Racial disparity in curative treatment and survival from solid-organ cancers

S. K. Kamarajah 1,2,3,*, P. Sylla 4 and S. R. Markar 5,6

1Department of Surgery, Queen Elizabeth Hospital Birmingham, University Hospital Birmingham NHS Trust, Birmingham, UK
2Northern Oesophagogastric Unit, Royal Victoria Infirmary, Newcastle University Trust Hospitals, Newcastle upon Tyne, UK
3Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
4Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
5Department of Surgery and Cancer, Imperial College London, London, UK
6Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden

*Correspondence to: Department of Surgery, 10th floor QEJM building, St Mary’s Hospital, Imperial College London, South Wharf Road, London W2 1NY, UK (e-mail: s.markar@imperial.ac.uk)

Introduction

Disparities in cancer care provision often lead to wide heterogeneity in oncological outcomes, which can affect patient outcomes negatively in more vulnerable populations. However, recognizing and understanding factors that influence disparities in cancer care is a necessary first step before intervening to eliminate these disparities. The impact of disparity on receipt of curative cancer treatment and long-term oncological effects remains relatively unknown. Previous small studies have focused on the role of race on survival in single-solid organ malignancy, and failed to explore these associations with outcomes in a broader context. Furthermore, previous studies grouped all ethnic minorities together, and therefore lack granularity to identify disparities by individual ethnic minorities (black, Hispanic, Asian, other). As race is often closely associated with other risk factors for unequal access to specialized cancer treatment, such as socioeconomic status, education level, and insurance status, any investigation must be performed using data sets that allow accurate adjustment for these factors in the analysis. Therefore, it is imperative to understand the pattern of treatment allocation by race with appropriate confounding factor adjustments.

Using the National Cancer Database (NCDB) from the USA, this study aimed to characterize the impact of race on allocation of curative surgery and neoadjuvant therapy, and long-term survival in patients with non-metastatic cancer across eight common cancers including those of the oesophagus, stomach, liver, pancreas, colon, rectum, breast, and lung.

Methods

The NCDB, a joint project of the Commission on Cancer of the American College of Surgeons and the American Cancer Society, was used to identify patients diagnosed with a non-metastatic solid-organ cancer (oesophageal, gastric, liver, pancreatic, colonic, rectal, and lung) according to the ICD-O-3 codes from 2004 to 2016. Exclusion criteria were: metastatic cancer at diagnosis, other concurrent cancer diagnoses, and palliative treatment. Details of data collected and statistical analysis are available in Appendix S1.

Results

This study included 3 718 367 patients with non-metastatic oesophageal (102 033), gastric (95 533), liver (149 715), pancreatic (173 296), colonic (805 204), rectal (114 649), breast (1 314 521), and lung (963 416) tumours. Black race was associated with a greater prevalence of medical co-morbidities, lower survival in patients with non-metastatic cancer across eight common cancers including those of the oesophagus, stomach, liver, pancreas, colon, rectum, breast, and lung.
Table 1 Impact of race on receipt to curative cancer surgery and neoadjuvant therapy in non-metastatic cancers

Race	No. of patients	Odds ratio (95% CI)	No. of patients	Odds ratio (95% CI)	No. of patients	Odds ratio (95% CI)	Odds ratio (95% CI)
	Oesophageal	Stomach	Pancreas	Stomach	Colon	Stomach	Rectum
White	37,936 (43.8)	1.00 (reference)	39,631 (60.4)	1.00 (reference)	16,030 (26.6)	1.00 (reference)	28,230 (23.8)
Black	17,962 (18.6)	0.29 (0.28, 0.31)	18,196 (61.5)	1.05 (1.01, 1.09)	16,030 (23.8)	1.00 (reference)	13,870 (20.4)
Hispanic	11,200 (33.0)	0.63 (0.59, 0.68)	15,535 (64.8)	1.21 (1.15, 1.27)	11,172 (14.2)	0.72 (0.66, 0.79)	11,972 (14.2)
Asian	5,320 (30.7)	0.57 (0.51, 0.63)	45,282 (72.6)	1.73 (1.63, 1.83)	31,163 (37.0)	0.73 (0.64, 0.82)	67,508 (10.8)
Other	7,550 (41.6)	0.92 (0.83, 1.01)	12,862 (60.5)	1.01 (0.92, 1.10)	33,180 (18.2)	0.73 (0.65, 0.82)	31,150 (7.5)

Values in parentheses are 95 per cent confidence intervals. Binary logistic regression models were adjusted for race, centre volume quintile, facility type, facility location, age at diagnosis, sex, Charlson–Deey co-morbidity score, insurance status, education level, median income, residence, AJCC clinical T category, and AJCC clinical N category.

The median income, advanced tumour stage (T3 or T4) (Fig. S1a), and node-positive disease (Fig. S1b) across seven of eight cancers studied (Tables S1–S8).

Receipt of curative surgery

Receipt of curative surgery varied from 11.6 to 94.5 per cent for white patients compared with 8.3–93.0 per cent for black race across these cancers (Table 1). Adjusted analyses, black race was independently associated with significantly lower rates of receipt of surgery compared with white patients for seven of eight cancers studied: oesophageal (odds ratio (OR) 0.29, 95 per cent c.i. 0.28 to 0.31), liver (OR 0.76, 0.74 to 0.79), pancreatic (OR 0.72, 0.70 to 0.75), colonic (OR 0.76, 0.74 to 0.78), rectal (OR 0.67, 0.63 to 0.70), breast (OR 0.55, 0.54 to 0.56), and lung (OR 0.71, 0.70 to 0.72). Similar results were seen for Asian and Hispanic race (Table 1). Physician recommendation was the most common reason for patients not having surgery across all cancers (Table S9).

Receipt of neoadjuvant therapy

Receipt of neoadjuvant therapy varied from 2.6 to 37.2 per cent for white patients compared with 2.5–34.8 per cent for black race across these cancers (Table 1). In adjusted analyses, black race was independently associated with significantly lower rates of receipt of neoadjuvant therapy than in white patients for six of eight cancers studied (Table 1).

Long-term survival

Median follow-up for the entire cohort was 25 (i.q.r. 19–36) months. Median survival for patients of black race was significantly shorter than that for white patients across oesophageal (22 versus 19 months), gastric (19 versus 20 months), liver (13 versus 14 months), pancreatic (10 versus 11 months), rectal (80 versus
93 months), and lung (20 versus 21 months) cancers (Fig. S2). Adjusted Cox regression analyses showed that black race was associated with significantly reduced survival for oesophageal (hazard ratio (HR) 1.14, 95 per cent c.i. 1.11 to 1.17), liver (HR 1.06, 1.04 to 1.08), pancreatic (HR 1.04, 1.02 to 1.06), colonic (HR 1.12, 1.11 to 1.13), rectal (1.17, 1.13 to 1.20), breast (HR 1.25, 1.23 to 1.26), and lung (HR 1.02, 1.01 to 1.03) cancers (Fig. S2). However, Asian or Hispanic race was often associated with significantly lower mortality rates than white race across all non-metastatic solid organ cancers (Fig. 1).

Stratified analyses by time cohorts

Stratified analyses were performed by time cohorts (2004–2007, 2008–2011, 2012–2016), which demonstrated consistent results.
for receipt of surgery (Table S10), receipt of neoadjuvant therapy (Table S11), and reflect long-term survival than chemotherapy (Table S12).

Discussion

This population-based cohort study of almost 4 million patients with non-metastatic cancer identified race as an important determinant of receipt of curative surgical resection and neoadjuvant therapy, and as a prognostic factor for long-term survival. Black race was associated with advanced T and N category at presentation, and was independently associated with lower rates of receipt of curative surgery, neoadjuvant therapy, and worse survival.

More advanced clinical presentation in ethnic minorities may be secondary to several factors. First, poor attendance at screening programmes for specific cancers, and distrust in the healthcare system may result in lower rates of early cancer diagnosis. However, discerning which factor is ultimately responsible and driving an interventional change is challenging. Second, a complex interaction between socioeconomic status and access to cancer care may influence delay in presentation of ethnic minorities. This may be exacerbated further by COVID. Large initiatives are being rolled out to address these issues.

Previous descriptive, single-region studies have demonstrated lower rates of surgery and poor long-term survival in black race across different cancers. There may be several explanations for the lower rates of curative surgery and survival in the present study. First, this could be due to refusal to undergo surgical intervention, misunderstanding of treatment guidelines on the part of the treating physician, or contraindications to surgery among black race. Second, previous studies have shown that rates of surgery vary according to socioeconomic status, and it is hypothesized that this is due to communication and financial barriers. Previous reports demonstrated that the likelihood of undergoing surgery increased when travelling more than 5 miles, which may be explained by travel associated with seeking tertiary-care centres. This could adversely affect patients of low socioeconomic status who may be unable to travel for care. Finally, studies of hospital-level variation in surgical practice have demonstrated that regional referral to high-volume centres may have a positive effect on outcomes.

Race is an important prognostic factor affecting receipt of surgical intervention and cancer survival in the USA. The findings of this study highlight the importance of implementing changes aimed at narrowing the disparities in outcomes between race in patients with cancer. Additional prospective analyses are warranted to further investigate the role of race in treatment decision-making and survival, and to identify specific hospital-level factors that affect disease management.

Disclosure. The authors declare no conflict of interest.

Supplementary material

Supplementary material is available at BJS online.

References

1. Warner ET, Tamimi RM, Hughes ME, Ottesen RA, Wong YN, Edge SB, et al. Racial and ethnic differences in breast cancer survival: mediating effect of tumor characteristics and sociodemographic and treatment factors. *J Clin Oncol* 2015;33:2254–2261.

2. Silber JH, Rosenbaum PR, Ross RN, Niknam BA, Ludwig JM, Wang W, et al. Racial disparities in colon cancer survival: a matched cohort study. *Ann Intern Med* 2014;161:845–854.

3. Ward E, Halpern M, Schrag N, Cokkinides V, DeSantis C, Bandi P, et al. Association of insurance with cancer care utilization and outcomes. *CA Cancer J Clin* 2008;58:3–31.

4. Halpern MT, Ward EM, Pavluck AL, Schrag NM, Bian J, Chen AY. Association of insurance status and ethnicity with cancer stage at diagnosis for 12 cancer sites: a retrospective analysis. *Lancet Oncol* 2008;9:222–231.

5. Bilimoria KY, Bentrem DJ, Ko CY, et al. Validation of the 6th edition AJCC pancreatic cancer staging system: report from the National cancer database. *Cancer* 2007;110:738–744.

6. Merkow RP, Rademaker AW, Bilimoria KY. Practical guide to surgical data sets: national cancer database (NCDB). *JAMA Surg* 2018;153:850–851.

7. Krok-Schoen JL, Fisher JL, Baltic RD, Paskett ED. White–black differences in cancer incidence, stage at diagnosis, and survival among adults aged 85 years and older in the United States. *Cancer Epidemiol Biomarkers Prev* 2016;25:1517–1523.

8. Zhang C, Zhang C, Wang Q, Li Z, Lin J, Wang H. Differences in stage of cancer at diagnosis, treatment, and survival by race and ethnicity among leading cancer types. *JAMA Netw Open* 2020;3:e202950.

9. Lannin DR, Mathews HF, Mitchell J, Swanson MS, Swanson FH, Edwards MS. Influence of socioeconomic and cultural factors on racial differences in late-stage presentation of breast cancer. *JAMA* 1998;279:1801–1807.

10. Tsao MW, Delozier OM, Stiles ZE, Magnotti LJ, Behrman SW, Denewe JL, et al. The impact of race and socioeconomic status on the presentation, management and outcomes for gastric cancer patients: analysis from a metropolitan area in the southeast United States. *J Surg Oncol* 2020;121:494–502.

11. Revels SL, Morris AM, Reddy RM, Akateh C, Wong SL. Racial disparities in esophageal cancer outcomes. *Ann Surg Oncol* 2013;20:1136–1141.

12. Taioli E, Wolf AS, Camacho-Rivera M, Kaufman A, Lee DS, Bhora F, et al. Racial disparities in esophageal cancer survival after surgery. *J Surg Oncol* 2016;113:659–664.

13. Paulson EC, Ra J, Armstrong K, Wirtalla C, Spitz F, Kelz RR. Underuse of esophagectomy as treatment for resectable esophageal cancer. *Arch Surg* 2008;143:1198–1203.

14. Revels SL, Banerjee M, Yin H, Sonnenday CJ, Birkmeyer JD. Racial disparities in surgical resection and survival among elderly patients with poor prognosis cancer. *J Am Coll Surg* 2013;216:312–319.

15. Sloane D, Chen H, Howell C. Racial disparity in primary hepatocellular carcinoma: tumor stage at presentation, surgical treatment, and survival. *J Natl Med Assoc* 1996;88:1934–1939.

16. Greenstein AJ, Little VR, Swanson SJ, Divino CM, Packer S, McGinn TG, et al. Racial disparities in esophageal cancer treatment and outcomes. *Ann Surg Oncol* 2008;15:881–888.

17. Lineback CM, Mervak CM, Revels SL, Kemp MT, Reddy RM. Barriers to accessing optimal esophageal cancer care for socioeconomically disadvantaged patients. *Ann Thorac Surg* 2017;103:416–421.

18. Speicher PJ, Englum BR, Ganapathi AM, Wang X, Hartwig MG, D’Amico TA, et al. Traveling to a high-volume center is associated with improved survival for patients with esophageal cancer. *Ann Surg* 2017;265:743–749.
19. Bach PB, Cramer LD, Schrag D, Downey RJ, Gelfand SE, Begg CB. The influence of hospital volume on survival after resection for lung cancer. *N Engl J Med* 2001;345:181–188.

20. Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I, et al. Hospital volume and surgical mortality in the United States. *N Engl J Med* 2002;346:1128–1137.

21. Birkmeyer JD, Stukel TA, Siewers AE, Goodney PP, Wennberg DE, Lucas FL. Surgeon volume and operative mortality in the United States. *N Engl J Med* 2003;349:2117–2127.

22. Birkmeyer JD, Siewers AE, Marth NJ, Goodman DC. Regionalization of high-risk surgery and implications for patient travel times. *JAMA* 2003;290:2703–2708.

Snapshots Quiz

Question: A middle-aged man presents with a long history of rectal bleeding and intermittent constipation. What is shown in this intraoperative image?

![Intraoperative Image]

Answer: A rectosigmoid junction intussusception caused by a malignant sigmoid tumour. Pathological examination reported a pT2 N0 sigmoid adenocarcinoma.

Disclosure. The authors declare no conflict of interest.

S. M. Núñez, I. R. Solís, L. N. Morales, A. S. Arteaga, F. P. Ciuró and J. P. Ruiz

General and Digestive Surgery Department, Virgen del Rocío University Hospital, Seville, Spain (e-mail: saramnunez.nov@gmail.com)

Advance Access Publication Date: 9 August 2021

Received: April 18, 2021. **Accepted:** April 27, 2021

© The Author(s) 2021. Published by Oxford University Press on behalf of BJS Society Ltd. All rights reserved. For permissions, please email: journals.permissions@oup.com