Progressive Refinement Imaging

M. Kluge1, T. Weyrich2 and A. Kolb1

1University of Siegen, Computer Graphics Group, Germany
2University College London, Department of Computer Science, United Kingdom

![Figure 1: A sample result of our progressive refinement imaging pipeline applied to the House of Neptune and Amphitrite mosaic data set comprising one reference image I_0 that is refined using 6 additional images captured with 6 different cameras over the period of 10 years. Compared to prior work, our method successfully generates photometrically and geometrically consistent results in an online and memory-efficient fashion without global optimization.](image)

Abstract

This paper presents a novel technique for progressive online integration of uncalibrated image sequences with substantial geometric and/or photometric discrepancies into a single, geometrically and photometrically consistent image. Our approach can handle large sets of images, acquired from a nearly planar or infinitely distant scene at different resolutions in object domain and under variable local or global illumination conditions. It allows for efficient user guidance as its progressive nature provides a valid and consistent reconstruction at any moment during the online refinement process. Our approach avoids global optimization techniques, as commonly used in the field of image refinement, and progressively incorporates new imagery into a dynamically extendable and memory-efficient Laplacian pyramid. Our image registration process includes a coarse homography and a local refinement stage using optical flow. Photometric consistency is achieved with respect to the photometric intensities given in a reference image that is retained during refinement. Globally blurred imagery and local geometric inconsistencies due to, e.g., motion are detected and removed prior to image fusion. We demonstrate the quality and robustness of our approach using several image and video sequences, including hand-held acquisition with mobile phones and zooming sequences with consumer cameras.
1. Introduction

The visual appearance of real world objects and scenarios spans multiple scales, and yet, despite an impressive rise in sensor resolution, photographic imaging hardware is hardly able to simultaneously capture visual details across all of these scales. Several algorithmic approaches have been proposed to overcome the resolution limits of digital imaging, creating higher-resolution images by fusing information from multiple observations.

Super-resolution techniques obtain a high-resolution image from multiple low-resolution images [PPK03], exploiting sub-pixel shifts between the individual images and solving the related inverse problem involving the camera’s point-spread function by means of global optimization. Super-resolution techniques are mainly applied to overcome hard physical acquisition limits, such as in satellite imaging, microscopy, or computed tomography [NM14].

In contrast, computational methods for image recombination and fusion have been developed that address the acquisition of scenes or objects that cannot be captured with a single photograph. Examples are panoramic photography, photo montage [ADA+04], multi-perspective image combination [YMS08] and photo exploration techniques based on partial 3D scene reconstruction from unstructured collections of photographs [SSS06]. Multi-perspective imaging combines images that are acquired under different perspectives using non-standard, potentially non-physical camera models [YMS08] such as computational zoom [BGKS17], which allows modifying image composition parameters such as the relative magnification of objects or the extent of perspective distortion.

Panoramic photography extends image resolution laterally, by creating a wide-angle mosaic from a set of images with narrower field of view with small overlapping regions [SS97]. Both alignment and stitching are usually formulated as global optimization problems, constrained by assuming that all images share the same viewpoint. The achievable panorama size is generally unlimited and allows for gigapixel imaging [KUDC07], while the object-space resolution is determined by the resolution and focal length of the camera used. Alternatively, a low-resolution reference image that completely covers a scene of interest can be enriched with high-resolution details from close-ups [EESM10]; our proposed method takes a similar approach.

All methods mentioned above have in common that they process images in batch mode, after capture. Inspired by progressive acquisition approaches in 3D scene reconstruction [ZSG+18], we avoid global optimization and super-resolution, and deliberately aim at a progressive framework that allows for continuous addition of observations, resulting in a lightweight and robust image acquisition approach that allows (1.) unconstrained input imagery, e.g. hand-held video or mixed-field-of-view images, without requiring calibration, prealignment, external tracking, lighting adjustment or other intervention, (2.) online user guidance for casual capture and dynamic refinement, even in fleeting situations, and (3.) fusing hundreds of images by continuously eliminating redundancy, thus taking the burden of efficiency-conscious view planning from the user.

Similar to prior work [EESM10], our progressive refinement procedure aims at the addition of high-resolution details to a reference image that covers the region of interest. At the core of our method is an adaptive and expandable Laplacian image-pyramid representation that is used to accumulate further observations into the reference image and which locally increases image resolution and expands the image laterally on demand. Due to its progressive nature and low costs of decoding, this representation provides a valid and consistent adaptive-resolution reconstruction at any moment during the progressive imaging process. Similar to conventional panoramic imaging, our implementation assumes absence of strong parallax in the input images. However, our approach allows for general camera viewpoints spanning a wide range of resolutions and imagery with strongly varying lens characteristics.

In summary, we propose a simple, yet surprisingly effective approach to progressively integrate an open set of images into a single geometrically and photometrically consistent image of a near-planar scenery. Unique strengths and contributions of our approach are

- the ability to robustly process uncalibrated, potentially unsharp, geometrically and photometrically inconsistent images at different levels of object resolution and from different viewpoints,
- the continuous local resolution adjustment to meet the resolution and extent of the incoming images, and
- the scalability into gigapixel range while maintaining near-constant update times upon incoming images.

2. Related Work

Photo Montage

In the mid-19th century, photo montage evolved as a photographic art form. Rejlander [Rej57], for example, composed the allegorical photo “The Two Ways of Life”, a photomontage of 32 carefully composed and feathered pictures, and Robinson [Rob69] discusses principles on how to arrange form, light, and shadow to create the perfect photo composition in the context of the aesthetics ideal of the “Picturesque”, a concept popularized in the mid-18th century. Today, applications of photo montage have gone well beyond the artistic medium, and digital workflows employ modern-day equivalents that build upon works such as digital image mosaicing [Mil75] and photomontage [ADA+04].

In the digital domain, the main technical challenge is to recombine images without leaving visible traces at the seams where images are composited. Previous works explored strategies for visually least disruptive placement of seams [M175, EF01, KSE+03, ADA+04, LSTS04] and blending operations to obscure image differences across a seam, such as, linear feathering [M175], Poisson blending [HLSH17, SUS11, PTX10, ADA+04] and the multi-resolution spline approach [BA83] that gave rise to the Laplacian image pyramid [Bur84, OABB85]. Laplacian image pyramids allow for computationally efficient multi-scale image representation in a localized, frequency-oriented way [AAB+84, PHK11]. Burt and Adelson [BA83] were the first to fuse images generating smooth transitions by using Laplacian pyramids and spatial blending. Burt and Kolczynski [BK93] extend this idea by addressing the objective of combining several, pre-aligned source images into a single composite image retaining specific image regions while discarding other image portions.
(Very Large) Panoramic Images

Panoramic photography is strongly related to seamless photomontage, as it attempts to combine several images into a consistent, artifact-free image. Geometric Registration is facilitated via feature matching, either based on simple landmarks [Mil75] or more complex features like SIFT [BL07]. For image composition, blending strategies including Poisson, Laplacian, and multi-band blending are used [SS97, BL07, PTC10, SUS11, HLSH17].

Kopf et al. [KUDC07] introduced a system to acquire gigapixel images, i.e., wide angle images of extremely high resolution. Their source imagery consists of robotically captured, geometrically uncalibrated HDR image stacks that are automatically undistorted using feature matching. Overall geometric consistency is achieved via global bundle adjustment. Photometric consistency results from an exposure adjustment utilizing the linear intensity domain of the HDR imagery and a photometric alignment and composition technique [EUS06]. The final composition is achieved using a graphic. Kazhdan and Hoppe [KH08] proposed new methods for editing gigapixel images. Their out-of-core multigrid approaches allows for gradient-domain image-editing operations involving the solution of Poisson equations that exceed the main memory capacity in the case of gigapixel images. Follow-up work on gradient-domain editing of gigapixel images extends the gigapixel approach towards wide-angle, high-resolution looping panoramic videos synthesis [HL17].

In our work, these challenges do not occur, as our blending operation takes place directly on the hierarchical Laplacian representation.

Photo Collections

Several works have extended the idea of panoramic photography to more general image sources. Snavely et al.’s Photo Tourism system [SS06] processes unstructured photo collections of popular internet sites, taken with various different cameras, at different times of the day, different seasons, or from various unknown positions. Instead of generating a single output image, their system merely recovers the camera poses and a sparse point cloud, and offers a 3D interface to browse through these photographs within their 3D context. Similarly, Ballan et al. [BB10] source both still images and video collections within the panoramic context of the same environment. Further work in this direction demonstrates the exploitation of video collections within the panoramic context of the same place [TPS*13] and the embedding of video clips within gigapixel scale imagery [PCD*12].

Eisemann et al.’s Photo Zoom [EESM10] pursues a similar goal to us, automatically constructing a high-resolution image from an unordered set of zoomed-in photos, but requires global, post-capture processing. Furthermore, they (1.) tackle color inconsistencies using a recursive gradient domain fusion approach that cannot handle strong local variations such as reflections, (2.) only apply homographies to register images and mask out regions with inconsistent content, (3.) expect all input images to be focused, and (4.) only fuse a comparable small number of images. On the flipside, their system synthesizes detail in undersampled regions.

Progressive Reconstruction

In a sense, our solution falls into the class of simultaneous localization and mapping (SLAM) algorithms that gradually build up a world model while reconstructing sensor location and orientation (in our case a camera pose) by relating any observations to the model built up so far [BF05, ND10]. Many of these methods share a similar feature detection and matching stage as the one employed by our method. Apart from that, a multitude of works combines sensors that range from laser range scanners, through 2D cameras, to hand-held depth cameras and merge their observations into various types of environment models (sparse features [PVA*17], collections of range maps [ND10], volumetric grids [IKH*11, NZIS13], oriented points [KLL*13], to name a few). To our knowledge, however, none of these works involves direct updates of an unbounded multi-scale world representation.

3. Overview

Our proposed refinement pipeline comprises several processing stages as depicted in Fig. 2. We expect the first input image \(I_0 \) fed into our pipeline to be a reference image, covering the region of interest for all following input images \(I_j \), \(j > 0 \). Within this region initialized by \(I_0 \), our system results in a geometric and photometric consistently refined image representation. In the following, we call this representation model \(M \). Outside of the region defined by the reference image, we still achieve geometric but no photometric consistency. See Tab. 1 for a complete list of conventions used.

The main stages of our pipeline can be summarized as follows:

Symbol	Description
\(I_j \)	\(j \)-th input image, whereas \(I_0 \) is the reference image and \(I_j, j > 0 \) an observation
\(M \)	model (refined reference image)
\(I_j, M^l \)	\(I_j \) and \(M \) decomposed in Laplacian pyramid
\(I^l_i, M_i^l \)	level \(l \) from \(\{ I_{\min}^l, I_{\max}^l \} \) and \(l \in \{ M_{\min}^l, M_{\max}^l \} \) respectively
\(T^l_i, T^l_M \)	level with a specific scale factor with respect to \(I_0 \), where \(i \) is the level’s index in the pyramid
\(T_{(p,q), l}^l, T_{(p,q), l}^M \)	\(I_j \) and \(M^l \) split into tiles with 2D array position \((p, q) \)
\(e_{I_j}, e_M \)	confidence map of \(I_j \) and \(M^l \)
\(F_{I_j}, F_M \)	local feature set in \(I_j \) and \(M \)
\(H_j \)	homography warping \(I_j \) to \(M \)
\(L_j \)	level map of \(I_j \) storing real-valued level numbers per pixel with respect to the model pyramid

Table 1: List of Conventions
image registration first. This is done by aligning the observation globally using a homography estimated with the help of local features. Afterwards, we locally fine-correct the registration based on an estimated flow field (see Sec. 5.1).

Laplacian pyramid generation. In this pipeline stage, the registered observation \(\mathcal{I}_j \) is decomposed into Laplacian pyramid levels \(\mathcal{I}_j^l \in [\mathcal{I}_j^{l_{\min}}, \ldots, \mathcal{I}_j^{l_{\max}}] \) that will be (potentially) merged with their corresponding Laplacian model levels \(\mathcal{M}^l \). These levels are generated by differences of low-pass filtered and downscaled versions of \(\mathcal{I}_j \) using the Gaussian-like kernel \([0.0625, 0.25, 0.375, 0.25, 0.0625]\) in 1D [Bur84]. Thus, each level contains the frequencies of a specific band. Depending on the viewing direction and position, the Laplacian observation level \(\mathcal{I}_j^l \) may contribute to the corresponding model level \(\mathcal{M}^l \) by adding new information in several ways. They can provide (1.) high frequencies not present in the model so far, (2.) lower frequencies already present, but with less precision, and/or (3.) new spatial coverage not observed so far (see Sec. 5.2).

Outlier removal. As an incoming observation \(\mathcal{I}_j \) may have different deficiencies, we conduct a two-level outlier removal. First, we apply a global reliability check to make sure that \(\mathcal{I}_j \) provides valuable frequency information that is consistent with the so-far accumulated model \(\mathcal{M} \), or if it is out of focus, e.g., due to an incorrect autofocus or motion artifacts. On the second outlier removal stage, we compute a pixelwise error on the Laplacian level in order to recognize local registration errors due to, e.g., inaccuracies in the optical flow estimation (Sec. 5.3).

Model expansion. We do not restrict the accumulation of observations into the model in terms of scale, resolution or coverage in object domain. Our model representation is an adaptive Laplacian pyramid that can be expanded in both resolution and lateral dimensions in order to incorporate novel information in either of these directions. Our Laplacian pyramid model \(\mathcal{M} \) comprises an adaptive tile-based representation in which tiles are allocated on-demand (see Secs. 4 and 5.2).

Merging Laplacian levels. At the core of our technique lies the merging of specific Laplacian levels \(l_{\min}, \ldots, l_{\max} \) of the current observation \(\mathcal{I}_j \) and the model \(\mathcal{M} \) that depends on specific resolution and/or lateral information provided by \(\mathcal{I}_j \). Merging Laplacian levels is based on per-pixel confidence values \(c_{\mathcal{I}_j}(x, y) \) for the Laplacian levels of \(\mathcal{I}_j \) and the corresponding model values \(c_{\mathcal{M}}(x, y) \). By comparing these confidence values, we are able to decide which pixels are capable of refining our model and how the observation and the model pixel values of the Laplacian levels are combined (see Sec. 5.4). Note that we never merge the top Gaussian levels of the model and the observation pyramid, but only Laplacian levels, thus retaining global photometric consistency.

Optionally, we render a visualization to steer the user towards image areas that need further refinement according to his or her needs and interests (see Sec. 5.5).

4. Adaptive Model Representation

Our preliminary goal is to progressively refine a given model image \(\mathcal{M} \) by new input images (observations) \(\mathcal{I}_j \) that can be taken at different scale or resolution in object domain and that cover potentially different regions. Thus, instead of using a flat representation, an adaptive Laplacian pyramid is an appropriate representation for our model \(\mathcal{M} \). Our adaptive Laplacian pyramid efficiently stores the model by means of localized detail information at different resolutions stored in Laplacian levels. Provided that two images (the observation and the model image in our case) are properly registered, Laplacian pyramids offer the advantage of directly comparing and manipulating detail information on corresponding resolution level without the computational burden of an explicit frequency analysis; see Burt et al. [BA83] for further technical details.

Initialization. Generating the standard Laplacian pyramid for the initial reference image \(\mathcal{I}_0 \) defines the initial model \(\mathcal{M} \) and, thus, serves as a reference view onto the scene. Pyramid level \(l_i^\mathcal{M} \) describes a model level with a specific scale factor with respect to \(\mathcal{I}_0 \), where \(i \) is the level’s index in the pyramid. Index \(i = 0 \) refers to the full resolution of \(\mathcal{I}_0 \), whereas levels \(l_i^\mathcal{M} \) with \(i > 0 \) and \(i < 0 \)
Adaptivity. As our model has to be dynamically expanded in order to represent so far unobserved content, i.e. higher or lower Laplacian levels or new lateral regions, we use a tile-based representation of our Laplacian pyramid. As storing a complete Laplacian pyramid would be extremely memory inefficient, we set up a simple regular 2D node array that can easily be added to represent new resolution levels (see Sec. 5.4).

Confidence maps. We log the confidence of the accumulated model pixels \(M^l(x,y) \) by storing a pixelwise confidence map \(c_{M}^l(x,y) \) for each Laplacian model level \(l \). Together with the confidence values \(c_{I_j}^j(x,y) \) computed for the current observation \(I_j \), the model’s confidence values determine the merging result (see Sec. 5.4).

5. Progressive Refinement

Our progressive refinement pipeline uses the Laplacian pyramid of the first input image \(I_0 \) of our image sequence as initialization of the model \(M \) (see Sec. 4). This first input image defines the reference view and the region of interest of the observed scene. Following observations \(I_j \) are integrated if they provide further information in terms of finer details or new lateral image regions. In order to simplify notation we omit frame index \(j \) in the following, i.e. the current observation \(I_j \), \(j > 0 \) is denoted by \(I \).

5.1. Image Registration

As we expect the current observation \(I \) to be captured with a different focal length and/or from a different camera pose than the reference view of model \(M \), we first estimate the homography between \(I \) and \(M \). Therefore, we detect a set of local features \(F_I \) in \(I \) and use the so far accumulated model features \(F_M \), detected in previous observations. Each set \(F = \{(x_k, y_k, f_k) \mid k = 1, \ldots, n \} \) of \(n \) detected features is defined by its position \(x_k, y_k \) and its descriptor \(f_k \). In our pipeline, we use SURF (speeded-up robust features) [BTVG06] as it provides a fast and robust detection. The homography \(H \) is estimated by applying a RANSAC matching [FB81] to the feature sets \(F_I \) and \(F_M \). As we assume some spatial coherence between consecutive input images, which is especially true in case of video sequences, we use the homography of the previous frame as initialization. In order to accumulate features for later usage, we replace all features \(F_M \) positioned within the observed area by new features \(F_I \), if the observation passes the full image outlier check in Sec. 5.3. Since all positions \((x_k, y_k) \) of \(F_M \) are related to the finest model level \(l_{min} \), we transform the positions of \(F_I \) accordingly. This re-positioning is also performed on \(F_M \) after the model gets extended to finer levels.

Using the homography \(H \), we now position the observation \(I \) with respect to lateral and (real-valued) level position in the model pyramid (see Fig. 4). This yields the minimal and maximal level \(l_{min}, l_{max} \) in the model pyramid that bound the scale of \(I \). As we want to avoid information loss due to downsampling, we warp the observation to the corresponding pyramid level \(l_{min} \) (e.g. level \(l_{M}^{0} \) in Fig. 4). In order to maintain the original level positioning, we compute a corresponding level map \(L \) by storing the real-valued level number with respect to the model per pixel (see also Sec. 5.4).

As we take uncalibrated observations as input, we expect mismatches especially in border and corner regions applying the homography only. To reduce this mismatch to a minimum, we fine-correct the registration locally. In order to achieve this, we need to compute the displacement for each pixel of \(I \) so that the photometric consistency between \(I \) and \(M \) of the observed area is as high as possible. A dense optical flow [HS81, LK*81] estimates the pixel-wise motion between two frames, resulting in a 2D flow field that contains the required displacement vectors. Therefore, we perform a backward optical flow between \(M \) and \(I \) of the observed area on level \(max(l_{min}, l_{M}^{0}) \), where \(l_{min} \) is the lowest level before the model expansion. After potentially resizing the flow field to level
l_{\min}, we resample \(I \) accordingly. In our implementation we use an OpenCV function with GPU acceleration that implements an optical flow variant presented by Farnebäck et al. [Far03].

Note that in this situation photometric inconsistencies may occur on the top Gaussian level of the model pyramid outside of the region defined by the reference image \(I_0 \).

Contributing coarser image information. Similar to the prior case, moving the camera farther away or zooming out results in newly observed regions, but also in coarser Laplacian levels not yet present in the model, i.e. \(l_0^{\text{max}} > l_{\text{max}}^M \). Thus, we additionally have to add higher pyramid levels into our model. In this case, we expand the model’s Laplacian pyramid to the same level as the one of the observation, i.e. to \(l_{\text{max}}^I \). Again, as in the prior case photometric inconsistencies may occur on the top Gaussian level of the model pyramid.

5.3. Outlier Removal

Before merging the Laplacian levels of the current observation \(I \) into our model pyramid, we apply an outlier removal in a full image and in a per-pixel stage. Here, outlier refers to image details of the observation \(I \) that are inconsistent to the so-far accumulated model \(M \) and, thus, should not be merged into our model. The main reasons for photometric inconsistencies are out-of-focus or motion blurred images that should be rejected completely, and locally inconsistencies due to inaccurate flow estimations or dynamic scene parts (see Sec. 5.1).

Full image outlier. We check for global consistency by comparing the finest Laplacian levels of the warped observation \(I \) and the model \(M \). Here, we apply a simple rule assuming that the novel observation contains at least as many fine details as the current model. Therefore, we compute the standard deviation of \(I \) and \(M \) on Laplacian level \(l_{\text{min}}^I \). If the standard deviation of the observed Laplacian level is smaller than the model values, we conclude that the observation does not provide additional image details and we drop \(I \).

Per-pixel outlier. If the observation \(I \) passed the full image outlier check, we compute a per-pixel matching error that accounts for imperfect local warps due to flow estimation insufficiencies or to dynamic scene parts. As local error metric, we use the relative absolute error \(E(x,y) \) on Laplacian levels \(l \in [l_{\min}, l_{\max}] \), with \(l_{\min} := \min(l_{\min}^M, l_{\min}^I) \) and \(l_{\max} := l_{\max}^I \). Note that we exclude the top Gaussian level for comparison due to its susceptibility to false positives if local photometric inconsistencies exist between \(I \) and \(M \). Moreover, in order to reduce the effect of considering new incoming details as outliers, we do not include high-frequency levels that are only present in \(I \). The per-pixel error is computed as

\[
E(x,y) = \sum_{l \in [l_{\min}, l_{\max}]} \frac{|M^I(x,y) - L^l(x,y)|}{\min(|M^I(x,y)|, |L^l(x,y)|)}.
\]

In all our experiments we discard observation pixels with \(E(x,y) > 10 \) in the case of low geometric distortions and to \(E(x,y) > 1 \) in the case of strong geometric distortions, i.e. for data sets **Moving cars** in Fig. 10 and **Streetart fisheye** in Fig. 11. The intuition behind this decision is that the model contains consistent detail information across the Laplacian levels. The error will get large, if the observation adds specifically high values in areas, where the model contains

5.2. Generation of the Laplacian Pyramid

Considering \(M^I \) and \(I^I \), the Laplacian pyramids of the model and the observation, their finest levels are defined by \(l_0^M \) and \(l_0^I \), whereas \(l_{\max}^M \) and \(l_{\max}^I \) are the coarsest levels. Since we generate a new pyramid for each observation, \(l_{\min}^I = l_0^I \) always holds, and the corresponding levels in the adaptive model pyramid are defined by the same scale in object domain (e.g. in case of Fig. 4, \(l_{\min}^M \) and \(l_0^M \) are corresponding levels). Furthermore, we have allocated model and observation levels \(T_{(p,q),l}^M \) and \(T_{(p,q),l}^I \), where \((p,q) \) is the tile’s position in the 2D tile array and \(l \) the pyramid level with \(l \in [l_{\min}^M, l_{\max}^M] \) for model tiles and \(l \in [l_{\min}^I, l_{\max}^I] \) for observation tiles. When capturing the scene from different positions, an observation can contribute content for merging into the model considering three cases:

Contributing finer image information. The new observation shows the scene captured from a closer distance, e.g. after moving the camera towards the scene or zooming in. In this case some observation tiles \(T_{(p,q),l}^I \) are not yet in the model pyramid, but corresponding tiles on coarser levels are. Thus, we extract the required tiles of the Laplacian level from the observation and add them to the model pyramid. As observation tiles also contribute to already existing model tiles, a merging of the model and the observation is applied in this case (see Sec. 5.4).

Contributing new scene areas at existing pyramid levels. The observation may provide new areas outside the current image boundaries, which allows more of the scene to be included in the reconstruction. In this case, we use all pyramid levels up to \(l_{\max}^I \) for incorporation into our model representation. Tiles that are not present in the model will be added, existing tiles will be merged (see Sec. 5.4).
very small values only, or vice versa. This is a clear indication that
the observation is locally inconsistent. For reasons of noise removal
and filling in gaps, the resulting mask is post-processed by a mor-
phological opening followed by a closing. For these operations we
use a disk-shaped structuring element with radius r=3 px and r=4 px,
respectively. If the observation contributes new image regions and,
thus, the model does not contain any data, we add the observation
content in any case.

5.4. Merging of Model and Observation Laplacian Levels

In the following we consider an individual pixel \(M^l(x,y) \) in
the model Laplacian pyramid at level \(l \) that already contains data and for
which we have an observation pixel \(I^l(x,y) \) that needs to be merged,
i.e. the pixel has passed the outlier test (see Sec. 5.3). Furthermore,
we have the level map \(L(x,y) \) value that represents the real-valued
level number of the corresponding pixel \(I(x,y) \) with respect to the
model pyramid levels (see Sec. 5.1).

Inspired by online 3D scene reconstruction [ZSG*18], we ad-
ditionally compute confidence values \(c^l_M(x,y) \) for the Laplacian
observation level \(l \) of \(I \) that refers to the reliability of the cur-
rent value \(I^l(x,y) \). The corresponding model confidence values are
stored in \(c^l_M(x,y) \) for \(M^l \). In the case of image fusion, we relate
the confidence to the contrast in a focused image, which can be mea-
sured using the modulation transfer function (MTF) of a camera;
see, for example, Williams and Becklund [WB89]. Independent of
the specific camera used, the MTF clearly states that coarser fre-
quency levels contain more contrast. Consequently, any observation
closer to the imaged object should be superior to other observations
taken from farther distances. As our outlier removal accounts for
unfocused images and misaligned image regions (see Sec. 5.3), we
simply set the observation’s confidence value \(c^l(x,y) \) to the lowest
per-pixel level map values \(L(x,y) \) observed so far and replace all
Laplacian levels for the model, i.e.

\[
M^l(x,y) \leftarrow \begin{cases} I^l(x,y) & \text{if } L(x,y) < c^l_M(x,y), \\ M^l(x,y) & \text{else.} \end{cases}
\]

\[
c^l_M(x,y) \leftarrow \min\{L(x,y), c^l_M(x,y)\}
\]

This operation guarantees that the model stores the observation
closest to the scene on a per-pixel level, i.e. the model contains a
single and reliable observation with maximal contrast. As we replace
the model frequencies also on coarser Laplacian levels, we retain a
photometrically and geometrically consistent reconstruction without
any further post-processing.

Remark: Our choice of replacing frequencies instead of blending
them is mainly motivated by the goal of being able to fuse several
hundred images without global optimization. We evaluated several
blending strategies that have been able to retain fine geometric
details for a small set of input images, but our experiments revealed
that slight misalignments and improper masks lead to gradually
increasing blur when applied to larger images sets. Due to the non-
perfect nature of image registration, blending all observations will
wash out geometric details that will never be fully recovered by
further blending operations. See the supplementary material for a
comparison.

5.5. Refinement Guidance

After the refinement, we render our confidence model map in order
to make the user aware of the current model composition in terms of
geometric detail. Fig. 5 shows such a visualization for an example
refinement. Using this visual guidance the user can steer the acquis-
tion process according to his or her needs and interests. We also
visualize areas in which the initial scene area defined by the refer-
ence image \(I_0 \) has been extended by further observations, as in this
regions our approach does not guarantee photometric consistency
(red areas in Fig. 5).

![Figure 5: Rendering the confidence map shows the so far refined areas (green). The brighter the green color, the finer the available geometric detail (i.e., the lower \(l \) for which \(M^l(x,y) \) exists). Red areas indicate regions with potential photometric inconsistency.](image)

6. Results

We evaluate the quality and the robustness of our progressive re-
finement imaging approach using 26 data sets, from which 8 are
presented in the paper; the remaining data sets can be found in the
supplementary material. The data sets consist of photos as well as
videos, captured by 29 different camera models (plus 19 unknown
cameras). For each record, the reference image \(I_0 \) is locally refined
by inserting additional images of the same scene taken closer to the
object or by zooming.

We compared our approach to 18 state of the art photo stitching
methods using a sequence of panorama photos captured with dif-
ferent zoom levels and with moderate illumination changes. This
comparison is available in the supplementary material (data set
Panorama). Most of these methods fail to process the data set
properly and we observe the following behaviors: (1.) The method
reported that no matching of the input frames is possible. (2.) The
method did not achieve any refinement, i.e., the merged image did
not contain the fine details provided by the zoomed images. (3.) The
method enforced a typical panorama scenario, resulting in a merged
image, where the input images are aligned horizontally. AutoSt-
titch [Bro,BL07] and Kolor Autopano Giga [Kol], which is using the
AutoStitch technology, were the only systems being able to achieve
a refinement. Unfortunately, AutoStitch crashes if the resolution
of the merged image exceeds 30942 px in one dimension. Furth-
more, we had no access to Eisemann et al.’s Photo Zoom [EESM10],
which precludes experimental comparison.

In the following, we compare our approach to the unrefined input
and the result of Autopano Giga [Kol]. In order to maintain the input images with the highest resolution in the final reconstruction, Autopano has to be operated using appropriate settings; see the supplementary material.

6.1. Refinement Using Different Sources of Imagery

For this experiment we use photos that were captured from different sources on different dates using different cameras from various unknown positions. We use publicly available photos, e.g. from Flickr or Wikimedia Commons, that are unedited and labeled for reuse with modification by the author.

House of Neptune and Amphitrite mosaic: A photo of the mosaic at the House of Neptune and Amphitrite in Hercula-neum captured with a Pentax Optio S7 (source: Johnboy Davidson, www.flickr.com/photos/49519215@N00/622102957/) and 6 additional close-up photos captured with 6 different cameras (FUJIFILM FinePix F900EXR, Panasonic DMC-ZS6, Nikon D7100, 3 unknown cameras) in the years 2007, 2006, 2014, 2011, 2017, 2014 and 2009, respectively (see Fig. 1).

This data set comprises challenging illumination variations due to different camera hardware and post-processing. Feeding this data set into Autopano Giga results in a geometric consistent, but photometric inconsistent image, as Autopano Giga tries to generate smooth transitions between the individual photos. In contrast, our method yields photometric and geometric consistency.

6.2. Robustness Evaluation

In this section we compare our method to Autopano Giga under varying conditions regarding illumination (Sec. 6.2.1) and geometric consistency (Sec. 6.2.2).

6.2.1. Inconsistent Illumination

The robustness against illumination changes is evaluated using the following four data sets:

Panorama at different daytimes: A panorama shot is refined using 9 additional zoomed-in photos that were taken at different daytimes with approximately one hour time difference in the afternoon, showing the same scene with decreasing sun light, locally changing shadows and clouds, and with a fixed camera position (see Fig. 6). All photos were captured with a Panasonic DMC-FZ28 (3648 × 2736 px mode).

Wall painting at different daytimes: A photo of an outside wall painting is refined using 38 additional photos that were taken at different daytimes during a single day, showing the same scene with varying sun light and locally changing shadows on the wall from strongly varying camera poses (see Fig. 7). All photos were captured with a Samsung Galaxy S8 build-in camera (4032 × 1960 px mode)

Glossy poster: The first frame of a video sequence capturing a glossy poster is refined using the remaining 847 frames that were captured closer to the scene. The video was acquired with a Samsung Galaxy S8 build-in camera in 1080p mode. This sequence comprises frames with very strong photometric inconsistencies in terms of reflections (see Fig. 8).

Deesis mosaic: A overview photo of the Mosaic of the Deesis in the Hagia Sophia is refined using 9 additional close-up photos (source: Steven Zucker, www.flickr.com/photos/profzucker/14275161473), where sunlight passes through the windows, resulting in a pattern of differently illuminated areas. All captured with a Sony DSC-RX100 (see Fig. 9).

Global Illumination Changes. The first two data sets, i.e. Panorama at different daytimes (Fig. 6) and Wall painting at different daytimes (Fig. 7), contain major changes in global illumination, while Panorama at different daytimes additionally contains geometric inconsistencies due to changes in cloudiness. While Autopano Giga has major difficulties in handling the illumination changes, the geometric variations (Panorama at different daytimes) and the different camera poses (Wall painting at different daytimes), our approach is able to combine both data sets into a photometric and geometric consistent image. The provided close-ups of the refined images demonstrate the proper handling of photometric and geometric information of our method during progressive image refinement.

Local Illumination Changes. The second two data sets, i.e. Glossy poster (Fig. 8) and Deesis mosaic (Fig. 9), contain strong local illumination variations due to photoflash reflections and shadow casts by a window grating, respectively. In both scenarios, Autopano Giga is incorporating local illumination constellations from different close-up images into the reconstruction, resulting in very inconsistent intensity distributions in the output image. Our proposed progressive method is able to generate a photometric consistent result even under these extreme lighting conditions (see also Fig. 5 for a visualization of the refined areas for the Glossy poster data set).

6.2.2. Inconsistent Scene Geometry

The robustness against strong geometric variations is evaluated using the following two data sets:

Moving cars: A panorama shot showing a freeway is refined using 2 additional zoomed-in photos, where the cars have been moving (see Fig. 10). All photos were captured with a Panasonic DMC-F228 (3648 × 2736 px).

Streetart fisheye: An ultra wide-angle shot of a streetart graffito captured with an unknown camera with a fisheye lens is refined using an additional photo captured with a normal lens (source: Mike Lambert, www.flickr.com/photos/mike_lambert/14411692449; see Fig. 11).

We additionally depict the local outlier masks generated for both data sets; see Figs. 10 and Fig. 11 and Sec. 5.3.

The main difference between both data sets is the type of geometric inconsistency. While the Moving cars data set comprises local unconstrained geometric variations, the Streetart fisheye data set suffers from strong lens distributions that can be seen as global constrained geometric inconsistency. Both scenarios exhibit the different approaches taken by Autopano Giga and our method. While Autopano Giga generates visually pleasing output images in both cases, they both contain a mixture of all provided images leading to, e.g., duplications of moving cars (see yellow circles in Fig. 10b) and a blended deformed geometry in case of strongly varying lens
artifacts (see Fig. 11). In contrast, our methods takes the initial image as photometric and geometric reference, and adjusts subsequent images to match this reference as close as possible before adding details. Therefore, our approach delivers a consistent geometric result, i.e. there are no multiple instances of moving objects or unexpected lens properties. Autopano Giga, however, always selects scene fragments with maximal focus, whereas our approach does not refine moving objects in the reference image, potentially leaving unsharp objects untouched; see Fig. 10c. Consulting the local outlier masks, we can evaluate the overall quality of our two-stage registration process described in Sec. 5.1; see also the discussion in Sec. 6.3.

In the Moving cars data set mainly driving cars and moving trees are discarded and in the Streetart fisheye data set the strong lens distribution can not be fully compensated by the optical flow stage.

Remark: Image parallax due to non-planar scenes can be seen as a geometric inconsistency that is fixed by our local outlier removal. Consequently, image areas are not refined if the variation of the camera viewpoint leads to geometric inconsistencies due to strong depth inhomogeneities (see supplementary material).

6.3. Influence of Pipeline Stages

In the following we discuss the influence of essential processing stages of our progressive image refinement pipeline; see Fig. 2. For this evaluation, we use the Moving Cars plus another data set:
Starlight: A sequence of 5 photos captured free-hand with a Samsung Galaxy S8 build-in camera with 1920 × 1080 px resolution, taken from an advertising poster.

The *Fine Registration* stage has a strong impact on the quality of the final result. Fig. 12 demonstrates the effect of the local refined image registration using optical flow on the *Starlight* data set. Even for the comparable small lens distortion in this data set we observe that the additional optical flow significantly improves the local matching of object details. This gets even more apparent if images with strong optical distortions such as the one in the *Streetart fisheye* are considered that can not be modeled using a homography; see Fig. 11.

The effect of the *Per-Frame Outlier Removal* is demonstrated in the *Panorama at different daytimes* data set; see Fig. 6. Here, the last input frame, which has been captured in very weak sunlight, has not passed the check, i.e. it has been discarded for model image refinement, since it does not provide additional image details. In comparison, Autopano Giga performs a histogram equalization and incorporates the last frame, overwriting the details of the previous frames, which results in a loss of detail and increased noise in the refined image. The *Per-pixel Outlier Removal* as described in Sec. 5.3 is evaluated in Fig. 13, which contains close-ups from the *Moving cars* and *Streetart fisheye* scenarios, for which we lowered the threshold for discarding pixels to $E(x,y) > 1$. Deactivating the local
outlier removal yields artifacts visible as slight ghosting of cars and of mismatching seams in the Moving cars and Streetart fisheye scenarios, respectively. Both effects vanish nearly completely if the per-pixel outlier removal gets activated.

6.4. Comparison of required resources

Tab. 2 shows for each data set a comparison of peak total RAM usage and processing time for the whole refinement process for both Autopano Giga and our proposed method. This comparison demonstrates that global optimization significantly increases memory requirements and runtime. This is unavoidable as global optimization methods have to keep all relevant images in memory in order to process them jointly. Especially for the video data set Glossy poster the memory requirements increase severely, by a factor of approx. 40, whereas the processing time increases by a factor of 5. In contrast, our approach of progressively refining the image is much more light-weight and continuously eliminates redundancy, substantially lowering resource requirements. All computations were

In our implementation we mainly optimized our adaptive Laplacian pyramid as described in Sec. 5, while the main image processing stages, such as feature extraction, optical flow and basic image operations, are taken from OpenCV as is.

6.5. Limitations and Discussion

As already stated before, our current pipeline can guarantee photometric consistency only within the region of the scene observed by the initially captured reference frame I_0. Our system is capable of incorporating images that are partially outside this initial region, but at the seam to I_0 it yields geometric but no photometric consistency. Furthermore, since the refined image is always consistent to the reference image, unintended photometric effects in I_0, e.g. photoflash reflections, will not be compensated by additional photos.
Moreover, our current implementation is not re-entrant, i.e., it does not support the continuation of a prior acquired model image represented in a Laplacian pyramid as described in Sec. 4. Although the implementation of this functionality is of some practical importance, we consider it an engineering task. While the system is truly progressive, in that information is fed frame-by-frame without any global optimization (across several images), the current implementation is interactive but not real-time. So far, we have not fully optimized and tightly integrated the pipeline components in order to achieve optimal load and compute balancing. Furthermore, the fine image registration using optical flow can not correct strong optical distortions or parallax, however our per-pixel outlier removal compensates for this error almost entirely; see Fig. 11.

7. Conclusions

We presented a simple, yet very effective and efficient technique for the progressive incorporation of large image sequences into a single, geometrically and photometrically consistent model image. Conceptually, our approach has no restriction to object resolution, camera-to-object distance, camera intrinsics or acquisition setup. Additionally, our approach does not require a global optimization applied to the complete or parts of the input image set. Our approach achieves geometric registration using a two-stage approach that combines a homography and an additional local refinement using a flow field. It can handle strong illumination changes, yielding photometric consistent results. Due to its progressive nature, our approach allows for a valid and consistent reconstruction at any moment during the refinement process without any post-processing.

References

[AAB+84] ADELSION E. H., ANDERSON C. H., BERGEN J. R., BURT P. J., OGDEN J. M.: RCA Engineer 29 (1984), 33–41.

[ADA+04] AGARWALA A., DONTCHEVA M., AGRAWALA M., DRUCKER S., COLBURN A., CURLESS B., SALESIN D., COHEN M.: Interactive digital photomontage. ACM Trans. Graphics 23, 3 (2004), 294–302.

[BAP83] BURT P. J., ADELSION E. H.: A multiresolution spline with application to image mosaics. ACM Trans. Graphics 2, 4 (1983), 217–236.

[BBPP10] BALLAN L., BROSTOW G. J., PUWEIN J., POLLEFEYS M.: Unstructured video-based rendering: Interactive exploration of casually captured videos. ACM Trans. Graphics 29, 4 (2010), 87:1–87:11.
B. Badki, A. Gallo, O. Kautz, and S. Pen: Computational zoom: a framework for post-capture image composition. *ACM Trans. Graphics* 36, 4 (2017), 46.

R. Burt, J. Kolczynski, and J. S. Kolczynski: Enhanced image capture through fusion. In *Proc. IEEE Int. Conf. Computer Vision (ICCV)* (1993), pp. 173–182.

B. Brown, M. Lowe, and T. D. G. Automatic panoramic image stitching using invariant features. *Int. Journal of Computer Vision (IJCV)* 74, 1 (2007), 59–73.

B. Brown: *Autostitch*. 2018. http://matthewwalunbrown.com/autostitch/autostitch.html

B. Tuytelaars, T. Van Gool, and L. Van Gool: Surf: Speeded up robust features. In *Proc. Europ. Conf. Computer Vision (ECCV)* (2006), pp. 404–417.

B. Burba: *Pyramid as a structure for efficient computation.* In *Multiresolution image processing and analysis*. 1984, pp. 5–35.

E. Eismann, E. Eisemann, and H. P. Magnor: Photo zoom: High resolution from unordered image collections. In *Proceedings of Graphics Interface 2010* (2010), Canadian Information Processing Society, pp. 71–78.

E. Efros, A. Freeman, and W. T. Freeman: Image quilting for texture synthesis and transfer. In *Proc. SIGGRAPH* (2001), pp. 341–346.

E. Eden, M. Uyttendaele, and R. Szeliski: Seamless image stitching of scenes with large motions and exposure differences. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)* (2006), vol. 2, pp. 2498–2505.

F. Farnebäck: Two-frame motion estimation based on polynomial expansion. In *Proc. Scandinavian Conf. Image Analysis* (2003), Springer, pp. 363–370.

F. Fischler and R. C. Bolles: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. *Communications of the ACM* 24, 6 (1981), 381–395.

H. He, M. Liao, S. Sander, and P. Hoppe: Gigapixel panorama video loops. *ACM Trans. Graphics* 37, 1 (2017), 3:1–3:15.

H. Horn and B. Schunck: Determining optical flow. *Artificial intelligence* 17, 1-3 (1981), 185–203.

I. Iki, S. I. Kim, D. Hilliges, O. Molyneaux, N. W. R. Kohli, J. Shotton, J. Hodges, S. Freeman, D. K. Davison, and B. Fitzgibbon: KinectFusion: real-time 3D reconstruction and interaction using a moving depth camera. In *Proc. ACM Symp. User Interface Software & Tech.* (2011), pp. 559–568.

K. Kazhdan, M. Hoppe, and H. Hoppe: Streaming multigrid for gradient-domain operations on large images. *ACM Trans. Graphics* 27, 3 (2008), 21:1–21:10.

K. Keller, M. Lefloch, L. Lambers, T. I. Izadi, and T. Weyrich: Kolob: Real-time 3D reconstruction in dynamic scenes using point-based fusion. In *Proc. Conf. Joint 3DIM/3DPVT (3DV)* (2013), p. 8.

K. Kol: *Kolor*. Kolor autopano giga 4.4.2. http://www.kolor.com/autopano-download

K. K. Kwatra, S. Schrödl, E. Essa, M. Turk, and B. Bick: Graphcut textures: image and video synthesis using graph cuts. *ACM Trans. Graphics* 22, 3 (2003), 277–286.

K. Kopf, M. Uyttendaele, O. Deussen, and H. Cohen: Capturing and viewing gigapixel images. In *ACM Trans. Graphics* (2007), vol. 26, p. 93.

L. Lucas, D. Kanade, and et al.: An iterative image registration technique with an application to stereo vision.

L. Li, Y. Sun, M. Tang, C.-K. Shum, and H.-Y. Shum: Lazy snapping. *ACM Trans. Graphics (Proc. SIGGRAPH)* 23, 3 (2004), 303–308.

M. Milgram: *Computer methods for creating photomosaics.* *IEEE Transactions on Computers* 100, 11 (1975), 1113–1119.

N. Newcombe, A. Davison, and J. S. Kautz: Live dense reconstruction with a single moving camera. In *Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)* (2010), pp. 1498–1505.

N. Nasrollahi and T. Moeslund: Super-resolution: a comprehensive survey. *Machine Vision and Applications* 25, 6 (2014), 1423–1468.

S. Niessner, M. Zollhöfer, S. Izadi, and Stamminger: Real-time 3D reconstruction at scale using voxel hashing. *ACM Trans. Graphics* 32, 6 (2013), 169.

O. Ogden, E. Adelson, J. Bergren, B. P. Burt, and P. J. Burt: Pyramid-based computer graphics. RCA engineer 30, 5 (1985), 4–15.

P. P. D. Pirk, M. Feun, O. Deussen, M. Uyttendaele, and J. Kopf: Video enhanced gigapixel panoramas. In *ACM Trans. Graphics (Proc. SIGGRAPH Asia)* (2012), pp. 7:1–7:4.

P. Paris, S. Hasinoff, J. S. Kautz, and T. Weyrich: Local laplacian filters: Edge-aware image processing with a laplacian pyramid. *ACM Trans. Graphics* 30, 4 (2011), 68:1–68:12.

P. Park, S. C., M. K. Kang, G. M.: Super-resolution image reconstruction: a technical overview. *IEEE signal processing magazine* 20, 3 (2003), 21–36.

P. Pulli, K. M., D. Xiong: Mobile panoramic imaging system. In *Proc. Conf. Computer Vision and Pattern Recognition (CVPR) - Workshops* (2010), pp. 108–115.

M. Pumarola, A. Vakhtbov, A. P. Agudo, S. Sanfelio, A. Moreno-Noguer, and F. P. SL-SLAM: Real-time monocular visual slam with points and lines. In *Proc. IEEE Int. Conf. Robotics and Automation (ICRA)* (2017).

R. Rejland, O. G.: Two ways of life. First Manchester Art Treasures Exhibition, 1857.

K. Robinson: *Pictorial Effect in Photography: Being Hints on Composition and Chiaro-oscuro for Photographers. To which is Added a Chapter on Combination Printing.* Piper & Carter, 1869.

S. Szeliski, R. Shum, and Y.: Creating full view panoramic images and environment maps. In *Proc. SIGGRAPH* (1997), pp. 251–258.

S. Snavely, N. Seitz, M. S. Szeliski: Photo tourism: Exploring photo collections in 3D. *ACM Trans. Graphics* 25, 3 (2006), 835–846.

S. Susil, R., M. Uyttendaele, M., and D. Steedly: Fast poisson blending using multi-splines. In *Proc. IEEE Int. Conf. Computational Photography* (2011), pp. 1–8.

S. Thrup, C. Burgard, and D. Fox: Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.

S. Tompkin, J., P. Pece, F., M. Shah, S., I. Izadi, J., and T. Theobalt: Video collections in panoramic contexts. In *Proc. ACM Symp. User interface software and technology* (2013), pp. 131–140.

W. Williams, C. S., and O. Becklund, O. A.: *Introduction to the optical transfer function.* Wiley, 1989.

W. Yuan, Y., M. McLellan, L., and P. Sturm: Multiperspective modeling, rendering, and imaging. In *ACM SIGGRAPH ASIA, courses notes* (2008), ACM, p. 14.

A. Zollhöfer, M. Stotko, and A. Theobalt: State of the art on 3D reconstruction with rgb-d cameras. In *Computer Graphics Forum* (2018), vol. 37, Wiley Online Library, pp. 625–652.