Research article

New identities involving Hardy sums $S_3(h, k)$ and general Kloosterman sums

Wenjia Guo1 Yuankui Ma2 and Tianping Zhang1,*

1 School of Mathematics and Information Science, Shaanxi Normal University, Xi’an, Shaanxi, P. R. China
2 School of Science, Xi’an Technological University, Xi’an, Shaanxi, P. R. China

* Correspondence: Email: tpzhang@snnu.edu.cn.

Abstract: The main purpose of this paper is to obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums $S_3(h, p)$ and general Kloosterman sums $K(r, l, \lambda; p)$. By applying the properties of Gauss sums and the mean value theorems of Dirichlet L-function, we derive some new identities. As the special cases, we also deduce some exact computational formulas for hybrid mean value involving $S_3(h, p)$ and classical Kloosterman sums $K(n, p)$.

Keywords: Hardy sums; general Kloosterman sums; hybrid mean value

Mathematics Subject Classification: 11F20, 11L05

1. Introduction and main results

If h and k are integers with $k > 0$, the classical Dedekind sums $S(h, k)$ are defined as

$$S(h, k) = \sum_{a=1}^{k} \left(\left(\frac{a}{k} \right) \left(\frac{ah}{k} \right) \right),$$

where

$$\left(\frac{x}{y} \right) = \begin{cases} x - [x] - \frac{1}{2}, & \text{if } x \text{ is not an integer;} \\ 0, & \text{if } x \text{ is an integer.} \end{cases}$$

The various properties of $S(h, k)$ were investigated by many authors, one of which is reciprocity theorem (see Tom M. Apostol [1] or L. Carlitz [2]). That is, for all positive integers h and k with $(h, k) = 1$, we have the identity

$$S(h, k) + S(k, h) = \frac{h^2 + k^2 + 1}{12hk} - \frac{1}{4}.$$
Conrey et al. [3] studied the mean value distribution of $S(h, k)$ and deduced the important asymptotic formula
\[\sum_{h=1}^{k} |S(h, k)|^{2m} = f_{m}(k) \left(\frac{k}{12} \right)^{2m} + O \left(\left(k^{\frac{9}{50}} + k^{2m-1} \right) \log^{3} k \right), \]
where $\sum'_{h=1}$ denotes the summation over all h such that $(h, k) = 1$ and
\[\sum_{n=1}^{\infty} \frac{f_{m}(n)}{n^{s}} = 2 \frac{\zeta(2m)}{\zeta(4m)} \cdot \frac{\zeta(s + 4m - 1)}{\zeta^{2}(s + 2m)} \zeta(s). \]
Moreover, X. L. He and W. P. Zhang [4] gave an interesting asymptotic formula for the Dedekind sums with a weight of Hurwitz zeta-function as follows:
\[\sum_{h=1}^{k} e^{\left(\frac{1}{2} \cdot \frac{h}{k} \right)} S^{2}(h, k) = \frac{k^{3}}{144} \zeta(3) \prod_{p \mid k} \left(1 - \frac{1}{p^{3}} \right) + O \left(k^{\frac{3}{2}} \exp \left(\frac{3 \log k}{\log \log k} \right) \right). \]

Other sums analogous to the Dedekind sums are the Hardy sums. Using the notation of Berndt and Goldberg [5], they defined
\[S_{1}(h, k) = \sum_{j=1}^{k-1} (-1)^{j+1+\left[\frac{h}{k} \right]}, \]
where h and k are integers with $k > 0$.

In 2014, H. Zhang and W. P. Zhang [6] obtained some beautiful identities involving $S_{1}(h, k)$ in the forms of
\[\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, p) K(n, p) S_{1}(2m\tilde{n}, p), \]
\[\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, p)|^{2} |K(n, p)|^{2} S_{1}(2m\tilde{n}, p), \]
where $K(n, p)$ denotes the reduced form of the general Kloosterman sums attached to a Dirichlet character λ modulo k as
\[K(r, l, \lambda; k) = \sum_{a=1}^{k} \lambda(a) e \left(\frac{ra + l\bar{a}}{k} \right), \]
where $e(x) = e^{2\pi i x}$, \bar{a} denotes the solution of the congruence $x \cdot a \equiv 1 \mod k$.

Recently, H. F. Zhang and T. P. Zhang [7] extended the results in [6] to a more general situation as
\[\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, s, \lambda; p) \tilde{K}(n, t, \lambda; p) S_{1}(2m\tilde{n}, p), \]
Theorem 3. Let λ be an odd prime with $p \equiv 3 \mod 8$. Then for any Dirichlet character λ mod p and any integer s, t with $(s, p) = (t, p) = 1$, we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(2n\overline{m}, p),
\]
where $\overline{K(n, t, \lambda; p)}$ denotes complex conjugate of $K(n, t, \lambda; p)$.

Actually there are six forms of Hardy sums (see Berndt [8] and Goldberg [9]). A natural question is whether we can obtain similar results by replacing $S_3(h, k)$ with other forms of Hardy sums. Due to some technical reasons, for most of other forms of Hardy sums, the answer is no! Thanks to the important relationships among Hardy sums and Dedekind sums built by R. Sitaramachandrarao [10], we are lucky to find the only one $S_3(h, p)$ to replace, with
\[
S_3(h, k) = \sum_{j=1}^{k} (-1)^{j} \left(\left(\frac{hj}{k} \right) \right).
\]

Our starting point relies heavily on the following in [10] as:

Proposition 1. Let k be an odd positive integer, h be an integer with $(h, k) = 1$. Then
\[
S_3(h, k) = 2S(h, k) - 4S(2h, k).
\]

Then applying the properties of Gauss sums and the mean square value of Dirichlet L-functions, we have

Theorem 1. Let p be an odd prime. Then for any Dirichlet character λ mod p and any integer s, t with $(s, p) = (t, p) = 1$, we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, s, \lambda; p) \overline{K(n, t, \lambda; p)} S_3(m\overline{m}, p) = \begin{cases}
\frac{p-1}{2}, & \text{if } \overline{\lambda} \neq \chi_0; \\
\frac{p(p-1)}{2}, & \text{if } \overline{\lambda} = \chi_0,
\end{cases}
\]

where χ is an odd Dirichlet character modulo p and χ_0 is the principal character modulo p.

Theorem 2. Let p be an odd prime with $p \equiv 1 \mod 4$. Then for any Dirichlet character λ mod p and any integer s, t with $(s, p) = (t, p) = 1$, we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\overline{m}, p) \begin{cases}
\frac{p^2(p-1)}{2}, & \text{if } \overline{\lambda} \neq \chi_0, \overline{\lambda} \neq \chi_0; \\
\frac{2}{p(p-1)}, & \text{if } \overline{\lambda} \neq \chi_0, \overline{\lambda} = \chi_0; \\
\frac{2}{p} + \frac{1}{2} p^2 - 4p^2 - p^3 + 5p^2 + p^2 - 2p^2 - \frac{1}{2} p, & \text{if } \overline{\lambda} = \chi_0, \overline{\lambda} = \chi_0; \\
\frac{2}{p} + 3p^2 + 3p^3 - \frac{1}{2} p^2 - \frac{1}{2} p, & \text{if } \overline{\lambda} = \chi_0, \overline{\lambda} \neq \chi_0.
\end{cases}
\]

Theorem 3. Let p be an odd prime with $p \equiv 3 \mod 8$. Then for any Dirichlet character λ mod p and any integer s, t with $(s, p) = (t, p) = 1$, we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\overline{m}, p) \begin{cases}
\frac{2}{p} + \frac{1}{2} p^2 - 4p^2 - p^3 + 5p^2 + p^2 - 2p^2 - \frac{1}{2} p, & \text{if } \overline{\lambda} = \chi_0, \overline{\lambda} = \chi_0; \\
\frac{2}{p} + 3p^2 + 3p^3 - \frac{1}{2} p^2 - \frac{1}{2} p, & \text{if } \overline{\lambda} = \chi_0, \overline{\lambda} \neq \chi_0.
\end{cases}
\]
Theorem 4. Let \(p \) be an odd prime with \(p \equiv 7 \mod 8 \). Then for any Dirichlet character \(\lambda \mod p \) and any integer \(s, t \) with \((s, p) = (t, p) = 1 \), we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\overline{m}, p) = \frac{p(p - 1)}{2}.
\]

Corollary 1. Let \(p \) be an odd prime. Then we have the identity
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, p)K(n, p)S_3(m\overline{m}, p) = \frac{p(p - 1)}{2}.
\]

Corollary 2. Let \(p \) be an odd prime. Then we have
\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, p)|^2 |K(n, p)|^2 S_3(m\overline{m}, p) = \begin{cases} \frac{p^2(p - 1)}{2}, & \text{if } p \equiv 1 \mod 4; \\ \frac{p^2(p - 1)}{2} - 6p^2 h_p^2, & \text{if } p \equiv 3 \mod 8; \\ \frac{p^2(p - 1)}{2} + 2p^2 h_p^2, & \text{if } p \equiv 7 \mod 8. \end{cases}
\]

2. Some Lemmas

To prove the Theorems, we need the following Lemmas.

Lemma 1. Let \(k > 2 \) be an integer. Then for any integer \(a \) with \((a, k) = 1 \), we have the identity
\[
S(a, k) = \frac{1}{\pi^2 k} \sum_{d|\mu} \frac{d^2}{\phi(d)} \sum_{\chi \mod d} \chi(a) |L(1, \chi)|^2,
\]
where \(L(1, \chi) \) denotes the Dirichlet \(L \)-function corresponding to Dirichlet character \(\chi \mod d \).
Proof. See Lemma 2 of [11].

Lemma 2. Let \(p \) be an odd prime, \(s \) be any integer with \((s, p) = 1\). Then for any non-principal character \(\chi \mod p \) and any Dirichlet character \(\lambda \mod p \), we have

\[
\sum_{m=1}^{p-1} \chi(m)K(m, s, \lambda; p) = \begin{cases}
p^2, & \text{if } \lambda \chi = \chi_0;
p, & \text{if } \lambda \chi \neq \chi_0.
\end{cases}
\]

Proof. See Lemma 2 of reference [7].

Lemma 3. Let \(p \) be an odd prime, \(s \) be any integer with \((s, p) = 1\). Then for any non-principal character \(\chi \mod p \) and any Dirichlet character \(\lambda \mod p \), we have

\[
\left| \sum_{m=1}^{p-1} \chi(m)K(m, s, \lambda; p) \right|^2 = \begin{cases}
p \tau \left(\frac{-s}{p} \right), & \text{if } \lambda \chi \neq \chi_0, \lambda \chi \neq \chi_0;
p \tau \left(\frac{-s}{p} \right), & \text{if } \lambda \chi \neq \chi_0, \lambda \chi = \chi_0;
p \tau \left(\frac{-s}{p} \right) + (p - 1), & \text{if } \lambda \chi = \chi_0, \lambda \chi = \chi_0;
p - \tau \left(\frac{-s}{p} \right) \tau (\lambda) + (p - 1), & \text{if } \lambda \chi = \chi_0, \lambda \chi \neq \chi_0,
\end{cases}
\]

where \(\tau(\chi) = \sum_{a=1}^{p} \chi(a)e \left(\frac{a}{p} \right) \) denotes the classical Gauss sums.

Proof. See Lemma 1 of reference [7].

Lemma 4. Let \(p \) be an odd prime, then we have

\[
\sum_{\chi \mod p, \chi(1) = -1} |L(1, \chi)|^2 = \frac{\pi^2}{12} \cdot \frac{(p - 1)^2(p - 2)}{p^2},
\]

\[
\sum_{\chi \mod p, \chi(1) = -1} \chi(2) \cdot |L(1, \chi)|^2 = \frac{\pi^2}{24} \cdot \frac{(p - 1)^2(p - 5)}{p^2}.
\]

Proof. See Lemma 5 of reference [6].

3. Proof of Theorems

Now we come to prove our Theorems.

Firstly, we prove Theorem 1. Applying Proposition 1 and Lemma 1, we obtain

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, s, \lambda; p)K(n, t, \lambda; p)S_3(m \overline{n}, p)
\]

\[
= \frac{2p}{\pi^2(p - 1)} \sum_{\chi \mod p, \chi(1) = -1} \sum_{m=1}^{p-1} \chi(m)K(m, s, \lambda; p) \cdot \sum_{n=1}^{p-1} \chi(n)K(n, t, \lambda; p) \cdot |L(1, \chi)|^2
\]

\[
- \frac{4p}{\pi^2(p - 1)} \sum_{\chi \mod p, \chi(1) = -1} \chi(2) \sum_{m=1}^{p-1} \chi(m)K(m, s, \lambda; p) \cdot \sum_{n=1}^{p-1} \chi(n)K(n, t, \lambda; p) \cdot |L(1, \chi)|^2
\]

AIMS Mathematics

Volume 6, Issue 2, 1596–1606.
Then we prove Theorem 2. From Proposition 1 and Lemma 1, we obtain

This completes the proof of Theorem 1.

Then from Lemma 2 and Lemma 4, if \(\lambda \chi = \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, s, \lambda; p) K(n, t, \lambda; p) S_3(m\bar{n}, p)
\]

\[
= \frac{2p^2}{\pi^2(p-1)} \sum_{\chi \mod p} |L(1, \chi)|^2 - \frac{4p}{\pi^2(p-1)} \sum_{\chi \mod p} \chi(2) |L(1, \chi)|^2
\]

\[
= \frac{2p^2}{\pi^2(p-1)} \cdot \frac{p}{12} \cdot \frac{(p-1)^2(p-2)}{p^2} - \frac{4p}{\pi^2(p-1)} \cdot \frac{p^2}{24} \cdot \frac{(p-1)^2(p-5)}{p^2}
\]

\[
= \frac{(p-1)}{2}
\]

While if \(\lambda \chi \neq \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} K(m, s, \lambda; p) K(n, t, \lambda; p) S_3(m\bar{n}, p)
\]

\[
= \frac{2p^3}{\pi^2(p-1)} \sum_{\chi \mod p} |L(1, \chi)|^2 - \frac{4p^3}{\pi^2(p-1)} \sum_{\chi \mod p} \chi(2) |L(1, \chi)|^2
\]

\[
= \frac{2p^3}{\pi^2(p-1)} \cdot \frac{p}{12} \cdot \frac{(p-1)^2(p-2)}{p^2} - \frac{4p^3}{\pi^2(p-1)} \cdot \frac{p^2}{24} \cdot \frac{(p-1)^2(p-5)}{p^2}
\]

\[
= \frac{p(p-1)}{2}
\]

This completes the proof of Theorem 2.

Then we prove Theorem 2. From Proposition 1 and Lemma 1, we obtain

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\bar{n}, p)
\]

\[
= \frac{2p}{\pi^2(p-1)} \sum_{\chi \mod p} \left| \sum_{m=1}^{p-1} \chi(m) |K(m, s, \lambda; p)|^2 \right|^2 |L(1, \chi)|^2
\]

\[
- \frac{4p}{\pi^2(p-1)} \sum_{\chi \mod p} \chi(2) \left| \sum_{m=1}^{p-1} \chi(m) |K(m, s, \lambda; p)|^2 \right|^2 |L(1, \chi)|^2.
\]
Since $p \equiv 1 \mod 4$, and notice that $|\tau(\chi^2)| = \sqrt{p}$. From Lemma 3 and Lemma 4, if $\overline{\lambda \chi} \neq \chi_0$, $\overline{\lambda \chi} \neq \chi_0$, we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\bar{n}, p)$$

$$= \frac{2p^4}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} |L(1, \chi)^2 - \frac{4p^4}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} \chi(2)|L(1, \chi)|^2$$

$$= \frac{2p^4}{\pi^2(p-1)} \cdot \frac{\pi^2}{12} \cdot \frac{(p-1)^2(p-2)}{p^2} - \frac{4p^4}{\pi^2(p-1)} \cdot \frac{\pi^2}{24} \cdot \frac{(p-1)^2(p-5)}{p^2}$$

$$= \frac{p^2(p-1)}{2}.$$ Similarly, if $\overline{\lambda \chi} \neq \chi_0$, $\overline{\lambda \chi} = \chi_0$, we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\bar{n}, p) = \frac{p(p-1)}{2}.$$ If $\overline{\lambda \chi} = \chi_0$, $\overline{\lambda \chi} = \chi_0$, we can obtain

$$\left|\sum_{m=1}^{p-1} \chi(m)|K(m, s, \lambda; \chi)|^2 \right|^2$$

$$= p^2 \left[(\text{Re} \tau(\chi^2) + (p-1))^2 + (\text{Im} \tau(\chi^2))^2 \right]$$

$$= p^2 \left[p + 2(p-1)\text{Re} \tau(\chi^2) + (p-1)^2 \right].$$

So we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\bar{n}, p)$$

$$= \frac{2p^3}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} \left[p + 2(p-1)\text{Re} \tau(\chi^2) + (p-1)^2 \right] |L(1, \chi)|^2$$

$$- \frac{4p^3}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} \chi(2) \left[p + 2(p-1)\text{Re} \tau(\chi^2) + (p-1)^2 \right] |L(1, \chi)|^2$$

$$= \frac{2p^3[p + (p-1)^2]}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} |L(1, \chi)|^2 + \frac{4p^3}{\pi^2} \sum_{\chi \mod p, \chi(1)=-1} \text{Re} \left(\tau(\chi^2) \right) |L(1, \chi)|^2$$

$$- \frac{4p^3[p + (p-1)^2]}{\pi^2(p-1)} \sum_{\chi \mod p, \chi(1)=-1} \chi(2) |L(1, \chi)|^2 - \frac{8p^3}{\pi^2} \sum_{\chi \mod p, \chi(1)=-1} \chi(2) \text{Re} \left(\tau(\chi^2) \right) |L(1, \chi)|^2$$

$$= \frac{p(p-1)(p^2 - p + 1)}{2} + \frac{4p^3}{\pi^2} \sum_{\chi \mod p, \chi(1)=-1} \text{Re} \left(\tau(\chi^2) \right) |L(1, \chi)|^2$$
\[-\frac{8p^3}{\pi^2} \sum_{\chi \bmod p \atop \chi(-1)=-1} \chi(2) \text{Re} \left(\tau \left(\chi^2 \right) \right) |L(1, \chi)|^2.\]

Noting that \(x \leq |x| \) holds for any real number \(x \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m \bar{m}, p) \leq \left| \sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m \bar{m}, p) \right|
\]

\[
= \frac{p(p-1)(p^2 - p + 1)}{2} + \frac{4p^2}{\pi^2} \sum_{\chi \bmod p \atop \chi(-1)=-1} |L(1, \chi)|^2 + \frac{8p^2}{\pi^2} \sum_{\chi \bmod p \atop \chi(-1)=-1} |L(1, \chi)|^2
\]

\[
= \frac{p^2}{2} + \frac{1}{2} p^4 - 4p^2 - p^3 + 5p^2 + p^2 - 2p^2 - \frac{1}{2} p.
\]

Similarly, if \(\lambda \bar{\chi} = \chi_0 \), \(\lambda \bar{\chi} \neq \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m \bar{m}, p) \leq p^5 - 3p^4 + 3p^3 - \frac{1}{2} p^2 - \frac{1}{2} p.
\]

This completes the proof of Theorem 2.

Next we turn to prove Theorem 3. Since \(p \equiv 3 \mod 4 \), note that \(\left(\frac{-1}{p} \right) = \chi_2(-1) = -1 \),

\(L(1, \chi_2) = \frac{\pi \cdot h_p}{\sqrt{p}} \), and \(\tau \left(\chi_2^2 \right) = -1 \). From Lemma 3 and Lemma 4, if \(\lambda \bar{\chi} = \chi_0 \), \(\lambda \bar{\chi} \neq \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m \bar{m}, p)
\]

\[
= \frac{2p^4}{\pi^2(p-1)} \sum_{\chi \bmod p \atop \chi(-1)=-1} |L(1, \chi)|^2 - \frac{2p^4}{\pi^2(p-1)} |L(1, \chi_2)|^2 + \frac{2p^3}{\pi^2(p-1)} |L(1, \chi_2)|^2
\]

\[
- \frac{4p^4}{\pi^2(p-1)} \sum_{\chi \bmod p \atop \chi(-1)=-1} \chi(2) |L(1, \chi)|^2 + \frac{4p^4}{\pi^2(p-1)} \chi_2(2) |L(1, \chi_2)|^2 - \frac{4p^3}{\pi^2(p-1)} \chi_2(2) |L(1, \chi_2)|^2
\]

\[
= \frac{p^2(p-1)}{2} - \frac{2p^3}{\pi^2} |L(1, \chi_2)|^2 + \frac{4p^3}{\pi^2} \chi_2(2) |L(1, \chi_2)|^2
\]

\[
= \frac{p^2(p-1)}{2} - 2p^2 h_p^2 + 4p^2 h_p^2 \left(\frac{2}{p} \right).
\]

Similarly, if \(\lambda \bar{\chi} \neq \chi_0 \), \(\lambda \bar{\chi} = \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m \bar{m}, p) = \frac{p(p-1)}{2} - 2p h_p^2 + 4p h_p^2 \left(\frac{2}{p} \right).
\]
If $\chi' = \chi_0$, $\overline{\chi'} = \chi_0$, we can obtain

$$p^2 \tau(\overline{\chi'}) + (p - 1)^2 = p^2 \left[1 + 2(p - 1)Re \tau(\overline{\chi'}) + (p - 1)^2 \right].$$

So we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\overline{n}, p)$$

$$= \frac{2p^3}{\pi^2(p - 1)} \sum_{x \mod p} \chi(2) \left[p + 2(p - 1)Re \tau(\overline{\chi'}) + (p - 1)^2 \right] |L(1, \chi)|^2$$

$$- \frac{2p^3}{\pi^2(p - 1)} \left[p + 2(p - 1)Re \tau(\overline{\chi'}) + (p - 1)^2 \right] |L(1, \chi_2)|^2$$

$$+ \frac{4p^3}{\pi^2(p - 1)} \left[p + 2(p - 1)Re \tau(\overline{\chi'}) + (p - 1)^2 \right] \chi_2(2)|L(1, \chi_2)|^2$$

$$- \frac{4p^3}{\pi^2(p - 1)} \left[1 + 2(p - 1)Re \tau(\overline{\chi'}) + (p - 1)^2 \right] \chi_2(2)|L(1, \chi_2)|^2$$

$$= \frac{p(p - 1)(p^2 - 2p + 1)}{2} + \frac{4p^3}{\pi^2} \sum_{x \mod p} Re \left(\tau^2(\overline{\chi'}) \right)|L(1, \chi)|^2$$

$$- \frac{8p^3}{\pi^2} \sum_{x \mod p} \chi(2)Re \left(\tau^2(\overline{\chi'}) \right)|L(1, \chi)|^2 - 2p^2h_p^2 + 4p^2h_p^2 \left(\frac{2}{p} \right).$$

Similarly, if $\chi' = \chi_0$, $\overline{\chi'} \neq \chi_0$, we have

$$\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_3(m\overline{n}, p)$$

$$= \frac{p(p - 1)(2p^2 - 2p + 1)}{2} - \frac{4p^3}{\pi^2} \sum_{x \mod p} Re \left(\tau^2(\overline{\chi'}) \tau(\overline{\chi'}) \right)|L(1, \chi)|^2$$

$$+ \frac{8p^3}{\pi^2} \sum_{x \mod p} \chi(2)Re \left(\tau^2(\overline{\chi'}) \tau(\overline{\chi'}) \right)|L(1, \chi)|^2 - 2p^2h_p^2 + 4p^2h_p^2 \left(\frac{2}{p} \right).$$

Combining the fact that

$$\left(\frac{2}{p} \right) = (-1)^{\frac{p-1}{2}} = \begin{cases} 1, & \text{if } p \equiv \pm 1 \mod 8; \\ -1, & \text{if } p \equiv \pm 3 \mod 8, \end{cases}$$
we deduce that if \(p \equiv 3 \bmod 8 \), then

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_5(m\bar{n}, p)
\]

\[
= \begin{cases}
\frac{p^2(p-1)}{2} - 6p^2h_p^2, & \text{if } \bar{\chi}_0 \neq \chi_0, \bar{\lambda}_0 \neq \lambda_0; \\
\frac{p(p-1)}{2} - 6ph_p^2, & \text{if } \bar{\lambda}_0 \neq \chi_0, \bar{\lambda}_0 = \chi_0.
\end{cases}
\]

If \(\bar{\lambda}_0 = \chi_0, \bar{\lambda}_0 \neq \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_5(m\bar{n}, p)
\]

\[
= \frac{p(p-1)(p^2 - p + 1)}{2} + \frac{4p^3}{\pi^2} \sum_{x \equiv p \bmod p \atop \chi(-1) = -1} \text{Re} \left(\tau(\bar{x}^2) \right) |L(1, \chi)|^2
\]

\[
- \frac{8p^3}{\pi^2} \sum_{x \equiv p \bmod p \atop \chi(-1) = -1} \chi(2) \text{Re} \left(\tau(\bar{x}^2) \right) |L(1, \chi)|^2 - 6p^2h_p^2.
\]

Then

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_5(m\bar{n}, p)
\]

\[
\leq \frac{p(p-1)(p^2 - p + 1)}{2} + \frac{4p^3}{\pi^2} \sum_{x \equiv p \bmod p \atop \chi(-1) = -1} \text{Re} \left(\tau(\bar{x}^2) \right) |L(1, \chi)|^2
\]

\[
+ \frac{8p^3}{\pi^2} \sum_{x \equiv p \bmod p \atop \chi(-1) = -1} \chi(2) \text{Re} \left(\tau(\bar{x}^2) \right) |L(1, \chi)|^2 + 6p^2h_p^2
\]

\[
= p^2 + \frac{1}{2}p^4 - 4p^2 - p^3 + 5p^2 + p^2 - 2p^3 - \frac{1}{2}p + 6p^2h_p^2.
\]

Similarly, if \(\bar{\lambda}_0 = \chi_0, \bar{\lambda}_0 \neq \chi_0 \), we have

\[
\sum_{m=1}^{p-1} \sum_{n=1}^{p-1} |K(m, s, \lambda; p)|^2 |K(n, t, \lambda; p)|^2 S_5(m\bar{n}, p) \leq p^5 - 3p^4 + 3p^3 - \frac{1}{2}p^2 - \frac{1}{2}p + 6p^2h_p^2.
\]

This completes the proof of Theorem 3.

Theorem 4 can be derived by the same method. This completes the proof of our Theorems.

4. Conclusions

In this paper, we obtain some exact computational formulas or upper bounds for hybrid mean value involving Hardy sums and Kloosterman sums (both classical Kloosterman sums and general
Kloosterman sums) by applying the properties of Gauss sums and the mean value of Dirichlet L-function. But in some cases, unluckily, it is difficult to get the exact formula. So how to get the exact formula in all cases remains open.

Acknowledgments

The authors want to show their great thanks to the anonymous referee for his/her helpful comments and suggestions.

This work is supported by the National Natural Science Foundation of China (No. 11871317, 11926325, 11926321) and the Fundamental Research Funds for the Central Universities (No. GK201802011).

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. T. M. Apostol, *Modular function and Dirichlet series in number theory*, New York: Springer-Verlag, 1976.
2. L. Carlitz, The reciprocity theorem of Dedekind sums, *Pacific J. Math.*, 3 (1953), 513–522.
3. J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, *J. Number Theory*, 56 (1996), 214–226.
4. X. L. He, W. P. Zhang, On the mean value of the Dedekind sum with the weight of Hurwitz zeta-function, *J. Math. Anal. Appl.*, 240 (1999), 505–517.
5. B. C. Berndt, L. A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-function, *SIAM J. Math. Anal.*, 15 (1984), 143–150.
6. H. Zhang, W. P. Zhang, On the identity involving certain Hardy sums and Kloosterman sums, *Inequal. Appl.*, 52 (2014), 1–9.
7. H. F. Zhang, T. P. Zhang, Some identities involving certain Hardy sums and general Kloosterman sums, *Mathematics*, 8 (2020), 95.
8. B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, *Reine Angew. Math.*, 303–304 (1978), 332–365.
9. L. A. Goldberg, *Transformations of theta-functions and analogues of Dedekind sums*, Ph.D. thesis, University of Illinois, Urbana, 1981.
10. R. Sitaramachandrarao, Dedekind and Hardy sums, *Acta Arith.*, 48 (1978), 325–340.
11. W. P. Zhang, On the mean values of Dedekind sums, *J. Theor. Nombr. Bordx.*, 8 (1996), 429–442.