Schauder estimates for nonlocal fully nonlinear equations

Tianling Jin

Department of Mathematics, The University of Chicago, 5734 S. University Avenue, Chicago, IL, 60637, USA

Jingang Xiong*

School of Mathematical Sciences, Beijing Normal University, Beijing, 100875, China

Abstract

In this paper, we establish pointwise Schauder estimates for solutions of nonlocal fully nonlinear elliptic equations by perturbative arguments. A key ingredient is a recursive Evans-Krylov theorem for nonlocal fully nonlinear translation invariant equations.

Keywords: Integro-differential equations, Schauder estimates

2010 MSC: 35R09, 35B65

1. Introduction

Integro-differential equations, which are usually called nonlocal equations nowadays, appear naturally when studying discontinuous stochastic process. In a series papers of Caffarelli-Silvestre [6, 7, 8], regularities of solutions of nonlocal fully nonlinear elliptic equations such as Hölder estimates, Cordes-Nirenberg type estimates and Evans-Krylov theorem were established. In this paper, we shall prove Schauder estimates for nonlocal fully nonlinear elliptic equations of the type:

$$\inf_{a \in A} \left\{ \int_{\mathbb{R}^n} \delta u(x,y) K_a(x,y) \, dy \right\} = f(x) \quad \text{in } B_5,$$

(1.1)

*Corresponding author.

Email addresses: tj@math.uchicago.edu (Tianling Jin), jx@bnu.edu.cn (Jingang Xiong)

Preprint submitted to Ann. Inst. H. Poincaré Anal. Non Linéaire

April 22, 2015

© 2015. This manuscript version is made available under the Elsevier user license

http://www.elsevier.com/open-access/userlicense/1.0/
where \(\delta u(x, y) = u(x + y) + u(x - y) - 2u(x) \). \(A \) is an index set, and each \(K_a \) is a positive kernel. We will restrict our attention to symmetric kernels which satisfy
\[
K(x, y) = K(x, -y). \tag{1.2}
\]

We also assume that the kernels are uniformly elliptic
\[
\frac{(2 - \sigma) \lambda}{|y|^{n+\sigma}} \leq K(x, y) \leq \frac{(2 - \sigma) \Lambda}{|y|^{n+\sigma}} \tag{1.3}
\]
for some \(0 < \lambda \leq \Lambda < \infty \), which is an essential assumption leading to local regularizations. Finally, we suppose that the kernels are \(C^2 \) away from the origin and satisfy
\[
|\nabla_y^i K(x, y)| \leq \frac{\Lambda}{|y|^{n+\sigma+i}}, \quad i = 1, 2. \tag{1.4}
\]

We say that a kernel \(K \in \mathcal{L}_0(\lambda, \Lambda, \sigma) \) if \(K \) satisfies (1.2) and (1.3), and \(K \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) if \(K \) satisfies (1.2), (1.3) and (1.4). In this paper, all the solutions of nonlocal equations are understood in the viscosity sense, where the definitions of such solutions can be found in [6].

One way to obtain Schauder estimates is that first we prove high regularity for solutions of translation invariant (or “constant coefficients”) equations, and then use perturbative arguments or approximations. In our case, the regularities for translation invariant equations should be the Evans-Krylov theorem for nonlocal fully nonlinear equations proved in [8], which states that: If \(u \) is a bounded solution of
\[
\inf_{a \in A} \left\{ \int_{\mathbb{R}^n} \delta u(x, y) K_a(y) \, dy \right\} = 0 \quad \text{in} \ B_5,
\]
where every \(K_a(y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) with \(\sigma \geq \sigma_0 > 0 \). Then, \(u \in C^{\bar{\sigma} + \bar{\alpha}}(B_1) \) for some \(\bar{\alpha} > 0 \). Moreover,
\[
\|u\|_{C^{\bar{\sigma} + \bar{\alpha}}(B_1)} \leq N_{ek} \|u\|_{L^\infty(\mathbb{R}^n)}, \tag{1.5}
\]
where both \(\bar{\alpha} \) and \(N_{ek} \) are positive constants depending only on \(n, \sigma_0, \lambda, \Lambda \). Note that \(\bar{\alpha} \) and \(N_{ek} \) do not depend on \(\sigma \), and thus, do not blow up as \(\sigma \to 2 \). The result becomes most interesting when \(\sigma \) is close to 2 and \(\sigma + \bar{\alpha} > 2 \). If we let \(\sigma \to 2 \), then it recovers the theorem of Evans and Krylov about the regularity of solutions to concave uniformly elliptic PDEs of second order.

Throughout the paper, we will always denote \(\bar{\alpha} \) as the one in (1.5) without otherwise stated.
In the step of approximations to obtain Schauder estimates at \(x = 0 \), it usually requires that the coefficients of the equations, which in our case are \(K(x, y) \) and \(f(x) \), are Hölder continuous at \(x = 0 \) in some sense. For the right-hand side \(f(x) \), we assume \(f \) satisfies the standard Hölder condition that
\[
|f(x) - f(0)| \leq M_f |x|^{\alpha} \quad \text{and} \quad |f(x)| \leq M_f
\]
for all \(x \in B_5 \), where \(M_f \) is a nonnegative constant.

For the kernel \(K \), one may impose different types of Hölder conditions. Here, we focus on the (most delicate, as explained below) case that \(\sigma + \bar{\alpha} - 2 \geq \gamma_0 > 0 \), and we will assume the kernels satisfy
\[
\int_{\mathbb{R}^n} |K(x, y) - K(0, y)| \min(|y|^2, r^2) dy \leq \Lambda |x|^{\alpha} r^{2-\sigma}
\]
for all \(r \in (0, 1], x \in B_5 \).

For \(s \in \mathbb{R} \), \([s] \) denotes the largest integer that is less than or equals to \(s \). Our main result is the following pointwise Schauder estimates for solutions of \((1.1) \).

Recall that \(\bar{\alpha} \) is the one in \((1.5) \).

Theorem 1.1. Assume every \(K_a(x, y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) satisfies \((1.7) \) with \(\alpha \in (0, \bar{\alpha}) \), \(\sigma + \bar{\alpha} - 2 \geq \gamma_0 > 0 \) and \(|\sigma + \alpha - 2| \geq \varepsilon_0 > 0 \). Suppose that \(f \) satisfies \((1.6) \). If \(u \) is a bounded viscosity solution of \((1.1) \), then there exists a polynomial \(P(x) \) of degree \([\sigma + \alpha] \) such that for \(x \in B_1 \),
\[
|u(x) - P(x)| \leq C \left(\|u\|_{L^\infty(\mathbb{R}^n)} + M_f \right) |x|^{\sigma + \alpha};
\]
\[
|\nabla^j P(0)| \leq C \left(\|u\|_{L^\infty(\mathbb{R}^n)} + M_f \right), \quad j = 0, \cdots, [\sigma + \alpha],
\]
(1.8)
where \(C \) is a positive constant depending only on \(\lambda, \Lambda, n, \bar{\alpha}, \alpha, \varepsilon_0 \) and \(\gamma_0 \).

Roughly speaking, Theorem 1.1 states that if \(K \) and \(f \) are of \(C^\alpha \) at \(x = 0 \) in the sense of \((1.7) \) and \((1.6) \), respectively, then the solution \(u \) of \((1.1) \) is precisely of \(C^{\sigma + \alpha} \) at \(x = 0 \). Moreover, the constant \(C \) in (1.8) does not depend on \(\sigma \), and hence, does not blow up as \(\sigma \to 2 \).

Various Schauder estimates for solutions of some nonlocal linear equations were obtained before by R.F. Bass [3], R. Mikulevicius and H. Pragarauskas [21], H. Dong and D. Kim [14], B. Barrera, A. Figalli and E. Valdinoci [2], D. Kriventsov [18], as well as the authors [16]. The results in [2] contain bootstrap regularity and applications to nonlocal minimal surfaces. The equations considered in [3]
are of rough kernels, i.e., without the assumption (1.4). Also in [18], D. Kriventsov proved $C^{1+\alpha}$ estimates for nonlocal fully nonlinear equations with rough kernels when the order of the equation $s > 1$ by perturbative arguments. Later, J. Serra [23] extended this result in [18] to parabolic equations and used a different method. In [17], M. Kassmann, M. Rang and R. W. Schwab proved Hölder regularity results for those nonlocal equations whose ellipticity bounds are strongly directionally dependent. Recently, X. Ros-Oton and J. Serra [22] studied boundary regularity for nonlocal fully nonlinear equations. One may see, e.g., [1, 13, 15] for more regularity results on nonlocal elliptic equations.

For the Hölder condition (1.7) on the kernels, one can check that it will hold if the kernels satisfy the pointwise Hölder continuous condition $|K(x, y) - K(0, y)| \leq \Lambda(2 - \sigma)|x|^{\alpha}|y|^{-n-\sigma}$. In the case of $\sigma + \alpha < 2$, all of our arguments still work except that one needs to change the condition (1.7) to (3.16) or (3.17), since the approximation solutions will be of only $C^{\sigma+\alpha}$; see Remark 3.3 and Corollary 3.4.

In the case of second order partial differential equations $F(\nabla^2 u, x) = 0$, to show that $u \in C^{2+\alpha}$, we usually use second order polynomials $p(x)$ to approximate u (see [4, 5]), in which one implicit convenience is that $\nabla^2 p(x)$ is a constant function. In the nonlocal case, to prove $C^{\sigma+\alpha}$ estimates of solutions to (1.1) for $\sigma + \alpha > 2$, second order polynomial approximation does not seem to work directly, since first of all, for a second order polynomial $p(x)$, it grows too fast at infinity so that $\delta p(x, y)K(y)$ is not integrable; and secondly, in general $\int_{\mathbb{R}^n} \delta \tilde{p}(x, y)K(y)dy$ will not be a constant function for any cut-off $\tilde{p}(x)$ of $p(x)$ so that we cannot apply Evans-Krylov theorem during the approximation and will lose control of the error. Another common difficulty in approximation arguments to obtain regularities for nonlocal equations is to control the error outside of the balls in the iteration, which may results in a slight loss of regularity as in [7] compared to second order equations. Instead of polynomials, we will approximate the genuine solution by solutions of “constant coefficients” equations, which is inspired by [4, 20]. In this way, we do not need to worry about either polynomials or the errors coming from the infinity. But a new difficulty arises for fully nonlinear equations (which does not appear in the case of linear equations): the Evans-Krylov theorem in [8] cannot be applied to obtain the uniform estimates for the sequence of approximation solutions to those “constant coefficients” equations; see also Remark 3.2. This leads us to establish a recursive Evans-Krylov theorem in Theorem 2.2 to overcome this difficulty.

Our paper is organized as follows. In Section 2, we prove Theorem 2.2, a recursive Evans-Krylov theorem for nonlocal fully nonlinear equations, where we adapt the proofs in [8] with delicate decomposition and cut-offs arguments. In Section 3, we
will use Theorem 2.2 and perturbative arguments to prove the Schauder estimates in Theorem 1.1. In the Appendix, we recall some definitions and notions of nonlocal operators from [7], and establish two approximation lemmas for our own purposes, which are variants of that in [7].

After we finished our paper, we learned from Joaquim Serra that he has a preprint [24] on estimates for concave nonlocal fully nonlinear elliptic equations with rough kernels, where interior Schauder estimates are obtained independently and by a very different method. Interior estimates of \(\|u\|_{C^{\sigma+\alpha}(B_{1/2})} \) were obtained in [24] when the kernels are rough for \(u \in C^\alpha(\mathbb{R}^n) \), and when the kernels are \(C^\alpha \) in \(y \) for \(u \in L^\infty(\mathbb{R}^n) \). The proof in [24] uses compactness arguments, combining a Liouville theorem and a blow up procedure.

2. A recursive Evans-Krylov theorem

We start with our motivation of the recursive Evans-Krylov theorem in Theorem 2.2. Recall that the idea of our proof of Theorem 1.1 is to find a sequence of suitable functions approximating \(u \) in a desirable way.

Let \(u \) be a bounded viscosity solution of (1.1). We first approximate \(u \) by \(w_0 \) which solves

\[
\inf_{a \in A} \int_{\mathbb{R}^n} \delta w_0(x,y) K_a(0,y) \, dy = f(0) \quad \text{in } B_4
\]

\[
w_0 = u \quad \text{in } \mathbb{R}^n \setminus B_4.
\]

Then the error estimate \(\|u - w_0\|_{L^\infty(B_4)} \) can be controlled by the approximation lemmas in the Appendix. We need to further estimate the error \(u - w_0 \) in the \(C^{\sigma+\alpha} \) norm near 0. To do this, we scale the error:

\[
W_1(x) = \rho^{-(\sigma+\alpha)}(u - w_0)(\rho x),
\]

where \(\rho \) will be universally chosen, and look for a desirable approximation for \(W_1 \) in \(B_4 \). It follows from (1.1) that \(W_1 \) satisfies

\[
\inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta W_1(x,y) + \rho^{-(\sigma+\alpha)} \delta w_0(\rho x, \rho y) \right) K_a^{(1)}(x,y) \, dy = \rho^{-\alpha} f(\rho x),
\]

where

\[
K_a^{(i)}(x,y) = \rho^{(n+\sigma)i} K_a(\rho^i x, \rho^i y), \quad i \in \mathbb{N}.
\]
The correct approximation (see Remark 3.2) of W_1 will be v_1, which solves
\[
\inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta v_1(x, y) + \rho^{-(\sigma + \alpha)} \delta w_0(\rho x, \rho y) \right) K_1(a)(0, y) dy = \rho^{-\alpha} f(0) \quad \text{in } B_4
\]
\[
v_1 = W_1 \quad \text{in } \mathbb{R}^n \setminus B_4.
\]

From the approximation lemmas, we know that $|v_1| \leq 1$ in \mathbb{R}^n. If we can get a desired estimate for $\|v_1\|_{C^{\sigma+\alpha}(B_0)}$, then for $w_1(x) = \rho^{\sigma+\alpha} v_1(\rho^{-1} x)$, $w_0 + w_1$ approximates u better than w_0 does near 0.

We do one more step to illustrate the essential difficulty. Now we need to estimate the error $u - w_0 - w_1$ in the $C^{\sigma+\alpha}$ norm near 0. We again further scale the error:
\[
W_2(x) = \rho^{-2(\sigma+\alpha)} (u - w_0 - w_1)(\rho^2 x).
\]

Based on the equation of W_2, the correct approximation of W_2 will be v_2, which satisfies
\[
\inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta v_2(x, y) + \rho^{-(\sigma + \alpha)} \delta v_1(\rho x, \rho y) + \rho^{-2(\sigma + \alpha)} \delta v_0(\rho^2 x, \rho^2 y) \right) K_2(a)(0, y) dy = \rho^{-2\alpha} f(0) \quad \text{in } B_4
\]
such that $v_2 = W_2$ in $\mathbb{R}^n \setminus B_4$, where $v_0 \equiv w_0$. We will know that $|v_2| \leq 1$ in \mathbb{R}^n.

If we can get a desired estimate for $\|v_2\|_{C^{\sigma+\alpha}(B_0)}$, then for $w_2(x) = \rho^{2(\sigma+\alpha)} v_2(\rho^{-2} x)$, $w_0 + w_1 + w_2$ approximates u better than $w_0 + w_1$ does near 0.

Continuing this process, we can find a sequence of functions $\{v_\ell\}_{\ell=1}^\infty$, where each v_m is defined recursively through $v_0, v_1, \ldots, v_{m-1}$ by solving an equation like (2.1).

We know that $|v_\ell| \leq 1$ in \mathbb{R}^n for all ℓ. If one applies the estimate (1.4) in [8] to v_ℓ directly, one will get their $C^{\sigma+\bar{\alpha}}$ estimates depending on ℓ, which blows up as $\ell \to \infty$. What we need is to find a universal ρ and obtain the estimate $\|v_\ell\|_{C^{\sigma+\bar{\alpha}}}$ uniformly, i.e., independent of ℓ. This is what we call the recursive Evans-Krylov estimate.

2.1. Statements and ideas of the proof

If we re-examine the proof of the nonlocal Evans-Krylov theorem in [8], we can show the following theorem with few modification.

Theorem 2.1. Assume that every $K_a(y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma)$ with $2 > \sigma \geq \sigma_0 > 1$ and every b_a is a constant. If w is a bounded solution of
\[
\inf_{a \in \mathcal{A}} \left\{ \int_{\mathbb{R}^n} \delta w(x, y) K_a(y) dy + b_a \right\} = 0 \quad \text{in } B_5,
\]
then, \(w \in C^{\sigma + \bar{\alpha}}(B_1) \), and there holds
\[
\|w\|_{C^{\sigma + \bar{\alpha}}(B_1)} \leq N_{ek}(\|w\|_{L^\infty(\mathbb{R}^n)} + |\inf a b_a|),
\]
where both \(\bar{\alpha} \) and \(N_{ek} \) are the same as those in (1.5).

The recursive Evans-Krylov theorem we are going to show is the following.

Theorem 2.2. Assume that every \(b_a \) is a constant, \(K_a(y) \in L_2(\lambda, \Lambda, \sigma) \) with \(2 > \sigma \geq \sigma_0 > 1 \). For each \(m \in \mathbb{N} \cup \{0\} \), let \(\{v_\ell\}_{\ell=0}^m \) be a sequence of functions satisfying
\[
\inf_{a \in A} \left\{ \int_{\mathbb{R}^n} \sum_{\ell=0}^j \rho^{-(j-\ell)(\sigma+\alpha)} \delta v_\ell(\rho^{j-\ell}x, \rho^{j-\ell}y) K_a^{(j)}(y) \, dy + \rho^{-\alpha} b_a \right\} = 0 \text{ in } B_5 \quad (2.1)
\]
in viscosity sense for all \(0 \leq j \leq m \), where \(K_a^{(j)}(x) = \rho^{j(n+\sigma)} K_a(\rho^j x), \rho \in (0,1), \alpha \in (0,\bar{\alpha}) \). Suppose that \(\|v_\ell\|_{L^\infty(\mathbb{R}^n)} \leq 1 \) for all \(\ell \) and \(|\inf_{a \in A} b_a| \leq 1 \). Then, \(v_\ell \in C^{\sigma + \bar{\alpha}}(B_1) \), and there exist constants \(C > 0 \) and \(\rho_0 \in (0,1/100) \), both of which depend only on \(n, \sigma_0, \lambda, \Lambda, \bar{\alpha} \) and \(\alpha \), such that if \(\rho \leq \rho_0 \) then we have
\[
\|v_\ell\|_{C^{\sigma + \bar{\alpha}}(B_1)} \leq C \quad \forall \ \ell = 0, 1, \ldots, m. \quad (2.2)
\]

The rest of this section will be devoted to proving Theorem 2.2. The regularity of \(v_{i+1} \) follows from the Evans-Krylov theorem in [8]. But if one applies the estimate (1.4) in [8] to \(v_\ell \) directly, one will get their \(C^{\sigma + \bar{\alpha}} \) estimates depending on \(\ell \) and \(\rho \). Our goal is to prove the estimate (2.2) which is independent of both \(\ell \) and \(\rho \).

A constant \(C \) is said to be a universal constant if \(C \) only depends on \(n, \sigma_0, \lambda, \Lambda, \alpha \) and \(\bar{\alpha} \). Throughout this section, all the constants denoted as \(C \) will be universal constants, and it may vary from lines to lines.

Let \(M \gg 1 \) be a universal constant which will be fixed later. Replacing \(v_\ell \) by \(v_\ell/M \), we may assume that
\[
\|v_\ell\|_{L^\infty(\mathbb{R}^n)} \leq 1/M \quad \text{and} \quad |\inf_{a \in A} b_a| \leq 1/M.
\]
Then our goal is to show that
\[
\|v_\ell\|_{C^{\sigma + \bar{\alpha}}(B_1)} \leq 1 \quad \forall \ \ell = 0, 1, \ldots, m.
\]
The proof is by induction on \(m \). When \(m = 0 \), then by Theorem 2.1, (2.2) holds for \(M = 2N_{ek} \). We assume that Theorem 2.2 holds up to \(m = i \) for some \(i \geq 0 \), and we are going to show that it holds for \(i + 1 \) as well.
It follows from the induction hypothesis and the \(i+1 \) equations for \(v_0, \ldots, v_i \) that \[
\|v_\ell\|_{C^{\sigma+\alpha}(B_1)} \leq 1, \quad \forall \, \ell = 0, 1, \ldots, i.
\]

We are going to show
\[
\|v_{i+1}\|_{C^{\sigma+\alpha}(B_1)} \leq 1. \tag{2.3}
\]

To illustrate the idea of our proof, let us first consider the second order fully nonlinear elliptic equations
\[
F(D^2 u) := \inf_{k \in K} a_{ij}^{(k)} u_{ij} = 0 \quad \text{in} \quad B_5, \tag{2.4}
\]
where \(K \) is an index set, and \(\lambda I \leq (a_{ij}^{(k)}) \leq \Lambda I \) for all \(k \in K \). By the Evans-Krylov theorem, for every viscosity solution \(u \) of (2.4), we have
\[
\|u\|_{C^{2+\alpha}(B_1)} \leq N e_k \|u\|_{L^\infty(B_5)}.
\]

Suppose that there exists a sequence of functions \(\{v_\ell\}_{\ell=0}^m \) satisfying
\[
F\left(\sum_{\ell=0}^j D^2 \left(\rho^{-((j-\ell)(2+\alpha))} v_\ell (\rho^{i+1-\ell}x) \right) \right) = 0 \quad \text{in} \quad B_5
\]
in viscosity sense for all \(0 \leq j \leq m \), and \(\|v_\ell\|_{L^\infty(B_5)} \leq 1/M \) for all \(\ell \). Suppose that up to \(m = i \) for some \(i \geq 0 \) there holds
\[
\|v_\ell\|_{C^{2+\alpha}(B_1)} \leq 1 \quad \text{for all} \quad \ell = 0, 1, \ldots, m.
\]

We are going to show this holds for \(m = i+1 \) as well. For \(\ell = 0, \ldots, i \), we let \(P_\ell \) be the second order Taylor expansion polynomial of \(v_\ell \) at \(x = 0 \). Let
\[
\tilde{v}_{i+1} = v_{i+1} + \sum_{\ell=0}^i \rho^{-(i+1-\ell)(2+\alpha)}(v_\ell - P_\ell)(\rho^{i+1-\ell} x).
\]

Then
\[
G(D^2 \tilde{v}_{i+1}) := F\left(D^2 \tilde{v}_{i+1} + \sum_{\ell=0}^i D^2 \left(\rho^{-(i+1-\ell)(2+\alpha)} P_\ell (\rho^{i+1-\ell} x) \right) \right) = 0 \quad \text{in} \quad B_5.
\]

It is clear that \(G(\cdot) \) is uniformly elliptic and concave. Since,
\[
\sum_{\ell=0}^i D^2 \left(\rho^{-(i+1-\ell)(2+\alpha)} P_\ell (\rho^{i+1-\ell} x) \right) \text{ is a constant matrix,} \tag{2.5}
\]
and

\[F\left(\sum_{\ell=0}^{i} D^2(\rho^{-(i+1-\ell)(2+\alpha)} P_{\ell}(\rho^{i+1-\ell} x))\right) = 0, \]

we have \(G(0) = 0 \). By the Evans-Krylov theorem,

\[\|\tilde{v}_{i+1}\|_{C^{2+\bar{\alpha}}(B_1)} \leq N_{ek}\tilde{v}_{i+1}\|_{L^{\infty}(B_5)}. \]

Since

\[\|\sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(2+\alpha)}(v_\ell - P_\ell)(\rho^{i+1-\ell} x)\|_{L^{\infty}(B_5)} \leq 5^{2+\bar{\alpha}} \sum_{\ell=0}^{i} \rho^{(i+1-\ell)(\bar{\alpha}-\alpha)} \leq \frac{5^3 \rho^{\bar{\alpha}-\alpha}}{1 - \rho^{\bar{\alpha}-\alpha}} \]

\[\|\sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(2+\alpha)}(v_\ell - P_\ell)(\rho^{i+1-\ell} x)\|_{C^{2+\bar{\alpha}}(B_1)} \leq 4 \cdot 5^{2+\bar{\alpha}} \sum_{\ell=0}^{i} \rho^{(i+1-\ell)(\bar{\alpha}-\alpha)} \leq \frac{5^4 \rho^{\bar{\alpha}-\alpha}}{1 - \rho^{\bar{\alpha}-\alpha}}, \]

it follows that

\[\|v_{i+1}\|_{C^{2+\bar{\alpha}}(B_1)} \leq N_{ek}\left(1/M + \frac{5^3 \rho^{\bar{\alpha}-\alpha}}{1 - \rho^{\bar{\alpha}-\alpha}}\right) + \frac{5^4 \rho^{\bar{\alpha}-\alpha}}{1 - \rho^{\bar{\alpha}-\alpha}} \leq 1 \]

if we choose \(M \) sufficiently large and \(\rho_0 \) sufficiently small.

From this proof for the second order case, we see that the idea is to decompose \(v_\ell \) as \((v_\ell - P_\ell) + P_\ell\), and apply Evans-Krylov theorem to the equation for \(\tilde{v}_{i+1} \) which is \(v_{i+1} \) plus those rescaled \((v_\ell - P_\ell)\). In this step, we used (2.5) and (2.6).

In the nonlocal fully nonlinear case (2.1), we are going to use the same idea of decomposing \(v_\ell \) and studying the equation of \(\tilde{v}_{i+1} \). However, there is a difficulty that \(\delta P_\ell(x, y)K(y) \) is not integrable and \(\int_{\mathbb{R}^n} \delta P_\ell(x, y)K(y) \) will never be a constant for any cut-off \(\tilde{P}_\ell \) of \(P_\ell \). Thus, we are not able to use the Evans-Krylov theorem proved in [8]. Instead, we are going to employ the proofs in [8] to prove the \(C^{\alpha+\bar{\alpha}} \) estimate for \(v_{i+1} \). A delicate part is that we need to decompose \(v_\ell \) in an appropriate way. We start with some preliminaries in the following.

2.2. Preliminaries

For a kernel \(K(y) \), we denote

\[Lu(x) = \int_{\mathbb{R}^n} \delta u(x, y)K(y) \, dy, \]

We will also say \(L \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) (or \(\mathcal{L}_0(\lambda, \Lambda, \sigma) \)) if \(K \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) (or \(\mathcal{L}_0(\lambda, \Lambda, \sigma) \)).
Lemma 2.3. Suppose that \(u \in C^4(B_2) \cap L^\infty(\mathbb{R}^n) \) and \(K(y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \). Then
\[
\|Lu\|_{C^2(B_1)} \leq C(\|u\|_{C^4(B_2)} + \|u\|_{L^\infty(\mathbb{R}^n)}),
\]
where \(C \) is a positive constant depending only on \(\alpha, \sigma_0 \) and \(\Lambda \).

Proof. Let \(\eta \in C^\infty_c(\mathbb{R}^n/2) \) and \(\eta \equiv 1 \) in \(B_{5/4} \). Then
\[
Lu = L(\eta u) + L((1 - \eta)u).
\]
It is clear that \(\partial_{ij}(L(\eta u)) = L(\partial_{ij}(\eta u)) \), from which it follows that
\[
\|L(\eta u)\|_{C^2(B_1)} \leq C(\|u\|_{C^4(B_2)} + \|u\|_{L^\infty(\mathbb{R}^n)}).
\]
For the second term, we have \(1 - \eta(x) = 0 \) if \(x \in B_1 \), and thus
\[
L((1 - \eta)u)(x) = \int_{\mathbb{R}^n} (1 - \eta(x+y))u(x+y)K(y)dy = \int_{\mathbb{R}^n \setminus B_{5/4}} (1 - \eta(y))u(y)K(y-x)dy.
\]
The lemma follows immediately since \(K(y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \).

Lemma 2.4. Suppose that \(u \in C^{\sigma+\alpha}(\mathbb{R}^n) \), \(0 \leq K(y) \leq (2 - \sigma)\Lambda|y|^{-n-\sigma} \) and \(K(y) = K(-y) \). Then
\[
\|Lu\|_{C^\alpha(\mathbb{R}^n)} \leq C\|u\|_{C^{\sigma+\alpha}(\mathbb{R}^n)},
\]
and \(C \) is a positive constant depending only on \(\alpha, \sigma_0 \) and \(\Lambda \).

Proof. First of all, it is clear that
\[
\|Lu\|_{L^\infty(\mathbb{R}^n)} \leq C\|u\|_{C^{\sigma+\alpha}(\mathbb{R}^n)}.
\]
In the following, we are going to estimate the \(C^\alpha \) norm of \(Lu \). We first consider that \(\sigma + \alpha \geq 2 \), which is the most difficult case. Since
\[
Lu(x) = 2\int_{\mathbb{R}^n} (u(x+y) - u(x) - \nabla u(x)y)K(y)dy
\]
and
\[
Lu(0) = 2\int_{\mathbb{R}^n} (u(y) - u(0) - \nabla u(0)y)K(y)dy,
\]
we have...
we have that, for \(r = |x| \)

\[
\frac{Lu(x) - L(0)}{2} = \int_{B_r} ((u(x + y) - u(x) - \nabla u(x)y) - (u(y) - u(0) - \nabla u(0)y))K(y)dy \\
+ \int_{\mathbb{R}^n \setminus B_r} ((u(x + y) - u(x) - \nabla u(x)y) - (u(y) - u(0) - \nabla u(0)y))K(y)dy \\
= I_1 + I_2.
\]

For \(I_1 \), we have that

\[
I_1 = \int_{B_r} (u(x + y) - u(x) - \nabla u(x)y - \frac{1}{2}y^T\nabla^2 u(x)y)K(y)dy \\
- \int_{B_r} (u(y) - u(0) - \nabla u(0)y - \frac{1}{2}y^T\nabla^2 u(0)y)K(y)dy \\
+ \frac{1}{2} \int_{B_r} (y^T\nabla^2 u(x)y - y^T\nabla^2 u(0)y)K(y)dy,
\]

and thus

\[
|I_1| \leq 2 \int_{B_r} ||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}|y|^\sigma K(y)dy + ||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}^r \int_{B_r} |y|^2 K(y)dy \\
\leq (4\alpha^{-1} + \Lambda)||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}^r \alpha.
\]

For \(I_2 \), it follows from mean value theorem that

\[
|(u(x + y) - u(x) - \nabla u(x)y) - (u(y) - u(0) - \nabla u(0)y)| \leq ||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}|x||y|^{\sigma+\alpha-1}.
\]

Thus,

\[
|I_2| \leq ||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}|x| \int_{\mathbb{R}^n \setminus B_r} |y|^{\sigma+\alpha-1} K(y)dy \leq (1 - \alpha)^{-1} ||u||_{C^{\sigma+\alpha}(\mathbb{R}^n)}|x|^{\alpha}.
\]

For the case \(\sigma + \alpha < 2 \), one can prove them similarly and we omit its proof here. \(\square \)

Lemma 2.5. Suppose that \(u \in C^{\sigma+\alpha}(B_2) \cap L^\infty(\mathbb{R}^n) \), \(0 \leq K(y) \leq (2 - \sigma)\Lambda|y|^{-n-\sigma} \), \(K(y) = K(-y) \) and \(|\nabla K(y)| \leq \Lambda|y|^{-n-\sigma-1} \). Then

\[
||Lu||_{C^{\sigma}(B_1)} \leq C(||u||_{C^{\sigma+\alpha}(B_2)} + ||u||_{L^\infty(\mathbb{R}^n)}),
\]

11
where
\[Lu = \int_{\mathbb{R}^n} \delta u(x, y) K(y) dy, \]
and \(C \) is a positive constant depending only on \(\alpha, \sigma_0 \) and \(\Lambda \).

Proof. Let \(\eta \in C_c^\infty(B_{3/2}) \) and \(\eta \equiv 1 \) in \(B_{5/4} \). Then
\[Lu = L(\eta u) + L((1 - \eta)u). \]
It follows from Lemma 2.4 that
\[\|L(\eta u)\|_{C^\alpha(B_1)} \leq C \|\eta u\|_{C^{\sigma+\alpha}(\mathbb{R}^n)} \leq C(\|u\|_{C^{\sigma+\alpha}(B_2)} + \|u\|_{L^\infty(\mathbb{R}^n)}). \]
For the second term, we have \(1 - \eta(x) = 0 \) if \(x \in B_1 \), and thus
\[L((1 - \eta)u)(x) = \int_{\mathbb{R}^n} (1 - \eta(x+y))u(x+y)K(y)dy = \int_{\mathbb{R}^n \setminus B_{5/4}} (1 - \eta(y))u(y)K(y-x)dy. \]
The lemma follows immediately since \(|\nabla K(y)| \leq \Lambda |y|^{-n-\sigma-1}. \)

Lemma 2.6. Let \(v \in C_c^{\sigma+\bar{\alpha}}(B_{1/2}) \) such that \(\|v\|_{C_c^{\sigma+\bar{\alpha}}(B_{1/2})} \leq 1 \), and \(p(x) \) be the Taylor expansion polynomial of \(v \) at \(x = 0 \) with degree \([\sigma + \bar{\alpha}] \). For every \(L \in \mathcal{L}_0(\lambda, \Lambda, \sigma) \), there exists \(P \in C_c^\infty(B_{1/2}) \) such that \(P(x) = p(x) \) in \(B_{1/4} \), \(\|P\|_{C^\sigma(B_{1/2})} \leq C \) and
\[LP(0) = Lv(0), \]
where \(C \) is a positive constant depending only on \(n, \lambda, \Lambda, \sigma_0 \) and \(\bar{\alpha} \).

Proof. Let \(\eta \in C_c^\infty(B_{1/3}) \) be such that \(\eta \equiv 1 \) in \(B_{1/4} \). Let \(h(x) \in C_c^1(B_{1/2} \setminus \bar{B}_{1/3}) \) be such that \(h(x) = 1 \) for \(B_{11/24} \setminus B_{9/24} \) and \(0 \leq h \leq 1 \) in \(B_{1/2} \). Let \(P(x) = \eta(x)p(x) + t \cdot h(x) \), where \(t = L(v - \eta p)(0)/Lh(0) \). Then we are left to show that \(|t| \leq C \), which depends only on \(n, \lambda, \Lambda, \sigma_0 \) and \(\bar{\alpha} \). On one hand, it is clear that
\[Lh(0) \geq (2 - \sigma)C^{-1}. \]
On the other hand, since \(|v(x) - p(x)| \leq C|x|^{\sigma+\bar{\alpha}} \) for \(x \in B_{1/4} \), we have
\[|L(v - \eta p)(0)| = \int_{B_{1/4}} |v(y) - p(y)|K(y)dy + \int_{B_{1/2} \setminus B_{1/4}} |v(y) - \eta(y)p(y)|K(y)dy \]
\[\leq C(2 - \sigma) \int_{B_{1/4}} |y|^{\sigma+\bar{\alpha}-n-\sigma}dy + C(2 - \sigma) \]
\[\leq C(2 - \sigma), \]
from which it follows that \(|t| \leq C \).

\[\square \]
2.3. Decompositions

We shall adapt the proofs in [8] with delicate decomposition and cut-off arguments indicated in Section 2.1 to prove Theorem 2.2. Recall that we are left to show (2.3).

For a function \(v \), we denote \(v_\rho(x) = \rho^{-(\sigma+\alpha)}v(\rho x) \). Set

\[
R(x) = \sum_{\ell=0}^{i} \rho^{-(i-\ell)(\sigma+\alpha)}v_\ell(\rho^{i-\ell}x).
\]

By (2.1),

\[
\inf_{a \in A} \{ L_{\rho}(i+1)\bar{a} + \rho^{-(i+1)\alpha}b_a \} = 0 \text{ in } B_{\bar{\alpha}}/\rho,
\]

where \(L_{\rho}(i+1) \) is the linear operator with kernel \(K_{\rho}(i+1) \in L_2(\lambda, \Lambda, \sigma) \). Hence, there exists an \(\bar{a} \in A \) such that

\[
0 \leq L_{\rho}(i+1)\bar{a}(0) + \rho^{-(i+1)\alpha}b_{\bar{a}} < \rho^{\bar{\alpha}-\alpha}.
\] (2.7)

Let \(\eta_0(x) = 1 \) in \(B_{1/4} \) and \(\eta_0 \in C_\infty^c(B_{1/2}) \) be a fixed cut-off function. Set

\[
v_\ell(x) = v_\ell \eta_0 + v_\ell(1 - \eta_0) =: v_\ell^{(1)} + v_\ell^{(2)}.
\]

Let \(p_\ell(x) \) be the Taylor expansion polynomial of \(v_\ell^{(1)}(x) \) at \(x = 0 \) with degree \([\sigma + \bar{\alpha}]\). By Lemma 2.6 there exists \(P_\ell \in C_\infty^c(B_{1/2}) \) such that \(P_\ell(x) = p_\ell(x) \) in \(B_{1/4} \), \(\| P_\ell \|_{C^\ell(B_{1/2})} \leq c_0 \) (a universal constant, independent of \(\ell \)) and

\[
L_{\rho}^{(\ell)}P_\ell(0) = L_{\rho}^{(\ell)}v_\ell^{(1)}(0).
\] (2.8)

Set

\[
v_\ell = (v_\ell^{(1)} - P_\ell) + (v_\ell^{(2)} + P_\ell) =: V_\ell^{(1)} + V_\ell^{(2)}.
\]

We have

\[
\| V_\ell^{(1)} \|_{L_\infty(\mathbb{R}^n)} + \| V_\ell^{(2)} \|_{L_\infty(\mathbb{R}^n)} \leq c_0 + 1, \quad V_\ell^{(1)}(0) = 0,
\]

\[
V_\ell^{(1)} \in C_{\sigma+\bar{\alpha}}(B_{1/2}), \quad \| V_\ell^{(1)} \|_{C^{\sigma+\bar{\alpha}}(\mathbb{R}^n)} + \| V_\ell^{(2)} \|_{C^{\sigma+\bar{\alpha}}(B_{1/2})} \leq 4^4(c_0 + 1),
\]

\[
V_\ell^{(1)} = v_\ell - p_\ell \text{ in } B_{1/4}, \quad V_\ell^{(2)} = p_\ell \text{ in } B_{1/4}, \quad |V_\ell^{(1)}(x)| \leq 4^4(c_0 + 1)|x|^{\sigma+\bar{\alpha}} \text{ in } \mathbb{R}^n.
\] (2.9)

Decompose \(R(x) \) as

\[
R(x) = R^{(1)}(x) + R^{(2)}(x),
\]
where

\[R^{(1)}(x) = \sum_{\ell=0}^{i} \rho^{-(i-\ell)(\sigma+\alpha)} V^{(1)}_{\ell} (\rho^{i-\ell} x) \]

\[R^{(2)}(x) = \sum_{\ell=0}^{i} \rho^{-(i-\ell)(\sigma+\alpha)} V^{(2)}_{\ell} (\rho^{i-\ell} x). \]

By change of variables, we have that for each \(a \in \mathcal{A}, \)

\[L^{(i+1)}_{\bar{a}} R^{(1)}_{\rho}(x) = \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha} (L^{(0)}_{\bar{a}} V^{(1)}_{\ell})(\rho^{i+1-\ell} x), \]

\[L^{(i+1)}_{\bar{a}} R^{(2)}_{\rho}(x) = \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha} (L^{(0)}_{\bar{a}} V^{(2)}_{\ell})(\rho^{i+1-\ell} x). \]

By (2.7) and (2.8), we have

\[L^{(i+1)}_{\bar{a}} R^{(1)}_{\rho}(0) = 0, \]

\[0 \leq L^{(i+1)}_{\bar{a}} R^{(2)}_{\rho}(0) + \rho^{-(i+1)\alpha} a b_{\bar{a}} = L^{(i+1)}_{\bar{a}} R_{\rho}(0) + \rho^{-(i+1)\alpha} a b_{\bar{a}} \leq \rho^{\bar{\alpha}-\alpha}. \]

By (2.7) and (2.8), we have

\[L^{(i+1)}_{\bar{a}} R^{(1)}_{\rho}(x) = |L^{(i+1)}_{\bar{a}} R^{(1)}_{\rho}(x) - L^{(i+1)}_{\bar{a}} R^{(1)}_{\rho}(0)| \]

\[\leq \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha}|(L^{(0)}_{\bar{a}} V^{(1)}_{\ell})(\rho^{i+1-\ell} x) - (L^{(0)}_{\bar{a}} V^{(1)}_{\ell})(0)| \]

\[\leq C|x|^\bar{\alpha} \sum_{\ell=0}^{i} \rho^{(\ell+1-\ell)(\bar{\alpha}-\alpha)} \|V^{(1)}_{\ell}\|_{C^{\sigma+\alpha}(\mathbb{R}^n)} \]

\[\leq C|x|^\bar{\alpha} \rho^{\bar{\alpha}-\alpha} \sum_{\ell=0}^{\infty} \rho^{\ell(\bar{\alpha}-\alpha)} \]

\[\leq C \rho^{\bar{\alpha}-\alpha} |x|^\bar{\alpha} \hspace{1cm} \text{for} \ x \in \mathbb{R}^n. \]
Similarly, it follows from Lemma 2.5, (2.10) and (2.9) that

\[
|L_{a_{i+1}}^{(i+1)}R_{\rho}^{(2)}(x) - L_{a}^{(i+1)}R_{\rho}^{(2)}(0)| \\
\leq \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha} |(L_{a_{\ell}}^{(\ell)}V_{\ell}^{(2)}(\rho^{i+1-\ell}x) - (L_{a_{\ell}}^{(\ell)}V_{\ell}^{(2)}(0))| \\
\leq C|x|^\bar{\alpha} \sum_{\ell=0}^{i} \rho^{(i+1-\ell)(\bar{\alpha}-\alpha)}(\|V_{\ell}^{(2)}\|_{C^{\alpha}(B_1)} + \|V_{\ell}^{(2)}\|_{L^{\infty}(\mathbb{R}^n)}) \\
\leq C \rho^{\bar{\alpha}-\alpha}|x|^{\bar{\alpha}} \quad \text{for} \ x \in B_5. \tag{2.13}
\]

Thus, by (2.11), we have

\[
|L_{a_{i+1}}^{(i+1)}R_{\rho}^{(2)}(x) + \rho^{-(i+1)\alpha}b_a| \leq C \rho^{\bar{\alpha}-\alpha}(|x|^{\bar{\alpha}} + 1) \quad \text{for} \ x \in B_5. \tag{2.14}
\]

Let

\[
\tilde{v}_{i+1} = v_{i+1} + R_{\rho}^{(1)}.
\]

Hence, the equation of (2.1) involving \(v_{i+1}\) is

\[
\inf_a \{L_{a_{i+1}}^{(i+1)}(v_{i+1} + R_{\rho}) + \rho^{-(i+1)\alpha}b_a\} = 0,
\]

which is equivalent to

\[
\inf_a \{L_{a_{i+1}}^{(i+1)}(\tilde{v}_{i+1} + R_{\rho}^{(2)}) + \rho^{-(i+1)\alpha}b_a\} = 0 \quad \text{in} \ B_5. \tag{2.15}
\]

It follows from (2.12) and (2.14) that

\[
L_{a_{i+1}}^{(i+1)}v_{i+1}(x) \geq -C \rho^{\bar{\alpha}-\alpha} \quad \text{in} \ B_5, \\
L_{a_{i+1}}^{(i+1)}\tilde{v}_{i+1}(x) \geq -C \rho^{\bar{\alpha}-\alpha} \quad \text{in} \ B_5. \tag{2.16}
\]

where \(C\) is a universal positive constant.

2.4. \(\mathcal{C}^\sigma \) estimates

Define the maximal operators

\[
\mathcal{M}_0^+ u(x) = \sup_{K \in \mathcal{S}_0(\lambda, \Lambda, \sigma)} \int_{\mathbb{R}^n} \delta u(x, y)K(y)dy,
\]

\[
\mathcal{M}_2^+ u(x) = \sup_{K \in \mathcal{S}_2(\lambda, \Lambda, \sigma)} \int_{\mathbb{R}^n} \delta u(x, y)K(y)dy.
\]
And one can define the extremal operators \mathcal{M}_0^- and \mathcal{M}_2^- similarly. Let $\eta_1 \in C_c^\infty(B_4)$ be a smooth cut-off function such that $\eta_1 \equiv 1$ in B_3. We write (2.15) as

$$\inf_{a \in \mathcal{A}} \{ L_a^{(i+1)} \tilde{v}_{i+1} + h_a(x) + \rho^{-(i+1)\alpha} b_a \} = 0 \quad \text{in } B_3, \quad (2.17)$$

where

$$h_a(x) := \eta_1(x) L_a^{(i+1)} R^{(2)}_\rho(x).$$

Lemma 2.7. Let K be a symmetric kernel satisfying $0 \leq K(y) \leq (2 - \sigma) \Lambda |y|^{-n - \sigma}$. Then for every bump function η such that

$$0 \leq \eta(x) \leq 1 \quad \text{in } \mathbb{R}^n,$$

$$\eta(x) = \eta(-x) \quad \text{in } \mathbb{R}^n,$$

$$\eta(x) = 0 \quad \text{in } \mathbb{R}^n \setminus B_{3/2},$$

we have

$$\mathcal{M}_2^+ \left(\int_{\mathbb{R}^n} \delta \tilde{v}_{i+1}(x,y) K(y) \eta(y) \, dy \right) \geq -C \rho^{2-\alpha} \quad \text{in } B_{3/2}.$$

Proof. Let ϕ_k be the L^1 function $\phi_k = \chi_{\mathbb{R}^n \setminus B_{1/k}} K(y) \eta(y)$, where χ_E is the characteristic function of a set E. For every $a \in \mathcal{A}$, we know from (2.17) that

$$L_a^{(i+1)} \tilde{v}_{i+1}(x) + h_a(x) + \rho^{-(i+1)\alpha} b_a \geq 0 \quad \forall \, x \in B_3.$$

It follows that for all $x \in B_{3/2},$

$$0 \leq (L_a^{(i+1)} \tilde{v}_{i+1} + h_a + \rho^{-(i+1)\alpha} b_a) * \phi_k(x)$$

$$\leq L_a^{(i+1)} (\tilde{v}_{i+1} * \phi_k)(x) + h_a * \phi_k(x) + \rho^{-(i+1)\alpha} b_a \| \phi_k \|_{L^1}. $$

It also follows from (2.17) that

$$\inf_{a \in \mathcal{A}} \{ \| \phi_k \|_{L^1} (L_a^{(i+1)} \tilde{v}_{i+1}(x) + h_a(x) + \rho^{-(i+1)\alpha} b_a) \} = 0 \quad \forall \, x \in B_3.$$

This implies that for all $x \in B_{3/2},$

$$\sup_{a \in \mathcal{A}} L_a^{(i+1)} (\tilde{v}_{i+1} * \phi_k - \| \phi_k \|_{L^1} \tilde{v}_{i+1})(x) + \sup_{a \in \mathcal{A}} \{ h_a * \phi_k(x) - \| \phi_k \|_{L^1} h_a(x) \} \geq 0.$$
For any $x \in B_{3/2}$, any $a \in A$, by using (2.10) and change of variables we have

\[
2|h_a * \phi_k(x) - \|\phi_k\|_{L_1} h_a(x)| \leq \left| \int_{B_{3/2} \setminus B_{1/k}} \delta(L_a^{(i+1)} R^{(2)}_{\rho})(x, y)K(y)\eta(y) \, dy \right|
\]

\[
\leq \sum_{\ell=0}^{\infty} \rho^{(i+1-\ell)\alpha} \left| \int_{B_{3/2} \setminus B_{1/k}} |\delta(L_a^{(\ell)} V^{(2)}_{\ell})(\rho^{i+1-\ell}x, \rho^{i+1-\ell}y)|K(y)\eta(y) \, dy \right|
\]

\[
\leq \sum_{\ell=0}^{\infty} \rho^{(i+1-\ell)(\sigma-\alpha)} \int_{B_{3\rho^{i+1-\ell}/2} \setminus B_{\rho^{i+1-\ell}/k}} \|L_a^{(\ell)} V^{(2)}_{\ell}\|_{C^2(B_{1/8})} |y|^{2}K^{-(i+1-\ell)}(y) \, dy
\]

\[
\leq C \sum_{\ell=0}^{\infty} \rho^{(i+1-\ell)(\sigma-\alpha)} \left(\|V^{(2)}_{\ell}\|_{C^4(B_{1/4})} + \|V^{(2)}_{\ell}\|_{L^\infty(\mathbb{R}^n)} \right) \sum_{\ell=0}^{\infty} \rho^{(2-\alpha)\ell}
\]

\[
\leq C \rho^{2-\alpha},
\]

where $K^{-(i+1-\ell)}(y) = \rho^{-(i+1-\ell)(\alpha+\sigma)}K(\rho^{-(i+1-\ell)}y)$, and Lemma 2.3 was used since $V^{(2)}_{\ell}(x) = p_{\ell}(x)$ in $B_{1/4}$. Consequently,

\[
\mathcal{M}_2^\dagger (\tilde{\nu}_{i+1} * \phi_k - \|\phi_k\|_{L_1} \tilde{\nu}_{i+1})(x) \geq -C \rho^{2-\alpha}.
\]

The result follows from Lemma 5 in [7] by taking the limit as $k \to \infty$. \qed

Lemma 2.8. Let K be a symmetric kernel satisfying $0 \leq K(y) \leq (2 - \sigma)\Lambda |y|^{-n-\sigma}$.

Then for every smooth bump function η such that

\[
\begin{align*}
0 &\leq \eta(x) \leq 1 \quad \text{in } \mathbb{R}^n, \\
\eta(x) &= \eta(-x) \quad \text{in } \mathbb{R}^n, \\
\eta(x) &= 0 \quad \text{in } \mathbb{R}^n \setminus B_{4/5}, \\
\eta(x) &= 1 \quad \text{in } B_{3/4},
\end{align*}
\]

we have

\[
\mathcal{M}_2^\dagger \left(\eta(x) \int_{B_1} \delta \tilde{\nu}_{i+1}(x, y)K(y) \, dy \right) \geq -C(\rho^{\alpha-\sigma} + \frac{1}{M}) \quad \text{in } B_{3/5}.
\]
Proof. Define
\[T v(x) = \int_{B_1} \delta v(x, y) K(y) \, dy. \]

It follows from Lemma 2.7 that
\[M_2^+(T \tilde{v}_{i+1})(x) \geq -C \rho^{2-\alpha} \quad \text{in } B_{3/2}. \] (2.18)

Let \(\tilde{L} \) be any operator with kernel \(\tilde{K} \in L_2(\lambda, \Lambda, \sigma) \). For \(x \in B_{3/5} \), we have
\[
\tilde{L}(\eta T \tilde{v}_{i+1})(x) = \int_{\mathbb{R}^n} \delta(T \tilde{v}_{i+1})(x, y) \tilde{K}(y) \, dy - \int_{\mathbb{R}^n} \delta((1 - \eta)T \tilde{v}_{i+1})(x, y) \tilde{K}(y) \, dy
\geq \tilde{L}(T \tilde{v}_{i+1})(x) - 2 \int_{\mathbb{R}^n} (1 - \eta(x - y))T \tilde{v}_{i+1}(x - y) \tilde{K}(y) \, dy. \] (2.19)

Now we estimate the second term in the last inequality. Recall that \(\tilde{v}_{i+1} = v_{i+1} + R^{(1)}_\rho(x) \).

It is clear that
\[
\int_{\mathbb{R}^n} T v_{i+1}(x - y)(1 - \eta(x - y)) \tilde{K}(y) \, dy
= \int_{\mathbb{R}^n} v_{i+1}(x - y) T((1 - \eta(x - \cdot)) \tilde{K}(\cdot))(y) \, dy \leq C \|v_{i+1}\|_{L^\infty} \leq C/M.
\]

By change of variables, we have for all \(x \in \mathbb{R}^n \),
\[
|TR^{(1)}_\rho(x)| = |\int_{B_1} \delta R^{(1)}_\rho(x, y) K(y) \, dy|
= |\sum_{\ell=0}^i \int_{B_{\rho^{i+1-\ell}}} \rho^{-(i+1-\ell)\alpha} \delta V^{(1)}_\ell(\rho^{i+1-\ell} x, y) K^{-(i+1-\ell)}(y) \, dy|,
\]
where \(K^{-(i+1-\ell)}(y) = \rho^{-(i+1-\ell)(n+\sigma)} K(\rho^{-(i+1-\ell)} y) \).
By triangle inequality, we have

\[|TR^{(1)}_\rho(x)| \]
\[\leq \sum_{l=0}^{i} \rho^{-(i+1-\ell)\alpha} \left| \int_{B_{\rho^{i+1-\ell}}} (\delta V^{(1)}_{\ell}(\rho^{i+1-\ell}x, y) - \delta V^{(1)}_{\ell}(0, y))K^{-(i+1-\ell)}(y) \, dy \right| \]
\[+ \sum_{l=0}^{i} \rho^{-(i+1-\ell)\alpha} \left| \int_{B_{\rho^{i+1-\ell}}} \delta V^{(1)}_{\ell}(0, y)K^{-(i+1-\ell)}(y) \, dy \right| \]
\[\leq C \sum_{\ell=0}^{i} \|V^{(1)}_{\ell}\|_{C^{\sigma+\alpha}(\mathbb{R}^{n})} |x|^\alpha \rho^{(i+1-\ell)(\alpha-\alpha)} \]
\[+ C \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha} \int_{B_{\rho^{i+1-\ell}}} \frac{(2 - \sigma)|y|^{\sigma+\alpha}}{|y|^{n+\sigma}} \, d\zeta \]
\[\leq C \rho^{\alpha-\alpha}(1 + |x|^\alpha) \quad \text{for all} \ x \in \mathbb{R}^{n}, \quad (2.20) \]
where we used Lemma 2.4 and (2.9) in the second inequality.

It follows that for \(x \in B_{3/5} \),

\[\int_{\mathbb{R}^{n}} (1 - \eta(x - y))TR^{(1)}(x - y)K(y) \, dy \]
\[= \int_{\mathbb{R}^{n}} (1 - \eta(y))TR^{(1)}(y)K(x - y) \, dy \]
\[= \int_{\mathbb{R}^{n} \setminus B_{3/4}} (1 - \eta(y))TR^{(1)}(y)K(x - y) \, dy \]
\[\leq C \rho^{\alpha-\alpha} \int_{|y| > 1/64} \frac{(2 - \sigma)}{|y|^{n+\sigma-\alpha}} \leq C \rho^{\alpha-\alpha}, \quad (2.21) \]
where we used that \(\sigma \geq \sigma_0 > 1 > \alpha \). Taking the supremum of all \(K \) in \(L_{2}(\lambda, \Lambda, \sigma) \) in (2.19) and using (2.18), we complete the proof. \[\square \]

Lemma 2.9. We have

\[|L^{(i+1)}_{\alpha}v_{i+1}(x)| \leq C(\rho^{\alpha-\alpha} + \frac{1}{M}) \quad \text{in} \ B_{1/2}. \]

Proof. Let \(\eta_{i}(x) \geq 0 \) be a smooth cutoff function in \(B_{2} \) with \(\eta_{i} \equiv 1 \) in \(B_{1} \). Then

\[\int_{\mathbb{R}^{n}} L^{(i+1)}_{\alpha}v_{i+1}\eta_{1} = \int_{\mathbb{R}^{n}} v_{i+1}L^{(i+1)}_{\alpha}\eta_{1} \leq C\|v_{i+1}\|_{L^{\infty}(\mathbb{R}^{n})} \leq C/M. \]
By (2.16), $L^{(i+1)}_a v_{i+1} \geq -C\rho^{\bar{a}-\alpha}$ in B_4, we have
\[
\int_{B_1} |L^{(i+1)}_a v_{i+1}| \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M}).
\]

Let
\[
T^{(i+1)}_a v = \int_{B_1} \delta v(x, y) K^{(i+1)}_a(y) \, dy.
\]
It is easy to see that
\[
\int_{B_1} |T^{(i+1)}_a v_{i+1}| \leq \int_{B_1} |L^{(i+1)}_a v_{i+1}| + C\|v_{i+1}\|_{L^\infty} \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M}).
\]

It follows from (2.20) that for all $x \in \mathbb{R}^n$,
\[
|T^{(i+1)}_a R^{(1)}_\rho(x)| \leq C\rho^{\bar{a}-\alpha}(1 + |x|^{\bar{a}}). \tag{2.22}
\]

Since $\bar{v}_{i+1} = v_{i+1} + R^{(1)}_\rho$, we obtain
\[
\int_{B_1} |T^{(i+1)}_a \bar{v}_{i+1}| \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M}). \tag{2.23}
\]

Let η be the cut-off function in Lemma 2.8 and denote $v(x) := \eta(x)T^{(i+1)}_a \bar{v}_{i+1}(x)$. It follows from Lemma 2.8 that
\[
M^+_2 v(x) \geq -C(\rho^{\bar{a}-\alpha} + \frac{1}{M}) \text{ in } B_{3/5}.
\]

It follows from (2.23) and Theorem 5.1 in [8] that $v \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M})$ in $B_{1/2}$. But $v = T^{(i+1)}_a \bar{v}_{i+1}$ in $B_{1/2}$, so we have proved that
\[
T^{(i+1)}_a \bar{v}_{i+1} \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M}) \text{ in } B_{1/2}.
\]

By (2.22), we have $T^{(i+1)}_a v_{i+1}(x) \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M})$ in $B_{1/2}$, and thus,
\[
L^{(i+1)}_a v_{i+1}(x) \leq C(\rho^{\bar{a}-\alpha} + \frac{1}{M}) \text{ in } B_{1/2}.
\]

We complete the proof together with (2.16).
Lemma 2.10. There is a universal constant C such that for every operator L with a symmetric kernel K satisfying $0 \leq K(y) \leq (2 - \sigma)\Lambda|y|^{n+\sigma}$, we have

$$|Lv_{i+1}(x)| \leq C(\rho^{\alpha-\sigma} + \frac{1}{M}) \text{ in } B_1.$$

Proof. We will prove the estimate in $B_{1/6}$, and the general estimate follows from scaling and translation arguments. By Lemma 2.9 we have

$$\|L^{(i+1)}v_{i+1}\|_{L^2(B_{1/2})} \leq C(\rho^{\alpha-\sigma} + \frac{1}{M}).$$

Note that $\|v_{i+1}\|_{L^1(\mathbb{R}^n,1/(1+|y|^{n+\sigma}))} \leq C\|v_{i+1}\|_{L^\infty} \leq C/M$. From Theorem 4.3 of [8], we have L^2 estimate for every linear operator L with kernel $K \in \mathcal{L}_0(\lambda, \Lambda, \sigma)$,

$$\|Lv_{i+1}\|_{L^2(B_{1/3})} \leq C(\rho^{\alpha-\sigma} + \frac{1}{M}).$$

We split the integral of Lv_{i+1} as

$$Lv_{i+1}(x) = \int_{B_1} + \int_{B_1^c} \delta v_{i+1}(x, y) K(y) \, dy.$$

It is clear that

$$|\int_{B_1^c} \delta v_{i+1}(x, y) K(y) \, dy| \leq C\|v_{i+1}\|_{L^\infty} \leq C/M.$$

Hence, we have L^2 estimates for the first one

$$\left\|\int_{B_1} \delta v_{i+1}(x, y) K(y) \, dy\right\|_{L^2(B_{1/3})} \leq C(\rho^{\alpha-\sigma} + \frac{1}{M}).$$

It follows from (2.20) that

$$|\int_{B_1} \delta R^{(1)}_\rho(x, y) K(y) \, dy| \leq C\rho^{\alpha-\sigma} \quad \text{for } x \in B_1. \quad (2.24)$$

By triangle inequality, we have

$$\left\|\int_{B_1} \delta \tilde{v}_{i+1}(x, y) K(y) \, dy\right\|_{L^2(B_{1/3})} \leq C(\rho^{\alpha-\sigma} + \frac{1}{M}). \quad (2.25)$$

21
For a smooth cut-off function $c(x) \in C^\infty_c(B_{1/3})$, $c(x) = c(-x)$, and $c(x) = 1$ in $B_{1/4}$, we define

$$v(x) := c(x) \int_{B_1} \delta \tilde{u}_{i+1}(x, y) K(y) \, dy.$$

It follows from the proof of Lemma 2.8 that $M^+_2 v \geq -C(1/M + \rho^{\tilde{a}-\alpha})$ in $B_{1/5}$. By (2.25) and Theorem 5.1 in [8] we have $v \leq C(1/M + \rho^{\tilde{a}-\alpha})$ in $B_{1/6}$, and thus

$$\int_{B_1} \delta \tilde{u}_{i+1}(x, y) K(y) \, dy \leq C(1/M + \rho^{\tilde{a}-\alpha}) \text{ in } B_{1/6}.$$

Since (2.24) holds for $x \in B_1$, we have that

$$\int_{B_1} \delta v_{i+1}(x, y) K(y) \, dy \leq C(1/M + \rho^{\tilde{a}-\alpha}) \text{ in } B_{1/6}.$$

Consequently,

$$Lv_{i+1} \leq C(1/M + \rho^{\tilde{a}-\alpha}) \text{ in } B_{1/6}.$$

Consider the kernel

$$K_d = \frac{2}{\lambda} K^{(i+1)} \tilde{a} - \frac{1}{\Lambda} K$$

and the corresponding linear operator L_d, where $0 \leq K \leq (2 - \sigma)\Lambda |y|^{-n-\sigma}$. Then K_d satisfies the ellipticity condition $(2 - \sigma)|y|^{-n-\sigma} \leq K_d(y) \leq (2 - \sigma)(2\Lambda/\lambda)|y|^{-n-\sigma}$. The same proof as above yields that

$$L_d v_{i+1} \leq C(1/M + \rho^{\tilde{a}-\alpha}) \text{ in } B_{1/6}.$$

Since $L^{(i+1)}_{\tilde{a}} v_{i+1}$ is lower bounded by (2.16), we obtain a bound from below for L in $B_{1/6}$

$$Lv_{i+1} = 2 \frac{\Lambda}{\lambda} L^{(i+1)}_{\tilde{a}} v_{i+1} - \Lambda L_d v_{i+1} \geq -C(1/M + \rho^{\tilde{a}-\alpha}) \text{ in } B_{1/6}.$$

Similarly, if we consider $\tilde{K}_d = \frac{2}{\lambda} K^{(i+1)} \tilde{a} + \frac{1}{\Lambda} K$, we obtain that $Lv_{i+1} \leq C(1/M + \rho^{\tilde{a}-\alpha})$. In conclusion, we obtained that $|Lv_{i+1}| \leq C(1/M + \rho^{\tilde{a}-\alpha})$ in $B_{1/6}$.

The above lemma immediately gives

Corollary 2.11. $\mathcal{M}_{\tilde{a}}^+ v_{i+1}$ and $\mathcal{M}_{\tilde{a}}^- v_{i+1}$ are bounded by $C(\rho^{\tilde{a}-\alpha} + 1/M)$ in B_1. In particular,

$$\|\nabla v_{i+1}\|_{L^\infty(B_{1/2})} \leq C(\rho^{\tilde{a}-\alpha} + 1/M),$$

(2.26)
and consequently,
\[\| \nabla \tilde{v}_{i+1} \|_{L^\infty(B_{1/2})} \leq C(\rho^{\delta-\alpha} + \frac{1}{M}). \quad (2.27) \]

Proof. The first conclusion is clear, from which (2.26) also follows immediately since \(\sigma \geq \sigma_0 > 1 \). To prove (2.27), we notice that \(V^{(1)}_\ell = v^{(1)}_\ell - P_\ell \in C^{\sigma+\bar{\alpha}}(B_{1/2}) \), and \(V^{(1)}_\ell = v^{(1)}_\ell - p_\ell \) in \(B_{1/4} \) where \(p_\ell \) is the Taylor expansion polynomial of \(v^{(1)}_\ell \) at \(x = 0 \) with degree \([\sigma + \bar{\alpha}]\). Hence, \(|\nabla V^{(1)}_\ell(x)| \leq C|x|^{\sigma+\bar{\alpha}-1} \) in \(B_{1/2} \). Thus, for all \(x \in B_{1/2} \),
\[
|\nabla R^{(1)}_\rho(x)| = |\nabla \sum_{\ell=0}^i \rho^{-(i+1-\ell)(\sigma+\alpha)} V^{(1)}_\ell(\rho^{i+1-\ell} x)|
\leq C \sum_{\ell=0}^i \rho^{-(i+1-\ell)(\sigma+\alpha-1)} |\rho^{i+1-\ell} x|^{\sigma+\bar{\alpha}-1} \leq C \rho^{\delta-\alpha}.
\]
Thus, (2.27) follows immediately. \(\square \)

Theorem 2.12. We have
\[
\int_{\mathbb{R}^n} |\delta v_{i+1}(x,y)| \frac{(2 - \sigma)}{|y|^{n+\sigma}} \, dy \leq C(\rho^{\delta-\alpha} + \frac{1}{M}) \quad \text{in } B_1.
\]

Proof. Given Lemma 2.10 and Corollary 2.11, it follows from the same proof as that of Theorem 7.4 in [8]. \(\square \)

2.5. \(C^{\sigma+\bar{\alpha}} \) estimates

For brevity, we write
\[u = v_{i+1} \quad \text{and} \quad \tilde{u} = \tilde{v}_{i+1}. \]
in this subsection.

Let \(\eta \) be a bump function as in Lemma 2.8. For each measurable set \(A \) with \(-A = A \), we write
\[
w_A(x) = \eta(x) \int_{B_1} (\delta \tilde{u}(x,y) - \delta \tilde{u}(0,y)) K_A(y) \, dy,
\]
where
\[
K_A(y) = \frac{(2 - \sigma)}{|y|^{n+\sigma}} \chi_A(y).
\]
For \(x \in B_1 \), by Lemma 2.4 and change of variables, we have

\[
| \int_{B_1} (\delta R^{(1)}_\rho(x, y) - \delta R^{(1)}_\rho(0, y)) K_A(y) \, dy | \\
\leq \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(\sigma+\alpha)} \int_{B_{\rho^{i+1-\ell}}} (\delta V^{(1)}_\ell(\rho^{i+1-\ell} x, \rho^{i+1-\ell} y) - \delta V^{(1)}_\ell(0, \rho^{i+1-\ell} y)) K_A(y) \, dy | \\
= \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)\alpha} \int_{B_{\rho^{i+1-\ell}}} (\delta V^{(1)}_\ell(\rho^{i+1-\ell} x, y) - \delta V^{(1)}_\ell(0, y)) K_A^{(\ell-1-i)}(y) \, dy | \\
\leq C \rho^{\delta-\alpha} |x|^\delta. \\
\tag{2.28}
\]

Then it follows from Theorem 2.12 that

\[
|w_A| \leq C(\rho^{\delta-\alpha} + 1/M) \quad \text{in} \quad \mathbb{R}^n. \tag{2.29}
\]

Also, it follows from Lemma 2.10 as well as (2.20) that

\[
| \int_{B_1} \delta \tilde{u}(0, y) K_A(y) \, dy | \leq C(\rho^{\delta-\alpha} + 1/M).
\]

Together with Lemma 2.8, we have

\[
\mathcal{M}_2^+ w_A \geq -C(\rho^{\delta-\alpha} + 1/M) \quad \text{in} \quad B_{3/5} \text{ uniformly in } A.
\]

As in [8], we define

\[
N^+(x) := \sup_A w_A(x) = \eta(x) \int_{B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y))^+ \frac{(2-\sigma)}{|y|^{n+\sigma}} \, dy,
\]

\[
N^-(x) := \sup_A -w_A(x) = \eta(x) \int_{B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y))^- \frac{(2-\sigma)}{|y|^{n+\sigma}} \, dy.
\]

Lemma 2.13. For all \(x \in B_{1/4} \), we have

\[
\frac{\lambda}{\Lambda} N^-(x) - C(\rho^{\delta-\alpha} + 1/M)|x| \leq N^+(x) \leq \frac{\lambda}{\Lambda} N^-(x) + C(\rho^{\delta-\alpha} + 1/M)|x|.
\]
Proof. For some \(x \in B_{1/2} \), let \(\tilde{u}_x(z) = \tilde{u}(x + z) \). It follows from (2.17) that
\[
\mathcal{M}_2^+(\tilde{u}_x - \tilde{u})(0) \geq - \sup_a (h_a(x) - h_a(0)), \quad \mathcal{M}_2^-(\tilde{u}_x - \tilde{u})(0) \leq \sup_a (h_a(0) - h_a(x)).
\]

Note that for \(x \in B_3 \),
\[
h_a(x) = L^{(i+1)}\rho(2)(x) = \sum_{\ell=0}^i \rho^{-(i+1-\ell)\alpha} (L^{(\ell)}_a V^{(2)}(\rho^{i+1-\ell} x))
\]
and thus for \(\rho x \in B_{1/4} \)
\[
|h_a(x) - h_a(0)| = |\sum_{\ell=0}^i \rho^{-(i+1-\ell)\alpha} (L^{(\ell)}_a V^{(2)}(\rho^{i+1-\ell} x) - L^{(\ell)}_a V^{(2)}(0))| \\
\leq C \sum_{\ell=0}^i \rho^{-(i+1-\ell)\alpha} (\|V^{(2)} \|_{C^4(B_{1/2})} + \|V^{(2)} \|_{L^\infty(\mathbb{R}^n)}) \rho^{(i+1-\ell)\alpha} |x|
\leq C \rho^{1-\alpha} \sum_{\ell=0}^{\infty} \rho^{\ell(1-\alpha)} |x|,
\]
where Lemma 2.3 was used in the first inequality. Hence, we have
\[
\mathcal{M}_2^+(\tilde{u}_x - \tilde{u})(0) \geq - C \rho^{1-\alpha} |x|, \quad \mathcal{M}_2^-(\tilde{u}_x - \tilde{u})(0) \leq C \rho^{1-\alpha} |x|. \quad (2.30)
\]

For every kernel \(K \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \), we have
\[
L(\tilde{u}_x - \tilde{u})(0) = \int_{\mathbb{R}^n} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy \\
= \int_{B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy \\
+ \int_{\mathbb{R}^n \setminus B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy.
\]
Now we estimate the second term of right hand side: for $x \in B_{1/4}$

$$\frac{1}{2} \int_{\mathbb{R}^n \setminus B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy$$

$$= \int_{\mathbb{R}^n} \tilde{u}(y)(K(y - x) \chi_{B_1}(y - x) - K(y) \chi_{B_1}(y)) \, dy - (\tilde{u}(x) - \tilde{u}(0)) \int_{\mathbb{R}^n \setminus B_1} K(y) \, dy$$

$$\leq \int_{\mathbb{R}^n \setminus B_{1+|x|}} |\tilde{u}(y)||K(y - x) - K(y)| \, dy$$

$$+ \|\tilde{u}\|_{L^\infty(B_{1+|x|})} \int_{B_{1+|x|} \setminus B_{1-|x|}} K(y) \, dy + C(\rho^{\bar{\alpha} - \alpha} + \frac{1}{M})|x|$$

$$\leq C(\rho^{\bar{\alpha} - \alpha} + \frac{1}{M})|x|,$$

where in the first inequality we have used (2.27), and in the last we used that $|\nabla K(y)| \leq (2 - \sigma) \Lambda |y|^{-n-\sigma-1}$ and

$$|\tilde{u}(y)| \leq \|v_{i+1}\|_{L^\infty(\mathbb{R}^n)} + |R^{(1)}_p(y)|$$

$$\leq \frac{1}{M} + C \sum_{\ell=0}^i \rho^{-(i+1-\ell)(\sigma+\alpha)}|V^{(1)}_{\ell}(\rho^{i+1-\ell} y)|$$

$$\leq \frac{1}{M} + C \sum_{\ell=0}^i \rho^{-(i+1-\ell)(\sigma+\alpha)}|\rho^{i+1-\ell} y|^{\sigma + \bar{\alpha}}$$

$$\leq \frac{1}{M} + C \rho^{\bar{\alpha} - \alpha} |y|^{\sigma + \bar{\alpha}}.$$

Therefore, for every kernel $K \in \mathcal{L}_2(\lambda, \Lambda, \sigma)$, we have

$$\int_{\mathbb{R}^n} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy \leq \int_{B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y)) K(y) \, dy + C(\rho^{\bar{\alpha} - \alpha} + \frac{1}{M})|x|.$$
In particular, if we take the supremum over all kernels $K \in \mathcal{L}_0(\lambda, \Lambda, \sigma)$, we still have

$$
\sup_{\frac{\Lambda(2-\sigma)}{|y|^{n+\sigma}} \leq K \leq \frac{\Lambda(2-\sigma)}{|y|^{n+\sigma}}} \int_{B_1} (\delta \tilde{u}(x, y) - \delta \tilde{u}(0, y))K(y) \, dy \geq -C(\rho^{\tilde{\alpha}-\alpha} + \frac{1}{M})|x|,
$$

which is equivalent to

$$
\Lambda N^+(x) - \lambda N^-(x) \geq -C(\rho^{\tilde{\alpha}-\alpha} + \frac{1}{M})|x|.
$$

The same computation with $\mathcal{M}^-_2(\tilde{u}_x - \tilde{u})(0) \leq C(\rho^{\alpha-\alpha} + \frac{1}{M})|x|$ provides the other inequality. □

One may consider $\bar{w}_A = (C(1/M + \rho^{\tilde{\alpha}-\alpha}))^{-1}w_A(rx)$, where C is the constant in (2.29). For every ε_1 small, we can choose r smaller so that

for every set A:

- $|w_A| \leq 1$ in \mathbb{R}^n,
- for every set A : $\mathcal{M}^+_2w_A \geq -\varepsilon_1$ in B_1

$$
\frac{\lambda}{\Lambda} N^-(x) - \varepsilon_1|x| \leq N^+(x) \leq \frac{\Lambda}{\lambda} N^-(x) + \varepsilon_1|x|. \quad (2.32)
$$

Note that w_A and \bar{w}_A share the same Hölder exponent.

Lemma 2.14. We have for $x \in B_{1/4}$, $N^+(x) \leq C(1/M + \rho^{\alpha-\alpha})|x|^{\tilde{\alpha}}$.

Proof. It follows from exactly the same proof of Lemma 9.2 in [8]. □

Proof of Theorem 2.2. For $x \in B_{1/4}$, we have

$$
| - \Delta)^{\sigma/2} \tilde{v}_{i+1}(x) - (-\Delta)^{\sigma/2} \tilde{v}_{i+1}(0)|
\leq C \left| N^+(x) - N^-(x) + \int_{\mathbb{R}^n \setminus B_1} (\delta \tilde{v}_{i+1}(x, y) - \delta \tilde{v}_{i+1}(0, y))K(y) \, dy \right|
\leq C(\rho^{\tilde{\alpha}-\alpha} + \frac{1}{M})|x|^\tilde{\alpha} + C(\rho^{\tilde{\alpha}-\alpha} + \frac{1}{M})|x|
\leq C(\rho^{\tilde{\alpha}-\alpha} + \frac{1}{M})|x|^\tilde{\alpha},
$$

where in the first inequality we used Lemma 2.14, Lemma 2.13 and (2.31).
On the other hand, it follows from the computations in (2.28) and Lemma 2.4 that
\[\left| (-\Delta)^{\sigma/2} R^{(1)}_{\rho}(x) - (-\Delta)^{\sigma/2} R^{(1)}_{\rho}(0) \right| \leq C(\rho^{\bar{\alpha}-\alpha} + \frac{1}{M}) |x|^{\bar{\alpha}}. \]
Thus,
\[\left| (-\Delta)^{\sigma/2} v_{i+1}(x) - (-\Delta)^{\sigma/2} v_{i+1}(0) \right| \leq C(\rho^{\bar{\alpha}-\alpha} + \frac{1}{M}) |x|^{\bar{\alpha}}. \]
It follows from Lemma 2.10, standard translation arguments and Schauder estimates for \((-\Delta)^{\sigma/2}\) that
\[\| v_{i+1} \|_{C^{\sigma+\bar{\alpha}}(B_1)} \leq C(\rho^{\bar{\alpha}-\alpha} + \frac{1}{M}). \]
This finishes the proof of Theorem 2.2 provided that \(\rho_0^{\bar{\alpha}-\alpha} \leq 1/(2C)\) and \(M \geq 2C\).

Lastly, let us discuss the case \(0 < \sigma_0 \leq \sigma \leq 1\). In this case, the Evans-Krylov theorem in [8] does not provide any improvement with respect to the \(C^{1,\alpha}\) estimate in [6]. However, we do not know how to use the incremental quotients method as in [6] to prove our Theorem 2.2. But we still can find some \(\bar{\alpha} > 0\) so that Theorem 2.2 holds. Recall that in the proof of Theorem 2.2 above, there are two places where we used \(\sigma > 1\):

(i): In (2.21), we used \(\sigma \geq \sigma_0 > 1 > \bar{\alpha}\) so that the integral there is universally bounded;

(ii): In (2.26), we have the gradient estimate for \(v_{i+1}\) when \(\sigma \geq \sigma_0 > 1\). This was used in proving (2.31) in the proof of Lemma 2.13 and (2.32).

It is clear that the use in (i) is not essential, since we can assume that \(\bar{\alpha} < \sigma_0\) when \(0 < \sigma_0 \leq \sigma \leq 1\). The use in (ii) is not essential, either, since we can proceed using the Hölder estimates in [6] that
\[\| v_{i+1} \|_{C^\beta(B_{1/2})} \leq C(\rho^{\bar{\alpha}-\alpha} + \frac{1}{M}) \] (2.33)
instead of (2.26), where \(\beta \in (0,1)\) is a constant depending only on \(n, \sigma_0, \lambda, \Lambda\). Consequently, the statement of Lemma 2.13 becomes
\[\frac{\lambda}{\Lambda} N^-(x) - C(\rho^{\bar{\alpha}-\alpha} + 1/M)|x|^\beta \leq N^+(x) \leq \frac{\lambda}{\Lambda} N^-(x) + C(\rho^{\bar{\alpha}-\alpha} + 1/M)|x|^\beta \quad \forall x \in B_{1/4}, \]
and (2.32) becomes
\[
\lambda \Lambda N^-(x) - \varepsilon_1 |x|^{\beta} \leq N^+(x) \leq \Lambda \Lambda N^-(x) + \varepsilon_1 |x|^{\beta}.
\]

The same proof of Lemma 9.2 in [8] will give that there exists some \(\bar{\beta} > 0 \) depending only on \(\sigma_0, n, \lambda, \Lambda \) such that
\[
N^+(x) \leq C(1/M + \rho^{\bar{\beta}-\alpha}) |x|^{\bar{\beta}} \quad \forall x \in B_{1/4},
\]
and we will choose \(\bar{\alpha} = \bar{\beta} \) (which might be smaller than the one in (1.5) when \(\sigma < 1 \) if one consider the best possible one due to the \(C^{1,\alpha} \) estimates in [6] even for \(\sigma \) very small).

Thus, we can prove that

Theorem 2.15. For \(\sigma_0 \in (0, 2) \) and \(\sigma \in [\sigma_0, 2) \), there exists a constant \(\bar{\alpha} \in (0, 1) \) depending only on \(n, \sigma_0, \lambda \) and \(\Lambda \) so that Theorem 2.2 holds.

3. Schauder estimates

In this section, we will prove the Schauder estimates in Theorem 1.1. We start with a lemma. It follows quickly from comparison principles and we omit the proof here.

Lemma 3.1. Suppose that every \(K_a(y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \) with \(\sigma \geq \sigma_0 > 0 \), \(c_0 \) is a constant. Let \(u \) be the viscosity solution of
\[
\inf_{a \in A} \int_{\mathbb{R}^n} \delta u(x, y) K_a(y) \, dy = c_0 \quad \text{in } B_1
\]
\[
u = g \quad \text{in } \mathbb{R}^n \setminus B_1.
\]

Then there exists a constant \(C \) depending only on \(\lambda, \Lambda, n \) and \(\sigma_0 \) such that
\[
\|u\|_{L^n(\mathbb{R}^n)} \leq C(\|g\|_{L^n(\mathbb{R}^n \setminus B_1)} + |c_0|).
\]

Proof of Theorem 1.1. The strategy of the proof is to find a sequence of approximation solutions which are sufficiently regular, and the error between the genuine solution and the approximation solutions can be controlled in a desired rate. We divide the proof into four steps.

Step 1: Normalization and rescaling.
Let \(w_0 \) be the viscosity solution of

\[
I_0 w_0(x) := \inf_{a \in A} \int_{\mathbb{R}^n} \delta w_0(x, y) K_a(0, y) \, dy - f(0) = 0 \quad \text{in } B_4
\]

\[
w_0 = u \quad \text{in } \mathbb{R}^n \setminus B_4.
\]

Then by Lemma 3.1 we have that

\[
\|w_0\|_{L^\infty(\mathbb{R}^n)} \leq C(\|u\|_{L^\infty(\mathbb{R}^n)} + \|f\|_{L^\infty(B_5)}).
\]

Thus by normalization, we may assume that

\[
\|w_0\|_{L^\infty(\mathbb{R}^n)} \leq 1/2, \quad \|u\|_{L^\infty(\mathbb{R}^n)} + \|f\|_{L^\infty(B_5)} \leq 1/2.
\]

For some universal small positive constant \(\gamma < 1 \), which will be chosen later in (3.15), we may also assume that \(|f(x) - f(0)| \leq \gamma |x|^\alpha \) and

\[
\int_{\mathbb{R}^n} |K_a(x, y) - K_a(0, y)| \min(|y|^2, r^2) dy \leq \gamma |x|^{\alpha r^{2-\sigma}}
\]

for all \(a \in A, r \in (0, 1], x \in B_5 \). This can be achieved by the scaling for \(s < 1 \) small that if we let

\[
\tilde{K}_a(x, y) = s^{n+\sigma} K_a(sx, sy) \in \mathcal{L}_2(\lambda, \Lambda, \sigma),
\]

\[
\tilde{u}(x) = u(sx),
\]

\[
\tilde{f}(x) = s^\sigma f(sx),
\]

then we see that

\[
\tilde{I} \tilde{u}(x) = \inf_{a \in A} \tilde{L}_a \tilde{u}(x) = \tilde{f}(x) \quad \text{in } B_5,
\]

where

\[
\tilde{L}_a \tilde{u}(x) := \int_{\mathbb{R}^n} \delta \tilde{u}(x, y) \tilde{K}_a(x, y) \, dy.
\]

It follows that if we choose \(s \) sufficiently small, then

\[
|\tilde{f}(x) - \tilde{f}(0)| \leq M_f s^{\sigma+\alpha} |x|^\alpha \leq \gamma |x|^\alpha \leq 5\gamma,
\]

and

\[
\int_{\mathbb{R}^n} |\tilde{K}_a(x, y) - \tilde{K}_a(0, y)| \min(|y|^2, r^2) dy \leq 2\Lambda s^{\alpha} |x|^\alpha r^{2-\sigma} \leq \gamma |x|^{\alpha r^{2-\sigma}}.
\]
for all $a \in A$, $r \in (0, 1]$, $x \in B_5$. Thus, we may consider the equation of \tilde{u} instead.

Consequently, it follows from (3.1) that ($\| \cdot \|_*$ is defined in (A.1) in the Appendix)

$$\| I - I_0 \|_* \leq 25\gamma.$$

Indeed, if $x \in B_5$, $h \in C^2(x)$, $\|h\|_{L^\infty(\mathbb{R}^n)} \leq M$, $|h(y) - h(x) - (y - x) \cdot \nabla h(x)| \leq \frac{M}{2}|x - y|^2$ for every $y \in B_1(x)$, we have

$$\|I - I_0\|_* \leq \sup_{x,a,h} \frac{1}{1 + M} \int_{\mathbb{R}^n} |\delta h(x, y)||K_a(x, y) - K_a(0, y)| \, dy$$

$$\leq \sup_a \frac{M}{1 + M} \left(\int_{B_1} |y|^2 |K_a(x, y) - K_a(0, y)| + 4 \int_{\mathbb{R}^n \setminus B_1} |K_a(x, y) - K_a(0, y)| \right)$$

$$< 5\gamma|x|^\alpha \leq 25\gamma. \quad (3.3)$$

Step 2: From now on, we denote

$$\rho = \rho_0$$

as the one in Theorem 2.2, which is a universal constant.

We claim that we can find a sequence of functions w_i, $i = 0, 1, 2, \cdots$, such that for all i,

$$\inf_{a \in \mathcal{A}} \int_{\mathbb{R}^n} \sum_{\ell=0}^i \delta w_\ell(x, y) K_a(0, y) dy = f(0) \quad \text{in } B_{4^i\rho^i}, \quad (3.4)$$

and

$$(u - \sum_{\ell=0}^i w_\ell)(\rho^i x) = 0 \quad \text{for all } x \in \mathbb{R}^n \setminus B_4, \quad (3.5)$$

and

$$\|w_i\|_{L^\infty(\mathbb{R}^n)} \leq \rho^{(\sigma + \alpha)i},$$

$$\|Dw_i\|_{L^\infty(B_{4^i\rho^i})} \leq c_2 \rho^{(\sigma + \alpha - 1)i} \tau^{-1},$$

$$\|D^2 w_i\|_{L^\infty(B_{4^i\rho^i})} \leq c_2 \rho^{(\sigma + \alpha - 2)i} \tau^{-2},$$

$$[D^2 w_i]_{C^{\sigma + \alpha - 2}(B_{4^i\rho^i})} \leq c_2 \rho^{(\sigma - \alpha)i} \tau^{-4}, \quad (3.6)$$

and

$$\|u - \sum_{\ell=0}^i w_\ell\|_{L^\infty(\mathbb{R}^n)} \leq \rho^{(\sigma + \alpha)(i + 1)}, \quad (3.7)$$

31
and

\[[u - \sum_{\ell=0}^{i} w_\ell] C_{\alpha_1(B_{\rho i}, \rho i)} \leq 8c_1 \rho^{(\sigma + \alpha - 1)i - \frac{1}{2}}, \tag{3.8} \]

where \(\tau \) is an arbitrary constant in \((0, 1]\), \(\alpha_1 \) and \(c_1 \) are positive constants depending only on \(n, \lambda, \Lambda, \gamma_0 \) and \(\tilde{\alpha} \), and \(c_2 \) is the constant in (2.2).

Then Theorem 1.1 will follow from this claim and standard arguments. Indeed, we have, when \(1 < \sigma + \alpha < 2 \) and for \(\rho^{i+1} \leq |x| < \rho^i \),

\[
|u(x, 0) - \sum_{\ell=0}^{\infty} w_\ell(0, 0) - \sum_{\ell=0}^{\infty} \nabla_x w_\ell(0, 0) \cdot x| \\
\leq |u(x, 0) - \sum_{\ell=0}^{i} w_\ell(x, 0)| + |\sum_{\ell=0}^{i} w_\ell(x, 0) - \sum_{\ell=0}^{i} w_\ell(0, 0) - \sum_{\ell=0}^{i} \nabla_x w_\ell(0, 0) \cdot x| \\
+ |\sum_{\ell=i+1}^{\infty} w_\ell(0, 0)| + |\sum_{\ell=i+1}^{\infty} \nabla_x w_\ell(0, 0) \cdot x| \\
\leq \rho^{(\sigma + \alpha)(i+1)} + c_2 |x|^2 \sum_{\ell=0}^{i} \rho^{(\sigma + \alpha - 2)\ell} + \sum_{\ell=i+1}^{\infty} \rho^{(\sigma + \alpha)\ell} + |x| \sum_{\ell=i+1}^{\infty} c_2 \rho^{(\sigma + \alpha - 1)\ell} \\
\leq C_2 |x|^{\sigma + \alpha}.
\]

When \(\sigma + \alpha > 2 \) and for \(\rho^{i+1} \leq |x| < \rho^i \),

\[
|u(x) - \sum_{\ell=0}^{\infty} w_\ell(0) - \sum_{\ell=0}^{\infty} D w_\ell(0) \cdot x - \sum_{\ell=0}^{\infty} \frac{1}{2} x^T D^2 w_\ell(0) x| \\
\leq |\sum_{\ell=0}^{i} w_\ell(x) - \sum_{\ell=0}^{i} w_\ell(0) - \sum_{\ell=0}^{i} D w_\ell(0) \cdot x - \sum_{\ell=0}^{i} \frac{1}{2} x^T D^2 w_\ell(0) x| \\
+ |u(x) - \sum_{\ell=0}^{i} w_\ell(x)| + |\sum_{\ell=i+1}^{\infty} w_\ell(0)| + |\sum_{\ell=i+1}^{\infty} D w_\ell(0) \cdot x| + \frac{1}{2} |\sum_{\ell=i+1}^{\infty} x^T D^2 w_\ell(0) x| \\
\leq \rho^{(\sigma + \alpha)(i+1)} + 2c_2 |x|^{\sigma + \alpha} \sum_{\ell=0}^{i} \rho^{(\alpha - \tilde{\alpha})\ell} + \sum_{\ell=i+1}^{\infty} \rho^{(\sigma + \alpha)\ell} + |x| \sum_{\ell=i+1}^{\infty} c_2 \rho^{(\sigma + \alpha - 1)\ell} \\
+ |x|^2 \sum_{\ell=i+1}^{\infty} c_2 \rho^{(\sigma + \alpha - 2)\ell} \\
\leq C_3 |x|^{\sigma + \alpha}.
\]
This proves the estimate (1.8).

Now we are left to prove this claim. Before we provide the detailed proof, we would like to first mention the idea and the structure of (3.4)-(3.8):

- Solving (3.4) and (3.5) inductively is how we construct this sequence of functions \(\{w_i\} \).
- (3.7) will follow from the approximation lemmas in the appendix, where (3.8) will be used.
- (3.6) will follow from (3.7), maximum principles and the recursive Evans-Krylov theorem, Theorem 2.2.

Step 3: Prove the claim for \(i = 0 \).

Let \(u \) be a viscosity solution of (1.1). It follows from the H"older estimates in [6], standard scaling and covering (contributing at most a factor of \(4/\tau \)) arguments that there exist constants \(\alpha_1 \in (0,1), c_1 > 0, \) depending only on \(n, \lambda, \Lambda, \gamma_0, \bar{\alpha} \), such that for \(\tau \in (0,1] \)

\[
\|u\|_{C^{\alpha_1}(B_{4-\tau})} \leq c_1 \tau^{-1-\alpha_1} \left(\|u\|_{L^\infty(\mathbb{R}^n)} + \|f\|_{L^\infty(B_4)} \right). \tag{3.9}
\]

Let \(w_0 \) be the one in Step 1 and \(c_2 \) be the constant in (2.2). Then by Theorem 2.2 standard scaling, translation and covering arguments that

\[
\|w_0\|_{L^\infty(\mathbb{R}^n)} \leq 1, \quad \|Dw_0\|_{L^\infty(B_{4-\tau})} \leq c_2 \tau^{-1}, \quad \|D^2w_0\|_{L^\infty(B_{4-\tau})} \leq c_2 \tau^{-2}.
\tag{3.10}
\]

Let us set up to apply the approximation lemma, Lemma A.1 in the Appendix. Let \(\varepsilon = \rho^3 \leq \rho^{\sigma+\alpha} \) and \(M = 1 \). Let us fix a modulus continuity \(\omega_1(r) = r^{\alpha_1} \). Then for these \(\omega_1, \varepsilon, M \), there exist \(\eta_1 \) (small) and \(R \) (large) so that Lemma A.1 holds. We can assume that the rescaling in (3.2) make the equation hold in a very large ball containing \(B_{2R} \) and \(|u(x) - u(y)| \leq \omega_1(|x-y|) \) for every \(x \in B_R \setminus B_4 \) and \(y \in \mathbb{R}^n \setminus B_4 \). The latter one can be done due to (3.9). We will choose \(\gamma < \eta_1/25 \) in (3.15). Then by the rescaling in Step 1, we can conclude from Lemma A.1 that

\[
\|u - w_0\|_{L^\infty(B_4)} \leq \varepsilon \leq \rho^{\sigma+\alpha},
\]

and thus,

\[
\|u - w_0\|_{L^\infty(\mathbb{R}^n)} \leq \|u - w_0\|_{L^\infty(B_4)} \leq \varepsilon \leq \rho^{\sigma+\alpha}.
\]

33
This proves that (3.4), (3.5), (3.6) and (3.7) hold for $i = 0$.

Let $v(x) = u(x) - w_0(x)$. Since $w_0 \in C^{\sigma + \tilde{\alpha}}$, v is a solution of

$$I^{(0)}v := \inf_{a \in A} \int_{\mathbb{R}^n} \delta v(x, y) K_a(x, y) + \delta w_0(x, y) K_a(x, y) dy - f(0)$$

$$= f(x) - f(0) \quad \text{in } B_4.$$

It is clear that $I^{(0)}$ is elliptic with respect to $L_0(\lambda, \Lambda, \sigma)$. Moreover, for $x \in B_{4-2\tau}$,

$$|I^{(0)}0| \leq |\inf_{a \in A} \int_{\mathbb{R}^n} \delta w_0(x, y) K_a(x, y) dy - f(0)|$$

$$\leq \left| \inf_{a \in A} \int_{\mathbb{R}^n} \delta w_0(x, y) K_a(x, y) dy - \inf_{a \in A} \int_{\mathbb{R}^n} \delta (w_0(x, y)) K_a(0, y) dy \right|$$

$$\leq \sup_{a \in A} \int_{\mathbb{R}^n} |\delta w_0(x, y)||K_a(x, y) - K_a(0, y)| dy$$

$$\leq \sup_{a \in A} \left(\int_{B_{2\tau}} c_2 \tau^{-2} |y|^2 |K_a(x, y) - K_a(0, y)| dy + 4 \int_{\mathbb{R}^n \setminus B_{2\tau}} |K_a(x, y) - K_a(0, y)| dy \right)$$

$$\leq \gamma (c_2 + 4) |x|^\sigma \tau^{-\sigma} \leq \gamma 4 (c_2 + 4) \tau^{-\sigma} \leq \tau^{-\sigma}, \quad (3.11)$$

where (3.10) was used in the second inequality, and (3.1) was used in the third inequality, and (3.15) was used in the last inequality. It follows from Hölder estimates established in [6], standard scaling and covering arguments (contributing at most a factor of $4/\tau$) we have

$$\|v\|_{C^{\alpha_1}(B_{4-3\tau})} \leq c_1 \tau^{-\alpha_1 - 1} (\tau^{-\sigma} + 4\gamma + 1) \leq 8c_1 \tau^{-4},$$

and thus,

$$[u - w_0]_{C^{\alpha_1}(B_{4-3\tau})} \leq 8c_1 \tau^{-4}.$$

This finishes the proof of (3.8) for $i = 0$.

Step 4: We assume all of (3.4), (3.5), (3.6), (3.7) and (3.8) hold up to $i \geq 0$, and we will show that they all hold for $i + 1$ as well.

Let

$$W(x) = \rho^{-(i+1)(\sigma + \alpha)} \left(u - \sum_{\ell=0}^{i} w_\ell \right) (\rho^{i+1} x),$$

$$v_\ell = \rho^{-(\sigma + \alpha)\ell} w_\ell (\rho^\ell x),$$

34
and
\[K^{(i+1)}(x, y) = \rho^{(\alpha+\sigma)(i+1)} K(\rho^{i+1}x, \rho^{i+1}y). \]

Since \(w_\ell \in C^{\sigma+\alpha} \) for each \(\ell \), then \(W \) is a solution of
\[I^{(i+1)}W = \rho^{-(i+1)\alpha} f(\rho^{i+1}x) - \rho^{-(i+1)\alpha} f(0) \quad \text{in } B_{4/\rho}, \]
where
\[
I^{(i+1)}W
:= \inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta W(x, y) + \sum_{\ell=0}^{i} \rho^{-(i+1)(\sigma+\alpha)} \delta w_\ell(\rho^{i+1}x, \rho^{i+1}y) \right) K^{(i+1)}(x, y) dy \\
- \rho^{-(i+1)\alpha} f(0)
\]
\[= \inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta W(x, y) + \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(\sigma+\alpha)} \delta v_\ell(\rho^{i+1-\ell}x, \rho^{i+1-\ell}y) \right) K^{(i+1)}(x, y) dy \\
- \rho^{-(i+1)\alpha} f(0). \]

It is clear that \(I^{(i+1)} \) is elliptic with respect to \(\mathcal{L}_0(\lambda, \Lambda, \sigma) \). Denote
\[
I^{(i+1)}_0 \nu
:= \inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta \nu(x, y) + \sum_{\ell=0}^{i} \rho^{-(i+1)(\sigma+\alpha)} \delta w_\ell(\rho^{i+1}x, \rho^{i+1}y) \right) K^{(i+1)}(0, y) dy \\
- \rho^{-(i+1)\alpha} f(0)
\]
\[= \inf_{a \in A} \int_{\mathbb{R}^n} \left(\delta \nu(x, y) + \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(\sigma+\alpha)} \delta v_\ell(\rho^{i+1-\ell}x, \rho^{i+1-\ell}y) \right) K^{(i+1)}(0, y) dy \\
- \rho^{-(i+1)\alpha} f(0), \]
which is also elliptic with respect to \(\mathcal{L}_0(\lambda, \Lambda, \sigma) \). Let \(\nu_{i+1} \) be the solution of
\[I^{(i+1)}_0 \nu_{i+1} = 0 \quad \text{in } B_4 \\
\nu_{i+1} = W \quad \text{in } \mathbb{R}^n \setminus B_4. \]

It follows that
\[\| \nu_{i+1} \|_{L^\infty(\mathbb{R}^n)} \leq \| W \|_{L^\infty(\mathbb{R}^n)} \leq 1. \] (3.12)
Indeed, we first know from the nonlocal Evans-Krylov theorem that $v_{i+1} \in C^{\sigma + \bar{\alpha}}$ and thus $I_0^{(i+1)} v_{i+1}$ can be calculated point-wisely. Since $I_0^{(i+1)} 0 = 0$ which follows from (3.4), we have for $x \in B_4$,

$$
\inf_{a \in \mathcal{A}} \int_{\mathbb{R}^n} \delta v_{i+1}(x, y) K_a^{(i+1)}(0, y) dy \leq I_0^{(i+1)} v_{i+1}(x) \leq \sup_{a \in \mathcal{A}} \int_{\mathbb{R}^n} \delta v_{i+1}(x, y) K_a^{(i+1)}(0, y) dy.
$$

We also know from the boundary regularity in [7] that $v_{i+1} \in C(\overline{B}_4)$. Suppose that there exists $x_0 \in B_4$ so that $v_{i+1}(x_0) = \max_{\overline{B}_4} v_{i+1} > \|W\|_{L^\infty(\mathbb{R}^n \setminus B_4)}$. Then

$$
\sup_{a \in \mathcal{A}} \int_{\mathbb{R}^n} \delta v_{i+1}(x_0, y) K_a^{(i+1)}(0, y) dy < 0,
$$

which is a contradiction to $I_0^{(i+1)} v_{i+1}(x_0) = 0$. It follows from similar arguments that $v_{i+1}(x) \geq -\|W\|_{L^\infty(\mathbb{R}^n \setminus B_4)}$ for $x \in B_4$. This proves (3.12).

Again, by our induction hypothesis (3.4), it follows that for all $m = 0, 1, \cdots, i$,

$$
\inf_{a \in \mathcal{A}} \int_{\mathbb{R}^n} \left(\sum_{\ell=0}^m \rho^{-(m-\ell)(\sigma+\bar{\alpha})} \delta v_{\ell}(\rho^{m-\ell} x, \rho^{m-\ell} y) \right) K_a^{(m)}(0, y) dy = \rho^{-ma} f(0) \text{ in } B_4.
$$

It follows from Theorem 2.2 and standard scaling arguments that

$$
\|D v_{i+1}\|_{L^\infty(B_{4^{-r}})} \leq c_2 \tau^{-1},
$$

$$
\|D^2 v_{i+1}\|_{L^\infty(B_{4^{-r}})} \leq c_2 \tau^{-2},
$$

$$
[D^2 v_{i+1}]_{C^{\sigma + \bar{\alpha}}(B_{4^{-r}})} \leq c_2 \tau^{-4}.
$$

We want to apply Lemma A.2 to the equations of W and v_{i+1} so that we have $|W - v_{i+1}| \leq \rho^{\sigma + \bar{\alpha}}$ in B_4.

First of all, $|W| \leq 1$ in \mathbb{R}^n, $W \equiv 0$ in $\mathbb{R}^n \setminus B_{4/\rho}$, and $[W]_{C^{\sigma_1(B_{(4^{-r})/\rho})}} \leq 8 c_1 \rho^{-\sigma_1 \tau^{-4}} \leq 8 c_1 \rho^{-3 \tau^{-4}}$. Secondly, it follows from similar computations in (2.28), and making use of (3.6) and Lemma 2.5 that

$$
[L_a^{(i+1)} R_{\rho}]_{C^{\alpha}(B_4)} \leq M_0 \quad \forall \ a \in \mathcal{A},
$$

where M_0 is a universal constant independent of i,

$$
L_a^{(i+1)} v = \int_{\mathbb{R}^n} \delta v(x, y) K_a^{(i+1)}(0, y) dy, \quad R_{\rho}(x) = \sum_{\ell=0}^i \rho^{-(i+1-\ell)(\sigma+\bar{\alpha})} v_{\ell}(\rho^{i+1-\ell} x).
$$
Lastly, we are going to show that we can choose γ sufficiently small so that

$$\|I^{(i+1)} - I_0^{(i+1)}\|_* \leq \eta_2 \quad \text{in } B_4 \quad (3.13)$$

and we can apply Lemma A.2, where η_2 is the one in (A.2) with $\varepsilon = \rho^3 \leq \rho^{\sigma + \alpha}$, M_0 as above, $M_1 = 1$, $M_2 = 8c_1\rho^{-3}$, $M_3 = c_2$.

For $x \in B_4$, $h \in C^2(x)$, $\|h\|_{L^\infty(\mathbb{R}^n)} \leq M$, $|h(y) - h(x) - (y-x) \cdot \nabla h(x)| \leq \frac{M}{2} |x-y|^2$ for every $y \in B_1(x)$, we have

$$\|I^{(i+1)} - I_0^{(i+1)}\|_*$$

$$\leq \sup_{a, h, x} \left| \int_{\mathbb{R}^n} \delta h(x,y)(K_a^{(i+1)}(x,y) - K_a^{(i+1)}(0,y))dy \right|$$

$$+ \sum_{\ell=0}^{i} \sup_{a \in A} \left| \int_{\mathbb{R}^n} \rho^{-(i+1)(\sigma + \alpha)} \delta w_{\ell}(\rho^{i+1}x, \rho^{i+1}y)(K_a^{(i+1)}(x,y) - K_a^{(i+1)}(0,y))dy \right|$$

$$= I_1 + I_2.$$

It follows from the same computations in (3.3) that

$$|I_1| \leq 25 \gamma.$$

For $a \in A$, $\ell = 0, 1, \cdots, i$ and for $x \in B_{4(2r)/\rho}$, we have, similar to (3.11),

$$\left| \int_{\mathbb{R}^n} \delta w_{\ell}(\rho^{i+1}x, \rho^{i+1}y)(K_a^{(i+1)}(0,y) - K_a^{(i+1)}(x,y))dy \right|$$

$$\leq \rho^{\sigma(i+1)} \int_{\mathbb{R}^n} |\delta w_{\ell}(\rho^{i+1}x, y)||K_a(0,y) - K_a(\rho^{i+1}x, y)|dy$$

$$\leq \rho^{\sigma(i+1)} \int_{B_{\rho^{i+1}}} c_2 \rho^{(\sigma + \alpha - 2)\ell} \tau^{-2}|y|^2|K_a(0,y) - K_a(\rho^{i+1}x, y)|dy$$

$$+ \rho^{\sigma(i+1)} \int_{\mathbb{R}^n \setminus B_{\rho^{i+1}}} \rho^{(\sigma + \alpha)\ell} 4|K_a(0,y) - K_a(\rho^{i+1}x, y)|dy$$

$$\leq \rho^{\sigma(i+1)} \gamma (c_2 + 4) \rho^{\alpha \ell} \tau^{-\sigma} |x|^{\alpha},$$

where we used (3.6) in the second inequality. We choose γ such that

$$\left(25 + (c_2 + 4) \sum_{\ell=0}^{\infty} \rho^{\alpha \ell}\right) \gamma \leq \min(\eta_1/25, \eta_2). \quad (3.15)$$
It follows that (3.13) holds (here we can choose $\tau = 1$). By Lemma A.2 we have that

$$
\|W - v_{i+1}\|_{L^\infty(\mathbb{R}^n)} = \|W - v_{i+1}\|_{L^\infty(B_4)} \leq \varepsilon \leq \rho^{\sigma + \alpha}.
$$

Let

$$
w_{i+1}(x) = \rho^{(\sigma + \alpha)(i+1)} v_{i+1}(\rho^{-(i+1)} x).
$$

Thus, we have shown in the above that all of (3.4), (3.5), (3.6), (3.7) hold for $i + 1$. In the following, we shall show that (3.8) hold for $i + 1$ as well. Let

$$
V = W - v_{i+1} = \rho^{-(i+1)(\sigma + \alpha)} \left(u - \sum_{\ell=0}^{i+1} w_{\ell} \right)(\rho^{i+1} x).
$$

Thus, for $x \in B_4$

$$
I^{(i+1)} V
$$

\[= \inf_{a \in A} \int_{\mathbb{R}^n} [\delta V(x, y) + \sum_{\ell=0}^{i+1} \rho^{-(i+1)(\sigma + \alpha)} \delta w_{\ell}(\rho^{i+1} x, \rho^{i+1} y)] K_a^{(i+1)}(x, y) dy - \rho^{-(i+1)\alpha} f(0) \]

\[= \rho^{-(i+1)\alpha} f(\rho^{i+1} x) - \rho^{-(i+1)\alpha} f(0). \]

Moreover, for $x \in B_{4-2\tau}$,

$$|I^{(i+1)} 0| = \left| \inf_{a \in A} \int_{\mathbb{R}^n} \sum_{\ell=0}^{i+1} \rho^{-(i+1)(\sigma + \alpha)} \delta w_{\ell}(\rho^{i+1} x, \rho^{i+1} y)] K_a^{(i+1)}(x, y) dy - \rho^{-(i+1)\alpha} f(0) \right|
$$

\[= \left| \inf_{a \in A} \int_{\mathbb{R}^n} \sum_{\ell=0}^{i+1} \rho^{-(i+1)(\sigma + \alpha)} \delta w_{\ell}(\rho^{i+1} x, \rho^{i+1} y)] K_a^{(i+1)}(x, y) dy \right|

\[\leq \sup_{a \in A} \sum_{\ell=0}^{i+1} \int_{\mathbb{R}^n} \rho^{-(i+1)(\sigma + \alpha)} |\delta w_{\ell}(\rho^{i+1} x, \rho^{i+1} y)]| K_a^{(i+1)}(x, y) - K_a^{(i+1)}(0, y) |dy \]

\[\leq \eta_2 \tau^{-\sigma}, \]

where in the last inequality we have used (3.14) and the choice of η_2 in (3.15). Thus, by standard scaling and covering arguments,

$$[V]_{C^{\alpha,1}(B_{4-3\tau})} \leq 8c_1 \tau^{-4}. \quad \text{(3.8)}$$
Hence, (3.8) holds for $i + 1$.

This finishes the proof of the claim in Step 2. Therefore, the proof of Theorem 1.1 is completed.

Remark 3.2. In the step of approximation, one cannot use

$$\bar{I}_0^{(i+1)} := \inf_{\alpha \in A} \int_{\mathbb{R}^n} \left(\delta v(x, y) + \sum_{\ell=0}^{i} \rho^{-(i+1-\ell)(\sigma+\alpha)} \delta v_\ell(0, \rho^{i+1-\ell} y) \right) K^{(i+1)}_a(0, y) dy$$

$$- \rho^{-(i+1)\alpha} f(0)$$

to approximate $I^{(i+1)} W$, since one can check that $\bar{I}_0^{(i+1)}$ will not be close to $I^{(i+1)}$. This is the main reason why we need Theorem 2.2.

Remark 3.3. In the case of $\sigma \geq \sigma_0 > 0$ and $\sigma + \bar{\alpha} \leq 2 - \gamma_0$ for some $\gamma_0 > 0$, our approximation solutions $\{w_i\}$ are of only $C^\sigma + \bar{\alpha}$ but may not be C^2. Thus, instead of (1.7), we need the following (stronger) assumption on K_a:

$$\int_{\mathbb{R}^n} |K_a(x, y) - K_a(0, y)| \min(|y|^\sigma + \bar{\alpha}, r^\sigma) dy \leq \Lambda |x|^\alpha r^{-\sigma}$$

(3.16)

which will be used in (3.11) and (3.14). Then, with the help of Theorem 2.15, for $|\sigma + \bar{\alpha} - 1| \geq \gamma_0$, $\alpha \in (0, \bar{\alpha})$ and $|\sigma + \alpha - 1| \geq \varepsilon_0$, the same proof shows that the Schauder estimate (1.8) holds under the conditions (3.16) and (1.6), where the constant C there will additionally depend on σ_0.

Let $\sigma_0 \in (0, 2)$. A unified Hölder condition on the kernels K for all $\sigma \in [\sigma_0, 2)$, which is slightly stronger than both (1.7) and (3.16), would be

$$\int_{B_{2r}\setminus B_r} |K(x, y) - K(0, y)| dy \leq (2 - \sigma) \Lambda |x|^\alpha r^{-\sigma}$$

(3.17)

for all $r > 0$, $x \in B_5$.

Combining Theorem 1.1 and Remark 3.3, we have this corollary.

Corollary 3.4. Let $\sigma_0 \in (0, 2)$. There exists $\bar{\alpha} \in (0, 1)$ depending only on n, λ, Λ and σ_0 such that the following statement holds: Assume every $K_a(x, y) \in \mathcal{L}_2(\lambda, \Lambda, \sigma)$ satisfies (3.17) with $\sigma \in [\sigma_0, 2)$, $\alpha \in (0, \bar{\alpha})$, $|\sigma + \alpha - j| \geq \gamma_0 > 0$ and $|\sigma + \alpha - j| \geq \varepsilon_0 > 0$ for $j = 1, 2$. Suppose that f satisfies (1.6). If u is a bounded viscosity solution of (1.1), then there exists a polynomial $P(x)$ of degree $|\sigma + \alpha|$ such that (1.8) holds for $x \in B_1$, where C in (1.8) is a positive constant depending only on $\lambda, \Lambda, n, \sigma_0, \bar{\alpha}, \alpha, \varepsilon_0$ and γ_0.
An application of our Schauder estimates is another proof of the following Evans-Krylov type estimates for viscosity solutions of nonlocal fully nonlinear parabolic equations:

\[
 u_t(x, t) = \inf_{a \in A} \left\{ \int_{\mathbb{R}^n} \delta u(x, y; t) K_a(y) \, dy \right\} \quad \text{in } B_2 \times (-2, 0],
\]

(3.18)

where \(\delta u(x, y; t) = u(x + y, t) + u(x - y, t) - 2u(x, t) \), \(A \) is an index set, and each \(K_a \in \mathcal{L}_2(\lambda, \Lambda, \sigma) \). These estimates for more general nonlocal parabolic equations have been established by H. Chang Lara and G. Davila [12]. The definition of viscosity solutions to nonlocal parabolic equations and their many properties can be found in [9, 10].

Theorem 3.5. Let \(u : \mathbb{R}^n \times [-2, 0] \rightarrow \mathbb{R} \) be a viscosity solution of (3.18). Suppose that \(u \) is Lipschitz continuous in \(t \) in \((\mathbb{R}^n \setminus B_2) \times [-2, 0] \) and \(\| M_0^\sigma u(\cdot, -2) \|_{L^\infty(\mathbb{R}^n)} \leq C_0 \). Then there exists \(\bar{\beta} \in (0, 1) \) depending only on \(n, \lambda, \Lambda \) such that for \(\sigma + \bar{\beta} - 2 \geq \gamma_0 > 0 \) we have

\[
 \| u_t \|_{C^{\alpha}_{x,t}(B_1 \times [-1,0])} + \| \nabla^2_x u \|_{C^\alpha_{x,t}(B_1 \times [-1,0])} \leq C(\| u \|_{L^\infty(\mathbb{R}^n \times [-2,0])} + \| u_t \|_{L^\infty((\mathbb{R}^n \setminus B_2) \times [-2,0])} + C_0),
\]

(3.19)

where \(\alpha = \gamma_0 \bar{\beta}/2 \) and \(C \) is a positive constant depending only on \(n, \lambda, \Lambda \) and \(\gamma_0 \).

Proof. It follows from Theorem 6.2 in [9] and Theorem 4.1 in [10] that there exists some \(\bar{\beta} \in (0, 1) \) depending only on \(n, \lambda, \Lambda \) such that

\[
 \nabla_{x,t} u \in C^{\bar{\beta}}_{x,t}(B_1 \times [-1,0]).
\]

In particular, the right hand side of (3.18) is Hölder in \(x \). By the Schauder estimates in Theorem 1.1 (and adjusting \(\bar{\beta} \) if necessary), when \(\sigma + \bar{\beta} - 2 \geq \gamma_0 > 0 \), we have for all \(t \in [-1,0] \)

\[
 \nabla^2_x u(\cdot, t) \in C^{\sigma + \bar{\beta} - 2}(B_1).
\]

By Lemma 3.1 on page 78 in [19], we have for all \(x \in B_1 \),

\[
 \nabla^2_x u(x, \cdot) \in C^{\beta(\sigma + \bar{\beta} - 2)/\sigma + \bar{\beta} - 1}_{r}([-1,0]) \subset C^{\alpha}_{r}([-1,0]).
\]

Thus, \(\nabla^2_x u \in C^{\alpha}_{x,t}(B_1 \times [-1,0]) \), and the estimate (3.19) follows from the estimates in Theorem 6.2 in [9], Theorem 4.1 in [10] and the Schauder estimates we proved. This finishes the proof. \(\square \)
The estimate (3.19) is not written in the scaling invariant form for the purpose of convenience in its proof. Note that Example 2.4.1 in [10] shows that the assumption of the Lipschitz continuity on \(u \) in \((\mathbb{R}^n \setminus B_2) \times [-2,0] \) is necessary to obtain Hölder continuity of \(u_t \) in \(B_1 \times [-1,0] \). The constant \(C \) in (3.19) does not depend on \(\sigma \), and thus, does not blow up as \(\sigma \to 2 \).

One also can replace the condition on the initial data \(u(\cdot, -2) \) in Theorem 3.5 by the following global Lipschitz type assumption:

\[
[u]_{C^{0,1}((t_1,t_2]; L^1(\omega_\sigma))} := \sup_{(t-\tau,t] \subseteq (t_1,t_2]} \frac{\| u(\cdot,t) - u(\cdot,t-\tau) \|_{L^1(\omega_\sigma)}}{\tau} < \infty, \tag{3.20}
\]

where \(\| v \|_{L^1(\omega_\sigma)} = \int_{\mathbb{R}^n} |v(y)| \min(1, |y|^{-n-\sigma}) dy \).

Theorem 3.6. Let \(u : \mathbb{R}^n \times [-2,0] \to \mathbb{R} \) be a viscosity solution of (3.18) and satisfy (3.20). Then there exists \(\beta \in (0,1) \) depending only on \(n, \lambda, \Lambda \) such that for \(\sigma + \beta - 2 \geq \gamma_0 > 0 \) we have

\[
\| u_t \|_{C^\alpha_x(B_1 \times [-1,0])} + \| \nabla_x^2 u \|_{C^\alpha_x(B_1 \times [-1,0])} \\
\leq C (\| u \|_{L^\infty(\mathbb{R}^n \times [-2,0])} + [u]_{C^{0,1}((t_1,t_2]; L^1(\omega_\sigma))}).
\]

where \(\alpha = \gamma_0 \beta/2 \) and \(C \) is a positive constant depending only on \(n, \lambda, \Lambda \) and \(\gamma_0 \).

Proof. It is the same as the proof of Theorem 3.5 except that we use Corollary 7.2 and Corollary 7.4 in [11] instead of Theorem 6.2 in [9] and Theorem 4.1 in [10]. \(\Box \)

Appendix A. Approximation lemmas

Our proof of Schauder estimates uses perturbative arguments, and we need the following two approximation lemmas, which are variants of Lemma 7 in [6]. We will do a few modifications for our own purposes, and we decide to include them in this appendix for completeness and convenience.

To start with, we recall some definitions and notations about nonlocal elliptic operators, which can be found in [6, 7]. Let \(\sigma_0 \in (0,2) \) be fixed, and \(\omega(y) = (1 + |y|^{n+\sigma_0})^{-1} \). We say \(u \in L^1(\mathbb{R}^n, \omega) \) if \(\int_{\mathbb{R}^n} |u(y)| \omega(y) dy < \infty \). Let \(\Omega \) be an open subset of \(\mathbb{R}^n \). Let us recall Definition 21 in [7] for nonlocal operators. A nonlocal operator \(I \) in \(\Omega \) is a rule that assigns a function \(u \) to a value \(I(u, x) \) at every point \(x \in \Omega \) satisfying the following assumptions:

- \(I(u, x) \) is well-defined as long as \(u \in C^2(x) \) and \(u \in L^1(\mathbb{R}^n, \omega) \);
• If $u \in C^2(\Omega) \cap L^1(\mathbb{R}^n, \omega)$, then $I(u, x)$ is continuous in Ω as a function of x. Here $u \in C^2(x)$ we mean that there is a quadratic polynomial p such that $u(y) = p(y) + o(|y-x|^2)$ for y close to x. An operator is translation invariant if $\tau_z I u = I(\tau_z u)$ where τ_z is the translation operator $\tau_z u(x) = u(x-z)$.

Given such a nonlocal operator I, one can defined a norm $\|I\|$ as in Definition 22 in [7]. We also define a (weaker) norm $\|I\|_\sigma$ for our own purpose:

$$\|I\|_\sigma := \sup\{|I(u, x)|/(1 + M) : x \in \Omega, u \in C^2(x), \|u\|_{L^\infty(\mathbb{R}^n)} \leq M, \quad |u(y) - u(x) - (y-x) \cdot \nabla u(x)| \leq \frac{M}{2} |x-y|^2\text{ for every } y \in B_1(x) \}.$$ (A.1)

We say that a nonlocal operator I is uniformly elliptic with respect to $\mathcal{L}_0(\lambda, \Lambda, \sigma)$, which will be written as $\mathcal{L}_0(\sigma)$ for short, if

$$\mathcal{M}_{\mathcal{L}_0(\sigma)}^- v(x) \leq I(u + v, x) - I(u, x) \leq \mathcal{M}_{\mathcal{L}_0(\sigma)}^+ v(x),$$

where

$$\mathcal{M}_{\mathcal{L}_0(\sigma)}^- v(x) = \inf_{L \in \mathcal{L}_0(\sigma)} Lv(x) = (2 - \sigma) \int_{\mathbb{R}^n} \frac{\lambda \delta v(x,y)^+ + \Lambda \delta v(x,y)^-}{|y|^{n+\sigma}} \, dy$$

and

$$\mathcal{M}_{\mathcal{L}_0(\sigma)}^+ v(x) = \sup_{L \in \mathcal{L}_0(\sigma)} Lv(x) = (2 - \sigma) \int_{\mathbb{R}^n} \frac{\Lambda \delta v(x,y)^+ - \lambda \delta v(x,y)^-}{|y|^{n+\sigma}} \, dy.$$

It is also convenient to define the limit operators when $\sigma \to 2$ as

$$\mathcal{M}_{\mathcal{L}_0(2)}^- v(x) = \lim_{\sigma \to 2} \mathcal{M}_{\mathcal{L}_0(\sigma)}^- v(x)$$

and

$$\mathcal{M}_{\mathcal{L}_0(2)}^+ v(x) = \lim_{\sigma \to 2} \mathcal{M}_{\mathcal{L}_0(\sigma)}^+ v(x).$$

It has been explained in [7] that $\mathcal{M}_{\mathcal{L}_0(2)}^+$ is a second order uniformly elliptic operator, whose ellipticity constants $\bar{\lambda}$ and $\bar{\Lambda}$ depend only λ, Λ and the dimension n. Moreover, $\mathcal{M}_{\mathcal{L}_0(2)}^+ v \leq \mathcal{M}^+(\nabla^2 v)$, where $\mathcal{M}^+(\nabla^2 v)$ is the second order Pucci operator with ellipticity constants $\bar{\lambda}$ and $\bar{\Lambda}$. Similarly, we also have corresponding relations for $\mathcal{M}_{\mathcal{L}_0(2)}^-$. Our approximation lemmas will be proved by compactness arguments, where we need the concepts of the weak convergence of nonlocal operators in Definition 41 in [7]. We say that a sequence of nonlocal operators $I_k \rightharpoonup I$ weakly in Ω if, for every $x_0 \in \Omega$ and for every function v of the form

$$v(x) = \begin{cases} p(x) & \text{if } |x-x_0| \leq r; \\
 u(x) & \text{if } |x-x_0| > r, \end{cases}$$

42
where \(p \) is a polynomial of degree two and \(u \in L^1(\mathbb{R}^n, \omega) \), we have \(I_k(v, x) \rightarrow I(v, x) \) uniformly in \(B_{r/2}(x_0) \).

Lemma A.1. For some \(\sigma \geq \sigma_0 > 0 \) we consider nonlocal operators \(I_0, I_1 \) and \(I_2 \) uniformly elliptic with respect to \(\mathcal{L}_0(\sigma) \). Assume also that \(I_0 \) is translation invariant and \(I_0(0) = 1 \).

Given \(M > 0 \), a modulus of continuity \(\omega_1 \) and \(\varepsilon > 0 \), there exists \(\eta_1 \) (small, independent of \(\sigma \)) and \(\tilde{R} \) (large, independent of \(\sigma \)) so that if \(u, v, I_0, I_1 \) and \(I_2 \) satisfy

\[
I_0(v, x) = 0, \quad I_1(u, x) \geq -\eta_1, \quad I_2(u, x) \leq \eta_1 \quad \text{in} \ B_1
\]

in viscosity sense, and

\[
\|I_1 - I_0\|_* \leq \eta_1, \quad \|I_2 - I_0\|_* \leq \eta_1 \quad \text{in} \ B_1,
\]

and

\[
\begin{align*}
|u(x)| &\leq M \quad \text{in} \ \mathbb{R}^n, \\
|u(x) - u(y)| &\leq \omega_1(|x - y|) \quad \text{for every} \ x \in B_R \setminus B_1 \text{ and } y \in \mathbb{R}^n \setminus B_1,
\end{align*}
\]

then \(|u - v| \leq \varepsilon \) in \(B_1 \).

Proof. It follows from the proof of Lemma 7 in [7] with modifications. We argue by contradiction. Suppose the above lemma was false. Then there would be sequences \(\sigma_k, I_0^{(k)}, I_1^{(k)}, I_2^{(k)}, \eta_k, u_k, v_k \) such that \(\sigma_k \rightarrow \sigma \in [\sigma_0, 2], \eta_k \rightarrow 0 \) and all the assumptions of the lemma are valid, but \(\sup_{B_1} |u_k - v_k| \geq \varepsilon \).

Since \(I_0^{(k)} \) is a sequence of uniformly elliptic translation invariant operators with respect to \(\mathcal{L}(\sigma_k) \), by Theorem 42 in [7] that we can take a subsequence, which is still denoted as \(I_0^{(k)} \), that converges weakly to some nonlocal operator \(I_0 \), and \(I_0 \) is also translation invariant, and uniformly elliptic with respect to the class \(\mathcal{L}_0(\sigma) \).

It follows from the boundary regularity Theorem 32 in [7] that \(u_k \) and \(v_k \) have a modulus of continuity, uniform in \(k \), in the closed unit ball \(B_1 \). Thus, \(u_k \) and \(v_k \) have a uniform (in \(k \)) modulus of continuity on \(B_{R_k} \) with \(R_k \rightarrow \infty \). We can subsequences of \(\{u_k\} \) and \(\{v_k\} \), which will be still denoted as \(\{u_k\} \) and \(\{v_k\} \), which converges

\(^1\)The statements of Lemma 7 and Lemma 8 in [7] should be read under the condition that \(I_0 \) is translation invariant (see [25]), which does not affect their applications in [7].
locally uniformly in \mathbb{R}^n to u and v, respectively. Moreover, $u = v$ in $\mathbb{R}^n \setminus B_1$, and $\sup_{B_1}|u - v| \geq \varepsilon$.

In the following, we are going to show that

$$I_0(u, x) = 0 = I_0(v, x) \quad \text{in } B_1, \quad \text{(A.2)}$$

from which we can conclude that $u \equiv v$ in B_1, since I_0 is translation invariant. But we know that $\sup_{B_1}|u - v| \geq \varepsilon$. This reaches a contradiction.

The second equality of (A.2) follows from Lemma 5 in [7]. The first equality actually follows almost identically from the proof of Lemma 5 in [7]: we only need to notice that the sequence $\{u_k\}$ is uniformly bounded by M, and thus the conditions that $I_1^{(k)}(u_k, x) \geq -\eta_k$, $I_2^{(k)}(u_k, x) \leq \eta_k$, $\|I_1^{(k)} - I_0^{(k)}\|_* \to 0$ and $\|I_2^{(k)} - I_0^{(k)}\|_* \to 0$ are sufficient to show $I_0(u, x) = 0$ in B_1 as in the proof of Lemma 5 in [7].

\textbf{Lemma A.2.} \ For some $\sigma \geq \sigma_0 > 0$ we consider nonlocal operators I_0, I_1 and I_2 uniformly elliptic with respect to $L_0(\sigma)$. Assume also that

$$I_0(v) := \inf_{a \in A} \left\{ \int_{\mathbb{R}^n} \delta v(x, y) K_a(y) dy + h_a(x) \right\} \quad \text{in } B_4,$$

where each $K_a \in L_2(\sigma)$ and for some constant $\beta \in (0, 1)$,

$$[h_a]_{C^\beta(B_4)} \leq M_0 \quad \text{and} \quad \inf_{a \in A} h_a(x) = 0 \quad \forall \ x \in B_4.$$

Given $M_0, M_1, M_2, M_3 > 0$, $R_0 > 5$, $\beta, \nu \in (0, 1)$, and $\varepsilon > 0$, there exists η_2 (small, independent of σ) so that if u, v, I_0, I_1 and I_2 satisfy

$$I_0(v, x) = 0, \quad I_1(u, x) \geq -\eta_2, \quad I_2(u, x) \leq \eta_2 \quad \text{in } B_4,$$

in viscosity sense, and

$$\|I_1 - I_0\|_* \leq \eta_2, \quad \|I_2 - I_0\|_* \leq \eta_2 \quad \text{in } B_4,$$

and

$$u = v \quad \text{in } \mathbb{R}^n \setminus B_4,$$

$$u \equiv 0 \quad \text{in } \mathbb{R}^n \setminus B_{R_0},$$

$$|u| \leq M_1 \quad \text{in } \mathbb{R}^n,$$

$$[u]_{C^{\nu}(B_{R_0 - \tau})} \leq M_2 \tau^{-4} \quad \forall \ \tau \in (0, 1),$$

$$\|v\|_{C^{\sigma + \beta}(B_{4 - \tau})} \leq M_3 \tau^{-4} \quad \forall \ \tau \in (0, 1),$$

then $|u - v| \leq \varepsilon$ in B_4. 44
Proof. This lemma can be proved similarly to Lemma \[A.1\]. Suppose the above lemma was false. Then there would be sequences \(\sigma_k, I_0^{(k)}(\cdot), I_1^{(k)}(\cdot), I_2^{(k)}(\cdot), \eta_k, u_k, v_k\) such that \(\sigma_k \to \sigma \in [\sigma_0, 2]\), \(\eta_k \to 0\) and all the assumptions of the lemma are valid, but \(\sup_{B_4} |u_k - v_k| \geq \varepsilon\).

By our assumptions, it is clear that, up to a subsequence, \(u_k\) converges locally uniformly in \(B_{R_0}\). Since \(u_k \equiv 0\) in \(\mathbb{R}^n \setminus B_{R_0}\), it converges almost everywhere to some function \(u\) in \(\mathbb{R}^n\). Since \(v_k\) is bounded and has a modulus continuity on \(B_5 \setminus B_4\), then by the boundary regularity Theorem 32 in [7], there is another modulus continuity that extends to the closed unit ball \(\overline{B}_4\), and thus, \(v_k\) converges uniformly in \(\overline{B}_4\), as well as in \(C^{\alpha+\beta-\mu} \text{loc}(B_4)\) for any arbitrarily small \(\mu > 0\). Therefore, \(v_k\) converges to some function \(v \in C^{\alpha+\beta-\mu} \text{loc}(B_4)\) almost everywhere in \(\mathbb{R}^n\). Moreover, \(u = v\) in \(\mathbb{R}^n \setminus B_4\), and \(\sup_{B_4} |u - v| \geq \varepsilon\).

We are going to show that there exists a subsequence of \(\{I_0^{(k)}\}\), which is still denoted as \(I_0^{(k)}\), that converges weakly in \(B_4\) to some nonlocal operator \(I_0\), and \(I_0\) is uniformly elliptic with respect to the class \(\mathcal{L}_0(\sigma)\). Then it follows from the proof of \(\{A.2\}\) that \(u\) and \(v\) solve the same equation \(I_0(u, x) = I_0(v, x) = 0\) in \(B_4\) in viscosity sense. Since \(v \in C^{\alpha+\beta-\mu} \text{loc}(B_4)\) is a classical solution and \(u = v\) in \(\mathbb{R}^n \setminus B_4\), we have \(u = v\) in \(B_4\), which is a contradiction.

The proof of that there exists a subsequence of \(\{I_0^{(k)}\}\) weakly converges in \(B_4\) will basically follow from the proofs of Lemma 6 and Theorem 42 in [7].

Claim 1: Let \(\varphi\) be a function

\[
\varphi(x) = \begin{cases}
 p(x) & \text{in } B_r, \\
 \Phi(x) & \text{in } \mathbb{R}^n \setminus B_r,
\end{cases}
\]

where \(r > 0\), \(p(x)\) is a second order polynomial, and \(\Phi \in L^1(\mathbb{R}^n, \omega)\). Then there exists a subsequence \(\{I_0^{(k_j)}\}\) such that \(f_{k_j}(x) := I_0^{(k_j)} \varphi(x)\) converges uniformly in \(B_{r/2}\).

Proof of Claim 1: Since \(I_0^{(k)}(0) = 0\), by uniformly ellipticity, \(f_k\) is uniformly bounded in \(\overline{B}_{r/2}\). We are going to find a uniform modulus of continuity for \(f_k\) in \(\overline{B}_{r/2}\) so that Claim 1 follows from Arzela-Ascoli theorem.

Recall \(\tau_x \varphi(x) = \varphi(x + z)\). Given \(x, y \in B_{r/2}\) with \(|x - y| < r/8\), we have

\[
f_k(x) - f_k(y) \leq M_{(\sigma_k)}^+ \mathcal{M}(v - \tau_yxv, v) + M_0 |x - y|^{\beta},
\]

where the first term has a modulus of continuity depends on \(\varphi\) but not \(I_0^{(k)}\) as shown in the proof of Lemma 6 in [7]. This finishes the proof of Claim 1.
As long as we have Claim 1, it follows from the proof of Theorem 42 in [7] identically that there exists a subsequence of \(\{I^{(k)}_0\} \), which is still denoted as \(I^{(k)}_0 \), that converges weakly in \(B_4 \) to some nonlocal operator \(I_0 \), and \(I_0 \) is uniformly elliptic with respect to the class \(\mathcal{L}_0(\sigma) \).

\[\square \]

Acknowledgements:

We would like to thank Professor Luis Silvestre for many useful discussions and suggestions. We also thank Professor YanYan Li for his interests and constant encouragement.

References

[1] G. Barles, E. Chasseigne and C. Imbert, Hölder continuity of solutions of second-order non-linear elliptic integro-differential equations. J. Eur. Math. Soc. (JEMS) 13 (2011), 1–26.

[2] B. Barrera, A. Figalli and E. Valdinoci, Bootstrap regularity for integro-differential operators, and its application to nonlocal minimal surfaces. To appear in Ann. Scuola Norm. Sup. Pisa Cl. Sci.

[3] R.F. Bass, Regularity results for stable-like operators. J. Funct. Anal. 257 (2009), 2693–2722.

[4] L.A. Caffarelli, Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (2) 130 (1989), 189–213.

[5] L.A. Caffarelli and X. Cabré, “Fully nonlinear elliptic equations”. American Mathematical Society Colloquium Publications, 43. American Mathematical Society, Providence, RI, 1995.

[6] L.A. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62 (2009), 597–638.

[7] L.A. Caffarelli and L. Silvestre, Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200 (2011), 59–88.

[8] L.A. Caffarelli and L. Silvestre, The Evans-Krylov theorem for non local fully non linear equations. Ann. of Math. (2) 174 (2011), 1163–1187.
[9] H.A. Chang Lara and G. Davila, *Regularity for solutions of non local parabolic equations*. Calc. Var. Partial Differential Equations **49** (2014), 139–172.

[10] H.A. Chang Lara and G. Davila, *Regularity for solutions of non local parabolic equations II*. J. Differential Equations **256** (2014), 130-156.

[11] H.A. Chang Lara and G. Davila, *Hölder estimates for non-local parabolic equations with critical drift*. [arXiv:1408.0676](http://arxiv.org/abs/1408.0676).

[12] H.A. Chang Lara and G. Davila, *$C^{\sigma+\alpha}$ estimates for concave, non-local parabolic equations with critical drift*. [arXiv:1408.5149](http://arxiv.org/abs/1408.5149).

[13] H. Dong and D. Kim, *On L_p-estimates for a class of nonlocal elliptic equations*. J. Funct. Anal. **262** (2012), no 3, 1166–1199.

[14] H. Dong and D. Kim, *Schauder estimates for a class of non-local elliptic equations*. Discrete Contin. Dyn. Syst. **33** (2013), 2319–2347.

[15] N. Guillen and R.W. Schwab, *Aleksandrov-Bakelman-Pucci type estimates for integro-differential equations*. Arch. Ration. Mech. Anal. **206** (2012), no. 1, 111–157.

[16] T. Jin and J. Xiong, *Schauder estimates for solutions of linear parabolic integro-differential equations*. [arXiv:1405.0755](http://arxiv.org/abs/1405.0755).

[17] M. Kassmann, M. Rang and R. W. Schwab, *Hölder regularity for integro-differential equations with nonlinear directional dependence*. To appear in Indiana Univ. Math. J. [arXiv:1306.0082](http://arxiv.org/abs/1306.0082).

[18] D. Kriventsov, *$C^{1,\alpha}$ interior regularity for nonlinear nonlocal elliptic equations with rough kernels*. Comm. Partial Differential Equations **38** (2013), 2081-2106.

[19] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural’ceva, “Linear and quasilinear equations of parabolic type”. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. 1968.

[20] Y.Y. Li and L. Nirenberg, *Estimates for elliptic system from composition material*. Comm. Pure Appl. Math. **56** (2003), 892–925.
[21] R. Mikulevicius and H. Pragarauskas, *On the Cauchy problem for integro-differential operators in Hölder classes and the uniqueness of the martingale problem*. Potential Anal. 40 (2014), no. 4, 539–563.

[22] X. Ros-Oton and J. Serra, *Boundary regularity for fully nonlinear integro-differential equations*. [arXiv:1404.1197](https://arxiv.org/abs/1404.1197).

[23] J. Serra, *Regularity for fully nonlinear nonlocal parabolic equations with rough kernels*. [arXiv:1401.4521](https://arxiv.org/abs/1401.4521).

[24] J. Serra, *$C^{\alpha+\alpha}$ regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels*. [arXiv:1405.0930](https://arxiv.org/abs/1405.0930).

[25] L. Silvestre, *Personal communications*.

48