geq k.$$
of finite output size, where no internal structure, such as guaranteed entropy in every bit (SV-sources) or every block of certain size (block sources) is assumed. The only guarantee of randomness is its overall min-entropy (see Fig. 2.4).

Definition 5 (Min-entropy source.). An \(n \)-bit random variable \(X \), such that

\[
H_\infty(X) \geq k
\]

is called an \((n,k)\)-source.

Note that in this view, a min-entropy source is a set of distributions with an upper bound on the probability of the most probable element imposed by min-entropy. This is incidentally the probability of success of the best strategy to guess the outcome of the variable. Such sources were introduced by Zuckerman [93] and nowadays are the most studied type of weak sources. Also note that randomness extractors for this type of sources (discussed in Subsection 2.3) can easily be used for block sources as well by simply applying them block-wise.

Since we will discuss min-entropy sources in this paper as well, we need several more definitions. For any \(n \)-bit random variable \(X \) with \(H_\infty(X) \geq k \), let us denote it’s min-entropy loss as \(c = n - k \) and it’s min-entropy rate as \(\frac{k}{n} \). The last important definition is that of the flat sources.

Definition 6 (Flat source). Let \(S \subset \{0,1\}^n \). A random \(n \)-bit variable \(X \) is flat on \(S \), if for all \(x \in S \),

\[
\Pr[X = x] = \frac{1}{|S|}.
\]

By extension, for all \(y \notin S \), \(\Pr[X = y] = 0 \). If \(|S| \geq 2^k \), it is a \((n,k)\)-flat source.

In other words, the flat sources with min-entropy \(k \) are distributed according to a probability distribution that is uniform on sufficiently large subset of possible outcomes (see Fig. 2.5). More importantly, any source with min-entropy \(k \) is a convex combination of flat sources with min-entropy \(k \) and it can be shown that in many applications the flat sources manifest the worst case behavior. That is why the analysis is often carried out on the flat sources only.
2.3 Randomness extractors

As mentioned previously, it is a very common scenario to post-process weak randomness, with the use of randomness extractors. These algorithms produce nearly perfect randomness, which can later be used in other applications. The aim of randomness extraction from \((n, k)\)-sources is to turn a bit string distributed according to arbitrary probability distribution with min-entropy at least \(k\) into a possibly shorter bit string that is close to being perfectly random. Concept of closeness can be summed by the following definition.

Definition 7 (\(\varepsilon\)-closeness). Random variables \(X\) and \(Y\) over the same domain \(D\) are \(\varepsilon\)-close, if:

\[
\Delta(X, Y) = \frac{1}{2} \sum_{x \in D} |\Pr[X = x] - \Pr[Y = x]| \leq \varepsilon
\]

The usefulness of this definition perhaps becomes more evident when we point out that \(\Delta(X, Y)\) can be equivalently defined as \(|p_X(A) - p_Y(A)| \leq \varepsilon\) for every event \(A \subseteq D\), therefore variables \(X\) and \(Y\) are almost indistinguishable.

It can be shown that the min-entropy of a variable \(X\) gives the upper bound on the number of extractable almost uniformly distributed bits \([80]\). In other words, if \(k\) bits can be extracted from a random variable \(X\), then \(X\) has min-entropy at least \(k\). Informally we say that a \((n, k)\)-distributed variable \(X\) contains \(k\) bits of randomness. It is for this reason that min-entropy sources have become the most widely considered model of weak randomness in the literature.

2.3.1 Seeded extractors

As we mentioned earlier, deterministic extraction is impossible for min-entropy sources. Nevertheless, as we have learned in the case of SV-sources, extraction might be possible with additional resources. The most widely studied constructions are seeded extractors, in which the extra resource is an additional short, uniformly distributed random string, called the seed.
Definition 8 (Seeded extractor). A function $\text{Ext} : \{0,1\}^n \times \{0,1\}^s \mapsto \{0,1\}^m$ is a seeded (k,ε)-extractor if for every (n,k)-distributed random variable X,

$$\Delta(\text{Ext}(X,U_s),U_m) \leq \varepsilon.$$

Sometimes a stronger definition of extractor is needed and the output is required to be random even to an entity that has seen the value of the seed. This can be formally written as

Definition 9 (Strong extractor.). A function $\text{Ext} : \{0,1\}^n \times \{0,1\}^s \mapsto \{0,1\}^m$ is a strong seeded (k,ε)-extractor if for every (n,k)-distributed random variable X,

$$\Delta(U_s \circ \text{Ext}(X,U_s),U_s \circ U_m) \leq \varepsilon,$$

where \circ is concatenation and two copies of U_s denote the same random variable.

Strong extractors can be seen as a set of deterministic extractors $\{\text{Ext}(\cdot,s) | s \in \{0,1\}\}$ with a following property: For any given (n,k)-source X most of the extractors in the set constitute a good extractor for X. This property will be used in Subsection 5.3 as a basic building block for a randomness amplification protocol.

There are several parameters against which the quality of the extractor can be evaluated. First of all we want the seed s to be as small as possible, because, as we have argued, (nearly) perfect randomness is a scarce resource. Second of all, we want the extractor to successfully extract randomness even from sources with low min-entropy k. In fact, it is easier to extract randomness from sources with higher min-entropy and the required min-entropy often depends on the length of the source n. This requirement becomes more clear when one realizes that the overall quality of the source is more accurately expressed by the min-entropy rate $\frac{k}{n}$ than the total min-entropy k. Intuitively it should be clear that a $(100,2)$-source is much worse than a $(3,2)$ source.

Naturally, we want $m > s$ to actually gain some randomness, ideally we want to achieve the maximum possible size of the output $m = s + k$. We also require the statistical distance ε of the output from an uniform random variable U_m to be as small as possible, typically ε is a function of all n,k and s. Last but not the least, we want the extractor to be efficient and efficiently constructible, meaning that given parameters n and k the function Ext must be constructible in polynomial time in both of these parameters and it’s evaluation should also be possible in time polynomial in both n and k.

The optimal parameters of extractors obtained by probabilistic methods [73] are seed length of $s = \log n + O(1)$, output length of $m = k + s - O(1)$ and such optimal extractor is able to extract from a source with any min-entropy k, regardless of it’s length n. Note however, that this extractor is non-explicit, and therefore not efficiently constructible. Even though the construction of an optimal extractor is not known, there are known extractor constructions that obtain optimal values for any pair of these three parameters. The best recent constructions according to the output length and the seed length are introduced in [52, 41].

As an example of a min-entropy extractor we will introduce a construction based on universal hashing [17].
Definition 10 (Universal hashing). A set \mathcal{H} of hash functions $H : \{0,1\}^n \mapsto \{0,1\}^\ell$ is a universal family of hash functions if for any $w_1 \neq w_2 \in \{0,1\}^n$, and for any $x_1, x_2 \in \{0,1\}^\ell$,
\[
\Pr[h(w_1) = x_1 \land h(w_2) = x_2] = 2^{-2\ell},
\]
where the probability is taken over uniform choice of hash function $h \in \mathcal{H}$.

There are known construction for such families of hash functions of size 2^{2n} for every $\ell < n$. Let us parametrize such set as $\mathcal{H} = \{h_s | s \in \{0,1\}^{2n}\}$.

Definition 11 (Universal hashing extractor). A function $\text{Ext} : \{0,1\}^n \times \{0,1\}^{2n} \mapsto \{0,1\}^m$ defined as
\[
\text{Ext} : (x, s) = s \circ h_s(x)
\]
is a $(m - s + 2\log(1/\varepsilon), \varepsilon)$ extractor for every ε.

This extractor was first introduced in [84] and it has optimal output length and can extract from sources with any k – as long as $m = k + s - 2\log(1/\varepsilon) - O(1)$, the output is at most ε far from uniform distribution. For more details and history of seeded extraction consult any of the excellent surveys of this topic [67, 80] and references therein.

2.3.2 Extraction from several independent sources

The disadvantage of the seeded extraction is that it requires uniformly distributed seed, which, as we argued before, is difficult to obtain. This fact leads to another direction in designing randomness extractors, which is to consider extracting randomness from several independent min-entropy sources. We will define such extractor for two independent sources, while generalization to several sources is straightforward.

Definition 12 (Two source extractor). A function $\text{Ext} : \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^\ell$ is a (k_X, k_Y, ε)-extractor if for every two independent (n, k_X) source X and (n, k_Y) source Y
\[
\|\text{Ext}(X, Y) - U_\ell\|_1 \leq \varepsilon.
\]

A pair of sources was already considered by Chor and Goldreich [18]. Multi-source extractors were subsequently studied by many other authors [27, 28, 74] and the best recent constructions can be found in [6].

One longstanding problem of multi-source extractors is to find explicit constructions for the sources with low min-entropy rate. Probability argument suggests that the lower bound on extractable min-entropy is in the order $O(\log_2(n))$, where n is the length of the input strings. Nevertheless, explicit constructions existed only for sources with min-entropy rate greater than $\frac{n}{2}$. Only recently Bourgain [12] has broken the $\frac{n}{2}$ barrier and shown how to construct extractors for sources with min-entropy below $\frac{n}{2}$.

In order to show an example of a two source extractor, let us first revisit the scalar product function. It turns out scalar product is essential in building two source extractors. In this context it is sometimes also called the Hadamard extractor, and is often used as a primitive to extract a single bit.
Definition 13 (Hadamard extractor). A function \(\text{Had} : \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\} \) defined as

\[
\text{Had}(x, y) = \left(\sum_{i=1}^{n} x_i \cdot y_i \right) \mod 2,
\]

where \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) is a \((k_X, k_Y, 2^{-k_X-k_Y-1})\) extractor.

In order to show how to expand Hadamard extractor in order to extract more than a single bit, we present a construction introduced by Dodis et al. [27].

Definition 14 (DEOR extractor). For all \(n > 0 \) there exists a set of \(n \times n \) matrices \(\{A_1, \ldots, A_n\} \) over \(GF(2) \) such that for any non-empty set \(S \subseteq \{1, \ldots, n\} \), \(A_S = \sum_{i \in S} A_i \) has full rank. Let \(n \geq m > 0 \). A Function \(\text{Ext}_D : \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^m \) defined as

\[
\text{Ext}_D(x, y) = \text{Had}(A_1x, y), \text{Had}(A_2x, y), \ldots, \text{Had}(A_mx, y)
\]

is a \((k_X, k_Y, 2^{-m-k_X-k_Y-1})\) extractor. Here \(GF(2) \) is a field of addition and multiplication modulo 2.

We have shown in [10] that Hadamard extractor can be improved, especially for sources with high min-entropy. We focused on one of the weaknesses of the Hadamard extractor – if one of the randomness sources, say \(X \), happens to be uniform, the extractor fails to produce unbiased bit. In our paper we proposed a function which produces bits with constantly better bias for \((n,k)\)-sources with \(k < n - 1 \). What is more, the distance \(\varepsilon \) of the produced bit from a uniform bit approaches 0 as \(k \) approaches \(n \). Our construction is presented in the next definition.

Definition 15 (BPP extractor). A function \(\text{Had}_\oplus : \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\} \) defined as

\[
\text{Had}_\oplus(x, y) = \left(x_1 + y_1 + \sum_{i=2}^{n} x_i \cdot y_i \right) \mod 2,
\]

where \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_n) \) is a \((k_X, k_Y, 2^{-k_X-k_Y-3})\) extractor.

Our extractor therefore obtains \(\sqrt{2} \) times smaller bias than the Hadamard extractor. Moreover, contrary to the Hadamard extractor, the bias of the proposed extractor is 0 if at least one of the input sources is uniform. Another interesting property is that our construction can beat the \(\frac{n}{2} \) bound in some cases.

Our extractor can be plugged into the DEOR (see Def. 14) construction, in which case we obtain a \((k_X, k_Y, \sqrt{2}^{n-k_X-k_Y-1})\) extractor, which is slightly better than the original construction. Surprisingly, this advantage in the extraction without the strongness property is not retained in the strong extraction scenario. In fact, our extractor is \(\sqrt{2} \) worse than the extractor based on the Hadamard construction.
2.4 Weak sources with quantum side information

So far, we have considered only classical weak sources, i.e. sources described by classical random variables with unknown probability distribution or, equivalently, classical random variables with adversaries holding some classical information about their outcome. In quantum information, however, this is not the most general model of weak randomness sources – a potential adversary might obtain side information about the source in form of quantum states.

In order to formalize this approach we need to introduce some new notation.

Definition 16 (cq-state). Let Z be a classical random variable and $\{\rho_z\}_{z \in Z}$ a set of density matrices. Then we denote the cq-state:

$$Z\rho_Z = \sum_{z \in Z} \Pr[Z = z] |z\rangle \langle z| \otimes \rho_z.$$

Supposing the adversary holds the quantum part of a cq-state and the device producing randomness holds the classical part, the weak source is obtained by measuring the classical part of the state in the computational basis – quantum mechanics guarantees that the measurement outcomes will be distributed according to the distribution p_Z of the random variable Z. Moreover according to the Copenhagen interpretation of quantum mechanics, this randomness is objective, therefore weak randomness is modeled in the spirit of our second definition – the adversary obtains information about the source via a side channel: in this case, for each outcome z the adversary obtains a state ρ_z. Generally the adversary holds a mixed state $\rho_Z = \sum_{z \in Z} \Pr[Z = z] \rho_z$ and tries to infer as much information as possible about the corresponding classical outcome.

In order to clearly formulate the capabilities of the adversary, the following scenario is typically considered. The adversary obtains the outcome of the random variable Z and stores quantum information about it in a quantum memory, by applying a quantum operation U_z to it, resulting in a state ρ_z. If all the states in $\{\rho_z\}_{z \in Z}$ are distinguishable, the adversary can obtain all the outcomes with probability 1, simply by using the distinguishing measurement. Therefore there remains a question how to bound the adversary’s knowledge in a meaningful way.

There are two ways to do this, both inspired by the classical min-entropy sources. First of all, the dimension of states ρ_z can be restricted. In such scenario, the adversary is given the outcome of the variable, but is allowed to store only b qubits about it. If one allows the adversary only classical memory, min-entropy sources are recovered – storage of b classical bits about a source that is uniformly distributed ensures that it’s resulting min-entropy conditioned on the adversary’s memory is at least $n - b$.

Recall that min-entropy of a classical source can also be interpreted as the upper bound on the probability of correct guess of it’s outcome. In the same spirit we can restrict the amount of information the reduced state ρ_Z contains about the random variable Z. Formally, we will restrict adversary’s probability to guess the outcome of Z correctly by restricting it’s guessing entropy given ρ_Z. As adversary’s strategy consists of measuring ρ_Z, we need to optimize over all possible POVMs.
Definition 17 (Guessing entropy). Let $X \rho_X$ be an arbitrary cq-state. The guessing entropy of X given ρ_X is

$$H_g(X \leftarrow \rho_X) = -\log \max_M \mathbb{E}_{x \leftarrow X} [\text{Tr}(M_x \rho_x)],$$

where the maximum is taken over all $|X|$ outcome POVMs $M = \{M_x | x \in X\}$.

Perhaps, more intuitive form is

$$H_g(X \leftarrow \rho_X) = -\log \max_M \text{Pr}[M(\rho_X) = X],$$

where $M(\rho_X)$ is a random variable we obtain by measuring the state ρ_X by a POVM M.

An alternative concept, often used in literature is called **conditional min-entropy** [76], but it has been shown that the two definitions are equivalent [48].

The definition of the weak source is now straightforward. A source X is a (n,k)-source against quantum memory ρ_X, if $H_g(X \leftarrow \rho_X) \geq k$.

Randomness extraction is studied for both sources with bounded storage (see i.e. [47, 26] and the references therein) and sources with guaranteed guessing entropy [25]. One of the most prominent results is that quantum side information can in some cases offer a significant advantage to the adversary in extraction scenario, when compared to it’s classical counterpart. This was proven by Gavinsky et. al. [37] who constructed a strong randomness extractor which is secure against classical adversaries, but fails to produce almost perfect randomness against adversaries holding quantum information. More precisely, their construction outputs almost perfectly random bits against an adversary with $o(\sqrt{n})$ bits of storage, while it fails against an adversary with $O(\log(n))$ quantum bits used for storage.

On the positive side, some of the existing extractors for classical weak sources have been proven to be secure against both types of quantum side information, among them the construction based on universal hashing [86] (see Def. 11). The recently best construction against adversaries with bounded storage can be found in [26] and against guessing entropy adversaries in [25].

Extraction without the access to uniform seed is even more complicated in case of sources with quantum side information. We will consider the case of extraction with two weak sources, which can easily be generalized to multiple source extractors.

In this scenario we assume that there are two non-communicating adversaries, one for each weak source. After the sources produce their outcomes, the two adversaries meet and try to guess the outcome of the extractor. In order to see that this level of abstraction is necessary, assume only a single adversary. In the side information formalism introduced earlier, he first receives the outcomes x and y of random variables X and Y representing the weak sources, and tries to save some restricted information about them in a quantum memory. Because he can see both random inputs of the extractor, he can simply calculate it’s outcome $\text{Ext}(x,y)$ and store it. The outcome $\text{Ext}(x,y)$ by definition contains almost no information about the individual inputs, thus fulfilling the restricted information requirements. In other words in this model the outputs of variables X and Y are easily made correlated via adversary’s memory that is why we need to assume two non-communicating adversaries.
To add more complexity to the problem, we can allow the adversaries’ memories to be entangled. This leads to several different models: bounded memory adversaries with/without entanglement and guessing entropy adversaries with/without entanglement. Kasher and Kempe [45] studied the DEOR construction introduced in the previous section (see Def. 14) in various settings of this type and were able to obtain positive results for both entangled and non-entangled bounded memory adversaries and non-entangled guessing entropy adversaries. The remaining scenario with entangled guessing entropy adversaries proved to be too strong and the DEOR construction does not provide any security in this case. Moreover, it is not clear if such strong constructions of extractors are even possible.

This concludes the short introduction into the wide field of weak randomness and we are ready to present the main topic of this paper.
3 Bell inequalities and randomness

In this section we will explain in detail what Bell type inequalities are and how their violation guarantees that the outcomes of certain measurements are fundamentally undetermined. This fact is exploited in the construction of randomness generation protocols.

3.1 The local set and determinism

The simplest scenario of a Bell type non-locality test consists of two spatially separated observers, Alice and Bob, who measure a bipartite system produced by a common source. Both Alice and Bob can choose one of several possible measurement settings. After the measurement both of them record the outcome. Let us label Alice’s choice of measurement setting \(x \in \mathcal{X} = \{1, \ldots, M_A\} \) and Bob’s choice \(y \in \mathcal{Y} = \{1, \ldots, M_B\} \) and their outcomes \(a \in \mathcal{A} = \{1, \ldots, m_A\} \) and \(b \in \mathcal{B} = \{1, \ldots, m_B\} \) (see Fig. 3.1). If this procedure is repeated many times, Alice and Bob can communicate their measurement settings and outcomes to each other and estimate probabilities

\[
p_{\mathcal{A}\mathcal{B}|\mathcal{X}\mathcal{Y}}(\mathcal{a}\mathcal{b}|\mathcal{xy}) = \Pr[A = \mathcal{a}, B = \mathcal{b}|XY = \mathcal{xy}],
\]

where \(X, Y \) are the random variables governing the inputs and \(A, B \) the random variables governing the outputs of the boxes. We say the outcomes are correlated, if for some \(x, y, a, b \)

\[
p_{\mathcal{A}\mathcal{B}|\mathcal{X}\mathcal{Y}}(\mathcal{a}\mathcal{b}|\mathcal{xy}) \neq p_{\mathcal{A}|X}(\mathcal{a}|x)p_{\mathcal{B}|Y}(\mathcal{b}|y). \tag{3.1}
\]

Existence of correlations isn’t anything surprising. In fact correlations are very natural and can be classically explained by some common cause of the observed statistics. Formally, one can model the cause of these correlations by a set of random variables \(\Lambda \), which have causal influence on both measurement outcomes, but are inaccessible to the observers. In a local hidden variable model, taking into account all the possible causes.

Fig. 3.1. Two party Bell type experiment. Alice’s measurement setting is \(x \) and Bob’s \(y \). Their respective outcomes are \(a \) and \(b \). The black barrier represents their inability to communicate, e.g. by separating the experiments by a space-time interval.
Bell inequalities and randomness

\[\Lambda, \text{ outcomes of the experiments are fully independent, i.e., for all } a, b, x, y, \lambda \]

\[p_{AB|XY\Lambda}(ab|xy, \lambda) = p_{A|X\Lambda}(a|x, \lambda)p_{B|Y\Lambda}(b|y, \lambda). \] \hspace{1cm} (3.2)

This in fact represents an explanation of the correlations according to which Alice’s outcome depends only on her local measurement setting \(x \) and some common cause \(\lambda \) and not on distant Bob’s measurement setting and outcome, and analogously Bob’s outcome doesn’t depend on anything that Alice does. This is in fact a crucial assumption required by the theory of relativity, which forbids non-local causal influence for spatially separated entities. To complete the picture we must take into account the probability distribution of \(\Lambda - p_\Lambda \). This gives rise to a local hidden variable condition:

\[p_{AB|XY}(ab) = \int_{\Lambda} d\lambda p_\Lambda(\lambda)p_{A|X\Lambda}(a|x, \lambda)p_{B|Y\Lambda}(b|y, \lambda). \] \hspace{1cm} (3.3)

This characterization contains an implicit assumption – the measurement settings \(x \) and \(y \) can be chosen independently of \(\lambda \). Formally,

\[p_{A|XY}(\lambda|x, y) = p_\Lambda(\lambda). \] \hspace{1cm} (3.4)

Notice that so far we haven’t assumed anything about the determinism of measurements in the local model, as condition (3.3) states only that the outcomes are probabilistically determined. In deterministic local hidden variables model, which is a special case of the above, each outcome is uniquely determined by \(\lambda \) and the corresponding input \(x \), i.e. for each outcome \(a \), input \(x \) and hidden cause \(\lambda \), \(p_{A|X\Lambda}(a|x, \lambda) \) is equal to either 1 or 0, and similarly for \(b, y \) and \(\lambda \).

In fact, local hidden variables are fully equivalent to deterministic local hidden variables, as first proven by Fine [34]. The reason why both definitions are equivalent stems from the fact that all randomness present in the probability functions \(p_{A|X\Lambda}(a|x, \lambda) \) and \(p_{B|Y\Lambda}(b|y, \lambda) \), can always be incorporated into the shared random variable. To show this, let us introduce two continuous variables \(\mu_A, \mu_B \in [0, 1] \) and introduce a new common variable \(\Lambda' = (\Lambda, \mu_A, \mu_B) \). Let

\[p_{A|X\Lambda'}(a|x, \lambda') = \begin{cases} 1 & \text{if } F(a - 1|x, \lambda) \leq \mu_A < F(a|x, \lambda) \\ 0 & \text{otherwise} \end{cases} \] \hspace{1cm} (3.5)

where \(F(a|x, \lambda) = \sum_{a' \leq a} p_{A|X\Lambda}(a'|x, \lambda) \), be new deterministic function governing outcomes of Alice and define analogous function for Bob. If we choose both \(\mu_A \) and \(\mu_B \) with uniform distribution, we will recover the prediction of the general model.

So far, we have shown that observed correlations that admit decomposition as in Eq. (3.3) can be explained by a fully deterministic model – outcomes of the measurement are completely predetermined by the measurement settings and some hidden variables.

In the next subsection we will show how to certify that there is no local hidden variable model for the observed correlations, as in the case for certain measurements of quantum systems.
3.2 Bell inequalities

In the previous subsection we have shown the equivalence between deterministic and general local hidden variable models that can both explain correlations observed. This result has in fact one more corollary – we need to consider only finite number of hidden variables. Indeed, in a deterministic model each variable in Λ specifies an outcome for one concrete input. The general model is a probabilistic mixture of these assignments from outputs to inputs. Since the total number of inputs and outputs is finite, so is the total number of different assignments and thus there is a finite number of hidden variables.

More formally, we can equivalently write down the model in (3.3) as follows: Let us define the values of hidden variables Λ as

$$\lambda = (a_1, \ldots, a_{M_A}, b_1, \ldots, b_{M_B}).$$

For each value of λ we can construct the corresponding deterministic input to output assignment d^λ as:

$$d^\lambda(ab|xy) = \begin{cases} 1 & \text{if } a = a_x \text{ and } b = b_y \\ 0 & \text{otherwise.} \end{cases} \quad (3.6)$$

There are $m_{\Lambda}^{M_A}m_{\Lambda}^{M_B}$ possible values of λ and thus $m_{\Lambda}^{M_A}m_{\Lambda}^{M_B}$ deterministic measurement outcome assignments. Observed probability $p_{AB|XY}(ab|xy)$ can be explained by local hidden variables, if it can be written as a convex combination of such deterministic local points:

$$p_{AB|XY}(xy|ab) = \sum_{\lambda} p_{\Lambda}(\lambda)d^\lambda(ab|xy), \quad (3.7)$$

where $p_{\Lambda}(\lambda) \geq 0$, $\sum_{\lambda} p_{\Lambda}(\lambda) = 1$, i.e. p_{Λ} is the probability distribution of the deterministic points d^λ.

The set of possible hidden variable models is a convex hull of a finite number of deterministic points d^λ, and therefore in terms of geometry it is a polytope. Any linear inequality defining a half-space in which the whole local polytope L resides can be used as a witness that a distribution violating this inequality is non-local. Inequalities of this type are called Bell inequalities. To identify the optimal set of Bell inequalities, it suffices to recall basic results in the theory of polytopes – a polytope can be represented not only by all it’s vertices, as in Eq. (3.7), but equivalently it can be represented by a finite number of half-spaces – the facets of the polytope. Each such facet can be expressed by a linear inequality of the form $\sum_{a,b,x,y} c_{abxy}p_{AB|XY}(ab|xy) \leq S_i$, where c_{abxy} are some linear coefficients defining the Bell inequality and S_i is the maximum value attainable by local probabilities

$$P = \{p_{AB|XY}(ab|xy)|a \in A, b \in B, x \in X, y \in Y\}, \quad (3.8)$$

belonging to the local polytope L. Such set of probabilities P is also called behavior. Hence an observed behavior P lies in the local polytope L, if and only if:

$$\sum_{a,b,x,y} c_{abxy}p_{AB|XY}(ab|xy) \leq S_i \quad \forall i \in I, \quad (3.9)$$
Bell inequalities and randomness

where \(I \) is a finite index set of linear inequalities corresponding to the facets of the local polytope. Conversely, if behavior \(P \) is non-local, it necessarily violates at least one of these Bell inequalities. Note that some facets are trivial and correspond to positivity conditions \((p_{AB|XY}(ab|xy)) \geq 0 \). These are obviously never violated by any physical behavior. All other facets are violated by some non-local behaviours, some of them even by quantum behaviours as we will show next. It is important to note that although there exist algorithms for obtaining all the polytope facets, given its vertices, they become extremely time-consuming as the number of inputs, outputs or parties grow. This is the reason why the study of Bell inequalities is a fruitful research area up to these days.

As an example we introduce here one of the most studied Bell inequalities. Consider the simplest scenario where both Alice and Bob choose one of two measurements \(x, y \in \{0, 1\} = B \) and obtain one of two measurement outcomes, which we label \(a, b \in \{-1, 1\} = A \). In this case the local polytope \(L \) has been fully characterized \([34]\). The only non-trivial facet inequality is the CHSH inequality introduced in \([20]\). Let \(\langle axby \rangle = \sum_{ab} ab \cdot p_{AB|XY}(ab|xy) \) be an expectation value of the product \(ab \) after measuring \(x \) and \(y \). The CHSH inequality then reads:

\[
I_{CHSH} = \langle a_0b_0 \rangle + \langle a_0b_1 \rangle + \langle a_1b_0 \rangle - \langle a_1b_1 \rangle \leq 2. \tag{3.10}
\]

Let us now analyze classical strategies. In order to maximize the CHSH expression \(I_{CHSH} \), we simultaneously want to achieve the highest possible value for \(\langle a_0b_0 \rangle, \langle a_0b_1 \rangle \) and \(\langle a_1b_0 \rangle \) and the lowest possible value of \(\langle a_1b_1 \rangle \). It is easy to see that with deterministic assignments, we can achieve the best value for three out of the four expressions. As an example consider a strategy such that for any question both Alice and Bob answer 1. Then \(p_{AB|XY}(11|00) = p_{AB|XY}(11|10) = p_{AB|XY}(11|01) = 1 \) which maximizes the first three expectation values, but also requires \(p_{AB|XY}(11|11) = 1 \). As argued before, all the other local strategies can be seen as convex combinations of such deterministic assignments and therefore the inequality holds.

Quantum strategy that violates this Bell inequality involves measuring the state

\[
|\Psi^+ \rangle = \frac{1}{\sqrt{2}} \left(|00 \rangle + |11 \rangle \right). \tag{3.11}
\]

The corresponding measurements can be expressed by the following observables. Alice’s observables are

\[
A_0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad A_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \tag{3.12}
\]

while Bob’s observables are

\[
B_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{and} \quad B_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}. \tag{3.13}
\]

By the laws of quantum mechanics we have

\[
\langle axby \rangle = \langle \Psi^+ | A_x \otimes B_y | \Psi^+ \rangle. \tag{3.14}
\]
After doing the calculations we can see that

$$\langle a_0 b_0 \rangle = \langle a_0 b_1 \rangle = \langle a_1 b_0 \rangle = -\langle a_1 b_1 \rangle = \frac{1}{\sqrt{2}},$$

(3.15)

yielding the value of the term

$$I_{CHSH} = 2\sqrt{2},$$

(3.16)

which is certainly larger than 2.

Another well known Bell inequality we will extensively use in this paper is called GHZ inequality [38]. We will introduce it in an alternative formalism used to describe quantum non-locality inspired by game theory. This formalism is very useful and every Bell inequality can be expressed as a game, including the CHSH game introduced previously as we will see in Subsection 4.2.

The GHZ inequality requires three non-communicating parties and it can be defined in terms of a three party game (see Fig. 3.2). Each of the three non-communicating boxes receives a single input bit and produces a single output bit. Let us denote the input bits of the respective boxes by x, y and z and the corresponding output bits by a, b and c. For the valid input combinations holds that $x \land y \land z = 1$, i.e. we consider only inputs $xyz \in \{111, 100, 010, 001\}$ simultaneously passed to all boxes. The value v of the GHZ term is a function of the 4 conditional probabilities $p_{ABC|XYZ}$ and the joint probability

$$xyz \in \{000, 001, 010, 100\}$$

$$x \quad y \quad z$$

\uparrow \uparrow \uparrow

A B C

\downarrow \downarrow \downarrow

a b c

$$a \oplus b \oplus c = x \land y \land z$$

Fig. 3.2. A GHZ test scenario. Three non-communicating boxes A, B, C each take a single bit input and each produce a single bit output. The test is successful if the condition $a \oplus b \oplus c = x \land y \land z$ holds. The best classical strategy achieves 75% success probability, the best quantum strategy achieves success probability 1 and produces two random bits - random variables A and B describing the outcomes of boxes A and B are fully random and independent. Random variable C is correlated with A and B via the inputs.
distribution p_{XYZ} of the inputs:

$$v = \sum_{a\oplus b\oplus c=1} p_{ABC|XYZ}(abc|111)p_{XYZ}(111)+$$
$$+ \sum_{a\oplus b\oplus c=0} p_{ABC|XYZ}(abc|100)p_{XYZ}(100)+$$
$$+ \sum_{a\oplus b\oplus c=0} p_{ABC|XYZ}(abc|010)p_{XYZ}(010)+$$
$$+ \sum_{a\oplus b\oplus c=0} p_{ABC|XYZ}(abc|001)p_{XYZ}(001).$$

(3.17)

In particular, for the uniform input distribution we set $p_{XYZ}(111) = p_{XYZ}(100) = p_{XYZ}(010) = p_{XYZ}(001) = \frac{1}{4}$ and denote the GHZ term by v_u.

Assuming the uniform distribution on all four inputs, the maximal value of v_u achievable by classical device [38] is $\frac{3}{4}$ (thus the GHZ inequality reads $v_u \leq \frac{3}{4}$) and there exists a classical device that can make any 3 conditional probabilities simultaneously equal to 1. In the quantum world we can achieve $v_u = 1$ and satisfy perfectly all 4 conditional probabilities using the tripartite GHZ state $\frac{1}{\sqrt{2}}(|000⟩ + |111⟩)$ and measuring σ_X (σ_Y) when receiving 0 (1) on input.

The beautiful property of the GHZ inequality is that the violation v gives us directly the probability that the device passes a test

$$a \oplus b \oplus c = x \land y \land z.$$

(3.18)

The probability of failing this test reads $1 - v$. This property will be extensively used in construction of device independent randomness amplification protocols of Section 5.

The discussions about quantum non-locality have been part of quantum theory from the beginning and many have considered it controversial [31]. However, quantum violations of Bell inequalities have now been convincingly verified in many experiments (see for example [3]).

Now we are finally ready to formulate the main message of this Section – violation of a Bell inequality guarantees at least some amount of randomness in outcomes of the experiments. This fact can be intuitively understood by the following argumentation: Local model (3.3) is equivalent to a deterministic model, where to each setting x, y and hidden variable λ the outcomes a and b are deterministically assigned. However, such model is excluded by the violation of a Bell inequality. The observed correlations thus cannot be explained by deterministic assignments and therefore the measurement outcomes are fundamentally undetermined.

This intuition certainly requires more clarification. In fact just as every local explanation is equivalent to a deterministic local explanation, it can be shown that every non-local behavior can be explained by a model that deterministically assigns outputs a and b depending on both measurement settings x and y. However every such explanation is necessarily signaling – if such explanation were true, Alice would be able to infer some information about the outcome of Bob's spatially separated measurement setting y only by looking at her outcome a and input x. Such interaction could be exploited
Device independent random number generation

to send signals faster than the speed of light, which is deemed impossible by the theory of relativity, leaving us with the original explanation – outcomes of the measurements are fundamentally undetermined. What is more, this type of randomness can be certified – any observed correlations violating some Bell inequality guarantee presence of randomness.

It is important to stress that to certify the randomness of outcomes we didn’t have to assume anything about the inner working procedures of the measurement devices or the source of measured particles – violation of a Bell inequality itself is sufficient. This is especially interesting for cryptography, in which it allows for reduction of the assumptions regarding the security. Quantum protocols which do not require the specification of the devices are called Device Independent (DI). A variety of protocols with this property have been devised ranging from self testing [54] to quantum key distribution [32] and random number generation, which is the main focus of this paper. For more thorough introduction to Bell inequalities and device independent outlook on quantum physics see excellent surveys [16, 79].

3.3 The set of quantum behaviors and the no-signaling set

In this subsection we will define the set of behaviors achievable by generalized measurement of a bipartite quantum state, which then can be easily generalized to more parties. Let us define a bipartite quantum behavior as a vector of probability distributions $p_{AB|XY}(ab|xy)$, which can be obtained by a measurement of a bipartite quantum system:

$$p_{AB|XY}(ab|xy) = \text{Tr}(\rho M_a^x \otimes M_b^y),$$

where $\rho \in \mathcal{H}_A \otimes \mathcal{H}_B$ is a bipartite quantum state of arbitrary dimension, and M_a^x and M_b^y are elements of Alice’s POVM $\{M^x_a|a \in \mathcal{A}\}$ and Bob’s POVM $\{M^y_b|b \in \mathcal{B}\}$ respectively.

It is interesting to study the set Q of quantum behaviours in the context of Bell inequalities. For example it is very interesting to ask what is the maximal violation of Bell inequalities with quantum resources. In fact, the state and measurements presented in the previous subsection achieves the maximum violation of the CHSH inequality as shown in [88]. Generally, unlike the set of local correlations \mathcal{L}, the set of quantum behaviors Q is not a polytope and is quite difficult to characterize. In a seminal paper of Navascués et. al [64] the authors introduced an infinite hierarchy of semi-definite conditions C_i, $i = 1, 2, \ldots$, which are necessarily satisfied by all probabilities of the form (3.19). The number of conditions rises with the index i, however the higher in the hierarchy the conditions are, the more precise is the characterization of the set $p_{AB|XY}(ab|xy) = \text{Tr}(\rho M_a^x \otimes M_b^y)$. This formulation allows solving optimization problems over the set of quantum behaviors to arbitrary precision using the technique called semi-definite programming.

The last set of correlations that is often studied in the literature is the set of no-signaling probability distributions denoted \mathcal{NS}. The no-signaling set of distributions requires only that $p(ab|xy)$ are proper probability distributions, i.e. $\forall a, b, x, y : p_{AB|XY}(ab)$
Bell inequalities and randomness

![Diagram](image)

Fig. 3.3. A two-dimensional cut of the no-signaling polytope, where \mathcal{L} is the local polytope, \mathcal{Q} is the set of quantum behaviors and \mathcal{NS} is the non-signaling polytope. The values for two Bell-type expressions are plotted in the figure, I_{CHSH} is the value of the CHSH expression 3.10 and I_{CHSH}^* is its symmetric version with labels 0 and 1 interchanged. Notice that a no-signaling distribution can achieve the CHSH value of 4, which is its algebraic maximum.

$$xy \geq 0, \forall x, y : \sum_{a,b} p_{AB|XY}(ab|xy) = 1,$$

and the no-signaling condition:

$$\forall a, x, y, y' \sum_{b=1}^{M_B} p_{AB|XY}(ab|xy) = \sum_{b=1}^{M_B} p_{AB|XY}(ab|x'y')$$

$$\forall b, x, x', y \sum_{a=1}^{M_A} p_{AB|XY}(ab|xy) = \sum_{a=1}^{M_A} p_{AB|XY}(ab|x'y). \quad (3.20)$$

This condition expresses the inability to utilize these correlations to send signals. The set of all no-signaling distributions is again a polytope, and a strict hierarchy can be shown (see Fig. 3.3):

$$\mathcal{L} \subset \mathcal{Q} \subset \mathcal{NS}. \quad (3.21)$$

The advantages of considering the no-signaling set are twofold. First of all, because of the fact that the set forms a polytope it might make the analysis easier. Moreover, for certain impossibility theorems for quantum set, it is sufficient to prove the theorems for a larger set – the no-signaling set. The second advantage is that theorems proven for no-signaling set will hold even against possible post-quantum theories, which might allow stronger than quantum correlations. This is especially interesting in the field of cryptography, where it is desirable to construct cryptosystems secure also in the presence of possible future theories.
4 Randomness expansion

In this section we will discuss protocols for generating random numbers in a device independent way. The crucial requirement for the randomness expansion protocols to work properly is the existence of a short random seed. Part of this seed is used to randomly choose settings in a Bell experiment and after verification that obtained outcomes violate a Bell inequality. If the violation is detected we know that the outcomes of the experiment contain some amount of entropy which we need to estimate. Then the rest of the preexisting randomness is used for classical post-processing of the outcomes via seeded randomness extractors. The result is a random string, which is longer than the initial seed, hence the name – randomness expansion.

4.1 Quadratic expansion

These protocols were first suggested by Colbeck [21], but we use the protocol of Pironio et. al. [70] for introduction. The protocol is based on a CHSH experiment. Intuitively, the greater the violation I_{CHSH} of the CHSH inequality (3.10) is, the more randomness has been produced in the outcomes of the experiment. Although this intuition is not entirely correct as later shown in [2], where the maximum production of randomness has been achieved by a non-maximal CHSH violation.

At first suppose the black-boxes performing the CHSH test were the same in each of n rounds of the protocol (a round is a single instance of the CHSH experiment) and for simplicity assume, a Bell violation I_{CHSH} of the underlying measurement process is given. Let A and B be the random variables describing the outputs of a single run of the experiment. Measure used to quantify the amount of randomness present in A and B is the min-entropy $H_\infty(AB|xy) = -\log_2 \max_{ab} p(ab|xy)$, conditioned on the inputs x and y. Recall that the amount of nearly perfectly random bits obtainable from a partially random source is roughly equal to it’s min-entropy (see Def. 3). The aim is therefore to obtain a lower bound $f(I_{CHSH})$ on min-entropy, if the process achieves violation I_{CHSH} of the CHSH inequality:

$$\forall x, y \quad H_\infty(AB|xy) \geq f(I_{CHSH}).$$

Having such lower bound for a single run, the min-entropy of all the outputs is at least $nf(I_{CHSH})$ and a randomness extractor can be used to transform this randomness into $O(nf(I_{CHSH}))$ bits that are close to being uniformly distributed and uncorrelated to any information the adversary may hold.

In the following we will show how to obtain the lower bound $f(I_{CHSH})$. Let us label $p^*(ab|xy)$ the maximum value of $p(ab|xy)$, where x, y are given and the maximum is taken over all possible values of a and b and all possible quantum probability distributions that achieve CHSH violation of value I_{CHSH}. Such maximization problem can be written in a form

$$p^*(ab|xy) = \max \quad p(ab|xy)$$

subject to

$$p(ab|xy) = Tr(\rho M_a^x \otimes M_b^y).$$

(4.4)
Recall that Eq. (4.3) is a linear constraint and can be written as a linear combination of probabilities of the form \(\sum c_{abxy} p(ab|xy) = I_{CHSH} \), where \(c_{abxy} \) are constants. The only remaining complication is to show that it is possible to express Eq. (4.4) in a more useful way. This can be done by the techniques of Navascues et. al. [64] introduced in previous section. We can characterize the approximation of the quantum set by semi-definite conditions \(C_i \). By doing so, we can obtain relaxations of the original problem \(R_i \) in the form of semi-definite programs (SDP). Moreover, the higher in the hierarchy \(C_i \) is, the more precise upper bound on \(p^*(ab|xy) \) we can obtain, which in turn gives us better lower bounds on the min-entropy \(H_\infty(AB|xy) \). Expressing optimization problems in forms of SDP guarantees that we can find the global maximum with arbitrary precision. In order to obtain a lower bound that does not depend on the inputs, we need to calculate the maximum for all combinations of inputs \(x \) and \(y \). The authors of [70] used these techniques to derive the following lower bound:

\[
\forall x, y \quad H_\infty(AB|xy) \geq f(I_{CHSH}) = 1 - \log_2 \left(1 + \sqrt{2 - \frac{I_{CHSH}^2}{4}} \right).
\]

The scenario given above is however only an idealization for the case of known CHSH violation \(I_{CHSH} \). In a real world protocol, to obtain the CHSH violation we would need infinite number of rounds, and moreover, the measurements and the measured state in round \(i \) can in principle depend on the data from previous rounds. This needs to be dealt with using a statistical approach which takes into account such memory effects. What we do is that we repeat the test \(n \) times and estimate the observed violation \(I_{obs}^{CHSH} \). It is given by

\[
I_{obs}^{CHSH} = [a_0b_0] + [a_0b_1] + [a_1b_0] - [a_1b_1],
\]

where \([a_0b_0] = \sum_{ab} a b N(ab|xy) \) and \(N(ab|xy) \) is the number of times outcomes \(a \) and \(b \) have been observed after measuring \(x \) and \(y \) and \(p(xy) \) is the probability of a pair \(x, y \) appearing as an input. However, in finite number of rounds such violation can be obtained with a positive probability even with a fully deterministic strategy. Authors of [70] were able to upper bound, by \(\delta \), the probability that the value of \(I_{CHSH} \) deviates from the real value of Bell violation \(I_{CHSH} \) by more than \(\varepsilon \):

\[
\delta = \exp \left(-\frac{n\varepsilon^2}{2(1/q + I_q)^2} \right),
\]

where \(I_q \) is the maximum obtainable quantum violation of a Bell inequality and \(q = \max_{xy} p(xy) \) is the probability of the most probable measurement setting. Combining all the previous results, the min-entropy of the produced string \(R = (a_1, b_1; a_2, b_2; \ldots; a_n, b_n) \) given all the inputs \(D = (x_1, y_1; x_2, y_2; \ldots; x_n, y_n) \) can be bounded from below by

\[
H_\infty(R|D) \geq n f(I_{obs}^{CHSH} - \varepsilon),
\]

with probability more than \(1 - \delta \). What is more, the proof holds even for the case of different measurements and measured states in each round. The whole protocol is summarized in Fig. 4.1:
Device independent random number generation

Quadratic expansion protocol

1. User of the randomness expander has a pair of devices, each with 2 inputs and 2 outputs. Both devices are isolated and cannot communicate outside of the lab and between each other. User also has an initial random string $t = (t_1, t_2)$, divided into two substrings t_1 and t_2. She chooses a security parameter δ to bound the probability of the adversary to cheat.

2. User uses string t_1 to produce inputs into the devices $d = (x_1, y_1; \ldots; x_n, y_n)$. Each of the inputs is generated independently according to a probability joint distribution p_{XY}. For each input pair (x_i, y_i) the user records the outcomes of the devices (a_i, b_i) and thus creates a string of outputs $r = (a_1, b_1; \ldots; a_n, b_n)$.

3. From the strings d and r the user computes I_{CHSH}^{obs} (Eq. (4.6)), then using I_{CHSH}^{obs} and δ she computes ε via Eq. (4.7). With these values she can bound the min-entropy of the output string r given inputs d via Eq. (4.8).

4. User applies a randomness extractor with the string t_2 as a seed to convert the string r into a string \bar{r} of length $O(n f(I_{CHSH}^{obs} - \varepsilon))$, which is close to uniform and uncorrelated to adversary’s information. The final random string is (t, \bar{r}).

Fig. 4.1. Quadratic expansion protocol of Pironio et. al. [70].

In order to assess the efficiency of the scheme, we need to examine the length of the final random string. It can be shown that if n is large enough, it is possible to start with a short random seed of the length $O(\sqrt{n \log_2 \sqrt{n}})$ to produce a string of length $O(n)$. It turns out that to achieve such quadratic expansion it is crucial not to choose measurement settings with uniform probability. Indeed, if the user chooses one of the possible inputs with probability $1 - 3q$ and the other three with probability q, with q small, the randomness required to generate the inputs is then equal to $n O(-q \log_2 q)$. Choosing $q = 1/\sqrt{n}$ thus requires $O(\sqrt{n \log_2 \sqrt{n}})$ random bits. On the other hand, amount of randomness in the string r is given by (4.8), with ε equal to $O(1)$. Hence, for a constant Bell violation the string r contains $O(n)$ bits of randomness. The protocol thus achieves quadratic expansion.

Protocol introduced by Pironio et. al. [70] was the first protocol with rigorous proof of security and what is more, in order to show the concept of device independent randomness expansion is viable with current technology, the authors also implemented their protocol and were able to obtain 42 new random bits with 99% confidence. However, the protocol still had some weaknesses to be fixed. First of all the protocol is not proven to be universally composable against a full quantum adversary – the bound (4.8) is derived against adversaries that measure their quantum systems prior to the randomness extraction. Recall that full quantum adversaries might store the side-information in a quantum
memory and measure their systems later, perhaps after a part of the extracted string has been revealed (as a part of another cryptographic protocol, e.g. privacy amplification). Secondly, this protocol raises a question, whether another, more efficient protocol can be designed – a protocol that achieves exponential, or even unbounded expansion. Both of these questions have been resolved in subsequent work and we will examine them in the rest of this section.

4.2 Exponential expansion

We will present the protocol of Vidick and Vazirani [91]. In order to do so we will first reformulate the CHSH inequality in a language of game theory. Alice and Bob are now non-communicating players that receive an input \(x, y \in \{0, 1\} \) and reply with bits \(a, b \in \{0, 1\} \). They win if and only if

\[
a \oplus b = x \land y,
\]

where \(\oplus \) is sum modulo 2 and \(\land \) is the logical AND. This is actually only a differently expressed CHSH inequality (3.10). All classical strategies (i.e. any strategy Alice and Bob could agree on before they start playing) achieve at most 75% probability to win the game. On the other hand, if Alice and Bob share an entangled state, they can achieve better probability of winning – about 85%. These properties of quantum and classical strategies are a simple corollary of the CHSH inequality presented in the previous section. The protocol for randomness expansion now consists of playing multiple rounds of the game with two devices with random inputs and determining the probability of winning from the outcomes. If the estimated probability to win is more than 75%, the devices have used a quantum strategy, which implies that some randomness was produced. The difficult part is again to make these statements quantitative.

First of all let us discuss a protocol that can achieve exponential expansion against an adversary without quantum memory. The first crucial idea to design such protocol was already hinted in the quadratic expansion protocol of previous subsection – do not choose inputs into devices with uniform distribution. In the Vazirani-Vidick protocol authors use default inputs, i.e. \(x = y = 0 \), into the devices in a significant portion of the rounds and use random choices of \(x \) and \(y \) only occasionally, in order to check if the devices use quantum strategy. This can obviously help to use shorter initial random seed, however makes testing of the CHSH condition more cumbersome. For example consider a protocol in which only a small fraction of the inputs is chosen randomly, while the rest of the inputs is fixed to \(x = 0 \) and \(y = 0 \). If the devices only output \(a = 0 \) and \(b = 0 \) in every round, the CHSH condition would be satisfied with probability almost 1, on average over the whole protocol. This demonstrates the need for a more sophisticated way to check the CHSH condition, as we will see in the following protocol.

Let \(n \) be the length of a random string to be generated and \(\delta \) a security parameter. Divide all the runs in the protocol into \(m = C[n \log(1/\delta)] \) blocks of the length \(k = 10[\log^2 n] \), where \(C \) is a large constant. Inputs in a given block consist of a fixed pair \((x, y)\) repeated in the whole block. For most of the blocks the input is \((0, 0)\) and only for randomly chosen blocks, called Bell blocks, the inputs \((x, y)\) are chosen with uniform probability. The number of Bell blocks is approximately \(\Delta = 1000[\log(1/\delta)] \). Authors
Exponential expansion

1. Compute \(\ell = Cn \) and \(\Delta = 1000\lceil \log(1/\delta) \rceil \) from inputs \(n \) and \(\delta \). Set \(k = \lceil 10 \log^2 \ell \rceil \) and \(m = \Delta \ell \).

2. Choose the Bell blocks \(T \subseteq \{1, \ldots, m\} \) by randomly selecting each block with probability \(1/\ell \). Repeat, for \(i = 1, \ldots, m \)
 (a) If \(i \notin T \), then
 i. Set \((x, y) = (0, 0) \) as inputs for \(k \) consecutive rounds of CHSH test and collect the outputs \((a, b) \).
 ii. If \(a \oplus b \) has more than \(\lceil 0.16k \rceil \) 1’s then reject and abort the protocol, otherwise continue.
 (b) If \(i \in T \), then
 i. Choose \((x, y) \in \{0, 1\}^n \) uniformly at random and use it as input for \(k \) rounds of CHSH test. Collect the outputs \((a, b) \).
 ii. If \(a \oplus b \) differs from \(x \land y \) in more than \(\lceil 0.16k \rceil \) rounds, reject and abort the protocol. Otherwise continue.

3. If all steps accepted, then accept.

Fig. 4.2. Exponential expansion protocol of Vidick and Vazirani [91].

introduced the blocks of input in order to check the CHSH condition (4.9) in a more sophisticated way – the condition needs to be fulfilled by at least 84% of outputs in each block in order for the protocol to pass the CHSH test.

The formal statement guarantees the existence of a constant \(C \), such that the following holds. Let \(A \) and \(B \) be random variables describing the output of the two devices used for randomness generation and \(P_{CHSH} \) an event in which the protocol passes the CHSH test. For all large enough \(n \) at least one of the following holds:

\[
\text{Either} \quad H_{\infty}(B|P_{CHSH}) \geq n \tag{4.10} \\
\text{Or} \quad \Pr[P_{CHSH}] \leq \delta \tag{4.11}
\]

We will omit the proof of this statement, and direct the reader to the original paper [91]. With this qualitative statement we now can present the protocol, which is described in Fig. 4.2.

Notice that only \(O(\Delta \log \ell) \) bits of the initial randomness were used. In step (2) \(O(\Delta \log \ell) \) bits were used to choose the Bell blocks and in step (2.b.i) 2 bits per Bell block of randomness were used, i.e. \(O(2\Delta \log \ell) \) bits altogether. Taking into account \(O(\log n) \) bits needed for randomness extraction, we only need \(O(\log n) \) bits of initial
randomness to produce $O(n)$ bits of perfect randomness. This protocol however is again secure only against an adversary without quantum memory.

4.3 Exponential expansion against full quantum adversaries

In order to achieve full composable security against quantum adversaries we need two ingredients. First of all we need to grant the adversary a quantum system ρ_E, possibly entangled to the devices used for the Bell test and a protocol that can guarantee that the outputs of the Bell test contain some entropy even conditioned on this quantum system. This is not a trivial task, especially in the composable security setting, where part of the produced string can later be revealed. It been shown that after revealing part of the generated random string, as in the case in some cryptographic protocols – privacy amplification in quantum key distribution being the prime example – the measurement of the system ρ_E enables the prediction of the rest of the string with inverse polynomial probability [91]. This is much higher than the inverse exponential probability that is available by measuring ρ_E without any advice bits.

The second ingredient is a randomness extractor which is secure even in the presence of quantum side information. We have already discussed existence of such extractors in Subsection 2.4.

The authors of [91] were able to construct a protocol with desired properties, using a modified CHSH game. In the game each of the players receives one of three possible inputs, which correspond to three measurement settings used in the CHSH game. They are labeled $(A,0), (A,1), (B,0)$, where $(A,0)$ denotes the measurement Alice would perform in a CHSH test, if her input was 0 and similarly for the others. The honest strategy is to perform measurements and use the state as in honest CHSH inequality as defined in Subsection 3.2. Important properties are that whenever $x = y$, the expected results are $a = b$, whenever $x = (A,1)$ and $y = (A,0)$, the outcomes are expected to be equal with probability $\frac{1}{2}$ and whenever $x = (A,0)$ and $y = (B,0)$, then according to the CHSH game, about 85% of the outcomes are expected to be the equal. Any other combination of settings does not appear in the protocol.

The protocol is again performed in m blocks of size k. Most of the blocks have constant input $(A,0)$ and a randomly chosen subset $T \subseteq \{1, \ldots, m\}$ of Bell blocks has inputs chosen uniformly at random – Alice gets either $(A,0)$ or $(A,1)$ and Bob gets either $(A,0)$ or $(B,0)$. The protocol takes as an input n – the number of bits to be produced, and the security parameter δ. The quantitative claim uses additional constants α, γ, ℓ and C, which can be directly calculated from n and δ, in order to calculate the number and length of the blocks. Let $\alpha, \gamma > 0, \alpha = -\log \delta$ and $\gamma \leq 1/(10 + 8 \alpha)$. Set $C = \lceil 100 \alpha \rceil$, and $\ell = n^{1/\gamma}$. Let P_{CHSH} be an event in which the protocol output is accepted and B' a random variable describing Bob’s output bits conditioned on P_{CHSH}. Let ρ_E be an arbitrary quantum system, possibly entangled with devices executing the protocol. Then for large enough n at least one of the following holds

\begin{align}
\text{Either} & \quad H_\infty(B'|\rho_E) \geq n \tag{4.12} \\
\text{Or} & \quad \Pr[P_{CHSH}] \leq \delta. \tag{4.13}
\end{align}

The full protocol is described in Fig. 4.3.
Exponential expansion against full quantum adversaries

1. Given δ and n, compute ℓ and C. Set $k = \lceil 10 \log^2 \ell \rceil$ and $m = C \ell \log^2 \ell$.

2. Choose $T \subseteq \{1, \ldots, m\}$ uniformly at random by choosing each block independently with probability $1/\ell$.

3. Repeat for $i = 1, \ldots, m$:

 (a) If $i \notin T$, then

 i. Set $x = y = (A, 0)$ and choose x, y as inputs for k consecutive steps.
 Collect all outputs a and b.

 ii. If $a \neq b$ abort the protocol, otherwise continue.

 (b) If $i \in T$, then

 i. Pick $x \in \{(A, 0), (A, 1)\}$ and $y \in \{(A, 0)(B, 0)\}$ uniformly at random, and use x, y as an input in next k consecutive rounds. Collect the outputs a and b.

 ii. If either $x = y$ and $a = b$; or $y = (B, 0)$ and $a \oplus b = x \land y$ in more than $\lceil 0.84k \rceil$ positions or $x = (A, 1)$ and $y = (A, 0)$ and a and b differ in $\lceil 0.49k \rceil - \lceil 0.51k \rceil$ positions then continue. Otherwise abort the protocol.

4. If all steps accepted, then accept.

Fig. 4.3. Exponential expansion protocol of Vidick and Vazirani [91] secure against full quantum adversaries.

Let us analyze the length of a random seed needed in the protocol. To choose the set T, we need $O(\log^3 \ell)$ bits. In each of the Bell blocks, the number of bits needed to choose the inputs is 4. All in all we need $O(\log^3 \ell)$ bits of randomness to produce $O(\ell^\gamma)$ bits, where γ is a constant depending directly on the security parameter δ.

The protocols we just presented managed to improve the original proposal [70] in both providing super-polynomial expansion and security against full quantum adversaries. However, their drawback is that they are not robust. Notice that in both protocols the tolerated deviation from the full quantum strategy is very low – by using honest quantum strategy the devices can fulfill the CHSH condition (4.9) in about 85% of the rounds and the accepted success rate in the protocol is only 84%. This deems the protocols to be unpractical. This issue was later addressed by Miller and Shi [60], who designed a robust protocol with exponential expansion secure against quantum adversaries, which, as we will see in the next section, is suitable for protocol concatenation.
4.4 Concatenation of protocols and unbounded expansion

After having designed a randomness expansion protocol, one of the most natural questions is if several expansion devices D_0, D_1, \ldots, D_n can be chained together such that output of device D_i – almost perfectly random string – is used as input into device D_{i+1}. In this way the resulting output could be much longer with multiple devices, ultimately leading to unbounded expansion.

The concatenation idea was present in the work on randomness expansion from the beginning [21, 70], but was seriously analyzed for the first time by Fehr et. al. [33]. They used concatenation with quadratically expanding protocol secure against adversary holding classical information in order to obtain polynomially expanding protocol. We will examine their protocol in more detail as it nicely demonstrates the difficulties of expansion protocol concatenation.

First of all, let us split the expansion protocol into two components – expansion and extraction. The expanding component uses black-box devices and if successful, produces a string with high min-entropy towards both the adversary and the input, which is not necessarily uniformly distributed. The extraction component takes this string with high entropy and transforms it into the outcome of the protocol – a string that is almost uniform towards the adversary. Note that both components require private seed S – a string uniform towards both the device and the adversary.

Let us now again consider randomness expansion devices D_0 and D_1 and suppose that the whole seed S was used as an input into device D_0 to maximize the length of it’s output d_0. The adversarial system for the device D_0 consists of the system ρ_E (the system the adversary holds) and system ρ_{D_1} (internal system of D_1). Since the original seed S is secure against both of these systems as well as internal system ρ_{D_0} of D_0, the output d_0 is also secure against ρ_{D_i} and ρ_E. Now we would like to use d_0 as an input into device D_1. The adversarial system for the device D_1 consists of ρ_E and ρ_{D_0}. Note that device D_0 can hold a whole copy of d_0 in it’s memory, therefore d_0 is secure against ρ_E and ρ_{D_1}, but not ρ_{D_0} (see Fig. 4.4). Can we still use it as a seed for the device D_1? If the answer is yes, we call the protocol input secure.
Fehr et. al. [33] designed a protocol, for which they have proven input security of the expansion part under the assumption of a classical adversary. Unfortunately they haven’t been able to show input security for the extraction part. However, even in this setting they could use the protocol concatenation considering only two alternating independent devices in order to achieve their goal of polynomial expansion. Let us label the two devices \(D_0 \) and \(D_1 \). Considering the model with the classical adversary we assume that the devices \(D_0 \) and \(D_1 \) are not entangled together. Part of initial seed \(S \), which is independent of the adversary and both devices, is used with device \(D_0 \). Since \(D_1 \) holds only classical information about \(D_0 \), the output of \(D_0 \) is guaranteed to be almost random to \(D_1 \). As stated earlier, expansion component of \(D_1 \) will output raw string with high min-entropy towards both the adversary and \(D_0 \), even though it’s input wasn’t secure against \(D_0 \). However it is necessary to take the seed for the extraction part of \(D_1 \) from the original seed \(S \). In this way the two devices can alternate until fresh seeds for the extractors are available and thus jointly create an output much longer than the original protocol (see Fig. 4.5).

For a long time it was an open question whether a full input secure expansion protocol exists.

This question was concurrently solved by both Coudron and Yuen [24] and Miller and Shi [60]. Coudron and Yuen proposed a protocol conceptually similar to that of Fehr. et. al. [33]. The protocol is alternating between two expansion devices \(D_0 \) and \(D_1 \) running the quantum proof protocol of Vazirani and Vidick [91]. What makes the whole protocol input secure is the fact that each output of an expansion protocol is first
Fig. 4.6. Concatenation protocol of Coudron and Yuen [24]. The protocol uses two sub-protocols. The first one, denoted VV is the Vazirani and Vidick protocol introduced in Subsection 4.3 and the second one, denoted RUV is an input secure protocol of Reichardt et. al. [75]. The concatenation protocol is initialized with a random seed S and then the devices alternate in a way depicted in the scheme, until the desired number of rounds is reached.

decoupled (see Fig. 4.6) from both devices D_0 and D_1 by another protocol taken from the work of Reichardt et. al. [75] (referred to as RUV protocol). The RUV protocol is input secure and therefore produces a random string even if its seed is secure only against internal state of the device running the protocol. The disadvantage of the RUV protocol is that its output is actually shorter than its input. Nevertheless, the shrinking factor is only polynomial, therefore coupling it with exponentially expanding Vazirani and Vidick protocol provides the desired unbounded expansion with only four devices.

The solution of Miller and Shi [60] heavily leans on a result by Chung et. al. [19], mainly their equivalence lemma. The equivalence lemma is very powerful and somewhat surprisingly dodges the problem of input secure extractor components. It treats the expansion protocol as a whole and shows that any expansion protocol with globally secure seed retains the same parameters if used with only a device secure seed. This lemma therefore automatically allows them to use any expansion protocol in an alternating way without any other assumptions (see Figure 4.7).

4.5 Experimentally feasible adversaries

To finish the review of the randomness expansion protocols we mention a set of papers that deal with a slightly different view on the topic of device independence.

In this view the device independence is motivated by the fragility of quantum devices that might easily lead to imperfect functioning rather than by an adversary in the system. Thus here we relax our assumption from the all powerful adversary (within given limitations) to a model imperfect devices. Instead, the devices are expected to be designed and constructed in an honest way, but might malfunction. But this malfunctioning is limited to carrying out the expected tasks in a wrong way (or not carrying them out at all) rather than performing completely new tasks. Thus, if there is e.g. no quantum
memory in the design of the protocol, the malfunctioning device will not be able to use it, as it is technically not possible.

Another motivation for examining this type of protocols comes from the fact that it is arguably very difficult to guarantee that the adversarially constructed devices do not contain classical transmitters of any sort. An dishonest provider would probably just install a device that would broadcast the final key in a classical way and not bother to break the security on the quantum level. Thus it has more sense to trust the provider to be honest, but possibly might be slovenly in the production process.

Let us first mention work of Pironio and Massar [71] and Fehr et. al. [33]. Both papers used tools from [70] and improved their analysis of security against classical side information. Moreover Fehr et. al. [33] developed the concatenation idea described in the previous section and Pironio and Massar [71] argued why classical security is sufficient in real world expansion protocols.

Even though their protocols aren’t secure in full generality they still provide a number of very useful properties. Traditional random number generators suffer from several problems, which device independent randomness expansion can successfully overcome. One of the most severe problems is monitoring the quality of the output. Deterioration of the output quality of random number generators is difficult to detect and should be monitored constantly. As we have seen, this is an implicit property of the randomness expansion protocols – all the produced data had to pass a Bell test. Another advantage is the estimation of entropy, which does not rely on any statistical test – violating a Bell inequality is the proof of randomness as such.

The work with similar adversarial setting was later continued in work by Bancal et. al. [5, 4] and Nieto-Silleras et. al. [66] who suggest techniques to certify more randomness from the correlations observed during a non-locality test.

In [82] a different relaxation of the assumptions was considered and authors constructed a protocol, in which the devices used are allowed a small amount of communication and authors of [23] gave an upper and lower bound on expansion rates for different types of protocols.
5 Randomness amplification

In this section, we will focus on a task closely related to randomness expansion. Recall that one of the crucial assumptions in randomness expansion protocols is the existence of an independent random seed, which is used to choose the measurement settings in a Bell test and as a seed for randomness extractor during the classical post-processing. The random and independent measurement choice corresponds to the assumption (3.4), which states that the preparation of the measured state does not depend on the measurement settings. Relaxation of this assumption can be modeled by granting the adversary some information about the random seed. In different context, this can be seen as a limitation on the “free will” of the experimentalist; a line of research is devoted to this topic, see e.g. [46, 68, 49]

The first difficulty stemming from partial information about the choice of measurement settings is that the programming of the devices can depend on them. Therefore the adversary can prepare the devices to expect some inputs more often than the others, hence their internal state is not fully independent on the inputs. The second difficulty is the post processing. In the case of randomness expanders, the initial random seed was split into two independent parts, one used for the measurement choices, the other for post-processing via randomness extractors, which require independent random seed to function properly. This is no longer possible in amplification scenario – we cannot split the initial weakly random seed into two independent parts. Because post-processing is more difficult, most of the existing amplification protocols produce only single independent random bit per run. Only recently, thanks to the development of input-secure unbounded expansion, protocols that produce more bits per run have been discovered.

In this section we review amplification protocols for Santha-Vazirani weak sources and then protocols for min-entropy sources.

5.1 Santha-Vazirani amplification with many devices.

The first randomness amplification protocol of Colbeck and Renner [22] that appeared in the literature was able to amplify any SV-source (see Def. 2) with $\varepsilon < \left(\sqrt{2} - 1\right)^2/2 \approx 0.086$, under the assumption of quantum adversaries. Under the stronger assumption of no signaling adversaries, the protocol can amplify SV-sources with $\varepsilon < 0.058$. Their protocol uses a two party chained Bell inequality [15]. In Grudka et. al. [39] analysis of two party protocol against no-signaling adversary was improved and it was shown that any SV source with $\varepsilon < 0.0961$ can be amplified.

The reason why the first protocols weren’t able to amplify SV-sources for arbitrary $\varepsilon > \frac{1}{2}$ is that this task requires a very specific Bell inequality.

First of all, to be able to design a protocol for full randomness amplification, it is crucial to use Bell inequalities, which can be maximally violated by quantum mechanics. To see this consider a particular cheating strategy. The adversary programs the devices with an optimal classical strategy. Using such strategy some inputs will be compatible with the optimal violations and some will not. However, the adversary is assumed to be able to influence the input randomness up to the Santha-Vazirani parameter ε and might set the classical strategy in each run in such a way that the outcomes will be
incompatible with the set of least probable inputs only. It can easily be seen that the
worse the randomness is (the higher the ε), the more successful this strategy becomes,
as the “bad” inputs become less probable. If the parameter of the SV source ε increases
above some threshold, the probability to successfully provide compatible outcomes with
this classical strategy reaches the quantum limit. This attack is no longer possible when
the maximal attainable violation is observed, because the adversary is forced to provide
correlations attaining the maximum violation in every round of the protocol, which is
impossible with classical strategy. An example of Bell inequality with this property is
the GHZ inequality introduced in Subsection 3.2.

The second property of Bell tests required to design full amplification protocol is
relevant if we want to obtain security against non-signaling adversaries. What we are
looking for is a function that can post-process the outcomes of measurement into a single
non-deterministic bit. It turns out this is not elementary and even inequalities fulfilling
the first property of maximum quantum violation don’t have to have this property. For
example, it can be shown that for every function post-processing the outcomes of the
GHZ inequality, there is a non-signaling distribution, which fully violates the inequality,
but fixes the outcomes of such function.

This is the reason why a breakthrough article [36] introducing the first amplification
protocol able to amplify arbitrary SV-source with $\varepsilon < \frac{1}{2}$ consider the following 5-party
inequality coming from a family of inequalities generalizing the GHZ inequality – so
called Mermin inequalities [58].

Let us denote the inputs for the five parties $\vec{x} = (x_1,\ldots,x_5)$ and the outputs $\vec{a} = (a_1,\ldots,a_5)$, with $x_i, a_i \in \{0,1\}$. We will express the inequality as a linear combination
of the non–signaling probabilities $p(\vec{a}|\vec{x})$, governing the outputs, given the inputs. The
inequality than reads:

$$\sum_{\vec{a}, \vec{x}} c_{\vec{a}, \vec{x}} \cdot p(\vec{a}|\vec{x}) \geq 6, \quad (5.1)$$

with linear coefficients

$$c_{\vec{a}, \vec{x}} = (a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5)\delta_{\vec{x} \in X_0} + (a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus a_5 \oplus 1)\delta_{\vec{x} \in X_1} \quad (5.2)$$

where

$$\delta_{\vec{x} \in X_i} = \begin{cases} 1 & \text{if } \vec{x} \in X_i \\ 0 & \text{if } \vec{x} \notin X_i \end{cases}$$

and

$$X_0 = \{(00000), (01000), (00100), (00010), (00001), (11111)\}$$
$$X_1 = \{(00111), (01011), (01101), (01110), (10011), (10101), (10110), (11001), (11010), (11100)\}.$$

Note that only half of the possible inputs appear in the inequality. The maximum non-
signaling violation of this inequality corresponds to the situation with left hand side of
Eq. 5.1 equal to zero and it can be achieved by a quantum strategy of measuring state
$|GHZ\rangle_5 = \frac{1}{\sqrt{2}}(|00000\rangle + |11111\rangle)$ with measurements σ_x and σ_y.

Santha-Vazirani amplification protocol with many devices

1. Use X to generate N quintuplets of bits $\bar{x}_1, \ldots, \bar{x}_n$, which are used as inputs into $5N$ devices. The devices outputs are labeled $\bar{a}_1, \ldots, \bar{a}_n$.

2. Quintuplets that are not valid inputs for 5-party Mermin inequality are discarded. If less than $N/3$ quintuplets remain, abort.

3. The rest of the quintuplets are organized into N_b blocks each having N_d quintuplets. One of the blocks is chosen, randomly according to the random source X, to be the distillation block.

4. Check, if all the non-distilling blocks maximally violate 5-party Mermin inequality. If not, abort the protocol.

5. Produce the bit $k = f(\text{maj}(\bar{a}_1), \ldots, \text{maj}(\bar{a}_{N_d}))$, where f is the distillation function, $(\bar{a}_1, \ldots, \bar{a}_{N_d})$ are outputs in the distillation block and $\text{maj}(\bar{a})$ is the majority function of the first three outputs of quintuplet a.

Fig. 5.1. Santha-Vazirani amplification protocol of Galego et. al. [36].

The post-processing function required to obtain non-deterministic bits from the outcomes of the measurement here is the majority function $\text{maj}(\bar{a})$ of the the first three parties involved in the protocol. It can be shown that for every non-signaling distribution fully violating the inequality, the predictability of the majority function is at most $3/4$. The property of the majority function can be interpreted as an amplification procedure of an arbitrary SV source with $\varepsilon < \frac{1}{2}$ into an SV-source with $\varepsilon = \frac{1}{4}$. To finish the protocol it needs to be equipped with two additional components.

The first of them is an estimation procedure to make sure that the untrusted devices indeed do yield the required Bell violation and the other thing is a procedure f that can transform sufficiently many bits with bias $\varepsilon = \frac{1}{4}$ generated in the Bell experiment into a random bit with bias ε arbitrary close 0. The second task looks to be in direct contradiction with the result of Santha and Vazirani [78], which claims it is impossible to classically extract bits from such a source. The reason it is possible here is that the bits are produced in a quantum process and the Santha-Vazirani classification (the value of ε) does not sufficiently describe all the properties of these bits. In other words, the bits do contain an additional structure. Using the techniques of [53], the authors of the protocol were able to show the existence of such function f. Unfortunately, even though the existence of such function is proven, the precise construction is yet unknown.

The protocol uses as a resources an SV-source X with arbitrary $\varepsilon < \frac{1}{2}$ and N 5-partite GHZ states (see Fig. 5.1).

The authors have shown in a rather complicated proof that the probability p_{guess} of the adversary to guess the output bit k correctly, using all the available information, can
be upper bounded as:
\[p_{\text{guess}} \leq \frac{1}{2} + \frac{3\sqrt{N_d}}{2} \left[\alpha^{N_d} + 2N_b^{\log_2(1/2 + \varepsilon)} (32\beta(1/2 - \varepsilon)^{-5})^{N_d} \right], \] (5.3)

where \(\alpha \) and \(\beta \) are real numbers such that \(0 < \alpha < 1 < \beta \).

Note that \(\varepsilon_f = \frac{3\sqrt{N_d}}{2} \left[\alpha^{N_d} + 2N_b^{\log_2(1/2 + \varepsilon)} (32\beta(1/2 - \varepsilon)^{-5})^{N_d} \right] \) is the bias of the newly produced bit, which can be made arbitrary close to zero \((p_{\text{guess}} \text{ can be made arbitrarily close to } \frac{1}{2}) \) by setting \(N_b = (32\beta(1/2 - \varepsilon)^{-5})^{2N_d/\log_2(1/2 + \varepsilon)} \) and increasing \(N_d \), so that \(N_dN_b \geq N/3 \). Notice that this protocol works only in a noiseless setting and the number of steps and devices increases as the \(\varepsilon_f \) of the produced bit approaches 0.

5.2 Santha-Vazirani amplification with eight devices.

The work of Gallego et al. [36] was followed by several results. At first in [61], a tripartite amplification protocol was presented, which could amplify SV source with arbitrary \(\varepsilon < 1/2 \), in a noisy setting in finite time, secure against quantum adversaries. Subsequently, in a breakthrough paper [14] the authors showed an amplification protocol secure against non-signaling adversaries for any SV-source with \(\varepsilon < 1/2 \), which uses only a finite number of devices and tolerates a constant rate of error. We will review their protocol in this subsection.

The protocol of Brandão et al. [14] uses two independent non-communicating devices composed of four non-signaling components to test a 4-partite Bell type inequality with inputs chosen according to a given Santha-Vazirani source with \(\varepsilon < \frac{1}{2} \). The runs of both devices are divided into blocks of equal lengths. After the necessary number of rounds two blocks are chosen according to the bits drawn from the given Santha-Vazirani source – one block from the first device and the second block from the second device. Subsequently, the violation of the used Bell inequality is calculated from the inputs and outputs of the devices. If the violation is high enough, a 2-source extractor is applied to the block outputs in order to create outputs of the protocol. In order to establish the correctness of the protocol authors have proven three crucial claims.

The first claim is that one can use as little as two devices with four components each. The main problem here is that in order to justify the use of a two source extractor, it’s inputs have to be independent. Although at the end of the protocol, the inputs for the extractor are chosen from two non-communicating devices, they are not trivially independent. Correlations between the blocks can be caused by several factors, for example pre-shared randomness or the fact that their inputs are chosen according to an SV-source which are generally correlated.

The crucial technique here is the use of a variant of quantum de Finetti theorem [13]. The quantum de Finetti theorems essentially show us that if a \(k \)-partite quantum state is permutation-symmetric, the reduced state of its subsystems of size \(l \ll k \) is close to a convex combination of \(l \)-partite identical separable quantum states. Moreover, after conditioning on the measurement outcomes of the rest of the states (the states that are not part of the small \(l \)-partite subsystem in question), the state of the chosen subsystem collapses into a state that is close to factorized. The permutation symmetry
can be obtained by simple uniform random choice of the subsystems. Then by the de Finetti theorem the subsystems are factorized and therefore their measurement outcomes are uncorrelated. The main problem in this context is to show that similar result holds even if the subsystems are chosen according to a (arbitrary weak) Santha-Vazirani source instead of the uniform one.

The second claim is that the violation of the used Bell inequality can certify randomness of the measurement outcomes even if the measurement settings are not chosen uniformly, but according to an SV-source. Moreover, it is also necessary to quantify the amount of min-entropy in the outcomes that passed the Bell test in order to use the appropriate two source extractors.

The third claim is concerned with the use of an appropriate two source extractor at the end of the protocol. It is important to stress that the authors use a non-explicit extractor, which is known to exist, but its construction is not generally known yet (i.e. it is not efficiently constructible – see Subsection 2.3). The reason for this is that recent two source extractor constructions require both input sources to have relatively high-min entropy rate as discussed in Subsection 2.3, which is not the case of the measurement outcomes in the chosen blocks. However, the protocol can be extended to a case with multiple devices with four components. In such a protocol a multi-source extractor is used at the end and there are known extractor constructions which require much lower entropy rate. The price to pay is the increase on the number of non-communicating devices, which nevertheless stays constant.

In order to introduce the protocol more formally, let us fix the notation. The first device will be used for \(N_1 = N_d N_1^b \) runs and the second device for \(N_2 = N_d N_2^b \) runs. Each run is divided into \(N_1^b \) and \(N_2^b \) blocks of size \(N_d \) respectively. The \(N_1 \) input quadruples for the first device are denoted \(\vec{x}_1 \), similarly \(N_2 \) input quadruples for the second device are denoted \(\vec{x}_2 \). Output quadruples are denoted \(\vec{a}_1 \) and \(\vec{a}_2 \) respectively.

The Bell inequality used in the protocol has the following form. Each of the four devices receives one bit input and produces one bit output, therefore the inputs are labeled \(\vec{x} = \{x_1, x_2, x_3, x_4\} \) and outcomes \(\vec{a} = \{a_1, a_2, a_3, a_4\} \). The measurement settings that appear in the Bell term are divided into two sets

\[
X_0 = \{0111, 1011, 1101, 1110\} \quad \text{and} \quad X_1 = \{0001, 0010, 0100, 1000\}
\]

The inequality then reads:

\[
\sum_{\vec{a}, \vec{x}} c_{\vec{a}, \vec{x}} (\vec{a}|\vec{x}) \geq 2,
\]

with linear coefficients

\[
c_{\vec{a}, \vec{x}} = (a_1 \oplus a_2 \oplus a_3 \oplus a_4) \delta_{\vec{x} \in X_0} + (a_1 \oplus a_2 \oplus a_3 \oplus a_4 \oplus 1) \delta_{\vec{x} \in X_1}
\]

where

\[
\delta_{\vec{x} \in X_i} = \begin{cases}
1 & \text{if } \vec{x} \in X_i \\
0 & \text{if } \vec{x} \notin X_i,
\end{cases}
\]
Santha-Vazirani amplification with eight devices

1. Divide the measurements of the two devices used in the protocol into \(N^1_d \) and \(N^2_d \) blocks respectively, such that each block contains \(N_d \) measurements. In other words \(N^1_1 = N^1_b N_d, N^2_2 = N^2_b N_d \).

2. Use the \(\varepsilon \)-SV source to choose measurement settings \(\{ \vec{x}^1_i | i \in \{1, \ldots, N^1_1 \} \}, \{ \vec{x}^2_i | i \in \{1, \ldots, N^2_2 \} \} \) for two devices composed of four black boxes each. The devices produce outputs \(\{ \vec{a}^1_i | i \in \{1, \ldots, N^1_1 \} \} \) and \(\{ \vec{a}^2_i | i \in \{1, \ldots, N^2_2 \} \} \).

3. Choose at random one of the blocks of size \(N_d \) from each device, using bits from the \(\varepsilon \)-SV source.

4. Perform an estimation of the violation of the Bell inequality in both blocks \((j = 1, 2)\) by computing the empirical average \(L_j = \frac{1}{N_d} \sum_{i=1}^{N_d} c_{\vec{a}, \vec{x}} \), where the sum goes through all inputs and outputs in the chosen block. The protocol is aborted unless for both of them \(L_j \leq \left(\frac{1}{2} - \varepsilon \right)^4 \frac{\delta}{2} (1 - \mu) \).

5. Conditioned on not aborting in the previous step apply the inexplicit two source extractor to the sequence of outputs from the chosen block in each device.

Fig. 5.2. Protocol for Santha-Vazirani source randomness amplification with 8 devices by Brandão et al. [14].

Local models can achieve minimal value of 2, while there exists a quantum strategy that achieves the algebraic minimum of 0. Moreover, the authors have shown that there doesn’t exist any no-signaling distribution that can simultaneously achieve low values of the Bell term and deterministic outcomes.

In the protocol we will be using empirical average of the Bell term over \(N_d \) runs. This serves the same role as before. We would need infinite time to check the Bell inequality precisely, so we are using average obtained in each of the blocks instead. Here it is defined as:

\[
L = \frac{1}{N_d} \sum_{i=1}^{N_d} c_{\vec{a}, \vec{x}}.
\]

If this empirical average is lower than \(\left(\frac{1}{2} - \varepsilon \right)^4 \frac{\delta}{2} (1 - \mu) \) with fixed constants \(\delta, \mu > 0 \), the outputs of the \(N_d \) runs have min-entropy linear in \(N_d \). The whole protocol is shown in Fig. 5.2.

Note that because this protocol can output more than one bit, it can be concatenated with one of the input secure expansion protocols in order to obtain unbounded amount of almost random bits.
5.3 Min-entropy amplification with many devices

In order to illustrate the complications in the analysis of min-entropy amplification, let us first recall the crucial difference between Santha-Vazirani sources and min-entropy sources. The main difference is that any string from a SV-source with \(\varepsilon < \frac{1}{2} \) has non-zero probability to appear. As we have discussed in Subsection 2.2.3, this is not the case of min-entropy sources. This fact creates many difficulties. As an example consider the case of GHZ scenario (see Subsection 3.2). If one of the four possible measurement settings is known by the adversary to have zero probability to be used, the classical deterministic strategy to violate the GHZ inequality exists. Note that this is not only the case of the GHZ inequality, but similar property is inherent in every Bell-type scenario as shown by Le et al. [85]. This is perhaps the main reason why min-entropy amplification took longer time to develop than its Santha-Vazirani counterpart.

Let us start by a protocol for block-min entropy sources (defined in Subsection 2.2.3) by Bouda, Pawlowski, Pivoluska and Plesch [9]. The protocol is based on GHZ game introduced in Subsection 3.2.

First of all note that in principle we need only two bits to generate an input into a GHZ test, as only four out of eight input bit combinations appear in the inequality. The simplest approach would be for the protocol to simply take a block of size \(n \) from the weak source, divide it into \(\frac{n}{2} \) two bit substrings and use these two bit substrings to create inputs for \(\frac{n}{2} \) rounds of the GHZ test. Unfortunately this approach does not work. Recall that in order to use deterministic strategy in a single run of a GHZ game, it is sufficient, if one of the inputs have 0 probability to be used. Thus the adversary can choose a probability distribution for the block source in such a way that only three out of four possible values appear in each two bit substring. Such source would allow the adversary to use a deterministic strategy to win the GHZ game in every round. The the min-entropy rate \(R \) of this distribution is \(\log_2(3) \) and therefore with this strategy amplification is impossible for sources with \(R \leq \frac{\log_2(3)}{2} \).

The main idea of the protocol construction that allows us to go around this difficulty is to first use several specific hash functions depending on each bit of the block in order to generate inputs into multiple independent devices performing the GHZ test. The reason why this trick works is that if the inputs are chosen in this way for multiple independent devices with the use of the suitable set of hash functions, it is much more demanding to achieve probability 0 of some input for all the devices simultaneously. To illustrate how hashing can improve the performance see Fig. 5.3.

It might seem that to lower the required min-entropy, using simply more hash functions to create the inputs into more independent GHZ testing devices will suffice. However, it is only partially true and this method has it’s limits. Whenever less than four out of all possible strings appear, each hash function can output only less than four of it’s outputs with non-zero probability. Therefore, the only requirement we have is that each block contains at least two bits of entropy, i.e. it is a \((n, 2)\) block source. Note that as \(n \) goes to infinity, rate of such source goes to 0.

Therefore the first step is to find a set of hash functions \(\mathcal{H} \) that ensures that every quadruple of the possible block outputs of size \(n \) will be hashed to four different two bit strings by at least one hash function \(h \in \mathcal{H} \). Such construction ensures that at least one
Fig. 5.3. An illustration of the “hash trick” for blocks of length $n = 3$. We use two independent devices with two hash functions. At least 3 out of 8 source outputs have to be fixed in order to win both GHZ games with deterministic strategy with probability 1, which is more than 2 out of 8 required with the use of a single device.

of the many independent GHZ devices paired with the hash functions has a distribution on the inputs that prevents it from winning the GHZ game with probability 1 with deterministic strategy.

This can be easily achieved by considering the set of all hash functions $h : \{0, 1\}^n \rightarrow \{0, 1\}^2$, however the size of such set $|H| = m$ is impractically large ($m = 4^n$ in this case), as a single function in fact “covers” several quadruples (see Fig. 5.4). On the other hand for large n one hash function covers as many as 9% of all four-tuples, independently of n. So the size of an optimal set of hash functions might not depend on n at all.

In what follows we show a construction of H with m polynomially large in n.

Let us consider a sequence of random variables $Z = (Z_0, \ldots, Z_{N-1})$ such that $Z_i \in \{0, 1, 2, 3\}$. The outcomes of such a random experiment are N-position sequences from the set $\{0, 1, 2, 3\}^N$. It is easy to see that each such sequence specifies uniquely a particular function $h : \{0, \ldots, N - 1\} \rightarrow \{0, 1, 2, 3\}$, and vice versa. Since now on we will use them interchangeably.
Let us assume that random variables Z satisfy the condition that for every 4-tuple of positions j_0, j_1, j_2, j_3 and every 4-element string $z_0 z_1 z_2 z_3 \in \{0, 1, 2, 3\}^4$ it holds that

$$\Pr[Z_{j_0} = z_0 \land Z_{j_1} = z_1 \land Z_{j_2} = z_2 \land Z_{j_3} = z_3] > 0.$$ \hfill (5.8)

Note that for our purposes even a weaker assumption on Z is sufficient: It is enough if for every 4-tuple of positions j_0, j_1, j_2, j_3 there exists at least one 4-element string $z_0 z_1 z_2 z_3 \in \{0, 1, 2, 3\}^4$ with all z_0, z_1, z_2, z_3 begin mutually different and satisfying (5.8). However, the stronger condition will make it easier to find a suitable set.

Let us denote $H = \{ z \in \{0, 1, 2, 3\}^N \text{ such that } \Pr[Z = z] > 0 \}$. Using the probabilistic method we see that for each 4-tuple of positions j_0, j_1, j_2, j_3 and every 4-element string $z_0 z_1 z_2 z_3 \in \{0, 1, 2, 3\}^4$ there exists a function $h \in H$ such that

$$h(j_0) = z_0 \land h(j_1) = z_1 \land h(j_2) = z_2 \land h(j_3) = z_3.$$ \hfill (5.9)

The number of functions in H is the same as the number of (nonzero probability) sample space elements of Z. It remains to construct Z with a sample space as small as possible. In order to do so, we will need the following definition and theorem.

Definition 18 (s-wise δ-dependence). Binary random variables (Z_0, \ldots, Z_{N-1}) are s-wise δ-dependent iff for all subsets $S \subseteq \{0, \ldots, N-1\}, |S| \leq s$

$$||U_{|S|} - D_S||_1 \leq \delta,$$ \hfill (5.10)

where $U_{|S|}$ is a uniform distribution over $|S|$-bit strings and D_S is a marginal distribution over subset of variables specified by S.

Theorem 1 ([63]). The logarithm of the cardinality of the sample space needed to construct N s-wise δ-dependent random variables is $O(s + \log \log N + \log \frac{1}{\delta})$.

In our case we are interested in $s = 4$. Let us consider two sequences X_0, \ldots, X_{N-1} and Y_0, \ldots, Y_{N-1} of binary 4-wise δ-dependent random variables, both sequences being mutually independent. Let $Z_i = 2X_i + Y_i$.
As both X and Y are δ-dependent, their distance from the uniform distribution for every subset of size at most 4 is at most δ. Assuming there is a zero probability for at least one binary string out of $\{0,1\}^4$ at positions $(0,1,2,3)$ we have that the distance of such a distribution from the uniform distribution is at least $2 \times 2^{-4} = 2^{-3}$.

Hence, assuring that $\delta < 2^{-3}$ we find that for each 4 positions there is a nonzero probability of every 4-bit sequence appearing. Hence, for the sequence of random variables Z it holds that in every 4-tuple of positions every string out of $\{0,1,2,3\}^4$ appears with non-zero probability.

In our case we need two independent sets of $N = 2^n$ 4-wise 1/8-dependent random variables, resulting in a sample space of $O(n^c)$, bearing the desired polynomial construction.

Another preliminary result we need to show is a form of rigidity theorem for the GHZ game. Rigidity theorems for Bell-type experiments show that if the value of the experiment is close to being optimal, so is the strategy that achieved it. In our case, the claim is that if the GHZ game is won with probability 1, then the optimal quantum strategy has been used, which in turn guarantees random outcomes of the measurements. The exact version of such rigidity for CHSH experiment has been known for some time [54]. It was later followed by the more robust results for more general games (also the GHZ game), claiming that if the probability of winning is close to 1, then the strategy that achieved it is close to the optimal one [59, 56]. Such theorems show us that the GHZ test behaves “nicely” in the sense that it is impossible to achieve a slightly suboptimal violation with strategies that are dramatically different from the optimal one and therefore even suboptimal violation is a witness of randomness being produced.

We used the following computational form of a rigidity theorem obtained by semidefinite programing, which is concerned only about the produced randomness. The formal statement is the following:

Take an arbitrarily long linearly ordered sequence of t Mermin devices D_1, \ldots, D_t with uniform distribution on inputs, and each device knows inputs and outputs of its predecessors, but devices cannot signal to its predecessors. Let us assume that the inputs of devices are described by random variables X_1, \ldots, X_t, and the outputs by A_1, \ldots, A_t. Then there exists a function $f(\varepsilon)$ such that if the value of the Mermin variable (3.17) using uniform inputs is at least $v_u \geq f(\varepsilon)$, then the output bit A_t has a bias at most ε conditioned on the input and output of all its predecessors and the adversarial knowledge. This function can be lower bounded by a semidefinite program (SDP) using any level of the hierarchy discussed in Subsection 3.3. By using the second level of the hierarchy one can obtain the bound on $f(\varepsilon)$ as a function of ε shown in Fig. 5.5.

We can set $t = 1$ (having just a single device) and get the lower bound on the detection probability of producing a bit biased by more than ε, which is $1 - f(\varepsilon)$. More independent non-communicating devices can be ordered into any sequence and thus this limit holds for any of these devices simultaneously.

Now we are armed with all the tools to analyze a single round of the protocol depicted in Fig. 5.6 and Fig. 5.7.

Let us now analyze how the single round protocol works. We will first analyze the single round protocol, if we restrict the adversary and allow her to use only flat sources (see Def. 6). In that case only 4 strings appear with positive probability of $\frac{1}{4}$. For such a
Randomness amplification

Fig. 5.5. Depicted is the value of GHZ term \(v = f(\varepsilon) \) needed to certify the bias of the output bit of the first device performing the GHZ test is at most \(\varepsilon \). This can be seen as a sort of rigidity term for the GHZ inequality and is one of the main tools in analysis of the protocol by Bouda et. al.[9]

Block source amplification protocol with many devices
1. Obtain a (weakly) random \(n \) bit string \(r \) from the \((n,k) \) block source.
2. Input into each device \(D_i \) the 3 bit string \(x_i, y_i, z_i \) chosen from set \(\{111, 100, 010, 001\} \) – each one corresponding to one of the possible outputs of \(h_i(r) \) and obtain the outputs \(a_i, b_i \) and \(c_i \).
3. Verify whether for each device \(D_i \) the condition \(a_i \oplus b_i \oplus c_i = x_i \cdot y_i \cdot z_i \) holds. If this is not true, abort the protocol.
4. Output \(b = \bigoplus_{i=1}^{m} a_i \).

Fig. 5.6. Single round protocol for block source amplification by Bouda et. al. [9]. The full protocol is a simple repetition of the single round protocol, each time with fresh a block from the block source and new devices. The outcome of the full protocol is an XOR of outcomes from all the rounds.

weak source our construction of the the set \(\mathcal{H} \) of hash functions assures that there exists a function \(h_j \in \mathcal{H} \) that has its four outputs uniformly distributed. Thus, inputs for the corresponding device \(D_j \) are uniform on this flat distribution.

Then by our rigidity claim we know that if the adversary wants to achieve bias \(\varepsilon \) for the output bit \(b \), she can do so only with probability \(v_u \leq f(\varepsilon) \) – otherwise the win condition will not be satisfied in device \(D_j \) and the protocol will abort.

More importantly, the set of all \((n,2) \) distributions is convex and the flat distributions
Device independent random number generation

Fig. 5.7. The block source amplification protocol of Bouda et al. [9]. The output \(r \) of a weak source is mapped into inputs for independent GHZ tests with the use of hash functions \(h_i \) coming from a specially constructed set \(\mathcal{H} \). The construction of \(\mathcal{H} \) guarantees that at least one of the GHZ tests obtains input distribution that cannot be won with deterministic strategy with probability 1, thus producing almost random outputs with high probability. Since the output \(A_i \) of the good device is independent of other outputs, the XOR of all the outputs has at most the same bias as \(A_i \).

are exactly all the extremal points of this convex set. Thus any \((n, 2)\) distribution \(d \) can be expressed as a convex combination of at most \(N \) \((n, 2)\) flat distributions \(d_i \) (Caratheodory theorem) as \(d = \sum_{i=1}^{N} p_i d_i \) for some \(p_i \geq 0 \), \(\sum_{i=1}^{N} p_i = 1 \).

The probability that the win condition is fulfilled for a mixed distribution \(d \) is then upper bounded by the weighted sum of successful cheating probabilities of the flat distributions \(d_i \). As all these are upper bounded by \(f(\varepsilon) \), the following statement holds:

\[
v_u \leq \sum_{i=1}^{N} p_i v_{u,i} \leq f(\varepsilon),
\]

where \(v_{u,i} \) is the cheating probability of \(i \)-th flat distribution constituting the mixture.

To summarize this part, having any \((n, k)\) source with \(k \geq 2 \), with a single round of a protocol, we can produce a single bit that is biased at most by \(\varepsilon \) with the cheating probability of the adversary \(f(\varepsilon) \).

However a good protocol should allow the user to choose both the target parameters of the produced bit – the bias \(\varepsilon \ll 1 \) and the cheating probability \(\delta \ll 1 \). The single round protocol obviously doesn’t fulfill this property, as the only pairs of allowed \((\varepsilon, \delta)\) are \((\varepsilon, f(\varepsilon))\). This downside can be overcome by repeating the protocol many times, each time with a new block from the weak source and new set of devices. The outcome of the protocol is a simple XOR of all the single round protocol outputs.
If we again consider flat weak sources, we know that in each round of the protocol there was at least one device that received uniform inputs. All these devices were new, thus we can order them in any particular time sequence. Using the rigidity result we see that for each such a sequence the last bit will be biased by no more than ε, unless the last round was cheated, which can be done with probability upper bounded by $f(\varepsilon)$. To achieve the bias of the product bit at least ε, all the rounds must be cheated, as any of them can be treated as the last one. Probability of doing this is upper bounded by $f(\varepsilon)^l$. Thus, choosing $l > \frac{\log \delta}{\log f(\varepsilon)}$ will guarantee the fulfillment of the conditions for the parameters ε and δ. Using the Caratheodory theorem we can extend this results to non-flat sources as well.

Summing up, with an (n, k) block source and $O \left(\frac{\log \delta}{\log f(\varepsilon)} \right)$ Mermin devices we can produce a single random bit with bias smaller than ε with probability larger than $1 - \delta$. For producing more bits we simply repeat the whole procedure: all the bits produced will have bias smaller than ε conditioned on the bits produced so far, with linear scaling of resources. Moreover, in the paper [9] we have shown that this protocol can be extended to a robust protocol, which is able to tolerate certain amount of errors.

To finish this subsections we will briefly mention a protocol for general min-entropy sources proposed by Chung et. al. [19]. Their idea is very similar to the presented protocol. The first difference is that they use a different set of hash functions. Namely they are using a de-randomized strong seeded extractor. Strong extractor can be seen as a set of hash functions H with a property that for any input source X with enough min-entropy most of the hash functions $h_i \in H$ produce almost random outputs. In practice therefore random choice over H constitutes a good extractor. However, if you use every function from the set, you can guarantee that for each X with $H(\infty)(X) \geq k$, at least one of them outputs k fully random bits. These bits can be used as an input into a randomness expansion protocol to produce many random bits. Of course similarly to the presented protocol the user doesn’t know which hash function produces random outputs and therefore all of them has to be used with their own independent and non-communicating device for the expansion part and the outcomes of the expansion protocols need to be summed together (see Fig. 5.8). Since there is no guarantee that the outputs of two different hash functions are independent, their result heavily leans on the equivalence lemma discussed in Subsection 4.4, because we need a guarantee that the expansion protocol used as a part of the amplification protocol is input secure.

5.4 Min-entropy amplification with a single device

Both presented protocols from the previous subsection require number of devices that grows with the (block) size of the input source. It is still an open question if protocols for min-entropy amplification with constant number of devices exist. An important step towards an answer was made by us in [72]. We examined a protocol that uses a single GHZ testing device (see Fig. 3.2) taking input from a single min-entropy $(2n, 2Rn)$ source, with min-entropy rate R. The protocol is depicted in Fig. 5.9.

In the round i two bits $R_1^i R_2^i$ are used to choose one out of four possible input
Fig. 5.8. Chung, Shi and Wu protocol for min-entropy amplification [19]. Here s_i is a binary $m = O(\log n)$ bit representation of i used as a seed into extractor Ext. For any (n, k) distribution at least one seed s_i constitutes a good extractor. Output of these extractors is used as an input into expansion devices D_i. As all expansion devices are input secure, their outputs A_i are longer than the inputs and independent of each other, therefore output string B is almost perfectly distributed.

Single device protocol for min-entropy amplification

1. Draw a string $X = (R_1^1, R_2^1, R_3^1; ...; R_1^n, R_2^n)$ from a $(2n, 2Rn)$ min-entropy source.

2. Use a single GHZ device to test the GHZ game n times, with input $R_1^1, R_2^1, R_1^i \oplus R_2^i \oplus 1$ in the ith round.

3. Test if $a_i \oplus b_i \oplus c_i = a_i \wedge y_i \wedge z_i$ in every round. If this doesn’t hold, abort the protocol.

4. Conditioned on not aborting the protocol, the output bit is $O = Ext(a, b)$.

Fig. 5.9. Protocol for a single device min-entropy amplification by Plesch and Pivoluska [72]. In the protocol, Ext is a specific two source extractor, $a = (a_1, a_2, ..., a_n)$ are outputs of the first box and $b = (b_1, b_2, ..., b_n)$ are outputs of the second box used in the GHZ test.

Combinations. Let $r = r_1^1r_2^1, ..., r_1^n r_2^n$ be a concrete realization of X. Let define $E_i(r)$ as

$$E_i(r) = -\log_2 \left(\max_{k,l \in \{0,1\}} P(R_1^i R_2^i = kl | R_1^i R_2^i = r_1^i r_2^i, ..., R_1^{i-1} R_2^{i-1} = r_1^{i-1} r_2^{i-1}) \right).$$

(5.12)
This is an important parameter characterizing the amount of entropy in the input of the \(i \)th round. Recall that devices can have memory and thus know the history of previous inputs and outputs. Therefore, if \(E_i(r) \) is less than \(\log_2(3) \), then, conditioned on the previous inputs, only three out of four two-bit strings might appear as an input into the devices in the \(i \)th round of the protocol and the round – consisting of a GHZ test (see Fig. 3.2) – can be won with probability 1 with deterministic strategy.

We analyzed the protocol in two specific adversarial scenarios. The first scenario analyzes the bias of the output bit in a case where the adversary doesn’t want to risk aborting the protocol at all. The second scenario analyzes the probability of aborting the protocol in case the adversary wants the protocol to produce a constant bit at all risk.

In the light of the definition of \(E_i(r) \) we can divide the rounds of the protocol into two types.

1. It holds that \(E_i(r) > \log_2(3) \); in this case \(P(R_1^i R_2^i = x_i y_i | R_1^1 R_2^1, \ldots, R_1^j R_2^j = r_1^j r_2^j, \ldots, r_1^i r_2^i) > 0 \) for all four possible values of \(x_i, y_i \in \{00, 01, 10, 11\} \) and the only strategy succeeding in the GHZ test with probability 1 is the honest strategy of measuring GHZ states. As discussed before, in this case bits \(a_i \) and \(b_i \) are uniformly distributed and independent of each other as well as all the other previous inputs \(x_j, y_j, z_j, j \in \{1, \ldots, i\} \) and outputs \(a_j, b_j, c_j, j \in \{1, \ldots, i-1\} \). Probability of any other strategy to fulfill the win condition is bounded away from 1.

2. It holds that \(E_i(r) \leq \log_2(3) \); there exists a probability distribution \(P \), such that \(P(R_1^i R_2^i = x_i y_i | R_1^1 R_2^1, \ldots, R_1^{i-1} R_2^{i-1} = r_1^1 r_2^1, \ldots, r_1^{i-1} r_2^{i-1}) = 0 \) for at least one possible value of \(x_i, y_i \in \{00, 01, 10, 11\} \). In this case there exists a classical strategy (which can be encoded in the common information \(\lambda \)) that succeeds in the GHZ test with probability 1.

In the first scenario, the adversary must program the boxes to play an honest strategy during the rounds of type 1 in order not to abort the protocol, however in the rounds of type two, the test can be successful even with a deterministic strategy. Worse still, because the boxes have memory, the deterministic strategy can depend on the outputs and inputs of the previous rounds, and thus compromise the randomness produced in the honest rounds.

As an example consider a very general scenario where the resulting bit \(O \) is computed as a sum of partial results from individual rounds \(o_i \). Let \(o_i \) be a result of a round \(i \) of type 1, arbitrarily random. Let \(j \) by a subsequent round of type 2. Devices and source can agree in advance that in round \(j \) they will output results obtained in the round \(i \) independently on the inputs. In such case \(o_j = o_i \) and \(o_j \oplus o_i = 0 \) and thus perfectly deterministic. The price to pay is the fact that the source had to select a specific outcome in the round \(j \), which decreases its entropy.

Therefore the analysis of the first scenario boils down to finding out to what extent can the outcomes of the rounds of type 2 negate any randomness produced in the rounds of type 1, given a specific entropy of the source. Assume that \(k \) out of \(n \) rounds are of type 1. Without the loss of generality we can assume that all \(k \) rounds of type 1 are
realized before \(n - k\) rounds of type 2. In fact, this order of rounds gives the adversary the best possible situation to react in rounds of type 2 on the randomness already produced in rounds of type 1.

In such ordering we have:

\[
A = \left(\vec{A}_k, f^{k+1}_\lambda(\vec{A}_k), \ldots, f^n_\lambda(\vec{A}_k)\right),
\]

\[
B = \left(\vec{B}_k, g^{k+1}_\lambda(\vec{B}_k), \ldots, g^n_\lambda(\vec{B}_k)\right),
\] (5.13)

where \(\vec{A}_k = (a_1, \ldots, a_k)\), \(\vec{B}_k = (b_1, \ldots, b_k)\) are outcomes of the rounds of type 1. Functions \(f^j_\lambda\) and \(g^j_\lambda\), \(k + 1 \leq j \leq n\) are particular strategies in round \(j\) of type 2 attempting to increase the bias of the final bit, depending on the outcomes of the rounds of type 1 and common information \(\lambda\). Recall that \(\lambda\) is the common information between the devices, source and the adversary. All these parties can be correlated only via this random variable. In a regime where the adversary doesn’t want to risk getting caught at all, this means that although vectors \(A\) and \(B\) are generally not independent, they can only be dependent via \(\lambda\). Therefore given \(\lambda\), \(A\) and \(B\) are independent and their respective conditional min-entropies are \(H_\infty(A|\lambda) = H_\infty(B|\lambda) = k\). Thus we can use any two source extractor \(Ext\) to extract the entropy present in \(A\) and \(B\). Since \(A\) and \(B\) are independent given \(\lambda\), it holds that \((Ext(A,B)|\lambda)\) will be distributed according to the properties of the particular extractor (close to being uniformly distributed given the previously shared information \(\lambda\)).

We used Hadamard extractor (see Def. 13) in our analysis. Recall that the distance of the output of the extractor, \((Had(A,B)|\lambda)\), is guaranteed to be \(2^{(n - H_\infty(A|\lambda) - H_\infty(B|\lambda) - 2)/2}\) close to a uniformly distributed bit as long as \(H_\infty(A|\lambda) + H_\infty(B|\lambda) \geq \frac{n}{2}\). Therefore as long as \(k > \frac{n}{2}\), regardless of the strategy employed in rounds of type 2, the output bit is, at least to some extent, random. Note here that the requirement on \(k\) could in principle be made lower by using different two-source extractors (see Subsection 2.3.2). For example Bourgain’s extractor [12] produces non-deterministic bit as long as the sum of the entropies of \(A\) and \(B\) is greater than \(2n(1/2 - \alpha)\) for some universal constant \(\alpha\) and non-explicit extractors can go as low as \(k = O(\log n)\) [18].

In the light of the previous analysis we can obtain the upper bound for the min-entropy rate, for which full cheating (maximum bias with probability of getting caught equal to 0) is possible. In order to do so, let us represent \(2n\) bit strings that the biased source \(X\) can output with non-zero probability by a graph tree of depth \(n\), where

- each vertex has at most 4 children and each edge from parent to child is labeled by one of \(\{00, 01, 10, 11\}\),

- each vertex represents prefix of a concrete realization of \(r\) with \(r^1_1, r^1_2, \ldots, r^i_1, r^i_2\) encoded in the edge labels on the path from the root of the tree to the given vertex,

- each leaf represents a concrete realization of \(r\).
Fig. 5.10. An optimal tree representation of the input weak source that potentially enables full cheating in Pivoluska and Plesch protocol (see Fig. 5.9). Each node in the tree level i represents the probability distribution of the inputs for i^{th} round. If the node has 4 children, all four inputs appear with positive probability in i^{th} round and the node is called honest. To win this round with probability 1 quantum strategy must be used. Otherwise classical deterministic strategy exist and the node is called dishonest. Optimal tree alternates between honest and dishonest vertices.

Clearly, each vertex has at least $\lceil 2^{E_i(r)} \rceil$ children. A vertex with $2^{E_i(r)} > 3$ will be called an honest vertex, as in this vertex an honest quantum strategy must be used, whereas all other vertices will be called dishonest vertices.

To give an upper bound on the min-entropy for which the adversary can fully cheat, we need to find a tree with a maximal number of leaves, such that for each path from the root to the leaf the number of honest vertices is smaller or equal to the number of dishonest vertices. Apparently such a tree can be constructed by alternating between honest and dishonest vertices along each path (see Fig. 5.10); such tree has $\sqrt{12}^n$ leaves. Uniform distribution over $\sqrt{12}^n$ leaves maximizes the min-entropy that can be used to realize such tree, yielding the min entropy rate of $R_H = \log_2 (12)/4$. For any higher min-entropy rate, there exists a leaf such that the number of honest vertices on the path from the root to the leaf is higher than the number of dishonest vertices, therefore the adversary cannot know the outcome of the protocol with probability 1 without risking to be caught.

If the actual min-entropy rate of the source used is expressed as $R = R_H + \varepsilon$ with arbitrary $\varepsilon > 0$, the probability of every single leaf in the tree will be upper bounded by $p_1 = 2^{-2nR} = \sqrt{12}^{-n}2^{-2\varepsilon n}$. In such a tree no more than $\sqrt{12}^n$ leaves will be of a form that allows cheating without risking to be caught, so the overall probability of cheating success is bounded from above by

$$p_{\text{cheat}} \leq 2^{-2\varepsilon n},$$

thus decreasing to zero exponentially with n. With this probability a bias of the output bit $\frac{1}{2}$ is achieved, whereas in all other bases the bias is 0, so the resulting bias of the
output bit will be

\[\text{bias}(B) \leq 2^{-(2\epsilon n + 1)}. \]

(5.15)

It is worth to mention that with growing min-entropy rate \(R \) the number of cheatable leaves is in fact decreasing and the actual cheating probability and consequently also the resulting bias will thus be strictly lower. This is due to the fact that with every extra leave added to the probability tree, some other leaves will convert from a fully biased to a perfectly random outcome. This is due to the fact that the extra leaves can be added only by adding a fourth child to a dishonest vertex, which is in this way converted to an honest one, resulting into honestness of its leafs (for depiction see Fig. 5.11).

The rate \(R_H = \log_4(12)/4 \) is only an upper bound for the amount of min-entropy for which the full cheating is possible. In fact, there is no constructive attack that would be possible with such a min-entropy rate. As we have also shown, the optimal implementable strategy is the one mentioned earlier – in every other round the boxes simple resend the outcomes of the previous honest round. Such strategy can tolerate less min-entropy than \(R_H \), as the dishonest vertex connected to it’s honest parent by a 11 edge must have only one child, also labeled 11 (see Fig. 5.12).

Uniform distribution over the leaves of such tree has a min–entropy rate

\[R_{\text{max}} = 1/4 \log_2 10, \]

(5.16)

which is the highest rate for which full cheating is possible – half of the rounds are of type 1, quantum and honest, and half of the rounds are of type 2, negating the bias of the output obtained of the previous runs. As soon as \(R = R_{\text{max}} + \epsilon \), the resulting bias exponentially converges to zero with the same arguments as used for Hadamard extractor.
Fig. 5.12. The optimal achievable cheating strategy in the Pivoluska and Plesch protocol (see Fig. 5.9) is to repeat outcomes of the previous honest rounds. Random inputs \{001, 010, 100\} are interchangeable in the GHZ test, while input \{111\} needs to be exactly repeated in the dishonest round.

In a realistic scenario, if it would not be possible for Eve to limit the inputs as needed for full cheating (i.e. \(R > \log_2(12)/4 \)), Eve could simply try to use a classical strategy and guess the correct outcomes in some of the honest rounds. Let us now analyze, what would be the probability of successful cheating with such a strategy.

One can model such cheating strategy by adding extra leaves to the fully cheatable tree (see Fig. 5.11). This can be achieved by adding a fourth edge to some of the dishonest vertices. In such round, Eve would simply use a classical strategy, which is successful only in three out of four realizations. Therefore, if this new added edge is actually realized by the random source, the protocol fails by not satisfying the win condition of the GHZ game (Eq. (3.18)). The number of leaves for which this strategy is successful stays exactly \(\sqrt{12^n} \) and all the other leaves lead to failure of the protocol. With a min-entropy rate \(R = R_H + \varepsilon \) the minimal number of leaves in the tree is \(\sqrt{12^n} \cdot 2^{2\varepsilon n} \), thus the probability of not failing the protocol is \(p_{\text{guess}} = 2^{-2\varepsilon n} \). Comparing to \(p_{\text{cheat}} \) (5.14) we see that the probability of successfully cheating the protocol by risking is the same as the upper bound of the probability of successful cheating of the protocol without risking.
6 Conclusion

The aim of this paper was to present a thorough review on protocols for device independent randomness production. These protocols provide a principal qualitative advantage in comparison with randomness generators based on classical physical phenomena, as well as in comparison with protocols based on simple measurements of quantum states.

Randomness produced in a device independent way is certified by violation of some Bell inequality. Such a violation guarantees that there is no deterministic model for the observed correlations, which in turn guarantees that the outcomes of measurement were not completely predetermined and therefore cannot be fully correlated to any outside information. On the other hand, to certify violation of a Bell inequality randomness is needed in the sense of “free will”, the possibility to choose measurement settings independently to the outside world. Thus even device-independent protocols are not able to produce randomness “out of nowhere”.

Different protocols described in our paper fundamentally depend on the level and type of the accessible randomness. In general, with better starting randomness simpler and more efficient protocols can be used, whereas in case where almost no randomness is available, complicated protocols with many devices are necessary.

In all cases the general idea utilized in the protocols is the same. Available randomness is used to select measurement settings in a Bell type experiment and the resulting data are post-processed (possibly using part of the original data again) into almost perfect randomness. This is defined as uniformly distributed bits that are uncorrelated to any other information in the Universe.

Most of the protocols are technically rather simple and rely on measuring of few-partite entangled states in one of a few pre-determined basis states. This is in a sharp contradiction to most of other quantum protocols which rely on scaling of entanglement range with scaling of the problem. So the crucial obstacle preventing from application of device independent randomness generators is the lack of a cheap, reliable on-demand source of multipartite entanglement and high efficiency detectors.

Acknowledgments

We would like to thank Jan Bouda, Marcus Huber and Marcin Pawłowski for valuable discussions. This research was supported by the Czech Science Foundation GAČR project P202/12/1142, EU project RAQUEL, as well as project VEGA 2/0043/15.
References

[1] Id quantique:. Quantis.

[2] A. Acín, S. Massar, and S. Pironio. Randomness versus nonlocality and entanglement. Phys. Rev. Lett., 108:100402, Mar 2012.

[3] A. Aspect, P. Grangier, and G. Roger. Experimental realization of einstein-podolsky-rosen-bohm Gedankenexperiment : A new violation of bell’s inequalities. Phys. Rev. Lett., 49:91–94, 1982.

[4] J.-D. Bancal and V. Scarani. More Randomness From Noisy Sources. In 9th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2014), volume 27, pages 1–6, 2014.

[5] J.-D. Bancal, L. Sheridan, and V. Scarani. More randomness from the same data. New Journal of Physics, 16(3):033011, 2014.

[6] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence: New constructions of condensers, ramsey graphs, dispersers, and extractors. J. ACM, 57:20:1–20:52, 2010.

[7] C. H. Bennett and G. Brassard. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pages 175–179, 1984.

[8] C. Bosley and Y. Dodis. Does privacy require true randomness? Cryptology ePrint Archive, Report 2006/283, 2006. http://eprint.iacr.org/.

[9] J. Bouda, M. Pawlowski, M. Pivoluska, and M. Plesch. Device-independent randomness extraction from an arbitrarily weak min-entropy source. Phys. Rev. A, 90:032313, 2014.

[10] J. Bouda, M. Pivoluska, and M. Plesch. Improving the hadamard extractor. Theoretical Computer Science, 459(0):69 – 76, 2012.

[11] J. Bouda, M. Pivoluska, M. Plesch, and C. Wilmott. Weak randomness seriously limits the security of quantum key distribution. Phys. Rev. A, 86:062308, 2012.

[12] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications. International Journal of Number Theory, 1:1–32, 2005.

[13] F. G. S. L. Brandão and A. W. Harrow. Quantum de finetti theorems under local measurements with applications. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages 861–870, 2013.

[14] F. G. S. L. Brandão, R. Ramanathan, A. Grudka, K. Horodecki, M. Horodecki, and P. Horodecki. Robust Device-Independent Randomness Amplification with Few Devices. 2013, quant-ph/1310.4544.

[15] S. L. Braunstein and C. M. Caves. Chained bell inequalities. In Bell’s Theorem, Quantum Theory and Conceptions of the Universe, volume 37 of Fundamental Theories of Physics, pages 27–36. 1989.

[16] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419–478, Apr 2014.

[17] J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[18] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic communication complexity. SIAM J. Comput., 17:230–261, 1988.

[19] K.-M. Chung, Y. Shi, and X. Wu. Physical Randomness Extractors. 2014, quant-ph/1402.4797.
660 Device independent random number generation

[20] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt. Proposed experiment to test local hidden-variable theories. *Phys. Rev. Lett.*, 23:880–884, 1969.

[21] R. Colbeck and A. Kent. Private randomness expansion with untrusted devices. *Journal of Physics A Mathematical General*, 44(9):095305, 2011.

[22] R. Colbeck and R. Renner. Free randomness can be amplified. *Nature Physics*, 8:450–454, 2012.

[23] M. Coudron, T. Vidick, and H. Yuen. Robust randomness amplifiers: Upper and lower bounds. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, volume 8096, pages 468–483. 2013.

[24] M. Coudron and H. Yuen. Infinite randomness expansion with a constant number of devices. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC ’14, pages 427–436, 2014.

[25] A. De, C. Portmann, T. Vidick, and R. Renner. Trevisan’s extractor in the presence of quantum side information. *SIAM Journal on Computing*, 41(4):915–940, 2012.

[26] A. De and T. Vidick. Near-optimal extractors against quantum storage. In *Proceedings of the Forty-second ACM Symposium on Theory of Computing*, STOC ’10, pages 161–170, 2010.

[27] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved randomness extraction from two independent sources. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, volume 3122, pages 334–344, 2004.

[28] Y. Dodis and R. Oliveira. On extracting private randomness over a public channel. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, volume 2764, pages 827–836. 2003.

[29] Y. Dodis, Shien Jin Ong, M. Prabhakaran, and A. Sahai. On the (im)possibility of cryptography with imperfect randomness. In *Foundations of Computer Science, 2004. Proceedings. 45th Annual IEEE Symposium on*, pages 196–205, 2004.

[30] Y. Dodis and J. Spencer. On the (non)universality of the one-time pad. In *Foundations of Computer Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on*, pages 376–385, 2002.

[31] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? *Phys. Rev.*, 47:777–780, 1935.

[32] A. K. Ekert. Quantum cryptography based on bell’s theorem. *Phys. Rev. Lett.*, 67:661–663, 1991.

[33] S. Fehr, R. Gelles, and C. Schaffner. Security and composability of randomness expansion from bell inequalities. *Phys. Rev. A*, 87:012335, 2013.

[34] A. Fine. Hidden variables, joint probability, and the bell inequalities. *Phys. Rev. Lett.*, 48:291–295, 1982.

[35] D. Frauchiger, R. Renner, and M. Troyer. True randomness from realistic quantum devices. 2013, quant-ph/1311.4547.

[36] R. Gallego, L. Masanes, G. de la Torre, C. Dhara, L. Aolita, and A. Acín. Full randomness from arbitrarily deterministic events. *Nature Communications*, 4, 2013.

[37] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de Wolf. Exponential separations for one-way quantum communication complexity, with applications to cryptography. In *Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing*, STOC ’07, pages 516–525, 2007.
[38] D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger. Bell’s theorem without inequalities. *American Journal of Physics*, 58(12):1131–1143, 1990.

[39] A. Grudka, K. Horodecki, M. Horodecki, Pa. Horodecki, Ma. Pawłowski, and R. Ramanathan. Free randomness amplification using bipartite chain correlations. *Phys. Rev. A*, 90:032322, 2014.

[40] J. Gruska. *Quantum Computing*. Osborne/McGraw-Hill, 1999.

[41] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors from parvaresh–vardy codes. *J. ACM*, 56:20:1–20:34, 2009.

[42] M. Huber and M. Pawłowski. Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement. *Phys. Rev. A*, 88:032309, 2013.

[43] Krister Sune Jakobsson. Theory, methods and tools for statistical testing of pseudo and quantum random number generators. Master’s thesis, 2014. http://www.icg.isy.liu.se/publications/.

[44] J. Kamp, A. Rao, S. Vadhan, and D. Zuckerman. Deterministic extractors for small-space sources. *J. Comput. Syst. Sci.*, 77:191–220, 2011.

[45] R. Kasher and J. Kempe. Two-source extractors secure against quantum adversaries. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, volume 6302 of *Lecture Notes in Computer Science*, pages 656–669. 2010.

[46] J. Kofler, T. Paterek, and C. Brukner. Experimenter’s freedom in bell’s theorem and quantum cryptography. *Phys. Rev. A*, 73:022104, 2006.

[47] R. König, U. Maurer, and R. Renner. On the power of quantum memory. *Information Theory, IEEE Transactions on*, 51(7):2391–2401, 2005.

[48] R. König, R. Renner, and C. Schaffner. The operational meaning of min- and max-entropy. *IEEE Trans. Inf. Theor.*, 55(9):4337–4347, 2009.

[49] T. Lawson, N. Linden, and S. Popescu. Biased nonlocal quantum games. *ArXiv e-prints*, 2010, quant-ph/1011.6245.

[50] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and C. Wachter. Ron was wrong, whit is right. Cryptology ePrint Archive, Report 2012/064, 2012. http://eprint.iacr.org/.

[51] M. Li and P. M. B. Vitnyi. *An Introduction to Kolmogorov Complexity and Its Applications*. Springer Publishing Company, Incorporated, 3 edition, 2008.

[52] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: optimal up to constant factors. In *Proceedings of the thirty-fifth annual ACM symposium on Theory of computing*, STOC ’03, pages 602–611, 2003.

[53] L. Masanes. Universally composable privacy amplification from causality constraints. *Physical review letters*, 102(14):140501, 2009.

[54] D. Mayers and A. Yao. Self testing quantum apparatus. *Quantum Information and Computation*, 4:273–268, 2004.

[55] J. L. McInnes and B. Pinkas. On the impossibility of private key cryptography with weakly random keys. In *Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’90*, pages 421–435, 1991.

[56] M. McKague. Self-testing graph states. 2010, quant-ph/1010.1989.

[57] A. J. Menezes, S A. Vanstone, and P. C. V. Oorschot. *Handbook of Applied Cryptography*. CRC Press, Inc., Boca Raton, FL, USA, 1996.
[58] N. D. Mermin. Extreme quantum entanglement in a superposition of macroscopically distinct states. *Phys. Rev. Lett.*, 65:1838–1840, 1990.

[59] C. A. Miller and Y. Shi. Optimal robust quantum self-testing by binary nonlocal XOR games. *ArXiv e-prints*, 2012, quant-ph/1207.1819.

[60] C. A. Miller and Y. Shi. Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices. In *Proceedings of the 46th Annual ACM Symposium on Theory of Computing*, STOC ’14, pages 417–426, 2014.

[61] P. Mironowicz and M. Pawłowski. Amplification of arbitrarily weak randomness. 2013, quant-ph/1301.7722.

[62] R. Motwani and P. Raghavan. *Randomized algorithms*. Cambridge University Press, New York, NY, USA, 1995.

[63] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. *SIAM J. Comput.*, 22(4):838–856, 1993.

[64] M. Navascues, S. Pironio, and A. Acín. A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. *New Journal of Physics*, 10(7):073013, 2008.

[65] M. A. Nielsen and I. L. Chuang. *Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences)*. Cambridge University Press, 1 edition, 2000.

[66] O. Nieto-Silleras, S. Pironio, and J. Silman. Using complete measurement statistics for optimal device-independent randomness evaluation. *New Journal of Physics*, 16(1):013035, 2014.

[67] N. Nisan and A. Ta-Shma. Extracting randomness: a survey and new constructions. *J. Comput. Syst. Sci.*, 58:148–173, 1999.

[68] M. Pawłowski, K. Horodecki, P. Horodecki, and R. Horodecki. *Quantum Cryptography and Computing*, chapter Local bounds for general Bell inequalities with the reduced entropy of the settings, pages 224–230. IOS press, 2010.

[69] Y. Peres. Iterating von neumann’s procedure for extracting random bits. *The Annals of Statistics*, 20(1):pp. 590–597, 1992.

[70] S. Pironio, A. Acín, S. Massar, A. B. de La Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe. Random numbers certified by Bell’s theorem. *Nature*, 464:1021–1024, 2010.

[71] S. Pironio and S. Massar. Security of practical private randomness generation. *Phys. Rev. A*, 87:012336, 2013.

[72] M. Plesch and M. Pivoluska. Device-independent randomness amplification with a single device. *Physics Letters A*, 378(40):2938 – 2944, 2014.

[73] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors, and depth-two superconcentrators. *SIAM Journal on Discrete Mathematics*, 13:2000, 2000.

[74] R. Raz. Extractors with weak random seeds. In *Proceedings of the thirty-seventh annual ACM symposium on Theory of computing*, STOC ’05, pages 11–20, 2005.

[75] B. W. Reichardt, F. Unger, and U. Vazirani. A classical leash for a quantum system: Command of quantum systems via rigidity of chsh games. In *Proceedings of the 4th Conference on Innovations in Theoretical Computer Science*, ITCS ’13, pages 321–322, 2013.

[76] R. Renner. *Security of Quantum Key Distribution*. PhD thesis, quant-ph/0512258v2, 2005.

[77] R. Renner and S. Wolf. Unconditional authenticity and privacy from an arbitrarily weak secret. In *In Proc. CRYPTO’03*, pages 78–95. Springer-Verlag, 2003.
References

[78] M. Santha and U. Vazirani. Generating quasi-random sequences from semi-random sources. *Journal of Computer and System Sciences*, 33(1):75 – 87, 1986.

[79] V. Scarani. The device-independent outlook on quantum physics (lecture notes on the power of bell’s theorem). *Acta Physica Sovaca*, 62, 2012.

[80] R. Shaltiel. Recent developments in explicit constructions of extractors. *Bulletin of the EATCS*, (77):67–95, 2002.

[81] C. E. Shannon. Communication Theory of Secrecy Systems. *Bell Systems Technical Journal*, 28:656–715, 1949.

[82] J. Silman, S. Pironio, and S. Massar. Device-independent randomness generation in the presence of weak cross-talk. *Phys. Rev. Lett.*, 110:100504, 2013.

[83] R. Solcã. *Testing of a Quantum Random Number Generator*. PhD thesis, Institute for Theoretical Physics, ETH Zürich, 2010.

[84] A. Srinivasan and D. Zuckerman. Computing with very weak random sources. In *Foundations of Computer Science, 1994 Proceedings.*, 35th Annual Symposium on, pages 264–275, 1994.

[85] L. P. Thinh, L. Sheridan, and V. Scarani. Bell tests with min-entropy sources. *Phys. Rev. A*, 87:062121, 2013.

[86] M. Tomamichel, R. Renner, C. Schaffner, and A. Smith. Leftover hashing against quantum side information. In *Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on*, pages 2703–2707, 2010.

[87] L. Trevisan and Vadhan. S. Extracting randomness from samplable distributions. *Foundations of Computer Science, Annual IEEE Symposium on*, 0:32, 2000.

[88] B. S. Tsirelson. Quantum generalizations of bell’s inequality. *Letters in Mathematical Physics*, 4(2):93–100, 1980.

[89] U. Vazirani. Strong communication complexity or generating quasi-random sequences from two communicating semi-random sources. *Combinatorica*, 7:375–392, 1987.

[90] U. Vazirani and V. Vazirani. Random polynomial time is equal to slightly-random polynomial time. In *FOCS’85*, pages 417–428, 1985.

[91] U. Vazirani and T. Vidick. Certifiable quantum dice: or, true random number generation secure against quantum adversaries. In *Proceedings of the 44th symposium on Theory of Computing*, pages 61–76. ACM, 2012.

[92] J. von Neumann. Various techniques used in connection with random digits. *Applied Math Series*, 12:36–38, 1951.

[93] D. Zuckerman. Simulating bpp using a general weak random source. *Algorithmica*, 16(4-5):367–391, 1996.