Numerical and Economic Evaluation of Some Papaya Genotypes Trees Grown In Qalyubia Region

Abd-elkawy M.M.A. and H. Khairy

Tropical fruits Res. Dept. Hort. Res. Inst. Agric. Res. Cent. Giza., Egypt.

Received: 20 Oct. 2019 / Accepted 15 Dec. 2019 / Publication date: 30 Dec. 2019

ABSTRACT

The study was undertaken to assess the genetic diversity on the basis of morphological and physiological characterization among 8 papaya genotypes in Qalyubia Governorate, Egypt during three successively seasons (2017, 2018 and 2019). Morphological, physiological and agronomical traits were studied across 8 papaya genotypes to characterize the genetic assessment which includes the following aspects: breeding method, sex form, special characteristics and fruit shape and size, plant height (cm), stem girth (cm), average No. leaves/plant, leaf length and diameter (cm), days from planting to first flowering, days from planting to first fruiting, days from planting to first harvest, number of fruits /tree, fruit weight (kg), yield (kg/tree), physical properties i.e. fruit length and diameter (cm) and fruit dimensions (fruit length/fruit diameter), fresh and dry weights (g) of papaya seed, chemical characteristics (SSC, vitamin C, papain enzyme, total, reducing and non-reducing sugars (%), study showed significant variation among all the genotypes in morphological and physiological traits. The obtained results showed that the availability of the selected papaya genotypes (G4 and G8) made it possible to study the influence of genotypes characteristics on the morphological, fruiting, yield, characteristics of fruits physical and chemical. Genetic diversity studies of available papaya genotypes are necessary to facilitate unambiguous identification of the various germplasms and their protection, and in turn can be provide to farmers and breeders to further improve auspicious papaya that could have a positive effect on the local economy.

Keywords: Carica papaya, evaluation, morphological, attributes genotypes, economy.

Introduction

Papaya, is an evergreen plant small semi-woody trees that considered the best known member of the family Caricaceae (Papaya Carica L.), which native to tropical and semi-tropical regions of both South America and Africa. The Caricaceae family plants belong to 3 genera in South America (Carica, Jasilla, Jacria) and one genera in Africa (Cyclicomorpha) (Sharon et al., 1992; Badillo, 1993, Nakasone and Poull, 1998). Papayas normally grow as single-stemmed trees with a crown of large palmate leaves emerging from the apex of the trunk (Villegas 1997). Papaya flowers are born on inflorescences which appear in the axils of the leaves. Female flowers are held close against the stem as a single flower or in clusters of 2-3 (Chay-Prove et al., 2000). Male flowers are smaller and more numerous and are born on 60-90 cm long pendulous inflorescences. Hermaphrodite flowers are intermediate between the two unisexual forms (Nakasone & Poull 1998). The functional gender of flowers can be altered or reversed, depending on environmental conditions, particularly temperature. Fruit are ready to harvest five six months after flowering. Fruit from female trees are spherical, whereas the shape of fruit from bisexual trees is affected by environmental factors, particularly temperature that modifies floral morphology during early development of the inflorescence (Nakasone & Poull 1998). Dioecious varieties are generally recommended because they have high fruit yield and relatively predictable fruit shape (Drew et al., 1998; Chay-Prove et al., 2000). Economically, Papaya (Carica papaya L) is the most important economic species of this family (Caricaceae) being cultivated widely for consumption as a fresh fruit and use as drinks, jams, jellies, ice-cream, pies and crystalloid fruits (Tawfik, 2007). Papaya fruit is known with its high content of vitamins A and C, and is a good source of calcium. An average of 100g of ripe papaya contains 950 I.U. of Vitamin A and 60.9mg of vitamin C (ascorbic acid). Biochemically, its leaves and fruit are complex, producing several proteins and alkaloids that have important pharmaceutical and industrial applications (El Moussaouii et al., 2001). Globally, Asia is the leading papaya producer continent with 56.27% of the
global production, followed by America (33.12%) and Africa with 10.50% production (FAOSTAT, 2018). In addition, papain is a particularly important proteolytic enzyme that is produced in the milky latex of green, unripe papaya fruits. Commercially, however, papain has varied industrial uses in the beverage, food and pharmaceutical industries including in the production of chewing gums, chill-proofing beer, tenderizing meat. Papain has also been used in the textiles industry, for degumming silk and for softening wool and in the cosmetics industry, in soaps and shampoo (Villegas 1997). Drugs have reparations for various digestive ailments, digestion for helping some people in replacing papain enzymes to the role of pepsin in the stomach and the treatment of gangrenous wounds (Galila, 1995 and Tawfik, 2007). Papaya is considered one of the most promising fruit crops, which their importance concentrated in the easy way to propagate. It ranks the second rank after banana in tropical and sub-tropical regions. It is also, available for fruiting all around the year, and after one year from cultivation (Tawfik, 2005 and Ming et al., 2008). Papaya fruit production in Egypt also relies on imported varieties and farmers’ selected seeds whose quality is not known. So that, we seek little attempts have been made to develop papaya with superior quality attributes and that are adapted locally, with divergent morpho-agronomic traits.

Therefore, the objectives of this study were to evaluate the morphological, physiological and quality characteristics of the fruits of the newly predictable papaya genotypes.

Materials and Methods

The present study was carried out in the three successive seasons of 2017, 2018 and 2019 at a private orchard in Tant Al Jazirah village, Tukh (Qalyubia Governorate) where papaya genotypes are planted. An eight predictable papaya genotypes were been select to evaluate morphological, physiological and agronomical characteristics. Standard recommended agronomic practices were followed for cultivate the crop. The field trials were carried out in randomized complete block design. The sampling plants for this study was selected as an elegant seedling plants in a farm located in Qalyubia governorate near Cairo to evaluate eight fruited local plants of papaya “Carica papaya L”.

A) Morphological characterization

The morphological and agronomical attributes like breeding method, sex form; special characteristics, fruit shape and size per plant were detected. Days to first flowering, days to first fruiting, days to first harvest, number of fruits per tree were measured. Papaya fruits were obtained from orchard and also samples of both leaves and inflorescences were taken to the laboratory of the Horticulture Research Institute to determine their morphological aspects during the seasons of the study; full matured fruits were picked to determine their physical and chemical aspects through both of 2017, 2018and 2019 seasons as follows:

B) Vegetative growth and flowering properties

Monitoring on different of the vegetative growth characteristics like plant height, stem girth of the tested genotypes were recorded also average No. leaves/plant, leaf length and diameter (cm).

C) Fruiting and yield

At harvest time, total fruit number/tree; fruit weight (g) were recorded and average total yield/tree were calculated as kg/tree.

D) Fruit quality

1- Physical aspects of fruits were determined as the fruit length and diameter (cm) and fruit shape index (fruit length/fruit diameter), fresh and dry weights (g) of seed papaya were measured.

2- Chemical properties of papaya fruit: Soluble solids content percentage (S.S.C. %) was determined by using hand refractometer according to A.O.A.C. (1995)

- Total sugars (%); reducing sugars and non-reducing sugars were determined according to the methods described by (Dubois et al., 1956).

-Vitamin (C) as (mg) Ascorbic acid /100 ml. in juice was determined according to A.O.A.C. (1995).
The plant papain enzyme material:
Preparation of papaya fruit pulp.

The extraction of papaya fruit pro tease was carried out according to the method described by (Nitsawang et al., 2006).

General evaluation of the eight papaya genotypes under Qalyubia Governorate conditions

Evaluation of the tested papaya genotypes were calculated on the basis of 100 units which were divided among the various fruit properties according to (Hamed, 2012) with simple modification as follows: 30 units for the yield/plant, 10 units for fruit weight, 10 units for number of fruits/tree, 5 units for each fruit length, diameter and seed weight, 10 units for each SSC and vitamin content and 15 units for total sugar content. Each papaya genotype that gave the best results in any character was given the full mark specified for this character, while each of the other tested papaya genotypes took lower units to their qualities. Economic evaluation of some papaya genotypes as average during three experimental seasons was detected.

Statistical analysis

The obtained data were statistically analyzed using the analysis of variance method according to Snedecor and Cochran (1980). Meanwhile, differences between means of treatments were compared using Duncan’s multiple range tested at probability of 0.05 levels as reported by (Duncan, 1955) during the three seasons of study.

Results and Discussion

Eight papaya genotypes were collected and used for the present experiment. The morphological parameters of the tested genotypes are elaborated in (Table1). The results of the present study revealed variations among papaya genotypes (Papaya Carica L.) in their morphological and the traits which can be used widely in evaluating the separate genotypes of papaya, this results agree with Morshidi, (1996) who stated that the wild population having greater diversity than domesticated populations which includes the following aspects:

Papaya genotypes	Breeding Method	Sex form	Special characteristics	Fruit shape and size
Papaya G1	Selection	Dioecious	Small fruit size	Small Oval
Papaya G2	Selection	Dioecious	Big fruit size	Large Oval
Papaya G3	Selection	Dioecious	Small fruit size	Oval by a bit neck
Papaya G4	Selection	Dioecious	Greenish striped fruit when reached ripening.	Spherical to neck
Papaya G5	Selection	Dioecious	Almost dwarf, orange flesh color, fruit High Papin Enzyme, High sugar flesh	Large Oval
Papaya G6	Selection	Dioecious	Late repining fruits.	Large Oval
Papaya G7	Selection	Dioecious	Very sensitive fruit to handling and decayed	Slight Elongated Oval
Papaya G8	Selection	Dioecious	High sugar flesh, starching smooth yellow skin	Oval to Round

1- Vegetative measurements of papaya genotype:

Plant height (cm)

Results represented in Table (2) illustrated the plant height (cm) of the studied genotypes, the highest significantly values (295 to 306 cm) were obtained from papaya G4, and G8, followed by papaya G5 and G3 (268 to 282 cm) and (270 to 280 cm) in three seasons of study. On the contrary, the lowest significant values (230 to 244 cm) were resulted from the papaya G1. The other genotypes gave intermediate results among genotypes, in three seasons respectively.

Stem girth (cm)

The results in Table (2) indicated that, papaya G4 gave the thicker stem (19.50, 20.25 and 20.60 cm) followed by papaya G8 (19.15, 19.90 and 20.40 cm) without significant differences in three
seasons. In the contrary, G2 and G1 gave lower values (10.50, 10.80 and 10.65 cm) and (11.5, 11.75 and 11.90 cm) during the three seasons. The rest of papaya genotypes were intermediate between the highest and lowest limited during all three seasons of the experiment under study. These results are matched with Morton, (1987). Stem diameters of adult plants were varied from 10 to 30 cm at the base to 5–10 cm at the crown. The lower internodes are compact and wider and seem to mechanically support the entire weight of the plant.

Average No. leaves/plant

Concerning the average number of leaves/plant, results in Table (2) cleared that, the maximum average number of leaves/plant came from papaya genotypes which gave the highest significant values, papaya G8 (30.00, 32.00 and 33.00 leaves/plant) followed by papaya G5 (31.00, 31.00 and 32.00 leaves/plant) in the three seasons. On reverse from that, average No. of leaves/plant was obtained by G4 (29.00) in the first season 2017 and (31.00 and 32.00 leaves/plant) in 2018 and 2019 seasons respectively, followed by the papaya G3 (27.00, 29.00 and 30.00 leaves/plant) during the three seasons of the study. On the other hand, papaya G7 recorded 21.00, 21.00 and 23.00 leaves/plant in the three seasons, respectively. The other genotypes gave intermediate results.

Table 2: Some vegetative growth properties of papaya genotypes used for the trial in the three seasons (2017, 2018 and 2019).

Papaya genotypes	Plant height (cm)	Stem girth (cm)	Average No. leaves/plant						
	2017	2018	2019	2017	2018	2019			
Papaya G1	230.0E	235.0D	244.0G	11.50E	11.75E	11.90E	23.00F	24.00E	27.00F
Papaya G2	240.0D	250.0C	257.0E	10.50F	10.80F	10.65F	22.00G	25.00D	28.00E
Papaya G3	270.0B	275.0B	280.0D	12.75D	12.95D	12.80D	27.00D	29.00C	30.00D
Papaya G4	295.0A	300.0A	306.0A	19.50AB	20.25A	20.60A	29.00C	31.00B	32.00B
Papaya G5	268.0C	275.0B	282C	14.35C	14.70C	14.95C	31.00A	31.00B	32.00B
Papaya G6	242.0D	250.0C	256.0F	16.50B	16.70B	16.90B	24.00E	24.00E	25.00G
Papaya G7	250.0E	275.0B	282C	19.15A	19.90AB	20.40AB	30.00B	32.00A	33.00A
Papaya G8	295.0A	300.0A	303.0B	19.15A	19.90AB	20.40AB	30.00B	32.00A	33.00A

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Leaf length and diameter (cm)

Results presented in Table (3) indicated that, the maximum values of leaf length and diameter (cm) were obtained from papaya G4 (58.35, 60.00 and 63.00 cm) and (53.20, 55.50 and 56.00 cm), followed by papaya G6 (55.00, 58.00 and 60.00cm) and (49.00, 50 and 52.80 cm), respectively where it was individual the second rank during the three seasons (2017, 2018 and 2019), respectively for the two parameters in this respect.

Table 3: Some vegetative growth properties of papaya genotypes used for the trial in the three seasons (2017, 2018 and 2019).

Papaya genotypes	Leaf length (cm)	Leaf diameter (cm)				
	2017	2018	2019	2017	2018	2019
Papaya G1	44.75F	46.00G	49.2E	34.30G	35.00G	36.60G
Papaya G2	50.30E	52.00E	55.00D	40.00D	42.20D	43.50D
Papaya G3	42.65G	45.00H	46.70F	37.00F	38.50F	40.35F
Papaya G4	53.45C	56.00C	58.00C	44.00C	45.10C	47.40C
Papaya G5	45.30F	47.00F	47.00F	24.25H	25.50H	28.40H
Papaya G6	52.00D	53.00D	55.1D	38.10E	40.60E	43.00E
Papaya G7	55.00B	58.00B	60.00B	49.00B	50.00B	52.8B

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.
However, papaya G3 and G6 gave the lowest leaf length and diameter (42.65, 45.00 and 46.7 cm) and (24.25, 25.50 and 28.40 cm) in the three seasons of study. The other genotypes gave intermediate results between the genotypes.

These results are in line with Ocampo et al., (2006) and Aikpokpodion, (2012), who indicated that papaya shows a wide variation in many traits including fruits, plant stature and leaf characteristics since some of which are exploited in the development of commercial papaya cultivars.

Flowering properties (days from planting to first flower, fruiting and harvest)

Results illustrated in Table (4) showed that days from planting to the 1st flowering required between 93 to 112 days since the longest time for flowering (112 days) was recorded with papaya G7. While the shortest one (93 days) was obtained with papaya G4. The others tested genotypes were intermediate in this concern. Also days from planting to the first harvesting took the same trend of the two previous parameters in this study.

These results are in harmony with those of Ronse Decraene and Smets (1999), Fisher, (1980) and Sritakae et al., (2011) on papaya where the female papaya flowers have five free petals and a rounded superior ovary that is five carpels, hollow and exhibits parietal placentation.

Papaya genotypes	Days from planting to first flowering	Days from planting to first fruiting	Days from planting to first harvest
Papaya G1	101	134	235
Papaya G2	105	139	244
Papaya G3	107	142	249
Papaya G4	93	123	215
Papaya G5	99	135	234
Papaya G6	107	142	249
Papaya G7	112	142	254
Papaya G8	94	124	218

Fruiting and yield

Fruits number/tree

Results presented in Table (5) showed that, the maximum values of fruits number/tree (51.00, 54.00 and 56 fruits/tree) were obtained with the papaya G4 in the first, second and third seasons of the study, followed by papaya G8 (51.00, 52.00 and 54 fruits/tree) with significant differences during the three studied seasons. On the contrary, papaya G6 gave the lowest significant values in this regard (18, 19 and 20 fruits/tree) during the three tested seasons, respectively.

Fruit weight (kg)

Results presented in Table (5) cleared that the comparison and evaluating of the eight papaya selected trees in the first, second and the third seasons of the study revealed that papaya G8 carried the highest fruit weight (1.79, 1.80 and 1.83 kg/tree), followed by G4 with average fruit weight of 1.75, 1.77 and 1.79 kg/tree, respectively. Meanwhile, the lowest average fruit weight was obtained by the trees of papaya G3 (1.00, 1.02 and 1.06) during the first, second and the third season, respectively.

The result of the papaya genotypes yield is shown in Table (5), there were significant differences between all genotypes in the three seasons of the study. The highest yield of papaya trees in 2017, 2018 and 2019 were associated with G8 and G4 (91.29, 95.58 and 100.2 kg/ tree) during 2017 and 2018 and 2019 seasons, respectively. Whereas, genotype number G3 recorded 22.90, 25.50 and 25.44 kg/tree and genotype number G6 gave 27.00, 28.43 and 30.02 kg, as the lowest yield/tree during the three seasons, respectively. The other papaya genotypes gave results in between.

These results are in agreement with those found by Yadava et al., (1990), Imungi and Wabule 1990; Abd El-Kareem (1996), OECD, 2005; Chan and Paull 2008; Nakasone and Paull, 1998; Das, 2013; Yogiraj et al., 2014; Ayele et al., (2017) who revealed that the fruit weight was varied substantially and ranged from 0.2 to 12 kg depending on the environment and variety.
Table 5: Fruits number/tree, fruit weight (g) and yield of some papaya genotypes evaluated during three seasons (2017, 2018 and 2019).

Papaya genotypes	2017	2018	2019	2017	2018	2019	2017	2018	2019
Papaya G1	33.00C	34.00E	36.00D	1.25DE	1.23EF	1.22D	41.25D	41.81D	43.94D
Papaya G2	33.00C	35.00D	36.00D	1.24DE	1.20F	1.25D	40.96D	42.00D	45.03D
Papaya G3	23.00E	25.00G	24.00F	1.00F	1.02G	1.06E	22.97G	25.50G	25.44G
Papaya G4	51.00A	54.00A	56.00A	1.75A	1.77A	1.79AB	89.25B	95.58A	100.2A
Papaya G5	38.00B	40.00C	41.00C	1.20E	1.33D	1.25D	45.60C	53.20C	51.25C
Papaya G6	18.00F	19.00H	20.00G	1.50C	1.49C	1.50C	27.00F	28.34F	30.02F
Papaya G7	25.00D	26.00F	28.00E	1.27D	1.25E	1.27D	31.78E	32.50E	35.56E
Papaya G8	51.00A	52.00B	54.00B	1.79A	1.80A	1.83A	91.29A	93.60B	98.82B

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Physical Characteristics

Fruit length and diameter (cm) and fruit shape index (fruit length/fruit diameter)

Results presented in Table (6) showed the comparison between fruit length of the eight selected papaya genotypes and revealed that, the fruits of papaya G8 and G4 had the longest fruit (23.07, 24.50 and 25.25) and (2.32, 23.40 and 23.90 cm), respectively. While papaya G1 had the shortest fruit (18.35, 18.83 and 19.25 cm), respectively.

Concerning the fruit diameter for the eight selected papaya genotypes, it was found that papaya G4 had the highest significant values of fruit diameter (14.90, 15.20 and 15.60 cm), followed by papaya G8 (14.90, 14.78 and 14.93 cm) during the three tested season of study. On the contrary, papaya G7 and (6) had the lowest fruit width (12.33, 12.65 and 12.91 cm) and (12.71, 12.89 and 13.35 cm) respectively.

Results concerning fruit shape index (fruit length/fruit diameter) Table (6) showed that, the papaya G4 were the highest significant values (1.663, 1.733 and 1.716 cm) followed by papaya G8 and G7. On reverse, the papaya G3 gave the lowest significant values of fruit shape index (1.309, 1.299 and 1.301 cm) in this respect during the three seasons of the study. The other papaya genotypes gave intermediate results between the genotypes.

Table 6: Fruit length; diameter (cm) and fruit shape index (cm) of some papaya genotypes evaluated during three seasons (2017, 2018 and 2019).

Papaya genotypes	2017	2018	2019	2017	2018	2019	2017	2018	2019
Papaya G1	18.35F	18.83F	19.25E	12.63F	12.93E	13.61D	1.453D	1.456F	1.529D
Papaya G2	20.38C	20.33D	20.81C	12.88DE	13.21D	13.55D	1.582BC	1.539E	1.536D
Papaya G3	19.50E	19.75E	20.29D	14.90A	15.20A	15.60A	1.309E	1.299G	1.301F
Papaya G4	22.32B	23.40B	23.90B	13.42C	13.50C	13.93C	1.663A	1.733A	1.716A
Papaya G5	20.40C	20.32D	20.83C	13.00D	13.13D	13.54D	1.569C	1.548E	1.538D
Papaya G6	20.21CD	20.46D	20.81C	12.71EF	12.89E	13.35E	1.590BC	1.587D	1.442E
Papaya G7	20.13D	20.75C	20.76C	12.33G	12.65F	12.91F	1.633AB	1.640C	1.608C
Papaya G8	23.07A	24.50A	25.25A	14.49B	14.78B	14.93B	1.592BC	1.658B	1.691B

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Fresh and dry weights of papaya genotypes seeds

Results presented in Table (7) declared that the heaviest fresh and dry seeds were obtained from papaya G8 (135.3, 145.1 and 140.7 g) and (15.17, 15.25 and 15.52 g), while the second rank was papaya G6 (116.6, 123.2 and 119.6g) and (13.00, 13.97 and 13.71 g) during the three seasons, respectively. Meanwhile, papaya G3 gave the lowest fresh and dry weights of papaya seeds (81.71,
89.95 and 86.31g) and (11.68, 12.62 and 12.83g) during the three studied seasons respectively (2017, 2018 and 2019). The other papaya genotypes gave results in between papaya genotypes.

These results are in agreement with those found by Nakasone et al., (1973), Shah and Shanmugavelu (1975a), Pal et al., (1980), Yadava et al., (1990) and Abd El-Kareem (1996) who concluded that there were significant differences in physical traits among cultivars. In addition, environmental effects on relatively less physical characteristics values were also proved by early findings of Kuhne and Allan (1970), Aziz et al., (1976), Chan (1979), Allan et al., (1987) and Fioravanço et al., (1994).

Table 7: Fresh and dry weights of seeds (g) in some papaya genotypes evaluated during three seasons (2017, 2018 and 2019).

Papaya genotypes	Fresh seed weight (g.)	Dry seed weight (g.)				
	2017	2018	2019	2017	2018	2019
Papaya G1	108.1E	109.3E	109.1G	12.54CD	12.71EF	12.88D
Papaya G2	105.4F	109.1E	110.7F	13.15B	13.56C	13.65B
Papaya G3	81.71H	89.95G	86.31H	11.68E	12.62F	12.83D
Papaya G4	116.6B	123.2B	119.6B	13.00B	13.97B	13.71B
Papaya G5	111.2C	118.6C	117.7C	12.67C	13.55C	13.61B
Papaya G6	89.73G	91.64F	111.1E	12.42CD	12.96D	13.15C
Papaya G7	109.5D	115.6D	113.0D	12.33D	12.85DE	13.22C
Papaya G8	135.3A	145.1A	140.7A	15.17A	15.25A	15.52A

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Fruit chemical characteristic and papain enzyme:

Fruit SSC (%)

From Table (8) it can be noticed that SSC (%) in the studied papaya fruits genotypes ranged from 14.13 % in first season (2017) in papaya G8 and 15.37 % and 15.18 in the second and third seasons of papaya G4 respectively. The other papaya genotypes results were in between.

Table 8: Fruit SSC (%), ascorbic acid (vitamin C) mg/100 juice and papain enzyme of some papaya genotypes evaluated during three seasons (2017, 2018 and 2019).

Papaya genotypes	SSC (%)	VC mg/100g	Papain enzyme						
	2017	2018	2019	2017	2018	2019	2017	2018	2019
Papaya G1	12.68CD	13.52C	13.65CD	15.25D	15.25D	15.48E	68.18G	70.92H	72.69G
Papaya G2	12.78CD	13.26C	13.77C	13.81F	15.87C	16.53C	76.50F	79.25F	81.03E
Papaya G3	13.03C	13.41C	13.49D	10.17H	10.27G	10.45H	86.25C	89.25C	79.21F
Papaya G4	13.36B	15.18A	15.37A	16.08C	15.40D	15.97D	108.7A	110.3A	90.90B
Papaya G5	12.21EF	12.33D	12.56E	16.72B	16.90B	19.08B	76.92F	78.50G	80.86E
Papaya G6	12.48DE	12.23D	12.71E	14.43E	14.43E	14.66F	81.92E	85.25E	86.73D
Papaya G7	12.06F	12.51D	12.80E	13.34G	13.34F	13.57G	82.75D	86.67D	87.86C
Papaya G8	14.13A	14.29B	14.48B	19.32A	19.41A	19.55A	88.75B	91.75B	93.40A

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Vitamin (C mg/100 ml Juice)

Results in Table (8) showed that V.C in the fruits of papaya genotypes under this study recorded the highest significant values (19.32, 19.41 and 19.55 mg/100 ml) for papaya G8 in 2017, 2018 and 2019 seasons, respectively. On the contrary, the lowest values (10.17, 10.27 and 10.45 mg/100 ml) was recorded with papaya G3. The other genotypes results were in between.
Papain Enzyme

Results in Table (8) showed that papain enzyme was the highest in fruits of papaya G4 (108.7, 111.3 and 90.90) as compared with the other tested papaya genotypes. While the standard of papain enzyme was in lowest values (68.18, 70.92 and 72.69) in fruits of papaya G1 this is clear in the tested three seasons respectively, the other studied papaya genotypes were intermediate in this concern.

Total, reducing and non-reducing sugars (%)

The results presented in Table (8) showed that, the highest statistical values of total sugar (%) were in papaya G4 (18.13, 18.21, 18.30 %) followed by papaya G8 (16.37, 16.75 and 17.30 %) during the three seasons of the study, respectively. On reverse, the lowest values (12.89, 12.65 and 12.23 %) were observed with papaya G5 in both three seasons. The other genotypes gave intermediate results between papaya genotypes. Concerning the reducing and non-reducing sugars, the highest significant values were obtained from papaya G2 (13.24, 12.99, 13.93 %) and (7.87, 7.76 and 7.72 %), during the three seasons, respectively. The lowest value of reducing sugars and non-reducing sugars (%) was associated with papaya G5 (12.89, 12.65 and 12.23%) and (1.80, 1.85 and 1.33 %) in the three seasons of the study, respectively. The other papaya genotype results came in between during the three seasons.

These results are in agreement with those found by Nakasone et al., (1973), Shah and Shanmugavelu (1975b), Madrigal et al., (1980), Pal et al., (1980) and Abd El-Kareem (1996) where significant differences were found among cultivars. In addition, environmental effects on relatively less chemical constituent values were also shown by early findings of Kuhne and Allan (1970), Aziz et al., (1976) and Fioravanço et al., (1994).

In conclusion, due to the different genetic constitution there are remaining some morphological differences among the papaya genotypes. The shape and size of fruit will vary with sex forms i.e. female that will be round and ovular fruits are found in hermaphrodite plant. The present search provides the guidelines for the selection of parents based on agronomic traits with special reference to qualitative features for papaya improvement program.

Table 9: Total sugars, reducing-sugars and non-reducing sugars (%) of some papaya genotypes evaluated during three seasons (2017, 2018 and 2019).

Papaya genotypes	Total sugars (%)	Reducing sugars %	Non-reducing sugars (%)						
	2017	2018	2019	2017	2018	2019	2017	2018	2019
Papaya G1	13.88D	14.10F	14.15E	11.13C	10.95D	11.05D	2.75E	3.15E	3.10E
Papaya G2	15.56C	15.52D	15.63D	13.24A	12.99A	13.93A	2.32F	2.53F	1.70H
Papaya G3	15.71C	16.30C	16.52C	10.43E	9.98H	10.17H	5.28B	6.32B	6.35B
Papaya G4	18.13A	18.21A	18.30A	10.26F	10.45G	10.58G	7.87A	7.76A	7.72A
Papaya G5	12.89F	12.65H	12.23G	11.09C	10.80E	10.90E	1.80H	1.85H	1.33G
Papaya G6	14.02D	14.35E	14.21E	10.69B	10.63F	10.73F	3.33D	3.72D	3.48D
Papaya G7	13.20E	13.25G	13.71F	11.19C	11.26C	11.49C	2.01G	1.99G	2.22F
Papaya G8	16.37B	16.75B	17.30B	12.69B	12.88B	13.09B	3.68C	3.87C	4.21C

Means within a column having the same letters are not significantly different according to Duncan's Multiple Range Test (DMRT) at 5% level.

Numerical evaluation:
Total score for yield and fruit quality (100 Unit)

Results regarding the general evaluation of different papaya genotypes, Table (10) showed that papaya G8 and G4 seemed to be the superior’s genotypes in yield and fruit quality as they attained the uppermost score units (98.22 & 96.61 unit) as compared with of the other papaya genotypes in average tested seasons. Whereas, the papaya G4 and G8 were the superior in all the traits of the evaluation, since the papaya G4 took the highest units in four measurements (yield, fruit number/tree, SSC and total sugars), while the papaya G8 took the highest units in five measurements (fruit weight, fruit length, fruit diameter, seed weight and vitamin C) in the three evaluation seasons.
The tested genotypes could be arranged in descending order based on total score (70) for fruit quality as follows: G8 (68.36), G4 (66.61 unit), G2 (55.66 unit), G5 (55.07 unit), G1 (53.94 unit), G6 (51.60 unit), G7 (50.87 unit) and G3 (50.19 unit) in average tested seasons. In harmony with the present results those obtained by Hamed (2012) and Ibrahim et al., (2014) date palm cultivars.

Table 11: General score evaluation of the eight evaluated papaya genotypes average three seasons (2017, 2018 and 2019) under Qalyubia governorate conditions.

Characteristics	Units specified	Tree (G.1)	Tree (G.2)	Tree (G.3)	Tree (G.4)	Tree (G.5)	Tree (G.6)	Tree (G.7)	Tree (G.8)
Yield	30	13.37	13.47	7.78	30.00	15.79	8.98	10.51	29.86
Fruit weight	10	6.83	6.81	5.68	9.80	6.97	8.28	6.99	10.00
Fruit number/plant	10	6.40	6.46	4.47	10.00	7.39	3.54	4.91	9.75
Fruit length	5	3.87	4.22	4.09	4.78	4.23	4.22	4.22	5.00
Fruit diameter	5	4.43	4.48	4.17	4.62	4.49	4.41	4.29	5.00
Seed weight	5	3.88	3.86	3.06	4.27	4.13	3.47	4.01	5.00
SSC	10	9.08	9.07	9.09	10.00	8.45	8.52	8.51	9.77
Vitamin C	10	7.89	7.93	5.30	8.14	9.04	7.47	6.91	10.00
Total sugar	15	11.57	12.82	13.32	15.00	10.37	11.69	11.02	13.84
Total scour fruit quality	70	53.94	55.66	50.19	66.61	55.07	51.60	50.87	68.36
Total unit yield/palm	100	67.30	69.13	57.97	96.61	70.86	86.25	61.38	98.22

Economic study

Economic evaluation of the eight papaya genotypes grown in Qalyubia Governorate as average during three experimental seasons was shown in (Table 11). It is cleared that net income for the eight papaya genotypes can be arranged discerningly as follows: G1, G2, G3, G4, G5, G6, G7 and G8. The minimum value of net income was for G3 (41.700 LE) and G6 (49.700 LE) while the maximum value for G4 (189.500 LE) and G8 (188.600 LE).

Table 11: Economic evaluation of eight papaya genotypes under Qalyubia governorate conditions.

Papaya genotypes	Average fruit yield (kg/tree)	Average fruit yield (ton)/fed.	Price / kg	Total income	Operation cost of management	Net income
Papaya G1	42.33	8.89	10.00	88.900	10.000	78.900
Papaya G2	42.66	8.96	10.00	89.600	10.000	79.600
Papaya G3	24.64	5.17	10.00	51.700	10.000	41.700
Papaya G4	95.01	19.95	10.00	199.500	10.000	189.500
Papaya G5	50.02	10.50	10.00	105.000	10.000	95.000
Papaya G6	28.45	5.97	10.00	59.700	10.000	49.700
Papaya G7	33.28	6.99	10.00	69.900	10.000	59.900
Papaya G8	94.57	19.86	10.00	198.600	10.000	188.600

References

Abd El-Kareem, H.A., 1996. Morphological and physiological studies on flowering and fruiting of papaya. M.Sc. Thesis, Dept. Hort., Fac. Agric., Cairo Univ., Egypt, 86.

Aikpokpodion P.O., 2012. Assessment of genetic diversity in horticultural and morphological traits among papaya (Carica papaya) accessions in Nigeria. Fruits, 67(3):173-187.

Allan, P. J., McClory and D. Biggas, 1987. Environmental effects on clonal female and male Carica papaya L. plants. Scientia Hort., 32(3/4): 221-232. [C.F. Hort. Abst. 57(12): 10054].

A.O.A.C., 1995. Association of Official analytical Chemists “Official Methods of Analysis” 15th ed., Washington D.C., USA.
Ayele, L., E. Etissa, A. Dagnew, W. Assefa, G. Kebede, M. Girma, K. Firde and M. Ayalew, 2017. Development of hermaphrodite papaya (*Carica papaya* L.) varieties for production in Ethiopia. Academic Research Journal of Agricultural Science and Research, 5 (7):561-569.

Aziz, A.B.A, S.M. El-Nabawy and H.A. Zaki, 1976. Seasonal changes in the physical and chemical properties of papaya fruits. Egyptian J. of Hort., 3 (1): 89-98.

Badillo, V.M., 1993. Caricaceae. Segundo seguenda esqueme. Rev. Fac. Agron. Univ. Cent. Venezuela, Alcance 43, Maracay, Venezuela.

Chan, Y.K and R.E. Paull, 2008. Papaya *Carica papaya* L., Caricaceae. In Janick J, Paull RE (Eds.) Encyclopedia of fruit and nuts. Wallingford, United Kingdom, CAB, pp. 237-247.

Chay-Prove, P., P. Ross, P. O'Hare, N. Macleod, I. Kernot, D. Evans, K. Grice, L. Vawdrey, N. Richards, A. Blair, and D. Astridge, 2000. Agrilink series: your growing guide to better farming. papaw information Kit. Queensland Horticulture Institute and Department of Primary Industries, Qld, Nambour, Qld.

Das, S.C., 2013. Studies on papaya cultivation and evaluation of different varieties and hybrids in Tripura. The Asian Journal of Horticulture 8(2):470-474.

Dubois, M, K.A. Cilles, J.K. Hamilton, P.A. Rober, and F. Smith, 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem., 28: 350-356.

Duncan, D. B., 1955. Multiple range and multiple F. Tests. Biometrics,11:1-41.

El-Moussaoui, A, M. Nijs, C. Paul, R. Wintjens, J. Vincentelli, M. Azarkan, and Y. Lootje, 2001. Revisiting the enzymes stored in the laticifers of *Carica papaya* in the context of their possible participation in the plant defence mechanism. Cell and Molecular Life Sciences, 58: 556-570.

Fisher, J.B., 1980. The vegetative and reproductive structure of papaya (*Carica papaya*). Lyonia 1:191–208

Fioravanco, J.C, M.C. Paiva, R.L.N. Carvalho and I. Manica, 1994. Characteristics of the pawpaw cultivar Formosa marketed in Porto Alegre from October 1991 to June 1992. Ciencia Rual 24 (3): 519-522. [C.F. Hort. Abst. 67(3): 2526]

FAOSTAT, 2018. Data for agriculture: Statistic database (August, 2018). http://www.FAO.org/faostat/en/#data.

Galila, A.S., 1995. Culture and production some of Tropical fruits in Egypt. Ministry of Agriculture Horticulture Institute. ARC, Giza, Cairo, Egypt.

Hamed, A.M., 2012. Evaluation of some Arabian date palm cultivars produced through tissue culture grown under Giza condition. Egypt. J. of Appl. Sci., 27 (4): 144-161.

Ibrahim, S.G., A. M. Hamed and N.H. El-Gawad, 2014. Comparative study on production of some Arabian and local date palm cultivars grown in the desert region at Giza governorate. Egypt. J. Agric. Res., 92(4): 1359-1375.

Imungi, J.K and M.N. Wabule, 1990. Some chemical characteristics and availability of vitamin A and vitamin C from Kenyan varieties of papayas (*Carica papaya* L.). Ecology of Food and Nutrition, 24 (2):115-120.

Kuhne, F.A. and Allan, 1970. Seasonal variations in fruit growth of *Carica papaya* L. Agroplantae, 2 (3): 99-104. [C.F. Hort. Abst. 42 (2): 5071]

Madrigal, S.L., N.A. Ortiz, R.D. Cooke, and H.R. Fernandez, 1980. The dependence of crude papain yields on different collection (‘tapping’) procedures for papaya latex. J Sci. Food Agric 31(3): 279–285.

Ming R., S. Hou, Y. Feng, Q. Yu, A. Dionne-Laporte and J.H. Saw, 2008. The draft genome of the transgenic tropical fruit tree papaya (*Carica papaya* Linnaeus). Nature, 452: 991-996.

Morshidi, M., 1996. Genetic variability in Carica papaya and related species. Ph. D. Dissertation, Univ. of Hawaii at Manoa.

Morton, J., 1987. Papaya. In: Fruits of warm climates. Julia F. Morton, Miami, 336–346.

Nakasone, H.Y. and R.E. Paull, 1998. Tropical Fruits, CAB International, Oxon UK. New York, USA. Chapter 20- papaya: 239-269.

Nakasone, H.Y, T.A. Crozier and D.K. Ikehara., 1973. Evaluation of “Waimanalo” a new papaya strains. Technical Bulletin, Hawaii Agricultural Experiment Station, Hawaii University No. 97, 12 pp.
Nitsawang S., R. Hatti-Kaul and P. Kanasawuda, 2006. Purification of papain from *Carica papaya* latex: Aqueous two-phase extraction versus two-step salt precipitation. Enzyme and Microbial Technology; 39: 1103-1107.

Ocampo, J.P., G.C. D’Eeckenbrugge, S.D.E. Bruyère, L.L. Bellaire, and P. Ollitrault, 2006. Organization of morphological and genetic diversity of Caribbean and Venezuelan papaya germplasm. Fruits 61:25-37.

Organisation for Economic Co-operation and Development, OECD, 2005. Draft of consensus document on the biology *Carica papaya* (L.) (Papaya). Report No. 5 February OECD, France. Padovan. Retrieved from (http://www.oecd.org/ehs/).

Pal, D.K, M.D. Subramanyam; N.G. Divar; C.P.A. Iyer and Y.V. Selvaraj., 1980. Studies on the physico-chemical composition of fruits of twelve papaya varieties. Journal of Food Science and Technology, India, 17 (6): 254-256.

Ronse Decraene, L.P and E.F. Smets, 1999. The floral development and anatomy of *Carica papaya* (Caricaceae). Can. J. Bot., 77 (4):582–598

Shah, H.A. and K.G. Shanmugavelu. 1975a. Studies on the first generation hybrids in papaya (*Carica papaya* L.) Morphological, floral and fruit characters. South Indian Hort., 23 (3/4): 100-108. [C.F. Hort. Abst. 47 (6): 6071].

Shah, H.A. and K.G. Shanmugavelu, 1975b. Studies on the first generation hybrids in papaya (*Carica papaya* L.). II - Chemical constituents of the fruit. South Indian Hort. 23 (3/4): 109-113. [C.F. Hort. Abst. 47 (6): 6072].

Sharon, D., J. Hillel, A. Vainstein, and U. Lavi, 1992. Application of DNA Finger prints for identification and genetic analysis of *Carica papaya* and other Carica species. Euphytica, 62: 119-126.

Snedecor, G.W. and W.G. Cochran, 1980: “Statistical Methods”. 7th ed., Iowa State Univ. Press Amer. Iowa, USA, 85-86.

Sritakae, A., P. Praseartkul, W. Cheunban, P. Miphokasap, A. Eiumnoh, P. Burns, N. Phironrit, B. Phuangrat, P. Kitsubun, and A. Meechai, 2011. Mapping airborne pollen of papaya (*Carica papaya* L.) and its distribution related to land use using GIS and remote sensing. Aerobiologia, 27(4):291–300.

Tawfik, A.A., 2005. Production and propagation of papaya in Africa with special reference to Egypt. First II. Sym. On papaya, getting Highlands, Malaysia

Tawfik, A.A., 2007. Papaya culture and production in Egypt. Monshate El-Maaref, Alexandria (in Arabic).

Villegas, V.N., 1997. *Carica papaya* L. In: EWM Verheij, RE Coronel, eds. Plant Resources of South-East Asia 2: Edible Fruits and Nuts. PROSEA Foundation, Bogor, Indonesia.

Yadava, U.L, J.A. Burris and D. McCrary, 1990. Papaya: a potential annual crop under middle Georgia conditions. Timber Press, 3 pp. [C.F. Hort. Abst. 61 (10): 9597].

Yogiraj, V., P.K. Goyal, C.S. Chauhan, A. Goyal, and B. Vyas, 2014. *Carica papaya* Linn: an overview. International Journal of Herbal Medicine, 2(5):1-8.