A microporous, amino acid functionalized Zn(II)-organic framework nanoflower for selective CO₂ capture and solvent encapsulation†

Shradha Gandhi, Prasenjit Das and Sanjay K Mandal*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, INDIA

Corresponding Author

*E-mail: sanjaymandal@iisermohali.ac.in
Table of Contents

Item(s)	Description	Page No.
Scheme S1	Synthesis of H$_3$(D-2,4-cbs)	S3
Fig. S1-S4	Characterization of H$_3$(D-2,4-cbs): FTIR spectrum, TGA, 1H NMR and Mass spectra	S4-S5
Fig. S5-S10	Characterization of **Zn-CBS**: FTIR spectrum, Solid-state reflectance spectrum, TGA, PXRD pattern, 2D WAX map and EDX analysis	S6-S8
Fig. S11	Analysis of sorption isotherms and N$_2$ sorption isotherm of **Zn-CBS**	S9
Fig. S12	PXRD patterns of before and after gas adsorption of **Zn-CBS**	S10
	Calculation of Isosteric heats of adsorption	S11
Table S1	Literature survey of BET surface area, H$_2$, N$_2$, CO$_2$ and CH$_4$ uptake, isosteric heat of adsorption for N$_2$, CO$_2$ and CH$_4$	S12-S13
Fig. S13-S21	CO$_2$ selectivity over N$_2$ and CH$_4$: Dual-site Langmuir-Freundlich plots	S14-S19
Table S2	Summary of DSLF model fit	S20
Table S3	Literature survey for the selectivity of CO$_2$/N$_2$ and CO$_2$/CH$_4$	S21
	DFT calculation and CBMC molecular simulation	S22
Table S4	Encapsulation of solvents by **Zn-CBS**	S23
Scheme S1. Synthesis of $H_3(\text{D-2,4-cbs})$.
Fig. S1 FTIR spectrum of H$_3$(D-2,4-cbs).

Fig. S2 TGA profile of H$_3$(D-2,4-cbs).
Fig. S3 1H NMR spectrum of H_3(D-2,4-cbs) in D_2O.

Fig. S4 HRMS of H_3(D-2,4-cbs).
Fig. S5 FTIR spectrum of Zn-CBS.

Fig. S6 Solid State diffuse reflectance spectrum of Zn-CBS.
Fig. S7 TGA profile of Zn-CBS.

Fig. S8 PXRD pattern of Zn-CBS.
Fig. S9 2D WAX Map of Zn-CBS.

Fig. S10 EDX analysis of Zn-CBS.

Element	Weight (%)	Atomic (%)
C K	33.5	47.5
N K	15.4	18.8
O K	25.5	27.1
Zn K	25.6	6.6
Total	100	
Analysis of Sorption Isotherm

For this analysis, the BET equation is considered:

\[\nu = \frac{c \nu_m x}{(1-x)[1 + (c-1)x]} \]

where, \(x = \frac{p}{p_0} \), \(\nu \) is the volume of nitrogen adsorbed per gram of Zn-CBS at STP, \(\nu_m \) is the monolayer capacity, and \(c \) is related to the heat of adsorption. It is noted that the line is fit to the low pressure isotherm data with range \(0.05 < x < 0.3 \).

The surface area is then calculated from:

\[A = \nu_m \sigma_0 N_{av} \]

where, \(\sigma_0 \) is the cross-sectional area of nitrogen at liquid density (16.2 Å) and \(N_{av} \) is Avogadro’s number.

These calculations are done through the “BET analysis” and “Langmuir analysis” function embedded in the Belsorp Adsorption/Desorption Data Analysis software version 6.3.1.0.

Pore size was calculated using microporous (MP) analysis method embedded in the Belsorp Adsorption/Desorption Data Analysis software.

![Fig. S11 N₂ sorption isotherms of Zn-CBS at 263 K, 273 K and 298 K.](image)
Fig. S12 PXRD pattern of before and after gas adsorption.
Calculation of Isosteric Heats of Adsorption:

Using the Clausius-Clapeyron equation

Isosteric heats of adsorption (Q_{st}) were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at two different temperatures of 273 K and 298 K. Q_{st} is defined as:

$$Q_{st} = -R \left(\frac{\partial \ln x}{\partial (1/T)} \right) y$$

where, x is the pressure, T is the temperature, R is the gas constant and y is the adsorption amount.

These calculations are done through the “Heat of Adsorption” function embedded in the Belsorp Adsorption/Desorption Data Analysis software version 6.3.1.0.
Table S1. Comparison of BET surface area, H₂, N₂, CO₂ and CH₄ uptake, isosteric heat of adsorption for N₂, CO₂ and CH₄ with literature reports.

Complex	BET surface area (m²/g⁻¹)	H₂ uptake at 77 K	N₂ uptake	CO₂ uptake	CH₄ uptake	Qst N₂	Qst CO₂	Qst CH₄	Ref.							
			298 K	273 K	263 K	298 K	273 K	263 K	195 K							
Zn-CBS	282	64	4.1	6.6	8.3	38.7	47.5	49.3	85.9	15.1	21.2	24.8	0.7	35	51.8	This work
([Cd(ATAIA)]₄H₂O)₆	62	20.12				17.1	24.3						37.5			
TEA@bio-MOF-1	1220							4.16 mmol/ g	4.446 mmol/ g	26.5						
TMA@bio-MOF-1	1460											23.9				
CPF-13		223.9				81	116						28.3			
JUC-141	1057		6.76	13.9	51.3	21.8	37.8	27.2	27.8	22.7						
MAF-2						19	49						27			
[Zn(atz)₄]	1014		29.4	50.1	99	140							26	19.5	Inorg. Chem. 2012, 51, 9950-9955	
														ACS Appl. Mat. Int., 2018, 10, 25360-25371		
Material	T (°C)	t (h)	Microporous and mesoporous material, 2010, 132, 305													
--------------------------------	--------	-------	---													
Zn_{2}(BDC)_{2}(DABCO)	1725	13.7	5.3													
		20														
(CH_{3})_{2}NH_{2}·[Zn_{3}L_{2}(HCOO)_{1.5}]xDMF	153.4	8.93	57.5													
			2.48													
SNU-150, SNU-775, SNU-151,	1563,	6.09,	78.6, 169, 169, 67.8, and 45.2													
and SNU-100	3670,	3.94,	12.0, 8.21, 22.2, and 19.9													
	1852	14.1,	0.859, 0.62, 1.24, and 1.41													
		14.1	1.29, 1.20, 2.00, and 2.56													
			12.8, 14.3, 18.2, and 26.5													
IITKGP-5	366	4	13.6													
			4.6													
			22.6													
			14.8													
IITKGP-6	83.4	4.1	9.2													
		6.2	13.8													
			5.1													
			23													
			18.4													
IISERP-MOF20	945	3.5	9 mmol/g													
			26													
CO₂ selectivity over N₂ and CH₄ - IAST selectivity calculation for CO₂/N₂ and CO₂/CH₄ mixture:

Gas selectivity for mixture of CO₂/N₂ (15:85) and CO₂/CH₄ (50:50) at different temperature were calculated based on the ideal absorbed solution theory (IAST) proposed by Myers and Prausnitz.¹ In order to calculate the selective sorption ability of Zn-CBS towards the separation of binary mixed gases, the parameter fitted from the single component CO₂ and N₂ and CH₄ adsorption based on the Dual-Site Langmuir-Freundlich (DSLF) model and different parameter were used given below.

\[
y = \frac{qm_1 b_1 p^{n_1}}{1 + b_1 p^{n_1}} + \frac{qm_2 b_2 p^{n_2}}{1 + b_2 p^{n_2}}
\]

where, \(p \) is the pressure of the bulk gas at equilibrium with the adsorbed phase (kPa); \(y \) is the adsorbed amount per mass of adsorbent (mmol/g), \(qm_1 \) and \(qm_2 \) are the saturation capacities of sites 1 and 2 (mmol/g); \(b_1 \) and \(b_2 \) are the affinity coefficients of sites 1 and 2, \(n_1 \) and \(n_2 \) represent the deviation from an ideal homogeneous surface.

The predicted adsorption selectivity is defined as

\[
S = \left(\frac{x_1}{y_1} \right) \left(\frac{y_2}{x_2} \right)
\]

where, \(x_i \) and \(y_i \) are the mole fractions of component 1 (\(i = 1, 2 \)) in the adsorbed and bulk phases, respectively. The IAST calculation was carried out for a binary mixture containing 15% CO₂ (\(y_1 \)) and 85% N₂ (\(y_2 \)) and 50% CO₂ (\(y_1 \)) and 50% CH₄ (\(y_2 \)), which is typical for flue gases and landfill gases, respectively.

(S1) A. L. Myers and J. M. Prausnitz, *AIChE J.*, 1965, **11**, 121-127.
Fig. S13 Dual-site Langmuir-Freundlich fitted (red line) for CO$_2$ (blue circle) isotherm measure at 298 K.

Fig. S14 Dual-site Langmuir-Freundlich fitted (red line) for CH$_4$ (green circle) isotherm measure at 298 K.
Fig. S15 Dual-site Langmuir-Freundlich fitted (red line) for N\textsubscript{2} (violet circle) isotherm measure at 298 K.

Fig. S16 Dual-site Langmuir-Freundlich fitted (red line) for CO\textsubscript{2} (blue circle) isotherm measure at 273 K.
Fig. S17 Dual-site Langmuir-Freundlich fitted (red line) for CH$_4$ (green circle) isotherm measure at 273 K.

Fig. S18 Dual-site Langmuir-Freundlich fitted (red line) for N$_2$ (violet circle) isotherm measure at 273 K.
Fig. S19 Dual-site Langmuir-Freundlich fitted (red line) for CO$_2$ (blue circle) isotherm measure at 263 K.

Fig. S20 Dual-site Langmuir-Freundlich fitted (red line) for CH$_4$ (green circle) isotherm measure at 263 K.
Fig. S21 Dual-site Langmuir-Freundlich fitted (red line) for N_2 (violet circle) isotherm measure at 263 K.
Table S2. Summary of parameters for the DSLF isotherm model.

Adsorbates	q_{m1} (mmol/g)	b_1 (1/kPa)	n_1	q_{m2} (mmol/g)	b_2 (1/kPa)	n_2
CH$_4$ (298 K)	0.02332	2.2068E-17	0.1196	1.27127	0.00931	096809
CO$_2$ (298 K)	0.14471	1.51329E-6	0.35411	1.98371	0.04647	0.97357
N$_2$ (298 K)	0.12043	0.01302	0.89336	0.59041	1.05795E-6	0.38817
CH$_4$ (273 K)	0.01047	3.41124E-30	0.06833	1.34749	0.02251	0.98999
CO$_2$ (273 K)	1.23464	0.01395	1.28967	1.75891	0.14174	0.84322
N$_2$ (273 K)	0.06844	0.04982	092441	0.30157	4.88965E-4	0.57555
CH$_4$ (263 K)	0.03442	0.0135	0.28901	1.39057	0.02733	0.98233
CO$_2$ (263 K)	7.637	0.0021	1.45978	1.87787	0.30022	0.89763
N$_2$ (263 K)	0.08555	0.04982	0.92441	0.37696	4.88965E-4	0.57555
Table S3. Comparison for the selectivity of CO$_2$/N$_2$ and CO$_2$/CH$_4$ with literature reports.

Complex	Selectivity CO$_2$/N$_2$ uptake	Selectivity CO$_2$/CH$_4$ uptake	References				
	298 K	273 K	263 K	298 K	273 K	263 K	
Zn-CBS	408	916	1832	12.2	17.2	24.5	This work
JUC-141	27.6	21.6	8.72	4.20			
SNU-150, SNU-77S, SNU-151, and SNU-100	5.4, 30, and 26.5	2.26, 7.20				Chem. Eur. J., 2013, 19, 17432–17438	
[Zn(atz)$_2$]$_2$	225	403	5.8	7.5			Inorg. Chem., 2012, 51, 9950-9955
IITKGP-5	147.8	435.5	23.8	151.6			Dalton Trans., 2017, 46, 15280–15286
IITKGP-6	42.8	51.3	5.1	36			Inorg. Chem., 2017, 56, 13991-13997
IISERP-MOF20	250	220					Inorg. Chem., 2018, 57, 5267-5272
MAF-66	225	403	5.8	7.5			Chem. Commun., 2014, 50, 12101-12104
UTSR-9a	93.5	193.7	33.7	34.8			
(Me$_2$NH)$_2$[(In$_2$X)$_2$]$_2$DMF\cdotH$_2$O	250	5.6	6.4				Inorg. Chem., 2013, 52, 3127-3132
NOTT-202a	4.3	26.7	1.4	2.9			Nat. Mater., 2012, 11, 710-716
UTSR-15a, UTSR-20a, UTSR-25a, UTSR-33a, and UTSR-34a			14.2, 8.3, 9.4, 7.0, and 5.1				Nat. Commun., 2012, 3, 954-963
Density Functional Theory (DFT) and Configurational Bias Monte Carlo (CBMC) molecular simulation:

Ligand H$_3$(D-2,4-cbs) was optimized in DFT and put in a (1 x 1 x 1) cell for further calculation. The simulation boxes representing the ligand consist of (1 x 1 x 1) unit cells for CO$_2$, N$_2$ and CH$_4$ (optimized). All the calculations were performed at 298 K at fixed pressure 1 bar. Interatomic interactions were modeled with standard Lennard-Jones potential and Coulombic potentials. Lorentz-Berthelot mixing rules were employed to compute the Lennard-Jones parameters between unlike atom types. The pairwise interactions between host and guest atoms of the particular force field were analysed by utilizing the non-bonding parameter. The long-range part of electrostatic interactions was handled using the Ewald summation technique with a relative precision of 10^{-6}. Periodic boundary conditions were applied in all three dimensions. For each state point, the CBMC simulation consists of 1×10^7 steps to guarantee equilibration, followed by 1×10^7 steps to sample the desired thermodynamic properties.
Table S4. Calculation of number of molecules absorbed per formula unit of Zn-CBS based on TGA.

Solvent	Found (wt%)	Calculated (wt%)	Number of guest molecules
Acetonitrile	15.0	14.6	3.75
Ethanol	15.0	15.2	3.5
Methanol	8.9	8.9	2.75
Tetrahydrofuran	12.5	12.3	1.75
Toluene	18.2	17.7	2.1
p-Xylene	14.7	15.0	1.5