CONFIGURATIONS OF AN ARTICULATED ARM AND SINGULARITIES OF SPECIAL MULTI-FLAGS

FERNAND PELLETIER¹ & MAYADA SLAYMAN ²

Abstract. On one hand P. Mormul has classified the singularities of special multi-flags in terms of "EKR class" encodings by sequences of integers (cf [7] and [8]). On the other hand, A-L. Castro and R. Montgomery in [4], have proposed a codification of singularities of multi-flags RC and RVT codes. The most important results of this paper describe a decomposition of each "EKR" class of depth at most 1 and, for k ≤ 4, at most 2 in terms of class in RVT codes, and give an interpretation of such "EKR" classes and RVT classes in terms of configurations of an articulated arm.

AMS classification: 53, 58, 70, 93.

Keywords: special multi-flags distributions, Cartan prolongation, spherical prolongation, articulated arm, EKR classes, RVT codes.

1. Introduction and Results

A special multi-flag of step m ≥ 1 and length k ≥ 1 is a sequence (see [7]):

\[F : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM \]

of distributions of constant rank on a manifold M of dimension (k + 1)m + 1 which satisfies the following conditions:

(i) \(D_{j-1} = [D_j, D_j] \) is the distribution generated by all Lie bracket of sections of \(D_j \).

(ii) \(D_j \) is a distribution of constant rank \((k - j + 1)m + 1\).

(iii) Each Cauchy characteristic subdistribution \(L(D_j) \) of \(D_j \) is a subdistribution of constant corank one in each \(D_{j+1} \), for \(j = 1, \cdots , k - 1 \), and \(L(D_k) = 0 \).

(iv) there exists a completely integrable subdistribution \(F \subset D_1 \) of corank one in \(D_1 \).

(see section 2.1 for a more precise definition)

The notion of special multi-flags is described in some ways in [13] and [8]. Furthermore, for \(m ≥ 2 \), it is proved in [2] and [16] that the existence of a completely integrable subdistribution \(F \) of \(D_1 \) implies property (iii), and when such a distribution \(F \) exists, it is than unique (see Theorem 2.1). When \(m = 1 \) a special multi-flag is a Goursat flag, and, in this case, the conditions (iii) and (iv) are automatically satisfied but for such a distribution \(F \) is not unique. One fundamental result on Goursat flags is the existence of locally universal Goursat distributions proved by R. Montgomery and M. Zhitomirski in [10]: the "monster Goursat manifold" which is constructed by applying Cartan prolongations \(k \) times. On the other hand, the kinematic system of a car with \(k - 1 \) trailers can be described by an appropriate Goursat distribution \(\Delta_k \) on \(\mathbb{R}^2 \times (S^1)^k \) and moreover, this configuration space is diffeomorphic to the Cartan prolongation of the distribution \(\Delta_{k-1} \) on \(\mathbb{R}^2 \times (S^1)^{k-1} \) (see Appendix D of [10]).

Theorem 1 of this paper (which is announced in [12]) is a generalization of this last result for special multi-flags of step \(m ≥ 2 \). As all the arguments used to show these results are basic arguments for the proof of Theorem 2 and Theorem 3 of this paper, we give here a complete this result.

More precisely, a special multi-flag can be considered as a generalization of the notion of Goursat flags and the fundamental result of [2] and [16] is again obtained by Cartan prolongation (see also [8]). So, in this situation, we can also defined a "monster tower" by successive Cartan prolongations of \(T \mathbb{R}^{m+1} \) (see for instance[2], [16], [4] or [5]). On the other hand, we can construct a kinematic system, called articulated arm in [15], and also called system of rigid bars in [6]. The configuration space \(C^k(m) \) of such a kinematic system is diffeomorphic to \(\mathbb{R}^{m+1} \times (S^m)^k \), and this system is characterized by a distribution \(D_k \) which generates a special multi-flags of length \(k \) (see section 2.1).

¹Université de Savoie, Laboratoire de Mathématiques (LAMA) Campus Scientifique, 73376 Le Bourget-du-Lac Cedex, France. E-Mail: pelletier@univ-savoie.fr
²Lebanese University, Mathematics Department, Faculty of Sciences, Lebanon. E-Mail: mslayman@ul.edu.lb
³see section 2.1
On one hand, by Cartan prolongations, we have a tower of projective bundles: (see section 2.2)

\[\cdots \to P^k(m) \to P^{k-1}(m) \to \cdots \to P^1(m) \to P^0(m) : = \mathbb{R}^{m+1} \]

Each manifold \(P^j(m) \) is provided with a distribution \(\Delta_j \), which is the Cartan prolongation of \(\Delta_{j-1} \).

On the other hand we can also define a natural notion of "spherical prolongation" which also gives rise to a tower of sphere bundles (see section 2.3)

\[\cdots \to \hat{P}^k(m) \to \hat{P}^{k-1}(m) \to \cdots \to \hat{P}^1(m) \to \hat{P}^0(m) : = \mathbb{R}^{m+1} \]

Again, each manifold \(\hat{P}^j(m) \) is provided with a distribution \(\hat{\Delta}_j \), which is the spherical prolongation of \(\hat{\Delta}_{j-1} \).

Note that we have a canonical 2-fold covering

\[\hat{P}^k(m) \to P^k(m) \]

for any \(k \geq 1 \) and \(m \geq 2 \).

In this context, we have the following result announced in [12]:

Theorem 1.

Let be \(\Delta_k \) the canonical distribution obtained on \(\hat{P}^k(m) \) after \(k \)-fold "spherical prolongation". Then we have:

For each \(k \geq 1 \) and \(m \geq 2 \), there exists a diffeomorphism \(F^k \) from \(\hat{P}^k(m) \) on \(C^k(m) \) such that:

1. \(\pi^k: \hat{P}^k(m) \to \hat{P}^{k-1}(m) \) and \(\rho^k: C^k(m) \to C^{k-1}(m) \) are the canonical projections, we have:

\[\rho^k \circ F^k = F^{k-1} \circ \pi^k \]

2. \(F^k(\hat{\Delta}_k) = D_k \)

In particular, this result gives a positive answer to a conjecture proposed in section 6 of [5].

The singularities of special multi-flags were firstly described by P Mormul in [7] and [8]. This classification was founded on one hand, on a generalization of Cartan prolongation and, on the other hand, on some "operation" denoted \(\mathsf{j} \) which produce a new \((m+1)\)-distributions from the older ones. So P. Mormul constructs a coding system for labeling singularity classes of germs of special multi-flags which he called "Extended Kumpera-Ruiz classes" and "EKR classes" in short (for more details see section 5.1). An EKR class is coded by a sequence \(j_1 \cdots j_k \) so that \(j_{i+1} \leq 1 + \sup\{j_1, \cdots, j_i\} \). The integer \(\sup\{j_1, \cdots, j_k\} - 1 \) is called the depth of the EKR class.

More recently, in [4], A-L. Castro and R. Montgomery have proposed a codification of singularities of multi-flags founded on the tower of projective bundles (1). They use \(\mathsf{RC} \) and \(\mathsf{RVT} \) codes. So they get the classification of singularities of special multi-flags in terms of \(\mathsf{RC} \) or \(\mathsf{RVT} \) classes.

The essential results of this paper is to give a decomposition of EKR class of depth 1 in terms of \(\mathsf{RVT} \) classes and also to give an interpretation of EKR class of depth 1 and \(\mathsf{RVT} \) classes in terms of configurations of an articulated arm.

More precisely, in the tower (1) we can define sub-towers by taking the Cartan prolongation of any fiber of \(P^j(m) \to P^{j-1}(m) \). We get the so called "baby monsters" in [4], so that, in each vector space \(\Delta_j(p) \subseteq T_pP^j(m) \) we have a family of "critical" hyperplanes coming from these "baby monsters". One of them is the vertical space \(V_jP^j(m) \) i.e. the tangent space to a fiber of \(P^j(m) \to P^{j-1}(m) \). A point \(p \in P^j(m) \) can be written \(p = (p_{k-1}, z) \) where \(p_{k-1} \in P^{k-1}(m) \) and \(z \) is a line in \(\Delta_{k-1}(p_{k-1}) \). The point \(p \) is called vertical if \(z \) is tangent to the fiber at \(p_{k-1} \), tangency if \(z \) is not vertical but belongs to one critical hyperplane and otherwise \(p \) is called regular. So we can affect to \(p \) a word in letters \(\{R, V, T\} \) so that the letters of rank \(l \) is \(R \) or \(V \) or \(T \) according to the fact that the projection of \(p \) onto \(P^l(m) \) is regular or vertical or tangency respectively.

In a word \(\omega \), a sub-word of type \(R^h \) or \(T^l \) means a sequence of \(h \) (resp. \(l \)) consecutive letters \(R \) (resp. \(T \)) if \(h > 0 \) (resp. \(l > 0 \)), and no letter \(R \) (resp. \(T \)) if \(h = 0 \) (resp. \(l = 0 \)). For any EKR class of 1-depth we will denote by \(\{i_1, \cdots, i_v\} \) the set \(\{i \text{ such that } j_i = 2\} \). The following result gives a complete description of EKR classes of depth 1 in terms of class of word in \(\mathsf{RVT} \) codes.

Theorem 2.

1. Each EKR class \(\Sigma_{j_1 \cdots j_k} \) of depth 1 is an analytic manifold of codimension \(v \).
(2) Denote by $C_{R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V}$ a class of point whose RVT code is $R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V$. Then any class C_ω of point p whose RVT code is ω is contained in an EKR class $\Sigma_{j_1 \cdots j_\nu}$ if and only if ω is of type $R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V$ where each letter V is exactly at rank i_1, \ldots, i_ν. Such a class $C_{R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V}$ is an analytic submanifold of $\Sigma_{j_1 \cdots j_\nu}$ of codimension $l_1 + \cdots + l_\nu$.

(3) The EKR class $\Sigma_{j_1 \cdots j_\nu}$ is the union of all class $C_{R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V}$ which satisfy property (2).

Theorem 3.

Let be (M_0, \ldots, M_k) an articulated arm in \mathbb{R}^{m+1}

1. a configuration $q \in C_k^\lambda(m)$ of the articulated arm belongs to the EKR class $\Sigma_{j_1 \cdots j_\nu}$ of depth 1 if and only if, for this configuration, the segments $[M_{i-2}, M_{i-1}]$ and $[M_{i-1}, M_i]$ are orthogonal in M_{i-1} for all $i = i_1, \ldots, i_\nu$.

2. There exists a family

$$\{K_0^\lambda, \ldots, K_\nu^\lambda\}_{\lambda=1, \ldots, \nu},$$

with $\kappa_\lambda = i_{\lambda+1} - i_\lambda - 1$ for $\lambda = 1, \ldots, \nu - 1$ and $\kappa_\nu = k - i_\nu - 1$

of directions in \mathbb{R}^{m+1} such that q belongs to the class $C_{R^{h_0}_V R^{h_1}_V \cdots V R^{h_\nu}_V} \subset \Sigma_{j_1 \cdots j_\nu}$ if and only if

- each segment $[M_{i_{\lambda+1} - 1}, M_{i_{\lambda+1}}]$ is orthogonal to K_λ^1 in $M_{i_{\lambda+1} - 1}$ for $l = 0, \ldots, l_\lambda$ and $\lambda = 1, \ldots, \nu$;

- each pair of consecutive segments $[M_{i_{\lambda+1} - 2}, M_{i_{\lambda+1} - 1}]$ and $[M_{i_{\lambda+1} - 1}, M_{i_{\lambda+1}}]$ are not orthogonal in $M_{i_{\lambda+1} - 1}$ for all i which do not belong to the union of the previous sets of index.

We finally give the same type of results for EKR classes of depth at most 2 for $1 \leq k \leq 4$ in the last section (section 5.4).

This paper is self-contained and organized as follows.

In Section 2 we recall at first all the context and essential results about special multi-flags which are used in this paper. In a second subsection, We present a summary on Cartan prolongation and tower of projective bundle. Spherical prolongations, tower of sphere bundles and their properties are developed in the last subsection.

Section 3 is devoted to the context of the configurations of an articulated arm of length $k \geq 1$ in \mathbb{R}^{m+1}. The space $C_k^\lambda(m)$ of such configuration is presented in the first subsection. The relation between tower of sphere bundles and $C_k^\lambda(m)$ is given in the second subsection in which the reader can find of proof of Theorem 1. Finally we present the hyperspherical coordinates on $C_k^\lambda(m)$ in the last subsection.

In the first subsection of section 4, according to [4], we present a summary on the RC and RVT codes and adapt these codes to the context of tower of sphere bundles. The following subsection gives some interpretations of the property of verticality in terms of configurations of an articulated arm. In the same way, some interpretations of the property of tangency are given in the last subsection.

Section 5 is devoted to the relation between EKR classes of depth at most 1 and RVT classes. In the first subsection, we summary the definition and procedures about EKR classes according to [7] and [8]. The following subsection gives a global description of EKR classes in terms of RVT classes. In particular, it contains a proof of theorem 2. The following subsection presents an interpretation in terms of configurations of an articulated arm for EKR classes (of depth at most 1) and RVT classes. In particular it contains a proof of Theorem 3. Finally, the last subsection develops, for $1 \leq k \leq 4$, the decomposition of EKR classes of depth at most 2 in RVT classes and the corresponding interpretation in terms of configurations of an articulated arm.

We end this paper by some commentaries about these results and the results contained in [4], [5] and [9].

2. Preliminaries

2.1. Special multi-flags.

A distribution D on a manifold M is an assignement $D : x \to D_x \subset TM$ of subspace D_x of the tangent space T_xM. A local vector field X on M is tangent to D if for any $X(x)$ belongs to D_x for all x in the open set on which X is defined. A distribution is called a smooth distribution if there exists a set \mathcal{X} of local vector fields such that D_x is generated by the set $\{X(x), X \in \mathcal{X}\}$, we then say that D is generated by \mathcal{X}.

In this paper any distribution will be smooth and we denote by $\Gamma(D)$ the set of all local vector fields which are tangent to D. Such a distribution will be called a distribution of constant rank if D defines is a subbundle of TM. According to [2] and [16], any pair (M, D) of a distribution of constant rank on a smooth manifold M will be called a differential system. Given two differential systems (M, D) and (N, Δ), we will say that (M, D, x) is locally equivalent to (N, Δ, y) if there exists an open neighbourhood U of x in M and a diffeomorphism ϕ from U onto an open neighbourhood V of $y = \phi(x)$ in N so that $\phi_*(D|_U) = \Delta|_V$.

The Lie square of a distribution D is the distribution denoted D^2 which is generated by the sets $\Gamma(D)$ and $\{[X,Y], X,Y \in \Gamma(D)\}$. The Cauchy characteristic distribution $L(D)$ of a distribution D is the distribution generated by the set vector fields $\{[X,Y], X,Y \in \Gamma(D)\}$ such that $[X,Y](x) \in D_x$. If $L(D)$ is a distribution of constant rank, then it is an integrable distribution.

A special multi-flag of step $m \geq 2$ and length $k \geq 1$ is a sequence (see [7]):

$$\mathcal{F} : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$$

of distributions of constant rank on a manifold M of dimension $(k+1)m + 1$ which satisfies the following conditions:

(i) $D_{j-1} = (D_j)^2$.

(ii) D_j is a distribution of constant rank $(k-j+1)m + 1$.

(iii) Each Cauchy characteristic subdistribution $L(D_j)$ of D_j is a subdistribution of constant corank one in each D_{j+1}, for $j = 1, \ldots, k-1$, and $L(D_k) = 0$.

(iv) There exists a completely integrable subdistribution $F \subset D_1$ of corank one in D_1.

In the following, a flag \mathcal{F} which satisfies conditions (i), (ii) but not conditions (iii) and (iv) will be just called a multi-flag of step m or a m-flag and we say that \mathcal{F} is generated by D.

The necessary and sufficient condition of a multi-flag to be a special multi-flag is given by the following result (see [2] Proposition 1.3 and [16] Theorem 6.2):

Theorem 2.1. [2],[16] For $k \geq 2$, $m \geq 1$ consider a multi-flag of step m:

$$\mathcal{F} : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$$

\mathcal{F} is a special multi-flag if and only if there exists a completely integrable subbundle F of D_1 of corank 1. Moreover, if such a subbundle F exists, F is unique.

According to the previous definition of a special multi-flag, we obtain the following sandwich flag:

$$D_k \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM$$

All vertical inclusions in this diagram are of codimension one, while all horizontal inclusions are of codimension k. The squares built by these inclusions can be perceived as certain sandwiches, i.e. each subdiagram number j indexed by the upper left vertices D_j:

$$D_j \subset \cdots \subset F$$

$$L(D_{j-1}) \subset L(D_{j-2})$$

is called sandwich number j.

In a sandwich number j, at each point $x \in M$, in the $(m+1)$ dimensional vector space $D_{j-1}/L(D_{j-1})(x)$ we can look for the relative position of the m dimensional subspace $L(D_{j-2})/L(D_{j-1})(x)$ and the 1 dimensional subspace $D_j/L(D_{j-1})(x)$:

- either $L(D_{j-2})/L(D_{j-1})(x) \oplus D_j/L(D_{j-1})(x) = D_{j-1}/L(D_{j-1})(x)$
- or $D_j/L(D_{j-1})(x) \subset L(D_{j-2})/L(D_{j-1})(x)$.

We say that $x \in M$ is a **Cartan point** if the first situation is true in each sandwich number j, for $j = 2, \ldots, k$. Otherwise x is called a singular point.

2.2 Cartan prolongation and tower of projective bundles.

Let be D a distribution of constant rank $m + 1$ on a manifold M of dimension n. Classically the Grassmannian bundle $G(D,1)$ on M is the set

$$G(D,1, M) := \bigcup_{x \in M} P(D(x),1)$$

where $P(D(x),1)$ is the projective space of the vector space $D(x)$. So we have a bundle $\pi : G(D,1) \to M$ whose fiber $\pi^{-1}(x)$ is diffeomorphic to the projective space $\mathbb{R}P^m$. The **rank one Cartan prolongation** is the distribution $D^{(1)}$ defined in the following way: given a point $(x,\lambda) \in G(D,1)$ then

$$D^{(1)}_{(x,\lambda)} := d\pi^{-1}(\lambda) \subset T_{(x,\lambda)}G(D,1,M)$$
where \(\lambda \) is a direction of \(D(x) \). Then \(D^{(1)} \) is a distribution on \(G(D, 1, M) \) of constant rank \(m + 1 \). Let be \(M \) a manifold of dimension \(m + 1 \) As in [16], for any \(m \geq 2 \) and \(k \geq 1 \) starting with \(D = TM \), we obtain inductively a tower of bundles:

\[
\cdots \rightarrow P^k(M) \rightarrow P^{k-1}(M) \rightarrow \cdots \rightarrow P^1(M) \rightarrow P^0(M) := M
\]

where, for any \(j = 0, \cdots, k \), \(P^j(M) \) is a manifold of dimension \((j + 1)m + 1\), and on each \(P^j(M), \Delta_j \) is a distribution and these data are defined inductively by :

\[
P^j(M) = G(\Delta_{j-1}, 1, P^{j-1}(M)) \text{ and } \Delta_j = (\Delta_{j-1})^{(1)}\text{ for } j = 1, \cdots, k \text{ and } \Delta_0 = TM.
\]

In the particular case of \(M = \mathbb{R}^{m+1} \), for \(j = 0, \cdots, k \), we denote simply by \(P^j(m) \) the manifold \(P^j(\mathbb{R}^{m+1}) \) and we have the following tower of bundles:

\[
\cdots \rightarrow P^k(m) \rightarrow P^{k-1}(m) \rightarrow \cdots \rightarrow P^1(m) \rightarrow P^0(m) := \mathbb{R}^{m+1}
\]

We have then the following result :

Theorem 2.2. [16]

1. On \(P^k(m) \), the distribution \(\Delta_k \) generates a special multi-flag of step \(m \) and length \(k \).
2. let be \(\mathcal{F} : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM \) a special multi-flag of step \(m \geq 2 \) and length \(k \geq 1 \). Then, for any \(x \in M \), there exists \(y \in P^k(m) \) for which the differential system \((P^k(m), \Delta_k, y) \) is locally equivalent to the differential system \((M, D, x) \).

Remark 2.1.
The part 2 of Theorem 2.2 can be found precisely in [16] called "Drapeau Theorem". However, according to the definition of a special multi-flag, we can easily deduce this result from the following Theorem of [8]:

Theorem 2.3. [8] Suppose that \(D \) is a \((m + 1)\)-dimensional distribution on a manifold \(M^{n+m} \) such that:

1. \(D_1 = [D, D] \) is a \((2m + 1)\)-dimensional distribution on \(M \),
2. there exists a \(1 \)-codimensional involutive subdistribution \(E \subset D \) that preserves \(D_1 \), that is \([E, D_1] \subset D_1 \).

Then, locally, \(D \) is equivalent to the Cartan prolongation \((D_1/E)^{(1)} \) of \(D_1 \) reduced modulo \(E \).

2.3. Spherical prolongation, Cartan prolongation and tower of sphere bundles.

Let be \(D \) a distribution of constant rank \(m + 1 \) on a manifold \(M \) of dimension \(n \). Choose any riemannian metric \(g \) on \(M \), and we denote by \(S(D, M, g) \) the unit sphere bundle of \(D \) associated to the induced riemannian metric on \(D \). So we get a bundle \(\hat{\pi} : S(D, M, g) \rightarrow M \). On \(S(D, M, g) \), we consider the antipodal action of \(\mathbb{Z}_2 \). Clearly, the quotient of \(S(D, M, g) \) by this action can be identified with \(G(D, 1, M) \) and the associated projection \(\pi : S(D, M, g) \rightarrow G(D, 1, M) \) is a bundle morphism over \(M \), and also a two-fold covering. In particular \(\pi \) is a local diffeomorphism. On \(S(D, M, g) \) we consider the distribution \(D^{[1]} \) defined in the following way

\[
D^{[1]}_{(x, \nu)} := \{ v \in T_{(x, \nu)}S(D, M, g) \text{ such that } d\hat{\pi}(v) = \lambda \nu \text{ for some } \lambda \in \mathbb{R} \}
\]

where \(\nu \) is a norm one vector in \(D(x) \).

The distribution \(D^{[1]} \) is called the **rank one spherical prolongation** of \((M, D, g) \).

Remark 2.2.
In fact, the unit sphere bundle of \(S(D, M) \) is defined as soon as we fix some riemannian metric on \(D \). In this case, the distribution \(D^{[1]} \) is also well defined.

Lemma 2.1.

(i) we have \(\tau_\ast D^{[1]} = D^{(1)} \)

(ii) There exists a canonical riemannian metric \(\hat{g} \) on \(S(D, M, g) \) which is uniquely defined from the riemannian metric \(g \) on \(M \).

Proof.
At first we show part (i) locally. Choose a chart domain \(U \) over which \(D \) is trivial. We choose an orthonormal frame \(\{ e_0, \cdots, e_m \} \) of \(D \) over \(U \). Without loss of generality we can assume that \(D^\perp \equiv \mathbb{R}^n \times \mathbb{R}^{m+1} \) so, the bundle \(S(D, M, g)|_U \) is isomorphic to \(\mathbb{R}^n \times S^m \) and \(G(D, 1, M)|_U \) is isomorphic to \(\mathbb{R}^n \times \mathbb{R}P^m \). So locally, \(\tau : \mathbb{R}^n \times S^m \rightarrow \mathbb{R}^n \times \mathbb{R}P^m \) is the map \((x, \nu) \rightarrow (x, [\nu]) \) where \([\nu] \) is the line bundle generated by \(\nu \). From the definition of \(D^{[1]}_{(x, \nu)} \) and \(D^{[1]}_{\mu(x, [\nu])} \) we have \(\tau_\ast(D^{[1]}_{(x, \nu)}) = D^{[1]}_{\mu(x, [\nu])} \). As \(\tau \) is a local diffeomorphism we get the part (i) locally. On the other hand, the map \(\hat{\alpha} : S(D, M, g) \rightarrow S(D, M, g) \) given by \(\hat{\alpha}(x, \nu) = (x, -\nu) \) is a diffeomorphism which commutes with \(\tau \). From the definition of \(D^{[1]} \), we get

\[
\hat{\alpha}_\ast(D^{[1]}_{(x, \nu)}) = D^{[1]}_{(x, -\nu)}
\]
This ends the proof of part (i).
For part (ii), denote by \hat{g} the canonical riemannian metric on TM associated to g. As, $S(D, M, g)$ can be considered as a submanifold on TM we get an natural induced riemannian metric \hat{g} on $S(D, M, g)$. □

Let be g_0 and g_1 two riemannian metrics on M. We denote by $S_i(D, M)$ the sphere bundle of D associated to the metric g_i, and $D^{[i]}$ the spherical prolongation of (D, M, g_i) for $i = 0, 1$.

Lemma 2.2.
There exists a canonical isomorphism of sphere bundle $\psi : S_0(D, M) \to S_1(D, M)$ such that $\psi_* (D^{[1]}_0) = D^{[1]}_1$.

Proof.
Let be $D^\circ = \bigcup_{x \in M} [D_x \setminus \{0\}]$. Then D° is an open submanifold of $D \subset TM$. On D° we consider the map $\Psi(x, u) : D^\circ \to D^\circ$ defined by

$$\Psi(x, u) = (x, \frac{u}{|g_1(u, u)|^{1/2}}).$$

If $\Pi : D \to M$ is the projection bundle, for any $(x, u) \in D$, there exists a neighbourhood $\hat{U} = \Pi^{-1}(U) \cap D^\circ$ of (x, u) in D° such that over this open, $TD^\circ_{|\hat{U}}$ can be identified with $\hat{U} \times T_xM \times D_x$. Then, In this context, we have:

$$d\Psi(v, w) = (v, -\frac{g_1(u, w)}{2|g_1(u, u)|^{3/2}}).$$

It is easy to see that Ψ is a diffeomorphism from D° into itself which commutes with Π and which sends $S_0(D, M)$ to $S_1(D, M)$. So the restriction ψ of Ψ to $S_0(D, M)$ is a diffeomorphism onto $S_1(D, M)$. Moreover, from (9), $d\Psi$ map the the linear span $\mathbb{R}u$ into itself, for any u in the fiber D°_x over x. So we have $\psi_* (D^{[1]}_0) = D^{[1]}_1$. □

Consider a differential system (M', D') and $\phi : M \to M'$ an injective immersion such that $\phi_*(D_x) \subset D'_\phi(x)$ for any $x \in M$. Given any riemannian metric g' on M', we get an induced riemannian metric g on M and we can consider the associated spherical prolongation then we have:

Lemma 2.3.
In the previous context, let be $\hat{\phi} : S(D, M, g) \to S(D', M', g')$ the map defined by

$$\hat{\phi}(x, v) = (\phi(x), d_x \phi(v)).$$

Then $\hat{\phi}$ is a bundle morphism over ϕ which is an injective immersion and such that

(i) $\hat{\phi}(S(D, M, g)) = S(\phi_*(D), \phi(M), g')$
(ii) $\hat{\phi}_*(D^{[1]}) = (\phi_*(D))^{[1]} \subset (D')^{[1]}$.

Moreover, if ϕ is a diffeomorphism such that $\phi_*(D) = D'$, then $\hat{\phi}$ is also a diffeomorphism and we have $\hat{\phi}_*(D^{[1]}) = (D')^{[1]}$ and the riemannian metric $\hat{\phi}_* g'$ is nothing but the canonical metric \hat{g} naturally associated to g on M.

Proof.
As in Lemma, consider the map $\hat{\phi}(x, v) = (\phi(x), d_x \phi(v))$. From our assumptions, we get a smooth map from $S(D, M, g)$ to $S(D', M', g')$ and from its definition, clearly $\hat{\phi}$ is a bundle morphism over ϕ. As ϕ is an injective immersion, it follows that at first $\hat{\phi}$ is injective.

Note that the tangent space $T_{(x, v)}S_x$ of the fiber S_x over x of $S(D, M, g)$ can be identified with

$$\{v \in D_x \text{ such that } g(v,v) = 0\}.$$

Now any $V \in T_{(x, v)}S(D, M, g)$ can be written $V = (u, v)$ with $u \in T_xM$ and $v \in T_{(x, v)}S_x$. So we have then:

$$d_{(x, v)} \hat{\phi}(u, v) = (d_x \phi(u), d_x \phi(v))$$

So, $\hat{\phi}$ is an immersion, from (10).

On the other hand, as $\phi^* g' = g, d_x \phi$ is an isometry on its range, and then, $d_x \phi_*(S_x)$ is the fiber over $\phi(x)$ of $S(\phi_*(D), \phi(M), g')$ and we get (i).

Let be $\hat{\pi} : S(D, M, g) \to M$ and $\hat{\pi}' : S(D', M', g') \to M'$ the natural projections. We have then:

$$d\hat{\pi}' \circ d\hat{\phi} = d\phi \circ d\hat{\pi}$$

So, we get:

$$\{\hat{\phi}_*(D^{[1]})\}_{\hat{\phi}(x, v)} = \{d\phi(u, v), (u, v) \in T_{(x, v)}S(D, M, g) \} \ d\hat{\pi}(u, v) = \lambda v \ \lambda \in \mathbb{R}$$
the following way:

\[j \text{a canonical distribution } \hat{\Delta}_j \]

\[\text{Theorem 2.4.} \]

So the tower of sphere bundles associated to the canonical metric on \(T_M, g \)

\[\text{Lemma.} \]

of sphere bundles (for a fixed choice of the metric \(g \))

\[\text{and} \]

\[\phi \text{is the tower of sphere bundles associated to the choice} \]

\[\hat{\Delta}_j \text{is the riemannian metric } \hat{g}_j \text{ to} \]

\[\text{The tower (12) will be called the spherical tower of special multi-flags of step} \]

\[\text{so that if } \hat{g}_j \text{ and } \hat{g}'_j \text{ are the canonical riemannian metric on the tangent} \]

bundle induced by } g \text{ and } g' \text{ respectively. As by construction } \hat{g}_j \text{ and } \hat{g}'_j \text{ are the restriction respective of } \bar{g}_j \text{ and } \bar{g}'_j \text{ to } S(D,M,g) \subset TM \text{ and } S(D',M',g') \subset TM' \text{ we get the last property and this ends the proof of the Lemma.} \]

\[\square \]

So, as in the context of Cartan prolongation, for any \(m \geq 2 \) and \(k \geq 1 \) we can define, inductively, a tower of sphere bundles (for a fixed choice of the metric \(g \) on a manifold \(M \)):

\[\cdots \to \hat{P}^k(M) \to \hat{P}^{k-1}(M) \to \cdots \to \hat{P}^1(M) \to \hat{P}^0(M) := M \]

where, for any \(j = 0, \cdots, k, \hat{P}^j(M) \) is a manifold of dimension \((j+1)m + 1\), and, on each \(\hat{P}^j(M) \) we have a canonical distribution \(\hat{\Delta}_j \) and a riemannian metric \(g_j \) on \(\hat{P}^j(M) \), all these data are defined inductively in the following way:

\[\hat{P}^j(M) = S(\hat{\Delta}_{j-1}, \hat{P}^{j-1}(M), g_{j-1}), \]

\[\Delta_j = (\hat{\Delta}_{j-1})^{[1]} \text{ for } j = 1, \cdots, k \text{ and } \Delta_0 = TM, \]

\[g_j \text{ is the riemannian metric } \hat{g}_{j-1} \text{ on } S(\hat{\Delta}_{j-1}, \hat{P}^{j-1}(M), g_{j-1}) \text{ associated to } g_{j-1} \text{ for } j = 1, \cdots, k \text{ and } g_0 = g. \]

Note that if \(g' \) is another riemannian metric on \(M \), according to Lemma 2.2 and Lemma 2.3, by induction we get a family of diffeomorphisms \(\psi^j \) such that, if :

\[\cdots \to \hat{P}^k(M) \to \hat{P}^{k-1}(M) \to \cdots \to \hat{P}^1(M) \to \hat{P}^0(M) := M \]

\[\psi^j(\hat{P}^j(M)) = \hat{P}^j(M) \]

\[\psi^j \text{ is fiber preserving} \]

\[\psi^j(\Delta_j) = \Delta'_j \]

So the properties which characterize the tower (11) are independent of the choice of the riemannian metric \(g \) on \(M \).

For simplicity we write \(\hat{P}^j(M) := \hat{P}^j(\mathbb{R}^{m+1}) \) for any \(j \in \mathbb{N} \). From Theorem 2.2, and Lemma 2.1 we get the following result :\]

Theorem 2.4. Let be

\[\cdots \to P^k(m) \to P^{k-1}(m) \to \cdots \to P^1(m) \to P^0(m) := \mathbb{R}^{m+1} \]

the tower of sphere bundles associated to the canonical metric on \(\mathbb{R}^{m+1} \).

(1) we have a canonical two-fold covering \(\tau^k : \hat{P}^k(m) \to P^k(m) \) such that \(\tau^k(\Delta^k) = \Delta_k \).

(2) On each manifold \(\hat{P}^k(m) \), the distribution \(\hat{\Delta}_k \) generates a special multi-flag of step \(m \) and length \(k \).

(3) let be \(F : D = D_k \subset D_{k-1} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TM \) a special multi-flag of step \(m \geq 2 \) and length \(k \geq 1 \). Then, for any \(x \in M \), there exists \(y \in \hat{P}^k(m) \) for which the differential system \((\hat{P}^k(m), \Delta^k, y) \) is locally equivalent to the differential system \((M, D, x) \).

The tower (12) will be called the spherical tower of special multi-flags of step \(k \).

3. Tower of sphere bundles associated to a kinematic system

3.1. A kinematic system for special multi-flags.

We locate us in the context of [6] and [15]. Consider a set of \(k \) segments \([M_i; M_{i+1}], i = 0, \cdots, k - 1 \), in \(\mathbb{R}^{m+1} \), with \(m \geq 2 \), keeping a constant length \(l_i = 1 \) between \(M_i \) and \(M_{i+1} \), and the articulation occurs at points \(M_i \), for \(i = 1, \cdots, k - 1 \).

Such a system is called a "k-bar system" in [6] and an "articulated arm of length \(k\)" in [15]. The kinematic evolution of the extremity \(M_0 \), under the constraint that the velocity of each point \(M_i, i = 0, \cdots, k - 1, \) is collinear with the segment \([M_i; M_{i+1}]\) is completely described in terms of hyperspherical coordinate in [15] and
result of flatness and controllability for such a system are proved in [6]. We can associate to this problem a special multi-flag of step $m \geq 2$ and length $k \geq 1$ as explained in the following:

We can decompose $(\mathbb{R}^{m+1})^{k+1}$, into a product $\mathbb{R}_{i=0}^{m+1} \times \cdots \times \mathbb{R}_{i=k+1}^{m+1}$. Let $x_i = (x_i^1, \ldots, x_i^{m+1})$ be the canonical coordinates on the space $\mathbb{R}_{i=k+1}^{m+1}$ which is equipped with its canonical scalar product $\langle \cdot, \cdot \rangle$. $(\mathbb{R}^{m+1})^{k+1}$ is then equipped with its canonical scalar product too.

Consider an articulated arm of length k denoted by (M_0, \ldots, M_k). On $(\mathbb{R}^{m+1})^{k+1}$, consider the vector fields:

$$Z_i = \sum_{i=1}^{m+1} (x_{i+1}^r - x_i^r) \frac{\partial}{\partial x_i^r} \quad \text{for } i = 0, \ldots, k-1$$

From our previous assumptions, the kinematic evolution of the articulated arm is described by a controlled system:

$$\dot{q} = \sum_{i=0}^{k-1} u_i Z_i + \sum_{r=1}^{m+1} u_{r+} \frac{\partial}{\partial x_k^r}$$

with the following constraints:

$$||x_i - x_{i+1}|| = 1 \quad \text{for } i = 0, \ldots, k-1$$

(see [6] or [15]).

Consider the map $\Psi_i(x_0, \ldots, x_k) = ||x_i - x_{i+1}||^2 - 1$. Then, the configuration space $C^k(m)$ is the set

$$\{(x_0, \ldots, x_k), \text{ such that } \Psi_i(x_0, \ldots, x_k) = 0 \quad \text{for } i = 0, \ldots, k-1\}$$

For $i = 0, \ldots, k-1$, the vector field:

$$N_i = \sum_{r=1}^{m+1} (x_{i+1}^r - x_i^r) \left[\frac{\partial}{\partial x_{i+1}^r} - \frac{\partial}{\partial x_i^r} \right]$$

is proportional to the gradient of Ψ_i. So the tangent space $T_q C^k(m)$ is the subspace of $T_q (\mathbb{R}^{m+1})^{k+1}$ which is orthogonal to $N_i(q)$ for $i = 0, \ldots, k-1$.

Denote by \mathcal{E}_k the distribution generated by the vector fields

$$\{Z_0, \ldots, Z_{k-1}, \frac{\partial}{\partial x_1^1}, \ldots, \frac{\partial}{\partial x_{k+1}^1}\}.$$

Lemma 3.1. [15]

Let \mathcal{D}_k be the distribution on $C^k(m)$ defined by $\Delta(q) = T_q \mathcal{C} \cap \mathcal{E}$. Then \mathcal{D}_k is a distribution of dimension $m+1$ generated by

$$(x_k^1 - x_{k-1}^1) \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + \frac{\partial}{\partial x_k^1} \quad \text{for } r = 1 \ldots m+1$$

where $A_j(q) = -\langle N_j(q), N_{j-1}(q) \rangle > < N_j(q), N_{j-1}(q) \rangle$ for $j = 1, \ldots, k-1$ and $A_k = 1$.

Remark 3.1. according to notations of Lemma 3.1, we set

$$Y_k = \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i = \sum_{i=0}^{k-2} \prod_{j=i+1}^{k} A_j Z_i + Z_{k-1} \quad \text{and } Y_{k-1} = \sum_{i=0}^{k-3} \prod_{j=i+1}^{k} A_j Z_i + Z_{k-2}$$

So we have $Y_k = (x_k^1 - x_{k-1}^1) (x_{k-1}^r - x_{k-2}^r) Y_{k-1} + Z_{k-1}$. Moreover, \mathcal{D}_k is generated by the family

$$\{(x_k^1 - x_{k-1}^1) Y_k + \frac{\partial}{\partial x_k^r} \quad r = 1 \ldots m+1\}$$

The properties of \mathcal{D}_k are summarized in the following result. (see [15] also [6])

Theorem 3.1.

On $C^k(m)$, the distribution \mathcal{D}_k satisfies the following properties:

1. \mathcal{D}_k is a distribution of rank $m+1$.
2. The distribution \mathcal{D}_k is a special multi-flag on $C^k(m)$ of step m and length k.
3.2. Articulated arm and spherical prolongation.

To an articulated arm on \(\mathbb{R}^{m+1} \) of length \(k \geq 1 \) we can associate the following canonical tower of sphere bundles:

\[
C^k(m) \to C^{k-1}(m) \to \cdots \to C^1(m) \to C^0(m) := \mathbb{R}^{m+1}
\]

where for \(j = 1, \cdots, k \), the projection \(C^j(m) \to C^{j-1}(m) \) is the restriction of the canonical projection

\[
\mathbb{R}^{m+1} \times \cdots \times \mathbb{R}^{m+1} \times \mathbb{R}^{m+1} \to \mathbb{R}^{m+1} \times \cdots \times \mathbb{R}^{m+1} \times \mathbb{R}^{m+1}
\]

According to Theorem 3.1, and Theorem 2.4, we know that the differential system \((C^k(m), D_k))\) associated to an articulated arm of length \(k \) on \(\mathbb{R}^{m+1} \) is locally isomorphic to the canonical differential system \((\hat{P}^k(m), \hat{D}_k))\) at some appropriate points. In fact, we have more: (see Theorem 1 in the introduction)

Theorem 3.2.

For each \(k \geq 1 \) and \(m \geq 2 \), there exists a diffeomorphism \(F^k \) from \(\hat{P}^k(m) \) on \(C^k(m) \) such that:

(i) if \(\hat{\pi}^k : \hat{P}^k(m) \to \hat{P}^{k-1}(m) \) and \(\rho^k : C^k(m) \to C^{k-1}(m) \) are the canonical projections, we have:

\[
\rho^k \circ F^k = F^{k-1} \circ \hat{\pi}^k
\]

(ii) \(F^k(\hat{D}_k) = D_k \)

So according to Theorem 2.4 from Theorem 3.2 we have:

Theorem 3.3. Let be \(F : D = D_k \subset \hat{D}_k \subset \cdots \subset D_1 \subset \cdots \subset D_0 = TM \) a special multi-flag of step \(m \geq 2 \) and length \(k \geq 1 \). Then, for any \(x \in M \), there exists \(y \in C^k(m) \) for which the differential system \((C^k(m), D_k, y)\) is locally equivalent to the differential system \((M, D, x)\).

The end of this subsection is devoted to the proof of Theorem 3.2. Before proving these results, we need some auxiliary results.

Lemma 3.2.

For \(k \geq 1 \), consider, on \(C^k(m) \), the natural decomposition:

\[
[T(R^{m+1})^{k+1}]_{\partial C^k(m)} = TC^k(m) \oplus [TC^k(m)]^\perp
\]

where \([TC^k(m)]^\perp\) is the orthogonal of \(TC^k(m) \) and denote by \(\Pi_k \) the orthogonal projection of \([T(R^{m+1})^{k+1}]_{\partial C^k(m)}\) onto \(TC^k(m) \). On the other hand, let \(L_k \) be the involutive distribution whose leafs are the fibers of the natural fiberation of \(C^k(m) \) onto \(C^{k-1}(m) \).

1. The family vector fields \(\{\Pi_k(\frac{\partial}{\partial x^k}), r = 1, \cdots, m + 1\} \) generates the distribution \(L_k \).
2. The distribution \(D_k \), is generated by \(L_k \) and the vector field \(X_k = \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j z_i + V_k \)

where \(V_k = \sum_{i=0}^{k} (x^k_i - x^k_{i-1}) \frac{\partial}{\partial x^k_{i+1}} \)
3. The distribution \(D_k \) is also generated by the family of vector fields

\[
(x^k_i - x^k_{i-1}) X_k + \Pi_k(\frac{\partial}{\partial x^k_{i+1}})
\]

Proof.

Let be \(H_k \) the subdistribution of \(L_k \) generated by the family vector fields \(\{\frac{\partial}{\partial x^k_{i+1}}, r = 1, \cdots, m + 1\} \). So \(H_k \cap TC^k(m) \) is a distribution on \(C^k(m) \) which is contained in \(D_k \). In fact, we have

\[
L_k = \ker d\Psi_{k-1} \cap H_k = \Pi_k(H_k).
\]

So \(L_k \) is generated by the family vector fields \(\{\Pi_k(\frac{\partial}{\partial x^k_{i+1}}), r = 1, \cdots, m + 1\} \). On the other hand, as \(H_k \) is the vertical bundle of the canonical projection

\[
R^{m+1}_0 \times R^{m+1}_k \to \mathbb{R}^{m+1} \times \cdots \times \mathbb{R}^{m+1}_k
\]

\[
(x_0, \cdots, x_{k-1}, x_k) \to (x_0, \cdots, x_{k-1})
\]
it follows that L_k is also the vertical bundle of the induced projection of $C^h(m)$ onto $C^{h-1}(m)$. On the other hand, the fiber over $q \in C^{h-1}(m)$ of the previous fibration is the unit sphere $S_q = \{(q,x_k) : \Psi_{k-1}(q,x_k) = 0\}$ which proves (1).

The vector field $V_k = \sum_{j=1}^{m+1} (x_k^j - x_k^{j-1}) \frac{\partial}{\partial x_k^j}$ is vertical for the projection (18) and is orthogonal to each S_q. As $|V_k| = 1$ we thus have:

$$
\Pi_k(\frac{\partial}{\partial x_k^j}) = \frac{\partial}{\partial x_k^j} - (x_k^j - x_k^{j-1})V_k
$$

From Lemma 3.1, D_k is generated by the family $\{(x_k^j - x_k^{j-1})\sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + \frac{\partial}{\partial x_k^j} \}$ for $r = 1 \ldots m + 1$.

So the vector field $X_k = \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + \frac{\partial}{\partial x_k^j}$ is tangent to D_k but clearly this vector fields is not tangent to L_k. As D_k is a distribution of constant rank $m + 1$ and L_k is an (integrable) subdistribution of rank m, it follows that D_k is generated by L_k and X_k which proves (2).

On the other hand, according to (19), each vector field $\sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + \frac{\partial}{\partial x_k^j}$ can be written

$$(x_k^j - x_k^{j-1})X_k + \Pi_k(\frac{\partial}{\partial x_k^j})$$

According to Lemma 3.1 we get (3).}

Proposition 3.1.

1. There exists a bundle isomorphism $\Psi : D_k \rightarrow C^h(m) \times \mathbb{R}^{m+1}$
2. Let be γ_k a riemannian metric on the bundle D_k so that the morphism $\hat{\Psi}$ is an isometry between D_k and $C^h(m) \times \mathbb{R}^{m+1}$ (for the canonical euclidian product on the fiber \mathbb{R}^{m+1}). Then $\hat{\Psi}$ induces a diﬀeomorphism $\Psi : S(D_k, C^h(m), \gamma_k) \rightarrow C^{h+1}(m)$ such that
 1. Ψ commutes with the canonical projections $S(D_k, C^h(m), \gamma_k) \rightarrow C^h(m)$ and $C^{h+1}(m) \rightarrow C^h(m)$.
 2. $\Psi([D_k]) = D_{k+1}$.

Proof.

From Lemma 3.2 part (3), the bundle D_k has $m + 1$ non-zero global sections

$$(x_k^r - x_k^{r-1})X_k + \Pi_k(\frac{\partial}{\partial x_k^j}) \text{ for } r = 1 \ldots m + 1$$

so D_k is a trivial bundle. It follows that there exists a bundle isomorphism $\hat{\Psi} : D_k \rightarrow C^h(m) \times \mathbb{R}^{m+1}$ which ends part (1).

Put on D_k the riemannian metric $\gamma_k = \hat{\Psi}^* g$ where g is the canonical euclidian product on \mathbb{R}^{m+1}. Now the map $\Gamma : (\mathbb{R}^{m+1})^{k+1} \times (\mathbb{R}^{m+1})^{k+2}$ defined by

$$
\Gamma(x_0, x_1, \ldots, x_k, z) = (x_0, x_1, \ldots, x_k, x_k + z)
$$

is a diﬀeomorphism. So the restriction Γ to $C^h(m) \times S^m$ is a diﬀeomorphism $\Gamma : C^h(m) \times S^m \rightarrow C^{h+1}(m)$.

Finally, $\hat{\Psi} = \Gamma \circ \Psi$ induces, by restriction, a diﬀeomorphism $\Psi : S(D_k, C^h(m), \gamma_k) \rightarrow C^{h+1}(m)$ which commutes with the canonical the projections:

$S(D_k, C^h(m), \gamma_k) \rightarrow C^h(m)$ and $C^{h+1}(m) \rightarrow C^h(m)$.

On D_k, we have a riemannian metric so that the global basis given in (20) is orthonormal. It follows that the map $\Psi : S(D_k, C^h(m), \gamma_k) \rightarrow C^{h+1}(m)$ is given by

$$\Psi((x_0, x_1, \ldots, x_k, \nu)) = ((x_0, x_1, \ldots, x_k, x_k + \nu)).$$

So, in the global chart of $S(D_k, C^h(m), \gamma_k)$ defined by Ψ, according to (20), the spherical prolongation $(D_k)^{[1]}$ of D_k is generated by the tangent space to the sphere centered at (x_0, \ldots, x_k) and the vector field:

$$Y_{k+1} = \sum_{r=1}^{m+1} (x_k^r - x_k^{r-1})(x_k^r - x_k^{r-1})X_k + \sum_{r=1}^{m+1} (x_k^r - x_k^{r-1})\Pi_k(\frac{\partial}{\partial x_k^j})$$

According to (19) and the value of X_k, this vector field can be written
\[
\sum_{r=1}^{m+1} \left((x_k^{r+1} - x_k^r)(x_k^r - x_k^{r-1}) \right) \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + V_k \]
\]
\[
= \sum_{r=1}^{m+1} \left((x_k^{r+1} - x_k^r)(x_k^r - x_k^{r-1}) \right) \sum_{i=0}^{k-1} \prod_{j=i+1}^{k} A_j Z_i + (x_k^r - x_k^{r-1}) \frac{\partial}{\partial x_k^r} \]

Note that \(\sum_{r=1}^{m+1} (x_k^{r+1} - x_k^r) \frac{\partial}{\partial x_k^r} = Z_k \). So according to Remark 3.1, applied at level \(k+1 \), we have

\[
Y_{k+1} = \left\{ \sum_{r=1}^{m+1} (x_k^{r+1} - x_k^r)(x_k^r - x_k^{r-1})Y_k + Z_k \right\}
\]

and the distribution \(D_{k+1} \) is generated by

\[
\left\{ (x_k^{r+1} - x_k^r)Y_{k+1} + \frac{\partial}{\partial x_k^{r+1}} \right\}_{r=1 \cdots m+1}
\]

Again from Lemma 3.2 part (2), at level \(k+1 \) we get:

\[\Psi_*[(D_k)^{[1]}] = D_{k+1} \]

\[\square \]

Proof of Theorem 3.2

Note that on the tangent bundle \(T \mathbb{R}^{m+1} \), we can put the global chart defined by the map \((x_1, x_2) \rightarrow (x_1, x_2 - x_1)\). On the other hand, the riemannian metric \(g_0 \) on \(T \mathbb{R}^{m+1} \) induces by the canonical metric \(g \) again the canonical metric on the product \(\mathbb{R}^{m+1} \times \mathbb{R}^{m+1} \). It follows that \(\mathcal{S}(T \mathbb{R}^{m+1}, \mathbb{R}^{m+1}) \subset T \mathbb{R}^{m+1} \) can be identified with \(\mathbb{R}^{m+1} \times S^k \) as submanifold of \(\mathbb{R}^{m+1} \times \mathbb{R}^{m+1} \). So we have

\[T_{(x,v)} \mathcal{S}(T \mathbb{R}^{m+1}, \mathbb{R}^{m+1}) = \{ (u, v) \in T_{(x,v)}(\mathbb{R}^{m+1} \times \mathbb{R}^{m+1}) \ such \ that \ g(v, u) = 0 \} \]

Recall that \(Z_0 = \sum_{r=1}^{m+1} (x_1^{r} - x_0^{r}) \frac{\partial}{\partial x_0^r} \) on \(\mathbb{R}^{m+1} \times \mathbb{R}^{m+1} \). In the previous coordinates, any tangent vector of \(\mathbb{R}^{m+1} \) at a point \(x_1 \) can be written \((x_1, x_2 - x_1)\). So, \(Z_0 \) defines a global section of the unit bundle associated to \(T \mathbb{R}^{m+1} \).

According to Lemma 3.2, the distribution \(D_1 \) is generated by

\[\mathbb{R} Z_0 + T S^{m} \subset T \mathbb{R}^{m+1} = T T \mathbb{R}^{m+1} \subset T \mathbb{R}^{m+1} \times \mathbb{R}^{m+1} \]. If \(\Pi : \mathbb{R}^{m+1} \times S^m \rightarrow \mathbb{R}^{m+1} \) denote the natural projection, for any \(v = \lambda Z_0 + w \in \{ D_1 \}_{(x,v)} \) with \(w \in T S^k \), we have \(d\Pi_1(v) = \lambda v \) so, \(\Delta_1 = (T \mathbb{R}^{m+1})^{[1]} \) and we get the result for \(k = 1 \).

Assume that we have a diffeomorphism \(\Phi : \hat{P}^k(m) \rightarrow C^k(m) \) which satisfies the properties (i), and (ii) of Theorem 2.4.

From Proposition 3.1, we have diffeomorphism \(\Psi : S(D_k, C^k(m), \gamma_k) \rightarrow C^{k+1}(m) \) so that

\[\Psi_*[(D_k)^{[1]}] = D_{k+1} \] and which commutes with the natural projections

\[S(D_k, C^k(m), \gamma_k) \rightarrow C^k(m) \] and \(C^{k+1}(m) \rightarrow C^k(m) \)

According to previous induction, we can put on \(\hat{P}^k(m) \), the riemannian metric \(\gamma_k = (\Phi^*)^k(\gamma_k) \). From Lemma 2.3, we can extend \(\hat{P}^k(m) \rightarrow C^k(m) \) into a diffeomorphism \(\hat{\Phi}^k : S(\Delta_k, \hat{P}^k(m), \gamma_k) \rightarrow S(D_k, C^k(m), \gamma_k) \) such that \(\hat{\Phi}^k_*(\langle \Delta_k \rangle) = (D_k)^{[1]} \) and which commutes with the natural projections

\[S(\Delta_k, \hat{P}^k(m), \gamma_k) \rightarrow \hat{P}^k(m) \] and \(C^{k+1}(m) \rightarrow C^k(m) \)

Finally, according to Lemma 2.2, when we put on \(\hat{P}^k(m) \) the riemannian metric induces by induction on the tower bundle (11), we also have a diffeomorphism

\[\Phi : \hat{P}^{k+1}(m) \rightarrow S(\Delta_k, \hat{P}^k(m), \gamma_k) \] which commutes with the canonical projections

\[\hat{P}^{k+1}(m) \rightarrow \hat{P}^k(m) \] and \(S(\Delta_k, \hat{P}^k(m), \gamma_k) \rightarrow \hat{P}^k(m) \)

and such that \(\Phi_*(\Delta_{k+1}) = \Delta_k^{[1]} \).

\[\square \]

Remark 3.2. According to Theorem 2.4 and Theorem 3.2, from towers (12) and (17) we get the following diagram each vertical map is a 2-fold covering for \(k \geq 1 \):

\[
\cdots \rightarrow C^k(m) \rightarrow C^{k-1}(m) \rightarrow \cdots \rightarrow C^1(m) \rightarrow C^0(m) := \mathbb{R}^{m+1}
\]

\[
\cdots \rightarrow P^k(m) \rightarrow P^{k-1}(m) \rightarrow \cdots \rightarrow P^1(m) \rightarrow P^0(m) := \mathbb{R}^{m+1}
\]
3.3. Hyperspherical coordinates.

Consider the natural global diffeomorphism $\mathcal{F}^k : \mathcal{C}^k(m) \to \mathbb{R}^{m+1} \times (S^m)^k$ given by

$$\mathcal{F}^k(x_0, x_1, \ldots, x_i, \ldots, x_k) = (x_0, x_1 - x_0, \ldots, x_i - x_{i-1}, \ldots, x_k - x_{k-1})$$

Note that, according to Theorem 3.2, the map $\hat{\mathcal{F}}^k \circ \mathcal{F}^k$ is also a global diffeomorphism from $\hat{\mathcal{P}}^k(m)$ to $S^k(m) = \mathbb{R}^{m+1} \times (S^m)^k$ and, if $\hat{\varphi}^k : S^k \to \mathbb{R}^{k-1}$ is the canonical projection, we have the following commutative diagram:

$$\begin{array}{ccc}
\hat{\mathcal{F}}^k(m) & \to & \mathcal{F}^k(m) \\
\downarrow \hat{\mathcal{P}}^k & \downarrow \mathcal{F}^k & \to \downarrow \hat{\varphi}^k \\
\hat{\mathcal{P}}^k(m) & \to & \mathcal{F}^k(m) & \to S^k(m)
\end{array}$$

Via this global chart, each point $q = (x_0, x_1, \ldots, x_i, \ldots, x_k) \in \mathcal{C}^k(m)$ could be identified with

$$\zeta = \mathcal{F}^k(q) = (x_0, z_1, \ldots, z_i, \ldots, z_k) \in \mathbb{R}^{m+1} \times (S^m)^k.$$

We will put on each factor S^m charts given by hyperspherical coordinates. We first recall some basic facts about this type of coordinates.

The hyperspherical coordinates in \mathbb{R}^{m+1} are given by the relations:

$$\begin{align*}
\rho^2 &= z_1^2 + \cdots + (z_i^k)^2, \\
0 &\leq \theta^1 \leq 2\pi, 0 \leq \theta^j \leq \pi, 0 \leq \theta^j' \leq \pi, 1 \leq j \leq m - 1.
\end{align*}$$

We consider $\Phi(\rho, \theta) = \rho \Phi(\theta) = z$, the application from $[0, +\infty] \times [0, \pi] \times \cdots \times [0, \pi] \times [0, 2\pi]$ to \mathbb{R}^{m+1}.

The jacobian matrix $D\Phi$ of Φ is:

$$D\Phi = \left(\begin{array}{c} \phi_1' \\ \phi_2' \\ \vdots \\ \phi_{m+1}' \end{array} \right)$$

where ϕ (resp. ϕ') is the column vector of components $\{\phi^1, \ldots, \phi^{m+1}\}$ (resp. $\{\phi^1', \ldots, \phi^{m+1}'\}$).

The inverse of this matrix is then the transpose of the matrix:

$$\left(\begin{array}{c} 1 \\ \rho \frac{\partial \phi_1'}{\partial \theta^1} \\ \vdots \\ \rho \frac{\partial \phi_{m+1}'}{\partial \theta^m} \end{array} \right)$$

We come back to $S^k = \mathbb{R}^{m+1} \times (S^m)^k$ which is considered as a subset in $(\mathbb{R}^{m+1})^{k+1}$. For $i = 1, \ldots, k$, let S_i be the canonical sphere in the ith factor \mathbb{R}^{m+1}. Given a point α in the sphere S_i, there exists hyperspherical coordinates $z_i = \hat{\Phi}(\rho_i, \theta_i) = \rho_i \Phi(\theta_i^1, \ldots, \theta_i^j)$ defined for $0 \leq \theta_i^j \leq 2\pi$ and $0 < \theta_i^j' < \pi$, $j = 1, \ldots, m - 1$, where $\Phi(0, \ldots, 0) = \alpha$. So, for a given point $\zeta = (x_0, z_1, \ldots, z_i, \ldots, z_k) \in S^k$, we get a chart $\mathcal{H}^k = (Id - x_0) \Phi(\hat{\Phi}_1)^{-1}, \ldots, (\hat{\Phi}_k)^{-1}$ centered at ζ, such that its restriction to $\rho_i = 1, i = 1, \ldots, k$, induces a chart of S^k centered at ζ.

We can note the map $\mathcal{H}^k = (Id - x_0, (\Phi_1)^{-1}, (\Phi_2)^{-1}, \ldots, (\Phi_k)^{-1})$ is a hyperspherical chart on $S^k(m)$ then we have

Definition 3.1.

1. For any $\zeta \in S^k(m)$ any map of type \mathcal{H}^k around ζ is called a hyperspherical chart on $S^k(m)$
2. For any $q = (\mathcal{F}^k)^{-1}(\zeta)$ in $\mathcal{C}^k(m)$, any map of type $\mathcal{H}^k \circ \mathcal{F}^k$ around q is called a hyperspherical chart on $\mathcal{C}^k(m)$.
3. For any $p = (\mathcal{F}^k \circ \mathcal{F}^k)^{-1}(\zeta)$ on $\hat{\mathcal{P}}^k(m)$, any map of type $\mathcal{H}^k \circ \mathcal{F}^k \circ \mathcal{F}^k$ around p is called a hyperspherical chart on $\mathcal{P}^k(m)$.

Now, we introduce the following notations in hyperspherical coordinates:

Notations 3.1.

- $A_i = \sum_{r=1}^{m+1} \phi_{r-1}^i \phi_r^i$ for $i = 1, \ldots, k - 1$ and $A_k = 1$;
• \(Z_0 = \sum_{i=1}^{m+1} \phi_i \frac{\partial}{\partial x_0} \)
• \(Z_i = \sum_{j=1}^{m} B_j^i \frac{\partial}{\partial \theta_{i-1}} \) for \(i = 1, \ldots, k - 1 \)

with:

\[
B_i^1 = \sum_{i=1}^{m+1} \frac{\partial \phi_{i-1}}{\partial \theta_{i-1}} \phi_i^r
\]

for \(i = 1, \ldots, k - 1 \) and \(j = 2, \ldots, m \)

\[
B_i^j = \frac{1}{\prod_{i=1}^{m+1} \partial \phi_{i-1}} \sum_{i=1}^{m+1} \frac{\partial \phi_{i-1}}{\partial \theta_{i-1}} \phi_i^r
\]

for \(i = 1, \ldots, k - 1 \) and \(j = 2, \ldots, m \)

\[
X_i^l = \frac{\partial}{\partial \theta_{i-1}} \phi_i^l, \text{ for } i = 1, \ldots, m \text{ and } 0 \leq l \leq k - 1 ;
\]

\[
X_i^0 = \sum_{i=0}^{l} f_i^l Z_i \text{ for } 0 \leq l \leq k - 1 ;
\]

with \(f_i^l = \prod_{j=i+1} A_j \), for \(i = 0, \ldots, l - 1, \ 0 \leq l \leq k - 1 \) and \(f_i^l = 1 \).

Remark 3.3. In Lemma 3.1 we already defined a function \(A_j(q) = -\langle N_j(q), N_{j-1}(q) \rangle \). It is clear that that we have:

\[
A_j \circ (H^k \circ F^k) = A_j
\]

Theorem 3.4. For any \(k \geq 1 \) we have

1. In hyperspherical coordinates, on each manifold \(S^k(m), C^k(m) \) and \(\hat{P}^k(m) \), the corresponding distributions \(F^k_\ast \mathcal{D}_k \), \(\mathcal{D}_k \) and \(\Delta_k \) respectively, is generated by \(\{ X_{k-1}, X_{k-1}, \ldots, X_{k-1} \} \).
2. we have a tower of commutative diagrams:

\[
\cdots \rightarrow \hat{P}^k(m) \rightarrow \hat{P}^{k-1}(m) \rightarrow \cdots \rightarrow \hat{P}^1(m) \rightarrow \hat{P}^0(m) := \mathbb{R}^{m+1} \\
\cdots \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \rightarrow C^k(m) \rightarrow C^{k-1}(m) \rightarrow \cdots \rightarrow C^1(m) \rightarrow C^0(m) := \mathbb{R}^{m+1} \\
\cdots \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \rightarrow S^k(m) \rightarrow S^{k-1}(m) \rightarrow \cdots \rightarrow S^1(m) \rightarrow S^0(m) := \mathbb{R}^{m+1} \\
\cdots \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\cdots \rightarrow P^k(m) \rightarrow P^{k-1}(m) \rightarrow \cdots \rightarrow P^1(m) \rightarrow P^0(m) := \mathbb{R}^{m+1}
\]

where, for all \(l = 1, \ldots, k \),

* at each horizontal level the horizontal map between column number \(l \) to column number \(l - 1 \) is a fibration in sphere (resp. projective space) for the three first line (resp. for the last line)
* Each vertical map sends each corresponding distribution of index \(l \) onto the corresponding distribution \(l \) on the lower line. Moreover the three first vertical maps are diffeomorphisms and the last vertical ones are two-fold coverings.

Proof. In [15] section 5, it is proved that, in hyperspherical coordinates, the distribution \(F^k_\ast \mathcal{D}_k \) is precisely generated by \(\{ X_{k-1}, X_{k-1}, \ldots, X_{k-1} \} \). According to Theorem 3.2, the diffeomorphism \(F^k : \hat{P}^k(m) \rightarrow C^k(m) \) sends the distribution \(\Delta_k \) onto \(\mathcal{D}_k \). This ends the proof of part (1). The part (2) is a consequence of (12), Theorem 3.2, diagram (21) and part (1).

Remark 3.4. All manifolds which appear in the towers (24) are analytic manifolds and all maps in these towers are also analytic.

4. RC - RVT codes and configuration of articulated arms

4.1. RC and RVT codes according to [4]. In this subsection we expose the theory of RC and RVT codes introduced in [4] and we also adapt it to the context of spherical prolongation.
Let be D a distribution of constant rank on a manifold M fitted with a Riemannian metric. We will denote indistinctly by $\mathcal{P}(M, D)$ the sphere sphere bundle $S(M, D, g)$ or the projective bundle $P(M, D)$ and by $D^{(1)}$ the spherical prolongation or the Cartan prolongation of D on $P(M, D)$. By induction the corresponding tower of bundle (cf (7) and (11))

$$\cdots \rightarrow \mathcal{P}^k(M) \rightarrow \mathcal{P}^{k-1}(M) \rightarrow \cdots \rightarrow \mathcal{P}^1(M) \rightarrow \mathcal{P}^0(M) := M$$

fitted at each level j with a distribution denoted by $\mathcal{D}_k = (\mathcal{D}_{k-1})^{(1)}$.

When $M = \mathbb{R}^{m+1}$ we simply denote $\mathcal{P}^k(m)$ any one space $\hat{\mathcal{P}}^k(m)$ or $\mathcal{P}^k(m)$.

For any $k \geq 1$ we denote by Π^k the natural projection of $\mathcal{P}^k(m)$ onto $\mathcal{P}^{k-1}(m)$. The tangent bundle to the fiber of Π^k is the vertical bundle denoted V_k and by construction we have $V_k(p) \subset \mathcal{D}_k(p)$.

For any $p \in \mathcal{P}^{k-1}(m)$, the fiber $(\Pi^k)^{-1}(p)$ is denoted $F^k(p)$. So for such a point p, from (25), we get a tower of fiber bundles

$$\cdots \rightarrow \mathcal{P}^1(S^k(p)) \rightarrow \mathcal{P}^1(S^k(p)) \rightarrow \cdots \rightarrow \mathcal{P}^1(S^k(p)) \rightarrow \mathcal{P}^0(S^k(p)) = S^k(p)$$

Coming back to our general context, on each $\mathcal{P}^1(S^k(p))$, we have a distribution \mathcal{D}_k^j again inductively defined by $\mathcal{D}_k^j = (\mathcal{D}_{j-1})^{(1)}$. Such a tower will be called a fiber prolongation tower. Note that, in such a tower, the differential system $(\mathcal{P}^1(S^k(p)), \mathcal{D}_k^j, q)$ is always equivalent to $\mathcal{P}^1(m-1), \mathcal{D}, p)$ for some adequate point $p \in \mathcal{P}^1(m-1)$.

Of course we have $\mathcal{P}^1(S^k(p)) \subset \mathcal{P}^{k+1}(m)$ and $\mathcal{D}_k^j(q)$ is an hyperplane in $\mathcal{D}_{k+j}(q)$ for any $q \in \mathcal{P}^1(S^k(p))$. In particular $V_k(q)$ is nothing but that $\mathcal{D}_0^j(q)$ for any $q \in S^k(p)$.

On the other hand, for any $k > l \geq 0$, let be Π^k the natural projection of $\mathcal{P}^k(m)$ onto $\mathcal{P}^l(m)$ which is the composition $\Pi^k \circ \Pi^{k-1} \circ \cdots \Pi^{l+1}$. If p is a point in $\mathcal{P}^k(m)$, we denote by p_l its projection $p_l = \Pi^l(p) \in \mathcal{P}^l(m)$ and we say that p_l is under $p_k = p$. With these notations, for $k \geq 1$, each point $p_l \in \mathcal{P}^k(m)$ can be written (p_{k-1}, z) for some $z \in S^k(p_{k-1})$.

So, at each level $k \geq 1$, inside the space $\mathcal{D}_k(p)$, we have the family of hyperplanes $\mathcal{D}_k^j(p)$, with $i + j = k$, coming from a fiber prolongation of order j of the tangent space of the fiber $S^i(p_{k-1})$ for $i = 1, \ldots, k$.

Recall that a family $\{E_i\}_{i \in I}$ of hyperplanes of \mathbb{R}^N is in general position if, for any subset $J \subset I$ of indices whose cardinality $|J| \leq N$ we have that the codimension of the intersection $\bigcap_{i \in J} E_i$ is exactly $|J|$.

Theorem 4.1. [4] The family of hyperplanes $\mathcal{D}_k^j(p)$, with $i + j = k$ is in general position inside the space $\mathcal{D}_k(p)$

Proof. This result is proved in [4] for Cartan prolongation (Theorem 6.1). If \hat{p} is a point in $\hat{\mathcal{P}}^k(m)$ we denote by p its projection $\tau^k(\hat{p})$ in $\mathcal{P}^k(m)$ (cf Theorem 2.4). According to Theorem 2.4, each hyperplane $\mathcal{D}_k^j(\hat{p})$ in $\mathcal{D}_k(\hat{p})$ project via τ^k onto any hyperplane $\mathcal{D}_k^p(\hat{p})$ in $\mathcal{D}_k(p)$ corresponding to the previous process of fiber prolongation in the tower of bundles (11). By applying result of [4] we get the proof in the context of spherical prolongations.

According to [4] and [5] we have the following Definitions

Definition 4.1.

1. Any hyperplane $\mathcal{D}_k^j(p)$, with $i + j = k$ in the space $\mathcal{D}_k(p)$ is called a critical hyperplane at p. A direction l or a vector v in $\mathcal{D}_k(p)$ is called critical if it lies in one critical hyperplane. Otherwise l (resp. v) is called regular. Moreover a critical direction l or a vector v in $\mathcal{D}_k(p)$ is called vertical (resp. tangency) if the singular hyperplane which contains it is $V_k(p) = \mathcal{D}_0^j(p)$ (resp. $\mathcal{D}_k^j(\hat{p})$ for $i > 0$).

2. A point $p = (p_{k-1}, z) \in \mathcal{P}^k(m)$ is called regular, critical, vertical, tangency if $z \in \mathcal{D}_{k-1}(p_{k-1})$ is respectively regular, critical, vertical, tangency.

Remark 4.1.

1. If \hat{p} is a point in $\hat{\mathcal{P}}^k(m)$ and $p = \tau^k(\hat{p})$, it follows from Theorem 2.4 that \hat{p} is regular, critical, vertical, tangency if and only if p is respectively regular, critical, vertical, tangency. In the converse, for any $p \in \mathcal{P}^k(m)$, each points in $\tau^k(p) \subset \hat{\mathcal{P}}^k(m)$ have the same previous qualification as p.

(2) Inside any fiber prolongations tower (26) we can consider a fiber prolongation tower from some fiber of the projection $P^k(S^k(p)) \rightarrow P^{k-1}(S^k(p))$ and look for the corresponding critical hyperplane in $\mathcal{V}_k(q)$. Then such a critical hyperplane is in fact an intersection of type $\mathcal{V}_i(q) \cap \mathcal{V}_j(q)$ with $i > k$ and $k + l = i + j$ (see Proposition 6.2 of [4]).

(3) if a point $p = (p_{k-1}, z) \in P^k(m)$ is critical, than z can belongs to the intersection of many critical hyperplanes and not only one critical hyperplane.

The RC code of a point $p \in P^k(m)$ is a word $\sigma = \sigma_1 \cdots \sigma_l \cdots \sigma_k$ whose letter σ_l is R (resp. C) if the point p_l under p is regular (resp. critical). Note that, by convention, the first letter is always R.

The RVT code of a point $p \in P^k(m)$ is a word $\omega = \omega_1 \cdots \omega_l \cdots \omega_k$ obtained from its RC $\sigma(p)$ such that:

- $\omega_l = R$ if $\sigma_l = R$;
- $\omega_l = V$ if $\sigma_l = C$ and the point p_l under p is vertical;
- $\omega_l = T$ if $\sigma_l = C$ ant the point p_l under p is tangency.

Remark 4.2.

1. According to Remark 4.1, the RC (resp. RVT) code of any point $\hat{p} \in P^k(m)$ is the same as the RC (resp. RVT) code of its projection $p = \tau^k(\hat{p}) \in P^k(m)$.

2. The RC code gives rise to a partition of $P^k(m)$ into 2^{k-1} set of points which have the same RC code σ. Let be C_σ (resp. C_σ) the set of point $\hat{p} \in P^k(m)$ (resp. $p \in P^k(m)$) whose RC code is σ. Then $\tau^k(C_\sigma) = C_\sigma$ and $(\tau^k)^{-1}(C_\sigma) = C_\sigma$.

3. Remark 4.1 part (2) imposes that each p_l which is tangency, p_l must lies in a fiber tower prolongations for some p_l under p_l. So the first letter C which appears in the RC codes, says level i, imposes that p_l must vertical.

4. Each RC code σ generates, a priori, $2^n\sigma$ RVT codes ω, if n_σ is the number of letters C in σ. However, from part (3), a letter T cannot follows immediately a letter R in such a code because each tangency point must lies in a prolongation tower of some point p_l under p_l. So, after a letter R the first eventually letter T which appear, we must at most one letter V between these letters.

5. According to Remark 4.1 (3), for a critical point $p = (p_{k-1}, z) \in P^k(m)$, when z belongs to the intersection of many critical hyperplanes the RVT code generated by the RC code can be not well defined. In this case, when z belongs is not vertical and belongs to one (and only one) of them, we need much precision in the code about the possible letters "T" for instance T_1, T_2, T_α. Moreover, much more complicated codification is needed if z belongs to a the intersection of many critical hyperplanes. For instance, if this intersection is a line we can use a codification by letters L_1, L_2, \cdots as it is proposed in [4] and [5].

In the RVT code, according to Remark 4.2 (5), and [4] and [5]

- if z to belongs to only one critical hyperplane we will use letters $V, T_1, T_2 \cdots$, in the RVT code;

- if z belongs to the intersection of exactly two critical hyperplanes reference T_i and T_j we will use letters of type T_{ij} in the RVT code. Moreover we adopt the following convention:
 T_0 is always relative to a vertical hyperplanes and T_i, for $i > 0$ to a critical hyperplanes which is not vertical.

- more generally, if z belongs to the intersection of exactly n critical hyperplanes referenced $T_0 = V$ and $T_{i_1}, \cdots T_{i_{n-1}}$ or $T_{i_1}, \cdots T_{i_n}$ with $i_1, \cdots, i_n \neq 0$ we will use letters of type $T_{0i_1 \cdots i_n}$ or $T_{i_1 \cdots i_n}$ in the RVT code.

Note that, in such a notation, in a RVT code, a letter T_0 always means "vertical" and each letters T_i with $i > 0$ means "tangency".

Definition 4.2.
we will say that a word ω (resp. a class C_ω) in RVT code is of depth d if this word ω contains at least one letter of type $T_{i_1 \cdots i_d}$ with $i_1 \geq 0$.

For instance, for $m = 3$ and $1 \leq k \leq 4$ the different RVT classes can be encoding in the following way (compare with [4] before Corollary 4.48):

\[
\begin{array}{c|c}
\ hline
k = 1: & R \\
k = 2: & RR, RV \\
k = 3: & RRR, RRV, RVV, RVR, RVT, RT_0T_01 \\
k = 4: & \\
\ hline
\end{array}
\]
Lemma 4.1.

Theorem 4.2.

Definition 4.3.

Proposition 4.1.

4.2 Vertical points and configurations of articulated arms.

Remark 4.4.

A consequence of this Proposition is the following:

The set C_S of singular points of $C^k(m)$ is a subanalytic set of codimension 1. In particular, the set of Cartan points $C^k(m)_S = C^k(m) \setminus C_S$ is an open dense set.

(ii) the configuration of an articulated arm (M_0, \cdots, M_k) belongs to $C(\omega)$ if and only if the unique consecutive segments $[M_{l-2}, M_{l-1}]$ and $[M_{l-1}, M_l]$ which are orthogonal in M_{l-1} are exactly for $l = l_1, \cdots, l_r$.

Remark 4.4.

(1) Our original definition of Cartan points (see the end of section 2.1) is somewhat different from [4] or [5]. However part (2) of Proposition 4.1 proves the equivalence of these definitions.

(2) The result of part (1) of Theorem 4.2 is well known (see [4], [5], [6], [7], [14]).

(3) Part (2) is also proved in [14] with another notation for this set.

The proof of the Proposition 4.1 needs the following Lemma:

Lemma 4.1.
(1) For $2 \leq l \leq k$ let be
\[[D_k] \subset [D_k]_{l-1} \]
\[\cup \cup \]
\[L([D_k]_{l-1}) \subset L([D_k]_{l-2}) \]
the sandwich number l associated to D_k.

Then in hyperpsherical coordinates, $A_{l-1}(q) = 0$ if and only if $[D_k]_l(q) \subset L([D_k]_{l-2})(q)$.

(2) For $2 \leq l \leq k$, q_l vertical if and only if $A_{l-1}(q) = 0$

Proof. We place ourselves in the context of Notations 3.1.

By a simple calculation in hyperpsherical coordinates, we obtain that the member $[D_k]_l$ of the multi-flag associate to D_k is generated by
\[\{X^0_l, X^1_l, \ldots, X^{m+1}_l\} \cup \{X^j_l, j = 1, \ldots, m \ l - 2 \leq i \leq k - 1\} \]
and $L([D_k]_{l-2})$ is generated by $\{X^j_l, j = 1, \ldots, m \ l - 2 \leq i \leq k - 1\}$.

On the other hand, we also have
\[(27) \]
\[X^0_{l-1} = A_{l-1}X^0_{l-2} + Z_{l-1} \]

As by construction, each Z_{l-1} belongs to $L([D_k]_{l-2})$, so if $A_{l-1}(q) = 0$, it follows that $[D_k]_l(q) \subset L([D_k]_{l-2})(q)$. On the other hand, as $\{X^0_{l-2}, X^1_{l-2}, \ldots, X^{m+1}_{l-2}\}$ is a basis of D_{l-1} at q_{l-1} and Z_{l-1} is a linear combination $\{X^1_{l-2}, \ldots, X^{m+1}_{l-2}\}$ we must have $X^0_{l-2}(q) \neq 0$. So we get: $[D_k]_l(q) \subset L([D_k]_{l-2})(q)$ if and only if $A_{l-1}(q) = 0$. According to Remark 3.3, this ends the proof of part (1).

According to Proposition 3.1, denote by Ψ^{l-1} the diffeomorphism from $S(D_{l-1}, \mathcal{C}^{l-1}(m), \gamma_{l-1})$ onto $\mathcal{C}^{l}(m)$ constructed in this Proposition. We can write $\Psi^{l-1}(q_l) = (q_{l-1}, w_l)$ where w_l is a vector of norm 1 in $D_{l-1}(q_{l-1})$. On the other hand, D_{l-1} is generated by $\{(x^1_{l-1} - x^r_{l-2})X^r_{l-1} + \Pi_{l-1}(\frac{\partial}{\partial x^r_{l-1}}), r = 1, \ldots, m + 1\}$ (see Lemma 3.2). As these vector fields is an orthonormal family for the metric γ_{l-1}, we can write:
\[w_l = \sum_{r=1}^{m+1} z^r_l (x^r_{l-1} - x^r_{l-2})X^r_{l-1} + \Pi_{l-1}(\frac{\partial}{\partial x^r_{l-1}}) \]

Moreover, according to this decomposition and from the definition of Ψ^{l-1} in the proof of Proposition 3.1, we have
\[\Psi^{l-1}(q_{l-1}, w_l) = (x_0, \ldots, x_{l-1}, x_{l-1} + z_l) \]
where $q_{l-1} = (x_0, \ldots, x_{l-1})$ and $z_l = (z^1_l, \ldots, z^{m+1}_l)$.

As $\Pi_{l-1}(\frac{\partial}{\partial x^r_{l-1}}), r = 1, \ldots, m + 1$ generates the tangent space to each fiber of the projection
\[\mathcal{C}^{l-1}(m) \rightarrow \mathcal{C}^{l-2}(m), q_l \text{ vertical if and only if } \sum_{r=1}^{m+1} (x^r_l - x^r_{l-2}) (x^r_{l-1} - x^r_{l-2}) = 0 \]

But the first member of the previous relation is exactly $A_{l-1}(q)$.

Proof of Proposition 4.1
The equivalence (a) \Leftrightarrow (b) comes from Lemma 4.1 part (1).
Also the equivalence (b) \Leftrightarrow (c) comes from part (2) of Lemma 4.1.
From Lemma 4.1 part (2), we get (d) \Leftrightarrow (b).

Now, a point q is a Cartan point if and only if $[D_k]_l(q)$ is not contained in $L([D_k]_{l-2})$ for all $2 \leq l \leq k$ (see the end of section 2.1). So, for part (1) if q is a Cartan point, no point q_l under q is vertical. If one p_l was tangency, from Remark 4.2 part (3), there must exists a point p_{l+1} under p_l which is vertical. So, again from part (1), q cannot be a Cartan point. We conclude that any point q_l under q is regular. The converse comes clearly from part (1).

Proof of Theorem 4.2
If q is singular, from part (2) of Proposition 4.1, there must exists a point q_l under q which is vertical. So the equation of set \mathcal{C}_S is $\prod_{l=1}^{k-1} A_l = 0$.

Note that at, a point q_l, we have
\[\frac{\partial A_l}{\partial x^r_{l+1}} = x^r_l - x^r_{l-1} \text{ for } r = 1, \ldots, m + 1 \]
So, if \(A_l(q) = 0 \), we must have \(\frac{\partial A_l}{\partial x_{i+1}}(q) \neq 0 \) for some \(1 \leq r \leq m + 1 \). According to Remark 3.4, it follows that \(C_S \) is a subanalytic subset of \(C^k(m) \) of codimension 1, which ends the proof of part (1).

Note that \(q \) belongs to \(C(\omega) \) if and only if each points \(q_1, \ldots, q_r \) under \(q \) are vertical. So, from property (b) of Proposition 4.1, the equations of \(C(\omega) \) are:

\[
A_i(q) = 0 : \; \text{for } i + 1 = l_1, \ldots, l_r
\]

On the other hand each \(A_i \) depends only of the variables \(x_{i-1}, x_i, x_{i+1} \). So using the previous argument \(\frac{\partial A_i}{\partial x_{i+1}}(q) \neq 0 \) for some \(1 \leq r \leq m + 1 \), the equations in (28) are independent. According again to Remark 3.4, it follows that \(C(\omega) \) is an analytic submanifold of \(C^k(m) \) of codimension \(r \).

Part (2) of Theorem 4.2 is a direct consequence of property (c) of Proposition 4.1.

\[\square \]

4.3. Tangency points and configurations of articulated arms.

We will prove the fundamental results for tangency points \(q \in C^k(m) \):

Theorem 4.3.

1. Let be \(q \in C^k(m) \) a tangency point. Then, there exists \(2 \leq i \leq k - 1 \) such that the point \(q_i \) under \(q \) is vertical. Moreover, let be

\[
l = \sup \{ 2 \leq i \leq k - 1 \; \text{such that } q_i \text{ is vertical} \}
\]

Then if \(l < k \), for any \(l \leq j \leq k \) the point \(q_j \) under \(q \) is tangency.

2. Denote by \(R^hVT^l \) a word of length \(h + l + 1 \), \(h \leq k \) in letters \(R, T, V \) where \(R^h \) means \(h \) consecutive letters equal to \(R \) and \(T^l \) means \(l \) consecutive letters equal to \(T \). Then the set \(C_{R^hVT^l} \) of points \(q \in C^{h+l+1}(m) \) whose \(RVT \) code is \(R^hVT^l \) is an analytic submanifold of \(C^{h+l+1}(m) \) of codimension \(l + 1 \). Moreover, the fiber of the projection of \(C_{R^hVT^l} \) onto \((C^h(m))_C \) over \(q \) is \(C^{h+l+1}(m) \) is the set \(P^{l+1}(\tilde{S}(q_i)) \).

3. Consider the the flag (3) associated to \(D_{h+l+1} \). The set \(C_{R^hVT^l} \) can be defined inductively in the following way:

- (i) \(C_{R^h} \) the open set of points \(q \) such that \(q_h \in C^h(m) \) is a Cartan point;
- (ii) \(C_{R^hVT} \) the set of points \(q \in C_{R^h} \) such that \(D_h[q] \) contains \(L[D_{h-1}] \) at \(q \);
- (iii) \(C_{R^hVT^l} \) the set of points \(q \in C_{R^hVT} \) such that \(D_h[q] \) is tangent to \(C_{R^hVT} \) at \(q \) for \(i = 1 \).

4. To a word \(R^hVT^l \) we associate a family \(\{K_0, \ldots, K_l\} \) of directions in \(R^{m+1} \) in the following way:

\[
K_i(q) = \text{the direction generated by } x_{h+i} - x_{h-1} \text{ for } i = 0, \ldots, l.
\]

Let be \((M_0, \ldots, M_{h+l+1}) \) an articulated arm in \(R^{m+1} \). Its configuration \(q = (x_0, \ldots, x_{h+l+1}) \) belongs to \(C_{R^hVT^l} \) if and only if, in configuration \(q \in C^k(m) \), each segment \([M_{i-1}, M_i] \) and \([M_i, M_{i+1}] \) are not orthogonal at point \(M_i \) for each \(i = 1, \ldots, h-1 \) and each segment \([M_{h+i}, M_{h+i+1}] \) is contained in the affine hyperplane though \(x_{h+i} \) which is orthogonal to the direction \(K_i \) for all \(i = 0, \ldots, l \).

Remark 4.5.

1. The result of part (3) condition (iii) can be seen as a justification of term "tangency" as in the context [11] for \(m = 1 \).

2. For \(m = 1 \), in the context of the "car with n trailers", in [3], F. Jean has build a family of "critical angulars". In our situation \(m \geq 2 \) the family \(\{K_0, \ldots, K_l\} \) of directions in \(R^{m+1} \), is nothing but a generalization of Jean's result.

3. A comparable result of part (3) and (4) can be find in [14] (with quite different assumptions), by using hyperspherical coordinates.

Proof. Fix some tangency point \(q \in C^k(m) \). From Remark 4.2 part (3), there must exist a vertical point \(q \), let \(q_i \) be the last such tangency point under \(q \). Then we have \(A_{l-1}(q) = 0 \). In fact, for \(q_{l-1} = (x_0, \ldots, x_{l-1}) \) given, this relation characterizes such points \(q = (x_0, \ldots, x_{l-1}, x_l) \in C^l(m) \) which are vertical. In other words, the set \(F^l(\tilde{S}(q_{l-1})) \) are exactly the set of points \((q_{l-1}, x_l) \in C^l(m) \) such that \(A_{l-1}(q_{l-1}, x_l) = 0 \).

Now, from the definition of \(l \) if \(l + 1 \leq k \), \(q_{l+1} \) cannot be vertical. The point \(q_{l+1} \) is no more regular otherwise between \(q_{l+1} \) and \(q \) we must have a vertical point which contradicts the definition of \(l \). So \(q_{l+1} \)
must be a tangency point. Set \(q_{i+1} = (x_0, \cdots, x_i, x_{i+1}) \).

Taking in account the proof of Proposition 3.1, in the trivialization \(\hat{\Psi}: \mathcal{D}_t \rightarrow C^l(m) \times \mathbb{R}^{m+1} \) we have

\[
\hat{\Psi}^l = \sum_{r=1}^{m+1} (x_{i+1}^r - x_i^r)(x_i^r - x_{i-1}^r)Y_i + (x_{i+1}^r - x_i^r) \frac{\partial}{\partial x_i^r} = x_{i+1} - x_i
\]

Note that in fact \(\left[\sum_{r=1}^{m+1} (x_{i+1}^r - x_i^r)(x_i^r - x_{i-1}^r)Y_i + (x_{i+1}^r - x_i^r) \frac{\partial}{\partial x_i^r} \right] \) is nothing but \(Y_{i+1} \) (see Remark 3.1). On the other hand, on \(S(\mathcal{D}_l, C^l, \gamma_l) \), the vector field \(\left[\sum_{r=1}^{m+1} (x_{i+1}^r - x_i^r)(x_i^r - x_{i-1}^r)Y_i + Z_l \right] \) belongs to \([\mathcal{D}_l]^1\). As \(q_{i+1} \)

is a tangency point, this vector field must project on \(C^l(m) \) onto a vector which is tangent to \(F^{l+1}(\hat{S}(q_{i+1})) \) at point \(q \). So we must have:

\[
D_{q_{i+1}}A_{i-1}(Y_{i+1}) = 0.
\]

Taking in account that \(A_{i-1}(q_i) = 0 \), and Remark 3.1 we get \(Y_l = Z_{i-1} \) on \(A_{i-1} = 0 \). According to the value of \(Z_{i-1} \) and \(Z_l \), modulo \(A_i = 0 \), equation (29) gives rise to the relation

\[
< x_{i+1}^l - x_i^l, (x_l - x_{l-1}) + (x_{l-1} - x_{l-2}) > = < x_{i+1}^l - x_i^l, x_l - x_{l-2} >= 0
\]

Note that, for \(q_{i+1} = (x_0, \cdots, x_i) \) fixed, the equation \(A_i(q_i) = 0 \) associated to (30) are exactly the equations of the set \(F^{l+1}(P^1(\hat{S}(q_{i+1}))) \). Moreover, it is easy to see that these equations are independent on \(C^{b+2}(m) \). Assume that for \(l \leq i < k \) the point \(q_i \) is tangency. By same arguments as previously, \(q_{i+1} \) must also a tangency point. So, by induction we get part (1).

We now look for part (2). Note that, from the previous proof we have already shown that \(C_{R^hVT} \) is an analytic submanifold of \(C^{b+2}(m) \) of codimension 2 and that the fiber of the projection of \(C_{R^hVT} \) onto \(C^l(m) \) over \(q_h \in C^l(m) \) is the set \(F^{b+2}(P^1(\hat{S}(q_h))) \cap C^{b+2}(m) \). The global result will be obtained by induction on \(l \).

To precise the induction hypothesis we need the following notations and Lemma.

We set \(A_{i,j}(q) = < x_{i+1}^l - x_i^l, x_{j+1}^l - x_j^l > \) for \(i, j = 0, \cdots, k-1 \). The family of functions \(\{A_{i,j}\} \) have the immediate following properties:

\[A_{i,j} = A_{j,i}, \quad A_{i,i} = 1, \quad A_{i,i+1} = A_i \]

Lemma 4.2. For any \(i > j \) we have

1. \(DA_{i,j}(Z_h) = 0 \) for all \(0 \leq h \leq k-1 \) and \(h \neq i, i+1, j, j+1 \);
2. \(DA_{i,j}(Z_l) = -A_{i,j} \) and \(j \neq i-1 \);
3. \(DA_{i,i-1}(Z_l) = 1 - A_{i,i-1} \);
4. \(DA_{i,j}(Z_{i+1}) = A_{i+1,j} \);
5. \(DA_{i,j}(Z_{j+1}) = A_{i,j+1} \).

Proof of Lemma.

At first note that \(Z_h \) is a vector field with components only on \(\{ \frac{\partial}{\partial x^h_1}, \cdots, \frac{\partial}{\partial x^h_{m+1}} \} \) so part (1) is then a consequence of the definition of \(A_{i,j} \). The other parts is a direct calculation.

Induction hypothesis (H_i): Assume that for any \(1 \leq i < l \) we have:

- each set \(C_{R^hVT} \) of point \(q \in C^{b+2}(m) \) whose \(RVT \) code is \(R^hVT^i \) is a subset of \(C^{b+2}(m) \) which is defined by the system of independent equations of type

\[
\phi_0 = \frac{A_h}{0}
\phi_1 = D_{q_{h+1}}\phi_0(Y_{h+2}) = 0
\phi_2 = D_{q_{h+2}}\phi_1(Y_{h+3}) = 0
\vdots
\phi_i = D_{q_{h+i}}\phi_{i-1}(Y_{h+i+1}) = 0
\]

- for \(j = 0, \cdots, n \) modulo the previous equations \(\phi_{j'} = 0 \) for \(0 \leq j' < j \), the equation \(\phi_j = 0 \) can be reduced to

\[
\phi_j \equiv \sum_{j' = 0}^{h-j-1} A_{h+j,j'} = 0
\]
• the set $E^{h+i+1}(P_i(\bar{S}(q_h))) \cap \mathcal{C}_h^{i+1}(m)$ is defined by system of equations (31), but for each fixed $q_h \in \mathcal{C}_h(m)C$

• we have $D\tilde{\phi}_j(Y_{h+i+2}) = 0$ for all $0 \leq j < i$

Note that we have already shown that this hypothesis is true for $i = 1$.

Referring to the previous proof for point q_{i+1} to obtain the equation (29), from the same argument applied for $q_{h+i+1} = (q_{h+i}, x_{h+i+1})$, we get that, when $q_{h+i} \in \mathcal{C}_h^{i+1}(m)$, the point q_{h+i+1} belongs to $\mathcal{C}_h^{i+2}(m)$ if and only if

$$D_{q_{h+i}}\phi_i(Y_{h+i+2}) = 0$$

for all $0 \leq j < i+1$.

According to (32), these conditions are equivalent to

$$D_{q_{h+i}}\phi_i(Y_{h+i+2}) = 0$$

for all $0 \leq j < i+1$.

On one hand, the vector field Y_{h+i+2} can be written

$$Y_{h+i+2} = A_{h+i+1}Y_{h+i+1} + \bar{Z}_{h+i+1}$$

and so, from our induction hypothesis, on $\mathcal{C}_h^{i+1}(m)$, we have

$$D_{q_{h+i}}\phi_i(Y_{h+i+1}) = 0$$

for all $0 \leq j < i$. On the other hand, from (32), each ϕ_j, depends only on variables $(x_{h-i}, \cdots, x_{h+i+1})$, so we always have $D\phi_j(Y_{h+i+1}) = 0$ for all $0 \leq j < i$. So, the only equation we must add to the system (31) for $j = i$ is:

$$(33) \quad D_{q_{h+i}}\phi_i(Y_{h+i+2}) = 0$$

In fact, it is clear that to the system (31), this equation is of course equivalent to

$$\phi_{i+1} = D_{q_{h+i}}\phi_i(Y_{h+i+2}) = 0$$

At first, note that, for $q_h \in \mathcal{C}_h(m)$ given, the system (31) with adding the equation $\phi_{i+1} = 0$ characterizes any point $q_{h+i+1} = (q_{h+i}, x_{h+i+1})$ which belongs to $E^{h+i+2}(P_i(\bar{S}(q_h)))$. We must show now that ϕ_{i+1} has a reduction of type (32), modulo the previous equation

From our hypothesis that $A_h = 0$ and Remark 3.1: we have

$$Y_{h+i+2} = \left[\sum_{i''=h}^{h+i} A_{i''}Z_{i''}\right] + \bar{Z}_{h+i+1}$$

Using the decomposition (32) and Lemma 4.2, we compute $DA_{k+j,i''}(\bar{Z}_{i''})$ for $i'' = h - 1, \cdots, h + j - 1$ and $i' = h, \cdots, h + j + 1$:

• for $i' = h, \cdots, h - j + 1$ fixed, we have

$$DA_{h+j,i''}(\bar{Z}_{i''}) = A_{h+j,i''} \text{ for } i'' = i' - 1$$

$$= -A_{h+j,i''} \text{ for } i'' = i'$$

$$= 0 \text{ for } i'' \neq i', i' - 1$$

• for $i' = h + j$, we have:

$$DA_{h+j,i''}(\bar{Z}_{i''}) = A_{h+j+1,i''} \text{ for } i'' \neq h + j - 1$$

$$= 1 - A_{h+j+1,h+j-1} \text{ for } i'' = h + j - 1$$

• for $i' = h + j + 1$, we have:

$$DA_{h+j,i''}(\bar{Z}_{i''}) = A_{h+j+1,i''} \text{ for } i'' \neq h + j - 1$$

$$= 1 - A_{h+j+1,h+j-1} \text{ for } i'' = h + j - 1$$

So, we finally get:

$$D\bar{\phi}_h(Y_{h+i+2}) = -A_{h+j+1}\bar{\phi}_i + \sum_{i''=h}^{h+j} A_{h+j+1,i''}$$

of course we set $\bar{\phi}_{i+1} = \sum_{i''=h-1}^{h+j} A_{h+j+1,i''}$.
Lemma 4.3. \(\{ \phi_0, \phi_1, \ldots, \phi_i, \phi_{i+1} \} \) is a set of independent functions. Using the reductions of equation (31), it is sufficient to proved that \(\{ \phi_0, \phi_1, \ldots, \phi_i, \phi_{i+1} \} \) is a set of independent functions.

From the expression of \(\phi_j \), \(j = 0, \ldots, i + 1 \) (of type (32)), we have

\[
\bar{\phi}_j = \sum_{i=h+1}^{h+j} \left(x_{i+1} - x_i \right) = x_{h+j+1} - x_{h+j}, x_{h+j+1} - x_{h+1}, \ldots
\]

So we have

\[
D\bar{\phi}_j \left(\frac{\partial}{\partial x_{h+j+1}} + \frac{\partial}{\partial x_{h+j}} \right) = x_{h+j+1} - x_{h+j}
\]

So \(D\bar{\phi}_j \left(\frac{\partial}{\partial x_{h+j+1}} + \frac{\partial}{\partial x_{h+j}} \right) \neq 0 \) for some \(1 \leq r \leq m + 1 \) on \(C^{h+i+2}(m) \).

It follows that \(\{ \phi_0, \phi_1, \ldots, \phi_i, \phi_{i+1} \} \) is a set of independent functions on \(C^{h+i+2}(m) \).

This ends the proof of part (2).

Now, in part (3), the condition (i) and (ii) are a direct consequence of Proposition 4.1. We will look for condition (iii).

For simplicity, we denote by \(D \) the distribution \(D_{h+l+1} \) and consider the flag associated to \(D \):

\[
D = D_{h+l+1} \subset D_{h+l} \subset \cdots \subset D_j \subset \cdots \subset D_1 \subset D_0 = TC^{h+l+1}(m)
\]

For each \(0 \leq i < l \), we can identify \(C^{h+i+1}(m) \) with the submanifold of \(\mathbb{R}^{h+l+1} \) of equations:

\[
\begin{aligned}
& x_{h+j+1} = 0 & & \text{for } j = i + 1, \ldots, l \\
& ||x_j - x_{j-1}|| = 1 & & \text{for } j = 1, \ldots, h + i + 1
\end{aligned}
\]

With these identifications, we have:

Lemma 4.3. Each member \(D_j \) of the previous flag is equal to \(D_j - 1 + D_j \) for each \(j = h + l + 1, h + l, \ldots 0 \)

Proof of Lemma 4.3. For \(j = h + l + 1 \) the result is trivial. Assume that the result is true for \(D_j \) for some \(0 < j \leq h + l + 1 \). We know that \(D_{j-1} \) is a distribution of rank \((h + l - j)m + 1 \) which contained \(D_j \) and is generated by Lie brackets \([X, Y]\) for all vector fields \(X \) and \(Y \) tangents to \(D_j \). We first prove that \(D_j + D_{j-1} \) is contained in \(D_{j-1} \). We know that \(D_j \) is generated by the family \(\{x_j - x_{j-1} : j = 1, \ldots, m+1 \} \) and \(Y_j = A_{j-1}Y_{j-1} + Z_{j-1} \) also belongs to \(D_j \) (Remark 3.1). As \(Y_{j-1} \) depends only on variables \((x_0, \ldots, x_{j-1}) \) and is tangent to \(C^{h+j}(m) \), we have then

\[
\begin{aligned}
& \quad \left[(x_j - x_{j-1})Y_j + \frac{\partial}{\partial x_j} \right] = -Y_j \left((x_j - x_{j-1}) \right) \left[\frac{\partial}{\partial x_j} \right] \\
& \quad = (x_j - x_{j-1})Y_j + \frac{\partial}{\partial x_j} A_{j-1}Y_{j-1} + \frac{\partial}{\partial x_j} Z_{j-1} \\
& \quad = (x_j - x_{j-1})Y_j + (x_j - x_{j-2})Y_{j-1} + \frac{\partial}{\partial x_j} Y_{j-1} & & \text{for } j \leq 2 \\
& \quad = (x_j - x_{j-2})Y_1 + \frac{\partial}{\partial x_j} & & \text{for } j = 0
\end{aligned}
\]

So, we get \(D_j + D_{j-1} \) is contained in \(D_{j-1} \). On the other hand, on \(C^{h+j}(m) \) the distribution generated by \(D_j \) and the family \(\{ (x_j - x_{j-1})Y_j + \frac{\partial}{\partial x_j} : r = 1, \ldots, m+1 \} \) is equal to the distribution generated by \(D_j \) and \(\{ \frac{\partial}{\partial x_j} : r = 1, \ldots, m+1 \} \) which is again \(D_j + D_{j-1} \). But, according to the constraint \(||x_j - x_{j-1}|| = 1 \) in \(C^{h+j}(m) \), we get that \(D_j + D_{j-1} \) is a distribution of constant rank \((h + l - j)m + 1 \) which ends the proof.

We come back to the proof of condition (iii) of part (2). According to the fact that (i), (ii) are already proved, assume that condition (iii) is true for all \(0 \leq i \leq j < l \).

From this assumption we already know that \(D_{h+j+1} \) is tangent to \(C_{R^iV^j} \) at each point of this manifold. So, according to Lemma 4.3, the set of points \(q = (x_0, \ldots, x_{h+j+1}) \in C_{R^iV^j}^{h+j+1}(m) \) such that \(D_{h+j+2} \) is tangent to \(C_{R^iV^j} \) is the set of points where \(D_{h+j+2} \) is tangent to \(C_{R^iV^j} \). But, we have already shown that \(C_{R^iV^j} \) is defined by the system (31), for \(0 \leq j \leq l \). Moreover this system of equations depends only on variables \((x_{h-1}, \ldots, x_{h+j+1}) \). As \(D_{h+j+2} \) is generated by \(\{ Y_{h+j+1} + \frac{\partial}{\partial x_{h+j+2}} \} \), this last condition is reduced to

\[
D\phi_i (Y_{h+j+2}) = 0 \quad \text{for all equations } \phi_i = 0 \in (31).
\]
From the value of \(Y_{h-j+2} \) and the properties of theses equations, the previous condition is equivalent to:

\[
\tilde{\phi}_{j+1} \equiv D \tilde{\phi}_j (Y_{h+j+2}) = 0.
\]

So finally, the set of points \(q = (x_0, \ldots, x_{h+j+1}) \in C^{h+l+1}(m) \) such that \(D_{h+j+2} \) is tangent to \(C_{R^1V^T} \) is the set defined by the system (31). This ends the proof of condition (iii) of part (3).

The part (4) we have already noted that

\[
\sum_{i'=h-1}^{h+j-1} A_{h+j,i'} = < x_{h+j+1} - x_{h+j}, x_{h+j} - x_{h-1} >
\]

So part (4) is a simple geometrical interpretation of reduced system \(\{ \tilde{\phi}_j = 0, j = 0, \ldots l \} \) of the set \(C_{R^1V^T} \)

Remark 4.6.

Let be \(q \in C^k(m) \) and assume that its projection \(q_{h+1} \) is vertical. For any \(0 \leq l \leq k - h - 1 \), in the set \(P^{h+l+1}_j(\hat{S}(q_k)) \), consider the distribution \(F_{h+l+1}^j(q_{h+1}) \). Then \(F_{h+l+1}^j(q_{h+1}) \) is a critical hyperplane in \(D_{h+1}(q_{h+1}) \). Then, according to Theorem 4.3 part (2) and part (4) and (34), on \(C^{h+l+1}(m) \), a point \(z \in D_{h+1}(q_{h+1}) \) belongs to \(F_{h+l+1}^j(q_{h+1}) \) if and only if \(z \) is orthogonal to \(x_{h+i} - x_{h-1} \).

5. **Relation between EKR classes of at most depth 1, RVT codes and articulated arms**

5.1. **Mormul EKR classes according to [7] and [8].**

In [7] and [8], P. Mormul has constructed a coding system for labeling singularity classes of germs of special multi-flag which he called "Extended Kumpera-Ruiz classes" ("EKR classes" in short). Mormul's codes are finite sequences in \(N \). For each such a sequence (under some constraints), using Theorem 2.3, he build an associated polynomially germ at \(0 \in \mathbb{R}^N \), for \(N \) large enough, of \((k+1) \)-dimensional distributions. These germs are called "Extended Kumpera-Ruiz pseudo-normal forms".

Notations 5.1.

\(\mathbb{R}^s(y_1, \ldots, y_s) \) is the space \(\mathbb{R}^s \) provided with coordinates \((y_1, \ldots, y_s) \) in the neighbourhood of 0.

In the following construction, any external variables \(x \) will denoted by a capital letter \(X = x + c \), when such a variable can be shifted by a constant \(c \), not excluding, the value \(c = 0 \) and only by \(x \) when such a shift is excluded.

For each \(j \in \{1, 2, \ldots, m+1\} \), we will define an operation denoted \(j \) producing new \((m+1) \)-distributions from the older ones. More precisely, given a distribution generated on a neighbourhood of \(0 \in \mathbb{R}^s(y_1, \ldots, y_s) \) the operation \(j \), as operation at level \(l \), gives rise to a new \((m+1) \)-distribution defined in the neighbourhood of 0 some space \(\mathbb{R}^{s+1}(y_1, \ldots, y_s, x_{l+1}^1, \ldots, x_{l+1}^m) \), generated by the vector fields

\[
Z_1 = x_1 Z_1 + \cdots + x_j Z_{j-1} Z_{j-1} + Z_j + X_j Z_{j+1} + \cdots + X_m Z_{m+1}
\]

and by

\[
Z'_2 = \frac{\partial}{\partial x_1^j}, \ldots, Z'_{m+1} = \frac{\partial}{\partial x_m^j}.
\]

It is important that these new local generators are written precisely in this order, thus producing a new system of generators \((Z_1, \ldots, Z_{m+1}) \).

For instance, when \(m = 2 \), we have the three following possibility for \(j \):

\[
Z_1 = \begin{cases}
Z_1 + X_1^1 Z_2 + X_1^2 Z_3 & \text{for } j = 1 \\
Z_1 + x_1^1 Z_2 + x_1^2 Z_3 & \text{for } j = 2 \\
Z_1 + x_1^1 Z_2 + x_2^1 Z_3 & \text{for } j = 3
\end{cases}
\]

Extended Kumpera-Ruiz pseudo-normal forms (EKR), of length \(k \geq 1 \), denoted by \(j_1 j_2 \cdots j_k \), where \(j_1, j_2, \cdots, j_k \in \{1, 2, \ldots, m+1\} \), are defined inductively, starting from the distribution generated by

\[
(\frac{\partial}{\partial t}, \frac{\partial}{\partial x_1^1}, \ldots, \frac{\partial}{\partial x_k^1})
\]

in the neighbourhood of \(0 \in \mathbb{R}^{k+1}(t, x_1^1, \ldots, x_k^1) \), which is the tangent bundle of \(\mathbb{R}^{k+1}(t, x_1^0, \ldots, x_k^0) \).

Then, if we assume that the germ associated to \(j_1 \cdots j_{r-1} \) is already known, the new germ associated to \(j_1 \cdots j_r \) is the result of the operation \(j_r \), performed, as the operation at level \(r \), from the germ associated to \(j_1 \cdots j_{r-1} \). Such a differential system will be denoted by \(\Delta_{j_1 j_2 \cdots j_r} \).

We have then the following result:
Theorem 5.1. [7] [8] Let D differential system which generates a special multi-flag of step $m \geq 2$ and length $k \geq 1$, on a manifold M of dimension $(k+1)m+1$. In a neighbourhood of every point $p \in M$, (M, D, p) is locally equivalent to some differential system $(\Delta_{j_1j_2 \cdots j_k}, \mathbb{R}^{(k+1)m+1}, 0)$. Moreover, that $\Delta_{j_1j_2 \cdots j_k}$ can be taken such that $j_1 = 1$ and, for $l = 1 \cdots k - 1$, if $j_{l+1} > \max(j_1, j_2, \cdots, j_l)$, then $j_{l+1} = 1 + \max(j_1, j_2, \cdots, j_l)$ (the rule of the least possible new jumps upwards in the words $j_1j_2 \cdots j_k$).

Note, however, that possible constants in such an EKR representing a given germ D are not, in general, uniquely defined. On the other hand, for a given germ of distribution D, the sequence of operations $j_1j_2 \cdots j_r$ associated to it, is unique and satisfy the rule of least upward jumps. Such a sequence is called a **EKR class of multi-flags** and the integer $d = \sup\{j_1, \cdots, j_k\} - 1$ is called the **depth** of this EKR class.

5.2. **Stratification of EKR classes of at most 1-depth by RVT codes.**

We denote by $\Sigma_{j_1 \cdots j_k}$ the set of points $q \in C^k(m)$ such that germ of distribution at q belongs to the EKR class j_1, \cdots, j_k. Recall in a word ω, a sub-word of type R^h or T^l means a sequence of h (resp. l) consecutive letters R (resp. T) if $h > 0$ (resp. $l > 0$), and no letter R (resp. T) if $h = 0$ (resp. $l = 0$). For any EKR class of 1-depth we will denote by $\{i_1, \cdots, i_v\}$ the set $\{i$ such that $j_i = 2\}$.

The following result gives a complete description of EKR classes of at most 1-depth in terms of RVT classes. In particular, it contains the results announced in Theorem 2 and part (1) of Theorem 3:

Theorem 5.2.

1. $\Sigma_{1, \cdots, 1}$ is of Cartan points. So $\Sigma_{1, \cdots, 1}$ is an open dense set whose complementary is a subanalytic set of $C^k(m)$ of codimension 1
2. For any EKR class j_1, \cdots, j_k of 1-depth, the set $\Sigma_{j_1 \cdots j_k}$ is an analytic submanifold of $C^k(m)$ of codimension equal to ν (cardinal of index i such that $j_i = 2$). Moreover, q belongs to $\Sigma_{j_1 \cdots j_k}$ if and only if the articulated arm M_{i_1}, \cdots, M_{i_v} the segments $[M_{i_{v-1}}, M_{i_v}]$ and $[M_{i_{v-1}}, M_{i_v}]$ are orthogonal in M_{i_v} for all $i = i_1, \cdots, i_v$ and any other pair of consecutive segments are not orthogonal
3. In the previous situation we have:
 1. A point q belongs to $\Sigma_{j_1 \cdots j_k}$ if and only if its RVT code is a word such that the only letters V are at rank i_1, \cdots, i_v.
 2. A RVT class \mathcal{C}_ω is contained in $\Sigma_{j_1 \cdots j_k}$ if and only if ω is of type $R^hVT^kR^h \cdots VT^kR^h$ and each letter V are exactly at rank i_1, \cdots, i_v. More precisely we have $h_1 + h_\lambda = i_\lambda + 1 - i_{\lambda-1}$ for $\lambda = 1, \cdots, \nu - 1$ and $h_\nu = k - i_\nu - 1 - k_{\nu-1}$. Such a class is an analytic submanifold of $\Sigma_{j_1 \cdots j_k}$ of codimension $l_1 + \cdots + l_\nu$. In particular $\mathcal{C}_{R^hVT^kR^h} \cdots VT^kR^h$ is an open dense set of $\Sigma_{j_1 \cdots j_k}$ for $h_\lambda = i_\lambda - 1$ and $h_\nu = k - i_\nu - 1 - k_{\nu-1}$. (ii) $\Sigma_{j_1 \cdots j_k}$, is the union of all classes of type $\mathcal{C}_{R^hVT^kR^h} \cdots VT^kR^h$, which satisfies the previous properties (ii)

Remark 5.1. The decomposition of $\Sigma_{j_1 \cdots j_k}$ given in (iii) into RVT classes is in agreement with the decomposition of such EKR classes for $k = 3$ described by Howard in appendix of [4]. So the description in (iii) can be seen as a generalization of Howard’s result.

For the proof of this Theorem we need the following Lemma:

Lemma 5.1.

Given an EKR class $\Sigma_{j_1 \cdots j_k}$ of at most 1-depth, then the index $j_l = 2$, for $l > 1$, if and only if $A_{l-1} = 0$. Proof. From the definition of the "operation $\jmath"$, it follows that a point q_l is regular if and only if $j_l = 1$. Now from the context of the proof Lemma 4.1 it follows that q_l is regular if and if $A_{l-1} \neq 0$. Now, as EKR class $\Sigma_{j_1 \cdots j_k}$ of at most 1-depth it follows that $j_l = 2$ if and only if $A_{l-1} = 0$.

Proof of Theorem 5.2.

The parts (1) and (2) are consequences of Lemma 5.1, Proposition 4.1 and Theorem 4.2 part (1). For part (3), the property (i) is also a consequence of are consequences ofLemma 5.1 and Proposition 4.1.

We now look for property (ii). If ω is of type $R^hVT^kR^h \cdots VT^kR^h$ and each letter V are exactly at rank i_1, \cdots, i_v, from part (i), $\mathcal{C}_{R^hVT^kR^h} \cdots VT^kR^h$ must be contained in $\Sigma_{j_1 \cdots j_k}$. On the other hand consider any word ω in RVT code such that each letters of rank r_1, \cdots, r_v is V and take any $q \in C_\omega \subset C^k(m)$. If $i_q - i_1 > 0$, consider some q_l under q with $i_1 < l < i_2$. Assume that q_l is critical. According to the RVT code of q_l, the point q_l must be tangency from Theorem 4.3 part (1), and, moreover, for $i_1 < l' \leq l$, the point
If and only if the induced articulated arm associated to integer
the configuration of the \(\nu \) system of type \((31)\) and so gives rise to \(\nu + l_1 + \cdots + l_\nu \) independent equations. So
the union of \(q \) systems of type \((31)\) which do not belongs to the union of the previous sets of index.

The property (ii) of Theorem 4.3 is of course a particular case of Theorem 5.2. Note that we can find an
• each segment \([M_{\lambda+1-1}, M_{\lambda+1}]\) is orthogonal to \(K^\lambda\) in \(M_{\lambda+1-1}\), for \(l = 0, \cdots, l_\lambda\) and \(\lambda = 1, \cdots, \nu\);

5.3. EKR classes of 1-depth, RVT codes and configurations of articulated arms.

We will now give a complete interpretation of the previous result in terms of configuration of an articulated
arm such is announced in Theorem 3 part (2):

Theorem 5.3. Let be \(\Sigma_{i_1 \cdots i_k}\) a EKR class of depth 1 and \(\{i_1, \cdots, i_\nu\}\) the set \(i\) such that \(j_i = 2\). There exists a family
\(\{K^\lambda_0, \cdots, K^\lambda_{\nu}\}_\lambda=1, \cdots, \nu\), with \(x^\lambda_i = i_{\lambda+1} - i_\lambda - 1\) for \(\lambda = 1, \cdots, \nu - 1\) and \(x^\nu = k - i_\nu - 1\)
of directions in \(R^{m+1}\) such that \(q\) belongs to the class \(C_{R^0V^TL^1 R^1 \cdots V^TL^\nu R^\nu}\) if and only if in

Remark 5.2. The property (ii) of Theorem 4.3 is of course a particular case of Theorem 5.2. Note that we can find an
analogue result in [14] with a more restricted context.

For the proof of this result, we need the notion of "induced articulated arm":

Given two integers \(r \) and \(s \) such that \(0 \leq r < s \leq k\), we can look for the motion of an induced articulated arm, which consists of segments of the original articulated arm which joints \(M_t\) to \(M_s\) included. We can then study the induced articulated arm \((M_r, \cdots, M_s)\). We put \(\kappa = s - r\), and we denote by \(C^{r,s}(m)\) the image of \(C^k(m)\) by the canonical projection
\(\varphi^{rs}\) from \(R^{m+1}_0 \times \cdots \times R^{m+1}_k\) onto \(R^{m+1}_r \times \cdots \times R^{m+1}_s\).

In fact, we have:
\(C^{r,s}(m) = \{q_s = (x_r, x_{r+1}, \cdots, x_s)\}\), if \(q = (x_0, \cdots, x_k)\)

Taking in account subsection 3.1, let be \(E_{rs}\) the distribution on \((R^{m+1}_{\kappa+1})\) generated by
\(Z_r, Z_{r+1}, \frac{\partial}{\partial x^r}, \cdots, \frac{\partial}{\partial x^{m+1}}\)

and let be \(D_{rs}\) the distribution induced by \(E_{rs}\) on \(C^{r,s}(m)\).

In terms of Notations 3.1, the mechanical system of the evolution of an induced arm \((M_r, \cdots, M_s)\), is a
controlled system on \(R^{m+1}_r \times (S^m)^\kappa \equiv C^{r,s}(m)\) naturally associated to the distribution \(D_{rs}\).

Consider a word \(R^0V^TL^1 R^1 \cdots V^TL^\nu R^\nu\) of \(k\) letters in \(RVT\) code and we associate to this word the sequences \(r_0, \cdots, r_\nu\) and \(s_0, \cdots, s_\nu\) defined by:
\(s_0 = s_\nu = 0\);
\(s_i = s_{i-1} + h_i + l_i + 1 = h_0 + h_1 + l_1 + 1 \cdots + h_i + l_i + 1\) and \(r_i = s_{i-1} - 1\) for \(i = 1, \cdots, \nu\)

We have the following characterization:

Lemma 5.2. The configuration \(q \in C^k(m)\) of an articulated arm \((M_0, \cdots, M_k)\) belongs to the class
\(C_{R^0V^TL^1 R^1 \cdots V^TL^\nu R^\nu}\) if and only if the induced articulated arm associated to integer \((r_i, s_i)\) satisfies \(\varphi^{r_is}(q)\) belongs to the class
\(C_{R^0} \subset C^{s_0}(m)\) for \(i = 0\) and to the class \(C_{RV^TL^i R^i} \subset C^{r_is}(m)\) for all \(i = 1, \cdots, \nu\).
Proof.

For any \(q \in C^k(m) \), as usual we denote by \(q_i \) any point of \(C^i(m) \) under \(q \). Fix a configuration \(q \in C^k(m) \) of the articulated arm \((M_0, \ldots, M_k)\). At first for \(i = 0 \), the induced articulated arm associated to \((r_0, s_0)\) has the induced configuration \(q_{i_0} \). The RVT code of \(q_{i_0} \) is the \(h_0 \) first letters of the RVT code of \(q \). So, these \(h_0 \) first letters are \(R^{h_0} \) if and only if the RVT code of \(q_{i_0} \) is \(R^{h_0} \).

Assume that we have proved that the \(s_i \) first letters of the RVT code of \(q \) are \(R^{h_0} V T^{l_1} R^{h_1} \cdots V T^{l_{i-1}} R^{h_{i-1}} \) if and only if the RVT code of the configuration \(q_{r_{i-1}} \) is \(\theta_s^{r_{i-1}}(q) \) of the associated induced articulated arm is \(R^{h_0} \) for \(i = 0 \) and \(R^{h_0} V T^{l_{i-1}} R^{h_{i-1}} \) for all \(1 \leq i \leq \mu - 1 < \nu \).

Consider the configuration \(q_{r_{\mu}} \) the configuration under \(q_{r_{s_{\mu}}} \) for \(l = r_\mu, \cdots, s_\mu \) and we set \(\kappa_\mu = s_\mu - r_\mu - 1 \). By convention, the RVT code of \(q_{r_{\mu}, s_{\mu+1}} \) is \(R \). Now, according to Proposition 4.1, in \(C^{s_{\mu+1}}(m) \equiv C^{s_{\mu}}(m) \), \(q_{r_{\mu}, s_{\mu+2}} \) is vertical if and only if

\[
\sum_{j=1}^{m+1} (x^j - x_{\mu+1}^j) (x_{\mu+1}^j - x_{\mu+2}^j) = 0
\]

This is equivalent to \(A_{\mu+1}(q) = 0 \). So, \(q_{r_{\mu}, s_{\mu+2}} \) is vertical if and only if \(q_{r_{\mu+2}} \) is vertical. So finally the letter of rank \(2 \) in the in the RVT code of \(q_{r_{s_\mu}} \) in \(V \) if and only if, the letters of rank

\[
s_\mu + 1 = h_0 + h_1 + l_1 + \cdots + h_\mu + l_\mu + 2
\]

is also \(V \).

Consider now an integer \(r_{\mu+2} \) with \(0 \leq l \leq l_\mu + h_\mu \). Either \(q_{r_{\mu}, s_{\mu+2}} \) is critical or regular. If \(q_{r_{\mu}, s_{\mu+2}} \) was vertical, then, from the previous argument, \(q_{r_{\mu+2}} \) must also be tangent which is a contradiction of the fixed RVT code. Assume that \(q_{r_{\mu}, s_{\mu+2}} \) is tangency. Then \(q_{r_{\mu+2}, s_{\mu+2}} \) is also tangency for all \(0 \leq l' \leq l \) from (34) is tangency if and only if we have:

\[
\begin{align*}
\langle x_{\mu+l'+3} - x_{\mu+l+2}, x_{\mu+l'+2} - x_{\mu} \rangle = 0, & \text{ for all } 0 \leq l' \leq l \\
\text{Moreover, in this case, } q_{r_{\mu}, s_{\mu+2}} \text{ must also be regular for } l \leq l' \leq l_\mu + h_\mu \\
\text{So, again analogue arguments used in the } \text{"tangency" case, } q_{r_{\mu}, s_{\mu+2}} \text{ is regular if and only if } q_{r_{\mu+2}} \text{ is also regular.}
\end{align*}
\]

It follows that our assumption is then true for the integer \(\mu \).

\[\square\]

Proof of Theorem 5.2.

According to Lemma 5.2 and Theorem 4.3 property (ii), to each induced articulated arm associated to a pair \((r_\lambda, s_\lambda)\) there exists a family of directions \(\{K_0, \cdots, K_{\lambda}^s\} \) of directions in \(\mathbb{R}^{m+1} \) such that \(q_{r_\lambda, s_\lambda} \) belongs to the class \(\mathcal{C}^{r_\lambda, s_\lambda}(m) \) if and only if, in the configuration \(q_{r_\lambda, s_\lambda} \), we have:

- each segment \([M_{r_\lambda+1+l}, M_{r_\lambda+2+l}] \) is orthogonal in \(M_{r_\lambda+1+l} \) to \(K_1^l \), for \(l = 0, \cdots l_\lambda \);
- each pair of consecutive segments \([M_{l_{\lambda-2}}, M_{l_{\lambda-1}}] \) and \([M_{l_{\lambda-1}}, M_{l_{\lambda}}] \) are not orthogonal in \(M_{l_{\lambda-1}} \) for all \(r_\lambda + 1 + l_\lambda < l \leq r_\lambda + 1 + l_\lambda + h_\lambda = s_\lambda - 1 \).

On the other hand, each index \(i_\lambda \) is equal to \(r_\lambda + 2 \) for \(\lambda = 1, \cdots, \nu \). So we get the announced results

\[\square\]

5.4. EKR classes of 2-depth , RVT codes and configurations of articulated arms for \(k \leq 4 \).

The combination of all possible RVT codes of depth 2 has an exponential growth relatively to the length \(k \) of special multi-flag. So, in this subsection we only describe the relations between EKR classes of 2-depth, RVT codes and configurations of articulated arms for \(k = 4 \). In fact this situation recovers the results of [4], [5] and [9].

At first for for \(k = 3 \) we have only \(\Sigma_{123} \) which is a EKR class of depth 2 and \(k = 4 \) we have 14 EKR classes (of depth 2) whose numerical code are (see for instance [9]):

\[1111, 1112, 1121, 1122, 1213, 1211, 1212, 1213, 1221, 1222, 1231, 1232, 1233, 1233.\]

So, for \(k \leq 4 \), the other EKR classes are of depth 1. On the other, at the end of section 4.3, we have seen that for \(k = 3 \), we have only one RVT class of depth 2 (i.e. \(RT_0T_0 \)) but we have that we have 10 RVT classes for \(k = 4 \) All other RVT classes are of depth 1.
For the decomposition of EKR classes of depth 1 into RVT classes are of depth 1 can be found in Theorem 5.2 and the corresponding interpretation in terms of configurations of an articulated arm can be found in Theorem 5.2. So we have only to give such result for EKR classes of depth 2 previously enumerated.

For this purpose we need the following Proposition:

Proposition 5.1.
Let be \(\Sigma_{j_1 \cdots j_k} \) a EKR class of depth 2. Consider an index \(j_i = 3 \) for \(l \geq 3 \) and denote by \(\{ i_1, \cdots, i_v \} \) the set of index such that \(\{ i : j_i = 2, 1 < i < l \} \)

1. \(q \in \mathcal{C}^i(m) \) belongs to \(\Sigma_{j_1 \cdots j_k} \),
2. the projection \(q_i = (x_{i_0}, \cdots, x_i) \) of \(q \) onto \(\mathcal{C}^i(m) \) satisfies the following equations:

\[
\begin{align*}
A_{l-1}(q_i) &= 0 \\
< x_l - x_{l-1}, x_{l-1} - x_{l-2} >= 0 & \text{ for some } 1 \leq \lambda \leq \nu
\end{align*}
\]

3. the articulated arm \((M_0, \cdots, M_k) \) satisfies the following situation at the configuration \(q \):
 - the segments \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \);
 - the segment \([M_{i-1}, M_i]\) is orthogonal in \(M_{i-1} \) at the direction generated by the vector \(\overrightarrow{M_{i-2}M_{i-1}} \)

For \(k = 4 \), we get easily the decomposition of EKR class of at most depth 2 into RVT classes as given in the following table and the proof is left to the reader. For \(k \leq 3 \) the results are essentially particular cases of Theorem 5.2.

Decomposition of EKR classes into RVT classes

EKR class	RVT class
1111	RRRR
1112	RRRV
1121	RRVR, RRV
1122	RRVV
1123	RRVT\(T_{01}\)
1211	RVRR, RVTR, RVTT
1212	RVRV, RVTV
1213	RVRT\(T_{01}\), RVTT\(T_{01}\)
1221	RVVR, RVVT
1222	RVVV
1223	RVTV\(T_{01}\)
1231	RT\(T_{01}\)R, RT\(T_{01}\)T, RVT\(T_{01}\)T\(2\), RVT\(T_{01}\)T\(1\)T\(2\)
1232	RT\(T_{01}\)V
1233	RT\(T_{01}\)T\(1\)T\(1\), RT\(T_{01}\)T\(2\)

For \(k \leq 4 \), we only give an interpretation of RVT classes in terms of configurations of articulated arm when the RVT code contains a letter of type \(T_{0j} \). The other cases are particular cases of Theorem 5.2. The following results are essentially due to the Proposition 5.1 and the proofs are left to the reader.

Let be \(q = (x_0, \cdots, x_k) \) a configuration of an articulated arm \((M_0, \cdots, M_k) \) with \(k \leq 4 \). We have the following characterizations:

- \(q \) belongs to \(\Sigma_{1123} = \mathcal{C}_{RT_{0}T_{01}} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3 \) and \([M_2, M_3]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_2 \) and no other orthogonality.

- \(q \) belongs to \(\Sigma_{1122} = \mathcal{C}_{RT_{0}T_{01}} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 3, 4 \) and \([M_3, M_4]\) is also orthogonal at \(q \) to the direction generated by \(x_1 - x_3 \) and no other orthogonality.

- \(q \) belongs to \(\mathcal{C}_{RT_{0}T_{01}} \subset \Sigma_{1213} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3 \) and \([M_2, M_3]\) is also orthogonal at \(q \) to the direction generated by \(x_1 - x_3 \) and no other orthogonality. The point \(q \) belongs to \(\mathcal{C}_{RVTT_{01}} \subset \Sigma_{1213} \) if and only if we have the previous constraints and moreover \([M_2, M_3]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_2 \) and no other orthogonality.

- \(q \) belongs to \(\Sigma_{1223} = \mathcal{C}_{RT_{0}T_{01}} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3, 4 \) and \([M_3, M_4]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_3 \) and no other orthogonality.
orthogonality.

• in \(\Sigma_{1231} \) we have :

(i) \(q \) belongs to \(\mathcal{C}_{RT_{01}T_{10}} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3 \) and \([M_2, M_3]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_2 \) and no other orthogonality.

(ii) The point \(q \) belongs to \(\mathcal{C}_{RT_{01}T_{01}} \) (resp. \(\mathcal{C}_{RT_{01}T_{12}} \) if and only if we have the previous constraints and moreover \([M_3, M_4]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_3 \) (resp. \(x_0 - x_3 \)) and no other orthogonality. (iii) The point \(q \) belongs to \(\mathcal{C}_{RT_{01}T_{02}} \) if and only if we have the previous constraints of (ii) and moreover \([M_3, M_4]\) is also orthogonal at \(q \) to the directions generated by \(x_0 - x_3 \) and by \(x_0 - x_3 \) and no other orthogonality.

• \(q \) belongs to \(\Sigma_{1232} = \mathcal{C}_{RT_{01}T_{01}V} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3, 4 \) and \([M_3, M_4]\) is also orthogonal at \(q \) to the directions generated \(x_0 - x_3 \) and by \(x_0 - x_3 \) and no other orthogonality.

• \(q \) belongs to \(\mathcal{C}_{RT_{01}T_{02}} \subseteq \Sigma_{1233} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3, 4 \) and \([M_2, M_3]\) and \([M_3, M_4]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_2 \) and \(x_0 - x_3 \) respectively and no other orthogonality.

The point \(q \) belongs to \(\mathcal{C}_{RT_{01}T_{02}} \subseteq \Sigma_{1213} \) if and only if \([M_{i-2}, M_{i-1}]\) and \([M_{i-1}, M_i]\) are orthogonal in \(M_{i-1} \) at \(q \) for \(i = 2, 3, 4 \) and \([M_2, M_3]\) and \([M_3, M_4]\) is also orthogonal at \(q \) to the direction generated by \(x_0 - x_2 \) and \(x_1 - x_3 \) respectively and no other orthogonality.

Proof of Proposition 5.1. According to Lemma 3.2, at a point \(q \) the distribution \(\mathcal{D}_{l-1} \) is generated by the family:

\[
\left\{ \sum_{r=1}^{m+1} (x_{l-1}^r - x_{l-2}^r) X_{l-1} + \Pi_{l-1}(\frac{\partial}{\partial x_{l-1}^r}) \right\}
\]

Now, according the proof of Proposition 3.1 the distribution \(\mathcal{D}_l \) (which can be identified with \(\langle \mathcal{D}_{l-1} \rangle^{[1]} \)) is generated by

\[
\{ A_{l-1} X_{l-1} + \sum_{r=1}^{m+1} (x_l^r - x_{l-1}^r) \Pi_{l-1}(\frac{\partial}{\partial x_{l-1}^r}), \Pi_l(\frac{\partial}{\partial x_l^r}) \},
\]

According to Lemma 4.3 and the "operation" \(j \) in the EKR classes, if \(q \) belongs to \(\Sigma_{j_1 \ldots j_k} \), we must have \(A_{l-1}(q) = 0 \). So at such a point \(\langle \mathcal{D}_{l-1} \rangle^{[1]} \) is generated by

\[
\{ \Pi_{l-1}(Z_{l-1}), \Pi_l(\frac{\partial}{\partial x_l^r}) \}.
\]

But we have

\[
\Pi_{l-1}(Z_{l-1}) = \sum_{r=1}^{m+1} (x_l^r - x_{l-1}^r) \Pi_{l-1}(\frac{\partial}{\partial x_{l-1}^r})
\]

So by the same argument as before, if \(q \) belongs to \(\Sigma_{j_1 \ldots j_k} \), then there exists a direction \(v_q \) in the fiber over \(q_{l-1} \) such that \(x_l - x_{l-1} \) is orthogonal to \(v_q \). In particular, \(z_l = x_l - x_{l-1} \) is a critical vector in the tangent space of the fiber over \(q_{l-1} \). So, according to Remark 4.1 part (2) and Remark 4.6, the direction \(v_q \) must be equal to some \(x_{l-1} - x_{l-2} \) for some \(1 \leq \lambda \leq v \).

Clearly the converse is true. We get the equivalence (1) \(\Leftrightarrow \) (2)

The equivalence (2) \(\Leftrightarrow \) (3) is a consequence of Proposition 4.1 and Remark 4.6.

6. Conclusions and Commentaries

According to the results of [7], [8], [4], [5] and [9], the results of this paper gives a decomposition of EKR classes in terms of \textit{RVT} classes. However, this decomposition can be refined: for instance each \textit{RVT} class of code \textit{RVT}, \textit{RRVT} and \textit{RVR} consist of two distinct "equivalence classes" (under the action of the group of (local) diffeomorphisms) (see [4] or [5]). On the other hand, in [9], the authors introduce the property of strong nilpotency. Again for instance the EKR class \(\Sigma_{121} \) splits into three "equivalence classes" while \(\Sigma_{121} \) is the union of only two \textit{RVT} classes. It would be interesting to find some interpretation of this property in terms of configurations of an articulated arm.
On the other hand, as in [11] for \(k = 1 \), in [4] for \(k \geq 1 \), Castro and Montgomery look for the definition of \(\text{RVT} \) code in terms of germs curves at \(0 \in \mathbb{R}^{m+1} \) whose all directional derivatives at order \(k \) is a point of \(P^k(m) \). They used the classification of curve singularities, under "Right-Left" equivalence (see Definition 3.11 in [4]), due to Arnold ([1]), to obtain beautiful results about classification of \(\text{RVT} \) classes in terms of Arnold’s classification. Also let us mention [5] for complete results of classification of \(\text{RVT} \) classes in \(P^4(2) \).

In this paper this aspect is not approached. However, it would be interesting to give an interpretation of a such approach in terms of germs of trajectories of the motion of an articulated arm.

References

[1] V.I. Arnold: Simple singularities of curves; Tr. Mat. Inst. Steklova, 226(Mat. Fiz. Probl. Kvantovoi Teor. Polya): (1999), pp. 27-35.
[2] J. Adachi: Global stability of special multi-flags; Israel Journal of Mathematics 179, (2010), pp. 29-56.
[3] F. Jean: The car with \(N \) trailers: characterisation of singular configurations; ESAIM: Control, Optimisation and Calculus of Variations 1, (1996), pp. 241-266.
[4] A.L. Castro, R. Montgomery and C. Howard (appendix): Curve singularities and monster/semple tower to appear in the Israel Journal of Mathematics, 2012.
[5] A.L. Castro, W. C. Howard: A monster approach to Goursat multi-flags; http://arxiv.org/abs/1107.4145 july 2011.
[6] S. Li, W. Respondek: The geometry, controllability, and flatness property of the \(n \)-bar system, Journal of Control, 84(5):83450, 2011.
[7] P. Mormul: Geometric singularity classes for special \(k \)-flags, \(k \geq 2 \), of arbitrary length; Preprint in: Singularity Theory Seminar, S. Janeczko (ed.), Warsaw Univ. of Technology, Vol. 8, (2003), pp. 87-100.
[8] P. Mormul: Multi-dimensional Cartan prolongation and special \(k \)-flags; in: H. Hironaka et al (eds.), Geometric Singularity Theory, Banach Center Publications 65 of Math., Polish Acad. Sci., Warsaw, (2004), pp. 157-178.
[9] P. Mormul, F. Pelletier, Special 2-flags in lengths not exceeding four: a study in strong nilpotency of distributions http://arxiv.org/abs/1011.1763v1.
[10] R. Montgomery, M. Zhitomirskii: Geometric approach to Goursat flags; Ann. Inst. H. Poincaré - AN 18, (2001), pp. 459-493.
[11] R. Montgomery, M. Zhitomirskii: Points and curves in the Monster tower Mem. Amer. Math. Soc., 203(956) (2010).
[12] F. Pelletier: Espace de configuration d’un système mécanique et tours de fibres associées à un multi-drapeau spécial C. R. Acad. Sci. Paris, Ser. I 350(2012) pp 71-76.
[13] W. Pasillas-Lépine, W. Respondek: Contact systems and corank one involutive subdistributions; Acta Appl. Math. 69, (2001), pp. 105-128.
[14] M. Slayman: Bras articulé et distributions multi-drapeaux; Université de Savoie, Laboratoire de Mathématiques (LAMA), PHD thesis (2008).
[15] M. Slayman, F. Pelletier: Articulated arm and special multi-flags; JMSAA, vol 8, n1 March 2011, pp. 9-41.
[16] K. Shibuya, K. Yamaguchi: Drapeau theorem for differential systems: Differential Geometry and its application 27(6), (2009), pp. 793-808.