Effects of Gravitational Chern-Simons during Axion-SU(2) Inflation

Leila Mirzagholi,a,1 Eiichiro Komatsu,a,b Kaloian D. Lozanova and Yuki Watanabea,c

aMax Planck Institute for Astrophysics, Karl-Schwarzschild-Str.1, 85741 Garching, Germany
bKavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), UTIAS, The University of Tokyo, Chiba 277-8583, Japan
cDepartment of Physics, National Institute of Technology, Gunma College, Gunma 371-8530, Japan
E-mail: lmirz@mpa-garching.mpg.de, komatsu@mpa-garching.mpg.de, klozanov@mpa-garching.mpg.de, yuki.watanabe@gunma-ct.ac.jp

Abstract. In this paper we examine the viability of inflation models with a spectator axion field coupled to both gravitational and SU(2) gauge fields via Chern-Simons couplings. Requiring phenomenological success of the axion-SU(2) sector constrains the coupling strength of the gravitational Chern-Simons term. We find that the impact of this term on the production and propagation of gravitational waves can be as large as fifty percent enhancement for the helicity that is not sourced by the gauge field, if the cut-off scale is as low as $\Lambda = 20H$. The effect becomes smaller for a larger value of Λ, while the impact on the helicity sourced by the gauge field is negligible regardless of Λ.

1Corresponding author.
1 Introduction

Coupled axion and SU(2) gauge fields during inflation [1–4] provide a rich phenomenology that is not shared by canonical single scalar field inflation [5–8] models (see [9] for a review), e.g., they generate a stochastic background of chiral gravitational waves [9–12] which are non-Gaussian [13–16]. It has also been shown [17–24] that generation of chiral gravitational waves leads to a non-zero parity-violating gravitational anomaly, $R \tilde{R}$, which, in turn, violates the lepton number conservation and generates the baryon asymmetry of the universe.

The upcoming LiteBIRD [25, 26] and CMB Stage-4 experiments [27] will provide further constraints on the axion-gauge fields [28, 29]. However, before the predictions of these models are taken seriously, it is important to check if these models are viable both phenomenologically and theoretically.

From the phenomenological point of view, it is important to see if couplings of SU(2) gauge fields to other fields lead to particle production and their backreaction on the axion-gauge field backgrounds do not spoil the model setup. In [30], a charged scalar field is coupled to the SU(2) gauge field, and production and backreaction of pairs of charged particles is studied in de Sitter spacetime. In [31], the backreaction of the extra spin-2 field in this setup is analytically studied for all the inflationary models involving the SU(2) gauge field. In [32, 33] a pair of massive Dirac fermions are coupled to the SU(2) gauge field. The coupling to a massless fermion is studied in [34]. In all these cases there exists a parameter space in which the backreaction of the particles on the SU(2) background is negligible. The nonlinear impact on the scalar perturbations of the chromo-natural inflation and the spectator sector during inflation has been studied in [35, 36]. Anisotropic initial conditions are discussed in [37].

From the theoretical point of view, it is important to consider all different classes of parity-violating terms that arise from the same physics. The existence of both $F \tilde{F}$ and $R \tilde{R}$ is the result of one phenomenon. As an example, if coupling to a massive degree of freedom, such as axially coupled heavy fermions, is considered, then radiative fermion loops generate
not only $F \tilde{F}$, but also $R \tilde{R}$ [38]. String theory predicts the existence of axions that couple to both terms simultaneously [39–41]. Hence, these two parity-violating terms arise at the same time and should be effectively considered on the same level in the theory. Moreover, given that $R \tilde{R}$ can introduce a ghost instability, it is important to check the stability of these models up to their cut-off scales.

In this paper we consider the axion-SU(2) gauge field spectator sector [42] together with the gravitational Chern-Simons term coupled to the axion field. In this setup we have the parity-violating terms on both sides of the equation of motion for the tensor metric perturbations; the left-hand side due to the gravitational Chern-Simons term and the right-hand side due to the axion-SU(2) sector. There are many studies focused on the cosmological signatures of the gravitational Chern-Simons term [38, 43–54]. In this paper, we extend these studies to the axion-SU(2) models. In [55–58], the authors have considered both $F \tilde{F}$ and $R \tilde{R}$ originating from string theory. The non-abelian gauge field in their consideration does not share the same vacuum expectation value as in our case, hence it does not source gravitational waves linearly.

This paper is organized as follows. In section 2 we present the model and analyse the background evolution. In section 3 we present the second-order Lagrangian for tensor perturbations and compare the gravitational waves with and without the gravitational Chern-Simons term. We discuss the stability and the cut-off scale of the model in section 4. We conclude in section 5.

2 Model Setup

2.1 Action

We consider the following action

$$S = S_{EH} + S_{\varphi} + S_{SPEC} + S_{GCS},$$ \hspace{1cm} (2.1)

where S_{EH} is the Einstein-Hilbert action and S_{φ} is the inflaton sector action given by

$$S_{EH} = \int d^4x \sqrt{-g} \frac{M_{pl}^2}{2} R,$$ \hspace{1cm} (2.2)

$$S_{\varphi} = \int d^4x \sqrt{-g} \left(-\frac{1}{2} (\partial \varphi)^2 - V(\varphi) \right).$$ \hspace{1cm} (2.3)

The spectator sector action S_{SPEC} contains axion and SU(2) gauge fields, where χ is an axion field with potential $U(\chi)$ and a decay constant f:

$$S_{SPEC} = \int d^4x \sqrt{-g} \left(-\frac{1}{2} (\partial \chi)^2 - U(\chi) + \frac{1}{4} F_{\mu \nu}^a F_a^{\mu \nu} + \frac{\lambda_1 \chi}{4f} \tilde{F}_a^{\mu \nu} \tilde{F}_a^{\mu \nu} \right),$$ \hspace{1cm} (2.4)

where

$$F_{\mu \nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a - g_A \epsilon^{abc} A_\mu^b A_\nu^c,$$ \hspace{1cm} (2.5)

is the field strength tensor of the SU(2) gauge fields, with g_A being the self-coupling constant and ϵ^{abc} the three dimensional anti-symmetric symbol.

The last term in S_{SPEC} is the Chern-Simons interaction, where λ_1/f parametrizes its coupling strength and $\tilde{F}_{\mu \nu}^a = \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}^a / 2$ is the dual of $F_{\mu \nu}^a$. $\epsilon^{\mu \nu \alpha \beta}$ is defined as $\epsilon^{\mu \nu \alpha \beta} = \epsilon^{\mu \nu \alpha \beta} / \sqrt{-g}$, where $\epsilon^{\mu \nu \alpha \beta}$ is the totally anti-symmetric symbol with $\epsilon^{0123} = 1$. The S_{SPEC} is
invariant under the local SU(2) transformation. $F \tilde{F}$ is a total derivative and for $\chi = \text{const}$, it reduces to a surface term. Hence, we can write $F \tilde{F}$ as

$$F \tilde{F} = \nabla_\mu C^\mu, \quad (2.6)$$

with

$$C^\mu = 2\varepsilon^{\mu \nu \alpha \beta} \left(A_\nu^a \partial_\alpha A_\beta^a - \frac{1}{3} \varepsilon^{abc} A_\nu^a A_\alpha^b A_\beta^c \right). \quad (2.7)$$

The last term in (2.1) is the gravitational Chern-Simons term coupled to the axion, with coupling strength of λ_2/f:

$$S_{GCS} = \int d^4x \sqrt{-g} \frac{\lambda_2 \chi}{4f} R \tilde{R}, \quad (2.8)$$

where

$$R \tilde{R} = R^\alpha_{\alpha \beta \gamma \delta} \tilde{R}^\beta_{\beta \gamma \delta \alpha \alpha \alpha} \quad (2.9)$$

$R^\alpha_{\alpha \beta \gamma \delta}$ is the Riemann tensor and the dual of the Riemann tensor is

$$\tilde{R}^\alpha_{\beta \gamma \delta} = (1/2) \varepsilon_{\sigma \tau \gamma \delta} R^\alpha_{\sigma \tau}. \quad (2.10)$$

We can also write $R \tilde{R}$ as

$$R \tilde{R} = 2\nabla_\mu K^\mu, \quad (2.11)$$

with

$$K^\mu = 2\varepsilon^{\mu \alpha \beta \gamma} \left(\frac{1}{2} \Gamma^\alpha_{\alpha \sigma \tau} \partial_\beta \Gamma^\gamma_{\gamma \sigma \alpha} + \frac{1}{3} \Gamma^\alpha_{\alpha \sigma \tau} \Gamma^\gamma_{\beta \eta \eta} \Gamma^\delta_{\gamma \delta \gamma} \right). \quad (2.12)$$

The gravitational Chern-Simons term is also a total derivative. For $\chi = \text{const}$, it reduces to a surface term.

2.2 Background Evolution

In this section, we describe the evolution of the background. As $R \tilde{R}$ vanishes in a Friedmann-Lemaître-Robertson-Walker (FLRW) background, there is no contribution to the background.

The vacuum expectation value of the gauge field is given by [1, 2]

$$A_0^a = 0, \quad A_i^a = \delta_i^a a(t) Q(t). \quad (2.13)$$

The 00-component of the Einstein equations is [42]

$$3M_{pl}^2 H^2 = \frac{\dot{\varphi}^2}{2} + V(\varphi) + \frac{\dot{\chi}^2}{2} + U(\chi) + \frac{3}{2} (\dot{Q} + HQ)^2 + \frac{3}{2} g_\alpha^2 Q^4. \quad (2.14)$$

The equations of motion for the axion and gauge fields are given by [3, 42]

$$\ddot{\chi} + 3H \dot{\chi} + \partial_\chi U = -\frac{g \lambda_1}{f} Q^2 (\dot{Q} + HQ), \quad (2.15)$$

$$\ddot{Q} + 3H \dot{Q} + (\dot{H} + 2H^2) Q + 2g_\alpha^2 Q^3 = \frac{g \lambda_1}{f} \dot{\chi} Q^2, \quad (2.16)$$

where dots show derivatives with respect to the cosmic time t and $H \equiv \dot{a}/a$ is the Hubble expansion rate. It is useful to define the slow-roll parameters $\epsilon_H \equiv -\dot{H}/H^2$ and write [42]

$$\epsilon_H = \epsilon_\varphi + \epsilon_\chi + \epsilon_B + \epsilon_E, \quad (2.17)$$

- 3 –
\[\epsilon_\varphi \equiv \frac{\dot{\varphi}^2}{2H^2M_{pl}^2}, \quad \epsilon_\chi \equiv \frac{\dot{\chi}^2}{2H^2M_{pl}^2}, \quad \epsilon_B \equiv \frac{g_A Q^4}{H^2M_{pl}^2}, \quad \epsilon_E \equiv \frac{(\dot{Q} + HQ)^2}{H^2M_{pl}^2}, \]

(2.18)

are all much smaller than unity.

Also we define the following dimensionless parameters

\[m_Q \equiv \frac{g_A Q}{H}, \quad \xi_1 \equiv \frac{\lambda_1 \dot{\chi}^2}{2fH}, \quad \xi_2 \equiv \frac{1}{2} \frac{\lambda_2 \dot{\chi}^2}{fH} \left(\frac{H}{M_{pl}} \right)^2. \]

(2.19)

The fourth term in the left hand side of (2.16) becomes \(2m_Q^2H^2Q \); thus \(m_Q \) can be regarded as the mass of \(Q \) (divided by \(H \)).

In the slow-roll approximation, the following relation holds between \(m_Q \) and \(\xi_1 \) \cite{42}

\[\xi_1 \simeq m_Q + \frac{1}{m_Q}. \]

(2.20)

To prevent instabilities of the scalar perturbations (lower bound) and strong backreaction on the gauge background (upper bound), we consider \(\sqrt{2} < m_Q \lesssim 4 \) \cite{11, 14, 31, 42}. This implies

\[\xi_2 \simeq \frac{\lambda_2}{2\lambda_1} \left(\frac{H}{M_{pl}} \right)^2 \left(m_Q + \frac{1}{m_Q} \right) \lesssim 10^{-9} \left(\frac{\lambda_2}{\lambda_1} \right), \]

(2.21)

where we have used \(\left(H/M_{pl} \right)^2 \lesssim 10^{-9} \). Thus, a sizeable \(\xi_2 \), e.g., \(\xi_2 \simeq 10^{-2} \), requires large \(\lambda_2/\lambda_1 \), e.g., \(\left(\lambda_2/\lambda_1 \right) = 10^7 \). A large hierarchy between \(\lambda_2 \) and \(\lambda_1 \) i.e., \(\left(\lambda_2/\lambda_1 \right) \gg 1 \), is in principle allowed, since all the degrees of freedom are coupled to the gravitational Chern-Simons term, but only the charged ones are coupled to the SU(2) Chern-Simons term. Specifically, \(\lambda_2 \propto (f/\Lambda)N \) where \(N \) is the number of integrated out degrees of freedom and \(\Lambda \) is the cut-off scale of the effective field theory, e.g., the mass of fermions in the loops. Note that this holds assuming that we are integrating out the massive fermions as an example at the same energy scale to get \(F\tilde{F} \) and \(R\tilde{R} \) simultaneously.

3 Tensor Perturbations

Now, we consider tensor perturbations during inflation at linear level. The tensor perturbations are amplified due to the tachyonic instability, whereas the scalar and vector perturbations are not amplified for \(m_Q > \sqrt{2} \) \cite{4, 9, 11, 42} in the spectator axion-SU(2) sector.

We have four tensor degrees of freedom: two metric tensor degrees of freedom that represent the gravitational waves and two additional tensor degrees of freedom associated with the SU(2) gauge field. We consider a perturbed FLRW metric as follows

\[ds^2 = a^2(\tau)(-d\tau^2 + (\delta_{ij} + \tilde{h}_{ij})dy^i dy^j), \]

(3.1)

where \(\tau \simeq -1/aH \) is the conformal time and \(\tilde{h}_{ij} \) is a transverse and traceless tensor, i.e. \(\partial^\tau \tilde{h}_{ij} = \tilde{h}_i^i = 0 \). We define the Fourier transformed right and left-handed circular polarization states as

\[\tilde{h}_{ij}(\tau, y) = \int \sum_{A=L,R} \frac{d^3k}{(2\pi)^{3/2}} e_{ij}^A(k) \bar{h}_A(\tau, k) e^{ik.y}, \]

(3.2)
where e_{ij}^a is the polarization state tensor for the right ($A = R$) and left-handed ($A = L$) circular polarization states and satisfies the relation

$$i\kappa_a e^{ab} e_{cd}^R = k e_{cd}^R, \quad i\kappa_a e^{ab} e_{cd}^L = -k e_{cd}^L,$$ \hspace{1cm} (3.3)

where $e^{ab} e_c$ is the three dimensional anti-symmetric symbol. For simplicity, we assume that the gravitational waves are propagating along the z spatial direction

$$ds^2 = a^2(\tau) \left[-d\tau^2 + (1 + \hat{h}_+(\tau, z)) dx^2 + (1 - \hat{h}_+(\tau, z)) dy^2 + 2\hat{h}_x(\tau, z) dx dy + dz^2 \right].$$ \hspace{1cm} (3.4)

We write the tensor perturbations of the gauge field as $\delta A^a = a \breve{i}_i^a$, where \breve{i}_i^a is chosen to be transverse and traceless, i.e. $\partial_i \breve{i}_i^a = \breve{i}_i^a = 0$. We write the gauge tensor perturbations as $\delta A_1^a = a(\breve{\ell}_+, \breve{\ell}_x, 0)$ and $\delta A_2^a = a(\breve{\ell}_-, \breve{\ell}_x, 0)$. For our convenience we work with the canonically normalised tensor perturbations

$$\hat{h}_{ij} \equiv -\frac{M_{pl}}{2} \breve{h}_{ij}, \quad t_i^a = \sqrt{2} a \breve{i}_i^a.$$ \hspace{1cm} (3.5)

We define the left and the right helicities as [42]

$$h_{L,R} \equiv \frac{1}{\sqrt{2}}(h_+ \pm i h_x), \quad t_{L,R} \equiv \frac{1}{\sqrt{2}}(t_+ \pm i t_x).$$ \hspace{1cm} (3.6)

Now we write the second order action for the tensor perturbations.

$$S = \frac{1}{2} \sum_{A=L,R} \int d\tau d^3k \left\{ \left(1 - \frac{s \lambda_1 \lambda_2}{4 f a M_{pl}^2} \right) \left[h_{A}^i h_A^i + (-k^2 + 2\mathcal{H}^2) h_{A}^i h_A - 2\mathcal{H} R (h_{A}^i h_A)^\dagger \right]
+ t_{A}^i t_A^i \left[2 gaQ + \frac{\lambda_1}{f a} \chi' \right] - k^2 - \frac{ga \lambda_1 a Q}{f} \chi' \right] + 2R \left[h_{A}^i t_A^i - h_{A}^i t_A^i \right] \frac{Q' + \mathcal{H}Q}{M_{pl}}
+ t_{A}^i t_A^i + 2 R (h_A^i t_A^i) \left\{ - s a k \frac{2 ga^2}{M_{pl}} - \mathcal{H} (Q' + \mathcal{H}Q) \frac{M_{pl}}{M_{pl}} + \frac{2 ga \lambda_1 Q^2}{M_{pl}} \chi' \right\} \right\},$$ \hspace{1cm} (3.7)

where $s = -1, 1$ for the left- and right-handed helicities respectively. A prime denotes the derivative with respect to the conformal time τ, and $\mathcal{H} \equiv a' / a$.

Using the parameters defined in (2.19) in the action, we find

$$S = \frac{1}{2} \sum_{A=L,R} \int d\tau d^3k \left\{ \left(1 - \frac{s \xi_2}{\mathcal{H}} \right) \left[h_{A}^i h_A^i + h_{A}^i h_A^i (-k^2 + 2\mathcal{H}^2) - 2\mathcal{H} R (h_{A}^i h_A)^\dagger \right]
+ \left(2 R (h_{A}^i t_A^i) - 2 R (h_{A}^i t_A^i) \right) \mathcal{H} \sqrt{\varepsilon E} + t_{A}^i t_A^i \left[2 s \mathcal{H} m Q k + 2 s \mathcal{H} \xi_1 k - 2 \mathcal{H}^2 m Q \xi_1 - k^2 \right] \right\} \right\} + t_{A}^i t_A^i + 2 R (h_A^i t_A^i) \left\{ - 2 s \mathcal{H} \sqrt{\varepsilon E} k + 2 \mathcal{H}^2 \sqrt{\varepsilon E} \xi_1 - \mathcal{H}^2 \sqrt{\varepsilon E} \right\}.$$ \hspace{1cm} (3.8)
We plot the metric tensor mode functions for different values of handed gauge tensor mode functions shown in the top-left panel of Figure 2. As ξ_2 becomes larger, the difference between the two helicity modes becomes more visible (middle- and bottom-left panels).

The equations of motion for the tensor modes up to leading order in slow-roll parameters are

$$\partial_x^2 t_A + \left[1 + \frac{2}{x^2} (m_Q \xi_1 - sx(m_Q + \xi_1)) \right] t_A = -\frac{2\sqrt{\epsilon_E}}{x} \partial_x h_A + \frac{2}{x^2} \left[(m_Q - sx)\sqrt{\epsilon_B} + \sqrt{\epsilon_E} \right] h_A,$$

$$\left(1 - s \xi_2 x\right) \left[\partial_x^2 h_A + (1 - \frac{2}{x^2})h_A \right] - 2s \xi_2 \partial_x h_A = \frac{2\sqrt{\epsilon_E}}{x} \partial_x t_A + \frac{2}{x^2} \left[(m_Q - sx)\sqrt{\epsilon_B} \right] t_A,$$

where $x \equiv -k\tau$.

Next we calculate the four tensor modes numerically.\(^1\) Only the right-handed helicity mode of the tensor perturbations of the SU(2) gauge field t_R is amplified with respect to the gravitational waves. In the left panel of Figure 1 we show the amplification of $|t_R| = \sqrt{|t_R^{(1)}t_R^{(2)}|}$ (green line) around the horizon crossing ($|k\tau| \sim 1$), assuming $m_Q, \xi_1, \xi_2, H, \epsilon_B$ and ϵ_E are constant. In all the plots in this section we use the following parameters

$$m_Q = 3, \quad \epsilon_B = 3 \times 10^{-4}, \quad \epsilon_E = 3 \times 10^{-5}, \quad H = 10^{13}\text{GeV}.$$

3.1 Without $F\tilde{F}$

To understand the effect of $R\tilde{R}$, we first consider the case where $\xi_1 = 0$ and $m_Q = 0$ in (3.10). The last term on the left hand side of (3.10) acts as a friction term for h_L, which prevents it from decaying, whereas it acts as an anti-friction term for h_R, which makes h_R decay faster. We plot the metric tensor mode functions for different values of ξ_2 in Figure 2. The difference between the right- and left-handed helicity modes are negligible for a small value of ξ_2, as shown in the top-left panel of Figure 2. As ξ_2 becomes larger, the difference between the two helicity modes becomes more visible (middle- and bottom-left panels).

\(^1\)For a discussion of the quantisation of the tensor modes and their vacuum state, see Appendix A.
In the right panels of Figure 2, we show the ratios of the right- and left-handed helicity mode functions with respect to those for $\xi_1 = 0$, $m_Q = 0$ and no gravitational Chern-Simons term, labelled as $h_{\xi_2=\xi_1=0}$. Contrary to the case where gauge fields are present, the left-handed helicity of the metric tensor perturbations is amplified. This difference depends on the relative sign between the coefficients of the parity-violating terms $F\tilde{F}$ and $R\tilde{R}$, i.e., λ_1 in (2.4) and λ_2 in (2.8). The effect of $R\tilde{R}$ on the enhancement/suppression is nearly symmetric as shown in the right panels of Figure 2. This enhancement/suppression occurs already deep inside the horizon. On the other hand, amplification of the right-handed helicity of the gauge field occurs near horizon crossing (see the green dotted line in the left panel of Figure 1). This difference becomes important in section 3.2.

3.2 With $F\tilde{F}$

We turn on the $F\tilde{F}$ term with $\xi_1 = 3.3$ ($m_Q = 3$) to capture the effect of $R\tilde{R}$ in axion-SU(2) gauge field models, we plot the ratio of metric tensor mode functions for different values of ξ_2 with respect to those without the gravitational Chern-Simons term, i.e. $\xi_2 = 0$ in Figure 1 and 3. In the right panel of Figure 1 for $\xi_2 = 4.5 \times 10^{-6}$, the contribution of the gravitational Chern-Simons term is small given such a small value of ξ_2. In Figure 3 we have plotted the same as Figure 1 for larger values of ξ_2. After considering different configurations, we conclude that the contribution from the gravitational Chern-Simons term on the left-handed helicity modes is about fifty percent amplification for $\xi_2 = 4.5 \times 10^{-2}$ as shown in Figure 3 while the right-handed helicity modes are largely unaffected. This value of ξ_2 requires a large hierarchy between λ_2 and λ_1, as noted at the end of section 2.2.

For completeness, the right- and left-handed helicity mode functions for four different cases: with $F\tilde{F}$ and $R\tilde{R}$, without $R\tilde{R}$, without $F\tilde{F}$, and without both terms, for different values of ξ_2 are shown in Figure 4.

The right-handed helicity modes are unaffected by the gravitational Chern-Simons coupling because they are sourced by the gauge field after horizon crossing, while the gravitational Chern-Simons coupling affects mode functions already deep inside the horizon.

4 Stability Analysis

For $k > H/\xi_2$, the sign of the kinetic term of h_R in the equation (3.8) becomes negative and, consequently, ghost instabilities may, in principle, be introduced into the model [49, 50]. Existence of ghosts does not necessarily translate to catastrophe in a model but translates to the breaking of the effective theory. Let us rewrite the first term in (3.8), $(1 - k\xi_2/H)$, (this is the only problematic term we have to analyse), in physical coordinates. It is given by $(1 - \frac{\xi_2}{H}k_{phy})$, where $k_{phy} \equiv k/a$ is the physical wave number. To show that the gravitational Chern-Simons term in this model is ghost-free, i.e., stable, we have to show that the effective field theory cut-off, Λ, on the physical wave number, k_{phy}, is below H/ξ_2. Note that we have two new free parameters in this model, the gravitational Chern-Simons coefficient λ_2 in (2.8) and the cut-off Λ. As there are no a priori constraints on λ_2, our strategy is to work our way backwards. Specifically, relying on independently motivated constraints on ξ_1, we ask what constraint is imposed on λ_2 in order to guarantee that the theory is healthy. Once this question is answered, we will ask how stringent or natural the resulting constraint is.

Let us first take a look at (2.19) and write the relation for λ_2

$$\lambda_2 = 2\xi_2 \frac{\lambda_1}{\xi_1} \left(\frac{M_{pl}}{H}\right)^2. \quad (4.1)$$
Figure 2: (Left panel) The right- (solid blue) and left-handed (dashed orange) helicity mode functions of \(h_{R,L} \) for different values of \(\xi_2 \) and \(\xi_1 = 0 \). We plot \(\sqrt{2k|k\tau h_{R,L}|} \). (Right panel) The ratios of the right- (solid blue) and left-handed (dashed orange) helicity mode functions for the same values of \(\xi_2 \) as the left panels with respect to those for \(\xi_2 = \xi_1 = 0 \). The horizontal dotted line shows unity.

To remain in the ghost-free regime we need the cut-off \(\Lambda \) on \(k_{phy} \) to be the following:

\[
\frac{\xi_2}{H} \Lambda < 1 .
\]

(4.2)

Here we consider two cases, a conservative case where the cut-off \(\Lambda \) does not exceed \(M_{pl} \),
and a more radical case where it is around $20H$.\(^2\)

- **Conservative case:** The inequality in (4.2) boils down to $\xi_2 < H/M_{pl}$ [44, 53], given the assumption that Λ does not exceed M_{pl}. Using this in (4.1), we have:

$$\lambda_2 < 2 \left(\frac{\lambda_1}{\xi_1} \right) \left(\frac{M_{pl}}{H} \right). \quad (4.3)$$

- **More radical case:** The inequality in (4.2) boils down to $\xi_2 < 1/20$, given the assumption that Λ is around $20H$. Using this in (4.1), we have:

$$\lambda_2 < \left(\frac{1}{10} \right) \left(\frac{\lambda_1}{\xi_1} \right) \left(\frac{M_{pl}}{H} \right)^2 \quad (4.4)$$

On the right hand side of both inequalities above we have $\xi_1 \sim O(1)$, which guarantees a slow variation of the gauge field, $\lambda_1 \sim O(10)$, and there is an upper bound on the tensor-to-scalar ratio $r \equiv (P_h/P_\zeta) < 0.06$ from not observing tensor modes in the CMB [59] where P_h and P_ζ are the power spectra of tensor and curvature perturbations, respectively. In our model both the vacuum fluctuations of the metric and the sourced gravitational waves contribute to P_h. Using the upper bound on r, the measurement of the dimensionless power spectrum of scalar fluctuations, $\Delta_\zeta \equiv k^3P_\zeta/2\pi^2 \approx 2.2 \times 10^{-9}$, and the expression for the dimensionless power spectrum of tensor fluctuations only from the metric vacuum fluctuations $\Delta_{h\text{vac}} \equiv k^3P_{h\text{vac}}/2\pi^2 = 2H^2/(\pi^2M_{pl}^2)$, we get a bound on the last term $(M_{pl}/H)^2 \gtrsim 1.5 \times 10^9$.

Therefore, in both (4.3) and (4.4), the right side is expected to be a very large number. As there is no stringent constraint on the free parameter λ_2 in our model, the model is not disfavoured by fine-tuning arguments.

5 Discussion

We have studied the effect of the gravitational Chern-Simons term coupled to the axion field on production and propagation of gravitational waves during inflation with the spectator axion-SU(2) sector [42]. Both parity-violating terms $R\tilde{R}$ and $F\tilde{F}$ exist simultaneously.

\(^2\)For more details on the cut-off, see Appendix A
Figure 4: (Left panel) The right-handed helicity mode functions for four different cases: $F\tilde{F}$ and $R\tilde{R}$ (dotted green), without $R\tilde{R}$ (solid blue), without $F\tilde{F}$ (dashed orange), and without both terms (dot-dashed red) for different values of ξ_2. ξ_1 is always $\xi_1 = 3.3$ ($m_Q = 3$). (Right panel) Same as the left panels but for the left-handed modes.

We find that the effect of the $R\tilde{R}$ term on chiral gravitational waves can be as large as fifty percent amplification for the left-handed helicity mode functions compared to the case without the $R\tilde{R}$ term for $\xi_2 = 4.5 \times 10^{-2}$. The effect is smaller for smaller values of ξ_2. The right-handed helicity mode functions are unaffected regardless of the values of ξ_2. Moreover, using the existing bounds on m_Q and ξ_1 from the spectator axion-SU(2) gauge field sector, and requiring that the cut-off scale of the theory, Λ, is in the conservative case $\Lambda = M_{pl}$ and in a more radical case $\Lambda = 20H$, we put constraints on the new free parameter λ_2 in our
model to remain in the ghost-free regime. Consequently, values of ξ_2 are related to the cut-off scale of the theory, Λ. $\xi_2 = 4.5 \times 10^{-2}$ is allowed when $\Lambda = 20H$ and $\xi_2 = 4.5 \times 10^{-6}$ is allowed when $\Lambda = M_{pl}$.

We conclude that the inflation models with the spectator axion-SU(2) sector remain phenomenologically viable in the presence of the gravitational Chern-Simons term.

Acknowledgments

LM thanks Valerie Domcke for useful discussions and is grateful to Elisa Ferreira and Ryo Namba for insightful discussions and comments on the manuscript. EK thanks Azadeh Maleknejad for useful discussions. This research was supported in part by the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy -EXC-2094-390783311. YW is supported by JSPS KAKENHI Grant No. JP16K17712.

A Quantisation of the tensor modes and initial conditions

Since the tensor-like perturbations in the gauge fields and the tensor metric perturbations are linearly coupled, we expand both in terms of the same pair of creation and annihilation operators [60]

$$h_A(\tau, k) = \sum_{n=h,t} \left[a_{n,k}^A h_{A,n} + a_{n,-k}^A h_{A,n}^\dagger \right],$$
$$t_A(\tau, k) = \sum_{n=h,t} \left[a_{n,k}^A t_{A,n} + a_{n,-k}^A t_{A,n}^\dagger \right], \quad (A.1)$$

where we have the standard commutators

$$[a_{n,k}^A, a_{m,q}^{B\dagger}] = \delta_{n,m} \delta_{A,B} \delta^{(3)}(k - q). \quad (A.2)$$

We have to specify the vacuum (when $-k\tau \gg m_Q$ and $-k\tau \xi_2 < 1$) for the gravitational and gauge fields separately. We divide the vacuum space to two subspaces corresponding to each field as [11, 20, 61]:

$$h_{A,n}(\tau, k) = \frac{1}{\sqrt{2k}} \delta_{n,h} e^{-ik\tau}, \quad h'_{A,n}(\tau, k) = -\frac{1}{\sqrt{2k}} i k \delta_{n,h} e^{-ik\tau},$$
$$t_{A,n}(\tau, k) = \frac{1}{\sqrt{2k}} \delta_{n,t} e^{-ik\tau}, \quad t'_{A,n}(\tau, k) = -\frac{1}{\sqrt{2k}} i k \delta_{n,t} e^{-ik\tau}. \quad (A.3)$$

The solution $h_{A,n=h}$ can be interpreted as the vacuum gravitational wave, whereas $h_{A,n=t}$ as the sourced one (by the vacuum gauge field, $t_{A,n=t}$).

While choosing a cut-off for the gravitational Chern-Simons term we should note where the tachyonic instability in the gauge sector exists for a given m_Q. Considering $m_Q = 3$ in the equation of motion for the gauge fluctuation, the tachyonic instability takes place around $x \sim 10$. A reasonable cut-off must be chosen far enough to capture the effects of the instability completely. The cut-off $\Lambda = 20H$ is acceptable considering this criteria.
References

[1] A. Maleknejad and M. M. Sheikh-Jabbari, *Gauge-flation: Inflation From Non-Abelian Gauge Fields*, Phys. Lett. B723 (2013) 224 [1102.1513].

[2] A. Maleknejad and M. M. Sheikh-Jabbari, *Non-Abelian Gauge Field Inflation*, Phys. Rev. D84 (2011) 043515 [1102.1932].

[3] P. Adshead and M. Wyman, *Chromo-Natural Inflation: Natural inflation on a steep potential with classical non-Abelian gauge fields*, Phys. Rev. Lett. 108 (2012) 261302 [1202.2366].

[4] P. Adshead, E. Martinec and M. Wyman, *Perturbations in Chromo-Natural Inflation*, JHEP 09 (2013) 087 [1305.2930].

[5] A. H. Guth, *The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems*, Phys. Rev. D23 (1981) 347.

[6] K. Sato, *First Order Phase Transition of a Vacuum and Expansion of the Universe*, Mon. Not. Roy. Astron. Soc. 195 (1981) 467.

[7] A. D. Linde, *A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems*, Phys. Lett. 108B (1982) 389.

[8] A. Albrecht and P. J. Steinhardt, *Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking*, Phys. Rev. Lett. 48 (1982) 1220.

[9] A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, *Gauge Fields and Inflation*, Phys. Rept. 528 (2013) 161 [1212.2921].

[10] P. Adshead, E. Martinec and M. Wyman, *Gauge fields and inflation: Chiral gravitational waves, fluctuations, and the Lyth bound*, Phys. Rev. D88 (2013) 021302 [1301.2598].

[11] E. Dimastrogiovanni and M. Peloso, *Stability analysis of chromo-natural inflation and possible evasion of Lyth’s bound*, Phys. Rev. D87 (2013) 103501 [1212.5184].

[12] A. Maleknejad, *Axion Inflation with an SU(2) Gauge Field: Detectable Chiral Gravity Waves*, JHEP 07 (2016) 104 [1604.03327].

[13] A. Agrawal, T. Fujita and E. Komatsu, *Large tensor non-Gaussianity from axion-gauge field dynamics*, Phys. Rev. D97 (2018) 103526 [1707.03023].

[14] A. Agrawal, T. Fujita and E. Komatsu, *Tensor Non-Gaussianity from Axion-Gauge-Fields Dynamics : Parameter Search*, JCAP 1806 (2018) 027 [1802.09284].

[15] T. Fujita, R. Namba and I. Obata, *Mixed Non-Gaussianity from Axion-Gauge Field Dynamics*, JCAP 1904 (2019) 044 [1811.12371].

[16] E. Dimastrogiovanni, M. Fasiello, R. J. Hardwick, H. Assadullahi, K. Koyama and D. Wands, *Non-Gaussianity from Axion-Gauge Fields Interactions during Inflation*, JCAP 1811 (2018) 029 [1806.05474].

[17] S. H.-S. Alexander, M. E. Peskin and M. M. Sheikh-Jabbari, *Leptogenesis from gravity waves in models of inflation*, Phys. Rev. Lett. 96 (2006) 081301 [hep-th/0403069].

[18] A. Maleknejad, *Gravitational leptogenesis in axion inflation with SU(2) gauge field*, JCAP 1612 (2016) 027 [1604.06520].

[19] P. Adshead, A. J. Long and E. I. Sfakianakis, *Gravitational Leptogenesis, Reheating, and Models of Neutrino Mass*, Phys. Rev. D97 (2018) 043511 [1711.04800].

[20] R. R. Caldwell and C. Devulder, *Axion Gauge Field Inflation and Gravitational Leptogenesis: A Lower Bound on B Modes from the Matter-Antimatter Asymmetry of the Universe*, Phys. Rev. D97 (2018) 023532 [1706.03765].

– 12 –
[21] A. Papageorgiou and M. Peloso, *Gravitational leptogenesis in Natural Inflation*, JCAP 1712 (2017) 007 [1708.08007].

[22] P. Adshead, J. T. Giblin and Z. J. Weiner, *Gravitational waves from gauge preheating*, Phys. Rev. D98 (2018) 043525 [1805.04550].

[23] A. Maleknejad, M. Noorbala and M. M. Sheikh-Jabbari, *Leptogenesis in inflationary models with non-Abelian gauge fields*, Gen. Rel. Grav. 50 (2018) 110 [1208.2807].

[24] A. Maleknejad, *Chiral Gravity Waves and Leptogenesis in Inflationary Models with non-Abelian Gauge Fields*, Phys. Rev. D90 (2014) 023542 [1401.7628].

[25] T. Matsumura, Y. Akiba, J. Borrill, Y. Chinone, M. Dobbs, H. Fuke et al., *Mission Design of LiteBIRD*, Journal of Low Temperature Physics 176 (2014) 733.

[26] M. Hazumi et al., *LiteBIRD: A Satellite for the Studies of B-Mode Polarization and Inflation from Cosmic Background Radiation Detection*, Journal of Low Temperature Physics 194 (2019) 443.

[27] CMB-S4 collaboration, *CMB-S4 Science Book, First Edition*, 1610.02743.

[28] B. Thorne, T. Fujita, M. Hazumi, N. Katayama, E. Komatsu and M. Shiraishi, *Finding the chiral gravitational wave background of an axion-SU(2) inflationary model using CMB observations and laser interferometers*, Phys. Rev. D97 (2018) 043506 [1707.03240].

[29] S. Shandera et al., *Probing the origin of our Universe through cosmic microwave background constraints on gravitational waves*, Bull. Am. Astron. Soc. 51 (2019) 338 [1903.04700].

[30] K. D. Lozanov, A. Maleknejad and E. Komatsu, *Schwinger Effect by an SU(2) Gauge Field during Inflation*, JHEP 02 (2019) 041 [1805.09318].

[31] A. Maleknejad and E. Komatsu, *Production and Backreaction of Spin-2 Particles of SU(2) Gauge Field during Inflation*, JHEP 05 (2019) 174 [1808.09076].

[32] I. Wolfson, A. Maleknejad and E. Komatsu, *How attractive is the isotropic attractor solution of axion-SU(2) inflation?*, 2003.01617.

[33] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation*, JCAP 1809 (2018) 030 [1806.08313].

[34] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from axion-gauge fields dynamics during inflation*, JCAP 1907 (2019) 004 [1904.01488].

[35] V. Domcke, Y. Ema, K. Mukaida and R. Sato, *Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories*, JHEP 03 (2019) 111 [1812.08021].

[36] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation*, JCAP 1809 (2018) 030 [1806.08313].

[37] I. Wolfson, A. Maleknejad and E. Komatsu, *Chiral Anomaly and Schwinger Effect in Non-Abelian Gauge Theories, JHEP 03 (2019) 111 [1812.08021].

[38] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from the coupling of the inflaton to a non-Abelian gauge field, with a focus on Chromo-Natural Inflation, JCAP 1809 (2018) 030 [1806.08313].

[39] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from axion-gauge fields dynamics during inflation*, JCAP 1907 (2019) 004 [1904.01488].

[40] I. Wolfson, A. Maleknejad and E. Komatsu, *How attractive is the isotropic attractor solution of axion-SU(2) inflation?, 2003.01617.

[41] A. Papageorgiou, M. Peloso and C. Unal, *Nonlinear perturbations from axion-gauge fields dynamics during inflation*, JCAP 1907 (2019) 004 [1904.01488].
[43] R. Jackiw and S. Y. Pi, Chern-Simons modification of general relativity, *Phys. Rev.* D68 (2003) 104012 [gr-qc/0308071].

[44] S. Alexander and J. Martin, Birefringent gravitational waves and the consistency check of inflation, *Phys. Rev.* D71 (2005) 063526 [hep-th/0410230].

[45] D. H. Lyth, C. Quimbay and Y. Rodriguez, Leptogenesis and tensor polarisation from a gravitational Chern-Simons term, *JHEP* 03 (2005) 016 [hep-th/0501153].

[46] S. Saito, K. Ichiki and A. Taruya, Probing polarization states of primordial gravitational waves with CMB anisotropies, *JCAP* 0709 (2007) 002 [0705.3701].

[47] M. Satoh, S. Kanno and J. Soda, Circular Polarization of Primordial Gravitational Waves in String-inspired Inflationary Cosmology, *Phys. Rev.* D77 (2008) 023526 [0706.3585].

[48] W. Fischler and S. Paban, Leptogenesis from Pseudo-Scalar Driven Inflation, *JHEP* 10 (2007) 066 [0708.3828].

[49] S. Alexander and N. Yunes, Chern-Simons Modified General Relativity, *Phys. Rept.* 480 (2009) 1 [0907.2562].

[50] S. Dyda, E. E. Flanagan and M. Kamionkowski, Vacuum Instability in Chern-Simons Gravity, *Phys. Rev.* D86 (2012) 124031 [1208.4871].

[51] N. Bartolo and G. Orlando, Parity breaking signatures from a Chern-Simons coupling during inflation: the case of non-Gaussian gravitational waves, *JCAP* 1707 (2017) 034 [1706.04627].

[52] N. Bartolo, G. Orlando and M. Shiraishi, Measuring chiral gravitational waves in Chern-Simons gravity with CMB bispectra, *JCAP* 1901 (2019) 050 [1809.11170].

[53] K. Kamada, J. Kume, Y. Yamada and J. Yokoyama, Gravitational leptogenesis with kination and gravitational reheating, *JCAP* 2001 (2020) 016 [1911.02657].

[54] J. Qiao, T. Zhu, W. Zhao and A. Wang, Polarized primordial gravitational waves in the ghost-free parity-violating gravity, *Phys. Rev.* D101 (2020) 043528 [1911.01580].

[55] S. Basilakos, N. E. Mavromatos and J. Solà Peracaula, Do we Come from a Quantum Anomaly?, *Int. J. Mod. Phys.* D28 (2019) 1944002 [1905.04685].

[56] S. Basilakos, N. E. Mavromatos and J. Solà Peracaula, Quantum Anomalies, Running Vacuum and Leptogenesis: an Interplay, *PoS* CORFU2018 (2019) 044 [1905.05685].

[57] S. Basilakos, N. E. Mavromatos and J. Solà Peracaula, Gravitational and Chiral Anomalies in the Running Vacuum Universe and Matter-Antimatter Asymmetry, *Phys. Rev.* D101 (2020) 045001 [1907.04890].

[58] S. Basilakos, N. E. Mavromatos and J. Solà Peracaula, Quantum Anomalies in String-Inspired Running Vacuum Universe: Inflation and Axion Dark Matter, *Phys. Lett.* B803 (2020) 135342 [2001.03465].

[59] BICEP2, Keck Array collaboration, BICEP2 / Keck Array x: Constraints on Primordial Gravitational Waves using Planck, WMAP, and New BICEP2/Keck Observations through the 2015 Season, *Phys. Rev. Lett.* 121 (2018) 221301 [1810.05216].

[60] S. Weinberg, *Cosmology*. 2008.

[61] R. Namba, E. Dimastrogiovanni and M. Peloso, Gauge-flation confronted with Planck, *JCAP* 1311 (2013) 045 [1308.1366].