CLUSTERING OF γ-RAY-SELECTED 2LAC FERMI BLAZARS

V. ALLEVATO1,2, A. FINOGUENOV1,2, AND N. CAPPELLUTI2,3

1 Department of Physics, University of Helsinki, Gustaf Hallströminkatu 2a, FI-00014 Helsinki, Finland
2 University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
3 INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

Received 2014 April 25; accepted 2014 September 30; published 2014 December 3

ABSTRACT

We present the first measurement of the projected correlation function of 485 γ-ray-selected blazars, divided into 175 BL Lacertae (BL Lacs) and 310 flat-spectrum radio quasars (FSRQs) detected in the 2 year all-sky survey by the Fermi-Large Area Telescope. We find that Fermi BL Lacs and FSRQs reside in massive dark matter halos (DMHs) with log $M_h = 13.35^{+0.20}_{-0.14}$ and log $M_h = 13.40^{+0.15}_{-0.13}$ h^{-1} M_\odot, respectively, at low ($z \sim 0.4$) and high ($z \sim 1.2$) redshift. In terms of clustering properties, these results suggest that BL Lacs and FSRQs are similar objects residing in the same dense environment typical of galaxy groups, despite their different spectral energy distributions, power, and accretion rates. We find no difference in the typical bias and hosting halo mass between Fermi blazars and radio-loud active galactic nuclei (AGNs), supporting the unification scheme simply equating radio-loud objects with misaligned blazar counterparts. This similarity in terms of the typical environment they preferentially live in, suggests that blazars tend to occupy the center of DMHs, as already pointed out for radio-loud AGNs. This implies, in light of several projects looking for the γ-ray emission from DM annihilation in galaxy clusters, a strong contamination from blazars to the expected signal from DM annihilation.

Key words: dark matter – galaxies: active – large-scale structure of universe – surveys – X-rays: general

Online-only material: color figures

1. INTRODUCTION

Blazars are radio-loud active galactic nuclei (AGNs) with jets pointing at us rather than the plane of the sky (Blandford & Rees 1978; Urry & Padovani 1995, and references therein). They are characterized by the luminous, rapidly variable, and polarized nonthermal continuum emission, extending from radio to γ-ray (GeV and TeV) energies. They emit most of their electromagnetic output in the γ-ray band and they are the most numerous class of extragalactic objects detected by the Large Area Telescope (LAT) on board the Fermi satellite (Nolan et al. 2012) and by ground-based Cherenkov telescopes (see Hinton 2009 for a review). The overall spectral energy distribution (SED) of low-power blazars is characterized by two broad distinctive humps peaking in the UV-soft X-ray band (due to synchrotron emission of relativistic electrons) and in the GeV–TeV band (due to inverse Compton scattering of soft photons by the same relativistic electrons). High-power blazars peak at smaller frequencies (submillimeter and \simMeV).

Blazars are usually separated into low-power BL Lacertae (BL Lacs) and high-power flat-spectrum radio quasars (FSRQs). BL Lacs are typically completely dominated by the jet emission, emitting a double-humped synchrotron self-Compton spectrum. The FSRQs are more complex, showing clear signatures of a normal AGN disk and broad line region, unlike the BL Lacs which generally show no broad lines or disk emission. Thus, the nature of the accretion flow itself is different in BL Lacs and FSRQs, with the latter showing a standard disk that is absent from the former. This can be linked to the clear distinction between the Eddington ratios of BL Lacs and FSRQs, with the BL Lacs all consistent with $m = M/M_{\text{Edd}} < 0.01$ (where $\eta M_{\text{Edd}} c^2 = L_{\text{Edd}}$ and the efficiency η depends on blackhole (BH) spin) while the FSRQs have $m > 0.01$ (see, e.g., Ghisellini et al. 2010, 2013). According to unified schemes, blazars are misaligned counterparts of radio galaxies, with FSRQs made by powerful Fanaroff–Riley type 2 (FRII) radio galaxies and BL Lacs related to low-power FRI radio galaxies.

As shown in Ackermann et al. (2011), the Fermi–ray Space Telescope provided one of the largest samples of blazars up to $z = 3.1$, allowing for the first time the study of the spatial distribution of γ-ray-selected AGNs in the universe. AGN clustering measurements are powerful in providing information about the physics of galaxy/AGN formation and evolution, the typical environment that AGNs preferentially live in, and putting constraints on the mechanisms that trigger AGN activity. Up to now a large amount of research in the field of clustering has been performed in optical, radio, and X-ray bands. The amplitude of the quasar correlation function suggests that optically selected quasars are hosted by halos of roughly constant mass, a few times $10^{12} M_\odot$ h^{-1}, out to $z \sim 3–4$ (e.g., Croton et al. 2005; Porciani & Norberg 2006; Myers et al. 2007; Ross et al. 2009; da Ángela et al. 2008). On the other hand, measurements of the spatial distribution of X-ray AGNs show that they are located in galaxy group-sized dark matter halos (DMHs) with $M_h = 10^{13–13.5} M_\odot$ h^{-1} at low ($z \sim 0.1$) and high ($z \sim 1$) redshift (see Cappelluti et al. 2012 for a review). The fact that DMH masses of this class of moderate luminosity AGN are estimated to be, on average, larger than those of luminous quasars has been interpreted as evidence against cold gas accretion via major mergers in those systems (e.g., Allevato et al. 2011; Mountrichas & Georgakakis 2012), and/or as support for multiple modes of BH accretion (cold versus hot accretion mode; Fanidakis et al. 2013).

Compared to X-ray- and optically selected sources, radio-selected AGNs are more likely found in group/cluster environments (Smolčić et al. 2011) and are mainly hosted by massive early-type galaxies (e.g., Smolčić et al. 2008, 2009). This result is also confirmed by clustering studies showing that radio AGNs...
have the same clustering amplitude of local elliptical galaxies (e.g., Magliocchetti et al. 2004; Mandelbaum et al. 2009; Wake et al. 2008; Hickox et al. 2009), with a strong dependence on radio luminosity (e.g., Overzier et al. 2003). Magliocchetti et al. (2004) found that faint radio-FIRST AGNs reside in DMHs more massive than $13.4 M_\odot$, which corresponds (following Ferrarese 2002) to a threshold BH mass of $\sim 10^9 M_\odot$. The minimum mass required to have radio AGNs is larger than that obtained for radio-quiet quasars in the same redshift range. Moreover, Hickox et al. (2009) found that radio AGNs reside in DMHs with $M_h = 3 \times 10^{13} h^{-1} M_\odot$, while Mandelbaum et al. (2009) estimated a mass (deduced from g–g lensing) of $1.6 \times 10^{13} h^{-1} M_\odot$ for SDSS radio AGNs. The radio luminosities of these radio AGNs range from 10^{23} to 10^{26} W Hz$^{-1}$; i.e., they are mainly FRI systems.

The clustering signal of radio-loud FRI AGNs has never been studied and Fermi is the only instrument capable of performing such an analysis. Following the argument that blazars are simply misaligned counterparts of radio galaxies, we expect that γ-ray-selected blazars behave similarly to radio AGNs, i.e., we expect that they are hosted by the most massive DMH halos at each epoch, with masses greater than a few times $10^{13} M_\odot$.

Throughout this work, we will assume a ΛCDM cosmology, with $\Omega_m = 0.3$, $\Omega_b = 0.7$, $\Omega_\Lambda = 0.045$, $\sigma_8 = 0.8$. All distances are comoving and quoted in units of Mpc h^{-1}, assuming $h = H_0/100$ km s$^{-1}$. The symbol log indicates a base-10 logarithm.

2. AGN CATALOG

The second catalog of AGNs (2LAC) detected by the Fermi-LAT (LAT) in two years of scientific operation has been presented in Ackermann et al. (2011). The entire sample includes 1017 γ-ray sources. For each source, they found a counterpart comparing the sample with known source catalogs and with uniform surveys in the radio and X-ray bands. The associations have been done with statistical approaches such as Bayesian, likelihood ratio, and log N–log S association methods (see Ackermann et al. 2011 for more details). The 1017 LAT sources have been classified as FSRQs, BL Lac objects, radio galaxies, steep-spectrum radio quasars (SSRQs), Seyfert, narrow line Seyfert 1, and starburst galaxies. The ingredients of the classification are optical spectra or other blazar characteristics (radio loudness, broadband emission, variability, and polarization) and the synchrotron-peak frequency of the broadbandSED. All the sources without a good optical spectrum or without an optical spectrum at all are defined as AGUs and AGNs. All of the objects with single counterparts and without analysis flag (886/1017) define the clean sample, which comprises 395 BL Lacs and 310 FSRQs, 157 sources of unknown type, 22 other AGNs, and 2 starburst galaxies. We focus our analysis on objects classified as blazars, i.e., BL Lac and FSRQs, with known spectroscopic redshifts. Unfortunately, only 46% of BL Lacs (175/395) have measured redshifts that extend to $z = 1.5$. Otherwise, the redshift distribution of FSRQs (310) peaks around $z = 1$ and extends to $z = 3.10$. The redshift distributions of 175 2LAC BL Lacs and 310 2LAC FSRQs are compared in Figure 1.

![Figure 1. Redshift distribution of 175 2LAC BL Lacs (filled red histogram), 310 2LAC FSRQs (dashed blue histogram), and of the corresponding random sources (gray empty histograms), where the random redshifts have been obtained using a Gaussian smoothing with $\sigma = 0.2$. (A color version of this figure is available in the online journal.)](image)

The mean redshift is $(z) = 0.38$ and 1.18 for BL Lacs and FSRQs, respectively.

3. TWO-POINT CORRELATION FUNCTION

The two-point correlation function (2PCF) $\xi(r)$ is defined as the excess probability dP, above a Poisson distribution, of finding an object in a volume element dV at a distance r from another randomly chosen object (Peebles 1980). With a redshift survey, we cannot directly measure $\xi(r)$ in physical space because peculiar motions of galaxies distort the line-of-sight distances inferred from redshift. To separate the effects of redshift distortions, the 2PCF is measured in two dimensions, r_p and π, which are the projected comoving separations between AGN pairs in the directions perpendicular and parallel to the line of sight, respectively. Following Davis & Peebles (1983), r_p and π are defined as

$$\pi = s \cdot \frac{1}{|l|}$$

$$r_p = \sqrt{(s \cdot s - \pi^2)}$$

where r_1 and r_2 are the redshift positions of a pair of AGNs, s is the redshift-space separation $(r_1 - r_2)$, and $l = (r_1 + r_2)/2$ is the mean distance to the pair. We then measure the 2PCF on a two-dimensional grid of separations r_p and π, obtaining the projected correlation function $w_p(r_p)$ defined by Davis & Peebles (1983) as

$$w_{\text{AGN}}(r_p) = 2 \int_0^{\pi_{\text{max}}} \xi(r_p, \pi) d\pi.$$

Usually, $\xi(r_p, \pi)$ is measured using the estimator defined in Landy & Szalay (1993, hereafter LS):

$$\xi = \frac{1}{RR} [DD - 2 DR + RR]$$

where DD, DR, and RR are the counts of pairs in the data data, data/random, and random/random bins, respectively.
The LS estimator is then defined as the ratio between AGN pairs in the data sample and pairs of sources in the random catalog, as a function of the projected comoving separations between the objects. This estimator has been used to measure the 2PCF of X-ray-, optically, and radio-selected AGN (e.g., Zehavi et al. 2005; Li et al. 2006; Coil et al. 2009; Hickox et al. 2009; Gilli et al. 2009; Allevato et al. 2011).

The choice of σ is a compromise between having an optimal signal-to-noise ratio and reducing the excess noise from high separations. Usually, the optimum σ value can be determined by estimating $w_p(r_p)$ for different values of σ, and finding the value at which the 2PCF levels off. Following this approach, we fixed $\sigma = 40 \text{ h}^{-1} \text{ Mpc}$ in the following analysis, which ensures the $w_p(r_p)$ convergence.

The measurement of the 2PCF required the construction of an AGN random catalog with the same selection criteria and observational effects as the data. This random sample serves as an unclustered distribution to which to compare the data. We separately created a random catalog for BL Lacs and FSRQs, reproducing the space and flux distributions of 2LAC blazars. In detail, the random sources are randomly placed in the sky, and the fluxes are randomly drawn from the catalog of real fluxes and kept in the random sample if above the values of the sensitivity map (published by Abdo et al. 2010) at those random positions. We prefer this method with respect to the one that keeps the angular coordinates unchanged, which has the disadvantage of removing the contribution to the signal due to angular clustering. The redshifts are randomly extracted from a smoothed redshift distribution of the real sources. Specifically, we assume a Gaussian smoothing length of $\sigma z = 0.2$. This is a good compromise between scales that are too small, which would suffer from local density variations, and those that are too large, which would oversmooth the distribution. However, we verified that our results do not change significantly using $\sigma z = 0.2 - 0.4$. Figure 1 compares the redshift distribution of 175 BL Lacs (in red) and 310 FSRQs (in blue) with the redshift distribution of the random sources, where the random redshifts have been obtained using a Gaussian smoothing with $\sigma = 0.2$.

Since adjacent bins in $w_p(r_p)$ are correlated, as are their errors, we constructed the covariance matrix $M_{i,j}$ (Miyaji et al. 2007), which reflects the degree to which bin i is correlated with bin j. The covariance matrix is used to obtain reliable fits to $w_p(r_p)$ by minimizing the correlated χ^2 values. By using a bootstrap resampling technique (Coil et al. 2009; Hickox et al. 2009; Krumpe et al. 2010; Cappelluti et al. 2010), we estimated the covariance matrix as

$$M_{i,j} = \frac{1}{N_{\text{boot}}} \sum_{k=1}^{N_{\text{boot}}} (w_k(r_{p,i}) - \langle w(r_{p,i}) \rangle) (w_k(r_{p,j}) - \langle w(r_{p,j}) \rangle).$$

We calculate $w_p(r_p) N_{\text{boot}} = 100$ times and $w_k(r_{p,i})$ and $w_k(r_{p,j})$ are from the kth bootstrap. $\langle w(r_{p,i}) \rangle$ and $\langle w(r_{p,j}) \rangle$ are the averages over all the bootstrap samples.

In the halo model approach, the 2PCF is modeled as the sum of contributions from AGN pairs within individual DMHs (one-halo term, $r_p \lesssim 1 \text{ Mpc h}^{-1}$) and in different DMHs (two-halo term, $r_p \gtrsim 1 \text{ Mpc h}^{-1}$). The superposition of both the terms describes the shape of the 2PCF better than a simple power law. In this context, the bias parameter b reflects the amplitude of the AGN large-scale clustering (two-halo term) relative to the underlying DM distribution, i.e.,

$$w_{\text{mod}}(r_p) = b^2 w_{\text{DM}}^{2-h}(r_p, z).$$

The DM two-halo term is measured at the mean redshift of the sample, using:

$$w_{\text{DM}}^{2-h}(r_p) = r_p \int_0^\infty \xi_{\text{DM}}^{2-h}(r) dr,$$

where

$$\xi_{\text{DM}}^{2-h}(r) = \frac{1}{2\pi^2} \int p^{2-h}(k) \frac{\sin(kr)}{kr} dk.$$

$p^{2-h}(k)$ is the linear power spectrum (Efstathiou et al. 1992), assuming a power spectrum shape parameter of $\Gamma = 0.2$ that corresponds to $h = 0.7$ (see Seljak 2000; Hamana et al. 2002).

4. RESULTS

The projected 2PCFs of 2LAC BL Lacs and FSRQs are shown in Figure 2 in the range $r_p = 1 - 80 \text{ h}^{-1} \text{ Mpc}$. The 1σ errors on $w_p(r_p)$ are the square root of the diagonal components of the covariance matrix. We find a significant signal at almost all the sampled scales for both BL Lacs and FSRQs, even if it has a relatively large uncertainty due to the small number of AGN pairs at each separation. On the contrary, we observe a lack of AGN pairs at smaller separation ($r_p \lesssim 1 \text{ Mpc h}^{-1}$).

We derive the best-fit bias for 2LAC blazars by using a χ^2 minimization technique with one free parameter, where $\chi^2 = \Delta^T M^{-1} \Delta$. In detail, Δ is a vector composed of $w_{\text{AGN}}(r_p) - w_{\text{mod}}(r_p)$ (see Equations (3) and (7)), Δ^T its transpose and M the covariance matrix. The DM 2PCF, as defined in Equation (8), is evaluated at the mean redshift of the samples, i.e., $z = 0.38$ and $\langle z \rangle = 1.18$ for BL Lacs and FSRQs, respectively. For BL Lacs, we find a linear bias of 1.84 ± 0.38 at $z = 0.38$ while, for FSRQs, we obtained $b = 3.30 \pm 0.41$ at $\langle z \rangle = 1.18$ (see Table 1). The errors correspond to $\Delta \chi^2 = 1$.

For comparison, we also fit the 2PCF with a power-law model of the form $w_p(r_p) = \langle r_0(r_p) - r_0 \rangle^{-\Gamma} / \Gamma(\langle r_0 \rangle - r_0)^{\langle r_0 \rangle - r_0}$ (Coil et al. 2009; Hickox et al. 2009; Gilli et al. 2009; Krumpe et al. 2010, 2012; Cappelluti et al. 2010), using a χ^2 minimization technique, with γ and r_0 as free parameters. As shown in Table 1, we derive $\gamma = 1.64_{-0.30}^{+0.55}$, $r_0 = 6.90_{-1.46}^{+1.46}$ Mpc h^{-1} for BL Lacs and $\gamma = 1.5_{-0.4}^{+0.3}$, $r_0 = 7.7_{-3.1}^{+3.8}$ Mpc h^{-1} for FSRQs. The best-fit values of the power-law slope are consistent with several results on the clustering of X-ray-selected AGNs (e.g., Coil et al. 2009; Krumpe et al. 2010, 2012; Cappelluti et al. 2010) and optically selected 2QZ luminous quasars (Porciani et al. 2004). On the other hand, we argue that the low-power-law slope observed for 2LAC blazars might be due to the lack of a clustering signal at small scales ($r_p \lesssim 1 \text{ Mpc h}^{-1}$). Finally, fixing $\gamma = 1.8$, we find that BL Lacs at $z \sim 0.4$ have a correlation length of $r_0 = 7.88 \pm 0.66$ Mpc h^{-1} while FSRQs at $z \sim 1.2$, have a correlation length of $r_0 = 11.2 \pm 1.2$ Mpc h^{-1}.

At similar redshift ($z \sim 1.4$), Shanks et al. (2011) derived a lower best fit of $r_0 = 5.90 \pm 0.14$ Mpc h^{-1} (and $\gamma = 1.8$) for quasars in SDSS DR5, 2SLAQ, and 2QZ surveys.

The power-law best-fit parameters are related to $\sigma_{8,\text{AGN}}(z)$, i.e., the rms fluctuations within a sphere with a co-moving radius of $8 \text{ h}^{-1} \text{ Mpc}$ (Peebles 1980):
where $J_2(\gamma) = 72/[(3 - \gamma)(4 - \gamma)(6 - \gamma)2^\gamma]$. Following this argument, we further derive the bias $b_{\text{PL}} = \sigma_{b,\text{AGN}}(z)/\sigma_{b,\text{DM}}(z)$ where $\sigma_{b,\text{AGN}}(z)$ is evaluated at 8 Mpc h^{-1} and normalized to a value of $\sigma_{b,\text{DM}}(z = 0) = 0.8$. As shown in Table 1, fixing the power-law slope $\gamma = 1.8$, we find a bias factor for 2LAC BL Lacs and FSRQs quite consistent with the values derived using the halo model approach. The uncertainties on the bias factors are derived from the 1σ errors on $\sigma_{b,\text{AGN}}(z)$, which correspond to $\chi^2 = \chi^2_{\text{min}} + 1$.

The projected 2PCF is always obtained by integrating out to some finite r_p rather than to infinity. van den Bosch (2013) demonstrates that this finite integration range introduces errors on the largest scales probed by the data (~ 20 h$^{-1}$ Mpc). This is due to the fact that the Kaiser effect (coherent galaxy motion that causes an apparent contraction of structure along the line of sight in redshift space; Kaiser 1987) cannot be ignored on scales $> \pi_{\text{max}}$. In order to estimate the error introduced in our 2PCF measurements by the finite integration range, we use the correction factor derived in van den Bosch (2013), see Equation (48) and Figure 6 therein for $\pi_{\text{max}} = 40$ h$^{-1}$ Mpc and by integrating over all halo masses.

We find that, without the correction, we underestimate the projected 2PCF by $\sim 35\%$ at $r_p = 20$ h$^{-1}$ Mpc for both 2LAC BL Lacs and FSRQs. However, this error only slightly affects the bias factors (Column 8, Table 1). In fact, by introducing the correction factor the bias factors of BL Lacs and FSRQs (based on power-law best-fit parameters or halo model) increase by $\sim 6\%$, i.e., within the statistical error of $\sim 14\%$. In agreement with van den Bosch (2013), the result suggests that this effect is important when using projected correlation functions to constrain cosmological parameters. However, it only introduces a small change in the bias of relatively small AGN samples.

Finally, we use the bias factor to estimate the typical DMH mass hosting the different blazar samples (under the assumption that the bias only depends on the halo mass). To this end, we followed the bias-mass relation $b(M_h, z)$ defined by the ellipsoidal collapse model of Sheth et al. (2001) and the analytical approximation of van den Bosch (2002).
Table 1 shows the typical DMH mass of 2LAC blazars derived by using the bias as defined in the halo model (Column 8). We found that BL Lacs and FSRQs reside in massive DMHs with $\log M_{h} = 13.35^{+0.20}_{-0.17}$ and $\log M_{h} = 13.40^{+0.15}_{-0.25} h^{-1} M_\odot$, respectively. These results infer for the first time that γ-ray-selected AGNs reside in group-sized halos at low (~ 0.4) and at high (~ 1.2) redshift.

5. DISCUSSION AND CONCLUSIONS

We have used a sample of 485 γ-ray-selected 2LAC blazars (175 BL Lacs and 310 FSRQs) detected in the 2 year all-sky survey of the Fermi satellite, to measure the clustering amplitude and to estimate characteristic DMH masses. We find that BL Lacs and FSRQs inhabit massive DMHs with $\log M_{h} = 13.35^{+0.20}_{-0.17}$ and $\log M_{h} = 13.40^{+0.15}_{-0.25} h^{-1} M_\odot$, respectively, at low ($z \sim 0.4$) and high ($z \sim 1.2$) redshift. Usually, BL Lacs and FSRQs have different power, SED, and Eddington ratios. In detail, low-power BL Lacs are consistent with $m < 0.01$, while high-power FSRQs have accretion rates above this value (see, e.g., Ghisellini et al. 2010, 2013). In terms of clustering properties, our results suggest that BL Lacs and FSRQs are similar objects preferentially residing in the same dense environment typical of galaxy groups. Additionally, their different power and accretion rates do not translate into different typical biases and halo masses.

It is worth comparing our results inferred for Fermi blazars with previous studies on radio-loud galaxies. Radio galaxies are usually classified as FRI or FRII sources depending on their radio morphology, radio power, and the optical luminosity of the hosting galaxies (Fanaroff & Riley 1974; Ledlow & Owen 1996). Unification models usually associate high luminosity FRI with FSRQs and low-luminosity FRI with BL Lacs. Figure 3 shows the DMH mass of radio-loud SDSS quasars at $0.01 < z < 0.3$ (Mandelbaum et al. 2009), 2SLAQ quasars at $z = 0.55$ (Wake et al. 2008) and radio AGES AGNs at $z = 0.57$ (Hickox et al. 2009). The radio luminosities of these samples range from 10^{23} to 10^{26} W Hz$^{-1}$, i.e., typical luminosities of FRI systems. Mandelbaum et al. (2009) measured the shear signal due to galaxy–galaxy lensing and inferred that radio SDSS AGNs reside in DMHs with typical mass of $1.6(\pm0.4) \times 10^{13} h^{-1} M_\odot$ at $z = 0.25$. This value is quite consistent with the typical mass obtained for Fermi-BL Lacs ($M_h = 2.7(\pm1.3) \times 10^{13} h^{-1} M_\odot$). Hickox et al. (2009) found a similar typical mass for the hosting halos of radio AGES AGNs ($M_h = 3(\pm0.9) \times 10^{13} h^{-1} M_\odot$).

By contrast, Wake et al. (2008) estimated an effective DMH mass equals $10.3 \times 10^{13.5} h^{-1} M_\odot$ for 2SLAQ quasars at $z = 0.55$, by using the HOD. This value is higher than typical halo masses derived for FRI objects and Fermi blazars. Indeed, this is quite expected given the different method (HOD) used to derive the DMH mass. Instead, using the power-law best-fit parameters quoted in Wake et al. (2008), we estimate a typical mass scaled to $\log M_{h} = 13.6 \pm 0.13 h^{-1} M_\odot$.

In Figure 3, we also show the typical DMH mass of radio-loud SDSS quasars at $z = 0.28$ (Krumpe et al. 2012) and $z = 1.3$ (Shen et al. 2009). Given the high radio luminosities, we expect that these quasars are representative of FRII radio AGNs. In detail, SDSS quasars at $z = 1.3$ inhabit DMHs with $\log M_{h} = 13.4 \pm 0.20 h^{-1} M_\odot$, value which is quite consistent with our result on Fermi FSRQs at similar redshift.

To summarize, we find that γ-ray blazars and FRI–II radio AGNs reside in DMHs of similar mass of the order of few times $10^{13} h^{-1} M_\odot$ at low (~ 0.4) and high (~ 1.2) redshift. These results suggest that, in terms of clustering properties, blazars, and radio-loud galaxies are similar objects, supporting the unification scheme equating FRI–II radio AGNs as misaligned counterparts of blazars (Urry & Padovani 1995, and reference therein).

Similarly, measurements of the clustering of X-ray AGNs with moderate luminosity ($L_{\text{bol}} \sim 10^{45–46}$ erg s$^{-1}$) show that they are located in dense environment, typical of galaxy groups ($10^{15–13.5} h^{-1} M_\odot$) at low ($\sim 0.1$) and high (1–2) redshift (e.g., Hickox et al. 2009; Cappelluti et al. 2010; Allevato et al. 2011; Krumpe et al. 2010, 2012; Hickox et al. 2009; Mountrichas et al. 2013; Koutoulidis et al. 2013). On the contrary, the hosting halo mass of γ-ray blazars and FRI–II radio AGNs is an order of magnitude larger than the typical mass of luminous quasars (e.g., Croom et al. 2005, da Ângela et al. 2008; Shen et al. 2009; Ross et al. 2009). In fact, several works have shown that luminous optically selected quasars are hosted by halos of roughly constant mass, a few times $10^{12} h^{-1} M_\odot$, out to $z \sim 3$.

Studies of the cross correlation function between blazars and a large sample of galaxies will significantly reduce the uncertainties in the 2PCF allowing the modeling of the signal with the halo occupation. The importance of using this method to derive a more reliable estimate of the full halo mass distribution, is supported by Wake et al.’s results, which suggest more massive hosting halos for radio AGNs.

In terms of properties of blazar hosting galaxies, previous works have shown that the host galaxies of blazars are
luminous giant ellipticals, regardless of intrinsic nuclear power. Accordingly, we find that 2LAC blazars are located in relatively large DMHs with DMH masses of a few \(10^{13} M_\odot\), corresponding to the large galaxy groups or small clusters. Additionally, blazars also have the same morphologies, luminosities, and sizes as the host galaxies of FRI–II sources (e.g., Urry et al. 2000; O’Dowd & Urry 2005; Kotilainen et al. 2005). Our results extend to the clustering properties (and then to the typical environment they live in) and the similarity between \(\gamma\)-ray blazars and radio galaxies.

Following these results, we also expect that BL Lacs and FSRQs preferentially occupy the center of DMHs and host very massive BH (\(>10^6 M_\odot\)), as already pointed out for radio AGNs (e.g., Wake et al. 2008; Mandelbaum et al. 2009; Smolčić et al. 2011; Ghisellini et al. 2013). The halo occupation will provide the full distribution of \(\gamma\)-ray AGNs among DMHs and then the contribution from objects in central halos. This is important in light of several projects that are currently looking for \(\gamma\)-ray emission from DM annihilation in the galactic center, in dwarf galaxies, and in galaxy clusters. Galaxy clusters are the largest gravitationally bound structures in the universe dominated by DM. Their large DM content makes them interesting targets for indirect detection of DM annihilation (e.g., Nezri et al. 2012; Hektor et al. 2013). In this light, the fact that \(\gamma\)-ray blazars reside in clusters and preferentially reside in central halos, suggests a strong contamination from blazars to the putative detected signal of DM annihilation.

V.A. and A.F. wish to acknowledge the Finnish Academy award, decision 266918. N.C. acknowledges European Commission Funding through the FP7 SPACE project ASTRODEEP (Ref. No: 312725). This work has been supported by NASA grant NNX12AP22G.

REFERENCES
Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJS, 188, 405
Ackermann, M., Ajello, M., Allafort, A., et al. 2011, ApJ, 743, 171
Allevato, V., Finoguenov, A., Cappelluti, N., et al. 2011, ApJ, 736, 99
Blandford, R. D., & Rees, M. J. 1978, PhyS, 17, 265
Cappelluti, N., Aiello, M., Burlon, D., et al. 2010, AdAst, 2012, 25
Coil, A. L., Georgakakis, A., Newman, J. A., et al. 2009, ApJ, 701, 1484
Croom, S. M., Boyle, B. J., Shanks, T., et al. 2005, MNRAS, 356, 415
da Angela, J., Shanks, T., Croom, S. M., et al. 2008, MNRAS, 383, 565
Davis, M., & Peebles, P. J. E. 1983, ApJ, 267, 465
Efstathiou, G., Bond, J. R., & White, S. D. M. 1992, MNRAS, 258, 1
Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 16, 31
Fanidakis, N., Georgakakis, A., Mountrichas, G., et al. 2013, MNRAS, 435, 679
Ferrarese, L. 2002, ApJ, 578, 90
Ghisellini, G., Della Ceca, R., Volontieri, M., et al. 2010, MNRAS, 405, 387
Ghisellini, G., Haardt, F., Della Ceca, R., Volontieri, M., & Sbrarto, T. 2013, MNRAS, 432, 2818
Gilli, R., Zamorani, G., Miyaji, T., et al. 2009, A&A, 494, 33
Hamana, T., Yoshida, N., & Suto, Y. 2002, ApJ, 568, 455
Hektor, A., Raidal, M., & Tempel, E. 2013, ApJ, 762, 22
Hickox, R. C., Jones, C., & Forman, W. R. 2009, ApJ, 696, 891
Hinton, J. 2009, NJPh, 11, 5005
Kaiser, N. 1987, MNRAS, 227, 1
Kotilainen, J. K., Hyvönen, T., & Falomo, R. 2005, A&A, 440, 831
Koutoulidis, L., Plionis, M., Georgantopoulos, I., & Fanidakis, N. 2013, MNRAS, 428, 1382
Krumpe, M., Miyaji, T., & Coil, A. L. 2010, ApJ, 713, 558
Krumpe, M., Miyaji, T., Coil, A. L., & Acceves, H. 2012, ApJ, 746, 1
Landy, S. D., & Szalay, A. S. 1993, ApJ, 412, 64
Ledlow, M. J., & Owen, F. N. 1996, AJ, 112, 9
Li, C., Kauffmann, G., Wang, L., et al. 2006, MNRAS, 373, 457
Magliocchetti, M., Maddox, S. J., Hawkins, E., et al. 2004, MNRAS, 350, 1485
Magliocchetti, M., & Porciani, P. 2003, MNRAS, 346, 186
Mandelbaum, R., Li, C., Kauffmann, G., & White, S. D. M. 2009, MNRAS, 393, 377
Miyaji, T., Zamorani, G., Cappelluti, N., et al. 2007, ApJS, 172, 396
Mountrichas, G., & Georgakakis, A. 2012, MNRAS, 420, 514
Mountrichas, G., Georgakakis, A., Finoguenov, A., et al. 2013, MNRAS, 430, 661
Myers, A. D., Brunner, R. J., Richards, G. T., et al. 2006, ApJ, 638, 622
Myers, A. D., Brunner, R. J., Richards, G. T., et al. 2007, ApJ, 658, 99
Nezri, E., White, R., Combet, C., et al. 2012, MNRAS, 425, 477
Nolan, P. L., Abdo, A. A., Ackermann, M., et al. 2012, ApJS, 199, 31
O’Dowd, M., & Urry, C. M. 2005, ApJ, 627, 97
Overzier, R. A., Röttgering, H. J. A., Rengelink, R. B., & Wilman, R. J. 2003, A&A, 405, 530
Peebles, P. J. E. 1980, The Large Scale Structure of the Universe (Princeton, NJ: Princeton Univ. Press)
Porciani, C., Magliocchetti, M., & Norberg, P. 2004, MNRAS, 355, 1010
Porciani, C., & Norberg, P. 2006, MNRAS, 371, 1824
Ross, N. P., Shen, Y., Strauss, M. A., et al. 2009, ApJ, 697, 1634
Seljak, U. 2000, MNRAS, 318, 203
Shanks, T., Crook, J. M.,: Fine, S., Ross, N. P., & Sawangwit, U. 2011, MNRAS, 416, 650
Shen, Y., Strauss, M. A., Ross, N. P., et al. 2009, ApJ, 697, 1656
Sheth, R. K., Mo, H. J., & Tormen, G. 2001, MNRAS, 323, 1
Smolčić, V., Finoguenov, A., Zamorani, G., et al. 2011, MNRAS, 416, 31
Smolčić, V., Schinnerer, E., Scodellio, M., et al. 2008, ApJS, 177, 14
Smolčić, V., Zamorani, G., Schinnerer, E., et al. 2009, ApJ, 696, 24
Urry, C. M., & Padovani, P. 1995, PASP, 107, 803
Urry, C. M., Scarpa, R., O’Dowd, M., et al. 2000, ApJ, 532, 816
van den Bosch, F. C. 2002, MNRAS, 331, 98
van den Bosch, F. C., More, S., Cacciato, M., et al. 2013, MNRAS, 430, 725
Wade, D. A., Croom, S. M., Sadler, E. M., & Johnston, H. M. 2008, MNRAS, 391, 1674
Zehavi, I., Eisenstein, D. J., Nichol, R. C., et al. 2005, ApJ, 621, 22