Dynamic Facility Location via Exponential Clocks

Hyung-Chan An¹ Ashkan Norouzi-Fard² Ola Svensson²

1) Department of Computer Science, Yonsei University, 03722 Seoul, Republic of Korea
2) School of Computer and Communication Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

ABSTRACT

The dynamic facility location problem is a generalization of the classic facility location problem proposed by Eisenstat, Mathieu, and Schabanel to model the dynamics of evolving social/infrastructure networks. The generalization lies in that the distance metric between clients and facilities changes over time. This leads to a trade-off between optimizing the classic objective function and the “stability” of the solution: there is a switching cost charged every time a client changes the facility to which it is connected. While the standard linear program (LP) relaxation for the classic problem naturally extends to this problem, traditional LP-rounding techniques do not, as they are often sensitive to small changes in the metric resulting in frequent switches.

We present a new LP-rounding algorithm for facility location problems, which yields the first constant approximation algorithm for the dynamic facility location problem. Our algorithm installs competing exponential clocks on the clients and facilities, and connect every client by the path that repeatedly follows the smallest clock in the neighborhood. The use of exponential clocks gives rise to several properties that distinguish our approach from previous LP-roundings for facility location problems. In particular, we use no clustering and we allow clients to connect through paths of arbitrary lengths. In fact, the clustering-free nature of our algorithm is crucial for applying our LP-rounding approach to the dynamic problem.

ACKNOWLEDGEMENT

Supported by ERC Starting Grant 335288-OptApprox, and Yonsei University New Faculty Seed Grant. Part of this work was conducted while H.-C. An was at EPFL.