The Breast Cancer-associated Stromelysin-3 Gene is Expressed During Mouse Mammary Gland Apoptosis

Olivier Lefebvre, Catherine Wolf, Jean-Marc Limacher, Pascal Hutin, Corinne Wendling, Mariane LeMeur, Paul Basset, and Marie-Christine Rio
Laboratoire de Génétique Moléculaire des Eucaryotes du Centre National de la Recherche Scientifique, Unité 184 de Biologie Moléculaire et de Génie Génétique de l'Institut National de la Santé et de la Recherche Médicale, Institut de Chimie Biologique, Faculté de Médecine, 67085 Strasbourg Cedex, France

Abstract. We have cloned from a mouse placenta cDNA library a mouse homologue of the human stromelysin-3 (ST3) cDNA, which codes for a putative matrix metalloproteinase expressed in breast carcinomas. The ST3 protein is well conserved between humans and mice, and the pattern of ST3 gene expression is similar in both species, and shows expression in the placenta, in the uterus, and during limb bud morphogenesis. We show that the ST3 gene can also be expressed in the normal mouse mammary gland. ST3 gene expression was not detected during mammary growth, neither in virgin nor in pregnant mice, but was specifically observed during postlactating involution of the gland, an apoptotic process associated with intense extracellular matrix remodeling. ST3 transcripts were found in fibroblasts immediately surrounding degenerative ducts, suggesting that ST3 gene expression may be associated with the basement membrane dissolution, which occurs during mammary gland involution. Since the ST3 gene is also specifically expressed in fibroblastic cells surrounding invasive neoplastic cells of breast carcinomas, we suggest that ST3 is implicated in extracellular matrix remodeling processes common to mammary apoptosis and breast cancer progression.

Materials and Methods

Tissue Collection

Mammary glands at different stages of development were surgically excised from female mice and immediately frozen in liquid nitrogen until RNA ex-
tration. Some of the samples were fixed in formol before inclusion in paraffin for histological examination and in situ hybridization analysis. Mammary glands were collected from virgin mice, from pregnant and lactating mice, and during the involution of the lobuloalveolar structures, which occurs after weaning (21 d postpartum).

RNA Isolation and Northern Blot Analysis

Total RNA was isolated using the method of Chomczynski and Sacchi (1987). RNAs were fractionated by electrophoresis in 1% agarose gels in the presence of formaldehyde and transferred to nylon membranes (hybond N; Amersham Corp., Arlington Heights, IL). Filters were acidified (10 min, 5% CH₃COOH) and stained (10 min, 0.004% methylene blue, 0.5 M CH₃COONa, pH 5.0) before hybridization, to check for integrity and amounts of RNA transferred. Blots were hybridized using cDNA probes labelled by random priming, for 18 h, at 37°C in the presence of 40% formamide (human S13 cDNA probe; Basset et al., 1990), or at 42°C in the presence of 50% formamide (mouse ST3 cDNA probe, nucleotides 179-1505). In both cases, washings were performed in 2x SSC, 0.1% SDS at 22°C then 0.1x SSC, 0.1% SDS at 55°C, followed by autoradiography.

Construction and Screening of Placenta cDNA Library

The first cDNA strand was synthesized with Avian Myeloblastosis Virus

The Journal of Cell Biology, Volume 119, 1992
Results

detected by Northern blot analysis of mouse placenta. Indeed, a 2.4-kb transcript was level in human placenta (Basset et al., 1990), would be also (see Materials and Methods). A mouse placenta cDNA was cloned into the EcoRI site of the λ gt10 vector (37°C in the presence of 50% formamide. Washings were performed in 2× SSC, 0.1% SDS at 22°C, followed by 0.1× SSC, 0.1% SDS at 55°C. After autoradiography, three positive plaques were detected. Three positive clones were obtained, and the longest insert (2.3 kb) was subcloned into a M13 vector and sequenced. The result of the sequence analysis showed that this insert corresponded to a potential full-length mouse ST3 cDNA of 2,260 nucleotides (Fig. 1). The open reading frame is predicted to encode a 492-residue protein exhibiting 80% sequence homology with the 488-amino acid residues of human ST3 (Fig. 2).

Subcloning and Sequencing

The three purified recombinant plagues detected with the human ST3 cDNA probe were amplified, and the phage DNA, prepared according to standard procedures, was digested with EcoRI enzyme. The longest cDNA insert (2.3 kb) was subcloned in M13 sequencing vector and DNA sequence was determined by the dideoxy chain termination method, using Sequenase and a deaza-3\'-GTP reagent kit (U.S. Biochemical Corp., Columbus, OH). The sequence was analyzed with the PC/GENE software package.

In Situ Hybridization

Deparaffinized and acid-treated sections (6 μm thick) were treated with proteinase K and hybridized overnight with 32P-labeled antisense transcripts from a mouse ST3 cDNA insert (nucleotides 1-1744), subcloned in pBluescript H (Stratagene, La Jolla, CA). Hybridization was followed by RNase treatment (20 μg/ml 30 min, 37°C) and two stringent washings (2× SSC, 50% formamide, 60°C, 2 h), before autoradiography using NTB2 emulsion (Kodak). Autoradiography was for 20 d, and after developing, the slides were counterstained with hematoxylin.

Results

Cloning and Sequencing of mouse ST3 cDNA

We assumed that the ST3 gene, which is expressed at a high level in human placenta (Basset et al., 1990), would be also expressed in mouse placenta. Indeed, a 2.4-kb transcript was detected by Northern blot analysis of mouse placenta poly(A) + RNA using a 32P-labeled human ST3 cDNA probe (see Materials and Methods). A mouse placenta cDNA library was constructed in the λ gt10 vector and 4 × 10^4 clones were screened with the human ST3 cDNA probe. Three positive clones were obtained, and the longest insert (2.3 kb) was subcloned into a M13 vector and sequenced. The result of the sequence analysis showed that this insert corresponded to a potential full-length mouse ST3 cDNA of 2,260 nucleotides (Fig. 1). The open reading frame is predicted to encode a 492-residue protein exhibiting 80% sequence homology with the 488-amino acid residues of human ST3 (Fig. 2).

The putative mouse protein has an hydrophobic N-terminal sequence (residues 1-35 or 1-37), which is a candidate leader sequence, and contains a Leu-Arg-Cys-Gly-Pro-Aro (LRCGVPD, single-letter amino acid code; residues 82-88) similar to the PRCGVPD sequence characteristic of MMPs prodomain (Matrisian, 1990), and to the putative zinc-binding region (Vallee and Auld, 1990).
However, the ST3 gene, which is not expressed in normal human skin (Basset et al., 1990), was expressed at low levels in mouse skin (data not shown).

ST3 Gene Expression in the Normal Mammary Gland

The branching growth of mammary ducts involves a complex interplay between epithelium and mesenchyme that is controlled by mammotrophic hormones. At ~4 wk of age, after the onset of ovarian secretion, small dense end buds appear at the ductal tips. These structures, consisting of layers of actively dividing epithelial and myoepithelial cells, serve as growth points for the elongation and branching of new ducts (Coleman et al., 1988; Vonderhaar 1988; Snedeker et al., 1991). At 8–10 wk postpartum, the entire mammary fat pad is filled with a highly branched network of epithelial ducts enveloped in a fibrous sheet of extracellular matrix (Silberstein et al., 1990). When the sexually mature female becomes pregnant, the mammary glands begin a cycle of lobulo-alveolar development that ultimately results in full functional differentiation and the production of milk (Topper and Freeman, 1980).

No ST3 gene expression could be detected by Northern blot analysis during the growth of mouse mammary gland. The gene was not expressed in virgin mice, nor in pregnant mice or during lactation (Fig. 3, lanes 1–7). However, ST3 gene expression was detected 3 d after weaning (Fig. 3, lane 11), in the involuting mammary gland. The expression was maximal 6 d after weaning (Fig. 3, lane 14), persisted at lower levels for an additional 2 wk (Fig. 3, lanes 15–18), and totally disappeared at the onset of the second gestation (Fig. 3, lanes 19 and 20).

The results of in situ hybridization experiments were consistent with those obtained by Northern blot analysis. No ST3 RNA could be detected in mouse mammary gland sections during the first 2 d after weaning (Fig. 4, a–c), during which milk is still produced and distends the alveolar structures (Martinez-Hernandez et al., 1976). However, ST3 gene expression was observed between days 4 and 20 after weaning (Fig. 4, d–l), when ECM remodeling is prominent and apoptosis of epithelial cells is occurring in the involuting mammary gland (Wicha et al., 1980). At day 4 (Fig. 4, d–f) and at day 7 (Fig. 4, g–i), ST3 RNA was detected in fibroblasts immediately surrounding disorganized clusters of epithelial cells, but not in fibroblasts at a distance from epithelial cords, nor in the epithelial cells themselves. In the following days, ST3 RNA was still observed in fibroblasts surrounding neoformed mammary structures (Fig. 4, j–l), but the number of ST3-expressing areas decreased markedly between days 7 and 20 after weaning (data not shown).

Discussion

We have isolated and characterized the cDNA corresponding to the mouse equivalent of the human MMP ST3 gene. The sequences of the human and mouse putative proteins are well conserved and exhibit the structural characteristics of other members of the MMP family. The 10 amino acids that are specific to human ST3, and are located precisely at the putative proprotein cleavage site (Basset et al., 1990), are also present in mouse ST3 and well conserved, suggesting that this short unique sequence may be important in proST3 activation. The expression pattern of the ST3 gene is similar in mice and in humans, with high levels of expression in the uterus, in the placenta, and in the limb bud during embryogenesis.

ECM is an important regulator of mammary cell function in the mouse, and ECM remodeling accompanies the anatomical changes in the mammary gland during gestation, lactation, and involution (Wicha et al., 1980; Walker et al., 1989; Silberstein et al., 1990; Streuli et al., 1991, and references therein). Several proteases have been implicated in these processes, including the urokinase plasminogen activator and a type IV collagenase (Ossowski et al., 1979; Talhouk et al., 1991). Urokinase activity is transiently increased after the initiation of mammary involution (Ossowski et al., 1979), while active type IV collagenase is absent during early involution, but appears 3–4 d after weaning, when massive restructuring of the ECM occurs (Talhouk et al., 1991). In this respect, there is a parallel between type IV collagenase expression and ST3 gene expression, which is also initiated 3–4 d after weaning. However, the active form of type IV collagenase is also abundant during pregnancy (Talhouk et al., 1991), while ST3 gene expression is specific to mammary gland involution.

It may be paradoxical that the ST3 gene, which is not expressed during mammary growth, is expressed both in breast carcinoma and during mammary involution, an apoptotic process characterized by epithelial cell death and commonly regarded as being the opposite of cell proliferation (Kerr et al., 1972; Gullino, 1980). However, it has been proposed that apoptosis and proliferation may use common molecular pathways (Evan et al., 1992), and, furthermore, another relationship between mammary involution and breast carcinoma is that both processes are characterized by basement membrane lysis. The basement membrane appears to play a central role in the function of normal mammary epithelial cells, and its dissolution during mammary involution correlates with functional regression of the mammary gland (Martinez-Hernandez et al., 1976; Wicha et al., 1980; Talhouk et al., 1991; Streuli et al., 1991). Thus, ST3 gene expression...
Figure 4. In situ hybridization of ST3 RNA on mouse mammary gland sections during postweaning involution. Analyses were performed at day 2 (a–c), day 4 (d–f), day 7 (g–i), and day 20 (j–l) after weaning. a, d, g, and j (×100), and b, e, h, and k (×200) are bright field micrographs; c, f, i, and l (×200) are dark field micrographs of the same sections where ST3 transcripts appear as white silver precipitate. In situ hybridization was carried out with a 35S-labeled mouse antisense RNA ST3 probe. (a–c) Numerous secretory distended alveoli. No ST3 transcript could be detected above background. (d–i) Disorganized mammary tissue with few collapsed epithelial structures remaining present (curved arrows) and high proportion of fatty stroma. ST3 transcripts were detected in fibroblasts immediately surrounding degenerating ducts (arrows), but not in fibroblasts at a distance from epithelial cells, nor in epithelial cells themselves. (j–l) Neoformed mammary structure. ST3 transcripts were still detected in few fibroblasts, exclusively in the vicinity of epithelial cells. No significant labeling above background was found when using a sense ST3 RNA probe (data not shown). (a, d, g, and j) Bar, 40 μm; (b, e, h, and k) bar, 20 μm.
may be associated with basement membrane remodeling that occurs both during breast carcinoma progression and during mammary gland involution. Consistent with this hypothesis, in both processes, the ST3 gene is exclusively expressed in fibroblastic cells immediately surrounding epithelial cells.

It remains to be seen whether ST3 participates, possibly with other proteinases such as urokinase and type IV collagenase, in basement membrane remodeling or whether ST3 gene expression is secondary to basement membrane remodeling. In the latter case, ST3 gene expression may result from the transient contact between epithelial and stromal compartments, or from the action of components released during the degradation of the basement membrane itself, including growth factors known to be tightly associated with the basement membrane (Ruoslahti and Yamaguchi, 1991; Flaumenhaft and Rifldn, 1991). In any event, the observation that the ST3 gene is expressed both during breast carcinoma progression and during mammary gland involution further supports the concept that ST3 gene expression plays a role in normal processes and is subverted in breast carcinoma.

We are indebted to P. Chambon for his support, and we thank P. Simpson for critical reading of the manuscript.

This work was supported by funds from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Ministère de la Recherche et de l'Enseignement Supérieur, the Fondation pour la Recherche Médicale Française, the Ligue Nationale contre le Cancer, the Association pour la Recherche sur le Cancer, the Centre Hospitalier Universitaire Régional, and by a grant to P. Chambon from the Fondation Jeantet.

Received for publication 19 May 1992 and in revised form 11 August 1992.

References
Basset, P., J. P. Bellocq, C. Wolf, I. Stoll, P. Hutin, J. M. Limacher, O. L. Podhajcer, M. P. Chenaud, M. C. Rio, and P. Chambon. 1990. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature (Lond.) 348:699-704.
Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
Coelman, S., G. B. Silberstein, and C. W. Daniel. 1988. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev. Biol. 127:304–315.
Evans, G., A. Wyllie, C. Gilbert, T. Littlewood, H. Land, M. Brooks, C. Waters, L. Penn, and D. Hancock. 1992. Induction of Apoptosis in Fibroblasts by c-myc Protein. Cell. 69:119–128.
Flaumenhaft, R., and D. B. Rifkin. 1991. Extracellular matrix regulation of growth factor and protease activity. Curr. Opin. Cell Biol. 3:817–823.
Gubler, U., and B. J. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene (Amst.). 25:263–269.
Guillino, P. M. 1980. The regression process in hormone-dependent mammary carcinomas. In Hormones and Cancer. S. Jacobelli, editor. Raven Press, Ltd., New York. 271–275.
Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26:239–244.
Levy, A., J. Zuckman, O. Delattre, M. G. Mattei, M. C. Rio, and P. Basset. 1992. Assignment of the human stromelysin-3 (STMY3) gene to the q11.2 region of chromosome 22. Genomics. In press.
Liotta, L., and W. G. Stetler-Stevenson. 1990. Metalloproteinases and cancer invasion. Cancer Biol. 1:99–106.
Martinez-Hernandez, A., L. M. Fink, and G. Barry Pierce. 1976. Removal of basement membrane in the involuting breast. Lab. Invest. 34:455–462.
Matrisian, L. M. 1990. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genes. 6:121–125.
Murphy, G. J., G. Murphy, and J. Reynolds. 1991. The origin of matrix metalloproteinases and their familial relationship. FEBS (Fed. Eur. Biochem. Soc.) Lett. 289:4–7.
Ossowski, L., D. Biegel, and E. Reich. 1979. Mammary plasminogen activator. Correlation with involution, hormonal modulation and comparison between normal and neoplastic tissue. Cell. 16:929–940.
Robinson, S. D., G. Silberstein, A. B. Roberts, K. C. Flanders, and C. W. Daniel. 1991. Regulated expression and growth inhibitory effects of transforming growth factor. Development (Camb.). 113:867–878.
Ruoslahti, E., and Y. Yamaguchi. 1991. Proteoglycans as modulators of growth factor activities. Cell. 289:867–869.
Sartoris, S., E. B. Cohen, and J. S. Lee. 1987. A rapid and improved method for generating cDNA libraries in plasmid and phage lambda vectors. Gene (Amst.). 56:301–307.
Silberstein, G. B., P. Strickland, S. Coleman, and C. W. Daniel. 1990. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta-growth inhibited mouse mammary gland. J. Cell Biol. 110:2209–2219.
Snedeker, S. M., C. F. Brown, and R. P. DiAugustine. 1991. Expression and functional properties of transforming growth factor alpha and epidermal growth factor during mouse mammary gland ductal morphogenesis. Proc. Natl. Acad. Sci. USA. 88:276–280.
Streuli, C. H., N. Bailey, and M. J. Bissell. 1991. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J. Cell Biol. 115:1383–1395.
Talhouk, R. S., J. R. Chin, E. N. Unemori, Z. Werb, and M. J. Bissell. 1991. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development (Camb.). 112:439–449.
Topper, Y. J., and C. S. Freeman. 1980. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol. Rev. 60:1049–1106.
Vallée, B. L., and D. S. Auld. 1990. Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry. 29:5647–5659.
Vonderhaar, B. 1988. Regulation of development of the normal mammary gland by hormones and growth factors. In Breast Cancer: Cellular and Molecular Biology. M. E. Lippman and R. B. Dickson, editors. Kluwer Academic Publishers, London. 251–265.
Von Heije, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14:4683–4690.
Walker, N. I., R. E. Bennett, and J. F. Kerr. 1989. Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.
Wicha, M. M., L. A. Liotta, B. C. Vonderhaar, and W. R. Kidwell. 1980. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev. Biol. 80:243–266.