Therapeutic Oligonucleotides for Patients with Inflammatory Bowel Diseases

This article was published in the following Dove Press journal: Biologics: Targets and Therapy

Irene Marafini
Giovanni Monteleone
Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy

Introduction: The better understanding of the molecular mechanisms, which drive the pathological process in the gut of patients with Crohn’s disease (CD) and patients with ulcerative colitis (UC), the major forms of inflammatory bowel diseases (IBD) in humans, has facilitated the development of novel therapeutic compounds. Among these, antisense oligonucleotides (ASOs) have been used to inhibit the expression of molecules, which sustain the IBD-associated mucosal inflammation.

Areas Covered: In this short review, we summarize experimental and clinical data on the use of ASOs in IBD.

Expert Opinion: Preclinical work indicates that the modulation of specific inflammatory pathways through the use of ASOs is highly effective and associates with low risk of adverse events. Initial clinical studies have confirmed the benefit of some ASOs even though no compound has yet reached the market. Further experimentation is warranted to establish the optimal route of administration for each ASO, ascertain whether and how long ASOs maintain their activity following administration, and identify which patient can benefit from specific ASO treatment.

Keywords: Crohn’s disease, ulcerative colitis, ICAM-1, Smad7

Key Messages
- Experimental and initial clinical data show that antisense oligonucleotide-based strategies are promising in inflammatory bowel diseases.
- Antisense oligonucleotides-based drugs showed a good safety profile.
- Changes in drug formulation and/or route of administration are fundamental to maximise antisense oligonucleotide efficacy.

Introduction
Inflammatory bowel diseases (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), are chronic disorders of the gastro-intestinal tract. The aetiology of both IBD is unknown and therefore no curative therapy is available. However, a better understanding of the basic mechanisms underlying the pathological process in IBD has facilitated the development of several therapeutic compounds, including biologics and small molecules. Unfortunately, not all the patients respond to the available therapies, and some of them lose response over time or develop drug-related complications, suggesting the necessity of additional drugs.

Antisense oligonucleotides (ASOs) are short, single-stranded nucleotides that selectively inhibit RNA sequences through multiple mechanisms, including
modulation of RNA splicing, disruption of molecules regulating RNA stability, inhibition of RNA translation into protein and catalytic degradation of target RNA by the recruitment of RNase H. Due to the not favourable natural physicochemical properties, the therapeutic use of ASOs is strictly dependent on strategies, which improve the absorption, distribution, metabolism, and elimination of these agents. Without chemical modifications, ASOs are rapidly degraded by nucleases abundantly present in plasma and tissues. The most frequent chemical modification to stabilize nucleotides against degradation is the substitution of sulphur for oxygen to generate phosphorothioate internucleotide linkages. This facilitates the binding of the ASOs to plasma proteins and the consequent up-take by several organs. ASOs are rapidly cleared from the circulation so that only a fraction of them reaches the target tissues. Therefore, intraocular, oral or rectal administrations of ASOs have been adopted to enhance tissue concentration and consequently the therapeutic effect of these compounds. In this short article, we review the available data about the role of antisense oligonucleotides (ASOs)-based therapiest in IBD.

ASOs-Based Therapies in IBD: From Bench to Bedside

Alicaforsen, a phosphorothioate ASO that selectively inhibits intercellular adhesion molecule (ICAM)-1 expression, was the first ASO to be tested in IBD. ICAM-1 is a transmembrane glycoprotein involved in the recruitment of activated leukocytes from the bloodstream to the gut wall. The levels of ICAM are increased in the inflamed tissue of IBD patients and experimental evidence supports the involvement of this molecule in the amplification of detrimental inflammatory responses in the gut. Indeed, ICAM-1 inhibition with a specific ASO was sufficient to dampen inflammation in experimental models of colitis and treatment associated with no signs of toxicity. In the first clinical trial conducted in 1998, intravenous alicaforsen was effective in active, steroid-dependent/resistant CD patients. Unfortunately, these encouraging results were not confirmed in Phase 2 and 3 clinical trials, and the development of alicaforsen was eventually discontinued in CD. In contrast, knockdown of ICAM1 was associated with benefit in patients with UC. In particular, in a Phase II randomized, double-blind, placebo-controlled trial, alicaforsen enema (240 mg/day) was effective in 40 patients with mild to moderate distal UC. In another randomised clinical trial, alicaforsen enema (120 or 240 mg) and mesalamine enema (4 gr) had comparable 6-week response rates, but alicaforsen showed a more durable effect. Similar results were obtained in a subsequent phase 2, double-blind, placebo-controlled study in patients with acute mild to moderate left-sided UC. In this study, patients receiving 240 mg alicaforsen enema had a significantly lower rate of relapse as compared to placebo, although there were no differences in terms of clinical response between the two groups. Moreover, alicaforsen was well tolerated and effective when administered to 12 patients with pouchitis for 6 weeks. In 2016, a retrospective analysis of alicaforsen enema in chronic refractory pouchitis was conducted. Clinical improvement was reported in 11/13 alicaforsen-treated patients, but almost all of them experienced an early clinical relapse. A Phase 3 randomized placebo-controlled clinical trial conducted in patients with pouchitis refractory to treatment with antibiotics has been recently concluded, but results are not yet publicly available. Collectively, the results in UC and pouchitis led the FDA to consider alicaforsen as an orphan drug, which can be prescribed as an unlicensed medicine in accordance with international regulation in patients with pouchitis and patients with left-sided UC.

A specific ASO targeting the p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) was also tested and showed promising results in vitro studies and in murine models of colitis. However, no data about the use of NF-κB ASO in IBD patients has been published so far.

Smad7 is an intracellular inhibitor of TGF-β1, a cytokine whose activity is central in the negative control of immune responses at the mucosal level. To inhibit Smad7, we developed a 21-base single-strand phosphorothioate ASO that hybridizes to the Smad7 mRNA and facilitates RNase H-mediated RNA degradation through a classic antisense mechanism. Studies conducted in IBD lamina propria mononuclear cells showed that knockdown of Smad7 with this ASO restored TGF-β1-dependent suppression of inflammatory cytokine production. Smad7 was also found to be up-regulated in the colon of mice with experimental colitis and oral administration of Smad7 ASO restored TGF-β1 activity and reduced mucosal inflammation. Later on, clinical trials were conducted in CD patients. For these studies, a Smad7 ASO-containing pharmaceutical compound, termed Mongersen, was used. Mongersen is a solid oral dosage
form protected by an external coating that determines gastro-
resistance and allows the compound to be mainly released in
the terminal ileum and right colon. In a Phase 1 study,
Mongersen showed a very good safety profile and a good
clinical response in patients with active, steroid-dependent
/resistant CD. 32 Subsequently, a phase 2, multicentre, pla-
placebo-controlled clinical trial in 166 patients with active,
steroid-dependent/resistant CD, showed that Mongersen
was more effective than placebo in inducing clinical
remission. 33 These data were confirmed by another phase 2
study showing clinical and endoscopic response in patients
treated with Mongersen. 34 However, a phase 3 clinical trial
was then suspended due to an interim analysis documenting
the lack of efficacy of Mongersen. 35

DNAzymes are single-stranded DNA molecules, which
specifically cleave RNA after appropriate binding. 36
A specific DNAzyme targeting GATA3 was tested in pre-
clinical models of colitis. Expression of GATA3, a
transcription factor involved in T cell development, is
increased in UC patients and in murine models of colitis.
Mice given intra-rectally anti-GATA3 DNAzyme exhib-
ited reduced expression of inflammatory molecules and
were less susceptible to oxazolone and trinitrobenzene
sulfonic acid-induced colitis. 37 A phase 2a, double-blind
placebo-controlled clinical trial investigating the efficacy
of GATA3-specific DNAzyme enema formulation (SB012)
in UC patients has been recently completed, but the results
of this study are not yet available. 38

More recently, STNM01, a synthetic, double-stranded
RNA oligonucleotide directed against carbohydrate sulfo-
transferase 15 (CHST15), an enzyme that catalyses sulfation
of chondroitin sulfate and is supposed to contribute to the
production of collagen and development of fibrosis was
tested in CD. CHST15 levels are increased in the inflamed
colon of CD patients 39 and STNM01 was effective in mice
with dextran sulphate sodium (DSS)-colitis. 40 In a phase 1
clinical trial, 18 CD patients with mucosal lesions refractory
to conventional therapies received a sub-mucosal injection
of STNM01 or placebo during colonoscopy. STNM01 was
well tolerated, improved endoscopic scores and reduced the
histological extent of intestinal fibrosis. 41

Conclusions
The recent decades have witnessed the enormous effort of the
researchers to identify molecules involved in the perpetua-
tion and amplification of the detrimental inflammatory
response in IBD and to develop compounds, which can
suppress the function of such molecules. ASOs represent an
interesting novelty in this field, as they inhibit the expression
of specific targets with a good safety profile. Nonetheless, no
ASO developed for IBD patients has yet reached the market.

Expert Opinion
Data from in vitro studies with human tissue samples of IBD
patients and experiments performed in animal models of
colitis have greatly advanced our understanding of the
mechanisms that propagate the IBD-associated mucosal
inflammation. Consequently, many strategies have been
employed to target key molecules involved in the tissue
damaging-immune response in such disorders. 3,42 Among
these, various ASOs-based compounds have shown promis-
ing results in pre-clinical studies and, therefore, were subse-
quently tested in IBD patients. 43 Unfortunately, however,
intravenous administration of Alicaforsen, the first ASO
used in IBD patients, was not effective in patients with active
CD. 18,19 Effective delivery of ASOs to their intracellular sites
of action remains a major issue. Since ASOs are largely taken
up by the liver and lymphoid organs following systemic
administration, 44 it is plausible that the intravenously admi-

ished Alicaforsen did not reach the inflamed gut of CD
patients at concentrations sufficiently high to suppress
ICAM1. This hypothesis is supported by the demonstration
that Alicaforsen, reformulated as an enema to deliver the
ASO directly to the inflamed mucosa, was effective in
patients with distal and left-sided UC and in patients with
chronic unremitting pouchitis. 20–24 Therapeutic failure of
Alicaforsen in CD could also rely on the fact that ICAM-1
is just one of the various molecules that control leukocyte
trafficking, and therefore, even in its absence, other integrins
can promote the recruitment of inflammatory cells in the
gut. 35,46 We cannot also exclude the possibility that
ICAM-1 plays a critical role in the amplification of the
inflammatory cascade in UC but not in CD.

The encouraging results seen in phase 1 and phase 2
studies, in which knockdown of Smad7 with Mongersen
was accompanied by clinical and endoscopic benefits, were
not confirmed by a recent phase 3 study, which was prema-
turely discontinued due to lack of efficacy. 32–35 The reasons
for such a discrepancy remain unknown. A possibility is that
changes in the selection of the patients may have contributed
to the different results between the initial phases 1 and phase
2 studies and the larger phase 3 study. Moreover, the ther-
apuetic failure of phase 3 could somehow rely on physical/
chemical changes of Mongersen, which are known to occur
during the large-scale oligonucleotide synthesis. Nonetheless,
remains relevant to examine whether
knockdown of Smad7 with Mongersen is therapeutic in specific subsets of CD patients (eg prevention of post-operative recurrence) as well as in UC as Smad7 is upregulated in inflamed mucosa of UC patients.47,48

Overall results derived from clinical trials indicate that ASOs are safe and well tolerated by most patients. This suggests that ASOs strategy could be ideal for specific categories of patients (eg elderly) or for the longer maintenance phases.

The ASO therapeutic field has seen remarkable progress over the last years with promising developments in pre-clinical models of colitis and initial stages of clinical trials in IBD patients. Further work is, however, needed to improve the delivery of the ASOs as well as their cellular uptake and intracellular trafficking.

Disclosure

GM has filed a patent related to the treatment of inflammatory bowel diseases with Smad7 antisense oligonucleotides, while the IM has no conflict of interest.

References

1. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361(21):2066–2078. doi:10.1056/NEJMra0804647
2. Neurath MF. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(5):269–278. doi:10.1038/nrgastro.2016.208
3. Bernstein CN, Blanchard JF, Kliewer E, Wajda A. Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer. 2001;91(4):854–862. doi:10.1002/1097-0142(20010215)91:4<854::AID-CNCR1073-3.0.CO;2-Z
4. Neurath M. Current and emerging therapeutic targets for IBD. Nat Rev Gastroenterol Hepatol. 2017;14(11):688. doi:10.1038/nrgastro.2017.138
5. Peyrin-Biroulet L, Lofthus EV Jr, Colombel JF, Sandborn WJ. Long-term complications, extraintestinal manifestations, and mortality in adult Crohn’s disease in population-based cohorts. Inflamm Bowel Dis. 2011;17(1):471–478. doi:10.1002/ibd.21417
6. Lima WF, De Hoyos CL, Liang XH, Crooke ST. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery. Nucleic Acids Res. 2016;44(7):3351–3363. doi:10.1093/nar/gkw065
7. Yacyshyn BR, Shanahan WR Jr. Making sense of antisense. Can J Gastroenterol. 1999;13(9):745–751. doi:10.1155/1999/154140
8. Eckstein F. Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev. 2000;10(2):117–121. doi:10.1089/1.2000.117
9. Eder PS, DeVine RJ, Dagle JM, Walder JA. Substrate specificity and kinetics of degradation of antisense oligonucleotides by a 3¢ exonuclease in plasma. Antisense Res Dev. 1991;1(2):141–151. doi:10.1089/ord.1991.1.141
10. Di Fusco D, Dinallo V, Marafini I, Figliuzzi MM, Romano B, Monteleone G. Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Front Pharmacol. 2019;10:305. doi:10.3389/fphar.2019.00305
11. Chen C, Yang Z, Tang X. Chemical modifications of nucleic acid drugs and their delivery systems for gene-based therapy. Med Res Rev. 2018;38(3):829–869. doi:10.1002/med.21479
12. Saleh AF, Arzumanov AA, Gaït MJ. Overview of alternative oligonucleotide chemistries for exon skipping. Methods Mol Biol. 2012;867:365–378.
13. Shen X, Corey DR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600. doi:10.1093/nkx/1239
14. Vainer B, Nielsen OH. Changed colonic profile of P-selectin, platelet-endothelial cell adhesion molecule-1 (PECAM-1), intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and ICAM-3 in inflammatory bowel disease. Clin Exp Immunol. 2000;121(2):242–247. doi:10.1046/j.1365-2249.2000.01296.x
15. Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE. Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol. 1991;147(9):2913–2921.
16. Bennett CF, Kombrust D, Henry S, et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmaco Exp Ther. 1997;280(2):988–1000.
17. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L, et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology. 1998;114(6):1133–1142. doi:10.1016/S0016-5085(98)70418-4
18. Schreiber S, Nikolaus S, Malchow H, et al. Absence of efficacy of subcutaneous antisense ICAM-1 treatment of chronic active Crohn’s disease. Gastroenterology. 2001;120(6):1339–1346. doi:10.1053/gast.2001.24015
19. Yacyshyn BR, Chey WY, Goff J, et al. Double blind, placebo-controlled trial of the remission inducing and steroid sparing properties of an ICAM-1 antisense oligodeoxynucleotide, alicaforsen (ISIS 2302), in active steroid dependent Crohn’s disease. Gut. 2002;51(1):30–36. doi:10.1136/gut.51.1.30
20. van Deventer SJ, Wedel MK, Baker BF, Xia S, Chuang E, Miner PB Jr. A phase II dose ranging, double-blind, placebo-controlled study of alicaforsen enema in subjects with acute exacerbation of mild to moderate left-sided ulcerative colitis. Aliment Pharmacol Ther. 2006;23(10):1415–1425. doi:10.1111/j.1365-2036.2006.02910.x
21. Miner PB Jr, Geary RS, Matson J, et al. Bioavailability and therapeutic activity of alicaforsen (ISIS 2302) administered as a rectal retention enema to subjects with active ulcerative colitis. Aliment Pharmacol Ther. 2006;23(10):1427–1434. doi:10.1111/j.1365-2036.2006.02909.x
22. Miner P, Wedel M, Bane B, Bradley J. An enema formulation of alicaforsen, an antisense inhibitor of intercellular adhesion molecule-1, in the treatment of chronic, unremittent pouchitis. Aliment Pharmacol Ther. 2004;19(3):281–286. doi:10.1046/j.1365-2056.2004.01863.x
23. van Deventer SJ, Tami JA, Wedel MK. A randomised, controlled, double blind, escalating dose study of alicaforsen enema in active ulcerative colitis. Gut. 2004;53(11):1646–1651. doi:10.1136/gut.2003.036160
24. Miner PB Jr., Wedel MK, Xia S, Baker BF. Safety and efficacy of two dose formulations of alicaforsen enema compared with mesalazine enema for treatment of mild to moderate left-sided ulcerative colitis: a randomized, double-blind, active-controlled trial. Aliment Pharmacol Ther. 2006;23(10):1403–1413. doi:10.1111/j.1365-2036.2006.02837.x
25. Greuter T, Biedermann L, Rogler G, Sauter B, Seibold F. Alicaforsen, an antisense inhibitor of ICAM-1, as treatment for chronic refractory pouchitis after proctocolectomy: a case series. United European Gastroenterol J. 2016;4(1):97–104. doi:10.1177/2050604615593681
26. Neurath MF, Pettersson S, Meyer Zum Buschenfelde KH, Stober W. Local administration of antisense phosphorothioate oligonucleotides to the 65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2(9):998–1004. doi:10.1038/nm996-998
27. Murano M, Maemura K, Hirata I, et al. Therapeutic effect of intracolonically administered mouse nuclear factor kappa B (p65) antisense oligonucleotide on mouse dextran sulphate sodium (DSS)-induced colitis. Clin Exp Immunol. 2000;120(1):51–58. doi:10.1046/j.1365-2249.2000.01183.x
28. Lawrance IC, Wu F, Leite AZ, et al. A murine model of chronic inflammation-induced intestinal fibrosis down-regulated by antisense NF-kappa B. Gastroenterology. 2003;125(6):1750–1761. doi:10.1053/j.gastro.2003.08.027
29. Troncone E, Marafini I, Stolfi C, Monteleone G. Transforming growth factor-beta1/Smad7 in intestinal immunity, inflammation, and cancer. Front Immunol. 2018;9:1407. doi:10.3389/fimmu.2018.01407
30. Monteleone G, Mann J, Monteleone I, et al. A failure of transforming growth factor-beta1 negative regulation maintains sustained NF-kappaB activation in gut inflammation. J Biol Chem. 2004;279(6):3925–3932. doi:10.1074/jbc.M303654200
31. Boirivant M, Pallone F, Di Giacinto C, et al. Inhibition of Smad7 with a specific antisense oligonucleotide facilitates TGF-beta1-mediated suppression of colitis. Gastroenterology. 2006;131(6):1786–1798. doi:10.1053/j.gastro.2006.09.016
32. Monteleone G, Fantini MC, Onali S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–876. doi:10.1038/mt.2011.290
33. Monteleone G, Neurath MF, Ardizzone S, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–1113. doi:10.1056/NEJMoa1407250
34. Feagan BG, Sands BE, Rossiter G, et al. Effects of Mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn’s disease. Gastroenterology. 2018;154(1):61–64. doi:10.1010/53j.gastro.2017.08.035
35. Sands BE, Feagan BG, Sandborn WJ, et al. Mongersen (GED-0301) for active Crohn’s disease: results of a phase 3 study. Am J Gastroenterol. 2019.
36. Liu H, Yu X, Chen Y, et al. Crystal structure of a RNA-cleaving DNAzyme. Nat Commun. 2017;8(1):2006. doi:10.1038/s41467-017-02203-x
37. Popp V, Gerlach K, Mott S, et al. Rectal delivery of a DNAzyme that specifically blocks the transcription factor GATA3 and reduces colitis in mice. Gastroenterology. 2017;152(1):176–92 e5. doi:10.1053/j.gastro.2016.09.005
38. Scarozza P, Schmitt H, Monteleone G, Neurath MF, Atreya R. Oligonucleotides-A novel promising therapeutic option for IBD. Front Pharmacol. 2019;10:314. doi:10.3389/fphar.2019.00314
39. Belmiro CL, Souza HS, Elia CC, et al. Biochemical and immunohistochemical analysis of glycosaminoglycans in inflamed and non-inflamed intestinal mucosa of patients with Crohn’s disease. Int J Colorectal Dis. 2005;20(4):295–304. doi:10.1007/s00384-004-0677-2
40. Suzuki K, Arumugam S, Yokoyama J, et al. Pivotal role of carbohydrate sulfotransferase 15 in fibrosis and mucosal healing in mouse colitis. PLoS One. 2011;6(7):e2158967. doi:10.3389/fphar.2019.00314
41. Suzuki K, Yokoyama J, Kawauchi Y, et al. Phase I clinical study of siRNA targeting carbohydrate sulfotransferase 15 in Crohn’s disease patients with active mucosal lesions. J Crohns Colitis. 2017;11(2):221–228. doi:10.1093/eco-jcc/jjw143
42. Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2019.
43. Bevivino G, Sedda S, Marafini I, Monteleone G. Oligonucleotide-based therapies for inflammatory bowel disease. BioDrugs. 2018;32(4):331–338. doi:10.1007/s00280-018-0286-1
44. Geary RS, Norris D, Yu R, Bennett CF. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev. 2015;87:46–51.
45. Zundler S, Neurath MF. Novel insights into the mechanisms of gut homing and antiadhesion therapies in inflammatory bowel diseases. Inflamm Bowel Dis. 2017;23(4):617–627. doi:10.1097/MIB.00000000000001067
46. Zundler S, Becker E, Schulze IJ, Neurath MF. Immune cell trafficking and retention in inflammatory bowel disease: mechanistic insights and therapeutic advances. Gut. 2019;68(9):1688–1700. doi:10.1136/gutjnl-2018-317977
47. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest. 2001;108(4):601–609. doi:10.1172/JCI12821
48. Monteleone G, Del Vecchio Blanco G, Monteleone I, et al. Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology. 2005;129(5):1420–1429. doi:10.1053/j.gastro.2005.09.005