Prediction of Missing Streamflow Data using Principle of Information Entropy

Santosa, B.¹, Legono, D.², and Suharyanto³

Abstract: Incomplete (missing) of streamflow data often occurs. This can be caused by a not continuous data recording or poor storage. In this study, missing consecutive streamflow data are predicted using the principle of information entropy. Predictions are performed using the complete monthly streamflow information from the nearby river. Data on average monthly streamflow used as a simulation sample are taken from observation stations Katulampa, Batubeulah, and Genteng, which are the Ciliwung Cisadane river areas upstream. The simulated prediction of missing streamflow data in 2002 and 2003 at Katulampa Station are based on information from Genteng Station, and Batubeulah Station. The mean absolute error (MAE) average obtained was 0.20 and 0.21 in 2002 and the MAE average in 2003 was 0.12 and 0.16. Based on the value of the error and pattern of filled gaps, this method has the potential to be developed further.

Keywords: Prediction, missing data, streamflow, entropy.

Introduction

Water resources planners and managers use historical monthly average streamflows data for a variety of purposes. The data set are often not complete, missing streamflows data may exist due to various reasons such as not continuous data recording or lost in storage. In relation to the development of analysis techniques, there should be a better method so that the uncertainty concerning with frequency of field experience could be minimized, to be accurate in predicting calculation.

The purpose of this paper is to develop and to test a method to fill monthly average missing streamflows data. Predictions to fill the missing streamflows data use existing data and information data from the nearest river basins that have a complete data recording history and proximity hydrological. Information from a nearby river basin is required, because the hydrologic pattern of adjacent river basin have similarities. This information will be utilized to fill the missing streamflow data in a river basin.

The approach used to predict a missing streamflows data is the principle of information entropy, which is based on the probability of distribution of each river flow events within a region [1].

Unavailability of data has led the theory of entropy to be attractive and widely used in models of decision making in environmental and water resources [1]. Kusmulyono and Goulter [2] used of the principles of entropy as a method of analysis, that is based on the interpretation of entropy principle and characteristics, that can be used to analyze events that have a probability.

The entropy theory comprises three main parts: Shannon entropy, principle of maximum entropy, and principle of minimum entropy. The entropy theory has been applied to a great variety of problems in hydrology and water resources. Singh and Rajagopal [3] discussed advances in application of the principle of maximum entropy (POME) in hydrology. Singh and Rajagopal [3] presented new perspectives for potential applications of entropy in water resources research. The entropy principle has recently found areas of versatile and promising use in hydrology and water resources [1]. Specific area of its application covers assessment of model performance, derivation of functional relationship, evaluation of information transfer between hydrology variables data, parameter estimation, derivation of frequency distribution, streamflow prediction, assessment of uncertainty, and evaluation of data acquisition system [3]. The method is subsequently extended for purposes of spatial design in case of streamflow gaging stations by defining transferred and transferable amounts of information [4].
Entropy method has been developed to estimate the random variable when the data are series of independent observations of the variable. This method is interesting, because it meets two basic requirements used to analyze probability based on the principle of invariant systems and the principle of monotonous data. Minimum entropy method has been applied to the analysis of the flood, and then compared with the method of moments and maximum likelihood [5]. The entropy theory is used to develop a univariate model for forecasting of long term streamflow [6]. The maximum entropy method is also widely applied and the maximum entropy distribution proved suitable for a variety of flooding data [7]. An entropy-based approach has been developed for estimation of natural recharge in Kodaganar River basin, Tamil Nadu, Southern India [8].

The frequency distribution is usually assumed in the analysis of frequency. The parameters of the distribution are estimated using the observed data changes. Completeness of the distribution is then used to estimate the amount of flow with different frequencies. Maximum entropy is a probability distribution which is defined as the minimum conditional probability distribution obtained by maximizing the entropy subject to constraints of the information given limits [7]. Apart from the interesting features of the distribution of maximum entropy, yet commonly used in practice, the main reason for not using the maximum entropy distribution in the general form is that the parameter estimation problem associated with the maximum entropy distribution is not easy. Recently this problem has been solved and the algorithms have been developed to estimate the parameters of the distribution of maximum entropy [7].

Study Area and Data

This research studies area are Ciliwung and Cisadane rivers with observational data obtained from the Department of Water Resources, Bandung, Indonesia. The data used in this study are drawn from the monthly average streamflows from observation stations Katulampa, Batubeulah and Genteng, at the Ciliwung and Cisadane river upstream. The monthly average flow profiles of the three observation stations can be seen in Figure 1.

![Figure 1. Monthly Average Streamflows Data from Batubeulah, Katulampa, and Genteng Stations.](image)

Method

Second Law of Thermodynamics states that under normal conditions, all systems without disruption tend to be disorganized, dispersed, and corrupted over time. Second law of thermodynamics is a way of defining this natural process with physics equations and calculations. This law is also known as entropy [1]. Shannon [9] developed the entropy theory for expression of information or uncertainty. To understand the informational aspect of entropy, we consider a set consisting of n events. We view uncertainty as a situation where we do not know which event among n events will occur. Thus, uncertainty is about which one of those events actually occurs.

Entropy is the interval of disorder in a system. It increases when a regular, structured, and planned state system becomes more irregular, scattered, and unplanned. Law of entropy states that the whole universe moves towards a more disordered, unplanned, and disorganized. Shannon [9] illustrates that the entropy is the amount of uncertainty in probability distributions. Thus, the concept of entropy can be used as a measure of uncertainty and indirectly as a measure of the probabilistic information. According to Shannon [9], this information is achieved only when there is uncertainty about an event. This uncertainty can be assumed to indicate the presence of alternative outcomes of events and to select them. Alternative with a high probability of occurrence showed little information available and its opposite. Thus, the likelihood of occurrence of a particular alternative is a measure of uncertainty, in this case Shannon called the entropy.

Information is a measure of uncertainty or entropy in a situation. The greater the uncertainty, the greater the available information. If there is a circumstance, there is no information at all. Theory of information entropy is a formula in use and at follow as the basis of measurement. The probability of n possible events 1, 2, 3, ..., n is p₁, p₂, ..., pₙ, and uncertainties may be defined as H (p₁, p₂, p₃, ..., pₙ) [10]. The basic equation of entropy is shown in Equation 1.

\[H = -K \sum_{i=1}^{n} p_i \ln p_i \]

(1)

Where H is a measure of information or the size of the uncertainty, the probability pᵢ that may be on events i. H will have a maximum value (ln n) if all the events is uncertain and pᵢ = 1/n. H will have a minimum value (0) if all the events for sure. In the probability of random occurrence the value of H will be between the two extremes. The maximum mean value of H indicates that there is no bias in predicting.
Principle of Maximum Entropy (POME)

Since the development of the entropy theory by Shannon in the late 1940s and of the principle of maximum entropy (POME) by Jaynes [11] in the late 1950s there has been a proliferation of applications of entropy in a wide spectrum of areas, including hydrological and environmental sciences. Maximum entropy is also called the Principle of Maximum Entropy (POME). Characteristics of the maximum entropy function in Equation 2 are uniform probability distribution that will produce the maximum entropy value for the occurrence of the specified limits. Conversely the maximum entropy function Equation 3 has a limitation that the number of probabilities of all events must be equal to one, to ensure the probability distribution is the probability uniformly on every event. The principle of entropy can be used to obtain the probability distribution by maximizing the objective function by setting limits for specific information events.

\[
\text{Maximum } H = - \sum_{i=1}^{n} P_i \ln P_i \tag{2}
\]

where \(\sum_{i=1}^{n} P_i = 1 \) \(\tag{3} \)

\[
\sum_{i=1}^{n} P_i x_i = \bar{x} \tag{4}
\]

Principle of Minimum Entropy (MDI)

Minimum entropy is also called the Minimum Discrimination Information (MDI). The minimum entropy principle was first introduced by Kullback and Leibler [10], the measurement approach performed with two probability distributions, namely the information to determine the difference between probability distributions \(P \) and \(Q \). Equation presented by Kullback and Leibler [10] to measure the entropy value is as in Equation 5 as the following:

\[
\text{Minimum } H(P : Q) = \sum_{i=1}^{N} P_i \ln \left(\frac{P_i}{Q_i} \right) \tag{5}
\]

Where \(P_i \) is the probability of event \(i \) of the probability distribution \(P \) and \(Q_i \) probability of event \(i \) of the probability distribution of \(Q \).

Predicting Method

Prediction of missing streamflows data on the observed location are performed using the principles of information entropy of the maximum and minimum entropy. Between maximum entropy and entropy will have a minimum value of entropy with the same probability distribution for events distributed uniformly. For example in the case of throwing the dice.

Real probability of throwing the dice is \(p_i \), whereas \(q_i \) is the theoretical probability which is 1/6. Optimization of the maximum entropy (Equation 2) will yield an equal value to the optimization of minimum entropy (Equation 5) with the information value of \(q_i \) = 1/6. Figure 2 and Figure 3 are probability distribution results obtained from optimization of the maximum and minimum entropy with the constraint (Equation 3) and the average value (Equation 4) of 3.5 and 4.5 respectively, while Figure 4 is obtained by adding the standard limits deviation of 1.898 in order to get a normal probability distribution.

The minimum entropy principle with the example of throwing dice can be applied in the selection of probability distributions for hydrological parameters, especially on the observation history of discharge data on the location of the observation of a river to provide information on other locations. The principle of maximum entropy distribution factor allows to incorporate probabilities \(q_i \), which is the initial information or (prior probability), to improve the final probability distribution \(p_i \) (posterior probability) as a basis prediction.

Figures 5 and 6 are illustrations of three adjacent river basins, where river basin data B has a vacancy that occurs in a certain time, while A and C is a river basin with complete data. Predicted loss of data in B can be done with the help of information from the river basin data A and C with the same period events, with consideration of the similarity of the flow pattern because of the proximity factor hydrology and climatology.

Figure 2. Throwing Dice Probability Distribution with an Average Set of Incidence = 3.5

Figure 3. Throwing Dice Probability Distribution with an Average Set of Incidence = 4.5
Prediction is basically done by utilizing the existing probability to generate a new probability in the year in which the predictions is performed. Prediction in this case is to generate data on flow rates at Katulampa station in 2002, then it must be known probability for flow in 2002. The probability of flow at Katulampa in 2002 can be generated by utilizing the nearest station flow data at Genteng in 2002, i.e. by finding the joint probability between the flow at Katulampa and Genteng station in 2002. This can be performed by using Equation 5 with its limitations (Equation 3 and 4), and with the help of the joint probability of information between the flow at Katulampa and Genteng stations from other years (2003-2006) and then joint probability between Katulampa and Genteng can be produced for the year 2002. Joint probability between Katulampa and Genteng in 2002 was a condition that must exist to generate predictions of Katulampa flow in 2002. Other information required in this prediction is the average flow and the deviation from the station Katulampa in 2003-2006. Predictions are also performed to flow at station Katulampa 2003, using information from the Batubeulah and Genteng stations. Prediction methods and processes are the same as when predicting the flow at Katulampa of 2002.

Prediction is done using the minimum entropy (Equation 5), where p_i is the probability that will be generated as the basis in making predictions, whereas q_i is the initial information obtained from the joint probability of the average flow events between Katulampa and Genteng or Katulampa and Batubeulah (Equation 2). Initial information from the two observation stations function to improve the joint probability p_i when performing predictions. Prediction of flow data on Katulampa station in 2002, based on information from the Batubeulah station (prediction 1) and information from the Genteng station (prediction 2), can be seen in Table 2 and Figure 7. The mean absolute errors (MAE) average that occurred are 0.20 and 0.21. Whereas Prediction of flow data on Katulampa station in 2003, based on information from the Batubeulah station (prediction 1) and information from the Genteng station (prediction 2), can be seen in Table 2 and Figure 8. The mean absolute errors (MAE) average that occurred are 0.12 and 0.16.

Figure 7. Prediction of Missing Streamflows Data in 2002 at Katulampa Station with Information Based from the Batubeulah and Genteng Station.
Table 1. Prediction of Missing Streamflows Data in 2002 at Katulampa Station

Month	Observations (m³/sec)	Predictions 1 (m³/sec)	Predictions 2 (m³/sec)	MAE Predictions 1	MAE Predictions 2
1	7.5	8.6	7.01	0.14	0.07
2	9.6	16.9	11.42	0.75	0.18
3	9.5	6.9	8.64	0.28	0.09
4	15.0	10.0	8.61	0.34	0.43
5	7.0	6.8	7.32	0.03	0.05
6	5.7	5.4	6.24	0.05	0.10
7	5.9	4.5	4.21	0.22	0.28
8	4.9	4.1	4.27	0.15	0.12
9	4.4	4.1	7.66	0.07	0.72
10	4.5	4.8	4.63	0.08	0.04
11	5.7	7.4	6.69	0.30	0.17
12	6.5	6.8	8.16	0.03	0.25

MAE average 0.20 0.21

Table 2. Prediction of Missing Streamflows Data in 2003 at Katulampa Station

Month	Observations (m³/sec)	Predictions 1 (m³/sec)	Predictions 2 (m³/sec)	MAE Predictions 1	MAE Predictions 2
1	5.7	6.7	6.6	0.18	0.15
2	11.0	11.8	9.6	0.08	0.13
3	9.9	9.4	7.0	0.05	0.29
4	7.7	9.4	7.0	0.22	0.09
5	9.0	8.4	7.7	0.07	0.15
6	4.3	2.9	3.6	0.33	0.16
7	3.1	2.8	3.3	0.07	0.07
8	2.3	2.7	2.9	0.14	0.22
9	2.8	2.9	3.6	0.04	0.29
10	5.5	5.8	4.3	0.05	0.22
11	4.7	3.8	4.9	0.17	0.05
12	7.0	7.3	7.7	0.03	0.10

MAE average 0.12 0.16

Figure 8. Prediction of Missing Streamflows Data in 2003 at Katulampa Station with Information Based from the Batubeulah and Genteng Station

Conclusion

Prediction of missing streamflows data at Katulampa Station 2002 produced a monthly average errors of 0.20 with the data information from Batubeulah station and 0.21 with data information from Genteng Station, whereas prediction of missing streamflows data at Katulampa Station 2003 produced a monthly average errors of 0.12 with the data information from Batubeulah Station and 0.16 with data information from Genteng Station. Based on the performance of the prediction, it can be seen that the method based on information entropy principles have the potential to be developed as the methods to be used to predict the missing monthly average discharge.

References

1. Singh, V.P., *The Entropy Theory as a Tool for Modelling and Decision Making in Environmental and Water Resources*, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70808-6405, USA, 1999.

2. Kusmulyono, A. and Goulter I., Entropy Principles in the Prediction of Water Quality Values at Discontinued Monitoring Stations, *Stochastic Hydrology and Hydraulics*, 8, 1994, pp. 301-317.

3. Singh, V.P. and Rajagopal, A.K., Some Recent Advances in the Application of the Principle of Maximum Entropy (Pome) in Hydrology, *Water for the Future: Hydrology in Perspective (Proceedings of the Rome Symposium)* IAHS Publ. No. 164., 1987, pp 353-364.
4. Harmancioglu, N. and Baran, T., Effect of Recharge System on Hydrological Information Transfer along River, *New Directions for Surface Water Modeling, Proceedings of the Baltimore Symposium*, IAHS Publ. no 181, May 1989, pp 224-233.

5. Lind, N.C., Hong, H.P., and Solana, V., A Cross Entropy Method for Flood Frequency Analysis, *Stochastic Hydrology and Hydraulics*, 3, 2005, pp. 191-202.

6. Krstanovic P.F. and Singh V.P., An Entropy Based Method for Flood Forecasting, *New Directions for Surface Water Modeling, Proceedings of the Baltimore Symposium*, IAHS Publ. no. 181, May 1989, pp. 105-113.

7. Rao, R.A. and Hsieh, C.H., Maximum Entropy Probability Distributions for Flood Frequency Analysis, *Civil Engineering and Environmental Systems*, 4(2), 1987, pp. 67-76.

8. Mondal, N.C. and Singh, V.P., Entropy-Based Approach for Estimation of Natural Recharge in Kodaganar River Basin, Tamil Nadu, India, *Current Science*, 99(11), 2010, pp. 1560-1569.

9. Shannon, C.E., A Mathematical Theory of Communication, *Bell System Technical Journal*, 1948, Part I July, pp. 379-423, Part II, Oct., pp. 623-656.

10. Kullback, S. and Leibler, R.A, On Information and Sufficiency, *The Annal of Mathematical Statistis*, 22(1), 1951, pp. 79-86.

11. Jaynes, E.T., Information Theory and Statistical Mechanic II, *The Physical Review*, Departement of Physics, Stanford University, California, 108(2), 1957, pp.171-190.