Molecular mechanisms for environmentally induced plasticity in the positioning of meiotic recombination at hotspots

Tresor O. Mukiza 1,2, Reine U. Protacio 1, Mari K. Davidson 1, and Wayne P. Wahls 1 *

1 Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA

2 Present address: Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678

*To whom correspondence should be addressed. Voice: +1 (501) 686-5787; Fax: +1 (501) 526-7008; Email: wahlswayne@uams.edu
Abstract

In meiosis, Spo11/Rec12-initiated homologous recombination is clustered at hotspots that regulate its frequency and distribution across the genome. Intriguingly, the intensities and positions of recombination hotspots can change dramatically in response to intracellular and extracellular conditions, and can display epigenetic memory. Here, using the fission yeast *Schizosaccharomyces pombe*, we reveal mechanisms for hotspot plasticity. We show that each of six hotspot-activating proteins (transcription factors Atf1, Pcr1, Php2, Php3, Php5, Rst2) is rate-limiting for promoting recombination at its own DNA binding site, allowing each class of hotspot to be regulated independently by agonistic and antagonistic signals. We also discovered that the regulatory protein-DNA complexes can establish a recombinationally poised epigenetic state before meiosis. Notably, Atf1 and Pcr1 controlled the activation of DNA sequence-dependent hotspots to which they do not bind; and they do so by regulating the expression of other hotspot-activating proteins. Thus, while each transcription factor activates its own class of DNA sequence-dependent hotspots directly in cis, cross-talk between regulatory networks modulates in trans the frequency and positioning of recombination at other classes of DNA sequence-dependent hotspots. We posit that such mechanisms allow cells to alter the frequency distribution of meiotic recombination in response to metabolic states and environmental cues.

Keywords

Recombination; meiosis; recombination hotspot; transcription factor; epigenetics
Introduction

In meiosis cells express the broadly conserved Spo11/Rec12 protein which, along with other components of the basal meiotic recombination machinery, catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination (1-3). The broken chromosome uses its homologous partner for template-directed repair, which yields recombinant chromosomes that harbor detectable gene conversion events, a subset of which have associated crossing over. Consequently, at any given location in the genome, there is general correspondence between the frequency of DSBs and the frequency of recombinants. In many, diverse taxa (e.g., fungi, plants, vertebrates), the DSBs and recombination events cluster at “hotspots” that regulate the frequency and distribution of recombination across the genome (4-7).

In a subset of metazoans (e.g., mice, cattle, primates), the positions of hotspots are shaped by Prdm9, and changes in its DNA binding domain confer dramatic, evolutionarily rapid changes in the distribution of recombination (8,9). Many other, sequence-specific DNA binding proteins that do not evolve as rapidly also position recombination at hotspots (10) and, correspondingly, hotspot locations are more stable in species that lack Prdm9 (e.g., birds, amphibians, many fishes, canids, marsupials, plants, fungi). The global distribution of DSB hotspots can be defined with precision using several molecular tools (11-17); and the reproducibility of such measures is exemplified by two, extensively studied, highly diverged organisms, fission yeast and budding yeast. Experiments conducted using different detection methods, at different times, and even in different laboratories have yielded similar patterns for the distribution of DSB hotspots within each of these species, differing primarily in the resolution and sensitivity of the assay employed (14-20). However, most of the intra-species comparative studies have used similar genetic backgrounds and experimental conditions, such as the media and temperature in which meiosis was induced. Remarkably, other experiments revealed that differences in metabolic states and environmental cues can trigger dramatic changes in the positioning of recombination at hotspots, even within isogenic or genetically identical strains.

Plasticity in the frequency distribution of meiotic recombination is a long-recognized, well-documented phenomenon. For example, differences in sex or mating type affect the distribution of recombination among hotspots of diverse species (e.g., fungi, mammals), as does the addition of an ectopic mating type cassette (21-24). Both auxotrophies and nutritional states, such as the addition or removal of amino acids in the media, affect hotspot activity (25,26). Differences in parental mating type and the freezing of diploids each affect the activity of hotspots in subsequent meiosis, which suggests that there is epigenetic imprinting (21,27). Such imprinting can also be inferred from the structure and composition of chromatin at hotspots (28-30). Differences in temperature during meiosis affect patterns of recombination across the genomes of diverse species (31), and in two of these species the effects of temperature on the global distribution of recombination-initiating DSBs have been examined. In budding yeast only about 20% of DSB hotspots, as defined using a frequency threshold, occur at the same positions when meiosis is carried out at 14 °C, 30 °C and 37 °C (32). In fission yeast differences in temperature affect the distribution of DSBs (23), as well as rates of recombination (33), at DNA sequence motif-dependent hotspots (34,35). Hypothetically, such regulatory DNA sites and their binding proteins might contribute to the plasticity of recombination positioning (30,32). There are other, even more perplexing manifestations of plasticity. For example, while Prdm9 can modulate the initiation of recombination at its own DNA binding sites (24), the deletion of Prdm9 leads to the generation of new hotspots elsewhere in the genome (36). A similar situation applies for transcription factors Bas1 and Ino4 of budding yeast, whose removal represses DSBs at some hotspots and induces DSBs at
others (37,38). In summary, environmental conditions and metabolic states can reshape—in
some cases quite dramatically and by yet unknown mechanisms—the frequency distribution of
meiotic recombination across the genomes of diverse taxa.

To gain insight into potential mechanisms for the plasticity of recombination events, we studied
three exceptionally well characterized classes of recombination hotspots in fission yeast. Each
class of hotspot is regulated by a discrete DNA sequence motif that has been defined
functionally at single-nucleotide resolution by scanning, base pair substitutions in the genome
(Table 1) (39-41). In each case, the binding of transcription factors to those DNA sites is
essential for hotspot activity. The Atf1-Pcr1 heterodimer (of the ATF/CREB/AP-1 family)
promotes recombination at M26 (CRE-like) DNA sites (5,34,42); Php2-Php3-Php5 complex
activates recombination at CCAAT box DNA sites (41); and Rst2 regulates recombination at
Oligo-C DNA sites (41). These disparate cis-acting regulatory modules each share a common
downstream mechanism. Each protein-DNA complex triggers the displacement of nucleosomes
to promote access of the basal recombination machinery (Spo11/Rec12 complex) to its DNA
substrates within chromatin (30), thereby stimulating locally the frequency of recombination-
initiating DSBs (5,43). Here we describe molecular mechanisms by which these cis-acting
regulatory modules can reshape the frequency distribution of recombination across the genome
in response to metabolic and environmental cues.

Materials and Methods

Yeast culture and strain construction

The DNA sequences of ade6 alleles used in this study are provided in Table 1 and the
genotypes of all strains are listed in Table 2. Strains were constructed using standard genetic
techniques and were cultured in rich or minimal media supplemented as necessary with amino
acids and bases at 100 µg/ml (44-46).

Measurements of meiotic recombination

Methods to measure rates of meiotic recombination were as described (34,47). In brief, haploid
strains with different ade6 alleles (Table 1) were mated; then, haploid meiotic products (spores)
were harvested, and serial dilutions of spores were plated on minimal media that contained or
lacked adenine. The titer of Ade⁺ recombinant spore colonies was divided by the titer of all
viable spore colonies to yield the recombinant frequency of each cross. Frequencies reported in
the figures are mean ± SEM of values from three or more independent biological replicates of
each cross.

Measurements of mRNA abundance

Quantitative, real-time, reverse-transcription PCR (qRT-PCR) was used to measure the
abundance of mRNAs in cells (A₅₉₅ = 0.5) that had been starved for nitrogen for 60 minutes.
For each sample, total RNA from approximately 1 × 10⁶ cells was extracted using the Quick-
RNA Fungal/Bacterial Miniprep (Zymo Research, Irvine, CA). For each sample, 1 µg of RNA
was treated with TURBO DNase using the TURBO DNA-free™ Kit, which includes reagents for
the digestion of DNA along with the removal of the enzyme and divalent cations post-
digestion. Following DNase treatment, cDNA was synthesized from 400 ng RNA as template
using the iScript cDNA Synthesis kit (BioRad, Hercules, CA). The cDNA was used as template
for qPCR using BlazeTaq SYBR Green qPCR Master Mix 2.0 (GeneCopeia, Rockville, MD) and
the PCR primers listed in Table 3; reactions were carried out using a CFX96 Real Time System (BioRad, Hercules, CA). Each qPCR reaction (10 µl) contained 1.0 µl of template and 200 nM of forward and reverse primers. Thermocycler parameters were: one cycle at 95°C for 10 minutes; followed by 40 cycles of 95°C for 10 seconds, 60°C for 20 seconds, and 72°C for 15 seconds. In each experiment, specificity was confirmed by melting point analyses from 65 °C to 95 °C at 0.5 °C increments. In each experiment, specificity was confirmed by melting point analyses from 65 °C to 95 °C at 0.5 °C increments. For each transcript and experimental condition, fold change in mutant versus wild-type samples was calculated using the ∆∆Ct method normalized to cam1 as the internal control (48,49). Calculations used the equation: ∆∆Ct = [(Ct gene – Ct ref) in wild-type] - [(Ct gene – Ct ref) in mutant], where gene refers to transcript being measured (atf1, pcr1, php2, php3, php5, rst2), and ref is the cam1 reference transcript. Frequencies reported in the figures are mean ± SEM of values from four independent biological replicates.

Replicates and statistics

Each biological replicate included matching controls (e.g., atf1+ versus atf1*), analyzed in parallel under identical conditions, to permit direct, pair-wise comparisons of data between replicates. Data sets were analyzed using paired t-test; differences between means with p ≤ 0.05 were judged to be significant statistically. Linear least squares regression was used to determine the significance of dose-dependent responses.

Data availability

The authors state that all data necessary for confirming the conclusions presented in the article are represented fully within the article. Yeast strains and other materials generated by the study are available upon request.

Results

Given that recombination hotspots of fission yeast are activated in cis by the binding of transcription factors to their own DNA sites in the genome (10,34,41), we reasoned that cross-talk between transcription factor networks might regulate hotspots indirectly in trans. We tested this hypothesis, first, by asking if hotspot-activating transcription factors can regulate DNA sequence-dependent hotspots to which they do not bind. Second, we tested whether the proteins are rate-limiting for promoting recombination at their own DNA binding sites. And third, we tested whether a given hotspot-activating transcription factor can regulate the expression of other hotspot-activating transcription factors. The answer, in each case, is yes.

Hotspot-activating proteins can regulate hotspot activity of DNA sites to which they do not bind

We compared rates of meiotic recombination in strains bearing either a basal recombination control allele (M375) or one of three different hotspot DNA sequence motifs (M26, CCAAT, Oligo-C) located near the 5' end of the ade6 gene (Table 1). Haploid strains with these alleles, which are auxotrophic for adenine, were crossed to another adenine auxotroph that harbors a tester allele (M210) near the 3' end of ade6 (Figure 1A). After mating and meiosis, spores were plated and spore colonies were scored for the frequency of Ade+ recombinants. In each case, the hotspot DNA sequence motifs promoted the rate of meiotic recombination substantially (by 900% to 1,800%), relative to that of the basal recombination control (M375) (Figure 1B). Removing either subunit of the Atf1-Pcr1 heterodimer, which binds to the M26 DNA site, abolished hotspot activity of M26 (Figure 1C). The rate of recombination fell to that of the basal
recombination control allele in wild-type cells. Similarly, subunits of the Php2-Php3-Php5 complex were essential for CCAAT motif-promoted recombination (Figure 1D) and Rst2 was essential for hotspot activity of its DNA binding site, Oligo-C (Figure 1E). The results and conclusions are consistent with, and provide independent confirmation of, those reported previously (10,34,40,41): Multiple different cis-acting regulatory modules (transcription factors and their DNA binding sites) each position the activity of the basal recombination machinery at hotspots.

When measuring the impact of protein deletions on hotspot activation, we included all possible pair-wise combinations of hotspot-activating proteins and DNA sequence motifs. The removal of the Php2, Php3 or Php5 proteins (which bind to and promote recombination at the CCAAT motif) had no significant impact on rates of recombination at the M26 hotspot (Figure 1C). Similarly, the removal of Php2 or Php3 had no significant impact on rates of recombination at the Oligo-C hotspot (Figure 1E). Likewise, the removal of the Rst2 protein (which binds to and promotes recombination at the Oligo-C motif) had no significant impact on the rates of recombination at the M26 hotspot (Figure 1C) or at the CCAAT hotspot (Figure 1D). These findings suggest that these two DNA sequence-specific, protein-DNA complexes functions with high specificity to promote recombination.

The binding of Atf1-Pcr1 heterodimer to M26 DNA sites directly activates this class of hotspots (5,34,35). Each subunit of this basic, leucine-zipper (bZIP) heterodimer binds one half-site of the M26 DNA site (50) and each subunit is essential for hotspot activity (e.g., Figure 1C). Strikingly, the removal of Pcr1 significantly reduced (by 74% and 70%, respectively) rates of recombination at the CCAAT and Oligo-C hotspots (Figure 1D-1E). Removing Atf1 also reduced recombination (by 46% and 30%, respectively) for CCAAT and Oligo-C (Figure 1D-1E). The differential effects of Atf1 and Pcr1 on activation of the CCAAT and Oligo-C hotspots are notable, given that the Atf1-Pcr1 heterodimer regulates M26-class hotspots, but these differential effects are readily explained by discovery of underlying molecular mechanisms (described subsequently). [These mechanisms involve the fact that Atf1 and Pcr1 are each multifunctional (e.g., they regulate both recombination and transcription), and they form both homodimers and heterodimers (34,47,50,51)]. Similarly, the removal of Php5 led to a significant, albeit modest reduction in recombination at the Oligo-C hotspot (Figure 1E). We conclude that hotspot-activating transcription factors can control the activation of heterologous DNA sequence-dependent hotspots to which they do not bind. The most parsimonious model is that transcription factor “A” might regulate the expression level of transcription factor “B”, thereby affecting recombination at “B” DNA sites. This model predicts that DNA sequence motif-dependent hotspots should be sensitive to the abundance of their binding/activating proteins, which we tested as follows.

Hotspot-activating proteins are rate-limiting for promoting recombination at their own DNA binding sites

To test for dose-dependent responses, we compared rates of recombination for each hotspot DNA sequence motif (M26, CCAAT, Oligo-C) in meioses that were homozygous wild-type, heterozygous wild-type/null mutant, and homozygous null mutant for their respective binding proteins. Essentially identical results were observed for each of the six different hotspot-activating proteins (Atf1, Pcr1, Php2, Php3, Php5, Rst2). In every case, the rate of recombination in the heterozygotes was intermediate between that of homozygous wild-type (full hotspot activity) and homozygous null mutant (no hotspot activity) (Figure 2). Linear regression analysis of the entire data set revealed a robust, positive correlation between dose and recombination rate ($R^2 = 0.89, p < 0.0001$). We confirmed this dose-dependent response
using a second, independent experimental approach that attenuates the expression of genes without changing their copy numbers (described in a subsequent section). The dose-dependent responses, observed using two different approaches, support a very important conclusion: each hotspot-activating protein is rate-limiting for promoting recombination at its DNA binding site. Consequently, any factor (cellular or environmental) that affects the abundance or functionality of a particular, DNA sequence-specific, hotspot-activating protein will therefore affect rates of recombination at the corresponding class of sequence-dependent hotspots in the genome.

Parental imprinting affects hotspot activation

Analyses of DNA binding in vitro and in vivo (47,51-55), as well as chromatin mapping experiments (29,46,47,51), revealed that the hotspot binding/activating proteins occupy their own DNA binding sites before meiosis. Moreover, the *cis*-acting regulatory modules (sequence-specific protein-DNA complexes) each promote recombination via the modification of chromatin structure before and during meiosis (30). For these reasons, we conducted our analyses of heterozygous wild-type/null mutant meiosis in two reciprocal configurations.

In the first configuration, one haploid parental strain harbored the protein deletion and the hotspot allele (e.g., genotype *atf1*Δ *ade6*-M26) and the other strain harbored wild-type protein and the tester allele (e.g., *atf1*+ *ade6*-M210). In the reciprocal configuration, one haploid parental strain harbored wild-type protein and the hotspot allele (e.g., *atf1*+ *ade6*-M26) and the other strain harbored the protein deletion and the tester allele (e.g., *atf1*Δ *ade6*-M210). Following mating and during meiosis, each of the two configurations would be heterozygous for the protein (e.g., *atf1*+/Δ) and for the alleles used to measure recombination (e.g., *ade6*-M26/Δ). In other words, in meiosis the genotypes were identical for each paired, reciprocal configuration of protein and DNA site. Therefore, if hotspot activation were simply a function of protein dosage during meiosis, one would expect to observe similar recombinant frequencies from the two reciprocal configurations of each cross. However, the results differed from this expectation.

For each of the six different hotspot binding/activating proteins (Atf1, Pcr1, Php2, Php3, Php5, Rst2), the rate of recombination was higher when the protein was expressed in the haploid parent with the hotspot DNA sequence motif (e.g., *M26*) than when the protein was expressed in the parent with the tester allele (*M210*) (**Figure 2**). This type of parental imprinting suggests that hotspot-regulating protein-DNA complexes can establish a recombinationally poised epigenetic state by the time of karyogamy (i.e., before meiosis). Such poised epigenetic states have important implications for the positioning of recombination throughout the genome and for changes in the distribution of recombination in response to intracellular and extracellular cues (see Discussion).

Hotspot-activating proteins can regulate the expression of other hotspot-activating proteins

Because Atf1 and Pcr1 each controlled the activity of DNA sequence-dependent hotspots to which they do not bind (*CCAAAT* and *Oligo-C*) (**Figure 1D-1E**), we tested whether Atf1 and Pcr1 regulate the expression of the proteins that bind to and activate the *CCAAAT* box hotspot (Php2-Php3-Php5 complex) and the *Oligo-C* hotspot (Rst2). In fission yeast the depletion of nitrogen source triggers sexual differentiation and the expression of key meiotic drivers (e.g., *ste11*) (51), so we analyzed transcript levels in cells that had been cultured in nitrogen-free media for 60 minutes. Quantitative, real-time, reverse-transcription PCR (qRT-PCR) was used to compare the relative abundance of each mRNA in null mutant cells versus wild-type (**Figure 3**). As
expected, no *atf1* transcript was detected in *atf1*Δ mutants and no *pcr1* transcript was detected in *pcr1*Δ mutants.

It was reported previously, based on quantitative Northern blot analyses of biological samples like those used in this study, that Atf1 promotes the expression of *pcr1* and that Pcr1 represses the expression of *atf1* (47). We obtained the same result using qRT-PCR: the removal of Atf1 led to a reduction in the abundance of the *pcr1* transcript (Figure 3A) and the removal of Pcr1 led to an increase in the amount of the *atf1* transcript (Figure 3B). The mean relative expression levels that we observed in the mutants versus wild-type (0.6 and 2.9, respectively) were similar to those observed previously (0.5 and 3.4, respectively), which provides reciprocal confirmation of findings in the two different studies and further validates the qRT-PCR approach used in this study.

Overall, considering all six genes analyzed, the removal of Atf1 reduced significantly the expression of *pcr1, php2* and *php3* (Figure 3A). The removal of Pcr1 significantly increased the expression of *atf1* and reduced that of *rst2* (Figure 3B). We conclude that some hotspot-activating proteins can regulate the expression of other hotspot-activating proteins. We also found that Atf1 had no significant impact on the expression of *php5* and *rst2* (Figure 3A) and that Pcr1 did not affect significantly the expression of *php2, php3* and *php5* (Figure 3B). Our finding that deletions of *atf1* and *pcr1* affected differentially the expression of the other genes was not surprising, given that Atf1 and Pcr1 (like bZIP proteins in general) form combinatorial homodimers and heterodimers, each of which regulates the expression of a different set of genes (50,53). Nevertheless, the results were highly informative. Collectively these findings—both the positive and negative results for expression-mediated, inter-pathway connections—support important conclusions as to molecular mechanisms.

The finding that Atf1 controls the expression of proteins that bind to and activate the CCAAT hotspot (Php2 and Php3; Figure 3A), coupled with the fact that those proteins are each rate-limiting for promoting recombination at their own DNA binding site (Figure 2B), reveals a specific mechanism by which Atf1 controls in trans the activation of the CCAAT hotspot (Figure 1D). The same conclusion applies for control of the Oligo-C hotspot in trans by Pcr1 (Figure 1E). Pcr1 regulates the expression of Rst2 (Figure 3B), which binds to and is rate-limiting for promoting recombination at the Oligo-C DNA site (Figure 2C). In other words, we documented the same type of fundamental, sequential, transcription-dependent pathway mechanism for the control of two different hotspots (*atf1* → *php2, php3* → recombination at CCAAT hotspot; *pcr1* → *rst2* → recombination at Oligo-C hotspot; see pathway diagram in Figure 3C). This type of signal transduction mechanism, exerted through modulating the expression of rate-limiting activator proteins, has broad implications for how diverse signaling networks can remodel the frequency distribution of recombination across the genome (see Discussion).

Interestingly, our qRT-PCR data also indicated that this cannot be the sole mechanism for regulating hotspots in trans. Pcr1 was strongly required for the activation of the CCAAT box hotspot: rates of recombination in the *pcr1*Δ mutant were only 26% of those in wild-type (Figure 1D). However, the removal of Pcr1 had no significant impact on the expression of *php2, php3* and *php5* (Figure 3B). The expression levels of these three genes in the *pcr1*Δ mutant were 115%, 100% and 99% of those in wild-type cells. These findings are inconsistent with a model in which the Pcr1-dependent control of this hotspot is solely exerted via altering the expression of its binding/activating proteins, Php2, Php3 and Php5. We infer that there must be at least one additional mechanism by which hotspot-activating transcription factors can control in trans other classes of DNA sequence-dependent hotspots (see Discussion).
The modulation of expression levels by mutating other factors was also informative for a third reason. In each case where expression of the hotspot-binding/activating protein was reduced (Figure 3), there was a corresponding reduction in rates of recombination at its DNA binding site (Figure 1). This provides independent support for the conclusion, reported above using a different experimental approach (Figure 2), that the hotspot-binding/activating proteins are rate-limiting for promoting recombination at their own DNA binding sites.

Discussion

In diverse taxa, environmental cues and metabolic states can reshape the frequency distribution of meiotic recombination across the genome (see Introduction). We reasoned that previously unknown mechanisms for this plasticity must be related to the way that cells position recombination at hotspots. Therefore, this study analyzed all six of the fission yeast proteins known to occupy, and promote meiotic recombination directly at, their own DNA binding sites (34,41,42). Nearly 200 additional, distinct DNA sequence elements also activate recombination hotspots in fission yeast, but their binding proteins are unknown (40). The mechanisms for modulating the activities of hotspots uncovered in this study likely apply to many, if not most of those other DNA sequence-dependent hotspots. Moreover, because the regulation of hotspots by specific DNA sites and their binding proteins is conserved between species (10,56,57) whose latest common ancestor occurred about 400 million years ago (58), the mechanisms revealed by this study likely apply broadly across taxa. Additional evidence for conservation of mechanisms is described below.

Our main, overall finding—that the activity of each class of DNA sequence-dependent hotspot can be modulated independently in cis and in trans—is sufficient to support a model for plasticity in the frequency distribution of meiotic recombination (Figure 4). Additional evidence that supports this model, its implications, and caveats are described in detail below.

A model for environmentally and metabolically induced plasticity in the distribution of meiotic recombination

We found that all six of the proteins known to directly regulate meiotic recombination hotspots in fission yeast are rate-limiting for promoting recombination at their own DNA binding sites (Figure 2). This property has also been reported for DNA sequence-specific, hotspot activating proteins Rap1 of budding yeast (59) and Prdm9 of mammals (at least in some genetic contexts) (9). Consequently, any signals that affect the functions of a given hotspot binding/activating protein will affect the rate at which it promotes recombination at its own DNA binding sites (confering none, intermediate or high levels of hotspot activity). Each class of hotspots could be controlled independently, both positively or negatively, by a large network of signals.

The activation of M26-class hotspots by the binding of Atf1-Pcr1 heterodimer to M26 DNA sites (5,34) provides a good example of such multifactorial regulation. Atf1 and Pcr1 are bZIP proteins that can function as homodimers or heterodimers that bind to M26 or M26-like DNA sites (50,51). As transcription factors, these proteins are key responders/effectors of multiple, core environmental stress responses, including those elicited by high temperature (53,60-63). Given that signals of elevated temperature are transduced via promoter-bound Atf1 and Pcr1 to induce the transcription of target genes, and that Atf1-Pcr1-M26 protein-DNA complexes also promote locally meiotic recombination, one might expect an increase in temperature to enhance rates of recombination at this class of hotspots. Evidence for this can be found in the data of
two, prior, independent reports. First, an increase in temperature (from 25 °C to 34 °C) increases the abundance of recombination-initiating DSBs at Atf1-Pcr1-M26 protein-DNA complex-dependent hotspots (23). Second, for this class of hotspots, there is a strong positive correlation between temperature (spanning six different temperatures from 11 °C to 33 °C) and rates of recombination, as measured in genetic crosses (33).

Atf1 and/or Pcr1 are key responders/effectors of many other signals, including those induced by osmolarity, oxidative state, heavy metals, abundance of nutrients, carbon source, DNA damage and chronological aging (42,47,51,54,60,64-80). These multiple, diverse signals—like those generated by differences in temperature—probably impinge upon Atf1 and Pcr1 to control rates of recombination at M26-class hotspots in the genome. Indeed, chromosome-bound Atf1-Pcr1 heterodimer promotes locally both transcription and meiotic recombination via the same general mechanism (chromatin remodeling) (30,51,81,82). This protein-DNA complex can help to seed both euchromatin and heterochromatin (51,83,84). In addition, complex-dependent hotspot activation is regulated both agonistically and antagonistically by multiple different signaling pathways, including those that respond to environmental and metabolic cues (29,46,47,81,85-89). Furthermore, distinct domains of chromosome-bound Atf1-Pcr1 heterodimer promote and repress recombination (42,46), demonstrating that both positive and negative regulation can be exerted directly through the same protein-DNA complex. It thus seems clear that the Atf1-Pcr1 heterodimer directly modulates rates of recombination at M26-class hotspots in response to a wide array of different extracellular and intracellular cues.

The same principles for the integration of multiple signals also apply for the CCAAT and Oligo-C classes of hotspots, which are activated in cis by their own transcription factors (Php2-Php3-Php5 complex and Rst2, respectively) (41). Presumably, similar mechanisms extend to at least a subset of the nearly 200 other, short, distinct DNA sequences that activate meiotic recombination hotspots in fission yeast, but whose binding proteins are not yet known (40). The constellation of agonistic and antagonistic signals that affect each of the rate-limiting, hotspot-activating proteins will modulate rates of recombination at their own class of DNA sequence-dependent hotspots. We posit that the independent modulation of recombination rates by each class of DNA sequence-dependent hotspot provides a molecular basis for the previously observed, dynamic changes in the frequency distributions of meiotic recombination that are elicited by intracellular and extracellular cues (e.g., sex or mating type, auxotrophies, nutritional states, temperature; see Introduction and references therein). Key features of this new model are depicted in Figure 4. We emphasize that the model is a working hypothesis that best explains our new data and many published findings; we do not mean to imply that this model applies universally to all hotspots in all systems.

Multiple mechanisms for modulating recombination rates via hotspot-activating proteins

One prediction of our model is that hotspot-activating proteins (which are key responders/effectors of environmental and metabolic cues) can regulate the activity of heterologous, DNA sequence-dependent hotspots to which they do not bind. This prediction was confirmed in our study. Atf1 and Pcr1 each controlled rates of recombination at the CCAAT and Oligo-C hotspots (Figure 1D-1E), which are, respectively, bound and activated by the Php2-Php3-Php5 complex and Rst2 (41). Such regulation in trans of DNA sequence-dependent hotspots likely applies to other species. For example, in mice the sequence-specific, hotspot-activating protein Prdm9 represses the activity of hotspots to which it does not bind (36,90), although it is not yet known whether those other hotspots are controlled in cis by their own DNA sites. Similarly, transcription factors Bas1 and Ino4 of budding yeast affect the frequency distribution of DSBs for hotspots both at their DNA binding sites and elsewhere (37,38),
although those studies did not test for DNA sequence dependence of the presumptively direct or indirect effects. In contrast, this study revealed dependent pathway relationships between multiple different proteins and DNA sites (Figure 1). Moreover, we identified underlying molecular mechanisms for inter-pathway connections (see pathway diagram in Figure 3C). These and additional mechanisms for regulating hotspots are relevant to how hotspots could be controlled by multiple signal transduction networks, not just the discrete inter-pathway examples documented in this study.

The first type of mechanism for controlling hotspot activity is exerted through controlling the abundance of the activator proteins. The exemplar here is that transcription factor “A” can regulate the expression of transcription factor “B” (Figure 3), which is rate-limiting for hotspot activity at “B” DNA sites (Figure 2). We documented the use of this same type of fundamental, sequential, transcription-dependent pathway mechanism for two different classes of hotspots (atf1 → php2, php3 → recombination at CCAAT hotspot; pcr1 → rst2 → recombination at Oligo-C hotspot; see pathway diagram in Figure 3C). We note that any other factors (cellular or environmental) whose signals modulate the expression of the rate-limiting, hotspot-binding/activating proteins would also modulate rates of recombination at their DNA sites of action. We do not mean to imply that the regulation of hotspots is exclusively mediated by altering the expression of hotspot-activating proteins. The fact that the activator proteins are rate-limiting supports additional modes of control.

A second type of mechanism for controlling hotspot activity can be exerted via changing the functionality of hotspot-binding/activating proteins without necessarily changing their abundance. Our finding that Pcr1 strongly controls activation of the CCAAT box hotspot (Figure 1D) without affecting significantly the expression of php2, php3 or php5 (Figure 3B) supports this idea. There are several ways to achieve robust, transcription-independent control of hotspots in trans. For example, “A” could regulate the subcellular localization, DNA binding affinity, or specific activity of “B”, thereby controlling “B”-type hotspots. An excellent case in point is the hotspot-activating Atf1-Pcr1 heterodimer, whose functions are controlled by each of these three different post-translational processes (42,46,47,69,91).

A third, currently hypothetical type of mechanism for controlling hotspot activity lies in the fact that each of the cis-acting regulatory modules analyzed in this study promotes recombination through downstream chromatin remodeling pathways (30). If factor “A” controls chromatin remodelers that help to activate “B”-type hotspots, this would contribute to the regulation in trans. A recent, proteomics-based approach revealed that many different chromatin remodeling enzymes and histone PTMs function in concert to activate individual hotspots (29), so there are many potential targets for the modulation of hotspot activity at this level.

In summary, there are many classes of DNA sequence-dependent hotspots and multiple different ways to modulate rates of recombination at hotspots via their rate-limiting, hotspot-binding/activating proteins. Each of these known and hypothetical mechanisms provides a nexus for the control of hotspot activity by other factors and signaling networks. As in the Butterfly Effect, minor perturbations to the biological system can, through the diversity of hotspots and regulatory networks, have large impacts on the overall distribution of recombination. Notably, the redistribution of recombination by such mechanisms does not require any changes in the overall distribution of the regulatory DNA sites themselves (e.g., Figure 4). Thus, the underlying mechanisms have implications for differences in hotspot usage among taxa and even isolated populations of the same species [92], as well as in response to changing environmental conditions.
Poised epigenetic states designate the positions of recombination hotspots

As a general principle from species tested, hotspot activation involves the modification of histones and the displacement of nucleosomes, which help localize activity of the basal recombination machinery to the hotspot (1-3). The parental imprinting that we discovered using reciprocally configured, but genetically identical, heterozygous meioses (Figure 2) revealed that sequence-specific, hotspot-activating protein-DNA complexes can establish a recombinationally poised epigenetic state prior to meiosis. Recent, temporal analyses of hotspot-recruited chromatin remodeling enzymes and histone PTMs (29), and of chromatin structure at single-nucleosome resolution (30), each support independently this conclusion for the hotspots examined in this study. Some hotspot-specific chromatin remodeling occurs before premeiotic S-phase, further remodeling occurs later in meiosis, leading subsequently to the induction of DSBs. Strikingly, the parental imprinting documented in this study can only be explained by the establishment of hotspot-specific, recombinationally poised epigenetic states before the time of karyogamy between the two haploid parents. This makes the poised epigenetic states the earliest-acting “designators” for the positioning of meiotic recombination defined to date in any organism, which has several important implications.

First, the new and recently published findings (above) indicate that discrete, hotspot-activating DNA sites and their binding proteins are the primary designators temporally, as well as spatially (10), of recombination events in meiosis. This makes sense given that each hotspot-activating protein analyzed in this study is expressed and binds to its DNA sites in vegetative cells, as well as in meiosis (47,51-53,55).

Second, the establishment of poised epigenetic states by hotspot-activating protein-DNA complexes can explain why most hotspot locations already have open chromatin (as judged by nuclease sensitivity assays) before meiosis (28). Given that the activator proteins occupy their DNA sites during vegetative growth, one might expect them to be displaced during, and re-bind following, premeiotic S-phase. Indeed, this dynamic unloading and reloading around the time of premeiotic S-phase has been reported for the Atf1-Pcr1 heterodimer (29). Both the stability of these protein-DNA complexes before meiosis and their rapid reassembly after displacement are presumably driven by the exceptionally high affinity (K_d ~1 nM) of the Atf1-Pcr1 heterodimer for its DNA binding site, M26 (50). Our genetic data support such a model (i.e., reloading after displacement in premeiotic S-phase) for each of the hotspots analyzed because we still observed some hotspot activity (albeit to lower levels) when different parents contributed the hotspot DNA site and its binding/activating protein(s) (Figure 2). Hence, the new and published findings, when considered together, provide key insight into the process. They indicate that the binding of activator proteins to their DNA sites before karyogamy and their re-binding after displacement in premeiotic S-phase each contribute to chromatin remodeling and hotspot activation.

Third, the poised epigenetic states provide a potential mechanism for the observation that prior environmental conditions can affect the frequency distribution of recombination in subsequent meiosis (27), although at present we cannot tell if the genetic imprinting that we observed extends over multiple, mitotic cell divisions.

Conclusions

The striking plasticity in the frequency distribution of meiotic recombination across genomes (see Introduction) is readily explained by the fact that many, distinct DNA sequence motifs each control rates of recombination locally (see model in Figure 4). Each of the sequence-
specific DNA binding proteins known to activate meiotic recombination hotspots is rate-limiting for promoting recombination at its own DNA sites. Consequently, each protein or protein complex can respond to agonistic and antagonistic signals to modulate rates of recombination at its own DNA sites. Together, the independent modulation of recombination rates by each class of DNA sequence-dependent hotspot can remodel dynamically the distribution of recombination across the genome in response to environmental and metabolic conditions.

Funding

This work was supported by a grant from the National Institutes of Health [grant number GM081766 to WPW].

Acknowledgments

We thank Giulia Baldini, Robert Eoff, Galina Glazko, Aaron Storey, and Alan Tackett for discussions.

References

1. Lam, I. and Keeney, S. (2014) Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb. Perspect. Biol., 7, a016634.
2. Robert, T., Vrielynck, N., Mezard, C., de Massy, B. and Grelon, M. (2016) A new light on the meiotic DSB catalytic complex. Semin. Cell Dev. Biol., 54, 165-176.
3. Jing, J.L., Zhang, T., Wang, Y.Z. and He, Y. (2019) Advances towards how meiotic recombination is initiated: A comparative view and perspectives for plant meiosis research. Int. J. Mol. Sci., 20.
4. Nishant, K.T. and Rao, M.R. (2006) Molecular features of meiotic recombination hot spots. Bioessays, 28, 45-56.
5. Wahls, W.P. and Davidson, M.K. (2010) Discrete DNA sites regulate global distribution of meiotic recombination. Trends Genet., 26, 202-208.
6. Tock, A.J. and Henderson, I.R. (2018) Hotspots for initiation of meiotic recombination. Front. Genet., 9, 521.
7. Dluzewska, J., Szymanska, M. and Ziolkowski, P.A. (2018) Where to cross over? Defining crossover sites in plants. Front. Genet., 9, 609.
8. Paigen, K. and Petkov, P.M. (2018) PRDM9 and its role in genetic recombination. Trends Genet., 34, 291-300.
9. Grey, C., Baudat, F. and de Massy, B. (2018) PRDM9, a driver of the genetic map. PLoS Genet., 14, e1007479.
10. Wahls, W.P. and Davidson, M.K. (2012) New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination. Nucleic Acids Res., 40, 9983-9989.
11. de Massy, B., Rocco, V. and Nicolas, A. (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J., 14, 4589-4598.
12. Wu, T.C. and Lichten, M. (1995) Factors that affect the location and frequency of meiosis-induced double-strand breaks in Saccharomyces cerevisiae. Genetics, 140, 55-66.
13. Baudat, F. and Nicolas, A. (1997) Clustering of meiotic double-strand breaks on yeast chromosome III. Proc. Natl. Acad. Sci. U.S.A., 94, 5213-5218.
14. Gerton, J.L., DeRisi, J., Shroff, R., Lichten, M., Brown, P.O. and Petes, T.D. (2000) Inaugural article: Global mapping of meiotic recombination hotspots and coldspots in the yeast *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U.S.A.*, **97**, 11383-11390.

15. Blitzblau, H.G., Bell, G.W., Rodriguez, J., Bell, S.P. and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-stranded-break hotspots near centromeres and telomeres. *Curr. Biol.*, **17**, 2003-2012.

16. Buhler, C., Borde, V. and Lichten, M. (2007) Mapping meiotic single-strand DNA reveals a new landscape of DNA double-strand breaks in *Saccharomyces cerevisiae*. *PLoS Biol.*, **5**, e324.

17. Pan, J., Sasaki, M., Kniewel, R., Murakami, H., Blitzblau, H.G., Tischfield, S.E., Zhu, X., Neale, M.J., Jasim, M., Socci, N.D. *et al.* (2011) A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. *Cell*, **144**, 719-731.

18. Young, J.A., Schreckhise, R.W., Steiner, W.W. and Smith, G.R. (2002) Meiotic recombination remote from prominent DNA break sites in *S. pombe*. *Mol. Cell*, **9**, 253-263.

19. Cromie, G.A., Hyppa, R.W., Cam, H.P., Farah, J.A., Grewal, S.I. and Smith, G.R. (2007) A discrete class of intergenic DNA dictates meiotic DNA break hotspots in fission yeast. *PLoS Genet.*, **3**, e141.

20. Fowler, K.R., Sasaki, M., Milman, N., Keeney, S. and Smith, G.R. (2014) Evolutionarily diverse determinants of meiotic DNA break and recombination landscapes across the genome. *Genome Res.*, **24**, 1650-1664.

21. Parvanov, E., Kohli, J. and Ludin, K. (2008) The mating-type-related bias of gene conversion in *Schizosaccharomyces pombe*. *Genetics*, **180**, 1859-1868.

22. Kong, A., Thorleifsson, G., Gudbjartsson, D.F., Masson, G., Sigurdsson, A., Jonasdottir, A., Walters, G.B., Jonasdottir, A., Gylfason, A., Kristinsson, K.T. *et al.* (2010) Fine-scale recombination rate differences between sexes, populations and individuals. *Nature*, **467**, 1099-1103.

23. Hyppa, R.W., Fowler, K.R., Cipak, L., Gregan, J. and Smith, G.R. (2014) DNA intermediates of meiotic recombination in synchronous *S. pombe* at optimal temperature. *Nucleic Acids Res.*, **42**, 359-369.

24. Brick, K., Thibault-Sennett, S., Smagulova, F., Lam, K.G., Pu, Y., Pratto, F., Camerini-Otero, R.D. and Petukhova, G.V. (2018) Extensive sex differences at the initiation of genetic recombination. *Nature*, **561**, 338-342.

25. Abdullah, M.F. and Borts, R.H. (2001) Meiotic recombination frequencies are affected by nutritional states in *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U.S.A.*, **98**, 14524-14529.

26. Cotton, V.E., Hoffmann, E.R., Abdullah, M.F. and Borts, R.H. (2009) Interaction of genetic and environmental factors in *Saccharomyces cerevisiae* meiosis: the devil is in the details. *Methods Mol. Biol.*, **557**, 3-20.

27. Stahl, F.W., Rehan, M.B., Foss, H.M. and Borts, R.H. (2016) Apparent epigenetic meiotic double-strand-break disparity in *Saccharomyces cerevisiae*: A meta-analysis. *Genetics*, **204**, 129-137.

28. de Castro, E., Soriano, I., Marin, L., Serrano, R., Quintales, L. and Antequera, F. (2011) Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. *EMBO J.*, **31**, 124-137.

29. Storey, A.J., Wang, H.P., Protacio, R.U., Davidson, M.K., Tackett, A.J. and Wahls, W.P. (2018) Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. *Epigenetics Chromatin*, **11**, 64.

30. Mukiza, T.O., Protacio, R.U., Davidson, M.K., Steiner, W.W. and Wahls, W.P. (2019) Diverse DNA sequence motifs activate meiotic recombination hotspots through a common chromatin remodeling pathway. *Genetics*, **213**, 789-803.
31. Bomblies, K., Higgins, J.D. and Yant, L. (2015) Meiosis evolves: Adaptation to external and internal environments. *New Phytol.*, 208, 306-323.

32. Zhang, K., Wu, X.C., Zheng, D.Q. and Petes, T.D. (2017) Effects of temperature on the meiotic recombination landscape of the yeast *Saccharomyces cerevisiae*. *MBio*, 8, e02099-02017.

33. Brown, S.D., Audoyan, C. and Lorenz, A. (2020) Intragenic meiotic recombination in *Schizosaccharomyces pombe* is sensitive to environmental temperature changes. *Chromosome Res.*, 28, 195-207.

34. Kon, N., Krawchuk, M.D., Warren, B.G., Smith, G.R. and Wahls, W.P. (1997) Transcription factor Mts1/Mts2 (Atf1/Pcr1, Gad7/Pcr1) activates the *M26* meiotic recombination hotspot in *Schizosaccharomyces pombe*. *Proc. Natl. Acad. Sci. U.S.A.*, 94, 13765-13770.

35. Steiner, W.W. and Smith, G.R. (2005) Natural meiotic recombination hot spots in the *Schizosaccharomyces pombe* genome successfully predicted from the simple sequence motif *M26*. *Mol. Cell. Biol.*, 25, 9054-9062.

36. Brick, K., Smagulova, F., Khil, P., Camerini-Otero, R.D. and Petukhova, G.V. (2012) Genetic recombination is directed away from functional genomic elements in mice. *Nature*, 485, 642-645.

37. Mieczkowski, P.A., Dominska, M., Buck, M.J., Gerton, J.L., Lieb, J.D. and Petes, T.D. (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in *Saccharomyces cerevisiae*. *Mol. Cell. Biol.*, 26, 1014-1027.

38. Zhu, X. and Keeney, S. (2015) High-resolution global analysis of the influences of Bas1 and Ino4 transcription factors on meiotic DNA break distributions in *Saccharomyces cerevisiae*. *Genetics*, 201, 525-542.

39. Schuchert, P., Langsford, M., Kaslin, E. and Kohli, J. (1991) A specific DNA sequence is required for high frequency of recombination in the *ade6* gene of fission yeast. *EMBO J.*, 10, 2157-2163.

40. Steiner, W.W., Steiner, E.M., Girvin, A.R. and Plewik, L.E. (2009) Novel nucleotide sequence motifs that produce hotspots of meiotic recombination in *Schizosaccharomyces pombe*. *Genetics*, 182, 459-469.

41. Steiner, W.W., Davidow, P.A. and Bagshaw, A.T. (2011) Important characteristics of sequence-specific recombinational hot spots in *Schizosaccharomyces pombe*. *Genetics*, 187, 385-396.

42. Gao, J., Davidson, M.K. and Wahls, W.P. (2008) Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot *ade6-M26* and the osmotic stress response. *Nucleic Acids Res.*, 36, 2838-2851.

43. Steiner, W.W., Schreckhise, R.W. and Smith, G.R. (2002) Meiotic DNA breaks at the *S. pombe* recombination hot spot M26. *Mol. Cell.*, 9, 847-855.

44. Gutz, H., Heslot, H., Leupold, U. and Loprieno, N. (1974) In King, R. C. (ed.), *Handbook of Genetics*. Plenum Press, New York, Vol. 1, pp. 395-446.

45. Forsburg, S.L. and Rhind, N. (2006) Basic methods for fission yeast. *Yeast*, 23, 173-183.

46. Gao, J., Davidson, M.K. and Wahls, W.P. (2009) Phosphorylation-independent regulation of Atf1-promoted meiotic recombination by stress-activated, p38 kinase Spc1 of fission yeast. *PLoS ONE*, 4, e5533.

47. Kon, N., Schroeder, S.C., Krawchuk, M.D. and Wahls, W.P. (1998) Regulation of the Mts1-Mts2-dependent *ade6-M26* meiotic recombination hotspot and developmental decisions by the Spc1 mitogen-activated protein kinase of fission yeast. *Mol. Cell. Biol.*, 18, 7575-7583.

48. Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods*, 25, 402-408.

49. Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative C(T) method. *Nat Protoc*, 3, 1101-1108.
50. Wahls, W.P. and Smith, G.R. (1994) A heteromeric protein that binds to a meiotic homologous recombination hot spot: correlation of binding and hot spot activity. Genes Dev., 8, 1693-1702.

51. Davidson, M.K., Shandilya, H.K., Hirota, K., Ohta, K. and Wahls, W.P. (2004) Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+. J. Biol. Chem., 279, 50857-50863.

52. McNabb, D.S., Tseng, K.A. and Guarente, L. (1997) The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol. Cell. Biol., 17, 7008-7018.

53. Eshaghi, M., Lee, J.H., Zhu, L., Poon, S.Y., Li, J., Cho, K.H., Chu, Z., Karuturi, R.K. and Liu, J. (2010) Genomic binding profiling of the fission yeast stress-activated MAPK Sty1 and the bZIP transcriptional activator Atf1 in response to H₂O₂. PLoS One, 5, e11620.

54. Woolcock, K.J., Stunnenberg, R., Gaidatzis, D., Hotz, H.R., Emmerth, S., Barraud, P. and Buhler, M. (2012) RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev., 26, 683-692.

55. Asada, R., Umeda, M., Adachi, A., Senmatsu, S., Abe, T., Iwasaki, H., Ohta, K., Hoffman, C.S. and Hirota, K. (2017) Recruitment and delivery of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by Tup1-family corepressors. Nucleic Acids Res., 45, 9361-9371.

56. Wahls, W.P. and Davidson, M.K. (2011) DNA sequence-mediated, evolutionarily rapid redistribution of meiotic recombination hotspots. Genetics, 189, 685-694.

57. Steiner, W.W. and Steiner, E.M. (2012) Fission yeast hotspot sequence motifs are also active in budding yeast. PLoS One, 7, e53090.

58. Sipiczki, M. (2000) Where does fission yeast sit on the tree of life? Genome Biol., 1, REVIEWS1011.

59. White, M.A., Wierdl, M., Detloff, P. and Petes, T.D. (1991) DNA-binding protein RAP1 stimulates meiotic recombination at the HIS4 locus in yeast. Proc. Natl. Acad. Sci. U.S.A., 88, 9755-9759.

60. Chen, D., Toone, W.M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N. and Bahler, J. (2003) Global transcriptional responses of fission yeast to environmental stress. Mol. Biol. Cell, 14, 214-229.

61. Martin, V., Rodriguez-Gabriel, M.A., McDonald, W.H., Watt, S., Yates, J.R., 3rd, Bahler, J. and Russell, P. (2006) Cip1 and Cip2 are novel RNA-recognition-motif proteins that counteract Csx1 function during oxidative stress. Mol. Biol. Cell, 17, 1176-1183.

62. Sanso, M., Gogol, M., Ayte, J., Seidel, C. and Hidalgo, E. (2008) Transcription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation. Eukaryot. Cell, 7, 826-835.

63. Sanso, M., Vargas-Perez, I., Garcia, P., Ayte, J. and Hidalgo, E. (2011) Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol. Microbiol., 82, 542-554.

64. Takeda, T., Toda, T., Kominami, K., Kohnosu, A., Yanagida, M. and Jones, N. (1995) Schizosaccharomyces pombe att1 encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J., 14, 6193-6208.

65. Shoizaki, K. and Russell, P. (1996) Conjugation, meiosis, and the osmotic stress response are regulated by Spc1 kinase through Atf1 transcription factor in fission yeast. Genes Dev., 10, 2276-2228.

66. Wilkinson, M.G., Samuels, M., Takeda, T., Toone, W.M., Shieh, J.C., Toda, T., Millar, J.B. and Jones, N. (1996) The Atf1 transcription factor is a target for the Sty1 stress-activated MAP kinase pathway in fission yeast. Genes Dev., 10, 2289-2301.
67. Ohmiya, R., Kato, C., Yamada, H., Aiba, H. and Mizuno, T. (1999) Isolation of multicopy suppressors of the calcium sensitivity of a mutant lacking the bZIP transcription factor Atf1 in fission yeast. *Mol. Gen. Genet.*, 261, 297-306.

68. Nakagawa, C.W., Yamada, K. and Mutoh, N. (2000) Role of Atf1 and Pap1 in the induction of the catalase gene of fission yeast *Schizosaccharomyces pombe*. *J Biochem (Tokyo)*, 127, 233-238.

69. Neely, L.A. and Hoffman, C.S. (2000) Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. *Mol. Cell. Biol.*, 20, 6426-6434.

70. Buck, V., Quinn, J., Soto Pino, T., Martin, H., Saldanha, J., Makino, K., Morgan, B.A. and Millar, J.B. (2001) Peroxisome sensors for the fission yeast stress-activated mitogen-activated protein kinase pathway. *Mol. Biol. Cell*, 12, 407-419.

71. Lee, J., Kwon, E.S., Kim, D.W., Cha, J. and Roe, J.H. (2002) Regulation and the role of Cu,Zn-containing superoxide dismutase in cell cycle progression of *Schizosaccharomyces pombe*. *Biochem. Biophys. Res. Commun.*, 297, 854-862.

72. Quinn, J., Findlay, V.J., Dawson, K., Millar, J.B., Jones, N., Morgan, B.A. and Toone, W.M. (2002) Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast *Schizosaccharomyces pombe*. *Mol. Biol. Cell*, 13, 805-816.

73. Soto, T., Beltran, F.F., Paredes, V., Madrid, M., Millar, J.B., Vicente-Soler, J., Cansado, J. and Gacto, M. (2002) Cold induces stress-activated protein kinase-mediated response in the fission yeast *Schizosaccharomyces pombe*. *Eur. J. Biochem.*, 269, 5056-5065.

74. Kim, S.J., Shin, Y.H., Kim, K., Park, E.H., Sa, J.H. and Lim, C.J. (2003) Regulation of the gene encoding glutathione synthetase from the fission yeast. *J Biochem. Mol. Biol.*, 36, 326-331.

75. Paredes, V., Franco, A., Madrid, M., Soto, T., Vicente-Soler, J., Gacto, M. and Cansado, J. (2004) Transcriptional and post-translational regulation of neutral trehalase in *Schizosaccharomyces pombe* during thermal stress. *Yeast*, 21, 593-603.

76. Reiter, W., Watt, S., Dawson, K., Lawrence, C.L., Bahlcr, J., Jones, N. and Wilkinson, C.R. (2008) Fission yeast MAP kinase Sty1 is recruited to stress-induced genes. *J. Biol. Chem.*, 283, 9945-9956.

77. Ors, A., Grimaldi, M., Kimata, Y., Wilkinson, C.R., Jones, N. and Yamano, H. (2009) The transcription factor Atf1 binds and activates the APC/C ubiquitin ligase in fission yeast. *J. Biol. Chem.*, 284, 23989-23994.

78. Zuin, A., Carmona, M., Morales-Ivorra, I., Gabrielli, N., Vivancos, A.P., Ayte, J. and Hidalgo, E. (2010) Lifespan extension by calorie restriction relies on the Sty1 MAP kinase stress pathway. *EMBO J.*, 29, 981-991.

79. Gao, J., Wagnon, J.L., Protacio, R.M., Glazko, G.V., Beggs, M., Raj, V., Davidson, M.K. and Wahls, W.P. (2013) A stress-activated, p38 mitogen-activated protein kinase-ATF/CREB pathway regulates posttranscriptional, sequence-dependent decay of target RNAs. *Mol. Cell. Biol.*, 33, 3026-3035.

80. Shimasaki, T., Ohtsuka, H., Naito, C., Murakami, H. and Aiba, H. (2014) Ecl1 is activated by the transcription factor Atf1 in response to H(2)O(2) stress in *Schizosaccharomyces pombe*. *Mol. Genet. Genomics*, 289, 685-693.

81. Yamada, T., Mizuno, K., Hirota, K., Kon, N., Wahls, W.P., Hartsuiker, E., Murofushi, H., Shibata, T. and Ohta, K. (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. *EMBO J.*, 23, 1792-1803.

82. Garcia, P., Paulo, E., Gao, J., Wahls, W.P., Ayte, J., Lowy, E. and Hidalgo, E. (2014) Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription. *Nucleic Acids Res.*, 42, 10351-10359.

83. Jia, S., Noma, K. and Grewal, S.I. (2004) RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. *Science*, 304, 1971-1976.
184. Kim, H.S., Choi, E.S., Shin, J.A., Jang, Y.K. and Park, S.D. (2004) Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. *J. Biol. Chem.*, **279**, 42850-42859.

185. Mizuno, K., Hasemi, T., Ubukata, T., Yamada, T., Lehmann, E., Kohli, J., Watanabe, Y., Iino, Y., Yamamoto, M., Fox, M.E. *et al.* (2001) Counteracting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. *Genetics*, **159**, 1467-1478.

186. Hirota, K., Hoffman, C.S., Shibata, T. and Ohta, K. (2003) Fission yeast Tup1-like repressors repress chromatin remodeling at the *fbp1*+ promoter and the *ade6-M26* recombination hotspot. *Genetics*, **165**, 505-515.

187. Hirota, K., Hasemi, T., Yamada, T., Mizuno, K.I., Hoffman, C.S., Shibata, T. and Ohta, K. (2004) Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. *Nucleic Acids Res.*, **32**, 855-862.

188. Hirota, K., Steiner, W.W., Shibata, T. and Ohta, K. (2007) Multiple modes of chromatin configuration at natural meiotic recombination hot spots in fission yeast. *Eukaryot. Cell*, **6**, 2072-2080.

189. Hirota, K., Mizuno, K., Shibata, T. and Ohta, K. (2008) Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot *ade6-M26*. *Mol. Biol. Cell*, **19**, 1162-1173.

190. Walker, M., Billings, T., Baker, C.L., Powers, N., Tian, H., Saxl, R.L., Choi, K., Hibbs, M.A., Carter, G.W., Handel, M.A. *et al.* (2015) Affinity-seq detects genome-wide PRDM9 binding sites and reveals the impact of prior chromatin modifications on mammalian recombination hotspot usage. *Epigenetics Chromatin*, **8**, 31.

191. Gaits, F., Degols, G., Shiozaki, K. and Russell, P. (1998) phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. *Genes Dev.*, **12**, 1464-1473.

192. Shanfelter, A.F., Archambeault, S.L. and White, M.A. (2019) Divergent fine-scale recombination landscapes between a freshwater and marine population of threespine stickleback fish. *Genome Biol. Evol.*, **11**, 1552-1572.
Table 1. DNA sequences of ade6 alleles

ade6 allele	Relevant sequence a
ade6* (wt)	...AAACAAATTG A.TGGAGGAC GTGAGCACAT...AGATGCCTCG...
ade6-M26	...AAACAAATTG A.TGGAatGAC GTGAGCACAT...AGATGCCTCG...
ade6-CCAAT b	...AAACAAATTG AtTGGAGGAC GTGAGCACAT...AGATGCCTCG...
ade6-Oligo-C	...tAACAAATTG A. accccGca GTGAGCACAT...AGATGCCTCG...
ade6-M375	...AAACAAATTG A.ttGAGGAC GTGAGCACAT...AGATGCCTCG...
ade6-M210	...AAACAAATTG A.TGGAGGAC GTGAGCACAT...AGATGcttTCG...

a The ade6 ORF is 1,659 bp in length and coordinates are numbered relative to the first nucleotide of the start codon. The hotspot (M26, CCAAT, Oligo-C), basal recombination control (M375), and test-cross (M210) alleles differ from wild-type (wt) only by the indicated bp substitutions (lower case). The bp substitutions of the hotspot alleles create DNA binding sites (grey shading) for DNA sequence-specific, hotspot-activating binding proteins (Atf1-Pcr1 heterodimer, Php2-Php2-Php5 complex, and Rst2, respectively). Each allele also renders cells auxotrophic for adenine, allowing one to score for adenine prototrophic recombinants (ade6+) from heterollelic crosses that contain a 5’ allele (M375, M26, CCAAT, or Oligo-C) and the 3’ allele (M210).

b The consensus motif 5’-CCAATCA-3’ is on the complementary strand.
Table 2. Genotypes of fission yeast strains [upon acceptance for publication, this table will be moved to a supplementary online materials file]

Strain	Genotype
WSP 0002	h+ ade6-M26
WSP 0004	h+ ade6-M210
WSP 0006	h+ ade6-M375
WSP 0016	h- ade6-M210
WSP 0018	h- ade6-M26
WSP 0022	h- ade6-M375 leu1-32
WSP 2650	h+ ade6-M26 atf1D15::ura4F his3-D1 leu1-32 ura4-D18
WSP 2651	h- ade6-M210 atf1D15::ura4F his3-D1 leu1-32 ura4-D18
WSP 2655	h+ ade6-M26 prc1D1::ura4F ura4-D18 his3-D1
WSP 2657	h- ade6-M210 prc1D1::ura4F ura4-D18 his3-D1
WSP 2659	h+ ade6-M375 prc1D1::ura4F ura4-D18 his3-D1
WSP 6540	h+ ade6-4002 ura4-D18
WSP 6573	h+ ade6-4099 ura4-D18
WSP 6577	h- ade6-4099 ura4-D18
WSP 6799	h+ ade6-M26 rst2D::ura4F ura4-D18
WSP 6803	h+ ade6-M375 rst2D::ura4F ura4-D18
WSP 6806	h- ade6-M210 rst2D::ura4F ura4-D18
WSP 6811	h+ ade6-4002 rst2D::ura4F ura4-D18
WSP 6815	h+ ade6-4099 rst2D::ura4F ura4-D18
WSP 6890	h+ ade6-M26 php2D::kanMX6
WSP 6893	h+ ade6-M375 php2D::kanMX6
WSP 7485	h+ ade6-4002 atf1D15::ura4F his3-D1 ura4-D18
WSP 7487	h- ade6-4099 atf1D15::ura4F his3-D1 ura4-D18
WSP 7508	h- ade6-4099 php2D::kanMX6
WSP 7510	h+ade6-4002 php2D::kanMX6
WSP 7519	h- ade6-m210 php2D::kanMX6
WSP 7520	h+ ade6-m210 php2D::kanMX6
WSP 7528	h- ade6-M375 php3D::kanMX6
WSP 7531	h+ ade6-M210 php3D::kanMX6
WSP 7537	h- ade6-4099 php3D::kanMX6
WSP 7541	h- ade6-M26 php3D::kanMX6
WSP 7543	h- ade6-4002 php3D::kanMX6
WSP 7553	h+ ade6-4002 prc1D1::ura4F ura4-D18
WSP 7558	h+ ade6-4099 prc1D1::ura4F ura4-D18
WSP 7704	h+ ade6-4002 php5::kanMX6 ura4-D18
WSP 7713	h- ade6-M210 php5::kanMX6
WSP 7715	h+ ade6-M375 php5::kanMX6 ura4-D18
WSP 7720	h+ ade6-M26 php5::kanMX6
WSP 7722	h+ ade6-4099 php5::kanMX6 ura4-D18
WSP 7816	h- ade6-4002
Fission yeast nomenclature uses a “D” to designate deletion. These are referred to as “Δ” in the text and figures for the sake of clarity. The ade6-M26 allele contains the M26 DNA sequence motif; ade6-4002 contains the CCAAT DNA sequence motif; ade6-4099 contains the Oligo-C DNA sequence motif. See Table 1 for DNA sequences and locations of all ade6 alleles.
Table 3. DNA sequences and locations of PCR primers [upon acceptance for publication, this table will be moved to a supplementary online materials file]

Amplicon	Primer	Sequence
Cam1	cam1-258F	5'-GCCTACTGCGCGCCGAATTAC-3'
Cam1	cam1-376R	5'-GGCTTCGCGAACTTCCTCTTC-3'
Php5	php5-593F	5'-GTCAAGCTCATATGTCTGCTACT-3'
Php5	php5-678R	5'-GGCATTTGGAACCCCTTGAATTG-3'
Php3	php3-200F	5'-CATCTGAACAAATGCACTCAAGAA-3'
Php3	php3-253R	5'-CTCTCGATTTTGTGAGAGAAAT-3'
Php2	php2-891F	5'-TGACTACCGACGCAGCGATA-3'
Php2	php2-926R	5'-CAATCTCGAACCCTTCAAGGAATG-3'
Pcr1	pcr1-126F	5'-CAATGCTGGCCTTCAGCAATC-3'
Pcr1	pcr1-207R	5'-CAACCCTGATGGGCAAGTAAT-3'
Atf1	atf1-1037F	5'-GTACTCAGCAACAGCCTATGT-3'
Atf1	atf1-1131R	5'-CGTGCGTTTGGCGTAATGTAATG-3'
Rst2	rst2-844F	5'-GACGATGAAAGTTTGCGCTAGAATG-3'
Rst2	rst2-926R	5'-CAATCTCGAACCCTTCAAGGAATG-3'

The number after each primer name indicates position of the 5' end of the primer relative to the first nucleotide in the start codon of the gene. F, forward primer; R, reverse primer.
Figure 1. Hotspot-activating proteins can regulate recombination at their own DNA binding sites and at DNA sequence-dependent hotspots to which they do not bind. (A) Diagram of genetic crosses showing relative positions of ade6 alleles (see Table 1 for sequences of alleles). (B) Rates of recombination from crosses bearing hotspot-activating DNA sequence motifs (M26, CCAAT, Oligo-C) and a basal recombination control (M375) which lacks those DNA sites. (C-E) Effects of binding proteins upon DNA sequence-dependent hotspot activity; proteins that bind directly to each hotspot DNA site are highlighted (bold). Recombinant frequencies are expressed as percent in null mutant versus wild-type and the results are grouped by class of hotspot: (C) M26 DNA site; (D) CCAAT DNA site; (E) Oligo-C DNA site. Data are mean from three or more independent biological replicates; differences with p ≤ 0.05 (*) are indicated for hotspot versus control (panel B) and mutant versus wild-type (panels C-E).
Figure 2. Hotspot activating proteins are rate-limiting and can establish a poised epigenetic state. Recombinant frequencies were determined for crosses that were homozygous wild-type, heterozygous wild-type/null mutant, and homozygous null mutant for hotspot-activating proteins. The heterozygous crosses were in two configurations. In the first configuration (Δ/+), the parent with the hotspot allele was null mutant for the binding protein (e.g., genotype ade6-M26 atf1Δ) and the parent with the test-cross allele expressed the binding protein (e.g., ade6-M210 atf1+). In the second configuration (+/Δ), the parent with the hotspot allele was wild-type for the binding protein (e.g., ade6-M26 atf1+) and the parent with the test-cross allele was null mutant for the binding protein (e.g., ade6-M210 atf1Δ). Recombinant frequencies are plotted as percent relative to homozygous wild-type and are grouped by class of hotspot: (A) M26 DNA site; (B) CCAAT DNA site; (C) Oligo-C DNA site. Data are mean from three or more independent biological replicates; differences with $p \leq 0.05$ are indicated for mutant versus wild-type (*) and for between heterozygous pairs (†).
Figure 3. Hotspot-activating proteins can control the expression of proteins that activate other DNA sequence-dependent hotspots. Since Atf1 and Pcr1 regulate hotspots to which they do not bind (Figure 1), we tested whether they regulate expression of the other hotspot-activating proteins. Gene expression levels from qRT-PCR in mutants are plotted as percent relative to wild-type for: (A) atf1Δ mutant; (B) pcr1Δ mutant. Data are mean from four independent biological replicates; differences with p ≤ 0.05 are indicated for mutant versus wild-type (*). (C) Conclusions from this and prior figures. Arrows depict statistically significant, linear, dependent pathway relationships elucidated in this study (solid lines), as well as connections where significant hotspot control in trans was observed, but whose mechanisms do not involve significant changes in expression of the hotspot-activating proteins (dotted lines).
Figure 4. Model for plasticity in the positioning of meiotic recombination. (A) Conceptual distribution of three different types of hotspot-activating DNA sequence motifs (a, blue; b, orange; c, grey) along the chromosome. (B) Each class of DNA sequence-dependent hotspot can be regulated independently, through its own binding/activating proteins, in response to changes in environmental and metabolic conditions. The indicated activities (low, medium, high) under each condition were assigned arbitrarily for the sake of illustration. (C-E) Contribution of each DNA site to the rate of recombination in its vicinity (blue, orange, grey lines) under the experimental conditions listed in panel B. Intensity values of each peak were assigned randomly for low (1-5), medium (11-15) and high (21-25) hotspot activity. (F-H) Net impact of the three classes of regulatory DNA sites on the overall distribution of recombination (black lines) under the three different conditions. Note differences in the frequency distribution of recombination events. Also note that if one applies a cutoff value for what is a hotspot (e.g., local recombination rate ≥ 10), as is often done in the literature, the number of annotated hotspots and their positions change substantially from condition to condition.