Assessment of pan coefficient models for the estimation of the reference evapotranspiration in a Mediterranean environment in Turkey

Deniz Levent Koç
Agricultural Structures and Irrigation/Agriculture Faculty, Çukurova University, Adana, Turkey

ABSTRACT

Reference evapotranspiration (ETo) is essential for irrigation practices and the management of water resources and plays a vital role in agricultural and hydro-meteorological studies. The FAO-56 Penman-Monteith (PM) equation, recommended as the sole standard method of calculating ETo by the Food and Agriculture Organization of the United Nations (FAO), is the most commonly used and accurate model to determine the ETo and evaluate ETo equations. However, it requires many meteorological variables, often restricting its applicability in regions with poor or missing meteorological observations. Many empirical and semi-empirical equations have been developed to predict the ET₀ from numerous meteorological data. The FAO-24 Pan method is commonly used worldwide to estimate ETo because it is simple and requires only pan coefficients. However, pan coefficients (Kₚan) should be determined accurately to estimate ET₀ using the FAO-24 Pan method. As the accuracy and reliability of the Kₚan models can be different from one location to another, they should be tested or calibrated for different climates and surrounding conditions. In this study, the performance of the eight Kₚan models was evaluated using 22-year daily climate data for the summer growing season in Adana, which has a Mediterranean climate in Turkey. The results showed that the mean seasonal pan coefficients estimated by all Kₚan models differed significantly at a 1% significance level from those observed by FAO-56 PM according to the two-tail z test. In the study, ETo values estimated by Kₚan models were compared against those obtained by the FAO-56 PM equation. The seasonal and monthly performance of Kₚan models was varied, and the Wahed & Snyder model presented the best performance for ETo estimates at the seasonal scale. (RMSE = 0.550 mm d⁻¹; MAE = 0.425 mm d⁻¹; MBE = −0.378 mm d⁻¹; RE = 0.134). In addition, it showed a good performance in estimating ETo on a monthly scale. The Orang model showed the lowest performance in estimating ETo among all models, with a very high relative error on the seasonal scale. (RMSE = 1.867 mm d⁻¹; MAE = 1.806 mm d⁻¹; MBE = −1.806 mm d⁻¹; RE = 0.455). In addition, it showed the poorest performance on a monthly scale. Hence, the Wahed & Snyder model can be considered to estimate ETo under Adana region conditions after doing the necessary calibration.

Subjects Agricultural Science, Plant Science, Natural Resource Management, Atmospheric Chemistry

Keywords Evapotranspiration, FAO-56 Penman-Monteith (PM), Pan coefficient models, Mediterranean environment

How to cite this article Koç DL. 2022. Assessment of pan coefficient models for the estimation of the reference evapotranspiration in a Mediterranean environment in Turkey. PeerJ 10:e13554 http://doi.org/10.7717/peerj.13554
INTRODUCTION

Adana is situated in the northeast of the Mediterranean region, and it is the gateway to the Cilicia plain. In Adana, Irrigation is essential in crop production because rainfall amounts and their distribution are inadequate during the crop season. The summer growing season for main crops is between April and October. Several crops can be planted in the same crop year in Adana, where fertile cultivated land occupies a large area due to the suitable climate. Cereal, fruit, vegetable, and citrus are grown in the region, and their production efficiency is high (Kafalı Yılmaz, 2019).

It is fundamental to determine the water demands of irrigated plants for effective water management. A simple way to determine crop water requirements is to calculate reference evapotranspiration (ETo). Accurate estimation of crop reference evapotranspiration (ETo) is essential in managing water resources efficiently and scheduling farm irrigation (Grismer et al., 2002). Reference evapotranspiration (ETo) is a vital numerical tool for scientific and management models and decision frameworks in arid and semi-arid regions. Specifically, in irrigated agriculture, reliable estimates of ETo are crucial for water management to enhance ecosystem conservation and increase water productivity (Negm, Minacapillia & Provenzanoa, 2018).

It is common to estimate plant water use and water demands using crop reference evapotranspiration (ETo) and appropriate crop coefficients (K_c) in different agroclimatic regions. The Food and Agriculture Organization (FAO) of the United Nations recommended the FAO-56 Penman-Monteith (PM) equation as the standard for estimation of reference evapotranspiration (ETo) and evaluation of the ETo equations (Allen et al., 1998). The fundamental difficulty in using the FAO-56 PM equation is the requirement of adequate weather data, which may not be available in most meteorological stations. Furthermore, evapotranspiration estimation depends upon the quality of the meteorological data. Agrometeorological stations may not be equipped to run this model (Chiew et al., 1995). For this reason, the FAO-24 Pan equation is being used commonly in irrigation projects and estimating ETo (Irmak, Haman & Jones, 2002).

The pan coefficient should be determined, which depends on upwind fetch distance, wind speed, and relative humidity, to estimate ETo using the FAO-24 Pan equation (Grismer et al., 2002). Doorenbos & Pruitt (1977) suggested a table for a few fetch distances under different relative humidity and wind speed to estimate the value of K_{pan}. For a more accurate estimation of ETo, several equations have been further developed to determine the pan coefficient, and many studies have been conducted to convert pan evaporation to ETo. The researchers investigated and compared different pan coefficient models concerning their suitability for ETo estimation. Irmak, Haman & Jones (2002) evaluated two K_{pan} models using 23-year climate data in north-central Florida. They found an overestimation of ETo obtained by the Snyder model compared with the FAO-56 PM method, whereas ETo values obtained by the Frevert model performed well. In a study in a semi-arid region in Brazil conducted by Sentelhas & Folegatti (2003), the Pereira and Cuenca models made the best ETo estimates when compared ETo measured with the automatic weighing lysimeter. In contrast, Snyder was the worst model with the highest error among the K_{pan}
models. In another study performed in a semi-arid region in India, Gundekar, Khodke & Sarkar (2008) estimated ETo values using pan coefficient models. They compared them with ETo values calculated by the FAO-56 PM method. According to the results, the Snyder K\textsubscript{pan} model was the best suited for this region, whereas the Pereira, Cuenca, and Orang K\textsubscript{pan} models gave a poor performance. Sabziparvar et al. (2010) evaluated seven K\textsubscript{pan} models in two different climate regions of Iran. Orang and Raghhuwansi & Wallender were the best K\textsubscript{pan} models under cold semi-arid climate conditions, whereas Snyder and Orang models had the best performance under warm, arid climate conditions. Rahimikhoob (2009) evaluated four K\textsubscript{pan} models using 10-year mean climate data for a subtropical climate in the north of Iran. The results showed that the Orang model gave more accurate ETo estimates than other K\textsubscript{pan} models. Cuenca, Snyder models significantly overestimated ETo compared with the FAO-56 PM method. In another study performed in an arid region in Iran, Heydari & Heydari (2014) used 21 years of climate data. They determined the Cuenca model showed the best adaptation compared with the FAO-56 PM. Wahed & Snyder and Raghhuwansi & Wallender models were successful in predicting ETo. Aschonitis, Antonopoulos & Papamichail (2012) evaluated six K\textsubscript{pan} models in the Thessaloniki region in Greece. They found that the Cuenca model indicated the best adaptation to the ASCE-PM method compared to the other models. Khobragade et al. (2019) developed pan coefficients for a humid tropical monsoon region, Chandigarh in India, using the optimization technique. Researchers found a value of 0.92 as an optimized pan coefficient for the annual time scale, and the pan coefficients varied significantly by month and season for the study area. In addition, most of the popular K\textsubscript{pan} models are unsuitable for the study area. Singh et al. (2014) performed a study in a semi-arid region in India. The results showed that ETo calculated from Modified Snyder and Orang model agreed with the FAO-56 PM method for daily, monthly, and annual estimates compared to other approaches. Another study performed by Pradhan et al. (2013) in a semi-arid region in India indicated that the Snyder model gave close agreement with the FAO-56 PM method, followed by the Cuenca, Orang, and Allen & Pruitt models. According to study results performed in a dry sub-humid region in India by Kar et al. (2017), the Snyder model indicated close agreement with the FAO-56 PM method. The values estimated by the Pereira model were mismatched with the FAO-56 PM method. In northern Iran’s mild, humid climate, Tabari, Grismer & Trajkovic (2013) evaluated eight K\textsubscript{pan} models with the FAO-56 PM method. The ETo estimates computed by the Snyder model best matched the ETo estimates by the FAO-56 PM method, whereas the Pereira model gave the greatest underestimate of the ETo.

Considering the FAO-56 PM, this method is recommended as the sole standard approach for estimating ETo and validating other models (Allen et al., 1998). This method can be applied in various environments and climate conditions without local calibration and has been validated using lysimeters under a wide range of climatic conditions (Landeras, Ortiz-Barredo & Lo'pez, 2008; Shiri et al., 2012; Feng et al., 2017). But the main limitation of this method is that it requires many meteorological inputs that are not commonly available, especially in developing countries (Feng et al., 2017). Thus, the FAO-24 Pan method is widely used to estimate ETo because it is simple and requires daily Class A pan evaporation...
and pan coefficients (Irmak, Haman & Jones, 2002). There are only a few reported studies (Aschonitis, Antonopoulos & Papamichail, 2012; Babakos et al., 2020; Grismer et al., 2002) in which popular pan coefficient models were evaluated under Mediterranean climate conditions. Therefore, the present study aimed to assess the performances of K_{pan} models for reference evapotranspiration estimation based on pan evaporation conversions. The ETo obtained by eight popular K_{pan} models using the 22-year daily climate data were compared to the ETo obtained by the FAO-56 PM model in Adana, which has a hot-summer Mediterranean climate.

MATERIALS & METHODS

Study area
In the present study, the Adana weather station (latitude = 37°00′14″N; longitude = 35°20′39″E) located in central Adana operated by the Turkish State Meteorological Service (TSMS) is used to assess pan coefficient models. Adana plain is Turkey’s most extensive and fertile delta plain (Kafalı Yılmaz, 2019). It consists of two parts called Çukurova and Upper Plain (Kafalı Yılmaz, 2019). Adana has a hot-summer Mediterranean climate. The study area is on flat terrain at an altitude of 24 m above sea level. According to Köppen–Geiger classification, Adana is Csa (warm temperate, summer dry, hot summer) (Öztürk, Çetinkaya & Aydın, 2017). According to the long-term measurement period (1929–2020), the rain in Adana falls mainly in the winter. The average annual rainfall is 668.1 mm, of which about 50% of rainfall occurs in December, January, and February, the three winter months. The months with the least precipitation are July and August, with an average of 10.2 and 9.6 mm, respectively. June and August are the hottest months, with a mean daily temperature of 28.2 and 28.7 °C, whereas January and February are the coldest months, with a mean daily temperature of 9.5 and 10.5 °C, respectively (Turkish State Meteorological Service, 2021). According to the long-term measurement period (1990-2019), the daily mean relative humidity is 65.8% in winter months while it is 68.9% in summer months, and its annual average is 66.0%. In the same measurement period, the daily mean wind speed is 1.33 in the winter months, whereas it is 1.40 in the summer months, and its annual average is 1.31 m s^{−1} (Turkish State Meteorological Service, 2020).

Models and approaches
Eight pan coefficients (K_{pan}) models derived from some weather data were tested and summarized below in Table 1. Long-term daily climatic parameters from 1998 to 2019 were used for this study.

FAO-56 PM method was used to test the accuracy of the ETo estimated by K_{pan} models because FAO recommended it for different climatic conditions (Allen et al., 1998).

\[
\text{ETo} = \frac{0.408 \times \Delta \times (R_n - G) + \gamma \times \frac{900}{T+273} \times U_2 \times (e_s - e_a)}{\Delta + \gamma \times (1 + 0.34 \times U_2)}
\]

where ETo = reference evapotranspiration (mm d^{−1}); Δ = slope of vapor pressure curve (kPa[°] C^{−1}); R_n = mean daily net radiation (MJ m^{−2} d^{−1}); G = mean daily soil heat flux density (MJ m^{−2} d^{−1}); γ = psychrometric constant (kPa K^{−1}); T = mean daily air
temperature at 2 m height (°C); \(U_2 \) = mean daily wind speed at 2 m height (m s\(^{-1}\));
\(e_s \) = saturation vapor pressure (kPa); and \(e_a \) = actual vapor pressure (kPa);
\((e_s - e_a) \) = saturation vapor pressure deficit (kPa) (Allen et al., 1998).

In this study, the ETo software (IAM_ETo) developed by Steduto & Snyder (1998) was used for determining the FAO-56 PM reference evapotranspiration. All of the data processing and calculations were performed in Microsoft Excel 2016.

Based on the FAO-24 Pan equation developed by Doorenbos & Pruitt (1977), pan evaporation data were converted to ETo using Eq. (2).

\[
ETo = K_{pan} \times E_{pan}
\]

where \(K_{pan} \) = pan coefficient; \(E_{pan} \) = pan evaporation (mm d\(^{-1}\)).
Table 1 Pan coefficient models used in the study.

Model	References	Formula
Cuenca	Cuenca (1989)	$K_{\text{pan}} = 0.475 - (2.4 \times 10^{-4} \times U) + (5.16 \times 10^{-3} \times \text{RH}) + (1.18 \times 10^{-3} \times F) - (1.6 \times 10^{-5} \times \text{RH}^2) - (1.01 \times 10^{-6} \times F^2) - (8 \times 10^{-9} \times \text{RH}^2 \times U) - (1 \times 10^{-8} \times \text{RH}^2 \times F)$
Allen and Pruitt	Allen & Pruitt (1991)	$K_{\text{pan}} = 0.108 - 0.000331 \times U + 0.0442 \times \ln(F) + 0.1434 \times \ln(\text{RH}) - 0.000631 \times [\ln(F)]^2 \times \ln(\text{RH})$
Raghuwanshi and Wallender	Raghuwanshi & Wallender (1998)	$K_{\text{pan}} = 0.482 + 0.024 \times \ln(F) - 0.000376 \times U + 0.0045 \times \text{RH}$
Pereira	Pereira et al. (1995)	$K_{\text{pan}} = 0.85 \times (\Delta + \gamma)/[\Delta + \gamma \times (1 + \frac{X3}{X4})] \Delta = 4098 \times [0.6108 \times \exp\left(\frac{2.4073}{T+257.3}\right)]$
Orang	Orang (1998)	$K_{\text{pan}} = 0.512062 - 0.000321 \times U + 0.002889 \times \text{RH} + 0.031886 \times \ln(F) - 0.000107 \times \text{RH} \times \ln(F)$
Modified Snyder	Grismer et al. (2002)	$K_{\text{pan}} = 0.5944 + 0.0242 \times X1 - 0.0583 \times X2 - 0.1333 \times X3 - 0.2083 \times X4 + 0.0812 \times X5 + 0.1344 \times X6(X1 = \ln(F), X2, X3, X4 = 0 \text{ if } U < 175, X2 = 1 \text{ if } 175 \leq U < 425, X3 = 1 \text{ if } 425 \leq U < 700, X4 = 1 \text{ if } U > 700 \text{ (km day}^{-1}), X5, X6 = 0 \text{ if } \text{RH} < 40\%, X5 = 1 \text{ if } 40\% \leq \text{RH} < 70\%, X6 = 1 \text{ if } \text{RH} \geq 70\%$
Wahed and Snyder	Wahed & Snyder (2008)	$K_{\text{pan}} = 0.5321 - 0.00030 \times U + 0.0249 \times \ln(F) + 0.0025 \times \text{RH}$

Notes.

where U = mean daily wind speed at 2 m height (km day$^{-1}$); F = the upwind fetch distance of low-growing vegetation (m) (Fetch was taken 50 m due to location of the Class A pan); RH = mean daily relative humidity (%); Δ = slope of saturation water vapor pressure curve at daily mean temperature (kPa K$^{-1}$); T = mean daily air temperature (°C); γ = psychrometric constant (kPa K$^{-1}$) (Psychrometric constant was calculated to be 0.06717 for the study area); r_c and r_a = canopy and aerodynamic resistance with $r_c / r_a = 0.34 \times U_2$ (Allen et al., 1998). U_2 = mean daily wind speed at 2 m height (m s$^{-1}$).

The ‘observed’ Class A pan coefficients were calculated by dividing FAO-56 PM E_{To} values by E_{pan} values (Eq. (3)).

$$K_{\text{pan-obs}} = \frac{E_{\text{To}}}{E_{\text{pan}}}.$$ \hspace{1cm} (3)

Statistical analysis

A two-tail Z test was conducted to determine if the observed and models-estimated seasonal mean K_{pan} values differed significantly. Daily mean K_{pan} values observed and estimated during April-October in the years 1998–2019 were used in the Z-test. In addition, the five statistical parameters suggested by Karunanithi et al. (1994) and Jacovides & Kontoyiannis (1995) were used in the evaluation of the pan coefficient models in estimating E_{To} (Table 2). These five indices were calculated at the monthly and seasonal scales.

RESULTS AND DISCUSSION

Estimation of pan coefficients

This study calculated daily and monthly mean K_{pan} values using eight K_{pan} models. The pan coefficients obtained using K_{pan} models and the FAO-56 PM equation are presented
Table 2 Statistical parameters used to assess pan coefficient models.

Statistical parameter	Symbol	Equation		
Root mean square error	RMSE	\(RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (E_{To,\text{estimated},i} - E_{To,\text{observed},i})^2} \)		
Relative error	RE	\(RE = \frac{\text{RMSE}}{\bar{O}} \)		
Mean bias error	MBE	\(MBE = \frac{1}{n} \sum_{i=1}^{n} (E_{To,\text{estimated},i} - E_{To,\text{observed},i}) \)		
Mean absolute error	MAE	\(MAE = \frac{1}{n} \sum_{i=1}^{n}	E_{To,\text{estimated},i} - E_{To,\text{observed},i}	\)
t-statistic	t	\(t = \left[\frac{(n-1)\text{MBE}^2}{\text{RMSE}^2 - \text{MBE}^2} \right]^{1/2} \)		

Notes.
\(n = \) the total number of data; \(E_{To,\text{estimated}} = K_{pan} \) model-estimated \(E_{To} \) values; \(E_{To,\text{observed}} = \) FAO-56 PM \(E_{To} \) values; \(\bar{O} = \) the mean of FAO-56 PM \(E_{To} \) values.

Table 3 Mean monthly values of the observed \(K_{pan} \)-obs. \((E_{To}/E_{pan})\) and computed \(K_{pan} \) by using \(K_{pan} \) models in years 1998–2019.

Month	\(E_{To}/E_{pan} \)	S	MS	WS	C	AP	O	P	RW
April	0.87	0.83	0.76	0.64	0.77	0.80	0.40	0.77	0.78
May	0.80	0.84	0.77	0.64	0.77	0.80	0.40	0.78	0.78
June	0.73	0.84	0.77	0.65	0.78	0.80	0.39	0.78	0.79
July	0.70	0.85	0.78	0.65	0.78	0.81	0.38	0.79	0.79
August	0.68	0.85	0.77	0.65	0.78	0.81	0.39	0.80	0.79
September	0.69	0.83	0.76	0.64	0.77	0.80	0.40	0.79	0.78
October	0.71	0.81	0.75	0.63	0.75	0.79	0.42	0.79	0.77
Average	0.74	0.84	0.77	0.64	0.77	0.80	0.40	0.79	0.78

Notes.
\(*E_{To} \) is calculated using FAO-56 PM equation.
S, Snyder; MS, Modified Snyder; WS, Wahed & Snyder; C, Cuenca; AP, Allen & Pruitt; O, Orang; P, Pereira; RW, Raghuwanshi & Wallender.

in Table 3. The pan coefficient values estimated using \(K_{pan} \) models showed a slight change during the season for each month, while those observed by FAO-56 PM showed variation among the months. It can be seen in Table 3 that \(K_{pan} \) values estimated by the Snyder model were higher than those of other models in all months during the season, while the Orang model gave lower pan coefficient values. The mean monthly pan coefficients during the season estimated by \(K_{pan} \) models ranged from 0.38 to 0.85, and those observed by FAO-56 PM ranged from 0.68 to 0.87. Allen & Pruitt (1991) and Babakos et al. (2020) reported that the range of pan coefficient values is nearly between 0.35 to 1.1 for various pan types and various local conditions of climates and surrounding environments.

As shown in Table 3, observed \(K_{pan} \) values were lower in dry months (July, August, September), whereas they were higher (April and May) in the rainy months. Similar results have been found in the studies performed in a Mediterranean environment by Aschonitis, Antonopoulos & Papamichail (2012) and in a humid tropical climate by Pradhan et al. (2013). Aschonitis, Antonopoulos & Papamichail (2012) assessed six \(K_{pan} \) models by two years of \(E_{pan} \) measurements using ASCE-PM as a reference in the Thessaloniki plain in Greece, which has a semi-arid Mediterranean environment. They likewise determined that observed \(K_{pan} \) values were higher in rainy months (April and May) and lower in dry
months (June, July, August). The mean monthly K_{pan} values estimated by K_{pan} models ranged from 0.32 to 0.75, and those observed by ASCE-PM ranged from 0.67 to 0.76.

The pan coefficient depends on wind speed (U), relative humidity (RH), and upwind fetch distance.

As shown in Table 3, observed K_{pan} values were 0.87 and 0.80 in April and May, respectively, whereas they ranged from 0.68 to 0.73 from June to October. However, K_{pan} coefficients estimated by models indicated a slight change in all months because RH and U values changed slightly during the season. The Snyder model estimated close to observed K_{pan} values in April and May, whereas the Wahed & Snyder model estimated close to observed K_{pan} values in August. In contrast, the Modified Snyder, Cuenca, Allen & Pruitt, Pereira, and Raghuwanshi & Wallender models estimated K_{pan} values close to observed K_{pan} values in May.

According to Z-test, the results showed that mean seasonal pan coefficients estimated by all K_{pan} models during April-October in the years 1998–2019 differed significantly at a 1% significance level from those observed by FAO-56 PM ($p < 0.01$, $n = 214$). The results were given in Table S1.

Estimation of reference evapotranspiration

The daily Class A pan evaporation data and pan coefficients determined by K_{pan} models were used to estimate reference evapotranspiration (ETo). The ETo values estimated by eight K_{pan} models were tested against those calculated using the FAO-56 PM equation.

The performance of the K_{pan} models according to RMSE, MAE, and RE statistics for seasonal scale is shown in Figs. 2 and 3. It can be seen from the scatter plot that the performance of the K_{pan} models varied for the seasonal scale. None of the K_{pan} models could estimate the ETo satisfactorily, but the Wahed & Snyder model had better performance to estimate ETo for the seasonal scale than other models (RMSE = 0.550 mm d$^{-1}$; MAE = 0.425 mm d$^{-1}$; RE = 0.134). The Wahed & Snyder model tended to underestimate ETo values during the season. In contrast, the Snyder, Modified Snyder, Cuenca, Allen & Pruitt, Pereira, and Raghuwanshi & Wallender models often overestimated ETo values. The Orang K_{pan} model underestimated ETo values during the season. It can be seen in Fig. 3 the Orang model resulted in the highest relative error at the seasonal scale [RE (%) = 45.5] compared to other models. According to the results, the accuracy of the K_{pan} models was as follows ranking. Wahed & Snyder >Modified Snyder >Cuenca >Raghuwanshi & Wallender >Pereira >Allen & Pruitt >Snyder >Orang.

Similarly, Aschonitis, Antonopoulos & Papamichail (2012) reported that Snyder and Orang were the worst models to estimate ETo in a semi-arid Mediterranean environment in Thessaloniki in Greece. However, they found that the Cuenca model indicated the best adaptation to the ASCE PM equation compared to the other K_{pan} models. Grismer et al. (2002) concluded that among the six K_{pan} equations and FAO-24 table, the Allen and Pruitt K_{pan} model yielded better ETo estimations than other K_{pan} models in California conditions with a Mediterranean climate. Cobaner (2013) used three pan-based equations: the FAO-24 Pan (Doorenbos & Pruitt, 1977), the Snyder ETo (Snyder et al., 2005), and the Ghare ETo (Ghare, Porey & Ingle, 2006) in the Fresno and Bakersfield weather stations.
Figure 2 Performance of K_{pan} models estimating ETo at seasonal scale in the years 1998–2019. Each point represents 22 years of daily mean ETo (April to October).

Koç (2022), PeerJ, DOI 10.7717/peerj.13554/fig-2

located in California, which has a Mediterranean climate. In his study, the daily Class A pan evaporation and reference evapotranspiration data are used as inputs to the wavelet regression (WR) models to estimate the ETo obtained using the FAO-56 PM equation. The performance of the WR models is compared with those of empirical models and their calibrated versions. His study selected the Allen & Pruitt K_{pan} model for the FAO-24 Pan equation because Grismer et al. (2002) determined it as the best K_{pan} model in California conditions. The WR model and the FAO-24 Pan equation yielded more accurate ETo estimation than those of the Snyder ETo and Ghare ETo equations. The WR model performed slightly better in predicting the ETo than the FAO-24 Pan equation. Trajkovic & Kolakovic (2010) evaluated the reliability of pan-based approaches (FAO-24 Pan, Snyder ETo, Ghare ETo) for estimating ETo, comparing them against daily lysimeter data from Policoro, Italy, which has a semi-arid Mediterranean climate. K_{pan} values obtained by radial basis function (RBF) were used in the study because Trajkovic & Kolakovic (2010)
presented that the RBF network predicted K_{pan} values better than the K_{pan} equations of Frevert, Hill & Braaten (1983) and Snyder (1992). The results indicated that the Snyder equation estimated the ETo better than the FAO-24 Pan equation, although it does not require the relative humidity and wind speed data. Estimating the pan coefficients with the RGF model but not determining the most appropriate pan coefficient model for the region may have caused this result. In a study conducted by Gundekar, Khodke & Sarkar (2008) in semi-arid conditions in India, Pereira, Cuenca, and Orang K_{pan} models showed the worst performance to estimate ETo. However, the Snyder K_{pan} model showed the best performance to estimate ETo in the study. Sabziparvar et al. (2010) also reported that the Snyder K_{pan} model gave the best performance for the warm-arid climate of Iran. On the other hand, it gave a poor performance in a study performed by Sentelhas & Folegatti (2003) in a warm-humid environment in Brazil and another study in the humid tropical region of India by George (2012).
It can be concluded that the pan coefficient is very dependent on local and climatic conditions and should be determined by comparing the pan data with the FAO-56 PM ETo estimates (Chiew et al., 1995).

The values of RMSE, MBE, RE, MAE, and t-statistic used to evaluate the K_{pan} models for the monthly scale are given in Tables 4–8. The results in Tables 4–8 show that the Wahed & Snyder model performed better than other models, mainly from June to October. However, it gave poor performance in the rainy months (April, May). The Wahed & Snyder model had the smallest RMSE, RE, MAE, MBE, and t values from June to October among the models. All models showed varied relative errors (RE) by months (Table 6). According to models, RE as a percentage ranges from 5.5% to 54.4%. The Wahed & Snyder model errors ranged from 5.5% to 10.1% from June to October. The highest error happened in April at 28.4%. The Orang model showed the highest error, ranging from 37.2% to 54.4% from April to October (Table 6). The errors shown by other models during April-October were as follows: Snyder (10.3%–31%), Modified Snyder (9.7%–19.8%), Cuenca (9.8%–20.8%), Allen & Pruitt (10.2%–24.9%), Pereira (9.7%–23.1%), Raghuwanshi & Wallender (10.0%–22.3%).

As shown in Table 5, according to MBE values, K_{pan} models overestimated and underestimated mean ETo values according to months. Snyder and Raghuwanshi & Wallender models underestimated ETo values in April, but they overestimated ETo in other months. The Modified Snyder, Cuenca, and Pereira models underestimated ETo values in April and May. In contrast, these models overestimated ETo values in other months. Wahed & Snyder and Orang models underestimated ETo in all months.

In this study, monthly mean ETo values estimated by K_{pan} models ranged from 1.55 to 6.49 mm d$^{-1}$, whereas observed monthly mean ETo values ranged from 2.58 to 5.16 mm d$^{-1}$ (Table 9). The Wahed & Snyder model estimated the lowest monthly mean ETo with 2.41 mm d$^{-1}$ in October and the highest monthly mean ETo with 4.95 mm d$^{-1}$ in July. The Orang and Snyder models produced the least accurate monthly mean ETo estimates. The Wahed & Snyder model accurately estimated the monthly mean ETo in August. In addition, it showed good performance estimating ETo values in July, September, and October with small t values (4.705–4.870), as seen in Table 8. The Wahed & Snyder model had the smallest t values from July to October, whereas the Orang model had the highest t values during the season. Modified Snyder, Cuenca, Allen & Pruitt, Pereira,
and Raghuwanshi & Wallender models accurately estimated the mean monthly ETo in May. Similarly, Irmak, Haman & Jones (2002), Gundekar, Khodke & Sarkar (2008), and Mahmud et al. (2020) indicated the success of K_{pan} models in accurately predicting ETo varied according to months.

CONCLUSIONS

Eight K_{pan} models were assessed for their potential to estimate reference evapotranspiration. The FAO-56 PM equation was used as a reference to evaluate the K_{pan} models. Generally, the K_{pan} models showed inadequate performance in estimating ETo for monthly and

Month/Model	April	May	June	July	August	September	October
S	−0.217	0.260	0.945	1.327	1.407	0.912	0.512
MS	−0.464	−0.094	0.441	0.737	0.869	0.541	0.303
WS	−0.937	−0.750	−0.430	−0.208	−0.018	−0.153	−0.164
C	−0.450	−0.072	0.481	0.797	0.920	0.563	0.300
AP	−0.329	0.092	0.679	0.992	1.116	0.741	0.439
O	−1.835	−2.019	−2.216	−2.269	−1.891	−1.478	−0.938
P	−0.438	−0.004	0.559	0.846	1.032	0.716	0.453
RW	−0.394	0.005	0.568	0.862	0.991	0.616	0.375

Month/Model	April	May	June	July	August	September	October
S	0.103	0.124	0.187	0.263	0.310	0.253	0.217
MS	0.155	0.097	0.108	0.152	0.198	0.156	0.141
WS	0.284	0.196	0.101	0.061	0.055	0.062	0.096
C	0.152	0.098	0.115	0.163	0.208	0.162	0.141
AP	0.123	0.102	0.151	0.199	0.249	0.207	0.189
O	0.544	0.488	0.448	0.441	0.407	0.396	0.372
P	0.149	0.097	0.128	0.172	0.231	0.200	0.192
RW	0.139	0.100	0.131	0.175	0.223	0.175	0.166

Month/Model	April	May	June	July	August	September	October
S	0.301	0.405	0.945	1.327	1.407	0.912	0.514
MS	0.476	0.357	0.460	0.737	0.869	0.541	0.318
WS	0.937	0.750	0.447	0.247	0.209	0.192	0.200
C	0.463	0.360	0.492	0.797	0.920	0.563	0.316
AP	0.362	0.370	0.679	0.992	1.116	0.741	0.444
O	1.835	2.019	2.216	2.269	1.891	1.478	0.938
P	0.454	0.363	0.562	0.846	1.032	0.716	0.456
RW	0.412	0.367	0.572	0.862	0.991	0.616	0.386
seasonal scales. Orang model showed the poorest performance in estimating ETo monthly and seasonal scales. However, the Wahed & Snyder model showed the best performance in estimating ETo at monthly and seasonal scales among the models. The Wahed & Snyder model accurately estimated the monthly mean ETo in August. In addition, it showed good performance by estimating mean ETo from June to October with ranging of 5.5% to 10.1% relative errors. However, the Wahed & Snyder model still cannot be recommended as an alternative to the FAO-56 PM equation. There is a need for its calibration in estimating ETo in Adana region conditions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.
Competing Interests
The author declares that he has no competing interests.

Author Contributions
• Deniz Levent Koç conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
 The raw measurements are available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.13554#supplemental-information.

REFERENCES

Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage. Paper (56). Rome: FAO.

Allen RG, Pruitt WO. 1991. FAO-24 Reference evapotranspiration factors. Journal of Irrigation and Drainage Engineering 117(5):758–773 DOI 10.1061/(ASCE)0733-9437(1991)117:5(758).

Aschonitis VG, Antonopoulos VZ, Papamichail DM. 2012. Evaluation of pan coefficient equations in a semi-arid Mediterranean environment using the ASCE-Standardized Penman-Monteith method. Journal of Agricultural Sciences 3(1):58–65 DOI 10.4236/as.2012.31008.

Babakos K, Papamichail D, Tziachris P, Pisinaras V, Demertzki K, Aschonitis V. 2020. Assessing the robustness of pan evaporation models for estimating reference crop evapotranspiration during recalibration at local conditions. Hydrology 7(3):62 DOI 10.3390/hydrology7030062.

Chiew FHS, Kamaladasa NN, Malano HM, McMahon TA. 1995. Penman-Monteith, FAO-24 reference crop evapotranspiration and Class-A Pan data in Australia. Agricultural Water Management 28:9–21 DOI 10.1016/0378-3774(95)01172-F.

Cobaner M. 2013. Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique. Irrigation Science 31:119–134 DOI 10.1007/s00271-011-0297-x.

Cuenca RH. 1989. Irrigation system design: an engineering approach. Prentice Hall, Englewood Cliffs. 552. Evapotranspiration. Water Resources Bulletin 10(3):486–498.

Doorenbos J, Pruitt WO. 1977. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage. Paper (24). FAO, Rome.

Feng Y, Jia Y, Cui N, Zhao L, Li C, Gong D. 2017. Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China. Agricultural Water Management 181:1–9 DOI 10.1016/j.agwat.2016.11.010.
Frevert DK, Hill RW, Braaten BC. 1983. Estimation of FAO evapotranspiration coefficients. *Journal of Irrigation and Drainage Engineering* **109**(2):265–270 DOI 10.1061/(ASCE)0733-9437(1983)109:2(265).

George C. 2012. Updating Class A pan coefficients (Kp) for estimating reference evapotranspiration (ETo) in the humid tropical region of Kerala. *Journal of Tropical Agriculture* **50**:1–2.

Ghare AD, Porey PD, Ingle RN. 2006. Discussion “of Simplified estimation of reference evapotranspiration from pan evaporation data in California” by Snyder, RL, Orang M, Matyac S, Grismer, ME. *Journal of Irrigation and Drainage Engineering* **132**(5):519–520 DOI 10.1061/(ASCE)0733-9437(2006)132:5(519).

Grismer ME, Orang M, Snyder R, Matyac R. 2002. Pan evaporation to reference evapotranspiration conversion methods. *Journal of Irrigation and Drainage Engineering* **128**(3):180–184 DOI 10.1061/(ASCE)0733-9437(2002)128:3(180).

Gundekar HG, Khodke UM, Sarkar S. 2008. Evaluation of pan coefficient for reference crop evapotranspiration for semi-arid region. *Irrigation Science* **26**(2):169–175 DOI 10.1007/s00271-007-0083-y.

Heydari MM, Heydari M. 2014. Evaluation of pan coefficient equations for estimating reference crop evapotranspiration in the arid region. *Archives of Agronomy and Soil Science* **60**(5):715–731 DOI 10.1080/03650340.2013.830286.

Irmak S, Haman DZ, Jones JW. 2002. Evaluation of Class A Pan coefficients for estimating reference evapotranspiration in humid location. *Journal of Irrigation and Drainage Engineering* **128**(3):153–159 DOI 10.1061/(ASCE)0733-9437(2002)128:3(153).

Jacovides CP, Kontoyiannis H. 1995. Statistical procedures for the evaluation of evapotranspiration computing models. *Agricultural Water Management* **27**:365–371 DOI 10.1016/0378-3774(95)01152-9.

Kafalı Yılmaz F. 2019. Changes in the production of industrial agricultural products in Adana plains. *Atatürk University Journal of Social Sciences Institute* **23**(3):973–986.

Kar SK, Nema AK, Mishra CD, Sinha BL. 2017. Evaluation of Class-A Pan coefficient models for estimation of reference crop evapotranspiration for dry sub-humid climates. *Journal of Agricultural Engineering* **54**(3):67–74.

Karunanithi N, Grenney WJ, Whitley D, Bovee K. 1994. Neural networks for river flow prediction. *Journal of Computing in Civil Engineering* **8**(2):201–220 DOI 10.1061/(ASCE)0887-3801(1994)8:2(201).

Khobragade SD, Semwal P, Kumar ARS, Nainwal HC. 2019. Pan coefficients for estimating open-water surface evaporation for a humid tropical monsoon climate region in India. *Journal of Earth System Science* **128**:175(2019) DOI 10.1007/s12040-019-1198-2.

Landeras G, Ortiz-Barredo A, López JJ. 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). *Agricultural Water Management* **95**:553–565 DOI 10.1016/j.agwat.2007.12.011.
Mahmud K, Siddik S, Khatun K, Islam T. 2020. Performance evaluation of Class A Pan coefficient models to estimate reference evapotranspiration in Mymensingh region of Bangladesh. *Journal of Bangladesh Agricultural University* 18(3):742–750 DOI 10.5455/JBAU.101511.

Negm A, Minacapillia M, Provenzanoa G. 2018. Downscaling of American National Aeronautics and Space Administration (NASA) daily air temperature in Sicily, Italy, and effects on crop reference evapotranspiration. *Agricultural Water Management* 209:151–162 DOI 10.1016/j.agwat.2018.07.016.

Orang M. 1998. Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables. Unpublished California Department of Water Resources Report. Sacramento, USA.

Öztürk MZ, Çetinkaya G, Aydın S. 2017. Climate types of Turkey according to Köppen-Geiger climate classification. *İstanbul University Journal of Geography* 35:17–27.

Pereira AR, Nova NA, Pereira AS, Barbieri V. 1995. A model for the Class A Pan coefficient. *Agricultural and Forest Meteorology* 76(2):75–82 DOI 10.1016/0168-1923(94)02224-8.

Pradhan S, Sehgal VK, Das DK, Bandyopadhyay KK, Singh R. 2013. Evaluation of pan coefficient methods for estimating FAO-56 reference crop evapotranspiration in a semi-arid environment. *Journal of Agrometeorology* 15(1):90–93.

Raghuwanshi NS, Wallender WW. 1998. Converting from pan evaporation to evapotranspiration. *Journal of Irrigation and Drainage Engineering* 124(5):275–277 DOI 10.1061/(ASCE)0733-9437(1998)124:5(275).

Rahimikhoob A. 2009. An evaluation of common pan coefficient equations to estimate reference evapotranspiration in a subtropical climate (north of Iran). *Journal of Irrigation Science* 27:289–296 DOI 10.1007/s00271-009-0145-4.

Sabziparvar AA, Tabari H, Acini A, Ghafouri M. 2010. Evaluation of Class A Pan coefficient models for estimation of reference crop evapotranspiration in cold semi-arid and warm arid climates. *Water Resources Management* 24(5):909–920 DOI 10.1007/s11269-009-9478-2.

Sentelhas PC, Folegatti MV. 2003. Class A Pan coefficients (Kp) to estimate daily reference evapotranspiration (ETo). *Revista Brasileira de Engenharia Agrícola e Ambiental* 7(1):111–115 DOI 10.1590/S1415-43662003000100018.

Shiri J, Kişi Ö, Landeras G, López JJ, Nazemi AH, Stuyt LCPM. 2012. Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). *Journal of Hydrology* 414–415:302–316 DOI 10.1016/j.jhydrol.2011.11.004.

Singh PK, Patel SK, Jayswal P, Chinchorkar SS. 2014. Usefulness of Class A Pan coefficient models for computation of reference evapotranspiration for a semi-arid Region. *MAUSAM* 65(4):521–528 DOI 10.54302/mausam.v65i4.1186.

Snyder RL. 1992. Equation for evaporation pan to evapotranspiration conversions. *Journal of Irrigation and Drainage Engineering* 118(6):977–980 DOI 10.1061/(ASCE)0733-9437(1992)118:6(977).
Snyder RL, Orang M, Matyac S, Grismer ME. 2005. Simplified estimation of reference evapotranspiration from pan evaporation data in California. *Journal of Irrigation and Drainage Engineering* 131(3):249–253 DOI 10.1061/(ASCE)0733-9437(2005)131:3(249).

Steduto P, Snyder RL. 1998. IAM_ETo. Software program and user’s guide. *Méditerranéennes: Série B. Études et Recherches* 20:1–64.

Tabari H, Grismer ME, Trajkovic S. 2013. Comparative analysis of 31 reference evapotranspiration methods under humid conditions. *Irrigation Science* 31:107–117 DOI 10.1007/s00271-011-0295-z.

Trajkovic S, Kolakovic S. 2010. Comparison of simplified pan-based equations for estimating reference evapotranspiration. *Journal of Irrigation and Drainage Engineering* 136(2):137–140 DOI 10.1061/(ASCE)IR.1943-4774.0000133.

Turkish State Meteorological Service. 2020. General directorate of state meteorology affairs. Available at https://mevbis.mgm.gov.tr/mevbis/ui/index.html#Workspace (accessed on 18 March 2020).

Turkish State Meteorological Service. 2021. General directorate of state meteorology affairs. Available at https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=ADANA (accessed on 15 October 2021).

Wahed AMH, Snyder RL. 2008. Simple equation to estimate reference evapotranspiration from evaporation pans surrounded by fallow soil. *Journal of Irrigation and Drainage Engineering* 134(4):425–429 DOI 10.1061/(ASCE)0733-9437(2008)134:4(425).