DATA NOTE

The genome sequence of the snout, *Hypena proboscidalis* (Linnaeus, 1758) [version 1; peer review: 2 approved, 1 approved with reservations]

Douglas Boyes¹, Peter W.H. Holland²,
University of Oxford and Wytham Woods Genome Acquisition Lab,
Darwin Tree of Life Barcoding collective,
Wellcome Sanger Institute Tree of Life programme,
Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective,
Tree of Life Core Informatics collective, Darwin Tree of Life Consortium

¹UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK
²Department of Zoology, University of Oxford, Oxford, OX1 3SZ, UK

First published: 15 Sep 2021, 6:236
https://doi.org/10.12688/wellcomeopenres.17189.1
Latest published: 15 Sep 2021, 6:236
https://doi.org/10.12688/wellcomeopenres.17189.1

Abstract
We present a genome assembly from an individual female *Hypena proboscidalis* (the snout; Arthropoda; Insecta; Lepidoptera; Erebidae). The genome sequence is 637 megabases in span. The majority of the assembly is scaffolded into 31 chromosomal pseudomolecules, with the Z sex chromosome assembled.

Keywords
Hypena proboscidalis, the snout, genome sequence, chromosomal

This article is included in the Tree of Life gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Boyes D: Formal Analysis, Investigation, Methodology; Holland PWH: Formal Analysis, Investigation, Supervision, Writing – Original Draft Preparation;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute (206194) and the Darwin Tree of Life Discretionary Award (218328).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2021 Boyes D et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Boyes D, Holland PWH, University of Oxford and Wytham Woods Genome Acquisition Lab et al. The genome sequence of the snout, *Hypena proboscidalis* (Linnaeus, 1758) [version 1; peer review: 2 approved, 1 approved with reservations] Wellcome Open Research 2021, 6:236 https://doi.org/10.12688/wellcomeopenres.17189.1

First published: 15 Sep 2021, 6:236 https://doi.org/10.12688/wellcomeopenres.17189.1
Species taxonomy
Eukaryota; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Lepidoptera; Glossata; Ditrysia; Noctuoidea; Erebidae; Hypeninae; Hypena; Hypena proboscidalis Linnaeus 1758 (NCBI:txid753189).

Introduction
Caterpillars of Hypena proboscidalis (the snout) are specialised herbivores of nettle plants; the common and binomial names reference the prominent labial palps of the adult. The genome of H. proboscidalis was sequenced as part of the Darwin Tree of Life Project, a collaborative effort to sequence all of the named eukaryotic species in the Atlantic Archipelago of Britain and Ireland. Here we present a chromosomally complete genome sequence for H. proboscidalis, based on one female specimen from Wytham Woods, Oxfordshire, UK.

Genome sequence report
The genome was sequenced from a single female H. proboscidalis collected from Wytham Woods, Oxfordshire, UK (latitude 51.772, longitude -1.338). A total of 23-fold coverage in Pacific Biosciences single-molecule long reads (N50 18 kb) and 55-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 34 missing/misjoins and removed 14 haplotypic duplications, reducing the assembly length by 2.17% and the scaffold number by 28.57%, and increasing the scaffold N50 by 14.21%. The final assembly has a total length of 637 Mb in 56 sequence scaffolds with a scaffold N50 of 22 Mb (Table 1). The majority, 98.3%, of assembly sequence was assigned to 31 chromosomal-level scaffolds, representing 30 autosomes (numbered by sequence length), and the Z sex chromosome (Figure 1–Figure 4; Table 2). The assumed sex chromosome karyotype is Z0. The assembly has a BUSCO v5.1.2 (Simão et al., 2015) completeness of 98.7% using the lepidoptera_odb10 reference set. While not fully phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods
A female H. proboscidalis, ilHypProb1, and a second specimen of unknown sex, ilHypProb2, were collected from Wytham Woods, Oxfordshire, UK (latitude 51.772, longitude -1.338) by Douglas Boyes, University of Oxford using a light trap. The specimens were snap-frozen in dry ice using a Cool-Rack before transferring to the Wellcome Sanger Institute (WSI).

DNA was extracted from head and thorax tissue of ilHypProb1 by the Scientific Operations core at the WSI using the Qiagen MagAttract HMW DNA kit, according to the manufacturer’s instructions. RNA was extracted from ilHypProb2 in the Tree of Life Laboratory at the WSI using TRIzol (Invitrogen), according to the manufacturer’s instructions. RNA was then eluted in 50 μl RNAse-free water and its concentration RNA assessed using a Nanodrop spectrophotometer and Qubit Fluorometer using the Qubit RNA Broad-Range (BR) Assay Kit. Analysis of the integrity of the RNA was done using Agilent RNA 6000 Pico Kit and Eukaryotic Total RNA assay.

Pacific Biosciences HiFi circular consensus and 10X Genomics read cloud DNA sequencing libraries, in addition to PolyA RNA-Seq libraries, were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the WSI on Pacific Biosciences SEQUEL II (HiFi) Illumina HiSeq X (10X) and Illumina HiSeq 4000 (RNA-Seq) instruments. Hi-C data were

Table 1. Genome data for Hypena proboscidalis, ilHypProb1.1.

Project accession data	
Assembly identifier	ilHypProb1.1
Species	Hypena proboscidalis
Specimen	ilHypProb1
NCBI taxonomy ID	NCBI:txid753189
BioProject	PRJEB42129
BioSample ID	SAMEA7520188
Isolate information	Female, head/abdomen/thorax

Raw data accessions	
PacificBiosciences SEQUEL II	ERR6406200
10X Genomics Illumina	ERR6002650, ERR6002651, ERR6003040, ERR6003041
Hi-C Illumina	ERR6002652
Illumina PolyA RNA-Seq	ERR6002653

Genome assembly data	
Assembly accession	GCA_905147285.1
Accession of alternate haplotype	GCA_905147305.1
Span (Mb)	637
Number of contigs	86
Contig N50 length (Mb)	21
Number of scaffolds	56
Scaffold N50 length (Mb)	22
Longest scaffold (Mb)	26
BUSCO* genome score	C:98.7%[S:98.0%,D:0.8%],F:0.3%,M:1.0%,n:5286

*BUSCO scores based on the lepidoptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ilHypProb1.1/dataset/CAJHVD01/busco.
generated from abdomen tissue using the Qiagen EpiTect Hi-C kit and sequenced on HiSeq X.

Assembly was carried out with Hifiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). The assembly was polished with the 10X Genomics Illumina data by aligning to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). One round of the Illumina polishing was applied. Scaffolding with Hi-C data (Rao et al., 2014) was carried
out with SALSA2 (Ghurye et al., 2019). The assembly was checked for contamination and corrected using the gEVAL system (Chow et al., 2016) as described previously (Howe et al., 2021). Manual curation was performed using gEVAL, HiGlass (Kerpedjiev et al., 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva et al., 2021). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis et al., 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Figure 2. Genome assembly of *Hypena proboscidalis*, ilHypProb1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilHypProb1.1/dataset/CAJHVD01/blob.
Figure 3. Genome assembly of Hypena proboscisalis, ilHypProb1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all chromosomes. Coloured lines show cumulative lengths of chromosomes assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ilHypProb1.1/dataset/CAJHVD01/cumulative.

The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and
Table 2. Chromosomal pseudomolecules in the genome assembly of *Hypena proboscidalis*, ilHypProb1.1.

INSDC accession	Chromosome	Size (Mb)	GC%
LR990127.1	1	25.59	35.1
LR990128.1	2	25.33	35.2
LR990129.1	3	24.21	34.7
LR990130.1	4	24.04	35.5
LR990131.1	5	23.26	34.8
LR990132.1	6	23.15	34.8
LR990133.1	7	23.08	34.9
LR990134.1	8	22.66	34.8
LR990135.1	9	22.65	35
LR990136.1	10	22.64	35.3
LR990137.1	11	22.30	34.7
LR990138.1	12	22.17	34.8
LR990139.1	13	21.97	35
LR990140.1	14	21.88	34.8
LR990141.1	15	21.39	35.5

Figure 4. Genome assembly of *Hypena proboscidalis*, ilHypProb1.1: Hi-C contact map. Hi-C contact map of the ilHypProb1.1 assembly, visualised in HiGlass.
Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.12	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALSA2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/ software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	1.0	Uliano-Silva et al., 2021
gEVAL	N/A	Chow et al., 2016
HiGlass	1.11.6	Kerpedjiev et al., 2018
PretextureView	0.1.x	https://github.com/wtsi-hpag/PretextView
BlobToolKit	2.6.2	Challis et al., 2020

Data availability

European Nucleotide Archive: Hypena proboscidalis (the snout). Accession number PRJEB42129: https://identifiers.org/ena.embl:PRJEB42129.

The genome sequence is released openly for reuse. The *H. proboscidalis* genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated using the RNA-Seq data and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Acknowledgements

Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.4789929.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.4893704.

Members of the Wellcome Sanger Institute Tree of Life programme collective are listed here: https://doi.org/10.5281/zenodo.5377053.

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.4790456.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.5013542.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.4783559.

References

Challis R, Richards E, Rajan J, et al.: BlobToolKit—Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361-74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 170–75. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL — a Web-Based Browser for Evaluating Genome Assemblies. Bioinformatics. 2016; 32(16): 2508-10. PubMed Abstract | Publisher Full Text | Free Full Text

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv:1207.3907, 2012. Reference Source

Ghurye J, Rhie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(2): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. GigaScience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Lekshas F, et al.: HiGlass: Web-Based Visual
Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1):125.

PubMed Abstract | Publisher Full Text | Free Full Text

Rao SS, Huntley MH, Durand NC, et al.: A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014; 159(7):1665–80.

PubMed Abstract | Publisher Full Text | Free Full Text

Simão FA, Waterhouse RM, Ioannidis P, et al.: BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics. 2015; 31(19):3210–12.

PubMed Abstract | Publisher Full Text

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021.

Publisher Full Text
Open Peer Review

Kuppusamy Sivasankaran
Loyola Collège, Chennai, Tamilnadu, India

Review report

I appreciate the authors for assembling the whole genome sequence of Snout *Hyrena proboscidalis*. The appropriate software, genome assembling process, and whole genome sequencing technologies were used.

The few comments on the manuscripts.

- Total sequence lengths (636,786,269 bp) were not mentioned in the text.
- Non-nuclear genome size and Scaffold count not mentioned in the text.
- How many nuclear genes were established in the assembling of the entire genome? The text makes no mention of the nuclear gene numbers.
- The maximum and minimum contig length was not indicated. Total contigs length was not indicated (18,834,925 bp).
- Gene recovery statistics can be given in the text.
- Overall, the manuscript is written well and it can be accepted for indexing.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Phylogenetic analysis of the superfamily Noctuoidea moths using mitochondrial genome sequence

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 08 February 2023
https://doi.org/10.21956/wellcomeopenres.18992.r54390

© 2023 Fric Z. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Zdenek F. Fric
Institute of Entomology,, Branisovska, Czech Republic

The paper introduces a newly published genome of another British moth, continuing in the Darwin Tree of Life Project, where the authors try to sequence all known species occurring in British islands. The aim is clear, the methodology is identical to all previous projects of the DTLP and the exact pipeline commands are in the same way obscured. However, the initiative is an important step in knowledge and the resulting DTLP sequences are a very useful tool for other genomic projects as they are easy to use as a reference genome for all other analyses.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Lepidoptera phylogeny and evolution
I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 30 September 2021

https://doi.org/10.21956/wellcomeopenres.18992.r45888

© 2021 McGaughran A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Angela McGaughran
Te Aka Mātuatua/School of Science, University of Waikato, Hamilton, New Zealand

The rationale for the study is not particularly defined - there is a very brief introduction to the species and mention that the sequencing is part of the DTLP, but some more information could be provided about the species. E.g., is it a pest, is it endangered, is it important in ecosystem function, etc. This would help place the study a bit better contextually.

The Methods section outlines all of the software used and version numbers are provided in Table 3. But there is no detail of the actual commands used, so the study cannot be replicated. Provision of the bioinformatic coding in Supplementary material would address this.

The figures are attractive to look at, but the legends are very brief and therefore the figures are not easy to interpret. For example, in Fig 4 the axes are not labelled; in Fig 1, the relevant percentages or other values seem to all be stated in the associated keys, so, though the figure looks great, it's not clear what it's adding. There is also no description of what the figures mean in the text.

Is the rationale for creating the dataset(s) clearly described?
Partly

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, population genomics.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.