Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original article

Assessment of health awareness and knowledge toward SARS-CoV-2 and COVID-19 vaccines among residents of Makkah, Saudi Arabia

Abdulmajeed Fahad Alrefaei, Deyab Almaleki, Fatimah Alshehrei, Sultan Kadasah, Ziyad ALluqmani, Abdulaziz Alotaibi, Ahmad Alsulaimani, Ahmad Aljuhani, Abdulrahman Alruhaili

Department of Biology, Jamoum, University Collage, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
Department of Evaluation, Measurement, and Research, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
Department of Biology, Faculty of Science, University of Bisha, Saudi Arabia

ARTICLE INFO

Keywords:
Awareness
Knowledge
SARS-CoV-2
COVID-19
Vaccines
Makkah

ABSTRACT

Introduction: Public awareness regarding COVID-19 plays an important role in controlling the virus’ spread and treating infected people. A high level of awareness among the public will help to implement preventive measures, particularly in the most populated regions, such as Makkah, Saudi Arabia. COVID-19 is an infectious disease and the Saudi Arabian government has taken serious precautions and implemented several preventive measures. In addition, The Ministry of Health (MOH) has launched many awareness campaigns and provided COVID-19 vaccines for free.

The objectives: To assess the Public’s level of health awareness and knowledge toward SARS-CoV-2 and COVID-19 vaccines among residents of Makkah, Saudi Arabia.

Methods: A cross-sectional study was conducted in the Makkah region from February 23 to March 2, 2021. The questionnaire was generated using a Google form and distributed online through social platforms such as Twitter and WhatsApp. The questionnaire consisted of five sections and six hundred participants have answered and completed all questions. Then, All data were imported into Microsoft Excel and analyzed using the statistical tools SAS version 9.4 and SPSS version 25 software.

Results: A total of 600 participants from the Makkah region were found to have a high level of awareness and knowledge about all aspects of SARS-CoV-2 and the COVID-19 disease. For example, all participants considered coronavirus to be contagious, and 89.8% of them knew that COVID-19’s symptoms are similar to those of seasonal flu. Most respondents showed a high level of awareness regarding the main factors of SARS-CoV-2 transmission. Over 98.7% of respondents were aware of the role of gatherings and events in further spread of the virus. The participants showed a good level of awareness about other preventive measures, such as maintaining social distancing and wearing a mask. However, the respondents considered COVID-19 vaccines to be effective, but some of them were not aware of their side effects, and 38.8% planned to receive a vaccine.

Conclusion: The residents of Makkah showed a high level of awareness about these aspects; an excellent awareness level was noted for SARS-CoV-2, means of transmission, disease symptoms and prevention of viral spread. On the other hand, the participants had less knowledge regarding COVID-19 vaccines; hence, more effort is required to educate people about the safety and benefits of the vaccines.

1. Introduction

COVID-19 has caused a global pandemic and economic crisis. It affects peoples’ lives in many ways; it is health threatening, socially disruptive, leads to job losses and causes substantial stress and fear. The first COVID-19 outbreak was in Wuhan, China, when a group of...
cases of pneumonia of unknown cause was reported to the World Health Organization on December 31, 2019. In January 2020, the virus was identified as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and the disease it causes was named COVID-19 by WHO. Genetic studies confirmed that the virus was the cause of this disease after analyzing many samples. Coronavirus causes respiratory and gastrointestinal diseases. The virus consists of a core of genetic material (positive-sense RNA), helical symmetry of the nucleocapsid surrounded by an envelope with protein spikes that gives it the appearance of a crown (Fig. 1A). Coronavirus are zoonotic, meaning that they are transmitted between animals and humans. SARS-CoV-2 can infect human cells through angiotensin-converting enzyme 2 (ACE2) in the lung and other organs (Fig. 1C). When the virus spike binds to the ACE2 receptor, the cells become infected. After the number of cases increased in many countries, the World Health Organization (WHO) declared COVID-19 to be a pandemic in March 2020 and announced that globally cooperated efforts would be required to prevent further spread of the virus. As of May 2021, there were almost 160,300,000 million global cases of COVID-19, with approximately 3,330,113 million deaths. Typically, coronavirus infection leads to respiratory disease symptoms. These symptoms could be mild to moderate and similar to seasonal flu symptoms, involving fever, cough, breathing difficulties, fatigue, sore throat and loss of smell and taste. Some infected people develop severe symptoms and have to be hospitalized. Specific population groups are at a higher risk of severe COVID-19 disease, including older people with serious chronic illnesses such as diabetes, cardiovascular disease, chronic respiratory disease and cancer. There are several means of COVID-19 transmission, with the main route being human to human, such as sneezing and coughing. COVID-19 may also spread through respiratory droplets or contact with infected secretions on different surfaces. Large events and gatherings have been associated with an increased risk of airborne transmission.

During the spread of COVID-19, the WHO has advised countries and societies to take strong preventative measures, such as frequent hand washing with alcohol-based products or soap. They recommend avoiding touching the eyes, nose, and mouth. Furthermore, people must wear masks and maintain social distancing. Infected people have to self-isolate and seek medical care if they develop severe respiratory symptoms.

In Saudi Arabia, the first COVID-19 case was recorded on the March 2, 2020. Since then, more cases have been reported, almost 428,369. Approximately 412,102 people have recovered from the disease, with almost 7098 deaths by May 2021. Since the beginning of the increase in reported cases, the Saudi Ministry of Health (MOH) has launched many awareness campaigns regarding the nature of the virus, transmission routes and preventative measures and have provided daily updates. The Saudi government has also taken strict measures to control the virus spreading by implementing travel bans, social distancing, quarantine measures for people who traveled to COVID-19 affected regions, and mandatory home isolation. The Ministry of Health launched an App called Eatmarna, which is used to register travel, health, and immigration history, as well as contact tracing of confirmed COVID-19 cases. In 2021, the Saudi government started vaccinating residents and expatriates. The COVAX program provided vaccines to Saudi Arabia, and local pharmaceutical companies began production of Covid-19 vaccines. Additionally, religious gatherings in Makkah could contribute to the spread of infectious diseases such as COVID-19. Thus, it is important to study the level of public awareness in Makkah. We analyzed the level of awareness and knowledge toward SARS-CoV-2 (the nature of the virus, symptoms, transmission, and preventative measures) and COVID-19 vaccine among residents of Makkah, Saudi Arabia.

2. Methods

2.1. Questionnaire design

This descriptive cross-sectional and randomized study was conducted in the Makkah region from February 23 to March 2, 2021, one year after the first case of COVID-19 infection was reported in Saudi Arabia. The questionnaire was adopted with some modifications from previously published literature and was then designed and validated. The questionnaire was generated using a Google form and distributed online through social platforms such as Twitter and WhatsApp. The questionnaire consisted of five sections: 1) social and background information, such as age, gender, educational level and nationality, 2) participants’ knowledge about the nature of SARS-CoV-2 (12 items), 3) awareness level of SARS-CoV-2 transmission (9 items), 4) knowledge about preventing SARS-CoV-2 (8 items) and 5) COVID-19 vaccine and drug awareness (6 items).

All participants were selected from the Makkah region. Makkah is in the west of the Kingdom of Saudi Arabia (Fig. 2). More than 600 respondents participated in this study. The following inclusion criteria were applied: Saudi or non-Saudi adults (i.e., aged over 17 years); reside in the Makkah region; provide voluntary consent.

2.2. Statistical analysis

All data were imported into Microsoft Excel and analyzed using the statistical tools SAS version 9.4 and SPSS version 25 software. T-tests and multivariate statistics ANOVA were used to analyze the significant variables of the level of public knowledge regarding transmission, prevention and vaccines. Statistical significance was considered at a P-value of less than 0.05 for all analyses.

3. Results

3.1. Participants’ demographic characteristics

Public knowledge is vital to overcome COVID-19. Therefore, we designed a questionnaire to investigate public health awareness in the Makkah region, Saudi Arabia. A total of 600 participants completed the survey, with the gender distribution being 26.5% female (159/600) and 73.5% male (441/600). Most respondents were Saudi (96.3%) and single (65.2%). More than half of respondents were 18–28 and 48–58 years of age (65% and 13.3%, respectively). 65.8% of the participants were bachelor’s degree holders. A detailed demographic profile of the study respondents is provided in Table 1.

3.2. Public knowledge regarding the nature and symptoms of COVID-19

To measure the level of public knowledge regarding the nature, symptoms and risk of COVID-19, participants were asked multiple questions (Table 2). We enquired about the initial spread of SARS-CoV-2; more than 90% (550) responded with ‘China’. Most participants (593 (98.8%)) considered this particular coronavirus to be contagious. 89.8% of respondents stated that COVID-19 symptoms are similar to those of seasonal flu. However, respondents were not sufficiently knowledgeable regarding digestive-system-related symptoms. 50.3% of them chose ‘Yes’, and the rest were divided between ‘No’ and ‘I do not know’. For other symptoms, the participants showed good knowledge, with 94.7%...
being aware that SARS-CoV-2 infects the respiratory system and knew about these symptoms; awareness of coughing was 84.5% and high temperature 97.8%. 65.3% of respondents chose sneezing, despite it not being a common symptom. Around 86.3% of participants considered the risk of COVID-19 to be high, whereas the remainder underestimated this risk. A high percentage of participants (90%) knew that the elderly people with chronic diseases are more likely to contract COVID-19.

3.3. COVID-19 transmission public awareness

Most respondents had good knowledge about SARS-CoV-2 transmission (Table 3). The majority stated that coughing (82.3%), sneezing (88.5%), hand-shaking (96%) and using tools of the infected person (94.3%) could spread the virus. 93% of respondents stated that touching surfaces contaminated with the virus could lead to SARS-CoV-2 transmission. Over 98.7% of the respondents were aware that gatherings and events contribute to the further spread of the virus. Most respondents (97.3%) showed a high level of awareness about SARS-CoV-2 transmission from infected to non-infected people. 74.3% of respondents disagreed that the virus is transmitted among individuals with genetic diseases, but more than half of them chose immunodeficiency as a factor of transmission (Table 3).

3.4. Public awareness of means of preventing coronavirus

84.7% of respondents chose ‘Yes’ to the enquiry about washing hands with soap and water for at least 20 s to protect against the coronavirus (Table 4). 90.8% of respondents were aware that using alcohol-based hand sanitiser protects against the virus. Most respondents (97%) chose ‘Yes’ regarding covering the mouth and nose while sneezing and coughing being able to reduce viral spread. Almost 98% of respondents were aware about the following practices staying at home, maintaining social distancing, and wearing a mask to help reduce the rate of infection with the virus. 90.5% of respondents chose ‘Yes’ to not touching the nose and mouth with the hand to reduce viral spread. Overall, there was a high level of awareness regarding the prevention of SARS-CoV-2 spreading among Makkah residents.

3.5. Knowledge and attitudes regarding COVID-19 vaccines

We asked participants about COVID-19 treatment availability, and a variety of responses were noted (Fig. 1 and S Table 1). Most respondents agreed that there are available vaccines (88.2%). Regarding antibiotic treatment against coronavirus, the participants were divided into three groups: 28.7% chose ‘Yes’, 35.7% chose ‘No’, and 35.7% chose ‘I don’t know’. 49.7% of respondents were confident of the effectiveness of the COVID-19 vaccines. 72.6% of participants considered these vaccines to be helpful in general. Only 34.5% of respondents were aware of the immediate side effects of the vaccine. Many respondents were happy to...
be vaccinated against this virus (38.8%) (Fig. 1 and S Table 1). Further statistical analysis showed that females’ knowledge of vaccines was significantly less than males (Table 5 and S Fig. 3).

Furthermore, a comparison of nationality (Saudi vs non-Saudi) and gender (male vs female) was used to examine public awareness of transmission, prevention, and vaccines (Table 5). Males were more knowledgeable about vaccines than females ($p = 0.0138$), whereas no nationality-based knowledge differences were observed. Moreover, analysis of the individual group variance for knowledge toward vaccines to compare the effect of group of age was conducted. Result showed that there was a statistically significant difference of group of age on knowledge toward vaccines ($F (4, 595) = 10.73$, $P < 0.0001$). People who are of age 48 years old to less than 58 years old ($P < 0.0001$, $M = 4.063$) had more knowledge toward vaccines comparing with two group of people who are of age 18 years old to less than 28 years old ($M = 2.841$) and 28 years old to less than 38 years old ($M = 3.250$). As well, people who are of age 38 years old to less than 48 years old ($P = 0.0420$, $M = 3.541$) had more knowledge toward vaccines comparing to the group who are of age 18 years old to less than 28 years old ($M = 2.841$) (S Fig. 3).

4. Discussion

Public awareness is crucial during pandemic management. Therefore, this study aimed to investigate the general level of public awareness towards SARS-CoV2 and its subsequent disease COVID-19 in the Makkah region, Saudi Arabia. This region is the second most populated in the kingdom and has major cities, such as Makkah and Jeddah. Makkah city receives millions of visitors for prayers, Umrah and Hajj each year. These large religious gathering could lead to contagious disease outbreaks, including COVID-19. Therefore, health awareness among residents and visitors to the Makkah region is important in containing potential pandemics. In Makkah city, many additional preventive measures were taken; for example, Umrah was completely stopped, and the holy mosque (Masjid Al-Haram) was closed and cleaned daily with disinfectant liquid and spray.

In 2020, Hajj was performed with a small number of pilgrims and only pilgrims who lived inside Saudi Arabia. Then, Eatmarna App was developed and launched; thus, visitors wishing to perform Umrah or prayers have had to register in the App and book a specific time. Then, not infected, they receive a confirmation message and become able to access inside the holy mosque. Recently, a new measure was implanted by the Saudi authority only vaccinated people can visit the holy mosque. All these preventive efforts and strict health measures effectively ensure the safety and wellbeing of residents, visitors and pilgrims of Makkah as well as prevent COVID-19 outbreaks from religious gatherings. This study is the first of its kind to investigate SARS-CoV2 and COVID-19 awareness in Makkah and the first to determine public knowledge about COVID-19 vaccines in Saudi Arabia.

Regarding public awareness about the nature, symptoms and risk of COVID-19, all participants considered coronavirus to be contagious, and 89.8% of them knew that COVID-19’s symptoms are similar to those of seasonal flu. However, respondents were not sufficiently aware of symptoms related to the digestive system. The same observation was reported among participants in Riyadh, and it was also documented.

![Level of Knowledge about Covid 19 vaccines](image_url)

Fig. 1. Participants’ knowledge about COVID-19 vaccines.
that diarrhoea is an underestimated symptom of COVID-19. Therefore, symptoms related to the digestive system need more emphasis in health awareness campaigns. For other symptoms, the participants showed a higher level of awareness and considered fever and coughing as symptoms of COVID-19 (Table 1). Furthermore, they identified people who at higher risk of COVID-19 infection, including the elderly people with chronic diseases and immunodeficiency.

One of the positive findings of this study is that most respondents showed a high level of awareness regarding the main factors of SARS-CoV-2 transmission and knew that coughing, sneezing and hand-shaking contribute to infection with this virus (Table 3). Over 98.7% of respondents were aware of the role of gatherings and events in further spread of the virus. These factors of transmission have been reported to be involved in the increase of infection rate in many countries.

Participants exhibited an excellent understanding of preventive measures, particularly in relation to washing hands and covering the mouth and nose while coughing or sneezing (Table 4). Furthermore, participants showed a good level of awareness about other preventive measures, such as staying at home, maintaining social distancing, and wearing a mask to help reduce the rate of infection with the virus. These preventive measures are among the important measures that need to be considered daily to prevent infection and viral spread. We found that the awareness level of preventing measures was the highest for all types of age (Fig. 3). This finding corresponds to the extent of observed commitment by citizens and residents to the instructions announced by the MOH during the pandemic. This high level of awareness reflects the success of the health campaigns led by the MOH, which used several approaches to reach people, including social platforms, daily updated statistics, health apps and educational webpages. Participants in this study show better awareness about COVID-19 compared to those analyzed in other studies, including in Riyadh, and other Saudi cities. Our participants were aware of COVID-19 treatment availability but were less knowledgeable about COVID-19 vaccines (Fig. 1, Table 1 and S Fig. 3). Only half of the respondents were confident of the effectiveness of the COVID-19 vaccines, and just a few of the respondents knew the immediate side effects of the vaccine. A small number of respondents would take the emerging COVID-19 vaccines (38.8%), potentially because 1) they are new vaccines developed in a short time, 2) the spread of misinformation about the vaccines and 3) conflicting reports from different countries and media, including social media. We found that knowledge about vaccines for those aged 18–28 years was lowest, which is not surprising because the advertisement campaigns for these vaccines were directed to people with chronic diseases and the most affected age groups, which are the elderly (S Fig. 3). Interestingly, knowledge towards vaccines was affected by educational level and gender. Result showed that there was a statistically significant difference of educational level on knowledge toward vaccines (F (3, 596) = 3.12, P = 0.0255). People who have a degree other than (high school, bachelor’s degree, postgraduate) (P = 0.0185, M = 4.040) had more knowledge toward vaccines comparing to people who have a bachelor’s degree (M = 3.025).

Regarding gender, females knew less than males (Table 5 and S Fig. 3B). This finding is consistent with MOH statistics, which reported that more females than males have been infected, despite more males than females having been vaccinated. On the other hand, 72.6% of respondents thought vaccines are helpful in general. Another study reported that only half of participants (residents in Malta and international individuals) were willing to take the vaccine, with the lack of vaccine being the main reason for this unwillingness. In the United States, one study reported negative attitudes towards the vaccines. A systematic review of COVID-19 vaccines found that acceptance rates of vaccines were low in several countries and continents, including the Middle East, some European countries, Russia and Africa. To improve the level of public awareness towards vaccines, healthcare providers must make more efforts in raising awareness among society using different communication platforms and strategies. In Saudi Arabia, the vaccination rate is encouraging currently, more than 10 million.

5. Conclusion

Health awareness is a key factor in tackling COVID-19. Increasing this knowledge will encourage people to follow and implement the advice provided by the MOH. In this study, various characteristics of the population were explored to obtain information that could be used for planning a health awareness campaign to tackle COVID-19 transmission and encourage people to take the vaccines. The residents of Makkah showed a high level of awareness about these aspects; an excellent awareness level was noted for SARS-CoV-2, means of transmission, disease symptoms and prevention of viral spread. On the other hand, the participants had less knowledge regarding COVID-19 vaccines; hence, more effort is required to educate people about the safety and benefits of these vaccines.

Funding

None.

Ethical approval

The ethical rules of the ethics committee of Umm-Alqura university were followed and all participants agreed to a voluntary and informed consent. All data were gathered anonymously and only used for scientific research in this project, and we ensured the confidentiality of all participants.

Authors’ contributions

AFA, DA, FA and SK contributed to design of the project and performed data analysis. ZA, AA, AA, and AA distributed the survey, gathered the data and did the data analysis. All authors contributed to writing and revising the article. They also approved the final version of
the article.

Declaration of competing interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

We would like to thank Professor Sameer Qari and Professor Kamal A.Attia for their valuable and critical comments in this project. The authors thank all participants of this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jcegh.2021.100935.

References

1 Harapan H, Itoh N, Yufika A, et al. Coronavirus disease 2019 (COVID-19): a literature review. J Infect Public Health. 2020;13(5):667–673. https://doi.org/10.1016/j.jiph.2020.03.019.

2 Haleem A, Javed M, Vaidhya R. Effects of COVID-19 pandemic in daily life. Curr Med Res Pract. 2020;10(2):78–79. https://doi.org/10.1016/j.jmerp.2020.03.011.

3 Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430–436. https://doi.org/10.1038/s41586-020-2521-4.

4 Munster VJ, Koopmans M, van Doremalen N, van Riel D, de Wit E. A novel coronavirus emerging in China - key questions for impact assessment. N Engl J Med. 2020;382(8):692–694. https://doi.org/10.1056/NEJMsp2000926.

5 Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. https://doi.org/10.1056/NEJMoa2001017.

6 Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: a comparison with young and middle-aged patients. J Infect. 2020;80(6):e14–e18. https://doi.org/10.1016/j.jinf.2020.03.005.

7 Gorbalenya AE, Baker SC, Baric R, et al. Severe Acute Respiratory Syndrome-Related Coronavirus: The Species and its Viruses – a Statement of the Coronavirus Study Group. 2020. https://doi.org/10.21454/S1010000780. Published online February 11.

8 Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. https://doi.org/10.1016/j.jauto.2020.102433.

9 Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microb Mol Biol Rev. 2005;69(4):635–664. https://doi.org/10.1128/MMBR.69.4.635-664.2005.

10 Chu AH, Wu J, Liu Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. https://doi.org/10.1056/NEJMoa2001316.

11 Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. Jama. 2020;323(16):1582–1589. https://doi.org/10.1001/jama.2020.4783.

12 Lu Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(3):1377–1380. https://doi.org/10.1056/NEJMoa2001316.

13 Almaleki D. Examinee characteristics and their impact on the psychometric properties of a multiple choice test according to the item response theory (IRT). Eng Technol Appl Sci Res. 2021;11(2):6889–6901. https://doi.org/10.4084/etar.4056.

14 Wang T, Kamachi M, Takeda M, et al. Implications of public understanding of coronavirus (COVID-19) in Qasim region, Saudi Arabia. J Med Libr Sci. 2021;28(1):281–286. https://doi.org/10.1007/s12098-020-03263-6.

15 Akter S, Alhajeri N, Aljubani N, Al Roumi A. Implications of public understanding of Coronavirus (COVID-19) outbreak and its impact on healthcare in Jordan. J Public Health. 2020;10:324–333. https://doi.org/10.1016/j.jpubheal.2020.02.003.

16 Almaleki D. Examining the impact of the item response theory (IRT) on the psychometric properties of a multiple choice test. J Phys Assist Educ. 2021;30(1):9–19.

17 Klopfenstein T, Kadian-Oussou NJ, Royer EB, Linder JD. COVID-19 vaccine hesitancy worldwide: a concise systematic review. Vaccine Technol Appl Sci Res. 2020;4(3):282–283. https://doi.org/10.1016/j.vttasr.2020.04.002.

18 AL-Rashedi M, Alhazmi Y, Mateq Ali A, et al. Public and healthcare providers awareness of coronavirus (COVID-19) in Qasim region, Saudi Arabia. Saudi J Biol Sci. 2021;28(1):90–98. https://doi.org/10.1016/j.sjbs.2020.08.025.

19 Alanezi F, Aljahdali A, Alyousef S, et al. Implications of public understanding of COVID-19 in Saudi Arabia for fostering effective communication through awareness framework. Front Public Health. 2020;8:369. https://doi.org/10.3389/fpubh.2020.00369.

20 Cordina M, Lauri MA, Lauri J, Cordina M, Lauri MA, Lauri J. Attitudes towards COVID-19 vaccination, vaccine hesitancy and intention to take the vaccine. Pharm Pract Granada. 2021;19(1). https://doi.org/10.18549/phantrop.2021.1.2317.

21 Fridman A, Gershon R, Gneezy A. COVID-19 and vaccine hesitancy: a longitudinal study. PLoS One. 2021;16(4), e0250123. https://doi.org/10.1371/journal. 2021.0250123.

22 Sallam M. COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine acceptance rates. Vaccines. 2021;9(2):160. https://doi.org/10.3390/ vaccines9020160.