A Simple Sum for Simplices

Christian Aebi and Grant Cairns

Consider a planar quadrilateral whose vertices have position vectors A, B, C, D, in cyclic order. Let K_{ABC} denote the area of the triangle ABC, as shown in Figure 1, and use similar notation for the other triangles. The identity

$$K_{BCD}A - K_{ACD}B + K_{ABD}C - K_{ABC}D = 0$$

was given in [1], where it was proved as a consequence of the Jacobi vector triple product identity in \mathbb{R}^3.

One has $2K_{ABC} = \det[B - A, C - A]$, and similarly for the other triangles, so (1) gives

$$\det[C - B, D - B]A - \det[D - C, A - C]B + \det[A - D, B - D]C - \det[B - A, C - A]D = 0. \tag{2}$$

The object of this paper is to generalize this fact to arbitrary dimension n. Consider points A_0, \ldots, A_{n+1} in \mathbb{R}^n and think of them as column vectors. For $i = 0, \ldots, n + 1$, consider the $n \times n$ matrix

$$M_i = [A_{i+2} - A_{i+1} | A_{i+3} - A_{i+2} | \cdots | A_{i+n+1} - A_{i+n}],$$

where the indices are computed modulo $n + 2$, and let $\Delta_i = \det M_i$. Here is the main result of this paper.

Theorem 1. In the above notation, one has

$$\sum_{i=0}^{n+1} (-1)^i \Delta_i A_i = 0. \tag{3}$$

Before proving this result, let us consider some special cases. For $n = 1$, the above theorem gives

$$(A_2 - A_1)A_0 + (A_0 - A_2)A_1 + (A_1 - A_0)A_2 = 0,$$

which is obvious. For $n = 2$, the theorem gives us (2). For $n = 3$, we have five points in \mathbb{R}^3, which we may regard as the vertices of a (possibly degenerate) polyhedron, and the theorem gives

$$\det[A_2 - A_1, A_3 - A_1, A_4 - A_1]A_0 + \det[A_3 - A_2, A_4 - A_2, A_0 - A_2]A_1 + \det[A_4 - A_3, A_0 - A_3, A_1 - A_3]A_2 + \det[A_0 - A_4, A_1 - A_4, A_2 - A_4]A_3 + \det[A_1 - A_0, A_2 - A_0, A_3 - A_0]A_4 = 0.$$

Here for each i, the coefficient of A_i is six times the signed volume of the tetrahedron defined by the other four vertices. For example, in Figure 2, for $A_0 = (0, 0, -1), A_1 = (1, 0, 0), A_2 = (0, 1, 0)$, and $A_3 = (-1, -1, 0), A_4 = (0, 0, 1)$, we obtain

$$3A_0 - 2A_1 - 2A_2 - 2A_3 + 3A_4 = 0.$$

In dimension n, the convex hull of $n + 1$ points is a (possibly degenerate) n-simplex. The coefficient Δ_i in (3) is the signed volume of the n-simplex defined by the points other than A_i. In particular, Δ_i is unchanged by translation. So on translating by a nonzero vector T, (3) gives

$$\sum_{i=0}^{n+1} (-1)^i \Delta_i (A_i + T) = 0.$$

Then subtracting (3) and taking the coefficient of T gives the following scalar identity.

Corollary 1. $\sum_{i=0}^{n+1} (-1)^i (n+1) \Delta_i = 0$.

In other words, given $n + 2$ points in \mathbb{R}^n, when n is odd the sum of the signed volumes of the n-simplices is zero, and when n is even, the alternating sum of the signed volumes is zero.

Figure 1. Quadrilateral $ABCD$ showing the area K_{ABC} of triangle ABC.

Figure 2. Applying (3) to a triangular bipyramid.
Multilinear Algebra

Our proof of the theorem is a simple argument using multilinear algebra. Let us summarize the well-known basic ideas we require. Consider real vector spaces V and W. Suppose that k is a positive integer. Recall that a function $f : V^k \to W$ is said to be multilinear if it is linear in each variable with the other variables held constant; for a gentle introduction, see [4, Chapter 3]. A multilinear function $f : V^k \to W$ is said to be alternating if for all elements $A_0, A_1, \ldots, A_{k-1} \in V$ and all permutations σ of $\{0, 1, \ldots, k-1\}$, one has

$$f(A_{\sigma(0)}, A_{\sigma(1)}, \ldots, A_{\sigma(k-1)}) = \text{sgn}(\sigma)f(A_0, A_1, \ldots, A_{k-1}),$$

where $\text{sgn}(\sigma)$ denotes the sign of σ. For example, the determinant function $\det : V^n \to \mathbb{R}$, $(A_0, \ldots, A_{n-1}) \mapsto \det[A_0 \mid \ldots \mid A_{n-1}]$ is an alternating multilinear function of the column vectors; see [3, Chapter XIII].

There are several known sets of generators for the symmetric group S_k of permutations of $\{0, 1, \ldots, k-1\}$; a nice survey is given in [2]. In particular, S_k is generated by the cycle $(0, 1, \ldots, k-1)$ and the transposition $(0, 1)$; see [2, Theorem 2.5]. Thus, in order to show that a multilinear function f is alternating, it suffices to show that for all $A_0, A_1, \ldots, A_{k-1} \in V$:

(a) $f(A_1, A_2, \ldots, A_{k-1}, A_0) = (-1)^{k-1}f(A_0, A_1, \ldots, A_{k-1})$,
(b) $f(A_0, A_1, A_2, \ldots, A_{k-1}) = -f(A_0, A_1, A_2, \ldots, A_{k-1})$.

Note that from (b) we have

\[f(A_0, A_0, A_2, A_3, \ldots, A_{k-1}) = 0. \]

Conversely, it is easy to see that if (b') holds for all $A_0, A_2, \ldots, A_{k-1} \in V$, then (b) follows. So in order to show that a multilinear function f is alternating, it suffices to verify conditions (a) and (b'). Note that it follows that if f is alternating and if $A_i = A_j$ for some $i \neq j$, then $f(A_0, A_1, \ldots, A_{k-1}) = 0$; indeed, one can just permute A_i, A_j to the extreme left and employ (b').

Finally, a key fact about alternating multilinear functions that we will use below is that if $k > \dim V$, then f is identically zero. In the literature, this fact can be quickly deduced once one has constructed the exterior algebra on V, but we don’t do that here, since we will not require the exterior product. Instead, one can use the following straightforward proof. First choose a basis for V. Using multilinearity, the image of the alternating function f is determined by its values on the basis elements. But if $A_0, A_1, \ldots, A_{k-1}$ are basis elements and $k > \dim V$, then by the pigeonhole principle, there must be a repetition of one of the basis elements. It follows that since f is alternating, $f(A_0, A_1, \ldots, A_{k-1}) = 0$.

Proof of the Theorem

Let n be an arbitrary positive integer, let $V = \mathbb{R}^n$, and consider the function $f : V^{n+2} \to V$ defined by

\[f(A_0, A_1, \ldots, A_{n+1}) = \sum_{i=0}^{n+1} (-1)^i \Delta_i A_i. \]

Because \det is multilinear, and because for each i, the variable A_i does not occur in Δ_i, it follows that f is multilinear. We will show that f is alternating, and hence identically zero. Condition (a) is immediate from the definition of f. So it remains to prove (b'). Using the fact that the determinant is an alternating multilinear function of the column vectors and computing the indices modulo $n + 2$, we have

\[\Delta_i = \det [A_{i+2} - A_{i+1} | A_{i+1} - A_i | \ldots | A_{i+n+1} - A_i] \]

\[= \det [A_{i+2} | A_{i+1} | \ldots | A_{i+n+1}] \]

\[- \sum_{j=0}^{n+1} (-1)^i \det [A_{i+j} | \ldots | A_{i+j+1}| A_{i+j} | A_{i+j+1} | \ldots | A_{i+n+1}]. \]

Moving the column A_{i+j} in the summation $j + 2$ positions to the far left, we have

\[\Delta_i = \det [A_{i+2} | A_{i+3} | \ldots | A_{i+n+1}] \]

\[- \sum_{j=0}^{n+1} (-1)^i \det [A_{i+j} | \ldots | A_{i+j+1} | A_{i+j} | A_{i+j+1} | \ldots | A_{i+n+1}] \]

where in the above, the hat symbol indicates that the term has been omitted. In particular,

\[\Delta_0 = \sum_{j=1}^{n+1} (-1)^{j-1} \det [A_1 | \ldots | \hat{A}_j | \ldots | A_{n+1}] \]

and

\[\Delta_1 = \sum_{j=1}^{n+1} (-1)^{j-1} \det [A_2 | \ldots | \hat{A}_j+1 | \ldots | A_{n+1} | A_0]. \]

Now suppose $A_1 = A_0$. Moving A_0 to the far left and replacing it by A_1, and then adjusting j, we have

\[\Delta_1 = \sum_{j=0}^{n} (-1)^{j+1} \det [A_1 | \ldots | \hat{A}_{j+1} | \ldots | A_{n+1}] \]

\[= \sum_{j=1}^{n+1} (-1)^{j-1} \det [A_1 | \ldots | \hat{A}_j | \ldots | A_{n+1}]. \]

So $\Delta_0 + (1)^{n+1} \Delta_1 = 0$. Since $A_1 = A_0$, we have $\Delta_i = 0$ for all $i \geq 2$. Hence, from the definition of f,
f(A_0, A_1, \ldots, A_{n+1}) = (\Delta_0 + (-1)^{n+1} \Delta_1)A_0 = 0,

as required.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

[1] C. Aebi and G. Cairns. A vector identity for quadrilaterals. To appear in *College Math. J.* Preprint available at arXiv:2106.11860.
[2] Keith Conrad. Generating sets. Notes available at https://kconrad.math.uconn.edu/blurbs/grouptheory/genset.pdf.
[3] Serge Lang. *Algebra*, revised third edition, Graduate Texts in Mathematics 211. Springer, 2002.
[4] Loring W. Tu. *An Introduction to Manifolds*, second edition, Universitext. Springer, 2011.

Christian Aebi, Collège Calvin, 1211 Geneva, Switzerland. E-mail: christian.aebi@edu.ge.ch

Grant Cairns, Department of Mathematics, La Trobe University, Melbourne 3086, Australia. E-mail: G.Cairns@latrobe.edu.au

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.