Stochastic Behavior of Effective Field Theories Across Threshold

E. Calzetta
IAFE and FCEN, University of Buenos Aires, Argentina

B. L. Hu
Department of Physics, University of Maryland, College Park, MD 20742, USA

(hep-th/9603164, UMDPP 96-90, March 20, 1996)

Abstract

We explore how the existence of a field with a heavy mass influences the low energy dynamics of a quantum field with a light mass by expounding the stochastic characters of their interactions which take on the form of fluctuations in the number of (heavy field) particles created at the threshold, and dissipation in the dynamics of the light fields, arising from the backreaction of produced heavy particles. We claim that the stochastic nature of effective field theories is intrinsic, in that dissipation and fluctuations are present both above and below the threshold. Stochasticity builds up exponentially quickly as the heavy threshold is approached from below, becoming dominant once the threshold is crossed. But it also exists below the threshold and is in principle detectable, albeit strongly suppressed at low energies. The results derived here can be used to give a quantitative definition of the ‘effectiveness’ of a theory in terms of the relative weight of the deterministic versus the stochastic behavior at different energy scales.

PACS numbers: 03.70.+k, 11.10.-z, 05.40.+j, -04.62.+v
1 Introduction

The goal of this paper is to explore how the existence of a field with a heavy mass (a heavy sector, or heavy field, in short) influences the low energy dynamics of a quantum field with light mass (light sector, or light field). It is a well known result from effective field theory [1, 2, 3] that at low energies the heavy fields effectively decouple. This means that it is possible to describe the low energy (infrared) physics through an effective action of the light fields, whereby no explicit reference to heavy fields is made. This description breaks down as the energy gets close to the heavy particle mass threshold, where particle creation of the heavy field begins to get significant. Generally, the breakdown of the effective light theory is described in terms of the loss of predictive power of the theory, resulting from a proliferation of increasingly nonlocal interactions. We shall propose a new way to look at the threshold behavior of the light theory, based on the manifestation of stochastic features which we believe are intrinsic to effective theories [6, 7].

This loss of predictability follows from the fact that the light field interacts in a complex way with quantum fluctuations of the heavy field. The stochastic characters of these interactions take on the form of fluctuations in the number of (heavy field) particles created at the threshold, and dissipation in the dynamics of the light fields, arising from the backreaction of produced heavy particles. The stochastic properties of effective field theory arise from particle creation, and the two processes it engenders, i.e., dissipation and noise, are related by the fluctuation-dissipation relation [8].

The appearance of stochastic behavior like dissipation and noise is predicated upon the actual observational context which defines the system, and its interaction with the unobserved or unobservable variables which make up the environment. In fact, for observers in the limited range of validity of the system (say, at low energy), the existence of the environment (say, the heavy sector) can sometimes only be indirectly deduced by the modified behavior of the system, rendered by such restrictions.

Dissipation becomes obvious above the heavy mass threshold, where the light field self energy becomes imaginary (in agreement with the optical theorem). As we shall show below, a proper analysis of the effective light theory shows that a dissipative theory must also be stochastic at some level. Our claim, based on the results of this paper, is that the stochastic nature of effective field theories is intrinsic, in that dissipation and fluctuations are present both above and below threshold. Stochasticity builds up exponentially quickly as the heavy threshold is approached, becoming dominant once the threshold is crossed. But it also exists below threshold, albeit strongly suppressed at low energy. This is in contradistinction to the conventional belief that such behavior changes discontinuously on threshold crossing. Using the expressions we derive here, one can quantitatively define the ‘effectiveness’ of a theory in

1It should be clear from the discussion below that we regard the effective theory as a description of the actual physics accessible to an observer at a given energy scale including the effect of the higher mass sector, rather than as a formal construct obtained from the full theory by application of some approximation scheme such as the Schwinger-DeWitt proper-time quasilocal or the Heisenberg-Euler inverse-mass expansion of propagators. The nonperturbative effect we discuss here cannot be obtained by these approximations.
terms of the relative weight of the deterministic versus the stochastic behavior at different energy scales.

The presence of stochastic effects shows that the physics of the light fields is different in an effective theory, in small but important ways, from what would follow if the light action were fundamental, even at scales below the heavy threshold. The difference lies in the phenomena of dissipation and fluctuation generation, which are present in effective theories but absent in fundamental ones. On a more speculative level, we may argue that there is no real ‘fundamental’ theory in nature [9]. A theory only appears to be fundamental at low energy in ignorance of the presence of other heavy constituents in nature because the stochastic components generated from such interactions are suppressed. At higher energies such features become more important and the presence of the heavy sector becomes more apparent. Thus, the magnitude of noise and dissipation can serve as a measure of the degree of resolution of the means of observation compared to the intrinsic mass or energy scales of the more complete theory. This viewpoint is a natural consequence from regarding an effective theory as an open system [6, 7], which is what we used earlier in the analysis of the statistical mechanical properties of particles and quantum fields [10, 11, 12, 13] and semiclassical gravity [14, 15, 16, 17].

Recent investigation of the statistical mechanical aspect of gravitational systems and quantum fields began with the work of Bekenstein [18] and Hawking [19] on black hole entropy. Penrose’s proposal of gravitational entropy and the Weyl curvature conjecture [20] was analyzed in the context of backreaction of particle creation by one of us. [21]. Entropy of quantum fields associated with particle creation was discussed in [22] and [23] (see also [24]). The concept of field entropy was further explored in [25, 26] and more recent works. Entropy of interacting fields defined by the truncation of a BBGKY hierarchy and the factorization of higher order correlation functions was proposed in [27]. Noise, decoherence, fluctuations and dissipation in this scheme were discussed in [12, 13]. A common assumption in quantum theories of structure formation, i.e., quantum correlation functions directly go over to their classical counterparts, was shown to be incorrect [17] when the stochastic properties of quantum fields are carefully considered. As our present analysis further demonstrates, only those modes of the light field which are dynamically entangled with the quantum heavy fields can partake of the process of decoherence and quantum to classical transition to acquire a stochastic character. The relationship between dissipation and stochasticity has been further discussed in the context of decoherence and quantum to classical transition. Calzetta and Mazzitelli pointed out the connection between particle creation and decoherence [28]. Paz and Sinha showed that a decohered field must of necessity possess traits of randomness [29]. The stochastic aspects of classical theories emerging from quantum mechanics are discussed at length in an important paper by Hartle and Gell-Mann [30]. (See also [31].)

Our inquiry into the stochastic nature of effective field theory thus compels us to adopt a new and more complex viewpoint of quantum field theory, incorporating the statistical mechanical properties of quantum fields. This means that we are more interested in the causal development of quantum fields than the traditional scattering or transition amplitude aspects. For this we need the in-in (or closed time path CTP, or Schwinger-Keldysh)
rather than the in-out (or Schwinger-DeWitt) formulation. We will use the related influence functional (Feynman-Vernon) formalism to extract the stochastic features of effective field theory. In addition, we will need to probe into the nonperturbative effects. By perturbative, we refer here specifically to expansions in the coupling constants of fields, rather than loop expansion, or adiabatic approximation. Nonperturbative calculations are exemplified by Schwinger’s original derivation of particle creation in a constant electric field. For noninteracting fields in curved spacetimes with regions where a vacuum for a field theory can be defined (asymptotically flat, or statically-bounded evolution), Parker and Zel’dovich’s treatment of cosmological particle creation and Hawking’s derivation of black hole radiance by means of Bogolubov transformations are nonperturbative, even though for more general situations where a well-defined global vacuum is lacking, one may need to appeal to approximate or perturbative concepts such as adiabatic vacuum. For fields propagating in nontrivial spacetimes (such as the nonconformally-flat spacetimes of the Bianchi Universes), or for interacting fields (e.g.) one has to appeal to perturbative expansion of the interaction or coupling parameter (such as the λ in a ϕ^4 theory or the anisotropy). These nonperturbative effects may be quantitatively significant in the proper environment, such as during the reheating era in inflationary cosmology.

The main result of this paper is that a light field plane wave is always followed by a stochastic, slowly varying light ‘echo’. This ‘echo’ is produced by the back reaction of heavy particles created from the seed light wave, and it is a nonperturbative effect. The amplitude and growth rate of the echo increases exponentially as the frequency of the seed wave approaches the heavy scales. We may understand this as a ‘diamagnetic’ effect (in contrast to a paramagnetic effect), since it involves two steps: First the polarization of the vacuum by the light seed wave, and then the coupling of the appropriate light modes to the polarized vacuum.

If the light field self-interacts, this effect shall be masked by the corresponding one originating from quantum fluctuations of the light field. In principle, these two effects could be disentangled by recourse to their different scale dependence. In any case, the presence of both effects underlies the fact that any field theory used in practice for the description of real physical systems is an effective theory. This heuristic observation may be put on a rigorous footing by casting a field theory as a theory of a background field interacting with a hierarchy of Wightman functions; the theory becomes effective when this hierarchy is truncated, either explicitly through some approximation scheme, or implicitly by the limited accuracy of specified observations.

To connect with earlier theoretical work (developed mainly in the 70’s and 80’s) we shall begin in Sec. 2 with a discussion of conventional effective field theories. We shall show how the features of light physics we want to develop appear already in the conventional (in-out) formulation, albeit in a somewhat obscure form. We shall then in Sec. 2.2 go over to the more suitable causal (in-in) formulation of quantum field theory. In Sec. 2.3 we show how the stochastic characters of an effective field theory can be identified from the in-in effective action with the aid of the Feynman-Vernon formalism, and how both dissipation
and fluctuations can be related to particle creation above threshold. In Sec. 3 we show how such features remain in the below threshold regime and derive the new effects which can in principle be used to discern an effective theory from a fundamental theory. The Appendices contain the details of the derivation of the heavy field quantization in the background of a light plane wave.

2 Perturbative effective field theory

As could be expected, the problems with conventional light effective theories are most acute if we attempt to implement them in the above threshold regime; in this range, dissipation and noise appear even at the perturbative level. We shall take advantage of this fact to introduce the main concepts of dressed field, dissipation and noise kernels, etc., in the familiar setting of one-loop Feynman graphs. We shall then proceed in the next section to discuss these effects in the physically more relevant, below-threshold regime.

2.1 Effective Theory of the Light Particles

To simplify the technical burden, we shall work on a toy model of quantum field theory consisting of two real scalar fields \(\phi \) and \(\Phi \). We have used this model to treat the dissipation of quantum fields via particle creation by the CTP method before [11, 13], For more general models, we refer the reader to [11]. Similar consideration of the dissipative and noise properties of two field interactions can be found in [14, 15, 16, 18, 19, 50, 51].

The classical action is given by

\[
S = S_l + S_H + S_{lH}
\]

\[
S_l = \int d^4 x \left(-\frac{1}{2}\right) \left[\partial \phi \partial \phi + m^2 \phi^2 - g \langle \Phi^2 \rangle_0 \phi \right]
\]

\[
S_H = \int d^4 x \left(-\frac{1}{2}\right) \left[\partial \Phi \partial \Phi + M^2 \Phi^2 \right]
\]

\[
S_{lH} = \int d^4 x \left(-\frac{1}{2}\right) g \phi \Phi^2
\]

where the subscripts \(l, H \) are used to denote the light and heavy fields. We use signature -++++, and ignore terms necessary for renormalization purposes (other than the term linear in the \(\phi \) field) Here, \(\langle \Phi^2 \rangle_0 \) stands for the vacuum expectation value in the absence of background field, i.e., \(\langle \Phi^2 \rangle_{\phi=0} \). We also assume \(m \ll M \).

The effective theory of light particles (we may henceforth call it light effective theory) is defined by the action functional

\[
S_{\text{eff}} = S_l + \delta S
\]
where

$$\delta S[\phi] = -i \ln \int D\Phi \: e^{i(S_H(\Phi) + S_H(\phi, \Phi))}$$ \hspace{1cm} (2.6)$$

Formally, δS is the effective action for the heavy fields propagating on the light background field (considered as an external field), evaluated at the vacuum expectation value $[52]$. In our case, this VEV vanishes by symmetry, so we shall not mention it explicitly. Perturbatively, δS is the sum of all 1PI vacuum bubbles, with light field insertions but only heavy internal lines.

To second order in the coupling constant g, we find

$$\delta S[\phi] = \left(\frac{-g}{2}\right) \int d^4x \: \phi(x) \Delta_F(x, x) + \left(\frac{ig^2}{4}\right) \int d^4x d^4x' \: \phi(x) \phi(x') \Delta_F^2(x, x')$$ \hspace{1cm} (2.7)$$

where

$$\Delta_F(x, x') = \frac{<\text{OUT} | T(\Phi(x)\Phi(x')) | \text{IN}>}{<\text{OUT} | \text{IN}>} = (-i) \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \frac{1}{k^2 + M^2 - i\varepsilon}$$ \hspace{1cm} (2.8)$$

is the Feynman propagator for the heavy particles. The linear term is cancelled by an appropriate counterterm. For the quadratic term, we find

$$\Delta_F^2(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \left\{ (i)(k^2 + m^2) \int_{4M^2}^\infty ds \: \frac{h(s)}{(s - m^2)(k^2 + s - i\varepsilon)} \right\}$$ \hspace{1cm} (2.9)$$

where we have performed the necessary subtractions to insure that m^2 remains the physical mass of the light field, and

$$h(s) = \frac{1}{(4\pi)^2} \sqrt{1 - \frac{4M^2}{s}}$$ \hspace{1cm} (2.10)$$

An effective light theory deals with the $k^2 \to 0$ limit. We can obtain a formal expression for the effective action by expanding Eq. (2.9) in inverse powers of the heavy mass; this expansion is analogous to the Heisenberg-Euler lagrangian for the electromagnetic field $[5]$. At any finite order, we obtain a higher derivative theory $[53]$. Such approximation will not show dissipation nor fluctuations in the light field.

In this limit, δS is analytic in k and real. However, this ceases to be the case as soon as we cross the heavy particle threshold $4M^2$. Above the threshold, δS is neither analytical nor real. In this regime a light effective theory is not only cumbersome because of the proliferation of nonlocal terms, rather, the whole concept of an effective action breaks down.

A striking feature of the light action, if we insist on taking it seriously above threshold, is that it leads to complex and noncausal equations of motion. This follows from the IN OUT boundary conditions built in the path integral Eq. (2.6). The imaginary part of the
effective action is related to the imaginary part of the Feynman graph. Because of the optical theorem, we know this in turn is related to pair creation from the light particles. Therefore, a complex action would give rise to dissipative terms in the equation of motion of the light field, and the fluctuations in the particle creation would measure the breakdown of the (low energy) effective theory. The unitarity of the full quantum theory is broken in the effective theory. However, the chosen IN-OUT boundary conditions obscure this fact, since they make it hard to discern the arrow of time arising from dissipation \[40\]. For this and other reasons, one should use the causal, IN-IN, boundary conditions, as introduced by Schwinger \[32, 41, 43\].

2.2 Causal effective field theory

Let us derive the causal and real equations of motion which describe the evolution of physical perturbations of the light field. This is achieved by doubling the degrees of freedom to two fields \(\phi^+\), or rather, by assuming the field is actually defined on a closed time path. The equations of motion are found by taking the variation with respect to \(\phi^+\) of the CTP action functional

\[
S^{\text{CTP}}_{\text{eff}} = S_l[\phi^+] - S_l[\phi^-] + \delta S^{\text{CTP}}[\phi^+, \phi^-] \tag{2.11}
\]

where \[32, 41\]

\[
\delta S^{\text{CTP}}[\phi^+, \phi^-] = -i \ln \int D\Phi^+ D\Phi^- e^{i\{S_H(\Phi^+)-S_H(\Phi^-)+S_{\text{int}}(\phi^+, \Phi^+)-S_{\text{int}}(\phi^-, \Phi^-)\}} \tag{2.12}
\]

The quadratic terms in the effective action, to second order in the coupling constant, are

\[
\frac{ig^2}{4} \int d^4x d^4x' \left\{ \phi^+(x)\phi^+(x')\Delta_F^2(x,x') - 2\phi^+(x)\phi^-(x')\Delta_F^2(x,x') + \phi^-(x)\phi^-(x')\Delta_F^2(x,x') \right\} \tag{2.13}
\]

where the propagators are the expectation values taken with respect to the IN vacuum defined by

\[
\Delta_F(x,x') = \langle \text{IN} | T(\Phi(x)\Phi(x')) | \text{IN} \rangle = (-i) \int \frac{d^4k}{(2\pi)^4} e^{i\mathbf{k}(x-x')} \frac{1}{k^2 + M^2 - i\epsilon} \tag{2.14}
\]

\[
\Delta_D(x,x') = \langle \text{IN} | \tilde{T}(\Phi(x)\Phi(x')) | \text{IN} \rangle = (i) \int \frac{d^4k}{(2\pi)^4} e^{i\mathbf{k}(x-x')} \frac{1}{k^2 + M^2 + i\epsilon} \tag{2.15}
\]

\[
\Delta_-(x,x') = \langle \text{IN} | \Phi(x')\Phi(x) | \text{IN} \rangle = (2\pi) \int \frac{d^4k}{(2\pi)^4} e^{i\mathbf{k}(x-x')} \delta \left(k^2 + M^2 \right) \theta (-k^0) \tag{2.16}
\]
The equations of motion become (but see below!)

\[
(-\Box + m^2) \phi(x) + g^2 \int d^4x' D(x, x') \phi(x') = 0 \tag{2.17}
\]

where

\[
D(x, x') = \frac{i}{2} \left[\Delta_F^2 (x, x') - \Delta_\pi^2 (x, x') \right] \tag{2.18}
\]

Since from the definitions

\[
\Delta^- (x, x') = \Delta_F (x, x') \quad \text{if} \quad t' > t, \tag{2.19}
\]

while

\[
\Delta^- (x, x') = \Delta_F^* (x, x') \quad \text{if} \quad t > t', \tag{2.20}
\]

it is obvious that Eq. (2.17) is real and causal. Explicitly

\[
D(x, x') = \int \frac{d^4k}{(2\pi)^4} e^{ik(x-x')} \left\{ \frac{-1}{2} (k^2 + m^2) \int_{4M^2}^{\infty} \frac{ds}{(s-m^2)} \frac{h(s)}{[(k+i\varepsilon)^2 + s]} \right\} \tag{2.21}
\]

with the same \(h\) as in Eq. (2.10), and \((k+i\varepsilon)^2 = -(k^0 + i\varepsilon)^2 + \vec{k}^2\), carrying the causal boundary conditions.

The light field \(\phi\) described by the wave equation Eq. (2.17) is clearly no longer the classical light field, but is now dressed through the interaction with the quantum fluctuations of the heavy field. A different approach to the dynamics clarifies this point. The Heisenberg equations of motion for the light field are

\[
(-\Box + m^2) \phi(x) + \left(\frac{g}{2}\right) \left[\Phi^2 - <\Phi^2>_0 \right] = 0 \tag{2.22}
\]

where we have substracted the expectation value of \(\Phi^2\), computed at vanishing light fields, to make \(\phi = 0\) the true light vacuum. Comparing (2.17) and (2.22), we see that the former amounts to the approximation

\[
[\Phi^2 - <\Phi^2>_0] \approx 2g \int d^4x' D(x, x') \phi(x') \tag{2.23}
\]

On the other hand, a direct calculation shows that

\[
2g D(x, x') \equiv \frac{\delta <\Phi^2>(x)}{\delta \phi(x')} \bigg|_{\phi=0} \tag{2.24}
\]

so that, within the present accuracy,

\[
2g \int d^4x' D(x, x') \phi(x') \simeq <\Phi^2>\phi - <\Phi^2>_0 \tag{2.25}
\]
Here, \(< \Phi^2 >_{\phi} \) stands for the vacuum expectation value evaluated with respect to the background of a non-zero light field \(\phi \). So in this approximation, the q-number \(\Phi^2 \) in the Heisenberg equation of motion is substituted by its expectation value, computed as a causal functional of the light background. (In quantum open systems language, the heavy field is said to be ‘slaved’ to the light one \([13]\)).

Now the expectation value does not give a faithful description of the action of the heavy fields on the light ones. Indeed, this approximation will become inaccurate as heavy pair creation accumulates and the actual state of the heavy field deviates, in unpredictable ways, from the vacuum. It is in this way that an arrow of time appears in the theory. Pair creation brings forth dissipation, and the fluctuations in back reaction associated to fluctuations in particle number manifest as noise, as we shall presently show.

2.3 Above Threshold: Fluctuations and Dissipation

The expectation value alone does not capture the full effect of the heavy fields on the light ones. Investigations in recent years show that theoretical consistency demands that an extra stochastic source term \(\xi(x) \) should be present in (2.17), as

\[
(-\Box + m^2) \phi(x) + g^2 \int d^4 x' D(x, x') \phi(x') = g \xi(x),
\]

which takes into account the fluctuations of the heavy fields, namely,

\[
\xi(x) \sim \left(\frac{1}{2} \right) \left[\Phi^2 - < \Phi^2 >_{\phi} \right](x)
\]

The external source vanishes on average, but has a rms value

\[
\langle \xi(x) \xi(x') \rangle \equiv N(x, x') = \left(\frac{1}{8} \right) \left[\langle \{ \Phi^2(x), \Phi^2(x') \} \rangle - 2 < \Phi^2 >_{\phi}^2 \right]
\]

Or, explicitly,

\[
N(x, x') = \int \frac{d^4 k}{(2\pi)^4} e^{ik(x-x')} \left(\frac{\pi}{2} \right) h(-k^2)
\]

Following Feynman and Vernon \([33]\), as we have done in related problems \([17]\), we can show that a Langevin type equation Eq. (2.26) is properly derived from the CTP effective action, rather than the more familiar deterministic equation Eq. (2.17).

To this end, let us first replace the field variables \(\phi^{+,-} \) by the average and difference variables

\[
[\phi] = \phi^+ - \phi^-, \quad \{\phi\} = \phi^+ + \phi^-
\]

With the identity

\[
S_{eff}^{\text{CTP}} \{\phi\} , [\phi] = 0 \equiv 0
\]
it follows that the equation of motion is

\[\frac{\delta S^{CTP}_e}{\delta [\phi]} \left[\{\phi\} = \phi, [\phi] = 0 \right] = 0 \] (2.32)

The quadratic terms in the effective action, Eq. (2.13), may be written as

\[\frac{g^2}{2} \int d^4x d^4x' \left\{ -[\phi(x)] D(x, x') \{\phi(x')\} + i[\phi(x)] N(x, x') [\phi(x')] \right\} \] (2.33)

It may seem that the noise kernel \(N \) does not contribute to the equations of motion. However, by virtue of the identity

\[\exp \left\{ -\frac{g^2}{2} \int d^4x d^4x' [\phi(x)] N(x, x') [\phi(x')] \right\} \equiv \int D\xi \exp \left\{ -ig \int d^4x \xi(x) [\phi(x)] \right\} \] (2.34)

for some probability density \(P \), with

\[\langle \xi(x)\xi(x') \rangle \equiv N(x, x') \] (2.35)

we may substitute the quadratic term in the light effective action by coupling the field to a stochastic source whose auto-correlation is given by the noise kernel \(N \). The fact that both dissipation and noise kernels can be expressed in terms of the same function \(h \) in this example is the origin of the fluctuation-dissipation theorem.

It should be realized that the inclusion of a stochastic source in Eq. (2.26) is not merely an improvement over the earlier Eq. (2.17), but it is required for consistency of the light effective theory.

We can see this, for example, by consideration of the light field fluctuations. These are described by the Hadamard kernel

\[G_1(x, x') = \langle IN |\{\phi(x), \phi(x')\}| IN \rangle \] (2.36)

The Fourier transform \(G_1(k) \) is related to that of the expectation value of the commutator of two fields \(G \) by the zero temperature KMS formula \[57\]²

²The dressed light field is prima facie a quantum field, and the stochastic driving force from the environment is also quantum in nature. Since light and heavy modes are dynamically entangled, interference effects are abound, but are extremely hard to display for observations carried out at low energy. A heavy sector serving as an environment to the light sector can decohere it, and induce a quantum to classical transition. After decoherence the open system variables obey an effectively classical equation of motion, but driven by stochastic source terms, such as in a Langevin equation. Indeed, the amount of noise in this open system is a direct measure of the degree of entanglement between the unobserved sector. (This delicate borderline between classical and quantum physics is a general feature of quantum noisy systems \[54\].) The issue of decoherence is an important one lying at the foundation of quantum mechanics and has been studied by many people in recent years \[55, 56\]. We have also discussed this issue for model field theories \[14, 17\]. By the same reasoning, we can assume safely for our considerations here that the light field has been decohered and behaves like a classical stochastic field.
If we assume canonical equal-time commutation relations, there is a simple relationship between G and G_{ret}

$$G_{\text{ret}}(x, x') = (-i)G(x, x')\theta(x^0 - x'^0)$$

which translates into

$$G(k) = 2 \text{ Im } G_{\text{ret}}(k)$$

The retarded propagator is simply the inverse of Eq. (2.17) with causal boundary conditions. It has a pole at $-k^2 = m^2$ and a branch cut from $-k^2 = 4M^2$ on. Therefore

$$G_{\text{ret}}(k) = \frac{B}{(k + i\varepsilon)^2 + m^2} + \left(\frac{g^2}{2}\right) \int_{4M^2}^{\infty} ds \frac{h(s) |G_{\text{ret}}(s)|^2}{[(k + i\varepsilon)^2 + s]}$$

where B is the residue at the pole, and $G_{\text{ret}}(s)$ stands for the propagator evaluated on the $-k^2 = s$ shell. We conclude

$$G(k) = 2\pi \left\{ B \delta(k^2 + m^2) + \left(\frac{g^2}{2}\right) h(-k^2) |G_{\text{ret}}(k)|^2 \theta(-k^2 - 4M^2) \right\} \text{sign}(k^0)$$

But this result is inconsistent with Eq. (2.17): since modes above threshold are damped, they couldn’t possibly sustain a time translation invariant auto-correlation such as Eq. (2.42). However, addition of the stochastic source $g\xi$ removes the contradiction: we can identify the first term in Eq. (2.42) as the ‘natural’ light quantum fluctuations, and the second as the fluctuations induced by the action of the external source, in agreement with Eq. (2.29). The stochastic source feeds onto the light field precisely the amount of fluctuation necessary to keep the noise level, as required by the fluctuation-dissipation relation.

Are these quantum or classical fluctuations? The calculation above relied on ordinary quantum mechanical rules, such as the KMS theorem, so one would answer they are quantum fluctuations. But this is the point of view of an observer who is aware of the existence of the heavy field. Since the high momentum modes are entangled with the heavy field and become correlated through particle creation, only such an observer could effect interference between modes above the threshold. For observers who cannot operate on the heavy field, the interference of these modes are not observable, and his answer could be that these are classical fluctuations. As in many other situations in quantum physics, questions like this can have different answers depending on the specific observational context.

Our perturbative treatment so far suggests that noise and dissipation only turn on above threshold. We now wish to show that they are indeed present below the threshold, albeit exponentially suppressed.
3 Nonperturbative effective theory

The analysis of the previous Section highlighted the main elements of the light field theory, namely, the dressing of the light field by the heavy quantum fluctuations, the onset of dissipative processes, and the decoherence and noise generation thereof. However, this analysis is based on a hypothetical light field with momenta above the heavy threshold, a regime where light effective theory would be of theoretical rather than practical (observational) interest. What makes the ongoing discussion relevant is that the same phenomena are actually occurring at the light scales, albeit strongly suppressed. They are not revealed in a perturbative theory. In this Section, we shall describe some of the most conspicuous manifestations of noise and dissipation in the infrared regime.

To simplify the calculation, we shall assume the existence of a seed classical light background field, in the form of a monochromatic plane wave. It may arise through the action of some external agent, or as an outcome of the previous history of the system. We also assume that the interaction between the light background and the heavy quantum field is adiabatically switched off in the past, so that there is a well defined IN vacuum for the heavy fields, and that no substantial particle creation occurs prior to a given time (conventionally taken as \(t = 0 \)), so that at this time the heavy field is still in the IN vacuum state. Our aim is to compute the amplification of the heavy quantum fluctuations due to parametric resonance, and the light fluctuations arising from the back-reaction thereof.

This situation actually arises in many cases of interest, like the background gravitational field in the early Universe interacting with quantum matter fields. In this case, detailed studies show that indeed the gravitational field is prone to decohere earlier than the matter fields, so the classical - quantum distinction is unambiguous \cite{29}. In the case of multiparticle production in heavy ion collisions, for example, particle currents are applied externally, while the gauge fields take the role of the ‘irrelevant’ heavy fields \cite{58} which are coarse-grained. If we study the generation of a cosmic background magnetic field, on the other hand, a seed magnetic field comes from the past (for example, through amplification of vacuum fluctuations during inflation) and is further amplified through interaction with charged particles in the radiation era \cite{59}. To give yet another example, we could model a laser as a light field (the electromagnetic field in a resonant cavity) interacting with heavy fields (the creation operators for the gas in the cavity, in different possible internal states). Then the seed is the externally provided pumping \cite{60}.

While the situation we shall discuss is at best a toy model for these relevant systems, it will allow us to show in detail how the back reaction of the heavy field on the light one leads to the onset of a distinct, inhomogenous, stochastic structure, whose amplitude, growth, and coarsening rates depend exponentially on the ratio of the light to the heavy scales. Thus the light theory will have a stochastic character, even for observers confined to infrared phenomenology.
3.1 Nonperturbative equations of motion

Let us return to the fundamental definitions

\[S_{\text{eff}}^{\text{CTP}} = S_l[\phi^+] - S_l[\phi^-] + \delta S_{\text{CTP}}^{\phi^+, \phi^-} \] \hspace{1cm} (3.1)

\[\delta S_{\text{CTP}}^{\phi^+, \phi^-} = -i \ln \int D\Phi^+ D\Phi^- e^{i\{S_H(\Phi^+) - S_H(\Phi^+) + S_{lu}(\phi^+, \Phi^+) - S_{lu}(\phi^-, \Phi^-)\}} \] \hspace{1cm} (3.2)

We shall now attempt a nonperturbative evaluation of this path integral. Using the sum and difference field variables

\[[\phi] = \phi^+ - \phi^- \quad \{\phi\} = \phi^+ + \phi^- \] \hspace{1cm} (3.3)

we can extract the ‘deterministic’ part as

\[\delta S_{\text{CTP}}^{\phi^+, \phi^-} = \left(-\frac{g^2}{2} \right) \int d^4x \left< \Phi^2 >_{\{\phi\}} (x) \right> \Delta S \{\phi\} , \{\phi\} \] \hspace{1cm} (3.4)

where as defined in the previous section, the subscript \{\phi\} denotes averaging with respect to the \{\phi\} field. We perform a functional Fourier transform

\[\exp \{i\Delta S \{\phi\} , \{\phi\}\} = \int D\xi e^{ig \int \xi[\phi]} P[\xi, \{\phi\}] \] \hspace{1cm} (3.5)

Observe that

\[\langle \xi(x) \rangle = 0 \] \hspace{1cm} (3.6)

\[\langle \xi(x) \xi(x') \rangle \equiv N(x, x') = \left(\frac{1}{8} \right) \left[\left< \Phi^2 (x) , \Phi^2 (x') \right> \right]_{\{\phi\}} - 2 \left< \Phi^2 >_{\{\phi\}} (x) \right. \left< \Phi^2 >_{\{\phi\}} (x') \right] \] \hspace{1cm} (3.7)

where

\[\langle f \rangle \equiv \int D\xi f P[\xi, \{\phi\}] \] \hspace{1cm} (3.8)

This is to be contrasted with the result in the perturbative treatment Eq. (2.29).

The functional \(P[\xi, \{\phi\}] \) must be real (as follows from \(\Delta S \{\phi\} , [-\phi] = -\Delta S \{\phi\} , [\phi]^* \)) and it is nonnegative to 1 loop approximation. We may think of it as a functional Wigner transform of the effective action \[61\], and thereby as a probability density ‘for all practical purposes’. Observe that \(P \) will not be Gaussian in general. In our concrete application, nevertheless, the effective action is 1-loop exact, so the identification of \(P \) as a Gaussian probability density poses no difficulty.

We conclude that the correct, nonperturbative effective equation of motion for the light fields reads
\[(\Box + m^2) \phi(x) + \left(\frac{g}{2}\right) \left[<\Phi^2>_{\phi} - <\Phi^2>_{\phi_0}\right](x) = g\xi(x)\]

(3.9)

Our goal is to show that any plane wave light field background will be followed by a slowly varying echo. Since the light mass is nonvanishing there is no loss of generality for our purpose if we assume the light field is homogeneous in space and harmonic in time, i. e.,

\[\phi(t) = \phi_0 \sin 2\omega t.\]

(3.10)

The condition that the light four momentum lies below the branch point at \(-k^2 = 4M^2\) translates into \(\omega \leq M\).

To compute the nonperturbative noise kernel, we decompose the quantum heavy fields propagating on the light background field into normal modes. The amplitudes of each normal mode are complex, with

\[\Phi_{-\vec{k}} = \Phi_{\vec{k}}^\dagger\]

(3.11)

They obey the wave equation

\[\partial_t^2 \Phi_{\vec{k}} + \Omega_{\vec{k}}^2 \Phi_{\vec{k}} = 0\]

(3.12)

where

\[\Omega_{\vec{k}}^2 = \vec{k}^2 + M^2 + g\phi(t)\]

(3.13)

is the natural frequency of the \(\vec{k}\)th mode. Here we shall disregard the possibility of \(\Omega\) becoming imaginary through a large negative light field, i.e., we assume \(g\phi_0 \leq M^2\). The strength of interaction between the light and heavy fields is measured by

\[\kappa_\vec{k} = \frac{1}{2\Omega_{\vec{k}}} \frac{d\Omega_{\vec{k}}}{dt} = \frac{1}{4\Omega_{\vec{k}}^2} \frac{d\Omega_{\vec{k}}^2}{dt}.\]

(3.14)

We assume the heavy field is in the vacuum state at some initial time \(t = 0\). Since it is a free field, Wick’s theorem holds, and our problem is to relate the field at arbitrary times to the initial creation and destruction operators. Of course, without knowing the explicit evolution law for the light field, we cannot get the exact form, but have to find a suitable approximation scheme. The general relationship we seek is

\[\Phi_{\vec{k}}(t) = f_k(t) a_{\vec{k}}(0) + f_k^\dagger(t) a_{-\vec{k}}^\dagger(0)\]

(3.15)

where \(f_k\) is the positive frequency mode associated to the IN particle model \[14\]. It can be decomposed into instantaneous positive and negative frequency parts as

\[f_k(t) = \frac{1}{\sqrt{2\Omega_k}} [\alpha_k(t) + \beta_k(t)]\]

(3.16)
3.2 Stochastic features near threshold

Let us first consider the near threshold ($\omega \sim M$), weak field regime, where Ω_k is essentially constant, and

$$
\kappa_k \sim 2c_k \cos 2\omega t
$$

where

$$
c_k \sim \frac{\omega g \phi_0}{4\Omega_k^2}.
$$

The Bogolubov coefficients α_k, β_k are calculated in Appendix A to be

$$
\alpha_k(t) = \left(\frac{c_k}{2\gamma_k}\right) e^{-i\omega t} e^{\gamma_k t} \left(1 + e^{i\delta_k} e^{-2\gamma_k t}\right) e^{-i\delta_k/2}
$$

$$
\beta_k(t) = \left(\frac{c_k}{2\gamma_k}\right) e^{i\omega t} e^{\gamma_k t} \left(1 - e^{-2\gamma_k t}\right)
$$

where

$$
e^{i\delta_k/2} = \left(\frac{\gamma_k}{c_k}\right) + i \left(\frac{\Omega_k - \omega}{c_k}\right)
$$

$$
\gamma_k = \sqrt{c_k^2 - (\Omega_k - \omega)^2}
$$

We observe that eqs. (3.19) and (3.20) are formally valid in the whole range of frequencies. However, outside the parametric resonance regime, we have

$$
\gamma_k \sim \pm i(\Omega_k - \omega)
$$

and both α_k and β_k describe positive frequency oscillations above the heavy threshold. We are interested here in the opposite case, where three features stand out, namely, 1) the generation of the negative frequency components described by β_k, which is the physical basis for vacuum particle creation; 2) the exponential amplification due to ongoing particle creation, and 3) the phase-locking of a whole range of wavelengths at the resonance frequency ω. As we shall now see, phase locking allows the generation of a low frequency, inhomogeneous stochastic field, which can be detected at the scale of the light sector. This is the main physical indication of the new features of dissipation and fluctuation below threshold we want to highlight in the context of effective field theory.

In order to find the noise kernel, let us decompose the Heisenberg operator Φ^2 into a c-number, a diagonal (D) and a nondiagonal (ND) (in the particle number basis) part

$$
\Phi^2 = \langle \Phi^2 \rangle_{\phi} + \Phi_{D}^2 + \Phi_{ND}^2
$$

where the (D) and (ND) components are
\[\Phi_2^D = \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} e^{i(k+k')x} \left\{ f_k(t) f_{k'}^*(t) a_{-k}^+ a_k + f_k^*(t) f_{k'}(t) a_{-k} a_{k'} \right\} \] (3.25)

\[\Phi_{2ND}^2 = \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} e^{i(k+k')x} \left\{ f_k(t) f_{k'}(t) a_k a_{k'} + f_k^*(t) f_{k'}^*(t) a_{-k}^+ a_{-k'}^+ \right\}. \] (3.26)

Observe that

\[\langle \Phi_2^D \rangle_\phi = \langle \Phi_{2ND}^2 \rangle_\phi = \langle \Phi_2^D \Phi_{2ND}^2 \rangle_\phi = \langle \Phi_2^D \Phi_2^D \rangle_\phi \equiv 0. \] (3.27)

Therefore,

\[N(x, x') = \left(\frac{1}{8} \right) \langle \{ \Phi_{2ND}(x), \Phi_{2ND}(x') \} \rangle_\phi \]

\[= \left(\frac{1}{2} \right) \int \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} e^{i(k+k')(x-x')} \text{Re} \left\{ f_k(t) f_{k'}(t) f_{k}^*(t') f_{k'}^*(t') \right\} \]

If no particle creation occurred, the noise kernel would contain frequencies above threshold only. However, in the presence of frequency-locking and a negative frequency part of the mode functions \(f \), the noise kernel also contains a steady component

\[N_S(x, x') = \left(\frac{1}{2} \right) \int' \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} e^{i(k+k')(x-x')} \Theta_{kk'}(t, t') \] (3.28)

where the integral is restricted to those modes where \(\gamma_k \) is real, and

\[\Theta_{kk'}(t, t') = \text{Re} \left\{ (\alpha_k(t) \beta_{k'}(t) + \alpha_{k'}(t) \beta_k(t)) (\alpha_k(t') \beta_{k'}(t') + \alpha_{k'}(t') \beta_k(t'))^* \right\}. \] (3.29)

It is important to notice that \(\Theta \) is slowly varying not only with respect to the heavy frequencies \(\Omega \), but also with respect to the locking frequency \(\omega \). Of course we do not observe the noise kernel directly, but only through its effect on the light field. However, since the steady part of the stochastic source is slowly varying in space and time, to first approximation it induces a stochastic light field \(\phi_S \) which is simply proportional to it

\[\phi_S \sim \left(\frac{g}{m^2} \right) \xi_S ; \quad \langle \phi_S \phi_S \rangle \sim \left(\frac{g}{m^2} \right)^2 N_S. \] (3.30)

This is the echo we sought for. One can deduce the noise and its auto-correlation in this way.

It is interesting to show the actual form of the noise kernel in the opposite limits of very long and very short times, as we now do.
3.2.1 Long time limit

At long times, the correlation function is dominated by the very long wavelength modes. We may thus approximate

\[c_k \sim c_0 \sim \frac{\omega g \phi_0}{4M^2} \]
\[\gamma_k \sim \gamma_0 - \frac{\sigma^2 k^2}{2} \]

in the exponents, where

\[\gamma_0 = \sqrt{c_0^2 - (M - \omega)^2} \]
\[\sigma^2 = \frac{1}{\gamma_0} \left[1 - \frac{\omega}{M} + \frac{2\omega^2 g^2 \phi_0^2}{M^6} \right] \]

neglecting \(k^2 \) elsewhere. Moreover, for \(\gamma_0 t \gg 1 \) we neglect the decaying modes, and extend the integral to all \(k \) space. The result is

\[\alpha_k(t) \sim \left(\frac{c_0}{2\gamma_0} \right) e^{-i\omega t} e^{\gamma t} e^{-i\phi_0/2} \]
\[\beta_k(t) = \left(\frac{c_0}{2\gamma_0} \right) e^{i\omega t} e^{\gamma t} \]
\[\alpha_k(t)\beta_{k'}(t) + \alpha_{k'}(t)\beta_k(t) \sim 2 \left(\frac{c_0}{2\gamma_0} \right)^2 e^{(\gamma_k + \gamma_{k'})t} e^{-i\phi_0/2} \]
\[\Theta_{kk'}(t, t') = 4 \left(\frac{c_0}{2\gamma_0} \right)^4 e^{(\gamma_k + \gamma_{k'})(t + t')} \]
\[N_S(x, x') = \left(\frac{1}{8(2\pi)^6 M^2} \right) \left(\frac{c_0}{\gamma_0} \right)^4 e^{2\gamma_0(t + t')} \left[\int d^3 k \ e^{ik(x-x')} e^{-\sigma^2 k^2(t+t')/2} \right]^2 \]

Performing the Gaussian integrals

\[N_S(x, x') \sim \left(\frac{\omega g \phi_0}{4M^2} \right)^4 \frac{e^{2\gamma_0(t+t')} e^{-(x-x')^2/\sigma^2(t+t')}}{\gamma_0^4 M^2 (2\pi \sigma^2(t + t'))^3} \]

We observe that a large scale, inhomogeneous stochastic structure in the light sector emerges from the back reaction of the created pairs of the heavy field. This structure takes the form of domains where the field is aligned, and the characteristic size of these domains grows as the square root of time.
3.2.2 Short time limit

In the opposite, very short time limit, we find

\[\alpha_k \approx e^{-i\omega t} \]
\[\beta_k(t) = c_k t e^{i\omega t} \]
\[\alpha_k(t)\beta_{k'}(t) + \alpha_{k'}(t)\beta_k(t) \sim (c_k + c_{k'}) t \]
\[\Theta_{kk'}(t, t') = (c_k + c_{k'})^2 t t' \]
\[N_S(x, x') = \left(\frac{tt'}{2}\right) \int' \frac{d^3k}{(2\pi)^3} \frac{d^3k'}{(2\pi)^3} e^{i(k+k')(x-x')} (c_k + c_{k'})^2 \]

Approximately,

\[N_S(x, x') \sim \left(\frac{c_0^2 k_0^6}{2\pi^4 \Omega_0^2}\right) tt' f^2(k_0 r) \]

where \(r = |\vec{x} - \vec{x}'| \),

\[f(u) = \left(\frac{1}{u^3}\right) [u \cos u - \sin u] \]

and \(k_0 \) marks the boundary of the resonant zone,

\[k_0 \sim \sqrt{(\omega + c_0)^2 - M^2}. \]

As before, we should stress that the scale of the stochastic echo is much lower than threshold. Even in the \(\omega \to M \) limit, we find

\[k_0 \sim \omega \sqrt{\frac{g\phi_0}{2M^2}} \ll \omega \]

3.3 Stochastic behavior far below threshold

Let us now consider the physically most relevant case, when the frequency of the light background wave is far below the heavy threshold. As before, we assume \(\phi(t) = \phi_0 \sin 2\omega t \), so that

\[\Omega_k \sim \Omega_{k0} + \delta\Omega_k \]
\[\delta\Omega_k \sim \frac{g\phi_0}{2\Omega_{k0}} \sin 2\omega t \]
\[\kappa_k = \frac{1}{2\Omega_k} \frac{d\Omega_k}{dt} \sim 2c_k \cos 2\omega t \]

(3.52)

where

\[c_k = \frac{g\phi_0}{4\Omega_{k0}^2} \omega \]

(3.53)

We are interested in the case where \(c_k \ll \omega \), and we assume

\[\frac{\Omega_{k0}}{\omega} = (2N + 1) (1 + \delta) \]

(3.54)

with \(N \gg 1 \gg \delta \).

As we show in Appendix B, the Bogolubov coefficients are given by

\[\alpha_k(t) = \left(\frac{C_k}{2\Gamma_k} \right) e^{\Gamma_k t} \left(1 + e^{i\Delta_k} e^{-2\Gamma_k t} \right) e^{-i\Delta_k/2} e^{-i\Theta_k} \]

(3.55)

\[\beta_k(t) = \left(\frac{C_k}{2\Gamma_k} \right) e^{\Gamma_k t} \left(1 - e^{-2\Gamma_k t} \right) e^{i\Theta_k} \]

(3.56)

where

\[e^{i\Delta_k/2} = \left(\frac{1}{C_k} \right) \{ \Gamma_k + i [\Omega_{k0} - (2N + 1)\omega] \} \]

(3.57)

\[\Gamma_k = \sqrt{C_k^2 - [\Omega_{k0} - (2N + 1)\omega]^2} \]

(3.58)

\[\Theta_k = (2N + 1)\omega t - \left(\frac{\Omega_{k0}c_k}{\omega^2} \right) \cos 2\omega t \]

(3.59)

and

\[C_k = c_k J_{2N} \left(\frac{2\Omega_{k0}c_k}{\omega^2} \right) \]

(3.60)

where \(J \) represents the usual Bessel function. When \(N \) is large, the asymptotics of Bessel functions yields

\[C_k \sim \left(\frac{c_k}{\sqrt{\pi N \tanh a}} \right) e^{-2N(a - \tanh a)} \]

(3.61)

where \(\cosh a = \omega / 2c_k (1 + \delta) \), or, in short,

\[a \sim \ln \left(\frac{4\Omega_{k0}^2}{g\phi_0} \right). \]

(3.62)

As expected, both the amplitude and the growth rate of the stochastic ‘echo’ are exponentially suppressed. In terms of the analysis of the previous subsection, this case always falls in the ”short time” limit. The amplitude and growth rate, as well as the inverse size,
of a stochastic domain shall be given by C_0. At truly low scales, the effect is extremely feeble, but it builds up exponentially as we reach for the heavy threshold. Since in a realistic situation this effect may be masked by self-interactions, this exponential scale dependence may be essential to its detectability, as one carries out measurements at successively higher energies in this below-threshold region.

The exponential suppression of particle creation and back reaction below the threshold brings to mind the analogy with quantum tunneling phenomena, which also depend exponentially on the height of the potential barrier. In both cases, though, these quantitatively small effects become important because of their qualitative impact on the physics of the system, and because no other perturbative effects are there to mask them. It is striking in this regard because tunneling dynamics is extremely sensitive to dissipation, and therefore to the kind of phenomena we are discussing.

3.4 Dissipation below threshold

As discussed in the Introduction, a noisy theory should also be dissipative. It is interesting then to conclude our treatment of fluctuations with a brief account of dissipative phenomena at low energies.

Dissipation is associated with the nonperturbative deterministic part of the equation of motion Eq. (3.9), namely,

$$\left(\frac{g^2}{2}\right)\left[\Phi^2 \phi - \Phi^2 \phi_0\right](x)$$

(3.63)

It is straightforward to show that

$$\left<\Phi^2\right>\phi = \int \frac{d^3k}{(2\pi)^3} \frac{\Omega_k}{2\Omega_k} \left\{1 + 2 \left|\beta_k\right|^2 + 2 \text{Re} \left[\alpha_k \beta_k^*\right]\right\}$$

(3.64)

Neglecting the dependence of Ω_k on the light field, the vacuum subtraction amounts to deleting the first term within brackets. The second term induces a deterministic, homogeneous shift in the low frequency light field. However, this effect is not associated to dissipation, being a reversible vacuum polarization effect much alike the Casimir energy between conducting plates.

It is the third term which depicts the truly dissipative effects. At short times it amounts to a viscous force

$$f = \left(\frac{g}{2}\right) \int \frac{d^3k}{(2\pi)^3} \frac{\Omega_k}{\Omega_k} \left\{e_k t \cos \omega t\right\}$$

(3.65)

(cf. Eq. (3.41, 3.42)). The integral is restricted to those modes where particle creation is effective. This force dissipates energy from the oscillating light field, which must be provided by the external agency sustaining the plane wave background. The energy dissipated per unit volume is

3We thank Diego Mazzitelli for this observation
\[\delta \varepsilon = \int dt \, f \dot{\phi} \sim \left(\frac{g}{2} \right) \int' \frac{d^3k}{(2\pi)^3 \Omega_k} \frac{\omega c_k \phi_0 t^2}{2} \equiv \int \frac{d^3k}{(2\pi)^3 \Omega_k} |\beta_k|^2 \]

(3.66)

(cf. Eqs. (3.10, 3.18, 3.42)). This establishes the link between dissipation and particle creation, and is essentially the same result as obtained earlier via the perturbative approach (e.g., [43]).

A fraction of the dissipated energy is returned to the system, degraded into stochastic fluctuations. The stochastic source produces a total amount of work per unit volume

\[\delta W \sim g \int dt \left\langle \xi \dot{\phi}_S \right\rangle \sim \left(\frac{g}{m} \right)^2 \int dt \frac{\partial}{\partial t'} N_S(t, t') \bigg|_{t' \rightarrow t} \sim \left(\frac{g^2 c_k^2 \lambda_0^6}{m^2 \Omega_0^2} \right) t^2 \]

(3.67)

(cf. Eq. (3.46)).

Under equilibrium conditions, the sum total of the dissipated energy equals the total work done by the stochastic force integrated over time. This is a manifestation of a non-linear fluctuation-dissipation relation. A precise statement of this involves the simultaneous consideration of several light modes, a task perhaps for future investigations.

4 Discussions

In this paper, we have presented a new way of looking at effective field theories, bringing forth their intrinsically dissipative and stochastic aspects. We have shown that dissipation and noise are generic features of such theories, both below and above the energy threshold of the heavy mass which defines their limit of applicability. As the threshold is crossed, the character of the light theory does not change discontinuously, as commonly believed, but is a continuous extension of what is already present below the heavy scales. The stochastic features of the light theory (including the build up of randomness and the breakdown of unitarity) though exceedingly small, will manifest themselves at an exponentially increasing rate as the energy is raised.

In the Introduction we have stressed the relevance of the observational context in the definition of an open system, and in interpreting the physical meaning of what is measured (e.g., appearance of dissipation and fluctuations in an open system, but absence in a closed system) in the restricted range of validity of the effective theory. In the same vein we understand a light field as a representation of the full quantum field observed at low energy. Standard texts tell us that this physical field is obtained from the bare fields of the theory through the renormalization process. However it is instructional to reexamine the meaning of renormalization in an effective field theory from the open-system viewpoint. Technically, renormalization means that the effects of certain quantum degrees of freedom are added to the bare quantities, and one regards these renormalized quantities as the actual physically measurable ones (e.g., the mean energy in the Maxwell field is added to the bare electron mass to make up its physical mass). In the open-system viewpoint, which is closer to observation than the formally complete yet unrealistic closed-system description (of all the
constituents at all energies), renormalization is a coarse graining operation: certain ‘irrelevant’ modes (in the above example, the virtual photons surrounding an electron), considered as the environment, are ‘slaved’ (for definition see [13]) to the ‘relevant’ modes of the particle, which constitute the (open) system, thus enabling one to compute their mean effect on the relevant physics and come up with an effective theory for the (open) system. Because this is an essentially statistical operation, it carries with it the well known statistical consequences: first, there is a gap between the mean value of a system mode and the actual value which includes the backreaction of the ‘irrelevant’ modes, and for this difference the system will be subject to a random source from the environment. Second, the approximations on which the slaving procedure is based (for example, to compute the quantum averages of the environment variables it is often necessary to ignore or to downplay the backreaction of these modes on the system variables) lose accuracy as the influence of the ‘irrelevant’ sector becomes large, as is the case when the fluctuations become significant, their coupling becomes strong, or generally in the long-time limit.

If one intends to have the light field represent the physical field, in a strict sense, the set up of the effective field theory should include a detailed account of the observational context, or at least of the renormalization procedure involved. Presumably, there would be transformation rules to translate the results from different renormalization prescriptions, and these could eventually take the form of renormalization group equations [65, 66]. However, in the presence of a sizable gap between a light and a heavy scale, as in the case studied here, sensible prescriptions will label most of the heavy field modes as environment, and most of the light modes as system. Thus we have adopted in the above the somewhat simplistic view of treating renormalization as the dressing of the light fields by the heavy quantum fluctuations. One shortcoming of this assumption is that, for example, if the light fields self interact, this prescription will not eliminate all infinities from the theory.

In the region where the system and environment get progressively entangled, the system dynamics will acquire a stochastic component, and become dissipative. An arrow of time will also emerge in the effective theory. It is of interest to develop a renormalization group theory for dissipative systems. Some of the traditional concepts would need a newer and broader interpretation. The breakdown of an effective theory in the threshold region is theoretically related to the cross-over behavior in critical phenomena studied in depth by O’Connor and Stephens [65]. Their observation on how the relevant degrees of freedom of a physical theory are dependent on the scales at which the theory is probed will be useful for the construction of open systems which are sensitive to the energy and observation scales. These are important questions at the foundation of statistical mechanics and field theory which we hope to probe into.

The ideas presented in this paper can lead to several directions of further development. At a basic level, there is the question about the fundamental nature of any realistic physical system described by quantum field theories. It is the view of the authors that in Nature there is no irreducibly ‘fundamental’ theories in the absolute sense, just as the existence of an absolute closed system is more in the hypothetical rather than the physical realm. (Even for the Universe, it is a closed system only in the ontological rather than the physical sense.)
All realistic theories describing open systems are to varying degrees noisy and dissipative. They are depicted by stochastic rather than strictly deterministic equations. Only when noise and dissipation are small can one describe in approximate terms the system by the usual tenets (e.g., effective action) of unitary field theory. The criterion of validity of an effective field theory is derived in this paper. In terms of structures, we also think that there are no irreducibly elemental theories or constituents in the absolute sense. The presence of noise, albeit in small amounts, points to the presence of a deeper layer of structure. (To give a historical example, brownian motion marks the boundary between hydrodynamics and many body theory, as it discloses the graininess of a seemingly continuous fluid). Indeed this point of view can be used to guide the probing into possible deeper and unknown layers of structures from a better known, lower energy domain. The case of gravity, from the better known semiclassical regime to the unknown quantum regime, was what motivated us into examining the general properties of quantum open systems and effective theories in the first place [6]. Noise and fluctuations could then in this sense serve as a trace detector which allows us to obtain a glimpse of the deeper structures.

There are also many physical situations where the mechanisms of fluctuation generation and structure growth described in this paper could be put to practical use. A particularly fertile ground is the physics of the Early Universe, modeled by a theory of massless fields (gravitational, neutrinos and gauge bosons) interacting with heavy fields such as electrons, quarks, and cold dark matter candidates. The gravitational background will create particles of the heavy fields (while neutrinos and gauge bosons are shielded by conformal invariance), which in turn will react on the light fields, resulting in the generation of primordial gravitational fluctuations [17] and gauge fields. Closer to home, the theory of heavy ion collisions also presents a situation where a color field background interacts with the massive quark fields, resulting in the formation of a quark-gluon plasma, which could be investigated using the framework of this paper [58]. We hope to report on the result of this and related research in later publications.

Acknowledgement

It is a pleasure to acknowledge numerous discussions with our colleagues Denjoe O’Connor, Juan Pablo Paz, Chris Stephens. Special thanks go to Diego Mazzitelli for his comments on an earlier draft of this paper. Part of this work was done while both of us enjoyed the hospitality of Professor Enric Verdaguer during our visit to the Universidad de Barcelona. This research is supported in part by the US National Science Foundation under grant PHY94-21849 and INT95-09847, and by the University of Buenos Aires, CONICET, Fundación Antorchas (Argentina) and the Commission for the European Communities under contract

\[CI1 * −CT94 − 0004. \]
5 Appendices

A. Derivation of α and β

Our method can be described as a translation into Hamilton-Jacobi language of the classical averaging method, as found in the textbooks by Landau and Lifshitz [67] and Bogolubov and Mitropolsky [68] (it is close to the methods used by [47].) We shall borrow some tools of classical mechanics to approach our problem. The mode equation follows from the Hamiltonian

$$H = P_{-k}P_k + \Omega^2 \Phi_{-k} \Phi_k$$ \hspace{1cm} (5.1)

where Φ_k and Φ_{-k} are independent canonical variables, and P_k, P_{-k} their conjugate momenta, respectively. We introduce creation and destruction operators through

$$\Phi_k = \frac{1}{\sqrt{2\Omega}} \left[a_k + a^{\dagger}_{-k} \right]$$ \hspace{1cm} (5.2)

$$P_k = i\sqrt{\frac{\Omega}{2}} \left[a^{\dagger}_k - a_{-k} \right]$$ \hspace{1cm} (5.3)

We adopt the destruction operators as new canonical variables, with conjugated momenta

$$p_{\pm k} = ia^{\dagger}_{\pm k}$$ \hspace{1cm} (5.4)

The Hamiltonian expressed in terms of these new variables is

$$K = -i\Omega \left[a_k p_k + a_{-k} p_{-k} \right] - i\kappa \left[a_k a_{-k} + p_k p_{-k} \right]$$ \hspace{1cm} (5.5)

where, as before,

$$\kappa = \frac{1}{2\Omega} \frac{d\Omega}{dt}$$ \hspace{1cm} (5.6)

The Bogolubov transformation linking the destruction and creation operators at time t with those at time $t = 0$ is given by

$$a_k(t) = \alpha(t)a_k(0) + \beta^*(t)a^{\dagger}_{-k}(0)$$ \hspace{1cm} (5.7)

$$a^{\dagger}_k(t) = \alpha^*(t)a^{\dagger}_k(0) + \beta(t)a_{-k}(0)$$ \hspace{1cm} (5.8)

where the coefficients satisfy the Wronkian condition

$$|\alpha|^2 - |\beta|^2 = 1$$ \hspace{1cm} (5.9)

In terms of the canonical variables, the Bogolubov transformation takes the form

$$a_k(t) = \alpha(t)a_k(0) - i\beta^*(t)p_{-k}(0)$$ \hspace{1cm} (5.10)
This is a canonical transformation with generating functional

\[\mathcal{S} = G(t) [a_k p_k(0) + a_{-k} p_{-k}(0)] + F(t) a_k a_{-k} + E(t) p_k(0) p_{-k}(0) \]

where (from now on, we shall occasionally omit the \(k\) subindices, to simplify the appearance of our formulae)

\[G = \frac{1}{\alpha}, \quad E = \frac{i \beta^*}{\alpha}, \quad F = \frac{i \beta}{\alpha} \]

\(\mathcal{S}\) satisfies the Hamilton-Jacobi equation

\[-i \Omega \left[a_k \frac{\partial \mathcal{S}}{\partial a_k} + a_{-k} \frac{\partial \mathcal{S}}{\partial a_{-k}} \right] - i \kappa \left[a_k a_{-k} + \frac{\partial \mathcal{S}}{\partial a_k} \frac{\partial \mathcal{S}}{\partial a_{-k}} \right] + \frac{\partial \mathcal{S}}{\partial t} = 0 \]

Therefore,

\[\frac{dE}{dt} - i \kappa G^2 = 0 \]

\[\frac{dG}{dt} - i [\Omega + \kappa F] G = 0 \]

\[\frac{dF}{dt} - 2i \Omega F - i \kappa \left[1 + F^2 \right] = 0 \]

Short of an exact solution, the conventional approach to solving this equation would be to expand in powers of \(\kappa\). This leads to the usual adiabatic approximation \[38, 39\], since \(\kappa \sim O(g)\), which is precisely what we should avoid for the present purpose.

As before, let us assume \(\Omega\) is essentially constant, and

\[\kappa \sim 2c \cos 2\omega t \]

where

\[c \sim \frac{\omega g \phi_0}{4 \Omega_k^2} \]

with \(\omega \leq \Omega_k\). The idea is to retain only the most resonant terms in Eq. (5.17); namely, we write

\[\frac{dF}{dt} - 2i \Omega_k F - ic \left[e^{2i\omega t} + e^{-2i\omega t} F^2 \right] = 0 \]

This equation allows a solution of the form

\[F = \frac{i}{c} e^{2i\omega t} \frac{\dot{u}}{u} \]
where \(u \) satisfies the ordinary equation

\[
\frac{d^2 u}{dt^2} - 2i(\Omega - \omega) \frac{du}{dt} - c^2 u = 0.
\]

(5.22)

The solutions are

\[
u_\pm \sim e^{\pm \gamma t} e^{i(\Omega - \omega)t} \]

(5.23)

where

\[
\gamma = \sqrt{c^2 - (\Omega - \omega)^2}
\]

(5.24)

The case of interest to us is when \(\gamma \) is real.

To find \(\alpha \) we integrate Eq. (5.16) under the approximation

\[
k_F \sim c e^{-2i\omega t} \equiv i \frac{\dot{u}}{u} \]

(5.25)

that is, we keep only the slowly varying term. The integration is then trivial, and we get

\[
G = \frac{e^{i\Omega t}}{u} ; \alpha = u e^{-i\Omega t} \]

(5.26)

Given \(F \) and \(\alpha \), finding \(\beta \) is a matter of algebra

\[
\beta = -i\alpha F \equiv \frac{\dot{u}}{c} e^{i(2\omega - \Omega)t} \]

(5.27)

We thus find the boundary conditions \(u(0) = 1, \dot{u}(0) = 0 \). The solution is

\[
u = \left(\frac{c}{2\gamma} \right) \left[e^{-i\delta/2} e^{\gamma t} + e^{i\delta/2} e^{-\gamma t} \right] e^{i(\Omega - \omega)t} \]

(5.28)

leading to Eqs. (3.19), (3.20), (3.21) as given in the main text.

B. Particle Creation Far Below Threshold

When the frequency \(\omega \) of the normal modes of the light field is far below \(M \), the above analysis is valid up to Eq. (5.17), but care must be taken to identify the resonant terms. Let us decompose the frequency \(\Omega \) into constant and fluctuating parts

\[
\Omega = \Omega_0 + \delta \Omega
\]

(5.29)

Then, from

\[
\kappa = \frac{1}{2\Omega} \frac{d\Omega}{dt} \sim 2c \cos 2\omega t
\]

(5.30)

we get
Let us assume
\[\Omega_0 \equiv (2N + 1)(1 + \delta), \quad (5.32) \]
where \(N \) is an integer and \(\delta \ll 1 \). Then resonance occurs at the frequency \((2N + 1)\omega\).

Instead of Eq. (5.21), we now try
\[F = \left(\frac{i(-1)^N e^{2i\Theta}}{C} \right) \left[\frac{\dot{U}}{U} \right] \quad (5.33) \]
where
\[\Theta = (2N + 1)\omega t - \left(\frac{\Omega_0}{\omega^2} \right) \cos 2\omega t \quad (5.34) \]
Expanding the exponential as a Fourier series, and keeping only the resonant term, we find
\[\kappa e^{\pm 2i\Theta} \sim (-1)^N cJ_{2N} \left(\frac{2\Omega_0 c}{\omega^2} \right) \equiv (-1)^N C \quad (5.35) \]
The equation for \(U \) reads
\[\ddot{U} - 2i[\Omega - (2N + 1)\omega] \dot{U} - C^2 U = 0 \quad (5.36) \]
\(\sim \)From here on, the argument exactly reproduces the previous case, leading to the results reported in the text.
References

[1] T. Appelquist and J. Carazzone, Phys. Rev. D11, 2856 (1975); S. Weinberg, Phys. Lett. 83B, 339 (1979); B. Ovrut and H. J. Schnitzer, Phys. Rev. D21, 3369 (1980); D22, 2518 (1980); L. Hall, Nucl. Phys. B178, 75 (1981). P. Lapage, in From Actions to Answers, Proc. 1989 Adv. Inst. in Elementary Particle Physics, eds T. DeGrand and D. Toussaint (World Scientific, Singapore, 1990) p. 483.

[2] S. Weinberg, The Quantum Theory of Fields (Vol. 1) (Cambridge University Press, Cambridge, 1995).

[3] S. Weinberg, Physica 96A, 327 (1979); Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991). C. Ordonez, L. Ray and U. van Klock, Phys. Rev. Lett. 72, 1982 (1994). H. Georgi, Nucl. Phys. B361, 339 (1991); B420, 94 (1994). U.-G. Meissner, ed., Proceedings of the Workshop on Effective Field Theories of the Standard Model (World Scientific, Singapore 1991). D. A. R. Dalvit and F. D. Mazzitelli, Phys. Rev. D50, 1001 (1994); D52, 2577 (1995). J. F. Donoghue, Phys. Rev. D50, 3874 (1994); [gr-qc/9512024] (1995).

[4] J. Schwinger, Phys. Rev. 82, 664 (1951); B. S. DeWitt, Phys. Rep. 19C, 297 (1975)

[5] W. Heisenberg and H. Euler, Z. Physik 98, 14 (1936)

[6] B. L. Hu, Physica A158, 399 (1989).

[7] B. L. Hu, “Quantum Statistical Fields in Gravitation and Cosmology” in Proc. Third International Workshop on Thermal Field Theory and Applications, eds. R. Kobes and G. Kunstatter (World Scientific, Singapore, 1994) [gr-qc/9403061]

[8] H. Callen and T. Welton, Phys. Rev. 83, 34 (1951); L. Landau, E. Lifshitz and L. Pitaevsky, Statistical Physics (Vol. 1) (Pergamon, London, 1980); S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, London, 1976); J. P. Boon and S. Yip, Molecular Hydrodynamics (Dover, New York, 1991).

[9] B. L. Hu, “Fluctuation, Dissipation and Irreversibility in Cosmology” in The Physical Origin of Time-Asymmetry, Huelva, Spain, 1991 eds. J. J. Halliwell, J. Perez-Mercader and W. H. Zurek (Cambridge University Press, Cambridge, 1994).

[10] B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); D47, 1576 (1993)

[11] B. L. Hu and A. Matacz, Phys. Rev. D49, 6612 (1994).

[12] E. Calzetta and B. L. Hu, “Decoherence of Correlation Histories” in Directions in General Relativity, Vol II: Brill Festschrift, eds B. L. Hu and T. A. Jacobson (Cambridge University Press, Cambridge, 1993) [gr-qc/9302013]
[13] E. Calzetta and B. L. Hu, “Correlations, Decoherence, Dissipation and Noise in Quantum Field Theory”, in *Heat Kernel Techniques and Quantum Gravity*, ed. S. A. Fulling (Texas A& M Press, College Station 1995). [hep-th/9501040]

[14] E. Calzetta and B. L. Hu, Phys. Rev **D49**, 6636 (1994).

[15] B. L. Hu and A. Matacz, Phys. Rev. **D51**, 1577 (1995).

[16] B. L. Hu and S. Sinha, Phys. Rev. **D51**, 1587 (1995).

[17] E. Calzetta and B. L. Hu, Phys. Rev. **D52**, 6770 (1995).

[18] J. D. Bekenstein, Phys. Rev. D7, 2333 (1973).

[19] S. W. Hawking, Comm. Math. Phys. 43, 199 (1975)

[20] R. Penrose, in *General Relativity, an Einstein Centenary Survey*, ed. S. Hawking and W. Israel (Cambridge University Press, Cambridge, 1979), p. 581.

[21] B. L. Hu, Phys. Lett. **A90**, 375 (1982); **A97**, 368 (1983)

[22] B. L. Hu and D. Pavón, Phys. Lett. **B180**, 329 (1986).

[23] B. L. Hu and H. Kandrup, Phys. Rev. **D35**, 1776 (1987).

[24] E. Calzetta, M. Castagnino and R. Scoccimarro, Phys. Rev. **D45**, 2806 (1992).

[25] R. Brandenberger, V. Mukhanov, and T. Prokopec, Phys. Rev. **D48**, 2443 (1993).

[26] M. Gasperini and M. Giovanni, Phys. Lett. 301B, 334 (1993); M. Gasperini and M. Giovanni and Veneziano, Phys. Rev. D48, R439 (1993).

[27] E. Calzetta and B. L. Hu, Phys. Rev. **D37**, 2878 (1988).

[28] E. Calzetta and F. D. Mazzitelli, Phys. Rev. **D42**, 4066 (1990).

[29] J. P. Paz and S. Sinha, Phys. Rev. **D44**, 1038 (1991).

[30] J. B. Hartle and M. Gell-Mann, Phys. Rev. **D47**, 3345 (1993).

[31] B. L. Hu, “Statistical Mechanics and Quantum Cosmology”, in *Proc. Second International Workshop on Thermal Fields and Their Applications*, eds. H. Ezawa et al (North-Holland, Amsterdam, 1991).

[32] J. Schwinger, J. Math. Phys. **2** (1961) 407; P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. **4**, 1 (1963), 4, 12 (1963). L. V. Keldysh, Zh. Eksp. Teor. Fiz. **47**, 1515 (1964) [Engl. trans. Sov. Phys. JEPT **20**, 1018 (1965)]; G. Zhou, Z. Su, B. Hao and L. Yu, Phys. Rep. **118**, 1 (1985); Z. Su, L. Y. Chen, X. Yu and K. Chou, Phys. Rev. **B37**, 29
9810 (1988); B. S. DeWitt, in Quantum Concepts in Space and Time ed. R. Penrose and C. J. Isham (Claredon Press, Oxford, 1986); R. D. Jordan, Phys. Rev. D33, 44 (1986). E. Calzetta and B. L. Hu, Phys. Rev. D35, 495 (1987).

[33] R. Feynman and F. Vernon, Ann. Phys. (NY) 24, 118 (1963). R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, (McGraw - Hill, New York, 1965). A. O. Caldeira and A. J. Leggett, Physica 121A, 587 (1983); H. Grabert, P. Schramm and G. L. Ingold, Phys. Rep. 168, 115 (1988). B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); D47, 1576 (1993)

[34] J. Schwinger, Phys. Rev. 82, 664 (1951);

[35] L. Parker, Phys. Rev. 183, 1057 (1969)

[36] Ya. B. Zel’dovich, Pis’ma Zh. Eksp. Teor. Fiz, 12, 443 (1970) [Sov. Phys. - JETP Lett. 12, 307(1970)]

[37] S. A. Fulling, Phys. Rev. D7, 2850 (1973)

[38] L. Parker and S. A. Fulling, Phys. Rev. D9, 341 (1974)

[39] Ya. Zel’dovich and A. Starobinsky, Zh. Eksp. Teor. Fiz 61, 2161 (1971) [Sov. Phys.-JETP 34, 1159 (1971)].

[40] J. B. Hartle and B. L. Hu, Phys. Rev. D20, 1772 (1979).

[41] E. Calzetta and B. L. Hu, Phys. Rev. D35, 495 (1987).

[42] B. L. Hu and Yuhong Zhang, Phys. Rev. 37, 2151 (1988)

[43] E. Calzetta and B. L. Hu, Phys. Rev. D40, 656 (1989).

[44] A. Stylianopoulos, Ph. D. Thesis, University of Maryland (1990)

[45] J. P. Paz, Phys. Rev. D42, 529 (1990)

[46] S. A. Ramsey, B. L. Hu and A. Stylianopoulos (1996)

[47] L. Kofman, A. Linde and A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994); J. Traschen and R. Brandenberger, Phys. Rev. D42, 2491 (1990); Y. Shtanov, J. Traschen and R. Brandenberger, Phys. Rev. D51, 5438 (1995).

[48] D. Boyanovsky and H. J. de Vega, Phys. Rev. D47, 2343 (1993); D. Boyanovsky, D.-S. Lee and A. Singh, Phys. Rev. D48, 800 (1993); D. Boyanovsky, H. J. de Vega, R. Holman, D.-S. Lee and A. Singh, Phys. Rev. D51, 4419 (1995).D. Boyanovsky, H. J. de Vega and R. Holman, Phys. Rev. D49, 2769 (1994);D. Boyanovsky, H. J. de Vega , M. D’Attanasio, D-S. Lee and R. Holman, Phys. Rev. D52 6805 (1995); D. Kaiser, Phys. Rev. D53, 1776 (1996)
[49] B. L. Hu and Y. Zhang, “Coarse-Graining, Scaling, and Inflation” Univ. Maryland Preprint 90-186 (1990); B. L. Hu, in Relativity and Gravitation: Classical and Quantum Proceedings of SILARG VII, Cocoyoc, Mexico, Dec. 1990. eds. J. C. D’ Olivo et al (World Scientific, Singapore, 1991);

[50] Sukanya Sinha and B. L. Hu, Phys. Rev. D44, 1028 (1991)

[51] B. L. Hu, J. P. Paz and Y. Zhang, “Quantum Origin of Noise and Fluctuation in Cosmology” in The Origin of Structure in the Universe Conference at Chateau du Pont d’Oye, Belgium, April, 1992, ed. E. Gunzig and P. Nardone (NATO ASI Series) (Plenum Press, New York, 1993) p. 227.

[52] R. Jackiw, Phys. Rev. D9, 1686 (1974); J. Iliopoulos, C. Itzykson and A. Martin, Rev. Mod. Phys. 47, 165 (1975).

[53] C. G. Bollini and L. Oxman, in J. J. Giambiagi Festschrift, H. Falomir (ed) (World Scientific, Singapore, 1991), p. 55.

[54] C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991).

[55] W. H. Zurek, Phys. Rev. D24, 1516 (1981); D26, 1862 (1982); in Frontiers of Nonequilibrium Statistical Physics, ed. G. T. Moore and M. O. Scully (Plenum, N. Y., 1986); Physics Today 44, 36 (1991); E. Joos and H. D. Zeh, Z. Phys. B59, 223 (1985); A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059 (1985); W. G. Unruh and W. H. Zurek, Phys. Rev. D40, 1071 (1989); B. L. Hu, J. P. Paz and Y. Zhang, Phys. Rev. D45, 2843 (1992); W. H. Zurek, Prog. Theor. Phys. 89, 281 (1993).

[56] R. B. Griffiths, J. Stat. Phys. 36, 219 (1984); R. Omnés, J. Stat Phys. 53, 893, 933, 957 (1988); Ann. Phys. (NY) 201, 354 (1990); Rev. Mod. Phys. 64, 339 (1992); The interpretation of quantum mechanics, (Princeton University Press, Princeton, 1994). M. Gell-Mann and J. B. Hartle, in Complexity, Entropy and the Physics of Information, ed. by W. H. Zurek (Addison-Wesley, Reading, 1990); J. B. Hartle and M. Gell-Mann, Phys. Rev. D47, 3345 (1993). J. B. Hartle, “Quantum Mechanics of Closed Systems” in Directions in General Relativity Vol. 1, eds B. L. Hu, M. P. Ryan and C. V. Vishveswara (Cambridge Univ., Cambridge, 1993);

[57] R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); A. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

[58] F. Cooper, S. Habib, Y. Kluger, E. Mottola, J. P. Paz, and P. R. Anderson, Phys. Rev. D50, 2848 (1994).

[59] M. S. Turner and L. M. Widrow, Phys. Rev. D37, 2743 (1987); F. D. Mazzitelli and F. M. Spedalieri, Phys. Rev. D52, 6694 (1995)

[60] V. Korenman, Ann. Phys. (NY) 39, 72 (1966).
[61] S. Habib, Phys. Rev. D46, 2408 (1992).

[62] R. Courant and D. Hilbert, *Methods of Mathematical Physics* (Interscience, New York, 1953)

[63] A. O. Caldeira and A. J. Leggett, Ann. Phys. (NY) 149, 374 (1983). A. J. Leggett et al., Rev. Mod. Phys. 59, 1 (1987).

[64] N. D. Birrell and P. C. W. Davies, *Quantum Fields in Curved Spaces* (Cambridge University Press, Cambridge, 1981).

[65] C. R. Stephens and D. J. O’Connor, Int. J. Mod. Phys. A9, 2805 (1994).

[66] C. Wetterich, Nucl. Phys. B352, 529 (1991)

[67] L. Landau and E. Lifshitz, *Mécanique* (Mir, Moscow, 1959).

[68] N. Bogolubov and Y. Mitropolsky, *Les Methodes Asymptotiques dans la Theorie des Oscillations non Lineaires* (Gauthier - Villiers, Paris, 1962).