Physiological mechanism of enhancing salinity tolerance of *Gleditsia sinensis* Lam. by arbuscular mycorrhizal fungi

CURRENT STATUS: POSTED

Jinping Wang
nanjing forestry university

Bo Zhang
university of california, davis

Jinchi Zhang
Nanjing Forestry University

✉ zhangjc8811@gmail.com
Corresponding Author
ORCiD: https://orcid.org/0000-0002-0517-7214

G. Geoff Wang
Clemson University

Jie Lin
Nanjing Forestry University

Xin Liu
nanjing forestry university

Cuiyu Liu
nanjing forestry university

Shilin Ma
Nanjing forestry University

DOI:
10.21203/rs.2.18799/v1

SUBJECT AREAS

Plant Physiology and Morphology
Plant Molecular Biology and Genetics

KEYWORDS

arbuscular mycorrhizal fungi, *Gleditsia sinensis* Lam., salinity tolerance, growth parameters, physiological mechanism
Abstract

Background and Aims

The protective effects of arbuscular mycorrhizal fungi (AMF) on salt-stressed crop plants had been well studied. However, the physiological mechanism of AMF in mitigating adverse impact caused by salinity stress in different tissues of woody plants is not clear. *Gleditsia sinensis* Lam. is a valuable tree species with various pharmaceutical uses; however, high soil NaCl concentration limits its growth in saline soil including coastal areas. This study aimed to investigate the effects of AMF on *G. sinensis* salinity tolerance and reveal its underlying physiological mechanism.

Methods

A greenhouse experiment was performed. *G. sinensis* seedlings with and without AMF inoculation were subjected to four salinity levels (0, 50, 100, and 150 mM NaCl). After 2 months, the seedlings were harvested and analyzed for growth and biochemical parameters.

Results

High AMF colonization rates (over 95%) and high mycorrhizal dependency (over 75%) were observed across all NaCl levels, and AMF-inoculated plants presented significantly higher aboveground and below ground growth than non-inoculated plants. AMF effectively enhanced the salinity tolerance of *G. sinensis* seedlings by enhancing leaf gas exchanges inducing higher leaf net photosynthetic rates; improving peroxidase, catalase, and superoxide dismutase activities resulting in higher membrane stability indexes and lower malondialdehyde contents in leaves and roots; increasing P uptake and P/N ratio to mitigate P-limited biomass products; selectively absorbing less Na + and more Ca 2+ in their tissues to alleviate ion toxicity and maintain more favorable ion balances (e.g., K + /Na +) in their tissues.

Conclusions

The results suggested the feasibility of using AMF to improve salinity tolerance as well as afforestation and rehabilitation of *G. sinensis* in coastal areas.

Introduction

Salinization of soil is a severe and common environmental problem, particularly in arid and semiarid
regions or low-lying coastal areas around the world (Porcel et al. 2012). One of the significant natural factors contributing to salinization of soils is oceanic salt deposition. Globally, salinization of soil, especially in the coastal areas, is increasing owing to the rising sea level and climate change, significantly affecting the multifunction, conservation, and rehabilitation of coastal ecosystems (Wilson 1999). Salinity stress restricts plant growth and development by inducing osmotic stress, oxidative stress, and ion toxicity, ultimately resulting in biomass production losses (Evelin et al. 2009). In the short term, accumulation of salt in the root zone causes decrease in osmotic potential, which leads to a decrease in water and nutrient availability. In the long-term, excessive uptake of Na$^+$ and Cl$^-$ cause nutrient imbalances and ion toxicity, which disrupt cell organelles, plasma membrane, and enzyme structures. Concurrently, over accumulation of reactive oxygen species (ROS) as a result of oxidative stress disrupts the normal metabolism of lipids, proteins, and nucleic acids (Muchate et al. 2016). Hence, improving salinity tolerance of plants is crucial for their survival and success of vegetation rehabilitation in coastal areas.

Many approaches have been developed to enhance salinity tolerance of plants via breeding, genetic engineering, microbial technology, etc. (Xu et al. 2008; Talaat and Shawky 2014). Among them, application of arbuscular mycorrhizal fungi (AMF) is considered to be an ecologically and economically feasible strategy. AMF are ubiquitous and ecologically important soil microorganisms that form mutualistic symbioses with the roots of more than 80% of terrestrial plant species (Fernández et al. 2011). They are widely distributed in various ecosystems, including coastal ecosystem, and play an important role in the establishment and survival of coastal dune plant communities (Rodríguez-Echeverría et al. 2008). Their external mycorrhizal hyphae act as root extension and help plants acquire water and nutrients. As the interface for the uptake and exchange of nutrients with host plants, arbuscules significantly increase nutrient absorption, thus enhancing plant growth. Besides, AMF vesicles are storage and vacuolated organelles that can absorb high concentrations of Na$^+$ and Cl$^-$, creating a dilution effect on the toxicity of these ions to plants (Augé 2001). Moreover, AMF regulate the physiological, biochemical, and molecular processes of plants, such as photosynthesis
pathway, ion balance, antioxidant system, osmoregulators, sodium compartmentalization, hormones, and aquaporins, ultimately helping plants to better cope with salinity stress (Porcel et al. 2012). The positive effects and underlying mechanisms of AMF involving in crop plant salt tolerance had been widely studied (Sharifi et al. 2007; Daei et al. 2009; Abdel-Fattah 2012; Evelin et al. 2012; Talaat and Shawky 2014; Garg and Pandey 2015; Porcel et al. 2015; Sarwat et al. 2016; Bulgarelli et al. 2017; Lin et al. 2017; Pollastri et al. 2018; Zhang et al. 2018), but few investigated woody plants subjected to salt stress. Recently, the positive effects of AMF had been reported on several salinity-stressed woody plants such as citrus aurantium L. (Khalil et al. 2011), Populus tomentosa Carrière (Lu et al. 2014), Elaeagnus angustifolia L. (Chang et al. 2018). However, the role of AMF in integrated physiological process in different tissues of woody plants subjected to salinity stress remains unclear. Especially, Gleditsia sinensis Lam. is a leguminous plant whose rhizobia symbiosis (nitrogen fixation) is more favorable for AMF functioning, but no researches had been made on the influences of AMF in salt tolerance of G. sinensis currently. Moreover, G. sinensis is a previous economically important tree species with multiple pharmaceutical values (Zhang et al. 2016). It is widely distributed in China and well adapted to many soil types. However, G. sinensis has very low salinity tolerance, withstanding only 0.3% salinity under greenhouse condition (Lei et al. 2008). As a result, its suitability as an afforestation and rehabilitation tree species in coastal areas is severely limited. To investigate the effects of AMF on improving salinity tolerance of woody plant species and reveal the underlying physiological mechanism, we performed a greenhouse experiment with G. sinensis. The membrane stability index, malondialdehyde contents, growth parameters including height growth, diameter growth, leaf area, dry biomass, and root morphology were measured to ascertain whether AMF could effectively enhance the salinity tolerance of G. sinensis seedlings. Besides, the chlorophyll contents, photosynthetic parameters, osmoregulators, antioxidant system, N, P contents and ion balance in different tissues were determined to analyze the physiological mechanism of AMF in alleviating salt-induced adverse effects on G. sinensis seedlings.

Materials And Methods

Experimental design

4
The pot experiment was conducted in a glasshouse of Xiashu Forest Farm, Nanjing Forestry University, China, from March to October 2018. The experiment consisted of a completely randomized block design with two inoculation treatments: non-mycorrhizal control plants and plants inoculated with the model AMF, Funneliformis mosseae (C. Walker & A. Schüßler). Each inoculation treatment comprised 48 replicates, totaling to 96 pots (1 plant per pot). The 48 pots in each treatment were randomly divided into four groups (12 pots per group), and each group was subjected to one of the four NaCl concentrations (0, 50, 100, and 150 mM NaCl).

Plant material and soil
The seeds of G. sinensis were provided by Jiangsu forestry station. All the seeds were soaked in concentrated H$_2$SO$_4$ for 10 min until the color of the seeds turned crimson, and then washed with sterile distilled water until the pH of residual water on the surface of the seeds turned to about 7.0. After that, the seeds were soaked in warm water for 2 days. The inflated seeds were embedded in wet yellow sand (which was previously sterilized in an autoclave for 2 h at 0.14 MPa and 121 °C) and incubated in plant incubator under dark condition at 25 °C.

Loamy soil was collected from Xiashu Forest Farm of Nanjing Forestry University, China, sieved (2 mm), mixed with yellow sand (< 2 mm) and vermiculite (1:1:1, topsoil/sand/vermiculite, v/v/v), autoclaved at 0.14 MPa and 121 °C for 2 h, and used as nursery substrates. The soil mixture was tested for its physicochemical properties: total C, 1.55%; total N, 0.03%; total P, 570.48 mg·kg$^{-1}$; total K, 15.18 g·kg$^{-1}$; available P, 10.00 mg·kg$^{-1}$; available K, 101.39 mg·kg$^{-1}$; electrical conductivity, 0.23 mS·cm$^{-1}$ (soil:water ratio, 1:5); and pH, 7.15 (soil:water ratio, 1:5).

Inoculation treatment
F. mosseae (isolate number: BGC G201C) was obtained from the Beijing Academy of Agriculture and Forestry Science, China. The inoculum was bulked in an open-pot sterilized yellow sand culture together with maize and clover as trap plants. After 3 months, the aboveground was cleared, and the roots were chopped into small pieces and mixed with the sand of the culture pot. This sand-based inoculum, consisting of yellow sand, infected root fragments, and mycorrhizal spores (> 7 g$^{-1}$), were collected and used in this study. The uniform seedlings (5 cm in length) were transported to the pots
(1 seedling per pot). Before transportation, the pots were soaked in 0.3% KMnO$_4$ solution for 3 h and washed with tap water. About 2.5 kg of the autoclaved nursery substrates were dispensed into each pot and 80 g of sand-based inoculum were added 5 cm below the surface of the nursery substrates. The non-inoculated control pots contained the fungal inoculums filtration and the same dosage of sterilized inoculum to provide the same microbial community (except for AMF) with inoculated treatment.

Growth conditions

The seedlings were grown in the glasshouse under the following conditions: 18 °C night/30 °C day temperature, 50–80% relative humidity, and 14 h/10 h diurnal light/dark cycles with a photosynthetic photon flux density of about 700–1,000 µmol m$^{-2}$·s$^{-1}$. Water was supplied adequately during the entire period of the experiment to avoid any drought effects, and modified Hoagland’s nutrient solution containing only 25% P concentration (300 mL per pot every time) was irrigated every month. The seedlings were cultivated for about 4 months prior to salinization to allow adequate plant growth and symbiotic establishment. Subsequently, the four groups of non-mycorrhizal control and mycorrhizal treatments were respectively gradually supplemented with aqueous NaCl solution (300 mL per pot) at the concentrations of 0, 50, 100, and 150 mM NaCl every week for 2 months. In order to avoid salt shock, all three salt treatments (50, 100, and 150 mM NaCl treatments) were treated with 50 mM NaCl for the first week; salt treatment (50 mM NaCl treatment) were treated with 50 mM NaCl, and salt treatments (100 and 150 mM NaCl treatments) were treated with 100 mM NaCl for the second week; salt treatments (50, 100, and 150 mM NaCl treatments) were treated with 50, 100, and 150 mM NaCl, respectively, from week 3 onwards, the seedlings were harvested and analyzed for growth and biochemical parameters.

Plant harvest and chemical analyses

Before and after salt stress, the seedling height was measured using a steel ruler, and basal diameter was measured using calipers. After harvesting, the plants were rinsed with tap water, and separated into leaf, stem, and root. The leaf area and root system characteristics (root length, root surface area, and root tip number) were determined using a LA2400 Scanner (Expression 12000XL, EPSON, Long
Beach, CA, USA). The dry weights of plant tissues (leaf, stem, and root) were recorded after drying the plant tissues in an oven at 70 °C to a constant weight. The mycorrhizal dependency was calculated using the formula (Wang et al. 2018):

\[
\text{mycorrhizal dependency (\%) = \frac{(\text{dry weight biomass of inoculated seedlings} - \text{mean of dry weight biomass of non-inoculated seedlings})}{\text{dry weight biomass of inoculated seedlings}} \times 100%.
\]

The dried plant tissues were ground separately, sieved through a 0.5-mm sieve. 50 mg of each sample was weighed to determine the concentrations of N using an elemental analyzer (Vario MACRO cube, Elementar Trading Shanghai, Shanghai, China). 0.2 g of each sample was digested in 10 mL of acid mixture (HClO₄:HNO₃, 1:5), and diluted with double-distilled water. The concentrations of P were ascertained spectrophotometrically using ammonium molybdate blue method, the concentrations of K⁺, Ca²⁺, Mg²⁺, and Na⁺ were ascertained with an atomic absorption spectrophotometer (AA900T, Perkin Elmer, Norwalk, CA, USA) (Allen 1989), and the K⁺/Na⁺, Ca²⁺/Na⁺, and Mg²⁺/Na⁺ ratios in the tissues were calculated using K⁺, Ca²⁺, Mg²⁺, and Na⁺ data.

Estimation of root mycorrhizal colonization

For the quantification of mycorrhizal colonization, the washed fine roots were cut into 1-cm-long segments. The root segments were clarified with 10% (w/v) KOH at 90 °C for 1 h, stained with basic H₂O₂ (containing 30 mL of 10% (v/v) H₂O₂, 3 mL of concentrated NH₄OH, and 60 mL of water) for 25 min, soaked in 1% (w/v) HCl for 3 min, and stained with 0.05% (w/v) Trypan Blue solution as described by Philips and Hayman (1970). Subsequently, the root segments were soaked in lactic acid-glycerol (1:1) to eliminate excess Trypan Blue solution, and microscopically examined for AMF colonization based on the presence of arbuscules, vesicles, hyphae, and spores (Giovannetti and Mosse 1980).

Determination of chlorophyll contents and photosynthetic parameters

The chlorophyll contents (Chl) in leaves were determined according to Lichtenthaler (1987) with minor modification. Fresh mature leaves (0.1 g) of each plant were cut into small pieces and completely submerged in acetone solution (0.5 mL of pure acetone and 15 mL of 80% acetone). The samples were incubated at 35 °C under dark condition. After the leaf turned white in color, the samples were
diluted with 80% acetone to 25 mL. The absorbance of the extracts was determined using an ultraviolet spectrophotometer (UV 2700, Shimadzu) at 663, 645, and 470 nm, respectively.

Leaf gas exchange (G_s) was evaluated on the mature expanded leaf using an infrared gas analyzer (LI-6400, LI-COR, Lincoln, NE, USA) during the day between 09:30 and 11:30 am under the following condition: photosynthetically active radiation, 1000 µmol m$^{-2}$ s$^{-1}$; CO$_2$ concentration, 390 µmol mol$^{-1}$; leaf temperature, 25 °C; leaf humidity, 35-50%; and air flow rate, 0.5 dm3 min$^{-1}$. Leaf net photosynthetic rate (P_n), intercellular CO$_2$ concentration (C_i), room CO$_2$ concentration (CO_2R) and transpiration rate (T_r) were simultaneously recorded, and leaf limiting value of stomata (Ls) was calculated using the formula: Ls = 1 - C_i/ CO_2R.

Measurement of relative water content and membrane stability

The leaf relative water content (RWC) was measured according to the previous method described by Wang et al. (2019) using the following formula: $RWC = (FW - DW) / (TW - DW) \times 100\%$, where FW is fresh weight, DW is dry weight, and TW is turgid weight obtained after the leaf was soaked for 24 h in deionized water. The membrane stability index (MSI) was estimated according to the method described by Talaat and Shawky (2014) using the formula: $MSI = (1 - C1/C2) \times 100\%$, where C1 is the electrical conductivity bridge after the leaves were heated at 40 °C for 30 min in a water bath and C2 is the electrical conductivity bridge after the leaves were boiled at 100 °C in a boiling water bath for 10 min.

Determination of lipid peroxidation and proline content

Lipid peroxidation in leaves and roots was estimated by measuring the concentration of malondialdehyde (MDA) as described by Hodges et al. (1999) with minor modification. The leaves and roots samples were homogenized and dissolved with quartz powders in 5% (w/v) trichloroacetic (TCA) solution under cold condition. The homogenate was centrifuged at 12,000 rpm for 10 min at 4 °C. The reaction mixture containing 2.0 mL of supernatant and 2.0 mL of 0.6% (w/v) thiobarbituric acid (TBA) was heated in a water bath at 95 °C for 30 min. Then, the boiled reaction mixture was immediately cooled in an ice bath and centrifuged at 3,000 rpm for 10 min. The absorbance of the supernatant was measured at 532, 600, and 450 nm, respectively. The concentration of MDA was calculated by
using the formula given by Hodges et al. (1999). The concentration of proline (Pro) generated was ascertained via ninhydrin reaction as described by Bates et al. (1973). The leaves and roots were cut into small pieces, completely submerged in 3% (w/v) sulfosalicylic acid solution, and heated in a water bath at 100 °C for 15 min. Then, 2 mL of the extract were added to 2 mL of glacial acetic acid and 2 mL of 2.5% ninhydrin solution, and heated in a water bath at 100 °C for 15 min. Subsequently, the reaction mixture was cooled down and 5 mL of methylbenzene were added to it and placed under dark condition. After the mixture completely separated into different layers, the absorbance of methylbenzene layer was measured at 520 nm.

Soluble proteins and antioxidant enzymes assay

Crude enzymes were extracted from the leaf and root samples homogenized in an ice bath with 50 mmol·L^{-1} sodium phosphate buffer (pH 7.0) containing 1% (w/v) PVP-40 (polyvinylpyrrolidone). The mixture was centrifuged at 12,000 rpm for 20 min at 4 °C, and the supernatant was collected for soluble proteins (SP) measurement and antioxidant enzymes analyses. The SP contents of leaves and roots were determined using the method of Coomassie Brilliant Blue G250 (Blakesley and Boezi 1977), and a commercial Bradford reagent (Sigma) and BSA (Merck) were employed as standard. Superoxide dismutase (SOD) activity was assayed using nitro blue tetrazolium (NBT) reduction test by measuring the ability of SOD to inhibit photochemical reduction of NBT (Giannopolitis and Ries 1977). A 50% inhibition of NBT reduction was considered as one unit of SOD activity at 560 nm. Peroxidase (POD) activity was assayed using guaiacol test and spectrophotometrically determined at 470 nm (Chance and Maehly 1955). Catalase (CAT) activity was ascertained by monitoring the decrease in the absorbance of H_2O_2 at 240 nm (Chance and Maehly 1955), and ascorbate peroxidase (APX) activity was determined by examining the decrease in the absorbance of ascorbate at 290 nm (Nakano and Asada 1981).

Statistical analysis

The data obtained were analyzed using SPSS19.0 (SPSS Inc., Chicago, IL, USA). Two-way ANOVA was used to determine the effects of NaCl levels, AMF inoculation, and their interactions. Multiple comparisons of means were performed by Tukey’s test (P ≤ 0.05). All the figures were derived using
Origin 8.5 (Origin Lab, Northampton, USA), and all data are presented as mean ± standard deviation of at least three plants.

Results

Mycorrhizal colonization, dependency and plant growth

No AMF structure was found in the roots of non-inoculated seedlings at all NaCl levels, whereas arbuscules, vesicles, and hyphae were observed in AMF-inoculated seedlings. The percentages of AMF colonization were very high (above 95%) across all NaCl levels (Fig. 1a). Mycorrhizal dependency was significantly influenced by salinity (Table S1), the values of mycorrhizal dependency were also very high (above 75%) across all NaCl levels, and significantly increased under high salinity conditions (100 and 150 mM NaCl) (Fig. 1b and Table S1).

Salinity and AMF inoculation had significant interactions on all growth parameters (height growth, basal diameter growth, leaf area, root length, root surface, root tip number, leaf biomass, stem biomass, and root biomass), except for leaf area and stem biomass (Table S1). In general, the growth parameters decreased with the increasing NaCl levels, and AMF inoculation significantly and positively influenced plant growth parameters, except leaf area, across all NaCl levels (Table 1 and Fig. 2).

Leaf chlorophyll contents and photosynthetic parameters

Salinity significantly decreased the chlorophyll contents (Table S1), with the reduced values reaching a significant level at 150 mM NaCl (Table S2). In contrast, AMF inoculation enhanced the photosynthesis pigments under salinity condition, presented significant increase at 150 mM NaCl, when compared with those in non-inoculated plants. Photosynthetic parameters (P_n, G_s, T_r and L_s) significantly decreased by salinity stress, among the photosynthetic parameters, P_n, G_s and T_r were significantly enhanced by AMF under salinity conditions (Table S2).

Relative water contents, membrane stability and lipid peroxidation

Salinity significantly decreased the leaf RWC at 150 mM NaCl (Fig. 3a), whereas AMF inoculation had no significant positive effect on leaf RWC (Table S1 and Fig. 3a). Salinity had significant effects on leaf MSI and MDA contents in leaves and roots (Table S1). Salinity decreased the leaf MSI, with the reduced value reaching a significant level at 100 and 150 mM NaCl (Fig. 3b). However, AMF inoculation improved leaf MSI, especially at high NaCl levels, with increased values reaching 10.33%
(P < 0.05) and 9.49% at 100 and 150 mM NaCl, respectively. The MDA contents in leaves and roots increased as the NaCl levels increased, and were significantly higher at high NaCl levels (100 and 150 mM NaCl), when compared with no-salinity treatments (Fig. 3c and d). AMF inoculation decreased the MDA contents across all the NaCl levels, with decreased values reaching 11.69%, 16.00%, 18.44% (P < 0.05), and 28.44% in leaves and 12.83%, 16.15% (P < 0.05), 12.97% (P < 0.05), and 23.48% in roots at 0, 50, 100, and 150 mM NaCl, respectively, when compared with those in non-inoculated seedlings.

Proline and soluble protein

Salinity, AMF inoculation, and their interaction had significant effects on the Pro content in leaves, whereas only salinity significantly affected the Pro content in roots (Table S1). The Pro content in the leaves and roots of non-inoculated plants increased with the increasing NaCl levels, reaching significant values in leaves and roots at 100 and 150 mM NaCl, respectively (Table 2). In contrast, under salinity condition, AMF inoculation significantly reduced the Pro content in leaves, but produced insignificant increase in Pro content in roots (Table 2). Furthermore, salinity significantly increased the SP content in leaves (Table S1). However, AMF inoculation decreased the SP content in leaves and increased it in roots, especially at 150 mM NaCl (P < 0.05), when compared with non-inoculated plants (Table 2).

Antioxidant enzymes activities

Salinity significantly affected the antioxidant enzymes (POD, SOD, CAT, and APX) activities, whereas AMF inoculation only significantly affected POD, SOD, and CAT, and their interaction showed significant effects only on POD, SOD, and APX in roots (Table S1). The activities of POD and CAT reached the highest values at 100 mM NaCl, while the highest SOD activity was noted in the leaves, but not in roots (Table 2). The APX activities in leaves and roots increased with the increase in NaCl levels in non-inoculated plants, whereas such trend was not observed in AMF-inoculated plants. AMF inoculation significantly enhanced the activities of POD in leaves and roots under salinity conditions. AMF inoculation enhanced the activities of CAT, the increased values were 101.51% (P < 0.05), 124.36% (P < 0.05), 86.48%, and 88.38% (P < 0.05) in leaves and 82.08% (P < 0.05), 67.39% (P <
0.05), 15.32%, and 87.96% in roots at 0, 50, 100, and 150 mM NaCl, respectively. AMF inoculation enhanced the activities of SOD mainly in roots, and the enhanced values reached significant levels at 0, 50, 100 mM NaCl. The activities of APX were not significantly enhanced by AMF both in leaves and roots.

N, P concentration and N/P ratio

Salinity, AMF inoculation, and their interaction had significant effects on N, P concentrations and N/P ratios of plants (Table S1). While AMF inoculation did not increase the N concentrations in the tissues of plants, it significantly enhanced the P concentrations in stems and roots at 100 and 150 mM NaCl, when compared with those in non-inoculated plants (Fig. 4a-f). AMF decreased the N/P ratios in the tissues of plants under salinity condition, the decreased values of stems and roots reached significant levels across all NaCl levels (Fig. 4g-i).

Ion concentration and ion balance

Salinity, AMF inoculation, and their interaction had significant effects on the Na\(^+\) and Ca\(^{2+}\) content in the three plant tissues (leaf, stem, and root), K\(^+\) content in leaves, and Mg\(^{2+}\) content in stems (Table S1). While salinity significantly enhanced the concentrations of Na\(^+\), AMF inoculation significantly decreased the concentrations of Na\(^+\) in the three tissues, when compared with those in non-inoculated plants (Fig. 5a-c). The concentrations of K\(^+\) were not significantly influenced by AMF inoculation across all NaCl levels except for 0 mM in leaves (Fig. 5d-f). AMF inoculation increased the concentrations of Ca\(^{2+}\), especially at high NaCl levels (100 and 150 mM), and the increase was significantly higher in roots, when compared with that in non-inoculated plants (Fig. 5g-i). However, the concentrations of Mg\(^{2+}\) were lower, especially in stem, following AMF inoculation, when compared with those in non-inoculated plants (Fig. 5k).

Salinity had significant effects on K\(^+\)/Na\(^+\), Ca\(^{2+}\)/Na\(^+\), Mg\(^{2+}\)/Na\(^+\), and Ca\(^{2+}\)/Mg\(^{2+}\) ratios in the three plant tissues (Table S1). While salinity reduced the K\(^+\)/Na\(^+\), Ca\(^{2+}\)/Na\(^+\), and Mg\(^{2+}\)/Na\(^+\) ratios in the plant tissues, AMF inoculation enhanced these ionic ratios across all the NaCl levels, when compared with those in non-inoculated plants (Table S3). In particular, the values of K\(^+\)/Na\(^+\) ratios were
increased by 37.66% (P < 0.05), 28.57% (P < 0.05), 47.89% (P < 0.05) in leaves, 82.68% (P < 0.05), 415.75% (P < 0.05), 399.25% (P < 0.05) in stems, and 11.67%, 40.07% (P < 0.05), 52.15% (P < 0.05) in roots at 50, 100, 150 mM NaCl level after AMF inoculation (Table S3). The values of Ca^{2+}/Na^+ and Mg^{2+}/Na^+ ratios were also increased by AMF under salinity conditions. In total, the increased effects of AMF inoculation showed the following trend: Ca^{2+}/Na^+ ratios > K^+/Na^+ ratios > Mg^{2+}/Na^+ ratios.

Besides, AMF inoculation also had positive effects on Ca^{2+}/Mg^{2+} ratios, especially in stems and roots.

Discussion

Effects of AMF inoculation on plant growth and root morphology under salinity stress

The results of the present study showed that the AMF, F. mosseae, had more than 95% colonization rate on the roots of G. sinensis across all NaCl levels (Fig. 1a), confirming previous reports indicating that F. mosseae had high tolerance to various stress, including salinity stress, and produced positive effects on host plant growth (Lin et al. 2017; Zhang et al. 2018). It must be noted that the mycorrhizal effects on plant growth differed among plant species, because plants with possibly thick and less branched roots and few root hairs generally present higher mycorrhizal dependency (Yang et al. 2015). In the present study, G. sinensis seedlings with coarse root architecture were found to grow very slowly without AMF colonization, but grew much faster in the presence of AMF. Furthermore, AMF-inoculated seedlings showed considerably higher height growth, diameter growth, and biomass accumulation (Table 1 and Fig. 2), indicating that the growth of G. sinensis highly depended on AMF, the values of mycorrhizal dependency (above 75%) confirmed it (Fig. 1b). Similar positive effects of AMF have also been found on other leguminous plants such as fenugreek (Trigonella foenum-graecum L.) (Evelin et al. 2012), pigeonpea (Cajanus cajan L. Millsp) (Garg and Pandey 2015), and soybean (Glycine max L. Merrill) (Bulgarelli et al. 2017). These effects might be attributed to the enhancement of nutrients and water acquisition by external mycorrhizal hyphae (Abdel-Fattah 2012). In addition, AMF can not only enhance plant root growth, modify root morphology, and architecture (considerably higher root length, surface area, and tip number) (Yang et al. 2015), but can also improve plants nutrients and water uptake, ultimately contributing to the growth and biomass accumulation of
Effects of AMF inoculation on Chlorophyll content and photosynthesis under salinity stress

Chlorophyll content reflects plant photosynthetic ability and indicates the relative plant salt tolerance to some extent (Takai et al. 2010). The reduction in the chlorophyll content in the present study under salinity stress might be caused by the decrease in Mg and K absorption (because Na has an antagonistic effect on Mg and K absorption) (Daei et al. 2009) or suppression of specific enzymes responsible for the synthesis of chlorophyll content (Murkute et al. 2006). And, the increase in chlorophyll contents following AMF inoculation under salinity stress suggested that the chlorophyll synthesis was less affected by salinity stress in the presence of AMF (Table S2). The higher values of Mg$^{2+}$/Na$^{+}$ ratios in the tissues of AMF-inoculated plants further implied that AMF inoculation effectively suppressed the antagonistic effect of Na$^{+}$ on Mg$^{2+}$, thus increasing chlorophyll contents, consistent with the findings of previous studies (Giri et al. 2003; Hajiboland et al. 2010; Porcel et al. 2015). Moreover, the substances secreted by AMF, such as cytokines, could be beneficial for the development of chloroplast and enhancement of chlorophyll levels (Thanaa and Nawar 1994), resulting in higher P_{n} values (Table S2). Besides, significant higher G_{s} values were observed in mycorrhizal plants under salinity conditions, which was also beneficial to increased P_{n} values. The higher G_{s} values in mycorrhizal plants indicated AMF could mitigate salt-induced reduction in stomatal conductance, which might attribute to the increase in nutrient and water uptake caused by AMF (Zhu et al. 2010). AMF inoculation significantly enhanced the T_{r} values, but significantly decreased L_{s} under salinity conditions, similar results also be reported by many researchers (Talaat and Shawky 2014; Lin et al. 2017; Zhang et al. 2018).

Effects of AMF inoculation on osmotic adjustment under salinity stress

There are some physiological mechanisms related to the protective effects of AMF on plants under salt stress condition. First, the present study showed that AMF-inoculated G. sinensis seedlings exhibited higher Pro content in the roots, but significant lower Pro content in leaves (Table 2), which is consistent with that noted in mycorrhizal soybean (Sharifi et al. 2007). Similar results of higher
accumulation of Pro in AMF-inoculated plants have also been reported in previous studies (Evelin et al. 2013; Talaat and Shawky 2014). In particular, higher accumulation of Pro in roots has been found to be beneficial for maintaining osmotic balance between water-absorbing root cells and external media (Evelin et al. 2009), whereas low accumulation of Pro in the leaves of AMF-inoculated plants might suggest less injury because Pro is also considered as an indicator of salt-induced damage (Evelin et al. 2013). The increase in the Pro content in roots could be attributed to the reduction in oxidation of Pro to glutamate or induction of Pro biosynthesis enzymes (Stewart 1981). Besides, higher SP concentration especially at 150 mM NaCl was also noted in the roots of AMF-inoculated plants (Table 2), which could be ascribed to the higher Pro accumulation, because Pro plays an important function in the stabilization of proteins. SP help in osmotic adjustment and play an essential role in maintaining water and nutrient absorption and membrane stabilization (MSI) (Goudarzi and Pakniyat 2009). Thus, the higher Pro and SP concentrations in the roots of AMF-inoculated plants indicated higher efficiency of osmotic regulation system in these plants.

Effects of AMF inoculation on antioxidant enzymes under salinity stress

Under salt stress, ROS, such as superoxide (O$_2^-$), hydrogen peroxide (H$_2$O$_2$), hydroxyl radical (OH), and singlet oxygen (1O$_2$), are generated in different cell compartments, including chloroplasts, mitochondria, and apoplastic space (Jithesh et al. 2006), and could disrupt the normal metabolism of lipids, proteins, and nucleic acids (Muchate et al. 2016). The higher SP contents in leaves and higher MDA contents in both leaves and roots with increasing NaCl levels suggested enhanced lipid peroxidation and protein oxidation under salinity condition, which is consistent with the findings of previous studies (Navarro et al. 2014; Talaat and Shawky 2014). To scavenge ROS, plants possess defense systems involving enzymes and antioxidants (Jiang and Zhang 2002). Among the antioxidant enzymes, SOD metabolizes O$_2^-$ to H$_2$O$_2$, which protects plant cells from damage, while CAT, POD, and APX directly convert H$_2$O$_2$ to H$_2$O and O$_2$. The results of the present study indicated that G. sinensis showed increased antioxidant enzymes activities to resist oxidative stress at a certain NaCl level (< 100 mM). However, these higher activities were not adequate to scavenge ROS, especially when the
NaCl level reached 100 mM; hence, the MDA content in the leaves of plants at 100 mM NaCl was significantly higher than that in plants under no salinity treatment (Fig. 3c). Many studies have reported higher antioxidant enzymes activities in AMF-inoculated plants, when compared with those in non-inoculated plants (Hajiboland et al. 2010; Lu et al. 2014). In the present study, higher activities of antioxidant enzymes (POD, CAT, and SOD) were observed in AMF-inoculated plants, especially in roots, when compared with those in non-inoculated plants. In addition, lower MDA contents in the AMF-inoculated plants indicated lower oxidative damage, especially at high NaCl levels, which might be partly owing to the higher Pro level in roots because Pro also play an important role in ROS detoxification (Muchate et al. 2016).

Effects of AMF inoculation on N and P contents under salinity stress
N and P elements are vital important for the growth of plant. Generally, the enhancement of P uptake is considered the most important salt stress tolerance mechanism in mycorrhizal plants (Bolan 1991; Liu et al. 2016), as the fungal hyphae of AMF function analogous to fine root hairs and acquire nutrients especially relatively immobile elements such as P (Koltai and Kapulnik 2010). Higher N concentrations in mycorrhizal plants compared with no-mycorrhizal plants had also been reported (Talaat and Shawky 2014; Wang et al. 2018). In the present study, AMF inoculation mainly enhanced the P concentration, but not the N concentration of plants at high NaCl level. In addition, lower N/P ratios in the tissues especially in stems and roots of mycorrhizal plants (Fig. 4g-i) provided support for that the enhancement of P uptake as one of the underlying mechanism by AMF which alleviate salt damage to plants. N/P ratio in the shoot biomass could be used to evaluate whether N or P is the limiting factor for plant biomass product, generally N/P ratios < 10 and > 20 correspond to N- and P-limited biomass production (Güsewell 2004). The N/P ratios in leaves and stems of no-inoculation plants were > 20 under salinity conditions indicated that G. sinensis was P-limited biomass product when exposed to salinity, the lower N/P ratios in mycorrhizal plants clearly showed that AMF inoculation could effectively allviate P-limited biomass product caused by salinity stress.

Effects of AMF inoculation on ion contents and ion balances under salinity stress
High Na$^+$ concentration in soil has been reported to inhibit the uptake of other nutrients such as K$^+$,
Ca$^{2+}$, Mg$^{2+}$, etc., resulting in nutrient imbalance and thus plant growth restriction (Parida and Das 2005). K$^+$ plays a key role in plant metabolism, including stomatal movement, protein synthesis, and enzymes activation (Khalil et al. 2011). In the present study, the K$^+$ content significantly decreased when the Na$^+$ content increased (Fig. 5a-f), because Na$^+$ ions compete with K$^+$ ions for binding sites essential for various cellular activities. It has been revealed that mycorrhizal colonization can enhance K$^+$ absorption under salinity condition (Giri et al. 2007; Evelin et al. 2012). The results of the present study showed no obvious difference in the K$^+$ content between AMF-inoculated and non-inoculated plants, but indicated obviously higher K$^+$/Na$^+$ ratios in the tissues of mycorrhizal plants at all NaCl levels (Table S3), which can be attributed to the lower Na$^+$ content, when compared with that in non-mycorrhizal plants.

The lower levels of Na$^+$ in AMF-inoculated plants have also been reported in many previous studies (Evelin et al. 2012; Lu et al. 2014; Pollastri et al. 2018). However, Allen and Cunningham (1983) indicated that AMF can occasionally enhance Na$^+$ uptake, suggesting that AMF could induce a buffering effect on the uptake of Na$^+$ causing higher Na$^+$ concentration in mycorrhizal plants at low salinity and lower Na$^+$ concentration at higher salinity. The strong enhancement of plant growth following AMF inoculation can also contribute to the decrease in Na$^+$ concentration in the tissues (Juniper and Abbott 1993; Al-Karaki 2006). A sustained high K$^+$/Na$^+$ ratio is considered to be one of the key indicators for the evaluation of salt tolerance in plants because it prevents disruption of various enzymatic processes and inhibition of protein synthesis (Maathuis and Amtmann 1999; Dasgan et al. 2002). The higher K$^+$/Na$^+$ ratios in the tissues of AMF-inoculated plants may be one of the primary reasons for the improvement in growth of G. sinensis seedlings under salinity condition, and similar findings have also been reported in previous studies (Hajiboland et al. 2010; Evelin et al. 2012).

Ca$^{2+}$ concentrations in the plant tissues increased under salt stress, which is beneficial for
transducing signal because Ca\(^{2+}\) acts as a second messenger. A higher Ca\(^{2+}\) concentration was also observed especially in roots of AMF-inoculated plants, consistent with the previous reports on mycorrhizal lettuce and tomato (Cantrell and Linderman 2001; Hajiboland et al. 2010). It has been indicated that high Ca\(^{2+}\) concentration in tissues can preserve the structural and functional integrity of membranes, stabilize cell wall structures, and regulate ion transport and selectivity (Munns 2002; Maathuis 2009). Hence, the higher MSI values and K\(^{+}\)/Na\(^{+}\) ratios could be partly attributed to the enhancement of Ca\(^{2+}\) content following AMF inoculation. Moreover, significant increment in Ca\(^{2+}\) concentration in the roots of mycorrhizal plants observed in the present study might account for the high AMF colonization at all NaCl levels, because high Ca\(^{2+}\) is known to enhance AMF colonization and sporulation (Jarstfer et al. 1998).

Mg\(^{2+}\) is essential for the biosynthesis of chlorophyll. Although salt stress restrains the uptake of Mg\(^{2+}\), the effect of AMF on Mg\(^{2+}\) concentration in plants is controversial. In a previous study, Evelin et al. (2012) demonstrated that the concentration of Mg\(^{2+}\) in mycorrhizal plants was higher in roots, but lower in shoot, when compared with that in non-mycorrhizal plants. However, Talaat and Shawky (2014) showed that the concentration of Mg\(^{2+}\) in leaves of wheat was significantly enhanced by AMF. The results of the present study indicated that the concentrations of Mg\(^{2+}\) in the leaves and roots of mycorrhizal plants were lower than those in non-mycorrhizal plants, which might be owing to the stronger competition by Ca\(^{2+}\). As Ca\(^{2+}\) has higher affinity to the binding sites of plasma membrane than Mg\(^{2+}\) (Marschner 1995), a higher Ca\(^{2+}\)/Mg\(^{2+}\) ratio was noted in mycorrhizal plants. However, a higher Mg\(^{2+}\)/Na\(^{+}\) ratio in mycorrhizal plants suggested that the function of Mg\(^{2+}\) was less suppressed by salinity in these plants.

Conclusions
We revealed that the AMF F. mosseae significantly enhanced the growth and biomass accumulation of G. sinensis seedlings both under normal and salinity conditions. The AMF inoculation alleviated salt-induced deleterious effects on G. sinensis seedlings growth by multiple ways. Enhanced Ca\(^{2+}\) uptake
by AMF might be beneficial to maintain high colonization under high salinity stress. Higher P/N ratio in AMF inoculation seedlings was one of important mechanisms for accumulating biomass under salinity conditions. In addition, AMF decreased Na\(^+\) absorption resulting in more favorable ion balances, and enhanced antioxidant enzymes (POD, CAT, and SOD) to scavenge ROS. Consequently, higher P\(_n\) and MSI in leaves, and lower Pro contents in leaves, lower MDA content in the tissues of mycorrhizal plants were noted, ultimately leading to better tolerance to salt stress. These findings clearly demonstrated the significant potential application of AMF in G. sinensis afforestation and rehabilitation in saline soil, including coastal areas.

Abbreviations

- **AMF**: arbuscular mycorrhizal fungi
- **Chl**: leaf chlorophyll contents
- **G\(_s\)**: leaf gas exchange
- **P\(_n\)**: leaf net photosynthetic rate
- **T\(_r\)**: transpiration rate
- **Ls**: leaf limiting value of stomata
- **Pro**: proline content
- **SP**: soluble protein
- **MDA**: malondialdehyde
- **RWC**: leaf relative water content
- **MSI**: membrane stability index
- **POD**: peroxidase
- **CAT**: catalase
- **APX**: ascorbate peroxidase
- **SOD**: superoxide dismutase

Additional Files

Table S1 Result of two way ANOVA test for independent variables including salinity treatment, AMF inoculation and their interaction
Table S2 Effects of *F. mosseae* on chlorophyll contents and photosynthetic parameters of *G. sinensis* seedling at different NaCl levels

Declarations

Funding

This work was financially supported by Jiangsu Agricultural Science and Technology Innovation Fund (Grant No. CX (17) 004), National Special Fund for Forestry Scientific Research in the Public Interest (Grant No. 201504406), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Doctorate Fellowship Foundation of Nanjing Forestry University (2169125). BZ was supported by the Greater Everglades Priority Ecosystem Science program and UC Davis Chancellors’ postdoc fellowship.

Availability of data and materials

All data generated or analyzed during this study are in this article (and its supplementary information files) or are available from the corresponding author on reasonable request.

Authors’ contributions

JZ and JW designed the experiments. JZ acquired the funding and administered the projects. JW, JL, JY, CL and SM conducted the experiments. GW, JW, BZ and XL interpreted data. JW wrote the manuscript. GW and BZ revised the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript.

References

1. Abdel-Fattah GM, Asrar AWA (2012) Arbuscular mycorrhizal fungal application to improve growth and tolerance of wheat (*Triticum aestivum*) plants grown in saline
soil. Acta Physiol Plant 34:267–277. https://doi.org/10.1007/s11738-011-0825-6

2. Al-Karaki GN (2006) Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7. https://doi.org/10.1016/j.scienta.2006.02.019

3. Allen EB, Cunningham GL (1983) Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol 93:227–236. https://doi.org/10.1111/j.1469-8137.1983.tb03427.x

4. Allen MF (1989) Mycorrhizae and rehabilitation of disturbed arid soils: Processes and practices. Arid Soil Res Rehab 3:229– https://doi.org/10.1080/153249888909381201

5. Augé RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100

6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205– https://doi.org/10.1007/BF00018060

7. Blakesley RW, Boezi JA (1977) A new staining technique for proteins in polyacrylamide gels using coomassie brilliant blue G250. Anal Biochem 82:580– https://doi.org/10.1016/0003-2697(77)90197-X

8. Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189-207. https://doi.org/10.1007/BF00012037

9. Bulgarelli RG, Marcos FCC, Ribeiro RV, der Andrade SAL (2017) Mycorrhizae enhance nitrogen fixation and photosynthesis in phosphorus-starved soybean (Glycine max Merrill). Environ Exp Bot 140:26–33. https://doi.org/10.1016/j.envexpbot.2017.05.015

10. Cantrell IC, Linderman RG (2001) Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil 233:269–281. https://doi.org/10.1023/A:1010564013601

11. Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Method
12. Chang W, Sui X, Fan XX, Jia TT, Song FQ 2(018) Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed *Elaeagnus angustifolia* seedlings. Front Microbiol 9:652. https://doi.org/10.3389/fmicb.2018.00652

13. Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field condition. J Plant Physiol 166:617–625. https://doi.org/10.1016/j.jplph.2008.09.013

14. Dasgan HY, Aktas H, Abak K, Cakmak I (2002) Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci 163:695- https://doi.org/10.1016/S0168-9452(02)00091-2

15. Evelin H, Giri B, Kapoor R (2012) Contribution of *Glomus intraradices* inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed *Trigonella foenum-graecum*. Mycorrhiza 22:203- https://doi.org/10.1007/s00572-011-0392-0

16. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263- https://doi.org/10.1093/aob/mcp251

17. Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in *Trigonella foenum-graecum*. Mycorrhiza 23:71- https://doi.org/10.1007/s00572-012-0449-8

18. Fernández N, Fontenla S, Messuti MI (2011) Co-occurrence of arbuscular mycorrhizas and dark septate endophytes in pteridophytes from a Valdivian Temperate Rainforest in Patagonia, Argentina. In: Pagano M (ed) Mycorrhiza: Occurrence in Natural and Restored Environments. Nova Science Publishers, New York, pp 99-126.

19. Garg N, Pandey R (2015) Effectiveness of native and exotic arbuscular mycorrhizal
fungi on nutrient uptake and ion homeostasis in salt-stressed *Cajanus cajan* (Millsp.) genotypes. Mycorrhiza 25:165-180. https://doi.org/10.1007/s00572-014-0600-9

20. Giannopolitis CN, Ries SK (1977) Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59: 309– https://doi.org/10.1104/pp.59.2.309

21. Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489- https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

22. Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of *Acacia auriculiformis*. Biol Fert Soils 38:170– https://doi.org/10.1007/s00374-003-0636-z

23. Giri B, Kapoor R, Mukerji KG (2007) Improved Tolerance of *Acacia nilotica* to Salt stress by arbuscular mycorrhiza, *Glomus fasciculatum* may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760. https://doi.org/10.1007/s00248-007-9239-9

24. Goudarzi M, Pakniyat H (2009) Salinity causes increase in proline and protein contents and peroxidase activity in wheat cultivars. J Appl Sci 9:348-353. https://doi.org/3923/jas.2009.348.353

25. Güsewel S (2004) N:P ratios in terrestrial plants: Variation and functional significance. New Phytol 164:243-266. http://doi.org/10.1111/j.1469-8137.2004.01192.x

26. Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (*Solanum lycopersicum*) plants. Plant Soil 331:313-327. https://doi.org/10.1007/s11104-009-0255-z

27. Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric
acid-reactive-substances assay for lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611. https://doi.org/10.1007/s004250050524

28. Jarstfer AG, Farmer-Koppenol P, Sylvia DM (1998) Tissue magnesium and calcium affect mycorrhiza development and fungal reproduction. Mycorrhiza 7:237- https://doi.org/10.1007/s005720050186

29. Jiang MY, Zhang JH (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401- https://doi.org/10.1093/jxb/erf090

30. Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defiance. J Genetics 85:237. https://doi.org/10.1007/BF02935340

31. Juniper S, Abbott L (1993) Vesicular-arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–57. https://doi.org/10.1007/BF00204058

32. Khalil HA, Eissa AM, El-Shazly SM, Aboul Nasr AM (2011) Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Sci Hortic 30:624–632. https://doi.org/10.1016/j.scienta.2011.08.019

33. Koltai H, Kapulnik Y (2010) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht, the Netherlands.

34. Lei F, Bai ZY, Lu BS, Cai SW, Feng LN (2008) Effects of NaCl stress on Hovenia dulcis and Gleditsia sinensis seedlings growth, chlorophyll fluorescence, and active oxygen metabolism. Chinese Journal of Applied Ecology 19:2503– (in Chinese)

35. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Method Enzymol 148:350– https://doi.org/10.1016/0076-
36. Lin JX, Wang YN, Sun SN, Mu CS, Yan XF (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of *Leymus chinensis* seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234– https://doi.org/10.1016/j.scitotenv.2016.10.091

37. Liu SL, Guo XL, Feng G, Maimaitiaiili B, Fan JL, He XH (2016) Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398:195-206. https://doi.org/10.1007/s11104-015-2656-5

38. Lu YW, Wang GQ, Meng QJ, Zhang WH, Duan BL (2014) Growth and physiological responses to arbuscular mycorrhizal fungi and salt stress in dioecious plant *Populus tomentosa*. Can J Forest Res 44:1020–10 https://doi.org/10.1139/cjfr-2014-0009

39. Maathuis FJM, Amtmann A (1999) K⁺ nutrition and Na⁺ toxicity: the basis of cellular K⁺/Na⁺ ratios. Ann Bot 84:123– https://doi.org/10.1006/anbo.1999.0912

40. Maathuis FJM (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250– https://doi.org/10.1016/j.pbi.2009.04.003

41. Marschner H (1995) Mineral nutrition of higher plant, 2nd edn. Academic, New York.

42. Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82:371– https://doi.org/10.1007/s12229-016-9173-y

43. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

44. Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hort Sci 33:70– https://doi.org/10.17221/3742-HORTSCI
45. Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76- https://doi.org/10.1016/j.jplph.2013.06.006

46. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867- https://doi.org/10.1093/oxfordjournals.pcp.a076232

47. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotox Environ Safe 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010

48. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-161. http://ir.xtbg.org.cn/handle/353005/9865

49. Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Facchio A, Cunzo FD, Michelozzi M, Lambardi M, Fotopoulos V, Loreto F, Centritto M, Balestrini R (2018) Impact of two arbuscular mycorrhizal fungi on Arundo donax response to salt stress. Planta 247:573–585. https://doi.org/10.1007/s00425-017-2808-3

50. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181- https://doi.org/10.1007/s13593-011-0029-x

51. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75- https://doi.org/10.1016/j.jplph.2015.07.006

52. Rodríguez-Echeverría S, Hol WHG, Freitas H, Eason WR, Cook R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30-36.
53. Sarwat M, Hashem A, Ahanger MA, Abd_Allah EF, Alqarawl AA, Alyemeni MN, Ahmad P, Gucel S (2016) Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica Juncea) plants. Front Plant Sci 7:869. https://doi.org/10.3389/fpls.2016.00869

54. Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144– https://doi.org/10.1016/j.jplph.2006.06.016

55. Stewart CR (1981) Proline accumulation: biochemical aspects. In: Paleg LG, Aspinall D (ed) Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 243-259.

56. Takai T, Kondo M, Yano M, Yamamoto T (2010) A quantitative trait locus for chlorophyll content and its association with leaf photosynthesis in rice. Rice 3:172– https://doi.org/10.1007/s12284-010-9047-6

57. Talaat NB, Shawky BT (2014) Protective effects of arbuscular mycorrhizal fungi on wheat (Triticum aestivum) plants exposed to salinity. Environ Exp Bot 98:20–31. https://doi.org/10.1016/j.envexpbot.2013.10.005

58. Thanaa E, Nawar A (1994) Salinity and mycorrhizal association in relation to carbohydrate status, leaf chlorophyll and activity of peroxidase and polyphenoloxidase enzymes in sour orange seedlings. Alexandria J Agric Res 29:342-351.

59. Wang JP, Fu ZY, Ren Q, Zhu LJ, Lin J, Zhang JC, Cheng XF, Ma JY, Yue JM (2019) Effects of arbuscular mycorrhizal fungi on growth, photosynthesis, and nutrient uptake of Zelkova serrata (Thunb.) Makino seedlings under salt stress. Forests 10:186.
60. Wang YH, Wang MQ, Li Y, Wu AP, Huang JY (2018) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of *Chrysanthemum morifolium* under salt stress. PLoS ONE 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

61. Wilson JB, Sykes M (1999) Is zonation in coastal sand dunes determined primarily by sand burial or by salt spray? A test in New Zealand dunes. Ecol Lett 2:233–236. 10.1046/j.1461-0248.1999.00084.x

62. Xu WF, Shi WM, Ueda A, Takabe T (2008) Mechanisms of salt tolerance in transgenic *Arabidopsis thaliana* carrying a peroxisomal ascorbate peroxidase gene from barley. Pedosphere 4:486–495. https://doi.org/10.1016/S1002-0160(08)60039-9

63. Yang HS, Zhang Q, Dai YJ, Liu Q, Tang Jj, Bian XM, Chen X (2015) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361– https://doi.org/10.1007/s11104-014-2370-8

64. Zhang JP, Tian XH, Yang YX, Liu QX, Wang Q, Chen LP, Li HL, Zhang WD (2016) *Gleditsia* species: an ethnomedical, phytochemical and pharmacological review. J Ethnopharmacology 178:155–171. https://doi.org/10.1016/j.jep.2015.11.044

65. Zhang T, Hu YJ, Zhang K, Tian CY, Guo JX (2018) Arbuscular mycorrhizal fungi improve plant growth of *Ricinus communis* by altering photosynthetic properties and increasing pigments under drought and salt stress. Ind Crop Prod 117:13– https://doi.org/10.1016/j.indcrop.2018.02.087

66. Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

Tables
Table 1 Effects of *F. mosseae* on growth and root morphology parameters of *G. sinensis* seedling at different NaCl levels

NaCl level (mM)	AMF status	Height growth (cm)	Diameter growth (mm)	Leaf area (cm²)	Root length (cm/plant)	Root surface area (cm²/plant)	Root tip number (/plant)
0	NM	15.49±3.63Ba	0.77±0.21Ba	1.52±0.26Aa	510.4±12.7Ba	80.8±9.6Ba	461±52Ba
	AM	47.72±15.13Aa	2.00±0.95Aa	1.78±0.34Aa	4246.9±34.86Aa	887.6±152.5Aa	6145±1758Aa
50	NM	12.01±2.18Bb	0.63±0.20Bb	1.14±0.32Aa	507.5±6.2Ba	80.4±9.7Ba	439±85Ba
	AM	47.58±16.35Aa	1.79±0.77Aa	1.53±0.26Aa	3949.6±208.4Aa	739.5±84.7Aa	6100±1201Aa
100	NM	2.03±0.32Ba	0.34±0.17Bc	0.91±0.22Aa	400.4±45.7Bb	60.4±1.5Bb	361±13Bab
	AM	39.09±9.70Aa	1.10±0.55Bb	1.14±0.13AAb	3358.2±192.8Bb	583.4±121.1AAb	3875±225Aa
150	NM	0.86±0.54Bc	0.21±0.07Bd	0.83±0.12Aa	324.8±62.7Bb	53.6±8.5Bb	277±41Bb
	AM	26.87±3.24Bc	0.63±0.20Aa	0.92±0.08Ac	2002.4±514.3Ac	454.5±172.2Ab	2955±656Bab

NM represents the groups without *F. mosseae* inoculation; AM represents the group with *F. mosseae* inoculation. Different capital letters indicate significant differences (*P < 0.05*) among inoculation treatments (NM and AM) within the same NaCl level. Different lowercase letters indicate significant differences (*P < 0.05*) among NaCl levels within the same inoculation treatment.

Table 2 Effects of *F. mosseae* on antioxidant enzyme activities and osmoregulators of *G. sinensis* seedling at different NaCl levels

Tissues	NaCl level (mM)	AMF status	POD (U/mg protein)	CAT (U/mg protein)	SOD (U/mg protein)	APX (U/mg protein)	Pro (µg/g)	SP (mg/g)
Leaf	0	NM	729.0±128.2Bc	1.98±0.34Bc	17.6±3.7Aa	11.9±5.2Ab	23.5±3.6Ac	5.59±0.26Ac
	AM	1112.3±54.0Ab	3.99±1.20Aa	38.1±22.0Aa	14.6±5.0Ab	11.7±7.5Aa	5.38±0.39Aa	
	50	NM	1016.8±83.6Bc	3.29±0.61Bc	105.7±10.7Bc	23.5±5.0Aa	34.7±4.0Ab	7.00±0.30Ac
	AM	1335.5±28.5Ab	7.38±1.25Aa	121.0±22.9Ab	26.2±8.7Aa	18.3±4.0Ba	6.98±0.76Aa	
	100	NM	1433.9±222.2Aa	8.95±2.19Aa	132.7±13.5Ab	32.3±5.3Aa	52.4±8.8Ab	7.78±0.71Aa
	AM	2452.9±633.6Aa	16.69±5.89Ab	189.2±9.2Aa	34.8±1.0Aa	22.1±3.9Aa	6.99±0.63Aa	
	150	NM	1108.8±69.2Bab	5.25±0.55Bb	112.8±6.9Aab	47.1±18.8Aa	276.3±17.1Aa	8.56±0.66Aa
	AM	1737.8±143.4AAb	9.89±0.73Aa	119.8±42.0Ab	34.1±7.9Aa	24.4±5.0Bb	6.65±0.93Bb	
Root	0	NM	763.5±179.2Ab	10.61±0.57Bb	45.8±6.1Bb	54.5±13.3Aa	27.2±2.2Ac	2.57±0.14Aa
	AM	800.6±130.2Ac	19.30±3.82Ab	112.3±9.0Aa	65.7±6.5Ac	20.3±3.5Bb	2.85±0.53Aa	
	50	NM	1245.3±207.6Ab	13.82±1.5Ba	56.0±2.2Bb	104.2±13.0Bc	45.6±4.3Ab	2.90±0.38Aa
	AM	2076.6±237.1Aab	23.09±2.67Aa	128.3±6.3Aa	312.3±18.9Bb	52.0±4.2Aa	2.91±0.28Aa	
	100	NM	649.6±131.9Bbc	23.45±6.49Bb	56.1±3.4Bb	235.4±12.7Ab	51.7±6.2Ab	2.55±0.36Aa
	AM	2577.3±351.4AAb	27.11±1.44Ab	96.6±8.2Ab	215.0±33.1Ab	62.2±10Aab	3.00±0.45Aa	
	150	NM	309.9±67.8Ab	10.77±2.15Ab	88.5±19.4Aa	343.5±18.3Aa	87.0±9.5Aa	2.18±0.29Bb
	AM	1792.7±135.3Ab	20.32±6.63Aa	93.0±10.5Aa	103.9±3.2Bc	92.9±31.8Aa	2.81±0.23Aa	

NM represents the groups without *F. mosseae* inoculation; AM represents the group with *F. mosseae* inoculation. Different capital letters indicate significant differences (*P < 0.05*) among inoculation treatments (NM and AM) within the same NaCl level. Different lowercase letters indicate significant differences (*P < 0.05*) among NaCl levels within the same inoculation treatment.

Figures
Fig. 1 Mycorrhizal colonization and mycorrhizal dependency of *G. sinensis* seedling at different NaCl levels. (a) Mycorrhizal colonization, (b) Mycorrhizal dependency. Different lowercase letters indicate significant differences ($P < 0.05$) among NaCl levels.

Figure 1

Mycorrhizal colonization and mycorrhizal dependency of *G. sinensis* seedling at different NaCl levels. (a) Mycorrhizal colonization, (b) Mycorrhizal dependency. Different lowercase letters indicate significant differences ($P < 0.05$) among NaCl levels.
Effects of F. mosseae on biomass of G. sinensis seedling at different NaCl levels. NM represents the groups without F. mosseae inoculation; AM represents the group with F. mosseae inoculation. In the same tissues, different capital letters indicate significant differences ($P < 0.05$) among inoculation treatments (NM and AM) within the same NaCl level, different lowercase letters indicate significant differences ($P < 0.05$) among NaCl levels within the same inoculation treatment.
Effects of F. mosseae on MSI, RWC and MDA contents of G. sinensis seedling at different NaCl levels. (a) Leaf relative water content, (b) Leaf membrane stability index, (c, d) Leaf and root MDA; NM represents the groups without F. mosseae inoculation; AM represents the group with F. mosseae inoculation. Different capital letters indicate significant differences (P < 0.05) among inoculation treatments (NM and AM) within the same NaCl level. Different lowercase letters indicate significant differences (P < 0.05) among NaCl levels within the same inoculation treatment.
Effects of F. mosseae on N, P concentrations, and N/P ratios of G. sinensis seedling at different NaCl levels. (a, b c) N concentration in leaf, stem, and root, (d, e, f) P concentration in leaf, stem, and root, (g, h, i) N/P ratio in leaf, stem, and root; NM represents the groups without F. mosseae inoculation; AM represents the group with F. mosseae inoculation. Different capital letters indicate significant differences (P < 0.05) among inoculation treatments (NM and AM) within the same NaCl level. Different lowercase letters indicate significant differences (P < 0.05) among NaCl levels within the same inoculation treatment.
Effects of F. mosseae on the ion concentrations of G. sinensis seedling at different NaCl levels. (a, b, c) Na+ concentration in leaf, stem, and root, (d, e, f) K+ concentration in leaf, stem, and root, (g, h, i) Ca2+ concentration in leaf, stem, and root, (j, k, l) Mg2+ concentration in leaf, stem, and root; NM represents the groups without F. mosseae inoculation; AM represents the group with F. mosseae inoculation. Different capital letters indicate significant differences (P < 0.05) among inoculation treatments (NM and AM) within the same NaCl level. Different lowercase letters indicate significant differences (P < 0.05) among NaCl levels within the same inoculation treatment.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
