Ultrasound Diagnosis of Exomphalos (Omphalocele): Differentiating Exomphalos from Normal Physiologic Gut Herniation and Gastroschisis

Jitendra Parmar1*, Paresh Shah1, Prashant Acharya2, Tapan Patel1, Sandip Shah1, Bhoomi Angirish1 and Nishith Chaudhari1

1Department of radiology, Apollo Hospitals International Limited, India
2Paras Advanced Center for Fetal Medicine, India

Submission: May 10, 2018; Published: July 02, 2018

*Corresponding author: Jitendra Parmar, Consultant, Department of Radiology, Apollo Hospitals International Limited, Gandhinagar, India, Tel: +919643158267; Email: jitendra32@gmail.com

Abstract
An Exomphalos, also known as omphalocele is a congenital midline abdominal wall defect at the base of the umbilical cord insertion with herniation of gut and/or liver or occasionally other content, out of the fetal abdomen. Many chromosomal anomalies are often associated with this embryologic defect. We present a case report describing ultrasound diagnosis of exomphalos associated with hypoplastic nasal bone and increased nuchal translucency thickness.

Keywords: Ultrasound diagnosis; Exomphalos; Omphalocele; Gut herniation; Gastroschisis; Congenital midline; Embryologic defect; Nuchal translucency; chromosomal anomalies; Gastroschisis; Transvaginal; Ductus venosus; Translucent sac; Wharton jelly; Umbilical vessels; Ovaries; Fetal chromosomal; Cleft palate; Dental malocclusion; Mortality rate; Sinologist; Echogenicity

Introduction
An Exomphalos, also known as omphalocele is a congenital midline abdominal wall defect at the base of umbilical cord insertion with herniation of gut and/or liver or occasionally other contents, out of the fetal abdomen. Many chromosomal anomalies are often associated with this embryologic defect [1-6]. A gastroschisis is a ventral abdominal wall defect, almost always to the right of the umbilicus from which it is separated by thin skin bridge, and contains abdominal viscera, most commonly small bowels, stomach and gonads without coverings [7,8]. During first trimester sonogram, normal physiologic herniation of the fetal bowel seen oftenly between 8 and 12 weeks gestational [9]. With careful detail scanning, the sonographer may be able to differentiate normal physiologic gut herniation from early identification of exomphalos and gastroschisis [9,10]. This case report describes a ultrasound diagnosis of exomphalos associated with hypoplastic nasal bone and increased nuchal translucency and discusses how to differentiate exomphalos from normal physiologic gut herniation and gastroschisis.

Case Report
A 27-year-old woman having her first pregnancy, at the 12 weeks + 4 days was referred to the ultrasound (US) department for a routine US without any pertinent past medical history. Transabdominal US, followed by transvaginal US was performed using a 2D (two dimensional) and 3D (three dimensional) ultrasound equipment (Voluson E 10 BT 17; Probe 3.5 Mhz). 2D US showed a single live intrauterine pregnancy with gestational age of 12 weeks + 4 days. By using Doppler US and 3D US, an exomphalos containing the liver was identified (Figure 1). With careful detail scanning, the sonographer may be able to differentiate normal physiologic gut herniation from early identification of exomphalos and gastroschisis [9,10]. This case report describes a ultrasound diagnosis of exomphalos associated with hypoplastic nasal bone and increased nuchal translucency and discusses how to differentiate exomphalos from normal physiologic gut herniation and gastroschisis.
described in Table 1. As a result of the sonographic findings the patient terminated the pregnancy, and no follow-up was able to be obtained. It is unknown whether the patient had the products of conception tested for aneuploidy.

Figure 1: Transabdominal (A) and transvaginal (B) ultrasound showed a well defined rounded solid homogenous mass lesion measuring 16 x 15 mm along the anterior abdominal wall at the level of umbilical cord insertion.

Figure 2: 3D (A) and Doppler ultrasound (B) confirmed exomphalos with the liver as herniated content.

Figure 3: Transvaginal sonography showed increased nuchal translucency (3.9 mm) and hypoplastic nasal bone.
How to cite this article: Jitendra P, Paresh S, Prashant A, Tapan P, Sandip S, et.al. Ultrasound Diagnosis of Exomphalos (Omphalocele): Differentiating Exomphalos from Normal Physiologic Gut Herniation and Gastroschisis. Glob J Reprod Med. 2018; 5(1): 555653. DOI: 10.19080/GJORM.2018.05.555653.

Table 1:

Findings	Measurements
Fetal Heart Rate	167 BPM
Crown-Rump Length	59.5 mm
Nuchal Translucency	3.90 mm
Biparietal Diameter	18.2 mm
Head Circumference	67.0 mm
Ductus Venosus PI	3.06
Placenta	Anterior high
Amniotic fluid	Adequate
Cord	3 vessels

BPM: Beats Per Minute
Mm: Millimetre
PI: Pulsatility Index

Discussion

Exomphalos frequently have been associated with other conditions, such as congenital heart disease, cleft palate, musculoskeletal abnormalities, intrauterine growth restriction and dental malocclusion. The incidence of associated chromosomal abnormalities is 10-40% that include trisomies 12, 13, 15, 18, and 21.3 [18-22]. A fetus found to have an exomphalos has a high mortality rate because of its coexistence with multiple anomalies [9,23]. However, because of improvement in the parenteral nutritional, surgical and the anesthetic management techniques, the survival of the exomphalos cases has increased from 60% during the 1960s to more than 90% at present [7,24].

The diagnosis of exomphalos can be made by ultrasound in 1st trimester; however, two close differentials; gastroschisis and physiologic midgut herniation, need to be excluded by careful and detail imaging. One of the most important and specific finding to differentiate exomphalos from midgut herniation is the visualization of herniated liver associated with gut loop within the herniated sac. Few other significant secondary features that differentiate physiologic midgut herniation from exomphalos: by 12 weeks gestational age, midgut herniation descends back into the abdominal cavity; exomphalos have homogenous appearance, while midgut herniation tends to have heterogenous appearance; exomphalos presents as a large circular shaped lesion measuring more than 7 mm, while midgut herniation presents as a small spherical shaped lesion measuring ~ 4 to 7 mm. Gastroschisis occurs later because the anterior abdominal wall defect before 16th week is very small and anterior abdominal wall muscles and peristaltic waves are visible only in 14th week. Intestinal convolutions pass through a small defect (<1 cm), which is localized to the right of the normal umbilical cord insertion and float freely in the amniotic fluid with no membrane covering the content [25].

In cases with difficulty to identify the exact pathology and to demonstrate the co-existing pathologies, the 3D USG may be helpful. Besides its help as a diagnostic tool, the 3D ultrasound may help the family to understand and realize the situation.
The decision process, genetic counselling, perception of the situation and its importance, future planning and the state of the management will be affected by the thorough comprehension and concern of the family. First trimester scanning of the anterior abdominal wall is crucial and at most important. It is important to determine the gestational age of the foetus being examined. The sinologist must examine the echogenicity of the herniation at the base of the umbilicus and make a determination as to heterogeneity or homogeneity and whether covering present or absent. Measurements must be taken at the base of the umbilical herniation, if the herniation is too large to be considered a physiologic midgut herniation. As the exomphalos is not usually absent. Measurements must be taken at the base of the umbilicus and make a determination as to whether covering present or absent.

References

1. Sanders RC, Blackmon LR. Omphalocele (2002) In: Sanders RC (Eds), Structural Foetal Abnormalities: The Total Picture, (2nd edn), St. Louis, Mosby, USA, Pp 221-223.
2. Graham JM (2010) How do genes affect the risk of having a child with a birth defect? In: Alwan S, Blejé SB, et al. (Eds), Teratology Primer-(2nd edn), Jefferson Digital Commons, USA, Pp 17-19.
3. Sepulveda W, Wong AW, Fauchon DE (2010) Fetal spinal anomalies in first-trimester sonographic screening program for aneuploidy. Prenat Diagn 31(1): 107-114.
4. Stoll C, Alembik Y, Dott B, Roth MP (2008) Omphalocele and gastrochisis and associated malformations. Am J Med Genet A 46A(10): 1280-1285.
5. Forrester MD, Merz RD (2008) Structural birth defects associated with omphalocele and gastrochisis, Hawaii, 1986-2001. Congenit Anom 48(2): 87-91.
6. Benjamin B, Wilson GN (2014) Anomalies associated with gastrochisis and omphalocele: analysis of 2825 cases from the Texas birth defects registry. J Pediatr Surg 49(4): 514-519.
7. Stone P (1999) Gastrointestinal Abnormalities. In: James DK, et al. (Eds), High Risk Pregnancy Management Options, (2nd edn), London: WB Saunders, UK Pp. 443-446.
8. Emanuel PG, Garcia GI, Anguacito TL (1995) Prenatal detection of anterior abdominal wall defects with US. Radiographics 15(3): 517-530.
9. Raatz SS (2004) Sonographic signs of midgut malformations due to ventral wall defects. J Diag Med Sonography 20(4): 246-253.
10. Stepan H, Horn LG, BennekJ, Faber R (1999) Congenital hernia of the abdominal wall: a differential diagnosis of fetal abdominal wall defects. Ultrasound Obstet Gynecol 1999 13(3): 207-209.
11. Cyr DR, Mack LA, Schoenecker SA, Paton RM, Shepard TH, et al. (1986) Bowel migration in the normal fetus: US detection. Radiology 161(1): 119-121.
12. Curtis JA, Watson L (1988) Sonographic diagnosis of omphalocele in the first-trimester of fetal gestation. J Ultrasound Med 7: 97-100.
13. Nyberg DA, Fitzsimmons J, Mack LA, et al. (1989) Chromosomal abnormalities in fetuses with omphalocele. Significance of omphalocele contents. J Ultrasound Med 8(6): 299-308.
14. Benacerraf BR, Saltzman DH, Estoff JA, Frigolletto FD (1990) Abnormal karyotype of fetuses with omphalocele: prediction based on omphalocele contents. Obstet Gynecol 75(3): 317-319.
15. Paglino M, Mossetti M, Ragni P (1990) Echographic diagnosis of omphalocele in the first-trimester of pregnancy. J Clin Ultrasound 18(8): 658-660.
16. Brown DL, Emerson DS, Shulman LP, Carson SA (1989) Sonographic diagnosis of omphalocele during 10th week of gestation. AJR Am J Roentgenol 153(4): 825-826.
17. Gray DL, Martin CM, Crane JP (1989) Differential diagnosis of first-trimester ventral wall defect. J Ultrasound Med 8(5): 255-258.
18. Géhin C, Touch S, Broth RE, Berghella V (2003) Abdominal wall defects and congenital heart disease. Ultrasound Obstet Gynecol 21(4): 334-337.
19. Mayer T, Black R, Maltik ME, Johnson DG (1980) Gastrochisis and omphalocele. An eight-year review. Ann Surg 192(6): 783-787.
20. Reçber D, Özen S (2005) Trizomi 13, Patau Syndrome: A case report. Van Tip Dergisi 12: 29-31.
21. Erk A, Uslu T, Kara F (1999) Prenatal ultrasonographic diagnosis of a thanatophoric dysplasia case. Anatolian J Gynecol Obst 1: 51-53.
22. Sadler TW, Langman J (2012) Third Month to Birth: The Fetus and Placenta. In: Sadler TW (Eds.), Langman’s Medical Embryology, (12th edn), Philadelphia, PA, Lippincott Williams & Wilkins, USA Pp 96-116.
23. Fratelli N, Papageorgiou AT, Bhide A, Sharma A, Okoye B, et al. (2007) Outcome of antenatally diagnosed abdominal wall defects. Ultrasound Obstet Gynecol 30(3): 266-270.
24. Arroyo IC, Pitarch V, Garcia MJ, Barrio AR, Martinez FML (2003) Unusual congenital abdominal wall defects and review. Am J Med Genet A 119(2): 211-213.
25. Gow KW, Bhatia A, Saad DF, Wulkan ML, Heiss KF (2006) Left Side Gastrochisis. Am Surg 72: 637-640.