Minireview

Emerging ethnic differences in lung cancer therapy

I Sekine*,1, N Yamamoto1, K Nishio2 and N Saijo3

1Division of Internal Medicine and Thoracic Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan; 2Department of Genome Biology, Kinki University School of Medicine, Sayama 389-8511, Japan; 3Division of Internal Medicine, National Cancer Center Hospital East, Kashiwanoha 6-5-1, Kashiwa 277-8577, Japan

Although global clinical trials for lung cancer can enable the development of new agents efficiently, whether the results of clinical trials performed in one population can be fully extrapolated to another population remains questionable. A comparison of phase III trials for the same drug combinations against lung cancer in different countries shows a great diversity in haematological toxicity. One possible reason for this diversity may be that different ethnic populations may have different physiological capacities for white blood cell production and maturation. In addition, polymorphisms in the promoter and coding regions of drug-metabolising enzymes (e.g., CYP3A4 and UGT1A1) or in transporters (e.g., ABCB1) may vary among different ethnic populations. For example, epidermal growth factor receptor (EGFR) inhibitors are more effective in Asian patients than in patients of other ethnicities, a characteristic that parallels the incidence of EGFR-activating mutations. Interstitial lung disease associated with the administration of gefitinib is also more common among Japanese patients than among patients of other ethnicities. Although research into these differences has just begun, these studies suggest that possible pharmacogenomic and tumour genetic differences associated with individual responses to anticancer agents should be carefully considered when conducting global clinical trials.

British Journal of Cancer (2008) 99, 1757–1762. doi:10.1038/sj.bjc.6604721 www.bjcancer.com
Published online 4 November 2008
© 2008 Cancer Research UK

Keywords: lung cancer; ethnicity; epidermal growth factor receptor; pharmacogenomic

Lung cancer is the most common malignancy worldwide. Approximately 1.2 million people are diagnosed with lung cancer annually (accounting for 12.3% of all cancers); the second most common malignancy is breast cancer (10.4%), followed by colorectal cancer (9.4%). As lung cancer almost invariably has a poor prognosis, it is the largest single cause of death from cancer in the world, with a mortality of 1.1 million annually (Stewart and Kleihues, 2003). Only 15% of lung cancer patients have a disease that is confined to the lung and are candidates for surgical resection; most patients with this disease have distant metastases or pleural effusion at the time of their initial diagnosis. These patients can be treated with systemic chemotherapy, but the efficacy of currently available anticancer agents is limited and patients with advanced diseases rarely live long.

As the development of new anticancer agents and chemotherapeutic regimens is both time and money consuming, clinical trials need to be as efficient as possible. One effort in this direction has been the adoption of global clinical trials for new agents that involve trial centres on more than one continent; this strategy enables adequate sample sizes to be obtained in a relatively short-time period and eliminates the need for redundant clinical trials with similar objectives conducted in different countries. However, whether the results of clinical trials performed in one population can be fully extrapolated to other populations remains questionable because of potential differences in trial designs, study-specific criteria, patient demographics, frequency of monitoring, and population-related pharmacokinetics, pharmacodynamics and pharmacogenomics. Recently, these genetic and physiologic factors influencing cancer chemotherapy have been increasingly examined and reported.

CLINICAL OBSERVATIONS OF TOXICITY DURING CYTOTOXIC CHEMOTHERAPY

A comparison of phase III trials for the same drug combinations against non-small cell lung cancer conducted in different countries shows a great diversity in toxicity (Sekine et al, 2006). Among trials studying the combination of carboplatin and paclitaxel, the dose of carboplatin was fixed in all the trials, but the dose of paclitaxel was 200 mg m⁻² in Japanese and European trials and 225 mg m⁻² in American trials. Grades 3–4 neutropenia was noted in 88% of the patients in the Japanese trial, 15–51% of the patients in the European trials, and 6–65% of the patients in the American trials. Meanwhile, grades 3–4 febrile neutropenia was encountered in 16% of the patients in the Japanese trial, 0–9% of the patients in the European trials, and 2–4% of the patients in the American trials (Table 1). For combinations of cisplatin and docetaxel (Table 1) and cisplatin and vinorelbine (Table 2), the incidences of grades 3–4 neutropenia and febrile neutropenia were almost the same between phase III trials performed in different areas, but the doses of docetaxel and vinorelbine in the Japanese trials were lower than those in the European and American trials. Thus, neutropenia in patients receiving a combination of platinum and antimitotubule agents may be more severe in Japanese than in Europeans and Americans. A higher frequency of grades 3–4 neutropenia in Japanese patients than in American patients was associated with combinations of cisplatin and irinotecan (65 vs...
ETHNIC DIFFERENCES IN DRUG METABOLISING ENZYMES

An explanation for the ethnic differences in haematological toxicity may be the varying activities of drug-metabolising enzymes and transporters that are mainly associated with polymorphisms in the promoter and coding regions of these enzymes (Fujita and Sasaki, 2007). The haematological toxicity of docetaxel monotherapy was associated with the clearance of this agent in Asian patients, a phenomenon that can be largely explained by CYP3A4 activity (Yamamoto et al., 2000). A study conducted in the Netherlands showed that docetaxel clearance was associated with the homozygous C1236T polymorphism in the ABCB1 (p-glycoprotein) gene (ABCB1*8) but was not associated with any CYP3A4 gene polymorphisms (Bosch et al., 2006). In contrast, docetaxel pharmacokinetics were not associated with the percent decrease in neutrophil counts nor with any polymorphisms in the CYP3A4 and ABCB1 genes in American patients (Lewis et al., 2007). Another example of ethnic differences in drug-metabolising enzymes is the association between polymorphisms in genes involved in irinotecan metabolism and irinotecan-induced neutropenia. Among the patients who received irinotecan with or without another anticancer agent, grade 4 neutropenia was noted in 40–57% of the patients with UDP-glucuronosyltransferase (UGT) 1A1*28 (a polymorphism in the promoter region of the UGT1A1 gene) homozygosity, whereas neutropenia was only observed in 15% or less of the patients with wild-type alleles. This association was consistent in both Asian and Caucasian patients, although the frequency of homozygosity was about 10% in Caucasians and much lower in Asians. The UGT1A1*6 allele is another polymorphism at exon 1 that is associated with defective glucuronidation function and is found almost exclusively in Asian individuals with a frequency as high as 20% (Fujita and Sasaki, 2007). A haplotype including UGT1A1*6 and UGT1A17*3, noted in as many as 15% of Japanese patients, and UGT1A1*6 homozygosity, noted in 7% of Korean patients, were significantly associated with decreased glucuronosyltransferase activity for SN-38 and severe neutropenia (Han et al., 2006; Fujita et al., 2005).
Emerging ethnic differences in lung cancer therapy
I Sekine et al

A similar association between objective responses and ethnicity was observed in studies on erlotinib monotherapy for previously treated advanced NSCLC. In an American phase II trial of this agent in 57 advanced NSCLC patients with disease progression or relapse after platinum-based chemotherapy, the response rate was 12% and the MST was 8.4 months (Perez-Soler et al., 2004). In contrast, the combined data of two Japanese phase II trials of erlotinib in similar patient populations showed objective responses in 30 of 106 (28%) patients and an MST of 13.8 months. Among the responders, significantly higher proportions of females (50%) than males (17%) (P = 0.0009) and of never smokers (51%) than smokers (14%) were observed (P < 0.0001) (Tamura et al., 2007). A phase III trial of erlotinib or a placebo in 731 NSCLC patients previously treated with one or two chemotherapy regimens showed that the response rate in Asian patients was higher than that in patients of other ethnicities (28 vs 10%, P = 0.02) (Shepherd et al., 2005).

These results of phases II and III trials consistently suggest that EGFR tyrosine kinase inhibitors may be more effective in Asian patients than in patients of other ethnicities.

In April 2004, the activating mutations of the EGFR gene were identified in NSCLC specimens, and cancers with these mutations were reported to be highly sensitive to gefitinib. The populations with higher responses to gefitinib (females, non-smokers and patients with an adenocarcinoma histology) also have higher incidences of EGFR mutations (Kosaka et al., 2004; Pao et al., 2004; Shigematsu et al., 2005). The incidence of EGFR mutations in surgically resected tissue samples is summarised in Table 3 (Kosaka et al., 2004; Pao et al., 2004; Marchetti et al., 2005; Qin et al., 2005; Shigematsu et al., 2005; Sasaki et al., 2005; Yang et al., 2005; Sasaki et al., 2006). The incidence varies from one report to another, but EGFR mutations tend to be more common among patients with an adenocarcinoma histology and among non-smokers. Among Asian patients, the average incidences of EGFR mutations were 31% overall, 47% among patients with adenocarcinoma, and 56% among non-smokers; among other ethnic populations, however, the average incidences were 7–8% overall, 13–15% among patients with adenocarcinoma, and 34–35% among non-smokers (Table 3). Thus, the percentage of responders to gefitinib or erlotinib almost paralleled the percentage of patients with EGFR mutations.

In NSCLC, mutations in EGFR are common among patients with an adenocarcinoma histology and among non-smokers. Among Asian patients, the average incidences of EGFR mutations were 31% overall, 47% among patients with adenocarcinoma, and 56% among non-smokers; among other ethnic populations, however, the average incidences were 7–8% overall, 13–15% among patients with adenocarcinoma, and 34–35% among non-smokers (Table 3). Thus, the percentage of responders to gefitinib or erlotinib almost paralleled the percentage of patients with EGFR mutations.

EGFR is composed of an extracellular domain, a single transmembrane domain, and a cytoplasmic domain. The extracellular domain contains the ligand binding site for EGF and related molecules, and the cytoplasmic domain contains a tyrosine kinase domain that is responsible for activating downstream signalling pathways. EGFR mutations in NSCLC have important clinical implications, as they are associated with responsiveness to EGFR tyrosine kinase inhibitors and with improved survival. In an analysis of 1120 patients with NSCLC and EGFR mutations, 28% of patients with wild-type EGFR and 51% of patients with EGFR mutations received treatment with gefitinib or erlotinib, and the response rate was 46% for patients with EGFR mutations compared with 12% for patients with wild-type EGFR (P < 0.0001). In addition, the MST was 12.2 months for patients with EGFR mutations compared with 7.2 months for patients with wild-type EGFR (P = 0.0077). These results suggest that EGFR mutations are predictive of sensitivity to EGFR tyrosine kinase inhibitors in NSCLC patients.

In summary, EGFR mutations are common among Asian patients with NSCLC and are associated with improved survival and responsiveness to EGFR tyrosine kinase inhibitors. These findings highlight the importance of considering ethnicity and genetic factors in the selection of patients for EGFR tyrosine kinase inhibitors.
INTERSTITIAL LUNG DISEASE ASSOCIATED WITH GEFITINIB AND ERLOTINIB

The frequencies of grades 3–4 common toxicities after the administration of gefitinib, including diarrhoea, skin rash, and elevated liver transaminase levels, have been similar among study populations, but the incidence of severe interstitial lung disease (ILD) associated with the administration of gefitinib differs between patients in Japan and those in other countries. In the IDEAL studies, two Japanese patients developed grades 3–4 ILD (2%), whereas no patients outside of Japan experienced ILD (Fukuoka et al., 2003; Kris et al., 2003). A retrospective study of 1976 consecutive patients treated with gefitinib at 84 institutions showed that the incidence of ILD was 3.5% and the mortality rate was 1.6%. Several risk factors for the development of gefitinib-induced ILD were identified in the Japanese population: a history of pulmonary fibrosis, a history of smoking, a poor performance status, and a male sex (Ando et al., 2006). A similar incidence of ILD (4.6%) was also noted in association with erlotinib chemotherapy in Japanese phase II trials (Tamura et al., 2007).

The association between ILD and anticancer treatment is a major topic in Japan because (1) the diagnosis of ILD can be difficult and a consensus among physicians is sometimes not reached, (2) the risk factors for ILD have not been fully established, 3) an effective treatment for ILD has not been established and the condition is often fatal, and (4) the low frequency of this complication makes it difficult to conduct pertinent clinical trials. Gefitinib-induced ILD seems to be more common among Japanese patients than among other patients, but the reasons for this ethnic difference are totally unknown.

CONCLUSION

The findings discussed here suggest that considerable variations in the toxicity and efficacy of anticancer agents may exist among patients of different ethnicities. Although research into these differences has just begun, these studies suggest that possible pharmacogenomic and tumour genetic differences associated with individual responses to anticancer agents should be carefully considered when conducting global clinical trials.

ACKNOWLEDGEMENTS

We thank Mika Nagai for her invaluable assistance in the preparation of this manuscript.

REFERENCES

Ando M, Okamoto I, Yamamoto N, Takeda K, Tamura K, Seto T, Ariyoshi Y, Fukuoka M (2006) Predictive factors for interstitial lung disease, antitumor response, and survival in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 24: 2549 – 2556

Belani CP, Lee JS, Socinski MA, Robert F, Waterhouse D, Rowland K, Ansari R, Lilienbaum R, Natale RB (2005) Randomized phase III trial comparing cisplatin-etoposide to carboplatin-paclitaxel in advanced or metastatic non-small cell lung cancer. Ann Oncol 16: 1069 – 1075

Table 3 Incidence of EGFR mutations in surgically resected specimens

Author	Country	Total N	Mutation N (%)	Adenocarcinoma Total N	Mutation N (%)	Non-smokers Total N	Mutation N (%)
Western areas							
Shigematsu	USA	80	11 (14)	44	11 (25)	26	7 (27)
Pao	USA	96	11 (11)	72	11 (15)	15	7 (47)
Yang	USA	219	26 (12)	164	25 (15)	34	12 (35)
Marchetti	Italy	860	39 (5)	375	39 (10)	103*	23 (22)
Total		1255	87 (7)	655	86 (13)	75	26 (35)
Asian areas							
Shigematsu	Japan	263	71 (27)	154	67 (44)	78	47 (60)
Kosaka	Japan	277	111 (40)	224	110 (49)	112*	76 (68)
Tokumo	Japan	120	38 (32)	82	37 (45)	36	25 (69)
Sasaki	Japan	95	35 (37)	71	32 (45)	36	25 (69)
Shigematsu	Taiwan	93	32 (34)	55	31 (56)	55	27 (49)
Qin	China	41	10 (24)	17	7 (41)	21	6 (29)
Soung	Korea	153	30 (20)	69	26 (38)	54	25 (46)
Shigematsu	Others	361	107 (30)	214	102 (48)	135	76 (56)
Total		1403	434 (31)	886	412 (47)	415	231 (56)
Other areas							
Shigematsu	Australia	83	6 (7)	36	5 (14)	7	4 (57)
Shigematsu	Others	158	13 (8)	75	12 (16)	31	9 (29)
Total		241	19 (8)	111	17 (15)	38	13 (34)
Total		2899	540 (19)	1652	515 (31)	528	270 (51)

*Including only patients with adenocarcinoma histology.
J Clin Oncol 19: 3210 – 3218

Kosaka T, Yatabe Y, Endoh H, Kuwano H, Takashahi T, Mizutomi T (2004) Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Res 64: 8919 – 8923

Kosmidis P, Mylonakis N, Nicolaides C, Kalophonos C, Samantas E, Boukouinas J, Fountzilas G, Skarlos D, Economopoulos T, Tsavardis D, Papakostas P, Bacoyniannis C, Dimopoulos M (2002) Paclitaxel plus carboplatin versus gemcitabine plus paclitaxel in advanced non-small-cell lung cancer: a phase III randomized trial. J Clin Oncol 20: 3578 – 3585

Kris MG, Natale RB, Herbst RS, Lynch Jr TJ, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Della C, Wolf MK, Averbuch SD, Ochs JJ, Kay AC (2003) Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290: 2149 – 2158

Lara P, Redman M, Lenz H, Gordon M, Shibata T, Fukuda H, Tamura T, Saijo N, Natale R, Gandara D (2007) Cisplatin (Cis)/etoposide (VP16) compared to cis/irinotecan (CPT11) in extensive-stage small cell lung cancer (E-SCLC): pharmacologic (PG) and comparative toxicity analysis of JCOG 9511 and SWOG 0124. J Clin Oncol 25(Suppl) 390s (abstract 7524)

Le Chevalier T, Brigand D, Douillard JY, Pujol JL, Alberola V, Monnier A, Riviere A, Llanes P, Chompy P, Cigolari S, Gottfried M, Ruffle P, Panizo A, Gaspard MH, Ravaiolli A, Besenval D, Besson F, Martinez A, Berthaud P, Tursz T (1994) Randomized study of vinorelbine and cisplatin versus vinorelbine and carboplatin in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients. J Clin Oncol 12: 360 – 367

Lewis LD, Miller AA, Rosner GL, Dowel JE, Valdivieso M, Relling MV, Egorin MJ, Bies RR, Hollis DR, Levine EG, Otteson GA, Millard F, Ratain MJ (2007) A comparison of the pharmacokinetics and pharmacodynamics of doxetaxel between African-American and Caucasian cancer patients: CALGB 9871. Clin Cancer Res 13: 3302 – 3311

Liu W, Innocenti F, Chen P, Das S, Cook Jr EH, Ratain MJ (2003) Interethnic difference in the allelic distribution of human epidermal growth factor receptor intron 1 polymorphism. Clin Cancer Res 9: 1009 – 1012

Liu W, Innocenti F, Wu MH, Desai AA, Dolan ME, Cook Jr EH, Ratain MJ (2005) A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Res 65: 46 – 53

Marchetti A, Martella C, Feliciani L, Barassi F, Salvatore S, Chella A, Campielle PP, Larussi T, Muccilli F, Mezzetti A, Cucurullo F, Saccro R, Buititta F (2005) EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23: 857 – 865

Mayr FB, Spiel AO, Leitner JM, Firbas C, Klrgel T, Jilma B (2007) Ethnic differences in plasma levels of interleukin-8 (IL-8) and granulocyte colony stimulating factor (G-CSF). Transl Res 150: 10 – 14

Minami H, Sai K, Sako M, Nakaya H, Seno K, Tanaka M, Ito T, Minami Y, Takagi K, Kaniwa N, Sawada J, Hamaguchi T, Yamamoto N, Shirao K, Yamada Y, Ohmatsu H, Kubota Y, Toshiya O, Saito K, Saijo N (2007) Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 17: 497 – 504

Nomura M, Shigematsu H, Li L, Suzuki M, Takahashi T, Estess P, Siegelman J, Smith A, Katoh H, Marchetti A, Shuy JW, Spitz MR, Wistuba II, Minna JD, Gazdar AF (2007) Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Med 4: e125

Ohe Y, Ohashi Y, Kubota K, Tamura T, Nakagawa K, Negoro S, Nishiwaki S, Iwai T, Ohtsu A, Saijo N (2007) Irinotecan pharmacokinetics/pharmacodynamics and UGT1A genetic polymorphisms in Japanese: roles of UGT1A1*6 and *28. Pharmacogenet Genomics 17: 497 – 504

Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria J, Hingorani S, Nihiwaki H, Rothenberg D, Varella-Garcia M, Velcic D, Wilson R, Kris M, Varmus H (2004) EGFR receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101: 13306 – 13311

Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigas J, Clark GM, Santabarbara P, Bonomi P (2004) Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 22: 3258 – 3247

© 2008 Cancer Research UK

British Journal of Cancer (2008) 99 (11), 1757 – 1762
Sekine I, Nokihara N, Kunitoh H, Ohe Y, Saijo N, Tamura T (2006) Common arm analysis: one approach to develop the basis for global standardization in clinical trials of non-small cell lung cancer. *Clin Cancer Res* 12: 1167 – 1173.

Yamamoto N, Tamura T, Kamiya Y, Sekine I, Kunitoh H, Saijo N (2000) Correlation between docetaxel clearance and estimated cytochrome P450 activity by urinary metabolite of exogenous cortisol. *J Clin Oncol* 18: 2301 – 2308.

Yang SH, Mechanic LE, Yang P, Landi MT, Bowman ED, Wampler J, Meerzaman D, Hong KM, Mann F, Dracheva T, Fukushima J, Travis W, Caporaso NE, Harris CC, Jen J (2005) Mutations in the tyrosine kinase domain of the epidermal growth factor receptor in non-small cell lung cancer. *Clin Cancer Res* 11: 2106 – 2110.

Zhang W, Weissfeld JL, Romkes M, Land SR, Grandis JR, Siegfried JM (2007) Association of the EGFR intron 1 CA repeat length with lung cancer risk. *Mol Carcinog* 46: 372 – 380.

Stewart B, Kleihues P (2003) The global burden of cancer. In *World Cancer Report. International Agency for Research on Cancer*, Stewart B, Kleihues P (eds), pp 11 – 19. IARC Press: Lyon.

Tamura T, Nishiwake Y, Watanabe K, Nakagawa K, Matsui K, Takahashi T, Segawa Y, Ichinose Y, Fukushima M, Saijo N (2007) Evaluation of efficacy and safety of erlotinib as monotherapy for Japanese patients with advanced non-small cell lung cancer (NSCLC); integrated analysis of two Japanese phase II studies. *J Thorac Oncol* 2(Suppl): s742.

Thatcher N, Chang A, Parikh P, Rodrigues Pereira J, Ciuleanu T, von Pawel J, Thongprasert S, Tan EH, Pemberton K, Archer V, Carroll K (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). *Lancet* 366: 1527 – 1537.

Toffoli G, Cecchin E, Corona G, Russo A, Buonadonna A, D’Andrea M, Pasetto LM, Pessa S, Errante D, De Pangher V, Giusto M, Medici M, Gaion F, Sandri P, Galligioni E, Bonura S, Boccalon M, Biason P, Frustaci S (2006) The role of UGT1A1*28 polymorphism in the pharmacodynamics and pharmacokinetics of irinotecan in patients with metastatic colorectal cancer. *J Clin Oncol* 24: 3061 – 3068.

Tokumo M, Toyooka S, Kiura K, Shigematsu H, Tomii K, Aoe M, Ichimura K, Tsuda T, Yano M, Tsukuda K, Tabata M, Ueoka H, Tanimoto M, Date H, Gazdar AF, Shimizu N (2005) The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. *Clin Cancer Res* 11: 1167 – 1173.

Published online 26 June 2006. doi:10.1186/1477-7817-9-175.

Emerging ethnic differences in lung cancer therapy

I Sekine et al.