High-temperature superconductivity on the verge of a structural instability in lanthanum superhydride

Dan Sun1,8✉, Vasily S. Minkov2,8, Shirin Mozaffari3, Ying Sun4, Yanming Ma4,5,6, Stella Chariton7, Vitali B. Prakapenka7, Mikhail I. Eremets2, Luis Balicas3 & Fedor F. Balakirev1

The possibility of high, room-temperature superconductivity was predicted for metallic hydrogen in the 1960s. However, metallization and superconductivity of hydrogen are yet to be unambiguously demonstrated and may require pressures as high as 5 million atmospheres. Rare earth based “superhydrides”, such as LaH10, can be considered as a close approximation of metallic hydrogen even though they form at moderately lower pressures. In superhydrides the predominance of H-H metallic bonds and high superconducting transition temperatures bear the hallmarks of metallic hydrogen. Still, experimental studies revealing the key factors controlling their superconductivity are scarce. Here, we report the pressure and magnetic field dependence of the superconducting order observed in LaH10. We determine that the high-symmetry high-temperature superconducting Fm-3m phase of LaH10 can be stabilized at substantially lower pressures than previously thought. We find a remarkable correlation between superconductivity and a structural instability indicating that lattice vibrations, responsible for the monoclinic structural distortions in LaH10, strongly affect the superconducting coupling.
For phonon-mediated superconductors, a high transition temperature necessitates light atomic masses. The lightest atom available to compose a crystal lattice is hydrogen, which forms covalently bonded molecular dimmers under ambient conditions. Transforming pure molecular hydrogen, with the aid of pressure, into a metal with an atomic lattice and into a superconductor has been a long-standing challenge and the subject of contention for the high-pressure community. Yet, chemical pre-compression with certain elements reduces the pressure required for metallization; thus, stable hydrogen-rich phases can be synthesized by the current high-pressure technology. With the discovery of a superconducting transition at the critical temperature $T_c = 203$ K in H$_3$S at 150 GPa\(^1\), the search for hydrogen-rich high-temperature superconductors (HTSs) has intensified, with the recent report of room-temperature superconductivity in C-S-H system with a maximum T_c of 288 K\(^2\). A new family of rare-earth hydrides, such as LaH$_{10}$\(^3,4\) and YH$_6$\(^5\), opened a path to a significant increase in T_c, which is predicted to reach 305–326 K in YH$_6$\(^6\).

While in H$_3$S the crystal lattice is formed by H-S covalent bonds, LaH$_{10}$ forms a clathrate-like structure, where each La atom is locked at the center of a H$_3$S hydrogen cage. The interatomic distances between hydrogen atoms in LaH$_{10}$ are close to the H–H distance predicted for atomic metallic hydrogen near $p = 500$ GPa\(^6\). Due to the short H–H distances and the high hydrogen content, LaH$_{10}$ can be considered as “doped” metallic hydrogen. A pronounced isotope effect on T_c when hydrogen is substituted by its heavier isotope deuterium, confirmed that the superconductivity in HTS hydrides is induced by electron–phonon interactions\(^7\). However, there is a dearth of experimental studies on HTS hydrides due to the very limited number of measurement techniques available at such extreme pressures. Here we explore the superconductivity and the structure of the lanthanum hydride family over a wide range of pressures, temperatures, and magnetic fields. We find that superconductivity in LaH$_{10}$ is strongly affected by a crystal lattice instability toward symmetry-lowering distortions. A similar dramatic change in the $T_c(p)$ dependence for another HTS hydride H$_3$S was also linked to a structural phase transition\(^8-11\). The present study firmly establishes the connection between HTS and soft phonon modes that are responsible for the structural instability in hydrides.

Results and discussion

The relation between crystal structure and superconductivity. Metallic lanthanum readily reacts with hydrogen at high pressures and temperatures yielding the clathrate-like superhydride LaH$_{10}$. We found that the superconducting $Fm-3m$ phase of LaH$_{10}$ can be synthesized at pressures much lower than ~150–170 GPa\(^3,4,12,13\) as reported earlier. Specifically, the powder X-ray diffraction data show that the sample prepared in the present study under 138 GPa is comprised of the dominant $Fm-3m$ phase of LaH$_{10}$. The minor impurity phases are attributed to two hexagonal close-packed (hcp) phases with the P6$_3$/mmc space group but with a different c/a ratio (~1.63 for hcp-I and ~1.48 for hcp-II) and a composition close to LaH$_{10}$ (Fig. 1). Both impurity phases were also found in various samples prepared via the direct chemical reaction between hydrogen and lanthanum or lanthanum trihydride in the previous work\(^6\) and did not distinctly affect the T_c of the superconducting $Fm-3m$ phase, which has the highest T_c in the lanthanum–hydrogen system\(^9\).

The persistence of the high-pressure, high-symmetry phase of LaH$_{10}$ at pressures as low as 138 GPa corroborates recent theoretical calculations that take quantum effects into account\(^14,15\). In contrast to the classical ab initio calculations\(^8,14,15\), which predict structural distortions in the $Fm-3m$ LaH$_{10}$ below ~230 GPa, the inclusion of the zero-point energy stemming from quantum atomic fluctuations lowers the enthalpy of the high-symmetry phase and stabilizes it at pressures as low as 129 GPa\(^14\).

The LaH$_{10}$ sample under 138 GPa still exhibits a narrow superconducting transition toward zero resistance with a high T_c of 243 K, slightly lower than the maximum T_c of ~250 K reported for LaH$_{10}$ at ~150–170 GPa\(^3,14,13\), in accordance with a “dome-shape” pressure dependence of T_c for the $Fm-3m$ phase of LaH$_{10}$\(^3\). No intrinsic hysteresis between cooling and warming $R(T)$ curves was observed (Supplementary Fig. 1). The resistivity p of LaH$_{10}$ is estimated to be $(0.3 \pm 0.1) \text{ m}\Omega\cdot\text{cm}$ at $T = 300$ K and is higher than the value reported for H$_3$S\(^16\). The large error bar is mainly due to the uncertainty on the thickness of the sample.

After the abrupt decompression from 138 to 120 GPa, some reflections from the ancestral cubic phase became split (Fig. 1) and the T_c dropped to 191 K (Fig. 2). The powder X-ray diffraction patterns of the new distorted phase can be reasonably indexed within the $C2/m$ space group (Fig. 1b). The refined cell parameters and the coordinates of the heavier La atoms in a good agreement with theoretical models for the $C2/m$ LaH$_{10}$ phase\(^14,17,18\). According to the theoretical calculations\(^14\), the monoclinic scenario of the structural distortions is energetically more favorable than two alternative orthorhombic and rhombohedral distortions of the $Fm-3m$ phase of LaH$_{10}$ on decompression.

We found that these monoclinic structural distortions are reversible, and the high-symmetry phase can be restored if the pressure is increased. The observed T_c increases rapidly within a short pressure range with increasing pressure and reaches 241 K at 136 GPa (Fig. 2a). The broadening of the superconducting transition in Fig. 2a is likely caused by the deterioration of the phase crystallinity during variations of the pressure. The continuous change of the lattice volume during the $Fm-3m$–$C2/m$ phase transition is in close agreement with both the experimental\(^3\) and theoretical\(^19\) equations of state for LaH$_{10}$ indicating the retention of the LaH$_{10}$ composition (Supplementary Fig. 2). In addition, predictions suggest that the composition should not change during any structural distortion scenario for the $Fm-3m$ phase of LaH$_{10}$ upon decreasing pressure\(^14,17,18\).

The pressure dependence of T_c in Fig. 2 displays two distinct regions—a low-pressure region characterized by a sharp rise in T_c, and a high-pressure region with a much more moderate dome-like $T_c(p)$ dependence, with a clear boundary between the two regions at 135 GPa. This distinct shape in $T_c(p)$ in LaH$_{10}$ closely resembles the T_c variation first discovered in the hydride H$_3$S, where a sharp but continuous drop in T_c was attributed to the change of the crystalline structure\(^8,10,11\). Multiple distorted hydrogen arrangements from a high-symmetry $Fm-3m$ phase are predicted for LaH$_{10}$ as well\(^14\). One of the predictions reports a stable LaH$_{10}$ $Fm-3m$ phase at high pressures, with symmetric H positions and a T_c of 259 K at 170 GPa. The drop in pressure is predicted to stabilize a distorted $R-3m$ phase of LaH$_{10}$ with $T_c = 206$ K at 150 GPa\(^18\). A T_c ~ 229–245 K was calculated for the $C2/m$ phase, although the calculations were performed for $p = 200$ GPa, which is substantially higher than the values presented here\(^17\).

The softening of lattice vibrations. A likely explanation for the drastic change in the dependence of T_c with pressure <135 GPa is a structural phase transition in LaH$_{10}$. The lack of a discontinuous jump in T_c in LaH$_{10}$ and in H$_3$S\(^8,10\) points to a continuous symmetry-lowering lattice distortion or a phase transition of the second order or weakly first order. We calculated phonon dispersion relations for the high-symmetry $Fm-3m$ and distorted $C2/m$ phases of LaH$_{10}$ and identified the lattice vibrations that soften upon decompression and can be linked to the
Fig. 1 Structural data for LaH$_{10}$ synthesized from La and excess H$_2$. a, b Rietveld refinement for Fm-3m phase of LaH$_{10}$ at 138 GPa and C2/m phase of LaH$_{10}$ at 120 GPa, respectively. The peaks originating from the hcp-I (a = 3.668(4) Å; c = 5.914(11) Å; V = 68.9(1) Å3 at 138 GPa) and hcp-II (a = 3.750(3) Å; c = 5.561(7) Å; V = 67.7(1) Å3 at 138 GPa) impurity phases are indicated through blue and red dashes, respectively. The refined ratio between the main and the impurity phases is provided in the left bottom corner of each figure. The main structural building block, two connected LaH$_{32}$ polyhedra, are shown in the middle inserts for each phase. Large blue and small black spheres correspond to La and H atoms, respectively. c, d The original powder X-ray diffraction patterns at 138 and 120 GPa, respectively. New reflections appear at 120 GPa due to the monoclinic distortions.

Fig. 2 The superconducting transitions in LaH$_{10}$. a The electrical resistance in LaH$_{10}$ after the synthesis under 138 GPa (red curve), after the abrupt decompression down to 120 GPa (brown curve), and upon a gradual increase in pressure from 120 to 136 GPa (blue, green, purple, and black curves). The data measured at 138 GPa on the upper panel are divided by 9 for better presentation. b Pressure dependence of T_c in LaH$_{10}$ measured in the present study (black symbols) and from a prior study3 (open red symbols). Insets: photos of the DAC loaded with a La flake and after the synthesis of LaH$_{10}$ through laser-assisted heating.
dashed lines extrapolate the slope of the high-temperature superconducting transition (left line) toward the asymptotic trace representing the high-field normal state magnetoresistance (right line) at 170 K, respectively. The intersection between two lines provides an estimation of the upper critical field (H_{c2}). The intersection of the first line with the horizontal axis indicates the irreversibility field (H^*) for the high-temperature superconducting phase.

Table 1 Summary of sample properties and the associated WHH fit parameters: the critical temperature, the upper critical field at $T=0$ K, coherence length at $T=0$ K, BCS Fermi velocity, calculated bare-band Fermi velocity, and the slope of H_{c2} at the critical temperature.

| Sample structure | p (GPa) | T_c (K) | $H_{c2}(0)$ (T) | $\xi(0)$ (nm) | $BCS \, \nu_F \times 10^5$ m/s | Band $\nu_F \times 10^5$ m/s | $dH_{c2}/dT|_{Tc}$ (T/K) |
|------------------|-----------|-----------|----------------|--------------|-----------------------------|-----------------------------|--------------------------|
| C2/m LaH$_{10}$ | 120 | 189 | 133.5 | 1.57 | 2.17 | 3.73 | −1.12 |
| Fm-3m LaH$_{10}$| 136 | 246 | 143.5 | 1.514 | 2.77 | 4.99 | −0.83 |

observed lattice distortion (Supplementary Fig. 4). The calculated phonon dispersions show that the Fm-3m phase is dynamically stable at 200 GPa. However, the softening of the low-lying H-H “wagging” vibration modes along the Γ–X direction is found in the phonon spectrum (Supplementary Figs. 4 and 5), which leads to a structural instability toward the monoclinic C2/m distortion. The classical harmonic treatment of atomic vibrations for the Fm-3m phase of LaH$_{10}$ shows negative phonon frequencies at pressures <180 GPa.

The transformation of the crystallographic structure from a higher- to a lower-symmetry phase is governed by the phonon softening in the vicinity of a structural transition has been reported in a number of superconducting families, ranging from Sn nanostructures, A15 compounds, intercalated graphite, ternary silicides, and even some elements under pressure. The symmetry-lowering distortion in the H sub-lattice in LaH$_{10}$ is driven by the softening of the low-lying H-H vibration modes below 500 cm$^{-1}$ (Supplementary Figs. 4 and 5), leading to a stronger electron–phonon interaction in the Fm-3m phase, which is characterized by a coupling constant $\lambda = 2 \int_0^\infty \alpha^2 F(\omega) \omega^{-1} \, d\omega$, where ω is the phonon frequency, $F(\omega)$ is the phonon density of states, and α^2 is an average square electron–phonon matrix element. While the light atomic mass of hydrogen is a necessary requirement for phonon-coupled HTS, T_c is also strongly affected by λ, with a peak in T_c predicted for large $\lambda \sim 2–2.5$, which should occur in the vicinity of the lattice instability in HTS hydrides.

Lattice distortion effect on superconducting parameters. The impact of the structural instability on the key parameters of the superconducting phase, including the upper critical field, H_{c2}, and the superconducting coherence length, ξ, for the Fm-3m and C2/m phases of LaH$_{10}$ was confirmed through magnetotransport measurements. The samples were electrically connected in a van der Pauw configuration (Fig. 2c, inset), making the measurements of both resistivity and Hall effect possible. The LaH$_{10}$ sample under 120 GPa was measured up to 45 T in direct current (DC) magnetic fields, and the LaH$_{10}$ sample under 136 GPa was measured in a 65 T pulsed magnet.

The magnetoresistance (MR) of LaH$_{10}$ collected at fixed temperatures is shown in Fig. 3. Under external magnetic fields, the superconducting transitions span tens of teslas, which correlates with the broadening of the superconducting transition at zero field (Fig. 2a). The normal state MR above H_{c2} is nearly field and temperature independent, with a clear kink at the onset of superconductivity at H_{c2}. For the consistency with prior studies, the H_{c2} values are determined as the intersection between the straight line extrapolations of the normal state MR and the slope of the superconducting transition by a method similar to the one followed in ref. 16. The irreversibility field of the high-temperature superconducting phase (H^*) is taken by extrapolating the leading edge of the transition to the horizontal axis (Supplementary Fig. 6). The Hall resistance signal measured above T_c is consistent with the electron-like Fermi surface (Supplementary Fig. 7).

Upper critical field measurements in H$_2$S HTS hydride have independently verified a large $\lambda \sim 2$16. We find a substantially larger H_{c2} for LaH$_{10}$ and determined that magnetic fields of the order of 100 T are required to distinguish between a strongly coupled scenario with a large λ and the more commonly employed Werthamer–Helfand–Hohenberg (WHH) model derived in the weakly coupling limit, $\lambda \ll 1$131. To extract the key superconducting properties of LaH$_{10}$ and explore the effects of the structural transition on its superconductivity, we fit the temperature dependence of H_{c2} to the WHH (Fig. 3c and Table 1) formalism. The WHH model fits our data well for fields up to 60 T, which is our upper measurement limit. The WHH model considers the combined effects of the magnetic field on the orbital motion and on the spin of the electrons: $H_{c2}^2 = H_{orb}^{-2} + H_{p}^{-2}$. The transformation of the crystallographic structure from a higher- to a lower-symmetry phase is governed by the phonon softening in the vicinity of a structural transition has been reported in a number of superconducting families, ranging from Sn nanostructures, A15 compounds, intercalated graphite, ternary silicides, and even some elements under pressure. The symmetry-lowering distortion in the H sub-lattice in LaH$_{10}$ is driven by the softening of the low-lying H-H vibration modes below 500 cm$^{-1}$ (Supplementary Figs. 4 and 5), leading to a stronger electron–phonon interaction in the Fm-3m phase, which is characterized by a coupling constant $\lambda = 2 \int_0^\infty \alpha^2 F(\omega) \omega^{-1} \, d\omega$, where ω is the phonon frequency, $F(\omega)$ is the phonon density of states, and α^2 is an average square electron–phonon matrix element. While the light atomic mass of hydrogen is a necessary requirement for phonon-coupled HTS, T_c is also strongly affected by λ, with a peak in T_c predicted for large $\lambda \sim 2–2.5$, which should occur in the vicinity of the lattice instability in HTS hydrides. The classical harmonic treatment of atomic vibrations for the Fm-3m phase of LaH$_{10}$ shows negative phonon frequencies at pressures <180 GPa.

The transformation of the crystallographic structure from a higher- to a lower-symmetry phase is governed by the phonon softening in the vicinity of a structural transition has been reported in a number of superconducting families, ranging from Sn nanostructures, A15 compounds, intercalated graphite, ternary silicides, and even some elements under pressure. The symmetry-lowering distortion in the H sub-lattice in LaH$_{10}$ is driven by the softening of the low-lying H-H vibration modes below 500 cm$^{-1}$ (Supplementary Figs. 4 and 5), leading to a stronger electron–phonon interaction in the Fm-3m phase, which is characterized by a coupling constant $\lambda = 2 \int_0^\infty \alpha^2 F(\omega) \omega^{-1} \, d\omega$, where ω is the phonon frequency, $F(\omega)$ is the phonon density of states, and α^2 is an average square electron–phonon matrix element. While the light atomic mass of hydrogen is a necessary requirement for phonon-coupled HTS, T_c is also strongly affected by λ, with a peak in T_c predicted for large $\lambda \sim 2–2.5$, which should occur in the vicinity of the lattice instability in HTS hydrides. The classical harmonic treatment of atomic vibrations for the Fm-3m phase of LaH$_{10}$ shows negative phonon frequencies at pressures <180 GPa.

The transformation of the crystallographic structure from a higher- to a lower-symmetry phase is governed by the phonon softening in the vicinity of a structural transition has been reported in a number of superconducting families, ranging from Sn nanostructures, A15 compounds, intercalated graphite, ternary silicides, and even some elements under pressure. The symmetry-lowering distortion in the H sub-lattice in LaH$_{10}$ is driven by the softening of the low-lying H-H vibration modes below 500 cm$^{-1}$ (Supplementary Figs. 4 and 5), leading to a stronger electron–phonon interaction in the Fm-3m phase, which is characterized by a coupling constant $\lambda = 2 \int_0^\infty \alpha^2 F(\omega) \omega^{-1} \, d\omega$, where ω is the phonon frequency, $F(\omega)$ is the phonon density of states, and α^2 is an average square electron–phonon matrix element. While the light atomic mass of hydrogen is a necessary requirement for phonon-coupled HTS, T_c is also strongly affected by λ, with a peak in T_c predicted for large $\lambda \sim 2–2.5$, which should occur in the vicinity of the lattice instability in HTS hydrides.

The classical harmonic treatment of atomic vibrations for the Fm-3m phase of LaH$_{10}$ shows negative phonon frequencies at pressures <180 GPa.

The transformation of the crystallographic structure from a higher- to a lower-symmetry phase is governed by the phonon softening in the vicinity of a structural transition has been reported in a number of superconducting families, ranging from Sn nanostructures, A15 compounds, intercalated graphite, ternary silicides, and even some elements under pressure. The symmetry-lowering distortion in the H sub-lattice in LaH$_{10}$ is driven by the softening of the low-lying H-H vibration modes below 500 cm$^{-1}$ (Supplementary Figs. 4 and 5), leading to a stronger electron–phonon interaction in the Fm-3m phase, which is characterized by a coupling constant $\lambda = 2 \int_0^\infty \alpha^2 F(\omega) \omega^{-1} \, d\omega$, where ω is the phonon frequency, $F(\omega)$ is the phonon density of states, and α^2 is an average square electron–phonon matrix element. While the light atomic mass of hydrogen is a necessary requirement for phonon-coupled HTS, T_c is also strongly affected by λ, with a peak in T_c predicted for large $\lambda \sim 2–2.5$, which should occur in the vicinity of the lattice instability in HTS hydrides.
where \(H_{orb} \) and \(H_p \) are the orbital-limited and spin-limited (Pauli) critical fields, respectively. We obtain \(H_p(0) \) values of 352 T at 120 GPa and 457 T at 136 GPa. \(H_p(0) \) values are larger by a factor of ~3 when compared to the \(H_c(0) \) values listed in Table 1, indicating predominantly orbital-limited upper critical fields in HTS LaH\(_{10}\), which is similar to H\(_3\)S\(_{16}\). The WHH fit provides a reasonable estimate of the superconducting coherence length \(\xi = \sqrt{\phi_0/2\pi H_c} \), where \(\phi_0 \) is the magnetic flux quantum. There is a significant drop in \(T_c \) in the distorted phase of LaH\(_{10}\) at 120 GPa when compared to the LaH\(_{10}\) sample at 136 GPa. Surprisingly, \(H_c(0) \) only drops by a small amount and thus \(\xi(0) \) remains nearly unchanged. \(\xi \) is linked to both \(T_c \) and the Fermi velocity \(v_F : \xi \sim \sqrt{\phi_0/k_B T_c} \) within the BCS theory\(^6\), but the \(\xi \sim v_F/T_c \) rule should remain valid for other models, thus signaling a lower value for \(v_F \) in the \(C2/m \) phase at 120 GPa when compared to that in the \(Fm-3m \) phase at 136 GPa. The onset of the lattice distortion is expected to be strongly affected by the electron dispersion, e.g. via the flattening of the bands at the boundaries of the new Brillouin zone, which may lead to a drop in \(v_F \) so that \(\xi \) and \(H_c \) remain high despite the drop in \(T_c \) in the \(C2/m \) phase. We calculated the \(v_F \) values along the Fermi surfaces in the first Brillouin zone for both \(C2/m \) and \(Fm-3m \) phases (Fig. 4a). The average calculated \(v_F \) values are listed in Table 1 alongside with the BCS values obtained from \(H_c(0) \). The calculated \(v_F \) values are larger than BCS values mainly because the calculations do not account for the renormalization of the bare-band \(v_F \) due to electron–phonon coupling. Nevertheless, the model provides a more reliable estimate of the relative change in \(v_F \). The calculations confirm a ~30% drop in \(v_F \) in the \(C2/m \) phase as observed in the high-field experiments. A comparative review of the \(v_F \) values for other hydrogen-rich HTS families, which can be extracted from the published \(H_c \) data, as well as the present study, reveal a surprisingly narrow distribution close to ~2.5 × 10\(^5\) m/s (Fig. 4b). A similar universal Fermi velocity was first noticed in the HTS cuprates, with a surprisingly similar average value of ~2.7 × 10\(^5\) m/s\(^3\)\(^2\). This similarity points to a renormalization of the charge carrier band dispersion both in the cuprates and in the hydrides via a strong coupling to low-lying excitations near the Fermi level, the same coupling that is commonly considered to be responsible for the high-temperature superconductivity.

In conclusion, we have measured the properties of the superconducting LaH\(_{10}\) compound as a function of pressure, temperature, and high magnetic fields. We find evidence for a pressure-induced \(Fm-3m \rightarrow C2/m \) structural transition in LaH\(_{10}\) at \(p_c = 135 \) GPa, resulting in a steep but continuous decrease in \(T_c(p) \) below \(p_c \). A likely mechanism for the structural instability is phonon softening associated with a gradual distortion of the lattice, as proposed for another HTS hydride H\(_3\)S. We established key superconducting quantities of superhydrides under high magnetic fields, including upper critical fields and coherence lengths. We found that the drop in the Fermi velocity in LaH\(_{10}\) is consistent with the distortion-induced changes in the Brillouin zone. The proximity of a peak in \(T_c \) to a symmetry-lowering structural transition, which is now experimentally established for at least two HTS hydride families, indicates that the tuning of the soft phonon modes should be viewed as one of the main pathways toward maximizing \(T_c \) in the hydrogen-rich superconductors.

Methods

Diamond anvil cell. The superconducting sample of LaH\(_{10}\) were synthesized in situ in a miniature diamond anvil cell (DAC) with a maximum diameter of 8.8 mm and a body length of ~30 mm. The DAC was designed by reworking and modifying the
Zero field electrical transport measurements. Zero field electrical resistance was measured through a four-probe technique in van der Pauw geometry with currents ranging from 10^{-4} A to 10^{-3} A at $p = 138$ GPa to 136 GPa. No apparent effect of the current value on the measured T_c was observed. The electrical measurements are presented in a warming part of a thermal cycle as it yields a more accurate temperature reading: the sample was warmed up slowly (0.2 K/min) under nearly isothermal environmental conditions (no coolant flow). The temperature measured by a Si diode thermometer attached to the DAC with an accuracy of ±1 K. T_c was determined at the onset of superconductivity—at the point of apparent deviation in the temperature dependence of the resistance from the normal metallic behavior.

Magnetotransport measurements. MR and Hall effect measurements under high magnetic fields were conducted in the 45 T hybrid magnet and in the 65 T pulsed magnet at the National High Magnetic Field Laboratory. A copper thermal shield was placed around the DAC during DAC field measurements. The thermal shield was heated uniformly to reduce the thermal gradients, and a secondary Cernox thermometer was attached to the DAC stage for accurate measurements of the sample temperature. There is no observable heating from the ramping of the magnetic field rates up to 3 T/min. The Hall effect was measured for the sample at 120 GPa above T_c in the hybrid DC magnet from 11.5 to 45 T. Reverse-field reciprocity method was employed to determine Hall resistance R_{xy} because the field direction of the hybrid magnet cannot be reversed during the day shift. A high-frequency (290 kHz) lock-in amplifier technique was employed to measure sample MR in 65 T pulsed magnet. AC field measurements were performed using DFT using the Perdew–Burke–Ernzerhof generalized gradient approximation. Phonon dispersion calculations were performed with the density functional perturbation theory. Ultrasonic pseudopotentials for La and H were used with a kinetic energy cutoff of 80 Ry. To reliably calculate the phonon dispersion, we have employed dense k-meshes and q-meshes for all the phonon frequencies: 8 x 8 x 4 k-meshes and 4 x 4 x 2 q-meshes for the C2/m-LaH$_{10}$ structure and 12 x 12 x 12 k-meshes and 6 x 6 x 6 q-meshes for the Fm-3m-LaH$_{10}$ structure. The visualization of the atomic vibrations was done by using a visualization tool (http://henriqemiranda.github.io/phono2e.html). For visualizations in three-dimensions of the Fermi surfaces associated with the electronic states on the Fermi surfaces in the first Brillouin zone, we have used FermiSurfer open software drawing code (http://fermisurfer.osdn.jp/).

Data availability
The data that support the findings of this study are available in Open Science Framework with the identifier: https://doi.org/10.17605/OSF.IO/RUIWJA. Source data are provided with this paper.

Received: 27 October 2020; Accepted: 14 October 2021; Published online: 25 November 2021

References
1. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shulin, S. I. Conventional superconductivity at 203 Kelvin at high pressures in the sulfurhydride system. Nature 525, 73–76 (2013).
2. Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).
3. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).
4. Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).
5. Kong, P. et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun. 12, 5073 (2021).
6. Liu, H. et al. Haffa, H.F. Hoffmann, R., Ashcroft, N.W. & Hemley, R.J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl Acad. Sci. USA 114, 6990–6995 (2017).
7. Bardeen, J., Cooper, L.N. & Schrieffer, J.R. Theory of superconductivity. Phys. Rev. 108, 1175 (1957).
8. Eina, M. et al. Crystal structure of the superconducting phase of sulfur hydrate. Nat. Phys. 12, 835–838 (2016).
9. Goncharov, A.F., Lobanov, S.S., Prakapenka, V.B. & Greenberg, E. Stable high-pressure phases in the H-S system determined by chemically reactivating hydrogen and sulfur. Phys. Rev. B 95, 140101 (2017).
10. Min'kov, V.S., Prakapenka, V.B., Greenberg, E. & Eremets, M.I. A boosted critical temperature of 166 K in superconducting D2S synthesized from elemental sulfur and hydrogen. Angew. Chem. Int. Ed. 2020, 59 (2020).
11. Gor'kov, L. & Kresin, V. Sulfur hydrides: phase diagram and the transition into the record-high Tc state. J. Supercond. Nov. Magn. 31, 1–5 (2018).
12. Geballe, Z.M. et al. Synthesis and stability of lanthanum superhydrides. Angew. Chem. 130, 696–700 (2018).
13. Hong, F. et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures. Chin. Phys. Lett. 37, 107401 (2020).
14. Errea, I. et al. Quantum crystal structure in the 250 Kelvin superconducting lanthanum hydride. Nature 578, 66–69 (2020).
15. Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 107001 (2017).
16. Mozaffari, S. et al. Superconducting phase diagram of H2S under high magnetic fields. Nat. Commun. 10, 2522 (2019).
17. Liu, H. et al. Dynamics and superconductivity in compressed lanthanum superhydride. Phys. Rev. B 98, 100102 (2018).
18. Kruglov, I. et al. Superconductivity of LaH10 and LaH16 polyhydrides. Phys. Rev. B 101, 024508 (2020).
19. Semenov, D.V. et al. Superconductivity at 253 K in lanthanum–yttrium ternary hydrides. Materials Today 48, 18–28 (2021).
20. Houben, K. et al. The influence of phonon softening on the superconducting critical temperature of Sn nanostructures. Sci. Rep. 10, 5729 (2020).
21. Testardi, L.R. Structural instability and superconductivity in A15 compounds. Rev. Mod. Phys. 67, 635 (1997).
22. Gauzzi, A. et al. Enhancement of superconductivity and evidence of structural instability in intercalated graphite CaC6 under high pressure. Phys. Rev. Lett. 98, 067002 (2007).
23. Kuroiwa, S. et al. Soft-phonon-driven superconductivity in CaAl5S as seen by inelastic x-ray scattering. Phys. Rev. B 77, 140503 (2008).
24. Mauri, F. et al. Phonon softening and superconductivity in tellurium under pressure. Phys. Rev. Lett. 77, 1151 (1996).
25. Suzuki, N. & Otoni, M. The role of the phonon anomaly in the superconductivity of vanadium and selenium under high pressures. J. Phys. Condens. Matter 19, 125206 (2007).
26. McMillan, W.L. Transition temperature of strong-coupled superconductors. Phys. Rev. B 167, 331 (1968).
27. Allen, P.B. & Dynes, R.C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 8, 903 (1973).
28. Struzhkin, V. et al. Superconductivity in La and Y hydrides: remaining questions to experiment and theory. Matter Radiat. Extremes 5, 028201 (2020).
29. Chen, X.J. Exploring high-temperature superconductivity in hard matter close to structural instability. Matter Radiat. Extremes 5, 068102 (2020).
30. Quan, Y., Ghosh, S.S. & Pickett, W.E. Compressed hydrides as metallic hydrogen superconductors. Phys. Rev. B 100, 184505 (2019).
31. Werthamer, N.R., Helfand, E. & Hohenberg, P.C. Temperature and purity dependence of the superconducting critical field Hc2 III. electron spin and spin-orbit effects. Phys. Rev. 147, 295 (1966).
32. Zhou, J.X. et al. Universal nodal Fermi velocity. Nature 423, 398 (2003).
33. Eremets, M.I. Megabar high-pressure cells for Raman measurements. J. Raman Spectrosc. 34, 515–518 (2003).
34. Eremets, M.I. & Troyan, I.A. Conductive dense hydrogen. Nat. Mater. 10, 927–931 (2011).
35. Prescher, C. & Prakapenka, V.B. DIOPTAS: a program for reduction of two dimensional X-ray diffraction data and data exploration. High. Press. Res. 35, 223–230 (2015).
36. Larson, A.C. & Von Dreele, R.B. General Structure Analysis System. Los Alamos National Laboratory Report LAUR 86-748 (Los Alamos National Laboratory, 1994).
37. Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).
38. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 39 (2009).
39. Sample, H.H., Bruno, W.J., Sample, S.B. & Sichel, E.K. Reverse-field reciprocity for conducting specimens in magnetic fields. J. Appl. Phys. 61, 1079–1084 (1987).
40. Perdew, J.P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 18 (1996).
41. Chen, W. et al. High-Temperature Superconducting Phases in Cerium Superhydride with a Tc up to 115 K below a Pressure of 1 Megabar. Phys. Rev. Lett. 127, 117001 (2021).
42. Hong, F. et al. Superconductivity at ~70 K in tin hydride SnHx under high pressure. Preprint at http://arxiv.org/abs/2101.02846 (2021).
43. Ma, L. et al. Experimental observation of superconductivity at 215 K in calcium superhydride under high pressures. Preprint at http://arxiv.org/abs/2103.16282 (2021).

Acknowledgements

The synchrotron X-ray diffraction data were collected at GeoSoilEnviro CARS (The University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory (USA). GeoSoilEnviro CARS is supported by the National Science Foundation–Earth Sciences (EAR-1634415) and Department of Energy-Geosciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The work performed at the National High Magnetic Field Laboratory is supported by the National Science Foundation Cooperative Agreement No. DMR-1644779 and the State of Florida. L.B. is supported by the Department of Energy, Basic Energy Sciences through award DE-SC0002613. M.L.E. acknowledges great support from the Max Planck Society.

Author contributions

D.S., V.S.M. and F.F.B. designed the research and wrote the paper; V.S.M. prepared the samples, collected synchrotron X-ray diffraction data, performed electrical transport measurements without external magnetic field, and processed the structural data; D.S., F.F.B., S.M., L.B. and M.J.E. performed electrical transport measurements under external magnetic fields and processed the data; D.S., F.F.B., S.M. and V.B.P. assisted with the synchrotron X-ray diffraction experiments; Y.S. and Y.M. performed structural relaxation, electronic structures, and phonon calculations. M.J.E. designed the diamond anvil cell. All authors contributed to writing the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-26706-w.

Correspondence and requests for materials should be addressed to Dan Sun.

Peer review information Nature Communications thanks Xiao-Jia Chen and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021