The inelastic Takahashi hard-rod gas

Umberto Marini-Bettolo-Marconi, Maurizio Natali, Giulio Costantini, and Fabio Cecconi

1Dipartimento di Fisica, Università di Camerino, Via Madonna delle Carceri, I-62032, Camerino, Italy
2INFN and Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, I-00185, Roma, Italy

(Dated: March 23, 2022)

We study a one-dimensional fluid of hard-rods interacting each other via binary inelastic collisions
and a short ranged square-well potential. Upon tuning the depth and the sign of the well, we
investigate the interplay between dissipation and cohesive or repulsive forces. Molecular dynamics
simulations of the cooling regime indicate that the presence of this simple interparticle interaction
is sufficient to significantly modify the energy dissipation rates expected by the Haff’s law for
the free cooling. The simplicity of the model makes it amenable to an analytical approach based
on the Boltzmann-Enskog transport equation which allows deriving the behaviour of the granular
temperature. Furthermore, in the elastic limit, the model can be solved exactly to provide a full
thermodynamic description. A meaningful theoretical approximation explaining the properties of the
inelastic system in interaction with a thermal bath can be directly extrapolated from the properties
of the corresponding elastic system, upon a proper re-definition of the relevant observables. Simulation
results both in the cooling and driven regime can be fairly interpreted according to our theoretical
approach and compare rather well to our predictions.

PACS numbers: 02.50.Ey, 05.20.Dd, 81.05.Rm

I. INTRODUCTION

Granular materials are ubiquitous in nature and their handling occurs in many types of industrial activities. While
they are very common, their properties often are not. In the last twenty years there has been a great progress in
the comprehension of static and dynamical properties of granular flows1,2,3,4. In spite of the fact that most of the
theoretical research in this context has been based on the inelastic hard sphere model, several observations suggest that
neither cohesive forces1 nor electrostatic repulsion7,8 can be ignored. Understanding how simple interactions modify
the behavior of a granular gas can have important practical consequences. Cohesive forces have to be considered
when studying wet granular matter: the humidity may lead to the formation of thin layers of water on the surface
of the grains and induce adhesion through capillarity effects. The presence of liquid-vapor interfaces can enhance
the mechanical stability of an assembly of grains, as illustrated by sand castles. On the other side, repulsive forces
also play a role, as stressed by Sheffer and Wolf7. Dry granular materials tend to become electrically charged due to
contact electrification during transport. In the case of monopolar charging the particles experience mutual coulombic
repulsion. Finally, Blair and Kudrolli7 studied the behavior of a vibrated system of magnetic grains, where forces
of tensorial character are in action, and found coexistence of long lived clusters with isolated particles. Clusters can
manifest as chains or globular structures according to the driving intensity.

In this work we introduce and study a one-dimensional model which can be tuned to describe both the cohesive
and the repulsive regime. One dimensional models have often been employed in the literature6,9,10,11,12,13,14 to study granular
fluids because their simplicity provides a valuable testing ground for theoretical approaches and approximations.
Our model consists of a set of inelastic hard rods subjected to square-well potential as shown in Fig. 1. The attractive
potential mimics the action of cohesive forces responsible for adhesion among particles which are crucial effects when
considering fine particulates such as powders or sands. On the contrary, the barrier describes the effect of soft materials
which may present a deformable shell covering the hard-core nucleus.

The choice of a square well interparticle interaction is particularly convenient in a computer implementation of
the model since it reduces Newton’s equations to algebraic expressions. Indeed, in the cooling regime, rods move
with constant velocity until they pass a barrier or their cores touch. Thus the collisional cooling can be simulated
through the collision driven algorithm of Alder-Wainwright15. We shall analyze the interplay between the potential
and the collisional dissipation typical of granular materials. In particular, we discuss the influence of the square-well
interaction on the rate of energy dissipations in the same spirit of reference16. It is well known, that in the homogeneous
free cooling process, a system of inelastic hard spheres dissipates its kinetic energy at a rate proportional to the square
root of the kinetic temperature, $T$, the so called granular temperature, and that $T$ decreases in time as the inverse of
square time17. As we shall see, this picture is partially modified by the presence of a short range repulsive or attractive
potential barrier. By treating collisions according to Enskog’s equation, a generalization of Boltzmann equation to
dense-fluid regime, we are able to make some predictions about the cooling behavior of the model. In addition we
consider its properties when it is kept in contact to a stochastic source of energy which balances the energy loss due to inelastic collisions. In this case, the system reaches a steady regime whose properties can be partly understood through a direct comparison with the properties of corresponding elastic system.

The paper is organized as follows. Section II, describes the model we use and the main features of the simulations and technical details. Section III shows the thermodynamics of the elastic version of the model, in order to have a reference system to compare inelastic results. In section IV, an analytic estimate of granular temperature of the system is derived through a Boltzmann-Enskog approach. Section V illustrates simulation results of the inelastic model both in the cooling and driven regimes with a comparison to theoretical predictions. Finally section VI contains a brief discussion and conclusions.

II. THE MODEL

We consider $N$ identical impenetrable rods of mass $m = 1$, size $\sigma = 1$, positions $x_i(t)$ and velocities $v_i(t)$ constrained to move in a periodic domain of size $L$. They interact through a potential $V(|x_i - x_j|)$ consisting of a hard-rod part and a square-well potential, as shown in Fig. 1. Explicitly, we consider:

$$V(x) = \begin{cases} 
\infty & \text{if } x < \sigma \\
-\varepsilon & \text{if } \sigma \leq x \leq b\sigma \\
0 & \text{if } x > b\sigma 
\end{cases}$$

(1)

where the parameter $b$ defines the characteristic range of the interaction. The effect of a piece-wise constant potential $V(x)$ amounts to a set of simple collision rules, similar to those involved in the dynamics of hard-rods. Several kinds of collisions between two neighbor particles may occur when their distance is:

$$\Delta x_i(t) \equiv x_{i+1}(t) - x_i(t) = b\sigma$$

If $\epsilon > 0$ the following cases are possible: I) particles entering the well II) particles leaving the well, III) particles being trapped and rebounding at the inside square-well edge, because their relative kinetic energy is not sufficient to escape. On the other hand, if $\epsilon < 0$ one has the cases: I’) particles overcoming the repulsive barrier ($m(v_i - v_{i+1})^2 > 4|\varepsilon|$) II’) particles descending the barrier, III’) particles being repelled by the barrier, when $m(v_i - v_{i+1})^2 < 4|\varepsilon|$.

The post-collisional velocities in cases III and III’ are given by:

$$v'_i = v_{i+1}$$
$$v'_{i+1} = v_i.$$

In the remaining cases the collision rule are found by requiring again the conservation of the total energy and total momentum at the edge of the square well-potential. If particles are entering ($s_i \equiv \text{sign}(v_i - v_{i+1}) > 0$), while if they
are leaving the well \((s_i < 0)\), and the collision rule reads:

\[
\begin{align*}
v'_i &= \frac{(v_i + v_{i+1})}{2} + s_i \sqrt{\frac{(v_i - v_{i+1})^2}{4} + \frac{\epsilon}{m}} \\
\end{align*}
\]

\[
\begin{align*}
v'_{i+1} &= \frac{(v_i + v_{i+1})}{2} - s_i \sqrt{\frac{(v_i - v_{i+1})^2}{4} + \frac{\epsilon}{m}} \tag{2}
\end{align*}
\]

where pre-collisional and post-collisional velocities are indicated by unprimed and primed symbols, respectively.

We finally consider the hard-core inelastic collision at

\[
\Delta x_i(t) \equiv x_{i+1}(t) - x_i(t) = \sigma
\]

which results in the transformation

\[
\begin{align*}
v'_{i+1} &= v_{i+1} - \frac{1 + \alpha}{2} (v_{i+1} - v_i) \\
v'_i &= v_i + \frac{1 + \alpha}{2} (v_{i+1} - v_i) \tag{3}
\end{align*}
\]

where \(\alpha\) indicates a constant coefficient of restitution and \(0 \leq \alpha \leq 1\).

Besides impulsive forces between particles, we shall also consider an external stochastic white noise force, whose role is to fluidize the system and balance the energy losses due to dissipative forces. The dynamics between two consecutive collisions is described by the following Langevin equation

\[
m \frac{d^2 x_i(t)}{dt^2} = -m \gamma \frac{dx_i(t)}{dt} + \xi_i, \tag{4}
\]

where \(-m \gamma dx_i/dt\) is a viscous term and \(\xi_i\) a Gaussian random force, with zero average and variance satisfying a fluctuation-dissipation relation:

\[
\langle \xi_i(t)\xi_j(t') \rangle = 2m \gamma T \delta_{ij} \delta(t - t') \tag{5}
\]

with \(T\) proportional to the intensity of the stochastic driving.\(^{17,18}\) The damping term renders the system stationary even in the absence of collisional dissipation and physically can represent the friction between the particles and the container. Summarizing, the position \(x_i\) (\(i = 1, N\)) of the \(i\)-th particle evolves according to the equation:

\[
m \frac{d^2 x_i(t)}{dt^2} = -m \gamma \frac{dx_i(t)}{dt} + \xi_i(t) + \sum_j f_{ij}(t) \tag{6}
\]

where \(f_{ij}\) indicates the resultant of impulsive forces between particles \(i\) and \(j\). Since the dynamics of the model is mainly ruled by impulsive forces, Molecular Dynamics (MD) simulations make use of a collision driven algorithm.

### III. ELASTIC SYSTEM: EQUILIBRIUM PROPERTIES

The elastic fluid, corresponding to the limit \(\alpha = 1\) in Eqs. \(^{45}\), serves conveniently as a reference system. Thus, we consider its equilibrium properties, that we shall compare to properties of the stationary inelastic system to build a theoretical approach valid in the region of moderate inelasticity. The equilibrium square-well fluid model is exactly solvable when the interaction range is restricted to first neighbors, \(i.e. b \leq 2\), the exclude volume allows no more than two particles to experience the same potential well. In that case, the Gibbs free energy, \(G(P, T, N)\), can be derived using the isothermal-isobaric ensemble.\(^{19,20}\) Here, the partition function \(Y(P, T, N)\) is related to that of the one-dimensional canonical ensemble \(Z(T, L, N)\) by

\[
Y(P, T, N) = \frac{1}{\Lambda^N \Lambda_0} \int_0^{\infty} dLE^{-\beta PL} Z(T, L, N) \tag{7}
\]

where \(P\) is the thermodynamic pressure, \(\Lambda \equiv h/\sqrt{2 \pi mk_B T}\) is the temperature-dependent de Broglie wavelength and \(\Lambda_0\) an arbitrary constant with dimension of a length.

Following the existing literature,\(^{22}\) the isothermal-isobaric partition function for \(N\) rods of length \(\sigma\) can be written as

\[
Y(P, T, N) = \Lambda \frac{1}{\beta PL} \left[ e^{\beta \epsilon} (e^{-\beta P\sigma} - e^{-\beta P\sigma}) + e^{-\beta P\sigma} \right]^{N+1}. \tag{8}
\]
The associated Gibbs potential

\[ G(P, T, N) = \frac{-1}{\beta} \ln Y(P, T, N) \]

reads a part from a constant

\[ G(P, T, N) = (N + 1) \left\{ b \sigma P + \frac{1}{\beta} \ln \left( \beta P \right) \right\} - \frac{1}{\beta} \ln \left[ 1 + e^{\beta \epsilon} (e^{\beta P (b-1) \sigma} - 1) \right]. \]  

(9)

The equation of state, relating density, pressure and temperature is obtained by differentiating \( G \) with respect to \( P \) and defining the “volume” per particle, \( \rho^{-1} = \bar{L}/N \), of the system

\[ \frac{1}{\rho} = b \sigma + \frac{1}{\beta P} - \frac{(b-1)\sigma}{1 + e^{-\beta P (b-1) \sigma} (e^{-\beta \epsilon} - 1)}. \]  

(10)

that can be recast to the more familiar form

\[ \frac{\beta P}{\rho} = \frac{1}{1 - \rho \sigma B} \]  

(11)

with

\[ B = \frac{1 + be^{-\beta P (b-1) \sigma} (e^{-\beta \epsilon} - 1)}{1 + e^{-\beta P (b-1) \sigma} (e^{-\beta \epsilon} - 1)} \]

Notice that \( b = 1 \) implies \( B \to 1 \), therefore the hard-rod pressure is straightforwardly recovered.

In order to apply Enskog’s kinetic approach, we need to compute the equilibrium pair correlation function in the thermodynamic limit. The pair correlation is defined as:

\[ \rho g(y) \equiv \sum_{r=1}^{\infty} \langle \delta(x_{l+r} - x_{l} - y) \rangle \]  

(12)

To perform the average in eq. (12), we represent the delta distribution (with \( l = 1 \) and \( q = r + l \)) by its Fourier transform

\[ \delta(x_q - x_1 - y) \equiv \int_{-\infty}^{\infty} \frac{dk}{2\pi} \exp[ik(x_q - x_1 - y)] \]  

(13)

and write the average explicitly in terms of the Boltzmann weights \( f(x) = \exp[-\beta V(x)] \):

\[ \langle \delta(x_q - x_1 - y) \rangle = \frac{1}{Z(T, L, N)} \int_{-\infty}^{\infty} \frac{dk}{2\pi} e^{-iky} \int_{0}^{L} dx_q \int_{0}^{x_q} dx_{q-1} \cdots \int_{0}^{x_2} dx_1 \cdot f(L - x_q) f(x_q - x_{q-1}) \cdots f(x_2 - x_1) f(x_1) e^{ik(x_q - x_1)} \]  

(14)

Since the last expression has the form of an iterated convolution, one can obtain the desired average by means of standard Laplace transform method, a simple generalization of the method employed to compute \( Z(T, L, N) \) in the isothermal-isobaric ensemble. After a lengthy calculation, in the thermodynamic limit \( N \to \infty \) and constant pressure, we get the series

\[ \rho g(y) = \sum_{r=1}^{\infty} \frac{A_r(y)}{(r-1)!} \frac{(\beta P)^r e^{-\beta P y}}{e^{\beta \epsilon} (e^{-\beta P \sigma} - e^{-\beta P \sigma}) + e^{-\beta P \sigma})^r} \]  

(15)

where the coefficients can be written as

\[ A_r(y) = \sum_{k=0}^{r} \binom{r}{k} \Theta[y - \sigma(r + (b-1)k)] \right) \cdot \left[ y - \sigma(r + (b-1)k) \right]^{r-1} (1 - e^{\beta \epsilon})^k (e^{\beta \epsilon})^{r-k} \]  

(16)
where $\Theta(x)$ is the unitary step function\textsuperscript{21}. Notice that for a pure hard-rod system ($\epsilon = 0$, $\beta P = \rho/(1 - \rho \sigma)$), one finds
\[\rho g_{hr}(y) = \sum_{r=1}^{\infty} \frac{1}{(r-1)!} \frac{\rho^r}{(1 - \rho \sigma)^{r-1}} \Theta(y - r\sigma)(y - r\sigma)^{r-1} \cdot \exp \left[-\frac{\rho}{1-\rho \sigma}(y - r\sigma)\right]\]
(17)
a result which agrees with the well known result by Zernike and Prins\textsuperscript{22,23}. From expressions (15) and (16), the value of the pair correlation at contact can be extracted explicitly:
\[g(\sigma) = \frac{\beta P}{\rho} \frac{1}{1 + e^{-\beta P(b-1)\sigma}(e^{-\beta \epsilon} - 1)}\]
(18)
Since the thermodynamic pressure can be expressed in terms of $g(y)$ through the virial equation\textsuperscript{24}
\[\frac{\beta P}{\rho} = 1 - \frac{\beta \rho}{2} \int_{-\infty}^{\infty} dx V'(x) x g(x)\]
(19)
after some rearrangements, the pressure reads
\[\frac{\beta P}{\rho} = 1 + \rho \sigma (g(\sigma) + bg(b\sigma^+) - bg(b\sigma^-))\]
(20)
where the discontinuity of the potential\textsuperscript{11} at $x = b\sigma$ results in a jump of the binary correlation function:
\[g(b\sigma^+) = g(\sigma) e^{-\beta P(b-1)\sigma - \beta \epsilon}\]
(21)
\[g(b\sigma^-) = g(\sigma) e^{-\beta P(b-1)\sigma}\]
(22)
with $g(b\sigma^\pm) = \lim_{\delta \to 0} g(b\sigma \pm \delta)$. These relations are consistent with Eq. (10) and show that the pressure depends not only on the value of the pair correlation at contact, but also on its values at $x = b\sigma$.

IV. BOLTZMANN-ENSKOG EQUATION

The system dynamics is determined by the combined effects of the heat-bath and interparticle collisions. Thus, the one-particle phase distribution function $f(x,v,t)$, in the absence of external drift and large density fluctuations, evolves under the action of a Kramers operator associated with the interaction with the heat-bath
\[L_K = \frac{\gamma}{m \beta} \frac{\partial^2}{\partial v^2} + \gamma \frac{\partial}{\partial v} v\]
plus a collision operator, that we represent for the sake of simplicity as a Boltzmann-Enskog collision integral:
\[\frac{\partial f(v,t)}{\partial t} = L_K f(v,t) + I(v,t).\]
(23)
Adapting to the present case arguments\textsuperscript{25,26} similar to those leading to the derivation of the SET (Standard Enskog Theory) we arrive at the following form of the Boltzmann-Enskog collision integral $I(v,t)$:
\[I(v,t) = I_0(v,t) + I_+(v,t) + I_-(v,t) + I_{BS}(v,t)\]
(24)
where the four contributions represent, respectively:
- the inelastic hard-core collision
  \[I_0(v,t) = g(\sigma) \int dv' \int dv'' |v' - v''| \cdot f(v') f(v'') \{\delta[v - \frac{1 - \alpha}{2} v' - \frac{1 + \alpha}{2} v''] - \delta[v - v'']\}\]
(25)
• the entering collision \((v' - v'') > 0)\)

\[
I_+(v, t) = g(b\sigma^+) \int dv' \int dv'' \Theta[(v' - v'')^2 + \frac{4\epsilon}{m}] \\
\cdot \left\{ \delta \left[ v - \frac{v' + v''}{2} + \sqrt{\frac{(v' - v'')^2}{4} + \epsilon} \right] - \delta[v - v''] \right\} |v' - v''| f(v') f(v'')
\]

(26)

• the escape collision \((v' - v'') < 0)\)

\[
I_-(v, t) = g(b\sigma^-) \int dv' \int dv'' \Theta[(v' - v'')^2 - \frac{4\epsilon}{m}] \\
\cdot \left\{ \delta \left[ v - \frac{v' + v''}{2} - \sqrt{\frac{(v' - v'')^2}{4} - \epsilon} \right] - \delta[v - v''] \right\} |v' - v''| f(v') f(v'')
\]

(27)

• the elastic bound-state collision at \(\Delta x = b\sigma^-\)

\[I_{BS}(v, t) = 0\]

which in one dimension vanishes and therefore can be omitted.

We can apply the previous analysis to the theoretical description of the cooling process in the presence of the interparticle potential, under the hypothesis of spatial homogeneity. By integrating with respect to \(v\) the second term in the right hand side of Eq. (25-27) and approximating \(f(v)\) with Maxwellian distribution of temperature \(T_g\), we obtain the Enskog collision frequency at \(\Delta x = \sigma\), and the frequencies of entering and escaping collisions:

\[
\omega_0(\rho\sigma) = \langle |v_{rel}| \rangle \rho g(\sigma)
\]

\[
\omega_+(\rho\sigma) = \langle |v_{rel}| \rangle \rho g(b\sigma^+)[\Theta(\epsilon) + \Theta(-\epsilon)e^{\beta\epsilon}]
\]

\[
\omega_-(\rho\sigma) = \langle |v_{rel}| \rangle \rho g(b\sigma^-)[\Theta(-\epsilon) + \Theta(\epsilon)e^{-\beta\epsilon}]
\]

(28)

The expression for \(\omega_0\) is formally identical to that obtained in the case of simple hard-rods without potential tail. It can be easily verified that the two factors containing the \(\Theta\)-functions are exactly the terms that compensate the asymmetry coming from expressions (21) and (22). Therefore, the rates become equal

\[
\omega_+ = \omega_- = \begin{cases} 
\langle |v_{rel}| \rangle \rho g(\sigma)e^{-\beta P(b-1)\sigma} & \text{if } \epsilon < 0 \\
\langle |v_{rel}| \rangle \rho g(\sigma)e^{-\beta P(b-1)\sigma - \beta\epsilon} & \text{if } \epsilon > 0
\end{cases}
\]

(29)

and thus satisfy a detailed balance relation between entering and escape collisions. The presence of the potential is reflected in the modified value of the pair correlation at contact Eq. (18). By substituting \(\langle |v_{rel}| \rangle = 2(\beta\pi m)^{-1/2}\) we find the following expression for the collision time of the square well fluid:

\[
\omega_0 = 2\sqrt{\frac{\beta}{\pi m}} P \frac{e^{-\beta P(b-1)\sigma}}{1 + e^{-\beta P(b-1)\sigma}(e^{-\beta\epsilon} - 1)}
\]

(30)

For the sake of comparison the hard-rod Enskog frequency reads:

\[
\omega_{hr} = 2\sqrt{\frac{\beta}{\pi m}} P_{hr}
\]

(31)

with \(\beta P_{hr} = \rho/(1 - \rho\sigma)\).

Interestingly, in an elastic system with repulsive forces, the ratio between the hard-core collision frequency and the entering/escape frequency reads

\[
\frac{\omega_0}{\omega_\pm} = e^{\beta P(b-1)\sigma}
\]

(32)
it suggests that, at high densities hard-core collisions dominate, because the pressure is a growing function of the density. Therefore, increasing the density amounts somehow to lowering the height of the effective potential barrier, i.e. the kinetic energy required to perform an elastic collision.

We now consider, how the average kinetic energy of the inelastic system ($\alpha < 1$) is dissipated. By multiplying Eqs. (24) by $v^2$ and integrating over the velocity, we can compute the loss of kinetic energy due to collisions. Since only hard-core collisions dissipate energy we find that solely the process represented by Eq. (25) contributes to the evolution equation for the granular temperature $T_g(t)$,

$$\frac{dT_g}{dt} = -(1 - \alpha^2)\omega_0 T_g.$$  \hspace{1cm} (33)

Notice that the expression for $\omega_0$, entering equation (33), employs a pair correlation function $g(\sigma)$ extrapolated from its equilibrium value, where $\beta$ has been identified with the inverse granular temperature, i.e. $\beta = 1/T_g$. Moreover, the value of the pressure necessary to compute the frequency $\omega_0$ can be obtained numerically by inverting Eq. (10) for a given density of the system. The rate $\omega_0$ decreases with increasing the repulsive barrier ($\epsilon \to -\infty$) or when the temperature tends to zero. Consequently, as the system cools down, the dissipation rate will be much slower than the corresponding rate when $\epsilon = 0$.

V. NUMERICAL RESULTS

Whereas the equilibrium properties of the conservative system are analytically accessible, most of the properties of its dissipative version need MD simulations to be investigated. After resorting to numerical methods we shall compare their results with our theoretical estimates. At values of the restitution parameter $\alpha$ less than 1, the system is certainly not in thermodynamic equilibrium, but can achieve a stationary state when in contact with the heat-bath described by Eq. (3).

We shall consider the behavior of the system both in the cooling regime ($\gamma = 0$ and $T = 0$) and in the stationary heated regime. The numerical methods employed have been briefly mentioned in the previous section and described in detail in papers\textsuperscript{28,29} which the reader can refer to.

In order to minimize surface effects and simulate an infinite system, periodic boundary conditions are imposed on the equations of motion. During each simulation run, we monitor the kinetic temperature, named granular temperature, $T_g$, which by definition, is proportional to the average of the kinetic energy per particle:

$$T_g = \frac{1}{N} \sum_i m[\langle v_i^2 \rangle - \langle v_i \rangle^2]$$  \hspace{1cm} (34)

having chosen units in which $k_B = 1$. The values of pressure, instead, can be obtained from the virial formula\textsuperscript{30} properly modified for the present system:

$$\frac{P_L}{NT_g} = 1 + \frac{1 + \alpha}{2} \frac{m}{t_{ob}NT_g} Z$$  \hspace{1cm} (35)

where $Z$ indicates the sum

$$Z = \sum_{all\ coll} x_{ij}v_{ij}$$  \hspace{1cm} (36)

$t_{ob}$ is the observation time and $x_{ij} = (x_i - x_j)$ and $v_{ij} = (v_i - v_j)$ are, respectively, the separation and the relative velocity at the moment of collision. Both kinds of collisional events $|x_{ij}| = \sigma$ and $|x_{ij}| = b\sigma$ determine an exchange of momenta among the particles.

A. Cooling regime

We consider, first, the properties of a system of $N = 2000$ particles evolving without the presence of heat-bath, thus no energy injection ($T = 0$) and no friction ($\gamma = 0$) occur. In the literature this situation is generally referred to as free cooling. The properties of this system with $\epsilon = 0$ have been studied thoroughly\textsuperscript{10,11,12,13,14} and are well known. Due to the repeated inelastic collisions, the temperature $T_g$ decreases and after a short transient, lasting only few collisions per particle, $T_g$ displays the typical power law behavior $t^{-2}$, known as Haff’s law. During such a regime,
the density remains homogeneous and the velocity distribution converges, from the initial Maxwellian, to a two hump function. As the system cools down, particles cluster into two “streams” at the outer edges the distribution and a bimodal velocity distribution emerges.

Our MD simulations show that this scenario is modified by the the presence of potential tail (see Eq. (1)). Every MD run starts from an initial state characterized by \( N = 2000 \) particles with a Maxwellian velocity distribution of temperature \( T \) and uniformly distributed in space with no overlaps. During the dynamics, the grains spontaneously organize toward a state where the velocity distribution \( P(v) \) depends on the attractive or repulsive character of \( V(x) \). The behaviour of \( P(v) \) is clearly shown in figure 2 where later time distributions are characterized by a nearly Gaussian shape for \( \epsilon > 0 \) and no longer Gaussian for \( \epsilon < 0 \). The attractive interaction has the effect to accelerate the dissipation, however the velocity distribution does not display the typical two-hump feature proper of the \( \epsilon = 0 \) case, remaining a single peak function of shrinking width (see Fig. 2 left panel).

On the contrary, when the potential is repulsive, only those pairs with velocities satisfying the condition \((v_i - v_{i+1})^2 > 4|\epsilon|/m\) may perform inelastic collisions. Such a selection mechanism is irrelevant when \( T_g >> \epsilon \), i.e. the very early stages of the simulations, however, it eventually leads to velocity distributions with small tails outside the region \(-\sqrt{|\epsilon|/m} \leq v \leq \sqrt{|\epsilon|/m}\) and almost flat inside (Fig. 2 right panel). Two small peaks can also be observed at \( v = \pm \sqrt{|\epsilon|/m} \), likely, a reminiscence of the free-cooling two stream mechanism.

![Initial gaussian distribution](image)

**FIG. 2:** Quenching of particle velocities observed at two stages of the cooling process of a system with attractive (\( \epsilon = 1 \), left) and repulsive (\( \epsilon = -1 \), right) interparticle interaction. The histograms of the rescaled (dimensionless) velocity \( u = v\sqrt{m/|\epsilon|} \) are collected after \( n_c \) hard-core collisions per particle have occurred. Simulations refer to a system of \( N = 2000 \) particles and parameters \( \alpha = 0.99, \rho\sigma = 0.002 \) and \( b = 2 \). The the Gaussian fits (dashed lines) are plotted for comparison.

Equation (30) indicates that, under repulsive interaction, particles collide inelastically with an initial rate \( \omega_0 \propto \sqrt{T_g} \), that, as the system cools down, makes the crossover to the behavior \( \omega_0 \propto \sqrt{T_g} \exp(\epsilon/T_g) \). Accordingly, fewer and fewer particle pairs will collide and the cooling slows down leading to a logarithmic decay in time of the temperature. However, this argument turns out to be incorrect. Indeed, Fig. 3 proves that the energy dissipation process occurs with a slower time decay than the prediction given by Eq. (33). The direct comparison between theoretical and simulated dimensionless rate \( R = \pi T_g/T_0 \) is shown in the inset, where \( \tau \) is a proper time scale. The reason for such a discrepancy relies on the fact that the Maxwellian approximation for the velocity distributions, used to derive the
rate expression (30), fails as it seen from Fig. 2 (right). With the actual shape of the distribution $P(v)$, indeed, the system dissipates only a negligible fraction of the kinetic energy and undergoes an effective re-elasticization, implying that the non-Maxwellian character of $P(v)$ is maintained up to the inelastic collapse. Our theoretical estimate of the collision frequencies works better at moderate densities, where dissipation can counterbalance the re-elasticization. As it suggested by Eq. (32) indeed, the pressure exerted by the dense surrounding fluid on two colliding partners may overwhelm their repulsion, so that they will experience frequent hard-core collisions, i.e. $\omega_0 >> omega_\pm$.

B. Driven regime

The scenario changes when the system is coupled to an heat-bath at temperature $T$. A steady regime, characterized by almost constant granular temperature and pressure, is attained. As already done for the cooling regime, we can derive an implicit relation for $T_g$ by multiplying both sides of Eq. (23) by $v^2$ and integrating with respect to $v$,

$$
\left[ 1 + (1 - \alpha^2) \frac{\omega_0(T_g)}{2\gamma} \right] T_g = T
$$

The variation of $T_g$ with density, given by the numerical solution of Eq. (37), is compared in figure 4 with the results of MD simulations. The agreement between theory and numerical experiments is satisfactory for the three possible cases: attractive, repulsive and vanishing inter-particle interaction. The virial formula (35) is employed to compute the pressure of the system by averaging over different MD runs. The simulated pressure values are plotted, in figure 5, together with those obtained by a self-consistent solution of formula (20) with the appropriate replacement of the heat-bath temperature $T$ by the granular temperature $T_g$, Eq. (37).

The use of formula (20) implicitly assumes that the pair correlation function for the inelastic model maintains the same functional dependence as its equilibrium counterpart. Such an hypothesis can be checked by measuring during MD runs the three collision frequencies $\omega_0$, $\omega_+$ and $\omega_-$ and comparing them with their theoretical prediction. The behaviour of these quantities with the dimensionless variable $\rho \sigma$ is reported in Fig. 6 for both attractive and repulsive interactions. Even in the inelastic case, one observes that the ratio, $\omega_0/\omega_\pm$, between frequencies of dissipative collisions and barrier crossing increases with density from the value 1, observed in a very diluted system, as shown in Fig. 7. This is very consistent with the prescription provided by formula (32), indeed, the hard-core collisions, in this model, become dominant events at higher densities.

In the case of barriers (Fig. 6a), the theoretical frequencies agree fairly with those extracted from simulations. However, some discrepancies arise when particles may mutually attract (Fig 6b), even though the overall trend of the frequencies with the particle density is correctly captured by the theoretical predictions. The differences induced by inelasticity become more evident in Fig. 8, where we plot the theoretical and numerical pair correlation functions $g(y)$ at the value $\rho \sigma = 0.05$ for repulsive c) and attractive d) particles. Again, the theory fits faithfully the simulations for the system with repulsive interactions, while, for attracting particles, the simulated $g(y)$ deviates of about a factor

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{figure3.png}
\caption{Simulation results of the energy decay with time measured units $\tau = \sqrt{m/T_0}$, for $\epsilon = 0$ (squares), $\epsilon = -1$ (circles) and $\epsilon = 1$ (triangles) at effective density $\rho \sigma = 0.002$. Each point is the average over one-hundred trajectories of a system with $N = 2000$ hard rods and initial temperature $T_0 = 10$. Lines represent the analytical estimate from Eqs. (33) and (30), coherently with Eq. (10). Inset: Plot of the theoretical and numerical (dimensionless) dissipation rate $R = \tau \dot{T}$ versus the rescaled granular temperature (same symbols).}
\end{figure}
FIG. 4: Dependence of the ratio between granular $T_g$ and bath temperature $T = 10$ on the density, for a system with repulsive $\epsilon = -10$ (squares), vanishing $\epsilon = 0$ (circles) and attractive $\epsilon = 10$ (triangles) interparticle interaction. Points indicate the average over a set of $10^4$ samplings in a single MD run of duration $t_{\text{max}} = 10^4$. Solid lines refer to theoretical temperatures extracted from the numerical solution of Eq. (37). The number of particles is $N = 2000$, the remaining parameters are chosen as $\alpha = 0.9$, $\gamma = 0.2$ and $b = 2$.

FIG. 5: Pressure of an inelastic system, rescaled to the equivalent ideal gas pressure ($P_{\text{id}} = \rho T$), as a function of $\rho \sigma$ in the case of $\epsilon = -10$ (squares), $\epsilon = 0$ (circles) and $\epsilon = 10$ (triangles), for a system with the same parameters as in Fig. 4. Solid lines are the corresponding analytical values obtained according to formula (20).

two from its estimate in the interval $\sigma \leq y \leq b \sigma$. Figures (Fig.8a) and (Fig.8b), on the contrary, indicates clearly that our theoretical approach perfectly describes the functions $g(y)$ of the elastic system with both attractive and repulsive forces.

The difficulty encountered by the theory to fit some regimes of the system with attracting inelastic particles can be ascribed to the different effects that repulsive and attractive interactions induce on the inelastic system. The former basically entails a system re-elasticization which may favor homogeneous particle distributions, while the latter enhances the frequency of inelastic collisions leading to clustering. The relevant physical parameter controlling the system behaviour is the ratio $|\epsilon|/T_g$, thus a good evaluation of $T_g$ is crucial to make accurate theoretical predictions. Our estimate of the granular temperature $T_g$, from Eq. (37), is based on the assumptions of spatial homogeneity. For repulsive interactions (barriers) the homogeneous state occurs, while for cohesive interactions, particles, under specific conditions, can easily cluster making the system inhomogeneous. If this happens, the single observable, $T_g$, does not describe properly the kinetic state of the system and, in addition, its estimate from Eq. (37) is incorrect since that formula neglects local temperature fluctuations.

The deviations of the theory from simulations become less pronounced as $\gamma$ increases, and the reliability of the
FIG. 6: Collision frequencies at particle separation \( x_{ij} = \sigma \) and \( x_{ij} = b\sigma \) as a function of \( \rho \sigma \). Figure (a) shows the repulsive case \( \epsilon = -10 \) while figure (b) refers to attractive interaction \( \epsilon = 10 \). Lines correspond to the theory from Eqs. (28). The remaining parameters are as in Fig. 4.

Theoretical approach can be quantified by the integrated difference between numerical, \( g_n(y) \), and theoretical, \( g_t(y) \),

\[
\Delta g = \frac{1}{\sigma} \int_{\sigma}^{b\sigma} dy [g_n(y) - g_t(y)]
\]

for various values of \( \gamma \), but \( \epsilon/T = \text{const} \). The dependence of \( \Delta g \) on \( \gamma \) reflects the fact that the response of the fluid to the action of the heat-bath is faster as \( \gamma \to \infty \) and thus erases more rapidly the memory of inelastic collisions. Within this limit one recovers the behavior of the elastic system.

VI. CONCLUSIONS

In this paper we have investigated both theoretically and numerically the influence of a finite range interparticle interaction on the behavior of a one-dimensional inelastic hard-rod system. Forces and interactions, whose range is larger than the size associated with the excluded volume constraint are often present in many realistic granular materials. In the specific case, we have chosen a square well potential to model attraction and a square barrier to model repulsion. These simple shapes, in the case of undriven system, still enable a computer implementation of the particle evolution in terms of a collision driven molecular dynamics. In fact, simple transformations describe the instantaneous changes of velocities when the separation between two particle corresponds to the two characteristic ranges of the potential. We first analyzed how the interplay between these finite range forces and inelasticity modifies the cooling scenario with respect to the free inelastic system. We found that in the case of repulsive barriers the temperature decay becomes slower than Haff’s \( 1/t^2 \) power law and eventually reaches a regime where the system is nearly elastic. In the case of attractive wells, instead, the granular temperature is lost faster than an inverse time power law.

Secondly, we studied the behavior of the stationary regime obtained through a stochastic forcing of the system. The steady state has been analyzed via MD simulations and theoretical approaches based on the direct comparison
with the elastic counterpart of the system whose equilibrium properties are well understood. Our results show that, in the dense limit, particle spatial correlations are relevant and modify the collision rate, the excluded volume of the other particles enhances the probability that two particles are at contact and thus reduce the repulsive barrier. The theoretical approach we have attempted remains a reliable approximation for the behaviour of the dissipative system at not too small densities while it is correct for the elastic system at every density.

Acknowledgments

U. Marini-Bettolo-Marconi acknowledges the financial support of the Project Complex Systems and Many-Body Problems Cofin-MIUR 2003 prot. 2003020230.

1 Granular Gas Dynamics, Lectures Notes in Physics vol. 624, T. Pöschel and N. Brilliantov editors, Berlin Heidelberg, Springer-Verlag (2003) and references therein.
2 L.P. Kadanoff, Rev. Mod. Phys. 71, 435 (1999).
3 H.M. Jaeger and S.R. Nagel, Science 255, 1523 (1992).
4 H.M. Jaeger, S.R. Nagel and R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996).
5 I. Goldhirsch, Annu. Rev. Fluid. Mech. 35, 267 (2003).
6 M. Schultz, B.M. Schultz and S. Herminghaus Phys. Rev. E 67, 052301 (2003).
7 T. Scheffler and D.E. Wolf, Granular Matter, 4, 103 (2002).
8 T.C. Halsey and A.J. Levine Phys.Rev.Lett. 80, 3141 (1998).
9 D. Blair and A. Kudrolli Phys. Rev. E 67, 021302 (2003).
10 S. McNamara and W.R. Young, Phys. Fluids A 4, 496 (1992); ibid. 5, 34 (1993).
11 N. Sela and I. Goldhirsch, Phys. Fluids 7, 507 (1995).
12 Y. Du, H. Li, and L.P. Kadanoff, Phys. Rev. Lett. 74 1268 (1995).
13 D.R.M. Williams and F.C. MacKintosh, Phys. Rev. E 54, R9 (1996).
14 A. Baldassarri, U. Marini-Bettolo-Marconi and A. Puglisi, Europhys. Lett. 58, 14, (2002).
15 B.J. Alder and T.E. Wainwright, Phys. Rev. A 1, 18 (1970).
16 P.K. Haff, J. Fluid. Mech. 134, 401 (1983).
17 A. Puglisi, V. Loreto, U. Marini-Bettolo-Marconi, A. Petri, and A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998).
18 A. Puglisi, V. Loreto, U. Marini-Bettolo-Marconi, and A. Vulpiani, Phys. Rev. E 59, 5582 (1999).
19 H. Takahashi, Proc. Phys. Math. Soc. Jpn. 24, 60 (1942).
20 M. Bishop and M.A. Boonstra, Am. J. Phys. 51, 564 (1983).
21 To the best of our knowledge the pair correlation function for the one-dimensional hard-rod fluid had not been obtained previously.
22 F. Zernike and J.A. Prins, Z. Phys. 41, 184 (1927).
FIG. 8: Simulated (circles) and theoretical (solid line) pair correlations as a function of the rescaled distance $y/\sigma$, for system of $N = 2000$ hard-rods with repulsive-elastic a), attractive-elastic b), repulsive-inelastic (a = 0.9) c), attractive-inelastic (a = 0.9) d) interactions, and parameters $T = |\epsilon|$, $\epsilon = 10$, $\gamma = 0.2$, $\rho \sigma = 0.05$ and $b = 2$. Points represent the average of the function over $10^4$ sampled configurations extracted from run of length of $t = 10^4$.

23 Z.W. Salsburg, R.W. Zwanzig and J.G. Kirkwood, J. Chem. Phys. 21, 1098 (1953).
24 M. Plischke and B. Bergersen, Equilibrium Statistical Physics 2nd Ed. World Scientific (1994), ISBN: 9810216424.
25 J. Karkheck and G. Stell, Phys. Rev. A 25, 3302 (1982) and J. Karkheck and G. Stell, J. Chem. Phys. 75, 1475 (1981).
26 I.P. Omelyan and M.V. Tokarchuk, Physica A 234, 89 (1996).
27 T.P.C. Van Noije and M.H. Ernst, Granular Matter 1, 57 (1998).
28 F. Cecconi, U. Marini-Bettolo-Marconi, A. Puglisi and A. Vulpiani, Phys. Rev. Lett. 90, 064301 (2003).
29 F. Cecconi, U. Marini-Bettolo-Marconi, A. Puglisi and F. Diotallevi, J. Chem. Phys. 121, 5125 (2004) and 120, 35 (2004).
30 M.P. Allen and D.J. Tildesley Computer Simulation of Liquids. Clarendon Press, Oxford UK (1987).
31 E. Ben-Naim, S.Y. Chen, G.D. Doolen, and S. Redner, Phys. Rev. Lett. 83, 4069 (1999).
32 E. Efrati, E. Livne, and B. Meerson, Phys. Rev. Lett. 94, 088001 (2005).
FIG. 9: Parametric plot of the cumulated difference $\Delta g$ between theoretical and simulated correlations function (see Eq. 38) versus the friction coefficient $\gamma$, for an inelastic system with $N = 2000$ rods and parameters $\alpha = 0.9$, $T = 10$, $\epsilon = 10$, $\rho \sigma = 0.05$ and $b = 2$. 