Deactivation of Mesoporous Titanosilicate-supported WO$_3$ Catalyst for Metathesis of Butene to Propene by Coke

Derun Hua*, Zheng Zhou1, Jian Li1, Yongrong Xie1 and Xinning Lu1

1Chemical Institute of Chemical Industry, Gannan Normal University, Jingxi, 341000, China
2Natural Gas Processing Plant of Sinopec Zhongyuan Oilfield Branch, Henan, 457000, China

Abstract

Catalyst deactivation by coke was studied during metathesis of butene to propene on the WO$_3$/MTS-9 catalyst. Characterization results of the coked catalyst showed that the pore volume, pore size, and specific surface area of the catalyst decreased significantly for coke; the coke amount in larger pore of catalyst was higher than that in smaller pores of the catalyst. Coke resulted in the decrease of the acidic amount and the activity of catalyst. The component of carbon deposition was aromatic-olefin compounds.

Keywords: Deactivation; Metathesis; Coke; MTS-9

Introduction

Olefin metathesis reported in the 1960s by Banks is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds [1]. Olefin metathesis has been used as an important way for olefin conversion and offers a path to convert low value olefins into high-value olefins, such as propene, ethene [2-5], short-chain olefin to long-chain olefin [6,7], and butene to propene [8,9]. Supported WO$_3$ catalysts are known to catalyze the reaction [8-11] and are currently applied industrially for heterogeneous catalysis metathesis reactions. Now, many studies have been carried out to improve performance of supported WO$_3$ catalysts [12,13]. Many factors, such as the method of catalyst preparation, reaction conditions, structure of the support and so on, affect catalytic activity. Debecker et al. [14] and Debecker et al. [15] prepared WO$_3$-based metathesis catalyst with high catalytic performance and shorter induction period by the one-step Sol-gel process. One-pot sol-gel catalysts perform better than corresponding impregnated catalysts, which were attributed to fact that the sol-gel method can control well on the final composition and textures of catalyst. Piyasan et al. [16] found that WO$_3$/SiO$_2$ catalysts treated by NaOH held a shorter induction period and low coke at the same metathesis activity. Piyasan et al. [17] suggested that silica-supported tungsten catalysts mixed with micro- and nano-sized SiO$_2$ excess support favored to form isolated surface tetrahedral tungsten oxide species. Phatanasri et al. [18] found that the calcination temperature markedly affected physico-chemical properties of the catalysts, particularly the active species of WO$_3$/SiO$_2$ catalysts. Khattaf et al. [19] investigated MCM-41- and SBA-15-supported tungsten catalyst. Supported oxide catalysts and mesoporous catalysts have been reviewed recently [20,21].

As heterogeneous catalysis, catalysts deactivation often occurs during olefin-metathesis reactions due to carbonaceous species formed on catalyst surface. The carbonaceous species deposit on the surface of catalyst, and results in deactivation of the catalyst. The mechanism for catalyst deactivation is complex. The causes of deactivation are various, such as poisoning, valence change of active sites, and active-site coverage [22]. For different types of catalysts employed to olefin-metathesis reactions, their deactivation reasons are different. For Re-supported catalysts, deactivation results from poisoning, and poison are adsorbed strongly on the surface of catalyst and hinder reactant to access the active sites [23]. For Mo-supported catalyst, the deep-reduction of Mo species may be the main reason for its deactivation during metathesis [24]. For the tungsten catalytic system, high reaction temperatures (300–500°C) have to be used in order to achieve high metathesis activity and avoid poisoning [25], but coke is easy to form at a high temperature and high acid, and deposits on the surface of catalyst [16,26]. In the last few years, a large amount of investigations have been undertaken to study coke deposits (location and total amount) and to obtain information regarding the deactivation mechanism and regeneration. Moodley [27] investigated the effect of the coke amount on catalytic activity and the coking location, and found that 2-Pentanone was the most effective inhibitor for coking, and the location of coke deposition is a more important factor than the coke amount. In the case of alkene metathesis, deep-reduction may result in deactivation [28]. Besides, it was found that water and polar solvents are useful to coke retardation [25,29] at a high temperature. Unfortunately, the coking location and the structure of carbon species are not clear.

In this study, the optimized 8.0 wt.% W supported on MTS-9 was used as the catalyst for metathesis of butene to propene. The deactivated catalyst was characterized, and regenerated by treating at 500°C in atmosphere. N$_2$ adsorption-desorption was used to detect pore size and pore volume of the catalyst before and after reaction. 13C-NMR and UV-Raman are used to investigate the nature of the carbonaceous species. STEM (scanning transmission electron microscopy) and EFTEM (energy filtered transmission electron microscopy) are used to monitor the coked location.

Experimental

Preparation of catalyst

MTS-9 was hydrothermally synthesized in a two-step procedure as given in the literature. First, precursors containing titanosilicate (TS-1) nanoclusters were prepared. Second, the preformed precursors were assembled with triblock copolymers in a strong acid medium.
The same conditions, carbon deposit depends on the texture of the catalyst. It is compared (see Figure 2a). It is found that the spent catalyst had a smaller pore volume than the fresh catalyst, suggesting that pore blockage occurs for carbon deposition. The texture of the catalyst is listed in Table 1. The distribution of the pore size of the spent catalyst is presented in Figure 2b. The Figure 2b shows that carbonaceous deposit filled the pores of the catalyst. The carbon deposit amount in the larger pores is higher than that in the smaller pores. Coking depends mainly on feedstock, temperature, catalyst acidity and pore size [33]. At the same conditions, carbon deposit depends on the texture of the catalyst. The available space was larger. The coking amount was greater.

Citation: Hua D, Zhou Z, Li J, Xie Y, Lu X (2016) Deactivation of Mesoporous Titanosilicate-supported WO3 Catalyst for Metathesis of Butene to Propene by Coke. J Thermodyn Catal 7: 162. doi:10.4172/2160-7544.1000162

Results and Discussion

After 320 h, the conversion of butene decreases from ca. 50% to ca. 25% (see Figure 1). The catalyst was discharged, then characterized to study the mechanism of coking and the deactivation reason. The N2 adsorption-desorption isotherms of the fresh and spent catalysts is compared (see Figure 2a). It is found that the spent catalyst had a smaller pore volume than the fresh catalyst, suggesting that pore blockage occurs for carbon deposition. The texture of the catalyst is listed in Table 1. The distribution of the pore size of the spent catalyst is presented in Figure 2b. The Figure 2b shows that carbonaceous deposit filled the pores of the catalyst. The carbon deposit amount in the larger pores is higher than that in the smaller pores. Coking depends mainly on feedstock, temperature, catalyst acidity and pore size [33]. At the same conditions, carbon deposit depends on the texture of the catalyst. The available space was larger. The coking amount was greater.

The scanning transmission electron microscopy (STEM) images of the spent and fresh catalyst are shown in Figure 3. The lightest regions (dashed circle) show the crystallites of tungsten oxide on the silica support. The lighter regions (dashed rectangle) show the surface tungsten interacting with support. The darkest regions (solid rectangle) show the support. The pore fingerprint of the fresh catalyst is clear in Figure 3A, but that of the spent catalyst is not found in Figure 3B.

Sample	Pore diameter (nm)	Totol pore volume (cm3/g)	Micropore volume (cm3/g)	Mesopore surface area (m2/g)
MTS-9	6.75	0.987	0.048	489.1
Catalyst	6.346	0.7125	0.0205	436.5
Spent catalyst	5.84	0.2944	0.002508	201.6

Table 1: Textural features of support and catalyst.

Time on stream/ h	Butene conversion/ %
0	45
50	40
100	35
200	30
300	25
350	20

Figure 1: Function of butene conversion with time.

Figure 2: N2-adsorption isotherm and the distribution of the pore size of spent and fresh catalyst.

Figure 3: STEM micrograph of the fresh (A) and spent (B) catalysts.
The EFTEM technique is used to acquire the location of coke on the WO\(_3\)/MTS-9 catalyst. The carbon map of the catalyst is shown in Figure 4A; the tungsten map of the catalyst is shown in Figure 4B. In Figure 4C, red regions are carbon maps, and the blue regions are tungsten maps. The carbon maps in Figure 4C show that all the carbon (red region) surrounds the tungsten oxide (blue region in the centre), that is, carbon deposition occurs around the tungsten, and tungsten is not covered by carbon. Effect of coke on the acidic amount of catalysts is listed in Table 2. A comparison of the acidic amount of catalysts, it is found that the acidic amount of the fresh catalyst is more than that of support, which indicates that the formation of new acidic sites is resulted from the interaction of tungsten and support. However, the acidic amount of the spent catalyst is less than that of the fresh catalyst, even is less than that of support, which indicates the acidic sites are covered by coke. Namely, the coking location is at the acidic sites.

We attempt to study the composition of coke by \(^1^3\)C-NMR (Figure 5). As shown in Figure 5, the resonance line of the spent catalyst is wide, indicating that condensed carbonaceous compounds are present [34]. Besides the above information, the \(^1^3\)C-NMR spectrum of spent catalyst exhibits two distinct groups of resonance lines, which are assigned to aliphatic (0-50 ppm) and aromatic (100-150 ppm) carbons. The resonance peak at 25 ppm is attributed to methyl group attached to aromatic ring [35]. The resonance peak at 47 ppm is assigned to methyl-substituted cyclopentenyl carbocation, which was reported as intermediates in the formation of aromatic hydrocarbon [36]. The resonance peak at 127 ppm corresponds to aromatic C-H bonds or olefin [37,38]. Since the operation temperature is above 350°C, coke components are polyaromatic regardless of other conditions [33].

Figure 6 shows the ultraviolet Raman spectrum of the fresh and spent catalysts. For the fresh catalyst, Raman spectrum consisted mainly of bands at 995 and 1087 cm\(^{-1}\). Raman bands of 1087 and 995 cm\(^{-1}\) are the characteristic of surface tungsten oxide species (active species). Bands at 1087 and 995 cm\(^{-1}\) corresponded to the stretching vibration mode of the terminal bond of isolated surface tungsten oxide species and surface poly tungsten, respectively [39,40]. On the spent catalyst, the strong bands of 1396 and 1610 cm\(^{-1}\) were observed. It was interesting that bands of 1087 and 995 cm\(^{-1}\) disappear or become weak. This is because the bands due to carbon are more intense and flatten Raman bands at 1087 and 995 cm\(^{-1}\).

Raman bands assignments for vibrations in the region from 1000 to 1650 cm\(^{-1}\) are listed in Table 3 [41]. Compared Table 2 with the UV-Raman spectra of spent catalyst (Figure 6), bands at 1396 and 1610 cm\(^{-1}\) correspond to the ring stretches of poly aromatic species. Based on the results of \(^1^3\)C-NMR (Figure 5) and UV-Raman spectra (Figure 6) of the spent catalyst, it is definite that the component of coke is poly aromatic species.

The UV-Raman spectrum of the spent catalyst is compared with the UV-Raman spectra of a series of polyaromatic compounds, such as naphthalene, phenanthrene, anthracene, fluorene, pyrene, pentacene, and coronene. UV-Raman measurements of these compounds have been reported previously by Chua and Stair [41,42], and Johnson [29]. By contrast, the spectrum of carbon deposits on WO\(_3\)/MTS-9 is similar to that of the chain-like polyaromatic compounds, such as naphthalene and pentacene.

The \(^1^3\)C-NMR and UV-Raman spectrum provides some evidence for coke configuration. The formation of coke molecules includes condensation, hydrogen transfer and dehydrogenation processes. So the following reaction scheme (Figure 7) can be proposed to explain the formation of coke molecules. Benzenic compounds are formed through the scheme of aromatization on the WO\(_3\)/MTS-9 catalyst.

The deactivated catalyst was regenerated at 500°C under air flow, and the performance of the fresh and regenerated catalyst was compared, as shown in Figure 8a. It can be seen that the activity of the regenerated catalyst is comparable to that of the fresh one, suggesting that the regeneration of the deactivated catalyst is feasible. Figure 8b shows Raman spectra of the regenerated and fresh catalyst.

Table 2: The acidic amount of catalysts.

Catalysts	WO\(_3\)	MTS-9	Fresh catalyst	Spent catalyst
Acidic amount (mmol/g)	0	0.188	0.261	0.157

Citation: Hua D, Zhou Z, Li J, Xie Y, Lu X (2016) Deactivation of Mesoporous Titanosilicate-supported WO\(_3\) Catalyst for Metathesis of Butene to Propene by Coke. J Thermodyn Catal 7: 162. doi: 10.4172/2160-7544.1000162
In comparison with Raman spectra of the fresh catalyst, there are no changes. So the fresh and regenerated catalyst holds the same activity.

Conclusions

According to results of BET, EFTEM and Raman, deactivation of WO\(_3\)/MTS-9 catalyst is attributed to the pore blockage. Coke results in the decrease of the acidic amount of the spent catalyst. According to our experiments, the coking location successfully determined is on the support and the active sites rather than the tungsten oxide crystallite and results indicate that the decrease of catalytic activity results from the coverage of the active sites. The deposited carbon is aromatic and results indicate that the decrease of catalytic activity results from the support architecture. Microporous and Mesoporous Mater 96: 44-54.

In the metathesis reaction between ethene and 2-butene, the fresh and regenerated catalyst holds the same activity. As reported in the literature, the fresh and regenerated catalyst holds the same activity.

References

1. Andreini A, Xu XD, Mol JC (1986) Activity of Re\(_{2}\)O\(_3\)/SiO\(_2\)/Al\(_2\)O\(_3\) catalysts for propene metathesis and the influence of alkylfuran promoters. Appl Catal A: General 27: 31-40.

2. Topka P, Balcar H, Rathousky J, Zílková N, Verpoort F, et al. (2006) Metathesis of 1-octene over MoO\(_3\) supported on mesoporous molecular sieves: The influence of the support architecture. Microporous and Mesoporous Mater 96: 44-54.

3. Aarkrog J, Escola J, Castro M, Paredes B (2005) Metathesis of 1-hexene over rhenium oxide supported on ordered mesoporous aluminas: comparison with Re(2O)\(_3\)/Al\(_2\)O\(_3\). Appl Catal A: General 294: 47-57.

4. Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, et al. (2009) Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 41: 205-210.

5. Aard G, Abbott B, Abdallah J, Abdinov O, Aben R, et al. (2015) Combined Measurement of the Higgs Boson Mass in pp Collisions at sqrt(s)=7 and 8 TeV with the ATLAS and CMS Experiments. Phys Rev Lett 114: 191803.

6. Debecker DP, Stoyanova N, Rodemerk U, Colbeau-Justin F, Boisserie C, et al. (2014) Aerosol route to nanostructured WO\(_3\)-SiO\(_2\)-Al\(_2\)O\(_3\) metathesis catalysts: Toward higher propene yield. Appl Catal A: General 470: 458-466.

7. Huang S, Liu S, Zhu Q, Zhu X, Xin W, et al. (2007) The effect of calcination time on the activity of WO\(_3\)/Al\(_2\)O\(_3\)/HY catalysts for the metathesis reaction between ethene and 2-butene. Appl Catal A: General 323: 94-103.

8. Huang S, Liu S, Xin W, Bai J, Xie S, et al. (2005) Metathesis of ethene and 2-butene to propene on W(Al)/Al\(_2\)O\(_3\))/HY catalysts with different HY contents. Mol Catal A: Chemical 226: 61-68.

9. Maksaisthorn S, Praserthdam P, Suriye K, Debecker DP (2015) Preparation of super-microporous WO\(_3\)-SiO\(_2\) olefin metathesis catalysts by the aerosol-assisted sol-gel process. Microporous and Mesoporous Mater 213: 125-133.

10. Bhuiyan TI, Arudra P, Akhtar MN, Aitani AM, Abudawoud RH, et al. (2013) Comparative study between tungsten containing MCM-41 and SBA-15. Appl Catal A: General 428: 200-207.

11. Bhuiyan TI, Arudra P, Aitani AM, Abudawoud RH, et al. (2013) Metathesis of 2-butene to propylene over W/mesoporous molecular sieves: A comparative study between tungsten containing MCM-41 and SBA-15. Appl Catal A: General 428: 224-234.

12. Banks R, Bailey G (1964) Olefin Disproportionation. A New Catalytic Process. Ind Eng Chem Prod Res Dev 3: 170-173.

13. Basur AG, Patwardhan SR, Vyas SN (1991) Propene metathesis over silica-supported tungsten oxide catalyst—Catalyst induction mechanism. J Catal 127: 96-95.

14. Andreini A, Mol JC (1985) Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. J Chem Soc Faraday Trans I 81: 1705-1714.

15. Schalkwyk CV, Spamer A, Moodley DJ, Dube T, Reynhardt J, et al. (2003) Factors that could influence the activity of a WO\(_3\)/SiO\(_2\) catalyst: Part III. Appl Catal A: General 255: 143-152.
26. Gangwal SK, Fathi-kalajahi J, Wills GB (1977) Break-in Behavior of a Tungsten Oxide on Silica Catalyst in Propylene Disproportionation. Ind Eng Chem Prod Res Dev 16: 237-241.

27. Moodley DJ, Schalkwyk CV, Spamer A, Botha JM, Datye AK (2007) Coke formation on WO3/SiO2 metathesis catalysts. Appl Catal A: General 318: 155-159.

28. Mol JC (1997) Handbook of Heterogeneous Catalysis. 2nd edition.

29. Siddiqui MRH, Holmes S, He H, Smith W, Coker EN, et al. (2000) Coking and regeneration of palladium-doped H3PW12O40/SiO2 catalysts. Catal Lett 66: 53-57.

30. Khomane RB, Kulkami BD, Paraskar A, Sairkar SR (2002) Synthesis, characterization and catalytic performance of titanum silicate-1 prepared in micellar media. Mater Chem Phys 76: 99-103.

31. Meng X, Li D, Yang X, Yu Y, Wu S, et al. (2003) Synthesis, Characterization, and Catalytic Activity of Mesostructured Titanosilicates Assembled from Polymer Surfactants with Preformed Titanosilicate Precursors in Strongly Acidic Media. J Phys Chem B 107: 8972-8980.

32. Hua D, Chen S-L, Yuan G, Wang Y, Zhao Q, et al. (2011) Metathesis of butene to propane and pentene over WO3/MTS-9. Microporous and Mesoporous Mater 143: 320-325.

33. Guisnet M, Magnoux P (2001) Organic chemistry of coke formation. Appl Catal A: General 212: 83-96.

34. Bibby DM, Howe RF, McLellan GD (1992) Coke formation in high-silica zeolites. Appl Catal A: General 93: 1-34.

35. Mellouki A, Liévín J, Herman M (2001) The vibrational spectrum of pyrrole (C2H5N) and furan (C4H4O) in the gas phase. Chem Phys 271: 239-266.

36. Stepanov AG, Lузгин MV, Azranov SS, Ernst H, et al. (2002) n-Butene Conversion on H-Ferrierite Studied by 13C MAS NMR. J Catal 211: 165-172.

37. Bigey C, Hilaire L, Maire G (1999) Catalysis on Pd/WO3 and Pd/WO2: Effect of the Modifications of the Surface States Due to Redox Treatments on the Skeletal Rearrangement of Hydrocarbons: Part I. Physical and Chemical Characterizations of Catalysts by BET, TPR, XRD, XAS, and XPS. J Catal 184: 406-420.

38. Bartle KD, Ladner WR, Martin TG, Snape CE, et al. (1979) Structural analysis of supercritical-gas extracts of coals. Fuel 58: 413-422.

39. Kim DS, Ostromnecki M, Wachs IE (1996) Surface structures of supported tungsten oxide catalysts under dehydrated conditions. J Mol Catal A: Chemical 106: 93-102.

40. Ramirez J, Gutiérrez-Alejandre A (1997) Characterization and Hydrodesulfurization Activity of W-Based Catalysts Supported on Al2O3–TiO2 Mixed Oxides. J Catal 170: 108-122.

41. Chua YT, Stair PC (2003) An ultraviolet Raman spectroscopic study of coke formation in methanol to hydrocarbons conversion over zeolite H-MFI. J Catal 213: 39-46.

42. Asher SA, Johnson CR (1984) Raman spectroscopy of a coal liquid shows that fluorescence interference is minimized with ultraviolet excitation. Science 225: 311-313.

Citation: Hua D, Zhou Z, Li J, Xie Y, Lu X (2016) Deactivation of Mesoporous Titanosilicate-supported WO3 Catalyst for Metathesis of Butene to Propene by Coke. J Thermodyn Catal 7: 162. doi:10.4172/2160-7544.1000162