Monotonic Representations of Outerplanar Graphs as Edge Intersection Graphs of Paths on a Grid

Eranda Çela¹ and Elisabeth Gaar*²

¹TU Graz, Steyrergasse 30, Graz A-8010, Austria, cela@math.tugraz.at
²Institute of Production and Logistics Management, Johannes Kepler University Linz, Altenberger Straße 69, Linz A-4040, Austria, elisabeth.gaar@jku.at

Abstract

In a representation of a graph G as an edge intersection graph of paths on a grid (EPG) every vertex of G is represented by a path on a grid and two paths share a grid edge iff the corresponding vertices are adjacent. In a monotonic EPG representation every path on the grid is ascending in both rows and columns. In a (monotonic) B_k-EPG representation every path on the grid has at most k bends. The (monotonic) bend number $b(G)$ ($b^m(G)$) of a graph G is the smallest natural number k for which there exists a (monotonic) B_k-EPG representation of G.

In this paper we deal with the monotonic bend number of outerplanar graphs and show that $b^m(G) \leq 2$ holds for every outerplanar graph G. Moreover, we characterize the maximal outerplanar graphs and the cacti with (monotonic) bend number equal to 0, 1 and 2 in terms of forbidden induced subgraphs. As a byproduct we obtain low-degree polynomial time algorithms to construct (monotonic) EPG representations with the smallest possible number of bends for maximal outerplanar graphs and cacti.

Keywords: intersection graphs, paths on a grid, outerplanar graphs, cacti

*The second author acknowledges support by the Austrian Science Fund (FWF): I 3199-N31.
1 Introduction and definitions

Edge intersection graphs of paths on a grid were introduced in 2009 by Golumbic, Lipshteyn and Stern [18]. A graph G is called an *edge intersection graph of paths on a grid* (EPG) if there exists a rectangular grid with horizontal and vertical grid lines and a set of paths along the grid lines such that the vertices of G correspond to the paths and two vertices are adjacent in G if and only if the corresponding paths share a grid edge. In this case we say that the paths *intersect*. Such a representation of a graph is called an *EPG representation*.

An EPG representation is called a *B_k-EPG representation*, if every path has at most k bends, for some $k \in \mathbb{N}$. A path on a grid is called *monotonic*, if it is ascending in both columns and rows. An EPG representation is called *monotonic* if every path is monotonic. A monotonic B_k-EPG representation is called a *B_{m_k}-EPG representation*. Furthermore a graph is called B_k-EPG or B_{m_k}-EPG if there is a B_k-EPG representation or a B_{m_k}-EPG representation, respectively. We denote by B_k and B_{m_k} the class of all graphs which are B_k-EPG and B_{m_k}-EPG, respectively. The *bend number* $b(G)$ and the *monotonic bend number* $b_{m}(G)$ of a graph G are defined as the minimum $k \in \mathbb{N}$ and $\ell \in \mathbb{N}$ such that G is in B_k and B_{m_ℓ}, respectively.

EPGs were initially motivated by applications in circuit layout design and chip manufacturing. For a detailed description of these applications and their relationship to EPGs we refer to [10, 18, 23]. Similar concepts which have been investigated in the literature include *edge intersection graphs of paths on a tree* (EPT), *vertex intersection graphs of paths on a tree* (VPT) and *vertex intersection graphs of paths on a grid* (VPG), see [1, 15, 16, 17].

Many research papers have dealt with (monotonic) EPG graphs since the introduction of the concept, see [2, 3, 4, 11, 13, 18, 19, 20, 21]. One of the well studied questions is the relationship between the classes B_k and B_{m_k}, for $k \in \mathbb{N}$. Golumbic, Lipshytz and Stern [18] showed that each graph is B_k-EPG and B_{m_k}-EPG for some $k, \ell \in \mathbb{N}$. Obviously $B_0 \subseteq B_1 \subseteq B_2 \subseteq \ldots$ and $B_0 \subseteq B_{m_1} \subseteq B_{m_2} \subseteq \ldots$ hold. Heldt, Knauer and Ueckerdt [21] have shown that the first chain of inclusions above is strict, i.e. $B_k \nsubseteq B_{k+1}$ holds for every $k \geq 0$. Clearly $B_{m_k} \subseteq B_k$ holds for every k and the relationships $B_0 = B_{m_0}$ and $B_0 \subseteq B_{m_1}$ are trivial. Golumbic, Lipshytz and Stern conjectured in [18] that $B_{m_1} \nsubseteq B_1$ and this was confirmed in [11].

The recognition problem for the classes B_k and B_{m_k}, $k \in \mathbb{N}$, has been investigated. It asks whether an input graph G is B_k-EPG (B_{m_k}-EPG). The recognition problem for B_0 is solvable in linear time. This follows from the observation that a graph G is B_0-EPG if and only if G is an interval graph and from the fact that interval graphs can be recognized in linear time, see
Booth and Lueker [7]. Heldt, Knauer and Ueckerdt [21] have proven that the recognition problem for B_1 is NP-complete. Cameron, Chaplick and Hoàng [11], have shown that the recognition problem for the class B_1^m is NP-complete as well. Recently Pergel and Rzążewski [24] have settled the NP-completeness of the recognition problem also for the classes B_2 and B_2^m.

The computation of the (monotonic) bend number of a given graph is closely related to the recognition problem for the classes B_k (B_k^m), $k \in \mathbb{N}$. The results on recognition problems mentioned above imply that the computation of the (monotonic) bend number $b(G)$ ($b^m(G)$) of a graph G is a hard problem in general. Thus the identification of upper bounds on $b(G)$, $b^m(G)$ is a reasonable task. Biedl and Stern [4] have shown that $b(G) \leq 5$ holds for planar graphs. This upper bound was improved to 4 by Heldt, Knauer and Ueckerdt [20]. Moreover Heldt et al. [20] have also shown that $b(G) \leq 2$ holds if G is outerplanar. This results holds also for Halin graphs as shown by Francis and Lahiri [14]. We strengthen the result of [20] and show that $b^m(G) \leq 2$ holds if G is outerplanar.

Another question considered in the literature is the following: given a certain class of graphs and a natural number k, characterize the members of the class which belong to B_k (B_k^m). Deniz, Nivelle, Ries and Schindl [12] provided a characterization of B_1-EPG split graphs for which there exists a B_1-EPG representation using only L-shaped paths on the grid. In this paper we provide characterizations of maximal outerplanar graphs and cacti with a given (monotonic) bend number.

The recognition problem for B_k (B_k^m) and the characterization of B_k-EPG (B_k^m-EPG) graphs is also relevant from an algorithmic point of view. Indeed several difficult problems from algorithmic graph theory turn out to be tractable on B_k-EPG graphs for a given $k \in \mathbb{N}$, see [6, 8, 9, 13].

Organization of the paper. In Section 2 we show that the monotonic bend number of outerplanar graphs is at most 2. In Section 3 we derive the (monotonic) bend number of the so-called n-sun graph, for $n \in \mathbb{N}$, $n \geq 3$. The results on n-sun graphs are relevant for the computation of the (monotonic) bend number of outerplanar graphs. In Section 4 and Section 5 we deal with maximal outerplanar graphs and cacti, respectively, and derive a full characterization for their membership in B_0, B_1, B_1^m and B_2^m. We conclude with a summary and some open questions in Section 6.

Terminology and notation. The crossings of two grid lines are called grid points. The part of a grid line between two consecutive grid points is called a grid edge and the two consecutive grid points are the vertices of the grid edge. We distinguish between horizontal grid edges and vertical grid edges. A path P on a grid is a sequence of grid points $\langle v_0, \ldots, v_i, \ldots, v_p \rangle =: P$
such that any two consecutive grid points are connected by a grid edge. The later are called *edges of the path* \(P\). The grid point \(v_0\) is called the *start point* of \(P\) and \(v_p\) is called the *end point* of \(P\). A *bend point* \(v_i\) of \(P, i \neq \{0, p\}\), is a grid vertex such that one of the edges \((v_{i-1}, v_i)\) and \((v_i, v_{i+1})\) of \(P\) is a horizontal grid edge and the other one is a vertical grid edge. The subpath \((v_{i-1}, v_i, v_{i+1})\) is called a *bend* on \(P\). The part of a path \(P\) between two consecutive bend points is called a *segment* of \(P\). Also the parts of \(P\) from the start point to the first bend point and from from the last bend point to the end point are called *segments*. A segment that consists of horizontal (vertical) edges is called *horizontal (vertical)* segment. We say that two paths on a grid intersect, if they have at least one common grid edge.

If a graph \(G\) contains an induced subgraph isomorphic to a graph \(H\), we consider that induced subgraph to be a *copy of \(H\)* in \(G\) and say that \(G\) *contains a copy of \(H\)*. Finally notice that when talking about an outerplanar graph \(G\), we consider an arbitrary but fixed outerplanar embedding of \(G\).

2 Outerplanar graphs are in \(B^m_2\)

Biedl and Stern [4] proved that every outerplanar graph is in \(B_3\) and showed the existence of an outerplanar graph which does not belong to \(B_1\). Furthermore, they conjectured that every outerplanar graph is in \(B_2\). This conjecture was confirmed by Heldt, Knauer and Ueckerdt in [20] who proved that every graph with treewidth at most 2 is in \(B_2\) and exploited the fact that every outerplanar graph has treewidth at most 2, see [3]. Thus 2 is a tight upper bound on the bend number of outerplanar graphs. We strengthen this result and show that all outerplanar graphs belong even to \(B^m_2\).

To prove this result we construct a \(B^m_2\)-EPG representation of a given outerplanar graph \(G = (V, E)\). Without loss of generality we assume \(G\) to be connected (a \(B^m_2\)-EPG representation of an arbitrary graph can be obtained as the union of the disjoint \(B^m_2\)-EPG representations of its connected components). Our construction builds upon a so-called *nice labeling* of the vertices of \(G\), which is a particular (not-unique) labeling of the vertices of an outerplanar graph obtained as follows. Consider an outerplanar embedding of \(G\) and a new vertex \(v_0 \notin V\). Let \(n = |V|\) be the order of \(G\). Consider some planar embedding of the planar graph \(G' := (V', E')\) with \(V' := V \cup \{v_0\}\) and \(E' := E \cup \{\{v_0, i\} : i \in V\}\), where every edge in \(E' \setminus E\) is drawn so as to start with a short straight line segment at \(v_0\). Then label the vertices of \(V\) by \(v_1, v_2, \ldots, v_n\) such that the straight line segments of the edges \(\{v_0, v_i\}\) are positioned around \(v_0\) in counterclockwise order.

In the following we always consider an outerplanar graph with a nice
labeling and identify its vertices with the corresponding labels.

We first observe that the nice labeling of a connected outerplanar graph fulfills two simple but useful properties, the *separation property* and the *path separation property*, defined below. Indeed, these properties are equivalent to each other.

Definition 2.1. Consider an outerplanar graph G on n vertices labeled by (v_1, \ldots, v_n). The labeling of the vertices is said to have the *separation property* iff for any edge $\{v_i, v_j\}$ in G with $i < j$ the following holds: if $\{v_k, v_\ell\}$ is an edge in G with $k, \ell \in \{1, 2, \ldots, n\}$ and $\{k, \ell\} \cap \{i, j\} = \emptyset$, then either $i < k < j$ and $i < \ell < j$ hold, or $k \not\in \{i, \ldots, j\}$ and $\ell \not\in \{i, \ldots, j\}$ hold.

Analogously, the labeling of the vertices is said to have the *path separation property* iff for any path $P = (v_i = v_{p_1}, v_{p_2}, \ldots, v_{p_r} = v_j)$ in G with $i < j$ the following holds: if $\{v_k, v_\ell\}$ is an edge in G with $k, \ell \in \{1, 2, \ldots, n\}$ and $\{k, \ell\} \cap \{p_1, \ldots, p_r\} = \emptyset$, then either $i < k < j$ and $i < \ell < j$ hold, or $k \not\in \{i, \ldots, j\}$ and $\ell \not\in \{i, \ldots, j\}$ hold.

Observation 2.2. Let $G = (V, E)$ be a connected outerplanar graph with vertex set $V = \{1, 2, \ldots, n\}$. Any nice labeling (v_1, v_2, \ldots, v_n) of the vertices has the separation property and the path separation property.

Proof. Consider a planar embedding of G' which gives rise to the nice labeling of the vertices of G as described above. To prove the separation property consider an arbitrary edge $\{v_i, v_j\}$ in G and any other edge $\{v_k, v_\ell\}$ in G such that $k, \ell \in \{1, 2, \ldots, n\}$ and $\{k, \ell\} \cap \{i, j\} = \emptyset$ hold. Then, v_0, v_i, v_j close a cycle C of length 3 in G' and v_k and v_ℓ have to be either both inside or both outside of C. In the first case $i < k < j$ and $i < \ell < j$ hold, in the second case $k \not\in \{i, \ldots, j\}$ and $\ell \not\in \{i, \ldots, j\}$ hold.

The path separation property can be shown by analogous arguments. \(\square\)

Next we present Algorithm 2.1 which constructs a B_m^n-EPG representation of a given connected outerplanar graph G with a given nice labeling of its vertices. The algorithm considers the vertices of G one by one in a particular order. The subroutine EXPLORE(v, \ldots) constructs a monotonic path on the grid with at most two horizontal segments and at most one vertical segment for every neighbor of v, for which no path has been constructed yet. The construction of the paths is done while maintaining the following invariant property at every call of EXPLORE(v, \ldots) during the execution of the algorithm: the path P_v on the grid corresponding to the green vertex v_i which is currently being explored, has a free region R_v on the lower horizontal segment, i.e. a region where there is no intersection of P_v with any of the paths constructed so far. The construction of the paths corresponding
Algorithm 2.1 Construct a B_2^m-EPG representation of a connected outerplanar graph

Input: A connected outerplanar graph $G = (V, E)$ with $n = |V|$ and $V = \{v_1, v_2, \ldots, v_n\}$ ordered according to a nice labeling

Output: A B_2^m-EPG representation of G

1: procedure B2M_Outerplanar(G)
2: Set $\text{color}(v_i) := \text{gray}$ for all $i \in \{1, 2, \ldots, n\}$
3: Set $\text{color}(v_1) := \text{green}$, $\text{ListGreen} := \{v_1\}$
4: Draw the path P_{v_1} representing v_1 as a straight horizontal line on the grid
5: Set $G' := G$, $V' := V$, $E' := E$
6: while $\text{ListGreen} \neq \emptyset$ do
7: Set $i := \min\{j : v_j \in \text{ListGreen}\}$
8: Set $i^* := \inf\{j : v_j \in \text{ListGreen}, j \neq i\}$ (may be ∞)
9: Set $\ell := \deg_{G'}(v_i)$
10: Let $\text{ListNeighbors} := (v_{i_1}, v_{i_2}, \ldots, v_{i_\ell})$ be the list of the ℓ neighbors of v_i in G' such that $1 \leq i_1 < i_2 < \ldots < i_\ell \leq n$
11: $\text{color} := \text{EXPLORE}(v_i, E', \text{ListNeighbors}, i^*, \text{color})$
12: $(V', E') := \text{UPDATEGRAPH}(v_i, V', E', \text{ListNeighbors}, i^*)$
13: $G' := (V', E')$
14: $\text{ListGreen} := \{v_j \in V' : \text{color}(v_j) = \text{green}\}$
15: end while
16: return
17: end procedure

Algorithm 2.1 is well-defined, i.e. the paths on the grid can be constructed as described in the algorithm and it terminates. Furthermore Algorithm 2.1 constructs exactly one path for each vertex of the graph.

Proof. Let $G = (V, E)$ be a connected outerplanar graph with vertex set $V = \{1, 2, \ldots, n\}$ and let (v_1, v_2, \ldots, v_n) be a nice labeling of its vertices.

We first prove the first statement of this lemma. Observe first that whenever Algorithm 2.1 starts to explore a new vertex v_i in line 11 all paths P_v
procedure \textsc{Explore}(v_i, E', ListNeighbors, i^*, color)
\begin{enumerate}
 \item Set color(v_j) := \text{green} for all $j \in \{1, 2, \ldots, \ell\}$
 \item for $j = 1, \ldots, \ell - 1$ do
 \begin{enumerate}
 \item if $j = 1$ then
 Construct the path $P_{v_{ij}}$ as shown in Figure 1(a) (P_{v_i} in the picture represents the lower horizontal segment of the already constructed path P_{v_i})
 \item else if $\{v_{ij-1}, v_{ij}\} \notin E'$ then
 Construct the path $P_{v_{ij}}$ as shown in Figure 1(b)
 \item else
 Construct the path $P_{v_{ij}}$ as shown in Figure 1(c)
 \end{enumerate}
 \item end if
 \item if $i^* = \infty$ or $\{v_{i\ell}, v_{i^*}\} \notin E'$ then
 Construct the path $P_{v_{i\ell}}$ as shown in Figure 1(d), where the dotted line is drawn iff $\{v_{i\ell-1}, v_{i\ell}\} \in E'$ (If $i^* = \infty$, then $P_{v_{i^*}}$ is not there. Otherwise $P_{v_{i^*}}$ in the picture represents the lower horizontal segment of the already constructed path $P_{v_{i^*}}$)
 \item else
 Construct the path $P_{v_{i\ell}}$ as shown in Figure 1(e), where the dotted line is drawn iff $\{v_{i\ell-1}, v_{i\ell}\} \in E'$
 \item end if
\end{enumerate}
return color
end procedure

Figure 1: The constructions of the subroutine \textsc{Explore} of Algorithm 2.1
that correspond to some green vertex \(v \) have a \textit{free} part \(\mathcal{R}_v \) on their lower horizontal segment, which is shared by no other path constructed so far. By construction these free parts are located in the grid in such a way that if \(v_k \) and \(v_j \) are two green vertices with \(k < j \), then the right-most point of the free part of \(P_{v_k} \) is located to the left and below the left-most point of the free part of \(P_{v_j} \). Obviously, this property clearly holds when \(v_1 \) is explored and it is clearly maintained in the later constructions. In Figure 1 the free parts of the current iteration are highlighted in light gray and the free parts determined for the next iteration in dark gray. The paths \(P_{v_i} \) and \(P_{v_\ast} \) are located as depicted in Figure 1(d) and (e). Thus, \textsc{Explore}(\(v_i \)) and hence Algorithm 2.1 can really construct all the paths as described.

Observe further that the termination of the algorithm is clear: any explored vertex is deleted and there are only finitely many vertices in \(G \).

Next we prove the second statement of the lemma. [Algorithm 2.1] constructs a path \(P_v \) corresponding to a vertex \(v \) in the same call of \textsc{Explore} as it colors \(v \) green. Due to the connectivity of \(G \) each vertex is colored green during the algorithm, so it constructs at least one path for each vertex. Thus, to prove the second statement of the lemma it is enough to show that whenever a vertex is colored green, it has not been colored green before. Equivalently, we show that whenever we explore a vertex \(v_i \) in the subroutine \textsc{Explore} all its current neighbors (i.e. all its neighbors in the current \(G' \)) are still colored \textit{gray}. This is done in two steps. First we show that (i) all current neighbors of \(v_i \) are contained in the set \(\{v_1, v_2, \ldots, v_{\ast}\} \) whenever \(i^* < \infty \). By construction \(v_i \) and \(v_{\ast} \) are the only green vertices in this set, so showing that (ii) \(v_{\ast} \) is not a current neighbor of \(v_i \) completes the proof.

Proof of (i). We show that if \(i^* < \infty \) after executing line 10 of Algorithm 2.1 then \textit{ListNeighbors} \(\subseteq \{v_1, v_2, \ldots, v_{\ast}\} \). In other words and using the notation of line 10 we prove that \(i_j \leq i^* \) holds for all neighbors \(v_j \) of \(v_i \) in \(G' \). Indeed, assume by contradiction that there is a \(j^* \) such that \(i_{j^*} > i^* \). The vertex \(v_{j^*} \)
is colored green, hence it was colored green during the exploration of some vertex \(x \neq v_i \) which was explored before \(v_i \). The vertex \(x \) itself was colored green during the exploration of some vertex \(z \) and so on, until \(v_1 \), the very first vertex explored, is reached. Let \(P = (v_1 = v_{p_1}, v_{p_2}, \ldots, v_{p_r} = v_{i^*}) \) be a path in \(G \) such that \(v_{p_j} \) is colored green during the exploration of \(v_{p_{j-1}} \) for every \(2 \leq j \leq r \). Obviously \(p_j \neq i \) and \(p_j \neq i^j \) holds for every \(1 \leq j \leq r \), because explored vertices are deleted, \(v_i \) is explored in this iteration and and \(v_{i_j^*} \) is in \(G' \). But then, the path \(P \) from \(v_1 \) to \(v_{i^*} \) and the edge \(\{v_i, v_{i^*}\} \) contradict the path separation property.

Proof of (ii). Next we prove \(v_{i^*} \notin \text{ListNeighbors} \). Assume for contradiction that \(v_{i^*} \) is among the current neighbors of \(v_i \) at some time during the algorithm, thus assume that \(i^*_k = i^* \) holds. Consider the value of \(i \) at the earliest occurrence of the above phenomenon. Let \(P \) be the path from \(v_1 \) to \(v_{i^*} \), as before. Analogously, let \(Q = (v_1 = v_{q_1}, v_{q_2}, \ldots, v_{q_s} = v_i) \) be the path in \(G \) such that \(v_{q_j^*} \) is colored green during the exploration of \(v_{q_{j-1}} \) for every \(2 \leq j \leq s \). Both \(P \) and \(Q \) start in \(v_1 \) and end in different vertices. Moreover, for every vertex \(x \) in \(P \) or \(Q \) there is exactly one vertex \(y \) such that \(x \) was colored green during the exploration of \(y \) (because \(i \) was chosen minimal with the corresponding property). Consequently there is an index \(j^* \) such that \(p_j = q_j \) for all \(j < j^* \) and furthermore \(p_j \neq q_k \) for all \(j > j^* \) and \(k > j^* \), i.e. the paths \(P \) and \(Q \) coincide for the first \(j^* \) vertices and then use different vertices.

First we observe that \(p_j, q_k \notin \{i, i + 1, \ldots, i^*\} \) for all \(j < r \) and \(k < s \), because otherwise the existence of the edge \(\{v_i, v_{i^*}\} \) and the paths \((v_1 = v_{p_1}, v_{p_2}, \ldots, v_{p_{r-1}})\) and \((v_1 = v_{q_1}, v_{q_2}, \ldots, v_{q_{s-1}})\) would contradict the path separation property. Next due to the path separation property with the path \(P \) from \(v_1 \) to \(v_{i^*} \), the fact that \(Q \) and \(P \) use different vertices after \(v_{p_{j^*}} = v_{q_{j^*}} \) and the fact that \(q_r = i < i^* \) it follows that \(q_k < i^* \). Therefore \(q_k \leq i \) for all \(j^* < k \leq s \leq s - 1 \). Due to the separation property these indices have to be ascending, i.e. \(q_k \leq q_{k+1} \) for all \(j^* < k \leq s - 1 \). Analogously, we have \(i^* \leq p_{j+1} \leq p_j \) for all \(j^* < j \leq r - 1 \).

Clearly, when \(v_{p_j} \) is explored, both \(v_{q_{j+1}} \) and \(v_{p_{j+1}} \) are among the neighbors of \(v_{p_{j+1}} \), because they are colored green during its exploration. Furthermore \(q_{j+1} \leq i < i^* \leq p_{j+1} \), hence \(v_{q_{j+1}} \) is explored before \(v_{p_{j+1}} \). By iteratively using this argument we get that all \(v_{q_k}, j^* + 1 \leq k \leq s \), are explored before \(v_{p_{j+1}} \). However, when exploring \(v_i = v_{q_s}, v_{i^*} \) had already been colored green. This is only possible if \(p_{j+1} = i^* \), and hence \(v_{i^*} \) has already been colored green during the exploration of \(v_{p_{j+1}} \).

Now let us consider the exploration of \(v_{q_{s-1}} \). At this point \(q_{s-1} \) is the smallest green index. Furthermore the above arguments show that during
the exploration of v_{q-1}, the vertex v_1 has already been colored green. Hence, the second lowest green index is less or equal to i^\ast. With (i) this implies that the index of any current neighbor of v_{q-1} is less than or equal to i^\ast. Due to the separation property with the edge $\{v_i, v_{i^\ast}\}$, there can’t be a neighbor of v_{q-1} between v_i and v_{i^\ast}, therefore v_i is the current neighbor of v_{q-1} with the largest index (the actual i_ℓ in the algorithm). Note that v_{i^\ast} can not be a neighbor of v_{q-1} because i was chosen minimal. Furthermore, i^\ast has to be the green vertex with the second smallest index also during the exploration of v_{q-1} (the actual i^\ast in the algorithm), because if there would be another green vertex between i and i^\ast, this vertex would remain green and during the exploration of v_i this vertex and not i^\ast would be the vertex with the second smallest index. But this implies that the edge between v_i and v_{i^\ast} is deleted in line 9 of UPDATEGRAPH and therefore the edge $\{v_i, v_{i^\ast}\}$ is not present in G' anymore when v_i is explored, which contradicts the definition of v_{i^\ast}.

Using Lemma 2.3 we obtain the following main result of this section.

Theorem 2.4. Every outerplanar graph is in B_2^m.

Proof. We show that Algorithm 2.1 constructs indeed a B_2^m-EPG representation of a connected outerplanar graph G with a nice labeling of its vertices $V = \{1, 2, \ldots, n\}$. By Lemma 2.3 Algorithm 2.1 is well-defined and constructs exactly one path for each vertex. Clearly every path P_v constructed by the algorithm has at most two bends by construction.

What is left to show is that the paths P_u and P_v corresponding to two vertices u and v intersect iff $\{u, v\}$ is an edge in G. To prove this, consider the exploration of v_i and the construction of $P_{v_{i_1}}, \ldots, P_{v_{i_\ell}}$. Clearly, the paths $P_{v_{i_1}}, P_{v_{i_1}}, \ldots, P_{v_{i_\ell}}$ intersect iff the corresponding edge is in the current graph G' and is deleted in the subsequent update of G'. Furthermore none of the paths $P_{v_{i_1}}, \ldots, P_{v_{i_\ell}}$ intersects any path P_v for $v \in V \setminus \{v_{i_1}, \ldots, v_{i_\ell}\}$, except for $v = v_i$. This is due to the fact that $P_{v_{i_1}}, \ldots, P_{v_{i_\ell}}$ are contained in the free part R_{v_i} of P_{v_i}. Hence during the exploration of v_i there is a new intersection between two paths iff the corresponding edge is in the current graph G', in which case that edge is deleted in the subsequent update of G'. These arguments hold in any exploration step and this completes the proof.

A straightforward analysis of the time complexity of Algorithm 2.1 reveals that a B_2^n-EPG representation of an n-vertex outerplanar graph can be constructed in $O(n)$ time.

Finally, observe that 2 is a tight upper bound on the monotonic bend number of outerplanar graphs, because 2 is a tight upper bound on the bend number of outerplanar graphs as mentioned at the beginning of this section.
3 The (monotonic) bend number of the n-sun

The n-sun graph S_n is a graph of order $2n$ defined as follows.

Definition 3.1. Let $n \in \mathbb{N}$, $n \geq 3$. The n-sun graph $S_n = (V, E)$ is the graph with vertex set $V = \{x_1, \ldots, x_n, y_1, \ldots, y_n\}$ and edge set $E = E_1 \cup E_2$, where $E_1 = \{\{x_i, x_j\} \mid 1 \leq i < j \leq n\}$ and $E_2 = \{\{x_i, y_i\}, \{x_{i+1}, y_i\} \mid 1 \leq i < n\} \cup \{\{x_1, y_n\}, \{x_n, y_n\}\}$. The vertices $\{x_1, x_2, \ldots, x_n\}$ are called central vertices of S_n and the edges between them, i.e. the edges in E_1, are called central edges of S_n.

A picture of S_3 can be found in Figure 9 and S_n is depicted in Figure 2(a). Golumbic, Lipshteyn and Stern [18] have shown that S_3 is in B_1 and that S_n is not in B_1 for every $n \geq 4$. Cameron, Chaplick and Hoàng [11] have shown that S_3 is not in B_0 and not in B^{m}_1. It can be easily checked that Figure 2(b) depicts a B^{m}_2-EPG representation of S_n for any $n \geq 3$. This implies the following theorem.

Theorem 3.2. The n-sun S_n is in B^{m}_2 for all $n \geq 3$.

It is easily seen that the B^{\cdot}_2-representation of S_n in Figure 2(b) can be constructed in $O(n)$ time. We summarize the results for the n-sun as follows.

Corollary 3.3. The (monotonic) bend number of S_n, $n \geq 3$, is given as follows.

$$b(S_n) = \begin{cases}
1 & \text{for } n = 3 \\
2 & \text{for } n \geq 4
\end{cases}$$

$$b^m(S_n) = 2 \text{ for } n \geq 3$$
Next, we recall the following definitions used in the investigation of S_n.

Definition 3.4 (Golumbic, Lipshteyn and Stern [18]). Consider some graph G with a B_1-EPG representation and some grid edge e. The set of all paths which use e in the B_1-EPG representation is called an edge clique. Consider a copy of the claw graph $K_{1,3}$ in the grid, i.e. a grid point together with three (arbitrarily selected but fixed) grid edges which have that grid point as a vertex. The set of all paths that use 2 edges of this copy of the claw $K_{1,3}$ is called a claw clique. The grid point of degree 3 in the claw $K_{1,3}$ is called central vertex of the claw and central grid point of the claw clique.

Clearly, the vertices of G corresponding to the paths of an edge clique form a clique. Also, the vertices of G corresponding to the paths of a claw clique form a clique. In fact, a converse statement is also true.

Lemma 3.5 (Golumbic, Lipshteyn, Stern [18]). Let G be a B_1-EPG graph. Then in every B_1-EPG representation of G, the paths corresponding to the vertices of a maximal clique in G form either an edge clique or a claw clique.

In general we say that a set X of vertices in G corresponds to an edge clique (a claw clique) in a B_1-EPG representation of G iff the paths corresponding to the vertices of X build an edge clique (a claw clique) in the B_1-EPG representation.

We close this section with a simple but useful observation on S_3, that will be used in Section 4.

Observation 3.6 (Biedl, Stern [4]). In every B_1-EPG representation of the graph S_3 the set of the central vertices $\{x_1, x_2, x_3\}$ corresponds to a claw clique. The paths corresponding to different vertices contain different pairs of edges of the claw, hence the central (grid) point of the claw clique is a bend point for exactly two of the three paths corresponding to $\{x_1, x_2, x_3\}$. In this case we say that these two paths are bent in the claw.

4 The (monotonic) bend number of maximal outerplanar graphs

In this section we determine the bend number and the monotonic bend number of maximal outerplanar graphs.

Definition 4.1. A graph G is called maximal outerplanar if (a) G is outerplanar and (b) joining any two non-adjacent vertices of G by an additional edge yields a graph which is not outerplanar anymore.
Notice that maximal outerplanar graphs are closely related to triangulations. Indeed, it is easy to see that maximal outerplanar graphs are exactly those outerplanar graphs, where the boundary of the outer face is a Hamiltonian cycle (thus containing all vertices) and every inner face is a triangle. We make use of the following auxiliary graph.

Definition 4.2. Let G be a maximal outerplanar graph with an arbitrary but fixed outerplanar embedding. Then the almost-dual graph \hat{G} of G has a vertex for every inner face of G. Two vertices of \hat{G} are adjacent if and only if the corresponding inner faces of G share an edge in G.

Clearly, the almost-dual \hat{G} of G is an induced subgraph of the planar dual of G. Figure 3(a) represents a maximal outerplanar graph with 8 vertices and its almost-dual graph. Observe that in this case the almost-dual graph is a path. Indeed, the following observation is easy to see.

Observation 4.3. The almost-dual graph of any maximal outerplanar graph G is a tree with maximum degree at most 3. This tree is a path iff G does not contain S_3 as an induced subgraph, that is, G is S_3-free.

Finally, we use the following notation. For any vertex \hat{v} of \hat{G} denote by $T_\hat{v}$ the subgraph of G induced by the vertices on the border of the triangular face of G associated to \hat{v} and by $V(T_\hat{v})$ the corresponding set of vertices.

4.1 Maximal Outerplanar Graphs in B_0

In this section we characterize maximal outerplanar graphs which belong to B_0. Cameron, Chaplick, Hoàng [11] showed that S_3 is not in B_0. Thus, any maximal outerplanar graph which is not S_3-free is not in B_0. We show by construction that the non-trivial converse of this statement is also true: any S_3-free maximal outerplanar graph is in B_0. We first prove that Algorithm 4.1 constructs a B_0-EPG representation of an S_3-free maximal outerplanar graph.

Lemma 4.4. Let G be an S_3-free maximal outerplanar graph and let \hat{G} be its almost-dual graph. Then Algorithm 4.1 constructs a B_0-EPG representation of G.

Proof. First notice that due to Observation 4.3 \hat{G} is a path as required by the input of Algorithm 4.1. Next observe that since G is maximal outerplanar, each of its vertices is contained in at least one triangle and thus in at least one vertex of the path \hat{G}. Hence Algorithm 4.1 draws exactly one path P_v for every vertex v of G. In order to prove the lemma we show that (i) for
Theorem 4.5. Let G be a maximal outerplanar graph. Then G is in B_0 if and only if G is S_3-free.

Proof. Let G be a maximal outerplanar graph. If G is not S_3-free, then G is not in B_0 because of Cameron, Chaplick, Hoàng [11]. If G is S_3-free, then

Algorithm 4.1 Construct a B_0-EPG representation of an S_3-free maximal outerplanar graph G

Input: An S_3-free maximal outerplanar graph $G = (V, E)$ and its almost-dual path \hat{G}

Output: A B_0-EPG representation of G

1: **procedure** B_0-S3FREE_MAX_OUTERPLANAR(G, \hat{G})
2: Let $\hat{v}_1, \ldots, \hat{v}_\ell$ be the consecutive vertices of the path \hat{G}
3: Label one horizontal line of the grid with 1 and $\ell + 1$ vertical lines of the grid with
4: $1, 2, \ldots, \ell + 1$
5: Let $(i, 1)$ be the grid point where the one horizontal and the i-th vertical grid line
6: intersect, $1 \leq i \leq \ell + 1$
7: **for** $v \in V$ **do**
8: Draw the path P_v from $(a, 1)$ to $(b + 1, 1)$, where \hat{v}_a is the first and \hat{v}_b is the
9: last vertex in the path \hat{G} such that $v \in V(T_{\hat{v}_a})$ and $v \in V(T_{\hat{v}_b})$
10: **end for**
11: **end procedure**

each vertex $w \in V(G)$ the set of vertices \hat{v} of \hat{G}, for which $w \in V(T_{\hat{v}})$ holds, build a subpath of \hat{G} and (ii) the paths on the grid P_u and P_v representing two vertices u and v of G intersect iff $\{u, v\}$ is an edge in G.

Proof of (i). Assume that (i) does not hold, and consider a $w \in V(G)$, for which there exist j and $k \geq j + 2$ with $w \in V(T_{\hat{v}_j})$ and $w \in V(T_{\hat{v}_k})$, but $w \not\in V(T_{\hat{v}_i})$ for any $j + 1 \leq i \leq k - 1$. It is easy to see that for any two consecutive vertices \hat{v}_i and \hat{v}_{i+1} on the path \hat{G}, the triangles $T_{\hat{v}_i}$ and $T_{\hat{v}_{i+1}}$ share two vertices in G, and every other vertex of G is only in $T_{\hat{v}_r}$ with either $r \leq i$ or $r \geq i + 1$. Thus, because $w \in V(T_{\hat{v}_j})$ and $w \not\in V(T_{\hat{v}_{j+1}})$, w can only be in $T_{\hat{v}_r}$ with $r \leq j$. Furthermore, because $w \in V(T_{\hat{v}_k})$ and $w \not\in V(T_{\hat{v}_{k-1}})$, w can only be in $T_{\hat{v}_r}$ with $r \geq k$, a contradiction.

Proof of (ii). Consider an edge $\{u, v\}$ of G. Clearly $\{u, v\}$ is part of at least one triangle $T_{\hat{v}_i}$ for some $i \in \{1, 2, \ldots, \ell\}$. This implies that P_u and P_v share the grid edge connecting $(i, 1)$ and $(i+1, 1)$. Hence P_u and P_v intersect.

Assume now that P_u and P_v intersect, so P_u and P_v share some grid edge e from $(k, 1)$ to $(k + 1, 1)$ for some $k \in \{1, 2, \ldots, \ell\}$. By construction, this implies that v is in $V(T_{\hat{v}_a})$ for some $a \leq k$ and in $V(T_{\hat{v}_b})$ for some $b \geq k$. Then, (i) implies that $v \in V(T_{\hat{v}_a})$. Analogously, $u \in V(T_{\hat{v}_b})$ holds. Hence u and v are adjacent.

With the help of Lemma 4.4 we show that the following theorem holds.

Theorem 4.5. Let G be a maximal outerplanar graph. Then G is in B_0 if and only if G is S_3-free.

Proof. Let G be a maximal outerplanar graph. If G is not S_3-free, then G is not in B_0 because of Cameron, Chaplick, Hoàng [11]. If G is S_3-free, then
Figure 3: (a) A graph G and its almost-dual \hat{G} with the vertices \hat{v}_i for $1 \leq i \leq 7$. (b) A B_0-EPG representation of G constructed by Algorithm 4.1

Algorithm 4.1 constructs a B_0-EPG representation as stated in Lemma 4.4. Hence, G is in B_0. \hfill \Box

4.5 and Observation 4.3 imply that it can be decided in $O(n)$ time whether a maximal outerplanar graph G is in B_0. Further, it is not difficult to see that in the positive case the construction of a B_0-EPG representation in Algorithm 4.1 can be done in $O(n)$ time for a graph of order n.

4.2 Maximal Outerplanar Graphs in B_1

In this section we characterize the maximal outerplanar graphs which are B_1^m-EPG and B_1-EPG, respectively. It turns out that for maximal outerplanar graphs B_0-EPG and B_1^m-EPG coincide, see Corollary 4.6. Thus, surprisingly, allowing two more shapes of paths in the EPG representation does not increase the class of graphs which can be represented.

Corollary 4.6. Let G be a maximal outerplanar graph. Then G is in B_1^m if and only if G is S_3-free.

Proof. Since S_3 is not in B_1^m (as shown by Cameron, Chaplick, Hoàng [11]), a graph which is not S_3-free is not in B_1^m. Further, by 4.5 every S_3-free maximal outerplanar graph is in B_0 and hence also in B_1^m. \hfill \Box

Since S_3 is in B_1 (Golumbic, Lipshteyn, Stern [18]) but not in B_0 (Cameron, Chaplick, Hoàng [11]) the class of B_1-EPG maximal outerplanar graphs is strictly larger than the class of B_1^m-EPG maximal outerplanar graphs. In the sequel we characterize the class of B_1-EPG maximal outerplanar graphs. To this end we need the concept of the reduced graph of a maximal outerplanar graph. Recall the definition of central vertices and central edges of S_3 from Definition 3.1.
Definition 4.7. Let G be a maximal outerplanar graph. The reduced graph \bar{G} of G is defined in the following way. For every copy of S_3 in G, the central vertices and the central edges of S_3 are colored green. Then all non-colored vertices and non-colored edges are removed from G. The resulting graph is the reduced graph \bar{G}.

The next lemma addresses the structural relationship of maximal outerplanar graphs and their reduced and almost-dual graphs.

Lemma 4.8. Let G be a maximal outerplanar graph with reduced graph \bar{G} and almost-dual graph \hat{G}. Then (i) the copies of S_3 in G, (ii) the triangles in \bar{G} and (iii) the vertices of degree 3 in \hat{G} are in a one-to-one correspondence.

Proof. First we prove the one-to-one correspondence between (ii) the triangles in \bar{G} and (i) the copies of S_3 in G. Clearly each copy of S_3 in G corresponds to a triangle in \bar{G}.

Now let $\{v_1, v_2, v_3\}$ be the vertices of an arbitrary triangle T in \bar{G}. Notice that there are exactly two possibilities for the order in which edges are colored: either all the edges of T were colored at once, or the three edges were colored at three different times as central edges belonging to three different copies of S_3 in G.

If all edges of T were colored at once, then T corresponds to the central vertices of a copy of S_3 in G. If $\{v_1, v_2\}, \{v_2, v_3\}, \{v_1, v_3\}$ were colored at three different times, there exists vertices v_4, v_5 and v_6 such that $\{v_1, v_2, v_4\}$, $\{v_2, v_3, v_5\}$ and $\{v_1, v_3, v_6\}$ are sets of central vertices of some copy of S_3 in G, respectively. Since G is outerplanar the vertices v_4, v_5 and v_6 are pairwise distinct and none of them can be adjacent to any of the two others. Therefore, the subgraph of G induced by the vertices $\{v_i | 1 \leq i \leq 6\}$ is a copy of S_3 in G and hence the vertices of T form the set of the central vertices of this copy of S_3. So (ii) and (i) are in a one-to-one correspondence.

To see the bijection between (iii) and (i), recall that any vertex of degree 3 in \hat{G} represents a (triangular) inner face of G such that each edge on its boundary is shared with the boundary of another triangular inner face. Thus each vertex of degree 3 in \hat{G} corresponds to a copy of S_3 in G, and clearly, also vice-versa.

Objects corresponding to each other in terms of the bijections given in the proof of Lemma 4.8 are referred to as corresponding objects.

Now we are able to prove the following structural result for B_1-EPG representations of maximal outerplanar graphs.

Corollary 4.9. Let G be a maximal outerplanar graph and \bar{G} its reduced graph. In every B_1-EPG representation of G (if there is any) the vertices of any triangle in \bar{G} correspond to a claw clique.
Figure 4: The graph M_1.

Figure 5: The graph M_1^ℓ with $\ell \geq 0$ consecutive triangles between the vertices a_1 and b_1. For $\ell = 0$ there are no vertices c and the vertices a_1 and b_1 coincide. For all values of ℓ either $\{a_1, a_3\}$ or $\{a_2, a_4\}$ and either $\{b_1, b_3\}$ or $\{b_2, b_4\}$ is an edge in M_1^ℓ.

\textbf{Proof.} According to Lemma 4.8 the vertices of every triangle in \tilde{G} are the central vertices of a copy of S_3 in G. Observation 3.6 implies that this set of central vertices corresponds to a claw clique. \qed

Next we consider some maximal outerplanar graphs which are not B_1-EPG.

\textbf{Lemma 4.10.} Let G be a maximal outerplanar graph and \tilde{G} its reduced graph. If the graph M_1 depicted in \textbf{Figure 4} or the graph M_1^ℓ depicted in \textbf{Figure 5} is an induced subgraph of \tilde{G} for some $\ell \geq 0$, then G is not in B_1.

\textbf{Proof.} Assume by contradiction that the maximal outerplanar graph G is not M-free while being B_1-EPG and consider a B_1-EPG representation of G.

Consider first the case where G contains a copy of M_1^ℓ for some $\ell \geq 0$ (see \textbf{Figure 5}). Since exactly one of $\{a_1, a_3\}$ and $\{a_2, a_4\}$ is an edge in the copy of M_1^ℓ in G the vertices $\{a_1, a_2, a_3, a_4\}$ form two triangles in \tilde{G}. According to Corollary 4.9 the vertices of any of these two triangles corresponds to a claw clique and due to Observation 3.6 in each claw clique two of the three paths are bent. It is easily observed that these two claw cliques must have different central grid points and there cannot be a path which is bent in both claw cliques. Thus any path corresponding to some vertex in $\{a_1, a_2, a_3, a_4\}$ is bent in exactly one of the these two claw cliques. Analogously, any path
corresponding to a vertex in \(\{b_1, b_2, b_3, b_4\} \) is bent in exactly one of the two claw cliques corresponding to the two triangles formed by \(\{b_1, b_2, b_3, b_4\} \).

If \(\ell = 0 \), then \(a_1 = b_1 \) and the vertices of two triangles in \(\hat{G} \) which share only one vertex correspond to claw cliques with different central grid points. Thus, the vertex \(a_1 = b_1 \) has to be bent in two claw cliques with different central grid points, a contradiction to \(G \) being \(B_1 \)-EPG. Assume now \(\ell \geq 1 \).

We set \(c_0 := a_1 \) and \(c_{2\ell} := b_1 \) for notational consistency. Due to Corollary 4.9

the vertices \(\{c_0, c_1, c_2\} \) of the first triangle correspond to a claw clique \(K_1 \). It is easily observed that the central grid point of \(K_1 \) is different from the central grid points of the claw cliques corresponding to the two triangles formed by \(\{a_1, a_2, a_3, a_4\} \). Then, the path corresponding to \(a_1 = c_0 \) is bent in one of the two claw cliques corresponding to the two triangles formed by \(\{a_1, a_2, a_3, a_4\} \), so it cannot be bent in \(K_1 \). Hence, the paths corresponding to \(c_1 \) and \(c_2 \) are bent in the claw clique \(K_1 \). Let \(K_1 \) be the claw clique corresponding to the vertices \(\{c_{2i-2}, c_{2i-1}, c_{2i}\} \) of the \(i \)-th triangle for \(1 \leq i \leq \ell \). By induction we get that the paths corresponding to the vertices \(c_{2i-1} \) and \(c_{2i} \) are bent in \(K_i \) for \(1 \leq i \leq \ell \). Thus the path corresponding to \(c_{2\ell} = b_1 \) has to be bent in the claw clique \(K_\ell \) as well as in one of the claw cliques corresponding to the two triangles formed by \(\{b_1, b_2, b_3, b_4\} \), and this is a contradiction.

Consider now the case where \(M_1 \) is an induced subgraph of \(\hat{G} \) (see Figure 4). By analogous arguments as for \(\{a_1, a_2, a_3, a_4\} \) the path corresponding to any vertex in \(\{d_1, d_2, d_3, d_4\} \) is bent in exactly one of the two claw cliques corresponding to the two triangles formed by \(\{d_1, d_2, d_3, d_4\} \). But then two of the paths corresponding to \(\{d_2, d_4, d_5\} \) have to be bent in the claw clique corresponding to \(\{d_2, d_4, d_5\} \) while \(d_2 \) and \(d_4 \) have to be bent also in another claw clique with a different central grid point. This contradicts the definition of a \(B_1 \)-EPG representation.

Lemma 4.10 describes a class of maximal outerplanar graphs which are not \(B_1 \)-EPG. In fact this class contains all maximal outerplanar graphs which are not \(B_1 \)-EPG as stated in in [123] the main result in this section. The following definition allows us to simplify notation.

Definition 4.11. A maximal outerplanar graph \(G \) is called \(M \)-free if its reduced graph \(\hat{G} \) contains neither \(M_1 \) nor \(M_\ell \), for any \(\ell \geq 0 \), as an induced subgraph.

Before we can consider the construction of a \(B_1 \)-EPG representation of a \(B_1 \)-EPG maximal outerplanar graph \(G \), we first need the following definitions.

Definition 4.12. Let \(G \) be a maximal outerplanar graph with almost-dual graph \(\hat{G} \) and reduced graph \(\hat{G} \). We denote by \(\hat{V}_3 \) the set of vertices of degree 3 in the almost-dual graph \(\hat{G} \), so \(\hat{V}_3 = \{\hat{v} \in V(\hat{G}) : \hat{v} \) has degree 3 in \(\hat{G} \} \).
Two distinct triangles in \tilde{G} which share an edge are called neighbored (to each other). Two distinct triangles in \tilde{G} which share a vertex, but not an edge, are called touching (each other). A sequence of touching triangles (STT) T_1, \ldots, T_k for some $k \in \mathbb{N}$ is a sequence of triangles T_i in \tilde{G} such that the triangles T_i and T_{i+1} are touching for each $1 \leq i \leq k - 1$. The surrounding of a pair of triangles T and T' neighbored to each other in \tilde{G} is the set of all triangles T^* in \hat{G}, such that T or T' can be reached from T^* over an STT, i.e. there is an STT T_1, \ldots, T_k with $T_1 = T^*$ and $T_k \in \{T, T'\}$.

Furthermore we translate the definitions related to triangles in \tilde{G} also to the corresponding vertices of degree 3 in \hat{G}. More precisely two vertices \hat{v}, \hat{v}' of degree 3 in \hat{G} that correspond to two neighbored (touching) triangles in \tilde{G} with respect to the bijection of Lemma 4.8 are called neighbored (touching).

A vertex \hat{v}^* of degree 3 in \hat{G} is said to be in the surrounding of two neighbored vertices \hat{v}, \hat{v}' of degree 3 in \hat{G} if the corresponding triangle $T_{\hat{v}^*}$ is in the surrounding of the neighbored triangles $T_{\hat{v}}, T_{\hat{v}'}$.

Finally a cycle of touching or neighbored triangles (CTNT) is defined as a sequence of triangles T_1, \ldots, T_k in \tilde{G}, $k \in \mathbb{N}$, such that for each $1 \leq i \leq k - 1$, T_i and T_{i+1} are either neighbored or touching triangles, and also T_1 and T_k are either neighbored or touching triangles. A CTNT T_1, \ldots, T_k is called reduced if for all $1 \leq i < j \leq k$ the triangles T_i and T_j are only neighbored or touching if either $j = i + 1$, or $i = 1$ and $j = k$. In other words a CTNT is reduced iff triangles of that cycle which are non-consecutive are neither touching each other nor neighbored to each other.

Next we investigate the structure of M-free maximal outerplanar graphs.

Lemma 4.13. Let G be an M-free maximal outerplanar graph with almost-dual graph \hat{G} and reduced graph \tilde{G}. Then the vertices in \hat{V}_3 can be partitioned such that each vertex is either (A) neighbored to exactly one other vertex of degree 3 in \hat{G}, or (B) not neighbored, but in the surrounding of exactly one pair of neighbored vertices in \hat{G}, or (C) not in the surrounding of any pair of neighbored vertices in \hat{G}.

Proof. Due to Lemma 4.8 we can consider triangles in \tilde{G} instead of considering vertices of degree 3 in \hat{G}.

Since M_I is not an induced subgraph of \hat{G}, every triangle in \tilde{G} is neighbored to at most one other triangle. Moreover if T_1 and T_2 are neighbored triangles in \tilde{G} with vertex sets $V(T_1)$ and $V(T_2)$, respectively, then none of the vertices in $V(T_1) \cup V(T_2)$ can be a vertex of some other pair of neighbored triangles, because otherwise M_1^I would be an induced subgraph of \hat{G}. To summarize, neighbored triangles in \tilde{G} appear in pairs of two and two different pairs of neighbored triangles share neither edges nor vertices.
Further, it is easy to see that each triangle of \tilde{G} is in the surrounding of at most one pair of neighbored triangles. Indeed, if a triangle T of \tilde{G} was in the surrounding of two different pairs of neighbored triangles (T_1, T_2) and (T_3, T_4), then the graph induced by T, T_1, T_2, T_3, T_4 and the two STTs from T to the two pairs (T_1, T_2), (T_3, T_4) would contain a copy of M_ℓ^t for some $\ell \geq 0$, a contradiction. Hence, the surroundings of different pairs of neighbored triangles are disjoint and the result follows.

For an M-free graph G we denote the sets of vertices of degree 3 in \tilde{G} in the parts (A), (B) and (C) of the partition of Lemma 4.13 by A, B and C, respectively.

Finally we are able to present Algorithm 4.2 which recognizes whether an input maximal outerplanar graph G is M-free and computes a particular assignment of pairs of vertices of G to vertices in \tilde{V}_3 in the positive case. The particular assignment is called assigned. It maps \tilde{V}_3 to $V(G) \times V(G)$ such that both vertices of the pair assigned(\hat{v}) are central vertices of the copy of S_3 in G corresponding to \hat{v} in the sense of Lemma 4.8. Moreover, these two vertices are selected carefully, such that no vertex of V is assigned to more than one $\hat{v} \in \tilde{V}_3$. This assignment will be used to construct a B_1-EPG representations of a B_1-EPG maximal outerplanar graph in Algorithm 4.3. In particular, the path corresponding to a vertex $a \in V(G)$ will bend for representing \hat{v} iff $a \in V(T_{\hat{v}})$ and a is assigned to \hat{v}.

Next we address two important arrays used by the algorithm: $\text{level}(\hat{v})$, for $\hat{v} \in \tilde{V}_3$, and $\Delta(a)$, for $a \in V(G)$. Their meaning is as follows. $\Delta(a) = \hat{v} \in \tilde{V}_3$ iff a belongs to assigned(\hat{v}). The meaning of $\text{level}(\hat{v})$ is a bit more complicated: in the case that the input graph G is M-free for every pair (\hat{v}, \hat{v}') of neighbored vertices in \tilde{V}_3 we have $\text{level}(\hat{v}) = \text{level}(\hat{v}') = 0$. For a vertex \hat{v} in the surrounding of some pair of neighbored vertices (\hat{w}, \hat{w}') (i.e. $\hat{v} \in B$ according to Lemma 4.13) the quantity $\text{level}(\hat{v}) = k - 1$ determines the length of a STT $\hat{v}_1, \ldots, \hat{v}_k$ in \tilde{V}_3 starting at \hat{w} or \hat{w}' and ending at $\hat{v} = \hat{v}_k$. Thus in the execution of line 25 of Algorithm 4.2 the vertex \hat{v}'' coincides with \hat{v}_{i-1} when \hat{v} coincides with \hat{v}_i for every $i \in \{2, \ldots, k\}$.

For each vertex \hat{v} which does not belong to the surrounding of some pair of neighbored vertices in \tilde{V}_3 (i.e. $\hat{v} \in C$ according to Lemma 4.13) the following holds. There is a STT $\hat{v}_1, \ldots, \hat{v}_\ell$ in \tilde{V}_3 such that $\text{level}(\hat{v}_1) = 0$ holds, $\hat{v} = \hat{v}_\ell$ and in the execution of line 25 of the algorithm the vertex \hat{v}'' coincides with \hat{v}_{j-1} when \hat{v} coincides with \hat{v}_j for every $j \in \{2, \ldots, \ell\}$.

The following Lemma 4.13 states some properties of the assignment constructed in Algorithm 4.2.

$\textbf{Lemma 4.14.}$ Let G be a maximal outerplanar graph with almost-dual \tilde{G} and reduced graph \tilde{G}. Then Algorithm 4.2 is well-defined. At termination it
Algorithm 4.2 Construct an assignment assigned: $\hat{V}_3 \rightarrow V(G) \times V(G)$

Input: A maximal outerplanar graph G, its reduced graph \tilde{G} and its almost-dual \hat{G}
Output: assigned: $\hat{V}_3 \rightarrow V(G) \times V(G)$ or “G is not M-free”

1: procedure Assignment_Max_Outerplanar(G, \tilde{G}, \hat{G})
2: Set assigned(\hat{v}) := 0 and label(\hat{v}) := unserved for each $\hat{v} \in \hat{V}_3$
3: Set $\Delta(a) := NULL$ for all $a \in V(G)$
4: Set $level(\hat{v}) := \infty$ for each $\hat{v} \in \hat{V}_3$ and $level(NULL) := \infty$
5: for $\hat{v} \in \hat{V}_3$ do
6: if label(\hat{v}) = unserved and $\exists \hat{v}' \in \hat{V}_3$: \hat{v} is neighbored to \hat{v}' then
7: Set $\{a, b\} := V(T_\hat{v}) \cap V(T_\hat{v}')$
8: Set $\{c\} := V(T_\hat{v}) \setminus \{a, b\}$ and $\{d\} := V(T_\hat{v}') \setminus \{a, b\}$
9: if $\exists x \in V(T_\hat{v}) \cup V(T_\hat{v}')$ with $\Delta(x) \neq NULL$ then
10: Output “G is not M-free” and STOP
11: end if
12: Set assigned(\hat{v}) := $\{a, c\}$ and label(\hat{v}) := served
13: Set assigned(\hat{v}') := $\{b, d\}$ and label(\hat{v}') := served
14: Set level(\hat{v}) := 0 and level(\hat{v}') := 0
15: Set $\Delta(a) := \hat{v}$, $\Delta(c) := \hat{v}$, $\Delta(b) := \hat{v}'$, $\Delta(d) := \hat{v}'$
16: end if
17: end for
18: while $\exists \hat{v} \in \hat{V}_3$: label($\hat{v}$) = unserved do
19: while $\exists \hat{v} \in \hat{V}_3$: label($\hat{v}$) = unserved and
min{$level(\Delta(x))$: $x \in V(T_\hat{v})$} $\neq \infty$ do
20: Set $a := \arg \min \{level(\Delta(x))$: $x \in V(T_\hat{v})\}$ and $\hat{v}' := \Delta(a)$
21: if $\exists x \in V(T_\hat{v}) \setminus \{a\}$ with $\Delta(x) \neq NULL$ then
22: Output “G is not M-free” and STOP
23: end if
24: Set assigned(\hat{v}) := $V(T_\hat{v}) \setminus \{a\}$ and label(\hat{v}) := served
25: Set level(\hat{v}) := level(\hat{v}') + 1
26: for $x \in V(T_\hat{v}) \setminus \{a\}$ do $\Delta(x) := \hat{v}$ end for
27: end while
28: if $\exists \hat{v} \in \hat{V}_3$: label($\hat{v}$) = unserved then
29: Let $a \in V(T_\hat{v})$ be a random vertex of $V(T_\hat{v})$
30: Set assigned(\hat{v}) := $V(T_\hat{v}) \setminus \{a\}$ and label(\hat{v}) := served
31: Set level(\hat{v}) := 0
32: for $x \in V(T_\hat{v}) \setminus \{a\}$ do $\Delta(x) := \hat{v}$ end for
33: end if
34: end while
35: return assigned
36: end procedure
either outputs “G is not M-free” or it returns an assignment that assigns two vertices \(x_\hat{v}, y_\hat{v} \) of \(G \) to every vertex \(\hat{v} \) in \(\hat{V}_3 \) such that (1) \(x_\hat{v}, y_\hat{v} \) are central vertices of the copy of \(S_3 \) in \(G \) corresponding to \(\hat{v} \), and (2) no vertex of \(G \) is assigned to more than one vertex \(\hat{v} \) of \(\hat{G} \).

Proof. We first show that Algorithm 4.2 is well-defined, i.e. that it can be executed as described and that it terminates. Observe that by the definition of neighbored vertices \(|V(T_\hat{v}) \cap V(T_\hat{v}')| = 2 \) holds, so \(a, b, c \) and \(d \) can be defined as described in line [7] and [8]. Furthermore, \(\text{level}(\Delta(x)) < \infty \) if and only if \(\Delta(x) \neq \text{NULL} \), and \(\Delta(x) \in \hat{V}_3 \) holds for all \(x \in V(G) \). So \(\hat{v}'' \in \hat{V}_3 \) holds in line [20] and the sum in line [25] is well-defined.

Next we show that the algorithm always terminates correctly. This clearly holds if Algorithm 4.2 outputs “G is not M-free”. Assume now that the algorithm does not output “G is not M-free”. The algorithm starts with all vertices of \(\hat{V}_3 \) being labeled unserved and having no assigned vertices (line [2]). Then the algorithm iteratively serves the vertices \(\hat{v} \) of \(\hat{V}_3 \), i.e. it labels them served and assigns them the vertices \(x_\hat{v}, y_\hat{v} \) from \(G \). Since the while loop in lines [18] to [34] is executed as long as there are unserved vertices in \(\hat{V}_3 \), the algorithm terminates after a finite number of steps. Moreover, it has assigned a pair of vertices \(x_\hat{v}, y_\hat{v} \) from \(G \) to every vertex \(\hat{v} \) in \(\hat{V}_3 \) at termination.

It is easy to see that the vertices \(x_\hat{v}, y_\hat{v} \) assigned to \(\hat{v} \in \hat{V}_3 \) fulfill property (1) by construction. In order to see that also (2) is fulfilled, observe that \(\Delta(x) = \hat{v} \) iff \(x \in \text{assigned}(\hat{v}) \) for all \(x \) and all \(\hat{v} \). Moreover, both the equality and the inclusion hold immediately after the vertex \(\hat{v} \) is served. Finally, \(\Delta(x) = \text{NULL} \) holds whenever a vertex \(x \) of \(G \) is assigned to a vertex \(\hat{v} \) in \(\hat{V}_3 \) in lines [12] or [13] would have been fulfilled and the algorithm would have already terminated with “G is not M-free”. Hence, a vertex \(x \) of \(G \) can only be assigned to at most one vertex \(\hat{v} \) of \(\hat{V}_3 \).

In order to examine Algorithm 4.2 in more detail, we refer to the execution of lines [5] to [17] as step one, the first execution of lines [19] to [27] as step two and to the remaining executions of lines [18] to [34] as step three. We start our investigation by considering step one in the next two lemmata.

Lemma 4.15. Let \(G \) be a maximal outerplanar graph with almost-dual \(\hat{G} \) and reduced graph \(\tilde{G} \). Then in step one Algorithm 4.2 either outputs “G is not M-free” or it serves exactly the vertices in \(\hat{V}_3 \) which are neighbored.

Proof. If Algorithm 4.2 does not output “G is not M-free” in step one, then it loops through all vertices of \(\hat{V}_3 \) and serves all vertices which are unserved and neighbored to another vertex, so clearly exactly neighbored vertices are
served in step one. Moreover, if the algorithm outputs “G is not M-free” in step one, it does so in line 10 and at this point there are still unserved vertices which belong to a pair of neighbored vertices (see line 6). Thus in this case the algorithm does not serve all neighbored vertices in V_3. \hfill \Box

Lemma 4.16. Let G be a maximal outerplanar graph with almost-dual \tilde{G} and reduced graph \hat{G}. Then Algorithm 4.2 outputs “G is not M-free” in line 10 iff \hat{G} contains a copy of M_1 or M_0.

Proof. Consider first the case that \hat{G} contains a copy of M_1 (see Figure 4). Let \hat{v}_1, \hat{v}_2 and \hat{v}_3 be the vertices in \hat{V}_3 that induce an M_1 in \hat{G}. We show that Algorithm 4.2 outputs “G is not M-free” in line 10 in this case. Assume by contradiction that this is not the case. Thus, the algorithm completes the for loop which starts at line 5. Assume that \hat{v}_1 is served by the algorithm before \hat{v}_2 and \hat{v}_3. The other cases (\hat{v}_2 or \hat{v}_3 are served first) can be handled analogously. Consider the execution of line 6 with $\hat{v} = \hat{v}_1$ or $\hat{v}' = \hat{v}_2$ prior to serving \hat{v}_1. There are two cases: either $\{\hat{v}, \hat{v}'\} \neq \{\hat{v}_1, \hat{v}_2\}$ or $\{\hat{v}, \hat{v}'\} = \{\hat{v}_1, \hat{v}_2\}$. In the first case the condition in line 10 is fulfilled at the latest by the execution of this line with $\hat{v} = \hat{v}_2$ or $\hat{v}' = \hat{v}_3$ and the algorithm would stop with “G is not M-free” in line 10, a contradiction. In the latter case the condition in line 10 is fulfilled at the latest by the execution of this line with $\hat{v} = \hat{v}_3$ or $\hat{v}' = \hat{v}_3$ and the algorithm would stop with “G is not M-free” in line 10 again a contradiction.

Consider now the case that \hat{G} contains a copy of M_1^0 but no copy of M_1. Let \hat{v}_1, \hat{v}_2, \hat{v}_3 and \hat{v}_4 be vertices of \hat{V}_3 that induce an M_1^0 such that \hat{v}_1 and \hat{v}_2 are neighbored to each other and \hat{v}_3 and \hat{v}_4 are neighbored to each other. We show by contradiction that Algorithm 4.2 outputs “G is not M-free” in line 10.

Notice that since \hat{G} does not contain a copy of M_1, each neighbored triangle is neighbored to exactly one other triangle. Assume w.l.o.g. that during the algorithm \hat{v}_1 and \hat{v}_2 coincide with \hat{v} and \hat{v}' in line 9 and then, later, \hat{v}_3 and \hat{v}_4 coincide with \hat{v} and \hat{v}' at that line. At that point one of the vertices of G contained in the triangles corresponding to \hat{v}_1 and \hat{v}_2 is among $x \in V(T_\delta) \cup V(T_{\delta'})$. So with the same arguments as above Algorithm 4.2 outputs “G is not M-free” in line 10.

We complete the proof by showing that \hat{G} contains a copy of M_1 or M_1^0 if Algorithm 4.2 outputs “G is not M-free” in line 10.

Let \hat{v}_1 and \hat{v}_2 be the vertices \hat{v} and \hat{v}' in line 6 at the last execution of this line before the algorithm stops. Clearly \hat{v}_1 and \hat{v}_2 are neighbored. Since Algorithm 4.2 stops, there has to be a vertex $x \in V(T_\delta) \cup V(T_{\delta'})$ such that $\Delta(x)$ was set to either \hat{v} or \hat{v}' in line 15 in a previous iteration. Let v_3 and v_4 be the vertices \hat{v} or \hat{v}' at that previous iteration. Clearly, x is
contained in $T_{\hat{v}_1}$ or $T_{\hat{v}_2}$ and also contained in $T_{\hat{v}_3}$ and $T_{\hat{v}_4}$, so at least one of v_1 and v_2 is neighbored to or touching at least one of v_3 and v_4. If the later vertices are neighbored, then \tilde{G} contains a copy of M_1. Otherwise \tilde{G} contains a copy of M_1^0.

Notice that Lemma 4.15 and Lemma 4.16 imply that if G is M-free, then in step one Algorithm 4.2 serves exactly the vertices in A (see Lemma 4.13). In the next two lemmata we consider step two of the algorithm in more detail.

Lemma 4.17. Let G be a maximal outerplanar graph with almost-dual \hat{G} and reduced graph \tilde{G}. Assume that Algorithm 4.2 serves a vertex \hat{v} in \hat{V}_3 in step two. Then \hat{v} is not neighbored, but it is in the surrounding of neighbored vertices.

Proof. Clearly, \hat{v} is not neighbored, otherwise it would have been already served at step one (see Lemma 4.15). We show that \hat{v} is in the surrounding of neighbored vertices. Consider the vertex \hat{v}'' in line 20 when \hat{v} is served in step two. Then \hat{v} and \hat{v}'' are touching. If \hat{v}'' is a neighbored vertex, then \hat{v} is in the surrounding of \hat{v}'' and we are done. Otherwise, \hat{v}'' has been served in step two and the above argument can be inductively repeated with \hat{v}'' in the role of \hat{v}. Since $\text{level}(\hat{v}'') < \text{level}(\hat{v})$, a neighbored vertex, i.e. a vertex with level equal to 0, is reached after a finite number of repetitions. Therefore \hat{v} is in the surrounding of neighbored vertices, but not neighbored.

Lemma 4.18. Let G be a maximal outerplanar graph with almost-dual \hat{G} and reduced graph \tilde{G}. Assume that Algorithm 4.2 has not terminated with “G is not M-free” in step one. Then in step two it either outputs “G is not M-free” or it serves exactly the vertices in \hat{V}_3 which are not neighbored, but in the surrounding of neighbored vertices.

Proof. Assume first that Algorithm 4.2 does not output “G is not M-free” in step two. Thus the algorithm has completed step two, i.e. it has completed the first run of the while loop in lines 19 to 27. Lemma 4.17 implies that each vertex served in step two is not neighbored, but in the surrounding of neighbored vertices. Now we consider a vertex \hat{v}, that is not neighbored, but in the surrounding of neighbored vertices. Assume by contradiction that it is not served in step two. Clearly, \hat{v} has not been served in step one, due to Lemma 4.15. Thus \hat{v} is not served yet at the end of step two. Consider an STT $T_{\hat{v}_1}, \ldots, T_{\hat{v}_k}$ such that $\hat{v} = \hat{v}_k$ and \hat{v}_1 belongs to a neighbored pair of vertices. Obviously, \hat{v}_1 was already served at the beginning of step two. Observe that $k \geq i \geq 2$ holds for the smallest index $i \in \{1, 2, \ldots, k\}$ such that the vertex \hat{v}_i is not served at the end of step two. Thus, at the end of step two \hat{v}_{i-1} is a served vertex, \hat{v}_{i-1} and \hat{v}_i are touching and \hat{v}_i is not served,
implying that the while-condition in line 19 is fulfilled, a contradiction to the completion of step two.

On the other hand, if Algorithm 4.2 outputs “G is not M-free” in step two, this is because the if condition in line 21 is fulfilled, meaning that there is an unserved vertex \(\hat{v} \) touching a served vertex \(\hat{v}' \) (see line 20). According to Lemma 4.15 and Lemma 4.17 \(\hat{v}'' \) is neighbored or lies in the surrounding of a neighbored vertex. Consequently, vertex \(\hat{v} \) also lies in the surrounding of a neighbored vertex, while being unserved.

Under the premise that Algorithm 4.2 correctly recognizes whether a graph is M-free, Lemma 4.18 implies that if \(G \) is M-free, then in step two Algorithm 4.2 serves exactly the vertices in \(B \) (see Lemma 4.13). Furthermore, under this premise, it follows from Lemma 4.14, Lemma 4.15 and Lemma 4.18 that if \(G \) is M-free, then in step three Algorithm 4.2 serves exactly the vertices in \(C \) (see Lemma 4.13). The next two lemmata are used to establish this premise.

Lemma 4.19. Let \(G \) be an M-free maximal outerplanar graph, with almost-dual graph \(\tilde{G} \) and reduced graph \(\tilde{G} \). Then \(\tilde{G} \) does not contain a reduced CTNT \(T_1, \ldots, T_k \) for any \(k \geq 4 \). Moreover, if a reduced CTNT of length 3 is contained in \(\tilde{G} \), then all the triangles in that CTNT share a common vertex.

Proof. We prove Lemma 4.19 by contradiction. Assume that \(C = (T_1, \ldots, T_k) \) is a reduced CTNT in \(\tilde{G} \) for some \(k \geq 4 \). Due to Lemma 4.13 touching triangles can be in the surrounding of at most one pair of neighbored triangles. Therefore at most two consecutive triangles can be neighbored in a CTNT, all other consecutive triangles are touching. For each \(1 \leq i \leq k-1 \) let \(v_i \) be a vertex shared by \(T_i \) and \(T_{i+1} \) and let \(v_k \) be a vertex shared by \(T_k \) and \(T_1 \). Clearly, \(v_1, \ldots, v_k \) are pairwise distinct (otherwise \(C \) would not be reduced) and form a cycle \(C' \) of length \(k \geq 4 \) in \(\tilde{G} \) and hence also in \(G \). Since \(G \) is maximal outerplanar, all the vertices of the triangles \(T_1, \ldots, T_k \) which are not in \(C' \) lie on the outside of \(C' \) and all faces of \(G \) within \(C' \) are triangles. Now we distinguish two cases: (i) there are two consecutive neighbored triangles in \(C \) and (ii) there are no two consecutive neighbored triangles in \(C \).

In Case (i) let \(i^* \) such that \(v_{i^*} \) is the vertex of \(C' \) which is shared by the neighbored triangles and let \(v'_{i^*} \) be the other vertex shared by the neighbored triangles. Notice that \(v'_{i^*} \) is not in \(C' \). It is easy to see that if we replace \(v_{i^*} \) by \(v'_{i^*} \) in \(C' \) we get another cycle \(C'' \) in \(G \) such that \(v_{i^*} \) is in the interior of the cycle \(C'' \), which is a contradiction to the outerplanarity of \(G \).

In Case (ii) all faces of \(G \) within the cycle \(C' \) are triangles and all of them are center triangles of some copy of \(S_3 \) in \(G \), thus all of them are present also in \(\tilde{G} \). But this implies that a copy of \(M_1 \) is contained in \(\tilde{G} \), a contradiction.
Thus there are no reduced CTNT of length \(k \) with \(k \geq 4 \) in \(\tilde{G} \).

Now consider a reduced CTNT \(C = (T_1, T_2, T_3) \) of length 3 in \(\tilde{G} \). We distinguish again the cases (i) and (ii).

In Case (i) let w.l.o.g. \(T_1 \) and \(T_2 \) be two neighbored triangles in \(C \). Then \(T_3 \) must share a vertex \(a \) with \(T_1 \) and a vertex \(b \) with \(T_2 \). If \(a \neq b \) and \(\{a, b\} \cap V(T_1) \cap V(T_2) = \emptyset \), then \(G \) would not be outerplanar, a contradiction. If \(a \neq b \) and \(|\{a, b\} \cap V(T_1) \cap V(T_2)| = 1 \), then \(G \) would contain a copy of \(M_1 \), which contradicts \(G \) being \(M \)-free. So \(a = b \) is shared by all triangles of \(C \).

In Case (ii), if there are no neighbored triangles in \(C \), then \(T_1, T_2, T_3 \) are pairwise touching. Again, if they would not all three touch at a common vertex, then \(\tilde{G} \) would contain a copy of \(M_1 \), contradicting \(G \) being \(M \)-free. \(\square \)

Lemma 4.20. Let \(G \) be a maximal outerplanar graph with almost-dual \(\tilde{G} \) and reduced graph \(\tilde{G} \). Then Algorithm 4.2 outputs “\(G \) is not \(M \)-free” in line 22 if \(\tilde{G} \) contains a copy of \(M_1^{\ell} \) for some \(\ell \geq 1 \) and no copy of \(M_1 \) and \(M_1^0 \).

Proof. First, let \(G \) be such that \(\tilde{G} \) contains a copy of \(M_1^{\ell} \) for some \(\ell \geq 1 \) and no copy of \(M_1 \) and \(M_1^0 \) (see Figure 4 and Figure 5). We show that Algorithm 4.2 outputs “\(G \) is not \(M \)-free” in line 22. Let us denote by \(\hat{a}_1 \) and \(\hat{a}_2 \) (\(b_1 \) and \(b_2 \)) the vertices in \(\tilde{V}_3 \) corresponding to the triangles with vertices \(\{a_1, a_2, a_3, a_4\} \) (\(\{b_1, b_2, b_3, b_4\} \)), and by \(\hat{v} \), the vertex in \(\tilde{V}_3 \) corresponding to the triangle with vertices \(\{c_{2i-2}, c_{2i-1}, c_{2i}\} \), \(1 \leq i \leq \ell \), in an arbitrary but fixed copy of \(M_1^{\ell} \) in \(\tilde{G} \). Due to Lemma 4.15 and Lemma 4.16 the pairs of neighbored vertices \(\hat{a}_1 \), \(\hat{a}_2 \) and \(\hat{b}_1 \), \(\hat{b}_2 \) have been served in step one and the algorithm has not terminated with “\(G \) is not \(M \)-free” in step one. According to Lemma 4.15 and Lemma 4.18 Algorithm 4.2 either outputs “\(G \) is not \(M \)-free” in step two or all vertices \(\hat{v}_i \) are served at the end of step two.

There is noting to show if the algorithm stops with “\(G \) is not \(M \)-free” in step two. So assume w.l.o.g. that all vertices \(\hat{v}_i \), \(1 \leq i \leq \ell \), are served at the end of step 2 and consider the moment when line 24 is executed for the last such vertex \(\hat{v}_i \) with \(\hat{v} = \hat{v}_i \). It can be shown inductively that the vertices \(c_{2i-2} \) and \(c_{2i} \) of \(V(T_\hat{v}) \) have already been assigned to other vertices. Hence \(\Delta(c_{2i-2}) \neq \text{NULL} \) and \(\Delta(c_{2i}) \neq \text{NULL} \), implying that the if condition in line 21 is fulfilled. Thus the algorithm stops with “\(G \) is not \(M \)-free” in line 22.

Next we assume that Algorithm 4.2 outputs “\(G \) is not \(M \)-free” in line 22. If \(\tilde{G} \) would contain a copy of \(M_1 \) or \(M_1^0 \), then Algorithm 4.2 would output “\(G \) is not \(M \)-free” already in line 20 (according to Lemma 4.16). We complete the proof by showing that \(\tilde{G} \) contains a copy of \(M_1^{\ell} \) for some \(\ell \geq 1 \).

Let \(\hat{v} \) be the vertex for which the if condition in line 21 is fulfilled right before termination with “\(G \) is not \(M \)-free” in line 22. Consider two vertices \(a \neq x \in V(T_\hat{v}) \), with \(\Delta(a) \neq \text{NULL} \) and \(\Delta(x) \neq \text{NULL} \) (see lines 20.
and [21]. Thus a and x have been assigned to some already served vertices, say \(\hat{a} \) and \(\hat{x} \) in \(\hat{V}_3 \). Notice that \(\hat{a} \neq \hat{x} \), otherwise \(\hat{a} = \hat{x} \) and \(\hat{v} \) would be neighbored to each other and \(\hat{v} \) would have already been served in step one due to Lemma 4.15. Notice, moreover, that \(\hat{a} \) and \(\hat{x} \) can not be neighbored due to the outerplanarity of \(G \). Furthermore, \(\hat{a} \) and \(\hat{x} \) do not touch, otherwise \(\tilde{G} \) would contain a copy of \(M_1 \). Hence \(T_\hat{a} \) and \(T_\hat{x} \) do not share a vertex.

The vertices \(\hat{a} \) and \(\hat{x} \) have been served in step one or two, and hence each of them is neighbored or in the surrounding of some neighbored vertices (see Lemma 4.15 and Lemma 4.17). Hence there exist two STT \(S_1 \) and \(S_2 \) such that (i) \(\hat{a} \) is the vertex preceding \(\hat{v} \) in \(S_1 \), (ii) \(\hat{x} \) the vertex preceding \(\hat{v} \) in \(S_2 \), and both \(S_1 \) and \(S_2 \) (iii) end in \(\hat{v} \), (iv) start in a neighbored triangle and (v) contain as few triangles as possible. If the only vertex in \(S_1 \) touching or being neighbored to some vertex different from \(\hat{v} \) in \(S_2 \) is \(\hat{v} \), then the union of \(S_1 \) and \(S_2 \) together with the vertices, to which the start vertices of \(S_1 \) and \(S_2 \) are neighbored, build an \(M^f_1 \) with \(\ell \geq 1 \).

Otherwise, consider the subsequence \(S_3 \) of \(S_1 \) which ends at \(\hat{v} \) and starts at the last vertex \(\hat{y} \neq \hat{v} \) which touches or is neighbored to some vertex different from \(\hat{v} \) in \(S_2 \). Then \(S_3 \) and \(S_2 \) contain a CTNT. Since \(\hat{a} \) and \(\hat{x} \) do not touch and are not neighbored to each other there is a reduced CTNT of the above CTNT containing \(\hat{v} \), \(\hat{a} \), \(\hat{x} \) and at least one other vertex. The existence of such a reduced CTNT of length at least 4 implies that \(G \) is not \(M \)-free (see Lemma 4.19). The latter statement together with the absence of copies of \(M_1 \) and \(M_1^0 \) in \(\tilde{G} \) implies the existence of a copy of \(M^f_1 \), for some \(\ell \geq 1 \), in \(\tilde{G} \).

Lemma 4.14 is one of many ingredients to prove the following theorem.

Theorem 4.21. Let \(G \) be a maximal outerplanar graph. Algorithm 4.2 correctly decides whether \(G \) is \(M \)-free.

Proof. As an immediate consequence of Lemma 4.16 and Lemma 4.20 Algorithm 4.2 outputs “\(G \) is not \(M \)-free” if and only if \(G \) is not \(M \)-free.

It can be shown that Algorithm 4.2 can be implemented to run in \(O(n^2) \) time, where \(n \) is the order of the input graph \(G \). Thus, it is possible to decide in \(O(n^2) \) time whether a maximal outerplanar graph \(G \) of order \(n \) is \(M \)-free. Moreover, in the positive case an assignment with the properties stated in Lemma 4.13 can be constructed in \(O(n^2) \) time. Algorithm 4.3 uses such an assignment to construct a \(B_1 \)-EPG representation of a maximal outerplanar \(M \)-free graph \(G \).

The next result establishes the correctness of Algorithm 4.3.
Algorithm 4.3 Construct a B_1-EPG representation for a maximal outerplanar M-free graph G

Input: A maximal outerplanar M-free graph G, its almost-dual \tilde{G}, its reduced graph \hat{G} and an assignment assigned: $\hat{v}_3 \rightarrow V(G) \times V(G)$ as computed by Algorithm 4.2

Output: A B_1-EPG representation of G

1: procedure B1_MFREE_MAX_OUTERPLANAR(G, \tilde{G}, \hat{G}, assigned)
2: Choose an arbitrary vertex \hat{v} of degree 1 from $V(\hat{G})$
3: Let \hat{u} be the neighbor of \hat{v} in $V(\hat{G})$
4: Let $\{a, b\} := V(T_\hat{a}) \cap V(T_\hat{b})$ and $\{c\} := V(T_\hat{c}) \setminus \{a, b\}$
5: Draw the paths P_a, P_b and P_c and set R_a as depicted in Figure 8(c)
6: Set $ToConstruct := \{(\hat{u}, \hat{v}, R_a)\}$
7: while $ToConstruct \neq \emptyset$ do
8: Let $(\hat{u}, \hat{v}, R_a) \in ToConstruct$
9: Set $ToConstruct := ToConstruct \setminus \{(\hat{u}, \hat{v}, R_a)\}$
10: Let $\{a, b\} := V(T_\hat{a}) \cap V(T_\hat{b})$
11: Let $\{c\} := V(T_\hat{c}) \setminus \{a, b\}$ and $\{d\} := V(T_\hat{d}) \setminus \{a, b\}$
12: if $\deg(\hat{u}) = 3$ then
13: Let $a' \in \text{assigned}(\hat{u}) \cap \{a, b\}$ and $\{b'\} = \{a, b\} \setminus \{a'\}$
14: Let $\hat{w} \in V(\hat{G})$ and $e \in V(G) \setminus \{b'\}$ such that $\{a', d, e\} = V(T_\hat{w})$
15: Let $\hat{w}' \in V(\hat{G})$ and $f \in V(G) \setminus \{a'\}$ such that $\{b', d, f\} = V(T_\hat{w}')$
16: if $\text{assigned}(\hat{w}) = \{a', b'\}$ then
17: Extend the paths $P_{a'}$ and $P_{b'}$, draw the path P_d in the region R_d and set $R_{\hat{w}}$, $R_{\hat{w}'}$ as depicted in Figure 6(b)
18: else $(\text{assigned}(\hat{w}) = \{a', d\})$
19: Extend the paths $P_{a'}$ and $P_{b'}$, draw the path P_d in the region R_d and set $R_{\hat{w}}$, $R_{\hat{w}'}$ as depicted in Figure 6(c)
20: end if
21: $ToConstruct := ToConstruct \cup \{(\hat{w}, \hat{u}, R_{\hat{w}}), (\hat{w}', \hat{u}, R_{\hat{w}'})\}$
22: else if $\deg(\hat{u}) = 2$ then
23: Let $\hat{w} \neq \hat{v}$ be the other neighbor of \hat{u} in \tilde{G}
24: Let $\{a'\} := V(T_\hat{a'}) \cap \{a, b\}$ and $\{b'\} := \{a, b\} \setminus \{a'\}$
25: Let e such that $\{a', d, e\} = V(T_\hat{w})$
26: Extend the paths $P_{a'}$ and $P_{b'}$, draw the path P_d in the region R_d and set $R_{\hat{w}}$ as depicted in Figure 7(b)
27: $ToConstruct := ToConstruct \cup \{(\hat{w}, \hat{u}, R_{\hat{w}})\}$
28: else $\deg(\hat{u}) = 1$
29: Extend the paths P_a and P_b and draw the path P_d in the region R_d as depicted in Figure 8(b)
30: end if
31: end while
32: end procedure
Figure 6: (a) A part of a graph G with \hat{G} and (b), (c) how Algorithm 4.3 constructs its B_1-EPG representation. Dotted edges may or may not exist.

Figure 7: (a) A part of a graph G with \hat{G} and (b) how Algorithm 4.3 constructs its B_1-EPG representation. Dotted edges may or may not exist.

Lemma 4.22. Let G be a maximal outerplanar M-free graph with almost-dual \hat{G} and reduced graph \tilde{G}. Then Algorithm 4.3 constructs a B_1-EPG representation of G.

Proof. We first prove that all paths can be constructed as described in Algorithm 4.3. Towards that end, note that we have the following invariants throughout the algorithm. For each $(\hat{u}, \hat{v}, R_{\hat{a}}) \in ToConstruct$ the vertices \hat{u} and \hat{v} are adjacent in \hat{G} and their corresponding triangles $T_{\hat{a}}$ and $T_{\hat{b}}$ share two vertices a and b in G. Furthermore the paths of the three vertices of $T_{\hat{b}}$ have already been constructed. Moreover $R_{\hat{a}}$ indicates a region of the B_1-EPG representation, where the paths P_a and P_b intersect and where they can be extended such that no other paths are in this region so far. This implies that all the paths can really be constructed as described by Algorithm 4.3.

Next we prove that Algorithm 4.3 constructs exactly one path for each vertex of G. After the execution of the operations in lines 10 to 20 of the while loop for the triple $(\hat{u}, \hat{v}, R_{\hat{a}})$ all paths corresponding to vertices of $T_{\hat{a}}$ have
been constructed and all neighbors of \(\hat{u} \) have been added to ToConstruct. This implies that for each vertex of \(G \) the path representing it on the grid has been constructed at this time, thus the algorithm constructs one path per vertex. Further, the algorithm constructs new paths only for those vertices the paths of which have not been constructed yet. Thus the algorithm does not construct more than one path per vertex.

Next we show that two paths \(P_a \) and \(P_b \) intersect iff the vertices \(a \) and \(b \) are adjacent. When constructing the paths, it is easy to see that if \(P_a \) and \(P_b \) intersect, then their corresponding vertices are adjacent. On the other hand, if \(a \) and \(b \) are adjacent vertices of \(G \), then there is a vertex \(\hat{v} \) of \(\hat{G} \) such that \(\{a, b\} \subseteq V(T_{\hat{v}})\). Algorithm 4.3 constructs the paths \(P_a \) and \(P_b \) as intersecting paths, when \(\hat{v} \) or one of its neighbors containing both \(a \) and \(b \) is considered in lines 8 to 30.

Finally we show that every path has at most one bend. By construction a path \(P_a \) corresponding to a vertex \(a \in V(G) \) only bends if \(a \in V(T_{\hat{v}}) \) and \(a \) was assigned to \(\hat{v} \) in the assignment given by Algorithm 4.2. Due to Lemma 4.14 each vertex of \(G \) is assigned to at most one vertex of \(\hat{G} \), hence each path \(P_a \) bends at most once. \(\square \)

Lemma 4.22 implies the following characterization of \(B_1 \)-EPG maximal outerplanar graphs.

Theorem 4.23. Let \(G \) be a maximal outerplanar graph. Then \(G \) is \(B_1 \)-EPG if and only if \(G \) is \(M \)-free.

Proof. If \(G \) is not \(M \)-free, then \(G \) is not \(B_1 \)-EPG by Lemma 4.10. Otherwise, Algorithm 4.3 constructs a \(B_1 \)-EPG representation according to Lemma 4.22 so \(G \) is \(B_1 \)-EPG. \(\square \)
4.23 and 4.21 imply that it can be decided in $O(n^2)$ time whether a given maximal outerplanar graph G of order n is B_1-EPG. Furthermore, Algorithm 4.3 can be implemented to run in $O(n)$ time for an input graph G of order n. Thus, a B_1-EPG representation of a B_1-EPG maximal outerplanar graph G of order n can be constructed in $O(n^2)$ time.

Recalling that all outerplanar graphs are in B_m^2 (see 2.4), we obtain the following full characterization of the maximal outerplanar graphs belonging to B_0, B_1, and B_m^2.

Corollary 4.24. The (monotonic) bend number of a maximal outerplanar graph G is given as follows.

\[
b(G) = \begin{cases}
0 & \text{if } G \text{ is } S_3\text{-free} \\
1 & \text{if } G \text{ is } M\text{-free but not } S_3\text{-free} \\
2 & \text{otherwise}
\end{cases}
\]

\[
b^m(G) = \begin{cases}
0 & \text{if } G \text{ is } S_3\text{-free} \\
2 & \text{otherwise}
\end{cases}
\]

5 The (monotonic) bend number of cacti

Definition 5.1. A graph is called a cactus if it is connected and any two simple cycles in it have at most one vertex in common.

It is easy to see that every cactus is outerplanar, so due to 2.4, cacti are in B_m^2. Notice that cacti are in some sense the opposite to maximal outerplanar graphs: in a cactus edges which connect non-consecutive vertices belonging to the same simple cycle are not allowed, whereas in maximal outerplanar graphs there have to be as many edges as possible connecting such vertices.

5.1 Cacti in B_0

Consider first some simple cacti which are not in B_0: cycles C_r for $r > 4$, and the graphs M_2 and M_3 depicted in Figure 9. Indeed, as shown in 22 (cf. Introduction) an interval graph (a) does not contain an induced cycle of length more than three and (b) in any triple of pairwise distinct and pairwise non-adjacent vertices, there exists at least one vertex which is a neighbor to any path connecting the two other vertices. It can be easily seen that none of the graphs mentioned above fulfills both (a) and (b), hence none of these graphs is an interval graph. Therefore, they are not contained in B_0 (and equivalently in B_m^0), because a graph G is in B_0 (and equivalently in B_m^0) iff G is an interval graph, as mentioned in Section 1.
Figure 9: (a) The graph S_3. (b) The graph M_2. (c) The graph M_3.

Figure 10: The B_0-EPG representation of the path G' of Algorithm 5.1.

Definition 5.2. A cactus is called *MC-free* if it contains neither M_2, nor M_3, nor C_r, for any $r \geq 4$, as an induced subgraph.

Since C_r, for any $r \geq 4$, M_2 and M_3 are not in B_0, a cactus that is not *MC-free* is not in B_0. The next theorem shows that the converse is also true. Its constructive proof is based on Algorithm 5.1.

Theorem 5.3. A cactus G is in B_0 if and only if G is *MC-free*.

Proof. As mentioned in Section 5.1 a graph which is not *MC-free* is not in B_0. The sufficient condition of Theorem 5.3 is proven by construction, more precisely, by showing that Algorithm 5.1 correctly constructs a B_0-EPG representation of an *MC-free* cactus G.

Notice that if G contains any cycles, then those are triangles. Furthermore notice that if the vertex set $\{v_1, v_2, v_3\}$ induces a triangle in G, then there is no vertex $v_4 \in V(G) \setminus \{v_1, v_2, v_3\}$ adjacent to at least two (assume w.l.o.g. v_1 and v_2) vertices of $\{v_1, v_2, v_3\}$, because otherwise the simple cycles $\{v_1, v_2, v_3\}$ and $\{v_1, v_2, v_4\}$ would share an edge and contradict the property of G being a cactus. Hence if the vertex set $\{v_1, v_2, v_3\}$ induces a triangle in G, then at least one vertex in $\{v_1, v_2, v_3\}$ has degree 2, otherwise G would contain M_3 as an induced subgraph. Assume w.l.o.g. that v_3 has degree 2.

If the graph $G \setminus v_3$ obtained from G by deleting the vertex v_3 and its incident edges $\{v_1, v_3\}$, $\{v_2, v_3\}$ had a B_0-EPG representation, the latter could be extended to a B_0-EPG representation of G by simply representing v_3 by just one grid edge in the B_0-EPG representation of $G \setminus v_3$ shared by the paths P_{v_1} and P_{v_2} corresponding to v_1 and v_2, respectively. Obviously, this...
Algorithm 5.1 Construct a B_0-EPG representation of an MC-free cactus

Input: An MC-free cactus $G = (V(G), E(G))$ and the set $\delta_G(v)$ of edges incident to v in G, $\forall v \in V(G)$

Output: A B_0-EPG representation of G

1: procedure $B_0_MC_FREE_CACTUS(G)$
2: Set $\Delta := ()$ and $\Delta' := ()$, where $()$ denotes an empty list
3: Set $\bar{G} := G$
4: while G contains a triangle with vertex set $\{v_1, v_2, v_3\}$ do
5: Determine a vertex v of degree two in $\{v_1, v_2, v_3\}$
6: Set $V(\bar{G}) := V(\bar{G}) \setminus \{v\}$ and $E(\bar{G}) := E(\bar{G}) \setminus \delta_G(v)$
7: Set $\Delta := (\Delta, v)$
8: end while
9: for $v \in V(\bar{G})$ do
10: If v is a leaf in \bar{G}, set $\Delta' := (\Delta', v)$
11: end for
12: Set $V(G') := V(\bar{G}) \setminus \Delta'$, $E(G') := E(\bar{G}) \setminus (\cup_{v \in \Delta} \delta_G(v))$, where $\delta_G(v)$ is the set of edges incident with v in \bar{G}
13: Set $G' = (V(G'), E(G'))$
14: Set $k := |V(G')|$
15: for $i = 1, \ldots, k$ do
16: Construct the path P_{w_i} corresponding to the i-vertex w_i in G' as shown in Figure 10
17: end for
18: for $v \in \Delta'$ do
19: Let $w \in V(\bar{G})$ such that $\{(w, v)\} = \delta_G(v)$
20: Construct a path P_v representing v as a subpath of P_w which is not contained in any other path constructed already
21: end for
22: for $v \in \Delta$ do
23: Construct a path P_v representing v as a common edge of the (already constructed) paths P_{v_1}, P_{v_2} for $\{(v, v_1), (v, v_2)\} = \delta_G(v)$
24: end for
25: end procedure
argument holds for any triangle in G. Following this idea, Algorithm 5.1 first constructs the graph \bar{G} obtained by removing from G one vertex of degree 2 together with its incident edges from every triangle in G. This is done in lines 4-8. In lines 9-21 the algorithm constructs a B_0-EPG representation of \bar{G}, which is then extended to a B_0-EPG representation of G in lines 22-24 as explained above.

Next consider the construction of a B_0-EPG representation of \bar{G}. Observe first that \bar{G} is a cactus which does not contain an induced M_2 or C_r, for any $r \geq 3$. Thus \bar{G} is a tree. More precisely \bar{G} is a so-called caterpillar, i.e. the graph G' obtained from \bar{G} by deleting all its leaves and the edges incident to them is a path. Indeed, there is no vertex v with degree more than 2 in G', because if a vertex v with 3 neighbors v_1, v_2, v_3 would exists in G', then each of v_1, v_2, v_3 would have degree at least 2 in \bar{G} and \bar{G} would contain M_2 as an induced subgraph.

Let G' be the path (w_1, w_2, \ldots, w_k) for some $k \leq |V(G)|$ and $w_i \in V(G)$, $1 \leq i \leq k$. It is straightforward to construct a B_0-EPG representation of (w_1, w_2, \ldots, w_k) as depicted in Figure 10. Moreover this B_0-EPG representation of G' can be easily extended to a B_0-EPG representation of \bar{G} in the following way. For any leaf v of \bar{G} consider its neighbor w_ℓ in \bar{G}. Since w_ℓ belongs to G', there is a path P_{w_ℓ} representing w_ℓ in the B_0-EPG representation of G'. Construct a subpath P_v of P_{w_ℓ} to represent v, such that P_v does not intersect any other path constructed so far. Obviously this construction yields a B_0-EPG representation of \bar{G}. Following these ideas the algorithm first constructs the path G' in lines 9-13, then it constructs the B_0-EPG representation of G' in lines 14-17 and finally it extends the latter to a B_0-EPG representation of \bar{G} in lines 18-21.

A standard analysis of the time complexity of Algorithm 5.1 reveals that a B_0-EPG representation a cactus of order n belonging to B_0 can be constructed in $O(n \log(n))$ time. The existence of a faster construction of a B_0-EPG representation of such a cactus remains an open problem.

5.2 Cacti in B_1

In this section we show that every cactus belongs to B_1 by demonstrating that Algorithm 5.2 constructs a B_m^m-EPG representation of an arbitrary cactus.

Theorem 5.4. Every cactus is in B_m^m.

Proof. We show that Algorithm 5.2 correctly constructs a B_m^m-EPG representation for an arbitrary input cactus G. Note that during the algorithm each vertex has a color $col(v)$ and that the colors of the vertices change during the
Algorithm 5.2 Construct a B_m^1-EPG representation of a cactus G

Input: A cactus $G = (V(G), E(G))$ with $n = |V(G)|$ and the set $\delta(v)$ of edges incident with v in G, $\forall v \in V(G)$

Output: A B_m^1-EPG representation of G

1: procedure $B_1m_cactus(G)$
2: Set $col(v) := \text{gray}$ for all $v \in V(G)$
3: Select an arbitrary vertex $v_0 \in V(G)$
4: Set $col(v_0) := \text{green}$
5: Draw the path P_{v_0} representing v_0 as a straight horizontal line on the grid
6: Set the free part R_{v_0} of P_{v_0} to be the whole grid
7: while There is a green vertex in $V(G)$ do
8: Select a vertex $v \in V(G)$ with $col(v) = \text{green}$
9: Determine all k_v cycles $C_1(v), \ldots, C_{k_v}(v)$ in G, which contain v and only gray vertices except for v ($k_v \in \mathbb{N} \cup \{0\}$)
10: Determine $C_0(v) := \{u \in V(G): \{u, v\} \in \delta(v), col(u) = \text{gray}\} \cup \bigcup_{i=1}^{k_v} V(C_i(v))$
11: for $u \in C_0(v)$ do
12: Construct the path P_u representing u such that it lies in the free part R_u of P_v and only intersects P_v, but no other already constructed path, as shown in Figure 11(a)
13: Set $col(u) := \text{green}$
14: end for
15: for $i = 1, \ldots, k_v$ do
16: Let $(v, u_1, u_2, \ldots, u_{\ell-1}, v)$ be the vertices of $C_i(v)$ in the order they are visited in the cycle $C_i(v)$
17: for $j = 1, \ldots, \ell - 1$ do
18: Construct the grid path P_{u_j} representing u_j such that
19: (1) P_{u_j} lies on the free part R_{u_j} of P_v
20: (2) P_{u_j} intersects $P_{u_{j-1}}$
21: (3) P_{u_j} intersects P_v if $j = \ell - 1$
22: (4) P_{u_j} does not intersect other already constructed paths as shown in Figure 11(b), Figure 11(c) and Figure 11(d) for $\ell = 3$, $\ell = 4$ and $\ell \geq 5$, respectively
23: Set $col(u_j) := \text{green}$
24: end for
25: end for
26: Set $col(v) := \text{red}$
27: end while
28: end procedure

35
Figure 11: The construction of a B_1^m-EPG representation of a cactus with free parts of the paths. These constructions are used if R_v lies on a horizontal line of P_v. If R_u lies on a vertical line of P_v, then the constructions have to be rotated by 90° clockwise and then flipped vertically.
algorithm. At the beginning all vertices are colored gray. A vertex \(v \) is gray iff the corresponding grid path \(P_v \) has not been constructed yet. A vertex \(v \) turns green as soon as \(P_v \) has been constructed. Finally, \(v \) is colored red as soon as the paths corresponding to all neighbors of \(v \) have been constructed in the \(B_1^{1m} \)-EPG representation.

Essentially the algorithm consists of a while loop which is repeated as long as there exist green vertices. After selecting a green vertex \(v \) (line 8), the algorithm explores \(v \) in the lines 9-27. Then, after the exploration, \(v \) turns red in line 27. The algorithm terminates when all green vertices have turned red, hence after repeating the while loop \(|V|\) times.

Notice that whenever a path \(P_v \) is constructed, also a free region \(R_v \) is indicated, in which a part of one of the two segments of \(P_v \) is contained and in which no other paths have been constructed yet.

Observe further that the following properties IA1, IA2 and IA3 always hold when the exploration of some vertex is completed, i.e. at line 27. We refer to these three properties as the invariants of the algorithm.

(IA1) For any green or red vertex \(u \) there is an \(\ell \in \mathbb{N} \cup \{0\} \) and a sequence \(S_u = \langle v_0, v_1, \ldots, v_\ell \rangle \) of red vertices such that \(u \) has turned green during the exploration of \(v_\ell \), and if \(\ell \geq 1 \), \(v_j \) has turned green during the exploration of \(v_{j-1} \) for all \(j \in \{1, \ldots, \ell\} \).

(IA2) Moreover, if \(\ell \geq 1 \), then any two vertices \(v_j, v_{j+1}, 0 \leq j \leq \ell - 1 \), in \(S_u \) are connected by a path of non-gray vertices all of which have been gray when the exploration of \(v_j \) started.

(IA3) In particular, for any green or red vertex \(u \) there is a path \(Q_{v_0,u} \) consisting of non-gray vertices connecting \(v_0 \) and \(u \) in \(G \).

The proof of the theorem is completed by proving the next four claims.

(i) Consider a green vertex \(v \) currently selected in line 8 of Algorithm 5.2 and a cycle \(C \) which contains \(v \). Let \(V(C) \) denote the set of vertices in \(C \). Then either all or none of the vertices in \(V(C) \setminus \{v\} \) are gray.

(ii) For every vertex \(u \) of \(G \) the algorithm constructs exactly one path on the grid representing \(u \).

(iii) All constructed paths are monotonic and have at most one bend.

(iv) Two paths \(P_u \) and \(P_w \) on the grid intersect iff the corresponding vertices \(u \) and \(w \) are adjacent in \(G \).

Proof of (i). This fact is trivially true if \(v = v_0 \) (i.e. \(v \) is the first vertex explored at all). Assume now that \(v \neq v_0 \) and that there is a cycle \(C \) in
G containing v as well as some gray vertex u and some non-gray vertex $w \neq v$. Then C does not contain v_0 (otherwise all vertices in C would have been colored green during the exploration of v_0). IA3 implies that there is a path $Q_{v_0,v}$ connecting v_0 and v and consisting of non-gray vertices, and that there is also a path $Q_{v_0,w}$ connecting v_0 and w and consisting of non-gray vertices. But then $Q_{v_0,v}, Q_{v_0,w}$ and a path $Q_{v,w}$ connecting v and w along C close a cycle C'. Moreover C and C' intersect along path $Q_{u,v}$ which contains at least two vertices, and this is a contradiction to G being a cactus.

Proof of (ii). The construction of at least one path P_u representing u, for every vertex u of G, follows from the connectivity of G. Indeed consider a path $Q_{v_0,u} = (v_0, v_1, \ldots, v_k = u)$ connecting v_0 and u in G. The vertex v_1 is colored green during the exploration of v_0. Since the algorithm does not terminate before the exploration of all green vertices, at some point v_1 will be explored and then v_2 will turn green at the latest. By repeating this argument along the vertices of $Q_{v_0,u}$ we conclude that u will turn green at some point, meaning that a grid path P_u representing u is constructed.

A path corresponding to a vertex is constructed only if a vertex turns green. Furthermore, each vertex turns green only once, because during the exploration of vertex v the sets $V(C_i(v))$, $0 \leq i \leq k_v$ have pairwise empty intersection since G is a cactus. Hence during the exploration of a vertex (only) gray vertices turn green at most once. Hence for each vertex exactly one corresponding path is constructed.

Proof of (iii). This claim follows directly from the construction: in Figure 11 all depicted paths are monotonic and have at most one bend. Moreover a 90° clockwise rotation of the paths depicted in Figure 11 followed by a vertical flipping yields monotonic paths with at most one bend.

Proof of (iv). We first consider an edge $\{u, w\}$ in G and show that P_u intersects P_w. Assume w.l.o.g. that w was explored before u by the algorithm.

If u was gray at the moment when w is explored, then u belongs to some $C_i(w)$, $0 \leq i \leq k_w$, and by construction P_u intersects P_w.

Assume now that u is not gray when w is explored. Let v_u (v_w) be the vertex during the exploration of which u (w) turned green. If $v_u = v_w$, then u, w, v_u are contained in one of the cycles $C_i(v_u)$, $1 \leq i \leq k_{v_u}$ and P_u, P_v intersect by construction.

Next we show that $v_u \neq v_w$ cannot happen. Indeed, if $v_u \neq v_w$, then consider the sequences S_{v_u} and S_{v_w} described in IA1. Notice that both sequences start with v_0 and denote by x the last common vertex in S_{v_u} and S_{v_w}. Clearly $x \neq v_u$ or $x \neq v_w$ by assumption. IA2 implies the existence of two paths $Q_{w,x}, Q_{w,x}$ in G joining x with u and w, respectively, and (except for x) consisting of gray vertices at the moment of the exploration of x. But then
$Q_{u,x}$, $Q_{w,x}$ and $\{u, w\}$ would close a cycle with all vertices but x being gray when x is selected for exploration. This would imply that both u and w turn green during the exploration of x, hence $v_u = v_w = x$ would hold.

To summarize, in all possible cases whenever u and w are adjacent in G, the paths P_u and P_w intersect.

Finally, we show that two vertices u and w of G are adjacent, whenever the corresponding grid paths P_u, P_w intersect. Assume w.l.o.g. that P_w was constructed by the algorithm before P_u. Observe that by construction all grid paths constructed after the completion of the exploration of w do not intersect P_w. Thus P_u has been constructed during the exploration of w. But then, by construction P_w and P_u intersect iff w and u are neighbors.

A standard time complexity analysis of Algorithm 5.2 reveals that a B_{11}^m-EPG representation of a cactus G of order n can be constructed in $O(n^2)$ time. The existence of a faster algorithm remains an open question.

Finally, we summarize the results of this section as follows.

Corollary 5.5. The (monotonic) bend number of a cactus G is given as follows.

$$b(G) = b^m(G) = \begin{cases} 0 & \text{if } G \text{ contains no copy of } M_2, M_3, C_r \text{, for } r \geq 4, \\ 1 & \text{otherwise} \end{cases}$$

6 Conclusions and open problems

In this paper we focused on EPG representations and on the (monotonic) bend number of outerplanar graphs. In particular, we dealt with two subclasses of outerplanar graphs: the maximal outerplanar graphs and the cacti. The main contribution of the paper is the full characterization of graphs with (monotonic) bend number equal to 0, 1 or 2 in the subclasses mentioned above. All presented proofs are constructive and lead to efficient algorithms for the construction of the corresponding EPG representations.

It was already known from [4, 20] that 2 is the best possible upper bound on the bend number of outerplanar graphs. In this paper we showed that 2 is also an upper bound on the monotonic bend number of outerplanar graphs, i.e. $b^m(G) \leq 2$ holds for every outerplanar graph G. The result of [4] implies the existence of an outerplanar graph which is not in B_{11}^m, so we conclude that 2 is a best possible upper bound on the monotonic bend number of outerplanar graphs. Thus, the best possible upper bounds on the monotonic bend number and on the bend number coincide for outerplanar graphs.

In [20] the inequality $b(G) \leq 2$ for the class of graphs G of treewidth at most 2 is proven, the outerplanar graphs being a proper subclass of the
later. So far no upper bound is known on $b^m(G)$ for graphs G with treewidth bounded by 2. In particular, it is an open question whether the coincidence mentioned above extends to the class of graphs with treewidth bounded by 2.

Another challenging open question concerns the monotonic bend number of planar graphs. As shown in [20], $b(G) \leq 4$ holds for every planar graph. Also the existence of a planar graph with bend number at least 3 is shown in [20]. So the best possible upper bound on the bend number of planar graphs is 3 or 4. With respect to the upper bound on the monotonic bend number of planar graphs we only now that it is at least 3.

Our precise results on the (monotonic) bend number of maximal outerplanar graphs can be summarized as follows. We distinguished two types of maximal outerplanar graphs: (I) maximal outerplanar graphs which do not contain S_3 as an induced subgraph, and (II) maximal outerplanar graphs which do contain S_3 as an induced subgraph. We showed that $b(G) = b^m(G) = 0$ holds for every graph G of type I. Thus for maximal outerplanar graphs the classes B_0 and B^m_1 coincide, hence allowing two more shapes of paths in the EPG representation does not increase the class of maximal outerplanar graphs, which can be represented. For graphs of type II we showed that $b^m(G) = 2$ holds, while $b^m(G) = b(G)$ does not necessarily hold. More precisely, for graphs G of type II the equality $b(G) = 1$ holds iff G is M-free (see Definition 4.11 and 4.23). Otherwise $b(G) = 2$ holds.

Our results on cacti can be summarized as follows. For cacti the monotonic bend number and the bend number coincide and are bounded by 1, i.e. and $b(G) = b^m(G) \leq 1$ holds for every cactus G. Furthermore $b(G) = b^m(G) = 0$ holds iff the cactus G is MC-free (see Definition 5.2). Otherwise $b(G) = b^m(G) = 1$ holds.

Observe that the two investigated subclasses of outerplanar graphs, the maximal outerplanar graphs and the cacti, behave quite differently in terms of the (monotonic) bend number. This is not surprising given the major structural differences of these two graph classes.

The full characterization of outerplanar graphs with a (monotonic) bend number equal to 1 or 2 remains a challenging open question. In particular, the characterization of Halin graphs and series-parallel graphs with a (monotonic) bend number equal to 1 or 2 are interesting open questions. Note that both graphs classes belong to the planar graphs and 2 is an upper bound on the bend number for both of them. In [14] it was shown that $b^m(G) \leq 2$ for every Halin graph G. In the case of series-parallel graphs the upper bound of 2 follows form the results in [20] and the fact that the treewidth of series-parallel graphs is bounded by 2, see [3].
References

[1] Andrei Asinowski, Elad Cohen, Martin Charles Golumbic, Vincent Limouzy, Marina Lipshteyn, and Michal Stern. Vertex intersection graphs of paths on a grid. *Journal of Graph Algorithms and Applications*, 16(2):129–150, 2012.

[2] Andrei Asinowski and Bernard Ries. Some properties of edge intersection graphs of single-bend paths on a grid. *Discrete Mathematics*, 312(2):427–440, 2012.

[3] Andrei Asinowski and Andrew Suk. Edge intersection graphs of systems of paths on a grid with a bounded number of bends. *Discrete Applied Mathematics*, 157(14):3174–3180, 2009.

[4] Therese Biedl and Michal Stern. Edge-intersection graphs of k-bend paths in grids. In *Computing and Combinatorics*, pages 86–95. Springer, 2009.

[5] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. *Theoretical Computer Science*, 209(1–2):1 – 45, 1998.

[6] Flavia Bonomo, María Pía Mazzoleni, and Maya Stein. Clique coloring B_1-EPG graphs. *Discrete Mathematics*, 340(5):1008–1011, 2017.

[7] Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. *Journal of Computer and System Sciences*, 13(3):335–379, 1976.

[8] M. Bougeret, S. Bessy, D. Gonçalves, and C. Paul. On independent set on B_1-EPG graphs. In *Approximation and online algorithms*, volume 9499 of *Lecture Notes in Comput. Sci.*, pages 158–169. Springer, Cham, 2015.

[9] Nicolas Bousquet and Marc Heinrich. Computing maximum cliques in B_2-EPG graphs. In *Graph-theoretic concepts in computer science*, volume 10520 of *Lecture Notes in Comput. Sci.*, pages 140–152. Springer, Cham, 2017.

[10] Martin Lee Brady and Majid Sarrafzadeh. Stretching a knock-knee layout for multilayer wiring. *IEEE Transactions on Computers*, 39(1):148–151, Jan 1990.
[11] Kathie Cameron, Steven Chaplick, and Chính T Hoàng. Edge intersection graphs of L-shaped paths in grids. *Electronic Notes in Discrete Mathematics*, 44:363–369, 2013.

[12] Zakir Deniz, Simon Nivelle, Bernard Ries, and David Schindl. On split B_1-EPG graphs. In *LATIN 2018: Theoretical Informatics*, volume 10807 of *Lecture Notes in Comput. Sci.*, pages 361–375. Springer, Cham, 2018.

[13] Dror Epstein, Martin Charles Golumbic, and Gila Morgenstern. Approximation algorithms for B_1-EPG graphs. In *Algorithms and Data Structures*, pages 328–340. Springer, 2013.

[14] Mathew C. Francis and Abhiruk Lahiri. VPG and EPG bend-numbers of Halin graphs. *Discrete Appl. Math.*, 215:95–105, 2016.

[15] Fănică Gavril. A recognition algorithm for the intersection graphs of paths in trees. *Discrete Mathematics*, 23(3):211 – 227, 1978.

[16] Martin Charles Golumbic and Robert E. Jamison. Edge and vertex intersection of paths in a tree. *Discrete Mathematics*, 55(2):151 – 159, 1985.

[17] Martin Charles Golumbic and Robert E. Jamison. The edge intersection graphs of paths in a tree. *Journal of Combinatorial Theory, Series B*, 38(1):8 – 22, 1985.

[18] Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Edge intersection graphs of single bend paths on a grid. *Networks*, 54(3):130–138, 2009.

[19] Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Single bend paths on a grid have strong helly number 4: errata atque emendationes ad “Edge intersection graphs of single bend paths on a grid”. *Networks*, 62(2):161–163, 2013.

[20] Daniel Heldt, Kolja Knauer, and Torsten Ueckerdt. On the bend-number of planar and outerplanar graphs. In *LATIN 2012: Theoretical Informatics*, pages 458–469. Springer, 2012.

[21] Daniel Heldt, Kolja Knauer, and Torsten Ueckerdt. Edge-intersection graphs of grid paths: The bend-number. *Discrete Applied Mathematics*, 167(0):144 – 162, 2014.
[22] Cornelis Lekkeikerker and Johan Boland. Representation of a finite graph by a set of intervals on the real line. *Fundamenta Mathematicae*, 51:45–64, 1962.

[23] Paul Molitor. A survey on wiring. *Journal of Information Processing and Cybernetics*, 27(1):3–19, April 1991.

[24] Martin Pergel and Paweł Rzążewski. On edge intersection graphs of paths with 2 bends. In *Graph-theoretic concepts in computer science*, volume 9941 of *Lecture Notes in Comput. Sci.*, pages 207–219. Springer, Berlin, 2016.