Renormalization and universality of the Hofstadter spectrum

Hans Koch1,3 and Saša Kocić2

1 Dept. of Mathematics, The University of Texas at Austin, Austin, TX 78712, United States of America
2 Dept. of Mathematics, The University of Mississippi, P.O. Box 1848, University, MS 38677-1848, United States of America

E-mail: koch@math.utexas.edu

Received 16 November 2019, revised 23 March 2020
Accepted for publication 3 April 2020
Published 20 July 2020

Abstract
We consider a renormalization transformation \(R \) for skew-product maps of the type that arise in a spectral analysis of the Hofstadter Hamiltonian. Periodic orbits of \(R \) determine universal constants analogous to the critical exponents in the theory of phase transitions. Restricting to skew-product maps over circle-rotations by the golden mean, we find several periodic orbits for \(R \), and we conjecture that there are infinitely many. Interestingly, all scaling factors that have been determined to high accuracy appear to be algebraically related to the circle-rotation number. We present evidence that these values describe (among other things) local scaling properties of the Hofstadter spectrum.

Keywords: Hofstadter spectrum, renormalization, almost Mathieu, periodic orbit, universality and scaling, Pisano period, rotation number

Mathematics Subject Classification numbers: 37E20, 37F25, 34L40 and 47A10.

(Some figures may appear in colour only in the online journal)

1. The Hofstadter model

The spectrum of the Hofstadter Hamiltonian \([1, 2]\) is known to exhibit local self-similarity and scaling properties. Scaling behavior can also be observed for related dynamic quantities such as the Lyapunov exponent and the fibered rotation number. Our goal here is to describe such phenomena within the framework of renormalization. Restricting to some specific cases, we argue that the observed scaling constants are universal, and that many can be computed exactly. Some of our results are rigorous, while others are based on numerical computations and hypotheses that remain to be verified.

The Hofstadter Hamiltonian describes Bloch electrons moving on \(\mathbb{Z}^2 \) under the influence of a magnetic flux \(2\pi\alpha \) through each unit cell. It is given by

\[H_{\text{Hofstadter}} = -\sum_{\mathbf{k}} \delta_{\mathbf{k}} \mathbf{a} \cdot \mathbf{a}^* + \frac{\alpha}{2\pi} \mathbf{a} \cdot \mathbf{a}^* \]

3Author to whom any correspondence should be addressed.
For all energies E such that

$$H^\alpha = \lambda'(U_\alpha + U_\alpha^*) + \lambda(V_\alpha + V_\alpha^*), \quad U_\alpha V_\alpha U_\alpha^{-1} V_\alpha^{-1} = e^{2\pi i \alpha},$$

(1.1)

where U_α, V_α are magnetic translations and λ, λ' are positive constants. In the Landau gauge, $(U_\alpha, \phi)(n, m) = \phi(n - 1, m)$ and $(V_\alpha, \phi)(n, m) = e^{2\pi i \alpha}(n, m - 1)$.

For rational $\alpha = m/n$ with m and n coprime, the spectrum of H^α consists of b bands (closed intervals), separated by gaps (open intervals), where $b = n$ for odd n and $b = n - 1$ for even n [8]. In the limit $m, n \to \infty$ where m/n approaches an irrational value, the width of these bands tends to zero, while the gaps stay open in the sense described below. Another important observation [5] is the following. Consider the integrated density of states $d(\alpha, E) = \langle \delta_0, P_\alpha^E \delta_0 \rangle$, where P_α^E is the spectral projection for H^α associated with the interval $(-\infty, E]$, and where δ_0 is the Kronecker delta at the origin. For each spectral gap there exists an index $k \in \mathbb{Z}$, also known as the Hall conductance, such that

$$d(\alpha, E) \equiv k\alpha \mod 1,$$

(1.2)

for all energies E in that gap. This relation is commonly referred to as ‘gap labeling’ [6]. Conversely, given any integer k, it is known that there is a unique spectral gap with index k for Liouville values of α [9, 19], and for Diophantine values [20] in the case $\lambda' \neq \lambda$. (For rational $\alpha = m/n$ with m and n co-prime, the same holds if $n > 2|k|$.)

The spectrum for irrational α is a Cantor set [19] of measure $4|\lambda' - \lambda|$, as was conjectured in [3] and proved later in [11, 12]. The generalized eigenfunctions for $\lambda > \lambda'$ are localized in the n-direction and extended in the m-direction; the same holds for $\lambda' > \lambda$, but with m and n exchanged.

The dual Hamiltonian, obtained by interchanging λ and λ', is unitarily equivalent to H^α. Of particular interest is the self-dual case $\lambda = \lambda'$. The spectrum for this family of operators H^α, plotted as points (α, E) in the plane, is known as the Hofstadter butterfly [2]. The positive-energy part is shown in Figure 1, and for Diophantine values $\lambda = \lambda'$, the spectrum tends to zero, while the gaps stay open in the energy direction, or for variations in λ. Other scaling properties will be described as well.

Below we consider enlargements of Figure 1 about a point $p = (\alpha', E')$, using an expanding map $M : (\alpha, E) \mapsto (\alpha' + u(\alpha - \alpha'), E' + v(E - E'))$. We call a set $S \subset \mathbb{R}^2$ self-similar near p,
Figure 2. 3-step and 6-step enlargements of the Hofstadter butterfly near \((\alpha_*, 0)\).
and, for $\lambda' = 1$, takes the form of a Schrödinger operator

$$\mathcal{H}^\alpha u_n = u_{n-1} + u_{n+1} + V(n\alpha)u_n, \quad n \in \mathbb{Z},$$

with (quasi) periodic potential $V(x) = 2\lambda \cos(2\pi(x + \xi))$. The equation $\mathcal{H}^\alpha u = Eu$ for a generalized eigenvector of \mathcal{H}^α can be written as

$$\begin{bmatrix} u_{n+1} \\ u_n \end{bmatrix} = A(n\alpha) \begin{bmatrix} u_n \\ u_{n-1} \end{bmatrix}, \quad A(x) = \begin{bmatrix} E - V(x) & -1 \\ 1 & 0 \end{bmatrix} \in \text{SL}(2, \mathbb{R}).$$

When combined with a rotation $x \mapsto x + \alpha$ of the circle $\mathbb{T} = \mathbb{R}/\mathbb{Z}$, this recursion defines a skew-product map G,

$$G(x, y) = (x + \alpha, A(x)y), \quad x \in \mathbb{T}, \ y \in \mathbb{R}^2.$$ \hspace{1cm} (2.3)

Two dynamical quantities of interest here are the Lyapunov exponent $L(G)$ and the fibered rotation number $\omega(G)$. They can be defined as follows. Let G be a lift of the map $(x, y) \mapsto (x + \alpha||A(x)y||^{-1}A(x)y)$ from $\mathbb{T} \times \mathbb{S}$ to $\mathbb{T} \times \mathbb{R}$, where \mathbb{S} denotes the unit circle $||y|| = 1$ in \mathbb{R}^2. Then

$$L(G) = \lim_{n \to \infty} \frac{1}{n} \log ||(\text{mat } G^n)(x)||, \quad \omega(G) = \lim_{n \to \infty} \frac{1}{2\pi n} \arg G^n(x, \vartheta).$$ \hspace{1cm} (2.4)

Here, $\text{mat } G^n$ denotes the matrix part of G^n, and $\arg(x, \vartheta) = \vartheta$. Assuming that $A : \mathbb{T} \to \text{SL}(2, \mathbb{R})$ is continuous and α irrational, the limit for $\omega(G)$ exists, is independent of x and ϑ, independent modulo 1 of the choice of the lift G, and convergence is uniform. Under the same assumptions, the limit for $L(G)$ exists and is a.e. constant in x. If G is the AM skew-product for energy E, the fibered rotation number is related to the density of states via $d(\alpha, E) \equiv -2\omega(G)$ modulo 1. Furthermore, $L(G) = \max(0, \log|\lambda|)$, if E belongs to the spectrum of \mathcal{H}^α. For proofs of these facts we refer to [4, 6, 7, 18]. Concerning the Lyapunov exponent for arbitrary energies, what is known e.g. is the asymptotic behavior as $\lambda \to \infty$ for Schrödinger potentials $V = \lambda v$ with v analytic; see [23] and references therein.

Denote by $L(E)$ and $\omega(E)$ Lyapunov exponent and fibered rotation number, respectively, for the self-dual AM map at energy E. Consider one of the scaling points mentioned in remark 1. Presumably, the energy E_ℓ belongs to the spectrum of H^α. Let $\epsilon = |E - E_\ell|$. The graph on the left in figure 3 shows the logarithm of $L(E)$ as a function of $\log \epsilon$ in the case $\ell = 3$. The graph on the right shows the logarithm of $R(E) = 2|\omega(E) - \omega(E_\ell)|$ versus $\log \epsilon$ in the case $\ell = 6$. The following formula matches our data at the precision available, with $\ell \in \{3, 6\}$ and $f \in \{L, R\}$.

$$f(E) \approx C_\pm(\log \epsilon)\tau^f, \quad \tau = \frac{\ell \log(\alpha_\ell^{-1})}{\log(\mu_1)},$$ \hspace{1cm} (2.5)

as $E \to E_\ell$ from below ($-$) or from above ($+$). The functions C_\pm are periodic with period

$$\log(\mu_1), \text{ where } \mu_1 \text{ is the largest root of } \mathcal{P}_\ell. \text{ Here } C_\pm \text{ depends on } (\ell, f), \text{ while } \mu_1 \text{ only depends on } \ell. \text{ The conjectured asymptotics (2.5) is based on our renormalization analysis described below, and we believe that the same holds for any } \ell \in \{3, 6, 24, 12, \ldots\} \text{ and } f \in \{L, R\}. \text{ The constant } \mu_1 \text{ is an analogue of a critical index in the theory of critical phenomena. We note that the case } \ell = 3 \text{ has an exceptional feature: since } E_3 \text{ lies at the bottom of the spectrum, the function } C_- \text{ is zero for } f = R \text{ and constant for } f = L.$
3. Renormalization

The observation of such asymptotic scaling suggests that a suitable renormalization transformation \mathcal{R} for skew-product maps has a periodic point P_ℓ of period ℓ, and that μ_1 is the largest eigenvalue of the derivative $D\mathcal{R}(P_\ell)$. Let G be a skew-product map as in (2.3), henceforth abbreviated as $G = (\alpha, A)$. Regard G as a map on $\mathbb{R} \times \mathbb{R}^2$. If G arises from a Schrödinger operator (2.1) with a 1-periodic potential V, then we pair G with a second skew-product map $F = (I, I)$. The 1-periodicity of the matrix function A is expressed by the fact that G commutes with F. As was observed and used in [24], the AM map G with potential $V(x) = 2\lambda \cos(2\pi(x + \xi))$ and $\xi = \alpha/2$ is reversible, in the sense that

$$G^{-1} = SGS, \quad S(x, y) = (-x, Sy), \quad S = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. \quad (3.1)$$

Thus, we restrict now to pairs $P = (F, G)$ that are reversible, and we choose our renormalization transformation to preserve reversibility, provided that F and G commute. The matrix parts of F and G are always assumed to take values in $SL(2, \mathbb{R})$. The transformation \mathcal{R} considered in [24] is given by

$$\mathcal{R}(P) = (\Lambda_1^{-1} G \Lambda_1, \Lambda_1^{-1} F G^{-1} \Lambda_1), \quad \Lambda_1(x, y) = (\alpha, x, Se^{\alpha/2}y), \quad (3.2)$$

where $\sigma_1 = \sigma_1(P)$ is determined by a suitable normalization condition. We note that this choice of \mathcal{R} is tailored to the study of skew-product maps $G = (\alpha, A)$ with $\alpha = \alpha_\ast$. Due to the identity $1 - \alpha = \alpha_\ast^2$, a pair $((1, B), (\alpha_\ast, A))$ is mapped to a pair $((1, B), (\alpha_\ast, A_1))$. Analogous transformations can be defined for other quadratic irrationals α. Approximate renormalization schemes and limiting cases have been considered earlier in [15, 17].

It is instructive to consider what happens to fibered rotation numbers under renormalization. Let $F = (\beta, B)$ and $G = (\alpha, A)$, with α and β irrational. Assume that A and B are continuous 1-periodic functions on \mathbb{R}, taking values in $SL(2, \mathbb{R})$. If F and G commute, then $\varrho(FG) \equiv \varrho(F) + \varrho(G)$ modulo 1. This follows e.g. from the uniform convergence [6] of the second limit in (2.4). As a consequence, if $(F_1, G_1) = \mathcal{R}(F, G)$, then

$$\begin{bmatrix} \varrho(F_1) \\ \varrho(G_1) \end{bmatrix} \equiv \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \varrho(F) \\ \varrho(G) \end{bmatrix} \pmod{1}. \quad (3.3)$$

This equation defines a hyperbolic map of the torus \mathbb{T}^2, related to Arnold’s cat map [10]. It has a dense set of periodic orbits, with homoclinic or heteroclinic connections between any two them. In particular, every point $\begin{bmatrix} 0 \\ m/n \end{bmatrix}$ lies on a periodic orbit. If m and n are coprime,
then its period agrees with the fundamental period $\ell(n)$ of the Fibonacci sequence modulo n. To see why, multiply both rotation vectors in (3.3) by n, to get a congruence modulo n over the integers. Denoting by U the 2×2 matrix in (3.3), the condition for a period ℓ is $U^\ell \equiv I$ modulo n. A straightforward computation shows that this condition holds if and only if ℓ is a period of the Fibonacci sequence modulo n. The smallest such integer $\ell > 0$ is known as the Pisano period $\ell(n)$. The two periods described earlier are $\ell(2) = 3$ and $\ell(4) = 6$. Periods $\ell(n)$ with odd n are not expected to occur in the AM model, due to a symmetry that implies $g(E) + g(-E) \equiv \frac{1}{2}$ modulo 1.

An explicit computation (with A and B constant rotations) shows that the transformation R has a ‘trivial’ invariant two-torus on which R is conjugate to the map (3.3). Presumably, this torus attracts AM pairs for $\lambda \ll 1$, but we did not study this situation. For the ‘critical’ maps considered here, such an invariant torus may exist as well, but the conjugacy is unlikely to be smooth (based on the observed eigenvalues). In any case, if orbits with periods $\ell(n)$ for odd n exist in a suitable space, then the closure of this set should carry uncountably many aperiodic recurrent orbits for R.

For even n, the Pisano period $\ell(n)$ is a multiple of 3. Thus, we restrict our analysis to iterates R^ℓ with ℓ a multiple of 3. Notice that $R^\ell(P)$ can be obtained by first iterating $(F, G) \mapsto (G, FG^{-1})\ell$ times, and then conjugating the resulting maps with a scaling

$$
\lambda_\ell(x, y) = (\alpha_\ell x, S^\ell e^{\sigma_\ell} y),
$$

where $\sigma_\ell = \sigma(\ell)$ is determined by a suitable normalization condition.

The following result is a slight extension of theorem 1.1 in [24].

Theorem 3.1. R^3 has a reversible fixed point $P_* = (F_*, G_*)$ with F_* and G_* commuting. P_* is not a fixed point of R. The matrix parts of F_* and G_* are non-constant and extend to entire analytic functions. The scaling exponent $\sigma_* = \sigma_3(P_*)$ is positive and satisfies the bound $|\sigma_* - c_3| < 10^{-443}$, where $c_3 = \frac{1}{2} \cosh^{-1}(\alpha_3^{-1})$.

We conjecture that $\sigma_* = c_3$ and note that the squared y-scaling factors $e^{\pm 2c_3}$ are the real roots of the polynomial $Q_3(z) = z^4 - 2z^3 - 2z^2 - 2z + 1$.

The following theorem is proved in [25].

Theorem 3.2. R^6 has a reversible fixed point $P_* = (F_*, G_*)$ with F_* and G_* commuting. P_* is not a fixed point of R^k for any positive $k < 6$. The matrix parts of F_* and G_* are non-constant and extend to entire analytic functions. The scaling exponent $\sigma_* = \sigma_6(P_*)$ is positive and satisfies the bound $|\sigma_* - c_6| < 10^{-431}$, where $c_6 = \frac{1}{2} \cosh^{-1}(\alpha_3^{-1})$.

We conjecture that $\sigma_* = c_6$ and note that $e^{\pm 2c_6}$ are the real roots of the polynomial $Q_6(z) = z^4 - 8z^3 - 25z^2 - 8z + 1$.

The fixed point P_* described in theorem 3.1 (theorem 3.2) can be associated with the Pisano period $\ell = \ell(n)$ for $n = 2$ ($n = 4$). Numerically, P_* attracts the self-dual AM pair with energy E_ℓ under iteration of $9R^\ell$. In addition, we have numerical evidence for the existence of analogous fixed points for $n = 6$ with $\ell(n) = 24$, and for $n = 8$ with $\ell(n) = 24$. The corresponding rotation number is $g(G) = \frac{1}{2}$ in all cases considered. Our computations for $n = 8$ were carried out at sufficient accuracy to predict a scaling exponent $c_{12} = \frac{1}{2} \cosh^{-1}(\alpha^{-6})$. This was motivated by the observation that $c_6 = 2c_3$. A similar relation for c_{12} seems excluded.

Remark 2. For convenience we have labeled periodic orbits by their fundamental period ℓ. However, the torus map (3.3) can have several periodic orbits with fundamental period $\ell(n)$. They arise from Fibonacci integer sequences modulo n that do not include a consecutive pair
and 3.2 describe the asymptotic behavior of generalized eigenfunctions of \mathcal{R} for some periodic orbits of the map (3.3).

Theorem 3.1 is proved by first solving the fixed point problem for the transformation

$$\mathcal{R}_3(F, G) = (\Lambda_1^{-1}GF^{-1}G\Lambda_3, \quad \Lambda_3^{-1}GF^{-1}FG^{-1}\Lambda_3), \quad (3.5)$$

which is obtained from \mathcal{R} by a 'palindromic' re-arrangement of the factors $F^{\pm 1}$ and $G^{\pm 1}$. This transformation has the advantage that reversible pairs are mapped to reversible pairs, even if the component maps do not commute. After establishing the existence of a fixed point P_* for \mathcal{R}_3, we prove that its components F_* and G_* commute. An analogous approach is used in our proof of theorem 3.2.

We note that, due to the scaling $x \mapsto \alpha_n x$ involved, the analysis can be carried out on a bounded domain in \mathbb{C}. Entire analyticity of the matrix functions $B_\ast = \operatorname{mat} F_\ast$ and $A_\ast = \operatorname{mat} G_\ast$ follows by iterating the fixed point equation and using that $x \mapsto \alpha_n x$ is analyticity improving. The same argument shows that A_\ast and B_\ast are exponentially bounded on all of \mathbb{C}. More specific bounds can be obtained by using information on the Lyapunov exponent of maps that are attracted to P_\ast under renormalization. Based on an explicit expression [21] for the Lyapunov exponent of complex-translated AM maps, we expect that $\log \|A_\ast(\alpha_n x)\|$ grow like $2\pi S \ell^{-1/2}|x|$ in the imaginary direction. This is consistent with the decay rate of the Taylor coefficient that we find numerically in the cases $\ell = 3$ and $\ell = 6$.

4. Scaling and universality

In both cases ($\ell = 3$ and $\ell = 6$) our analysis requires as input an approximate fixed point of \mathcal{R}_ℓ. Such a pair $P_{k\ell}$ is obtained numerically by starting with the self-dual AM pair P with energy E_ℓ and computing $P_{k\ell} = \mathcal{R}^{k\ell}(P)$ for some large k. The fact that this procedure works suggests that P is attracted to our fixed point P_\ast under the iteration of \mathcal{R}. If we assume that this is the case, then it is possible to relate asymptotic properties of P to local properties of the transformation \mathcal{R} near the orbit of P_\ast. Since \mathcal{R} defines a dynamical system on a space of pairs, the same applies to other families in the domain of \mathcal{R}.

Consider e.g. a Schrödinger operator $\mathcal{H}^{n\ast}$ and the associated map $G = (\alpha_n, A)$. Let $P = ((1, I), G)$ and $(F_\ell, G_\ell) = \mathcal{R}_\ell^\ell(P)$. Then $G_\ell = \Lambda_\ell^{-1}G^{n\ast}\Lambda_\ell$, where q_n is the $n + 1$st Fibonacci number. The matrix part of $G^{n\ast}$ is related to the matrix part A_ℓ of G_ℓ via

$$\operatorname{mat} G^{n\ast}(\alpha_n^\ell x) = e^{\sigma_n^\ell S}A_\ell(x)S^\ell e^{-\sigma_n^\ell S}. \quad (4.1)$$

If the sequence $k \mapsto P_{k\ell}$ converges to a fixed point P_\ast of \mathcal{R}^ℓ, then $\sigma_\ell \sim k\sigma_\ast$ for large k, where σ_\ast is the scaling exponent associated with P_\ast. This shows that the scaling factors $e^{\sigma_n^\ell}$ given in theorems 3.1 and 3.2 describe the asymptotic behavior of generalized eigenfunctions of $\mathcal{H}^{n\ast}$ with the proper rotation numbers. A precise argument along these lines is given in [24], as well as a graph of the generalized eigenfunction for the self-dual AM Hamiltonian for energy $E_\ast = -E_3$.

Concerning proper rotation numbers, we note that, while the periodic orbits of the map (3.3) are pairs with rational components, their stable manifolds include mostly irrational pairs. In particular, all pairs with $q(F) = 0$ and $2q(G) \in \mathbb{Z}[\alpha_n]$ are attracted to rational periodic orbits. Numerically, we find e.g. that the self-dual AM pair with $2q(G) = 1 - \alpha_n$ is attracted under iteration of \mathcal{R} to the 3-periodic orbit described in theorem 3.1. The corresponding energy is $E = 1.874 \ldots$

Other universal quantities are associated with the eigenvalues of modulus ≥ 1 of the derivative of \mathcal{R} at a fixed point P_\ast. These eigenvalues have been determined numerically for the fixed points described in theorems 3.1 and 3.2. In both cases, \mathcal{R}^ℓ appears to be hyperbolic, with
exactly two eigenvalues of modulus ≥ 1. It seems likely that the same is true much more generally. In some sense, the 'universality class' is governed by the two-parameter AM model. To be more precise about hyperbolicity: we restrict \mathcal{Y} to a codimension 1 manifold that includes all commuting pairs in the space being considered. Without this restriction, $D\mathcal{Y}(P_\ell)$ has a simple eigenvalue $(-1)^{\ell}$ that is associated with a non-commuting perturbation of P_ℓ.

Two scaling phenomena that are governed by the largest eigenvalue μ_1 are described by (2.5). This eigenvalue determines the ℓ-step asymptotic scaling of the Hofstadter butterfly at (α_s, E_s) in the energy direction. One of the assumptions here is that the AM family intersects the stable manifold of \mathcal{Y} transversally; or equivalently, that this family converges to the unstable manifold of P_ℓ, under the iteration of \mathcal{Y} and proper rescaling. To be more precise, let μ_2 be the second largest eigenvalue of $D\mathcal{Y}(P_\ell)$, and define $\mu s = (\mu_1 s_1, \mu_2 s_2)$ for all $s = (s_1, s_2)$ in \mathbb{R}^2. For s near zero, denote by $P(s)$ the AM pair for $E = E_\ell + s_1$ and $\lambda = 1 + s_2$. Then the family $s \mapsto \mathcal{Y}(P(\mu^{-k} s))$ is assumed to converge to a parametrization of the local unstable manifold of \mathcal{Y} at P_ℓ as k tends to infinity. We note that the diagonal nature of the parameter-scaling μ is specific to the AM family.

Consider e.g. the one-parameter family obtained by setting $s_2 = 0$. Assuming that the Lyapunov exponents and rotation numbers have limits as well, a straightforward computation yields the behavior (2.5) for positive $\varepsilon = |s_1|$ close to zero.

Next, consider the one-parameter family obtained by setting $s_1 = 0$. Let $s_2 > 0$, and denote by $G(s_2)$ the second component of the pair $P(s)$. In this case, we already know that $L(G(s_2)) = \log(1 + s_2)$. So the assumptions made above yield a prediction for the eigenvalue μ_2. Notice that, up to a conjugacy by Λ_{μ_2}, the second component of $\mathcal{Y}(P(\mu^{-k} s))$ is the map $G(\mu_2^{-k} s_2)^\mu_2^{\ell}$, where $q_n \simeq 5^{-1/2} \alpha_n^{n-1}$ denotes the nth Fibonacci number. Assuming that the Lyapunov exponent of $G(\mu_2^{-k} s_2)^\mu_2^{\ell}$ converges to a finite nonzero value as $k \to \infty$, the above implies that $\mu_2 = \alpha_e^{-\ell}$. This value of μ_2 is indeed observed numerically, for the two periods $\ell(2) = 3$ and $\ell(4) = 6$.

We have also computed the first 12 contracting eigenvalues of $\mathcal{L} = D\mathcal{Y}(P_\ell)$. Numerically, the fifth largest (in modulus) eigenvalue μ_5 is a real root of the polynomial P_ℓ, related to largest eigenvalue μ_1 as described after (1.3). For these real roots μ of P_ℓ, one also finds that $x = \mu^{1/3}$ satisfies $x^3 - 3x - x - 1 = 0$ in the case $\ell = 3$, while $x = \mu^{1/2}$ satisfies $x^4 - 14x^3 - 2x - 1 = 0$ in the case $\ell = 6$. The remaining eigenvalues of \mathcal{L} appear to be (real and) of the form $\pm \alpha_\ell^{k\ell}, \pm \alpha_\ell^{k\ell} e^{2\ell\xi}$, or $\pm \alpha_\ell^{k\ell} e^{-2\ell\xi}$, for some positive integer k. Both signs appear, if we count multiplicities in the case $\ell = 6$. For at least one choice of the sign, the eigenvector is generated by a coordinate transformation or corresponds to a non-commuting direction; see [24] for details on how to determine these eigenvectors. For the other values we do not have an explanation.

Acknowledgments

We would like to thank the referees for pointing out several places that needed clarification. The work of SK is supported in part by the National Science Foundation EPSCoR RII Track-4 Award No. 1738834.

ORCID iDs

Hans Koch @ https://orcid.org/0000-0001-5545-7858
Saša Kocić @ https://orcid.org/0000-0003-4506-4887

We are not counting here the parameter α; any scaling in the α direction is trivial and determined solely by arithmetic.
References

[1] Harper P G 1955 Single band motion of conduction electrons in a uniform magnetic field Proc. Phys. Soc. A 68 874–92
[2] Hofstadter D R 1976 Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields Phys. Rev. B 14 2239–49
[3] Aubry S and André G 1980 Analyticity breaking and Anderson localization in incommensurate lattices Ann. Isr. Phys. Soc. 3 133–64
[4] Bellissard J and Simon B 1982 Cantor spectrum for the almost Mathieu equation J. Funct. Anal. 48 408–19
[5] Thouless D J, Kohmoto M, Nightingale M P and Den Nijs M 1982 Quantized Hall conductance in a two-dimensional periodic potential Phys. Rev. Lett. 49 405–8
[6] Johnson R and Moser J 1982 The rotation number for almost periodic potentials Commun. Math. Phys. 84 403–38
[7] Avron J and Simon B 1983 Almost periodic Schrödinger operators II. The integrated density of states Duke Math. J. 50 369–91
[8] van Mouche P 1989 The coexistence problem for the discrete Mathieu operator Commun. Math. Phys. 122 23–33
[9] Choi M D, Elliott G A and Yui N 1990 Gauss polynomials and the rotation algebra Invent. Math. 99 225–46
[10] Dyson F J and Falk H 1992 Period of a discrete cat mapping Am. Math. Mon. 99 603–14
[11] Last Y 1993 A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants Commun. Math. Phys. 151 183–92
[12] Last Y 1994 Zero measure spectrum for the almost Mathieu operator Commun. Math. Phys. 164 421–32
[13] Rüdinger A and Piéchon F 1997 Hofstadter rules and generalized dimensions of the spectrum of Harper’s equation J. Phys. A: Math. Gen. 30 117–28
[14] Abanov A G, Talstra J C and Wiegmann P B 1998 Hierarchical structure of Azbel–Hofstadter problem: strings and loose ends of Bethe ansatz Nucl. Phys. B 525 571–96
[15] Mestel B D, Osbaldestin A H and Winn B 2000 Golden mean renormalisation for the Harper equation: the strong coupling fixed point J. Math. Phys. 41 8304–30
[16] Osadchy D and Avron J E 2001 Hofstadter butterfly as quantum phase diagram J. Math. Phys. 42 5665–71
[17] Dalton J and Mestel B D 2003 Renormalization for the Harper equation for quadratic irrationals J. Math. Phys. 44 4776–83
[18] Goldstein M and Schlag W 2008 Fine properties of the integrated density of states and a quantitative separation property of the Dirichlet eigenvalues Geom. Funct. Anal. 18 755–869
[19] Avila A and Jitomirskaya S 2009 The ten Martini problem Ann. Math. 170 303–42
[20] Avila A and Jitomirskaya S 2010 Almost localization and almost reducibility J. Eur. Math. Soc. 12 93–131
[21] Avila A 2015 Global theory of one-frequency Schrödinger operators Acta Math. 215 1–54
[22] Satija I I 2016 A tale of two fractals: the Hofstadter butterfly and the integral Apollonian gaskets Eur. Phys. J. Spec. Top. 225 2533–47
[23] Han R and Marx C A 2018 Large coupling asymptotics for the Lyapunov exponent of quasi-periodic Schrödinger operators with analytic potentials Ann. Henri Poincaré 19 249–65
[24] Koch H 2019 Golden mean renormalization for the almost Mathieu operator and related skew products 19–45 (arXiv:1907.06804 [math-ph])
[25] Koch H and Kocič S Orbits under renormalization of skew-product maps over circle rotations (in preparation)