Critical Properties of
the Calogero-Sutherland Model with Boundaries

Takashi Yamamoto
Yukawa Institute for Theoretical Physics, Kyoto University,
Kyoto 606, Japan

Norio Kawakami
Department of Material and Life Science, and Department of Applied Physics, Osaka University,
Suita, Osaka 565, Japan

Sung-Kil Yang
Institute of Physics, University of Tsukuba,
Ibaraki 305, Japan

Abstract

Critical properties of the Calogero-Sutherland model of BC_N-type (BC_N-CS model) are studied. Using the asymptotic Bethe-ansatz spectrum of the BC_N-CS model, we calculate finite-size corrections in the energy spectrum. Since the BC_N-CS model does not possess translational invariance, the finite-size spectrum acquires the contributions coming from “boundaries”. We show that the low-energy critical behavior of the model is described by $c = 1$ boundary conformal field theory. Thus the universality class of the model is identified as a chiral Tomonaga-Luttinger liquid.
I. INTRODUCTION

The Calogero-Sutherland (CS) models \([1,3]\) describe one-dimensional quantum many-body systems with inverse-square long-rang interactions. Among many variants of the CS model \([4]\), a class of models which are not translationally invariant has been known over the passed years \([3]\). In particular the so-called CS model of \(BC_N\)-type (abbreviated as the \(BC_N\)-CS model hereafter) is the most general model with \(N\) interacting particles. The \(BC_N\)-CS model is intimately related to the root system of type \(BC_N\) and invariant under the action of the Weyl group of type \(B_N\). Namely, the model is invariant under coordinate transformations

\[
(q_1, q_2, \cdots, q_N) \mapsto (\epsilon_1 q_{\sigma(1)}, \epsilon_2 q_{\sigma(2)}, \cdots, \epsilon_N q_{\sigma(N)}),
\]

where \((q_1, q_2, \cdots, q_N) \in \mathbb{R}^N\) denote the coordinates of \(N\) particles, \(\epsilon_j \in \{\pm 1\}\) and \(\sigma\) is an element of the symmetric group of \(N\) letters. Roughly speaking, the Weyl group of type \(B_N\) consists of the ordinary exchange of particle coordinates and the sign change of coordinates. As we will see below the latter is understood as the mirror image of particles with respect to a boundary.

Recent works have made it clear that the \(BC_N\)-CS model is relevant to one-dimensional physics with boundaries. For instance, it was pointed out that the non-relativistic dynamics of quantum sine-Gordon solitons in the presence of a boundary is described by the \(BC_N\)-CS model (with sinh-interaction) \([3]\). This model is interesting in view of the quantum electric transport in mesoscopic systems \([7,8]\). The Haldane-Shastry model, which is the discrete version of the CS model, with open boundary conditions can also be constructed by utilizing the root system of type \(BC_N\) \([9,10]\). We shall present further evidence for the relevance of the \(BC_N\)-CS model to our understanding in one-dimensional physics including boundary effects.

In this article we will analyze the long-distance critical properties of the \(BC_N\)-CS model. Since the exact energy spectrum of the model is available \([11]\), we may apply the method of
finite-size scaling developed in conformal field theory (CFT) to study the critical behavior. The same technique has already been employed when the critical properties of the CS model of A_{N-1}-type were considered [12]. The universality class of the A_{N-1}-CS model is identified as a Tomonaga-Luttinger liquid which is equivalent to $c = 1$ Gaussian CFT. In what follows we will show that, in contrast to the A_{N-1}-CS model, the BC_N-CS model exhibits the critical behavior described by $c = 1$ CFT with boundaries [13]. Hence the universality class will be found to be a chiral Tomonaga-Luttinger liquid [14].

In the next section we first introduce the BC_N-CS model and review the energy spectrum of the model obtained by using the asymptotic Bethe-ansatz. In section 3 we consider the thermodynamic properties. In section 4 the finite-size scaling analysis of the energy spectrum is performed. Finally, in section 5, we discuss various critical exponents of correlation functions.

II. THE BC_N-CS MODEL

Let us write down the Hamiltonian of the BC_N-CS model [3]. We put the system in finite geometry with linear size L and impose periodic boundary conditions. The Hamiltonian is then given by

$$
\mathcal{H} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial q_j^2} + 2\lambda(\lambda - 1) \left(\frac{\pi}{L} \right)^2 \sum_{1 \leq j < k \leq N} \left\{ \frac{1}{\sin^2 \frac{\pi}{L}(q_j - q_k)} + \frac{1}{\sin^2 \frac{\pi}{L}(q_j + q_k)} \right\} \\
+ \lambda_1(\lambda_1 + 2\lambda_2 - 1) \left(\frac{\pi}{L} \right)^2 \sum_{j=1}^{N} \frac{1}{\sin^2 \frac{\pi}{L} q_j} + 4\lambda_2(\lambda_2 - 1) \left(\frac{\pi}{L} \right)^2 \sum_{j=1}^{N} \frac{1}{\sin^2 \frac{\pi}{L} q_j^2}
$$

where λ, λ_1 and λ_2 are coupling constants which are assumed to be non-negative. It is clearly seen that the Hamiltonian (3) is invariant under the action (4) of the Weyl group of type B_N. There exist several interaction terms which will need explanation. The term $1/\sin^2(\pi/L)(q_j + q_k)$ expresses the two-body interaction between the j-th particle and the “mirror-image” (we place a mirror at the origin $q = 0$) of the k-th particle ($j \neq k$). The term $1/\sin^2(\pi/L)q_j^2$ may be interpreted as the potential due to impurity located at the origin.
The term $1/\sin^2(\pi/L)2q_j$ describes the interaction between the j-th particle and its own “mirror-image”. All these terms required by invariance under the action of the Weyl group of type B_N violate translational invariance. Therefore, the total momentum is not a good quantum number for the BC_N-CS model.

The Hamiltonian (2) can be cast into another form just by using the elementary identity $\sin 2A = 2 \sin A \cos A$. One gets

$$H = -\sum_{j=1}^{N} \frac{\partial^2}{\partial q_j^2} + 2\lambda(\lambda - 1) \left(\frac{\pi}{L}\right)^2 \sum_{1 \leq j < k \leq N} \left\{ \frac{1}{\sin^2 \frac{\pi}{L}(q_j - q_k)} + \frac{1}{\sin^2 \frac{\pi}{L}(q_j + q_k)} \right\} + \mu(\mu - 1) \left(\frac{\pi}{L}\right)^2 \sum_{j=1}^{N} \frac{1}{\sin^2 \frac{\pi}{L}q_j} + \nu(\nu - 1) \left(\frac{\pi}{L}\right)^2 \sum_{j=1}^{N} \frac{1}{\cos^2 \frac{\pi}{L}q_j},$$

where $\mu = \lambda_1 + \lambda_2$, $\nu = \lambda_2$. In this form of the Hamiltonian the term $1/\sin^2(\pi/L)(q_j + q_k)$ is regarded as the boundary potential as before, while the last two terms in (3) are regarded as the impurity potentials with the strength determined by μ and ν respectively. The Hamiltonian (3) is suitable for our present considerations.

The eigenvalues of the Hamiltonian (3) of the BC_N-CS model have been obtained by one of the authors [11]. The energy spectrum so obtained is shown to be reproduced exactly with the use of the asymptotic Bethe-ansatz (ABA) method [11]. Let us recall the ABA formula for the BC_N-CS model. First of all the total energy of the system takes the form

$$E_N = \sum_{j=1}^{N} k_j^2,$$

where pseudomomenta k_j’s satisfy $k_1 > k_2 > \cdots > k_N > 0$ and obey the ABA equations

$$k_jL = 2\pi I_j + \pi(\lambda - 1) \sum_{i=1, i \neq j}^{N} \{ \text{sgn}(k_j - k_i) + \text{sgn}(k_j + k_i) \} + \pi(\mu - 1)\text{sgn}(k_j) + \pi(\nu - 1)\text{sgn}(k_j), \quad j = 1, \cdots, N,$$

Precisely speaking, this reference treated the case with $\nu = 0$ (the B_N-CS model). However, we can easily obtain the formula for the BC_N-CS model. The spectrum was also derived in [10].
with \(\text{sgn}(x) = 1 \) for \(x > 0 \), \(= 0 \) for \(x = 0 \) and \(= -1 \) for \(x < 0 \). Here \(I_j \) \((j = 1, \cdots, N)\) are positive integers with \(I_1 > I_2 > \cdots > I_N > 0 \). These are quantum numbers which characterize the excited states.

We emphasize here that, in contrast to the \(A_{N-1} \)-CS model, the Fermi surface of the \(BC_N \)-CS model consists of a single point. This is due to the fact that pseudomomenta \(k_j \) which are solutions to (5) are distributed only over the semi-infinite region as is shown in Fig. 1a. Therefore, in view of the bosonization picture, it implies that the low-energy critical behavior of the \(BC_N \)-CS model will be effectively described by a left (or right)-moving sector of CFT (see Fig. 1b). In addition to this, we also notice that the form of our Bethe-ansatz equations (5) is quite close to that appeared in the studies of the nonlinear Schrödinger equation on the half line \([15,16]\) as well as the \(XXZ \) model with open boundary conditions \([17,18]\). The critical behavior observed in these models \([15–18]\) is well described by boundary CFT \([13]\). It is inferred from these points that boundary CFT will play a role in our study of the \(BC_N \)-CS model.

Finally we rewrite our ABA equation (5) for further convenience. As has already been mentioned, all the pseudomomenta \(k_j \) are positive. However, one can make a trick so that \(k_j \) takes values in \((−∞,∞)\) as in the bulk system. To realize this let us define \(I_{−j} = −I_j \), \(I_0 = 0 \), \(k_{−j} = −k_j \) and \(k_0 = 0 \) with \(j = 1, \cdots, N \), then we have

\[
k_j = 4\pi \frac{1}{2L} I_j + 2\pi(\lambda - 1) \frac{1}{2L} \sum_{l=−N}^{N} \text{sgn}(k_j - k_l) \\
+ \frac{\pi}{L}(\mu + \nu - 2)\text{sgn}(k_j) - \frac{\pi}{L}(\lambda - 1)\text{sgn}(2k_j) - \frac{\pi}{L}(\lambda - 1)\text{sgn}(k_j),
\]

where \(j = −N, −N + 1, \cdots, N \). The last two terms in (5) arise since the summation in (5) does not include the terms \(l = j \) and \(l = 0 \). Now the system turns out to have linear size \(2L \) and the number of particles becomes \(2N + 1 \). Note that the density of the system does not change. This doubling trick is known to be efficient when studying one-dimensional physics with boundaries \([15–18]\).
III. THERMODYNAMIC PROPERTIES

The purpose in this section is to discuss thermodynamics of the BC_N-CS model. Let us first consider the system at zero temperature. All the states inside of the interval $[-k_F, k_F]$ are occupied, where the Fermi momentum k_F is defined as $k_F = \max\{k_j\}$. The thermodynamic limit is taken by $2L \to \infty$, $2N + 1 \to \infty$ with the density $(2N + 1)/2L$ fixed. As usual we define the density of states by

$$
\lim_{L \to \infty} \frac{1}{2L} \sum_{j=-N}^{N} (k_j - k_{j+1}) = \rho(k),
$$

and the sum is converted into integral

$$
\frac{1}{2L} \sum_{j=-N}^{N} (k_j - k_{j+1}) \to \int_{-k_F}^{k_F} dk \rho(k).
$$

From (8), (9), and $\frac{d}{dx} \text{sgn}(x) = 2\delta(x)$, it is shown that

$$
1 = 4\pi \rho(k) + 4\pi (\lambda - 1) \int_{-k_F}^{k_F} dk' \delta(k - k') \rho(k') + \frac{2\pi}{L} (\mu + \nu - 2\lambda) \delta(k),
$$

where the boundary effect manifests itself in the last term ($\sim 1/L$). Notice that even for $\mu = \nu = 0$, it still modifies the equation. Upon taking the thermodynamic limit one can neglect the boundary term. The resulting equation is the same as for the A_{N-1}-CS model [2]. Then it is immediate to get

$$
\rho(k) = \frac{1}{4\pi \lambda},
$$

$$
k_F = 2\pi \lambda d,
$$

where we have put $d = N/L$. It is also straightforward to compute the ground-state energy,

$$
E^{(0)} = \sum_{j=-N}^{N} (k_j^{(0)})^2 = 2L \int_{-k_F}^{k_F} dk k^2 \rho(k) = 2L \cdot \epsilon^{(0)}
$$

with $\epsilon^{(0)} = 4\pi^2 \lambda^2 d^3/3$ in the $2L \to \infty$ limit.

It is not difficult to extend the above analysis to the finite temperature case. At finite temperatures the pseudomomenta distribute over the infinite region $(-\infty, \infty)$. One finds
\[1 = 4\pi (\rho(k) + \rho^h(k)) + 4\pi(\lambda - 1) \int_{-\infty}^{\infty} dk' \delta(k - k') \rho(k') + \frac{2\pi}{L}(\mu + \nu - 2\lambda)\delta(k),\]
(13)

where \(\rho^h(k)\) is the hole density. Let \(2L \to \infty\), then we have

\[\rho(k) + \frac{1}{\lambda} \rho^h(k) = \frac{1}{4\pi\lambda}.\]
(14)

Following now the familiar procedure, we obtain the thermodynamic Bethe-ansatz equation,

\[\epsilon(k) = k^2 - \mu_c + (\lambda - 1)T \log \left\{ 1 + \exp \left(-\frac{1}{T} \epsilon(k) \right) \right\},\]
(15)

where \(T\) is the temperature, \(\mu_c\) is the chemical potential and the energy density \(\epsilon(k)\) of particles is defined by

\[\frac{\rho(k)}{\rho^h(k)} = \exp \left(-\frac{1}{T} \epsilon(k) \right).\]
(16)

Performing the low-temperature expansion of the free energy \(F(T)\) which is given by

\[(F(T) - \mu_c(2N + 1))/(2L) = -\frac{T}{4\pi} \int_{-\infty}^{\infty} dk \log(1 + e^{-\frac{1}{T}\epsilon(k)}),\]
(17)

we have

\[F(T) \simeq F(T = 0) - \frac{\pi T^2}{6(4\pi \lambda d)}.\]
(18)

The second term in (18) is responsible for the linear specific heat \(C\) as \(T \to 0\). It is well recognized that the coefficient in \(C\) is universal modulo the Fermi velocity \(v_F\) which is not universal \[19\]. In translationally invariant systems the Fermi velocity is determined by the dispersion relation. In the \(BC_N\)-CS model, however, one cannot rely on the dispersion relation since the momentum is not a good quantum number. So, in order to determine \(v_F\), we have to take another point of view. As we observed, eqs. (11), (14) and (14) coincide with those obtained in the \(A_{N-1}\)-CS model. Hence we may regard the \(A_{N-1}\)-CS model as the bulk counterpart of the \(BC_N\)-CS model. Since the \(A_{N-1}\)-CS model is described in terms of \(c = 1\) CFT \[12\] we assume that the central charge for the \(BC_N\)-CS model is also given by \(c = 1\). Then, comparing \(C\) obtained from (18) to the formula \(C = \pi c T/(3 v_F)\) \[19\] with \(c = 1\) we find \(v_F = 4\pi \lambda d\). We shall see in section 5 that the finite-size spectrum is in fact in accord with \(c = 1\) CFT.
IV. FINITE-SIZE SCALING ANALYSIS

In this section we perform the finite-size scaling analysis of the energy spectrum of the BC_N-CS model. To begin with, we summarize several fundamental formulas in boundary CFT [13] which we will need to analyze the energy spectrum. Let us first recapitulate the finite-size scaling form of the ground-state energy predicted by conformal invariance under free boundary conditions [19]

$$E^{(0)} = L\epsilon^{(0)} + 2f - \frac{\pi v_F c}{24L}.$$ \hspace{1cm} (19)

where $\epsilon^{(0)}$ and f are, respectively, the bulk limits of the ground-state energy density and the boundary energy, v_F is the velocity of the elementary excitations. The Virasoro central charge c which specifies the universality class of the system appears as the universal amplitude of the $1/L$ term in (19).

From the scaling behavior of the excitation energy one can read off the boundary critical exponents x_b [13]. This exponent x_b governs the power-law decay (parallel to the boundary surface) of a two-point function. Suppose a critical system on the half-plane $\{(y,\tau) \in \mathbb{R}_{\geq 0} \times \mathbb{R}\}$ with a surface at $y = 0$. (y is the perpendicular distance from a point (y,τ) to the boundary and τ means the imaginary time.) Let $\mathcal{O}(y,\tau)$ be a local operator. We consider its two-point correlation function $G(y_1, y_2, \tau) = \langle \mathcal{O}(y_1, \tau_1)\mathcal{O}(y_2, \tau_2) \rangle$, which is a function of $\tau = \tau_1 - \tau_2$ because of translational invariance along the surface. For $|\tau| \gg y_1, y_2$, we obtain the asymptotic form of G,

$$G(y_1, y_2, \tau) \sim \frac{1}{\tau^{2x_b}}.$$ \hspace{1cm} (20)

To evaluate x_b we have to examine the scaling law

$$E - E^{(0)} = \frac{\pi v_F}{L} x_b$$ \hspace{1cm} (21)

with E being the excitation energy. It usually happens that the value of x_b is distinct from that of the bulk exponent for certain scaling operator. In terms of CFT, the bulk exponent
is expressed as the sum of left and right conformal weights, while the boundary exponent is equal to the left (or right) conformal weight.

Let us now turn to the BC_N-CS model. It is convenient to manipulate the ABA equations (3) directly. We can easily solve (3) to obtain

$$k_j = \frac{2\pi}{L} [N - j + 1] + k_j^{(0)}, \quad j = 1, \cdots, N,$$

where

$$k_j^{(0)} = \frac{2\pi}{L} \left[\lambda (N - j) + \frac{\mu + \nu}{2} \right].$$

The ground state is thus specified by the quantum numbers $I_j^{(0)} = N - j + 1$, $(j = 1, \cdots, N)$, from which we get the Fermi point $I_1^{(0)} = N$ and the Fermi momentum $k_F = 2\pi \lambda N/L + \pi (\mu + \nu - 2\lambda)/L$. The ground-state energy is then obtained as

$$E_N^{(0)} = \sum_{j=1}^{N} \left(k_j^{(0)} \right)^2 = \left(\frac{2\pi}{L} \right)^2 \left[\frac{1}{3} \lambda N^3 + \frac{1}{2} \lambda (\mu + \nu - \lambda) N^2 + \frac{1}{12} \left(3(\mu + \nu - \lambda)^2 - \lambda^2 \right) N^3 \right].$$

We make a power expansion of (24) with respect to $1/L$ while keeping the particle density $d = N/L$ fixed. The result reads

$$E_N^{(0)} = \epsilon^{(0)} L + 2f + \frac{\pi v_F}{L} \lambda (\Delta N_b)^2 - \frac{\pi v_F}{12L} \lambda,$$

where $f = \pi^2 \lambda (\mu + \nu - \lambda) d^2$ and

$$\Delta N_b = \frac{\mu + \nu - \lambda}{2\lambda}.$$

In (23) there appear no higher-order terms with $L^{-m}(m \geq 2)$. Note also the symmetric dependence of f and ΔN_b on μ, ν.

There are several points which should be noticed in (23). First of all, besides the thermodynamic energy density $\epsilon^{(0)}$ already computed in (12), one finds the boundary energy $2f$ in the term of order L^0, which is due to the absence of translational invariance in the system. The next order corrections proportional to $1/L$ turn out to provide valuable information on
"boundary effects". To see this, let us proceed a bit carefully by having decomposed the $1/L$-contributions into the last two terms in (25). We first recall that the size-dependence of the interaction is inevitably introduced for $1/r^2$ systems, as seen in (3), when dealing with interacting particles in finite geometry. This gives rise to nonuniversal $1/L$-corrections to the ground-state energy in addition to the universal one, as observed in the A_{N-1}-CS model \[\text{[12]}\]. In (25), therefore, we think that the term $-\pi v_F \lambda/(12L)$ suffers from such nonuniversal contaminations which, in direct comparison with (19), yield the wrong value for the central charge.

The other $1/L$-correction term, $\pi v_F \lambda(\Delta N_b)^2/L$, is more interesting and understood as the "boundary effect" which consists of two kinds of contributions. As seen from (8), when we convert the BC_N system to the chiral system by using a trick of mirror image, we are left with particles moving only in one direction feeling the boundary potential depending on λ, in addition to the impurity potential depending on μ and ν. These two types of scattering effects are combined into a quadratic form with respect to the "fractional quantum number" ΔN_b depending on both $\mu + \nu$ and λ. Note that the quantum number ΔN_b physically represents the phase shift due to the scattering by the impurity- and boundary-potentials. Thus our ground-state energy $E_N^{(0)}$ is considered as the phase-shifted ground-state energy \[\text{[20]}\]. If we imagine a hypothetical system which does not include these boundary contributions, the corresponding ground-state energy $\tilde{E}_N^{(0)}$ is written as

$$\tilde{E}_N^{(0)} = E_N^{(0)} - \frac{2\pi v_F \lambda}{L} \frac{(\Delta N_b)^2}{2}.$$

Having discussed the ground-state energy in detail, we next wish to calculate the finite-size corrections to the excited states. Looking at the ABA equations \[\text{(5)}\] let us create an excited state by adding ΔN particles to the ground-state configuration. In this case, we have the pseudomomenta

$$k_j = \frac{2\pi}{L} \left[\lambda(N + \Delta N - j) + \frac{\mu + \nu}{2} \right],$$

from which we immediately obtain the finite-size corrections to leading order in $1/L,$
\[E_{N+\Delta N}^{(0)} - E_N^{(0)} \approx \mu_c^{(0)} \Delta N + \frac{\pi}{L} \left[4\pi \lambda (\mu + \nu - \lambda) d\Delta N + 4\pi \lambda^2 d(\Delta N)^2 \right] \]
\[= \mu_c^{(0)} \Delta N + \frac{\pi v_F}{L} \lambda (\Delta N + \Delta N_b)^2 - \frac{\pi v_F}{L} \lambda (\Delta N_b)^2, \]

(29)

where \(\mu_c^{(0)} = \frac{\partial \epsilon^{(0)}}{\partial d} = k_F^2 \) is the chemical potential. Note that this expression for the finite-size spectrum is essentially the same as that derived for the charge sector in the Kondo problem (see (49) in [21]). If we redefine \(E_N^{(0)} \) by \(E_N^{(0)} - \mu_c^{(0)} N \), we find

\[E_{N+\Delta N}^{(0)} - \tilde{E}_N^{(0)} = 2\pi v_F \frac{\lambda}{L} (\Delta N + \Delta N_b)^2. \]

(30)

Since any excitations which carry currents with large momentum transfer are barred due to the absence of translational invariance in the \(BC_N \)-CS model, the remaining possible type of low-energy excitations are provided by particle-hole excitations labeled by non-negative integers \(n \). The corresponding energy is simply obtained by adding \(2\pi v_F n/L \) to (30). Hence we have

\[E - \tilde{E}_N^{(0)} = 2\pi v_F \frac{\lambda}{L} \left[\frac{\lambda}{2} (\Delta N + \Delta N_b)^2 + n \right], \]

(31)

where \(E \) denotes the energy of the excited state specified by \((\Delta N, \Delta N_b, n) \). In the next section we argue that our result (31) is in accordance with the scaling law in \(c = 1 \) boundary CFT.

V. CORRELATION FUNCTIONS

Now that we have evaluated the finite-size corrections it is possible to read off various critical exponents using the scaling relation (21). When comparing our result (31) with (21) we have to replace \(L \) with \(2L \) since \(L \) has been defined as the periodic length of the system. Bearing this in mind let us take an operator \(\psi_b \) which corresponds to the phase-shifted ground state. This operator can be assumed to be the boundary changing operator [20].

With this point of view, the phase-shifted ground state is an excited state relative to \(\tilde{E}_N^{(0)} \) in (27). The scaling dimension of \(\psi_b \) is obtained as
\[x_{\psi_b} = \frac{L}{\pi v_F} \left(E_N^{(0)} - \tilde{E}_N^{(0)} \right) = \frac{1}{2 \xi^2} \left(\Delta N_b \right)^2, \]
(32)

where we have put \(\xi = 1/\sqrt{\lambda} \), \(\zeta = 1/\sqrt{\mu + \nu} \), and hence \(\Delta N_b = (\xi^2 - \zeta^2)/(2\xi^2) \).

We next consider an operator \(\phi \) which induces the particle number change as well as the particle-hole excitation in the phase-shifted ground state. From (30) and (21) we have

\[x_{\phi} = \frac{L}{\pi v_F} \left(E_N^{(0)} - \tilde{E}_N^{(0)} \right) = \frac{1}{2 \xi^2} \left(\Delta N \right)^2 + n, \]
(33)

where

\[\Delta N = \Delta N + \Delta N_b. \]
(34)

Scaling dimensions (32) and (33) take the form of conformal weights characteristic of \(c = 1 \) CFT. The radius \(R \) of compactified \(c = 1 \) free boson is taken to be \(R = \xi \). Let us concentrate on the self-dual point \(R = 1/\sqrt{2} \) (i.e. \(\lambda = 2 \)) where the symmetry is known to be enhanced to the level-1 \(SU(2) \) Kac-Moody algebra. In the \(BC_N\)-CS model we have the other continuous parameters \(\mu, \nu \) which should also be tuned to achieve the \(SU(2) \) point. It turns out that \(\mu + \nu = 0, 1, 2, 3 \) and \(4 \) with \(\lambda = 2 \) are the desired points. This follows from the following observations: When \(\mu + \nu = 2 \) we have \(\Delta N_b = 0 \) and hence

\[x_{\phi} = \frac{1}{4} \left(2\Delta N \right)^2 + n \]
(35)

which is the conformal weight for the spin-0 irreducible representation of the level-1 \(SU(2) \) Kac-Moody algebra. When \(\mu + \nu = 4 \) or \(0 \) we get \(\Delta N_b = \pm 1/2 \) and thus

\[x_{\phi} = \frac{1}{4} \left(2\Delta N + 1 \right)^2 + n \]
(36)

which is the conformal weight of spin-1/2 irreducible representation. When \(\mu + \nu = 3 \) or \(1 \) we have \(\Delta N_b = \pm 1/4 \), thereby

\[x_{\phi} = \frac{1}{16} \left(4\Delta N + 1 \right)^2 + n. \]
(37)

This is the conformal weight for the unique irreducible representation of the level-1 twisted \(SU(2) \) Kac-Moody algebra [22]. The highest-weight state with \(x_{\phi} = 1/16 \) is a twist field in
$c = 1$ CFT. Several $SU(2)$ points identified in [10] are in agreement with our result. Thus we conclude that the low-energy critical behavior of the BC_N-CS model is described in terms of $c = 1$ boundary CFT, *i.e.* the universality class of a chiral Tomonaga-Luttinger liquid.

Further considerations on the low-energy critical properties of the BC_N-CS model require a clear distinction between two pictures corresponding to two possible sets of quantum numbers. One is a set of quantum numbers $(\Delta N, \Delta N_b, n)$ and the other is a set of $(\hat{\Delta}N, n)$ where $\hat{\Delta}N$ is regarded as the ordinary particle number change in (33) (forgetting about ΔN_b in (34)). The picture based on the set $(\Delta N, \Delta N_b, n)$ is relevant when describing the long-time asymptotic behavior of the system in which we suddenly turn on the boundary effects in the ground state. The X-ray absorption singularity in the Kondo problem, for instance, is considered in this type of picture [20,21]. The boundary changing operator ψ_b is described in this picture with $(\Delta N, \Delta N_b, n) = (0, \Delta N_b, 0)$. If we use the set $(\hat{\Delta}N, n)$ instead, our picture is independent of ζ and adequate to compute the critical exponents of ordinary correlation functions with boundary effects.

Let us consider the one-particle Green function in the above two pictures. Let $(\Delta N, \Delta N_b, n) = (1, \Delta N_b, 0)$ in the first picture. This choice of quantum numbers determines the long-time asymptotic behavior of the field correlator (the one-particle Green function) when boundary potentials are turned on at $\tau = 0$,

$$\langle \Psi^\dagger(\tau)\Psi(0) \rangle_{\text{sudden}} \sim \frac{1}{\tau^{2x_G}},$$

(38)

where

$$x_G = \frac{1}{2\xi^2}(1 + \Delta N_b)^2 = \frac{1}{8\xi^2} \left(1 + \frac{\xi^2}{\zeta^2}\right)^2.$$

(40)

Here $\langle \cdots \rangle_{\text{sudden}}$ stands for the expectation value when the boundary potential is suddenly switched on. On the other hand, if we let $(\hat{\Delta}N, n) = (1, 0)$ in the second picture, the field correlator takes the form,

$$\langle \Psi^\dagger(\tau)\Psi(0) \rangle \sim \frac{1}{\tau^{2x_g}},$$

(40)
where

$$x_g = \frac{1}{2\xi^2}, \quad (41)$$

which describes the ordinary one-particle Green function. In this case, the boundary critical exponent x_g linearly depends on λ. Contrary to these Green functions, the density-density correlation function is controlled by the excitations which do not change the number of particles. Hence, it should have the long-time asymptotic form,

$$\langle \rho(\tau)\rho(0) \rangle \sim \frac{1}{\tau^2}, \quad (42)$$

which follows by taking the quantum number $(\hat{\Delta}N, n) = (0, 1)$ in (33). Note that there do not appear anomalous exponents in this correlator. One can easily see that this is also the case for sub-leading terms τ^{-2k} in which the quantum number is chosen as $(\hat{\Delta}N, n) = (0, k)$. This fact will be confirmed shortly in the following.

We now compare our result with the explicit calculations of the dynamical correlation function. In the case $\lambda = 1, \nu = 0$ with μ arbitrary which corresponds to the noninteracting system, the dynamical density-density correlation function for the BC_N-CS model has been obtained by Macêdo [23] (see also [24]). In the thermodynamic limit, the density-density correlation function $G(y_1, y_2, \tau)$ has the form

$$G(y_1, y_2, \tau) = \frac{\pi^4}{4} y_1 y_2 \int_1^\infty du_1 e^{-\frac{1}{2}\pi^2 y_1} J_{\mu-\frac{1}{2}}(\pi y_1 \sqrt{u_1}) J_{\mu-\frac{1}{2}}(\pi y_2 \sqrt{u_1})$$

$$\times \int_0^1 du_2 e^{-\frac{1}{2}\pi^2 y_2} J_{\mu-\frac{1}{2}}(\pi y_1 \sqrt{u_2}) J_{\mu-\frac{1}{2}}(\pi y_2 \sqrt{u_2}), \quad (43)$$

where $J_{\nu}(z)$ is the Bessel function and τ is the imaginary time. When $\mu = 1/2 + m$ $(m = 0, 1, \cdots)$ it is not difficult to evaluate the large-τ asymptotic behavior by making use of the series expansion of $J_m(z)$. After some algebra we obtain

$$G(y_1, y_2, \tau) = \sum_{k=1}^\infty A_k(y_j) \left(\frac{1}{\tau} \right)^{2k} + \sum_{l=0}^\infty B_l(y_j) \left(\frac{1}{\tau} \right)^{l+m+2} e^{-\frac{1}{2}x^2\tau}, \quad (44)$$

where $A_k(y_j), B_l(y_j)$ are some functions. As $\tau \to \infty$ with y_1, y_2 fixed, the second term vanishes exponentially, yielding
Notice that the exponents are independent of \(m \) (i.e., \(\mu \)). The density-density correlation function is considered in the picture based on \((\widetilde{\Delta}N, n)\). Then we see from (43) that all these exponents are precisely understood in terms of the excitations \((\widehat{\Delta}N, n) = (0, k)\). This means that the correlation function \(G \) is dominated by the particle-hole excitations, and hence there is no way of depending on \(\lambda \). Therefore the result (45) completely agrees with our prediction by CFT analysis. We are thus led to conclude that the power-law decay in (45) is universal irrespective of \(\lambda \) (but with \(\nu = 0 \) fixed) though (45) is verified at \(\lambda = 1 \). We stress that this remarkable feature in the density-density correlation function is inherent in \textit{chiral} Tomonaga-Luttinger liquids [14].

Finally we briefly mention possible applications to the (chiral) random matrix theory [25]. Let us recall the \(B_N \) Calogero-Moser model (\(B_N \)-CM model) in the rational form [3],

\[
H_{\text{C-M}} = -\sum_{j=1}^{N} \frac{\partial^2}{\partial x_j^2} + 2\lambda(\lambda - 1) \sum_{1 \leq j < k \leq N} \left\{ \frac{1}{(x_j - x_k)^2} + \frac{1}{(x_j + x_k)^2} \right\} + \mu(\mu - 1) \sum_{j=1}^{N} \frac{1}{x_j^2} + \omega^2 \sum_{j=1}^{N} x_j^2,
\]

(46)

with \(\omega > 0 \). In the thermodynamic limit, this model belongs to the same universality class as the \(B_N \)-CS model which is equivalent to the \(BC_N \)-CS model at \(\nu = 0 \). The ground-state wave function for the \(B_N \)-CM model takes the form of Jastrow-type [3]

\[
\Psi^{(0)}(x_1, x_2, \cdots, x_N) = \mathcal{N} \prod_{1 \leq j < k \leq N} |x_j^2 - x_k^2|^{\lambda} \prod_{l=1}^{N} x_l^2 |x_l^2|^{\#} \exp \left(-\frac{1}{2} \omega x_l^2 \right),
\]

(47)

where \(\mathcal{N} \) is a calculable normalization constant. Notice that \(\Psi^{(0)}(x_1, x_2, \cdots, x_N) \) depends only on the \(x_j^2 \)'s. Then, introducing new variables \(z_j = x_j^2 \), one should note that \(|\Psi^{(0)}(x_1, x_2, \cdots, x_N)|^2 \) is identical to the probability distribution function for the eigenvalues \(z_j \) of the Laguerre ensemble when \(\lambda = 1/2, 1 \) and 2 (with appropriate values of \(\mu \) and \(\omega \)) corresponding to the ensembles of orthogonal, unitary and symplectic types [25], respectively. Therefore, it will be very interesting if the long-time asymptotic behavior of correlation
functions in the B_N-CM model obtained in the present work is directly compared with the results in the Laguerre random matrix theory.

In summary, we have investigated boundary critical phenomena in the BC_N-CS model. The boundary effects come from both the impurity potentials and interactions between particles and “image” particles. Making use of boundary CFT, we have obtained boundary critical exponents, and clarified the critical properties of the BC_N-CS model in terms of chiral Tomonaga-Luttinger liquids.

Acknowledgements

T.Y. was supported by the Yukawa memorial foundation and the COE (Center of Excellence) researchers program of the Ministry of Education, Science and Culture, Japan. N. K. was partly supported by a Grant-in-Aid from the Ministry of Education, Science and Culture, Japan. The work of S.-K.Y. was supported in part by Grant-in-Aid for Scientific Research on Priority Area 231 “Infinite Analysis”, the Ministry of Education, Science and Culture, Japan.
REFERENCES

[1] F. Calogero, J. Math. Phys. 10 (1969) 2191, 2197; 12 (1971) 419; Lett. Nuovo Cimento 13 (1975) 411.

[2] B. Sutherland, Phys. Rev. A4 (1971) 2019; A5 (1972) 1372; J. Math. Phys. 12 (1971) 246, 251.

[3] J. Moser, Adv. Math. 16 (1975) 1.

[4] See, for reviews, N. Kawakami, Prog. Theor. Phys. 91 (1994) 189;
 F. D. M. Haldane, in Correlation Effects in Low Dimensional Electron Systems, eds.
 A. Okiji and N. Kawakami (Springer, 1994).

[5] M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 71 (1981) 313; 94 (1983) 313.

[6] A. Kapustin and S. Skorik, Phys. Lett. A196 (1994) 47.

[7] C. W. J. Beenakker and B. Rejaei, Phys. Rev. B49 (1994) 7499.

[8] M. Caselle, Phys. Rev. Lett. 74 (1995) 2776.

[9] B. D. Simons and B. L. Altshuler, Phys. Rev. B50 (1994) 1102.

[10] D. Bernard, V. Pasquir and D. Serban, Europhys. Lett. 30 (1995) 301.

[11] T. Yamamoto, J. Phys. Soc. Jpn. 63 (1994) 1223.

[12] N. Kawakami and S.-K. Yang, Phys. Rev. Lett. 67 (1991) 2493.

[13] J. L. Cardy, Nucl. Phys. B240 (1984) 514; in Phase Transitions and Critical Phenomena,
 vol. 11, eds. C. Domb and J. L. Lebowitz (Academic Press, 1987).

[14] See, for review, X.-G. Wen, Int. J. Mod. Phys. B6 (1992) 1711.

[15] M. Gaudin, Phys. Rev. A4 (1971) 386.

[16] A. Berkovich and G. Murthy, J. Phys. A21 (1988) 3703.
[17] C. J. Hamer, G. R. W. Quispel and M. T. Batchelor, J. Phys. A20 (1987) 5677.

[18] F. C. Alcaraz, M. N. Barber, M. T. Batchelor, R. J. Baxter and G. R. W. Quispel, J. Phys. A20 (1987) 6397.

[19] H. W. Blöte, J. L. Cardy and M. P. Nightingale, Phys. Rev. Lett. 56 (1986) 742;
 I. Affleck, Phys. Rev. Lett. 56 (1986) 746.

[20] I. Affleck and A. W. W. Ludwig, J. Phys. A27 (1994) 5375.

[21] S. Fujimoto, N. Kawakami and S.-K. Yang, Phys. Rev. B50 (1994) 1046.

[22] V. Rittenberg and A. Schwimmer, Phys. Lett. B195 (1987) 135;
 F. Ravanini and S.-K. Yang, Nucl Phys. B295 (1988) 262.

[23] A. M. S. Macêdo, Phys. Rev. B49 (1994) 16841.

[24] A. V. Andreev, B. D. Simons and N. Taniguchi, Nucl. Phys. B432 (1994) 487.

[25] M. L. Mehta, *Random Matrices, 2nd ed.*, (Academic Press, 1991);
 A. D. Stone, P. A. Mello, K. A. Muttalib and J.-L. Pichard, in *Mesoscopic Phenomena in Solids*, eds. B. L. Altshuler, P. A. Lee and R. A. Webb (North-Holland, 1991).
FIG. 1. (a) The Fermi surface consists of a single point $k = k_F$. (b) Schematic illustration for the bosonization picture.