Effects of Carbon Dioxide and Photosynthetic Photon Flux on Mineral Content in Chrysanthemum Allowing for Growth as a Covariate

Carl E. Niedziela Jr.
Department of Biology, Elon University, Elon, NC 27244

Mary A. Depa and Paul V. Nelson
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

Daniel H. Willits
Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695-7625

Mary M. Peet
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

David A. Dickey
Department of Statistics, North Carolina State University, Raleigh, NC 27693-8203

Nancy C. Mingis
Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609

Additional index words. Dendranthema × grandiflorum, foliar analysis, hydroponic, modeling, nutrition, photobiology

Abstract. The effect of CO2 concentration (330 and 675 μL·L−1) and photosynthetic photon flux (PPF) (mean daily peaks of 550–1400 μmol·m−2·s−1) on total mineral contents in shoots was studied in chrysanthemum [Dendranthema × grandiflorum (Ramat) Kitam ‘Fiesta’] during three times of the year. Growth (as measured by shoot dry weight) and shoot mineral contents (weight of nutrient per shoot) of hydroponically grown plants were analyzed after 5 weeks. There was a positive synergistic interaction of CO2 concentration and PPF on growth with the greatest growth at high PPF (1400 μmol·m−2·s−1) with high CO2 (675 μL·L−1). When growth was not used as a covariate in the statistical model, both CO2 concentration and PPF significantly affected the content of all eight nutrients. However, after growth was included as a covariate in the model, nutrients were classified into three categories based on whether CO2 concentration and PPF level were needed in addition to growth to predict shoot nutrient content. Neither CO2 concentration nor PPF level was needed for Mg, Fe, and Mn contents, whereas PPF level was needed for N, P, K, and Ca contents, and both CO2 concentration and PPF level were required for B content.

An increase in ambient CO2 concentration generally results in increased growth and a greater demand for nutrients (Campbell and Sage, 2002; Hagedorn et al., 2002; Jin et al., 2015; Taiz and Zeiger, 2010). Elevated ambient CO2 concentration has been shown to result in increased phosphate uptake due to changes in root morphology and depth as well as quantity and composition of root exudates (Jin et al., 2015). Reich et al. (2006) observed a 20% to 25% increase in plant biomass in perennial grassland species when an increase in ambient CO2 concentration was accompanied by an enriched N supply vs. an 8% to 12% increase when only the CO2 concentration was increased. Similar responses to increased fertility have been observed in other species grown under high levels of CO2 (Knecht and O’Leary, 1983; Patterson and Flint, 1982; Sionit et al., 1981).

Similarly, an increase in PPF also yields improved growth and greater nutrient demand (Taiz and Zeiger, 2010). Frantz (2013) reported that increasing light from 53% to full ambient in a greenhouse resulted in increased phosphate uptake without a change in tissue P concentration in Vinca [Catharanthus roseus (L.) G. Don] and Zinnia (Zinnia elegans Jacq.). This indicated that phosphate uptake kept pace with increased growth. Increased light and temperature resulted in enhanced macronutrient uptake in lettuce (Albomoz and Leith, 2015). Baligar et al. (2017) observed increased macronutrient uptake in five tropical legume cover crop species with increasing PPF in the range of 100–450 μmol·m−2·s−1. Chrysanthemum and Rosa hybrida L. grown under supplemental PPF responded to higher levels of fertility (Armitage and Tsujita, 1979; Hughes and Tsujita, 1982).

Nutrient levels have very often been presented as concentrations (i.e., percentage or mg·kg−1); however, nutrient content (weight per whole plant or plant part) provides additional useful information. Content has been used to assess total accumulation, distribution of specific nutrients, or both during or after a growth period in several species (Al-Tardeh et al., 2008; Frantz, 2013; Mishra et al., 2012; Niedziela et al., 2015; Overdieck, 1993; Somda et al., 1999; Subramanian et al., 2011; Zhu et al., 2016).

Whereas elevated CO2 and PPF have been reported to result in increased nutrient contents, decreased nutrient concentrations have frequently been associated with these nutrient content increases. Overdieck (1993) observed increased contents and decreased concentrations of macro- and micronutrients in four herbaceous and two woody plant species. Zhu et al. (2016) found increased N, P, and K contents along with decreased concentrations in annual wormwood (Artemisia annua L.). Eng et al. (1985) examined the nutrient status of 3-week-old chrysanthemums grown under supplemental PPF and CO2 enrichment and reported larger plants but decreased nutrient concentrations.

One explanation for decreased N concentration in plants under increased CO2 is dilution by increased photosynthetic C accumulation (Taub and Wang, 2008). Fangmeier et al. (2002) noted that although total accumulation of macro- and micronutrients increased in potato tubers grown under increasing CO2 level, nutrient concentrations decreased because of greater increases in biomass than nutrient uptake. Kuehny et al. (1991) found that increased CO2 concentrations and PPF resulted in increased concentrations of starch and decreased concentrations of 11 nutrient elements in chrysanthemum shoots. When the concentrations of the 11 nutrients were recalculated by subtracting the weight of starch from the shoot dry weight, shifts in shoot concentrations of seven nutrients due to increases in CO2 concentration and PPF treatments no longer occurred. These studies suggested
that a component of growth more directly controlled shoot nutrient concentration than the ambient CO₂ concentration or PPF.

Willits et al. (1992) modeled nutrient uptake in chrysanthemum as a function of growth rate by using relative growth rate to predict relative accumulation rates for 11 elements. The Willits et al. (1992) report addressed the overall effect of CO₂ and PPF on nutrient uptake in which growth stimulation was a main effect but did not break out the effects of CO₂ or PPF above and beyond the additional growth these two factors caused. The objective of our study was to determine the effects of ambient CO₂ concentration and PPF on the shoot content of eight mineral nutrients in chrysanthemum and to assess the relative influence of ambient CO₂ concentration and PPF vs. growth on these shoot contents. In other words, we were interested in treatment effects on shoot dry weight (growth) in a covariance analysis with shoot dry weight as a covariate to assess whether there was an effect on shoot nutrient content over and above any effects associated with weight differences.

Materials and Methods

Treatments. Three greenhouse experiments, each 5 weeks in duration, were conducted during separate times of the year: 25 Apr. to 30 May, 8 Nov. to 12 Dec., and 29 Jan. to 5 Mar. Treatments in each experiment included a combination of two target CO₂ concentrations (330 and 675 µL·L⁻¹) and three target PPF levels (830, 1100, and 1400 µmol·m⁻²·s⁻¹) for a total of 24 culture tanks. Within each experiment, the upper target CO₂ concentration was selected based on the yield response in cucumber, which was optimum at that concentration when tested in a closed-loop rock-storage bed system in the same facilities (Peet and Willits, 1987). The four target PPF levels of 550, 830, 1100, and 1400 µmol·m⁻²·s⁻¹ were designated as extra-low, low, medium, and high, respectively. The high (1400 µmol·m⁻²·s⁻¹) and low (830 µmol·m⁻²·s⁻¹) PPFs were selected based on expected maximum irradiance at 1200 µmol·m⁻²·s⁻¹ at 21 June and 21 Dec., respectively. However, daily variations in cloud cover prevented the continuous maintenance of the selected maximum irradiance levels. Also, CO₂ concentrations were modestly higher than set points because of respiration of workers in closed greenhouses. Minimum day and night temperature set points were 21 and 17 °C, respectively. Actual average daily CO₂ concentration during daylight hours, daily total PPF, and day and night air temperatures were as indicated in Table 1.

Greenhouse facilities. This study was conducted in Raleigh, NC (lat. 35°47’N, long. 78°42’W at an elevation of ≈121.9 m above sea level). It was conducted in four greenhouse facilities equipped with a free-standing, double-polyethylene, gutter-connected style greenhouses (5.2 m wide × 6.1 m long). Each house contained a natural gas-fired heater, a two-speed fan, and an evaporative pad cooling system. Two of the greenhouses had attached rock-storage beds (3.1 m wide × 5.4 m long × 1.8 m high), which served as energy sinks during daylight hours and energy sources at night. In addition, the rock-storage beds provided closed-loop cooling which allowed CO₂ to be injected during a large part of the year (Peet and Willits, 1987; Willits and Peet, 1987). Rock-storage beds were given priority for heating and cooling; however, when the rock-storage beds were unable to meet the demand, conventional heating and cooling methods were used.

Liquid CO₂ was used for CO₂ enrichment during daylight hours. A conductimetric controller of the type developed by Kimball and Mitchell (1979) was used to monitor and control CO₂ within the greenhouses. PPF was set using a combination of natural solar radiation, shade frames (with various layers of cheesecloth), and supplemental high-pressure sodium lamps. PPF at the top of each leaf canopy were monitored with six LI-COR Model 190 quantum sensors (LI-COR, Lincoln, NE) rotated throughout each location on a weekly basis.

Cultural procedures. Unrooted cuttings of ‘Fiesta’ pot chrysanthemum were placed in aerated tanks of distilled water (60 plants per 20-L tank) with a top measurement of 35 cm × 45 cm for 1 week followed by half-strength complete nutrient solution for 3 d, and then full-strength solution for the remainder of the 2-week rooting period before each experiment. The full-strength nutrient solution contained the following macronutrients (µM): 2 NH₄⁺, 14 NO₃⁻, 1 HPO₄²⁻, 6 K⁺, 4 Ca²⁺, 2 Mg²⁺, and 2 SO₄²⁻; and micronutrients (µM): 72 Fe³⁺, 18 Mn²⁺, 1.5 Zn²⁺, 1.6 Cu²⁺, 93 BO₃⁻, and 0.1 MoO₄²⁻. Nutrient solutions were formulated in distilled water. To prevent flowering during this 2-week rooting period, a short-night photoperiod was achieved with incandescent light applied at an intensity of 2 µmol·m⁻²·s⁻¹ from 0000 to 0200 hr.

On the first day of the experiment, plants were transferred to larger fiberglass culture tanks with tops measuring 45 cm × 60 cm. Forty-two liters of full-strength nutrient solution was added to each tank and adjusted to a pH of 6.7. In each tank, 35 plants were supported by placing stems in hollow plastic stoppers that were suspended through holes in the tank lid. The solution in each tank was aerated at a rate of 5 L·min⁻¹ through two fritted glass diffusers connected to an air pump.

Six 42-L tanks were placed in each of four greenhouses (two houses at the high CO₂ concentration and two at low concentration) for a total of 24 culture tanks. Within each greenhouse, two tanks were placed under each of three PPF treatments. The nutrient solution was changed weekly for the duration of the experiment. Distilled water was added daily to each tank as necessary to replace transpirational losses. A short-night photoperiod was continued during the first week of the experiment. Thereafter, a long-night photoperiod of at least 12 h of uninterrupted darkness was maintained to initiate and promote floral bud development. When the natural photoperiod exceeded 12 h, plants were covered with black plastic from ≈1930 to 0730 hr. Also, at the start of long nights, the terminal end of each shoot was removed to encourage lateral branch development.

Sampling and analysis of tissue. Shoots, including leaves and stems, from five plants from each tank were taken initially and at weekly intervals on the morning of and before nutrient solution change. The five shoots were combined, washed for 1 min in 0.2 N HCl, rinsed in distilled water, dried for

Table 1. Overall means and SDs of mean daily CO₂ concentration during daylight hours, daily total photosynthetic photon flux (PPF), and mean day and night air temperatures at the top of the plant canopy over 5 weeks in three experiments.

CO₂ (µL·L⁻¹)	Daily total PPF (mol·m⁻²·d⁻¹)	Air temp (°C)				
Low	High	Low	Medium	High	Day	Night
Mean	Mean	Mean	Mean	Mean	Mean	Mean
SD	SD	SD	SD	SD	SD	SD
April to May						
368	14	558	26			
November to December	422	43	645	14		
January to March	423	10	693	15		

SDs were of the weekly means and thus represent the variability of the associated factor from growth interval to growth interval to growth interval for each experiment.

Target low and high CO₂ treatment levels were 330 and 675 µL·L⁻¹, respectively.

Target PPF levels for extra-low, low, medium, and high PPF treatments (maximum noontime irradiance) were 550, 830, 1100, and 1400 µmol·m⁻²·s⁻¹, respectively.

Minimum day and night temperature set points were 21 and 17 °C, respectively.

A short-night photoperiod was applied during the first week for vegetative growth followed by a long-night photoperiod for flowering in each experiment.
24 h at 70 °C, weighed, and ground in a stainless-steel Wiley Mill (Thomas Scientific, Philadelphia, PA) to a particle size of 1 mm or less. Tissue was dried at 500 °C, dehydrated in HCl, and finally dissolved in 0.5 N HCl for P, K, Ca, Mg, Fe, and Mn analyses. Tissue was handled in a similar manner for B analyses except that it was ashed in the presence of a solution of Mg (NO₃)₂ in MeOH. Total N was determined by a Kjeldahl procedure which included a salicylic acid pretreatment to aid reduction of NO₃ (Eastin, 1978). Analyses for K, Ca, Mg, Fe, and Mn were carried out by atomic absorption spectrophotometry (AAnalyt 100; Perkin-Elmer, Norwalk, CT). Colorimetric analyses were performed for P (Jackson, 1958) and B (Grinstead and Snider, 1967) using a Perkin-Elmer Lambda 3 ultraviolet/VIS spectrophotometer (Norwalk, CT). Resulting nutrient concentrations were converted to nutrient content per shoot (mg/shoot and µg/shoot for macro- and micronutrients, respectively).

Results and Discussion

There was a significant CO₂ concentration by PPF interaction for growth, as measured by shoot dry weight (Table 2A). Generally, growth increased with increasing PPF and increased CO₂ concentration (Table 3). The combination of increasing both independent variables together had a greater effect on growth than each individually. Specifically, growth was lowest at extra-low PPF (550 µmol·m⁻²·s⁻¹) regardless of CO₂ concentration or low PPF (830 µmol·m⁻²·s⁻¹) with low CO₂ concentration (330 µL·L⁻¹). The next greatest growth occurred at low PPF with high CO₂ concentration (675 µL·L⁻¹) or medium PPF (1100 µmol·m⁻²·s⁻¹) with low CO₂ concentration. Growth increased further at medium PPF with high CO₂ concentration or high PPF (1400 µmol·m⁻²·s⁻¹) with low CO₂ concentration. The greatest growth was recorded at high PPF with high CO₂ concentration. The positive synergistic effects of increasing light and raising ambient CO₂ on growth in chrysanthemum have been previously reported (Eng et al., 1983, 1985; Stephens and Langhans, 1982).

Using the statistical model with experiment blocked, but without shoot dry weight as a covariate, there were significant main effects of CO₂ concentration and PPF for all the nutrients tested (Table 2A). In addition, Mg had a CO₂ concentration by PPF interaction using this model. After shoot dry weight (growth) was included as a covariate, shoot dry weight was significant for all nutrients, and the main effect of target CO₂ concentration was no longer significant.

Table 2. Results of two-way factorial analyses of variance on the effects of two CO₂ and four photosynthetic photon flux (PPF) levels on shoot dry weight (growth) and content of eight mineral nutrients in chrysanthemum shoots after 5 weeks: (A) without and (B) with shoot dry weight as a covariate in the model.

Source	Shoot dry wt	N	P	K	Ca	Mg	Fe	Mn	
(A) ANOVA without shoot dry wt as a covariate									
CO₂	0.0002	0.0002	0.0045	0.0001	0.0008	0.0040	0.0006	0.0062	0.0316
PPF	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
CO₂ × PPF	0.0294	0.1600	0.2517	0.1074	0.1088	0.0325	0.0777	0.5983	0.5582
(B) ANOVA with shoot dry wt as a covariate									
CO₂	—	0.4544	0.9236	0.2303	0.9750	0.2042	0.9560	0.2451	
PPF	—	0.0166	<0.0001	0.0035	<0.0001	0.0150	0.0911	0.0291	
CO₂ × PPF	0.3370	0.4270	0.1352	0.0869	0.4735	0.0663	0.1591		
Shoot dry wt	—	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		

Numbers bolded were significant (α = 0.05). ANOVA = analysis of variance.

Table 3. The interactive effects of CO₂ and photosynthetic photon flux (PPF) on shoot dry weight and main effect of PPF on nitrogen, phosphorus, potassium, calcium, and manganese content in chrysanthemum shoots after 5 weeks.a

Target PPF* (µmol·m⁻²·s⁻¹)	Shoot dry wt (g/shoot)	N	P	K	Ca	Mn (µg/shoot)	
	Low CO₂*	High CO₂	505	415	66	80	1,778
550	4.20 a	5.06 a	255	261	64	84	1,804
830	6.03 a	8.48 b	462	83	698	102	
1,100	9.30 b	12.13 c	501	98	750	102	
1,400	11.33 c	15.03 d	552	100	782	102	

Means were compared using the Tukey–Kramer method. Shoot dry weight (growth) was a covariate in the model for mean separation in the five mineral nutrients. Numbers for each dependent variable with the same letter were not significantly different (α = 0.05).

Target low and high CO₂ treatment levels were 330 and 675 µL·L⁻¹, respectively.
for all nutrients except B (Table 2B). However, the main effect of PPF remained significant for N, P, K, Ca, and Mn, and there was also a CO2 concentration by PPF interaction for B. All subsequent discussions concerning nutrient contents will use the results of this latter model that included growth as a covariate.

Although the covariate shoot dry weight was significant for Mg and Fe, there were no effects of CO2 or PPF (Table 2B). The elimination of significant treatment effects for Mg and Fe by including shoot dry weight (growth) as a covariate in the model indicated that differences in these two nutrients could be explained by the differences in shoot dry weight without additional input from CO2 or PPF levels. In other words, changes in these two nutrients paralleled changes in growth. The mean Mg and Fe contents for all treatments in the three experiments were 23.2 mg/shoot and 1067 μg/shoot, respectively.

There was a significant main effect of PPF on shoot N content (Table 2B). The N content generally increased with increasing PPF (Table 3). The shoot N content at extra-low PPF (550 μmol·m−2·s−1) was lower than that at the other treatment levels. Shoot N content at low PPF (830 μmol·m−2·s−1) was similar to that at medium PPF (1100 μmol·m−2·s−1) but lower than that at high PPF (1400 μmol·m−2·s−1).

There was a main effect of PPF on shoot P and K contents (Table 2B). Phosphorus and K had a similar response patterns. Phosphorus and K contents, such as N, tended to increase with increasing PPF (Table 3). However, the shoot P and K contents were least at extra-low PPF (550 μmol·m−2·s−1), intermediate at low PPF (830 μmol·m−2·s−1), and greatest at medium and high PPF (1100 and 1400 μmol·m−2·s−1), respectively.

There was a main effect of PPF on shoot Ca content (Table 2B). Calcium content was lower at extra-low PPF (550 μmol·m−2·s−1) than that at the other three PPF levels, which were similar to each other (Table 3).

Whereas the ANOVA showed a significant main effect of PPF on Mn content (Table 2B), the Tukey–Kramer analysis did not exhibit significant mean separation (Table 3). The mean Mn content for all treatments in the three experiments was 1850 μg/shoot.

The response of B to CO2 and PPF differed from the other nutrients tested. Increased CO2 and PPF caused a decrease in shoot B content rather than the increase with increasing PPF that occurred for N, P, and K, or Ca, or the lack of response to CO2 or PPF that occurred for Mg, Fe, and Mn (Table 3). There was a significant CO2 concentration by PPF interaction for shoot B content (Table 2). The SLICE option analysis provided insight into the simple effects of CO2 within the PPF levels on B content (Table 4). There was no effect of CO2 concentration at the extra-low PPF level (550 μmol·m−2·s−1), a moderate effect at the low and medium PPF levels (830 and 1100 μmol·m−2·s−1, respectively), and a strong effect at the high PPF level (1400 μmol·m−2·s−1). Mishra et al. (2012) likewise reported lower leaf B content and B uptake rate in seed geranium (Pelargonium xhortorum) when grown at 700 vs. 370 μL·L−1·CO2. During the early research of CO2 enrichment in greenhouses, B deficiencies were noted in flowering crops grown in high concentrations of CO2 (Lindstrom, 1964).

In our study, increased PPF from low to optimal levels likely caused increases in leaf temperature which may have increased growth and uptake of many nutrients. Jia et al. (2015) found that growth and uptake of N, P, and K increased with increasing temperature in gerbera seedlings. Other studies have shown increases in influx of ammonium in tomato (Bloom et al., 1998), nitrate uptake in barley (Bloom, 1985) and tomato (Smart and Bloom, 1988), and potassium uptake in barley roots (Hoagland and Broyer, 1936) with increasing temperature. The Q10 values in those studies ranged from 1.8 to 2.0. However, leaf temperature measurements were not available from our study to assess the impact of leaf temperature on nutrient accumulation either through temperature-enhanced growth or temperature effects above and beyond growth. These results emphasize the importance of providing an adequate supply of nutrients at high CO2 concentrations and PPF levels.

Conclusions

The eight nutrients tested can be allocated to three groups with respect to the role CO2 and PPF levels play beyond growth measurement in prediction of their content in chrysanthemum shoots. For Mg, Fe, and Mn, levels of CO2 and PPF were not required for prediction of their content. The level of PPF, but not CO2, was needed for prediction of N, P, K, and Ca content. Finally, both CO2 and PPF levels were required for prediction of B content.

Literature Cited

Al-Tardeh, S., T. Sawidis, B-E. Diannelidis, and S. Delivopoulos. 2008. Water content and reserve allocation patterns within the bulb of the perennial geophyte red squill (Liliaceae) in relation to the Mediterranean climate. Botany 86:291–299.

Albomoz, F. and J.H. Leith. 2015. Diurnal macronutrients uptake patterns by lettuce roots under various light and temperature levels. J. Plant Nutr. 38:2028–2043.

Armitage, A.M. and M.J. Tsujita. 1979. Supplemental lighting and nitrogen nutrition effects on yield and quality of Forever Yours roses. Can. J. Plant Sci. 59:343–350.

Baligar, V.C., M. Olson, Z.L. He, Y. Li, A. de Q. Paiva, D. Ahnert, A-A.F. Almeida, and N.K. Fageria. 2017. Ambient and elevated carbon dioxide on growth, physiological and nutrient uptake parameters of perennial leguminous cover crops under low light intensities. Intl. J. Plant Soil Sci. 15(4):1–16.

Bloom, A.J. 1985. Wild and cultivated barleys show similar affinities for mineral nitrogen. Oecologia 65:555–557.

Bloom, A.J., L.B. Randall, P.A. Meyerhoff, and D.A. St. Clair. 1998. The chilling sensitivity of root ammonium influx in a cultivated and wild tomato. Plant Cell Environ. 21:191–199.

Campbell, C.D. and R.F. Sage. 2002. Interactions among light and temperature levels. J. Plant Physiol. 159:1–16.

Eastin, E.F. 1978. Total N determination for plant material containing nitrate. Anal. Biochem. 85:591–594.

Eng, R.Y.N., M.J. Tsujita, and B. Grodzinski. 1985. The effects of supplementary HPS lighting and carbon dioxide enrichment on the vegetative growth, nutritional status and flowering characteristics of Chrysanthemum morifolium Ramat. J. Hort. Sci. 60(3):389–395.

Eng, R.Y.N., M.J. Tsujita, B. Grodzinski, and R.G. Dutton. 1983. Production of chrysanthemum cuttings under supplementary lighting and carbon dioxide enrichment. HortScience 18:878–879.

Fangmeier, A., L. De Temmerman, C. Black, K. Persson, and V. Vorne. 2002. Effects of elevated CO2 and/or ozone on nutrient concentrations and nutrient uptake of potatoes. Eur. J. Agron. 17:353–368.

Frantz, J.M. 2013. Uptake efficiency of phosphorus in different light environments by zinnia (Zinnia elegans) and vincia (Catharanthus roseus). HortScience 48:594–600.

Table 4. The simple effects of CO2 within photosynthetic photon flux (PPF) levels on boron content in chrysanthemum shoots after 5 weeks.a

Target PPF (μmol·m−2·s−1)	B (μg/shoot)	Difference in CO2	t	P > t	
Low CO2	High CO2	t	P > t		
550 (extra-low)	591	582	9	0.36	0.7256
830 (low)	572	514	58	3.12	0.0039
1,100 (medium)	533	473	60	3.02	0.0049
1,400 (high)	539	386	153	6.16	<0.0001

a Measured were compared across CO2 concentrations within the different levels of PPF by using an LSMEANS statement with the SLICE option. Shoot dry wt (growth) was a covariate in the model used for mean separation.

b Mean daily total PPF at the target PPF levels of 550, 830, 1100, and 1400 μmol·m−2·s−1 were 5.8, 9.1, 15.5, and 22.6 μmol·m−2·d−1, respectively, when measured values from Table 1 were averaged across the three experiments.

c Target low and high CO2 treatment levels were 330 and 675 μL·L−1, respectively.
Grinstead, R.R. and S. Snider. 1967. Modification of the curcumin method for low level boron determination. Analyst (Lond.) 92:532–533.

Hagedorn, F., W. Landolt, D. Tarjan, P. Egli, and J.B. Bucher. 2002. Elevated CO₂ influences nutrient availability in young beech-spruce communities on two soil types. Oecologia 132:109–117.

Hoagland, D.R. and T.C. Broyer. 1936. General nature of the process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11:471–507.

Hughes, B.R. and M.J. Tsujita. 1982. The effect of supplemental high pressure sodium lighting and nutrition on vegetative growth and flowering of ‘White Marble’ and ‘Improved Mefo’ cut chrysanthemums. J. Amer. Soc. Hort. Sci. 107:1019–1024.

Jackson, M.L. 1958. Soil chemical analysis. Prentice Hall Inc., Englewood Cliffs, NJ.

Jia, N., C. Zhihui, A.R. Khan, and I. Ahmad. 2015. Effects of temperature during seedling stage on growth and nutrient absorbance of Gerbera jamesoni growing in organic substrate. J. Plant Nutr. 38:700–711.

Jin, J., C. Tang, and P. Sale. 2015. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: A review. Ann. Bot. 116:987–999.

Kimball, B.A. and S.T. Mitchell. 1979. Low cost carbon dioxide analyzer for greenhouses. HortScience 14:180–182.

Knecht, G.N. and J.W. O’Leary. 1983. The influence of carbon dioxide on the growth, pigment, protein, carbohydrate, and mineral status of lettuce. J. Plant Nutr. 6(4):301–312.

Kuehny, J.S., M.M. Peet, P.V. Nelson, and D.H. Willits. 1991. Nutrient dilution by starch in CO₂-enriched chrysanthemum. J. Expt. Bot. 42:711–716.

Lindstrom, R.S. 1964. The effect of increasing the carbon dioxide concentration on floricultural plants. Mich. Florist 398:12–13, 19–22.

Mishra, S.A. Heckathorn, and J.M. Frantz. 2012. Elevated CO₂ affects plant responses to variation in boron availability. Plant Soil 350:117–130.

Niedziela, C.E., Jr., P.V. Nelson, and D.A. Dickey. 2015. Growth, development, and mineral nutrient accumulation and distribution in tulip from planting through postanthesis shoot senescence. Intl. J. Agron. 2015: Article ID 341287, 11 pages.

Weed Sci. 30:389–394.

Peet, M.M. and D.H. Willits. 1987. Greenhouse CO₂ enrichment alternatives: Effects of increasing concentration or duration of enrichment on cucumber yields. J. Amer. Soc. Hort. Sci. 112:236–241.

Patterson, D.T. and E.P. Flint. 1982. Interacting effects of CO₂ and nutrient concentration.

Peet, M.M. and D.H. Willits. 1987. Greenhouse CO₂ enrichment alternatives: Effects of increasing concentration or duration of enrichment on cucumber yields. J. Amer. Soc. Hort. Sci. 112:236–241.

Roth, B., B. Hobbie, T. Lee, D.S. Ellsworth, J.B. West, D. Tilman, J.M.H. Knops, S. Naem, and J. Trost. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO₂. Nature 440:922–924.

Sionit, N., D.A. Mortensen, B.R. Strain, and H. Hellmers. 1981. Growth response of wheat to CO₂ enrichment and different levels of mineral nutrition. Agron. J. 73:1024–1027.

Smart, D.R. and A.J. Bloom. 1988. Kinetics of ammonium and nitrate uptake among wild and cultivated tomatoes. Oecologia 76:336–340.

Somda, Z.C., W.J. McLaurin, and S.J. Kays. 1999. Jerusalem artichokes growth, development, and field storage. II. Carbon and nutrient element allocation and redistribution. J. Plant Nutr. 22:1315–1334.

Stephanis, J.P. and R.W. Langhans. 1982. Quantum flux density studies of chrysanthemum in a controlled environment with high pressure sodium lamps. J. Rooting studies. J. Amer. Soc. Hort. Sci. 107:457–460.

Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2011. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 107:681–691.

Taiz, L. and E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Assoc., Sunderland, MA.

Subramanian, N.K., P.J. White, M.R. Broadley, and G. Ramsay. 2011. The three-dimensional distribution of minerals in potato tubers. Ann. Bot. 107:681–691.