Isoprenoid Modification of G25K (Gp), a Low Molecular Mass GTP-binding Protein Distinct from p21ras

William A. Maltese* and Kathleen M. Sheridan

From the Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822

Cultured murine erythroleukemia (MEL) cells synthesize a variety of low molecular mass GTP-binding proteins that undergo post-translational modification by isoprenoids. We used two-dimensional electrophoresis and immunoblotting to show that a 23-24-kDa protein labeled by the isoprenoid precursor [3H]mevalonate was specifically recognized by an antibody to G25K (Gp), a low molecular mass GTP-binding protein originally purified from placental, platelet, and brain membranes. Several isoelectric variants of G25K were detected in MEL cells, and all were radiolabeled with [3H]mevalonate. The G25K-immunoreactive protein did not cross-react with pan-ras antibody. Although mature p21ras is known to be localized in the cell membrane, most of the isoprenylated G25K was found in the 100,000 × g supernatant fraction when cells were lysed in buffer without detergent. Blocking isoprenoid synthesis by incubation of MEL cells with lovastatin resulted in a decrease in the concentration of G25K in the particulate fraction and a corresponding increase in immunodetectable protein in the soluble fraction. Lovastatin treatment also produced shifts in the electrophoretic mobilities of the G25K isoforms on two-dimensional gels. These observations are consistent with the idea that isoprenylation plays a permissive role in the association of G25K with the cell membrane or other organelles. However, the high proportion of soluble isoprenylated G25K in MEL cells under normal culture conditions suggests that the role of the isoprenoid modification may be more complex than simply serving as a structural anchor for stable insertion of proteins into the lipid bilayer.

Mevalonic acid (MVA) serves as a precursor for the biosynthesis of a variety of isoprenoid products including cholesterol, dolichols, the side chain of ubiquinone (coenzyme Q), and the farnesyl moiety of heme a (1-3). In 1984, Schmidt et al. (4) demonstrated that cultured mammalian cells were able to incorporate isoprenoid products derived from MVA into a discrete set of proteins, suggesting the existence of a new type of post-translational modification. Subsequent studies have established that isoprenylation of proteins occurs in a wide variety of cell types (5-9) and that the modified proteins fall into several categories with respect to their electrophoretic mobilities on SDS gels and their subcellular localizations (7, 9). Most recently, progress has been made in characterizing the modifying isoprenoid structures as being either farnesyl or diterpene groups, linked to the proteins via cysteine thioether bonds (10-12).

With only a few exceptions, the identities of the isoprenylated proteins remain to be determined. Two of the isoprenylated proteins that are localized in the nuclear matrix and which migrate between 66 and 72 kDa have been identified as lamin B (11, 14-16) and prelamin A (15-17). In the latter case, isoprenylation represents a key step in the proteolytic processing of prelamin A to mature lamin A (17). Several recent studies have shown that p21ras also undergoes isoprenylation in what appears to be the first step in a series of post-translational processing events that occur at the C terminus of the protein (18-21). One of the few structural features common to both the lamins and p21ras is the presence of a C-terminal amino acid sequence consisting of cysteine followed by 3 additional amino acids. Since the first 2 amino acids distal to the cysteine generally have aliphatic or hydroxy side chains, this amino acid sequence is frequently referred to as a Cys-A-A-X motif (where A is an aliphatic residue and X is any amino acid). The Cys-A-A-X sequence is found in several fungal mating factors that undergo farnesylation at C-terminal cysteine residues (22-24), and studies using mutational analysis have established that this is indeed the site of isoprenoid modification in mammalian p21ras (18) and avian nuclear lamins (16).

Mammalian cells contain many low molecular mass (20-30 kDa) GTP-binding proteins in addition to H-, K-, and N-p21ras, e.g. rho (25-27), ypt1/rab1 (28, 29), rab 2.3.4 (29, 30), smg21 (rap1) (31, 32), rul (33, 34), and rac1,2 (34, 35). Although these proteins are structurally distinct from each other and from p21ras, their sequences all show some degree of homology with that of p21ras, particularly in the regions contributing to the GTP-binding site. We reported recently that cultured MEL cells and fibroblasts contain several low molecular mass GTP-binding proteins that are not recognized by antibodies to p21ras but nevertheless undergo isoprenylation (36). Although some of these may be novel gene products, it seemed likely that others might be previously identified GTP-binding proteins. Among the low molecular mass GTP-binding proteins described in the literature, one particular protein named G25K (formerly Gp) attracted our interest because of its seemingly ubiquitous distribution in normal tissues and a variety of cultured cell lines (37-39).

We now demonstrate that proteins identified as G25K (Gp) by two-dimensional immunoblotting are modified by isoprenoid in cultured MEL cells. In contrast to the mature form of p21ras, which is localized in the cell membrane, a substantial proportion of isoprenylated G25K is concentrated in the soluble fraction. This finding implies that although isopren-
ylation may promote membrane association of p21ras, the stability of this association may vary greatly in the case of other related GTP-binding proteins.

EXPERIMENTAL PROCEDURES

Materials—8,9 [3H]Mevalonolactone was prepared by reduction of mevalonic acid precursor (Sigma) with sodium borohydride (Amersham Corp.) as described by Keller (40). The identity and purity of the tritium-labeled product were confirmed by thin-layer chromatography (41). The specific radioactivity of the [3H]MVA used in the present study was 3.66 Ci/mmol. 14C-labeled goat anti-rabbit IgG (Amersham Corp.) as described by Keller (40). The identity and purity of the tritium-labeled product were confirmed by thin-layer chromatography (41). The specific radioactivity of the [3H]MVA used in the present study was 3.66 Ci/mmol.

Isoprenoid Modification of G25K (G\textsubscript{p})

In a previous study with MEL cells (36), we were unable to detect p21ras by immunoblotting with the pan-ras antibody, using a horseradish peroxidase-conjugated secondary antibody. However, in the present study, the increased sensitivity of the 125I-labeled secondary antibody revealed a 26-kDa protein that reacted with the pan-ras antibody in the particulate fraction of HL-60 cells, as shown in Fig. 1.

RESULTS

Antibodies to G25K Detect a Protein Distinct from p21ras in MEL Cells

The presence of G25K (G\textsubscript{p}) in MEL cells was established initially by immunoblotting with an affinity-purified antibody against G\textsubscript{p} protein at approximately 23-24 kDa fell within a cluster of proteins labeled heavily with [3H]MVA, prompting further analysis of the isoprenylated proteins. The same blots were incubated with Saran Wrap and exposed to Kodak X-Omat AR film with a Cronex intensifying screen for various periods of time. For analysis of total cell protein, the washed cell pellets were dissolved immediately in electrophoresis buffer (46). With modifications described previously (36), the antibody to G25K also gave a weak signal corresponding to the pan-ras antibody in the particulate fraction. Prior to electrophoresis, protein that reacted with the pan-ras antibody in the particulate fraction was visualized prior to immunoblotting, the dried blots were transferred to nitrocellulose membranes as described previously (36). Alignment of fluorography films with subsequent immunoblots was facilitated by inclusion of fluorescent markers on the blots.

Immunoblotting was performed as described by Munby et al. (48). Blots that had been fluorographed were washed with water for 15 min prior to the initial blocking step.

Primary antibodies were diluted to 1/1,000 in buffer containing 5% dry milk, 2% Nonidet P-40, and 0.2% SDS, and incubation was performed at room temperature for 2 h. Secondary antibodies (goat 125I-anti-mouse IgG for p21ras primary antibody, or goat 125I-anti-rabbit IgG for anti-G25K or anti-Gp primary antibodies) were added to the same buffer at 500,000 dpm/ml, and incubation was carried out for 1 h. Blots were covered with Saran Wrap and exposed to Kodak X-Omat AR film with a Cronex intensifying screen for various periods of time.

TRANSIENT EXPRESSION OF H-ras IN COS CELLS

The pZIP-rasras wild-type leucine 61 ras plasmid DNA was obtained from Dr. Channing Der (La Jolla Cancer Research Foundation, La Jolla, CA). The ras insert was excised with BamHI and subeloned into the polylinker region of the pCMV5 expression vector (49) obtained from Dr. David Russell (University of Texas Southwestern Medical Center, Dallas). As a control for comparison with the ras transfected cells, parallel cultures were transfected with the pmCV5 plasmid containing a G\textsubscript{ta} cDNA insert, provided by Dr. Janet Rohishaw (Weiz Center for Research, Jerusalem, Israel). Expressed G\textsubscript{ta} protein migrated at 41 kDa and does not undergo isoprenylation despite having a Cys-A-X-C terminal sequence (50). Prior to transfection, COS-M6 cells were plated in 60-mm dishes at a density of 9 x 104 cells/dish and grown for 24 h. Cells were transfected with pmCV5 plasmid DNA (4 \mu g/dish) using a standard DEAE-dextran protocol (51) with the inclusion of 10 mM chloroquine during the initial 4-h incubation with the DNA/DEAE-dextran mixture. Incubation of cells with [3H]MVA to detect the formation of isoprenylated proteins was started 18 h after the transfection.

RESULTS

Antibodies to G25K Detect a Protein Distinct from p21ras in MEL Cells

The presence of G25K (G\textsubscript{p}) in MEL cells was established initially by immunoblotting with an affinity-purified antibody against a synthetic peptide derived from the sequence of human placental and platelet G25K (peptide pl described in Ref. 39). The experimental strategy was as follows. LR-MEL cells were incubated with the isoprenylated protein [3H]MVA to label the entire complement of isoprenylated proteins. The soluble and particulate fractions were then subjected to SDS-PAGE, transferred to nitrocellulose membranes, and fluorographed to establish the positions of the isoprenylated proteins. The same blots were incubated subsequently with the antibody to G25K or with a monoclonal antibody (ras-11, pan) which recognizes all H-, K-, and N-p21ras proteins (for additional details, see legend to Fig. 1).

In agreement with our previous studies of MEL cells (36), most of the isoprenylated proteins were found in the 21-28-kDa region of the SDS gel and were about equally concentrated in the soluble and particulate fractions (Fig. 1). The soluble fraction contained a protein that reacted strongly with the antibody to G25K. The broad band of immunoreactive protein at approximately 23-24 kDa fell within a cluster of proteins labeled heavily with [3H]MVA, prompting further study by two-dimensional electrophoresis (see Fig. 5, described below). The antibody to G25K also gave a weak signal with a protein at the same molecular mass in the particulate fraction.

In a previous study with MEL cells (36), we were unable to detect p21ras by immunoblotting with the pan-ras antibody, using a horseradish peroxidase-conjugated secondary antibody. In the present study, the increased sensitivity of the 125I-labeled secondary antibody revealed a 26-kDa protein that reacted with the pan-ras antibody in the particulate fraction.

In a previous study with MEL cells (36), we were unable to detect p21ras by immunoblotting with the pan-ras antibody, using a horseradish peroxidase-conjugated secondary antibody. However, in the present study, the increased sensitivity of the 125I-labeled secondary antibody revealed a 26-kDa protein that reacted with the pan-ras antibody in the particulate fraction.

In a previous study with MEL cells (36), we were unable to detect p21ras by immunoblotting with the pan-ras antibody, using a horseradish peroxidase-conjugated secondary antibody. However, in the present study, the increased sensitivity of the 125I-labeled secondary antibody revealed a 26-kDa protein that reacted with the pan-ras antibody in the particulate fraction.
culture of LR-MEL cells was initiated at a density of 200,000 cells/ml and grown for 24 h in medium containing 25 \(\mu \)M lovastatin. Cells were then incubated with [\(^3H \)]MVA (200 \(\mu \)Ci/ml of medium) for 18 h. Cells were lysed in hypotonic buffer, and the soluble and particulate proteins were separated by SDS-PAGE (200 \(\mu \)g of protein/lane). After transfer to nitrocellulose, the isoprenylated proteins were visualized by fluorography. Each of the fluorographed strips of nitrocellulose was cut in half, and the fluor was washed out. The matching halves of the strips were then immunoblotted with antibodies to G25K or p21ras, using an \(^3H \)-labeled secondary antibody for detection of bound IgG (see "Experimental Procedures"). Exposure time for fluorography of the [\(^3H \)]MVA-labeled proteins was 5 days. The \(^3H \)-labeled immunoblots were exposed for 4 h. Stds., molecular mass standards.

Fig. 1. Immunodetection of G25K in MEL cells. A suspension culture of LR-MEL cells was initiated at a density of 200,000 cells/ml and grown for 24 h in medium containing 25 \(\mu \)M lovastatin. Cells were then incubated with [\(^3H \)]MVA (200 \(\mu \)Ci/ml of medium) for 18 h. Cells were lysed in hypotonic buffer, and the soluble and particulate proteins were separated by SDS-PAGE (200 \(\mu \)g of protein/lane). After transfer to nitrocellulose, the isoprenylated proteins were visualized by fluorography. Each of the fluorographed strips of nitrocellulose was cut in half, and the fluor was washed out. The matching halves of the strips were then immunoblotted with antibodies to G25K or p21ras, using an \(^3H \)-labeled secondary antibody for detection of bound IgG (see "Experimental Procedures"). Exposure time for fluorography of the [\(^3H \)]MVA-labeled proteins was 5 days. The \(^3H \)-labeled immunoblots were exposed for 4 h. Stds., molecular mass standards.

fraction of the LR-MEL cells. This protein clearly migrated at a higher molecular mass than the protein recognized by anti-G25K, and contrary to G25K, it was not found in the soluble fraction (Fig. 1).

The 26-kDa protein reacting with the pan-ras antibody in the MEL cells appeared to be different from both p21ras and G25K with respect to its electrophoretic mobility. Thus, when COS cells were transfected with cDNA coding for p21ras or G25K, using an \(^3H \)-labeled secondary antibody for detection of bound IgG (see "Experimental Procedures"). Exposure time for fluorography of the [\(^3H \)]MVA-labeled proteins was 5 days. The \(^3H \)-labeled immunoblots were exposed for 4 h. Stds., molecular mass standards.

Fig. 2. Comparison of pan-ras immunoreactive proteins in MEL cells with immunoreactive p21ras transiently expressed in COS cells. COS cells were transfected with cDNA coding for p21ras or G25K, as described under "Experimental Procedures." Beginning 18 h after transfection, the isoprenylated proteins in the COS cells as well as a parallel culture of LR-MEL cells were labeled by incubation for 18 h with [\(^3H \)]MVA (200 \(\mu \)Ci/ml of medium) in medium containing 25 \(\mu \)M lovastatin. Aliquots of whole cell homogenate (90 \(\mu \)g of protein) were resolved by SDS-PAGE, and the proteins were transferred to nitrocellulose. After fluorography (5-day exposure) immunoblotting was performed with pan-ras antibody followed by \(^3H \)-labeled secondary antibody to detect the bound IgG (6-h exposure). The arrows indicate the position of the transiently expressed p21ras in the COS cells transfected with H-ras. Stds., molecular mass standards.

Confirmation of the Presence of G25K in the Soluble Fractions of Different Cell Lines—The finding that the G25K-immunoreactive protein detected in LR-MEL cells was concentrated in a soluble fraction generated by lysis of cells in buffer without detergent was surprising since G25K (Gp) originally was isolated from placental and brain membranes (37, 38). In a previous study of G25K in cultured cells, Polakis et al. (39) used the anti-G25K p1 peptide antibody to confirm the presence of G25K in HL-60 cells and several other cell lines. However, because the screening was performed on membrane fractions or whole cell lysates, these studies did not establish whether a significant proportion of G25K was present in the soluble fraction.

The unexpected subcellular distribution of the immunoreactive protein in the present study led us to consider whether the antipeptide antibody might have been recognizing a soluble protein that shared the G25K p1 peptide sequence but was in fact a protein different from the Gp protein originally isolated by Evans et al. (37). To test this possibility we compared the immunoblot patterns obtained with the anti-p1 peptide antibody with those obtained with a polyclonal antiserum against G25K from platelet membranes. As shown in Fig. 3 (panel a), the antibody against the G25K p1 peptide gave a strongly positive reaction when tested against authentic placental Gp or platelet G25K. Conversely, the polyclonal antiserum against Gp also reacted with both the placental and platelet proteins. When both antibodies were used in parallel immunoblot assays against soluble and particulate protein fractions from LR-MEL cells, the polyclonal antiserum against Gp gave results that were essentially identical to those obtained with the antipeptide antibody; i.e. a broad immunoreactive band with a mobility corresponding to that of pure G25K, concentrated predominantly in the soluble fraction (Fig. 3, panel b).

Another possible explanation for the high proportion of G25K in the soluble fraction was that this subcellular distribution was a unique feature of the LR-MEL cells. Therefore, we compared the distribution of G25K between the total soluble and particulate compartments in several additional
Isoprenoid Modification of G25K (Gp) cell lines (Fig. 4). The salient feature of the results is that a substantial proportion of G25K was present in the soluble fraction in every cell line examined. As in the case of the LR-MEL cells, the protein was predominantly cytosolic in human HL-60 myeloid leukemia cells, simian COS cells, and the parent Friend MEL cell line, which had not been adapted to grow in the presence of lovastatin. In normal Rat-6 fibroblasts, the relative amount of immunoreactive protein detected in the particulate fraction was slightly greater than in the soluble fraction whereas in the H-ras-transformed Rat-6 fibroblasts the G25K appeared to be about equally distributed between the two compartments.

Demonstration of the Isoprenylation of G25K by Two-dimensional Gel Analysis—In view of the overlap of proteins recognized by antibodies to G25K with proteins labeled by [3H]MVA on one-dimensional SDS gels (Fig. 1), we performed a two-dimensional immunoblot analysis of MEL cell proteins to establish whether or not G25K was actually one of the isoprenylated proteins. The [3H]MVA-labeled proteins from the soluble and particulate fractions were subjected to two-dimensional electrophoresis, fluorography, and immunoblotting with the anti-G25K pl antibody. In anticipation of performing further studies on the effects of blocking isoprenoid synthesis on the electrophoretic mobility and subcellular distribution of G25K (see Fig. 6), we elected to perform these studies with the parent MEL cell line, which had not been adapted to grow in the presence of lovastatin and therefore retained full sensitivity to this inhibitor of MVA synthesis. The results, which are shown in Fig. 5, clearly identified three major [3H]MVA-labeled proteins in the soluble fraction which reacted with the antibody to G25K. These proteins were indistinguishable by molecular mass but had varying pl values ranging from approximately 7.5 to 7.8 (determined in a separate experiment in which the proteins were run with carboxymethyl standards). In addition to the soluble G25K-reactive proteins, we also detected a doublet of immunoreactive [3H]MVA-labeled proteins in the particulate fraction. These proteins were similar to the soluble proteins with respect to their molecular masses and pl values. Thus far we have observed a similar pattern of [3H]MVA-labeled G25K isoforms in three separate experiments. However, it should be noted that the relative proportions of the three proteins in the soluble fraction, based on the [3H]MVA labeling or immunoblotting, were not always identical. The reasons for this variability remain to be established.

Effects of Lovastatin on the Subcellular Distribution and

Fig. 3. Antibodies to G25K pl peptide and purified Gp both react with a protein in the soluble fraction of MEL cells. a, partially purified platelet G25K (9 µg) or placental Gp (20 µg) was subjected to SDS-PAGE and Western blotting as indicated at the top of each lane. Immunoblotting was then performed with affinity-purified antibody against G25K pl peptide or with polyclonal antiserum against platelet Gp, as indicated at the bottom of each panel. After incubation with 125I-labeled secondary antibody (see "Experimental Procedures") the immunoblots were exposed for 2 h. b, LR-MEL cells from an exponentially growing suspension culture were homogenized and fractionated as described under "Experimental Procedures." Aliquots of soluble (S) or particulate (P) fractions (150 µg of protein/lane) were subjected to SDS-PAGE and transferred to nitrocellulose. Immunoblotting was performed with the anti-G25K peptide antibody or the anti-Gp polyclonal antiserum as indicated below each panel. The blots were exposed for 8 h to visualize the 125I-labeled secondary antibody.

Fig. 4. Comparison of the distribution of G25K between the soluble and particulate fractions of several cultured cell lines. Cells were harvested from suspension or monolayer cultures that were in the exponential phase of growth. Fractionation of cells into soluble (S) and particulate (P) components was performed as described under "Experimental Procedures." In each case, the total soluble and particulate fractions were loaded in adjacent lanes and subjected to SDS-PAGE and immunoblotting with the anti-G25K pl peptide antibody. The blots shown in panels a and b were from two separate experiments. Those in panel a were exposed for 17 h, and those in panel b were exposed for 4 h. The actual protein values for the total soluble and particulate fractions loaded in each case were as follows: a, LR-MEL: P = 330 µg, S = 208 µg; HL-60: P = 264 µg, S = 173 µg; b, LR-MEL: P = 780 µg, S = 350 µg; MEL, P = 640 µg, S = 150 µg; COS: P = 740 µg, S = 250 µg; Rat-6: P = 100 µg, S = 40 µg; H-ras-Rat-6; P = 620 µg, S = 120 µg.
Isoprenoid Modification of G25K (Gp)

FIG. 5. Isoprenylation of G25K demonstrated by fluorography and immunoblotting of proteins separated by two-dimensional electrophoresis. MEL suspension cultures that had reached a density of 10^6 cells/ml were incubated with [3H]MVA (200 μCi/ml) and 25 μM lovastatin for 24 h. In separate experiments, soluble and particulate fractions were prepared and subjected to two-dimensional electrophoresis as described under "Experimental Procedures." The amounts of protein loaded on the gels were 200 μg (soluble) and 150 μg (particulate). Following electrophoresis, proteins were transferred to nitrocellulose membranes and fluorographed to visualize the total complement of isoprenylated proteins (upper panels). The regions of the blots containing the 21-28-kDa [3H]MVA-labeled proteins (outlined by boxes) were washed and subjected to immunoblotting with antibody to the G25K p1 peptide using ^125I-labeled secondary antibody to localize the bound IgG (lower panels). Fluorographs were exposed for 7 days (soluble) or 5 days (particulate). Both of the immunoblots were exposed for 18 h. The arrows indicate [3H]MVA-labeled proteins that were specifically recognized by the antibodies to G25K. IEF, isoelectric focusing.

Electrophoretic Mobility of G25K—Recent studies of p21ras have shown that treatment of cultured cells with inhibitors of isoprenoid biosynthesis prevents the isoprenylation and post-translational proteolytic processing of the protein at its C terminus (i.e. conversion of pro-p21ras to c-p21ras) and the subsequent palmitoylation and membrane localization of the protein (conversion of c-p21ras to m-p21ras) (18, 21). The inhibition of p21ras processing is manifested by the accumulation of pro-p21ras, which can be distinguished from c-p21ras and m-p21ras by virtue of its higher apparent molecular mass on one-dimensional SDS gels (18, 19, 21). In view of these findings, we conducted studies to determine what effect blocking MVA synthesis might have on the subcellular distribution and electrophoretic mobility of G25K. As shown in Fig. 6 (panel a), pretreatment of MEL cells for 24 h with 25 μM lovastatin resulted in a decrease in the relative amount of immunodetectable G25K in the particulate fraction and an increase in the relative amount of immunodetectable G25K concentrated in the soluble fraction. The broadening of the band of immunoreactive protein in the soluble fraction of MEL cells acutely exposed to lovastatin suggested that forms of G25K with slightly altered electrophoretic mobilities might have accumulated when MVA synthesis was blocked. However, even when gradient gels were used, the resolution afforded by one-dimensional SDS-PAGE was insufficient to delineate clearly a pro-form of G25K analogous to pro-p21ras. To explore this possibility further, two-dimensional electrophoresis was used to resolve the isoforms of G25K (Fig. 6,
FIG. 6. Effects of inhibition of MVA synthesis on the subcellular distribution and electrophoretic mobility of G25K in MEL cells. MEL cells in the exponential phase of growth were incubated with 25 µM lovastatin for 24 h. Control cells were incubated without lovastatin. Cells were fractionated into soluble (S) and particulate (P) components, and electrophoresis and immunoblotting were carried out as described under "Experimental Procedures." a, one-dimensional gradient SDS-PAGE. All lanes were loaded with 100 µg of protein, and immunoblotting was performed with antibody to G25K p1 peptide. Blots were exposed for 4.5 h to visualize the lz51-labeled secondary antibody. Using the developed film as a guide, identical regions of parallel blots (20-30 kDa, p1 approximately 7-8) were subjected to two-dimensional electrophoresis. The panels show identical regions of parallel blots (20-30 kDa, p1 approximately 7-8) after reaction with the G25K antibody. In both cases, exposure time was 90 min. IEF, isoelectric focusing.

panel b). Under these conditions, shifts in both the P1 values and the apparent molecular masses of the G25K isoforms were clearly discernible after lovastatin preincubation.

DISCUSSION

The present study demonstrates that in cultured MEL cells a protein that is immunologically indistinguishable from G25K undergoes post-translational modification by isoprenoid groups derived from [3H]MVA. G25K (G2) is a relatively abundant GTP-binding protein in platelets (34), brain (38), and placenta (37), and it was one of the first low molecular mass GTP-binding proteins to be purified from mammalian tissues. Although its function remains to be defined, the studies of Polakis et al. (39) coupled with those in this report imply that G25K is a ubiquitous protein found in a variety of normal and transformed cell lines. G25K is customarily viewed as being a member of the rapidly expanding family of ras-related proteins. However, the available amino acid sequence information derived from four peptide fragments indicates that compared with other low molecular mass GTP-binding proteins, G25K has relatively little homology with p21ras (39). Variation is observed even in the highly conserved Asn-Lys-X-Asp element (where X is an amino acid), which has been proposed to contribute to the guanine nucleotide binding site in the ras-related proteins (52, 53). Therefore, it was not surprising that antibodies generated against the unique p1 peptide sequence of G25K (39) showed no cross-reactivity with proteins recognized by the pan-ras antibody in the present study.

As mentioned previously, reports that isoprenoid modification of p21ras, prelamin A, lamin B, and fungal mating factors occurs at a cysteine within a C-terminal Cys-A-A-X sequence have led to speculation that this sequence may represent a consensus motif for isoprenylation. Therefore, a major question is whether the C-terminal sequence of G25K is consistent with this pattern. The full-length cDNA sequence for G25K is not yet available. However, preliminary information indicates that there may be two different forms of G25K, one with a C-terminal sequence fitting the pattern Cys-A-A-X2 and the other with a variation of this motif, i.e. Cys-Cys-A-X. Although the electrophoretic variants of G25K seen in the present study could have been due to post-translational modifications of a single protein, it is also conceivable that two or more slightly different G25K gene products are expressed in MEL cells. If the latter is true, then our finding that all of the electrophoretic variants of G25K in MEL cells were isoprenylated (see Fig. 5) raises the possibility that proteins with a Cys-Cys-A-X motif, as well as the usual Cys-A-A-X, may undergo isoprenylation.

Preincubation of MEL cells with an inhibitor of isoprenoid synthesis resulted in changes in the isoelectric points and molecular masses of the G25K-immunoreactive proteins on two-dimensional gels (see Fig. 6). This observation provides some support for the notion that as in the case of p21ras, post-translational processing of G25K is dependent on isoprenoid availability. However, it remains to be determined whether the shifts in electrophoretic mobility of G25K are due solely to accumulation of nonisoprenylated forms of the protein or whether blocking isoprenoid synthesis prevents additional steps such as proteolytic cleavage or carboxymethylation at the C terminus.

In addition to establishing that G25K is isoprenylated, our results provide the first indication that G25K is normally localized in both the soluble and particulate fractions of several cultured cell lines. Of particular note was the observation that in MEL cells most of the G25K partitioned in the soluble fraction, despite the fact that the protein was isoprenylated. This finding argues against the idea that isoprenylation necessarily results in the stable insertion of proteins into the membrane lipid bilayer and points to a more complex and subtle role for this structural modification. The recent studies with p21ras have established that isoprenylation of Cys100 is sufficient to promote interaction of the protein with the cell membrane and expression of transforming activity (18, 19). However, the presence of an isoprenylated intermediate form of p21ras (c-p21ras) in the soluble fraction of COS cells led Hancock et al. (18) to conclude that although the first steps in p21ras processing (i.e. isoprenylation, proteolytic cleavage, and carboxymethylation) allow some degree of membrane association, this association is not as strong or stable as that which is attained after the protein is palmitoylated. Additional insight into the function of isoprenylation comes from studies of the nuclear lamins. For example, although it is known that prelamin A is isoprenylated (15-17) and that mutations in the Cys-A-A-X motif abolish translocation of the protein to the nuclear envelope (54), the forms of prelamin A with point mutations in the a-helical domain remain dispersed in the nucleoplasm despite the fact that they have a normal Cys-A-A-X-C-terminal sequence (54). Based on these studies, it has been suggested that isoprenylation alone confers only a weak affinity for membranes and that other structural features or protein-protein interactions are also required for assembly of lamin A into the nuclear envelope (54). A similar situation may exist in the case of lamin B, in which isoprenylation at a C-terminal cysteine (11, 14-16) and interaction with a specific receptor (55) may both contribute to the stable association.

2 Dr. Richard Cerione, Cornell University, Ithaca, NY, personal communication.

3 Dr. Paul Polakis, Cetus Corp., Emeryville, CA, personal communication.
The major isoprenylated GTP-binding proteins in MEL cells are currently underway. Studies aimed at determining if this protein represents one of the most likely candidates, our studies with G25K suggest that interactions promoted by isoprenylation may serve to bring G25K into proximity with a membrane receptor protein in the cell membrane. This could explain why blocking isoprenoid synthesis with lovastatin resulted in a decreased concentration of G25K in the particulate fraction of MEL cells (see Fig. 6). Alternatively, weak membrane interactions proposed by isoprenylation may serve to bring G25K into proximity with a membrane receptor protein in which other factors (e.g. GTP binding and hydrolysis, phosphorylation) ultimately control the release of the protein into the soluble fraction. Several lines of evidence suggest that the latter possibility merits serious consideration. For instance, Nagata et al. (59) found that a membrane-bound small GTP-binding protein in platelets could be phosphorylated by cyclic AMP-dependent protein kinase whereas a similar cytoplasmic GTP-binding protein in platelets was incapable of being phosphorylated by the same enzyme unless it was first treated with phosphatase. Hart et al. (60) reported recently that purified platelet G25K undergoes epidermal growth factor stimulated tyrosine phosphorylation when reconstituted into phospholipid vesicles with purified epidermal growth factor receptor and speculated that phosphorylation might serve to stimulate release of the protein from membranes in vivo. In this regard it is noteworthy that several of the 20-25-kDa isoprenylated proteins have been shown previously to be phosphorylated in murine lymphoma cells (9). It is not yet known if any of these proteins corresponded to G25K, but it is conceivable that phosphorylation could account for the multiple isoforms of G25K observed in the present study.

The discovery that both p21s and G25K are isoprenylated strongly suggests that other ras-related GTP binding may undergo similar modifications. Although proteins bearing the Cys-A-X-C terminal sequence (e.g. rho, rap1) remain the most likely candidates, our studies with G25K suggest that proteins with variations in this general motif should not be ruled out. In this regard, we demonstrated recently that when MEL cell proteins were separated by two-dimensional electrophoresis, several [3H]MVA-labeled proteins in the 20-28-kDa region of the gel were able to bind [a-32P]GTP after transfer to nitrocellulose membranes (36). The GTP-binding capacity of two isoprenylated proteins migrating at 26-28 kDa was particularly striking since it was retained after long term fluorography. Although it is known that G25K does not bind [32P]GTP after transfer to nitrocellulose, another related protein, H-ras, has been reported to do so with high affinity (34). Interestingly, H-ras migrates at approximately 28 kDa on SDS gels, and its amino acid sequence deduced from a cDNA cloned from a placental library (34) contains a C-terminal motif (Cys-Cys-A-X) similar to that of one form of G25K. Studies aimed at determining if this protein represents one of the major isoprenylated GTP-binding proteins in MEL cells are currently underway.

An important area for future investigation concerns the structure of the isoprenoid moiety attached to G25K and other GTP-binding proteins. Initial studies of lamin B (11) and p21s (19) suggested that these proteins were modified by farnesyl (C15) groups. In a preliminary characterization of isoprenoids released from the low molecular mass isoprenylated proteins of MEL cells by sulfonium salt cleavage, we found material with chromatographic characteristics of farnesol, nerolidol, and additional unidentified rearrangement products (10). More recent studies of isoprenylated proteins from Chinese hamster ovary cells (12) and HeLa cells (13), employing gas chromatography-mass spectrometry to characterize products released by Raney-Nickel-catalyzed desulfurization, have demonstrated the existence of a second class of C20 (geranylgeranyl) isoprenoids. Thus, it is possible that C20 isoprenoid alcohols might have accounted for some of the unidentified material released from MEL cell proteins with methyl iodide cleavage (10). In view of the apparent heterogeneity of the modifying isoprenoid groups, it will be necessary to determine whether or not specific proteins such as G25K can be modified interchangeably by farnesyl or geranylgeranyl groups, depending on substrate availability or prenyltransferase activity in a given tissue. An alternative possibility is that variations in the C-terminal motifs may dictate which proteins will act as substrates for particular prenyltransferases. Clarification of these issues should be forthcoming as additional isoprenylated proteins are identified and their modifying groups are characterized.

Acknowledgments—We thank Drs. Paul Polakis, Tony Evans, and John Northup for helpful discussions and for generously providing antibodies and purified samples of G25K (Gy) used in these studies; Dr. Richard Cerione for sharing unpublished information regarding the G25K sequence; Dr. Channing Der for the pZIP-rosH plasmid; Dr. David Russell for the pCMV5 plasmid; and Dr. Therese Kinsella for subcloning of the H-ras insert.

REFERENCES

1. Goldstein, J. L., and Brown, M. S. (1990) Nature 343, 425-430
2. Schroepfer, G. J., Jr. (1981) Ann. Rev. Biochem. 50, 585-621
3. Weinstein, J. D., Branchaud, R., Beale, S. I., Bements, W. J., and Sinclair, P. R. (1986) Arch. Biochem. Biophys. 245, 44-50
4. Schmidt, R. A., Schneider, C. J., and Glomset, J. A. (1984) J. Biol. Chem. 259, 10175-10180
5. Sinensky, M., and Jorgel, J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 3257-3261
6. Bruenger, E., and Rilling, H. C. (1986) Biochim. Biophys. Acta 847, 209-214
7. Maltese, W. A., and Sheridan, K. M. (1987) J. Cell. Physiol. 133, 471-481
8. Faust, J., and Kriger, M. (1987) J. Biol. Chem. 262, 1990-2004
9. Sepp-Lorenzino, L., Azrolan, N., and Coleman, P. S. (1989) FEBS Lett. 245, 110-116
10. Maltese, W. A., and Erdman, R. A. (1989) J. Biol. Chem. 264, 18168-18172
11. Farnsworth, C. C., Wolda, S. L., Gelb, M. H., and Glomset, J. A. (1989) J. Biol. Chem. 264, 20422-20429
12. Rilling, H. C., Bruenger, E., Epstein, W. W., and Crain, P. F. (1990) Science 247, 318-319
13. Farnsworth, C. C., Gelb, M. H., and Glomset, J. A. (1990) Science 247, 320-322
14. Wolda, S. L., and Glomset, J. A. (1986) J. Biol. Chem. 261, 9977-9980
15. Beck, L. A., Hoshic, T. J., and Sinensky, M. (1988) J. Cell Biol. 107, 1307-1316
16. Vorburger, J., Kitten, G. T., and Nigg, E. A. (1989) EMBO J. 8, 4007-4013
17. Beck, L. A., Hoshic, T. J., and Sinensky, M. (1990) J. Cell Biol. 110, 1489-1499
18. Hanceck, J. F., Magne, A. J., Childs, J. E., and Marshall, C. J. (1989) Cell 57, 1167-1177
19. Caskey, P. J., Solski, P. A., Der, C. J., and Buss, J. E. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 8323-8327
20. Schaefer, W. R., Kim, R., Sterne, R., Thorner, J., Kim, S-H., and Rine, J. (1988) Science 245, 379-385
21. Leonard, G., Beck, L., and Sinensky, M. (1989) J. Biol. Chem. 264, 5157-5160
22. Kamiya, Y., Sakurai, A., Tamura, S., Takahashi, N., Tsuchiya, ...
Isoprenoid Modification of G25K (G26)

23. Anderegg, R. J., Betz, R., Carr, S. A., Crabb, J. W., and Dunzte, W. (1984) *J Biol Chem* 263, 18236-18240

24. Sakagami, Y., Yoshida, M., Isogai, A., and Suzuki, A. (1981) *Science* 212, 1525-1527

25. Yamamoto, K., Kenda, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) *J Biol Chem* 263, 9926-9932

26. Chardin, P., Madaloule, P., and Tavitian, A. (1988) *Nucleic Acids Res.* 16, 2717

27. Avraham, H., and Weinberg, R. A. (1988) *Mol Cell. Biol.* 9, 2058-2065

28. Haubruck, H., Disela, C., Wagner, P., and Gallwitz, D. (1987) *EMBO J.* 6, 4049-4053

29. Touchot, N., Chardin, P., and Tavitian, A. (1987) *Proc Natl Acad Sci U S A* 84, 8210-8214

30. Zakariaoui, A., Touchot, N., Chardin, P., and Tavitian, A. (1989) *J Biol Chem* 264, 12394-12401

31. Kawata, M., Masu, Y., Konda, J., Hishida, T., Teranishi, Y., and Takai, Y. (1988) *J Biol Chem* 263, 18965-18971

32. Pizon, V., Chardin, P., Lerosey, J., Olafsson, B., and Tavitian, A. (1988) *Oncogene* 3, 201-204

33. Chardin, P., and Tavitian, A. (1986) *EMBO J.* 5, 2203-2208

34. Polakis, P. G., Weber, R. F., Nevins, B., Didsbury, J. R., Evans, T., and Snyderman, R. (1989) *J Biol Chem* 264, 16383-16389

35. Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) *J Biol Chem* 264, 16378-16382

36. Maltese, W. A., Sheridan, K. M., Repko, E. M., and Erdman, R. A. (1990) *J Biol Chem* 265, 2148-2155

37. Evans, T., Brown, M. L., Fraser, E. D., and Northup, J. K. (1986) *J Biol Chem* 261, 7052-7059

38. Waldo, G. L., Evans, T., Fraser, E. D., Northup, J. K., Martin, M. W., and Harden, T. K. (1986) *Biochem J.* 240, 431-438

39. Polakis, P. G., Snyderman, R., and Evans, T. (1989) *Biochem Biophys Res Commun.* 160, 25-32

40. Keller, R. K. (1986) *J Biol Chem* 261, 12053-12059

41. Repko, E. M., and Maltese, W. A. (1988) *J Biol Chem* 264, 9945-9952

42. Albert, A. W., Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirasheld, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980) *Proc Natl Acad Sci U S A* 77, 3957-3961

43. Kita, T., Brown, M. S., and Goldstein, J. L. (1980) *J Clin Invest* 66, 1094-1100

44. Hsiao, W.-L., Wu, T., and Weinstein, I. B. (1986) *Mol Cell Biol.* 6, 1943-1950

45. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) *J Biol Chem.* 193, 265-275

46. Laemmli, U. K. (1970) *Nature* 227, 680-685

47. Garrels, J. I. (1979) *J Biol Chem* 254, 7961-7977

48. Muroy, S., Fang, I.-H., Gilman, A. G., and Sternweis, P. C. (1988) *J Biol Chem* 263, 2020-2026

49. Anderson, S., Davis, D. L., Dahlbäck, B., Jornwall, H., and Russell, D. W. (1989) *J Biol Chem* 264, 8222-8229

50. Maltese, W. A., and Robishaw, J. D. (1990) *J Biol Chem* 265, 18071-18074

51. Kingston, R. E. (1987) in *Current Protocols in Molecular Biology* (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G. Smith, J. A., and Struhl, K., eds) pp. 9.2.1-9.2.6. John Wiley & Sons, New York

52. LaCour, T. F. M., Nyborg, J., Thrup, S., and Clark, B. F. C. (1985) *EMBO J.* 4, 2985-2988

53. McCormick, F., Clark, B. F. C., LaCour, T. F. M., Kjeldgaard, M., Norskov-Lauritsen, K., and Nyborg, J. (1985) *Science* 230, 78-82

54. Holtz, D., Tanaka, R. A., Hartwig, J., and McKeon, F. (1989) *Cell* 59, 969-977

55. Worman, J. H., Yuan, J., Blobel, G., and Georgatos, S. D. (1988) *J Biol Chem* 263, 8531-8534

56. Grand, R. J. A. (1989) *Biochem J.* 265, 625-638

57. Clarke, S., Vogel, J. P., Deschenes, R. J., and Stock, J. (1987) *Proc Natl Acad Sci U S A* 85, 4643-4647

58. Deschenes, R. J., Stimmel, J. B., Clarke, S., Stock, J., and Broach, J. R. (1988) *J Biol Chem* 264, 11865-11873

59. Nagata, K., Nogao, S., and Nozawa, Y. (1989) *Biochem Biophys Res Commun.* 160, 235-242

60. Hart, M. J., Polakis, P. G., Evans, T., and Cerione, R. A. (1990) *J Biol Chem* 265, 5990-6001
Isoprenoid modification of G25K (Gp), a low molecular mass GTP-binding protein distinct from p21ras.
W A Maltese and K M Sheridan

J. Biol. Chem. 1990, 265:17883-17890.

Access the most updated version of this article at http://www.jbc.org/content/265/29/17883

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/265/29/17883.full.html#ref-list-1