Nanomaterials: An Introduction

Tarun Kumar Barik, Gopal Chandra Maity, Pallavi Gupta, L. Mohan, and Tuhin Subhra Santra

Abstract Nanotechnology offers a significant advantage in science, engineering, medicine, medical surgery, foods, packing, clothes, robotics, and computing from the beginning of the twenty-first century. As the potential scientific discovery always contains some good and bad effects on human civilization and the environment, nanotechnology is not an exception. The major drawbacks include economic disruption along with imposing threats to security, privacy, health, and environment. The introduction of the chapter discusses the historical background of nanotechnology. Later it also discusses the advancement of nanotechnology to date with its benefits. Major drawbacks of nanotechnology arise in human health due to the enormous involvement in medicine, food, agriculture, etc. This chapter also deals with environmental nano pollution and its effect on society, highlighting the social-economic disruption due to the rapid use of nanotechnology. Nano pollution affects not only human beings but also other living beings like microorganisms, animals and plants, which are briefly reviewed. This chapter also demonstrates the safety and security of nanotechnological developments, current policy and regulation status, challenges, and future trends. Finally, it is concluded, while nanotechnology offers more efficient power sources, faster and modern computers and technologies, life-saving medical treatments, but due to some negative impacts, it bounds us to think twice before any further advanced technological applications.

T. K. Barik (✉)
Department of Physics, Achhruram Memorial College, Jhalda, Purulia, West Bengal, India
e-mail: tarun.barik2003@gmail.com

G. C. Maity
Department of Chemistry, Abhedananda Mahavidyalaya, Sainthia, Birbhum, India

P. Gupta · L. Mohan · T. S. Santra
Department of Engineering Design, Indian Institute of Technology Madras, Chennai, India

L. Mohan
Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
T. S. Santra and L. Mohan (eds.), Nanomaterials and Their Biomedical Applications,
Springer Series in Biomaterials Science and Engineering 16,
https://doi.org/10.1007/978-981-33-6252-9_1
1 Introduction

Nanotechnology is an emerging field of science and technology with numerous applications in biomedical and manufacturing engineering [1–3]. In the last two decades, nanotechnology integrates with mechanical and electronic engineering to develop Micro/Nano-electromechanical systems (MEMS/NEMS) devices, which have diverse applications in different fields of science and engineering. These devices are potentially applicable for various sensing, actuating, and biomedical analysis purposes [4–13]. Recently, quantum dots have increased much attention in biological fields due to their unique size, tunable light absorption, and emission properties [14]. Further, biocompatible nanomaterials have many applications in biomedical purposes such as orthopedic, cardiovascular, contact lenses, catheter, prosthetic replacement, etc., [15–21]. Among noble metals, Ag and Au nanoparticles synthesis via marine algae are used as a broad-spectrum antimicrobial agent towards a variety of pathogens in the biomedical field [22]. Nowadays, nanomaterials are produced by industries for commercial applications with enormous benefits. While there lies a vast potential of nanomaterials for fulfilling individual requirements, it also represents potential risks to human health [23].

The green synthesis of nanoparticles attracts many researchers and industries. Many microorganisms are utilized for the synthesis of nanoparticles. Biosynthesis of nanoparticles has been reported using photoautotrophic microorganisms such as cyanobacteria, eukaryotic algae, and fungi. The biogenic fabrication of nanoparticles via microalgae is a non-toxic, and eco-friendly, green chemistry method with a large variety of compositions and physicochemical properties. Biosynthesis of nanoparticles by plant extracts is currently under exploitation. Plant extracts are a better source of nanomaterials compared to the various biological processes often considered eco-friendly substitutes of chemical and physical methods [1, 17]. Seaweeds contain different organic and inorganic substances that can benefit human health [24]. The green seaweed is used widely in agriculture, pharmaceutical, biomedical, and nutraceutical industries for its presence of a high amount of vitamins and minerals [25]. Among several genera of microalgae, *Spirulina platensis* is blue-green algae of the cyanobacteria family grown in temperate water in the whole world. A blue-green alga has served as food with high protein content and nutritional value from ancient times [26]. The algae produce novel and potentially useful bioactive compounds [27, 28]. The bioactive materials have gained significant attention in recent years and have been used considerably in developing new pharmaceutical products, food products, renewable bio-energy, and biomedical applications [29–31]. However, a new global health problem has been arisen as in discriminant antibiotic use and the remarkable ability of bacteria to acquire resistance to lower these drugs’ effectiveness via genetic
mutation or gene acquisition. Therefore, new classes of antibiotics with novel structures are needed to combat this trend. Food preservation is now dealing with the severe concern of microorganisms mediated spoilage and fall in quality and nutrition worldwide [32]. Hence, increasing the continuous demand for pathogen control measures to combat resistant microorganisms against multiple antimicrobial agents. However, nanoparticles own large surface area to volume ratio, unique quantum size, magnetic properties, heat conductivity in addition to some catalytic and antimicrobial properties [33]. In this regard, nanomaterials, including metal nanoparticles, carbon nanotubes, quantum dots, and other active nanomaterials can be used to develop biosensors against a broad spectrum of microorganisms for the formulation of a new generation of antimicrobial agents.

2 Historical Background of Nanotechnology

The first experiment of nanotechnology was shown in 1857 when Michael Faraday introduced ‘gold colloid’ samples to the Royal Society. He added phosphorous to a solution of gold chloride and, after a short while, noted that the blue color of the solution changed to a ruby red dispersion, without knowing the actual cause of color changing. Indeed, the resulting suspension of nanosized gold particles in solution appeared transparent at some frequencies, but others could look colored (ruby, green, violet, or blue). Since then, many experiments and theoretical studies have been carried out to explain similar systems’ unique properties, which in today’s terminology are called low-dimensional systems. Nearly after 100 years, in 1959, Richard Feynman inspired the field of nanotechnology in his lecture at the American Physical Society (APS) meeting, Caltech, saying the meaningful words “There’s Plenty of Room at the Bottom.” From the late 1980s, we find there is a growth of activity on these low dimensional materials. In general, low dimensional systems are categorized as follows: (a) two dimensional (2D) systems, in which the electrons are confined in a plane (e.g., Layered structures, quantum wells and superlattices); (b) one dimensional (1D) systems, in which electrons are free to move only in one dimension (e.g., linear chain-like structures, semiconductor quantum wires), and (c) zero-dimensional (0D) systems, where electrons are confined in all three dimensions (e.g., quantum dots, clusters, and nanosized colloidal particles) [34–41].

The dimension of these materials in the direction of confinement lies in the nanometer scale, given the name nanomaterials. In this length scale, classical physics fails to explain the behavior of these materials. Instead, one needs quantum mechanical concepts. Interestingly, due to quantum effects, the physical properties of nanomaterials change drastically from their corresponding bulk behavior. This unique feature of nanomaterials has been exploited by modern technology in various applications. The link between human life and nanotechnology is as old as Ayurveda, a 5000-year-old Indian medicine system.

Moreover, twenty-first century modern science marks the beginning of nanoscience, while it existed from ancient times of Vedas, much before even the
term “nano” was coined [42, 43]. As per strict nanometer terminology, any objects with dimensions in the nm range can be termed as a nanoparticle or a “nano” object, as TiO₂ dust in the study mentioned above [44]. Nanotechnology not only combines engineering, physics, and chemistry but also integrates with biology [45]. A physicist generally tries to identify and quantify nanomaterials’ fundamental interactions with different surrounding systems such as the thermodynamics, the interface of the nanoparticles with the liquid, and the role of mechanical properties (e.g., stiffness, elasticity, adhesion), etc.

Past three decades, extensive work has been performed to develop new drugs from natural products, because of the resistance of microorganisms to the existing drugs [46]. Researchers from the Indian Institute of Technology Bombay, India, have discovered that the age-old complementary medicines of Homeopathic pills and Ayurvedic Bhasmas are having metal nanoparticles such as gold, silver, copper, platinum, tin, and iron [46, 47]. Metallic nanoparticles (mainly silver and gold) have unique optical, electrical, and biological properties, that have attracted significant attention due to their potential use in many applications, such as catalysis, ultra-sensitive chemical and biological sensors, bio-imaging, targeted drug delivery and nanodevice fabrication [13, 48–57]. Recently, various industries like electronics, aerospace, cosmetics, textile, and even food use nanoparticles. Consequently, the chance of human exposure to nanoparticles rises, heading towards the time when nanoparticles are eventually present in blood circulation and interacting with immune blood cells.

Nanoparticles can be synthesized via various chemical and physical routes such as chemical reduction, [58–60] photochemical reduction, [61–65] electrochemical reduction, [66, 67] heat evaporation, [68, 69], etc. In all the above-mentioned methods, the reagents can be from different properties, i.e. inorganic such as sodium or potassium borohydrate, hydrazine, and salts of tartrate, or organic ones like sodium citrate, ascorbic acid, or amino acids, capable of getting oxidized. Various options are also available to work as a stabilizing agent. Several studies have reported shape and size dependency of silver nanoparticles formation on capping agents such as dendrimer, [70] chitosan, [71] ionic liquid, [72], and poly (vinylpyrrolidone) PVP [73]. These capping agents control the nanoparticle growth via reaction confinement within the matrix or preferential adsorption on specific crystal facets. Since these approaches are costly, hazardous, toxic, and non-environment friendly, hence, evaluation of the risk of these nanoparticles to human health becomes critical. Multiple studies have shown the increase in the number of leukocytes, mainly neutrophils, in the lungs and bronchoalveolar lavages during airway exposure of nanoparticles in-vivo models of inflammation. The neutrophil counts act as biomarkers for inflammation. Therefore, the selection of a synthesis route that minimizes the toxicity and increases nanoparticle stability leads to enhanced biomedical applications of silver and gold nanoparticles. The development of better experimental procedures for the synthesis of nanoparticles employing a variety of chemical compositions and controlled polydispersity offers considerable advancement [74]. Methods of nanoparticle production through different physical and chemical routes, as stated above, have their demerits as they produce enormous environmental contaminations.
and hazardous byproducts. Thus, there is a need for “green chemistry” that ensures clean, non-toxic, and environment-friendly nanoparticles production [75].

In recent years, environment-friendly approaches have been developed to fabricate stable nanoparticles with well-defined morphology and configured constricted sizes [76]. Additionally, owing to the high demand for precious metals (like silver and gold) and metal oxides in electronics, catalysis, medical, and other industrial applications, its recovery from primary and secondary sources is of considerable significance and interest. Biological recovery of these precious metals by preparing their nanoparticle is a green alternative to the conventional physical and chemical methods [77, 78]. Bio-inspired synthesis of nanoparticles is an advanced, cost-effective, environment-friendly approach over chemical and physical processes, without any inclusion of high pressure, energy, temperature, and toxic chemicals [79]. For example, the plant leaf extract is used for the biosynthesis of silver and gold nanoparticles for pharmaceutical and biomedical applications, without employing any toxic chemicals in the synthesis protocols [80]. An environmentally acceptable solvent system, eco-friendly reducing and capping agents are considered to be an essential element for an ultimately “green” synthesis [81]. The green synthesis techniques are generally utilizing relatively non-toxic chemicals to synthesize nanomaterials. The fabrication process also includes the use of non-toxic solvents such as water, biological extracts, biological systems, etc. In this technique, generally, microwave maintains a constant temperature of solvent systems. The conventional extraction technique using hexane, ethanol, and water was used to collect bioactive molecules [82]. However, they are immensely problematic due to instability as well as environmental and health hazards [83]. To overwhelm this problem, researchers developed a new approach, i.e., supercritical fluid (SCF) extraction technology for avoiding toxic organic solvents in green technology. SCF possesses physical properties intermediate between CO₂ gas and a liquid at a temperature and pressure above its critical point. Since supercritical CO₂ is non-polar, non-toxicity, non-flammability, and low critical temperature.

3 Benefits of Nanotechnology

Recently, research and development in nanotechnology have seen exponential growth due to advantages in different fields, i.e., drug delivery, cell imaging, material improvement, and medical devices for diagnosis and treatment. More powerful computers are being designed using nanomaterials in a smaller size, faster in speed, and consuming very less power, having long-life batteries. Circuits consisting of carbon nanotubes can maintain the computer system advancement. Carbon nanotubes are also commercially used in sports equipment, to increase their strength while maintaining a low weight. Nanoparticles or nanofibers in fabrics improve the water-resistance, stain resistance, and flame resistance, without putting on extra weight, stiffness, or thickness of the material. Nanoparticles are used in medical products for dermal, oral or inhalation applications, and pharmaceuticals. These are
also used in various consumer products, including cosmetics, food, and food packaging. The nanomaterials having potential uses in cosmetics include nanosilver, nanogold, nanoemulsions, nanocapsules, nanocrystals, dendrimers, fullerenes, liposomes, hydrogels, and solid lipid nanoparticles. Smaller the size, corresponding to the higher surface area of nanomaterials offer greater strength, stability, chemical, physical, and biological activity. Nanomaterials present in the human environment can be primarily classified into four categories: carbon-based nanomaterials, metal-based nanomaterials, dendrimers, and composites. The carbon-based nanomaterials (fullerenes and nanotubes) are employed in thin films, coatings, and electronics.

The metal-based nanomaterials (i.e., nanosilver, nanogold, and metal oxides (i.e., titanium dioxide (TiO$_2$)) are useful for food, cosmetics, and drug-related products. The dendrimers are nano-polymers, an ideal candidate for drug delivery. Composites such as nanoclays are formed with a combination of nanoparticles with other nanosize or larger particles. Many beverage bottles are made up of plastics with nanoclays. The nanoclay reinforcement increases permeation resistance to oxygen, carbon dioxide, moisture, and thus retaining carbonation, pressure with increased shelf life by several months. Nanoclays are also being used in packaging materials.

Different classes of nanomaterials are composed of nanoparticles with different shape, size, and chemistry and biology. Nanotechnology helps to improve vehicle fuel efficiency and corrosion resistance by building vehicle parts from Diamond-Like-Nanocomposite (DLN) materials that are lighter, stronger, and more chemically resistant than metal [84–88]. The DLN film exhibits biocompatibility in nature, which has potential applications as a coating material for biomedical purposes [89, 90].

A few nanometers wide water filters can remove nanosized particles, including virtually all viruses and bacteria, which can revolutionize the water filtration method. These cost-effective, portable water-treatment systems are ideal for the improvement of drinking water quality in developing countries. Nowadays, most sunscreens also contain nanoparticles for effective absorption of light, including the more dangerous ultraviolet range and passing the other wavelengths, which is healthy for the skin. Recently, nanosensors can be programmed to detect a particular chemical at low levels, such as a single-molecule detection, out of billions of molecules. This capability is ideal for security systems and surveillance at labs, industrial sites, and airports. In medical science, the detection of single biomolecules has tremendous DNA/RNA sequencing and disease analysis applications. The nanobiosensors can be used to precisely identify particular cells or substances in the body for different diagnostics purposes. Current research is focused on preparing the smaller, highly sensitive, and cost-efficient biosensors. The new biosensors are updated to even detect odors specific diseases for medical diagnosis, pollutant detection, and gas leaks for environmental protection. Figure 1 shows the technological tsunami that occurs due to nanotechnology in energy storage, defense & security, metallurgy & materials, electronics, optical engineering & communication, biomedical & drug delivery, agriculture & food, cosmetics & paints, biotechnology, textile, etc. [91]. According to Zion market research analysis in 2017 [92], there is a rapid increase of global nanomaterials market volume (in kilo tons) and revenue (in USD Billion), which is estimated from 2014 to 2022, is shown in Fig. 2a. Other statistical surveys
from two different agencies (see Fig. 2b and c (BCC research)) also confirmed the rapid increase of the global nanotechnology market of nanomaterials, nanotools, and nanodevices, etc. [93, 94].

4 Nanotechnology in Health

4.1 Potential Routes for Nanomaterials to Enter into the Human Body

Nanomaterials can enter into the human body in various ways. Potential routes nanomaterials enter the human body are ingestion, inhalation, and skin absorption [95–97]. Many nanomaterials are employed in drug transport or cell imaging via intravenous entry to the human body. In the body, nanomaterials are translocated throughout the body by blood circulation. For the purpose, the nanoparticles must fulfill the requirement of permeability across the barrier of the blood vessel wall. Absorption through the skin serves as an alternate route of entry for nanoparticles inside a human body. The skin is the largest organ of the human body, provides a large surface area for interactions with the external environment. TiO$_2$ nanoparticles can take either
Fig. 2 a Rapid increase in global nanomaterials market volume (Kilo Tons) and revenue (USD Billion) for the period of 2014–2022 [92]. Source Zion market research analysis, 2017. b The global market value of nanotechnology from 2010 to 2020 (in Billion USD) [93]. c Global nanotechnology review for nanomaterials, nanotools, and nanodevices market from 2011 to 2017 (in Million USD). Source BCC Research [94]

route for entry, i.e., the lungs or gastrointestinal tract. Nanomaterials can enter the body through the skin for various reasons, such as the use of medicine, cosmetics, ointments, and use of clothes containing nanomaterials, occupational contact in the industry, etc. Soaps, shampoos, toothpaste, hair gels, creams, and some cosmetics containing the nanosilver, which can enter into the body through the skin.

Cream or solution containing Silver nanoparticles is used to treat wounds, burns, etc. to prevent infections and damaged skin. The penetrating ability depends on the size of the nanoparticles. The smaller the nanoparticle, has the more exceptional penetrating ability. The inhaled particulate matter gets accumulate in the human respiratory tract, while one significant portion of those inhaled particles gets deposited in the lungs. Nanoparticles also can travel across the placenta in pregnant women to the fetus along with other organs, i.e., brain, liver, and spleen. The effects of inhaled nanoparticles in the body may include lung inflammation and heart disease problems [95]. The pulmonary injury and inflammation resulting from the inhalation of nanosized urban particulate matter appear due to the oxidative stress imposed by these particles in the cells [98–101]. The first reported nanoparticle is nanosilver, which can damage DNA molecules. Silver nanoparticles have the most harmful effects on the most sensitive biological groups [98, 102–105]. This nanoparticle can enter into the blood through the skin. Silver binds with the thiol group of some proteins. If
silver complexes with thiol groups are located near-skin region, it gets readily available to get reduced either by visible or UV light into metallic nanosilver particles. Therefore, the immobilization of silver nanoparticles takes place in the skin. Further, the effect of nano copper-induced renal proximal tubule necrosis in kidneys has been reported by Liao and Liu [106].

4.2 Nanomaterials for Therapy and Diagnostics

Nanoparticles in pharmaceutical products facilitate improved absorption within the human body and easy delivery, often in association with medical devices. For example, magnetite, a metal oxide, has high potential applications in nanomedicine. Nanoparticles can assist the targeted delivery of chemotherapy drugs to specific cells, i.e., cancer cells. Superparamagnetic iron oxide nanoparticles (SPIONs) and ultra-small superparamagnetic iron oxide (USPIO) have also proved its significance for targeted drug delivery [107]. Nanoparticles improve the solubility of poorly watersoluble drugs, increase drug half-life, modify pharmacokinetics, improve bioavailability, diminish drug metabolism, assist controlled and targeted, and combined drug delivery [98, 108–111]. According to the International Agency for Research on Cancer (IARC) data, estimates of nearly 13.1 million deaths due to cancer by 2030. It is evident that the low survival rate occurs not because of the scarcity of potent, natural, or synthetic antitumor agents but owing to inadequate drug delivery systems. Hence develops the requirement of technology advancement to establish carriers and delivery systems capable of targeted and efficient delivery of the chemotherapeutic agents without unwanted systemic side effects [112]. The solid lipid nanoparticles and nanoemulsions are the most employed lipid-based drug delivery particles. However, nanosilver based commercial products are capturing the market. The newly developed nanomaterials for theranostics are being employed alone or in association with “classical” drugs, e.g., cytostatic drugs, or antibiotics. Theranostics is a combined term for nanomaterials with diagnostic and therapeutic properties [111].

5 Drawbacks of Nanotechnology

Nanomaterials are being employed in different industries and everyday life. Therefore, the interplay of nanomaterials and social surroundings is worth scientific exploration. Nanomaterials with several benefits can be toxic. Various studies also confer the effects, as mentioned above, indicating the potential toxicological effects on the human environment [98]. Different toxic and hazardous effects of nanotechnology are briefly discussed below.
5.1 Toxicity of Nanomaterials

Greater human exposure of nanomaterials presents in the environment; more significant is the harmful effect on human health. The assessment of the cytotoxicity of nanomaterials assists in the proper elucidation of the biological activity. Gerloff et al. reported the cytotoxicity of various nanoparticles, such as zinc oxide (ZnO), SiO$_2$, and TiO$_2$, on human Caco-2 cells [113]. Shen et al. [114] showed the human immune cells are prone to toxicity due to ZnO nanoparticles [115]. The ZnO nanoparticles damage mitochondrial and cell membranes in rat kidney, ultimately leading to nephrotoxicity [115]. Generally, the nanomaterial toxicity mechanism comprises reactive oxygen species formation and genotoxicity. However, as described earlier, the toxicity of ZnO nanoparticles mainly affects immune cells. Various nanomaterials with their diverse sizes alter mitochondrial function. For example, ZnO nanoparticles generate Zn$^{2+}$ ions, which disrupts charge balance in the electron transport chain in the mitochondria and therefore triggers reactive oxygen species generation. Nanosilver particle has a genotoxic effect. A 20-nm nanosilver has a genotoxic effect on human liver HepG2 and colon Caco2 cells. It has also increased mitochondrial injury and the loss of double-stranded DNA helix in both cell types [116]. Inhalation of TiO$_2$ nanoparticles resulted in pulmonary overload in rats and mice with inflammation [117, 118]. The cytotoxic and genotoxic effects of TiO$_2$ nanoparticles on the human lung were reported by Jugan et al. [119]. TiO$_2$ nanoparticles are genotoxic, and it can induce pathological damage of the liver, kidney, spleen, and brain. Du et al. reported cardiovascular toxicity of silica nanoparticles in rats [120]. The surface coating of quantum dots causes toxicity to the skin cells, including cytotoxicity and immunotoxicity [121]. Nanosilver is used in wound dressings, affects both keratinocytes and fibroblasts. Fibroblasts show higher sensitivity towards nanosilver than by keratinocytes. Again, iron oxide nanoparticles rapidly get endocytosis on cultured human fibroblasts and interrupt the function. Citrate/gold nanoparticles have shown toxicity on human dermal fibroblasts [122]. Carbon nanotubes have high toxicity and produce harmful effects on humans. The nanoparticles can penetrate the lungs, then reached the blood and acted as a barrier for the circulation of blood into the brain. They can also enter inside other organs like bone marrow, lymph nodes, spleen, or heart. Sometimes, nanoparticles can incite inflammation, oxidant and antioxidant activities, oxidative stress, and change in mitochondrial distribution. These effects depend on the type of nanoparticles and their concentrations [101]. Copper nanoparticles (diameters 40 nm and 60 nm) harm brain cells at low concentrations. It activated the proliferation of the endothelial cells in brain capillaries. Ag nanoparticles (25, 40, or 80 nm) influenced the blood-brain barrier, causing a pro-inflammatory reaction, which might induce a brain inflammation with neurotoxic effects [123]. Smaller Ag nanoparticles (25 nm and 40 nm diameter) can induce cytotoxic effect at a higher rate than larger nanoparticles. Nanoparticles also have harmful effects on the brain cell of the mouse and rat. The high concentration of nanoparticles can affect brain blood fluxes, with consequent cerebral edema. Pathogenic effects of Ag-nanoparticles (25, 40, and 80 nm diameter), Cu-nanoparticles (40 and 60 nm), and Au-nanoparticles
(3 and 5 nm) on the blood-brain barrier of the pig have been reported [124]. Silver nanoparticles (45 nm) influenced the acetylcholine activity via nitric oxide generation; it induces hyperactivity of rat tracheal smooth muscle [125]. It is also reported that Ag- nanoparticles (25 nm) produced oxidative stress after the injection into the mouse. The nanoparticles were aggregated in the kidneys, lungs, spleen red pulp, and the nasal airway, with no observable morphological changes apart from the nasal cavity [126].

Very few cells do not undergo morphological changes after withstanding the air-liquid interface culture for an extended duration. Au-nanoparticles (5 nm and 15 nm diameter) penetrated the mouse fibroblasts, where they remained stocked. Only the presence of 5 nm Ag-nanoparticles disrupted cytoskeleton resulting in narrowing and contraction of cells. Many engineered nanomaterials, such as TiO2, magnetite iron, CeO2, carbon black, SWCNTs, and MWCNTs, also might cause different levels of inflammatory reactions, including enhanced pro-inflammatory cytokines expression, target inflammation-related genes, and micro-granulomas formation [127, 128]. The intra-tracheal administration of MWCNTs with variable length and iron content in hypertensive rats Led to the lung inflammation with increased blood pressure and lesions in abdominal arteries along with accumulation in multiple organs i.e., liver, kidneys, and spleen post seven days and 30 days exposure [129]. Maneewattanapinyo et al. studied acute toxicity of colloidal silver nanoparticles administered in laboratory mice and observed no mortality any acute toxicity symptoms after a limited dose of 5.000 mg/kg post 14 days of oral administration. No differences could be observed among groups after hematological and biochemical assessment and the histopathological study. The instillation of silver nanoparticles at the concentration of 5.000 ppm developed a transient eye irritation for 24 h. The application of these nanomaterials on the skin did not produce any micro or macroscopic toxicity [130]. The schematic mechanism of silver nanoparticle’s toxicity in the human body is shown in Fig. 3 [131]. The liver and spleen are maximum exposed organs to nanomaterials owing to the prevalence of phagocytic cells in the reticuloendothelial system. Also, the organs with high blood flow, such as kidneys and lungs, can be affected.

5.2 Health Hazards in Human

Despite having many benefits and using nanomaterials, it may cause health hazards to humans due to a tiny size. The broad absorption surface of the lung, the thinner air–blood barrier, and comparatively less inactivation of enzymes leads to faster entry for particles into the systemic blood circulation at higher drug concentrations. Additionally, intended uptake, exposure of airborne particles from the environment, and nanoparticles released during the manufacturing process may also cause health hazards for humans. Usually, nanomaterials’ biological effects are based on their size, composition, shape, and even on their electronic, magnetic, optical, and mechanical
properties. Presently, the influence of nanotechnology on human health and the environment is still controlled. Most of the studies assessed the outcomes of unintentional and accidental exposure (inhalation, medical procedures, or accidental ingestion) and focused only on local effects [98, 99]. Though, along with introducing nanomaterial-based biomedical methods, it is mandatory to analyze their toxicity at a systemic level. Centuries before, Paracelsus said, “everything is a poison, and nothing is a poison, it is only a matter of a dose.” For nanomaterials, it is applicable in both the aspects of dose and particle size [100]. There is a massive demand for nanomaterials in various applications, ranging from diagnostic technology, bio-imaging, to gene/drug delivery [132–145]. Therefore, intended or unintended human exposure to nanomaterials is unavoidable and has higher prospects of exposure. Thus, a branch of science is developing, named “nanotoxicology”, the study of the toxicity of nanomaterials. Nanotoxicology assesses the role and safety of nanomaterials on human health. Several anthropogenic sources, like power plants, internal combustion engines, and other thermo-degradation reactions also generate nanoparticles and develop the need to assess them [101].
5.2.1 Hazards in Nanomedicine

The nanomaterials represent a variety of biomedical applications. However, there is some potential risks factor related to the toxic issue. For example, oxidative stress, cytotoxicity, genotoxicity, and inflammation have been reported on in vitro and in vivo models for testing nanoparticles. The difference in the size of nanomaterial and bulk comes with the differences in properties and toxicity. Nanomaterials are tremendously beneficial yet can be toxic. Ag, ZnO, or CuO nanoparticles are frequently used as bactericides [102]. Nevertheless, waste disposal in the environment can also negatively affect non-target organisms.

5.2.2 Hazards in Medical Instrumentation

Nanomaterials are involved in medical interventions like prevention, diagnosis, and treatment of diseases. More functional and accurate medical diagnostic equipment are being designed for easy and safe operation. The lab-on-a-chip technology facilitates real-time point-of-care testing, enhancing the standards of medical care. Nanomaterial based thin films on implant surfaces improve the wear and resist infection. However, until now, these medical nanodevices are not 100% hazard free due to manufacturing processes, not following guidelines of nanotoxicity, and operating without the assessment of long term effects of nanotoxicity.

5.2.3 Hazards in Food Product

Nanotechnology is used to produce advanced food products and smart packaging technology [146–148]. In this way, the possibility of direct exposure to nanomaterials with human beings is enhanced, and different types of long-term or short-term toxicity may occur [149–151]. Nanoparticles and diamond-like nanocomposite (DLN) thin films are used in food packaging to reduce UV exposure and prolonged shelf life. Due to very few articles being reported in this area, further research is needed to fully explore the potential use of these nanoparticles for food products and medical treatments.

6 Environmental Nanopollution and Its Effect in Society

Environment conservation is a challenging task. Its vastness and complexity make this even more difficult. As nanomaterials’ production is growing, multiple issues concerning nanotechnology arise as environmental pollution and industrial exposure. Nanoparticles serve as pollutants in diesel exhaust or welding fumes, presenting new toxicological mechanisms [152, 153]. It also makes us face pollution in macro, micro,
and nanoscale. New branches of electronics are also creating new sources of occupational exposure hazard. The circumstances produce new challenges for both classical toxicology and nanotoxicology. Though nanotechnology improves the living standard, a simultaneous increase in water and air pollution has also occurred. As the origin of this pollution lies in nanomaterials hence termed “Nanopollution.” Nanopollution is exceptionally lethal to both underwater flora and fauna and organisms living on soil. The pollutants can enter the human body in multiple ways. Cellular mechanisms can get affected by nanomaterial toxicity, which mainly comprises reactive oxygen species generation and genotoxicity [153–155]. The nanoparticle’s exposure on humans can occur accidentally by environmental particles (e.g., air pollution) and intentionally because of a variety of consumer products, cosmetics, and medical products containing nanoparticles. The release of nanoparticles during the manufacturing process may result in exposure to workers via dermal, oral, and inhalation routes. Exposure to air pollutants, such as ultrafine particles, is known to cause inflammatory airway diseases and cardiovascular problems in humans [156]. Pope et al. [157] stated that even low levels of ambient nanoparticle exposure have a significant effect on mortality. To decrease nano pollution, scientists and researchers used nanotechnology to develop nanofilters, eliminating almost all airborne particles [158].

7 Social-economic Disruption Due to Rapid Use of Nanotechnology

As the speed of nanotechnology development is growing, as a consequence, the job opportunities are decreasing, arising the problem of unemployment in fields like industrial sector, manufacturing, and traditional farming [159, 160]. Nanotechnology-based devices and machines have replaced humans to furnish the job more rapidly and efficiently, which has pointed out the importance of human resources in practical work. Increasing growth and instant performance of nanotechnology have compromised the worth of commodities like diamond and oil. As an alternative technology, i.e., Nanotechnology has a detrimental effect on demand as substitutes have more efficiency and do not need fossil fuels. Diamonds are losing the worth due to greater availability from nanotechnology-based fabrication methods. Currently, manufacturing companies are equipped to produce the bulk of these products at a molecular scale, followed by disintegration to create new components.

At present, nanotechnology involves high investment technologies, raising the cost daily. The high price is the result of intricate molecular structure and processing charges of the product. The whole process makes it difficult for manufacturers to produce dynamic products using nanotechnology randomly. Currently, it is an unaffordable business owing to the massive pricing of nanotechnology-based machines. Hence, nanotechnology can also bring financial risks as manufacturers have to invest a large sum of money for setting up nanotech plants. The manufacturers have to
face a considerable loss if, by any chance, the manufactured products fail to satisfy the customers. Alternate options such as the recovery of the original product or maintenance of the nanomaterials are also a costly and tedious affair.

Further, nanotechnology does not leave any byproducts or residues, generally based on small industries, therefore creating a considerable risk of extinction for small scale industries. As an outcome, the quantity of sub-products of coal and petroleum is deteriorating. Another massive threat, like the Covid-19 pandemic situation, may be born with the arrival of nanotechnology. It can make the easy accessibility of biochemical weapons or nano-bio engineered biological weapons. Nanotechnology is making these weapons more powerful and destructive. Unauthorized criminal bodies or corrupt politicians can steal the formulations and may reach these dangerous weapons easily, and they can quickly destroy our civilization [161].

8 Effect of Nanotechnology on Microorganisms, Animals, and Plants

Some nanomaterials are hazardous to human beings and are also harmful to the existence of different microorganisms, animals, and plants. Human-made nano pollution is very unsafe for living microorganisms, animals, and plants under the water or on the earth. As a result, many of microorganism’s families have entirely disappeared from the world. Due to the rapid application of nanotechnology in the agriculture sector without proper nanotoxicological analysis, many plants are directly exposed to nanotoxicity, and animals are indirectly exposed. Thus, in the last two decades, a vast number of valuable plants and animals are entirely disappeared from our world.

9 Safety and Security of Nanotechnological Developments

Nanotechnology is an extensively expanding field. Researchers, scientists, and engineers are getting high success in producing nanoscale materials and taking advantage of enhanced properties, such as higher strength, lighter weight, increased electrical conductivity, and chemical reactivity compared to their larger-scale equivalents [162, 163].

Human health concerns are also growing due to nanomaterials. The attempts of technological manipulations raise the vocational risk to the workers in case of accidental exposures. The ethical issues regarding the poisoning of mass material are processed at a nanoscale, causing adverse effects on the health and industry. Mass poisoning occurs in the case of toxic micro particles coatings on the products. These microparticles penetrate inside the brain, while in contact with humans. Academic and industry experts suggest that there exists ambiguity regarding the toxic effects of releasing nanoparticles into the environment. It is also noteworthy that there is a lack
of knowledge of nanoparticles interactions with humans and the environment. Similar to most of the emerging technologies, nanotechnology, and nanochemistry industries have both benefits and challenges. To obtain maximum benefits, the problems must be overcome, managed, and endured. In combination with other inorganic or organic counterparts, mesoporous silicates have been extensively explored for targeted drug delivery and cancer treatment. Even though the long-term toxicity of the nanoparticles is subjected to controversies and doubts, the use of gold and silver nanoparticles have provided more advantages in comparison to other actual alternatives (cytostatics).

Consequently, there is a growing interest in developing in vitro assays for nanotoxicology study [164]. It is strongly encouraged to use primary human cells as a source for in vitro study with nanoparticles since different origins of cancerous cell lines complicate data interpretation for human risk evaluation. Till now, the environmental effects and the toxicity of nanomaterials to organisms are in the infancy state. The evaluation methods need to be cost-effective rapid, and quantity efficient.

10 Current Policy and Regulation Status

The social implications of nanotechnology comprise many fundamental aspects like ethics, privacy, environment, and security. Occasionally, the negative impacts on the environment are too averse to handle that the people simply give up. However, nanoscience researchers are still optimistic about seeing the light of hope on the other side of the tunnel. Environmental clean-up is possible via the design and manipulation of the atomic and molecular scale of materials. It would develop cleaner energy production, energy efficiency, water treatment, and environmental remediation. Nanoscale fluid dynamics decipher the flow of nanoparticles in the environment as a result of interactions with biological and ecological systems. Researchers are keen to understand the transportation of nanomaterials in association with environmental contaminants through groundwater systems. For food authenticity, safety, and traceability, every food company should need to use smart labels at more robust and innovative functional lightweight packaging. Each developed and developing countries have a separate policy and regulation for the use of nanotechnological products and applications. Explicit initiatives on nanotechnology must be needed to promise that the opportunity provided by nanotechnology is not misused, and research does not become fragmented. The uncertainty, complexity, and diversity of nanotechnology mean that any initiative should not be a strictly preconceived closed program. Flexibility will be needed to stay side by side of development as they arise.
11 Challenges and Future Trends in Using Nanomaterials in Humans

Nanotechnology-based production uses minimal human resources, land, maintenance, and it is cost-effective, high productivity with modest requirements of materials and energy. The extensively growing field offers scientists and engineers an excellent opportunity to manipulate or alter the nanoscale materials to yield benefit of enhanced material characteristics like increased strength, lightweight, higher electrical conductivity, and chemical activity in comparison to their large-scale counterparts. However, for biomedical applications, the toxicity evaluation of nanomaterials should be performed. Broadly, detailed physicochemical characterization of nanomaterial should be performed before and during any toxicity study. Essential properties can control nanomaterial-induced toxicity, including size and shape of the nanomaterials, coating, chemical composition, crystal growth, nanomaterials purity, structure, surface area, surface chemistry, surface charge, agglomeration, and solubility should also be taken care. Measurements should be performed in a sufficiently stable state of nanomaterials in the most suitable test medium, i.e., aggregation status and ion release from metallic nanomaterials. Various engineered materials should be tested for their multidisciplinary tiered toxicity using diverse models and experiments [165, 166]. Therefore, the first step in genotoxicity is an assessment of the physicochemical properties of nanomaterials. The validation of the proposed tiered approaches still waits for the future. The researchers are continuously trying to increase the relevant database with an increasing number of publications (papers, reviews, or even patents) every year [167], particularly the market share of the nanotechnology products is also growing up to thousands of billions of Euros [168]. Balanced use of the nanotechnologies/nanomaterials must be arranged to optimize the opportunities/risks factors.

Further studies related to the influence of size and shape, capping agents, receptors immobilization onto the metal nanoparticles are still necessary. Varying sizes can tune surface plasmon resonance, the shape of the nanomaterials and different surface functionalization of both silver and gold nanoparticles can reduce the toxicity and enhance a variety of biomedical applications in the future. For example, CNT toxicity can be reduced via functionalization, surface coating, and stimulation of the autophagic flux. The amino functionalization decreases the CNT toxicity to the cells [169] and albumin coating for SWCNTs [170]. We have summarized some comparative points about the advantages and disadvantages of nanotechnology discussed throughout our review in the form of the following Table 1.

12 Conclusions

Nanoparticles can enter and get distributed around the human body very easily. After entering into humans, it moves within the body and creates cellular toxicity. Then it attacks the respiratory system, cardiovascular system, brain, skin, gut, and other
Advantages	Disadvantages
Early-stage detection of some diseases	Still at its infancy stage
Reduction of the size of any material, machine or equipment	More research and developmental work need to be done
Reduction of the amount of energy and resource	Expensive technology till now
Helps to clean up the existing nano-pollution	Creates environmental nano pollution
Able to secure the economy once it can be fully implemented	It can create social-economic disruption in society
Applicable and implementable to most of the applications ever existed	The huge initial cost for implementation
Can alter the basis of technology for human, in its matured phase	Resistance from a culture perspective, activists, journalists and even within the government
Improvement of the therapeutic drug index by increasing efficacy and/or reducing toxicities	Knowledge limitation from many industries and misperception among many fields about its capabilities.
Targeted delivery of drugs in a tissue-, cell- or organelle-specific manner	The government does not regulate nanomaterials
Enabling sustained or stimulus-triggered drug release	Requirement of significant investment and research but yield is still a limiting factor
More sensitive cancer diagnosis and imaging	Some nanoparticles may be toxic to humans
Better pharmaceutical properties (i.e. stability, solubility, circulating half-life and tumor accumulation) of therapeutic molecules	Nanotechnology made weapons are more powerful and more destructive by increasing the explosion potential
Provision of new approaches for the development of synthetic vaccines	Lack of employment in the fields of traditional farming, manufacturing, and industrial sector

organs. Some nanomaterials kill harmful bacteria within the body, and some kill good bacteria and live-cells of the human body. Nanoparticles with different substances are used in SIM cards of cell phones or sunscreens. When these are used, free nanoparticles get released in the environment (air, water, or soil). Engineering fields like civil and electronics also create new occupational health risks, making new, potentially toxic nanomaterials. The toxicity of nanoparticles depends on their shape, size, and chemical composition. Centuries before, Paracelsus quoted, “everything is a poison, and nothing is a poison, it is only a matter of a dose.” In regards to nanomaterials, the quotes hold value for both dose and particle size. The new interdisciplinary investigations explore the potentially harmful effects of these useful NPs and help in environmental preservation. Owing to a smaller size, the inhalation of nanomaterials imposes an adverse impact on human health. The inhalation causes severe injury to the lungs and can also become fatal. The deterioration of lungs can be observed even after the 60s of nanoparticle inhalation. Therefore, for sustainable nanotechnology development, it is mandatory to evaluate and spread knowledge about the short term and long term exposure benefits and hazards for nanomaterials.
To conclude, nanotechnology has the potential to impact society, both positively or negatively. Its consumers, producers, and dealers include all the community members and all stakeholders, so we should collectively raise the voice in its various growth and commercialization phases. Nanotechnology is currently in its infancy stage, with a significant lack of awareness about its effects on humans and the environment. As civilization moves forward, the vital query is: how should we manage the risks and uncertainties of this emergent technology? Is anyhow the COVID-19 pandemic situation human-made? If not, we can face such circumstances due to the careless application of nanotechnology in different fields.

References

1. Santra TS, Tseng F-G (Kevin), Barik TK (2015) Biosynthesis of silver and gold nanoparticles for potential biomedical applications—a brief review. J Nanopharmaceutics Drug Deliv 2:249–265. https://doi.org/10.1166/jnd.2014.1065
2. Kalantar-Zadeh K, Fry B (2008) Nanotechnology-enabled sensors. Springer, US
3. Bhushan B (2010) Introduction to nanotechnology. Springer handbook of nanotechnology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1–13
4. Jha AR (2008) MEMS and nanotechnology-based sensors and devices for communications, medical and aerospace applications. CRC Press
5. Bakhoun EG Micro- and nano-scale sensors and transducers
6. (2020) Handbook of single cell technology + reference. Springer
7. Microfluidics and BioMEMS: Devices and applications—1st Edition—Tu. https://www.routledge.com/Microfluidics-and-BioMEMS-Devices-and-Applications/Santra/p/book/9789814800853. Accessed 9 June 2020
8. Tseng F-G, Santra TS essentials of single-cell analysis: concepts, applications and future prospects
9. Tseng F-G, Santra TS (2015) Micro/nano fluidic devices for single cell analysis. MDPI AG Basel, Switz
10. Santra TS (2020) Bio-MEMS and bio-NEMS: devices and applications. Jenny Stanford Publisher Pvt. Ltd., Singapore
11. Shinde P, Kar S, Mohan L, Chang H-Y, Tseng F-G, Nagai M, Santra TS (2020) Infrared pulse laser activated highly efficient intracellular delivery using titanium micro-dish device. ACS Biomater Sci Eng. https://doi.org/10.1021/acsbiomaterials.0c00785
12. Santra TS, Kar S, Chang H-Y, Tseng F-G (2020) Nano-localized single-cell nanoelectroporation. Lab Chip 17. https://doi.org/10.1039/d0lc00712a
13. Illath K, Narasimahan, AK, Nagai M, Wankhar S, Santra TS (2020) Microfluidic based metallic nanoparticle synthesis and applications. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher Pte. Ltd
14. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater
15. Oshida Y (2010) Bioscience and bioengineering of titanium materials. Elsevier
16. Mohan L, Anandan C, Grips VKW (2012) Corrosion behavior of titanium alloy Beta-21S coated with diamond like carbon in Hank’s solution. Appl Surf Sci 258:6331–6340. https://doi.org/10.1016/j.apsusc.2012.03.032
17. Santra TS, Tseng F-G, Barik TK (2014) Green biosynthesis of gold nanoparticles and biomedical applications. Am J Nano Res Appl 2:5–12. https://doi.org/10.11648/j.nano.s.2014020602.12
18. Mohan L, Durgalakshmi D, Geetha M, Narayanan TSNS, Asokamani R (2012) Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications. Ceram Int 38:3435–3443
19. Mohan L, Anandan C (2013) Wear and corrosion behavior of oxygen implanted biomedical titanium alloy Ti-13Nb-13Zr. Appl Surf Sci 282:281–290. https://doi.org/10.1016/j.apsusc.2013.05.120
20. Mohan L, Anandan C, Rajendran N (2015) Electrochemical behaviour and bioactivity of self-organized TiO2 nanotube arrays on Ti-6Al-4 V in Hanks’ solution for biomedical applications. Electrochim Acta 155:411–420. https://doi.org/10.1016/j.electacta.2014.12.032
21. Mohan L, Kar S, Nandhini B, Dhillip Kumar SS, Nagai M, Santra TS (2020) Formation of nanostructures on magnesium alloy by anodization for potential biomedical applications. Mater Today Commun: 101403. https://doi.org/10.1016/j.mtcomm.2020.101403
22. [PDF] A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via Marine Algae and Seagrasses|Semantic Scholar. https://www.semanticscholar.org/paper/A-Review-of-Current-Research-into-the-Biogenic-of-Fawcett-Verduin/04a57915cbb6701b08de0464260d5a3a7e3a7. Accessed 9 June 2020
23. Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12. https://doi.org/10.1093/annhyg/mel071
24. Cox S, Abu-Ghannam N, Gupta S (2010) An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. Int Food Res J 17:205–220. https://doi.org/10.2147/D7HC92
25. De Pádua M, Growsoski Fontoura PS, Mathias AL (2004) Chemical composition of Ulvaria oxysperma (Kützing) bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Brazilian Arch Biol Technol 47:49–55. https://doi.org/10.1590/s1516-89132004000100007
26. Kumar P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757. https://doi.org/10.1016/j.foodchem.2009.11.006
27. Ravikumar S, Krishnakumar S, Inbanesin SJ, Gnanadesigan M (2010) Antagonistic activity of marine actinomycetes from Arabian Sea coast
28. Krishnakumar S, Premkumar J, Alexis RR, Ravikumar S (2011) Optimization of potential antibiotic production by salt-tolerant Actinomycetes streptomycyes sp.-MSU29 isolated from marine sponge. Int J Appl Bio-Eng 5:12–18. https://doi.org/10.18000/ijabeg.10079
29. Manivasagan P, Venkatesan J, Kim S-K (2015) Marine algae: an important source of bioenergy production. In: Marine Bioenergy. CRC Press, pp 45–70
30. Ermakova S, Kusaykin M, Trincone A, Tatiana Z (2015) Are multifunctional marine polysaccharides a myth or reality? Front Chem 3:39. https://doi.org/10.3389/fchem.2015.00039
31. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281
32. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006
33. Ra M, Gade A, Gaikwad S, Marcato PD, Durán N (2012) Biomedical applications of nanobiosensors: the state-of-the-art. J Braz Chem Soc 23:14–24
34. Kar S, Mohapatra DR, Freysz E, Sood AK (2014) Tuning photoinduced terahertz conductivity in monolayer graphene: optical-pump terahertz-probe spectroscopy. Phys Rev B Condens Matter Mater Phys 90:165420. https://doi.org/10.1103/PhysRevB.90.165420
35. Kar S, Nguyen VL, Mohapatra DR, Lee YH, Sood AK (2018) Ultrafast spectral photoresponse of bilayer graphene: optical pump-terahertz probe spectroscopy. ACS Nano 12:1785–1792. https://doi.org/10.1021/acsnano.7b08555
36. Kar S, Mohapatra DR, Sood AK (2018) Tunable terahertz photocconductivity of hydrogen functionalized graphene using optical pump-terahertz probe spectroscopy. Nanoscale 10:14321–14330. https://doi.org/10.1039/c8nr04154g
37. Kar S, Su Y, Nair RR, Sood AK (2015) Probing photoexcited carriers in a few-layer MoS2 laminate by time-resolved optical pump-terahertz probe spectroscopy. ACS Nano 9:12004–12010. https://doi.org/10.1021/acsnano.5b04804
38. Kar S, Jayanthi S, Freysz E, Sood AK (2014) Time resolved terahertz spectroscopy of low frequency electronic resonances and optical pump-induced terahertz photoconductivity in reduced graphene oxide membrane. Carbon N Y 80:762–770. https://doi.org/10.1016/j.carbon.2014.09.030
39. Li BL, Wang J, Zou HL, Garaj S, Lim CT, Xie J, Li NB, Leong DT (2016) Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv Funct Mater 26:7034–7056. https://doi.org/10.1002/adfm.201602136
40. Kar S, Sood AK (2019) Ultrafast terahertz photoresponse of single and double-walled carbon nanotubes: optical pump-terahertz probe spectroscopy. Carbon N Y 144:731–736. https://doi.org/10.1016/j.carbon.2018.12.081
41. Chiara R, Ciftci YO, Queloz VIE, Nazeeruddin MK, Grancini G, Malavasi L (2020) Green-emitting lead-free Cs4SnBr 6 zero-dimensional perovskite nanocrystals with improved air stability. J Phys Chem Lett 11:618–623. https://doi.org/10.1021/acs.jpclett.9b03685
42. Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071. https://doi.org/10.1016/j.procbio.2010.03.024
43. Prasad TNVKV, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1:439–442. https://doi.org/10.1016/S2221-1691(11)60096-8
44. Leela A, Vivekanandan M (2008) Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African J Biotechnol 7:3162–3165. https://doi.org/10.5897/AJB08.425
45. Hedenborg M (1988) Titanium dioxide induced chemiluminescence of human polymorphonuclear leukocytes. Int Arch Occup Environ Health 61:1–6. https://doi.org/10.1007/BF00381600
46. Savithramma N, Linga Rao M, Ankanna S, Venkateswarlu P (2012) Screening of medicinal plants for effective bio genesis of silver nanoparticles and efficient antimicrobial activity. Int J Pharm Sci Res. https://ijpsr.com/bft-article/screening-of-medicinal-plants-for-effective-bio-genesis-of-silver-nano-particles-and-efficient-anti-microbial-activity/. Accessed 9 June 2020
47. Chikramane PS, Suresh AK, Bellare JR, Kane SG (2010) Extreme homeopathic dilutions retain starting materials: a nanoparticulate perspective. Homeopathy 99:231–242. https://doi.org/10.1016/j.jomp.2010.05.006
48. Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J Phys Chem B 109:3157–3162. https://doi.org/10.1021/jp045186t
49. Diao JJ, Cao Q (2011) Gold nanoparticle wire and integrated wire array for electronic detection of chemical and biological molecules. AIP Adv 1:012115. https://doi.org/10.1063/1.3568815
50. Lim JK, Imura K, Nagahara T, Kim SK, Okamoto H (2005) Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chem Phys Lett 412:41–45. https://doi.org/10.1016/j.cplett.2005.06.094
51. Hutter E, Maysinger D (2011) Gold nanoparticles and quantum dots for bioimaging. Microsc Res Tech 74:592–604
52. Biological applications of colloidal nanocrystals—IOPscience. https://iopscience.iop.org/article/10.1088/0957-4484/14/7/201/pdf. Accessed 9 June 2020
53. Schider G, Krenn R, Hohenau A, Ditlbacher H, Leitner A, Ausseneeg R, Schaich L, Puscasu I, Monacelli B, Boreman G (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B Condens Matter Mater Phys 68:155427. https://doi.org/10.1103/PhysRevB.68.155427
54. Lou X, Zhang Y, Qin J, Li Z (2011) A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples. Chem A Eur J 17:9691–9696. https://doi.org/10.1002/chem.201100389
55. Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866. https://doi.org/10.1016/j.electacta.2008.03.005
56. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380:269–272. https://doi.org/10.1016/j.cplett.2003.07.029
57. Dey K, Kar S, Shinde P, Mohan L, Bajpai SK, Santra TS (2020) Microfluidic electroporation and applications. Jenny Stanford Publisher
58. Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+-poly(γ-glutamic acid)-silver nitrate complex via chemical reduction process. Colloids Surf B BioInterfaces 59:171–178. https://doi.org/10.1016/j.colsurfb.2007.05.007
59. Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J Colloid Interface Sci 249:336–345. https://doi.org/10.1006/jcis.2001.8166
60. Petit C, Lizon P, Pilien MP (1993) In situ synthesis of silver nanocluster in AOT reverse micelles. J Phys Chem 97:12974–12983. https://doi.org/10.1021/j100151a054
61. Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by inter-phase reduction. Colloids Surf A Physicochem Eng Asp 152:375–379. https://doi.org/10.1016/S0927-7757(98)00861-9
62. Mallick K, Witcomb MJ, Scurrell MS (2005) Self-assembly of silver nanoparticles in a polymer solvent: formation of a nanochain through nanoscale soldering. Mater Chem Phys 90:221–224. https://doi.org/10.1016/j.matchemphys.2004.10.030
63. Kéki S, Török J, Deák G, Daróczi L, Zsuga M (2000) Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag+. J Colloid Interface Sci 229:550–553. https://doi.org/10.1006/jcis.2000.7011
64. Pilien MP (2000) Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl Chem, pp 53–65
65. Sun YP, Atormgjitawat P, Meziani MJ (2001) Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 17:5707–5710. https://doi.org/10.1021/la0103057
66. Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168. https://doi.org/10.1016/j.elecom.2004.09.010
67. Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491:78–86. https://doi.org/10.1016/S0022-0728(00)00301-6
68. Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. In: Applied Surface Science. Elsevier, pp 628–634
69. Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci 284:521–526. https://doi.org/10.1016/j.jcis.2004.10.038
70. Esumi K, Isono R, Yoshimura T (2004) Preparation of PAMAM- and PPI-Metal (Silver, Platinum, and Palladium) nanocomposites and their catalytic activities for reduction of 4-nitrophenol. Langmuir 20:237–243. https://doi.org/10.1021/la035440t
71. Murugadoss A, Khan A, Chattopadhyay A (2010) Stabilizer specific interaction of gold nanoparticles with a thermosensitive polymer hydrogel. J Nanoparticle Res 12:1331–1348. https://doi.org/10.1007/s11051-009-9668-0
72. Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J Mater Chem 19:8223–8231. https://doi.org/10.1039/b910610c
73. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science (80-) 298:2176–2179. https://doi.org/10.1126/science.1077229
74. Bhattacharya R, Mukherjee P (2008) Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev 60:1289–1306
75. Raghunandan D, Borgaonkar PA, Bendiagume B, Bedre MD, Bhagawanraju M, Yalagatti MS, Huh DS, Abbaraju V (2011) Microwave-assisted rapid extracellular biosynthesis of silver nanoparticles using carom seed (Trachyspermum coticum) extract and in vitro studies. Am J Anal Chem 02:475–483. https://doi.org/10.4236/ajac.2011.24057
76. Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137. https://doi.org/10.1016/j.colsurfb.2009.01.016

77. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl 4-ions using the anaerobic bacterium Shewanella alga. Hydrometallurgy 81:24–29. https://doi.org/10.1016/j.hydromet.2005.09.006

78. (PDF) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa | Alfredo R Vilchis-Nestor—Academia.edu. https://www.academia.edu/22627587/Biosynthesis_of_silver_gold_and_bimetallic_nanoparticles_using_the_filamentous_fungus_Neurospora_crasa. Accessed 9 June 2020

79. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley-Liss

80. Thakur NS, Dwivedee BP, Banerjee UC, Bhauumik J (2017) Bioinspired synthesis of silver nanoparticles: characterisation, mechanism and applications. In: Silver Nanoparticles for Antibacterial Devices. CRC Press, pp 3–36

81. Xie J, Lee KY, Wang DIC, Ting YP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439. https://doi.org/10.1021/nn7000883

82. Mendiola JA, Rodriguez-Mezioso I, Señoráns FJ, Reglero G (2017) Advanced Microagal Technologies for a Circular Economy. ALGATEC-CM View project. Project Allergy Car-Union European View project

83. Wenqiang G, Shufen L, Ruixiang Y, Yanfeng H (2006) Comparison of composition and antifungal activity of Artemisia argyi Lév. et Vant inflowescence essential oil extracted by hydrodistillation and supercritical carbon dioxide. Nat Prod Res 20:992–998. https://doi.org/10.1080/14786410600921599

84. Santra TS, Bhattacharyya TK Diamond-Like Nanocomposite (DLN) Films for Microelectro-Mechanical System (MEMS). IJCA

85. Santra TS, Bhattacharyya TK, Tseng FG, Barik TK (2012) Influence of flow rate on different properties of diamond-like nanocomposite thin films grown by PECVD. AIP Adv 2:022132. https://doi.org/10.1063/1.4721654

86. Santra TS, Bhattacharyya TK, Patel P, Tseng FG, Barik TK (2011) Structural and tribological properties of diamond-like nanocomposite thin films. Surf Coatings Technol 206:228–233. https://doi.org/10.1016/j.surfcoat.2011.06.057

87. Santra TS, Liu CH, Bhattacharyya TK, Patel P, Barik TK (2010) Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition. J Appl Phys 107:124320. https://doi.org/10.1063/1.3415548

88. IJCA—Diamond-like Nanocomposite (DLN) Films for Microelectro-Mechanical System (MEMS). http://sandbox.ijcaonline.org/proceedings/isdmisc/number6/3478-isdm132. Accessed 9 June 2020

89. Biomedical applications of diamond-like nanocomposite thin films: ingenta connect. https://www.ingentaconnect.com/content/asp/sam/2012/00000004/00000001/art00014. Accessed 9 June 2020

90. Das T, Ghosh D, Bhattacharyya TK, Maiti TK (2007) Biocompatibility of diamond-like nanocomposite thin films. J Mater Sci Mater Med 18:493–500. https://doi.org/10.1007/s10856-007-2009-x

91. Nanotechnology applications (With images) | Nanotechnology, Nano science, Nanotechnology art. https://in.pinterest.com/pin/574842339921055473/. Accessed 9 June 2020

92. Global Nanomaterials Market Worth USD 16.8 Billion by 2022. https://www.zionmarketresearch.com/news/nanomaterials-market. Accessed 9 June 2020

93. Nanotechnology global market value 2020 | Statista. https://www.statista.com/statistics/1073886/global-market-value-nanotechnology/. Accessed 9 Jun 2020

94. Global Nanotechnology Market To Reach $48.9 Billion In 2017. https://www.bccresearch.com/pressroom/nn/global-nanotechnology-market-reach-$48.9-billion-2017. Accessed 9 June 2020
95. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev
96. Pridgen EM, Alexis F, Farokhzad OC (2015) Polymeric nanoparticle drug delivery technologies for oral delivery applications. Expert Opin Drug Deliv
97. Kafshgari M, Harding F, Voelcker N (2015) Insights into cellular uptake of nanoparticles. Curr Drug Deliv. https://doi.org/10.2174/1567201811666140821110631
98. De Jong WH, Borm PJ A (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149
99. Papp T, Schifffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27. https://doi.org/10.1080/1743590701847935
100. Likus W, Bajor G, Siemianowicz K (2013) Nanosilver-does it have only one face?
101. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839
102. Love SA, Maurer-Jones MA, Thompson JW, Lin Y-S, Haynes CL (2012) Assessing nanoparticle toxicity. Annu Rev Anal Chem. https://doi.org/10.1146/annurev-anchem-062011-143134
103. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin. Chim, Acta
104. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res, Int
105. Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H (2012) Toxicity of silver nanoparticles-Nanoparticle or silver ion? Toxicol Lett. https://doi.org/10.1016/j.toxlet.2011.11.002
106. Liao MY, Liu HG (2012) Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environ Toxicol Pharmacol 34:67–80. https://doi.org/10.1016/j.etap.2011.05.014
107. La Francesca S (2012) Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications. Methodist Debacke Cardiovasc J 8:28–35
108. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp. Mol, Pathol
109. Wang AZ, Langer R, Farokhzad OC (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med. https://doi.org/10.1146/annurev-med-040210-162544
110. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, Wurm EMT, Yoong C, Robertson TA, Soyer HP, Roberts MS (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv, Rev
111. Xie J, Lee S, Chen X (2010) Nanoparticle-based theranostic agents. Adv Drug Deliv, Rev
112. Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56:1649–1659
113. Gerloff K, Albrecht C, Boots AW, Frster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3:355–364. https://doi.org/10.3109/17435390903276933
114. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. I Semantic Scholar. https://www.semanticscholar.org/paper/Relating-cytotoxicity%2C-zinc-ions%2C-and-reactive-in-Shen-James/95df5b01a4a932d2c233884e7a4e9e8ed942169. Accessed 9 June 2020
115. Yan G, Huang Y, Bu Q, Lv L, Deng P, Zhou J, Wang Y, Yang Y, Liu Q, Cen X, Zhao Y (2012) Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats. J Environ Sci Heal Part A 47:577–588. https://doi.org/10.1080/10934529.2012.650576
116. Sahu SC, Zheng J, Graham L, Chen L, Ihrig J, Yourick JJ, Sprando RL (2014) Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 34:1155–1166. https://doi.org/10.1002/jat.2994
117. Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. In: Inhalation Toxicology, pp 453–459
118. Ferin J, Oberdorster G, Penney DP (1992) Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol 6. https://doi.org/10.1165/ajrccmb.6.5.535

119. Jugan ML, Barillet S, Simon-Deckers A, Sauvaigo S, Douki T, Herlin N, Carrière M (2011) Cytotoxic and genotoxic impact of TiO2 nanoparticles on A549 cells. J Biomed Nanotechnol 7:22–23. https://doi.org/10.1166/jbn.2011.1181

120. Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, Liu X, Liu Y, Du H, Guo C, Zhou X, Sun Z (2013) Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 13:194–207. https://doi.org/10.1007/s12012-013-9198-y

121. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10:1–33

122. Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M,Strauss V, Treumann S, Wohlleben W, Grötters S, Wienza K, Van Ravenzwaay B (2014) Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol 11:16. https://doi.org/10.1186/1743-8977-11-16

123. Silver Nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells | Toxicological Sciences | Oxford Academic. https://academic.oup.com/toxsci/article-abstract/118/1/160/1664864?redirectedFrom=fulltext. Accessed 9 June 2020

124. Trickler WJ, Lantz-Mcpeak SM, Robinson BL, Paule MG, Slikker W, Biris AS, Schlager JJ, Hussain SM, Kanungo J, Gonzalez C, Ali SF (2014) Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metab Rev 46:224–231

125. González C, Salazar-García S, Palestino G, Martínez-Cuevas PP, Ramírez-Lee MA, Jurado-Manzano BB, Rosas-Hernández H, Gaytán-Pacheco N, Martel G, Espinosa-Tanguma R, Biris AS, Ali SF (2011) Effect of 45 nm silver nanoparticles (AgNPs) upon the smooth muscle of rat trachea: Role of nitric oxide. Toxicol Lett 207:306–313. https://doi.org/10.1016/j.toxlet.2011.09.024

126. Genter MB, Newman NC, Shertzer HG, Ali SF, Bolon B (2012) Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicol Pathol 40:1004–1013. https://doi.org/10.1177/0192623312444470

127. Tsuda H, Xu J, Sakai Y, Futakuchi M, Fukamachi K (2009) Toxicology of engineered nanomaterials—a review of carcinogenic potential. Asian Pac J Cancer Prev 10:975–980

128. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K (2010) Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 275:65–71. https://doi.org/10.1016/j.tox.2010.06.002

129. Chen R, Zhang L, Ge C, Tseng MT, Bai R, Qu Y, Beer C, Autrup H, Chen C (2015) Subchronic toxicity and cardiovascular responses in spontaneously hypertensive rats after exposure to multiwalled carbon nanotubes by intratracheal instillation. Chem Res Toxicol 28:440–450. https://doi.org/10.1021/tx5004003

130. Maneewattanapinyo P, Banlunara W, Thammachareon C, Ekgasit S, Kaewamatawong T (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73:1417–1423. https://doi.org/10.1292/jvms.11-0038

131. Clichici S, Filip A (2015) In vivo assessment of nanomaterials toxicity. In: Nanomaterials—toxicity and risk assessment. InTech

132. Shinde P, Kumar A, Kavitha, Dey K, Mohan L, Kar S, Barik TK, Sharifi-Rad J, Nagai M, Santra TS (2020) Physical approaches for drug delivery. In: Delivery of drugs. Elsevier, pp 161–190

133. Kumar A, Mohan L, Shinde P, Chang H, Nagai M, Santra TS Mechanoporation Toward single cell approaches

134. Santra TS, Chang H-Y, Wang P-C, Tseng F-G (2014) Impact of pulse duration on localized single-cell nano-electroporation. Analyst 139:6249–6258

135. Santra TS, Wang PC, Chang HY, Tseng FG (2013) Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation. Appl Phys Lett 103. https://doi.org/10.1063/1.4833535
136. Manoj H, Gupta P, Loganathan M, Nagai M, Wankhar S, Santra (2020) Microneedles: current trends & applications. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher
137. Kar S, Shinde P, Nagai M, Santra TS (2020) Optical manipulation of cells. In: Microfluidics and bio-MEMS: devices and applications. Jenny Stanford Publisher
138. Santra TS, Wu TH, Chiou EPY (2016) Photothermal microfluidics. In: Optical MEMS for chemical analysis and biomedicine. Institution of Engineering and Technology, pp 289–323
139. Santra TS, Tseng F-G (2016) Electroporation for single-cell analysis, pp 55–83
140. Santra TS, Wang P-C, Tseng FG (2013) Electroporation based drug delivery and its applications. In: Advances in Micro/Nano Electromechanical Systems and Fabrication Technologies. InTech
141. Shanmugam MM, Santra TS (2016) Microinjection for single-cell analysis. Springer, Berlin, Heidelberg, pp 85–129
142. Santra TS, Kar S, Chen C-W, Borana J, Chen T-C, Lee M-C, Tseng F-G (2020) Near-infrared nanosecond-pulsed laser-activated high efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale. https://doi.org/10.1039/d0nr01792b
143. Shinde P, Mohan L, Kumar A, Dey K, Maddi A, Patananan AN, Tseng F-G, Chang H-Y, Nagai M, Santra TS (2018) Current trends of microfluidic single-cell technologies. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103143
144. Kar S, Loganathan M, Dey K, Shinde P, Chang H-Y, Nagai M, Santra TS (2018) Single-cell electroporation: current trends, applications and future prospects. J Micromechanics and Microengineering 28:123002. https://doi.org/10.1088/1361-6439/aae5ae
145. Narasimhan AK, Lakshmi SB, Santra TS, Rao MSR, Krishnamurthi G (2017) Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv 7:53822–53829. https://doi.org/10.1039/c7ra10702a
146. Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog. Polym. Sci
147. Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2014.09.009
148. Sekhon BS (2010) Food nanotechnology—an overview. Nanotechnol Sci Appl
149. Bajpai VK, Kamle M, Shukla S, Mahato DK, Chandra P, Hwang SK, Kumar P, Huh YS, Han YK (2018) Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal
150. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess
151. Sharma C, Dhiman R, Rokana N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbiol
152. Ibrahim RK, Hayyan M, AlSaadi MA, Hayyan A, Ibrahim S (2016) Environmental application of nanotechnology: air, soil, and water. Environ Sci Pollut Res
153. Mehdiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut. https://doi.org/10.5539/ep.v2n2p49
154. Zhang B, Misak H, Dhanasekaran PS, Kalla D, Asmatulu R (2011) Environmental impacts of nanotechnology and its products. Am Soc Eng Educ
155. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect
156. Van Hee VC, Kaufman JD, Scott Budinger GR, Mutlu GM (2010) Update in environmental and occupational medicine 2009. Am J Respir Crit Care Med 181:1174–1180
157. Pope AC, Burnett RT, Krewski D, Jerrett M, Shi Y, Calle EE, Thun MJ (2009) Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke shape of the exposure-response relationship. Circulation 120:941–948. https://doi.org/10.1161/CIRCULATIONAHA.109.857888
158. Bernd N (2010) Pollution prevention and treatment using nanotechnology. In: Nanotechnology
159. Wood S, Geldart A, Jones R (2003) The social and economic challenges of nanotechnology. TATuP - Zeitschrift für Tech Theor und Prax. https://doi.org/10.14512/tatup.12.3-4.72

160. Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanoparticle Res. https://doi.org/10.1007/s11051-004-2336-5

161. Khan A (2015) Ethical and social implications of nanotechnology. QScience Proc. https://doi.org/10.5339/qproc.2015.elc2014.57

162. Springer handbook of nanotechnology

163. (2012) Encyclopedia of nanotechnology

164. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258:151–165. https://doi.org/10.1016/j.taap.2011.11.010

165. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G (2010) Risk assessment of engineered nanomaterials and nanotechnologies—a review. Toxicology 269:92–104

166. Kumar A, Dhawan A (2013) Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Arch Toxicol 87:1883–1900

167. Scopus—Document search | Signed in. https://www.scopus.com/search/form.uri?display= basic. Accessed 9 June 2020

168. Nanomaterials: toxicity and risk assessment—Google Books. https://books.google.co.jp/ books?id=ammQDwAAQBAJ&pg=PA18&lpg=PA18&dq=Rodgers,+P.+Chun,+A.,+Cantrill,+S.,+Thomas,+J.+Editorial,+Small+is+different,+Natur+Nanotechnol.+1,+1,+2006.& source=bl&ots=NX2ybJWdwk&sig=ACfU3U0mla1_5cq6sbkJpAeR7SQxHn7Ig&hl=en&sa=X&ved=2ahUKEwjP8L2Kj_TpAhVrw4sBHQE4DLUQ6AEwAHoECAoQAQ#v= onepage&q=Rodgers%2CP.%2CChun%2CA.%2CCantrill%2CS.%2CThomas%2CJ.Editorial%2CSmallisdifferent%2CNaturNanotechnol.1%2C1%2C2006.&f=false. Accessed 9 June 2020

169. Chen W, Xiong Q, Ren QX, Guo YK, Li G (2014) Can amino-functionalized carbon nanotubes carry functional nerve growth factor? Neural Regen Res 9:285–292. https://doi.org/10.4103/1673-5374.128225

170. Liu Y, Ren L, Yan D, Zhong W (2014) Mechanistic study on the reduction of SWCNT-induced cytotoxicity by albumin coating. Part Part Syst Charact 31:1244–1251. https://doi.org/10.1002/ppsc.201400145