Extremely high-performance visible light photodetector in the Sb$_2$SeTe$_2$ nanoflake

Shiu-Ming Huang1, Shih-Jhe Huang1, You-Jhih Yan2, Shih-Hsun Yu2, Mitch Chou2,3, Hung-Wei Yang4, Yu-Shin Chang4 & Ruei-San Chen4

The photocurrent was performed in the Sb$_2$SeTe$_2$ topological insulator at a wavelength of 532 nm. It exhibits extremely high performance that the responsivity and the photoconductive gain reach 2293 A W$^{-1}$ and 5344 at 1 V. This high photoresponse is orders of magnitude higher than most reported values in topological insulators and two-dimensional transitional metal dichalcogenides. This finding suggests that the Sb$_2$SeTe$_2$ nanoflake has great potential for future optoelectronic device applications.

A system that generates a high photocurrent in response to light may be used as a photosensor. The light penetration distance is very short; thus, the photoresponse properties are dominated by the carriers near the material surface. A material with a relatively high surface carrier dominance can be expected to perform as a relatively efficient photodetector. To optimize the photoresponse, various types of nanostructured materials, with high surface-to-volume ratios and high levels of photoresponse, were investigated$^{1-6}$. Recently, two-dimensional materials such as graphene7,8, graphene-based heterostructures$^{1-4}$, and two-dimensional transitional metal dichalcogenides (TMDs) have attracted noteworthy attention$^{9-16}$. These two-dimensional materials demonstrate excellent photoelectrical performance because they have high surface-to-volume ratios and abundant surface carriers.

Three-dimensional topological insulators are promising materials because they offer insulating bulk states and a gapless conducting surface state. These insulators have a surface state that is topologically protected by a time reversal symmetry, which is induced by a strong spin-orbit interaction. This remarkable surface state has garnered intensive theoretical and experimental attention and had been a recent research topic17,18. The linear dispersions in the surface state and the extremely high carrier mobility levels make these insulators promising candidates for optical electrical devices19,20. The photoelectrical characteristics of the Bi-based topological insulators have been investigated and have revealed promising responses21,22. It is reported that the Bi$_2$Te$_3$ topological insulator based heterostructures23,24 and PLD-grown Bi films25 reveal ultrahigh responsivity in wide wave range. Recently, it was reported that Sb$_2$Te$_3$ thin films offer higher photoelectrical responses than that in Bi-based topological insulators26.

In this paper, we report on the photocurrent produced by a 532-nm wavelength in a Sb$_2$SeTe$_2$ topological insulator. The experimental results reveal extremely high performance; specifically, the responsivity and the photoconductive gain reached 2293 A W$^{-1}$ and 5344 at a bias of 1 V. These observations are orders of magnitude higher than most reported values in other topological insulators and two-dimensional TMDs, which suggests that Sb$_2$SeTe$_2$ nanoflakes have great potential for future optoelectronic device applications.

Experimental method

Single crystals of Sb$_2$SeTe$_2$ were grown by a homemade resistance-heated floating zone furnace (RHFZ). The starting raw materials of Sb$_2$SeTe$_2$ were mixed according to the stoichiometric ratio. At first, the stoichiometric mixtures of high purity elements Sb (99.995%), Se (99.995%) and Te (99.995%) were melted at temperatures of 700 – 800 °C for 20 h, and then slowly cooled to room temperature in an evacuated quartz glass tube. The resulting material was used as a feeding rod for the following RHFZ experiment. After growth, the crystals were then furnace cooled to room temperature. The as-grown crystals were cleaved along the basal plane, producing a silvery...
shining mirror-like surface, and then prepared for the further experiments. The Raman27, EDS and XPS28 spectrum support that the crystal is Sb\textsubscript{2}SeTe\textsubscript{2}. The Sb\textsubscript{2}SeTe\textsubscript{2} nanoflakes were obtained by exfoliating bulk crystals using dicing tape and were then dispersed on the insulating SiO\textsubscript{2} (300 nm)/n-Si templates with pre-patterned Ti/Au circuits. Two platinum (Pt) metal contacts were subsequently deposited on the selected Sb\textsubscript{2}SeTe\textsubscript{2} nanoflakes using focused-ion beam (FIB) technique (shown in the right-bottom inset of Fig. 1). The thickness of a nanoflake is determined by the atomic force microscopy; here, the nanoflake was 181-nm thick, 708-nm long, and 1667-nm wide. The current-voltage characteristic reveals a linear dependence that indicates the ohmic contacts in the sample; the conductivity was approximately 33.7 S/cm. The left-top inset within Fig. 1 shows the X-ray diffraction of the Sb\textsubscript{2}SeTe\textsubscript{2}; the sharp peaks indicate that the Sb\textsubscript{2}SeTe\textsubscript{2} crystal has high crystallinity. Our previous works show that the physical parameters extracted from XPS, Raman spectrum, ARPES and the quantum SdH oscillation are consistent. That supports the Sb\textsubscript{2}SeTe\textsubscript{2} crystal reveals high quality and uniformity. Figure 2 presents the schematic of the Sb\textsubscript{2}SeTe\textsubscript{2} nanoflake device, illustrating the photoelectrical measurement setup and the light that illuminated it. The wavelength of the light was 532 nm.

Results and Discussion

The inset of the Fig. 3 shows that the measured current of our Sb\textsubscript{2}SeTe\textsubscript{2} nanoflake under light illumination with light power that ranges from 1 to 50 mW that is corresponding to the power intensity of 40 to 2000 Wm-2. It clearly indicates that the current increases with increasing light power. The overall response time is approximately 10 s; which is shorter than the reported values of Sb\textsubscript{2}Te\textsubscript{3} films29, but longer then the values of B:30 based topological
Here the photocurrent is presented as a function of the power intensity at bias of 0.1 V (Fig. 3). For quantitative analysis, the relationship between the photocurrent and the light intensity can be fitted to the simple power law relation,
\[I_p = AP^\theta, \]
where the \(A \) is a constant for the wavelength of the illuminating light, \(P \) is the power intensity of the light that illuminates the device, and \(\theta \) is a constant related to the photosensitivity of the device. As Fig. 3 reveals, the experimental data agrees with the power law relation and the fitting result gives a \(\theta \) of 0.85.

To quantitatively determine the performance of the Sb\(_2\)Se\(_2\)Te\(_2\) nanoflake under illumination, responsivity, \(R \), and the photoconductive gain, \(G \), are calculated through the following equations;

\[R = \frac{I_p}{PS}, \]

\[G = \frac{hcR}{\eta e \lambda} = \frac{1240R}{\eta \lambda}, \]

where \(I_p, P, S, h, c, e, \eta \) and \(\lambda \) are the photocurrent, the light intensity, the effective area, Planck's constant, the velocity of light, the charge of an electron, the quantum efficiency (for convenience, we assume \(\eta = 1 \)) and the wavelength, respectively. The \(G \) for a wavelength is proportional to the \(R \) at the same wavelength. Figure 4 depicts \(R \) and \(G \) as functions of the light intensity at a constant bias of 0.1 V, and reveals that the \(R \) and \(G \) decrease as the power intensity increases. Specifically, the \(R \) and \(G \) are 276 AW\(^{-1}\) and 643 at a power intensity of 120 Wm\(^{-2}\).
The photocurrent is strongly related to the applied bias. To comprehensively investigate the intrinsic optoelectronic characteristics in the Sb$_2$SeTe$_2$ nanoflake, an experiment on bias-dependent photocurrents was performed. As shown in the inset of the Fig. 5, the photocurrent was linearly related to the applied bias; specifically, the observed photocurrent was approximately 0.8 μA at 1 V and a light power intensity of 280 W/m2. This linear bias-dependent increment of the photocurrent can be attributed to the increment drift velocity and the reduced carrier transit time caused by applied bias. Expressed as $T = \frac{L}{\mu V_d}$, T is the carrier transit time, L is the device length, μ is the carrier mobility, and V_d is the applied bias. This indicates a system with higher carrier mobility; and, a higher bias might decrease the carrier transit time, and produce a higher photocurrent. Figure 5 also indicates that the evaluated R and G are functions of bias, to which both linearly relate. At 1 V, The R and G reach 2293 AW$^{-1}$ and 5344, respectively.

To qualitatively identify the optical performance of the Sb$_2$SeTe$_2$ nanoflake, the reported values were collected. Table 1 presents a list of the reported R and G values for topological insulators and two-dimensional TMDs, and clearly reveals that the R and G values for our Sb$_2$SeTe$_2$ are orders of magnitude higher than most the reported values in topological insulators and two-dimensional TMDs under similar conditions. That suggests that the Sb$_2$SeTe$_2$ has the potential to deliver extremely high-performance photocurrent-related applications.

Aside from the high quality of the crystalline sample and the large surface-to-volume ratio, several possible causes might lead to this extremely high photoresponse. First, the photoresponse is extremely sensitive to the condition of sample surface. In addition to the reduction of the effective response area, surface defects and oxidation reduce carrier mobility and lifetime. One prior study reported that adsorbed molecules on a surface reduce the carrier's life time; thus, the photoresponse of a material in a vacuum is higher than the photoresponse of the same material in the air. Our previous work revealed that the surface state carrier transport characteristics in our Sb$_2$SeTe$_2$ topological insulator can tolerate surface oxidation and molecules adsorbed on the sample's surface; such molecules might come from unavoidable pollution during the fabrication process or from sample transference. Therefore, less effective defective materials might impair the surface electron transport properties of our Sb$_2$SeTe$_2$ sheet, and the proposed nanoflake might be very effectively by comparison. Second, in addition to the artificial and extrinsic factors, R and G values are directly related to carrier mobility. The reported R and G in MoS$_2$ and WSe$_2$ flakes were positively related to the field-effect carrier mobility. The surface state carrier mobility of our Sb$_2$SeTe$_2$ topological insulator was approximately $55.5 \text{cm}^2\text{V}^{-1}\text{s}^{-1}$ at room temperature; that is one order larger than the previously reported value ($4 \text{cm}^2\text{V}^{-1}\text{s}^{-1}$) for a single-layer MoS$_2$ flake. Third, it is noteworthy that previous works have revealed that graphene-based heterostructure greatly enhances photoresponse because electron have high mobility in graphene and two-dimensional TMDs demonstrate enhanced adsorption ratios. The R and G values of our Sb$_2$SeTe$_2$ are orders of magnitude higher than most reported values in topological insulators and two-dimensional TMDs, and are only lower than the reported values in the nanowires and graphene-MoS$_2$ hybrid structure. Theoretical calculation shows that the surface state Dirac point lies at the energy gap of the bulk state in Sb$_2$SeTe$_2$, and our previous work supported that the Fermi level is below the Dirac point. This energy band structure is similar to the graphene-MoS$_2$ hybrid structure and might lead to the observed high photoresponse.

Detectivity, that is an important figure-of-merit in evaluating the ability of a photodetector to detect weak signal, is another important indices used to characterize the performance of photodetectors. The specific detectivity (D^*) is calculated through the relation:

$$D^* = \frac{RS^{1/2}}{(2qI_d)^{1/2}}.$$

Figure 5. Left-top inset shows the linear relation of a photocurrent to the applied bias at a wavelength of 532 nm and a power intensity of 280 W/m2. The main figure shows the responsivity and the photoconductive gain as functions of the applied bias at a wavelength of 532 nm and the power intensity of 280 W/m2.

$$R = \frac{qI}{2 \frac{V_d}{2}},$$

$$G = \frac{qI}{2 \frac{V_d}{2}}.$$

$$L = \frac{\mu V_d}{\mu V_d}.$$
where R, S, q, and I_d are the responsivity, effective area of light illumination, electronic charge, and dark current. By using the experimental data, the detectivity is determined to be 4.5×10^8 Jones.

Conclusion

A photocurrent experiment was performed in a Sb$_2$SeTe$_3$ topological insulator nanoflake at a wavelength of 532 nm. It exhibited extremely high performance; the responsivity and the photoconductive gain were 2293 AW$^{-1}$ and 5344 at 1 V, respectively. This high photoresponse was orders of magnitude higher than most reported values in topological insulators and two-dimensional TMDs. This finding suggests that the Sb$_2$SeTe$_3$ nanoflake has remarkable potential for future optoelectronic device applications.

material	wavelength (nm)	Bias (V)	Responsivity (AW$^{-1}$)	Gain (EQE)	reference
Sb$_2$SeTe$_3$ nanoflake	532	1	2293	5344	This work
Sb$_2$SeTe$_3$ nanoflake	532	0.1	276	643	This work
Sb$_2$Te$_3$ film	980	0.01	0.26	0.33	ref. 26
Sb$_2$Te$_3$ film	980	0.1	2.31	2.93	ref. 26
Sb$_2$Te$_3$ film	980	1	21.7	27.4	ref. 26
Bi$_2$Se$_3$ nanoflake	1064	0.1	207	241	ref. 21
Bi$_2$Se$_3$ nanoflake	1064	0.15	300	350	ref. 21
Bi$_2$Te$_3$ polycrystal	1064	0.3	3×10^{-3}	3.85×10^{-5}	ref. 22
graphene – Bi$_2$Te$_3$	1550	1	0.22	0.17	ref. 34
graphene – Bi$_2$Te$_3$	980	1	10	11	ref. 34
graphene – Bi$_2$Te$_3$	532	1	36.7	85.8	ref. 34
Bi$_2$Se$_3$ nanosheet (exfoliated)	532	0.6	20.4×10^{-3}		ref. 35
Pristine Bi$_2$Se$_3$ bulk	532	0.6	2.45×10^{-3}		ref. 35
Heat-treated Bi$_2$Se$_3$ nanosheets	532	0.6	16.1×10^{-3}		ref. 35
Graphene	532	0.1	8.61		ref. 7
Graphene	1550	0.4	6×10^{-3}		ref. 8
GaSe	254	5	2.8	13.67	ref. 9
GaS	254	2	4.2	20.5	ref. 10
MoS$_2$	670	1	4.2×10^{-4}		ref. 11
MoS$_2$	532	5	~ 6		ref. 12
MoS$_2$	532	10	0.57	13.3	ref. 13
MoS$_2$	532	1	780	1840	ref. 14
MoS$_2$	633	1	120		ref. 15
MoS$_2$ nanoflake	532	1	30	103	ref. 29
MoS$_2$ nanoflake	561	8	880		ref. 30
MoS$_2$	655	5	4.1		ref. 36
APTES-doped MoS$_2$	655	5	56.5		ref. 36
OTS-doped MoS$_2$	655	5	0.36		ref. 36
WS$_2$	655	5	20		ref. 36
APTES-doped WS$_2$	655	5	0.59		ref. 36
OTS-doped WS$_2$	655	5	36.4		ref. 36
WS$_2$ film	635	9	0.7	157%	ref. 37
WS$_2$ film	635	10	0.92	180%	ref. 38
WS$_2$ monolayer	650	2	1.8×10^3	3.5×10^3	ref. 39
Mo$_3$W$_2$S$_3$ polycrystal film	635	2.2	5.8	11.35%	ref. 40
MoTe$_2$	473	0.5	2560	6700	ref. 41
HfSe$_2$ multilayer	800	2	3961		ref. 42
In$_2$Se$_3$ nanosheet	300	5	395	1630	ref. 43
In$_2$Se$_3$ nanosheet	400	5	110	340	ref. 43
In$_2$Se$_3$ nanosheet	500	5	59	146	ref. 43
InSe layers	532	5	0.101	0.235	ref. 44
NbSe$_2$ nanoflake	532	0.1	2.3	300	ref. 45
NbSe$_2$ nanoflake	808	0.1	3.8	300	ref. 45

Table 1. List of the reported responsivity and gain values of photocurrents in topological insulators and two-dimensional transition metal dichalcogenides.
References

1. K. Roy et al. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotech 8, 826–830 (2013).
2. W. J. Zhang et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene–MoS2 Heterostructures. Sci. Rep. 4, 3826–3833 (2014).
3. G. Konstantatos et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotech 7, 363–368 (2012).
4. C. Chen et al. Highly responsive MoS2 photodetectors enhanced by graphene dots. Sci. Rep. 5, 11830–11838 (2015).
5. C. Soci et al. ZnO Nanowire UV Photodetectors with High Internal Gain. Nano Lett. 7, 1003–1009 (2007).
6. R. S. Chen et al. Photoconductivity efficiencies of metal oxide semiconductor nanowires: The material’s inherent properties. Appl. Phys. Lett. 103, 223107–223111 (2013).
7. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu & Q. J. Wang. Broadband high photoresponse from pure monolayer graphene photodetector. Nat. Commun. 4, 1811–1821 (2013).
8. T. Mueller, F. Xia & P. Avouris. Graphene photodetectors for high-speed optical communications. Nat. Photonics 4, 297–301 (2010).
9. P. A. Hu et al. Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors. ACS Nano 6, 5988–5994 (2012).
10. P. A. Hu et al. Highly Responsive Ultrathin GaSe Nanosheet Photodetectors on Rigid and Flexible Substrates. Nano Lett. 13, 1649–1654 (2013).
11. Z. Lin et al. Single-Layer MoS2 Phototransistors. ACS Nano 6, 74–80 (2012).
12. M. M. Furchi et al. Mechanisms of Photoconductivity in Atomically Thin MoS2. ACS Nano 14, 6165–6170 (2014).
13. D. S. Tsai et al. Few-Layer MoS2 with High Broadband Photogain and Fast Optical Switching for Use in Harsh Environments. ACS Nano 7, 3995–3991 (2013).
14. W. Zhang et al. High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Adv. Mater. 25, 3456–3461 (2013).
15. W. Choi et al. High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Adv. Mater. 24, 5832–5836 (2012).
16. M. Buscema et al. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44, 3691–3718 (2015).
17. M. Z. Hasan & C. L. Kane. Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
18. X.-L. Qi & S.-C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
19. L. He et al. Epitaxial growth of Bi2Se3 topological insulator thin films on Si (111). J. Appl. Phys. 109, 103702-1–103702-6 (2011).
20. Q. Wang et al. Rational Design of Ultralarge Pb1−xSnxTe Nanoplates for Exploring Crystalline Symmetry-Protected Topological transport. Adv. Mater. 28, 617–623 (2016).
21. A. Sharma et al. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. 6, 19138–19145 (2016).
22. H. Zhang et al. Anomalous Photoelectric Effect of a Polycrystalline Topological Insulator Film. Sci. Rep. 4, 5876–5880 (2014).
23. J. D. Yao et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 7, 12535–12541 (2015).
24. J. D. Yao et al. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in temperature range from 370 to 1550 nm. J. Mater. Chem. C 4, 7831–7840 (2016).
25. J. D. Yao et al. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Sci. Rep. 5, 12320–12326 (2015).
26. K. Zheng et al. Optoelectronic characteristics of a near infrared light photodetector based on a topological insulator ShTe3 film. J. Mater. Chem. C 3, 9154–9160 (2015).
27. C. K. Lee et al. Robustness of a Topologically protected Surface state in a Sb2Te4Se single crystal. Sci. Rep. 6, 36538 (2016).
28. S. M. Huang et al. Observation of surface oxidation resistant Shunodnikov-de Haas oscillations in Sb2Se3Se topological insulator. J. Appl. Phys 121, 054311-1–054311-4 (2017).
29. W. C. Shen et al. Photoconductivities in MoS2 Nanoflake Photodetectors. Nanoscale Research Lett. 11, 124–130 (2016).
30. O. Lopez-Sanchez et al. Ultrason sensitive photodetectors based on monolayer MoS2. Nat. Nanotech. 6, 497–501 (2013).
31. S. M. Huang et al. The linear magnetoresistance from surface state of the Sb2Te4Se single crystal. J. Phys. Condens. Matter 25, 103403-1–103403-4 (2013).
32. F. Gonzalez-Padella et al. Room-Temperature Photodetector Dynamics of Single GaN Nanowires. Nano Lett. 12, 172–176 (2012).
33. J. D. Yao et al. Stable, Fast UV-Vis-NIR Photodetector with Excellent Responsivity, Detectivity, and Sensitivity Based on α-In2Te3 films with a Dirac band gap. ACS Appl. Mater. Interface 8, 20872–20879 (2016).
34. H. Qiao et al. Broadband Photodetectors Based on Graphene–Bi2Te3 Heterostructure. ACS Nano 9, 1886–1894 (2015).
35. C. Zhang et al. Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route. Appl. Surf. Sci. 316, 341–347 (2014).
36. D. H. Kang et al. High-Performance Transition Metal Dichalcogenide Photodetectors Enhanced by Self-Assembled Monolayer Doping. Adv. Funct. Mater. 25, 4219–4227 (2015).
37. J. D. Yao et al. Stable, highly-resistive and broadband photodetection based on larger-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 7, 14974–14981 (2015).
38. Z. Q. Zhang et al. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 27, 225501–225511 (2016).
39. W. J. Zhang et al. Role of Metal Contacts in High-Performance Phototransistors Based on WSe2 Monolayers. ACS Nano 8, 8655–8661 (2014).
40. J. D. Yao, Z. Q. Zhang & G. W. Yang. Promoting the Performance of Layered-Material Photodetectors by Alloy Engineering. ACS Appl. Mater. Interface 8, 12915–12924 (2016).
41. L. Yin et al. Ultrahigh Sensitive MoS2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 108, 043503-1–043503-5 (2016).
42. L. Yin et al. Ultrafast and ultrason sensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 109, 213105-1–213105-5 (2016).
43. B. Robin et al. Extraordinary Photoresponse in Two-Dimensional InSe Nanosheets. ACS Nano 8, 514–521 (2014).
44. Z. Chen, J. Biscaras & A. Shukla, A high performance graphene/few-layer InSe photo-detector. Nanoscale 7, 5981–5986 (2015).
45. Y. H. Huang et al. Electronic transport in NbSe2 two-dimensional nanostructures: semiconductor characteristics and photoconductivity. Nanoscale 7, 18964–18970 (2015).

Acknowledgements

The work was supported by the Taiwan National Science Council through Grants No. MOST 103-2112-M-110-009-MY3, NSYSU-KMU co-operation project No. 103-I 008. for SMH, and Grant No. MOST 105-2112-M-011-001-MY3 for RSC.
Author Contributions
S.M.H. conceived and designed the study, analyzed the data and wrote the manuscript. Y.J.Y., S.H.Y. and M.C. grew the single crystal. S.J.H., H.W.Y., Y.S.C., and R.S.C. prepared the samples and performed the photocurrent experiments. All authors contributed to discussion and reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing financial interests.

How to cite this article: Huang, S.-M. et al. Extremely high-performance visible light photodetector in the Sb2Se2Te2 nanoflake. Sci. Rep. 7, 45413; doi: 10.1038/srep45413 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017