Mn-induced Ferromagnetic Semiconducting Behavior with Linear Negative Magnetoresistance in Sr$_4$(Ru$_{1-x}$Mn$_x$)$_3$O$_{10}$ Single Crystals

Lingyi Xing1, Xin Gui2, Weiwei Xie2, Huibo Cao1, Jiaqiang Yan4, Brian C. Sales4 & Rongying Jin1

Triple-layered Sr$_4$Ru$_3$O$_{12}$ is a unique ferromagnet with the central RuO$_6$ layer behaving differently from two outer layers both crystallographically and magnetically. We report that the partial substitution of Ru by smaller Mn gives rise to modification in crystal structure, electronic and magnetic properties of Sr$_x$(Ru$_{1-x}$Mn$_y$)$_3$O$_{10}$. Through the single crystal X-ray diffraction refinement, we find that (Ru/Mn) O$_6$ octahedral rotation is no longer detectable at $x \geq 0.23$, leading to the tetragonal structure. The magnetization measurements indicate the ferromagnetic transition temperature T_c decreases from 105 K for $x = 0$ to 30 K for $x = 0.41$, with the reduced magnetic moment as well. Remarkably, Mn doping results in the change of magnetic anisotropy from the easy c axis in $x = 0$ to the easy ab plane seen in $x = 0.34$ and 0.41. Such change also removes the ab-plane metamagnetic transition observed in $x = 0$. Furthermore, the electrical resistivity increases with increasing x showing semiconducting behavior with $\Delta \sim 10$ meV for $x = 0.34$ and 30 meV for $x = 0.41$. Under applied magnetic field, the magnetoresistance exhibits negative and linear field dependence in all current and field configurations. These results clearly indicate Sr$_x$(Ru$_{1-x}$Mn$_y$)$_3$O$_{10}$ is a novel ferromagnetic semiconductor with exotic magnetotransport properties.

The Ruddlesden-Popper (RP) ruthenates Sr$_{n+1}$Ru$_n$O$_{3n+1}$ \((n = 1, 2, 3 \ldots \infty)\) have attracted great attention because of their exotic electronic and magnetic properties. While the only difference in their chemical composition is the number of RuO$_6$ octahedral layers \(n\) in the unit cell, their physical properties vary from a p-wave superconductor ($n = 1$), to a paramagnetic metal with magnetic field-induced quantum critical point ($n = 2$), to an unusual ferromagnetic metal with in-plane metamagnetism ($n = 3$), to a ferromagnetic polar metal ($n = \infty$). Both experimental and theoretical studies indicate that the fundamental building block RuO$_6$ octahedron plays an extremely important role in these unconventional properties. In the RP series, RuO$_6$ octahedra are connected by corner sharing O atoms within the \(n\) layers, which can be distorted in multiple ways such as elongation, compression, rotation, and tilt. For example, with increasing \(n\), the rotation angle of RuO$_6$ octahedron changes from zero ($n = 1$), to 7° ($n = 2$), to 11.2° ($n = 3$) to $\sim 12^\circ$ ($n = \infty$). According to theoretical calculations, such distortion impacts the electronic distribution, thus changing the physical properties.

In the RP series, the members with odd \(n\) are particularly interesting. For Sr$_2$RuO$_4$ with \(n = 1\), the RuO$_6$ octahedron rotates about 9° at the surface, even it is absent in bulk. Such rotation may stabilize ferromagnetism at the surface, which is ultimately connected to the Cooper pair formation with parallel spins in bulk. For Sr$_3$Ru$_2$O$_8$ with \(n = 3\), the RuO$_6$ octahedron in the central layer apparently rotates double amount ($\sim 11.2^\circ$) than that in the two outer layers ($\sim 5.6^\circ$), corresponding to different magnetic moment as well. According to density functional calculations, the orthorhombic structure with the rotation of the RuO$_6$ octahedron is in favor of ferromagnetic coupling. In the previous study of Sr$_x$(Ru$_{1-x}$Mn$_y$)$_3$O$_{10}$, partial replacement of Ru by smaller Mn leads to the decrease of (Ru/Mn)O$_6$ octahedral rotation, and long-range antiferromagnetic (AFM) ordering at T_N^1. Intriguingly, T_N^1 versus x is dome-like with both T_N^1 and the rotation vanishes at the same doping level. This

1Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA. 2Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, USA. 3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. 4Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. Correspondence and requests for materials should be addressed to R.J. (email: rjin@lsu.edu)
Orthogonalized U tensor (Å²).

Table 1. Atomic coordinates and equivalent isotropic displacement parameters of Sr₄(Ru₀.77(Mn₀.23)₃O₁₀ at 300 (2) K obtained through single crystal X-ray diffraction refinement. Ueq is defined as one-third of the trace of the orthogonalized U tensor (Å²).

Atom	Wyckoff	Occupancy	x	y	z	Ueq
Sr1	4e	1	0	0	0.43011 (4)	0.0092 (3)
Sr2	4e	1	0	0	0.29737 (4)	0.0074 (3)
(Ru/Mn) 1	4e	0.784 (8)/0.216	½ ½ ½	0.35987 (3)	0.0045 (3)	
(Ru/Mn) 2	2a	0.741 (8)/0.259	½ ½ ½	0.0033 (4)		
O1	4e	1	½ ½ ½	0.2986 (2)	0.009 (2)	
O2	4e	1	½ ½ ½	0.4310 (4)	0.016 (2)	
O3	8g	1	½ 0 ½	0.3610 (2)	0.014 (1)	
O4	4c	1	½ 0 ½	0.043 (4)		

Table 2. Atomic coordinates and equivalent isotropic displacement parameters of Sr₄(Ru₀.59(Mn₀.41)₃O₁₀ at 300(2)K obtained through single crystal X-ray diffraction refinement. Ueq is defined as one-third of the trace of the orthogonalized U tensor (Å²).

Atom	Wyckoff	Occupancy	x	y	z	Ueq
Sr1	4e	1	0	0	0.43022 (4)	0.0093 (3)
Sr2	4e	1	0	0	0.29779 (3)	0.0076 (3)
(Ru/Mn)1	4e	0.596(8)/0.404	½ ½ ½	0.35989 (3)	0.0045 (3)	
(Ru/Mn)2	2a	0.575(8)/0.425	½ ½ ½	0.0034 (4)		
O1	4e	1	½ ½ ½	0.2906 (2)	0.010 (2)	
O2	4e	1	½ ½ ½	0.4309 (2)	0.014 (2)	
O3	8g	1	½ 0 ½	0.3609 (2)	0.012 (1)	
O4	4c	1	½ 0 ½	0.038 (3)		

Suggests that the correlation between octahedral rotation and magnetic coupling is more complex than simple monotonic response. Given its magnetic ground state and the difference in local structure between outer and central layers, Sr₄Ru₃O₁₀ could be much more susceptible to Mn doping than the case of n = 2. In this article, we report, for the first time, the experimental investigation of Mn doped Sr₄Ru₃O₁₀ single crystals, including the crystal structure, magnetization, and electrical transport properties. The partial replacement of Ru by Mn results in the modification of (1) crystal structure by removing octahedral rotation, (2) magnetic interaction by changing the easy axis from the c direction to the ab plane, and (3) electrical conduction from metallic to semiconducting with unusual magnetotransport behavior.

Results and Discussion

For both nominal x = 0.25 and 0.5 crystals, our single-crystal X-ray diffraction refinement results in structural and compositional information that are given in Tables 1 and 2, respectively. The refinement indicates that they form a tetragonal structure (S.G. 14/mmm) with actual x = 0.23 and 0.41, respectively. Note that the actual Mn concentration is the average value of Mn in the central layer (Mn1) and outer layers (Mn2). While Mn is randomly distributed within each layer, our structural refinement indicates that Mn1 concentration is slightly lower than Mn2 in both x = 0.23 and 0.41. As summarized in Tables 1 and 2 for x = 0.23 and 0.41, the atomic coordination and occupancy correspond to the Sr₄(Ru₁₋ₓMnₓ)₃O₁₀ phase with lattice parameters a = b = 3.9033(5) Å and c = 28.138(3) Å for x = 0.23, and a = b = 3.910(4) Å and c = 27.96(3) Å for x = 0.41. The doping concentration x obtained from XRD is consistent with the element analysis through wavelength dispersive spectroscopy (WDS) via Joel JXA-8230 Electron Microprobe. The WDS measurements of nominal x = 0.4 single crystals give actual x = 0.34, which are used for the investigations of electrical and magnetic properties presented below.

Figure 1(a) depicts the crystal structure of Sr₄(Ru₁₋ₓMnₓ)₃O₁₀ for x = 0.23 and 0.41, with the indication of two Ru/Mn ((Ru/Mn)₁ and (Ru/Mn)₂) sites and four O (O₁, O₂, O₃, O₄) sites. Compared to the undoped case (x = 0) in Fig. 1(a), both the number of Ru/Mn and O sites are reduced. The change from orthorhombic for x = 0 to tetragonal for x = 0.23, and 0.41 indicates the removal of octahedral rotation upon Mn doping. While a (b) (the values for parent compound are divided by √2) remains more or less a constant, lattice parameter c decreases with increasing x as plotted in Fig. 1(b). This means that the unit cell volume decreases with increasing x (see the inset of Fig. 1(b)). To understand the origin of unit cell shrinkage, we plot the x dependence of the bond lengths of Ru/Mn-O in four different octahedra (I, II, III and IV, referred from x = 0) in Fig. 1(c–f), respectively. With increasing x, while the in-plane bond length slightly decreases, the out-of-plane Ru/Mn-O bond length decreases more dramatically. By calculating the ratio of the average out-of-plane to in-plane Ru/Mn-O distance, we obtain the x dependence of the Jahn-Teller (JT) distortion b₇ for I, II, III and IV, which are shown in Fig. 1(g). Note that b₇ for outer-layer octahedra (I and III) decrease from 1.05 to 1.00 while those for central-layer octahedra (II and IV) decrease from 1.01 to 0.99, as x increases from 0 to 0.41. These indicate Mn doping makes the outer-layer octahedra less elongated, and the central-layer ones slightly compressed.
Figure 1. (a) Crystal structure of Sr$_x$(Ru$_{1-x}$Mn$_x$)$_2$O$_{12}$ (x = 0.23 and 0.41) (left) and the parent compound Sr$_4$Ru$_3$O$_{12}$ (right)3. (b) Doping (x) dependence of lattice parameters a, b, and c. For $x = 0$, $a/\sqrt{2}$ and $b/\sqrt{2}$ are used. The inset is the x dependence of the unit cell volume V. (c–f) Doping (x) dependence of the Bond lengths of (Ru/Mn)-O in four different octahedral. (g) Doping (x) dependence of the Jahn-Teller distortion Δ_T for four different octahedra.

Figure 2(a,b) show the temperature dependence of the magnetic susceptibility for $x = 0.34$ and 0.41 measured with $H = 1$ T parallel to the ab plane (χ_{ab}) and c axis (χ_c), respectively. While the overall profile is similar to that observed in $x = 0^1$, several features are worth noting: (1) both χ_{ab} and χ_c only reflect one magnetic transition T_C, which is 35 K for $x = 0.34$ and 30 K for $x = 0.41$; (2) $\chi_{ab} > \chi_c$ for $x = 0.34$ and 0.41, indicating that the magnetic easy axis is along the ab plane. Compared to the case of $x = 0$, T_C obviously is decreased and the magnetic easy axis is switched from the c direction to the ab plane upon Mn doping. In analyzing the high temperature susceptibility data using the Curie–Weiss law $\chi = \chi_0 + \frac{N\mu_B^2/\hbar\kappa_B}{T - \theta_{CW}}$, ($\chi_0$ is a constant, N is the Avogadro constant, and κ_B the Boltzmann constant), we obtain positive Curie-Weiss temperature θ_{CW} and effective moment μ_{eff}. For $x = 0.34$, $\chi_0 \sim -0.003$ emu/mol, $\theta_{CW} \sim 33$ K and $\mu_{eff} \sim 3.4\mu_B$ and $\chi_0 \sim -0.01$ emu/mol, $\theta_{CW} \sim 37$ K and $\mu_{eff} \sim 3.2\mu_B$ for $x = 0.41$. The positive θ_{CW} value indicates that magnetic interaction is ferromagnetic along both the ab plane and c axis, similar to the $x = 0$ case4. However, for $x = 0.41$, θ_{CW} is higher than T_C, which usually occurs in low-dimensional or frustrated magnetic systems. While there is anisotropy in magnetic susceptibility above θ_{CW}, the tetragonal structure disfavors magnetic frustration as well. One possibility is that the compressed central (Ru/Mn)O$_6$ layer [see Fig. 1(g)] may be in favor of antiferromagnetic interaction, while the elongated two outer (Ru/Mn)O$_6$ layers support ferromagnetic interaction according to theoretical calculations11,12. The mixed ferromagnetic and antiferromagnetic interactions result in higher θ_{CW} but smaller μ_{eff} in $x = 0.41$ compared to the case of $x = 0.34$. Although similar argument also should apply to the latter case, antiferromagnetic interaction is less dramatic own to smaller or close-to-zero compression of the central (Ru/Mn)O$_6$ octahedra [see Fig. 1(g)]. Nevertheless, the estimated μ_{eff} for $x = 0.34$, and 0.41 corresponds to effective spin $1 < S_{eff} \sim 1.19$–1.28 $< 2/3$ for Ru/Mn, slightly higher than the undoped case with $S = 1^2$. This suggests that Mn has the same valence as Ru$^{4+}$, i.e., Mn$^{4+}$, which gives $S = 3/2$.

To further identify the nature of the magnetic interaction in the doped systems, the magnetization hysteresis is measured at various temperatures, which is presented in Fig. 2(c–f) for both $x = 0.34$ and 0.41 with $H//ab$ and $H//c$, respectively. In both directions, $M(H)$ is linear at high temperatures for $x = 0.34$ and 0.41. As temperature is lowered, non-linear $M(H)$ is observed at low fields as seen at $T = 80$ K. However, the hysteresis loop does not occur until T approaches T_C, consistent with long-range ferromagnetic ordering. More importantly, there is no sudden increase upon increasing magnetic field in either M_{ab} or M_c. This indicates the absence of the metamagnetic transition up to 7 Tesla in both $x = 0.34$ and 0.41. Furthermore, the magnetic moment at $7 T$ decreases with increasing Mn doping level, consistent with the scenario that Mn doping increases antiferromagnetic interaction.
According to previous studies, small percentage of Mn doping in single-layered Sr$_2$RuO$_4$ ($n=1$)22 and double-layered Sr$_3$Ru$_2$O$_7$ ($n=2$)8,23 results in antiferromagnetic insulating ground state. The same trend is observed in SrRuO$_3$ ($n=\infty$), in which more than 39% Mn doping turns the system into an AFM insulator as well24,25. The fact that Sr$_4$Ru$_1$Mn$_{0.3}$O$_{10}$ ($x=0.34$ and 0.41) retains its ferromagnetic (FM) ordering is remarkable, suggesting that the magnetic interaction in the $n=3$ system is different from those mentioned above.

Figure 3(a–e) show temperature dependence of both in-plane (ρ_{ab}) and c-axis (ρ_c) resistivities for $x=0.34$ (a–c) and 0.41 (d–e), respectively. Note that, for $x=0.34$, ρ_c shows a semiconducting behavior in the entire measured temperature range while the metal-insulator transition (MIT) temperature occurs at 215 K in the ab-plane (see Fig. 3(c)). For $x=0.41$, we can speculate that this transition is beyond 300 K, as both ρ_{ab} and ρ_c are non-metallic below 300 K. While no anomaly is observed in ρ_{ab} and ρ_c at T_C, the resistivity anisotropy ρ_c/ρ_{ab} presented in Fig. 3(f), shows steep change below T_C than that at higher temperatures. This is consistent with the magnetic anisotropy that stronger in-plane ferromagnetism ($M_{ab}>M_c$) results in better electrical conduction along the ab plane. By replotting the temperature dependence of resistivities as $\ln\rho$ versus T^{-1} in the inset of Fig. 3(a,b,d and e), liner relationship is clearly revealed. This indicates that both $\rho_{ab}(T)$ and $\rho_c(T)$ can be described by the thermal activation model $\rho = \rho_0 \exp(\Delta/2k_BT)$, where ρ_0 is a temperature-independent constant, and Δ is the thermal activation energy. By fitting experimental data to the formula, we obtain $\Delta \sim 10$ meV and 30 meV for $x=0.34$ and 0.41, respectively. The solid lines in the insets of Fig. 3(a,b,d and e) represent the fitting results, which describe the experimental data very well.
The above electrical and magnetic properties indicate that the Mn-doped Sr₄(Ru₁₋ₓMnx)₃O₁₀ (x = 0.34 and 0.41) is a ferromagnetic semiconductor with a narrow energy gap. This sets it apart from other sister compounds with Mn doping and adds a new member in a small magnetic semiconductor family. Further evidence for ferromagnetic semiconducting properties of Sr₄(Ru₁₋ₓMnx)₃O₁₀ (x = 0.34 and 0.41) is reflected in magnetoresistance (MR). Figure 4(a–d) show, for x = 0.34, the field dependence of the MR for //ab and //c and H//ab and H⊥ab (MR∥), //ab and H⊥ab (MR⊥), //ab and H//c (MR∥), and //c and H⊥c (MR⊥), respectively. Several features are worth noting. First, the MR in all field and current configurations is negative at T ≤ 150 K. Second, |MR∥| > |MR⊥| and |MR∥| > |MR⊥| in all configurations exhibits more or less linear field dependence without the sign of saturation up to 14 Tesla. The same features also are observed for x = 0.41 as shown in Fig. 4(e–h).

The negative MR for Sr₄(Ru₁₋ₓMnx)₃O₁₀ (x = 0.34 and 0.41) is different from that seen in the parent compound, which is positive along both the //plane and c direction prior to the metamagnetic transition field. This confirms that the magnetic properties of Mn-doped system are different from the undoped case. Furthermore, the fact that |MR∥| > |MR⊥| and |MR∥| > |MR⊥| indicate that spin scattering is strong in the //plane, and can be more effectively suppressed when //ab. This is consistent with the observation that the magnetic easy axis in Sr₄(Ru₁₋ₓMnx)₃O₁₀ (x = 0.34 and 0.41) is along the //plane. The most remarkable feature is the linear–H dependence of the negative MR in all configurations. While it is discussed in both classic and quantum scenarios, linear negative MR (LNMR) in all configurations is rare.

In normal circumstances, one would expect that MR exhibits the HF dependence in low fields and eventually saturates at high fields. Linear MR can be found in materials with open Fermi surfaces, disordered metals or semiconductors, and in the extreme quantum limit with high correlation and defects, and polycrystalline graphite consisting of nano-sized particles. In the latter case, the system exhibits semiconducting behavior with thermally activated electrical conduction. Due to its polycrystalline nature, it consists of weak localization (WL) and (2) there is no sign for cusp-shaped H dependence in MR up to 14 Tesla down to 2 K (see Fig. 4).

For Sr₄(Ru₁₋ₓMnx)₃O₁₀, the observed LNMR should be related to Mn doping as it is (1) absent in x = 0.34, (2) larger in higher Mn doping level under the same condition (see Fig. 4), and (3) appearing below and above T_C. The fact that LNMR occurs in all current and field configurations with small anisotropy for both x = 0.34 and 0.41 indicates that it is not related to dimensional confinement nor orbital nature in our system. Similar behavior was observed in Be-doped AlGaAs – GaAs quantum well structures, in which the LNMR is attributed to spin exchange interactions between localized states. Under the application of magnetic field, spin disorder related...
to exchange interactions is suppressed and Zeeman energy activates carriers in the localized states to delocalized states, leading to LNMR40,45. This is consistent with our observation that the largest LNMR occurs when H is applied along the magnetic easy (\textit{ab}) plane and continuous increase of magnetization (see Fig. 2). However, this scenario cannot explain the increased LNMR with increasing x, as energy gap is enlarged and spin polarization becomes weaker. Theoretically, MR in doped ferromagnetic semiconductors is expected to be inversely proportional to the number of charge carriers per magnetic unit cell30. Our data is consistent with this picture, as Mn doping results in charge localization thus reducing charge carrier density in $\text{Sr}_4(\text{Ru}_{1-x}\text{Mn}_x)\text{O}_{10}$.

In summary, we have successfully grown Mn-doped single crystalline $\text{Sr}_4(\text{Ru}_{1-x}\text{Mn}_x)\text{O}_{10}$ with x up to 0.41. Single crystal X-ray diffraction indicates that the partial substitution of Ru by Mn results in symmetry change from orthorhombic to tetragonal due to the removal of octahedral rotation. Both electrical and magnetic properties are changed as well. For $x = 0.34$ and 0.41, the system becomes ferromagnetic semiconducting with $T_C \sim 35$ K and energy gap ~10 meV for $x = 0.34$ and $T_C \sim 30$ K and 30 meV for $x = 0.41$, making $\text{Sr}_4(\text{Ru}_{1-x}\text{Mn}_x)\text{O}_{10}$ an excellent material system to study ferromagnetic semiconducting properties. One of remarkable features is its linear negative MR observed in a wide temperature and field range in all current and field configurations. Such behavior

Figure 4. Magnetic field dependence of MR for $x = 0.34$ (a–d) and 0.41 (e–h) single crystals measured in the configurations of $I/\parallel ab$ and $H/\parallel I$ (a,e), $I/\parallel ab$ and $H \perp I$ (b,f), $I/\parallel c$ and $H/\parallel I$ (c,g), and $I/\parallel c$ and $H \perp I$ (d,h).
may be explained by considering spin exchange interactions between localized states, which likely increases with increasing Mn doping. Our results shed important insights for linear MR particularly in the case of LNMR.

Methods
High-quality Sr$_{(1-x)$Ru$_x$Mn$_x$}O$_{10}$ single crystals were grown via the floating-zone technique. For making both seed and seed rods, polycrystalline Sr$_{(1-x)$Mn$_x$}O$_{10}$ was first prepared by heating the mixture with the molar ratio SrCO$_3$: [(1 − x)Ru + xMnO$_2$] = 4: 3 up to 1400 °C for 24 h in oxygen atmosphere with quick cool off by quenching. It is then hydrostatically pressed into cylinder-shaped rods, and further sintered at 950 °C for another 12 h in oxygen atmosphere. Single crystals were grown through melting the feed rod and moving downward with the speed of 30 mm/h. To prevent oxygen deficiency, 0.9 MPa oxygen pressure was applied during the growth. In addition, both seed and seed rods were rotated in opposite directions at 20 rpm to improve homogeneity and reduce possible impurity.

For single-crystal X-ray diffraction (XRD), a single crystal was mounted on the tip of Kapton loop, and data were collected on a Bruker Apex II X-ray diffractometer with Mo radiation $\lambda = 0.71073$ Å. The SMART software was used for data acquisition over a full sphere of reciprocal space with 0.5° scans in ω with an exposure time of 10 s per frame. The 20 range extended from 0° to 80°. Intensities were extracted and corrected for Lorentz and polarization effects with the SAINT program. Numerical absorption corrections were accomplished with XPREP which is based on face-indexed absorption. The crystal structure was determined based on full-matrix least-squares methods using the SHELXLIT package.

Physical property measurements were investigated in $x = 0.34$ and 0.41 single crystals. The magnetization was measured using the magnetic property measurement system (MPMS, Quantum Design), while the electrical resistivity was carried out in the physical property measurement system (PPMS, Quantum Design).

References
1. Maeno, Y. et al. Superconductivity in a layered perovskite without copper. Nature 372, 532–534 (1994).
2. Grigera, S. A. et al. Magnetic Field-Tuned Quantum Criticality in the Metallic Ruthenate Sr$_2$RuO$_4$. Science 294, 329 (2001).
3. Crawford, M. K. et al. Structure and magnetism of single crystal Sr$_2$RuO$_4$: A ferromagnetic tri-layer rutherenide. Phys. Rev. B 65, 214412 (2002).
4. Callaghan, A., Moeller, C. W. & Ward, R. Magnetic interactions in ternary rheniun oxides. Inorg Chem 5, 1572–1576 (1966).
5. Friedt, O. et al. Structural and magnetic aspects of the metal-insulator transition in Ca$_{0.8}$Sr$_{0.2}$RuO$_4$. Phys. Rev. B 63, 174432 (2001).
6. Ikeda, S.-I., Maeno, Y., Nakatsuji, S., Kosaka, M. & Uwatoko, Y. Ground state in Sr$_3$Ru$_2$O$_7$: Fermi liquid close to a ferromagnetic instability. Phys. Rev. B 62, R6089 (2000).
7. Perry, R. S. et al. Metamagnetism and Critical Fluctuations in High Quality Single Crystals of the Bilayer Rutherenate Sr$_2$RuO$_4$. Phys. Rev. Lett. 86, 2661–2664 (2001).
8. Hu, B. et al. Structure-property coupling in Sr$_{1-x}$Mn$_x$O$_3$. Phys. Rev. B 84, 174411 (2011).
9. Chen, C. et al. Hidden phases revealed at the surface of double-layered Sr$_{1-x}$Mn$_x$O$_3$. Phys. Rev. B 94, 085420 (2016).
10. Matzdorf, R. et al. Ferromagnetism Stabilized by Lattice Distortion at the Surface of the p-Wave Superconductor Sr$_2$RuO$_4$. Science 289, 746 (2000).
11. Fang, Z. & Terakura, K. Magnetic phase diagram of Ca$_x$Sr$_{1-x}$RuO$_4$ governed by structural distortions. Phys. Rev. B 64, 020509 (2001).
12. Singh, D. J. & Mazin, I. I. Electronic structure and magnetism of Sr$_2$RuO$_4$. Phys. Rev. B 63, 165101 (2001).
13. Huang, Q. et al. Neutron Powder Diffraction Study of the Crystal Structures of Sr$_2$RuO$_4$ and Sr$_2$IrO$_4$ at Room Temperature and at 10 K. J Solid State Chem 112, 355–361 (1994).
14. Huang, Q., Lynn, J. W., Erwin, R. W., Jarupatrakorn, J. & Cava, R. J. Oxygen displacements and search for magnetic order in Sr$_2$RuO$_4$. Phys. Rev. B 58, 8515 (1998).
15. Shaked, H., Jorgensen, J. D., Chmaissem, O., Ikeda, S. & Maeno, Y. Neutron Diffraction Study of the Structural Distortions in Sr$_2$RuO$_4$. J Solid State Chem 154, 361–367 (2000).
16. Weickert, F. et al. Missing magnetism in Sr$_2$RuO$_4$: Indication for Antisymmetric Exchange Interaction. Scientific Reports 7, 3867 (2017).
17. Malvestuto, M. et al. Electronic structure trends in the Sr$_{1-x}$Ru$_x$O$_{3-δ}$ family (n = 1, 2, 3). Phys. Rev. B 83, 165121 (2011).
18. Malvestuto, M. et al. Nature of the apical and planar oxygen bonds in the Sr$_{1-x}$Ru$_x$O$_{3-δ}$ family (n = 1, 2, 3). Phys. Rev. B 88, 195143 (2013).
19. Carlesi, F. et al. Double magnetic transition in Sr$_2$RuO$_4$: Relationship to Other layered metallic oxides. Phys. Rev. B 89, 205120 (2014).
20. Weickert, F. et al. In-depth study of the H−T phase diagram of Sr$_2$RuO$_4$: Observation of magnetic fluctuations. Physica B 536, 634–636 (2018).
21. Cao, G., McCall, S. K., Crow, J. E. & Guertin, R. P. Ferromagnetism in Sr$_2$Ru$_{1-x}$Mn$_x$O$_4$: Relationship to other layered metallic oxides. Phys. Rev. B 56, R5740 (1997).
22. Ortmann, J. E. et al. Competition Between Antiferromagnetism and Ferromagnetism in Sr$_2$RuO$_4$. Probing by Mn and Co Doping. Scientific Reports 3, 2950 (2013).
23. Mathieu, R. et al. Impurity-induced transition to a Mott insulator in Sr$_2$RuO$_4$. Phys. Rev. B 72, 092404 (2005).
24. Cao, G. et al. Itinerant ferromagnetism to insulating antiferromagnetism: A magnetic and transport study of single crystal Sr$_{1-x}$Mn$_x$O$_3(0 \leq x < 0.60)$. Phys. Rev. B 71, 035104 (2005).
25. Horiba, K. et al. Electronic structure of Sr$_{1-x}$Mn$_x$O$_3$ studied by photoemission and x-ray absorption spectroscopy. Phys. Rev. B 81, 245127 (2010).
26. Fobes, D. et al. Phase diagram of the electronic states of triflayered rutherenate Sr$_2$Ru$_3$O$_7$. Phys. Rev. B 75, 094429 (2007).
27. Fobes, D. et al. Anisotropy of magnetoresistivities in Sr$_2$Ru$_3$O$_7$: Evidence for an orbital-selective metamagnetic transition. Phys. Rev. B 81, 172402 (2010).
28. Pippard, A. B. Magnetoresistance in metals. Cambridge University Press, Cambridge (1989).
29. Kapitza, P. The change of electrical conductivity in strong magnetic fields. Proceedings of the Royal Society of London A 123, 292 (1929).
30. Majumdar, P. & Littlewood, P. B. Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors. Nature 395, 479 (1998).
31. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily doped semiconductors. Nature 426, 162 (2003).
32. Parish, M. M. & Littlewood, P. B. Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005).
33. Pan, J., Karki, A., Plummer, E. W. & Jin, R. Doping effect on the physical properties of Ca$_{0.5}$PbAs$_4$(Fe$_2$As$_4$)$_2$ single crystals. Journal of Physics: Condensed Matter 29, 485702 (2017).
34. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788 (1998).
35. Abrikosov, A. A. Quantum linear magnetoresistance. Europhys Lett 49, 789–793 (2000).
36. Abrikosov, A. A. Quantum linear magnetoresistance; solution of an old mystery. *Journal of Physics A: Mathematical and General* **36**, 9119–9131 (2003).
37. Dmitriev, A., Dyakonov, M. & Jullien, R. Anomalous Low-Field Classical Magnetoresistance in Two Dimensions. *Phys. Rev. Lett.* **89**, 266804 (2002).
38. Chetanov, V. V., Dmitriev, A. P. & Kachorovskii, V. Y. Anomalous negative magnetoresistance caused by non-Markovian effects. *Phys. Rev. B* **68**, 201304 (2003).
39. Sotomayor, N. M. et al. Negative linear classical magnetoresistance in a corrugated two-dimensional electron gas. *Phys. Rev. B* **70**, 235326 (2004).
40. Agrinskaya, N. V., Kozub, V. I., Mikhailin, N. Y. & Shamshur, D. V. Spin-controlled negative magnetoresistance resulting from exchange interactions. *JETP Lett.* **105**, 484–487 (2017).
41. Schluck, J. et al. Linear negative magnetoresistance in two-dimensional Lorentz gases. *Phys. Rev. B* **97**, 115301 (2018).
42. Zhang, X., Xue, Q. Z. & Zhou, D. D. Positive and negative linear magnetoresistance of graphite. *Phys Lett A* **320**, 471–477 (2004).
43. Hishiyama, Y., Irumano, H., Kaburagi, Y. & Soneda, Y. Structure, Raman scattering, and transport properties of boron-doped graphite. *Phys. Rev. B* **63**, 245406 (2001).
44. Fujita, S. Negative magnetoresistance in carbons and diffuse scattering at crystallite boundaries. *Carbon* **6**, 746–748 (1968).
45. Fukuyama, H. & Yoshida, K. Negative Magnetoresistance in the Anderson Localized States. *J. Phys. Soc. Jpn.* **46**, 102–105 (1979); *ibid.* **46**, 11522 (1979).
46. Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr A* **64**, 112–122 (2008).

Acknowledgements
This material is based upon work supported by the U.S. Department of Energy under EPSCoR Grant No. DE-SC0016315 (LX, RJ), and Louisiana Board of Regents Research Competitiveness Subprogram (RCS) under Contract Number LEQSF(2017-20)-RD-A-08 grant for X-ray diffraction refinement (XG, WX). This research used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory for magnetic structure refinement (HC). High-pressure floating-zone technique was employed for single crystal growth under the supervision of JY and BCS who are supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Division of Materials Sciences and Engineering.

Author Contributions
R.J. designed research; L.X. synthesized the sample with assistance from J.Y. and B.C.S. and conducted physical property measurements; X.G. and W.X. carried out the single crystal XRD refinement; H.C. did magnetic properties analysis; L.X. and R.J. wrote the manuscript with the contributions from all the authors.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018