Cultural effects on neurodevelopmental testing in children from six European countries: an analysis of NUTRIMENTHE Global Database

Miguel Pérez-García, Juan de Dios Luna, Francisco J. Torres-Espínola, Cristina Martínez-Zaldívar, Tania Anjos, Jolien Steenweg-de Graaff, Martina Weber, Veit Grote, Dariusz Gruszfeld, Elvira Verduci, Pascale Poncelet, Joaquín Escribano, Henning Tiemeier, Berthold Koletzko and Cristina Campoy

Abstract

Cultural background is an important variable influencing neuropsychological performance. Multinational projects usually involve gathering data from participants from different countries and/or different cultures. Little is known about the influence of culture on neuropsychological testing results in children and especially in European children. The objectives of this study were to compare neuropsychological performance of children from six European countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain) using a comprehensive neuropsychological battery and to apply a statistical procedure to reduce the influence of country/cultural differences in neuropsychological performance. As expected, the results demonstrated differences in neuropsychological performance among children of the six countries involved. Cultural differences remained after adjusting for other confounders related to neuropsychological execution, such as sex, type of delivery, maternal age, gestational age and maternal educational level. Differences between countries disappeared and in

Key words: Neuropsychological testing: Cultures: Children: Diets: Mental performance

Neuropsychological assessment during infancy and childhood are frequently implemented as outcomes in nutrition research because of the consistent link between some nutrients with brain development and neuropsychological functioning. Investigating this relationship in an international context implies gathering data from participants from different countries with different cultural backgrounds. Therefore, when projects include neuropsychological testing, culture becomes an important factor influencing the performance of participants. According to the United Nations Educational, Scientific and Cultural Organization (UNESCO), culture is defined as ‘set of distinctive spiritual, material, intellectual and emotional features of society or a social group, that encompasses, not only art and literature, but lifestyles, ways of living together, value systems, traditions and beliefs.’

Disclaimer: This paper was published as part of a supplement to the British Journal of Nutrition, publication of which was supported partially by UNILEVER, NUTRIMENTHE EU Project and an unrestricted educational grant from the University of Granada. The papers included in this supplement were invited by the Guest Editor and have undergone the standard journal formal review process. They may be cited.

Abbreviations: CHOP, Childhood Obesity Project; NGDB, NUTRIMENTHE Global Database; NUHEAL, Nutraecuticals for a Healthy Life.
traditions and beliefs’ (page 1) and cultural neuroscience as ‘an emerging research discipline that investigates cultural variation in psychological, neural, and genomic processes as a means of articulating the bidirectional relationship of these processes and their emergent properties’. A growing number of studies showed neuropsychological differences among people from different cultures. Differences in neuropsychological performance were found among healthy people from different cultures such as Asian, Hispanic or African. These differences have been shown in verbal and non-verbal tests at any age, and also in brain-damaged patients. However, some studies failed to detect neuropsychological differences depending on the cultural background.

Cultural differences in neuropsychological performance have also been found between persons living in the same country but belonging to different ethnic groups. Many et al. showed differences between Caucasians and African Americans in cognitive functioning. Similar differences have been found in Hispanic American samples. Differences have been found even among people from the same ethnicity sharing the same language but living in different countries. For example, Bér-eyes et al. found differences in memory neuropsychological tests among Hispanics living in different countries (North America, Chile, Santo Domingo and Spain).

The cultural differences in neuropsychological performance have traditionally been mainly explained by variables such as sex, language and ethnicity. When variables such as language, reading ability and alphabeticism, bilingualism or socioeconomic status are controlled for, the size of differences in neuropsychological performance decreases. Therefore, acculturation and quality of education could explain at least part of the cultural differences in neuropsychological performance.

Nevertheless, recently, new variables related to the modulating effect of culture on the cognitive system have been proposed. Agranovich et al. studied the differences between American and Russian adults in time attitudes, and how these can explain the cultural differences in the chronometric neuropsychological tests. Ouellet et al. have shown that time runs from left (past time) to right (future time) for Spaniards but it runs in the opposite direction for Israeli people, reflecting the direction of reading and writing. Fasfous et al. showed that cognitive processes requiring carrying out a culture-free intelligence test may be different, depending on the subject’s cultural background.

Despite all evidence about the influence of culture in neuropsychological performance of adults, little is known about the influence of culture in neuropsychological testing in children. In a review, Byrd et al. found that only ten studies about cross-cultural neuropsychology in children were conducted, and, half of them conducted in North America. Most of the studies found differences among children with different cultures. Recently, studies focused on specific cognitive processes. Sobhen & Spijkers found differences between German and Syrian children in an attention battery, with the latter scoring less than the former, and Kail et al. found differences in speed processing between US and East Asian children. Similar results have been found when children from Sweden, Spain, Iran and China were compared in an executive function inventory or using the Children Colour Trail Test in Moroccan children.

However, most of the studies conducted in children have focused on a specific cognitive function but have not used a comprehensive neuropsychological battery. Also, we have not found studies comparing different European countries. The objectives of this study were to compare the neuropsychological performance of children from six European countries (Belgium, Germany, Hungary, Italy, The Netherlands, Poland and Spain) using a comprehensive neuropsychological battery, and applying a statistical procedure to reduce the influence of country/cultural differences in neuropsychological performance.

In the present study, country and culture will be used in an equivalent way. According to the previous definition of culture, several cultures may exist inside one country or several countries could share the same culture. However, in our study, each country is considered to have its own culture. The main objective of this study was to analyse the influence of culture on neuropsychological performance of healthy European children, who were participating in nutrition studies. Also, we were interested in studying the utility of standardisation by country and sex as a way to reduce or eliminate the influence of culture on neuropsychological scores.

Methods

Study design and participants

The data obtained to develop this study comes from the NUTRIMENTHE EU Project, which has been previously described in Anjos et al. Within NUTRIMENTHE EU Project (grant agreement no. 212652) framework, the NUTRIMENTHE Global Database (NGDB) has been developed joining the data sets from three different follow-up European cohorts, the Childhood Obesity Project (CHOP) study (Belgium, Germany, Italy, Poland and Spain), the Generation R study (The Netherlands) and the Nutraceuticals for a Healthy Life (NUHEAL) study (Germany, Hungary and Spain). Description of participants of these cohorts has been already published elsewhere. After combining the common variables from the three studies, a new cohort was formed with a total of 1050 children who were assessed using a common neuropsychological procedure; all data sets from these children were included in the NGDB.

A common set of questions, anthropometrical examinations, blood parameters, nutritional and baseline characteristic data were collected besides the common neuropsychological test battery with similar methodologies to be able to combine the data sets for analysis. The merging was performed using the statistical programming language R (The R Foundation for Statistical Computing). To embed, recode and standardise all variables in a good, documented and structured way into one common global database has been essential to ensure proper data analysis later on.

In the present analysis, 880 healthy children from six European countries (Belgium, n = 63; Germany, n = 117; Italy, n = 100; The Netherlands, n = 199; Poland, n = 102; and Spain, n = 299) were included. All participants from Hungary were excluded because of a significant drop-out rate. In addition, participants without all neuropsychological scores were excluded because...
Selected tests were culturally adapted and translated into six languages (Spanish, German, Italian, French, Dutch and Polish) by experts in the field. After obtaining approval from the owners of the copyrights in each country, licences were obtained for all children to be assessed in the six countries. Tests were included in the present study.

No neuropsychological tests were available with versions for all participating countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain). Thus, to assess the child's neurocognitive development, a comprehensive neuropsychological battery was specifically developed for the NUTRIMENTHE Project (2013-2016). Criteria used to choose the neuropsychological battery were as follows: (1) tests to assess the main neuropsychological domains; (2) tests with reduced cultural influence. Most of the tests identified were not available in one country's procedures. A back-translation procedure was followed to translate the tests. First, instructions were translated from each language by translation and another translated from Spanish to each language by a translator, and another translated from each language to Spanish. Both versions were compared and discrepancies were sorted out. Expert translated the tests from each language to Spanish. Both translated from Spanish to each language by a translator, and another was followed to translate the tests. Finally, the NNB was culturally adapted and translated into six languages and implemented in six European countries. The training sessions were carried out by experts in each country who had been previously trained centrally by the University of Granada, and provided with Standard Operating Procedures (SOPs). All children to be assessed in the six countries. Tests were administered by health professionals (most of them psychologists) during the afternoon; The training sessions were carried out in a quiet room without interruptions. Procedure (CSOP) Manuals, which included the assessment, were also provided. Children were assessed in seven domains (processing speed, perception, motor, attention, language, memory, executive functions, which are described in Table 2 (full description in the online supplementary material for all children). For each subject, we calculated the statistical analyses included in the present study.

No neuropsychological tests were available with versions for all participating countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain). Thus, to assess the child's neurocognitive development, a comprehensive neuropsychological battery was specifically developed for the NUTRIMENTHE Project (2013-2016).

Criteria used to choose the neuropsychological battery were as follows: (1) tests to assess the main neuropsychological domains; (2) tests with reduced cultural influence. Most of the tests identified were not available in one country's procedures. A back-translation procedure was followed to translate the tests. First, instructions were translated from each language by translation and another translated from Spanish to each language by a translator, and another translated from each language to Spanish. Both versions were compared and discrepancies were sorted out. Expert translated the tests from each language to Spanish. Both translated from Spanish to each language by a translator, and another was followed to translate the tests. Finally, the NNB was culturally adapted and translated into six languages and implemented in six European countries. The training sessions were carried out by experts in each country who had been previously trained centrally by the University of Granada, and provided with Standard Operating Procedures (SOPs). All children to be assessed in the six countries. Tests were administered by health professionals (most of them psychologists) during the afternoon; The training sessions were carried out in a quiet room without interruptions. Procedure (CSOP) Manuals, which included the assessment, were also provided. Children were assessed in seven domains (processing speed, perception, motor, attention, language, memory, executive functions, which are described in Table 2 (full description in the online supplementary material for all children). For each subject, we calculated the statistical analyses included in the present study.

No neuropsychological tests were available with versions for all participating countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain). Thus, to assess the child's neurocognitive development, a comprehensive neuropsychological battery was specifically developed for the NUTRIMENTHE Project (2013-2016).

Criteria used to choose the neuropsychological battery were as follows: (1) tests to assess the main neuropsychological domains; (2) tests with reduced cultural influence. Most of the tests identified were not available in one country's procedures. A back-translation procedure was followed to translate the tests. First, instructions were translated from each language by translation and another translated from Spanish to each language by a translator, and another translated from each language to Spanish. Both versions were compared and discrepancies were sorted out. Expert translated the tests from each language to Spanish. Both translated from Spanish to each language by a translator, and another was followed to translate the tests. Finally, the NNB was culturally adapted and translated into six languages and implemented in six European countries. The training sessions were carried out by experts in each country who had been previously trained centrally by the University of Granada, and provided with Standard Operating Procedures (SOPs). All children to be assessed in the six countries. Tests were administered by health professionals (most of them psychologists) during the afternoon; The training sessions were carried out in a quiet room without interruptions. Procedure (CSOP) Manuals, which included the assessment, were also provided. Children were assessed in seven domains (processing speed, perception, motor, attention, language, memory, executive functions, which are described in Table 2 (full description in the online supplementary material for all children). For each subject, we calculated the statistical analyses included in the present study.

No neuropsychological tests were available with versions for all participating countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain). Thus, to assess the child's neurocognitive development, a comprehensive neuropsychological battery was specifically developed for the NUTRIMENTHE Project (2013-2016).

Criteria used to choose the neuropsychological battery were as follows: (1) tests to assess the main neuropsychological domains; (2) tests with reduced cultural influence. Most of the tests identified were not available in one country's procedures. A back-translation procedure was followed to translate the tests. First, instructions were translated from each language by translation and another translated from Spanish to each language by a translator, and another translated from each language to Spanish. Both versions were compared and discrepancies were sorted out. Expert translated the tests from each language to Spanish. Both translated from Spanish to each language by a translator, and another was followed to translate the tests. Finally, the NNB was culturally adapted and translated into six languages and implemented in six European countries. The training sessions were carried out by experts in each country who had been previously trained centrally by the University of Granada, and provided with Standard Operating Procedures (SOPs). All children to be assessed in the six countries. Tests were administered by health professionals (most of them psychologists) during the afternoon; The training sessions were carried out in a quiet room without interruptions. Procedure (CSOP) Manuals, which included the assessment, were also provided. Children were assessed in seven domains (processing speed, perception, motor, attention, language, memory, executive functions, which are described in Table 2 (full description in the online supplementary material for all children). For each subject, we calculated the statistical analyses included in the present study.

No neuropsychological tests were available with versions for all participating countries (Belgium, Germany, Italy, The Netherlands, Poland and Spain). Thus, to assess the child's neurocognitive development, a comprehensive neuropsychological battery was specifically developed for the NUTRIMENTHE Project (2013-2016).

Criteria used to choose the neuropsychological battery were as follows: (1) tests to assess the main neuropsychological domains; (2) tests with reduced cultural influence. Most of the tests identified were not available in one country's procedures. A back-translation procedure was followed to translate the tests. First, instructions were translated from each language by translation and another translated from Spanish to each language by a translator, and another translated from each language to Spanish. Both versions were compared and discrepancies were sorted out. Expert translated the tests from each language to Spanish. Both translated from Spanish to each language by a translator, and another was followed to translate the tests. Finally, the NNB was culturally adapted and translated into six languages and implemented in six European countries. The training sessions were carried out by experts in each country who had been previously trained centrally by the University of Granada, and provided with Standard Operating Procedures (SOPs). All children to be assessed in the six countries. Tests were administered by health professionals (most of them psychologists) during the afternoon; The training sessions were carried out in a quiet room without interruptions. Procedure (CSOP) Manuals, which included the assessment, were also provided. Children were assessed in seven domains (processing speed, perception, motor, attention, language, memory, executive functions, which are described in Table 2 (full description in the online supplementary material for all children). For each subject, we calculated the statistical analyses included in the present study.

Table 1. Characteristics of the study population forming the new cohort that were merged by the NUTRIMENTHE Global Database (Mean values and standard deviations)

Country	Belgium (n = 63)	Germany (n = 117)	Italy (n = 100)	The Netherlands (n = 199)	Poland (n = 102)	Spain (n = 299)	
Maternal age (years)	Mean ± SD						
Maternal educational level*	High (higher education)	30 ± 4	31 ± 9	31 ± 4	30 ± 8	27 ± 2	30 ± 8
	Middle (secondary education)	29 ± 4	64 ± 4	14 ± 7	13 ± 7	51 ± 4	14 ± 7
	No/low (primary/no education)	3 ± 3	16 ± 3	15 ± 3	15 ± 3	63 ± 4	15 ± 3
Smoking in pregnancy (no/yes)*	No	97 ± 19	74 ± 26	197 ± 26	68 ± 34	207 ± 92	
	Yes	32 ± 24	53 ± 36	39 ± 13	59 ± 32	163 ± 61	
Mode of delivery*	Caesarean section	16 ± 3	36 ± 3	22 ± 3	15 ± 3	31 ± 3	63 ± 3
	Expression	0 ± 1	0 ± 1	0 ± 1	0 ± 1	0 ± 1	0 ± 1
	Forceps	0 ± 1	1 ± 1	0 ± 1	4 ± 1	47 ± 1	
	Spontaneous	44 ± 11	68 ± 11	75 ± 11	121 ± 11	60 ± 11	179 ± 11
	Vacuum extraction	3 ± 3	11 ± 3	3 ± 3	7 ± 3	6 ± 3	7 ± 3
Gestational age (weeks)	Mean ± SD	39 ± 15	39 ± 15	39 ± 15	39 ± 15	39 ± 15	39 ± 15
Sex (female/male)*	Mean ± SD	42 ± 21	61 ± 21	47 ± 21	98 ± 21	47 ± 21	15 ± 21

* χ² test.
Table 2. NUTRIMENTHE Neuropsychological Battery: test description

Domains	Function	Test
Memory	Visual episodic memory	Recall of Object Test (ROT) (47)
	Verbal memory	Rey Auditory Verbal Learning Test (RAVLT) (48)
Attention	Sustained and focused attention	Continuous Performance Test (CPT) (49)
	Spatial attention	Pair Cancellation test (W-M) (50)
Motor	Visuo-motor coordination	Grooved Pegboard Test (GPT) (51)
Perception	Visuo-perceptual integration	Hooper Visual Organization Test (HVOT) (52)
Language	Semantic fluency	Categorical Fluency Test (F-A-S-Animals) (53)
Processing Speed	Processing speed	Token test II (NEPSY-II) (54)
Executive Functions	Impulsivity/inhibition	Symbol Digit Modalities Test (SDMT) (55)
	Update	Stroop Color and Word Test (56)
	Flexibility/shifting	Reversal Digits Subtest (57)
	Decision making	Matrix Analogies test – (K-ABC-II) (57)
		Children’s Color Trail Test (CCTT) (58)
		Hungry Donkey Task (HDT) (59)

Statistical analysis

All scores were entered in the NGDB, consisting of the raw scores of the dependent variables obtained from the neuropsychological tests. Each individual score was subtracted from the corresponding country and sex mean and divided by the corresponding country and sex standard deviation in order to obtain the standardisation by country and sex. This standardisation was performed to reduce effect and noise due to countries. ‘Leaving-one-out’ standardisation (each observation was standardised using the mean and standard deviation of the particular sample excluding the individual score) was performed in order to eliminate probable effects of extreme values. As there were no differences between the results obtained after applying ‘leaving-one-out’ and normal standardisation, ‘leaving-one-out’ standardised scores were not considered in the present analysis. To reduce the number of statistical analyses, a reduced set of dependent variables was selected.

In order to study differences in neuropsychological performance among countries, a one-way ANOVA and Kruskal–Wallis (skewed variables) analysis were conducted using country as a factor and the raw neuropsychological variables as dependent variables. To study the importance of the country variable as a confounder, ordinal logistic regressions were conducted over the outcomes (neurodevelopmental tests), using the available common variables related with neuropsychological performance in children such as sex, type of delivery, maternal age, gestational age and maternal educational level as predictors; raw neuropsychological scores were considered as dependent variables.

The database was imputed using machine-learning techniques; the best suitable one found was missforest (package ‘missforest’ in R; from Daniel J. Stekhoven, 2013), obtaining an acceptable out-of-bag error of 0.07. The percentage of imputations ranged from 28% for HDT to <1% for Reversal Digits.

Database set up, including file merging, mistake detection and metadata, and the whole statistical analysis were conducted using STATA 12.1.

Results

General characteristics of the children by country included in the present analysis (Table 1).

Maternal age was the youngest in Poland, and the oldest in Italy. The percentage of mothers with a high level of education was higher than 50% in the Netherlands and Germany; Germany and Italy were the countries with the highest percentage of mothers with a medium level of education (>70%). The major percentage of mothers with a low level of education came from Spain and Italy (>17%). In all, 22% of the mothers were smokers during pregnancy and 44% of women breast-fed their babies (with a higher percentage in the Netherlands (78%) and the lowest in Spain (27%)). A total of 64% of the babies had a spontaneous mode of delivery. The instrumental deliveries represented the other 36%; from these, 21% of the mothers delivered by caesarean section, with this type of delivery being more frequent in Germany (31%), Poland (30%), Italy (22%) and Spain (21%) compared with the other countries. Delivery by forceps represented 16% of all deliveries registered in the Spanish sample, compared with a minimal incidence in Poland (4%) and Germany (0-85%), and none reported in the rest of the countries. Vacuum extraction was the mode of delivery in 26% of the Dutch mothers and 6% of the German ones; in the rest of the countries, vacuum extraction had a very low incidence.

All children were born at term, although there were differences between countries, with the Belgian children being the youngest ones. In all, 451 children were girls and 429 were
Table 3. F for raw (F_{RD}) and imputed (F_{ID}) data obtained in the different neuropsychological testing in the children participants in NUTRIMENTHE EU Project from six European countries†

(Mean values and standard deviations)

Neuropsychological tests	Belgium (n 63)	Germany (n 117)	Italy (n 100)	The Netherlands (n 199)	Poland (n 102)	Spain (n 299)	F_{RD}	F_{ID}
SDMT hits	26.25	6.76	23.68	6.43	25.16	8.04	20.94	6.13
Grooved DH	48.26	9.10	43.47	7.95	44.29	7.49	48.31	9.90
Grooved NDH	48.88	11.23	43.82	9.75	45.79	8.83	53.11	14.41
HVOT hits	20.12	3.25	19.80	3.52	20.71	3.36	21.41	3.37
CPT hits	76.30	13.31	84.68	19.23	71.62	19.92	67.63	15.16
CPT BL7 OMI	3.81	4.35	1.64	1.71	3.47	3.24	4.21	4.47
ROT immediate hits	7.63	2.36	6.65	2.05	6.87	2.16	6.19	2.08
ROT delayed hits	4.57	2.06	4.31	1.79	4.76	2.02	4.43	2.41
RAVLT hits trial 1−5	5.35	1.76	5.54	1.83	5.26	1.74	5.32	1.76
RAVLT delayed trial	10.76	2.51	10.14	2.44	10.87	2.73	9.13	3.20
Animals total hits	8.52	3.11	8.73	3.08	8.73	3.20	7.36	3.20
Token total tests	13.78	3.31	12.02	4.17	12.13	4.31	14.39	4.06
Stroop interference	23.49	2.51	21.85	3.16	23.08	3.01	21.81	2.91
Reversal digits	−3.60	5.40	−3.91	6.14	−3.75	8.12	1.69	7.99
KABC matrix reasoning	21.14	8.96	16.75	8.37	18.41	8.80	15.55	7.49
CPTT part 1 time (s)	37.75	11.81	49.60	33.26	40.78	12.09	82.6	38.81
HDT total hits	18.93	12.10	17.34	7.50	17.04	8.73	18.93	10.08

SDMT, Symbol Digit Modalities Test; DH, Dominant Hand; NDH, Non-Dominant Hand; HVOT, Hooper Visual Organization Test; CT, Cancellation Test; CPT BL7, Continuous Performance Test, Block 7; OMI, omissions; ROT, Recall of Object Test; RAVLT, Rey Auditory Verbal Learning Test; CTT, Children’s Colours Test Test; HDT, Hurry Donkey Test.

P < 0.01; *P < 0.001
† F_{RD} (raw): experimented F from one-way ANOVA for raw data.

Discussion

The main objective of this study was to analyse the influence of culture on neuropsychological performance in healthy children. As we expected, results showed differences in the neuropsychological performance between countries and sex, as a way to reduce the influence by adjusting for other confounders such as sex, mental age, delivery, maternal age, gestational age, birth weight and smoking. After adjusting for these confounders, the country and sex differences became the main predictor in the linear mixed models (Table 4).

In order to study the influence of the country variable as a confounder, raw neuropsychological scores were adjusted using the available confounder variables related to neuropsychological performance. To study differences among countries, results were obtained from the multiple imputed scores (Table 3). As described in the statistical methods section, scores were standardized by country and sex. After that, the previous differences were standardized by country and sex, and then the results were obtained from the imputed scores (Table 4).

No statistical differences were found between countries in the females–males distribution. As shown in Table 3, significant statistical differences were found among the six countries. In general, the Netherlands children scored higher than those from the other countries. Some results were obtained from the multiple imputed scores (Table 3). As described in the statistical methods section, scores were standardized by country and sex, and then the results were obtained from the imputed scores (Table 4).

Neuropsychological differences among countries

As described in the statistical methods section, scores were standardized by country and sex, and then the results were obtained from the multiple imputed scores (Table 3). As described in the statistical methods section, scores were standardized by country and sex, and then the results were obtained from the multiple imputed scores (Table 4).
Table 4. Raw and imputed data from ordered logistic regression of the different tests performed in the NUTRIMENTHE children with the available confounders from six European countries†
(Coefficients of the ordered logistic regression model for imputed data and 95% confidence intervals)

Neuropsychological tests	Study country Coefficient 95% CI	Sex Coefficient 95% CI	Maternal age Coefficient 95% CI	Maternal educational level Coefficient 95% CI
SDMT hits	0.09** 0.02, 0.17	0.61*** 0.37, 0.84	0.03* 0.004, 0.05	0.03 0.08, 0.01
Grooved DH	0.14** 0.06, 0.21	−0.33** −0.56, −0.10	0.01 0.03, 0.01	0.03 0.08, 0.015
Grooved NDH	0.21*** 0.14, 0.28	−0.04 −0.27, 0.19	−0.17 0.04, 0.009	0.01 0.06, 0.03
HVOT hits	0.09** 0.01, 0.16	0.45*** 0.21, 0.68	0.04** 0.01, 0.06	0.22*** 0.16, 0.27
CT hits	−0.08* −0.15, −0.008	0.85*** 0.61, 1.09	−0.001** −0.02, 0.02	0.10*** 0.05, 0.15
CPT BL7 OMI	−0.02 0.05, 0.09	−0.07 −0.31, 0.15	−0.02 0.02, 0.02	0.04 0.02, 0.12
ROT immediate hits	0.05* 0.01, 0.03	0.29 0.03, 0.02	0.02 0.01, 0.04	0.01 0.03, 0.07
Token test total hits	−0.15*** 0.11, 0.02	−0.22 0.07, 0.70	0.01 0.04, 0.09	0.05 0.001, 0.10
Sroop interference	0.19*** 0.12, 0.27	0.20 0.02, 0.44	0.02 0.002, 0.02	0.04 0.002, 0.09
Reversal digits hits	−0.01** 0.008, 0.15	0.46*** 0.23, 0.70	0.03 0.005, 0.005	0.01 0.05, 0.01
K-ABC-II matrix reasoning	−0.15*** 0.08, 0.23	−0.11 0.03, 0.11	0.04*** 0.01, 0.06	0.002 0.009, 0.09
CTTT part1 time (s)	−0.06 0.13, 0.01	−0.10 0.03, 0.12	0.08 0.004, 0.04	0.06** 0.01, 0.11
HDT total hits				

Smoking in pregnancy

Smoking in pregnancy Coefficient 95% CI	Mode of delivery Coefficient 95% CI	Gestational age Coefficient 95% CI	Breast-feeding Coefficient 95% CI	
SDMT hits	0.13 0.07, 0.53	−0.04 0.13, 0.04	0.03 0.04, 0.10	−0.01*** 0.05, 0.06
Grooved DH	0.07 0.03, 0.22	−0.04 0.06, 0.10	−0.14* 0.21, 0.06	−0.01*** 0.05, 0.06
Grooved NDH	0.03 0.05, 0.05	−0.08 0.15, 0.03	−0.05 0.13, 0.03	−0.05 0.001, 0.001
HVOT hits	0.05 0.02, 0.25	0.04 0.14, 0.03	0.02 0.05, 0.10	0.06 0.02, 0.15
CT hits	0.05*** 0.04, 0.06	−0.08 0.17, 0.01	0.04 0.02, 0.02	0.04 0.009, 0.09
CPT BL7 OMI	−0.07 0.12, 0.27	−0.02 0.12, 0.06	0.02 0.004, 0.09	0.05 0.019, 0.30
ROT immediate hits	0.01 0.02, 0.02	0.01 0.03, 0.04	0.02 0.004, 0.09	0.04 0.009, 0.09
Token test total hits	−0.08 0.03, 0.21	−0.001 0.09, 0.09	0.03 0.04, 0.10	0.03 0.025, 0.02
Sroop interference	−0.01 0.02, 0.30	0.01 0.07, 0.01	0.07 0.006, 0.15	0.01*** 0.025, 0.02
Reversal digits hits	0.10 0.02, 0.35	−0.02 0.11, 0.06	0.07 0.006, 0.15	0.01*** 0.025, 0.02
K-ABC-II matrix reasoning	0.01 0.07, 0.15	−0.03 0.13, 0.05	0.07 0.006, 0.15	0.01*** 0.025, 0.02
CTTT part1 time (s)	−0.01 0.02, 0.13	−0.001 0.09, 0.09	−0.15*** 0.24, 0.07	0.75*** 0.49, 0.10
HDT total hits	0.01 0.03, 0.07	0.02 0.06, 0.07	0.39** 0.14, 0.65	

SDMT: Symbol Digit Modalities Test (total hits); DH: Dominant Hand; NDH: Non-Dominant Hand; HVOT: Hooper Visual Occupation Test (total hits); CT: Cancellation Test (total hits); CPT BL7: Continuous Performance Test (total hits); Block 7; OMI: Omissions; ROT: Recall of Object Test (immediate and delayed recalled pictures); HDT: Hungry Donkey Task (total score).

P < 0.005; *P < 0.01; ****P < 0.001

† Children’s neuropsychological scores adjusted by study country, sex, maternal age, maternal educational level, smoking in pregnancy, mode of delivery, gestational age and breast-feeding.
largest differences have been found in processing speed and executive functions and the smallest in the delayed recall of visual memory, verbal fluency and decision making. Specific neuropsychological patterns for specific cultures have not been demonstrated, but differences have been reported in both verbal and non-verbal tests. Our results are congruent with previous studies showing cultural differences in several cognitive functions. Also, it should be mentioned that most of the studies compared neuropsychological execution only between 2–3 cultures; studies with six cultures/countries are inexistent. In that sense, NNB is the first European neuropsychological battery for children designed in such way as to be used in six different countries. The development of this tool permitted us to build up the NGDB, giving us the opportunity to evaluate cultural effects in a population of European children.

Standardisation by country and sex has been useful to eliminate differences among countries. This is due to the fact that standardisation sorts neuropsychological performance inside each country according to the country means. This can be done under the assumption that groups of children in each country are normal children, and thus, they represent the normal variability. Under this assumption, a higher score in the same neuropsychological test of one child from one country when compared with that of another child from another country does not indicate a better execution.

Those results may have important implications for future research. First, they highlight the need for developing procedures to compare neuropsychological performance among children from different cultures. This is important even when comparing children inside the same country, with the same education system but different culture. In the case of Europe, this is almost mandatory because of the number of multinational studies promoted by the European Commission in which neuropsychological assessment is involved. Also, it enhances the importance of obtaining normal reference values for neuropsychological performance in each European country considering minorities living inside the country.

Our results have some limitations. First, the unbalanced sample sizes in the three studies included in the database prevented this study from using data as a reference for each test in each country. Second, the number of children from each country was different and, in some countries, was relatively small. The objective of this study was not to obtain representative normal reference values for each country, but our conclusions for countries should be considered with caution. Despite the unbalanced situation, comparison between countries could be made, and in many cases the results were clearly significant; hence, we believe that this unbalance does not have a strong influence on the main results of this study. Furthermore, the potential approaches to differentiate useful variables from noisy ones, as well as to detect patterns of association between selected variables, demonstrates the need for further studies to determine the usefulness of the shorter and more targeted assessments. Our study has been conducted only in a selected age range (7–9 years); thus, future studies should be conducted to also explore whether our results can be extended to other ages. Finally, it should be considered that neuropsychological tests were administrated by different technicians with different backgrounds. This variable could increase differences among countries. However, common training carried out by the same person was provided to all technicians in order to decrease the influence of this effect. Also, our study cannot verify which country/cultural variables such as language, educational system, etc., are involved in the neuropsychological differences. A crucial aspect of explanatory statistical inference in this context is that we need methods that allow us to deal with categorical outcomes and to include a large number of potentially correlated predictors while avoiding over fitting.

The strengths of the present study have been the development and application of a common Neuropsychological Battery, translated into eight languages, and assessed in 880 European children, which can serve as a reference for future studies. The NGDB allowed us to pool results of three cohort studies that use different tests in assessing the same phenotypes. The majority of functional domains have been divided into a set of specific sub-domains. We emphasise that a cautious and robust approach was needed in order to combine the data in a meaningful way, particularly in pooled analyses, where a priori theoretical background and statistical modelling has been employed. Sensible combinations of data, originated from the different neuropsychological tests, have been driven by theoretical considerations of the likely specificity of the effects of particular nutritional and environmental agents on neuropsychological development. This will allow practitioners to gain a clear understanding about the better assessment methods to be used when limited resources and time are available in applied clinical settings.

It is notable that very few neuropsychologists work in the field of nutrition. The presence of these professionals with a background in both neurodevelopment and neuropsychological development is critical to the elaboration and application of assessment protocols (on the basis of their knowledge of brain development and neuropsychological testing), as well as quality control on the data collection and analysis, and for the interpretation of the study findings. Their inclusion in multidisciplinary research teams will improve the quality of research in this important field.

In summary, it is well known that culture is an important confounding factor in neuropsychological testing. In the present study, statistical differences in neuropsychological performance among children of six European countries were demonstrated; those differences remained even after standardisation of the test scoring and adjusting for other confounders related to neuropsychological execution, such as maternal education or mode of delivery. Statistical differences among countries disappeared when standardised scores by country and sex were used. We believe that these findings are of major importance for further studies and can be considered beyond its limitations. Future research should determine what variables can justify those differences and which ones should be tested in future projects, when the use or development of new neuropsychological batteries for multicountry assessment is planned.

Acknowledgements

The authors thank all participating children for their collaboration and all colleagues in the study centres for their support.
The studies reported herein have been carried out with financial support from the Commission of the European Communities, specific Research and Technological Development Programme ‘Quality of Life and Management of Living Resources’, within the 7th Framework Programme (FP7-2008–2013) under grant agreement no. 212652 (NUTRIMENTHE Project: The Effect of Diet on the Mental Performance of Children). The data included in this study come from the neuropsychological development performed in the 1050 European children participants in the CHOP EU project (FOOD-CT-2005-007036), the Generation R study (www.generationrr.nl/researchers.html) and the NUHEAL Project: ‘Nutraceuticals for a healthy life’ (BIOMED QRT-1999-00888). This publication is the work of the authors and does not reflect the views of the EU Commission.

All authors helped in the interpretation of results and contributed to manuscript preparation. M. P.-G. was responsible for the neuropsychological battery development; M. P.-G. and C. C. wrote the manuscript; J. d. D. L. performed the statistical analysis; F. J. T.-E., C. M.-Z. and J. S.-d. G. were responsible of neuropsychological evaluation of NUHEAL children at 8-5 years and Generation R children at 7 years, supported all other teams and helped to complete the databases; T. A. worked in the NUTRIMENTHE management team, collaborated in the organisation of the study and the completion of the NUTRIMENTHE Global Database; M. W. and V. G. helped in the development of the NUTRIMENTHE Global Database; F. J. T.-E., C. M.-Z., J. S.-d. G., T. A., M. W., V. G., D. G., E. V., P. P., B. K., J. E., H. T. and T. A. supervised the manuscript. D. G., E. V., P. P., B. K. and J. E. were responsible for the CHOP study in Poland, Italy, Belgium, Germany and Spain, respectively; H. T. was responsible for the Generation R study in Rotterdam (The Netherlands); T. A. and B. K. were responsible for the NUHEAL study in Hungary and Germany, respectively; C. C. was the coordinator of NUTRIMENTHE EU Project and supervised the NUHEAL study in Granada.

None of the authors has any conflicts of interest to declare.

Supplementary material

For supplementary material/s referred to in this article, please visit https://doi.org/10.1017/S0007114517000824

References

1. Anjos T, Almáes S, Emmett P, et al. (2013) Nutrition and neurodevelopment in children: focus on NUTRIMENTHE project. Eur J Nutr 52, 1825–1842.
2. Smith MA & Scholey AB (2014) Nutritional influences on human neurocognitive functioning. Front Hum Neurosci 8, 358.
3. Fretham SJ, Carlson ES & Georgieff MK (2011) The role of iron in learning and memory. Adv Nutr 2, 112–121.
4. Portillo-Reyes V, Pérez-García M, Loya-Méndez Y, et al. (2014) Clinical significance of neuropsychological improvement after supplementation with omega-3 in 8–12 years old malnourished Mexican children: a randomized, double-blind, placebo and treatment clinical trial. Res Dev Disabil 35, 861–870.
5. Uzzell BP, Ponton M & Ardila A (editors) (2013) International Handbook of Cross-Cultural Neuropsychology. New York: Psychology Press.
6. United Nations Educational, Scientific and Cultural Organization (UNESCO) (2001) UNESCO Universal Declaration on Cultural Diversity. Paris: UNESCO. http://www.unesco.org/confrgen/press_re/021101_clt_diversity.shtml
7. Chiao JY (2009) Cultural neuroscience: a once and future discipline. Prog Brain Res 178, 287–304.
8. Ardila A (2007) The impact of culture on neuropsychological test performance. In International Handbook of Cross-Cultural Neuropsychology, pp. 23–44 [BP Uzzell, M Pontón and A Ardila, editors]. Mahwah, NJ: Lawrence Elbaum.
9. Hsieh SJ & Tori CD (2007) Normative data on cross-cultural neuropsychological tests obtained from Mandarin-speaking adults across the life span. Arch Clin Neuropsychol 22, 283–296.
10. Lan X, Legare CH, Ponitz CC, et al. (2011) Investigating the links between the subcomponents of executive function and academic achievement: a cross-cultural analysis of Chinese and American pre-schoolers. J Exp Child Psychol 108, 677–692.
11. Nuss D, Capetillo D, Carrión-Baralt J, et al. (2009) Professional considerations for improving the neuropsychological evaluation of Hispanics: a National Academy of Neuropsychology education paper. Arch Clin Neuropsychol 24, 127–135.
12. Llorente AM (2008) Principles of Neuropsychological Assessment with Hispanics. New York, NY: Springer.
13. Khalil MS (2010) Preliminary Arabic normative data of neuropsychological tests: the verbal and design fluency. J Clin Exp Neuropsychol 32, 1028–1035.
14. Raffel E, Njamsni AK, Mayer E, et al. (2009) Neuropsychology in Cameroon: first normative data for cognitive tests among school-aged children. Child Neuropsychol 16, 1–19.
15. Wicherts JM, Dolan CV & van der Maas HL (2010) A systematic literature review of the average IQ of sub-Saharan Africans. Intelligence 38, 1–20.
16. Chemer M, Suarez P, Lazzaretto D, et al. (2007) Demographically corrected norms for the Brief Visuospatial Memory Test-revised and Hopkins Verbal Learning Test-revised in monolingual Spanish speakers from the US–Mexico border region. Arch Clin Neuropsychol 22, 343–353.
17. Mutate E, Rosselli M, Ardila A, et al. (2004) Verbal and nonverbal fluency in Spanish-speaking children. Dev Neuropsychol 26, 647–660.
18. Park D & Gutchess A (2006) The cognitive neuroscience of aging and culture. Curr Dir Psychol Sci 15, 105–108.
19. Boone KB, Victor TL, Wen J, et al. (2007) The association between neuropsychological scores and ethnicity, language, and acculturation variables in a large patient population. Arch Clin Neuropsychol 22, 355–365.
20. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
21. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
22. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
23. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
24. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
25. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
26. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
27. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
28. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
29. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
30. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
31. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
32. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
33. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
34. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
35. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
36. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
37. Ferraro FR & McDonald LR (2005) More culturally sensitive considerations for improving the neuropsychological evaluation of Hispanics. J Int Neuropsychol Soc 11, 417–419.
24. Manly JJ, Byrd DA, Touradji P, et al. (2004) Acculturation, reading level, and neuropsychological test performance among African American elders. *Appl Neuropsychol* **11**, 37–46.

25. Puente AE, Perez-Garcia M, Vilar-Lopez R, et al. (2013) Neuropsychological assessment of culturally and educationally dissimilar individuals. In *Handbook of Multicultural Mental Health: Assessment and Treatment of Diverse Population*, pp. 225–242 [FA Paniagua and A-M Yamada, editors]. San Diego, CA: Academic Press.

26. Salazar GD, Garcia MP & Puente AE (2007) Clinical neuropsychology of Spanish speakers: the challenge and pitfalls of a neuropsychology of a heterogeneous population. In *International Handbook of Cross-Cultural Neuropsychology*, pp. 283–302 [BP Uzzell, MO Pontón and A Ardila, editors]. Mahwah, NJ: Lawrence Erlbaum Associates.

27. Buré-Reyes A, Hidalgo-Ruzzante N, Vilar-López R, et al. (2013) Neuropsychological test performance of Spanish speakers: is performance different across different Spanish-speaking subgroups? *J Clin Exp Neuropsychol* **35**, 404–412.

28. Ardila A (2005) Cultural values underlying psychometric cognitive testing. *Neuropsychol Rev* **15**, 185–195.

29. Rosselli M & Ardila A (2003) The impact of culture and education on non-verbal neuropsychological measurements: a critical review. *Brain Cogn* **52**, 326–333.

30. Gasquoine PG (2009) Race-norming of neuropsychological tests. *Neuropsychol Rev* **19**, 250–262.

31. Brickman AM, Cabo R & Manly JJ (2006) Ethical issues in cross-cultural neuropsychology. *Appl Neuropsychol* **13**, 91–100.

32. Schwartz BS, Glass TA, Bolla KI, et al. (2004) Disparities in cognitive functioning by race/ethnicity in the Baltimore Memory Study. *Environ Health Perspect* **112**, 314–320.

33. Manly JJ, Jacobs DM, Touradji P, et al. (2002) Reading level attenuates differences in neuropsychological test performance between African American and White elders. *J Int Neuropsychol Soc* **8**, 341–348.

34. Wilson M (2010) The re-tooled mind: how culture re-engineers cognition. *Soc Cogn Affect Neurosci* **5**, 180–187.

35. Agranovich AV, Pantier AT, Puente AE, et al. (2011) The culture of time in neuropsychological assessment: exploring the effects of culture-specific time attitudes on timed test performance in Russian and American samples. *J Int Neuropsychol Soc* **17**, 692–701.

36. Ouellet M, Santiago J, Israeli Z, et al. (2010) Is the future the right time? *Exp Psychol* **57**, 308–314.

37. Fasfous AF, Hidalgo-Ruzzante N, Vilar-López R, et al. (2013) Cultural differences in neuropsychological abilities required to perform intelligence tasks. *Arch Clin Neuropsychol* **28**, 784–790.

38. Byrd D, Arentoft A, Scheiner D, et al. (2008) State of multicultural neuropsychological assessment in children: current research issues. *Neuropsychol Rev* **18**, 214–222.

39. Sobeh J & Spijkers W (2013) Development of neuropsychological functions of attention in two cultures: a cross-cultural study of attentional performances of Syrian and German children of pre-school and school age. *Eur J Dev Psychol* **10**, 318–336.

40. Kail RV, McBride-Chang C, Ferrer E, et al. (2013) Cultural differences in the development of processing speed. *Dev Sci* **16**, 476–483.

41. Thorell LB, Veleiro A, Siu AF, et al. (2013) Examining the relation between ratings of executive functioning and academic achievement: findings from a cross-cultural study. *Child Neuropsychol* **19**, 630–638.

42. Llorente AM, Williams J, Satz P, et al. (2003) *Children’s Colour Trails Test-Professional Manual*. Lutz, FL: Psychological Assessment Resources.

43. Fasfous AF, Puente AE, Pérez-Marfil MN, et al. (2013) Is the colour trails culture free? *Arch Clin Neuropsychol* **28**, 743–749.

44. Schiess S, Grote V, Scaglioni S, et al. (2010) Introduction of complementary feeding in 5 European countries. *J Pediatr Gastroenterol Nutr* **50**, 92–98.

45. Jaddoe VW, Mackenbach JP, Moll HA, et al. (2006) The Generation R Study: design and cohort profile. *Eur J Epidemiol* **21**, 475–484.

46. Krauss-Etschmann S, Shadid R, Campoy C, et al. (2007) Effects of fish-oil and folate supplementation of pregnant women on seminal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: a European randomized multicenter trial. *Am J Clin Nutr* **85**, 1392–1400.

47. Snodgrass JG & Vanderwart M (1980) A standardized set of words norms for naming, image agreement, familiarity, and visual complexity. *J Exp Psychol Hum Learn Mem* **6**, 174–215.

48. Rey A (1941) L’examen psychologique dans les cas d’encephalopathie trau-matique: the Rey Auditory Verbal Learning Test [RVLT] (The psychological examination in cases of head trauma: the Rey Auditory Verbal Learning Test [RVLT]). *Arch Psychol (Geneve)* **28**, 215–285.

49. Conners CK, Epstein JN, Angold A, et al. (2003) Continuous performance test performance in a normative epidemiological sample. *J Abnorm Child Psychol* **31**, 555–562.

50. Woodcock R, McGrew K & Mather N (2001) *Woodcock-Johnson III. Tests of Cognitive Abilities*. Rolling Meadows, IL: Riverside Publishing.

51. Lafayette I (2002) *Grooved Pegboard User Instructions*. Lafayette, IN: Lafayette Instruments.

52. Hooper H (1985) *Hooper Visual Organization Test Manual*. Los Angeles, CA: Pearson Assessment.

53. Strauss E, Sherman EM & Spreen O (2006) *A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary*. New York: Oxford University Press.

54. Korkman M, Kirk U & Kemp S (2007) *NEPSY II. Administration Manual*. San Antonio, TX: Pearson Assessment.

55. Smith A (2007) *Symbol Digit Modalities Test*. Los Angeles, CA: WPS.

56. Golden C (1978) *Stroop Color and Word Test*. Chicago, IL: Stoelting Company.

57. Kaufman AS & Kaufman NL (2004) *Kaufman Assessment Battery for Children*, 2nd ed. San Antonio, TX: Pearson.

58. Llorente A, Williams J, Satz P, et al. (2003) *Children’s Color Trails Test*. Lutz, FL: Psychological Assessment Resources, Inc.

59. Crone EA & Van der Molen MW (2004) Developmental changes in real life decision making: performance on a gambling task previously shown to depend on the ventromedial prefrontal cortex. *Dev Neuropsychol* **25**, 251–279.

60. Portocarrero JS, Burright RG & Donovick PJ (2007) *Vocabulary and verbal fluency of bilingual and monolingual college students*. *Arch Clin Neuropsychol* **22**, 415–422.