Relationship between KCNQ1 gene polymorphisms and type 2 diabetes in the population of northwestern China and a meta-Analysis

CURRENT STATUS: POSTED

Jing Xu
The First Affiliated Hospital of Xi'an Jiaotong University

Wei Zhang
The First Affiliated Hospital of Xi'an Jiaotong University

Wei Song
The First Affiliated Hospital of Xi'an Jiaotong University

Jiaqi Cui
The First Affiliated Hospital of Xi'an Jiaotong University

Yanni Tian
The First Affiliated Hospital of Xi'an Jiaotong University

Huan Chen
The First Affiliated Hospital of Xi'an Jiaotong University

Pan Huang
Xi'an Jiaotong University Medical College First Affiliated Hospital

Shujun Yang
The First Affiliated Hospital of Xi'an Jiaotong University

Lu Wang
The First Affiliated Hospital of Xi'an Jiaotong University

Xin He
Xi'an Aerospace General Hospital

Lin Wang
Xi'an Gaoxin Hospital, Shaanxi,

Wei Cui
The First Affiliated Hospital of Xi’an Jiaotong University

Bingyin Shi
The First Affiliated Hospital of Xi’an Jiaotong University

shibingyin111111@163.com
Corresponding Author
ORCiD: https://orcid.org/0000-0002-3220-6076

DOI: 10.21203/rs.2.11512/v1

SUBJECT AREAS
Molecular Epidemiology Molecular Genetics

KEYWORDS
KCNQ1, Genetic polymorphism, Type 2 diabetes, Association study, Meta-analysis
Abstract

Aims
The purpose of this study was to explore the correlation between Potassium Voltage-Gated Channel Subfamily Q Member 1 (KCQ1) gene polymorphisms and the risk of type 2 diabetes mellitus (T2DM) and its clinical indicators in the population of northwestern China, and conducted a meta-analysis on two polymorphic loci that have been studied frequently and controversial.

Methods
A case control study was conducted, involving 508 patients and 503 healthy individuals in the population of northwest China, and evaluated the associations using the χ^2 test, Fisher's exact test, T test, and genetic model analyses.

Results
We discovered that rs2237895 rs2283228, rs163184, and rs163177 were associated with susceptibility to T2DM. Rs231362 rs231356, rs8181588 were related to the risk of T2DM after stratification. The results of meta-analysis also confirmed that rs2237895 and rs2283228 were strongly correlated with T2DM risk, especially in the East Asian population.

Conclusions
This study provides evidence for the correlation between KCQ1 gene polymorphisms and T2DM in the population of northwestern China.

Background
Type 2 diabetes (T2DM), characterized by hyperglycemia characterized by insulin resistance and beta cell dysfunction, has become an obvious global public health problem [1]. In 2017, there were 7.5 billion adults (8.8% of adults aged 20 to 79) with diabetes. It is expected that this rate will rise to 9.9% by 2045, which will affect 9.5 billion adults [2]. The treatment of T2DM imposes enormous social, financial and health system burdens across the world. Therefore, it is urgent to clarify the precise etiology and pathophysiology of T2DM and make the treatment more targeted.

The candidate genes for T2DM have been widely investigated. Numerous single nucleotide polymorphisms (SNPs) have been identified through sequencing, and many of them in critical genes
such as KCNJ11, WFS1, ABCA1, and ALOX5 were demonstrated to be associated with T2DM susceptibility [3-6]. Among them, KCNQ1 (Potassium Voltage-Gated Channel Subfamily Q Member 1) is located in a region of chromosome 11p15.5, spanning over 400 kb and containing 676 amino acids. KCNQ1 encodes a voltage-gated potassium channel required for repolarization phase of the cardiac action potential, and is expressed in the human heart and pancreas and, to a lesser extent, in the placenta, lung, liver and kidney [7]. In two independent GWAS studies (2008), KCNQ1 was first identified as a T2DM susceptibility gene in East Asian populations [8, 9]. Subsequently, some studies have confirmed that KCNQ1 was a susceptibility gene of T2DM in Chinese, Singaporean, Indian and some Euro-Caucasian subjects. In addition, the functional studies on KCNQ1 have shown that it can stimulate insulin secretion by selective blockade of this K+ channel [10]. Furthermore, clinical trait association analysis showed that baseline insulin secretion is impaired in KCNQ1 risk allele carriers [8]. It has been found that KCNQ1 blocker 293B stimulates insulin secretion, and KCNQ1 inhibitor enhances glucose-stimulated insulin secretion and increases the level of glucagon-like peptide-1 in mice [11]. Similarly, knockdown of KCNQ1 in mouse models resulted in increased systemic insulin sensitivity and increased insulin-mediated glucose uptake in the liver and muscles [12]. All these studies proved that KCNQ1 plays an important role in the occurrence of T2DM.

It is well known that different geographic regions can show significant differences in the frequency of certain genetic variations, which lead to differences in susceptibility to disease among populations from different regions. Currently, the correlation of KCNQ1 variants with T2DM risk has been reported in some regions of China, such as Hong Kong, Singapore and Shanghai, Jiangsu, Wuhan [8, 9, 13-15]. However, the effect of KCNQ variation on T2DM risk has not been reported in northwest China. Meanwhile, the relationship between the variants and clinical phenotypes of T2DM has rarely been reported, and it is equally important to find some new variants related to diabetes in KCNQ1.

In present study, we selected eight variants (rs117601636, rs231362, rs231356, rs2237895, rs2283228, rs163184, rs163177, rs8181588) of KCNQ1 gene for genotyping, among which rs8181588 has not been studied. Our aim was to explore the correlation of these eight variants with T2DM risk and some clinical indicators in northwest China. In addition, we also performed a meta-analysis on
two polymorphic loci (rs2237895 and rs2283228) that have been extensively studied so far. These studies can enhance our understanding of T2DM development and lead to effective individualized prevention of this disease in different populations.

Methods

Study subjects

Using a case control design, a total of 1011 participants including 508 patients with newly diagnosed T2DM and 503 healthy controls were recruited. All of blood samples of patients were collected from the First Affiliated Hospital of Xi’an Jiaotong University. All subjects were members of Chinese Han population living in the Shaanxi province of China. We diagnosed patients with T2DM according to the World Health Organization (WHO) criteria in 1999: fasting plasma glucose 7.0mmol/l and/or 2 hours postprandial plasma glucose 11.1mmol/L. At the same time, patients with acute diabetes complications, other types of diabetes, type T2DM with lipid-lowering and/or oral hypoglycemic drugs, cardiovascular disease, renal and liver failure, and malignancies were excluded.

The inclusion criteria for unrelated controls were as follows: 1) normal glucose tolerance (fasting plasma glucose < 6.1 mmol/L and 2-h plasma glucose < 7.8 mmol/L), or HbA1c levels < 5.6% with fasting plasma glucose 6.1 mmol/L; 2) No personal or family history of diabetes; 3) no systemic diseases.

SNP selection and genotyping

Eight tag-SNPs (rs117601636, rs231362, rs231356, rs8181588, rs163177, rs163184, rs2283228, rs2237895) in the KCNQ1 gene were selected from the International HapMap Project (http://www.hapmap.org), dbSNP (http://www.ncbi.nlm.nih.gov/proj ects/ SNP/) and UCSC (http://genome.ucsc.edu/) databases for our present study. These SNPs were with minor allele frequencies (MAFs) >5% in Chinese Han population. A multiplexed SNP MassEXTEND assay was designed by Agena MassARRAY Assay Design 3.0 Software (Agena Bioscience, Inc., San Diego, CA, USA). Genotyping of variants was performed by two laboratory personnel in a double-blinded fashion using the Agena MassARRAY system (Agena, San Diego, CA, U.S.A.) [16, 17], and we used Agena Typer 4.0 software for data management and analysis [18, 19]. In order to verify the accuracy of
genotyping, marker and sample genotyping efficiency as well as the performance of positive and negative controls were examined. In addition, approximately 10% of the total samples were randomly selected for repeat genotyping with a reproducibility of 100%. The corresponding primers used for SNPs in this study are listed in Table S1.

Data collection

Basic information about the subjects was collected by trained professionals using structured questionnaires. The peripheral blood samples from each participant were contained in tubes coating with ethylene-diaminetetraacetic acid (EDTA) and were stored at −80°C after centrifugated until analysis. Genomic DNA from whole blood was isolated by the Whole Blood Genomic DNA Extraction Kit (Tiangen Biotech, Beijing, China), and its concentration was measured using the NanoDrop2000 (Thermo Scientific, Waltham, MA, USA).

Data analyses

All the statistical analyses were completed using the Microsoft Excel (Microsoft Corporation, Redmond, WA, USA) and the SPSS 18.0 statistical package (SPSS, Chicago, IL, USA). The differences of basic parameters between the cases and controls were examined with the Pearson’s χ² tests for categorical variables and independent sample Student t test for continuous variables. For each SNP, Hardy Weinberg equilibrium as well as the differences in allele frequencies and genotype frequencies between cases and controls were examined by χ² tests or Fisher’s exact test. Beyond that, multiple inheritance model analyses (codominant, dominant, recessive and log-additive) were generated using PLINK software (http://pngu.mgh.harvard.edu/purcell/plink/) to estimate the relationship between SNPs and diabetes risk. Furthermore, we also used multiple genetic models to analyze the correlation between SNPs and diabetes risk in different stratified analyses. Finally, haploview software package (version 4.2) and the SHEsis software (http://analy sis.bio-x.cn/ myAna lysis .php) were used to evaluate the pairwise linkage disequilibrium (LD), haplotype construction, and genetic association of polymorphism loci. The diabetes risk linked with alleles and genotypes was estimated by computing the odds ratios (ORs) and their 95% confidence intervals (CIs) from unconditional logistic regression analysis by adjusting covariates such as age. For all tests, a two-sided p-value < 0.05 was regarded
statistically significant.

Search Strategy and Selection Criteria

We searched for key words such as T2DM, KCNQ1, rs2237895 and rs2283228 polymorphism etc. in PUBMED, EMBASE, Cochrane library, HuGNet database and other related publications to determine the literature. We also supplemented the literature by reviewing the reference list of all publications retrieved.

For the meta-analysis, the following inclusion criteria were considered: (1) unrelated case-control studies; (2) sufficient genotypes data were presented to calculate the odds ratios (ORs); (3) The sources of T2DM diagnostic cases and controls should be clearly described; (4) conform to Hardy-Weinberg equilibrium (HWE). The exclusion criteria were as follows: (1) no control population (2) duplication of a previous study, and (3) no available genotype frequency.

Data Extraction

Two investigators extracted data independently and reached a consensus on all of the items. The following information was sought from each article: the first author’s name, year of publication, country of origin, ethnicity, representativeness and ascertainment of cases and controls, mean age, male sex percentage in case and control groups, number of cases and controls, genotype frequencies for cases and controls and Hardy-Weinberg equilibrium (HWE) of controls.

Statistical Meta-Analysis

Stata software was used for all statistical analyses (version 11.0;StataCorp LP, College Station, TX), using bilateral p values. p < 0.05 was considered statistically significant in all analyses except for the heterogeneity test. Heterogeneity was assessed using a chi-square based Q test. If the p value is greater than 0.100 of the q-test, indicating a lack of heterogeneity between studies, the summary OR estimate for each study is calculated using the fixed effects model (the Mantel-Haenszel method/ the inverse variance method). Instead, perform the random effects model (the DerSimonian-Laird method with the estimate of heterogeneity being taken from the Mantel-Haenszel model/the inverse-variance fixed-effect model). Heterogeneity was also assessed using I^2 statistics, with values between 0% and 100%. A higher value indicates a greater degree of heterogeneity ($I^2 = 0 - 25%$: no heterogeneity; I^2
= 25 - 50%: moderate heterogeneity; I² = 50 - 75%: large heterogeneity; I² = 75 - 100%: extreme heterogeneity). Use the Z test to determine the significance of the merged OR. Funnel plots, Begg's test and Egger's test were used to check for potential publication bias.

Results

Characteristics of patients and controls

The basic characteristics of cases and controls are summarized in Table 1. In this case-control study, a total of 508 patients (277 males and 231 females; age at diagnosis: 59.34 ± 7.62 years) and 503 healthy individuals (279 males and 224 females; age at diagnosis: 59.21 ± 11.90 years) were enrolled. There were no statistically significant differences (p = 0.248) in the distributions of gender and age between the cases and controls groups.

Hardy-Weinberg equilibrium and SNPs alleles

Table 2 presented the basic information of the eight SNPs of KCNQ1 in terms of gene, SNP ID, chromosomal position, role, minor allele frequency (MAF) of cases and controls, Hardy-Weinberg equilibrium (HWE) test results and call rate. The call rate for all SNPs was above 99.5% in case and controls, which was considered high enough to perform association analyses. For all of the KCNQ1 polymorphisms, the genotype distribution in controls subjects were no deviation from the HWE (p > 0.05). We used χ² tests to compare the difference in allele frequency between cases and controls, and evaluate the association with the risk of diabetes by ORs. Finally, we found that three significant SNPs in KCNQ1 were associated with the risk of T2DM. Rs163177 and rs2237895 were associated with a higher T2DM risk in the allele genetic model (rs163177, T vs. C: OR = 1.21, 95% CI = 1.01 - 1.44, p = 0.036; rs2237895, C vs. A: OR = 1.20, 95% CI = 1.00 - 1.44, p = 0.046). Conversely, rs2237895 was associated with a reduced risk of T2DM in the allele genetic model (C vs A: OR = 0.78, 95% CI = 0.65 - 0.93, p = 0.007).

Association between KCNQ1 and the risk of diabetes

Furthermore, we analyzed the association between the SNPs and the risk of T2DM under multiple inheritance models (codominant, dominant, recessive, additive models) (Table 3). The results showed that rs163177 significantly increased the risk of T2DM under the codominant, dominant and log-
additive model (TC vs. TT: OR = 1.52, 95% CI = 1.12 - 2.05, p = 0.007; CC vs. TT: OR = 1.48, 95% CI = 1.03 - 2.13, p = 0.035; C/C - TC vs. TT: OR = 1.51, 95% CI = 1.13 - 2.01, p = 0.006; C vs. T: OR = 1.22, 95% CI = 1.02 - 1.47, p = 0.030). The SNP site rs2237895 was significantly correlated with increased risk of T2DM under the codominant and log-additive model (A/A vs. CC: OR = 1.53, 95% CI = 1.02 - 2.30, p = 0.039; A vs. C: OR = 1.21, 95% CI = 1.01 - 1.46, p = 0.044). The SNP site rs163184 only increased the risk of T2DM in dominant model (T/G-G/G vs. TT: OR = 1.30, 95% CI = 1.00 - 1.74, p = 0.049). However, rs2283228 polymorphism had a significantly reduced the risk of T2DM based on codominant, dominant and log-additive model (AA vs. CC: OR = 0.60, 95% CI = 0.39 - 0.91, p = 0.016; A/C-A/A vs. CC: OR = 0.74, 95% CI = 0.57 - 0.94, p = 0.016; A vs. C: OR = 0.77, 95% CI = 0.64 - 0.93, p = 0.007).

Stratification analysis by age and gender

We performed a subgroup analysis to evaluate the effect of the SNPs on T2DM stratified by age adjusted for age and gender. As shown in Table 4, the results indicated that rs163177 was associated with an increased T2DM risk at age ≤ 50 years in codominant model, dominant model ((TC vs. TT, OR = 1.74, 95% CI = 1.13 - 2.69, p = 0.012; C/C - T/C vs. TT, OR = 0.165, 95% CI = 1.08 - 2.54, p = 0.022). Rs818158 polymorphism was observed to be associated with the reduced the susceptibility of T2DM at age 50 years under allele model (C vs. T, OR = 0.78, 95% CI = 0.60 - 1.00, p = 0.046). Meanwhile, rs2283228 also showed a negative effect on T2DM at age 50 years under both the log-additive (A vs. C, OR = 0.76, 95% CI: 0.58 - 0.99, p = 0.041) and the allele model (A vs. C, OR= 0.74, 95% CI: 0.58 - 0.96, p = 0.024).

Stratified analysis by gender adjusted for age also revealed significant associations between three SNPs and the risk of T2DM as presented in Table 4. Rs163177 polymorphism was significantly associated with increasing the T2DM risk among the female subgroup under the co-dominant model (CC vs. TT, OR = 1.81, 95% CI = 1.05-3.13, p = 0.033), dominant model (C/C-T/C vs. TT, OR = 1.55, 95% CI: 1.01 - 2.38, p = 0.045), log-additive model (C vs. T, OR=1.35, 95% CI: 1.03 - 1.77, p = 0.030) and allele model (C vs. T, OR=1.32, 95% CI:1.02 - 1.71, p = 0.038). Rs2237895 polymorphism also exhibited an increased T2DM risk among female in the co-dominant model (AA vs. CC, OR = 2.04,
95% CI = 1.11 - 3.76, p = 0.023), recessive model (A/A vs. C/C-A/C, OR = 1.81, 95% CI: 1.04 - 1.81, p = 0.026), log-additive model (A vs. C, OR = 1.37, 95% CI: 1.04 - 1.81, p = 0.026) and allele model (A vs. C, OR = 1.36, 95% CI: 1.03 - 1.78, p = 0.028). Conversely, rs2283228 polymorphism was associated with reduced susceptibility of diabetes in females under co-dominant (AC vs. CC, OR = 0.67, 95% CI = 0.45 - 0.99, p = 0.045) and dominant model (A/C-A/A vs. CC, OR = 0.67, 95% CI = 0.46 - 0.97, p = 0.033). However, there was no relationship existed between the selected SNPs and diabetes risk in males.

Stratification analysis by smoking and alcohol drinking

We further explored the potential interactions between the selected SNPs and the development of T2DM based on smoking and drinking stratification, and found the results in Table 5. According to the stratification of smoking status, it was found that rs231362 can increase the susceptibility of non-smokers to T2DM under the co-dominant (TC vs. TT: OR = 1.76, 95% CI = 1.05 - 2.98, p = 0.034), dominance model (C/C-T/C vs. TT: OR = 1.81, 95% CI = 1.08 - 3.04, p = 0.023), log-additive model (C vs. T, OR=1.77, 95% CI: 1.09 - 2.87, p = 0.021). For rs2283228, nonsmokers' susceptibility to T2DM in the allele model was reduced (A vs. C, OR=0.74, 95% CI: 0.55 - 0.99, p = 0.043).

When stratified by drinking status, rs231362 was observed to decrease the susceptibility to T2DM among individuals without drinking history based on co-dominant (TC vs. TT: OR = 2.01, 95% CI = 1.20 - 3.35, p = 0.008), dominance model (C/C-T/C vs. TT: OR = 2.06, 95% CI = 1.25 - 3.42, p = 0.005), log-additive model (C vs. T, OR = 1.99, 95% CI: 1.24 - 3.20, p = 0.005) and allele model (C vs. T, OR = 1.53, 95% CI: 1.04 - 2.25, p = 0.032). Both rs231362 and rs231356 were associated with a reduced risk of T2DM under codominant, dominance, and regression models among drinkers (rs231362: CC vs. TT: OR = 0.31, 95% CI = 0.12 - 0.83, p = 0.005; C/C-T/C vs. TT: OR = 0.33, 95% CI = 0.13 - 0.83, p = 0.019; C vs. T, OR= 0.40, 95% CI: 0.18 - 0.93, p = 0.033; rs231356: TA vs. TT: OR = 0.39, 95% CI = 0.17 - 0.89, p = 0.024; A/A-T/A vs. TT: OR = 0.39, 95% CI = 0.18 - 0.85, p = 0.018; A vs. T, OR= 0.48, 95% CI: 0.25 - 0.93, p = 0.030).

Stratification analysis by BMI

Finally, when stratified analysis according to BMI, we found that four SNPs sites were significantly
correlated with T2DM risk, as listed in Table 6. Rs231362 polymorphism was associated with a higher T2DM risk in allele genetic models at BMI ≤ 24 (A vs. C: OR = 1.67, 95% CI = 1.02 - 2.72, p = 0.039). Rs163177 and rs163184 polymorphisms also increased the risk of T2DM in co-dominant, dominant, log-additive model, allele model at BMI ≤ 24 (rs163177: CC vs. TT, OR = 2.27, 95% CI = 1.05 - 4.90, p = 0.037; C/C-T/C vs. TT, OR = 1.95, 95% CI: 1.02 - 3.73, p = 0.043; C vs. T, OR = 1.49, 95% CI: 1.01 - 2.18, p = 0.042; C vs. T, OR = 1.43, 95% CI: 1.04 - 1.98, p = 0.029; rs163184: G/T vs. T/T, OR = 1.92, 95% CI: 1.02 - 3.65, p = 0.045; GG vs. T/T, OR = 2.07, 95% CI: 1.00 - 4.27, p = 0.049; G vs. T: OR = 1.44, 95% CI = 1.00 - 2.07, p = 0.049; G vs. T: OR = 1.39, 95% CI = 1.01 - 1.93, p = 0.045).

Rs2283228 polymorphism was associated with decreased risk of T2DM under both log-additive model and allele model at BMI ≤ 24 (log-additive model: A vs. C: OR = 0.67, 95% CI = 0.45 - 0.98, p = 0.041; allele model: A vs. C: OR = 0.67, 95% CI = 0.48 - 0.95, p = 0.025).

Relationship between the genotype of RETN SNPs and clinical indicators in patients with T2DM

We also analyzed the relationship between eight SNPs in KCNQ1 gene and the clinical parameters of T2DM, including fasting glucose, glycosylated hemoglobin, total cholesterol, triglyceride, LDL, HDL and urea, etc., and the positive results were listed in Table 7. We found that “GA”, “AG” and “AA” genotypes of rs117601636 were significantly associated with total cholesterol and LDL levels. The genotypes “AA” of rs231362 carriers have higher UCRP and TJCTNT levels than “AG” and “AA” genotype carriers. For locus rs8181588, “CC” carriers were observed to have higher total cholesterol, LDL and ALBP levels than “CA” and “AA” carriers. The “TT”, “GT” and “GG” genotypes of rs163177 were significantly correlated with total cholesterol and INS content. The “CC”, “CA” and “AA” genotypes of rs2237895 were significantly related to LDL content. There also was a significant correlation between the three genotypes of rs2237895 and LDL content. Compared with those with “CC” and “AA” genotypes in rs2237895, the LDL levels of “CA” genotype carriers were higher.

Association of KCNQ1 haplotypes with the risk of diabetes

Finally, the relationship between KCNQ1 haplotype and the risk of T2DM under different stratification was evaluated. Supplementary Figure S1 - Figure S6 listed the linkage disequilibrium (LD) blocks of
SNPs in the KCNQ1 gene. The frequencies distribution of haplotypes in case and control group is presented in Supplementary Table S2. The haplotype “TC” constructed by rs163184 | rs2283228 was associated with a reduced risk of T2DM at age 50 years (OR = 1.33; 95% CI = 1.02 - 1.74; p = 0.035). The haplotype “TT” constructed by rs163177|rs163184 has a protective effect on the risk of T2DM in female (OR = 0.74; 95% CI = 0.56 - 0.97; p = 0.027). The haplotype “AA” constructed by rs231362|rs231356 was associated with an increased risk of T2DM among non-smokers (OR = 1.73; 95% CI = 1.06 - 2.81; p = 0.027). The haplotypes “AA” and “GT” constructed by rs231362|rs231356 were associated with an increased risk of T2DM in drinkers (AA: OR = 2.33, 95% CI = 1.02 - 5.33, p = 0.045; GT: OR = 2.19, 95% CI = 1.12-4.27, p = 0.022). The haplotype “AA” constructed by rs231362|rs231356 can increase the susceptibility to T2DM among individuals without drinking history (OR = 1.93; 95% CI = 1.20 - 3.11; p = 0.007). The haplotype “CG” constructed by rs163177|rs163184 was associated with an increased risk of T2DM at BMI ≤ 24 (OR = 1.45; 95% CI = 1.00 - 2.08; p = 0.049), while haplotype “CG” can reduced the risk of T2DM at BMI ≤ 24 (OR = 0.68; 95% CI = 0.46 - 0.99; p = 0.044).

Characteristics of eligible studies
For the polymorphic locus rs2237895, a total of 18 articles were included with 25,620 patients and 10,352 controls. Site rs2283228 was eventually included in 7 articles. It was found that these two polymorphisms occurred at a frequency consistent with HWE in the control populations of the vast majority of the published studies. The detailed characteristics of rs2237895 and rs2283228 loci included in this meta-analysis are shown in Supplementary Table S3 - Table S4.

Meta-analysis of the relationship between rs2237895 and T2D susceptibility
The associations between rs2237895 gene polymorphism and T2DM risk, as well as heterogeneity tests, were shown in Table 8. The forest diagrams of rs2237895 in different gene models were shown in Figure 1 and Supplementary Figure S11 –Figure S14. The overall results showed that rs2237895 polymorphism was significantly associated with an increased T2DM risk in different genetic models. (OR = 1.25, 95% CI =1.07 - 1.47, p = 0.001 for allele model A vs. C; OR = 1.23, 95% CI = 1.06 - 1.42,
$p = 0.006$ for Homozygote comparison model AA vs. CC; OR = 1.24, 95% CI = 1.05 - 1.32, $p = 0.012$
for heterozygote comparison model AC vs CC). When the study was stratified by region, rs2237895
polymorphism was associated with an increased risk of T2DM under the allelic model (A vs. C: OR =
1.26, 95% CI = 1.03 - 1.53, $p = 0.009$), the homozygous comparison model (AA vs. CC; OR = 1.23,
95% CI = 1.02 - 1.47, $p = 0.028$), the heterozygous model (AA vs. CC; OR = 1.26, 95% CI = 1.02 -
1.55, $p = 0.035$) in the East Asian population. However, no significant association was found for South
Asian, Caucasian and other ethnic populations.

Meta-analysis of the relationship between rs2283228 and T2D susceptibility

We presented the detailed results of association between rs2283228 polymorphism and T2DM risk in
Table 9. The forest diagrams of rs2283228 in different gene models were shown in Figure 5 and
Supplementary Figure S15 – Figure S18. Overall, we detected significant association between
rs2283228 polymorphism and T2DM risk among all genetic models (OR = 0.83, 95% CI = 0.77 - 0.89,
$p = 0.000$ for allele model A vs. C; OR = 0.81, 95% CI = 0.73 - 0.90, $p = 0.000$ for dominant model
AA/AC vs. CC; OR = 0.74, 95% CI = 0.67 - 0.81, $p = 0.000$ for recessive model AA vs. AC/CC; OR =
0.66, 95% CI = 0.60 - 0.74, $p = 0.000$ for Homozygote comparison model AA vs. CC; OR = 0.85, 95%
CI = 0.76 - 0.95, $p = 0.006$ for heterozygote comparison model AC vs CC).

Further subgroup analysis by region, a significantly decreased T2DM risk was observed in East Asian
population under all genetic models (OR = 0.82, 95% CI = 0.78 - 0.86, $p = 0.000$ for allele model A vs.
C; OR = 0.79, 95% CI = 0.74 - 0.86, $p = 0.000$ for dominant model AA/AC vs. CC; OR = 0.73, 95% CI =
0.66 - 0.81, $p = 0.000$ for recessive model AA vs. AC/CC; OR = 0.67, 95% CI = 0.60 - 0.75, $p = 0.000$
for Homozygote comparison model AA vs. CC; OR = 0.84, 95% CI = 0.76 - 0.91, $p = 0.000$ for
heterozygote comparison model AC vs CC), but not Caucasians and North Africa population.

Publication bias and sensitivity test

In this study, we first used Q test and I^2 statistics to test the heterogeneity between studies, and all
models showed significant heterogeneity. Therefore, the random effect model was used to generate
wider CIs. There was no significant evidence of publication bias for any association investigated based
on visual examination of funnel plots (Supplement Figure S7 - Figure S10). As to the sensitivity analysis, there was no significant change in the overall results after the omission of each study, reflecting the stability and reliability of these results.

Discussion

In this case control study, the allele, genotype and haplotype frequencies of eight SNPs in *KCNQ1* gene between T2DM patients and healthy control group were compared and stratification analyses by age or gender etc. Our study found that four of eight SNPs (rs2237895 rs2283228, rs163184, rs163177) were correlated with susceptibility to T2DM. Three polymorphism loci (rs231362 rs231356, rs8181588) are associated with the risk of T2DM after stratification. Meanwhile, the results of large-scale meta-analysis also confirmed that rs2237895 and rs2283228 were strongly correlated with T2DM risk, especially in the East Asian population. To our knowledge, this is the first study to evaluate the relationship between *KCNQ1* gene variation and the risk of developing T2DM in the population of northwestern China.

KCNQ1 is closely related to the occurrence of T2DM. The evidence to date demonstrated that common variants of *KCNQ1* could mediate the susceptibility of people of different ethnic backgrounds to T2DM by altering insulin secretion [20, 21]. For example, the rs2237895 allele was related to b-cell dysfunction in the Danish population [13]. The rs2283228 risk allele was associated with elevated fasting glucose and impaired b-cell function in Asians [22]. In the present study, we selected eight common variants in *KCNQ1* to explore their correlation with T2DM risk. Currently, rs2283228 and rs2237895 have been widely reported in different populations, but their correlations with the risk of T2DM in different populations were inconsistent. Previous studies have shown that rs2237895 variant was associated with T2DM risk in Asians (Japanese, Chinese and Koreans), and in Europeans (Danish and Scandinavian) [5, 9, 13, 20, 23, 24]. In contrast, rs2237895 were not associated with the incidence of T2DM in Punjabi and Asian Indian populations [25][20], Singaporean (Chinese and Malays, Asian Indians) and Malaysian Chinese the subjects, Spanish Renastur cohort or Tunisians [22, 26-28]. Similarly, rs2283228 variants have also been shown to be associated with T2DM in Europe (Denmark), Singapore (Chinese, Malays, and Asian Indians), Japan, and South Korea, but not
associated with T2DM in Singapore (China) and Tunisia Arabs [8, 9, 22, 26]. In our current study, we observed that rs2237895 and rs2283228 were significantly correlated with T2DM risk in the population of northwestern China, and the meta analysis also observed that these two sites were significantly related to T2DM susceptibility in the overall population and the population of East Asia. In addition, the association between rs163184 polymorphism to the earlier onset of T2DM has not been observed in the Slovakian population [29]. Our study found that rs163184 was associated with an increased risk of T2DM in the dominant model, which was inconsistent with the reports in the Slovakian population. Regarding the rs163177 locus, a study to identify SNPs associated with the risk of T2DM in Korean adults found a prospective association between rs163177 (KCNQ1) and T2DM [30]. We also found that this site could increase the risk of T2DM in the population of northwestern China, which was consistent with the results in the Korean population. The above studies in different population have both consistent and inconsistent places, which may be attributed to ethnic difference, environmental factor, or inappropriate sample size. At the same time, more sample studies are needed to confirm our results.

Tobacco smoking, an established modifier of DNA methylation, is associated with an increased risk of T2DM diabetes [31]. In a Dutch population-based cohort study, the allele of rs231356 was observed to be associated with hyomethylation of KCNQ1 and a higher risk of diabetes [32]. In our study, we found that rs231356 was not associated with the risk of T2DM in smokers or non-smokers, which may be due to the small sample size or ethnic differences, requiring more samples for further study.

The most common feature of classic T2DM patients is obesity, but recent studies have shown that lean patients with T2DM exhibit more rapid, early loss of β-cell function while still having low levels of insulin resistance in contrast to obese patients with T2DM [33]. The study of Kong et al. found that T2DM-related risk alleles showed a stronger predisposition to lean T2DM than to obese T2DM in Chinese Han population [34]. In our study, we found that four polymorphisms (s231362 rs2283228, rs163184 and rs163177) were associated with an increased risk of diabetes at BMI ≤ 24, which further prove that lean T2DM patients was higher than that for obese T2DM patients.

Some limitations in our study must be noted. First, the sample size was relatively small after
stratification by sex, which might convert the positive findings into negative results. Second, a relatively small sample size in stratified analysis may translate a positive result into a negative one. In addition, the contribution of gene environment interactions to the pathogenesis of T2DM should not be overlooked, as it will directly impact on the association of possible (susceptibility) loci with the risk of T2DM. A larger case control study is required to reduce errors. Despite these limitations, our current findings provide scientific evidence for future in-depth studies of polymorphisms and T2D risk.

Conclusion
In conclusion, our present study provided the first evidence that \textit{KCNQ1} was associated with T2DM susceptibility in the population of northwestern China. Our latest meta-analysis also confirmed that two polymorphic loci (rs2237895, rs2283228) in \textit{KCNQ1} were significantly correlated with the risk of T2DM. Nevertheless, we believe that further efforts are needed to re-sequence \textit{KCNQ1} in depth to identify causal variants and reveal the molecular mechanisms underlying this association.

Abbreviation List

Abbreviations	English full name
\textit{KCNQ1}	Potassium Voltage-Gated Channel Subfamily Q Member 1
T2DM	type 2 diabetes mellitus
SNP	Single nucleotide polymorphism
HWE	Hardy-Weinberg equilibrium
OR	Odds ratio
95\%CI	95\% confidence intervals
LD	Linkage disequilibrium
MAF	Minor allele frequency

Declarations

Ethics statement
This study was approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University, and in compliance with the Declaration of Helsinki. The purpose of this study was well informed to the all participants and written informed consents were obtained from all participants prior to biological material collection in this study. All subsequent study analyses were conducted in accordance with the approved guidelines and regulations.

Consent for publication
Written informed consent was obtained from the patient for publication of this report.
Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Acknowledgments

We are grateful to the individuals for their participation in this study. We also thank the clinicians and hospital staff who contributed to the sample and data collection for this study. We would also like to thank all participants for this manuscript.

Conflict of interest

The authors declare that they have no conflict of interests.

Funding

This study was funded by Key research and development program of Shaanxi province (No. 2018SF-156), Social development science and technology public relations project of Shaanxi province (No. 2016SF-314) and Fund of the First Affiliated Hospital of Xi’an Jiaotong University (No. 2017QN-16).

Author Contributions

BYS and WC: conceived and designed the experiments;

JX, WZ and WS: performed the experiments;

JX and JQC: analyzed the data;

YNT, HC and PH: contributed reagents/materials/analysis tools;

SJY and LW: prepared the figures and/or tables;

XH and LW: drafted the work or revised it critically for important content.

References

1. Ginter E, Simko V: Type 2 diabetes mellitus, pandemic in 21st century. Advances in experimental medicine and biology 2012, 771:42-50.

2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B: IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes research and clinical practice 2018, 138:271-281.

3. Nejatian N, Hafner AK, Shoghi F, Badenhoop K, Penna-Martinez M: 5-Lipoxygenase (ALOX5): Genetic susceptibility to type 2 diabetes and vitamin D effects on monocytes. The Journal of steroid
biochemistry and molecular biology 2019, 187:52-57.

4. Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S et al: A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445(7130):881-885.

5. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM et al: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science (New York, NY) 2007, 316(5829):1336-1341.

6. van Hoek M, Dehghan A, Witteman JC, van Duijn CM, Uitterlinden AG, Oostra BA, Hofman A, Sijbrands EJ, Janssens AC: Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 2008, 57(11):3122-3128.

7. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ: A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 2000, 403(6766):196-199.

8. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, Hirota Y, Mori H, Jonsson A, Sato Y et al: Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nature genetics 2008, 40(9):1092-1097.

9. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M, Andersen G, Ng DP, Holmkvist J, Borch-Johnsen K, Jorgensen T et al: SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nature genetics 2008, 40(9):1098-1102.

10. Ullrich S, Su J, Ranta F, Wittekindt OH, Ris F, Rosler M, Gerlach U, Heitzmann D, Warth R, Lang F: Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Archiv : European journal of physiology 2005, 451(3):428-436.

11. Liu L, Wang F, Lu H, Ren X, Zou J: Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets 2014, 6(4):e962386.

12. Boini KM, Graf D, Hennige AM, Koka S, Kempe DS, Wang K, Ackermann TF, Foller M, Vallon V, Pfeifer K et al: Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1. American journal of physiology Regulatory, integrative and comparative physiology 2009, 296(6):R1695-1701.
13. Hu C, Wang C, Zhang R, Ma X, Wang J, Lu J, Qin W, Bao Y, Xiang K, Jia W: Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. *Diabetologia* 2009, 52(7):1322-1325.

14. Lin YD, Qian Y, Dong MH, Lu F, Shen C, Jin GF, Hu ZB, Shen HB: [Association of polymorphisms of potassium voltage-gated channel, KQT-like subfamily, member 1 and type 2 diabetes in Jiangsu province, China]. *Zhonghua yu fang yi xue za zhi* [Chinese journal of preventive medicine] 2013, 47(6):538-541.

15. Wang H, Miao K, Zhao J, Liu L, Cui G, Chen C, Wang DW, Ding H: Common variants in KCNQ1 confer increased risk of type 2 diabetes and contribute to the diabetic epidemic in East Asians: a replication and meta-analysis. *Annals of human genetics* 2013, 77(5):380-391.

16. Gabriel S, Ziaugra L, Tabbaa D: SNP genotyping using the Sequenom MassARRAY iPLEX platform. *Current protocols in human genetics* 2009, Chapter 2:Unit 2.12.

17. Liu X, Huang X, Zhang S, Niu F, Ouyang Y, Shou Z, Liu J: Correlations between CYP3A4 polymorphism and susceptibility to breast cancer in Chinese Han population. *International journal of clinical oncology* 2019, 24(2):179-188.

18. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L et al: High-throughput oncogene mutation profiling in human cancer. *Nature genetics* 2007, 39(3):347-351.

19. An F, Wang J, Gao H, Liu C, Tian Y, Jin T, Liu W, Wang J: Impact of IL1R1 and IL1R2 gene polymorphisms on risk of osteonecrosis of the femoral head from a case-control study. *Molecular genetics & genomic medicine* 2019:e00557.

20. Jonsson A, Isomaa B, Tuomi T, Taneera J, Salehi A, Nilsson P, Groop L, Lyssenko V: A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. *Diabetes* 2009, 58(10):2409-2413.

21. Mussig K, Staiger H, Machicao F, Haring HU, Fritsche A: Genetic variants affecting incretin sensitivity and incretin secretion. *Diabetologia* 2010, 53(11):2289-2297.

22. Saif-Ali R, Muniandy S, Al-Hamodi Z, Lee CS, Ahmed KA, Al-Mekhlafi AM, Ismail IS: KCNQ1 variants
associate with type 2 diabetes in Malaysian Malay subjects. *Annals of the Academy of Medicine, Singapore* 2011, 40(11):488-492.

23. Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH, Chang CT, Wang TY, Chen RH, Shiu CF, Liu YM *et al*:
A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. *PLoS genetics* 2010, 6(2):e1000847.

24. Liu Y, Zhou DZ, Zhang D, Chen Z, Zhao T, Zhang Z, Ning M, Hu X, Yang YF, Zhang ZF *et al*:
Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. *Diabetologia* 2009, 52(7):1315-1321.

25. Been LF, Ralhan S, Wander GS, Mehra NK, Singh J, Mulvihill JJ, Aston CE, Sanghera DK: Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: a study of 3,310 subjects from India and the US. *BMC medical genetics* 2011, 12:18.

26. Tan JT, Nurbaya S, Gardner D, Ye S, Tai ES, Ng DP: Genetic variation in KCNQ1 associates with fasting glucose and beta-cell function: a study of 3,734 subjects comprising three ethnicities living in Singapore. *Diabetes* 2009, 58(6):1445-1449.

27. Riobello C, Gomez J, Gil-Pena H, Tranche S, Reguero JR, de la Hera JM, Delgado E, Calvo D, Moris C, Santos F *et al*: KCNQ1 gene variants in the risk for type 2 diabetes and impaired renal function in the Spanish Renastur cohort. *Molecular and cellular endocrinology* 2016, 427:86-91.

28. Turki A, Mtiraoui N, Al-Busaidi AS, Khirallah M, Mahjoub T, Almawi WY: Lack of association between genetic polymorphisms within KCNQ1 locus and type 2 diabetes in Tunisian Arabs. *Diabetes research and clinical practice* 2012, 98(3):452-458.

29. Dobrikova M, Javorsky M, Habalova V, Klimcakova L, Kozarova M, Zidzik J, Haluskova J, Salagovic J, Tkac I: [Relationship of the CDKAL1 and KCNQ1 gene polymorphisms to the age at diagnosis of type 2 diabetes in the Slovakian population]. *Vnitrni lekarstvi* 2011, 57(2):155-158.

30. Kim J, Kim MK, Jung S, Lim JE, Shin MH, Kim YJ, Oh B: Interaction of iron status with single nucleotide polymorphisms on incidence of type 2 diabetes. *PloS one* 2017, 12(4):e0175681.

31. Jadhav RA, Hazari A, Monterio A, Kumar S, Maiya AG: Effect of Physical Activity Intervention in Prediabetes: A Systematic Review With Meta-analysis. *Journal of physical activity & health* 2017,
32. Ligthart S, Steenaard RV, Peters MJ, van Meurs JB, Sijbrands EJ, Uitterlinden AG, Bonder MJ, Hofman A, Franco OH, Dehghan A: Tobacco smoking is associated with DNA methylation of diabetes susceptibility genes. *Diabetologia* 2016, 59(5):998-1006.

33. George AM, Jacob AG, Fogelfeld L: Lean diabetes mellitus: An emerging entity in the era of obesity. *World journal of diabetes* 2015, 6(4):613-620.

34. Kong X, Xing X, Hong J, Zhang X, Yang W: Genetic variants associated with lean and obese type 2 diabetes in a Han Chinese population: A case-control study. *Medicine* 2016, 95(23):e3841.

Tables

Table 1 Demographic characteristics of cases and controls in this study
Characteristics	Case	Control	\(p \) value
Number	508	503	
Age			\(> 0.05 \)
\(\leq 59 \)	245(48%)	238(48%)	
\(> 59 \)	263(52%)	265(53%)	
Age (mean ± SD)	59.34 ± 7.62	59.21 ± 11.90	
Gender			\(> 0.05 \)
Male	277(55%)	279(55%)	
Female	231(45%)	224(45%)	
Smoking			
Yes	135(27%)	115(23%)	
No	230(45%)	188(37%)	
Drinking			
Yes	68(13%)	106(21%)	
No	277(55%)	182(36%)	
BMI index			
\(\leq 24 \)	130(26%)	173(34%)	
\(> 24 \)	187(37%)	185(37%)	

\(a \) Two-side Chi-squared test;

\(b \) Independent samples \(t \) test;

\(p < 0.05 \) indicates statistical significance.

Table 2 Basic information and allele frequencies about \(KCNQ1 \) candidate SNPs in this study
SNP	Chr	Position	Gene(s)	Role	Alleles	Frequency (MAF)	A/B	Cases	Controls
rs17601636	11	2620807	KCNQ1	ncRNA exonic	A/G	0.085			
rs231362	11	2670241	KCNQ1	ncRNA exonic	C/T	0.135			0.125
rs231356	11	2684113	KCNQ1	ncRNA exonic	A/T	0.216			0.224
rs8181588	11	2810311	KCNQ1	intronic	C/T	0.349			0.393
rs163177	11	2817183	KCNQ1	intronic	C/T	0.510			0.464
rs163184	11	2825839	KCNQ1	intronic	G/T	0.493			0.459
rs2283228	11	2825839	KCNQ1	intronic	A/C	0.311			0.366
rs2237895	11	2835964	KCNQ1	intronic	A/C	0.381			0.338

SNP, single nucleotide polymorphism; Alleles A/B, Minor/Major alleles; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval; HWE, Hardy–Weinberg equilibrium; p values were calculated with Pearson’s χ² tests; *p ≤ 0.05 indicates statistical significance.

Table 3 Relationship between KCNQ1 gene polymorphisms and risk of T2DM under multiple models of inheritance

SNP	Model	Genotype	control	OR (95% CI)
rs163177	Codominant	T/T	143(28.4%)	1.00
		T/C	254(50.5%)	1.51(1.1)
		C/C	106(21.1%)	1.48(1.0)
	Dominant	T/T	143(28.4%)	1.00
		C/C-T/C	360(71.6%)	1.5(1.1)
	Recessive	T/C-T/T	397(78.9%)	1.00
		C/C	106(21.1%)	1.11(0.4)
rs163184	Co-dominant	Dominant	Recessive	Log-additive
----------	-------------	-----------	-----------	--------------
	T/T	153(30.7%)	128(25.1%)	1.0
	G/T	240(48.1%)	260(51.1%)	1.3(0.9)
	G/G	106(21.2%)	121(23.8%)	1.36(0.9)
	T/T	153(30.7%)	128(25.1%)	1.0
	T/G-G/G	346(69.3%)	381(74.9%)	1.32(1.0)
	G/G	106(21.2%)	121(23.8%)	1.16(0.8)

| | Res | 346(69.3%)| 381(74.9%)| 1.32(1.0) |

rs2283228	Co-dominant	Dominant	Recessive	Log-additive	
	C/C	197(39.4%)	239(47.0%)	1.0	
	A/C	238(47.6%)	223(43.8%)	0.77(0.5)	
	A/A	65(13.0%)	47(9.2%)	0.60(0.3)	
	C/C	197(39.4%)	239(47.0%)	1.0	
	A/C-A/A	303(60.6%)	270(53.0%)	0.73(0.5)	
	Recessive	C/C-A/C	435(87.0%)	462(90.8%)	1.0
	A/A	65(13.0%)	47(9.2%)	0.68(0.4)	
	Res			0.77(0.6)	

rs2237895	Co-dominant	Dominant	Recessive	Log-additive	
	C/C	214(42.7%)	193(38.0%)	1.0	
	A/C	235(46.9%)	243(47.8%)	1.15(0.8)	
	A/A	52(10.2%)	72(34.6%)	1.54(1.0)	
	C/C	214(42.7%)	193(38.0%)	1.0	
	A/C-A/A	287(57.3%)	315(62.0%)	1.22(0.9)	
	Recessive	C/C-A/C	449(89.8%)	436(65.4%)	1.0
	A/A	52(10.2%)	72(34.6%)	1.43(0.9)	
	Res			1.21(1.0)	

ORs, odds ratios; 95% CI, 95% confidence interval;
p values were calculated with Pearson’s χ^2 tests;
*p value < 0.05 indicates statistical significance (p < 0.05).

Table 4 Relationship of KCNQ1 gene polymorphisms and risk of T2DM stratified by gender and age (adjusted by sex, age)

SNP	Model	Genotype	Age (years) ≤ 59	Age (years) > 59		
			OR (95% CI)	p value	OR (95% CI)	p value
			OR (95% CI)	p value	OR (95% CI)	p value
rs8181588	Co-dominant	T/T	1.00	1.00	1.00	1.00
		T/C	0.83(0.57-1.22)	0.344	0.9(0.61-1.32)	0.49
		C/C	0.91(0.51-1.64)	0.762	0.6(0.34-1.04)	0.762
	Dominant	T/T	1.00	0.49	1.00	1.00
		C/C-T/C	0.87(0.60-1.28)	0.81(0.57-1.17)	0.81(0.57-1.17)	0.81(0.57-1.17)
	Recessive	T/C-T/T	1.00	0.865	1.00	1.00
		C/C	0.95(0.54-1.69)	0.63(0.38-1.06)	0.63(0.38-1.06)	0.63(0.38-1.06)
	Log-additive	---	0.92(0.69-1.22)	0.554	0.8(0.62-1.04)	0.554
	Allele	T	1.00	0.532	1.00	0.532
		C	0.92(0.71-1.20)	0.78(0.60-1.00)	0.78(0.60-1.00)	0.78(0.60-1.00)
rs163177	Codominant	T/T	1.00	1.00	1.00	1.00
		T/C	1.74(1.13-2.69)	0.012*	1.26(0.81-1.96)	0.012*
		C/C	1.63(0.96-2.74)	0.068	1.23(0.72-2.08)	0.068
	Dominant	T/T	1.00	0.022*	1.00	0.022*
		C/C-T/C	1.65(1.08-2.54)	1.25(0.82-1.90)	1.25(0.82-1.90)	1.25(0.82-1.90)
	Recessive	T/C-T/T	1.00	0.740	1.00	0.740
		C/C	1.08(0.69-1.69)	1.04(0.68-1.60)	1.04(0.68-1.60)	1.04(0.68-1.60)
	Log-additive	---	1.26(0.96-1.65)	0.098	1.11(0.85-1.45)	0.098
	Allele	T	1.00	0.059	1.00	0.059
		C	0.92(0.71-1.20)	0.78(0.60-1.00)	0.78(0.60-1.00)	0.78(0.60-1.00)
	C	A				
------------------	-----------------------	--------------------				
rs2283228	**Co-dominant**	**Dominant**				
	C/C	C/C				
	1.00	1.00				
	A/C	A/C				
	0.75(0.52-1.10)	0.141				
	0.77(0.53-1.12)					
	A/A	A/A				
	0.7(0.37-1.31)	0.259				
	0.57(0.32-1.02)					
	Recessive					
	C/C-A/C					
	1.00	0.381				
	A/A					
	0.76(0.52-1.11)					
	0.72(0.5-1.03)					
	Log-additive					

	0.8(0.6-1.07)	0.131				
	0.76(0.58-0.99)					
	Allele					
	C					
	1.00	0.133				
	A					
	0.81(0.62-1.07)	0.74(0.58-0.96)				
rs2237895	**Co-dominant**	**Dominant**				
	C/C	C/C				
	1.00	1.00				
	A/C	A/C				
	1.19(0.81-1.74)	0.378				
	1.07(0.73-1.57)					
	A/A	A/A				
	1.46(0.81-2.63)	0.209				
	1.61(0.9-2.86)					
	Recessive					
	C/C-A/C					
	1.00	0.486				
	A/A					
	1.23(0.69-2.19)	1.55(0.9-2.65)				
	Log-additive					

	1.13(0.85-1.49)	0.404				
	1.21(0.93-1.57)					
	Allele					
	C					
	1.00	0.183				
	A					
	1.2(0.92-1.56)	1.22(0.95-1.56)				

ORs, odds ratios; 95% CI, 95% confidence interval;

p values were calculated by unconditional logistic regression analysis with adjustments for age;

* *p value < 0.05 indicates statistical significance (p < 0.05).*
Table 5 Relationship of KCNQ1 gene polymorphisms and risk of T2DM stratified by smoking and drinking (adjusted by sex, age)

SNP	Model	Genotype	smokers OR (95% CI)	p value	nondrinkers OR (95% CI)	p value	
rs231362	Co-dominant	T/T	1.00		1.00		
		T/C	0.73(0.33-1.57)	0.416	1.76(1.05-2.98)	0.034*	
		C/C	0.89(0.11-7.33)	0.912	3.20(0.35-29.56)	0.305	
	Dominant	T/T	1.00	0.427	1.00	0.023*	
		C/C-T/C	0.74(0.35-1.56)		1.81(1.08-3.04)		
	Recessive	T/C-T/T	1.00	0.969	1.00	0.367	
		C/C	0.96(0.12-7.87)		2.79(0.30-25.93)		
	Log-additive	---	0.79(0.41-1.52)	0.481	1.77(1.09-2.87)	0.021*	
	Allele	T	1.00	0.719	1.00	0.081	
		C	1.10(0.65-1.85)		1.42(0.96-2.11)		
rs231356	Co-dominant	T/T	1.00		1.00		
		T/A	0.91(0.45-1.86)	0.795	1.05(0.67-1.63)	0.849	
		A/A	0.92(0.21-3.99)	0.913	2.35(0.72-7.63)	0.157	
	Dominant	T/T	1.00	0.789	1.00	0.572	
		A/A-T/A	0.91(0.46-1.8)		1.13(0.73-1.75)		
	Recessive	T/A-T/T	1.00	0.950	1.00	0.161	
		A/A	0.95(0.23-4.04)		2.31(0.72-7.43)		
	Log-additive	---	0.93(0.54-1.63)	0.809	1.21(0.83-1.74)	0.324	
	Allele	T	1.00	0.588	1.00	0.753	
		A	1.12(0.74-1.72)		1.05(0.76-1.46)		
rs2283228	Co-dominant	C/C	1		1.00		
		A/C	0.60(0.3-1.23)	0.162	0.83(0.54-1.30)	0.418	
		A/A	1.03(0.31-3.4)	0.963	0.58(0.27-1.22)	0.150	
SNP	Model	Genotype	BMI < 24	control	case	OR (95% CI)	p-value
---------	-------------	----------	----------	---------	------	-------------------	---------
rs231362	Co-dominant	T/T	142(82.1%)	92(70.8%)	1.00		
		T/C	28(16.2%)	36(27.7%)	1.82(0.97-3.43)	0.063	
		C/C	3(1.7%)	2(1.5%)	1.36(0.19-10)	0.760	
	Dominant	T/T	142(82.1%)	92(70.8%)	1.00		0.064
		C/C-T/C	31(17.9%)	38(29.2%)	1.79(0.97-3.29)		
	Recessive	T/C-T/T	170(98.3%)	128(98.5%)	1.00		0.857
		C/C	3(1.7%)	2(1.5%)	1.2(0.16-8.76)		
	Log-additive	---	---	---	1.62(0.93-2.82)	0.087	
	Allele	T	148(86.0%)	148(86.0%)	1.00		0.039*
		C	24(14.0%)	24(14.0%)	1.67(1.02-2.72)		
rs163177	Codominant	T/T	47(27.2%)	20(15.4%)	1.00		0.087
		T/C	86(49.7%)	72(55.4%)	1.81(0.92-3.57)		

ORs, odds ratios; 95% CI, 95% confidence interval;

*p values were calculated by unconditional logistic regression analysis with adjustments for age;

* p value < 0.05 indicates statistical significance (p < 0.05).
| SNP | Genotypic Model | C/C | T/T | Odds Ratio (95% CI) | P-value | |
|---|---|---|---|---|---|---|
| rs163184 | Co-dominant | T/T | 54(31.8%)| 26(20.0%) | 1.00 |
| | | G/T | 77(45.3%)| 68(52.3%) | 1.92(1.02-3.65) | 0.045* |
| | | G/G | 39(22.9%)| 36(27.7%) | 2.07(1.00-4.27) | 0.049* |
| rs2283228 | Co-dominant | C/C | 66(38.4%)| 66(51.2%) | 1.00 |
| | | A/C | 82(47.6%)| 51(39.5%) | 0.69(0.40-1.21) | 0.194 |
| | | A/A | 24(14.0%)| 12(9.3%) | 0.43(0.18-1.02) | 0.056 |

Allele:
- T: 180(52.0%) 112(43.1%)
- C: 166(48.0%) 148(56.9%)
ORs, odds ratios; 95% CI, 95% confidence interval; BMI, body mass index;

*p values were calculated by unconditional logistic regression analysis with adjustments for age;

*p value < 0.05 indicates statistical significance (p < 0.05).

Table 7 The relationship between KCNQ1 genotype and clinical indicators of T2DM

SNP	Genotype	Total cholesterol	Triglycerides	LDL	HDL	ALBP	INS	UCRP	TJCTNT
rs117601	AA	4.57±1.34	2.67±1.05	1.66±0.42	41.24±13	9.75	0.58±1.37	0.01±1.37	0.01±1.37
	GA	4.27±0.97	2.42±0.82	1.18±0.35	14.41±19	6.5	16.53±1.09	0.36±0.66	0.01±0.66
	GG	5.79±3.05	3.61±2.33	1.34±0.51	5.32±2.27	13.78±3.38	0.48±0.63	0.01±0.63	0.01±0.63
	p	0.036*	0.224	0.043*	0.895	0.432	0.585	0.527	0.271
rs231362	GG	4.56±1.35	2.62±1.04	1.20±0.58	43.26±14	0.4	19.28±1.93	0.58±1.39	0.01±1.39
	AG	4.46±1.24	2.65±1.08	1.34±1.86	17.99±28	82	18.83±1.79	0.35±0.64	0.01±0.64
	AA	5.45±1.26	2.52±0.94	1.2±0.32	35.99±34	34.6	10.83±3.62	1.84±2.79	0.02±0.03
	p	0.813	0.438	0.53	0.249	0.37	0.558	0.015*	0.001*
rs231356	TT	4.57±1.37	2.61±1.01	1.2±0.65	47.4±151	48	19.59±2.05	0.52±1.13	0.01±0.13
	AT	4.48±1.28	2.58±1.14	2.3±12.98	19.02±29	39	18.93±1.74	0.54±1.41	0.01±0.41
	AA	4.58±0.93	2.5±0.7	1.25±0.3	20.87±37	34	9.49±5.92	0.82±1.82	0.01±0.02
	p	0.685	0.052	0.802	0.406	0.206	0.116	0.664	0.472
rs818158	TT	4.45±1.26	2.32±2.1	1.2±0.8	23.5±153	48	18.02±2.02	0.51±1.41	0.01±1.41
	CT	4.55±1.3	2.6±1.14	1.16±0.44	39.25±96	25	18.49±1.52	0.6±1.23	0.01±0.23
	CC	4.83±1.61	2.68±1.16	4.81±2.344	89.42±30	5.03	23.76±2.58	0.44±0.67	0.01±0.01
	p	0.226	0.006*	0.547	0.015*	0.040*	0.317	0.746	0.871
rs163177	TT	4.53±1.32	2.96±2.5	1.2±0.77	39.49±70	33	23.77±2.07	0.75±1.36	0.01±1.36
	CT	4.54±1.36	2.65±1.18	1.84±0.21	45.72±15	9.06	16.65±2.19	0.5±1.34	0.01±0.34
	CC	4.55±1.21	2.61±0.85	1.25±0.36	14.82±16	42	19.32±2.74	0.47±1.06	0.01±1.06
rs163184	TT	4.51±1.38	2.88±2.7	2.47±0.85	2.82±1.94	41.16±68.58	21.56±2.5	0.77±1.51	0.01±0.00
	GT	4.52±1.34	2.57±2.19	2.68±1.19	1.15±0.58	45.77±16.17	16.81±1.79	0.47±1.25	0.01±0.01
	GG	4.59±1.22	1.99±1.68	2.63±0.85	1.26±0.94	13.63±14.09	20.25±2.98	0.47±1.06	0.01±0.01
	p	0.897	0.051	0.264	0.188	0.233	0.165	0.243	0.185

rs228322	CC	4.67±1.29	3.17±2.9	2.61±0.69	5.79±2.68	27.66±35.16	25.41±2.86	0.54±0.73	0.01±0.01
	CA	4.53±1.49	2.59±2.3	2.62±1.2	1.19±0.63	54.3±17.92	17.51±5.08	0.59±1.28	0.01±0.00
	AA	4.51±1.24	2.32±2.0	2.6±0.92	1.23±0.56	24.71±54.92	18.82±0.72	0.51±1.35	0.01±0.01
	p	0.811	0.198	0.987	0.005*	0.169	0.169	0.89	0.784

rs223789	CC	4.51±1.36	2.23±2.0	2.53±0.84	1.23±0.41	16.24±17.57	21.84±2.94	0.51±0.96	0.01±0.01
	CA	4.63±1.32	2.58±2.4	2.75±1.21	1.99±1.12	46.35±17.08	18.23±4.55	0.47±1.38	0.01±0.01
	AA	4.4±1.28	2.51±2.1	2.47±0.83	1.21±0.61	34.99±64.33	18.56±1.82	0.65±1.26	0.01±0.01
	p	0.296	0.662	0.038*	0.6	0.405	0.539	0.542	0.848

HDL-C, high-density lipoprotein cholesterol; LDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; ALBP, Adipocyte Lipid-binding Protein;

Data are presented as means SD or percentages;

* p value < 0.05 indicates statistical significance (p < 0.05).

Table 8 Meta-analysis of the rs2237895 polymorphism and T2DM risk
Model	Genotype	Subgroup	Total	East Asian	South Asian	Caucasian	Other
Allele model	A vs. C	OR(95% CI)	1.25(1.07-1.47)	1.26(1.03-1.53)	1.76(0.97-3.22)	0.97(0.74-1.26)	1.06(0.90-1.26)
		p a	0.000	0.000	0.000	0.025	0.636
		p	0.001*	0.009*	0.058	0.773	0.832
Dominant model	AA/AC vs. CC	OR(95% CI)	0.92(0.81-1.06)	0.94(0.79-1.12)	0.6(0.34-1.05)	1.05(0.63-1.77)	1.18(0.86-1.61)
		p a	0.000	0.000	0.000	0.120	0.796
		p	0.005*	0.025*	0.064	0.811	0.476
Recessive model	AA vs. AC/CC	OR(95% CI)	1.08(0.95-1.24)	1.06(0.89-1.26)	1.68(0.95-2.97)	0.95(0.56-1.60)	0.91(0.72-1.24)
		p a	0.000	0.000	0.007	0.031	0.51
		p	0.247	0.483	0.074	0.850	0.422
Homozgyote	AA vs. CC	OR(95% CI)	1.23(1.06-1.42)	1.23(1.02-1.47)	2.12(1.00-4.47)	0.91(0.49-1.69)	0.96(0.74-1.23)
		p a	0.000	0.000	0.001	0.020	0.522
		p	0.006*	0.028*	0.050	0.773	0.724
Heterogeneity	AC vs. CC	OR(95% CI)	1.24(1.05-1.32)	1.26(1.02-1.55)	1.52(0.96-2.39)	1.01(0.92-1.10)	1.10(0.92-1.32)
		p a	0.000	0.000	0.015	0.382	0.927
		p	0.012*	0.035*	0.072	0.879	0.299

\(p^a\) values obtained from chi-square tests for heterogeneity

* \(p\) value < 0.05 indicates statistical significance (\(p < 0.05\)).

Table 9 Meta-analysis of the rs2283228 polymorphism and T2DM risk
Model	Model	Subgroup	Total	East Asian	South Asian	North Africa
Allele model	A vs. C	OR(95% CI)	0.83(0.77-0.89)	0.82(0.78-0.86)	1.19(0.29-4.86)	0.88(0.62-1.24)
		p a	0.000	0.101	0.000	.
		p	0.000*	0.000*	0.810	0.469
Dominant model	AA/AC vs. CC	OR(95% CI)	0.81(0.73-0.9)	0.79(0.74-0.86)	1.10(0.2-6.12)	0.9(0.63-1.29)
		p a	0.000	0.048	0.000	.
		p	0.000*	0.000*	0.915	0.573
Recessive model	AA vs. AC/CC	OR(95% CI)	0.74(0.67-0.81)	0.73(0.66-0.81)	0.88(0.41-1.9)	0.43(0.07-2.58)
		p a	0.271	0.177	0.276	.
		p	0.000*	0.000*	0.747	0.355
Homozygote	AA vs. CC	OR(95% CI)	0.66(0.6-0.74)	0.67(0.6-0.75)	0.87(0.22-3.45)	0.43(0.07-2.56)
		p a	0.194	0.156	0.115	.
		p	0.000*	0.000*	0.841	0.351
Heterogeneity	AC vs. CC	OR(95% CI)	0.85(0.76-0.95)	0.84(0.76-0.91)	1.09(0.19-6.38)	0.93(0.64-1.34)
		p a	0.000	0.011	0.000	.
		p	0.006*	0.000*	0.923	0.692

p^a values obtained from chi-square tests for heterogeneity

* p value < 0.05 indicates statistical significance (p < 0.05).
Figure 1

Forest plot of rs2237895 polymorphism and the risk of T2DM under the allele model (a vs c).
Figure 2

Forest plot of rs2283228 polymorphism and the risk of T2DM under the allele model (a vs c).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Supplementary material.docx