Neutron diffraction of titanium aluminides formed by continuous electron-beam treatment

S Valkov1,4, D Neov2, D Luytov3 and P Petrov1

1Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
2Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia
3Department of Solid State Physics and Microelectronics, Faculty of Physics, St. Kl. Ohridsky University of Sofia, 5 J. Bourchier blvd., 1164 Sofia, Bulgaria

E-mail: stsvalkov@gmail.com

Abstract. Ti-Al-based alloys were produced by hybrid electron-beam technologies. A composite Ti-Al film was deposited on a Ti substrate by electron-beam evaporation (EBE), followed by electron-beam treatment (EBT) by a continuously scanned electron beam. The speed of the specimens motion during the EBT were \(V_1 = 1 \) cm/sec and \(V_2 = 5 \) cm/sec, in order to realize two different alloying mechanisms – by surface melting and by electron-beam irradiation without melting the surface. The samples prepared were characterized by XRD and neutron diffraction to study the crystal structure on the surface and in depth. SEM/EDX analysis was conducted to explore the surface structure and analyze the chemical composition. Nanoindentation measurements were also carried out. No intermetallic phases were registered in the sample treated at velocity \(V_1 \), while the sample treated at \(V_2 \) exhibited a Ti3Al/TiAl structure on the surface, transformed to Ti/TiAl in depth. The nanoindentation test demonstrated a significant negative hardness gradient from the surface to the depth of the sample.

1. Introduction
Ti-Al-based alloys combine attractive mechanical properties, light weight and excellent oxidation behavior at high temperatures. Titanium aluminides are widely used as a protective material, e.g., in the field of automotive and aircraft industry. Some aircraft engines manufacturers have successfully introduced \(\gamma \)-TiAl for turbine blades [1-3]. It has been found that the mechanical properties are greatly improved when the alloys consist of a mixture of \(\gamma \)-TiAl and \(\alpha_2 \)-Ti3Al phases, rather than the single phase structure of \(\gamma \)-TiAl [4]. Due to the very good oxidation behavior of aluminium, the presence of a TiAl phase is capable of causing the formation of a thin oxide film, such as Al2O3, on the surface, which acts as a protective barrier to organic environmental pollutants [5].

There exist several technologies for production of the alloys discussed above, including thin-films deposition [6], ion implantation [7], etc. It should be noted that many studies have been published describing the formation of Ti-Al alloys induced by pulsed electron-beam surface treatment, [8,9], but

4 To whom any correspondence should be addressed.
the formation of Ti-Al alloys by irradiation with continuous electron beams has been less well investigated.

In this study, a composite Ti-Al film was deposited on an α-Ti substrate by electron-beam evaporation followed by electron-beam treatment with a continuously scanned electron beam, thus realizing two different alloying mechanisms – by surface melting and by surface irradiation without melting. The crystal structure was determined by XRD on the surface and by neutron diffraction in depth. SEM/EDX analyses were carried out in order to explore the surface structure and to analyze the chemical composition; a nanoindentation test was also conducted to examine the mechanical properties.

2. Experimental part

A composite Ti-Al film with a thickness a 10 μm was deposited on an α-Ti substrate by electron-beam evaporation followed by electron-beam treatment with a continuously scanned electron beam. When applying this method, the accelerated electrons provoke interactions of the atoms from the deposited layer and the substrate, forming intermetallic alloys. The experiments were conducted on a Leybold Heraeus (EWS 300/15 - 60) installation with the following technological parameters: accelerating voltage $U = 55 - 60$ kV, beam current $I = 40$ mA, focusing lens current $I_f = 512$ mA. The alloying process was controlled by varying the speed of motion of the specimens. A low speed of specimen motion corresponds to a long interaction time of the electron beam and the treated area, increasing the temperature and, thus, melting the surface. In order to realize two different alloying mechanisms (by melting the surface, and by surface irradiation without melting), two different speeds were chosen: $V_1 = 1$ cm/sec and $V_2 = 5$ cm/sec.

The phase composition on the surface was characterized by X-ray diffraction. The experiments were performed on a Bruker D8 Advance diffractometer with Cu Kα radiation and a LynxEye detector. The XRD patterns were registered within the range from 20° to 80° at 2^θ scale with a step of 0.02°.

Scanning electron microscopy (SEM) analysis was carried out in order to explore the surface structure. The experiment was performed on a dual-beam scanning electron/focused system (SEM/FIB LYRA I XMU, TESCAN), equipped with an EDX detector (Quantax 200, Bruker). In this study, secondary electrons were used with high voltage $HV = 30$ kV and a work distance of 8.7 mm.

Neutron diffraction experiments were performed in order to study the phase composition in the volume of the samples. The measurements were conducted on a DN-2 diffractometer of the IBR-2 fast pulsed reactor at the Frank Laboratory of Neutron Physics (FLNP) JINR (Dubna, Russia). IBR-2 is a high-flux pulsed reactor with a peak thermal neutron flux of 10^{16} neutrons/cm² s at the moderator. The reactor operates in a time-of-flight mode, which implies time-dispersive measurements instead of the most common angle-dispersive diffraction. The initial velocity of each neutron is determined by the time of arrival of the neutron into the detector. Since the neutron flux is formed after passing through the moderator, it has a velocity (and hence, wavelength) distribution defined by the Maxwell thermal distribution and the resultant neutron spectra are a blend of this distribution and the sample diffraction pattern. The scattering angle and direction are fixed by the position of the detector during the experiment. Diffraction maxima in the scattered intensity appear when the Bragg conditions are fulfilled. The relation between the time of the flight and the interplanar distance d_{hkl} is as follows (modified Bragg law):

$$d = \frac{ht}{2mL\sin\theta},$$ (1)

where d – interplanar distance; t – time of neutron flight; L –distance from the neutron source to the detector; θ – angle position of the detector; h – Plank constant; m – mass of the neutron.

Figure 1 represents schematically the DN-2 diffractometer. The neutrons are transported from the neutron source to the sample position in a bent neutron guide constructed from straight mirror sections with a length of 0.5 m. The guide together with the specially designed neutron moderator enables the
The use of the long-wavelength neutrons in the range 1.2 – 20 Å. The time-of-flight neutron experiments were performed for 13.5 hours with an SNM17 neutron detector filled with ^3He. The detector was positioned at 63.8° and the neutron flight path from the moderator to the detector was 24.27 m. The neutron flux at the sample was $\sim 5 \times 10^6$.

In figure 1: 1 – moderator; 2 – background chopper; 3 – neutron guide tube; 4 – ring detector; 5 – ^3He detectors; 6 – goniometer; 7 – two-coordinate position-sensitive detector; 8 – mechanical part with a moveable arm; 9 – control and operative visualization/analysis; 10 – data acquisition; 11 – data transfer.

The nanoindentation test was performed to study the mechanical properties of the samples prepared. The experiment was conducted on a nanomechanical tester (Bruker, USA). Prior to the indentation, the surface of the samples was polished; the force applied was 200 mN.

3. Results and discussion

Figures 2 and 3 represent the XRD patterns of the samples. The diffractogram of the specimen treated at speed V_1 does not contain any peaks corresponding to intermetallic Ti-Al phases, while at speed V_2, an intermetallic Ti-Al structure is visible with a main phase α_2-Ti$_3$Al. In addition, the pattern exhibits several peaks corresponding to γ-TiAl and some peaks of Al$_2$O$_3$ and TiO phases, because the sample was retrieved from the vacuum chamber directly after the EBT process. The latter phases demonstrate the good oxidation behavior of the sample.

A SEM image taken from the surface of the sample treated at speed V_2 is shown in figure 4. The EDX analysis showed that an intermetallic Ti-Al structure has been formed with a significant degree of oxidation. The mean ratio of Ti:Al was about 3:1, which corresponds to the main Ti$_3$Al phase, according to the XRD analysis. The dark precipitations, marked by asterisks, correspond to Al$_2$O$_3$ with a negligible amount of Ti (\sim4%). Thus, the SEM/EDX results confirmed the phase composition as evaluated by XRD.
Figure 4. SEM image of the surface of a Ti-Al alloy.

Figure 5. Time-of-flight neutron diffraction pattern of a TiAl alloy.

Figure 6. Nanohardness depth profile of a Ti-Al alloy.

4. Conclusions
Ti-Al alloys were successfully produced by continuous electron-beam treatment without surface melting of the Ti substrate/Ti-Al coating system with the technological parameters discussed above, in contrast with the case of electron-beam surface melting. We demonstrated that the combination of the XRD and neutron diffraction techniques is an effective method of evaluating the in-depth phase composition distribution. The results obtained showed that the surface structure of Ti₃Al/TiAl was transformed to Ti/TiAl in the volume, which means that the mechanical properties on the surface are superior to those in the volume. In addition, a nanoindentation test demonstrated a decrease in the nanohardness in the depth, with the values being ~18.5 GPa at 0.7 µm and ~5 GPa at 1.5 µm.
Acknowledgments
The authors would like to thank the Bulgarian Nuclear Regulatory Agency for providing financial support. The SEM/EDX experiments were conducted at the Materials Science Laboratory of the Department of Solid State Physics and Microelectronics, Faculty of Physics, St. Kliment Ohridsky University of Sofia.

References
[1] Wu X 2006 Intermetallics 14 1114 - 22
[2] Dimiduk M 1999 Mater. Sci. Eng. A 263/2 281 – 8
[3] Clements H and Mayer S 2013 Adv. Eng. Mater. 15 191 – 215
[4] Appel F, Paul J and Oehring M 2011 Gamma Titanium Aluminide Alloys: Science and Technology (Wiley-VCH Verlag & Co. KGaA)
[5] Eckert J, Gao W, Golovin I, Imai Y, Li Z, Rennhofer M, Roth S, Russel A, Stoica M, Vanghan G, Zavrazhnov A and Zlomanov V 2008 Intermetallic Research Progress (Nova Science Publ. New York)
[6] Hampshire J, Kelly P and Teer D 2002 Thin Solid Films 420 – 421 386 – 91
[7] Tsyganov I, Wieser E, Matz W, Mucklich A, Reuther H, Pham M and Richter E 2000 Thin Solid Films 376 188 - 97
[8] Mei X, Fu J, Li X, Rotshtein V, Koval N and Ma T 2014 Rare Meter. 33/2 155 – 60
[9] Allian-Bonasso N, Rotshtein V, Bouzy E, Germain L, Ivanov Y and Grosdidier T 2013 J. Phys.: Conf. Series 416
[10] Zabel H 1990 Adv. Solid State Phys. 30 197 – 217