Short-time decoherence of Josephson charge qubits in Ohmic and $1/f$ noise environment

Xian-Ting Liang
Department of Physics and Institute of Modern Physics, Ningbo University, Ningbo 315211, China

November 5, 2018

Abstract

In this paper we investigate the short-time decoherence from Ohmic and $1/f$ noise of single Josephson charge qubit (JCQ). At first, we use the short-time approximation to obtain the dynamics of the open JCQ. Then we calculate the decoherence the measure of which is chosen as the maximum norm of the deviation density operator. It is shown that the decoherence from $1/f$ noise plays the central role. The total decoherence from Ohmic and $1/f$ noise is serious at present experiential conditions according to the DiVincenzo criterion.

PACS numbers: 03.65.Ta, 03.65.Yz, 85.25.Cp

Keywords: Short-time decoherence; Ohmic noise; $1/f$ noise

1 Introduction

Quantum bit (qubit) is a key block for building quantum computers. Among various realizations of the qubit for quantum computations that based on the Josephson junctions are considered to be particularly promising candidates because of their scalability, established fabrication techniques, and flexibility in designs. Many kinds of the superconducting Josephson-junction-qubit models are proposed in last years. They are Josephson charge [11], flux [2], phase [3] and hybridized [4] qubits. According to DiVincenzo [5] proposal, the qubit for quantum computation must satisfy five criteria one of which is the low decoherence criterion. An approximate benchmark of the criterion is a fidelity loss no more than $\sim 10^{-4}$ per elementary quantum gate operation. The decoherence of the Josephson single qubit and coupling qubits has been investigated widely in last years [6]. In these researches the dynamics of the qubits interacting with their environment has been treated by the perturbation method, the path integral method [7], and others [8]. In the researchs in general some approximation scheme must be used. The most familiar and frequently used one is the Markov approximation [9].

It has been pointed that the Markov approximation can not be used in low temperature and for short cycle times of quantum computation [10]. However, the qubits based on the Josephson superconducting junction should be worked in low temperature, such as few 10 mK. So the Markov approximation can not be used in the investigations of decoherence for Josephson qubits. Fortunately, a short-time approximation scheme [11] being fit for the investigations has been developed recently by Privman et al. [12, 13]. The approaches of V. Privman and his co-worker are rather formal and universal. It is also very interesting to investigate the decoherence of a concrete and physical qubit model because it can help us to know that whether the model satisfy the DiVincenzo low decoherence criterion or not. If the model can not

*Email address: xtlia@ustc.edu
satisfy the criterion, the qubit has then not qualification for being a quantum computation hardware.

In this paper we shall investigate that if the JCQ model satisfy the DiVincenzo low decoherence criterion. The same problem has been investigated in our previous works [14] [15] where we suppose that there is only the Ohmic noise in the environment of JCQ. However, recent several experiments (see [10] and within) with Josephson junction circuits have revealed at low frequencies the presence of 1/f noise and it is shown that the 1/f noise plays a major role in destructing the coherence of qubit in solid-state systems. In this paper, we shall carefully estimate the decoherence of the JCQ in Ohmic and 1/f noise environment. Here, the measure of decoherence is based on a standard operator norm $||A||$ in the theory of linear operators [17]. The short-time approximation of the split-operator will be used in our investigation.

2 Open JCQ model

The single JCQ Hamiltonian is [18] [19]

$$H_s = 4E_c (n - n_g)^2 - E_J \cos \varphi. \tag{1}$$

Here, $E_c = \frac{e^2}{2} (C_g + C_J)$ is the charging energy; $E_J = I_c \hbar / 2e$ is the Josephson coupling energy [20], where I_c is the critical current of the Josephson junction, \hbar the Planck’s constant divided 2π, and e the charge of electron; $n_g = C_g V_g / 2e = Q_g / 2e$ is the dimensionless gate charge, where C_g is the gate capacitance, V_g the controllable gate voltage. The number operator n of (excess) Cooper pair on the island, and the phase operator φ of the superconducting order parameter, are quantum mechanically conjugate [19]. The unavoidable noise of the environment may lead to the dissipation. In general, one takes into account that the environment itself is also a quantum system with a large number degrees of freedom. Usually it is modeled by a bath with a large set of harmonic oscillators [21] [22]

$$H_B = \sum_\alpha \left[\frac{1}{2m_\alpha} p_\alpha^2 + \frac{1}{2} m_\alpha \omega_\alpha^2 x_\alpha^2 \right], \tag{2}$$

each of which interacts weakly with the system of interest. The whole Hamiltonian of the system-bath is [23] then

$$H = H_s + \sum_\alpha \left[\frac{1}{2m_\alpha} p_\alpha^2 + \frac{1}{2} m_\alpha \omega_\alpha^2 x_\alpha^2 + \frac{\lambda_\alpha}{m_\alpha \omega_\alpha^2} (x_\alpha - \frac{\lambda_\alpha}{m_\alpha \omega_\alpha^2} 2e \hbar n \frac{C_I}{C_J})^2 \right]. \tag{3}$$

Here, the coupling operator of the environment is $X = \sum \lambda_\alpha x_\alpha$. If the Josephson coupling energy E_J is much smaller than the charging energy E_c, and both of them are much smaller than the superconducting energy gap Δ, the Hamiltonian H_s of Josephson junction can be parameterized by the number of the Cooper pairs n on the island. When the temperature T is low enough the system can be reduced to a two-state system (qubit) because all other charge states have much higher energy and can be neglected. So the Hamiltonian of the system can approximately reads $H_s = -\frac{1}{2} B_z \sigma_z - \frac{1}{2} B_x \sigma_x$, where $B_z = E_{cb} (1 - 2n_g)$ and $B_x = E_J$. If we choose the working point to make n_g half-integer, say $n_g = 1/2$, we can obtain that

$$H \equiv H_s + H_I + H_B. \tag{4}$$

Here,

$$H_s = -\frac{1}{2} B_z \sigma_z, \quad H_B = \sum_\alpha \hbar \omega_\alpha a_\alpha^\dagger a_\alpha,$$

$$H_I = -\sigma_z \sqrt{\hbar} \sum_\alpha g_\alpha (a_\alpha^\dagger + a_\alpha), \tag{5}$$

where

$$g_\alpha = \lambda_\alpha \sqrt{\frac{1}{m_\alpha \omega_\alpha}} \left(2e \hbar C_I C_J \right). \tag{6}$$

3 Ohmic and 1/f noise

Recent studies, both the experimental and theoretical, suggest that the serious noise sources in Josephson devices include two kinds of fluctuations one of which with ohmic spectrum the other with 1/f spectrum [16]. In the following, we introduce the spectral densities of the Ohmic and 1/f noise. According to [21], from Eq. (3), we can express the spectral density
of the noise as
\[J_X(\omega) = \frac{\pi}{2} \sum_\alpha \left(\frac{2eC_t}{C_J} \right)^2 \frac{\lambda_\alpha^2}{m_\alpha \omega_\alpha} \delta(\omega - \omega_\alpha) \]
\[= \frac{\pi}{2} \hbar \sum_\alpha |g_\alpha|^2 \delta(\omega - \omega_\alpha) \]
\[= \frac{\pi}{2} \hbar \int_{-\infty}^{\infty} |g(\omega)|^2 \delta(\omega - \omega_\alpha) \]
\[= \frac{\pi}{2} \hbar D(\omega)|g(\omega)|^2, \quad (7) \]

where \(D(\omega) \) is the density of the states of environment modes. On the other hand, the spectral density is related to the power spectrum as \[S_X(\omega) = J_X(\omega) \hbar \coth(\omega \beta/2). \quad (8) \]

Here, \(\beta = \hbar/k_B T \), where \(k_B \) is the Boltzmann constant. It has been stressed that the relationship \[\text{Eq. (7)} \]
are satisfied not only for the linear coupling model but also for the nonlinear one. To the Ohmic noise case, from the fluctuation-dissipation theorem one has \[\text{Eq. (8)} \]
\[S_X(\omega)|_O = \left(\frac{2eC_t}{C_J} \right)^2 S_V(\omega)|_O \]
\[= \left(\frac{2eC_t}{C_J} \right)^2 \Re Z_t(\omega) \hbar \coth(\omega \beta/2). \quad (9) \]

Then, setting \(\Re Z_t(\omega) \approx R \), one has
\[J_X(\omega)|_O = (2e)^2 \left(\frac{C_t}{C_J} \right)^2 R\omega. \quad (10) \]

So by using Eq. \[\text{Eq. (7)} \]
we have
\[D(\omega)g^2(\omega)|_O = 4\left(\frac{2e^2}{\hbar} \right)^2 \left(\frac{C_t}{C_J} \right)^2 R\omega. \quad (11) \]

Considering the cutoff of the frequency \(\omega \) we can set
\[D(\omega)g^2(\omega)|_O = \eta \omega \exp\left(\frac{\omega}{\omega_c} \right). \quad (12) \]

Here, \(\omega_c \) is the cutoff frequency and \(\eta = 4\frac{R}{R_Q} \left(\frac{C_t}{C_J} \right)^2 \), where \(R_Q = \hbar/(2e)^2 \approx 6.5 \text{ k}\Omega \) \[\text{[24]} \]. In the model of the JCQ circuit the typical impedance of the control line is \(R \approx 50 \Omega \), and \(C_g \approx 10^{-18} \text{ F} \), \(C_J \approx 10^{-16} \text{ F} \), so we can obtain \(\eta \approx 10^{-6} \).

The \(1/f \) noise is considered deriving from the background charge fluctuations in the circuits. It can be expressed an effective noise of the gate charge, i.e., \(S_{Qe}(\omega) = \alpha f e^2/\omega \). Recent experiments proposed at relevant temperatures \(\alpha f \sim 10^{-7} - 10^{-6} \). According to Ref. \[\text{[23]} \] this noise can be translated into the fluctuations of \(X \), namely,
\[S_X(\omega)|_f = E_f^2/\omega, \quad (13) \]
where \(E_f = 4E_c\sqrt{\pi f} \). Comparing the Eq. \[\text{Eq. (13)} \] with Eq. \[\text{Eq. (8)} \] we have
\[J_X(\omega)|_f = \frac{16E_c^2\alpha_f}{\hbar \omega \coth(\omega \beta/2)}. \quad (14) \]

So
\[D(\omega)g^2(\omega)|_f = \frac{32E_c^2\alpha_f}{\pi \hbar^2 \omega \coth(\omega \beta/2)} = \frac{\kappa \alpha_f}{\omega \coth(\omega \beta/2)}. \quad (15) \]

where \(\kappa = \frac{64E_c^2}{\hbar h} \approx 1.5 \times 10^{25} \). \quad (16)

In fact, in a JCQ circuit these two kinds of noise are existed at the same time. So the spectral density of the total noise is
\[J(\omega) = J_X(\omega)|_O + J_X(\omega)|_f. \quad (17) \]

So we have
\[D(\omega)g^2(\omega) = D(\omega)g^2(\omega)|_O + D(\omega)g^2(\omega)|_f. \quad (18) \]

In the following, we shall use above three kinds of different noise of the environment investigating the decoherence of the JCQ.

4 Short-time dynamics of JCQ

Before studying the decoherence we shall investigate the dynamics of the open JCQ with the short-time
approximation. Suppose the initial state of the JCQ-bath be \(R(0) = \rho(0) \otimes \Theta \), where \(\rho(0) \) is the initial state of JCQ and \(\Theta \) is the initial state of the environment. We set \(\Theta \) is the product of the bath modes density matrices \(\theta_k \). In the initial states, each bath mode \(k \) is assumed to be thermalized, namely,

\[
\theta_k = \frac{e^{-\beta M_k}}{\text{Tr}_k \left(e^{-\beta M_k} \right)},
\]

(19)

where \(M_k = \omega_k a_k^\dagger a_k \). The evolution operator of the JCQ-bath is then

\[
U = e^{-iHs/\hbar} = e^{-i(H_s+H_I+H_B)\tau/\hbar}.
\]

(20)

Due to non-conservation of \(H_s \) in this system, the evolution operator cannot be in a general way expressed as \(e^{-iHs/\hbar}e^{-i(H_I+H_B)\tau/\hbar} \). But in the sort-time approximation, the operator can be approximately expressed as \(\rho_{m,n} = \text{Tr}_B \rho_m^s e^{-i(H_s+H_I+H_B)\tau/\hbar} e^{-iH_s\tau/2\hbar} + o(\tau^3) \). \(U = e^{-iHs/\hbar} e^{-i(H_I+H_B)\tau/\hbar} \). \((21) \)

It has been proved that the expression is accurate enough for the time being short to the characteristic time. In the following we only investigate the case that the system evolve within the time \(\tau < 10 \) ps, the characteristic time of the single JCQ is \(\tau = 12.7 \) ps (when \(E_J = 51.8 \mu eV \)) \[15\]. So the elements of the reduced density matrix \(\rho(\tau) \) in the basis of operator \(H_s \) can be expressed as

\[
\rho_{m,n} = \text{Tr}_B \left(\rho_m^s e^{-iHs/\hbar} e^{-i(H_I+H_B)\tau/\hbar} e^{-iHs\tau/2\hbar} \right) = \text{Tr}_B \left(\rho_m^s e^{-iHs/\hbar} e^{-i(H_I+H_B)\tau/\hbar} e^{-iHs\tau/2\hbar} \right) \rho_0(0),
\]

(22)

where \(\{m,n\} = 0 \) or 1. The \(\rho \) is a matrix with 2 by 2. In the following we set \(t = \tau/\hbar \). Through some calculations we can obtain the evolution of the density matrix elements \(\rho_{10}(t) \) and \(\rho_{11}(t) \) as \[14\] \[15\]

\[
\rho_{10}(t) = \frac{1}{2} \rho_{10} \left(1 - e^{-B^2(t)} + e^{itE_J} + e^{itE_J-B^2(t)} \right),
\]

\[
\rho_{11}(t) = \frac{1}{2} \rho_{00} \left(1 - e^{-B^2(t)} \right) + \frac{1}{2} \rho_{10} \left(1 + e^{-B^2(t)} \right),
\]

(23)

where \(\rho_{00} = \rho_{00}(0) \), \(\rho_{11} = \rho_{11}(0) \), \(\rho_{10} = \rho_{10}(0) \), and

\[
B^2(t) = 8 \sum_k \left| \frac{g_k}{\omega_k} \right|^2 \sin^2 \left(\frac{\omega_k t}{2} \right) \coth \left(\frac{\beta \omega_k}{2} \right),
\]

\[
C(t) = \sum_k \left| \frac{g_k}{\omega_k} \right|^2 (\omega_k t - \sin \omega_k t).
\]

(24)

When the summation in Eq. \[24\] is converted to integration in the limit of infinite number of the bath modes, one has

\[
B^2(t) = 8 \int d\omega J(\omega) g(\omega)^2 \omega^{-2} \sin^2 \frac{\omega t}{2} \coth \frac{\beta \omega}{2},
\]

for the real \(g(\omega) \). In fact this \(B^2(t) \) is the mean-squared value of the magnitude of the phase noise in Ref. \[27\]. From the deriving of \(B^2(t) \) we know that it results from the choice of bath model and the coupling forms of JCQ-bath rather than the choice of the approximation scheme. But the evolution of the matrix elements as Eqs. \[24\] is resulted from the short-time approximation and it can not be obtained by using the Markov approximation and others. By using above results we can yield a good quantitative estimation to the decoherence behavior of JCQ in a short time.

5 Decoherence of JCQ

It is shown that the measure

\[
D(t) = \sup_{\rho(0)} \left(\| \sigma(t, \rho(0)) \|_\lambda \right)
\]

(26)

is suitable for estimating the decoherence of the qubit gates \[12\] \[13\]. Here, the norm \(\| \sigma \|_\lambda \) is defined as

\[
\| \sigma \|_\lambda = \sup_{\varphi \neq 0} \left(\left| \langle \varphi | \sigma | \varphi \rangle \right| \right)^{\frac{1}{2}}.
\]

(27)

For a qubit, it is

\[
\| \sigma \|_\lambda = \sqrt{\| \sigma_{10} \|^2 + \| \sigma_{11} \|^2}.
\]

(28)

Here, the deviation operator \(\sigma \) is defined as

\[
\sigma(t) = \rho(t) - \rho^i(t),
\]

(29)
calculations we use the initial state \(\rho(\tau) \) and \(\rho^i(\tau) \) are density matrixes of the “real” evolution (with interaction) and the “ideal” one (without interaction) of the investigated system. The evolution of the closed JCQ is \(\rho^i_{11}(t) = \rho_{11} \), and \(\rho^i_{10}(t) = \rho_{10}e^{itE_J} \). So for the open JCQ we have

\[
\sigma_{10}(t) = \frac{1}{2}\rho_{10}\left(1 - e^{-B^2(t)}\right)\left(1 - e^{itE_J}\right), \\
\sigma_{11}(t) = \frac{1}{2}\left(1 - e^{-B^2(t)}\right)(\rho_{00} - \rho_{11}).
\]

(30)

Thus, we have

\[
||\sigma(t)||_\lambda = \frac{1}{2}\left(1 - e^{-B^2(t)}\right) \\
\{\left(\rho_{00} - \rho_{11}\right)^2 + 4|\rho_{10}|^2\sin^2\frac{E_Jt}{2}\}^{1/2}.
\]

(31)

From Eq. (31) we know that a pure state

\[
\rho_1(0) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ or } \rho_2(0) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}
\]

(32)

will make the \(||\sigma(t)||_\lambda \) into \(D(t) \). In the following calculations we use the initial state \(\rho_1(0) \) and choose the Josephson energy \(E_J = 51.8 \mu\text{eV} \) according to Ref. [1].

6 Conclusions

In this paper we investigated the short-time decoherence results from the Ohmic and 1/f noise of the JCQ. It is shown that the decoherence from 1/f noise
is larger than that from Ohmic noise to the JCQ model. To the Ohmic noise the higher frequency parts play a major role to the decoherence. We take a larger range of the frequencies of the environment modes in our numerical simulation than usually proposed. It is shown that in usually experimental temperature this decoherence is not serious comparing to the DiVincenzo criterion. Unlike the Ohmic noise case, to the $1/f$ noise the decoherence is mainly determined by the lower frequency parts. It is shown that when $\alpha_f \lesssim 5 \times 10^{-8}$, within $\tau = 12.7$ ps this decoherence is also not serious according to the DiVincenzo criterion. However, the present experiments show that the value of α_f is between 10^{-7} and 10^{-6}. Thus, if we wish to make the JCQ become a optimal qubit model we should decrease the value of α_f. The value of α_f is related to the temperature. It may decrease with the decreasing of temperature. Carefully finding out the correlation of the value of α_f and other parameters (include the temperature) is an important task for our investigating the decoherence of JCQ model in the future.

Acknowledgement 1 The project was supported by National Natural Science Foundation of China (Grant No. 10347133) and Ningbo Youth Foundation (Grant No. 2004A620003).

References

[1] Y. Nakamura, Y. A. Pashkin, and J. S. Tsai, Nature (London) 398, 786 (1999); Yu. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. V. Averin, and J. S. Tsai, 421, (2003) 823.

[2] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, (2003) 1869.

[3] Y. Yu, S. Han, X. Chu, S.-I. Chu, and Z. Wang, Science 296, (2002) 889; J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, (2002) 117901.

[4] J. Q. You, J. S. Tsai, and F. Nori, cond-mat/0409010.

[5] D. P. DiVincenzo, “Topics in Quantum Computers”, in Mesoscopic Electron Transport, edited by L. Kowenhoven, G. Schöhn and L. Sohn, NATO ASI Series E, (Kluwer Ac. Publ., Dordrecht, 1997) p.657, cond-mat/9612126.

[6] M. Governale, M. Grifoni, and G. Schöhn, Chem. Phys. 268, (2001) 273; A. J. Berkley, H. Xu, M. A. Gubrud, R. C. Ramos, J. R. Anderson, C. J. Lobb, and F. C. Wellstood, Phys. Rev. B 68, (2003) 060502(R).

[7] E. Paladino, L. Faoro, G. Falci, and R. Fazio, Phys. Rev. Lett. 88, (2002) 228304.

[8] Y. Nakamura, Y. A. Pashkin, T. Yamamoto, and J. S. Tsai, Phys. Rev. Lett. 88, (2002) 047901.

[9] W. H. Louisell, Quantum Statistical properties of Radiation, Wiley, 1973.

[10] D. Tolkunov, and V. Privman, Phys. Rev. A 69, (2004) 062309.

[11] D. Braun, F. Haake, and W. T. Strunz, Phys. Rev. Lett. 86, (2001) 2913.

[12] V. Privman, J. Stat. Phys. 110, (2003) 957; V. Privman, Mod. Phys. Lett. B 16, (2002) 459; V. Privman, Proc. SPIE 5115, (2003) 345, cond-mat/0303155.

[13] L. Fedichkin, A. Fedorov, V. Privman, Proc. SPIE 5105, 243 (2003), cond-mat/0303158; L. Fedichkin, A. Fedorov, Phys. Rev. A 69, (2004) 032311, quant-ph/0309024.

[14] X. T. Liang, Y. J. Xiong, Physica B: Condensed Matter (in press), quant-ph/0405188.

[15] X. T. Liang, Y. J. Xiong, Phys. Lett. A 332, 8 (2004); quant-ph/0409102.

[16] Y. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, (2004) 178301.

[17] T. Kato. Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Germany, 1995.

[18] A. Shnirman, G. Schöhn, and Z. Hermon, Phys. Rev. Lett. 79, (1997) 2371.
[19] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, (2001) 357.

[20] H. Grabert and G.-L. Ingold, Superlattices and Microstructures 25, (1999) 915.

[21] U. Weiss, Quantum Dissipative Systems, World Scientific Publishing, Singapore, 1993.

[22] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger, Rev. Mod. Phys. 59, (1987) 1.

[23] Y. Makhlin, G. Schön, and A. Shnirman, Chem. Phys. 296, (2003) 315; cond-mat/0309049; A. Shnirman, Y. Makhlin, G. Schön, cond-mat/0202518.

[24] In Refs.[23, 15], the express $R_Q = (2e)^2/h$ is incorrect, but the value $R_Q \approx 6.5$ kΩ is correct.

[25] S. K. Gray, and J. M. Verosky, J. Chem. Phys. 99, (1993) 8680; M. Goernale, M. Grifoni, and G. Schön, Chem. Phys. 268, (2001) 273.

[26] S. Blanes, and P. C. Moan, Phys. Lett. A 265, (2000) 35.

[27] J. M. Martinis, S. Nam, J. Aumentado, and K. M. Lang, Phys. Rev. B 67, (2003) 094510.

7 Figs. captions

Fig.1 The decoherence from Ohmic noise within short time. The lowest, middle and upmost lines correspond to $T_2 = 0.0300$ K, $T_2 = 0.1500$ K and $T_3 = 0.1875$ K. Here, the frequencies of bath modes is set in 1 kHz~ 50 GHz.

Fig.2 The decoherence from $1/f$ noise within short time. The lowest, middle and upmost lines correspond to $\alpha_f = 1.0 \times 10^{-7}$, $\alpha_f = 1.1 \times 10^{-7}$, and $\alpha_f = 1.3 \times 10^{-7}$. Here, the frequencies of bath modes is set in 1 kHz~ 1 GHz.

Fig.3 The decoherence from Ohmic noise and $1/f$ noise within short time. The lowest, middle and upmost lines correspond to $\alpha_f = 3 \times 10^{-8}$, $\alpha_f = 4 \times 10^{-8}$, and $\alpha_f = 5 \times 10^{-8}$. Here, the temperature is set $T = 30$ mK, the frequencies of bath modes is set in 1 kHz~ 1 GHz for $1/f$ noise and in 1 GHz~ 50 GHz for Ohmic noise.
The graph shows the function $D(t)$ plotted against t. The x-axis represents time t ranging from 0.002 to 0.02, and the y-axis represents the values of $D(t)$ ranging from 0.002×10^{-6} to 0.02×10^{-6}. The function appears to be increasing smoothly with t.
