DATA NOTE

Nicotiana glauca whole-genome investigation for cT-DNA study

Galina Khafizova1*, Pavel Dobrynin3,4, Dmitrii Polev2 and Tatiana Matveeva1

Abstract

Objective: Nicotiana glauca (tree tobacco) is a naturally transgenic plant, containing sequences acquired from Agrobacterium rhizogenes by horizontal gene transfer. Besides, N. glauca contains a wide profile of alkaloids of medical interest.

Data description: We report a high-depth sequencing and de novo assembly of N. glauca full genome and analysis of genome elements with bacterial origin. The draft genome assembly is 3.2 Gb, with N50 size of 31.1 kbp. Comparative analysis confirmed the presence of single, previously described gT insertion. No evidence was acquired to support idea of multiple T-DNA insertions in the N. glauca genome. Our data is the first comprehensive de novo assembly of tree tobacco and provide valuable information for researches in pharmacological and in phylogenetic fields.

Keywords: Nicotiana glauca, Cellular T-DNA, Whole genome sequencing, Genome assembly

Objective

Nicotiana glauca (tree tobacco) is a member of the Solanaceae family, which includes important crops (potato, tomato, eggplant, pepper) and many medicinal plants [1]. This diploid plant is native to South America and is one of the first Nicotiana species with Agrobacterium cellular T-DNA (cT-DNA) [2]. Its cT-DNA is a partial, inverted repeat, called gT [3]. Tree tobacco belongs to the section Noctiflorae. Sequencing of the genomes of N. tomentosiformis and N. otophora (section Tomentosae) and N. tabacum (section Nicotiana) allowed the detection of previously unknown multiple cT-DNAs [4], raising the question whether there are other T-DNA insertions in the N. glauca. NGS data can help answer this question. Besides, N. glauca contains a profile of alkaloids different from N. tabacum [5]. The plant is used for medicinal purposes. Comparative analysis of genomic data of phylogenetically distant tobacco species will provide valuable information on the genetic basis for various traits, especially secondary metabolism. Our data complement the list of species for the comparative genomics of Nicotiana, which opens up new opportunities for pharmacological and phylogenetic studies.

Data description

One plant isolate was sequenced on Illumina HiSeq machine, yielding in total 210 Gb of raw sequence data. De novo assembly resulted in 385116 scaffolds, with N50 and L50 of 31.1 kbp and 27293 respectively. Genome size suggested by K-mer analysis is 2 Gb, while the final size of the assembled genome equaled 3.2 Gb. Comparative analyses of N. glauca scaffolds against genome assembly of N. tabacum TN90 cultivar strain resulted in 3.2 Gbp of aligned sequences median identity of 88%. T-DNA analysis revealed sequences homologous to agrobacterial genes orf13a, orf13, orf14, rolC, rolB and mis. The fragment of T-DNA obtained in the assembly is organized in an imperfect inverted repeat. The similarity of the nucleotide sequences, that we found, and sequence of gT, previously described by Suzuki [3] was 99%, while its similarity to Agrobacterium T-DNA is 77–89%. Sequences of PCR fragments, amplified from T-DNA/plantDNA junction areas, coincide with known ones (Acs. AB071335, AB071334).

*Correspondence: galina.khafizova@gmail.com
1 Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb. 7/9, Saint Petersburg 199034, Russia
Full list of author information is available at the end of the article

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Methodology

Sample collection
Leaf tissue of aseptic plants *N. glauca* was used for DNA extraction, with a modified version of Doyle and Doyle protocol [6], yielding 30 ng/μl of high molecular weight DNA.

Library construction
Purified genomic DNA from *N. glauca* was used to construct both pair-end and mate pair libraries in order to generate a high coverage de novo assembly. A pair-end library with an insert size of 350 bp was constructed using the TruSeq® Nano DNA Library Prep Reference Guide. To improve resolution of repeats during the assembly stage and scaffolding process, one mate pair library with an insert size of 4 kbp was constructed, according to the Nextera® Mate Pair Library Prep Reference Guide.

Read sequencing, quality analysis and filtering
Pair-end and mate pair libraries were sequenced on four and two lanes using Illumina HiSeq. Quality of raw reads was analyzed with the FastQC [7] program, followed by filtering and trimming raw PE reads with Trimgalore [8]. Mate pair raw reads were processed and splitted with Nextclip [9] and additionally filtered with Trimgalore [8].

Genome assembly
The genome was assembled with the MaSuRCA-3.2.2 genome assembler [10].

Whole genome alignment of *Nicotiana glauca* and *Nicotiana tabacum*
To identify the location of the *N. glauca* cT-DNA insertion relative to the *N. tabacum* genome, we mapped all *N. glauca* scaffolds to *N. tabacum* scaffolds downloaded from the Sol Genomics Network [11]. To increase accuracy of alignment we masked all known plant repeat classes and their homologs in the *N. glauca* genome. For repeat identification, we used the RepeatMasker software [12] and the latest Repbase Update library from 09.27.2017. For whole genome alignment, we used the Last software [13].

T-DNA analysis
The Last software [13] was used to carry out the alignment of the database, containing all known T-DNA-like sequences, that were detected as part of cT-DNA (data file 2), to the *N. glauca* genome. To reaffirm T-DNA/plantDNA junction areas Long PCR was carried out using “LONG PCR enzyme Mix” (Thermo scientific) according to the instructions for the kit (Table 1).

Limitations
85% of the mate pair library proved to be PCR duplicates, which we filtered before assembling. Low coverage of MP reads resulted in low N50 and big number of contigs and scaffolds. A better quality or/and a bigger number of MP libraries should be used in future to improve the assembly.

Abbreviations
T-DNA: transferred DNA; PE: pair-end; MP: mate pair.

Authors’ contributions
TM developed the overall project design. GK, PD and TM wrote the paper. GK collected the *N. glauca* sample and extracted DNA from the sample. GK and DP constructed libraries. DP sequenced the genome of *N. glauca*. PD assembled the *N. glauca* genome and analyzed whole genome alignments. GK, PD and TM performed cT-DNA analysis. All authors read and approved the final manuscript.

Acknowledgements
The authors thank Professor Otten (Institut de Biologie Moléculaire des Plantes, Strasbourg) and Professor Lutova (Saint Petersburg University, St. Petersburg) for useful discussion and critical reading of the manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The assembly sequences are available at DDBJ/ENA/GenBank as WGS project under the Accession PGPE00000000. The SRA for whole-genome sequencing can be accessed at NCBI SRA via Reference Numbers: SRX3419913, SRX3419914, SRX3419915, SRX3419916, SRX3419917, SRX3419918.

Consent for publication
Not applicable.
Data citation
1. Khafizova G, Dobrynin P, Polev D. FigShare https://doi.org/10.6084/m9.figshare.5732427.v1 (2017).
2. Khafizova G, Dobrynin P. FigShare https://doi.org/10.6084/m9.figshare.5645854.v1 (2017).
3. Khafizova G, Matveeva T. FigShare https://doi.org/10.6084/m9.figshare.5754120.v1 (2018).

Ethics approval and consent to participate
Not applicable.

Funding
This paper was supported by a Grant to Tatiana Matveeva from the Russian Science Foundation 16-16-10010 and a Grant from Saint Petersburg State University №1.52.1647.2016.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 November 2017 Accepted: 5 January 2018
Published online: 12 January 2018

References
1. Long N, Ren X, Xiang Z, Wan W, Dong Y. Sequencing and characterization of leaf transcriptomes of six diploid Nicotiana species. J Biol Res (Thessalon). 2016;23:6.
2. White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW. Sequence homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature. 1983;301:348.
3. Suzuki K, Ichiro Y, Nobukazu T. Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 2002;32:5.
4. Chen K, Doriac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J. 2014;80:4.
5. Saitoh F, Kawasima N. The alkaloid contents of sixty Nicotiana species. Phytochemistry. 1985;24:477.
6. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11.
7. FastQC program. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 12 Jan 2017.
8. Krueger F. Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. 2015. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/. Accessed 12 Jan 2017.
9. Leggett RM, Clavijo BJ, Cissold L, Clark MD, Caccamo M. NextClip: an analysis and read preparation tool for Nextera Long Mate Pair libraries. Bioinformatics. 2013;30:4.
10. Zimin AV, Puiu D, Luo MC, Zhu T, Koren S, Marçais G, Yorke JA, Dvořák J, Salzberg SL. Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27:5.
11. Sol Genomic Network. https://solgenomics.net. Accessed 25 Feb 2017.
12. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinform. 2009;25:4–10.
13. Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:3.