Saša Dimić1,*, Ivana Dimić2, Zlatan Elek1,3, Milan Radojković4

The potential role of interleukin-6, endotoxin and C-reactive protein as standard biomarkers for acute appendicitis in adults

Потенцијална улога интерлеукина-6, ендотоксин и Ц-реактивног протеина као стандардних биомаркера акутног апендицитиса код одраслих

1Kosovska Mitrovica Clinical Hospital Centre, Department of General Surgery, Kosovska Mitrovica, Serbia;
2Kosovska Mitrovica Clinical Hospital Centre, Department of Laboratory Diagnostics, Kosovska Mitrovica, Serbia;
3University of Priština, Faculty of Medicine, Kosovska Mitrovica, Serbia;
4University of Niš, Faculty of Medicine, Niš Clinical Center, Clinic for Digestive Surgery, Niš, Serbia

Received: July 23, 2020
Revised: September 5, 2021
Accepted: February 11, 2022
Online First: February 14, 2022
DOI: https://doi.org/10.2298/SARH200723026D

Accepted papers are articles in press that have gone through due peer review process and have been accepted for publication by the Editorial Board of the *Serbian Archives of Medicine*. They have not yet been copy-edited and/or formatted in the publication house style, and the text may be changed before the final publication.

Although accepted papers do not yet have all the accompanying bibliographic details available, they can already be cited using the year of online publication and the DOI, as follows: the author’s last name and initial of the first name, article title, journal title, online first publication month and year, and the DOI; e.g.: Petrović P, Jovanović J. The title of the article. Srp Arh Celok Lek. Online First, February 2017.

When the final article is assigned to volumes/issues of the journal, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the journal. The date the article was made available online first will be carried over.

*Correspondence to:
Saša DIMIC
Čika Jovina 9/15, 38220 Kosovska Mitrovica, Serbia
E mail: dimicssasa@hotmail.com
The potential role of interleukin-6, endotoxin and C-reactive protein as standard biomarkers for acute appendicitis in adults

Potencijalna uloga интерлеукина-6, ендотоксина и Ц-реактивног протеина као стандардних биомаркера акутног апендицитиса код одраслих

SUMMARY
Introduction/Objective Acute appendicitis (AA) is by far the most frequent urgent condition in abdominal surgery and numerous biomarkers may help the physician to diagnose and even predict the severity of the disease. The objective of the paper was to determine the accuracy of C-reactive protein (CRP), interleukin-6 (IL-6) and endotoxin and compare it with the diagnostic value of Alvarado score (AS) in adults surgically treated for AA.

Methods Sixty-seven patients were diagnosed with AA using AS. Prior to surgery serum levels of inflammatory biomarkers were determined and together with AS were respectively compared to the results of histopathological analysis of specimens. The patients were divided into three group according to the histopathological assessment.

Results The univariate analysis revealed that the increase of CRP level by one unit increases the probability of complicated AA (CoAA) occurrence by 1% (1.00 to 1.02, p < 0.05). ROC curve analysis has revealed that CRP has better capacity to predict suppurative AA (SAAs)/CoAAs than catarrhal AA (CAA), with the cut-off value 19.45. Increase of AS value by one unit produced 2.98 fold increase of the probability of CoAA occurrence (1.60 to 5.57, p < 0.001), while positive AS value increases the probability of CoAA occurrence 24.67 times (4.94 to 123.12, p < 0.001). ROC curve analysis was demonstrated that AS may better predict CoAAs than CAA/SAAs, with the cut-off value 8.50.

Conclusion AS and CRP should be routinely used as powerful tools for diagnosis and prediction of complicated AA.

Keywords: biomarkers; acute appendicitis; adults

CONCLUSION

Acute appendicitis (AA) is by far the most frequent urgent condition in abdominal surgery with reported lifetime risk of 8.6% in men and 6.7% in women [1]. If untreated, initial inflammation progresses, the appendix becomes gangrenous and perforates causing peritonitis and abscess formation, ileus sepsis and eventually death. This so called “complicated appendicitis” occurs in approximately 16.5% of patients [2]. Open or laparoscopic
appendectomy remains the standard treatment for the condition. However, despite its high incidence the accurate preoperative diagnosis of AA is still challenging. The negative appendectomy rate is 20.6% [2] with peaks in certain categories of patients such as women in childbearing age (30–50%) or young children (30–46%) [3, 4]. The diagnosis of AA is still predominantly clinical with 80% diagnostic accuracy of the initial algorithm consisting of suggestive history, pain at Mc-Burney’s point and leukocytosis [5]. The addition of imaging methods such as ultrasound and especially computerized tomography (CT) increases the diagnostic accuracy and decreases negative appendectomy rate to 10% [6]. Nevertheless, some serious drawbacks limit the diagnostic utility of these radiological modalities. These include high cost and radiation of CT and low sensitivity of ultrasound (failure of appendix visualization in up to 55% of cases) [7, 8].

Numerous biomarkers are associated with AA and may help the physician to diagnose and even predict the severity of the disease. Some of the routinely used biomarkers are widely available but have insufficient diagnostic value [9], while some newly introduced with higher accuracy require costly and time-consuming analysis. When solely used not a single one of them has all the desired features which include good diagnostic accuracy and relatively cheap, simple and time-sparing assay. Therefore, the combination of biomarkers or their usage as a part of stratification scores such as the Alvarado (AS) in conjunction with history data and examination results may improve their sensitivity [10, 11], although the reliability of these scores is limited due to the interpretation subjectivity of history data and examination findings [12]. The aim of this study was to determine the accuracy of inflammatory biomarkers C-reactive protein (CRP), interleukin-6 (IL-6) and endotoxin and compare it with the diagnostic value of AS in adults surgically treated for AA.

METHODS

The study, done in accord with standards of the institutional committee on ethics, included 67 patients that underwent surgery for AA during 6 months period, from January to June 2019 at Emergency unit, Clinical Center Nis. There were 35 men (52.2%) and 32 women (47.8%), median age 38.7 ± 16.5 years (range: 19–80). The patients were diagnosed with AA using AS (Table 1) [13] with diagnostic cut-off value of 6. Histopathological diagnosis of
removed appendices was considered definitive. Prior to surgery their blood samples were taken and serum levels of CRP, IL-6 and endotoxin were determined. The levels of these inflammatory biomarkers and AS were respectively compared to the results of histopathological analysis of specimens. Surgical treatment of the examined patients included open appendectomy. The severity of appendiceal inflammation was categorized according to the histopathological assessment as presented in Table 2. Gangrenous appendicitis and periappendiceal abscess were categorized as complicated AA (CoAA) as opposed to catarrhal (CAA) and supurative (SAA) inflammation.

Statistical data processing

The data are presented in the form of an arithmetic mean and a standard deviation, or in the form of absolute and relative numbers. Group comparisons were performed using the Student t-test or Mann-Whitney U-test. Analysis of variance (ANOVA) was used to compare continuous variables of three independent groups including subsequent Post Hoc tests (Tukey method and Tahmane’s T2 test). Alternatively, Kruskal-Wallis test was also used. Assessment of the relationship between categorical variables was done using Pearson's chi-squared test (χ^2). Diagnostic features of the analyzed parameters (sensitivity and specificity, i.e. predictive value) were assessed using receiver operating characteristic curve (ROC) analyses. P-values < 0.05 were considered statistically significant. Statistical analyses were done using SPSS software version 16.0 (IBM, Armonk, NY, USA).

RESULTS

Patients ranged in age from 18 to 80 years, with no statistically significant difference in gender representation (numerical sex ratio 1.09 in favor of men) (Figure 1). In terms of age and sex distribution, the largest number of operated patients was in the age group 18 to 29 years, while the least patients were in the age group 70 and older (Table 3).
The distribution of AS values among our patients is presented in Figure 2. 61 (91%) patients had AS values compatible with the diagnosis of AA (6 or greater).

The average value of AS in the examined group of patients was 7.94 ± 1.82, with a median of 8.00, with the lowest value of 2 and the highest 10. CRP values on the total sample ranged from 0.6 to 415.2 mg/L, with an average value of 60.37 ± 79.18 mg/L. In the total sample, the average endotoxin values were 3.42±1.20 MU/mL, with the lowest value of 2.88 MU/mL and the highest, 3.72 MU/mL, with a median of 3.28 MU/mL. IL-6 values ranged from 13.17 pg / ml to 98.83 pg/ml, with a mean value of 91.40 ± 139.63 pg/ml and a median of 31.33 pg/ml Table 4.

AS positive (6 and more) and histopathological (HP) finding were used as the two most authoritative measures in the final diagnosis of AA. Table 5 shows the basic descriptive indicators of the examined continuous variables for AS negative (5 and less) and AS positive. In the group of patients with AS positive, statistically significantly higher values of IL-6 (p < 0.001) and CRP (p < 0.01) were found.

The basic descriptive indicators of the examined continuous variables in relation to the HP finding of AA are given in Table 6. Statistically significant differences were found between the examined groups of parameters AS, IL-6, CRP (p < 0.001) and for Endotoxin (p < 0.05). The value of AS was statistically significantly higher in CoAA in relation to CAA (p < 0.001) and SAA (p < 0.01), and it was statistically higher in SAA in relation to CAA (p < 0.05). IL-6 in CoAA was statistically significantly higher compared to SAA and CAA alone (p < 0.001). CRP was statistically significantly higher in CoAA compared to CAA (p < 0.001), but also SAA (p < 0.05), while the value in SAA was statistically significantly higher compared to CAA (p < 0.01). Endotoxin values were higher in SAA, compared to CAA, but also in CoAA (p < 0.05). By comparing the values of parameters between groups, it was determined that the subjects with CoAA were statistically significantly older than those with CAA, but also SAA (p < 0.05).

Table 7 shows the findings of the incidence of elevated values of examined parameters in relation to AS. In the group of patients with AS positive, there was a statistically significantly higher presence of HP findings CoAA (p < 0.001). With a level of statistical significance of
p < 0.01 and IL-6 bi above the reference values. No patient with AS positive had IL-6 values < 5.9 pg/ml.

Statistically significantly different representation of findings compared to HP finding AA was found for IL-6, CRP (p < 0.01) and Endotoxin (p < 0.01). The prevalence of AS, IL-6 and CRP findings above the reference values is highest in CoAA and lowest in CAA, while the finding of Endotoxin above the reference values is most prevalent in SAA. By comparing the values of the examined parameters between groups with HP findings of AA, it was found that the findings of AS positive were statistically more prevalent in CoAA compared to SAA and catarrhal findings separately (p < 0.001) (Table 8).

Univariate logistic regression analysis for modelling event probabilities was applied in order to assess whether examined parameters may predict the severity of appendiceal inflammation definitively determined by histopathological analysis (Table 9). Positive correlation was found for AS and CRP: increase of CRP value by one unit increases the probability of CoAA occurrence by 1% (1.00 to 1.02, p < 0.05); increase of AS value by one unit produced 2.98 fold increase of the the probability of CoAA occurrence (1.60 to 5.57, p < 0.001), while positive AS value increases the probability of CoAA occurrence 24.67 times (4.94 to 123.12; p < 0.001). Diagnostic potential (sensitivity and specificity) of these two parameters (CRP and AS) was assessed using ROC curve analysis and two cut-off values were determined: one for the distinction between CAAs and SAAs/CoAAs and the other for the distinction between CAAs/SAAs and CoAAs. Based on the values of the parameters, it is evident that in this case, slightly better diagnostic characteristics are shown by CRP in relation to AS. The area under the curve is 0.787 with a standard estimation error of 0.065, with a statistical significance of p = 0.0006 (p < 0.001). The cut-off value is 19.45. Although it has a slightly wider confidence interval (0.659–0.914) compared to AS, it has significantly more sensitivity (74.51), with slightly less specificity and greater overall accuracy (Figure 3, Tables 10 and 11).

On the other hand, it was demonstrated that AS may better predict CoAAs as opposed to CAAs/SAAs. The area under the curve is 0.823 with a standard estimation error of 0.053, with a statistical significance of p = 0.0001 (p < 0.001). The cut-off value is 8.50. It has a relatively narrow confidence interval (0.719–0.927), the best ratio of sensitivity and specificity (88.89%
DISCUSSION

Despite the constant high frequency of AA its timely and accurate diagnosis may still be elusive. A wide variety of biomarkers has been shown associated with AA and potentially able to reduce the risk of misdiagnosed inflammation and/or negative appendectomy. While traditional markers such as leukocytes are cheap and have relatively poor diagnostic accuracy, some of the novel ones such as IL-6 have been shown to have a higher predictive value, but are more expensive and time-consuming. So the quest for the ideal biomarker to be used solely or combined with other parameters or as a part of stratification scores is actual for quite a while now.

IL-6 is a proinflammatory cytokine, mediator of acute phase reaction, and is secreted during inflammatory process and neutrophil recruitment following the invasion of bacteria to the appendix [14, 15]. Some of the previous studies have shown its relatively high sensitivity (73–84%) and low specificity (46–72%) for diagnosing AA and even higher sensitivity (up to 91%) and lower specificity (37%) for diagnosing perforated appendicitis [16, 17]. Elevated serum IL-6 levels were found in the majority of our patients (55, 82.09%, p < 0.001). In relation to AS, in our study serum IL-6 levels were significantly both higher (p < 0.001) and more frequently elevated (p < 0.01) in patients with positive AS values as compared to ones with negative AS (Tables 5 and 7, respectively). Also, in relation to histopathology IL-6 levels were significantly both higher (p < 0.001) and more frequently elevated (p < 0.01) in patients with CoAA in comparison to the ones with CAA/SAA (Tables 6 and 8, respectively). However, univariate logistic regression analysis failed to demonstrate the predictive capacity of IL-6 for the severity of appendiceal inflammation. These results are consistent with available literature data reporting good overall performance of IL-6 in terms of sensitivity, but still not specific enough especially for diagnosing CoAA and associated with higher cost and time consuming [18].
CRP is synthesized in the liver as an acute-phase reactant to infection or inflammation. Its serum levels rapidly increase within the first 12h from the onset of symptoms which is followed by also fast normalization. CRP is reported as a useful tool for the diagnosis of AA with its high serum levels indicating suppurative and gangrenous evolution of the inflammation or appendiceal perforation. Multiple studies have demonstrated its high sensitivity (93.6–96.6%) [19–21]. However, it reportedly lacks specificity and cannot be used to distinguish between sites of infection [22]. Elevated serum CRP levels were also found in the majority of our patients (56, 83.58%, p < 0.001). In relation to AS, in our study serum CRP levels were significantly higher (p < 0.01) in patients with positive AS values as compared to ones with negative AS (Table 5). However, in contrast to IL-6, although elevated CRP levels were more frequent in patients with positive AS than in ones with negative AS, this difference lacks statistical significance (Table 7). In relation to histopathology, CRP levels were significantly both higher (p < 0.001) and more frequently elevated (p < 0.01) in patients with CoAA in comparison to ones with CAA/SAA (Tables 6 and 8, respectively). Also, as opposed to IL-6, univariate logistic regression analysis has demonstrated the capacity of CRP to predict the severity of appendiceal inflammation: it was shown that the increase of CRP level by one unit increases the probability of CoAA occurrence by 1% (1.00 to 1.02, p < 0.05)(Table 9). Furthermore, ROC curve analysis has revealed that CRP has better capacity to predict SAAs/CoAAs than CAA, with the cut-off value 19.45 (Figure 3, Tables 10 and 11). These results clearly demonstrate that CRP levels contribute the precise AA diagnosis, the prediction of the severity of inflammation and may serve as independent markers for CoAAs. Nevertheless, as not specific for AA its interpretation during the decision making process should be combined with the analysis of additional diagnostic parameters.

Since AA is a bacterial infection, it may be expected that the severity of inflammation is dependent on the amount of a range of extracellular products and cell-wall constituents produced and released by bacteria. These products stimulate the local and systemic inflammatory response eventually leading to the sepsis and shock. Among these products, endotoxin (lipopolysaccharide complex from the outer membrane of Gram-negative bacteria such as Escherichia coli, Salmonella, Shigella, Pseudomonas, Neisseria, Haemophilus influenzae, Bordetella pertussis and Vibrio cholera) is one of the most important. During infectious disease endotoxins released from bacterial cells significantly contribute to the disease pathophysiology and symptoms development. However, elevated serum endotoxin levels were found only in 21 (31.34%) of our patients. In our study, serum endotoxin levels did
not correlate to AS values, i.e., were not significantly neither higher nor more frequently elevated in patients with positive AS values as compared to ones with negative AS (Tables 5 and 7, respectively). In relation to histopathology, endotoxin levels were significantly both higher (p < 0.05) and more frequently elevated (p < 0.05) only in patients with SAA in comparison to the ones with both CAA and CoAA (Tables 6 and 8, respectively). Univariate logistic regression analysis failed to demonstrate the predictive capacity of endotoxin for the severity of appendiceal inflammation. These results of our study indicate a rather modest pathogenic activity of endotoxins and, hence, their smaller diagnostic value. In comparison to bacterial exotoxins, endotoxins are less potent, less specific in their action, and remain stable within the cell membrane until its disintegration during the first hours of bacterial infection. This may explain their relatively low serum levels in patients with CAAs. Also, endotoxins stimulate natural immunity and proinflammatory activity (production of cytokines, activation of the complement and coagulation cascades) [23], thus preventing their high levels in patients with CoAA.

AS enables risk stratification in patients presenting with abdominal pain suspected of AA [13]. However, although AS is often sufficient when probability of AA is intermediate and physician is in doubt, further investigations (ultrasound, CT) or additional biomarkers determination are recommended [24]. In our study 61 (91%) patients had AS values compatible with the diagnosis of AA (6 or greater). In relation to histopathology, AS values were significantly both higher (p < 0.001) and more frequently elevated (p < 0.001) in patients with CoAA in comparison to ones with CAA/SAA (Tables 6 and 8, respectively). On univariate logistic regression analysis it was shown that increase of AS value by one unit produced 2.98 fold increase of the probability of CoAA occurrence (1.60 to 5.57, p < 0.001), while positive AS value increases the probability of CoAA occurrence 24.67 times (4.94 to 123.12; p < 0.001) (Table 9). On ROC curve analysis it was demonstrated that AS may better predict CoAAs than CAAs/SAAAs, with the cut-off value 8.50 (Figure 4, Tables 12 and 13). These data illustrate very good predictive capacity of AS especially for determining the possibility of CoAA. This is consistent with the results of other researchers reporting AS as a supreme diagnostic aid [25].
CONCLUSION

The present study has demonstrated excellent and complementary diagnostic features of both AS and CRP, especially their capacity for prediction of complicated forms of AA. Despite good sensitivity and overall performance IL-6 was not shown useful due to the lack of specificity for diagnosing CoAA, higher cost and time consuming. Endotoxin levels were not significantly elevated in our patients and showed rather modest pathogenic activity and, hence, insignificant diagnostic value. AS and CRP should be routinely used combined as powerful tools for diagnosis and prediction of complicated AA.

Conflict of interest: None declared.
REFERENCES

1. D’Souza N, Nugent K. Appendicitis. Am Fam Physician. 2016;93:142–3. https://www.aafp.org/afp/2016/0115/p142.html

2. National Surgical Research Collaborative Multicentre observational study of performance variation in provision and outcome of emergency appendicectomy. Br J Surg. 2013;100:1240–52. https://bjsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/bjs.9201

3. Di Saverio S, Poddà M, De Simone B, Ceresoli M, Augustin G, Gori A, et al. Diagnosis and treatment of acute appendicitis: 2020 update of the WSES Jerusalem guidelines. World J Emerg Surg. 2020;15:27. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386163/

4. Hodge SV, Mickiewicz B, Lau M, Jenne CN, Thompson GC. Novel molecular biomarkers and diagnosis of acute appendicitis in children. Biomark Med. 2021;15:1055–1065. https://doi.org/10.2217/bmm-2021-0108

5. Jairaj R, Narendranath L, Ali F, Matew J, Tharanath K, Shyam T, et al. Serum biomarkers as a diagnostic aid in acute appendicitis. Int J Biomed Adv Res. 2016;7:497–501. https://www.ssjournals.com/index.php/ijbar/article/view/3607/2545

6. Alhamdani YF, Rizk HA, Algeethami MR, Albarawi AM, Albadawi RH, Faqih SN, et al. Negative Appendectomy Rate and Risk Factors That Influence Improper Diagnosis at King Abdulaziz University Hospital Mater Somatetom. 2018;30:215–20. https://www.ncbi.nlm.nih.gov/

7. Gongur F, Kilic T, Akyol KC, Ayaz G, Cakir UC, Akcimen M, et al. Diagnostic Value and Effect of Bedside Ultrasound in Acute Appendicitis in the Emergency Department Academic emergency medicine. 2017;24:578–86. https://onlinelibrary.wiley.com/

8. Fatima SR, Zaheer F, Moosa FA, Arqam SM, Mussab RM, Choudhry MS. Combined Diagnostic Accuracy of Total Leukocyte Count, Neutrophil Count, and Ultrasonography for the Diagnosis of Acute Appendicitis. Cureus. 2021. 2; 13:e13086. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932557/

9. Tullavardhana Th, Sanguanlosit S, Chartkitchareon A. Role of platelet indices as a biomarker for the diagnosis of acute appendicitis and as a predictor of complicated appendicitis: A meta-analysis. Ann Med Surg. 2021;6:102448.

10. Yahya AA, Abolaid N, Myint F Diagnostic Markers in Acute Appendicitis Am J Surg. 2015;209:1043–7. https://cbc.org.br/wp-content/uploads/2015/08/01062015-AJS.pdf

11. Alattal Alhames K, Martín-Sánchez FJ, Ruiz-Artacho P, Ayuso FJ, Trenchs V, Martínez Ortiz de Zarate M, et al. Diagnostic accuracy of combining C-Reactive protein and Alvarado Score among 2-to-20-year-old patients with acute appendicitis suspected presenting to Emergency Departments. Rev Esp Quimioter. 2021;34:220–227. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179944/

12. Eko FN, Ryb GE, Drager L, Goldwater E, Wu JJ, Counihan TC Ideal timing of surgery for acute uncomplicated appendicitis. North American Journal of Medical Sciences. 2013;5:22–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560134/

13. Alvarado A. A practical score for the early diagnosis of acute appendicitis. Ann Emerg Med. 1986;15:557–64. https://www.researchgate.net/publication/19197479

14. Stankovic N, Surbatovic M, Stanojevic I, Simic R, Djuricic S, Milicovcic M, et al. Possible cytokine biomarkers in pediatric acute appendicitis Ital J Pediatr. 2019;45:125. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6794741/

15. Psaltis E, Zaitoun AM, Neal KR, Lobo DN. Immunohistochemical Inflammation in Histologically Normal Appendices in Patients with Right Iliac Fossa Pain. World J Surg. 2021. https://link.springer.com/article/10.1007/s00268-021-06288-w

16. Haggi AR, Kasraianfard A, Monsef A, Zameni AS, Rahimi S, Javadi SMR. The diagnostic values of procalcitonin and interleukin 6 in acute appendicitis. Turk J Surg Turk J Surg. 2019;35:19–22. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6791682/

17. Destek S, Gül VO, Mentec MO, Çıçek AF Diagnostic efficacy of serum procalcitonin, IL-6, IL-2, and D-dimer levels in an experimental acute appendicitis model Turk J Gastroenterol. 2019;30:641. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629283/

18. Acharya A, Markar ShR, Ni M, Hanna GB Biomarkers of acute appendicitis: systematic review and cost–benefit trade-off analysis Surg Endosc. 2017;31:1022–31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315733/

19. Msolli MA, Belgiaef K, Bouida W, Nahla Jerbi N, Grissa MH, Hamdi Boubaker H, et al. Value of early change of serum C reactive protein combined to modified Alvarado score in the diagnosis of acute appendicitis BMC Emerg Med. 2018;18:15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968536/

20. Shimoda M, Maruyama T, Nishida K, Suzuki K, Tago T, Shimazaki J, et al. Preoperative high C-reactive protein level is associated with an increased likelihood for conversion from laparoscopic to open appendectomy in patients with acute appendicitis. Clin Exp Gastroenterol. 2019;12:141–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6497831/
21. Moon HM, Park BS, Moon DJ. Diagnostic value of C-reactive protein in complicated appendicitis. J Korean Soc Coloproctol. 2011;27:122–6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145882/
22. Raja MH, Elshaikh E, Williams L, Ahmed MH. The value of C-reactive protein in enhancing diagnosis of acute appendicitis. J CurrSurg. 2017;7:1–10. https://www.currentsurgery.org/index.php/jcs/article/view/316/292
23. Brănescu C, D Şerban D, C Şavlovschi C, AM Dascălu AM, Kraft A. Lipopolysaccharide binding protein (L.B.P.) – an inflammatory marker of prognosis in the acute appendicitis. J Med Life. 2012;5:342–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3487177/
24. Gaskill CE, Simianu VV, Carnell J, Hippe DS, Bhargava P, Flum DR, et al. Use of computed tomography to determine perforation in patients with acute appendicitis. Curr Probl Diagn Radiol. 2018;47:6–9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485251/
25. Awayshih MMA, Nofal MN, Yousef AJ. Evaluation of Alvarado score in diagnosing acute appendicitis. Pan Afr Med J. 2019;34:15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859007/
Table 1. Alvarado score for diagnosing acute appendicitis

Clinical signs	Alvarado score
Moving pain	1
Loss of appetite	1
Nausea and vomiting	1
Tension in the right lower quadrant	2
Bloomberg’s sign	1
Fever (> 37.2°C)	1
Leukocytosis (> 10 x 10⁵)	2
Polymorphonuclear > 75%	1
Total	**10**
Table 2. The severity of acute appendicitis according to the histopathological assessment

Severity grade	Histopathology
Catarrhal appendicitis	Intraluminal polymorphonuclear neutrophils
Suppurative appendicitis	Mucosal infiltration with inflammatory cells
Gangrenous appendicitis (CoAA)	Muscular layer infiltration with inflammatory cells
Periappendiceal abscess (CoAA)	Periappendiceal infiltration with inflammatory cells

CoAA – complicated acute appendicitis
Figure 1. Patients’ sex distribution
Table 3. Distribution of different histopathological categories of acute appendicitis in relation to patients’ age and sex

Age	18–29y	30–39y	40–49y	50–59y	60–69y	+70y	Σ							
Sex	M	F	M	F	M	F	M	F						
CAA (n = 16)	3	5	2	0	2	0	3	0	0	0	1	8	8	
SAA (n = 33)	6	7	8	3	1	2	1	1	1	2	0	1	17	16
CoAA (n = 18)	2	1	4	1	0	4	0	2	4	0	0	1	10	8
Σ	11	13	12	6	3	6	4	3	5	2	0	2	35	32

CAA – catarrhal acute appendicitis; SAA – suppurative acute appendicitis; CoAA – complicated acute appendicitis
Figure 2. Distribution of Alvarado score values among our patients
Table 4. Mean values of examined parameters

Parameter	X ± SD	Me	Min	Max
Age (years)	38.72 ± 16.46	36	18	80
Alvarado score	7.94 ± 1.82	8	2	10
Endotoxin (MU/mL)	3.42 ± 1.2	3.28	2.88	3.72
IL-6 (pg/ml)	91.40 ± 139.63	31.33	13.17	98.83
CRP (mg/L)	60.37 ± 79.18	29.7	0.6	415.2

X – mean value; SD – standard deviation; Me – median; Min – minimum; Max – maximum
Table 5. Mean values of examined parameters in relation to Alvarado score values

Parameter	Alvarado score negative (5 and less)	Alvarado score positive (6 and more)	p
Age (years)	35.95 ± 16.14 (33)	42.57 ± 16.42 (39)	0.0580
Endotoxin (MU/mL)	3.49 ± 1.26 (3.32)	3.32 ± 1.12 (3.17)	0.7029
IL-6 (pg/ml)	37 ± 65.62 (16.5)	167.16 ± 177.12 (84.83)	0.0000***
CRP (mg/L)	42.94 ± 64.46 (18.2)	84.65 ± 91.79 (52.05)	0.0054**

X – mean value; SD – standard deviation; Me – median;

*p < 0.05;

**p < 0.01;

***p < 0.001 (Student’s t-test or Mann–Whitney U-test)
Table 6. Mean values of examined parameters in relation to histopathological findings

Parameter	CAA (n = 16)	SAA (n = 33)	CoAA (n = 18)	p
Age (years)	35.00 ± 17.91	36.94 ± 15.94	45.28 ± 15.12	0.0570
	(29)	(35)	(46)	
Alvarado score	6.94 ± 1.18	7.7 ± 2.05	9.28 ± 0.83	0.0000 ***
	(7)	(7)	(9)	
Endotoxin (MU/mL)	3.1 ± 0.68	3.8 ± 1.48	3 ± 0.68	0.0409*
	(3.09)	(3.39)	(3.11)	
IL-6 (pg/ml)	43.73 ± 90.65	50.6 ± 70.68	208.56 ± 197.68	0.0000 ***
	(15.41)	(19.9)	(124.58)	
CRP (mg/L)	19.51 ± 27.77	56.35 ± 70.68	104.05 ± 103.11	0.0002 ***
	(15.35)	(29.9)	(70.15)	

X – mean value; SD – standard deviation; Me – median; CAA – catarrhal acute appendicitis;
SAA – suppurative acute appendicitis; CoAA – complicated acute appendicitis;

Parameters are given as X ± SD and Me;

a vs. CAA
b vs. SAA;
c vs. CoAA;

*p < 0.05;

**p < 0.01;

***p < 0.001 (ANOVA, Kruskal–Wallis test, Student’s t-test, Mann–Whitney U-test)
Table 7. The incidence of elevated values of examined parameters in relation to Alvarado score

Parameter	Value	Alvarado score (%)	p	
		negative	positive	
Endotoxin	normal	64.1	75	0.3466
	elevated	35.9	25	
IL-6	normal	30.77	0	0.0013**
	elevated	69.23	100	
CRP	normal	17.95	14.29	0.7506
	elevated	82.05	85.71	
Histopathology	CAA and SAA	94.87	42.86	0.0000***
	CoAA	5.13	57.14	

CAA – catarrhal acute appendicitis; SAA – suppurative acute appendicitis; CoAA – complicated acute appendicitis;

**p < 0.01;

***p < 0.001 (χ² test)
Table 8. The incidence of elevated values of examined parameters in relation to histopathological findings

Parameter	Value	Histopathology	P		
		CAA	SAA	CoAA	
Alvarado score	normal	93.75%	66.67%	11.11%	**0.0000***
	elevated	6.25%	33.33%	88.89%	
Endotoxin	normal	81.25%	51.52%	88.89%	**0.0105***
	elevated	18.75%	**48.48%***	11.11%	
IL-6	normal	43.75%	15.15%	0%	**0.0050***
	elevated	56.25%	84.85%	**100%***	
CRP	normal	43.75%	12.12%	0%	**0.0018***
	elevated	56.25%	87.88%**	**100%***	

CAA – catarrhal acute appendicitis; SAA – suppurative acute appendicitis; CoAA – complicated acute appendicitis;

*a vs. CAA;

*b vs. SAA;

*c vs. CoAA;

*p < 0.05;

**p < 0.01;

***p < 0.001 (χ² test)
Table 9. Results of univariate logistic regression analysis assessing the probability of AA histopathology prediction by examined parameters

Parameter	OR	Limits 95% CI	p	
		Lower	Upper	
AS	2.98	1.60	5.57	0.0006***
Positive AS value	24.67	4.94	123.12	0.0001***
CRP	1.01	1	1.02	0.0165*
Elevated CRP	-	0	-	0.9987

AS – Alvarado score; OR – odds ratio (between catarrhal acute appendicitis and suppurative acute appendicitis on one side and complicated acute appendicitis on the other); CI – confidence interval;

*p < 0.05;

**p < 0.01;

***p < 0.001
Figure 3. Receiver operating characteristic (ROC) curve analysis presenting predictive features of a) Alvarado score and b) CRP for distinction between catarrhal acute appendicitis and suppurative acute appendicitis / complicated acute appendicitis
Table 10. Receiver operating characteristic curve coordinates presenting predictive features of Alvarado score (AS) and CRP for distinction between catarrhal acute appendicitis and suppurative acute appendicitis / complicated acute appendicitis

AS	Se	Sp	Se + Sp	CRP	Se	Sp	Se + Sp
4	0.941	0.000	0.941	16.3	0.765	0.688	1.452
5.5	0.922	0.125	1.047	17.3	0.745	0.688	1.433
6.5	0.902	0.375	1.277	18.6	0.745	0.750	1.495
7.5	0.745	0.625	1.370	19.45	0.745	0.813	1.558
8.5	0.529	0.938	1.467	20.75	0.725	0.813	1.538
9.5	0.294	1.000	1.294	22.15	0.706	0.813	1.518
11	0.000	1.000	1.000	23.7	0.686	0.813	1.499

Se – sensitivity; Sp – specificity
Table 11. Diagnostic features of Alvarado score (AS) and CRP for distinction between catarrhal acute appendicitis and suppurative acute appendicitis / complicated acute appendicitis

Parameter	Area below ROC curve (95% CI)	SE	p	Cut-off	Se (%)	Sp (%)	PPV (%)	NPV (%)	OA (%)
AS	0.775 (0.662–0.889)	0.053	0.0001***	8.5	52.94	93.75	96.43	37.5	62.69
CRP	0.787 (0.659–0.914)	0.065	0.0006***	19.45	74.51	81.25	92.68	44.83	76.12

ROC – receiver operating characteristic; CI – confidence interval; SE – standard error; Se – sensitivity; Sp – specificity; PPV – positive predictive value; NPV – negative predictive value; OA – overall accuracy;

*p < 0.05;

***p < 0.001
Figure 4. Receiver operating characteristic (ROC) curve analysis presenting predictive features of a) Alvarado score and b) CRP for distinction between complicated acute appendicitis and catarrhal acute appendicitis / suppurative acute appendicitis.
Table 12. Receiver operating characteristic curve coordinates presenting predictive features of Alvarado score (AS) and CRP for distinction between complicated acute appendicitis and catarrhal acute appendicitis / suppurative acute appendicitis

AS	Se	Sp	Se + Sp	CRP	Se	Sp	Se + Sp
4	1.00	0.061	1.061	32.35	0.778	0.653	1.431
5.5	1.00	0.122	1.122	33.95	0.778	0.673	1.451
6.5	1.00	0.224	1.224	35.55	0.778	0.694	1.472
7.5	0.944	0.449	1.393	40.4	0.778	0.714	1.492
8.5	0.89	0.760	1.644	45.25	0.667	0.714	1.381
9.5	0.444	0.857	1.302	47.9	0.667	0.735	1.401
11	0.000	1.000	1.000	49.5	0.611	0.735	1.346

Se – sensitivity; Sp – specificity
Table 13. Diagnostic features of Alvarado score (AS) and CRP for distinction between complicated acute appendicitis and catarrhal acute appendicitis / suppurative acute appendicitis

Parameter	Area below ROC curve (95% CI)	SE	p	Cut-off	Se (%)	Sp (%)	PPV (%)	NPV (%)	OA (%)
AS	0.823 (0.719–0.927)	0.053	0.0001**	8.5	88.89	75.51	57.14	72.55	79.1
CRP	0.789 (0.638–0.879)	0.062	0.0013**	40.4	77.78	71.43	50	66.04	73.13

ROC – receiver operating characteristic; CI – confidence interval; SE – standard error; Se – sensitivity; Sp – specificity; PPV – positive predictive value; NPV – negative predictive value; OA – overall accuracy;

*p < 0.05;

**p < 0.01