Modeling of the random texture surface based on self-similar structures

O A Mossoulina

1Samara National Research University, Moskovskoye Shosse 34, Samara, Russia, 443086

e-mail: chanta595@gmail.com

Abstract. The construction realized of random texture surfaces based on self-similar ones with the addition of certain rules of the accidental element in the construction process. An example of a random fractal widespread in nature is obtained in the process of so-called diffusion-precise aggregation. I investigated spatial spectrum of the formed surfaces on the basis of the multidimensional Fourier transform. I used software package ParaView to visualize 3D textures.

1. Introduction

In recent years, interdisciplinary research in modern Earth Sciences is becoming increasingly important. Research is increasingly conducted at the junction of different scientific areas [1]. For a comprehensive assessment of the current state of various natural structures, it is necessary to conduct research using not only classical scientific methods developed and tested in the system of Earth Sciences, but also the latest physical, mathematical, computer knowledge and technologies. One of these tools is fractal analysis. This method allows to estimate the structure of self-similarity of a natural object, to reveal its fractal properties [2].

Complex assessment of the state of various natural structures by their images requires not only classical methods of modeling and forecasting trends in the properties of natural objects [2-3]. The fractal approach can be applied to natural objects (in particular, to describe landscape images), demonstrating the properties of self-similarity in a relatively wide range of characteristic scales. Such methods use fractional topological dimension of signals, as well as properties of self-similarity or scaling [3]. It should be noted, that such properties of optical fields as self-similarity [2-3], self-reproduction [4-6], periodicity [7-8] and invariance [9-11] are close and interrelated [12-13].

Note that certain properties of statistical fractals, such as aerosols, smoke, moiré [14-17] coincide, what is very important for the transmission of optical signal through a non-uniform or random medium [18-21].

One of the most important characteristics of fractals is the spatial spectrum [22-26].

In this paper, the construction of random texture surfaces on the basis of self-similar structures with the introduction of a probabilistic element in the construction process. An example of a random fractal common in nature, which is obtained in the process of so-called diffusion-limited aggregation, is considered. The spatial spectra of the formed surfaces are calculated on the basis of the multidimensional Fourier transform.
2. Research result
Consider one of the simplest fractal structures called the Harter – Heituey dragon [27].

![Fractal Structure](image1)

Figure 1. The view of the fractal structure dragon Harter – Hatuey (a) and its spatial spectrum (b) for $N=23$ level of the fractal.

In figure 1 it is clearly seen that the spatial spectrum of this structure contains vortex twist associated with the construction of a fractal.

The process of building a dragon-like structure with the introduction of a random angle into the construction process was used when forming a random field. The result is shown in figure 2 and 3.

![Random Field](image2)

Figure 2. (a) Regular draconian construction; (b) Spatial spectrum of the regular draconian construction.

![Random Field](image3)

Figure 3. (a) The random dragon-like field; (b) Spatial spectrum of the random dragon-like field.

Thus, the introduction of a random element in the process of fractals building allowed to form a random field.

Let us consider the examples of formation of random two-dimensional and three-dimensional fractals.

The fractal is modeled by generating a random Cantor set. Each random Cantor set is assigned the same random process, that is, the removal of a part of the segment, and the length of the segment and the parts separated by it are set randomly within the acceptable value.
At the same time, a certain degree of regularity, retains since at each step of the fractal construction process, the removal is repeated randomly on both sides of the remote segment.

You can build a two-dimensional fractal simply as a product of one-dimensional ones, and you can enter a scale transformation along different axes. Moreover, in this case it is possible to use fractals of different levels. Then the spatial spectrum for the two-dimensional triad Cantor fractal can be estimated by the equation [23, 24, 28, 29]:

\[
F_{S,P}(u,v) = 2^{-S-P} \left[\prod_{s=0}^{S-1} \cos \left(2\pi \cdot 3^s \alpha u \right) \right] \left[\prod_{p=0}^{P-1} \cos \left(2\pi \cdot 3^p \beta v \right) \right] \text{sinc} (\alpha u) \text{sinc} (\beta v),
\]

(1)

where \(S\) – the level of the fractal.

Figure 4 shows examples of random fractals obtained on the basis of the Serpinsky carpet.

\[\text{Figure 4. Random fractal structure view (left) and its spatial spectrum (right) for different fractal levels: a) } S=3; \text{ b) } S=4.\]

To obtain a three-dimensional random fractal, let’s use a single cube at the first step \(E_0 = [0,1] \times [0,1] \times [0,1]\). At the next step (level) the fractal is set as \(E_1 = ([0,a_1] \cup [b_1,1]) \times ([0,a_2] \cup [b_2,1]) \times ([0,a_3] \cup [b_3,1])\), where \(a_1, a_2, a_3, b_1, b_2, b_3\) – the parameters of the fractal set in the range of \((0,1)\), moreover \(a_1 < b_1, a_2 < b_2\) and \(a_3 < b_3\). The generation of a three-dimensional fractal, as well as for the one-dimensional and two-dimensional case, occurs on the principle of the formation of cracks with a growing frequency as the fractal level increases. But some corrections are introduced so that the length at each step is set randomly.

\[\text{Figure 5. Type of three-dimensional random fractal structure (a) and its spatial spectrum (b) for } S=5 \text{ level of the fractal.}\]
Figure 6 shows the two-dimensional fractal obtained from the Serpinsky carpet and its spatial spectrum.

Figure 6. The two-dimensional fractal structure (Sierpinsky carpet) (a) and its spatial spectrum (b) for $S=5$.

Figure 7. The cut-out part of the spectral characteristic taken a) in the middle, b) from the first quarter (left), the obtained two-dimensional fractal (center) and its spatial spectrum (right).

Figure 8. The cut out part of the spectral characteristic taken with the upper line (left), the resulting two-dimensional fractal (center) and its spatial spectrum (right).
The spectral pattern was studied. A part of the spectral pattern was taken for this purpose. The inverse Fourier transform was obtained from it and the direct transformation was applied for this purpose.

Figures 7-9 show the spectral response from part of the initial spatial spectrum shown in figure 6.

![Image of Figures 7-9]

Figure 9. The cut-out part of the spectral characteristic taken with the diagonal line (left), the resulting two-dimensional fractal (center) and its spatial spectrum (right).

3. Conclusion
In this paper are described a two-dimensional and three-dimensional case of obtaining a fractal structure of a random form. The introduction of a random element in the process of fractals building allowed to form a random field. The developed approach can serve as a supplement to the known methods of a surface roughness modeling [30-31] which used in the analysis of manufacturing errors [32-36]. The spatial spectrum of the formed fractals is obtained. The preservation of the fractal structure of the field constructed only on a part of the spatial spectrum including information on the diagonal directions is shown.

4. References
[1] Favorskaya M N and Petukhov N Yu 2010 Comprehensive calculation of the characteristics of landscape images Journal of Optical Technology 77(8) 504-509
[2] Petukhov N Y 2011 Bulletin of the Siberian State Aerospace University 4
[3] Gonzalez R C and Woods R E 2002 Digital image processing NJ: Upper Saddle River
[4] Khonina S N, Kotlyar V V and Soifer V A 1999 Self-reproduction of multimode hermite-gaussian beams Technical Physics Letters 25(6) 489-491
[5] Almazov A A and Khonina S N 2004 Periodic self-reproduction of multi-mode laser beams in graded-index optical fibers Optical Memory and Neural Networks 13(1) 63-70
[6] Khonina S N and Volotovsky S G 2007 Self-reproduction of multimode laser fields in weakly guiding stepped-index fibers Optical Memory & Neural Networks (Information Optics) 16(3) 167-177
[7] Kotlyar V V, Soifer V A and Khonina S N 1998 Phase formers of light fields with longitudinal periodicity Optics and Spectroscopy 84(5) 771-777
[8] Khonina S N, Kotlyar V V, Soifer V A, Lautanen J, Honkanen M and Turunen J 1999 Generating a couple of rotating nondiffractive beams using a binary-phase DOE Optik 110(3) 137-144
[9] Kirilenko M S and Khonina S N 2014 Calculation of eigenfunctions for imaging two-lens system with axial symmetry Computer Optics 38(3) 412-417
[10] Kirilenko M S, Zubtsov R O and Khonina S N 2015 Calculation of eigenfunctions of a bounded fractional Fourier transform Computer Optics 39(3) 332-338
[11] Kirilenko M S and Khonina S N 2018 Formation of signals matched with vortex eigenfunctions of bounded double lens system Optics Communications 410 153-159
[12] Soifer V A (ed.), Doskolovich L L, Golovashkin D L, Kazanskiy N L, Khonina S N, Kotlyar V V, Pavelyev V S, Skidanov R V, Solovyev V S, Usplenyev G V and Volkov A V 2002 Methods for computer design of diffractive optical elements (John Wiley & Sons, Inc.)
[13] Khonina S N and Ustinov A V 2014 Lenses to form a longitudinal distribution matched special functions Optics Communications 341 114-121
[14] Peitgen H O, Jurgens H and Saupe D 2004 New York NY: Springer
[15] Forrest S and Witten T A 1979 Long-range correlations in smoke-particle aggregates J. Phys. A 12(5) L109
[16] Berry M V and Percival I C 1986 Optics of fractal clusters such as smoke Journal of Modern Optics 33(5) 577-591DOI: 10.1080/713821987
[17] Oster G, Wasserman M and Zwerling C 1964 Theoretical interpretation of moiré patterns J. Opt. Soc. Am. 54(2) 169-175
[18] Khonina S N and Golub I 2015 Creating order with the help of randomness: generating transversely random, longitudinally invariant vector optical fields Optics Letters 40(17) 4070-4073
[19] Soifer V A, Korotkova O, Khonina S N and Shchepakina E A 2016 Vortex beams in turbulent media: review Computer Optics 40(5) 605-624 DOI: 10.18287/2412-6179-2016-40-5-605-624
[20] Porfired P M, Kirilenko M S, Khonina S N, Skidanov R V and Soifer V A 2017 Study of propagation of vortex beams in aerosol optical medium Applied Optics 56(11) E8-E15
[21] Khonina S N, Karpeev S V and Paranin V D 2018 A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles Optics and Lasers in Engineering 105 68-74
[22] Allain C and Cloitre M 1987 Spatial spectrum of a general family of self-similar arrays Phys. Rev. 36(12) 5751-5757
[23] Uozumi J, Kimura H and Asakura T 1990 Fraunhofer diffraction by Koch fractals J. Mod. Opt. 37(6) 1011-1031
[24] Zunino L and Garavaglia M 2003 Fraunhofer diffraction by cantor fractals with variable lacunarity J. Mod. Opt. 50(5) 717-727
[25] Horvath P, Smid P, Vaskova I and Hrabovsky M 2010 Koch fractals in physical optics and their Fraunhofer diffraction patterns Optik 121(2) 206-213
[26] Khonina S N and Volotovskiy S G 2018 Fractal Cylindrical Fracxicon Optical Memory and Neural Networks 27(1) 1-9 DOI: 10.3103/S1060992X18010034
[27] Mishra J and Mishra S 2007 L-System Fractals Mathematics in Science and Engineering 209 30
[28] Allain C and Cloitre M 1986 Optical diffraction on fractals Phys. Rev. B 33(5) 3566-3569
[29] Jagard A D and Jagard D L 1998 Cantor ring diffractions Opt. Commun. 158(1) 141-148
[30] Sharif Ullah A M M 2017 Surface roughness modeling using Q-sequence Mathematical and Computational Applications 22(2) 33 DOI:10.3390/mca22020033
[31] Abulkhanov S R and Kazanskiy N L 2018 Information Pattern in Imaging of a Rough Surface IOP Conference Series: Materials Science and Engineering 302 012068 DOI:10.1088/1757-899X/302/1/012068
[32] Biskup H, Haberl A and Rascher R 2015 Surface errors in the course of machining precision optics Proceedings of SPIE 9575 95750O DOI:10.1117/12.2189991
[33] Kazanskiy N L, Stepankenko I S, Khaimovich A I, Kravchenko S V, Byzov E V and Moiseev M A 2016 Injectional multilens molding parameters optimization Computer Optics 40(2) 203-214 DOI:10.18287/2412-6179-2016-40-2-203-214
[34] Bhaduri D, Penchev P, Batal A, Dimov S, Soo S L, Sten S, Harrysson U, Zhang Z and Dong H 2017 Laser polishing of 3D printed mesoscale components Applied Surface Science 405 29-46
[35] Borodin S A, Volkov A V and Kazanskii N L 2009 Device for analyzing nanoroughness and contamination on a substrate from the dynamic state of a liquid drop deposited on its surface _Journal of Optical Technology_ 76(7) 408-412 DOI:10.1364/JOT.76.000408

[36] Denisov D G 2017 Error analysis in digital processing of the results of interferometric control of nano-scale local deviations of optical surfaces _Computer Optics_ 41(6) 820-830 DOI:10.18287/2412-6179-2017-41-6-820-830

Acknowledgments

The reported study was funded by RFBR according to the research project № 18-37-00056.