Meta-fibrosis links positive energy balance and mitochondrial metabolism to insulin resistance [version 1; referees: 3 approved]

Daniel S. Lark, David H. Wasserman

1Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
2Vanderbilt Mouse Metabolic Phenotyping Center, Vanderbilt University School of Medicine, Nashville, TN, USA

Abstract

Obesity and insulin resistance often emerge from positive energy balance and generally are linked to low-grade inflammation. This low-grade inflammation has been called “meta-inflammation” because it is a consequence of the metabolic dysregulation that can accompany overnutrition. One means by which meta-inflammation is linked to insulin resistance is extracellular matrix expansion secondary to meta-inflammation, which we define here as “meta-fibrosis”. The significance of meta-fibrosis is that it reflects a situation in which the extracellular matrix functions as a multi-level integrator of local (for example, mitochondrial reactive oxygen species production) and systemic (for example, inflammation) inputs that couple to cellular processes creating insulin resistance. While adipose tissue extracellular matrix remodeling has received considerable attention, it is becoming increasingly apparent that liver and skeletal muscle extracellular matrix remodeling also contributes to insulin resistance. In this review, we address recent advances in our understanding of energy balance, mitochondrial energetics, meta-inflammation, and meta-fibrosis in the development of insulin resistance.
Corresponding author: David H. Wasserman (david.wasserman@vanderbilt.edu)

Competing interests: The authors declare that they have no competing interests.

How to cite this article: Lark DS and Wasserman DH. Meta-fibrosis links positive energy balance and mitochondrial metabolism to insulin resistance [version 1; referees: 3 approved] F1000Research 2017, 6(F1000 Faculty Rev):1758 (doi: 10.12688/f1000research.11653.1)

Copyright: © 2017 Lark DS and Wasserman DH. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article are available under the terms of the Creative Commons Zero "No rights reserved" data waiver (CC0 1.0 Public domain dedication).

Grant information: The author(s) declared that this work was funded by National Institutes of Health (grants DK054902, DK050277, DK059637), NIDDK Mouse Metabolic Phenotyping Centers MICROMouse Program (grant 15GRU2558) and American Heart Association (grant 16POST29910001).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 27 Sep 2017, 6(F1000 Faculty Rev):1758 (doi: 10.12688/f1000research.11653.1)
Introduction

Advances in industrial and agricultural technology combined with lower rates of energy expenditure through physical activity have had the unintended consequence of creating a dramatic rise in the prevalence of obesity, insulin resistance (IR), hypertension, and dyslipidemia. These comorbidities are principal components of the metabolic syndrome as well as risk factors for type 2 diabetes mellitus and cardiovascular disease. The public health impact of these altered metabolic states is clear when considering that, in 2012, approximately 33% of United States citizens (over 100 million people) were projected to have at least one component of the metabolic syndrome.

Positive energy balance at the whole-body level and altered oxidative metabolism at the cellular level are central to the development of IR. However, the conduit linking nutrient status and cellular energetics to pathophysiological states like IR is incompletely defined. In this commentary, we provide a framework for how mitochondrial energetics along with metabolically driven inflammation (meta-inflammation) and extracellular matrix (ECM) remodeling leading to fibrosis (meta-fibrosis) link overnutrition to IR (Figure 1). As several recent discoveries suggest, there is a great deal to be learned regarding the etiology of IR by studying organ-level physiological events in the context of the extracellular milieu. The focus here will be on metabolism, molecular organization, and cell signaling in the pathogenesis of IR. The important roles of gene transcription and epigenetics in the development of IR are beyond the scope of this commentary. Readers are directed to recent reviews on these topics.

Energy balance and the metabolic syndrome

Energy balance is defined as the gastrointestinal absorption of dietary macronutrients minus whole-body energy expenditure. Human evolution has selected for traits that facilitate the efficient mobilization, metabolism, and storage of macronutrients. The biological significance of these adaptations lies in the need to store nutrients during times of nutrient excess and the ability to mobilize fuel in situations of nutrient deficiency. Nutrient storage is important for acute bouts of elevated energy expenditure or prolonged periods during which food is not readily available. Indeed, mechanisms for storing excess glucose (glycogen), lipids (triglyceride), and amino acids (protein) obtained from the diet are exquisitely sensitive. While these adaptations have been critical for survival and species propagation, people living in industrialized societies now have easy access to high-calorie foods and do not need to expend considerable energy to obtain their food. This has led to a sustained positive energy balance. Since this is a situation rarely encountered during the course of human evolution, the body is poorly equipped to adapt to dietary excess. As such, the chronic energy surplus incurred by overnutrition and sedentary behavior has become a persistent metabolic burden that leads to adipose tissue expansion and obesity in many individuals. Obesity, in turn, is central to the development of IR.

The evolutionarily conserved mechanisms that make survival possible during periods of famine also make humans refractory to weight loss. Resistance to weight loss and weight maintenance is recognized as a primary barrier to improving metabolic health. This is most clearly demonstrated when considering the effects of caloric restriction and physical activity on energy balance and body weight. In both obese and non-obese humans, prolonged caloric restriction results in significant weight loss, but it is accompanied by reductions in resting metabolic rate (RMR) beyond that which can be accounted for by weight loss alone. Since RMR is a primary contributor to the daily energy budget, this represents a significant barrier to long-term weight loss. It is notable that exercise alone is only marginally effective as a therapy for weight loss. This is likely due to both metabolic and behavioral obstacles. Exercise training fails to increase RMR in obese individuals with diabetes, and this is potentially due to increased metabolic efficiency. Exercise training has had mixed results in eliciting weight loss in both rodents and humans and is explained in part by increased food intake. In addition to RMR, “non-exercise activity thermogenesis” (NEAT) is a major contributor to energy expenditure in mice and humans. Mice given access to a running wheel increase their physical activity and energy expenditure over a four-week period, but the metabolic cost of activity progressively decreases concurrently with decreased NEAT. This is significant because fat gain with overnutrition in humans is positively correlated with an increase in NEAT. Whether the bidirectional modulation of NEAT...
based on whole-body energy balance is modifiable therapeutically remains to be seen but may be a viable strategy for combating obesity. Complicating therapeutic strategies further is a growing body of literature demonstrating that the metabolic adaptations that occur with weight loss predispose an individual to accelerated weight regain and increased adiposity upon cessation of a supervised diet or exercise regimen or both[1]. Notably, recent work suggests that glucocorticoid antagonism mitigates the weight regain and IR that occur following cessation of voluntary exercise in rats[2]. A better understanding of how humans resist weight loss, even in the setting of obesity, is critically important in that it may reveal novel therapeutic strategies for treating obesity and IR.

Mitochondrial energetics and the pathogenesis of insulin resistance

As the demand-driven terminus of oxidative metabolism, mitochondria are intricately involved in the maintenance of energy balance, and several recent reviews have highlighted the importance of mitochondrial energetics to the etiology of IR[3,4,5]. At the level of the mitochondrion, energy balance is established by a dynamic rate of carbon flux through the tricarboxylic acid (TCA) cycle that supports ATP production via oxidative phosphorylation. In the setting of overnutrition, there is a supply/demand mismatch that results in excess anaplerotic flux of carbon from fatty acids entering the TCA cycle relative to the ATP demand leading to IR[6]. Excessive anaplerotic flux creates a mitochondrial "carbon stress" that has been well documented in both skeletal muscle (SkM) and liver. This carbon stress promotes IR through incompletely defined mechanisms that likely involve post-translational protein modifications that alter insulin signaling or protein trafficking (that is, GLUT4 translocation). The teleological explanation for limiting SkM glucose uptake in the face of excess dietary lipids may be that SkM is unable to efficiently convert excess intracellular glucose to an inert metabolite (that is, fatty acids).

In the liver, greater fatty acid availability accelerates anaplerotic flux contributing to IR that correlates with the severity of non-alcoholic fatty liver disease (NAFLD) in humans[7]. This appears to be linked, at least in part, to incomplete β-oxidation in the setting of overnutrition[8]. This hypothesis is supported by findings that acyl-carnitine, the carbon chain intermediate of β-oxidation, is increased in human plasma[9] as well as rodent SkM[10]. Free carnitine in SkM is also reduced in the setting of obesity or high-fat feeding or both[11], suggesting a reduced capacity to handle excess fatty acids. Collectively, excess dietary fatty acids entering metabolically active tissues overload the mitochondria, leading to IR. A teleological explanation for why mitochondria induce IR may be to mitigate oxidative damage induced by overnutrition[29].

Mitochondria can also engage in cataplerosis, which is removal of carbons from the TCA cycle. In SkM, one proposed role for cataplerosis is as a buffering system to avoid mitochondrial carbon excess that can lead to increased reactive oxygen species (ROS) production during overnutrition[24]. SkM cataplerosis occurs in large part via carnitine acetyltransferase (CrAT), an enzyme that is responsible for exporting acetyl and acyl groups bound to carnitine from the mitochondrial matrix into the cytosol. Mice with SkM-specific deletion of CrAT have impaired glucose tolerance and increased oxidative stress[30], illustrating a need for mitochondrial carbon efflux (that is, cataplerosis) to preserve SkM metabolic homeostasis in the setting of overnutrition. In the liver, cataplerosis is essential for the production of both glucose (gluconeogenesis) and ketones (ketogenesis). Predominantly expressed in gluconeogenic organs (liver and kidney), phosphoenolpyruvate carboxykinase (PEPCK) converts oxaloacetate to pyruvate and is a key enzyme for gluconeogenesis. Loss of PEPCK in mice reduces hyperglycemia in leptin receptor–deficient (db/db) diabetic mice[11]. Similarly, ketogenesis exerts partial protection against high-fat diet (60% calories from fat)–induced hyperglycemia and fatty liver, primary complications linked to obesity and overnutrition[32]. Notably, however, mice fed a ketogenic diet (more than 90% calories from fat) are lean and hypoinsulinemic but also display fatty liver[33,34]. This may be due to the impaired liver mitochondrial respiratory capacity observed in mice fed a short-term (14 days) ketogenic diet[12]. Strategies to increase cataplerosis in a tissue- and product-specific fashion could yield valuable strategies for preserving glucose homeostasis and insulin sensitivity but should be considered in the context of also preventing the development of fatty liver.

How does mitochondrial carbon excess promote IR? Carbon turnover that exceeds metabolic demand leads to accumulation of reducing equivalents (NADH and FADH2) that exert greater “reducing pressure” (that is, more electrons) on the electron transport system[16]. This buildup of reducing equivalents in the matrix and electrons within the electron transport system promotes the formation of ROS that modulate a wide variety of normal and pathophysiological cellular processes[2]. For example, acute or chronic high-fat feeding increases mitochondrial ROS production that has been shown in some[35,36,37,38], but not all[39], reports to be causal for the development of IR. Notably, fatty acids can also “uncouple” oxidative phosphorylation[40], raising the possibility that mitochondrial oxidative efficiency may be an additional mechanism to manage carbon excess in obesity. Targeting this mechanism may be feasible in light of recent work demonstrating that mitochondrial oxidative efficiency is a dynamic process that is acutely sensitive to energetic demand[41]. Historically, the use of mitochondrial uncouplers as therapeutic agents has been met with skepticism following a string of deaths linked to the protonophore 2-dinitrophenol in the 1930s. However, recent efforts have provided new lead compounds that may be promising in the treatment of obesity[42,43]. While mitochondria-targeted therapies are being studied intensively and hold great promise, an alternative approach may be to address downstream effectors of mitochondrial oxidants. The downstream processes affected by mitochondrial oxidants are incompletely defined but include inflammation and expansion of the ECM. The remainder of this article will be spent discussing these processes in the context of their individual, and collective, contributions to the etiology of IR.

Inflammation and extracellular matrix expansion in the etiology of insulin resistance

Low-grade metabolically driven “meta-inflammation”[47] contributes to IR in obesity[48]. There are numerous intersecting mechanisms linking inflammation and ROS[49], including a critical role for the innate immune system that is coupled to macrophage
infiltration5,61. Macrophages recruited with chronic overnutrition are pro-inflammatory (M1; CD11b+) and secrete tumor necrosis factor alpha (TNF\textalpha) that has been shown to contribute to IR in adipose, SkM, and liver5,23-54. M1 macrophages also play a critical role in wound healing. It has been observed that the meta-inflammatory response to obesity that includes M1 macrophage infiltration is responsible for the accumulation of ECM proteins in insulin-sensitive tissues55. The evidence linking these processes in adipose, SkM, and liver is outlined below.

Adipose tissue function is reliant upon, and in certain situations compromised by, the ECM surrounding adipocytes66. Healthy adipose tissue expansion involves a balance between enzymatic degradation and subsequent synthesis of ECM proteins57. Pathogenic obesity in humans is characterized by adipose tissue fibrosis due to excessive ECM deposition and reduced ECM degradation that is associated with IR58-61. Paradoxically, recent work by Muir et al.62 showed that diabetics have reduced adipose tissue fibrosis and greater adipose tissue hypertrophy. Genetically obese (ob/ob) mice have increased expression of genes encoding collagens63 that is exacerbated by high-fat feeding64. Genetic loss of the adipose tissue–abundant collagen VI in mice mitigates adipocyte inflammation, diet-induced obesity (DIO), and glucose intolerance while permitting greater adipocyte hypertrophy65. Beyond collagen, various other ECM components— including osteopontin66,67, hyaluronan68, thrombospondins69-71, and microfibril-associated glycoprotein 1 (MAGP1)72—accumulate in adipose tissue with obesity and contribute to IR. Adipose tissue ECM expansion is attenuated by the anti-diabetic drug metformin73, a drug that is also known to reduce mitochondrial ROS production74. Whether metformin improves metabolic health by mitigating mitochondrial ROS production or ECM accumulation or both remains to be addressed directly.

Obesity induces SkM ECM expansion75-77 that would be expected to increase the resistance to glucose delivery, an essential controller of glucose uptake78. Even short-term (28 days) high-fat feeding79 is sufficient to induce SkM ECM expansion. This appears to be reversible as SkM collagen accumulation is ameliorated in obese mice following exercise training80 and preventable in mice with genetic enhancement of SkM mitochondrial ROS scavenging81. A genetic knockout of matrix metalloprotease-9 (MMP-9), a key ECM-degrading enzyme, in obese mice causes increased collagen and a further deterioration of SkM insulin action82. Treatment with pegylated hyaluronidase causes degradation of hyaluronan and rescues IR in obese mice83. These studies demonstrate a direct link between ECM accumulation and insulin action in SkM.

In the setting of obesity, circulating lipids are incompletely sequestered in adipose tissue and consequently accumulate in SkM and liver and lead to IR. NAFLD is a primary risk factor for the development of IR and diabetes via liver fibrosis84,85. Mice fed a high-fat-high-fructose diet exhibit liver fibrosis that accompanies lipid accumulation and IR86. The extent and scope to which overnutrition alters liver ECM are not completely known, highlighting a need for future studies.

ECM accumulation is recognized as a structural barrier between cells and the vascular space that restricts molecular transport87. More recently, a body of evidence has emerged indicating that cellular changes that accompany ECM accumulation are receptor-mediated. As such, the ECM is a biomolecular “motherboard” that determines the physical and metabolic properties of the tissue and the cells that they envelope. A greater understanding of how the ECM changes in obesity and the contribution of individual ECM proteins will be necessary in defining extracellular processes impacting metabolic health.

Extracellular matrix expansion and integrins in the setting of obesity

Integrins are a class of receptors that bind ECM proteins and have numerous overlapping functions, including cell adhesion, mechanotransduction, and differentiation88,89. ECM receptors are involved in a myriad of receptor signaling events through physical and functional interactions with growth factor receptors, including the insulin receptor90. In this way, ECM receptors orchestrate dynamic and specific signaling responses to diverse physiological and pathophysiological conditions. Integrins functionally link ECM changes to a multitude of conditions, including IR91 (summarized in Figure 2).

Integrins are heterodimers consisting of \(\alpha\) and \(\beta\) subunits with varying ligand specificities and expression in different tissues. Differentiated insulin-sensitive cells from SkM, adipose tissue, and liver express a variety of \(\alpha\) subunit isoforms but express only a single \(\beta\) integrin isoform (\(\beta 1\))17-49. Whole-body loss of the integrin \(\alpha 1\) subunit, a pro-fibrotic integrin receptor subunit that exclusively binds to \(\beta 1\), fails to protect against diet-induced SkM IR in mice; however, loss of the anti-fibrotic \(\alpha 2\) isoform that also binds to \(\beta 1\) is protective55. It is interesting to note that combined SkM and myocardial loss of the integrin \(\beta 1\) subunit results in IR in lean mice92. Integrin-linked kinase (ILK) is a protein that physically associates with the intracellular tail of the \(\beta\) integrin subunit93. In contrast to the IR caused by knockout of the integrin \(\beta 1\) subunit in both SkM and myocardium of lean mice94, SkM-specific loss of ILK (mILK-KO mice) results in improved SkM insulin action in DIO mice95. Liver-specific deletion of ILK also protects against IR in DIO mice96. Whether adipocyte ILK deletion has effects on nutrient metabolism remains to be determined.

Despite its name, ILK lacks a functional kinase domain but rather functions as a scaffold for at least 26 high-fidelity binding partners97. Most notable among these binding proteins are PINCH and parvin, which, together with ILK, form an ILK/PINCH/Parvin (IPP) complex. PINCH consists of two isoforms (PINCH1 and PINCH2) that have both distinct and overlapping cellular functions98. In the context of glucose homeostasis, PINCH can bind to Nck2, which in turn interacts with insulin receptor substrate-1 (IRS-1)99, a requisite for insulin signaling. Nck2 is highly expressed in epididymal adipose tissue and its genetic deletion in mice causes IR and increased lipolysis100. PINCH has also been implicated in the phosphorylation of Akt via interactions with ILK101. Three ubiquitously expressed isoforms of parvin exist (\(\alpha\), \(\beta\), and \(\gamma\)). \(\alpha\)- and \(\beta\)-parvin both can bind directly to f-actin and in this way

F1000Research 2017, 6(F1000 Faculty Rev):1758 Last updated: 27 SEP 2017
regulate cytoskeletal dynamics98. Parvin-mediated regulation of actin cytoskeletal dynamics is thought to occur, at least in part, via interactions between parvin and the Rho GTPase Rac99,100 and actin depolymerizing factor protein cofilin101. Rac1 is required for insulin-stimulated glucose uptake and is impaired during IR102, representing a potential link between integrins and insulin action. A potential role for γ-parvin in the context of insulin action has not been elucidated. Rac1 and cofilin are also involved in the regulation of numerous mitochondrial processes, including fission103, apoptosis104, and translocation105, demonstrating a link between integrins and the regulation of oxidative metabolism. Whether integrins and the IPP complex directly regulate Rac1 or cofilin in obesity is not yet known, nor is it known what role the IPP complex may play in obesity through its other binding partners.

A recent report shows that focal adhesion kinase (FAK), an alternative downstream target of integrin activation, can modulate insulin sensitivity through regulation of adipocyte survival106. In light of the complexities of the ECM, integrins, and intracellular signaling pathways, much remains to be learned about ECM-integrin interactions in IR.

Summary and future directions

The etiology of IR involves both cell-intrinsic regulation of nutrient metabolism and integrated systems pathophysiology. The established paradigm of meta-inflammation coupled with the emerging concept of meta-fibrosis illustrates the complex nature of IR; however, several major questions remain to be addressed. For example, the composition and organization of the ECM must be elucidated so that the contribution of individual proteins or complexes or both can be mechanistically understood. Additionally, the role of downstream intracellular substrates of integrin signaling must be defined in the context of IR and cellular metabolism. The complex nature and broad importance of ECM/integrin function will be better understood through interdisciplinary studies that draw expertise from numerous fields (such as mechanobiology, biophysics, endocrinology, and molecular metabolism).
It is anticipated that future studies will provide a more complete understanding of how the ECM functions as a biophysical regulator of whole-body function and support the development of novel therapeutics aimed at treating IR by mitigating meta-fibrosis.

Competing interests
The authors declare that they have no competing interests.

Grant information
The author(s) declared that this work was funded by National Institutes of Health (grants DK054902, DK05277, DK059637), NIDDK Mouse Metabolic Phenotyping Centers MICROMouse Program (grant 15GRU2558) and American Heart Association (grant 16POST2991001).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Aguilera M, Bhuket T, Torres S, et al.: Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA. 2015; 313(19): 1973–4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

2. Kang S, Tsai LT, Rosen ED: Nuclear Mechanisms of Insulin Resistance. Trends Cell Biol. 2016; 26(5): 341–51. PubMed Abstract | Publisher Full Text | Free Full Text

3. Gross B, Pawlik M, Lefebvre P, et al.: PPARs in obesity-induced T2DM, dyslipidemia and NAFLD. Nat Rev Endocrinol. 2017; 13(1): 36–49. PubMed Abstract | Publisher Full Text

4. Endorsed by The Obesity Society, Young DR, Hivert MF, et al.: The Obesity Society Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009; 41(2): 459–71. PubMed Abstract | Publisher Full Text

5. Tremblay A, Chaput JP: Adaptive reduction in thermogenesis and resistance to lose fat in obese men. Br J Nutr. 2009; 102(4): 488–92. PubMed Abstract | Publisher Full Text

6. Drouet E, St-Pierre S, Alméras N, et al.: Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr. 2001; 85(6): 715–23. PubMed Abstract | Publisher Full Text

7. Zitterl V, Zitterl V, Zitterl V, et al.: Medical and behavioral compensations in response to caloric restriction: implications for the maintenance of weight loss. PLoS One. 2009; 4(2): e4377. PubMed Abstract | Publisher Full Text | Free Full Text

8. Spearman RL, Almeida CA: Physical activity and resting metabolic rate. Proc Nutr Soc. 2008; 62(3): 621–34. PubMed Abstract | Publisher Full Text

9. Thomas DM, Bouchard C, Church T, et al.: Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis. Obes Rev. 2012; 13(10): 835–47. PubMed Abstract | Publisher Full Text | Free Full Text

10. Byrne NM, Wood RE, Shultz Y, et al.: Does metabolic compensation explain the majority of less-than-expected weight loss in obese adults during a short-term severe diet and exercise intervention? Int J Obes (Lond). 2012; 36(11): 1472–8. PubMed Abstract | Publisher Full Text

11. Shaw K, Gennat H, O’Reavy P, et al.: Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006; 4: CD003817. PubMed Abstract | Publisher Full Text

12. Jennings AE, Albarga A, Sigal RJ, et al.: The effect of exercise training on resting metabolic rate in type 2 diabetes mellitus. Med Sci Sports Exerc. 2009; 41(8): 1558–65. PubMed Abstract | Publisher Full Text

13. Amati F, Dubé JJ, Shah C, et al.: Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation. J Appl Physiol (1985). 2008; 105(3): 825–31. PubMed Abstract | Publisher Full Text | Free Full Text

14. Maclean PS, Bergouignan A, Corrier MA, et al.: Biology’s response to dieting: the impetus for weight regain. Am J Physiol Regul Integr Comp Physiol. 2011; 301(3): R581–600. PubMed Abstract | Publisher Full Text | Free Full Text

15. O’Reilly TJ, Friend DM, Guo J, et al.: Increases in Physical Activity Result In Diminishing Increments in Daily Energy Expenditure in Mice. Curr Biol. 2017; 27(3): 423–30. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

17. MacLean PS, Higgins JA, Giles ED, et al.: The role for adipose tissue in adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2016; 311(1): E66–68. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

19. Teich T, Dunford EC, Porras DP, et al.: Glucocorticoid antagonism limits adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction. Am J Physiol Endocrinol Metab. 2016; 311(1): E66–68. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

20. Lark DS, Fisher-Wellman KH, Neuber PD: High-fat load; mechanism(s) of insulin resistance in skeletal muscle. Int J Obes Suppl. 2012; 2(Suppl 2): S31–S36. PubMed Abstract | Publisher Full Text | Free Full Text

21. Lark DS, Fisher-Wellman KH, Neuber PD: High-fat load; mechanism(s) of insulin resistance in skeletal muscle. Int J Obes Suppl. 2012; 2(Suppl 2): S31–S36. PubMed Abstract | Publisher Full Text | Free Full Text

22. Hesselink MK, Schrauwen-Hinderling V, Schrauwen P: Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol. 2016; 12(11): 633–45. PubMed Abstract | Publisher Full Text

23. Theurey P, Rieusset J: Mitochondria-Associated Membranes Response to Nutrient Availability and Role in Metabolic Diseases. Trends Endocrinol Metab. 2017; 28(12): 32–45. PubMed Abstract | Publisher Full Text

24. Muoio DM, Neuber PD: Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012; 15(5): 595–605. PubMed Abstract | Publisher Full Text | Free Full Text

25. Satapali S, Kucejova B, Duarte JA, et al.: Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 2015; 125(12): 4447–62. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

26. Koves TR, Ussher JR, Noland RC, et al.: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008; 7(1): 45–56. PubMed Abstract | Publisher Full Text

27. Adams SH, Hoppel CL, Lok KH, et al.: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 2009; 139(7): 1073–81. PubMed Abstract | Publisher Full Text | Free Full Text

28. Noland RC, Koves TR, Seiler SE, et al.: Mitochondrial dysfunction and overnutrition compromises mitochondrial performance and metabolic flexibility. Cell Metab. 2012; 15(5): 764–77. PubMed Abstract | Publisher Full Text | Free Full Text
75. Tam CS, Chaudhuri R, Hutchison AT, et al.: Skeletal muscle extracellular matrix remodeling after short-term overfeeding in healthy humans. Metab Clin Exp. 2017; 67: 26–30. PubMed Abstract | Publisher Full Text | F1000 Recommendation

76. Kang L, Mayes WH, James FD, et al.: Matrix metalloproteinase 9 opposes diet-induced muscle insulin resistance in mice. Diabetologia. 2014; 57(3): 655–13. PubMed Abstract | Publisher Full Text | Free Full Text

77. Kang L, Lanteri L, Kennedy A, et al.: Hyaluronan accumulates with high-fat feeding and contributes to insulin resistance. Diabetes. 2013; 62(6): 1888–96. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

78. Ekstedt M, Fransen LE, Mathiesen UL, et al.: Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006; 44(4): 865–73. PubMed Abstract | Publisher Full Text

79. McCullough AJ: The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis. 2004; 8(3): 521–33, vii. PubMed Abstract | Publisher Full Term

80. Kohi R, Kirby M, Xanthakos SA, et al.: High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology. 2010; 52(3): 934–44. PubMed Abstract | Publisher Full Text | Free Full Text

81. Luo Y, Burrinton CM, Greif EC, et al.: Metabolic phenotype and adipose and liver features in a high-fat Western diet-induced mouse model of obesity-linked NAFLD. Am J Physiol Endocrinol Metab. 2016; 310(6): E418–39. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

82. Sun K, Tordman J, Clément K, et al.: Fibrosis and adipose tissue dysfunction. Cell Metab. 2013; 18(4): 470–7. PubMed Abstract | Publisher Full Text | Free Full Text

83. Gattazzo F, Urciuolo A, Ronaldo P: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014; 1840(8): 2506–19. PubMed Abstract | Publisher Full Text | Free Full Text

84. Ringer P, Colo G, Fässler R, et al.: Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol. 2017; pii: S0945-059X(17)30018-5. PubMed Abstract | Publisher Full Text

85. Kim SH, Turnbull J, Guimond S: Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011; 209: 139–51. PubMed Abstract | Publisher Full Text

86. Williams AS, Kang L, Wasserman DH: The extracellular matrix and insulin resistance. Trends Endocrinol Metab. 2016; 27(7): 357–66. PubMed Abstract | Publisher Full Text | Free Full Text

87. Schwander M, Shirasaki R, Pfaff SL, et al.: Beta1 integrins in muscle, but not in motor neurons, are required for skeletal muscle innervation. J Neurosci. 2004; 24(37): 8181–91. PubMed Abstract | Publisher Full Text

88. Schwander M, Leu M, Stumm M, et al.: Beta1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell. 2003; 4(5): 673–85. PubMed Abstract | Publisher Full Text

89. Liadaki K, Casar JC, Wessen M, et al.: α4 integrin marks interstitial myogenic progenitor cells in adult murine skeletal muscle. J Histochem Cytochem. 2012; 60(1): 31–44. PubMed Abstract | Publisher Full Text | Free Full Text

90. Zong H, Bastie CC, Xu J, et al.: Insulin resistance in striated muscle-specific integrin receptor beta1-deficient mice. J Biol Chem. 2009; 284(7): 4679–88. PubMed Abstract | Publisher Full Text | Free Full Text

91. Kang L, Mokshagundam S, Reuter B, et al.: Integrin-Linked Kinase in Muscle Is Necessary for the Development of Insulin Resistance in Diet-Induced Obese Mice. Diabetes. 2016; 65(6): 1590–600. PubMed Abstract | Publisher Full Text | Free Full Text

92. Williams AS, Treffs E, Lanteri L, et al.: Integrin-Linked Kinase Is Necessary for the Development of Diet-Induced Hepatic Insulin Resistance. Diabetes. 2017; 66(2): 325–34. PubMed Abstract | Publisher Full Text | Free Full Text

93. Dobrev A, Fielding A, Foster LJ, et al.: Mapping the integrin-linked kinase interactome using SILAC. J Proteome Res. 2008; 7(4): 1740–9. PubMed Abstract | Publisher Full Text

94. Kovalevich J, Tracy B, Langford D: PINCH: More than just an adaptor protein in cellular response. J Cell Physiol. 2011; 226(4): 940–7. PubMed Abstract | Publisher Full Text | Free Full Text

95. Tu Y, Liang L, Frank SJ, et al.: Src homology 3 domain-dependent interaction of Nck-2 with insulin receptor substrate-1. Biochem J. 2001; 354(Pt 2): 315–22. PubMed Abstract | Publisher Full Text | Free Full Text

96. Dusseault J, Li B, Haider N, et al.: Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipigenesis. Diabetes. 2016; 65(9): 2652–66. PubMed Abstract | Publisher Full Text | F1000 Recommendation

97. Xu Z, Fukuda T, Li Y, et al.: Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. J Biol Chem. 2005; 280(30): 27631–7. PubMed Abstract | Publisher Full Text

98. Nikolopoulos SN, Turner CE: Actopaxin, a new focal adhesion protein that binds paxillin LD motifs and actin and regulates cell adhesion. J Cell Biol. 2000; 151(7): 1435–48. PubMed Abstract | Publisher Full Text | Free Full Text

99. Berrier AL, Martinez R, Bokoch GM, et al.: The integrin beta tail is required and sufficient to regulate adhesion signaling to Rac1. J Cell Sci. 2002; 115(22): 4285–91. PubMed Abstract | Publisher Full Text | F1000 Recommendation

100. Pignatelli J, LaLonde SE, LaLonde DP, et al.: Actopaxin (ε-parvin) phosphorylation is required for matrix degradation and cancer cell invasion. J Biol Chem. 2012; 287(44): 37309–20. PubMed Abstract | Publisher Full Text | Free Full Text

101. Shibue T, Brooks MW, Weinberg RA: An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell. 2013; 24(4): 481–98. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

102. Sylow L, Jensen TE, Kleinert M, et al.: Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes. 2013; 62(6): 1865–75. PubMed Abstract | Publisher Full Text | Free Full Text

103. Li S, Xu S, Roeofs BA, et al.: Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol. 2015; 208(1): 109–23. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

104. Chua BT, Volbracht C, Tan KO, et al.: Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nat Cell Biol. 2003; 5(12): 1083–9. PubMed Abstract | Publisher Full Text

105. Matveeva EA, Venkova LS, Chernovianenko IS, et al.: Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol Open. 2015; 4(10): 1290–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

106. Luk CT, Shi SY, Cai EP, et al.: FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nat Commun. 2017; 8: 14360. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✓ ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1. **John Thyfault** Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, USA

 Competing Interests: No competing interests were disclosed.

1. **Jane Shearer** 1,2 1 Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N1N4, Canada
 2 Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N1N4, Canada

 Competing Interests: No competing interests were disclosed.

1. **Michael Riddell** School of Kinesiology and Health Science, York University, Toronto, ON, Canada

 Competing Interests: No competing interests were disclosed.