Evaluation on the efficiency of the construction sector companies in Malaysia with data envelopment analysis model

Lam Weng Hoe1*, Lim Shun Jinn2, Lam Weng Siew3 and Tey Kim Hai4

1,3 Centre for Mathematical Sciences, Centre for Business and Management, Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
2 Centre for Bio-Diversity Research, Department of Physical and Mathematical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.
4 Department of Construction Management, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar Campus, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia.

E-mail: whlam@utar.edu.my

Abstract. In Malaysia, construction sector is essential parts in driving the development of the Malaysian economy. Construction industry is an economic investment and its relationship with economic development is well posited. However, the evaluation on the efficiency of the construction sectors companies listed in Kuala Lumpur Stock Exchange (KLSE) with Data Analysis Envelopment (DEA) model have not been actively studied by the past researchers. Hence the purpose of this study is to examine the financial performance the listed construction sectors companies in Malaysia in the year of 2015. The results of this study show that the efficiency of construction sectors companies can be obtained by using DEA model through ratio analysis which defined as the ratio of total outputs to total inputs. This study is significant because the inefficient companies are identified for potential improvement.

1. Introduction

Bursa Malaysia, also known as Kuala Lumpur Stock Exchange (KLSE) is a platform that provides a fully integrated exchange offering a comprehensive range of exchange-related facilities including listing, trading, clearing, settlement and depository services [1]. Currently, there are 811 listed companies and 39 companies are under categories of Construction sector. In Malaysia, construction sectors are essential parts in driving the development of the Malaysian economy. According to [2], the construction industry is an economic investment and its relationship with economic development is well posited. At the same time, construction industry also demonstrates strong correlation with economic development, with the construction share of GDP positively correlated with GDP per capita [3]. Construction sector is an important industry in contribution economy growth of Malaysia although the contribution of Gross Domestic Product, GDP lesser than services, manufacturing and agriculture sector. The Gross Domestic Product, GDP 8.2% (RM 46.63 billion) in 2015 and it will be estimated to contribute 10.3% GDP per annum within the period 2016-2020
according to the Eleventh Malaysia Plan. The purpose of this research is to study the financial performance on the efficiency of the listed construction sectors companies in Malaysia by analyzing financial ratio in the year of 2015. This paper will be organized into few sections: Section 2 presents some literature review of the research with some basic concepts and definition of DEA. Section 3 includes the research methodology. Meanwhile section 4 discusses and interprets the obtained results. The final sections will be the conclusion of the research together with suggestion for further study.

2. Literature Review

The application of DEA measuring efficiency in the production of agricultural crops has been used regularly in the past studies [4, 5, 6]. The other researchers have applied DEA in a real life study case, for examples: energy consumption in cotton industry [7], direct seeding and wetland paddy cultivation at Sungai Besar District of Selangor, Malaysia which employed the DEA model and Cobb-Douglas production function on the measured paddy cultivation data [8]. Recent studies on the area of aquaculture sector in Peninsular Malaysia using two stage DEA model in evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems [9] and bootstrapping DEA to estimate the bias-corrected technical efficiency (BCTE) of different culture systems and species of freshwater aquaculture in Malaysia [10] were sound concerned for the fish farmer in term of efficiency in the fish production.

Bank sector is the most studies in the application sector on DEA to measure performance and efficiency. Kamarudin, Ismail, and Mohd [11] claimed that DEA could analyze the efficiency and effectiveness of Malaysian Islamic Banks. The results showed Malaysian Islamic Banks were more efficient. Yang [12] suggested a DEA assessment framework applied to measure the performance of the two sub-processes, which is profit-making efficiency and risk-controlling efficiency. Widely literatures in banking area on DEA applications have been studied by the past researchers [12, 13, 14, 15, 16, 17, 18].

Rezaie et al.[19] applied Data Envelopment Analysis to compare the efficiency of 50 top companies listed by Tehran Stock Exchange (TSE) in the 1st quarter of the year 2010 as TSE was the first established stock market in 1967 and currently it is a largest stock market in Iran. The results obtained beneficiary managers and investors in stock exchange for investment and developing and determining corporate strategy as DEA is a suitable and efficient approach to model the fluctuations and uncertainties existing in financial data and factors affecting the efficiency of a corporation [19].

Other past studies have been done in different stock markets [20, 21, 22, 23, 24]. This research will focus on the efficiency of the listed construction sectors companies in Malaysia based on the financial ratios with a new propose Enhanced Data Envelopment Analysis (DEA) model to determine the potential improvement for the listed construction sector companies which have not been actively studied by the past researchers.

3. Data and Methodology

This study extracted data from financial reports through Bursa Malaysia in year 2015 in construction sector. Total of 39 companies from construction sector listed in Malaysia stock market are displayed in the following Table 1.
Table 1. Construction Companies in Malaysia Stock Market.

CODE	Abbreviations	Company Name
7007	ARK	ARK RESOURCES BERHAD
7078	AZRB	AHMAD ZAKI RESOURCES BERHAD
5190	BENALEC	BENALEC HOLDINGS BERHAD
5932	BPURI	BINA PURI HOLDINGS BHD
8761	BREM	BREM HOLDING BERHAD
8591	CRESBLD	CREST BUILDER HOLDINGS BERHAD
7528	DKLS	DKLS INDUSTRIES BHD
5253	ECONBHD	ECONPILE HOLDINGS BERHAD
8877	EKOVEST	EKOVEST BERHAD
9261	GADANG	GADANG HOLDINGS BHD
5398	GAMUDA	GAMUDA BERHAD
5169	HOHUP	HO HUP CONSTRUCTION COMPANY BHD
6238	HSL	HOCK SENG LEE BERHAD
3336	IJM	IJM CORPORATION BERHAD
5268	IKHMAS	IKHMAS JAYA GROUP BERHAD
4723	JAKS	JAKS RESOURCES BERHAD
9083	JETSON	KUMPULAN JETSON BERHAD
7161	KERJAYA	KERJAYA PROSPEK GROUP BERHAD
5171	KIMLUN	KIMLUN CORPORATION BERHAD
5129	MELATI	MELATI EHSAN HOLDINGS BERHAD
5006	MERGE	MERGE ENERGY BHD
9571	MITRA	MITRAJAYA HOLDINGS BERHAD
7595	MLGLOBAL	ML GLOBAL BERHAD
5085	MUDAJYA	MUDAJAYA GROUP BERHAD
5703	MUHIBAH	MUHIBAH ENGINEERING (M) BHD
8311	PESONA	PESONA METRO HOLDINGS BERHAD
5070	PROTASCO	PROTASCO BERHAD
7145	PSIPTEK	PRINSIPTEK CORPORATION BERHAD
9598	PTARAS	PINTARAS JAYA BHD
6807	PUNCAK	PUNCAK NIAGA HOLDINGS BERHAD
5205	SENDAI	EVERSENDAI CORPORATION BERHAD
5263	SUNCON	SUNWAY CONSTRUCTION GROUP BERHAD
9717	SYCAL	SYCAL VENTURES BERHAD
5054	TRC	TRC SYNERGY BERHAD
5622	TRIPLC	TRIPLC BERHAD
5042	TSRCAP	TSR CAPITAL BERHAD
3565	WCEHB	WCE HOLDINGS BERHAD
Ratio analysis is an applicable management tool which usually uses in a company with offering further understanding on financial results and trends over time, based on the analysis on the business situation and to identify the strengths and weaknesses for monitoring company’s performance. In this study, the six financial ratios have been considered to study. Three inputs factors to study which are current ratio, debt to assets ratio, debt to equity ratio and three outputs factors as: earning per share (EPS), return on assets (ROA), and return on equity (ROE).

3.1 Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a non-parametric mathematical linear programming technique and benchmarking technique, which is widely used in Decision Making Units (DMUs) among organization units such as insurances, hospitals, banks, property management, factory, retails, service operation and so on as performance measurement for efficiency evaluation and frontier analysis. Commonly, DEA is a set of measurements which is the ratio of total outputs to total inputs [25]; various inputs and outputs are combined into a single measurement of efficiency. DEA is used for improve performance of inefficient unit, either decrease the input or increase the input. Efficiency is defined as the comparison of what is actually produced or performed with what can be achieved with the same consumption of resources (money, time, labor)[26]. Farrell [27] has recommended a satisfactory measure of productive efficiency which considers all inputs and yet avoids number index problem as it is important for economic theorist and economic policy makers. Measuring of efficiency with a common set of inputs and outputs in Decision Making Units (DMUs) was first introduced by Charnes, Cooper, and Rhodes [28] for nonprofit and public sector organization. The efficiency of construction sectors companies can be obtained by using DEA model thru ratio analysis which defined as the ratio of total outputs to total inputs. In this paper, the CCR [28] DEA model formulation is represented as follows:

\[
\begin{align*}
\text{Max} & \quad h_k = \frac{\sum_{r=1}^{s} u_r y_{rk}}{\sum_{i=1}^{m} v_i x_{ik}} \\
\text{Subject to} & \quad \sum_{r=1}^{s} u_r y_{rq} \leq 1; \quad j = 1, 2, 3, K, n \\
& \quad \sum_{i=1}^{m} v_i x_{ij} \\
& \quad u_r, v_i \geq 0; \quad r = 1, A, s; i = 1, A, m. \quad (1)
\end{align*}
\]

where

- \(h_k\) is relative efficiency of DMU_k
- \(s\) is the number of outputs
- \(u_r\) is the weights to be determined for output \(r\)
m is the number of inputs

v_i is the weights to be determined for input i

n is the number of entities

For the relative efficiency h_k of DMU$_k$, equation (1) as an objective function which maximizes the efficiency of DMU$_k$, following by the constraint (2) is true, i.e: $0 \leq h_k \leq 1$. However, the model above is a nonlinear combine with a linear and fractional objective function together with the constraint. Hence transformation into general output maximization CCR DEA model in linear programming form can be simplified as [28, 29]:

$$h_k = \sum_{r=1}^{s} u_r y_{rk}$$ \hspace{1cm} (4)

Subject to

$$\sum_{i=1}^{m} v_i x_{ij} - \sum_{i=1}^{s} u_r y_{ij} \geq 0; j = 1,2,3,K,n$$ \hspace{1cm} (5)

$$\sum_{i=1}^{m} v_i x_{ik} = 1$$ \hspace{1cm} (6)

$$u_r, v_i \geq 0; r = 1,L,s; i = 1,L,m.$$ \hspace{1cm} (7)

4. Result and Discussion

Table 2. Ranking of Construction sector Companies

DMUs	Efficiency	Rank
ARK	29.88	23
AZRB	14.62	31
BENALEC	4.15	36
BPURI	19.94	26
BREM	57.73	11
CRESBLD	8.10	33
DKLS	34.85	20
ECONBHD	100.00	1
EKOVEST	3.90	38
GADANG	53.63	13
GAMUDA	38.80	18
HOHUP	91.59	6
HSL	93.38	5
IJM	19.22	28
IKHMAS	53.50	14
JAKS	26.22	24
JETSON	5.11	35
KERJAYA	81.71	7
Table 2 shown the relative efficiency and rank of the construction sector companies which listed in Bursa Malaysia. A total amount of four companies which are ECONBHD, MLGLOBAL, PTARAS, and SUNCON manage to score 100% efficiency. This indicates that these four companies have been fully utilized the inputs and maximizing the outputs. The rest of 35 companies are categorized as inefficient companies as the efficiency scores are less than 100%. HSL and HOHUP obtained maximum efficiency scores at 93.38% and 91.59% respectively in rank 5 and 6 which nearly close to 100%. Meanwhile, KERJAYA, MITRA, WCT and PRTASCO attained the efficient score within 60% to 82% in rank of 7, 8, 9 and 10 where positioned in the range of inefficiency. In addition, CRESBILD, TSRCAP, JETSON BENALEC, PSIPTEK, EKOVEST and MUDAJYA resulted the scores which less than 10% ranked in 33, 34, 35, 36, 37, 38 and 39 respectively.

5. Conclusions
DEA is a non-parametric mathematical linear programming technique and benchmarking technique, which is widely used in Decision Making Units (DMUs) among organization units such as insurances, hospitals, banks, property management, factory, retails, service operation, etc. as performance measurement for efficiency evaluation and frontier analysis. This study is to attempt the efficiency of construction sectors companies by using DEA model through ratio analysis which is defined as the ratio of total outputs to total inputs. The result obtained from this study showed that four companies which are ECONBHD, MLGLOBAL, PTARAS, and SUNCON manage to score 100% efficiency. This study is significant because the inefficient companies are identified for potential improvement.
6. References

[1] Bursa Malaysia, 2016. Bursa Malaysia. [Online] Available at: http://www.bursamalaysia.com/corporate/about-us/ [Accessed 4 July 2016].

[2] Olanrewaju, A.L. & Abdul-Aziz, A.R., 2015. Building maintenance processes and practices: The case of a fast developing country. Building Maintenance Processes and Practices: The Case of a Fast Developing Country, pp.1–331.

[3] Construction Industry Development Board Malaysia, 2015. Construction Industry Transformation Programme (CITP) 2016-2020, Kuala Lumpur: CIDB Malaysia.

[4] Mohammadi, A. et al., 2015. Joint life cycle assessment and data envelopment analysis for the benchmarking of environmental impacts in rice paddy production. Journal of Cleaner Production, 106, pp.521–532.

[5] Banker, R., 1984. Estimating most productive scale size using data envelopment analysis. European Journal of Operational Research, 17(1), pp.35–44.

[6] Masuda, K., 2016. Measuring eco-efficiency of wheat production in Japan: a combined application of life cycle assessment and data envelopment analysis. Journal of Cleaner Production, 126, pp.373–381.

[7] Khalili-Damghani, K. et al., 2015. A dynamic multi-stage data envelopment analysis model with application to energy consumption in the cotton industry. Energy Economics, 51, pp.320–328.

[8] Muazu, A. et al., 2014. Yield Prediction Modeling Using Data Envelopment Analysis Methodology for Direct Seeding, Wetland Paddy Cultivation. Agriculture and Agricultural Science Procedia, 2, pp.181–190.

[9] Illyasu, A. & Mohamed, Z.A., 2016. Evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems in Peninsular Malaysia: A two-stage DEA approach. Aquaculture Reports, 3, pp.12–17.

[10] Illyasu, A., Mohamed, Z.A. & Terano, R., 2016. Comparative analysis of technical efficiency for different production culture systems and species of freshwater aquaculture in Peninsular Malaysia. Aquaculture Reports, 3, pp.51–57.

[11] Kamarudin, N., Ismail, W.R. & Mohd, M.A., 2014. Assessing efficiency and effectiveness of Malaysian Islamic banks: A two stage DEA analysis. In Proceedings of the 3rd International Conference on Mathematical Sciences, Kuala Lumpur, Malaysia, 17–19 December 2013. AIP Publishing, pp. 934–938.

[12] Yang, C.C., 2014. Evaluating the performance of banking under risk regulations: A slacks-based Data Envelopment Analysis assessment framework. Expert Systems, 3(2), pp.176–184.

[13] Yue, P., 1992. Data Envelopment Analysis and Commercial Bank Performance: A Primer With Applications to Missouri Banks. Federal Reserve Bank of St. Louis, 74(1), pp.31–45.

[14] Singh, P.K. & Thaker, K., 2016. Dynamics of scale efficiency of Indian banks: A deterministic frontier approach. Journal of Developing Areas, 50(3), pp.437–457.

[15] Echchabi, A., Olaniyi, O.N. & Ayedh, A.M., 2015. Assessing the efficiency of Malaysian banks: A data envelopment analysis approach. Afro-Asian Journal of Finance and Accounting, 5(1), pp.56–69.

[16] Ng, K.H. et al., 2014. A survey on Malaysia’s banks efficiency: Using data envelopment analysis. Scholars Journal of Economics, Business and Management, 1(11), pp.586–592.

[17] Sufian, F. & Zulkhibri, M., 2013. On the efficiency of the Malaysian banking sector: A risk-return perspective. Review of Development Finance, 3(1), pp.13–21.

[18] Tahir, I.M. & Bakar, N.M.A., 2009. Evaluating efficiency of Malaysian banks using data envelopment analysis. International Journal of Business and Management, 4(8), pp.96–106.
[19] Rezaie, K. et al., 2013. Efficiency appraisal and ranking of decision-making units using data envelopment analysis in fuzzy environment: A case study of Tehran stock exchange. *Neural Computing and Applications*, 23(SUPPL1), pp.1–17.

[20] Ling, O.P. & Kamil, A.A., 2010. Data envelopment analysis for stocks selection on Bursa Malaysia. *Archives of Applied Science Research*, 2(5), pp.11–35.

[21] Chuweni, N.N. & Eves, C., 2016. Technical, allocative and scale efficiency of Malaysian REITs: The preliminary finding. In *22nd Pacific Rim Real Estate Society Conference ;Sunshine Coast, Queensland, Australia 17-20 January 2016*.

[22] Abdul-Wahab, A.-H. & Dzuljasti Abd. Razak, 2015. Relative efficiency of plantation companies in Malaysia: A financial ratio based data envelopment analysis approach. In *Proceeding - Kuala Lumpur International Business, Economics and Law Conference 6, Vol. 1. April 18 – 19, 2015. Hotel Putra, Kuala Lumpur, Malaysia*. pp. 132–142.

[23] Harun, S.L., Md Tahir, H. & Zaharudin, Z.A., 2012. Measuring efficiency of real estate investment trust using data envelopment analysis approach. In *The Fifth Foundation of Islamic Finance Conference (FIFC),9-10 July 2012, Langkawi, Malaysia*.

[24] Tahir, I.M. et al., 2010. Company operation performance analysis using data envelopment analysis approach: A study on publiclisted companies in Malaysia. *International Journal of Global Business*, 3(1), pp.43–52.

[25] Ramanathan, R., 2003. *An introduction to data envelopment analysis : a tool for performance measurement*, New Delhi: Sage.

[26] WebFinance, 2016. *BusinessDictionary*. [Online] Available at: http://www.businessdictionary.com/definition/efficiency.html [Accessed 25 July 2016].

[27] Farrell, M.J., 1957. The Measurement of Productive Efficiency. *Journal of the Royal Statistical Society. Series A (General)*, 120(3), pp.253–290.

[28] Charnes, A., Cooper, W.W. & Rhodes, E., 1978. Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2(6), pp.429–444.

[29] Martić, M., Novaković, M. & Baggia, A., 2009. Data Envelopment Analysis - Basic Models and their Utilization. *Organizacija*, 42(2), pp.37–43.

Acknowledgements

This study is supported by Universiti Tunku Abdul Rahman Research Fund.