On the Compatibility Between Physics and Intelligent Organisms

John C. Collins,∗†
DESY, Notkestraße 85, D-22603 Hamburg, Germany,
and
II Institut für Theoretische Physik, Universität Hamburg,
Luruper Chaussee 149, D-22761 Hamburg, Germany

9 February 2001

Abstract

It has been commonly argued, on the basis of Gödel’s theorem and related mathematical results, that true artificial intelligence cannot exist. Penrose has further deduced from the existence of human intelligence that fundamental changes in physical theories are needed. I provide an elementary demonstration that these deductions are mistaken.

Is real artificial intelligence possible? Are present-day theories of physics sufficient for a reductionist explanation of consciousness? Among the long history of discussions of these questions [1–4], the eloquent writings of Penrose [2] stand out for strong mathematical arguments that give negative answers to both questions.

For a physicist, Penrose’s result is quite striking. He claims that understanding the human brain entails big changes in current microscopic theories

∗E-mail: collins@phys.psu.edu
†On leave from: Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.
of physics (e.g., quantum mechanics in general and quantum gravity in particular). This is contrary to our normal scientific experience. The enormous progress in both elementary particle physics and in molecular biology during the last 30 years has had no direct mutual influence on the two fields, except on our students’ career choices. Now we have an eminent theoretical physicist telling elementary particle physicists to look to neurons rather than multi-billion-dollar accelerators for progress in physics. Should we believe him?

In this paper, I provide an elementary argument that this chain of reasoning fails.

1 Penrose’s argument

Penrose observes that current microscopic theories of physics are computational, and that they appear to underlie all chemical and biological phenomena. It follows that it is possible to simulate all properties of biological organisms by a computer program. Of course, the computer program will be impractically big to implement, but this fact does not affect Penrose’s mathematics. Among the biological organisms are mathematicians, so the computer program provides artificial mathematicians that are completely equivalent to human mathematicians. This runs afoul of Turing’s halting theorem, which, taken at face value, implies that artificial mathematicians are always less powerful than human mathematicians.

From this contradiction, Penrose deduces that better theories of physics are needed and that the new theories must be non-computational, unlike current theories, such as the “Standard Model”, which are all particular quantum mechanical theories. On the way he also demolishes all hope for true artificial intelligence.

Of course, this argument attracted much comment [3, 4]. The critics observe that real computer programs appear to have a much richer range of behavior than the kind of computation used in Turing’s theorem. This theorem applies to strictly non-interactive computer programs (technically known as Turing machines), whereas real intelligent entities are obviously much more like interactive computer programs. But Penrose always appears to have a comeback. For example, if an intelligent computer needs to be trained by an environment, then he tells us to simulate the environment by a computer, just as one might hook up an aircraft control computer to a flight simulator instead of a real crashable jumbo jet.
Thus Penrose counters the criticism by observing that from an interactive program one can construct a non-interactive program, i.e., one that does not depend on repeated interaction with other beings or with an environment. I will show that this construction fails. The construction of a non-interactive program satisfying a particular precise specification of the kind needed in the Turing theorem inevitably loses access to the full powers of a putative intelligent interactive program.

2 Turing’s halting theorem

The technical results use the concept of a “Turing machine”. Now a Turing machine is simply any device for performing a defined computation. Turing’s achievement was to characterize this mathematically, i.e., to define in general what a computer program is. Hence, instead of Turing machines, we can equally well discuss realistic computers and actual programming languages.

The halting theorem — see Penrose’s excellent treatment [2] — concerns a subroutine \(T_k(n) \) which takes one argument and which obeys the following specification:

\[
T_k(n) \text{ halts if and only if it has constructed a correct proof that the one-argument subroutine defined by } n \text{ does not halt when presented with data } n.
\]

Here, the subscript in \(T_k \) represents the source code for the subroutine. The argument \(n \) is the source code for another subroutine, and \(T_k \) concerns itself with proving properties of this second subroutine.

Turing’s halting theorem is obtained when one sets \(n = k \), i.e., when \(T_k \) is asked to prove a theorem about itself. There is a contradiction unless \(T_k(k) \) does not halt; this result is exactly the halting theorem. From the subroutine’s specification, we see that the subroutine is unable to prove this same theorem, the one stated in the previous sentence.

But humans can prove the theorem. From this follow the conclusions about the impossibility of artificial intelligence, etc.

3 Non-Turing computations

What is the relation between a dry abstract theorem-proving subroutine and a computer program simulating biological organisms? The behavior of the
organisms (even the mathematicians) is clearly a lot richer and more varied than that of the theorem prover. Basically the answer is in the common assertion that all computers and computer programs are examples of Turing machines; that is, they can each be viewed as some subroutine T_k. To obtain the Turing machine used in the halting theorem, one simply has to ask the simulated mathematician to prove an appropriate theorem.

However, the common assertion, of the equivalence between Turing machines and computer programs, is not exactly correct. The idea of a Turing machine is that it is given some definite input, it runs, and then it returns the results of the computation. This is appropriate for the calculation of a trigonometric function, for example. But a real computer program may be interactive; it may repeatedly send output to the outside world and receive input in response, word processors and aircraft control programs being obvious examples. Such computer programs are not Turing machines, strictly speaking. As Geroch and Hartle [5] have observed, a Turing machine is equivalent to a particular kind of computer program, a program whose input is all performed in a single statement that is executed once.

The legalistic distinction between Turing and non-Turing computations matters critically for Penrose’s results. Software that attempts to mimic real intelligence must surely be in the more extended class of interactive programs. Moreover, if one is to avoid programming all the details of its behavior, the program must learn appropriate responses in interaction with an environment. The prototypical case is unsupervised learning by an artificial neural network, an idea with obvious and explicit inspiration from biological systems.

To be able to using the halting theorem, one must demonstrate that, given some software that genuinely reproduces human behavior, one can construct from it a subroutine of the Turing type suitable for use in the theorem.

4 Interactive programs

Penrose [2] gives a number of examples, that appear to show that it is easy to construct the requisite non-interactive subroutine using the interactive program as a component.

However, there is a big problem in figuring out how to present the input to the program, to tell it what theorem is to be proved. Now the program, which we can call an artificial mathematician, is in the position of a research
scientist whose employer specifies a problem to be worked on. To be effective, such a researcher must be able to question the employer’s orders at any point in the project. The researcher’s questions will depend on the details of the progress of the research. ("What you suggested didn’t quite work out. Did you intend me to look at the properties of XXYZ rather than XYZ?") As every scientist knows, if the researcher does not have the freedom to ask unanticipated questions, the whole research program may fail to achieve its goals.

Therefore to construct the non-interactive program needed by Penrose one must discover the questions the artificial mathematician will ask and attach a device to present the answers in sequence. The combination of the original computer and the answering machine is the entity to which Turing’s halting theorem is to be applied.

How does one discover ahead of time the questions that will be asked? (Remember that the program is sufficiently complex that one does not design it by planning ahead of time the exact sequence of instructions to be executed.) One obvious possibility is simply to run the program interactively to discover the questions. Then one programs the answering machine with the correct answers and reruns the program.

This is exactly what a software manufacturer might do to provide a demonstration of a graphical design program. Both the graphical design program and the answering machine are interactive programs; but the combination receives no input from the outside world and is therefore an actual Turing machine.

Here comes a difficulty that as far as I can see is unsolvable. The first input to the program was a request to prove a particular theorem about a particular computing system. This computing system happened to be the program itself, together with all its ancillary equipment. When one reruns the program after recording the answers to its questions, the theorem under consideration has changed. The theorem is now about the original computing system including the answering machine, and, most importantly, the answers recorded on it.

The answers were recorded when the program was asked to prove a theo-

\footnote{In the case of a complete microscopic simulation of the real world, one must also figure out how to present mathematics research problems to the beings that are created by the simulation. This is quite non-trivial given that the actual programming concerned itself exclusively with the interactions of quarks, gluons and electrons. Nevertheless let us assume that this problem has been solved.}
rem about the computing system with no answers on the answering machine. Why should the questions remain the same when the theorem has changed? If they don’t, then the recorded answers can easily be wildly inappropriate.

Of course, the theorem has not changed very much. However, in a complex computing system the output often depends sensitively on the details of the input. Indeed, a system that is intended to be intelligent and creative should show just such unpredictable behavior.

No matter how one goes about it, to discover the exact questions that the artificial mathematician will ask requires us to know the answers. But one doesn’t know which answers are needed until one knows the questions. And one must know the exact questions and answers, for otherwise one cannot set up the subroutine used in Turing’s halting theorem. The subroutine is asked to prove a theorem K about a certain subroutine. The proof of Turing’s halting theorem is inapplicable if even one bit of machine code differs between the subroutine that attempts to prove the theorem K and the subroutine that is the subject of the theorem.

Once one realizes that the exact information on the questions and answers cannot be found, the applicability of the halting theorem to a simulation of biological organisms fails, and with it Penrose’s chain of argument.

5 Conclusion

Intelligent software must behave much more like a human than the kinds of software that are encompassed by the strict definition of a Turing machine. Penrose’s conclusion requires taking absolutely literally the idea that every computation can be reduced to some Turing machine, so that he can use Turing’s halting theorem. The proof of the theorem requires perfect equality between a certain subroutine that proves theorems and the subroutine that is the subject of a theorem to be proved. But the practicalities of converting intelligent software to the non-interactive software used in the halting theorem preclude one from achieving this exact equality.

We see here an example of a common phenomenon in science: any statement we make about the real world is at least slightly inaccurate. When we employ logical and mathematical reasoning to make predictions, the reasoning is only applicable if it is robust against likely deviations between the mathematics and the real world. This does not seem to be the case for Penrose’s reasoning.
Acknowledgments

I would like to thank A. Ashtekar, S. Finn, J. Hartle, D. Jacquette, R. Penrose and L. Smolin for useful discussions, and I am particularly grateful to J. Banavar for a careful critique of this paper. I would also like to thank the U.S. Department of Energy for financial support, and the Alexander von Humboldt foundation for an award.

References

[1] For example, J.R. Lucas, Philosophy 36, 120 (1961).

[2] R. Penrose, Shadows of the Mind (Oxford, 1994).

[3] Discussion about R. Penrose’s The Emperor’s New Mind, in Behavioural and Brain Sciences 13 (4) 655 (1990).

[4] Symposium on Roger Penrose’s Shadows of the Mind in Psyche 2 (1995), at http://psyche.cs.monash.edu.au/psyche-index-v2.html.

[5] R. Geroch, J.B. Hartle, Found. Phys. 16, 533 (1986).