Abstract. Head and neck cancers are diverse and complex diseases characterised by unregulated growth of tumour cells in various parts of the head and neck region, such as in the buccal mucosa, floor of the mouth, tongue, oropharynx, hypopharynx, oesophagus, nasopharynx and salivary glands. Partial or total glossectomy, radiation or chemotherapy greatly affect patient quality of life. However, even following treatment, patients may relapse. Nicotine-derived nitrosamines and alcohol are the major etiological factors underlying this deadly disease. These compounds induce DNA damage that may lead to mutation in crucial genes, such as p53 and p21, which are important to regulate cell proliferation, thus leading to cancer. CD9 is a tetraspanin, which are a group of transmembrane proteins that have a role in cell motility and adhesion. The present review aimed to explore the role of CD9 in head and neck cancer. Epidermal growth factor receptor activity and cell proliferation are regulated by the CD9-integrin/CD9-transforming growth factor interaction. Hence, CD9 can play a dual role in various types of cancer.

Contents
1. Introduction
2. Risk factors associated with HNSCC
3. Biomarkers in head and neck cancer
4. Tetraspanin CD9
5. Mechanism of action of CD9
6. CD9 as a friend of HNSCC
7. CD9 as a foe
8. Conclusions

1. Introduction

Head and neck cancer is common in several regions of the world such as India, Hong Kong and Sri Lanka (1). Head and neck squamous cell carcinomas (HNSCCs) are a type of epithelial cancer arising in the mucosa of the upper aerodigestive tract (1). The oral cavity, hypopharynx, oropharynx and larynx are sites that have the potential to be affected by this cancer (1). A tetraspanin member, CD9 is found on the epithelial cells. Hence, it may have a role in the carcinogenesis of head and neck cancer. HNSCCs are aggressive, genetically complex and difficult to treat. HNSCCs can develop from dysplastic or premalignant lesions in the oropharyngeal mucosa that have occurred due to chronic exposure of the upper aerodigestive tract to carcinogenic agents (2).

HNSCCs are associated with different types of epidemiologies, aetiologies and therapies (2). Treatment has to be undertaken by multidisciplinary teams with training in supportive care that considers swallowing, nutrition, dental and voice impairment due to the effects of clinical intervention. In total, 6-90% of patients at early stages of this cancer show positive responses to local therapy. Early diagnosis and appropriate treatment results in cure and survival. The majority of patients with HNSCC who present with stages III and IV locally advanced head and neck cancer require multimodality treatment (3).

HNSCCs begin in the flat squamous cells that make up the thin layer of tissue on the surface of the epithelium in the head and neck. Directly beneath the epithelium, some areas of the head and neck have a layer of moist tissue, called the mucosa. A cancer that is only found in the squamous layer of cells is called carcinoma in situ. Cancer that has grown beyond the mucosa and has moved into the deeper tissue is called invasive squamous cell carcinoma (4). Head and neck cancer, the sixth most common malignancy, accounts for >650,000 cases and 330,000 deaths annually world-
are formed when malonaldehyde and 4-hydroxynonenal, which are the by-products of lipid peroxidation, accumulate by the action of ROS produced by CYP2E1 (26). The upregulation of vascular endothelial growth factor and monocyte chemotactic protein-1, which play an important role in tumour angiogenesis and growth, is caused by the accumulation of ROS (27). An increase in the expression of MMPs, such as MMP2 and MMP9, leads to the degradation of the extracellular matrix (ECM), resulting in cell motility, invasion and metastases (28) (Fig. 1).

Heavy metals. According to the International Agency for Research on Cancer (IARC), arsenic (As), cadmium (Cd), chromium (Cr) and nickel (Ni) are category I heavy metals that disrupt tumour suppressor gene expression (29). These heavy metals damage the DNA repair process and metabolism-related enzyme activities (30,31). As is present in organic and inorganic forms, but the organic form of As is less toxic when compared with the inorganic form. Inorganic As compounds are pentavalent and soluble in water and produce salts, such as arsenate (32). Oxidative stress is the major mechanism of As-related damage (33,34). DNA repair processes are inhibited and ROS are the metabolic products in the spleen and liver of the methylated forms of As (35,36). ROS accumulation results in abnormal gene expression and lesions of cellular components that induce cell death (37). Residues of As bind to the DNA-binding proteins and increase the risk of carcinogenesis (38). Cd is an environmental pollutant that is released from industry and agricultural waste (39). B cell lymphoma 2 protein-associated X protein and mitogen-activated protein kinase 1 are associated with Cd (40), which exists in different forms. The trivalent and hexavalent compounds of Cd are biologically toxic as they can induce oxidative stress, DNA damage and apoptosis (41-43).

The levels of As, Cd, Cr and Ni have been found to be significantly high in patients with head and neck cancer compared with those in healthy individuals (44). This may be due to altered cellular metabolism during cancer. Occupational or environmental factors might be the reason for this difference in the concentration of heavy metals between patients with cancer and healthy individuals (44).

FA. FA is a genetic disease that is characterised by alteration in one of the 23 genes of the FS pathway or in the 23rd FA gene, DNA repair protein RAD51 homolog 1 (45). Genome stability induced by interstrand DNA crosslink repair in the FA pathway has the potential to induce tumorigenesis (45). Patients with FA are more prone to HNSCC and are more sensitive to severe radiation-induced side effects. Patients with FA who are at higher risk for HNSCC must abstain from other risk factors, such as tobacco, alcohol and HIV infections (45). The main characteristics of this rare autosomal recessive disorder are congenital malformations, such as abnormal thumbs and arms, skeletal abnormalities of the hips, ribs or spine, small reproductive organs in male patients, low body weight at birth, mental retardation, hyperpigmentation, progressive bone marrow failure, and the development of solid tumours (46-48).

PA system. An extracellular proteolytic enzyme system, the PA system, comprises various components, such as urokinase-type
PA (uPA), its receptor (uPAR), and PA inhibitor-1 and -2. They have a major role in cancer progression and metastasis (49). The activation of plasminogen to plasmin by binding of uPA to uPAR initiates a proteolytic cascade that degrades ECM components, thus facilitating cancer cell migration from the site of origin to distant organs (50). uPA/uPAR overexpression increases tumour cell migration and invasion, playing a key role in metastasis and conferring poor prognosis of patients with head and neck cancer (51). It is associated with focal adhesion kinase 1 and ERK1/2 signalling activation and an increase in HNSCC tumour growth (51,52). Activation of plasmin, ECM degradation and indirect activation of signalling pathways, such as the PI3K-Akt pathway, may be the reasons for this effect (50).

MMP. MMPs are enzymes that degrade the ECM, connective tissue and the basement membrane collagen, which are crucial in cancer cell invasion and progression. They require zinc for their catalytic activity. Type VI collagenase, MMP2 and MMP9 are members of the MMP family of enzymes (53‑59). In HNSCC, immunohistochemical staining of MMP9 demonstrated that it has prognostic values that are not dependent on tumour stage. Patients with extensive positive MMP9 staining had relatively higher risk of mortality. No correlation has been found between MMP9 and the stage or grade of the tumour (60).

HPV and EBV infection. Inactivation of cellular tumour antigen p53 and cyclin-dependent kinase inhibitor 2A by cell cycle dysregulation leads to cell proliferation and inhibition of apoptosis in head and neck cancer (61). In oropharyngeal squamous cell carcinoma caused by HPV, the virus integrates into the host DNA genome, leading to the deregulation of oncoproteins (E6 and E7), which leads to the p53 and retinoblastoma tumour suppressor gene product pRb. P16 upregulation is the result of negative feedback of pRb inactivation. In nasopharyngeal squamous cell carcinoma caused by EBV, the cell cycle is the most deregulated pathway. Progression of the G1/S phase is promoted by the inhibition of p16 expression and pRb upregulation (61,62).

Wood and leather dust are the two types of occupational dusts that are classified as type 1 carcinogens by IARC (63). Dusts are small solid particles present in the air with a size ranging from 1 to 100 μm (64). They are a heterogenous group of exposures that can be either organic or inorganic. The carcinogenic effect of dust is exerted through the induction of chronic inflammation, their intrinsic chemical properties or they act as carriers of other carcinogenic compounds (63). Occupational sawdust exposure has been found to increase the risk of laryngeal carcinoma (OR, 1.2; 95% CI, 1.0‑1.3) and metal dust (OR, 1.2; 95% CI, 1.0‑1.4). Exposure to occupational leather dust can increase the risk of head and neck cancer (OR, 1.5; 95% CI, 1.2‑1.9) (65).

1,1-thiobis, also known as sulphur mustard, causes blisters on contact with the skin and mucous membrane (66). A reactive intermediate, a cyclic sulfonium ion, is produced as sulphur mustard eliminates a chloride ion by intramolecular nucleophilic substitution. This intermediate causes alkylation of guanine nucleotide of DNA that prevents cell division, which may lead to malignant transformation (67,68).

Radiation is used widely to treat cancers. Radiation-induced sarcomas are seen in long-term survivors of head and neck cancer with a risk of up to 0.3% (69). Treatment of head and neck cancer include surgical eradication, chemotherapy and radiotherapy, which reduce quality of life (including loss of taste and excessive hair loss), and are ineffective. Genetic heterogeneity that results in the loss of function of genes, such as p53 and p16, and the activation of oncogenes, such as epidermal growth factor receptor (EGFR) and PIK3CA, plays an important role in HNSCC (70‑72).
3. Biomarkers in head and neck cancer

A biomarker is an objective feature that can be precisely assessed to determine a specific biological, pathological or therapeutic development of the host (73). There are several biomarkers for head and neck cancer. MMPs are enzymes that degrade the ECM and induce cell migration. Serum levels of MMP2, 3 and 9 are elevated in patients with HNSCC (74). Inflammatory markers, such as IL-8 and IL-6, are increased in saliva and serum, respectively (75,76). Cytokeratin 17 is a cytoskeletal intermediate filament that is upregulated in oral squamous cell carcinoma (OSCC) when compared with normal cells, and it has been identified as an immunohistochemical marker for squamous cell carcinoma of the larynx (77,78).

MicroRNAs (miRNAs/miRs) are small non-coding sequences that regulate gene expression after transcription. Levels of miRNAs, such as miR-125a and miR-200a, are significantly lower in subjects with OSCC compared with those in normal subjects (79).

Interferon-γ (IFN-γ) released from activated CD8+ T cells in the tumour microenvironment triggers the transmembrane protein, programmed death ligand 1 (PD-L1). T cell energy and programmed cell death can be induced by PD-L1 upregulation when it interacts with programmed death receptor-1 (PD-1), a checkpoint present on the immune cell surface. PD-L1 plays a prognostic role by regulating the relationship between tumour-infiltrating lymphocytes and tumour cells (80,81). HNSCC is a highly immunosuppressive cancer. Blocking the PD-1/PD-L1 pathway has been found to improve the survival of patients with head and neck cancer and reduce tumour growth (82). Progression-free survival was improved in PD-L1-positive patients with head and neck cancer (P=0.01). PD-L1 expression was increased in patients who had HPV-positive HNSCC (P<0.001). Poorer overall survival was observed in patients with positive PD-L1 who had low levels of CD8+ tumour-infiltrating T cells (P=0.03) (83) (Fig. 2).

Fluorodeoxyglucose-positron emission tomography is a powerful imaging tool that can be used to identify cervical node metastasis and is a standard of care for patients with III and IV stage HNSCC (84). Patients with lower ΔSUV max10/20 showed lower overall survival compared with those with higher ΔSUV max10/20 (P=0.02). The decrease in the SUV max before and after chemoradiotherapy acts as a potential prognostic marker in patients with head and neck cancer (85).

CD62, also known as L-selectin, is a lectin receptor expressed on leucocytes that regulate the entry of naïve and central memory T cells into lymph nodes (86). The spread of tumour cells to lymph nodes is a multistep process that includes invasion of the tumour cells into the lymphovascular compartment and lodging and growth of the tumour cell in the new environment. The lymph node is the most common region of metastasis for head and neck cancer. Head and neck cancer cells express unrecognized L-selectin that mediates the binding to lymphocytes and thus aids tumour node metastasis (87).

Likewise, tetraspanins are one of the markers for HNSCC. Tetraspanins play a major role in a wide array of cellular processes, including cell adhesion, motility, intracellular signalling, cell matrix adhesion and proliferation (88). Of the 33 tetraspanin proteins, CD9 is being extensively studied (89-91).

4. Tetraspanin CD9

Tetraspanin is a glycoprotein family containing four transmembrane domains. These proteins form multimeric complexes with each other and other cell surface proteins, including integrins, leucocyte antigens and signalling molecules, at specialized tetraspanin-enriched microdomains (92). They also contain distinct palmitoylation sites and most members are glycosylated (93).

The large extracellular loop has highly conserved motifs that aid in the recognition of tetraspanins (94). Cys-Cys-Gly, Phe-X-Ser-Cys and Glu-Gly-Cys are the conserved motifs of CD9 protein (95-97). ‘Tetraspanin webs’ are formed by the heteromultimerization of tetraspanins, which are stabilized by the transmembrane domains (97-99). There are two subdomains in the EC2 domain, a highly conserved subdomain with residue differences and a subdomain that has variability in size, amino acid sequence and protein folding for the disulphide bridge (90). The interaction between tetraspanins and other transmembrane proteins, such as integrins and other signalling molecules, is regulated by the EC2 domain of the tetraspanin (90,98-101) (Fig. 3). Tetraspanins recruit cell surface proteins, which stabilize the functional signalling complexes and act as molecular facilitators (102).

Kersey et al (103) identified CD9 using a monoclonal antibody (binds to acute lymphoblastic leukaemia cells) as the human lymphohematopoietic progenitor cell surface antigen p24. In the systematic nomenclature, Tspan 29 belongs to the tetraspanin family with a molecular weight of 21-24 kDa. CD9 is made up of four transmembrane domains with a small and large extracellular loop (SEL or EC1 and LEL or EC2, respectively) and short intracellular N- and C-terminal tails (104).

Among the tetraspanins, CD9 is unusual as it has only one N-glycosylation site located in its SEL domain, whereas other tetraspanins have a number of glycosylation sites (105). Critical physiological and pathological processes, such as sperm-egg
fusion, neurite outgrowth, myotube formation, tumorigenicity and metastasis, are regulated by CD9 (106-108).

5. Mechanism of action of CD9

The molecule that interacts with CD9 decides the role of this tetraspanin in cancer cell motility. The adhesion of tumour cells to the ECM increases when integrin expression is upregulated in combination with CD9. Transcription of MMP2 can be inhibited by CD9 complexes with fibronectin-bound integrins (109). Increased invasiveness of tumour cells can be the result of the activation of intracellular signalling molecules, such as PI4K and Src homology 2, by the transcription of MMP2 induced by CD9 crosslinking (110). Growth factors of the transforming growth factor (TGF) family activate the EGFR. Ectodomain shedding is a process where TGF\(\alpha\) is proteolytically cleaved to release an EGF-core containing ligand. Ectodomain shedding and the release of TGF\(\alpha\) is affected when it interacts with CD9, as it regulates the cleavage TGF\(\alpha\), which may lead to constant activation of EGFR, resulting in cell proliferation (110,111) (Fig. 4).

In CD9-overexpressed cells, the NF-\(\kappa\)B signalling pathway has been found to be activated and dependent on CD9 expression. CD9 also induced tumour necrosis factor \(\alpha\) (TNF\(\alpha\)) gene expression, which resulted in the increase of IL-6 and IL-8 levels. NF-\(\kappa\)B subunits, upon activation by TNF\(\alpha\), activate the transcription of genes involved in cell proliferation and differentiation by translocating into the nucleus. CD9 activates the caspase-3 inhibitor, which reduces the activity of caspase-3. Blockage of CD9 expression with small interfering RNA increases the level of caspase-3 activity. This shows that CD9 has anti-apoptotic activity (112) (Fig. 5).

6. CD9 as a friend of HNSCC

Favourable clinical outcomes have been observed in HNSCC with elevated CD9 expression. Tetraspanins or \(\alpha3\beta1\) integrins show an association with CD9 on the cell-to-cell junctions of human umbilical vein endothelial cells (109-113). Migration of endothelial cells during wound repair has been reported to be inhibited by anti-CD9 antibodies (101,114‑117), which indicates the stabilizing effect of CD9 antigen on the integrity of the vascular membranes. During tumour angiogenesis, downregulation of CD9 proteins may be linked to vascular supply reorganization (89). CD9 acts by setting up the junctions between the cell surface and the intercellular matrix via the formation of a functional signalling complex with other cell surface proteins (98,118-121). Motility-related protein 1 (MRP-1)/CD9 expression was the only predictive parameter that seemed to be significant with respect to overall survival (P>0.049), whereas CD9 expression (P>0.006) and lymph node status (P>0.007) were significant for prolonged disease-free survival. Tumour patients with lower CD9 expression survived shorter periods of time than patients with high CD9 levels in the overall survival curves estimated by Kaplan-Meier analysis (P>0.04) (89). The potential effects of CD9 were confirmed when its expression was observed in the tumour vessels, indicating the involve-

Figure 3. Structure of tetraspanin CD9. It has a small and large extracellular loop and four transmembrane domains that span the plasma membrane.
ment of this protein in tumour angiogenesis and endothelial cell migration (89).

Patients with positive CD9 tumours show shorter disease-free survival and overall survival than patients with negative CD9 expression in OSCC (100). Metastatic lesions have been reported in patients with lack of expression of these proteins, and they tended to have poorer prognosis and lower rates of survival (122-126). The incidence of cervical lymph node metastasis and survival has been found to be significantly associated with the abnormal expression of the CD9 protein (90).

One of the most common cancers in the head and neck region is laryngeal squamous cell carcinoma (LSCC) (91). The tumour grows in the glottic, supraglottic and subglottic areas. Death and the patient's quality of life are influenced by infiltration and metastasis, which have become the primary factors leading to an increase in the incidence of LSCC (91). Patients with negative CD9 protein expression have shorter median survival times compared with patients with positive CD9 protein expression (P<0.01) (91). LSCC may develop due to the combined participation of CD9 and another tetraspanin protein, CD82 (91). Infiltration, prognosis of LSCC and metastasis can be determined by using CD9 as a marker. Patients with TNM stage I-II, which is well-differentiated and non-metastatic LSCC, show higher CD9 positive expression than patients with TNM stage III-IV, which is well-differentiated and metastatic LSCC (91). These results show that as the expression of CD9 decreases, the invasiveness and the metastatic potential of the cancer cells increase (91).

Overexpression of CD9 by transfection leads to the suppression of cell motility (127,128). In oesophageal squamous cell carcinoma, lymph node metastasis may be facilitated by a decrease in CD9 expression (129). Patient prognosis can be predicted by the expression status of CD9 (129). A previous study reported that the cell membranes of normal oesophageal epithelial cells show positive CD9 expression, whereas CD9 expression is reduced on the membranes of cancer cells. As the tumours grew deeper, the levels of reduced CD9 expression significantly increased. As the stage of cancer advanced, the expression of MRP-1/CD9 was reduced. Lymph node metastasis and CD9 expression showed a significant inverse correlation, but there was no correlation between CD9 expression and distant metastasis. A correlation was found between lymph node metastases and lymphatic invasion. The 5-year survival rates of patients with CD9 positive expression were significantly improved compared with those patients with low or negative CD9 expression (129). The closest sites to the primary lesions may be affected by the loss of CD9, leading to local lymph node metastasis. Hence, there might be an inverse correlation between CD9 expression and lymphatic invasion (129). The adhesion effects of the interaction between CD9 and heparin-binding EGF-like growth factor associated with α3β1 integrin may play an important role in the initiation of the metastatic cascade (130,131). CD9 antibody activates platelets and their aggregation, thereby releasing the growth factors that facilitate tumour activation or growth (127,132).

In total, ~50% of gingival squamous cell carcinoma (GSCCs) cases show high oral malignant neoplasms and present with cervical lymph node metastasis (133). The jawbone and its surrounding tissues, such as nerves, muscles, the nasal cavity and skin, are invaded by GSCC. Logistic regression analysis with cervical lymph node metastasis as a target variable has shown that CD9/ACTB (P=0.013) and CD9/CD82 (P=0.013) have significant association (133). CD9 is related to the invasiveness of cancer cells by controlling the function of integrin receptors (133). Lymph node metastasis has been shown to be related to an increased level of the integrin α3 gene and a reduced level of CD9, as indicated in OSCC gene expression analysis (134,135). A previous study demonstrated that the main regulator of cell motility, the microvilli-like protrusions arising from the cancer cells, had clusters of tetraspanin-α3 integrin complexes on them. Upon treating the cells with tetraspanin and integrin antibodies, the cancer cells had increased invasive potential due to the stimulation of MMP2 production and elevated long invasive protrusion formation (136). Cancer cell motility is negatively influenced by CD9 via actin cytoskeleton reorganization. There
is a negative correlation between CD9/ACTB gene expression and lymph node metastasis. Cytoskeleton reconstruction related to elevated ACTB expression may be associated with a decrease in CD9 expression (137).

In papillary thyroid microcarcinoma, the patients’ age, multifocality and extrathyroidal extension are known factors that can be used for prognosis (138). CD9 immunostaining intensity has been found to be higher in patients with lymph node metastasis than inpatients without metastasis (P=0.002) (138). CD9 intensity is also correlated with lymph node metastasis, suggesting that CD9 can be considered a prognostic marker for lymph node metastasis in papillary thyroid microcarcinoma (138).

7. CD9 as a foe

Through its association with other partner proteins, CD9 has various functions and has been identified as a tumour suppressor (139). CD9 is involved in and modifies the steps of tumour formation, such as proliferation, apoptosis, migration, adhesion and angiogenesis, and the communication with the environment, dissemination and metastasis (139). Thus, CD9 has a major role in cancer development and progression. Venous vessel invasion, metastasis and poor prognosis are related to tetraspanin CD9 (139). Upon treating patients with gastric cancer with CD9 antibody, tumour progression was found to be inhibited by antiproliferative, pro-apoptotic and anti-angiogenic effects. This indicates that CD9 may be target in patients with gastric cancer (139).

The EGFR has shown association with CD9. EGFR amplification is a characteristic of glioblastoma histology, affecting the signal transduction pathway. CD9 has the ability to attenuate the ligand-induced activation of the receptor via the destabilization of the surface expression of EGFR (140). Phosphorylation of EGFR at specific sites has been shown to be decreased by CD9 (141). Additionally, cell growth and proliferation pathways, such as EGFR signalling of PI3K/Akt and MAPK/Erk, can be attenuated by CD9. By contrast, activation of EGFR signal transduction pathways, including PI3K/Akt and MAPK/Erk, can be enhanced by the reduction in CD9 expression via small hairpin RNA-mediated knockdown of CD9. Inhibition of the activity of PI3K/Akt and MAPK/Erk signalling pathways and phosphorylation of EGFR maybe the mechanism underlying the CD9-induced suppression of cell proliferation (141). CD9, along with other transmembrane proteins, has the ability to regulate cell migration (142,143).

CD9 has been identified as a glioma stem cell-enriched protein. In a context-dependent manner, CD9 is associated with the progression of malignant tumours and plays a role in pro-tumorigenesis to promote cancer invasion and tumour growth in glioblastomas (144). Predicting patient survival using CD9 expression is a potential prognostic tool (145). According to previous reports, cell proliferation and tumour formation are facilitated by CD9 (129,133,144,146).

The progression of solid tumours is associated with CD9 downregulation. Patients with advanced stages lack these molecules, and reduced expression is observed less in primary site tumours than in metastatic tumours. CD9 may contribute to the highly invasive and metastatic phenotype of small cell lung carcinoma. Thus, CD9 is an indicator of poor survival (147).

CD9 expression is an independent prognostic factor of post-operation recurrence-free survival (RFS) for gastrointestinal stromal tumours (GIST), as shown by the Cox proportion hazards regression (HR, 0.104; 95% CI, 0.021-0.528; P=0.006). The RFS of patients with CD9-negative expression was significantly worse than that of the CD9-positive expression group (148). CD9 plays a role in the inhibition of proliferation and metastasis by inhibiting the activation, degradation and secretion of the Wnt signalling pathway, TGFα and metalloproteinase (143,149,150). Downregulation of CD9 is correlated with tumour invasion and metastasis and is a poor prognostic marker in various cancers, such as like breast, colon, small cell lung cancer. Malignant behaviour and tumour progression can be a result of reduced CD9 expression (148). The post-operative three-year RFS rate of the CD9-negative group was found to be lower than that of the CD9-positive group (33.3 vs. 78.4%; P<0.001), as shown in the universal analysis of comparison between the CD-negative and CD9-positive group (148). RFS can be predicted independently using CD9 expression via multivariate analysis (148). This result showed that CD9 is important in the invasion and metastasis of GIST, and the risk of metastasis and recurrence increases as the expression of CD9 decreases. Hence, the aggressive and progressive behaviour of GIST can be predicted using CD9 expression (148).

The survival rate of patients with colon cancer with CD9-positive tumours was reported to be significantly higher than that of patients with CD9-negative tumours (151). Cell motility inhibition and induction of apoptosis promoted by concurrent GM3 synthesis and N-glycosylation may be related to the suppression of malignancy by CD9 (152). The transmembrane 4 superfamily protein CD9 regulates cell motility by acting as a link between extracellular integrins and intracellular signalling molecules, such as phosphatidylinositol 4-kinase (153-155).

Increased invasiveness of breast cancer tumour cells may be the result of activation of intracellular signalling molecules, such as PI4K and Src homology, by CD9 crosslink-induced MMP2 transription (110). In epithelial cells, cleavage of TGFα is protected by the interaction with CD9, which leads to the persistent activation of EGFR (105,106). Patients without CD9 expression had improved overall survival (P=0.051) and disease-free survival (P=0.014) compared with patients with CD9 expression (109). The survival of patients with breast cancer decreased due to altered cellular proliferation induced by activated EGFR signalling (108).

8. Conclusions

In several human cancers (Table 1), CD9 has different effects on different types of cells. In epithelial cells, the expression of CD9 on the tumour cell has shown association with favourable clinical outcomes. Hence, CD9 can be regarded as a tumour prognostic biomarker. It is useful for making decisions regarding postoperative treatment. CD9 in tumour inhibition or tumour progression depends on the molecule that interacts with CD9 (Fig. 6). In conclusion, CD9 interacts with several molecules that result in altered behaviour of cancer cells. This behaviour is different for each cancer. Thus, determination
of the function and interaction of CD9 in various types of cancer that result in reduced cell motility may be of clinical importance.

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

No funding was received.
Authors' contributions

SPC wrote the manuscript, and was responsible for the original draft preparation, research and editing. SSS supervised, and wrote, reviewed and edited the manuscript. SKN supervised, validated the research, and wrote, reviewed and edited the manuscript. PKS and PP made revisions to the manuscript. All authors have read and approved the final manuscript. Data authentication is not applicable.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. Grandis JR, Melhem MF, Gooding WE, Day R, Holst VA, Wagener MM, Dreming SD and Twardy DJ: Levels of TGF-α and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 90: 824-832, 1998.
2. National Comprehensive Cancer Network: Clinical Practice Guidelines in Oncology. Head and Neck Cancer v1; 2017. Available from: https://www.nccn.org/professionals/physician_gls/f_guidelines.asp#site.
3. Lo Nigro C, Denaro N, Merlotti A and Merlano M: Head and neck cancer: Improving outcomes with a multidisciplinary approach. Cancer Manag Res 9: 363-371, 2017.
4. https://www.cancer.net/cancer-types/head-and-neck-cancer/introduction.
5. https://www.uptodate.com/contents/epidemiology-and-risk‑factors-for‑head‑and‑neck‑cancer/search=epidemiology‑and‑risk‑factors‑for‑head‑and‑neck‑cancer &source=search_result &selectedTitle=1‑150#type=default&display_rank=1
6. Hukkanen J, Jacob PII and Benowitz NL: Metabolism and disposition kinetics of nicotine. Pharmacol Rev 57: 79-115, 2005.
7. Warren GW and Singh AK: Nicotine and lung cancer. J Carcinog 12: 1, 2013.
8. Hecht SS: Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer 3: 733-744, 2003.
9. Doll R and Peto R: The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66: 1191-1308, 1981.
10. US Department of Health and Human Services: Reducing the Health Consequences of Smoking: 25 Years of Progress. A Report of the Surgeon General; Centers for Disease Control and Prevention, Atlanta, GA, 1989.
11. Secretan B, Straif K, Baan R, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, et al: A review of human carcinogens-Part E: Tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol 10: 1033-1034, 2009.
12. https://www.cancer.net/cancer-types/head-and-neck-cancer/risk-factors-and-prevention.
13. US Department of Health and Human Services: How Tobacco Smoke Causes Disease: The Biology and Behavioral Basics for Smoking-attributable Disease. A Report of the Surgeon General; Centers for Disease Control and Prevention, Atlanta, GA, 2010.
14. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83: 1-1438, 2004.
15. Takahashi H, Ogata H, Nishigaki R, Broide DH and Karin M: Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell 17: 89-97, 2010.
16. Boyland E, Roe FJ and Gorrod JW: Induction of Pulmonary tumors in mice by nitrosornonitrite, a possible constituent of tobacco smoke. Nature 202: 1126, 1964.
17. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83: 1-1438, 2004.
18. Acetaldehyde. IARC Monogr Eval Carcinog Risk Chem Hum 36: 101-132; 1985.
19. Setz HK and Stickel F: Molecular mechanisms of alcohol-mediated carcinogenesis. Nat Rev Cancer 7: 599-612, 2007.
20. Haorah J, Ramirez SH, Floreni A, Gorantla S, Morsey B and Persidsky Y: Mechanism of alcohol-induced oxidative stress and neuronal injury. Free Radic Biol Med 45: 1542-1550, 2008.
21. Wang F, Yang JL, Yu KK, Xu M, Xu YZ, Chen L, Lu YM, Fang HS, Wang XY, Hu ZQ, et al: Activation of the NF-κB pathway as a mechanism of alcohol enhanced progression and metastasis of human hepatocellular carcinoma. Mol Cancer 14: 10, 2015.
22. Shinozara M, Adachi Y, Mitsuhashi J, Kuwabara M, Nagasawa A, Harada S, Furuta S, Zhang Y, Seheli K, Miyazaki H and Kamata T: Reactive oxygen generated by NADPH oxidase 1 (NOX1) contributes to cell invasion by regulating matrix metalloprotease-9 production and cell migration. J Biol Chem 285: 4481-4488, 2010.
23. Ha PK, Chang SS, Glazer CA, Califano JA and Sidransky D: Molecular techniques and genetic alterations in head and neck cancer. Oral Oncol 45: 335-339, 2009.
24. Suh Y, Amelio I, Guerrero Urbano T and Tavassoli M: Clinical update on cancer: Molecular oncology of head and neck cancer. Cell Death Dis 5: e1018, 2014.
25. Leemans CR, Snijders PIF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer 18: 269-282, 2018.
26. Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin 61: 69-90, 2011.
27. Wannakulasuriya S, GLOBOcan: The epidemiology of oral and oropharyngeal cancer. Oral Oncol 45: 309-316, 2009.
28. Kawakita A, Yamamoto S, Yamada S, Naruse T, Takahashi H, Kawasaki G and Umeda M: Microrna-21 promotes oral cancer invasion via the Wnt/β-catenin pathway by targeting DKK2. Pathol Oncol Res 20: 253-261, 2014.
29. IARC Monographs on the Evaluation of Carcinogenic Risk to Human. Vol 100C. International Agency for Research on Cancer, Lyon, 2012.
30. Bánfalvi G: Heavy metals, trace elements and their cellular effects. In: Cellular Effects of Heavy Metals. Banfalvi G (ed). Springer, Dordrecht, 2001.
31. Ercal N, Gurer-Orhan H and Aykın-Burns N: Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1: 509-539, 2001.
32. Grund SC, Hanusch K and Wolf HU: Arsenic and arsenic compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, 2005.
33. Shi H, Shi X and Liu KJ: Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255: 67-78, 2004.
34. Flora SJ: Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 51: 257-281, 2011.
35. Hartwig A and Schwertle T: Interactions by carcinogenic metal compounds with DNA repair processes: Toxicological implications. Toxicol Lett 127: 47-54, 2002.
36. Mass MJ, Tennent A, Roop BC, Cullen WR, Styblo M, Thomas DJ and Kligerman AD: Methylated trivalent arsenic species are genotoxic. Chem Res Toxicol 14: 355-361, 2001.
37. Bae DT, Wang TS, Chung CH, Wang AS, Wang AS and Jan KY: Oxidative DNA adducts and DNA-protein cross-links are the major DNA lesions induced by arsenite. Environ Health Perspect 110 (Suppl 5): S753-S756, 2002.
38. Georganos PL, Aposhian HV, Mass MI, Cebrán M, Beck BD and Waalkes MP: The enigma of arsenic carcinogenesis: Role of metabolism. Toxicol Sci 49: 5-14, 1999.
39. Wilson K, Yang H, Sea CW and Marshall WE: Select metal adsorption by activated carbon made from peanut shells. Bioresearch Technol 97: 269-270, 2006.
40. Kim HS, Kim YJ and Seo YR: An overview of carcinogenic heavy metal: Molecular toxicity mechanism and prevention. J Cancer Prev 20: 232-240, 2015.
41. Dayan AD and Paine AJ: Mechanisms of chromium toxicity, carcinogenicity and allergenicity. Review of the literature from 1985 to 2000. Hum Exp Toxicol 20: 439-451, 2001.
64. Prevention and Control Exchange (PACE) World Health
63. International Agency for Research on Cancer: A review of human
62. Swift MR and Hirschhorn K: Fanconi’s anemia. Inherited
61. Ghiso JA, Kovalski K and Ossowski L: Tumor dormancy induced
60. Beddok A, Krieger S, Castera L, Stoppa-Lyonnet D and Thariat J:
59. Stetler-Stevenson WG: Type IV collagenases in tumor invasion
58. Shapiro SD: Matrix metalloproteinase degradation of extracellular
57. Stetler-Stevenson WG: Metalloproteinases and metastasis. Cancer Metastasis Rev 10: 289-303, 1990.
56. Liotta LA and Stetler-Stevenson WG: Metalloproteinases and
55. Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem 274: 21491-21494, 1999.
54. Liotta LA and Stetler-Stevenson WG: Matrix metalloproteinases and cancer invasion. Semin Cancer Biol 7: 147-154, 1996.
53. Li Y, St John MA, Zhou X, Kim Y, Sinha U, Eisele D, Abemayor E, Elashoff D, Park NH and WT D; Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res 10: 8442-8450, 2004.
52. Ghiso JA, Kovalski K and Ossowski L: Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147: 89-104, 1999.
51. Ghiso JA: Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21: 2513-2524, 2002.
50. Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem 274: 21491-21494, 1999.
49. Liotta LA and Stetler-Stevenson WG: Metalloproteinases and cancer invasion. Semin Cancer Biol 7: 147-154, 1996.
48. Mahmood N, Mihalciou C and Rabbani SA: Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): Diagnostic, prognostic, and therapeutic applications. Front Oncol 8: 20. 2018.
47. Eastmond DA, MacGregor JT and Slesinski RS: Trivalent chromium: Assessment of the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 35: 103-110, 2005.
46. Prevention and Control Exchange (PACE) World Health Organization. Occupational and Environmental Health Team: Hazard Prevention and Control in the Work Environment: Airborne Dust. World Health Organisation, 1999. Available from: https://apps.who.int/iris/handle/10665/66147.
45. Beddok A, Krieger S, Castera L, Stoppa-Lyonnet D and Thariat J: Management of Fanconia anemia patients with head and neck carcinoma: Diagnosis and treatment adaptation. Oral Oncol 35: 103-110, 2005.
44. Prevention and Control Exchange (PACE) World Health Organization. Occupational and Environmental Health Team: Hazard Prevention and Control in the Work Environment: Airborne Dust. World Health Organisation, 1999. Available from: https://apps.who.int/iris/handle/10665/66147.
43. Katz SA and Salem H: The toxicology of chromium with respect to its chemical speciation: A review. J Appl Toxicol 13: 217-224, 1993.
42. Eastmond DA, MacGregor JT and Slesinski RS: Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit Rev Toxicol 35: 103-110, 2005.
85. Hentschel M, Appold S, Schreiber A, Abolmaali N, Abramuky A, Dörr W, Kotzerke J, Baumann M and Zöpfel K: Early FDG PET at 10 or 20 Gy under chemoradiotherapy is prognostic for loco-regional control and overall survival in patients with head and neck cancer. Eur J Nucl Med Mol Imaging 38: 1203-1211, 2011.

86. Mohammed RN, Watson HA, Vigar M, Ohme J, Thomson A, Humphreys IR and Ager A: L-selectin is essential for delivery of activated CD80 T cells to virus-infected organs for protective immunity. Cell Host Microbe 14: 760-771, 2016.

87. Resto VA, Burdick MM, Dagia NM, McCammon SD, Fennell SW and Sackstein R: L-selectin-mediated lymphocyte-cancer cell interactions under low fluid shear conditions. J Biol Chem 283: 15816-15824, 2008.

88. Longo N, Xiang M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98: 3717-3726, 2001.

89. Kohno S, Kijima T, Otani Y, Mori M, Minami T, Takahashi R, Nagatomo T, Takeda Y, Kida H, Goya S, et al.: Cell surface transprotein CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70: 8025-8035, 2010.

90. Yanez-Mó M, Mittelbrunn M, De la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98: 3717-3726, 2001.

91. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G and Bolognesi M: CD81 extracellular domain 3D structure: Insight into the tetraspanin superfamily structural motifs. EMBO J 20: 12-18, 2001.

92. Hemler ME: Tetraspanin-mediated cell-cell interactions. J Cell Biol 155: 1103-1107, 2001.

93. Clark KL, Oelke A, Johnson ME, Eilert KD, Simpson PC: Structural organization and interactions of transmembrane domains in tetraspan proteins. Trends Biochem Sci 28: 102-112, 2003.

94. Stipp CS, Kolesnikova TV and Hemler ME: Functional domains in tetraspanin proteins. Trends Biochem Sci 28: 1189-1205, 2003.

95. Fitter S, Seldin MF and Ashman LK: Characterisation of the mouse homologues of CD151 (PETA-3/SA1) and CD81: genomic structure, chromosomal localisation and identification of 2 novel splice forms. Biochim Biophys Acta 1398: 75-85, 1998.

96. Stipp CS, Kolesnikova TV and Hemler ME: EWI-2 regulates alphabeta3 integrin-dependent cell functions on laminin-5. J Cell Biol 163: 1167-1177, 2003.

97. Segonne M, Delaguillaumie A, Lagaudrière-Gesbert C and Conjeaud H: Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276: 40055-40064, 2001.

98. Maecker HT, Todd SC and Levy S: The tetraspanin superfamily: Molecular interactions and domains in transmembrane proteins. BMC Struct Biol 5: 11, 2005.

99. Kovalenko OV, Metcalf DG, degrado WF and Hemler ME: Specific tetraspanin functions. J Cell Biol 155: 1236-1243, 2001.

100. Resto VA, Burdick MM, Dagia NM, McCammon SD, Fennell SW and Sackstein R: L-selectin-mediated lymphocyte-cancer cell interactions under low fluid shear conditions. J Biol Chem 283: 15816-15824, 2008.

101. Longo N, Xiang M, Mittelbrunn M, de la Rosa G, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood 98: 3717-3726, 2001.

102. Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Ovalle S, Gutiérrez-López MD, Olmo N, Turnay J, Lizarbe MA, Muñoz ML, Sánchez-Madrid F and Sánchez-Mateos P: Tetraspanin CD9 mediates chemoresistance in small cell lung cancer. Cancer Res 70: 8025-8035, 2010.

103. Klein-Soyer C, Azorsa DO, Cazenave JP and Lanza F: CD9 participates in endothelial cell migration during in vitro wound repair, Arterioscler Thromb Vasc Biol 20: 360-369, 2000.

104. Peñas PF, García-Díez A, Sánchez-Madrid F and Yáñez-Mó M: Tetraspanins are located at motile structural and functional domains in involved in normal human keratinocyte wound healing migration. J Invest Dermatol 114: 1126-1135, 2000.

105. Lijen HR, Lüpfel C, Dorn Le Nobour and Bouché C: CD9 gene deficiency does not affect smooth muscle cell migration and neointima formation after vascular injury in mice. Thromb Haemost 83: 956-961, 2000.

106. Erovic BM, Pamminger H, Heilmann H, Wegerbauer M, Geleff S, Fischer MB, Burian M, Frommlet F and Neuchist C: Motility-related protein-1/CD9 expression in head and neck squamous cell carcinoma. Head Neck 22: 484-487, 2003.

107. Lagaudrière-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Bouquet P, Bouché C, Conjeaud H and Rubinstein E: Functional analysis of four tetraspanins, CD9, CD53, CD81, and CD82, suggests a common role in costimulatory cell-cell adhesion, and migration: Only CD9 upregulates HB-EGF activity. Cell Immunol 182: 105-112, 1997.

108. Oren R, Takahashi S, Doss C, Levy R and Levy S: TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell 10: 4007-4015, 1990.

109. Kovalenko OV, Metcalf DG, degrado WF and Hemler ME: Structural organization and interactions of transmembrane domains in tetraspan proteins. BMC Struct Biol 5: 11, 2005.

110. Fitter S, Seldin MF and Ashman LK: Characterisation of the mouse homologues of CD151 (PETA-3/SA1) and CD81: genomic structure, chromosomal localisation and identification of 2 novel splice forms. Biochim Biophys Acta 1398: 75-85, 1998.

111. Stipp CS, Kolesnikova TV and Hemler ME: EWI-2 regulates alphabeta3 integrin-dependent cell functions on laminin-5. J Cell Biol 163: 1167-1177, 2003.

112. Segonne M, Delaguillaumie A, Lagaudrière-Gesbert C and Conjeaud H: Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem 276: 40055-40064, 2001.

113. Maecker HT, Todd SC and Levy S: The tetraspanin superfamily: Molecular interactions and domains in transmembrane proteins. FEBS Lett 428: 442-448, 1998.

114. Peñas PF, García-Díez A, Sánchez-Madrid F and Yáñez-Mó M: Tetraspanins are located at motile structural and functional domains in involved in normal human keratinocyte wound healing migration. J Invest Dermatol 114: 1126-1135, 2000.

115. Lijen HR, Lüpfel C, Dorn Le Nobour and Bouché C: CD9 gene deficiency does not affect smooth muscle cell migration and neointima formation after vascular injury in mice. Thromb Haemost 83: 956-961, 2000.

116. Erovic BM, Pamminger H, Heilmann H, Wegerbauer M, Geleff S, Fischer MB, Burian M, Frommlet F and Neuchist C: Motility-related protein-1/CD9 expression in head and neck squamous cell carcinoma. Head Neck 22: 484-487, 2003.

117. Lagaudrière-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Bouquet P, Bouché C, Conjeaud H and Rubinstein E: Functional analysis of four tetraspanins, CD9, CD53, CD81, and CD82, suggests a common role in costimulatory cell-cell adhesion, and migration: Only CD9 upregulates HB-EGF activity. Cell Immunol 182: 105-112, 1997.

118. Oren R, Takahashi S, Doss C, Levy R and Levy S: TAPA-1, the target of an antiproliferative antibody, defines a new family of transmembrane proteins. Mol Cell 10: 4007-4015, 1990.

119. Kovalenko OV, Metcalf DG, degrado WF and Hemler ME: Structural organization and interactions of transmembrane domains in tetraspan proteins. BMC Struct Biol 5: 11, 2005.

120. Fitter S, Seldin MF and Ashman LK: Characterisation of the mouse homologues of CD151 (PETA-3/SA1) and CD81: genomic structure, chromosomal localisation and identification of 2 novel splice forms. Biochim Biophys Acta 1398: 75-85, 1998.

121. Stipp CS, Kolesnikova TV and Hemler ME: EWI-2 regulates alphabeta3 integrin-dependent cell functions on laminin-5. J Cell Biol 163: 1167-1177, 2003.
126. Miyake M, Koyama M, Seno M and Ikeyama S: Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med 174: 1347-1354, 1991.

127. Ikeyama S, Koyama M, Yamaoko M, Sasada R and Miyake M: Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177: 1231-1237, 1993.

128. Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M, et al: Exposure of platelet fibrinogen receptors by a monoclonal antibody to CD9 antigen. Blood 72: 224-229, 1988.

129. Kurokawa A, Takahata K, Yatomi Y, Nakahara K and Kurokawa K: Purification and partial characterization of CD9 antigen of human platelets. FEBS Lett 264: 270-274, 1990.

130. Nakamura K, Iwamoto R and Mekada E: Membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 128: 929-938, 1995.

131. Hato T, Ikeda K, Yasukawa M, Watanabe A and Kobayashi Y: The tetraspanin CD9 modulates epidermal integrin signaling. J Cell Biol 146: 477-492, 1999.

132. Sugiura T and Berditchevski F: Function of alpha -integrin signaling. Mol Med Re 12: 1381-1386, 2015.

133. Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, et al: Identification of potential biomarkers of lymph node metastasis in oral squamous cell carcinoma by cDNA microarray analysis. Int J Cancer 106: 683-689, 2003.

134. Kurokawa A, Nakata M, Kitamura N, Ohyama T, Yoshizawa M, Susuki K, et al: Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer 124: 2911-2916, 2009.

135. Nagata M, Fujita H, Ida H, Hoshina H, Inoue T, Seki Y, Ohnishi M, Ohyama T, Shingaki S, Kaji M, et al: Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177: 1231-1237, 1993.

136. Uchida S, Shimada Y, Watanabe G, Li ZG, Hong T, Miyake M, et al: Expression of platelet fibrinogen receptors by a monoclonal antibody to CD9 antigen. Blood 72: 224-229, 1988.

137. Kurokawa A, Nakata M, Kitamura N, Ohyama T, Yoshizawa M, Susuki K, et al: Tetraspanin gene expression levels as potential biomarkers for malignancy of gingival squamous cell carcinoma. Int J Cancer 124: 2911-2916, 2009.

138. Sugiura T and Berditchevski F: Function of alpha -beta1-tetraspanin protein complexes in tumor cell invasion. Evidence for the role of the complexes in production of matrix metalloproteinase 2 (MMP-2). J Cell Biol 146: 1375-1389, 1999.

139. Huang CL, Ueno M, Liu D, Masuya D, Koyama K, Nakajima T, et al: Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. Oncotarget 7: 593-609, 2016.

140. Wang GP and Han XF: CD9 modulates proliferation of human glioblastoma cells via epidermal growth factor receptor signaling. Mol Med Re 12: 1381-1386, 2015.