Over the last decades, a research upsurge on two-dimensional (2D) materials has emerged due to their remarkable properties and enormous potentials in scalable device applications. As a milestone work, the successful stripping of graphene provides a new experimental and theoretical support for the expansion of 2D van der Waals (vdW) material family. Hereafter, a series of graphene-like materials have been fabricated, such as silicene, germanane, phosphorene, hexagonal boron nitride (h-BN), graphitic carbon nitride (g-C3N4), and transition metal dichalcogenides (TMDCs). These 2D materials with different elements exhibit versatile physical and chemical properties. However, the magnetism is still a missing property in the current lineup of 2D materials. Although the edge structure modification, carrier doping, and transition-metal adsorption can induce linear calculations performed on monolayer MnPSe3 lead to an energy difference between p and K′ valleys at K and K′′. This kind of Neel antiferromagnetic (AFM) semiconductor shows a direct band gap at its high symmetry points K and K′. More importantly, the absence of an inversion center and the destruction of time-reversal symmetry are integrated in such a novel system. In previous study, noncollinear calculations performed on monolayer MnPSe3 lead to an energy difference between K and K′ valleys after the bands renormalization, which indicates that MnPSe3 is a potential candidate to realize spontaneous valley polarization. However, the Bloch states of two spins at K and K′ are degenerate in this process. Hence, we propose once the spin splitting can be achieved, the available degree of electron freedoms will be greatly increased.

The strategy of stacking 2D vdW materials with diverse characteristics into their layered heterostructures is widely used in the acquisition of new electronic properties at interface. For instance, He et al. have successfully synthesized the ultrathin p-GaTe/n-MoS2 vdW heterostructures with high photovaltaic and photodetecting properties. Chang et al. have proposed and verified a light-induced spin Hall effect for interlayer exciton gas in monolayer MoSe2/WSe2 vdW heterostructures. In our previous work, a tunable spin splitting via perpendicular electric field appearing in arsenene/FeCl2 vdW heterostructure has been predicted theoretically. In short,
The vdW heterostructures demonstrate some outstanding features beyond its individual components, which can play a vital role in the extension of the electronic degrees of freedom and the development of well-performed electronic devices.

In this work, we comprehensively investigate the electronic structure of 2D MnPSe₃/MoS₂ vdW heterostructures with different stacking patterns by density functional theory. In addition, we propose a strategy to realize simultaneously the spin and valley degeneracy splitting in monolayer MnPSe₃ by interfacial coupling interaction. A spin splitting appears at the valence band maximum (VBM) of MnPSe₃ in some particular stacking patterns due to the hybridization of Mn d orbital, which enriches the available degree of electron freedom. Particularly, the opposite spin moments at K and K′ valleys can be achieved by modulating configurations. The strategies and results illustrated here aimed at a better understanding on the basic properties of MnPSe₃/MoS₂ vdW heterostructures and developing the novel spintronic and valleytronic devices. Moreover, our theoretical findings also indicate the MnPSe₃/MoS₂ vdW heterostructures could be the potential photocatalyst.

Calculation details

All the simulations are performed by using Vienna *ab initio* simulation package code²⁹, ³⁰ with the generalized gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerhof (PBE)³¹ together with the vdW-D2 correction. The GGA + D₂ is used to add the longer-ranged correlation in evaluating vdW interaction between the monolayers. Kohn-Sham single-particle wavefunctions are expanded in the plane wave basis set with a kinetic energy truncation at 500 eV. A 7 × 7 × 1 k-point grid centered at Γ point is adopted. The energy and force convergence criteria on each atom are less than 10⁻⁶ eV and 0.01 eV/Å, respectively. It is well known that GGA cannot properly describe the strongly correlated systems with partially filled d subshells. Thus, we use Hubbard U terms (5 eV for Mn) to describe the on-site electron-electron Coulomb repulsion as suggested in the literature.³³ The optimized in-plane lattice constants for monolayer MnPSe₃ and MoS₂ are 6.403 and 3.189 Å, respectively, which are highly consistent with previously calculated results. MnPSe₃/MoS₂ vdW heterostructures are constructed based on supercell models, where 2 × 2 × 1 MoS₂ are stacked on the top of 1 × 1 × 1 MnPSe₃ unit cell to match with each other. The lattice mismatch for supercells is only 0.4%. We choose an average lattice constant of 6.390 Å as the starting point of the optimization for heterostructures. In order to minimize the interaction between periodic images, a 20-Å vacuum slab is inserted perpendicularly. Meanwhile, the corrections of vdW-D2, Coulomb repulsion U and SOC are conducted simultaneously through the whole calculation process so as to guarantee the meaningful comparison of energies.

Results and Discussion

Bulk MnPSe₃ is an antiferromagnetic semiconductor with a Neél temperature of 74 K.³⁵ This layered crystal shows a weak interlayer interaction, so that the monolayer MnPSe₃ can be obtained through exfoliation method. Our calculation results show that the AFM state is more stable than the FM state by about 40 meV per unit cell for 2D MnPSe₃, indicating the bulk antiferromagnetic characteristic is preserved in monolayer structure. In Fig. 1(a), each unit cell in the monolayer MnPSe₃ is composed of two Mn²⁺ ions and one [P₂Se₆]⁴⁻ cluster (partial magnification shown in Fig. 1(c)). Each Mn²⁺ ion, assuming an S = 5/2 high-spin state, is antiferromagnetically coupled to the three neighboring Mn²⁺ ions, forming an AFM ordering. In addition, the spin density mainly localizes

![Figure 1](image-url)
at two Mn ions with the opposite spin magnetic moments, while P and Se atoms have the negligible magnetic
moments. The calculated Mn magnetic moment of 4.6 μB per ion is consistent with previous calculation values of
4.6 μB24 and 4.54 μB36. These results reveal that the parameters adopted in the present work are valid and reliable.

Bulk MoS₂ has the 2H stacking order with an inversion symmetric space group D_{6h}. When it is exfoliated into
monolayer, the lattice symmetry will reduce to D_{3h}, accompanied by an definitely broken of inversion symmetry.
The honeycomb crystal structure of 2D MoS₂ is clearly illustrated by the top and side views in Fig. 1(b), where Mo
is bonded to six neighboring S atoms. Moreover, the first Brillouin zone and high-symmetry points of honeycomb
lattice crystal are described in Fig. 1(d).

We lay the main emphasis on the influences of SOC towards the MnPSe₃ band structures, which is considered
to have limited effects thus often be neglected in the previous calculations21,37. Band structures with (red dashed
line) and without (blue solid line) SOC correction of the 2D MnPSe₃ are illustrated in Fig. 2(a). The MnPSe₃
shows a direct band gap of 1.84 eV without SOC, which falls well within the optical absorption range, facilitating
the optical polarization of charge carriers. Our band gap result agrees with the result calculated with PBE functional (2.62 eV in ref. 21 and 2.32 eV in ref. 37), since the PBE functional always underestimates the band gap due
to self-interaction errors38–40. Beyond that, we can also observe the two spins in the momentum space
and its VBM and CBM are both located at K′ valleys (represented by Δ(K′)). This difference can meet the demand of lifting valley degeneracy for the
conduction band minimum (CBM) consists of P p, Se p and Mn d orbitals.

Figure 2(b) presents the band changes of monolayer MoS₂ (1 × 1 unit cell) with or without SOC. The
band structure of monolayer MoS₂ exhibits a direct band gap of 1.58 eV when SOC is considered, where
its VB and CBM are both located at K point, as shown by our PBE calculations. Owing to the strong
SOC originated from Mo d orbital41, the lack of inversion symmetry along with strong SOC leads to the
change of spin splitting (δ₁ = 150 meV and δ₂ = 3 meV for valance bands (VB) and conduction bands (CB),
respectively) from K to K′. Meantime, the spin moments of two valleys are opposite. Such phenomenon is
consistent with earlier study42. Since the SOC interactions have great influences on describing the electronic
properties of monolayer MnPSe₃ and MoS₂ accurately, SOC corrections are taken into account in all the
models through the whole simulations.

According to the different atoms (Mn, P and Se) right below Mo and S, 2D MnPSe₃/MoS₂ heterostructures can
be divided into five different stacking models, named as V1-V5. In Fig. 3, each model is interconvertible by horizontal
layer sliding. After fully relaxing the structure, the interfacial binding energies (E_b) are calculated by the
equation of E_b = E_{MnPSe₃/MoS₂} = (E_{MnPSe₃} + E_{MoS₂}), where E_{MnPSe₃}, E_{MoPSe₃}, and E_{MoS₂} represent the total
energy of heterostructures, isolated MnPSe₃, and MoS₂, respectively. The binding energies of five models (V1-V5)
are −447, −426, −411, −408 and −418 meV, respectively, reflecting the weak van der Waals interaction between the MoS₂
layer and MnPSe₃ layer. According to the order from the most stable model to the least stable one, we have the
sequence of V4 < V3 < V5 < V2 < V1. It should be noted that the binding energies of V1-V5 are very close, which

Figure 2. Electronic band structure calculated with (red dashed line) and without (blue solid line) SOC and
partial DOS calculated with SOC of monolayer (a) MnPSe₃ and (b) MoS₂. Corresponding up and down opening
parabolas are used to represent the minimum conduction and maximum valence bands at two valleys. ▲ and ▼
assume spin direction. Δ_{K′}, δ₁ and δ₂ denote valley splitting and spin splitting at K and K′, respectively.
have the same order in magnitude (10^2 meV) as other vdW heterostructures. Apart from that, the equilibrium interlayer distances are in the range from 3.395 to 3.527 Å. These results evidently prove that 2D MnPSe3/MoS2 vdW interfaces mainly interact by weak vdW forces.

In order to better illustrate the binding mechanism, the charge density difference of V1-V5 models are calculated by:

$$\Delta \rho = \rho_{\text{MnPSe}_3/\text{MoS}_2} - \rho_{\text{MnPSe}_3} - \rho_{\text{MoS}_2},$$

where \(\rho_{\text{MnPSe}_3/\text{MoS}_2}\), \(\rho_{\text{MnPSe}_3}\) and \(\rho_{\text{MoS}_2}\) represent the charge densities of heterostructures, isolated MnPSe3 and MoS2, respectively. The calculated results are shown in Fig. 3. Clearly, the charge redistribution situations can be separated into two main categories, one is related to V1 and V2, whose charge accumulations appear around II-S, Mo and I-Se atoms while charge depletes in the region above and below the S and Se atoms, The other includes V3, V4 and V5, whose aggregation and dissipation of charge are mainly concentrated between the interfacial layer atoms (II-S~I-Se). However, since the isosurface value is only 0.15 e/nm^3, the charge redistribution is actually insignificant. For the purpose of quantification, the bader charge analysis is also calculated for V1-V5 systems. We take V1 as an example, where hardly any magnetic moment (0.001 μB) is induced in MoS2, and the charge transfer (0.01 e) between MnPSe3 and MoS2 can also be neglected. Since the absence of covalent bonding upon the hybrid interface, the interaction between MnPSe3 and MoS2 layers is relatively weak.

In order to clearly demonstrate the interaction between MnPSe3 and MoS2, it is insightful to analyze their electronic structures. Band structures of V1-V5 models are shown in Fig. 4(a)–(e), respectively. Spin projection along z direction is depicted as the color scales. The size of circles is proportional to orbital components and the color transition from red to blue represent a transitional form between spin-up and spin-down. We mainly focus on the band alignment near Fermi level. Compared with isolated monolayer MoS2, the bands of MoS2 component in all the considered heterostructures move down by 0.2 eV relative to Fermi level. Synchronously, the semiconducting nature and the valley features (\(\Delta \nu \)) of MnPSe3 are preserved in the five stacking patterns. As mentioned above, the spin states at \(K\) and \(K'\) points are degenerated for isolated MnPSe3, while the spin degeneracy of the bands is lifted in V1 and V2 models, leading to a noticeable spin splitting at VBM. In V1 model (Fig. 4(a)), the splitting energy at \(K\) and \(K'\) points are calculated as 19 and 22 meV, respectively. Similar to V1 model, this feature of spin splitting is also observed in V2 model (Fig. 4(b)), where the splitting energy is 15 meV at \(K\) point and 19 meV at \(K'\) point. It is worth noting that the spin moments are completely opposite at VBM for the two different stacking models. We also give the band structures of the other three models for comparison, while no obvious spin splitting can be observed near Fermi level.

The origins of these unique properties are further investigated by calculating total DOS and partial DOS of each atom in all models. Owing to the three main kinds of phenomena in the band structures, we choose V1, V2 and V4 models as objects of the study, as displayed in Fig. 5. It can be clearly observed that the curves of Mn_{1-d} and Mn_{2-d} states show a peak movement in the range of −0.2–0 eV in the insertions of Fig. 5(a) and (b). As a result, the peak movements of Mn_{1-d} and Mn_{2-d} near Fermi level leads to spin splitting at VBM, which can be attributed to the Mn_{d} states hybridizing with MoS2. However, for other three stacking patterns (represented by V4), the corresponding peak positions are still overlapping like the isolated MnPSe3, thus the spin splitting is
hardly detected. What’s more, the opposite spin moments of V1 and V2 can be ascribed into the opposite peak position of Mn\textsubscript{1}d and Mn\textsubscript{2}d states in the two models, which can be well exhibited by the partial magnification in the black oval in Fig. 5. Since the two Mn atoms in MnPSe\textsubscript{3} are antiferromagnetic coupling, the densities for two spins (up and down) on Mn are indeed well separated and localized on two Mn2+ ions. Therefore, the peak of Mn\textsubscript{1}d orbital is closer to Fermi level, leading to spin-up states at VBM in V1 model. On the contrary, V2 shows spin-down states at VBM because the peak of Mn\textsubscript{2}d orbital is closer to Fermi level.

In previous theoretical developments24, we have had insights into the degree of freedom characterized by the spin and valley indices in 2D MnPSe\textsubscript{3}, where both valleys can absorb the circular polarized light. However, in our calculated system, the spin degeneracy of MnPSe\textsubscript{3} disappears due to the hybridization of Mn d orbital after contacting with MoS\textsubscript{2}, leading to the different excitation energies for spin-up and spin-down electrons at K and K’ valleys. Thus, the excitation of one spin at one valley can be realized selectively in combination with the

Figure 4. Band structure of V1-V5 models. The circles represent the MnPSe\textsubscript{3} component and the spin projection along z direction is depicted as the color scale. The size of circles is proportional to orbital components. The insertions in each graph magnify the bands near Fermi level. Corresponding down opening parabolas are schematic drawings of the valance band edge structures at two valleys. Red and blue parabolas represent spin-up and spin-down, respectively.

Figure 5. Total and partial DOS of (a) V1, (b) V2 and (c) V4 configurations. Fermi level is indicated by the vertical shadow-line and set to zero.
polarization and frequency of the incident light, which may produce a spin-polarized Hall current. Meanwhile, the simultaneous spin and valley polarization can facilitate the manipulation of spin and valley degrees of freedom by electrical gating in addition to optical pumping. In such a system, some intriguing phenomena, for example, the anomalous valley/spin Hall effect could occur.

Among the discussions above mentioned, one point that the MnPSe3/MoS2 composite is a type-II heterostructure should be worthy of note. We calculate the work functions to achieve the band edges relative to the vacuum potential. The schematic illustration of band alignment and carrier transfer in MnPSe3/MoS2 heterostructures is shown in Fig. 6. When MnPSe3 and MoS2 are brought into contact, the Fermi level should be at equilibrium conditions, leading to the CB and VB of MnPSe3 more positive than the corresponding bands of MoS2. The top part of the VB in heterostructures is mainly contributed by MnPSe3, while the states from the MoS2 are located at a relatively low position (0.06 eV). On the other hand, the bottom part of the CB mainly comes from the MoS2 states while the position of MnPSe3 is 0.25 eV higher than MoS2. Consequently, the electrons photoexcited from the CB of MnPSe3 can be easily transferred into the CB of MoS2, leaving the holes in the VB. In other words, this predicted type-II band alignment ensures the photogenerated electrons can easily migrate from MnPSe3 into MoS2, which can effectively promote the separation of photoinduced carriers. To date, MoS2 has received a lot of experimental attention as a cocatalyst in heterostructures[48, 49]. Therefore, our predictions not only provide a mechanical insight to the possibility that MnPSe3/MoS2 heterostructures can be a potential photocatalyst, but also can be a guide to extend for future studies of other layered heterostructures in experiment.

Conclusion
In summary, we propose a strategy to realize the spin and valley degeneracy splitting simultaneously by the interfacial coupling in MnPSe3/MoS2 heterostructures. The main properties and electronic structures of isolate monolayer MnPSe3 and MoS2 are preserved in heterostructures due to the weak vdW interaction. In particular, we can obtain the completely opposite spin splitting appearing at VBM by modulating the relative stacking position between MnPSe3 and MoS2. For V1 model, the splitting energy at K and K' valley are calculated as 19 and 22 meV, respectively, which are 15 and 19 meV for V2 model. Moreover, the predicted type II band alignment in this hybrid layered heterostructure is of great benefit to the light absorbance and electrons injection, which could be applied in the photoelectrochemical field. These theoretical predictions provide insight to understand the basic properties of 2D MnPSe3/MoS2 vdW heterostructures and are attractive for manipulation of the valley and spin degrees of freedom.

References
1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
2. Novoselov, K. S. et al. Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197–200 (2005).
3. Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–205 (2005).
4. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).
5. Cahangirov, S., Topsakal, M., Aktürk, E., Sahin, H. & Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 102, 236804 (2009).
6. Lü, L. et al. Buckled germanene formation on Pt (111). Adv. Mater. 26, 4820–4824 (2014).
7. Dávola, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le, L. G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicone. New J. Phys. 16, 095002 (2014).
8. Jing, Y., Tang, Q., He, P., Zhou, Z. & Shen, P. W. Small molecules make big differences: molecular doping effects on electronic and optical properties of phosphorene. Nanotechnology 26, 095201 (2015).
9. Jing, Y., Zhang, X. & Zhou, Z. Phosphorene: what can we know from computations? WIREs Comput. Mol. Sci. 6, 5–19 (2016).
10. Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3, 404–409 (2004).
11. Wang, X. et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680–1681 (2009).
12. Wu, F. et al. Visible-light-absorption in graphitic C3N4 bilayer: enhanced by interlayer coupling. J. Phys. Chem. Lett. 3, 3330–3334 (2012).
13. Tan, C. L. & Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015).
14. Chhowalla, M. et al. The chemistry of two-dimensional transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).
15. Huang, X., Zeng, Z. Y. & Zhang, H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013).
16. Li, R. et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. *Acc. Chem. Res.* **48**, 56–64 (2015).

17. Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. *ACS Nano* **5**, 26–41 (2010).

18. Pan, H. et al. Room-temperature ferromagnetism in carbon-doped ZnO. *Phys. Rev. Lett.* **99**, 127201 (2007).

19. Cao, C., Wu, M., Jiang, J. & Cheng, H. P. Transition metal adatom and dimer adsorbed on graphene: induced magnetization and electronic structures. *Phys. Rev. B* **81**, 205424 (2010).

20. Wang, Y., Wang, S. S., Lu, Y., Jiang, J. & Yang, S. A. Strain-induced isosstructural and magnetic phase transitions in monolayer MoS₂. *Nano Lett.* **16**, 4576–4582 (2016).

21. Li, X. X., Wu, X. J. & Yang, J. L. Half-metallicity in MnPSe₃ exfoliated nanosheet with carrier doping. *J. Am. Chem. Soc.* **136**, 11065–11069 (2014).

22. Du, K. et al. Weak van der Waals stacking, wide-range Band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides. *ACS Nano* **10**, 1738–1743 (2016).

23. Le Flem, G., Brec, R., Ouvard, G., Louisy, A. & Segransan, P. Magnetic interactions in the layer compounds MPₓ (M=Mn, Fe, Ni, X=Se, S). *J. Phys. Chem. Solidi* **43**, 455–461 (1982).

24. Li, X., Cao, T., Niu, Q., Shi, J. & Peng, J. Coupling the valley degree of freedom to antiferromagnetic order. *Proc. Natl. Acad. Sci. USA* **110**, 3738–3742 (2013).

25. Gétin, A. K. & Grigorieva, I. V. Van der Waals heterostructures. *Nature* **499**, 419–425 (2013).

26. Wang, F. et al. Tunable GaTe-MoS₂ van der Waals p-n junctions with novel optoelectronic performance. *Nano Lett.* **15**, 7558–7566 (2015).

27. Li, Y. M. et al. Light-induced exciton spin Hall effect in van der Waals heterostructures. *Phys. Rev. Lett.* **115**, 166804 (2015).

28. Song, Y., Li, D., Mi, W. B., Wang, X. C. & Cheng, Y. C. Electric-field induced spin effects on spin splitting of two-dimensional van der Waals arsenene/FeCl₃ heterostructures. *J. Phys. Chem. C* **120**, 5613–5618 (2016).

29. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* **54**, 11169 (1996).

30. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* **59**, 1758 (1999).

31. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865 (1996).

32. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comp. Phys. Chem* **27**, 1787–1799 (2006).

33. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. *Phys. Rev. B* **57**, 1305 (1998).

34. Kosinov, K. & Fernández-Rossier, J. Electronic properties of the MoS₂-WS₂ heterojunction. *Phys. Rev. B* **87**, 075451 (2013).

35. Wiedemann, A., Mignod, J. R., Louisy, A., Brec, R. & Rouxel, J. Neutron diffraction study of the layered compounds MnPSe₃ and FePSe₃. *Solid State Commun.* **40**, 1067–1072 (1981).

36. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPₓ (M=metal phosphorus trichalcogenides. *Phys. Rev. B* **94**, 184428 (2016).

37. Zhang, X., Zhao, X., Wu, D., Jeng, Y. & Zhou, Z. MnPSe₃ monolayer: a promising 2D visible-light photohydrolytic catalyst with high carrier mobility. *Adv. Sci. 3*, 1600062 (2016).

38. Perdew, J. P. & Levy, M. Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. *Phys. Rev. Lett.* **51**, 1884 (1983).

39. Sham, L. J. & Schlüter, M. Density-functional theory of the energy gap, density-functional theory of the energy gap. *Phys. Rev. Lett.* **51**, 1888 (1983).

40. Mori-Sánchez, P., Cohen, A. J. & Yang, W. Localization and delocalization errors in density functional theory and implications for band-gap prediction. *Phys. Rev. Lett.* **100**, 146401 (2008).

41. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. *Phys. Rev. B* **84**, 153402 (2011).

42. Chen, X., Zhong, L., Li, X. & Qi, J. Valley splitting in the transition-metal dichalcogenide monolayer via atom adsorption. *Nanoscale* **9**, 2188–2194 (2017).

43. Lu, N., Guo, H., Wang, L. & Zeng, X. C. Van der Waals trilayers and superlattices: modification of electronic structures of MoS₂ by intercalation. *Nanoscale* **6**, 4566–4571 (2014).

44. Padilha, I. E., Fazzio, A. & da Silva, A. J. R. Van der Waals heterostructure of phosphorene and graphene: tuning the schottky barrier and doping by electrostatic gating. *Phys. Rev. Lett.* **114**, 066803 (2015).

45. Henkelman, G., Arnaldsson, A. & Jonsson, H. A Fast and robust algorithm for bader decomposition of charge density. *Comput. Mater. Sci.* **36**, 354–360 (2006).

46. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for bader charge allocation. *J. Comput. Chem.* **28**, 899–908 (2007).

47. Tang, W., Sanville, E. & Henkelman, G. A grid-based bader analysis algorithm without lattice bias. *J. Phys.: Condens. Matter* **21**, 84204–84210 (2009).

48. Zong, X. et al. Enhancement of photocatalytic H₂ evolution on CdS by loading MoS₂ as cocatalyst under visible light irradiation. *J. Am. Chem. Soc.* **130**, 7176–7177 (2008).

49. Xiang, Q., Yu, J. & Jaroniec, M. Synergetic effect of MoS₂ and graphene as cocatalysts for enhanced photocatalytic H₂ production activity of TiO₂ nanoparticles. *J. Am. Chem. Soc.* **134**, 6575–6578 (2012).

Acknowledgements

This work is supported by National Natural Science Foundation of China (516771142, U1632152, 51661145026), Key Project of Natural Science Foundation of Tianjin (16JCZDJC37300). It is also supported by High Performance Computing Center of Tianjin University, China.

Author Contributions

All of the authors designed the outline of the manuscript. Q.P. and W.M. contributed detailed discussions and wrote the main manuscript text; Y.S., X.W. and J.Z. contributed some analysis on the data and detailed revisions. All authors reviewed the manuscript.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
