Spatial variation of important mulberry pests and their natural enemies

A. Mohan,1 J. Ravikumar2, D. Senthilkumar1
1Department of Zoology, Kandaswami Kandar’s College, Namakkal; 2Regional Sericultural Research Station, Salem, India

Abstract

Mulberry is a silkworm food plant (Bombyxmori. L) that is seriously affected by many insect pests. The incidence of Diaphania pulverulentalis (Hampson), Maconellicoccus hirsutus (Green), Paracoccus marginatus (Williams and Granara de Willink), Aleurodiscus dispersus (Russels) and Pseudodendrothrips mori (Niwa) and their natural enemies, viz. coccinellids and spiders (/100 plants), were observed through survey and surveillance for 3 months. In February 2013, the incidence of insect pests in Vaikkalpattarai and Reddipudur villages (India) was: D. pulverulentalis, 1.02 and 0.85%; P. marginatus, 6.80 and 33.10%; A. dispersus, 59.72% and M. hirsutus (1.40%) and A. dispersus (59.72%) was also observed in February at Vaikkalpattarai. The population of coccinellids was high in December (1.02 and 0.84/100 plants), but the spider population was even higher in February and January (1.04 and 1.81/100 plants). Population of pests had a significant positive correlation with relative humidity. The population of coccinellids and spiders have positive correlation with temperature and mulberry pests infestation. The natural enemies observed in the study were mostly the ladybird beetles, Psyllobora bisoctonotata and unidentified species of spiders.

Introduction

Like other agricultural crops, mulberry is also prone to attack by many insect pests, which cause quantitative and qualitative damage resulting in a decrease in sericultural productivity. According to Narayanaswamy (1996), more than 300 insects and non-insect species of pests are known to attack mulberry. The important pests of mulberry are mealy bugs, leaf webber, thrips, Bihar hairy caterpillar and cut worms (Carsai et al., 2014). Among these, pink mealy bug (Maconellicoccus hirsutus) is a major pest-causing tukra in mulberry. The average incidence and loss in mulberry leaf yield caused by these pests is estimated to be 34.24% and 4500 kg/ha/year (Manjunath et al., 2003). In this study an attempt was made to find the occurrence of five major pests and their natural enemies in mulberry fields at Salem and Namakkal districts of Tamil Nadu.

Materials and Methods

A survey on the incidence of five major mulberry pests and natural enemies was carried out at Salem and Namakkal, the two major sericultural districts in Tamil Nadu (http://tnsericulture.gov.in/sericultureNov12/BriefNoteOnSericulture.htm). The observations were made at weekly intervals for about three months (December 2012 – February 2013). The study was conducted in Randomized Block Design at Regional Sericultural Research Station (RSRS), Central Silk Board, Vaikkalpattarai in Salem District and Reddipudur village in Namakkal District. In each village, a mulberry gardens was chosen for study. The 100 plants (20each in 4 corners and 20 plants in centre of the plot) were observed for a week in each holding. The natural enemies of mulberry pests were identified with the help of the website http://www.angelfire.com/bug2/j_poorni/. Meteorological data such as temperature, relative humidity and rainfall during the study period were also recorded to assess the influence of these factors on the pest and natural enemies incidence. The correlation coefficients were worked out by using the GNU PSPP statistical software (Version 0.7.9 for Linux Mint 17.1).

Results

Table 1 shows the temperature, relative humidity and rainfall in Vaikkalpattarai and Reddipudur (India) during the study period (December 2012 – February 2013). The lowest (24.77°C) and
highest (28.29°C) temperature was recorded in Vaikkalpattarai and Reddipudur during Jan 2013 and Feb 2013 respectively. The relative humidity (RH) was higher in Vaikkalpattarai than Reddipudur (less than 50%). There was light rain (0.09-0.32 mm) in Vaikkalpattarai and no rainfall was registered in Reddipudur during our work (Figure 1).

The incidence of mulberry pests such as Leaf Webber (*D. pulverulentalis*), Pink mealy bug (*M. hirsutus*), Papaya mealy bug (*P. marginatus*), Spiralling white fly (*A. dispersus*), Thrips (*P. mori*) was recorded in Table 2. The incidence of *P. mori* gradually increased from Dec 2012 to Feb 2013 in both stations, similarly the *A. dispersus* in Vaikkalpattarai, *P. marginatus* in Reddipudur showed increased trend in the same period (Figure 2).

The occurrence of natural enemies such as Coccinellids and spiders in the mulberry fields of Vaikkalpattarai and Reddipudur was also recorded in Table 2. The occurrence of Coccinellids was highest in first two months of our study period and lowest in the last month. But the spider population was high in Feb 2013 in Vaikkalpattarai and Jan 2013 in Reddipudur (Figure 3).

Table 3 indicated the correlation between weather factors, mulberry pests and their natural enemies at Vaikkalpattarai station. There was no correlation between temperature and relative humidity, but temperature was well correlated with pest *A. dispersus* (0.70), *P. marginatus* (0.67) and natural enemy spider (0.63). Relative Humidity showed positive correlation with Rainfall (0.98), Coccinellids (0.96) and negative correlation with all pests and spiders. Rainfall had negative correlation with all pests and spiders and positive correlation with Coccinellids population (0.88). All the mulberry pests showed positive correlation with spiders and negative correlation with Coccinellids in Vaikkalpattarai station.

Temperature showed positive correlation with mulberry pests (*D. pulverulentalis* 1.00; *P. marginatus* 0.70; *P. mori* 0.95) and negative correlation with their natural enemies (Coccinellids and spiders, −0.99). In Reddipudur, there was negative correlation between pests and their enemies (Table 4).

### Table 1. Meteorological data on Vaikkalpattarai village (Salem district) and Reddipudur village (Namakkal district).

|                | Vaikkalpattarai village |               |               |                |               |               |               |               |               |
|----------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                | Avg temp (°C)           | Jan 2013       | Feb 2013       |
| Avg temp (°C) | 25.69                   | 24.77          | 26.68          | 26.02          | 26.08          | 25.29          |
| Avg RH (%)     | 60.26                   | 59.22          | 51.03          | 48.03          | 47.99          | 44.1           |
| Rainfall (mm)  | 0.32                    | 0              | 0.09           | 0              | 0              | 0              |

### Table 2. Incidence of pests and natural enemies in Vaikkalpattarai village (Salem district) and Reddipudur village (Namakkal district).

|                | Vaikkalpattarai village |               |               |                |               |               |               |               |               |
|----------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                | Dec 2012 | Jan 2013 | Feb 2013 | Dec 2012 | Jan 2013 | Feb 2013 | Dec 2012 | Jan 2013 | Feb 2013 |
| *D. pulverulentalis* | 0.60    | 1.07    | 1.20    | 0.57    | 0.59    | 0.85    |
| *P. marginatus*     | 3.47    | 4.59    | 6.80    | 22.78   | 30.60   | 33.10   |
| *M. hirsutus*       | 0.30    | 0.84    | 1.40    | 0.00    | 0.00    | 0.00    |
| *P. mori*           | 5.60    | 29.68   | 42.98   | 14.99   | 25.27   | 45.50   |
| *A. dispersus*      | 8.52    | 23.67   | 59.72   | 0.00    | 0.00    | 0.00    |
| Coccinellids        | 1.02    | 0.52    | 0.38    | 0.84    | 0.74    | 0.28    |
| Spiders             | 0.36    | 0.92    | 1.81    | 0.95    | 1.04    | 0.46    |

### Table 3. Correlation coefficients (r) of weather factors vis-a-vis Mulberry pest’s infestation and natural enemies in Vaikkalpattarai village of Salem district.

|                | Avg temp | Avg RH | Rainfall | *D. pulverulentalis* | *P. marginatus* | *M. hirsutus* | *P. mori* | *A. dispersus* | Coccinellids | Spiders |
|----------------|----------|--------|----------|----------------------|----------------|--------------|-----------|----------------|--------------|---------|
| Avg temp       | 1.00     | 0.05   | 0.25     | 0.23                 | 0.67           | 0.53         | 0.37      | 0.70           | -0.23        | 0.63    |
| Avg RH         | 1.00     | 0.98   | -0.96    | -0.71                | -0.82          | -0.91        | -0.68     | 0.96           | -0.75        |         |
| Rainfall       | 1.00     | -0.89  | -0.55    | -0.69                | -0.81          | -0.51        | 0.88      | -0.60          |              |         |
| *D. pulverulentalis* | 1.00 | 0.88 | 0.95 | 0.89 | 0.85 | -1.00 | 0.90 |
| *P. marginatus* | 1.00 | 0.98 | 0.94 | 1.00 | -0.88 | 1.00 |
| *M. hirsutus* | 1.00 | 0.98 | 0.98 | -0.95 | 0.99 |
| *P. mori* | 1.00 | 0.92 | -0.99 | 0.96 |         |
| *A. dispersus* | 1.00 | -0.85 | 0.99 |         |         |
| Coccinellids | 1.00 | -0.90 |         |         |         |
| Spider         |         |         |         |         |         |         | 1.00     |         |         |
Discussion

A positive correlation between temperature and mulberry pests is in agreement with previous studies (Mahimasanthi et al., 2015). Here it is proved that increase in temperature increases the mealy bug population and infestation, but prolonged high temperature for longer period reduces mealy bug infestation. This is in agreement with well defined temperature limits observable in arthropods, beyond which mortality is observed, as expected in ectoderm animals (Aswathi, 1997; Hemalatha & Shree, 2008). This study demonstrated also that Pink mealy bug may cause damage to the mulberry crop throughout the year, as opposite to other findings (Benjamin et al., 1997) where a maximum damage ranging from 0.79 to 11.69 % of severity was observed from July to August.

In the present study relative Humidity showed negative correlation with all mulberry pests. Similar results were reported by other authors (Mani & Thontadarya, 1987; Narendra Kumar et al., 2006; Rahmathulla et al., 2015) in different areas of Southern India. The infestation of the pest however, was low during rainy and winter season. This could be due to the fact that in cooler climate, females remain inactive in sheltered parts of plants or over-winter in the egg stage.

Rainfall in Vaikkalpattarai station shows negative correlation with all mulberry pests. Venugopalapillai & Krishnaswami (1983) reported that high rainfall and humidity were not favourable for thrips resulting in low peaks of thrips population on mulberry.

D. pulverulentalis infestation in Vaikkalpattarai and Reddipudur was the least serious in the study period. But many workers (Sengupta et al., 1990; Siddegowda et al., 1995; Geethabai et al., 1997; Rajadurai et al., 1999) reported a high percentage of infestation caused by lepidopteran leaf roller D. pulverulentalis in the south of India during rainy and winter months.

During the study period the spider population was abundant only in January and February 2013 in both stations. The effect of a
spider species on a pest population may be enhanced if the spider population increases rapidly in response to a rich supply of nutritious alternative prey (Jeffries & Lawton 1984; Axelsen et al., 1997). Spiders play a key role, together with the other dominant natural enemies, in suppressing pest populations (Zhang, 1992). Small pests, such as thrips, midges and aphids, may die by being caught in the webs of large spiders, even when they are ignored by the spider (Nentwig, 1987). The spider population might even kill more pests than if the pests were a high-quality preferred prey, because spiders would remain unsatiated (Alderweireldt, 1994). Coccinellids such as Synona rougeti Mulsant, Epilachna vigitioctopunctata Fabricius, Cheilomenes sexmaculata Fabricius, Nephus lentiformis, Illeis bielavskii (Ghorpade, Psylllopora bisoctonotata Mulsant) control the pest populations in the mulberry fields of present study. Our results are in agreement with the finding other authors (Cock, 1985; Kumashiro et al., 1983; Ignacimuthu, 2002).

Conclusions

The different geographical position of the two stations and the abiotic factors – temperature, relative humidity and rainfall influenced the changes in the pest and natural enemies populations of mulberry fields.

References

ALDERWEIRELDT M., 1994 - Prey selection and prey capture strategies of linyphiid spiders in high input agricultural fields. - Bull. Br. Arachnol. Soc. 9: 300-308.

ASWATHI V.B., 1997 - Introduction to general and applied entomology. - Scientific Publishers, Jodhpur, India.

AXELSEN J.A., RUGGLE P., HOLST N., TOFT S., 1997 - Modelling natural control of cereal aphids. - III. Linyphiid spiders and coccinellids. Acta Jutl. 72: 221-231.

BENCHMARK K.A., VENKATARAMANA P., THIMMANAIK S. SANATH KUMAR Y.N., 1997 - Pest and disease occurrence in mulberry and silkworm. A survey. - Ind. Silk 36: 1-8.

CARASI R.C., TELAN I.F., PERA B.V., 2014 - Bio-ecology of cutworm (S. litura) of Mulberry. - Int. J. Sci. Res. Publ. 4: 2250-3153.

COCK M.J.W., 1985 - A review of biological control of pests in the Commonwealth Caribbean and Bermuda up to 1982. Fanum Royal, UK; Commonwealth Agricultural Bureaux. - Technical Communication of the Commonwealth Institute of Biological Control No. 9, 149 pp.

GEETHABAI M., MARIMADAIAB H., NARAYANASWAMY K.C., RAJGOPAL D., 1997 - An outbreak of leaf-roller pest, Diaphania (margaronia) pulverulentis (Hampson) on mulberry in Karnataka. - Geobios 16: 73-79.

HEMALATHA., SHREE M.P., 2008 - Analysis of the trend of infestation by sap suckers in mulberry (Morus Spp.) crop system. - Ind. J. Sericult. 47: 130-132.

IGNACimuthu S., 2002 - Biological control of insect pest. Entomology Research Institute, Loyola College, Chennai. - J. Sci. Indust. Res. 61: 543-546.

JEFFRIES M.J., LAWTON J.H., 1984 - Enemy free space and the structure of ecological communities. - Biol. J. Linn. Soc. 23: 269-286.

KUMASHIRO B.R., LAI P.Y., FUNASAKI G.Y., TERAMOTO K.K., 1983 - Efficacy of Nephaspis amnicola and Encarsia haitiensis controlling Auleurodiscus dispersusin Hawaii. - Proc. Hawaiian Entomol. Soc. 24: 261-269.

MAHIMASANTI A., PRASANNA KUMAR S., VINDHYA G.S SIVAPRASAD V., 2015 - Influence of biotic and abiotic factors on tritrophic relations of mulberry, mealy bug, Maconellicoccus hirsutus (Green) and its entomophages. - Int. Res. J. Biol. Sci. 4: 39-43.

MANI M., THONTADARYA T.S., 1988 - Population dynamics of the mealybug, Maconellicoccus hirsutus (Green) and its natural enemies in grapevine ecosystem. J. Biol. Control 2: 93-97.

MANJUNATH D., PRASAD K.S., SIDDE GOWDA D.K., 2003 - Ecological approach for the management of mealy bug, Maconellicoccus hirsutuscausing (tukra) in mulberry. - Proc. Natl. Conf. Trop. Sericult. Global Competitv., CSRTI, Mysore, India, 41.

NARENDRA KUMAR J.B., VEERAIAH T.H., JAYARAJ S., 2006 - Tukra mealybug (M. hirsutus, Green) of mulberry (Morus alba L.): tackling through eco-friendly strategies for sustainable sericulture. In: Abstracts of national Seminar on Soil Health and Water Management for Sustainable Sericulture. - Regional Sericultural Research Station, Kodathi, Bangalore, India. pp. 127.

NARAYANASWAMY K.C., GEETHABAI M., RAGURAMAN R., 1996 - Mite pests of mulberry: a review. Indian J. Sericult. 35: 1-8.

NENTWIG W., 1987 - The prey of spiders. In: Eco-physiology of spiders. Nentwig W. ed. Springer-Verlag, Berlin, pp. 261-269.

RAHMATHULLA V.K., SATHYANARAYANA K., ANGADI B.S., 2015 - Influence of abiotic factors on population dynamics of major insect pests of mulberry. - Pak. J. Biol. Sci. 18: 215-223.

RAJADURAI S., MANJUNATH D., KATIYAR R.L., PRASAD K.S., SEN A.K., 1999 - Leaf roller: a serious pest of mulberry. - Indian Silk 37: 9-11.

SENGUPTA K., KUMAR P., BAIG M., ANDGOVINDAIAH M., 1990 - Handbook on pest and disease control of mulberry and silkworm. UNESCO - United Nations Economic and Social Commission for Asia and the Pacific, Bangkok, 88.

SIDDEGOWDA D.K., GUPTA V.K., SEN A.K., BENCHMARK K.V., MANJUNATH D., PRASAD K.S., 1995 - Diaphania species infests mulberry in South India. - Indian Silk 34: 6-8.

VENUGOPALAPILLAI S., KRISHNASWAMI S., 1983 - Population of mulberry thrips, pseudodendrothrips mori (Niwa) in relation to weather factors. - Ind. J. Sericult. 21: 46-52.

ZHANG Z.Q., 1992 - The natural enemies of Aphis gossypii (Hom. Aphididae) in China. - J. Appl. Entomol. 114: 251-262.