Synthesis of the BIVO₄ nanoparticle as an efficient photocatalyst to activate hydrogen peroxide for the degradation of methylene blue under visible light irradiation

P T D Pham¹,², P Q T Bui², L X Nong¹, V H Nguyen¹, L G Bach¹, H T Vu³, H T Nguyen⁴, T D Nguyen¹,⁵

¹ NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh Street, District 4, Ho Chi Minh City, Vietnam.
² Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City, Vietnam.
³ Faculty of Hydro-Meteorology, HCMC University of Natural Resources and Environment, Le Van Sy Street, Ward 1, Tan Binh District, Ho Chi Minh City, Vietnam.
⁴ Son La Hydro Power Company, No 56 Lo Van Gia Street, Group 3, Chieng Le Ward, Son La Province, Vietnam
⁵ E-mail: ndtrinh@ntt.edu.vn

Abstract. In this study, we investigated the synthesis of BiVO₄ nanoparticles via the hydrothermal method and their photocatalytic activity for the degradation of methylene blue (MB) under LED visible light mediated by H₂O₂. The obtained BiVO₄ catalyst was characterized by XRD, Raman, SEM, and UV-vis DRS. The effect of H₂O₂ concentrate, pH, and MB initial concentration on the removal rate of MB was carefully studied. The results showed that MB was decolorized entirely after 30 min in the BiVO₄/H₂O₂/Vis process whereas the decomposition rate of BiVO₄ with the absence of H₂O₂ is 78% after 60 min. The accelerated degradation of MB by in the BiVO₄/H₂O₂/Vis process is due to H₂O₂ acts as the external electron acceptor, which could promote the separation of photo-induced electrons and holes.

1. Introduction

Bismuth vanadate (BiVO₄), with a bandgap energy of ca. 2.4 eV, has recently emerged as a promising semiconductor photocatalysis for application in the evolution of O₂ from water, conversion of CO₂ and degradation of organic dyes because it absorbs a substantial portion of the visible spectrum [1–3]. However, the efficiency achieved with BiVO₄ to date has been far below what is expected due to its poor electron-hole separation yield [4, 5].

Previous studies have reported that the photo-induced electron-hole pairs should be separated efficiently and transported to induce a photocatalytic reaction. Therefore, to enhance the photocatalytic activity, the synthesis of BiVO₄ with facilitating the separation of electron-hole pairs have been proposed. For example, BiVO₄ with a control over the morphology and crystallographic facets can enhance the photocatalytic performance [6–8]. The design of composite structure of the n-type (BiVO₄) a p-type semiconductor (e.g., TiO₂, CdS, and SrTiO₃) could also improve the photocatalytic activity of BiVO₄ because the p-type semiconductor can act as the external electron acceptor, which can restrict
the recombination of electron and hole [9, 10]. Similarly, the formation of a p-n junction from the monoclinic scheelite phase of BiVO₄ to p-type tetragonal phase of BiVO₄ was recently investigated with significantly improving the photocatalytic activity of BiVO₄ [2, 10, 11].

The introduction of external electron acceptor is another essential and feasible strategy to enhance the performance of BiVO₄ photocatalyst. The presence of hydrogen peroxide (H₂O₂), potassium bromate (KBrO₃), persulfate (PS) and peroxymonosulfate (PMS) as electron acceptors can suppress the electron-hole pair, thus enhancing the photodegradation efficiency via generating more radical (•OH, BrO₂• and SO₄•⁻) [12, 13].

Herein, we report the photocatalytic degradation of methylene blue (MB) over BiVO₄ under visible LED light irradiation. To improve the photocatalytic degradation of MB, a more stable H₂O₂ was added into the BiVO₄/Vis process. The recyclability of catalysts was conducted to measure its long-term applicability. We also investigated the effect of H₂O₂ concentration, pH, and MB initial concentration on the removal rate of MB in detail.

2. Materials and methods

2.1. Synthesis of BiVO₄

BiVO₄ nanoparticles were prepared via hydrothermal method using Bi(NO₃)₃ (Sigma-Aldrich, 99%) and NH₄VO₃ (Sigma-Aldrich, 99%) as Bi and V source, respectively. Typically, four mmol of Bi(NO₃)₃ was added to 40 mL HNO₃ 0.1 M under vigorous stirring to get a colorless solution (solution A). Four mmol of NH₄VO₃ was dissolved in 40 mL H₂O to get a clear yellow solution (solution B). Then, a yellow precipitate was formed immediately when the solution B was added to solution A. After stirring 1 h, the pH of the mixed solution was adjusted 5.0 using 0.2 M NaOH solution. The obtained solution was transferred into a 100 mL Teflon-lined stainless steel autoclave and heated at 160 °C for 24 h. After cooling naturally, the yellow precipitate was washed with water by centrifugation at 7000 rpm for 10 min five times and dried at 110 °C for 24 h followed by calcining at 400 °C for 3 h.

2.2. Catalyst characterization

The XRD of BiVO₄ nanoparticles was carried out on a Bruker D8 Advance powder diffractometer with a Cu-Kα excitation source and a scan rate of 0.02 °/s from 10° to 70°. Raman spectra were taken on a Raman spectrometer (Horiba Jobin Yvon) using a red laser (633 nm) as the excitation source. SEM was recorded on a Jeol instrument (JSM 7401F, Japan. UV-visible diffuse reflectance spectrum (UV-vis DRS) was recorded on a Shimadzu UV-vis spectrophotometer.

2.3. Photocatalytic test

The photocatalytic activity tests were conducted in a 250 ml double layer interbed interlayer glass beaker photocatalytic reactor under visible light irradiation using six white LED lamp (Cree L6, 10W, 1040 lm) at room temperature. The beaker was filled with a mixture of MB (100 mL), BiVO₄ sample (50 mg), and H₂O₂. The pH value of the mixed solution was adjusted using 0.2 M NaOH or 0.2 M HCl solution, and then the suspension was magnetically stirred in the dark for 60 minutes to ensure adsorption-desorption equilibrium between MB and the surface of BiVO₄ before lighting on. During light irradiation, five ml of aliquots were withdrawn and immediately centrifuged to separate photocatalyst particles every 5 min. MB concentration was analyzed by a UV-visible spectrophotometer (Model Evolution 60S, Thermo Fisher Scientific) with the absorption intensity at its maximum absorbance wavelength of λ = 664 nm. To investigate effects of H₂O₂ concentration, pH, and MB concentration on photocatalytic activity of BiVO₄, the H₂O₂ concentration was increased from 0 to 10⁻¹ mol/L, and pH was increased from 3 to 9, whereas MB concentration was increased from 10 to 30 mg/L. In addition, we also investigated the effect of added anions, including NaCl (3 mM), Na₂SO₄ (3 mM), Na₂CO₃ (3 mM), and NaHCO₃ (3 mM), on photocatalytic activity of BiVO₄.
3. Results and discussion

3.1. Characterization of the as-synthesized BiVO₄

Figure 1(A) shows the XRD patterns of the as-obtained BiVO₄ products obtained by hydrothermal method at 140 ºC for 24 h. It is apparent that the XRD peaks of BiVO₄ can be well indexed to the scheelite-type monoclinic phase (JCPDS card no. 14–0688) [1, 2, 14]. In addition, characteristic peaks of bismuth oxide and vanadate oxide or impurities were not detected in the XRD patterns of BiVO₄, implying that the BiVO₄ catalyst was high purity and single-phase. The mean size crystalline BiVO₄ (τ, nm) was calculated based on the Scherrer equation [15]:

\[\tau = \frac{K \lambda}{\beta \cos \theta} \]

where, \(K \) is constant (0.9), \(\lambda \) is the X-ray wavelength (0.15405 nm), \(\beta \) is the line broadening at half the maximum intensity (FWHM, radians), and \(\theta \) is the Bragg angle. The mean size crystalline BiVO₄ obtained from XRD data is 30.2 nm.

To provide more structural information, Raman analysis was conducted. The Raman spectra of the BiVO₄ catalyst is presented in Figure 1(B). As shown in Figure 1(B), the strongest band at 830 cm⁻¹ is attributed to the symmetric V–O stretching mode, while the peaks at 641 cm⁻¹ and 709 cm⁻¹ are due to the asymmetric stretching mode of V–O bonds. The Raman peak at 324 cm⁻¹ and 367 cm⁻¹ are assigned to the asymmetric and symmetric deformation mode of \(\text{VO}_2^− \), respectively. The external modes (i.e., crystal lattice translational and rotational modes) of BiVO₄ were observed at 130 cm⁻¹ and 212 cm⁻¹. Besides, based on the Raman shift of the V–O bond (\(\nu \), cm⁻¹), we calculate the V–O bond length of BiVO₄ (R, Å) by using the empirical expression: \(\nu = 21349 \cdot e^{−19176/R} \) [16]. The V–O bond length using the empirical expression was 1.693 Å, which is consistent with the V–O bond length in monoclinic scheelite phase of BiVO₄ crystal. Raman result, along with XRD result, indicates that BiVO₄ crystal with single monoclinic scheelite phase was successfully prepared by hydrothermal method.

3.2. Morphology of BiVO₄

The morphologies of BiVO₄ were investigated by SEM, as shown in Figure 2 A and B. It is seen that the as-synthesized BiVO₄ consists of cocoon-shaped particles, which was further confirmed by TEM result (Figure 2 C). The length and width of the cocoon-like particles is about 100–250 nm and 50–100 nm, respectively. This result has a difference from the mean size calculated by the Sherrer equation due to the clustering of particles.
UV-Vis DRS of the as-synthesized BiVO₄ sample in comparison with TiO₂-P25 is plotted in Figure 3(A). As comparison to TiO₂, BiVO₄ exhibited strong absorption in visible light range, which can facilitate the enhancement of photocatalytic activity of the BiVO₄ catalysts under the visible light irradiation. The indirect band gap energy (E_g) was evaluated using the relation: $(\alpha h \nu)^2 = A(h\nu - E_g)$, wherein A was the absorption coefficient near the absorption edge, h was the Planck constant (eV), and α was a constant [2,17]. The plot of function $(\alpha h \nu)^2$ plots versus photon energy ($h\nu$) of BiVO₄ sample is shown in Figure 3(B). The estimated band gap value is 2.39 eV, which is in a good agreement with previous studies [2,11,17].

3.2. Photocatalytic performance

MB was degraded using BiVO₄ photocatalyst with the presence of H₂O₂ under white LED light. Typical results are present in Figure 4(A). The degradation of MB with irradiation only and the H₂O₂/Light system was not improved, indicating that H₂O₂ could not be activated by visible light irradiation. The photodegradation of MB with single BiVO₄ ([H₂O₂] = 0 M) is 78% after 60 min of irradiation, whereas the degradation rate with the BiVO₄/H₂O₂/light system ([H₂O₂] = 10⁻³ M) increases to 96% after 15 min of irradiation. BiVO₄ exhibited the poor photocatalytic activity is due to its poor charge transport characteristics and weak surface adsorption, therefore, facilitate the recombination of excessive electrons and hole [3,12,14,18]. A comparison in the photocatalytic properties with the benchmark material used in this study (TiO₂-P25) will be performed. With the presence of H₂O₂ as the acceptor electron, this recombination was restricted, resulting the photocatalytic performance was improved. The possible photocatalytic mechanism for BiVO₄ with the presence of H₂O₂ under visible light irradiation was represented as follows [12]:

$$BiVO₄ + hν \rightarrow h^+_B + e^-_{CB}$$

(1)
The HO$^\bullet$ radical was known as a strong oxidizer, and therefore the formation rate of HO$^\bullet$ radicals has a good correlation with the photocatalytic activity [1,11,19]. The time evolution of the spectral changes during the photodegradation of MB over BiVO$_4$ with the absence and presence of H$_2$O$_2$ under white LED light was shown in Figure 4(E) and (F), respectively. With the prolongation of the irradiation time, the intensities of the MB absorption peaks at 664 nm gradually decrease, and the color of the solution faded, which was due to the destruction of the MB with the chromophoric structure [20].

As also displayed in Figure 4(A), the increase added H$_2$O$_2$ concentration is favorable to enhancement degradation rate. However, when H$_2$O$_2$ was adjusted to 10$^{-6}$ M, the MB removal rate was not improved because of the insufficiency of the generated HO$^\bullet$. When increasing the added H$_2$O$_2$ concentration to 10$^{-1}$ M, the degradation rate also deceased.

Figure 4(B) displayed the effect of initial pH on the photodegradation degree of MB in the BiVO$_4$/H$_2$O$_2$/Light system with H$_2$O$_2$ concentration fixing at 10$^{-3}$ M. The result showed that no significant difference is observed in the MB photodegradation degree within the tested reaction period of 60 min in the lower initial pH levels (pH = 3–5). However, when the solution pH was increased to 7 and 9, the lower conversions were observed. The lower performance of the BiVO$_4$/H$_2$O$_2$/Light system is due to H$_2$O$_2$ became highly unstable and was decomposed into water and oxygen under an alkaline pH [12]. While H$_2$O$_2$ act as an oxidant and most importantly the source of HO$^\bullet$ in the BiVO$_4$/H$_2$O$_2$/Light process.

To investigate the effect of initial MB concentration on the photocatalytic decomposition of MB, the photocatalytic tests were performed in varying concentration from 10 to 30 mg/L. The results (Figure 4C) indicated that the photodegradation degree was reduced with the increased initial MB concentration, while keeping a fixed amount of BiVO$_4$, H$_2$O$_2$ concentration and pH value of solution. This decrease is due to the decrease the OH radical formed on the interface of the catalyst/water during irradiation. With an increase of initial MB concentration corresponding to an increase of adsorbed organic substances on the surface of BiVO$_4$, the number of photons which are available to reach the catalyst surface was inhibited, and therefore less •OH are formed.

In Figure 4(D) we have presented the influence of anions such as NaCl, Na$_2$SO$_4$, NaHCO$_3$, and Na$_2$CO$_3$ on the photocatalytic activity of BiVO$_4$. With the presence of NaCl and Na$_2$SO$_4$, no significant difference is observed in the MB photodegradation degree. By contrast, NaHCO$_3$ and Na$_2$CO$_3$ could inhibit the photodegradation significantly. It may be due to the reaction of these anions with HO$^\bullet$ (see reaction (6) and (7)), resulting in prolonged MB removal [12]. NaCl and Na$_2$SO$_4$ can react with h$^\bullet_{vb}$ (reaction 8 and 9) [21].

\[
\begin{align*}
H_2O_2 + BiVO_4(e^-) & \rightarrow HO^\bullet + OH^- \tag{2} \\
H_2O_2 + HO^\bullet & \rightarrow HO_2^\bullet + H_2O \tag{3} \\
HO_2^\bullet + HO^\bullet & \rightarrow H_2O + O_2 \tag{4} \\
H_2O_2 + 2h^\bullet_{vb} & \rightarrow O_2 + 2H^\bullet \tag{5}
\end{align*}
\]

\[
\begin{align*}
CO_3^{2-} + OH^\bullet & \rightarrow CO_2^- + OH^- \tag{6} \\
HCO_3^- + OH^\bullet & \rightarrow CO_2^- + H_2O \tag{7} \\
Cl^- + h^\bullet_{vb} & \rightarrow Cl^\bullet \tag{8} \\
SO_4^{2-} + h^\bullet_{vb} & \rightarrow SO_4^{2-} \tag{9}
\end{align*}
\]
3.3. The repeatability of photocatalyst activity

The recyclability of catalysts is essential properties for practical applications. The photocatalytic test of BiVO₄ was repeated five-time. It is seen that the photocatalytic performance did not significantly reduce after five successive runs (Figure 5). The MB photodecomposition level kept on higher than 90% in each run. This result indicated that BiVO₄ was not corroded and rather stable in the during the photocatalytic test.

![Figure 5](image_url)

Figure 5. Cycling runs in the photocatalytic degradation of MB in the BiVO₄/H₂O₂/Vis process.
4. Conclusions
We successfully synthesized BiVO₄ photocatalytic with a bandgap energy of ca. 2.39 eV by hydrothermal method and applied for photocatalytic degradation of MB under the visible LED light. MB was decolorized entirely after 30 min in the BiVO₄/H₂O₂/Vis process whereas the decomposition rate of BiVO₄ with the absence of H₂O₂ is 78% after 60 min. The accelerated degradation of MB by the BiVO₄/H₂O₂/Vis process is due to H₂O₂ acts as the external electron acceptor, which could restrict the recombination of photoinduced electrons and holes. Moreover, the as-prepared BiVO₄ sample exhibited reasonable good reusability and stability after five-time reaction recycles.

Acknowledgments.
This research is funded by the National Foundation for Science and Technology Development (NAFOSTED), Vietnam, under grant No. 104.05-2017.315.

References
[1] Ge M, Liu L, Chen W, Zhou Z 2012 Cryst. Eng. Comm. 14 1038–1044
[2] Nguyen D T, Hong S S 2017 Top. Catal. 60 782–788
[3] Zhang Y, Guo Y, Duan H, Li H, Sun C & Liu H 2014 Phys. Chem. Chem. Phys. 16 24519–24526
[4] Pingmuang K, Chen J, Kangwansupamonkon W, Wallace G G, Phanichphant S & Nattestad A 2017 Sci. Rep. 7 8929
[5] Zou L, Wang H, Wang X 2017 ACS Sustain. Chem. Eng. 5 303–309
[6] Tan H L, Wen X, Amal R, Ng Y H 2016 J. Phys. Chem. Lett. 7 1400–1405
[7] Chen L, Wang J, Meng D, Xing Y, Wang C, Li F, Wang Y & Wu X 2015 Mater. Lett. 147 1–3
[8] Tan G, Zhang L, Ren H, Huang J, Yang W, Xia A 2014 Ceram. Int. 40 9541–9547
[9] Petala A, Bontemps R, Spartatouille A, Frontistis Z, Antonopoulou M, Konstantinou I, Kondarides D I & Mantzavinos D 2017 Catal. Today. 280 122–131
[10] Usai S, Obregón S, Becerro A I & Colón G 2013 J. Phys. Chem. C. 117 24479–24484
[11] Yan M, Yan Y, Wu Y, Shi W & Hua Y 2015 RSC Adv. 5 90255–90264
[12] Lai H F, Chen C C, Chang Y K, Lu C S & Wu R J 2014 Sep. Purif. Technol. 122 78–86
[13] Xu T, Zhu R, Zhu G, Zhu J, Liang X, Zhu Y & He H 2017 Appl. Catal. B Environ. 212 50–58
[14] Ma Y, Jiang H, Zhang X, Xing J & Guan Y 2014 Ceram. Int. 40 16485–16493
[15] Nguyen D T & Hong S S 2017 J. Nanosci. Nanotechnol. 17 2690–2694
[16] Frost R L, Henry D A, Weter M L & Martens W 2006 J. Raman Spectrosc. 37 722–732
[17] Cooper J K, Gul S, Toma F M, Chen L, Liu Y S, Guo J, Ager J W, Yano J & Sharp I D 2015 J. Phys. Chem. C. 119 2969–2974
[18] Xi G & Ye J 2010 Chem. Commun. 46 1893
[19] Yu J, Wang W, Cheng B & Su B L 2009 J. Phys. Chem. C. 113 6743–6750
[20] Cesano F, Rahman M M, Bardelli F, Damin A & Scarano D 2016 ChemistrySelect. 1 2536–2541
[21] Konstantinou I K & Albanis TA 2004 Appl. Catal. B Environmental. 49 1–14