WEIGHTED WEAK TYPE ENDPOINT ESTIMATES FOR THE
COMPOSITIONS OF CALDERÓN–ZYGMDUND OPERATORS

GUOEN HU

(Received 4 August 2018; accepted 20 February 2019; first published online 8 April 2019)

Communicated by C. Meaney

Abstract

Let T_1, T_2 be two Calderón–Zygmund operators and $T_{1,b}$ be the commutator of T_1 with symbol $b \in \text{BMO}(\mathbb{R}^n)$. In this paper, by establishing new bilinear sparse dominations and a new weighted estimate for bilinear sparse operators, we prove that the composite operator $T_1 T_2$ satisfies the following estimate: for $\lambda > 0$ and weight $w \in A_1(\mathbb{R}^n)$,

$$w(\{x \in \mathbb{R}^n : |T_1 T_2 f(x)| > \lambda\}) \lesssim [w]_{A_1} [w]_{A_1} \log(e + [w]_{A_1}) \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(e + \frac{|f(x)|}{\lambda}\right) w(x) \, dx,$$

while the composite operator $T_{1,b} T_2$ satisfies

$$w(\{x \in \mathbb{R}^n : |T_{1,b} T_2 f(x)| > \lambda\}) \lesssim [w]_{A_1} [w]_{A_1}^2 \log(e + [w]_{A_1}) \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^2\left(e + \frac{|f(x)|}{\lambda}\right) w(x) \, dx.$$

2010 Mathematics subject classification: primary 42B20; secondary 42B25, 47B33.

Keywords and phrases: weighted bound, Calderón–Zygmund operator, bilinear sparse operator, grand maximal operator.

1. Introduction

We will work on \mathbb{R}^n, $n \geq 1$. Let $p \in [1, \infty)$ and w be a nonnegative, locally integrable function on \mathbb{R}^n. We say that $w \in A_p(\mathbb{R}^n)$ if the A_p constant $[w]_{A_p}$ is finite, where

$$[w]_{A_p} := \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) \left(\frac{1}{|Q|} \int_Q w^{-\frac{1}{p-1}}(x) \, dx \right)^{p-1}, \quad p \in (1, \infty),$$

the supremum is taken over all cubes in \mathbb{R}^n and

$$[w]_{A_1} := \sup_{x \in \mathbb{R}^n} \frac{Mw(x)}{w(x)}.$$
For properties of $A_p(\mathbb{R}^n)$, we refer the reader to the monograph [6]. In the last two decades, considerable attention has been paid to the sharp weighted bounds with A_p weights for the classical operators in harmonic analysis. A prototypical work in this area is Buckley’s paper [2], in which it was proved that if $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$, then the Hardy–Littlewood maximal operator M satisfies

$$
||Mf||_{L^p(\mathbb{R}^n, w)} \leq n, p \quad [w]_{A_p}^{1/(p-1)} ||f||_{L^p(\mathbb{R}^n, w)}. \tag{1.1}
$$

Moreover, the estimate (1.1) is sharp in the sense that the exponent $1/(p-1)$ cannot be replaced by a smaller one. Hytönen and Pérez [15] improved the estimate (1.1) and showed that

$$
||Mf||_{L^p(\mathbb{R}^n, w)} \leq n, p \quad ([w] A_{p'} [w^{-1/(p-1)}]_{A_{\infty}})^{1/p} ||f||_{L^p(\mathbb{R}^n, w)},
$$

where, and in the following, for a weight $u \in A_{\infty}(\mathbb{R}^n) = \bigcup_{p \geq 1} A_p(\mathbb{R}^n)$, $[u]_{A_{\infty}}$ is the A_{∞} constant of u, defined by

$$
[u]_{A_{\infty}} = \sup_{Q \subset \mathbb{R}^n} \frac{1}{u(Q)} \int_Q M(u \chi_Q(x)) \, dx;
$$

see [28].

Let K be a locally integrable function on $\mathbb{R}^n \times \mathbb{R}^n \setminus \{(x, y): x \neq y\}$. We say that K is a Calderón–Zygmund kernel if K satisfies the size condition that for $x, y \in \mathbb{R}^n$, $x \neq y$,

$$
|K(x, y)| \leq |x - y|^{-n}
$$

and the regularity condition that for any $x, y, y' \in \mathbb{R}^n$ with $|x - y| \geq 2|y - y'|$,

$$
|K(x, y) - K(x, y')| + |K(y, x) - K(y', x)| \leq \frac{|y - y'|^\varepsilon}{|x - y|^{n+\varepsilon}}, \tag{1.2}
$$

where $\varepsilon \in (0, 1)$ is a constant. A linear operator T is said to be a Calderón–Zygmund operator with kernel K if it is bounded on $L^2(\mathbb{R}^n)$ and satisfies

$$
Tf(x) = \int_{\mathbb{R}^n} K(x, y) f(y) \, dy \tag{1.3}
$$

for all $f \in L^2(\mathbb{R}^n)$ with compact support and almost every $x \in \mathbb{R}^n \setminus \text{supp } f$. Hytönen [12] proved that for a Calderón–Zygmund operator T and $w \in A_2(\mathbb{R}^n)$,

$$
||Tf||_{L^2(\mathbb{R}^n, w)} \leq n \quad [w]_{A_2} ||f||_{L^2(\mathbb{R}^n, w)}. \tag{1.4}
$$

This solved the so-called A_2 conjecture. Hytönen and Lacey [13] improved the estimate (1.4) and proved that for a Calderón–Zygmund operator T, $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$
||Tf||_{L^p(\mathbb{R}^n, w)} \leq n, p \quad [w]_{A_p}^{1/p} ([w]_{A_{\infty}}^{1/p'} + [\sigma]_{A_{\infty}}^{1/p}) ||f||_{L^p(\mathbb{R}^n, w)},
$$

where, and in the following, for $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$, $p' = p/(p-1)$ and $\sigma = w^{1/(p-1)}$. Hytönen and Pérez [16] proved that if T is a Calderón–Zygmund operator and $w \in A_1(\mathbb{R}^n)$, then

$$
||Tf||_{L^{1,\infty}(\mathbb{R}^n, w)} \leq [w]_{A_1} ||f||_{L^1(\mathbb{R}^n, w)}.
$$
For other works about quantitative weighted bounds of Calderón–Zygmund operators, see [14, 15, 17, 19, 20, 23] and the related references therein.

Let T_1, T_2 be two Calderón–Zygmund operators and T_2^* be the adjoint operator of T_2. It was pointed out in [5, Section 9] that if $T_1(1) = T_2^*(1) = 0$, then the composite operator $T_1 T_2$ is also a Calderón–Zygmund operator; thus, for $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$||T_1 T_2 f||_{L^p(\mathbb{R}^n, w)} \lesssim [w]_{A_p}^{1/p} [w]_{A_\infty}^{1/p'} + [\sigma]_{A_\infty}^{1/p} ||f||_{L^p(\mathbb{R}^n, w)}.$$

Benea and Bernicot [1] considered the weighted bounds for $T_1 T_2$ when $T_1(1) = 0$ or $T_2^*(1) = 0$. In fact, the results in [1] imply the following conclusion (see Remark 3.3 in Section 3).

Theorem 1.1. Let T_1, T_2 be two Calderón–Zygmund operators, $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$.

(i) If $T_1(1) = 0$, then

$$||T_1 T_2 f||_{L^p(\mathbb{R}^n, w)} \lesssim [w]_{A_p}^{1/p} [w]_{A_\infty}^{1/p'} + [\sigma]_{A_\infty}^{1/p} ||f||_{L^p(\mathbb{R}^n, w)}.$$

(ii) If $T_2^*(1) = 0$, then

$$||T_1 T_2 f||_{L^p(\mathbb{R}^n, w)} \lesssim [w]_{A_p}^{1/p} [w]_{A_\infty}^{1/p'} + [\sigma]_{A_\infty}^{1/p} ||f||_{L^p(\mathbb{R}^n, w)}.$$

Fairly recently, Hu [9] considered the quantitative bounds on $L^p(\mathbb{R}^n, w)$ for the composite operator $T_{1,b} T_2$, with T_1, T_2 two Calderón–Zygmund operators, $b \in \text{BMO}(\mathbb{R}^n)$ and $T_{1,b}$ the commutator of T_1 defined by

$$T_{1,b} f(x) = b(x) T_1 f(x) - T_1 (b f)(x);$$

see [4, 15, 23] for the quantitative weighted bounds of the commutator of Calderón–Zygmund operators. Employing the ideas of Lerner [21], Hu [9] proved that if $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$||T_{1,b} T_2 f||_{L^p(\mathbb{R}^n, w)} \lesssim ||b||_{\text{BMO}(\mathbb{R}^n)} [w]_{A_p}^{1/p} [w]_{A_\infty}^{1/p'} + [\sigma]_{A_\infty}^{1/p}$$

$$\times ([w]_{A_\infty} + [\sigma]_{A_\infty}^2) ||f||_{L^p(\mathbb{R}^n, w)}. \quad (1.5)$$

We remark that the operator $T_{1,b} T_2$ was introduced by Krantz and Li [18] in the study of the Toeplitz-type operator of singular integral operators.

The main purpose of this paper is to establish the weighted weak type endpoint estimates for the composite operators $T_1 T_2$ and $T_{1,b} T_2$. Our main results can be stated as follows.

Theorem 1.2. Let T_1 and T_2 be Calderón–Zygmund operators. Then, for $w \in A_1(\mathbb{R}^n)$ and $\lambda > 0$,

$$w(\{x \in \mathbb{R}^n : |T_1 T_2 f(x)| > \lambda\}) \lesssim [w]_{A_1} [w]_{A_\infty} \log(e + [w]_{A_\infty})$$

$$\times \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(e + \frac{|f(x)|}{\lambda}\right) w(x) \, dx. \quad (1.6)$$
Moreover, if \(T_1(1) = 0 \), then
\[
w(\{ x \in \mathbb{R}^n : |T_1 T_2 f(x)| > \lambda \}) \leq [w] A_1 \log^2 (e + [w]_{A_\infty}) \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log\left(e + \frac{|f(x)|}{\lambda} \right) w(x) \, dx.
\]

Theorem 1.3. Let \(T_1 \) and \(T_2 \) be two Calderón–Zygmund operators and \(b \in \text{BMO}(\mathbb{R}^n) \). Then, for \(w \in A_1(\mathbb{R}^n) \) and \(\lambda > 0 \),
\[
w(\{ x \in \mathbb{R}^n : |T_{1,b} T_2 f(x)| > \lambda \}) \lesssim [w] A_1 [w]_{A_\infty}^2 \log (e + [w]_{A_\infty}) \times \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^2 \left(e + \frac{|f(x)|}{\lambda} \right) w(x) \, dx.
\]

Remark 1.4. It was proved in [9] that for each \(q \in (1, 2) \) and bounded functions \(f \) and \(g \) with compact support, there exists a sparse family of cubes \(S \) such that
\[
\int_{\mathbb{R}^n} |g(x)T_{1,b} T_2 f(x)| \, dx \lesssim A_{S,L_1 \log L^2, L^1}(f, g) + A_{S,L_1 \log L^1, L_1 \log L^2}(f, g) + q^2 A_{S, L^1, L^2}(f, g),
\]
where \(A_{S,L_1 \log L^2, L^1} \), \(A_{S,L_1 \log L^1, L_1 \log L^2} \) and \(A_{S, L^1, L^2} \) are bilinear sparse operators (for the definition of sparse family and bilinear sparse operator, see Section 3 below). Although the estimate (1.9) is adequate for establishing the weighted estimate (1.5), we do not know if it implies the weighted weak type endpoint estimates for \(T_{1,b} T_2 \). In this paper, we will establish a more refined bilinear sparse domination (Theorem 3.2), which, along with a new weighted estimate relating to the sparse operator \(A_{S, L_1 \log L^2, L_1 \log L^2} \) (see Lemma 3.1 in Section 3), leads to (1.8). It should be pointed out that Lemma 3.1 is a weighted version of [1, Proposition 6] and its proof is different from and simpler than what was used in the proof of Proposition 6 of [1].

Throughout the article, \(C \) always denotes a positive constant that is independent of the main parameters involved but whose value may differ from line to line. We use the symbol \(A \lesssim B \) to denote that there exists a universal constant \(C \) such that \(A \leq CB \). Especially, we use \(A \lesssim_{n, p} B \) to denote that there exists a positive constant \(C \) depending only on \(n, p \) such that \(A \leq CB \). A constant with a subscript such as \(c_1 \) does not change in different occurrences. For any set \(E \subset \mathbb{R}^n \), \(\chi_E \) denotes its characteristic function. For a cube \(Q \subset \mathbb{R}^n \) and \(\lambda \in (0, \infty) \), we use \(\lambda Q \) to denote the cube with the same center as \(Q \) and whose side length is \(\lambda \) times that of \(Q \). For \(\beta \in [0, \infty) \), a cube \(Q \subset \mathbb{R}^n \) and a suitable function \(g \), \(\|g\|_{L(\log L)^\beta, Q} \) is defined by
\[
\|g\|_{L(\log L)^\beta, Q} = \inf \left\{ \lambda > 0 : \frac{1}{|Q|} \int_Q \frac{|g(y)|}{\lambda} \log^\beta \left(e + \frac{|g(y)|}{\lambda} \right) dy \leq 1 \right\}.
\]
We denote \(\|g\|_{L(\log L)^\beta, Q} \) by \(\langle |g| \rangle_Q \). For \(r \in (0, \infty) \), we set \(\langle |g| \rangle_{Q, r} = (\|g\|_{L(\log L)^r, Q})^{1/r} \) and define \(M_r \) by
\[
M_r g(x) = \sup_{Q \ni x} \langle |g| \rangle_{Q, r}.
\]
For $\beta \in [0, \infty)$, the maximal operator $M_{L(\log L)^\beta}$ is defined by

$$M_{L(\log L)^\beta}f(x) = \sup_{Q \ni x} \|f\|_{L(\log L)^\beta, Q}.$$

It is well known that

$$|\{x \in \mathbb{R}^n : M_{L(\log L)^\beta}f(x) > \lambda\}| \lesssim \int_{\mathbb{R}^n} |f(x)| \lambda \log^\beta \left(e + \frac{|f(x)|}{\lambda} \right) dx. \quad (1.10)$$

2. Two grand maximal operators

For a linear operator T, we define the corresponding grand maximal operator M_T by

$$M_T f(x) = \sup_{Q \ni x} \text{ess sup}_{\xi \in Q} |T(f\chi_{\mathbb{R}^n \setminus 3Q})(\xi)|,$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^n$ containing x. This operator was introduced by Lerner [20]. Moreover, Lerner [20] proved that a Calderón–Zygmund operator T with kernel K in the sense of (1.3) satisfies

$$M_T f(x) \lesssim T^* f(x) + M f(x), \quad (2.1)$$

where T^* denotes the maximal operator associated with T, defined by

$$T^* f(x) = \sup_{\epsilon > 0} \left| \int_{|x-y| > \epsilon} K(x, y) f(y) dy \right|.$$

Let T_1, T_2 be Calderón–Zygmund operators and $b \in \text{BMO}(\mathbb{R}^n)$. We define the grand maximal operators $M^*_{T_1T_2}$ and $M^*_{T_1T_2,b}$ by

$$M^*_{T_1T_2} f(x) = \sup_{Q \ni x} \text{ess sup}_{\xi \in Q} |T_1(f\chi_{\mathbb{R}^n \setminus 3Q}T_2(f\chi_{\mathbb{R}^n \setminus 9Q}))(\xi)|$$

and

$$M^*_{T_1T_2,b} f(x) = \sup_{Q \ni x} \text{ess sup}_{\xi \in Q} |T_1(f\chi_{\mathbb{R}^n \setminus 3Q}T_{2,b}(f\chi_{\mathbb{R}^n \setminus 9Q}))(\xi)|,$$

respectively. As we will see in Section 3, these two operators play important roles in the proof of Theorems 1.2 and 1.3. This section is devoted to the endpoint estimates for the operators $M^*_{T_1T_2}$ and $M^*_{T_1T_2,b}$. We begin with some preliminary lemmas.

Lemma 2.1. Let $p_0 \in (1, \infty)$, $\varphi \in [0, \infty)$ and S be a sublinear operator. Suppose that

$$\|S f\|_{L^{p_0}(\mathbb{R}^n)} \leq A_1 \|f\|_{L^{p_0}(\mathbb{R}^n)}$$

and, for all $\lambda > 0$,

$$|\{x \in \mathbb{R}^n : |S f(x)| > \lambda\}| \leq A_2 \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^\varphi \left(e + \frac{|f(x)|}{\lambda} \right) dx.$$
Then, for $\beta \in [0, \infty)$ and two cubes $Q_2, Q_1 \subset \mathbb{R}^n$,
\[
\int_{Q_1} |S(f\chi_{Q_2})(x)| \log^\beta (e + |S(f\chi_{Q_2})(x)|) \, dx \leq |Q_1| + (A_1^{P_0} + A_2) \int_{Q_2} |f(x)| \log^{\beta + 1} (e + |f(x)|) \, dx.
\] (2.2)
Moreover, if $Q_0 \subset \mathbb{R}^n$ is a cube and $\{Q_j\}$ is a family of cubes contained in Q_0 with pairwise disjoint interiors, then
\[
\sum_j \int_{Q_j} |S(f\chi_{Q_j})(x)| \, dx \leq (1 + A_1^{P_0} + A_2)|Q_0||\|f\|_{L(\log L)^{\beta + 1}, Q_0}.
\] (2.3)

For the case of $\beta = 0$, (2.2) was proved in [11]. For the case of $\beta \in (0, \infty)$, the proof is similar. And (2.3) follows from (2.2) by homogeneity.

Lemma 2.2. Let $s \in [0, \infty)$ and S be a sublinear operator which satisfies that for any $\lambda > 0$,
\[
|\{x \in \mathbb{R}^n : |Sf(x)| > \lambda\}| \leq \int_{\mathbb{R}^n} \left|\frac{|f(x)|}{\lambda}\right| \log^s \left(e + \frac{|f(x)|}{\lambda}\right) \, dx.
\]
Then, for any $\varrho \in (0, 1)$ and cube $Q \subset \mathbb{R}^n$,
\[
\left(\frac{1}{|Q|} \int_Q |S(f\chi_{Q})(x)|^\varrho \, dx\right)^{1/\varrho} \leq \|f\|_{L(\log L)^s, Q}.
\]

For the proof of Lemma 2.2, see [10, page 643].

Lemma 2.3. Let $R > 1$ and $\Omega \subset \mathbb{R}^n$ be an open set. Then Ω can be decomposed as $\Omega = \bigcup_j Q_j$, where $\{Q_j\}$ is a sequence of cubes with disjoint interiors, and:
(i) $5R \leq \frac{\text{dist}(Q_j, \mathbb{R}^n\setminus \Omega)}{\text{diam}Q_j} \leq 15R$;
(ii) $\sum_j \chi_{RQ_j}(x) \leq nR \chi_\Omega(x)$.

For the proof of Lemma 2.3, see [27, page 256].

Lemma 2.4. Let $\beta \in [0, \infty)$ and U be a sublinear operator which is bounded on $L^2(\mathbb{R}^n)$ and satisfies that for any $t > 0$,
\[
|\{x \in \mathbb{R}^n : |Uf(x)| > t\}| \leq \int_{\mathbb{R}^n} \frac{|f(x)|}{t} \log^\beta \left(e + \frac{|f(x)|}{t}\right) \, dx.
\]
Let T be a Calderón–Zygmund operator and $b \in \text{BMO}$ with $\|b\|_{\text{BMO}(\mathbb{R}^n)} = 1$. Then, for any $\lambda > 0$,
\[
|\{x \in \mathbb{R}^n : |UTf(x)| > \lambda\}| \leq \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^{\beta + 1} \left(e + \frac{|f(x)|}{\lambda}\right) \, dx
\] (2.4)
and
\[
|\{x \in \mathbb{R}^n : |UT_bf(x)| > \lambda\}| \leq \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^{\beta + 2} \left(e + \frac{|f(x)|}{\lambda}\right) \, dx.
\] (2.5)
Proof. We only prove (2.5). The proof of (2.4) is similar and will be omitted. By homogeneity, it suffices to prove the inequality (2.5) for the case of $\lambda = 1$. Applying Lemma 2.3 to the set $\{ x \in \mathbb{R}^n : Mf(x) > 1 \}$, we obtain a sequence of cubes $\{ Q_l \}$ with disjoint interiors, such that $\{ x \in \mathbb{R}^n : Mf(x) > 1 \} = \bigcup_l Q_l$, and

$$\sum_l \chi_{5Q_l}(x) \lesssim 1, \int_{Q_l} |f(y)| dy \leq |Q_l|.$$

Let

$$g(x) = f(x)\chi_{\mathbb{R}^n \cup \bigcup_l Q_l}(x) + \sum_l \langle f \rangle_{Q_l} \chi_{Q_l}(x)$$

and

$$h(x) = \sum l (f(x) - \langle f \rangle_{Q_l}) \chi_{Q_l}(x) := \sum_l h_l(x).$$

Recall that UTb is bounded on $L^2(\mathbb{R}^n)$. Thus, by the fact that $\|g\|_{L^\infty(\mathbb{R}^n)} \lesssim 1$,

$$|\{ x \in \mathbb{R}^n : |UTb g(x)| > 1/2 \}| \lesssim \int_{\mathbb{R}^n} |g(x)|^2 dx \lesssim \int_{\mathbb{R}^n} |f(x)| dx.$$

To estimate $UTb h$, write

$$|UTb h(x)| \leq \left| UT\left(\sum_l (b - \langle b \rangle_{Q_l}) h_l \right)(x) \right| + \left| U\left(\sum_l (b - \langle b \rangle_{Q_l}) \chi_{5Q_l} Th_l \right)(x) \right|$$

$$+ \left| U\left(\sum_{l' \not= l} \chi_{\mathbb{R}^n \setminus 5Q_l} (b - \langle b \rangle_{Q_l}) Th_l \right)(x) \right|$$

$$= V_1(x) + V_2(x) + V_3(x).$$

We first consider the term V_1. Employing Jensen’s inequality, we have that for $\gamma > 0$,

$$\langle |f| \rangle_Q \log^\gamma(e + \langle |f| \rangle_Q) \leq \frac{1}{|Q|} \int_Q |f(y)| \log^\gamma(e + |f(y)|) dy.$$

Observe that, for $t_1, t_2 \in (0, \infty)$,

$$(t_1 + t_2) \log^\gamma(e + t_1 + t_2) \lesssim \gamma t_1 \log^\gamma(e + t_1) + t_2 \log^\gamma(e + t_2).$$

It then follows that

$$\int_{Q_l} |h_l(y)| \log^\gamma(e + |h_l(y)|) dy \lesssim \int_{Q_l} |f(y)| \log^\gamma(e + |f(y)|) dy. \quad (2.6)$$

On the other hand, the generalization of Hölder’s inequality (see [26]) tells us that

$$t_1 t_2 \log^\beta(e + t_1 t_2) \leq \exp t_1 + \log^\beta+1(e + t_2). \quad (2.7)$$
We deduce from inequalities (2.4), (2.6) and (2.7) that
\[
|x \in \mathbb{R}^n : |V_1(x)| > 1/6| \\
\leq \sum_l \int_{Q_l} |b(x) - \langle b \rangle_{Q_l}| |h_l(x)| \log^{\beta+1}(e + |b(x) - \langle b \rangle_{Q_l}| |h_l(x)|) dx \\
\leq \sum_l \int_{Q_l} \exp\left(\frac{|b(x) - \langle b \rangle_{Q_l}|}{C\|b\|_{\text{BMO}({\mathbb{R}^n})}}\right) dx + \sum_l \int_{Q_l} |h_l(x)| \log^{\beta+2}(e + |h_l(x)|) dx \\
\leq \int_{\mathbb{R}^n} |f(x)| \log^{\beta+2}(e + |f(x)|) dx. \tag{2.8}
\]
Recall that $\chi_{Q \cup 5Q_l} \leq 1$. It follows from inequality (2.7), Lemma 2.1 and inequality (2.6) that
\[
|x \in \mathbb{R}^n : |V_2(x)| > 1/6| \\
\leq \sum_l \int_{5Q_l} |b(x) - \langle b \rangle_{Q_l}| |Th_l(x)| \log^\beta(e + |b(x) - \langle b \rangle_{Q_l}| |Th_l(x)|) dx \\
\leq \sum_l \left(|Q_l| + \int_{Q_l} |Th_l(y)| \log^{\beta+1}(e + |Th_l(y)|) dy \right) \\
\leq \int_{\mathbb{R}^n} |f(y)| \log^{\beta+2}(e + |f(y)|) dy. \tag{2.9}
\]
To estimate the term V_3, we first observe that for each l and $y \in \mathbb{R}^n \setminus 5Q_l$,
\[
|Th_l(y)| \leq \frac{\ell(Q_l)^\epsilon}{|y - z_l|^{n+\epsilon}} \|h_l\|_{L^1(\mathbb{R}^n)};
\]
here z_l is the center of Q_l and $\epsilon \in (0,1]$ is the constant in (1.2). Thus, for each $v \in L^2(\mathbb{R}^n)$ with $\|v\|_{L^2(\mathbb{R}^n)} = 1$, we have by the John–Nirenberg inequality that
\[
\sum_l \left\| \int_{\mathbb{R}^n \setminus 5Q_l} (b(y) - \langle b \rangle_{Q_l}) Th_l(y)v(y) dy \right\| \\
\leq \sum_l \int_{\mathbb{R}^n} |h_l(y)| \int_{\mathbb{R}^n \setminus 5Q_l} \frac{|b(y) - \langle b \rangle_{Q_l}| |Q_l|^{\epsilon/n}}{|y - z_l|^{n+\epsilon}} |v(y)| dy dz \\
\leq \sum_l \int_{Q_l} M_{L,\log} L v(y) dy \lesssim \left(\sum_l |Q_l| \right)^{1/2}.
\]
This, via a standard duality argument, gives that
\[
\left| \left\{ x \in \mathbb{R}^n : |V_3(x)| > \frac{1}{6} \right\} \right| \lesssim \left\| \sum_l \chi_{\mathbb{R}^n \setminus 5Q_l}(b(\cdot) - \langle b \rangle_{Q_l}) Th_l \right\|_{L^2(\mathbb{R}^n)}^2 \\
\lesssim \int_{\mathbb{R}^n} |f(y)| dy. \tag{2.10}
\]
Combining the estimates (2.8)–(2.9) and (2.10) leads to our desired conclusion. \qed
COROLLARY 2.5. Let T_1 and T_2 be two Calderón–Zygmund operators. Then, for each $\lambda > 0$,

$$
|x \in \mathbb{R}^n : MT_2 f(x) + T_1^* T_2 f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log \left(e + \frac{|f(x)|}{\lambda} \right) dx,
$$

(2.11)

and

$$
|x \in \mathbb{R}^n : MT_{2,b} f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^2 \left(e + \frac{|f(x)|}{\lambda} \right) dx.
$$

(2.12)

and, for $r \in (0, 1)$,

$$
|x \in \mathbb{R}^n : M_r T_{1}^* T_{2,b} f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^2 \left(e + \frac{|f(x)|}{\lambda} \right) dx.
$$

(2.13)

Proof. Inequalities (2.11) and (2.12) follow from Lemma 2.4 directly. Also, we know from Lemma 2.4 that

$$
|x \in \mathbb{R}^n : T_1^* T_{2,b} f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log \left(e + \frac{|f(x)|}{\lambda} \right) dx.
$$

Recall that for $r \in (0, 1)$,

$$
|x \in \mathbb{R}^n : M_r f(x) > \lambda| \lesssim \lambda^{-1} \sup_{s \in 2^{-1/\lambda}} |x \in \mathbb{R}^n : |f(x)| > s|;
$$

see [10, page 651]. Combining the last two inequalities establishes (2.13). \hfill \Box

We are now ready to establish our main conclusion in this section.

Theorem 2.6. Let T_1, T_2 be two Calderón–Zygmund operators and $b \in BMO(\mathbb{R}^n)$ with $\|b\|_{BMO(\mathbb{R}^n)} = 1$. Then, for each bounded function f with compact support and $\lambda > 0$,

$$
|x \in \mathbb{R}^n : M_{T_1, T_2}^* f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log \left(e + \frac{|f(x)|}{\lambda} \right) dx
$$

(2.14)

and

$$
|x \in \mathbb{R}^n : M_{T_1, T_2,b}^* f(x) > \lambda| \lesssim \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^2 \left(e + \frac{|f(x)|}{\lambda} \right) dx.
$$

(2.15)

Proof. We first prove the estimate (2.14). By Corollary 2.5 and estimate (1.10), it suffices to prove that

$$
M_{T_1, T_2}^* f(x) \lesssim M_{1/2}^* T_1^* T_2 f(x) + M_{L \log L} f(x) + MT_2 f(x).
$$

(2.16)

Let $x \in \mathbb{R}^n$ and Q be a cube containing x. A trivial computation involving inequality (2.1) leads to that for each $\xi \in Q$,

$$
|T_1(\chi_{\mathbb{R}^n \setminus 3Q} T_2(f\chi_{\mathbb{R}^n \setminus 9Q})(\xi))| \lesssim \inf_{z \in Q} M_{T_1}(T_2 f \chi_{\mathbb{R}^n \setminus 9Q})(z)
$$

$$
\lesssim \left(\frac{1}{|Q|} \int_{Q} (M_{T_1}(T_2(f\chi_{\mathbb{R}^n \setminus 9Q}))(z))^{1/2} dz \right)^2
$$

$$
\lesssim \left(\frac{1}{|Q|} \int_{Q} |T_1^* T_2 f(z)|^{1/2} dz \right)^2 + \left(\frac{1}{|Q|} \int_{Q} [MT_2 f(z)]^{1/2} dz \right)^2
$$

$$
+ \left(\frac{1}{|Q|} \int_{Q} [T_1^* T_2 (f\chi_{\mathbb{R}^n \setminus 9Q})(\xi)]^{1/2} d\xi \right)^2 + \left(\frac{1}{|Q|} \int_{Q} [MT_2 (f\chi_{\mathbb{R}^n \setminus 9Q})(\xi)]^{1/2} d\xi \right)^2.
$$
Recalling that $M_{1/2}Mh(x) \leq Mh(x)$, we know that
\[
\left(\frac{1}{|Q|} \int_Q [MT_2f(\xi)]^{1/2} \, d\xi \right)^2 \leq MT_2f(x).
\]
On the other hand, it follows from estimate (2.11) and Lemma 2.2 that
\[
\left(\frac{1}{|Q|} \int_Q [T_1^*T_2(f\chi_{[0,1]}Q)(\xi)]^{1/2} \, d\xi \right)^2 + \left(\frac{1}{|Q|} \int_Q [MT_2(f\chi_{[0,1]}Q)(\xi)]^{1/2} \, d\xi \right)^2
\]
\[
\leq \|f\|_{L\log L,9Q} \leq M_{L\log L}f(x).
\]
This establishes (2.16).

We turn our attention to the inequality (2.15). Again by Corollary 2.5 and estimate (1.10), it suffices to prove that
\[
M_{T_1^*T_2,b}f(x) \leq M_{T_1^*T_2,b}f(x) + MT_2,bf(x) + M_{L\log L}f(x). \tag{2.17}
\]
Let $x \in \mathbb{R}^n$ and Q be a cube containing x. As in the proof of (2.16), we have that for each $\xi \in Q$,
\[
|T_1(\chi_{[0,1]}Q T_2.b(f\chi_{[0,1]}Q))| \xi \rangle
\]
\[
\leq \left(\frac{1}{|Q|} \int_Q [MT_i(T_2,b(f\chi_{[0,1]}Q))(z)]^{1/2} \, dz \right)^2
\]
\[
\leq \left(\frac{1}{|Q|} \int_Q [T_1^*(T_2,b(f\chi_{[0,1]}Q))(z)]^{1/2} \, dz \right)^2
\]
\[
+ \left(\frac{1}{|Q|} \int_Q [M(T_2,b(f\chi_{[0,1]}Q))(z)]^{1/2} \, dz \right)^2 = I + II.
\]
A trivial computation involving estimate (2.13) and Lemma 2.2 shows that
\[
I \leq \left(\frac{1}{|Q|} \int_Q [T_1^*T_2,bf(z)]^{1/2} \, dz \right)^2 + \left(\frac{1}{|Q|} \int_Q [T_1^*T_2,bf(\chi_{[0,1]}Q)]^{1/2} \, dz \right)^2
\]
\[
\leq M_{1/2}T_1^*T_2,bf(x) + M_{L\log L}f(x).
\]
Similarly, we can obtain that
\[
II \leq MT_2,bf(x) + M_{L\log L}f(x).
\]
Combining the estimates above yields (2.17). \qed

3. Proof of Theorems 1.2 and 1.3

Recall that the standard dyadic grid in \mathbb{R}^n consists of all cubes of the form
\[
2^{-k}([0,1]^n + j), k \in \mathbb{Z}, j \in \mathbb{Z}^n.
\]
Denote the standard grid by D. For a fixed cube Q, denote by $D(Q)$ the set of dyadic cubes with respect to Q, that is, the cubes from $D(Q)$ are formed by repeating the subdivision of Q and each of its descendants into 2^n congruent subcubes.
As usual, by a general dyadic grid \(\mathcal{D} \) we mean a collection of cubes with the following properties: (i) for any cube \(Q \in \mathcal{D} \), its side length \(\ell(Q) \) is of the form \(2^k \) for some \(k \in \mathbb{Z} \); (ii) for any cubes \(Q_1, Q_2 \in \mathcal{D}, \) \(Q_1 \cap Q_2 \in \{Q_1, Q_2, \emptyset\} \); (iii) for each \(k \in \mathbb{Z} \), the cubes of side length \(2^k \) form a partition of \(\mathbb{R}^n \).

Let \(\eta \in (0, 1) \) and \(S = \{Q_j\} \) be a family of cubes. We say that \(S \) is \(\eta \)-sparse if, for each fixed \(Q \in S \), there exists a measurable subset \(E_Q \subset Q \) such that \(|E_Q| \geq \eta |Q| \) and the \(E_Q \) are pairwise disjoint. Associated with the sparse family \(S \) and \(\beta \in [0, \infty) \), define the sparse operator \(\mathcal{A}_{S, L(\log L)^\beta} \) by

\[
\mathcal{A}_{S, L(\log L)^\beta} f(x) = \sum_{Q \in S} |\langle f, \chi_Q \rangle|_{L(\log L)^\beta, Q}(x).
\]

For a sparse family \(S \) and constants \(\beta_1, \beta_2 \in [0, \infty) \), we define the bilinear sparse operator \(\mathcal{A}_{S, L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} \) by

\[
\mathcal{A}_{S, L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} (f, g) = \sum_{Q \in S} |\langle f, \chi_Q \rangle|_{L(\log L)^{\beta_1}, Q} |\langle g, \chi_Q \rangle|_{L(\log L)^{\beta_2}, Q}.
\]

We denote \(\mathcal{A}_{S, L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} \) by \(\mathcal{A}_{S, L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} \) for simplicity, and \(\mathcal{A}_{S, L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} \) by \(\mathcal{A}_{S; L(\log L)^{\beta_1}, L} \).

Lemma 3.1. Let \(\beta_1, \beta_2 \in \mathbb{N} \cup \{0\} \) and \(U \) be an operator. Suppose that for a bounded function \(f \) with compact support, there exists a sparse family of cubes \(S \) such that for any function \(g \in L^1(\mathbb{R}^n) \),

\[
\left| \int_{\mathbb{R}^n} U f(x) g(x) \, dx \right| \leq \mathcal{A}_{S; L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} (f, g) \tag{3.1}
\]

Then, for any \(\epsilon \in (0, 1) \) and weight \(u \),

\[
u\left(\left\{ x \in \mathbb{R}^n : |U f(x)| > \lambda \right\}\right) \leq \frac{1}{\epsilon^{1+\beta_1}} \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log^{\beta_1} \left(1 + \frac{|f(x)|}{\lambda} \right) M_{L(\log L)^{\beta_2}, u}(x) \, dx.
\]

Proof. Let \(f \) be a bounded function with compact support and \(S \) be the sparse family such that (3.1) holds true. By the one-third trick (see [14, Lemma 2.5] or [22, Theorem 3.1]), there exist dyadic grids \(\mathcal{D}_1, \ldots, \mathcal{D}_{3^n} \) and sparse families \(S_1, \ldots, S_{3^n} \) such that for \(j = 1, \ldots, 3^n \), \(S_j \subset \mathcal{D}_j \), and

\[
\mathcal{A}_{S; L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} (f, g) \leq \sum_{j=1}^{3^n} \mathcal{A}_{S_j; L(\log L)^{\beta_1}, L(\log L)^{\beta_2}} (f, g).
\]

It was proved in [16, pages 618–619] that

\[
\|Mg\|_{L^{p}(\mathbb{R}^n, (M_{L(\log L)^{\beta_1}, u})^{-1/p})} \leq p^2 \left(\frac{1}{\epsilon} \right)^{1/p'} \|g\|_{L^{p}(\mathbb{R}^n, u^{-1/p'})}.
\]
Repeating the argument in the proof of Theorem 1.8 in [25], we know that if $p \in (1, \infty)$ and $\|h\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} = 1$, then

$$
\mathcal{A}_{S_j; L\log L}^0, L\log L \|f\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \leq p^{1+\beta_1} \|M_{L\log L}^2 g\|_{L^p} \|f\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \leq p^{1+\beta_1} \left[p^2 \left(\frac{1}{\varepsilon}\right)^{1/p'}\right]^{\beta_2+1} \|g\|_{L^p} \|f\|_{L^p(\mathbb{R}^n, e^{L^p} u^1)},
$$

since $M_{L\log L}^2 g(x) \approx M_{L\log L}^{2+1} g(x)$; see [3]. This, via homogeneity, yields that

$$
\mathcal{A}_{S_j; L\log L}^0, L\log L \|f\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \leq p^{1+\beta_1} \left[p^2 \left(\frac{1}{\varepsilon}\right)^{1/p'}\right]^{\beta_2+1} \|h\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \|f\|_{L^p(\mathbb{R}^n, e^{L^p} u^1)}.
$$

(3.2)

Now let $M_{\mathcal{D}_j, L\log L}^{\beta_1}$ be the maximal operator defined by

$$
M_{\mathcal{D}_j, L\log L}^{\beta_1} f(x) = \sup_{Qx \in \mathcal{D}_j} \|f\|_{L^p(\mathbb{R}^n, Qx)}.
$$

For each fixed $j = 1, \ldots, 3^n$, we decompose the set \{ $x \in \mathbb{R}^n : M_{\mathcal{D}_j, L\log L}^{\beta_1} f(x) > 1$ \} as

\{ $x \in \mathbb{R}^n : M_{\mathcal{D}_j, L\log L}^{\beta_1} f(x) > 1$ \} $= \bigcup_k Q_{j,k}$,

with $Q_{j,k}$ the maximal cubes in \mathcal{D}_j such that $\|f\|_{L^p(\mathbb{R}^n, Q_{j,k})} > 1$. We have that

$$
1 < \|f\|_{L^p(\mathbb{R}^n, Q_{j,k})} \leq 2^n.
$$

Let

$$
\begin{align*}
f_1^j(y) &= f(y) \chi_{\mathbb{R}^n \setminus \bigcup_k Q_{j,k}}(y), \quad f_2^j(y) = \sum_k f(y) \chi_{Q_{j,k}}(y) \\
f_3^j(y) &= \sum_k \|f\|_{L^p(\mathbb{R}^n, Q_{j,k})} \chi_{Q_{j,k}}(y).
\end{align*}
$$

It is obvious that $\|f_1^j\|_{L^{\infty}(\mathbb{R}^n)} \leq 1$ and $\|f_3^j\|_{L^{\infty}(\mathbb{R}^n)} \leq 1$. Take $p_1 = 1 + \varepsilon/(2\beta_2 + 1)$. It then follows from the inequality (3.2) that

$$
\mathcal{A}_{S_j; L\log L}^{\beta_1} \|f_1^j\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \leq p_1^{1+\beta_1} \left[p_1^2 \left(\frac{1}{\varepsilon}\right)^{1/p_1'}\right]^{\beta_2+1} \|f_1^j\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \leq \frac{1}{\varepsilon^{1+\beta_1}} \|f_1^j\|_{L^p(\mathbb{R}^n, M_{L\log L}^{2(1+\eta)p-1+\eta})} \|f_1^j\|_{L^p(\mathbb{R}^n, e^{L^p} u^1)}.
$$

(3.3)

Let $E = \bigcup_j \bigcup_k 4n Q_{j,k}$ and $\bar{u}(y) = u(y) \chi_{\mathbb{R}^n \setminus E}(y)$. It is obvious that

$$
\begin{align*}
u(E) &\leq \sum_{j=1}^{3^n} \sum_k \inf_{z \in Q_{j,k}} \|Mz\|_{Q_{j,k}} \\
&\leq \int_{\mathbb{R}^n} |f(y)| \log^h (e + |f(y)|) M u(y) dy.
\end{align*}
$$

(3.4)
Moreover, by the fact that
\[
\inf_{y \in Q_{jk}} M_{L(\log L)^p} \overline{u}(y) \approx \sup_{z \in Q_{jk}} M_{L(\log L)^p} \overline{u}(z),
\]
we obtain that for \(\gamma \in [0, \infty) \),
\[
\| f_j^2 \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})} \leq \sum_{k} \inf_{y \in Q_{jk}} M_{L(\log L)^p} \overline{u}(z) \| f_j^2 \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})}
\leq \int_{\mathbb{R}^n} |f(y)| \log^{\beta_1}(e + |f(y)|) M_{L(\log L)^p} u(y) \, dy. \tag{3.5}
\]
Let
\[
S_j^* = \{ I \in S_j : I \cap (\mathbb{R}^n \setminus E) \neq \emptyset \}.
\]
Note that if \(\text{supp } g \subset \mathbb{R}^n \setminus E \), then
\[
\mathcal{A}_{S_j^*, L(\log L)^p_1, L(\log L)^p_2} (f_j^1, g) = \mathcal{A}_{S_j^*, L(\log L)^p_1, L(\log L)^p_2} (f_j^1, g).
\]
As in the argument in [8, pages 160–161], we can verify that for each fixed \(I \in S_j^* \),
\[
\| f_j^2 \|_{L^1(\mathbb{R}^n, \tilde{u}^\gamma)} \leq \| f_j^2 \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})}.
\]
Therefore, for \(g \in L^1(\mathbb{R}^n) \) with \(\text{supp } g \subset \mathbb{R}^n \setminus E \),
\[
\mathcal{A}_{S_j, L(\log L)^p_1, L(\log L)^p_2} (f_j^1, g) \leq \mathcal{A}_{S_j, L(\log L)^p_1, L(\log L)^p_2} (f_j^1, g)
\leq \frac{1}{\epsilon^{1 + \beta_1}} \| f_j^1 \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})} \| g \|_{L^2(\mathbb{R}^n, \tilde{u}^1-\gamma)} \tag{3.6}
\]
Inequalities (3.3), (3.5) and (3.6) tell us that for a function \(g \in L^p(\mathbb{R}^n \setminus E, \tilde{u}^{1-p'}) \) with
\[
\| g \|_{L^p(\mathbb{R}^n \setminus E)} \leq 1,
\]
\[
\left| \int_{\mathbb{R}^n} U f(x) g(x) \, dx \right| \leq \sum_{j=1}^{3^n} \mathcal{A}_{S_j, L(\log L)^p_1, L(\log L)^p_2} (f_j^1, g)
+ \sum_{j=1}^{3^n} \mathcal{A}_{S_j, L(\log L)^p_1, L(\log L)^p_2} (f_j^2, g)
\leq \frac{1}{\epsilon^{1 + \beta_1}} \| f \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})}
+ \frac{1}{\epsilon^{1 + \beta_1}} \| f \|_{L^1(\mathbb{R}^n, M_{L(\log L)^p} \overline{u})}.
\]
Thus, by a duality argument and (3.4),
\[
\frac{1}{\epsilon^{1 + \beta_1}} \int_{\mathbb{R}^n} |f(y)| \log^{\beta_1}(e + |f(y)|) M_{L(\log L)^p} u(y) \, dy.
\]
This, via homogeneity, leads to our desired conclusion. \(\square \)
Theorem 3.2. Let T_1 and T_2 be two Calderón–Zygmund operators and $b \in \text{BMO}(\mathbb{R}^n)$ with $\|b\|_{\text{BMO}(\mathbb{R}^n)} = 1$.

(i) For a bounded function f with compact support, there exist a $\frac{1}{2}(1/9^n)$-sparse family of cubes $S = \{Q\}$ and functions J_0, J_1 such that for each $j = 0, 1$ and function g,

$$\left| \int_{\mathbb{R}^n} J_j(x)g(x) \, dx \right| \leq \mathcal{A}_{S; L(\log L)^{1/2}, L(\log L)^{1/2}}(f, g);$$

and, for almost every $x \in \mathbb{R}^n$,

$$T_1 T_2 f(x) = J_0(x) + J_1(x).$$

(ii) For a bounded function f with compact support, there exist a $\frac{1}{2}(1/9^n)$-sparse family of cubes $S = \{Q\}$ and functions H_0, H_1 and H_2 such that for each $j = 0, 1, 2$ and function g,

$$\left| \int_{\mathbb{R}^n} H_j(x)g(x) \, dx \right| \leq \mathcal{A}_{S; L(\log L)^{3/2}, L(\log L)^{3/2}}(f, g);$$

and, for almost every $x \in \mathbb{R}^n$,

$$T_{1,b} T_2 f(x) = H_0(x) + H_1(x) + H_2(x).$$

Proof. We only prove the conclusion (ii). The proof of the conclusion (i) is similar and will be omitted. We will employ the argument in [20]. For a fixed cube Q_0, define the local analogy of $\mathcal{M}_{2}, \mathcal{M}^*_{2,T_2}$ and $\mathcal{M}^*_{T_1 T_2,b}$ by

$$\mathcal{M}_{T_2,Q_0} f(x) = \sup_{Q \ni x, Q \subset Q_0} \text{ess sup}_{\xi \in Q} |T_2(f(x)\chi_{3Q}(\xi))|,$$

$$\mathcal{M}^*_{T_1 T_2; Q_0} f(x) = \sup_{Q \ni x, Q \subset Q_0} \text{ess sup}_{\xi \in Q} |T_1(\chi_{3Q} T_2(f(x)\chi_{2Q}(\xi)))|,$$

and

$$\mathcal{M}^*_{T_1 T_2,b; Q_0} f(x) = \sup_{Q \ni x, Q \subset Q_0} \text{ess sup}_{\xi \in Q} |T_1(\chi_{3Q} T_2,b(f(x)\chi_{2Q}(\xi)))|,$$

respectively. Let $E = \bigcup_{j=1}^{5} E_j$ with

$$E_1 = \{x \in Q_0 : |T_{1,b} T_2(f(x)\chi_{Q_0}(\xi))| > D\|f\|_{L(\log L)^{1/2}, 9Q_0}\},$$

$$E_2 = \{x \in Q_0 : \mathcal{M}_{T_2,Q_0} f(x) > D\|f\|_{9Q_0}\},$$

$$E_3 = \{x \in Q_0 : \mathcal{M}^*_{T_1 T_2; Q_0} f(x) > D\|f\|_{L(\log L)^{1/2}, 9Q_0}\}$$

and

$$E_4 = \{x \in Q_0 : \mathcal{M}^*_{T_1 T_2,b; Q_0} f(x) > D\|f\|_{L(\log L)^{3/2}, 9Q_0}\},$$

$$E_5 = \{x \in Q_0 : \mathcal{M}^*_{T_1 T_2; Q_0} ((b - (b)_{Q_0}) f(x) > D\|f\|_{L(\log L)^{1/2}, 9Q_0}\},$$

with D a positive constant. It then follows from Theorem 2.6 and Corollary 2.5 that

$$|E| \leq \frac{1}{2^{n+2}} |Q_0|,$$
if we choose D large enough. Now, on the cube Q_0, we apply the Calderón–Zygmund decomposition to χ_E at level $1/2^{n+1}$ and obtain pairwise disjoint cubes $\{P_j\} \subset D(Q_0)$ such that

$$\frac{1}{2^{n+1}}|P_j| \leq |P_j \cap E| \leq \frac{1}{2}|P_j|$$

and $|E \setminus \cup_j P_j| = 0$. Observe that $\sum_j |P_j| \leq \frac{1}{2}|Q_0|$. Let

$$G_0(x) = T_{1,b}T_2(f\chi_{Q_0})(x)\chi_{Q_0 \setminus \cup P_j}(x) - \sum_{l} T_1(\chi_{\mathbb{R}^n \setminus 3P_j}T_{2,b}(f\chi_{Q_0 \setminus 9P_j}))(x)\chi_{P_l}(x)$$

and

$$G_0(x) = T_{1,b}T_2((b - \langle b \rangle_{Q_0})f\chi_{Q_0 \setminus 9P_j}))(x)\chi_{P_l}(x).$$

The facts that $P_j \cap E^c \neq \emptyset$ and $|E \setminus \cup_j P_j| = 0$ imply that

$$|G_0(x)| \leq |T_{1,b}T_2(f\chi_{Q_0})(x)|_{\mathcal{Q}_0 \setminus \cup P_j} + \sum_{l} \inf_{\xi \in P_j} M^*_{T_{1,b}T_2}f(\xi)\chi_{P_l}(x)$$

$$\leq \|f\|_{L(\log L)^{2}, Q_0}.$$ (3.7)

Also, we define functions G_1 and G_2 by

$$G_1(x) = (b(x) - \langle b \rangle_{Q_0}) \sum_{l} T_1(\chi_{\mathbb{R}^n \setminus 3P_j}T_{2}(f\chi_{Q_0 \setminus 9P_j}))(x)\chi_{P_l}(x)$$

and

$$G_2(x) = \sum_{l} T_{1,b}T_2(f\chi_{Q_0 \setminus 9P_j}))(x)\chi_{P_l}(x).$$

Then

$$|G_1(x)| \leq |b(x) - \langle b \rangle_{Q_0}| \sum_{l} \inf_{\xi \in P_j} M^*_{T_{1,b}T_2}f(\xi)\chi_{P_l}(x)$$

$$\leq |b(x) - \langle b \rangle_{Q_0}|\|f\|_{L(\log L)^{2}, Q_0}(x).$$ (3.8)

Let \overline{T}_{1} be the adjoint operator of T_1 and $\overline{T}_{1,b}$ the commutator of \overline{T}_{1}. For each function g, we have by estimate (2.3) in Lemma 2.1 that

$$\left| \int_{\mathbb{R}^n} G_2(x)g(x) \, dx \right| \leq \sum_{l} \int_{3P_j} |T_2(f\chi_{Q_0 \setminus 9P_j}))(x)| \overline{T}_{1,b}(g\chi_{P_l})(x) \, dx$$

$$\leq \sum_{l} \inf_{\xi \in P_j} M_{T_{2,Q_0}}(\xi) \int_{3P_j} |\overline{T}_{1,b}(g\chi_{P_l})(x)| \, dx$$

$$\leq \|f\|_{9Q_0} \|g\|_{L(\log L)^{2}, Q_0} |Q_0|.$$ (3.9)

Moreover,

$$T_{1,b}T_2(f\chi_{Q_0})(x)\chi_{Q_0}(x) = G_0(x) + G_1(x) + G_2(x) + \sum_{l} T_{1,b}T_2(f\chi_{P_l})(x)\chi_{P_l}(x).$$
We now repeat the argument above with \(T_{1,b} T_2(f \chi_{Q_0})(x) x_{Q_0} \) replaced by each
\(T_{1,b} T_2(f \chi_{Q_j})(x) x_{Q_j} \) and so on. Let \(Q_{0,j}^0 = P_j \) and, for fixed \(j_1, \ldots, j_{m-1}, \{ Q_{0,j_1,\ldots,j_{m-1}} \}_{j_m} \) be the cubes obtained at the \(m \)th stage of the decomposition process to the cube
\(Q_{0,j_1,\ldots,j_{m-1}} \). For each fixed \(j_1, \ldots, j_m \), define the functions \(H_{Q_0,1}^{j_1,\ldots,j_m} \) and \(H_{Q_0,2}^{j_1,\ldots,j_m} \) by

\[
H_{Q_0,1}^{j_1,\ldots,j_m} f(x) = T_1(x \chi_{Q_0^{j_1,\ldots,j_m}}) x_{Q_0^{j_1,\ldots,j_m}}(x)
\]

and

\[
H_{Q_0,2}^{j_1,\ldots,j_m} f(x) = T_1(x \chi_{Q_0^{j_1,\ldots,j_m}}) x_{Q_0^{j_1,\ldots,j_m}}(x),
\]

respectively. Set \(\mathcal{F} = \{ Q_0 \} \cup \bigcup_{m=1}^{\infty} \bigcup_{j_1,\ldots,j_m} \{ Q_{0,j_1,\ldots,j_m} \} \). Then \(\mathcal{F} \subset D(Q_0) \) is a \(\frac{1}{2} \)-sparse family. Let

\[
H_{0,Q_0}(x) = T_{1,b} T_2(f \chi_{Q_0})(x) x_{Q_0^{j_1,\ldots,j_m}}(x)
\]

Also, we define the functions \(H_{1,Q_0} \) and \(H_{2,Q_0} \) by

\[
H_{1,Q_0}(x) = \sum_{m=1}^{\infty} \sum_{j_1,\ldots,j_m} H_{Q_0,1}^{j_1,\ldots,j_m} f(x) \chi_{Q_0^{j_1,\ldots,j_m}}(x)
\]

and

\[
H_{2,Q_0}(x) = \sum_{m=1}^{\infty} \sum_{j_1,\ldots,j_m} H_{Q_0,2}^{j_1,\ldots,j_m} f(x) \chi_{Q_0^{j_1,\ldots,j_m}}(x).
\]

Then, for almost every \(x \in Q_0 \),

\[
T_{1,b} T_2(f \chi_{Q_0})(x) = H_{0,Q_0}(x) + H_{1,Q_0}(x) + H_{2,Q_0}(x).
\]

Moreover, as in inequalities (3.7)–(3.9), the process of producing \(\{ Q_{0,j_1,\ldots,j_{m-1}} \} \) leads to

\[
|H_{0,Q_0}(x) \chi_{Q_0}| \leq \sum_{Q \in \mathcal{F}} \|f\|_{L^1} \|\log L\|^2 \|g\|_{L^1} \chi_{Q}(x).
\]

For any function \(g \), we can verify that

\[
\left| \int_{Q_0} g(x) H_{1,Q_0}(x) \, dx \right| \leq \sum_{Q \in \mathcal{F}} |Q| \|f\|_{L^1} \|\log L\|^2 \|g\|_{L^1} \chi_{Q}(x).
\]
and
\[\left| \int_{Q_l} g(x)H_{2,Q_l}(x) \, dx \right| \lesssim \sum_{Q \in F} |Q| \|f\|_g \|g\|_{L(\log L)^{\frac{1}{2}}},Q. \]

We can now conclude the proof of Theorem 3.2. In fact, as in [20], we decompose \(\mathbb{R}^n \) by cubes \(\{R_l\} \) such that \(\text{supp} f \subset 3R_l \) for each \(l \) and the \(R_l \) have disjoint interiors. Then, for almost every \(x \in \mathbb{R}^n \),

\[T_{1,b} T_2 f(x) = \sum_l H_{0,R_l} f(x) + \sum_l H_{1,R_l} f(x) + \sum_l H_{2,R_l} f(x) \]

:= \(H_0 f(x) + H_1 f(x) + H_2 f(x) \).

Obviously, for \(j = 0, 1, 2 \) and any function \(g \),

\[\left| \int_{\mathbb{R}^n} H_j(x)g(x) \, dx \right| \lesssim A_{S,L(\log L)^{\frac{3}{2}}},L(\log L)^j \langle f, g \rangle. \]

Our desired conclusion then follows directly. \(\square \)

Proof of Theorem 1.2. By Theorem 3.2 and Lemma 3.1, we know that for each \(\epsilon \in (0, 1) \), weight \(u \) and \(\lambda > 0 \),

\[u(\{x \in \mathbb{R}^n : |T_1 T_2 f(x)| > \lambda \}) \]

\[\leq \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log \left(e + \frac{|f(x)|}{\lambda} \right) M_{L(\log L)^j} u(x) \, dx \]

\[+ \frac{1}{\lambda \epsilon} \int_{\mathbb{R}^n} |f(x)| M_{L(\log L)^{j+1}} u(x) \, dx \]

\[\leq \frac{1}{\epsilon} \int_{\mathbb{R}^n} \frac{|f(x)|}{\lambda} \log \left(e + \frac{|f(x)|}{\lambda} \right) M_{L(\log L)^{j+1}} u(x) \, dx. \]

Applying the ideas used in [16, page 608] (see also the proof of Corollary 1.3 in [21]), we know that the last inequality implies (1.6).

The inequality (1.7) is essentially an application of [1, Proposition 9] and Lemma 3.1. Recall that \(T_1(1) = 0 \). It then follows from [1, Proposition 9] that for \(f \in L^2(\mathbb{R}^n) \), there exists a sparse family of cubes \(S \) such that

\[|T_1 T_2 f(x)| \lesssim \sum_{Q \in S} \text{osc}_Q(T_2 f) \chi_Q(x); \]

here \(\text{osc}_Q(T_2 f) \) is defined by

\[\text{osc}_Q(T_2 f) = \frac{1}{|Q|} \int_Q |T_2 f(x) - \langle T_2 f \rangle_Q| \, dx. \]

A trivial computation leads to

\[\text{osc}_Q(T_2 f) \lesssim \|f\|_{L,8n} + \sum_{k=1}^{\infty} 2^{-k\epsilon} \|f\|_{2^k},Q. \]
with ε the constant in (1.2). Let G be the operator defined by

$$
G f(x) = \sum_{k=1}^{\infty} 2^{-ke} \sum_{Q \in S} \langle f \rangle_{2^k Q} \chi_Q(x).
$$

We then have that

$$
|T_1 T_2 f(x)| \leq \mathcal{A}_{S, L \log L} f(x) + G f(x). \tag{3.10}
$$

On the other hand, it was proved in [19] that there exist sparse families of cubes S_1, \ldots, S_{2^n+1} such that for any function g,

$$
\int_{\mathbb{R}^n} |G f(x)g(x)| \, dx \leq \sum_{j=1}^{2^n+1} \mathcal{A}_{S_j, \log L} (f, g). \tag{3.11}
$$

Thus, by inequalities (3.10), (3.11) and Lemma 3.1, we know that for each fixed $\lambda > 0$, $\varepsilon \in (0, 1)$ and weight u,

$$
u(x \in \mathbb{R}^n : |T_1 T_2 f(x)| > \lambda) \leq \frac{1}{\varepsilon^2} \int_{\mathbb{R}^n} \left| f(x) \right| \frac{\log \left(1 + \frac{|f(x)|}{\lambda} \right)}{\lambda} M_{L(\log L)^2} u(x) \, dx.
$$

This implies (1.7).

\[\square\]

Remark 3.3. By the estimate of the bilinear sparse operator (see [24] or [7]), we proved in [9] that for $b_1, b_2 \in [0, \infty)$, $p \in (1, \infty)$ and $w \in A_p(\mathbb{R}^n)$,

$$
\mathcal{A}_{S, L \log L} f, L \log L \mathcal{A}_2 (f, g) \leq |\sigma|_{A_p}^{b_1} [w]_{A_p}^{b_2} [w]^{1/p} [w]^{1/p'} + |\sigma|_{A_p} [f]_{L^p(\mathbb{R}^n)} [g]_{L^{p'}(\mathbb{R}^n, \sigma)}. \tag{3.12}
$$

The conclusions in Theorem 1.1 now follow from inequalities (3.10)–(3.12).

Proof of Theorem 1.3. As was shown in the proof of Theorem 1.2, by Theorem 3.2 and Lemma 3.1, we know that for each $\varepsilon \in (0, 1)$, weight u and $\lambda > 0$,

$$
u(x \in \mathbb{R}^n : |T_1 b T_2 f(x)| > \lambda) \leq \frac{1}{\varepsilon} \int_{\mathbb{R}^n} \left| f(x) \right| \frac{\log \left(1 + \frac{|f(x)|}{\lambda} \right)}{\lambda} M_{L(\log L)^{2+u}} u(x) \, dx.
$$

The inequality (1.8) then follows immediately. \[\square\]

Remark 3.4. Let $m \in \mathbb{N}$ and $0 \leq k \leq m$, T_1, \ldots, T_m be Calderón–Zygmund operators, $b_1, \ldots, b_m \in \text{BMO}(\mathbb{R}^n)$ and T_{j,b_j} ($j = 1, \ldots, m$) be the commutator of T_j. Repeating the proofs of Theorem 3.2, we can verify that for each bounded function f, there exist a $\frac{1}{2}(1/3^n)$-sparse family of cubes S and functions J_0, \ldots, J_{m+k-1} such that for each $j = 0, \ldots, m + k - 1$ and function $g \in L^1(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} J_j(x) g(x) \, dx \leq \mathcal{A}_{S, \text{BMO}(L^{2+1})} (f, g).
$$
and, for almost every \(x \in \mathbb{R}^n \),

\[
T_{1,b_1} \ldots T_{k,b_k} T_{k+1} \ldots T_m f(x) = \sum_{j=0}^{m+k-1} J_j(x).
\]

This, via Lemma 3.1 and estimate (3.12), shows that:

(i) for \(p \in (1, \infty) \) and \(w \in A_p(\mathbb{R}^n) \),

\[
\|T_{1,b} \ldots T_{k,b_k} T_{k+1} \ldots T_m f\|_{L^p(\mathbb{R}^n, w)} \leq [w]_{A_p}^{1/p} ([w]_{A_\infty}^{1/p'} + [\sigma]_{A_\infty}^{1/p}) ([w]_{A_\infty} + [\sigma]_{A_\infty})^{m+k-1} \|f\|_{L^p(\mathbb{R}^n, w)};
\]

(ii) for each \(\epsilon \in (0, 1) \), weight \(u \) and \(\lambda > 0 \),

\[
u(\{x \in \mathbb{R}^n : |T_{1,b_1} \ldots T_{k,b_k} T_{k+1} \ldots T_m f(x)| > \lambda\}) \leq \frac{1}{\epsilon} \int_{\mathbb{R}^n} \frac{|f(x)| \log^{m+k-1} (e + |f(x)|)}{\lambda} M_L(\log L)^{m+k-1} u(x) \, dx.
\]

References

[1] C. Benea and F. Bernicot, ‘Conservation de certaines propriétés à travers un contrôle épars d’un opérateur et applications au projecteur de Leray–Hopf’, Preprint, 2017, arXiv:1703:00228.

[2] S. M. Buckley, ‘Estimates for operator norms on weighted spaces and reverse Jensen inequalities’, Trans. Amer. Math. Soc. 340 (1993), 253–272.

[3] N. Carozza and A. Passarelli di Napoli, ‘Composition of maximal operators’, Publ. Mat. 40 (1996), 397–409.

[4] D. Chung, M. C. Pereyra and C. Pérez, ‘Sharp bounds for general commutators on weighted Lebesgue spaces’, Trans. Amer. Math. Soc. 364 (2012), 1163–1177.

[5] R. R. Coifman and Y. Meyer, Wavelets: Calderón–Zygmund Operators and Multilinear Operators (Cambridge University Press, Cambridge, 1997).

[6] L. Grafakos, Modern Fourier Analysis, 2nd edn, Graduate Texts in Mathematics, 250 (Springer, New York, 2008).

[7] T. Hänninen, T. Hytönen and K. Li, ‘Two-weight \(L^p - L^q \) bounds for positive dyadic operators: unified approach to \(p \leq q \) and \(p > q \)’, Potential Anal. 45 (2016), 579–608.

[8] G. Hu, ‘Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator’, Nonlinear Anal. 165 (2017), 143–162.

[9] G. Hu, ‘Quantitative weighted bounds for the composition of Calderón–Zygmund operators’, Banach J. Math. Anal. 13 (2019), 133–150.

[10] G. Hu and D. Li, ‘A Cotlar type inequality for the multilinear singular integral operators and its applications’, J. Math. Anal. Appl. 290 (2004), 639–653.

[11] G. Hu and D. Yang, ‘Weighted estimates for singular integral operators with nonsmooth kernels’, J. Aust. Math. Soc. 85 (2008), 377–417.

[12] T. Hytönen, ‘The sharp weighted bound for general Calderón–Zygmund operators’, Ann. of Math. (2) 175 (2012), 1473–1506.

[13] T. Hytönen and M. T. Lacey, ‘The \(A_p - A_\infty \) inequality for general Calderón–Zygmund operators’, Indiana Univ. Math. J. 61 (2012), 2041–2052.

[14] T. Hytönen, M. T. Lacey and C. Pérez, ‘Sharp weighted bounds for the \(q \)-variation of singular integrals’, Bull. Lond. Math. Soc. 45 (2013), 529–540.

[15] T. Hytönen and C. Pérez, ‘Sharp weighted bounds involving \(A_\infty \)’, Anal. PDE 6 (2013), 777–818.

[16] T. Hytönen and C. Pérez, ‘The \(L(\log L)^p \) endpoint estimate for maximal singular integral operators’, J. Math. Anal. Appl. 428 (2015), 605–626.
[17] T. Hytönen, C. Pérez and E. Rela, ‘Sharp reverse Hölder property for A_1 weights on spaces of homogeneous type’, *J. Funct. Anal.* **263** (2012), 3883–3899.

[18] S. G. Krantz and S. Li, ‘Boundedness and compactness of integral operators on spaces of homogeneous type and applications’, *J. Math. Anal. Appl.* **258** (2001), 629–641.

[19] A. K. Lerner, ‘A simple proof of the A_2 conjecture’, *Int. Math. Res. Not.* **14** (2013), 3159–3170.

[20] A. K. Lerner, ‘On pointwise estimate involving sparse operator’, *New York J. Math.* **22** (2016), 341–349.

[21] A. K. Lerner, ‘A weak type estimate for rough singular integrals’, Preprint, 2017, arXiv:1705.07397.

[22] A. K. Lerner and F. Nazarov, ‘Intuitive dyadic calculus: the basics’, *Expo. Math.* doi:10.1016/j.exmath.2018.01.001.

[23] A. K. Lerner, S. Ombrosi and I. Rivera-Rios, ‘On pointwise and weighted estimates for commutators of Calderón–Zygmund operators’, *Adv. Math.* **319** (2017), 153–181.

[24] K. Li, ‘Two weight inequalities for bilinear forms’, *Collect. Math.* **68** (2017), 129–144.

[25] K. Li, C. Pérez, I. P. Rivera-Rios and L. Roncal, ‘Weighted norm inequalities for rough singular integral operators’, *J. Geom. Anal.* doi:10.1007/s12220-018-0085-4.

[26] M. Rao and Z. Ren, *Theory of Orlicz Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, 146 (Marcel Dekker, New York, 1991).

[27] E. Sawyer, ‘Norm inequalities relating singular integrals and the maximal function’, *Studia Math.* **75** (1983), 253–263.

[28] M. J. Wilson, ‘Weighted inequalities for the dyadic square function without dyadic A_∞’, *Duke Math. J.* **55** (1987), 19–50.

GUOEN HU, School of Applied Mathematics, Beijing Normal University, Zhuhai 519087, PR China
e-mail: guoenxx@163.com