A magnetometer suitable for measurement of the Earth’s field based on transient atomic response

L Lenci, S Barreiro, P Valente, H Failache and A Lezama

Abstract

We describe the development of a simple atomic magnetometer using 87Rb vapour suitable for monitoring Earth’s magnetic field. The magnetometer is based on time-domain determination of the transient precession frequency of the atomic alignment around the measured field. A sensitivity of 1.5 nT Hz$^{-1/2}$ is demonstrated by the measurement of the Earth’s magnetic field in the laboratory, while for a simulated Earth field inside a magnetic shield a 130 pT Hz$^{-1/2}$ sensitivity was attained. We discuss the various parameters determining the magnetometer precision and accuracy and predict a sensitivity of 30 pT Hz$^{-1/2}$.

1. Introduction

Atomic magnetometers are based on the measurement of the Larmor precession frequency of the atomic spin in the magnetic field to be measured [1, 2]. They were first introduced in the 1960s [3] before the development of lasers. Present-day atomic magnetometers [4–6] can rival superconducting quantum interference devices (SQUID), which have been the most sensitive magnetometers over the last three decades (see [7] for a review of SQUID magnetometers). Very high magnetic-field sensitivities have been demonstrated for magnetometers operating at or near the zero of the magnetic field. At larger fields, the performance of the magnetometer is degraded mainly as a consequence of spin-exchange atomic collisions [8]. Few atomic magnetometers have been suitably designed for the measurement of the Earth’s magnetic field and/or geophysical-range fields with high sensitivity. Belfi and coworkers presented the measurement of the variations of the Earth’s magnetic field during some hours [9]. Their device was based on coherent population trapping [10] with frequency modulation of the laser light. The reported sensitivity of the magnetometer was 45 pT Hz$^{-1/2}$. Acosta et al [11] described a technique able to measure geophysical-scale fields with projected sensitivity of 60 fT Hz$^{-1/2}$ although the measurement of the Earth’s magnetic field could not be demonstrated with sensitivity better than 100 pT Hz$^{-1/2}$ due to environmental magnetic noise. Seltzer and Romalis [12] have adapted near zero-field spin-exchange techniques to the measurement of an ambient magnetic field by using compensating coils. A sensitivity near 1 pT Hz$^{-1/2}$ was demonstrated.

In this paper, we describe a simple atomic magnetometer setup that, unlike previous work, uses the time-domain signal analysis for the measurement of the Larmor frequency of ground-state Rb atoms evolving in the Earth’s magnetic field. In section 2, we briefly illustrate the magnetometer principles. The experimental setup is described in section 3. Section 4 presents the results of test measurements on an artificially generated field and a measurement of the Earth’s magnetic field. A critical discussion of the performance of the magnetometer is presented in section 5 followed by the concluding remarks in section 6.

2. The magnetometer principle

If an ensemble of atoms, prepared in an anisotropic state of the ground level, is suddenly placed in a magnetic field, it will show a transient evolution with oscillations at frequencies which are multiples of the Larmor frequency ω_L of the atomic...
ground state. The Larmor frequency relates to the ambient magnetic field B through the relation

$$
\omega_L = \mu_B g_F B,
$$

where μ_B is the Bohr magneton and g_F is the ground-state hyperfine level Landé factor which are known with high accuracy [13]. The duration of the transient is determined by the coherence lifetime of the ground state. This transient oscillation provides the basis for the measurement of the Larmor frequency and consequently the ambient magnetic field.

A well-known means for preparing the ground level of an atomic sample in an anisotropic state is optical pumping [14]. Optical pumping with linearly polarized light usually results in atomic alignment. A detailed consideration of atomic alignment in the presence of a magnetic field can be found in [16]. As an example, consider the situation depicted in figure 1(a) where a linearly polarized laser field is resonant with an $F = 2 \rightarrow F' = 1$ atomic dipolar transition. In this figure, the quantization axis has been chosen along the direction of the optical polarization (say x). After many absorption and emission cycles, the atomic population will be evenly pumped in the two $m = \pm 2$ Zeeman states. The alignment of the system is here characterized by a well-defined axis which is x in the present case. In the presence of an external magnetic field, the alignment precesses around the field at the Larmor frequency ω_L. Note that if the magnetic field is perpendicular to the alignment (say in the direction z), then the alignment reproduces itself after half a precession cycle (see figure 1(b)). As the alignment evolves, the absorption of an x polarized light beam is modulated at the frequency $2\omega_L$ if the magnetic field is perpendicular to x and at frequencies ω_L and $2\omega_L$ in the general case.

Our magnetometer uses a sequence of two consecutive time intervals. In the first, the atomic sample is aligned through optical pumping in the absence of magnetic field. In the second interval, the previously prepared atomic alignment freely evolves in the presence of the magnetic field to be measured. A single linearly polarized laser beam, resonant with the atomic transition, is used for both optical pumping and probing the transient evolution of the atomic ground state.

The proposed scheme requires the cancellation of the external magnetic field during the optical pumping time. This is achieved with the help of a solenoid oriented roughly parallel to the ambient magnetic field. As will be discussed below, this compensation does not require the precise a priori knowledge of the ambient magnetic field and can be successfully achieved. After a time of a few milliseconds, the system reaches a steady state. The current in the coil is subsequently switched off during the field measurement time interval.

The functioning of the magnetometer requires the tuning of two parameters. One is the current of the solenoid that cancels the ambient field. Such a current is chosen for a purely exponential evolution of the laser transmission during the optical pumping time interval and for maximizing the amplitude of the oscillatory transient during the free evolution time interval. The proper value of the electric current can easily be found by tuning a variable current supply. Nevertheless, this is a critical parameter since a few per cent modification in its value results in a significant deterioration of the precession signal.

The second parameter to be carefully chosen is the linear polarization of the laser field. By rotating the polarizer, the field polarization is set to be perpendicular to the ambient
magnetic field. Such a condition can be met by imposing that the oscillatory transient occurs at frequency $2\omega_L$ with negligible modulation at the subharmonic ω_D. An alternative strategy that we have successfully tested was to let the polarizer in a fixed position and include in the signal processing (see below) the fact that the light transmission evolves at the two frequencies $2\omega_L$ and ω_D. Finally, it is worth mentioning that the analysis of the transmission signal for different orientations of the polarizer may lead to a complete knowledge of the vectorial magnetic field [17].

3. Magnetometer setup

The experimental setup is sketched in figure 2. We have used a CW diode laser tuned to resonance with the 87Rb ($F = 2 \rightarrow F' = 1$) transition of the D1 line (795 nm). A linear absorption setup with a secondary atomic sample was used to stabilize the laser frequency on the Doppler absorption profile. It was tested that a laser frequency variation of the order of 100 MHz had negligible influence on the magnetometer precision making unnecessary the stabilization of the laser frequency on a narrower atomic reference signal as a saturated absorption.

The laser beam was expanded and an 8 mm diaphragm used to select the centre of the beam and obtain an intensity homogeneity better than 10%. Neutral density filters were used to have 25 μW radiation power at the atomic cell. The polarization of the beam was determined with a rotatable linear polarizer.

The glass cell with the Rb vapour is 5 cm long and has windows of 2.5 cm diameter. It contains both Rb isotopes in natural abundance and 30 Torr of Ne as a buffer gas. The optimal conditions for the atomic signal were obtained for an atomic density of $1.6 \times 10^{11} \text{ cm}^{-3}$ corresponding to a cell temperature of 55 $^\circ$C and a laser absorption of 30%. To avoid a stray magnetic field from an electric heating system, the cell was heated with hot water flowing through a silicone tube wrapped around the cell body. The water temperature was not actively stabilized but good thermal isolation and large thermal inertia allows a temperature stability of the cell of about 0.1 $^\circ$C h$^{-1}$.

The cell was placed inside a 5 cm diameter, 30 cm long solenoid coaxial with the light beam. A current supply controlled with a square signal from a signal generator switches the current through the coil with 2 μs rise time. A diode with a low leakage current is connected in series with the coil. During the measurement interval, this diode is reverse polarized and a negligible magnetic field is induced by the coil.

The photodetector is a photodiode with 1 MHz bandwidth.

4. Measurements

Figure 3 shows a typical transient damped oscillation of the transmitted laser light due to the precession of the atomic alignment in the presence of the magnetic field to be measured.

Different analogue or numerical signal-processing methods can be used to extract oscillation frequency from the observed data. We chose to determine the value of $2\omega_L$ by numerically fitting the damped oscillation to the function:

$$A(t) = A_0 e^{-\gamma t} \cos(2\omega_L t + \phi) + B_0 e^{-\gamma t} t + C_0.$$ (2)

Here, the damping constant γ is the decoherence rate of the sub-levels of the Zeeman manifold, A_0 is the absorption oscillation amplitude, B_0 is the amplitude of a damped oscillation background characterized by the damping constant γ_2, and ϕ is a phase parameter. The use of equation (2) has been adopted phenomenologically. It can also be justified from first principles by considering the dynamics of an $F = 2$ ground-state Zeeman manifold interacting with a resonant linearly polarized optical field in the presence of a constant magnetic field [18]. In the determination of the magnetic field from equation (1), we have used $\mu_B g_F = 2\pi 0.699 583 \text{ MHz G}^{-1}$ [13].

4.1. Test measurements

Test measurements were initially carried out under controlled conditions on an artificially created magnetic field inside a magnetic shield. A three-layer μ-metal magnetic shield was used to reduce the stray magnetic field produced by many sources in the laboratory. The residual stray magnetic field inside the innermost shield was less than 100 pT. For the test measurements, the coil is operated differently than for ambient field measurements. During the atomic alignment (optical pumping) interval, the current through the coil is zero. During the measurement interval, the coil is used to produce a controlled magnetic field to be measured. This magnetic
field, oriented in the direction of the laser propagation, has an estimated inhomogeneity of less than 50 nT along the cell.

The transient laser beam transmission through the cell under test conditions with a magnetic field approximately equal to that of the Earth is similar to that shown in figure 3. We have checked that the detected signal decay is not affected by laser intensity-broadening. The decay time is mainly determined by the magnetic field inhomogeneity in the sample.

The transient laser absorption signal was acquired with a digital oscilloscope (Tektronix TDS2232) after averaging 256 traces with 2048 points each. The measurement time, a few seconds in our case, was imposed by the slow standard digital communication protocol between the oscilloscope and the computer. The acquisition time of one transient is however limited by the atomic coherence decay time ($1 \text{ ms for } \gamma_1 \sim 1 \text{ kHz determined by experimental conditions}$). Dedicated electronics can, in principle, achieve this limit acquisition rate.

Figure 4 shows the variation of the measurements of the magnetic field produced by the coil inside the magnetic shield. The noise amplitude, typically 400 pT, is mainly determined by the coil-current-relative stability estimated to be of the order of 10^{-5}.

4.2. Earth’s field measurements

Earth’s magnetic field measurements were achieved by placing the atomic sample and the surrounding coil in a separate room free from many sources of magnetic field present in the laboratory. The laser light was guided from the laboratory to the atomic sample with a 20 m long mono-mode optical fibre (not preserving polarization). In spite of these precautions, significant magnetic-field fluctuations and inhomogeneities were still present. Some of the magnetic field fluctuations are synchronous to the electric power line. Their influence can be reduced by triggering the data acquisition in phase with the power line. However, other uncontrolled magnetic noise sources due to human activity in the building persist. In addition, light polarization fluctuations produced in the optical fibre result in amplitude noise in the atomic signal.

Figure 3 shows a typical transient of the light transmitted through the atomic cell in the presence of the Earth’s magnetic field. Earth’s magnetic field measurements during a 24 h period are presented in figure 5. Simultaneous measurements performed with a proton magnetometer (Geometrics G-856AX) are also shown. These measurements were made a few kilometres away from the laboratory and far from any building since the proton magnetometer was unable to operate under the typical magnetic field inhomogeneity present inside buildings. We note that the atomic magnetometer could operate in spite of the large field inhomogeneities probably because its probing volume is more than two order of magnitude smaller than that of the proton magnetometer.

A good correlation between the two measurements is observed in figure 5 showing the daily variation of the Earth’s field. An absolute difference of 1 μT was present between these two curves that is attributed to the variation in the magnetic fields between the two distant measurement points. The result of the protonic magnetometer measurement in figure 5 was vertically shifted for better presentation.

5. Discussion

We initially address the question of whether the functioning of the atomic magnetometer requires the precise a priori knowledge of the ambient magnetic field for its compensation during the optical pumping interval. We analyse the effect of improper compensation assuming an ambient field oriented along z and an optical polarization along x. From figure 1(b), we see that imperfect cancellation of the z component of the magnetic field will result in the spreading of the alignment within a disc in the xy plane resulting in a vanishing amplitude of the free evolution transient. For this to occur, it is sufficient that the residual field along z has a Larmor frequency comparable to or larger than the optical pumping rate (Hanle resonance width). A suitable value of the current in the magnetic coil can always be found to precisely cancel the z component of the field. However, since the orientation
of the magnetic coil will generally not coincide with that of the unknown ambient field, a residual transverse field (in the xy plane) is present during the pumping time interval. The effect of this field is illustrated in figure 1(c) where a small residual field component along \(y \) is assumed. Its effect is to spread the alignment within a disc in the \(xz \) plane. However, such a disc, in the presence of the \(z \)-oriented ambient field, will evolve by rotating around its \(z \) diameter giving rise to a significant light-transmission modulation signal suitable for magnetic field measurement. We conclude that in order for the atomic magnetometer to operate properly, only a rough initial knowledge of the direction of the ambient field is required to select the orientation of the coil. This was experimentally confirmed by observing that the orientation of the coil axis could be varied by several degrees with no significant degradation of the magnetometer performance.

The measurements shown in figures 4 and 5 do not represent the ultimate magnetometer precision. In the case of the Earth’s field measurement, several noise sources inside the building degrade the magnetometer performance, while in the case of operation inside a magnetic shield the precision is limited by the stability and homogeneity of the magnetic field to be measured. Since the total effective acquisition time was 0.1 s, we estimate that the data shown in figures 4 and 5 correspond to a sensitivity of 130 \(\text{pT Hz}^{-1/2} \) and 1.5 \(\text{nT Hz}^{-1/2} \), respectively.

The limit magnetometer precision can be estimated from the uncertainty in the determination of frequency \(2\omega_1 \) from the atomic signal shown in figure 3. This uncertainty is taken as the mean square root time deviation \(\delta T \) of the experimental data from the best fitting curve. The signal to noise ratio is \(S/N = T/\delta T \), where \(T \) is the oscillation period. The uncertainty \(\delta \) in the determination of \(\omega_1 \) is given by

\[
\frac{\delta}{\omega_1} = \frac{1}{\sqrt{nS/N}},
\]

where \(n \) is the measured number of oscillation periods. An estimation of \(n \) is given by \(n \approx \frac{\gamma_1}{1} \), where \(\gamma_1 \) is the transient damping rate.

A lower limit of \(\gamma_1 \) in our buffered cell was measured to be \(\gamma_1 \leq 50 \text{ Hz} \) [19]. Using this value together with the experimentally achieved \(S/N \) ratio \(\simeq 3 \times 10^3 \), we extrapolate a magnetometer sensitivity of \(\delta B = 30 \text{ pT Hz}^{-1/2} \). Enhancement of this figure is in principle possible through improvements of the signal to noise ratio.

In the results presented in this work, the nonlinear Zeeman effect was not taken into account. For our experimental conditions, this effect has a negligible influence on the achieved precision. We note that under conditions approaching the limit resolution of the magnetometer, the consequences of the nonlinear Zeeman effect would be observable. This effect can be accounted for in principle by generalizing the expression in equation (2) to allow for the presence of modulation sidebands [11].

The accuracy of our magnetometer is essentially limited by the effect of atomic collisions. While the collisions with the buffer gas are estimated to play a negligible role, we realize that the performance of the magnetometer is affected by Rb–Rb spin-exchange collisions that broaden and shift the frequency of two photons transitions between Zeeman sublevels [8, 20]. We have observed a temperature-dependent long term drift of \(\frac{\delta B}{\delta T} \sim 2 \text{ nT °C}^{-1} \). This drift is considered to be the consequence of small changes in the atomic density in response to temperature changes and consequently in the rate of spin-exchange collisions. A similar shift was measured by Balling et al [20].

6. Conclusion

We have built an atomic magnetometer suitable for measurements of geophysical magnetism. The magnetometer uses time-domain signal processing to determine the Larmor frequency of ground-state Rb atoms in the presence of the ambient field. The very simple experimental setup does not require the precise \(a \) \(\text{priori} \) knowledge of the ambient field. The orientation and tuning of the experimental apparatus is easily achieved and is robust against small changes in the experimental conditions. The sensitivity of our magnetometer is comparable to that reported for other atomic magnetometers used to measure the Earth’s magnetic field. The extension of our work towards the development of a vectorial magnetometer is currently considered.

Acknowledgments

We wish to thank L Sánchez for providing the commercial proton magnetometer and A Saez for help with the experiment setup. This work was supported by CSIC, ANII and PEDECIBA (Uruguayan agencies).

References

[1] Budker D, Gawlik W, Kimball D F, Rochester S M and Yashchuk V V 2002 Resonant nonlinear magneto-optical effects in atoms Rev. Mod. Phys. 74 1153
[2] Alexandrov E B, Auzinsh M, Budker D, Kimball D F, Rochester S M and Yashchuk V V 2005 Dynamic effects in nonlinear magneto-optics of atoms and molecules: review J. Opt. Soc. Am. B 22 7
[3] Bloom A L 1962 Principles of operation of the rubidium vapor magnetometer Appl. Opt. 1 61
[4] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 A subfemtotesla multichannel atomic magnetometer Nature 422 596
[5] Budker D and Romalis M 2007 Optical magnetometry Nature Phys. 3 227
[6] Groeger S, Bison G, Schenker J L, Wynands R and Weis A A 2006 A high-sensitivity laser-pumped MHz magnetometer Eur. Phys. J. D 38 239
[7] Weinstock H (ed) 1996 SQUID Sensors: Fundamental, Fabrication and Applications (Dordrecht: Kluwer)
[8] Happer W and Tang H 1973 Spin-exchange shift and narrowing of magnetic resonance lines in optically pumped alkali vapors Phys. Rev. Lett. 31 273
[9] Belfi J, Bevilacqua G, Biancalana V, Dancheva Y and Mio L 2007 All optical sensor for automated magnetometry based on coherent population trapping J. Opt. Soc. Am. B 24 1482
[10] Alzetta G, Gozzini A, Mio L and Orriols G 1976 Experimental-method for observation of RF transitions and
laser beat resonances in oriented Na vapor *Nuovo Cimento* B 36 5

[11] Acosta V, Ledbetter M P, Rochester S M, Budker D, Kimball D F, Hovde D C, Gawlik W, Pustelny S and Zachorowski J 2006 Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range *Phys. Rev. A* 73 53404

[12] Seltzer S J and Romalis M V 2004 Unshielded three-axis vector operation of a spin-exchange-free atomic magnetometer *Appl. Phys. Lett.* 85 4804

[13] Steck D A 2010 Rubidium 87 d line data, available online at http://steck.us/alkalidata

[14] Happer W 1972 Optical pumping *Rev. Mod. Phys.* 44 169

[15] Acosta V M et al 2008 Production and detection of atomic hexadecapole at Earth’s magnetic field *Opt. Express* 16 1153

[16] Rochester S M and Budker D 2001 Atomic polarization visualized *Am. J. Phys.* 69 450

[17] Pustelny S, Gawlik W, Rochester S M, Jackson Kimball D F, Yashchuk V V and Budker D 2006 Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields *Phys. Rev. A* 74 063420

[18] Valente P, Failache H and Lezama A 2002 Comparative study of the transient evolution of Hanle electromagnetically induced transparency and absorption resonances *Phys. Rev. A* 65 023814

[19] Failache H, Valente P, Ban G, Lorent V and Lezama A 2003 Inhibition of electromagnetically induced absorption due to excited state decoherence in Rb vapor *Phys. Rev. A* 67 043810

[20] Balling L C, Hanson R J and Pipkin F M 1964 Frequency shifts in spin-exchange optical pumping experiments *Phys. Rev.* 133 A607