Residue-by-residue analysis of cotranslational membrane protein integration in vivo

Felix Nicolaus#1, Ané Metola#1, Daphne Mermans#1, Amanda Liljenström1, Ajda Krč1,2, Salmo Mohammed Abdullahi1, Matthew Zimmer4, Thomas F. Miller III4, Gunnar von Heijne*1,3

1Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
2Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
3Science for Life Laboratory Stockholm University, Box 1031, SE-171 21 Solna, Sweden
4California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, CA 91125, USA.

*Correspondence to: Gunnar von Heijne, gunnar@dbb.su.se.

# These authors contributed equally.

Classification: Biological sciences; Biochemistry

Keywords: membrane protein biogenesis, cotranslational, EmrE, GlpG, BtuC.

Running title: Membrane protein integration
Abstract

We follow the cotranslational biosynthesis of three multi-spanning *E. coli* inner membrane proteins *in vivo* using high-resolution Force Profile Analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation, and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the ‘sliding’ model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.
Introduction

Most integral membrane proteins are cotranslationally integrated into their target membrane with the help of translocons such as bacterial SecYEG and YidC, and the eukaryotic Sec61 and EMC complexes (1, 2). While the energetics of translocon-mediated integration of transmembrane α-helices (TMHs) is reasonably well understood (3), the actual integration process is not, other than in general terms. We have shown that Force Profile Analysis (FPA) – a method in which a translational arrest peptide (AP) engineered into a target protein serves as a sensor to measure the force exerted on a nascent polypeptide chain during translation – can be used to follow the cotranslational folding of soluble proteins and the membrane integration of a model TMH (4-6). Here, we have applied FPA and coarse-grained molecular dynamics simulations to follow the cotranslational membrane integration of three multi-spanning Escherichia coli inner membrane proteins of increasing complexity (EmrE, GlpG, BtuC), providing the first residue-by-residue data on membrane protein integration in vivo.

Results

Force Profile Analysis

FPA takes advantage of the ability of APs to bind in the upper parts of the ribosome exit tunnel and thereby pause translation when their last codon is in the ribosomal A-site (7). The duration of an AP-induced pause is reduced in proportion to pulling forces exerted on the nascent chain (8, 9), i.e., APs can act as force sensors, and can be tuned by mutation to react to different force levels (10). In an FPA experiment, a series of constructs is made in which a force-generating sequence element (e.g., a TMH) is placed an increasing number of residues away from an AP (reflected in $N$, the number of residues from the start of the protein to the end of the AP), which in turn is followed by a C-terminal tail, Figure 1a. In constructs where the TMH engages in an
interaction that generates a strong enough pulling force $F$ on the nascent chain at the point when
the ribosome reaches the last codon of the AP, pausing will be prevented and mostly full-length
protein will be produced during a short pulse with $[^{35}\text{S}]$-Met, Figure 1b (middle). In contrast, in
constructs where little force is exerted on the AP, pausing will be efficient and more of the
arrested form of the protein will be produced, Figure 1b (left and right). The fraction full-length
protein produced, $f_{\text{FL}} = \frac{I_{\text{FL}}}{I_{\text{FL}}+I_{\text{A}}}$, where $I_{\text{FL}}$ and $I_{\text{A}}$ are the intensities of the bands representing
the full-length ($FL$) and arrested ($A$) species on an SDS-PAGE gel, Figure 1c and Figure 1-figure
supplement 1, can therefore be used as a proxy for $F$ in a given construct (9, 11, 12). A plot of $f_{\text{FL}}$
vs. $N$ – a force profile (FP) – thus can provide a detailed picture of the cotranslational process in
question, as reflected in the variation in the force exerted on the nascent chain during translation.
FPs can be recorded with up to single-residue resolution by increasing $N$ in steps of one residue
(corresponding to a lengthening of the nascent chain by ~3Å).

EmrE – 4 TMHs, 110 residues

We chose EmrE as an example of a small, relatively simple 4-TMH protein. EmrE is a dual-
topology protein, i.e., the monomers integrate into the inner membrane in a 50-50 mixture of $N_{in}$-
$C_{in}$ and $N_{out}$-$C_{out}$ topologies; two oppositely oriented monomers then assemble into an
antiparallel dimer (13, 14). To avoid potential complications caused by the dual topology we
used EmrE($C_{out}$), a mutant version that adopts the $N_{out}$-$C_{out}$ topology (14), and further used the
relatively weak SecM($Ec$) AP (5) and included an HA tag for immunoprecipitation, Figure 2a. A
series of EmrE($C_{out}$)-AP constructs (see Supplementary File 1 for sequences) was used to obtain
the FP shown in Figure 2b (orange curve), at 2-5 residues resolution. Also shown is a FP derived
from a coarse-grained molecular dynamics simulation (CGMD-FP, grey) (15); a hydrophobicity
plot (HP) is included in Figure 2-figure supplement 1.
We have previously shown that a model TMH composed of Ala and Leu residues generates a peak in an FP recorded with the SecM(Ec) AP that reaches half-maximal amplitude ($N_{\text{start}}$) when the N-terminal end of the TMH is ~45 residues away from the polypeptide transferase center (PTC) (5), and a recent real-time FRET study of cotranslational membrane integration found that the N-terminal end of the first TMH in a protein reaches the vicinity of the SecYEG translocon when it is 40-50 residues away from the PTC (16). For EmrE(Cout) TMH1, this would correspond to constructs with $N \approx 50$. However, the $f_{FL}$ values are hardly above background in this region of the FP. Due to the functionally important E$_{14}$ residue, TMH1 is only marginally hydrophobic and does not become firmly embedded in the membrane until the protein dimerizes (17). To ascertain whether the lack of a peak in the FP corresponding to the membrane integration of TMH1 is because of its low hydrophobicity, we mutated E$_{14}$ to L. Indeed, in the FP obtained for EmrE(Cout,E$_{14}$L), Figure 2b (green curve), a clear peak appears at the expected chain length $N_{\text{start}} \approx 50$ residues. Mutation E$_{14}$A yields an $f_{FL}$ value intermediate between EmrE(Cout,E$_{14}$L) and EmrE(Cout) at $N = 55$, Figure 2c, while $f_{FL}$ for the mutants EmrE(Cout,E$_{14}$D) and EmrE(Cout,E$_{14}$Q) are the same as for EmrE(Cout).

Peak II has $N_{\text{start}} \approx 76$, corresponding to a situation where the N-terminal end of TMH2 is ~45 residues from the PTC, Figure 2d. The double mutation I$_{37}$I$_{38} \rightarrow$NN in TMH2 reduces $f_{FL}$ at $N = 80$ and 85 (magenta triangles), as expected. Unexpectedly, however, the E$_{14}$L, E$_{14}$A, and E$_{14}$Q (but not the E$_{14}$D) mutations in TMH1 increase $f_{FL}$ at $N = 85$, Figure 2c, showing that a negatively charged residue (D or E) in position 14 in TMH1 specifically reduces the pulling force generated by TMH2 at $N = 85$, i.e., when about one-half of TMH2 has integrated into the membrane. Likewise, $f_{FL}$ values at $N = 115$ and 130 (but not at $N = 105$, included as a negative control) are specifically affected by mutations in E$_{14}$: at $N = 115$ (one-half of TMH3 integrated),...
all four mutations in position 14 increase $f_{FL}$ relative to $E^{14}$, while at $N = 130$ (beginning of TMH4 integration), the $E^{14}A$ and $E^{14}L$ mutations decrease $f_{FL}$, Figure 2c. FPA thus reveals long-range effects of mutations in $E^{14}$ on three specific steps in the membrane integration of the downstream TMHs. This implies that TMH1 remains in the vicinity of the translocon and that $E^{14}$ makes specific interactions with residues in the TMH2-TMH4 region during the membrane integration process. Further studies will be required to pin-point these interactions, and to understand the role played by the slow dynamics of TMH1 integration (17).

Peak III has $N_{\text{start}} \approx 102$ residues, with the N-terminal end of TMH3 ~45 residues from the PTC, Figure 2d. Peak IV is difficult to locate precisely in the FP because $f_{FL}$ values are high throughout the TMH3-TMH4 region, but is seen at $N_{\text{start}} \approx 132$ residues when the strong SecM($Ec$-sup1) AP (18) is used (blue curve), again with the N-terminal end of TMH4 ~45 residues from the PTC, Figure 2d. As shown in Figure 2e, the TMHs cease generating a pulling force when their C-terminal ends are ~45 residues away from the PTC, indicating that they are fully integrated at this point.

GlpG – 6 TMHs, 276 residues

We next studied GlpG, a medium-sized monomeric 6-TMH rhomboid protease with a ~60-residue cytoplasmic N-terminal domain (NTD) (19, 20), Figure 3a, a protein that allows us to follow the cotranslational folding of a soluble domain and integration of a membrane domain in the same experiment.

The FP is shown in Figure 3b (orange curve). It was obtained at 5-residue resolution, except for the portion $N = 168-224$ which we measured with single-residue resolution. For unknown reasons, constructs with $N \approx 140-190$ residues gave rise to a slowly migrating band on the gel that was difficult to interpret (Figure 1-figure supplement 1j-k); this problem did not arise when
the NTD (GlpG residues 1-60) was replaced by residues 1-58 of the LepB protein, Figure 3a, and
the corresponding \( f_{FL} \) values are shown in the FP (\( N = 131-224 \)). The LepB part contains an N-
terminal, N_{out}-C_{in} oriented TMH (21, 22) that interacts with the signal recognition particle Ffh
(23) and hence targets the LepB-GlpG constructs to the SecYEG translocon before GlpG TMH1
is translated. This could in principle affect the FP; however, because the C-terminal end of the
LepB part is \( \geq 70 \) residues away from the C-terminal end of the SecM AP in these constructs,
LepB is far outside the ribosome exit tunnel and therefore unlikely to exert a strong effect.
Indeed, \( f_{FL} \) values for GlpG (calculated either including or excluding the slowly migrating band
in \( I_{FL} \) and LepB-GlpG are very similar in the peak III region (\( N = 166-231 \)) of the FP, Figure 3-
figure supplement 1a. \( N_{start} \) and \( N_{end} \) values for peaks II-VII are indicated in Figure 3-figure
supplement 1c-d.
Peak I, at \( N_{start} \approx 84 \) residues, is conspicuously close to what would be expected for the folding of
the NTD from previous studies of cotranslational folding of small globular domains in the
ribosome exit tunnel (6). To verify that the peak indeed represents folding of the NTD, we
recorded a FP for the NTD by \textit{in vitro} transcription-translation in the PURE system (24), and
further made a destabilizing point mutation (F\textsuperscript{16}E) in the core of the NTD, Figure 3c. The FP
obtained \textit{in vitro} (magenta) overlaps peak I in the \textit{in vivo} FP, and the mutation strongly reduces
\( f_{FL} \) values for peak I both \textit{in vivo} (green) and \textit{in vitro} (black). Given that the NTD has a relative
contact order of 15\% and is predicted to fold on the msec time scale (25) while the elongation
cycle on the ribosome takes \( \sim 100 \) msec/codon (26), the NTD has ample time to equilibrate
between the unfolded and accessible folded states at each elongation step (27). We conclude that
the \( \sim 60 \)-residue NTD folds inside the ribosome exit tunnel when its C-terminal end is 25-30
residues from the PTC, well before synthesis of the membrane domain has commenced.
Peaks II-VII in the FP correspond reasonably well to the CGMD-FP (grey) and HP (Figure 3-figure supplement 1b). The unexpectedly low \(N_{\text{start}}\) value for peak III seems to be caused by an upstream periplasmic surface helix, Figure 3f (see below). Likewise, peak VI-a likely reflects the membrane integration of a hydrophobic, membrane-associated cytoplasmic segment located just upstream of TMH5, Figure 3-figure supplement 1c. In contrast, the unexpectedly high \(N_{\text{start}}\) value for peak IV indicates that integration of TMH3 commences only when its N-terminal end is ~52 residues away from the PTC, possibly because of the tight spacing between TMH2 and TMH3.

As peak III saturates at \(f_{FL} \approx 0.9\) over a rather wide range, we sought a more detailed view by using the strong SecM\((Ec-\text{Sup1})\) AP (18), Figure 3b,d (blue), and the medium-strong SecM\((Ec-Ms)\) AP (28), Figure 3d (green). The SecM\((Ec-\text{Sup1})\) FP allows a precise determination of \(N_{\text{max}} = 200\), at which point the middle of TMH2 (L\(^{155}\)) is located 45 residues from the PTC, Figure 3f. The SecM\((Ec-Ms)\) FP reveals additional detail: peak III is now seen to be composed of three subpeaks III-a, III-b, and III-c. III-a has \(N_{\text{start}} = 182\), coinciding with the N-terminal end of the periplasmic surface helix reaching 45 residues away from the PTC. For III-b, \(N_{\text{start}} \approx 190\), with the N-terminal end of TMH2 ~45 residues from the PTC. The major subpeak III-c at \(N \approx 197\) - 204, finally, corresponds well to the peak seen in the SecM\((Ec-\text{Sup1})\) and the CGMD FPs, and therefore represents the membrane insertion of the most hydrophobic part of TMH2. Taken together, subpeaks III-b and III-c are reminiscent of the biphasic pulling force pattern previously recorded for a model hydrophobic transmembrane segment using the medium-strong SecM\((Ms)\) AP (5), which is closely related to the SecM\((Ec-Ms)\) AP used here.

We further recorded a SecM\((Ec-Ms)\) FP (magenta) for the triple mutation Y\(^{138}\)F\(^{139}\)L\(^{143}\)→NNN (Figure 3e) that renders the periplasmic surface helix less hydrophobic: the mutation strongly reduces the amplitude of peak III-a, has only a small effect on peak III-b, and both reduces the
amplitude and shifts $N_{\text{start}}$ and $N_{\text{max}}$ for peak III-c by $\sim 4$ residues, Figure 3d,f. Thus, the
periplasmic surface helix engages in hydrophobic interactions already during its passage through
the translocon, presumably by sliding along a partly open lateral gate (29). It also adds to the
force generated by the membrane integration of TMH2, possibly by partitioning into the
periplasmic leaflet of the inner membrane at approximately the same time that TMH2 enters the
translocon.

**BtuC — 10 TMHs, 326 residues**

Finally, we studied BtuC, a vitamin B12 transporter with 10 TMHs, as an example of a large,
multi-spanning protein with a complex fold (30). In order to improve expression, we added the
N-terminal part of LepB to the BtuC constructs, Figure 4a, and used a LepB antiserum for
immunoprecipitation. The N$_{\text{out}}$-C$_{\text{in}}$ orientation of LepB TMH1 ensures that the N$_{\text{in}}$-C$_{\text{in}}$ topology
of BtuC will be maintained, and constructs that we could measure without the LepB fusion gave
similar $f_{FL}$ values as those seen for the LepB fusions, Figure 4-figure supplement 1b.

We identified 11 peaks in the FP, Figure 4b (orange), one more than could be accounted for by
the 10 TMHs. Since it was not possible to provide an unequivocal match between the BtuC FP
and the CGMD-FP (or HP, Figure 4-figure supplement 1a), we did two sets of controls. First, we
chose constructs at or near peaks in the FP and CGMD-FP and mutated multiple hydrophobic
residues (Leu, Ile, Val, Met) located 40-50 residues from the PTC to less hydrophobic Ala
residues (Figure 4-figure supplement 2). The mutations caused significant drops in $f_{FL}$, ($p$<0.01,
two-sided t-test), except for construct $N=191$ that is mutated at the extreme N-terminus of
TMH5. The mutation data allowed us to identify the membrane integration of TMHs 1, 2, 3, 4, 5,
7, 8, 9, and 10 with peaks I, II, III, IV, V, VIII, IX, X, and XI, respectively; the overlapping
peaks VIII and IX appear to represent the concerted integration of the closely spaced TMH7 and
TMH8. However, peak II (corresponding to TMH2) is shifted to unexpectedly high, and peaks V (corresponding to TMH5), X (corresponding to TMH9), and XI (corresponding to TMH10) to unexpectedly low, $N_{\text{start}}$ values, Figure 4c. To confirm these assignments, we obtained FPs for the isolated TMH2 (dashed green), TMH8 (dashed light blue), and TMH10 (dashed pink) sequences, Figure 4b, by introducing them into the periplasmic domain of LepB such that they maintained their natural N$_{\text{out}}$-C$_{\text{in}}$ orientation, Figure 4d; the FPs for the individual TMHs overlap the corresponding peaks II, IX, and XI in the full FP. Likewise, an FP obtained for a construct lacking TMH1-TMH4 overlaps the full FP, except that peak V is shifted to a higher $N_{\text{start}}$ value, Figure 4-figure supplement 3, more in line with the peak seen in the CGMD-FP. The low $N_{\text{start}}$ value for the N$_{\text{in}}$-C$_{\text{out}}$ oriented TMH5 in full-length BtuC may result from an early interaction between a positively charged patch (RFARRHLSTSR) just upstream of TMH5 and negatively charged lipid headgroups (note that only two of the four Arg residues are present in the ΔTMH1-TMH4 construct, Figure 4-figure supplement 3), while the low $N_{\text{start}}$ values for peaks X and XI are likely caused by the short upstream hydrophobic segments LCGL and LAAALEL (Figure 4c,f), similar to peak III in GlpG.

Remarkably, the N-terminal end of the isolated TMH2 is ~45 residues away from the PTC at $N_{\text{start}}$, suggesting that upstream sequence elements present in full-length BtuC delay the integration of TMH2 by ~10 residues (compare II* and II in Figure 4c). The most conspicuous feature in the upstream region of TMH2 is the presence of 3 positively charged Arg residues, an uncommon occurrence in a periplasmic loop (31). Indeed, when these residues are replaced by uncharged Gln residues in LepB-BtuC, peak II (dashed black in Figure 4b,e) becomes almost identical to the FP for the isolated TMH2; a similar behavior is seen when the CGMD-FP simulation is run without an electrical membrane potential, Figure 4e. Upstream positively
charged residues thus delay the membrane integration of the N$_{\text{out}}$-oriented TMH2, possibly because of the energetic cost of translocating them against the membrane potential (4), or because they are temporarily retained in the negatively charged exit tunnel (16).

Neither peak VI nor VII seem to represent the integration of TMH6, but instead flank the location expected from the CGMD-FP and HP and apparently correspond, respectively, to the membrane insertion of a short periplasmic re-entrant helix and of a short cytoplasmic surface helix, Figure 4c,h. Mutation of three hydrophobic residues to Ala in the latter significantly reduces the amplitude of peak VII (Figure 4-figure supplement 2, construct $N = 259$). Further, the FP for the isolated TMH6, Figure 4b,g (dashed dark blue) peaks in the location expected from the CGMD-FP, between peaks VI and VII, and the FP for the isolated TMH5-6 part that includes the re-entrant helix but lacks the downstream surface helix is intermediate between the LepB-BtuC and the TMH6 FPs, Figure 4g (dashed green). Thus, the membrane interactions of the periplasmic re-entrant helix and the cytoplasmic surface helix exert a strong effect on the membrane integration of the intervening TMH6.

**Discussion**

The detailed view of the cotranslational integration of three multi-spanning membrane proteins provided here shows that translocating nascent chains experience a distinct transition to a more hydrophobic environment at a distance of ~45 residues from the PTC, generating an oscillating force on the nascent chain that is ultimately transmitted to the PTC and varies in step with the appearance of each TMH in the vicinity of the SecYEG translocon channel. It seems likely that such oscillations can have multiple effects on the translation of membrane proteins, as recently demonstrated for ribosomal frameshifting (32), and may affect protein quality control (33).
Notably, TMHs also stop generating a force on the nascent chain when their C-terminal end reaches ~45 residues from the PTC, irrespective of whether their orientation is N<sub>out</sub>-C<sub>in</sub> or N<sub>in</sub>-C<sub>out</sub>. This is in agreement with the ‘sliding’ model of TMH integration (29), which posits that N<sub>out</sub>-C<sub>in</sub> TMHs have continuous lipid contact as they slide across the membrane along the open lateral gate in the SecYEG translocon, while N<sub>in</sub>-C<sub>out</sub> TMHs first partition into the cytoplasmic interface region of the membrane as they exit the ribosome (and therefore generate less pulling force than N<sub>out</sub>-C<sub>in</sub> TMHs (34)) and only insert across the membrane as their polar C-terminal flanking region translocates through the central translocon channel. In both cases, the TMHs are embedded in the membrane (albeit in perpendicular orientations) when their C-terminal end is ~45 residues from the PTC. In the sliding model, the translocon channel serves as a conduit for polar nascent chain segments while hydrophobic segments are always in contact with surrounding lipid, similar to what has been proposed for the YidC/Oxa1 translocon family (35).

The lateral gate region in the SecYEG translocon thus in a certain sense mimics the water-bilayer interface environment (36).

We also find that the cytoplasmic N-terminal domain in GlpG folds already in the ribosome exit tunnel, before the first TMH has been synthesized. Further, the force profiles for EmrE, GlpG, and BtuC to a first approximation match those predicted by CGMD calculations, but uncover a much richer picture of the membrane integration process where charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a TMH show prominent interactions with the translocon and surrounding lipid. Finally, point mutations in EmrE TMH1 affect the pulling force generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the membrane-integration process. Complementing in vitro unfolding/folding studies (37, 38), real-
time FRET analyses (16), chemical crosslinking (35), structure determination (39), and computational modeling (40), high-resolution in vivo FPA can thus help identify the molecular interactions underlying cotranslational membrane protein biogenesis with up to single-residue precision.

Acknowledgments

We thank Dr. Rickard Hedman (Stockholm University) for programming and maintenance of the EasyQuant software. This work was supported by grants from the Knut and Alice Wallenberg Foundation (2017.0323), the Novo Nordisk Fund (NNF18OC0032828), and the Swedish Research Council (621-2014-3713) to GvH, from a Marie Curie Initial Training Network Grant (Horizon 2020, ProteinFactory 642863) to FN, and from NIGMS, National Institutes of Health, (R01GM125063) to TFM and MZ. This work used the Extreme Science and Engineering Discovery Environment (XSEDE) Bridges computer at PSC through allocation TG-MCB160013. XSEDE is supported by National Science Foundation grant number ACI-1548562.

Competing interests

The authors declare no competing interests.
### Key Resources Table

| Reagent type (species) or resource | Designation | Source or reference | Identifiers | Additional information |
|-----------------------------------|-------------|---------------------|-------------|------------------------|
| Strain, strain background (Escherichia coli) | BL21(DE3) | Sigma-Aldrich | CMC0016 | Electrocompete nt cells |
| Strain, strain background (Escherichia coli) | MC1061 | J Biol Chem. 261:13844-9. PMID: 3531212 | NA | Electrocompete nt cells |
| Other | Protein G-Agarose | Roche | 11243233001 | Resin used for immunoprecipitation |
| Antibody | Anti-HA.11 Epitope Tag Antibody (mouse monoclonal) IgG | BioLegend | Cat# 901533 | Used for immunoprecipitation (1μl of 1 mg/mL, diluted 1:820) |
| Antibody | LepB antibody (rabbit polyclonal) IgG | Generated in-house | NA | Used for immunoprecipitation (dilution 1:820) |
| Recombinant DNA reagent | pET Duet-1 (plasmid) | Novagen | Cat # 71146 | Expression plasmid |
| Recombinant DNA reagent | pING1 (plasmid) | Gene 34:137-45. PMID: 4007491. | NA | Expression plasmid |
| Commercial assay, kit | GeneJET Plasmid miniprep kit | Thermo Fisher Scientific | Cat no. 0502 | Used to purify plasmids |
|----------------------|-----------------------------|--------------------------|--------------|------------------------|
| Commercial assay, kit | GeneJET PCR Purification Kit | Thermo Fisher Scientific | Cat no. K0701 | Used to purify linear fragments for in vitro expression |
| Commercial assay, kit | PURExpress | New England Biolabs | Cat no. E6800L | Used for *in vitro* expression |
| Chemical compound, drug | 35S Methionine | Perkin-Elmer | Cat no. NEG009T001M C | 35S Methionine is incorporated into the protein during *in vitro* and *in vivo* translation and aids detection by phosphorimaging. |
| Software, algorithm | EasyQuant | Developed in-house Nat Struct Mol Biol. 19:1018-22. PMID: 23001004; | | Used to quantify relative fraction full-length of translated protein from SDS-PAGE |

284  **Enzymes and chemicals**

285 All enzymes used in this study were purchased from Thermo Scientific and New England Biolabs. Oligonucleotides were from Eurofins Genomics. DNA isolation/purification kits and precast polyacrylamide gels were from Thermo Scientific. L-[35S]-methionine was obtained from
PerkinElmer. Mouse monoclonal antibody against the HA antigen was purchased from BioLegend. Protein-G agarose beads were manufactured by Roche. All other reagents were from Sigma-Aldrich.

Cloning and Mutagenesis

EmrE: The previously described N\textsubscript{out}-C\textsubscript{out} oriented EmrE(C\textsubscript{out}) version carrying mutations T\textsuperscript{28}R, L\textsuperscript{85}R and R\textsuperscript{106}A was engineered in a pETDuet-1 vector (14). A series of constructs was designed by inserting nucleotides downstream of EmrE(C\textsubscript{out}) coding for a variable LepB-derived linker sequence (between 4 and 34 residues), the 9-residue long HA tag, the 17-residue long \textit{E. coli} SecM AP, and a 23-residue long C-terminal tail. The following APs with stalling strengths were used: SecM(\textit{Ec}) (FSTPVWISQAQIRAGP), SecM(\textit{Ec}-Ms) (FSTPVWISQHAPERGSP, mutations underlined), and SecM(\textit{Ec}-Sup1) (FSTPVWISQAPPARRGSP, mutations underlined).

The LepB-derived linker as well as EmrE(C\textsubscript{out}) were truncated 2-5 residues at a time from the C-terminus of the respective sequence. Site-specific DNA mutagenesis was carried out to introduce point mutations E\textsuperscript{14}L, E\textsuperscript{14}A, E\textsuperscript{14}D, and E\textsuperscript{14}Q in EmrE(C\textsubscript{out}). All cloning and mutagenesis products were confirmed by DNA sequencing. Different EmrE sequences used in this study are summarized in Supplementary File 1.

GlpG: The gene encoding for GlpG was amplified from the genome of \textit{E. coli} K-12 MG1655 strain by PCR and assembled together with other sequence elements into the pING1 plasmid (41, 42) by Gibson assembly®. For the longest truncates, a LepB-derived unstructured linker was introduced downstream of the GlpG sequence, followed by an HA tag, a 17-residue long \textit{E. coli} SecM AP and a 23-residue long C-terminal tail derived from LepB. Partially overlapping primers were used in around-the horn PCR (43) to create deletion variants truncating upstream of the HA-tag. All the sequences of GlpG deletion variants used in this study are summarized in
Supplementary File 1. For LepB-GlpG constructs, 60 N-terminal residues corresponding to the soluble domain were truncated from GlpG and substituted by LepB N-terminal segment comprising TMH1 and a long cytoplasmic loop (1-174 res of LepB). Three different stalling sequences of increasing strength were used: SecM(Ec) (FSTPVWISQAGIRAGP), SecM(Ec-Ms) (FSTPVWISQHAPIRGSP, mutations underlined), and SecM(Ec-Sup1) (FSTPVWISQAPPIRAGP, mutations underlined). Mutations in SecM(Ec) AP and GlpG folding variants NTD(F\textsuperscript{16}E), GlpG(Y\textsuperscript{138}F\textsuperscript{139}L\textsuperscript{143}→NNN) were engineered using partially overlapping primers in around-the-horn PCR. All cloning and mutagenesis products were confirmed by DNA sequencing.

For \textit{in vitro} transcription/translation of the soluble NTD domain, constructs of variable length were fused to the SecM(Ec) AP and cloned into the pET19b vector. Folding variant NTD(F\textsuperscript{16}E) was engineered using partially overlapping primers in around-the-horn PCR. pET19b plasmids containing different GlpG variants were used as template to create linear DNA fragments amplified by PCR for each construct using forward and reverse primers that anneal to the T7 promoter and terminator regions, respectively.

\textbf{BtuC}: The previously described pING1 plasmid harboring a truncated LepB sequence with an inserted hydrophobic test segment (6L/13A) followed by a variable LepB-derived linker (between 9 and 43 residues), the 17-residue long \textit{E. coli} SecM AP, and a C-terminal tail comprised of 23 or 75 residues derived from LepB was used to generate all BtuC constructs (5). All BtuC sequences used in this study are summarized in Supplementary File 1. The gene encoding BtuC was amplified from the genome of the \textit{E. coli} K-12 MG1655 strain by PCR and then engineered to replace 6L/13A using Gibson assembly\textsuperscript{®} (44). In order to maintain the correct topology of BtuC, the sequence coding for TMH2 of LepB (between residues P\textsuperscript{58} and P\textsuperscript{114} was
removed by deletion-PCR resulting in a 177-residue long sequence upstream of BtuC. A gene sequence encoding 52 residues (part of LepB P2 domain) was introduced downstream of the SecM AP for constructs with \( N \geq 298 \), resulting in an extension of the C-terminal tail from 23 to 75 residues in order to improve protein separation during SDS-PAGE. The LepB-derived linker as well as BtuC were truncated 4 residues at a time from the C terminus of the respective sequence. Site-specific DNA mutagenesis was carried out to replace 3 or 6 hydrophobic residues with Ala residues in TMHs of BtuC and to replace 3 Arg residues with Gln residues in the periplasmic loop connecting TMH1 and TMH2 (R\(^{47}\)R\(^{56}\)R\(^{59}\)→QQQ). Gene sequences of single TMH and 2-TMH constructs were cloned with the variable linker sequence derived from LepB, the single TMH constructs were placed in the background containing gene sequences of both LepB TMHs in order to maintain the correct topology. Furthermore, BtuCΔLepB constructs lacking the N-terminal LepB fusion were obtained by deletion of the entire LepB sequence upstream of BtuC, and the 9-residue long LepB-derived linker was replaced with an HA tag for immunoprecipitation. All cloning and mutagenesis products were confirmed by DNA sequencing.

**In vivo pulse-labeling analysis**

Competent *E. coli* MC1061 (45) or BL21 (DE3) cells were transformed with the respective plNG1 (BtuC, GlpG) or pET Duet-1 (EmrE) plasmid, respectively and grown overnight at 37°C in M9 minimal medium supplemented with 19 amino acids (1 μg/ml, no Met), 100 μg/ml thiamine, 0.4% (w/v) fructose, 100 mg/ml ampicillin, 2 mM MgSO\(_4\), and 0.1mM CaCl\(_2\). Cells were diluted into fresh M9 medium to an OD\(_{600}\) of 0.1 and grown until an OD\(_{600}\) of 0.3 - 0.5. Expression from plNG1 was induced with 0.2% (w/v) arabinose and continued for 5 min at 37°C. Expression from pET Duet-1 was induced with 1 mM IPTG and continued for 10 min at
37°C. Proteins were then radiolabeled with [\(^{35}\)S]-methionine for 2 min (1 min for BtuC constructs lacking the N-terminal LepB fusion) at 37°C before the reaction was stopped by adding ice-cold trichloroacetic acid (TCA) to a final concentration of 10%. Samples were put on ice for 30 min and precipitates were spun down for 10 min at 20,000 g at 4°C in a tabletop centrifuge (Eppendorf). After one wash with ice-cold acetone, centrifugation was repeated and pellets were subsequently solubilized in Tris-SDS buffer (10 mM Tris-Cl pH 7.5, 2% (w/v) SDS) for 5 min while shaking at 1,400 rpm at 37°C. Samples were centrifuged for 5 min at 20,000 g to remove insoluble material. The supernatant was then added to a buffer containing 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.1 mM EDTA-KOH, 2% (v/v) triton X-100, and supplemented with Pansorbin® (BtuC constructs) or Gammabind G Sepharose® (all GlpG and EmrE constructs, and BtuC constructs lacking the N-terminal LepB fusion). After 15 min incubation on ice, non-specifically bound proteins were removed by centrifugation at 20,000xg (when Pansorbin® was used) or 7,000xg (when Gammabind G Sepharose® was used). The supernatant was used for immunoprecipitation of BtuC constructs using Pansorbin® and LepB antisera (rabbit), or immunoprecipitation of GlpG/EmrE constructs using Gammabind G Sepharose® and Anti-HA.11 Epitope Tag Antibody (mouse). The incubation was carried out at 4°C whilst rolling. After centrifugation for 1 min, immunoprecipitates were washed with 10 mM Tris-Cl pH 7.5, 150 mM NaCl, 2 mM EDTA, and 0.2% (v/v) triton X-100 and subsequently with 10 mM Tris-Cl pH 7.5. Samples were spun down again and pellets were solubilized in SDS sample buffer (67 mM Tris, 33% (w/v) SDS, 0.012% (w/v) bromophenol blue, 10 mM EDTA-KOH pH 8.0, 6.75% (v/v) glycerol, 100 mM DTT) for 10 min while shaking at 1,400 rpm. Solubilized proteins were incubated with 0.25 mg/ml RNase for 30 min at 37°C and subsequently separated by SDS-PAGE. Gels were fixed in 30% (v/v) methanol and 10% (v/v) acetic acid and dried by using a
Bio-Rad gel dryer model 583. Radiolabeled proteins were detected by exposing dried gels to phosphorimaging plates, which were scanned in a Fuji FLA-3000 scanner. Band intensity profiles were obtained using the FIJI (ImageJ) software and quantified with our in-house software EasyQuant. $A_c$ and/or $FL_c$ controls were included in the SDS-PAGE analysis for constructs where the identities of the $A$ and $FL$ bands were not immediately obvious on the gel. Data was generally collected from three independent biological replicates for EmrE and BtuC, and for two or three replicates for GlpG, and averages and standard errors of the mean (SEM) were calculated (see Source Data). Note that for two replicates, plotting the average ± SEM is equivalent to plotting the average ± error bars representing the two experimental measurements.

**In vitro transcription/translation of GlpG NTD**

*In vitro* transcription/translation was performed using the commercially available PURExpress system (New England Biolabs). Reactions were mixed according to the manufacturer’s recommendations by the addition of 2.2 μl of linear DNA of each construct giving a final volume of 10 μl. Polypeptide synthesis was carried out in the presence of $[^{35}S]$-methionine at 37°C for 15 min under 700 rpm shaking. Translation was stopped by the addition of trichloroacetic acid (TCA) to a final concentration of 5% and incubated on ice for at least 30 min. Total protein was sedimented by centrifugation at 20,000 g for 10 min at 4°C in a tabletop centrifuge (Eppendorf). The pellet was resuspended in 2x SDS/PAGE sample buffer, supplemented with RNaseA (400 μg/ml) to digest the stalled peptidyl-tRNA, and incubated at 37°C for 15 min under 1,000 rpm agitation. The samples were resolved on 12% Bis-Tris gels (Thermo Scientific) in MOPS buffer. Gels were dried (Hoefer GD 2000), exposed to a phosphorimager screen for 24 h and scanned using the Fujifilm FLA-9000 phosphorimager for visualization of radioactively labeled protein species.
Molecular dynamics simulations

Computer simulations of cotranslational membrane integration were carried out using a previously developed and validated coarse-grained molecular dynamics (CGMD) model in which nascent proteins are mapped on to CG beads representing three amino acids (11, 46). The nascent protein interacts with the Sec translocon and the ribosome via pairwise interactions that depend on the hydrophobicity and charge of the beads of the nascent protein. The interaction parameters are unchanged from previous work (46). The lateral gate of the translocon switches between the open and closed conformations with probability dependent on the difference in free energy between the two conformations. The structures of the ribosome and translocon are based on cryo-EM structures and, aside from the lateral gate of the translocon, are fixed in place during the simulations. The lipid bilayer and cytosol are modelled implicitly. The positions of the nascent protein beads are evolved using overdamped Langevin dynamics with a timestep of 300 ns and a diffusion coefficient of 253 nm$^2$/s. Membrane potentials are included by adding an electrostatic energy term to the simulations, as previously described (11).

To simulate protein translation, new amino acids are added to the nascent chain at a rate of 5 amino acids per second. Simulations of EmrE, GlpG, and BtuC begin with 12 amino acids translated. Translation continues until the nascent protein reaches the desired length, at which point translation is halted and forces on the C-terminus of the nascent chain are measured every 3 ms for 6 seconds. This methodology has been found to accurately reproduce experimental force profiles (11). Forces are measured starting at a nascent protein length of 18 amino acids for EmrE and BtuC, and 70 for GlpG. The computational force profile (CGMD-FP) is then obtained by measuring the forces at lengths incremented by four amino acids. Simulations at different lengths are performed independently and repeated 100 times. Because the ribosomal exit tunnel
is truncated in the CGMD model, a shift in the protein index is required to compare simulated
and experimental results. Shifts of -12, -5, and -5 residues are used for EmrE, GlpG and BtuC
CGMD-FPs, respectively. The shifts are estimated by aligning the computational and
experimental force profiles and are in line with what is expected given the length of the truncated
exit tunnel. Variation in the shift may reflect different degrees of compaction of the nascent
chain. Although previous work provides a framework to estimate the experimentally observed
fraction full-length from simulated forces given a specific arrest peptide (11, 47), forces are
reported directly to facilitate comparison between experiments performed with different arrest
peptides.

Protein contact order calculation

The relative contact order for the GlpG NTD was calculated using the Contact Order server at
https://depts.washington.edu/bakerpg/contact_order/contact_order.cgi.

References

1. Rapoport TA, Li L, & Park E (2017) Structural and Mechanistic Insights into Protein
   Translocation. *Annu Rev Cell Devel Biol* 33:369-390.
2. Chitwood PJ, Juszkiewicz S, Guna A, Shao S, & Hegde RS (2018) EMC Is Required to
   Initiate Accurate Membrane Protein Topogenesis. *Cell* 175:1507-1519 e1516.
3. Hessa T, *et al.* (2007) Molecular code for transmembrane-helix recognition by the Sec61
   translocon. *Nature* 450:1026-1030.
4. Ismail N, Hedman R, Lindén M, & von Heijne G (2015) Charge-driven dynamics of nascent-chain movement through the SecYEG translocon. *Nat Struct Mol Biol* 22:145-149.

5. Ismail N, Hedman R, Schiller N, & von Heijne G (2012) A biphasic pulling force acts on transmembrane helices during translocon-mediated membrane integration. *Nature Struct Mol Biol* 19:1018-1022.

6. Farias-Rico JA, Ruud Selin F, Myronidi I, Frühauf M, & von Heijne G (2018) Effects of protein size, thermodynamic stability, and net charge on cotranslational folding on the ribosome. *Proc Natl Acad Sci U S A* 115:E9280-E9287.

7. Ito K & Chiba S (2013) Arrest peptides: cis-acting modulators of translation. *Annu Rev Biochem* 82:171-202.

8. Goldman DH, *et al.* (2015) Mechanical force releases nascent chain-mediated ribosome arrest *in vitro* and *in vivo*. *Science* 348:457-460.

9. Kemp G, Nilsson OB, Tian P, Best RB, & von Heijne G (2020) Cotranslational folding cooperativity of contiguous domains of α-spectrin. *Proc Natl Acad Sci U S A* 117:14119-14126.

10. Cymer F, Hedman R, Ismail N, & von Heijne G (2015) Exploration of the arrest peptide sequence space reveals arrest-enhanced variants. *J Biol Chem* 290:10208-10215.

11. Niesen MJM, Muller-Lucks A, Hedman R, von Heijne G, & Miller TF, 3rd (2018) Forces on Nascent Polypeptides during Membrane Insertion and Translocation via the Sec Translocon. *Biophys J* 115:1885-1894.

12. Leininger SE, Narayan K, Deutsch C, & O'Brien EP (2019) Mechanochemistry in Translation. *Biochemistry* 58:4657-4666.
13. Chen YJ, et al. (2007) X-ray structure of EmrE supports dual topology model. *Proc Natl Acad Sci USA* 104:18999-19004.

14. Rapp M, Seppälä S, Granseth E, & von Heijne G (2007) Emulating membrane protein evolution by rational design. *Science* 315:1282-1284.

15. Van Lehn RC, Zhang B, & Miller TF, 3rd (2015) Regulation of multispansing membrane protein topology via post-translational annealing. *Elife* 4.

16. Mercier E, Wintermeyer W, & Rodnina MV (2020) Co-translational insertion and topogenesis of bacterial membrane proteins monitored in real time. *EMBO J*:e104054.

17. Seurig M, Ek M, von Heijne G, & Fluman N (2019) Dynamic membrane topology in an unassembled membrane protein. *Nature Chem Biol* 15:945-948.

18. Yap MN & Bernstein HD (2009) The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. *Mol Cell* 34:201-211.

19. Sherratt AR, Blais DR, Ghasrian H, Pezacki JP, & Goto NK (2012) Activity-based protein profiling of the Escherichia coli GlpG rhomboid protein delineates the catalytic core. *Biochemistry* 51:7794-7803.

20. Wang Y, Zhang Y, & Ha Y (2006) Crystal structure of a rhomboid family intramembrane protease. *Nature* 444:179-180.

21. Wolfe PB, Wickner W, & Goodman JM (1983) Sequence of the leader peptidase gene of *Escherichia coli* and the orientation of leader peptidase in the bacterial envelope. *J Biol Chem* 258:12073-12080.

22. von Heijne G (1989) Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. *Nature* 341:456-458.
23. Schibich D, et al. (2016) Global profiling of SRP interaction with nascent polypeptides. *Nature* 536:219-223.

24. Shimizu Y, Kanamori T, & Ueda T (2005) Protein synthesis by pure translation systems. *Methods* 36:299-304.

25. Plaxco KW, Simons KT, & Baker D (1998) Contact order, transition state placement and the refolding rates of single domain proteins. *J Mol Biol* 277:985-994.

26. Young R & Bremer H (1976) Polypeptide-chain-elongation rate in Escherichia coli B/r as a function of growth rate. *Biochem J* 160:185-194.

27. Kemp G, Kudva R, de la Rosa A, & von Heijne G (2019) Force-Profile Analysis of the Cotranslational Folding of HemK and Filamin Domains: Comparison of Biochemical and Biophysical Folding Assays. *J Mol Biol* 431:1308-1314.

28. Farias-Rico JA, Goetz SK, Marino J, & von Heijne G (2017) Mutational analysis of protein folding inside the ribosome exit tunnel. *FEBS Lett* 591:155-163.

29. Cymer F, von Heijne G, & White SH (2015) Mechanisms of integral membrane protein insertion and folding. *J Mol Biol* 427:999-1022.

30. Hvorup RN, et al. (2007) Asymmetry in the structure of the ABC transporter-binding protein complex BtuCD-BtuF. *Science* 317:1387-1390.

31. von Heijne G (1986) The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. *EMBO J* 5:3021-3027.

32. Harrington HR, et al. (2020) Cotranslational folding stimulates programmed ribosomal frameshifting in the alphavirus structural polyprotein. *J Biol Chem* 295:6798-6808.

33. Lakshminarayan R, et al. (2020) Pre-emptive Quality Control of a Misfolded Membrane Protein by Ribosome-Driven Effects. *Curr Biol* 30:854-864.
34. Cymer F, Ismail N, & von Heijne G (2014) Weak pulling forces exerted on N-in-orientated transmembrane segments during co-translational insertion into the inner membrane of *Escherichia coli*. *FEBS Lett* 588:1930-1934.

35. He H, Kuhn A, & Dalbey RE (2020) Tracking the Stepwise Movement of a Membrane-inserting Protein In Vivo. *J Mol Biol* 432:484-496.

36. Marx DC & Fleming KG (2021) Local Bilayer Hydrophobicity Modulates Membrane Protein Stability. *J Am Chem Soc* 143:764-772.

37. Yu H, Siewny MG, Edwards DT, Sanders AW, & Perkins TT (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. *Science* 355:945-950.

38. Choi HK, *et al.* (2019) Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. *Science* 366:1150-1156.

39. Kater L, *et al.* (2019) Partially inserted nascent chain unzips the lateral gate of the Sec translocon. *EMBO Rep* 20:e48191.

40. Lu W, Schafer NP, & Wolynes PG (2018) Energy landscape underlying spontaneous insertion and folding of an alpha-helical transmembrane protein into a bilayer. *Nat Commun* 9:4949.

41. Johnston S, Lee JH, & Ray DS (1985) High-level expression of M13 gene II protein from an inducible polycistronic messenger RNA. *Gene* 34:137-145.

42. Dalbey RE & Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the *Escherichia coli* plasma membrane. *J Biol Chem* 260:15925-15931.

43. Floor S (2018) Around-the-horn PCR and cloning. *protocols.io* https://dx.doi.org/10.17504/protocols.io.rf2d3qe.
44. Gibson DG, et al. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nat Methods* 6:343-345.

45. Dalbey RE & Wickner W (1986) The role of the polar, carboxyl-terminal domain of *Escherichia coli* leader peptidase in its translocation across the plasma membrane. *J Biol Chem* 261:13844-13849.

46. Niesen MJ, Wang CY, Van Lehn RC, & Miller TF, 3rd (2017) Structurally detailed coarse-grained model for Sec-facilitated co-translational protein translocation and membrane integration. *PLoS Comput Biol* 13:e1005427.

47. Tian P, et al. (2018) Folding pathway of an Ig domain is conserved on and off the ribosome. *Proc Natl Acad Sci U S A* 115:E11284-E11293.

48. Notari L, Martinez-Carranza M, Farias-Rico JA, Stenmark P, & von Heijne G (2018) Cotranslational Folding of a Pentarepeat β-Helix Protein. *J Mol Biol* 430:5196-5206.

49. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, & Lomize AL (2012) OPM database and PPM web server: resources for positioning of proteins in membranes. *Nucleic Acids Res* 40:D370-376.

50. Tsirigos KD, Peters C, Shu N, Kall L, & Elofsson A (2015) The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. *Nucleic Acids Res* 43:W401-407.
Figure legends

**Figure 1.** *The force profile assay.* (a) Basic construct. Arrested (A) and full-length (FL) products are indicated. (b) At construct length $N_1$, TMH2 has not yet entered the SecYEG channel and no pulling force $F$ is generated. At $N_2$, TMH2 is integrating into the membrane and $F \gg 0$. At $N_3$, TMH2 is already integrated and $F \approx 0$. (c) SDS-PAGE gels showing A and FL products for $[^{35}\text{S}]$-Met labelled and immunoprecipitated EmrE(C_{out})(N = 105), GlpG(N = 196), and BtuC(N = 314). Control constructs $A_c$ and $FL_c$ have, respectively, a stop codon and an inactivating Ala codon replacing the last Pro codon in the AP. The band just below the A band in the EmrE(C_{out})(N = 105) lane most likely represents ribosomes stacked behind the AP-stalled ribosomes (48) and is not included in the calculation of $f_{FL}$. See Figure 1-figure supplement 1 for additional gels.

**Figure 2.** *EmrE(C_{out})*. (a) Construct design. EmrE(C_{out}) is shortened from the C-terminal end of the LepB-derived linker (dotted), as indicated by the arrow. Cytoplasmic (red) and periplasmic (blue) loops, and lengths of full-length EmrE(C_{out}), LepB-derived linker, HA tag+AP, and C-terminal tail are indicated. Since the 30-residue HA+AP segment is constant in all constructs, the FP reflects nascent chain interactions occurring mainly outside the ribosome exit tunnel. (b) FPs for EmrE(C_{out}) (orange), EmrE(C_{out},E^{14}L) (green), EmrE(C_{out}) with SecM(Ec-sup1) AP (blue), EmrE(C_{out},I^{37}I^{38}\rightarrow NN) (magenta triangles), and CGMD-FP calculated with a -100 mV membrane potential (grey). (c) Effects of mutations in E^{14} on $f_{FL}$ values for the $N$ values indicated by arrows in panel b. $p$ values (2-sided t-test): $p < 0.05$, *; $p < 0.01$, **; $p < 0.001$, ***. (d-e) Sequences corresponding to peaks I-IV aligned from their $N_{\text{start}}$ (d) and $N_{\text{end}}$ (e) values. The + sign indicates 45 residues from the PTC. Hydrophobic TMH segments shown in orange and transmembrane $\alpha$-helices underlined (PDB 3B5D). Error bars in panels b and c indicate SEM values.
Figure 3. GplG. (a) Construct design, c.f., Figure 2a. The N-terminal LepB fusion is indicated. (b) FPs for GlpG and LepB-GlpG (N = 131-224) (orange), NTD(F16E) (green), in-vitro translated NTD (magenta) and NTD(F16E) (black), LepB-GlpG with SecM(Ec-Sup1) AP (blue), and CGMD-FP calculated with a -100 mV membrane potential (grey). Error bars indicate SEM values. Note that the LepB-GlpG constructs are two residues shorter than the corresponding GlpG constructs but are plotted with the same N values as the latter to facilitate comparison. (c) NTD (PDB ID: 2LEP), with F16 in spacefill. (d) Enlarged FPs for LepB-GlpG with SecM(Ec) AP (orange), SecM(Ec-Ms) AP (green), SecM(Ec-sup1) AP (blue), and GlpG(Y138F139L143→NNN) with SecM(Ec-Ms) AP (magenta). CGMD-FP in grey. (e) Structure of GlpG with the periplasmic surface helix in blue, TMH2 in red, the membrane-associated cytoplasmic segment in cyan, and TMH5 in yellow. Y138F139L143 and G223I223Y224L225 are shown as sticks. (f) LepB-GlpG peak III-a and III-c sequences aligned, respectively, from their Nstart and Nmax values, and the mutant LepB-GlpG(Y138F139L143→NNN) peak III-c sequence aligned from its Nmax value. Hydrophobic TMH segments shown in orange and transmembrane α-helices (PDB 2IC8) underlined. The periplasmic surface helix is italicized.

Figure 4. BtuC. (a) Construct design, c.f., Figure 2a. The N-terminal LepB fusion is indicated. N values are calculated from the N-terminus of BtuC. For constructs with N ≥ 298, the C-terminal tail is 75 residues long. Circles indicate constructs for which mutations were made in the corresponding TMH, see Figure 4-figure supplement 2. (b) FPs for BtuC (orange), BtuC-TMH2 (green), BtuC(R47R56R59→QQQ) (black), BtuC-TMH6 (dark blue), BtuC-TMH8 (blue), BtuC-TMH10 (pink), and CGMD-FP calculated with a -100 mV membrane potential (grey). Error bars indicate SEM values. Note that the BtuC-TMH2, BtuC-TMH6, BtuC-TMH8, and BtuC-TMH10 constructs are plotted with the same N values as the corresponding BtuC constructs to facilitate
comparison (i.e., the number of residues between the TMH in question and the last residue of the AP is the same in both types of constructs, see Supplementary File 1). (c) Sequences corresponding to peaks I-XI aligned from their $N_{start}$ values. Hydrophobic TMH segments shown in orange and membrane-embedded $\alpha$-helices according to the OPM database (49) underlined. Re-entrant loops and surface helices discussed in the text are italicized. (d) Construct design for obtaining FPs of isolated N$_{out}$ oriented BtuC TMHs. Dashed segments are derived from LepB. (e) Enlarged FPs for BtuC (orange) and (R$^{47}$R$^{56}$/R$^{59}$→QQQ) (black), together with CGMD-FPs calculated with (grey) and without (dashed grey) a -100 mV potential. (f) BtuC TMH9-TMH10, with hydrophobic flanking residues in stick representation (PDB ID: 2QI9). (g) Enlarged FPs for BtuC (orange), isolated TMH6 (residues 187-206; blue), and isolated TMH5-6 (residues 138-206; green). In the latter construct, LepB TMH2 was not included in order to maintain the correct membrane topology of the BtuC TMH5-TMH6 part. The CGMD-FP is in grey. (h) Structure of TMH6 including the upstream periplasmic re-entrant helix and the downstream cytoplasmic surface helix, with hydrophobic flanking residues in stick representation.

**Figure 1-figure supplement 1.** Gel gallery with selected EmrE (panels a-e), GlpG (panels f-l), and BtuC (panels m-r) constructs. Full-length (FL) and arrested (A) products are indicated by black and white circles, respectively. Repeat experiments are indicated by single and double lines above the lanes for EmrE (a-e), by short lines beneath the lanes for GlpG (f-i), and are on neighboring gels for BtuC. For BtuC, some full-length (FL$_c$) and arrest (A$_c$) controls are included (c.f., Figure 1c); these are for the construct immediately to the right of the control construct lanes. GlpG (j-k) show GlpG constructs (indicated by -) and the corresponding LepB-GlpG constructs (indicated by +) for $N$ = 136-196. For $N$ = 141-186, GlpG constructs have the expected full-length band (lower grey circles) that runs slightly faster than the corresponding
LepB-GlpG construct (black circles), plus an extra band of unknown provenance that runs more slowly than the full-length LepB-GlpG construct (upper grey circles). The GlpG $f_{FL}$ values shown in Figure 3-figure supplement 1a were calculated by assigning only the lower (dashed magenta curve), or both (dashed green curve), of the bands indicated by grey circles as full-length product. Panel l shows a repeat experiment for the LepB-GlpG constructs included in panels j-k.

Figure 2-figure supplement 1. EmrE(Cout). As in Figure 2b, but with a HP ($\Delta G$) calculated by TOPCONS (3, 50) (grey). Since the HP represents the membrane-integration energy and the FP the force generated during integration, the two profiles have been aligned such that peaks in the FP approximately align with maxima in the derivative of the HP.

Figure 3-figure supplement 1. GlpG. (a) $f_{FL}$ values for peak III obtained for LepB-GlpG fusion constructs (orange) and GlpG constructs calculated either including (dashed green) or excluding (dashed magenta) the slowly migrating band indicated in Figure 1-figure supplement 1j-k in $I_{FL}$. The two latter are from single measurements. (b) As in Figure 3b, but with a HP ($\Delta G$) calculated by TOPCONS (3, 50) (grey). (c) Sequences corresponding to peaks II-VII aligned based on the $N_{start}$ values. The periplasmic surface helix upstream of TMH2 and the hydrophobic patch upstream of TMH5 are in italics. Hydrophobic TMH segments shown in orange and membrane-embedded $\alpha$-helices underlined. (d) Sequences corresponding to peaks II-VII aligned based on the $N_{end}$ values. Hydrophobic TMH segments shown in orange and membrane-embedded $\alpha$-helices underlined.

Figure 4-figure supplement 1. BtuC. (a) As in Figure 4b, but with a HP ($\Delta G$) calculated by TOPCONS (3, 50) (grey). (b) Close-up view of the BtuC FP ($N = 30-150$; orange), and the
corresponding FP obtained with BtuC constructs lacking the N-terminal LepB fusion (green).

For the latter, an HA tag was included just upstream of the AP, and cells were radiolabelled with $[^{35}\text{S}]$-Met for 1 min. before TCA precipitation.

**Figure 4-figure supplement 2.** *Mutations in constructs representing peaks in the BtuC FP.* (a) Sequences of the 67 residues leading up to the end of the AP for constructs with the indicated $N$-values. The constructs are identified by black circles on the BtuC FP in Figure 4b. For each construct, the residues indicated in bold green were simultaneously mutated to Ala. The shaded area encompasses residues located 40-50 residues away from the C-terminal end of the AP in the respective constructs. Hydrophobic TMH segments are shown in orange and membrane-embedded α-helices are underlined. (b) $f_{FL}$ values for the unmutated constructs (orange) and the Ala-replacement mutants (blue). Error bars indicate SEM values, and stars indicate $p$-values calculated using a two-sided t-test ($p < 0.05$, *; $p < 0.01$, **; $p < 0.001$, ***).

**Figure 4-figure supplement 3.** *BtuC.* As in Figure 4b, with the FP for construct BtuC(ΔTMH1-TMH4) in green.

**Supplementary File 1.** Amino acid sequences of EmrE(C_{out}), GlpG, and BtuC constructs.
Figure 1
Figure 1-figure supplement 1, part 1
Figure 1-figure supplement 1, part 2
LepB-BtuC

Figure 1-figure supplement 1, part 3
Figure 2
Figure 3
Figure 3-figure supplement 1
Figure 4
Figure 4—figure supplement 1
Figure 4-figure supplement 2
Figure 4-figure supplement 3