Fredholm Alternative for Periodic-Dirichlet Problems for Linear Hyperbolic Systems

Irina Kmit Lutz Recke
Institute for Applied Problems of Mechanics and Mathematics,
Ukrainian Academy of Sciences
Naukova St. 3b, 79060 Lviv, Ukraine
E-mail: kmit@informatik.hu-berlin.de

Institute of Mathematics, Humboldt University of Berlin,
Rudower Chaussee 25, 12489 Berlin, Germany
E-mail: recke@mathematik.hu-berlin.de

Abstract

This paper concerns hyperbolic systems of two linear first-order PDEs in one space dimension with periodicity conditions in time and reflection boundary conditions in space. The coefficients of the PDEs are supposed to be time independent, but allowed to be discontinuous with respect to the space variable. We construct two scales of Banach spaces (for the solutions and for the right hand sides of the equations, respectively) such that the problem can be modeled by means of Fredholm operators of index zero between corresponding spaces of the two scales.

1 Introduction

1.1 Problem and main results

This paper concerns linear inhomogeneous hyperbolic systems of first order PDEs in one space dimension of the type

\[
\begin{align*}
\partial_t u + \partial_x u + a(x)u + b(x)v &= f(x,t) \\
\partial_t v - \partial_x v + c(x)u + d(x)v &= g(x,t)
\end{align*}
\]
\[0 \leq x \leq 1, \ t \in \mathbb{R} \quad (1.1)\]
with time-periodicity conditions
\[
\begin{align*}
 u(x, t + \frac{2\pi}{\omega}) &= u(x, t) \quad 0 \leq x \leq 1, \ t \in \mathbb{R} \\
v(x, t + \frac{2\pi}{\omega}) &= v(x, t)
\end{align*}
\] (1.2)

and reflection boundary conditions
\[
\begin{align*}
u(0, t) &= r_0 v(0, t) \\
v(1, t) &= r_1 v(1, t) \quad t \in \mathbb{R}.
\end{align*}
\] (1.3)

Together with the periodic-Dirichlet problem (1.1)–(1.3) we consider its homogeneous adjoint variant
\[
\begin{align*}
-\partial_t u - \partial_x u + a(x)u + c(x)v &= 0 \quad 0 \leq x \leq 1, \ t \in \mathbb{R}, \\
-\partial_t v + \partial_x v + b(x)u + d(x)v &= 0
\end{align*}
\] (1.4)

\[
\begin{align*}
u(x, t + \frac{2\pi}{\omega}) &= u(x, t) \\
v(x, t + \frac{2\pi}{\omega}) &= v(x, t)
\end{align*}
\] (1.5)

\[
\begin{align*}
v(0, t) &= r_0 u(0, t) \\
u(1, t) &= r_1 v(1, t) \quad t \in \mathbb{R}.
\end{align*}
\] (1.6)

Here \(\omega > 0 \) and \(r_0, r_1 \in \mathbb{R} \) are fixed numbers, \(a, b, c, d : [0, 1] \to \mathbb{R} \) are fixed coefficient functions, and the right-hand sides \(f, g : [0, 1] \times \mathbb{R} \to \mathbb{R} \) are supposed to be \(\frac{2\pi}{\omega} \)-periodic with respect to \(t \).

Roughly speaking, we will prove the following: Suppose
\[
|r_0 r_1| \neq \frac{1}{2} \int (a(x) + d(x)) \, dx. \quad (1.7)
\]

Then there exists a solution to (1.1)–(1.3) if and only if the pair \((f, g) \) of the right hand sides is orthogonal in \(L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega} \right); \mathbb{R}^2 \right) \) to any solution to (1.4)–(1.6). Moreover, the dimension of the space of all solutions to (1.1)–(1.3) with \(f = g = 0 \) is finite and is equal to the dimension of the space of all solutions to (1.4)–(1.6).

More exactly, we construct two scales \(V^\gamma(r_0, r_1) \) and \(W^\gamma \) (with scale parameter \(\gamma \geq 1 \)) of Banach spaces such that \(V^\gamma(r_0, r_1) \hookrightarrow W^\gamma \hookrightarrow C(\mathbb{R}; L^2((0, 1); \mathbb{R}^2)) \), that the elements of \(W^\gamma \) satisfy (1.2), that the elements of \(V^\gamma(r_0, r_1) \) satisfy (1.2) and (1.3) and such that the left hand side of (1.1) is a Fredholm operator of index zero from \(V^\gamma(r_0, r_1) \) into \(W^\gamma \).

The main tools of the proofs are separation of variables (cf. (3.2)–(3.3)), integral representation of the solutions of the corresponding boundary value problems of the ODE systems (cf. (3.6)) and an abstract criterion for Fredholmness which seems to be new (cf. Lemma 11).
In order to formulate our results exactly, let us introduce function spaces: For \(l = 0, 1, 2, \ldots \) and \(\gamma \geq 0 \) we denote by \(H^{l,\gamma} \) the vector space of all measurable functions \(u : [0, 1] \times \mathbb{R} \to \mathbb{R} \) such that \(u(x, t) = u(x, t + \frac{2\pi}{\omega}) \) for almost all \((x, t) \in [0, 1] \times \mathbb{R}\) and that

\[
\|u\|^2_{H^{l,\gamma}} := \sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \sum_{m=0}^l \left| \int_0^1 \partial_x^m u(x, t)e^{-ik\omega t} \, dt \right|^2 \, dx < \infty. \tag{1.8}
\]

It is well-known (see, e.g., [2], [10, Chapter 5.10], and [12, Chapter 2.4]) that \(H^{l,\gamma} \) is a Banach space. In fact, it is the space of all locally quadratically Bochner integrable maps \(u : \mathbb{R} \to H^l(0, 1) \), which are \(\frac{2\pi}{\omega} \)-periodic and such that all generalized derivatives up to the (possibly noninteger) order \(\gamma \) are locally quadratically integrable maps from \(\mathbb{R} \) into \(H^l(0, 1) \), too. Further, we denote

\[
\begin{align*}
W^{\gamma} &:= H^{0,\gamma} \times H^{0,\gamma}, \\
V^{\gamma} &:= \{(u, v) \in W^{\gamma} : (\partial_t u + \partial_x u, \partial_t v - \partial_x v) \in W^{\gamma}\}.
\end{align*}
\]

The function spaces \(W^{\gamma} \) and \(V^{\gamma} \) will be endowed with the norms

\[
\|(u, v)\|^2_{W^{\gamma}} := \|u\|^2_{H^{0,\gamma}} + \|v\|^2_{H^{0,\gamma}}
\]

and

\[
\|(u, v)\|^2_{V^{\gamma}} := \|(u, v)\|^2_{W^{\gamma}} + \|(\partial_t u + \partial_x u, \partial_t v - \partial_x v)\|^2_{W^{\gamma}}.
\]

It is easy to prove (see Lemma 7) that \(V^{\gamma} \) is a Banach space. Moreover, if \(\gamma \geq 1 \), then for any \((u, v) \in V^{\gamma}\) and any \(x \in [0, 1] \) there exist continuous trace maps \((u, v) \in V^{\gamma} \mapsto (u(x, \cdot), v(x, \cdot)) \in (L^2_{loc}(\mathbb{R}))^2\) (see Remark 9). Hence, for \(\gamma \geq 1 \) it makes sense to consider the following closed subspaces in \(V^{\gamma}\):

\[
\begin{align*}
V^{\gamma}(r_0, r_1) &:= \{(u, v) \in V^{\gamma} : (1.3) \text{ is fulfilled for a.a. } t \in \mathbb{R}\}, \\
\tilde{V}^{\gamma}(r_0, r_1) &:= \{(u, v) \in V^{\gamma} : (1.6) \text{ is fulfilled for a.a. } t \in \mathbb{R}\}.
\end{align*}
\]

Finally, let us introduce linear operators: For \(a, b, c, d \in L^\infty(0, 1) \) we define \(A \in \mathcal{L}(V^{\gamma}(r_0, r_1); W^{\gamma}) \), \(\tilde{A} \in \mathcal{L}(\tilde{V}^{\gamma}(r_0, r_1); W^{\gamma}) \), and \(B, \tilde{B} \in \mathcal{L}(W^{\gamma}) \) by

\[
\begin{align*}
A \begin{bmatrix} u \\ v \end{bmatrix} &:= \begin{bmatrix} \partial_t u + \partial_x u + au \\ \partial_t v - \partial_x v + dv \end{bmatrix}, \quad B \begin{bmatrix} u \\ v \end{bmatrix} := \begin{bmatrix} bv \\ cv \end{bmatrix}, \\
\tilde{A} \begin{bmatrix} u \\ v \end{bmatrix} &:= \begin{bmatrix} -\partial_t u - \partial_x u + au \\ - \partial_t v + \partial_x v + dv \end{bmatrix}, \quad \tilde{B} \begin{bmatrix} u \\ v \end{bmatrix} := \begin{bmatrix} cu \\ bu \end{bmatrix}.
\end{align*}
\]

Now we formulate our main result:
Theorem 1 Let $\gamma \geq 1$, $a, d \in L^\infty(0,1)$, $b, c \in BV(0,1)$, and suppose (1.7). Then we have:

(i) The operator A is an isomorphism from $V^\gamma(r_0,r_1)$ onto W^γ.
(ii) The operator $A + B$ is Fredholm of index zero from $V^\gamma(r_0,r_1)$ into W^γ.
(iii) The image of $A + B$ is the set of all $(f, g) \in W^\gamma$ such that

$$\frac{2\pi}{\omega} \int_0^1 \int_0^1 (f(x,t)u(x,t) + g(x,t)v(x,t)) \, dx \, dt = 0 \text{ for all } (u, v) \in \ker(\tilde{A} + \tilde{B}).$$

In Theorem 1 and in what follows we denote, as usual, by $BV(0,1)$ the Banach space of all functions $h : (0, 1) \to \mathbb{R}$ with bounded variation, i.e. of all $h \in L^\infty(0,1)$ such that there exists $C > 0$ with

$$\left| \int_0^1 h(x)\varphi'(x)dx \right| \leq C\|\varphi\|_{L^\infty(0,1)} \text{ for all } \varphi \in C^\infty_0(0,1). \tag{1.9}$$

The present paper has been motivated mainly by two reasons:

The first reason are recent investigations of so-called traveling wave models, which are successfully used for modeling of dynamical behavior of semiconductor lasers (see, e.g., [1, 5, 6, 7, 8, 11]). In those models, systems of the type (1.1) appear to describe the forward and backward traveling light waves in the longitudinal laser direction. If one deals with multisection lasers consisting of several sections with different electrical and optical properties, then the coefficient functions $a, b, c,$ and d are discontinuous (piecewise constant). Note that in the laser models the coefficient functions and the reflection coefficients r_0 and r_1 as well as the unknown functions u and v are complex valued, and the linear wave system is coupled (via the coefficient functions) to a nonlinear balance equation for the carrier distribution in the active zone of the laser. Hence, from the point of view of applications to laser dynamics, our problem (1.1)–(1.3) is only a case study. In a forthcoming paper we will use our present results for applications to laser models.

The second reason is that the Fredholm property of the linearization is a key for many local investigation techniques for nonlinear equations, such as smooth continuation via implicit function theorem or local bifurcation via Liapunov-Schmidt procedure. In particular, those techniques are well established for periodic solutions to nonlinear ODEs (see, e.g., [3]) and nonlinear parabolic PDEs (see, e.g., [4]). But almost nothing is known about the question if those techniques work for nonlinear dissipative hyperbolic PDEs.
1.2 Some Remarks

In this subsection we will comment about several aspects of Theorem 1.

Remark 2 about maximal regularity The main concern of this paper is not to prove existence of solutions to (1.1)–(1.3) for reasonable right hand sides \((f, g)\). The main concern is to find pairs of maximal regularity for (1.1)–(1.3), i.e. Banach spaces \(V\) and \(W\) (in our case \(V = V^\gamma_0(r_0, r_1)\) and \(W = W^\gamma\)) such that, on the one hand, for all \((u, v)\in V\) (1.2) and (1.3) are satisfied and the left hand side of (1.1) belongs to \(W^\gamma\) and, on the other hand, for all \((f, g)\in W^\gamma\) the solutions to (1.1)–(1.3) belong to \(V^\gamma_0(r_0, r_1)\).

Remark 3 about the choice of the spaces Our strategy of construction of pairs of maximal regularity for (1.1)–(1.3) is as follows: First take a scale of spaces for the right hand sides, in our case \(W^\gamma = H^{0,\gamma} \times H^{0,\gamma}\). Then take the maximal domain of definition of the differential operator \((\partial_t + \partial_x, \partial_t - \partial_x)\) in \(W^\gamma\), i.e. the space of all \((u, v)\in W^\gamma\) such that \((\partial_t u + \partial_x u, \partial_t v - \partial_x v)\in W^\gamma\). Remark that this space is larger than the space of all \((u, v)\in W^\gamma\) such that \(\partial_t u, \partial_x u, \partial_t v, \partial_x v \in H^{0,\gamma}\). In other words: The time derivatives and the space derivatives of \((u, v)\in V^\gamma\) can have singularities, such that \(\partial_t u, \partial_x u, \partial_t v, \partial_x v \notin H^{0,\gamma}\), but these singularities cancel each other in \(\partial_t u + \partial_x u\) and \(\partial_t v - \partial_x v\). In particular, it seems not to be a good idea to try to work with the time derivative operator and the space derivative operator separately.

And finally, take the scale parameter \(\gamma\) large enough such that the elements of the maximal domain of definition of the differential operator \((\partial_t + \partial_x, \partial_t - \partial_x)\) have traces in \(x = 0, 1\).

Remark 4 about noncompactness of the embedding \(V^\gamma_0(r_0, r_1) \hookrightarrow W^\gamma\)

At first glance it seems to be natural to prove assertion (ii) of Theorem 1 by using assertion (i) of Theorem 1 and by proving that \(V^\gamma_0(r_0, r_1)\) is compactly embedded into \(W^\gamma\). But this approach fails because \(V^\gamma_0(r_0, r_1)\) is not compactly embedded into \(W^\gamma\)! Let us verify this, for the sake of simplicity, for the case \(r_0 = r_1 = 0\): Take the sequence \((u_l, v_l)\in V^\gamma(0, 0), l = 1, 2, \ldots,\)

\[
 u_l(x, t) := (1 + l^2)^{-\frac{1}{2}} e^{i\omega(t-x)} x, \quad v_l(x, t) := (1 + l^2)^{-\frac{1}{2}} e^{i\omega(t+x)} (x - 1).
\]

Then

\[
 (\partial_t + \partial_x) u_l(x, t) = (1 + l^2)^{-\frac{1}{2}} e^{i\omega(t-x)}, \quad (\partial_t - \partial_x) v_l(x, t) = (1 + l^2)^{-\frac{1}{2}} e^{i\omega(t+x)}.
\]

Hence, \((u_l, v_l)\) is a bounded sequence in \(W^\gamma\), but the sequence \((u_l, v_l)\) does not contain a subsequence which converges in \(V^\gamma(0, 0)\).
Remark 5 about noncompactness of A^{-1} and compactness of $(A^{-1})^2$

Remark 4 shows that the operator A^{-1} is not compact from W^γ into W^γ. But in Section 4 we will show that $(A^{-1})^2$ is compact from W^γ into W^γ. Using that and a corresponding abstract criterion for Fredholmness (Lemma 11), we will prove assertion (ii) of Theorem 1.

2 Some properties of the function spaces

In this section we formulate and prove some properties of the function spaces $H^{l,\gamma}$, W^γ, and V^γ, introduced in Section 1.

It is well known that for each $u \in H^{l,\gamma}$ we have

$$u(x, t) = \sum_{k \in \mathbb{Z}} u_k(x)e^{ik\omega t} \text{ with } u_k(x) = \frac{\omega}{2\pi} \int_0^{2\pi} u(x, t)e^{-ik\omega t} dt,$$

(2.1)

where the Fourier coefficients u_k belong to the classical Sobolev space $H^l((0, 1); \mathbb{C})$, and the series in (2.1) converges in the complexification of $H^{l,\gamma}$. And vice versa: For any sequence $(u_k)_{k \in \mathbb{Z}}$ with

$$u_k \in H^l((0, 1); \mathbb{C}), \quad \sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \|u_k\|^2_{H^l((0, 1); \mathbb{C})} < \infty \quad (2.2)$$

there exists exactly one $u \in H^{l,\gamma}$ with (2.1). In what follows, we will identify functions $u \in H^{l,\gamma}$ and sequences $(u_k)_{k \in \mathbb{Z}}$ with (2.2) by means of (2.1), and we will keep for corresponding functions and sequences the notations u and $(u_k)_{k \in \mathbb{Z}}$, respectively.

Lemma 6 A set $M \subset H^{0,\gamma}$ is precompact in $H^{0,\gamma}$ if and only if the following two conditions are satisfied:

(i) Uniform boundedness: There exists $C > 0$ such that for all $u \in M$ it holds

$$\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \int_0^1 |u_k(x)|^2 dx \leq C.$$

(ii) Uniform continuity with respect to shifts: For all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\xi, \tau \in (-\delta, \delta)$ and all $u \in M$ it holds

$$\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \int_0^1 \left| u_k(x + \xi)e^{ik\omega \tau} - u_k(x) \right|^2 dx < \varepsilon,$$

where $u_k(x + \xi) := 0$ for $x + \xi \notin [0, 1]$.

Proof. Let us use the canonical isomorphism J from $H^{0, \gamma}$ onto $H^{0, 0} = L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega} \right) \right)$, which is defined by

$$(Ju)(x, t) := \sum_{k \in \mathbb{Z}} (1 + k^2)^{\gamma/2} u_k(x) e^{i k \omega t}.$$

We have to show that $J(M)$ is precompact in $L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega} \right) \right)$, i.e. that $J(M)$ is bounded in $L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega} \right) \right)$, and that for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $\xi, \tau \in (-\delta, \delta)$ and all $u \in J(M)$ it holds

$$\int_0^{\frac{2\pi}{\omega}} \int_0^1 \left| u(x + \xi, t + \tau) - u(x, t) \right|^2 dx \, dt < \varepsilon,$$

(2.3)

where $u(x + \xi, t + \tau) := 0$ for $x + \xi \not\in [0, 1]$. Boundedness in $L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega} \right) \right)$ is just condition (i) of the lemma.

Now we show that (2.3) is just condition (ii) of the lemma. This follows from

$$\begin{align*}
\int_0^{\frac{2\pi}{\omega}} \int_0^1 \left| (Ju)(x + \xi, t + \tau) - (Ju)(x, t) \right|^2 dx \, dt \\
= \int_0^{\frac{2\pi}{\omega}} \int_0^1 \left| \sum_{k \in \mathbb{Z}} (1 + k^2)^{\gamma/2} \left(u_k(x + \xi) e^{i k \omega (t+\tau)} - u_k(x) e^{i k \omega t} \right) \right|^2 dx \, dt \\
= \frac{2\pi}{\omega} \int_0^1 \left| \sum_{k \in \mathbb{Z}} (1 + k^2) \left| u_k(x + \xi) e^{i k \omega \tau} - u_k(x) \right|^2 dx.
\end{align*}$$

\[\square \]

Lemma 7 The space V^γ is complete.

Proof. Let $(u^j, v^j)_{j \in \mathbb{N}}$ be a fundamental sequence in V^γ. Then $(u^j, v^j)_{j \in \mathbb{N}}$ and $(\partial_t u^j + \partial_x u^j, \partial_t v^j - \partial_x v^j)_{j \in \mathbb{N}}$ are fundamental sequences in W^γ. Because W^γ is complete, there exist $(u, v) \in W^\gamma$ and $(\tilde{u}, \tilde{v}) \in W^\gamma$ such that

$$(u^j, v^j) \to (u, v) \text{ and } \left(\partial_t u^j + \partial_x u^j, \partial_t v^j - \partial_x v^j \right) \to (\tilde{u}, \tilde{v})$$
in W^γ as $j \to \infty$. It remains to show that $\partial_t u + \partial_x u = \tilde{u}$ and $\partial_t v - \partial_x v = \tilde{v}$ in the sense of generalized derivatives. But this is obvious: Take a smooth function $\varphi : (0, 1) \times \left(0, \frac{2\pi}{\omega}\right) \to \mathbb{R}$ with compact support. Then

\[
\int_0^1 \int_0^{2\pi} u(\partial_t + \partial_x) \varphi \, dt \, dx = \lim_{j \to \infty} \left(\int_0^1 \int_0^{2\pi} u_j(\partial_t + \partial_x) \varphi \, dt \, dx \right)
\]

and similarly for v and \tilde{v}. \hfill \Box

Lemma 8 If $\gamma \geq 1$, then V^γ is continuously embedded into $(H^{1, \gamma-1})^2$.

Proof. Take $(u, v) \in V^\gamma$. Then $(u, v) \in (H^{0, \gamma})^2$, hence $(\partial_t u, \partial_v v) \in (H^{0, \gamma-1})^2$. By the definition of the space V^γ, $(\partial_x u, \partial_x v) \in (H^{0, \gamma-1})^2$. Hence $(u, v) \in (H^{1, \gamma-1})^2$. Moreover, we have

\[
\|(u, v)\|_{(H^{1, \gamma-1})^2}^2 = \|u\|_{H^{0, \gamma-1}}^2 + \|v\|_{H^{0, \gamma-1}}^2 + \|\partial_x u\|_{H^{0, \gamma-1}}^2 + \|\partial_x v\|_{H^{0, \gamma-1}}^2
\leq \|u\|_{H^{0, \gamma-1}}^2 + \|v\|_{H^{0, \gamma-1}}^2 + \|\partial_t u + \partial_x u\|_{H^{0, \gamma-1}}^2 + \|\partial_t v - \partial_x v\|_{H^{0, \gamma-1}}^2
+ \|\partial_t u\|_{H^{0, \gamma-1}}^2 + \|\partial_t v\|_{H^{0, \gamma-1}}^2
\leq C\|(u, v)\|_{V^\gamma}^2,
\]

where the constant C does not depend on (u, v). \hfill \Box

Remark 9 Suppose $\gamma \geq 1$. By Lemma 8, we have

\[
V^\gamma \hookrightarrow (H^{1, 0})^2 \approx \left(H^1 \left((0, 1); L^2 \left(0, \frac{2\pi}{\omega} \right) \right) \right)^2 \hookrightarrow \left(C \left([0, 1]; L^2 \left(0, \frac{2\pi}{\omega} \right) \right) \right)^2.
\]

Therefore, for any $x \in [0, 1]$ there exists a continuous trace map

\[
(u, v) \in V^\gamma \mapsto \left(u(x, \cdot), v(x, \cdot) \right) \in \left(L^2 \left(0, \frac{2\pi}{\omega} \right) \right)^2.
\]

Now, let us consider the dual spaces $(H^{0, \gamma})^*$.

Obviously, for any $\gamma \geq 0$ the spaces $H^{0, \gamma}$ are densely and continuously embedded into the Hilbert space $H^{0, 0} = L^2 \left((0, 1) \times \left(0, \frac{2\pi}{\omega}\right) \right)$. Hence, there is a canonical dense continuous embedding

\[
H^{0, 0} \hookrightarrow (H^{0, \gamma})^* \quad \text{for all } u \in H^{0, 0} \text{ and } v \in H^{0, \gamma}. \quad (2.4)
\]
Here $[\cdot, \cdot]_{H^{0,\gamma}} : (H^{0,\gamma})^* \times H^{0,\gamma} \to \mathbb{R}$ is the dual pairing, and $\langle \cdot, \cdot \rangle_{H^{0,0}} : H^{0,0} \times H^{0,0} \to \mathbb{R}$ is the scalar product in $H^{0,0}$, i.e.

$$\langle u, v \rangle_{H^{0,0}} := \frac{\omega}{2\pi} \int_0^1 \int_0^1 u(x, t)v(x, t) \, dx \, dt = \sum_{k \in \mathbb{Z}} \int_0^1 u_k(x) \overline{v_k(x)} \, dx.$$ \hspace{1cm} (2.5)

Let us denote

$$e_k(t) := e^{ik\omega t} \text{ for } k \in \mathbb{Z} \text{ and } t \in \mathbb{R}. \hspace{1cm} (2.6)$$

If a sequence $(\varphi_k)_{k \in \mathbb{Z}}$ with $\varphi_k \in L^2((0, 1); \mathbb{C})$ is given, then the pointwise products $\varphi_k e_k$ belong to $L^2 \left((0, 1) \times (0, \frac{2\pi}{\omega}) ; \mathbb{C} \right)$. Hence, they belong to the complexification of $(H^{0,\gamma})^*$ (by means of the complexification of (2.4)), and it makes sense to ask if the series

$$\sum_{k \in \mathbb{Z}} \varphi_k e_k \hspace{1cm} (2.7)$$

converges in the complexification of $(H^{0,\gamma})^*$.

Lemma 10 (i) For any $\varphi \in (H^{0,\gamma})^*$ there exists a sequence $(\varphi_k)_{k \in \mathbb{Z}}$ with

$$\varphi_k \in L^2((0, 1); \mathbb{C}), \quad \overline{\varphi_k} = \varphi_{-k}, \quad \sum_{k \in \mathbb{Z}} (1 + k^2)^{\gamma - \gamma} \int_0^1 |\varphi_k(x)|^2 \, dx < \infty, \hspace{1cm} (2.8)$$

such that the series (2.7) converges to φ in the complexification of $(H^{0,\gamma})^*$. Moreover, it holds

$$\int_0^1 \varphi_k(x) u(x) \, dx = [\varphi, u_{-k}]_{H^{0,\gamma}} \text{ for all } u \in L^2(0, 1). \hspace{1cm} (2.9)$$

(ii) For any sequence $(\varphi_k)_{k \in \mathbb{Z}}$ with (2.8) the series (2.7) converges in the complexification of $(H^{0,\gamma})^*$ to some $\varphi \in (H^{0,\gamma})^*$, and (2.9) is satisfied.

Proof. (i) By the Riesz representation theorem, for given $\varphi \in (H^{0,\gamma})^*$ and $k \in \mathbb{Z}$ there exists exactly one $\varphi_k \in L^2((0, 1); \mathbb{C})$ with (2.9). The property $\overline{\varphi_k} = \varphi_{-k}$ follows directly from (2.9).

Now, take $u \in H^{0,\gamma}$ with its representation (2.1), (2.2) (with $l = 0$ there). We have

$$\left| [\varphi, u]_{H^{0,\gamma}} \right| = \left[\varphi, \sum_{k \in \mathbb{Z}} u_k e_k \right]_{H^{0,\gamma}} = \left| \sum_{k \in \mathbb{Z}} \int_0^1 (1 + k^2)^{\gamma - \gamma} \varphi_k(x)(1 + k^2)^{\gamma} u_k(x) \, dx \right|. \hspace{1cm} (2.7)$$
Taking the supremum over all $u \in H^{0,\gamma}$ with $\|u\|_{H^{0,\gamma}}^2 = \sum_{k \in \mathbb{Z}} (1+k^2)^\gamma \int_0^1 |u_k(x)|^2 \, dx = 1$, we get

$$\|\varphi\|^2_{(H^{0,\gamma})^*} = \sum_{k \in \mathbb{Z}} (1+k^2)^{-\gamma} \int_0^1 |\varphi_k(x)|^2 \, dx < \infty.$$

Similarly one shows that the series (2.7) converges in the complexification of $(H^{0,\gamma})^*$: For all $u \in H^{0,\gamma}$ we have

$$\left| \varphi - \sum_{|k| \leq k_0} \varphi ke_k, u \right|_{H^{0,\gamma}} \leq \sum_{|k| > k_0} \left((1+k^2)^{-\gamma} |\varphi_k(x)|^2 \int_0^1 (1+k^2)^{\gamma} u_k(x) \, dx \right)^{\frac{1}{2}} \|u\|_{H^{0,\gamma}} \tag{2.10}$$

and this tends to zero as $k_0 \to \infty$ uniformly for $\|u\|_{H^{0,\gamma}} = 1$.

(ii) As in (2.10) one shows that (2.7) converges in the complexification of $(H^{0,\gamma})^*$ to some $\varphi \in (H^{0,\gamma})^*$. Moreover, (2.9) is satisfied, because for all $u \in L^2(0,1)$ we have

$$[\varphi, u e_k]_{H^{0,\gamma}} = \sum_{l \in \mathbb{Z}} \langle \varphi le_l, u e_k \rangle_{H^{0,0}} = \int_0^1 \varphi_k(x)u(x) \, dx.$$

Here we used (2.4) and (2.5).

3 Proof of the isomorphism property

In what follows, we suppose the assumptions of Theorem 1 to be fulfilled. In this section we prove assertion (i) of Theorem 1.

Fix $(f, g) \in W^{\gamma}$. Then $f(x, t) = \sum_{k \in \mathbb{Z}} f_k(x) e^{ik\omega t}$ and $g(x, t) = \sum_{k \in \mathbb{Z}} g_k(x) e^{ik\omega t}$ with $f_k, g_k \in L^2((0,1); \mathbb{C})$ and

$$\sum_{k \in \mathbb{Z}} (1+k^2)^\gamma \int_0^1 (|f_k(x)|^2 + |g_k(x)|^2) \, dx < \infty. \tag{3.1}$$
We have to show that there exists exactly one \((u, v) \in V^\gamma(r_0, r_1)\) such that \(\partial_t u + \partial_x u + au = f\) and \(\partial_t v - \partial_x v + du = g\). Writing \(u\) and \(v\) as series according to (2.1) and (2.2), we have to show that there exists exactly one pair of sequences \((u_k)_{k \in \mathbb{Z}}\) and \((v_k)_{k \in \mathbb{Z}}\) with \(u_k, v_k \in H^1(0, 1)\) satisfying the boundary value problem

\[
\begin{align*}
 u'_{k} + (a(x) + ik\omega)u_k &= f_k(x), \\
 v'_{k} - (d(x) + ik\omega)v_k &= -g_k(x),
\end{align*}
\]

and the estimates

\[
\sum_{k \in \mathbb{Z}} (1 + k^2) \gamma \int_{0}^{1} (|u_k(x)|^2 + |v_k(x)|^2) \, dx < \infty, \tag{3.4}
\]

\[
\sum_{k \in \mathbb{Z}} (1 + k^2) \gamma \int_{0}^{1} (|u'_k(x) + ik\omega u_k(x)|^2 + |v'_k(x) - ik\omega v_k(x)|^2) \, dx < \infty. \tag{3.5}
\]

Here we used Lemma 8 and Remark 9.

The estimate (3.5) follows from (3.1), (3.2), and (3.4). Hence, it remains to show that there exists exactly one pair of sequences \((u_k)_{k \in \mathbb{Z}}\) and \((v_k)_{k \in \mathbb{Z}}\) with \(u_k, v_k \in H^1((0, 1); \mathbb{C})\) satisfying (3.2), (3.3), and (3.4).

In order to simplify the formulae below, let us introduce the following notation:

\[
\alpha(x) := \int_{0}^{x} a(y) \, dy, \quad \delta(x) := \int_{0}^{x} d(y) \, dy, \quad \Delta_k := e^{ik\omega + \delta(1)} - r_0 r_1 e^{-ik\omega - \alpha(1)}.
\]

A straightforward calculation shows that the boundary value problem (3.2), (3.3) has a unique solution \((u_k, v_k) \in H^1((0, 1); \mathbb{C})\), and this solution is explicitly given by

\[
\begin{align*}
 u_k(x) &= e^{-ik\omega - \alpha(x)} \left(\int_{0}^{x} e^{ik\omega y + \alpha(y)} f_k(y) \, dy + \frac{r_0}{\Delta_k} w_k(f_k, g_k) \right), \\
 v_k(x) &= e^{ik\omega + \delta(x)} \left(\int_{0}^{x} e^{-ik\omega - \delta(y)} g_k(y) \, dy + \frac{1}{\Delta_k} w_k(f_k, g_k) \right),
\end{align*}
\]

with

\[
w_k(f, g) := r_1 e^{-ik\omega - \alpha(1)} \int_{0}^{1} e^{ik\omega y + \alpha(y)} f(y) \, dy - e^{ik\omega + \delta(1)} \int_{0}^{1} e^{-ik\omega y - \delta(y)} g(y) \, dy. \tag{3.7}
\]
Here we used assumption (1.7), which implies
\[|\Delta_k| \geq \left| e^{\delta(1)} - |r_0 r_1| e^{-\alpha(1)} \right| > 0 \text{ for all } k \in \mathbb{Z}. \] (3.8)

From (3.6) and (3.8) it follows that
\[|u_k(x)| + |v_k(x)| \leq C \left(\int_0^1 \left(|f_k(x)|^2 + |g_k(x)|^2 \right) dx \right)^{1/2} \] (3.9)
for all \(x \in [0, 1] \), where the constant \(C \) does not depend on \(k, f_k, g_k, \) and \(x \).

Finally, (3.1) and (3.9) imply (3.4).

4 Proof of Fredholmness

In this section we prove that \(A + B \) is Fredholm, which is a part of assertion (ii) of Theorem 1.

Obviously, \(A + B \) is Fredholm from \(V^\gamma(r_0, r_1) \) into \(W^\gamma \) if and only if \(I + BA^{-1} \) is Fredholm from \(W^\gamma \) into \(W^\gamma \). Here \(I \) is the identity in \(W^\gamma \).

We are going to prove that \(I + BA^{-1} \) is Fredholm from \(W^\gamma \) into \(W^\gamma \) using the following

Lemma 11 Let \(W \) be a Banach space, \(I \) the identity in \(W \), and \(C \in \mathcal{L}(W) \) such that \(C^2 \) is compact. Then \(I + C \) is Fredholm.

Proof. Since \(I - C^2 = (I - C)(I + C) \) and \(C^2 \) is compact, we have
\[\dim \ker(I + C) \leq \dim \ker(I - C^2) < \infty. \] (4.1)

Similarly one gets \(\dim \ker(I + C)^* < \infty \), hence \(\text{codim} \, \overline{\text{im}(I + C)} < \infty \). It remains to show that \(\overline{\text{im}(I + C)} \) is closed.

Take a sequence \((w_j)_{j \in \mathbb{N}} \subset W \) and an element \(w \in W \) such that
\[(I + C)w_j \to w. \] (4.2)

We have to show that \(w \in \overline{\text{im}(I + C)} \).

Because of (4.1) there exists a closed subspace \(V \) of \(W \) such that
\[W = \ker(I + C) \oplus V. \] (4.3)

Using the decomposition \(w_j = u_j + v_j \) with \(u_j \in \ker(I + C) \) and \(v_j \in V \), we get from (4.2)
\[(I + C)v_j \to w. \] (4.4)
First we show that the sequence \((v_j)_{j \in \mathbb{N}}\) is bounded. If not, without loss of generality we can assume that

\[
\lim_{j \to \infty} \|v_j\| = \infty. \tag{4.5}
\]

From (4.4) and (4.5) we get

\[
(I + C) \frac{v_j}{\|v_j\|} \to 0, \tag{4.6}
\]

hence

\[
(I - C^2) \frac{v_j}{\|v_j\|} \to 0. \tag{4.7}
\]

On the other side, because \(C^2\) is compact, there exist \(v \in W\) and a subsequence \((v_{j_k})_{k \in \mathbb{N}}\) such that

\[
C^2 \frac{v_{j_k}}{\|v_{j_k}\|} \to v. \tag{4.8}
\]

Inserting (4.8) into (4.7), we get

\[
\frac{v_{j_k}}{\|v_{j_k}\|} \to v \in V. \tag{4.9}
\]

Combining (4.9) with (4.6), we get \((I + C)v = 0\), i.e.

\[
v \in V \cap \ker(I + C) \text{ and } \|v\| = 1.
\]

But this contradicts to (4.3).

Now we use the boundedness of \((v_j)_{j \in \mathbb{N}}\) to show that that \(w \in \text{im}(I + C)\). As the operator \(C^2\) is compact, there exist \(v \in W\) and a subsequence \((v_{j_k})_{k \in \mathbb{N}}\) such that \(C^2 v_{j_k} \to v\). On the other hand, (4.4) yields \((I - C^2)v_j \to (I - C)w\). Hence (4.4) yields \(\lim_{k \to \infty} v_{j_k} = (I - C)w + v\), and, therefore,

\[
w = \lim_{k \to \infty} (I + C)v_{j_k} = (I + C)((I - C)w + v) \in \text{im}(I + C).
\]

\[\square\]

In order to use Lemma 11 with \(W := W^\gamma\) and \(C := BA^{-1}\), let us show that \((BA^{-1})^2\) is compact from \(W^\gamma\) into \(W^\gamma\).

Take a bounded set \(N \subset W^\gamma\), and let \(M\) be its image under \((BA^{-1})^2\). In order to show that \(M\) is precompact in \(W^\gamma = H^{0,\gamma} \times H^{0,\gamma}\), we use Lemma 6 “componentwise”.

Condition (i) of Lemma 6 is satisfied because \((BA^{-1})^2\) is a bounded operator from \(W^\gamma\) into \(W^\gamma\).
It remains to check condition \((ii)\) of Lemma 6. The explicit representation \((3.6)\) of \(A^{-1}\) yields the following: For given \((f, g) \in N\) we have

\[
\begin{bmatrix}
\tilde{u} \\
\tilde{v}
\end{bmatrix} = (BA^{-1})^2 \begin{bmatrix}
f \\
g
\end{bmatrix} = BA^{-1} \begin{bmatrix}
u \\
u
\end{bmatrix} \quad \text{with} \quad \begin{bmatrix}
u \\
u
\end{bmatrix} = A^{-1} \begin{bmatrix}
f \\
g
\end{bmatrix}
\]

if and only if

\[
\tilde{u}_k(x) = b(x)e^{ik\omega x + \delta(x)} \left(\int_0^x e^{-ik\omega y - \delta(y)} c(y)u_k(y) \, dy + \frac{1}{\Delta_k}w_k(bv_k, cu_k) \right),
\]

\[
\tilde{v}_k(x) = c(x)e^{-ik\omega x - \alpha(x)} \left(\int_0^x e^{ik\omega y + \alpha(y)} b(y)v_k(y) \, dy + \frac{r_0}{\Delta_k}w_k(bv_k, cu_k) \right),
\]

where the functions \(w_k\) are defined by \((3.7)\) and the functions \(u_k, v_k \in H^1(0, 1)\) as the solutions to \((3.2), (3.3)\) are given by the formulas \((3.6)\). Hence

\[
\left| \tilde{u}_k(x + \xi)e^{ik\omega \tau} - \tilde{u}_k(x) \right|
\]

\[
\leq \left| b(x + \xi)e^{i k \omega (x + \tau) + \delta(x + \xi)} \int_x^{x + \xi} e^{-i k \omega y - \delta(y)} c(y)u_k(y) \, dy \right|
\]

\[
+ \left| b(x + \xi)e^{\delta(x + \xi)} \left(e^{2ik\omega(x + \tau)} - 1 \right) \left(\int_0^x e^{-i k \omega y - \delta(y)} c(y)u_k(y) \, dy + \frac{w_k(bv_k, cu_k)}{\Delta_k} \right) \right|
\]

\[
+ \left| (b(x + \xi)e^{\delta(x + \xi)} - b(x)e^{\delta(x)}) \left(\int_0^x e^{-i k \omega y - \delta(y)} c(y)u_k(y) \, dy + \frac{w_k(bv_k, cu_k)}{\Delta_k} \right) \right|.
\]

On the account of \((3.9)\) and the boundedness of \(N\), we get the estimate

\[
\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \left| \int_0^1 b(x + \xi)e^{i k \omega (x + \tau) + \delta(x + \xi)} e^{i k \omega y - \delta(y)} c(y)u_k(y) \, dy \right|^2 \, dx \leq C\xi^2,
\]

where the constant \(C\) does not depend on \(\xi, \tau,\) and \((f, g) \in N\). Similarly one gets (using \((3.7)-(3.9)\))

\[
\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \left| \int_0^1 b(x + \xi)e^{\delta(x + \xi)} - b(x)e^{\delta(x)} \right|^2
\]
\[
\begin{align*}
&\times \left| \int_0^x e^{-ik\omega y-\delta(y)} c(y) u_k(y) \, dy + \frac{w_k(b v_k, c u_k)}{\Delta_k} \right|^2 \, dx \\
\leq C \int_0^1 \left| b(x + \xi) e^{\delta(x+\xi)} - b(x) e^{\delta(x)} \right|^2 \, dx,
\end{align*}
\]
which tends to zero for \(\xi \to 0 \) uniformly with respect to \((f, g) \in N\) (because of the continuity in the mean of the function \(x \mapsto b(x) e^{\delta(x)} \)).

It remains to show that
\[
\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \int_0^1 \left| b(x + \xi) e^{\delta(x+\xi)} \left(e^{ik\omega(\xi+\tau)} - 1 \right) \right|^2
\times \left| \int_0^x e^{-ik\omega y-\delta(y)} c(y) u_k(y) \, dy + \frac{w_k(b v_k, c u_k)}{\Delta_k} \right|^2 \, dx
\]
(4.10)
tends to zero for \(\xi, \tau \to 0 \) uniformly with respect to \((f, g) \in N\). Using (3.2), we have for all \(k \neq 0 \)
\[
\begin{align*}
e^{-ik\omega y} c(y) u_k(y) \\
&= \frac{1}{2ik\omega} c(y) \left(e^{-2ik\omega y} \frac{d}{dy} \left(e^{ik\omega y} u_k(y) \right) - \frac{d}{dy} \left(e^{-ik\omega y} u_k(y) \right) \right) \\
&= \frac{1}{2ik\omega} c(y) \left(e^{-ik\omega y} (f_k(y) - a(y) u_k(y)) - \frac{d}{dy} \left(e^{ik\omega y} u_k(y) \right) \right).
\end{align*}
\]
Moreover, assumption \(c \in BV(0,1) \) yields (cf. (1.9))
\[
\left| \int_0^x e^{-\delta(y)} c(y) \frac{d}{dy} \left(e^{ik\omega y} u_k(y) \right) \, dy \right| \leq C\|u_k\|_{L^\infty(0,1)},
\]
the constant \(C \) being independent of \(x, k, \) and \(u_k \). Using (3.9), it follows
\[
\left| \int_0^x e^{-ik\omega y-\delta(y)} c(y) u_k(y) \, dy \right| \leq \frac{C}{1 + |k|} \left(\|f_k\|_{L^2(0,1)} + \|g_k\|_{L^2(0,1)} \right)
\]
for some \(C > 0 \) not depending on \(x, \xi, \tau, k, f_k, \) and \(g_k \). Similarly we proceed in the integrals in \(w_k(b v_k, c u_k) \) (cf. (3.7)) in order to get
\[
|w_k(b v_k, c u_k)| \leq \frac{C}{1 + |k|} \left(\|f_k\|_{L^2(0,1)} + \|g_k\|_{L^2(0,1)} \right).
\]
Hence, (4.10) can be estimated by
\[C \sum_{k \in \mathbb{Z}} (1 + k^2)^{\gamma - 1} |e^{ik\omega(\xi + \tau)} - 1|^2 \left(\|f_k\|_{L^2(0,1)}^2 + \|g_k\|_{L^2(0,1)}^2 \right) \]
with some \(C > 0 \) not depending on \(x, \xi, \tau, k, f_k, \) and \(g_k \). Using \(|e^{ik\omega(\xi + \tau)} - 1| \leq k\omega(\xi + \tau) \), we see that this tends to zero as \(\xi, \tau \to 0 \) uniformly with respect to \((f, g) \in N \).

Thus, \(M \) is precompact, i.e. \((BA^{-1})^2\) is compact. Hence \(I + BA^{-1} \) is Fredholm, and therefore \(A + B \) is Fredholm.

In order to finish the proof of assertion \((ii)\) of Theorem 1, it remains to show that the index of \(A + B \) is zero. This will be proved in the next section.

5 Fredholmness of index zero

Directly from the definitions of the operators \(A, \tilde{A}, B, \) and \(\tilde{B} \) it follows
\[
\langle (A + B)(u, v), (\tilde{u}, \tilde{v}) \rangle = \langle (u, v), (\tilde{A} + \tilde{B})(\tilde{u}, \tilde{v}) \rangle
\]
for all \((u, v) \in V^\gamma(r_0, r_1) \) and \((\tilde{u}, \tilde{v}) \in \tilde{V}^\gamma(r_0, r_1) \).

Here
\[
\langle (u, v), (\varphi, \psi) \rangle := \frac{\omega}{2\pi} \int_0^{2\pi} \int_0^1 (u\varphi + v\psi) \, dx \, dt = \sum_{k \in \mathbb{Z}} \int_0^1 (u_k\varphi_k + v_k\psi_k) \, dx
\]
is the usual scalar product in the Hilbert space \((H^{0,0})^2 = L^2((0,1) \times (0,\frac{2\pi}{\omega}); \mathbb{R}^2)\).

In order to prove that the Fredholm operator \(A + B \) has index zero, it suffices to show that
\[
\dim \ker(A + B) = \dim \ker(A + B)^*.
\]
Here \((A + B)^*\) is the dual operator to \(A + B \), i.e. a linear bounded operator from \((W^\gamma)^*\) into \((V^\gamma(r_0, r_1))^*\). Using the continuous dense embedding
\[
\tilde{V}^\gamma(r_0, r_1) \hookrightarrow W^\gamma \hookrightarrow (H^{0,0})^2 \hookrightarrow (W^\gamma)^*,
\]
it makes sense to compare the subspaces \(\ker(A + B)^* \) of \((W^\gamma)^*\) and \(\ker(\tilde{A} + \tilde{B}) \) of \(\tilde{V}^\gamma(r_0, r_1) \):

Lemma 12 \(\ker(A + B)^* = \ker(\tilde{A} + \tilde{B}) \).
Here we used (2.4) and (5.1). Obviously, (5.3) implies \(\ker(\tilde{\psi}) = 0 \). It follows that for all \((u, v)\) in \(V^\gamma(r_0, r_1) \) we have
\[
\langle (\tilde{A} + \tilde{B})(\tilde{u}, \tilde{v}), (u, v) \rangle = \langle (\tilde{u}, \tilde{v}), (A + B)(u, v) \rangle = \langle (A + B)^*(\tilde{u}, \tilde{v}), (u, v) \rangle.
\]
(5.3)

Here we used (2.4) and (5.1). Obviously, (5.3) implies \(\ker(\tilde{A} + \tilde{B}) \subseteq \ker(A + B)^* \).

Now, take an arbitrary \((\varphi, \psi) \in \ker(A + B)^* \), and let us show that \((\varphi, \psi) \in \ker(\tilde{A} + \tilde{B}) \). By Lemma 10, we have (using notation (2.6)) \(\varphi = \sum_{k \in \mathbb{Z}} \varphi_k e_k \) and \(\psi = \sum_{k \in \mathbb{Z}} \psi_k e_k \) with \(\varphi_k, \psi_k \in L^2((0, 1); \mathbb{C}) \) and
\[
\sum_{k \in \mathbb{Z}} (1 + k^2)^\gamma \int_0^1 \left(|\varphi_k(x)|^2 + |\psi_k(x)|^2 \right) dx < \infty.
\]
It follows that for all \((u, v) \in V^\gamma(r_0, r_1) \)
\[
0 = [(A + B)^*(\varphi, \psi), (u, v)] = [(\varphi, \psi), (A + B)(u, v)]
= \sum_{k \in \mathbb{Z}} \int_0^1 (\varphi_k(u_{-k}' + (a - ik\omega)u_{-k} + bv_{-k}) + \psi_k(v_{-k}' - (d - ik\omega)v_{-k} + cu_{-k})) dx.
\]
Therefore
\[
\varphi_k (u_{-k}' + (a - ik\omega)u_{-k} + bv_{-k}) + \psi_k (v_{-k}' - (d - ik\omega)v_{-k} + cu_{-k}) = 0
\]
for all \(u_k, v_k \in H^1((0, 1); \mathbb{C}) \) with (3.3). By a standard argument, we conclude that \(\varphi_k, \psi_k \in H^1((0, 1); \mathbb{C}) \) and that they satisfy the differential equations
\[
-\varphi_k' + (a - ik\omega)\varphi_k + c\psi_k = 0, \quad \psi_k' + (d - ik\omega)\psi_k + b\varphi_k = 0 \quad (5.4)
\]
and the boundary conditions
\[
\psi_k(0) = r_0\varphi_k(0), \quad \varphi_k(1) = r_1\psi_k(1).
\]
(5.5)
This yields, as in Section 3, that \((\varphi, \psi) \in \tilde{V}^\gamma(r_0, r_1) \) and \((\tilde{A} + \tilde{B})(\varphi, \psi) = 0 \). \(\square \)

Lemma 12 implies that assertion (iii) of Theorem 1 is true. Hence, it remains to prove (5.2), i.e.
\[
\dim \ker(A + B) = \dim \ker(\tilde{A} + \tilde{B}) \quad (5.6)
\]
Lemma 13 There exists \(k_0 \in \mathbb{N} \) such that for all \((u, v) \in \ker(A + B) \) and all \((\tilde{u}, \tilde{v}) \in \ker(\tilde{A} + \tilde{B}) \) and all \(k \in \mathbb{Z} \) with \(|k| > k_0 \) we have \(u_k = v_k = \tilde{u}_k = \tilde{v}_k = 0 \).
Proof. Suppose, contrary to our claim. Then there exists, for example, a sequence \((u_j, v_j)_{j \in \mathbb{N}} \in \ker(A + B)\) such that for all \(j \in \mathbb{N}\) there is \(k_j \in \mathbb{Z}\) with \(|k_j| \geq j\) and \(u_{k_j} \neq 0\) or \(v_{k_j} \neq 0\). Without loss of generality we can assume that \(k_j \neq k_l\) for \(j \neq l\). Using the notation (2.6) again, we see that the functions \((u_{k_j} e_{k_j}, v_{k_j} e_{k_j})\) belong to \(\ker(A + B)\) and are linearly independent. On the other side we know that \(\ker(A + B) < \infty\), and this is a contradiction. □

Lemma 13 implies that

\[
\ker(A + B) = \left\{ \sum_{|k| \leq k_0} (u_k e_k, v_k e_k) : (u_k, v_k) \text{ solves (3.2), (3.3) with } f_k = g_k = 0 \right\},
\]

\[
\ker(\tilde{A} + \tilde{B}) = \left\{ \sum_{|k| \leq k_0} (\varphi_k e_k, \psi_k e_k) : (\varphi_k, \psi_k) \text{ solves (5.4), (5.5)} \right\}.
\]

It is known that, given \(k \in \mathbb{Z}\), the number of linearly independent solutions to (3.2), (3.3) with \(f_k = g_k = 0\) (this number is zero, one or two) equals to the number of linearly independent solutions to (5.4), (5.5). Hence, (5.6) is proved.

6 Closing remarks and open questions

In this final section we formulate some closing remarks, generalizations and open questions related to Theorem 1.

Remark 14 about \(L^\infty\) perturbations of \(b\) and \(c\) It seems to be an open question if the assumption \(b, c \in BV(0, 1)\) of Theorem 1 can be weakened to \(b, c \in L^\infty(0, 1)\). But at least for “almost all” \(b, c \in L^\infty(0, 1)\) Theorem 1 remains to be true. More exactly, the following generalization of assertion (ii) of Theorem 1 holds:

Let \(\gamma \geq 1\), \(a, d \in L^\infty(0, 1)\), and suppose (1.7). Then there exists an open and dense set \(M \subseteq (L^\infty(0, 1))^2\) such that \((BV(0, 1))^2 \subset M\) and that for all \((b, c) \in M\) the operator \(A + B\) is Fredholm of index zero from \(V^\gamma(r_0, r_1)\) into \(W^\gamma\).

This generalization is true because the set of index zero Fredholm operators is open in \(\mathcal{L}(V^\gamma(r_0, r_1); W^\gamma)\), because the operator \(B\) depends continuously (in the operator norm in \(\mathcal{L}(W^\gamma)\)) on the coefficient functions \(b\) and \(c\) (in the \(L^\infty\) norm), and because \(BV(0, 1)\) is dense in \(L^\infty(0, 1)\).

Remark 15 about time depending perturbations of \(a, b, c\) and \(d\) The question, if an analog to Theorem 1 is true for general \(2\pi/\omega\)-periodically time-depending coefficients \(a, b, c,\) and \(d\) seems to be much more complicated (even if \(a,\)
Let $\gamma \geq 1$, $a, d \in L^\infty(0,1)$, $b, c \in BV(0,1)$, and suppose (1.7). Then there exists $\varepsilon > 0$ such that the following is true: Take smooth functions $\tilde{a}, \tilde{b}, \tilde{c}, \tilde{d}$:

$$[0,1] \times \mathbb{R} \to \mathbb{R}$$

which are $2\pi/\omega$-periodic with respect to the second argument. Suppose the L^∞ norms of $\tilde{a}, \tilde{b}, \tilde{c}$, and \tilde{d} to be less than ε. Define the operators $A \in \mathcal{L}(V^\gamma(r_0,r_1); W^\gamma)$ and $B \in \mathcal{L}(W^\gamma)$ as above by replacing $a, b, c,$ and d by $a + \tilde{a}, b + \tilde{b}, c + \tilde{c},$ and $d + \tilde{d}$, respectively. Then A is an isomorphism from $V^\gamma(r_0,r_1)$ onto W^γ, and $A + B$ is Fredholm of index zero from $V^\gamma(r_0,r_1)$ into W^γ.

The argument of the proof of this assertion is, again, the openness of the sets of isomorphisms and of index zero Fredholm operators and the continuous dependence of the operators A and B on the functions $\tilde{a}, \tilde{b}, \tilde{c},$ and \tilde{d}.

Acknowledgments

This work was done while the first author visited the Institute of Mathematics of the Humboldt University of Berlin. She is thankful to Prof. Hans-Jürgen Prömel for his kind hospitality during her stay at the Humboldt University.

The authors would like to thank the anonymous referee for his comments that lead to improvements of the paper.

References

[1] U. Bandelow, L. Recke, B. Sandstede, Frequency regions for forced locking of self-pulsating multi-section DFB lasers, Optics Commun. 147 (1998) 212–218.

[2] L. Herrmann, Periodic solutions of abstract differential equations: the Fourier method, Czechoslovak Math. J. 30(105) (1980) 177–206.

[3] G. Iooss, D. D. Joseph, Elementary Stability and Bifurcation Theory, Springer, 1980.

[4] H. Kielhöfer, Bifurcation Theory. An Introduction with Applications to PDEs, Appl. Math. Sciences 156, Springer, 2004.

[5] M. Lichtner, M. Radziunas, L. Recke, Well-posedness, smooth dependence and center manifold reduction for a semilinear hyperbolic system from laser dynamics, to appear in Math. Methods Appl. Sci.
[6] D. Peterhof, B. Sandstede, All-optical clock recovery using multi-section distributed-feedback lasers, J. Nonl. Sciences 9 (1999) 98–112.

[7] M. Radziunas, Numerical bifurcation analysis of traveling wave model of multisection semiconductor lasers, Physica D 213 (2006) 575–613.

[8] M. Radziunas, H.-J. Wünsche, Dynamics of multisection DFB semiconductor lasers: traveling wave and mode approximation models, in: Optoelectronic Devices – Advanced Simulation and Analysis, ed. by J. Piprek, Springer, New York, 2005, 121–150.

[9] L. Recke, D. Peterhof, Abstract forced symmetry breaking and forced frequency locking of modulated waves, J. Differ. Equat. 144 (1998) 233–262.

[10] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts in Appl. Math., Cambridge University Press, Cambridge, 2001.

[11] J. Sieber, Numerical bifurcation analysis for multi-section semiconductor lasers, SIAM J. Appl. Dyn. Systems 1 (2002) 248–270.

[12] O. Vejvoda et al., Partial Differential Equations: Time-Periodic Solutions, Sijthoff Noordhoff, 1981.