SUPPLEMENTARY MATERIAL

A new triterpenoid saponin from *Gleditsia sinensis* and its antiproliferative activity
Chao Liua,b, Hui Sunc, Wei-Ting Wanga,b, Jin-Bao Zhangd, An-Wei Chenga,b, Xu Guoa,b and Jin-Yue Suna,b,*

aInstitute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, PR China;
bKey Laboratory of Agro-Products Processing Technology of Shandong Province, Jinan 250100, PR China;
cShandong Chengchuang Pharmaceutical R & D Co., Ltd, Jinan 250101, PR China;
dDepartment of Genetics, Weifang Medical University, 7166 Baotong West Street, Weifang 261053, PR China.

*Corresponding author. E-mail: moon_s731@hotmail.com
Abstract

Chemical investigation of the anomalous fruits of *Gleditsia sinensis* led to the isolation and identification of a new triterpenoid saponin, 3-**O**-**β**-D-xylopyranosyl-(1→2)-**α**-L-arabinopyranosyl-(1→6)-**β**-D-glucopyranosyl oleanolic acid 28-**O**-**β**-D-xylopyranosyl-(1→4)-**α**-L-rhamnopyranosyl-(1→4)-**β**-D-xylopyranosyl-(1→4)-**α**-L-rhamnopyranosyl-(1→3)-**β**-D-glucopyranosyl ester (1), along with other nine known compounds (2–10). All the isolates from this species were reported for the first time. The structure of Compound 1 was determined by detailed analysis using various analytical techniques including 1D and 2D NMR. *In vitro* anti-proliferative activities of Compounds 1 on MCF-7 and Hep-G2 tumor cell lines were evaluated. IC₅₀ values against the two cell lines were 9.5 and 11.6 μM, respectively.

Keywords: *Gleditsia sinensis*; triterpenoid saponin; antiproliferative
1. Extraction and isolation

The anomalous fruits (10 kg) of *G. sinensis* were ground into powder and then extracted with 90% ethanol (50.0 L) by heating reflux for 3 hrs using a reaction still. Following filtration and vacuum-concentration of the combined solution yielded a crude extract (919.0 g), which was then suspended in water (3000 mL) and extracted successively with petroleum ether (3 × 1000 mL), EtOAc (3 × 1000 mL) and *n*-BuOH (3 × 1000 mL) to afford three organic fractions.

The *n*-BuOH fraction (638.0 g) was submitted to column chromatography (CC) over HP-20, eluted with methanol – water (V1/V2 = 0:1, 3:7, 5:5, 7:3, 9:1) gradient to yield five subfractions (Fr. 1 42.3 g, Fr. 2 65.8 g, Fr. 3 32.5 g, Fr. 4 22.1 g, Fr. 5 117.2 g). The Fr. 3 was separated on silica gel CC eluted with dichloromethane-methanol to yield compounds 2 (132.1 mg), 3 (14.9 mg) and fraction 3.1 – 3.4. Fr. 3.1 (4.2 g) was submitted to ODS CC eluted with methanol – water (V1/V2 = 3:7) to yield 4 (15.3 mg) and 5 (8.4 mg). Purification of Fr. 3.2 (3.6 g) by ODS CC eluted with methanol – water to afford compound 6 (9.2 mg). Part of fraction 3.3 (5.9 g) was also chromatographed over ODS columns and then repeatedly subjected to semi-preparative HPLC (MeOH: H2O) purification to afford 1 (142 mg) and 7 (9.1 mg). By the same method, fraction 3.4 (2.7 g) furnished 10 (10.6 mg), 8 + 9 (49 mg). Following repeated HPLC [MeOH-H2O (38:62)] purification, 8 + 9 gave 8 (15.2 mg) and 9 (3.8 mg).

2. Cytotoxicity activity experiments

The cytotoxic effects of compounds 1–4 were estimated *in vitro* against the MCF-7 and Hep-G2 cancer cell lines by MTT assay. Briefly, the cell suspensions (200 mL) at a density of 5 × 10^4 cells·mL⁻¹ were distributed into 96-well cell culture plates and cultured at 37°C in incubator with 5% CO₂ for 24 h. The solution of five different concentrations of the test compounds (2 mL in DMSO) was added to each well and further incubated for 48 h under the same conditions. The MTT solution (20 mL) was then added to each well and incubated for 4 hrs. Finally, the supernatant was discarded and limited DMSO was added to each well to dissolve the blue-violet
crystals completely, the optical density (OD) values were then read on the microplate reader at 490 nm. All tests and analyses were carried out in triplicate. Dose-response curves were generated and the IC$_{50}$ values were defined as the concentration of compound required to inhibit cell proliferation by 50%. Martrine, an approved agent for the treatment of many tumors, was applied as a positive control.

Legends for Table

Table S1. 1H, 13C-NMR data of 1 at 400 and 100 MHz in DMSO-d$_6$ (δ in ppm; J in Hz)

Legends for Figures

Figure S1. 1H-NMR spectrum of compound 1

Figure S2. 13C-NMR spectrum of compound 1

Figure S3. HSQC spectrum of compound 1

Figure S4-1. HMBC spectrum of compound 1

Figure S4-2. Key HMBC (H→C) correlations of 1

Figure S5-1. ROESY spectrum of compound 1

Figure S5-2. Key ROESY correlations of 1

Figure S6. HR-ESI-MS of compound 1
Position	δ_C	δ_H		
Aglycon				
1	38.55	1.35 m, 0.84 m		
2	26.20	2.24 m, 1.83 m		
3	88.10	3.10 m		
4	39.20			
5	55.50	0.81 m		
6	18.41	1.67 m, 1.32 m		
7	33.26	1.63 m, 1.58 m		
8	39.61			
9	47.49	1.62 m		
10	36.76			
11	23.43	2.03 m, 2.08 m		
12	122.20	5.18 br s		
13	143.67			
14	41.86			
15	27.99	1.23 m, 1.57 m		
16	22.73	1.85 m, 2.05 m		
17	46.72			
18	41.39	3.17 dd ($J = 9.4, 2$ Hz), 3.43 brd		
19	46.13	1.78 m, 1.26 m		
20	30.78			
21	33.65	1.35 m, 1.16 m		
22	32.04	2.09 m, 1.70 m		
23	27.98	0.98 s		
24	16.97	0.75 s		
25	15.76	0.85 s		
26	17.14	0.68 s		
27	25.78	1.08 s		
28	175.92			
29	32.71	0.84 s		
30	23.92	0.82 s		
C3-Glc				
1	105.66	4.15 d ($J = 7.6$ Hz)		
2	74.39	3.02 m		
3	77.22	3.38 m		
4	71.14	3.36 m		
5	75.52	3.25 m		
6	68.68	3.46 m, 3.84 m		
C28-Glc				
1	93.41	5.31 m		
2	74.20	3.19 m		
3	76.11	3.18 m		
	Ara	1	101.41	4.45 d (\(J = 4.8 \) Hz)
---	---------	---	--------	----------------------------
	2	79.35	3.54 m	
	3	72.36	3.15 m	
	4	66.26	3.60 m	
	5	63.17	3.30 m	
	Rha	1	100.10	5.13 br s
	2	70.14	3.75 m	
	3	71.02	3.38 m	
	4	83.67	3.39 m	
	5	67.31	3.60 m	
	6	18.40	1.09 d (\(J = 6 \) Hz)	
	Rha'	1	100.57	4.48 br s
	2	69.88	3.28 m	
	3	70.93	3.08 m	
	4	86.26	3.32 m	
	5	68.28	3.34 m	
	6	18.20	1.16 d (\(J = 5.6 \) Hz)	
	Xyl	1	105.08	4.25 d (\(J = 7.2 \) Hz),
	2	74.35	3.09 m	
	3	76.53	3.38 m	
	4	69.82	3.22 m	
	5	66.18	3.67 t, 3.09 m	
	Xyl'	1	105.65	4.42 d (\(J = 7.6 \) Hz),
	2	74.10	3.02 m	
	3	75.91	3.29 m	
	4	68.50	3.35 m	
	5	66.21	3.48 t, 3.37 m	
	Xyl''	1	104.80	4.38 d (\(J = 7.6 \) Hz)
	2	74.25	3.18 m	
	3	77.71	3.38 m	
	4	70.97	3.58 m	
	5	66.02	3.68 t, 3.07 m	
Figure S1. 1H-NMR Spectrum of compound 1

Figure S2. 13C-NMR Spectrum of compound 1
Figure S3. HSQC Spectrum of compound 1
Figure S4-1. HMBC Spectrum of compound 1

Figure S4-2. Key HMBC (H→C) correlations of 1
Figure S5-1. ROESY Spectrum of compound 1

Figure S5-2. Key ROESY correlations of 1
Figure S6. HR-ESI-MS of compound 1