Analytical and numerical Gubser solutions of the complete second-order hydrodynamics

Long-Gang Pang,1 Yoshitaka Hatta,2 Xin-Nian Wang,1,3 and Bo-Wen Xiao1

1Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
3Nuclear Science Division Mailstop 70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Evolution of quark-gluon plasma (QGP) near equilibrium can be described by the second-order relativistic viscous hydrodynamic equations. Consistent and analytically verifiable numerical solutions are critical for phenomenological studies of the collective behavior of QGP in high-energy heavy-ion collisions. A novel analytical solution based on the conformal Gubser flow which is a boost-invariant solution with transverse fluid velocity is presented. It is used to verify with high precision the numerical solution with a newly developed (3 + 1)-dimensional second-order viscous hydro code (CLVisc). The perfect agreement between the analytical and numerical solutions demonstrates the reliability of the numerical simulations with complete terms of the second-order viscous corrections. This lays the foundation for future phenomenological studies that allow one to gain access to the second-order transport coefficients.

PACS numbers: 47.75.+f, 12.38.Mh, 11.25.Hf

Introduction—Relativistic hydrodynamics has been one of the essential tools to study the properties of the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions [1]. A picture of the QGP as a nearly perfect fluid emerged from comparisons between experimental data and viscous hydrodynamic simulations [2] with a small specific shear viscosity (shear viscosity to entropy ratio η_s/σ) that is very close to the lower bound 1/4π [3] computed for N = 4 Super Yang-Mills (SYM) theory in the AdS/CFT correspondence. The extraction of the specific shear viscosity relied on numerical solutions of the viscous hydrodynamics with realistic initial conditions.

There have been tremendous progresses in solving relativistic ideal and viscous hydrodynamic equations numerically with realistic initial conditions to simulate the dynamical evolution of the dense matter in heavy-ion collisions [4–17]. Analytical solutions, even with simplified initial conditions, can also play a very important role in understanding the evolution dynamics and testing the consistency of numerical solutions. Bjorken flow [18] is a well-known analytical solution to the ideal hydrodynamic equation for a transversely uniform and longitudinally boost-invariant system. It has been recently extended to the Gubser flow [19, 20] by including non-trivial transverse flow velocity with the help of conformal symmetry. Moreover, an exact solution to the first-order viscous hydrodynamic equation (the Navier-Stokes equation) was also found [19, 20] which reduces to the Gubser flow in the ideal limit. On general grounds, one expects that the relativistic Navier-Stokes equation is pathological, and indeed this solution [19, 20] shows unphysical behaviors such as a negative temperature at early time. Though attempts have been made to cure this problem by solving, semi-analytically and numerically, the Israel-Stewart equation [21] and the microscopic Boltzmann equation in the relaxation time approximation [22, 23], it is important to search for more complete and consistent second-order relativistic hydrodynamic equations [24–31] and their solutions.

In this Letter, we will go beyond the Israel-Stewart equation and find an exact and well-behaved analytical solution of the conformal second-order hydrodynamic equation from Ref. [26] which reduces to the Gubser flow in a certain limit. We furthermore will use this analytical solution to check the accuracy of numerical solutions of the complete second-order viscous hydrodynamic equation based on CCNU-LBNL viscous hydrodynamic model (CLVisc) and in turn test numerically the stability of the analytic solution. Using CLVisc and proper initial conditions, we find almost perfect agreement with the analytical solution within the accuracy of the numerical simulations. We also find that small perturbations to initial conditions dissipate quickly after a few fm/c of hydrodynamical evolution, indicating the stability of the solution. The study can help to build the state-of-art and analytically tested second-order viscous hydrodynamic models, and eventually lead us to a better understanding of second-order transport coefficients for the QGP in future phenomenological studies.

The analytical solution to the conformal hydrodynamic equation—We work in the (τ, x, y, η) or τ – η coordinates where τ is the proper time and η is the spatial rapidity. The metric in this coordinate system is

\[ds^2 = d\tau^2 - dx_\perp^2 - x_\perp d\phi^2 - \tau^2 dy^2, \]

where \(x_\perp = \sqrt{x^2 + y^2} \). The second-order hydrodynamic equation without external currents is simply given by

\[\nabla_{\mu} T^{\mu\nu} = 0, \]

where \(T^{\mu\nu} = -T^{\nu\mu} \) is the stress-energy tensor.
with the energy-momentum tensor $T^{\mu\nu} = \epsilon u^\mu u^\nu - p \Delta^{\mu\nu} + \pi^{\mu\nu}$, where ϵ is the energy density, p the pressure, u^μ the flow four-velocity normalized as $u^\mu u_\mu = 1$, and $\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu$ the projection operator orthogonal to the flow velocity. The shear pressure tensor $\pi^{\mu\nu}$ represents the deviation from ideal hydrodynamics and local equilibrium. We choose to work in the Landau frame which yields transverse ($u_\mu \pi^{\mu\nu} = 0$) and traceless ($\pi^{\mu\mu} = 0$) shear stress tensor. Our assumed conformal symmetry implies $T^\mu_\mu = 0$ and the equation of state $\epsilon = 3p$. By projecting along the flow velocity u^μ and the direction orthogonal to u^μ, we can rewrite the hydrodynamic equation as,

\begin{equation}
D\epsilon + (\epsilon + p)\theta - \frac{1}{2}\pi^{\mu\nu}\sigma_{\mu\nu} = 0,
\end{equation}

\begin{equation}
(\epsilon + p)Du^\mu - \Delta^{\mu\alpha}\nabla_\alpha p + \Delta^{\mu}_\nu \nabla_\alpha \pi^{\alpha\nu} = 0,
\end{equation}

respectively, where $D = u^\mu \nabla_\mu$ is the comoving derivative and $\theta = \nabla_\mu u^\mu$ the expansion rate. The traceless shear viscous pressure tensor $\pi^{\mu\nu}$ satisfies the following equation [2,3],

\begin{equation}
\pi^{\mu\nu} = \eta_v \sigma^{\mu\nu} - \tau_\pi \bigg[\Delta^{\mu}_\beta \Delta^\nu_\lambda \nabla_\lambda \pi^{\alpha\beta} + \frac{4}{3} \pi^{\mu\nu} \theta \bigg] - \lambda_1 \pi^{(\mu}_\lambda \pi^{\nu)}\lambda - \lambda_2 \pi \pi^{(\mu}_\lambda \pi^{\nu)}\lambda - \lambda_3 \pi \pi^{(\mu}_\lambda \pi^{\nu)}\lambda,
\end{equation}

with the symmetric shear tensor $\sigma^{\mu\nu}$ and the antisymmetric vorticity tensor $\Omega^{\mu\nu}$ defined as,

\begin{equation}
\sigma^{\mu\nu} = 2\nabla^{(\mu}_\lambda \pi^{\nu)} = 2\Delta^{\mu\alpha\beta}\nabla_\alpha u_\beta,
\end{equation}

\begin{equation}
\Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\lambda} \Delta^{\nu}_\beta \nabla_\alpha u_\beta - \nabla_\alpha u_\beta,
\end{equation}

\begin{equation}
\Delta^{\mu\alpha\beta} = \frac{1}{2} (\Delta^{\mu\alpha} \Delta^{\nu\beta} + \Delta^{\mu\beta} \Delta^{\nu\alpha}) - \frac{1}{3} \Delta^{\mu\nu} \Delta^{\alpha\beta},
\end{equation}

where $\Delta^{\mu\alpha\beta}$ is the double projection operator which renders the resulting contracted tensors symmetric, traceless and orthogonal to the flow velocity. In Eq. (5), τ_π, λ_1, λ_2, λ_3 are four independent second-order transport coefficients in flat space-time.

Following Gubser [19], we perform a conformal/Weyl transformation to the coordinate system such that,

\begin{equation}
ds^2 = \frac{ds^2}{\tau^2} = d\rho^2 - \cosh^2 \rho (d\theta^2 + \sin^2 \theta d\phi^2) - d\eta^2,
\end{equation}

which indicates that the Minkowski space is conformal to $dS_3 \times R$ with,

\begin{equation}
sin \rho = -\frac{L^2 - \tau^2 + x^2_\perp}{2 L \tau}, \quad \tan \theta = \frac{2L x_\perp}{L^2 + \tau^2 - x^2_\perp},
\end{equation}

where L can be interpreted as the radius of the dS_3 space and may be understood as the typical size of the relativistic fluid in phenomenology. Hereafter, dynamical variables in the new coordinates $\tilde{\epsilon} = (\rho, \theta, \phi, \eta)$ will carry a hat to avoid confusion. The Gubser flow and our new solution are both characterized by the comoving flow velocity $\tilde{u}^\mu \equiv (1, 0, 0, 0)$ in the \tilde{x}^μ coordinates. It is straightforward to find that,

\begin{equation}
\tilde{\theta} = 2 \tanh \rho, \quad \tilde{\Omega}^{\mu\nu} = 0,
\end{equation}

\begin{equation}
\tilde{\sigma}_\theta = \tilde{\sigma}_\phi = -\frac{1}{2}\tilde{\sigma}_\eta = \frac{2}{3} \tanh \rho.
\end{equation}

We factor out various powers of $\tilde{\epsilon}$ from all the transport coefficients $\tilde{\eta}_\nu, \tau_\pi$ and λ_1 to make them dimensionless. Eq. (5) then becomes,

\begin{equation}
\tilde{\pi}^{\mu\nu} = \tilde{\eta}_\nu \tilde{\epsilon}^{3/4} \tilde{\pi}^{\mu\nu} - \frac{\tilde{\tau}_\pi}{\tilde{\epsilon}^{1/4}} \bigg[\Delta^{\mu}_\lambda \Delta^\nu_\beta \nabla_\lambda \pi^{\alpha\beta} + \frac{4}{3} \pi^{\mu\nu} \tilde{\theta} \bigg] - \frac{\tilde{\lambda}_1}{\tilde{\epsilon}^{1/4}} \tilde{\pi}^{(\mu}_\lambda \tilde{\pi}^{\nu)}\lambda - \frac{\tilde{\lambda}_2}{\tilde{\epsilon}^{1/4}} \tilde{\pi}^{(\mu}_\lambda \tilde{\pi}^{\nu)}\lambda - \frac{\tilde{\lambda}_3}{\tilde{\epsilon}^{1/4}} \tilde{\pi} \tilde{\pi}^{(\mu}_\lambda \tilde{\pi}^{\nu)}\lambda.
\end{equation}

Assuming $\tilde{\pi}^{\mu\nu}$ is diagonal and has the form $\tilde{\pi}^{\mu\nu} = (0, \tilde{\pi}^{\theta\theta}, \tilde{\pi}^{\phi\phi}, \tilde{\pi}^{\eta\eta})$, one can show that Eqs. (3) and (4) can be cast into,

\begin{equation}
\partial_\rho \tilde{\epsilon} + \frac{8}{3} \tilde{\epsilon} \tanh \rho - C \tanh \rho = 0,
\end{equation}

\begin{equation}
\tilde{\pi}^{\theta\theta} = \tilde{\pi}^{\phi\phi} \sin^2 \theta,
\end{equation}

respectively. In addition, Eq. (10) can be written as,

\begin{equation}
\left[\partial_\rho A + \frac{8}{3} A \tanh \rho + \frac{2}{3} \frac{\tilde{\eta}_\nu \tilde{\epsilon}}{\tilde{\tau}_\pi} \tanh \rho \right] + \frac{\tilde{\epsilon}^{1/4}}{\tilde{\tau}_\pi} \left[A - \frac{\tilde{\lambda}_1}{3 \tilde{\epsilon}} (2A^2 - B^2 - C^2) \right] = 0,
\end{equation}

\begin{equation}
\left[\partial_\rho B + \frac{8}{3} B \tanh \rho - \frac{2}{3} \frac{\tilde{\eta}_\nu \tilde{\epsilon}}{\tilde{\tau}_\pi} \tanh \rho \right] + \frac{\tilde{\epsilon}^{1/4}}{\tilde{\tau}_\pi} \left[B - \frac{\tilde{\lambda}_1}{3 \tilde{\epsilon}} (2B^2 - C^2 - A^2) \right] = 0,
\end{equation}

\begin{equation}
\left[\partial_\rho C + \frac{8}{3} C \tanh \rho - \frac{4}{3} \frac{\tilde{\eta}_\nu \tilde{\epsilon}}{\tilde{\tau}_\pi} \tanh \rho \right] + \frac{\tilde{\epsilon}^{1/4}}{\tilde{\tau}_\pi} \left[C - \frac{\tilde{\lambda}_1}{3 \tilde{\epsilon}} (2C^2 - A^2 - B^2) \right] = 0,
\end{equation}

where $A \equiv \tilde{\pi}^{\theta\theta} \cosh^2 \rho$, $B \equiv \tilde{\pi}^{\phi\phi} \cosh^2 \rho \sin^2 \theta$ and $C \equiv \tilde{\pi}^{\eta\eta}$. The above equations are a set of non-linear differential equations, which are notoriously hard to solve analytically. Fortunately, when $\tilde{\eta}_\nu \tilde{\lambda}_1^2 = 3 \tilde{\tau}_\pi$, we manage to find a very
simple analytical solution,

\[C = -2A = -2B = \frac{2}{\lambda_1} \dot{\epsilon}, \quad \text{and} \quad \dot{\epsilon} \propto \left(\frac{1}{\cosh \rho} \right)^{\frac{\pi}{\lambda_1}}. \]

(16)

After the Weyl rescaling, we can get back to the Minkowski \((\tau, x, y, \eta)\) space and obtain,

\[u_\mu = \tau \frac{\partial \tilde{x}^\nu}{\partial x^\mu} \tilde{\eta}^\nu = \begin{bmatrix} \frac{L^2 + \tau^2 + x_1^2}{\sqrt{(L^2 + \tau^2 + x_1^2)^2 - 4\tau^2 x_1^2}} & -2\tau \tilde{x}_\perp \frac{1}{\sqrt{(L^2 + \tau^2 + x_1^2)^2 - 4\tau^2 x_1^2}} & 0 \end{bmatrix}, \]

(17)

\[\epsilon = \frac{1}{\tau^4} \dot{\epsilon} \quad \text{and} \quad \pi_{\mu\nu} = \frac{1}{\tau^2} \frac{\partial \tilde{x}^\alpha}{\partial x^\mu} \frac{\partial \tilde{x}^\beta}{\partial x^\nu} \tilde{\eta}_{\alpha\beta}. \]

(18)

This conditional solution is very non-trivial since it involves three different transport coefficients and many non-vanishing components of the shear stress tensor \(\pi_{\mu\nu}\). It is also useful for verifying numerical solutions of the second-order viscous hydrodynamic equations. Our solution has the same transverse flow velocity \(v_\perp \equiv -u_\perp/\tau_\perp\) as the Gubser flow due to conformal symmetry. In contrast to the pathological solution of the Navier-Stokes equation, which has negative temperature at early time, our second-order viscous solution is always well-defined in the whole space-time.

For consistency and stability, the above solution is meaningful when \(|\lambda_1| \sim \dot{\epsilon}/[\dot{\pi}^\nu_\perp] \gg 1\). For positive \(\lambda_1\), we always get positive \(\pi^\eta_\eta\) and negative \(\pi^{xx}, \pi^{yy}\). For negative \(\lambda_1\), \(\pi^\eta_\eta\) becomes negative, while \(\pi^{xx}, \pi^{yy}\) turn positive. In principle, \(\lambda_1\) can be either positive or negative. A positive value \((\lambda_1 = 3/4)\) was reported for \(N = 4\) super Yang-Mills theory in Ref. [26], whereas \(\lambda_1\) is negative in a particular model considered in Ref. [32]. Since physical initial conditions for QGP in heavy-ion collisions lean towards positive \(\pi^{xx}\) and \(\pi^{yy}\), we shall employ a negative value for \(\lambda_1\).

Numerical results—CLVisc is the extension of the ideal 3+1D hydrodynamic model [33] which includes the second-order viscous terms. To solve Eqs. (2) and (5), we use the OpenCL GPU parallel language together with the KT algorithm implemented on graphic cards and the new code can significantly speed up the numerical simulations. CLVisc treats the shear stress tensor \(\pi^{\mu\nu}\) as the source term of the ideal hydrodynamic energy-momentum tensor \(T^{\mu\nu}_0 = \epsilon u^\mu u^\nu - p \delta^{\mu\nu}\) and implements them into two different evolution kernels, which makes the switch to ideal hydrodynamics easy. These two kernels are compiled on GPUs which process more efficiently most of the heavy computations such as KT evolutions and gradient calculation. At any given time, we can extract the energy density \(\epsilon\) and flow velocity \(u^\mu\) from \(T^{\mu\nu}_0\).

Using CLVisc, we numerically solve the second-order viscous hydrodynamic equations for \(T^{\mu\nu}\) and \(\pi^{\mu\nu}\) with the conformal equation of state \(\epsilon = 3p\) directly in Minkowski space-time in the \(\tau-\eta\) coordinates. For later comparison, we set the initial condition at \(\tau_0 = 1\) fm/c to match the analytical solution. We can then obtain \(T^{\mu\nu}\) and \(\pi^{\mu\nu}\) numerically according to the hydrodynamic evolution at \(\tau > \tau_0\). The initial energy density \(\epsilon\), fluid velocity \(u^\mu\) and shear viscous tensor \(\pi^{\mu\nu}\) are discretized on a lattice with the number of grids \(N_x \times N_y \times N_\eta = 303 \times 303 \times 6\) and the grid size \(\Delta \tau = \Delta y = 0.08\) fm and \(\Delta \eta = 0.3\). In order to generate the correct time derivatives for initial fluid velocities \(\partial_\tau u^\mu\), we set initial conditions for two time steps \(\tau = 0.99\) fm/c and \(\tau_0 = 1.0\) fm/c with the time evolution step \(\Delta \tau = 0.01\) fm/c. Given the above numerical setup in the KT algorithm, the numerical error can be estimated to be about a few percent at \(\tau = 5\) fm/c. We find that it helps to reduce numerical errors by using \(\pi^{\eta\eta} = \tau^2 \pi^{\eta\eta}\) instead of \(\pi^{\eta\eta}\) directly in the numerical simulations, since the numerical derivatives become tricky due to non-vanishing Christoffel symbols in the \(\tau-\eta\) coordinates.

To compare to the analytical solution, we also set \(\hat{\eta}_\eta \lambda_1^2 = 3\tau_\perp\) where \(\lambda_1 = \lambda_1/T^4\), \(\tau_\perp = \tau_\perp/T\) and \(\eta = \hat{\eta}_\perp T^3\) \((T \equiv \epsilon^{1/4} \text{is the temperature})\). We then choose the parameters \(\eta/s = 3\hat{\eta}_\eta/4 = 0.08\), \(\lambda_1 = -10\), and \(L = 5\) fm. Shown in Fig. 1 are the energy density (a) and the transverse flow velocity (b) from the analytical (solid lines) and CLVisc numerical solutions (dotted lines) for different values of time up to \(\tau = 5\) fm/c. The accumulated numerical relative error is roughly 5 percent at \(\tau = 5\) fm/c for chosen spatial grid and time-step size. One could reduce the numerical error by decreasing the spatial grid and time-step size, however, with increased computing time. In Fig. 2(a) and (b), we plot two different components of the shear stress tensor, respectively. We observe a perfect agreement again between the numerical and analytical results for these quantities. Furthermore, we find that the numerical results without the \(\lambda_1\) term, shown as the (green) dashed curves in Fig. 2(b), have significant differences from the results with the \(\lambda_1\) term in the
second-order viscous corrections. In addition, we show in Fig. 2(c) that small two-dimensional Gaussian perturbations initially added to $\pi^{\mu\nu}$ at the central point dissipate quickly and have no effect on the hydrodynamic evolution for the rest of the system. It implies that both our numerical and analytical solutions are stable with respect to small perturbations. Incidentally, we have checked that an equally good agreement is obtained when λ_1 is positive and large. In the limit $|\lambda_1| \to \infty$, both analytical and numerical solutions approach the ideal Gubser flow.

Conclusion—We have found an analytical Gubser flow solution to the second-order conformal hydrodynamic equation beyond the Israel-Stewart theory. We have also solved the same second-order hydrodynamic equation numerically using the newly developed CLVisc hydro code. The numerical solution agrees perfectly with the analytical one with the same condition and parameters. This gives us confidence in the numerical solutions beyond the Gubser flow solution, at least for flows with vanishing vorticity. In the case with non-vanishing vorticity, it should be straightforward to follow the same procedure and compare with the analytical solution found earlier in Ref. [36]. This paves the way for future phenomenological studies of QGP in heavy-ion collisions that can give us access to second-order transport coefficients.

Acknowledgment—This work is supported by the NSFC under Grant No. 11221504, China MOST under Grant No. 2014DFG02050, by U.S. DOE under Contract No. DE-AC02-05CH11231 and within the framework of the JET Collaboration.
[1] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013) [arXiv:1301.2826 [nucl-th]].

[2] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008) [Erratum-ibid. C 79, 039903 (2009)] [arXiv:0804.4015 [nucl-th]].

[3] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 116101 (2005) [hep-th/0405231].

[4] P. F. Kolb, J. Sollfrank and U. W. Heinz, Phys. Rev. C 62, 054909 (2000) [hep-ph/0006129].

[5] D. H. Rischke, S. Bernard and J. A. Maruhn, Nucl. Phys. A 595, 346 (1995) [nucl-th/9504018].

[6] T. Hirano, Phys. Rev. C 65, 011901 (2002) [nucl-th/0108004].

[7] H. Petersen, J. Steinheimer, G. Burau, M. Bleicher and H. Stocker, Phys. Rev. C 78, 044901 (2008) [arXiv:0806.1695 [nucl-th]].

[8] H. Song and U. W. Heinz, Phys. Rev. C 77, 064901 (2008) [Erratum-ibid. C 78, 089902 (2008)] [arXiv:0712.2916 [hep-th]].

[9] J. Peralta-Ramos and E. Calzetta, Phys. Rev. D 80, 126002 (2009) [arXiv:0908.2646 [hep-ph]].

[10] S. Bhattacharyya, V. E. Hubeny, S. Minwalla and M. Rangamani, JHEP 0802, 045 (2008) [arXiv:0712.2456 [hep-th]].

[11] M. Natsuume and T. Okamura, Phys. Rev. D 77, 066014 (2008) [Erratum-ibid. D 78, 089902 (2008)] [arXiv:0712.2916 [hep-th]].

[12] J. P. Boris, D. L. Book, J. Comput. Phys. 11, 38 (1973).

[13] A. Kurganov, E. Tadmor Numerical Methods for Partial Differential Equations, 18, 584-608 (2002).

[14] Y. Hatta, J. Noronha and B. W. Xiao, Phys. Rev. D 89, 051702 (2014) [arXiv:1401.6248 [hep-th]]; Phys. Rev. D 89, 114011 (2014) [arXiv:1403.7693 [hep-th]].