Nonuniform Markov Models

Eric Sven Ristad Robert G. Thomas

Research Report CS-TR-536-96
November 1996

Abstract

A statistical language model assigns probability to strings of arbitrary length. Unfortunately, it is not possible to gather reliable statistics on strings of arbitrary length from a finite corpus. Therefore, a statistical language model must decide that each symbol in a string depends on at most a small, finite number of other symbols in the string. In this report we propose a new way to model conditional independence in Markov models. The central feature of our nonuniform Markov model is that it makes predictions of varying lengths using contexts of varying lengths. Experiments on the Wall Street Journal reveal that the nonuniform model performs slightly better than the classic interpolated Markov model. This result is somewhat remarkable because both models contain identical numbers of parameters whose values are estimated in a similar manner. The only difference between the two models is how they combine the statistics of longer and shorter strings.

Keywords: nonuniform Markov model, interpolated Markov model, conditional independence, statistical language model, discrete time series.

\(^1\) Thanks to Andrew Appel, Joe Kupin and Harry Printz for their critique. Our implementation of the nonuniform model used the library of practical abstractions (Ristad and Yianilos, 1996). Both authors are partially supported by Young Investigator Award IRI-0258517 to the first author from the National Science Foundation.
1 Introduction

The task of statistical language modeling is to accurately predict the future utterances of a language user. The probability that a given language user will produce a given utterance at a given moment depends on the language user’s knowledge of language and of the world. Our current understanding of the language user’s cognitive abilities is too impoverished for us to build plausible models of the language user’s knowledge, and so we must be content to model the observables as best we can. Here the observables are the word sequences produced by language users. And so our goal is to assign accurate probabilities to word sequences.

The interpolated Markov model [8] and its cousin the backoff model [4, 9, 18] have long been the workhorses of the statistical language modeling community. These traditional models rely only on the frequencies of strings up to a fixed length. Recent research in statistical language modeling has focused primarily on developing more powerful model classes [7, 11] as well as on adding new sources of information to the traditional models [12, 15]. In contrast, the goal of this work is to find a more effective way to use the statistics of finite length strings. The distinguishing feature of our model is that it acquires beliefs about conditional independence, and uses those beliefs to make predictions of varying lengths using contexts of varying lengths.

We believe that our work has two contributions to offer to the field of Markov modeling. The first contribution is our interpretation of the interpolation parameters as beliefs about conditional independence. Prior work on interpolated Markov models has interpreted the interpolation parameters as smoothing the “specific probabilities” with the “general probabilities” [8, 13]. Our interpretation gives rise to the second contribution of our work, namely, a class of nonuniform Markov models that make predictions of varying lengths using contexts of varying lengths. Nonuniform predictions is a principled way to perform alphabet extension, that is, to make a string become a symbol in the alphabet, an ad hoc technique that can improve model performance [5].

The remainder of this report is organized into four sections. In section 2 we motivate the nonuniform model as arising from the proper generative interpretation of our beliefs about conditional independence. In section 3 we provide efficient algorithms for evaluating the probability of a string according to a nonuniform model, for finding the most likely nonuniform generation path for a given string, and for optimizing the parameters of a nonuniform model on a training corpus. Finally, in section 4 compare the performance of the classic interpolated Markov model and the nonuniform model on the Wall Street Journal. The nonuniform model performs slightly better than the classic model under equivalent experimental conditions. This result is somewhat remarkable, since the only difference between these two models is how they interpret the interpolation parameters.
2 Nonuniform Model

A statistical language model assigns probability to strings of arbitrary length. Unfortunately, it is not possible to gather reliable statistics on strings of arbitrary length from a finite corpus. In practice, this difficulty is quite severe. There are k^n logically possible strings of length n over an alphabet of size k, but there are at most $T - n + 1$ distinct strings of length n in a corpus of length T. Nearly all of the n-grams do not occur in any finite corpus, and of the n-grams that do occur, nearly all occur only once. Therefore, we must decide that each symbol in a string depends only on at most a small, finite number of other symbols and is conditionally independent of all other symbols in the string.

For example, a Markov model of order n stipulates that each symbol depends only on the n most recent symbols, and is conditionally independent of all other past symbols,

$$p(x_i|x_1 \ldots x_{i-1}) \overset{\dagger}{=} p(x_i|x_{i-n} \ldots x_{i-1})$$

where the probability $p(x^T|T)$ of a string x^T of length T is then calculated as a product of T conditional probabilities.

$$p(x^T|T) = \prod_{i=1}^{T} p(x_i|x_1 \ldots x_{i-1}, T)$$

$$\overset{\dagger}{=} \prod_{i=1}^{T} p(x_i|x_{i-n} \ldots x_{i-1}, T)$$

We are trying to model the observable correlates of a cognitive process far more complex and powerful than a fixed order Markov model. Consequently, we cannot afford to take such a simple-minded approach to conditional independence. Rather than stipulate the point of conditional independence a priori, as in a Markov model, we would like our model to acquire beliefs about conditional independence based on empirical evidence.

In this section, we provide three different generative interpretations for the state-conditional interpolation parameters of a Markov model. These interpretations give rise to an interpolated context model, an interpolated state model, and our nonuniform model. Next, we compare the ability of these three interpretations to model local independence and global independence. We argue that the nonuniform model combines the ability of the state model to properly model global independence with the ability of the context model to properly model local independence. Finally, we prove that the nonuniform model is fundamentally different from the other two models because it is not possible to map a nonuniform model into an extensionally equivalent context or state model.

Let us first define our notation. Let A be a finite alphabet of distinct symbols, $|A| = k$, and let $x^T \in A^T$ denote an arbitrary string of length T over the alphabet A. Then x^j_i denotes the substring of x^T that begins at position i and ends at position j. For convenience, we abbreviate the unit length substring x^1_i as x_i and the length t prefix of x^T as x^t.

2.1 Three Interpolated Models

An interpolated Markov model $\phi = \langle n, A, \delta, \lambda \rangle$ consists of a maximal string length n, a finite alphabet A, a set of string probabilities $\delta : A^{\leq n} \rightarrow [0,1]$, and the interpolation parameters $\lambda : A^{<n} \rightarrow [0,1]$. Given a string y^l, $l < n$, the string probabilities $\delta(y^l)$ are typically their empirical probabilities in a training corpus. The only difference between our three models will be how the interpolation parameters λ are interpreted.

Let us now consider three generative interpretations of the interpolated Markov model: the context model, the state model, and our nonuniform model. A context model interprets the λ parameters as combining the predictions from Markov models of varying orders. A state model interprets the λ parameters as hidden transitions from a higher order Markov model to a lower order Markov model. The state and context models are both uniform models because they always predict unit-length strings. A nonuniform model interprets the λ parameters as beliefs about conditional independence.

In each case, we let $\bar{p}_c(i|x^t_{t-m+1})$ be the probability that we pick a context of length i in the history x^t_{t-m+1} and let $\bar{p}_v(y^1|x^t_{t-i+1})$ be the probability that we make a prediction y^1 of length j in the chosen context x^t_{t-i+1}.

2.1.1 Context Model

In the interpolated context model, the interpolation parameters are understood as smoothing the conditional probabilities estimated from longer histories with those estimated from shorter histories [8, 13]. Longer histories support stronger predictions, while shorter histories have more accurate statistics. Interpolating the predictions from histories of different lengths results in more accurate predictions than can be obtained from any fixed history length. This interpretation of the interpolation parameters was originally proposed by Jelinek and Mercer [8]. It leads to the following generation algorithm, where the hidden transition from a longer context to a shorter context (line 3) is temporary, used only for the current prediction (line 4).

\textbf{CONTEXT-GENERATE}(T, ϕ)
1. Initialize $t := 0$; $x^0 := \epsilon$
2. Until $t = T$
3. Pick context length i in $[0, \min(t, n - 1)]$
 \hspace{1cm} $\bar{p}_c(i|x^t) = \lambda(x^t_{t-i+1}) \prod_{l=\min(t,n-1)}^{i+1}(1 - \lambda(x^t_{t-l+1}))$
4. Make one symbol prediction y^1
 \hspace{1cm} $\bar{p}_v(y^1|x^t_{t-i+1}) = \delta(y^1|x^t_{t-i+1}, i + 1)$
5. Extend history x^t_i by prediction y^1
 \hspace{1cm} $x^t_{i+1} := x^t_i y^1$; $t := t + 1$
6. return(x^T)
The probability \(p_c(x_i|x_i^{-1}, \phi) \) assigned by an interpolated context model \(\phi \) to a symbol \(x_i \) in the history \(x_i^{-1} \) has a particularly simple form:

\[
p_c(x_i|x_i^{-1}, \phi) = \lambda(x_i^{i-1})\delta(x_i|x_i^{-1}) + (1 - \lambda(x_i^{i-1}))p_c(x_i|x_i^{i-1}, \phi) \tag{1}
\]

where \(\lambda(x^t) = 0 \) for \(i \geq n \) and \(\lambda(\epsilon) = 1 \).

2.1.2 State Model

Alternately, the interpolation parameters may be understood as modeling our beliefs about how much of the past is necessary to predict a state transition in an underlying Markov source of unknown order. This interpretation leads to the following generation algorithm, where the hidden transition from a state of a higher order model to a state of a lower order model (line 3) is permanent (line 4).

state-generate\((T, \phi) \)

1. **Initialize** \(t := 0; \ x_0 \ := \epsilon; \ m := 0; \)
2. Until \(t = T \)
3. **Pick context length** \(i \) in \([0, m]\)
 \[
 \bar{p}_c(i|x_{t-m+1}^t) = \lambda(x_{t-i+1}^t) \prod_{l=m}^{i+1} (1 - \lambda(x_{l+1}^t))
 \]
4. \(m := i; \)
5. **Make one symbol prediction** \(y^1 \)
 \[
 \bar{p}_c(y^1|x_{t-i+1}^t) = \delta(y^1|x_{t-i+1}^t, i + 1)
 \]
6. **Extend history** \(x_{t+1}^t \) by prediction \(y^1 \)
 \[
 x_{t+1}^t := x^t y^1; \ t := t + 1; \ m := \min(m + 1, n - 1); \)
7. **return**\((x_T) \);

2.1.3 Nonuniform Model

We develop the following model of conditional independence. Let \(\iota(x^n) \) be our degree of belief that \(x_n \) depends on \(x_1 \) in a string \(x_1^n \) of length \(n \)

\[
\iota(x^n) \doteq p(p(x_n|x_1 \ldots x_{n-1}) \neq p(x_n|x_2 \ldots x_{n-1}))
\]

and let \(\lambda(x^i) \) be our degree of belief that the next \(n - i \) symbols depend on \(x_1 \), a kind of expected dependence.

\[
\lambda(x^i) \doteq \sum_{y^{n-i}} p(y^{n-i}|x^i)\iota(x^i y^{n-i})
\]

Our beliefs about independence are determined in large part by the robustness of our statistics. If we do not believe that our model \(\delta(|x^t) \) of the source state transition probabilities is accurate, then our \(\lambda(x^t) \) will be low.
Our beliefs about conditional independence have two implications. The first implication, as in the uniform model, is that we should transition from a longer context \(x^i \) to the shorter context \(x^j \) with probability \(1 - \lambda(x^i) \). This expresses our belief of degree \(1 - \lambda(x^i) \) that the future does not depend on \(x^i \). The second implication, which is unique to the nonuniform model, is that we should transition from a shorter prediction \(y_{j-1} \) to a longer prediction \(y_j \) in the chosen context \(x^i \) with probability \(\lambda(x^i y_{j-1}) \). This implication follows from our belief of degree \(\lambda(x^i y_{j-1}) \) that the future depends on the entire string \(x^i y_{j-1} \) and does not depend on any symbol further in the past. Our novel interpretation leads to the following nonuniform generation algorithm.

```
nonuniform-generate(T, \phi)
1. Initialize \( t := 0 \); \( x^0 := \epsilon \);
2. Until \( t = T \)
3. Pick context length \( i \) in \([0, \min(t, n - 1)]\)
   \( \bar{p}_c(i|x^t) = \lambda(x^t_{i-1}^{t+i}) \prod_{l=\min(t,n-1)}^{t+i}(1 - \lambda(x^t_{t-l+1})) \)
4. \( c := x^t_{t-i+1}; \ j_{\text{max}} := \max(n - i, T - t); \)
5. Pick prediction \( y_1^j \) of length \( j \) in \([1, j_{\text{max}}]\)
   \( \bar{p}_v(y_1^j|c) = (1 - \lambda(c y_1^j)) \delta(y_j | c y_1^{j-1}, i + j) \prod_{l=1}^{j_{\text{max}}} \lambda(c y_1^{j_{\text{max}}}) = 0. \)
6. Extend history \( x^t_1 \) by prediction \( y_1^j \)
   \( x^t_{t+j} := x^t_1 y_1^j; t := t + j; \)
7. return(\( x^T \));
```

The nonuniform model behaves both like a state model and like a context model. The transition from a longer context to a shorter context (line 3) continues for the duration of the resulting prediction (line 5). If a unit length prediction is made, then the nonuniform model behaves exactly like the context model. However, if a longer prediction is made, then the nonuniform model behaves more like the state model.

2.2 Two Situations

Let us examine the behavior of our three model classes in two situations. The first situation is a point of local independence, where the current prediction does not depend on the history but later predictions do. In such a situation, the context model will outperform the state model. The second situation is a point of global independence, where no subsequent prediction depends on the current history. In such a situation, the state model will outperform the context model. The nonuniform model will perform reasonably well in both situations.

The first situation to consider is a point of local independence, where the immediate future \(y_1 \) does not depend on any suffix of the history \(x^i \), while the longer term future \(y_2 \) depends on the entire past \(x^i y_1 \). In such a situation, all
\[p_c(x^3|3, \phi) = \delta(x_1) \left[\lambda(x_1) \delta(x_2|x_1) + (1 - \lambda(x_1)) \delta(x_2) \right] \cdot \left[\lambda(x^2) \delta(x_3|x^2) + (1 - \lambda(x^2)) \right] \]

\[p_s(x^3|3, \phi) = \delta(x_1) \left[\lambda(x_1) \delta(x_2|x_1) + (1 - \lambda(x_1)) \delta(x_2) \right] \cdot \left[\lambda(x_2) \delta(x_3|x^2) + (1 - \lambda(x_2)) \delta(x_3) \right] \]

\[p_n(x^3|3, \phi) = \delta(x_1) \left[\lambda(x_1) \delta(x_2|x_1) + (1 - \lambda(x_1)) \delta(x_2) \right] \cdot \left[\lambda(x_2) \delta(x_3|x_2) + (1 - \lambda(x_2)) \delta(x_3) \right] \]

Figure 1: The total probability assigned to a string \(x^3 \) by the three generative interpretations of the interpolated trigram model. The context model is shown in (2), the state model in (3), and the nonuniform model in (4).
\(\lambda(x^n_1) \) will be close to zero, while the \(\lambda(x^n_1y) \) will be close to unity. Consequently, the context model will accurately predict \(p(\cdot|x^n) \) using the empty context \(\epsilon \) and then predict \(p(\cdot|x^n_1y) \) using the full context \(x^n_1y \). In contrast, the state model will transition from the \(x^n_1 \) context all the way to the empty context \(\epsilon \) with high probability, which then obliges it to predict \(p(\cdot|x^n_1y) \) using the weak context \(y \). The behavior of the nonuniform model depends on the value of \(\lambda(y) \). If \(\lambda(y) \) is high, then the nonuniform model will behave more like the state model, while if \(\lambda(y) \) is low, then it will behave more like the context model.

The simplest example of such a situation is an interpolated trigram model on a string \(x^n_3 \) of length 3, where \(p(\cdot|x_1^n) = p(\cdot|\epsilon) \) but \(p(\cdot|x^n_2) \neq p(\cdot|x_2^n) \) and \(p(\cdot|x^n_2) = p(\cdot|\epsilon) \). Then \(\lambda(x_1^n) \) and \(\lambda(x_2^n) \) are close to zero, while \(\lambda(x^n_2) \) is close to unity. Consequently, the state model must incorrectly treat all three symbols as being independent (\(a. \)), while the context model (\(b. \)) and the nonuniform model (\(c. \)) are able to correctly treat \(x_2^n \) as independent of \(x_1^n \), while also treating \(x_3^n \) as dependent on both \(x_1^n \) and \(x_2^n \).

\[
\begin{align*}
a. & \quad p_s(x^n|\phi) \approx \delta(x_1^n)\delta(x_2^n)\delta(x_3^n) \\
b. & \quad p_c(x^n|\phi) \approx \delta(x_1^n)\delta(x_2^n)\delta(x_3^n|x_2^n) \\
c. & \quad p_n(x^n|\phi) \approx \delta(x_1^n)\delta(x_2^n)\delta(x_3^n|x_2^n)
\end{align*}
\]

The total probability assigned to a string \(x^n_3 \) by our three interpolated trigram models appears in figure \(\text{f.} \)

The second situation to consider is a point of global independence, where the entire future \(y^n \) is completely independent of the past \(x^n_{i-1} \). Such a situation will arise in practice when all suffixes of the history \(x^n_{i-1} \) are rare, or when the source \(p(y^n|x^n_{i-1}) = p(y^n|\epsilon) \) for all \(i \). In this situation, we would like to ignore the entire history \(x^n_{i-1} \) when making our predictions. All \(\lambda(x^n_{i-1}) \) and \(\lambda(x^n_{i-1}y^n_{i-1}) \) will be close to zero, but never identically zero. Due to inadequate statistics at a point of independence, nearly all \(\delta(y^n_{i-1}|x^n_{i-1}) \) will be zero, and to simplify the example we assume that all are zero.

Once the state model transitions to the empty context in order to predict the first symbol \(y_1^n \), it need never again transition past any suffix of \(x^n_{i-1} \). The total probability assigned to \(p(A^n|\epsilon) \) by the state model (\(\text{g.} \)) is a product of \(n - 1 \) probabilities. In contrast, the context model must transition past some suffix of the history \(x^n_{i-1} \) for each of the next \(n - 1 \) predictions, and so the total probability assigned to \(p(A^n|\epsilon) \) by the context model (\(\text{h.} \)) is a product of \(n(n-1)/2 \) probabilities. Note that (\(\text{b.} \)) must be considerably less than (\(\text{h.} \)). Here the nonuniform model behaves like the state model by first transitioning to the empty context and then predicting the string \(y^n_1 \) of length \(n \), and so the total probability assigned to \(p(A^n|\epsilon) \) by the nonuniform model (\(\text{k.} \)) is a product of only \(2n - 2 \) probabilities. Therefore the total probability assigned to \(y^n \) by the nonuniform model is considerably greater than that assigned by the context.
We consider the simplest nondegenerate situation, which is the same uniform probability context. In this situation, the state model and the context model both assign $i = 0$. This corresponds a bigram model predicting two symbols using an empty for all p_y.

Either or the state model probability p probability $p_n > \lambda$ in A_n.

Theorem 1 δ to a lower order transition probability, i.e., ϕ interpolated Markov model or state model (theorem 1).

or state model (theorem 1).

nondegenerate nonuniform model into an extensionally equivalent context model equivalent to some uniform model. Here we argue that nonuniform models are

2.3 Inequivalence

The only difference between the three model classes is how they interpret the λ parameters. This raises the question of whether the nonuniform interpretation has substance, that is, whether every nonuniform model might really be equivalent to some uniform model. Here we argue that nonuniform models are fundamentally different from uniform models, because it is not possible to map a nondegenerate nonuniform model into an extensionally equivalent context model or state model (theorem 4).

We say an interpolated model is degenerate iff it is equivalent to some simpler model, that is, equivalent to a model with fewer parameters. Formally, an interpolated Markov model $\phi = \langle n, A, \delta, \lambda \rangle$ is degenerate iff either (i) some λ value is either 0 or 1 or (ii) some higher order transition probability is equivalent to a lower order transition probability, i.e., $\delta(x_{i+1}|x_i^1) = \delta(x_{i+1}|x_{i+2}^1)$ for some x_i^1 in $A^{<n}$.

Theorem 1 For every nondegenerate $\phi = \langle n, A, \delta, \lambda \rangle$ and $\phi' = \langle n, A, \delta, \lambda' \rangle$, with $n > 1$, there exist strings $x_i \in A^*$ and $y_j \in A^+$ such that the nonuniform probability $p_n(y^j|x^i, \phi)$ is not equal to the context model probability $p_c(y^j|x^i, \phi')$ or the state model probability $p_s(y^j|x^i, \phi')$.

Proof. Either $\lambda = \lambda'$ or $\lambda \neq \lambda'$.

Case i. If $\lambda \neq \lambda'$, then $p_n(y^j|x^i, \phi) \neq p_c(y^j|x^i, \phi')$ and $p_n(y^j|x^i, \phi) \neq p_s(y^j|x^i, \phi')$ for some $x^i \in A^+$ because all three interpretations of ϕ are trivially identical for all one symbol predictions $y^j \in A$.

Case ii. Otherwise $\lambda = \lambda'$, and then $p_n(y^j|x^i, \phi) = p_c(y^j|x^i, \phi') = p_s(y^j|x^i, \phi')$ for all x^i and y^1. However, now it is straightforward to show that $p_n(y^j|x^i, \phi) \neq p_c(y^j|x^i, \phi')$ and $p_n(y^j|x^i, \phi) \neq p_s(y^j|x^i, \phi')$ for some x^i and $y^j \in A^j$ with $j > 1$. We consider the simplest nondegenerate situation, which is $n = 2$, $j = 2$, and $i = 0$. This corresponds a bigram model predicting two symbols using an empty context. In this situation, the state model and the context model both assign the same uniform probability $p_n(y^2|\phi)$ to y^2. Then

$p_n(y^2|\phi) = \delta(y_1)|\lambda(\lambda(y_1))\delta(y_2|y_1) + (1 - \lambda(y_1))\delta(y_2)|$

$p_n(y^2|\phi) = \delta(y_1)|\lambda(\lambda(y_1))\delta(y_2|y_1) + (1 - \lambda(y_1))\delta(y_2|y_1) + (1 - \lambda(y_1))\delta(y_2)|$
and

$$p_n(y^2 | \phi) - p_n(y^2 | \phi) = \lambda(y_1)(1 - \lambda(y_1))\delta(y_2 | y_1) - \delta(y_2).$$

By the definition of degeneracy, neither $\lambda(y_1)$, $1 - \lambda(y_1)$, nor $\delta(y_2 | y_1)$ can be zero. By the axioms of probability, some y_1 must have nonzero probability, which means that $\delta(y_1)$ must be nonzero for that y_1, and therefore equation (7) must also be nonzero for that y_1. \square

It is instructive to note that the difference between the uniform and nonuniform interpretations of a given ϕ is proportional to the difference between the conditional probability $\delta(y_2 | y_1)$ and the marginal probability $\delta(y_2)$. If y_2 and y_1 are truly independent, then with high probability $\delta(y_2 | y_1) \approx \delta(y_2)$ in our training corpus and both interpretations assign essentially the same probability to y^2, regardless of our beliefs about conditional independence. If, however, y_2 truly depends on y_1 then with high probability $\delta(y_2 | y_1) \neq \delta(y_2)$ in our training corpus and the difference between the context model interpretation and the nonuniform model interpretation depends principally on our beliefs of conditional independence. This difference is maximized for $\lambda(y_1) = 0.5$, i.e., when we are maximally uncertain, and vanishes when $\lambda(y_1)$ approaches 0 or 1, i.e., as our certainty grows.

3 Nonuniform Algorithms

Having defined the class of nonuniform models, and compared them to the two uniform models, let us now consider how we might effectively use the nonuniform model class in practice. Here we provide efficient algorithms to evaluate the probability of a string according to a nonuniform model (section 3.1), to find the most likely generation path for a string according to a nonuniform model (section 3.2), and to optimize the parameters of a nonuniform model on a training corpus (section 3.3).

3.1 Evaluation

The nonuniform model ϕ assigns probability to generation paths paired with the strings that they generate. A string may have more than one generation path, and so the marginal probability of a string x^T is determined by summing the joint probabilities over all generation paths s.

$$p(x^T | \phi, T) = \sum_s p(x^T, s | \phi, T)$$

There are only polynomially many generation paths for a given string.

The following dynamic programming algorithm evaluates the probability of a string x^T of length T in $O(n^2 T)$ time and $O(T)$ space. The space requirements of the algorithm may be reduced to $O(n)$ at a slight expense in clarity. Note that $\lambda(x_{t+1}^{T+j_{\text{max}}}) = 0$ for $j_{\text{max}} = \min(T - t, n - i)$.
Decoding

Decoding a string x^T with respect to an nonuniform model ϕ is the process of finding the single most likely generation path for that string. This computation is performed in $O(n^2T)$ time and $O(T)$ space by the following dynamic programming algorithm.

1. For $t = 2$ to T [$\alpha_t := 0$]; $\alpha_1 := 1$;
2. For $t = 1$ to $T - 1$
3. $p_v = 1$;
4. for $i = \min(t, n - 1)$ to 0
5. $\bar{p}_v := \lambda(x'_t) p_v$; $p_v := 1$;
6. for $j = 1$ to $\min(T - t, n - i)$
7. $\bar{p}_v := (1 - \lambda(x'_t)) \delta(x'_t | x'_{t-1}) p_v$;
8. $\alpha_t + j := \alpha_t + j + \alpha \bar{p}_v p_v$;
9. $p_v := \lambda(x'_t) p_v$;
10. $c_v := (1 - \lambda(x'_t))$;
11. return(α_T);

The α_t variable stores the total probability $p(x^t | \phi, t)$ for the substring x^t.

3.2 Decoding

Decoding a string x^T with respect to an nonuniform model ϕ is the process of finding the single most likely generation path for that string. This computation is performed in $O(n^2T)$ time and $O(T)$ space by the following dynamic programming algorithm.

1. For $t = 2$ to T [$\alpha_t := 0$]; $\alpha_1 := 1$;
2. For $t = 1$ to $T - 1$
3. $p_v = 1$;
4. for $i = \min(t, n - 1)$ to 0
5. $\bar{p}_v := \lambda(x'_t) p_v$; $p_v := 1$;
6. for $j = 1$ to $\min(T - t, n - i)$
7. $\bar{p}_v := (1 - \lambda(x'_t)) \delta(x'_t | x'_{t-1}) p_v$;
8. if ($\alpha_t + j > \alpha_{t+1}$) then [$s_{t+1} := (i, j); \alpha_{t+1} := \alpha_t \bar{p}_v p_v$];
9. $p_v := \lambda(x'_t) p_v$;
10. $c_v := (1 - \lambda(x'_t))$;
11. $s := \phi; t := T$;
12. while ($t > 1$) [$s := s_{t-1}; t := t - s_{t-1}$];
13. return(s);

The α_t variable stores the probability of the most likely generation path for x^t, while the s_t variable stores the last transition in the most likely generation path for x^t. Each transition in the nonuniform model is a pair (i, j) indicating that a context of length i was used to make a prediction of length j. The elements i and j of the pair $s_t = (i, j)$ are identified by the notation $s_t,0$ and $s_t,1$, respectively. The most likely generation path is stored in the s variable.
3.3 Estimation

In this section, we formulate an expectation maximization (EM) algorithm for the nonuniform Markov model. Our development follows the traditional lines established for the hidden Markov model [2, 3]. (See [16] for a tutorial.) Recall that we must first calculate the expected number of times that each hidden event occurred for a given training sequence. The hidden events for the nonuniform model are the choice of context and prediction lengths.

We begin by defining our forward and backward variables. The forward variable \(\alpha_t(i, j) \) contains the probability of generating the first \(t \) symbols of the history, picking a context of length \(i \) and then making a prediction of length \(j \), according to the model \(\phi \).

\[
\alpha_t(i, j) = p(h = x^t_1, c = x^t_{i-1}, v = x_1^{t+j} | \phi, T) \quad (8)
\]

The following iterative algorithm calculates all \(\alpha_t(i, j) \) values in \(O(n^2T) \) time and \(O(n^2T) \) space.

FORWARD\((x^T, \phi)\)
1. For \(j = 1 \) to \(n \) \[\alpha_0(0, j) := \hat{p}_v(x^1_1|c); \]
2. For \(t = 1 \) to \(T \)
3. \(\alpha_t := \sum_{j=1}^{\min(t,n)} \sum_{i=0}^{\min(n-j,t-j)} \alpha_{t-j}(i, j); \)
4. For \(i = 0 \) to \(\min(t, n-1) \)
5. For \(j = 1 \) to \(\min(T - t, n-i) \)
6. \(\alpha_t(i, j) := \alpha_t \hat{p}_c(i|x^t_1) \hat{p}_v(x^{t+j}_{t+1}|x_{t+i+1}^t); \)

The backward variable \(\beta_t(i, j) \) contains the probability of generating the final \(T - t \) symbols in the string \(x^T_t \), given that the history is \(x^t_1 \) and that we have chosen to make a prediction of length \(j \) in a context of length \(i \) according to the model \(\phi \).

\[
\beta_t(i, j) = p(x^T_{t+1} | h = x^t_1, c = x^t_{t-i+1}, v = x_1^{t+j+1} | \phi, T) = p(x^T_{t+1} | x_{t+j+1}^t, \phi) = \beta_{t+j} \quad (9)
\]

The following iterative algorithm calculates all \(\beta_t(i, j) \) values in \(O(n^2T) \) time and \(O(T) \) space. Note that we need only maintain a one dimensional table of \(\beta \) values because \(\beta_t(i, j) = \beta_{t+j} \) for all \(i, j \).

BACKWARD\((x^T, \phi)\)
1. \(\beta_T := 1; \)
2. For \(t = T - 1 \) to \(0 \)
3. \(\beta_t := \sum_{i=0}^{\min(t,n-1)} \sum_{j=1}^{\min(T-t,n-i)} \hat{p}_c(i|x^t_1) \hat{p}_v(x^{t+j}_{t+1}|c = x^t_{t+i+1}) \beta_{t+j}; \)
The forward and backward variables allow us to calculate the posterior probability of every hidden transition in our model, as represented by the following \(\gamma_t(i,j) \) variable.

\[
\gamma_t(i,j) = \frac{p(c = x_{t-i+1}^t, v = x_{t+j}^{t+1} | x_1^T, \phi)}{p(x_1^T | \phi)} = \frac{\alpha_t(i,j) \beta_t(i,j)}{p(x_1^T | \phi)}
\]

(10)

We use the following useful fact to verify our implementation of the \(\gamma \) computation.

Theorem 2 The following constraint holds for the \(\gamma \) values:

\[
T = \sum_{t=0}^{T-1} \sum_{i=0}^{\min(t,n-1)} \sum_{j=1}^{\min(T-t,n-i)} j \cdot \gamma_t(i,j)
\]

(11)

Proof. Recall that \(\gamma_t(i,j) \) represents the posterior probability that the nonuniform model made a prediction of length \(j \) using a context of length \(i \) at time \(t \) in the input string \(x^T \). Each such stochastic transition consumes exactly \(j \) symbols of the input. Consequently, summing the \(\gamma_t(i,j) \) over the prediction lengths \(j \) multiplied by the prediction lengths \(j \) yields the expected number of symbols predicted at time \(t \) from a context of length \(i \). Summing this quantity over the context lengths \(i \) yields the the expected number of symbols predicted at time \(t \), independent of context length. Finally, summing this expectation over all the times \(t \) must yield the total number of symbols in a string \(x^T \).

We use the \(\gamma \) values to obtain the expected number of times that the nonuniform model transitioned from a longer context to a shorter one, or from a shorter prediction to a longer one. We use two variables to keep track of our expectations: \(\lambda^+(y^l) \) accumulates the number of times that we used \(y^l \) to condition our prediction when it was possible to do so, while \(\lambda^-(y^l) \) accumulates the number of times that we could have used \(y^l \) to condition our prediction but chose a proper suffix instead. The following algorithm accumulates all \(\lambda^+(y^l) \) and \(\lambda^-(y^l) \) values in \(O(n^3 T) \) time and \(O(n^2 T) \) space.

EXTRACTION-STEP \((x^T, \phi, \lambda^+, \lambda^-)\)

1. For \(t = 1 \) to \(T \)
2. For \(i = 0 \) to \(\min(t, n-1) \)
3. For \(j = 1 \) to \(\min(T-t, n-i) \)
4. \(\lambda^+(x_{t-i+1}^{t+j}) = \gamma_t(i,j); \)
5. \(\lambda^-(x_{t-i+1}^{t+j}) = \gamma_t(i,j); \)
6. For \(l = i+1 \) to \(\min(t, n-1) \) \[\lambda^-(x_{t-l+1}^{t+i}) = \gamma_t(i,j); \];
7. For \(l = j+1 \) to \(\min(T-t, n-i) \) \[\lambda^+(x_{t-l+1}^{t+j}) = \gamma_t(i,j); \];

Having done all the work in the expectation step, the maximization step is straightforward.
The following deleted-estimation() algorithm estimates the parameters of an interpolated model ϕ using a set B of blocks of text. For each iteration, we delete one block B_i from the set B, initialize the string probabilities δ to their empirical probabilities in the remaining blocks $B - B_i$ (line 4), and then perform an expectation step on the deleted block B_i (line 5). After all blocks have been deleted, we update our model parameters (line 6).

deleted-estimation(B, ϕ)

1. **Until convergence**
2. Initialize λ^+ , λ^- to zero;
3. For each block B_i in B
4. Initialize δ using $B - B_i$;
5. **expectation-step($B_i, \phi, \lambda^+, \lambda^-$);**
6. **maximization-step($\phi, \lambda^+, \lambda^-$);**
7. Initialize δ using B;

4 Experimental Results

In this section we compare the performance of the interpolated context model and the nonuniform model on the Wall Street Journal. (Recall that the interpolated context model is the classic interpolated Markov model of Jelinek and Mercer.\cite{Sarnec}.) We performed two sets of experiments. The first set of experiments was with the 6.2 million word WSJ 1989 corpus. The goal of these initial experiments was to better understand how initial parameter values affect model performance. The second set of experiments was with the 42.3 million word WSJ 1987-89 corpus. In order to assess the possible value of our language models to speech recognition, we used verbalized punctuation and a vocabulary of approximately 20,000 words chosen from both training and test sets. Out-of-vocabulary words were mapped to a unique OOV symbol. In all cases, we used 90% of the corpus for training and 10% for testing. No parameter tying or parameter selection was performed. We report performance as test message perplexity.

We set the δ parameters to be the empirical probabilities in the training data and then optimized the λ parameters on the training data using deleted interpolation\cite{Sarnec, Banes}. We soon discovered that the initial values for the λ parameters had a noticeable effect on model performance as did the block size used for deleted interpolation. Larger block sizes result in more conservative estimates, which work better when the corpus is small relative to the alphabet.
size and worse when the corpus is large relative to the alphabet size. More aggressive initial estimates for the λ parameters give better initial performance for some model orders but worse ultimate performance. Regardless of how the λ parameters were initialized or what block size was used, the nonuniform model performed slightly better than the uniform model under equivalent experimental conditions.

We considered three initial estimates for the λ values: uniform, the Jeffreys-Perks rule of succession [8, 14, 10], and the natural law of succession [17]. The uniform estimate sets all λ values to 0.5. The Jeffreys-Perks rule sets $\lambda(x^i)$ to $c(x^i)/(c(x^i)+k/2)$, for alphabet size k and string frequency $c(x^i)$. Jeffreys-Perks is a conservative estimate, that assigns relatively low probability to $\lambda(x^i)$. The natural law sets $\lambda(x^i)$ to

$$\frac{c(x^i)(c(x^i)+1)+q(x^i)(1-q(x^i))}{c(x^i)^2+c(x^i)+2q(x^i)}$$

for string frequency $c(x^i)$ and context diversity $q(x^i) = |\{y : c(x^iy) > 0\}|$. The natural law is an aggressive estimate that assigns relatively high probability to $\lambda(x^i)$. The best performance for higher model orders was achieved with uniform initialization in all of our experiments.

4.1 WSJ 1989

The first set of experiments was on the 1989 Wall Street Journal corpus, which contains 6,219,350 words. Our vocabulary consisted of the 20,293 words that occurred at least 10 times in the entire WSJ 1989 corpus. The goal of these initial experiments was to better understand how initial values affect model performance.

4.1.1 Before Optimization

The following table reports test message perplexities for WSJ 1989 before the λ parameters were optimized using deleted interpolation. The best results for both models are obtained when the λ parameters are initialized uniformly. Before optimization the interpolated context model performs better than the nonuniform model.

N	Context Model	0.5	Nonuniform Model	0.5		
	Jeffrey-Perks	Natural Law	Jeffrey-Perks	Natural Law		
2	284.9	**188.2**	213.9	276.8	197.6	209.6
3	248.1	148.7	**136.0**	235.8	175.4	138.4
4	241.6	155.0	**130.0**	229.3	196.3	138.3
5	239.6	161.7	**131.3**	227.6	211.4	142.6
6	238.7	165.7	**132.6**	226.9	219.4	145.2
4.1.2 After Optimization

The following table reports test message perplexities for WSJ 1989 after optimization via deleted interpolation. All models were trained using deleted interpolation with 22 blocks on the first 90% of the corpus and then tested on the remaining 10% of the corpus. The nonuniform model slightly outperforms the context model for \(n > 3 \). The best results for both models are obtained when the \(\lambda \) parameters are initialized uniformly. The nonuniform model is less sensitive to the initial \(\lambda \) estimates than the context model.

N	Context Model				Nonuniform Model				
	Jeffrey-Perks	Natural Law	0.5	Jeffrey-Perks	Natural Law	0.5	Jeffrey-Perks	Natural Law	0.5
2	175.3	175.2	175.2	177.7	177.2	177.7			
3	122.1	121.8	121.2	121.6	121.6	121.2			
4	115.8	115.9	114.0	113.6	114.1	113.2			
5	114.5	115.4	112.6	111.9	113.0	111.4			
6	114.1	115.6	112.3	111.5	112.9	111.0			

4.2 WSJ 1987-89

The second set of experiments was on the 1987-89 Wall Street Journal corpus, which contains 42,373,513 words. Our vocabulary consisted of the 20,092 words that occurred at least 63 times in the entire WSJ 1987-89 corpus. The goal of these experiments was to produce competitive results for the context model, in order to compare those results to those achieved by the nonuniform model. We believe that we are the first to report WSJ 1987-89 results for full (ie., unpruned) interpolated Markov models of higher order than trigrams.

4.2.1 Before Optimization

The following table reports test message perplexities for WSJ 1987-89 before optimization via deleted interpolation. All \(\lambda \) values were initialized uniformly.

N	Context Model	Nonuniform Model
2	198.2	190.1
3	107.5	106.1
4	97.7	100.4

4.2.2 After Optimization

The following table reports test message perplexities for WSJ 1987-89 after optimization via deleted interpolation. All \(\lambda \) values were initialized uniformly, trained using deleted interpolation with 152 blocks on the first 90% of the corpus, and then tested on the remaining 10% of the corpus. The nonuniform model performs slightly better than the context model for \(n > 2 \).
N	Context Model	Nonuniform Model
2	150.7	151.7
3	93.4	93.3
4	85.7	84.4

5 Conclusion

We have proposed a nonuniform Markov model, that makes predictions of varying lengths using contexts of varying lengths. We argue that the nonuniform model combines the ability of the context model to properly model situations of local independence with the ability of the state model to properly model situations of global independence. We demonstrated that the nonuniform model slightly outperforms the interpolated context model on natural language text. This feat is somewhat remarkable when we consider that both models are based on the statistics of fixed-length strings, and that both models contain identical numbers of parameters whose values are estimated using expectation-maximization. The only difference between the two models is how they combine the statistics of longer and shorter strings.

References

[1] Bahl, L. R., Brown, P. F., de Souza, P. V., Mercer, R. L., and Nahamoo, D. A fast algorithm for deleted interpolation. In Proc. EUROSPEECH ’91 (Genoa, 1991), pp. 1209–1212.

[2] Baum, L., and Eagon, J. An inequality with applications to statistical estimation for probabilistic functions of a Markov process and to models for ecology. Bull. AMS 73 (1967), 360–363.

[3] Baum, L., Petrie, T., Soules, G., and Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Stat. 41 (1970), 164–171.

[4] Cleary, J., and Witten, I. Data compression using adaptive coding and partial string matching. IEEE Trans. Comm. COM-32, 4 (1984), 396–402.

[5] Jeanrenaud, P., Eide, E., Chaudhari, U., McDonough, J., Ng, K., Siu, M., and Gish, H. Reducing word error rate on conversational speech from the Switchboard corpus. In ICASSP 95 (1995), pp. 53–56.

[6] Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. Roy. Soc. (London) A 186 (1946), 453–461.

[7] Jelinek, F., LaBaffery, J., and Mercer, R. L. Basic methods of probabilistic context-free grammars. In Speech Recognition and Understanding.
Recent Advances, Trends, and Applications, P. Laface and R. De Mori, Eds. Springer Verlag, Berlin, 1992.

[8] Jelinek, F., and Mercer, R. L. Interpolated estimation of Markov source parameters from sparse data. In Pattern Recognition in Practice (Amsterdam, May 21–23 1980), E. S. Gelsema and L. N. Kanal, Eds., North Holland, pp. 381–397.

[9] Katz, S. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Trans. ASSP 35 (1987), 400–401.

[10] Krichevskii, R. E., and Trofimov, V. K. The performance of universal coding. IEEE Trans. Information Theory IT-27, 2 (1981), 199–207.

[11] Lafferty, J., Sleator, D., and Temperly, D. Grammatical trigrams: a probabilistic model of link grammar. Tech. Rep. CMU-CS-92-181, CMU, Pittsburgh, September 1992.

[12] Lau, R., Rosenfeld, R., and Roukos, S. Trigger-based language models: a maximum entropy approach. In Proc. ICASSP-93 (1993), pp. 45–48. vol.II.

[13] MacKay, D. J., and Peto, L. C. B. A hierarchical Dirichlet language model. Natural Language Engineering 1, 1 (1994).

[14] Perks, W. Some observations on inverse probability, including a new indifference rule. J. Inst. Actuar. 73 (1947), 285–312.

[15] Pietra, S. D., Pietra, V. D., Gillett, J., Lafferty, J., Printz, H., and Ures, L. Inference and estimation of a long range trigram model. Tech. Rep. CMU-CS-94-188, CMU, Pittsburgh, September 1994.

[16] Rabiner, L., and Juang, B. An introduction to hidden Markov models. IEEE ASSP Magazine (1986), 4–16.

[17] Ristad, E. S. A natural law of succession. Tech. Rep. 495-95, Department of Computer Science, Princeton University, Princeton, NJ, May 1995.

[18] Ristad, E. S., and Thomas, R. G. New techniques for context modeling. In Proc. 33rd Annual Meeting of the ACL (Cambridge, MA, June 1995).

[19] Ristad, E. S., and Yianilos, P. N. Library of practical abstractions. Tech. rep., Department of Computer Science, Princeton University, Princeton, NJ, 1996. ftp://ftp.cs.princeton.edu/pub/packages/libpa.