The convection of close red supergiant stars observed with near-infrared interferometry

M. Montargès, P. Kervella, G. Perrin, A. Chiavassa, M. Aurière, J.B. Le Bouquin

1: IRAM Grenoble
2: LESIA - Observatoire de Paris
3: UMI Franco-Chilena de Astronomía
4: Lagrange - Observatoire de la Côte d'Azur
5: IRAP - Université de Toulouse
6: IPAG

Physics of Evolved Stars - In memory of Olivier Chesneau
Nice - June 11th 2015
Mass loss of evolved stars

Trigerring the RSG mass loss

- Physical process remains unknown (no flares, no large pulsations)
- Verhoelst et al. (2006) proposed Al₂O₃ as nucleus for dust condensation
- Josselin & Plez (2007) suggested a convection triggered mass loss
- Auriere et al. (2010) observed magnetic field \(\sim 1 \, \text{G} \)
Trigerring the RSG mass loss

- Physical process remains unknown (no flares, no large pulsations)
- Verhoelst et al. (2006) proposed Al$_2$O$_3$ as nucleus for dust condensation
- Josselin & Plez (2007) suggested a convection triggered mass loss
- Auriere et al. (2010) observed magnetic field \sim 1 G

→ Study of the photosphere + CSE
Antares (α Sco) & Betelgeuse (α Ori)

Parameter	Antares	Betelgeuse
m (visible)	0.91	0.42
m (IR)	-3.49	-3.73
M (M$_\odot$)	15 ± 5	21 ± 2
R (R$_\odot$)	\(~ 680\)	897 ± 211
T$_{\text{eff}}$ (K)	3707 ± 77	3690 ± 54
d (pc)	\(~ 170\)	197 ± 45
ν_{rad} (km.s$^{-1}$)	-3.50 ± 0.8	21.91 ± 0.51
Spectral Type	M0.5Iab	M2Ib
Interferometric observations of Antares

- VLTI/PIONIER observations: 4 telescopes, H band (low spectral resolution)
- 3 array configurations (baseline lengths from 11m to 153m)
Antares@PIONIER : analytical model

→ Fit in 1st lobe only

θ_{\text{LDD}} = 39.8 \pm 0.70 \text{ mas}, \ \alpha_{\text{LDD}} = 0.660 \pm 0.10
Mass loss of evolved stars
Convection of \(\alpha \) Sco
The photosphere of \(\alpha \) Ori

Antares@PIONIER : RHD simulations

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO\(^5\)BOLD, Freytag et al. 2012)
Antares@PIONIER : RHD simulations

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO5BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
Antares@PIONIER : RHD simulations

Receipt to fit RHD simulations (see Chiavassa et al. 2011):
- Have a stellar model (CO5BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
- Rotate each snapshot (on-sky star orientation)
Antares@PIONIER : RHD simulations

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO5BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
- Rotate each snapshot (on-sky star orientation)
- FT to get interferometric characteristics
Antares@PIONIER : RHD simulations

Receipt to fit RHD simulations (see Chiavassa et al. 2011):

- Have a stellar model (CO5BOLD, Freytag et al. 2012)
- Let the model evolve for a certain time
- Take (a lot of) snapshots (= realizations of convective pattern)
- Rotate each snapshot (on-sky star orientation)
- FT to get interferometric characteristics

More ? → Talk of A. Chiavassa at 3:20pm.
Antares@PIONIER : RHD simulations

- Up to 16th lobe of visibility function
- Very small scale structures
- Statistical approach
Antares@PIONIER : RHD simulations

Parameter	Antares	st36g00m05
Grid	-	401³
M (M☉)	6	15 ± 5
R (R☉)	376.7 ± 0.5	~ 680
T_{eff}	3707 ± 77	3710 ± 20

(see in Chiavassa et al. 2011)

- Convection remains the best scenario to explain the high SF
 (See: Montargès et al. 2014 in A&A on Betelgeuse with VLTI/AMBER)
Antares@PIONIER : RHD simulations

Parameter	Antares	st36g00m05
Grid	-	401³
M (M☉)	6	15 ± 5
R (R☉)	376.7 ± 0.5	∼ 680
T eff	3707 ± 77	3710 ± 20

(see in Chiavassa et al. 2011)

- Convection remains the best scenario to explain the high SF
 (See: Montargès et al. 2014 in A&A on Betelgeuse with VLTI/AMBER)
- Numerical constraints on simulations
Interferometric observations of Betelgeuse

- VLTI/PIONIER observations (still 4 telescopes, H band, low spectral resolution)
- 4 epochs of monitoring: Jan. 2012, Feb. 2013, Jan. 2014 and Nov. 2014
- Only the compact array configuration
2012 observations

UD/LDD models

First lobe only:
- UD: $\theta_{UD} = 42.64 \pm 0.97$ mas $\chi^2 = 814$
- LDD: $\theta_{LDD} = 60.64 \pm 2.27$ mas $\alpha_{LDD} = 2.30 \pm 0.27$ $\chi^2 = 118$
Mass loss of evolved stars

Convection of \(\alpha \) Sco

The photosphere of \(\alpha \) Ori

2012 observations

UD/LDD models

First lobe only:

- UD: \(\theta_{UD} = 42.64 \pm 0.97 \) mas \(\chi^2 = 814 \)
- LDD: \(\theta_{LDD} = 60.64 \pm 2.27 \) mas \(\alpha_{LDD} = 2.30 \pm 0.27 \) \(\chi^2 = 118 \)

- 1st lobe shape: indication of non-spherical star, not expected
 → True feature or instrumental artifact?
2012 vs 2013

- 2012: diaphragms to avoid saturation, calibrator: Sirius (d = 27°)
- 2013: neutral densities + calibrators with $d \leq 7°$
2013 observations: disk models

UD/LDD models

First lobe only:

- UD: $\theta_{UD} = 42.71 \pm 1.00$ mas $\chi^2 = 619$
- LDD: $\theta_{LDD} = 53.64 \pm 1.52$ mas $\alpha_{LDD} = 1.41 \pm 0.19 \chi^2 = 195$
2013 observations: disk models

UD/LDD models

First lobe only:
- UD: \(\theta_{\text{UD}} = 42.71 \pm 1.00 \text{ mas} \) \(\chi^2 = 619 \)
- LDD: \(\theta_{\text{LDD}} = 53.64 \pm 1.52 \text{ mas} \) \(\alpha_{\text{LDD}} = 1.41 \pm 0.19 \) \(\chi^2 = 195 \)

- Still the 1st lobe feature \(\rightarrow \) cannot be ignored!
2013 observations: LD ellipse

- Visibilities ~ ok ($\chi^2 = 70$, better than for disk models)
A little break : closure phases

- Visibility = amplitude of Fourier Transform of light intensity distribution of the source
A little break: closure phases

- Visibility = amplitude of Fourier Transform of light intensity distribution of the source
- Closure phase = sum of the phases measured by 3 baselines on a closed triangle (independent from phases atmospheric perturbations)
2013 observations: LD ellipse

- Visibilities ~ ok ($\chi^2 = 70$, better than for disk models)
- Difference between major/minor axes ~ 25% of usual diameter of the star
- Closure phases bad ($\chi^2 = 718$, expected)
Hot spot hypothesis

- Huge hotpost can affect the 1st lobe
- Difficulty: strong link between the star diameter and the spot characteristics
2013 observations: LDD+gaussian hotspot

Parameter	Value
θ_{LDD} (mas)	43.73 ± 0.50
α_{LDD}	0.19 ± 0.07
ν_{spot}	0.08 ± 0.02
x_{center} (mas)	19.76 ± 2.02
y_{center} (mas)	-7.46 ± 2.42
FWHM (mas)	18.42 ± 2.42
χ^2	31
4 epochs of monitoring

Fit with SF < 51 arcsec$^{-1}$

- $\chi^2_{2012\ 01} = 29$
- $\chi^2_{2013\ 02} = 31$
- $\chi^2_{2014\ 01} = 29$
- $\chi^2_{2014\ 11} = 70$

Nov. 2014: need to use 2 spots (+ all SF range)

- Montargès et al. 2015 in prep.
2014: evolution of the signal

January 2014

November 2014

The convection of close red supergiant stars observed with near-infrared interferometry
2014: evolution of the signal

TBL/Narval (spectro-polarisation)
Aurière, Lopez Ariste, Mathias et al. in prep.
Spring 2015: VLT/SPHERE

Kervella et al. in prep. (preliminary)
Conclusion

Antares
- Convection: statistical approach using RHD simulations (resolution up to more than 1/10 of the star diameter)

Betelgeuse
- NIR photosphere, massive hot spot evolving over 4 years
- What would be the result with only one sample in the 1st lobe?
 - Related to spectro-polarimetric measurements?
 - Montargès et al. A&A in prep.
- Visible: higher photosphere domain?

⇒ Complex and unexpected shape of RSG
⇒ Evolution clearly visibly from one epoch to one other
Backups
The convection of close red supergiant stars observed with near-infrared interferometry.