Accurate determination of the Josephson critical current by lock-in measurements

Razmik A. Hovhannisyan1,2, Olena M. Kapran1, Taras Golod1, and Vladimir M. Krasnov1,7

1 Department of Physics, Stockholm University, AlbaNova University Center, SE-10691 Stockholm, Sweden
2 Moscow Institute of Physics and Technology (State University), 9 Institutskiy per., 141700 Dolgoprudny, Russia

(Dated: December 9, 2021)

Operation of Josephson electronics usually requires determination of the Josephson critical current I_c, which is affected both by fluctuations and measurement noise. Lock-in measurements allow obviation of $1/f$ noise and, therefore, provide a major advantage in terms of noise and accuracy with respect to conventional dc-measurements. In this work we show both theoretically and experimentally that the I_c can be accurately extracted using first and third harmonic lock-in measurements of junction resistance. We derive analytic expressions and verify them experimentally on nano-scale Nb-PtNi-Nb and Nb-CuNi-Nb Josephson junctions.

I. INTRODUCTION

A Josephson junction (JJ) is the key element of superconducting electronics \cite{1}. Operation of Josephson devices usually involves manipulation and determination of the Josephson critical current, I_c. Conventional dc-measurements of I_c are complicated by two factors. First, I_c in small junctions is subject to both thermal and quantum fluctuations \cite{2,3}. However, they are particularly large in quantum devices, such as qubits, and require statistical determination of I_c with a large number of measurements \cite{4,5}. Second, dc-measurements are strongly affected by the flicker $1/f$ noise. Simultaneously, they allow a statistical averaging over an arbitrary number of periods. In recent works \cite{18,19} it has been noticed that the magnetic field modulation of the junction lock-in resistance reflects the corresponding $I_c(H)$ modulation and can be used for extraction of I_c. However, such extraction requires proper mathematical justification and experimental verification, which is the main motivation of this work.

In this work we study both theoretically and experimentally how the critical current of resistively shunted Josephson junctions (RSJ) can be deduced from lock-in measurements of ac-resistance, R_{ac}. First we present a simple analytical solution for the relation between I_c and different harmonics of R_{ac}. Next, we use derived expressions for determination of I_c for nano-scale proximity-coupled Nb-PtNi-Nb and Nb-CuNi-Nb JJ’s. We demonstrate that the formalism leads to a robust reconstruction of I_c in a broad range of ac-current amplitudes, I_{ac}. We also show that, with some minor adjustments taking into account eventual field-dependence of the normal resistance, $R_n(H)$, and deviations of the I-V shape from the RSJ model, the formalism can be employed for accurate determination of the $I_c(H)$ modulation. We conclude that it is advantageous to use both the 1st and the 3rd lock-in harmonics for unambiguous determination of I_c.

II. THEORETICAL ANALYSIS OF THE LOCK-IN RESPONSE IN THE RSJ MODEL

The shape of the I-V in the RSJ model is

$$V = IR_n\sqrt{1 - (I_c/I)^2}$$

(1)

for $I > I_c$ and $V = 0$ for $I < I_c$. We assume that the bias is provided by the periodic ac-current, $I = I_{ac} \sin \omega t$, with the period $T = 2\pi/\omega$ and the amplitude $I_{ac} > I_c$. The m-th harmonics of the lock-in response at $\omega_m = m\omega$ is given by the m-th Fourier component,

$$V_m = \frac{1}{T} \int_{-T/2}^{T/2} V(t) \sin(m\omega t) dt,$$

(2)

Eqs. (1) and (2) lead to simple expressions for lock-in harmonics of resistance, $R_m = V_m/I_{ac}$, first three of which are:

$$\frac{R_1}{R_n} = 1 - \left[\frac{I_c}{I_{ac}} \right]^2,$$

(3)

$$\frac{R_2}{R_n} = 0,$$

(4)

$$\frac{R_3}{R_n} = \left[\frac{I_c}{I_{ac}} \right]^4 - \left[\frac{I_c}{I_{ac}} \right]^2.$$

(5)

Thus the I_c can be deduced from either 1st or 3rd harmonics of the lock-in resistance:

$$I_c(R_1) = I_{ac} \sqrt{1 - \frac{R_1}{R_n}},$$

(6)

$$I_c(R_3) = \frac{I_{ac}}{\sqrt{2}} \sqrt{1 - \left[1 + \frac{R_3}{R_n} \right]}$$

(7)
In experiment it often happens that the I-V is asymmetric with different positive and negative critical currents, $I_{c+} \neq I_{c-}$. This is typically due to the self-field effect, or junction inhomogeneity \[20, 21\]. In this case $(I_c/I_{ac})^k (k = 2, 4)$ in Eqs. (3) and (5) should be replaced by the mean value $[(I_{c+}/I_{ac})^k + (I_{c-}/I_{ac})^k]/2$. Since now there are two unknown parameters I_{c+} and I_{c-}, their determination requires the knowledge of both R_1 and R_3:

$$I_{c \pm} = \frac{I_{ac}}{\sqrt{2}} \sqrt{a \pm \sqrt{b - a^2}},$$

$$a = \left(1 - \frac{R_1}{R_n}\right), \quad b = \left(\frac{R_3}{R_n} + \frac{R_1}{R_n} - 1\right).$$

(8)

All even harmonics remain zero, unless there is a hysteresis in the I-V with retrapping current $I_r < I_c$ \[5\]. In this case Eqs. (3) and (4) should be replaced by $R_1/R_n = (a_c^2 + a_r^2)/2$ and $R_2/R_n = (4/3\pi)\left[a_c^3 - a_r^3\right]$, where $a_c^2 = 1 - (I_{c,c}/I_{ac})^2$. Similar to the asymmetric case, Eq.(8), measurements of two harmonics $R_{1,2}$ are needed for determination of the two unknown variables I_c and I_r in this case.

Finally, we note that the shape of the I-V may deviate from the RSJ expression, Eq. (1). In general, a similar analysis can be expanded to any shape of the I-V. We will not consider this rigorously because there is no explicit analytical solution. Instead, we propose a simple phenomenological modification of Eq. (6) with an additional fitting parameter β:

$$I_c(R_1) = I_{ac} \left[1 - \frac{R_1}{R_n}\right]^\beta,$$

(9)

with $\beta = 0.5$ in the RSJ case, Eq. (6).

III. COMPARISON WITH EXPERIMENT

We present data for nano-scale proximity-coupled junctions Nb-PtNi-Nb and Nb CuNi-Nb. Junctions are made from trilayer films using 3D nanosculpturing by Focused Ion Beam (FIB). Details of fabrication and junction characteristics can be found in Refs. \[18, 19, 22\]. Figure 1(a) shows scanning electron microscopy (SEM) image and a sketch of one of the studied Nb-PtNi-Nb
FIG. 2. (a) I-V characteristics of the Nb-PtNi-Nb junction at $T = 4.47$ K and at different in-plane magnetic fields. Black lines represent RSJ fits. (b) and (c) Field modulation of the 1st (b) and the 3rd (c) lock-in harmonics of resistance for this junction. (d) Magnetic field modulation of critical currents measured experimentally, I_c(exp), (black symbols) and reconstructed from the 1st (red) and 3rd (blue line) lock-in harmonics.

junctions (see Ref. [22] for more details about properties of Nb-PtNi-Nb JJ’s).

Fig. 1(b) shows the I-V characteristics of a Nb-PtNi-Nb junction with sizes 250×1000 nm2 at a fixed $T = 4.47$ K and with no applied magnetic field, $H = 0$. Red dots represent experimental data and a thin black line - corresponding numerical fits using the RSJ Eq. (1). It is seen that the fit is good with exception of the region close to I_c. The deviation may be either due to an intrinsic difference of the I-V shape with a smoother than Eq. (1) increase of voltage at $I \approx I_c$, or due to smearing by fluctuations and noise [4, 5]. Therefore, the fit by Eq. (1) yields a somewhat overestimated value of I_c(Eq.1) = 200 μA, which is larger than the value deduced from the experimental I-V, I_c(exp) = 187 \pm 8 μA, where the uncertainty is due to smearing.

Fig. 1(c) represents the measured 1st harmonic resistance, R_1, for this junction as a function of I_{ac} (red circles) at $H = 0$ and $T = 4.47$ K. Lock-in measurements are performed at $f = 13$ Hz with the averaging time of 1 s. The black solid line is obtained from Eq. (3), using I_c as the only fitting parameter. The fit works well in a broad range of I_{ac} and yields I_c(Eq.3) = 200 μA. Fig. 1(d) represent I_c deduced from the same $R_1(I_{ac})$ data with the help of Eq. (6), using R_n as the only fitting parameter. Horizontal lines show I_c(exp) (solid) and I_c(Eq.1) = I_c(Eq.3) (dashed line) values. It can be seen that all methods of reconstruction of I_c from R_1 work well and provide I_c values in the range of experimental uncertainties, marked by error bars on I_c(exp) in Fig. 1(d). From Figs. 1(c) and (d) it is seen that such the reconstruction provides reliable I_c values in a broad bias range $1.3I_c < I_{ac} < 2I_c$. Discrepancies outside this range are caused by deviations of the I-V shape from the RSJ Eq. (1) due to smearing at low bias and, possibly, self-heating at large bias [5]. The independence of the extracted I_c from the bias, I_{ac}, indicates the robustness of the method.
IV. RECONSTRUCTION OF MAGNETIC FIELD MODULATION $I_c(H)$

Magnetic field modulation, $I_c(H)$, is a figure of merit for JJ quality and uniformity [20]. Measurement of $I_c(H)$ at integer number of flux quanta in the JJ and at high fields, when $I_c(H)$ becomes small, is challenging because of enhanced susceptibility to fluctuations and noise at low Josephson energies [2]. Lock-in measurements of I_c become particularly useful in this case [18, 19].

Fig. 2(a) shows a set of I-V’s for the same Nb-PtNi-Nb JJ at $T = 4.47$ K and for different in-plane magnetic fields perpendicular to the long side of the JJ. It is seen that the I_c is completely suppressed at $H \simeq 100$ Oe. Figs. 2(b) and (c) show 1st and 3rd harmonics of lock-in resistance vs. H, measured at a fixed $I_{ac} = 315 \mu A$. It is seen that both are carrying information about the Fraunhofer $I_c(H)$ modulation. Due to the small sizes of the JJ, the flux quantization field and the overall field range is rather large. This leads to a visible parabolic fields dependence of the junction resistance $R_n(H)$, indicated by the black line in Fig. 2(b). Black dots in Fig. 2(d) represent magnetic field modulation of $I_c(exp)$, obtained directly from the I-V’s. The determination is made using a threshold voltage criterion, $V < V_{th}$. Red and blue lines represent $I_c(R_1)$ and $I_c(R_3)$ values, recalculated from the 1st and 3rd lock-in harmonics, respectively, using Eqs. (6) and (7) with the actual $R_n(H)$ dependence, shown in Fig. 2(b). It is seen that both modulation patterns $I_c(R_1)$ and $I_c(R_3)$ are in a quantitative agreement with $I_c(exp)$ in the whole field range. At high fields, $|H| > 300$ Oe, modulation of $I_c(exp)$ is practically unresolvable, but for $I_c(R_1)$ and $I_c(R_3)$ it is clearly seen. Furthermore, $I_c(R_3)$ has a significantly larger signal-to-noise ratio than $I_c(R_1)$ due to a smaller $1/f$ noise.

In Figure 3 we analyze data for another Nb-CuNi-Nb junction with sizes 250×500 nm2 (for more details about junction properties, see Refs. [19, 19]). Fig. 3(a) shows the I-V at $H = 0$ and $T \simeq 0.4$ K. Here a deviation from the RSJ shape, Eq. (1), in a form of a smoother, almost linear, deviation of V from zero at $I \sim I_c$ can be seen more clearly than for the Nb-PtNi-Nb JJ, Fig. 1(a). Fig. 3(b) shows field modulation (for the down-ward field sweep) of the 1st harmonic lock-in resistance measured at $f = 123$ Hz and $I_{ac} \simeq 42.3$ μA. Fig. 3(c) shows magnetic field modulation of the measured $I_c(exp)$ (blue symbols) obtained using a threshold criterion from the I-V curves. Since the shape of I-V’s of this junction deviates from RSJ, we used the modified expression Eq. (9) using β as the only fitting parameter for extraction of $I_c(R_1)$. The red line in Fig. 3(c) demonstrates a result of such fitting with $\beta = 0.8$. Apparently, it not only properly reproduces $I_c(H)$, but also significantly reduces noise and corrects an artifact of inaccurate dc-measurement of small critical currents, $I_c < V_{th}/R_n$. Thus, introduction of a phenomenological parameter β provides a simple way of accounting for the non-RSJ shape of the I-V curve of a junction.

Finally, we want to emphasize, that the discussed method is applicable for junctions with RSJ-like I-V’s with arbitrary I_c and R_n, at any T, and for any type of fluctuations (quantum or thermal). In Fig. 3(c) the smallest reconstructed I_c at $H \sim \pm 2000$ Oe is in the 100 nA range and the readout voltage $I_cR_n \sim 10$ nV. These are very good number for conventional measurements with averaging time of 1 s and without any special precautions.

CONCLUSIONS

To summarize, we have shown that lock-in measurements can be advantageously used for accurate determination of critical currents in small Josephson junctions, for which direct dc-determination of I_c is complicated by noise and fluctuations. We have derived explicit and simple analytic expressions for the RSJ model and suggested

FIG. 3. (a) The I-V characteristics of a Nb-CuNi-Nb junction at $H = 0$ and $T \simeq 0.4$ K. The dashed line indicates normal resistance $R_n = 115.2$ mΩ. (b) Measured field dependence of the 1st harmonic lock-in resistance R_1. The horizontal dashed line indicates the R_n level. (c) Field modulation of the critical current, determined from I-V’s (blue symbols), and recalculated from R_1 (red line) using Eq. (9).
a simple phenomenological modification for the non-RSJ case. The formalism was verified experimentally on nanoscale proximity-coupled junctions. We conclude that it is advantageous to measure both the 1st and the 3rd lock-in harmonics, which together allow robust and almost bias-independent reconstruction of the critical current. Generally it may be useful also measure higher odd harmonics for further improvement of the proposed method. We argue that the developed technique provides a major advantage for read-out of various superconducting devices.

ACKNOWLEDGMENTS

The work was supported by the Russian Science Foundation grant No. 19-19-00594. We are grateful to A. Ivan for assistance with fabrication of Nb-CuNi-Nb junctions. The manuscript was written during a sabbatical semester of V.M.K. at MIPT, supported by the Faculty of Science at SU.

[1] K. K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach Sc. Publ., Amsterdam, 1986).
[2] J.M. Martinis, M.H. Devoret, and J. Clarke. Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. *Phys. Rev. B* 35, 4682 (1987).
[3] J.M. Martinis and H. Grabert. Thermal enhancement of macroscopic quantum tunneling: Derivation from noise theory. *Phys. Rev. B* 38, 2371 (1988).
[4] R.L. Kautz and J.M. Martinis. Noise-affected I-V curves in small hysteretic Josephson junctions. *Phys. Rev. B* 42, 9903 (1990).
[5] V. M. Krasnov, T. Golod, T. Bauch and P. Delsing. Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. *Phys. Rev. B* 76, 224517 (2007).
[6] Y. Makhlin, G. Schön, A. Shnirman. Statistics and noise in a quantum measurement process. *Physical review letters* 85(21), 4578 (2000).
[7] E. Paladino, L. Faoro, G. Falci, and R. Fazio. Decoherence and 1/f noise in Josephson qubits. *Physical Review Letters* 88(22), 228304 (2002).
[8] V. M. Krasnov, T. Golod, T. Bauch and P. Delsing. Anticorrelation between temperature and fluctuations of the switching current in moderately damped Josephson junctions. *Phys. Rev. B* 76, 224517 (2007).
[9] T. Faivre, D. Golubev, and J. P. Pekola. Josephson junction based thermometer and its application in bolometry. *Journal of Applied Physics*, 116(9), 094302 (2014).
[10] R. Gross, , P. Chaudhari, M. Kawasaki, M. B. Ketchen, and A. Gupta. Low noise $YBa_2Cu_3O_{7-δ}$ grain boundary junction de SQUIDs. *Applied physics letters*, 57(7), 727-729, (1990).
[11] D.R. Koelle, F. Kleiner, E. D. Ludwig and J. Clarke. High-transition-temperature superconducting quantum interference devices.*Reviews of Modern Physics* 71(3), 631 (1999).
[12] J.R. Kirtley, L. Paulinus, A.J. Rosenberg, J.C. Palmstrom, C.M. Holland, E.M. Spanton, D. Schiessl, C.L. Jermain,J. Gibbons, Y.K.K. Fung and M.E. Huber. Scanning SQUID suscepctometers with sub-micron spatial resolution. *Review of Scientific Instruments*, 87(9), 093702 (2016).
[13] A. Finkler, Y. Segev,Y. Myasoedov,M.L. Rappaport, L. Ne’eman, D. Vasyukov, E. Zeldov, M.E. Huber, J. Martin, A. Yacoby. Self-aligned nanoscale SQUID on a tip. *Nano letters* 10(3), 1046-9 2010.
[14] S. Biswas, C. B. Winkelmann, H. Courtois, and A. K. Gupta. Josephson coupling in the dissipative state of a thermally hysteretic μ-SQUID. *Physical Review B*, 98(17), 174514 (2018).
[15] B. Dimov, D. Balashov, M. Khabipov, T. Ortlepp, F.I. Buchholz, A.B. Zorin, J Niemeyer, F.H. Uhleman. Implementation of superconducting passive phase shifters in high-speed integrated RSFQ digital circuits. *Superconductor Science and Technology*, 21(4) 045007 (2008).
[16] W. Wiedemann, E. Bocquillon, R.S. Deacon, S. Hartinger, O. Herrmann, T.M. Klappwijk, L. Maier, C. Ames, C. Brine, C. Gould and A. Oiwa. 4 π-periodic Josephson supercurrent in HgTe-based topological Josephson junctions. *Nature communications*, 7(1), pp.1-7 (2016).
[17] F. Dominguez, F. Hassler, and G. Platero. Dynamical detection of Majorana fermions in current-biased nanowires. *Physical Review B*, 86(14), 140503 (2012).
[18] A. A. Kalenyuk, A. Pagliero, E. A. Borodianskyi, A. A. Kordyuk, and V. M. Krasnov, Phase-Sensitive Evidence for the Sign-Reversal $σ_{x}$ Symmetry of the Order Parameter in an Iron-Pnictide Superconductor Using Nb/Ba$_{1-x}$Na$_x$Fe$_2$As$_2$ Josephson Junctions, *Phys. Rev. Lett.* 120, 067001 (2018).
[19] O. M. Kapran, T. Golod, and V. M. Krasnov. Controllable generation of a spin-triplet supercurrent in a Josephson spin valve. *Phys. Rev. B* 90, 134514 (2014).
[20] V. M. Krasnov, A. Iovan, T. Golod, and V. M. Krasnov. Observation of the dominant spin-triplet supercurrent in Josephson spin valves with strong Ni ferromagnets. *Phys. Rev. Research* 2, 013167 (2020).
[21] V.M. Krasnov, V.A. Obozov, and N.F. Pedersen. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity. *Phys. Rev. B* 55, 14486–14498 (1997).
[22] V.M. Krasnov. Josephson junctions in a local inhomogeneous magnetic field. *Phys. Rev. B* 101, 144507 (2020).