LOW POWER CONSUMPTION ALGORITHM ADOPTING CONSTANT MULTIPLICATIONS

Almukhtar Ahmed
Assistant Prof, Electrical &Electronics Department,
Faculty of Engineering Sabratha, Sabratha University, Sabratha-Libya

ABSTRACT

In FIR channels, increase tasks are expensive to perform. Channel loads are steady for some random channel. A few strategies have been created throughout the years for the effective acknowledgment of consistent augmentations by a system of include/subtract-move activities [6]. Steady duplication strategies are comprehensively of two sorts, (i) single consistent increase (SCM) techniques and (ii) various consistent augmentation (MCM) methods. In this short, Radix-2r arithmetic is connected to the different steady increase (MCM) issues. Given a number M of nonnegative constants with a bit length N, its decided that the explanatory equations for the most extreme number of increments, the normal number of increases, and the greatest number of fell augmentations framing the basic way. We get the principal demonstrated limits known so far for MCM. Notwithstanding being completely unsurprising as for the issue measure (M, N), The RADIX-2r MCM heuristic shows sub straight runtime intricacy \(O(M \times N/r)\), where \(r\) is a component of (M, N). For high multifaceted nature issues, it is no doubt the special case that is even doable to run. Legitimacy is that it has the briefest viper profundity in correlation with the best distributed MCM calculations.

Keywords: High-Speed and Low-Power Design, Linear Time Invariant (LTI) Systems, Multiplier Less Single/Multiple Constant Multiplication (SCM/MCM), Radix-2r Arithmetic.

Cite this Article: Almukhtar Ahmed, Low Power Consumption Algorithm Adopting Constant Multiplications, International Journal of Electronics and Communication Engineering and Technology, 10(2), 2019, pp. 08-16.

http://www.iaeme.com/IJECET/issues.asp?JType=IJECET&VType=10&IType=2

1. INTRODUCTION

A great deal of research has been done to develop effective algorithms to identify the optimal set of non-redundant sub expressions to A first-rate deal of research has been completed to improve potent algorithms to establish the top-quality set of non-redundant sub expressions to attain the minimum number of good judgment operators and the minimal logic depth of the MCM. Regardless of variations in methodology and the extent of optimality, in all these works, after the fashioned sub expression terms are determined and the ADD/SUB network of non-
Low Power Consumption Algorithm Adopting Constant Multiplications

redundant sub expressions (or phrases) is formed, the product worth similar to every of the coefficients is computed by using an adder-tree that sums up its vital terms. Two adder-bushes are shaped, for computing the made of a pair of coefficients using shifted types of specified CS terms ‘1’, ‘10-1’ and ‘1001’ from the term-networks or sub expression-networks.

Acquire the minimum number of good judgment operators and the minimal good judgment depth of the MCM. Regardless of variations in methodology and the extent of optimality, in all these works, after the long-established sub expression phrases are made up our minds and the ADD/SUB community of non-redundant sub expressions (or phrases) is formed, the product price similar to each of the coefficients is computed by means of an adder-tree that sums up its primary phrases. Two adder-bushes are formed, for computing the manufactured from a pair of coefficients utilizing shifted types of specific CS phrases ‘1’, ‘10-1’ and ‘1001’ from the time period-networks or sub expression-networks. A brief characterization study of the number of ADD/SUB operators in different parts of Arbitrary filters using 2-bit recursive usual sub expression removing for MCMs exhibits that the number of operators used to kind the adder-tree networks may be very colossal, regularly a couple of times more, compared to that in the term networks. Whilst the foremost research focus of MCM is on more effective usual sub expression sharing systems, optimizations on adder-bushes are largely overlooked. Without reference to which normal sub expression identification algorithm is used, the formation of an adder-tree is most of the time handled by means of the equal tree-height minimization algorithm that ensures the height of generated adder-tree is the minimal on the operator stage. In this paper, I present a system of derivation of identical adder-bushes to shrink the adder tree resource. I have developed the price mannequin of the shift ADD/SUB network by bit-stage evaluation, which might be diminished via suitable scheduling of operations on the adder-tree. I discover that tremendous area and vigor discount (as much as 15% and 11.6% respectively with an traditional of 8.46 % and 5.96%) can be executed on prime of already optimized MCM blocks.

1.1. Multiple-Constant multiplication

The couple of-consistent multiplication (MCM) drawback is to investigate a shift-and-add community that can understand multiplication of a single input, \(x(n) \), with a collection of coefficients, \(H \). It is sufficient to just recall ordinary integer coefficients, seeing that even and fractional coefficients can be got via a right shift operation. The sign of the coefficient can also generally be compensated for in different elements of the implementation. Hence, the coefficient set, \(C \), which is the input to the MCM algorithm, as illustrated in Fig. 1, is assumed to only contain unique positive odd integers. The shift- and-add networks are often illustrated using the directed acyclic graph representation of multiplication introduced. Each node, except for the input node, corresponds to an addition/subtraction and each edge corresponds to a shift operation, i.e., a multiplication by a power-of-two. The nodes are assigned values, which are referred to as fundamentals. A fundamental, \(f_i \), is computed from two other fundamentals \(f_j \) and \(f_k \) as

\[
 f_i = e_j f_j + e_k f_k
 \]

(1)

![Figure 1 Design path for MCM blocks.](https://ssrn.com/abstract=3554157)
Where e_j and e_k are part values, as illustrated in Fig. 2 (a). The acquired sign price on this node will then be f_i times the input sign. As an illustration, don't forget the coefficient set $C=33, 57$. The coefficient 33 will also be got instantly from the input as $1 + 25$. Nonetheless, the coefficient 57 cannot be realized and a new node have got to for this reason be integrated. For illustration, the value 3 solves the predicament, as shown in Fig. 2 (b). As a result, the set of extra fundamentals is $E=3$, and the complete predominant set $F=C\cup E=3, 33, 57$ is the output of the MCM algorithm.

![Figure 2](a) Graph representation. (b) Shift-and-add MCM block.

1.1.1. Scaling

All nodes in the MCM block are explicitly scaled using safe scaling, i.e., there will never be an overflow and the output word length is just enough to represent all possible outputs. Quantization is not considered, and, hence, full precision is kept throughout the MCM block. Using safe scaling, the number of output bits, W_i, from the add operation associated with the fundamental

$$W_i = W_0 + \left\lceil \log_2(\|f_i\|) \right\rceil$$

Where W_0 is the word length at the input, $x(n)$, of the MCM block.

1.1.2. Bit-Level Optimization

For each and every foremost f_i bought in keeping with (1), there are two possibilities related to the magnitude of the threshold values, e_j and e_k. Within the first case the value at one of the most enter nodes is left shifted at the least once at the same time the value of the opposite price is unchanged (or else the influence would now not be extraordinary). The shift operation is, for simplicity, always related to the enter node f_j. The 2nd case occurs when the magnitude of each side values is less than one, i.e., two right shifts are performed. As a way to obtain an strange integer foremost, the brink values must then be of equal value. For that reason, we have

$$|e_j| > 1, |e_i| = 1 \quad \text{(one left shift) or}$$

$$|e_j| = |e_i| < 1 \quad \text{(two right shifts)}$$

When signs are additionally viewed, this leads to the 5 extraordinary instances illustrated in Fig. 4. The hardware complexity for these occasions can be decided with the aid of utilizing counting the quantity of full adder (FA) cells required to fully grasp each word degree (WL) adder. The quantity of overhead full adders, defined because the difference between the total quantity of full adders, n_{FA}, i, and the input phrase length, W_0, is for the fundamental f_i

$$n_{FA,i} = n_{FA,i} - W_0 = \left\lceil \log_2(\|f_i\|) - \log_2(\|e_j\|), |e_j| > 1 \right\rceil$$

Additionally, it was also proven that the use of half adders, which might be required in a right away implementation of the case in Fig. Four (c), will also be eradicated by means of changing the signs of the threshold weights.
1.1.3. **Interconnection**

It may be proven that it is optimum to separate the tasks of finding the fundamentals, F, and to find a suitable interconnection graph, G, as illustrated with the aid of the state chart in Fig.1. The intent is effortlessly that it's simpler to create an excellent interconnection when all know-how is on hand, i.e., after the whole MCM challenge has been solved. The focus used to be on this drawback. It was once proven that an interconnection graph, G, where all nodes have minimal depth for a given major set, F, can also be obtained utilizing the next algorithm: 1. Initialize a graph G that handiest involves the enter node. 2. Add to G all fundamentals, fi ∈F, which can be acquired from the nodes in G, i.e., through including/subtracting any two realized fundamentals (simplest the enter within the first new release) in step with (1). 3. Repeat step 2 unless all fundamentals in F have been realized. By making use of this algorithm, one level at a time is delivered to the graph, i.e., the primary time step 2 is completed all realized nodes can have depth 1, the second time depth 2 etc. This assures that everyone fundamentals are realized at minimum depth given F. Thus, the adder depth can, if feasible, only be reduced by adding or altering the extra fundamentals, i.e, with the aid of utilizing one more MCM algorithm within the preceding step. Via since different interconnections, it is feasible to make sure that each predominant is realized using a minimal quantity of overhead full adders in keeping with (4), to additionally optimize the complexity. A couple of consistent Multiplication (MCM) is an arithmetic operation that multiplies a collection of constant-factor constants with the equal fixed-point variable X. From a circuit point of view, MCM dominates the complexity of the whole category of Linear Time Invariant (LTI) techniques, comparable to, FIR/IIR filters, DSP transforms (DCT, DFT, Walsh …), LTI controllers, crypto-systems, and so on. To be efficiently carried out, MCM must prevent high-priced multipliers. The hardware substitute need to be multiplier less, i.e., making use of most effective additions, subtractions, and shifts. For that reason, the MCM hindrance is defined because the method of discovering the minimal quantity of addition/subtraction operations. The computational complexity of MCM is conjectured to be NP-difficult.

2. **LITERATURE SURVEY**

The complexity of digital filter is generally influenced via the no of multiplication needed within the multiplier block. The complexity can be widely decreased if effective quantity process is used. Proposed an effective MSD representation which is able to provide no of forms which has minimum no of nonzero digits for the steady.

The multiplier block of digital FIR filter has giant impact on the complexity and performance of the design because significant numbers of constant multiplications are required to acquire high via-put and the multiplication operation is considered to be pricey as it occupies massive discipline Proposed effective shift-add design of digit serial multiplications and yielded large subject and energy reduction than these when put next with the multiplier blocks which are applied with the aid of using digit serial regular multiplier. Accordingly, the multiplications of enter knowledge with filter coefficients is carried out utilizing shift-add architectures the place each steady multiplication is realized by using utilizing addition/subtraction and shift operation in more than one constant Proposed a mighty MSD representation which is equipped to furnish no of forms which has minimal no of nonzero digits for the steady. The multiplier block of digital FIR filter has massive have an impact on the complexity and performance of the design in view that significant numbers of regular multiplications are required to collect high through-put and the multiplication operation is regarded to be expensive because it occupies giant discipline Proposed mighty shift-add design of digit serial multiplications and yielded gigantic field and power discount than these when put next with the multiplier blocks which can be utilized with the support of utilizing digit serial regular multiplier.
Title: Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common sub expression elimination

Many purposes in DSP, telecommunications, pictures, and control have computations that both contain a tremendous quantity of multiplications of one variable with a couple of constants, or an quite simply be modified to that kind. A right optimization of this part of the computation, which we call the multiple consistent multiplication (MCM) situation, usually outcome in a giant growth in a number of key design metrics, comparable to throughput, discipline, and power. However, unless now little concentration has been paid to the MCM trouble. After defining the MCM crisis, we introduce an robust challenge components for fixing it where first the minimal number of shifts which are needed is computed, and then the number of additions is minimized utilizing common sub expression elimination. The algorithm for usual sub expression elimination is based on an iterative pair wise matching heuristic. The energy of the MCM strategy is augmented by means of preprocessing the computation constitution with a new scaling transformation that reduces the number of shifts and additions. An efficient department and certain algorithm for applying the scaling transformation has additionally been developed. The flexibility of the MCM difficulty formula allows the applying of the iterative pair sensible matching algorithm to a couple of other fundamental and fashioned high stage synthesis tasks, such as the minimization of the number of operations in regular matrix-vector multiplications, linear transforms, and single and a couple of polynomial critiques. All functions are illustrated via a number of benchmarks.

Title: Global Optimization of Common Subexpressions for Multiplier less Synthesis of Multiple Constant Multiplications

Within the context of more than one constant multiplication (MCM) design, we recommend a novel fashioned sub expression removal (CSE) algorithm that units the top-quality synthesis of coefficients into a zero-1 blended-integer linear programming (MILP) challenge. A time prolong constraint is included for synthesis. We also advocate coefficient decompositions that mix all minimal signed digit (MSD) representations and the shifted sum (difference) of coefficients. Within the examples we display, the proposed resolution space additional reduces the quantity of adders/subtractors in the MCM synthesis.

3. PROPOSED SYSTEM

3.1. RADIX-2'MCM

A nonnegative-bit constant C is expressed in Radix-2'as

\[C = \sum_{j=0}^{(N+1)/r-1} (c_{rj-1} + 2^0 c_{rj} + 2^1 c_{rj+1} + 2^2 c_{rj+2} + \cdots + 2^{r-2} c_{rj+r-2} - 2^{r-1} c_{rj+r-1}) \times 2^{rj} \]

\[= \sum_{j=0}^{(N+1)/r-1} Q_j \times 2^{rj} \]

(1)

where \(c_{-1} = c_N = 0 \) and \(r \in N^* \) In (1), the two’s complement representation of Cis split into \([(N+1)/r]\) slices (Qj), each of r+1bit length.
Low Power Consumption Algorithm Adopting Constant Multiplications

Figure 3 Slice partitioning of N-bit constants in Radix-2^r. (a) RADIX-2^r SCM. (b) RADIX-2^r MCM.

Each pair of two contiguous slices has one overlapping bit. A digit set DS(2r) corresponds to (1), such that

\[Q_j \in DS(2^r) = \{-2^{r-1}, -2^{r-1} + 1, \ldots, -1, 0, 1, 2, \ldots, 2^{r-1} - 1\}\]

The sign of the Qi term is given by the bit, and \(|Q_j| = 2^{k_j} \times m_j\), with \(k_j \in \{0, 1, 2, \ldots, r - 1\}\), and \(m_j \in OM(2^r) \cup \{0, 1\}\), where \(OM(2^r) = \{3, 5, 7, \ldots, 2^{r-1} - 1\}\). \(OM(2^r)\) is the set of odd positive digits in Radix-2^r recoding, with \(|OM(2^r)| = 2^{r-2} + 1\).

RADIX-2^r SCM can be easily extended to MCM. In MCM, a single variable is simultaneously multiplied by a set of M constants \{C0, C1, C2, ..., CM-1\}, having all the same bit size N. In RADIX-2^r MCM, each constant Ci is split into \([(N + 1)/r^i]\) slices (Qi_j), each slice of bit length \(r^i+1\) (see Fig. 3(b)). Thus, the maximal number of partial products (PPs) is \(M \times [(N+1)/r^i]\) plus a maximum of \(2^{r^i-2} - 1\) nontrivial PP{3×X, 5×X, 7×X, ...} that can be invoked during the PP generation process. Aided by Fig. 3(b) and using the same reasoning, we can easily demonstrate that the maximum number of additions (Upb) in RADIX-2^r MCM is

\[Upb(r') = M \times [(N+1)/r^i] + 2^{r^i-2} - 1 - M. \]

\(Upb(r')\) is minimal for \(r' = 2 \cdot \frac{W(\sqrt{M \cdot (N+1) \cdot \log(2)})}{\log(2)}\). Note that \(r' \geq r\) (see Fig. 1) due to the product M×(N+1). In fact, RADIX-2^r SCM is a particular case of RADIX-2^r MCM for \(M=1\). Pursuing also the same reasoning developed, we can straightforwardly derive the analytic expressions of Avg and Ath. However, in real-life applications of MCM, for instance, in the transposed form of FIR filter, the coefficients will most likely have different bit sizes. Assume that, for each constant Ci corresponds a bit size Ni, the total number of PPs for a set of M constants will be equal to \(M-1 \times 0(\text{Ni}+1)/r\).

Unlike existing MCM algorithms, in RADIX-2^r MCM, each constant is implemented apart, independently from the others. However, all constants share the same set of nontrivial PPs. This is illustrated by the following MCM example: C0=(84AB5) H, C1=(64AB55) H, and C2=(5959595B) H. To the constants C0, C1, and C2 corresponds the bit sizes N0=20, N1=23, and N2=31, respectively. Thus, for \(2 \times 0(\text{Ni}+1) = 77\), there=r1 gives \(r' = 4\), which is the value that minimizes Upb.
Hence, the solution given by the online version of RADIX-2 r MCM is

\[C_0 \times X = X \times 2^{19} + X_1 \times 2^{12} - X_1 \times 2^8 - X_1 \times 2^4 + X_1 \]
\[C_1 \times X = X_0 \times 2^{21} + X_1 \times 2^{16} - X_1 \times 2^{12} - X_1 \times 2^8 + X_1 \times 2^4 + X_1 \]
\[C_2 \times X = X_0 \times 2^{29} - X_2 \times 2^{24} + X_0 \times 2^{21} - X_2 \times 2^{16} + X_0 \times 2^{13} - X_2 \times 2^8 + X_0 \times 2^5 - X_1 \]

with \(X_0 = 3 \times X = X \times 2 + X \), \(X_1 = 5 \times X = X \times 2^2 + X \), and \(X_2 = 7 \times X = X \times 2^3 - X \).

Note that the online version offers three solutions. The one given above corresponds to the optimization of adder depth.

We introduced a variant of RADIX-2 called R3. It has a better Avg with the same Upband Ath. R3 MCM gives

\[C_0 \times X = X \times 2^{19} + U_{75} \times 2^8 - U_{75}, U_{75} = X_1 \times 2^4 - X_1 \]
\[C_1 \times X = U_{101} \times 2^{16} - U_{85} \times 2^8 + U_{85}, U_{101} = X_0 \times 2^5 - X_1, U_{85} = X_1 \times 2^4 + X_1 \]
\[C_2 \times X = U_{89} \times 2^{24} + U_{89} \times 2^{16} + U_{91}, U_{89} = X_0 \times 2^5 - X_2, U_{91} = X_0 \times 2^5 - X_1. \]

These two solutions are compared with the ones provided by the most efficient MCM algorithms. Note that the canonical signed digit (CSD) representation, RADIX-2, and R3 MCM, as digit-recoding algorithms, allow both serial and parallel implementations, whereas Hcub, BHM, and Lefèvre’s common sub pattern (CSP) are limited to serial implementation only due to the shared terms. This issue will be detailed further in the next section.

4. RESULTS

4.1. Simulation Result

![Simulation Result](image-url)

Figure 4 Simulation results for MCM-top

4.2. Synthesis Results

The developed challenge is simulated and verified their performance. As soon as the useful verification is done, the RTL model is taken to the synthesis approach utilizing the Xilinx ISE software. In synthesis system, the RTL mannequin can be converted to the gate degree netlist mapped to a unique science library. Right here in this Spartan 3 family, many one-of-a-kind devices have been available in the Xilinx ISE device. With a view to synthesis this design the device named as “XC3S500E” has been chosen and the bundle as “FG320” with the gadget
Low Power Consumption Algorithm Adopting Constant Multiplications

velocity corresponding to “-4”. This design is synthesized and its results have been analyzed as follows

4.3. Technology Schematic

![Technology schematic for MCM](image)

Figure 5 Technology schematic for MCM

4.4. Design Summary

Logic Utilization	Used	Available	Utilization
Number of Slices	45	5304	1%
Number of Input LUTs	78	7662	1%
Number of bonded I/Os	24	221	10%

Figure 6 Device utilization for MCM

![Device utilization for MCM](image)

5. CONCLUSION

A wholly predictable and sub linear runtime MCM heuristic with the shortest adder depth has been developed (RADIX-2r) and increased (R3). Its confirmed limits with a detailed quantity of additives for the ordinary, adder price, and adder depth are the targeted analytic bounds identified up to now for MCM. Nonetheless, premiere bounds remain an open research situation.
REFERENCES

[1] A. Okay. Oudjida and N. Chaillet, “Radix-2 R Arithmetic for Multiplication by Means of A Constant” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 64, No. 5, pp. 349–353, May 2014.

[2] A. Ok. Oudjida, N. Chaillet, and M. L. Berrandjia, “Radix-2 R Arithmetic for Multiplication by A Steady: Extra Results and Improvements” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 62, No. 4, pp. 372–376, Apr. 2015.

[3] V. Lefèvre, “Multiplication with The Aid of An Integer Consistent,” INRIA, Lyon, France, INRIA Res. Rep. 4192, May Just 2001.

[4] A. G. Dempster and M. D. Macleod, “Use of Minimum Adder Multiplier Blocks in Fir Digital Filters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Procedure., Vol. 42, No. 9, pp. 569–567, Sep. 1995.

[5] Y. Voronenko and M. Püschel, “Multiplierless A Couple of Consistent Multiplication,” ACM Trans. Algorithms, Vol. 3, No. 2, pp. 11, May Just 2007.

[6] A. K. Oudjida and M. L. Berrandjia, RADIX-2 r MCM Net Page, Jun. 2015.

[7] A. Avizienis, “Signed-Digit Quantity Illustration for Fast Parallel Arithmetic” IRE Trans. Electron. Comput., Vol. EC-10, No. 3, pp. 389–400, Sep. 1961.

[8] O. Gustafsson, “Slash Bounds for Constant Multiplication Problems,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 54, No. 11, pp. 974–978, Nov. 2007.

[9] k. Johansson, O. Gustafsson, L. S. DeBrunner, and L. Wanhammar, “Minimal Adder Depth Multiple Regular Multiplication Algorithm for Low Power Fir Filters,” in Proc. IEEE ISCAS, Rio de Janeiro, Brazil, could 2011, pp. 1439–1442.

[10] L. Aksoy, P. Flores, and J. Monteiro, “Detailed and Approximate Algorithms for The Filter Design Optimization Situation” IEEE Trans. Signal approach., Vol. 63, no. 1, pp. 142–154, Jan. 2015.

[11] X. Lu, Y. J. Yu, and P. Okay. Meher, “Satisfactory-Grained Valuable Path Evaluation and Optimization For Field-Time Effective Awareness of A Couple of Constant Multiplications,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 63, No. 3, pp. 863–872, Mar. 2014.

[12] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U. Meyer-Baese, “Multiple Constant Multiplication with Ternary Adders,” in Proc. 23rd Int. Conf. FPL Appl, Porto, Portugal, Sep. 2013, pp. 1–8.

[13] L. Aksoy, P. Flores, and J. Monteiro, “Effective Design of Fir Filters Using Hybrid Multiple Steady Multiplications on FPGA,” in Proc. IEEE ICCD, Seoul, Korea, Oct. 2014, pp. 42–47.