The Stark Broadening Parameters of the Nitrogen HF RF-CCPs

To cite this article: Ü Erözbek Güngör 2019 J. Phys.: Conf. Ser. 1289 012012

View the article online for updates and enhancements.
The Stark Broadening Parameters of the Nitrogen HF RF-CCPs

Ü Erözbek Gungör
Department of Physics, Middle East Technical University, 06800 Ankara, TURKEY
Email: ummugul@metu.edu

Abstract. This paper presents the experimental Stark-broadening and shifting analysis of 40.68 MHz nitrogen RF-CCPs. The non-thermal plasmas were generated in a cylindrical parallel plate plasma reactor under 0.2-0.8 Torr and 50-200 Watt. The physical and chemical spectral analyses of the system were performed by using the OES method. Many N I and N II lines were detected in the UV-Vis-NIR region. The diagnostic measurements of the plasmas were done according to the Saha relation and the Boltzmann plot method, under the LTE assumption. The calculated T_e, T_{gas}, n_e and n_0 take values in the range of $(10748 \pm 742 - 16144 \pm 653)$ K, $(690 \pm 82 - 833 \pm 22)$ K, $(0.598 \pm 0.024 - 2.87 \pm 0.03) \times 10^{14}$ cm$^{-3}$ and $(2.32 \pm 0.06 - 11.37 \pm 1.44) \times 10^{13}$ cm$^{-3}$, respectively. The normalized Stark-broadening parameters (ω_s and d_s) of the vacuum visible N II multiplets (653.445, 659.749 and 661.545 nm) were determined for 10.000 and 15.000 K.

1. Introduction
Some well-known plasma diagnostic techniques are Langmuir probe, interferometry, mass spectroscopy and optical emission spectroscopy (OES). Among these techniques, OES is the simplest, the cheapest and a non-invasive method for parametrical analysis in low temperature, low pressure (local thermal equilibrium-LTE) laboratory plasmas [1].

The physical structure of plasma is complicated. There are many particles (electrons, radicals, atoms and ions) in the plasma. EM radiation in a specific spectral range is observed as a result of the interactions between these particles, resulting in vibrational, rotational and electronic transitions. Therefore, understanding the origin of these reactions reveals the cause of the spectral lines and shapes. The main origin of these reactions is the kinetic energy of the plasma particles. The kinetic energy of the electrons is defined as the electron temperature (T_e) while the kinetic energy of the heavy particles is described as the gas temperature (T_{gas}) [2-4]. These temperatures can be determined by using the Boltzmann plot method related to the plasma emission spectra.

In non-thermal plasmas, under certain experimental conditions, the Lorentzian spectral line profile is correlated with the Stark (Coulomb interactions between the emitting atom and the charged particles), van der Waals (dipolar interaction between the excited atoms and the induced dipole from the neutral perturbers) and natural broadening (transition energy and frequency) [5-8].

This paper reports a detailed experimental parametrical analysis of non-thermal; low-pressure HF (40.68 MHz) nitrogen radio frequency capacitively coupled plasmas (RF-CCPs) by using the OES method. The temperature and the broadening calculations are done in Vis-NIR regions. The plasma (T_e, T_{gas}, n_e and n_0) and the Stark (ω_s and d_s) parameters are calculated under the assumption of LTE according to the Boltzmann, Saha and the spectral line broadening methods. All the spectral line shapes are fitted by using the Lorentzian fitting routine Origin Pro8, with high R^2 for the regression.
2. Theory

2.1. Temperature Calculation
It is assumed the plasma particles have the same localized temperature, which gives information about the internal transitions. Therefore, T\textsubscript{e} and T\textsubscript{gas} are assumed to be equal to the excitation (T\textsubscript{exc}) temperatures of the ionized and neutral atomic lines, respectively.

2.1.1. Electron Temperature. If the profile of the electron velocity distribution function is Maxwellian, the temperature is called as the electron temperature. According to our assumptions, T\textsubscript{e} is calculated from the slope of the Boltzmann plot. This plot is given by the natural logarithm of the relative intensities of atomic lines as in the following equation [8-11].

\[
\ln(I_{\text{II}} \lambda_{\lambda_i} g_e^{-1} A^{-1}_{\text{II}}) = C - E_k k_B^{-1} T_{\text{exc}}^{-1}
\]

where \(I_{\text{II}} \) is the emissivity of the spectral line, \(g_e \) is the statistical weight of the upper level, \(A_{\text{II}} \) is the Einstein transition probability, \(E_k \times k_B^{-1} \) is the normalized energy of the upper level and \(C \) is the partition function depended parameter.

2.1.2. Gas Temperature. This temperature is also known as the average random kinetic energy of the ions and neutrals and is mainly responsible for the molecular atomization processes and the radical generation in the plasma [7]. T\textsubscript{gas} is calculated from the Boltzmann plot of N I atoms.

2.2. Number Density Calculation
In a plasma reactor, many chemical reactions take place during the gas-plasma phase transition. The first two ionization chemical reactions for the nitrogen atom are written as;

\[
\begin{align*}
N & \leftrightarrow N^+ + e + E_I (N_I) \\
N^+ & \leftrightarrow N^{2+} + e + E_{II} (N_{II})
\end{align*}
\]

where E is the ground electronic state ionization energy of the atoms and the ions.

If the ionization and the recombination chemical reactions at T\textsubscript{exc} are in LTE, then \(n_e \) is calculated from the ionization degree of the operating gas, as described by the following Saha-Boltzmann equation [8, 10, 11].

\[
n_{\text{e}} n_{\text{II}}^{-1} = g_e g_{\text{II}} \exp\left(\frac{2\pi m_e k_B T_{\text{II}} h^2}{E_I k_B T_{\text{II}}} - 1\right)
\]

where \(n \) (e: electron, I: N-atom and II: N+-ion), \(g \) (e: 2, I: 4 and II: 1), \(T_{\text{II}} \) is the T\textsubscript{exc} of N+, \(E_I \) is the ground electronic state ionisation energy of N (14.5341 eV or 168 661 K).

The gas pressure of the plasma system is given by [10];

\[
P = (n_e + n_i + n_{\text{II}}) k_B T
\]

If Equations (4) and (5) are solved together with the assumption of quasi-neutrality (\(n_e = n_{II} \)) in the plasma, the numerical value of the \(n_e \) is obtained.

2.3. Stark Broadening Parameters
The Stark broadening parameters are mostly defined as the electron impact width (\(\omega_e \)) and the electron impact shift (\(\delta_e \)) [13, 14]. As T\textsubscript{gas} is much less than T\textsubscript{e} in the plasmas the ion quasi-static term can be neglected [7]. The spectral line is broadened due to a strong and chaotic electric field. The central position of the line is shifted depending on the strength and direction of the static electric field [11]. These parameters are correlated with \(n_e \) and T\textsubscript{e} [15] as shown in Equation (6) [6, 12, 16].

\[
\omega (n_e, T_{\text{e}}) = 2 \omega_e = 2 (n_e n_{e0}^{-1}) \omega_{S0} (T_{\text{e}})
\]

where \(\omega \) is the FWHM of the emitted ionic line (nm), \(\omega_e \) (nm), \(n_e \) (cm3), \(\omega_{S0} \) (nm) is the normalized Stark parameter for the given line and \(n_{e0} (10^{17} \text{cm}^3) \) is the normalized electron density.
3. Results and Discussion

3.1. Temperature Calculation

For HF RF-CCPs in LTE, \(T_{\text{exc}} \) is calculated from the relative intensities of N I and N II emission lines in the 200-1100 nm spectral region, using the Equation (1). Even though many peaks are eliminated to get more accurate (high R²) measurement results. The extracted atomic lines and their parameters are listed in Table 1.

Table 1. List of NI and NII atomic transition lines and their NIST spectral database

Vac.λ(nm)	Transition Array	Rel. Int.(a.u.)	\(g_eA_e \) (s⁻¹)	\(E_e \) (cm⁻¹)
610.506	\(2s^2p^2(^3P)s^0P_{1/2} - 2s^2p^2(^1D)3s^0D_{3/2} \)	45.93774137	8.40E-04	99663.912
644.2718	\(2s^2p^2(^3P)p^3D_{5/2} - 2s^2p^2(^1P)p^4D_{7/2} \)	105.9742895	1.06E+07	11040.322
650.8822	\(2s^2p^2(^3P)p^3D_{3/2} - 2s^2p^2(^1P)p^4F_{3/2} \)	184.0754597	3.88E+05	11019.465
660.8	\(2s^2p^2(^3P)p^3D_{5/2} - 2s^2p^2(^1P)p^4D_{5/2} \)	315.803019	5.32E+05	109926.66
734.9594	\(2s^2p^2(^3P)p^3D_{5/2} - 2s^2p^2(^1P)p^4D_{3/2} \)	202.6686562	3.33E+06	110470.24
738.0546	\(2s^2p^2(^3P)p^3S_{3/2} - 2s^2p^2(^1P)p^4S_{3/2} \)	185.0878238	7.80E+06	110299.97
866.9316	\(2s^2p^2(^1D)3s^0D_{3/2} - 2s^2p^2(^1P)p^2P_{0/2} \)	22.83340573	1.21E+07	111198.85
599.233	\(2s^2p^3d(^3F)_{5/2} - 2s^2p^3d(^1P)_{1/2} \)	41.43542388	7.80E+04	203258.98
638.608	\(2s^2p^3d(^3F)_{5/2} - 2s^2p^3d(^1P)_{1/2} \)	57.2563414	2.36E+06	202170.63
643.521	\(2s^2p^3d(^3P)_{3/2} - 2s^2p^3d(^1P)_{1/2} \)	26.49384973	6.10E+04	170666.23
655.628	\(2s^2p^3d(^1D)_{5/2} - 2s^2p^3d(^1P)_{1/2} \)	104	4.29E+06	202714.12
659.749	\(2s^2p^3d(^1D)_{5/2} - 2s^2p^3d(^1P)_{1/2} \)	229.8159747	2.11E+07	211749.35
697.756	\(2s^2p^3d(^1D)_{5/2} - 2s^2p^3d(^1P)_{1/2} \)	8.041914435	1.03E+07	203189.03
885.773	\(2s^2p^3d(^3P)_{3/2} - 2s^2p^3d(^1P)_{1/2} \)	21.78130777	7.53E+06	223069.02

\(T_{\text{gas}} \) of the N I and \(T_e \) of the NII species in the RF plasma at 0.2 Torr-100 Watt are calculated as \(T_{\text{gas}} = 735 ± 57 \) K and \(T_e = 16144 ± 653 \) K from the linear Boltzmann plot. From these results, it is possible to claim that the dominant temperature in the plasma is \(T_e \) as it is much higher than \(T_{\text{gas}} \).

Table 2. List of the calculated \(T_e \) and \(T_{\text{gas}} \) with their operating conditions according to the Boltzmann plot method

PC (Torr -Watt)	\(T_e \) (K)	\(T_{\text{gas}} \) (K)
0.2 - 50	16144 ± 653	833 ± 22
0.2 - 100	14292 ± 574	735 ± 57
0.2 - 200	11746 ± 928	735 ± 52
0.3 - 50	14990 ± 770	735 ± 87
0.3 - 100	13490 ± 754	704 ± 60
0.3 - 200	13889 ± 705	725 ± 82
0.4 - 50	11827 ± 550	794 ± 60
0.4 - 100	15216 ± 761	735 ± 79
0.4 - 200	10748 ± 742	714 ± 90
0.5 - 50	14673 ± 1267	725 ± 93
0.5 - 100	12741 ± 285	752 ± 91
0.5 - 200	12372 ± 350	741 ± 100
0.8 - 50	12901 ± 1045	758 ± 93
0.8 - 100	13628 ± 598	690 ± 82
0.8 - 200	12718 ± 512	719 ± 97
Table 3. List of the calculated n_e and n_0 with their operating conditions according to the Saha relation and the Boltzmann plot method, respectively

PC (Torr-Watt)	n_e ($\times 10^{14}$ cm$^{-3}$)	n_0 ($\times 10^{15}$ cm$^{-3}$)
0.2 - 50	0.598 ± 0.024	2.32 ± 0.06
0.2 - 100	0.674 ± 0.026	2.64 ± 0.20
0.2 - 200	0.769 ± 0.018	2.64 ± 0.18
0.3 - 50	0.965 ± 0.048	3.99 ± 0.47
0.3 - 100	1.06 ± 0.05	4.14 ± 0.35
0.3 - 200	1.04 ± 0.05	4.04 ± 0.45
0.4 - 50	1.50 ± 0.02	4.89 ± 0.37
0.4 - 100	1.27 ± 0.06	5.31 ± 0.57
0.4 - 200	1.26 ± 0.24	5.49 ± 0.69
0.5 - 50	1.64 ± 0.13	6.76 ± 0.87
0.5 - 100	1.86 ± 0.01	6.51 ± 0.78
0.5 - 200	1.85 ± 0.02	6.63 ± 0.90
0.8 - 50	2.81 ± 0.07	10.34 ± 1.27
0.8 - 100	2.78 ± 0.09	11.37 ± 1.44
0.8 - 200	2.87 ± 0.03	10.92 ± 1.48

3.2. Number Density Calculation

The plasma state of matter contains atoms, molecules, radicals, ions and electrons. Therefore, it is important to understand the physical mechanism (n & T) of these species to characterize the plasma medium. In lab plasmas, n is determined by T_{ex} as soon as the plasma medium is in LTE. Under the LTE and quasi-neutrality principle, the n_e and n_0 are calculated by the Saha-Boltzmann relation written in the Equation (4). The numerical calculated results of the HF RF-CCP system under certain experimental conditions are listed in Table 3.

3.3. Stark Broadening Parameters

I determined the Stark widths and shifts of some strong vacuum visible NII Multiplets (653.445, 659.749 and 661.545 nm). The Lorentzian fitting analysis of these emitted ionic spectral lines of the vacuum nitrogen plasmas under 0.2 Torr-50 Watt are clearly represented in Figure 1.

Figure 1. Lorentz fitting procedures of the N II Multiplets a) 653.445 b) 659.752 and c) 661.762 nm under 0.2 Torr-50 Watt.
These fitted ω_e values, for the selected peaks, were substituted into the Equation (6) to calculate ω_e and d_e, associated with the α_e calculated from the Saha relation. After normalizing α_e to 10^{17} cm$^{-3}$, ω_e was computed for each T_e. Temperature power fitting relations of ω_e for the N II/653.445, 659.749 and 661.545 nm lines are given in Table 4. According to these relations, ω_e and d_e of the N II multiplets are normalized to 10,000 and 15,000 K, as seen in Table 5.

Table 4. Temperature dependence of ω_e for the N II multiplets

Multiplet (nm)	T (K)	10,000	15,000
653.445	7.892	1.283	
659.749	2.384	2.814	
661.545	2.454	2.224	

Table 5. Calculated Stark-broadening parameters of the N II multiplets

Multiplet (nm)	ω_e	d_e	ω_e	d_e
653.445	7.892	-2.454	1.283	-2.224
659.749	2.384	-9.344	2.814	6.504
661.545	4.542	1.023	2.224	6.504

The values of the Stark broadening parameters listed in Table 5 are higher as compared to the results in the literature. There are two important reasons of this variation: the peak profile shape and the experimental conditions. In the literature, the experiments are mostly performed under atmospheric conditions and the spectral lines are fitted with a Voigt profile. This type of fitting is the convolution of Gaussian and Lorentzian profiles [7, 8, 14, 16, 17]. On the other hand, the HF RF plasmas for this study are generated under laboratory vacuum conditions and the emitted spectral lines were found to be best represent by a Lorentzian profile.

References
[1] Fantz U 2006 Plasma Sources Sci. Technol. 15 S137-S147
[2] Munoz J, Rincon R, Melero C, Dimitrijevic M S, Gonzalez C and Calzada M D 2018 J. Quant. Spectrosc. Radiat. Transfer 206 135-141
[3] Laux C O, Spence T G, Kruger C H and Zare R N 2003 Plasma Sources Sci. Technol. 12 125-138
[4] Calzada M D 2005 Mem. S.A.It. 7 198
[5] Munoz J, Dimitrijevic M S, Yubero C and Calzada M D 2009 Spectrochimica Acta Part B 64 167-172
[6] Bredice F, Borges F O, Sobral H, Villagran-Muniz M, Di Roco H O, Cristoforetti G, Legnaoli S, Palleschi V, Salvetti A and Tognoni E 2007 Spectrochimica Acta Part B 62 1237-1245
[7] Yubero C, Rodero A, Dimitrijevic M S, Gamero A and Garcia M C 2017 Spectrochimica Acta Part B 129 14-20
[8] Devia D M, Rodriguez-Restrepo L V and Restrepo-Parra E 2015 ing.ciene 11 239-267
[9] Wang Y, Li C, SHI Jielin, WU Xingwei and DING H 2017 Plasma Sci. Technol. 19 115403
[10] Camacho J J, Poyato J M L, Diaz L and Santos M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 4573-4590
[11] Camacho J J, Poyato J M L, Diaz L and Santos M 2011 Lasers and Electro-Optics Research and Technology (Nova Science Publishers: New York) ISBN:978-61209-575-2
[12] Yubero C, Dimitrijevic M S, Garcia M C and Calzada M D 2007 Spectrochimica Acta Part B 62 169-176
[13] Barteccka A, Wujec T, Halenka J and Musielok J 2004 Eur. Phys. J. D 29 265-271
[14] Barteccka A 2014 Phys. Scr. T161 014065
[15] Torres J, Palomares J M, Sola A, van der Mullen J J A and Gameno A 2007 J. Phys. D: Appl. Phys. 40 5929-5936
[16] Pellerin S, Musiol K, Pokrzywka B and Chapelle J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 3911-3924
[17] Christova M, Gagov V and Koleva I 2000 Spectrochimica Acta Part B 55 815-822