Performance evaluation of vertical axis hydrokinetic turbine (VAHT) helical blade using duct system for low current speed application

Zain Amarta1, Abdi Ismail2

1Department of Furniture Design, Politeknik Industri Furnitur dan Pengolahan Kayu
Wanamarta Raya 20 Street, Kaliwungu, Kendal, Indonesia
Email: zainamarta@gmail.com

2Department of Naval Architecture, Institut Teknologi Sepuluh Nopember
ITS Campus Sukolilo, Surabaya, Indonesia

Abstract. This study evaluate the performance of vertical axis hydrokinetic turbine (VAHT) - Helical Blade using duct system. Experimental study has been performed in the open channel with measured current speed of 0.7 m s-1, 0.9 m s-1, and 1.1 m s-1. Rotational speed and torque were measured to obtain the performance factor (C_P) and tip speed ratio (TSR). The gain of current speed has good response on rotational speed and torque. VAHT - Helical Blade using duct system has greater C_P than non-duct system at three different current speed. The maximum C_P is 0.44 reached on TSR of 2.92. The addition of duct system has good response on C_P of VAHT - Helical Blade due to increasing current speed around the turbine.

Keywords: vertical axis hydrokinetic turbine, helical blade, duct system

1. Introduction

Renewable energy sources are presently the most assuring alternative energy source considering their green and wealthy characteristic. They can be gathered from nature, applied, and reprocessed frequently. A lot of investigation has been implemented on renewable energy sources such as wind energy, solar energy, hydropower, geothermal energy, and bioenergy [1]. Among the renewable energy sources, hydropower has obtained the most interest due to its environment friendly process [2]. Hydrokinetic systems are a group of zero-head hydropower whereby the operation of energy conversion implies implementation of kinetic energy involved in river streams, tidal currents, ocean currents, or some constructed waterways for electricity production [3].

Turbine systems are perceived as prime option for energy conversion on hydrokinetic systems. Vertical Axis Hydrokinetic Turbine (VAHT) is suitable for low current speed application, since it can generate electricity and can operate in any direction perpendicular to the flow. Another advantages of VAHT are easy to maintenance and no require yaw mechanism [4]. Helical Blade is one type of VAHT, it first invented by Gorlov [5]. VAHT - Helical Blade has technical convenience of refining unsteady torque at the shaft and representing an enhancement in total power output compared to straight blade [6]. A lot of research has been applied to enhance VAHT performance.
High performance of VAHT can be obtained by optimizing geometric parameters. Several methods have been developed such as modification of blade airfoil [7], blade number [8], height to radius ratio [9], and blade inclination angle [10].

Attempts against obtaining a steady torque and improving the power conversion by using a duct have been conducted severally. Ducts for flow augmentation have been advanced, aside from the gain in obtained power, operation of a suitable duct has many more conveniences [11]. The effect of a brim type diffuser for hydrokinetic applications has been observed. This research suggested a design for two-way brim type diffuser for operation in tidal streams, whereby the orientation of the stream switched with the tide [12]. A duct for Darrieus turbine has been developed [13]. The results represent that the total power output of Darrieus turbine using duct is improved. The objective of this study was to evaluate the performance of VAHT - helical blade using duct system.

2. Experimental method

VAHT - helical blade manufacturing used fiberglass as blade material. Meanwhile shaft, arm, frame, and ducting used steel as material. Geometric parameters of VAHT - helical blade using duct system are shown in Table 1. Dimension of VAHT - helical blade using duct system are shown in Figure 1.

Blade number (N)	3
Blade chord (C)	0.1 m
Height (H)	0.8 m
Diameter (D)	0.4 m
H/D	1
Blade inclination angle (δ)	60°
Blade airfoil	NACA0018
Duct input width (w_i)	0.45 m
Duct output width (w_o)	0.9 m
Duct length (L)	1.25 m
w_o/w_i	2

Table 1. Geometric parameters of VAHT - helical blade using duct system

Figure 1. Dimension of VAHT - helical blade using duct system: a) front view, b) top view
Experimental study was performed to evaluate the performance of VAHT - Helical Blade using duct system. The performance was influenced by several factors such as flow fluctuation, bearing effect, and channel blockage. Therefore, the characteristics of channel used for turbine testing should be observed. The channel should have stable flow and low turbulence characteristic. VAHT - Helical Blade using duct system was tested in the open channel. Current speed was measured at three different point using current meter. VAHT - Helical Blade using duct system was subjected to three current speeds, i.e. 0.7 m s\(^{-1}\), 0.9 m s\(^{-1}\), and 1.1 m s\(^{-1}\).

Rotational speed was measured at the surface of water using tachometer mounted on the end of a shaft. Static torque was measured using torque wrench at five different azimuths, i.e. 0°, 90°, 120°, 180°, and 240°. Therefore, the torque fluctuation during turbine rotation could be predicted. Total static torque generated by the turbine was calculated from the average torque of all azimuth angles. Rotational speed and static torque measurement of VAHT - helical blade using duct system was illustrated in Figure 2.

![Figure 2. Measurement of VAHT - helical blade using duct system: a) rotational speed, b) static torque](image)

3. Result and discussion

VAHT - Helical Blade using duct system performance can be expressed in performance factor (\(C_p\)). \(C_p\) is a main factor to identify the turbine performance. The quantity of mechanical power obtained from current through the turbine can be presented as \(C_p\) value. The greater the \(C_p\), the greater the power that can be reached by the turbine. \(C_p\) can be calculated using equation 1 [14]. Where \(T\) is torque (Nm), \(\omega\) is angular velocity (rad s\(^{-1}\)), \(\rho\) is water density (kg m\(^{-3}\)), \(A\) is cross section of the stream (m\(^2\)), and \(V\) is current speed (m s\(^{-1}\)) (equation 1).

\[
C_p = \frac{T\omega}{0.5\rho AV^3}
\]

The relation between tangential velocity of the blade and current speed can be expressed in tip speed ratio (TSR). TSR value specifies how quick the turbine is operating towards a definite current speed. TSR can be calculated using equation (2) [14]. Where \(R\) is turbine radius (m), \(\omega\) is angular velocity (rad s\(^{-1}\)), and \(V\) is current speed (m s\(^{-1}\)) (equation 2).

\[
TSR = \frac{R\omega}{V}
\]

The proportional relation between rotational speed and current speed can be described in Figure 3. The greater the current speed, the greater the rotational speed. VAHT - helical blade using duct system has greater rotational speed than non-duct system at three different current speed. The maximum rotational speed of 113.56 RPM is reached by VAHT - helical blade using duct system at current speed of 1.1 m s\(^{-1}\). The gain of current speed has good response on rotational speed.
The proportional relation between torque and current speed can be described in Figure 4. The greater the current speed, the greater the torque. VAHT - helical blade using duct system has greater torque than non-duct system at three different current speeds. The maximum torque of 3.94 Nm is reached by VAHT - helical blade using duct system at current speed of 1.1 m s⁻¹. The gain of current speed has good response on torque.

C_P and TSR value can be calculated based on current speed, rotational speed, and torque data using equation 1 and equation 2. The graph of the relation between C_P and TSR is presented in Figure 5. VAHT - helical blade using duct system has greater C_P than non-duct system at three different current speed. The maximum C_P is 0.44 reached by VAHT - helical blade using duct system at TSR of 2.92. Meanwhile the smallest C_P is 0.20 reached on TSR of 2.05 by VAHT - helical blade non-duct system. The addition of duct system has good response on C_P of VAHT - helical blade due to increasing current speed around the turbine.

![Figure 3. Rotational speed - current speed curves of VAHT - helical blade](image3.png)

![Figure 4. Torque - current speed curves of VAHT - helical blade](image4.png)
For the next research, VAHT - helical blade performance can be improved using the blade cascaded technique [15]. Furthermore, research on VAHT should continue on other aspects such as blade material development and damage detection while VAHT is operating. Bio-resin material [16] has the potential to be developed as a tough blade material. Damage detection in VAHT can use natural frequency [17-19], dynamic modal analysis [20], and optimization method [21].

![Figure 5. C_P - TSR curves of VAHT - helical blade](image)

4. Conclusion
In this research, experimental study has been performed in the open channel to evaluate the performance of VAHT - helical blade using duct system. Current speed, rotational speed, and torque were measured to obtain C_P and TSR. The greater the C_P, the greater the power that can be reached by the turbine. VAHT - Helical Blade using duct system has greater C_P than non-duct system at three different current speed. The addition of duct system has good response on C_P of VAHT - Helical Blade due to increasing current speed around the turbine.

5. References
[1] Lian J, Zhang Y, Ma C, Yang Y and Chaima E 2019 A review on recent sizing methodologies of hybrid renewable energy systems Energy Conversion and Management 199 112027
[2] Erinofigardi, Gokhale P, Ma C, Date A, Akbarzadeh A, Bismantolo P, Suryono A F, Mainil A K and Nuramal A 2017 A review on micro hydropower in Indonesia Energy Procedia 110 316-321
[3] Niebuhr C M, Van Dijk M, Neary V S and Bhagwan J N 2019 A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential Renewable and Sustainable Energy Reviews 113 109240
[4] Khan M J, Bhuyan G, Iqbal M T, and Quaicoe J E 2009 Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review Applied Energy 86 1823-1835
[5] Gorlov A 1995 Unidirection helical reaction turbine United States 5451137A
[6] Gorlov A 1998 Development of the helical reaction hydraulic turbine Final Technical Report Northeastern University, Boston, United States
[7] Mohamed M H 2012 Performance investigation of H-rotor Darrieus turbine with new airfoil shapes Energy 47 522-530
[8] Samaraweera K K M N P, Pathirathna K A B, De Silva H E D and Sugathapala A G T 2010 Development of darrieus-type vertical axis wind turbine for stand-alone applications Proceedings of International Conference on Sustainable Built Environment, Kandy pp 421-430
[9] Li Y and Calisal S M 2010 Performance investigation of H-rotor Darrieus turbine with new airfoil shapes Renewable Energy 35 2325-2334
[10] Marsh P, Ranmuthugala D, Penesis I and Thomas G 2015 Numerical investigation of the influence of blade helicity on the performance characteristics of vertical axis tidal turbines Renewable Energy 81 926-935
[11] Ponta F and Dutt G S 2015 An improved vertical-axis water-current turbine incorporating a channelling device Renewable Energy 20 223-241
[12] Setoguchi T, Shiomi N and Kaneko K 2004 Development of two-way diffuser for fluid energy conversion system Renewable Energy 29 1757-1771
[13] Malipeddi A R and Chatterjee D 2012 Influence of duct geometry on the performance of Darrieus hydroturbine Renewable Energy 43 292-300
[14] Han S H, Park J S, Lee K S, Park W S and Yi J H 2013 Evaluation of vertical axis turbine characteristics for tidal current power plant based on in situ experiment Ocean Engineering 65 83-89
[15] Hantoro R, Utama I K A P, Arief I S, Ismail A and Manggala S W 2018 Innovation in vertical axis hydrokinetic turbine - straight blade cascaded (VAHT-SBC) design and testing for low current speed power generation Journal of Physics: Conference Series 1022 012023
[16] Ardhyananta H, Sari E N, Wicaksono S T, Ismail H, Tuswan and Ismail A 2019 Characterization of vinyl ester bio-resin for core material sandwich panel construction of ship structure application: Effect of palm oil and sesame oil AIP Conference Proceedings 2202 020051
[17] Ismail A, Zubaydi A, Piscesa B, Ariesta R C and Tuswan 2020 Vibration-based damage identification for ship sandwich plate using finite element method Open Engineering 10 744-752
[18] Ismail A, Zubaydi A, Budipriyanto A and Yudiono 2018 Damage identification of the sandwich plate having core from rice husk-epoxy for ship deck structure Proceedings of the 3rd International Conference on Marine Technology pp 112-118
[19] Tuswan T, Zubaydi A, Piscesa B, Ismail A and Ilham M F 2020 Free vibration analysis of interfacial debonded sandwich of ferry ro-ro’s stern ramp door Procedia Structural Integrity 27 22-29
[20] Tuswan, Zubaydi A, Piscesa B and Ismail A 2020 Dynamic characteristic of partially debonded sandwich of ferry ro-ro’s car deck: a numerical modeling Open Engineering 10 424–433
[21] Amarta Z, Soepangkat B O P, Sutikno and Norcahyo R 2019 Multi response optimization in vulcanization process using backpropagation neural network-genetic algorithm method for reducing quality loss cost AIP Conference Proceedings 2114 020003