Specific length and structure rather than high thermodynamic stability enable regulatory mRNA stem-loops to pause translation

Chen Bao, Mingyi Zhu, Inna Nykonchuk, Hironao Wakabayashi, David H. Mathews & Dmitri N. Ermolenko

Translating ribosomes unwind mRNA secondary structures by three basepairs each elongation cycle. Despite the ribosome helicase, certain mRNA stem-loops stimulate programmed ribosomal frameshift by inhibiting translation elongation. Here, using mutagenesis, biochemical and single-molecule experiments, we examine whether high stability of three basepairs, which are unwind by the translating ribosome, is critical for inducing ribosome pauses. We find that encountering frameshift-inducing mRNA stem-loops from the E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) hinders A-site tRNA binding and slows down ribosome translocation by 15-20 folds. By contrast, unwinding of first three basepairs adjacent to the mRNA entry channel slows down the translating ribosome by only 2-3 folds. Rather than high thermodynamic stability, specific length and structure enable regulatory mRNA stem-loops to stall translation by forming inhibitory interactions with the ribosome. Our data provide the basis for rationalizing transcriptome-wide studies of translation and searching for novel regulatory mRNA stem-loops.
During translation elongation, the ribosome translocates along mRNA one codon at a time. The narrow mRNA channel of the small ribosomal subunit accommodates mRNA only when it is not basepaired. Hence, translation requires unwinding of mRNA secondary structure. Indeed, the translating ribosome has been demonstrated to be an efficient helicase,4,5 that unwinds three basepairs per translational step. However, it remains unclear to what extent mRNA stem-loops reduce the rate of translation elongation relative to translation along unpaired mRNA. Because mRNAs have a propensity to form intramolecular basepairing interactions and were shown to fold into extensive secondary structures in live cells6,9-13, elucidating the effects of mRNA stem-loops on translation elongation has important implications for translation regulation.

Several published studies vary in their estimates for the magnitude of translation elongation slowdown induced by mRNA secondary structures5,10-13. For instance, optical tweezer experiments suggested that ribosome translocation through three consecutive GC basepairs is only 2–3-fold slower than translocation along unpaired RNA10,12. Consistent with these data, several transcriptome-wide ribosome profiling analyses performed in yeast and \textit{E. coli} cells indicated that most of the secondary structure elements within coding regions of mRNA do not produce detectable ribosome pauses or significantly change translational efficiency14,15.

In contrast to aforementioned reports demonstrating modest impact of mRNA secondary structure on translation rate, a ribosome profiling study performed in \textit{E. coli} revealed strong negative correlation between translational efficiency and the presence of extensive intramolecular basepairing interactions in ORFs suggesting that both initiation and elongation phases of protein synthesis can be regulated by mRNA secondary structure16. Another study suggested that the effects of mRNA secondary structure on translational efficiency measured by ribosome profiling may be masked by the presence of codons that are decoded by abundant tRNAs in the structured regions of ORFs17. These studies indicate that mRNA secondary structure may strongly affect the translation elongation rate.

In addition to adjusting the translation elongation rate, certain RNA stem-loop structures were found to induce ribosome stalling that results in accumulation of truncated polypeptides18 and No-Go mRNA decay19. Furthermore, certain mRNA stem-loops and pseudoknots are known to trigger programmed translational pauses20 and stimulate −1 programmed ribosomal frameshifting (PRF) by slowing down the ribosome21. −1 PRF plays an important role in regulating synthesis of bacterial, viral and eukaryotic proteins, including translation of gag-pol polypeptide of human immunodeficiency virus (HIV)22 and C-terminally extended polypeptide in SARS-CoV-2 coronavirus, which caused the COVID-19 pandemic23,24.

−1 PRF requires the presence of two signals in an mRNA: the heptanucleotide slippery sequence NNNWWNN (where N can be any nucleotide and W is either A or U) and a downstream frameshifting-inducing hairpin or a pseudoknot called the frameshift stimulating sequence (FSS)25. The slippery sequence allows cognate or near-cognate pairing of the P-site and A-site tRNAs in both 0 and −1 frames and thus makes frameshifting thermodynamically favorable26. A number of previous studies demonstrated that when the slippery sequence is bound in the P and A sites of the ribosome and the FSS is positioned at the entry to mRNA tunnel of the small subunit, the rate of tRNA/mRNA translocation decreases by approximately an order of magnitude11,27-31. We also recently demonstrated that, when positioned 11–12 nucleotides downstream of the P-site codon, FSSs can transiently escape the ribosome helicase and inhibit A-site tRNA binding by docking into the A site of the small (30S) ribosomal subunit31. Hence, the FSS slows down the ribosome through two alternative pathways: inhibiting translocation and A-site tRNA binding.

It is commonly assumed that mRNA stem-loops and pseudoknots induce −1 PRF and ribosome pausing due to their high overall thermodynamic stability21,23,32-33. However, the translating ribosome unwinds only three basepairs at a time and thus is unable to "sense" the overall thermodynamic stability of mRNA stem-loops or pseudoknots. Consistent with this idea, optical tweezer experiments demonstrated that when GC content remains constant throughout very long stem-loops, the ribosome can unwind dozens basepairs with a seemingly uniform rate3. It has also been hypothesized that rather than the total stability of the FSS, high local thermodynamic stability of basepairs positioned at the entrance to the mRNA tunnel of the small subunit that are first unwound by the ribosome explain the FSS-induced ribosome pausing32,34,35. Finding why some stem-loops slow down the ribosome more than others is important for interpreting ribosome-profiling data, discovering new regulatory stem-loops and designing mRNAs for biotechnology (including mRNA vaccines).

Here, we investigate to what degree high thermodynamic stability of the three basepairs, which are unwound by the translating ribosome, accounts for translation pausing mediated by frameshifting-inducing mRNA stem-loops. We hypothesize that in addition to overall and local thermodynamic stability, other structural properties enable stem-loops to induce ribosome pausing. To test these hypotheses, we examine how sequence and structure perturbations of frameshift-inducing stem-loops affect their ability to slow down translation elongation.

We find that unwinding of three basepairs per elongation cycle only moderately affects the rate of translation elongation. By contrast, when encountered by the translating ribosome, frameshifting-inducing stem-loops produce an order-of-magnitude longer translational pause. Our results indicate that specific length and the presence of the loop are important for inducing long ribosome pauses. Hence, our findings offer new insights into translational control by mRNA secondary structures and provide rationale for the discovery of previously unknown regulatory secondary structure elements at transcriptome-wide level.

Results

We used a combination of smFRET and biochemical assays to investigate properties of frameshifting-inducing stem-loops from \textit{E. coli} dnaX mRNA and the gag-pol transcript of HIV that are important for inducing ribosomal pausing and −1 PRF. The dnaX mRNA encodes the gag-pol polyprotein of HIV structural proteins is produced in the absence of −1 PRF. The卑or messengers (mRNA) records the τ and γ subunits of DNA polymerase III36. The slippery sequence AAAAAG and a downstream 11 nucleotide-long FSS mRNA hairpin, which are separated by a five nucleotide-long spacer, program −1 PRF that produces γ subunit with 50–80% efficiency29,32,37 (Fig. 1). While the Gag polyprotein containing HIV structural proteins is produced in the absence of frameshifting, the 12 basepair-long RNA hairpin in combination with the slippery sequence UUUUUUAA induces −1 PRF with 5–10% efficiency22,34. This frameshifting yields the Gag-Pol polyprotein, which contains reverse transcriptase, RNase H, integrase and HIV protease34,36. mRNAs containing the slippery sequence and HIV FSS undergo frameshifting in bacterial (\textit{E. coli}) ribosomes in vitro and in vivo at frequencies comparable to those observed for HIV frameshifting in eukaryotic translation systems38-41 providing evidence for a common mechanism of frameshifting and ribosomal pausing induced by FSS in bacteria and eukaryotes. Hence, the FSS from HIV can be studied in \textit{E. coli} system.
Fig. 1 Model mRNAs containing either an FSS stem-loop or a bimolecular helix. a Sequences of model mRNAs containing the Shine-Dalgarno (SD) sequences (green) and the FSS. The dnaX_Slip mRNA contains native slippery sequence (magenta). In other mRNA constructs, the slippery sequence is replaced with non-slippery codons. The sequences (green) and the FSS. The dnaX_Slip mRNA contains native slippery sequence (magenta). In other mRNA constructs, the slippery sequence is replaced with non-slippery codons. b–d Secondary structures of frameshift-stimulating stem-loops (b, c) or bimolecular RNA helices (d). Dashed boxes indicate replacements of native GC basepairs with less stable A–U or G–U pairs. ΔG° values represent the overall thermodynamic stability of corresponding structures. ΔΔG° values of FSS variants indicate the changes in stabilities relative to the corresponding WT hairpins. Secondary structures and ΔG°/ΔΔG° values (b–d) were determined by the RNAstructure software using the default settings. Uncertainties in the folding free energy changes are determined using the variance and covariance of the nearest-neighbor parameter terms, determined by propagating the experiment uncertainties.

To probe properties of FSS stem-loops that are essential for inhibiting translocation and A-site RNA binding, we introduced mutations into the FSS in model mRNAs that were derived from the E. coli dnaX and HIV gag-pol transcripts (Fig. 1, Supplementary Table 1). Frameshift changes the spacing between the P-site codon and the FSS and may also partially alleviate ribosome pausing. To delineate the effect of the FSS RNA hairpin on ribosome pausing from frameshifting, slippery codons in sequences derived from HIV and dnaX mRNAs were replaced with “non-slippery” codons as previously described (Fig. 1a). Mutations in the slippery sequence have been shown to decrease frameshifting efficiency to low or undetectable levels. Each model mRNA contained the Shine–Dalgarno (SD, ribosome-binding site) sequence, a short
open reading frame (ORF) and a downstream FSS. In addition, upstream of the SD sequence, each mRNA contained a 25 nucleotide-long sequence complementary to a biotin-conjugated DNA oligonucleotide that is used to tether the mRNA to a microscope slide for smFRET experiments (Fig. 1a, Supplementary Table 1).

The stability of three basepairs of the FSS first unwound by the ribosome has no effect on A-site tRNA binding. We examined the FSS-mediated inhibition of the A site tRNA binding using a filter-binding assay as previously described. Using this approach, we found that when positioned 11 or 12 nucleotides (but not 13 nucleotides) downstream of P-site codon, the FSS from HIV and dnaX strongly hinders binding of aminoacyl(aa)-tRNA to the A site. Here, we measured kinetics of tRNA binding to the A site, which was strongly hindered downstream of P-site codon, the FSS approach, we found that when positioned 11 or 12 nucleotides downstream from the P-site (UUC), the stability of the FSS is described relative to the first nucleotide of the P-site codon. For example, positioning 11 nucleotides downstream of the P-site codon means that the first nucleotide of the P-site codon and the first nucleotide of the FSS are +1 and +12, respectively (Fig. 1a).

Because the ribosome unwinds three pairs at a time, we investigated how the stability of the three bottom basepairs of the FSS affect tRNA binding. Two (in HIV) or three (in dnaX) G−C pairs at the bottom of respective FSSs were replaced with less stable G−U or A−U pairs to create HIV destabilized I and dnaX destabilized mRNAs (Fig. 1b, c). These mutations were predicted by the RNAstructure software to decrease the stability of the bottom three basepairs in HIV and dnaX FSSs by 4.6 and 6.2 kcal/mol, respectively. However, probabilities of forming each basepair in HIV and dnaX stem-loops were predicted to be 80% because of high overall stability of both HIV and dnaX mutant FSSs (−19.0 and −12.9 kcal/mol, respectively) and because sequences were designed to avoid pairing with the rest of the mRNA (Supplementary Fig. 1). To further destabilize the bottom of the HIV FSS, an additional two G−C basepairs were replaced with less stable A−U pairs to create HIV destabilized II mRNA (Fig. 1b, Supplementary Fig. 1). Relative to the wild-type FSS, the stability of the first five FSS basepairs in HIV destabilized II mRNA decreased by 8.6 kcal/mol while overall stability of the FSS remained high (−15.0 kcal/mol).

A-site tRNA binding was equally slow (0.2 min−1) in the presence of the wild-type, destabilized I and destabilized II HIV FSSs (Fig. 3a). Likewise, experiments with dnaX mRNAs demonstrated that the destabilization of the bottom three basepairs has no effect on A-site tRNA binding (Fig. 3b). These results indicate that the stability of basepairs of the FSS that are first unwound by the ribosome does not affect the ability of HIV and dnaX FSS to inhibit A-site tRNA binding.

The stem length and the presence of the loop are important for the ability of the FSS to inhibit A-site tRNA binding. To examine the contribution of the stem-loop topology to FSS-induced inhibition of tRNA binding, we truncated the HIV FSS upstream of the loop and annealed a 12-mer RNA oligo to create a “loopless” RNA bimolecular helix, which is identical to the stem of the HIV stem-loop. Likewise, by annealing an RNA oligo to the dnaX mRNA, which was truncated upstream of the FSS loop, the dnaX bimolecular helix similar to the stem of wild-type dnaX FSS was created (Fig. 1d). The dnaX bimolecular helix is predicted to have two structures in equilibrium with folding free energy changes of −20.3 and −20.2 kcal/mol (Fig. 1d, Supplementary Fig. 1). The conformational difference is whether the C bulges in the mRNA (Fig. 1c, Supplementary Fig. 1) or the trans
tRNATyr to ribosomes programmed with FSS-containing mRNA is shown to regulate translation elongation. To further test this and length are unlikely to play key roles in the FSS-mediated inhibition of A-site tRNA binding, specifically in the (UACCC) FSSs differ in both sequence and length. Hence, estimated dissociation rates\(^4^6\) (Supplementary Table 2) predict that both HIV and dnaX bimolecular helices remain stable within the duration of our biochemical and single-molecule experiments.

When ribosomes were programed with either HIV bimolecular helix or dnaX bimolecular helix mRNA, no inhibition of A-site tRNA binding was observed, i.e. the rate of tRNA binding was too fast to be measured by filter-binding assay, which involves manual mixing of the ribosome and tRNA (Fig. 3a, Supplementary Table 3). Therefore, truncation of the HIV FSS substantially alleviates FSS-induced inhibition of A-site tRNA binding.

We also extended the upper stem of the wild-type HIV FSS by six basepairs. The probability of forming new basepairs in the stem-extended FSS was predicted to be over 99%, while the overall thermodynamic stability was computed to increase from –23.6 kcal/mol (wild-type HIV) to –40.3 kcal/mol (Fig. 1b). When we performed the filter-binding assay in the presence of all basepairs in the stem-extended HIV mRNA, we found that the extended FSS inhibits P-site tRNA binding. Non-enzymatic P-site binding of N-Ac-Phe-tRNA\(^\text{Phe}\) (which pairs with UUC codon 11 nt upstream of the FSS) and N-Ac-Met-tRNA\(^\text{Met}\) (which pairs with AUG codon 14 nt upstream of the FSS) were reduced to 50% and 70% of ribosome occupancy, respectively (Fig. 4, Supplementary Fig. 2a). It is possible that under our in vitro conditions, the stem-extended FSS binds directly to the P site in a fraction of ribosomes and hinders P-site tRNA binding.

Because ribosome complex assembly at the AUG codon was more efficient than assembly at the UUC codon of the extended FSS mRNA, we examined the effect of the stem-extended FSS on A-site binding by measuring incorporation of radio-labeled aa-tRNAs during translation through three (Met, Phe, and Tyr) codons. We found that Tyr-tRNA\(^\text{TyT}\) binding was equally efficient relative to incorporation of Met and Phe into polypeptide chain (Fig. 4). Likewise, kinetics of Tyr-tRNA\(^\text{TyT}\) A-site binding to ribosomes containing P-site N-Ac-Met-Phe-tRNA\(^\text{Phe}\) was not affected as the rate of tRNA binding was too fast to be measured by a filter-binding assay, which involves manual mixing of the oligonucleotide (more similar to the dnaX hairpin structure; Fig. 1d, Supplementary Fig. 1). The base of the helix has similarly high probability as the dnaX wild-type hairpin stem-loop. When compared to the stem-loops, the bimolecular helices lack the loops.

Based on the free energy change for the formation of the bimolecular helices, we calculated the equilibrium constants and concentrations of the annealed bimolecular helices (Supplementary Table 2). These assessments predict that at concentrations of mRNAs and RNA oligos used during the ribosome complex assembly, nearly 100% of mRNA molecules form bimolecular helices. Furthermore, estimated dissociation rates\(^4^6\) (Supplementary Table 2) predict that both HIV and dnaX bimolecular helices remain stable within the duration of our biochemical and single-molecule experiments.

When ribosomes were programed with either HIV bimolecular helix or dnaX bimolecular helix mRNA, no inhibition of A-site tRNA binding was observed, i.e. the rate of tRNA binding was too fast to be measured by filter-binding assay, which involves manual mixing of the ribosome and tRNA (Fig. 3a, b). Hence, our results show that the presence of a loop in the FSS may be essential for the inhibition of A-site tRNA binding. Loop regions of the wild-type HIV (ACAA) and dnaX (UACCCC) FSSs differ in both sequence and length. Hence, despite the importance of the presence of the loop for the FSS-induced inhibition of A-site tRNA binding, specific loop sequence and length are unlikely to play key roles in the FSS-mediated regulation of translation elongation. To further test this hypothesis, we replaced the original, 4 nucleotide-long ACAA loop of HIV FSS with an 8 nucleotide-long ACAGGACA loop, which was predicted to not lower the probability of the base pairs in the stem-loop (Supplementary Fig. 1). This loop extension resulted in a two-fold increase in the rate of A-site tRNA binding when compared to the wild-type HIV FSS (Fig. 3a, Supplementary Table 3). Replacing the 5 nucleotide-long UACCC loop of dnaX FSS with a 10 nucleotide-long UACACUACC loop, which was predicted to not lower the probability of the base pairs in the stem-loop (Supplementary Fig. 1), did not affect the ability of the dnaX FSS to inhibit A-site binding (Fig. 3b, Supplementary Table 3). The relatively modest effect (HIV mRNA) or lack thereof (dnaX mRNA) of the loop extension on tRNA binding rate supports the idea that loop sequence and length are not critical for the ability of the FSS to inhibit A-site tRNA binding.

To explore the role of stem length, we truncated the wild-type HIV FSS by deleting the upper six basepairs adjacent to the loop while leaving bottom six basepairs intact (Fig. 1b). Importantly, the fractions of mRNA molecules forming all basepairs in the truncated stem-loop was predicted to be over 99% providing evidence that truncated HIV FSS variant is formed despite the decrease in overall thermodynamic stability from –23.6 kcal/mol (wild-type HIV) to –11.6 kcal/mol. Importantly, in the HIV mRNA with truncated FSS, the local stability of bottom basepairs first unwound by the ribosome was equal to the stability of these basepairs in the wild-type FSS. Because thermodynamic stability of RNA helices is a function of helix length (number of basepairs)\(^4^7\), it is impossible to truncate a stem-loop without lowering overall stem-loop stability. Nevertheless, the overall thermodynamic stability of the truncated HIV FSS (–11.6 kcal/mol) was only slightly lower that the stability of HIV destabilized FSS II (–15 kcal/mol, Fig. 1b) and dnaX destabilized FSS (–12.9 kcal/mol, Fig. 1c). Because the dnaX FSS contains two bulges (unpaired nucleotides in the stem) designing mutant versions of dnaX FSS with a truncated RNA stem while keeping the FSS sufficiently stable was not feasible. For that reason, we varied the stem length only in the HIV FSS.

When ribosomes were programed by the HIV truncated FSS mRNA instead of the HIV wild-type FSS mRNA, the pseudo-first-order rate constant for tRNA binding increased from 0.2 to 0.9 min\(^{-1}\) (Fig. 3a, Supplementary Table 3). Therefore, truncation of the HIV FSS substantially alleviates FSS-induced inhibition of A-site tRNA binding.

![Fig. 3 The stem length and the presence of the loop are more important for the FSS-induced inhibition of tRNA binding than FSS local and overall thermodynamic stabilities.](image-url)
ribosome and tRNA (Supplementary Fig. 2b). Therefore, in contrast to the wild-type HIV FSS, the stem-extended HIV FSS does not hamper A-site tRNA binding when the FSS is positioned 11 nucleotides downstream of the P-site codon.

Taken together, our filter-binding data indicate that the specific stem length and the presence of the loop are important for the ability of the frameshift-inducing stem-loops to inhibit A-site tRNA binding while overall and local thermodynamic stability have negligible effects.

The overall and local thermodynamic stabilities of the FSSs moderately affect ribosomal translocation. When positioned 11 or 12 nucleotides downstream of the P-site codon, HIV and dnaX FSSs strongly inhibit A-site binding but do not completely block it as the A site eventually becomes filled during extended incubation of the ribosome with aminocyl-tRNA and EF-Tu GTP (Fig. 3). The resulting pre-translocation ribosomes can be employed to examine the effect of the FSSs on the translocation step of the elongation cycle.

We next used single-molecule microscopy (Fig. 2b) and all aforementioned mRNA constructs (Fig. 1) to investigate the properties of HIV and dnaX FSSs, which are important for the inhibition of ribosomal translocation. Following aminocyl-tRNA binding to the ribosomal A site and peptide-bond formation, the pre-translocation ribosome predominantly adopts the rotated (R) conformation. In this conformation, the small ribosomal subunit (the 30S subunit in bacteria) is rotated by ∼9° relative to the large subunit (the 50S subunit) and two tRNAs adopt the intermediate hybrid states of binding

HIV mRNA 5’-...AA AUG UUC UAC AAGAU-FSS...-3’

Fig. 4 Extension of the stem length eliminates the FSS-induced inhibition of tRNA binding. The ribosomes, which were programmed with HIV stem-extended FSS mRNA and contained P-site N-Ac-Met-tRNAMet, were incubated with EF-G GTP, EF-Tu GTP, Phe-tRNAPhe, and Tyr-tRNATyr for 5 min before loading ribosomes onto a nitrocellulose filter and washing away unbound aa-tRNA. The experiment was repeated three times with one of the three aminocyl-tRNAs radio labeled, i.e. using N-Ac-[3H]Met-tRNAMet (blue bar), [3H]Phe-tRNAPhe (orange bar), or [3H]Tyr-tRNATyr (red bar). Similar experiments were performed with ribosomes programmed with HIV ΔFSS mRNA. The binding of each radio-labeled tRNA to ribosomes programmed with the HIV stem-extended FSS mRNA is shown relative to that observed in ribosomes programmed with the HIV ΔFSS mRNA. Data are presented as mean values ± standard deviations of three independent measurements. Source data are provided as a Source Data file.

been shown to correspond to the 0.6 and 0.4 FRET states of S6-cy5/L9-cy3 FRET pair. The pretranslocation S6-cy5/L9-cy3-labeled ribosomes containing A-site peptidyl-tRNA (N-Ac-Phe-Tyr-tRNAPhe) and P-site deacylated tRNAPhe were progranmed with a FSS-containing mRNA (Fig. 2b). In these complexes, the FSS was positioned 11 nt downstream of the P-site codon. When the first nucleotide of the P-site codon is defined as +1, the +11 nucleotide is the last mRNA residue bound in the mRNA tunnel of the small subunit. The first nucleotide of the FSS (+12) is positioned at the tunnel entrance (Fig. 1a).

Consistent with previous reports, when imaged in the absence of EF-G, pretranslocation ribosomes containing deacylated tRNAPhe in the P site spontaneously fluctuate between R and NR conformations at rates of 0.8 s-1 (NR to R, Supplementary Fig. 3a) and 0.5 s-1 (R to NR, Supplementary Fig. 3b). The R conformation is predominant as 95% of pretranslocation ribosomes spend <4 s in the NR conformation (Supplementary Fig. 3a). In contrast to these unproductive fluctuations, EF-G-induced translocation fixes the ribosome in the NR state. To distinguish translocation from spontaneous unproductive fluctuations between R and NR conformations, we define EF-G-induced translocation as a transition from R to the stable NR state (i.e. 0.6 FRET state lasting over 4 s).

In translocation measurements, at 10 s of imaging, EF-G-GTP was injected into the microscope slide bound with pretranslocation ribosomes (Figs. 2b, 5). The dwell time \(\tau_{\text{off}}\) between the injection and the transition from R (0.4 FRET) to the stable NR (0.6 FRET) ribosomal conformations reflects the translocation rate (Fig. 5).

When the HIV FSS was positioned 11 nucleotides downstream of the P site codon, translocation was so slow that most ribosomes remained in the R state until photobleaching of the acceptor dye. Under our experimental conditions, the rate of photobleaching was 0.03 s-1 (Supplementary Fig. 3c). To extend the lifetime of the acceptor fluorophore and detect translocation in most ribosomes, the excitation laser was switched off after the EF-G injection and switched back on either 40 or 60 s later (Fig. 5a). Varying the interval for which the excitation laser was switched off between 40 and 60 s did not significantly affect the distribution of \(\tau_{\text{off}}\) in ribosome population indicating that the number of ribosomes translocating during the laser shutoff was negligible (Supplementary Fig. 4a, b). \(\tau_{\text{off}}\) measured in ribosomes programmed with the HIV FSS was remarkably long (Figs. 5a, 6a, Supplementary Fig. 5a) with median value of 73 s (Figs. 5b, 6a, Supplementary Fig. 4a, b). By contrast, when ribosomes were programmed with HIV mRNA lacking the FSS (HIV ΔFSS mRNA), median \(\tau_{\text{off}}\) was 2.8 s indicating that HIV FSS reduces the translocation rate by 25 folds (Figs. 5c, d, 6a, Supplementary Fig. 5a).

Next, we measured translocation kinetics in ribosomes programmed with dnaX mRNA, in which the dnaX FSS was positioned 11 nt downstream of the P-site (UUC) codon (Fig. 1a). Because of the slow rate of translocation in the presence of the dnaX FSS, the excitation laser was switched off after the EF-G injection and switched back on either 40 or 60 s later to extend lifetime of the acceptor fluorophore. Similar to experiments with HIV mRNA, varying the laser shutoff time did not significantly affect the distribution of \(\tau_{\text{off}}\) in ribosome population indicating that the number of ribosomes translocating during the laser shutoff was negligible (Supplementary Fig. 4e, f). When compared to the mRNA lacking the FSS, dnaX FSS reduced the translocation rate 15 times as the median of \(\tau_{\text{off}}\) changed from 5.1 (dnaX ΔFSS mRNA, Fig. 6b, Supplementary Fig. 6a) to 73.4 s (dnaX wild-type FSS mRNA, Fig. 6b, Supplementary Fig. 6b).
To examine how the kinetics of translocation depend on the spacing between the P-site codon and the FSS, we made two HIV mRNA variants where the spacer between the P-site (UUC) codon was extended from 11 to 12 or 13 nucleotides (Fig. 1a, 5). Extending the P-site-FSS spacer from 11 to 12 nucleotides decreased median τ_{trl} from 73.3 to 28.6 s (Fig. 5e, f) while lengthening the P-site-FSS spacer to 13 nucleotides further decreased median τ_{trl} to 16.9 s (Fig. 5g,h). Hence, extending the P-site-FSS spacer progressively accelerates translocations. Note-worthy, in the experiments with 12 and 13-nucleotide long

Fig. 5 The FSS-induced inhibition of translocation is influenced by length of the mRNA spacer between P-site codon and FSS. The pre-translocation S6-cy5/L9-cy3-labeled ribosomes were programmed with either HIV WT FSS (a, b, e, f, g, h) or HIV ΔFSS (c, d) mRNA (Fig. 1). The HIV FSS was positioned either 11 (a, b), 12 (e, f) or 13 (g, h) nucleotides downstream of the P-site codon, respectively. a, c, e, g Representative FRET traces show cy3 donor fluorescence (blue), cy5 acceptor fluorescence (red), and FRET efficiency (orange) fitted by two-state HHM (brown). Arrows show the injection of EF-G•GTP. The EF-G-catalyzed translocation corresponds to the transition from R (0.4 FRET) to a stable (i.e. lasting over 4 s) NR (0.6 FRET) state of the ribosome. b, d, f, h Histograms (2 s binning size) show the distributions and median values of the dwell time between the injection and the translocation, τ_{trl}. N indicates the number of traces assembled into each histogram. To extend lifetime of the acceptor fluorophore in the experiments with 11 nucleotide spacer mRNA, the excitation laser was turned off after the EF-G injection and switched back on either 40 s (a) or 60 s later. τ_{trl} distribution in (b) was combined from data sets acquired with 40 s (Supplementary Fig. 4a) and 60 s (Supplementary Fig. 4b) laser shut-off times. Source data are provided as a Source Data file.
employed in DNA X mRNAs (Fig. 1b, c). These mRNA variants were also
inhibition of translocation, we used mutant variants of HIV and
and 4). Destabilization of the three (HIV FSS) or four (DNA X FSS)
periments. For the HIV stem-extended FSS,
asebasepairs of the FSS that are
mRNA tunnel are basepaired, extending the P-site-FSS spacer
mRNA were imaged for 10 s. Then, EF-Tu-GTP-Tyr-tRNA\(^{\text{TYR}}\)
and EF-G-GTP were injected to bind Tyr-tRNA\(^{\text{TYR}}\) to the A-site
Y (UAC) codon and induce tRNA/mRNA translocation, respectively.
Before the injection, ribosomes containing P-site peptideyl-tRNA
(N-Ac-Met-Phe-tRNA\(^{\text{Phe}}\)) were predominately observed in the
NR (0.6 FRET) state. After the injection, the ribosomes showed an
NR (0.6 FRET)-to-R (0.4 FRET) transition resulting from tRNA binding followed by the transpeptidation reaction and subsequent movement of tRNAs into hybrid states.
The dwell time between the injection and the transition from the
NR (0.6 FRET) to R (0.4 FRET) state, \(\tau_{\text{d}}\), primarily reflects the
type of Tyr-tRNA\(^{\text{TYR}}\) binding to the A-site of the ribosome.
The subsequent reverse transition from the R to the stable NR
state (0.6 FRET lasting over 4 s) indicates translocation of mRNA
and tRNA. The dwell time, \(\tau_{\text{d}}\), between the NR to R and NR
transitions in our injection experiments reflects to the transloca-
rate (Fig. 7a–d).
Consistent with filter-binding experiments (Fig. 4), Tyr-
tRNA\(^{\text{TYR}}\) binding time, \(\tau_{\text{d}}\), observed in the presence (4.3 s; Fig. 7b) and the absence of the stem-extended HIV FSS (3.1 s; Fig. 7c) were similar. These results indicate that the stem-
extended HIV FSS positioned 11 nucleotides downstream of the
P-site codon cannot dock into the A site and does not inhibit
tRNA binding. Median translocation time, \(\tau_{\text{d}}\), observed in the
presence and the absence of the stem-extended HIV FSS were
10.2 and 3.2 s, respectively (Fig. 7d, f). Hence, in contrast to the
wild-type HIV FSS, which induces a 25-fold reduction in translocation rate (Fig. 7a–d), \(\tau_{\text{d}}\), in our experiment reflects a decrease in the translocation rate by only 3 folds. These data demonstrate that the optimal stem length contributes more to the FSS ability to inhibit translocation than overall and local thermodynamic stability of the stem-loop.
Swapping the four nucleotide-long ACA\(_{\text{A}}\) loop of the HIV FSS
with an eight nucleotide-long ACAGCAGA loop (Fig. 1b) did not
change median \(\tau_{\text{d}}\) (Fig. 6a, Supplementary Figs. 4c, d, 5a, 7d). Likewise, replacing the UACC loop of the DNA X FSS with an extended UACACAUACC loop (Fig. 1c) did not change translocation rate (Fig. 6b, Supplementary Figs. 5b, 6d). These observations indicate that altering length and sequence of the FSS loop does not affect FSS-induced inhibition of translocation.

The stem length and the presence of the loop are important for the inhibition of translocation by the FSS. We next explored how stem length and the presence of the loop affect FSS-induced inhibition of ribosome translocation. In contrast to moderate effects of destabilization of bottom basepairs, truncation of the HIV FSS by deleting the upper six basepairs adjacent to the loop while leaving the “bottom” six basepairs intact (Fig. 1b), accelerated translocation rate by 7 fold as \(\tau_{\text{d}}\) decreased from 73 to 11 s (Fig. 6a, Supplementary Fig. 7c).

We also examined how encountering the HIV FSS extended by six basepairs affects ribosome translocation. To that end, S6-cy5/L9-cy3 labeled ribosomes bound with P-site N-Ac-Met-Phe-tRNA\(^{\text{Phe}}\) and programmed with the stem-extended FSS HIV mRNA were imaged for 10 s. Then, EF-Tu-GTP-Tyr-tRNA\(^{\text{TYR}}\) and EF-G-GTP were injected to bind Tyr-tRNA\(^{\text{TYR}}\) to the A-site Tyr (UAC) codon and induce tRNA/mRNA translocation, respectively. Before the injection, ribosomes containing P-site peptideyl-tRNA (N-Ac-Met-Phe-tRNA\(^{\text{Phe}}\)) were predominately observed in the NR (0.6 FRET) state. After the injection, the ribosomes showed an NR (0.6 FRET)-to-R (0.4 FRET) transition resulting from tRNA binding followed by the transpeptidation reaction and subsequent movement of tRNAs into hybrid states.

The dwell time between the injection and the transition from the
NR (0.6 FRET) to R (0.4 FRET) state, \(\tau_{\text{d}}\), primarily reflects the
type of Tyr-tRNA\(^{\text{TYR}}\) binding to the A-site of the ribosome.
The subsequent reverse transition from the R to the stable NR
state (0.6 FRET lasting over 4 s) indicates translocation of mRNA
and tRNA. The dwell time, \(\tau_{\text{d}}\), between the NR to R and NR
transitions in our injection experiments reflects to the transloca-
rate (Fig. 7a–d).

Consistent with filter-binding experiments (Fig. 4), Tyr-
tRNA\(^{\text{TYR}}\) binding time, \(\tau_{\text{d}}\), observed in the presence (4.3 s; Fig. 7b) and the absence of the stem-extended HIV FSS (3.1 s; Fig. 7c) were similar. These results indicate that the stem-
extended HIV FSS positioned 11 nucleotides downstream of the
P-site codon cannot dock into the A site and does not inhibit
tRNA binding. Median translocation time, \(\tau_{\text{d}}\), observed in the
presence and the absence of the stem-extended HIV FSS were
10.2 and 3.2 s, respectively (Fig. 7d, f). Hence, in contrast to the
wild-type HIV FSS, which induces a 25-fold reduction in translocation rate (Fig. 7a–d), \(\tau_{\text{d}}\), in our experiment reflects a decrease in the translocation rate by only 3 folds. These data demonstrate that the optimal stem length contributes more to the FSS ability to inhibit translocation than overall and local thermodynamic stability of the stem-loop.

Swapping the four nucleotide-long ACA\(_{\text{A}}\) loop of the HIV FSS
with an eight nucleotide-long ACAGCAGA loop (Fig. 1b) did not
change median \(\tau_{\text{d}}\) (Fig. 6a, Supplementary Figs. 4c, d, 5a, 7d). Likewise, replacing the UACC loop of the DNA X FSS with an extended UACACAUACC loop (Fig. 1c) did not change translocation rate (Fig. 6b, Supplementary Figs. 5b, 6d). These observations indicate that altering length and sequence of the FSS loop does not affect FSS-induced inhibition of translocation.

Fig. 6 The stem length and the presence of the loop are more important for the FSS-induced inhibition of translocation than FSS local and overall thermodynamic stabilities. The S6-cy5/L9-cy3 ribosomes were programmed with mRNA containing either an HIV (a) or DNA X (b) FSS variant as indicated (Fig. 1). Bar graphs show median values of \(\tau_{\text{d}}\). Respective mean values of \(\tau_{\text{d}}\), together with standard error of the mean (SEM) and standard deviations (SD) are shown in Supplementary Fig. 5. For all FSS variants but the HIV stem-extended FSS, \(\tau_{\text{d}}\) represents the dwell time between injection of EF-G\(_{\text{GTP}}\) and ribosome translocation in smFRET experiments. For the HIV stem-extended FSS, \(\tau_{\text{d}}\) corresponds to the dwell time between tRNA binding and translocation (Fig. 7). Source data are provided as a Source Data file.

P-site FSS spacers, the excitation laser was not switched off at any point (Fig. 5c, g) because translocation rates were much faster than the acceptor photobleaching rate.

Assuming that all FSS nucleotides residing outside of the mRNA tunnel are basepaired, extending the P-site FSS spacer from 11 to 12 or 13 nucleotides is expected to reduce the number of basepairs unwound upon a round of ribosome translocation from 3 to 2 or 1, respectively. Hence, our data may indicate that the number of basepairs unwound by the ribosome determines the extent of translocation paused by the FSS. Alternatively, the short (11 nucleotide) spacer restricts the FSS dynamics and thus decreases the entropic penalty for forming FSS–ribosome interactions that inhibit translocation.

To investigate how the stability of three lowest basepairs of the FSS that are first unwound by the ribosome affects FSS-mediated inhibition of translation, we used mutant variants of HIV and DNA X RNAs (Fig. 1b, c). These mRNA variants were also employed in filter-binding experiments described above (Figs. 3 and 4). Destabilization of the three (HIV FSS) or four (DNA X FSS) bottom basepairs of the FSS that are first unwound by the ribosome slightly accelerated translocation as \(\tau_{\text{d}}\) decreased from 73 s (both wild-type HIV and wild-type DNA X FSSs) to 41.1 s (HIV destabilized FSS I, Fig. 6a, Supplementary Figs. 5a, 7a) and 52.3 s (DNA X destabilized FSS, Fig. 6b, Supplementary Figs. 5b, 6c), respectively. Reducing the stability of the first five FSS basepairs in HIV destabilized II mRNA led to two-fold acceleration of translocation rate as median \(\tau_{\text{d}}\) decreased from 73.3 s (wild-type HIV FSS) to 32.1 s (HIV destabilized FSS II) (Fig. 6a, Supplementary Figs. 5a, 7b).

When compared to the wild-type FSS HIV mRNA, distributions of \(\tau_{\text{d}}\) times observed in the presence of destabilized FSS I and II HIV RNAs were markedly more heterogeneous (Supplementary Fig. 7a, b). These data likely indicate that destabilizing mutations introduced into HIV FSS and interactions of mutant FSS variants with the ribosome lead to structural heterogeneity of the stem-loop such as possible fraying of the stem-loop bottom basepairs. Nevertheless, the predominant peaks in \(\tau_{\text{d}}\) distributions observed with destabilized HIV FSS I and II RNAs (Supplementary Fig. 7a, b) likely correspond to the slowest ribosomes bound with the fully intact FSS (Fig. 5b).

Taken together, experiments with DNA X and HIV mRNA variants with destabilized bottom basepairs provide evidence that the stability of basepairs, which are first unwound by the translating ribosome, moderately contributes to the inhibition of translocation by the DNA X and HIV FSSs.
By contrast, replacing the wild-type HIV and dnaX FSSs with "loopless" bimolecular helices that are identical to stems of HIV and dnaX FSSs (Fig. 1d) similarly accelerated the rate of translocation by ~7 folds (Fig. 6a, b, Supplementary Fig. 5a,b). Median τ_{trl} decreased from 73 s (both wild-type HIV and dnaX FSSs) to 10.3 s (HIV bimolecular helix, Fig. 6a, Supplementary Fig. 7e) and 12.7 s (dnaX bimolecular helix, Fig. 6b, Supplementary Fig. 6e). These results show that the presence of the loop plays an important role in the FSS-induced inhibition of translocation.

Next, we tested whether another bimolecular RNA duplex that is not derived from a frameshift-inducing stem-loop has a similar effect on translocation as bimolecular helices derived from HIV and dnaX FSSs. To that end, a 16 nucleotide-long RNA oligo was annealed to an unstructured region of a model mRNA derived from the phage T4 gene 32 mRNA named m291 [60] (Fig. 1a–d). Importantly, the overall thermodynamic stability of the m291 bimolecular helix (~24.5 kcal/mol) was comparable to the stabilities of bimolecular helices, in pretranslocation ribosomes programed with m291 FSS (Fig. 1d). These results show that the presence of the loop plays an important role in the FSS-induced inhibition of translocation.

![Diagram](https://via.placeholder.com/150)

Fig. 7 The FSS-induced inhibition of translocation is alleviated by extension of the stem length. The S6-cy5/L9-cy3-labeled ribosomes containing P-site N-Ac-Met-Phe-tRNA$^{\text{Phe}}$ were programmed with either HIV stem-extended FSS (a–c) or HIV ΔFSS (d–f) mRNA (Fig. 1). The FSS was positioned 11 nucleotides downstream of the P-site codon. a, d Representative FRET traces show cy3 donor fluorescence (blue), cy5 acceptor fluorescence (red) and FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon. FRET efficiency (orange) fitted by two-state HHM (brown). Arrows mark the injection of EF-Tu\cdotGTP\cdotTyr-tRNA$^{\text{Tyr}}$ and EF-G\cdotGTP. τ_{bd} is the dwell time between the injection and the Tyr-tRNA$^{\text{Tyr}}$ binding to the ribosomal A site, which corresponds to the transition from NR (0.6 FRET) to R (0.4 FRET) state nucleotides downstream of the P-site codon.

Effects of structural perturbations in FSS on frameshifting efficiency. To examine how variations in the FSS structure affect ribosome frameshifting, we determined the efficiency of 1 PRF on the dnaX mRNA containing native slippery sequence (dnaX_Slip, Figs. 1 and 9) using the filter-binding assay, as we previously described [31]. The beginning of the ORF in the dnaX_Slip mRNA encodes Met-Val-Lys-Lys-Arg in the 0 frame and Met-Val-Lys-Lys-Glu in the -1 frame. Ribosomes bound with dnaX_Slip mRNA and P-site N-Ac-Val-tRNA$^{\text{Val}}$ were incubated with EF-G\cdotGTP, EF-Tu\cdotGTP, Lys-tRNA$^{\text{Lys}}$ (decodes the slippery sequence) and $[^3]$H]Glu-tRNA$^{\text{Glu}}$ (binds in the -1 frame). Consistent with previous publications [29,31,32,37], we observed a frameshifting efficiency (corresponding to the $[^3]$H]Glu-tRNA$^{\text{Glu}}$ occupancy of the ribosomal A site) of ~61% (Fig. 9). When ribosomes were programmed with the truncated dnaX_Slip ΔFSS mRNA, which lacks the FSS, the efficiency of 1
PRF decreased to ~18% (Fig. 9), demonstrating that the FSS stimulates ribosome frameshifting.

We next introduced into dnaX_Slip mRNA mutations that destabilize bottom basepairs of dnaX FSS and are identical to nucleotide substitutions, which we used in the context of non-slippery codons (Fig. 1). These mutations, which did not affect A-site tRNA binding and moderately accelerated ribosome translocation in the context of non-slippery codons, reduced frameshifting efficiency from 61% to 41% (Fig. 9). Replacing the dnaX FSS with a bimolecular helix, which is identical in sequence and stability to stem of wild-type dnaX FSS, decreased frameshifting efficiency from 61% to 25%. Stronger decline of frameshifting efficiency in the presence of the bimolecular helix is consistent with the experiments performed in the context of the non-slippery sequence, showing that replacing dnaX FSS with bimolecular helix dramatically diminishes FSS-induced inhibition of tRNA binding and translocation (Fig. 9). These results also suggest that frameshifting efficiency, at least to some degree, positively correlates with the length of FSS-induced translation pause.

Discussion

We find that the total thermodynamic stability of the FSSs and the local stability of the basepairs adjacent to the entry of mRNA tunnel moderately influence ribosome pausing. In our work, we used nearest-neighbor estimation of helix stabilities, which is well established as accurate\(^\text{47}\). Using recent quantification of the confidence of nearest-neighbor parameters by propagating the experimental errors through the derivation of parameters\(^\text{61,62}\), we found that the error estimates are smaller than the calculated \(\Delta AG\)'s (Fig. 1). Hence, instead of merely acting as a physical barrier for the translating ribosome, the FSS likely hinder protein synthesis by forming specific interactions with the ribosome. Consistent with this idea, the lack of correlation between total thermodynamic stability of the FSS and the efficiency of frameshifting has been observed in several studies\(^\text{53,64}\), including our own experiments (Fig. 9). In addition, significant destabilization of the bottom three basepairs of the HIV FSS has been shown to have no effect on the efficiency of frameshifting\(^\text{34}\).

By contrast, stabilization of the bottom basepairs of the HIV FSS has been shown to substantially increase frameshifting efficiency\(^\text{34}\). Furthermore, positive correlation between frameshifting efficiency and the overall stability of dnaX FSS have been demonstrated by Atkins and colleagues\(^\text{32}\). Several factors, however, complicate the comparison of ribosome pausing observed in the context of non-slippery codons in our work with previously reported measurements of frameshifting. First, during translocation coupled with −1 PRF, two instead of three bottom basepairs of the FSS are unwound. Second, in contrast to short model mRNAs used in our experiments, FSS sequences in long mRNA encoding frameshifting reporters may form several alternative structures by forming basepairs with the rest of mRNA, which compete with FSS basepairs. It is possible that the mutations designed to destabilize the FSS resulted in alternative secondary structures, which complicate the analysis of the data. By contrast, stabilizing mutations in the FSS might increase frameshifting efficiency by enlarge the fraction of mRNA, which contains properly folded FSS, rather than by hindering FSS unwinding by the ribosome. Although the duration of FSS-induced ribosome pausing might weakly correlate with frameshifting efficiency, it is more likely that apparent discrepancies between measurements of ribosome pausing and frameshifting are due to formation of alternative secondary structures in long reporter mRNAs.

Our data show that structural properties of the FSS such as stem length and the presence of the loop make significant contribution to FSS-induced long ribosome pauses. Note-worthy, HIV and dnaX FSSs are 12 and 11 basepairs long, respectively (Fig. 1b, c). The idea that optimal stem length (around 11–12 basepairs) is important for ribosome pausing and frameshifting is supported by the study of the frameshift-inducing stem-loop derived from Simian retrovirus type-1 gag-pro transcript\(^\text{65}\). This work demonstrated that both increase and decrease in the length of the stem from the original length of 12 basepairs reduce frameshifting efficiency.

Fig. 8 The bimolecular helix formed in the m291 mRNA at the entry to mRNA tunnel mildly inhibits translocation. Kinetics of translocation was measured by smFRET experiments with pre-translocation S6-cy5/19-cy3 ribosomes programmed with m291 mRNA containing a 16-bp bimolecular RNA helix (Fig. 1) positioned 11 nucleotides downstream of P-site codon (a) or with single-stranded m291 mRNA (b). Histograms (2 s binning size) show the distributions and median values of \(\tau_{\text{tr}}\), which represents the dwell time between injection of EF-G GTP and ribosome translocation. N indicates the number of FRET traces compiled into each histogram. Source data are provided as a Source Data file.

Fig. 9 The presence of the loop is more important for the FSS-stimulated −1 PRF than the local and overall thermodynamic stabilities of the FSS. Ribosomes containing P-site N-Ac-Val-tRNA\(^\text{34}\) were programmed with dnaX_Slip mRNA containing an FSS variant (Fig. 1). The ribosomes were incubated with EF-G\textsubscript{GTP}, EF-Tu\textsubscript{GTP}, Lens-tRNA\(^\text{Lys}\) and \[^{3}\text{H}]{\text{Glu-tRNA}}\(^{\text{Glu}}\) (decodes GAG codon in –1 frame) for 5 min. For each FSS variant, \[^{3}\text{H}]{\text{Glu-tRNA}}\(^{\text{Glu}}\) binding to the ribosomal A site was measured by filter-binding assays. Frameshifting efficiency is represented by A-site occupancy by \[^{3}\text{H}]{\text{Glu-tRNA}}\(^{\text{Glu}}\) normalized by the P-site occupancy of N-Ac-{\[^{3}\text{H}]{\text{Glu-tRNA}}\(^{\text{Glu}}\)} which non-enzymatically binds to the ribosome programmed with dnaX_Slip ΔFSS mRNA. Data are presented as mean values ± standard deviations of three independent measurements. Source data are provided as a Source Data file.
How do FSSs interact with the ribosome to inhibit translation elongation? Our recent studies indicated that the FSSs transiently inhibit tRNA binding by directly blocking the A site. In the structure of HIV FSS–ribosome complex, mRNA nucleotides between the P-site codon and the FSS are dissociated from the mRNA tunnel and the FSS is binds into the A site of the ribosome\(^1\). Extending HIV FSS by six basepairs likely prevents FSS docking into the A site because HIV stem-extended FSS does not inhibit tRNA binding (Figs. 4, 7, Supplementary Fig. 2b).

In the HIV FSS–ribosome structure, the FSS loop contacts the A-site finger (Helix 38) of 23S rRNA. Consistent with the importance of the FSS loop–ribosome interactions, HIV and dnaX bimolecular helices lacking the loop do not inhibit A-site tRNA binding. Furthermore, shortening the stem-loop also likely eliminates the interaction of the loop with the A site finger, and thus partially alleviates the FSS-induced inhibition of A-site tRNA binding. In our experiments, variations in the sequence and length of the loop do not affect the ability of the HIV and dnaX FSS to inhibit tRNA binding (Fig. 3). Hence, the interactions between the FSS loop and the large subunit do not appear to be sequence specific and likely involve RNA phosphate backbone.

In addition to inhibiting A-site tRNA binding, the HIV and dnaX FSSs slow down translocation. This likely occurs when mRNA is threaded through the 30S mRNA channel and the FSS interacts with the entry to the mRNA tunnel that is lined by ribosomal protein uS3, uS4, and uS5. Such a conformation of the FSS was visualized by cryo-EM reconstructions of the dnaX FSS bound to bacterial ribosome\(^12\) and frameshift-inducing pseudoknot from SARS-CoV-2 RNA genome bound to mammalian ribosome\(^66\). In the dnaX–ribosome complex, similar to the dnaX–ribosome complexes used in our work, the FSS was positioned 11 nucleotides downstream of the P-site codon\(^42\). Because of intermediate local resolution at the dnaX hairpin, molecular details of the FSS interactions with E. coli ribosome remain unclear. SHAPE probing of the dnaX FSS performed on this complex demonstrated that dnaX FSS is properly folded when adjacent to mRNA tunnel, although basepairing status of nucleotides +13, +14 and +15 of the FSS was ambiguous\(^42,58\).

Our data support the assumption that when bound to the entry to the mRNA tunnel (i.e. 11 nucleotides downstream of the P-site codon in bacterial ribosome), the HIV and dnaX FSS remain fully folded. Mutations destabilizing basepairing interactions formed by nucleotides +12, +13 and +14 in the HIV FSS and +13, +14 and +15 in the dnaX FSS appreciably affected the rate of translocation in our smFRET experiments indicating that unwinding of these basepairs accompanies translocation (Fig. 6). \(\tau_{\text{on}}\) observed in the presence of HIV destabilized FSS I (41 s) and HIV destabilized FSS II (32 s) (Fig. 6a) were relatively similar, consistent with the idea basepairs formed by nucleotides +15 and +16 are not unwound during translocation in our smFRET experiments.

Similar to earlier proposals\(^66,67\), we hypothesize that interactions of the FSS with the entry of mRNA tunnel inhibit ribosome translocation and helicase activity. Recent optical tweezers experiments indicated that unwinding of three basepairs adjacent to the mRNA tunnel occurs through two parallel pathways, one of which is 7-fold slower than the other\(^12\). An mRNA stem-loop likely samples alternative conformations at the entry to mRNA tunnel. In some of these conformations, translocation and basepair unwinding might be slowed down. Unique interactions with the ribosome that distinguish the FSS from the bimolecular helix likely favor this slow translocation/unwinding pathway. Our data show that the presence of the loop and specific stem length stabilize the inhibitory conformation of the FSS-ribosome complex. The cryo-EM reconstruction of the SARS-CoV-2 FSS bound at the entry to mRNA tunnel of mammalian ribosome\(^66\) indicated that the pseudoknot wedges between the head and the body domains of the small ribosomal subunit and thus might restrict the swiveling motion of the head domain relative to the body and platform domains of the small subunit that accompanies ribosome translocation\(^68\). Structures with higher local resolution near the FSS positioned at entry to the mRNA tunnel will be required to elucidate the molecular mechanism of FSS-mediated switching between the slow and fast pathways of translocation/mRNA unwinding observed in optical tweezers experiments.

Interestingly, when positioned 11 nucleotides downstream of the P-site codon, a bimolecular helix identical to the stem of the HIV FSS inhibits translocation less than the wild-type HIV FSS positioned 12 or 13 nucleotides downstream of the P-site codon. In other words, unwinding of three basepairs of the HIV bimolecular helix slows down the ribosome less than unwinding of two basepairs or one basepair of the HIV FSS. This observation is consistent with the interpretation that thermodynamic stabilities of basepairs adjacent to the entry to the mRNA tunnel do not account for the inhibitory effect of the FSS. Partial alleviation of the FSS-mediated pausing observed in our experiments when the spacing between the FSS and the P-site codon was extended from 11 to 12 or 13 nucleotides likely indicates that the short (11 nucleotide) spacer decreases entropic cost for forming the inhibitory interactions between the FSS and the ribosome by restricting the FSS dynamics.

Our findings have a number of implications for translational regulation at transcriptome-wide levels. On the one hand, because unwinding of three basepairs slows down the ribosome only 2–3 times, most elements of secondary structure are not expected to produce long ribosome pauses that are consistent with published ribosome profiling studies\(^14,15\). However, variations in the propensity to form basepairing interactions within the ORF may provide several lines of evidence that specific mRNA stem-loops inhibit translation much stronger than an mRNA helix in general.

Further investigation of structural properties of mRNA stem-loops and pseudoknots important for translation inhibition may inform identification of previously unknown regulatory secondary structure elements within mRNA ORFs that produce programmed ribosome pausing events. Our data also have important implications for the rational design of mRNA sequences for industrial applications, including mRNA vaccines. On the one hand, specific stem-loops and pseudoknots that induce extended ribosome pausing/stalling should be avoided in the design of mRNA vaccines because ribosome stalling triggers quality-control pathways, including ribosome rescue, nascent polypeptide degradation and no-go mRNA decay\(^69\). On the other hand, the PRF-stimulating mRNA secondary structures can be used to encode alternative polypeptide products in the same transcript via PRF, thus expanding the protein-coding capacity of the artificial mRNAs.
subunits with S6-41C-cy5 and L11-11C-cy3 proteins48,70. tRNAs (purchased from
ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28600-5
www.nature.com/naturecommunications

smFRET measurements. The total internal reflection fluorescence (TIRF)
microscopy-based smFRET experiments were performed using published
procedures31,49,70 with modifications. Quartz slides were coated with dichloro-
substituted ethylsilane (DDES), bound with biotin-BSA and passivated by Tween-207,
30 μL 0.2 mg/mL neutravidin dissolved in H50 buffer (20 mM HEPES (pH 7.5) and
50 mM KCl) was loaded and bound to the biotin-BSA. Ribosomal complexes were
imaged in polyamine buffer (50 mM HEPES (pH 7.5), 6 mM Mg2+, 6 mM β-mercaptoethanol, 150 mM NH4Cl, 0.1 mM spermine, and 2 mM spermidine).

Frameshifting assay. To prepare the ribosome programmed with dnaXSlip
ΔFSS mRNA.

RNAstructure prediction. RNAstructure (version 6.2) was used to predict the RNA secondary structure and thermodynamic stability of corresponding
structures45. RNA secondary structures were predicted using maximum expected accuracy74 from basepair probabilities estimated from a partition function calcu-
lation. In these calculations, nucleotides from the beginning of the Shine–Dalgarno
sequence to nucleotide –11 downstream of the first nucleotide of the P-site codon
and the oligonucleotide tether-binding site were forced to be unpaired, mimicking the
effect of the bound ribosome and oligonucleotide. The efn2 function was used to
calculate the ΔG° of RNA secondary structure based on the predicted structure using
default parameters. For the bimolecular structure prediction, Bifold application
of RNAstructure (version 6.2) was used59.

References
1. Yusupov, G. Z., Yusupov, M. M., Cate, J. H. & Noller, H. F. The path of
message RNA through the ribosome. Cell 106, 233–241 (2001).
2. Yusupov, G., Jenner, L., Rees, B., Moras, D. & Yusupov, M. Structural basis
for messenger RNA movement on the ribosome. Nature 444, 391–394 (2006).
3. Jenner, L., B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects
of messenger RNA reading frame maintenance by the ribosome. Nat. Struct.
Mol. Biol. 17, 555–560 (2010).
4. Takay, S., Hickerson, R. P. & Noller, H. F. mRNA helicase activity of the
ribosome. Cell 120, 49–58 (2005).
5. West, J. D. et al. Following translation by single ribosomes one codon at a
time. Nature 452, 598–603 (2008).
6. Adilvarahan, S. et al. Spatial organization of single mRNA8s at different stages of
the gene expression pathway. Mol. Cell 72, 727–738e5 (2018).
7. Khong, A. & Parker, R. mRNP architecture in translating and stress conditions
reveals an ordered pathway of mRNP compaction. J. Cell Biol. 217, 4124–4140
(2018).
8. Aw, J. G. et al. In vivo mapping of eukaryotic RNA interaction reveals
principles of higher-order organization and regulation. Mol. Cell 62, 603–617
(2016).
9. Lu, Z. et al. RNA duplex map in living cells reveals higher-order transcriptome
structure. Cell 165, 1267–1279 (2016).
10. Xu, Q. et al. The ribosome uses two active mechanisms to unwind messenger
RNA during translation. Nature 475, 118–121 (2011).
11. Calisak, N., Katunin, V. I., Belardelli, R., Peske, F. & Rodnina, M. V.
Programmed –1 frameshifting by kinetic partitioning during impeded
translation. Cell 157, 1619–1631 (2014).
12. Desai, V. P. et al. Co-temporal force and fluorescence measurements reveal a
ribosomal gear shift mechanism of translation regulation by structured
mRNA8s. Mol. Cell 75, 1007–1019e5 (2019).
13. Chen, C. et al. Dynamics of translation by single ribosomes through mRNA
secondary structures. Nat. Struct. Mol. Biol. 20, 582–588 (2013).
14. Del Campo, C., Bartholomau, A., Fedynian, I. & Ignatova, Z. Secondary
structure across the bacterial transcriptome reveals versatile roles in mRNA
regulation and function. PLoS Genet. 11, e1005613 (2015).
15. Pop, C. et al. Causal signals between codon bias, mRNA structure, and the
efficiency of translation and elongation. Mol. Syst. Biol. 10, 770 (2014).
16. Burkhart, D. H. et al. Operon mRNAs are organized into ORF-centric
structures that predict translation efficiency. Elife 6, e22037 (2017).
17. Gorochowski, T. E., Ignatova, Z., Bovenberg, R. A. & Roubos, J. A. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. *Nucleic Acids Res.* 43, 3022–3032 (2015).

18. Yan, S., Wen, J. D., Bustamante, C. & Tinoco, I. Jr Ribosome excursions during mRNA translation mediate broad branching of frameshift pathways. *Cell* 160, 870–881 (2015).

19. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with a stem in translation elongation. *Nature* 450, 561–564 (2006).

20. Young, J. C. & Andrews, D. W. The signal recognition particle receptor alpha subunit assembles post-translationally onto the endoplasmic reticulum membrane during an mRNA-encoded translation pause in vitro. *EMBO J.* 15, 172–181 (1996).

21. Caliskan, N., Neske, F. & Rodnina, M. V. Changed in translation: mRNA structures, ribosome states and impedes ribosomal translocation. *Nat. Commun.* 13, 14719–14735 (1998).

22. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with a stem in translation elongation. *Nature* 450, 561–564 (2006).

23. Qin, P., Yu, D., Zuo, X. & Cornish, P. V. Structural mRNA induces the ribosome in a hyper-rotated state. *EMBO Rep.* 15, 185–190 (2014).

24. Tsunehashi, Z. & Brown, P. O. Sequence requirements for efficient translational frameshifting in the Escherichia coli dRNA gene and the role of an unstable interaction between tRNA(Lys) and an AAG lysine codon. *Genes Dev.* 6, 511–519 (1992).

25. Reuter, J. S. & Mathews, D. H. RNAstructure: software for RNA secondary structure prediction and analysis. *BMC Bioinform.* 11, 129 (2010).

26. Bloomfield, V. A., Crothers, D. M. & Tinoco, I. Nucleic Acids: Structures, Properties, and Functions, x 794 p. (University Science Books, 2000).

27. Xia, T. et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. *Biochemistry* 37, 14719–14735 (1998).

28. Ermolenko, D. N. et al. Observation of intersubunit movement of the ribosome in solution using FRET. *J. Mol. Biol.* 370, 530–540 (2007).

29. Cornish, P. V., Ermolenko, D. N., Noller, H. F. & Sa, T. Spontaneous intersubunit rotation in single ribosomes. *Mol. Cell* 30, 578–588 (2008).

30. Attila, C. E. & Puglisi, J. D. Following the intersubunit conformation of the ribosome during translation in real time. *Nat. Struct. Mol. Biol.* 17, 793–800 (2010).

31. Frank, J. & Gonzalez, R. L. Jr Structure and dynamics of a processive Brownian motor: the translating ribosome. *Annu. Rev. Biochem.* 79, 381–412 (2010).

32. Frank, J. & Agrawal, R. K. A rattle-like inter-subunit reorganization of the ribosome during translocation. *Nature* 406, 318–322 (2000).

33. Dunkle, J. A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. *Science* 332, 981–984 (2011).

34. Mouzakis, K. D., Lang, A. L., Vander Meulen, K. A., Easterday, P. D. & Mathews, D. H. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. *Science* 332, 981–984 (2011).

35. Garcia-Miranda, P. et al. HIV frameshift site RNA stability correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. *Proc. Natl Acad. Sci. USA* 109, 12893–12898 (2004).

36. Bao, C. et al. mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding. *Elife* 9, e55799 (2020).

37. Larsen, B., Gesteland, R. F. & Atkins, J. F. Structural probing and mutagenic analysis of the stem-loop required for *Escherichia coli* dRNA ribosomal frameshifting: programmed efficiency of 30%. *J. Mol. Biol.* 271, 47–69 (1997).

38. Kim, H. K. & Tinoco, I. Jr. EF-G catalyzed translocation dynamics in the presence of ribosomal frameshifting stimulatory signals. *Nucleic Acids Res.* 45, 2865–2874 (2017).

39. Bouwmeester, M. N., Payant, C., Lemay, G. & Brakier-Gingras, L. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site. *Nucleic Acids Res.* 27, 4783–4791 (1999).

40. Zuber, J., Cabral, B. J., McFadyen, I., Mauger, D. M. & Mathews, D. H. Analysis of RNA nearest neighbor parameters reveals interdependencies and quantifies the uncertainty in RNA secondary structure prediction. *RNA* 24, 1568–1582 (2018).

41. Ritchie, D. B., Foster, D. A. & Woodside, M. T. Programmed -1 frameshifting efficiency correlates with RNA pseudoknot conformational plasticity, not resistance to mechanical unfolding. *Proc. Natl Acad. Sci. USA* 109, 16167–16172 (2012).

42. Wu, B. et al. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. *Nucleic Acids Res.* 46, 9736–9748 (2018).

43. Yu, C. H., Noteborn, M. H., Pleij, C. W. & Osthoom, R. C. Stem-loop structures can effectively substitute for an RNA pseudoknot in -1 ribosomal frameshifting. *Nucleic Acids Res.* 39, 8952–8959 (2011).

44. Bhat, P. R. et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. *Science* 372, 1306–1313 (2021).

45. Nam, O., Moran, S. J., Stuart, D. I., Gilbert, R. J. & Brierley, I. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. *Nature* 441, 244–247 (2006).

46. Noller, H. F., Lancaster, L., Zhou, J. & Mohan, S. The ribosome moves: RNA secondary structure and translation. *Nat. Struct. Mol. Biol.* 24, 1021–1027 (2017).

47. D’Orazio, K. N. & Green, R. Ribosome states signal RNA quality control. *Mol. Cell* 81, 1372–1383 (2021).

48. Ling, C. & Ermolenko, D. N. Initiation factor 2 stabilizes the ribosome in a semirotated conformation. *Proc. Natl Acad. Sci. USA* 112, 15874–15879 (2015).

49. Sun, H. et al. An improved surface passivation method for single-molecule studies. *Nat. Methods* 11, 1233–1236 (2014).

50. McKinney, S. A., Joo, C. & Ha, T. Analysis of single-molecule FRET trajectories using hidden Markov modeling. *Biophys. J.* 91, 1941–1951 (2006).

51. Sali, E., Farah, E. & Ermolenko, D. N. EF-G activation by phosphate analogs. *J. Mol. Biol.* 428, 2248–2258 (2016).
Acknowledgements
These studies were supported by grants from the US National Institute of Health R01GM099719, R35GM141812 (both to D.N.E.) and R01GM076485 (to D.H.M.). We thank Harry Noller, Laura Lancaster, and Gillian Rexroad for their comments on the manuscript.

Author contributions
D.N.E. conceived the project. C.B., M.Z., D.H.M., and D.N.E. designed research. C.B. performed experiments with contributions from I.N. and H.W. M.Z. performed computational studies. C.B., M.K., D.H.M., and D.N.E. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-28600-5.