Atmospheric Modes Excited by the 2021 August Eruption of the Fukutoku-okanoba Volcano, Izu-bonin Arc, Observed as Harmonic Oscillations of QZSS Total Electron Content

Kosuke Heki (heki@sci.hokudai.ac.jp)
Hokkaido University https://orcid.org/0000-0003-4909-8830

Tatsuya Fujimoto
Hokkaido University: Hokkaido Daigaku

Research Article

Keywords: QZSS, GNSS, ionospheric disturbance, total electron content, Fukutoku-Okanoba, Plinian eruption, atmospheric mode

Posted Date: December 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1190157/v1

License: Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Continuous Plinian eruptions of volcanoes often excite atmospheric resonant oscillations with several distinct periods of a few minutes. We detected such harmonic oscillations excited by the 2021 August eruption of the Fukutoku-Okanoba volcano, a submarine volcano in the Izu-Bonin arc, in ionospheric total electron content (TEC) observed from global navigation satellite system (GNSS) stations deployed on three nearby islands, Chichijima, Hahajima, and Iwojima. Continuous records with the geostationary satellite of Quasi-Zenith Satellite System (QZSS) presented four frequency peaks of such atmospheric modes. The harmonic TEC oscillations, started at ~5:16 UT, exhibited an unprecedented large amplitude but decayed in a few hours.

Introduction

With arrays of continuous global navigation satellite system (GNSS) stations, we can continuously monitor the Earth's ionosphere in terms of total electron content (TEC), an integrated number of electrons along line-of-sights connecting satellites and receivers. GNSS-TEC observations enabled us to detect ionospheric responses to large volcanic eruptions worldwide during the last two decades. Such responses have two distinct types, (Type-1) harmonic oscillations of TEC (e.g. Nakashima et al. 2016), and (Type-2) short impulsive pulses of TEC changes (e.g. Heki 2006). Type-1 disturbances are caused by continuous Plinian eruptions and often lasts for hours. Type-2 occurs 8-10 minutes after a Vulcanian explosion of a volcano as a single N-shaped change of TEC. Both types propagate outward with a speed of 0.8-1.0 km/s, the acoustic wave velocity in the ionospheric F region. Cahyadi et al. (2020) and Cahyadi et al. (2021) compiled the recent cases of such Type-1 and Type-2 disturbances, respectively. Type-1 cases have never been found in Japan except the 2009 eruption signal of the Sarychev Peak Volcano, Russia, from stations in northern Japan (Shestakov et al. 2021).

Global Positioning System (GPS) has been the main GNSS used to study ionospheric TEC. GPS satellites employ orbits with periods of a half sidereal day and can stay within the view of a ground station only for periods shorter than 4-5 hours. On the other hand, Quasi-Zenith Satellite System (QZSS), the Japanese satellite system for positioning, is composed of three satellites with quasi-zenith orbits (J01, J02, J03) and one geostationary orbit satellite (J07). These satellites stay longer within the view of a station (~8 and 24 hours a day for J01-03 and J07, respectively). This offers a rare opportunity to observe the TEC oscillation caused by a Plinian volcanic eruption lasting for hours without disruptions of data. In this study, we take this advantage in discussing the frequency content and temporal decay of the oscillation caused by a recent case of Type-1 ionospheric disturbance by a volcanic eruption in Japan.

Ionospheric response to the 2021 August eruption of the Fukutoku-Okanoba volcano

The 2021 Plinian eruption

Fukutoku-Okanoba is a submarine volcano located ~5 km NNE of Kita-iwojima Island (uninhabited) in the Izu-Bonin arc, located ~1,000 km south of Tokyo, Japan (Fig. 1). Its submarine eruptions in 1904-
1905, 1914, and 1986 resulted in formation of a tiny island, which disappeared within a few years by collapse and marine erosion.

The latest volcanic activity started in 2020 February, when the sea water of this area changed its color to yellow-green. A strong eruption with Volcanic Explosivity Index (VEI) 4 started on August 13, 2021. According to Japan Meteorological Agency (JMA), the eruption column as high as ~16,000 m lasted from August 13, 00 UT to August 14, 19 UT (JMA, 2021).

Formation of an island with a diameter of ~1 km was confirmed on August 15, but this new island has been shrinking day by day. The 2021 eruption is one of the largest eruptions in Japan in terms of the total mass of the ejecta. A few months later, huge amount of floating pumice reached the coast of the Ryukyu Islands, southwestern Japan, hindering fishing and ferry navigation in that region.

Eruption signatures in GNSS-TEC

We use GNSS raw data files from GEONET (GNSS Earth Observation Network) run by Geospatial Information Authority (GSI), Japan. Within ~300 km from the Fukutoku-Okanoba volcano, there are five GEONET stations on three inhabited islands, P217 and 2007 on Chihijima, 0603 on Hahajima, and 0604 and 0605 on Iwojima (Fig. 1b). Although the two stations in Iwojima track only GPS satellites, the three other stations track GLONASS, Galileo, and QZSS in addition to GPS. Figure. 1c-f shows sub-ionospheric point (SIP) trajectories of these four GNSS as viewed from 0603, Hahajima. SIP trajectories of the QZSS satellites are much shorter than other GNSS, and the SIP of J07 hardly moves. This indicates that these satellites are nearly fixed in the sky when viewed from the ground station.

We converted the L1 and L2 carriers into total electron contents (TEC) (we also try L5 as discussed later in this article). Basic procedures in the GNSS-TEC studies follow Heki (2021). Figure. 2 compares the TEC time series 4:30-7:30 UT obtained using the QZSS geostationary satellite (J07) from the 0603 station over five consecutive days, August 11-15, 2021. One can see that TEC oscillation started at ~5:20 UT on August 13, the day the Plinian eruption started. This is a typical ionospheric signature of Plinian volcanic eruptions (Cahyadi et al., 2020). Such oscillations are not seen on other days.

In Figure. 3a, we selected stations 2007, 0603, 0605 representing the three islands, Chichijima, Hahajima, and Iwojima, respectively, and showed slant TEC time series on Aug. 13, 2021, using various GNSS satellites with SIP located close to the volcano. Those observed at P217 and 0604 are not shown because they are very similar to those at 2007 and 0605 stations, respectively. In Figure. 3b, we modified the time axis correcting for the travel time of the acoustic wave from the volcano to the ionospheric penetration points of line-of-sights assuming 0.8 km/s propagation velocity. We can see that the phases of TEC oscillations are largely coherent among different satellite-station pairs and that the atmospheric oscillation started at around 5:16 right above the volcano.

Outward propagation of ionospheric disturbances from the volcano can be confirmed also in Figure. 4, where we plot the disturbance observed by various station-satellite pairs in colors as a function of time.
(horizontal axis) and distance from the volcano (vertical axis). There, we can recognize peaks align along lines with a slope corresponding to the acoustic wave speed (0.8 km/s).

Discussion And Conclusion

Frequency spectrum of the TEC oscillations

Time-variable amplitudes of the TEC oscillation (Fig. 3) suggests the existence of multiple frequency peaks. Long continuous TEC records enabled by QZSS are suitable for studying their frequency spectra. Figure 5a shows the time series of slant TEC of J07 observed at three stations (0603 on Hahajima, 2007 and P217 on Chichijima) in 5:00-9:30 UT. A positive pulse at ~8:50 UT observed at 2007 and P217 would possibly be a sporadic-E irregularity (e.g., Maeda and Heki, 2015) irrelevant to the volcanic eruption. We select the 4-hours data 5:20-9:20 and estimated their frequency components using the Blackman-Tukey method (Fig. 5b).

They show four frequency peaks at about 3.7, 4.4, 4.8, and 5.4 mHz, with the 4.8 mHz peak somewhat weaker than the other three. They correspond to periods of about 270, 227, 208, and 185 seconds, respectively. The first two are the atmospheric resonance frequencies detected by seismometers after the 1991 eruption of the Pinatubo volcano (e.g., Kanamori and Mori, 1992). They also coincide with the two modes with abnormally large amplitudes in the background free oscillation of the Earth (Nishida et al., 2000). The higher two frequencies are also overtones of the atmospheric resonant oscillation (Watada and Kanamori, 2010). Identification of these four peaks would have been difficult with short arcs of conventional GNSS like GPS.

Temporal decay of the TEC oscillations

Next, we analyze how such TEC oscillation decayed in time. Figure 6a compares time series in two sequential 3-hours periods (5:20-8:20 and 8:20-11:20) and two spectrograms made using the initial two hours of these time windows. Strong atmospheric mode peaks in the earlier time disappear in the later time (Fig. 6b). Figure 6c shows gradual decay of the three peak frequency intensities. Because the time corresponds to local afternoon (5:20 UT is 14:20 in local time), background TEC also decays. However, the decay of the oscillation exceeds that in the background TEC calculated with a global ionospheric map (Mannucci et al., 1998) suggesting that the atmospheric resonance would have decayed substantially within 3 hours (Fig. 6c).

Comparison of 3 different combinations of L1, L2, and L5

The QZSS satellites transmit microwave signals in three different frequencies L1 (~1.575 GHz), L2 (~1.228 GHz), and L5 (~1.176 GHz). So far, we have been combining L1 and L2 phases to calculate TEC, but the three frequencies allow us to compare three different combinations (L1-L2, L1-L5, and L2-L5) for TEC. Let \(f_h \) and \(f_l \) be the higher and lower frequencies of the two bands to be combined, then we multiply their phase differences (expressed in lengths) with the factor \(f_h^2 f_l^2 / (f_h^2 - f_l^2) \) to obtain TEC. This factor
becomes smaller (TEC data become less noisy) if the two frequencies are more different. The actual values of this factor are 7.76, 9.52, and 42.08 for the L1-L5, L1-L2, and L2-L5 combinations, i.e., the L1-L5/L2-L5 combinations would have the smallest/largest noises.

Figure 7 (a) High pass filtered slant TEC time series 5:20-8:50 at the 2007 station observed using J07 satellite calculated using three different combinations of L1, L2, and L5 carrier phases. (b) Standard deviations of slant TEC s_{tot} obtained by the three combinations as a function of the frequency factor F in equation (1). Three curves correspond to period 1 (5:20-6:20), period 2 (6:20-7:20) and period 3 (7:20-8:20). (c) Receiver noises s_{rx} remain nearly constant, while ionospheric scintillation s_{ion} decays rapidly with time. The receiver noise s_{rx} is scaled with the frequency factor for the L1-L2 combination.

Figure 7a compares slant TEC time series obtained with the same station-satellite pair (2007 – J07) using the three different phase combinations. Indeed, the L2-L5 combination shows the largest noise, and the L1-L5 combination shows slightly smaller variance than the conventional L1-L2 combination. The total standard deviation (s_{tot}) would be composed of real ionospheric TEC changes (s_{ion}) caused, e.g., by small scale electron density irregularities (scintillations) and phase reading errors within GNSS receivers (s_{rx}). The latter would be enhanced by the frequency factor F as discussed above while the former would remain the same for any frequency combinations. Then, their variances would have the following relationship.

$$s_{\text{tot}}^2 = s_{\text{ion}}^2 + F^2 s_{\text{rx}}^2 \quad F \equiv f_h^2 f_l^2 / (f_h^2 - f_l^2). \quad (1)$$

Figure 7b compares the total standard deviation s_{tot} as a function of the factor F. We used (1) as the observation equation and estimated the two quantities s_{ion} and s_{rx} for three different periods by the least-squares method. Figure 7c indicates that the receiver noise s_{rx} remains constant for the three periods while ionospheric scintillation s_{ion} decays rapidly as time elapses. This provides an additional support for the decay of atmospheric modes within three hours shown in Figure 6c.

TEC oscillation amplitude

Cahyadi et al. (2020) compared the TEC oscillation amplitudes relative to the background vertical TEC from three cases and suggested that they might be proportional to the mass eruption rate (MER). The motions of electrons in the ionospheric F region are constrained in the direction of the ambient geomagnetic fields. This causes the directivity of ionospheric disturbances. They appear strongly on the equator side of the volcano, i.e., stronger disturbances emerge on the southern side in northern hemisphere (e.g., Heki, 2006; Kundu et al., 2021), and northern side in southern hemisphere (Nakashima et al., 2016).

Figure 8a shows how such north-south asymmetry occurs using numerical simulation of upward propagation of atmospheric acoustic waves following Kundu et al. (2021). There, hypothetical line-of-sight with elevation angle 45º from two points assumed 270 km due south (Ps) and due north (Pn) are given with white lines. In Figure 8b,c, we compare slant TEC changes as viewed from the points Pn and
Ps. Their amplitude differs by a factor of ~4, and the amplitude observed at 0603 using J07, calculated real azimuth and elevation of J07 from 0603 (red curve in Fig. 8b), is similar to the point Pn case. The current 0603-J07 slant TEC peak-to-peak amplitude of ~0.23 TECU becomes ~0.19 TECU in vertical TEC by multiplying with the cosine of the incidence angle of line-of-sight (~33°) with the F region ionosphere. This corresponds to ~0.76% of the background vertical TEC, ~25 TECU according to the GIM.

This relative TEC oscillation amplitude in the 2021 Fukutoku-Okanoba eruption is comparable to those associated with the 2015 Calbuco and 2010 Merapi eruptions (Cahyadi et al., 2020). However, we would have observed four times as strong oscillation if we had a GNSS station to the south of the volcano (Fig. 8). If we consider this factor 4 difference, the TEC oscillation amplitude of the 2021 Fukutoku-Okanoba eruption may reach ~3% of the background vertical TEC, which exceeds the value for the 2014 Kelud eruption (Nakashima et al., 2016; Cahyadi et al. 2020). Then, the MER at the peak time (~5:20 UT) of the TEC oscillation may have been as large as 5 x 10^7 kg s^-1. This is consistent with the total amount of ejecta in this eruption inferred as 3-10 x 10^{11} kg (GSJ, 2021).

Conclusions

We summarize this study as follows.

1. The 2021 August eruption of the Fukutoku-Okanoba submarine volcano caused typical ionospheric signatures associated with Plinian eruptions.

2. Atmospheric modes in four different frequencies are observed and the TEC oscillation decayed within three hours.

3. QZSS has two benefits for ionospheric studies, i.e., long continuous records suitable for frequency spectrum analyses, and three different microwave carriers that enable separation of intensities of true ionospheric scintillation signals from receiver noises.

Abbreviations

GEONET: GNSS Earth Observation Network; GNSS: global navigation satellite system; GIM: global ionospheric map; GLONASS: Global Orbiting Navigation Satellite System; GPS: Global Positioning System; GSI: Geospatial Information Authority of Japan; GSJ: Geological Survey of Japan; JMA: Japan Meteorological Agency; MER: mass eruption rate; QZSS: Quasi Zenith Satellite System; SD: standard deviation; SIP: sub-ionospheric point; TEC: total electron content; TECU: TEC unit; UT: Universal Time; VEI: volcanic explosivity index

Declarations

Acknowledgments
We thank GSI for GNSS data. Review by two referees improved the manuscript.

Authors’ contributions

KH: conceptualization, data analysis, writing, TF: calculation related to L1, L2, and L5 combinations. All authors read and approved the final manuscript.

Authors’ information

Kosuke Heki is a professor in Department of Natural History Sciences, Hokkaido University, Japan. He studies space geodesy, with strong interest in atmospheric sensing with GNSS. He pioneered various applications of GNSS-TEC including ionospheric disturbances immediately before and after large earthquakes.

Tatsuya Fujimoto is a master course graduate student in Department of Natural History Sciences, Graduate School of Science, Hokkaido University. He is mainly interested in GNSS-TEC applications for studying sporadic-E irregularities.

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

This research was supported by JSPS KAKENHI Grant number JP20K04120.

Availability of data and materials

GEONET data can be downloaded from GSI ftp server (terras.gsi.go.jp) after a simple registration procedure. Most of the software systems used in this study can be found in the web page of the corresponding author (www.ep.sci.hokudai.ac.jp/~heki/software.htm).

References

Cahyadi M N, Rahayu R W, Heki K, Nakashima Y (2020) Harmonic ionospheric oscillation by the 2010 eruption of the Merapi volcano, Indonesia, and the relevance of its amplitude to the mass eruption rate. J Volcanology Geothermal Res 405:107047, doi:10.1016/j.jvolgeores.2020.107047.

Cahyadi M N, Handoko E Y, Rahayu R W, Heki K (2021) Comparison of Volcanic Explosions in Japan Using Impulsive Ionospheric Disturbances. Earth Planets Space 73:228, doi:10.1186/s40623-021001539-5.

GSJ (2021) Fukutoku-Oka-no-Ba submarine volcano information, Geological Survey of Japan. www.gsj.jp/hazards/volcano/fukutokuokanoba/2021/index.html (in Japanese)
Heki K (2006) Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbances. Geophys Res Lett 33:L14303, doi:10.1029/2006GL026249.

Heki K (2021) Chapter 21: Ionospheric Disturbances Related to Earthquakes in Ionospheric Dynamics and Applications. Geophysical Monograph 260, edited by C. Huang and others, pp.511-526, Wiley/American Geophysical Union, doi:10.1002/9781119815617.ch21.

JMA (2021) Volcanic activity of Fukutoku-Okanoba (2021 August), Information on Volcanic Activities in 2021 August. www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/monthly_v-act_doc/tokyo/21m08/331_21m08.pdf (in Japanese)

Kanamori H, Mori J (1992) Harmonic excitation of mantle Rayleigh waves by the 1991 eruption of Mount Pinatubo, Philippines. Geophys Res Lett 19 (7):721–724. doi:10.1029/92GL00258/full.

Kundu B, Senapati B, Matsushita A, Heki K (2021) Atmospheric wave energy of the 2020 August 4 explosion in Beirut, Lebanon, from ionospheric disturbances. Sci Rep 11:2793, doi:10.1038/s41598-021-82355-5.

Maeda J, Heki K (2015) Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content observations in Japan. Earth Planets Space 67:89, doi:10.1186/s40623-015-0257-4.

Mannucci A J, Wilson B D, Yuan D N, Ho C H, Lindqwister U J, Runge T F (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33:565–582, doi:10.1029/97RS02707

Nakashima Y, Heki K, Takeo A, Cahyadi M N, Aditiya A, Yoshizawa K (2016) Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet Sci Lett 434:112–116, doi:10.1016/j.epsl.2015.11.029.

Nishida K, Kobayashi N, Fukao Y (2000) Resonant oscillation between the solid earth and the atmosphere. Science 287: 2244–2246.

Shestakov N, Orlyakovskiy A, Perevalova N, Titkov N, Chebrov D, Ohzono M, Takahashi H (2021) Investigation of ionospheric response to June 2009 Sarychev Peak Volcano eruption. Remote Sens 13:648. doi:10.3390/rs13040638

Watada S, Kanamori H (2010) Acoustic resonant oscillations between the atmosphere and the solid earth during the 1991 Mt. Pinatubo eruption. J Geophys Res 115:B12319. https://doi.org/10.1029/2010JB007747.

Figures
Figure 1

A map (a) showing the boundaries of the Pacific (PA) and the Philippine Sea (PH) Plates and the coverages of the other maps. (b) shows the locations of the volcano Fukutoku-Okanoba, which erupted in 2021 August, and three islands, Iwojima, Hahajima, and Chichijima, where five GEONET stations are deployed. Maps in (c-f) show SIP tracks 5.1-6.9 UT calculated assuming a thin ionosphere at 300 km altitude for the pairs of the station 0603 and four different GNSS, GPS (c), QZSS (d), GLONASS (e), and Galileo (f). Red stars and black circles on the trajectories show time marks of the onset (5:16 UT) of the oscillation and 6:00 UT. A satellite SIP therefore moves in the direction from the red star toward the black circle.

Figure 2

Slant TEC time series at 0603 with J07 satellite 4:30-7:30 UT on five days, August 11-15, 2021. They are high-pass filtered by taking residuals from best-fit degree 9 polynomials. A typical Plinian eruption signature (TEC oscillation with period ~4 minutes) is seen after 5 UT only on August 13, the starting day the Plinian eruption. The unit TECU (TEC unit) indicates 10^{16} electrons/m2.

Figure 3

(a) High pass filtered slant TEC time series with various combinations of three stations and satellites of four different GNSS (G, R, E, J indicates GPS, GLONASS, Galileo, and QZSS, respectively). In (b), we corrected for the travel time of acoustic wave assuming the propagation velocity of 0.8 km/s and time-variable distances between the volcano and ionospheric piercing points of line-of-sights (altitude assumed as 300 km), to reproduce hypothetical oscillation signals right above the volcano.

Figure 4

Short period TEC disturbances (positive/negative changes expressed in red/blue) as functions of time (horizontal axis) and the distance from the Fukutoku-Okanoba volcano (vertical axis) for all the satellite-station pairs showing the eruption signatures. Thin lines, connecting points of clear positive anomalies, have a slope corresponding to the acoustic wave propagation speed (0.8 km/s).

Figure 5
(a) High pass filtered slant TEC time series at three stations observed using J07, the QZSS geostationary satellite, at three GNSS stations 0603, 2007, and P217 (Fig. 1b). Frequency components of the four hours data 5:20-9:20 UT (shown with a dashed line) obtained using the Blackman-Tukey method are shown in (b). We see three strong peaks (3.7, 4.4, and 5.4 mHz) and one weak peak (4.8 mHz) for the TEC data at all the three stations (color corresponds to those in (a)).

Figure 6

(a) High pass filtered slant TEC time series 5:20-8:20 (blue) and 8:20-11:20 (green) UT, at the 2007 station observed using J07 satellite. (b) Frequency components of the two hours data 5:20-7:20 UT and 8:20-10:20 UT indicate that the peak powers mostly decayed in the second time window. (c) We select the three strong peaks (3.7, 4.4, and 5.4 mHz) and compare their powers obtained from a two-hour time window moving with a 1-hour time step (horizontal bars indicate the periodes representing the frequency spectra. The red curve in (c) indicates gentle afternoon decrease of vertical TEC above the volcano from GIM.

Figure 7

(a) High pass filtered slant TEC time series5:20-8:50 at the 2007 station observed using J07 satellite calculated using three different combinations of L1, L2, and L5 carrier phases. (b) Standard deviations of slant TEC s_{tot} obtained by the three combinations as a function of the frequency factor F in equation (1). Three curves correspond to period 1 (5:20-6:20), period 2 (6:20-7:20) and period 3 (7:20-8:20). (c) Receiver noises s_{rx} remain nearly constant, while ionospheric scintillation s_{ion} decays rapidly with time. The receiver noise s_{rx} is scaled with the frequency factor for the L1-L2 combination.

Figure 8

Numerical simulation of the upward propagation of atmospheric acoustic waves and ionospheric electron density anomalies made by the passage of the wave. Red and blue parts show the positive and negative electron density anomalies (arbitrary unit) in the north-south vertical section. We assumed a simple N-shaped pulse with a period of 4 minutes. Geomagnetic field (Inclination: 34.5º, Declination -3.0º, at a point ~300 km above Fukutoku-Okanoba, shown as B) makes north-south asymmetry. Details of the simulation are described in Kundu et al. (2021). In (b) we compare slant TEC signatures to be obtained by observing a satellite in the northern/southern skies, with elevation 45º, from the southern/northern points Ps/Pn (gray curves), and those assuming the geometry of 0603-J07 (red curve). (c) Line-of-sight from
0603 to J07 extends almost southward with the similar elevation, the situation similar to the case for the point Pn.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- graphicalabstract.jpg