Mechanisms underlying glucose-dependent insulino tropic polypeptide and glucagon-like peptide-1 secretion

Frank Reimann*, Fiona M Gribble*
University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, WT-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK

Keywords
Gastric inhibitory polypeptide/glucose-dependent insulinotropic peptide, Glucagon-like peptide-1, Secretion

*Correspondence
Frank Reimann
Tel.: +44-0-1223-746796
Fax: +44-1223-330598
E-mail address: fr222@cam.ac.uk

and

Fiona Gribble
Tel.: +44-0-1223-336746
Fax: +44-1223-330598
E-mail address: fmg23@cam.ac.uk

J Diabetes Investig 2016; 7: 13–19
doi: 10.1111/jdi.12478

INTRODUCTION
Glucose-dependent insulino tropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones secreted from specialized enteroendocrine cells within the intestinal epithelium. They are released postprandially and act as circulating markers of food consumption, enabling the body to respond appropriately to food-derived elevations of blood nutrient concentrations. This is crucial for the control of blood glucose concentrations, as co-stimulation of pancreatic β-cells by GIP and GLP-1 approximately doubles the amount of insulin released in response to an elevation in ambient (blood) glucose concentrations. GIP and GLP-1 are hence often termed ‘incretins,’ and underlie the ‘incretin effect’ – a well-documented observation that intravenous glucose infusion at a rate that simulates postprandial blood glucose levels triggers only about half as much insulin release as a matched oral glucose challenge. After the discovery that the insulino tropic effect of GLP-1 is preserved in most people with type 2 diabetes1, GLP-1 mimetics and inhibitors of GLP-1 degradation by dipeptidyl peptidase 4 have been developed and licensed for the treatment of type 2 diabetes2.

Although a wealth of evidence supports the idea that both GLP-1 and GIP underlie the incretin effect, there are important differences in the activity and plasma profiles of the two hormones. GIP, for example, stimulates glucagon secretion from pancreatic α-cells, whereas GLP-1 inhibits α-cell activity. GLP-1, in contrast, has anorexigenic properties, whereas GIP seems to have no effects on food intake. GIP is instead considered pro-adipogenic, based on several observations, including that knockout of the GIP-receptor3 or immunoneutralization of
circulating GIP4 are protective against diet-induced obesity in rodents. As the incretin action of GIP seems to be impaired in patients with type 2 diabetes1, it might be postulated that a stimulation of GLP-1 and an inhibition of GIP secretion could be a therapeutic objective in overweight patients with type 2 diabetes. Further understanding the differences between these two hormones should enable a more targeted approach to their exploitation for the treatment of diabetes and obesity. The present review will focus on the physiology of the enteroendocrine cells secreting these two hormones, the GIP-expressing K cells and the proglucagon/GLP-1-expressing L cells.

LOCATION: OVERLAPPING BUT DISTINCTIVE POPULATIONS OF K- AND L CELLS

GIP-containing cells are found at highest density in the duodenum in a number of species5,7. GLP-1-containing cells can also be found in the proximal small intestine, but increase in number towards the distal small intestine, and in contrast to K cells are also numerous in the colon and rectum (Figure 1). Based on immunohistochemical staining, so-called LK cells have been described, which were immune-positive for both GIP and GLP-18,9. In transgenic mice expressing fluorescent markers under the control of either the GIP or the proglucagon promoter, cells producing the ‘other’ incretin have also been observed; that is, GIP in cells labeled by the proglucagon promoter, and GLP-1 in cells labeled by the GIP promoter10; however, these double-positive cells only amounted to \(\sim 10\text{—}20\%\) of the total K- and L cell population. Overall secretory responses from cell populations in vivo or in vitro are thus likely to be dominated by the remaining \(\sim 80\%\) of single-positive cells that produced only GLP-1 or GIP9, and as we describe below, selective stimulation or inhibition of either GIP or GLP-1 secretion is therefore possible. Nevertheless, the observation that K- and L cells additionally produce other hormones, such as CCK10, challenges the traditional classification of enteroendocrine cells according to their expression of one (or sometimes two) specific hormones, and suggests a more plastic expression profile that could be affected by external factors, such as the recent exposure of the intestine to nutrients and other luminal stimulants. Given the relatively rapid turnover of enteroendocrine cells in the small intestine every \(\sim 5\) days11, it seems plausible that recent nutritional availability could result in changes to the overall enteroendocrine cell population within days or weeks. In a recent study to identify the effects of a high-fat diet on mouse L cells, however, we observed a general downregulation of many enteroendocrine cell-specific genes rather than a switch to the preferential production of an alternative hormone12.

GLUCOSE SENSING: SIMILAR MECHANISMS OPERATE IN BOTH K- AND L CELLS

Given the importance of both GIP and GLP-1 for the incretin effect, one of the most investigated secretory stimuli of gut hor-

K/L cell distribution	Enteroneocrine stimulus	EEC Transporter/ion channel	EEC Receptor
L	Monosaccharide	SLC5A1 (SGLT1)	Tas1R2/3 (?)
L	Long chain fatty acid	FFAR1, FFAR4	
L	Monoacyl glycerol, acyl-ethanolamide	GPR119, CB1	
L	Amino acid	BoAT1 (SLC6A19), ATA2 (SLC38A2)	CASR, GPRc6A
L	Di/tripeptide	SLC15A1 (PepT1)	CASR
L	Bile acid	GPBAR1	
L	Short chain fatty acid	FFAR2, FFAR3	
L	Bile acid	GPBAR1	
L	Indole	Kv channels	
K			

Figure 1 | L- and K cell distribution and stimulus detection machinery. The majority of K cells are more proximally located than L cells. Fasting and postprandial glucose-dependent insulinotropic polypeptide (K cells) and glucagon-like peptide-1 (L cells) secretion likely reflect the dynamic gradient of different intestinal stimuli along the gut. Physiological activation of the L- and K cell detection pathways is shown, involving transporters/ion channels (linked to altered cellular electrical activity) and G-protein-coupled receptors, differing between the small intestine and colon. ATA2, amino acid transporter A2 (solute carrier [Slc] Slc38A2); BoAT1, system B(0) neutral amino acid transporter AT1 (Slc6A19); CASR, calcium-sensing receptor; CB1, cannabinoid receptor 1; EEC, enteroendocrine cell; FFAR, free fatty-acid receptor; GPBAR1, G-protein coupled bile-acid receptor 1; GPR119, G-protein coupled receptor 119; GPRC6A, G-protein coupled receptor classC 6A; Kv-channels, voltage gated potassium channels; SGLT1, sodium-coupled glucose transporter 1 (Slc5A1); Tas1R, taste receptor type 1.
mone secretion is glucose. Both K- and L cells in mixed primary intestinal epithelial cultures failed to respond to glucose when the sodium-coupled glucose transporter 1 (SGLT1) was inhibited either pharmacologically or genetically13–16. Indeed, a wealth of in vitro and in vivo data have suggested that the rapid elevations in plasma GIP and GLP-1 concentrations after glucose ingestion are directly linked to the electrogenic uptake of glucose by K- and L cells, resulting in membrane depolarization, voltage-gated calcium entry and enhanced rates of vesicular exocytosis17. More extensive phenotyping of global SGLT1 knockout mice, however, showed differences between the release patterns of GIP and GLP-1, which are likely related to the different locations of K- and L cells along the gastrointestinal tract axis18. In this mouse model, the GIP response to an oral glucose tolerance test was abolished, consistent with the proposed SGLT1-dependent coupling of glucose absorption to GIP secretion in K cells. By contrast, whereas the early GLP-1 response \textasciitilde5 min after a glucose gavage was abrogated in SGLT1 knockout mice or in mice treated with an SGLT1 inhibitor13,18, elevated plasma GLP-1 concentrations were observed at later time-points18. The findings support the idea that the rapid secretion of GLP-1 and GIP from the proximal small intestine after a glucose load is linked to SGLT1-dependent glucose absorption, but suggest that alternative sensory mechanisms operate in the distal gut. Inhibition of glucose absorption in the upper gastrointestinal tract in SGLT1 knockout mice results in a dramatic increase in glucose delivery to the distal gut with its higher density of L cells18, likely underpinning the delayed elevation of GLP-1 levels in these mice. The mechanism by which this glucose load is sensed by the distal ileum and/or colon remains unclear. Candidate pathways include the bacterial fermentation of distally-delivered carbohydrate to metabolites, such as short chain fatty acids that are then sensed by G-protein-coupled receptors, such as GPR4319, or metabolism of the sugar within L cells resulting in the activation of an alternative downstream signaling pathway. Neither of these hypotheses has yet been validated experimentally.

Whereas the SGLT1-dependent pathway is common to K- and L cells, we observed some differences between the responsiveness of the glucose-sensing machinery underlying GIP and GLP-1 secretion from small intestinal primary murine epithelial cultures. Whereas α-methyl-glycogenoside, a non-metabolizable SGLT1 substrate, enhanced GLP-1 secretion in the absence of other stimuli16, it only became an effective GIP secretagogue at elevated cyclic adenosine monophosphate (cAMP) levels14. Interestingly, the responsiveness to tolbutamide, an inhibitor of adenosine triphosphate-sensitive potassium (K_{ATP}) channels, showed the reverse dependence, triggering GIP responses in the absence, but not presence, of the cAMP-raising agents, forskolin and 3-isobutyl-1-methylxanthine (IBMX)14. K_{ATP} channel closure has itself been postulated as a mechanism underlying K- and L cell glucose sensing, similar to its well-established role in mediating glucose-dependent insulin secretion from pancreatic β-cells. In support of this idea, K_{ATP} channel inhibition enhanced GIP and GLP-1 secretion from intestinal cultures, triggered GIP-1 secretion from the enteroendocrine cell line, GLUTag20, and increased GLP-1 release from perfused rat intestine21. However, there is little data supporting the idea that K_{ATP} channel closure triggers gut hormone secretion in an intact animal. Mice lacking the K_{ATP} channel subunit Kir6.2 did not show impaired glucose-triggered gut hormone secretion22,23; and in humans, the K_{ATP} channel inhibitor, glibenclamide, had no effects on GIP and GLP-1 concentrations before or during an oral glucose tolerance test24. K_{ATP}-channel closure has, however, been suggested to underlie fructose-stimulated GLP-1 secretion25. Fructose is not a substrate for sodium-coupled monosaccharide transport, and instead enters cells through the facilitative transporter GLUT5. Interestingly, fructose does not stimulate GIP secretion in healthy rodents and humans25, but GIP release in response to fructose has been reported in diabetic mouse models22,26. However, opening of K_{ATP}-channels with diazoxide did not abolish fructose-stimulated GIP secretion in diabetic mice, and even the GLP-1 response to oral fructose remained intact in mice lacking the K_{ATP} channel subunit, Kir6.223. In view of the widespread agreement that K_{ATP} channels are expressed and functional in K- and L cells, the results unanimously support the idea that the resting K_{ATP} conductance is already very small in native K- and L cells in vivo, and that any differences observed between in vivo and in vitro experiments might reflect differences in the metabolic status of the enteroendocrine cells under the different conditions.

Another physiological glucose-sensing mechanism involves the G-protein-coupled receptor heterodimer of TAS1R2 and TAS1R3, that underlies sweet taste sensation in the tongue. Impaired postprandial GLP-1 levels have been observed in mice lacking α-gustducin, a component of the downstream taste receptor signaling pathway27, and both GIP and GLP-1 secretion have been reported from the GLUTag cell line in response to high concentrations of artificial sweeteners28. We, however, were unable to show a role for TAS1R2/3 in hormone secretion from murine K- or L cells in primary culture14,16, and artificial sweeteners failed to elevate plasma incretin hormone levels in human volunteers29. Other studies also failed to show artificial sweetener-stimulated GIP secretion in mice in vivo22 or GLP-1 secretion in a perfused rat intestinal preparation31, questioning the importance of TAS1R2/3 in incretin secreting cells.

G-PROTEIN-COUPLED RECEPTORS: CANDIDATES FOR SELECTIVELY TARGETING K- AND L CELLS

The development of transgenic mice with fluorescently tagged K- or L cells has enabled the transcriptomic analysis of these different cell types. Similarities and differences between K- and L cell populations were observed for the expression of a number of G-protein-coupled receptors. Both K- and L cell populations, for example, were found to express messenger ribonucleic acids (mRNAs) encoding the free-fatty acid receptors, FFAR1 (GPR40) and FFAR4 (GPR120)14,16. GPR40 activation has, for
example, been linked to the stimulation of GLP-1 secretion in experiments using Gpr40 knockout mice30, as well as by the application of GPR40 agonists to the perfused rat intestine31. Recent data, by contrast, convincingly showed a reduction in GPR119 mRNA for which is expressed in both K- and L cells14,16. Whereas a small molecule GPR119 agonist elevated GLP-1 secretion and GPR40 activation to GLP-1 release are robust, it is currently unclear whether either of these receptors plays a relatively greater role in any particular enteroendocrine cell type.

Other lipid-derived stimulants, such as mono-acyl-glycerol, activate GPR119, mRNA for which is expressed in both K- and L cells34,16. Whereas a small molecule GPR119 agonist elevated GLP-1 and GIP concentrations in mice34, however, the natural GPR119 ligand oleoylethanolamide (OEA) was not a good stimulus of GIP-secretion from primary epithelial cultures14. GLP-1 secretion, by contrast, was stimulated by OEA from both small and large intestinal-derived murine cultures34. In the colon, this was mediated by GPR119, as shown by the loss of mRNA for GLP-1 release in colonic cultures from mice lacking GPR119 specifically in proglucagon expressing cells. Similar experiments carried out in small intestinal cultures from these mice, however, showed that the OEA-activated GPR119 GLP-1 secretory response in the upper gastrointestinal tract was not GPR119-dependent34, suggesting that OEA recruits alternative mechanisms in duodenaljejunal L cells, and that this pathway might not be sufficiently active in K cells to trigger GIP secretion.

The related compounds, mono-arachidonoyl-glycerol and arachidonylethanolamine (anandamide), are agonists for the endocannabinoid receptor, CB1 (encoded by the gene Cnr1), which is predominantly G\textsubscript{i}-coupled. Cnr1 is highly expressed in small intestinal K- and L cells, with a tendency for higher expression in K- than L cells, but was not detected in L cells from the colon35. Consistent with the known G\textsubscript{i} coupling of CB1, anandamide was shown to inhibit IBMX-triggered GIP secretion in vivo, an effect that was blocked by the CB1-antagonist AM251. Interestingly, GLP-1 secretion from the same cultures was not affected by anandamide, despite the relatively high expression of Cnr1 in small intestinal L cells. Pretreatment of mice with anandamide delayed GIP, but not GLP-1 responses to an oral glucose tolerance test35. These findings raise questions about why the same receptor is apparently more effectively coupled to inhibition of secretion in K- than L cells, despite relatively high expression levels in both.

Ligands for other predominantly G\textsubscript{i}-coupled receptors expressed in both K- and L cells, by contrast, tend to have similar effects on both GIP and GLP-1 secretion. Somatostatin is nearby intestinal D cells, this being an example of how paracrine signals can integrate responses to luminal signals within the epithelium. Galanin, most likely secreted from enteric neurons, similarly recruits GALR1 in both K- and L cells, resulting in a G\textsubscript{q}-dependent suppression of CAMP levels36, and exemplifying that enteroendocrine cells likely integrate responses to luminal nutrients with signals arriving through the enteric nervous system. G\textsubscript{q}-coupled receptors, such as GALR1, have been reported to inhibit electrically excitable cells through activation of G-protein activated inwardly rectifying potassium (GIRK) channels, mediated by the G-protein \(\gamma\)-subunit. Interestingly, whereas both K- and L cells showed enriched expression of mRNAs encoding GIRK channels, and although GIRK-inhibition had no effect on the ability of galanin to inhibit GIP-1 secretion, only GLP-1, but not GIP, secretion could be inhibited by co-application of the GIRK-activator, ML297, with IBMX or glucose34. This might point to a difference in the role of potassium conductances in the stimulus secretion coupling of K- and L cells, but further work assessing possible differences in the electrical activity of these enteroendocrine cell types and its relationship to hormone secretion is required.

Given the calcium dependence of a number of proteins involved in the exocytotic pathway, predominantly G\textsubscript{q}-coupled receptors should be good targets to stimulate incretin secretion. The similar expression levels in K- and L cells of mRNAs encoding the G\textsubscript{q}-coupled receptor, FFAR1, have been mentioned above. The related short-chain fatty acid receptor FFAR2 (GPR43) by contrast seems more abundant in L- than K cells (Affymetrix chip array probe 1425216 RMA-values are 2,143 for fluorescently tagged L- and 154 for fluorescently tagged K cells isolated from the small intestine, with the latter value being similar to values observed for the non-fluorescent control cells; Reimann and Griibble unpubl.), supporting the reported importance of GPR43 in short-chain fatty acid stimulated GLP-1 secretion35. However, whereas fluorescent reporter mice for FFAR2 had only a few labeled enteroendocrine cells, reporter mice for the other short chain fatty acid receptor FFAR3 (GPR41) showed strong labeling of a number of enteroendocrine cells in the small intestine, including K- and L cells37. A recent publication reported a blunting of GLP-1, but not GIP, secretion in response to orally-administered butyrate in Ffar3 knockout mice36, and further work will be required to clarify the relative roles of these receptors in incretin-secreting cells. Another G\textsubscript{q}-coupled receptor, presumably underlying modulation of enteroendocrine secretion by the enteric nervous system, as it is activated by neuromedin C and gastrin-releasing peptide, is the bombesin receptor 2. Bombesin receptor 2 mRNA was found to be selectively enriched in L cells, but not K cells, and, consistent with this finding, bombesin increased calcium concentrations in L cells, but not K cells, and triggered GLP-1, but not GIP, secretion from primary small epithelial cultures as well as in a perfused intestinal preparation39.

Whether any of the predominantly G\textsubscript{q}-coupled receptors will be good targets for selective stimulation of GLP-1 secretion
in vivo will have to await further research. It should be noted, however, that a recent report of a so-called FFAR1 ‘superagonist,’ capable of triggering robust GLP-1 secretory responses, stresses the importance of the dual action of such compounds in recruiting both G$_{q}$- and G$_{s}$-coupled pathways. This latter notion is supported by our observation that raising intracellular cAMP levels with forskolin and IBMX boosts GIP and GLP-1 secretory responses to a number of agents that elevate enteroenodocrine cell cytosolic Ca$^{2+}$ concentrations, in primary epithelial cultures. A predominantly G$_{s}$-coupled receptor expressed in L cells, but not K cells, is the melanocortin receptor 4, and increased GLP-1 and PYY secretion in response to agonists has been shown, although currently the nature or source of the physiological ligand for this receptor on L cells is uncertain. Other predominantly G$_{q}$-coupled receptors, expression of which is enriched in L cells, include GPR119 (see above) and the bile acid-sensitive receptor, GPBAR1 (TGR5). Although there seems to be some expression of Gpbar1 in K cells, it is not enriched compared with the surrounding cells (Reimann and Gribble unpublished observation), making GPBAR1 one of the more promising receptors to ‘selectively’ stimulate GLP-1 secretion. However, we recently showed that bile acids need to access the basolateral rather than the apical/luminal surface of L cells to stimulate GLP-1 secretion through GPBAR1, and a similar observation was reported for agonists of GPR40. As melanocortin receptor 4 was also located to the basolateral side, the interesting question arises if any GPCRs directly sample the luminal contents. If all L cell GPCRs are instead located on the basolateral membrane, the potential hope to develop agents with limited systemic bioavailability to avoid off-target side-effects as a result of action on other cells expressing the receptors in question would be unfounded.

CONCLUSION
Although the success of GLP-1 analogs/mimetics in the treatment of type 2 diabetes and the correlation of strongly elevated postprandial GLP-1 levels after Roux-Y gastric bypass surgery strongly suggests benefits of recruiting endogenous GLP-1 reserves as a not yet exploited treatment alternative, the situation for GIP is less clear. Arguments have been put forward for developing both GIP-receptor agonists and antagonists. The differences observed in murine K- and L cells suggest that it is possible to elevate one incretin preferentially by external stimuli, but further work will be required before translation into a clinical therapy.

ACKNOWLEDGMENTS
Research in the Reimann and Gribble laboratories is currently funded by the Wellcome Trust (grants 106262/Z/14/Z and 106263/Z/14/Z), Full4Health (grants FP7/2011-2015 no 266408) and the Medical Research Council (MRC; grant MRC_MC_UU_12012/3).

DISCLOSURE
The authors declare no conflict of interest.

REFERENCES
1. Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest 1993; 91: 301–307.
2. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006; 368: 1696–1705.
3. Miyawaki K, Yamada Y, Ban N, et al. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 2002; 8: 738–742.
4. Fulurija A, Lutz TA, Sladko K, et al. Vaccination against GIP for the treatment of obesity. PLoS ONE 2008; 3: e3163.
5. Cho HJ, Kosari S, Hunne B, et al. Differences in hormone localisation patterns of K and L type enteroendocrine cells in the mouse and pig small intestine and colon. Cell Tissue Res 2015; 359: 693–698.
6. Svendsen B, Pedersen J, Albrechtsen NJ, et al. An analysis of cosecretion and coexpression of gut hormones from male rat proximal and distal small intestine. Endocrinology 2015; 156: 847–857.
7. Sjölund K, Sandén G, Häkanson R, et al. Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 1983; 85: 1120–1130.
8. Mortensen K, Christensen LL, Holst JJ, et al. GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 2003; 114: 189–196.
9. Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006; 290: E550–E559.
10. Habib AM, Richards P, Cairns LS, et al. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 2012; 153: 3054–3065.
11. Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 1974: 141: 503–519.
12. Richards P, Pais R, Habib AM, et al. High fat diet impairs the function of glucagon-like peptide-1 producing L-cells. Peptides 2015; 3: pii: S0196-9781(15)00189-8. doi: 10.1016/j.peptides.2015.06.006. [Epub ahead of print]. PMID:26145551
13. Gorboulev V, Schürmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61: 187–196.
14. Parker HE, Habib AM, Rogers GJ, et al. Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide
from primary murine K cells. *Diabetologia* 2009; 52: 289–298.

15. Parker HE, Adriaenssens A, Rogers G, *et al.* Predominant role of active versus facilitative glucose transport for glucagon-like peptide-1 secretion. *Diabetologia* 2012; 55: 2445–2455.

16. Reimann F, Habib AM, Tolhurst G, *et al.* Glucose sensing in L cells: a primary cell study. *Cell Metab* 2008; 8: 532–539.

17. Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. *J Clin Invest* 2015; 125: 908–917.

18. Powell DR, Smith M, Greer J, *et al.* Short-Chain Fatty Acids Stimulate Glucagon-Like Peptide-1 Secretion via the G-Protein-Coupled Receptor FFAR2. *Diabetes* 2012; 61: 364–371.

19. Reimann F, Gribble FM. Glucose-sensing in glucagon-like peptide-1-secreting cells. *Diabetes* 2002; 51: 2757–2763.

20. Kuhre RE, Frost CR, Svendsen B, *et al.* Molecular mechanisms of glucose-stimulated GLP-1 secretion from perfused rat small intestine. *Diabetes* 2015; 64: 370–382.

21. Ogata H, Seino Y, Harada N, *et al.* The GAL1 receptor in enteric enteroendocrine L cells mediate GLP-1 secretion from isolated perfused rat small intestine. *Diabetes* 2015; 64: 370–382.

22. Seino Y, Ogata H, Maekawa R, *et al.* Fructose induces glucose-dependent insulinotropic polypeptide, glucagon-like peptide-1 and insulin secretion: role of adenosine triphosphate-sensitive

23. El-Ouaghlidi A, Rehring E, Holst JJ, *et al.* The dipeptidyl peptidase 4 inhibitor vildagliptin does not accentuate glibenclamide-induced hypoglycemia but reduces glucose-induced glucagon-like peptide 1 and gastric inhibitory polypeptide secretion. *J Clin Endocrinol Metab* 2015; 92: 4165–4171.

24. Kuhre RE, Gribble FM, Hartmann B, *et al.* Fructose stimulates GLP-1 but not GIP secretion in mice, rats, and humans. *Am J Physiol Gastrointest Liver Physiol* 2014; 306: G622–G630.

25. Flatt PR, Kwasowski P, Bailey CJ. Stimulation of gastric inhibitory polypeptide release in ob/ob mice by oral administration of sugars and their analogues. *J Nutr* 1989; 119: 1300–1303.

26. Jang HJ, Kokashvili Z, Theodorakis MJ, *et al.* Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. *Proc Natl Acad Sci U S A* 2007; 104: 15069–15074.

27. Margolskee RF, Dyer J, Kokashvili Z, *et al.* T1R3 and gustducin in gut sense sugars to regulate expression of Na+/glucose cotransporter 1. *Proc Natl Acad Sci U S A* 2007; 104: 15075–15080.

28. Ma J, Bellon M, Wishart JM, *et al.* Effect of the artificial sweetener, sucralose, on gastric emptying and incretin hormone release in healthy subjects. *Am J Physiol Gastrointest Liver Physiol* 2009; 296: G735–G739.

29. Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. *Diabetes* 2008; 57: 2280–2287.

30. Christensen LW, Kuhre RE, Janus C, *et al.* Vascular, but not luminal, activation of FFAR1 (GPR40) stimulates GLP-1 secretion from isolated perfused rat small intestine. *Physiol Rep* 2015; 3(9): pii: e12551. doi: 10.14814/phy2.12551. PMID:26381015

31. Iwasaki K, Harada N, Sasaki K, *et al.* Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion. *Endocrinology* 2015; 156: 837–846.

32. Chu ZL, Carroll C, Alfonso J, *et al.* A role for intestinal enteroendocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulino- tropic Peptide release. *Endocrinology* 2008; 149: 2038–2047.

33. Moss CE, Glass LL, Diakogiannaki E, *et al.* Lipid derivatives activate GPR119 and trigger GLP-1 secretion in primary murine L-cells. *Peptides* 2015; 2: pii: S0196-9781(15)00195-3. doi: 10.1016/j.peptides.2015.06.012. [Epub ahead of print]. PMID:26144594

34. Moss CE, Marsh WJ, Parker HE, *et al.* Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucagon-dependent insulinotropic polypeptide from intestinal K cells in rodents. *Diabetologia* 2012; 55: 3094–3103.

35. Psichas P, Glass LL, Reimann F, *et al.* Galanin inhibits GLP-1 and GIP secretion via the GAL1 receptor in enteroendocrine L and K cells. *Br J Pharmacol* 2015; 12: doi: 10.1111/bph.13407. [Epub ahead of print]. PMID: 26661062

36. Nehr MK, Pedersen MH, Gille A, *et al.* GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. *Endocrinology* 2013; 154: 3552–3564.

37. Lin HV, Frassetto A, Kowalk EJ, *et al.* Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. *PLoS ONE* 2012; 7: e35240.

38. Svendsen B, Pais R, Engelstoft MS, *et al.* GLP1 and GIP-producing cells rarely overlap and differ by bocesin receptor-2 expression and responsiveness. *J Endocrinol* 2016; 228(1): 39–48.

39. Hauge M, Vestmar MA, Husted AS, *et al.* GPR40 (FFAR1) - Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. *Mol Metab.* 2015; 4: 3–14.

40. Panaro BL, Tough IR, Engelstoft MS, *et al.* The melanocortin-4 receptor is expressed in enteroendocrine L cells and
regulates the release of peptide YY and glucagon-like peptide 1 in vivo. *Cell Metab* 2014; 20: 1018–1029.

42. Brighton CA, Rievaj J, Kuhre RE, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally-located G-protein coupled bile acid receptors. *Endocrinology* 2015; 156: 3961–3970.

43. Jørgensen NB, Jacobsen SH, Dirksen C, et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. *Am J Physiol Endocrinol Metab* 2012; 303: E122–E131.

44. Irwin N, Flatt PR. Therapeutic potential for GIP receptor agonists and antagonists. *Best Pract Res Clin Endocrinol Metab* 2009; 23: 499–512.