Comparison of the ligand-binding properties of fluorescent VEGF-A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET

Chloe J. Peach1,2 | Laura E. Kilpatrick1,2 | Jeanette Woolard1,2 | Stephen J. Hill1,2

1 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
2 Centre of Membrane Proteins and Receptors, University of Birmingham and University of Nottingham, The Midlands, UK

Background and Purpose: Vascular endothelial growth factor A (VEGF-A) is a key mediator of angiogenesis. A striking feature of the binding of a fluorescent analogue of VEGF165a to nanoluciferase-tagged VEGF receptor 2 (VEGFR2) in living cells is that the BRET signal is not sustained and declines over time. This may be secondary to receptor internalisation. Here, we have compared the binding of three fluorescent VEGF-A isoforms to VEGFR2 in cells and isolated membrane preparations.

Experimental Approach: Ligand-binding kinetics were monitored in both intact HEK293T cells and membranes (expressing nanoluciferase-tagged VEGFR2) using BRET between tagged receptor and fluorescent analogues of VEGF165a, VEGF165b, and VEGF121a. VEGFR2 endocytosis in intact cells expressing VEGFR2 was monitored by following the appearance of fluorescent ligand-associated receptors in intracellular endosomes using automated quantitative imaging.

Key Results: Quantitative analysis of the effect of fluorescent VEGF-A isoforms on VEGFR2 endocytosis in cells demonstrated that they produce a rapid and potent translocation of ligand-bound VEGFR2 into intracellular endosomes. NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2. In isolated membrane preparations, ligand-binding association curves were maintained for the duration of the 90-min experiment. Measurement of the k_{off} at pH 6.0 in membrane preparations indicated shorter ligand residence times than those obtained at pH 7.4.

Conclusions and Implications: These studies suggest that rapid VEGF-A isoform-induced receptor endocytosis shortens agonist residence times on the receptor ($1/k_{off}$) as VEGFR2 moves from the plasma membrane to the intracellular endosomes.

1 | INTRODUCTION

Angiogenesis, the growth of new blood vessels from existing vascular networks, is an important physiological process that can be dysregulated in numerous pathologies including cancer and age-related macular degeneration (Chung & Ferrara, 2011; Peach, Mignone, et al., 2018). VEGF-A is a key mediator of both angiogenesis and vascular permeability, primarily signalling via its cognate
receptor VEGF receptor 2 (VEGFR2; Alexander et al., 2017; Simons, Gordon, & Claesson-Welsh, 2016). VEGF-A is an anti-parallel, disulphide-linked homodimer that binds across immunoglobulin-like domains 2 and 3 of VEGFR2 (Ruch, Skinniotis, Steinmetz, Walz, & Ballmer-Hofer, 2007). Ligand binding leads to VEGFR2 dimerisation and conformational changes that enable the auto- and trans-phosphorylation of intracellular tyrosine residues. The recruitment of adaptor proteins to VEGFR2 and subsequent initiation of signalling cascades then lead to cell proliferation, migration, and vascular permeability (Koch, Tugues, Li, Gualandi, & Claesson-Welsh, 2011; Simons et al., 2016). VEGFR2 can internalise in the presence or absence of ligand stimulation (Ewan et al., 2006; Jopling et al., 2009; Jopling, Howell, Gamper, & Ponnambalam, 2011). Through both clathrin-dependent and clathrin-independent mechanisms (Basagiannis et al., 2016), VEGFR2 first accumulates in Rab5+/EEA1+ endosomes (Gampel et al., 2006). VEGFR2 can then recycle back to the plasma membrane via short loop Rab4+ endosomes or long loop Rab11+ endosomes (Jopling et al., 2014), or receptor ubiquitination can initiate lysosomal degradation (Smith et al., 2016).

Alternative mRNA splicing of the Vgfa gene leads to a number of endogenous VEGF-A isoforms of varying length, such as "proto-typical" VEGF165a or VEGF121a, as well as variants (e.g., VEGF165b) that have distinct carboxy-terminus substitutions of exon 8a for exon 8b (Peach, Mignone, et al., 2018; Woolard et al., 2004). Additionally, programmed translational readthrough can lead to VEGF-Ax, an isoform containing both exon 8a- and 8b-encoded residues (Eswarappa et al., 2014). The residues present within each VEGF-A isoform determine whether they can interact with other membrane proteins (e.g., neuropilin 1; Cébe Suarez et al., 2006; Parker, Xu, Li, & Vander Kooi, 2012; Guo & Vander Kooi, 2015; Peach, Kilpatrick, et al., 2018) and extracellular matrix components (Krilleke et al., 2007; Vempati, Popel, & Mac Gabhann, 2014). This causes isoforms to vary in their bioavailability and signalling outcomes with many isoforms acting as partial agonists relative to VEGF165a (Peach, Mignone, et al., 2018). VEGF-A isoforms also have distinct expression profiles in health and disease, such as down-regulation of VEGF165b in numerous cancer types (Bates et al., 2002; Pritchard-Jones et al., 2007). VEGF-A/VEGFR2 signalling has been targeted by a number of clinically approved inhibitors used to treat cancer, such as receptor TK inhibitors (RTKIs) that target the intracellular ATP-binding domain (Ferrara & Adamis, 2016).

The development of fluorescence-based technologies has advanced our pharmacological understanding of GPCRs, RTKs, and other classes of membrane proteins (Stoddart, Kilpatrick, & Hill, 2018; Stoddart, White, Nguyen, Hill, & Pfieger, 2016). For example, real-time ligand binding can be quantified in living cells using BRET (Stoddart et al., 2015; Stoddart et al., 2016). This proximity-based assay monitors energy transfer between a receptor tagged on its N-terminus with a bright 19-kDa nanoluciferase (NanoLuc) and a suitable fluorophore acceptor. We previously developed fluorescent variants of VEGF165a, VEGF165b, and VEGF121a labelled at a single site with tetramethylrhodamine (TMR; Kilpatrick et al., 2017; Peach, Kilpatrick, et al., 2018). Despite similar affinities, VEGF165a-TMR had distinct binding kinetics at VEGFR2 and its co-receptor neuropilin 1 expressed in living HEK293T cells (Peach, Kilpatrick, et al., 2018). VEGF121a-TMR and VEGF165b-TMR were also shown to bind to VEGFR2 but not to neuropilin 1 using both NanoBRET and live-cell fluorescence imaging techniques (Peach, Kilpatrick, et al., 2018).

A striking feature of the binding of VEGF165a-TMR to VEGFR2 in intact living cells is that the BRET signal obtained with higher concentrations of the fluorescent probe declines over longer incubation times, after reaching a peak between 15 and 20 min (Kilpatrick et al., 2017). One possible explanation is that this is a consequence of receptor internalisation and uncoupling of ligand–receptor complexes within intracellular endosomes (Kilpatrick et al., 2017). Due to the complex spatiotemporal dynamics of VEGFR2, kinetic profiles of ligand binding to VEGFR2 in intact living cells are likely to contain components that represent the initial ligand-binding interaction and also components that reflect receptor endocytosis, whereby the endosomal environment can impact upon the stability of these ligand–receptor complexes.

In order to isolate the ligand-binding profiles of fluorescent VEGF-A isoforms to VEGFR2 from the potential influences of agonist-induced receptor endocytosis, the present study was undertaken with VEGF165a-TMR, VEGF165b-TMR, and VEGF121a-TMR to: (a) investigate the concentration-dependence and temporal profile of ligand-induced VEGFR2 endocytosis, (b) the influence of VEGFR2 phosphorylation on endocytosis and ligand binding, and (c) the kinetics of the ligand–receptor interactions in isolated membrane preparations, where the potential for parallel receptor endocytosis is not present.

What is already known
- VEGF-A is a key mediator of angiogenesis.
- The binding of VEGF-A to VEGFR2 is not sustained in living cells.

What this study adds
- The power of NanoBRET approaches to study real-time ligand-binding kinetics in membranes and cells.
- Fluorescent VEGF-A isoforms produced a rapid and potent translocation of ligand-bound VEGFR2 into intracellular endosomes.
- Endocytosis shortens agonist residence times as VEGFR2 moves from the plasma membrane to intracellular endosomes.

What is the clinical significance
- New insights into the impact of cellular location on the kinetics of VEGFR2 ligand–receptor interactions.
2 | METHODS

2.1 | Cell culture and materials

HEK293T cells (CCLV Cat# CCLV-RIE 1018, RRID:CVCL_0063) were maintained at 37°C/5% CO₂ in DMEM (Sigma-Aldrich, USA) supplemented with 10% fetal calf serum (FCS; Sigma-Aldrich, USA). At 70–80% confluency, cells were passaged using PBS (Lonza, Switzerland) and trypsin (0.25% w/v in versene; Lonza). Stable cell lines expressing VEGFR2 were generated using FuGENE HD (Promega Corporation, USA) at a 3:1 ratio of reagent to cDNA. As described previously by Peach, Kilpatrick, et al. (2018), N-terminal NanoLuc-tagged VEGFR2 (NM_002253) was cloned into a pFN31K vector encoding the secretory IL-6 signal peptide fused to the N-terminus of NanoLuc, followed by a GSSGAIA linker before the receptor. Additionally, VEGFR2 was cloned into a pFN21A vector with the IL-6 signal peptide followed by a sequence encoding HaloTag and an EPTTEDLYQSDNAIA linker at the receptor N-terminus, as described in Peach, Kilpatrick, et al. (2018). Fluorescent VEGF₁₆₅A, VEGF₁₆₅B, and VEGF₁₂₁A were labelled at a single N-terminal cysteine residue with TMR using the HaloTag mammalian protein detection and purification system (G6795; Promega Corporation, USA) as described previously (Kilpatrick et al., 2017; Peach, Kilpatrick, et al., 2018). Fluorescent ligands were characterised in terms of labelling efficiency, dimerisation, and function as described in Kilpatrick et al. (2017) and Peach, Kilpatrick, et al. (2018). Binding affinities of fluorescent VEGF isoforms are approximately an order of magnitude lower than those of their native counterparts (Peach, Kilpatrick, et al., 2018). Ligands were stored at -20°C in 2.5 mg·ml⁻¹ protease-free BSA (Millipore, USA).

Cediranib was purchased from Sequoia Research Products (Pangbourne, UK), and unlabelled recombinant human VEGF isoforms were purchased from R&D Systems (Abingdon, UK). Furimazine was bought from Promega Corporation (Madison, USA), and other tissue culture reagents were purchased from Sigma-Aldrich (Gillingham, UK).

2.2 | Generation of a tyrosine phosphorylation-deficient variant of HaloTag-VEGFR2 and NanoLuc-VEGFR2

To generate tyrosine phosphorylation-deficient (VEGFR2-TPD) variants, site-directed mutagenesis was performed for HaloTag-VEGFR2 and NanoLuc-VEGFR2 using the following forward and reverse complementary primers for mutations: Y951F (Fwd 5’-GTCAAGGAAAAAGACTTCCCGTGACAACTCC-3’; Rev 5’-GGATTGCTCC AACGaAGTCTTTCCCTTGAC-3’), Y1175F (Fwd 5’-GCAAGGATTTGCGA AAGACTTCCCGTGACAACTCC-3’; Rev 5’-GATATCCTCGAGCTTCCGATATCC-3’), Y1214F (Fwd 5’-GGATTGCTCC AATCCTTTCCCTTGACAACTCC-3’; Rev 5’-GATATCCTCGAGCTTCCGATATCC-3’), and Y1059F (Fwd 5’-GGATTGCTCC AATCCTTTCCCTTGACAACTCC-3’; Rev 5’-GATATCCTCGAGCTTCCGATATCC-3’). All HEK293T cells stably expressing wild-type or tyrosine phosphorylation-deficient NanoLuc-VEGFR2 were grown in DMEM/10% FCS to 80–90% confluency in 148-mm² culture dishes (Corning, USA). The media was then replaced with PBS, cells were removed from the dish by scraping and then transferred into a 50-ml tube. Cells were centrifuged at 378 × g for 12 min at 4°C, the supernatant was removed, and the remaining pellet was stored at -80°C. Thawed pellets resuspended in PBS were homogenised using an electronic handheld IKA T10 Ultra Turrax homogeniser in 10 × 3 s bursts at 15,000 rpm. Unbroken cells and nuclei were removed by centrifugation at 1,500 × g for 20 min (4°C). The supernatant was then centrifuged at 41,415 × g for 30 min at 4°C to pellet the remaining membranes. The pellet was resuspended in 1-ml PBS, transferred to a borosilicate glass homogeniser mortar, and homogenised 15 times using an IKA RW16 overhead stirrer attached to a serrated pestle (Kartell) at 1,000 rpm. Protein concentration was determined using a bicinchoninic acid assay (Pierce™ BCA Protein Assay; Thermo Fisher Scientific), and absorbance was measured using a Dynex Technologies 4.25 plate reader. Membrane preparations were stored at -80°C, and retained their luminescence emissions following addition of furimazine and their ability to bind VEGF-TMR for at least 10 months.

2.4 | Measuring ligand binding using NanoBRET

For whole-cell experiments with wild-type VEGFR2, HEK293T cells stably expressing full-length NanoLuc-VEGFR2 were grown to 70–80% confluency. Cells were seeded in DMEM/10% FCS at 35,000 cells per well on white 96-well clear bottom plates (Greiner Bio-One, 655089) pre-coated with poly-D-lysine (0.01 mg·ml⁻¹ in PBS). Following a 24-hr incubation at 37°C/5% CO₂, media were replaced with assay buffer, HEPES buffered saline solution (HeBSS; 10 mM HEPES, 10mM glucose, 146 mM NaCl, 5mM KCl, 1 mM MgSO₄, 2 mM sodium pyruvate, 1.3 mM CaCl₂; pH 7.2) containing 0.1% BSA at pH 7.4. In transient transfection experiments, HEK293T cells were plated at 12,500 cells per well in white 96-well clear bottom plates (37°C, 5% CO₂). After 24 hr, cells were transiently transfected with wild-type or tyrosine phosphorylation-deficient NanoLuc-VEGFR2 incorporated (shown in bold below; Fwd 5’-GATATTTTTAAAAGATCC AGATTITGTCCAGAAAGATGCTCGC-3’; Rev 5’-GGACACATC TCCCTTTCTGACAAATCTCGATTTTTAAAAATATC-3’). The altered nucleotides are shown in lower case. Mutagenesis was performed sequentially with the above primers to generate the Y951F, Y1054, Y1059F, Y1175F, and Y1214F tyrosine phosphorylation-deficient mutant of VEGFR2 (VEGFR2-TPD; Figure 4d) using Pfu DNA polymerase (Promega Corporation, USA), followed by sequencing of the full plasmid to check for off-target SNPs. All HEK293T cells also stably expressed a Firefly luciferase reporter downstream of an NFAT response element to monitor NFAT-induced gene transcription (NFAT-RE-luc2P; Promega Corporation, USA), as in Carter, Wheal, Hill, and Woolard (2015).
using FuGENE HD (Promega Corporation, USA) at a 3:1 ratio of reagent to cDNA with 100-ng cDNA per well. For assays using membrane preparations derived from stable cell lines, defrosted membranes were plated in white 96-well clear bottom plates at concentrations ranging from 2.5 to 20 μg per well diluted in HeBSS/0.1% BSA and then incubated for 30 min at 37°C.

For experiments investigating the influence of membrane concentration on NanoBRET signals, increasing concentrations of membranes prepared from wild-type VEGFR2 cells were incubated in the presence and absence of 5-nM VEGF165b-TMR. Following incubation for 60 min in the dark, the NanoLuc substrate furimazine (10 μM) was added to each well and equilibrated for 5 min to enable NanoLuc-mediated furimazine oxidation and resulting bioluminescence emission. Emissions were recorded using the PHERAstar FS platereader (BMG Labtech), and BRET ratios were calculated from the second of three cycles.

Both kinetic and saturation experiments were repeated in wild-type NanoLuc-VEGFR2 membranes to investigate the effect of pH on ligand binding, using VEGF165b-TMR as a representative fluorescent VEGF-A isoform. The pH of the assay buffer, HeBSS/0.1% BSA (pH 7.4), was lowered to 5.8–6.2 with concentrated hydrochloric acid on the day of the experiment and measured using a pH Meter PB-11 (Sartorius, Germany). Although EPES buffer has a pKₐ suited to physiological pH (6.8–8.2), control experiments confirmed the assay buffer remained within 0.2 of the initial pH in conditions replicating the experimental set-up (50 μl at 37°C for 2 hr).

2.5 High-content widefield imaging quantifying endocytosis of fluorescent VEGF-A isoforms

HEK293T cells stably expressing HaloTag-VEGFR2, NanoLuc-VEGFR2 (Kilpatrick et al., 2017), or wild-type HEK293T cells were seeded at 25,000 cells per well in DMEM/10% FCS on black 96-well clear bottom plates (Greiner Bio-One, 655090) pre-coated with poly-D-lysine (0.01 mg·ml⁻¹ in PBS). Following an incubation for 24 hr at 37°C/5% CO₂, media were replaced with assay buffer (serum-free DMEM/0.1% BSA). To compare untransfected HEK293T cells with cells expressing HaloTag-VEGFR2, cells were stimulated with 10-nM VEGF165b-TMR and VEGF121a-TMR for 60 min (37°C). All other widefield imaging assays used cells expressing NanoLuc-VEGFR2. For concentration–response experiments, increasing concentrations of VEGF165b-TMR, VEGF165b-TMR, or VEGF121a-TMR (0.1–100 nM) were added in duplicate wells (60 min; 37°C/5% CO₂). Alternatively, cells were stimulated with 10-nM VEGF165b-TMR, VEGF165b-TMR, or VEGF121a-TMR for between 5 and 120 min as a retrospective timecourse. Cells were washed with PBS (100 μl per well) and fixed with 3% paraformaldehyde in PBS for 15 min at room temperature (RT). Following another PBS wash, nuclei were stained with 2 mg·ml⁻¹ H33342 in PBS for 15 min at RT and then washed and stored in PBS at 4°C. The following day, cells were imaged using an ImageXpress Micro widefield high-content platereader (Molecular Devices, USA). Plates were imaged at four sites per well using a 20× ELWD (extra long working distance) objective, with a TRITC filter to image VEGF165b-TMR (560-nm excitation, 607- to 634-nm emission, and 2,000-ms exposure time) and a DAPI filter for nuclei (405-nm excitation, 447- to 460-nm emission, and 25-ms exposure time). Images were analysed using a granularity algorithm (Molecular Devices), whereby nuclei were identified based upon their size (5- to 25-μm diameter) and pixel depth in grey levels, which was kept consistent between experimental replicates. A nuclear mask defining cell nuclei was then placed over the nuclei within the acquired image forming the basis for automated image segmentation. Fluorescent granules were defined based upon size (2- to 15-μm diameter) and pixel depth in grey levels. Granules were then assigned to specific nuclei based upon proximity using the aforementioned segmented image.
2.6 | Immunofluorescent labelling of Rab5

HEK293T cells stably expressing wild-type or tyrosine phosphorylation-deficient HaloTag-VEGFR2 were seeded at 300,000 cells per well onto poly-D-lysine-coated coverslips (18 × 18 mm, 1.5H; Zeiss, Germany) in six-well plates. Following a 24 hr incubation at 37°C/5% CO2, coverslips were transferred to humified wells of a six-well plate lined with parafilm and maintained in PBS to retain moisture. Receptors were labelled with 0.5-μM membrane-impermeant HaloTag-Alexa Fluor 647 (Promega Corporation, USA) in assay buffer (serum free DMEM containing 0.1% BSA). Following 30 min at 37°C/5% CO2, coverslips were washed twice with assay buffer and then incubated with 10-nM VEGF121α-TMR for 5 or 60 min (37°C/5% CO2). Cells were washed with PBS and fixed with 3% paraformaldehyde in PBS for 20 min at RT. Following numerous wash steps in PBS (3 × 5 min), cells were permeabilised with Triton X-100 (0.025% in PBS). To minimise non-specific antibody labelling, cells were washed (3 × 5-min PBS), incubated with 3% BSA/1% glycine (30 min, RT), washed (3 × 5-min PBS), and blocked with 10% chick serum in PBS (30 min, RT). This was replaced with the primary monoclonal antibody against Rab5 raised in rabbit (IgG; Cell Signaling Technology Cat# 3547, RRID:AB_2300649) diluted 1:200 in 10% chick serum and incubated overnight at 4°C. Cells were then washed in PBS (3 × 5 min) and incubated with the secondary antibody, chick anti-rabbit Alexa Fluor 488 (IgG; heavy and light chains; Cat# A21441; ThermoFisher; RRID:AB_2535859) 1:1000 dilution in 10% PBS, incubated with 1% Triton buffer and then incubated with 3% BSA/1% glycerol (30 min, RT), washed (3 × 5 min PBS), and blocked with 10% chick serum in PBS (30 min, RT). This was replaced with the primary monoclonal antibody against Rab5 raised in rabbit (IgG; Cell Signaling Technology Cat# 3547, RRID:AB_2300649) diluted 1:200 in 10% chick serum and incubated overnight at 4°C. Cells were then washed in PBS (3 × 5 min) and incubated with the secondary antibody, chick anti-rabbit Alexa Fluor 488 (IgG; heavy and light chains; Cat# A21441; ThermoFisher; RRID:AB_2535859) 1:1000 dilution in 10% chick serum (1 hr, RT). To determine non-specific immunofluorescent labelling, this was repeated using a secondary antibody only in the absence of the primary antibody. Cells were then washed (3 × 5-min PBS), and nuclei were stained with 2 μg·ml⁻¹ H33342 in PBS (15 min, RT) and washed (2 × 5-min PBS) before coverslips were mounted onto slides using ProLong Diamond (Thermo Fisher Scientific) and sealed for storage at 4°C. Coverslips were imaged using a Confocal Zeiss LSM880 fitted with a 63× Pan Apochromat oil objective (1.4 numerical aperture) using a 1-μm slice. Wavelengths were imaged in separate tracks with Rab5 immunolabelling imaged with an Argon488 laser (491- to 571-nm bandpass; 3% power); VEGF121α-TMR was imaged with a DPSS 561-10 laser (571–615 nm, 3% power); and HaloTag-Alexa Fluor 647 was imaged using a HeNe633 laser (638–747 nm; 15% power). Images were obtained at 1,024 × 1,024 pixels with eight averages and similar gains per replicate. The immuno-related procedures used comply with the recommendations made by the British Journal of Pharmacology.

2.7 | NFAT luciferase reporter gene assay

HEK293T cells stably expressing wild-type or tyrosine phosphorylation-deficient HaloTag-VEGFR2, as well as NFAT-RELuc2P, were grown to 70–80% confluency. Cells were seeded at 25,000 cells per well in white 96-well plates pre-coated with poly-D-lysine. Following 24 hr at 37%/5% CO2, cell culture media were replaced with serum-free DMEM for another 24 hr. Cells were then stimulated with increasing concentrations of VEGF165α (R&D Systems) or vehicle (serum-free DMEM/0.1% BSA). Following stimulation for 5 hr at 37%/5% CO2, media were replaced with 50 μl per well assay buffer and 50 μl per well ONE-Glo Luciferase reagent (Promega Corporation, USA). Cells were incubated for 5 min to allow luciferase to react with the added reagent and for the background luminescence to subside, and then luminescence emissions were measured using a TopCount platereader (PerkinElmer, UK). Data were normalised to their respective vehicle (0%) and response of wild-type HaloTag-VEGFR2 to 10-nM VEGF165α (100%) per experiment. Data were pooled from five independent experiments with duplicate wells.

2.8 | Data and statistical analysis

Data were analysed using GraphPad Prism 7.02 (RRID:SCR_002798; San Diego, CA, USA). Data are presented as mean ± SEM. The data and statistical analysis comply with the recommendations of the British Journal of Pharmacology on experimental design and analysis in pharmacology.

Representative confocal images were processed using ImageJ (Version 1.52f; RRID:SCR_003070). For colocalisation analysis, images were corrected to the background fluorescence intensity from each experimental replicate determined using the non-specific secondary antibody only (Rab5, 488 nm) or untransfected cells in each field of view (TMV, 546 nm; HaloTag-VEGFR2, 647 nm). The mean background intensity was calculated for each experimental replicate (n = 5) and subtracted from each image for manual thresholding. To quantify colocalization, regions of interest were drawn around each cell expressing HaloTag-VEGFR2 using the nuclei stain and phase contrast image. Following subtraction of the region outside the region of interest, colocalisation was determined using pixel-based measures between Rab5/TMR and Rab5/HaloTag using the ImageJ plugin Coloc 2. Images with saturated pixels were excluded from analyses. Mander’s overlap coefficients measure co-occurrence as the proportion of Rab5 pixels (green) overlapping with VEGF-TMR (yellow) or HaloTag-VEGFR2 (red). These were calculated on a per cell basis, with a total number of 64 cells (5-min stimulation) and 68 cells (60-min stimulation) pooled from five independent experiments.

Saturation binding curves were fitted simultaneously for total (fluorescent VEGF-A ligand alone) and non-specific binding (obtained in the presence of 100 nM of unlabelled VEGF-A) using the equation:

$$\text{Total binding} = \frac{B_{\text{max}} \times [B]}{[B] + K_D} + M \times [B] + C,$$

where B_{max} is the maximal specific binding, [B] the concentration of fluorescent ligand (nM), K_D the equilibrium dissociation constant (nM), M the slope of the non-specific binding component, and C the y-axis intercept. Background and non-specific binding parameters were shared across all data sets.

Binding affinities (K_i) of the unlabelled ligands were calculated using the Cheng–Prusoff equation:

$$K_i = \frac{IC_{50}}{1 + \left(\frac{L}{IC_{50}}\right)}.$$
where \([L]\) is the concentration of fluorescent ligand used (nM). \(K_D\) values (nM) were derived from saturation binding curves. IC50 is the molar ligand concentration that will inhibit 50% of the specific binding of the fluorescent ligand concentration \([L]\) and was calculated using the equation:

\[
\% \text{specific VEGF binding} = \left(\frac{100 \times IC_{50}}{[A] + IC_{50}} \right)
\]

where \([A]\) is the concentration of competing drug used.

Fluorescent ligand-binding association kinetic data were fitted to the following mono-exponential association function:

\[
Y = Y_{max} \cdot \left(1 - e^{-k_{on} \cdot t}\right)
\]

where \(Y_{max}\) equals the level of specific binding at infinite time, \(t\) is the time of incubation, and \(k_{on}\) is the rate constant for the observed rate of association.

\(k_{on}\) and \(k_{off}\) values were determined by simultaneously fitting ligand-binding association kinetic curves obtained at different fluorescent ligand concentrations \([L]\) to the following equation with the following relationship between \(k_{obs}\) and two kinetic binding constants \(k_{on}\) and \(k_{off}\):

\[
k_{on} \cdot k_{off} = \frac{k_{obs} \cdot k_{on} \cdot k_{off}}{L}
\]

Residence time was calculated as the reciprocal of \(k_{off}\). Kinetically determined \(K_D\) values were calculated from these kinetic parameters using the following equation:

\[
K_D = \frac{k_{off}}{k_{on}}
\]

For VEGF165a-TMR concentration–response curves for internalisation of IgG-VEGFR2 complexes, the mean granule number per cell was calculated from four images per well. Data are expressed as a percentage of the responses obtained using 100 nM VEGF165a-TMR (100%) or vehicle (0%). Data were fitted using non-linear least squares regression using GraphPad Prism with the following equation:

\[
\text{Response} = \frac{E_{max} \times [B]}{[B] + EC_{50}}
\]

where \(E_{max}\) is the maximal response and \(EC_{50}\) is the concentration of agonist required to produce 50% of the maximum response.

The kinetic data for receptor internalisation were fitted to the following mono-exponential association function:

\[
Y = Y_{max} \cdot \left(1 - e^{-k_{obs} \cdot t}\right)
\]

where \(Y_{max}\) equals the level of receptor internalisation at infinite time, \(t\) is the time of incubation, and \(k_{obs}\) is the rate constant for the observed rate of receptor internalisation.

Statistical analyses of differences between Mander’s overlap coefficients obtained at 5 and 60 min were performed using an unpaired non-parametric Mann–Whitney test. Statistical analysis of the difference of the Mander’s overlap coefficient obtained from zero were performed using a Wilcoxon signed-rank test. Statistical analysis of differences between fitted kinetic ligand-binding parameters, in the presence and absence of cediranib, was performed using a paired t test.

AUC analysis (GraphPad Prism 7.02) was used to determine the effect of cediranib on NanoBRET ligand-binding times courses (Figure 4), and the statistical significance of these changes was determined by two-way ANOVA. Differences between kinetic binding constants in cells and membranes were performed using one-way ANOVA with post hoc Tukey test. Statistical significance was taken as \(P < .05\). A power calculation was performed to confirm sample number for statistical comparisons between binding parameters determined by NanoBRET. This was done on the basis of five separate experiments with the anticipated SD obtained in similar experiments and a calculation of the statistical power to detect a significant change in a particular parameter of 0.3 log units. This yielded a power of 0.99; that is, there was a 99% chance of detecting a significant change in value of 0.3 log units.

2.9 Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 (Alexander, Fabbro et al., 2017; Alexander, Kelly et al., 2017).

3 RESULTS

3.1 Binding kinetics of VEGF165b and VEGF121a in intact living HEK293 cells

Initial kinetic studies with VEGF165b-TMR and VEGF121a-TMR recapitulated the previous findings obtained with VEGF165a-TMR in intact living cells (Kilpatrick et al., 2017). Thus, with concentrations chosen to be close to their respective \(K_D\) values (3 nM), the specific binding of each ligand increased rapidly and was then relatively well maintained over the course of the experiment (Figure 1a,b). The specific binding observed with 20 nM VEGF165b-TMR or VEGF121a-TMR, however, peaked at ~20 min and then declined substantially towards baseline over the next 70 min (Figure 1a,b).

3.2 Agonist-mediated internalisation of VEGFR2 in HEK293T cells

We have previously suggested that the fall in the VEGFR2-associated NanoBRET signal observed with VEGF165a-TMR over longer incubations periods is a consequence of VEGF2 internalisation and the dissociation of VEGF165a-TMR from its receptor within intracellular endosomes (Kilpatrick et al., 2017). To look into the timecourse and potency of receptor internalisation by each fluorescent VEGF-A isoform, we investigated receptor endocytosis by monitoring the
appearance of fluorescent ligand-associated receptors in intracellular endosomes using unbiased, automated quantitative high-content imaging. A granularity algorithm was used to detect the presence of fluorescent VEGF-A isoforms within granules of a particular size (i.e. between 2 and 15 μm; Figure 2a). We have previously shown that this analysis correlates with the endocytosis of tagged receptors (Kilpatrick et al., 2017). Minimal VEGF-TMR containing granules were detected in untransfected HEK293T cells compared with cells stably expressing HaloTag-VEGFR2 (Figure 2b). All three fluorescent VEGF-A isoforms stimulated a potent internalisation of VEGFR2 (Figure 2c). In the presence of 10 nM of VEGF165b-TMR, VEGF165a-TMR, or VEGF121a-TMR, the appearance of ligand-bound VEGFR2 in endosomes was rapid with a $t_{1/2}$ of between 15 and 20 min (Figure 2d and Table 1).

3.3 Presence of VEGF-TMR and VEGFR2 in Rab5+ endosomes

Immunofluorescent labelling of Rab5 in fixed cells was used to confirm whether VEGF-TMR and VEGFR2 complexes were localised in early Rab5-positive endosomes, using confocal microscopy for enhanced axial resolution (z) compared with high-content widefield imaging in Figure 2. As a representative VEGF-TMR ligand, 10-nM VEGF121a-TMR was significantly colocalised with Rab5 ($P < .05$; Wilcoxon signed-rank test; Figure 3a,b) at both intracellular sites and regions of the plasma membrane by 5 min, whereas it was largely intracellular by 60 min (Figure 3a,b). This was accompanied by increased colocalisation with Rab5 at 60 min (Figure 3b; $P < .05$; Mann–Whitney test, $n = 64$ cells and $n = 68$ cells for 5- and 60-min stimulation, respectively). HaloTag-VEGFR2 labelled with a membrane-impermeable dye was significantly ($P < .05$) colocalised with Rab5 at 5 min (Figure 3a,c). At 60 min, there was a small decrease in colocalisation of Rab5 with HaloTag-VEGFR2 compared with 5 min (Figure 3c; Mann–Whitney test, $P < .05$; $n = 64$ for 5 min and $n = 68$ for 60 min), which is consistent with some recycling of VEGFR2 back to the plasma membrane previously observed by Kilpatrick et al. (2017).

3.4 Influence of VEGFR2 phosphorylation on ligand binding in intact cells

Addition of the RTKI cediranib (1 μM, pre-incubated for 30 min, produced a significant elevation in the NanoBRET signal at both 5- and 20-nM VEGF165b-TMR relative to the DMSO control (Figure 4a–c; $P < .05$, two-way ANOVA of every time point, $n = 5$). This elevation was similar to that reported previously with an endpoint NanoBRET binding timecourse for VEGF165a-TMR (Kilpatrick et al., 2017). However, as also noted by Kilpatrick et al. (2017), the binding profile of 20-nM VEGF165b-TMR continued to decline in the presence of cediranib following the peak at 20 min when monitored continuously using real-time NanoBRET measurements (Figure 4c).

To explore the influence of receptor phosphorylation further, we generated a tyrosine phosphorylation-deficient VEGFR2 (VEGFR2-TPD) where key intracellular phosphotyrosine residues were mutated to phenylalanine (Y951F, Y1054F, Y1059F, Y1175F, and Y1214F; Figure 4d). Receptors were labelled with membrane-impermeant HaloTag-Alexa Fluor 647, and this confirmed the plasma membrane expression of this VEGFR2 variant (Figure 4e). However, VEGF121a-TMR and VEGFR2-TPD were also localised to intracellular Rab5+ sites following a 60-min incubation. Using the same cell line as those for imaging experiments, the tyrosine phosphorylation-deficient VEGFR2 was unable to signal through NFAT in response to increasing concentrations of VEGF165a in comparison with wild-type VEGFR2 ($pEC_{50} = 9.92 ± 0.12$; Figure 4f). In intact cells, there was a significant elevation ($P < .05$) in NanoBRET signal with both 3- and 20-nM VEGF121a-TMR (Figure 4g,h; $n = 8$). It was notable that there was also a decline in the NanoBRET signal in VEGFR2-TPD
after the initial peak at 20 min. Both wild-type and tyrosine phosphorylation-deficient NanoLuc-VEGFR2 receptors were expressed at the same level, as determined by the NanoLuc luminescence emissions (data not shown).

3.5 | NanoBRET ligand binding in membrane preparations

To determine the influence of membrane concentrations on NanoBRET ligand binding in membranes prepared from NanoLuc-VEGFR2-expressing HEK293T cells, we used NanoBRET ligand binding in membrane preparations. These preparations were obtained by extracting membranes from cells expressing NanoLuc-VEGFR2 and measuring NanoBRET signals. We observed that the NanoBRET signals were highest at 10 nM ligand concentration, with a gradual decrease at higher concentrations. The time-course analysis revealed that the NanoBRET signals reached a peak at 20 minutes, similar to the internalization experiments.

Table 1 presents the concentration-response parameters and observed rate constants for the NanoBRET ligand binding in HEK293T cells expressing NanoLuc-VEGFR2. The data were obtained from five independent experiments, each with duplicate wells imaged at four sites per well.

Ligand	pEC_{50} ± SEM	k_{obs} (min^{-1})	t_{1/2} (min)
VEGF_{165a}-TMR	7.95 ± 0.09	0.04 ± 0.01	17.5 ± 1.87
VEGF_{165b}-TMR	7.54 ± 0.08	0.04 ± 0.01	19.8 ± 3.53
VEGF_{121a}-TMR	7.81 ± 0.12	0.05 ± 0.01	14.8 ± 2.11

Note: Data are mean ± SEM from five separate experiments.
VEGFR2-expressing HEK293T cells, we initially investigated the binding of 5 nM VEGF165b-TMR to VEGFR2 over a range of membrane concentrations (2.5-20 μg protein per well). NanoBRET binding was well maintained across the full range of protein concentrations (Figure 5a). Membrane concentration was also linearly related to NanoLuc luminescence (Figure 5b).

The binding of different concentrations of fluorescent VEGF-A isoforms monitored by NanoBRET showed clear saturable specific binding in each case. The KD values obtained in membrane preparations from these equilibrium binding experiments were slightly more potent (0.31 ± 0.06, 5.55 ± 0.47, and 2.58 ± 0.34 nM for VEGF165a-TMR, VEGF165b-TMR, and VEGF121a-TMR, respectively; n = 5 in each case) than those similarly determined in intact cells (2.03, 9.53, and 5.54 nM; Peach, Kilpatrick, et al., 2018). However, non-specific binding was low in all cases (Figure 6a-c).

3.6 | Kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2 in membrane preparations

To determine the kinetic constants (k_on and k_off) for the binding of fluorescent VEGF-A isoforms to VEGFR2, we investigated the timecourse of the binding of five concentrations of VEGF165a-TMR, VEGF165b-TMR, and VEGF121a-TMR at NanoLuc-VEGFR2 in membrane preparations (1–20 nM; Figure 7a–c). Binding of all three fluorescent VEGF-A isoforms produced classic ligand-binding association curves that, in contrast to the studies in intact cells (Figure 1), were maintained for the duration of the experiment (90 min; Figure 7a–c). Kinetic k_on and k_off values determined from these experiments in Table 2 were similar to those previously reported for these three ligands in intact cells, where the kinetic analysis was limited to the first 20 min of agonist stimulation (Peach, Kilpatrick, et al., 2018).

Membrane kinetic experiments were also repeated in the presence of the RTKI cediranib (Table 3). There was a significant decrease in k_off in membrane preparations when compared with cells (Table 3), but the k_off values were not altered by cediranib treatment. There was a small significant decrease in the k_on value for...
VEGF165b-TMR obtained in intact cells in the presence of cediranib compared with the DMSO control. The value obtained in the presence of cediranib was also similar to the k_{on} values obtained in membranes (Table 3). To quantify the kinetics of binding at the tyrosine phosphorylation-deficient NanoLuc-VEGFR2 using membrane preparations, a stable cell line was generated. Kinetic parameters of
VEGF121a–TMR in VEGFR2-TPD membranes (Table 3) were similar to control VEGF121a–TMR kinetic parameters derived in wild-type VEGFR2 membranes (Tables 2 and 3). Taking advantage of our binding assay in membrane preparations, we investigated the effect of an acidic pH on ligand–receptor binding to reflect early endosomes (pH 6.0) compared with physiological

![Figure 5](image1.png)
FIGURE 5 Influence of membrane concentration on ligand binding between NanoLuc-tagged receptors and fluorescent VEGF165b–TMR detected using NanoBRET. (a) Increasing concentrations of membranes prepared from HEK293T cells expressing NanoLuc-VEGFR2 were incubated with vehicle or 5-nM VEGF165b–TMR. Following 60-min incubation at 37°C, BRET ratios were calculated and expressed as mean ± SEM. Data were pooled from five independent experiments using separate membrane preparations per experiment. (b) Variation in NanoLuc luminescence detected at different membrane concentrations in a single representative experiment with duplicate wells.

![Figure 6](image2.png)
FIGURE 6 Binding characteristics of fluorescent VEGF-A isoforms at NanoLuc-tagged receptors in membrane preparations. Membrane preparations from HEK293T cells expressing wild-type NanoLuc-VEGFR2 (5 μg per well) were incubated with increasing concentrations of (a) VEGF165a–TMR, (b) VEGF165b–TMR, and (c) VEGF121a–TMR (60 min, 37°C). Non-specific binding was determined using 100-nM unlabelled VEGFxxx counterpart (R&D Systems) added simultaneously with fluorescent ligand. Raw BRET ratios are expressed as mean ± SEM from five independent experiments. Displacement of unlabelled VEGF-Ax by (d) VEGF165a–TMR (n = 5), (e) VEGF165b–TMR (n = 6), or (f) VEGF121a–TMR (n = 5) in NanoLuc-VEGFR2 membrane preparations. Increasing concentrations of unlabelled ligand were added simultaneously with five fixed concentrations of fluorescent ligand and incubated for 60 min at 37°C. Values are mean ± SEM from five to six independent experiments with duplicate wells. Bars show the binding obtained with vehicle (white) or fluorescent ligand alone (left to right; highest to lowest concentration of each fluorescent ligand used).
extracellular pH (7.4, as above). Using VEGF_{165b}-TMR as a representative ligand at membranes expressing wild-type NanoLuc-VEGFR2, there was comparable saturable binding with low non-specific binding (Figure 7d). Equilibrium binding constants for VEGF_{165b}-TMR were similar at neutral and acidic pH (pH 7.4, \(K_D = 5.29 \pm 1.12 \) nM, and pH 6.0, \(K_D = 4.43 \pm 1.25 \) nM; \(n = 6 \) in both experiments). Kinetic experiments showed similar association binding of VEGF_{165b}-TMR at both pH conditions (Figure 7e,f; \(n = 6 \)). Kinetic parameters derived using four concentrations of VEGF_{165b}-TMR show kinetics at an acidic pH had faster association and dissociation rate constants (Table 3). The \(K_D \) affinity estimated from kinetic parameters (\(k_{off}/k_{on} \)) also yielded a similar binding affinity at both pH conditions, despite the difference in residence times.

Table 2: Kinetic binding parameters of ligand binding to NanoLuc-VEGFR2 in isolated membranes and intact cells

Ligand	HEK293T membrane preparations	Intact HEK293T cells						
	\(k_{on} \) (min\(^{-1}\)·M\(^{-1}\))	\(k_{off} \) (min\(^{-1}\))	\(K_D \) (nM)	Residence time (min)	\(k_{on} \) (min\(^{-1}\)·M\(^{-1}\))	\(k_{off} \) (min\(^{-1}\))	\(K_D \) (nM)	Residence time (min)
VEGF_{165a}-TMR	1.27 \(\times 10^7 \) \(\pm \) 0.24 \(\times 10^7 \)	0.030 \(\pm \) 0.001	2.21 \(\pm \) 0.40	33.3	1.54 \(\times 10^7 \)	0.06	6.64	16.7
VEGF_{165b}-TMR	3.69 \(\times 10^6 \) \(\pm \) 0.67 \(\times 10^6 \)	0.029 \(\pm \) 0.002	9.21 \(\pm \) 2.53	34.5	7.29 \(\times 10^6 \)	0.06	11.3	16.7
VEGF_{121a}-TMR	5.13 \(\times 10^6 \) \(\pm \) 0.48 \(\times 10^6 \)	0.019 \(\pm \) 0.002	3.85 \(\pm \) 0.61	52.6	8.51 \(\times 10^6 \)	0.05	5.54	20.0

Note. Values in membrane preparations are mean \(\pm \) SEM (\(n = 5 \)) derived from experiments shown in Figure 7 using five concentrations of fluorescent ligand. Values in intact cells are taken from Peach, Kilpatrick, et al. (2018). \(K_D \) values shown are the kinetically derived values (\(k_{off}/k_{on} \)).

4 | DISCUSSION

Initial kinetic studies of the ligand binding of VEGF_{165b}-TMR and VEGF_{121a}-TMR, in intact HEK293T cells, recapitulated previous findings obtained with VEGF_{165a}-TMR in intact living cells (Kilpatrick...
et al., 2017). We have previously reported all three fluorescent VEGF-A isoforms bind with nanomolar affinity to VEGFR2 (Kilpatrick et al., 2017; Peach, Kilpatrick, et al., 2018). Thus, at concentrations close to their respective K_D values, the specific binding of each ligand (monitored by NanoBRET) increased rapidly and was then relatively well maintained over the course of the experiment. In contrast, specific binding observed with higher concentrations (e.g., 20 nM) of VEGF$_{165}$b-TMR or VEGF$_{121a}$-TMR peaked at ~20 min and then declined substantially towards baseline over the next 70 min. Previous studies with VEGF$_{155a}$-TMR alone suggested that this was a consequence of VEGFR2 endocytosis and the dissociation of the fluorescent ligand from the receptor within intracellular endosomes, followed by subsequent recycling of ligand-free VEGFR2 back to the plasma membrane (Kilpatrick et al., 2017). Published studies in primary endothelial cells using immunofluorescence antibody labelling or biochemical techniques agreed that VEGFR2 internalised within 30–60 min of VEGF-A stimulation (Bruns et al., 2010; Ewan et al., 2006; Jopling et al., 2009).

To determine the agonist potency (EC_{50} values) and kinetic profile of agonist-induced VEGFR2 endocytosis, we monitored the appearance of fluorescent ligand-associated receptors in intracellular endosomes using high-content quantitative imaging. This approach was able to quantify the internalisation of VEGF-A ligand isoforms independently of the known constitutive endocytosis of VEGFR2 (Basagiannis et al., 2016; Ewan et al., 2006; Jopling et al., 2009; Jopling et al., 2011). All three fluorescent VEGF-A isoforms stimulated comparable internalisation of VEGFR2 ($EC_{50} = 12–30$ nM), with 10 nM of each fluorescent ligand eliciting a rapid appearance of ligand-bound VEGFR2 in endosomes ($t_{1/2}$ of between 15 and 20 min). This contrasted with previous findings in HUVEC that VEGF$_{121a}$ was less able to induce VEGFR2 endocytosis compared with VEGF$_{155a}$ (Fearnley et al., 2016). However, it is notable that the HEK293T cells used in the present study have minimal expression of the co-receptor neuropilin 1 (Peach, Kilpatrick, et al., 2018), whereas human umbilical vein endothelial cells also express the co-receptor neuropilin 1. Neuropilin 1 does not interact with VEGF$_{165}$a but has been reported to modulate VEGFR2 trafficking (Ballmer-Hofer, Andersson, Ratcliffe, & Berger, 2011). We were, however, able to confirm using confocal microscopy that both VEGF$_{121a}$-TMR and VEGF$_{22}$ were colocalised with Rab5 in intracellular endosomes following addition of the fluorescent ligand.

The data obtained from the internalisation assays also indicate that significant internalisation only occurs at the highest concentrations of fluorescent VEGF-A isoforms used ($EC_{50} = 12, 14$, and 30 nM for VEGF$_{155a}$-TMR, VEGF$_{121a}$-TMR, and VEGF$_{165}$b-TMR, respectively). Interestingly, these values are greater than the corresponding kinetically derived K_D ligand-binding values determined in membrane preparations (2.4, 3.9, and 9.2 nM). This might suggest that the binding affinity of VEGFR2 for VEGF-A isoforms is lower after receptor activation as a result of autophosphorylation and engagement with signalling proteins involved in endocytosis. To investigate the impact of receptor TK activation on this process, we have investigated the effect of pretreating cells with the RTKI cediranib (Carter et al., 2015). Cediranib (1 μM) produced no significant effect on the kinetic rate constants (k_{on} and k_{off}) or K_D value of VEGF$_{165}$b-TMR determined from binding to VEGFR2 in HEK293T cell membranes. In intact cells, however, cediranib produced a small elevation in the NanoBRET signal from binding to VEGFR2 in HEK293T cell membranes. In intact cells, however, cediranib produced a small elevation in the NanoBRET signal from binding to VEGFR2 in HEK293T cell membranes. In intact cells, however, cediranib produced a small elevation in the NanoBRET signal from binding to VEGFR2 in HEK293T cell membranes. In intact cells, however, cediranib produced a small elevation in the NanoBRET signal from binding to VEGFR2 in HEK293T cell membranes.

TABLE 3 Effect of cediranib and tyrosine phosphorylation deficiency on the binding kinetics of VEGF$_{165}$b-TMR to NanoLuc-VEGFR2

Cells or membranes	Ligand	Drug	k_{on} (min$^{-1}$·M$^{-1}$)	k_{off} (min$^{-1}$)	Residence time (min)	Kinetic K_D (nM)
VEGFR2 WT cells*a	VEGF$_{165}$b-TMR (5)	0.01% DMSO	4.26 × 106 ± 0.50 × 106	0.081 ± 0.009	12.3	19.8 ± 2.96
VEGFR2 WT membranesb	VEGF$_{165}$b-TMR (5)	1-μM cediranib	2.63 × 106 ± 0.51 × 106	0.091 ± 0.015	20	43.6 ± 14.5
VEGFR2 WT membranesb	VEGF$_{121a}$-TMR	None	6.21 × 105 ± 1.61 × 105	0.037 ± 0.006	27.0	6.85 ± 1.81
VEGFR2 WT membranesb	VEGF$_{165}$b-TMR (6)	pH 7.4	2.34 × 106 ± 0.19 × 106	0.023 ± 0.002	43.5	10.2 ± 1.20
VEGFR2 WT membranesb	VEGF$_{165}$b-TMR (6)	pH 6.0	4.39 × 106 ± 0.39 × 106	0.059 ± 0.018	17.0	13.3 ± 3.55

Note. Values shown are mean ± SEM, with the number of independent experiments in parentheses. Data were taken from kinetic binding experiments at wild-type NanoLuc-VEGFR2 (VEGFR2 WT) in cells or membranes, or tyrosine phosphorylation-deficient NanoLuc-VEGFR2 (VEGFR2-TPD) membranes.

*Kinetic parameters were determined by a global association kinetic fit to four concentrations of fluorescent ligand from initial 20 min in intact cells.

bKinetic parameters were determined by a global association kinetic fit to four concentrations of fluorescent ligand from 90 min in membrane preparations.

* $P < .05$ for comparison with the k_{on} and k_{off} values determined in 0.01% DMSO in VEGFR2 WT cells (one-way ANOVA with post hoc Tukey test) compared with DMSO control in VEGFR2 WT cells.

a $P < .05$. Wilcoxon matched-pairs signed-rank test (pH 7.4 vs. pH 6.0). Matched analysis of paired kinetic constants for 0.01% DMSO versus cediranib in either cells or membranes was not significant.
To explore further the influence of receptor phosphorylation, we generated a tyrosine phosphorylation-deficient VEGFR2 (VEGFR2-TPD) where key intracellular phosphotyrosine residues were mutated to phenylalanine (Y951F, Y1054F, Y1059F, Y1175F, and Y1214F; Figure 4d). This mutant form of VEGFR2 was unable to stimulate NFAT signalling but mimicked the effect of cediranib on VEGF-TMR binding and produced a significant increase in the amplitude of the NanoBRET binding signal obtained with 20-nM VEGF121a-TMR. This is likely to be due to interference with endocytosis pathways that are dependent on agonist-induced VEGFR2 activation and phosphorylation. However, what is clear from both the experiments with VEGFR2-TPD and cediranib is that additional pathways can mediate VEGFR2 endocytosis. For example, endocytosis of both VEGFR2-TPD and VEGF121a-TMR was still observed using confocal microscopy (Figure 4).

Our data suggest that substantial agonist-induced VEGFR2 endocytosis is occurring in intact HEK293T cells over the concentration range (1–20 nM) and time course (20 min) used previously to assess ligand-binding kinetics in live cells (Kilpatrick et al., 2017; Peach, Kilpatrick, et al., 2018). Furthermore, this internalisation could not be prevented by interfering with agonist-induced VEGFR2 phosphorylation. To investigate the impact that agonist-induced endocytosis (or association with other signalling complexes and ancillary proteins in living cells) may have on the estimation of kinetic ligand-binding parameters deduced by NanoBRET in intact cells, we established an isolated membrane ligand-binding assay where the potential for parallel agonist-induced receptor endocytosis and engagement with cytoplasmic signalling complexes would be disrupted. NanoBRET ligand binding with all three fluorescent VEGF-A isoforms demonstrated clear specific binding in isolated membrane preparations. Non-specific binding, determined in the presence of a high concentration of non-fluorescent VEGF-A ligand, was low over the full concentration range of fluorescent ligand employed. The equilibrium K_D values determined following a 1-hr incubation were slightly more potent than those previously reported in intact cells (Table 2; Kilpatrick et al., 2017; Peach, Kilpatrick, et al., 2018). This was particularly the case for VEGF165a-TMR. Similarly, VEGF-Ax produced competitive inhibition of the binding of each fluorescent VEGF-A isoform in membrane preparations. However, in marked contrast to equivalent studies in intact living cells, the kinetics of the binding of five different concentrations of VEGF165a-TMR, VEGF165b-TMR, or VEGF121a-TMR produced classic ligand-binding association curves that were maintained for the duration of the 90-min experiment.

The k_{on} and k_{off} values determined in membrane preparations were of a similar order to those previously reported for these three fluorescent ligands in intact cells when the kinetic analysis was restricted to the first 20 min of agonist stimulation, in order to reduce the influence of receptor endocytosis (Peach, Kilpatrick, et al., 2018). k_{on} rate constants were slightly smaller (1.2-fold to 2.0-fold) in membranes than the corresponding values obtained in intact cells. However, k_{off} rate constants were approximately fourfold lower (Table 2) than those determined in HEK293T cells, indicative of a slower agonist dissociation rate. In matched experiments (Figure 6 and Table 3), these differences were significant ($P < .05$). These data suggest that the impact of agonist-induced VEGFR2 endocytosis on kinetically derived k_{on}, k_{off}, and K_D values is not large if the analysis in cells is restricted to early time points. However, the process of receptor endocytosis does lead to an underestimation of the equilibrium off-rate kinetic constant and receptor residence time ($1/k_{off}$) of VEGF165b-TMR on the receptor at the plasma membrane (e.g. the calculated residence time in cells for VEGF165b-TMR was 12.3 min whilst that in membranes preparations was 43.5 min; Table 3). This is consistent with our earlier suggestion that rapid dissociation of VEGF165a-TMR from VEGFR2 occurs in the environment of intracellular endosomes (as a consequence of the lower pH or the presence of endosomal proteases) and allows rapid recycling of ligand-free VEGFR2 back to the cell surface (Kilpatrick et al., 2017). Interestingly, in the tyrosine phosphorylation-deficient VEGFR2-TPD, the kinetic constants determined in membranes for VEGF121a-TMR were within a factor of two of those derived in membranes for the wild-type receptor.

The ability to define the pH at which ligand-binding studies are undertaken in membrane preparations provided an opportunity to study the influence of pH on ligand binding at the acidic pH normally found in intracellular endosomes. These data showed that the association and dissociation rate constants of fluorescent VEGF-A at NanoLuc-VEGFR2 were faster at pH 6.0 than those observed at pH 7.4. Indeed, the parameters approached those obtained in intact cells (Table 3). These data suggest that a proportion of the ligand-binding characteristics observed in intact cells is a consequence of receptor endocytosis and the influence of the lower pH environment.

In summary, the present study has shown for the first time that NanoBRET can be used to monitor the kinetics of the binding of fluorescent VEGF-A isoforms to VEGFR2 in isolated membrane preparations. Equilibrium measurements in membranes produced binding parameters that were of a similar order to those determined in live cells. However, in contrast to previous studies in intact cells where the NanoBRET signal falls towards baseline values after reaching a peak, kinetic experiments in membranes produced classic ligand-binding association curves that were maintained for the duration of the 90-min experiment. Automated imaging allowed a quantitative analysis of the effect of fluorescent VEGF-A isoforms on VEGFR2 endocytosis in intact cells. These studies confirmed that all three fluorescent ligands produced a rapid and potent translocation of ligand-bound VEGFR2 to intracellular endosomes.

Our data suggest that the largest impact of this rapid agonist-induced VEGFR2 endocytosis on ligand-binding parameters was on the equilibrium off-rate kinetic constant (k_{off}) and receptor residence time ($1/k_{off}$). Thus, rapid VEGFR2 endocytosis into intracellular endosomes receptor in intact cells shortened the measured residence time of VEGF165b-TMR on the receptor from 43.5 min (in membranes) to 12.3 min (in cells). These data suggest that the ligand-binding kinetics of VEGF-A isoforms differ between plasma membrane and intracellular endosomes and that agonist-induced receptor endocytosis can change both local signalling environment and ligand-binding kinetic properties of the receptor. These data provide important new insights.
into the impact of cellular location and pH on the kinetics of ligand-receptor interactions for a receptor that is a key mediator of both angiogenesis and vascular permeability, and an important drug target for the treatment of cancer.

ACKNOWLEDGEMENTS
This work was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/L019418/1) and Promega Corporation. C.J.P. was funded by an A.J. Clark studentship from the British Pharmacological Society (BPS). We also thank Promega Corporation for synthesising VEGF165a-TMR, VEGF165b-TMR, and VEGF121a-TMR and providing NanoLuc-tagged and HaloTag-VEGFR2 constructs. We thank the School of Life Sciences Imaging (SLIM) team for the support in imaging facilities and analysis.

CONFLICT OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS
S.J.H., J.W., and S.J.H. conceived the study; C.J.P., L.E.K., S.J.H., and J.W. participated in the research design; C.J.P. conducted the experiments; C.J.P. and S.J.H. performed the data analysis; and C.J.P., L.E.K., and S.J.H. wrote or contributed to the writing of the manuscript.

DECLARATION OF TRANSPARENCY AND SCIENTIFIC RIGOUR
This Declaration acknowledges that this paper adheres to the principles for transparent reporting and scientific rigour of preclinical research as stated in the BJPR guidelines for Design & Analysis and Immunoblotting and Immunochemistry and as recommended by funding agencies, publishers, and other organisations engaged with supporting research.

ORCID
Chloe J. Peach https://orcid.org/0000-0001-6315-1170
Laura E. Kilpatrick https://orcid.org/0000-0001-6331-5606
Jeanette Woolard https://orcid.org/0000-0001-5406-6847
Stephen J. Hill https://orcid.org/0000-0002-4424-239X

REFERENCES
Alexander, S. P. H., Kelly, E., Marrion, N. V., Peters, J. A., Facenda, E., Harding, S. D., ... CGTP Collaborators. (2017). The Concise Guide to PHARMACOLOGY 2017/18: Overview. British Journal of Pharmacology, 174(51), S1–S516. https://doi.org/10.1111/bph.13882
Alexander, S. P. H., Fabbro, D., Kelly, E., Marrion, N. V., Peters, J. A., Facenda, E., ... CGTP Collaborators. (2017). The Concise Guide to PHARMACOLOGY 2017/18: Catalytic receptors. British Journal of Pharmacology, 174, S225–S271.
Ballmer-Hofer, K., Andersson, A. E., Ratcliffe, L. E., & Berger, P. (2011). Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. Blood, 118, 816–826. https://doi.org/10.1182/blood-2011-01-328773
Basagiannis, D., Zografou, S., Murphy, C., Fotsis, T., Morbidelli, L., Ziche, M., ... Christoforidis, S. (2016). VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis. Journal of Cell Science, 129, 4091–4104.
Bates, D., Cui, T. G., Doughty, J. M., Winkler, M., Sugiono, M., Shields, J. D., ... Harper, S. J. (2002). VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Research, 62, 4123–4131.
Bruns, A. F., Herbert, S. P., Odell, A. F., Jopling, H. M., Hooper, N. M., Zachary, I. C., ... Ponnambalam, S. (2010). Ligand-stimulated VEGF2 signaling is regulated by co-ordinated trafficking and proteolysis. Traffic, 11, 161–174.
Carter, J., Wheal, A. J., Hill, S. J., & Woolard, J. (2015). Effects of receptor tyrosine kinase inhibitors on VEGF165a- and VEGF165b-stimulated gene transcription in HEK-293 cells expressing human VEGFR2. British Journal of Pharmacology, 172, 3141–3150. https://doi.org/10.1111/bph.13116
Cébe Suarez, S., Pieren, M., Cariolato, L., Arн, S., Hoffman, U., Bogucki, A., ... Ballmer-Hofer, K. (2006). A VEGF-A splice variant defective for heparan sulfate and neuropilin-1 binding shows attenuated signaling through VEGFR-2. Cellular and Molecular Life Sciences, 63, 2067–2077. https://doi.org/10.1007/s00018-006-6254-9
Chung, A. S., & Ferrara, N. (2011). Developmental and pathological angiogenesis. Annual Review of Cell and Developmental Biology, 27, 563–584. https://doi.org/10.1146/annurev-cellbio-092910-154002
Eswarappa, S. M., Potdar, A. A., Koch, W. J., Fan, Y., Vasu, K., Lindner, D., ... Fox, P. L. (2014). Programmed translational readthrough generates antiangiogenic VEGF-Ax. Cell, 157, 1605–1618. https://doi.org/10.1016/j.cell.2014.04.033
Ewan, L. C., Jopling, H. M., Jia, H., Mittar, S., Bagherzadeh, A., Howell, G. J., ... Ponnambalam, S. (2006). Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic, 7, 1270–1282. https://doi.org/10.1111/j.1600-0854.2006.00462.x
Fearnley, G. W., Smith, G. A., Abdul-Zani, I., Yuldasheva, N., Mughal, N. A., Homer-Vanniasinkam, S., ... Ponnambalam, S. (2016). VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biology Open, 5, 571–583. https://doi.org/10.1242/bio.017434
Ferrara, N., & Adamis, A. (2016). Ten years of anti-vascular endothelial growth factor therapy. Nature Reviews Drug Discovery, 15, 385–403. https://doi.org/10.1038/nrd.2015.17
Gampel, A., Moss, L., Jones, M. C., Brunton, V., Norman, J. C., & Mellor, H. (2006). VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood, 108, 2624–2631. https://doi.org/10.1182/blood-2005-12-007484
Guo, H. F., & Vander Kooi, C. W. (2015). Neuropilin functions as an essential cell surface receptor. The Journal of Biological Chemistry, 290, 29120–29126. https://doi.org/10.1074/jbc.R115.687327
Harding, S. D., Sharman, J. L., Facenda, E., Southan, C., Pawson, A. J., Ireland, S., ... NC-IUPHAR (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: Updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Research, 46, D1091–D1106.
Jopling, H. M., Howell, G. J., Gamper, N., & Ponnambalam, S. (2011). The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. Biochemical and Biophysical Research Communications, 410, 170–176. https://doi.org/10.1016/j.bbrc.2011.04.093
Jopling, H. M., Odell, A. F., Hooper, N. M., Zachary, I. C., Walker, J. H., & Ponnambalam, S. (2009). Rab GTPase regulation of VEGFR2 trafficking and signaling in endothelial cells. Arteriosclerosis, Thrombosis, and
Vascular Biology, 29, 1119–1124. https://doi.org/10.1161/ATVBAHA.109.186239

Jopling, H. M., Odell, A. F., Pellet-Many, C., Latham, A. M., Frankel, P., Sivarapadasara, A., ... Ponnambalam, S. (2014). Endosome-to-plasma membrane recycling of VEGFR2 receptor tyrosine kinase regulates endothelial function and blood vessel formation. Cell, 3, 363–385. https://doi.org/10.3390/cells3020363

Kilpatrick, L. E., Friedman-Ohana, R., Alcobia, D. C., Riching, K., Peach, C. J., Wheal, A. J., ... Hill, S. J. (2017). Real-time analysis of the binding of fluorescent VEGF165a to VEGFR2 in living cells: Effect of receptor tyrosine kinase inhibitors and fate of internalized agonist-receptor complexes. Biochemical Pharmacology, 136, 62–75. https://doi.org/10.1016/j.bcp.2017.04.006

Koch, S., Tugues, S., Li, X., Gualandi, L., & Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors, The Biochemical Journal, 437, 169–183. https://doi.org/10.1042/BJ20110301

Krilleke, D., DeErkenez, A., Schubert, W., Giri, I., Robinson, G. S., Ng, Y. S., & Shima, D. T. (2007). Molecular mapping and functional characterization of the VEGF164 heparin-binding domain. The Journal of Biological Chemistry, 282, 28045–28056. https://doi.org/10.1074/jbc.M700319200

Parker, M. W., Xu, P., Li, X., & Vander Kooi, C. W. (2012). Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. The Journal of Biological Chemistry, 287, 11082–11089. https://doi.org/10.1074/jbc.M111.331140

Peach, C. J., Kilpatrick, L. E., Friedman-Ohana, R., Zimmerman, K., Robers, M. B., Wood, K. V., ... Hill, S. J. (2018). Real-time ligand binding of fluorescent VEGF-A isoforms that discriminate between VEGFR2 and NRP1 in living cells. Cell Chemical Biology, 25, 1208–1218. https://doi.org/10.1016/j.chembiol.2018.06.012

Peach, C. J., Mignone, V. W., Arruda, M. A., Hill, S. J., Kilpatrick, L. E., & Woolard, J. (2018). Molecular pharmacology of VEGF-A isoforms: Binding and signalling at VEGFR2. International Journal of Molecular Sciences, 19, 1264. https://doi.org/10.3390/ijms19041264

Pritchard-Jones, R. O., Dunn, D. B. A., Qiu, Y., Varey, A. H. R., Orlando, A., Rigby, H., ... Bates, D. O. (2007). Expression of VEGFxxxb, the inhibitory isoforms of VEGF, in malignant melanoma. British Journal of Cancer, 97, 223–230. https://doi.org/10.1038/sj.bjc.6603839

Ruch, C., Skiniotis, G., Steinmetz, M. O., Walz, T., & Ballmer-Hofer, K. (2007). Structure of a VEGF–VEGF receptor complex determined by electron microscopy. Nature Structural & Molecular Biology, 14, 249–250. https://doi.org/10.1038/nsmb1202

Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews. Molecular Cell Biology, 17, 611–625. https://doi.org/10.1038/nrm.2016.87

Smith, G. A., Fearnley, G. W., Abdul-Zani, I., Wheatcroft, S. B., Tomlinson, D. C., Harrison, M. A., ... Ponnambalam, S. (2016). VEGFR2 trafficking, signaling and proteolysis is regulated by the ubiquitin isopeptidase USP8. Traffic, 17, 53–65. https://doi.org/10.1111/tra.12341

Stoddart, L., Johnstone, E. K. M., Wheal, A. J., Goulding, J., Robers, M. B., Machleidt, T., ... Pfleger, K. D. G. (2015). Application of BRET to monitor ligand binding to GPCRs. Nature Methods, 12, 661–663. https://doi.org/10.1038/nmeth.3398

Stoddart, L. A., Kilpatrick, L. K., & Hill, S. J. (2018). NanoBRET approaches to study ligand binding to GPCRs and RTKs. Trends in Pharmacological Sciences, 39, 136–147. https://doi.org/10.1016/j.numt.2017.10.006

Stoddart, L. A., White, C. W., Nguyen, K., Hill, S. J., & Pfleger, K. D. G. (2016). Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. British Journal of Pharmacology, 173, 3028–3037. https://doi.org/10.1111/bph.13316

Vempati, P., Popel, A. S., & Mac Gabhann, F. (2014). Extracellular regulation of VEGF: Isomerization, proteolysis, and vascular patterning. Cytokine & Growth Factor Reviews, 25, 1–19. https://doi.org/10.1016/j.cytogfr.2013.11.002

Woolard, J., Wang, W., Bevan, H. S., Qiu, Y., Morbidelli, L., Pritchard-Jones, R. O., ... Bates, D. O. (2004). VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Research, 64, 7822–7835. https://doi.org/10.1158/0008-5472.CAN-04-0934

How to cite this article: Peach CJ, Kilpatrick LE, Woolard J, Hill SJ. Comparison of the ligand-binding properties of fluorescent VEGF-A isoforms to VEGF receptor 2 in living cells and membrane preparations using NanoBRET. Br J Pharmacol. 2019;176:3220–3235. https://doi.org/10.1111/bph.14755