Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation [version 1; referees: 3 approved]

Natalie Nevárez, Luis de Lecea
Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA

Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides (Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the hypothalamus. Data collected in the 20 years since their discovery have supported the view that the Hcrts play a broad role in the control of arousal with a particularly important role in the maintenance of wakefulness and sleep-to-wake transitions. While this latter point has received an overwhelming amount of research attention, a growing literature has begun to broaden our understanding of the many diverse roles that the Hcrts play in physiology and behavior. Here, we review recent advances in the neurobiology of Hcrt in three sections. We begin by surveying findings on Hcrt function within normal sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In the second section, we discuss research establishing a role for Hcrt in mood and affect (that is, anxiety, stress, and motivation). Finally, in the third section, we briefly discuss future directions for the field and place an emphasis on analytical modeling of Hcrt neural activity. We hope that the data discussed here provide a broad overview of recent progress in the field and make clear the diversity of roles played by these neuromodulators.

Keywords
hypothalamus, vigilance, arousal, wake, sleep, addiction, memory
Corresponding author: Luis de Lecea (LLECEA@STANFORD.EDU)

Author roles: Nevárez N: Writing – Original Draft Preparation, Writing – Review & Editing; de Lecea L: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: Our work was supported by the National Institutes of health under grant numbers 5R01MH087592-07, 5R01AG047671-04 and 1R01MH102638-01A1.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2018 Nevárez N and de Lecea L. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Nevárez N and de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation [version 1; referees: 3 approved] F1000Research 2018, 7(F1000 Faculty Rev):1421 (doi: 10.12688/f1000research.15097.1)

First published: 06 Sep 2018, 7(F1000 Faculty Rev):1421 (doi: 10.12688/f1000research.15097.1)
Introduction
In 1998, two research studies published within a month of each other described a set of novel hypothalamic peptides. The first group to describe them was led by Gregor Sutcliffe at the Scripps Research Institute in La Jolla, California. The Sutcliffe group used subtractive RNA hybridization to characterize a cDNA clone with restricted expression in the dorsal and lateral hypothalamus (LH). This cDNA clone encoded a preproprotein termed preprohypocretin. This was the putative precursor to two peptides that they named hypocretin-1 (Hcrt1/Ox-A) and hypocretin-2 (Hcrt2/Ox-B) with respective receptors OX1R and OX2R. Their name was a combination of hypo for their hypothalamic origin and cretin based on their sequence homology to the gut hormone secretin1. At the same time, Masashi Yanagisawa’s group at University of Texas Southwestern was characterizing ligands for orphan G-protein-coupled receptors as a means to determine their role in various physiological processes. The group found two extracts within the hypothalamus that bound and activated two orphan receptors with unknown functions. When supraphysiological doses of peptide were injected intracerebroventricularly, these peptides promoted food intake. Owing to this effect, the group named the peptides “orexins” based on the Greek word for appetite (orexis).2 Indeed, the two groups were describing the same peptides, and today hypocretin and orexin are synonymous. Here, we will review some of the most recent findings in the neurobiology of Hcrt in relation to arousal, emotional processing, and motivation and finally discuss future directions for analytical modeling of Hcrt networks.

As new tools have become increasingly accessible to researchers at all levels, we have seen an explosion of studies using specific methodologies for the study of neural circuitry, namely the use of optogenetics and chemogenetics for the manipulation of neural circuits, fiber photometry and microendoscopy for the measurement of cellular activity via genetically encoded calcium indicators (for example, GCaMP6f), and precise genetic tools (for example, transcription activator-like effector nucleases [TALENs]; targeting-induced local lesions in genomes [TILLING]; and clustered regularly interspaced short palindromic repeats [CRISPR/Cas9]) and high-throughput sequencing to characterize and manipulate genes. Optogenetics is a technique in which neurons are genetically modified to express light-sensitive ion channels (for example, channelrhodopsins and archaerhodopsins). Subsequent photostimulation of these neurons can activate or inhibit cells on the basis of the wavelength and intensity of light used3. Chemogenetics uses modified G-protein-coupled receptors (designer receptors exclusively activated by designer drugs, also known as DREADDs) that are largely activated by a metabolite of clozapine N-oxide (CNO) when injected systemically4. Excitatory or inhibitory DREADDs can be selectively expressed in neuronal populations of interest (for example, in a Cre- or Flp-dependent manner) which then can be manipulated by injections of CNO5. Additionally, the expression of calcium indicators allows the measurement of cell activity in relation to behavior via fiber photometry or microendoscopy6. Most recently, genome editing via CRISPR/Cas9 systems and developmental engineering can quickly produce knock-outs or knock-ins for multiple gene targets in a single generation7-10.

As our review focuses primarily on advances made within the past 3 years, there is an overwhelming representation of these methodologies, which already have significantly advanced our understanding of the Hcrt circuit11,12.

Part I: hypocretin and arousal
Hcrt cell bodies reside exclusively within the hypothalamus and project broadly throughout the brain and spinal cord13. They receive major inputs from a diversity of afferents covering all of the major neurotransmitter systems14. The increasing database of research on Hcrt shows that these neuropeptides may not be necessary for the generation of sleep or wakefulness per se but rather for coordinating and stabilizing these states. Hcrt activity regulates sleep-to-wake transitions via its many interactions with other neuroanatomical and neurotransmitter systems15,16. Thus, many of the recent findings discussed here are a combination of studies done directly on Hcrt circuitry or studies done on other systems that either coordinate activity with or are modulated by Hcrt.

Sleep and wakefulness
Hcrt deficiency underlies the majority of cases of narcolepsy17-20. Narcolepsy is characterized by unexpected sleep episodes during times of wakefulness, excessive daytime sleepiness, rapid eye movement (REM)-like episodes that can co-occur with conscious wakefulness, and disrupted nocturnal sleep21,22. Further support for aberrant state boundaries in narcolepsy was recently published showing intrusions of REM sleep during wakefulness as well as intrusions of non-REM (NREM) sleep during wakefulness23. While it is established that Hcrt neuron degeneration contributes to the etiology of narcolepsy in many cases, recent evidence has characterized how sleep and wakefulness are impacted through the progression of Hcrt cell loss24,25,26. Studies in mice at different stages of Hcrt neuron degeneration found that loss of these neurons reduces the likelihood of long wake bouts but increases the likelihood of short wake bouts (that is, wakefulness is fragmented) as a result of waking primarily during the first 30 seconds of NREM sleep and a reduced likelihood of returning to sleep within the first 60 seconds of wakefulness26.

While early observations demonstrated that Hcrt deficiency underlies narcolepsy, a causal role for Hcrt in sleep-to-wake transitions was shown only in 200720. Optogenetic manipulations of Hcrt circuitry revealed that activation of this neuronal population induces wakefulness in mice while optogenetic inhibition promotes NREM sleep27,28. Likewise, chemogenetic studies targeting Hcrt neuronal activity have shown that injections of CNO in mice expressing excitatory (Gq) DREADDs promote wakefulness but that engagement of inhibitory (Gi) DREADDs decreases wakefulness and increases time in NREM sleep29. Thus, Hcrt clearly plays a critical role in the regulation of sleep-to-wake transitions, but its various effects on these processes are regulated by the many brain regions and neurotransmitter systems with which it interacts. Indeed, research has demonstrated important interactions between Hcrt and histaminergic neurons within the tuberomammillary nucleus (TMN), cholinergic and GABAergic neurons of the basal forebrain (BF),
dopamine (DA) neurons within the ventral tegmental area (VTA), and norepinephrine (NE) neurons of the locus coeruleus (LC), among others56,57 (Figure 1). Recent advances in our understanding of the roles of these regions in sleep/wake regulation and their possible interactions with the Hcrt system are outlined below.

As we discuss below, histaminergic neurons of the TMN play a role in arousal, but the ways in which Hcrt influences TMN-mediated arousal are not clear. TMN histaminergic neurons become active during wake onset and are silent during sleep18,20,26. Optogenetic silencing of histaminergic TMN neurons induces NREM sleep and inhibits wakefulness31. Hcrt activates TMN neurons and increases histamine release at their terminals, suggesting that Hcrt activation of TMN neurons supports wakefulness2,34. However, mice and zebrafish that lack the rate-limiting enzyme in histamine synthesis (histamine decarboxylase) show normal sleep-to-wake transitions upon optogenetic stimulation of Hcrt neurons2,34. These data suggest that histaminergic signaling in the TMN may serve a redundant function in Hcrt-mediated arousal. Recent findings also show that histaminergic regulation of wakefulness within the TMN may be via co-transmission of GABA. Small interfering RNA (siRNA)-mediated knockdown of the vesicular GABA transporter (VGAT) or genetic knockout of the VGAT gene in histaminergic neurons results in hyperactivity and sustained wakefulness97. Future studies should characterize how manipulations of GABA transmission in the TMN impacts Hcrt-induced wakefulness specifically.

The BF is an attention- and arousal-sustaining structure containing cholinergic, GABAergic, and glutamatergic cells that are depolarized by Hcrt38. Similarly, the region expresses both Hcrt receptors, and there is a higher density of OX\textsubscript{R} than OX\textsubscript{R}3 in the BF. This difference may be meaningful, as studies in organotypic slice cultures show that Hcrt depolarizes cholinergic cells of the BF via actions at OX\textsubscript{R} but not OX\textsubscript{R}3. However, injections of OX-A into the BF of rats resulted in wakefulness in regions of the BF that show stronger expression of OX\textsubscript{R}3. Chemogenetic studies demonstrate that activation of cholinergic neurons of the BF decreases electroencephalogram (EEG) delta power (specifically during NREM sleep) and promotes cortical desynchronization without behavioral wakefulness43. In contrast, activation of GABAergic neurons in this region produces sustained wakefulness whereas inhibition increases NREM sleep57. Further genetic targeting studies show that subsets of GABAergic neurons in the region exhibit a diversity of responses across arousal states13-45. For example, parvalbumin-positive (PV+) GABAergic neurons are more active during wakefulness and REM sleep than during NREM sleep whereas somatostatin-positive (SOM+) GABAergic neurons are reciprocally silent during wakefulness. Predictably, optogenetic activation of PV+ GABA neurons powerfully induces wakefulness whereas activation of SOM+ GABAergic neurons promotes NREM sleep46-49. Modern genetic tools will continue to allow more detailed examinations of the impact of neuronal heterogeneity within regions in the context of Hcrt-mediated arousal.

Indeed, Hcrt axons project to midbrain DA neurons, and DA cell bodies express Hcrt receptors13,30,31. In vitro electrophysiological recordings show that Hcrt1 and Hcrt2 treatment increases VTA DA neural firing15. Hcrt1 injections into the VTA increase time awake and levels of DA at axonal terminals in the prefrontal cortex13,15. Although Hcrt neurons project to systems for all the monoamines and drugs that increase DA transmission increase wakefulness, DA was thought not to be involved in normal sleep/wake regulation until recently5-46,47. Work from our laboratory has shown a role for VTA DA neurons in promoting arousal and the initiation of sleep-preparatory behaviors46. Optogenetic activation of VTA DA neurons induces emergence from anesthesia, and chemogenetic activation of the VTA induces and consolidates wakefulness32,60. Further manipulations have demonstrated that VTA effects on wakefulness are through a D\textsubscript{2} receptor-mediated mechanism60. Future work using projection-specific manipulations of Hcrt fibers within the VTA should better characterize their role in VTA-mediated arousal.

Noradrenergic neurons of the LC are strong promoters of arousal14,61. Direct administration of Hcrt1 into the LC increases firing rates while optogenetic silencing of these neurons with concurrent excitation of Hcrt cells prevents Hcrt-evoked sleep-to-wake transitions46-48. Additional studies have shown that noradrenergic activity is required to promote wakefulness and Hcrt-induced arousal in zebrafish. Using DA b-hydroxylase (dbh) (the rate-limiting enzyme in NE synthesis) mutant zebrafish, researchers found that these animals had dramatically increased sleep yet lower arousal thresholds49. Additionally, wakefulness induced by genetic overexpression of Hcrt and optogenetic activation of Hcrt neurons is blocked by the inhibition or knocking out of NE in zebrafish larvae49. However, further investigations have shown that overexpression of Hcrt or activation of Hcrt neurons has no significant effect in dbh mutant zebrafish15. Thus, future work should continue to parse out the roles in which NE functions in sleep/wake regulation and how it may serve specifically within the Hcrt circuit to help regulate wakefulness in particular.

Motor tone

Despite evidence demonstrating innervation of motor control systems by the Hcrt neurons, the coupling of arousal states with motor control is poorly understood26. Indeed, measures of muscle tone along with cortical activity are the most common endpoints for characterizing various arousal states. A hallmark of waking is low-amplitude, high-frequency EEG activity with high muscle activity. REM sleep, also known as paradoxical sleep, is characterized by a near complete loss of skeletal muscle activity and an EEG resembling wakefulness. Hcrt-deficient narcoleptics show cataplexy (a loss of muscle tone during wakefulness that can result in postural collapse and can be triggered by strong emotions such as happiness and fear)2,71-74. Similarly, individuals with REM sleep behavior disorder (RBD) show muscle tone problems. Under normal conditions, REM sleep is devoid of skeletal muscle tone; however, in RBD, an individual acts out their dreams by moving their limbs or talking, which can be dangerous for the individual enacting their dreams as well as anyone in their surroundings75. Noradrenergic activity is necessary for motor behavior76. Indeed, NE depletion has...
Figure 1. Hypocretin arousal network. Research of the past three years has found evidence of hypocretin-associated arousal in the illustrated circuits. Solid lines denote excitatory projections, and dashed lines denote inhibitory projections. 5-HT, serotonin; ACh, acetylcholine; AMY, amygdala; BF, basal forebrain; DA, dopamine; DRN, dorsal raphe nucleus; GABA, gamma aminobutyric acid; HA, histamine; Hcrt, hypocretin; LC, locus coeruleus; LH, lateral hypothalamus; NA, noradrenergic system; NAc, nucleus accumbens; NE, norepinephrine; NREM, non-rapid eye movement; PV, parvalbumin; REM, rapid eye movement; SOM, somatostatin; TMN, tuberomammillary nucleus; VTA, ventral tegmental area.
been shown to have a stronger motor-impairing effect than dopaminergic lesions with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) infusions of NE-induced hyperactivity, and loss of NE neurons is associated with motor learning deficits in aged rats72-80. Likewise, increasing noradrenergic tone has been shown to reduce cataplectic episodes81. As discussed above, noradrenergic neurons of the LC are powerfully regulated by Hcrt; Hcrt dysfunction predictably alters both arousal and motor control. Moreover, Hcrt neurons project to dorsal raphe nucleus (DRN) serotonergic neurons where they may further influence motor behavior. Indeed, restoration of OX\textsubscript{R} into serotonergic DRN neurons of dual Hcrt receptor knockout mice suppresses cataplexy-like episodes yet has no effect on sleep/wake fragmentation. Likewise, optogenetic stimulation of serotonergic DRN terminals in the amygdala (AMY) suppresses cataplexy-like arrests in Hcrt-deficient mice, and optogenetic inhibition blocks the cataplexy-reducing effect of Hcrt receptor restoration in serotonergic DRN neurons82. Additional chemogenetic manipulations of this amygdalar circuit show that GABAergic populations of the central AMY are responsible for the production of cataplexy in mice but may not be the only circuit that can drive emotionally driven cataplexy83. Together, these findings demonstrate a key role for amygdalar circuits in the production of cataplexy; however, they do not rule out other nuclei or circuits that may influence emotionally driven cataplexy. Indeed, the neural infrastructure exists for Hcrt activity to modulate AMY activity via its connections from the LC and DRN, and future studies should characterize the influence of Hcrt in emotion-driven cataplexy.

Part II: affect and motivation

As a regulator of arousal, the Hcrt system plays additional important roles in adaptive behaviors such as the regulation of stress responses and the avoidance of punishments and seeking of rewards. Additionally, sleep supports the consolidation of memory; predictably, proper regulation of sleep and arousal is key to proper memory function. Below we discuss recent findings in the growing field of Hcrt in the regulation of emotion and motivation and place a particular focus on stress and anxiety, addiction, and memory processes. Many of the data discussed here were gathered via global manipulations of Hcrt receptor signaling and thus should be interpreted in the context of known receptor distributions, drug treatments and selectivity (as many of these drugs are known to vary in selectivity on the basis of dose84), and drug administration schedules (Figure 2 and Table 1).

Stress and anxiety

Hcrt plays a role in the coordination of stress responses. Plasticity in the Hcrt system is thought to contribute to long-term dysregulation of arousal seen in certain psychiatric disorders85,86. This may be an adaptive response to repeated stress, where heightened arousal and vigilance are needed under conditions of instability or high threat87. Recent literature has supported the idea that activation of OX\textsubscript{R} promotes anxiety-like behavior. For example, in rodent models of panic, an extreme form of anxiety, animals with panic vulnerability treated with the OX\textsubscript{R} antagonist compound 56 reduced panic-like behaviors in a sodium lactate model of panic induction88. Similarly, treatment with the OX\textsubscript{R} antagonist JNJ-54717793 attenuates panic-like behavior and cardiovascular responses in both the sodium lactate model of panic and a carbon dioxide (CO\textsubscript{2}) model of panic provocation89. Additional studies within the CO\textsubscript{2} model that screened selective Hcrt receptor antagonists (SORAs) and dual Hcrt receptor antagonists (DORAs) found that both a SORA-1 (compound 56) and a DORA-12 attenuate anxiety-like behaviors but that a SORA-2 did not90. Importantly, these data provide a promising treatment route, as animals treated with SORA-1 and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure2.png}
\caption{Hypocretin receptor distribution in the rodent brain. BNST, bed nucleus of the stria terminalis; CeA, central amygdala; DG, dentate gyrus; DRN, dorsal raphe nucleus; LC, locus coeruleus; LH, lateral hypothalamus; NAc, nucleus accumbens; PVN, paraventricular nucleus; PVT, paraventricular nucleus of the thalamus; TMN, tuberomammillary nucleus; VTA, ventral tegmental area.}
\end{figure}
Table 1. Summary of recent findings for hypocretin in relation to affect and motivation

Manipulation	Findings	Reference
Stress and Anxiety		
SB-334867	Reduction in orofacial pain associated anxiety	Bonaventure et al., 2015
SB-334867	Effect on one measure of arousal (mobility in open field) in adolescent males. No effect on anxiety related behavior	Blume, Nam, Luz, Bangasser, & Bhatnagar, 2018
OX,R Knockout	Increased anxiety, reduced social interaction, increased startle	Abbas et al., 2015
SORA2 JNJ-10397049	No effect on anxiety or cardiovascular responses to CO₂ model of panic induction	Johnson et al., 2015
DORA-12	Attenuation of CO₂ induced anxiety responses.	Johnson et al., 2015
OX Knockout	Increased anxiety in open field, predator scent, and light/dark box	Khalil & Fendt, 2017
Opioids		
SB-334867	Blocks cue induced reinstatement with strongest effect in animals with highest cocaine-cue dependent behavior	Bentzley & Aston-Jones, 2015
SB-334867	Decreased cocaine self administration and reduced cellular response to drug	Prince, Rau, Yorgason, & España, 2015
RTIOX-276	Reduced responding for cocaine under high effort conditions, reduced DA response to cocaine paired cues	Levy et al., 2017
VTA OX,R Knockdown	Delays acquisition of self-administration, reduces response to drug under progressive ratio, alters DA transmission in striatum	Bernstein, Badve, Barson, Bass & España, 2017
4PT	No effect on cocaine self administration or DA response to drug	Prince, Rau, Yorgason, & España, 2015
Almorexant	Reduced self administration under progressive ratio. Differential effects on DA response to drug over time	Prince, Rau, Yorgason, & España, 2015
Suvorexant	Reduces self-administration under progressive ratio, cocaine induced ultrasonic vocalizations, and conditioned place preference. Reduces DA response to cocaine	Gentile et al., 2018
Hcrt Knockdown	Attenuates self administration in progresorative ratio	Schmeichel et al., 2017
Hcrt Knockout	Blunted intake at highest dose and reduced response to drug after abstinence	Steiner et al., 2018
SB-334867	Reduced EtOH intake and cue induced reinstatement in EtOH preferring rats	Moorman, James, Kilroy, & Aston-Jones, 2017
GSK1059865	Reduced EtOH vapor induced EtOH drinking in dependent mice	Lopez, Moorman, Aston-Jones, Becker, 2016
Cocaine		
SB-334867	Anterior PVT injections of OX,R antagonist reduces EtOH intake. EtOH consumption increases OX,R mRNA in PVT	Barson, Tin Ho, Leibowitz, 2015
Motivation and Addiction		
SB-334867	In a white population, OX,R polymorphism was associated with rate of alcohol dependence independent of age or gender	Klepp et al., 2017
	Context induced reinstatement associated with various levels of Hcrt neuron activity across the LH	Moorman, James, Kilroy, & Aston-Jones, 2016
	Voluntary EtOH drinking in zebrafish increases Hcrt expression in hypothalamus	Sterling, Karatayev, Chang, Algava, & Leibowitz, 2015
SB-334867	Differentially modulates hedonic and motivational effects of remifentanyl in high and low takers	Porter-Stransky, Bentzley, & Aston-Jones, 2017
	Intra-VTA injections attenuate morphine CPP	Farahimanesh, Zarrabian, & Haghighparast, 2017
	Intra-DG injection attenuates drug induced reinstatement of morphine CPP	Ebrahimian et al., 2016
	TCS-OX2-29 Intra-VTA injections attenuates morphine CPP	Farahimanesh, Zarrabian, & Haghighparast, 2017
	TCS-OX2-29 Intra-DG injection attenuates drug induced reinstatement of morphine CPP	Ebrahimian et al., 2016
	Reduced heroin self administration in long access paradigm and increase in OX,R mRNA in the AMY	Schmeichel et al., 2015
	Morphine CPP increases Hcrt1 release in DG	Guo et al., 2016
DORA-12 showed no significant changes in sleep99. Currently, the levels of benzodiazepines needed to achieve anxiolytic effects are also sedating; as discussed here, OX\(_R\) antagonists can have anxiolytic effects without impacting sleep100.

Although the mechanism of action of the wake-promoting drug modafinil is mainly through activation of DA circuitry, it also activates Hcrt neurons and is used for the treatment of narcolepsy. Treatment with modafinil after a traumatic experience reduces the incidence of post-traumatic stress disorder (PTSD), a disorder characterized by anxiety and hyperarousal. The anxiolytic effect of this treatment may be due to its interference with normal sleep-dependent memory processes101. However, the benefits of modafinil treatment may go beyond this, as it has been shown to stimulate adaptive stress responses in an animal model of PTSD102,103. In a model of orofacial pain-induced anxiety, rats given injections of capsaicin into the upper lip showed increased anxiety-like responses on the elevated plus maze. Administration of Hcrt exacerbates this response while treatment with OX\(_R\) antagonists inhibits orofacial pain-associated anxiety104. In another study, differential effects of OX\(_R\) antagonism were observed. The OX\(_R\) antagonist SB-334867 influenced arousal (mobility/immobility in an open field) but not anxiety-like behavior (center exploration) in conditions of mild stress in male rats105. Yet Hcrt knockout mice show increased anxiety in the open-field test, light-dark box test, and predator scent avoidance test despite intact fear learning106. Likewise, OX\(_R\) receptor knockout mice show increased anxiety and reduced social interaction, increased startle responses, and altered depressive-like behavior107. Although genetic knockout results do not completely contradict findings from pharmacological studies, they do showcase the necessity to use the newest genetic techniques to parse out the role of Hcrt in anxiety. Two points must be made with regard to these findings: first, knockout models may result in compensatory mechanisms that may explain how Hcrt-null or OX\(_R\)-deficient mice display lower anxiety. Second, models of stress discussed here vary greatly, and the conclusions drawn from these works may reflect the differences in the circuits underlying different types of anxiety. Thus, findings must be interpreted within the context of pharmacological, genetic, and behavioral manipulations used in these studies.

Recent work is also characterizing how individual differences in baseline Hcrt activity may pose resilience or susceptibility to stress. Rats that show low expression of preprohypocretin mRNA are resilient to social stress, and further manipulations show that chemogenetic inhibition of Hcrt reduces depressive-like behavior in otherwise stress-susceptible rats108. Together, these data suggest that the activity of Hcrt on stress may be context or stressor specific but additionally that individual differences at baseline may influence stress resilience.

Motivation and addiction

The mesolimbic DA system, which originates in the VTA and projects to the striatum, is a key region for the processing of reward and reinforcement109,110. These processes necessitate and evoke arousal states to monitor reinforcers and facilitate learning111. Reciprocally, motivational states impact arousal so as to facilitate the seeking of rewards and the avoidance of punishments112,113. As discussed above, LH-Hcrt neurons send excitatory projections to the VTA114. Thus, the VTA may be an optimal region by which Hcrt can influence motivated arousal states. The majority of recent advances made in this field have investigated the effects of Hcrt manipulations on motivation for cocaine and ethanol (EtOH). To date, these studies suggest that Hcrt1 plays a role in motivation for drug reward, especially when drug presentation is dependent on effortful responses on the part of the animal. Here, we discuss the role of Hcrt in addiction and motivation, focusing on cocaine, alcohol, and opioids.

Hcrt knockdown attenuates cocaine self-administration under progressive ratio schedule (that is, Hcrt knockdown lowers cocaine breakpoint) but not under a fixed ratio schedule115. Similarly, Hcrt-deficient mice show reduced cue-induced cocaine-seeking behavior following a period of abstinence, suggesting a role for Hcrt in relapse behavior116. Additionally, these animals show blunted cocaine intake at the highest dose and reduced behavioral responses to cocaine after abstinence117. Additional work from Navarro and colleagues further supports the role of Hcrt in relapse behavior118. In particular, their work shows that cocaine acts at and alters activity of corticotropin-releasing factor receptor (CRF\(_R1\)/OX\(_R\) heterodimers within the VTA. Action of cocaine at these sites disrupts Hcrt/CRF crosstalk even 24 hours after a single systemic injection and may be a mechanism underlying stress-induced cocaine relapse119.

Indeed, Hcrt may play a unique role in cue-reward associations, as OX\(_R\) antagonism via SB-334867 only decreases cocaine demand in the presence of cues. SB-334867 treatment also blocks cue-induced reinstatement of drug seeking—an effect most pronounced in high-demand animals (animals with the greatest cue-dependent behavior). This suggests that OX\(_R\) increases the reinforcing efficacy of cocaine-associated cues but not of cocaine alone. This supports the notion that Hcrt plays a role in the ability of conditioned cues to elicit motivational responses120. Recent \textit{in vivo} measurements of DA activity are beginning to inform the mechanisms that may underlie these observed effects on cocaine reinforcement. For example, Hcrt knockdown within the VTA delays acquisition of cocaine self-administration and reduces motivation for cocaine under a progressive ratio schedule while reducing DA release in the ventral striatum, DA uptake, and cocaine-induced DA reuptake inhibition at striatal terminals121. Similarly, OX\(_R\) blockade with RTIOX-276 attenuates motivation for cocaine and reduces the number of DA transients, DA release evoked by cocaine cues, and cocaine-induced DA reuptake inhibition as measured by fast scan cyclic voltammetry (FSCV)122. Suvorexant, a DORA, attenuates the motivational properties of cocaine as measured by progressive ratio and place conditioning. Additionally, treatment with Suvorexant also reduces the hedonic properties of cocaine as measured by ultrasonic vocalizations. Additionally, DORA treatment reduced cocaine-induced elevations in ventral striatal DA123. Work by Prince and colleagues suggests that effects of the DORA may be mediated by OX\(_R\), as blockade of OX\(_R\) receptors alone has no effect on DA signaling or self-administration of cocaine124. However, blocking of OX\(_R\) or both OX\(_R\) and OX\(_R\) decreases motivation for cocaine as
measured by self-administration under a progressive ratio schedule and reduces the effects of cocaine on DA signaling as measured by FSCV.

In the case of EtOH, Hcrt antagonism generally reduces EtOH consumption. In a voluntary EtOH intake model in zebrafish, it was seen that intake of EtOH increases Hcrt expression in the hypothalamus. OX_R antagonism with SB-334867 reduces EtOH self-administration in alcohol-prefering rats. Similarly, the OX_R antagonist GSK1059865 reduces EtOH drinking in EtOH-dependent mice. In a model of EtOH seeking and preference, activation of the LH is correlated with degree of seeking in context-induced reinstatement and degree of preference in home cage EtOH preference testing. Interestingly, cue-evoked reinstatement shows no correlation with Hcrt activation in any region. This suggests that there is a relationship between Hcrt activity in the LH and EtOH seeking and preference behavior but that cue-induced reinstatement for alcohol may be mediated by a different mechanism.

Interestingly, EtOH consumption increases OX_R mRNA within the anterior paraventricular nucleus of the thalamus and local antagonism of OX_R reduces total EtOH intake.

The interactions of Hcrt with opioid rewards are particularly interesting, as the endogenous opioid dynorphin (Dyn) is expressed in 94% of Hcrt neurons and Hcrt and Dyn are thought to be co-released at Hcrt terminals within the VTA. The interactions of these neurotransmitters are beyond the scope of this review; however, of major relevance is the point that these neurotransmitters have opposing yet complementary actions on VTA cellular excitability. OX_R antagonism with SB-332867 modulates demand for the opioid drug remifentanil in low takers but not in high takers.

Additionally, intra-VTA injections of the OX_R antagonist SB-334867 attenuate morphine conditioned place preference (CPP) acquisition and expression. Interestingly, in the case of opioid reward, OX_R antagonism via TCS-OX2-29 also significantly attenuates morphine CPP acquisition and expression, suggesting that both receptors within the VTA are important for expression of morphine reward.

Similarly, systemic treatment with the OX_R antagonist NBI-80713 dose-dependently reduces heroin self-administration in a long-access paradigm. Long-access heroin self-administration paradigms are thought to mimic compulsive drug taking; thus, OX_R antagonism may be particularly effective at influencing drug-associated compulsivity. Similar effects have been observed in the hippocampal dentate gyrus (DG), which receives Hcrt projections from the LH and interacts with the VTA to play an important role in the linking of drug reward with contextual cues. In a stress- and drug-induced model of morphine reinstatement, intra-DG administration of OX_R and OX_R antagonists attenuates drug priming-induced reinstatement dose-dependently with no effect on stress-induced reinstatement. Similarly, morphine CPP increases Hcrt1 release in the DG and OX_R antagonism via SB-334867 ameliorates morphine CPP. These findings suggest that Hcrt actions at the DG may influence the learning of drug-context associations.

Finally, additional work has begun to delineate the effect of Hcrt on motivation at VTA terminal sites such as the nucleus accumbens (NAc). Blomeley and colleagues used optogenetics and electrophysiology to characterize a direct Hcrt-to-DA D_1 excitatory circuit that is necessary for the expression of risk avoidance behavior in mice. Indeed, increased DA D_1 neuron activation caused animals to avoid risks such as crossing a predator-scented chamber to attain a food reward and chemogenetic silencing of accumbal DA D_1 cells inhibited Hcrt-mediated avoidance. Importantly, these data showcase how Hcrt can influence adaptive behavioral inhibition even in the presence of rewards. These data open up new opportunities of research, such as characterizing the effects of Hcrt on different subregions of the NAc, which is a heterogeneous structure with distinct electrophysiological properties.

Additional lines of research should investigate how Hcrt-mediated motivation in the NAc is impacted by diurnal rhythms as well as sleep disturbance and how the Dyn system interacts in this region to modulate motivation.

Cognitive function and memory

Studies suggest that Hcrt deficiency is associated with memory deficits. Hcrt deficiencies negatively impact associated with memory as tested in a non-matching-to-place T-maze task. Hcrt/ataxin-3 transgenic mice (a progressive model of narcolepsy), which become Hcrt deficient at 12 weeks old, show impaired avoidance memory in a two-way active avoidance paradigm in which an animal has to perform a specific motor response to avoid an aversive stimulus. Hcrt1 administration reverses memory deficits, suggesting that Hcrt plays a role in hippocampal-dependent consolidation of two-way active avoidance memory.

Chemogenetic activation of Hcrt neurons improves short-term memory for novel locations, a function that putatively supports foraging and exploration.

Pain negatively influences memory processing in ways that may be influenced by Hcrt. In the Morris water maze (MWM) (a test of spatial learning and memory), orofacial pain-induced memory impairments are exacerbated by the OX_R antagonist SB-334867 whereas administration of Hcrt1 prevented these spatial memory deficits. Importantly, injections were directed at the trigeminal nucleus caudalis, which is a central relay for orofacial pain. Thus, the observed effect on memory may be via alterations in the experience of pain itself rather than the formation of a pain-associated memory. In a similar study by Raaf and colleagues, orofacial pain reward was mediated by Hcrt at the level of the hippocampus (HPC). Intra-hippocampal injections of Hcrt1 inhibit pain-induced memory impairments as measured by the MWM. However, treatment with the OX_R antagonist SB-334867 had no effect on learning and memory. Indeed, the HPC is a critical region for memory function and Hcrt action at this site may influence memory processes via its influence on the induction of long-term potentiation (LTP). In vitro studies show that OX_R antagonists significantly decrease the firing rates of hippocampal CA1 neurons, showing that the effect of Hcrt on these neurons is excitatory. Additional in vitro electrophysiology studies demonstrate that Hcrt1 may bidirectionally modulate HPC CA1 function. Specifically, moderate doses of Hcrt1 inhibit LTP while subnanomolar concentrations result in re-potentiation via OX_R and OX_R. It is important to note that the Hcrt
manipulations discussed here may have influenced sleep and therefore resulting memory problems may be sleep dependent and thus only indirectly dependent on Hcrt.

Part III: quantitative modeling of hypocretin circuits

Computational modeling of the Hcrt network remains a relatively unexplored frontier. Development of analytical models of Hcrt function will inform our interpretation of data gathered through empirical study and drive the development of testable hypotheses. In particular, computational modeling of Hcrt networks will prove essential for our understanding of the following three questions: (1) how do internal or external physiological states influence arousal? (2) How does the heterogeneity of the system (that is, genetic, afferent, and efferent diversity) contribute to network dynamics? (3) How does Hcrt function as a volume transmitter to produce both generalized and specific effects? Ultimately, integration of these models with experimental approaches will allow for understanding of the network as a whole as well as monosynaptic interactions.

Models of hypocretin network in arousal

Current models have described Hcrt as functioning within a “flip/flop” model where it stabilizes wakefulness, preventing aberrant switches between mutually exclusive states. This model, however, cannot account for overlapping states of arousal such as those observed in narcolepsy or RBD in which REM sleep can co-occur with conscious awareness. Additionally, this model does not factor in the many systems that interact to influence arousal. These observations make it necessary to revise the binary nature of the flip/flop model. Studies have expanded the model by characterizing a circuit with hierarchical gating of additional neural circuits, feedback, and redundancy. This hierarchical model provides a framework on which to add motivational influences on arousal states. Indeed, animals can adapt their sleep on the basis of internal and external variables such as migration or predator avoidance or to increase the likelihood of mating. Recently, an alternative has been proposed in which sleep-to-wake transitions are predicted on the basis of inputs with different “weights” onto an integrator neuron. An integrator neuron would continuously compute probabilities of wakefulness on the basis of functional connectivity of the system as well as physiological factors such as stress or circadian phase. Diversity of neuronal responses to stimuli can be integrated within this model to account for the heterogeneity of the system. In this vein, Schöne and Burdakov acknowledge the necessity of an adaptive behavioral control system that can respond to unpredictable changes in the environment. Thus, they propose a model of brain arousal control modules organized in a feedback loop by which Hcrt can gate relevant information on the basis of environmental and homeostatic needs. We look forward to the future advancement of this area of Hcrt research that will undoubtedly expand our understanding as an adaptable regulator of arousal.

Volume transmission

Volume transmission (VT) is a mechanism of neural signaling by which neurotransmitters can exert actions on cells in close proximity as well as distant targets. In VT, neurotransmitters signal via diffusion within extracellular fluid. This type of release is thought to allow for modulation of neural activity via long time courses and greater distances. VT may happen via cellular pores, diffusion through the plasma membrane, exocytosis, or reversal of transporter proteins. To date, actions of Hcrt at the dorsal lateral geniculate nucleus (DLG) and the DRN (aside from already-known synaptic actions) have been theorized to be exerted via VT. Observations of Hcrt immunoreactivity in many non-synaptic varicosities located far from synapses with axons forming asymmetric synapses suggest that DRN excitation via Hcrt1 may be via this mechanism. Indeed, the DRN plays an important role in the regulation of arousal and both synaptic and VT mechanisms may support long-term cortical arousal. In a separate set of findings, Hcrt was found to powerfully modulate neurons of the DLG despite only sparse expression of Hcrt nerve terminals in the region, suggesting that these actions are via VT. Additionally, a recent study of melanin-concentrating hormone (MCH), a hypothalamic peptide important for the regulation of feeding, shows that MCH neurons project to ventricular regions where they increase MCH levels in the cerebrospinal fluid (CSF) and stimulate feeding. MCH neurons are intermingled with Hcrt neurons in the LH, and the authors measure that 40% of Hcrt neurons also project to the CSF where they are poised to signal via VT to influence distal targets. Further investigations should determine whether Hcrt acts via VT and, if so, how its activity is influenced by (1) temporal and spatial release dynamics, (2) diffusion and dilution parameters, and (3) transporter kinetics in order to characterize its effective radius.

Future directions and conclusions

As reviewed here, the ever-growing database on Hcrt continues to broaden our conceptualization of these peptides as more than just regulators of sleep-to-wake transitions. Technical advances have allowed ever more precise measurement and manipulation of these circuits which will continue to inform our understanding of this circuit. To date, therapeutic advances have allowed the effective targeting of Hcrt circuitry for the treatment of narcolepsy and insomnia, and research discussed here provides evidence for the potential of this system for the treatment of anxiety, addiction, and memory deficits. Integration of these findings with analytical models will provide a novel means for explaining and interpreting biological observations so as to gain a holistic understanding of their role in physiology and behavior.

Grant information

Our work was supported by the National Institutes of health under grant numbers 5R01MH087592-07, 5R01AG047671-04 and 1R01MH102638-01A1.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Acknowledgments

The authors would like to thank Jeremy C. Borniger and Christopher C. Angelakos for their helpful comments on the manuscript.
References

1. de Lecea L, Kilduff TS, Peyron C, et al.: The hypocretins: hypothalamus-specific peptides with neuroendocrine activity. Proc Natl Acad Sci U S A. 1998; 95(1): 322–7.

2. Sakurai T, Ameyama A, Ishi M, et al.: Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998; 92(4): 753–85.

3. Kim CK, Adikkan A, Deisseroth K: Integration of optogenetics with complementary methodologies in systems neuroscience. Nat Rev Neurosci. 2017; 18(4): 222–35.

4. Gomez JL, Bonaventura J, Lesniewski W, et al.: Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science. 2017; 357(6365): 503–7.

5. Roth BL: DREADDs for Neuroscientists. Neuron. 2016; 89(4): 683–94.

6. Lin MZ, Sznitman MJ: Genetically encoded indicators of neuronal activity. Nat Neurosci. 2016; 19(9): 1142–53.

7. Funato H, Miyoshi C, Fujyama T, et al.: Complementary methodologies in systems neuroscience. Neuron. 2013; 76(2): 222–35.

8. Susaki EA, Ukai H, Ueda HR: Next-generation mammalian genetics toward organism-level systems biology. NPU Syst Biol Appl. 2017; 3: 15.

9. Cong L, Ran FA, Cox D, et al.: Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339(6121): 819–23.

10. Mali P, Yang L, Esvelt KM, et al.: RNA-guided human genome engineering via Cas9. Science. 2013; 339(6121): 823–6.

11. Weber F, Dan Y: Circuit-based interrogation of sleep control. Nature. 2016; 536(7623): 51–9.

12. Lörincz ML, Adamantidis AR: Monoaminergic control of brain states and sensory processing: Existing knowledge and recent insights obtained with optogenetics. Prog Neurobiol. 2017; 181: 237–53.

13. Peyron C, Tighes DK, van den Pol AN, et al.: Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998; 18(23): 9996–10015.

14. Yoshida K, McCormack S, España RA, et al.: Afferents to the orexin neurons of the rat brain. J Comp Neurol. 2006; 494(5): 845–61.

15. Scammell TE, Arrigoni E, Lipton JD: Neural Circuitry of Wakefulness and Sleep. Neuron. 2017; 93(4): 747–65.

16. Emi-Rothschild A, de Lecea L: Neuronal substrates for initiation, maintenance, and structural organization of sleep/wake states [version 1; referees: 2 approved]. F1000Res. 2017; 6: 212.

17. Thannickal TC, Moore RY, Niemus R, et al.: Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000; 27(3): 469–74.

18. Nishino S, Riepe B, Overeem S, et al.: Hypocretin (orexin) deficiency in human narcolepsy. Lancet. 2000; 356(9217): 39–40.

19. Lin L, Faraco J, Li R, et al.: The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999; 98(3): 365–78.

20. Chemelli RM, Willette JT, Sinton CM, et al.: Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999; 98(4): 437–51.

21. de Lecea L: Optogenetic control of hypocretin (orexin) neurons and arousal circuits. Curr Top Behav Neurosci. 2015; 25: 367–78.

22. DiGennaro DR, Niedermeyer E, Treatment of narcolepsy. Expert Rev Neurother. 2009; 9(6): 897–910.

23. Scharf SF, Werth E, Poryazova R, et al.: Dysregulation of Sleep Behavioral States in Narcolepsy. Sleep. 2017; 40(12): zxx170.

24. Branch AF, Navid W, Tabuchi S, et al.: Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness. Sleep. 2010; 33(2): 369–77.

25. Adamantidis AR, Zhang F, Aravanis AM, et al.: Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007; 450(7168): 420–4.

26. Teumetsu T, Tabuchi S, Tanaka KF, et al.: Long-lasting silencing of orexin/hypocretin neurons using archeahordopsin induces slow-wave sleep in mice. Behav Brain Res. 2013; 235: 64–74.

27. Sasaki K, Suzuki M, Mieda M, et al.: Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS One. 2011; 6(5): e20360.

28. Sakurai T, Nagata R, Yamanaka A, et al.: Impact of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron. 2005; 46(2): 297–308.

29. Haas H, Palma P: The role of histamine and the tuberomammillary nucleus in the nervous system. Nat Rev Neurosci. 2003; 4(2): 121–30.

30. Takahashi K, Lin JG, Sakai K: Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci. 2006; 26(40): 10928–9.

31. Fujita A, Bonnavion P, Wilson MH, et al.: Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability. J Neurosci. 2017; 37(39): 9574–92.

32. Bayer L, Eggemann E, Serafin M, et al.: Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2011; 34(1): 1571–6.

33. Eriksson KS, Sergerie O, Brown RE, et al.: Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001; 21(23): 9273–9.

34. Huang ZL, Wu WM, Li WD, et al.: Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci U S A. 2001; 98(17): 9965–70.

35. Chen A, Singh C, Oikonomou G, et al.: Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro. 2017; 4(1): pii: ENEURO.0286-16.2017.

36. Carter ME, Adamantidis A, Ohhto H, et al.: Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009; 29(35): 10939–46.

37. Yu X, Ye Z, Houston CM, et al.: Wakefulness Is Governed by GABA and Histamine Cotransmission. Neurosci. 2015; 87(1): 164–78.

38. Eggemann E, Serafin M, Bayer L, et al.: Orexins/hypocretins excite basal forebrain cholinergic neurons. Neuroscience. 2001; 108(2): 177–81.

39. Marcus JN, Aschner CJ, Lee CE, et al.: Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001; 435(1): 6–25.

40. España RA, Baldo BA, Kelley AE, et al.: Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001; 106(4): 699–715.

41. Chen L, Yin D, Wang TX, et al.: Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice. Neuropsychopharmacology. 2016; 41(8): 2133–46.

42. Ancarlu C, Pedersen NP, Ferrarini LL, et al.: Basal forebrain control of wakefulness and cortical rhythms. Nat Commun. 2015; 6: 8744.

43. Jones BE: Principal cell types of sleep-wake regulatory circuits. Curr Opin Neurobiol. 2017; 44: 101–9.

44. Lee MG, Hassan OK, Alonso A, et al.: Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci. 2005; 25(17):
48. Irmak SO, de Lecea L: Roles of the orexin system in central motor control. Neurobiol Behav Rev. 2015; 49:43–51. PubMed Abstract | Publisher Full Text | Free Full Text

50. Bardo BA, Daniel RA, Berridge CW, et al.: Overlapping distributions of orexin/hypocretin- and dopamine-beta-hydroxylase immunoreactive fibers in rat brain regions mediating arousal, motivation, and stress. J Comp Neurol. 2003; 464(2):220–37. PubMed Abstract | Publisher Full Text

51. Fadel J, Deutch AY: Locus coeruleus impulse activity. Neurosci. Biobehav Rev. 2003; 27(4):4365–9. PubMed Abstract | Publisher Full Text | Free Full Text

53. Narita M, Nagumo Y, Hashimoto S, et al.: Neuropeptide Y stimulates activation of the locus coeruleus. Brain Res. 2011; 1459:122–37. PubMed Abstract | Publisher Full Text | Free Full Text

56. Han Y, Shi Y, Pan J, et al.: Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions. Curr Biol. 2014; 24(6):683–8. PubMed Abstract | Publisher Full Text

57. Carter ME, Brill J, Bonnivain P, et al.: Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A. 2012; 109(39):E3835–44. PubMed Abstract | Publisher Full Text | Free Full Text

58. Carter ME, Yizhar O, Chikahisa S, et al.: Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010; 13(12):1526–33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

59. Singh C, Okonowomo G, Prober DA: Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish, elife. 2015; e07000. PubMed Abstract | Publisher Full Text | Free Full Text

60. Carter ME, Brill J, Bonnivain P, et al.: Mechanism for Hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci U S A. 2012; 109(39):E3835–44. PubMed Abstract | Publisher Full Text | Free Full Text

65. Berridge CW, Waterhouse BD: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 2003; 42(1):33–84. PubMed Abstract | Publisher Full Text

68. Carter ME, Yizhar O, Chikahisa S, et al.: Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010; 13(12):1526–33. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

69. Singh C, Okonowomo G, Prober DA: Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. elife. 2015; e07000. PubMed Abstract | Publisher Full Text | Free Full Text

70. Hu B, Yang N, Qiao QC, et al.: Roles of the orexin system in central motor control. Neurobiol Behav Rev. 2015; 49:43–51. PubMed Abstract | Publisher Full Text | Free Full Text

71. Burgess CR, Scammell TE: Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci. 2012; 32(36):12001–11. PubMed Abstract | Publisher Full Text | Free Full Text

72. Blouin AM, Siegel JM: Relation of melatonin concentating hormone levels to sleep, emotion and hypocretin levels. Sleep. 2013; 36(12):1777. PubMed Abstract | Publisher Full Text | Free Full Text

73. Lammers GJ, Overeem S, Tijssen MA, et al.: Effects of startle and laughter in cataplectic subjects: a neurophysiological study between attacks. Clin Neurophysiol. 2000; 111(7):1296–301. PubMed Abstract | Publisher Full Text

74. Wu MF, Nienhuis R, Maitland N, et al.: Cerebrosplinal fluid hypocretin (orexin) levels are elevated by play but are not raised by exercise and its associated heart rate, blood pressure, respiration or body temperature changes. Arch Ital Biol. 2011; 149(1):692–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

75. Vetrivelan R, Chang C, Lu J: Muscle tone regulation during REM sleep: neural circuitry and clinical significance. Arch Ital Biol. 2011; 149(4):348–66. PubMed Abstract | Publisher Full Text | Free Full Text

76. Vitrac C, Benici-Marand M: Monoaminergic Modulation of Motor Cortex Function. Front Neural Circuits. 2011; 7:72. PubMed Abstract | Publisher Full Text | Free Full Text

77. Rommelfanger KS, Edwards GL, Freeman KG, et al.: Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci U S A. 2007; 104(34):13804–9. PubMed Abstract | Publisher Full Text | Free Full Text

78. Mahoney CE, Agostinelli LJ, Brooks JN, et al.: Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993; 614(1):37–45. PubMed Abstract | Publisher Full Text | Free Full Text

79. Bickford P: Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993; 614(1):37–45. PubMed Abstract | Publisher Full Text | Free Full Text

80. Geyer MA, Segal DS, Mandell AJ: Effect of intraventricular infusion of dopamine and norepinephrine on motor activity. Physiol Behav. 1972; 8(4):653–6. PubMed Abstract | Publisher Full Text | Free Full Text

81. Larrosa O, de la Llave Y, Bario S, et al.: Stimulant and anticahtalpsic effects of reboxetine in patients with narcolepsy: a pilot study. Sleep. 2001; 24(3):282–5. PubMed Abstract | Publisher Full Text | Free Full Text

82. Luthman J, Fredriksson A, Sundström E, et al.: Selective lesion of central dopaminergic and noradrenergic neurons in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res. 1989; 33(3):267–77. PubMed Abstract | Publisher Full Text | Free Full Text

83. Bickford P: Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993; 614(1):37–45. PubMed Abstract | Publisher Full Text | Free Full Text

84. Hasegawa E, Maéma T, Yoshida T, et al.: Serotonin neurons in the dorsal raphe modulate the anticahtalpsic action of orexin neurons by reducing amygdala activity. Proc Natl Acad Sci U S A. 2017; 114(17):E3526–E3535. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

85. Mahoney CE, Agostinelli LJ, Brooks JN, et al.: Motor learning deficits in aged rats are correlated with loss of cerebellar noradrenergic function. Brain Res. 1993; 614(1):37–45. PubMed Abstract | Publisher Full Text | Free Full Text

86. Gao XB, Wang AH: Experience-dependent plasticity in hypocretin/orexin neurons: re-setting arousal threshold. Acta Physiol (Oxf). 2010; 198(3):251–62. PubMed Abstract | Publisher Full Text | Free Full Text

87. Johnson PL, Motonoh A, Fitz SD, et al.: Orexin, stress, and anxiety/panic states. Prog Brain Res. 2012; 198:131–63. PubMed Abstract | Publisher Full Text | Free Full Text

88. Johnson PL, Motonoh A, Fitz SD, et al.: Orexin 1 and 2 receptor involvement in CO2-induced panic-associated behavior and autonomous responses. Depress Anxiety. 2015; 32(9):671–83. PubMed Abstract | Publisher Full Text | Free Full Text
110. Gentile TA, Simmons SJ, Barker DJ, Bentzley BS, Aston-Jones G: Perinatal distress: A review and synthesis of 15 years of research. J Clin Psychol. 2018.
107. Abbas MG, Shoji H, Soya S, et al.: Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci. 2016; 43(5): 710–20.
98. Rasch B, Born J: Brain Res. 2018; 138–46.
97. Bahaaddini M, Khatamsaz S, Esmaeili-Mahani S, et al.: Antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res. 2017; 1654(Pt A): 34–42.
96. Lopez MF, Moorman DE, Aston-Jones G, et al.: The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res. 2016; 1636: 74–80.
95. Muromann DE, James MH, Kilroy EA, et al.: Orexin/hypocretin neuron activation is mediated predominantly by orexin receptor 1. ACS Chem Neurosci. 2015; 6(1): 138–46.
94. Barson JR, Ho HT, Leibowitz SF: Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: Role of orexin receptor 2. Addict Biol. 2015; 20(3): 469–81.
93. Vance MC, Kovachy B, Dong M, et al.: Neurosci. 2006; 28(15): 1507–37.
92. Blume SR, Nam H, Lus S, et al.: Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuropathological Activity. Neuroscience. 2018; 381: 11–21.
91. Baimel C, Gelding SJ: Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol. 2018; 179(14): 2825–33.
90. Yoshikawa H, Penke L, Itoh K, et al.: Protective reward signal of dopamine neurons. J Neurophysiol. 1998; 80(1): 1–27.
89. McEwen BS, Mohler MJ, Gage SM: Opioid- and hypocretin-inhbitory dynorphin and excitatory hypocretin/orxoin neuropeptides. J Neurosci. 2004; 24(5): 1278–84.
88. Vidal M, Haman M, Broussard P, et al.: Hypocretin receptor 1 blockade produces bimodal modulation of cocaine-associated mesolimbic dopamine signaling. Psychopharmacology (Berl). 2017; 234(18): 2761–76.
87. Rattue K, et al.: The role of trigeminal nucleus caudalis orexin 1 receptor in orofacial pain-induced anxiety in rat. Neuronat. 2016; 27(15): 1107–13.
86. Vigo S, Luiz S, et al.: Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orxoin neuropeptides. J Neurosci. 2006; 26(50): 13037–47.
85. Baimel C, Lau BK, Qiao M, et al.: Excitatory orexin/hypocretin neurons control GABAergic inputs to tuberomammillary neurons. Eur J Neurosci. 2014; 39(5): 833–44.
84. Baimel C, Belknap JM, Berman PS, et al.: The role of hypocretin in driving arousal and social behavior. Front Behav Neurosci. 2015; 9: 324.
83. Baimel C, Gelding SJ: Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol. 2018; 179(14): 2825–33.
82. Moorman DE, James MH, Kilroy EA, et al.: Orexin/hypocretin-1 receptor antagonist Suvorexant, an orexin/hypocretin-1 receptor antagonist, reduces alcohol self-administration and reinstatement selectively in highly-motivated rats. Brain Res. 2017; 1654(Pt A): 34–42.
81. Baimel C, Gelding SJ: Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol. 2018; 179(14): 2825–33.
80. 2015; 25: 41–50.
79. Baimel C, Lau BK, Qiao M, et al.: Predictive reward signal of dopamine neurons. J Neurophysiol. 1998; 80(1): 1–27.
78. Baimel C, Gelding SJ: Opioid and hypocretin neuromodulation of ventral tegmental area neuronal subpopulations. Br J Pharmacol. 2018; 179(14): 2825–33.
77. Vigo S, Luiz S, et al.: Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orxoin neuropeptides. J Neurosci. 2006; 26(50): 13037–47.
76. Wightman RM, Heien ML, Wassum KM, et al.: Hypocretin receptor 1 blockade reduces motivation for cocaine. Neuron. 2015; 83(3): 320–32.
hypocretin/orexin neurons facilitates short-term spatial memory in mice.
Neurobiol Learn Mem. 2016; 136: 183–8.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

134. Kooshki R, Abbasnejad M, Esmaeili-Mahani S, et al.: The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats. Physiol Behav. 2016; 157: 29–37.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

135. Raof R, Esmaeili-Mahani S, Abbasnejad M, et al.: Changes in hippocampal orexin 1 receptor expression involved in tooth pain-induced learning and memory impairment in rats. Neuropeptides. 2015; 50: 9–16.
PubMed Abstract | Publisher Full Text

136. Chen XY, Chen L, Du YF: Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors. J Neurosci Res. 2017; 95(7): 1415–26.
PubMed Abstract | Publisher Full Text

137. Lu GL, Lee CH, Chiou LC: Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation. Neuropharmacology. 2016; 107: 168–80.
PubMed Abstract | Publisher Full Text

138. Saper CB, Fuller PM, Pedersen NP, et al.: Sleep state switching. Neuron. 2010; 68(6): 1023–42.
PubMed Abstract | Publisher Full Text | Free Full Text

139. Krueger JM, Rector DM, Roy S, et al.: Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci. 2008; 9(12): 910–9.
PubMed Abstract | Publisher Full Text | Free Full Text

140. Vyazovskiy VV, Olcese U, Hanlon EC, et al.: Local sleep in awake rats. Nature. 2011; 472(7344): 443–7.
PubMed Abstract | Publisher Full Text | Free Full Text

141. Soroshshyari S, Huerta R, de Lecea L: A Framework for Quantitative Modeling of Neural Circuits Involved in Sleep-to-Wake Transition. Front Neurosci. 2015; 9: 32.
PubMed Abstract | Publisher Full Text | Free Full Text

142. Acerbi A, Nunn CL: Prediction and the phasing of sleep: An evolutionary individual-based model. Animal Behaviour. 2011; 81(4): 601–11.
Publisher Full Text

143. Rattenborg NC, Vorin B, Cruz SM, et al.: Evidence that birds sleep in mid-flight. Nat Commun. 2016; 7: 12468.
PubMed Abstract | Publisher Full Text | Free Full Text

144. Lesku JA, Rattenborg NC, Valcu M, et al.: Adaptive sleep loss in polygynous pectoral sandpipers. Science. 2012; 337(6102): 1654–8.
PubMed Abstract | Publisher Full Text | F1000 Recommendation

145. Eban-Rothschild A, Appelbaum L, de Lecea L: Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology. 2018; 43(9): 937–52.
PubMed Abstract | Publisher Full Text | Free Full Text

146. Schöne C, Burdakov D: Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain. Curr Top Behav Neurosci. 2017; 33: 51–74.
PubMed Abstract | Publisher Full Text | Free Full Text

147. Agnati LF, Guidolin D, Guazzetti M, et al.: Understanding wiring and volume transmission. Brain Res Rev. 2010; 64(1): 137–59.
PubMed Abstract | Publisher Full Text

148. Águeda C, De-Miguel FF: Extrasynaptic exocytosis and its mechanisms: a source of molecules mediating volume transmission in the nervous system. Front Physiol. 2012; 3: 319.
PubMed Abstract | Publisher Full Text | Free Full Text

149. Leski JA, Zoli M, Strömberg I, et al.: Intercellular communication in the brain: wiring versus volume transmission. Neuroscience. 1995; 69(3): 711–26.
PubMed Abstract | Publisher Full Text | Free Full Text

150. Del Cid-Pellitero E, Garzón M: Medial prefrontal cortex receives input from dorsal raphe nucleus neurons targeted by hypocretin/orexin-A-containing axons. Neuroscience. 2011; 172: 30–43.
PubMed Abstract | Publisher Full Text

151. Chrobok L, Palus-Chramiec K, Chrzanowska A, et al.: Multiple excitatory actions of orexins upon thalamo-cortical neurons in dorsal lateral geniculate nucleus - implications for vision modulation by arousal. Sci Rep. 2017; 7(1): 7713.
PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

152. Noble EE, Hahn JD, Konur VR, et al.: Control of Feeding Behavior by Cerebral Ventricular Volume Transmission of Melanin-Concentrating Hormone. Cell Metab. 2018; 28(1): 55–68.e7.
PubMed Abstract | Publisher Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status:

Editorial Note on the Review Process

F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Thomas Scammell Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
 Competing Interests: No competing interests were disclosed.

2 Jyrki P. Kukkonen Biochemistry and Cell Biology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, and Department of Physiology, Institute of Biomedicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
 Competing Interests: No competing interests were disclosed.

3 Denis Burdakov Neurophysiology Laboratory, Francis Crick Institute, London, UK
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com