EULER-SYMMETRIC PROJECTIVE TORIC VARIETIES AND ADDITIVE ACTIONS

ANTON SHAFAREVICH

Abstract. Let G_a be the additive group of the field of complex numbers \mathbb{C}. We say that an irreducible algebraic variety X of dimension n admits an additive action if there is a regular action of the group $G_a^n = G_a \times \ldots \times G_a$ (n times) on X with an open orbit. In 2017 Baohua Fu and Jun-Muk Hwang introduced a class of Euler-symmetric varieties. They gave a classification of Euler-symmetric varieties and proved that any Euler-symmetric variety admits an additive action. In this paper we show that in the case of projective toric varieties the converse is also true. More precisely, a projective toric variety admitting an additive action is an Euler-symmetric variety with respect to any linearly normal embedding into a projective space. Also we discuss some properties of Euler-symmetric projective toric varieties.

1. Introduction

Let $X \subseteq \mathbb{P}^s$ be a projective variety over the field \mathbb{C}. Suppose that X is nondegenerate, that is, X is not contained in any hyperplane in \mathbb{P}^s. Denote by G_m the group \mathbb{C}^*. The following definition was given in [16].

Definition 1. Let $x \in X$ be a smooth point. A G_m-action on \mathbb{P}^s is said to be of Euler type at x, if the following conditions hold:

1. the variety X is invariant with respect to this action;
2. the point x is isolated fixed point in X with respect to this action;
3. the induced action on the tangent space T_xX acts by scalar operators.

We say that x is an Euler point if there is a G_m-action on \mathbb{P}^s of Euler type at x. The variety X is called Euler-symmetric if there is an open subset $U \subseteq X$ such that every point of U is an Euler point.

In [16] Baohua Fu and Jun-Muk Hwang gave a description of Euler-symmetric varieties using their fundamental forms at a general point. Also they proved that any Euler-symmetric variety admits an additive action [16, Theorem 3.7].

There are several results on additive actions on complete toric varieties. The first one is the work of Hassett and Tschinkel [17]. They established a correspondence between additive actions on the projective space \mathbb{P}^n and local commutative associative algebras with unit of dimension $n + 1$. One can find in [19] a more general correspondence.

Additive actions on projective hypersurfaces are studying in [3] and [4]. One can find results on additive actions on flag varieties in [1], [10] and [14]. Also there are works on additive actions on singular del Pezzo surfaces [11], weighted projective planes [2] and Hirzebruch surfaces [17].

2010 Mathematics Subject Classification. Primary 14M25, 14L30; Secondary 14R20, 13N15, 14M17.
Key words and phrases. Euler-symmetric varieties, toric varieties, additive actions.

The author was supported by the grant RSF-19-11-00172.
We recall that a toric variety is a normal variety of dimension n which admits an effective action of torus $T = \mathbb{G}_m^n = \mathbb{G}_m \times \ldots \times \mathbb{G}_m$ (n times) with an open orbit. Due to a combinatorical description (see [15] or [8]) a lot of properties of toric varieties can be described in a nice and simple way. So it is always natural to consider the toric case while studying some general theory.

Toric varieties admitting additive actions are described in [5]. It was proven in [12] that a complete toric variety of dimension two which admits an additive action can have either one or two non-isomorphic additive actions. There is a description of complete toric varieties with a unique additive action [13]. In [21] projective toric hypersurfaces with additive actions are classified.

We study Euler-symmetric projective toric variety. It turns out that a linearly normal projective toric variety is Euler-symmetric if and only if it admits an additive action (Theorem 3). Also we study the set of Euler points on a projective toric variety (Proposition 3) and describe fundamental forms corresponding to linearly normal Euler-symmetric projective toric varieties (Proposition 5).

The author is grateful to Ivan Arzhantsev for stating the problem and helpful remarks.

2. Complete toric varieties admitting additive actions

Here we recall the description of complete toric varieties admitting additive actions obtained in [5].

Let X be a complete toric variety of dimension n with an acting torus T. Let N be the lattice of one-parameter subgroups of T, M be the dual lattice of characters and $\langle \cdot, \cdot \rangle : N \times M \to \mathbb{Z}$ be the natural pairing. We denote by $N_\mathbb{Q}$ and $M_\mathbb{Q}$ the vector spaces $N \otimes \mathbb{Z} \mathbb{Q}$ and $M \otimes \mathbb{Z} \mathbb{Q}$, respectively.

Let Δ be the fan of polyhedral cones in $N_\mathbb{Q}$, which corresponds to X; see [8] or [15] for details. Let $\Delta(1) = \{\rho_1, \ldots, \rho_r\}$ be the set of one-dimensional cones in Δ and for a cone $\sigma \in \Delta$ by $\sigma(1)$ we mean the set of one-dimensional faces of σ. We denote the primitive lattice generator of a ray ρ by p_ρ and by p_i we mean p_{ρ_i}.

Definition 2. A vector $e \in M$ is called a Demazure root of a complete fan Δ if there is a ray $\rho \in \Delta(1)$ such that $\langle p_\rho, e \rangle = -1$ and $\langle p_{\rho'}, e \rangle \geq 0$ for all $\rho' \in \Delta(1)$, $\rho' \neq \rho$.

A set of Demazure roots e_1, \ldots, e_n of a complete fan Δ of dimension n is called a complete collection if the rays in $\Delta(1)$ can be numbered in such a way that $\langle p_i, e_j \rangle = -\delta_{ij}$ for all $1 \leq i, j \leq n$ where $\delta_{ij} = 1$ when $i = j$ and $\delta_{ij} = 0$ when $i \neq j$.

The following result makes it possible to understand by the fan Δ whether X admits an additive action.

Theorem 1. [5, Corollary 2] A complete toric variety X admits an additive action if and only if there is a complete collection of Demazure roots of the fan Δ.

It is easy to see that there is a complete collection of Demazure roots of the fan Δ if and only if one can order rays of the fan Δ in such a way that the primitive vectors on the first n rays form a basis of the lattice N and the remaining rays lie in the negative octant with respect to this basis (see Figure 1).

Definition 3. Let $X \subseteq \mathbb{P}^s$ be a normal nondegenerate projective variety. The embedding of X into \mathbb{P}^s defines a map of spaces $H^0(\mathbb{P}^s, \mathcal{O}(1)) \to H^0(X, \mathcal{O}_X(1))$. We say that X is linearly normal projective variety if this map is surjective.
Every nondegenerate linearly normal projective toric variety can be given by a polytope in $M_\mathbb{Q}$. We recall that a lattice polytope in $M_\mathbb{Q}$ is a convex hull of a finite subset in M.

Let m be a vertex of a lattice polytope P. Denote by $S_{P,m}$ the semigroup in M generated by the set $(P \cap M)−m$. The semigroup $S_{P,m}$ is called saturated if for all $k \in \mathbb{N} \setminus \{0\}$ and for all $a \in M$ the condition $ka \in S_{P,m}$ implies $a \in S_{P,m}$. A lattice polytope P is very ample if for every vertex $m \in P$, the semigroup $S_{P,m}$ is saturated.

Let $P \subseteq M_\mathbb{Q}$ be a full dimensional very ample lattice polytope and $P \cap M = \{m_0, m_1, \ldots, m_s\}$. Then one can consider the map

$$T \to \mathbb{P}^s, \quad t \mapsto [\chi_{m_0}^{m_0(t)} : \ldots : \chi_{m_s}^{m_s(t)}],$$

where χ_{m_i} is the character of T corresponding to m_i. Denote by X_P the closure of the image of this map. Then X_P is a linearly normal nondegenerate projective toric variety.

Conversely, let $Y \subseteq \mathbb{P}^s$ be a linearly normal nondegenerate projective toric variety with an acting torus T. Then Y coincides with X_P for some very ample polytope P in M up to automorphism of \mathbb{P}^s.

Definition 4. A lattice polytope $P \subseteq M_\mathbb{Q}$ is inscribed in a rectangle if there is a vertex $v_0 \in P$ such that

1. the primitive vectors on the edges of P containing v_0 form a basis e_1, \ldots, e_n of the lattice M;
2. for every inequality $\langle p, x \rangle \leq a$ on P that corresponds to a facet of P not passing through v_0 we have $\langle p, e_i \rangle \geq 0$ for all $i = 1, \ldots, n$.

Theorem 2. [5, Theorem 4] Let $P \subseteq M_\mathbb{Q}$ be a very ample polytope and X_P be the corresponding projective toric variety. Then X_P admits an additive action if and only if the polytope P is inscribed in a rectangle.
3. Fundamental forms

As we mentioned before an Euler-symmetric variety is uniquely determined by its fundamental form. We recall some definitions.

Let \(X \subseteq \mathbb{P}^s \) be a \(n \)-dimensional nondegenerate irreducible projective subvariety of the projective space \(\mathbb{P}^s \) and \(x \in X \) be a smooth point. Denote by \(z_0, \ldots, z_s \) homogeneous coordinates on \(\mathbb{P}^s \) and by \(y_i = \frac{z_i}{z_0} \) the respective inhomogeneous coordinates on the affine chart \(U_0 = \{ z \in \mathbb{P}^s | z_0 \neq 0 \} \). We may assume that \(x = [1 : 0 : \ldots : 0] \) with respect to these coordinates and the tangent space \(T_x X \) is given by equations \(y_i = 0 \) for \(i = n + 1, \ldots, s \).

Then the functions \(y_1, \ldots, y_n \) are the system of local parameters on \(X \). Denote by \(L \) the set of linear combinations \(\{ l = \alpha_0 + \alpha_1 y_1 + \ldots + \alpha_n y_n : \alpha_i \in \mathbb{C} \} \).

For any function \(l \in L \) there is an open neighborhood of \(x \) such that \(l \) is given by the series
\[
l = \sum_{i=0}^{\infty} h_i^l(y_1, \ldots, y_n),
\]
where \(h_i^l \) is a homogeneous polynomial of degree \(i \). Denote by \(\overline{h}(l) \) the first non-zero term.

Definition 5. The \(k \)-th fundamental form of the variety \(X \) at the point \(x \) is a vector space
\[
F^k = \langle \overline{h}(l) | l \in L, \deg \overline{h}(l) = k \rangle \subseteq \text{Sym}^k(T_x X)^*.
\]

The fundamental form of the variety \(X \) at the point \(x \) is the vector space
\[
F = \bigoplus_{k=0}^{\infty} F^k \subseteq \bigoplus_{k=0}^{\infty} \text{Sym}^k(T_x X)^*.
\]

Definition 6. We say that the fundamental form is monomial if one can choose coordinates \(y_1, \ldots, y_n \) such that there is a basis in \(F \) consisting of monomials. Each monomial \(y_1^{a_1} \cdots y_n^{a_n} \) defines a point \((a_1, \ldots, a_n) \in \mathbb{Z}_{\geq 0}^n \) so a monomial fundamental form defines a set \(D(F) = \{(a_1, \ldots, a_n) | y_1^{a_1} \cdots y_n^{a_n} \in F \} \).

Remark 1. One can find in [18, Chapter 3] a more generally accepted definition of fundamental form. It follows from [16, Lemma 2.5] that these definitions are equivalent.

Definition 7. Let \(V \) be a vector space. For any vector \(v \in V \) and a non-negative integer number \(k \) the contraction homomorphism is a linear map \(\iota_v : \text{Sym}^k V^* \rightarrow \text{Sym}^{k-1} V^* \) which sends \(\varphi \in \text{Sym}^k V^* \) to \(\iota_v(\varphi) \in \text{Sym}^{k-1} V^* \) defined by
\[
\iota_v(\varphi)(v_1, \ldots, v_k) = \varphi(v, v_1, \ldots, v_k),
\]
for any \(v_1, \ldots, v_k \in V \). By convention, we define \(\iota_v(\text{Sym}^0 V^*) = 0 \).

Definition 8. Consider a subspace \(W = \bigoplus_{k \geq 0} W^k \subseteq \bigoplus_{k \geq 0} \text{Sym}^k V^* \). Then the subspace \(W \) is called a symbol system if \(W^0 = \mathbb{C}, W^1 = V^* \), \(W^k \neq 0 \) only for finite number of \(k \) and \(\iota_v(W) \subseteq W \) for all \(v \in V \).

It is well known that the fundamental form at a general point is a symbol system (see [18, Chapter 3]). It follows from [16, Theorem 3.7] that an Euler-symmetric variety is uniquely defined by its fundamental form at a general point. Moreover, for any symbol system \(F \) there is an Euler-symmetric variety \(X \) such that a fundamental form of \(X \) at a general point is \(F \).
4. Euler-symmetric projective toric varieties

First of all, note that if a normal projective variety X is an Euler-symmetric variety with respect to some nondegenerate embedding of X into a projective space, then X is Euler-symmetric with respect to any linearly normal embedding of X into a projective space. More precisely, the following statement is true.

Proposition 1. Let X be a normal projective variety and $x \in X$ be a smooth point. The following conditions are equivalent.

1. The point x is an Euler point with respect to some nondegenerate embedding of X into a projective space.
2. The point x is an Euler point with respect to any nondegenerate linearly normal embedding of X into a projective space.

Proof. $(1) \Rightarrow (2)$. Here we use reasoning similar to the proof of [7, Proposition 3.2.6].

Let $X \subseteq \mathbb{P}^s$ be a nondegenerate projective variety and $x \in X$ be a smooth Euler point. Then there is a \mathbb{G}_m-action of Euler type at x. Consider a nondegenerate linearly normal embedding $\rho : X \hookrightarrow \mathbb{P}^k$. Denote by L the restriction on X of the line bundle $\mathcal{O}(1)$ on \mathbb{P}^k. Since \mathbb{G}_m is a factorial variety the line bundle L can be linearized with respect to the action of \mathbb{G}_m on X [20, Proposition 2.4]. The linearization defines a rational linear \mathbb{G}_m-action on $H^0(X, L) \simeq H^0(\mathbb{P}^k, \mathcal{O}(1))$. It defines extended \mathbb{G}_m-action on \mathbb{P}^k. Therefore x is an Euler point with respect to embedding $\rho : X \hookrightarrow \mathbb{P}^k$.

Any normal projective variety admits a nondegenerate linearly normal embedding into a projective space. So the implication $(2) \Rightarrow (1)$ is trivial.

Corollary 1. Let X be a normal projective variety. Then X is Euler-symmetric with respect to some nondegenerate embedding into a projective space if and only if X is Euler-symmetric with respect to any nondegenerate linearly normal embedding of X into a projective space.

Now we consider the toric case.

Proposition 2. Let X be a projective toric variety with an acting torus T and $x \in X$ be a smooth T-fixed point. Then x is an Euler point with respect to any linearly normal nondegenerate embedding of X into a projective space.

Proof. Let M be the lattice of characters of T. Any linearly normal nondegenerate embedding of X into a projective space corresponds to some very ample lattice polytope $P \subseteq M_{\mathbb{Q}}$. Denote by v_0 the vertex of P corresponding to x. We can assume that v_0 is the zero point of M.

Since x is a smooth point, the primitive vectors on the edges of P containing v_0 form a basis e_1, \ldots, e_n. All vertices of P have non-negative coordinates with respect to this basis.

Denote by $\{m_0, m_1, \ldots, m_s\}$ the lattice points in P. We can assume that the first $n + 1$ points have the following coordinates in the basis e_1, \ldots, e_n:

$$m_0 = v_0 = (0, \ldots, 0), \quad m_1 = (1, 0, \ldots, 0), \quad m_2 = (0, 1, \ldots, 0), \ldots, \quad m_n = (0, 0, \ldots, 1).$$

We denote the coordinates of the other points as:

$$m_{n+i} = (a_{i,1}, \ldots, a_{i,n}), \quad i = 1, \ldots, s - n,$$

where $a_{i,j}$ are non-negative integer numbers.
Let \(t_1, \ldots, t_n \) be the coordinates on \(T \) corresponding to the basis \(e_1, \ldots, e_n \). For any character \(m \in M \) and for any \(t \in T \) we denote by \(t^m \) the value \(\chi^m(t) \).

Consider the map
\[
\varphi_D : T \to \mathbb{P}^s, \quad (t_1, \ldots, t_n) \to [t^{m_0} : \ldots : t^{m_s}] = [1 : t_1 : \ldots : t_n : t_1^{a_1,1} \cdots t_n^{a_1,n} : \ldots : t_1^{a_n,-n} \cdots t_n^{a_n,-n}].
\]

The variety \(X \) is the closure of the image of the map \(\varphi_D \). Note that the point \(x \) has coordinates \([1 : 0 : \ldots : 0]\).

It is easy to see that the action of \(T \) on \(X \) can be extended to an action of \(T \) on \(\mathbb{P}^s \). Consider the subtorus
\[
T_1 = \{(t, \ldots, t)| t \in \mathbb{C}^\times \} \subseteq T.
\]

Denote by \(z_0, \ldots, z_s \) the homogeneous coordinates on \(\mathbb{P}^s \). Consider the affine chart \(U_0 = \{(z_0 : \ldots : z_s)| z_0 \neq 0\} \subseteq \mathbb{P}^s \). Let \(y_i = z_i / z_0 \) be the corresponding inhomogeneous coordinates on \(U_0 \). Then the variety \(X \cap U_0 \) satisfies equations \(y_{n+i} = y_1^{a_{1,i}} \cdots y_n^{a_{n,i}} \). We see that \(x = (0, \ldots, 0) \) is an isolated fixed point in \(X \) with respect to the action of \(T_1 \).

The tangent space at a point \(x \) on \(X \) is given by equations \(y_{n+i} = \ldots = y_n = 0 \). But \(T_1 \) acts by multiplication by \(t \) on the variables \(y_1, \ldots, y_n \). So \(T_1 \) acts by scalar operators on \(T_1X \). So \(x \) is an Euler point with respect to the action of \(T_1 \).

\[\square\]

Remark 2. It follows from the proof of Proposition 2 that the fundamental form \(F \) of \(X \) at the point \(x \) is monomial and the set \(D(F) \) coincides with the set \(\{m_0, m_1, \ldots, m_s\} \).

Proposition 3. Let \(X \) be a projective toric variety with an acting torus \(T \) and \(x \) be a smooth point in \(X \). The following conditions are equivalent.

1. The point \(x \) is an Euler point with respect to some nondegenerate embedding of \(X \) into a projective space.
2. The point \(x \) is an Euler point with respect to any nondegenerate embedding of \(X \) into a projective space.
3. There is an automorphism \(\varphi \) of \(X \) such that \(\varphi(x) \) is a \(T \)-fixed point.

Proof. We start with implication (1) \(\Rightarrow \) (3). Suppose \(x \in X \) is an Euler point with respect to an action of one-dimensional torus \(T_1 \) with respect to some nondegenerate embedding into a projective space. Denote by \(G \) the connected component of unit in the automorphism group \(\text{Aut}(X) \). Then \(G \) is an affine algebraic group (see [9, Theorem 4.2]). Hence there is a maximal subtorus \(T' \) in \(G \) such that \(T_1 \) is a subgroup of \(T' \). All points in the orbit \(T'x \) are \(T_1 \)-fixed. Since \(x \) is isolated \(T_1 \)-fixed point then \(x \) is a \(T' \)-fixed point.

All maximal subtorus in \(G \) are conjugated, so there is an automorphism \(\varphi \in G \) such that \(\varphi T' \varphi^{-1} = T \). Then \(\varphi(x) \) is a \(T \)-fixed point.

Now we prove (3) \(\Rightarrow \) (2). Suppose that there is an automorphism \(\varphi \) of \(X \) such that \(\varphi(x) \) is a \(T \)-fixed point. Then \(x \) is a fixed point with respect to the torus \(\varphi T \varphi^{-1} \). The variety \(X \) is a toric variety with respect to the action of the torus \(\varphi T \varphi^{-1} \). By Proposition 2 the point \(x \) is an Euler point with respect to any linearly normal nondegenerate embedding.

The equivalence of (1) and (2) follows from Proposition 1. \(\square \)

Theorem 3. Let \(X \) be a projective toric variety with an acting torus \(T \). The following conditions are equivalent:

1. \(X \) is Euler-symmetric with respect to some nondegenerate embedding into a projective space;
(2) X is Euler-symmetric with respect to any nondegenerate linearly normal embedding into a projective space;

(3) X admits an additive action.

Proof. (1) \Rightarrow (3). Suppose that X is Euler-symmetric with respect to some nondegenerate embedding into a projective space. Then X admits an additive action by [16, Theorem 3.7] (see also Proposition 4 below).

(3) \Rightarrow (2) Now suppose that X admits an additive action. Then by [5, Theorem 3] X admits an additive action normalized by T. Let U be the open orbit with respect to this additive action. The orbit U is isomorphic to the affine space and T-invariant. Therefore the variety U is an affine toric variety with respect to the action of T. An affine toric variety has a T-fixed point if and only if it has no regular invertible functions except constants. So there is a T-fixed smooth point $p \in U$. By Proposition 3 all points in U are Euler points with respect to any nondegenerate linearly normal embedding into a projective spaces.

The equivalence of (1) and (2) follows from Corollary 1. □

It is proved in [16] that any Euler-symmetric projective variety admits an additive action. However, in the case of toric varieties one can prove it using the combinatorial description of toric varieties. For this purpose we need a description of the orbits of the automorphism group of complete toric varieties obtained by Ivan Bazhon [6].

For a ray ρ_i we denote by D_i the T-invariant divisor corresponding to ρ_i and by $[D_i]$ we mean the class of this divisor in the divisor class group. For a cone $\tau \in \Delta$ we define a monoid

$$\Gamma(\tau) = \sum_{\rho_i \in \Delta(1) \setminus \tau(1)} Z_{\geq 0}[D_i].$$

Denote by $\Upsilon(\Delta)$ the set of monoids $\{\Gamma(\tau) : \tau \in \Delta\}$. By O_τ we mean the torus orbit on X corresponding to $\tau \in \Delta$.

Theorem 4. [6, Theorem 3.7] Let X be a complete toric variety. Torus orbits O_σ and $O_{\sigma'}$ on X lie in the same $\text{Aut}(X)$-orbit if and only if there exists an automorphism $\phi : \text{Cl}(X) \to \text{Cl}(X)$ with the following properties:

- $\phi(\Gamma(\sigma)) = \Gamma(\sigma')$,
- $\phi(\Upsilon(\Delta)) = \Upsilon(\Delta)$,
- there exists a permutation f of elements $\{1, \ldots, r\}$ such that $\phi([D_i]) = [D_{f(i)}]$.

Proposition 4. Let $X \subseteq \mathbb{P}^s$ be a nondegenerate Euler-symmetric projective toric variety. Then X admits an additive action.

Proof. Let X be an Euler-symmetric projective toric variety with an acting torus T. Then there is an open subset U consisting of Euler points in X. Denote by O the open T-orbit in X. It is clear that O is a subset of U. By Proposition 3 there is a T-fixed Euler point x which belongs to the same $\text{Aut}(X)$-orbit with points from O.

Denote by Δ the fan corresponding to X. Let σ be the cone in Δ corresponding to the T-orbit x and σ_0 be the cone corresponding to the T-orbit O. Note that σ is a maximal cone in Δ and σ_0 is a vertex.

Let $\Delta(1) = \{\rho_1, \ldots, \rho_r\}$ be the set of rays in Δ and p_1, \ldots, p_r be the primitive lattice generators on these rays. We suppose that the first n rays belong to σ. Since x is a smooth point the vectors p_1, \ldots, p_n form a basis of the lattice N. Then the monoid $\Gamma(\sigma_0)$ is equal to $\sum_{i=1}^n Z_{\geq 0}[D_i]$ and the monoid $\Gamma(\sigma)$ is equal to $\sum_{i=n+1}^r Z_{\geq 0}[D_i]$.

By [6, Theorem 3.7] there is an automorphism ϕ of the group $\text{Cl}(X)$ such that $\phi(\Gamma(\sigma_0)) = \Gamma(\sigma)$. The automorphism ϕ permutes the elements of the set $\{[D_1], \ldots, [D_r]\}$. Since the monoid $\Gamma(\sigma_0)$ is generated by the set $\{[D_1], \ldots, [D_r]\}$, we have $\phi(\Gamma(\sigma_0)) = \Gamma(\sigma_0)$. It implies that $\Gamma(\sigma_0) = \Gamma(\sigma)$. It follows that for any $i = 1, \ldots, n$ there are non-negative integers $a_{i,j}$ such that

$$[D_i] = \sum_{j=n+1}^r a_{i,j}[D_j].$$

There is an exact sequence

$$0 \rightarrow M \rightarrow \mathbb{Z}^r \rightarrow \text{Cl}(X) \rightarrow 0,$$

where the second arrow is given by the map

$$m \rightarrow (\langle p_1, m \rangle, \ldots, \langle p_r, m \rangle), \quad m \in M,$$

and the third arrow is given by the map

$$(b_1, \ldots, b_r) \rightarrow b_1[D_1] + \ldots + b_r[D_r],$$

where $b_j \in \mathbb{Z}$; see [8, Chapter 4] for details.

Since $[D_i] - \sum_{j=n+1}^r a_{i,j}[D_j] = 0$ for $i = 1, \ldots, n$ there are vectors $m_i \in M$ such that $\langle p_j, m_i \rangle = \delta_{ij}$ for $1 \leq i, j \leq n$ and $\langle p_j, m_i \rangle = -a_{i,j}$, for $1 \leq i \leq n < j \leq r$.

Then m_1, \ldots, m_n is a dual basis to p_1, \ldots, p_n and the vectors p_j with $j > n$ have coordinates $-a_{i,j}$. So rays $\rho_{n+1}, \ldots, \rho_r$ lie in the negative octant with respect to the basis p_1, \ldots, p_n. By Theorem 1 the variety X admits an additive action.

It is easy to describe symbol systems which correspond to toric Euler-symmetric varieties.

Proposition 5. Let $X \subseteq \mathbb{P}^s$ be a linearly normal nondegenerate projective Euler-symmetric variety of dimension n and F be its fundamental form at a general point. Then X is a toric variety if and only if F is monomial and the set $D(F) \subseteq \mathbb{Z}_{\geq 0}^n$ coincides with the set of lattice points inside some very ample inscribed in a rectangle lattice polytope.

Proof. Let $X \subseteq \mathbb{P}^s$ be a linearly normal nondegenerate Euler-symmetric projective toric variety with an acting torus T. Then X admits an additive action. The embedding of X into the projective space \mathbb{P}^s is given by some very ample lattice polytope $P \subseteq M_\mathbb{Q}$. By [5, Theorem 4] P is inscribed in a rectangle.

Denote by v_0 the vertex of P from Definition 4 and by $x \in X$ the smooth T-fixed point corresponding to v_0. We can assume that v_0 is the origin of M. The point x belongs to the open \mathbb{G}_a^n-orbit in X. Since \mathbb{G}_a^n is a factorial variety the action of \mathbb{G}_a^n can be extended on \mathbb{P}^s. So at a general point in X the fundamental form is isomorphic to F. By Remark 2 the fundamental form F at the point x is monomial and the set $D(F)$ coincides with the set of lattice points inside P.

Conversely, let $X \subseteq \mathbb{P}^s$ be a linearly normal nondegenerate projective Euler-symmetric variety and suppose that the fundamental form F at a general point of X is monomial and the set $D(F) \subseteq \mathbb{Z}^n$ coincides with the set of lattice points inside some very ample inscribed in a rectangle lattice polytope P. Consider the toric variety $X_P \subseteq \mathbb{P}^s$ corresponding to P. Then fundamental form at a general point of X_P is F. Since Euler-symmetric variety is
uniquely determined by its fundamental form at a general point, the varieties X and X_P are isomorphic. So X is a toric variety.

At the end we consider two examples.

Example 1. As follows from Proposition 3, each Euler point on projective toric varieties X belongs to $\text{Aut}(X)$-orbit of a T-fixed point. At the same time two Euler points can lie in different $\text{Aut}(X)$-orbits.

Consider the Hirzebruch surface H_s with $s \geq 1$. It is a toric variety with the fan Δ_{H_s} is shown in Figure 3.

![Figure 3](image.png)

Figure 3. The fan corresponding to Hirzerbruch surface H_s.

The Hirzebruch surface is smooth. It is well known that any complete toric surface is a projective variety; see [15, Chapter II.4].

By σ_{ij} we mean a two-dimensional cone in Δ_{H_s} with rays ρ_i and ρ_j. By σ_i we mean a one-dimensional cone ρ_i and by σ_0 the vertex of Δ_{H_s} respectively.

The divisor class group $\text{Cl}(X)$ is freely generated by $[D_{\rho_3}]$ and $[D_{\rho_4}]$. We have $[D_{\rho_1}] = [D_{\rho_3}]$ and $[D_{\rho_2}] = [D_{\rho_2}] + s[D_{\rho_3}]$. Then all monoids in $\Upsilon(\Delta_{H_s})$ except $\Gamma(\sigma_{12})$, $\Gamma(\sigma_{23})$ and $\Gamma(\sigma_2)$ are equal to $\langle [D_{\rho_2}], [D_{\rho_3}] \rangle$, where by $\langle S \rangle$ we mean a monoid generated by a set S. We denote the monoid $\langle [D_{\rho_2}], [D_{\rho_3}] \rangle$ by A.

Monoids $\Gamma(\sigma_{12})$, $\Gamma(\sigma_{23})$ and $\Gamma(\sigma_2)$ are equal to the monoid $B = \langle [D_{\rho_3}], [D_{\rho_2}] + s[D_{\rho_3}] \rangle$. The element $[D_{\rho_2}]$ does not belong to B, so $A \neq B$.

Any automorphism ϕ from [6, Theorem 3.7] permutes monoids in $\Upsilon(\Delta_{H_s})$. But in $\Upsilon(\Delta_{H_s})$ there are 5 monoids equal to A and 3 monoids equal to B. So there is no such ϕ that $\phi(A) = B$.

Then all points in H_s belong to $\text{Aut}(X)$-orbit of some smooth T-fixed point and all points are Euler points with respect to any nondegenerate linearly normal embedding into a projective space. But there are two different $\text{Aut}(X)$-orbits.

Example 2. Not all smooth points on a projective toric variety are necessarily Euler points. Any projective toric variety that does not admit an additive action is suitable as a counterexample. Indeed, points from the open T-orbit are smooth but not Euler. However it is also interesting to consider an example of Euler-symmetric variety, in which not all smooth points are Euler.

Consider a blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$ at a point. It is a smooth projective toric variety and the corresponding fan is shown in Figure 4.

![Figure 4](image.png)

Figure 4. The fan corresponding to Hirzerbruch surface H_s.

The divisor class group $\text{Cl}(X)$ is freely generated by classes $[D_{\rho_3}]$, $[D_{\rho_4}]$ and $[D_{\rho_5}]$. Also we have $[D_{\rho_1}] = [D_{\rho_3}] + [D_{\rho_4}]$ and $[D_{\rho_2}] = [D_{\rho_4}] + [D_{\rho_5}]$. Let us consider $[D_{\rho_3}]$, $[D_{\rho_4}]$, $[D_{\rho_5}]$ as a basis of $\text{Cl}(X)$. We will show that the points from the orbit corresponding to σ_4 are
not Euler. Indeed, the monoid $\Gamma(\sigma_4) = \langle (1, 0, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1) \rangle$ is not equal to any of monoids corresponding to fixed points listed below:

$$\Gamma(\sigma_{23}) = \langle (0, 1, 0), (0, 0, 1), (1, 1, 0) \rangle, \quad \Gamma(\sigma_{15}) = \langle (0, 1, 0), (1, 0, 0), (0, 1, 1) \rangle,$$
$$\Gamma(\sigma_{34}) = \langle (0, 0, 1), (1, 1, 0), (0, 1, 1) \rangle, \quad \Gamma(\sigma_{45}) = \langle (1, 0, 0), (1, 1, 0), (0, 1, 1) \rangle,$$
$$\Gamma(\sigma_{12}) = \langle (1, 0, 0), (0, 1, 0), (0, 0, 1) \rangle.$$

Any automorphism ϕ of the group $\text{Cl}(X)$ satisfying the condition of Theorem 4 permutes the elements $[D_{\rho_3}]$. So ϕ is an automorphism of monoid $\langle (1, 0, 0), (0, 1, 0), (0, 0, 1) \rangle$. The elements $[D_{\rho_3}], [D_{\rho_4}], [D_{\rho_5}]$ are irreducible in this monoid but $[D_{\rho_1}]$ and $[D_{\rho_2}]$ are not. So ϕ permutes the elements $[D_{\rho_3}], [D_{\rho_4}], [D_{\rho_5}]$. The elements $[D_{\rho_1}]$ and $[D_{\rho_2}]$ are both divisible by $[D_{\rho_4}]$. So ϕ is either identical or ϕ permutes $[D_{\rho_4}]$ and $[D_{\rho_5}]$ and preserves $[D_{\rho_3}]$. In both cases $\Gamma(\sigma_4)$ is preserved.

Therefore $\text{Aut}(X)$-orbit of any T-fixed point does not meet points in O_{σ_4}. So points in O_{σ_4} are not Euler but smooth.

References

[1] Ivan Arzhantsev. Flag varieties as equivariant compactifications of \mathbb{G}_a^n. Proc. Amer. Math. Soc. 139 (2011), no. 3, 783–786
[2] Ivan Arzhantsev, Sergey Bragin, and Yulia Zaitseva. Commutative algebraic monoid structures on affine spaces. Commun. Contemp. Math. 22, (2020), no. 8, P. 1950064: 1.
[3] Ivan Arzhantsev and Andrei Popovkiy. Additive actions on projective hypersurfaces. Automorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat., 79, (2014), 17-33
[4] Ivan Arzhantsev and Elena Sharoyko. Hassett-Tschinkel correspondence: Modality and projective hypersurfaces. J. Algebra 348 (2011), no. 1, 217-232
[5] Ivan Arzhantsev and Elena Romaskevich. Additive actions on toric varieties. Proc. Amer. Math. Soc. 145 (2017), no. 5, 1865-1879
[6] Ivan Bazhov. On orbits of the automorphism group on a complete toric variety. Beitr. Algebra Geom. 54 (2013), no. 2, 471–481.
[7] Michel Brion. Linearization of algebraic group actions. In Handbook of group actions. Adv. Lect. Math. 41 (2018), 291–340.
[8] David Cox, John Little, and Henry Schenck. Toric Varieties. Grad. Stud. Math. 124, AMS, Providence, RI, 2011
[9] David Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom. 4 (1995), no. 1, 17–50
[10] Rostislav Devyatov. Unipotent commutative group actions on flag varieties and nilpotent multiplications. Transform. Groups 20 (2015), no. 1, 21–64
[11] Ulrich Derenthal and Daniel Loughran. Singular del Pezzo surfaces that are equivariant compactifications. J. Math. Sci. 171 (2010), no. 6, 714–724
[12] Sergey Dzhunusov. Additive actions on complete toric surfaces. Internat. J. Algebra Comput. 31 (2021), no. 1, 19-35
[13] Sergey Dzhunusov. On uniqueness of additive actions on complete toric varieties. arXiv:2007.10113
[14] Evgeny Feigin. G_a^n degeneration of flag varieties. Selecta Math. 18 (2012), no. 3, 513–537
[15] William Fulton. Introduction to toric varieties. Ann. of Math. Stud. 131, Princeton University Press, Princeton, NJ, 1993
[16] Baohua Fu and Jun-Muk Hwang. Euler-symmetric projective varieties. Algebr. Geom. 7 (2020), no. 3, 377–389
[17] Brendan Hassett and Yuri Tschinkel. Geometry of equivariant compactifications of G_a^n. Int. Math. Res. Not. IMRN 1999 (1999), no. 22, 1211–1230
[18] Thomas Ivey and Joseph Landsberg. Cartan for beginners: differential geometry via moving frames and exterior differential systems. Grad. Stud. Math 61. American Mathematical Society, Providence, RI, 2003
[19] Friedrich Knop and Herbert Lange. Commutative algebraic groups and intersections of quadrics. Math. Ann. 267 (1984), no. 4, 555-571
[20] Friedrich Knop, Hanspeter Kraft, Domingo Luna, Thierry Vust. Local properties of algebraic group actions. Invariant Theory Algebr. Transform. Groups 13 (1989), 63–75
[21] Anton Shafarevich. Additive Actions on Toric Projective Hypersurfaces. Results Math. 76 (2021), no. 145.

Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; and National Research University Higher School of Economics, Faculty of Computer Science, Pokrovsky Boulevard 11, Moscow, 109028, Russia

Email address: shafarevich.a@gmail.ru