Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The Impact of Ejection Fraction on COVID-19 Patients With Myocardial Injury

Giorgio A. Medranda, Brian C. Case, Hooman Fazlalizadeh, Charan Yerasi, Brian J. Forrestal, Chava Chezar-Azerrad, William S. Weintraub, Hooman Fazlalizadeh, Charan Yerasi, Ron Waksman

Background: Coronavirus disease 2019 (COVID-19) has demonstrated deleterious effects on the cardiovascular system, which is associated with worse outcomes. Myocardial injury in COVID-19 is common and, coupled with a reduction in ejection fraction (EF), is concerning for myocarditis. We sought to investigate the outcomes of COVID-19 patients with evidence of myocardial injury and a reduced ejection fraction.

Methods: This was a retrospective observational study in which we screened COVID-19-positive patients who presented to the MedStar Health system (11 hospitals in Washington, DC, and Maryland) since the beginning of the COVID-19 pandemic (March-September 2020). We compared patients with a positive troponin (defined as >1.0 ng/mL) and reduced EF (<50%) to those with preserved EF (>50%) examining inpatient outcomes.

Results: There were 3386 COVID-19-positive patients admitted to the MedStar system from March through September 2020 in whom a troponin was drawn. Of these, 155 patients had a positive troponin, of whom 105 had a transthoracic echocardiogram (TTE) during admission. There were 41 COVID-19-positive patients with a positive troponin and a reduced EF and 64 COVID-19-positive patients with a positive troponin and a preserved EF (32.4% vs. 60.2%; p=0.0001). Patients with a reduced EF saw higher maximum troponins during their admission (28.1 ng/mL vs. 5.6 ng/mL; p=0.0104), but similar rates of requiring intubation (58.5% vs. 57.8%; p=1.0000), intensive-care-unit length of stay (ICU LOS) (9.4 days vs. 12.1 days; p=0.2978) and inpatient mortality (36.6% vs. 31.3%; p=0.6721).

Conclusions: COVID-19 patients with evidence of myocardial injury and reduced EF have higher troponin elevations compared to those with preserved EF but demonstrate similar dismal inpatient outcomes regardless of EF with higher rates of requiring intubation, prolonged ICU LOS, and an inpatient mortality >30%.

doi: 10.1016/j.carrev.2021.06.053

Radiation-Dose Reduction During Catheterization Procedures Using Simple Partial Patient Shielding

Alireza Serati, Ashkan Hashemi, Babak Sharifkashani, Sourmah Nourbakhsh, Arash Hashemi, Sepideh Emami, Mohammad Reza Movahed

Background: Reduction in X-ray exposure during cardiac catheterization is important to reduce radiation risks for operators and personnel. Reducing scattered radiation from the patient can achieve this goal. Scattered radiation is correlated with the patient’s body surface area. The goal of this study was to evaluate the reduction in radiation using simple partial shielding of patients undergoing cardiac catheterization.

Method: By putting a lead-based apron on the lower extremities of patients undergoing cardiac catheterization, we analyzed the reduction in total radiation with and without this shielding.

Results: A total of 112 patients were divided into 2 groups. In one group, the protective lead-based apron was put on the lower extremities of patients. Another group was free of the shield. Total angiography times were 332 minutes and 45 seconds in the first group and 269 minutes and 10 seconds in the second group. Total radiation exposure was 33 μGy in the first group vs 606 μGy in the second group.

Conclusion: Despite higher exposure time, the total radiation dose was 22 times lower in the protected group. Our simple method, available without any additional cost, can significantly reduce a patient’s radiation exposure thereby reducing long-term health risks.

doi: 10.1016/j.carrev.2021.06.052