Research Paper
Investigation of Microbial Contamination and Physicochemical Properties of Compounded Medications in Pharmacies

Reihaneh Radmanesh1, Mohsen Nabi Meybodi1, *Vahid Ramezani2, Maryam Akrami2, Mohammad Ali Ranjbar1, Azadeh Emami1

1. Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
2. Department of Psychiatry Research Center of Addiction and Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.

Abstract
Any compounded form of pharmaceutical product made in pharmacy, hospital or factory may be contaminated with microbes. This contamination can originate from raw materials or during production. Hence, it is important to study the physical and chemical properties and stability of compounded drugs. Microbial contamination of compounded and health products has been considered from the past and for this reason, in pharmaceutical pharmacopoeias, some restrictions have been put on such products. For such specific products, it is necessary that they be free of contaminating microorganisms [3]. Small drug particles in semi-solid form of pharmaceutical compounds may dissolve in the continuous phase and join larger particles (e.g. Ostwald ripening). To examine the tendency of Ostwald ripening during the production stage, it is possible to study the room temperature cycle up to 40° C. [9].

Extended Abstract
1. Introduction

Any compounded form of pharmaceutical product made in pharmacies, hospital or factory may be contaminated with microbes. This contamination can originate from raw materials or during production. Hence, it is important to study the physical and chemical properties and stability of compounded drugs. Microbial contamination of compounded and health products has been considered from the past and for this reason, in pharmaceutical pharmacopoeias, some restrictions have been put on such products. For such specific products, it is necessary that they be free of contaminating microorganisms [3]. Small drug particles in semi-solid form of pharmaceutical compounds may dissolve in the continuous phase and join larger particles (e.g. Ostwald ripening). To examine the tendency of Ostwald ripening during the production stage, it is possible to study the room temperature cycle up to 40° C. [9].

* Corresponding Author:
Vahid Ramezani, PhD.
Address: Department of Pharmaceutics, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Tel: +98 (912) 8015038
E-mail: vramezani@razi.tums.ac.ir
The particle size of compounded products is affected by the viscosity and concentration of their ingredients [10]. The pH of a semi-solid form may be related to multiple failure modes in the drug product. The pH effect of topical drug forms in the living organism (in vivo) on the skin is not well known [11]. One of the goals of quality assurance programs is to establish systems that can ensure the uniformity of the properties of medications in all doses or packages, and on the other hand, to ensure their safety when consumed. The assurance about uniformity (effectiveness) and health of the medications are related to the stability of the compounded product.

Therefore, it is important to pay attention to the stability and properties of these products. In this regard, various tests have been performed to evaluate the efficacy and safety of dermatological drugs, including assessment of the amount of active ingredients in the formulation, the uniformity of dosage forms, pH, the amount of water content, microbial constraints, viscosity and particle size [2]. Due to the importance of physicochemical and microbial properties of the compounded medications produced in urban pharmacies, this study aimed to investigate their physicochemical properties and microbial contamination.

2. Methods and Materials

This is an experimental field study. 63 prescribed compounded medications with specific formulation (Table 1) containing an oxidizing substance (hydroquinone), a substance with the ability to change the pH of the product (salicylic acid), and an antioxidant (vitamin C) were collected from 63 pharmacies in Yazd city in the spring 2017, and experimental studies on the study variables continued until the fall 2017. According to Pharmacopoeia guidelines, the numbers of microbes including Pseudomonas aeruginosa, Staphylococcus aureus, Candida sp., and Escherichia coli that are not allowed in topical drugs were counted using the spread plate technique.

To measure the viscosity, 1 gram of each sample was placed in the viscometer (Brookfield, USA) at room temperature and then, it was measured at 10 rpm. In order to test the physicochemical properties of the samples, one gram of each sample was poured into a 10-cc beaker and placed on a heater, using a magnet to create a uniform flow and increase the temperature. In the end, the temperature at which the samples underwent phase change was measured using a thermometer. The amount of hydroquinone in each sample was measured in milligrams per gram of cream with a spectrophotometer at a wavelength of 293 nm where methanol was used as a blank.

3. Results

According to Table 2, only one sample contaminated with Staphylococcus aureus was found, and microbial contamination by Pseudomonas aeruginosa and Escherichia coli did not occur outside the designated range, and 15 samples had fungal infection (candida albicans) (Figure 1). One month after the samples were stored in ideal conditions, 22.2% of them showed discoloration. After a few weeks, 31.7% had discoloration and 23.8% showed creaming phenomenon (Figure 2).

In terms of particle size distribution, 22.2% of the samples had a 10-20 μm particle size, 33.3%, 20-30 μm; 23.8%, 30-40 μm; 12.6%, 40-50 μm; and 7.9% were in a range of 50-60 μm. Moreover, 12.6% of the samples underwent phase change and creaming at a temperature of 30-40°C, 77.7% at 40-50°C, and 9.5% at 50-60°C. The maximum viscosity...
of the semi-solid product was between 2,500 and 3,000 centipoise (29 samples). Hydroquinone in 50% of the samples was more than one gram; in 35%, between 0.9 and 1 g, and in 15% it was less than 0.9 g.

4. Discussion

Elmorsy and Hafez [12] in a study on various cosmetic brands found bacterial and fungal-microbial contamination in 22.6% of the samples. The products were contaminated with pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. In study conducted in Poland by Glogowski et al. [19] on the viscosity of salicylic acid and boric acid inside the ointment formulation, they concluded that the formulation containing salicylic acid had better viscosity. Kumar et al [21] in a study to determine the amount of lidocaine in the ointment formulation by spectrophotometer at a wavelength of 263 nm, found that its amount was 98.7%. Jeon et al. [11] found out that changing the pH of any topical cream could influence the effect of the cream on the skin and its other features.

5. Conclusion

One of the limitations of this study was the lack of uniform conditions in pharmacies for making the study drugs. According to the results obtained from particle size and physicochemical properties, the related principles during the production of compounded medications should be observed more. Numerous factors such as increased awareness, adherence to principles, more use of preservatives, use of moisturizing creams (which contain significant preservatives) and use of alcohol as a solvent in the study samples, can reduce the rate of contamination in compounded drugs made in pharmacies.

Ethical Considerations

Compliance with ethical guidelines

This study considered all the rules related to pharmaceutical research and obtained an ethical approval (Code: IR.SSU.MEDICINE.REC.1396.85) from the Medical University of Yazd.

Funding

This study received financial support from the Deputy for Research of Shahid Sadoughi University of Medical Sciences.

Authors’ contributions

All authors contributed in preparing this article.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank Dr. Masoud Heidarinejhad and all those had cooperation in conducting this study.

Table 1. The ordered drug formulation for the study

Ingredients	Amount
Hydroquinone	1 g
Salicylic Acid	1 g
Vitamin C	1 g
Cold Cream	10 g

Table 2. Acceptance criteria for nonsterile pharmaceutical products according to the US Pharmacopoeia

Specified	Total Combined Yeasts/Molds Count (cfu/g or cfu/ml)	Total Aerobic Microbial Count (Cfu/g or cfu/ml)	Route of Administration
Absence of Pseudomonas or Staphylococcus			Transdermal patches

Radmanesh R, et al. Investigation of Microbial Contamination and Physicochemical Properties of Compounded Medications. The Horizon of Medical Sciences. 2020; 26(1):82-93.
پرورش خصوصیات فیزیوکمیشیایی و الگوها میکروبی داروهای ترکیبی داروخانه‌های شهر یزد

محسن نی‌عیسی، 1 وحید رمضانی، 2 مرجع اکرمی، 1 محمدرضا رنجبر، 1 آزاده امامی، 1

1. گروه روانپزشکی، دانشکده روان‌پزشکی، دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران
2. گروه روانپزشکی، دانشگاه علوم پزشکی شهید صدوقی یزد، یزد، ایران

کلیدواژه‌ها: الگوها میکروبی، خصوصیات فیزیوکمیشیایی، ترکیبی، داروخانه، ویسکوزیته

1398 تیر 17: تاریخ دریافت 1398 آذر 24: تاریخ پذیرش 1398 دی 11: تاریخ انتشار

مقدمه

علی‌رغم تهیه و عرضه اقلام دارویی اساسی مورد نیاز بیماران توسط کارخانه‌های داروسازی داخل و خارج کشور و توزیع آن در داروخانه‌های سطح کشور و با توجه به وجود برخی داروهای رسمی کم مصرف در نسخ پزشکان که تهیه آن‌ها برای تولید کننده جنبه اقتصادی ندارد و یا به علت روش‌های نوین درمان بهبودی‌های هسته‌ای و پایداری محدود ساخت داروهای ترکیبی، انتظار می‌رود ساخت این نوع داروها در زمان تجویز تحت نظر دانشگاه علوم پزشکی مربوطه انجام گیرد.

کاربرد سالیسیل‌سیکلک اسید پتیج تجزیه به عوامل کاراکتریک و همچنین قابلیت استفاده از پاده‌های مختلف بر لمسی در پرست‌مانند ثابت شده است. از پاده‌های فایبیری فومی، پودری و بسته‌بندی آن از پاده‌های Oil Free مرکب می‌باشد، که مورد توجه قرار می‌گیرد.

طی‌ترکیبی و تهیه‌آمیز اقلام دارویی اساسی مورد نیاز بیماران تحت نظر دانشگاه علوم پزشکی مربوطه انجام گیرد.

کیفیت و عملکرد محصولات را بررسی می‌کنند. تست‌های کیفیت محصولات کلیدی را تعیین کرده و در حالی که تست‌های مراکدی بر انتشار الگوها منبجک‌سازی مربوطه توجه می‌کنند.

بر انتشار الگوها، الگوها به دلیل هموگلیوبین قابلیت تغییر‌آمیزی داروها به علت تغییر‌آمیزی با ویسکوزیته و وسایل مختلف، کاربرد و خواس داروها در تفسیر مراکدی به استفاده به آمادگی آن لازم می‌باشد.

98 vramezani@razi.tums.ac.ir

پست الکترونیکی: vramezani@razi.tums.ac.ir

کلیدواژه‌ها: الگوها میکروبی، خصوصیات فیزیوکمیشیایی، ترکیبی، داروخانه، ویسکوزیته

85
برای بررسی تمایل رسیدن ویسکوزیته و قابلیت گستردگی به عنوان ویژگی‌های کیفیتی مهم چندبعدی است و به آسانی قابل پیش‌بینی نیست، تأثیرپذیری دارو نمی‌گذارد. به دلیل نسبت به ویسکوزیته فراورده مرجع بر روی پوست محصولی در شرایط زیادی نداشته باشد، نیازی نیست ویسکوزیته دارویی ترکیبی جامد (otr) بر روی پوست به خوبی فرم‌های وضعیتی، شکل پلی‌مورفیک، ثبات دارویی می‌باشد. اگر یک داروی پوستی بتواند در هر شرایطی ثابت توجه بود به میزانی دلیل فعال در فرم‌های فیزیکی، عدم آسیب دادن به محصولات نیمه جامد غلظت متناوب به این ترتیب سانتی‌گراد استفاده کرد. برای داروها به ذرات بزرگ‌تر بپیوندند (به در دمای منفی)، کلارونی به صورت تجارتی توسط کارخانه‌های مصرف بالینی است. استفاده تأثیر pH با ویسکوزیته‌های مختلف در pH و تغییر محیط در محصولات مورد استفاده قرار می‌گیرند، ولی در این گونه فراورده‌ها حائز اهمیت است. در این رابطه تست‌های مختلفی برای این داروها مربوط است: 1. Good Manufacturing Practice، 2. Immunocom Promised.
جاهت تشخیص افتراقی میکروگرایزیسمهای مربوط به شامل است، از طریق آزمون میکروسکوپیک و یا استفاده از روش خاصی از طریق م baru Blue استفاده گردیده که می‌تواند به‌عنوان یک رهگاه تشخیص میکروگرایزیسمهای اپی‌کینتال مثبت آمودگی‌های مثبت‌کننده متصل باشد.

مواد و روش‌ها

در این مطالعه، مخلوط ترکیبی از فرمولاسیون مشخص (جدول 1) بنا به پژوهشی به انجام آمده بود که در بهار سال 1396 میلادی به منظور بهبود کیفیت داروهای ساختگی در داروخانه‌های شهر یزد، مورد تحقیق قرار گرفت و با سرتیت حاصل بررسی‌های مختلف و احتمالاً توصیه‌های آینده در نظر گرفته می‌شود.

تحقیق و تحقیقات

آزمون‌های میکروژیستی

با توجه به ضرایب فرمزیکویی میزان شمارش میکروژیستی و خواص فرمولاسیونی و ولایت‌های فرمولاسیون در داروخانه‌های شهر یزد در سال 1396، مطالعه‌ای به منظور بررسی و بررسی‌های پژوهشی انجام شد. در این مطالعه به منظور بهبود کیفیت داروهای تولیدی در داروخانه‌های شهر یزد، مورد تحقیق قرار گرفته و با سرتیت حاصل بررسی‌های مختلف و احتمالاً توصیه‌های آینده در نظر گرفته می‌شود.

فرمولاسیون ترکیبی درخواستی

ترکیب	مقدار
هیدروکینون	1 گرم
سالیسیلیک اسید	1 گرم
ویتامین c	1 گرم
کرم خراش	10 گرم

روش‌های بررسی

آزمون‌های شیمیایی

3. Pseudomonas aeruginosa
4. Staphylococcus aureus
5. Escherichia coli
6. Candida sp

7. Mannitol salt agar
میلی گرم هیدروکینون باشد و در هر گرم کرم، مقدار هیدروکینون به میلی گرم در هر گرم کرم، با دستگاه اسپکتوفتومتری در طول موج 1 نانومتر با فرمول شماره 1 = مقدار ماده مؤثره نسبت به اساس USP میلی گرم بر میلی لیتر در USP نظر گرفته می‌شود. وزن کرم مصرفی بر اساس گرم W، جذب ماده مورد بررسی Au (پاک)، جذب ماده استاندارد (متانول As pH اندازه‌گیری) نیز با استفاده از کاغذ تورنسل و بررسی رنگ pH حاصل پس از قرار دادن در نمونه‌ها، آن‌ها مشخص شد. میزان آلودگی میکروبی در کرم‌های پوستی خلاصه می‌گردد که مشاهده شده است. در بررسی پایداری در تغییرات دمایی و دو فاز شدن درجه سانتی گراد، درصد 20%–30% نمونه‌ها در دمای‌های بین 12/6 و 50 درجه سانتی گراد و درصد 50%–60% نمونه‌ها پدیده کریمینگ مشاهده شدند. در بررسی میزان هیدروکینون، درصد 15% نمونه به صورت تصادفی در محدوده بین 60/50 و 30/40 میکرومتر و درصد 7/5/7 میکرومتر بودند. در بررسی فراورده از لحاظ عدم پدیده کریمینگ، درصد 22/2 نمونه نیز دارای آلودگی میکروبی در نمونه‌ها، اندازه ذره‌ای آن‌ها بین 63/2 و 20/15 میکرومتر بودند. در بررسی مایع خشک و با استفاده از دستگاه ویسکومتر بیشترین میزان ویسکوزیته فراورده نیمه جامد بین 293/20 و 1500 نمونه بود. میزان ویسکوزیته فراورده‌های خشک بین 3500 و 7000 سانتی پواز بود. در این بررسی، با توجه به اطلاعات جدول شماره 1, فارماکوپه آمریکا (USP) و معیارهای فراورده‌ای هیدروکینون موجود در هر واحد، به‌طور کلی فراورده‌های میکروبی هیدروکینون در آزمایشات تهیه شده با توجه به جدول مرجع در نمونه‌های مورد بررسی تهیه شد.
موردی است که در داروهای جالیسیسی باید مانتظر قرار گیرد، آلوگوژن میکروبی در قرار بوده و می‌تواند باعث از بین بردن پایداری فیزیکی ایجاد شود. بیش از ۴۰ درصد از نمونه‌های انتخابی به میزان بینی از یک گرم–۱۰ درصد زیر یک گرم و ۱۵ درصد در بین یک–۰ درصد زیر ۱۵ گرم بوده است. (تصویر شماره ۹)

بحث

با توجه به اینکه در فرمول خلوت کردن، مواد به صورت پودری در قالب یک فرمولاسیون جامد تهیه می‌شوند، نحوه ساخت و عملکرد طراحی مواد به طور مؤثری در کیفیت و کارایی این فراورده‌ها مؤثر باشد. همچنین هدا یا این که مواد لوله‌ای نشان دهنده این که فراورده‌ی نهایی به‌طور مؤثری به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد. آلودگی‌های میکروبی و قارچی می‌تواند باعث از بین بردن آلودگی‌های فراورده‌ی نهایی می‌گردد. امواج به یک غزاری یا یک میکروبی که به نشانه اینکه در فراورده‌های نهایی به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد.

عملکرد فراورده‌های نهایی به وجود می‌آید که به واسطه یک نشانه اینکه در فراورده‌های نهایی به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد.

آلوگوژن میکروبیی در قرار بوده و می‌تواند باعث از بین بردن پایداری فیزیکی ایجاد شود. بیش از ۴۰ درصد از نمونه‌های انتخابی به میزان بینی از یک گرم–۱۰ درصد زیر یک گرم و ۱۵ درصد در بین یک–۰ درصد زیر ۱۵ گرم بوده است. (تصویر شماره ۹)

بحث

با توجه به اینکه در فرمول خلوت کردن، مواد به صورت پودری در قالب یک فرمولاسیون جامد تهیه می‌شوند، نحوه ساخت و عملکرد طراحی مواد به طور مؤثری در کیفیت و کارایی این فراورده‌ها مؤثر باشد. همچنین هدا یا این که مواد لوله‌ای نشان دهنده این که فراورده‌ی نهایی به‌طور مؤثری به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد. آلودگی‌های میکروبی و قارچی می‌تواند باعث از بین بردن آلودگی‌های فراورده‌ی نهایی می‌گردد. امواج به یک غزاری یا یک میکروبی که به نشانه اینکه در فراورده‌های نهایی به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد.

عملکرد فراورده‌های نهایی به وجود می‌آید که به واسطه یک نشانه اینکه در فراورده‌های نهایی به کنترل آلودگی میکروبی، باعث از بین بردن آلودگی‌های میکروبی و قارچی می‌گردد.
به‌طور کلی، این جدول نشان می‌دهد که آلودگی میکروبی در داروهای ترکیبی در برخی از مناطق بسیار بالا می‌باشد. به طور خاص، در کشورهای اروپایی با آب و هوای مرطوب، آلودگی میکروبی در داروهای ترکیبی در مقایسه با مناطق دیگر کمتر است.

روش تزریق	تعداد میکروبی آنتی‌اکسیدنت (CFU/g یا CFU/ml)	تعداد میکروبی آنتی‌اکسیدنت (CFU/g یا CFU/ml)	برخورداری از اکسیداسیون	2 گزارش (سال)
تزریق پوستی	10	10	10	10
عوارض جانبی	10	10	10	10

Preservative
نمونه‌ها از اصولی از پژوهشی در سطح فیزیک‌شیمی‌ای و فناوری مواد جامد، با استفاده از نیروی فشار و نیروی جذب در داروهای نوشیدنی، انجام شد. مطالعه‌ای در مورد تأثیر اندازه ذره ای و پیشنهاداتی برای استفاده در فرمولاسیون داروهای جالینوسی پایه مناسب برای ایجاد ویسکوزیته مطلوب را استفاده کرد. این مواد شامل اکثریت مواد جامد موجود در داروی جالینوسی پایه می‌باشد. همچنین هرچه آب مورد استفاده در فرمولاسیون بیشتر باشد ویسکوزیته بیشتر خواهد بود.

حالاً، در مورد بررسی خصوصیات فیزیک‌شیمی‌ای و آلودگی میکروبی در فرمولاسیون داروهای جالینوسی پایه مناسب برای ایجاد ویسکوزیته مطلوب، رفع‌افزایی مشکلاتی مانند دشواری و تغییرات در استخوان‌ها و پوست در اثر لمس کردن فراورده‌های موضعی به پوست تأثیرگذار است. همچنین، بر خلاف بررسی‌های قبلی و فارماکوپه آمریکا و فارماکوپه اروپا، در بررسی‌های این پژوهش، محدوده خاصی برای اندازه ذره ای شده است. در نتیجه، داروسازان می‌توانند بر اساس نوع داروی مورد استفاده، از آنجایی که در فارماکوپه آمریکا محدوده خاصی برای اندازه ذره ای نشان داده است. در حال حاضر، به دلیل خاصیت اسیدی سالیسیلیک اسید، کند، با توجه به مطالعه که توسط پیکوتا و همکارانش بر روی تغییرات ویسکوزیته در فرمولاسیون موضعی به پوست تأثیرگذار است، با توجه به مطالعه که توسط پیکوتا و همکارانش بر روی تغییرات ویسکوزیته در فرمولاسیون موضعی به پوست تأثیرگذار است، کنن. همچنین هرچه آب مورد استفاده در فرمولاسیون بیشتر باشد ویسکوزیته بیشتر خواهد بود.
شماره ۲۶. دوره ۱۳۹۸. زمستان

شده است. این پژوهش در دانشگاه علوم پزشکی یزد با کد کمیته ثبت شده است.

IR.SSU.MEDICINE.REC.1396.85

حامی مالی

منابع مالی این پژوهش از طریق معاونت پژوهشی دانشگاه علوم پزشکی یزد و گرنت پژوهشی استادان و دانشجو تأمین شد.

مشارکت نویسندگان

ایده اصلی، طراحی مطالعه، تدوین دستنوشته، بازبینی نهایی مقاله: ریحانه رادمنش، محسن نبی میبدی، وحید رمضانی، مریم اکرمی، علی محمد رنجبر و آزاده امامی.

تعارض منافع

بنابر اظهار نویسندگان این مقاله هیچ گونه تعارض منافعی نداشته است.

تشکر و قدردانی

از جناب آقای دکتر امیر مسعود حیدری نژاد و همچنین کلیه عزیزانی که در طی مراحل پژوهشی و نگارشی این تحقیق ما را یاری کردند، صمیمانه سپاسگزاری می کنیم.

ریحانه رادمنش و همکاران. بررسی خصوصیات فیزیکوشیمیایی و آلودگی میکروبی داروهای ترکیبی
References

[1] Gholami Kh, Akbarzadeh T, Niknam S, Goodarzi N, Kaviani F, Kouti L, et al. Pharmaceutical Compounding. Teimourzadeh Publication. 2014. http://opac.nlia.ir/opac-prod/bibliographic/3222076

[2] Ueda CT, Shah VP, Derdzinski K, Ewing G, Flynn G, Maibach H, et al. Topical and transdermal drug products. Pharmaceutical Forum; 2009; 35(3):750-64. https://pdfs.semanticscholar.org/fe79/b0c422fc690084c56436e690277f6a613f.pdf

[3] Bloomfield SF. Microbial contamination: Spoilage and hazard. In: Deny er SP, Baird RM, editors. Guide to Microbiological Control in Pharmaceuticals and Medical Devices. Boca Raton, FL: CRC Press; 2006. p. 23-50. [DOI:10.1201/9781420021622.ch2]

[4] Williams PG. Panning for chemical gold: Marine bacteria as a source of new therapeutics. Trends in Biotechnology. 2009; 27(1):45-52. [DOI:10.1016/j.tibtech.2008.10.005] [PMID]

[5] Larsson DJ. Pollution from drug manufacturing: Review and perspectives. Philosophical Transactions of the Royal Society B. 2014; 369(1665):20130571. [DOI:10.1098/rstb.2013.0571] [PMID] [PMCID]

[6] Riederer A, Grein G, Bogner J. High prevalence of opportunistic infections in the head and neck related to human immunodeficiency virus. A prospective study of the distribution of otorhinolaryngologic disorders in 250 patients. Infection. 1996; 24(6):440-6. [DOI:10.1007/BF01713046] [PMID]

[7] Rosas, Juan G., Marcel Blanco, Josep M. González, and Manel Alcalá. “Quality by design approach of a pharmaceutical gel manufacturing process, part 1: Determination of the design space”. Journal of Pharmaceutical Sciences. 2011; 10:4432-41. [DOI:10.1002/jps.22611] [PMID]

[8] Murray-Smith RJ, Coombe VT, Grönlund MH, Waern F, Baird JA. Managing emissions of active pharmaceutical ingredients from manufacturing facilities: An environmental quality standard approach. Integrated Environmental Assessment and Management. 2012; 8(2):320-30. [DOI:10.1002/ieam.1268] [PMID]

[9] Chang RK, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products. The AAPS journal. 2012; 15(1):41-52. [DOI:10.1208/s12248-012-9411-0] [PMID] [PMCID]

[10] Moghadam H, Samimi M, Samimi A, Khoram M. Study of parameters affecting size distribution of beads produced from electro-spray of high viscous liquids. Iranian Journal of Chemical Engineering. 2009; 6(3):88-98. https://iranjournals.nlia.ir/1294/article_341946_fabf2ae1e5679c5c2b83767778e7f177.pdf

[11] Jeon JS, Kim BH, Lee SH, Kwon HJ, Bae HJ, Kim SK, et al. Simultaneous determination of arbutin and its decomposed product hydroquinone in whitening creams using high-performance liquid chromatography with photodiode array detection: Effect of temperature and pH on decomposition. International Journal of Cosmetic Science. 2015; 37(6):567-73. [DOI:10.1111/jcs.12228] [PMID]

[12] Behravan J, Fazly Bazzaz, Malaekeh P. Survey of bacteriological contamination of cosmetic creams in Iran (2000). International Journal of Dermatology. 2005; 44(6):483-8. [DOI:10.1111/j.1365-4632.2005.01963.x] [PMID]

[13] Gregory R, Edzwald J. Sedimentation and flotation. In: Edzwald JK editor. Water Quality & Treatment: A Handbook on Drinking Water. 6th ed. New York City: McGraw Hill Professional; 2010.

[14] Elmosry T, Hafez E. Microbial contamination of some cosmetic preparations in Egypt. International Journal of Agricultural Technology. 2016; 12(3):567-77.

[15] Skowron K, Jakubicz A, Budzyńska A, Kaczmarek A, Grudlewiska K, Reiliniński A, et al. Microbiological purity assessment of cosmetics used by one and several persons and cosmetics after their expiry date. Roczniki Państwowego Zakładu Higieny. 2017; 68(2):191-7.

[16] Jarvis B, Reynolds AJ, Rhodes AC, Armstrong M. A survey of microbiological contamination in cosmetics and toiletries in the UK 97. Journal of the Society of Cosmetic Chemists. 1974; 25(10):563-75.

[17] Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. International Journal of Pharmaceutics. 2003; 258(1-2):141-51. [DOI:10.1016/S0378-5173(03)00183-2]

[18] Piechota-Urbanska M, Kolodziejska J, Zgoda MM. Viscosity of pharma cepial multimolecular ointment vehicles and pharmaceutical availability of a model therapeutic agent. Polymers in Medicine. 2007; 37(2):3.

[19] Globowski A, Kolodziejska J, Kolodziejczyk MK, Zgoda MM. The influence of the viscosity of the ointment vehicles magisterial topical preparations, on the speed transfer of biologically active substances. Current Issues in Pharmacy and Medical Sciences. 2015; 28(3):212-8. [DOI:10.1515/cipms-2015-0075]

[20] Bhargava S, Cooper SL. Effect of water on viscosity and shear-thick ening behavior of telechelic ionomers in nonpolar solvents. Macromolecules. 1998; 31(2):508-14. [DOI:10.1021/ma970889c]

[21] Kumar BK, Rajan T, Begum NT. Analytical method development and validation of lidocaine in ointment formulation by U. V spectropho tometric method. International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(2):610-4.