Laser-Induced Electron Transfer in the Dissociative Multiple Ionization of Argon Dimers

YanLan Wang, XuanYang Lai, ShaoGang Yu, RenPing Sun, and XiaoJun Liu
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China

Martin Dorner-Kirchner,1 Sonia Erattupuzha,1 Seyedreza Larimian,1 Markus Koch,2 Václav Hanus,1 Sarayoo Kangaparambil,1 Gerhard Paulus,3 Andrius Baltuška,1 Xinhua Xie,4 and Markus Kitzler-Zeiler1,†
1Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
2Institute of Experimental Physics, Graz University of Technology, A-8010 Graz, Austria
3Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
4SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland

(Received 6 November 2019; revised 28 May 2020; accepted 16 July 2020; published 7 August 2020)

We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar$^{+} +$ Ar$^{2+}$ and Ar$^{2+} +$ Ar$^{2+}$ fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.

DOI: 10.1103/PhysRevLett.125.063202

Photoinduced molecular charge transfer across system boundaries is a key step in many important natural or technical processes such as solar-driven energy production [1,2], photocatalysis [3,4], or photosynthetic activity [5,6]. In these processes, the relocation of charge, initiated by the absorption of a single photon by a molecule, is determined by the energetic and spatial structure of the system. A fundamentally different mechanism for determining charge-localization processes becomes available in strong laser fields. It was shown that the intramolecular localization of electrons during the dissociation of isolated, small molecules can be determined by multiphoton processes driven by intense few-cycle laser pulses using their carrier-envelope phase (CEP) as the control parameter [7–11].

An intriguing yet unexplored question is then, whether strong-field-driven multiphoton processes can influence the localization of charge not only within one molecule, but also across system boundaries. Widely used model systems for investigating intersystem transfer reactions are small van der Waals (vdW) clusters and dimers. vdw dimers are used to study photoinduced biological processes [12–14], photocatalytic reactions [15,16], and energy or charge transfer reactions induced by soft x-ray photons [17–20] and electron impact [21]. vdw systems are also studied with strong laser fields, but in the case of dimers with a focus on the field-driven ionization and fragmentation dynamics [22–35], or electronic energy conversion processes in the case of larger clusters [36–41]. To the best of our knowledge, strong-field driven electron transfer reactions across the system boundary from one entity to another have not been investigated, thus far.

In this Letter, we show, experimentally and by simulations, using the argon dimer, Ar$_2$, as an example, that electron transfer reactions from one argon atom to the other can be driven by a strong laser field and, furthermore, that they are decisive for the ionization and fragmentation behavior of the dimer. Specifically, we demonstrate that an electron liberated at one of the two Ar atoms can be captured by the neighboring atom. This process, which we refer to as the laser-induced transfer of electron (LITE) process, determines the emission timing of the electrons via electron-electron interaction and, thus, depending on the CEP, influences the momenta of the emitted electrons. As a result, the effect of LITE can be observed in our experiments and simulations when comparing the asymmetry of electron emission as a function of CEP for the two ionization-fragmentation channels Ar(1,2) and Ar(2,2), where $\text{Ar}(n,m)$ denotes $\text{Ar}_2 \rightarrow \text{Ar}_2^{(n+m)^+} \rightarrow \text{Ar}^{n^+} + \text{Ar}^{m^+}$.

In our experiments, argon dimers created by supersonic expansion of a few bars of argon gas were ionized by intense laser pulses, linearly polarized along z, with a full width at half maximum (FWHM) duration in intensity of
wavelength was highlighted the peaks resulting from Coulomb explosion at $\text{Ar}(n,m)$. Upon laser ionization of the argon dimers, the two vDW-bound argon atoms, separated by their equilibrium internuclear distance (R_{eq}) undergo fragmentation via Coulomb explosion. We detected the two emerging argon ions, Ar^{n+} and Ar^{n+}, in coincidence and, from their time of flight and impact position on our detector, calculated their three-dimensional momenta p_{Ar}^n and p_{Ar}^m. By imposing momentum conservation conditions onto the ions detected in coincidence, the two-body fragmentation channels of interest, $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$, as well as the channel $\text{Ar}(1,1)$, were selected for further analysis. Because of momentum conservation, the sum momentum of the $(n + m)$ emitted electrons, $p_{\text{Ar}}^{n,m} = \sum_{i=1}^{n+m} p_i$, with p_i the momentum of the ith electron, can be determined from the center of mass recoil momentum of the ions, $p_R = p_{\text{Ar}}^n + p_{\text{Ar}}^m$, using the relation $p_{\text{Ar}}^{n,m} = -p_R$.

Figure 1(a) displays the measured distributions of the kinetic energy released (KER) during fragmentation, $\text{KER} = \frac{\left(\langle p_{\text{Ar}}^n \rangle^2 + \langle p_{\text{Ar}}^m \rangle^2 \right)}{2M}$ with M the atomic mass of argon, for the $\text{Ar}(1,1)$, $\text{Ar}(1,2)$, and $\text{Ar}(2,2)$ channels. For each channel, at least two characteristic main peaks can be identified. The smaller peaks at higher KER values (marked by arrows) were attributed to the process of frustrated tunnel ionization [22–24]. The dominant peaks at lower KER values, highlighted by colored areas in Fig. 1(a), originate from Coulomb explosions of the argon dimers at R_{eq} and are the focus of this letter.

To obtain insight into the multiple ionization dynamics underlying the colored lower KER peaks in Fig. 1(a), we introduce an asymmetry parameter $A_{\text{KER}}^{(n,m)} = \langle n_{\text{up}} - n_{\text{down}} \rangle / \langle n_{\text{up}} + n_{\text{down}} \rangle$, where n_{up} (n_{down}) denote for the channel $\text{Ar}(n,m)$ the number of events with a positive (negative) electron sum momentum along z. Alternatively to $A_{\text{KER}}^{(n,m)}$, one could also analyze the mean electron sum momentum $\langle p_{\text{e}}^{(n,m)} \rangle$. But as we show in the Supplemental Material [48], the two quantities feature an almost identical dependence on the CEP. In the following, we will use $A_{\text{KER}}^{(n,m)}$, as it has the advantage that it can be visually connected to electron yields discussed below. The measured dependence of $A_{\text{KER}}^{(n,m)}$ on CEP for the $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$ channels is depicted in Fig. 2(a).

The key feature in Fig. 2(a) is that the A_{KER} curve for the $\text{Ar}(2,2)$ channel exhibits a clear left phase shift of about 0.23π to that of the $\text{Ar}(1,2)$ channel.

To understand this experimentally observed CEP shift between the two channels, we traced the correlated electrons and the motion of the nuclei in the combined laser and Coulomb fields by performing a 3D classical ensemble model calculation [34,52], described in the Supplemental Material [48]. As the laser intensity is well above the over-the-barrier threshold [53], the two outermost electrons are rapidly stripped from each argon atom [52]. Therefore, we did not model these two initial ionization events and, instead, started from a dimer consisting of two singly charged argon ions (Ar^+Ar^+), with one active electron situated around the position of each ion.

The CEP dependence of A_{KER} predicted by the simulations for the $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$ channels is shown in Fig. 2(b). The simulated curves agree very well with the measured ones, in particular, the CEP left shift of the $\text{Ar}(2,2)$ channel is very well reproduced. The origin of this phase shift can be extracted from the simulations by analyzing the distributions of ionization times $t_{1\text{st}}$ and $t_{2\text{nd}} > t_{1\text{st}}$ of the laser-driven electron trajectories that lead to the channels $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$, respectively. The ionization time $t_{1\text{st}}$ marks the instant at which the single-particle energy of the first emitted electron becomes positive for the first time. Likewise, $t_{2\text{nd}}$ marks this instant for the second emitted electron in the $\text{Ar}(2,2)$ channel. The distributions of $t_{1\text{st}}$ and $t_{2\text{nd}}$ are plotted in Figs. 2(c)–2(h) for the $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$ channels and three selected values of the CEP. For convenience of the following discussion, the ionization time distributions were separated depending on whether the (sum) momentum of the electron (pair) reaches positive (upper halves) or negative momentum (lower halves).

To explain the CEP left shift between $\text{Ar}(1,2)$ and $\text{Ar}(2,2)$, we start with the CEP dependence of $A_{\text{KER}}^{(1,2)}$. As shown in Figs. 2(c)–2(e), the distributions of the ionization times ($t_{1\text{st}}$) in this channel feature two maxima per peak of the laser field. The reason underlying these two maxima will be explained below. For $\phi_{\text{CEP}} = 0$, the two maxima corresponding to the field peak at ϕ_{A} are marked by cyan and yellow boxes [Fig. 2(c)]. The maxima corresponding to the field peaks at ϕ_{B} and ϕ_{F} are much smaller for $\phi_{\text{CEP}} = 0$. The emission directions of electrons set free during these maxima (up or down, indicated by positive or negative time distributions) are largely determined by the laser vector potential according to the relation $p_{\text{e}} = -A(t_i) = \int_{-\infty}^{t_i} E(t') dt'$ [54,55] with t_i the ionization time. Positive values of $-A(t_i)$ are indicated by gray shading in

FIG. 1. Kinetic energy release (KER) distributions of fragmentation channels $\text{Ar}(n,m)$ with $(n,m) = \{(1,1),(1,2),(2,2)\}$. Arrows mark peaks due to electron recapture, shaded areas highlight the peaks resulting from Coulomb explosion at R_{eq}.

063202-2
Considered. The distributions of area. As a consequence, the CEP dependence of t_A decreasing field maximum at t_B is dominated by only one peak. It is delayed by a laser half cycle to the strongest field maximum at t_B. Again, the reasons for the delay and single peak structure corresponding to the field maximum at t_B becomes gradually larger; at $\varphi_{\text{CEP}} = 0.5\pi$, the negative and positive double-peak structures are roughly equal in area. As a consequence, the resulting time distributions, displayed in Fig. 3(a), show that the emissions can be classified into two types according to the relative emission time of the first and second electrons: One, where the two emissions happen isolated of each other ($t_{1\text{st}} \in [-0.25T, 0.25T]$), and a second one, where the two emission steps happen in a concerted manner within the same half cycle ($t_{1\text{st}} \in [0.25T, 0.75T]$).

Typical trajectories for both the isolated and concerted cases are displayed in Fig. 3. We show, in the Supplemental Material [48], that they are representative for all emitted trajectories. The trajectories for the isolated case of double ionization (DI) [Figs. 3(b) and 3(c)] show that the first electron is immediately flying away from its own parent nucleus (red curve). The second electron, in contrast, is transferred to the other nucleus, where it is subsequently temporally captured by the Coulomb potential of the neighboring Ar^{2+} ion. It becomes ionized only during the next laser half cycle around the peak of the field. We refer to this electron transfer process across the system boundaries and the subsequent capture process that results in the ionization delay as LITE.

LITE also plays a significant role in the concerted type of DI. Two cases can be distinguished: Representative
electron trajectories [Figs. 3(d) and 3(e)] show that, for case 1, one of the electrons is emitted at one site and transferred to the other site by LITE. There, it is captured by the Coulomb potential, collides with the second electron initially on this site, and produces a transient Ar$^{2+}$-Ar$^{+*}$ complex. The captured electron finally ionizes at or after the next peak of the laser field and produces an Ar(2,2) dimer.

This second case is reminiscent of the recollision-induced excitation with subsequent field ionization process well known for monomers [56–58]. Here, however, the collision-excitation step takes place on a distant entity and is enabled only by a preceding LITE process. Further explanations and a visualization of the role of LITE in the three different DI scenarios, as well as additional data and discussion on the role of the alignment of the argon dimer with respect to the laser polarization direction, the correlation between the two emitted electrons due to the collisions induced by LITE, and a spatiotemporal analysis of the electron transfer is provided in the Supplemental Material [48].

The finding that the DI dynamics to Ar(2,2) is dominated by an electron transfer process (LITE), explains why the second electron emission is delayed by a laser half cycle to its initiating laser field peak [cf. the t_{2nd} distributions in Figs. 2(f)–2(h)]. Likewise, the double-peak structure of t_{1st} can also be explained by LITE: In the concerted cases of DI, the first electron is transferred and, therefore, is emitted with delay, giving rise to the second peak. The first, undelayed peak arises during the isolated cases of DI and during single ionization (SI) to Ar(1,2). The delayed peak in SI corresponds to cases where the first electron becomes transferred, but the second electron stays bound, see the Supplemental Material [48] for further details.

Finally, based on the fact that the first ionization step proceeds similarly for the Ar(1,2) and Ar(2,2) channels [cf. Figs. 2(c)–2(h)], we can now investigate which of the two DI cases, the isolated or the concerted one, is responsible for the distinct CEP shift observed between the, as expressed in the Supplemental Material [48], and concerted two-electron emissions based on $A_z^{(2,2)}$ separately for the isolated and concerted contributions to Ar(2,2), in comparison with $A_z^{(1,2)}$ taken from Fig. 2(b). The separated curves reveal

FIG. 4. Simulated CEP dependence of the asymmetry A_z for channels Ar(1,2) and Ar(2,2). The latter is separated into isolated and concerted two-electron emissions based on $\Delta t = t_{1st} - t_{A,B,C}$, where $t_{A,B,C}$ (indicated in Fig. 2) are the instants of the laser field maxima right before a given t_{1st} peak that initiates the electron emission at t_{1st}: Isolated for $0 \leq \Delta t \leq 0.25T$, concerted for $0.25T \leq \Delta t \leq 0.5T$.

063202-4
that the uncorrelated two-electron emission of the isolated case introduces a notable shift, but the main shift is introduced by the concerted pathway. The reason is that, for this case, the electron-electron interaction dynamics triggered in the excited argon atom upon electron transfer by LITE leads to electron emission over a much broader range of time within the laser cycle as compared to a purely field-driven ionization dynamics confined to around the crests of the laser cycle.

In conclusion, we have experimentally and theoretically studied the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a known CEP. We observe a distinct CEP shift of the electron emission asymmetry between the Ar$^+$ + Ar$^{2+}$ and Ar$^{2+}$ + Ar$^{2+}$ fragmentation channels. Using a classical ensemble model, we find that this CEP shift is due to electron-electron interaction mediated by a field-driven electron transfer process (LITE) from one argon atom to the other. Thus, our work heralds the possibility of using strong laser fields for controlling subcycle intermolecular electron-transfer processes where the transferred electron can excite electronic dynamics on a distant molecule. This finding opens up a new route for controlling molecular processes with intense laser pulses beyond mere bond-breaking reactions.

We thank Professors Difa Ye and Jing Chen, and Dr. Zongqiang Yuan for stimulating discussions. This work was supported by the Austrian Science Fund (FWF), Grants No. P28475-N27 and No. P30465-N27, the National Key Research and Development Program of China (Grant No. 2019YFA0307702), the National Science Foundation of China (Grants No. 11834015, No. 11847243, No. 11804374, No. 11922413, and No. 11874392), the Strategic Priority Research Program No. 11847243, No. 11804374, No. 11922413, and Science Foundation of China (Grants No. 11834015, Grant No. 2019YFA0307702), the National Key Research and Development Program of China No. P28475-N27 and No. P30465-N27, the National Key Research and Development Program of China No. 114, 11863 (2014).

[1] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).
[2] J. Lu, S. Liu, and M. Wang, Front. Chem. 6, 541 (2018).
[3] O. Morawski, K. Izdebska, E. Karpik, J. Nowacki, A. Suchocki, and A. L. Sobolewski, Phys. Chem. Chem. Phys. 16, 15256 (2014).
[4] M. D. Kärkäs, O. Verho, E. V. Johnston, and B. Åkermark, Chem. Rev. 114, 11863 (2014).
[5] J. Barber, Chem. Soc. Rev. 38, 185 (2009).
[6] J.-D. Roachix, Biochim. Biophys. Acta 1807, 375 (2011).
[7] M. F. Kling, C. Siedschlag, A. J. Verhoef, J. I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, and M. J. J. Vrakking, Science 312, 246 (2006).
[8] M. F. Kling, P. von den Hoff, I. Znakovskaya, and R. de Vivie-Riedle, Phys. Chem. Chem. Phys. 15, 9448 (2013).
[9] M. Kremer, B. Fischer, B. Feuerstein, V. L. B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C. D. Schröter, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 103, 213003 (2009).
[10] B. Fischer, M. Kremer, T. Pfeifer, B. Feuerstein, V. Sharma, U. Thumm, C. D. Schröter, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 105, 223001 (2010).
[11] I. Znakovskaya, P. von den Hoff, G. Marcus, S. Zherebtsov, B. Bergues, X. Gu, Y. Deng, M. J. J. Vrakking, R. Kienberger, F. Krausz, R. de Vivie-Riedle, and M. F. Kling, Phys. Rev. Lett. 108, 063002 (2012).
[12] H. Lippert, V. Stert, C. P. Schulz, I. V. Hertel, and W. Radloff, Phys. Chem. Chem. Phys. 6, 2718 (2004).
[13] T. Schultz, E. Samoylova, W. Radloff, I. V. Hertel, A. L. Sobolewski, and W. Domcke, Science 306, 1765 (2004).
[14] D. A. Horke, H. M. Watts, A. D. Smith, E. Jager, E. Springate, O. Alexander, C. Cacho, R. T. Chapman, and R. S. Minns, Phys. Rev. Lett. 117, 163002 (2016).
[15] J. Ehrmaier, T. N. Karsili, A. L. Sobolewski, and W. Domcke, J. Phys. Chem. A 121, 4754 (2017).
[16] E. J. Rabe, K. L. Corp, A. L. Sobolewski, W. Domcke, and C. W. Schlenker, J. Phys. Chem. Lett. 9, 6257 (2018).
[17] L. S. Cederbaum, J. Zobeley, and F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997).
[18] T. Jahnke, A. Czasch, M. S. Schöffler, S. Schössler, A. Knapp, M. Käsz, J. Titze, C. Wimmer, K. Kreidl, R. E. Grisenti, A. Staudte, O. Jagutzki, U. Hergenhahn, H. Schmidt-Böcking, and R. Dömer, Phys. Rev. Lett. 93, 163401 (2004).
[19] N. Sisourat, N. V. Kryzhevoi, P. Kolorenc, S. Scheit, T. Jahnke, and L. S. Cederbaum, Nat. Phys. 6, 508 (2010).
[20] T. Mizuno, P. Corlin, T. Miteva, K. Gokhberg, A. Kuleff, L. S. Cederbaum, T. Pfeifer, A. Fischer, and R. Moshammer, J. Chem. Phys. 146, 104305 (2017).
[21] X. Ren, E. Jabbour Al Maalouf, A. Dorn, and S. Deniil, Nat. Commun. 7, 11093 (2016).
[22] B. Manischewets, H. Rottke, G. Steinmeyer, L. Foucar, A. Czasch, H. Schmidt-Böcking, and W. Sandner, Phys. Rev. A 82, 013413 (2010).
[23] B. Ulrich, A. Vredenborg, A. Malakzadeh, M. Meckel, K. Cole, M. Smolarski, Z. Chang, T. Jahnke, and R. Dömer, Phys. Rev. A: At., Mol., Opt. Phys. 82, 013412 (2010).
[24] J. Wu, A. Vredenborg, B. Ulrich, L. P. H. Schmidt, M. Meckel, S. Voss, H. Sann, H. Kim, T. Jahnke, and R. Dömer, Phys. Rev. Lett. 107, 043003 (2011).
[25] B. Ulrich, A. Vredenborg, A. Malakzadeh, L. P. H. Schmidt, T. Havemeier, M. Meckel, K. Cole, M. Smolarski, Z. Chang, T. Jahnke, and R. Dömer, J. Phys. Chem. A 115, 6936 (2011).
[26] J. Wu, A. Vredenborg, B. Ulrich, L. P. H. Schmidt, M. Meckel, S. Voss, H. Sann, H. Kim, T. Jahnke, and R. Dömer, Phys. Rev. A: At., Mol., Opt. Phys. 83, 061403(R) (2011).
[27] J. Wu, M. Kunitski, L. P. H. Schmidt, T. Jahnke, and R. Dömer, J. Chem. Phys. 137, 104308 (2012).
[28] K. Hoshina, H. Hagihara, and M. Tsuge, J. Phys. Chem. A 116, 826 (2012).
[29] J. Wu, M. Meckel, L. Schmidt, M. Kunitski, S. Voss, H. Sann, H. Kim, T. Jahnke, A. Czasch, and R. Dömer, Nat. Commun. 3, 1113 (2012).
[30] A. von Veltheim, B. Manschwetus, W. Quan, B. Borchers, G. Steinmeyer, H. Rottke, and W. Sandner, Phys. Rev. Lett. 110, 023001 (2013).
[31] C. Wu, C. Wu, D. Song, H. Su, X. Xie, M. Li, Y. Deng, Y. Liu, and Q. Gong, J. Chem. Phys. 140, 141101 (2014).
[32] M. Amada, Y. Sato, M. Tsuge, and K. Hoshina, Chem. Phys. Lett. 624, 24 (2015).
[33] X. Ding, M. Haertelt, S. Schlauderer, M. S. Schuurman, A. Y. Naumov, D. M. Villeneuve, M. S. Schuurman, A. Y. Naumov, D. M. Villeneuve, A. R. W. McKellar, P. B. Corkum, and A. Staudte, Phys. Rev. Lett. 118, 153001 (2017).
[34] Q. Cheng, X. Xie, Z. Yuan, X. Zhong, Y. Liu, Q. Gong, and C. Wu, J. Phys. Chem. A 121, 3891 (2017).
[35] A. S. Bogomolov, V. G. Goldort, S. A. Kochubei, and A. V. Baklanov, J. Chem. Phys. 147, 234304 (2017).
[36] T. Ditmire, J. W. G. Tisch, E. Springate, M. B. Mason, N. Hay, R. A. Smith, J. Marangos, and M. H. R. Hutchinson, Nature (London) 386, 54 (1997).
[37] V. Kumarappan, M. Krishnamurthy, and D. Mathur, Phys. Rev. Lett. 87, 085005 (2001).
[38] C. Jungreuthmayer, M. Geissler, J. Zanghellini, and T. Brabec, Phys. Rev. Lett. 92, 133401 (2004).
[39] T. Fennel, K. H. Meiwas-Broer, J. Tiggesbäumker, P. G. Reinhard, P. M. Dinh, and E. Suraud, Rev. Mod. Phys. 82, 1793 (2010).
[40] B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A. Kuleff, M. Vrakking, and A. Rouzée, Nat. Commun. 6, 8596 (2015).
[41] B. Schütte, C. Peltz, D. R. Austin, C. Strüber, P. Ye, A. Rouzée, M. J. J. Vrakking, N. Golubev, A. I. Kuleff, T. Fennel, and J. P. Marangos, Phys. Rev. Lett. 121, 063202 (2018).
[42] C. Smeenk, J. Z. Salvail, L. Arissian, P. B. Corkum, C. T. Hebeisen, and A. Staudte, Opt. Express 19, 9336 (2011).
[43] R. Dörner, V. Mergel, O. Jagutzki, L. Spielberger, J. Ullrich, R. Moshammer, and M. F. Kling, Phys. Rev. Lett. 108, 073003 (2012).
[44] B. Schütte, C. Peltz, D. R. Austin, C. Strüber, P. Ye, A. Rouzée, M. J. J. Vrakking, N. Golubev, A. I. Kuleff, T. Fennel, and J. P. Marangos, Phys. Rev. Lett. 121, 063202 (2018).
[45] X. Xie, K. Doblhoff-Dier, S. Roither, M. S. Schöffler, D. Kartashov, H. Xu, T. Rathje, G. G. Paulus, A. Baltuška, S. Gräfe, and M. Kitzler, Phys. Rev. Lett. 109, 243001 (2012).
[46] X. Xie, T. Wang, S. G. Yu, X. Lai, S. Roither, D. Kartashov, A. Baltuška, X. J. Liu, A. Staudte, and M. Kitzler, Phys. Rev. Lett. 119, 243201 (2017).
[47] T. Rathje, N. G. Johnson, M. Möller, F. Süßmann, D. Adolph, M. Kübel, R. Kienberger, M. F. Kling, G.G. Paulus, and A. M. Sayler, J. Phys. B 45, 074003 (2012).
[48] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.063202 for additional explanations and supporting data on the electron emission anisotropy, the numerical model and the LITE mechanism, which includes Refs. [49–51].
[49] L. Zhang, X. Xie, S. Roither, Y. Zhou, P. Lu, D. Kartashov, M. Schöffler, D. Shafir, P. B. Corkum, A. Baltuška, A. Staudte, and M. Kitzler, Phys. Rev. Lett. 112, 193002 (2014).
[50] N. Camus, B. Fischer, M. Kremer, V. Sharma, A. Rudenko, B. Bergues, M. Kübel, N. G. Johnson, M. F. Kling, T. Pfeifer, J. Ullrich, and R. Moshammer, Phys. Rev. Lett. 108, 073003 (2012).
[51] B. Bergues, M. Kübel, N. G. Johnson, B. Fischer, N. Camus, K. J. Betsch, O. Herrwerth, A. Sentieben, A.M. Sayler, T. Rathje, T. Pfeifer, I. Ben-Itzhak, R. R. Jones, G. G. Paulus, F. Krausz, R. Moshammer, J. Ullrich, and M. F. Kling, Nat. Commun. 3, 813 (2012).
[52] X. Xie, C. Wu, Z. Yuan, D. Ye, P. Wang, Y. Deng, L. Fu, J. Liu, Y. Liu, and Q. Gong, Phys. Rev. A 92, 023415 (2015).
[53] A. Scrinzi, M. Geissler, and T. Brabec, Phys. Rev. Lett. 83, 706 (1999).
[54] F. Faisal, J. Phys. B: At., Mol. Opt. Phys. 6, L89 (1973).
[55] H. Reiss, Phys. Rev. A 22, 1786 (1980).
[56] B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch, J. R. Crespo Lopez-Urrutia, C. Höhr, P. Neumayer, J. Ullrich, H. Rottke, C. Trump, M. Wittmann, G. Korn, and W. Sandner, Phys. Rev. Lett. 87, 043003 (2001).
[57] A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schröter, R. Moshammer, and J. Ullrich, Phys. Rev. Lett. 93, 253001 (2004).
[58] Y. L. Wang, S. P. Xu, W. Quan, C. Gong, X. Y. Lai, S. L. Hu, M. Q. Liu, J. Chen, and X. J. Liu, Phys. Rev. A 94, 053412 (2016).