Analytic functions of the annihilation operator

Aleksandar Petrović
M. Gorkog 27, 11000 Belgrade, Serbia

A method for construction of a non-entire function f of the annihilation operator a is given for the first time. $f(z)$ is analytic on some compact domain that does not separate the complex plane. A new form of the identity is given, which is well suited for the function’s domain. Using Runge’s polynomial approximation theorem, such a function f of the annihilation operator is defined on the whole domain. The constructed operators are given in terms of dyads formed of Fock states.

PACS numbers: 03.65.Ca, 03.65.Ta

I. INTRODUCTION

The annihilation operator in Hilbert space is operator a which satisfies relation

$$[a, a^\dagger] = 1.$$ (1)

A self-adjoint Number operator N and the corresponding Fock states are constructed using a:

$$N = a^\dagger a, \quad N|n\rangle = n|n\rangle, \quad n = 0, 1, 2, 3, ...$$ (2)

Eigenstates of a are called coherent states:

$$a|\alpha\rangle = \alpha|\alpha\rangle, \quad |\alpha\rangle = e^{-|\alpha|^2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle, \quad \alpha \in \mathbb{C}.$$ (3)

The coherent states are denoted with Greek letters ($|\alpha\rangle$, $|\beta\rangle$, $|\gamma\rangle$), and the Fock states with Latin letters ($|l\rangle$, $|k\rangle$, $|n\rangle$, $|m\rangle$).

The identity can be formed using eigenvectors $|\alpha\rangle$:

$$I = \frac{1}{\pi} \int d^2 \alpha |\alpha\rangle \langle \alpha|. \quad (4)$$

a is not a normal operator, so The Spectral Theorem cannot be applied to construct $f(a)$. Nevertheless, every entire function of the operator a can be represented in a form analogous to the resolution of a normal operator with respect to its projective measure:

$$f(a) = \frac{1}{\pi} \int d^2 \alpha f(\alpha)|\alpha\rangle \langle \alpha|. \quad (5)$$

Contrary to the normal operator case, non-entire functions of a cannot be represented in such a way [1], [2]. Previous unsuccessful attempts to use $\ln a$ were pointed out in [1]. Related questions concerning this issue were also studied by Perelomov [3]. The underlying problem is the fact that until now non-entire functions of the annihilation operator have not been studied in detail, and some straightforward assumptions arising from resolution [3] have lead to erroneous conclusions. In this paper, we construct a function $f(a)$ of the annihilation operator, where f is analytic on a compact domain that does not separate the complex plane. The operators constructed here are given in terms of dyads formed of Fock states.

*Electronic address: a.petrovic.phys@gmail.com
II. RESULTS

A. New identity resolution

Standard resolution of identity (11) is not suitable for non-entire functions, so a new resolution of identity is given. To do that, non-normalized coherent states (NCS) are defined:

\[|\tilde{\alpha}\rangle = e^{\alpha a^+} |0\rangle = e^{\frac{|\alpha|^2}{2}} |\alpha\rangle. \] (6)

Translation operator for NCS is:

\[T(\beta) = e^{\beta a^+}, \quad T(\beta)|\tilde{\alpha}\rangle = |\tilde{\alpha} + \beta\rangle, \quad \alpha, \beta \in \mathbb{C}. \] (7)

Now, an identity whose eigenstates are on the circle of radius \(R \) centered at the origin can be formed from NCS:

\[I = -i \oint_{|\gamma| = R} d\gamma |\tilde{\gamma}\rangle \langle \tilde{\gamma}| J, \] (8)

where

\[J = \frac{1}{2\pi} \sum_{n=0}^{\infty} n! |n\rangle \langle n|. \] (9)

B. Runge’s approximation theorem and functions of the annihilation operator

In this subsection, \(f(a) \) where \(f \) is an analytic function defined on a compact domain \(\Omega \) that does not separate the complex plane, is constructed. Two classes of such functions are considered. The first class consist of functions \(f \) defined on domains containing 0: \(0 \in \Omega \). The second class consists of functions which are not defined at 0: \(0 \not\in \Omega \). A convenient theoretical tool for this is Runge’s polynomial approximation theorem.

Theorem: If \(f \) is an analytic function on a compact domain \(\Omega \) that does not separate the complex plane, then there exists a sequence \(P_l(z) \) of polynomials such that converges uniformly to \(f(z) \) on \(\Omega \) [4],[5],[6]:

\[f(z) = \sum_{l=0}^{\infty} P_l(z - z_0) = \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} (z - z_0)^k, c_k^{(l)} \in C, z, z_0 \in \Omega. \] (10)

Let us consider the first class of analytic function \((0 \in \Omega)\) and let

\[f(z) = \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} z^k, z \in \Omega \] (11)

be an expansion of \(f \) in a series of polynomials. Then [11] and [8] can be used to construct the function \(f(a) \) of annihilation operator:

\[f(a) = \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} a^k \cdot I = -i \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} \oint_{|\gamma| = R} d\gamma \gamma^{k-1} |\tilde{\gamma}\rangle \langle \tilde{\gamma}| J. \] (12)

Using definition (6) of \(|\tilde{\gamma}\rangle \), and after performing integration, \(f(a) \) becomes:
\[f(a) = \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \sum_{m=n}^{d_l+n} c_{m-n}^{(l)} \sqrt{\frac{m!}{n!}} |n\rangle \langle m|, \]

which for \(\alpha \in \Omega \) gives:

\[f(a) |\alpha\rangle = f(a) |\alpha\rangle. \]

Let us now examine the second class of \(f \). Again we can use (10), but requiring \(z_0 \neq 0, z_0 \in \Omega \). However, a repetition of the above procedure using (8) leads to a divergence problem. To resolve this issue, a different resolution of identity, one involving translation (7) is chosen:

\[I = e^{z_0 a^\dagger} I e^{-z_0 a^\dagger}. \]

If \(I \) in the right hand side of equation (15) is substituted with (8), and using (7) we get:

\[I = -i \oint_{|\gamma|=R} d\gamma \gamma^{k-1} |\gamma + z_0\rangle \langle \gamma| J e^{-z_0 a^\dagger}. \]

Now we apply the operator, obtained by polynomial approximation, to the identity (16):

\[f(a) = \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} (a - z_0)^k \cdot I = -i \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} \oint_{|\gamma|=R} d\gamma \gamma^{k-1} |\gamma + z_0\rangle \langle \gamma| J e^{-z_0 a^\dagger}. \]

Again, using definition (10) of \(|\gamma\rangle \), and after performing integration, \(f(a) \) becomes:

\[f(a) = \sum_{l=0}^{\infty} \sum_{k=0}^{d_l} c_k^{(l)} \sum_{n=0}^{n+k} \sum_{m=n}^{m+k} \left(\begin{array}{c} n \\ m-k \end{array} \right) \sqrt{\frac{m!}{n!}} z_0^{n-m+k} |n\rangle \langle m| e^{-z_0 a^\dagger}, \]

which for \(\alpha \in \Omega \) gives:

\[f(a) |\alpha\rangle = f(a) |\alpha\rangle. \]

We can simplify (18), collecting coefficients at dyads, as

\[f(a) = \chi e^{-z_0 a^\dagger}, \]

\[\chi = \sum_{l=0}^{\infty} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \chi_{nm}^{(l)} |n\rangle \langle m|, \]

\[\chi_{nm}^{(l)} = \sqrt{\frac{m!}{n!}} \sum_{k=p}^{s_l} c_k^{(l)} \left(\begin{array}{c} n \\ m-k \end{array} \right) z_0^{n-m+k}, \]

\(p = \max\{0, m-n\}, \)

\(s_l = \min\{m, d_l\}. \)
III. DISCUSSION AND CONCLUSION

In this paper, for the first time an expression for a non-entire function $f(a)$ of the annihilation operator is obtained. $f(z)$ is an analytic function on a compact domain $\Omega \subset \mathbb{C}$ that does not separate the complex plane. A very significant application of our result is its use in a construction of $\ln a$. Since $\ln z$ and $1/z$ can be defined on a domain which satisfies previous conditions, our method allows us to obtain $\ln a$ and $1/a$. Since, formally, $[\ln a, a^\dagger] = 1/a$, it follows

$$[a^\dagger a, -i \ln a] = i. \quad (21)$$

Operator $-i \ln a$ is conjugate to the Number operator. It is not self-adjoint, but due to commutation relation (21) it can serve as a good starting point for construction of the Phase Operator $[1,2]$. Considering the significance of this result, it will be topic of a separate paper.

Acknowledgments

The author would like to thank Drs. M. Arsenović, D. Arsenović, D. Davidović and J. Ajtić for their suggestions and help in preparation of this manuscript.

[1] Lj. Davidović, D. Arsenović, M. Davidović and D.M. Davidović, J. Phys. A: Math. Theor. 42, 235302 (2009).
[2] M. Davidović, D. Arsenović and D.M. Davidović, J. Phys.: Conf. Ser. 36, 46 (2006).
[3] A.M. Perelomov, Theor. Math. Phys. 6 (Engl. Transl.), 213 (1971).
[4] E.B. Saff, “Proceedings of Symposia in Applied Mathematics Vol.36”, (1986).
[5] A.I. Markushevich, ”Theory of function of complex variable”, (1977).
[6] L.V. Ahlfors, ”Complex Analysis” (1979).