MAC Based Security Integration using Face Recognition in Cloud Environment

Yash Sharma¹ and Neeraj Kumar Pandey²
¹,²School of Computing, DIT University, Dehradun, Uttarakhand, India

E mail: mr.yashsharma@yahoo.com

Abstract. The major challenges, which come across face recognition system, are to find the age and gender in 2D/3D image of the person specifically in cloud environment. This paper is centered on face detection with MAC (Media Access Control) and biometric technology. Face scanning along with machine’s MAC address and biometric technologies has been shown to improve security controls. Face recognition can be used to search and label users and their assigned machines for sensitive purposes. Following that, it was stored in a specific database with their unique ID. In addition, the verification process has begun by comparing the models in the database. Face scanning along with speech and biometric technologies is used to improve security controls. Face recognition system may also be set up in high security machines to improve protection by allowing only registered individuals or others users. Related strategies for determining the age and gender and 2D/3D image from a specific picture are explored, as well as several modern methods for preserving protection. In this paper, the full model is explored independently with security implemented in cloud environment. The proposed model of the paper provides the integrated security features using MAC address of machine and face recognition of the machine user.

Keywords: Cloud Computing, Image Processing, Face Recognition System, Fully Connected Layers, CNN Layers, Face Image Matrix

1. Introduction
The Cloud Computing is considered as a type of significant technology which is also referred as internet based computing or network based computing, facilitates the user to organize, analyze, create and modify the applications with the help of internet, without using computer’s hardware. In related words, this cloud technology systems is an extraction model for initializing useful and user’s on-demand network root access to the pooled type configurationally Computed resources like servers, networking devices, networks, applications, storage, and also this is defined as a batch of services that can be suddenly released and provisioned does not required much of management efforts, and interaction process of the service providers, decreasing the time of deploying and cost cutting methodologies which involve in this whole process [1]. The cloud model is having three types of cloud service models and four types of cloud computing driven deployment models[2].

1.1 Feature of Cloud Computing Technology
A Sum of multiple unique features is available in cloud computing system technology, such as Specific Service on UserDemand. Any user can easily avail the cyberspace resources anytime and on any device (mobile, laptop, and tablet) which desires cutting of the interaction with each of the servers through worldwide internet. So these types of resources include software, uptime, network storage, server time, and many more. Therefore, if any user within an instant is in a need of a specific time gap
can able to access all these computational resources through a decent manner without making use of human influence with these cloud service providers (CSP’s) [3].

Access of Networks in Wide Range: The networking tools that are accessible on the cloud network and can be accessed via a variety of thick and thin client channels, such as, laptops, tablets, workstations, mobile devices, Computational devices etc. These types of resources are available on the web portals over the internet and can easily accessible by its user [4].

Sharing of Resources: Web computational resources are designed in groups to provide services to multiple consumers. The multi-tenant model is utilized in various types of virtualized and physical resources that are allocated and reallocated according to customer demands or needs. As the sharing of the cloud resources are independent process and the customers are not able to control the physical resources of the cloud [5].

1.2 Features of Face Recognition System X MAC Address

Face scanning along with machine’s MAC address and biometric technologies has been shown to improve security controls. Employee’s roles and responsibilities can be tracked by simply scanning their faces, which can help the organization to limit the access. Face recognition can be used to search and label users and their assigned machines for performing specific task [6]. So with the integration of face matrix with machine’s MAC address helps to improve the following purpose:

- **Data Encryption**: For the formation of any model, a specific data type is needed as input to train the model, so to initialize steps for both installation and training of model by image data set it needs to be in encrypted.

- **Precautions for Data Breaches**: Biometric models which are impaneled within the model as in the case of a data leak, the facial recognition system can never be transformed back to a face image.

- **Data Filtering**: The need is to automate the filter of surveillance data at regular intervals, to meet the level of industry best practices.

- **Anti-profiling**: Discrimination based on age, race, gender, or national origin should be avoided in facial recognition applications.

![Figure 1: Face Recognition Land markings](image)

1.3 Fully Connected layers over CNN (Convolutional Neural Network) layers

By introducing FC (Fully Connected) layer in the model, it helps to provide the proposed model an ability to mix signals, seeing as how each and every neuron have a special connection with each and every single neuron in the next layer. After analyzing itis noted that there is a flow of information between each input dimension (Considered as, pixel position) and each dimension of four output class. Therefore, the findings of the model are truly based on the whole image. A naturally occurring point need to be analyze that as a result these operations in terms of information flow can rely within the model layers. Layers that are fully connected are global (Global: as they can add some kind of dependency to the given dataset as input). This is a reason why convolutions perform so well in some domains such as image analytics (Figure 1). Since their local existence makes them much simpler to handle and train, even though they are just a subset of what fully
connected layers can represent mathematically [7]. A typical use of CNN’s is considered in different steps where kernels are small.

2. Fully Connected Layers
FC layers is the term used for the layers in a neural network where all of one layer's inputs are bound to each and every activation unit (bias) of the next layer. The final few layers in most widely used machine learning models are FC Layers that can compile the data, which is extracted from previous connected layers to design the final output. In comparison to CNN (Convolutional neural networks) layers, an assumption occurs that FC layers are the second most time taking layers [8]. There are following reasons which generates need of FC layer:

Feature extraction: The feature extraction method is used to extract image-based features from the data to train the model and make the classification function according to the specified data set for CNN classification algorithms, including SVMs (Support Vector Machines). The CNN layers are used for feature extraction in the same way. As it does not need to do any more attribute extraction because CNN layers can capture a better representation of the dataset.

Classification: As the following feature engineering performed, a step is needed to categories the dataset into different classes, which can be done with a FCN network. Users may also use a CNN classifier like SVM instead of fully connected layers. However, usually the step ends up by adding FC layers to make the model trainable from beginning to end[9].

2.1 Application of FC Layer
FC layers can be easily applied in Deep Neural Networks. As fully connected layers are considered as the powerhouse of deep learning techniques, so it can be easily use for multiple applications. FC Layers usually applied or defined on the top of the network model hierarchy. At that point when the input has been reduced (mostly CNN Layers) to a dense representation of features [10]. As, the FC layers are used to detect and identify specific global configurations of the features.

![A Neural Network with Fully Connected Layers](image)

Figure 2: A Neural Network with Fully Connected Layers

So by this an augmentation is noticed that CNN layers are working as breaking the input (in form of image) in the form of common features, and the FC layers are working as piecing these specific features together into a single unit (those objects that needs to be recognized by the network).

3. Literature Review
In paper H. Wang, et. al (2017) [11], Faster R-CNN (Region Based - CNN) is one of the most distinctive and efficient objects detection methods and it has gained prominence in a number of objection detection applications. In this paper, a recommendation is given for using Faster R-CNN to develop a robust deep facial recognition technique.
S.H. Shabbeer, et. al (2019) [12], This paper works on the Convolutional Neural Networks (CNNs), in specific domains defined as the computer vision, which mainly bring down the need for user-made features because of its capability to extract the problem-specific features from raw data with the selection of dataset-specific CNN architecture, on the other hand it is a time-consuming and error-prone operation that is often done through either practice or knowledge.

S. Chen, et. al (2019) [13], This research paper examines that the deep neural networks have made major advancements in a number of areas including computer science and image recognition. Deep neural network models are computationally complex and need a lot of memory bandwidth.

Kangkan Wang, et. al (2020) [14], This paper used a weakly controlled fine-tuning method to extend their framework to gather individual data from human bodies. The suggested solution would precisely retrieve the 3D body posture model sequence from a cloud point array.

T. Ahmed, et. al (2020) [15], This research introduces a comparative analysis using CNN Network based models such as VGG16, VGG19, AlexNet and MobileNet to identify faces from a personalized dataset of at least 10 celebrities of various identities. These models were earlier trained on the ImageNet dataset and are now being used. Transfer Learning and Fine Tuning techniques are used in this model. Training, evaluation, and checking on various images generated from the same dataset are all part of the performance review. The validation accuracy of the VGG19 model was found to be higher than the other three, but the evaluation accuracy of the MobileNet model was found to be better.

4. Proposed Method

The proposed method of cloud computing work that makes cloud computing infrastructure more secure. So, to access secure cloud infrastructure cloud providers need to understand and measure the existing data structure, server power consumption, their verification measures and authorization policies in order to achieve the highest level of security. In addition, to measure the efficient and effective use of all the features and services of cloud computing services, modeling tools are required. Software must be built on a variety of computer systems, such as (compiler, algorithm, space allocation, operating system and applications) in a unique way to maximize the power consumption of resources. In order to maintain the security and integrity of the space-based transaction, resources need to be allocated directly to the application depending on the required performance level based on it.

All the important aspects of cloud computing technology such as network, memory, cooling and CPU should be considered in the data center to create complete solutions for resource planning and monitoring.

To increase the level of security in cloud computing, multi-layer fire pellets need to be installed within the connected network. Designing an environment of neural networks by using TensorFlow so that identification can be done on the CNN Neural networks layers and it’s functioning. CNN networks perform exceptionally well in computer vision tasks. After this, the process of assisting a model that has been pre-trained on large datasets, such as ImageNet, etc. needs to be done. These model architectures need to be conveniently customized to fit with the specific input dataset. FCN network needs to be design using Keras in TensorFlow Platform. For inserting and breaking the downloaded sample data set becomes easy [16]. In Keras, create a generator to load and process a batch of datasets in memory. And begin the training of the programmed network model with different batch sizes.

Once the design gets completed an identification need to be done that whether the network is properly working or not by using Tensor Board. As FC layer network does not contain any 12 traditional CNN layers (or Dense layers) [17]. Once the model gets trained, an following step needs to be done for simulating the out coming results.

- Deploying the model using TensorFlow Serving.
To insure the integrity of Cloud server authentication and authorization process, an integration of Face ID model with MAC Address in Cloud System using Django needs to be performed.

As Face ID generates in a form of matrix, by this the integration of face id matrix with mac address can be finalized and it can authenticate the user’s system according to the outcome value. Once the model is created in form of a web application, a deployment step on Gradient paperspace cloud environment is performed to check the feasibility of designed application [18].

5. Proposed Approach

Following are the steps for generating the results from the model:

5.1 Developing the Core

To use the functionality of dense layers, a step needs to be performed to fix the input dimensions of the proposed model, so the number of parameters that would be used as input to the dense layer must be predetermined. Dense layers (commented out) and 1x1 convolutions are used in the code. Here are some of the findings after designing and practicing the model for both configurations:

1. The number of trainable parameters in both models is equivalent.
2. Time spent on preparation and inference is comparable.
3. Dense layers do better than 1x1 convolutions in terms of generalization.

5.2 Data Selection

The aim of the human face dataset is to help in understanding the challenges that occurs while training a model with variable input measurements. Any interesting datasets for testing our FCN model could come from the medical imaging domain, which includes microscopic features that are important in image classification as well as other datasets with geometric patterns/shapes that may blur after resizing the image. The separate script is used and implemented to carry out the following duties:

Download the Human Faces dataset.
Divides the dataset into two sets: training and evaluation. The number of photos copied into the training and validation sets can be customized.
Provides dataset statistics such as image height and width minimum, average, and median.

5.3 The Special Injection Systems

Initially a test needs to be done on the proposed model for different input measurements. Each picture in a batch, as well as within batches, has different dimensions. Traditional image classifiers resize images to a certain dimension, transform them to numpy arrays or tensors, and then forward propagate this batch of data through the model. This batch's metrics (loss, precision, and so on) are compared. These metrics are used to measure the back propagation gradients.

Writing a custom training loop that does the different can be seen as a workaround like using expand script to transform (height, width, 3) to (1, height, width, 3) before passing each picture in the batch through the model. Compile metrics for each image in the Python array (batch). Using the cumulative metrics, the loss and gradients are calculated. Applying the model's gradient change and building a new list (batch) of images by resetting the values for the metrics. Next step is to transfer it to the generator script as a numpy array or a tensor with ease. The model learns to forget the 0’s (that are black pixels) and instead learns features from the padded image's expected component.

5.4 Ignition and Training of model

The following classes are imported and instantiated by the training script using python:

Producer: The route to the train and Val directories provided by data file must be defined.

FCN model: In the final output layer, it is must to define the number of classes needed.

Training: The training method takes the above classes and uses the Adam optimizer and categorical cross entropy loss function to compile the construct. During testing, a step of building a checkpoint
callback is performed that saves the best model. At the end of each epoch, the value of loss computed on the validity set determines the best one. If any user has a GPU on their local computer; a recommendation is given to train it on Google Colab. A Colab notebook is included in the GitHub repo, which brings all of the pieces together for preparation. User can change the python scripts in Colab and train various model configurations on its own dataset and the results can be visualized to user’s local computer until the training haven’t been finished.

Model Training: The data used to train the algorithm is referred to as the training set. Based on the algorithm mostly used in machine learning appears differently. The points in the training sample are used to draw the line of best fit by using Linear Regression. The points in the training range that may be neighbours are included in K-Nearest Neighbours.

Model Validation: The points in the validation set are used to calculate the classifier’s accuracy or error after it has been trained with the training set. The big takeaway is that the true labels of any point in the validation package is going to act as checkpoint for test results. Any point in the validation collection can be utilized as input into the classifier of proposed model.

Deploying Model: Once data set is residing in the local system, it is needed to use the export command to convert it to SavedModel format. In the key feature, specify the path to the downloaded model (Trained Model File) and run the script with export command. This script makes use of TensorFlow 2.0’s latest features to load a Keras model from a (Trained Model File) and save it as a TensorFlowSavedModel.

Epoch loss: An algorithm based on Machine Learning can be optimized by using a loss function. The loss is measured using training and validation data, and its meaning is determined by how well the model performs in these two sets. It’s the total number of errors made in each training or validation set for each case. The loss value indicates how well or poorly a model can have optimized after each iteration [19].

Epoch accuracy: The performance of the algorithm is calculated using accuracy metric. After the model parameters have been calculated the accuracy of the model is usually expressed as a percentage. A statistic measures that how similar the model’s predictions are the real outcomes [20].

6. Results and Discussion

A proposal of using the convolution blocks made up of 2D convolution layers (Conv2D) and the necessary regularization to construct our FCN model (Dropout and Batch Normalization) for initializing Regularization aids accelerated convergence by preventing overfitting. In addition, as the existing model is having a non-linearity activation sheet.

Epoch 1/10
270/170 [======================================] - 346s 86ms/step - loss: 1.6146 - accuracy: 0.5010 - val_loss: 0.9736 - val_accuracy: 0.7699
Epoch 2/10
270/170 [======================================] - 343s 89ms/step - loss: 0.8162 - accuracy: 0.7466 - val_loss: 0.6843 - val_accuracy: 0.7643
Epoch 3/10
270/170 [======================================] - 343s 89ms/step - loss: 0.8162 - accuracy: 0.7466 - val_loss: 0.6843 - val_accuracy: 0.7643
Epoch 4/10
270/170 [======================================] - 343s 89ms/step - loss: 0.6893 - accuracy: 0.8132 - val_loss: 0.7808 - val_accuracy: 0.7654
Epoch 5/10
270/170 [======================================] - 343s 89ms/step - loss: 0.4519 - accuracy: 0.8585 - val_loss: 0.7691 - val_accuracy: 0.7771
Epoch 6/10
270/170 [======================================] - 343s 89ms/step - loss: 0.3829 - accuracy: 0.9032 - val_loss: 0.8700 - val_accuracy: 0.7812
Epoch 6/10
270/170 [======================================] - 343s 89ms/step - loss: 0.3829 - accuracy: 0.9032 - val_loss: 0.8700 - val_accuracy: 0.7812
<tensorflow.python.keras.callbacks.History at 0x7f888146e48>

Figure 3: Results of Developed Model

The input batch dimension is automatically applied in Keras, so there is no need to mention it in the input layer. As the height and width (HxW) of the given input images are in variable form, thus the definition of the input image data type is given as (None, None, 3).
So, to use the Fully connected layer's features, a step must be taken to correct the input dimensions of the proposed model and the number of parameters that will be used as input to the dense layer must be calculated ahead of time. In the figure 4 with the continuation of training the proposed model, TensorBoard states a functionality of monitoring the growth in training of the model while injecting data. So, in the very first model, the first epoch model has a gross value of 2.0304 loss values and 0.3750 as accuracy value.

![Graphical Comparison between Existing and Developed Model](image)

Figure 4: Graphical Comparison between Existing and Developed Model

Just after completion of training of the model first, it shows a continuous stepwise reduction in loss with and simultaneously increment in accuracy where loss value =0.7578 and accuracy value = 0.7745.

Epoch	Epoch_Accuracy	Epoch_Loss						
Training Value	Validation Value	Steps	Training Value	Validation Value	Steps			
Existing Model								
0.6122	0.6229	1	1.295	1.257	1			
0.6553	0.6523	2	1.154	1.181	2			
0.679	0.6355	3	1.063	1.135	3			
0.7046	0.6768	4	0.9852	1.092	4			
0.7262	0.6833	5	0.9162	1.058	5			
			0.7558	0.7643	1	0.8037	0.8043	1
8

Table 1: Comparison Table between Existing and Developed Model

	Proposed Model	0.8119	0.7654	2	0.6181	0.7808	2
		0.8561	0.7771	3	0.7639	0.7691	3
		0.8953	0.7813	4	0.3242	0.870	4
		0.928	0.7693	5	0.0	0.999	5

So, to increase the accuracy of the proposed model, some changes need to be done in the proposed model by initializing the design of FC layers using Keras in TensorFlow Platform by this as the proposed model is compared to the existing model, In the first epoch of existing model the registered outcomes start with 1.6146 loss value and 0.5010 accuracy and after completing the training of the proposed model, the registered outcomes have the epoch value of 0.1 as loss which is very low and achieved the highest accuracy as 1.23.

The Proposed Model confirms that individual’s character which are examined more accurately than the previously defined or existing models. This model employs FC layers over CNN layers’ calculations with VGG16 engineering, which are more exact than other computations. This work is distinguished by the actualization of the prepared model on the equipment stage, as well as an increase in precision and a decrease in the “false positive” rate. When compared to the earlier work stated in Table 1, this study stands out since it implements the learned model on a hardware platform, resulting in increased accuracy and a lower “false positive” rate. As, In Sun et al. [21], the accuracy relies between 69.8% to 77.98% by using the method of Individual-free representation-based classification for Face Recognition. Also, In Yuan et al. [22], the accuracy rate reply between 83% to 87% by using CNN based model on TensorFlow for Face Recognition and in Yaddadenet al. [23], the accuracy stands between 85% to 90.61% by using the user action system and face recognition for error detection system in cloud. In Lekdioui et al [24], the accuracy stands between 86.03% to 91.87% by using facial decomposition for facial recognition. Comparing the above accuracy rates the proposed model accuracy stands between 85% to 93.48%.

7. Conclusion

Through the research an environment of neural networks is designed by using Python and TensorFlow, so that it becomes easy to identify the packets transmitting in the network, and can suspect any unauthorized network by which attacks can be performed onto the designed network server. Therefore, by using the NMap tool, the identification of the designed network can be performed that whether the network is properly working or not, by delivering the network packet request. As to insure the integrity of Cloud server authentication and authorization process a step needs to be performed to integrate the Face ID with MAC Address in Cloud System. To improvise the current face recognition system the proposed model needs to be deploy to generate the Face ID Matrix. The Face ID generates in a form of matrix, by this, the integration of Face ID matrix with MAC address can be finalized and further, it authenticates the user’s system according to the outcome value. This model of authentication improves the security in the real time cloud user’s authentication by the integration of MAC with real time face recognition.

References:

[1] Tak BC, Urgaonkar B, Sivasubramaniam A 2011 To Move or Not to Move: The Economics of Cloud Computing. InHotCloud 14.
[2] May M 2010 Forecast calls for clouds over biological computing Nat Med 16 6.
[3] Chen J, Wang Y, Wang X 2012 On-demand security architecture for cloud computing. Computer 45 7 73-78.
[4] Chen M, Zhang Y, Hu L, Taleb T, Sheng Z 2015 Cloud-based wireless network: Virtualized, reconfigurable, smart wireless network to enable 5G technologies. Mobile Networks and Applications 20 4704.
[5] Caton S, Haas C, Chard K, Bubendorfer K, Rana OF 2014 A social compute cloud: Allocating and sharing infrastructure resources via social networks. IEEE Transactions on Services Computing. Jan 28 7(3) 359-72.
[6] Hu G, Yang Y, Yi D, Kittler J, Christmas W, Li SZ, Hospedales T. 2015 When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. InProceedings of the IEEE
Basha SS, Dubey SR, Pulabaigari V, Mukherjee S. 2020 Impact of fully connected layers on performance of convolutional neural networks for image classification. *Neurocomputing* **378** 112-119.

Novikov A, Podoprikhin D, Osokin A, Vetrov D. 2015 Tensorizing neural networks. *arXiv* (preprint arXiv:1509.06569).

Chen Y, Jiang H, Li C, Jia X, Ghamisi P. 2016 Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. *IEEE Transactions on Geoscience and Remote Sensing* **54** 6232-51.

Schwing, Schwing, Alexander G., and Raquel Urtasun. 2015 Fully connected deep structured networks *arXiv* (preprint arXiv:1503.02351).

Wang H, Li Z, Ji X, Wang Y. Face r-cnn 2017 *arXiv* (preprint arXiv:1706.0106).

Shabbeer Basha SH, Dubey SR, Pulabaigari V, Mukherjee S. 2019 Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification. *arXiv* e-prints. Jan:arXiv-1902.

Chen S, Sun W, Huang L, Yang X, Huang J. 2019 Compressing Fully Connected Layers using Kronecker Tensor Decomposition. *IEEE 7th International Conference on Computer Science and Network Technology* (Dalian China/IEEE) p. 308-312.

Wang, Kangkan, Jin Xie, Guofeng Zhang, Lei Liu, and Jian Yang. 2020 Sequential 3D human pose and shape estimation from point clouds. In *Proceedings of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition* (California/IEEE) p. 7275-7284.

Ahmed T, Das P, Ali MF, Mahmud MF. 2020 A Comparative Study on Convolutional Neural Network Based Face Recognition. 11th *International Conference on Computing, Communication and Networking Technologies* (Khadagpur India/IEEE) p. 1-5.

Hu G, Yang Y, Yi D, Kittler J, Christmas W, Li SZ, Hospedales T. 2015 When face recognition meets with deep learning: an evaluation of convolutional neural networks for face recognition. *InProceedings of the IEEE International Conference on Computer Vision Workshops* p 42-150.

Peng KC, Chen T. 2015 Cross-layer features in convolutional neural networks for generic classification tasks. *IEEE International Conference on Image Processing* (ICIP canada/IEEE) Sep p. 3057-3061.

Zhang J. 2019 Gradient descent based optimization algorithms for deep learning models training. *arXiv* (preprint arXiv:1903.03614).

Katsavrias C, Daglis IA, Li W. 2019 On the statistics of acceleration and loss of relativistic electrons in the outer radiation belt: A superposed epoch analysis. *Journal of Geophysical Research: Space Physics* **124** 2755-68.

You Y, Zhang Z, Hsieh CJ, Demmel J, Keutzer K. 2018 Imagenet training in minutes. In *Proceedings of the 47th International Conference on Parallel Processing* (Eugene, Oregon/ACM) p.1-10.

Sun Z, Hu ZP, Wang M, Zhao SH. 2017 Individual-free representation-based classification for facial expression recognition. *Signal, Image and Video Processing* **11**(4) 597-604.

Yuan L, Qu Z, Zhao Y, Zhang H, Nian Q. 2017 A convolutional neural network based on TensorFlow for face recognition. *IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conf.* (Chongqing,China/IEEE) p. 525-529.

Yaddaden Y, Adda M, Bouzouane A, Gaboury S, Bouchard B. 2018 User action and facial expression recognition for error detection system in an ambient assisted environment. *Expert Systems with Applications* **112** 2173-89.

Lekdioui K, Messoussi R, Ruichek Y, Chaabi Y, Touahni R. 2017 Facial decomposition for expression recognition using texture/shape descriptors and SVM classifier. *Signal Processing: Image Communication* **58** 300-12.