Cholinesterase inhibitors from botanicals

Faiyaz Ahmed, Raza Murad Ghalib¹, P. Sasikala, K. K. Mueen Ahmed²

Indian Institute of Crop Processing Technology, Ministry of Food Processing Industries, Government of India, Thanjavur, India, ¹Department of Chemistry, Kulliyyah of Science, IIUM, Kuantan, Malaysia, ²Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Kingdom of Saudi Arabia

Submitted: 26-02-2013 Revised: 07-03-2013

ABSTRACT

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed.

Key words: Acetylcholinesterase, alkaloids, alzheimer’s disease, butyrylcholinesterase, buxaceae

INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease of the central nervous system, wherein cholinergic neurons projecting to the neocortex and hippocampus are predominantly affected causing profound memory impairment, emotional disturbance, and personality changes in late stages.¹,² According to cholinergic hypothesis, memory impairment in Alzheimer’s disease is due to the deficit of cholinergic function in the brain, thereby, reducing hippocampal and cortical levels of the neurotransmitter acetylcholine (ACh) and associated enzyme choline transferase.³,⁴ In the healthy brain acetylcholinesterase (AChE) is the most important enzyme regulating the level of ACh, while butyrylcholinesterase (BChE) plays a minor role. In patients with AD, the level of AChE activity declines and the activity of BChE increases and the ratio between BChE and AChE can change from 0.6 in the normal brain to as high as 11 in cortical areas affected by the disease.⁵ Therefore, inhibition of AChE and BChE is the most effective therapeutic approach to treat the symptoms of AD.⁵,⁶ Consequently, cholinesterase inhibitors are the only approved drugs for treating patients with mild to moderately severe Alzheimer’s disease.⁵,⁶,⁷

Although, synthetic drugs such donepezil, neostigmine, and rivastigmine are available for the symptomatic treatment of AD, search for newer molecules from natural products has gained much attention by the researchers worldwide. As a result, a number of botanicals used in various traditional systems of medicines as memory enhancers have been tested for anticholinesterase activity. Bacopa monniera, Ginkgo biloba, Acorus calamus, Epimedium koreanum, Rhododendron ponticum, Rhododendron luteum, Corydalis solida, Glaucium corniculatum, and Buxus sempervirens are some of the medicinal plants used as cognitive enhancers by traditional healers which have been found to posses moderate to excellent anticholinesterase activity.⁸-¹² Further, a number of active compounds with good cholinesterase activity have been isolated from medicinal plants. With this background, the present review was planned to comprehend the fragmented information available on the cholinesterase inhibitors from medicinal plants.
Phytoconstituent	Class of compound	Isolated from	Family	IC₅₀ (µM)	Reference
Lycorine	Alkaloid	Galanthus ikariae	Amaryllidaceae	3.16	[13]
Galanthamine	Alkaloid	Galanthus ikariae	Amaryllidaceae	3.2	[13]
Tazettine	Alkaloid	Galanthus ikariae	Amaryllidaceae	3.2	[13]
Crinine	Alkaloid	Galanthus ikariae	Amaryllidaceae	-	[13]
3-epi-hydroxybulbispermine	Alkaloid	Galanthus ikariae	Amaryllidaceae	-	[13]
2-demethoxy-montanine	Alkaloid	Galanthus ikariae	Amaryllidaceae	-	[13]
N-nor-galanthamine	Alkaloid	Narcissus tazetta	Amaryllidaceae	3.2	[13]
Haemanthamine	Alkaloid	Narcissus tazetta	Amaryllidaceae	3.2	[13]
3-epi-hydroxybulbispermine	Alkaloid	Narcissus tazetta	Amaryllidaceae	3.2	[13]
Protopine	Alkaloid	Corydalis ternata	Papaveraceae	50	[14]
Conympodiol	Alkaloid	Asparagus adscendens	Asparagaceae	2.17	[15]
Bulbocapnine	Alkaloid	Corydalis cava	Fumariaceae	40	[16]
Corydine	Alkaloid	Corydalis cava	Fumariaceae	>100	[16]
Cyclobuxoxviridine	Alkaloid	Buxus hyrcana	Buxaceae	179.7	[17,18]
Moenjodaramine	Alkaloid	Buxus hyrcana	Buxaceae	25.0	[17,19]
Buxamine A	Alkaloid	Buxus hyrcana	Buxaceae	81.4	[17,20]
Buxamine B	Alkaloid	Buxus hyrcana	Buxaceae	79.6	[17,21]
Spirofornabuxine	Alkaloid	Buxus hyrcana	Buxaceae	6.3	[22]
α-solane	Glyco alkaloid	Solanum tuberosum	Solanaceae	-	[23,24]
Coronarinidine	Indole alkaloid	Tabernaemontana australis	Apocynaceae	-	[25]
Physostigmine	Indole alkaloid	Physostigma venenosum	Leguminosace	6x10⁻⁴	[26]
Rupicoline	Indole alkaloid	Tabernaemontana australis	Apocynaceae	-	[25]
Voacangine	Indole alkaloid	Tabernaemontana australis	Apocynaceae	-	[25]
Voacangine hydroxyindolenine	Indole alkaloid	Tabernaemontana australis	Apocynaceae	-	[25]
Corynoline	Isoquinoline alkaloid	Corydalis incisa	Papaveraceae	30.6	[27]
Palmatine	Isoquinoline alkaloid	Corydalis speciosa	Papaveraceae	5.8	[28]
Protopine	Isoquinoline alkaloid	Corydalis speciosa	Papaveraceae	16.1	[28]
Corydalone	Isoquinoline alkaloid	Corydalis cava	Fumariaceae	15	[16]
Annotinine	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	>2,000	[29]
Annotine	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	860	[29]
Annotine N-oxide	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	404	[29]
Lycodoline	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	>2,000	[29]
Lycoposerramine M	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	191	[29]
Anthrolycodoline	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	1720	[29]
Gnidioidine	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	600	[29]
Acrifoline	Lycopodane-type alkaloid	Lycopodium annotinum	Lycopodiaceae	1625	[29]
Dehydroevodiamine	Quinazoline alkaloid	Evodia rutacearpa	Rutaceae	37.8	[30]
(−)-huperzine A	Quinolizidine alkaloid	Huperzia serrata	Lycopodiaceae	10-4	[9,31,32]
		Huperzia dalhousieana			
Assoanine	Steroidal alkaloid	Narcissus assoanus	Amaryllidaceae	3.87	[7]
Buxamine B	Steroidal alkaloid	Buxus hyrcana	Buxaceae	7.56	[33]
Buxamine	Steroidal alkaloid	Buxus papillosa	Buxaceae	7.28	[33]
N, N-dimethyl buxapapine	Steroidal alkaloid	Buxus papillosa	Buxaceae	7.28	[33]
Epinorgalantamine	Steroidal alkaloid	Narcissus confuses	Amaryllidaceae	9.60	[7]
Galanthamine	Steroidal alkaloid	Galanthus nivalis	Lycopodiaceae	1.07	[7,34-36]
11-hydroxygalantamine	Steroidal alkaloid	Narcissus poeticus	Amaryllidaceae	1.61	[7]
Oxoassoanine	Steroidal alkaloid	Narcissus assoanus	Amaryllidaceae	47.2	[7]
Sanguinine	Steroidal alkaloid	Eucharis grandiflora	Amaryllidaceae	0.10	[7]
Sarsaligone	Steroidal alkaloid	Sarcococca saligna	Buxaceae	7.02	[33]
Vaganine	Steroidal alkaloid	Sarcococca saligna	Buxaceae	8.59	[33]
E-buxenone	Steroidal alkaloid	Buxus hyrcana	Buxaceae	71.0	[17]
Z-buxenone	Steroidal alkaloid	Buxus hyrcana	Buxaceae	87.4	[17]
31-hydroxybuxamine B	Steroidal alkaloid	Buxus hyrcana	Buxaceae	61.3	[17,37]
N20-formylbuxaminol E	Steroidal alkaloid	Buxus hyrcana	Buxaceae	25.5	[17,38]
Buxrugulosamine	Steroidal alkaloid	Buxus hyrcana	Buxaceae	24.8	[39]
Phytoconstituent	Class of compound	Isolated from	Family	IC₅₀ (µM)	Reference
--------------------------------------	-----------------------	---------------------	------------	----------	-----------
Cyclobuxophylline O	Steroidal alkaloid	Buxus hyrcana	Buxaceae	35.4	[39]
Isosarcodine	Steroidal alkaloid	Sarcococa saligna	Buxaceae	10.31	[40]
Sarcorine	Steroidal alkaloid	Sarcococa saligna	Buxaceae	69.99	[40]
Sarcodine	Steroidal alkaloid	Sarcococa saligna	Buxaceae	49.77	[40]
Sarcocine	Steroidal alkaloid	Sarcococa saligna	Buxaceae	20.0	[40]
Alkaloid-C	Steroidal alkaloid	Sarcococa saligna	Buxaceae	42.2	[40]
Nb-dimethylcyclobuxoviricine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	45.5	[17,41]
Buxakashmiramine	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	25.4	[42]
Buxakarachimine	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	143	[42]
Buxaheramaine	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	162	[42]
Cyclopropobuxine-C	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	38.8	[42]
Cyclovirrobuxine-A	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	105.7	[42]
Cyclicomophylline-A	Triterpenoid alkaloid	Buxus papillosa	Buxaceae	235	[42]
(+)-homoenjodaramine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	19.2	[43]
(+)-moenjodaramine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	50.8	[43]
17-oxo-3-benzoylbutadine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	17.6	[17]
buxhyrcamine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	18.2	[17]
31-demethylcyclobuxoviridine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	298.3	[17]
Homomoenjodarine	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	19.5	[17,43]
Papillozine C	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	47.8	[43]
Buxmicrophylline F	Triterpenoid alkaloid	Buxus hyrcana	Buxaceae	22.4	[44]
Haloxysterols A	Sterol	Haloxylon recurvum	Chenopodiaceae	8.3	[45]
Haloxysterols B	Sterol	Haloxylon recurvum	Chenopodiaceae	0.89	[45]
Haloxysterols C	Sterol	Haloxylon recurvum	Chenopodiaceae	1.0	[45]
Haloxysterols D	Sterol	Haloxylon recurvum	Chenopodiaceae	17.2	[45]
5a,8a-epidioxy-(24S)-ethylcholesta-6,9 (11), 22 (E)-triene-3b-ol	Sterol	Haloxylon recurvum	Chenopodiaceae	26.4	[45]
(24S)-ethylcholesta-7,9 (11), 22 (E)-triene-3b-ol	Sterol	Haloxylon recurvum	Chenopodiaceae	19.2	[45]
Lawssaritol	Sterol	Haloxylon recurvum	Chenopodiaceae	15.2	[45]
24-ethyl-cholesterol-7-en-3,5,6-triol	Sterol	Haloxylon recurvum	Chenopodiaceae	13.7	[45]
24-ethylcholesterol	Sterol	Haloxylon recurvum	Chenopodiaceae	3.5	[45]
6-en-3,5-diol	Sterol	Haloxylon recurvum	Chenopodiaceae	200	[46]
Isothymonin 40-methyl ether	Flavone	Micromeria cilicica	Lamiaceae	>200	[46]
Tiliroside	Flavonoid	Agrimonia pilosa	Rosaceae	23.5	[47]
3-Methoxy quercetin	Flavonoid	Agrimonia pilosa	Rosaceae	37.9	[47]
Quercitrin	Flavonoid	Agrimonia pilosa	Rosaceae	66.9	[47]
Quercetin	Flavonoid	Agrimonia pilosa	Rosaceae	19.8	[47]
Rutin	Flavone	Micromeria cilicica	Lamiaceae	>200	[46]
Isomucronulatol	Isolavone	Micromeria cilicica	Lamiaceae	118	[46]
Osajin	Isolavonoid	Maclura pomifera	Moraceae	2.239**	[48]
Pomiferin	Isolavonoid	Maclura pomifera	Moraceae	0.096**	[48]
Sudachitin	Polymethoxy flavone	Micromeria cilicica	Lamiaceae	140	[46]
Ferulic acid	Phenolic acid	Impatiens bicolor	Balsaminaceae	81.7	[49]
α-pinene	Monoterpenes	Salvia potentillifolia	Lamiaceae	>200	[50]
β-pinene	Monoterpenes	Salvia potentillifolia	Lamiaceae	>200	[50]
1,8-cineole	Monoterpenes	Salvia lavandulaefolia	Lamiaceae	0.67	[10]
α-pinen	Monoterpenes	Salvia lavandulaefolia	Lamiaceae	0.63	[10]
Ursolic acid	Pentacyclic triterpene	Micromeria cilicica	Lamiaceae	93.8	[46]
Ursolic acid	Pentacyclic triterpene	Origanum majorana	Lamiaceae	7.5**	[51]
(+)-limonene	Terpene	Pinimpinella anisoides	Apiaceae	225.9	[52]
trans-anethole	Terpene	Pinimpinella anisoides	Apiaceae	134.7	[52]
(+)-sabinene	Terpene	Pinimpinella anisoides	Apiaceae	176.5	[52]
Arbor-1,9 (11)-dien-3-one	Terpene	Buxus hyrcana	Buxaceae	47.9	[53]
α-onocerin	Terprenedioid	Lycopodium clavatum	5.2	[54]	
Swertianolin	Bellidifolin	Gentiana cambpestris	Coniferae	-	[55]
Norswertianolin	Bellidin	Gentiana cambpestris	Coniferae	-	[55]
pipertone 7-O-b-D-glucoside	Glycoside	Micromeria cilicica	Lamiaceae	>200	[46]
1,2,3,4,8-penta-O-galloyl-β-D-glucone	Glycoside	Terminalia chebula	Combretaceae	29.9	[56]
Table 1: Butyrylcholinesterase inhibitors from medicinal plants

Phytoconstituent	Class of compound	Isolated from	Family	IC₅₀ (µM)	Reference
Cynatroside A	Pregnane glycoside	*Cynanchum atratum*	Asclepiadaceae	6.4	[57]
Cynatroside B	Pregnane glycoside	*Cynanchum atratum*	Asclepiadaceae	3.6	[57]
(+)-α-viniferin	Sterilene oligomer	*Caragana chamlaque*	Fabaceae	2.0	[58]
kobopholin A	Sterilene oligomer	*Caragana chamlaque*	Fabaceae	115.8*	[58]
Bellidin	Xanthone	Gentiana campestris	Coniferae	-	[51]
Bellidifolin	Xanthone	Gentiana campestris	Coniferae	-	[51]
Bracteosin A	Withanolide	Ajuga bracteosa	Labiatae	25.2	[59]
Bracteosin B	Withanolide	Ajuga bracteosa	Labiatae	35.2	[59]
Bracteosin C	Withanolide	Ajuga bracteosa	Labiatae	49.2	[59]

IC₅₀ reflects the concentration at which 50% inhibition of the enzyme is observed.

Table 2: Butyrylcholinesterase inhibitors from medicinal plants

Phytoconstituent	Class of compound	Isolated from	Family	IC₅₀ (µM)	Reference
Corypodiol	Alkaloid	*Asparagus adscendens*	Asparagaceae	11.21	[15]
Bulboapline	Alkaloid	*Corydalis cava*	Fumariaceae	>100	[16]
Corydine	Alkaloid	*Corydalis cava*	Fumariaceae	>100	[16]
Cyclobuxoviridine	Alkaloid	*Buxus hycran*	Buxaceae	304.5	[17,18]
Moenjodaramine	Alkaloid	*Buxus hycran*	Buxaceae	102.4	[17,19]
Buxamine A	Alkaloid	*Buxus hycran*	Buxaceae	100.2	[17,20]
Buxamine B	Alkaloid	*Buxus hycran*	Buxaceae	100.5	[17,21]
Spirofornabuxine	Alkaloid	*Buxus hycran*	Buxaceae	125.2	[22]
Corydine	Isoquinoline alkaloid	*Corydalis cava*	Fumariaceae	52.0	[16]
Annotine	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Annotine N-oxide	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Lycodoline	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	667.0	[29]
Lycopersidramine M	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Anthydrinol	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Gnidioline	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Lycofoline	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
Acrifoline	Lycopodane-type alkaloid	*Lycopodium annotinum*	Lycopodiaceae	>2,000	[29]
E-buxenone	Steroidal alkaloid	*Buxus hycran*	Buxaceae	200.7	[17]
Z-buxenone	Steroidal alkaloid	*Buxus hycran*	Buxaceae	155.8	[17]
31-hydroxybuxamine B	Steroidal alkaloid	*Buxus hycran*	Buxaceae	112.1	[17,37]
N20-formylbuxaminol E	Steroidal alkaloid	*Buxus hycran*	Buxaceae	120.9	[17,38]
Buxrugulosamine	Steroidal alkaloid	*Buxus hycran*	Buxaceae	160.2	[39]
Cyclobuxophylline O	Steroidal alkaloid	*Buxus hycran*	Buxaceae	45.0	[39]
Isosarcodine	Steroidal alkaloid	*Sarcococca saligna*	Buxaceae	1.893	[40]
Sarcorine	Steroidal alkaloid	*Sarcococca saligna*	Buxaceae	10.33	[40]
Sarcodeine	Steroidal alkaloid	*Sarcococca saligna*	Buxaceae	18.31	[40]
Sarcothen	Steroidal alkaloid	*Sarcococca saligna*	Buxaceae	3.86	[40]
Alkaloid-C	Steroidal alkaloid	*Sarcococca saligna*	Buxaceae	22.13	[40]
N-b-dimethylcyclobuxoviricine	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	133.8	[17,41]
Buxakashmiramine	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	0.74	[42]
Buxakarachamine	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	ND	[42]
Buxahejamine	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	ND	[42]
Cycloprobutoxine-C	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	2.73	[42]
Cyclovibuxamine-A	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	2.05	[42]
Cycloicynophylline-A	Triterpenoid alkaloid	*Buxus papillosa*	Buxaceae	2.43	[42]
17-oxo-3-benzoylbuxadine	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	186.8	[17]
buxhyrycine	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	209.0	[17]
31-demethylcyclobuxoviridine	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	15.4	[17,43]
Homomoenjodarmine	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	52.2	[17,43]
Papilozine C	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	35.2	[43]
Buxmicophylline F	Triterpenoid alkaloid	*Buxus hycran*	Buxaceae	154.2	[44]
Haloxysters A	Sterol	*Haloxylon recurvum*	Chenopodiaceae	4.7	[45]
Haloxysters B	Sterol	*Haloxylon recurvum*	Chenopodiaceae	2.3	[45]
Haloxysters C	Sterol	*Haloxylon recurvum*	Chenopodiaceae	17.8	[45]
Haloxysters D	Sterol	*Haloxylon recurvum*	Chenopodiaceae	2.5	[45]
5a,8-epidioxy-(24S)-ethylcholesta-	Sterol	*Haloxylon recurvum*	Chenopodiaceae	6.9	[45]
6,9 (11), 22 (E)-triene-3b-ol	Sterol	*Haloxylon recurvum*	Chenopodiaceae		

Contd...
ANTICHLINOSTERASE PHYTOCHEMICAL CLASSES

In this review, 119 compounds having anti-AChE activity [Table 1] and 67 compounds having anti-BChE activity are presented [Table 2]. The structures of some important anticholinesterase compounds are presented in Figures 1a–c. Majority of these phytochemicals with potential AChE and BChE inhibitory activity are alkaloids followed by terpenes, steroids, flavonoids, and glycosides. Triterpenoid alkaloids, steroid-alkaloids, indole-alkaloids, isoquinoline alkaloid, and lycopodane-type alkaloid are the major types of alkaloids having significant anticholinesterase activity making them promising candidates to be used as cholinesterase inhibitors in clinical practice. Most of the compounds having potential anticholinesterase activity are isolated from Buxaceae, Amaryllidaceae, Lycopodiaceae, Lamiaceae, Chenopodiaceae, Papaveraceae, Apocynaceae, and Labiatae species. [13,17,18,23,27,29] Following are three of the important families having potential compounds to be used as anticholinesterase inhibitors.

Buxaceae

Buxaceae is a small family of 4–5 genera consisted of about 90–120 species of flowering plants which are usually shrubs or small trees with a cosmopolitan distribution. [62] The plants of this family find extensive uses in the folkloric medicine particularly for memory-related disorders. Furthermore, studies have evidenced that terpenoidal alkaloids are the major chemical constituents responsible for the biological activities of the plants of this family. [63]

Amaryllidaceae

The plants of Amaryllidaceae family are well-known for their ornamental value and medicinal properties. The family has attracted considerable attention due to the content of alkaloids of its species, which showed interesting biological properties. [64] The chemical structures of these alkaloids are very variable as well as their pharmacological properties. Some species of this family contain galanthamine, an acetylcholinesterase inhibitor approved for the treatment of AD, as well as other alkaloids with interesting pharmacological activities: Antimalarial, antiviral, and antiproliferative. [65,66] Galanthamine is an important reversible, long-lasting, selective, and competitive inhibitor of AChE isolated from Amaryllidaceae plant species such as Amaryllis, Galanthus, Lecocoum, Pancratium, and Zephyranthes. [67] It is a good example of a natural product substituting synthetic drugs in the treatment of AD.

Lycopodiaceae

Lycopodiaceae family is comprised of four genera: Huperzia Bernh., Phyllocladus Kunze, Lycopodium L., and Lycopodiella Holub and has a wide distribution throughout the world. [68] Lycopodium species are used widely in Argentinian traditional medicine for memory improvement and Huperzine A is an alkaloid having potent, specific, and reversible acetylcholinesterase inhibitor isolated from Huperzia serrata. [69] Extensive studies on Huperzine A as a lead compound for the development of more effective anti-AChE drugs for the treatment of AD relative to those approved by the Food and Drug Association (FDA), such as donepezil, (–)-galanthamine, and rivastigmine, have been attributed to its better penetration through the blood brain barrier, its higher oral bioavailability and its longer duration of AChE inhibitory action. [70-76]
Figure 1a: Structures of some important anticholinesterase compounds
Figure 1b: Structures of some important anticholinesterase compounds
CONCLUSIONS

AD has great impact on the personal and social life of human beings and no doubt, cholinesterase inhibitors offer great help in the effective management and treatment of AD. It is clearly evidenced that alkaloids are the major phytoconstituents responsible for the anticholinesterase activity of plant extracts and this information could be exploited for the synthesis of novel anticholinesterase drugs using alkaloids as intermediate compounds. Although, large number of natural plants extracts has been found to effective inhibitors of AChE and BChE, very few plants have been studied in-depth. Thus, detailed studies involving β-amylloid and receptor binding studies are warranted for optimum therapeutic utilization of these phytoconstituents. Further, limited data is available on the safety aspects of both the plant extracts and the isolated phytoconstituents. Since, very few animal studies and clinical trials are available; scope exists to undertake extensive research in these areas. It was also noted that, the alkaloids are the major compounds responsible for the anticholinesterase activity of plant extracts and these alkaloids can be used as starting materials for new classes of synthetic drugs for the treatment of AD.

REFERENCES

1. Bartolucci C, Perola E, Pilger C, Fels G, Lamba D. Three-dimensional structure of a complex of galanthamine (Nivalin) with acetylcholinesterase from Torpedo californica: Implications for the design of new anti-Alzheimer drugs. Proteins 2001;42:182-91.
2. Lahiri DK, Farlow MR, Greig NH, Sambamurti K. Current drug targets for Alzheimer’s disease treatment. Drug Dev Res 2002;56:267-81.
3. Perry EK. The cholinergic hypothesis: Ten years on. Br Med Bull 1986;42:63-9.
4. Bartus BT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982;217:408-17.
5. Greig NH, Lahiri DK, Sambamurti K. Butyrylcholinesterase: An important new target in Alzheimer’s disease therapy. Int Psychogeriatr 2002;14:77-91.
6. Shetty HG, Woodhouse K. Geriatrics. In: Walker R, Edwards C, editors. Clinical Pharmacy and Therapeutics. 2nd ed. Edinburgh: Churchill Livingstone; 1999.
Ahmed, et al.: Phyto-anticholinesterases

1. Lopez S, Bastida J, Viladomat F, Codina C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci 2002;71:2521-9.

2. Das A, Shanker G, Nath C, Pal R, Singh S, Singh HK. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behav 2002;73:893-900.

3. Orhan I, Sener B, Choudhary MI, Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 2004;91:57-60.

4. Perry NS, Houghton PG, Theolad AE, Jenner P, Perry EK. In vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaeefolia essential oil and constituent terpenes. J Pharm Pharmacol 2000;52:895-902.

5. Perry NS, Houghton PG, Sampson J, Theolad AE, Hart S, Lis-balchin M, et al. In vitro activities of Salvia lavandulaeefolia (Spanish Sage) relevant to treatment of Alzheimer’s disease. J Pharm Pharmacol 2001;53:1347-56.

6. Mukherjee PK, Kumar V, Mal M, Houghtonova PJ. Acetylcholinesterase inhibitors from plants. Phytotherapy 2007;14:289-300.

7. Orhan I, Sener B. Sustainable use of various Amaryllidaceae plants against Alzheimer’s. Proc. WOCMAP III: In: Franz C, Matthé A, Craker LE, Gardner ZE, editors. Targeted Screening of MAPs, Economics and Law. vol. 4., Acta Hort 678, ISHS 2005.

8. Kim SR, Hwang SY, Jang YP, Park MJ, Markelos GJ, Oh TH, et al. Protopine from Corydalis ternata has anticholinesterase and antiinflammatory activities. Planta Med 1999;65:218-21.

9. Khan I, Nisar M, Khan N, Saeed M, Nadeem S, Fazal-ur-Rehaman, et al. Structural insights to investigate Conypododiol as a dual cholinesterase inhibitor from Asparagus adscendens. Fitoterapia 2010;81:1020-5.

10. Adsersen A, Kjolbye A, Dall O, Jager AK. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava Schweigg and Kort. J Ethnopharmacol 2007;113:179-86.

11. Atta-ur-Rahman, Nisa M, Farhi S. The isolation and structure of Buxus alkaloids. XVIII. Alkaloids of Buxus cava Mill. Chemicke Zvesti 1984;38:101-9.

12. Atta-ur-Rahman, Parveen S, Khalid A, Farooq A, Choudhary MI. Enantiomeric resolution of galantamine and related drugs used in anti-Alzheimer therapy by means of capillary zone electrophoresis employing derivatized cyclodextrin selectors. J Chromatogr B 1999;730:167-75.

13. Vassova A, Voticky Z, Cernik J, Tomko J. Buxus alkaloids. XVIII. Alkaloids of Buxus harlandi Hance. Chemicke Zvesti 1980;34:706-11.

14. Rouhier Y, Gagnadoux MF, Gras D, Vouilloz I, Naves S. Immune-mediated toxicity of Buxus harlandi. Physiopathology 1997;50:84-8.

15. Vassova A, Voticky Z, Cernik J, Tomko J. Buxus alkaloids. XVIII. Alkaloids of Buxus harlandi Hance. Chemicke Zvesti 1980;34:706-11.

16. Foumeau C, Hocquemiller R, Guedon D, Cave A. Spirofornabuxine, a novel type of Buxus alkaloid. Tetrahedron Lett 1997;38:2965-8.

17. Roddick JG. The acetylcholinesterase inhibitory activity of steroidal glycoalkaloids and their aglycones. Phytochemistry 1989;28:2631-4.

18. McGehee DS, Krasowski MD, Fung DL, Wilson B, Gronert GA, Moss J. Cholinesterase inhibition by potato glycoalkaloids slows mivacurium metabolism. Anesthesiology 2000;93:510-9.

19. Andrade MT, Lima JA, Pinto AC, Rezende CM, Carvalho MP, Epifanio RA. Indole alkaloids from Tabernaemontana auristalis (Muell. Arg) Miers that inhibit acetylcholinesterase enzyme. Bioorg Med Chem 2005;13:4092-5.

20. Karczmar A. Invited review: Anticholinesterases: Dramatic aspects of their use and misuse. Neurochem Int 1998;32:401-11.
Ozturk M, Kolak U, Topcu G, Okusuz S, Choudhary MI. Antioxidant and anticholinesterase active constituents from *Micromeria ciliica* by radical-scavenging activity-guided fractionation. Food Chem 2011;126:31-8.

Jung M, Park M. Acetylcholinesterase inhibition by flavonoids from *Agrimonia pilosa*. Molecules 2007;12:2130-9.

Orhan I, Senol FS, Kartal M, Dvorska M, Zemlicka M, Smekal K, et al. Cholinesterase inhibitory effects of the extracts and compounds of *Maclura pomifera* (Rafin.) Schneider. Food Chem Toxicol 2009;47:1747-51.

Shahwar D, Shafiaq-ur-Rehman, Raza MA. Acetyl cholinesterase inhibition potential and antioxidant activities of ferulic acid isolated from *Impatiens bicolor* Linn. J Med Plant Res 2010;4:260-6.

Kievrak I, Mehmet Emin Duru ME, Ozturk M, Mercan N, Harmandar M, Topcu G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of *Salvia potentillofolia*. Food Chem 2009;116:470-9.

Chung YK, Heo HJ, Kim EK, Kim HK, Huh TL, Lim Y, et al. Inhibitory effect of ursolic acid on purified from *Oreganum majorana* L on the acetylcholinesterase. Mol Cells 2001;11:137-43.

Menichini F, Tundis R, Loizzo MR, Bonesi M, Marrelli M, Statti GA, et al. Acetylcholinesterase and butyrylcholinesterase inhibition of ethnicanol extract and monoterpenes from *Pimpinella anisoides* V Brig. (Apiaceae). Fitoterapia 2009;80:297-300.

Vorbrueggen H, Pakrash SC, Djerassi C. Terpenoids. LIV. Studies on Indian medicinal plants. Arborinol, a new triterpene type. Justus Liebigs Annalen der Chemie 1963;668:57-76.

Orhan I, Terzioglu S, Sener B. α-α-onicerin: An acetylcholinesterase inhibitor from *Lycopus clavatum*. Planta Med 2003;69:1-3.

Urbaín A, Marston A, Queiroz EF. Ndjoko K, Hostettmann K. Xanthones from *Gentiana campestris* as new acetylcholinesterase inhibitors. Planta Med 2004;70:1011-4.

Sancheti S, Sanchet S, Um BH, Seo SY. 1,2,3,4,6-penta-O-galloyl-β-d-glucose: A cholinesterase inhibitor from *Terminalia chebula*. S Afr J Bot 2010;76:285-8.

Lee KY, Sung SH, Kim YC. New acetylcholinesterase inhibitory pregnane glycosides of *Cynanchum atratum* roots. Helv Chim Acta 2003;86:474-83.

Sung SH, Kang SY, Lee KY, Park MJ, Kim JH, Park JH, et al. (+)-α-Viniferin, a stilbene trimer from *Caragana chamlaugae*, inhibits acetylcholinesterase. Biol Pharm Bull 2002;25:125-7.

Riaz N, Malik A, Aziz-ur-Rehman, Muhammad P, Nawaz SA, Choudhary MI. Cholinesterase inhibiting withanolides from *Ajuga bracteosa*. Chem Biodivers 2004;1:1289-95.

Von BM, Endress PK, Qiu Y-L. Phylogenetic relationships in Buxaceae based on nuclear internal transcribed spacers and plastid ndhF sequences. Int J Plant Sci 2000;161:785-92.

Devkota KP, Lenta BN, Fokou PA, Sewald N. Terpenoid alkaloids of the Buxaceae family with potential biological importance. Nat Prod Rep 2008;25:612-30.

Vieira Pde B, Giordani RB, De Carli GA, Zuanazzi JA, Tasca T. Screening and bioguided fractionation of Amaryllidaceae species with anti-Trichomona vaginalis activity. Planta Med 2011;77:1054-9.

Hostettmann K, Borioz A, Urbain A, Marston A. Natural product inhibitors of acetylcholinesterase. Curr Dev Chem 2006;10:825-47.

C. [How to cite this Article: Ahmed F, Ghalib RM, Sasikala P, Mueen Ahmed KK. Cholinesterase inhibitors from botanicals. Phcog Rev 2013;7:121-30.]

[Source of Support: Nil, Conflict of Interest: None declared]