Esophageal Perforation Successfully Treated With EVT

Kavea Panneerselvam, MD1, Ronald Samuel, MD2, and Robert J. Sealock, MD2

1Baylor College of Medicine, Department of Medicine, Houston, Texas
2Baylor College of Medicine, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Houston, Texas

ABSTRACT

Esophageal perforation is rare and carries high morbidity and mortality. A high degree of suspicion is needed for timely diagnosis and treatment. A 54-year-old man presented with fever and confusion. Imaging revealed air in the hepatic inferior vena cava and concern for a fistula between the distal esophagus and the inferior vena cava. An upper endoscopic evaluation revealed a dental floss pick penetrating the distal esophagus. The foreign body was removed, and endoluminal vacuum therapy was used to close the perforation. Endoluminal vacuum therapy is an emerging therapy to treat full-thickness gastrointestinal injuries.

INTRODUCTION

Esophageal perforation is a rare but potentially fatal problem with mortality as high as 31%.1–3 The most common causes of esophageal perforation are iatrogenic, spontaneous, and foreign body ingestion with each contributing 52%, 24%, and 17%, respectively.1 The presentation is often nonspecific with symptoms, such as nausea, vomiting, and epigastric pain, thereby requiring a high index of clinical suspicion to result in timely diagnosis and management. Several therapeutic modalities are available to treat esophageal perforation, including primary surgical repair, surgical resection of the defect, endoscopic stents, endoscopic suturing, and endoluminal vacuum therapy (EVT). We present an unusual cause of esophageal perforation treated with EVT.

CASE REPORT

A 54-year-old man with a history of schizophrenia and homelessness presented to the hospital with fevers, chills, and confusion. Initial examination revealed fever (102.1°F), tachycardia (112 BPM), scleral icterus, and mild tenderness to palpation in the right upper quadrant of the abdomen. Laboratory values showed leukocytosis (40 K/μL), hemoglobin of 11.3 g/dL, elevated amino-transferases (aspartate transaminase 338 U/L and alanine transaminase 207 U/L) along with elevated alkaline phosphatase (175 U/L), and total bilirubin (7.7 mg/dL). Abdominal computed tomography revealed air in the hepatic portion of the inferior vena cava (IVC) with a fistulous connection between the distal esophagus and the proximal hepatic IVC along with a hepatic abscess (Figure 1).

Figure 1. Abdominal computed tomography showing (A) air and (B) a fistulous tract between the distal esophagus near the gastroesophageal junction and the proximal hepatic IVC. IVC, inferior vena cava
Blood cultures had a growth of multiple organisms, including *Streptococcus mitis*, *Streptococcus salivarius*, and *Granulicatella adiacens*. He was started on broad-spectrum antibiotics.

An esophagram showed linear extravasation of contrast at the level of the diaphragmatic crus without evidence of extension into the IVC, along with 2 esophageal divertica (Figure 2).

Figure 2. (A) Initial esophagram showing 2 diverticula along the right border of the distal esophagus and a focal outpouching of contrast arising from the gastroesophageal junction at the level of the diaphragmatic crus with a linear tract that extends inferiorly into the right before splitting into 2 tracts. An image of a dental pick is overlaid on the image for a representation of how we believe these defects were created. (B) Esophagram performed after the perforation healed, confirming no contrast extravasation.

Figure 3. Esophagogastroduodenoscopy showing (A) the dental pick that has been pushed from the esophagus into the stomach, (B) the 2 diverticula, (C) the penetrating ulcer, and (D) the endoluminal vacuum overlying the penetrating ulcer.
The endoscopic wound vacuum was exchanged every 3 days to ensure proper pressure and to allow for granulation tissue to form. A postpyloric nasogastric tube was placed during endoscopy to minimize any esophageal irritation and to avoid any oral fluids that might migrate to the perforation site. The patient was fed continuously, and the nasogastric tube was advanced as the patient was able to tolerate it.

An EGD on hospital day 29 revealed that his perforation had healed. This was confirmed through esophagram in which no further contrast extravasation was seen (Figure 2). The patient was able to return to a solid diet and had no further complications.

DISCUSSION

Various therapeutic modalities have been used for patients presenting with esophageal perforation, including endoscopic, surgical, and conservative approaches. Although surgery has traditionally been considered the standard of care, endoscopic modalities are becoming more widely used and have shown improved outcomes. Endoscopic options include clips, stents, endoscopic suturing, and EVT.

Negative pressure wound therapy is commonly used for superficial wounds to promote secondary intention but is less commonly used for gastrointestinal perforations. EVT was initially adopted for the closure of colonic anastomotic leaks. In 2008, it was adapted for use in upper gastrointestinal postsurgical leaks by Wedemeyer. A case series in 2015 with 35 patients showed that EVT may be more successful than esophageal stenting in treating anastomotic leaks after esophagectomy. In 2013, a large single-center retrospective analysis of 336 patients showed that EVT had a significant survival benefit over other modalities with 12% mortality for EVT and 50% and 83% for surgical repair and stenting, respectively. With EVT, the median time to healing is 11–29 days with sponge exchanges every 2–4 days. Reported complications include sponge dislocation, sponge detachment, and stricture formation.

EVT can be used in the management of esophageal leaks and perforations and may be superior compared with traditional means of closure, although randomized trials are lacking. EVT is time and labor intensive requiring frequent endoscopy with sponge exchanges. However, given the survival benefit, low complication risk, and high success rate, EVT may become an initial treatment option for patients with esophageal and other luminal perforations.

DISCLOSURES

Author contributions: K. Panneerselvam reviewed the literature, wrote, and approved the final manuscript. R. Samuel edited the manuscript and revised the manuscript for intellectual content. R. J. Sealock provided the images, edited the manuscript, and is the article guarantor.

Financial disclosure: None to report

Informed consent could not be obtained from the patient despite several attempts. All identifying information has been removed from this case report to protect patient privacy.

Received April 5, 2021; Accepted July 26, 2021

REFERENCES

1. Vidarsdottir H, Blondal S, Alfredsson H, Geirsson A, Gudbjartsson T. Oesophageal perforations in Iceland: A whole population study on incidence, aetiology and surgical outcome. Thorac Cardiovasc Surg. 2010; 58(8):476–80.
2. Chirica M, Champaault A, Dray X, et al. Esophageal perforations. J Visc Surg. 2010;147(3):e117–28.
3. Biancari F, D’Andrea V, Paone R, et al. Current treatment and outcome of esophageal perforations in adults: Systematic review and meta-analysis of 75 studies. World J Surg. 2013;37(5):1051–9.
4. Schniewind B, Schafmayer C, Voehrs G, et al. Endoscopic endoluminal vacuum therapy is superior to other regimens in managing anastomotic

![Figure 4. The proximal and distal ends of the wound vacuum sponge are secured to the distal end of an 18 French nasogastric tube using sutures.](image-url)
leakage after esophagectomy: A comparative retrospective study. Surg Endosc. 2013;27(10):3883–90.

5. Watkins JR, Farivar AS. Endoluminal therapies for esophageal perforations and leaks. Thorac Surg Clin. 2018;28(4):541–54.

6. Weidenhagen R, Gruetzner KU, Spelsberg F, Lang RA, Jauch KW. New method for sepsis control caused by anastomotic leakage in rectal surgery. The endo-VAC. Published online 2004;22:1818–25.

7. Wedemeyer J, Schneider A, Manns MP, Jackobs S. Endoscopic vacuum-assisted closure of upper intestinal anastomotic leaks. Gastrointest Endosc. 2008;67(4):708–11.

8. Mennigen R, Harting C, Lindner K, et al. Comparison of endoscopic vacuum therapy versus stent for anastomotic leak after esophagectomy. J Gastrointest Surg. 2015;19(7):1229–35.

9. Newton NJ, Sharrock A, Rickard R, Mughal M. Systematic review of the use of endo-luminal topical negative pressure in oesophageal leaks and perforations. Dis Esophagus. 2017;30:1–5.