Dear Editor,

We read with great interest the article of Donagaon et al.\(^1\) regarding the association between glycemic gap and adverse outcome in critically ill patients. The authors have shown on a cohort of 200 diabetic patients admitted to the intensive care unit (ICU) that the higher was the excursion in glucose blood levels, the higher was the risk of life-threatening complications, notably acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome, and acute kidney injury. They also showed a significant correlation with mortality, a result recently confirmed also by Singh et al.\(^2\). To perform their analyses, Donagaon et al.\(^1\) used the glycemic gap, a very interesting parameter that allows to estimate glucose blood levels excursion by subtracting the average glucose of the previous 8–12 weeks (\(ADAG = [28.7 \times HbA1c] - 46.7\)) from plasma glucose at admission.\(^3\) Although many methods to calculate glucose excess and glucose variation have been described,\(^3\) we find this method of computation very helpful and easier to use. Furthermore, we think that this article allows interesting considerations, especially concerning the risk of developing ARDS.

Despite the fact that the prevalence of diabetes in the ICU population is estimated to be up to 40%, no studies have investigated the role of diabetes on ARDS development in a systematic manner, leading to conflicting results: some studies have hypothesized a protective role on ARDS, whereas others demonstrated no effects. In this scenario of uncertainty, the results of the European Society of Intensive Care Medicine (ESICM) trial group analysis on the LUNG SAFE database are more than welcomed.\(^4\) The aim of their investigation was, indeed, to answer to this longstanding-question: is there any association between diabetes and ARDS development? In patients admitted with acute hypoxic respiratory failure to 459 ICUs in 50 countries, they analyzed the incidence of ARDS on the second day from admission depending on the presence of diabetes. Interestingly, among 4107 patients, 209 of them developed ARDS after 2 days, with no differences between diabetics and non-diabetics (4.8% vs. 5.2%, \(P = 0.67\)). The authors found no differences also in terms of mortality between patients with and without diabetes (log-rank test, \(P = 0.28\)).\(^5\) The LUNG SAFE analysis offers a new insight into the relationship between ARDS and diabetes, and one of its strength point is, undoubtedly, the sample size on which it was performed. Nevertheless, it was not specified, as mentioned in the limitations, whether both the severity of diabetes and the presence of an uncontrolled hyperglycemic status could have played a role, leading to different conclusions. In this context, a simple method such as the glycemic gap could have been helpful in stratifying the population, providing these missing information.

In conclusion, one of the highest-quality investigation on the subject has shown that the presence of diabetes does not worsen the outcome in ARDS patients. Nevertheless, further studies aimed to enlighten the still unresolved issues are required; in our opinion, they could easily take advantage of the glycemic gap as the reference method for this purpose.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Donagaon S, Dharmalingam M. Association between Glycemic Gap and adverse outcomes in critically ill patients with diabetes. Indian J Endocrinol Metab 2018;22:208-11.
2. Singh M, Upreti V, Singh Y, Kannapur AS, Nakra M, Kotwal N. Effect of Glycemic variability on mortality in ICU settings: A prospective observational study. Indian J Endocrinol Metab 2018;22:632-5.
3. Bartoli E, Sainaghi PP, Bergamasco L, Castello L. Computation of the excess glucose and Na deficit of hypo-osmolar hyponatremic hyperglycaemia. Acta Diabetol 2010;47:147-54.
4. Bartoli E, Sainaghi PP, Bergamasco L, Castello L. Hyperosmolar coma due to exclusive glucose accumulation: Recognition and computations. Nephrol Carlton Vic 2009;14:338-44.
5. Boyle AJ, Madotto F, Laffey JG, Bellani G, Pham T, Pesenti A, et al. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxic respiratory failure: An analysis of the LUNG SAFE database. Crit Care Lond Engl 2018;22:268.

Access this article online

Quick Response Code: [QR Code]
Website: www.ijem.in
DOI: 10.4103/ijem.IJEM_617_18

How to cite this article: Gavelli F, Patrucco F. Could the glycemic gap fill the unfilled gaps?. Indian J Endocr Metab 2019;23:171.

© 2019 Indian Journal of Endocrinology and Metabolism | Published by Wolters Kluwer - Medknow