Collective intelligence in Massive Online Dialogues

TARANEH KHAZAEI and LU XIAO, University of Western Ontario

1. INTRODUCTION

Collective intelligence refers to the intelligence that emerges from local interactions among individual people. These local interactions in human collectives can be either direct or indirect. In addition, the interactions of both forms can take place through verbal communication or non-verbal action. As illustrated in Figure 1, following these two binary distinctions, interactions among humans can be classified into four groups. Meanwhile, the emergence and ongoing development of Web 2.0 technologies have enabled advanced forms of collective intelligence, allowing large numbers of individuals to act collectively and create high quality intellectual artifacts. To understand the current status in this research and development area, we conducted a systematic review of the studies that used automatic tools to analyze the large-scale Web-based platforms and identified the research gaps. We focused on the platforms in which intelligence may arise from dialogue exchange and discussion among participants (left upper quadrant in Figure 1). Therefore, online reviews, microblogs, and news headlines are excluded since these text units are independent pieces of writings. Chat and email tools are also excluded because they are primarily designed to support small-scale interactions.

To classify the existing literature, the McGrath's framework of group studies [McGrath 1984] is used. Although this framework has been originally intended to address relatively small groups, it is not merely a model about small group activities, but a framework for studying groups systematically. Hence, here, it is applied to research on larger online collectives. In this framework, group interaction process is considered the essence of a group and it refers to “patterned relations among the behaviors of individuals” [McGrath 1984]. The framework encompasses several other elements that are member's properties, group structure, environment, and tasks. In addition, McGrath describes interaction processes at a micro level, viewing it in terms of three different stages: communication pattern among interacting people, content of communications, as well as impact of different group interaction processes on each other and on participants. The content itself is then viewed in terms of two different aspects: interpersonal relationship and task performance. Current research on the analysis of collective intelligence commonly treats members' properties, group structure, environment, and task as the context of the study and then facilitates computational tools to analyze the interaction processes. As such, the prior research is categorized into three main groups: communication pattern analysis, content analysis, and impact analysis. Content analysis is then divided into two categories of research. Due to the different nature of virtual spaces, interpersonal relationships component is seen at a higher level, focusing on the studies that analyze sentimental aspects of the content. The task performance component is called task/purpose performance since such settings might be less task-oriented.

1.1 Communication Patterns

Communication pattern refers to the structure of a series of interactive behaviours that takes place among people [McGrath 1984]. A study by Woodley et al. [Woolley et al. 2010] has shown that the patterns of turn taking among participants is correlated with the collective intelligence. This finding illustrates the importance of the analysis of communication patterns in understanding and fostering intelligence. Even though earlier works in this context have relied on basic statistical measures [Whit-
Collective intelligence can be categorized into four different groups based on the interaction types among humans.

1.2 Content Analysis

1.2.1 Sentiment. There has been a large amount of work on sentiment analysis, with researchers investigating various methods to identify subjective sentences, to rate the sentiment level, to detect moods and emotions, and finally, to understand the source, target, and complex attitude types [Pang and Lee 2008]. A traditional lexicon-based approach uses sentiment-annotated dictionaries to determine the sentiment score of a text unit by averaging out sentiment values of individual words extracted from the dictionary [Wanner et al. 2011; Li and Wu 2010]. The increasing availability of labeled data on the Web has led to the use of a variety of supervised classification methods in sentiment research [Rosenthal and McKeown 2012; Sood and Churchill 2010]. Following a related approach, a language model is constructed in [Hassan et al. 2010] to detect sentences with attitudes.

1.2.2 Task/Purpose Performance. A set of studies on online environments attempts to address the information overload problem by describing the features of the underlying social space. Such studies can be seen as preliminary steps that can lead to easier and more accurate task performance analysis by machines or users. Adoptions and extensions of document clustering techniques [Said and M. Wanas 2011; Paukkeri and Kotro 2009] as well as topic modeling methods [Zhu et al. 2008] have been proposed to describe content-based features of the conversational text. Another line of work on
descriptive analysis has focused on the annotation of the communication space with social actions and behaviours that are of value in performance analysis such as identification of claims [Rosenthal and McKeown 2012; Marin et al. 2011], agreements or disagreements [Abbott et al. 2011; Murakami and Raymond 2010], justifications [Biran and Rambow 2011], and ideas [Convertino et al.]. Rather than descriptive analysis, some researchers have developed computational methods to directly evaluate the user-generated content. Variations of information retrieval techniques [Sood and Churchill 2010; Feng et al. 2006; Wanas et al. 2009] as well as supervised learning methods [Weimer et al. 2007; Chai et al. 2011; Wanas et al. 2008; Shah and Pomerantz 2010; Harper et al. 2008] have been proposed to evaluate users’ contributions.

1.3 Impact

Impact analysis aims to understand the potential effects of group interaction processes on each other and on participants. Employing computational methods, two different procedures have been followed to study impact in online social environments. A set of works have focused on calculating variables of interest independently and then they use basic statistical methods to assess how they correlate [Diakopoulos and Naaman 2011; Chmiel et al. 2011a; De Liddo et al. 2011; Adamic et al. 2008; Laniado et al. 2011]. A few recent approaches utilized more complex methods such as clustering to directly assess the potential impact of one variable on another [Chmiel et al. 2011b].

1.4 Discussion

Table I provides a summary of the studies reviewed in this article. Exploring the table may enable researchers to identify current research gaps and to gear their research efforts toward addressing current shortcomings. Such gaps include lack of diversity in environments of focus in sentiment analysis, lack of focus on task-oriented environments such as deliberation and idea management tools, as well as lack of sophisticated computational tools to analyze impact. As can be seen in the table, some attempts have been made to analyze the impact of interaction processes, i.e., communication pattern, task/purpose performance, and sentiment, on each other. However, less attention has been paid to understand how these processes influence participants’ individual and collective behaviours over time, such as their perception, learning, and judgement. In order to gain insights into how intelligence emerges from within social interactions and to determine various factors that may influence the collective intelligence phenomenon, further research is required to fill these gaps.

Primary Purpose	Aspects of Focus	Main Methods	Environments	Secondary Benefits
communication analysis	interaction structure	social network analysis	comment sets	browse & navigation
	thread structure	tree analysis	social networks	popularity detection & prediction
	interaction behaviour	machine learning	discussion fora	controversy detection & prediction
content sentiment analysis	subjective polarity	lexicon-based	discussion fora	understanding social relations
	rating emotions and moods	machine learning	comment sets	social action/behaviour detection
	attitudes	language modeling		community management
performance analysis	topicality	clustering & topic modeling	comment sets	search & navigation
	social actions & behaviours	supervised machine learning	social networks	technology impact assessment
	quality & relevance	information retrieval	discussion fora	content filtering & summarization
impact analysis	performance (topicality)	basic statistics	comment sets	understanding social
	& communication performance (topicality)	clustering	discussion fora	& psychological processes
	(quality)		Q&A fora	technology impact assessment
	& sentiment		deliberation tools	community management
	& sentiment		idea management tools	
	communication & learning			

Table I.: Prior research is summarized according to the McGrath’s framework.
REFERENCES

Rob Abbott, Marilyn Walker, Pranav Anand, Jean E. Fox Tree, Robeson Bowman, and Joseph King. 2011. How Can You Say Such Things???: Recognizing Disagreement in Informal Political Argument. In Proceedings of the Workshop on Languages in Social Media. 2–11.

Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. 2008. Knowledge Sharing and Yahoo Answers: Everyone Knows Something. In Proceedings of the Conference on World Wide Web. 665–674.

Or Biran and Owen Rambow. 2011. Identifying Justifications in Written Dialogs. In Proceedings of the Conference on Semantic Computing. 162–168.

Kevin Chai, Chen Wu, Vidyasagar Potdar, and Pedram Hayaati. 2011. Automatically Measuring the Quality of User Generated Content in Forums. In Proceedings of the Conference on Advances in Artificial Intelligence. 51–60.

Anna Chmiel, Julian Sienkiewicz, Georgios Paltoglou, Kevan Buckley, Mike Thelwall, and Janusz A. Holyst. 2011a. Negative emotions accelerating users activity in BBC Forum. Physica A 390, 16 (2011), 2936–2944.

Anna Chmiel, Julian Sienkiewicz, Mike Thelwall, Georgios Paltoglou, Kevan Buckley, Arvid Kappas, and Janusz A. Holyst. 2011b. Collective emotions online and their influence on community life. PLoS One (2011).

Gregorio Convertino, Ágnes Sándor, and Marcos Baez. -. Idea Spotter and Comment Interpreter: Sensemaking tools for Idea Management Systems. (-).

Anna De Liddo, Simon Buckingham Shum, Ivana Quinto, Michelle Bachler, and Lorella Cannavacciuolo. 2011. Discourse-centric learning analytics. In Proceedings of the Conference on Learning Analytics and Knowledge. 23–33.

Nicholas Diakopoulos and Mor Naaman. 2011. Topicality, time, and sentiment in online news comments. In Extended Abstracts on Human Factors in Computing Systems. 1405–1410.

Donghui Feng, Erin Shaw, Jihie Kim, and Eduard Hovy. 2006. Learning to detect conversation focus of threaded discussions. In Proceedings of the Joint Human Language Technology/North American Chapter of the ACL Conference. 208–215.

Vicenc Gómez, Andreas Kaltenbrunner, and Vicente López. 2008. Statistical Analysis of the Social Network and Discussion Threads in Slashdot. In Proceedings of the Conference on World Wide Web. 645–654.

Vicenc Gómez, Hilbert J. Kappen, and Andreas Kaltenbrunner. 2011. Modeling the Structure and Evolution of Discussion Cascades. In Proceedings of the Conference on Hypertext and Hypermedia. 181–190.

Vicenc Gómez, Hilbert J. Kappen, Nelly Litvak, and Andreas Kaltenbrunner. 2013. A likelihood-based framework for the analysis of discussion threads. Proceedings of the Conference on World Wide Web 16, 5-6 (2013), 645–675.

Ahmed Hassan, Vahed Qazvinian, and Dragomir Radev. 2010. What’s with the attitude? Identifying sentences with attitude in online discussions. In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 1245–1255.

Ravi Kumar, Mohammad Mahdian, and Mary McGlohon. 2010. Dynamics of Conversations. In Proceedings of the Conference on Knowledge Discovery and Data Mining. 553–562.

David Laniado, Riccardo Tasso, Yana Volkovich, and Andreas Kaltenbrunner. 2011. When the Wikipedians Talk: Network and Tree Structure of Wikipedia Discussion Pages. In International AAAI Conference on Weblogs and Social Media.

Nan Li and Desheng Dash Wu. 2010. Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decision Support Systems 48, 2 (2010), 354 – 368.

Alex Marin, Bin Zhang, and Mari Ostendorf. 2011. Detecting Forum Authority Claims in Online Discussions. In Proceedings of the Workshop on Languages in Social Media. 39–47.

Joseph Edward McGrath. 1984. Groups: Interaction and Performance. Prentice-Hall.

Akiko Murakami and Rudy Raymond. 2010. Support or Oppose?: Classifying Positions in Online Debates from Reply Activities and Opinion Expressions. In Proceedings of the Conference on Computational Linguistics. 869–875.

Bo Pang and Lillian Lee. 2008. Opinion Mining and Sentiment Analysis. Foundations and Trends in Information Retrieval 2, 1-2 (2008), 1–135.

Mari-Sanna Paukkeri and Tanja Kotro. 2009. Framework for Analyzing and Clustering Short Message Database of Ideas. In Proceedings of Knowledge Management and Knowledge Technologies.

Huzefa Rangwala and Salman Jamali. 2010. Defining a Coparticipation Network Using Comments on Digg. IEEE Intelligent Systems 25, 4 (2010), 36–45.

Sara Rosenthal and Kathleen McKeown. 2012. Detecting Opinionated Claims in Online Discussions. In Proceedings of the Conference on Semantic Computing. 30–37.

Warren Sack. 2000. Conversation Map: A Content-based Usenet Newsgroup Browser. In Proceedings of the Conference on Intelligent User Interfaces. 233–240.

Collective Intelligence 2014.
Dina A. Said and Nayer M. Wanas. 2011. Clustering Posts in Online Discussion Forum Threads. *International Journal of Computer Science and Information Technology* 3, 2 (2011), 1–14.

Chirag Shah and Jeffrey Pomerantz. 2010. Evaluating and Predicting Answer Quality in Community QA. In *Proceedings of the Conference on Research and Development in Information Retrieval*. 411–418.

Marc A. Smith. 1999. Invisible crowds in cyberspace: Mapping the social structure of the Usenet. In *Communities in Cyberspace*, Marc A. Smith and Peter Collock (Eds.). Routledge, 195–219.

Sara O. Sood and Elizabeth F. Churchill. 2010. Anger management: Using sentiment analysis to manage online communities. *Grace Hopper Celebration* (2010).

Pedro Olmo S. Vaz de Melo, Christos Faloutsos, Renato Assunção, and Antonio Loureiro. 2013. The Self-feeding Process: A Unifying Model for Communication Dynamics in the Web. In *Proceedings of the Conference on World Wide Web*. 1319–1330.

Nayer Wanas, Magdy Amr, and Ashour Heba. 2009. Using automatic keyword extraction to detect off-topic posts in online discussion boards. In *Content Analysis in Web 2.0 Workshop*.

Nayer Wanas, Motaz El-Saban, Heba Ashour, and Waleed Ammar. 2008. Automatic Scoring of Online Discussion Posts. In *Proceedings of the Workshop on Information Credibility on the Web*. 19–26.

Franz Wanner, Thomas Ramm, and Daniel A. Keim. 2011. ForAVis: Explorative user forum analysis. In *Proceedings of the Conference on Web Intelligence, Mining and Semantics*. 14:1–14:10.

Markus Weimer, Iryna Gurevych, and Max Mühlhäuser. 2007. Automatically assessing the post quality in online discussions on software. In *Proceedings of the Annual Meeting on Association for Computational Linguistics*. 125–128.

Howard T. Welser, Eric Gleave, Danyel Fisher, and Marc Smith. 2007. Visualizing the Signatures of Social Roles in Online Discussion Groups. *The Journal of Social Structure* 8, 2 (2007), 1–31.

Steve Whittaker, Loren Terveen, Will Hill, and Lynn Cherny. 1998. The Dynamics of Mass Interaction. In *Proceedings of the Conference on Computer Supported Cooperative Work*. 257–264.

Anita W. Woolley, F. Chabris Chabris, Alexander Pentland, Nada Hashmi, and Thomas W. Malone. 2010. Evidence for a collective intelligence factor in the performance of human groups. *Science* 330 (2010), 686–688.

Min Wu, Hui Li, Ke Zhang, and Lijuan Qin. 2011. An Evolutionary Model of Reply Networks on Bulletin Board System. In *Proceedings of the Conference on Information Technology, Computer Engineering, and Management Sciences*. 92–95.

Mingliang Zhu, Weiming Hu, and Ou Wu. 2008. Topic Detection and Tracking for Threaded Discussion Communities. In *Proceedings of the IEEE/WIC/ACM Conference on Web Intelligence and Intelligent Agent Technology*. 77–83.