Alkali Line Profiles in Degenerate Dwarfs

Derek Homeier
Institut für Astrophysik Göttingen

PHOENIX Collaborators:
France Allard (CRAL, ENS Lyon/IAP)
Nicole Allard (IAP)
Christine Johnas, Peter Hauschildt (Hamburger Sternwarte)
Ultracool Dwarfs

Kirkpatrick 2005
Ultracool Dwarfs

- Extremely reddened optical/near-IR spectrum of late L and T dwarfs ➔ dust or other opacity source?
(Sub-)stellar atmosphere modelling

- **independent Variables** (minimal):
 - effekte temperature \(T_{\text{eff}} \)
 - surface gravity \(g(r) = GM/r^2 \)
 - mass \(M \) or radius \(R \) or luminosity \(L = 4 \pi R^2 \sigma T_{\text{eff}}^4 \)
(Sub-)stellar atmosphere modelling

- Radiative transfer solution provides thermal structure to determine
- Gas phase physics (ionisation/occupation ratios)
- Chemistry (partial pressures, condensation)
• Dust clouds need to be sustained by turbulent mixing.
• Visible clouds have to be supported by convective overshoot.
• Cloud layer recedes from the photosphere in T dwarfs.
• Atomic and molecular lines becoming more important.
Brown Dwarfs — Line Absorption

- Most atoms in ground state, little contribution at longer wavelengths
- Spectral energy distribution shifts toward IR
- Importance of molecular bands dependent on:
 - Line strengths $\leftrightarrow gf$, abundances, chemistry
 - Line shapes
 - Line numbers
 - Line distribution
- Bands with complex spectra (polyatomic molecules) produce strongest blanketing effects.
Ultracool Atmosphere Models

- Coming and going of dust clouds explains the M-L-T spectra (Allard et al. 2001)
- Molecules: 3500-2500 K
- Dust: 2500-1500 K
- CH4: 1500-500 K
T Dwarfs — Dust-free atmospheres

- No visible dust → Massive alkali line broadening responsible for optical/near-IR absorption
T Dwarfs — Alkali lines

- Depletion of metals due to condensation and sedimentation
- Alkali resonance lines still strong in deep atmosphere layers
- Powerful probe of atmosphere at very different optical depths!

![Graph showing the distribution of Na, K, Rb, Cs, CrH, and FeH in T Dwarfs.](image)
Impact and single-perturber approximations with accurate inter-atomic potentials (Allard et al. 2005, 2007)
T Dwarfs - Alkali lines

- Broadening by He and H$_2$ (several geometries)
- Far wings shape spectrum over several μm!

Profiles from Allard, Allard, Hauschildt, Kielkopf & Machin (2003, 2007)
A Unified Set of Model Atmospheres

M-L-T-(Y?)-dwarfs

Derek Homeier

Alkali Lines in Degenerate Dwarfs
Interaction potentials show local minimum

→ quasi-molecular resonance in the blue wing
Absorption in the blue wing of K\textsc{I}

- CaH “resurgence” - a molecular band returning or a new absorption feature?
Alkali lines - quasi-molecular satellites!

- New profiles by Allard, Spiegelmann & Kielkopf 2007
Challenges - Alkali chemistry

- Depletion of refractory species depends on complex chemical reaction network and mixing properties
Challenges - Alkali chemistry

• Modelling of condensation still important in late T dwarfs!
• Gas density in line-forming region exceeds 10^{20} cm$^{-3}$
 \rightarrow single-perturber approximation no longer valid in wings
Alkali lines in White Dwarfs

- Strong V absorption in metal-rich cool white dwarfs
- Evidence for extremely pressure-broadened Na lines

Oppenheimer et al. 2001, Salim et al. 2004 (obs.)
Homeier et al. EuroWD 06

Derek Homeier
Alkali Lines in Degenerate Dwarfs

VIth SCSLSA 12 June 2007
Alkali lines in White Dwarfs

H-models log g = 8.0, [M/H]=-3.5, [Na,K/H]=-1.5

- 2 ultra-cool white dwarfs with strong Na absorption
- Hydrogen- or Helium-dominated atmosphere?

Harris et al. 2003 (obs.)
Homeier et al.
EuroWD 06

Derek Homeier Alkali Lines in Degenerate Dwarfs
FT Expansion breaks down at high density

- Standard density expansion to 3^{rd} or even 7^{th} order only carries a fraction of the line strength!
FT Expansion breaks down at high density

- Better treatment of far wings by direct calculation required for densest objects!
Conclusions

• Atmosphere models have made great progress towards understanding substellar objects

• Condensation and depletion of dust species explains the properties of L dwarfs and the transition from L to T

• Line absorption paramount to correctly model T dwarfs

• Few, massively broadened alkali resonance lines shape large regions of brown dwarf spectra

• Next generation of line profiles needed to model atmospheres of still denser objects → Y dwarfs, metal-rich white dwarfs

Thanks for your attention &
Thanks to the organisers!

Derek Homeier Alkali Lines in Degenerate Dwarfs VI
VIth SCSLSA 12 June 2007