Multi-Criteria Decision-Making Model using Intuitionistic Fuzzy Entropy and Variable Weight Theory

Omar Ayasrah¹* and Faiz Mohd Turan¹

¹Faculty of Manufacturing and Mechatronic Engineering Technology, Universiti Malaysia Pahang, 26600 Pahang, Malaysia.

ABSTRACT – The aim of this research is to develop a new multi-criteria decision-making method that integrates an intuitionistic fuzzy entropy measure and variable weight theory to be implemented in different fields to provide a solution for MCDM problems when the available information is incomplete. A limited number of studies have considered determining decision maker’s weights by performing objective techniques, and almost all of these researches detected a constant weight for the decision makers. In addition, most of the MCDM studies were not formulated to perform sensitivity analysis. The new method is based on the TOPSIS model with an intuitionistic fuzzy entropy measure in the exponential-related function form and the engagement of the variable weight theory to determine weights for the decision-makers that vary as per attributes. Lastly, a mathematical model was developed in this research to be as an input for developing the mobile-application based method in future for virtual use of the new MCDM method.

INTRODUCTION

In recent complicated life, selecting the best decisions turns out to be a tough part of the management job in both private and government enterprises. Recently, decision-makers have become unwilling to take gut feeling-based decisions, and instead look to adapt quantitative techniques to take and analyze their decisions [1].

Multi-criteria decision-making (MCDM) methods support decision-makers to confront problems with multiple criteria to provide a solution. Usually, a single optimal solution for such problems does not exist. So, preferences from decision-makers differentiate between solutions (alternatives). In other words, MCDM aims to aid decision-makers to shortlist alternatives or choose a single alternative that fulfills the attributes and is aligned with their preferences [2].

The solution of the MCDM problem is derived from the preferences of a group of decision-makers and, due to the vagueness and imprecision in the available infor-mation, DMs use intuitionistic fuzzy numbers (IFNs) to give their preferences and build a decision matrix [3-4].

Criteria weights having a significant effect on the final rank of the alternatives [5]. The used techniques to detecting weights for attributes could be grouped into two categories: subjective, based on decision-makers evaluation (like using AHP), and objective, that derived from given decision-makers preferences (like using the Entropy method) [6]. Hatefi [7] claimed that using objective methods would be more robust and rational than using subjective methods.

Entropy measure is used to evaluate the fuzziness and vagueness of the fuzzy sets [8]. Zadeh [9] presented the fuzzy entropy first. Then Deluca and Termini [10] explored the definition of fuzzy entropy. Then, many fuzzy entropy measures were introduced, and the IF entropy measure was introduced by Burillo and Bustince [11].

REVIEW OF LITERATURE

As a summary from the literature review, the challenges in MCDM that this study will try to confront are: assigning objective weights to decision-makers that vary as per attributes, the lack of sensitivity analysis in MCDM methods, and the possibility of performing the MCDM process virtually. Details are as follows:

Assigning decision weights by using objective techniques

Kabak & Ervural [12] mentioned that only 41% of current studies considered the decision-makers’ weights and almost all of them assigned weights directly using a subjective rating method, while rarely of them delivered a comprehensive objective method for determining the weights. More objective methods are therefore required [6].

Koksalmis & Kabak [13] reviewed the MCDM studies for a 47-year period (1970–2017) and found that 76% of those concerned with determining decision-makers’ weights had been published after 2011. They claimed that this subject is still attracting good attention from researchers in the last few years. Although 82% of the studies used constant weights, they expected that dynamic weighting methods would become dominant in future studies.

But the challenge is how to treat the variety and inconsistency within a group of decision-makers [14] when decision-makers’ weights are still not normally considered in the MCDM literature [15-16]. Liu et al. [17] added that the...
irrationality of the MCDM processes increased when the decision-makers’ weights are not considered or are assumed to be known. Hence, defining a process to detect weights is a crucial and motivated research topic [18-19].

An example of the subjective technique frequently used to determine the decision-makers’ weights is Equation 1, proposed by Boran et al. [20], where the weights are detected based on the subjective evaluation from senior management, \(D = (\mu_k, v_k, \pi_k) \):

\[
\lambda_k = \frac{\left(\mu_k + \pi_k \left(\frac{\mu_k}{\mu_k + v_k}\right)\right)}{\sum_{k=1}^{m} \left(\mu_k + \pi_k \left(\frac{\mu_k}{\mu_k + v_k}\right)\right)}
\]

(1)

The above equation was used in different studies such as [21-23].

Other studies used TOPSIS, statistical variance (SV), and simple additive weighting (SAW) to obtain the decision-makers’ weights as an objective weighting process [17, 24]. In both subjective and objective weighting methods, however, still the weights are constant and they do not deal with errors that may arise due to the fact that decision-makers may be biased or that a sudden error may take place [15].

Criteria weights

A group of DMs may find it difficult to agree on assigning exact criteria weights, and a large number of attributes could reduce the accuracy of their subjective weighting [25]. For that, Hatefi [26] suggested using objective or semi-objective techniques, but these are few in this field, even though there are techniques like Entropy, Standard Deviation, Ideal Point, and Maximizing Deviation. Therefore there is still a need for analytical techniques to handle situations where there is no preferences information from DMs.

DMs are normally selected from different fields and are characterized by different skills, knowledge, and experience, so it is not rational for DMs to set criteria weights based on their information [3].

As an example of subjective methods to determine criteria weights [22], each DM gives an IFS weight for criterion \(U_j \) as \(\omega_j = [\mu_j^v, v_j^v] \), then uses an IFWA operator to determine the final criterion weight:

\[
\omega_j(\mu, v) = IFWA(\omega_j^1, \omega_j^2, ..., \omega_j^n) = 1 - \prod_{k=1}^{l} \left(1 - \mu_j^v\right)^{\lambda_k} \prod_{k=1}^{l} \left(v_j^v\right)^{\lambda_k}
\]

(2)

Then, the criteria weights are calculated by using the equation:

\[
\omega_j = \frac{\left(\mu_j + \pi_j \left(\frac{\mu_j}{\mu_j + v_j}\right)\right)}{\sum_{j=1}^{n} \left(\mu_j + \pi_j \left(\frac{\mu_j}{\mu_j + v_j}\right)\right)}
\]

(3)

where, \(\sum \omega_j = 1, j=1, 2, ..., n \), and \(k=1, 2, ..., l \).

In objective methods, criteria weights are derived from the evaluation rates given by the DMs. As an example, the IF entropy measure \(E(e_{ij}) \) is used to determine criteria weights [24, 27] by using the equation below:

\[
\omega_j = \frac{1 - Q_j}{n - \sum_{j=1}^{n} Q_j}
\]

(4)

where \(Q_j = \frac{1}{m} \sum_{i=1}^{m} E(e_{ij}), E(e_{ij}) \) is the IF entropy of \(e_{ij} = (u_{ij}, v_{ij}) \), and \(\sum \omega_j = 1 \).

Sensitivity analysis

One of the simplest ways to check out how the solution of an MCDM problem varies with changes in the criteria and decision-makers’ weights is by performing sensitivity analysis [28]. Well-designed sensitivity analysis determines the inputs that require more care and have a limited effect on the problem solution [28]. There are many pieces of research on this. For example, Y. Chen et al. [29] and Triantaphyllou & Sánchez [30] employed sensitivity analysis to explore the effect of changing either the criteria weights or aggregated methods separately or together. Most studies have not implemented sensitivity analysis on the decision-makers’ weights [13].

Akhkuele & Turan [27] used the DMs’ attitudinal parameter (\(\beta \)) in an exponential function that could be utilized to check how the MCDM problem solution would vary with different values of the parameters:

\[
ER(\alpha) = e^{\left(1-\beta(\alpha^2-v^2)\right)/\beta}
\]

(5)
while Liu et al. [15] proposed a new method based on variable weight theory, where a parameter (α) was used for determining the DMs’ variable weights, for different values of α, and a variant preference order of alternatives could be yielded. The DMs’ variable weights are calculated by using the following equation:

$$\lambda_k (q) = \lambda_k + \alpha \lambda_k \left(\sum_{k=1}^{t} (\mu^k + \nu^k) \lambda_k - (\mu^k + \nu^k) \right)$$

(6)

where: λ_k is the predetermined DM weights for $k=1,2,3,\ldots,t$; $\bar{q} = \sum_{k=1}^{t} (\mu^k + \nu^k) \lambda_k : q_k = (\mu^k + \nu^k)$.

MCDM method with Intuitionistic fuzzy set theory

MCDM methods are usually used to select the best alternative according to the different criteria (multi-attributes) [31]. The aim is to provide decision-makers with an efficient and rational decision technique to comprehensively analyze all the objective and subjective criteria of the problem [19, 32]. Researchers started using fuzzy set theory and intuitionistic fuzzy set theory to achieve more accurate results and to deal with imperfect and imprecise data [15], and the fuzzy MCDM area is now a hot research field [33].

A number set (A) is considered as an intuitionistic fuzzy set in the universal set X, if: $A = \{\langle x_i, \mu_A (x_i), \nu_A (x_i) \rangle \}$ $\forall x_i \in X$, where: $\mu_A (x_i) \in [0,1]$ is the membership function of $x_i \in X$ in A, and $\nu_A (x_i) \in [0,1]$ is the non-membership function of $x_i \in X$ in A. Also, $\pi_A (x_i)=1-\mu_A (x_i) - \nu_A (x_i), (0 \leq \pi_A (x_i) \leq 1)$ is called the intuitionistic index or hesitancy degree of x_i in A. Since $\pi_A (x_i)=0$, then A is a fuzzy set.

A virtual MCDM method based on DSS

Decision support systems (DSS) could enhance the effectiveness of the decision-making process by making a better and quick analysis and decision, in addition to dealing with complex and imprecise data [13]. The need for a web- or mobile technology applications-DSS could become the subject of future studies. The rationale behind using mobile applications to solve MCDM problems is that enhancing the communication will positively affect the MCDM decision, by making the discussion more concentrated on the problem rather than less important issues [34].

METHODOLOGY

The IF-TOPSIS$_{EF}$ method, proposed by Aikhuele [27], utilizes the simplicity of the TOPSIS technique and the exponential-based function using an intuitionistic fuzzy set to introduce the attitudinal parameter to support the product reliability aspect. Meanwhile, the variable weight theory was applied by Liu et al. [15] to objectively determine variable DMs’ weights in MCDM problems. For the aim of this research, a combination of these two techniques will help to tackle the aforementioned challenges in the literature review, with consideration to include sensitivity analysis and providing a mobile-based application mathematical model.

The characteristics of IF-TOPSIS$_{EF}$ and variable weight theory techniques are summarized in Table 1:

Table 1. Characteristics of IF-TOPSIS$_{EF}$ and Variable Weight Theory methods.
Aspect
Method
Aggregation operator
Decision maker’s weights
Criteria weights
Sensitivity analysis
Main equation(s)
Advantages
Disadvantages

- Deriving DM's weights not considered
- The method is designed to test the reliability of product design only
- The method is not formed to perform sensitivity analysis

- Determining criteria weights is not considered
- Calculated DM's weights vary as per alternatives, not per criteria
- The method is not formed to perform sensitivity analysis

Integrating the IF-TOPSIS$_{EF}$ and variable weight theory methods by utilizing the simplicity of the first one and the logic of deriving variable DMs’ weights from the second one, yields a new robust MCDM method that can be implemented in different fields, such as project selection, best product design, site selection, and many other fields. The integration process needs to consider that IF-TOPSIS$_{EF}$ was proposed to tackle product design only, so there is a need to amend this method to be of more general use. On the other hand, the variable weight theory method generates DMs’ weights that vary based on the alternatives, which may lead to being unfair with alternatives, and to mitigate this risk, the variable weight theory method needs to be reformulated to generate DMs’ weights that vary according to the attribute instead. Once the two baseline methods are modified, theoretically, the new integrated method will utilize variable weight theory to assign variable DMs’ weights per attribute, and these weights will be used as an input to the amended IF-TOPSIS$_{EF}$ technique. By doing this, it is expected to have three parameters that can be used for sensitivity analysis: weights parameter (Υ), and finally the aggregation operator (IFWA and IFWG).

The inductive approach is selected as the overall methodology in this research because the new combined MCDM method will first be derived from the two existing techniques, then secondary data will be used to validate the results of this new method by comparison with the results of methods from which the data will be taken. Then a deductive approach will be followed to determine the requirements of developing the mathematical model for the new method to be used virtually.

The proposed combined method

A new method is proposed that utilizes the benefit of variable weight theory after being amended and uses the TOPSIS method with the entropy exponential function. The proposed method is presented in Figure 2.

![Proposed method layout](image-url)
The characteristics of the new method

The characteristics of the IF-TOPSIS$_{EF}$ and variable weight theory techniques are summarized in Table 2.

Table 2. Characteristics of the new method.

Aspect	The proposed method
Method	Intuitionistic fuzzy set, IF entropy as exponential-related function, TOPSIS, variable weight theory
Aggregation operator	IFWA and IFWG
Decision maker’s weights	Variable weights based on attributes
Criteria weights	Intuitionistic fuzzy entropy method
Sensitivity analysis	Sensitivity analysis by considering:
	- DMs’ weight parameters
	- Aggregation operators
Main equation(s)	$EE(\alpha_t) = e^{\tan^{-1}\left(\frac{\mu_t - \lambda}{\sigma_t + \delta}\right)}$
	$\lambda_t = \lambda + \alpha_t \sum_{i=1}^{n} \lambda_t + v_t^i \lambda_t - v_t^i$
Advantages	- The use of the intuitionistic fuzzy set
	- The use of the intuitionistic fuzzy set
	- The simplicity of the TOPSIS method
	- Using IF entropy as an exponential-related function
	- Providing sensitivity analysis
	- Providing algorithm of the method for virtual use
Disadvantages	- The virtual use of the method is not finalized

RESULTS

Case study

Aikhuele (2017) conducted a real case study on a crawler crane to identify the expected root causes of the machine’s failure, by evaluating the risk attributes: occurrence (O), detection (D), severity (S), and failure cost (C), considering only the operational components. Figure 3 shows the parts of the crawler crane, and a list of selected operational parts with corresponding failure modes.

![Crawler Crane Parts and Failure Modes](image-url)
M6 Anchor bolt looseness;
M7 MBB vibration;
M8 Anchor bolt breakage

03
M9 Tip distortion;
M10 Poor lubrication;
M11 Tip blockage;
M12 Tip stuck

04
M13 Weight sensor failure;
M14 No display of amplifier Circuits;
M15 Actuator damage

05
M16 Hydraulic shock;
M17 Pressure due to overload of hydraulic;
M18 High-pressure ball valve spun off;
M19 Pressure reducing valve stuck;
M20 HS leakage

Figure 3. The parts of the crawler crane and their related failure modes.

A group of 33 experts was invited to give their preferences on the failure modes. Then, after screening the responses, five experts were selected to continue the evaluation process of the risk assessment. The weight vector $\gamma = \{0.25, 0.15, 0.20, 0.15, 0.25\}^T$ was assigned to the selected experts respectively.

The DMs’ preferences while performing the risk assessment of the failure modes were provided by using linguistic variables as shown in Table 3.

Table 3. The intuitionistic fuzzy linguistic variables to express DMs’ preferences.

Linguistic term	IF Number
Extremely high (EH)	(0.9, 0.1)
Very high (VH)	(0.8, 0.1)
High (H)	(0.7, 0.2)
Medium high (MH)	(0.6, 0.3)
Medium (M)	(0.5, 0.4)
Medium low (ML)	(0.4, 0.5)
Low (L)	(0.25, 0.6)
Very low (VL)	(0.1, 0.75)
Extremely low (EL)	(0.1, 0.9)

By deploying the new method, the preference order of all the alternatives (failure modes) is shown in Table 4, where M18 (High-pressure ball valve spun off) is the most important failure mode among the others considered, with high stability when using different sensitivity parameters.

Table 4. Preference order after using the new method.

Risk factor	$Y_{IFWA} = -10$	$Y_{IFWA} = 10$	$Y_{IFWG} = -10$	$Y_{IFWG} = 10$	$Y_{IFWA} = -10$	$Y_{IFWA} = 10$	$Y_{IFWG} = -10$	$Y_{IFWG} = 10$
M1	10	11	13	15	20	20	17	17
M2	2	2	6	8	13	13	16	13
M3	6	7	10	11	3	3	2	2
M4	11	9	4	4	8	8	7	6
M5	17	14	19	19	15	15	11	10
M6	7	6	3	3	16	16	18	18
M7	14	17	20	20	18	19	15	14
M8	12	12	9	9	1	1	1	1
M9	19	18	14	16	5	5	12	12
M10	9	10	8	5	4	4	5	7

By comparing the results of the risk assessment for the case study obtained with the new method and with the IF-TOPSIS method, the clear result from the new method shows without doubt that M18 is ranked as the first failure mode to be considered by the management to mitigate the risk of failure during the design process. By contrast, if referring to the result from the other mentioned method presented in Table 5, the management will be uncertain about prioritizing the failure modes.

Table 5. Preference order by using IF-TOPSIS method.

Risk factor	$\lambda = 0.1$	$\lambda = 0.1$	Risk factor	$\lambda = 0.1$	$\lambda = 0.1$
M1	8	11	M11	5	14
M2	15	5	M12	12	8
The results from using the new method can be ranked by calculating the average preference order for the different sensitivity analysis parameters used. Therefore, the final ranking of failure modes will be as follows:

M18>M13>M2>M6>M20>M4>M14>M10>M3>M19>M8>M1>M15>M12>M17>M9>M16>M5>M7>M11

Model of the proposed method

The mathematical model of the proposed method for virtual application is shown in Figure 4.

CONCLUSION

In this paper, a new MCDM is proposed by integrating the IF-TOPSISIEF method and variable weight theory. This integration took place after enhancing the two base-line methods by emphasizing their advantages and treating the disadvantages of each base-line method separately. Then, the enhanced baseline methods were validated separately by using secondary data (examples) before integration. The final combined method was formulated to provide sensitivity analysis, after which a mobile-based application mathematical model was developed to allow this new method to be used virtually in the future. The use of intuitionistic fuzzy entropy measure in an exponential function form compensated the need to detect attribute’s weights, therefore added more simplicity to the new method.

ACKNOWLEDGEMENT

The authors would like to thank the Ministry of Higher Education for providing fi-nancial support under Fundamental Research Grant Scheme (FRGS) No. FRGS/1/2019/TK10/UMP/02/10 (University reference RDU1901158) and Universiti Malaysia Pahang for the facilities.
REFERENCES

[1] Brunelli, M., "Introduction to the Analytic Hierarchy Process", Springer International Publishing, 2015, https://doi.org/10.1007/978-3-319-12502-2.

[2] Khan, B. M., Bilal, R., & Young, R., "Fuzzy-TOPSIS based Cluster Head selection in mobile wireless sensor networks", Journal of Electrical Systems and Information Technology, 5(3), 2018, https://doi.org/10.1016/j.jesist.2016.12.004.

[3] Elaminasab, Z., & Hamzehee, A., "Determining appropriate weight for criteria in multi criteria group decision making problems using an LP model and similarity measure", Iranian Journal of Fuzzy Systems, 16 (3), 2019, https://doi.org/10.22111/ijfs.2019.4643.

[4] DO Aikhuele, FBM Turan, "Intuitionistic fuzzy-based model for failure detection", SpringerPlus 5 (1), 1-15, 2016, https://doi.org/10.1186/s40064-016-3446-0.

[5] Garg, H. "Generalized Intuitionistic Fuzzy Entropy-Based Approach for Solving Multi-attribute Decision-Making Problems with Unknown Attribute Weights", Springerlink, 89, 129-139, 2019, https://doi.org/10.1007/s00107-019-0395-0.

[6] H. Arian, H. Ashkan, L. Huchang, H. Francisco, "An overview of MULTIMOORA for multi-criteria decision-making: Theory, developments, applications, and challenges", Information Fusion, 51, 145-177, 2019, https://doi.org/10.1016/j.inffus.2018.12.002.

[7] Hatifi, Mohammad, "Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making", Applied Soft Computing, 74, 643-651, 2019, https://doi.org/10.1016/j.asoc.2018.10.050.

[8] Liu, M., & Ren, H., "A new intuitionistic fuzzy entropy and application in multi-attribute decision making", Information, 5(4), 587-601, 2014, https://doi.org/10.3390/info5040587.

[9] Zadeh, L.A., "Probability measures of fuzzy events", J. Math. Anal. Appl, 23, 421–427, 1968, https://doi.org/10.1016/0022-247X(68)90078-4.

[10] De Luca, A., Termini, S., "A definition of non-probabilistic entropy in the setting of fuzzy set theory", Inf. Control, 20, 301–312, 1972, https://doi.org/10.1016/S0019-9958(72)90199-4.

[11] Burillo, P.; Bustince, H., "Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets", Fuzzy Sets Syst., 118, 305–312, 2001, https://doi.org/10.1016/S0165-0114(96)84611-2.

[12] Kabak, Ö. & Ervural, B., "Multiple attribute group decision making: A generic conceptual framework and a classification scheme", Knowledge-Based Systems, 123, 2017, https://doi.org/10.1016/j.knosys.2017.02.011.

[13] Koksalmis, E., & Kabak, Ö., "Deriving decision makers’ weights in group decision making: An overview of objective methods", Information Fusion, 49, 2019, https://doi.org/10.1016/j.inffus.2018.11.009.

[14] Janković, A., & Popović, M., "Methods for assigning weights to decision makers in group AHP decision-making", Decision Making: Applications in Management and Engineering, 2(1), 2019, https://doi.org/10.31181/dname1901147.

[15] Liu, S., Yu, W., Liu, L., & Hu, Y., "Variable weights theory and its application to multi-attribute group decision making with intuitionistic fuzzy numbers on determining decision maker’s weights", PLOS ONE, 14(3), 2019, https://doi.org/10.1371/journal.pone.0212636.

[16] Yue, Z., "Developing a straightforward approach for group decision making based on determining weights of decision makers", Applied Mathematical Modelling, 36(9), 2021, https://doi.org/10.1016/j.apm.2011.11.041.

[17] Liu, S., Chan, F. T. S., & Ran, W., "Multi-attribute group decision-making with multi-granularity linguistic assessment information: An improved approach based on deviation and TOPSIS", Applied Mathematical Modelling, 37(24), 2013, https://doi.org/10.1016/j.apm.2013.05.051.

[18] Dong, Q., & Cooper, O., "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making", European Journal of Operational Research, 250(2), 2016, https://doi.org/10.1016/j.ejor.2015.09.016.

[19] Yue, C., "Entropy-based weights on decision makers in group decision-making setting with hybrid preference representations", Applied Soft Computing, 60, 2017, https://doi.org/10.1016/j.asoc.2017.07.033.

[20] Boran, F. E., Genç, S., Kurt, M., & Akay, D., "A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method", Expert Systems with Applications, 36(8), 2009, https://doi.org/10.1016/j.eswa.2009.03.039.

[21] Yalcin, A. S., & Kilic, H. S., "Green supplier selection via an integrated multi-attribute decision making approach", Sakarya University Journal of Science, 2019, https://doi.org/10.16984/saunbiler.46279.

[22] Memari, A., Dargi, A., Akhbari Jokar, M. R., Ahmad, R., & Abdul Rahim, A. R., "Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method", Journal of Manufacturing Systems, 50, 2019, https://doi.org/10.1016/j.jmsy.2018.11.002.

[23] Sachdeva, N., & Kapur, P. K., "A hybrid intuitionistic fuzzy and entropy weight based multi-criteria decision model with TOPSIS", System Performance and Management Analytics, 2019, https://doi.org/10.1007/978-981-10-7323-6_27.

[24] Liu, S., Chan, F. T. S., & Ran, W., "Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes", Expert Systems with Applications, 55, 2016, https://doi.org/10.1016/j.eswa.2016.01.059.

[25] Ginevičius, R., "A new determining method for the criteria weights in multicriteria evaluation", International Journal of Information Technology & Decision Making, 10(06), 2011, https://doi.org/10.1142/S0219622011004713.

[26] Hatfi, M. A., "Indifference threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making", Applied Soft Computing, 74, 2019, https://doi.org/10.1016/j.asoc.2018.10.050.

[27] Aikhuele, D. O., & Turan, F. M., "Extended TOPSIS model for solving multi-attribute decision making problems in engineering", Decision Science Letters, 2017, https://doi.org/10.5267/j.dsl.2017.2.002.

[28] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S., "Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index", Computer Physics Communications, 181(2), 2010, https://doi.org/10.1016/j.cpc.2009.09.018.

[29] Chen, Y., Yu, J., & Khan, S., "Spatial sensitivity analysis of multi-criteria weights in GIS-based land suitability evaluation", Environmental Modelling & Software, 25(12), 2010, https://doi.org/10.1016/j.envsoft.2010.06.001.

[30] Triantaphyllou, E., & Sánchez, A., "A sensitivity analysis approach for some deterministic multi-criteria decision-making methods", Decision Sciences, 28(1), 1997, https://doi.org/10.1111/j.1540-5915.1997.tb01306.
[31] Chin, K.-S., Fu, C., & Wang, Y., “A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes”, *Computers & Industrial Engineering*, 87, 2015, https://doi.org/10.1016/j.cie.2015.04.016.

[32] Wan, S., Wang, F., & Dong, J., “Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making”, *European Journal of Operational Research*, 263(2), 2017, https://doi.org/10.1016/j.ejor.2017.05.022.

[33] Wan, S.-P., & Dong, J.-Y., “Interval-valued intuitionistic fuzzy mathematical programming method for hybrid multi-criteria group decision making with interval-valued intuitionistic fuzzy truth degrees”, *Information Fusion*, 26, 2015, https://doi.org/10.1016/j.inffus.2015.01.006.

[34] Perez, I. J., Cabrerizo, F. J., & Herrera-Viedma, E., “A mobile decision support system for dynamic group decision-making problems”, *IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans*, 40(6), 2010, https://doi.org/10.1109/TSMCA.2010.2046732.