ON COMPUTABLE LEARNING OF CONTINUOUS FEATURES

NATHAN AEL ACKERMAN, JULIAN ASILIS, JIEQI DI, CAMERON FREER, AND JEAN-BAPTISTE TRISTAN

Abstract. We introduce definitions of computable PAC learning for binary classification over computable metric spaces. We provide sufficient conditions for learners that are empirical risk minimizers (ERM) to be computable, and bound the strong Weihrauch degree of an ERM learner under more general conditions. We also give a presentation of a hypothesis class that does not admit any proper computable PAC learner with computable sample function, despite the underlying class being PAC learnable.

CONTENTS

1. Introduction 1
 1.1. Related work 2
 2. Preliminaries 3
 2.1. Computable metric spaces and Weihrauch reducibility 3
 2.2. Learning theory 6
 3. Notions of computable learning theory 8
 3.1. Countable hypothesis classes 9
 3.2. Examples 10
 3.3. Computable learners with noncomputable sample functions 11
 4. Computability of learners 12
 4.1. Upper bounds 12
 4.2. Lower bounds 13
 Acknowledgements 16
 References 16

1. Introduction

The modern statistical learning theory framework for the study of uniform learnability is the synthesis of two theories. On the one hand, Vapnik-Chervonenkis (VC) theory [VC71] is a statistical theory that provides a rate of convergence for a uniform law of large numbers for estimates of the form \(\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}(f(X_i) \neq Y_i) \), where \((X_i, Y_i)\) are i.i.d. samples from an unknown probability measure over \(\mathcal{X} \times \mathcal{Y} \) and \(f: \mathcal{X} \to \mathcal{Y} \) is a function from a class \(\mathcal{H} \) of measurable functions. The rate of convergence is a function of the complexity of the class \(\mathcal{H} \), measured using the concept of VC dimension. On the other hand, efficient Probably Approximately Correct (PAC) learnability [Val84] is a computational theory that defines the efficient learnability of a function class \(\mathcal{H} \) in terms of the existence of a learner, given by an algorithm having polynomial runtime, that takes an i.i.d. sample \(S = ((X_i, Y_i))_{i \leq n} \) from an unknown probability measure \(\mu \) as input and returns a function \(h \in \mathcal{H} \) whose error \(\Pr(h(X) \neq Y) \) for \((X, Y) \sim \mu\) can be bounded with high probability over the choice of \(S \). The analogous notion of PAC learnability, where the learner is merely required to be measurable in an appropriate sense, rather than efficiently computable, has also been widely studied.

The synthesis of these two theories culminates with the so-called fundamental theorem of machine learning [BEHW89], which establishes, under certain broadly-applicable measurability conditions, that
a class of functions is PAC learnable if and only if its VC dimension is finite. This theory provides
a justification for the foundational learning paradigm of empirical risk minimization and has become
the basis for studying many other learning paradigms and non-uniform theories of learnability. Note,
however, that in this framework the learner is only required to be a measurable function, and in
particular need not be computable.

Insofar as the goal of studying uniform learning is to determine when a problem admits supervised
learning by some program given access to training examples, it is important to investigate the subclass
of learners that are in some sense computable, a natural object of study intermediate between learners
that are efficiently computable and those that are merely measurable. In this direction, [AAB+20]
proposed a notion of computable learner for computably represented hypothesis classes \(\mathcal{H} \) on discrete
spaces. They principally consider binary classification in the case where \(\mathcal{H} \) is a computably enumerable
set of computable functions on a countable domain, e.g., \(\mathcal{X} = \mathbb{N} \).

However, many natural problems considered in classical PAC learning theory have continuous
domains, such as \(\mathbb{R}^n \). In the present paper, we consider notions of computable learners and hypothesis
classes, without restricting to the discrete setting, e.g., where \(\mathcal{X} \) is an arbitrary computable metric
space. We do so using the framework of computable analysis [Wei00], and establish upper and lower
bounds on the computability of several standard classes of learners in our setting.

We now describe the structure of the paper. Next, in Section 1.1, we describe several other ap-
proaches to computability in learning theory, including [AAB+20], and their relation to our work. We
then in Section 2 provide the relevant preliminaries from computability theory (including computable
metric spaces and Weihrauch reducibility) and from classical PAC learning theory. In Section 3 we
develop the basic concepts of computable learning theory in our setting, including notions of com-
putability for learners, presentations of hypothesis classes, and sample functions. Section 4 contains
our primary results, including sufficient conditions for empirical risk minimizer (ERM) learners to
be computable, upper bounds on the strong Weihrauch degrees of certain ERM learners, and the
construction of a (computable presentation of a) hypothesis class that is PAC learnable but which has
no computable proper PAC learner that admits a computable sample function.

1.1. Related work. Computability of PAC learners has also been studied in [AAB+20], which con-
siders the setting of discrete features and countable hypothesis classes. They provide several positive
and negative results on the computability of both proper and improper learners for various notions
of computably presented hypothesis classes, in both the realizable and agnostic cases. Our results,
when we restrict our setting to discrete spaces, correspond most closely to their results for so-called
recursively enumerable representable (RER) hypothesis classes. In particular, our Theorem 4.2 can be
viewed as a generalization of [AAB+20, Theorem 10], and the proof of our Theorem 4.6 uses similar
ideas to those in [AAB+20, Theorem 11].

Computability of non-uniform learning, which we do not consider in this paper, has been studied
in the discrete setting in both [Sol08] and [AAB+20].

In the present paper (and [AAB+20]) when considering a function with finite codomain (as arises
for both learners and presentations of hypothesis classes), the notion of computable function is such
that for each input, the output is always eventually given. It is also reasonable to consider settings
in which there is a particular value signaling non-halting, which the computable function may never
identify. This approach is explored in [CMPR21], where non-halting of a learner’s output is signaled
by the value \(\perp \). A related approach is considered in [Cal15], which studies PAC learning for concepts
that are \(\Pi^0_1 \) classes on \(2^\mathbb{N} \), which can be thought of as equivalent to working with computable functions
from \(2^\mathbb{N} \) to Sierpiński space \(S \) (i.e., the space \(\{ \perp, \top \} \) with open sets \(\{ \emptyset, \{ \top \}, \{ \perp, \top \} \} \)), where the inverse
image of \(\top \) is the \(\Pi^0_1 \) class in question.

Another interaction between learning theory and computability is in the setting of “learning in the
limit” [Gol67], sometimes called TxtEx learning. One recent result [Ber14] in this framework
establishes the \(\Sigma^0_3 \)-completeness of this learning problem for certain computably enumerable hypothesis
classes.
2. Preliminaries

This section provides a brief treatment of the computability theory and classical learning theory
that form the starting point of our study.

We begin by recalling several pieces of notation. For a set I, we write $(s_i)_{i \in I}$ to denote an I-
indexed sequence. For $n \in \mathbb{N}$, write $[n]$ to denote the set $\{0, 1, \ldots, n-1\}$. We write $f|_U$ to denote
the restriction of a function $f: X \to Y$ to a subdomain $U \subseteq X$.

For a topological space X, we write $X^{<\omega}$ for the space $\bigsqcup_{i \in \mathbb{N}} X^i$ of finite sequences of points in X,
edowed with its natural topology as the coproduct of product spaces. An extended metric space
is a set X equipped with a distance function $d: X \times X \to \mathbb{R} \cup \{\infty\}$ satisfying the usual metric axioms
(where $\infty + r = \infty$ for any $r \in \mathbb{R} \cup \{\infty\}$).

2.1. Computable metric spaces and Weihrauch reducibility. We next describe certain key
notions of computability and computable analysis, including the notions of computable metric spaces
and computable functions between them. For more details and several equivalent formulations of the
basic notions, see, e.g., [BHW08, Section 4]. We then describe the notion of Weihrauch reducibility;
for more details, see [BGP21].

Recall that a partial function f from \mathbb{N} to \mathbb{N} is said to be computable if there is some Turing
machine that halts on input n (encoded in binary) precisely when f is defined on n, and in this case
produces (a binary encoding of) $f(n)$ as output. We fix a standard encoding of Turing machines and
write $\{e\}$ to denote the partial function that the program encoded by $e \in \mathbb{N}$ represents. We write
$\{e\}(n) \downarrow$ to mean that the partial function $\{e\}$ is defined on n, i.e., that the program encoded by e
halts on input n, and write $\{e\}(n) \uparrow$ otherwise.

In this paper, it will be convenient to take oracles to be elements of $\mathbb{N}^\mathbb{N}$ rather than $2^\mathbb{N}$. For $f \in \mathbb{N}^\mathbb{N}$
we write $\{e\}^f$ to denote the partial function defined by an oracle program encoded by e using f as an
oracle. Because we are using oracles in $\mathbb{N}^\mathbb{N}$, we will define the Turing jump to yield a function rather
than a set. Given $f \in \mathbb{N}^\mathbb{N}$, the Turing jump of f, written f', is defined to be the characteristic function of
$\{e \in \mathbb{N} : \{e\}^f(0) \downarrow\}$. By convention, we write \emptyset' for the characteristic function of the
halting set $\{e \in \mathbb{N} : \{e\}(0) \uparrow\}$.

A subset of \mathbb{N} is computable if its characteristic function is a total computable function, and is
computably enumerable (c.e.) if it is the domain of a partial computable function (equivalently,
either empty or the range of a total computable function). We will also speak of more elaborate
finitary objects (such as sets of finite tuples of rationals) as being computable or c.e. when they are
computable or c.e., respectively, under a standard encoding of the objects via natural numbers.

For concreteness, we will use the notion of a presentation of a real when defining computable metric
spaces, but note that this could also be formulated using represented spaces, as defined later in the
section. An extended real is an element of $\mathbb{R} \cup \{\infty\}$. A presentation of an extended real is a sequence of rationals $(q_i)_{i \in \mathbb{N}}$ with either $q_i > i$ for all i or $|q_i - q_j| < 2^{-i}$ for all i, j with $i < j$. In the
first case we say that the sequence is a presentation of ∞ and in the second case that it is a presentation
of the limit of the Cauchy sequence in \mathbb{R}. We say that an extended real is computable if it has a
computable presentation. The computable reals are the elements of \mathbb{R} admitting a computable presentation as extended reals.

We say that a sequence $(t_i)_{i \in \mathbb{N}}$ in an (extended) metric space $X = (X, d)$ is a rapidly converging
Cauchy sequence when for all $i < j$ we have $d(t_i, t_j) < 2^{-i}$.

Definition 2.1. A computable (extended) metric space is a triple $X = (X, d_X, (s^X_i)_{i \in \mathbb{N}})$ such that

1. $(X \cup S, d_X)$ is a separable (extended) metric space, where $S = \{s^X_i : i \in \mathbb{N}\}$,
2. $(s^X_i)_{i \in \mathbb{N}}$, called the sequence of ideal points of X, enumerates a dense subset of $(X \cup S, d_X)$,
3. X, called the underlying set of X, is dense in $(X \cup S, d_X)$, and
4. d_X, called the distance function, is such that $d_X(s^X_i, s^X_j)$ is a computable extended real,
 uniformly in i and j.
In the special case where (X, d_X) is a complete (extended) metric space, we say that X is a **computable (extended) Polish space**. An element $x \in X$ is said to be a **computable point** of X if there is a computable function $f : \mathbb{N} \to \mathbb{N}$ such that $(s^X_{f(i)})_{i \in \mathbb{N}}$ is a rapidly converging Cauchy sequence that converges to x. We will omit the superscripts and subscripts when they are clear from context.

Note that some papers (e.g., [BP03, Definition 2.1] and [BHW08, Definition 7.1]) define a computable metric space only in the case where the set S of ideal points is a subset of X, and others (e.g., [HR09, Definition 2.4.1]) use the term computable metric space to refer to what we call a computable Polish space.

Example 2.2. The set \mathbb{R} of real numbers forms a computable Polish space under the Euclidean metric, when equipped with the set \mathbb{Q} of rationals as ideal points under the standard diagonal enumeration $(q_i)_{i \in \mathbb{N}}$. The computable points of this computable Polish space are precisely the computable reals.

Note that in a computable metric space that is not a Polish space, the ideal points need not be in the underlying set, as in the following example.

Example 2.3. The set of irrational numbers forms a computable metric space under the Euclidean metric, again equipped $(q_i)_{i \in \mathbb{N}}$ as the sequence of ideal points. The computable points of this computable metric space are the computable irrational numbers.

The next two examples will be key in many of our constructions.

Example 2.4. Baire space, written $\mathbb{N}^\mathbb{N}$, is the computable Polish space consisting of countably infinite sequences of natural numbers, with ideal points those sequences having only finitely many nonzero values (ordered lexicographically), and where $d_{\mathbb{N}^\mathbb{N}}$ is the ultrametric on the countably infinite product of $\{0,1\}$, i.e.,

$$d_{\mathbb{N}^\mathbb{N}}((s_i)_{i \in \mathbb{N}}, (t_i)_{i \in \mathbb{N}}) = 2^{-\inf_{i \in \mathbb{N}}(s_i \neq t_i)}.$$

Cantor space, written $2^\mathbb{N}$, is the computable Polish subspace of $\mathbb{N}^\mathbb{N}$ consisting of binary sequences.

Let π_0 and π_1 be computable maps from \mathbb{N} to \mathbb{N} such that $i \mapsto (\pi_0(i), \pi_1(i))$ is a computable bijection of \mathbb{N} with $\mathbb{N} \times \mathbb{N}$.

When X and Y are computable (extended) metric spaces, we write $X \times Y$ to denote the computable (extended) metric spaces with underlying set $X \times Y$, with sequence of ideal points $(s^X_{\pi_0(i)}, s^Y_{\pi_1(i)})_{i \in \mathbb{N}^\mathbb{N}}$, and where $((X \cup S^X) \times (Y \cup S^Y), d_{X \times Y})$ is the product (extended) metric space of $(X \cup S^X, d_X)$ and $(Y \cup S^Y, d_Y)$.

We let $X^{\leq \omega}$ be the coproduct $\biguplus_{n \in \omega} \prod_{i \in \mathbb{N}} X$, i.e., the space whose underlying set consists of finite sequences of elements of X, whose ideal points are finite sequences of ideal points in X, and where the distance function satisfies

$$d_{X^{\leq \omega}}((x_i)_{i \in \mathbb{N}}, (y_i)_{i \in \mathbb{N}}) = \begin{cases} \max_{i \in \mathbb{N}} d_X(x_i, y_i) & \text{if } m = n; \\ \infty & \text{otherwise}. \end{cases}$$

Definition 2.5. Suppose $X = (X, d_X)$ and $Y = (Y, d_Y)$ are metric spaces and $Z \subseteq X$. We say a map $f : X \to Y$ is **continuous** on Z if for all open sets $U \subseteq Y$, there is an open set $V \subseteq X$ such that $f^{-1}(U) \cap Z = V \cap Z$. In other words, f restricted to Z is continuous as a map from the metric space that X induces on Z to Y.

Definition 2.6. Let X and Y be computable metric spaces with ideal points $(s_i)_{i \in \mathbb{N}}$ and $(t_i)_{i \in \mathbb{N}}$ respectively, and suppose $Z \subseteq X$. Suppose $f : W \to Y$ is a map where $Z \subseteq W \subseteq X$. We say that f is **computable on** Z if for all $(j, q) \in \mathbb{N} \times \mathbb{Q}$ there is a set $\Phi_{j,q} \subseteq \mathbb{N} \times \mathbb{Q}$ such that

- $f^{-1}(B(t_j, q)) \cap Z = \left(\bigcup_{(k,p) \in \Phi_{j,q}} B(s_k, p) \right) \cap Z$, and
- the set $\{(j, q, k, p) : (k, p) \in \Phi_{j,q}\}$ is c.e.

This definition captures the notion that the partial map f is continuous on its restriction to Z and has a computable witness to this continuity.
Observe that a computable function from $\mathbb{N}^\mathbb{N}$ to a computable metric space \mathbb{Y} can be thought of as a program on an oracle Turing machine that takes the input on its oracle tape, and outputs a “representation” of a point in \mathbb{Y}. The notion of a represented space is one way of making this notion precise. For more details, see [BGP21].

Definition 2.7. A represented space (X, γ) is a set X along with a surjection γ from a subset of $\mathbb{N}^\mathbb{N}$ onto X. When the choice of γ is clear from context, we call γ the representation of X.

Definition 2.8. Suppose $X = (X, d_X, (s_X^i)_{i \in \mathbb{N}})$ is a computable metric space. Define $CS_X \subseteq \mathbb{N}^\mathbb{N}$ to be the collection of functions $f : \mathbb{N} \to \mathbb{N}$ for which $(s_X^i)_{i \in \mathbb{N}}$ is a rapidly converging Cauchy sequence whose limit is in X. The represented space induced by X is defined to be (X, γ_X), where

$$\gamma_X : CS_X \to X$$

assigns each function f the value $\lim_{i \to \infty} s_X^i(i)$.

Intuitively, a realizer of a function g takes a description of an input x to a description of the corresponding output $g(x)$, where these descriptions are given in terms of representations.

Definition 2.9. Suppose (X, γ_X) and (Y, γ_Y) are represented spaces, and let $g : X \to Y$ be a map. A realizer of g is any function $G : \text{dom}(\gamma_X) \to \text{dom}(\gamma_Y)$ such that $\gamma_Y \circ G = g \circ \gamma_X$.

A realizer is computable if it is computable on $\text{dom}(\gamma_X)$ (considered as a partial map between computable metric spaces $\mathbb{N}^\mathbb{N}$ and $\mathbb{N}^\mathbb{N}$).

The notion of strong Weihrauch reducibility aims to capture the intuitive idea that one function is computable given the other function as an oracle, along with possibly some computable pre-processing and post-processing, where access to the original input is permitted only in pre-processing. (The weaker notion of Weihrauch reducibility, in which the input may be used again in post-processing, also arises in computable analysis, but in this paper we are able to show that all of the relevant reductions are strong.)

Definition 2.10. Let (X_i, γ_{X_i}) and (Y_i, γ_{Y_i}) be represented spaces for $i \in \{0, 1\}$, and suppose that $f : X_0 \to Y_0$ and $g : X_1 \to Y_1$ are functions. Let F and G be the sets of realizers of f and g respectively. We say that f is strongly Weihrauch reducible to g, and write $f \leq_{sW} g$, when there are computable functions H and K, each from some subset of $\mathbb{N}^\mathbb{N}$ to $\mathbb{N}^\mathbb{N}$, such that for every $G \in G$ there exists an $F \in F$ satisfying

$$F = H \circ G \circ K.$$

We say that f and g are strongly Weihrauch equivalent, and write $f \equiv_{sW} g$, when $f \leq_{sW} g$ and $g \leq_{sW} f$.

Note that strong Weihrauch reducibility is usually described in the more general setting of partial multifunctions. Here we will only need single-valued functions with explicitly defined domains, and Definition 2.10 coincides with the standard one in this situation.

The following important map describes the problem of computing limits on a represented space X induced by a computable metric space X. (Note that elsewhere in the literature, \lim_X is typically referred to as $\lim_{\mathbb{N}^\mathbb{N}}$.)

Definition 2.11. Suppose X is a computable metric space, and let (X, γ_X) be the represented space it induces. The limit map $\lim_X : X^\mathbb{N} \to X$ is the function that assigns every convergent Cauchy sequence in X its limit.

One can view $\lim_{\mathbb{N}^\mathbb{N}}$ as playing a role in Weihrauch reducibility analogous to the role played by the halting problem \emptyset' with respect to Turing reducibility. For more details, see [BGP21, §11.6].

It will also be useful to introduce the notion of a rich space, which bears a relation to $\lim_{\mathbb{N}^\mathbb{N}}$ and is informally a space that computably contains the real numbers.

Definition 2.12. A computable metric space X is rich if there is some computable map $\iota : 2^\mathbb{N} \to X$ that is injective and whose partial inverse ι^{-1} is also injective.
Lemma 2.13. [BGP21, Proposition 11.6.2] If \(X \) and \(Y \) are rich spaces, then \(\lim_N X \equiv_{sW} \lim_N Y \). In particular, \(\lim_N X \equiv_{sW} \lim_N \). \(\equiv_{sW} \).

Observe that for any computable metric space \(X \), the space \(X \prod \mathbb{N}^\aleph_0 \) is rich, and therefore \(\lim_N \equiv_{sW} \lim_N \prod \mathbb{N}^\aleph_0 \). Hence \(\lim_N \equiv_{sW} \) is maximal (under \(\leq_{sW} \)) among limit operators.

We will also work with the Turing jump map \(J : \mathbb{N}^\aleph_0 \to \mathbb{N}^\aleph_0 \), given by \(z \mapsto z' \), which is strongly Weihrauch equivalent to \(\lim_N \).

Lemma 2.14 ([BGP21, Theorem 11.6.7]). \(\lim_N \equiv_{sW} J \).

Although \(\lim_N \equiv_{sW} J \), in general \(\lim_N \) is weaker. In Section 4.1 we will establish our upper bounds in terms of \(\lim_N \) for appropriate computable metric spaces \(I \), while in Section 4.2 we will establish a bound using the operator \(J \).

Strong Weihrauch reductions to the parallelization of a function allow one to ask for countably many instances of the function to be evaluated.

Definition 2.15. Let \(f : X \to Y \) be a map between represented spaces. The parallelization of \(f \) is the map \(\hat{f} : X^\aleph_0 \to Y^\aleph_0 \) defined by \(\hat{f}((x_i)_{i \in \mathbb{N}}) = (f(x_i))_{i \in \mathbb{N}} \).

The following is immediate.

Lemma 2.16. For any map \(f : X \to Y \) between represented spaces, \(f \equiv_{sW} \hat{f} \).

We will also need the following standard fact.

Lemma 2.17 ([BGP21, Theorem 11.6.6]). \(\widehat{\lim_N} \equiv_{sW} \lim_N \).

The notion of the parallelization of a function will be important in Section 4.2, for reasons we explain in Remark 4.7.

2.2. Learning theory. We now consider the traditional framework for uniform learnability, formulated for Borel measurable hypotheses. A learning problem is determined by a domain, label set, and hypothesis class, as we now describe.

(i) a domain \(\mathcal{X} \) of features that is a Borel subset of some extended Polish space \(X \),

(ii) a label set \(\mathcal{Y} \) that is a Polish space, and

(iii) a hypothesis class \(\mathcal{H} \) consisting of Borel functions from \(\mathcal{X} \) to \(\mathcal{Y} \).

We will say that any Borel function from \(\mathcal{X} \) to \(\mathcal{Y} \) is a hypothesis; note that such a map is sometimes also called a predictor, classifier, or concept. In this paper, we will only consider problems in binary classification, i.e., where \(\mathcal{Y} = \{0, 1\} \), considered as a metric space under the discrete topology.

Let \(D \) be a Borel measure on \(\mathcal{X} \times \mathcal{Y} \). The true error, or simply error, of a hypothesis \(h \in \mathcal{H} \) with respect to \(D \) is the probability that \((x, h(x)) \) disagrees with a randomly selected pair drawn from \(D \), i.e.,

\[
L_D(h) = D\{(x, y) \in \mathcal{X} \times \mathcal{Y} \mid y \neq h(x)\}.
\]

The empirical error of a hypothesis \(h \) on a tuple \(S = ((x_1, y_1), \ldots, (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n \) of training examples is the fraction of pairs in \(S \) on which \(h \) misclassifies the label of a feature, i.e.,

\[
L_S(h) = \frac{\sum_{i=1}^n |h(x_i) - y_i|}{n}.
\]

Traditionally, one thinks of a learner as a map which takes finite sequences of \((\mathcal{X} \times \mathcal{Y})^\omega \) and returns a hypothesis, i.e., an element of \(\mathcal{Y}^\mathcal{X} \). We would then like to define a computable learner as a learner which is computable as a map between computable extended metric spaces. Unfortunately, here we encounter the obstructions that \(\mathcal{Y}^\mathcal{X} \) is not, in general, an extended metric space. We overcome it by instead considering a learner as the “curried” version of a map from \((\mathcal{X} \times \mathcal{Y})^\omega \times \mathcal{X} \) to \(\mathcal{Y} \). In this manner, we will be able to consider learners which are computable as maps between Polish spaces.
Definition 2.18. A learner is a Borel measurable function $A: (\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X} \to \mathcal{Y}$. For notational convenience, for $S \in (\mathcal{X} \times \mathcal{Y})^{<\omega}$ we let $\tilde{A}(S): \mathcal{X} \to \mathcal{Y}$ be the function defined by $\tilde{A}(S)(x) = A(S,x)$.

The goal of a learner A is to return a hypothesis h that minimizes the true error with respect to an unknown Borel distribution D on $\mathcal{X} \times \mathcal{Y}$. The learner does so by examining a D-i.i.d. sequence $S = ((x_1, y_1), \ldots, (x_n, y_n))$. Notably, the learner cannot directly evaluate L_S; it is guided only by the information contained in the sample S, including evaluations of L_S. However, as it is ignorant of D, the learner does not know how faithfully L_S approximates L_D.

The most central framework for assessing learners with respect to hypothesis classes is that of PAC learning (see, e.g., [SB14, Chapter 3]). In the setting of efficient PAC learning [SB14, Definition 8.1], one further requires that the learning algorithm be polynomial-time in the reciprocal of its inputs ϵ and δ, to be described in the following definition.

Definition 2.19. Let \mathbb{D} be a collection of Borel distributions on $\mathcal{X} \times \mathcal{Y}$ and let \mathcal{H} be a hypothesis class. A learner A is said to PAC learn \mathcal{H} with respect to \mathbb{D} (or is a learner for \mathcal{H} with respect to \mathbb{D}) if there exists a function $m: (0,1)^2 \to \mathbb{N}$, called a sample function, that is non-increasing on each coordinate and satisfies the following property: for every $\epsilon, \delta \in (0,1)$ and every Borel distribution $D \in \mathbb{D}$, a finite i.i.d. sample S from D with $|S| \geq m(\epsilon, \delta)$ is such that, with probability at least $(1-\delta)$ over the choice of S, the learner A outputs a hypothesis $\tilde{A}(S)$ with

$$(\dagger) \quad L_D(\tilde{A}(S)) \leq \inf_{h \in \mathcal{H}} L_D(h) + \epsilon.$$

(Observe that (\dagger) is a Borel measurable condition, as $L_D(\tilde{A}(S)) = \int 1_{\tilde{A}(S,x) \neq y} D(dx,dy)$. The minimal such sample function for A is its sample complexity. When there is some learner A that learns \mathcal{H} with respect to \mathbb{D}, we say that \mathcal{H} is PAC learnable with respect to \mathbb{D} (via A).

In the case where \mathbb{D} consists of all Borel distributions on $\mathcal{X} \times \mathcal{Y}$, we say that \mathcal{H} is agnostic PAC learnable and that A is an agnostic PAC learner for \mathcal{H}. In the case where \mathbb{D} consists of the class of Borel distributions D on $\mathcal{X} \times \mathcal{Y}$ for which $L_D(h) = 0$ for some $h \in \mathcal{H}$, we say that \mathcal{H} is PAC learnable in the realizable case and that A PAC learns \mathcal{H} in the realizable case.

Remark 2.20. Some sources use “sample complexity” to refer to a property of hypothesis classes \mathcal{H}, defined as the pointwise minimum of all of \mathcal{H}’s PAC learners’ sample complexities (in the sense of Definition 2.19). The learner-dependent definition will be more appropriate for our purposes, in which, for instance, the distinction between computable and noncomputable learners is of central importance.

We will see shortly in Theorem 2.23 that a class that is PAC learnable in the realizable case must also be agnostic PAC learnable (possibly via a different learner with worse sample complexity).

Definition 2.21. A learner E is an empirical risk minimizer (or ERM) for \mathcal{H}, if for all finite sequences $S \in (\mathcal{X} \times \mathcal{Y})^{<\omega}$, we have

$${\tilde{E}(S)} \in \arg\min_{h \in \mathcal{H}} L_S(h).$$

Definition 2.22. The VC dimension of \mathcal{H} is

$$\sup \{ |C| : C \subseteq \mathcal{X} \text{ and } \{h_C : h \in \mathcal{H}\} = \{0,1\}^C\}.$$

When $\{h_C : h \in \mathcal{H}\} = \{0,1\}^C$, we say that \mathcal{H} shatters the set C.

We now state the relevant portions of the fundamental theorem of learning theory in our setting (binary classification with 0-1 loss), which holds for hypothesis classes satisfying the mild technical assumption of universal separability [BEHW89, Appendix A]. This condition is satisfied for any hypothesis class having a computable presentation (see Definition 3.2), as is the case for all hypothesis classes considered in this paper.
Theorem 2.23 ([SB14, Theorem 6.7]). Let \mathcal{H} be a hypothesis class of functions from a domain X to \{0, 1\}. Then the following are equivalent:

1. \mathcal{H} has finite VC dimension.
2. \mathcal{H} is PAC learnable in the realizable case.
3. \mathcal{H} is agnostically PAC learnable.
4. Any ERM learner is a PAC learner for \mathcal{H}, over any family of measures.

Because of the equivalence between conditions 2 and 3, we will say that a hypothesis class \mathcal{H} is PAC learnable (without reference to a class of distributions \mathbb{D}, and without mentioning agnostic learning or realizability) when any of these equivalent conditions hold. Note that while every agnostic PAC learner for \mathcal{H} is in particular a PAC learner for \mathcal{H} in the realizable case, the converse is not true; when we speak of a PAC learner for \mathcal{H} without mention of \mathbb{D}, we will mean the strongest such instance, namely that it is an agnostic PAC learner for \mathcal{H}.

Furthermore, there exists a connection between the VC dimension of a PAC learnable class and the sample functions of its ERM learners.

Theorem 2.24 ([SB14, pp. 392]). Let \mathcal{H} be a hypothesis class of functions from a domain X to \{0, 1\} with finite VC dimension d. Then its ERM learners are PAC learners with sample functions

$$m(\epsilon, \delta) = \frac{32d}{\epsilon^2} \cdot \log\left(\frac{64d}{\epsilon^2}\right) + \frac{8}{\epsilon^2} \cdot (8d \log(\epsilon/d) + 2\log(4/\delta)).$$

3. Notions of computable learning theory

As described before Definition 2.18, the notion of learner we consider in this paper is the curried version of the standard one, in order to allow for it to be a computable map between Polish spaces. We now make use of this, to define when a learner is computable, and when a hypothesis class is computably PAC learnable.

Definition 3.1. By a computable learner we mean a learner $A: (X \times Y)^{<\omega} \times X \to Y$ which is computable as a map of computable extended metric spaces. We say a hypothesis class \mathcal{H} is computably PAC learnable if there is a computable learner that PAC learns it.

It will also be important to have a computable handle on hypothesis classes themselves. As such, we will primarily consider hypothesis classes as collections of hypotheses endowed with (not necessarily unique) indices. This information is collected up into a presentation of the class.

Definition 3.2. A presentation of a hypothesis class is a Borel measurable function $\bar{\mathcal{H}}: I \times X \to Y$. We call I the index space. Let $\bar{\mathcal{H}}: I \to Y^{X}$ be the function defined by $\bar{\mathcal{H}}(i)(x) = \mathcal{H}(i, x)$. We write \mathcal{H}^I to denote the underlying hypothesis class, i.e., range($\bar{\mathcal{H}}$). We say that \mathcal{H} presents the class \mathcal{H}^I and that a hypothesis is an element of \mathcal{H}^I when it is in \mathcal{H}^I.

Definition 3.3. A presentation $\bar{\mathcal{H}}: I \times X \to Y$ of a hypothesis class is computable if I is a computable metric space and $\bar{\mathcal{H}}$ is computable as a map of computable extended metric spaces.

Classically, a proper learner for a hypothesis class \mathcal{H} is usually regarded simply as a learner which happens to always produce hypotheses in the class \mathcal{H}. This is a key notion, about which we will want to reason computably.

In our setting, to study the computability of proper learning, it will be valuable to consider the case in which the elements of \mathcal{H} are identified by indices bearing additional structure, and thus to consider learners that identify hypotheses in \mathcal{H} by such indices, using a presentation $\bar{\mathcal{H}}$. Consequently, and in contrast to the classical setting, we take proper learners to be slightly different objects than ordinary learners. Our proper learners map samples to indices, rather than map samples and features to labels. We then can define a computable proper learner to be simply a proper learner that is computable (similarly to Definition 3.1 of a computable learner).
Definition 3.4. Let \mathcal{I} be a presentation of a hypothesis class. A proper learner for \mathcal{H} is a map $A : (\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathcal{I}$. If the map A defined by $A((x_i, y_i)_{i \in [n]}, x) = \mathcal{H}((x_i, y_i)_{i \in [n]}, x) \subseteq A$ for $\mathcal{H} \subseteq (\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{I}$, then A is a proper PAC learner for \mathcal{H}, we call A the learner induced by \mathcal{H} (as a proper learner for \mathcal{H}). If \mathcal{H} is a computable presentation, we say that a proper learner \mathcal{A} for \mathcal{H} is computable when it is computable as a map of computable extended metric spaces.

Note that the learner A induced by a computable proper PAC learner for \mathcal{H} in Definition 3.4 is a computable learner for \mathcal{H}^\dagger, as we have required both \mathcal{A} and \mathcal{H} to be computable. Intuitively, \mathcal{H}^\dagger is properly PAC learnable if there is a computable function which takes in finite sequences of elements of $\mathcal{X} \times \mathcal{Y}$ and outputs the index of an element of \mathcal{H}, and where the corresponding learner PAC learns \mathcal{H}^\dagger.

Definition 3.5. Given a hypothesis class \mathcal{H}, define $\Phi_\mathcal{H} \subseteq (\mathcal{X} \times \mathcal{Y})^{<\omega}$ to be the set of those finite sequences $((x_1, y_1), \ldots, (x_n, y_n))$ for which $\{((x_1, y_1), \ldots, (x_n, y_n))\}$ is a subset of the graph of h for some $h \in \mathcal{H}$, i.e., $\bigcup_{h \in \mathcal{H}} \prod_{n<\omega} \{(x, h(x)) : x \in \mathcal{X}\}^n$.

Recall that the realizable case restricts attention to measures \mathcal{D} for which \mathcal{D}-i.i.d. sequences are almost surely in the graph of some element of \mathcal{H}. In particular, for any such \mathcal{D} and $n \in \mathbb{N}$, the product measure \mathcal{D}_n is concentrated on $\Phi_\mathcal{H} \cap (\mathcal{X} \times \mathcal{Y})^n$. Note, however, that $\Phi_\mathcal{H}$ itself will not in general be Borel, even when \mathcal{H} is. Yet, in the following definition, $\Phi_\mathcal{H}$ plays only the role of a subdomain on which the computability of learners in the realizable case is considered, and thus its measure-theoretic properties are of no consequence.

Definition 3.6. Let \mathcal{H} be a hypothesis class. Then a learner A for \mathcal{H} in the realizable case is computable in the realizable case for \mathcal{H} if it is computable on $\Phi_\mathcal{H}$ as a function between metric spaces $(\mathcal{X} \times \mathcal{Y})^{<\omega}$ and \mathcal{I}. A proper learner \mathcal{A} for a computable presentation \mathcal{H} of \mathcal{H} is computable in the realizable case if \mathcal{A} is computable on $\Phi_\mathcal{H}$ as a function between metric spaces $(\mathcal{X} \times \mathcal{Y})^{<\omega}$ and \mathcal{I}.

Note that it is possible to have a noncomputable learner for \mathcal{H} which is nevertheless computable in the realizable case for \mathcal{H}. However, all computable learners for \mathcal{H} are computable in the realizable case for \mathcal{H}.

It will be important to impose computability constraints on sample functions as well as learners.

Definition 3.7. A sample function $m : (0, 1)^2 \to \mathbb{N}$ is computable if uniformly in $n \in \mathbb{N}$ there are computable sequences of rationals $(\ell_{n,i})_{i \in \mathbb{N}}$, $(r_{n,i})_{i \in \mathbb{N}}$, $(t_{n,i})_{i \in \mathbb{N}}$, and $(b_{n,i})_{i \in \mathbb{N}}$ such that

- $U_n \subseteq m^{-1}(n)$ for every $n \in \mathbb{N}$, and
- the closure of the set $\bigcup_{n \in \mathbb{N}} U_n$ is $(0, 1)^2$,

where for each n we define $U_n = \bigcup_{i \in \mathbb{N}} (\ell_{n,i}, r_{n,i}) \times (t_{n,i}, b_{n,i})$.

Given a computable PAC learner and a computable sample function for this learner, one can produce an algorithm that, given an error rate and failure probability, outputs a hypothesis having at most that error rate with at most the stated failure probability. If the computable learner is an ERM, then by Theorem 2.24 it has a computable sample function, and so one obtains such an algorithm. On the other hand, we will see in Theorem 3.12 that not every computable PAC learner (for a given hypothesis class \mathcal{H} and class of distributions \mathcal{D}) admits a computable sample function (with respect to \mathcal{H} and \mathcal{D}).

3.1. Countable hypothesis classes. Suppose that \mathcal{X} is countable and discrete. Requiring that a learner A be computable is then tantamount to asking that the maps $x \mapsto A(S, x)$ be uniformly computable as S ranges over $(\mathcal{X} \times \mathcal{Y})^{<\omega}$. By collecting up this data, such a computable learner A can be encoded as a computable map from \mathcal{N} to \mathcal{N}. In a similar fashion, a computable presentation of a hypothesis class could be encoded by a single computable map from \mathcal{N} to \mathcal{N}.

The paper [AAB+20] studies computable PAC learning in the setting where $\mathcal{X} = \mathcal{N}$, a countable discrete metric space. As such, they are able to work with the encodings of these simplified notions of computable learners and presentations of hypothesis classes, as we have just sketched.
3.2. Examples. To illustrate these definitions, we now describe two examples — one a very basic one in this formalism, and the other a standard example from learning theory.

3.2.1. “Apply” function. Let the index space \(\mathcal{I} \) be \(2^\mathbb{N} \) and the sample space \(\mathcal{X} \) be \(\mathbb{N} \). We define the “apply” presentation of the hypothesis class \(2^\mathbb{N} \) to be the map \(\delta : \mathcal{I} \times \mathcal{X} \to \{0, 1\} \) where \(\delta^*(x, n) = x(n) \). Note that while \(\delta^* \) is computable, there is no single Turing degree which bounds every hypothesis in \(\delta^* = 2^\mathbb{N} \). In particular, this example demonstrates that the notion of computable hypothesis class that we consider is fundamentally more general than the corresponding notion in [AAB+20], which considers only countable collections of hypotheses.

3.2.2. Decision stump. Recall the decision stump problem from classical learning theory: \(\mathcal{X} = \mathbb{R}, \mathcal{Y} = \{0, 1\}, \) and \(\mathcal{H} = \{ \mathbb{1}_{>c} : c \in \mathbb{R} \} \). In the realizable case, the learning problem amounts to estimating the true cutoff point \(c \) from a sample \(S = (x_i, y_i)_{i \in [n]} \) for which \(y_i = 1 \) if and only if \(x_i > c \). It is well-known to be PAC learnable in the realizable case via the following algorithm:

1. If \(S \) has negatively labeled examples (i.e., \((x_i, y_i) \) with \(y_i = 0 \)), then set \(m \) to be the maximal such \(x_i \). Otherwise, set \(m \) to be the minimal feature among positively labeled examples.
2. Return \(\mathbb{1}_{>m} \).

In particular, this implements an ERM learner for \(\mathcal{H} \) in the realizable case. Further, as \(\mathcal{H} \) has VC dimension 1, it is a PAC learner for \(\mathcal{H} \) in the realizable case by the equivalence of clauses 1 and 4 in Theorem 2.23.

The classical algorithm does not give rise to a computable learner in the sense of Definition 2.18, however, as \(\mathbb{1}_{>m} \) cannot be computed from \(S \). In particular, undecidability of equality for real numbers obstructs such a computation from being performed over \(\mathbb{R} \). In order to more sensibly cast the problem in a computable setting, we restrict focus to cutoff points located at computable reals and take the noncomputable reals as the domain set \(\mathcal{X} \).

Now consider the computable presentation \(\delta_{\text{step}} : \mathbb{R} \times (\mathbb{R} \setminus \mathbb{N}) \to \{0, 1\} \) of a hypothesis class with index set the computable reals \(\mathbb{R} \), given by \(\delta_{\text{step}}(c, x) = \mathbb{1}_{>c}(x) \). Its underlying hypothesis class \(\delta_{\text{step}}^* = \{ \mathbb{1}_{>c} : c \in \mathbb{R} \} \) consists of computable functions (whose domains are \(\mathbb{R} \setminus \mathbb{N} \)), thus proper learners have a chance of success. Nevertheless, the classical algorithm fails: \(m \) will reside in \(\mathcal{X} \), and thus \(\mathbb{1}_{>m} \) will be noncomputable as a function on \(\mathcal{X} \) (even when one has access to \(m \)). We will exhibit a proper learner \(\mathcal{A}_{\text{step}} \) for \(\delta_{\text{step}} \) that is computable in the realizable case and whose induced learner is an ERM.

Fix a computable enumeration \((q_i)_{i \in \mathbb{N}} \) of \(\mathbb{Q} \) and uniformly enumerate a computable presentation of each as a computable real.

Algorithm 3.8 (Algorithm \(\mathcal{A}_{\text{step}} \)). Given a sample \(S = (x_i, y_i)_{i \in [n]} \), output the least \(i \in \mathbb{N} \) for which the empirical error of \(\mathbb{1}_{>q_i} \) is 0.

Proposition 3.9. \(\mathcal{A}_{\text{step}} \) is a proper learner for \(\delta_{\text{step}} \) that is computable in the realizable case and whose induced learner is an ERM.

Proof. Observe that the sequence of functions \((\mathbb{1}_{>q_i})_{i \in \mathbb{N}} \) is uniformly computable on \(\mathcal{X} = \mathbb{R} \setminus \mathbb{N} \). The empirical error of each \(\mathbb{1}_{>q_i} \) can be computed exactly on any sample (and hence compared with 0). The loop terminates upon reaching a rational \(q_i \) that separates the sample \(S \), one of which must exist for any \(S \) under consideration in the realizable case.

Corollary 3.10. \(\mathcal{A}_{\text{step}} \) is a computable proper PAC learner in the realizable case for \(\delta_{\text{step}} \).

Proof. By Proposition 3.9, \(\mathcal{A}_{\text{step}} \) is a computable proper learner in the realizable case for \(\delta_{\text{step}} \), whose induced learner is an ERM. The class \(\delta_{\text{step}} \) has VC dimension 1, and so by the equivalence of clauses 1 and 4 in Theorem 2.23, the learner induced by \(\mathcal{A}_{\text{step}} \) is a PAC learner in the realizable case.

In fact, we will see shortly in Theorem 4.2 that Corollary 3.10 is an instance of a more general result, namely that all classes with computable presentations have computable ERM learners in the realizable case.
3.3. **Computable learners with noncomputable sample functions.** Theorem 3.12 shows that even when a hypothesis class \(\mathcal{H} \) and class of distributions \(\mathbb{D} \) admit some computable PAC learner with a computable sample function, not all computable learners for \(\mathcal{H} \) with respect to \(\mathbb{D} \) must have a computable sample function.

Therefore, when investigating the computability of algorithms for outputting a hypothesis (with the desired error rate and failure probability), we must consider the computability of a pair consisting of a PAC learner and sample function, not merely the PAC learner alone.

The intuition behind the proof of Theorem 3.12 is that we can enumerate those programs that halt, and whenever the \(n \)th program to halt does so, we then coarsen all samples of size \(n \) up to accuracy \(2^{-s} \), where \(s \) is the size of the program. Consequently, for each desired degree of accuracy, we eventually obtain answers that are never coarsened beyond that accuracy. On the other hand, knowing how many samples are needed for a given accuracy allows us to determine a point past which we never again coarsen to a given level. This then lets us deduce when a given initial segment of the halting set has stabilized.

Definition 3.11. For \(M \in \mathbb{N} \), let \(\mathbb{D}_M \) be the collection of Borel probability distributions \(\mathbb{D} \) over \((\mathbb{R} \setminus \mathbb{R}_e) \times \{0, 1\} \) such that

- (i) \(L_P(h) = 0 \) for some element \(h \) of \(\mathcal{F}_{\text{step}} \), and
- (ii) \(\mathbb{D} \) is absolutely continuous (with respect to Lebesgue measure) and has a probability density function bounded by \(M \).

Theorem 3.12. For each \(M \in \mathbb{N} \), there is a learner \(A \) on \(\mathcal{X} = \mathbb{R} \setminus \mathbb{R}_e \) and \(\mathcal{Y} = \{0, 1\} \) such that

- \(A \) is computable in the realizable case with respect to \(\mathcal{F}_{\text{step}}^{\dagger} \), and
- \(A \) is a PAC learner for \(\mathcal{F}_{\text{step}}^{\dagger} \) over \(\mathbb{D}_M \), and
- \(\emptyset \) is computable from any sample function for \(A \) (as a learner for \(\mathcal{F}_{\text{step}}^{\dagger} \) over \(\mathbb{D}_M \)).

Proof. Define the function \(\alpha : \mathbb{Q} \times \mathbb{N} \to \mathbb{Q} \) by \(\alpha(q, \ell) = |2^\ell q|/2^\ell \), and let \(c : (\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathbb{Q} \) be such that \(c(\{(x_i, y_i)\}_{i \in [k]}) \) is the rational \(q \) of least index attaining zero empirical error on \(\{(x_i, y_i)\}_{i \in [k]} \) if one exists, and 0 otherwise. Hereafter, we will additionally demand that the computable enumeration of \(\mathbb{Q} \) employed by \(c \) be one which enumerates \(\mathbb{Q} \) first. Define \(c^*(\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathbb{N} \to \mathbb{Q} \) by \(c^*(S, n) = \alpha(c(S), n) \), i.e., the previous decision stump learner discretized to accuracy \(2^{-n} \).

Let \((\epsilon_k)_{k \in \mathbb{N}} \) be an enumeration without repetition of all \(e \in \mathbb{N} \) for which \(\{e\}(0) \downarrow \). For \(S \in (\mathcal{X} \times \mathcal{Y})^{<\omega} \), write \(\text{len}(S) \) for its length. Define the function \(A : (\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X} \to \mathcal{Y} \) by \(A(S, x) = h_{c^*(S, \text{len}(S))}(x) \). In other words, we discretize the decision stump algorithm to accuracy \(2^{-\text{len}(S)} \). Note that because \(\lim_k \epsilon_k = \infty \), we can find arbitrarily good approximations as we increase the sample size, even if (as we will show) we cannot compute how large such samples must be.

Note that \(A \) is computable in the realizable case. Further, for every \(r \in \mathbb{N} \) there is an \(i \in \mathbb{N} \) such that \(e_{r+i} > i \) for all \(r^* \geq r \). Then for every integer \(\ell > 0 \), there is an \(n \in \mathbb{N} \) such that whenever \(\text{len}(S) > n \), the set \(U = \{x : \mathcal{F}_{\text{step}}(\mathcal{A}_{\text{step}}(S), x) \neq A(S, x)\} \) is contained in an interval of length \(2^{-\ell} \). A is thus a PAC learner for \(\mathcal{F}_{\text{step}}^{\dagger} \) over \(\mathbb{D}_M \), as the loss incurred by \(A \) on \(U \) is bounded uniformly over \(\mathbb{D}_M \) by \(2^{-\ell} \cdot M \).

Let \(m(e, \delta) \) be a sample function for \(A \) and consider \(n \in \mathbb{N} \). We will compute the function \(\emptyset' \) restricted to \(\mathcal{X} \) restricted to the set \([n] = \{0, \ldots, n-1\} \). Fix any rational \(\delta \in (0, 1) \), and set \(m_n = m(2^{-(n+2)}, \delta) \). Suppose there is some \(i > m_n \) such that \(e_i < n \). Then given a sample \(S \) of size \(i \), the function \(A(S, \cdot) \) will discretize \(c(S) \) to an accuracy below \(2^{-n} \). This would cause \(A \) to incur a true loss of at least \(2^{-n} \) on the distribution which is uniform on features in \([0, 1]\) and takes labels according to \(\mathbb{I}_{>1/3} \), as \(\alpha(1/3, k) \leq 1/3 - 2^{-(k+2)} \), a contradiction. Hence \(i \leq m_n \) whenever \(e_i < n \). We can therefore determine membership in \(\{e_k : k \in \mathbb{N}\} \cap [n] \), and hence can compute \(\emptyset' \) restricted to \([n] \). \(\square \)
4. Computability of learners

We now turn to the question of how computable a learner can be, for a hypothesis class with a computable presentation.

Throughout this section, we remain in the setting of binary classification, i.e., \(\mathcal{Y} = \{0, 1\} \).

4.1. Upper bounds. For any computable presentation of a hypothesis class, we establish a concrete upper bound on the complexity of some ERM, which depends only on the index space.

Theorem 4.1. Suppose \(\mathcal{H} : \mathcal{I} \times \mathcal{X} \to \mathcal{Y} \) is a computable presentation of a hypothesis class. Then there is an ERM for \(\mathcal{H} \) that is strongly Weihrauch reducible to \(\lim_\mathcal{I} \).

Proof. Fix a sample \(S = (x_i, y_i)_{i \in [n]} \). To invoke \(\lim_\mathcal{I} \), we introduce a procedure for approximating an input \(z = (z_i)_{i \in \mathbb{N}} \). In particular, we approximate \(z \) using the sequence \((z_k)_{k \in \mathbb{N}} \), with each \(z_k \in \mathcal{I}^k \) taking the form \(z_k = (z_{k1}, \ldots, z_{k(k-1)}, z_k^\dagger, z_k, \ldots) \), i.e., constant after the \((k-1) \)th term.

\(z_k^\dagger \) is computed as follows, for \(j \in [k] \):

1. Take balls around the \(x_i \) and around the first \(j \) ideal points of \(\mathcal{I} \), all of radius \(2^{-k} \). In addition, calculate which value is taken by \(y_i \in \{0, 1\} \).
2. For each of the first \(j \) ideal points of \(\mathcal{I} \), use \(\mathcal{H} \) to determine whether the balls around the \(x_i \) and the ideal point suffice to calculate a well-defined empirical error with respect to \(S \).
3. If none of the first \(j \) ideal points induce a well-defined empirical error, set \(z_k^\dagger \) to be the first ideal point of \(\mathcal{I} \). Otherwise, set \(z_k^\dagger \) to be the first ideal point which attains minimal empirical error among the first \(j \) ideal points.

As \(\mathcal{H} \) is continuous, and as there are only finitely many possible empirical errors, if \(w \in \mathcal{I} \) is such that \(\mathcal{H}(w) \) has minimal empirical error with respect to \(S \), then there must be an open ball around \(w \) where all elements of the ball give rise to a function with the same minimal empirical error (with respect to \(S \)). In particular, there must be an ideal point \(c \) such that \(\mathcal{H}(c) \) has minimal empirical error with respect to \(S \). Therefore \(z = (z_j^\dagger)_{j \in \mathbb{N}} \) converges to the ideal point with minimal index among those that give rise to minimal empirical error with respect to \(S \). Calling \(\lim_\mathcal{I} \) on \(z \) thus is a proper learner whose induced learner for \(\mathcal{H} \) is an ERM, as desired.

Furthermore, in this setting there is always an ERM that is computable in the realizable case. This result can be viewed as a generalization of [AAB+20, Theorem 10].

Theorem 4.2. Suppose \(\mathcal{H} : \mathcal{I} \times \mathcal{X} \to \mathcal{Y} \) is a computable presentation of a hypothesis class. Then there is an ERM for \(\mathcal{H} \) that is computable in the realizable case.

Proof. We will construct a proper learner whose induced learner for \(\mathcal{H} \) is an ERM that is computable in the realizable case. Suppose \(S \in \Phi_\mathcal{Y} \). There is some \(w \in \mathcal{I} \) such that \(\mathcal{H}(w) \) has empirical error 0 with respect to \(S \). Because there are only finitely many possible values of the empirical error with respect to \(S \), there must be some open ball \(B \) around \(w \) such that for all elements \(w^* \in B \), the function \(\mathcal{H}(w^*) \) has empirical error 0 with respect to \(S \). In particular, there must be some ideal point \(c \) in this ball. Therefore the algorithm which searches through all ideal points and returns the first to attain an empirical error 0 with respect to \(S \) will eventually halt.

Remark 4.3. The algorithms in Theorems 4.1 and 4.2 would have failed had \(\mathcal{Y} \) not been computably discrete, in which case verifying that a hypothesis incurs an empirical error of 0 would not be computable. When \(\mathcal{Y} = \{0, 1\} \), as in this paper, the predictions of hypotheses on features can be deduced exactly, allowing for precise computation of empirical errors. If \(\mathcal{Y} = \mathbb{R} \), in contrast, then predictions of hypotheses \(h \) take the form \((q_k - 2^{-k}, q_k + 2^{-k}) \) for \(q_k \in \mathbb{Q} \) and chosen \(k \in \mathbb{N} \), amounting to the information that \(h(x) \in (q_k - 2^{-k}, q_k + 2^{-k}) \).

Some such intervals allow one to conclude that \(h(x) \neq y \), namely when \(y \notin (q_k - 2^{-k}, q_k + 2^{-k}) \), and thus that \(h \) does not attain an empirical error of 0. Yet no such interval allows one to conclude that \(h(x) = y \) for even a single example \((x, y)\) if \(y \) may take any real value, much less that \(h \) attains an empirical error of 0 across an entire sample.
The restricted setting of computability in the realizable case, as in Theorem 4.2, provides a stopping criterion for detecting a hypothesis in \mathcal{H}^\uparrow attaining minimal empirical risk on S, thereby eliminating the need for \lim_{τ}. A similar criterion would arise if the size of the restriction of a (computably presented) class \mathcal{H} to a given sample S could be known in advance. In such a case, one could walk through the ideal points of \mathcal{I} as in 4.2 until all such behaviors on S are encountered, subsequently returning one which attains the minimal empirical error.

Theorem 4.4. Suppose $\mathcal{H}: \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$ is a computable presentation of a hypothesis class, and that for all finite $U \subseteq \mathcal{X}$, the size of $\{|h_U| : h \in \mathcal{H}\}$ can be computed, uniformly in U. Then an ERM learner for \mathcal{H}^\uparrow is computable.

Proof. Let $n \in \mathbb{N}$. Define $\mathcal{H}^n: \mathcal{I} \times \mathcal{X}^n \to \mathcal{Y}^n$ to be the map where $\mathcal{H}^n(w, (x_j)_{j \in [n]}) = (h(w, x_j))_{j \in [n]}$. Note that this is a continuous function, and hence for all $w \in \mathcal{I}$ and for every $u \in \mathcal{X}^n$ there is an ideal point c such that $\mathcal{H}^n(w, u) = \mathcal{H}^n(c, u)$.

Suppose $U \subseteq \mathcal{X}$ is finite. We then have

$$|\{|h_U| : h \in \mathcal{H}^\uparrow\}| = |\{|\mathcal{H}(c)|_U : c \text{ is an ideal point of } \mathcal{I}\}|.$$
In particular, by searching through all the ideal points of \mathcal{I} we realize all behavior (restricted to U) that occurs in \mathcal{H}. So, from $|\{|h_U| : h \in \mathcal{H}^\uparrow\}|$ we can compute ideal points of \mathcal{I} realizing all such behavior. From this it is straightforward to choose an ideal point which minimizes the empirical error on any sample $(x_i, y_i)_{i \in [m]}$ where $\{x_i : i \in [m]\} = U$. \square

It has been shown in [FW95] that the computability condition of Theorem 4.4 is enjoyed by maximum classes, i.e., those which achieve the bound of the Sauer–Shelah lemma. We can thus conclude computable PAC learnability for such maximum classes.

Corollary 4.5. If $\mathcal{H}: \mathcal{I} \times \mathcal{X} \to \mathcal{Y}$ is a computable presentation of a hypothesis class, and \mathcal{H}^\uparrow is a maximum class of finite VC dimension, then it is computably PAC learnable.

4.2. Lower bounds. We now show that in appropriate circumstances, all proper learners must have a certain complexity, thereby providing some corresponding lower bounds.

4.2.1. *Discrete index spaces.* Suppose the index space of a computable presentation of a hypothesis class is infinite and discrete (hence isomorphic to \mathbb{N}). Theorem 4.1 shows that there is an ERM that is strongly Weihrauch reducible to \lim_{τ}.

We now provide a partial converse in the same setting, showing that there is a computable presentation of a hypothesis class with discrete index space such that \mathcal{H}' is strongly Weihrauch reducible to any proper PAC learner for the presentation along with any sample function for the proper learner. In particular, for this presentation, there is no computable procedure for outputting hypotheses from samples in a manner that PAC learns the underlying hypothesis class.

The hypothesis class that we will use in the proof of Theorem 4.6 is similar to that used to prove [AAB+20, Theorem 11].

Theorem 4.6. There is a hypothesis class that is PAC learnable but admits a computable presentation \mathcal{H} with discrete index space such that $\mathcal{H} \leq_{\text{SW}} (\mathcal{A}, m)$ whenever \mathcal{A} is a proper PAC learner for \mathcal{H} and m is a sample function for the learner induced by \mathcal{A} for \mathcal{H}^\uparrow.

Proof. Given an enumeration $Z = (z_i)_{i \in \mathbb{N}}$ without repetition of some subset of \mathbb{N}, define \mathcal{D}_Z to be the computable metric space with underlying set $\{z_i : i \in \mathbb{N}\}$, the discrete metric taking distances $(0, 1)$, and sequence of ideal points Z.

Let $E = (e_i)_{i \in \mathbb{N}}$ be a computable enumeration without repetition of all natural numbers e such that $\{e(0)\}$. Given two natural numbers n_0 and n_1, we write $n_0 \sim n_1$ if either (a) both $\{n_0\}(0)\uparrow$ and $\{n_1\}(0)\uparrow$, or (b) both $\{n_0\}(0)\downarrow$ and $\{n_1\}(0)\downarrow$ and the programs n_0 and n_1 take the same number of steps to halt on input 0.

Let the index space \mathcal{I} be \mathcal{D}_E, as defined above. Let the sample space \mathcal{X} be $\mathcal{D}_{(i)_{i \in \mathbb{N}}}$, and let $\mathcal{H}: \mathcal{I} \times \mathcal{X} \to \{0, 1\}$ be the map where $\mathcal{H}(n_0, n_1) = 1$ if and only if $n_0 \sim n_1$. Note that \mathcal{H} is computable via the following algorithm:
(1) Run program n_0 on input 0 until it halts, which it must as $n_0 \in I$. Let k be the number of steps it took to halt.
(2) Run program n_1 on input 0 for k steps.
(3) If n_1 takes precisely k steps to halt on input 0 then return 1, and otherwise (i.e., if it takes fewer steps or has not yet halted) return 0.

First we show that \mathcal{A}^1 shatters no set of size 2, so that it has VC dimension 1 and hence is PAC learnable by Theorem 2.23. Let $n_0, n_1 \in \mathbb{N}$ be distinct. If there exists an $h \in \mathcal{A}^1$ with $h(n_0) = 1$ and $h(n_1) = 0$, then there is some k such that \{n_0\}(0) halts exactly k steps but \{n_1\}(0) does not. But then there is no $g \in \mathcal{A}^1$ with $g(n_0) = 1$ and $g(n_1) = 1$. Therefore \mathcal{A}^1 does not shatter the set $\{n_0, n_1\}$.

Now suppose that \mathcal{A} is a proper PAC learner for \mathcal{A}, and let m be a sample function for the induced PAC learner for \mathcal{A}^1. We will show that $\mathcal{A}^1 \leq_{sW} (\mathcal{A}, m)$.

Let $M = n(\epsilon, \delta)$ for any choice of $\epsilon, \delta \in (0, 1)$. Given $n \in \mathbb{N}$, let $S_n = (\{(n, 1)\})_{i \in [M]}$, i.e., M copies of $(n, 1)$. Let $z_n = \mathcal{A}(S_n)$ and let μ_n be the measure with a single point mass on $(n, 1)$. Note that ρ_n^M places full measure on S_n and that for any map $h : \mathcal{X} \to \{0, 1\}$, its loss with respect to μ_n is either 0 or 1.

Note that if $\{n\}(0) \uparrow$ then there is an $n^* \in I$ (namely, $n^* = n$) such that the minimum loss with respect to μ is 0. As \mathcal{A} is a proper PAC learner for \mathcal{A}, we must then have $z_n \sim \tilde{z}_n$. Otherwise, \mathcal{A} incurs an error of $1 > \epsilon$ with probability $1 > (1 - \delta)$ over μ_n on samples of size M, producing contradiction with the PAC condition on $m(\epsilon, \delta)$. On the other hand, if $\{n\}(0) \downarrow$, then for any $e \in I$ we must have $e \sim \tilde{e}$ and in particular $z_n \neq \tilde{z}_n$. Therefore $n \mapsto 1 - z_n$ is precisely the function \mathcal{A}. In particular, this shows that $\mathcal{A} \leq_{sW} (\mathcal{A}, m)$. \hfill \square

4.2.2. Rich index spaces. When the index space I of a computable presentation of a hypothesis class is rich, we have $\lim_{\mathcal{I}} \equiv_{sW} \lim_{\mathcal{I}^\uparrow}$. In this case, Theorem 4.1 shows that there is an ERM that is strongly Weihrauch reducible to $\lim_{\mathcal{I}^\uparrow}$.

We also provide a partial converse in this situation, using the notion of parallelization. We show that there is a computable presentation of a hypothesis class with rich index space such that $\lim_{\mathcal{I}^\uparrow}$ is strongly Weihrauch reducible to the parallelization of any proper PAC learner for the presentation along with any sample function for the proper learner.

Remark 4.7. It is worth taking a moment to discuss why, when considering learners on continuum-sized metric spaces, we study the parallelization of the learner as opposed to the learner itself. When comparing the relative computational strength of two maps f and g, the notion of g being “more complex” than f can be intuitively thought of as the statement that one can compute f when given access to g. This is made precise using the formalism of strong Weihrauch reducibility, in which a single application of f must be computed using a single application of g (possibly along with some uniform pre- and post-processing).

However, the manner in which we are discussing learners, namely as maps from $(\mathcal{X} \times \mathcal{Y})^{<\omega} \times \mathcal{X}$ to $\{0, 1\}$ (as opposed to maps from $(\mathcal{X} \times \mathcal{Y})^{<\omega}$ to $\{0, 1\}^{\mathcal{X}}$), means that a single application of a learner can only return a single bit of information about its input. In contrast, $\lim_{\mathcal{I}^\uparrow}$ is a map from $\mathbb{N}^{\mathcal{I}}$ to $\mathbb{N}^{\mathcal{I}}$ for which a single application contains countably many bits of information. As such, our representation of learners is not well suited to be compared to $\lim_{\mathcal{I}^\uparrow}$ if we (somewhat artificially) allow only a single application of the learner. We can overcome this obstacle by instead considering the parallelization of the learner, i.e., by allowing ourselves to simultaneously ask countably many questions of the learner, rather than a single one. This is what we do in Theorem 4.8 (in the analogous setting for proper learners).

By Lemma 2.16, any function is strongly Weihrauch reducible to its parallelization, and by Lemma 2.17, $\lim_{\mathcal{I}^\uparrow}$ is strongly Weihrauch equivalent to its own parallelization. Hence not much is lost when establishing that $\lim_{\mathcal{I}^\uparrow}$ is a lower bound on the parallelization of a proper learner (as opposed to a lower bound on the proper learner itself).
Theorem 4.8. There is a hypothesis class that is PAC learnable but which admits a computable presentation \(\mathcal{F} \) such that \(\lim_{n \to \infty} \leq_{SW} (\mathfrak{A}, m) \) whenever \(\mathfrak{A} \) is a proper PAC learner for \(\mathcal{F} \) and \(m \) is a sample function for the PAC learner for \(\mathcal{F} \) that \(\mathfrak{A} \) induces.

Proof. Let \(\mathcal{X} \) be the product of computable metric spaces \(\mathbb{N} \) and \(\mathbb{N}^\mathbb{N} \), and let the index space \(\mathcal{I} \) be \(\{ (e, z) \in \mathbb{N} \times \mathbb{N}^\mathbb{N} : \{ e \} \downarrow (0) \} \) with distance inherited from \(\mathcal{X} \) and ideal points of the form \((e, z)\) where \(z \) has only finitely many nonzero values, ordered by when the respective programs with oracles halt on input 0.

Given \((e_0, z_0), (e_1, z_1) \in \mathcal{X}\), we write \((e_0, z_0) \sim (e_1, z_1)\) when (a) \(e_0 = e_1 \) and (b) \(\{ e_0 \} \downarrow (0) \) if and only if \(\{ e_1 \} \downarrow (0) \), with program \(e_0 \) with oracle \(z_0 \) taking the same number of steps to halt on input 0 as does \(e_1 \) with oracle \(z_1 \) (when they both halt). Define \(\mathcal{F} : \mathcal{I} \times \mathcal{X} \to \{0,1\} \) by

\[
\mathcal{F}((e_0, z_0), (e_1, z_1)) = \begin{cases} 1 & (e_0, z_0) \sim (e_1, z_1) \\ 0 & \text{otherwise.} \end{cases}
\]

Note that \(\mathcal{F} \) is computable because \(\{ e_0 \} \downarrow (0) \) for every \((e_0, z_0) \in \mathcal{I}\).

First we show that \(\mathcal{F} \) shatters no set of size 2, so that it has VC dimension 1 and hence is PAC learnable by Theorem 2.23. Let \((e_0, z_0), (e_1, z_1) \in \mathcal{X}\) be distinct. If there exists an \(h \in \mathcal{F} \) with \(h(e_0, z_0) = 1 \) and \(h(e_1, z_1) = 0 \), then there is some \(k \) such that the program \(e_0 \) with oracle \(z_0 \) halts on input 0 in exactly \(k \) steps but either \(e_0 \neq e_1 \) or the program \(e_1 \) with oracle \(z_1 \) does not halt on input 0 in exactly \(k \) steps. But then there is no \(g \in \mathcal{F} \) with \(g(e_0, z_0) = 1 \) and \(g(e_1, z_1) = 1 \). Therefore \(\mathcal{F} \) does not shatter the set \(\{(e_0, z_0), (e_1, z_1)\} \).

Now suppose that \(\mathfrak{A} : (\mathcal{X} \times \mathcal{Y})^{<\omega} \to \mathcal{I} \) is a proper PAC learner for \(\mathcal{F} \), let \(A \) be the induced PAC learner for \(\mathcal{F} \), and let \(m \) be a sample function for \(A \) (as a PAC learner for \(\mathcal{F} \)). We will show that \(J_{\leq_{SW}} (\mathfrak{A}, m) \). Then by Lemma 2.14, we will have \(\lim_{n \to \infty} \leq_{SW} (\mathfrak{A}, m) \).

Let \(z \in \mathbb{N}^\mathbb{N} \). We aim to uniformly compute \(z' \) using \(\mathfrak{A} \), \(m \), and \(z \). First we preprocess. Calculate \(k = m(\epsilon, \delta) \) for any choice of \(\epsilon, \delta \in (0,1) \) and construct the sequence \(S_{\epsilon, z} = ((e, z), 1)^k \) \(e \in \mathbb{N} \). Then, apply \(\mathfrak{A} \) to obtain a sequence \((\ell_{e, s_e})_{e \in \mathbb{N}} \).

Now consider the measure \(D_{(e, z)} \) which places a pointmass on \((e, z), 1\). Because \(A \) is a PAC learner, we have

\[
\mathbb{P} \left(S \sim D_{(e, z)} \left| \left(L_{D_{(e, z)}} (A(S)) - \min_{w \in \mathcal{I}} L_{D_{(e, z)}} (\mathcal{F}(w)) \right) < \epsilon \right) > 1 - \delta. \right.
\]

Therefore, as \(D_{(e, z)} \) is a pointmass, we have \(\left| L_{D_{(e, z)}} (A(S_{e, z})) - \min_{w \in \mathcal{I}} L_{D_{(e, z)}} (\mathcal{F}(w)) \right| < \epsilon \). Again because \(A \) is a PAC learner and \(D_{(e, z)} \) is atomic, we have an equivalence between the following statements:

1. \(A(S_{e, z})(e, z) = 1 \).
2. \(L_{D_{(e, z)}} (A(S_{e, z})) = 0 \).
3. \(L_{D_{(e, z)}} (\mathcal{F}(w)) = 0 \) for some \(w \in \mathcal{I} \).
4. \(\mathcal{F}(w, (e, z)) = 1 \) for some \(w \in \mathcal{I} \).

In particular, (3) \(\Rightarrow \) (2) because \(D_{(e, z)} \) concentrates mass on \(S_{(e, z)} \), so otherwise \(A \) would be guaranteed to incur a loss of \(1 > \epsilon \) when trained on samples drawn from \(D_{(e, z)} \), contradicting the PAC condition on \(m(\epsilon, \delta) \).

Now note if \(\{ e \} \downarrow (0) \), then there is a \(w = (e, z) \in \mathcal{I} \) such that \(\mathcal{F}(w, (e, z)) = 1 \); by the previous equivalence, this implies that \(A(S_{e, z})(e, z) = 1 \).

We are now equipped to post-process and calculate \(z'(n) \). If \(n \neq \ell_n \), then \(A(S_{n, z})(n, z) = 0 \) and, via \(\neg(1) \Rightarrow \neg(4) \) in the equivalence, \(\{ n \} \downarrow (0) \), meaning \(z'(n) = 0 \).

Otherwise, \(n = \ell_n \). First compute \(\{ n \} \uparrow (0) \). This computation is guaranteed to halt, by definition of \(\mathcal{I} \) and the fact that \(\mathfrak{A} \) is a proper learner. Let \(t \) be the number of steps it took to halt. Next run \(\{ n \} \downarrow \) on input 0 for \(t \) steps. If it halts within \(t \) steps, then \(\{ n \} \downarrow (0) \) and so \(z'(n) = 1 \). If \(\{ n \} \downarrow \) has not halted on input 0 within \(t \) steps, then \(A(S_{n, z})(n, z) = 0 \) and the equivalence again implies that \(\{ n \} \downarrow (0) \), meaning \(z'(n) = 0 \).
Acknowledgements

The authors would like to thank Caleb Miller for valuable discussion on the topic, particularly in helping refine the notion of computable PAC learning and in describing the computable algorithm for the decision stump.

An extended abstract [AAD+21] announcing related results in a different setting was presented at the Eighteenth International Conference on Computability and Complexity in Analysis (July 26–28, 2021).

This material is based upon work supported by the National Science Foundation under grant no. CCF-2106659. Freer’s work is funded in part by financial support from the Intel Probabilistic Computing Center.

References

[AAB20] S. Agarwal, N. Ananthakrishnan, S. Ben-David, T. Lechner, and R. Urner, On learnability with computable learners, Proceedings of the 31st International Conference on Algorithmic Learning Theory (ALT) (San Diego, California, USA), Proceedings of Machine Learning Research, vol. 117, 2020, pp. 48–60.

[AAD+21] N. Ackerman, J. Asilis, J. Di, C. Freer, and J.-B. Tristan, On the computable learning of continuous features, Eighteenth International Conference on Computability and Complexity in Analysis, 2021.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the Vapnik–Chervonenkis dimension, J. ACM 36 (1989), no. 4, 929–965.

[Ber14] A. A. Beres, Learning theory in the arithmetic hierarchy, J. Symb. Log. 79 (2014), no. 3, 908–927.

[BGP21] V. Brattka, G. Gherardi, and A. Pauly, Weihrauch complexity in computable analysis, Handbook of Computability and Complexity in Analysis (V. Brattka and P. Hertling, eds.), Springer, Cham, 2021, pp. 367–417.

[BHW08] V. Brattka, P. Hertling, and K. Weihrauch, A tutorial on computable analysis, New Computational Paradigms, Springer, 2008, pp. 425–491.

[BP03] V. Brattka and G. Presser, Computability on subsets of metric spaces, Theoret. Comput. Sci. 305 (2003), no. 1-3, 43–76.

[Cal15] W. Calvert, PAC learning, VC dimension, and the arithmetic hierarchy, Arch. Math. Logic 54 (2015), no. 7-8, 871–883.

[CMPR21] T. Crook, J. Morgan, A. Pauly, and M. Roggenbach, A computability perspective on (verified) machine learning, arXiv e-print 2102.06585 (2021).

[FW95] S. Floyd and M. Warmuth, Sample compression, learnability, and the Vapnik–Chervonenkis dimension, Machine Learning 21 (1995), no. 3, 269–304.

[Gold67] E. M. Gold, Language identification in the limit, Inform. and Control 10 (1967), no. 5, 447–474.

[HR09] M. Hoyrup and C. Rojas, Computability of probability measures and Martin-Löf randomness over metric spaces, Inform. and Comput. 207 (2009), no. 7, 830–847.

[SB14] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From theory to algorithms, Cambridge University Press, 2014.

[Sol08] D. Soloveichik, Statistical learning of arbitrary computable classifiers, arXiv e-print 0806.5357 (2008).

[Val84] L. G. Valiant, A theory of the learnable, Commun. ACM 27 (1984), no. 11, 1134–1142.

[VC71] V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theor. Probability Appl. 16 (1971), no. 2, 264–280.

[Wei00] K. Weihrauch, Computable analysis: An introduction, Springer, 2000.