Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study

COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators*

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Purpose: To describe acute respiratory distress syndrome (ARDS) severity, ventilation management, and the outcomes of ICU patients with laboratory-confirmed COVID-19 and to determine risk factors of 90-day mortality post-ICU admission.

Methods: COVID-ICU is a multi-center, prospective cohort study conducted in 138 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, adjunctive interventions, ICU length-of-stay, and survival data were collected.

Results: From February 25 to May 4, 2020, 4643 patients (median [IQR] age 63 [54–71] years and SAPS II 37 [28–50]) were admitted in ICU, with day-90 post-ICU admission status available for 4244. On ICU admission, standard oxygen therapy, high-flow oxygen, and non-invasive ventilation were applied to 29%, 19%, and 6% patients, respectively. 2635 (63%) patients were intubated during the first 24 h whereas overall 3376 (80%) received invasive mechanical ventilation (MV) at one point during their ICU stay. Median (IQR) positive end-expiratory and plateau pressures were 12 (10–14) cmH2O, and 24 (21–27) cmH2O, respectively. The mechanical power transmitted by the MV to the lung was 26.5 (18.6–34.9) J/min. Paralyzing agents and prone position were applied to 88% and 70% of patients intubated at Day-1, respectively. Pulmonary embolism and ventilator-associated pneumonia were diagnosed in 207 (9%) and 1209 (58%) of these patients. On day 90, 1298/4244 (31%) patients had died. Among patients who received invasive or non-invasive ventilation on the day of ICU admission, day-90 mortality increased with the severity of ARDS at ICU admission (30%, 34%, and 50% for mild, moderate, and severe ARDS, respectively) and decreased from 42 to 25% over the study period. Early independent predictors of 90-day mortality were older age, immunosuppression, severe obesity, diabetes, higher renal and cardiovascular SOFA score components, lower PaO2/FiO2 ratio and a shorter time between first symptoms and ICU admission.

Conclusion: Among more than 4000 critically ill patients with COVID-19 admitted to our ICUs, 90-day mortality was 31% and decreased from 42 to 25% over the study period. Mortality was higher in older, diabetic, obese and severe ARDS patients.

Keywords: Acute respiratory distress syndrome, Mechanical ventilation, COVID-19, Outcome, Mortality risk factor

*Correspondence: matthieu.schmidt@aphp.fr

Management and Writing Committee and COVID-ICU Investigators are listed in 'Acknowledgement' section.
Introduction

From March to May 2020, Europe was massively affected by the coronavirus disease 2019 (COVID-19) outbreak. In that context, the REVA network [1] designed a specific registry (COVID-ICU), to prospectively collect characteristics, management, and outcomes of patients admitted to intensive care units (ICUs) for severe COVID-19 in France, Belgium, and Switzerland. In France, as of October 1st, 2020, 395,104 patients had been tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 32,365 deaths have been associated with the disease. On April 8, 2020, the number of COVID-19 patients hospitalized in French ICUs peaked at 7148.

A few case-series [2–5] have described baseline characteristics and short-term mortality (up to 28-days after ICU admission) ranging from 26 to more than 50% in critically ill patients with COVID-19. However, recovery from severe COVID-19 often takes several weeks and a substantial number of these patients were still in the ICU or the hospital at the time their outcome was evaluated [4, 5]. Notably, 28-day mortality was 41% in the control care group of the RECOVERY trial, which showed that dexamethasone improved the survival of patients receiving invasive mechanical ventilation or oxygen at randomization [6].

The present study reports data of 4244 patients with laboratory-confirmed SARS-CoV-2 infection admitted to the ICU and for whom day-90 status was available. We also evaluated risk factors associated with 90-day mortality in these critically ill patients.

Methods

Study Design, Patients

COVID-ICU is a multi-center, prospective cohort study conducted in 149 ICUs from 138 centers, across three countries (France, Switzerland, and Belgium). Centers were invited to participate by public announcements and by the Reseau European de recherche en Ventilation Artificielle (REVA) network (70 centers were active members of this network). We included in the present report data from participating ICUs that had enrolled at least one patient with complete data on age and 90-day vital status. COVID-ICU received approval from the ethical committee of the French Intensive Care Society (CERLF 20–23) in accordance with our local regulations. All patients or close relatives were informed that their data were included in the COVID-ICU cohort.

All consecutive patients over 16 years of age admitted to the participating ICU between February 25, 2020, and May 4, 2020, with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were included. Laboratory confirmation for SARS-CoV-2 was defined as a positive result of real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay from either nasal or pharyngeal swabs, or lower respiratory tract aspirates [7]. Patients without laboratory-confirmed COVID-19 were not included, even if they presented with a typical radiological pattern.

Inclusions were stopped on May 4, 2020, after enrollment of 4643 patients admitted to the ICU. Survival status up to 90 days after ICU admission was obtained for 4244 of them.

Data collection

Day 1 was defined as the first day when the patient was in ICU at 10 am. Each day, the study investigators completed a standardized electronic case report form. Baseline information collected at ICU admission were: age, sex, body mass index (BMI), active smoking, Simplified Acute Physiology Score (SAPS) II score [8], Sequential Organ Failure Assessment (SOFA) [9], comorbidities, immunodeficiency (if present), clinical frailty scale [10], date of the first symptom, dates of the hospital and ICU admissions. The case report form prompted investigators to provide a daily-expanded data set including respiratory support devices (oxygen mask, high flow nasal cannula, or non-invasive ventilation), mechanical ventilation settings (positive end-expiratory pressure (PEEP), the fraction of inspired oxygen (FiO₂), respiratory rate, tidal volume, plateau pressure, arterial blood gas, standard laboratory parameters, and adjuvant therapies for acute respiratory distress syndrome (ARDS) such as the use of continuous neuromuscular blockers, nitric oxide, prone position, corticosteroids, or extracorporeal membrane oxygenation until day-90. Driving pressure was defined as plateau pressure minus PEEP and mechanical power (J/min) was calculated as follows: Mechanical power (J/min) = 0.098 × tidal volume × respiratory rate × (peak pressure − 1/2 × driving pressure) [11]. If not specified, peak pressure was considered equal to plateau pressure. Ventilatory ratio was defined...
as \((\text{minute ventilation} \times \text{PaCO}_2) - (\text{predicted body-weight} \times 100 \times 37.5)\) [12].

ARDS severity, complications, and outcomes

ARDS was graded based on the Berlin definition for patients undergoing mechanical ventilation (invasive or non-invasive) on ICU day 1 [13]. Patients on nasal, mask or high-flow oxygen therapy were not included in this group. However, their day-1 \(\text{PaO}_2/\text{FiO}_2\) was calculated by converting \(\text{O}_2\) flow to estimated \(\text{FiO}_2\) (see conversion tables in the supplement) [14]. ICU-complications and organ dysfunction included acute kidney failure requiring renal replacement therapy, thromboembolic complications (distal venous thrombosis or proven pulmonary embolism by either pulmonary CT angiography or cardiac echography), ventilator-associated pneumonia, and cardiac arrest. Clinical suspicion of ventilator-associated pneumonia was confirmed before antibiotics either by quantitative distal bronchoalveolar lavage cultures growing \(\geq 10^4\) cfu/mL, blind protected specimen brush distal growing \(\geq 10^3\) cfu/mL, or endotracheal aspirates growing \(\geq 10^6\) cfu/mL.

Patient outcomes included the date of liberation from mechanical ventilation, dates of ICU and hospital discharge, vital status at ICU and hospital discharge, and 28, 60, and 90 days after ICU admission.

Statistical analyses

Characteristics of patients were described as frequencies and percentages for categorical variables and as means and standard deviations or medians and interquartile ranges for continuous variables. Categorical variables were compared by Chi-square or Fisher’s exact test, and continuous variables were compared by Student’s \(t\) test or Wilcoxon’s rank-sum test. Kaplan–Meier overall survival curves until Day 90 were computed, and were compared using log-rank tests. The median length of stay in ICU and in hospital were also estimated using a Kaplan–Meier estimator to take into account patients that may be still in ICU at the time of the analysis.

Baseline risk factors of death at Day 90 were assessed within the whole cohort using univariate and multivariate cox regression. Baseline variables (i.e., obtained during the first 24 h in the ICU) included in the multivariate model were defined a priori, and no variable selection was performed (see the description of the statistical analysis plan in the Supplement). ICU admission dates were split into four calendar periods (i.e., before March, 15; from March 16 to 31; from April 1 to 15; and after April 16). Proportional hazard assumption was assessed by inspecting the scaled Shoenfeld residuals and Harrel’s test [15] (Table S4). Multiple imputations were used to replace missing values when appropriate (Figure S1–S2).

Ten copies of the dataset were created with the missing values replaced by imputed values, based on observed data including outcomes and baseline characteristics of participants. Each dataset was then analyzed and the results from each dataset were pooled into a final result using Rubin’s rule [16]. Lastly, a sensitivity analysis using a Cox model stratified on the center variable was also performed. Hazard ratios and their 95% confidence interval were estimated. A \(p\) value < 0.05 was considered statistically significant. Statistical analyzes were conducted with R v3.5.1.

Results

Participating ICUs and Patients Enrolled

Patients were included in 149 ICUs (71 [48%] university, 66 [44%] public regional, and 12 [8%] private, semi-private, or military hospitals, respectively) from 138 centers in three countries. The median (interquartile) number of ICU beds in these centers and these ICUs were 26 (18-55) and 20 (14-28), respectively. Fifty-six percent of the patients were recruited in Paris and the surrounding area (see Table S1-S3 in the Supplement for an extensive description of ICUs and center characteristics). Ninety-four percent of the centers reported having extended the number of ICU beds during the COVID-19 outbreak.

Of the 4643 patients enrolled on May 4, 2020, 399 were lost to follow-up at Day-90. Thereafter we describe the characteristics of the remaining 4244 patients with available day-90 vital status (Fig. 1).

There were 1085/4244 (26%) female patients (Table 1). At ICU admission, their median (interquartile) age, SAPS II, and SOFA scores were 63 (54–71) years, 37 (28–50), and 5 (3–8), respectively. The rate of obese (\(\text{BMI} \geq 30\) kg/m\(^2\)) patients was 1607/3935 (41%). The most frequent comorbidities were hypertension 2018/4197 (48%), known diabetes 1167/4196 (28%), and immunocompromised status 314/4192 (7%). Median (IQR) time between first symptoms and ICU admission was 9 (6–12) days. Of note, only 176/4124 (4%) patients were active smokers and only 208/4116 (5%) had concomitant bacterial pneumonia at ICU admission.

Ventilatory support, adjunctive therapies, and ARDS severity

On day-1, standard oxygen therapy, high flow oxygen, and non-invasive ventilation were applied to 1219/4157 (29%), 786/4096 (19%), and 230/4109 (6%) patients, respectively. The use of these modalities tended to increase over time (Table S5 and Figure S3). 2635/4175 (63%) were placed on invasive mechanical ventilation during the first 24 h, whereas in total 3376/4209 (80%) were intubated during their ICU stay. On the first day
in ICU, median tidal volume, PEEP, plateau, driving pressures, and mechanical power were 6.1 (5.8–6.7) mL/kg, 12 (10–14) cmH₂O, 24 (21–27) cmH₂O, 13 (10–17) cmH₂O, and 26.5 (18.6–34.9) J/min, respectively (Table 1). 1841/2560 (72%) patients required a FiO₂ ≥ 50%, while 1371 (54%) received a PEEP ≥ 12 cmH₂O.

Mild, moderate, and severe ARDS was reported in 539/2233 (24%), 1154/2233 (52%), and 540/2233 (24%) patients on mechanical ventilation (invasive or non-invasive) on ICU day 1, respectively (Table 2). Continuous neuromuscular blockade and prone positioning were used in 1966/2224 (88%), and 1556/2223 (70%) in these patients. Moderate and severe ARDS patients were more likely to receive these adjunct therapies, with a median number of 3 (IQR 2–6) prone positioning sessions per patient. Of note, 888/2224 (41%) of them received corticosteroids for a median of 5 (IQR 2–8) days. Lastly, 321/4187 (8%) patients were placed on extracorporeal membrane oxygenation (ECMO). Table S6 provides the use of adjunct therapies in the whole cohort of 4224 patients.

ICU complications and organ support in patients intubated on ICU-day 1
Ventilator-associated pneumonia was diagnosed in 1209/2101 (58%) patients who were intubated on ICU day 1, whereas 623/2227 (28%) patients had an acute kidney failure requiring renal replacement therapy.
Table 1 Demographic, clinical, and ventilatory support characteristics of 4244 patients according to their 90-day survival status

	No. (n = 4244)	All patients	90-day status	P value	
		Alive (n = 2946)	Death (n = 1298)		
Age, years,	4244	63 (54–71)	61 (52–69)	68 (59–74)	< 0.001
Women, no (%)	4226	1085 (26)	771 (26)	314 (24)	0.170
Body mass index, kg/m²	3935	28 (25–32)	29 (26–32)	28 (25–32)	0.006
≥ 30 kg/m²		1607 (41)	1167 (42)	440 (37)	0.004
Active smokers	4124	176 (4)	116 (4)	60 (5)	0.234
SAPS II score	3935	37 (28–50)	34 (27–46)	44 (33–58)	< 0.001
SOFA score at ICU admission	3676	5 (3–8)	4 (3–8)	7 (4–10)	< 0.001
Treated hypertension	4197	2018 (48)	1310 (45)	708 (55)	< 0.001
Known diabetes	4196	1167 (28)	704 (24)	463 (36)	< 0.001
Immune deficiencya	4192	314 (7)	178 (6)	136 (11)	< 0.001
Long-term corticosteroidsb	4178	178 (4)	94 (3)	84 (7)	< 0.001
Clinical frailty scale	3152	2 (2–3)	2 (2–3)	3 (2–4)	< 0.001
Time between					
First symptoms to ICU admission, days	4007	9 (6–12)	9 (7–12)	8 (5–11)	< 0.001
ICU admission to invasive MV, hours	2010c	8 (1–27)	9 (1–27)	7 (1–29)	0.482
During the first 24 h in ICU					
Standard oxygen therapy	4157	1219 (29)	927 (32)	292 (23)	< 0.001
High-flow oxygen	4096	786 (19)	584 (21)	202 (16)	< 0.001
Noninvasive ventilation	4109	230 (6)	134 (5)	96 (8)	< 0.001
Invasive mechanical ventilation	4175	2635 (63)	1678 (58)	957 (75)	< 0.001
PaO₂/FiO₂	2500	154 (106–223)	163 (116–229)	136 (91–206)	< 0.001
VT, mL/kg PBW	2306	6.1 (5.8–6.7)	6.1 (5.8–6.6)	6.1 (5.7–6.7)	0.652
Set PEEP, cm H₂O	2542	12 (10–14)	12 (10–14)	12 (10–14)	0.429
Plateau pressure, cmH₂O	1847	24 (21–27)	24 (21–26)	25 (21–28)	< 0.001
Driving pressure, cmH₂O²	2256	13 (10–17)	12 (10–16)	14 (11–18)	< 0.001
Static compliance, mL/cmH₂O⁶	1746	33 (26–42)	34 (27–43)	32 (24–41)	< 0.001
< 30		635 (36)	367 (33)	268 (43)	< 0.001
30–39		562 (32)	380 (34)	182 (29)	
≥ 40		549 (31)	376 (33)	173 (28)	
Dynamic compliance, mL/cmH₂O⁷	409	17 (14–25)	18 (14–26)	17 (13–22)	0.100
Mechanical power, J/min³	1987	26.5 (18.6 –34.9)	26.1 (18.4–34.2)	27.1 (18.9–36.1)	0.120
Ventilatory ratio⁹	2251	1.7 (1.4–2.2)	1.7 (1.4–2.1)	1.8 (1.4–2.3)	0.017
Concomitant bacterial pneumonia	4116	208 (5)	138 (5)	70 (6)	0.298
Hemodynamic component of the SOFA,	4065	0 (0–4)	0 (0–3)	3 (0–4)	< 0.001
Renal component of the SOFA,	4014	0 (0–1)	0 (0–0)	0 (0–1)	< 0.001
Corticosteroids³	4134	459 (11)	278 (10)	181 (14)	< 0.001
Blood gases					
pH	4003	7.41 (7.34–7.46)	7.43 (7.36–7.47)	7.38 (7.30–7.44)	< 0.001
PaCO₂, mmHg	4004	40 (35–46)	39 (35–45)	41 (35–49)	< 0.001
PaO₂/FiO₂	3080	154 (103–222)	162 (112–227)	134 (90–205)	< 0.001
HCO₃, mmol/L	3942	25 (22–27)	25 (23–27)	24 (21–27)	< 0.001
Lactate, mmol/L	3795	1.2 (0.9–1.6)	1.2 (0.9–1.5)	1.3 (1.0–1.8)	< 0.001
Biology					
Lymphocyte count, x 10⁹/L	3481	0.8 (0.6–1.2)	0.8 (0.6–1.2)	0.8 (0.5–1.1)	< 0.001
Platelet count, x 10⁹/L	3867	224 (167–291)	230 (176–299)	205 (151–271)	< 0.001
Total bilirubin, µmol/L	3029	10 (7–14)	10 (7–14)	10 (7–16)	0.210
Serum creatinine, µmol/L	3915	78 (61–112)	73 (59–98)	94 (69–152)	< 0.001
90-day mortality was 36% in patients intubated from 42 to 25% (p < 0.001). Noticeably, 90-day mortality declined over time with high flow oxygen, or non-invasive ventilation at day-1 in patients who received standard oxygen therapy, was 292/1219 (24%), 202/786 (26%), and 96/230 (42%) respectively. Of note, these durations increased with the severity of the ARDS (Table 3).

Non-survivors were older, and more frequently diabetic or immunocompromised than survivors. At ICU admission, they had a higher renal and hemodynamic SOFA component scores and lower PaO2/FiO2 ratio. Interestingly, they also had a shorter time since the onset of the first symptoms. Day-1 patients’ characteristics significantly associated with higher 90-day mortality identified by the Cox regression model were older age, known diabetes, class 2 and extreme obesity, immunodeficiency, higher renal and cardiovascular components of the SOFA score, lower PaO2/FiO2, lower pH, and a shorter time between first symptoms and ICU admission (Table 4). The same analysis re-run after multiple imputations of missing data (Table S8), and a sensitivity analysis introducing the center variable as a stratification variable in the multivariable model yielded similar results (Table S9). Kaplan–Meier survival estimates according to age, ICU admission period, the renal component of the SOFA score, and lymphopenia. Thus, for these variables, two types of hazard ratio are reported, indicating the early effect (before 14 days of follow-up) or the late effect (after 15 days of follow-up) of the corresponding baseline characteristic on the risk of death, respectively.

Non-survivors were older, and more frequently diabetic or immunocompromised than survivors. At ICU admission, they had a higher renal and hemodynamic SOFA component scores and lower PaO2/FiO2 ratio. Interestingly, they also had a shorter time since the onset of the first symptoms. Day-1 patients’ characteristics significantly associated with higher 90-day mortality identified by the Cox regression model were older age, known diabetes, class 2 and extreme obesity, immunodeficiency, higher renal and cardiovascular components of the SOFA score, lower PaO2/FiO2, lower pH, and a shorter time between first symptoms and ICU admission (Table 4). The same analysis re-run after multiple imputations of missing data (Table S8), and a sensitivity analysis introducing the center variable as a stratification variable in the multivariable model yielded similar results (Table S9). Kaplan–Meier survival estimates according to age, ICU admission period, the renal component of the SOFA score, and lymphopenia. Thus, for these variables, two types of hazard ratio are reported, indicating the early effect (before 14 days of follow-up) or the late effect (after 15 days of follow-up) of the corresponding baseline characteristic on the risk of death, respectively.

Non-survivors were older, and more frequently diabetic or immunocompromised than survivors. At ICU admission, they had a higher renal and hemodynamic SOFA component scores and lower PaO2/FiO2 ratio. Interestingly, they also had a shorter time since the onset of the first symptoms. Day-1 patients’ characteristics significantly associated with higher 90-day mortality identified by the Cox regression model were older age, known diabetes, class 2 and extreme obesity, immunodeficiency, higher renal and cardiovascular components of the SOFA score, lower PaO2/FiO2, lower pH, and a shorter time between first symptoms and ICU admission (Table 4). The same analysis re-run after multiple imputations of missing data (Table S8), and a sensitivity analysis introducing the center variable as a stratification variable in the multivariable model yielded similar results (Table S9). Kaplan–Meier survival estimates according to age, ICU admission period, the renal component of the SOFA score, and lymphopenia. Thus, for these variables, two types of hazard ratio are reported, indicating the early effect (before 14 days of follow-up) or the late effect (after 15 days of follow-up) of the corresponding baseline characteristic on the risk of death, respectively.

Non-survivors were older, and more frequently diabetic or immunocompromised than survivors. At ICU admission, they had a higher renal and hemodynamic SOFA component scores and lower PaO2/FiO2 ratio. Interestingly, they also had a shorter time since the onset of the first symptoms. Day-1 patients’ characteristics significantly associated with higher 90-day mortality identified by the Cox regression model were older age, known diabetes, class 2 and extreme obesity, immunodeficiency, higher renal and cardiovascular components of the SOFA score, lower PaO2/FiO2, lower pH, and a shorter time between first symptoms and ICU admission (Table 4). The same analysis re-run after multiple imputations of missing data (Table S8), and a sensitivity analysis introducing the center variable as a stratification variable in the multivariable model yielded similar results (Table S9). Kaplan–Meier survival estimates according to age, ICU admission period, the renal component of the SOFA score, and lymphopenia. Thus, for these variables, two types of hazard ratio are reported, indicating the early effect (before 14 days of follow-up) or the late effect (after 15 days of follow-up) of the corresponding baseline characteristic on the risk of death, respectively.

Non-survivors were older, and more frequently diabetic or immunocompromised than survivors. At ICU admission, they had a higher renal and hemodynamic SOFA component scores and lower PaO2/FiO2 ratio. Interestingly, they also had a shorter time since the onset of the first symptoms. Day-1 patients’ characteristics significantly associated with higher 90-day mortality identified by the Cox regression model were older age, known diabetes, class 2 and extreme obesity, immunodeficiency, higher renal and cardiovascular components of the SOFA score, lower PaO2/FiO2, lower pH, and a shorter time between first symptoms and ICU admission (Table 4). The same analysis re-run after multiple imputations of missing data (Table S8), and a sensitivity analysis introducing the center variable as a stratification variable in the multivariable model yielded similar results (Table S9). Kaplan–Meier survival estimates according to age, ICU admission period, the renal component of the SOFA score, and lymphopenia. Thus, for these variables, two types of hazard ratio are reported, indicating the early effect (before 14 days of follow-up) or the late effect (after 15 days of follow-up) of the corresponding baseline characteristic on the risk of death, respectively.
Discussion

We report herein one of the largest prospective case-series of COVID-19 patients who required intensive care admission, with detailed information on their baseline characteristics, ARDS severity, and 90-day outcomes. Overall 90-day mortality was 31% and was higher in older and obese patients, diabetics, immunocompromised patients, and those who had multiple organ dysfunction at ICU admission. 90-day mortality rates were 30%, 34%, and 50%, in patients with mild, moderate, and severe ARDS who were on mechanical ventilation (invasive or non-invasive) on ICU day-1, respectively. Noticeably, mortality rates decreased over time during the study period, while ICU and hospital length of stay were substantially longer than in other cohorts of ARDS patients [17].

Acute respiratory failure was the main indication for ICU admission, with 80% of our COVID-19 patients requiring invasive mechanical ventilation which is consistent with the experience in Lombardy, Italy [2], where 88% of ICU patients were intubated. However, lower rates of intubation in ICU patients were reported in Wuhan, China by Wang et al. (47%), and Yang et al. (42%) [18, 19], and in Washington state, USA (71%) [20]. While early single-center reports in small groups of COVID patients reported well-preserved lung mechanics despite the severity of hypoxemia [21], more recent data [22] and our observations suggested that lung compliance and driving pressure were close to those of reported in classical ARDS. Mechanical power which is the energy delivered to the respiratory system over time during mechanical ventilation was very high in our patients with ARDS, reaching 26.5 (18.6–34.9) J/min, while a higher mortality risk has been suggested for patients with ARDS whose value exceeded 17 J/min [23]. In that context, the application of evidence-based

Table 2 Use of adjunct measures, organ dysfunction and major complications according to acute respiratory distress syndrome severity for patients on mechanical ventilation (invasive or non-invasive) on ICU day 1

Parameter	No.	All*(n = 2233)	Mild ARDS²(n = 539)	Moderate ARDS²(n = 1154)	Severe ARDS²(n = 540)	P value
Ventilatory features on Day-1						
Plateau pressure, cmH₂O	1617	24 (21–27)	24 (21–26)	24 (21–27)	25 (22–28)	<0.001
Driving pressure, cmH₂O	1965	13 (10–17)	12 (10–15)	13 (10–18)	14 (11–18)	<0.001
Static compliance, ml/cmH₂O	1531	33 (26–42)	36 (29–44)	33 (26–42)	30 (24–37)	<0.001
Mechanical power, J/min⁹	1735	26.6 (18.7–34.9)	24.9 (18.3–33.3)	26.4 (18.5–34.4)	29.1 (20.3–37.6)	0.001
Tracheotomy	2229	198 (9)	53 (10)	107 (9)	38 (7)	0.207
Prone position	2223	1556 (70)	308 (57)	822 (71)	426 (79)	<0.001
Number of session	1553	3 (2–6)	3 (2–6)	3 (2–6)	3 (2–6)	0.585
Continuous neuromuscular blockers	2224	1966 (88)	441 (82)	1025 (89)	500 (93)	<0.001
Nitric oxide	2224	425 (19)	74 (14)	206 (18)	145 (27)	<0.001
Corticosteroids⁸	2224	888 (41)	192 (37)	458 (41)	238 (46)	0.012
ECMO	2153	225 (11)	41 (8)	111 (10)	83 (15)	<0.001
Cardiac arrest	2227	133 (6)	31 (6)	58 (5)	44 (8)	0.038
Thromboembolic complications	2226	373 (17)	107 (20)	174 (15)	92 (17)	0.043
Pulmonary embolism	207 (9)	59 (11)	95 (8)	53 (10)	0.872	
Proven distal venous thrombosis	184 (8)	54 (10)	89 (8)	41 (8)	0.567	
Renal replacement therapy	2227	623 (28)	135 (25)	320 (28)	168 (31)	0.080
Bacterial coinfection	1951	144 (7)	24 (5)	84 (8)	36 (8)	0.062
Ventilator-associated pneumonia	2101	1209 (58)	276 (54)	628 (58)	307 (61)	0.084

Definition of abbreviations: ECMO extracorporeal membrane oxygenation. Results are expressed as n (%) or median (25th–75th percentiles)

* Only patients on invasive mechanical ventilation or non-invasive ventilation within the first 24 h in ICU

² Defined as 200 mmHg < PaO₂/FIO₂ ≤ 300 mmHg with PEEP ≥ 5 cm H₂O or continuous positive airway pressure ≥ 5 cm H₂O

³ Defined as 100 mmHg < PaO₂/FIO₂ ≤ 200 mmHg with PEEP ≥ 5 cm H₂O

⁴ Defined as PaO₂/FIO₂ ≥ 100 mmHg with PEEP ≥ 5 cm H₂O

⁵ Defined as plateau pressure—PEEP; If plateau pressure was missing, peak pressure was considered instead

⁶ Defined as tidal volume/(plateau pressure − PEEP)

⁷ Mechanical power (J/min) = 0.098 × tidal volume × respiratory rate × (peak pressure − 1/2 × driving pressure). If not specified, peak pressure was considered equal to plateau pressure

⁸ Irrespective of the indication, the dose, and the timing
ARDS care, such as lung-protective mechanical ventilation and proning are both warranted [24]. ECMO, which was used in 15% of severe ARDS in our cohort should be considered when these measures have failed [25].

28-day mortality was 39% in 257 critically-ill COVID-19 patients in New-York city, of whom 203 (79%) received invasive mechanical ventilation [4], 41% in patients on invasive mechanical ventilation included in the usual care group of the RECOVERY randomized trial [6] and >50% in 733 Chinese patients admitted in the ICU [3]. Despite similar severity at baseline, day-28 mortality were 26% in the whole cohort and 30% in our patients intubated at day-1, a rate close to that reported in the large LUNG-SAFE study [17]. Different characteristics of patients admitted to ICUs and different degrees of stress on healthcare systems could explain these discrepancies [26]. Besides, we report a progressive decrease in 90-day mortality over the study period with a higher proportion of patients on high flow oxygen and non-invasive ventilation and a lower rate of intubation on ICU day-1 in the last period of the study (Table S5 and Figure S3). Similar findings have been reported by other groups [27] and might reflect better knowledge of the pathophysiology of the disease over time and less reluctance to use non-invasive oxygenation strategies. It should however be noticed that duration of invasive mechanical ventilation and length of ICU and hospital stays were substantially longer than those of in ARDS unrelated to COVID-19. For instance, ICU length of stay in patients surviving severe ARDS was 26 (13–43) days, compared to 14 (7–23) days in the LUNG-SAFE study [17]. These patients rapidly overwhelmed ICU’s capacity, forcing a major reorganization of ICU beds during the crisis [28].

Identifying the determinants of outcomes of critically ill patients with severe COVID-19 is crucial to optimize

Table 3: Outcome of patients on mechanical ventilation (invasive or non-invasive) according to Acute Respiratory Distress Syndrome Severity assessed the first day in the ICU

Parameter	No. (n = 2233)	Mild ARDSa (n = 539)	Moderate ARDSb (n = 1154)	Severe ARDSc (n = 540)	P valued	
Progression of ARDS severity, No (%) [95 CI]	2233	539 (24) [22–26]	1154 (52) [50–54]	540 (24) [22–26]		
Progression to moderatec	237 (44) [40–48]	–	–	–		
Progression to severec	64 (12) [9–15]	183 (16) [14–18]	–	–		
Duration of invasive ventilation, days	1448					
All patients	12 (7–17)	11 (6–17)	12 (7–17)	11 (6–17)	0.021	
Surviving patients at day-90	13 (8–18)	12 (6–18)	14 (8–18)	14 (10–19)	0.007	
ICU length of stay, days	2187					
All patients	16 (9–28)	15 (8–27)	17 (9–28)	16 (8–30)	0.149	
Surviving patients at day-90	21 (13–36)	18 (10–31)	21 (13–35)	26 (16–43)	< 0.001	
ICU mortality	2214	773 (35)	146 (27)	366 (32)	261 (49)	< 0.001
Hospital length of stay, days	2041					
All patients	23 (12–39)	22 (13–39)	24 (13–40)	22 (9–36)	0.002	
Surviving patients at day-90	30 (20–48)	28 (17–47)	31 (20–47)	32 (23–49)	0.012	
Hospital mortality	2086	797 (38)	154 (30)	375 (35)	268 (53)	< 0.001
Still in the hospital at day-28	1152 (53)	286 (54)	628 (56)	238 (45)	< 0.001	
Day-28 mortality	2233	703 (31)	134 (25)	331 (29)	238 (44)	< 0.001
Day-60 mortality	2233	808 (36)	157 (29)	382 (33)	269 (50)	< 0.001
Day-90 mortality	2233	820 (37)	162 (30)	388 (34)	270 (50)	< 0.001

Results are expressed as n (%) or median (25th–75th percentiles)

ARDS acute respiratory distress syndrome, ICU intensive care unit

a Only patients on invasive mechanical ventilation or non-invasive ventilation within the first 24 h in the ICU

b Defined as 200 mmHg < PaO2/FIO2 ≤ 300 mmHg with PEEP ≥ 5 cm H2O or continuous positive airway pressure ≥ 5 cm H2O

c Defined as 100 mmHg < PaO2/FIO2 ≤ 200 mmHg with PEEP ≥ 5 cm H2O

d Defined as PaO2/FIO2 ≤ 100 mmHg with PEEP ≥ 5 cm H2O

e p global value
the use of ICU care and other hospital resources. Older age, obesity, diabetes, being immunocompromised, lower PaO$_2$/FiO$_2$ and higher hemodynamic and renal SOFA score at ICU admission were independently associated with 90-day mortality, highlighting the dismal impact of premorbid conditions and multiorgan damage on the outcomes of patients with the most severe forms of COVID-19 [3, 29]. The rate of patients with a BMI \geq 30 kg/m2 was 41% in our cohort and unusually high compared to the prevalence of obesity in the French population [30]. More severe COVID-19 in obese patients may be explained by impairments in the adaptive immune response [31], cardiometabolic and thrombotic derangements [32], and alterations in lung function [33]. Obesity may also be a marker of poorer baseline health conditions since it is frequently associated with a lower socio-economic status [34]. As previously reported [35], a shorter time between first symptoms and ICU admission was also independently associated with increased mortality. Lastly, we and others [36, 37] observed an unusually high rate of thromboembolic complications, with 9% of proven pulmonary embolism. This rate may likely be higher since pulmonary CT angiography was not systematically performed in all patients. Diffuse vascular endothelium injury and intense activation of the coagulation cascade may explain this increased risk of venous thrombosis [38].
The major strength of this study is the detailed report of physiological, clinical features, ventilatory management, and 90-day outcomes of a large, multicenter series of 4244 critically ill COVID-19 patients. We acknowledge several limitations to our study. First, we conducted this cohort at a time where the national health system was extremely pressured with a need for a large number of ICU beds in some regions. Then, we cannot rule out that ICU admission policies and patients’ management were similar in all centers, although a sensitivity analysis introducing the center variable in the multivariable model found similar results. Second, testing was not standardized across sites, which might have led to misclassification. Third, some variables have missing data (as reported

Table 4	Predictive patient factors associated with 90-day mortality in critically ill adults with COVID-19				
Age, years	4244	1.05 (1.04–1.05)	< 0.001	1.05 (1.04–1.06)	< 0.001
Date of ICU admission	4244	–	–	–	–
Before March, 15	–	–	–	–	–
From March, 16 to 31	0.69 (0.56–0.84)	0.86 (0.64–1.16)			
From April, 1 to 15	0.61 (0.50–0.76)	0.75 (0.54–1.04)			
After April, 16	0.54 (0.40–0.72)	0.82 (0.52–1.29)			
Immunodeficiency	4192	1.64 (1.38–1.96)	< 0.001	1.38 (1.06–1.80)	0.020
Body mass index, kg/m²	3935	–	–	–	–
< 25	–	–	–	–	–
25 ≤ BMI < 30	0.92 (0.68–1.25)	1.06 (0.78–1.43)			
30 ≤ BMI < 35	0.77 (0.57–1.03)	0.81 (0.60–1.10)			
35 ≤ BMI < 40	0.94 (0.68–1.29)	1.11 (0.80–1.55)			
≥ 40	0.59 (0.42–0.83)	0.63 (0.44–0.89)			
≥ 1.33	0.49 (0.30–0.79)	0.60 (0.37–0.97)			
Active smoking	3935	1.51 (0.96–2.36)	0.225	1.30 (0.82–2.05)	0.314
Treated hypertension	4197	1.44 (1.29–1.60)	< 0.001	1.01 (0.85–1.19)	0.940
Known diabetes	4196	1.62 (1.44–1.81)	< 0.001	1.51 (1.28–1.78)	< 0.001
Time between first symptoms to ICU admission, days	3862	–	–	–	–
< 4 days	–	–	–	–	–
≥ 4 days	0.87 (0.65–1.16)	1.07 (0.80–1.43)			
During the first 24 h in the ICU	–	–	–	–	–
CV component of the SOFA score ≥ 3	4065	1.77 (1.58–1.98)	1.79 (1.52–2.11)	< 0.001	
Renal component of the SOFA score ≥ 3	4014	3.01 (2.30–3.92)	2.38 (1.81–3.13)	< 0.001	
Coagulation component of the SOFA score ≥ 3	4002	2.01 (1.21–3.34)	1.73 (0.81–3.69)	0.190	
PaO₂/FiO₂	3080	2.01 (1.21–3.34)	0.016	1.73 (0.81–3.69)	0.190
200 < PaO₂/FiO₂ ≤ 300	0.94 (0.72–1.21)	0.93 (0.67–1.29)			
100 < PaO₂/FiO₂ ≤ 200	1.09 (0.87–1.38)	1.12 (0.83–1.51)			
PaO₂/FiO₂ ≤ 100	1.73 (1.36–2.19)	2.05 (1.51–2.78)			
Lymphocyte count ≤ 1 x 10⁹/L	3481	0.92 (0.75–1.14)	0.008	0.80 (0.65–0.99)	0.300
pH	4003	1.46 (1.14–1.88)	1.24 (0.96–1.60)	0.67 (0.60–0.75)	0.065

BMI: body mass index, CV: cardiovascular, SOFA: Sequential Organ Failure Assessment, ICU: intensive care unit, HR: hazard ratio, CI: confidence interval

* Complete analysis cases on 2152 patients

† Early effect before 14 days of follow-up (first line); late effects (i.e., after day-15) in the second line

‡ Calculated for all patients, including those on oxygen therapy using conversion tables provided in the online supplement

The major strength of this study is the detailed report of physiological, clinical features, ventilatory management, and 90-day outcomes of a large, multicenter series of 4244 critically ill COVID-19 patients. We acknowledge several limitations to our study. First, we conducted this cohort at a time where the national health system was extremely pressured with a need for a large number of ICU beds in some regions. Then, we cannot rule out that ICU admission policies and patients’ management were similar in all centers, although a sensitivity analysis introducing the center variable in the multivariable model found similar results. Second, testing was not standardized across sites, which might have led to misclassification. Third, some variables have missing data (as reported
in the tables) due to a large number of patients included in a short period and intense clinical activity during the crisis. Indeed, our multivariable model included only 51% of the whole cohort of patients because of these missing data, which may explain, together with other residual confounders, the unanticipated lower mortality before 14 days of follow-up associated with baseline lymphopenia [39, 40]. However, this association was no longer statistically significant in the model with multiple imputations. Fourth, Grasselli et al. recently reported that high D-dimer concentration was significantly associated with mortality in COVID-19-related ARDS patients when associated with low values of static respiratory system compliance [22]. Unfortunately, we were unable to confirm that result in our multivariable model due to inconsistent collection of this data at ICU admission.

Conclusions
In this case series of 4244 critically ill patients with laboratory-confirmed COVID-19 admitted to our ICUs, over-all 90-day mortality was 31% and decreased over time during the study period. Mortality was higher in older patients, immunocompromised, extreme obese, diabetics, those with a shorter delay between first symptoms and ICU admission, and those with extra-pulmonary organ dysfunction at ICU admission. Ninety-day mortality increased with the severity of ARDS from 30% in mild to 50% in severe ARDS. These information, together with the very long durations of mechanical ventilation and of ICU stay, which have contributed to the swamping of our ICU’s capacity, will be critical for the management of the second wave of the epidemic. Lastly, long-term follow-up is warranted to provide a complete description of the outcomes and potential sequelae associated with the most severe forms of COVID-19 requiring ICU treatment.

Electronic supplementary material
The online version of this article (https://doi.org/10.1007/s00134-020-06294-x) contains supplementary material, which is available to authorized users.

Acknowledgements
We acknowledge with gratitude all the French, Belgian, and Swiss clinical research centers, the medical students, the students of the Polytechnic University, and all the volunteers for their amazing help in data collection.

Role of the funder: The funder had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Participating sites and COVID-ICU investigators: CHU Angers, Angers, France (Alain Mercat, Pierre Asfar, Frédéric Boulou, Julien Derielle), APHP - Hôpital Bicêtre, Le Kremlin-Bicêtre, France (Tâï-Pharm, Arthur Pavot, Xavier Monnet, Christian Richard), APHP-Hôpital Pitié Salpêtrière, Paris, France (Alexandre Demoulé, Martin Dres, Julien Maya, Alexandra Beurton), CHU Caen Normandie-Hôpital Côte de Nacre, Caen, France, Cédric Daubin (Richard Descamps, Aurélie Joret, Damien Du Cheyron), APHP-Hôpital Cochin, Paris, France (Frédéric Pene, Jean-Daniel Chiche, Mathieu Jozwiak, Paul Jaubert), APHP-Hôpital Tenon, Paris (France, Guillaume Voinot, Muriel Fartoukh, Marion Teullier, Clarisse Blaya), CHRU de Brest-La Cavale Blanche, Brest, France (Erwen L’Her, Céleste Aubron, Laetitia Bodenes, Nicolas Ferriere), Centre Hospitalier de Cholet, Cholet, France (Johann Aucabie, Anthony Le Meur, Sylvain Pignol, Thierry Mazioti), CHU Dijon Bourgogne, Dijon, France (Jean-Pierre Quenet, Pascal Andrieu, Jean-Baptiste Roudau, Marie Labayoue), CHU Lille-Hôpital Roger Salengero, Lille, France (Saad Nseir, Sébastien Preau, Julien Poissy, Daniel Mathieu), Groupe Hospitalier Nord Essonne, Longjumeau, France, Sarah Benhamida, Rémi Paulet, Nicolas Roucaud, Martial Thyrault), APHM-Hôpital Nord, Marseille, France (Florence Daviet, Sami Hraiech, Gabriel Parzy, Aude Sylvestre), Hôpital de Melun-Sénart, Melun, France (Sébastien Jochmans, Céline Boullant, Mehrahran Khodadadi), Élément Militaire Herbrecht, Mathieu Rabbath, Section de l’SSA, Mulhouse, France (Marc Danguy des Déserts, Quentin Mathais, Gwendoline Rager, Pierre Pasquier), CHU Nantes-Hôpital Hotel Dieu, Nantes, France (Reignier Jean, Seguin Amélie, Garret Carolina, Canet Emmanuel), CHU Nice-Hôpital Archet, Nice, France (Jean Dellamonica, Clément Saccheri, Romain Lombardi, Yanis Kouchit), Centre Hospitalier d’Orléans, Orléans, France (Sophie Jacquet, Armelle Mathonnet, Mai-Ahr Nay, Isabelle Runge), Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France (Frédéric Martino, Laure Flurin, Amélie Rolle, Michel Carles), Hôpital de la Mètérie, Pottiers, France (Rémis Coudroy, Arnaud W Thille, Jean-Pierre Fat, Maeva Rodriguez), Centre Hospitalier Roanne, Roanne, France (Pascal Beuret, Audrey Tientcheu, Arthur Vincent, Florian Michelin), CHU Rouen-Hôpital Charles Nicolle, Rouen, France (Marie Anne Melone, Maxime Gauz, Arnaud Guilbert, Geoffrey Koudiat), CHRU Tours-Hôpital Bretonneau, Tours, France (Valérie Gissot, Stéphane Ehrmann, Charlotte Salmon-Gandonnierre, Djali El Farouci), Centre Hospitalier Bretagne Atlantique, Vannes, France (Agathe Delbove, Yannick Fenel, Julien Hutzingter, Eddy Lebas), CHU Liége, Liége, Belgique (Grâce Risola, Céline Grégoire, Stella Marchetta, Bernard Lambermont), Hospices Civils de Lyon-Hôpital Edouard Herriot, Lyon, France (Laurent Argaud, Thomas Baudry, Pierre-Jean Bertrand, Augustine Dargent), Centre Hospitalier Du Mans, Le Mans, France (Christophe Guittton, Nicolas Chudeau, Mickael Landais, Cédric Darreau), Centre Hospitalier de Versailles, Le Chesnay, France (Alexis Ferre, Antoine Gros, Guillaume Lacave, Frédéric Bruneel), Hôpital Foch, Suresnes, France (Mathilde Neuville, Jérôme Devauxquet, Guillaume Tachon, Richard Galliot), Hôpital Claude Galien, Quincy sous Senart, France (Riad Cheilha, Arnaud Galbois, Anne Jallot, Ludovic Chaleumeau Lemoine), CHR Mulhouse Sud-Alsace, Mulhouse, France (Khalidou Kuteifan, Valérie Poitier, Louise-Marie Jandeeux, Joy Mootoen), APHP-Hôpital Antoine Béclère, Clamart, France (Charles Damaison, Benjamin Satrzymf), APHP-Hôpital Pitié-Salpêtrière, Paris, France (Mathieu Schmidt, Alain Combès, Juliette Chommeloux, Charles Edouard Luty), Hôpital Intercommunal de Créteil, Créteil, France (Frédérique Schortgen, Leon Rusel, Camille JUNG), Hospices Civils de Lyon-Hôpital Neurologique, Lyon, France (Florent Gobert), APHP-Hôpital Necker, Paris, France (Damienn Vimpere, Lionel Lamhaut), Centre Hospitalier Public du Cotentin-Hôpital Pasteur, Cherbourg-en-Cotentin, France (Bertrand Sauneau, Liliane Charnier, Julien Calus, Isabelle Desmeules), CHU Rennes-Hôpital du Pontchailou, Rennes, France (Benoit Painvin, Jean-Marc Tadie), CHU Strasbourg-Hôpital Hautepérier, Strasbourg, France (Vincent Castera, Baptiste Michael, Jean-Etienne Herbrecht, Mathieu Baldacini), APHP-Hôpital Pitié Salpêtrière, Paris, France (Nicolas Weiss, Sophie Demeret, Clémence Marois, Benjamin Rohaut), Centre Hospitalier Territorial Gaston-Bourret, Nouméa, France (Pierre-Henri Moury, Anne-Charlotte Savida, Emmanuel Couadou, Mathieu Série), Centre Hospitalier Compiegne-Noyon, Compiegne, France (Nica Alexandru), Groupe Hospitalier Saint-Joseph, Paris, France (Cédric Bruel, Candice Fontaine, Sonia Garrigou, Juliette Courtade Mahler), Centre hospitalier mémorial de Saint-Lô, Saint-Lô, France (Maxime Leclerc, Michel Ramakers), Grand Hôpital de l’Est Francilien, Villejuif, France (Nolwenn Lucas, Franck Chemouni, Annabelle Stoclin), Centre Hospitalier Intercommunal Robert Ballanger, Aulnay-sous-Bois, France (Alexandre Avenel, Henri Faure, Angéline Gentilhomme, Sylvie Ricome), Hospices Civils de Lyon-Hôpital Edouard Herriot, Lyon, France (Paul Abraham, Céline Monard, Julien Textoris, Thomas Rimele), Centre Hospitalier d’Avignon, Avignon, France (Sophie Jacquier, Armelle Mathonnet, Mai-Ahn Nay, Isabelle Runge), Centre Hospitalier d’Orléans, Orléans, France (Alexandre Avenel, Henri Faure, Angéline Gentilhomme, Sylvie Ricome), Hospices Civils de Lyon-Hôpital Neurologique, Lyon, France (Florent Gobert), APHP-Hôpital Pitié Salpêtrière, Paris, France (Nicolas Weiss, Sophie Demeret, Clémence Marois, Benjamin Rohaut), Centre Hospitalier Territorial Gaston-Bourret, Nouméa, France (Pierre-Henri Moury, Anne-Charlotte Savida, Emmanuel Couadou, Mathieu Série), Centre Hospitalier Compiegne-Noyon, Compiegne, France (Nica Alexandru), Groupe Hospitalier Saint-Joseph, Paris, France (Cédric Bruel, Candice Fontaine, Sonia Garrigou, Juliette Courtade Mahler), Centre hospitalier mémorial de Saint-Lô, Saint-Lô, France (Maxime Leclerc, Michel Ramakers), Grand Hôpital de l’Est Francilien, Jossigny, France (Pierre Garçon, Nicole Massou, Ly Van Vong, Juliane Sen), Gustave Roussy, Villejuif, France (Nolwenn Lucas, Franck Chemouni, Annabelle Stoclin), Centre Hospitalier Intercommunal Robert Ballanger, Aulnay-sous-Bois, France (Alexandre Avenel, Henri Faure, Angéline Gentilhomme, Sylvie Ricome), Hospices Civils de Lyon-Hôpital Edouard Herriot, Lyon, France (Paul Abraham, Céline Monard, Julien Textoris, Thomas Rimele), Centre Hospitalier d’Avignon, Avignon, France (Florent Montini), Groupe Hospitalier Dijonnes-Croix Saint Simon, Paris, France (Gabriel Lejour, Thierry Lazare, Isabelle Ettenney, Younes Kercoumi), CHU Clermont-Ferrand-Hôpital Gabriel Montpied, Clermont Ferrand, France (Dupuis Claire, MarinBerezas, Elisabeth Coupez, Thibaut Francois), Hôpital d’Instruction des Armées Roanne, Roanne, France (Clément Hoffmann, Nicolas Donat, Violaine Muller, Thibault Martinez), CHU Nancy-Hôpital Brabois, Vandoisvère-les-Nancy, France (Antoine Kimmoun, Audrey Jacquot, Matthieu Mattei, Bruno Levy), Centre Hospitalier de Vichy,
Compliance with ethical standards

Conflicts of interest

MS reported personal fees from Getting, Drager, and Xenios, outside the submitted work. AD reports personal fees from Medtronic, grants, personal fees and non-financial support from Fisher & Paykel, grants from French Ministry of Health, personal fees from Gating, grants and personal fees from Resporin, grants and non-financial support from Lungpacer, outside the submitted work. AM reported personal fees from Faro Pharmaceuticals, Air Liquid Medical Systems, Pfizer, Resmed and Drager and grants and personal fees from Fisher and Paykel and Covidien, outside this work. MD reported personal fees from Lungpacer. AK reported personal fees from Aspen, Aguettant and MSD. No other disclosures were reported.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 July 2020 Accepted: 12 October 2020
Published online: 29 October 2020

References

1. REVA network http://www.reseau-reva.org/. Accessed 5 Oct 2020
2. Grasselli G, Zangrillo A, Zanella A et al (2020) Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. https://doi.org/10.1001/jama.2020.5394
3. Xie J, Wu W, Li S et al (2020) Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. https://doi.org/10.1007/s00134-020-06211-2
4. Cummings MJ, Baldwin MR, Abrams D et al (2020) Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. https://doi.org/10.1016/S0140-6736(20)31189-2
5. Grasselli G, Greco M, Zanella A et al (2020) Risk factors associated with mortality among patients with COVID-19 in intensive care units in Lombardy. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2020.3539
6. RECOVERY Collaborative Group, Horby P, Lim WS et al (2020) Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med. https://doi.org/10.1056/NEJMoa2021436
7. Management of severe acute respiratory infection when COVID-19 is suspected. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected. Accessed 27 Apr 2020
8. Le Gall JR, Lemeshow S, Saulnier F (1993) A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963
9. Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22:707–710
10. Juma S, Taabazuing M-M, Montero-Odasso M (2016) Clinical frailty scale in an acute medicine unit: a simple tool that predicts length of stay. Can Geriatr J 19:34–39. https://doi.org/10.5770/cgj.19.196
11.Gattinoni L, Terroni T, Cressoni M et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42:1567–1575. https://doi.org/10.1007/s00134-016-4505-2
12. Sinha P, Calfee CS, Beitler JR et al (2018) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526. https://doi.org/10.1093/biomet/81.3.515
13. Gattinoni L, Terroni T, Cressoni M et al (2016) Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med 42:1567–1575. https://doi.org/10.1007/s00134-016-4505-2
14. Definition Task Force ARDS, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533. https://doi.org/10.1001/jama.2012.5669
15. Vincent JL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329. https://doi.org/10.1001/jama.2009.1574
16. Grumbsch PM, Therneau TM (1994) Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 81:515–526. https://doi.org/10.1093/biomet/81.3.515
17. Lemeshow S, Lohr KN (1996) A简版。JAMA 270:2957-2963
18. Vincent JL, Moreno R, Takala J et al (1996) The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22:707–710
18. Wang D, Hu B, Hu C et al (2020) Clinical Characteristics of 138 hospital-
ized patients with 2019 novel coronavirus-infected pneumonia in
Wuhan, China. JAMA. https://doi.org/10.1001/jama.2020.1585
19. Yang X, Yu Y, Xu J et al (2020) Clinical course and outcomes of critically
ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-
centered, retrospective, observational study. Lancet Respir Med. https ://doi.org/10.1016/S2213-2600(20)30079-5
20. Arentz M, Yim E, Klaff L et al (2020) Characteristics and outcomes of 21
critically ill patients with COVID-19 in Washington State. JAMA. https://doi.org/10.1001/jama.2020.4326
21.Gattinoni L, Chiumello D, Caironi P et al (2020) COVID-19 pneumonia:
different respiratory treatments for different phenotypes? Intensive
Care Med. 46:1099–1102. https://doi.org/10.1007/s00134-020-06033-2
22. Grasselli G, Tonetti T, Protti A et al (2020) Pathophysiology of COVID-19-
associated acute respiratory distress syndrome: a multicentre
prospective observational study. Lancet Respir Med. https://doi. org/10.1016/S2213-2600(20)30370-2
23. Serpa Neto A, Deliberato RO, Johnson AEW et al (2018) Mechanical
power of ventilation is associated with mortality in critically ill patients:
an analysis of patients in two observational cohorts. Intensive Care Med 44:1914–1922. https://doi.org/10.1007/s00134-018-5375-6
24. Gattinoni L, Meissner K, Marini JJ (2020) The baby lung and the COVID-19
era. Intensive Care Med 46:1438–1440. https://doi.org/10.1007/s00134-020-06103-5
25. Schmidt M, Hajage D, Lebreton G et al (2020) Extracorporeal membrane
oxygenation for severe acute respiratory distress syndrome associated
with COVID-19: a retrospective cohort study. Lancet Respir Med. https://doi. org/10.1016/S2213-2600(20)30368-4
26. Millar JE, Busse R, Fraser JF et al (2020) Apples and oranges: international
comparisons of COVID-19 observational studies in ICUs. Lancet Respir Med. https://doi.org/10.1016/S0140-6736(20)30566-3
27. Auld SC, Caridi-Scheible M, Robichaux C et al (2020) Declines in mortality
over time for critically ill adults with coronavirus disease 2019. Crit Care Med. https://doi.org/10.1097/CCM.0000000000004687
28. Alban A, Chiek SE, Dongelmans DA et al (2020) ICU capacity manage-
ment during the COVID-19 pandemic using a process simulation. Intensive Care Med 46:1624–1626. https://doi.org/10.1007/s00134-020-06066-7
29. Gabarre P, Dumas G, Dupont T et al (2020) Acute kidney injury in critically
ill patients with COVID-19. Intensive Care Med 46:1339–1348. https://doi.org/10.1007/s00134-020-06153-9
30. https://www.santepubliquefrance.fr/les-actualites/2017/etude-esteban-
2014-2016-chapitre-corpulence-stabilisation-du-surpoids-et-de-l-obesi-
te chez l’enfant et l’adulte. Accessed 5 Oct 2020
31. Green MD, Beck MA (2017) Obesity impairs the adaptive immune
response to influenza virus. Ann Am Thorac Soc 14:S406–S409. https://doi.org/10.1513/AnnalsATS.201706-447AW
32. Chart A, den Hartigh LI (2020) Adipose tissue distribution, inflammation
and its metabolic consequences, including diabetes and cardio-
vascular disease. Front Cardiovasc Med 7:22. https://doi.org/10.3389/fcvm.2020.00022
33. Gong MN, Bajwa EK, Thompson BT, Christiani DC (2010) Body mass
index is associated with the development of acute respiratory distress
syndrome. Thorax 65:44–50. https://doi.org/10.1136/thx.2009.117572
34. McLaren L (2007) Socioeconomic status and obesity. Epidemiol Rev 29:29–48. https://doi.org/10.1093/epirev/mxm001
35. Azoulay E, Fotoukh M, Darmon M et al (2020) Increased mortality in
patients with severe SARS-CoV-2 infection admitted within seven days of
disease onset. Intensive Care Med. https://doi.org/10.1007/s00134-020-
06202-3
36. Poissy J, Goutay J, Caplan M et al (2020) Pulmonary embolism in COVID-19
patients: awareness of an increased prevalence. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.120.047430
37. Helms J, Tacquard C, Severac F et al (2020) High risk of thrombosis in
patients with severe SARS-CoV-2 infection: a multicenter prospective
cohort study. Intensive Care Med. https://doi.org/10.1007/s00134-020-
06062-x
38. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are
associated with poor prognosis in patients with novel coronavirus pneu-
monia. J Thromb Haemost 18:844–847. https://doi.org/10.1111/jth.14768
39. Liu Z, Long W, Tu M et al (2020) Lymphocyte subset (CD4+, CD8+) counts reflect the severity of infection and predict the clinical outcomes
in patients with COVID-19. J Infect 81:318–356. https://doi.org/10.1016/j.jinf.2020.03.054
40. Zhou F, Yu T, Du R et al (2020) Clinical course and risk factors for mortal-
ity of adult inpatients with COVID-19 in Wuhan, China: a retrospective
cohort study. Lancet 395:1054–1062. https://doi.org/10.1016/S0140-
6736(20)30566-3