The Influence of Tilmicosine and Enrofloxacine in Mycoplasmas Control, Hatchery Performance and Quality of Eggs and Day Old Chicks

INTRODUCTION
The hatchability in the incubator and quality of eggs and day old chicks in breeder broiler chickens, is a very important indicator for farmers of the parental flocks. Many factors play an important role in the percentage of the hatching of eggs like the genetic strain (Abudabos, 2010) quality of eggs (Yoho et al., 2008), age of broiler breeders (Tona et al., 2004., Dikmen et al., 2007), egg shell and incubation condition (Christensen et al., 2005), nutrition (Aydin et al., 2004., King’ori, 2010), environmental factors (King’ori, 2011), egg storage position (Tiwari et al., 2005), males and females rapports (Sapp, 2004), eggs size (Abiola, 2008) etc.

Different microorganisms, especiallly mycoplasmas have an affect on the fertility and the embryonic deaths and as a result on the percentage of hatching of the eggs in the incubator. (Levisohn et al., 1985., Lockaby et al., 1999., King’ori, 2011)

The chick’s vitality, besides others, has also to do with the chick’s weight which is interdependent from the egg’s weight.

Lots of authors mentioned that the one day broiler chicks weight, can affect its weight in slaughter house at the age of 38-40 days (Leeson et al., 2000).

Besides other factors, the egg’s and hatched chick’s weight, can be influenced by several factors with microbe origin such are Mycoplasmas.

In order to see concretely the influence of Mycoplasma gallisepticum in the quality of eggs and hatched chicks, we organized the following experiment:

MATERIAL AND METHOD
In a breeder broiler farm that produces eggs for broiler incubation, there have been created three groups with 3500 female chicks on each. In the two of the three groups we used the antibiotic Tilmicosine and Enrofloxacine in the first 3 days that the chicks just entered in the stable with dose 30ml Tilmicosine 25% in 100L/drinking water (Pulmotil AC, Elanco) and 300ml of Enrofloxacine 10% in 100L/drinking water (Baytril, Bayer). Then, Tilmicosine was used for 5 other times for one day with dose 20mg/kg.b.w with four-week intervals till the beginning of the eggs’ lay. The same scheme but for 2 days was using the Enrofloxacine 10mg/kg body way. Upon the beginning of the eggs’ lay, no more antibiotics were used till the removal of the breeder stock from the stable which lasted for 63 weeks. In the control group no antibiotic was used. Before the antibiotics usage, 15 chicks for every group were made the blood infusion in specified days and the control for the presence of Mycoplasma antibodies was made, through the ELIZA’s test, Flock check MG-IDEEX. There were also made cultural controls in determined days in respective cultures. The cultural tests have taken place in microbiology laboratory of the Faculty of Medicine in Iannina-Greece. The terrains PPLO agar and bujon medium of the company Difco were used , adding the supplement Mycoplasmas: yeast extract, horse serum, penicillin and thallium acetate according to the assigned methodology. From the laboratory, clinical and anatomy-pathological check, we had no other microbe factors to affect the experiment result. But however, the conditions in the three experimental groups were equal.

We collected the eggs for each group and put in the incubator seperately under strict control on every detail.

Then we scaled with electronic scale by 100 eggs taken occasionally from each group, and we got out the average for one egg, placing them separately for incubation.

The chicks hatched by these eggs were scaled with the electronic scale, separately for every group getting out by this way the average for one chick.

For this purpose, the eggs have been taken in assigned days that coincided with the peak of the eggs’ production (lay). On the 210th day on which the eggs’ production was 88%, later on the 280th day on which the eggs’ production was in the middle of the production curve over 70%, and at the end of the laying curve (day 210, 280, 350) were better in the Tilmicosine and Enrofloxacine groups, than the control group.

RESULTS AND DISCUSSION
In table no.1 are presented the results of serological analysis.
In the second day we don’t have the presence of the antibodies of Mycoplasma gallisepticum in the blood serum infused to the newly arrived chicks in stable. This demonstrates that grandparents flock is free of Mycoplasma gallisepticum, under the conditions of a rigorous bio-security.

Table No. 1. Serological analysis, Eliza test

Groups	ELISA 2nd day	ELISA 30th day	ELISA 120th day	ELISA 210th day	ELISA 280th day
Control group	-	+	+	+	+
Tilmicosine	-	+	+	+	+
Enrofloxacin	-	+	+	+	+

The serological analysis of the 30th day showed the presence of mycoplasma’s antibodies in the blood serum in the control group and Enrofloxacin group, such a fact shows the horizontal infection of chicks because of the lack of a non rigorous bio-security.

In the serological analysis after the 120th day, we have the presence of mycoplasma’s antibodies in all groups. The serological analysis was assisted from the cultural tests too for the increase of MG presence.

In table no.2 are presented the results taken from the cultural tests. The presence of MG on the 30th day, we have the mycoplasmas presence in all groups, in the serological control and in the cultural tests.

The MG presence is higher in the samples of the control group (4 positive samples in 15), compared to the group where the antibiotics were used (Tilmicosine 1 positive sample and Enrofloxacin 2 positive samples in 15). This shows that the antibiotic usage with one-month intervals, keeps in a relatively lower level. On the other side, this shows that the antibiotic usage in long intervals is not capable of controlling perfectly the increase and multiplying of mycoplasmas, especially when we also have other stresses such as the post-vaccine ones or the lack of a non rigorous bio-security (Ley and al, 1997., Jerome et al, 2006).

In the laboratory control of the 210th and 280th day, when chickens are just in the middle and in the peak of their eggs production, we have an increase in the number of mycoplasmas samples. This shows that the eggs produced and incubated in this period are in considerable percentage (relatively high), infected by Mycoplasma gallisepticum and carry the possibility of broilers’ vertical infection (Barbour et al, 1998). But it is important to emphasize that the infection is lower in Tilmicosine group compared to the Enrofloxacin and especially to the control group.

This increase of mycoplasmas in control group, in our opinion has to do with the non-usage of antibiotics for a long time, and consequently the MG has the possibility to continue its multiplying.

Our results are in contradiction to the conclusions of some authors that have applied the antibiotics usage only in pullets imped ing the transmission of mycoplasmas through eggs in the newly hatched chicks (Elanco Italy, 2003). Our results showed that under the conditions of a non-perfect bio-secu rity, the antibiotic usage only in pullets till the beginning of the eggs’ lay, is not able to control the mycoplasmas’ transmission through eggs in the newly hatched chicks.

These results show that the frequent monitoring of breeder stock is necessary, in order to take precaution for the mycoplasmas control, through the increase of bio-security and through the frequent usage of antibiotics in chickens during the laying period (Barbour et al, 1998., Nascimento et al, 2005).

Table No. 2. Cultural test: The presence of MG in different days

Groups	Cultural test on the 30th day	Cultural test on the 120th day	Cultural test on the 210th day	Cultural test on the 280th day
Control group	1/15	4/15	6/15	7/15
Tilmicosine	0/15	1/15	2/15	3/15
Enrofloxacin	0/15	2/15	3/15	5/15

The serological analysis of the 30th day showed the presence of mycoplasma’s antibodies in the blood serum of the control group and Enrofloxacin group, such a fact shows the horizontal infection of chicks because of the lack of a non rigorous bio-security.

In the serological analysis after the 120th day, we have the presence of mycoplasma’s antibodies in all groups. The serological analysis was assisted from the cultural tests too for the increase of MG presence.

In table no.2 are presented the results taken from the cultural tests. The presence of MG on the 30th day was verified only in the control group and not in the group where Tilmicosine and Enrofloxacin were used. In the controls of the 120th day, we have the mycoplasmas presence in all groups, in the serological control and in the cultural tests.

The MG presence is higher in the samples of the control group (4 positive samples in 15), compared to the group where the antibiotics were used (Tilmicosine 1 positive sample and Enrofloxacin 2 positive samples in 15). This shows that the antibiotic usage with one-month intervals, keeps in a relatively lower level. On the other side, this shows that the antibiotic usage in long intervals is not capable of controlling perfectly the increase and multiplying of mycoplasmas, especially when we also have other stresses such as the post-vaccine ones or the lack of a non rigorous bio-security (Ley and al, 1997., Jerome et al, 2006).

In the laboratory control of the 210th and 280th day, when chickens are just in the middle and in the peak of their eggs production, we have an increase in the number of mycoplasmas samples. This shows that the eggs produced and incubated in this period are in considerable percentage (relatively high), infected by Mycoplasma gallisepticum and carry the possibility of broilers’ vertical infection (Barbour et al,1998). But it is important to emphasize that the infection is lower in Tilmicosine group compared to the Enrofloxacin and especially to the control group.

This increase of mycoplasmas in control group, in our opinion has to do with the non-usage of antibiotics for a long time, and consequently the MG has the possibility to continue its multiplying.

In total the percentage of the hatching in the incubator is obviously different. Which is 73 756 , more hatched birds in Tilmicosine’s group in comparison to control group and 34 750 in comparison to Enrofloxanine.

Tilmicosine’s group has 2.6 % higher percentage than control group and 1.45% higher than Enrofloxacin’s group. The percentage of the hatchability were 85.6 %, 84.15% and 83.2% respectively for the Tilmicosine, Enrofloxacin and control group.

These results are of a big interest for an economy that deals with egg production and the hatching of birds in incubators. So the economical effect of Tilmicosine should be taken under consideration.

Table No. 4 The weight of eggs and chicks in different days of production curve

Groups	Weight on the 210th day (30 weeks)	Weight on the 280th day (40 weeks)	Weight on the 350th day (50 weeks)
Control group	53.8 gr	60.8 gr	62.9 gr
Tilmicosine	55.7 gr	63.9 gr	65.7 gr
Enrofloxacin	54.6 gr	62.2 gr	64.3 gr

From the careful observation of tables no.4 , it results clearly that the eggs produced from chickens on the 210th day, which coincides with the peak of egg’s production, are smaller, so with average weight that is smaller compared to the weightings on the 280th and 350th day. Not only the average weight of their eggs, but also that of the chicks hatched from them, is smaller.

This average weight of both eggs and chicks, increases on the 280th day and reaches the biggest weight on the 350th day.
A certain progress of egg’s weight, and consequently of the chicks’ weight that are hatched from them, is physiological (Leeson et al, 2000, Yanacopulos et al, 1987). The egg weight is in the right correlation with chickens’ body weight, which increases continuously till the end of the laying period (Leeson et al, 2000).

The weight of chicks hatched from eggs in the peak of their production, so from small eggs, must be taken into consideration from the importers of our country that debate and require from the farmers of the parent stock of Greece and Italy to receive chicks that come from as big eggs as possible and that chicks have the most possible weight.

However, in every phase of weighting we have differences between the three groups concerning the average weight of the eggs and of the chicks hatched from them. In the group where we have used the antibiotic macrolid Tilmicosine, the weight is bigger compared to the Enrofloxacin group and both eggs from groups treated with antibiotics were bigger than control group. Certainly, in absolute values, this difference seems inconsiderable, but by the biological point of view it has noticeably influenced in the hatch of a more vital chick which can pass easier the initial stresses, the receipt and assimilation of nutrition etc. Furthermore, a vital chick is very resistant towards the different infections, including also the respiratory infections (Dufour-Zavala,1999) such are mycoplasmas which are frequent in poultry industry.

The differences between groups and ages of weighting, is verified also by the results’ statistical processing. Other authors have studies the correlation between the chicks’ weight in hatch and those in slaughter house. As big chicks’ weight in hatch and those in slaughter house. As big eggs from groups treated with antibiotics were bigger than control group. Certainly, in absolute values, this difference seems inconsiderable, but by the biological point of view it has noticeably influenced in the hatch of a more vital chick which can pass easier the initial stresses, the receipt and assimilation of nutrition etc. Furthermore, a vital chick is very resistant towards the different infections, including also the respiratory infections (Dufour-Zavala,1999) such are mycoplasmas which are frequent in poultry industry.

The difference in the percentage of the incubated eggs’ hatch and of the quality of the chick’s weight is dedicated to the antibiotics concentration by lots of authors, especially to pharmacokinetics of macrolide antibiotics such as Tilmicosin in the egg, in egg yolk and in the egg embryo control- ing well and decreasing the microbe number of Mycoplasmas (Goetting, 2011).

The decrease of Mycoplasmas’ number, in our case MG, decreased their negative impact in eggs and in eggs’ embryo, increasing so not only the fertility and hatchability, but also the weight and vitality of the chicks hatched from them (Mohamet et al., 1987., Scorneaux et al, 1998., Nascimento et al,2005).

CONCLUSION

1.- The usage of the macrolide antibiotic – Tilmicosine, gives better results in the control of Mycoplasma gal- lisepticum in the breeder broiler chicken, affecting posi- tively in the decrease of MG microbe number, verified in laboratory through the serological analyses (Elisa test) and through cultural tests in the respective terrains.

2.- The usage of Tilmicosine and Enrofloxacin antibiotics influenced to increase the percentage of hatchery of the eggs and to increase the weight of eggs and chicks hatched from them giving us more vital chicks compared to the control group.

3.- Taking the measurements of bio-security, quarantine and disinfections, must be as complete as possible in the breeder broiler chicken, in order to control the horizontal transmission of Mycoplasma gallisepticum.

4.- According to literature, Tilmicosine is concentrated in eggs, so the non incubated eggs must not be given for public consumption.

REFERENCE

[1] Abudabos, A. (2010). “The effects of Broiler breeder strain and parent flock age on hachability and fertile hatchability”. Journal of Poultry Science, 9 (3): 231-235. [2] Abiola, S.S., Meshoyi, B.O., Oyeninde, B.O., Bamgbose, M.A. (2008). “Effect of egg size on hatchability of broiler chicks”. Arch. Zoot. 57:83-86. [3] Aydin, R., Cook, M.E. (2004). “The Effects of dietary conjugated linoleic acid on egg yolk fatty acids and hatchability in Japanese quail”. Poult. Sci.,83:2016-2022. [4] Barbour,E.K., Hamadeh,S., Talhouk,R., Sakw, R., Danish,R. (1998). “Evaluation of an enrofloxacin-treatment program against Mycoplasma gallicepiticum infection in broilers”. Prev. Vet. Med. 1:35 (2):91-99. [5] Christensen, V.L., Wineland, M.J., Ort, D.T., Mann, K.M. (2005). “Eggshell conductivity and incubator ventilation as factors in embryo survival and poultry quality”. Int. J.Poul. Sci. 4:818-826. [6] Dikmen,B.y., Sahan,U. (2007). “Correlation between breeder age, egg cholesterol content, blood cholesterol level and hatchability of broiler breeders”. Poult. Sci., 48:98-103. [7] Dufour-Zavala,L. (1999). “Effects of chick Quality on Respiratory Disease”. Elanco Poultry Respiratory diseases. Atlanta, Georgia, USA. [8] Elanco Italy (2003). Non-publicized work. “Effect of Tilmicosin in control of mycoplasmas in poultry”. [9] Goetting, V., Lee, K. A., Tell, L. A. (2011). “Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: a review of the literature”. J. Vet. Pharmacol. Therap. 34, 521-556. [10] Halevy,O., S. Hefez, D.S.University of Jerusalem.(2004) “Heavier Chicks at hatch have improved marketing body weight by enhancing skeletal muscle growth but not intestinal development”. Proceedings XXII World poultry congress. [11] Jerome Le Carnou., Anita K. Reinhardt., Isabelle Kempf and Anne V.Gautea-Bouchardon (2006) “Persistence of Mycoplasma synoviae in hens after two enrofloxacin treatments and detection of mutations in the park gene”. Vet. Res. 37:145-154. [12] King’ori,A.M., Tuutok, J.K., Muiruri, H.K., Wahira, A.M. (2010). “Effect of dietary protein levels on egg production, hatchability and post-hatch offspring performance of indigenous chickens of Kenia”. Int. J.Poul.Cci.,10:324-329. [13] Leeson, S. and Summers J.D.(2000) “Broiler Breeder Production”, University Books, Guelph, Ontario. Canada [15] Ley, D.H. and Yoher, H.W., Jr. (1997) “Mycoplasmosis/Mycoplasma gallisepticum infection”. In: Calcine B.W. et al., Disease of poultry. 10th edn. Ames: Iowa State University Press. p. 194-207. [16] Levisohn,S., Glisson J.R., Kleven, H.S. (1985). “In ovo pathogenicity of Mycoplasma gallisepticum strain in the presence and absence of maternal antibody”. Av. Dis. 29:188-197. [17] Lockaby,S.B., Hoer, F.J., Kleven, s.h., Lauerman, L.H. (1999). “Pathogenicity of Mycoplasma synoviae in chicken embryos”. Av. Dis. 43: 2: 331-337 [18] Mohammed, H.O, Carpenter, T.E., Yamamoto R.(1987). “Economic impact of Mycoplasma gallisepticum and Mycoplasma synoviae in commercial layer flocks”. Avian Diseases ; 31: 477-482. [19] Nascimento ER, Pezeira VLA; Nascimento MGF. (2005) “Barreto M., Revista Brasileira de Ciencia Avicola”Vol 7 no 1. [20] Sapp, R.L., Rekays, R, Mistral, I, Wing, T. (2004). “Male and female fertility and hatchability in chickens: A longitudinal mixed model approach”. Poult. Sci., 83:1253-1259. [21] Scorneaux, B., T., Shryock.(1998) “Persistence of Mycoplasma synoviae in hens after two enrofloxacin treatments and detection of mutations in the park gene.” Poult. Sci., 9 (3): 231-235. [22] Severson, E.L., A.M. (1985). “Pharmacokinetics of veterinary drugs in laying hens and residues in eggs, so the non incubated eggs must not be given for public consumption.”. J. Appl. Poul. Res.13:10-18.