Comparing hierarchical black hole mergers in star clusters and active galactic nuclei

Guo-Peng Li,1,* Da-Bin Lin,1,† and Yong Yuan2

1Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
2School of Physics Science and Technology, Wuhan University, No.299 Bayi Road, Wuhan, Hubei, China
(Dated: March 3, 2023)

Star clusters (SCs) and active galactic nuclei (AGNs) are promising sites for the occurrence of hierarchical black hole (BH) mergers. We use simple models to compare hierarchical BH mergers in two of the dynamical formation channels. We find that the primary mass distribution of hierarchical mergers in AGNs is higher than that in SCs, with the peaks of $\sim 50 M_\odot$ and $\sim 13 M_\odot$, respectively. The effective spin (χ_{eff}) distribution of hierarchical mergers in SCs is symmetrical around zero as expected and $\sim 50\%$ of the mergers have $|\chi_{\text{eff}}| > 0.2$. The distribution of χ_{eff} in AGNs is narrow and prefers positive values with the peak of $\chi_{\text{eff}} \geq 0.3$ due to the assistance of AGN disks. BH hierarchical growth efficiency in AGNs, with at least $\sim 30\%$ of mergers being hierarchies, is much higher than the efficiency in SCs. Furthermore, there are obvious differences in the mass ratios and effective precession parameters of hierarchical mergers in SCs and AGNs. We argue that the majority of the hierarchical merger candidates detected by LIGO-Virgo may originate from the AGN channel as long as AGNs get half of the hierarchical merger rate.

I. INTRODUCTION

At least one binary black hole (BBH) merger event in the gravitational-wave transient catalog (GWTC, [1–4]) reported by the LIGO-Virgo-KAGRA (LVK) Collaboration is likely a hierarchical merger [5–9]. Hierarchical mergers are expected to occur in dense stellar environments such as star clusters (SCs, e.g., nuclear star clusters, NSCs and globular clusters, GCs) and active galactic nuclei (AGNs) [10].

A second-generation (2G) black hole (BH) formed by merging a 1G BBH (1G+1G) from the collapse of stars can be retained by the host if the escape speed of the host stands larger than its kick recoil velocity imparted by the loss of linear momentum. Then, the 2G BH will pair with another BH to form a 2G BBH (2G+1G or 2G+2G), merge within a Hubble time, and therefore produce a 3G BHs. Repeatedly, there might be the occurrence of higher-generation mergers. A N-G BBH (or merger) is referred to that one is a N-G BH and the other is a M-G BH (N \geq M), which will merge to produce a (N+1)-G BBH (see Fig. 1 of Ref. [11]). For example, a 3G BBH refers to a 3G+1G, 3G+2G, or 3G+3G, whose outcome is a 4G BH. Hierarchical mergers have been extensively discussed in SCs (e.g., Refs. [12–17]) and AGNs (e.g., Refs. [18–21]), which can efficiently pollute the pair-instability (PI) mass gap (between $50–120 M_\odot$) predicted by PI supernovae [22] and Pulsational PI supernovae [23]. It is also an alternate pathway to explain the growth of intermediate-mass black holes (IMBHs) in dense stellar environments [24–27].

Reference [28] studied the retention efficiency of BBH merger remnants in dense stellar clusters by considering three hierarchical merger branches: NG+1G, NG+NG, and NG+≤NG (NG refers to the BH generation). By seeding, growing, and pruning the three hierarchical branches, they found that if escape velocities reach ~ 300 km s$^{-1}$, then the fraction of detectable hierarchical mergers with a source-frame total mass of $\geq 100 M_\odot$ will exceed the observed upper limit of the LVK analysis [29]. Therefore, they stressed that some unknown mechanisms are needed to avoid a ‘cluster catastrophe’ of overproducing BBH mergers if such environments dominate the BBH merger rate.

NG+1G mergers are expected to preferentially occur in AGNs because of migration traps in high-density gas disks within about 300 Schwarzschild radii from the central supermassive BH [30–32]. Because merger remnants could continue to reside in migration traps and merge again with another 1G BH that aligned with the AGN disk and migrated to traps within the disk [18, 21, 33]. While the occurrence of NG+NG mergers is preferentially in SCs because of mass segregation (e.g., Refs. [34–37]). Because more massive NG BHs would concentrate on the dense core of SCs, where they will preferentially form NG+NG binaries in dynamical interactions [12]. NG+≤NG mergers include but are not limited to the mergers of NG+1G and NG+NG, which is representative of a steady-state limit [28].

Previous studies focused on hierarchical BH mergers in a single formation channel or multiple channels without AGNs (e.g., Refs. [11, 12, 15–18, 21, 28, 38–41], but [42, 43]). In this paper, we compare hierarchical BH mergers in SCs and AGNs using simple models that are similar in construction to previous work [11, 28, 43, 44]. Because hybrid Monte Carlo and/or N-body simulations of dense stellar environments are extremely difficult to investigate the relevant parameter space of hierarchical mergers due to the computational cost. The rest of this paper is organized as follows. In Sec. II we describe our model framework. In Sec. III we show our results in both SCs and AGNs. Finally, in Sec. IV we discuss our assumptions, and escape velocities and delay times, and we conclude with implications in Sec. V.
II. MODELS

Following Ref. [28], we consider three hierarchical BBH merger branches: NG+1G, NG+NG, and NG+≤NG. We use numerical relativity fits to calculate each merger remnant’s total mass [45], final spin [46], and kick velocity [47] (see also summaries of Refs. [41, 48]). Table I lists the summary of our models we will cover below.

A. First-generation BHs

We adopt a 1G BH mass distribution in dense stellar environments as \(p(m) \propto m^{-p} \). The range of BH masses \(m \in [5 \, M_\odot, 50 \, M_\odot] \) is adopted, which is determined by the lower and PL mass gap. We adopt \(\alpha = 2.3 \) in SCs corresponding to the Kroupa initial mass function [49]; \(\alpha = 1 \) within AGN disks because the disks harden the initial BH mass function [50].

We assume a uniform spin magnitude distribution: \(U(0, \chi_{\text{max}}) \) with \(\chi_{\text{max}} = 0.2 \) in SCs [29]. Spin tilt angles for all BH generations are isotropically drawn over a sphere. However, the spin of BHs in AGN disks may be significantly altered under accretion. The misalignment angle \(\theta \) between the spin and the orbital angular momenta changed with \(\cos \theta \rightarrow 1 \) or \(-1 \) [51]. Whereas the vast majority should have \(\theta \leq \pi/2 \) because gas accretion from AGN disks will tend to torque the BH spin into alignment with the gas [9, 52, 53], which also causes that spin magnitudes are going to be higher overall under accretion [51, 54]. For simplicity, we neglect the case of \(\cos \theta < 0 \), which should be a very few part and not make a difference to our results. Therefore, we adopt \(\chi_{\text{max}} = 0.4 \), and \(\cos \theta \) between 0 and 1 according to a distribution uniform in \(p(\cos \theta) \propto \cos \theta \) in AGN disks. Here, a higher-spin distribution in AGN disks made is because the black holes there should have relatively high spins due to gas accretion. We also adopt \(\chi_{\text{max}} = 0.01 \) and 0.4 and \(\chi_{\text{max}} = 0.2 \) and 1 in SCs and AGN disks, respectively, for comparison, which involves the same spin distribution in both SCs and AGN disks.

We draw the primary component BH mass (\(m_1 \)) of a 1G binary (i.e., 1G+1G) according to the above distributions. Then, we pair it with another component BH according to the Power Law + Peak model of Ref. [29] is also considered by Ref. [28]. The difference between these two distributions is the latter allows BH masses to be in the PI mass gap because it probably includes merger remnants, which means it is not representative of a true distribution of 1G black hole masses. Therefore, we do not consider it in our models. Reference [11] considered \(\beta = -1 \) that prefers asymmetric binaries, although it is in disfavor of the observed results. However, they have shown that if the pairing prefers equal-mass binaries, then the 2G and 3G mergers are consistent with two of the subdominant peaks of the predictive BH mass spectrum from the Flexible Mixture model [55, 56].

B. Constraining hierarchical growth efficiency

We constrain the growth efficiency of hierarchical mergers by escape velocities and delay times.

- We drop all subsequent mergers if \(V_{\text{kick}} \geq V_{\text{esc}} \), where \(V_{\text{kick}} \) is the kick velocity of the merger remnant and \(V_{\text{esc}} \) is the escape velocity of the host. The kick velocities inferred from the GWTC events can lie in a wide range: \(\sim 50–2000 \, \text{km s}^{-1} \) [11, 57]. In comparison, the escape speed is \(\sim 100\, \text{km s}^{-1} \) for GCS [58], \(\sim 1000 \, \text{km s}^{-1} \) for AGNs [58], and up to \(\sim 1000 \, \text{km s}^{-1} \) in AGN disks within an inner radii. The kicks of merger remnants in AGNs are generally neglected by the previous works [21, 59, 60], because of the large orbital velocities \(\sim 2 \times 10^4 \, \text{km s}^{-1} \) and the small kick magnitude due to BH spins are largely aligned or antialigned with the disk [54].
- BBH mergers can occur before the present day. We draw the delay times between the subsequent mergers according to a distribution uniform in \(p(\Delta t) \propto \Delta t^{-1} \) with

Model	\(\alpha \)	\(\chi_{\text{max}} \)	Spin direction	\(\beta \)	\(V_{\text{esc}} \) [\(\text{km s}^{-1} \)]	\(t_{\text{esc}} \) [Myr]
SC\text{I}	2.3	0.2	Isotropic	1.08	100	10
SC\text{II}	2.3	0.2	Isotropic	1.08	50	10
SC\text{III}	2.3	0.2	Isotropic	1.08	200	10
SC\text{IV}	2.3	0.2	Isotropic	1.08	300	10
SC\text{V}	2.3	0.2	Isotropic	1.08	500	10
SC\text{VI}	2.3	0.2	Isotropic	1.08	100	0.1
SC\text{VII}	2.3	0.2	Isotropic	1.08	100	100
SC\text{VIII}	2.3	0.2	Isotropic	5	100	10
SC\text{IX}	2.3	0.01	Isotropic	1.08	100	10
SC\text{X}	2.3	0.4	Isotropic	1.08	100	10
AGN\text{I}	1	0.4	Anisotropic	0	\(\infty \)	0.1
AGN\text{II}	1	0.4	Anisotropic	0	\(\infty \)	0.1
AGN\text{III}	1	0.4	Anisotropic	0	\(\infty \)	0.01
AGN\text{IV}	1	0.4	Anisotropic	0	\(\infty \)	2
AGN\text{V}	1	0.4	Anisotropic	1.08	\(\infty \)	0.1
AGN\text{VI}	1	0.2	Anisotropic	0	\(\infty \)	0.1
AGN\text{VII}	1	Anisotropic	0	\(\infty \)	0.1	

Column 1: Name of the model. ‘SC\text{I}’ represents the SC-like environment; ‘AGN\text{I}’ represents the AGN-like environment. Column 2: The mass index \(\alpha \). Column 3: The maximum initial spin \(\chi_{\text{max}} \). Column 4: The spin direction for all BH generations. ‘Isotropic’ represents spin tilt angles are isotropically drawn over a sphere; ‘Anisotropic’ represents the misalignment angle \(\theta \) obeying a distribution uniform in \(p(\cos \theta) \propto \cos \theta \) spanning from 0 and 1. Column 5: The mass-ratio index \(\beta \). Column 6: The escape velocity \(V_{\text{esc}} \). \(V_{\text{esc}} = \infty \) represents that the kicks of merger remnants are neglected. Column 7: The delay times \(\Delta t \) between the subsequent mergers.
In Appendix I

I

II

A

32

18

NG

mergers, we pair each 2G BH with a BH with the genera-

tion

The fraction of mergers with generation

NG

is 10

mergers, respectively. For NG+≤NG mergers, we pair each 2G BH with a BH with the generation

M (M \leq N) . The probability of the generation

M obeys

p(M) \propto 2^{-(M-1)} \[28\]. For example, a NG BH is twice as likely to merge with a 1G BH than a 2G BH, and four times as likely to merge with a 1G BH than a 3G BH. We constrain the fraction of mergers with generation

N to

f(N) \leq 2^{-N} . For example, there has at most 100 2G mergers and 50 3G mergers if only 200 1G mergers occur. The merger generation

with

N contains

N merger types: NG+1G, NG+2G, \ldots, and

NG+NG. We repeat the above method to obtain the higher-
generation merger population and stop our iteration until all
BHs but one have been either ejected or accreted.

III. RESULTS

A. Mass distribution

We show the primary BH mass distribution of hierarchical
mergers (i.e., excluding 1G mergers) in Fig. 1. There is a
distinct difference between the masses of hierarchical merg-
ers in SCs and AGNs, in which the distributions with wide
ranges in AGNs are higher than that in SCs due to the hard
initial mass spectrum and efficient hierarchical mergers (see
Table II in Appendix A). The peaks of the distributions in SCs
are \sim 11–15 \text{M}_\odot as similar with Ref. \[11\], while that in AGNs
can reach up to \sim 50 \text{M}_\odot being consistent with Ref. \[18\].
The NG+1G mergers have relatively low masses because one of
each of them came from a 1G BH that has a mass of \sim 50 \text{M}_\odot.
Whereas the NG+NG mergers have relatively high masses be-
cause the binaries are in favor of symmetric masses.

We find that the hierarchical mergers for all the different
cases can efficiently pollute the PI mass gap and IMBHs, es-
pecially in AGN disks. We see that the escape velocities
play an important role for hierarchical merges in SCs. The
small escape velocity represents the inefficiency of hierarchi-
cal mergers, which causes low merger masses; the larger the
escape velocity, the higher the masses. The high-mass end
of the distributions for the cases with different escape veloc-
ities has significant differences; in particular, the masses of
the NG+NG mergers can reach up to $\gtrsim 1000 M_\odot$. The pairing probability of $\beta = 5$ (SC,8) could upraise the mass distribution at the high-mass end.

For the hierarchical mergers in AGNs, the mass distributions for all the different cases (excluding AGN,5) are no significant differences. Because all the mergers could be retained in migration traps, and the delay times are relatively short with the assistance of AGN disks, resulting in almost the same fraction in the same merger generation for the different model (see Table II in Appendix A). This also results in ~ 30–50% of the merging BBHs being hierarchical mergers.

B. Spin distribution

In Fig. 2, we plot the probability density distribution of the effective spins (χ_{eff}) of hierarchical BH mergers. $\chi_{\text{eff}} = (m_1 \chi_1 \cos \theta_1 + m_2 \chi_2 \cos \theta_2)/(m_1 + m_2)$, where m_i, χ_i, and θ_i are the mass, the dimensionless spin, and the misalignment angle, respectively, of each BH in a merged BBH.

We see that the distributions in SCs are symmetrical around zero as expected due to random spin directions. However, they have a wide range from ~ -0.75 to ~ 0.75 with 50% of the mergers have $|\chi_{\text{eff}}| \gtrsim 0.2$ because the final spins of 1G mergers concentrate on 0.69, which the similar results were obtained by Refs. [12, 16]. The distributions with the peaks of $\chi_{\text{eff}} \gtrsim 0.3$ in AGNs are narrower and always greater than 0 because we assume that the misalignment angles of the BBHs are less than $\pi/2$. The reason for this assumption is that gas accretion from the AGN disk will tend to torque the BH spin direction into alignment with the disk orbital angular momentum [52, 53].

We find that there are no differences between χ_{eff} either in SCs or in AGNs if variations to the hierarchical branches are fixed because the finally spins of any merger generations lie in a stable range from ~ 0.5 to ~ 0.8 [28, 44]. That indicates that the effective spin distribution of hierarchical mergers weakly depends on escape velocities and delay times. In SCs, the distribution of χ_{eff} of NG+NG mergers is relatively wider than that of the other two hierarchical branches, though not obvious. In AGNs, the peaks of the distributions of χ_{eff} of the mergers of NG+1G, NG+≤NG, NG+NG increase in turn to ~ -0.32, ~ -0.4, and ~ 0.5, respectively, which means equal-mass BBH mergers have large effective spins. The peak values of the distributions in AGNs broadly agree with the distributions of the 2G and 3G mergers in Ref. [18].

Figure 2 also shows that the gravitational-wave (GW) events with large χ_{eff} reported by LVK [4] most likely originate from AGNs because χ_{eff} of the merger form isolated binary evolution tend to be positive close to zero, while that from SCs also centers zero (see also Fig. 3). The distribution of the model of AGN,8 is higher than others because we adopt the maximum initial BH spin is 1.

C. Comparison with the promising candidates

We would expect that NG+1G and NG+NG mergers dominate the hierarchical BH merger rates in AGNs and SCs, respectively, because of migration traps and mass segregation. We show 2D probability densities of the chirp mass ($M = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}$) and effective spin ($\chi_{\text{eff}}$) of the hierarchical BH mergers detected by LIGO-Virgo [66, 67] in SCs and AGNs in Fig. 3 [68]. In the left panel, we plot the detectable mergers in SCs with the model of SC,1 and the hierarchical branch of NG+NG, and in the right is the detectable mergers in AGNs with the model of AGN,1 and the hierarchical branch of NG+1G. We assume that redshifts of the mergers are drawn uniformly in comoving volume between $z \in [0, 2]$, and that the generated gravitational waves conform to PhemonA [69]. We calculate the signal-to-noise
ratio (SNR) according to $\rho^2 = \frac{16 \hat{f}}{3} \int \frac{\sqrt{f} S_{\text{eff}}(f)}{S_{\text{det}}(f)} d\ln(f)$, where f is frequency of the gravitational wave, T is the observation time, $S_{\text{eff}}(f)$ is the one-sided, averaged, power spectral density of the signal, and $S_{\text{det}}(f)$ is the noise sensitivity curve of LIGO [70]. When SNR > 8, we consider the signal to be detectable [71]. We see that the distribution with the densest region located at $M \sim 20 M_\odot$ and $\chi_{\text{eff}} \sim 0$ in SCs has a wider range than that with the densest region located at $M \sim 40 M_\odot$ and $\chi_{\text{eff}} \sim 0.4$ in AGNs.

GW170729 [1], GW170817A [72], GW190412 [64], and GW190521 [65] are promising candidates for hierarchical mergers (e.g., [18, 19, 73, 74], see also a review of Ref. [10]), which we plot them in Fig. 3. Moreover, GW190519, GW190602, GW190620, and GW190706 in the GWTC-2 [2] are also promising candidate events found by Ref. [8], although they used globular models that imply that these events may not be hierarchical merger candidates if they originate from other channels such as an AGN disk. We find that most of the hierarchical merger candidate events are consistent with the AGN channel because of the large chirp masses and high effective spins. Thus, most of the hierarchical merger candidate events detected by LIGO-Virgo [66, 67] may originate from the AGN channel if AGNs in all probability dominant the hierarchical BH merger rate [18, 75].

We show that GW170729 [18, 76–78] could be well explained in the AGN channel. Reference [18] also showed that it could have originated from this channel, although not definitively (with odds ratio of ~1). It is possible that GW190412 [73, 79–81] originated from SCs or AGNs. However, GW190412 has a component BH with the mass of ~8 M_\odot that should be a 1G BH, which implies it is more likely to come from an AGN because NG+1G mergers prefer to occur in AGNs. GW190521 [8, 25, 74, 82] is in disfavor of originating from the AGN channel because of χ_{eff} nears zero; it has relatively symmetric masses with a total mass of ~130 M_\odot, which suggests it would be an NG+NG merger. Therefore, GW190521 may originate from a SC, but even within SCs, it is still an extremely rare case.

IV. DISCUSSION

The assumption that the mergers of NG+1G and NG+NG dominate the hierarchical merger rates of AGNs and SCs, respectively, relies on the efficiency of migration traps and mass segregation. Reference [21] has shown that the NG+1G binaries dominate hierarchical BH mergers in AGNs with the percentage in hierarchical mergers being at least ~90% by neglecting migration times and considering that the BHs reach the migration trap region once they align with their orbits with the AGN disk. In Ref. [17], we predicted that the branching ratio of the mergers of 2G+1G and 2G+2G in SCs is ≥ 20 by neglecting the pairing probability. However, this could go into reverse if the pairing probability is strongly in favor of equal-mass binaries because of mass segregation. We expect to identify whether NG+NG or NG+1G dominates hierarchical mergers in SCs by the observation of future ground-based GW detectors, which is also a test for the efficiency of migration traps and mass segregation.

Generally, the initial BH mass function in dense stellar environment depends on metallicity [16, 25, 78] that we have not considered in our models. Most GCs are low-metallicity environments [83], which therefore can form much more massive BHs [84, 85]. Both low- and high-metallicity stars are in NSCs because of their complex history and various episodes of accretion and star formation (e.g., Ref. [86]). We also have ignored the increase in mass of BHs in AGN disks under accretion [60, 87]. These may change our results of masses slightly.

The kick velocities of merger remnants are sensitive to BH spins; low spins are in favor of the relatively small kick velocities imparted to merger remnants [12, 88]. Possibly, the occurrence of hierarchical mergers in young star clusters if the kick velocities are small enough [10, 15, 16]. The rate
of hierarchical mergers in SCs depends on the escape velocities of host clusters. Reference [38] showed that the SC with an escape velocity of \(\geq 50 \text{ km s}^{-1} \) could populate the PI mass gap. Moreover, the results of Ref. [28] indicated that there is a ‘cluster catastrophe’ of an abundance of high-mass mergers if the SCs with escape velocities of \(\sim 300 \text{ km s}^{-1} \) dominate the BBH merger rate. Therefore, the kick velocities between \(\sim 50 \text{ km s}^{-1} \) and \(\sim 300 \text{ km s}^{-1} \) are appropriate to hierarchical mergers in SCs, although Ref. [11] found that two of the subdominant peaks of the predictive BH mass spectrum are consistent with the 2G and 3G mergers with escape velocities of \(\sim 500 \text{ km s}^{-1} \). In our models, the hierarchical merger efficiency with \(\sim 50\% \) of the mergers being hierarchies would be too high if the SCs with escape velocities of \(\sim 500 \text{ km s}^{-1} \) dominate the BBH merger rate (see Table II in Appendix A).

The hierarchical merger rate in AGNs is determined by delay times (i.e., migration times) in our models. Because the kick velocities of merger remnants are always less than the escape velocity in AGN disks due to the large orbital velocities and the appropriate misalignment angle [30, 51, 52, 54]. If migration times are short, then the fraction of hierarchical mergers can reach up to \(\sim 50\% \) in all three hierarchical branches (see Table II in Appendix A). Reference [75] predicted that the BBH merger rate in AGNs is larger than that of NSCs and contributes \(\sim 25\%–80\% \) of the LIGO-Virgo measured rate of \(\sim 24 \text{ Gpc}^{-3} \text{ yr}^{-1} \) [29]. Moreover, Ref. [54] found that \(\sim 80\%–90\% \) of mergers occur away from migration traps, and \(\sim 10\%–20\% \) of mergers occur at traps, which means most mergers occur within migration times. These show that multibody interactions [89–92] and/or the efficiency of migration traps [30–32, 93, 94] in AGN disks may play an important role if the efficiency of hierarchical mergers is overestimated by us, although we can constrain it by rising migration times.

We note that one of the key conclusions is that the values of \(\chi_{\text{eff}} \) for AGN disks are mostly positive. This is due to the assumption about alignment made in Sec. II A. However, Ref. [95] found that 68% of the BBHs in their simulation orbit in the retrograde direction, which implies that BBHs would have small \(\chi_{\text{eff}} \). We expect that we could probe the likely torquing by disk accretion onto the embedded objects by testing the population of BBH mergers in AGN disks. GCs are believed to be a major contributor to the rate of dynamically formed LIGO-Virgo events [96, 97]. However, most of the cluster models considered here have an escape speed of \(\geq 100 \text{ km s}^{-1} \), which implies that the models assumed only applied to NSCs. This would weaken the results presented in this paper and should be taken into account when interpreting our results.

V. CONCLUSIONS

In this paper, we compare hierarchical BH mergers in SCs and AGNs using simple models. We mainly focus on the differences of hierarchical mergers between SCs and AGNs, not on the differences within SCs or AGNs under different model parameters. In our models, the two dynamical BBH formation channels are distinguished by initial BH distributions in mass and spin, pairing probabilities, escape velocities, and delay times. We show that hierarchical mergers in mass and spin have significantly differences in between SCs and AGNs regardless of the model parameters. We stress that our estimates should be seen as upper limit because of neglecting multibody interactions and the efficiency of migration traps and mass segregation. Our conclusions are as follows:

- The primary mass distribution of the hierarchical mergers in AGNs, with the peak of \(\sim 50 M_\odot \) and with a wide range, is higher than that with the peak of \(\sim 13 M_\odot \) in SCs (see Fig. 1). The hierarchical mergers in both AGNs and SCs can pollute the PI mass gap, and it is more effective for mergers in AGN disks to fill IMBHs. Compared with SCs, the hierarchical mergers in AGNs prefer asymmetric masses (see Fig. 4 in Appendix B).

- The effective spin distribution of hierarchical mergers in SCs is symmetrical around zero as expected, in which \(\sim 50\% \) of the mergers have \(|\chi_{\text{eff}}| > 0.2 \), while that in AGNs is narrower and prefers positive values with the peak of \(|\chi_{\text{eff}}| > 0.3 \) with the assistance of AGN disks (see Fig. 2). The distribution of \(\chi_{\text{eff}} \) weakly depends on escape velocities and delay times. The effective precession parameter distribution with the peak of \(\chi_p \sim 0.66 \) in SCs are much narrower than that in AGNs; the distribution of \(\chi_p \) in AGNs is flat, especially for NG+1G mergers, because of the assistance of AGN disks (see Fig. 5 in Appendix C).

- The hierarchical BH merger rate in SCs strongly depends on the escape velocities of clusters, while that in AGNs depends on the delay times between subsequent mergers. Compared with SCs, the fraction of hierarchical mergers in AGNs is higher with \(\sim 30\%–50\% \); the percentage in SCs is \(\sim 10\%–50\% \) that has great uncertainty determined by the escape velocities (see Table II in Appendix A). As a whole, BH hierarchical growth efficiency in AGNs should be much higher than the efficiency in SCs.

- Most of the hierarchical merger candidate events (especially GW170729) detected by LIGO-Virgo may originate from the AGN channel (see Fig. 3). GW190412 is more likely to come from AGNs because of a small component BH mass. GW190521 should originate from SCs due to a significantly large total mass and relatively symmetric masses, but even within SCs, it is still an extremely rare case.

Our results in SCs and/or AGNs broadly agree with those in Refs. [12, 15, 16, 18, 39, 43]. We expect that with third-generation GW detectors in operation [98–100], the increasing data on GW events will help us to constrain hierarchical mergers precisely in the two dynamical formation channels.

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No. 12273005), the Guangxi
TABLE II: The fraction of each merger generation of the three hierarchical branches for the eighteen models and their detected fraction.

Model	Branch	1G	2G	3G	4G	5G	6G	7G	8G	9G	≥10G	Detected
SC_1	NG+1G	0.751	0.24	0.007	9×10^{-4}	3×10^{-4}	1×10^{-4}	7×10^{-5}	3×10^{-5}	2×10^{-6}	8×10^{-6}	0.006
SC_1	NG+NG	0.753	0.241	0.006	1×10^{-4}	6×10^{-6}	0	0	0	0	0	0.008
SC_1	NG≤NG	0.752	0.24	0.007	5×10^{-4}	1×10^{-4}	4×10^{-5}	2×10^{-5}	8×10^{-6}	0	0	0.007
SC_1	NG+1G	0.907	0.093	3×10^{-4}	1×10^{-5}	7×10^{-6}	0	0	0	0	0	0.006
SC_2	NG+NG	0.907	0.093	2×10^{-4}	7×10^{-6}	0	0	0	0	0	0.006	
SC_2	NG≤NG	0.907	0.093	3×10^{-4}	7×10^{-6}	0	0	0	0	0	0.006	
SC_3	NG+NG	0.614	0.307	0.051	0.015	0.007	0.004	0.002	9×10^{-4}	5×10^{-4}	2×10^{-4}	0.007
SC_3	NG+1G	0.636	0.318	0.039	0.006	7×10^{-4}	9×10^{-5}	8×10^{-6}	4×10^{-6}	0	0	0.013
SC_3	NG≤NG	0.622	0.311	0.047	0.011	0.004	0.002	0.001	5×10^{-4}	2×10^{-4}	1×10^{-4}	0.009
SC_4	NG+NG	0.559	0.279	0.087	0.038	0.019	0.009	0.005	0.002	0.001	6×10^{-4}	0.008
SC_4	NG+1G	0.501	0.25	0.125	0.063	0.031	0.016	0.009	0.004	0.002	0.001	0.009
SC_4	NG≤NG	0.501	0.25	0.125	0.063	0.031	0.016	0.009	0.004	0.002	0.001	0.015
SC_5	NG+1G	0.532	0.266	0.115	0.052	0.021	0.009	0.003	0.001	4×10^{-4}	2×10^{-4}	0.031
SC_5	NG≤NG	0.503	0.252	0.123	0.062	0.031	0.015	0.008	0.004	0.002	0.001	0.015

Appendix A: Fraction of each merger generation

Table II lists the fraction of each merger generation of the three hierarchical branches for the eighteen models. The hier-
Appendix B: Mass ratio distribution

In Sec. III A, we show the primary mass distribution of hierarchical mergers (see Fig. 1). Here, we plot their probability density distribution of the mass ratios (q) in Fig. 4, which is broadly consistent with the results of Ref. [11] for SCs. We find that (on average) hierarchical mergers could lead to the formation of more asymmetric binaries in dynamical formation channels. Compared with NG+NG mergers, NG+1G mergers in both SCs and AGNs prefers unequal-mass binaries depending on hierarchical merger efficiency. Because the higher-generation mergers, the more extreme mass ratios for the branch of NG+1G. The mass ratio distribution of NG+≤NG mergers is between NG+1G and NG+NG mergers.

Archival mergers in AGNs are more efficient than that in SCs because almost all of the merger remnants could be retained in migration traps in AGN disks. The kick velocities of NG+NG mergers are larger than the others and therefore their fractions of hierarchical mergers are relatively low in SCs. We also show their fraction detected by LIGO-Virgo in Table II [68], with a network detection threshold of SNR >8 [71] (see more details in Sec. III C). The detectable fractions of BBH mergers in AGNs are, on average, about three times that of BBH mergers in SCs.
For NG+NG mergers, the distributions in SCs and AGNs are not very different. In SCs, the distribution of q of NG+1G mergers has large uncertainty, in which the distribution of the model of SC$_2S$ is the highest at the low-q end. The hierarchical mergers in AGNs would be more asymmetric that that in SCs, if NG+1G and NG+NG mergers dominate the hierarchical BH merger rates in AGNs and SCs, respectively.

Appendix C: Effective precession parameter distribution

In Sec. III B, we show the effective spin distribution of hierarchical mergers (see Fig. 2). Here, we show the probability density distribution of the effective precession parameters (χ_p) of hierarchical BH mergers in Fig. 5, where $\chi_p = \max\{\chi_1 \sin \theta_1, \chi_2 \sin \theta_2 q (4 q + 3)/(4 + 3 q)\}$. We see that the effective precession parameter distributions with the peak of $\chi_p \sim 0.66$ in SCs are much narrower than that in AGNs. The distribution of χ_p in AGNs is flat, especially for NG+1G mergers, because gas accretion tends to torque the BH spin into alignment with the AGN disk. The results of the distributions of χ_p in SCs and/or AGNs are agree with those in Refs. [14, 43].

[1] B. P. Abbott et al., “GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs,” Physical Review X 9, 031040 (2019), arXiv:1811.12907.
[2] R. Abbott et al., “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run,” Physical Review X 11, 021053 (2021), arXiv:2010.14527.
[3] The LIGO Scientific Collaboration et al., “GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run,” arXiv e-prints, arXiv:2108.01045 (2021), arXiv:2108.01045.
[4] The LIGO Scientific Collaboration et al., “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” arXiv e-prints, arXiv:2111.03606 (2021), arXiv:2111.03606.
[5] R. M. O’Leary, Y. Meiron, and B. Kocsis, “Dynamical Formation Signatures of Black Hole Binaries in the First Detected Mergers by LIGO,” Astrophys. J. 824, L12 (2016), arXiv:1602.02809.
[6] M. Fishbach, D. E. Holz, and B. Farr, “Are LIGO’s Black Holes Made from Smaller Black Holes?”, Astrophys. J. 840, L24 (2017), arXiv:1703.06869.
[7] D. Gerosa and E. Berti, “Are merging black holes born from stellar collapse or previous mergers?”, Phys. Rev. D 95, 124046 (2017), arXiv:1703.06223.
[8] C. Kimball et al., “Evidence for Hierarchical Black Hole Mergers in the Second LIGO-Virgo Gravitational-Wave Catalog,” Astrophys. J. 915, L35 (2021), arXiv:2011.05332.
[9] M. Mould, D. Gerosa, and S. R. Taylor, “Deep learning and bayesian inference of gravitational-wave populations: Hierarchical black-hole mergers,” Phys. Rev. D 106, 103013 (2022).
[10] D. Gerosa and M. Fishbach, “Hierarchical mergers of stellar-mass black holes and their gravitational-wave signatures,” Nature Astronomy 5, 749 (2021), arXiv:2105.03439.
[11] P. Mahapatra, A. Gupta, M. Favata, K. G. Arun, and B. S. Sathyaprakash, “Black hole hierarchical growth efficiency and mass spectrum predictions,” arXiv e-prints, arXiv:2209.05766 (2022).
[12] C. L. Rodriguez, M. Zevin, P. Amaro-Seoane, S. Chatrerjee, K. Kremer, F. A. Rasio, and C. S. Ye, “Black holes: The next generation—repeateed mergers in dense star clusters and their gravitational-wave properties,” Phys. Rev. D 100, 043027 (2019), arXiv:1906.10260.
[13] C. Kimball, C. Talbot, C. P. L. Berry, M. Carney, M. Zevin, E. Thane, and V. Kalogera, “Black Hole Genealogy: Identifying Hierarchical Mergers with Gravitational Waves,” Astrophys. J. 900, 177 (2020), arXiv:2005.00023.
[14] V. Baibhav, E. Berti, D. Gerosa, M. Mould, and K. W. Wong, “Looking for the parents of LIGO’s black holes,” Phys. Rev. D 104, 084002 (2021), arXiv:2105.12140.
[15] M. Mapelli, F. Santoliquido, Y. Bouffanais, M. A. Arca Sedda, M. C. Artale, and A. Ballone, “Mass and Rate of Hierarchical Black Hole Mergers in Young, Globular and Nuclear Star Clusters,” Symmetry 13, 1678 (2021), arXiv:2007.15022.
[16] M. Mapelli et al., “Hierarchical black hole mergers in young, globular and nuclear star clusters: the effect of metallicity, spin and cluster properties,” Mon. Not. R. Astron. Soc. 505, 339 (2021), arXiv:2103.05016.
[17] G.-P. Li, “Constraining hierarchical mergers of binary black holes detectable with LIGO-Virgo,” Astron. Astrophys. 666, A194 (2022), arXiv:2208.11894.
[18] Y. Yang et al., “Hierarchical Black Hole Mergers in Active Galactic Nuclei,” Phys. Rev. Lett. 123, 181101 (2019), arXiv:1906.09281.
[19] V. Gayathri, I. Bartos, Z. Haiman, S. Klimenko, B. Kocsis, S. Márka, and Y. Yang, “GW170817A as a Hierarchical Black Hole Merger,” Astrophys. J. 890, L20 (2020), arXiv:1911.11142.
[20] H. Tagawa, B. Kocsis, Z. Haiman, I. Bartos, K. Omukai, and J. Samsing, “Mass-gap Mergers in Active Galactic Nuclei,” Astrophys. J. 908, 194 (2021), arXiv:2012.00011.
[21] G.-P. Li, “Time-dependent stellar-mass binary black hole mergers in AGN disks: Mass distribution of hierarchical mergers,” Phys. Rev. D 105, 063006 (2022), arXiv:2202.09961.
[22] A. Heger, C. L. Fryer, S. E. Woosley, N. Langer, and D. H. Hartmann, “How Massive Single Stars End Their Life,” Astrophys. J. 591, 288 (2003), arXiv:astro-ph/0212469.
[23] S. E. Woosley, S. Blinnikov, and A. Heger, “Pulsational pair instability as an explanation for the most luminous supernovae,” Nature 450, 390 (2007), arXiv:0710.3314.
[24] G. D. Quinlan and S. L. Shapiro, “The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation,” Astrophys. J. 321, 199 (1987).
[25] G. Fragione, A. Loeb, and F. A. Rasio, “On the Origin of GW190521-like Events from Repeated Black Hole...
Mergers in Star Clusters,” Astrophys. J. **902**, L26 (2020), arXiv:2009.05065.

[26] G. Fragione, B. Kocsis, F. A. Rasio, and J. Silk, “Repeated Mergers, Mass-gap Black Holes, and Formation of Intermediate-mass Black Holes in Dense Massive Star Clusters,” Astrophys. J. **927**, 231 (2022), arXiv:2107.04639.

[27] E. González Prieto, K. Kremer, G. Fragione, M. A. S. Martínez, N. C. Weatherford, M. Zevin, and F. A. Rasio, “Intermediate-mass Black Holes on the Run from Young Star Clusters,” arXiv e-prints, arXiv:2208.07881 (2022), arXiv:2208.07881.

[28] M. Zevin and D. E. Holz, “Avoiding a Cluster Catastrophe: Retention Efficiency and the Binary Black Hole Mass Spectrum,” Astrophys. J. **935**, L20 (2022), arXiv:2205.08549.

[29] The LIGO Scientific Collaboration et al., “The population of merging compact binaries inferred using gravitational waves through GWTC-3,” arXiv e-prints, arXiv:2111.03634 (2021), arXiv:2111.03634.

[30] B. McKernan, K. E. S. Ford, W. Lyra, and H. B. Perets, “Intermediate mass black holes in AGN discs - I. Production and growth,” Mon. Not. R. Astron. Soc. **425**, 460 (2012), arXiv:1206.2309.

[31] J. M. Bellovary, M.-M. Mac Low, B. McKernan, and K. E. S. Ford, “Migration Traps in Disks around Supermassive Black Holes,” Astrophys. J. **819**, L17 (2016), arXiv:1511.00005.

[32] A. Secunda, J. Bellovary, M.-M. Mac Low, K. E. S. Ford, B. McKernan, N. W. C. Leigh, W. Lyra, and Z. Sándor, “Orbital Migration of Interacting Star Mass Black Holes in Disks around Supermassive Black Holes,” Astrophys. J. **878**, 85 (2019), arXiv:1807.02859.

[33] B. McKernan et al., “Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO,” Astrophys. J. **866**, 66 (2018), arXiv:1702.07818.

[34] K. K. Scaria and M. K. V. Bappu, “Mass segregation in globular clusters,” Journal of Astrophysics and Astronomy **2**, 215 (1981).

[35] T. Nony et al., “Mass segregation and sequential star formation in NGC 2264 revealed by Herschel,” Astron. Astrophys **645**, A94 (2021), arXiv:2011.05939.

[36] V. Pavlík and E. Vesperini, “Mass segregation and dynamics of primordial binaries in star clusters with a radially anisotropic velocity distribution,” Mon. Not. R. Astron. Soc. **515**, 1830 (2022), arXiv:2206.11905.

[37] E. Vitral, K. Kremer, M. Libralato, G. A. Mamon, and A. Bellini, “Stellar graveyards: clustering of compact objects in globular clusters NGC 3201 and NGC 6397,” Mon. Not. R. Astron. Soc. **514**, 806 (2022), arXiv:2202.01599.

[38] D. Gerosa and E. Berti, “Escape speed of stellar clusters from multiple-generation black-hole mergers in the upper mass gap,” Phys. Rev. D **100**, 041301 (2019), arXiv:1906.05295.

[39] G. Fragione and J. Silk, “Repeated mergers and ejection of black holes within nuclear star clusters,” Mon. Not. R. Astron. Soc. **498**, 4591 (2020), arXiv:2006.01867.

[40] B. Liu and D. Lai, “Hierarchical black mergers in multiple systems: constrain the formation of GW190412-, GW190814-, and GW190521-like events,” Mon. Not. R. Astron. Soc. **502**, 2049 (2021), arXiv:2009.10068.

[41] P. Mahapatra, A. Gupta, M. Favata, K. G. Arun, and B. S. Sathyaparakash, “Remnant Black Hole Kicks and Implications for Hierarchical Mergers,” Astrophys. J. **918**, L31 (2021), arXiv:2106.07179.

[42] Z. Doctor, D. Wysocki, R. O’Shaughnessy, D. E. Holz, and B. Farr, “Black Hole Coagulation: Modeling Hierarchical Mergers in Black Hole Populations,” Astrophys. J. **893**, 35 (2020), arXiv:1911.04424.

[43] H. Tagawa, Z. Haiman, I. Barton, B. Kocsis, and K. Omukai, “Signatures of hierarchical mergers in black hole spin and mass distribution,” Mon. Not. R. Astron. Soc. **507**, 3362 (2021), arXiv:2104.09510.

[44] D. Gerosa, N. Giacobbo, and A. Vecchio, “High Mass but Low Spin: An Exclusion Region to Rule Out Hierarchical Black Hole Mergers as a Mechanism to Populate the Pair-instability Mass Gap,” Astrophys. J. **915**, 56 (2021), arXiv:2104.11247.

[45] E. Barausse, V. Morozova, and L. Rezzolla, “On the Mass Radiated by Coalescing Black Hole Binaries,” Astrophys. J. **758**, 63 (2012), arXiv:1206.3803.

[46] F. Hofmann, E. Barausse, and L. Rezzolla, “The Final Spin from Binary Black Holes in Quasi-circular Orbits,” Astrophys. J. **825**, L19 (2016), arXiv:1605.01938.

[47] M. Campanelli, C. Lousto, Y. Zlochower, and D. Merritt, “Large Merger Recoils and Spin Flips from Generic Black Hole Binaries,” Astrophys. J. **659**, L5 (2007), arXiv:gr-qc/0701164.

[48] D. Gerosa and M. Kesden, “precession: Dynamics of spinning black-hole binaries with python,” Phys. Rev. D **93**, 124066 (2016), arXiv:1605.01067.

[49] P. Kroupa, “On the variation of the initial mass function,” Mon. Not. R. Astron. Soc. **322**, 231 (2001), arXiv:astro-ph/0009005.

[50] Y. Yang, I. Bartos, Z. Haiman, B. Kocsis, Z. Márka, N. C. Stone, and S. Márka, “AGN Disks Harden the Mass Distribution of Stellar-mass Binary Black Hole Mergers,” Astrophys. J. **876**, 122 (2019), arXiv:1903.01405.

[51] S.-X. Yi and K. S. Cheng, “Where Are the Electromagnetic-wave Counterparts of Stellar-mass Binary Black Hole Mergers?” Astrophys. J. **884**, L12 (2019), arXiv:1909.08384.

[52] T. Bogdanović, C. S. Reynolds, and M. C. Miller, “Alignment of the Spins of Supermassive Black Holes Prior to Coalescence,” Astrophys. J. **661**, L147 (2007), arXiv:astro-ph/0703054.

[53] B. McKernan, K. E. S. Ford, T. Callister, W. M. Farr, R. O’Shaughnessy, R. Smith, E. Thane, and A. Vajpeyi, “LIGO-Virgo correlations between mass ratio and effective inspiral spin: testing the active galactic nucleus channel,” Mon. Not. R. Astron. Soc. **514**, 3886 (2022), arXiv:2107.07551.

[54] B. McKernan, K. E. S. Ford, R. O’Shaughnessy, and D. Wysocki, “Monte Carlo simulations of black hole mergers in AGN discs: Low χ_{eff} mergers and predictions for LIGO,” Mon. Not. R. Astron. Soc. **494**, 1203 (2020), arXiv:1907.04356.

[55] V. Tiwari, “VAMANA: modeling binary black hole population with minimal assumptions,” Classical and Quantum Gravity **38**, 155007 (2021), arXiv:2006.15047.

[56] V. Tiwari, “Exploring Features in the Binary Black Hole Population,” Astrophys. J. **928**, 155 (2022), arXiv:2111.13991.

[57] V. Barma, S. Bisveoucanu, T. Islam, F. H. Shaik, C.-J. Haster, M. Ivić, W. M. Farr, S. E. Field, and S. Vitale, “Evidence of Large Recoil Velocity from a Black Hole Merger Signal,” Phys. Rev. Lett. **128**, 191102 (2022), arXiv:2201.01302.

[58] F. Antonini and F. A. Rasio, “Merging Black Hole Binaries in Galactic Nuclei: Implications for Advanced-LIGO Detec-
tions," Astrophys. J. **831**, 187 (2016), arXiv:1606.04889.

[59] H. Tagawa, Z. Haiman, and B. Kocsis, “Formation and Evolution of Compact-object Binaries in AGN Disks,” Astrophys. J. **898**, 25 (2020), arXiv:1912.08218.

[60] Y. Yang, V. Gayathri, I. Bartos, Z. Haiman, M. Safarzadeh, and H. Tagawa, “Black Hole Formation in the Lower Mass Gap through Mergers and Accretion in AGN Disks,” Astrophys. J. **901**, L34 (2020), arXiv:2007.04781.

[61] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O’Shaughnessy, “Double Compact Objects. I. The Significance of the Common Envelope on Merger Rates,” Mon. Not. R. Astron. Soc. **497**, 1043 (2020), arXiv:1911.01434.

[62] U. N. Di Carlo, M. Mapelli, Y. Bouffanais, N. Giacobbo, F. Santoliquido, A. Bressan, M. Spera, and F. Haardt, “Binary black holes in the pair instability mass gap,” Mon. Not. R. Astron. Soc. **497**, 1043 (2020), arXiv:1911.01434.

[63] I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, “Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei,” Astrophys. J. **835**, 165 (2017), arXiv:1602.03831.

[64] R. Abbott et al., “GW190412: Observation of a binary-black-hole coalescence with asymmetric masses,” Phys. Rev. **D 102**, 043015 (2020), arXiv:2004.08342.

[65] R. Abbott et al., “GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_⊙,” Phys. Rev. Lett. **125**, 101102 (2020), arXiv:2009.01075.

[66] LIGO Scientific Collaboration et al., “Advanced LIGO,” Classical and Quantum Gravity **32**, 074001 (2015), arXiv:1411.4547.

[67] F. Acernese et al., “Advanced Virgo: a second-generation interferometric gravitational wave detector,” Classical and Quantum Gravity **32**, 024001 (2015), arXiv:1408.3978.

[68] L. S. Finn and D. F. Chernoff, “Observing binary inspiral in gravitational radiation: One interferometer,” Phys. Rev. **D 47**, 2198 (1993), arXiv:gr-qc/9301003.

[69] P. Ajith et al., “A phenomenological template family for black-hole coalescence waveforms,” Classical and Quantum Gravity **24**, S689 (2007), arXiv:0704.3764.

[70] B. P. Abbott et al., “Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA,” Living Reviews in Relativity **23**, 3 (2020).

[71] J. Abadie et al., “TOPICAL REVIEW: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors,” Classical and Quantum Gravity **27**, 173001 (2010), arXiv:1003.2480.

[72] B. Zackay, L. Dai, T. Venumadhav, J. Roulet, and M. Zaldarriaga, “Detecting gravitational waves with disparate detector responses: Two new binary black hole mergers,” Phys. Rev. **D 104**, 063030 (2021).

[73] D. Gerosa, S. Vitale, and E. Berti, “Astrophysical Implications of GW190412 as a Remnant of a Previous Black-Hole Merger,” Phys. Rev. Lett. **125**, 101103 (2020), arXiv:2005.04243.

[74] R. Abbott et al., “Properties and Astrophysical Implications of the 150 M_⊙ Binary Black Hole Merger GW190521,” Astrophys. J. **900**, L13 (2020), arXiv:2009.01190.

[75] K. E. Saavik Ford and B. McKernan, “Binary black hole merger rates in AGN disks versus nuclear star clusters: Loud beats quiet,” Mon. Not. R. Astron. Soc. (2022), 10.1093/mnras/stac2861, arXiv:2109.03212.

[76] K. Chatziioannou et al., “On the properties of the massive binary black hole merger GW170729,” Phys. Rev. **D 100**, 104015 (2019), arXiv:1903.06742.

[77] M. Fishbach, W. M. Farr, and D. E. Holz, “The Most Massive Binary Black Hole Detections and the Identification of Population Outliers,” Astrophys. J. **891**, L31 (2020), arXiv:1911.05882.

[78] A. S. Hamers and M. Safarzadeh, “Was GW190412 Born from a Hierarchical 3 + 1 Quadruple Configuration?” Astrophys. J. **898**, 99 (2020), arXiv:2005.03045.

[79] C. L. Rodriguez et al., “GW190412 as a Third-generation Black Hole Merger from a Super Star Cluster,” Astrophys. J. **896**, L10 (2020), arXiv:2005.04239.

[80] M. Zevin, C. P. L. Berry, S. Coughlin, K. Chatziioannou, and S. Vitale, “You Can’t Always Get What You Want: The Impact of Prior Assumptions on Interpreting GW190412,” Astrophys. J. **899**, L17 (2020), arXiv:2006.11293.

[81] O. Anagnostou, M. Trenti, and A. Melatos, “Repeated Mergers of Black Hole Binaries: Implications for GW190521,” Astrophys. J. **941**, 4 (2022).

[82] W. E. Harris, “A Catalog of Parameters for Globular Clusters in the Milky Way,” Astron. J. **112**, 1487 (1996).

[83] J. S. Vink, A. de Koter, and H. J. G. L. M. Lamers, “Mass-loss predictions for O and B stars as a function of metallicity,” Astron. Astrophys. **369**, 574 (2001), arXiv:astro-ph/0101509.

[84] M. Spera and M. Mapelli, “Very massive stars, pair-instability supernovae and intermediate-mass black holes with the sevn code,” Mon. Not. R. Astron. Soc. **470**, 4739 (2017), arXiv:1706.06109.

[85] F. Antonini, “Origin and Growth of Nuclear Star Clusters around Massive Black Holes,” Astrophys. J. **763**, 62 (2013), arXiv:1207.6589.

[86] S.-X. Yi, K. S. Cheng, and R. E. Taam, “The Growth of Stellar Mass Black Hole Binaries Trapped in the Accretion Disks of Active Galactic Nuclei,” Astrophys. J. **859**, L25 (2018), arXiv:1805.07026.

[87] G. Fragione and A. Loeb, “Implications of recoil kicks for black hole mergers from LIGO/Virgo catalogs,” Mon. Not. R. Astron. Soc. **502**, 3879 (2021), arXiv:2011.08935.

[88] A. Secunda, B. Hernandez, J. Goodman, N. W. C. Leigh, B. McKernan, K. E. S. Ford, and J. I. Adorno, “Evolution of Retrograde Orbiters in an Active Galactic Nucleus Disk,” Astrophys. J. **908**, L27 (2021), arXiv:2009.03910.

[89] Y.-H. Wang, B. McKernan, S. Ford, R. Perna, N. W. C. Leigh, and M.-M. Mac Low, “Symmetry Breaking in Dynamical Encounters in the Disks of Active Galactic Nuclei,” Astrophys. J. **923**, L23 (2021), arXiv:2110.03698.

[90] J. Samsing, I. Bartos, D. J. D’Orazio, Z. Haiman, B. Kocsis, N. W. C. Leigh, B. Liu, M. E. Pesah, and H. Tagawa, “AGN as potential factories for eccentric black hole mergers,” Nature **603**, 237 (2022).

[91] J. Li, A. M. Dempsey, H. Li, D. Lai, and S. Li, “Hydromodynamical Simulations of Black-Hole Binary Formation in AGN Disks,” arXiv e-prints , arXiv:2211.10357 (2022), arXiv:2211.10357.
[93] Z. Pan and H. Yang, “Formation rate of extreme mass ratio inspirals in active galactic nuclei,” *Phys. Rev. D* **103**, 103018 (2021), arXiv:2101.09146.

[94] P. Peng and X. Chen, “The last migration trap of compact objects in AGN accretion disc,” *Mon. Not. R. Astron. Soc.* **505**, 1324 (2021), arXiv:2104.07685.

[95] A. Secunda, J. Bellovary, M.-M. Mac Low, K. E. S. Ford, B. McKernan, N. W. C. Leigh, W. Lyra, Z. Sándor, and J. I. Adorno, “Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes. II. Spins and Incoming Objects,” *Astrophys. J.* **903**, 133 (2020), arXiv:2004.11936.

[96] M. Mapelli, Y. Bouffanais, F. Santoliquido, M. Arca Sedda, and M. C. Artale, “The cosmic evolution of binary black holes in young, globular, and nuclear star clusters: rates, masses, spins, and mixing fractions,” *Mon. Not. R. Astron. Soc.* **511**, 5797 (2022), arXiv:2109.06222.

[97] I. Mandel and F. S. Broekgaarden, “Rates of compact object coalescences,” *Living Reviews in Relativity* **25**, 1 (2022), arXiv:2107.14239.

[98] M. Punturo et al., “The Einstein Telescope: a third-generation gravitational wave observatory,” *Classical and Quantum Gravity* **27**, 194002 (2010).

[99] M. Punturo et al., “The third generation of gravitational wave observatories and their science reach,” *Classical and Quantum Gravity* **27**, 084007 (2010).

[100] B. P. Abbott et al., “Exploring the sensitivity of next generation gravitational wave detectors,” *Classical and Quantum Gravity* **34**, 044001 (2017), arXiv:1607.08697.