Long-term (6 and 12 months) follow-up of two prospective, randomized, controlled phase III trials of photodynamic therapy with BF-200 ALA and methyl aminolaevulinate for the treatment of actinic keratosis

T. Dirschka,1,2 P. Radny,3 R. Dominicus,4 H. Mensing,5 H. Brüning,6 L. Jenne,7 L. Karl,8 M. Sebastian,9 C. Oster-Schmidt,10 W. Klövekorn,11 U. Reinhold,12 M. Tanner,13 D. Gröne,14 M. Deichmann,15 M. Simon,16 F. Hübing,17 G. Hofbauer,18 G. Krähn-Senttleben,19 F. Borrosch,20 K. Reich,21 C. Berking,22 P. Wolf,23 P. Lehmann,24 M. Moers-Carpi,25 H. Höningmann,26 K. Wernicke-Panten,27 S. Hahn,27 G. Pabst,28 D. Voss,28 M. Fuguet,29 B. Schmitz,29 H. Lübbert29 and R.-M. Szeimies30; AK-CT002 and AK-CT003 Study Groups

1Private Dermatological Practice Centre, Wuppertal, Germany
2Faculty of Health, University Witten-Herdecke, Witten, Germany
3Private Dermatological Practice, Friedrichshafen, Germany
4Private Practice, Düren, Germany
5Dermatological Ambulatory, Hamburg, Germany
6Day Hospital for Allergy and Skin Diseases, Kiel, Germany
7Private Practice, Selsrperch, Kiel, Germany
8Dermatological Practice, Soest, Germany
9Private Practice, Mehl, Germany
10Private Practice for Skin and Genital Diseases Altenkirchen, Altenkirchen, Germany
11Private Dermatological Practice, Giesing, Germany
12Medical Centre Bonn, Bonn, Germany
13Dermatosisurgery Center Nördlingen, Nördlingen, Germany
14Dermatological Practice, Berlin, Germany
15Dermatological Practice, Gelnhausen, Germany
16Dermatological Practice, Clinical Study Centre, Berlin, Germany
17Private Practice, Wuppertal, Germany
18University Hospital Zurich, Clinic of Dermatology, Zurich, Switzerland
19Cutis Sana Dermatologists, Blaubeuren, Germany
20Centre for Dermatology Vechta, Vechta, Germany
21SClaim GmbH, Hamburg, Germany
22Clinic for Dermatology and Allergology, Ludwig-Maximilian-University Munich, Munich, Germany
23Department of Dermatology and Venerology, Research Unit for Photodermatology, Medical University of Graz, Graz, Austria
24HELIOS Hospital Wuppertal, Wuppertal, Germany
25Private Practice for Skin Diseases, Operative and Aesthetic Dermatology, Munich, Germany
26University Hospital for Dermatology, Vienna, Austria
27Accovion GmbH, Eschborn, Germany
28Focus Clinical Drug Development GmbH, Neuss, Germany
29Biofrontera Bioscience GmbH, Leverkusen, Germany
30Klinikum Vest, Department of Dermatology and Allergology, Recklinghausen, Germany

Summary

Background Two phase III trials of photodynamic therapy (PDT) with BF-200 ALA, a recently approved nanoemulsion formulation of 5-aminolaevulinic acid (ALA) demonstrated high clearance rates in mild-to-moderate actinic keratosis (AK). The comparison to a registered methyl aminolaevulinate (MAL) cream demonstrated significantly superior total patient clearance rates.

Objectives To evaluate long-term efficacy and safety of PDT for AK 6 and 12 months after the last PDT with BF-200 ALA, MAL or placebo.
Actinic keratosis (AK) is defined as squamous cell carcinoma (SCC) in situ. It represents the most common neoplasia affecting fair-skinned subjects in sun-exposed body areas such as the face and scalp. AKs may progress to SCC, therefore necessitating treatment. As photodynamic therapy (PDT) with 5-aminolaevulenic acid (ALA), or its derivative methyl aminolaevulinate (MAL), combines high efficacy with an excellent cosmetic outcome, it is recommended as one of the first-line treatments in this indication.

Formulations containing ALA have frequently been used clinically, but are often restrained by their short-term stability and poor skin penetration. BF-200 ALA is a new nanoemulsion-based gel formulation containing 7% ALA (10% ALA hydrochloride), which overcomes these drawbacks, displaying an improved stability of ALA in the aqueous formulation and an enhanced penetration into the epidermis. Based on these advantages, lower ALA concentrations are sufficient for an excellent therapeutic outcome, which was recently demonstrated in two phase III studies of the treatment of AK, one of them in comparison to a registered MAL formulation.

Here we present the recurrence rates of subjects treated with BF-200 ALA or MAL PDT in two phase III trials and the percentage of patients who were totally cleared of AK 12 months after PDT. Safety issues such as new lesions and skin cancer in the treatment area are also reported.

Material and methods

Data were collected during the follow-up period (FUP) of two randomized, placebo-controlled, multicentre phase III clinical studies. All subjects in both studies entered the FUP 3 months after the last treatment and were invited to two FUP visits, the first at 6 months and the second at 12 months after the last PDT. Patient assessments at the FUP visits were analysed distinct from the study and summarized in a separate report. The studies were approved by the responsible ethics committees and the competent authorities (BfArM, Germany; Swissmedic, Switzerland; BASG, Austria) and performed according to the national drug laws, the guidelines of Good Clinical Practice and the Declaration of Helsinki.

During the clinical parts of the studies, eligible subjects with four to eight mild-to-moderate AK lesions (Olsen grade I or II) on the face or scalp were treated with BF-200 ALA containing ALA 78 mg g⁻¹ (now registered as Ameluz; Biofrontera, Leverkusen, Germany), or a registered MAL cream (Metvix; Galdema, Düsseldorf, Germany) containing 160 mg g⁻¹ of MAL, or placebo matching the BF-200 ALA formulation. After roughening of lesion surfaces and cleaning the skin with alcohol, medications were applied for 3 h. Then, remnant gel or cream was carefully wiped off and lesions were illuminated with red light either with narrow-spectrum lamps (LED lamps: Aklitise CL 128, Photocure, Oslo, Norway; Omniliux PDT, Photo Therapeutics Inc., Montgomeryville, PA, U.S.A.) or broad-spectrum light sources (PhotoDyn™ 750/505; Hydrosun Medizintechnik GmbH, Müllheim, Germany; Waldmann® PDT 1200 L; Waldman Medizintechnik, Villingen-Schwenningen, Germany) as described in detail in the study protocols. Treatment efficacy and cosmetic outcome were assessed 3 months after PDT. In cases of remaining lesions, a second treatment was performed at this time point. The final assessment was then carried out after 3 more months.

Results Recurrence rates were similar for BF-200 ALA and MAL, with a tendency to lower recurrence rates for BF-200 ALA. The proportion of patients who were fully cleared during PDT and remained completely clear for at least 12 months after PDT were 47% for BF-200 ALA (both studies) and 36% for MAL treatment. The subgroup that was illuminated with narrow wavelength LED lamps reached 69% and 53% for BF-200 ALA (both studies, respectively) and 41% for MAL. No safety concerns were reported.

Conclusions The FUP data confirmed the high efficacy and safety of PDT with BF-200 ALA. The slightly lower recurrence rates after BF-200 ALA treatment compared with MAL treatment enhanced the better treatment outcome due to the significantly superior efficacy.
patients, allowed the follow-up of every individual lesion that was completely cleared after the last PDT. This lesion-based FUP analysis was not performed in study ALA-AK-CT002 (comparative study with the registered MAL cream) as only lesions of complete responders were considered in this trial.

Study plan

To analyse patient and lesion long-term efficacy, patient visits to the study centres were scheduled 6 and 12 months after the last PDT (Fig 1). If recurrent lesions occurred, patients received an additional AK therapy chosen by the investigator. In addition to recurrent lesions, new AK lesions, skin cancers and cosmetic outcome in the treatment areas were recorded at the scheduled visits. Serious adverse events (SAEs) were recorded for both studies.

Recurrence rate assessment

Patients who were completely cleared at the end of the clinical study, i.e. 3 months after the last PDT, were included in the analysis. Patients or lesions completely cleared 3 months after the last PDT, but then diagnosed and/or treated at or before FUP visit 1 (FUP1; i.e. 6 months after the last PDT) or FUP visit 2 (FUP2; i.e. 12 months after the last PDT) were assessed as recurrent. In study ALA-AK-CT003, all totally cleared lesions were examined individually, both in patients with all lesions cleared and in those with lesions remaining. The following of each individual lesion was not done in study ALA-AK-CT002 (comparative study), where only complete responders were considered during FUP. This leads to an overestimation of lesion-based recurrence rates in study ALA-AK-CT002.

If a patient was recurrent at FUP1 they were also counted as recurrent at FUP2, irrespective of an AK therapy that may have cleared the patient in the meantime.

Nonrecurrence rates were evaluated using the life-table method for grouped data. Two values were calculated: (i) the

Fig 1. Treatment regimen of the clinical phases and follow-up (FU) phases of studies ALA-AK-CT002 and ALA-AK-CT003. Assessment of photodynamic therapy (PDT) efficacy was scheduled 3 months after PDT. Subsequently, completely cleared patients entered FUP with two visits 6 and 12 months after PDT (a). In case of residual lesions 3 months after the first PDT, a second PDT was performed (b) with a final assessment of efficacy 3 months later. MAL, methyl aminolaevulinate.
probability that a patient or lesion, completely cleared at the end of the clinical phase of the study, remains completely clear up to the 6- and 12-month FUP visits (\(P_i\) for visit \(i\), \(i = 1, 2\)); and (ii) the probability that a patient or lesion is fully cleared during PDT and remains completely clear until the follow-up visit at 6 or 12 months after the last PDT (\(P_i \times C_{RP}\) or \(P_i \times C_{RL}\); see below).

Biometric analysis

Data were obtained independently for both studies and reported for the intent-to-treat (ITT; ALA-AK-CT002) or the full-analysis set (FAS; ALA-AK-CT003) population, respectively. Patient-based and lesion-based recurrence rates were estimated at both follow-up visits, i.e. after 6 months (FUP1) and after 12 months (FUP2), based on an approach of time-to-event analysis. As only two time points were considered, the life-table method for grouped data was chosen. This is the grouped data equivalent to the Kaplan–Meier estimator. To take withdrawals or patients lost to FUP adequately into account it is assumed that the withdrawal times are continuously uniformly distributed on the time interval between the visits. This allows censoring half of the dropouts at the beginning of the interval and the other half at the end of the interval. Table 1 shows how the estimators for subject-based recurrence rates have been calculated.

Recurrence rates were assessed for treatment groups and various subgroups (e.g. by centre, sex, age, skin type, target area, light spectrum and AK severity at baseline if appropriate). The approaches were performed taking into consideration: (i) the number of subjects or lesions completely cleared at the end-of-study visit 3 months after the last PDT; (ii) the number of subjects/lesions with complete remission in the target area(s) at the current visit; (iii) the number of subjects with at least one recurrent lesion or new recurrent lesions in the target area(s) between the preceding and the current visit; and (iv) the number of subjects/lesions lost to FUP or withdrawn between the preceding and the current visit.

For the FUP, probabilities (\(P_i\)) for subjects remaining fully cleared up to the respective visit (\(i\), \(i = 1, 2\)) were assessed according to life-table estimates as shown in Table 1 (probabilities regarding totally cleared lesions were performed similarly).

Firstly, the number of subjects with complete clearance of all AK lesions in the target area(s) at the current visit (\(C_{RP0}\)) was calculated by subtracting subjects with at least one recurrent lesion in the target area(s) between the preceding and the current visit (\(R_i\)) and the number of subjects lost to FUP or withdrawn between the preceding and the current visit (\(L_i\)) from the totally cleared patient group at the last visit (\(C_{RP(i-1)}\)) :

\[C_{RP} = C_{RP(i-1)} - R_i - L_i.\]

Secondly, for subjects with complete remission at the preceding visit, the probability of remaining cleared could then be calculated:

\[f_i = 1 - R_i/(C_{RP} - L_i/2).\]

Finally, the probability of remaining clear up to the current visit could be estimated using the formula:

\[P_i = P_{(i-1)} \times f_i.\]

Furthermore, the probability that a patient or lesion, respectively, is cleared during treatment and remains clear up to the current visit was estimated by multiplying the \(P_i\) of the assessed treatment group and the corresponding patient-based (\(C_{RP0}\)) or lesion-based clearance rate (\(C_{RL0}\)) 3 months after the last PDT (end of clinical trial); this term is defined as \(P_i \times CR_P\) or \(P_i \times CR_{RL}\), respectively:

\[P_i \times CR_\text{P} = P_1 \times CR_{P0}\]

Example for \(P_i \times CR_\text{P}\) calculation

The \(P_i\) value of 0.827 achieved at the FUP1 for BF-200 ALA-treated patients in the ALA-AK-CT003 study indicates that 82.7% of the patients who were completely cleared 3 months after the last PDT (66.3%) remain completely clear at this time point. In addition, the corresponding product \(P_i \times CR_\text{P}\) (0.827 × 0.663) of 0.548 takes the respective efficacy 3 months after the last PDT into consideration and reflects the probability of a patient entering PDT to be cleared at FUP1 (for values see Tables 2 and 4).

For the calculation of \(P_i \times CR\) data for comparator compounds, the required data were obtained from publications of controlled, randomized phase III trials.9–12 The following values were taken from those references and entered in the calculation: number of completely cleared patients at the end of the study, patients entering FUP, patients lost to FUP (whenever data are provided, otherwise set to 0), and number of dropouts at the beginning of the interval and the other half at the end of the interval. Table 1 shows how the estimators for subject-based recurrence rates have been calculated.

Table 1 Calculation of life-table estimates for subject-based recurrence rates

Visit name	Visit (i)	CR_{RP0}	CR_{RP(i-1)} - R_i - L_i	R_i	L_i	f_i = 1 - R_i/(C_{RP} - L_i/2)	P_i = P_{(i-1)} \times f_i
3 months after last PDT	0	CR_{RP0}	CR_{RP(i-1)} - R_i - L_i	0	0	1	1
Follow-up after 6 months	1	CR_{RP1}	R_2	L_1	f_1		P_i
Follow-up after 12 months	2	CR_{RP2}	R_2	L_1	f_2		P_i

\(CR_{RP0}\): number of subjects totally cleared of lesions at end-of-study visit 3 months after the last photodynamic therapy (PDT); \(CR_{RP}\): number of subjects with complete remission of all actinic keratosis lesions in the target area(s) at current visit; \(R_i\): number of subjects with at least one recurrent lesion in target area(s) between current and preceding visit; \(L_i\): number of subjects lost to follow-up or withdrawn between preceding and current visit; \(f_i\): probability of remaining clear for subjects with complete remission at preceding visit; \(P_i\): probability of remaining clear up to current visit.
patients with at least one recurrent lesion during FUP. The calculation was as described above and illustrated in Table 1. New lesions or skin cancers observed in the target area were assessed by descriptive statistics.

Results

Patients

A total of 663 patients from both phase III studies entered the FUP, accounting for 93.4% (114 patients) and 96.1% (549 patients) of the randomized subjects of studies ALA-AK-CT003 and ALA-AK-CT002, respectively. Of these, 63.3% (420 patients) were complete responders. Six hundred and thirty subjects completed the follow-up (102 subjects in study ALA-AK-CT003, 528 subjects in study ALA-AK-CT002) while 33 patients discontinued prematurely (Tables 2).

A flow chart of the patient disposition is presented in Figure 2. Patient characteristics are summarized in Table 3. Results are shown for the ITT/FAS follow-up population.

Efficacy

Patient nonrecurrence rates

Rates of nonrecurrent patients in the FUP of both pivotal studies are summarized in Table 4 (for study ALA-AK-CT003) and Table 5 (for study ALA-AK-CT002). No significant differences became apparent between BF-200 ALA- and MAL-treated subjects at FUP1. More than 80% of the patients were still complete responders 6 months after the last PDT with BF-200 ALA (in both studies) or MAL.

A slightly larger variation was observed at FUP2 after 12 months, when for BF-200 ALA patients, 58.4% in study ALA-AK-CT002 and 69.4% in ALA-AK-CT003 were still nonrecurrent. For MAL, 55.2% of the patients were still completely cleared. The difference at FUP2 between the patient clearance rates in the BF-200 ALA groups of the two pivotal trials may be partly due to the larger percentage of patients with moderate lesions (Olsen grade II) in study ALA-AK-CT002 (Table 3). In both studies at FUP2, recurrence rates for Olsen grade II patients treated with BF-200 ALA were about 14% points higher than for patients with only mild (Olsen grade I) lesions (compare Table 7).

In study ALA-AK-CT002, the probability (P2) in the BF-200 ALA group of remaining cleared 12 months after the last PDT was 0.592, and that for the MAL group 0.555. In study CT003, the probability of remaining completely cleared after BF-200 ALA treatment at 12 months FUP was 0.706 (Tables 4 and 5).

Combining efficacy and recurrence rates, the probability of being totally clear 12 months after the last treatment (P2 × CRp) was 0.472 and 0.468 (ALA-AK-CT002 and ALA-AK-CT003, respectively) for BF-200 ALA-treated patients, and 0.363 for MAL-treated patients (ALA-AK-CT002; Tables 4 and 5). In spite of the lower recurrence rate in study ALA-AK-CT003, the overall P2 × CRp for BF-200 ALA were very similar.

Table 2. Overview of demographics

	ALA-AK-CT003	ALA-AK-CT002			
	BF-200 ALA	Placebo	BF-200 ALA	MAL	Placebo
Clinical trial					
Patients enrolled in clinical study, n	122	600			
Patients randomized, n	81	41	248	247	76
FAS/ITT population, n (%)	80 (100)	40 (100)	248 (100)	246 (100)	76 (100)
Premature discontinuation, n			7	7	8
Complete responders 3 months after last PDT, n (CRp, %)	53 (66.3)	5 (12.5)	194 (78.2)	158 (64.2)	13 (17.1)
After 1st PDT	38 (47.5)	4 (10.0)	120 (48.4)	91 (37.0)	3 (13.9)
After 2nd PDT	15 (38.5)	1 (3.0)	74 (52.8)	67 (43.2)	10 (13.7)
Totally cleared lesions 3 months after last PDT, n (CRp, %)	369 (81.1)	46 (20.9)	1359 (90.4)	1295 (83.2)	182 (37.1)
Follow-up phase (FUP)					
Patients entering FUP (FAS/ITT), n (%)	77 (96.3)	37 (92.5)	241 (97.2)	240 (97.6)	68 (89.5)
FUP1	72 (93.5)	34 (91.9)	238 (98.8)	236 (98.3)	66 (97.1)
FUP2	71 (92.2)	32 (86.5)	236 (97.9)	232 (96.7)	64 (94.1)
Patients completing FUP, n (%)	70 (90.9)	32 (86.5)	233 (94.0)	231 (93.9)	64 (94.1)
Lost to FUP, n	7	5	8	9	4
Complete responders entering FUPa, n (%)	53 (66.3)	5 (12.5)	192 (77.4)	157 (63.8)	13 (17.1)
FUP1	51 (63.8)	4 (10.0)	188 (75.8)	154 (62.6)	13 (17.1)
FUP2	49 (61.3)	4 (10.0)	185 (74.6)	154 (62.6)	13 (17.1)
Lesions considered for recurrence rate in FUP, n (%)b	353	45	1147	958	84

ALA, 5-aminolaevulinic acid; FAS, full analysis set; FUP1/2, follow-up visits 1 and 2; ITT, intent-to-treat; MAL, methyl aminolaevulinate; PDT, photodynamic therapy. aOnly subjects who were completely clear 3 months after the last PDT were considered for evaluation of recurrence rates; bonly lesions of complete responders were considered in all patient groups of study ALA-AK-CT002. If in study ALA-AK-CT002 patients were treated for actinic keratosis between FUP visits or the number of recurrent lesions was not noted, all lesions of the patient were counted as recurrent.
Completed clinical phase and entered follow-up phase
Study ALA-AK-CT003

Allocated to Placebo
N (overall) = 77
N (CRP) = 53

Discontinued follow-up
(overall/CRP)
4/1 Lost to Follow-up
1/0 Subject’s decision

Completed Follow-up
N (overall) = 70
N (CRP) = 49

Allocated to BF-200 ALA
N (overall) = 77
N (CRP) = 53

Discontinued follow-up
(overall/CRP)
4/1 Lost to Follow-up
1/0 Subject’s decision

Completed Follow-up
N (overall) = 70
N (CRP) = 49

Allocated to Placebo
N (overall) = 37
N (CRP) = 5

Discontinued follow-up
(overall/CRP)
6/3 Lost to Follow-up
1/0 Subject’s decision

Completed Follow-up
N (overall) = 32
N (CRP) = 4

Fig 2. Allocation of patients in the follow-up phases (FUPs) of studies ALA-AK-CT003 (a) and ALA-AK-CT002 (b). The numbers of patients entering and completing FUP are indicated along with the cause of discontinuation during the FUP. CRP, complete responders, i.e. patients without remaining lesions 3 months after the last treatment with photodynamic therapy; MAL, methyl aminolaevulinate; SAE, serious adverse event.

Table 3 Summary of patient characteristics entering follow-up phase (intent-to-treat/full analysis set)

	ALA-AK-CT003	Placebo	ALA-AK-CT002	MAL (n = 240)	Placebo (n = 68)
Sex, n (%)					
Male	69 (89.6)	29 (78.4)	208 (86.3)	199 (82.9)	54 (79.4)
Female	8 (10.4)	8 (21.6)	33 (13.7)	41 (17.1)	14 (20.6)
Age (years)	70.4 ± 6.2	71.3 ± 6.4	70.1 ± 7.2	71.0 ± 7.0	71.7 ± 6.8
Range	58–82	60–85	39–87	44–85	51–84
Severity of AK at baseline, n					
Mild (grade I)	15	2	33	37	3
Moderate (grade II)*	38	3	159	120b	10
Target area, n					
A (face and forehead)	31	2	120	107	4
B (bald scalp)	13	3	47	23	5
A + B	9	0	25	27	4
Light spectrum, n					
Narrow	27	2	104	84	5
Broad	26	3	88	73	8

AK, actinic keratosis; ALA, 5-aminolaevulinic acid; MAL, methyl aminolaevulinate. *Patients with at least one AK assessed as grade II at start of clinical trial; b one severe (grade III) lesion included.
Table 4 Patient-based life table: number of subjects still cleared at 6-month (FUP1) and 12-month (FUP2) follow-up visits in study ALA-AK-CT003

Subjects completely cleareda, %	BF-200 ALA (n = 53)	Placebo (n = 5)				
	P_i	P_i * CR_p	P_i	P_i * CR_p		
FUP1	82.4	0.827	0.548	50.0	0.556	0.069
FUP2	69.4	0.706	0.468	50.0	0.556	0.069

AK, actinic keratosis; ALA, 5-aminolaevulinic acid; P_i, probability that a completely cleared patient remains completely clear up to FUP1 or FUP2; P_i * CR_p, probability that a patient is fully cleared from all lesions during photodynamic therapy and remains totally clear until the follow-up visit (product of P_i and efficacy rate at the end of the clinical trial).

Table 5 Patient-based life table: number of subjects still cleared at 6-month (FUP1) and 12-month (FUP2) follow-up visits in study ALA-AK-CT002

Subjects completely cleareda, %	BF-200 ALA (n = 192)	MAL (n = 157)	Placebo (n = 13)			
	P_i	P_i * CR_p	P_i	P_i * CR_p		
FUP1	80.9	0.812	0.647	81.8	0.821	0.537
FUP2	58.4	0.592	0.472	55.2	0.555	0.363

AK, actinic keratosis; ALA, 5-aminolaevulinic acid; MAL, methyl aminolaevulinate; P_i, probability that a completely cleared patient remains completely clear up to FUP1 or FUP2; P_i * CR_p, probability that a patient is fully cleared from all lesions during photodynamic therapy and remains totally clear until the follow-up visit (product of P_i and efficacy rate at the end of the clinical trial).

Lesion recurrence rate

A total of 1359 (90.4%) and 369 (81.1%) BF-200 ALA-treated lesions were totally cleared at the end of the clinical parts of studies ALA-AK-CT002 and ALA-AK-CT003, respectively, and 1295 (83.2%) of MAL-treated lesions in study ALA-AK-CT002 (Table 2). For the placebo groups, 182 (37.1%) and 46 (20.9%) of the lesions were cleared 12 weeks after the last treatment in the respective studies. Of the BF-200 ALA-treated lesions 1147 and 353 from the two studies entered the follow-up phase, and 958 of the MAL-treated lesions. Eighty-four and 45 lesions were monitored in the respective placebo groups (Table 2). In contrast to study ALA-AK-CT003 in which every individual lesion was monitored during FUP, in study ALA-AK-CT002 only lesions of complete responders entered the FUP, reducing the total number of completely cleared lesions analysed. This again leads to a small number of lesions followed up in the placebo group, rendering any interpretation of the results in this group questionable.

In the ALA-AK-CT002 study, the overall lesion recurrence rates after 6 months were 7.0% for BF-200 ALA-treated patients and 6.6% for MAL-treated patients; 3.6% were recurrent in the placebo group. Lesion recurrence in ALA patients at FUP1 in ALA-AK-CT003 was 7.4%, and 6.1% for patients in the placebo group. After 12 months, adding recurrence rates of FUP1 and FUP2, BF-200 ALA patients in study ALA-AK-CT002 had a lesion recurrence rate of 21.7%, MAL patients of 25.4% and placebo patients of 15%. In study ALA-AK-CT003, the combined lesion recurrence rates after 12 months were 16.7% for BF-200 ALA and 12.6% for placebo patients, respectively (Table 6).

The probabilities of lesions remaining totally clear up to FUP1 were very similar for BF-200 ALA- and MAL-treated patients with values around 0.93. Again, there were slight advantages for BF-200 ALA at FUP2 with a P_i of 0.855 for BF-200 ALA-treated patients in study ALA-AK-CT002 vs. 0.813 for MAL-treated patients. In the ALA-AK-CT003 study the corresponding probability was 0.843 (Table 6).
The differences in the lesion recurrence rates between the two pivotal studies are likely to be caused by the different way of counting recurrent lesions. While all lesions were recorded individually in study ALA-AK-CT003, all lesions of a patient were counted as recurrent in study ALA-AK-CT002 if this patient received any AK therapy in between the scheduled visits or if the number of recurrent lesions was not recorded by the investigator. After 12 months (FUP2 of ALA-AK-CT002), 78 out of 127 recurrent lesions in the BF-200 ALA group, 104 out of 140 recurrent lesions in the MAL group and eight out of eight lesions in the placebo group belonged to the aforementioned patients. These high proportions illustrate that the procedure leads to an overestimation of lesion recurrence in the ALA-AK-CT002 study. It should not, however, affect any differences between lesion recurrence in the BF-200 ALA and MAL groups.

The probability of reaching total lesion clearance 12 months after the last PDT ($P_1^{\text{CR}_{\text{i}}}$) for BF-200 ALA was 0.525 in ALA-AK-CT002 and 0.684 in ALA-AK-CT003. For MAL, the probability was 0.401, considerably lower than the probabilities with BF-200 ALA (Table 6).

Subgroups

In both pivotal studies a difference in the number of subjects with recurrent AK lesions treated either with narrow- or broad-spectrum light sources was obtained at both FUP visits for all verum groups (Table 7).

In the comparative study ALA-AK-CT002, a similar number of patients was still completely clear 12 months after the last treatment with BF-200 ALA or MAL and illumination with LED devices (60-2% with BF-200 ALA and 59-3% with MAL). With broad-spectrum devices this clearance rate was, with 56-3%, slightly lower for BF-200 ALA, while MAL showed a clearly reduced rate of 50-7% (Table 7). In study ALA-AK-CT003, a strong difference was observed between narrow and broad light spectrum lamps, with 76-9% and 60-9% of the BF-200 ALA patients remaining completely clear, respectively (Table 7).

At FUP2 after 12 months, the probabilities of lesions remaining totally cleared after treatment with LED lamps were 0.932 and 0.839 for BF-200 ALA (studies ALA-AK-CT003 and ALA-AK-CT002) and 0.813 for MAL (Table 6).

Cosmetic outcome

The cosmetic outcome was assessed by the investigator at the 6-month FUP as very good or good in 39-7% and 43-1% subjects in the BF-200 ALA groups (study ALA-AK-CT002 and ALA-AK-CT003, respectively), in 42-6% of subjects in the MAL group (study ALA-AK-CT002), and 34-8% and 44-1% of subjects in the placebo groups (studies ALA-AK-CT002 and ALA-AK-CT003, respectively). An unsatisfactory or impaired assessment was obtained in 14-3% and 7-0% of subjects treated with BF-200 ALA (ALA-AK-CT002 and ALA-AK-CT003, respectively), and in 9-0% of MAL-treated patients. Higher values were obtained for placebo with 13-7% and 20-6% in the respective studies.

At the 12-month FUP, the cosmetic outcome was judged as very good or good in 38-9% and 45-0% of subjects in the BF-200 ALA groups (ALA-AK-CT002 and ALA-AK-CT003,
respectively), in 41·1% of subjects in the MAL group, and in 32·8% and 46·9% of subjects in the placebo groups (ALA-AK-CT002 and ALA-AK-CT003, respectively). Unsatisfactory or impaired outcome was reported to a similar extent in all groups (15·0% and 14·1% of BF-200 ALA-treated patients, 16·5% of MAL-treated subjects, 15·7% and 18·8% of placebo patients, respectively).

Safety and tolerability

Sixty-one AEs were reported during the FUP of study ALA-AK-CT002, which occurred to a similar extent in the three study arms (11·6%, 11·3% and 8·8% in the BF-200 ALA, the MAL and the placebo groups, respectively). All events were classified as unrelated with the exception of one subject with SCC in the BF-200 ALA group, two patients with basal cell carcinomas (BCC) in the MAL group and one subject each with Bowen’s disease in the MAL and placebo groups. No AEs were assessed in the ALA-AK-CT003 study.

During the ALA-AK-CT002 FUP study, 10 SAEs were reported in eight subjects (three for subjects treated with BF-200 ALA, five for subjects who received MAL). Four SAEs were fatal. The SAEs occurred between about 6 weeks after the last PDT and about 1 year after the last PDT and the last follow-up visit (product of
P_i and efficacy rate at the end of the clinical trial). The percentage is calculated according to the number of patients at the respective visit.

New lesions and disease recurrence

Subgroup/visit	BF-200 ALA (ALA-AK-CT003)	BF-200 ALA (ALA-AK-CT002)	MAL (ALA-AK-CT002)
	Patients still completely cleared*, %	Patients still completely cleared*, %	Patients still completely cleared*, %
Light spectrum			
Broad			
FUP1	75·0	0·760	0·403
FUP2	60·9	0·630	0·334
Narrow			
FUP1	88·9	0·889	0·774
FUP2	76·9	0·775	0·675
AK severity at baseline			
Grade I			
FUP1	100	1·000	0·789
FUP2	80·0	0·800	0·632
Grade II			
FUP1	75·0	0·757	0·471
FUP2	64·7	0·669	0·417
Target area			
A: face/forehead			
FUP1	79·3	0·800	0·564
FUP2	71·4	0·729	0·514
B: bald scalp			
FUP1	92·3	0·923	0·545
FUP2	84·6	0·846	0·500
A + B			
FUP1	77·8	0·778	0·500
FUP2	37·5	0·419	0·269
Complete responder: after 1 PDT			
FUP1	89·2	0·893	0·424
FUP2	71·4	0·726	0·345

AK, actinic keratosis; ALA, 5-aminolaevulinic acid; MAL, methyl aminolaevulinate; PDT, photodynamic therapy;
P_i, probability that a completely cleared patient remains completely clear up to FUP1 or FUP2;
P_i * CR, probability that a patient is fully cleared from all lesions during PDT and remains totally clear until the follow-up visit (product of
P_i and efficacy rate at the end of the clinical trial). The percentage is calculated according to the number of patients at the respective visit.
responders, but clearly different figures in the placebo group (24-1% vs. 0%).

Nonmelanoma skin cancers (SCC, BCC) developed in the treatment area in only a few patients at a very similar extent in most study groups, with the exception of a slight increase in the ALA-AK-CT002 placebo group (Table 8). No melanomas were reported in either study. Interestingly, most of the patients with nonmelanoma skin cancer were noncomplete responders (14/20 in ALA-AK-CT002, two of four in ALA-AK-CT003) or had a history of skin diseases including AK for several years (18/20 in ALA-AK-CT002, four of four in ALA-AK-CT003).

Discussion

BF-200 ALA is a new nanoscale oil-in-water emulsion of ALA for PDT, which was recently shown to be a very effective and safe treatment option for AK lesions.6,7 PDT is recommended as a first-line therapy for the treatment of AK due to its high efficacy, the possibility of treating extended skin areas and its superior cosmetic outcome compared with other treatment modalities.1 However, long-term follow-up data of controlled clinical trials are limited and only a few publications have reported recurrence rates after ALA or MAL PDT treatment over a longer follow-up period.8,11

The present article summarizes 6- and 12-month FUP data collected in two pivotal phase III studies.6,7 The reported studies compared the clearance and recurrence rates, new lesion formation and cosmetic outcome in patients with AK treated with BF-200 ALA or placebo, and one of the studies compared the results for BF-200 ALA with those for a commercially available MAL formulation. The data confirm that PDT is a highly effective and safe therapy for AK. Both PDT drugs displayed low recurrence rates, in favour of BF-200 ALA over MAL. The probability that complete responders remained clear 12 months after the last treatment was 0·59 or 0·71 for BF-200 ALA (study ALA-AK-CT002 and ALA-AK-CT003, respectively) and 0·56 for MAL (study ALA-AK-CT002). Although these recurrence rates with BF-200 ALA are not substantially lower than with MAL, the difference is reflected in all subgroups analysed, illustrating a general tendency to slightly lower recurrence rates.

Nevertheless, the probability of clearance 12 months after PDT is strongly in favour of BF-200 ALA due to its statistically significantly higher efficacy. These probabilities, denoted $P_2 \times CR_p$, were 0·47 for BF-200 ALA vs. 0·36 with MAL for all lamps, and 0·53 vs. 0·41 for narrow-spectrum lamps, respectively, in study ALA-AK-CT002. Thus, calculating a patient’s long-term prognosis as the combination of efficacy and recurrence rates demonstrates the strong superiority of BF-200 ALA compared with MAL. It is worth noting that $P_2 \times CR_p$ values in patients who were completely cleared after a single PDT, were still better 12 months after BF-200 ALA treatment than 6 months after MAL treatment (Table 7).

The two pivotal trials documented a strong influence of the applied lamp sources on PDT efficacy. Narrow-wavelength lamps generated much better clinical efficacy than broadband lamps.6,7 Therefore, it was of particular interest to compare the recurrence rates of these subgroups. For most subgroups, patients illuminated with narrowband LED lamps displayed lower recurrence rates than those illuminated with broadband lamps. Therefore, the advantage of higher efficacy provided by the LED lamps is at least maintained or even enhanced during the 12 months following PDT.

Studies describing recurrence rates of conventional therapies are rare and mostly poorly controlled. The recurrence rates described13 after 1 year were similar or worse than those described here. A better data basis is available for PDT drugs, where several authors published FUP results of phase III studies of AK PDT. The life-table analysis, in which the probability $P_2 \times CR_p$ expresses the likelihood that a patient is completely cleared during treatment and remains clear of all lesions for 12 months after treatment, should serve as the basis to choose the optimal therapy for the patients. Our data illustrate that 53% (study ALA-AK-CT002) to 68% (study ALA-AK-CT003) of patients treated with BF-200 ALA and LED lamps, and 41% of patients treated with MAL and LED lamps are cleared of all lesions during treatment and remain free of all lesions for at

Table 8 New lesions and skin cancer in the target areas

	ALA-AK-CT003	ALA-AK-CT002		
	BF-200 ALA, n (%)	BF-200 ALA, n (%)	MAL, n (%)	Placebo, n (%)
New AK				
FUP1 (6 months)	16/72 (22·2)	14/71 (19·7)	3/32 (9·4)	48/234 (20·5)
FUP2* (12 months)	30/72 (41·7)	7/34 (20·6)	99/237 (41·8)	115 (48·7)
Overall	30/72 (41·7)	7/34 (20·6)	99/237 (41·8)	115 (48·7)
Nonmelanoma skin cancer				
FUP1 (6 months)	2/72 (2·8)	1/34 (2·9)	3/237 (1·3)	2/236 (0·8)
FUP2* (12 months)	1/71 (1·4)	0	5/234 (2·1)	6/231 (2·6)
Overall	3/72 (4·2)	1/34 (2·9)	8/237 (3·4)	8/236 (3·5)

Numbers indicate the affected patients/all patients assessed at the particular follow-up (FUP) visit. AK, actinic keratosis; ALA, 5-aminoalanine; MAL, methyl aminolaevulinate. *Data for FUP visit 2 reflect the number of patients who developed new lesions or nonmelanoma skin cancer since FUP visit 1.
least 12 months after treatment. This treatment success is clearly above the values achieved in controlled trials with Levulan Kerastick® (DUSA, Wilmington, MA, U.S.A.) (40%),9 ALA patch (21–45%),10,11 cryotherapy (29%)10,11 or of a recently approved ingenol mebutate (0.015%)-containing gel (20%)12 (Table 9). In the studies cited here Levulan Kerastick was, according to its product specification, used in combination with blue light, the ALA patch also with LED lamps.

The lesion recurrence rates observed in the 12-month FUP assessments for lesions treated with BF-200 ALA and LEDs are in a similar range (21% in study ALA-AK-CT002) or clearly below (7% in study ALA-AK-CT003) the values provided in the published literature.9,11,14 On average with all lamps the recurrence rates were 22% in study ALA-AK-CT002 and 17% in study ALA-AK-CT003. Lesion recurrence rates for MAL were slightly higher, with 24% for LED lamps and 25% on average for all lamps. However, it must be taken into consideration that lesion recurrence in study ALA-AK-CT002 is overestimated as, for subjects who received AK therapy between visits or for whom the number of recurrent lesions was not documented, all lesions were classified as recurrent, irrespective of the actual recurrence. This aspect is most relevant in the recurrence evaluation at FUP2 in which 61% of recurrent lesions in the BF-200 ALA and 74% of recurrent lesions in the MAL group belonged to the aforementioned patient group. All the general tendencies observed for total patient recurrence were paralleled and confirmed by the data obtained when the occurrence of individual lesions was calculated. Here also, recurrence rates with MAL were slightly higher than those for BF-200 ALA in all subgroups.

The assessment of the cosmetic outcome as very good or good for BF-200 ALA- and MAL-treated patients differed only slightly from the evaluation at the end-of-study visit (BF-200 ALA: 47±6% and 43±1% at the end of study vs. 45±0% and 38±9% at FUP2, for ALA-AK-CT003 and ALA-AK-CT002, respectively; MAL: 45±2% vs. 41±1%, respectively). Placebo values increased from 25% to 46±9% in study ALA-AK-CT003 and changed from 36±4% to 32±8% in the ALA-AK-CT002 study.6,7 The lower values in the placebo groups might be influenced by the higher percentage of additional AK therapies applied subsequent to the studies. Application of conventional AK therapies to recurrent patients might also explain the increase of unsatisfactory or impaired values in the verum groups during FUP.

In conclusion, treatment with BF-200 ALA revealed a high efficacy in the treatment of AKs which is maintained over a 1-year FUP. Total patient clearance rates are significantly higher with BF-200 ALA than with MAL, and this advantage may even be enhanced by the tendency to lower recurrence rates.

What’s already known about this topic?

- BF-200 ALA is a stable nanoemulsion-based gel formulation of 5-aminolaevulinic acid (ALA) for photodynamic therapy (PDT) of actinic keratosis (AK), which demonstrated significantly higher efficacy compared with a registered methyl aminolaevulinate (MAL) cream.
What does this study add?

- This study gives 6- and 12-month follow-up results of two pivotal phase III studies with BF-200 ALA for PDT of AK in comparison to placebo and a registered MAL cream.
- It provides a comparison of recurrence rates after use of different light sources for PDT of AK.

Acknowledgments

We are indebted to the clinical research staff and patients involved in this trial. We also gratefully acknowledge the excellent assistance of Andreas Jäger in the preparation of the manuscript.

References

1 Braathen LR, Szeimies RM, Basset-Seguin N et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. J Am Acad Dermatol 2007; 56:125–43.
2 Rowert-Huber J, Patel MJ, Froschner T et al. Actinic keratosis is an early in situ squamous cell carcinoma: a proposal for reclassification. Br J Dermatol 2007; 156 (Suppl. 3):8–12.
3 Frost CA, Green AC, Williams GM. The prevalence and determinants of solar keratoses at a subtropical latitude (Queensland, Australia). Br J Dermatol 1998; 139:1033–9.
4 Frost CA, Green AC. Epidemiology of solar keratoses. Br J Dermatol 1994; 131:455–64.
5 Maisch T, Santarelli F, Schreml S et al. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exp Dermatol 2010; 19:e302–5.
6 Szeimies RM, Radny P, Sebastian M et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a prospective, randomized, double-blind, placebo-controlled phase III study. Br J Dermatol 2010; 163:386–94.
7 Dirschka T, Radny P, Dominicus R et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a multicentre, randomized, observer-blind phase III study in comparison with a registered methyl-5-aminolaevulinate cream and placebo. Br J Dermatol 2012; 166:137–46.
8 Olen EA, Abernethy ML, Kulp-Shorten C et al. A double-blind, vehicle-controlled study evaluating masoprocol cream in the treatment of actinic keratoses on the head and neck. J Am Acad Dermatol 1991; 24:738–43.
9 Tschen EH, Wong DS, Pariser DM et al. Photodynamic therapy using aminolaevulinic acid for patients with nonhyperkeratotic actinic keratoses of the face and scalp: phase IV multicentre clinical trial with 12-month follow-up. Br J Dermatol 2006; 155:1262–9.
10 Hauschild A, Stockfleth E, Popp G et al. Optimization of photodynamic therapy with a novel self-adhesive 5-aminolaevulinic acid patch: results of two randomized controlled phase III studies. Br J Dermatol 2009; 160:1066–74.
11 Szeimies RM, Stockfleth E, Popp G et al. Long-term follow-up of photodynamic therapy with a self-adhesive 5-aminolaevulinic acid patch: 12 months data. Br J Dermatol 2010; 162:410–14.
12 Lebwohl M, Swanson N, Anderson LL et al. Ingentol mebutate gel for actinic keratosis. N Engl J Med 2012; 366:1010–19.
13 Stockfleth E, Ferrandiz C, Grob JJ et al. Development of a treatment algorithm for actinic keratoses: a European Consensus. Eur J Dermatol 2008; 18:651–9.
14 Braathen LR, Paredes BE, Saksa O et al. Short incubation with methyl aminolaevulinate for photodynamic therapy of actinic keratoses. J Eur Acad Dermatol Venereol 2008; 22:550–5.