EFFECT OF POULTRY MANURE AND FARMYARD MANURE WITH AND WITHOUT CHEMICAL FERTILIZERS ON THE GROWTH AND YIELD OF BRRI DHAN28

Md. Yasin Ali¹, M.S. Jahan¹ and M. A. Hossain²
¹Agrotechnology Discipline, Khulna University, Khulna-9208, Bangladesh
²Public College, Boyra, Khulna, Bangladesh

KUS–07/38-101107
Manuscript received: November 10, 2007; Accepted: June 30, 2008

Abstract: A field experiment was conducted at the Agrotechnology Field Laboratory of Khulna University, Khulna during boro season of 2005 to find out the effects of poultry manure (PM) and farmyard manure (FYM) in presence and absence of chemical fertilizers on BRRI dhan28. The experiment was laid-out in a randomized complete block design with three replications. There were ten treatments viz. T₁: 100% RFD (Recommended fertilizer doses), T₂: 100% RFD+10 t FYM, T₃: 100% RFD+ 5 t FYM, T₄: 50% RFD+5 t FYM, T₅: 100% RFD + 5 t PM, T₆: 100% RFD+ 2.5 t PM, T₇: 50% RFD+ 2.5 t PM, T₈: 5 t PM and T₁₀: Control (without manures and fertilizers). The doses of inorganic fertilizers N, P, K, S and Zn were 80, 50, 40, 10 and 5 kg ha⁻¹. All the combined application of manures and fertilizers significantly increased the plant height, number of tiller hill⁻¹, dry matter hill⁻¹, grain and straw yield over the control. The highest grain yield was recorded in 100% RFD + 5 t PM treated plot which was similar to 100% RFD+10 t FYM treated plot, while the lowest yield was recorded in the control. Half of the recommended doses of fertilizer with 5 t ha⁻¹ farmyard manure or 2.5 t ha⁻¹ poultry manure produced statistically similar grain yields as produced by RFD which indicates that 50% of the fertilizers can be replaced by PM or FYM without any loss of grain yield.

Key words: Poultry manure, farmyard manure, fertilizer, BRRI dhan28.

Introduction

Soils of Bangladesh are already depleted in many of the essential plant nutrients, intensive cultivation with HYVs and extremely low return from organic recycling is thought to be main reasons for this depletion. Fertilizers are essential for crop production in modern agriculture and inorganic fertilizers hold the key to the success in crop production in Bangladesh (Anonymous, 1997). However, continuous use of inorganic fertilizer to soil has a deleterious effect on soil and steadily declines soil fertility (Nambiar et al. 1998). On the other hand inorganic fertilizers, organic fertilizers are relatively poor in plant nutrients, but increase microbial activity and plays important role in improving soil health (physical, chemical and biological properties of soil) and thus helps to increase and conserve the soil productivity.

Thus sustainable crop production is difficult by using chemical fertilizer alone and similarly it is not possible to get higher crop yield by using organic manure only (Bair, 1990). The integrated use of organic and inorganic fertilizers might be helpful for sustainable crop production. Nambiar (1991) cited that integrated use of organic manure and chemical fertilizers would be quite promising not only in providing greater stability in production, but also in maintaining higher soil fertility status. Researchers in Bangladesh Rice Research Institute reported that application of cowdung at the rate of 5 t ha⁻¹ year⁻¹ improves rice production as well as prevents the soil resource from the degradation (Bhuiyan, 1994).
Farmyard manure is the common source of manure in Bangladesh. Poultry manure from poultry farms of different sizes established all over the country. As quality feeds are used in farms, could be very good source of nutrients for field crops. Poultry excreta is rich in nutrients.

In view of the continued need to increase crop yield, proper use of inorganic fertilizers and organic manures is essential. It is essential to look after immediate crop needs in order to build up soil fertility and to conserve soil health for sustaining increased crop production. In addition, global environmental pollution can also be controlled considerably by reducing the use of fertilizer and increasing the use of manures. Hence, the present study was undertaken to observe the effects of combinations of poultry manure (PM), farmyard manure (FYM) and fertilizer on the growth and yield of BRRI dhan28.

Materials and Methods

A field study was conducted to find out the effect of PM and FYM in presence or absence of fertilizers on boro rice variety BRRI dhan28. The experiment was carried out at the Agrotechnology Field Laboratory of Khulna University, Khulna. The soil of the experimental plot was silt loam in texture having pH 7.6, organic matter 3.90%, total N 0.10%, available P 6.78 ppm and exchangeable K 0.22 meq/100g soil. BRRI dhan28, a high yielding variety of rice was used as the test crop in this experiment.

The experiment was designed with ten treatments, laid out in a randomized complete block design (RCBD) with three replications. Unit plot size was 4.0m x 2.5m. The treatments were T1: 100% RFD (Recommended fertilizer doses), T2: 100% RFD + 10 t FYM, T3: 100% RFD + 5 t FYM, T4: 50% RFD + 5 t FYM, T5: 10 t FYM, T6: 100% RFD + 5 t PM, T7: 100% RFD + 2.5 t PM, T8: 50% RFD + 2.5 t PM, T9: 5 t PM and T10: Control (without manures and fertilizers).

The doses of inorganic fertilizers were 80, 50, 40, 10 and 5 kg ha\(^{-1}\) N, P, K, S and Zn. All the plots got N, P, K, S, and Zn from urea, TSP, MP, gypsum and zinc sulphate, respectively. One third of urea and the entire amount of other fertilizers were applied as basal in each plot during final land preparation. The second split of urea was applied at maximum tillering stage and the third split of urea at panicle initiation stage. The total amounts of FYM and PM were applied at 15 days before planting. Three healthy seedlings of 40 days old were transplanted in the experimental plots on 18 February, 2005. The spacing was 25 cm x 15 cm. Intercultural operations, such as irrigation and weeding, were done whenever required to ensure normal growth of the crop.

Destructive plant samplings were done at 15 days interval to determine different plant growth parameters starting from 45 days after transplanting (DAT) and continued till maturity. At each sampling date were recorded from five randomly selected hills in each plot and the mean of five hills was taken. Growth parameters like plant height, tiller number, total dry matter were recorded at 45, 60, 75 DAT and at harvest. The crops were harvested at their full maturity when 90% of the grain turned golden yellow in color. Total harvesting was done in a day. Before harvesting 5 hills were uprooted randomly from each plot for taking yield component data. As yield and yield contributing characters plant height, effective tillers hill\(^{-1}\), filled grains panicle, 1000 grain weight, grain yield, straw yield, biological yield and harvest index were recorded. Grain and straw yields were recorded from whole plot basis and adjusted to 14% moister level. Quantitative information on growth and yield performance of rice was subjected to Analysis of Variance (ANOVA) and means of the parameters were compared using Duncan’s Multiple Range Test (DMRT).

Results

Growth parameters as influenced by manures and fertilizers: Plant height increased to the maximum at harvest but the rate of increase was higher at early stages of growth. Application of manures and fertilizers influenced markedly on the plant height at each stage of growth. FMY and
PM in combination with RFD always showed better performance over their single application (Table 1).

The number of tillers hill’ varied with the passes of time and treatments (Table 2). The number of tillers gradually increased up to 60 DAT and decreased thereafter. Treatments with only manure and combination of manures and fertilizers produced higher number of tillers at all the growth stages.

The dry matter hill' increased gradually with the passes of time up to harvest (Table 3). Different treatments responded differently in dry matter production at different stages of growth. However, the combination of manures and fertilizers treated plots showed comparatively better result than their sole application.

Table 1. Plant height of BRRI dhan28 at different growth stages as influenced by manures and fertilizers

Treatments	45 DAT	60 DAT	75 DAT	At Harvest
100% RFD	52.40exd	74.20bcd	74.47bc	79.70bcd
100% RFD + 10 t FYM	63.40a	87.60a	88.80a	90.87a
100% RFD + 5 t FYM	62.47a	81.13ab	82.23ab	84.00abc
50% RFD + 5 t FYM	54.47bcd	77.40bc	78.50bc	78.67cd
10 t FYM	46.13cd	67.20cd	68.73cd	70.20de
100% RFD + 5 PM	61.80ab	83.27ab	87.60a	89.43ab
100% RFD + 2.5 t PM	57.07c	78.33bc	81.83bc	82.43bc
50% RFD + 2.5 t PM	59.87cd	78.40bc	78.83bc	78.97cd
5 t PM	47.80c	65.67cd	67.87cd	69.97de
Control	41.47d	60.00d	60.87d	61.33d

Level of significance: 0.01 0.01 0.01 0.01
CV (%): 8.39 6.60 6.45 5.18

The figures having different letters in a column are significantly different. RFD=Recommended fertilizer dose; DAT=Days after transplanting; FYM=Farmyard manure; PM=Poultry manure; Control (without manures and fertilizers)

Table 2 Tiller number of BRRI dhan28 at different growth stages, influenced by manures and fertilizers

Treatments	45 DAT	60 DAT	75 DAT	At Harvest
100% RFD	17.60bc	12.70b	15.00ab	14.80abc
100% RFD + 10 t FYM	25.40a	25.73a	18.33a	20.33ab
100% RFD + 5 t FYM	20.30bc	19.87a	16.30a	16.03ab
50% RFD + 5 t FYM	19.73bc	19.40a	17.20a	16.27ab
10 t FYM	19.07bc	20.47a	16.53a	16.33ab
100% RFD + 5 PM	24.73ab	25.47a	20.13a	21.47a
100% RFD + 2.5 t PM	21.27ab	23.70a	19.87a	19.40ab
50% RFD + 2.5 t PM	21.13ab	21.53a	18.13a	16.13ab
5 t PM	19.97bc	23.20b	17.47b	16.57bc
Control	13.07c	16.73a	10.60a	12.03b

Level of significance: 0.01 NS 0.05 0.05
CV (%): 13.81 18.16 17.23 18.91

The figures having different letters in a column are significantly different. RFD=Recommended fertilizer dose; DAT=Days after transplanting; FYM=Farmyard manure; PM=Poultry manure; NS=Not significance; Control (without manures and fertilizers)
Table 3. Dry matter hill\(^{-1}\) of BRRI dhan28 at different growth stages as influenced by manures and fertilizers

Treatments	45 DAT	60 DAT	75 DAT
100% RFD	7.33abc	8.59bc	20.23bc
100% RFD+10 t FYM	6.53abc	15.12a	25.80abc
100% RFD+5 t FYM	6.42abc	13.72ab	27.27ab
50% RFD+5 t FYM	5.33abc	11.52abc	19.77bc
10 t FYM	5.17bc	9.77bc	15.93c
100% RFD+5 t PM	8.5a	15.54a	32.97a
100% RFD+2.5 t PM	7.00ab	8.98bc	19.07bc
50% RFD+2.5 t PM	5.67abc	10.86abc	19.47bc
5 t PM	4.68bc	9.38bc	21.77bc
Control	3.33c	7.31c	16.17bc

Level of significance: 0.01 0.05 0.01

CV (%): 20.43 24.45 19.14

The figures having different letters in a column are significantly different. RFD=Recommended fertilizer dose; DAT=Days after transplanting; FYM=Farmyard manure; PM=Poultry manure; NS=Not significance; Control (without manures and fertilizers)

Yield and yield attributes as influenced by manures and fertilizers: The effective tillers hill\(^{-1}\) of BRRI dhan28 was significantly affected by different treatments (Table 4) ranging from 8.28 to 18.47. The maximum number of effective tillers hill\(^{-1}\) (18.47) was recorded in T\(_6\) (100% RFD+5 t PM) which was superior to all other treatments except T\(_2\) (100% RFD+10 t FYM). The lowest number of tiller (8.28) was found in the control. The performance T\(_6\) and T\(_2\) treatments were significantly higher than the rest of the treatments.

Filled grain panicle\(^{-1}\) varied significantly due to various treatments. The highest number of filled grains was recorded in the treatment T\(_6\) (100% RFD+5 t PM) which was statistically similar to T\(_2\) (100% RFD+10 t FYM) but superior to rest of the treatments (Table 4). The 1000-grain weight was significantly affected by different treatments ranging from 16.55 to 22.14 g. The highest 1000-grain weight was recorded in T\(_6\) (100% RFD+5 t PM) which was statistically similar with T\(_2\) (100% RFD+10 t FYM). The lowest 1000-grain weight was in T\(_{10}\) (control).

A significant variation in grain yield of BRRI dhan28 was found due to application of manures and fertilizers. The highest grain yield of 3.58 t ha\(^{-1}\) was observed in the treatment T\(_6\) (100% RFD+5 t PM) and that of the lowest (0.97 t ha\(^{-1}\)) was in T\(_{10}\) (control) treatment. The grain yield of T\(_6\) was statistically similar to that of T\(_2\) (100% RFD+10 t FYM). Combined use of RFD with PM or FYM showed better result in contrast to their sole application (Table 4).

Straw yield of rice also varied remarkably due to the application of manures and fertilizers. Among the treatments T\(_6\) (100% RFD+5 t PM) produced the highest straw yield which was statistically similar with T\(_2\) (100% RFD+10 t FYM), T\(_1\) (100% RFD), T\(_3\) (100% RFD+5 t FYM) and T\(_7\) (100% RFD+2.5 t PM) treatments. The lowest straw yield was obtained from the treatment T\(_{10}\) (control).
Table 4. Effect of manures and fertilizers on yield components and yield of BRRI dhan28

Treatments	Effective tillers (no)	Filled grains (g)	1000-grain weight (g)	Grain yield (t ha⁻¹)	Straw yield (t ha⁻¹)	Biological yield (t ha⁻¹)	Harvest index (%)
T₁	9.23c	46.60ad	20.68e	2.52b	3.48d	5.74d	39.12abc
T₂	15.47ab	65.37bc	21.49bc	2.99b	4.52a	7.52b	39.84abc
T₃	12.13bc	52.86bc	20.69bc	2.60b	3.79c	6.31bc	40.10abc
T₄	9.60c	42.07d	18.78bc	1.72d	3.03c	4.75d	36.97cd
T₅	8.67c	32.85de	17.23f	1.19f	3.13bc	4.33c	27.33d
T₆	18.47c	70.07a	22.14e	3.58e	4.55a	8.13a	43.98e
T₇	12.10c	50.60c	20.02f	2.65f	3.62e	6.28e	42.29cd
T₈	10.40f	40.17d	19.55d	1.96d	3.36b	5.30bc	36.61cd
T₉	8.50c	32.93de	17.75d	1.22d	2.90e	4.15f	30.01ed
T₁₀	8.28c	27.47e	16.55f	0.97f	2.08e	3.05f	32.01e
Level of significance							
CV (%)	0.01	0.01	0.01	0.01	0.01	0.01	0.05
	17.42	11.87	2.63	14.57	12.81	9.31	15.18

The figures having different letters in a column are significantly different. RFD=Recommended fertilizer dose; PM=Poultry manure; FYM=Farmyard manure

T₁=100% RFD
T₂=100% RFD + 10 t FYM
T₃=100% RFD + 5 t FYM
T₄=100% RFD + 5 t PM
T₅=100% RFD + 2.5 t PM
T₆=50% RFD + 5 t PM
T₇=50% RFD + 10 t FYM
T₈=50% RFD + 2.5 t PM
T₉=50% RFD + 5 t PM
T₁₀=Control (without manures and fertilizers)

A significant variation in the biological yield of BRRI dhan28 was recorded due to the application of manures and fertilizers. The highest biological yield (8.13 t ha⁻¹) was recorded in T₆ (100% RFD+5 t PM) which was followed by the treatment T₂ (100% RFD+10 t FYM) and the lowest biological yield (3.05 t ha⁻¹) was noted in the treatment T₁₀ (control).

Application of manures and fertilizers influenced harvest index significantly. The harvest index range from 27.33 to 43.98% and the maximum was in the treatment T₆ (100% RFD+5 t PM) which was statistically similar to those of other combined application and 100% recommended doses of fertilizers. The lowest harvest index was recorded in control (T₁₀).
Discussion
Application of manures and fertilizers influenced differently on the plant height of BRRI dhan28 and the variation was significant. Farmyard manure and poultry manure with incorporation of recommended fertilizer treated plots always showed better performance over solely fertilizer and manure applied plots. Budhar et al. (1991) found that the plant height was significantly influenced due to basal incorporation of farm wastes. Almost similar information was also reported by Azim et al. (1999), Jin et al. (1996), and Babu et al. (2001).

Filled grain panicle\(^{-1}\) varied significantly due to various treatments. Mondal et al. (1990) reported that the percentage of filled grains increased with increasing NPK rates and FYM application. A significant variation in grain yield of BRRI dhan28 was found due to application of manures and fertilizers. Combined use of RDF with PM or FYM showed better result in contrast to their sole application. Ahmed and Rahman (1991) reported that rice grain yield increased with the application of organic matter and chemical fertilizer. The combination of manures and fertilizers treated plots showed comparatively better dry weight than their sole application; so these plots produced comparatively higher yield.

PM when applied in combination with fertilizer performed better in increasing biological yield and the variation was significant. Azim et al. (1999) reported a significant increase in biological yield of rice due to application of manures and fertilizers.

Conclusion
From the findings of the present study it might be concluded that integrated use of manures and fertilizers showed better performance in contrast of solely applied fertilizers and manures. The combined application of recommended dose of fertilizer with poultry manure 5 t ha\(^{-1}\) or farmyard manure @ 10 t ha\(^{-1}\) showed similar result on the grain yield of BRRI dhan28 and produced statistically higher grain yields than RDF.

Half of the recommended doses of fertilizers with 2.5 t ha\(^{-1}\) poultry manure or 5 t ha\(^{-1}\) farmyard manure produced statistically similar grain yields as produced by RFD which indicates that 50% of the fertilizers can be replaced by PM or FYM without any loss of grain yield.

References
Ahmed, M. and Rahman, S. 1991. Influence of organic matter on the yield and mineral nutrition of modern rice and soil properties. Bangladesh Rice Journal, 2(1-2): 107-112.
Anonymous. 1997. FRG (Fertilizer Recommendation Guide), Bangladesh Agricultural Research Council (BARC). Soils Pub. No. 41, Farmgate, Dhaka, pp. 125-184.
Azim, S.M.A.; Rahman, M.M.; Islam, M.R. and Hoque, M.A. 1999. Effect of sulphur, zinc and boron supplied from manures and fertilizers on yield and nutrient uptake by rice. Progressive Agriculture, 10 (1&2): 87-90.
Babu, S.; Marimuthu, R.; Manivannan, V. and Rameshkumar, S. 2001. Effect of organic and inorganic fertilizers on growth and yield of rice. Agricultural Science of Digestion, 21 (4):232-234.
Bair, N. 1990. Characterization of the environment for sustainable agriculture in semi-arid tropics. In sustainable agriculture, Issues, perspectives and prospects in Semi-arid tropics (Ed. Singh, R.P) Hydaradada, India. Indian Society of Agronomy, 1: 90-128.
Bhuiyan, N.I. 1994. Crop Production trends and need of sustainability in agriculture. Paper Presented at Workshop on Integrated Nutrient Management for Sustainable Agriculture, held at Soil Resources Development Instution, Dhaka, Bangladesh, June 20-28, 1994.
Budhar, M.N.; Palaniappan, S.P. and Rangassamy, A. 1991. Effect of farm waste and green manures on low land rice. Indian Journal of Agronomy, 36 (2): 251-252.
Ali, M.Y.; Jahan, M.S. and Hossain, M.A. 2008. Effect of Poultry Manure and Farmyard Manure with and without Chemical Fertilizers on the Growth and Yield of Brri Dhan28. *Khulna University Studies*, 9(2): 325-332.

Jin, H.J.; Kim, J. G.; Kway, J.H.; Shin, J.S. and Lee, H.H. 1996. Growth, yield and quality of rice cultivated on paddy soils after crop fodder rye under heavy application of animal manures. *Journal of Korean Society of Grassland Science*, 16 (4): 338-342.

Mondal, S.S.; Joyaram, D. and Paradham, B.K. 1990. Effect of fertilizer and farmyard manure on the yield and yield components of rice (*Oryza sativa* L.). *Environmental Ecology*, 8 (1): 223-226.

Nambiar, K.K.M. 1991. Long-term fertility effects on wheat productivity. Wheat for the nontraditional warm areas: A Proceedings of the International Conference, Mexico DF (Mexico), CYMMYT, pp. 516-521.

Nambiar, K.K.M.; Sehgal, J.; Blum, W.E. and Gojbiya, K.S. 1998. Integrated use of organic manures and chemical fertilizers in red soils for sustainable agriculture. Red and lateritic soils. Vol. 1, Managing and Lateric Soils for Sustainable Agriculture, pp.367-376.
Ali, M.Y.; Jahan, M.S. and Hossain, M.A. 2008. Effect of Poultry Manure and Farmyard Manure with and without Chemical Fertilizers on the Growth and Yield of Brri Dhan28. Khulna University Studies, 9(2): 325-332.