Gas Leakage Alerting System

K.V. Ranga Rao, G.Ravi kumar, R.Kumaraiah, Sudipta Ghosh

1Professor, Dept.of CSE, Vidya Jyothi Institute of Technology, Aziznagar
2Assistant Professor, Dept.of ECE, Vidya Jyothi Institute of Technology, Aziznagar
3Lab Assistant, Dept.of ECE, Maturi Venkata Subba Rao Engineering
4Associate professor, Dept.of ECE, Calcutta Institute of Engineering and Management

https://doi.org/10.26782/jmcms.2019.04.00015

Abstract:

A standout amongst the most well-known kinds of vitality source utilized in residential is propane in which condensed gas contains. Despite the fact that the wellbeing issues are considered, spillage of gas has turned out to be basic mishap which can make harm human lives and property. This Paper displays a minimal effort, control effective brought together Gas Leakage Alerting System. The framework has two principle gadgets: the gas identifier and the alert unit. The gas finder that is found near the gas utilization point gas chamber is a battery worked gadget. There can be more than one locator in the frameworks, which can be independently distinguished in the framework. The caution unit distinguishes the alarms sent by the indicators and discharges the alert. And furthermore it sends messages to indicated people. The segments of the gadget have been picked thinking about the power utilization and the time interims have been determined concerning the present utilization.

Keywords : Vitality Source, Alerting System, Control Utilization, Current Utilization

1. Introduction

The LPG or propane which is combustible blend of hydrocarbon gases utilized as fuel in numerous applications like homes, lodgings, enterprises, cars, vehicles due to its attractive properties which incorporate high calorific esteem, which produce the less smoke, delivers less ash, and does not make much damage the earth. Flammable gas is another broadly utilized fuel in homes. The two gases consume to create clean vitality; anyway there is a difficult issue about their spillage in the air. The gases being heavier than air don't scatter effectively and may prompt suffocation when breathed in additionally when gas spillage into the air may prompt blast. Because of the blast of LP gas the quantity of passings has been expanded as of late. To maintain a strategic distance from this issue there is a requirement for a framework to recognize and furthermore avert spillage of LPG. Gas spillage discovery is the way toward
distinguishing conceivably unsafe gas spills by methods for different sensors. These sensors for the most part utilize a capable of being heard caution to alarm individuals when a risky gas has been distinguished.

Gas sensors are utilized in a wide scope of uses in the fields of security, wellbeing, instrumentation and so forth... Regular models are residential, business cautions for hazardous or lethal gases, or in car application as gas spillage identifiers for LPG fueled autos. Such sensors, these days, are found additionally in applications including air quality control frameworks and contamination observing. The present sensors, while highlighting a high affectability to a wide gases assortment, are minimized in size and have altogether decreased their capacity utilization to more readily adjust to compact arrangements. Regardless of the sensor could be dealt with, essentially, as a variable resistor (which esteem relies upon gas fixation in air) the down to earth execution in a venture ought to be finished thinking of some as configuration rules, particularly if the last circuit is a gadget to be utilized in a field where dependability is firmly required. This structure and arrangement of MQ-2 gas sensor is made by smaller scale Al2O3 artistic cylinder, Tin Dioxide (SnO2) delicate layer, estimating anode and warmer are fixed into an outside made by plastic and tempered steel net. The radiator gives important work conditions to work of touchy segments. The wrapped MQ-2 have 6 stick, 4 of them are utilized to bring signals, and other 2 are utilized for giving warming current.

II. Block Diagram:

![Block diagram of LPG detection](image)

Figure 1. Block diagram of LPG detection
III. Technical Data:

Model No.	MQ-2
Sensor Type	Semiconductor
Standard Encapsulation	Bakelite (Black Bakelite)
Detection Gas	Combustible Gas and Smoke
Concentration	300-10000ppm (Combustible gas)

Circuit

Loop Voltage	V_C	≤ 24V DC
Heater Voltage	V_H	5.0V ±0.2V AC or DC
Load Resistance	R_L	Adjustable

Character

Heater resistance	R_H	31Ω±3Ω Room Temp
Heater Consumption	P_H	≤ 900mW
Sensing Resistance	R_S	2K Ω-20KΩ (in 200ppm C₃H₈)
Sensitivity	S	Rs(in air)/Rs(1000ppm isobutene) ≥ 5
Slope	α	≤ 0.6(R5000ppm/E3000ppm CH₄)

Condition

| Tem. Humidity | 20±265% ±5%RH |
| Standard test circuit | Vc: 5.0V ±0.1V |
| Vh: 5.0V ±0.1V |
| Preheat time | Over 48 hours |

IV. Working:

Gas sensors are accessible in wide determinations relying upon the affectability levels, sort of gas to be detected, physical measurements and various different elements. This Insight covers a methane gas sensor that can detect gases, for example, alkali which may get created from methane. At the point when a gas connects with this sensor, it is first ionized into its constituents and is then adsorbed by the detecting component. This adsorption makes a potential contrast on the component which is passed on to the processor unit through yield sticks in type of current.

The gas sensor module comprises of a steel exoskeleton under which a detecting component is housed. This detecting component is exposed to current through associating leads. This current is known as warming current through it, the gases approaching the detecting component get ionized and are consumed by the detecting
component. This progresses the obstruction of the detecting component which changes the estimation of the current leaving it.

Figure 2. Externals of a standard gas sensor module

V. System Analysis:

V.a. Existing System:

This LPG Gas Sensor, perfect sensor for use to distinguish the nearness of a hazardous Liquefied oil gas (LPG) and it has high affectability to propane, butane, isobutene, gaseous petrol. The sensor can likewise be utilized to identify burnable gases, particularly methane. It is intended to identify the LPG from 200 sections for each million (PPM) to 10,000 PPM. At whatever point there is LPG grouping of 1000 ppm (parts per million) in the territory, the OUT stick of the sensor module goes high. What’s more, ringer produces a sound.

Figure 3. Design of existing system

V.b. Proposed System:

LPG gas is provided in pressurized steel barrels. As this gas is heavier than air, when it spills from a barrel it streams along floor and will in general settle in low spots, for example, a storm cellar. This can cause flame or suffocation if not managed. LPG
gas spillage sensor circuit that recognizes the surge of LPG gas and alarms the client by means of sound, visual signs and furthermore sends the alarm messages to the ideal individuals.

The core of this the basic designing circuit is a gas sensor module SEN1327. The yield motion from gas sensor module is utilized to drive a clock based a stable multi vibrator circuit. Here clock fills in as a tone generator, the recurrence of tone can be changed. This task is intended to distinguish the LPG from 400 sections for each million (PPM) to 10,000 PPM. This LPG Gas Sensor can be utilized to make remote Gas spill indicator in home security framework. The LPG Gas Sensor Module is intended to empower LPG recognition interface to Microcontroller without ADC Channels. By giving a GSM modem we can get "SMS ALERTS" also. This circuit can identify spillages in your Home, vehicle or in an administration station, stockpiling tank condition. This unit can be effectively actualized to modern dimension by overhauling its extents.

Figure 4. Design of proposed system
VI. Implementation:

VI.a. The MQ2 Sensor, EST32 connecting wires etc before connecting:

VI.b. The Gas Leakaging system after connecting to the board:
VI.c. After connecting to wifi, when there is no gas leakage:

VI.d. When there is leakage of gas its alerts the user:
VI. When there is gas leakage, a mail will be sent to the specified user:

![Image of email notification](image1.jpg)

Figure 7.1: SMS Alert

VII. Output Screens:

VII.a. The SMS alert is sent to the member specified whenever there is a gas leakage in the home.
VII.b. The serial monitor prints the gas concentration continuously and alerts when gas is leaked.

Figure 7.2: Serial Monitor

Figure 7.3: Server
VIII. Conclusion:

By and large framework is to be structured and tried by presenting the little measure of LPG gas close gas sensor module. The framework distinguishes the dimension of gas noticeable all around in the event that it surpasses the wellbeing level; this framework naturally cautions the general population by bell, sends the messages to indicated individuals and makes the essential move of keeping the gas leakage. In ongoing families, the utilization of LPG is taking a major roll. From the utilization of chamber up to the utilization of oil pipelines. The greatest favorable position by utilizing this innovation is security and our ensure will end up being blast for family units, inns, vehicles and businesses. It is a productive home security framework and furthermore can be utilized in ventures and different spots to recognize gas spills. The cost engaged with building up the framework is altogether low and is substantially less than the expense of gas identifiers industrially accessible in the market.

IX. Future scope:

With ongoing advancement in innovation, improvement is suit with GPS innovation with various recipient MODEMS at various positions in the topographical territories by utilizing small scale controllers and temperature sensors. Multilingual presentation can be another additional variety in the task. Sound yield can be acquainted with make it easy to understand. This circuit can identify spillages in your Home, vehicle or in an administration station, stockpiling tank condition. This unit can be effectively executed to modern dimension by redesigning its reaches. And furthermore we incorporate the flame alert framework with this venture. Increasingly over we can execute this auto controlling framework subsequent to identifying gas spill.

References

I. Attia, Hussain A., and Halah Y. Ali. "Electronic Design of Liquefied Petroleum Gas Leakage Monitoring, Alarm, and Protection System Based on Discrete Components." International Journal of Applied Engineering Research, vol. 11, no. 19, pp. 9721-9726, 2016.

II. Apeh, S. T., K. B. Erameh, and U. Iruansi. "Design and Development of Kitchen Gas Leakage Detection and Automatic Gas Shut off System." Journal of Emerging Trends in Engineering and Applied Sciences, vol. 5, no. 3, pp. 222-228, 2014.

III. Ashish Shrivastava, Ratnesh Prabhaker, Rajeev Kumar, Rahul Verma, "GSM based gas leakage detection system." International Journal of Emerging Trends in Electrical and Electronics, vol. 3, no. 2, pp. 42-45, 2013.

IV. B. Jolhe, P. Potdukhe and N. Gawai, "Automatic LPG Booking, Leakage Detection and Real Time Gas Measurement Monitoring System," International Journal of Engineering Research & Technology (IJERT), vol. 2, no. 4, pp. 1192 - 1195, 2013.
V. B. Didpaye and S. Nanda, "Automated Unified System for LPG using Microcontroller and GSM Module," International Journal of Advanced Research in Computer and Communication Engineering, vol. 5, no. 2, pp. 234 - 237, February 2016.

VI. “Converting Occupational Exposure Limits from mg/m3 to ppm”, Canadian Centre for Occupational Health & Safety, 2009.

VII. “Flammable Gas Cylinders for Laboratory Use”, Various Small Gas Torches, 2003.

VIII. “Gas cylinders in labs” Aylward & Findlay, 1988.

IX. Q.Instrument Services Limited, “An introduction to Gas Detection Oliver”, IGD, Q. Instrument Services Limited, Cork, 2006.

X. K. B. Vinoth, S. Kalaiyarsan, B. A. R. Denesu and T. Kanthavel, "Quadcopter Based Gas Detection System," IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), vol. 11, no. 1, pp. 64 - 68, 2016.

XI. Mahalingam, A., R. T. Naayagi, and N. E. Mastorakis. "Design and implementation of an economic gas leakage detector." Recent Researches in Applications of Electrical and Computer Engineering, pp. 20-24, 2012

XII. P.Meenakshi Vidya, S.Abinaya, G.Geetha Rajeswari, N.Guna,"Automatic LPG detection and hazard controlling ".

XIII. S. Ashish, P. Ratnesh, K. Rajeev and V. Rahul, "GSM Based Gas Leakage Detection System," International Journal of Technical Research and Applications (IJTRA), vol. 1, no. 2, pp. 42 - 45, 2013.

XIV. T. Soundarya and J. Anchitaalagammai, "Control and Monitoring System for Liquefied Petroleum Gas (LPG) Detection and Prevention," International Journal of Innovative Research in Science, Engineering and Technology (IJRSET), vol. 3, no. 3, pp. 696 - 700, 2014.

XV. “What is Gas Leak Detection Gas Monitors UK Europe”, 2012.