VOLterra type integral operator and analytic function spaces

RAHIM KARGAR

Abstract. We obtain the radius of convexity of the Volterra type integral operator
\[T_g f(z) = \int_0^z f(s) g'(s) ds \quad (|z| < 1), \]
when \(f \) and \(g \) belong to the some certain subclass of analytic functions.

1. Volterra type operator

Let \(\Delta := \{ z \in \mathbb{C} : |z| < 1 \} \). In 1977 Pommerenke \[17\] Lemma 1 introduced an integral operator, called Volterra type operator as follows:
\[J_g f(z) := \int_0^z f'(s) g(s) ds \quad (z \in \Delta). \]
Pommerenke proved that \(J_g f(z) \) is a bounded operator on the Hardy space \(H^2 \) if and only if \(g \) belongs to the class \(BMOA \). Also Aleman and Siskakis \[1\] proved that this characterization (boundedness) is valid on each \(H^p \) for \(1 \leq p < \infty \) and that \(J_g \) is compact on \(H^p \) if and only if \(g \in VMOA \). An another natural integral operator is defined as follows:
\[T_g f(z) := \int_0^z f(s) g'(s) ds \quad (z \in \Delta). \]
It is necessary to refer to the this fact that
\[J_g f(z) + T_g f(z) = M_g f - f(0)g(0), \]
where \(M_g \) is the multiplication operator and is defined by
\[(M_g f)(z) = g(z)f(z) \quad (f \in H(\Delta), z \in \Delta) \]
and \(H(\Delta) \) denotes the class of all analytic functions on \(\Delta \). Indeed, if \(f \) and \(g \) are two normalized analytic functions, then
\[J_g f(z) + T_g f(z) = g(z)f(z). \]
We note that the integral operators \(J_g f(z) \) and \(T_g f(z) \) contain the well-known integral operators in the analytic function theory and geometric function theory, such as the generalized Bernardi–Libera–Livingston linear integral operator (see \[2\] \[9\] \[10\]), Srivastava–Owa fractional derivative operators \[12\] \[14\] and the Cesáro integral operator, \[18\] \[19\].

Recently many researchers have been studied the integral operators \(J_g f(z) \) and \(T_g f(z) \). For example, Li and Stević \[7\] studied the boundedness and the compactness of \(J_g f(z) \) and \(T_g f(z) \) on the Zygmund space and the little Zygmund space. Also, many authors have been studied the essential norm of the integral operators. Laitila et al. \[6\] studied the essential norm of the operator \(T_g \) on the Hardy space. Or Liu et al. (see \[8\]) studied the essential norm of the operator \(T_g \) on the Bloch

2010 Mathematics Subject Classification. 47B38; 30C45.

Key words and phrases. Starlike; Convex; Radius of convexity; Volterra type integral operator; Linear–invariant family; Locally univalent.
space and some other spaces. Zhuo and Ye [20] studied the essential norm of the
operator T_g from Morrey spaces to the Bloch space. Finally, Zhou and Zhu studied
the essential norm of the operator T_g from Hardy spaces to the BMOA space, Besov
spaces, Bergman spaces and Bloch-type spaces, see [21].

The basis of this article is to study of the integral operator

$$T_g f(z) = \int_0^z f(s)g'(s)ds = \int_0^1 f(tz)g'(tz)dt = \int_0^z f dg.$$

2. Some Subclass of Analytic Functions

In this section we recall some certain subclass of analytic functions. Further,
we denote by \mathcal{A} the class of all analytic and normalized functions in the open unit
disk Δ. The subclass of \mathcal{A} that the function $f \in A$ holds throughout Δ, then

$\text{Re} \left\{ z f'(z) \right\} > \alpha \quad (z \in \Delta).$

We denote by $S^*(\alpha)$ the class of starlike functions of order α. Also, $f \in \mathcal{U}$ is convex
of order $0 \leq \alpha < 1$ if $z f'(z) \in S^*(\alpha)$. The class of convex functions of order alpha
is denoted by $\mathcal{K}(\alpha)$. Analytically, $f \in \mathcal{K}(\alpha)$ iff

$$\text{Re} \left\{ 1 + z f''(z) \right\} > \alpha \quad (z \in \Delta).$$

Let A and B be two complex numbers such that $|A| > 1$ and $|B| \leq 1$. We say
that the function $f \in \mathcal{A}$ belongs to the class $S^*(A, B)$ if it satisfies the following
subordination relation:

$$zf'(z) - \frac{A + Az}{1 + Bz} (z \in \Delta).$$

We note that if $-1 \leq B < A \leq 1$ and are real, then $S^*(A, B)$ becomes the family of
Janowski starlike functions. Also, we say that $f \in \mathcal{K}(A, B)$ if and only if $z f'(z) \in S^*(A, B)$. Indeed, if f belongs to the class $\mathcal{K}(A, B)$, then it satisfies

$$1 + z f''(z) < \frac{1 + A}{1 + B} (z \in \Delta).$$

We remark that $\mathcal{K}(2, 1)$ and $\mathcal{K}(2, -1)$ become to the Ozaki conditions. Moreover,
by the Lindelöf subordination principle (this principle states that if $f(z) \prec g(z)$,
then $|f'(0)| \leq |g'(0)|$ and $f(\Delta) \subset g(\Delta)$), if $f \in \mathcal{K}(2, 1)$, then we have

$$(2.1) \quad \text{Re} \left\{ 1 + z f''(z) \right\} < \frac{3}{2} (z \in \Delta).$$

Also, if $f \in \mathcal{K}(2, -1)$, then

$$(2.2) \quad \text{Re} \left\{ 1 + z f''(z) \right\} > -\frac{1}{2} (z \in \Delta).$$

Ozaki proved that if $f \in \mathcal{A}$ with $f(z)f(z)/z \neq 0$, there, and if either (2.1) or (2.2)
holds throughout Δ, then f is univalent and convex in at least one direction in Δ, see [15].

Let \mathcal{LU} denote the family of normalized locally univalent functions in Δ. For
$\beta \in \mathbb{R}$, we consider the class $\mathcal{G}(\beta)$ consisting of all functions $f \in \mathcal{LU}$ which satisfy the condition

$$(2.3) \quad \text{Re} \left\{ 1 + z f''(z) \right\} < 1 + \frac{\beta}{2} (z \in \Delta).$$
We note that $G(1) \subset U$ and $G(1) \equiv K(2,1)$. Also the functions in the class $G(1)$ are starlike of order zero in Δ. The functions class $G(\beta)$ was studied extensively by Kargar et al. [5] (see also [11]). For more details about the class $G(\beta)$ see [5] and its references.

Let $Aut(\Delta)$ be the class of holomorphic automorphisms in Δ. Any $\phi \in Aut(\Delta)$ has the following representation:

$$\phi(z) = e^{i\theta} \frac{z + a}{1 + az} \quad (\theta, a \in \mathbb{R}, z \in \Delta).$$

The family F of A is called a linear–invariant family (L.I.F.), if $F \subset LU$ and for all $f \in F$ and $\phi \in Aut(\Delta)$

$$(2.4) \quad F_\phi(f)(z) := f(\phi(z)) - f(\phi(0))$$

and the universal linear invariant family of order $\gamma \geq 1$ as

$$UL_\gamma := \{ f \in F : \text{ord } f \leq \gamma \}.$$

We remark that $UL_1 \equiv K(0)$ and $U \subset UL_2$. For more details about the L.I.F. see [4, Chapter 5].

3. Some Key Lemmas

In this section we recall some lemmas which help us in order to prove of main results.

Lemma 3.1. (see [3]) If $f \in UL_\gamma$ and $\gamma \geq 1$, then

$$\max \left\{ \left| \frac{zf''(z)}{f'(z)} \right| - \frac{2|z|^2}{1 - |z|^2} : f \in F \right\} \leq \frac{2\gamma|z|}{1 - |z|^2} \quad (z \in \Delta).$$

The next lemma is due to Pommerenke [16], see also [4, Lemma 5.1.3].

Lemma 3.2. Let F be a linear–invariant family and $\delta = \text{ord } F$. Then

$$(3.1) \quad \delta = \sup \sup_{f \in F, |z| < 1} \left| -z + \frac{1}{2} \frac{f''(z)}{f'(z)} \right| (z \in \Delta).$$

The following lemma gives a basic estimate which leads to the distortion theorem for univalent functions.

Lemma 3.3. (see [4] p. 15) If $f \in U$, then

$$\max \left\{ \left| \frac{zf''(z)}{f'(z)} - \frac{2r^2}{1 - r^2} \right| : |z| = r < 1 \right\} \leq \frac{4r}{1 - r^2}.$$

The estimate is sharp for rotation of Koebe function.

Lemma 3.4. (see [11]) Let $\beta \in (0,1]$ be fixed. If $f \in G(\beta)$, then

$$\max \left\{ \left| \frac{f''(z)}{f'(z)} \right| : z \in \Delta \right\} \leq \frac{\beta}{1 - z}.$$

The result is sharp for the function $f'(z) = (1 - z)^\beta$.

In the present paper, we obtain the radius of convexity of the Volterra-type integral operator $T_\beta f(z)$ given by (1.2) when the functions f and g belonging to the some certain subclasses of analytic functions which are defined in the Section 2.
4. Main Results

We begin this section with the following result.

Theorem 4.1. Let A and B be two complex numbers, $|A| > 1$ and $|B| ≤ 1$. Also, let $0 ≤ \alpha < 1$ be real number. If $f \in S^*(A, B)$ and $g \in \mathcal{K}(A, B)$, then the Volterra-type integral operator $T_g f(z)$ given by (1.2) is convex of order α in $|z| ≤ r_c(A, B, \alpha)$ where

$$r_c(A, B, \alpha) = \begin{cases} \frac{|B - A| - (\alpha - 1)|B - A|}{\alpha |B|^2 - 2 \text{Re}(AB)} & B = 0 \\ \frac{|B - A| - (\alpha - 1)|B - A|}{\alpha |B|^2 - 2 \text{Re}(AB)} & B \neq 0. \end{cases}$$

Proof. From now on, for convenience we put $T(z) := T_g f(z)$. By the analytic definition of convexity of order $0 ≤ \alpha < 1$ it is enough to find out the largest number $0 < r < 1$ for which

$$\min_{|z| = r} \text{Re} \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} - \alpha ≥ 0.$$

Further, from (1.2) we have

$$1 + z \frac{T''(z)}{T'(z)} - \alpha = z \frac{f''(z)}{f(z)} - \alpha + z \frac{g''(z)}{g'(z)} + 1.$$

On the other hand, since $f \in S^*(A, B)$ we get

$$z \frac{f''(z)}{f(z)} = \frac{1 + A z}{1 + B z} \quad (z \in \Delta).$$

Thus by using the Lindelöf subordination principle, we get

$$\left| z \frac{f''(z)}{f(z)} - \frac{1 - AB r^2}{1 - |B|^2 r^2} \right| ≤ \frac{|B - A|^r}{1 - |B|^2 r^2} \quad (|r| = r < 1).$$

From the above inequality (4.5), we obtain

$$\text{Re} \left\{ z \frac{f''(z)}{f(z)} \right\} - \alpha ≥ \text{Re} \left\{ 1 - AB r^2 \right\} - \alpha \quad \geq \frac{1 - |B - A| r - (\text{Re} \{AB\} - \alpha |B|^2) r^2}{1 - |B|^2 r^2}.$$

Also, because $g \in \mathcal{K}(A, B)$, by the same proof we obtain

$$\text{Re} \left\{ 1 + z \frac{g''(z)}{g'(z)} \right\} ≥ \frac{1 - |B - A| r - \text{Re} \{AB\} r^2}{1 - |B|^2 r^2}.$$

Now from (4.3), (4.6) and (4.7) we get

$$\text{Re} \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} - \alpha ≥ \frac{2 - \alpha - 2|B - A| r - (2 \text{Re} \{AB\} - \alpha |B|^2) r^2}{1 - |B|^2 r^2} > 0$$

provided $\phi(r) := 2 - \alpha - 2|B - A| r - (2 \text{Re} \{AB\} - \alpha |B|^2) r^2 > 0$. A simple calculation gives that the roots of $\phi(r)$ are

$$\frac{|B - A| ± |(\alpha - 1)B - A|}{\alpha |B|^2 - 2 \text{Re}(AB)}.$$

Also, it is clear that if $B = 0$, then $\phi(r)$ yields that $\phi(r) = 2 - \alpha - 2|A| r$ and it will be positive if $r < (2 - \alpha)/2|A|$. This completes the proof. □

If we take $A = 2$ and $B = -1$ in the Theorem 1.1 then we have the following.

Corollary 4.1. Let $\text{Re}\{zf'(z)/f(z)\} > -1/2$ where $z \in \Delta$ and g satisfies the condition (2.2). Then the Volterra-type integral operator $T_g f(z)$ given by (1.2) is convex of order α ($0 ≤ \alpha < 1$) in the disk $|z| ≤ (2 - \alpha)/(4 + \alpha)$.
Putting $A = 2$ and $B = 1$ in the Theorem 4.1, we get.

Corollary 4.2. Let $\text{Re}\{zf'(z)/f(z)\} < 3/2$ where $z \in \Delta$ and g satisfies the condition (4.11). Then the radius of convexity of order α of the Volterra-type integral operator $T_g f(z)$ given by (1.2) is

$$
(4.11) \quad \text{-Re} \left\{ z \frac{g''(z)}{g'(z)} \right\} \geq \frac{2r^2}{1 - r^2} - \frac{2\gamma r}{1 - r^2}.
$$

Now by definition of starlikeness of order alpha and using the above inequality (4.11), and applying the relation (4.10) we obtain

$$
\Re \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} = \Re \left\{ z f'(z) + z \frac{g''(z)}{g'(z)} + 1 \right\}
$$

$$
> \frac{1 + \alpha - 2\gamma r + (2 - \alpha - 1)r^2}{1 - r^2} > 0,
$$

provided $\varphi(r) = 1 + \alpha - 2\gamma r + (2 - \alpha - 1)r^2 > 0$. It is easy to see that the roots of $\varphi(r)$ are

$$
\gamma \pm \sqrt{\alpha^2 + \gamma^2 - 1}.
$$

Also we see that if $0 \leq \alpha < 1$ and $\gamma \geq 1$, then $0 < r_c^{-}(\alpha, \gamma) < 1$ where $r_c(\alpha, \gamma)$ defined in (4.10). This is the end of proof. \text{□}

Putting $\alpha = 0$ and $\gamma = 1$ in the Theorem 4.2, we get.

Corollary 4.3. Let f and g be starlike and convex univalent functions in the open unit disk Δ, respectively. Then the Volterra-type integral operator $T_g f(z)$ is convex univalent function in Δ, too.

Theorem 4.3. Let $0 \leq \alpha < 1$. If f is starlike of order α and $g \in \mathcal{F}$ with $\text{ord} \mathcal{F} = 1$, then the Volterra type integral operator $T_g f(z)$ given by (1.2) is convex univalent in the disk Δ.

Proof. Since f is starlike of order $0 \leq \alpha < 1$ we have

$$
(4.12) \quad \text{Re} \left\{ z \frac{f'(z)}{f(z)} \right\} > \alpha \quad (z \in \Delta).
$$

Also since $g \in \mathcal{F}$, by using the relation (5.1) and with a little calculation we get

$$
(4.13) \quad \Re \left\{ 1 + z \frac{g''(z)}{g'(z)} \right\} \geq \frac{1 - 2\delta r + r^2}{1 - r^2} \quad (|z| = r < 1).
$$

Now, from (4.10), (4.12) and (4.13) and since $\text{ord} \mathcal{F} = 1$, we get

$$
\Re \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} \geq \frac{1 + \alpha - 2\gamma r + (1 - \alpha)r^2}{1 - r^2}.
$$
and for $z \in \Delta$ one deduces that

$$\Re \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} > 0 \quad (z \in \Delta).$$

Thus by definition we conclude that $T(z)$ is convex univalent in the unit disk Δ. This is the end of proof.

The next theorem is the following.

Theorem 4.4. Let f be starlike function of order α and g be univalent function. Then the radius of convexity of the Volterra-type integral operator $T_g f(z)$ is

$$r_c^\alpha (\alpha) = \frac{2 - \sqrt{3 + \alpha^2}}{1 - \alpha} \quad (0 \leq \alpha < 1).$$

Proof. Let $f \in S^*(\alpha)$ where $0 \leq \alpha < 1$ and $g \in \mathcal{U}$. From Lemma 3.3 and by (4.10), we get

$$\Re \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} = \Re \left\{ z \frac{f'(z)}{f(z)} + z \frac{g''(z)}{g'(z)} + 1 \right\} > \frac{1 + \alpha - 4r + (1 - \alpha)r^2}{1 - r^2} > 0,$$

when $|z| \leq (2 - \sqrt{3 + \alpha^2})/(1 - \alpha)$ and concluding the proof.

Remark 4.1. Taking $\alpha = 0$ in the Theorem 4.4, we see that if f is starlike univalent function and $g \in \mathcal{U}$, then the radius of convexity of the Volterra type integral operator is $2 - \sqrt{3}$. Indeed, in this case the radius of convexity the Volterra type integral operator is equal to familiar radius of convexity for the class \mathcal{U} (see [4, Theorem 2.2.22, p. 51]).

Finally we have.

Theorem 4.5. Let f be starlike function of order $0 \leq \alpha < 1$ and g be locally univalent function which satisfies in (2.3) where $0 < \beta \leq 1$. Then the radius of convexity of the Volterra-type integral operator $T_g f(z)$ is

$$r_c(\alpha, \beta) = \frac{1 + \alpha}{1 + \alpha + \beta}.$$

Proof. Assume that $f \in S^*(\alpha)$ and $g \in \mathcal{G}(\beta)$, where $0 \leq \alpha < 1$ and $0 < \beta \leq 1$. By Lemma 3.3 and from (4.10) we have

$$\Re \left\{ 1 + z \frac{T''(z)}{T'(z)} \right\} > 1 + \alpha - \frac{\beta |z|}{1 - |z|} \geq 0,$$

where $|z| \leq (1 + \alpha)/(1 + \alpha + \beta)$. This completes the proof.

References

[1] A. Alemán and A. Siskakis, *An integral operator on H^p*, Complex Var. Theory Appl. **28** (1995), 140–158.

[2] S.D. Bernardi, *Convex and starlike univalent functions*, Trans. Amer. Math. Soc. **135** (1969), 429–446.

[3] A. Ebadian and R. Kargar, *Univalence of integral operators on neighborhoods of analytic functions*, Iran. J. Sci. Technol. Trans. Sci., DOI: 10.1007/s40995-017-0223-z.

[4] I. Graham and G. Kohr, *Geometric Function Theory in One and Higher Dimensions*, Marcel Dekker Inc., New York, 2003.

[5] R. Kargar, N.R. Pascu and A. Ebadian, *Locally univalent approximations of analytic functions*, J. Math. Anal. Appl. **453** (2017), 1005–1021.

[6] J. Laitila, S. Miihkinen and P. Nieminen, *Essential norms and weak compactness of integration operators*, Arch. Mech. **97** (2011), 39–48.
VOLTERRA TYPE INTEGRAL OPERATOR AND ANALYTIC FUNCTION SPACES

[7] S. Li and S. Stević, Volterra-type operators on Zygmund spaces, J. Ineq. Appl., Vol. 2007, Article ID 32124, 10 pages, 2007.
[8] J. Liu, Z. Lou and C. Xiong, Essential norms of integral operators on spaces of analytic functions, Nonlin. Anal. 75 (2012), 5145–5156.
[9] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758.
[10] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966) 352–357.
[11] M. Obradović, S. Ponnusamy, and K.-J. Wirths, Coefficient characterizations and sections for some univalent functions, Sib. Math. J. 54 (2013), 679–696.
[12] S. Owa, On the distortion theorems I, Kyungpook Math. J. 18 (1978), 53–59.
[13] S. Owa, Properties of certain integral operators, Georgian Math. J. 2 (1995), 535–545.
[14] S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math. 39 (1987), 1057–1077.
[15] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku, 4 (1941), 45–86.
[16] C. Pommerenke, Linear-invariante familiä von analytischer funktionen. I, Math. Ann. 155 (1964), 108–154.
[17] Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv. 52 (1977), 591–602.
[18] A.G. Siskakis, Composition semigroups and the Cesàro operator on H^p, J. Lond. Math. Soc. 36 (1987), 153–164.
[19] A.G. Siskakis, The Cesàro operator is bounded on H^1, Proc. Amer. Math. Soc. 110 (1990), 461–462.
[20] Z. Zhuo and S. Ye, Volterra-type operators from analytic Morrey spaces to Bloch space, J. Integral Equ. Appl. 27 (2015), 289–309.
[21] J. Zhou and X. Zhu, Essential norm of a Volterra-type operator from Hardy spaces to some analytic function spaces, J. Integral Equ. Appl. 28 (2016), 581–593.

Independent researcher, without dependence on the organization.
E-mail address: rkargari963@gmail.com