ENDOFUNCTORS OF SINGULARITY CATEGORIES
CHARACTERIZING GORENSTEIN RINGS

TAKUMA AIHARA AND RYO TAKAHASHI
(Communicated by Irena Peeva)

Abstract. In this paper, we prove that certain contravariant endofunctors of singularity categories characterize Gorenstein rings.

Let Λ be a noetherian ring. Denote by $D_{sg}(\Lambda)$ the singularity category of Λ, that is, the Verdier quotient of the bounded derived category $D^b(\Lambda)$ of finitely generated (right) Λ-modules by the full subcategory consisting of bounded complexes of finitely generated projective Λ-modules. We are interested in the following question.

Question 1. What contravariant endofunctor of $D_{sg}(\Lambda)$ characterizes the Iwanaga–Gorenstein property of Λ?

In this paper we shall consider this question in the case where Λ is commutative and Cohen–Macaulay.

Let R be a commutative Cohen–Macaulay local ring of Krull dimension d. Denote by $\text{CM}(R)$ the category of (maximal) Cohen–Macaulay R-modules and by $\text{CM}_{st}(R)$ its stable category: the objects of $\text{CM}(R)$ are the Cohen–Macaulay R-modules, and the hom-set $\text{Hom}_{\text{CM}(R)}(M, N)$ is defined as $\text{Hom}_R(M, N)$, the quotient module of $\text{Hom}_R(M, N)$ by the submodule consisting of homomorphisms factoring through finitely generated projective (or equivalently, free) R-modules. The natural full embedding functor $\text{CM}(R) \to D^b(R)$ induces an additive covariant functor

$$\eta : \text{CM}(R) \to D_{sg}(R).$$

Furthermore, the assignment $M \mapsto \Omega^d \text{Tr} M$, where Ω and Tr stand for the syzygy and transpose functors respectively (see [1, Chapter 2, §1] for details of the functors Ω and Tr), makes an additive contravariant functor

$$\lambda : \text{CM}(R) \to \text{CM}(R).$$

The following result gives a partial answer to Question 1.

Theorem 2. The following are equivalent:

1. The ring R is Gorenstein.
(2) The functor η is an equivalence (i.e. η is full, faithful and dense).

(3) There exists a functor $\phi : \text{D}_{sg}(R) \to \text{D}_{sg}(R)$ such that the diagram

$$
\begin{array}{ccc}
\text{D}_{sg}(R) & \xrightarrow{\phi} & \text{D}_{sg}(R) \\
\eta & \uparrow & \eta \\
\text{CM}(R) & \xrightarrow{\lambda} & \text{CM}(R)
\end{array}
$$

of functors commutes up to isomorphism.

Proof. (1) \Rightarrow (2): If R is Gorenstein, then a celebrated theorem of Buchweitz [2, Theorem 4.4.1] implies that the functor η is an equivalence.

(2) \Rightarrow (3): When η is an equivalence, we have a contravariant endofunctor $\phi = \eta\lambda\rho : \text{D}_{sg}(R) \to \text{D}_{sg}(R)$ of $\text{D}_{sg}(R)$, where ρ stands for a quasi-inverse of η. Condition (3) holds for this functor ϕ.

(3) \Rightarrow (1): In the remainder of the proof, we will omit writing free summands. Let

$$
\pi : \text{mod} R \to \text{mod} R
$$

be the canonical functor from the category of finitely generated R-modules to its stable category, that is, the objects of $\text{mod} R$ are the finitely generated R-modules and the hom-set $\text{Hom}_{\text{mod} R}(M,N)$ is defined as $\text{Hom}_{R}(M,N)$.

Assume that there are a contravariant functor $\phi : \text{D}_{sg}(R) \to \text{D}_{sg}(R)$ and an isomorphism

$$
\Delta : \phi\eta \to \eta\lambda
$$

of functors from $\text{CM}(R)$ to $\text{D}_{sg}(R)$. Take a Cohen–Macaulay R-module M. It follows from [1, Proposition (2.21)] that there exists an exact sequence

$$
(2.1) \quad 0 \to F \to \text{Tr}\Omega\text{Tr}\Omega M \xrightarrow{f} M \to 0
$$

of finitely generated R-modules with F free. The map f induces a morphism

$$
\Theta : \text{Tr}\Omega\text{Tr}\Omega \to 1
$$

of functors from $\text{CM}(R)$ to $\text{CM}(R)$, where I stands for the identity functor. Applying the R-dual functor $(-)^* = \text{Hom}_{R}(-,R)$ to (2.1) gives an exact sequence

$$
0 \to M^* \xrightarrow{f^*} (\text{Tr}\Omega\text{Tr}\Omega M)^* \xrightarrow{g^*} F^* \to \text{Tr}M \xrightarrow{h} \text{Tr}((\text{Tr}\Omega\text{Tr}\Omega M)) \to \text{Tr}F \to 0
$$

with $\pi(h) = \text{Tr}\pi(f)$; see [1, Lemma (3.9)]. Note that there is also an exact sequence

$$
0 \to M^* \xrightarrow{f^*} (\text{Tr}\Omega\text{Tr}\Omega M)^* \xrightarrow{g^*} F^* \to \text{Ext}^1_R(M,R) \to \text{Ext}^1_R((\text{Tr}\Omega\text{Tr}\Omega M),R).
$$

Since $\text{Ext}^1_R((\text{Tr}\Omega\text{Tr}\Omega M),R) = 0$ by [1, Theorem (2.17)] and since $\text{Tr}F$ is free, we obtain an exact sequence

$$
0 \to \text{Ext}^1_R(M,R) \to \text{Tr}M \xrightarrow{h'} \text{Tr}((\text{Tr}\Omega\text{Tr}\Omega M)) \to 0
$$

such that $\pi(h') = \pi(h)$. Taking the d-th syzygies of $\text{Ext}^1_R(M,R)$ and $\text{Tr}((\text{Tr}\Omega\text{Tr}\Omega M))$ and using the horseshoe lemma, we get an exact sequence of Cohen–Macaulay R-modules

$$
(2.2) \quad 0 \to \Omega^d\text{Ext}^1_R(M,R) \to \lambda M \xrightarrow{f} \lambda(\text{Tr}\Omega\text{Tr}\Omega M) \to 0
$$
with \(\pi(\ell) = \lambda \pi(f) \). Note that for each short exact sequence \(\sigma : 0 \to X \alpha \to Y \beta \to Z \to 0 \) of Cohen–Macaulay \(R \)-modules, the image of \(\sigma \) by the canonical functor \(\pi \) is sent by \(\eta \) to an exact triangle \(X \alpha \to Y \beta \to Z \to 0 \). Hence, \(\eta \) sends (2.2) to an exact triangle

\[
\eta \Omega^d \text{Ext}^1_R(M, R) \to \eta \lambda M \xrightarrow{\eta \lambda(\Theta M)} \eta(\text{Tr}\Omega \text{Tr} M) \to \eta M
\]

in \(D_{sg}(R) \). We have a commutative diagram

\[
\begin{array}{ccc}
\eta \lambda M & \xrightarrow{\eta \lambda(\Theta M)} & \eta(\text{Tr}\Omega \text{Tr} M) \\
\Delta M \uparrow \cong & \cong & \Delta(\text{Tr}\Omega \text{Tr} M) \\
\phi \eta M & \xrightarrow{\phi \eta(\Theta M)} & \phi \eta(\text{Tr}\Omega \text{Tr} M)
\end{array}
\]

of morphisms in \(D_{sg}(R) \), and the exact sequence (2.1) induces an isomorphism

\[
\eta(\Theta M) : \eta(\text{Tr}\Omega \text{Tr} M) \to \eta M
\]

in \(D_{sg}(R) \). Therefore \(\eta \Omega^d \text{Ext}^1_R(M, R) \) is isomorphic to \(\eta M \) in \(D_{sg}(R) \), which means that the \(R \)-module \(\text{Ext}^1_R(M, R) \) has finite projective dimension. Thus, letting \(M := \Omega^d k \), where \(k \) denotes the residue field of \(R \), shows that \(\text{Ext}^{d+1}_R(k, R) \) has finite projective dimension. If \(\text{Ext}^{d+1}_R(k, R) = 0 \), then \(R \) is Gorenstein. If \(\text{Ext}^{d+1}_R(k, R) \neq 0 \), then the \(R \)-module \(k \) has finite projective dimension, which implies that \(R \) is regular, so that \(\text{Ext}^{d+1}_R(k, R) = 0 \), a contradiction. Consequently, in either case \(R \) is a Gorenstein ring.

Now the proof of the theorem is completed. \(\square \)

Remark 3. In the proof of the theorem, the assumption that the ring \(R \) is commutative is used to deduce the Gorensteinness of \(R \) from the fact that the \(R \)-module \(\text{Ext}^{d+1}_R(k, R) \) has finite projective dimension. For a noncommutative ring \(\Lambda \) with Jacobson radical \(J \) and an integer \(n \), the \(n \)-th Ext group \(\text{Ext}_n^\Lambda(\Lambda/J, \Lambda) \) of the right \(\Lambda \)-modules \(\Lambda/J \) and \(\Lambda \) is not necessarily semisimple as a left \(\Lambda \)-module.

We end this paper by stating a direct consequence of the theorem.

Corollary 4. Suppose that \(R \) is artinian. Then \(R \) is Gorenstein if and only if the transpose functor \(\text{Tr} : \text{mod} R \to \text{mod} R \) extends to the singularity category \(D_{sg}(R) \).

REFERENCES

[1] Maurice Auslander and Mark Bridger, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, Providence, R.I., 1969. MR0269685 (42 #4580)

[2] R.-O. Buchweitz, *Maximal Cohen-Macaulay modules and Tate-cohomology over Gorenstein rings*, Preprint (1986), http://hdl.handle.net/1807/16682.