Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3′ untranslated region (UTR) of the RNA in mediating transport. Because the 3′ UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3′ UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified. Thirty-five proteins that were predicted to function in either RNA- or DNA-binding were selected from this pool. Seven were monitored for their expression profiles and further evaluated for their capacity to bind to the 3′ UTR of StBEL5 using β-galactosidase assays in the Y3H system and RNA gel-shift assays. Among the final selections were two RBPs, a zinc finger protein, and one protein, StLSH10, from a family involved in light signaling. In this study, the Y3H system is presented as a valuable tool to screen and verify interactions between target RNAs and putative RBPs. These results can shed light on the dynamics and composition of plant RNA-protein complexes that function to regulate RNA metabolism.

Keywords: mobile RNA, potato, Solanum tuberosum, yeast three-hybrid, StBEL5, BEL1 family

INTRODUCTION

For plant development, phloem plays important roles in not only transporting nutrients, but also as a conduit for moving signal RNAs and proteins. Full-length, phloem-mobile mRNAs function to integrate environmental cues for plant development via this long-distance signaling pathway (Haywood et al., 2005; Banerjee et al., 2006). There are three types of mobile RNAs in plants: (1) pathogenic viral and viroid RNAs, (2) small RNAs including siRNAs and microRNAs, and (3) full-length cellular RNA transcripts (Kehr and Buhzt, 2008). Although many full-length transcripts have been identified in the phloem, only a few of these transcripts have been confirmed to be mobile through the phloem translocation stream. The best examples of mobile RNAs are StBEL5 (Banerjee et al., 2006), CmGAI (Haywood et al., 2005), and the Arabidopsis FLOWERING LOCUS T (Li et al., 2011; Lu et al., 2012). StBEL5 is a transcription factor that works in tandem with Knotted1-types to regulate plant growth (Chen et al., 2003, 2004). RNA detection methods and heterografting experiments demonstrated that StBEL5 transcripts are present in phloem cells and move across a graft union to localize in stolon tips, the site of tuber induction (Banerjee et al., 2006). This movement of RNA originates in leaf veins and petioles and is induced by a short-day photoperiod, regulated by the untranslated regions, and correlated with enhanced tuber production (Banerjee et al., 2006, 2009). Long-distance movement of the RNA of GA INSENSITIVE (GAI) has also been clearly established in both cucumber and pumpkin (Haywood et al., 2005; Ham et al., 2009). Recent results suggest that in addition to FT protein, FT RNA may also be moving to shoot apices to contribute to systemic floral signaling (Li et al., 2011; Lu et al., 2012).

In general, RNA molecules are associated with RNA-binding proteins (RBPs) in the cell, and a number of RNA-protein interactions have been established. RBPs function in splicing, nuclear export, RNA transport and localization, translation, and stability (Dreyfuss et al., 2002; Fedoroff, 2002). RBPs are involved in coordinating gene expression and also influence the localization of protein synthesis (Lunde et al., 2007). For example, a polypyrimidine-tract binding protein (PTB), designated as CmRBP50, was reported as the core protein of a phloem-mobile ribonucleoprotein complex consisting of six RNAs, including CmGAI RNA, and 16 proteins in pumpkin phloem sap (Ham et al., 2009). Commonly, it is the UTRs that function via protein interactions in facilitating the cellular localization of a transcript (Jansen, 2001), in mediating its stability (Lee and Jeong, 2006), or in regulating the efficiency of translation (Barreau et al., 2006). Binding motifs have been identified in the RNAs of animals that function in recognizing RBPs (for review, see Jansen, 2001). These motifs are most predominant in the 3′ UTR (Saunders and Cohen, 1999; Corral-Debrinski et al., 2000; Thio et al., 2000). There are numerous examples demonstrating the importance of the 3′ UTRs in recognizing RBPs that regulate metabolism and movement (Ferrandon et al., 1994; Padmanabhan and Richter, 2006; Irion and St. Johnston, 2007). As a prime example in plants, the 3′ UTR of StBEL5 plays a significant role in mediating its...
long-distance transport, controlling translation, and regulating stability (Banerjee et al., 2006, 2009), suggesting the presence of cis-elements in this UTR that are recognized by RNA-binding partners.

Although there are several useful biochemical approaches to analyze RNA-protein interactions, the yeast three-hybrid (Y3H) system (Sengupta et al., 1996; Hook et al., 2005) represents a simple but powerful tool for searching a large collection of cDNAs to identify proteins that bind a specific RNA of interest (Cassiday and Maher III, 2003; Gonzalez et al., 2003; Maniataki et al., 2003; Moore et al., 2003; Campalans et al., 2004; Hwang et al., 2005). Not only does it allow the identification of RNA-protein binding partners but also the dissection of higher-order RNA-protein complexes (Bernstein et al., 2002).

SCREENING OF RNA-BINDING PROTEINS

The YBZ-1 yeast strain containing the StBEL5 full-length 3′ UTR hybrid RNA was transformed with 60 µg of the potato cDNA library. The entire transformation mixture (about 10 mL) was spread onto plates containing SD/-his/-leu/-ura and 1.0 mM 3-AT, a competitive inhibitor of the β-galactosidase assay, in order to measure the induction of the β-galactosidase (β-gal) gene (Table A5 in Appendix). The initial screening resulted in more than 100 cDNA clones isolated from the screening based on nutrient selection and HIS3 and β-galactosidase activation. Seven protein candidates were selected based on their putative RNA-binding properties for further analyses and RNA gel-shift assays. These results clearly demonstrate the utility of the Y3H system in identifying candidate RBPs.

MATERIALS AND METHODS

CONSTRUCTS FOR THE Y3H SYSTEM

The DNA fragments encoding full-length and truncated forms (D1, T2, and UA baits) of the 3′ UTR of StBEL5 were amplified with gene-specific primer sets (Table A5 in Appendix) and cloned into pIIIA/MS2-1. The plasmids containing the hybrid RNA fused to the full-length 3′ UTR and the truncated forms were transformed into the YBZ-1 yeast strain. For screening, an amplified leaf cDNA library for screening binding partners that may be involved in the metabolism of the full-length, mobile RNA, StBEL5. Initially, more than 100 cDNA clones were isolated from the screening based on nutrient selection and HIS3 and β-galactosidase activation. Seven protein candidates were selected based on their putative RNA-binding properties for further analyses and RNA gel-shift assays. These results clearly demonstrate the utility of the Y3H system in identifying candidate RBPs.

SCREENING OF RNA-BINDING PROTEINS

The YBZ-1 yeast strain containing the StBEL5 full-length 3′ UTR hybrid RNA was transformed with 60 µg of the potato cDNA library. The entire transformation mixture (about 10 mL) was spread onto plates containing SD/-his/-leu/-ura and 1.0 mM 3-amino triazole (3-AT), a competitive inhibitor of the HIS3 gene product. To calculate the transformation efficiency, the transformation mixture was serially diluted (10⁻¹, 10⁻², 10⁻³) and grown on small SD/-leu/-ura plates. After 1st and 2nd rounds of screening (0, 1, 5, 10, or 50 mM) of 3-AT-containing plates, positive colonies were selected in order to measure the induction of the lacZ reporter gene using a Yeast β-galactosidase Assay Kit (Pierce Biotechnology), according to the manufacturer’s protocol. From the assays, 116 colonies were selected. The 3′ UTR of StBEL5 with StPTB6-pAD (Mahajan et al., 2012) and an empty pAD were used as positive and negative controls, respectively.

PLASMID RESCUE, IDENTIFICATION AND CATEGORIZATION OF THE SCREENED CLONES

In order to identify the positive clones from the screening, yeast plasmid rescue was performed with E.Z.N.A.® Yeast Plasmid Kit (OMEGA bio-tek) with slight modifications. Positive yeast colonies were picked from the plate and inoculated in 3.0 mL of SD/-leu. Overnight grown cells were pelleted and incubated at 30°C for at least 30 min after resuspension in 480 µl Buffer SE/β-mercaptoethanol and 40 µl lyticase solutions. After incubation, yeast plasmid DNA was isolated by following the kit protocols. The rescued yeast plasmids were transformed into E. coli HB101 competent cells, and the plasmids were isolated and sequenced using pGAD-specific primers (Table A5 in Appendix) at the DNA Facility, Iowa State University. For putative identities of the clones, the sequences of the cDNAs were analyzed at the Dana–Farber Cancer Institute (DFCI) Gene Index® potato database. Translated protein sequences were obtained from Translate2 and ORF Finder3 and analyzed using BLAST on the TAIR database4. Functional categorization of selected proteins was performed using the MIPS Arabidopsis thaliana database5. The domains of the B5RBPs (Figure 3) were analyzed using SMART5 and NCBI’s Conserved Domain Search. For Figure 4A, amino acid sequences of Arabidopsis and potato LSH proteins were organized into a phylogenetic tree with the MEGA 4.0.2 package and the neighbor-joining program. The numbers listed at the branching points are boot-strapping values that indicate the level of significance (percentage) for the separation of two branches.

RNA GEL-SHIFT ASSAYS

The PCR-amplified fragments with gene-specific primer sets (Table A5 in Appendix) were cloned into the pET-28a (+) plasmids after proper enzyme digestion to produce histidine tag (His) fusion recombinant proteins (Figure A1 in Appendix). The constructs were transformed into E. coli BL21-Codon (DE3) cells (Stratagene). The recombinant proteins were induced with 0.4 mM IPTG, and purified using HisPur Cobalt Purification Kit (Pierce Biotechnology). For in vitro transcription to generate RNA probes, T3 promoter-containing sense primers were created by adding T3 sequences on the 5′ end of the sense primers of the target sequences (Table A5 in Appendix), and used for PCR amplification using Platinum Taq DNA Polymerase High Fidelity (Invitrogen). The gel-purified PCR product was transcribed using MEGAscript T3 (Ambion) incorporating biotin (biotin-11-UTP, Perkin Elmer) as described by the manufacturer’s manual. The biotin-labeled probe RNA was purified by gel purification using Zymoclean™ Gel RNA Recovery Kit (ZymoResearch). Five femtomoles of biotin-labeled RNA probes were incubated with indicated amounts of purified recombinant proteins in the binding buffer provided by the Light Shift Chemiluminescent RNA EMSA kit (Pierce Biotechnology) on ice for 45 min. The RNA-protein complexes were separated in 2.5% agarose (for the full-length probe)

1 http://compbio.dfci.harvard.edu/cgibin/tgi/gimain.pl?gudb=potato
2 http://web.expasy.org/translate/
3 http://www.ncbi.nlm.nih.gov/ntgov/gorf/gorf.html
4 http://www.arabidopsis.org
5 http://mips.helmholtz-muenchen.de
6 http://smart.embl-heidelberg.de/
or 5% polyacrylamide gel (for the IRE probe) and transferred onto BrightStar-Plus (Ambion) nylon membranes. The signal was detected using the EMSA kit according to the manufacturer’s manual.

SCREENING FOR RNA-BINDING PROTEINS USING THE YEAST THREE-HYBRID SYSTEM

As eloquently explained by Bernstein et al. (2002), the Y3H system is based on two expression vectors, one for the RNA bait and the other for the protein target, and three-hybrid components. When bait RNA interacts with the target protein, the reporter genes, HIS3 and lacZ, are activated and can be readily detected by simple biochemical assays (Hook et al., 2005; Seay et al., 2006). To isolate interacting proteins, the DNA fragment encoding 3′ UTR of StBEL5 as a bait was cloned into the MS2 portion of pIIIa/MS2-1 vector. The resulting plasmids carrying hybrid MS2-3′ UTR of StBEL5 were transformed into a yeast strain, YBZ-1, and the potato leaf cDNA library was sequentially transformed using conventional protocols with slight modifications (Bernstein et al., 2002; Seay et al., 2006). We analyzed approximately 6.5 × 10⁵ yeast colonies, and the resulting transformed colonies were screened on SD/-his/-leu/-ura plates containing 1.0 mM 3-AT (Figure 1). From the first round, 448 colonies were selected as primary positives. Those selected positive colonies were replicated on SD/-his/-leu/-ura plates containing 1.0 mM 3-AT again to remove potential false positives. From these screenings, 281 colonies were chosen for further screening by using the two reporter genes, HIS3 and lacZ. SD/-his/-leu/-ura plates containing a series of 3-AT concentration (0, 1, 3, 5, 10, and 50 mM) were used for testing HIS3 expression. The 281 colonies were streaked on these plates, and 194 colonies were grown on SD/-his/-leu/-ura plates containing at least 5.0 mM 3-AT. Finally, 116 colonies were selected based on β-galactosidase and HIS3 activation and were sequenced and analyzed (Table A1 in Appendix). The overall strategy of the screening is summarized in Figure 1. As a comparison, using the yeast strain YBZ-1, 49 HIS3+ colonies were selected out of approximately 8.0 × 10⁵ transformants according to Hook et al. (2005). The interactions of the 3′ UTR of StBEL5 with StPTB6 and the 3′ UTR of StBEL5 with empty pGAD vector were used as positive and negative controls for RNA-protein interaction, respectively. PTB proteins are multifunctional proteins that bind numerous mRNAs and are involved in a wide range of RNA metabolism, such as RNA stability, splicing, translational repression, and long-distance transport. There are six PTBs in the potato genome, and one, designated StPTB6, binds to untranslated regions of phloem-mobile mRNAs of potato (Mahajan et al., 2012).

CHARACTERIZATION OF SELECTED cDNA CLONES

For identification of the screened colonies, their sequences were analyzed and BLAST was performed using the Arabidopsis and potato databases, and a total of 89 clones (76.7%) exhibited significant matches to previously characterized or known genes (Table A2 in Appendix). Thirteen clones were identified as redundant (30.2% redundancy), and therefore, a total of 94 unique singletons were isolated from the Y3H screening (listed in Tables A1–A3 in Appendix). These 13 included LSH3 (Light-dependent Short Hypocotyls3), LSH10 (Light-dependent Short Hypocotyls10), C3H zinc finger transcription factor, sucrose synthase4, a Transducin/WD40 repeat-like superfamily protein, LTP12 (Lipid Transfer Protein 12), ELI3-1 (elicitor-activated gene 3-1), X-ray induced transcript 1, glutamate-1-semialdehyde-2, 1-aminomutase, and some ribosomal proteins and unknown proteins (Table A3 in Appendix). Interestingly, LSH10, a close sequence match to AtLSH10 (AT2G42610), was identified from 10 clones along with another LSH member, LSH3, which was isolated twice. Twenty-seven clones (23.3%) were categorized as undefined clones, i.e., “unknown” or “no hit” from the database search (Table A2 in Appendix). Functional classification revealed a total of eight cDNAs that encoded proteins with DNA/RNA-binding properties. Nineteen clones encoded proteins that are components of the machinery for protein synthesis (16.4%) at the initiation and/or elongation of translation, such as elf5A, transducin/WD40 repeat-like superfamily, heat shock protein 70, and an alpha-tubulin protein (Doroshenko et al., 2009; Lin et al., 2009; Tables A1 and A4 in Appendix). Overall, 35 cDNAs (30.1% of total screened clones) encoding proteins with RNA-binding properties were identified (Table A4 in Appendix).

CANDIDATE PROTEIN PARTNERS FOR StBEL5 RNA

Based on activities of marker genes (HIS3 and lacZ), and their putative RNA-binding function, seven cDNA clones were selected for verification as protein partners of StBEL5, and designated as StBEL5 RNA-binding protein (B5RBP) one to seven (Figure 2A). Related proteins of three of the B5RBPs, B5RBP1, -4, and -6, were previously identified as RBPs in other species (Xu et al., 2004; Doroshenko et al., 2009; Ling et al., 2011), and three others,

![Figure 1](https://www.frontiersin.org)
B5RBP2, -5, and -7, contain conserved RNA recognition motifs (RRMs; Figure 3). The most frequently identified clone from the Y3H screening, StLSH10 (B5RBP3), was also included (Table A3 in Appendix). Each of these proteins induced β-galactosidase activity in an interaction with the bait RNA to levels much higher than the negative controls and, in some cases, even higher than the positive control (Figures 2B, C).

B5RBP2 encodes a glycine-rich RNA-binding protein that contains a RRM for RNA-binding and a glycine-rich motif (GRM, Figure 3). Plant proteins that contain a GRM are grouped into five classes based on structure. B5RBP2 is considered a class IV member because it contains a RRM (Mangeon et al., 2010). Class IV GRM-proteins are subdivided based on their links to osmotic stress, cold stress, flower timing, development, and responsiveness to abscisic acid. Interestingly, B5RBP2 is orthologous to AtGRP7 (AT2G21660) a protein related to a RBP found in pumpkin phloem sap (Lin et al., 2009). B5RBP2 may function in potato phloem sap by interacting with StBEL5 RNA to facilitate long-distance movement. AtGRP7 is also involved in the regulation of alternative splicing, ribosome function, and RNA metabolism (Wachter et al., 2012).

B5RBP3 is light-dependent short hypocotyl (LSH1, AT2G42610) protein with a Domain of Unknown Function (DUF640, Figure 3). In Arabidopsis, there are 10 LSH genes and in potato, 15 (Figure 4A). The function of most these proteins, ranging in size from 164 to 219 aa, are unknown except for AtLSH1 and -4. AtLSH1 is a nuclear protein in Arabidopsis with a nuclear localization signal (NLS) in the C-terminal region. It is involved in light regulation of seedling development (Zhao et al., 2004). Both AtLSH3 and -4 appear to have a role in Arabidopsis shoot and...
Cho et al. RNA-binding proteins for StBEL5 RNA

Figure 3 | Protein structure and prediction of conserved domains of the seven B5RBPs. The deduced amino acid sequences of the B5RBPs were analyzed using SMART (http://smart.embl-heidelberg.de/) and NCBI’s Conserved Domain Search. RRM, RNA recognition motif; DUF, domain of unknown function; GRM, glycine-rich motif; KOW, from Kyrpides et al. (1996); CC, coiled-coil motif; ZF-CCCH, zinc finger, CCCH-type.

floral organ differentiation since constitutive expression of these genes resulted in abnormal development (Takeda et al., 2011). As described earlier, LSH10 was the most frequently selected cDNA from the screen (Table A3 in Appendix). β-galactosidase activity of the B5RBPs/StBEL5 interaction was several-fold greater than the other B5RBPs (Figure 2B). All of the potato LSH proteins exhibit a highly conserved internal region representative of a domain from the DUF640 superfamily flanked by sequence of considerable variance at both the amino- and carboxy-termini (Figure 4B).

B5RBP4 encodes a eukaryotic initiation factor 5A (eIF5A, AT1G13950) containing both KOW (acronym of the authors surname, Kyrpides et al., 1996; Figure 3) and eIF5A motifs for ribosome binding, RNA-binding, and translation activity (Figure 3). Studies in bacteria suggest that the KOW motif mediates RNA and protein interactions (Steiner et al., 2002). For simplicity, the eIF5A motif is referred to as a RNA-binding site (Figure 3) since the motif is characterized as a S1-like RNA-binding domain (Peat et al., 1998). eIF5A is a multifunctional protein involved in RNA-binding, processing, turnover, and transport from the nucleus to cytoplasm and in transcription and translation (Burd and Dreyfuss, 1994; Casacub, 1999; Xu and Chen, 2001). Recently, eIF5A in yeast was shown to stimulate protein synthesis but was not required for the process (Henderson and Hershey, 2011). In pumpkin phloem sap, CmeIF5A was detected as a component of the RBP50-based ribonucleoprotein complex (Ham et al., 2009). Further characterization of CmeIF5A revealed that hypusination (lysine residue modification) was necessary for RNA-binding and protein interaction and that both hypusinated and non-hypusinated CmeIF5A existed in the phloem (Ma et al., 2010). B5RBP4 may function through a similar mechanism in potato phloem sap to mediate the formation of ribonucleoprotein complexes.

B5RBP5 encodes a RNA-binding (RRM/RNA-Binding Domain/ Ribonucleoprotein → RRM/RBD/RNP) protein family member containing a coiled-coil motif (CC) and a RRM (Figure 3) that is orthologous to At5G65260, an Arabidopsis RNA-binding protein. At5G65260 is designated as a polyadenylation factor that can bind to the poly (A) tail and control its length (Hunt et al., 2008). The Arabidopsis transcription factor Long Hypocotyl5 (HY5) that is involved in photomorphogenesis was shown to mediate the expression of At5G65260 (Lele et al., 2007). At5G65260 expression was down-regulated in a loss-of-function HY5 mutant. It is conceivable that B5RBP5 levels in potato may also be regulated by light.

B5RBP6 encodes a zinc finger (CCCH-type) family protein containing two ankyrin repeats for protein–protein interactions, and two zinc finger–C3H1 domains (ZF-CCCH) for zinc ion binding, and nucleic acid binding (Figure 3). Unlike other zinc finger proteins that generally function as DNA-binding proteins (Laity et al., 2001), CCCH zinc finger proteins bind to AU-rich elements of RNAs (Brown, 2005). A study in mouse revealed a role for a
CCCH zinc finger protein (tristetraprolin) in mRNA decay (Lai et al., 2006). In Trypanosoma brucei, the causative agent of sleeping sickness, the CCCH zinc finger protein (Tb2C3H20) functions in mRNA stability (Ling et al., 2011). In Arabidopsis, two CCCH-type zinc finger genes, designated AtSZF1, and AtSZF2, were salt-inducible and mediated responsiveness to salt (Sun et al., 2007). From the current screen, two CCCH-type zinc finger proteins were identified (Table A4 in Appendix) that shared sequence similarity with AT2G40140 (AtSZF2) and AT5G58620 from Arabidopsis.

B5RBP7 encodes another RNA-binding (RRM/RBD/RNP motifs) family protein that shares sequence similarity with Arabidopsis AtRNP1 (AT4G14300) containing two RRM domains (Figure 3). AtRNP1 is a target of Arabidopsis transportin 1 (AtTRN1) that is an ortholog of the human nuclear import receptor transportin1 protein (Ziemienowicz et al., 2003). AtRNP1 may function as a shuttle protein moving RNAs between the nucleus and cytoplasm. Interestingly, AtGRP7 also interacted with AtTRN1. As discussed above, B5RBP2 is orthologous to AtGRP7 suggesting that B5RBP7 and B5RBP2 may associate with StBEL5 RNA as a tandem complex.

EXPRESSION PROFILES

To assess transcript levels for select RBPs, expression values were obtained from the publicly available RNA-seq database from the RH genotype of the Potato Genome Sequencing Project (Xu et al., 2011). Abundance levels of StBEL5 and StHSP70 have been included as references. The potato HSP70 protein was selected during the screen (Table A4 in Appendix) and a HSP70-type was previously identified as a member of a phloem-mobile RNP complex in pumpkin (Ham et al., 2009). Relatively high and consistent levels of transcripts across all organs were observed for B5RBP2, -4, HSP70, and both RBPs, B5RBP5, and -7 (Table 1). The very high levels of eIF5A (B5RBP4) likely reflect its general, multifunctional role in several aspects of RNA metabolism (Zanelli and Valentini, 2006).
Table 1 | Expression profile of select B5RBPs mined using the RNA-seq data from the publically available Potato Genome Database (Xu et al., 2011).

Gene	Flower	In vitro plant	Sprout	Leaf	Petiole	SAM	Stem	Stolon	Young tuber	Root
B5RBP1	43	170	120	10	39	46	62	175	407	151
B5RBP2	91	144	191	129	152	201	113	252	257	165
B5RBP3	0	14	33	0	77	23	46	149	590	53
StLSH3	4	15	12	0	27	5	3	17	3	11
B5RBP4	375	364	414	354	511	199	377	420	418	606
B5RBP5	76	68	93	40	83	63	70	65	71	92
B5RBP6	67	91	46	103	334	48	59	70	40	104
B5RBP7	119	229	392	111	250	188	141	184	184	238
SHSP70	65	64	108	44	100	122	140	236	192	160
StBEL5	35	52	60	39	170	25	77	24	55	42

Nine organs and an in vitro plantlet are presented and abundance values are shown in FPKMs (fragments per kb per million mapped reads). StBEL5 is shown as a relative control. The potato HSP70 protein is included here because it was selected during the screen (Table A4 in Appendix) and previously was identified as a member of a phloem-mobile RNP complex in pumpkin (Ham et al., 2009).

2007), B5RBP1 (sucrose synthase) scored abundant RNA levels in both stolons and young tubers indicative of its role in starch metabolism during tuber formation. The zinc finger CCCH protein (B5RBP6) was most abundant in petioles with a value of 334 FPKMs (fragments per kb per million mapped reads). A mobile RNA like StBEL5 is very abundant in petioles, an observation that is consistent with both its transcriptional source and its capacity to move long-distances through the phloem (Banerjee et al., 2006). Petioles serve two main functions: to provide support for the leaf lamina and to act as a protective sleeve for phloem cells that move sugar and signaling molecules (like RNA) from source leaves to sinks. RBPs are commonly detected in companion cells and sieve elements of leaf veins in position to chaperone mobile RNAs (Ham et al., 2009).

Despite the observation that B5RBP3 (LSH10) appeared 10 times from the Y3H screening (Table A3 in Appendix), its RNA levels were remarkably low in leaf RNA of the RH genotype (Table 1). Similar results for LSH10 RNA abundance levels were observed in RNA-seq data from the DM genotype (Xu et al., 2011). Among the proteins selected, this putative RBP exhibited the strongest induction of β-galactosidase activity (Figure 2). Whereas the second LSH protein selected in this screen, StLSH3, exhibited very low transcript values across all organs, transcript abundance values for B5RBP3 (Table 1) were extremely high in petioles (77 FPKMs), stolons (149 FPKMs), and young tubers (590 FPKMs). This latter transcript value was the second most abundant of any of the RNAs scored in this experiment.

VERIFICATION OF RNA-PROTEIN INTERACTION OF THE B5RBPs

To validate the direct interaction of select proteins with the 3’ UTR of StBEL5, RNA gel-shift assays were performed with select B5RBPs. These assays were performed using biotin-incorporated RNA probes using the full-length 3’ UTR of StBEL5 and the purified recombinant B5RBP2, -3, and -5 proteins (Figure 5A). For showing specificity of the interaction, IRE RNA, which binds specifically with the iron responsive protein in the cell under iron-starved conditions, was used as a negative control (Figure 5B). Shifted bands were observed for all three interactions in a range of 30–250 nM of protein. B5RBP3 affected a shift with protein amounts as low as 30 nM, whereas shifted bands were clearly observed with the other two B5RBPs in the reactions containing 90 nM of protein. With comparable amounts of protein, no gel-shift was observed for the negative control, the iron responsive element (IRE, Figure 5B).

The 3’ UTR of SIBEL5 is involved in several aspects of RNA metabolism and is replete with potential binding motifs (Banerjee et al., 2009). To identify shorter binding regions within the 3’ UTR that may be involved in protein/RNA interaction, truncated bait sequences were utilized in the β-galactosidase assay of the Y3H system (Figure 6). Three truncated sequences were used based on their conserved sequence motifs and their coverage of the UTR (Figure 7). The 5’ D1 sequence is enriched for CU motifs (underlined sequence, Figure 7). T2 contains several UAGU motifs (Figure 7, boxed), and the UA-bait sequence contains a number of uracil/adenine runs (underlined sequence, Figure 7). Overall, the greatest β-galactosidase activity was observed for the full-length 3’ UTR (Figure 6). Based on β-galactosidase activity, B5RBP3, -5, -6, and -7 exhibited the strongest interaction with sequence located toward the 5’ end of the UTR (D1 and T2 baits). B5RBP1 and -2 exhibited the strongest interaction with sequence located toward the 3’ end of the UTR (T2 and UA baits). B5RBP4, the potato ortholog of eIF5A, exhibited equivalent strength of activity with all three truncated baits suggesting a degree of non-specific binding. These results with the potato eIF5A are consistent with previous work showing that a pumpkin form of eIF5A exhibited RNA-binding that was non-sequence-specific in nature (Ma et al., 2010).

CONCLUSION

The Y3H system has been established as an efficient method for selecting protein partners of RNA from among thousands of putative partners, and for assaying binding affinity of specific RNA/protein interactions. With modifications, this system has been adapted for screening RNA/RNA interactions (Piganeau and Schroeder, 2006), for identifying protein/small signaling molecule complexes (Cottier et al., 2011), and for testing multi-component
Cho et al. RNA-binding proteins for StBEL5 RNA

FIGURE 5 | Mobility shift assays for in vitro interaction of the 3′ UTR of StBEL5 with select B5RBPs. (A) Full-length 3′ UTR of StBEL5 with B5RBP2, -3, and -5. The iron response element (IRE) is included as a negative control (B). Approximately 5 fmole of biotin-labeled bait RNA and protein concentrations ranging from 30 to 250 nM were used in each reaction.

FIGURE 6 | Analysis of β-galactosidase activity for the interaction of select StBEL5 RNA-binding proteins (B5RBPs) with sequences within the 3′ UTR of StBEL5. The values in each graph are normalized to activity relative to the full-length UTR. 3′ UTR, full-length UTR; D1, a 178-nt sequence within the UTR starting from the stop codon; T2, a UAGU-rich region within the UTR; UA, UA-rich region toward the 3′ end of the UTR; MS2-1, RNA sequence from the bait vector serving as a negative control. See Figure 7 for details on these truncated StBEL5 bait sequences.

interactions (Bernstein et al., 2002). Although numerous false positives may arise during the screening process, there are several levels of selection that may be utilized to eliminate these. These include nutrient selection, HIS3 activation, addition of 3-aminotriazole, and 5-fluororotic acid to the media, and the induction of lacZ. As shown previously (Hook et al., 2005), both HIS3 and lacZ
expression levels are directly related to binding affinity and may be used to assess the robustness of specific RNA/protein interactions (Mahajan et al., 2012) or to map specific motifs present in either bait or target sequences (Edwards et al., 2001; Mori et al., 2008; Mahajan et al., 2012) or to map specific motifs present in either bait or target sequences (Edwards et al., 2001; Mori et al., 2008; Mahajan et al., 2012) or to map specific motifs present in either bait or target sequences (Edwards et al., 2001; Mori et al., 2008; Mahajan et al., 2012) or to map specific motifs present in either bait or target sequences (Edwards et al., 2001; Mori et al., 2008; Mahajan et al., 2012) or to map specific motifs present in either bait or target sequences (Edwards et al., 2001; Mori et al., 2008; Mahajan et al., 2012). The inclusion of additional sequence within the full-length 503-nt UTR: the 106-nt T2 region, and the 123-nt UA-rich region (UA).

REFERENCES

Banerjee, A. J., Lin, T., and Han-napel, D. J. (2009). Untranslated regions of a mobile transcript mediate RNA metabolism. *Plant Physiol.* 151, 1831–1843.

Banerjee, A. K., Yu, Y., Chatterjee, M., Sud, S. G., Miller, W. A., and Han-napel, D. J. (2006). Dynamics of a mobile RNA of potato involved in a long-distance signaling pathway. *Plant Cell* 18, 3443–3457.

Barroja-Fernandez, E., Munoz, F. J., Montero, M., Exteberria, E., Sesma, M. T., Ovecka, M., Bahaji, A., Ezquer, I., Li, J., Prat, S., and Pozueta-Romero, I. (2009). Enhancing sucrose synthase activity in transgenic potato (*Solanium tuberosum* L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and accessibility of the insert to the target protein in *Medicago truncatula* mRNA, induces cytoplasmic localisation of a nuclear RNA binding protein in *Medicago truncatula*. *Plant Cell Physiol.* 50, 1631–1662.

Barreau, C., Paillard, L., and Osborne, H. B. (2006). AU-rich elements and associated factors: are there unifying principles? *Nucleic Acids Res.* 33, 7158–7150.

Berstein, D. S., Buter, N., Stumpf, C., and Wickens, M. (2002). Analyzing mRNA-protein complexes using a yeast three-hybrid system. *Methods* 26, 123–141.

Bieniawska, Z., Paul Barratt, D. H., Garlick, A. P., Thole, V., Kruger, N. J., Martin, C., Zrenner, R., and Smith, A. M. (2007). Analysis of the sucrose synthase gene family in *Arabidopsis*. *Plant J.* 49, 810–828.

Brown, R. S. (2005). Zinc finger proteins: getting a grip on RNA. *Curr. Opin. Struct. Biol.* 15, 94–98.

Burd, C. G., and Dreyfuss, G. (1994). RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. *EMBO J.* 13, 1197–1204.

Campalans, A., Kondorosi, A., and Crespi, M. (2004). Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localisation of a nuclear RNA binding protein in *Medicago truncatula*. *Plant Cell Physiol.* 49, 810–828.

Brown, R. S. (2005). Zinc finger proteins: getting a grip on RNA. *Curr. Opin. Struct. Biol.* 15, 94–98.

Choi et al. RNA-binding proteins for StBEL5 RNA

ACKNOWLEDGMENTS

Thanks to Kate Lueders for her valuable technical assistance and to Mary Wickens for graciously providing the Y3H vectors and yeast strains. Thanks also to Tian Lin and Pooja Sharma for their help in preparing the LSH phylogenetic tree and alignment. This research was supported by the NSF Plant Genome Research Program award no. DBI-0820659.
Fu, H., Kim, S. Y., and Park, W. D. (1995). High-level tuber expression and sucrose inducibility of a potato SUS4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7, 1387–1394.

González, G. B., Lehmann, K. A., Ho, D. K., Stanitsa, E. S., Williamson, J. R., and Long, R. M. (2003). RNA-protein interactions promote asymmetric sorting of the ASH1 mRNA ribonucleoprotein complex. RNA 9, 1384–1399.

Ham, B. K., Brandom, J. L., Xoconostle-Cárceles, B., Ringgold, V., Lough, T. I., and Lucas, W. J. (2009). A polyprimidine tract binding protein, pumpkin RBFP5, forms the basis of a phloem-mobile ribonucleoprotein complex. Plant Cell 21, 197–215.

Haywood, Y., Yu, T. S., Huang, N. C., and Lucas, W. J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. Plant J. 42, 49–68.

Henderson, A., and Hershey, J. W. (2011). Eukaryotic translation initiation factor (eIF) 5A stimulates mRNA synthesis in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 108, 6415–6419.

Hook, B., Bernstein, D., Zhang, B., and Wickens, M. (2005). mRNA protein interactions in the yeast three hybrid system: affinity, sensitivity, and enhanced library screening. RNA 11, 227–233.

Hunter, A. G., Xu, R., Adedepai, B., Rao, S., Forbes, K. P., Meeks, R. L., Xiong, D., M., Van Laken, C., and Li, Q. Q. (2006). Regulated Pumilio-2 binding blocks translational repression of the ASH1 mRNA through the phloem. J. Biol. Chem. 281, 21649–21656.

Hwang, M. S., Kim, S. H., Lee, J. H., Bae, J. M., Paek, K. H., and Park, Y. I. (2005). Evidence for interaction between the 2a polymerase protein and the 3a movement protein of cucumber mosaic virus. J. Gen. Virol. 86, 3171–3177.

Irión, U., and St Johnston, D. (2007). Bicoid RNA localization requires specific binding of an endosomatic binding complex. Nature 445, 554–558.

Jansen, R. P. (2001). mRNA localization: message on the move. Nat. Rev. Mol. Cell Biol. 2, 247–256.

Kehr, J., and Buhtz, A. (2008). Long distance transport and movement of RNA through the phloem. J. Exp. Bot. 59, 85–92.

Kempf, N. C., Woese, C. R., and Ouzounis, C. A. (1996). KOW: a novel motif linking a bacterial transcription factor with ribosomal proteins. Trends Biochem. Sci. 21, 425–426.

Lai, W. S., Parker, J. I., Grissom, S. F., Stumpo, D. J., and Blackshear, P. I. (2006). Novel mRNA targets for tristetraplolar (TPP) identified by global analysis of stabilized transcripts in TTP-deficient fibroblasts. Mol. Cell Biol. 26, 9196–9208.

Laity, J. H., Lee, B. M., and Wright, P. E. (2001). Zinc finger proteins: new insights into structural and functional diversity. Curr. Opin. Struct. Biol. 11, 39–46.

Lee, H. K., and Jeong, S. (2006). Beta-catenin stabilizes cycooxygenase-2 mRNA by interacting with AU-rich elements of 5′ UTR. Nucleic Acids Res. 34, 5705–5714.

Lee, J., He, K., Stoèck, V., Lee, H., Figueroa, P., Gao, Y., Tongprasit, W., Zhao, H., Lee, I., and Deng, X. (2007). Analysis of translation factor HuY3 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749.

Li, C., Gu, M., Shi, N., Zhang, H., Yang, X., Osmann, T., Liu, Y., Wang, H., Vatish, M., Jackson, S., and Hong, Y. (2011). Mobile FTrRNA contributes to the systemic flower signaling in nalling in floral induction. Sci. Rep. 1, 73.

Lin, M. K., Lee, Y. J., Lough, T. J., Phinney, B. S., and Lucas, W. J. (2009). Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol. Cell Proteomics 8, 343–356.

Ling, A. S., Trotter, J. R., and Hendriks, E. F. (2011). A zinc finger protein, TZH3/C1H20, stabilizes two developmentally regulated mRNAs in Trypanosomes. J. Biol. Chem. 286, 20152–20162.

Lu, K. J., Huang, N. C., Liu, Y. S., Lu, C. A., and Yu, T. S. (2012). Long-distance movement of Arabidopsis FLOWERING LOCUS T RNA participates in systemic floral regulation. RNA Biol. 9, 1.

Lunde, B. M., Moore, C., and Varani, G. (2007). RNA-binding proteins: modular design for efficient function. Nat. Rev. Mol. Cell Biol. 8, 479–490.

Ma, Y., Miura, E., Ham, B. K., Cheng, H. W., Lee, J. Y., and Lucas, W. J. (2010). Pumpkin eIF3A isoforms interact with components of the transla-tional machinery in the curcurbit sieve tube system. Plant J. 64, 536–550.

Mahajan, A., Bhogale, S., Kang, I. H., Hannapel, D. J., and Banerjee, A. K. (2012). The mRNA of a Knotted-1-like transcription factor of potato is phloem mobile. Plant Mol. Biol. 79, 595–608.

Mangeon, A., Junqueira, R. M., and Sachetto-Martins, G. (2010). Functional diversity of the plant glycine-rich proteins superfamily. Plant Sig-nal. Behav. 5, 99–104.

Maniatis, E., Martínez de Alba, E., Ságszerf, R., Tabler, M., and Tsagris, M. (2003). Viroid RNA systemic spread may depend on the interaction of a 71-nucleotide bulged hairpin with the host protein VirP1. RNA 9, 346–354.

Moore, F. L., Jaruzelska, I., Fox, M. S., Urano, J., Firpo, M. T., Turek, P. J., Dorfman, D. M., and Pera, R. A. (2003). HumanPumilio-2 is expressed in embryonic stemcells and germcells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. Proc. Natl. Acad. Sci. U.S.A. 100, 538–543.

Mori, D., Sasagawa, N., Kino, Y., and Ishiiura, S. (2008). Quantitative analysis of CUG-BP1 binding to RNA repeats. J. Biochem. 143, 377–383.

Padmanabhan, K., and Richter, J. D. (2006). Regulated Pumilio-2 binding controls RINm-OS/Gl mRNA translation and CPEB activation. Genes Dev. 20, 199–209.

Peat, T. S., Newman, J., Waldo, G. S., Berendzen, J., and Terwilliger, T. C. (1998). Structure of translation initiation factor 5A from Pyrobo-cillum aerophilum at 1.75 A resolution. Structure 6, 1207–1214.

Pigneur, N., and Schroeder, R. (2006). Identification and detection of RNA-RNA interactions using the yeast RNA hybrid system. Nat. Protoc. 1, 689–694.

Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, J., Orjeda, G., Ouzoun- man, E., Torres, M., Lozano, R., Ponce, O., Martinez, D., De la Cruz, G., Chakrabarti, S., Kapil, V. U., Skrzybain, K. G., Kuzeztov, B. B., Ravin, N. V., Kolganova, T. V., Belet-sky, A. V., Mardanov, A. V., De Ga-vena, A., Eiseer, D. M., Martin, D. M., Li, G., Yang, K., Kuang, H., Hu, Q., Xiong, X., Bishop, G. J., Sagredo, B., Mejia, N., Zagorski, W., Gro- matka, G., Gawor, I., Szczesny, P., Huang, S., Zhang, Z., Liang, C., He, J., Li, Y., He, Y., Xu, J., Zhang, Y.,
Cho et al. RNA-binding proteins for StBEL5 RNA

Xie, B., Du, Y., Qu, D., Bonierbale, M., Ghislain, M., Herrera-Medel, R., Giuliano, G., Pietrella, M., Perrotta, G., Facella, P., O’Brien, K., Feingold, S. E., Barreiro, L. E., Massa, G. A., Diambrà, L., Whitty, B. R., Vaillancourt, B., Lin, H., Massa, A. N., Geoffroy, M., Lundback, S., Del-laPenna, D., Buell, C. R., Sharma, S. K., Marshall, D. F., Waugh, R., Bryan, G. J., Destefanis, M., Nagy, L., Milbourne, D., Thomson, S. J., Fiers, M., Jacobs, J. M., Nielsen, K. L., Senderker, M., Iovene, M., Torres, G. A., Jiang, J., Veilleux, R. E., Bachem, C. W., de Boer, J., Borm, T., Kloosterman, B., van Eck, H., Datema, E., Hekkert, B. L., Goverse, A. V., van Ham, R. C., Visser, R. G., and Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195.

Datema, E., Hekkert, B. L., Goverse, T., Kloosterman, B., van Eck, H., Bachem, C. W., de Boer, J., Borm, T., Kloosterman, B., van Eck, H., Datema, E., Hekkert, B. L., Goverse, A. V., van Ham, R. C., Visser, R. G., and Potato Genome Sequencing Consortium. (2011). Genome sequence and analysis of the tuber crop potato. Nature 475, 189–195.

Saunders, C., and Cohen, R. S. (1999). The role of oocyte transcription, the 5′ UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol. Cell 3, 43–45.

Seay, D., Hook, B., Evans, K., and Wickens, M. (2006). A three-hybrid screen identifies mRNAs controlled by a regulatory protein. RNA 12, 1594–1600.

Sengupta, D. J., Zhang, B, Kraemer, B., Seay, D., Hook, B., Evans, K., and Wickens, M. (1996). A three-hybrid system to detect RNA-protein interactions in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 8496–8501.

Steiner, T., Kaiser, J. T., Marinkovic, S., Huber, R., and Wahl, M. C. (2002). Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J. 21, 4641–4653.

Stumpi, C. R., Kimble, J., and Wickens, M. (2008). A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA 14, 1550–1557.

Sun, J., Jiang, H., Xu, Y., Li, H., Wu, X., Xie, Q., and Li, C. (2007). The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol. 48, 1148–1158.

Takeda, S., Hanano, K., Kariya, A., Shimizu, S., Zhao, L., Matsu, M., Tasaka, M., and Aida, M. (2011). Cup-shaped cotyledon1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOC gene family, in shoot organ boundary cells. Plant J. 66, 1066–1077.

Thio, G. L., Ray, R. P., Barcelo, G., and Schupbach, T. (2000). Localization of gurken RNA in Drosophila oogenesis requires elements in the 5′ and 3′ regions of the transcript. Dev. Biol. 15, 435–446.

Wachter, A., Rühl, C., and Stauffer, E. (2012). The role of polypyrimidine tract-binding proteins and other hnRNP proteins in plant splicing regulation. Front. Plant Sci. 3:81. doi:10.3389/fpls.2012.00081

Wurster, S. E., and Maher, J. III. (2010). Selections that optimize RNA display in the yeast three-hybrid system. RNA 16, 253–258.

Xu, A., and Chen, K. Y. (2001). Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with post translational enrichment RNA. J. Biol. Chem. 276, 2555–2561.

Xu, A., Jao, D. L.-E., and Chen, K. Y. (2004). Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co-purification and differential display. Biochem. J. 384, 585–590.

Zanelli, C. F., and Valentini, S. R. (2007). Is there a role for eIF5A in translation? Amino Acids 33, 351–358.

Zhao, L., Nakazawa, M., Takase, T., Manabe, K., Kobayashi, M., Seki, M., Shinozaki, K., and Matsu, M. (2004). Overexpression of LSH1, a member of an uncharacterized gene family, causes enhanced light regulation of seedling development. Plant J. 37, 694–706.

Ziemienowicz, A., Haasen, D., Stäger, D., and Merkle, T. (2003). Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Mol. Biol. 53, 201–212.

Zrenner, R., Salanoubat, M., Willmitzer, L., and Sonnewald, U. (1995). Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7, 97–107.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 20 June 2012; paper pending accepted: 02 August 2012; published online: 27 August 2012.

Citation: Cho SK, Kang I-H, Carr T and Hannapel DJ (2012) Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA. Front. Plant Sci. 3:819. doi: 10.3389/fpls.2012.00819

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Cho, Kang, Carr and Hannapel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
FIGURE A1 | Coomassie-stained gels of protein purification of three B5RBPs. Each protein was induced in E. coli; the soluble fraction was extracted, and the protein purified once or twice (B5RBP3) using the HisPur Cobalt purification kit (Pierce). The farthest right-hand lanes (arrows) represent from 15 to 100 ng of protein loaded and these samples were used for the RNA EMSAs. (+) indicates the addition of IPTG; (−) no IPTG; S, soluble fraction; IS, insoluble fraction.
Table A1 | Full list of the screened genes with their putative identities and concentration of 3-AT for screening.

Clone no	AGIa	Descriptionb	E-value	Potatoc	3-ATd
#1–1	AT4G16260	Glycosyl hydrolase superfamily protein	2E–96	TC194747 50	
#1–9	AT4G17880	Basic helix-loop-helix (bHLH) DNA-binding family protein	3E–66	TC207090 50	
#1–12	AT2G37190	Ribosomal protein L11	3E–71	TC200521 10	
#1–21	AT3G43190	ATUS4	sucrose synthase 4	0	TC194622 50
#1–22	AT3G43190	ATUS4	sucrose synthase 4	0	TC194622 10
#1–25	AT2G38040	Acetyl co-enzyme a carboxylase carboxyltransferase alpha subunit	2E–76	TC202772 5	
#1–38	AT2G40140	ATSF2 (salt-inducible zinc finger 2)	8E–23	TC208753 50	
#1–40	AT4G05320	Polyubiquitin 10	0	TC204873 5	
#1–55	AT1G58684	Ribosomal protein S5	E–111	TC225313 5	
#1–57	AT4G15470	Bac inhibitor-1	1E–71	TC200584 5	
#1–61	AT3G14610	Cytochrome P450, family 72, subfamily A, polypeptide 7	E–124	TC197461 50	
#2–5	AT3G12120	Fatty acid desaturase 2	E–143	TC197103 50	
#2–23	AT5G57280	S-Adenosyl-l-methionine-dependent methyltransferases	9E–77	AV090478 50	
#2–35	AT1G28830	ATCUL3A (cullin 3)	0	TC220451 5	
#2–36	AT5G24530	2-Oxoglutarate (2OG) and Fe(II)-dependent oxygenase	8E–37	TC212020 50	
#2–51	AT2G23940	Protein of unknown function (DUF788)	6E–60	TC223843 5	
#2–52	AT5G48720	X-ray induced transcript 1	1E–26	BG597043 50	
#2–57	AT1G27620	APFI/gamma carbonic anhydrase 2	E–126	TC195322 5	
#2–62	AT5G48720	XRI, XRI1	X-ray induced transcript 1	6E–17	BG597043 5
#3–1	AT3G18000	S-Adenosyl-l-methionine-dependent methyltransferases	0	TC212421 10	
#3–4	AT3G13340	Transducin/VD40 repeat-like superfamily protein	3E–92	TC224846 50	
#3–7	AT1G58684	Ribosomal protein S5	E–111	TC225313 5	
#3–16	AT1G3840	ATPME1, PME1	pectin methylesterase 1	9E–20	EG012025 5
#3–20	AT3G05950	Ribosomal protein L18	8E–83	TC210667 5	
#3–33	AT4G37980	ELI3-1, ELI3, ATCAD7, CAD7	elicitor-activated gene 3-1	4E–20	TC223852 5
#3–39	AT5G61030	Glycine-rich RNA-binding protein	2E–30	TC203116 50	
#3–43	AT2G45000	ATP14K GAMMA 4 (phosphoinositide 4-kinase gamma 4)	3E–54	TC208976 5	
#3–53	AT1G90400	SCD1	stomatal cytokinesis defective/SCD1 protein: WD40 containing	2E–63	TC206273 5
#4–1	AT5G19510	Translation elongation factor EF1B/ribosomal protein S6 family protein	2E–26	TC197463 5	
#4–5	AT2G32220	GRIM-19 protein	1E–63	TC201317 5	
#4–13	AT4G22140	EBS	PhD finger family protein/bromo-adjacent homology (BAH) domain-containing	6E–98	TC216086 5
#4–33	AT3G52640	Heat shock protein 90	E–157	TC200319 10	
#4–36	AT1G22410	Class-II DAHP synthetase family protein	0	TC194919 5	
#4–37	AT3G39510	Vesicle transport v-SNARE family protein	6E–08	TC196409 5	
#4–60	AT3G3120	SAUR-like auxin-responsive protein family	7E–19	TC219427 5	
#5–1	AT2G22210	ATOEP16-3, OEP16-3	Mitochondrial import inner membrane translocase subunit	2E–54	TC204735 5
#5–2	AT3G01320	SNL1	SIN3-like 1	1E–42	CV288681 10
#5–4	AT5G27700	Ribosomal protein S21e	4E–43	TC214159 5	
#5–5	AT5G25610	RD22, ATRD22	BURP domain-containing protein	1E–32	TC201563 10
#5–6	AT1G03860	APThB2, PHB2	prohibitin 2	E–120	TC196152 50
#5–9	AT4G09800	S18 ribosomal protein	5E–44	TC207656 10	
#5–10	AT2G42610	LSH10	Protein of unknown function (DUF640)	1E–64	TC202398 10
#5–11	AT2G42610	LSH10	Protein of unknown function (DUF640)	1E–64	TC202398 10
#5–12	AT1G49310	Unknown protein	0.002	TC207198 5	
#5–13	AT3G60520	Unknown protein	0.047	TC196277 50	
#5–17	AT2G7450	APT1, ATAPT1	adenine phosphoribosyl transferase 1	2E–78	TC196278 5
#5–21	AT3G50500	SNKR2.2	SNF1-related protein kinase 2.2	3E–15	EG012856 5
#5–22	AT1G60420	DC1 domain-containing protein	E–100	TC199573 50	
#5–23	AT1G67785	Unknown protein	2E–16	TC216692 5	
#5–24	AT1G22100	Inositol-pentakisphosphate 2-kinase family protein	1E–67	TC213605 5	
#5–26	AT5G28220	ChaC-like family protein	1E–79	TC195543 10	

(Continued)
Clone no	AGIa	Descriptionb	E-value	Potatoc	3-ATd	
#5–27	AT2G42610	LSH10	Protein of unknown function (DUF640)	2E–60	TC205325	10
#5–29	AT2G42610	LSH10	Protein of unknown function (DUF640)	5E–14	TC205325	50
#5–30	AT1G19580	GAMMA CA1	gamma carboxylic anhydrase 1	E–129	TC196517	5
#5–31	AT1G76870	Nucleotide-sugar transporter family protein	E–147	TC198970	10	
#5–32	AT1G13950	EIF-5A, ELF5A-1, ATELF5A-1, EIF5A	eukaryotic elongation factor 5A-1	3E–72	TC202667	5
#5–34	AT2G42610	LSH10	Protein of unknown function (DUF640)	2E–60	TC202398	10
#5–35	AT2G23610	ATMES3, MES3	methyl esterase 3	5E–41	TC221190	10
#5–37	AT3G25660	Amidase family protein	2E–73	CV506455	50	
#5–38	AT1G18080	ATARCA (Transducin/WD40 repeat-like superfamily protein)	E–118	TC197724	5	
#5–39	AT2G31160	LSH3	Protein of unknown function (DUF640)	1E–129	TC196517	5
#5–40	AT1G76670	Nucleotide-sugar transporter family protein	E–147	TC198970	10	
#5–42	AT1G13950	EIF-5A, ELF5A-1, ATELF5A-1, EIF5A	eukaryotic elongation factor 5A-1	3E–72	TC202667	5
#5–44	AT2G42610	LSH10	Protein of unknown function (DUF640)	2E–60	TC202398	10
#5–46	AT5G65020	ANNAT2	annexin 2	E–88	TC208485	5
#5–48	AT5G02380	MT2B	metallothionein 2B	0.007	TC217979	5
#6–1	AT3G15610	Transducin/WD40 repeat-like superfamily protein	3E–34	TC199143	5	
#6–2	AT1G25520	Uncharacterized protein family (UPF0016)	3E–88	TC215875	5	
#6–4	AT2G19739	Ribosomal L28e protein family	4E–59	TC200167	5	
#6–5	AT3G16240	DELTA-TIP, TIP2;1, DELTA-TIP1, AQP1, ATTIP2;1	3E–77	TC195833	5	
#6–6	AT2G42610	LSH10	Protein of unknown function (DUF640)	2E–60	TC202398	10
#6–10	AT1G58684	Ribosomal protein S5 family protein	E–111	TC225313	5	
#6–14	AT2G42610	LSH10	Protein of unknown function (DUF640)	1E–64	TC202398	10
#6–19	AT1G36320	Unknown protein	2E–72	TC198511	5	
#6–20	AT5G92420	Ribosomal protein S8e family protein	4E–80	TC205286	5	
#6–24	AT5G63570	GSA1	glutamate-1-semialdehyde-2,1-aminomutase	E–115	TC215875	5
#6–25	AT2G42610	LSH10	Protein of unknown function (DUF640)	8E–65	TC196879	10
#6–26	AT1G63000	NRS/ER, UER1	nucleotide-ribose synthase/epimerase-reductase	E–151	TC194991	5
#6–30	AT4G13170	RP1	ribosomal protein 1	0	TC196190	5
#6–31	AT5G65260	RNA-binding (RRM/RBD/RNP motifs) family protein	E–60	TC196348	5	
#6–35	AT3G04400	Ribosomal protein L14p/L23e family protein	4E–69	TC208592	5	
#6–37	AT4G14960	TUA6	Alpha-tubulin/FtsZ family protein	0	TC196128	5
#6–38	AT5G47770	TH11, T2, TH14	thioleic biosynthetic enzyme, chloroplast (ARA6; THI1; THI4)	E–114	TC194928	5
#6–42	AT5G01870	Bifunctional inhibitor/lipid transfer protein/seed storage 2S albumin superfamily protein	4E–13	TC123303	5	
#6–44	AT1G27400	Ribosomal protein L22p/L17e family protein	8E–70	TC214142	5	
#7–1	AT3G15610	Transducin/WD40 repeat-like superfamily protein	E–120	TC204693	5	
#7–2	AT5G4290	Translation initiation factor SUI1 family protein	6E–51	TC202798	5	
#7–3	AT5G62220	ATGT18, GT18	glycosyltransferase 18	E–131	TC195956	5
#7–7	AT1G79920	Heat shock protein 70 (Hsp 70) family protein	E–133	TC204446	5	
#7–8	AT1G18540	Ribosomal protein L6 family protein	3E–75	TC198860	5	
#7–9	AT1G18540	Ribosomal protein L6 family protein	2E–67	TC198860	5	
#7–14	No Hit	CK861625	5			
#7–15	AT3G06030	ANP3, MAPKKX12, NP3	NPK1-related protein kinase 3	E–39	CK861339	5
#7–18	AT1G26355	SP1L1	SPIRAL-like1	9E–22	TC208881	5
#7–19	AT5G64300	ATGCH, GCH, ATRIA1, RDF1	GTP cyclohydrolase II	0	TC207697	5
#7–22	AT5G58620	Zinc finger (CCCH-type) family protein	E–144	TC196771	5	
#7–23	AT5G63570	Glutamate-1-semialdehyde 2,1-aminomutase	E–115	TC206171	5	
#7–28	AT4G23895	Pleckstrin homology (PH) domain-containing protein	2E–97	TC194970	5	
#7–29	AT1G1680	Putative obtusifoliol 14-alpha demethylase involved in sterol biosynthesis	E–169	TC202830	5	
#7–32	AT2G47730	Glutathione transferase belonging to the phi class of GSTs	4E–69	TC184941	5	
#7–33	AT3G25660	Amidase family protein	2E–73	CV506455	50	

(Continued)
Table A1 | Continued

Clone no	AGIa	Descriptionb	E-value	Potatoc	3-ATd	
#7–35	AT4G13350	NIG	NSP (nuclear shuttle protein)-interacting GTPase	4E–07	TC200976	5
#7–36	AT1G07890	Cytosolic ascorbate peroxidase APX1	E–116	TC195529	5	
#7–37	AT4G14300	RNA-binding (RRM/RBD/RNP motifs) family protein; AtRNP1	9.00E–73	TC200460	5	
#7–40	AT1G14685	BPC2, BBR/BPC2, ATBPC2	basic pentacysteine 2	3E–62	TC202087	5
#7–41	AT4G38510	ATPase, V1 complex, subunit B protein	0	TC197270	5	
#7–42	AT4G37980	Elicitor-activated gene 3-1 (ELI3-1)	5E–20	TC223852	5	
#7–46	AT1G36320	Unknown protein	2E–76	TC198511	5	
#8–4	AT3G61590	Lipid transfer protein 12 (LTP12)	2E–14	TC221371	5	
#8–17	AT4G29410	Ribosomal L28e protein family	1E–46	TC200167	5	
#8–26	AT3G63120	VPS37-1	Modifier of rudimentary (Mod(r)) protein	2E–47	TC205847	5
#8–30	AT4G00100	ATRPS13A, RPS13, PFL2, RPS13A	ribosomal protein S13A	2E–78	TC197315	5
#8–44	AT5G49650	Xylose kinase 2	E–132	TC211252	5	
#8–45	AT3G61590	Lipid transfer protein 12 (LTP12)	2E–14	TC221371	5	
#8–47	AT1G67325	Ran BP2/NZF zinc finger-like superfamily protein	8E–98	TC194820	5	

a Arabidopsis Genome Initiative number.
b From the Arabidopsis Information Resource annotations (http://www.arabidopsis.org).
c From DFCI Database.
d Concentration of 3-AT (mM) for screening the clones.

Table A2 | Summary of clones from the yeast three-hybrid screening.

Number	Ratio (%)	
Total screened clones	116	76.7
BLAST-match clones	89	23.3
BLAST-no match clones	27	69.8
Non-redundant clones	81	30.2
Redundant clones	35	
Total singletons	94	

Functions	Number	Ratio (%)
DNA/RNA-binding	8	6.9
Protein synthesis	19	16.4
Metabolism	28	24.1
Transcription activity	7	6.0
Structures	18	15.5
Others	14	12.1
Unknown/uncharacterized	27	23.3

The number of the clones and their percentages are presented.
Table A3 | List of the redundant clones and their identities.

AGI	Description	Potato	No of clones	
AT2G42610	LSH10	Protein of unknown function (DUF640)	TC202398	10
AT1G58684	Ribosomal protein S5	TC225313	3	
AT1G18540	Ribosomal protein L6 family protein	TC198860	2	
AT1G36320	Unknown protein	TC198511	2	
AT2G31160	LSH3	Protein of unknown function (DUF640)	CV502385	2
AT2G40140	ATSZF2 (salt-inducible zinc finger 2)	TC208753	2	
AT3G15610	Transducin/WD40 repeat-like superfamily protein	TC199143	2	
AT3G25660	Amidase family protein	CV506455	2	
AT3G43190	ATSUS4	sucrose synthase 4	TC194622	2
AT3G51590	Lipid transfer protein 12 (LTP12)	TC221371	2	
AT4G37980	ELI3-1, ELI3, ATCAD7, CAD7	elicitor-activated gene 3-1	TC223852	2
AT5G48720	X-ray induced transcript 1	BG597043	2	
AT5G63570	Glutamate-1-semialdehyde 2, 1-aminomutase	TC210671	2	

*Arabidopsis Genome Initiative number.

*From the Arabidopsis Information Resource annotations (http://www.arabidopsis.org).

*From DFCI Database.
Table A4 | List of the screened clones with RNA-binding properties.

Clone No	AGI^a	Description^b	Property	
#1–9	AT4G17880	Basic helix-loop-helix (bHLH) DNA-binding family protein	DNA/RNA-binding	
#1–38	AT2G40140	ATSZF2 (salt-inducible zinc finger 2)	DNA/ RNA-binding	
#3–39	AT5G61030	StGRP3	glycine-rich RNA-binding protein 3	DNA/ RNA-binding
#4–13	AT4G22140	EBS	PHD finger family protein	DNA/ RNA-binding
#6–31	AT5G69260	RNA-binding (IRRM/RBD/RNP motifs) family protein	DNA/ RNA-binding	
#7–22	AT5G58620	Zinc finger (CCCH-type) family protein	DNA/ RNA-binding	
#7–37	AT4G14300	RNA-binding (IRRM/RBD/RNP motifs) family protein; AtRNP1	DNA/ RNA-binding	
#7–40	AT1G14685	BPC2, BBR/BPC2, ATBPC2	basic pentacysteine 2	DNA/ RNA-binding
#1–21	AT3G43190	ATSUS4	sucrose synthase 4	RBP
#1–22	AT3G43190	ATSUS4	sucrose synthase 4	RBP
#3–4	AT3G13340	Transducin WD40 repeat-like superfamily protein	RBP	
#5–38	AT1G18080	ATARCA (Transducin/WD40 repeat-like superfamily protein)	RBP	
#6–1	AT3G15610	Transducin WD40 repeat-like superfamily protein	RBP	
#6–37	AT4G14960	TUA6	Alpha-tubulin/FtsZ family protein	RBP
#7–1	AT3G15610	Transducin WD40 repeat-like superfamily protein	RBP	
#7–7	AT1G79920	Heat shock protein 70 (Hsp 70) family protein	RBP	
#1–12	AT2G37190	Ribosomal protein L11	Translation	
#1–55	AT1G58684	Ribosomal protein S5	Translation	
#3–7	AT1G58684	Ribosomal protein S5	Translation	
#3–20	AT3G05590	Ribosomal protein L18	Translation	
#4–1	AT5G19510	Translation elongation factor EF1B/ribosomal protein S6 family protein	Translation	
#5–4	AT5G27700	Ribosomal protein S21e	Translation	
#5–9	AT4G09800	S18 ribosomal protein	Translation	
#6–4	AT2G19730	Ribosomal L28e protein family	Translation	
#6–10	AT1G59684	Ribosomal protein S5 family	Translation	
#6–20	AT5G59240	Ribosomal protein S8e family	Translation	
#6–30	AT1G43170	RP1	ribosomal protein 1	Translation
#6–35	AT3G04400	Ribosomal protein L14p/L23e family protein	Translation	
#6–44	AT1G27400	Ribosomal protein L22p/L17e family protein	Translation	
#7–2	AT1G54290	Translation initiation factor SU1 family protein	Translation	
#7–8	AT1G18540	Ribosomal protein L6 family protein	Translation	
#7–9	AT1G18540	Ribosomal protein L6 family protein	Translation	
#8–17	AT4G29410	Ribosomal L28e protein family	Translation	
#8–30	AT4G00100	ATRPS13A, RPS13, PFL2, RPS13A	ribosomal protein S13A	Translation
#5–32	AT1G13950	EiF5A, ELF5A-1, ATELF5A-1, EIF5A	eukaryotic elongation factor 5A-1	Translation/RBP

^aArabidopsis Genome Initiative number.

^bFrom the Arabidopsis Information Resource annotations (http://www.arabidopsis.org).
Table A5: List of primers.

Name	Primer sequence	Purpose
B5 3’ UTR F	atccccgggATACCAGAACGTCTCGTA	Cloning of 3’ UTR of StBEL5 into pIII A/MS2-1 for library screening
B5 3’ UTR R	cagccgggGCTAATCTAATATGATA	Cloning of physical dissection (D1) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 3’ UTR F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTCGTA	In vitro transcription of 3’ UTR of StBEL5
B5 D1 F	atccccgggATACCAGAACGTCTCGTA	Cloning of physical dissection (D1) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 D1 R	cagccgggTATACGAAAGGATGCTCTTT	Cloning of physical dissection (T2) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 D1 F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTCGTA	In vitro transcription of D1 of StBEL5
B5 T2 F	atccccgggTATACGAAAAGGAGAAGAAG	Cloning of physical dissection (UA-rich) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 T2 R	cagccgggTACACTAGTGTTATCAATCT	Cloning of PT motif (T1) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 T1 F	atccccgggACTCTTTATATGTG	Cloning of PT motif (T1) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 T1 R	atccccgggAAAGAGATATATAT	Cloning of PT motif (T1) of 3’ UTR of StBEL5 into pIIIA/MS2-1 for validation
B5 D1 F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTCGTA	In vitro transcription of D1 of StBEL5
B5 D2 F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTTTTTTGATAGTAGATA	In vitro transcription of D2 of StBEL5
B5 D3 F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTTTTTTGATAGATA	In vitro transcription of D3 of StBEL5
B5 T1 F w T3	AATTAACCTCAGAAAGGAGATACCAGAGTGCTCTTTTTTGATAGATA	In vitro transcription of T1 of StBEL5
B5 RBP2 F	taccgatccATGGGTCTTTAATTAACAGC	Cloning of B5RBP2 into pET28a for expression of His-fusion protein
B5 RBP2 R	cgtgatccAGGATCGTCTGCTGATAAT	Cloning of B5RBP2 into pET28a for expression of His-fusion protein
B5 RBP3 F	taccgatccATGGGTCTTTAATTAACAGC	Cloning of B5RBP3 into pET28a for expression of His-fusion protein
B5 RBP3 R	cgtgatccAGGATCGTCTGCTGATAAT	Cloning of B5RBP3 into pET28a for expression of His-fusion protein
B5 RBP5 F	taccgatccATGGGTCTTTAATTAACAGC	Cloning of B5RBP5 into pET28a for expression of His-fusion protein
B5 RBP5 R	cgtgatccAGGATCGTCTGCTGATAAT	Cloning of B5RBP5 into pET28a for expression of His-fusion protein
GAD-C1 Seq	CGATGATGATACGCCAC	Sequencing of the screened clones

Note: Lower case letters represent restriction enzyme sites used for cloning.