Testing Quantum Dynamics using Signaling

Aditi Sen(De) and Ujjwal Sen
ICFO-Institut de Ciències Fòtoniques, Jordi Girona 29, Edifici Nexus II, E-08034 Barcelona, Spain
Institut für Theoretische Physik, Universität Hannover, D-30167 Hannover, Germany

We consider a physical system in which the description of states and measurements follow the usual quantum mechanical rules. We also assume that the dynamics is linear, but may not be fully quantum (i.e. unitary). We show that in such a physical system, certain complementary evolutions, namely cloning and deleting operations that give a better fidelity than quantum mechanically allowed ones, in one (inaccessible) region, lead to signaling to a far-apart (accessible) region. To show such signaling, one requires certain two-party quantum correlated states shared between the two regions. Subsequent measurements are performed only in the accessible part to detect such phenomenon.

The existence of quantum correlation in states shared between distant partners has several important fundamental and practical impacts [1]. One can obtain violation of local realism by using states with quantum correlation [2]. On the other hand, one may use states with quantum correlation in nonclassical tasks like cryptography [3], dense coding [4], teleportation [5], etc. Non-quantum effects have generated substantial interest in quantum mechanics. And (ii) and (iii) lead to quantum correlation in states [6]. We consider a physical system in which (i) the states (|ψ⟩, |φ⟩, etc.) are elements of a complex Hilbert space, just as in quantum mechanics. And (ii) measurements are also assumed just as in quantum mechanics. The duo is said to form the “statics” part of the theory. We further assume that (iii) the dynamics is linear, i.e. |ψ⟩ → |ψ′⟩ and |φ⟩ → |φ′⟩ implies a|ψ⟩ + b|φ⟩ → a|ψ′⟩ + b|φ′⟩, for complex a and b. Note that (i), (ii), and (iii), by themselves, does not imply a quantum dynamics (i.e. the usual unitary dynamics). For our purposes, it is important to note that (i) and (ii) lead to quantum correlation in states of separated parties. We show that in such a physical system, certain complementary families of non-quantum evolutions give rise to signaling. This gives us an independent basis to believe in the quantum dynamics.

In checking for the effect, we will use cloning [6] and deleting [8] operations as our tools. It was shown in [6] that exact cloning or exact deleting, results in a change of von Neumann entropy [10]. Within the quantum formalism, although exact cloning and deleting are not possible, approximate versions of such operations are possible (see e.g. [11, 12]). To check the effect, one requires to prepare certain bipartite states, which we show to be available within the reach of current technology. Importantly, we do not need to directly observe (perform measurements in) the region whose dynamics is being probed. We suppose that one part (B) of the bipartite state is lost to the “environment”. The other part (A) remains in the “accessible” part of the experiment (see Fig. 2). In this paper we show, that in our physical system (i.e. one which follows (i), (ii), and (iii)), whenever the evolution in the environment (B), is such that a cloning or deleting happens with a better fidelity than the best quantum mechanical cloning or deleting machine, there occurs a change of entropy in the accessible part (A) of the experiment. This change of entropy can be detected in the A part, and therefore results in a signaling to the A part. Note here that if we believe that signaling is not possible [13], then our results prove that cloning and deleting (that are better than what can be done by the best quantum mechanical machines) are not possible, without assuming the whole quantum dynamics. The reason for the choice of the two operations of cloning and deleting is that it has been generally argued, that they are in a sense complementary. Thus, it is conceivable that at least one of such non-quantum mechanical operations or “nearby” ones are possible to occur, if at all, in the environment.

Cloning and deleting. Let us first briefly consider the notions of cloning and deleting. In cloning, we want to have the evolution |ψ⟩|0⟩ → |Ψ⟩, |φ⟩|0⟩ → |Φ⟩, where |0⟩ is a fixed “blank” state in which the closed state is to appear. In the exact case, we want to have |Ψ⟩ = |ψ⟩|ψ⟩ and |Φ⟩ = |φ⟩|φ⟩. This however is not possible under a quantum mechanical evolution, when |ψ⟩ and |φ⟩ are not orthogonal [11, 14]. Consequently, one may want to have the best cloning machine, i.e. one that takes |Ψ⟩ as close as possible to |ψ⟩|ψ⟩, and at the same time takes |Φ⟩ as close as possible to |φ⟩|φ⟩. The best cloning machine is one, which maximizes the quantity F_{clone} = (⟨ψ|⟨ψ|Ψ⟩ + ⟨φ|⟨φ|Φ⟩)/2 [11]. In the case of deleting, we want to have the complementary evolution |ψ⟩|ψ⟩ → |Ψ_d⟩ and |φ⟩|φ⟩ → |Φ_d⟩ (in a closed system), where in the perfect case, we want to have |Ψ_d⟩ = |ψ⟩|0⟩ and |Φ_d⟩ = |φ⟩|0⟩, |0⟩ being a fixed state from which information (whether it was |ψ⟩ or |φ⟩) has been deleted. Again this exact case is not possible under a quantum mechanical operation, when |ψ⟩ and |φ⟩ are nonorthogonal [11, 12]. So just as in the case of cloning, one may again want to obtain |Ψ_d⟩ as close as possible to |ψ⟩|0⟩, and at the same time |Φ_d⟩ as close as possible to |φ⟩|0⟩. The best deleting machine is one that, for some fixed |0⟩, maximizes the quantity F_{delete} = (⟨ψ|⟨0|Ψ_d⟩ + ⟨φ|⟨0|Φ_d⟩)/2 [12].

We now show that

Theorem 1 In a physical system that follows (i), (ii), and (iii), for two nonorthogonal states (|ψ⟩ and |φ⟩),
cloning evolutions that allow fidelities that are better than the best quantum mechanically attainable fidelity \(F_{\text{clone}} \), will result in signaling.

Before proving the theorem, let us note that in \[13\] (cf. \[16\]), it was shown that a better fidelity than the best quantum mechanical fidelity leads to signaling. And Ref. \[17\] shows that exact deleting results in signaling. But let us consider symmetric cloning. However in both these cases, they considered universal cloning and deleting. Such cloning and deleting are invalidated by linearity. Here however we consider cloning and deleting of two nonorthogonal states, which cannot be ruled out by linearity. No cloning and no deleting of two nonorthogonal states can be proven by using unitarity, a more strict restriction than just linearity. It has been widely regarded that violation of linearity will lead to signaling (cf. \[18\]). Our results show that important linear operations can also lead to signaling.

Proof. Let us consider symmetric cloning. However all the considerations carry over, with a little more algebra, to the asymmetric case also. Suppose that for the input states \(|\psi\rangle\) and \(|\phi\rangle\), the best quantum mechanically attainable cloning fidelity is \(F_{\text{clone}} \), and is attained with the states \(|\Psi\rangle\) and \(|\Phi\rangle\). Suppose also that there exists a (non-quantum) cloning machine that produces the states \(|\Psi\rangle\) and \(|\Phi\rangle\), giving a better fidelity \(F'_{\text{clone}} = (\langle \psi | \langle \psi | \Psi \rangle + \langle \phi | \langle \phi | \Phi \rangle) / 2 \), that is \(> F_{\text{clone}} \).

In Fig. 1, we give a pictorial representation of the states \(|\psi\rangle\), \(|\phi\rangle\), \(|\Psi\rangle\), \(|\Phi\rangle\), \(|\Psi'\rangle\), and \(|\Phi'\rangle\).

As \(F'_{\text{clone}} > F_{\text{clone}} \), the cone formed by \(|\Psi\rangle\) and \(|\Phi\rangle\) will be wider than that formed by \(|\Psi'\rangle\) and \(|\Phi'\rangle\) (see Fig. 1). Since we consider symmetric cloning, all three cones will be coaxial. Thus we have \(|\langle \Psi' | \Phi\rangle| < |\langle \Psi | \Phi\rangle|\). But \(|\langle \Psi' | \Phi\rangle| = |\langle \psi | 0 \rangle |\phi\rangle|, since \(|\Psi\rangle\) and \(|\Phi\rangle\) are produced from \(|\psi\rangle\) \(|\phi\rangle\) by quantum mechanical operations. Therefore we have that \(|\langle \Psi' | \Phi\rangle| < |\langle \psi | 0 \rangle |\phi\rangle|\), a clear departure from quantum mechanical evolutions (since inner product must be preserved in quantum mechanical evolutions). And whenever this relation holds, the von Neumann entropy of \(q_{\text{out}} = (|\Psi'\rangle \langle \Psi' | + |\Phi\rangle \langle \Phi |) / 2 \) is greater than the von Neumann entropy of \(q_n = (|\psi\rangle \langle 0 | \langle 0 | + |\phi\rangle \langle 0 |) / 2 \).

Consider now the bipartite state

\[
|\alpha\rangle = \frac{1}{\sqrt{2}} (|0\rangle_A (|\psi\rangle \langle 0 |)_B + |1\rangle_A (|\phi\rangle \langle 0 |)_B),
\]

where \(|0\rangle|1\rangle = 0\). Suppose that a super-quantum mechanical cloning evolution, attaining \(F_{\text{clone}} \) for the states \(|\psi\rangle\) and \(|\phi\rangle\), acts on part B of the state \(|\alpha\rangle\), so that the state \(|\alpha\rangle\) evolves into \(|\alpha'\rangle = (|0\rangle_A |\Psi\rangle_B + |1\rangle_A |\Phi\rangle_B) / \sqrt{2}\). Note that we have explicitly used linearity (item (iii)), in obtaining the state \(|\alpha_1\rangle\). The local density matrices of the B part of the states \(|\alpha\rangle\) and \(|\alpha_1\rangle\) are \(q_{\text{out}} \) and \(q_{\text{out}} \). We therefore have a difference in von Neumann entropy of the input and output states in the B part. Since \(|\alpha\rangle\) and \(|\alpha_1\rangle\) are pure states, this difference can be exactly verified in the A part.

Similar reasoning holds for the case of deleting also. Only Fig. 4 must be replaced by one in which an outer cone is formed by \(|\Psi_d\rangle\) and \(|\Phi_d\rangle\) and an inner cone by \(|\psi\rangle \langle 0 |\) and \(|\phi\rangle \langle 0 |\). The middle cone will again be formed by \(|\Psi_d'\rangle\) and \(|\Phi_d'\rangle\). Here \(|\Psi_d\rangle\) and \(|\Phi_d\rangle\) will represent the states which are obtained from \(|\psi\rangle \langle 0 |\) and \(|\phi\rangle \langle 0 |\), by the best quantum mechanical deleting operation, assumed to be \(F_{\text{delete}} \). Also the shared bipartite state that must be considered is \(|\alpha'\rangle = (|0\rangle_A (|\psi\rangle \langle 0 |)_B + |1\rangle_A (|\phi\rangle \langle 0 |)_B) / \sqrt{3}\). In this case, a super-quantum deleting evolution in the B part, results in a decrease of entropy in the A part, so that

Theorem 2 A physical system that follows (i), (ii), and (iii), for two nonorthogonal states \(|\psi\rangle\) and \(|\phi\rangle\), deleting evolutions that allow fidelities that are better than the best quantum mechanically attainable fidelity \(F_{\text{delete}} \), will result in signaling.

We will now show that it is possible to test the effect, by showing that the states \(|\alpha\rangle\) and \(|\alpha'\rangle\) (used in Theorems 1 and 2 above) can be prepared with current technology. Photons are as yet the best candidates for quantum communication. We give our strategy in terms of the polarization degree of freedom of photons.

The case of cloning. In this case, we require to prepare the state \(|\alpha\rangle\) of Eq. 1. Let us write it as \(\alpha = |\gamma\rangle_1 (|\psi\rangle_2 + |\phi\rangle_2) |0\rangle_3 \), where the photon 1 is to go to Alice (A) who is in the accessible part of the experiment. The photons 2 and 4 are to be sent to the environment, and will not be directly observed (see Fig. 2). For nonorthogonal \(|\psi\rangle\) and \(|\phi\rangle\), the first part \(|\gamma\rangle\) is a
nonmaximally entangled state. It can of course be written in Schmidt decomposition as \(a |0\rangle |0\rangle + b |1\rangle |1\rangle \), where \(a \) and \(b \) are positive numbers with \(a^2 + b^2 = 1 \). We choose the local axes such that this nonmaximally entangled state is \(a |V\rangle |H\rangle + b |H\rangle |V\rangle = |\beta\rangle \) (say), where \(|V\rangle \) and \(|H\rangle \) are respectively the vertical and horizontal polarizations of a photon. This can be prepared by spontaneous pulsed parametric down conversion 19, 20.

A schematic description of the arrangement is given in Fig. 2. A pump laser is directed towards a down conversion crystal. There is then a certain probability of creating a pair in the state 21. Subsequently, local filtering operations are performed to create the nonmaximally entangled state \(|\beta\rangle = a |V\rangle_1 |H\rangle_2 + b |H\rangle_1 |V\rangle_2 \) in the modes 1 and 2. (These local filtering operations are not shown in the figure.) After passing through the crystal, the pulse is reflected back to the crystal by a delay mirror (see e.g. 22). There is again a certain probability of creation of a pair in the state \(|\psi^+\rangle \) in the modes 3 and 4. We consider only those cases when both the pairs are created. The mode 3 is detected and acts as a trigger to indicate that a photon is actually present in mode 4. The polarization of the photon in mode 4 is set to vertical by using a polarizer. So the photon in mode 4 is ultimately in the state \(|V\rangle \), and this acts as our blank state \(|0\rangle \) in the total state \(|\alpha\rangle_{12} = |\beta\rangle_{12} |0\rangle_4 \). The mode 4 and the mode 2 (after being reflected by two mirrors) is directed to a half-silvered mirror, so that mode 4 passes through and mode 2 is reflected. The delay in the creation of the pair 34 is made such that the photons in modes 2 and 4 reach the half-silvered mirror at the same time. Then these two photons are directed to the environment. The photon in mode 2 runs towards Alice (A), and remains in the accessible part of the experiment.

Here we are using Type II down conversion 23. In Type I case, the path degrees of freedom are used for entanglement generation. This is a problem here, as we want the B part photons to ultimately be directed towards a single direction. Note here that we have not used entanglement swapping 24, 25 to prepare our entangled state. Here, the photon 3 acts as a trigger for guaranteeing the existence of photon 4, while the photon 1 will subsequently be detected by Alice (and will act as a trigger for the state created in modes 12), and we consider only those runs of the experiment, in which both the trigger photon 3 and the photon 1 are detected.

The case of deleting. In this case, we must prepare the state \(|\alpha'\rangle \). This can be obtained after local filtering operations on a GHZ state 26

\[
(\langle 0\rangle_A (\langle 0\rangle_B + \langle 1\rangle_B)_{1B} + \langle 1\rangle_A \langle 1\rangle_B)/\sqrt{2},
\]

after which the first part remains in the accessible part (A) of the experiment and the second and third parts are aligned to a single direction (just as in Fig. 2 in case of cloning) and sent to the environment. Experimental observation of the GHZ state has been reported in 27. However the experiment relies for its success on actual observation of all the photons that make up the GHZ state (plus a trigger photon). Whereas this is sufficient for many important purposes, it is not sufficient for us. In our case, at least two photons are not to be directly observed. However in a proposal for preparation for the GHZ state 28, the state is prepared without the restriction of having to actually detect the photons (making up the GHZ), to know that a GHZ state is produced. After production of a GHZ by this proposal, local filtering operations can be carried out to produce the state \(|\alpha'\rangle \).

After the photons in the B part are sent to the environment, Alice makes measurements on her photon to determine the von Neumann entropy of her state. The von Neumann entropy can conveniently be found by measurement results from outcomes in a Mach-Zehnder interferometer, to which the photon in mode 1 can be directed into. More economical methods , although requiring measurements over many copies, can be found in Refs. 28. The von Neumann entropy of the A part of the state \(|\alpha\rangle \), or the 1 part of the state \(|\beta\rangle |V\rangle_4 \) is

\[
H(a^2) = -a^2 \log a - b^2 \log b^2.
\]

Similarly, let the von Neumann entropy of the A part of the state \(|\alpha'\rangle \) be

\[
H(a'^2).
\]

As we have seen in Theorem 1 above, any departure from the value \(H(a^2) \) in the experiment for cloning, or from the value \(H(a'^2) \) in the experiment for deleting, of the von Neumann entropy of the polarization degrees of freedom of the photon 1, as detected by Alice from her experimental results, will indicate a signaling. This in turn indicates that there are non-quantum mechanical operations that have acted on the modes 2 and 4, that were directed to the environment.

The same experiment can be carried on for different values of \(a, a' \). The values of \(a, a' \) can be varied by varying the parameters of the local filtering apparatus. Each set of \(\{a, a'\} \), checks for a duo of non-quantum mechanical evolutions, one from super-quantum mechanical cloning, and the other from super-quantum mechanical deleting. Thus we can check for two complementary families of possible non-quantum mechanical evolutions on the modes 2 and 4. In an actual experiment, there will

FIG. 2: Schematic description of the arrangement in the case of cloning. The down conversion crystal is denoted as a box, and delay mirror, mirrors, and half-silvered mirror are denoted respectively by DM, M, and HSM. See text for details.
be some noise. The results obtained from such experiments can be used to put bounds on the power of possible non-quantum mechanical evolutions in the environment.

In principle, the “environment” can be some extreme situations, e.g. an evaporating black hole, where conditions may be far too extreme for the laws established in the usual laboratories to be applicable (see e.g. \[30\], cf. \[31\]). However just as in the recent proposal \[31\], the way to send the probes (the photons 2 and 4 in our case) to an evaporating black hole, remains a problem. But let us mention that we consider a bipartite state instead of the three-party state of \[31\]. Another conceivable situation is where a person claims to be able to perform non-quantum operations, but denies direct access to his/her laboratory. Our procedure can then be used to check for his/her claim. However the main impetus, in this paper (of the Theorems 1 and 2), is to have an independent reason for believing in the quantum dynamics.

In conclusion, we have shown that in a physical system that follows (i), (ii), and (iii), a cloning operation acting in a region B, that leads to a better than quantum mechanical fidelity, results in signaling to a far-apart region A. The same conclusion can be obtained for deleting. The strategy to check for such signaling does not require to perform measurements in the region B. The two-party states required to perform the strategy can be prepared with current technology. This gives us an independent basis to believe in the quantum dynamics.

We acknowledge support from the Alexander von Humboldt Foundation, and the EC Contract QUPRODIS.

[1] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).
[2] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 57, 777 (1935); J.S. Bell, Physics 1, 195 (1964).
[3] C.H. Bennett and G. Brassard, in Proceedings of the International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York (1984); A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[4] C.H. Bennett and S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).
[5] C.H. Bennett et al., Phys. Rev. Lett. 70, 1895 (1993).
[6] B. Mielnik, Quant-phi/0012041.
[7] W.K. Wootters and W.H. Zurek, Nature 299, 802 (1982); D. Dieks, Phys. Lett. 92A, 271 (1982).
[8] A.K. Pati and S.L. Braunstein, Nature 404, 164 (2000).
[9] M. Horodecki, R. Horodecki, A. Sen(De), and U. Sen, quant-phi/0306044.
[10] The von Neumann entropy of ρ is $S(\rho) = -\text{tr} \rho \log_2 \rho$.
[11] V. Bužek and M. Hillery, Phys. Rev. A 54, 1844 (1996); D. Bruß et al., Phys. Rev. A 57, 2368 (1998); R.F. Werner, Phys. Rev A, 58, 1827 (1998).
[12] A.K. Pati and S.L. Braunstein, quant-phi/0007121.
[13] See e.g. A. Shimony, in Foundations of Quantum Mechanics in the Light of New Technology, ed. S. Kamefuchi, Phys. Soc. Japan, Tokyo, 1983.
[14] H.P. Yuen, Phys. Lett. 113A, 405 (1986).
[15] N. Gisin, Phys. Lett. A 242, 1 (1998).
[16] D. Bruß, G.M. D’Ariano, C. Macchiavello, and M.F. Sacchi, Phys. Rev. A 62, 062302 (2000).
[17] A.K. Pati and S.L. Braunstein, quant-phi/0305145.
[18] C. Simon, V. Bužek, and N. Gisin, Phys. Rev. Lett. 87, 170405 (2001); M. Ferrero, D. Salgado, and J.L. Sánchez-Gómez, Phys. Rev. A 70, 014101 (2004); ibid., quant-phi/0501093.
[19] C.K. Hong and L. Mandel, Phys. Rev. A 31, 2409 (1985); ibid., Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).
[20] See also e.g. the appendix of A. Sen(De), U. Sen, and M. Żukowski, Phys. Rev. A 68, 062301 (2003).
[21] One has to go through the usual quantum evolution to derive the output state of a parametric down conversion \[19, 20\]. However the form of the output state can also be checked in an experiment, without directly going to the quantum formalism. Also, the state is produced in the accessible part of our experiment, where we may believe in the quantum formalism, without necessarily believing it to be true in the environment.
[22] A. Lamas-Linares, J.C. Howell, and D. Bouwmeester, Nature 412, 887 (2001).
[23] P.G. Kwiat et al., Phys. Rev. Lett. 75, 4337 (1995).
[24] M. Żukowski, A. Zeilinger, M.A. Horne, and A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993); M. Żukowski, A. Zeilinger, and H. Weinfurter, Ann. N.Y. Acad. Sci. 755, 91 (1995).
[25] S. Bose, V. Vedral, and P.L. Knight, Phys. Rev. A 57, 822 (1998); ibid. 60, 194 (1999).
[26] D.M. Greenberger, M.A. Horne, and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. M. Kafatos (Kluwer, Dordrecht, 1989); N.D. Mermin, Am. J. Phys. 58, 731 (1990).
[27] D. Bouwmeester et al., Phys. Rev. Lett. 82, 1345 (1999).
[28] See the experimental proposal in Fig. 3 of A. Zeilinger, M.A. Horne, H. Weinfurter, and M. Żukowski, Phys. Rev. Lett. 78, 3031 (1997).
[29] P. Horodecki, Phys. Rev. A 68, 052101 (2003); M. Keyl and R.F. Werner, ibid. 64, 052311 (2001); O. Gühne et al., ibid. 66, 062305 (2002); P. Horodecki and A.K. Ekert, Phys. Rev. Lett. 89, 127902 (2002); A.K. Ekert et al., ibid. 88, 217901 (2002).
[30] U. Yurtsever and G. Hockney, quant-phi/0312160.
[31] T. Banks, M.E. Peskin, and L. Susskind, Nucl. Phys. B 244, 125 (1984).