TSA-Seq 2.0 reveals both conserved and variable chromosomal distances to nuclear speckles

Liguo Zhang¹, Yang Zhang², Yu Chen¹#, Omid Gholamalamdari¹, Jian Ma², Andrew S. Belmont¹,³,⁴*

¹Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL
²Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
³Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL;
⁴Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
⁵Present address: Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, CIRM Center of Excellence, University of California, Berkeley, CA 94720, USA, Howard Hughes Medical Institute, Berkeley, CA 94720, USA

*Corresponding author: Andrew Belmont, asbel@illinois.edu
Summary:

TSA-Seq measures chromosomal distances from specific nuclear compartments genome-wide but requires ≥100 million cells. We report 10-20-fold increased sensitivity using TSA-Seq 2.0 which deliberately saturates protein-labeling but preserves distance mapping by the still unsaturated DNA-labeling. Mapping nuclear speckle distances in four cell lines reveals highly transcriptionally active, conserved speckle-associated chromosome domains but relative shifts of a small fraction of the genome that highly correlates with changes in gene expression.
High-resolution Hi-C has revealed a division of A and B compartments into several subcompartments1, while newer genomic methods such as SPRITE2 and GAM3 both point to multi-way interactions occurring more frequently in the nuclear interior, specifically at nuclear bodies such as nucleoli and nuclear speckles2. In addition to mapping contact frequencies, what are needed are convenient genomic methods that directly interrogate the spatial relationship of chromosomes, or even actual distances, relative to specific nuclear bodies/compartments.

Tyramide Signal Amplification (TSA) uses a horse-radish peroxidase (HRP)-conjugated secondary antibody to generate biotin-tryamid free radicals that diffuse and then covalently react with nearby macromolecules4,5. TSA-Seq exploits the exponential decay gradient of tyramide labeling from a point source to convert sequencing reads into a “cytological ruler”, reporting on mean chromosome distances from immuno-stained nuclear compartments6. TSA-Seq mapping on speckle and lamina in K562 cells reveals a lamina-speckle axis with gradients in gene expression and genomic features, suggesting a new model of nuclear organization6. However, as originally implemented, “TSA-Seq 1.0” requires several hundred million cells.

TSA is typically described as labeling the tyrosines of proteins; however, we found that tryamide free radicals also label DNA6. We used pulldown of purified DNA rather than chromatin, ensuring mapping is not biased towards either genomic regions with high tyrosine-rich nonhistone protein content, given that histones are a very weak substrate for the tyramide labeling, or chromatin regions of higher solubility. We designed a series of TSA labeling conditions with increased tyramide-biotin concentration and reaction time (Conditions A-E) using anti-SON nuclear speckle TSA labeling in K562 cells (Fig. 1a, Fig. S1). Condition A corresponds to TSA-Seq 1.0 conditions6. Nuclear speckle TSA labeling increased from Conditions A to C but plateaued, with increases in background staining, from Conditions C to E (Fig. 1a&b).
Condition E produced higher tyramide-biotin labeling in the cytoplasm with no visible specific nuclear speckle staining above the nucleoplasmic staining.

We hypothesized that progressive saturation of protein tyrosines causes non-specific TSA labeling spreading progressively outwards from nuclear speckles, which dominated weaker DNA tyramide labeling masked by this protein labeling. Moreover, under these same conditions, DNA tyramide labeling remains far from saturation.

To test this hypothesis, we “blocked” protein tyrosine groups using high concentrations of tyramide-biotin (Condition E), and then performed a second TSA using tyramide-FITC (Condition A) (Fig. 1c). TSA labeling using the under-saturating Condition A produced similar nuclear speckle staining after both rounds of TSA labeling (Fig. 1d, top). As predicted (Fig. 1c), however, while Condition E TSA labeling produced diffuse biotin-labeling throughout the cell, a 2nd TSA labeling (Condition A) revealed nuclear speckle-specific labeling in K562 (Fig. 1d, bottom) and HFFc6 cells (Fig. S2).

We estimated average tyramide-biotin labeling increased from ~1 biotin/200 kb using Condition A to ~1 biotin/7.5 kb using Condition E (Fig. S3), predicting ~1 biotin/0.94 kb over the ~8 fold-enriched speckle TSA-Seq peaks. Sonicating DNA to ~100-600 bps ensures few DNA fragments with multiple biotins, maintaining linearity between TSA labeling and pulldown read number.

Speckle TSA-Seq maps generated from Conditions A-E were both qualitatively and quantitatively similar (Fig. 1e). Converting TSA-Seq signals to predicted nuclear speckle distances using exponential fitting of immuno-FISH data (Supplementary Table 1 and 2, Methods) demonstrated similar distances estimated from TSA-Seq data across Conditions A-E (Fig. 1e, Fig. S4a). Distance residuals across the genome between Conditions A and E were
mostly smaller than the microscopy diffraction limit of \(\sim 0.25\ \mu m\) (Fig. 1e-f, Fig. S4). Conditions A, C, and E also produced similar SON TSA-Seq maps in HCT116 cells (Fig. S5).

Thus using Condition E we increased pulldown DNA yields by 10-20 fold relative to TSA-Seq 1.0 (Condition A) (Fig. 1g, Fig. S5d), reducing required cell numbers to \(\sim 10-15\) million (to obtain \(\sim 5\) ng pulldown DNA), without significant quantitative changes in nuclear speckle distance estimations.

Previously, we defined chromosome regions with top 5% nuclear speckle TSA-Seq scores as Speckle Associated Domains (SPADs) as they were near-deterministically localized near nuclear speckles, with mean estimated speckle distances of \(<0.32\ \mu m\) and \(\sim 100\%\) of alleles positioned within 0.5 \(\mu m\) of speckles by FISH. To test whether SPADs are conserved among different cell types, we applied SON TSA-Seq 2.0 to four cell lines (Supplementary Table 3, Fig. 1a, Fig. S5a, S6), each with two biological replicates. Indeed, SPADs remained largely conserved among all 4 cell types (Fig. 2a-b, Fig. S7), particularly considering the \(\sim 5\) percentile differences between biological replicates for regions with top 10% TSA-Seq scores (Fig. S8).

To correlate SPADs with gene expression, we divided human protein-coding genes into 20 groups according to their SON TSA-Seq scores in each cell line. SPADs were dramatically enriched in the top 5% expressed genes (Fig. 2c) and had the highest FPKM values in all 4 cell lines (Fig. S9), suggesting SPADs were correlated with genomic regions of constitutively high gene expression. Also, SPADs were enriched in housekeeping genes compared to non-housekeeping genes (Fig. 2d).

We next identified chromosome domains 100 kb or larger with significantly different relative positions to nuclear speckles in pair-wise comparisons between cell lines. We did this by merging 5 or more adjacent 20-kb bins which each showed changed TSA-Seq scores with a p-
value threshold of 0.01. Comparing H1 and HFFc6, we identified 494 domains localized closer to speckles in HFFc6 (408 kb average size) and 367 domains (396 kb average size) closer to speckles in H1 (e.g. Fig. 2e, highlighted).

Chromosome regions closer to nuclear speckles in one cell line versus the other typically showed one or more genes with higher relative gene expression levels in this cell line (e.g. Fig. 2f), including many examples of genes with tissue-specific expression— for example, Collagen genes in fibroblasts (Fig. 2f, Fig. S10). Genome-wide analysis confirmed this marked expression bias (Fig. 2g): of 628 genes with log2-fold changes >=1, 379 genes >= 2, and 248 genes >= 3 located within chromatin domains closer to speckles in H1 versus HFFc6, 91%, 94%, and 96%, respectively, show higher expression in H1; of 307 genes with log2-fold changes >= 1, 161 genes >=2, and 94 genes >=3 located within domains closer to speckles in HFFc6 versus H1, 66%, 77%, and 83%, respectively, show higher expression in HFF. Comparing H1 and HCT116 revealed a similar expression bias (Fig. S11).

For all differentially expressed (DE) protein-coding genes in HFF versus H1 cells, we found ~9-fold more genes with significantly higher expression in regions that did not change their positions versus regions that did change their positions relative to nuclear speckles (Fig. S12a, d). As a group, DE genes located in chromatin domains that changed their positions relative to nuclear speckles showed a moderate shift in their distribution towards higher fold-changes in expression, although there was extensive overlap in expression changes with DE genes in chromatin domains that did not change positions (Fig. S12b, e). Gene ontology (GO) analysis suggested DE genes in regions closer to speckles in one cell line were related to cell type specific functions, including extracellular matrix organization and collagen related functions in
HFFc6 fibroblasts (Fig. S12c) and homophilic cell adhesion related to stem cell colony formation and maintenance in H1 hESCs (Fig. S12f).

In conclusion, we used protein super-saturation labeling conditions to increase the sensitivity of TSA-Seq, allowing mapping of 3D genome organization relative to nuclear speckles using 10-15 million cells versus 200-400 million cells. Whereas the TSA-Seq 1.0 procedure required sequential staining of several batches of cells over 1-2 months, our new TSA-Seq 2.0 procedure required 10-20-fold fewer cells performed in a single, one-week staining. Cell culture costs were reduced commensurately— for example, for hESCs from ~$2000 to ~$200 per replicate.

These reductions in time and cost allowed us to apply TSA-Seq 2.0 to compare nuclear relative distances to nuclear speckles genome-wide in 4 cell lines. This mapping revealed a conservation of SPADs, which in all cell lines were associated with unusually high gene expression levels. More surprisingly, pair-wise comparisons of cell lines showed remarkable similarities in relative nuclear speckle distances for ~90% of the genome. Moreover, for the several hundred chromatin domains that did show significant changes in TSA-Seq scores, these changes typically were modest, ranging in scaled TSA-Seq scores (1 – 100) from a minimum of 11 to a maximum of 26 (mean 13, median 13) for the HFFc6 and H1 comparison. Yet these changes highly correlated with increased (decreased) gene expression levels for regions that were closer to (further from) nuclear speckles.

The improved sensitivity of TSA-Seq 2.0 will greatly facilitate extension of TSA-Seq to mapping of additional nuclear compartments across a range of cell types and conditions.

Correlating changes in chromosome positioning relative to nuclear compartments/bodies using
TSA-Seq 2.0 with changes in gene expression, DNA replication timing, and other genomic features should help reveal general principles of nuclear genome organization and function.
Methods

Cell culture

K562 cells were obtained from ATCC and cultured according to ENCODE Consortium protocol (http://genome.ucsc.edu/ENCODE/protocols/cell/human/K562_protocol.pdf). H1-ESC (WA01), HCT116, HFF-hTert-clone 6 cells were obtained through 4D Nucleome Consortium and cultured according to 4DN SOPs (https://www.4dnucleome.org/cell-lines.html). Briefly, K562 cells were cultured in RPMI-1640 medium supplemented with 10% FBS (Sigma F2442) and 1% 100X Antibiotic-Antimycotic (GIBCO). Cells were seeded at 0.1 million/mL density and passaged or harvested at around 0.75 million/mL density. H1 cells were cultured in Matrigel (Corning 354277, Lot #7128002)-coated flasks in mTeSR medium (STEMCELL Tech 85850). Cells were passaged (or harvested) at optimal density and colony size (see SOP) every 4 or 5 days with 1 in 10 to 1 in 20 splits by digesting colonies into 50-200 μm aggregates using ReLeSR (STEMCELL Tech 05872). HFFc6 cells were cultured in DMEM medium supplemented with 20% heat-inactivated FBS (VWR 97068-091, Lot #035B15). Cells were passaged (or harvested) at 70%-80% confluence without significant drop of mitotic cell ratio with 1 in 2 splits using Trypsin-EDTA (0.05%) (Fisher Sci 25300054). HCT116 cells were cultured in McCoy’s 5A Medium supplemented with 10% heat-inactivated FBS (VWR 97068-091, Lot #035B15). Cells were passaged (or harvested) at 70%-80% confluence (around 0.4 million cells/cm²) and seeded at 4 – 5 x 10⁴ cells/cm² using Trypsin-EDTA (0.05%) (Fisher Sci 25300054).

Coverslip TSA staining

K562 cells were plated on poly-L-lysine (Sigma P4707, 70,000-150,000 M.W., 0.01% w/v) coated coverslips (Fisher Sci 12-545-81) with 0.3-0.5 mL at 0.4-0.7 million/mL cell density. Cells were cultured for 30 mins for attachment. HFFc6 cells were plated on coverslips 1 or 2 days
before experiments and harvested at ~80% confluency. Cells were fixed with 1.6% freshly-made paraformaldehyde (PFA) (Sigma P6148) in PBS at room temperature (RT) for 20 mins. Cells were then permeabilized with 0.5% Triton X-100 (Sigma T8787) in PBS (0.5% PBST) at RT for 30 mins, treated with 1.5% H$_2$O$_2$ in PBS at RT for 1 hr to quench endogenous peroxidases, and rinsed with 0.1% Triton X-100 (Sigma T8787) in PBS (0.5% PBST) 3x at RT. Cells were blocked with 5% normal goat serum (Sigma G9023) in 0.1% PBST (GS blocking buffer) at RT for 1 hr and then incubated with rabbit anti-SON polyclonal antibody (Pacific Immunology Corp, custom-raised) 1:2000 in GS blocking buffer at RT for 5 hrs. Cells were then washed with 0.1% PBST at RT 3 x 5 min and incubated with HRP conjugated goat anti-rabbit polyclonal antibody (Jackson Immuno 111-035-144) 1:1000 in GS blocking buffer at RT for 5 hrs or at 4 °C for 10-12 hrs. Cells were then washed with 0.1% PBST at RT for 3 x 5 min and subject to TSA labeling.

For Condition A, the reaction solution is 50% sucrose (w/v), 1/10000 tyramide-biotin or tyramide-FITC (v/v), and 0.0015% H$_2$O$_2$ (v/v) in PBS. Tyramide-biotin was prepared as previously described6. Tyramide-FITC was prepared according to an online protocol8. Labeling is done at RT for 10 mins. For Condition E, the reaction solution is 50% sucrose, 1/300 tyramide-biotin and 0.0015% H$_2$O$_2$ in PBS. Labeling is done at RT for 30 mins. For both conditions, 500 uL reaction solution was applied per coverslip.

For “two-rounds” of TSA labeling, after the 1st-round of TSA, cells were washed with 0.1% PBST at RT for 3 x 5 mins and then subject to a 2nd-round of TSA. After TSA labeling, cells were washed with 0.1% PBST at RT for 3 x 5 mins, stained with Streptavidin-Alexa Fluor 594 (Invitrogen) 1:200 and goat anti-rabbit – Alexa Fluor 647 (Jackson Immuno) 1:200 in GS blocking buffer at RT for 2 hrs or at 4 °C for 10-12 hrs, and then washed with 0.1% PBST at RT for 3 x 5 mins. Coverslips were mounted in DAPI containing, anti-fading media (0.3 μg/ml DAPI (Sigma-
Aldrich)/10% w/v Mowiol 4-88(EMD Millipore)/1% w/v DABCO (Sigma-Aldrich)/25% glycerol/0.1 M Tris, pH 8.5).

TSA-Seq

The TSA-Seq procedure was modified from our previous publication⁶.

For suspension cells (K562), cells were fixed by adding 8% freshly made PFA in PBS to reach a final concentration of 1.6% and incubated at RT for 20 min. Aldehyde groups were quenched by adding 1.25M (10x) glycine in PBS and mixing at RT for 5 min. Cells were permeabilized with 0.5% PBST at RT for 30 mins, centrifuged at 116 g, and re-suspended in PBS.

H₂O₂/PBS was added to reach a final H₂O₂ 1.5% concentration to quench endogenous peroxidases in a volume of 1 mL per 3 million cells; the cell suspension was incubated by slowly nutating at RT for 1 hr (open tubes 2 or 3 times during the incubation to release the generated gas). Cells were rinsed 3x with 0.1% PBST, blocked with 5% normal goat serum (Sigma G9023) in 0.1% PBST (GS blocking buffer) in a volume of 1 mL / 10 million cells at RT for 1 hr, and then incubated with rabbit anti-SON polyclonal antibody⁶ (Pacific Immunology Corp, custom-raised) 1:2000 in GS blocking buffer at 1mL / 10 million cells at 4 °C for 20-24 hrs. Cells were then washed with 0.1% PBST at RT for 3 x 5 mins and incubated with HRP conjugated goat anti-rabbit polyclonal antibody (Jackson Immuno 111-035-144) 1:1000 in blocking buffer in a volume of 1 mL / 10 million cells at 4 °C for 20-24 hrs. Cells were washed with 0.1% PBST for 3 x 5 mins, washed with PBS for 5 mins at RT, and then subjected to TSA labeling. Cells were resuspended in 50% sucrose/PBS and then the same volume of 50% sucrose/PBS containing tyramide-biotin and hydrogen peroxide was added to reach the final concentrations for a specific labeling condition (Fig. S1). The final volume of reaction solution was 1 mL per 10 million. Cells were gently nutated at RT during the TSA labeling time specific to each condition (Fig. S1). Cells were then washed at
RT with 0.1% PBST 3 x 5 mins and with PBS for 5 min. For each sample, a small portion of cells were attached to a coverslip for anti-biotin and anti-SON staining to visualize the TSA labeling. Remaining cells were pelleted and either immediately subjected to genomic DNA isolation or stored at -80 °C for later DNA isolation. K562 cells were lysed with high T-E buffer (10 mM Tris and 10 mM EDTA, pH 8.0) containing 0.5% SDS and 0.2 mg/mL Proteinase K (NEB P8107S). All centrifugations prior to TSA labeling were low-speed at 116 – 130 g for 5 – 10 mins to preserve cell structure.

For attached cells (H1, HFFc6, HCT116), cells were grown in tissue culture flasks and fixed by quickly pouring away growth media, adding freshly made 1.6% PFA in PBS, and incubating at RT for 20 mins. Cells were rinsed with PBS, and then washed/permeabilized with 0.5% PBST at RT for 3 x 5 mins. Free aldehyde groups were quenched with 20 mM glycine in PBS at RT for 3 x 5 mins. Cells were then washed with PBS and incubated with 1.5% H2O2 in PBS at RT for 1 hr. Cells were rinsed 3x with PBS, blocked with 5% normal goat serum (Sigma G9023) in PBS in a volume of 1 mL per 25 cm2 flask surface area at RT for 1 hr, and then incubated with rabbit anti-SON polyclonal antibody6 (Pacific Immunology Corp, custom-raised) 1:2000 in 0.1% PBST in a volume of 1 mL per 25 cm2 at 4 °C for 10-12 hrs. Cells were then washed with 0.1% PBST at RT for 3 x 5 mins and incubated with HRP conjugated goat anti-rabbit polyclonal antibody (Jackson Immuno 111-035-144) 1:1000 in 0.1% PBST in a volume of 1 mL per 25 cm2 at 4 °C for 10-12 hrs. Cells were washed at RT with 0.1% PBST for 3 x 5 mins and with PBS for 5 mins. Cells were TSA-labeled with a working solution of 50% sucrose/PBS containing 0.0015% H2O2 and the condition-specific tyramide-biotin concentration (Fig. S1) in a volume of 0.8mL per 10 cm2 surface area. Cells were incubated at RT for the condition-specific time (Fig. S1) and then washed at RT with 0.1% PBST 3 x 5 mins and with PBS for 5 mins. For each staining, a small portion of attached cells were scraped off and loaded onto coverslips for anti-biotin and anti-
SON immunostaining to visualize the TSA-labeling. Remaining cells were washed with high T-E buffer (10 mM Tris and 10 mM EDTA, pH 8.0) at RT for 5 min and lysed with high T-E buffer containing 1% SDS and 0.2 mg/mL Proteinase K. Cell lysates were collected and immediately subjected to genomic DNA extraction. All incubation and washing steps before cell-lysing were done by gently shaking the original flasks.

Cells on coverslips were stained with Streptavidin-Alexa Fluor 594 (Invitrogen) 1:200 and goat anti-rabbit – FITC (Jackson Immuno) 1:500 in GS blocking buffer at RT for 2 hrs or at 4 °C for 10-12 hrs. Cells were then washed with 0.1% PBST at RT for 3 x 5 mins. Coverslips were mounted in DAPI containing, anti-fading media (0.3 μg/ml DAPI (Sigma-Aldrich)/10% w/v Mowiol 4-88 (EMD Millipore)/1% w/v DABCO (Sigma-Aldrich)/25% glycerol/0.1 M Tris, pH 8.5).

Genomic DNA was extracted by phenol/chloroform as previously described. For samples with low DNA concentration, glycogen (Roche) was added to a final concentration of 0.05 mg/mL to facilitate ethanol precipitation. Isolated DNA was fragmented to 100-600 bp using a Bioruptor Pico (Diagenode) machine with a mode of 30 sec ON – 30 sec OFF. Inspection of DNA gels determined the number of required sonication cycles. Biotin labelled DNA fragments were isolated with streptavidin beads as previously described.

Sequencing libraries were constructed using the TruSeq ChIP Sample Prep Kit (Illumina, IP-202-1012) for H1, HCT116, HFFc6 samples, or the Hyper Library Construction Kit (Kapa Bio) for K562 Condition A, B, C samples, or a protocol developed in the John Lis laboratory (Cornell University) for K562 Condition D, E samples. The John Lis lab protocol includes steps of end repair (End-It DNA End-Repair Kit: Epicentre Biotech ER0720), 3'-end A tailing (Klenow Fragment: NEB M0212S), and indexed adaptor ligation (NEXTflex ChIP-Seq Barcodes-6: Bioo Sci 514120; T4 DNA Ligase (Rapid): Enzymatics Inc L6030-HC-F). Libraries were amplified by 8-12
PCR cycles. qPCR was used to measure the concentrations of each library which were then pooled at equimolar concentration for each lane and sequenced for 101 cycles from one end of the fragments on a HiSeq4000 using a HiSeq4000 sequencing kit version 1 (Illumina). Fastq files were generated and demultiplexed with the bcl2fastq Conversion Software (Illumina).

Microscopy

3D optical sections were acquired with 0.2-μm z-steps using an Applied Precision Personal DeltaVision microscope system and DeltaVision SoftWoRx software (GE Healthcare) with a 60× oil objective (NA 1.4) and a CoolSNAP HQ2 charge-coupled device camera, or using a DeltaVision OMX microscope system and DeltaVision SoftWorx software with a 100× (NA 1.4) objective lens and an Evolve 512 Delta EMCCD Camera using the wide-field light path. Image deconvolution and registration were done with SoftWoRx. Image intensity was measured with FIJI software (ImageJ, NIH) using the Plot Profile function and normalized by exposure time and the % transmitted exciting light. Normalized intensity plots were generated using OriginPro 2018 software (OriginLab). All figure panel images were prepared using FIJI and Illustrator CC (Adobe).

Dot blot and DNA biotinylation estimation

Biotinylation levels of DNA were assayed by dot blot prior to biotin-avidin pulldown of DNA. 5-fold serial dilutions of a biotin end-labeled 250 bp fragment were used as biotin concentration standards. The PCR product was produced from *Drosophila* DNA cloned within a BAC (BAC48E12) using primers: GAAACATCGC/iBiodT/GCCCATAAT (forward) and AGAAGCAGCTACGCTCCTCA (reverse) resulting in 1 biotin per fragment. These PCR standards were combined with control, unbiotinylated, sonicated K562 genomic DNA (100-600 bp) to reach a final DNA concentration the same as the test DNA sample (400 or 600 ng/μL) in order to eliminate concentration effects on the crosslinking of DNA to membranes.
DNA was spotted with 1 or 1.5 uL (same volume for all standards and samples in a specific experiment), twice onto a nitrocellulose membrane (0.45 μm; Bio-Rad), and were UV cross-linked to the membrane (0.24J; UV Stratalinker 2400; Agilent Technologies). The membrane was blocked with SuperBlock (TBS) blocking buffer (Thermo) with 0.05% Tween-20 (Fisher) at RT for 1 h, and then incubated with streptavidin-HRP (Invitrogen 43-4323) diluted 1:10000 in blocking buffer at 4 °C for 1-3 hr or overnight. The membrane was then washed with 0.05% Tween-20 in TBS at RT for 6 x 5 mins with rigorous shacking. The membrane was treated with SuperSignal West Femto chemiluminescent substrate (Thermo) and developed with HyBlot CL film (Denville) or in an iBright machine (Invitrogen). Sample biotinylation level (kilobases of DNA with one biotin labeling on average) was calculated following the equation:

\[
\frac{1}{l_{std}} \times c_{std} = \frac{1}{l_{smp}} \times c_{smp}
\]

\(l_{std}\): standard DNA length per biotin (0.25 kb), \(l_{smp}\): average sample DNA length (kb) per biotin (to be calculated), \(c_{std}\): concentration of the 0.25kb standard DNA that has the same signal intensity with the tested sample DNA, \(c_{smp}\): concentration of the tested sample DNA.

TSA-Seq data mapping and processing

We used a similar analysis pipeline as the previous paper\(^6\) to process TSA-Seq data. Briefly, we mapped the raw sequencing read to the latest human reference genome (hg38, downloaded from the UCSC Genome Browser) using Bowtie2\(^9\) (version 2.0.2) with default parameters. We excluded sequence from the Chromosome Y to avoid mapping bias for K562 data (female). We further applied the rmdup command from SAMtools\(^10\) to remove the potential PCR duplicates in the alignment. We then used the PCR duplicates removed alignment files as the input files for TSA-Seq normalization.
TSA-Seq normalization followed a similar scheme as used in the previous paper⁶, using matched pulldown and input data with the following updates: First, we no longer used sliding windows. Instead, we used separate genomic bins of 20kb. Each mapped read is exclusively assigned to a window according to its largest aligned position in the reference genome. Second, we modified the calculation of TSA-Seq enrichment score, as described in the next paragraph.

\[N'_{TSA} \] and \(N_{input} \) represent the original number of mapped reads in each 20kb bin in the pulldown and input samples, respectively. \(N_{TSA} \) in each bin (bins without mapped reads are skipped) was normalized by input read number, according to equation (1), where \(\text{Ave}(N_{input}) \) is the average value of \(N_{input} \) across genome-wide windows calculated by dividing the genome-wide sum of \(N_{input} \) by the number of bins containing mapped reads:

\[
N'_{TSA} = \frac{N_{TSA} \times \text{Ave}(N_{input})}{N_{input}} \quad (1)
\]

The TSA-Seq enrichment score is then defined as the log2 ratio between \(N'_{TSA} \) and the genome-wide average of \(N'_{TSA} \) (\(\text{Ave}(N'_{TSA}) \)), calculated using the number of bins containing non-zero numbers of mapped reads, as per equation 2:

\[
\text{TSA-Seq enrichment score} = \log_2 \left(\frac{N'_{TSA}}{\text{Ave}(N'_{TSA})} \right) \quad (2)
\]

This normalized TSA-Seq enrichment score can be considered as the log2 ratio of relative enrichment or depletion of DNA in a specific bin relative to the average pulldown value.

For subsequent analyses, the non-overlapping 20kb binned signals were smoothed by convolution using a Hanning window of length 21 (21 × 20 kb or 420 kb).
K562 pulldown data from all five conditions were normalized using one input constructed from fragmented K562 genomic DNA. H1, HCT116 and HFFc6 data were normalized using separate input libraries made from the DNA used for pulldown for each TSA-labeling experiment.

TSA distance prediction and comparison

To convert TSA-Seq scores to distances from speckles, previously we fit loci TSA-Seq signal y (here y is the TSA-Seq fold-enrichment value PRIOR to the log2 operation in equation 2) and mean distances (x) from speckles measured by 3D immuno-FISH to a calibration equation

$$y = y_0 + Ae^{R_0x}.$$

Here we applied a new “hybrid” method to estimate the parameters for this calibration equation.

First, we obtained the exponential decay parameter R_0 by fitting 16 FISH measurements from our previously published data to the new TSA-Seq data (Supplementary Table 1). For each FISH probe, we used the previously published mean cytological distance to speckles based on measurements of 100 alleles (16 probes, Supplementary Table 1). We used the smoothed TSA-Seq data and calculated the mean TSA-Seq enrichment values over the genomic regions cloned within the BACs used to generate FISH probes. We fit the 16 TSA-Seq fold-enrichment values, y, and their corresponding mean speckle distances, x, to the exponential function $y = y_0 + Ae^{R_0x}$ using OriginPro software (OriginLab) to obtain the exponential parameter, R_0.

Next, we obtained y_0 and A based on the minimum and maximum TSA-Seq fold-enrichment values, y_{min} and y_{max}: $y_{min} = y_0 (x = x_{max})$ and $y_{max} = y_0 + A (x = 0)$. With the parameters R_0, y_0 and A (Supplementary Table 2), we converted TSA-Seq enrichment values
from all 20 kb bins of smoothed TSA-Seq data into speckle distances by computing the inverse
equation for x in the exponential function (equation (3)):

\[x = \frac{1}{R_0} \ln \frac{y - y_0}{A} \]

To compare distances derived from TSA-Seq data produced using two different TSA
staining conditions, we calculated their distance residuals over each of the 20 kb bins and then
generated histograms showing the distribution of these distance residuals, using a 0.005 µm
histogram binning interval.

SPAD calling and cell type comparisons

We ranked smoothed TSA-Seq enrichment scores over all 20 kb bins genome-wide from
largest to smallest excluding unmapped regions from hg38 genome. We then divided them into
100 equal sized groups and named them as percentiles from percentile 1 to 100 (smallest to
largest). All adjacent 20kb bins above the 95th percentile were merged to segment these regions
as SPADs.

To compare cell lines, we first generated a scatterplot showing the variability in
percentile values for all 20 kb bins comparing two biological replicates. To compare SPADs called
in one cell line with percentile TSA-Seq scores in other cell lines, we calculated the mean TSA-
Seq percentile score over each SPAD region in each of the other cell lines and plotted these
values in a boxplot, with dots showing all values. We used Intervene11 (version 0.6.4) to
generate a 4-way Venn diagram using 20-kb binned .bed files of the four cell lines.

**Identification of genomic domains that show different nuclear positions relative to speckles in
different cell lines**
To identify genomic regions that change nuclear position relative to speckles in different cell lines, we adapted a previously published method12 that compares the variability of scores in two cell lines with the variability observed in biological replicates. Essentially, the hypothesis tested is whether a region is statistically different from the values of the biological replicates of the two different cell lines.

For each dataset, we first rescaled TSA-Seq enrichment scores (20kb bin) linearly between their min and max values to a new 1-100 scale based on equation (4) and rounded up to integers with min assigned as 1 instead of 0.

$$\text{Scaled enrichment score (bin i)} = \frac{TSA\text{-Seq enrichment score (bin i)} - \min}{\max - \min} \times 100$$ \hspace{1cm} (4)

To reduce the influence of outliers on this rescaling, we used a large and a small percentile of all ranked values as the max and min values, respectively (e.g. 99.95th and 0.05th percentile for HFFc6 and H1 comparison).

For a pair-wise comparison between two cell lines, we rescaled the SON TSA-Seq scores for two biological replicates for each cell line:

$$\text{TSA}_{H1\,\text{rep}_1}, \text{TSA}_{H1\,\text{rep}_2}, \text{TSA}_{HFFc6\,\text{rep}_1}, \text{TSA}_{HFFc6\,\text{rep}_2}$$

For example, $\text{TSA}_{H1\,\text{rep}_1}$ denotes the H1 TSA-Seq biological replicate 1 and is a row vector of N values from all 20kb non-overlapping bins with mapped reads in the genome. Scatterplots show near uniform data noise across the genome for both cell lines (Figure 1, in this Methods section).
Figure 1. Scatter plots of normalized SON TSA-Seq scores between biological replicates in H1 (A) and HFFc6 (B).

We averaged the replicates for the same cell line and used the residual, Δ, between two cell lines for comparison:

$$\Delta = \frac{1}{2} \{ (\text{TSA}_{\text{HFFc6 rep1}} + \text{TSA}_{\text{HFFc6 rep2}}) - (\text{TSA}_{\text{H1 rep1}} + \text{TSA}_{\text{H1 rep2}}) \}$$ \hspace{1cm} (5)

We define data variance as the difference between biological replicates for the same cell line. We averaged the variance between the two cell lines to be compared to construct a vector Φ including all possible orderings with a length of $4N$, where N= number of genomic bins excluding unmapped regions from hg38 genome:

$$\Phi = \frac{1}{2} \{ (\text{TSA}_{\text{H1 rep1}} - \text{TSA}_{\text{H1 rep2}}) + (\text{TSA}_{\text{HFFc6 rep1}} - \text{TSA}_{\text{HFFc6 rep2}}),$$

$$ (\text{TSA}_{\text{H1 rep1}} - \text{TSA}_{\text{H1 rep2}}) + (\text{TSA}_{\text{HFFc6 rep2}} - \text{TSA}_{\text{HFFc6 rep1}}),$$

$$ (\text{TSA}_{\text{H1 rep2}} - \text{TSA}_{\text{H1 rep1}}) + (\text{TSA}_{\text{HFFc6 rep1}} - \text{TSA}_{\text{HFFc6 rep2}}),$$

$$ (\text{TSA}_{\text{H1 rep2}} - \text{TSA}_{\text{H1 rep1}}) + (\text{TSA}_{\text{HFFc6 rep2}} - \text{TSA}_{\text{HFFc6 rep1}}) \}$$ \hspace{1cm} (6)
The vector Φ serves as the null distribution against which to test single bin value difference from Δ for statistical significance. Φ can be viewed as a set of observations with random variable ϕ, which is approximately Gaussian distributed with parameters μ and σ^2 (Figure 2, in this Methods section).

![Figure 2. Density plot of ϕ](image)

We test if a single element in Δ (a 20kb bin score) shows a significant change between the two cell lines to be compared by comparing with ϕ. We calculated p-values for both tails of the distribution separately: for equation (5), we separate the bins with values above or below 0 to obtain bins with bigger TSA scores in either HFFc6 or H1. We calculated p-values for all 20kb bins and displayed -log10 (p-value) in the genomic tracks.

To identify genomic regions that showed statistically significant changes in position, we set a cutoff p-value of 0.01 and identified all 20kb bins with p-values < 0.01 for either ordering (bigger TSA-Seq values in HFFc6 or H1). For each ordering, we merged adjacent bins whose p-values were less than 0.01 to call domains that changed location. We set a second cutoff to call only domains corresponding to 100 kb or larger.

RNA-Seq data processing and correlation with TSA-Seq data
We applied the ENCODE RNA-Seq processing pipeline13 to process RNA-Seq data for these cell lines (Supplementary Table 4). Briefly, we used STAR14 (version 2.5.1b) to map the raw sequencing reads to the human reference genome. The index files of the reference genome used by STAR is the same that used by the ENCODE project. We downloaded the index files from the ENCODE project website (URL: https://www.encodeproject.org/files/ENCFF742NER/). Next, we used RSEM15 (version 1.2.26) to quantify gene expression using the ENCODE gene annotation file (URL: https://www.encodeproject.org/files/ENCFF940AZB/). The value of mRNA fragments per kilobase of transcript per million mapped reads (FPKM) value for each gene reported by RSEM was used for downstream analysis. Reads per million (RPM) signal tracks for each RNA-Seq data set were generated using STAR with input flag “--outWigNorm RPM”.

To correlate TSA-Seq score with gene expression, we ranked TSA-Seq enrichment scores of genome-wide 20kb bins (bins without mapped reads were removed) from largest to smallest, divided them into 20 equal sized groups using the cut function in R, and named them as vigintiles from vigintile 1 to vigintile 20 (smallest to largest). For each protein-coding gene (based on the GENCODE annotation version 24), we calculated the average TSA-Seq enrichment score across the whole gene region and assigned the gene to the corresponding TSA-Seq vigintile group according to the TSA-Seq enrichment score ranges for each vigintile. RNA-Seq analysis and TSA-Seq correlation results were summarized in Supplementary Table 5.

A housekeeping gene list was downloaded from https://www.tau.ac.il/~elieis/HKG/HK_genes.txt16 and processed as previously described6 but using hg38 RefSeq gene annotation. 3791 protein-coding genes were identified as housekeeping genes, and the remaining 16541 protein-coding genes were determined as non-housekeeping genes.
To correlate repositioned regions with expression differences between two cell lines, first we identified all genes located within these genomic regions by overlapping gene and region coordinates (the whole gene must be located within the region to be called). Then we calculated the log2 ratio between the gene FPKM values in the two cell lines and plotted these log2 ratios against the region mean scaled TSA-Seq score (max-min normalized, 1-100) change between the two cell lines.

For differential expression analysis between H1 and HFF (RNA-Seq datasets summarized in Supplementary Table 4), we used STAR14 (version 2.5.3a) to map the raw sequencing reads using the index files from the ENCODE project (https://www.encodeproject.org/files/ENCFF742NER/). Next, we used htseq-count function of HTSeq17 (version 0.9.1) to count raw read number for each gene with the gencode.v24 annotation (https://www.encodeproject.org/files/gencode.v24.primary_assembly.annotation/). To identify differentially expressed (DE) protein-coding genes between H1 and HFF, we used DEseq218 (version 1.24.0) with thresholds for adjusted P-value of <0.01 and for fold-expression change of >2-fold (Results summarized in Supplementary Table 6). For DE genes with significantly higher expression in one cell line versus the other, we identified which of these genes located entirely within “repositioned” domains that are located closer to nuclear speckles in this cell line versus the other by overlapping gene genomic position with the coordinates of the domains that showed significantly higher scaled TSA-Seq scores in this cell line. The remaining DE genes with significantly higher expression in this cell line were determined as differentially expressed but not located within domains that reposition closer to speckles (“non-repositioned”).

Next we calculated the mean scaled TSA-Seq scores (max-min normalized, 1-100) across each of the genes and generated scatter plots to show the correlation of these TSA-Seq scores.
between the two cell lines. We calculated log2-fold expression changes for repositioned versus non-repositioned DE genes, and plotted boxplots of these expression changes for all genes in each of these two categories. We used DAVID19,20 (version 6.8) to conduct gene ontology (GO) analysis using the “GOTERM_BP_DIRECT” category (Results summarized in Supplementary Table 7). We compared GO terms for the repositioned and non-repositioned DE genes by plotting bar plots of -log10 P-values of top 5 terms sorted by P-values.
Acknowledgements

We thank the UIUC Biotechnology center for guidance with preparation of sequencing libraries and quality control. We thank Drs. K.V. Prashanth, William Brieher, Lisa Stubbs and Huimin Zhao (UIUC, Urbana, IL) for helpful suggestions. We thank Belmont lab members for sharing reagents and providing suggestions. We thank members of the 4D-Nucleome Consortium and Belmont NOFIC center for helpful suggestions and feedback. This work was supported by National Institutes of Health grant R01 GM58460 (ASB) and U54 DK107965 (ASB, JM).

Author contributions

LZ designed experiments with ASB’s guidance. LZ performed all experiments. LZ and YZ analyzed genomic data with guidance from ASB and JM. YC developed and standardized TSA-Seq 1.0 protocols and provided suggestions for development of TSA-Seq 2.0. OG contributed ideas to the “hybrid” distance-calibration mapping approach. LZ and ASB wrote the manuscript with critical suggestions from other co-authors. ASB supervised the overall study.

Data availability

All TSA-Seq data are available at the 4DN Data Portal: https://data.4dnucleome.org/browse/?experimentset_type=replicate&type=ExperimentSetReplicate&award.project=4DN&experiments_in_set.experiment_type.display_title=TSA-Seq&experiments_in_set.biosample.biosource.individual.organism.name=human

Code availability

TSA-Seq normalization software is available at https://github.com/zocean/Norma. Codes for all genomic data analyses are available at https://github.com/lgchang27/TSA-Seq-2.0-Analysis.
1. Rao, S.S. et al. *Cell* **159**, 1665-1680 (2014).
2. Quinodoz, S.A. et al. *Cell* **174**, 744-757 e724 (2018).
3. Beagrie, R.A. et al. *Nature* **543**, 519-524 (2017).
4. Bobrow, M.N. et al. *Journal of Immunological Methods* **125**, 279-285 (1989).
5. Raap, A.K. et al. *Human Molecular Genetics* **4**, 529-534 (1995).
6. Chen, Y. et al. *The Journal of cell biology* (2018).
7. Pieters, T. & van Roy, F. *J Cell Sci* **127**, 2603-2613 (2014).
8. http://wiki.xenbase.org/xenwiki/index.php/Flourescin_Tyramide_Synthesis.
9. Langmead, B. & Salzberg, S.L. *Nature methods* **9**, 357-359 (2012).
10. Li, H. et al. *Bioinformatics* **25**, 2078-2079 (2009).
11. Khan, A. & Mathelier, A. *BMC Bioinformatics* **18**, 287 (2017).
12. Peric-Hupkes, D. et al. *Molecular cell* **38**, 603-613 (2010).
13. https://github.com/ENCODE-DCC/rna-seq-pipeline.
14. Dobin, A. et al. *Bioinformatics* **29**, 15-21 (2013).
15. Li, B. & Dewey, C.N. *BMC Bioinformatics* **12**, 323 (2011).
16. Eisenberg, E. & Levanon, E.Y. *Trends in genetics : TIG* **29**, 569-574 (2013).
17. Anders, S. et al. *Bioinformatics* **31**, 166-169 (2014).
18. Love, M.I. et al. *Genome biology* **15**, 550 (2014).
19. Huang da, W. et al. *Nature protocols* **4**, 44-57 (2009).
20. Huang da, W. et al. *Nucleic acids research* **37**, 1-13 (2009).
Figure 1. TSA-Seq 2.0 development and validation.
a) TSA Conditions A-E show varying nuclear speckle specificity: SON immunostaining of speckles (green), strepavidin tyramide-biotin staining (red), merged channels, and DNA (DAPI, blue) in K562 cells;
b) Tyramide-biotin intensities along line profiles spanning nuclear speckles in a) for Conditions A-E;
c) Schema
predicting results from following Condition E tyramide-biotin TSA staining with Condition A tyramide-FITC TSA staining, assuming Condition E saturates protein but not DNA tyramide-labeling; d) Experimental results for schema in c). Top row: control showing two consecutive rounds of Condition A (non-saturating) TSA-labeling using tyramide-biotin and then tyramide-FITC. Bottom row: Same as top row but using Condition E for 1st TSA-labeling. SON immunostaining (grey), tyramide-biotin (red), tyramide-FITC (green), merged channels, plus DAPI (blue); e) SON TSA-Seq mapping results for Conditions A-E showing TSA-Seq enrichment scores (black tracks), estimated speckle distances (Conditions A and E, middle orange tracks), and residuals (absolute magnitude) between Conditions A and E distances (bottom, orange track); f) Histogram of distance residuals in e): number (y-axis), residual value (x-axis); g) Cell numbers used and pulldown DNA yields for TSA Conditions A-E.
Figure 2. TSA-Seq 2.0 speckle mapping in four cell lines reveals largely conserved but ~10\% variable domains.
a) SON TSA-Seq enrichment score (top) and SON TSA-Seq signal as a genome-wide percentile score (middle) tracks (20 kb bins), and segmented SPeckle Associated Domains (SPADs) (bottom) in 4 human cell lines (chr7). SPADs were defined as contiguous bins, each with >95\% percentile score (Methods);
b) TSA-Seq percentile score distributions of H1 SPADs in other 3 cell lines. Box plots (with data points as dots) show median (inside line), 25\% (box bottom) and 75\% (box top) percentiles, 75\% percentile to highest value within 1.5-fold of box height (top whisker), 25\% percentile to lowest value within 1.5-fold of box height (bottom whisker), and outliers (diamonds);
c) Distributions of percentages (y-axis) of top 5\% expressed protein-coding genes versus SON TSA-Seq vigintiles (division of percentile scores, 0-100, into 20 bins of 5\% size each) (x-axis) in 4 cell lines;
d) Distributions of percentages (y-axis) of housekeeping (red) and non-housekeeping (blue) protein-coding genes versus SON TSA-Seq vigintiles (x-axis) in 4 cell lines;
e) Comparison of H1 and HFFc6 smoothed SON TSA-Seq enrichment score tracks (top, dashed lines indicate “zero” values showing regions with genome-wide average number of reads), domains repositioned relative to speckles (highlighted, middle) and -\log_{10}(p\text{-values per bin for significance of change in rescaled SON TSA-Seq scores}) (bottom);
f-g) Strong bias towards increased gene expression in domains shifting closer to nuclear speckles;
f) Zoomed view of two regions (arrows in e) plus gene annotation (GENCODE v29) and RNA-Seq RPM values.
g) Changes in expression of protein-coding genes in repositioned domains: scatterplots show log2 fold-changes in FPKM ratios (y-axis) between HFFc6 and H1 versus absolute values of changes in mean scaled TSA-Seq scores.
(x-axis, max-min normalized: 1-100). Green (brown) dots are genes closer to speckles in H1 (HFFc6). Gene distribution was shown as Kernel density plots on the right.
Supplementary Figure 1. Experimental design of enhanced TSA labeling conditions. All labeling conditions include 50% sucrose (w/v) and 0.0015% hydrogen peroxide (v/v). From Conditions A to E, serial increases in tyramide-biotin concentration and/or longer reaction times are applied.
Supplementary Figure 2. Two sequential rounds of SON TSA-labeling demonstrate speckle-specific DNA TSA-labeling after previous “super-saturation” TSA staining. Top row: Two sequential Condition A (non-saturating) rounds of SON TSA-labeling reveals speckle-specific TSA-labeling for both round 1 (tyramide-biotin) and round 2 (tyramide-FITC). Bottom row: First round of SON TSA-labeling using super-saturation Condition E (tyramide-biotin) produces non-specific staining due to saturation of protein-labeling, but second round with tyramide-FITC shows speckle-specific TSA-labeling consistent with sub-saturation DNA labeling: Left to right-SON immunostaining (grey), tyramide-biotin labeling (red), tyramide-FITC (green), merged channels, merged channels plus DAPI-staining (blue).
Supplementary Figure 3. Dot blot estimation of DNA-biotinylation levels after SON TSA labeling using Conditions A-E. Top: Biotinylated-DNA standards: dilutions of biotinylated PCR 250-bp product (0.16 – 20 ng/ul) containing 1 biotin / DNA molecule combined with unlabeled K562 genomic DNA (100-600 bp fragments) to a total DNA concentration of 600 ng/ul.

Bottom: Sonicated genomic DNA (100-600 bp) from K562 cells after SON TSA-labeling using Conditions A-E (left to right).
Supplementary Figure 4. SON TSA Conditions A-E produce quantitatively similar genome-wide estimates of mean distances to speckles.

a) Chromosome 3 tracks showing: (Top) Mean distances (µm) to nuclear speckles in K562 cells estimated from SON TSA-Seq produced using Conditions A-E. (Bottom) Absolute values of distance residuals (µm) between Condition A versus Conditions B-E;

b) Histograms of absolute value distance residuals between Condition A versus Conditions B-E from all 20 kb bins across the genome. Number (y-axis), distance residual values (x-axis: intervals of 0.005µm). Arrows mark 0.2 µm value shown as dotted horizontal lines in a).
Supplementary Figure 5. SON TSA-Seq using Conditions A-E in HCT116 cells parallels results from K562 cells.

a) Similar changes in reduced specificity of cellular anti-biotin staining after SON TSA in HCT116 cells with increased tyramide labeling using Conditions A (top) versus C (middle) and E (bottom). Left to right: SON immunostaining, streptavidin staining of tyramide-biotin, merged channels (SON, green; biotin, red), plus DAPI (blue); b) Tyramide-biotin
intensities along line profiles spanning nuclear speckles in a) for Conditions A, C, and E; c) Similar SON TSA-Seq enrichment score profiles (chromosome 3, 20 kb bins) for Conditions A, C, and E; d) Cell numbers used and pulldown DNA yields for Conditions A, C, and E.
Supplementary Figure 6. Microscopy assays of biotin-labeling after Condition E SON TSA-labeling in H1 and HFFc6. Cells were immunostained to verify biotin-labeling after Condition E SON TSA-Seq: (Left to right) SON immunostaining, streptavidin staining of tyramide-biotin, merged image (SON, green; biotin, red), merged image plus DAPI (blue) in H1 (top) and HFFc6 (bottom) cells.
Supplementary Figure 7. Comparison of SPADs from HCT116, HFFc6, and K562 cells with SPADs in other cell lines. TSA-Seq percentile score distributions of SPADs from HCT116 a), HFFc6 b), and K562 c) in the other 3 cell lines. Box plot displays are as described in Fig. 2b legend. d) 4-way Venn diagram showing overlapping of SPADs across all 4 cell lines. 56.4% (129.3 Mbp) are classified as SPADs (>95th percentile) in all 4 cell lines, 12.5% (28.6 Mbp) in 3 cell lines, 13.0% in 2 cell lines (29.7 Mbp), and 18.1% (41.5 Mbp) in just 1 cell line, out of 229.1 Mbp total. However, 100% of SPADs remain near speckles (>80th percentile in relative SON TSA-Seq enrichment scores) in all 4 cell lines.
Supplementary Figure 8. Correlation between biological replicates of H1 SON TSA-Seq percentile scores. 2D histograms show correlation of SON TSA-Seq percentile scores (20 kb bins) for biological replicates 1 (x-axis) and 2 (y-axis) across entire percentile range (a) and top 10 percentile regions (b); a-b) Colors represent numbers of 20 kb bins with given TSA-Seq percentile scores in the 2 replicates falling within given replicate 1 percentile: replicate 2 percentile histogram 2D bin (1 percentile x 1 percentile intervals). b) Regions between dashed lines show histogram bins in which TSA-Seq percentile scores are within a 5 percentile difference of each other in the two replicates.
Supplementary Figure 9. Protein-coding gene expression increases with higher SON TSA-Seq enrichment score vigintiles in all four cell lines. Protein-coding gene FPKM in 20 SON TSA-Seq enrichment score vigintiles (division of percentile scores, 0-100, into 20 bins of 5% size each) in H1 (top left), K562 (top right), HCT116 (bottom left), and HFFc6 (bottom right). Box plots show median (inside line), 25th (box bottom) and 75th (box top) percentiles, 75th percentile to highest value within 1.5-fold of box height (top whisker), and 25th percentile to lowest value within 1.5-fold of box height (bottom whisker).
Supplementary Figure 10. Increased Collagen gene expression in HFF fibroblasts versus H1 hESCs correlates with closer relative distance to nuclear speckles in fibroblasts versus hESCs.

a, c) Comparison of H1 and HFFc6 smoothed SON TSA-Seq enrichment scores: top track- H1 (green), middle track- HFFc6 (brown), bottom track- p-values per bin for significance of change in scaled SON TSA-Seq scores. Dashed lines (top and middle tracks) indicate “zero” values showing regions with genome-wide average number of reads. Highlighted regions (brown) below middle track containing Collagen genes (a, b: COL3A1, COL5A2; c,d: COL4A1, COL4A2) localize closer to speckles in HFFc6; b, d) Zoomed browser views of same highlighted regions also showing gene annotation (GENCODE v29) and RNA-Seq RPM values.
Supplementary Figure 11. Strong bias towards increased (decreased) gene expression with repositioning of chromosome regions closer to (further from) nuclear speckles in H1 versus HCT116 cells. a) H1 and HCT116 SON TSA-Seq enrichment scores (smoothed) (top, dashed lines indicate “zero” values which are regions with genome-wide average number of reads), highlighted repositioned domains (middle), and -log10 (p-value per bin for significance of change in scaled SON TSA-Seq scores) (bottom); b) Zoomed view of two regions (arrows in a)
plus gene annotation (GENCODE v29) and RNA-Seq RPM values; c) Changes in expression of protein-coding genes in repositioned domains: scatterplots show log2 fold-changes in FPKM ratios (y-axis) between HCT116 and H1 versus absolute values of changes in mean scaled TSA-Seq scores (x-axis, max-min normalized: 1-100). Green (blue) dots are genes closer to speckles in H1 (HCT116). Gene distribution is shown as Kernel density plots on the right.
Supplementary Figure 12. Upregulated genes in regions that position relatively closer to nuclear speckles show modest skewing towards higher gene expression but significant
enrichment in cell-type specific gene-ontology classes.

a) Scatter plots show scaled SON TSA-Seq scores (max-min normalized: 1-100) in H1 hESCs (y-axis) versus HFFc6 (x-axis) for protein-coding genes (dots) that are upregulated in HFF vs H1 for: left panel- all upregulated genes, middle panel- upregulated genes in regions relatively closer to nuclear speckles in HFFc6 cells, right panel- upregulated genes in regions that are not closer to nuclear speckles in HFFc6 cells. Red dashed lines represent thresholds for domains that show statistically significant changes in scaled HFFc6 vs H1 SON TSA-Seq scores.

b) Comparison of log2-fold changes in gene expression in HFF versus H1 hESCs for protein-coding genes significantly upregulated in HFF cells for: upregulated genes in regions that are relatively closer to nuclear speckles in HFFc6 cells (left, blue) versus upregulated genes in regions that are not relatively closer to nuclear speckles in HFFc6 cells (right, orange). Box plots show median (inside line), 25th (box bottom) and 75th (box top) percentiles, 75th percentile to highest value within 1.5-fold of box height (top whisker), and 25th percentile to lowest value within 1.5-fold of box height (bottom whisker).

c) Top gene ontology (GO) terms for protein-coding genes upregulated in HFF versus H1 cells for: left panel, blue- upregulated genes in regions that are relatively closer to nuclear speckles in HFFc6 versus H1 cells, right panel, orange- upregulated genes in regions that are not relatively closer to nuclear speckles in HFFc6 versus H1 cells.

d) Scatter plots show scaled SON TSA-Seq scores (max-min normalized: 1-100) in H1 hESCs (y-axis) versus HFFc6 (x-axis) for protein-coding genes (dots) that are upregulated in H1 vs HFF for: left panel- all upregulated genes, middle panel- upregulated genes in regions relatively closer to nuclear speckles in H1 cells, right panel- upregulated genes in regions that are not closer to nuclear speckles in H1 cells. Red dashed lines represent thresholds for domains that show statistically significant changes in scaled H1 vs
HFFc6 SON TSA-Seq scores. **e)** Comparison of log2-fold changes in gene expression in H1 versus HFF cells for protein-coding genes significantly upregulated in H1 ESCs for: upregulated genes in regions that are relatively closer to nuclear speckles in H1 ESCs (left, blue) versus upregulated genes in regions that are not relatively closer to nuclear speckles in H1 ESCs (right, orange). Box plots show median (inside line), 25th (box bottom) and 75th (box top) percentiles, 75th percentile to highest value within 1.5-fold of box height (top whisker), and 25th percentile to lowest value within 1.5-fold of box height (bottom whisker). **f)** Top gene ontology (GO) terms for protein-coding genes upregulated in H1 versus HFF cells for: left panel, blue- upregulated genes in regions that are relatively closer to nuclear speckles in H1 versus HFFc6 cells, right panel, orange- upregulated genes in regions that are not relatively closer to nuclear speckles in H1 versus HFFc6 cells.
Supplementary Table 1

BAC	Genome coordinates (hg38)	Mean distance to speckles (μm)
RP11-634L10	chr17:81,838,939-82,011,417	0.09
RP11-479I13	chr6:31,726,514-31,941,167	0.11
RP11-264N5	chr7:100,470,712-100,665,336	0.16
RP11-1058N17	chr18:48,801,893-48,998,009	0.47
CTD-3106L12	chr2:24,775,317-24,986,884	0.5
RP11-997B19	chr17:71,701,964-71,881,248	0.81
RP11-978O5	chr2:22,703,020-22,897,142	0.97
RP11-846O11	chr18:41,032,947-41,237,108	0.98
RP11-302K17	chr10:102,058,244-102,216,677	0.25
RP11-246J15	chr1:202,111,935-202,271,377	0.36
CTD-3244P16	chr10:102,990,564-103,165,048	0.47
CTD-2503D10	chr10:103,950,393-104,169,256	0.51
RP11-729K13	chr2:30,387,390-30,582,345	0.6
RP11-531I9	chr6:23,302,021-23,446,224	0.76
RP11-543G21	chr1:199,421,727-199,594,861	0.92
RP11-1047B3	chr7:114,496,093-114,692,887	0.97

Supplementary Table 2

K562 SON TSA	Condition A	Condition B	Condition C	Condition D	Condition E
y₀	0.27	0.35	0.24	0.38	0.28
A	9.69	6.10	7.7	5.08	6.75
R₀	-4.28	-3.53	-3.80	-3.43	-3.79

Supplementary Table 3

Cell line	Organism	Lineage
H1	Human	Embryonic stem cell
K562	Human	Erythroleukemia
HCT116	Human	Colorectal carcinoma (epithelial)
HFFc6	Human	Foreskin fibroblast
Supplementary Table 4 is a separate Excel file showing public RNA-Seq datasets used for correlation with TSA-Seq and for differential expression analysis between H1 and HFF cells.

Supplementary Table 5 is a separate Excel file showing results of RNA-Seq data analysis and correlation TSA-Seq data in the four cell lines.

Supplementary Table 6 is a separate Excel file showing all identified differentially expressed protein-coding genes between H1 and HFF cells.

Supplementary Table 7 is a separate Excel file showing results of gene ontology analysis for differentially expressed protein-coding genes in regions that are relatively closer to speckles versus that are not relatively closer to speckles between H1 and HFF cells.