Construction of English Resume Corpus and Test with Pre-trained Language Models

Chengguang Gan Tatsunori Mori

Yokohama National University, Japan
gan-chengguang-pw@ynu.jp, tmori@ynu.ac.jp

Abstract

Information extraction (IE) has always been one of the essential tasks of NLP. Moreover, one of the most critical application scenarios of information extraction is the information extraction of resumes. Constructed text is obtained by classifying each part of the resume. It is convenient to store these texts for later search and analysis. Furthermore, the constructed resume data can also be used in the AI resume screening system. Significantly reduce the labor cost of HR. This study aims to transform the information extraction task of resumes into a simple sentence classification task. Based on the English resume dataset produced by the prior study. The classification rules are improved to create a larger and more fine-grained classification dataset of resumes. This corpus is also used to test some current mainstream Pre-training language models (PLMs) performance. Furthermore, in order to explore the relationship between the number of training samples and the correctness rate of the resume dataset, we also performed comparison experiments with training sets of different train set sizes. The final multiple experimental results show that the resume dataset with improved annotation rules and increased sample size of the dataset improves the accuracy of the original resume dataset.

1 Introduction

As artificial intelligence develops, using artificial intelligence instead of HR for resume screening has always been the focus of research. And the accuracy of resume screening depends on the precision of resume information extraction. Hence, it is crucial to improve the precision of resume extraction for the subsequent steps of various analyses performance of resumes. The previous study on resume information extraction tends to use the Bi-LSTM-CRF model for Name Entity Recognition (NER) of resume text (Huang et al., 2018). Although this method extracts the resume information (e.g. Personal information, Name, Address, Gender, Birth) with high accuracy, it also loses some original verbal expression information. For example, the description of one’s future career goals, requires complete sentences that cannot be extracted by the NER method. As an AI system that scores the candidate’s resume, the career object is also part of the score. In summary, sentences such as these should not be ignored. Hence, in the prior study, the task of resume information extraction is transformed into a sentence classification task (Gan and Takahashi, 2021). Firstly, the various resume formats were converted into a uniform txt document. Then the sentences were classified after dividing them by sentence units. The classified sentences are used in the subsequent AI scoring system for resumes. The pilot study segmented and annotated 500 of the 15,000 original CVs from Kaggle.\(^1\) Five categories of tags were set: experience, knowledge, education, project and others.\(^2\) The pilot study annotated resume dataset has problems, such as unclear classification label boundaries and fewer categories. Also, a dataset of 500 resumes with a total of 40,000 sentences in the tagging is sufficient for PLMs to fine-tune. If the dataset sample is increased, can the model’s performance continue to improve.

To resolve all these problems, we improved the classification labels of resumes and used them to label a new resume classification dataset. To find out how many training samples can satisfy the fine-tune requirement of PLMs, we annotated 1000 resumes with a total of 78000 sentences. Furthermore, various experiments have been performed on the newly created resume dataset using the current mainstream PLMs.

\(^1\)https://www.kaggle.com/datasets/oo7kartik/resume-text-batch
\(^2\)https://www.kaggle.com/datasets/chingkuangkam/resume-text-classification-dataset
2 Related Work

Since the last century, resume information extraction has been a critical applied research subfield in IE. In earlier studies, methods such as rule-based and dictionary matching were used to extract specific information from resumes (Mooney, 1999). HMM, and SVM methods extract information such as a person’s name and phone number from resume information (Yu et al., 2005). Related Resume Corpus Construct study has an extensive resume corpus in Chinese (Su et al., 2019).

3 Corpus Construction

3.1 Annotation Rule

We increased the number of categories from 5 to 7 in order to discriminate the various parts of the resume more carefully. As shown in Figure 1, the blue block on the left is the abbreviation of the seven classification labels, and on the right is the name of the resume section corresponding to the label. The full names of the seven labels are Experience, Personal Information, Summary, Education, Qualifications, Skill, and Objective. The newly developed classification rules make it possible to have a clear attribution for each item in the resume. It will not cause the neglect of some sentences in the resume, as there are other labels in the prior study.

3.2 Annotation Tool

In order to label resume datasets faster and more accurately, we developed a simple annotation program based on Tkinter. The operation interface of the resume annotation tool. This tool automatically recognizes original resumes in pdf, Docx, and txt formats. It can also segment all the sentences in the original resume according to a simple rule-based approach. Figure 2 shows the sample interface of the resume annotation tool. On the left are the sentences split by rule-based, and on the right are seven buttons that can be selected individually. After the sentence annotation of a whole resume is completed, a separate txt file will be automatically exported after closing the window, and the sentence annotation window for the next resume will be started automatically. Examples of annotated resume sentences can be seen in the Appendix A.

4 Experiments Set

In this section, we will perform various test experiments on the new-constructed resume dataset. First, we compared the performance of the BERT (Devlin et al., 2018) model on the original resume corpus and the newly constructed resume dataset. Furthermore, four mainstream PLMs models are selected to test the resume dataset performance: BERT, ALBERT (Lan et al., 2019), RoBERTa (Liu et al., 2019), and T5 (Raffel et al., 2020). For the fairness of the experiment, the size with the most similar parameters was chosen for each of the four models (BERT_large, ALBERT_xlarge, RoBERTa_large, T5_large). The evaluation metrics for all experiments were F1-micro. The training set, validation set, and test set are randomly divided in the ratio of 7:1.5:1.5, and each experiment was performed.

Figure 1: Resume annotation rules diagram.

Figure 2: The operation interface of the resume annotation tool.

3https://docs.python.org/ja/3/library/tkinter.html
Table 1: The first row indicates the number of training sets. The following two rows indicate the F1-score of the validation set and test set corresponding to the number of training samples.

Sample	10000	15000	20000	25000	30000	35000	40000	45000	50000	55000
Valid	83	83.7	84.9	84.9	85.6	86	86.1	**86.6**	85.9	85.9
Test	83.5	84.3	85.3	85.6	84.6	85.4	**85.9**	**85.9**	85.8	85.1

Table 2: The first column * show accuracy of resume dataset before improvement.

Model	F1-score
BERT*_{large} (baseline)	85.97
BERT_{large}	86.67
ALBERT_{large}	86.40
RoBERTa_{large}	87.00
T5_{large}	87.35

Figure 4: Fan chart of the percentage of each category of the resume corpus.

5 Result

5.1 Pre-train Models Test
As shown in Table 2, the new resume corpus ameliorated by 0.70% over the original dataset F1-score for the same BERT model. RoBERTa and T5 scores improved by 1.03% and 1.38% over baseline, respectively. The above results are also consistent with the ranking of the four PLMs in terms of their performance in various benchmark tests of NLP.

5.2 Sample Size Affects Experiment
In order to find out how many samples can bring out the maximum performance of the model, we divide the data set into training set 58000: validation set 10000: test set 10000. As shown in Table 1, the scores of the validation and test sets for different sample sizes. The model scores are tested from the 58000 training set, starting from 5000 and increasing the number of training samples every 5000. The highest score in the validation set is 86.6 when the training sample equals 45000. The highest score in the test set is 85.9 when the training sample equals 40000 and 45000. In order to visualize the relationship between the number of training samples and performance, we plotted the graphs (As Figure 3). It can be seen that as the number of training samples increases, the correctness of the model rises. Finally, the model’s performance reaches the highest point when the training samples are increased to 40,000. From the experimental results, for the PLMs, this resume corpus above 40,000 is sufficient for the model’s maximum performance. The results also prove that the new resume corpus, which doubles the sample size, is significant compared to the original resume corpus.

6 Analysis
In the final section, we analyze the sample distribution of the constructed resume corpus.
shows that the category with the most significant proportion in the resume corpus is *experience*, which accounts for half of the resume text. In addition, the three categories that account for the least in the resume corpus are *skill*, *object*, and *qualification*, which account for only 7%, 3%, and 1%. Conclusively, resume text is a very easy sample imbalance for experimental subjects. Thus, the resume corpus also vigorously tests the model's learning capability for categories with sparse samples in the training dataset. Hence, we plotted the confusion matrix of RoBERTa and T5 models. It is used to analyze the learning ability of the two models for sample-sparse categories in the dataset.

As shown in the figure 5, we can see the confusion matrix of RoBERTa and T5 models. First, the RoBERTa model is better for classifying *qualification* with the least number of samples. Secondly, the T5 model is slightly better than the RoBERTa model in terms of overall category classification results. The above results also demonstrate that our constructed resume corpus is highly unbalanced. However, if the model has strong performance, it can still learn the features of the corresponding category from very few samples.

7 Conclusion

In this paper, we improve the classification labels of the original English resume corpus. Furthermore, it doubled the number of samples size. The final tests and analyses also show the reliability of the newly constructed resume corpus. In future work, we will explore how to solve the sample imbalance problem of the resume corpus. Make the model learn effectively even for small sample categories.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Chengguang Gan and Ryouei Takahashi. 2021. Verification of the applicability of bert in the english resume data extraction. In Information Processing Society of Japan Kansai Branch IPSJ Kansai-Branch Convention 2021, volume 2021.

S. Huang, L. I. Wei, and J. Zhang. 2018. Entity extraction method of resume information based on deep learning. Computer Engineering and Design.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

R Mooney. 1999. Relational learning of pattern-match rules for information extraction. In Proceedings of the sixteenth national conference on artificial intelligence, volume 328, page 334.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67.

Yanyuan Su, Jian Zhang, and Jianhao Lu. 2019. The resume corpus: A large dataset for research in information extraction systems. In 2019 15th International Conference on Computational Intelligence and Security (CIS), pages 375–378. IEEE.
Kun Yu, Gang Guan, and Ming Zhou. 2005. Resume information extraction with cascaded hybrid model. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05), pages 499–506.

A Appendix A
Responsible for converting business requirements into functional and non-functional requirements.

Conducted JAD sessions for communicating with the all Project directors and stakeholders and created process workflows. Focused on creating comprehensive, efficient, and effective methodologies to facilitate project success.

As a Business Analyst worked on various process policy workflows refining from Policy Issues/New Submission, Policy Change, Re-Issuance, and System Integration. Ensured seamless communication with stakeholders and compliance with industry standards.

Created custom code design for integration to downstream BBS and Data Warehouse for BI needs. Identification of data domain for new Data Warehouse to ensure accurate and timely data delivery.

Troubleshooted test account audit: SQL queries, ETL jobs, data warehouse/data mart/data store models.

Identified use cases from the requirements, created Use Case Diagrams, Activity Diagrams, and Sequence Diagrams, and data flow diagrams. Created mock-up forms in HTML for better visualization and understanding of the software solution.

Assisted in implementing a new process change in testing different releases and in designing test plans and test cases. Performed User Acceptance Testing (UAT) Environment: Windows, Oracle 9i, SQL, Microsoft Office suite, National Clear Case and Rational Clear Case.

Chandler Robert Duraiswami

Business Analyst

3256 Vista Drive | Ap# 3851, West Den Moines, IA 50528 | 515-257-5888 | chandler_robert@gmail.com

Summarized 15 years of IT experience in Business Analysis, Project Management and Business Development.

A thorough understanding of Software Development Life Cycle (SDLC). Hands-on experience in various SDLC Methodologies such as Waterfall, Agile, and Lean methodologies.

Solid experience in Requirements Management including Gathering, Analyzing, documenting, and tracking the requirements. Skilled in consistently delivered projects on time and on budget, coordinating effectively with the stakeholders and development teams.

Routinely experience in creating Project Plans, Project Schedules, and project cost estimates.

Sound experience in being a Scrum Master.

Handled healthcare applications, E-commerce applications, Android Apps and IOS Apps projects.

Conducted training sessions throughout the project life cycle to both team members and end-users.

Sound understanding in data analysis procedures.

Sound knowledge and experience in HIPAA security standards, HITCS compliance healthcare systems.

Experience in handling Provider Billing and Medical/Health Insurance applications.

Strong understanding and experience in documenting requirements using MS Tools like Word, Excel, PowerPoint, and MS Project.

Hired motivated team players with excellent analytical, problem-solving, interpersonal, and communication skills.

Relevant Technical, Business and Financial acumen to communicate with clients and their teams.

Skills Summary

Microsoft Tools: MS Project, MS Visio, MS Office
Software Engineering Tools: JIRA, Pencil, FMS, Lucidchart, Babylon
Database Software: MySQL, Microsoft SQL Server 2014
Programming Languages: HTML, CSS, PHP, C++, C#, JAVA, JSP
Web Technologies: HTML, CSS, PHP, C++, C#, JAVA, JSP
Defect Tracking Tools: Jira, Bugzilla
Web & Application Server: Apache, Tomcat 8.0
Operating System: Windows 8/XP/Vista/7/8/10, Linux, Android, IOS
Test Automation: Selenium
Scrum Team: Conduct Scrum Ceremonies - Daily Standup, Burndown tracking, Monitor sprint health, Capacity and sprint planning, Backlog Refinement.

Geographical Expertise: Healthcare, E-commerce, B2B, B2C, C2C, Supply chain, Finance

Professional Experience

Mano Infotech - Business Analyst

Client: Walgreens (Rehabilitation Hospital), Pennsylvania Jan 2018 - Till Date

Business Analyst.