INTRODUCTION

There are about 500 species of Berberis worldwide, located mainly in Eurasia with approximately 300 species and 200 species in South America [1]. In Southern Chile and Argentina, from the 60 species previously reported in 1961 [2], currently, 20 species are recognized [3]. This important reduction is explained by several species, such Berberis heterophylla and Berberis buxifolia, being grouped into one species, Berberis microphylla [4]. Berberis species are deciduous or evergreen shrubs with a height of up to 5 meters tall and thorny stems, which are native to temperate and subtropical regions of Europe, Africa, North and South America [5]. At present, a large number of species of Berberis have been reported with pharmacological and clinical use [6]. In homeopathy and ethnic medicine, these species have been used as medicine for their anti-inflammatory [7], antibacterial, antihypertensive, anticancer, antiarrhythmic [8], hypoglycemic [9,9], and hepatoprotective [10-12] properties. The major phytochemical studies have been conducted on Asian species, such as Berberis jaeschkeana, Berberis asiatica, Berberis aristata, and Berberis lyceum. These species showed a relatively high content of tannins, saponins, alkaloids, flavonoids, steroids, phenolic compounds, and carbohydrates [13-15].

In the Chilean-Argentina Patagonia, the Berberis genus is represented by 16 species of native shrubs [16], among which B. microphylla—which common name is caulk - stands out as a symbol of Patagonia due to its widespread abundance in the region [17]. B. microphylla has also been medically used by the native peoples of Patagonia (Aónikenk, Selk’nam, Kawésqar) for its astringent, antipyretic, analgesic, antibacterial, and antiviral properties [18].

Although several articles on B. microphylla have reported the diversity of alkaloid compounds [19,20], there are currently no studies showing the presence of other secondary metabolites in this plant. For this reason, our research is important because it reports for the first time the presence of the main secondary metabolites that have been described with biological activity. Therefore, the objective of this work was to perform phytochemical qualitative and quantitative analyses of the main secondary metabolites in the root of B. microphylla.

METHODS

Sample collection

Roots of B. microphylla were collected in the settlement of Bahía Mansa (53° 36’ 39, 38’’ S and 70° 55’ 50, 56’’ O), about 54 km South of the city of Punta Arenas, Chile. The plants of B. microphylla were collected, and taxonomic authentication was carried out by Dr. Juan Marcos Henríquez, botanist, and taxonomist at the Institute of Patagonia, Universidad de Magallanes, Chile (Voucher No: 012837).

Methanolic and ethanolic extracts preparation of B. microphylla root

We prepared extracts of the root of B. microphylla in ethanol and methanol. For this purpose, 100 g of root was dried, ground and extracted with 1000 ml of alcohol (ethanol or methanol) for 72 hrs at room temperature. Then, the extract was filtered and concentrated in a rotary evaporator at 40°C. Finally, the extract was lyophilized and stored at 4°C until use.

Qualitative phytochemical analysis

We carried out qualitative assays on both ethanolic and methanol extracts to identify the presence of secondary metabolites, such as alkaloids, flavonoids, glycosides, cardiac glycosides, saponins, resins, phenols, tannins, triterpenes, steroids, catechins, amines, and anthocyanins based on a protocol previously described [21].

Quantitative phytochemical analysis

We submitted both extracts to quantitative biochemical testing to determine the main secondary metabolites with described medicinal activity, such as alkaloids [22,23], flavonoids [24], saponins [25], and tannins [26].
Table 1: Phytochemical screening in alcoholic extracts of B. microphylla root

Constituents	Ethanol extract	Methanol extract
Alkaloids	+	+
Flavonoids	+	+
Glycosides	+	+
Cardiac glycosides	+	+
Saponins	+	+
Resins	-	-
Phenols	+	+
Tannins	+	+
Terpenes	+	+
Triterpenes	-	-
Quinones	+	+
Catechins	-	-
Amines	-	-
Anthocyanins	-	-

*: Absence, +: Presence, B. microphylla: Berberis microphylla

Table 2: Phytochemical composition of B. microphylla root extract

Extract	Alkaloids	Flavonoids	Tannins	Saponins %	
	mg equivalents berberine/g dry matter	mg equivalents quercetin/g dry matter	mg equivalents tannic acid/g dry matter	%	
Ethanol	1.16±0.05	0.13±0.11	2.85±0.12	9.53±0.41	3.60±0.53
Methanol	3.64±0.17	0.22±0.21	4.09±0.36	7.40±0.65	1.43±0.27

Values expressed as mean±SD and correspond to mg equivalent g⁻¹ of dry weight and percentage. *Significant versus percentage of ethanol extract (p<0.05), SD: Standard deviation, B. microphylla: Berberis microphylla

RESULTS AND DISCUSSION

Qualitative phytochemical analysis

Different reports highlight B. microphylla as an important source of alkaloid compounds [16,17]. However, there is little background information on other secondary metabolites of this plant. Thus, as far as we know, this work constitutes the first report describing the presence of other phytochemical constituents in the root of B. microphylla. Results of the qualitative phytochemical analysis are shown in Table 1. It is important to note that our results are consistent with those described for B. asiatica [15], B. aristata [14], B. tinctoria [27], and B. lyceum [28].

Quantitative analysis

We quantified four phytochemicals groups known to be important in natural medicine [29]. Interestingly, Thaw et al. underlined the role that saponins and tannins perform in the control and management of hyperglycemia [30], which seems to be similar to alkaloids [28].

The total alkaloid contents were reported as mg equivalents of berberine. Their percentage in the methanolic extract was significantly higher compared to the percentage in the ethanolic extract. This may be due to the type of polarity of the solvent used. In the literature, there are various reports regarding the total alkaloid content of dry roots. For instance, B. thunbergii (3.47%) and B. vulgaris (2.22%) [31] show lower percentages than those found in B. microphylla, which may be due to the content of berberine, which is the main alkaloid, varying considerably with altitude and soil conditions for the root [31-33]. Total flavonoids were reported as mg equivalents of quercetin. No significant difference was found between the two extracts tested. In the literature, values of close to 2.8% of flavonoids in B. aristata are reported [34], a value higher than that found in B. microphylla. Total tannins contents were reported as mg equivalents of tannic acid. The percentage of tannins is roughly similar in several species of Berberis; however, the root of B. microphylla contained a higher percentage of tannins than those described for B. aristata (0.6%), B. asiatica (1.7%), B. chitria (0.73%), and B. lyceum (0.96%) [35]. Moreover, the percentage of saponins is greater in B. microphylla than in B. vulgaris (0.3%) [36]. No significant differences were found in both extracts tested for these phytochemical groups. The phytochemical composition of both extracts was expressed in mg g⁻¹ of dry matter of the sample (±SD) and percentage (±SD), and the results are shown in Table 2.

CONCLUSION

The phytochemical study showed that the root extracts of B. microphylla contain important bioactive secondary metabolites, without qualitative differences between the ethanolic and methanolic extract of the plant. This would be the first time to report the presence of tannins, flavonoids, and saponins present in the root of B. microphylla. Quantitatively, the tannins would be the major group for both extracts tested. Therefore, their presence would support the traditional use of the plant in the treatment of various diseases. We are conducting further studies of the isolation of active components from the root of B. microphylla with cell lines to validate the medicinal use of this plant.

ACKNOWLEDGMENTS

The authors would like to thank Advanced Human Capital Formation Program, CONICYT-CHILE for their financial support of María Cristina Furrianca Llaneza during her National Doctorate fellow (N°24121475).

REFERENCES

1. Bottini MC, De Bustos A, Sanso AM, Jouve N, Poggio L. Relationships in Patagonian species of Berberis (Berberidaceae) based on the characterization of rDNA internal transcribed spacer sequences. Bot J Linn Soc 2007;153(3):321-8.
2. Ahrendt LW. Berberis and Mahonia. J Linn Soc London Bot 1961;57(369):1-410.
3. Landrum L.R. Revision of Berberis (Berberidaceae) in Chile and adjacent Southern Argentina. Ann Missouri Bot Gard 1999;86(4):793-834. Available from: http://www.biostor.org/reference/13047.
4. Varas B, Castro MH, Rodriguez R, von Baehr D, Mardones C, Hinrichsen P. Identification and characterization of microsatellites from calafate (Berberis microphylia, Berberidaceae). Appl Plant Sci 2013;1:11.

5. Sodagar N, Bahrami AR, Memariani F, Etehtahi H, Vaezi J, Khoasravi AR. Biosystematic study of the genus Berberis L. (Berberidaceae) in Khorasan, NE Iran. Plant Syst Evol 2012;298(1):193-203.

6. Agarwal P, Mathur A, Prasad A, Saini N, Singh S. Phytochemical and pharmacological studies of traditionally used medicinal plants. Indian J Tradit Knowl 2013;12(2):106-8.

7. Singh V, Gunjan, Katiyar D. Anti-inflammatory activity of alcoholic and aqueous heartwood extracts of Berberis aristata DC. Asian J Pharm Clin Res 2014;7 Suppl 1:210-2.

8. Mokhber-Dezfuli N, Saeidnia S, Gohari AR, Kurepazad F et al. Identification of isoquinoline alkaloids from Berberis thunbergii DC. A Review. J Drug Deliv Ther 2011;1(2). Available from: http://www.jddtonline.info/index.php/jddt/article/view/34/25.

9. Singh V, Gunjan, Katiyar D. Anti-inflammatory activity of alcoholic and aqueous heartwood extracts of Berberis aristata DC. Asian J Pharm Clin Res 2014;7 Suppl 1:210-2.

10. Upwar N, Patel R, Waseem N, Kumar Mahobia N. Hypoglycemic effect of methanolic extract of Berberis aristata DC. on stem normal and streptozotocin induced diabetic rats. Int J Pharm Pharm Sci 2012;4(2):473-4.

11. Unkeshwar P, Nasiruddin M, Fayazuddin M, Khan R, Khan A, Tajuddin. Evaluation of hepatoprotective activity of Berberis aristata against carbon tetrachloride induced hepatotoxicity in rats. Int J Pharm Pharm Sci 2013;5 Suppl 4:107-10. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887724/

12. Dehar N, Walia R, Verma RB, Pandey P. Hepatoprotective activity of Berberis aristata root extract against chemical induced acute hepatotoxicity in rats. Asian J Pharm Clin Res 2013;6 Suppl 5:53-6.

13. Alamzeb M, Khan MR, Ali S, Shah SQ, Rashid MU. Antimicrobial properties of extracts and compounds isolated from Berberis jaeschkeana. Bangladesh J Pharmacol 2013;3(2):107-9.

14. Mittal M, Juyal V, Singh A. Phytochemical, anti-diabetic, and cytoprotective properties of Berberis aristata DC. root extracts. Pharm Crop 2012;3:64-8.

15. Patni S, Sahi AN, Meena H, Pandey HK. Physico-chemical, phytochemical and elemental analysis of stem bark and roots of Berberis aristata L. Medicinal and Biological Chemistry 2013;1:122-4.

16. Ahmed J, Mir S, Naqvi K. Hypoglycemic activity of aqueous extract of Berberis aristata stems bark in streptozotocin induced rats. Int J Pharm Pharm Sci 2012;4(2):473-4.

17. Patil M, Bhat J, Prasad A, Saini N, Singh S. Phytochemical and pharmacological studies of traditionally used medicinal plants. Indian J Tradit Knowl 2013;12(2):106-8.

18. Domínguez E. Flora of ethnobotanical interest used by the indigenous: A review. Bol Latinoam Caribe Plant Med Aromat 2012;11(4):291-305.

19. Manosalva L, Mutis A, Diaz J, Urzua A, Fajardo V, Quirao A. Identification of isosquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS. Bol Latinoam Caribe Plant Med Aromat 2014;13:323-34.