Direct Mediation of Meta-Stable Supersymmetry Breaking

Ryuichiro Kitano1,2, Hirosi Ooguri3 and Yutaka Ookouchi3

1Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309
2Physics Department, Stanford University, Stanford, CA 94305
3California Institute of Technology, Pasadena, CA 91125

Abstract

The supersymmetric SU(N_C) Yang-Mills theory coupled to N_F matter fields in the fundamental representation has meta-stable vacua with broken supersymmetry when $N_C < N_F < \frac{3}{2}N_C$. By gauging the flavor symmetry, this model can be coupled directly to the standard model. We show that it is possible to make a slight deformation to the model so that gaugino masses are generated and the Landau pole problem can be avoided. The deformed model has simple realizations on intersecting branes in string theory, where various features of the meta-stable vacua are encoded geometrically as brane configurations.
1 Introduction

Although there is no clear evidence yet, it is plausible that softly broken $\mathcal{N} = 1$ supersymmetry is realized in nature. Not only because it is a symmetry possessed by string theory, there are many phenomenologically attractive features in supersymmetric models, such as cancellation of quadratic divergences and unification of the gauge coupling constants \[1, 2, 3\].

It is then a question how supersymmetry is broken and how we feel it. There have been many studies on this subject, but, as is often the case, one of the earliest proposals \[4, 5\] among them seems to be the most elegant and simple idea. The idea is that there is a QCD-like strong interaction which breaks supersymmetry dynamically, and the standard model gauge group is identified with a subgroup of flavor symmetry in this sector. The standard model gauge sector can, therefore, feel the supersymmetry breaking directly via one-loop diagrams.

This idea has been discarded for a long time because of its difficulty in realistic model building. First, Witten has shown that there is a supersymmetric vacuum in supersymmetric QCD by using an index argument \[6\]. Therefore, we are forced to think of the possibility of chiral gauge theories for supersymmetry breaking, which is already a bit complicated. (See \[6, 7, 8\] for dynamical supersymmetry breaking in chiral gauge theories, and \[10, 11\] for models of direct gauge mediation in that context.) There is also a problem of Landau poles of the standard model gauge interactions. Once we embed the gauge group of the standard model into a flavor group of the dynamical sector (this itself is not a trivial task), there appear many particles which transform under the standard model gauge group. These fields contribute to beta functions of the gauge coupling constants and drive them to a Landau pole below the unification scale. Finally, even though the gauge sector of the standard model directly couples to the supersymmetry breaking dynamics, it is non-trivial whether we can obtain the gaugino masses. It is often the case that the leading contribution to gaugino masses cancels out.

Very recently, there was a break-through on this subject. Intriligator, Seiberg and Shih (ISS) have shown that there is a meta-stable supersymmetry breaking vacuum in some of supersymmetric QCD theories \[12\]. The model is simply SU(N_C) gauge theory with massive (but light) N_F quarks. Within a range $N_C < N_F < 4N_C$, supersymmetry is broken in the meta-stable vacuum. The possibility of direct gauge mediation in this model is also discussed in Ref. \[12\]. Because of its simplicity of the model, it is straightforward to embed the standard model gauge group into the SU(N_F) flavor symmetry. However, it is concluded that there are still problems regarding the Landau pole and the gaugino masses. In the ISS model, there is an unbroken approximate U(1)$_R$ symmetry which prevents us from obtaining the gaugino masses.

*See also \[13\] for a related work.
The $U(1)_R$ problem is a common feature in models of gauge mediation. As is discussed recently in Ref. [14], if the low energy effective theory of the dynamical supersymmetry breaking model is of the O’Raifeartaigh type, there is an unbroken R-symmetry at the minimum of the potential (the origin of the field space). It has been proposed that the inverted hierarchy mechanism [15] can shift the minimum away from the origin by the effect of gauge interactions [16, 17, 18, 19, 14]. An alternative possibility that the shift is induced by an R-symmetry breaking term in supergravity Lagrangian (the constant term in the superpotential) is recently discussed in Ref. [20]. It is, however, still non-trivial whether we obtain the gaugino masses even with the R-symmetry breaking vacuum expectation values in direct gauge mediation models. For example, a model in Ref. [21] generates gaugino masses only at the F^3 order even though the R-symmetry is broken by assuming the presence of the local minimum away from the origin. Since the scalar masses squared are obtained at the F^2 order as usual, gaugino masses are much smaller than the scalar masses unless the messenger scale is $O(10 \text{ TeV})$, that is difficult in models of direct gauge mediation because of the Landau pole problem. In fact, as we will see later, the structure of the messenger particles in the ISS model is the same as that in this model. (The same structure can be found in many models, for example, in Ref. [22] and also in very early proposals of gauge mediation models in Ref. [23, 24, 25].) Therefore, it is not sufficient to destabilize the origin of the field space for generating both gaugino and scalar masses.

In this paper we propose a slight deformation to the ISS model with which we can obtain gaugino masses by identifying a flavor subgroup with the standard model gauge group. We add a superpotential term which breaks R-symmetry explicitly so that non-vanishing gaugino masses are induced. The vacuum structure becomes richer by the presence of the new term. In addition to the vacuum that is obtained by a slight perturbation to the ISS meta-stable vacuum, which we will call the ISS vacuum, there appear new (but phenomenologically unacceptable) meta-stable vacua. We find that decays of the ISS vacuum into the other vacua are sufficiently slow so that it is phenomenologically viable.

We also show that the Landau pole problem can be avoided by keeping the dynamical scale of the ISS sector sufficiently high in a way that is compatible with phenomenological requirements. In addition, if meta-stable vacua exist in a model with the same number of colors and flavors, as suggested by ISS, we can also consider the case where the ISS sector is in the conformal window, $\frac{3}{2} N_C \leq N_F < 3N_C$. In this case, we can take the scales of the ISS sector as low as $O(100–1000 \text{ TeV})$.

The deformed ISS model can be realized on intersecting branes in string theory, where a rich vacuum structure and the meta-stability of vacua can be understood geometrically.
2 The ISS model

We first review the ISS model. The model is simply a supersymmetric QCD with light flavors. Perturbative corrections to a scalar potential are calculable in the magnetic dual picture, and they have been found to stabilize a supersymmetry breaking vacuum. The model has an unbroken R-symmetry, which prevents it from generating gaugino masses. An explicit one-loop computation of the masses suggests a natural solution to this problem, which we will discuss in the next section.

2.1 Supersymmetry breaking

The model is an SU(N_C) gauge theory with N_F flavors. The quarks have mass terms:

$$W = m_i Q_i \bar{Q}_i.$$ \hfill (1)

The index i runs for $i = 1, \ldots, N_F$. The masses m_i are assumed to be much smaller than the dynamical scale Λ. There is a meta-stable supersymmetry breaking vacuum when $N_C < N_F < \frac{3}{2} N_C$, where there is a weakly coupled description of the theory below the dynamical scale Λ. The gauge group of the theory is SU($N_F - N_C$) and degrees of freedom at low energy are meson fields $M_{ij} \sim Q_i Q_j$ and dual quarks q_i and \bar{q}_i. There are superpotential terms:

$$W = m_i M_{ii} - \frac{1}{\hat{\Lambda}} q_i M_{ij} \bar{q}_j.$$ \hfill (2)

A dimensionful parameter $\hat{\Lambda}$ is introduced so that the dimensionality of the superpotential is correct. A natural scale of $\hat{\Lambda}$ is $O(\Lambda)$.

With this superpotential, the $F_M = 0$ condition for all components of M_{ij} cannot be satisfied. The rank of the matrix $q_i \bar{q}_j$ is at most $N_F - N_C$ whereas the mass matrix m_i has the maximum rank, N_F. The lowest energy vacuum is at

$$M_{ij} = 0, \quad q_i = \bar{q}_i = \left(\frac{\sqrt{m_i \hat{\Lambda}} \delta_{IJ}}{0} \right),$$ \hfill (3)

where I and J runs from 1 to $N_F - N_C$, and m_i is sorted in descending order. The F-components of M_{ii} with $i = N_F - N_C + 1, \ldots, N_F$ have non-vanishing value m_i. At this vacuum, the gauge symmetry SU($N_F - N_C$) is completely broken.

We parametrize fluctuations around this vacuum to be:

$$\frac{\delta M_{ij}}{\hat{\Lambda}} = h \left(\begin{array}{cc} Y_{IJ} & Z_{Ia} \\ Z_{at} & \Phi_{ab} \end{array} \right), \quad \delta q_i = \left(\begin{array}{c} \chi_{IJ} \\ \rho_{Ia} \end{array} \right), \quad \delta \bar{q}_i = \left(\begin{array}{c} \tilde{\chi}_{IJ} \\ \tilde{\rho}_{Ia} \end{array} \right).$$ \hfill (4)
We put dimensionless parameter h of $O(1)$ so that components have canonically normalized kinetic term. Again, $I, J = 1, \cdots, N_F - N_C$ and $a, b = 1, \cdots, N_C$. Among these fields Φ_{ab} and the trace part of $\chi - \bar\chi$, $\text{Tr}[\chi - \bar\chi] \equiv \text{Tr}\delta\bar\chi$, remains massless at tree level. The other fields obtain masses of $O(\sqrt{m\Lambda})$. One-loop correction to a potential for the pseudo-moduli $\hat{\Phi}$ and $\text{Re}[\text{Tr}\delta\bar{\chi}]$ is shown to give positive masses squared, which ensures the stability of the vacuum.

Once we take into account the non-perturbative effect, the true supersymmetric vacuum appears far away from the origin of the meson field M. The lifetime of the false vacuum can be arbitrarily long if $m_i \ll \Lambda$. Also, interestingly, the supersymmetry breaking vacuum is preferred in the thermal history of the universe \[26, 27, 28\].

2.2 Gaugino masses

It is possible to embed the standard model gauge group into a flavor symmetry group of this model. When we take $m_1 = \cdots = m_{N_F - N_C} = m$ and $m_{N_F - N_C + 1} = \cdots = m_{N_F} = \mu$, there is a global symmetry; $\text{SU}(N_F - N_C)_F \times \text{SU}(N_C)_F \times \text{U}(1)\cdots$. With $N_F - N_C \geq 5$ or $N_C \geq 5$, we can embed $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)$ into $\text{SU}(N_F - N_C)_F$ or $\text{SU}(N_C)_F$, respectively. In the case where we embed $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)$ into the $\text{SU}(N_F - N_C)_F$ flavor symmetry, the standard model gauge group at low energy is a diagonal subgroup of $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)$ in $\text{SU}(N_F - N_C)_F$ flavor group.

As discussed in Ref. \[12\], there is an unbroken R-symmetry under which M carries charge two and q and \bar{q} are neutral. Since the R-symmetry forbids the gaugino masses, there is no contribution to the gaugino masses of the standard model gauge group even though it is directly coupled to a supersymmetry breaking sector. It is instructive to see how the gaugino masses vanish at one-loop. The fields ρ and $\tilde{\rho}$ carry quantum numbers of both $\text{SU}(N_F - N_C)$ and $\text{SU}(N_C)_F$ and couple to $\hat{\Phi}$ which has non-vanishing vacuum expectation value in the F-component. Therefore ρ and $\tilde{\rho}$ play a role of messenger fields in gauge mediation.\[†\] The relevant superpotential for this discussion is

\[
W = -h_\rho \hat{\Phi} \tilde{\rho} - h\tilde{m}(\rho \tilde{Z} + \bar{\rho} Z),
\]

where we suppressed indices and defined $\tilde{m} \equiv \sqrt{m\Lambda}$. The ρ and Z fields have mixing terms.

\[†\] Imaginary part of $\text{Tr}\delta\bar{\chi}$ is a Goldstone boson associated with a broken $\text{U}(1)_B$ symmetry.

\[‡\] The standard model gauge group at low energy partly comes from $\text{SU}(N_F - N_C)$ when we embed the $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)$ into $\text{SU}(N_F - N_C)_F$. One-loop diagrams with the ρ and $\tilde{\rho}$ fields, therefore, contribute to the gaugino masses also in this case, although they are not charged under $\text{SU}(N_F - N_C)_F$.

\[5\]
a matrix notation,

\[W = h(\rho, Z) \mathcal{M} \begin{pmatrix} \hat{\rho} \\ \hat{Z} \end{pmatrix} \]

(6)

where \(\mathcal{M} \) is a mass matrix for the messenger fields

\[\mathcal{M} = \begin{pmatrix} \hat{\Phi} & \hat{m} \\ \hat{m} & 0 \end{pmatrix}. \]

(7)

The formula for the gaugino masses can be generalized for this multi-messenger case as follows:

\[m_\lambda = \frac{g^2 \tilde{N}}{(4\pi)^2} F_\Phi \frac{\partial}{\partial \Phi} \log \det \mathcal{M}, \]

(8)

where \(\tilde{N} \) is \(N_C \) or \(N_F - N_C \) depending on whether we embed the standard model gauge group into the \(\text{SU}(N_F - N_C)_F \) or the \(\text{SU}(N_C)_F \) flavor symmetry. This formula is valid when \(F_\Phi \ll \tilde{m}^2 \).

Since there is no \(\hat{\Phi} \) dependence in \(\det \mathcal{M} \), we obtain \(m_\lambda = 0 \).

We can now clearly see that the gaugino mass would vanish at the leading order in \(F_\Phi/\tilde{m}^2 \) even if we could obtain a non-vanishing vacuum expectation value for \(\hat{\Phi} \) which breaks the \(R \)-symmetry [21]. In the following section, we consider a model with explicit \(R \)-symmetry breaking which generates the gaugino masses at the leading order in \(F_\Phi/\tilde{m}^2 \).

3 Deformed ISS model

Motivated by discussion in the previous section, we consider a modification of the ISS model which contains a mass term for the meson fields \(Z \) and \(\hat{Z} \) so that \(\det \mathcal{M} \) has \(\hat{\Phi} \) dependence. In the electric description, this corresponds to adding the following superpotential term

\[W \ni -\frac{1}{m_X} (Q_I \bar{Q}_a)(Q_a \bar{Q}_I), \]

(9)

where the color \(\text{SU}(N_C) \) indices are contracted in \((Q \bar{Q})\). Though this is a non-renormalizable interaction, it can be generated by integrating out extra massive fields coupled to \((Q_a, Q_I)\) in a renormalizable theory. In section 4, we will show that such a theory can be realized on intersecting branes in string theory. This interaction preserves the global symmetry \(\text{SU}(N_F - N_C)_F \times \text{SU}(N_C)_F \times U(1)_B \). We assume the same structure for mass terms of \(Q \) and \(\bar{Q} \) as that in the model in the previous section, i.e.,

\[W_{\text{mass}} = m(Q_I \bar{Q}_I) + \mu(Q_a \bar{Q}_a), \]

(10)

so that the global symmetry is preserved. In the magnetic description, the mass terms correspond

\[W_{\text{mass}}^{\text{mag}} = \tilde{m}^2 \text{Tr} Y + \tilde{\mu}^2 \text{Tr} \hat{\Phi}, \]

(11)
where $\tilde{m}^2 \equiv m \tilde{\Lambda}$ and $\tilde{\mu}^2 \equiv \mu \tilde{\Lambda}$. In terms of component fields, the full superpotential is given by

$$W = h \text{Tr} \left[\tilde{m}^2 Y + \tilde{\mu}^2 \tilde{\Phi} - \chi Y \tilde{\chi} - \chi Z \tilde{\rho} - \rho \tilde{Z} \tilde{\chi} - \rho \tilde{\Phi} \tilde{\rho} - m_z \tilde{Z} \tilde{Z} \right].$$

(12)

We could have added other terms compatible with the global symmetry. Although the theorem of [29] implies that a generic deformation to the superpotential generates a supersymmetry preserving vacuum at tree-level, it may not cause a problem with our scenario as far as the new vacuum is far from the one we are interested in and the transition rate between the vacua is small. However, since there are tree-level flat directions in $\tilde{\Phi}$, a deformation by $\text{Tr} \tilde{\Phi}^2$ destabilizes the ISS vacuum. Whether such a deformation is prohibited is a question of ultra-violet completions of the theory, but there is an interesting observation we can make from the point of view of the low energy effective theory. As we will see later, we need a certain level of hierarchy between m and μ ($\mu \ll m$) to suppress a tunneling rate into unwanted vacua and also to avoid a Landau pole of the gauge coupling of the standard model gauge interaction. With this hierarchy this model possesses an approximate (anomalous) R-symmetry which is softly broken by the small mass term μ. The charge assignment is $R(Q_I) = R(\tilde{Q}_I) = 1$ and $R(Q_a) = R(\tilde{Q}_a) = 0$. This symmetry justifies the absence or suppression of other higher dimensional operators such as $\text{Tr} \tilde{\Phi}^2$ which destabilize the supersymmetry breaking vacua. (The supersymmetry breaking vacua remain stable as far as the coefficient for $\text{Tr} \tilde{\Phi}^2$ is smaller than μ.)

3.1 Vacuum structure

The introduction of the mass term for Z and \tilde{Z} makes the vacuum structure of this model quite rich. In addition to the supersymmetric and supersymmetry breaking vacua in the ISS model, there are also several stable supersymmetry breaking vacua. The stability and decay probability between these vacua are controlled by parameters in superpotential.

Meta-stable supersymmetry breaking vacua

As long as m_z is smaller than \tilde{m}, we can think of m_z as a small perturbation to the ISS model, and thus there exists a similar meta-stable supersymmetry breaking vacuum. The effect of a finite value of m_z is a small shift of $\tilde{\Phi}$ of $O(m_z)$. The pseudo-moduli $\tilde{\Phi}$ and $\text{Re}[\text{Tr} \delta \tilde{\chi}]$ obtain masses of $O(h^2 \tilde{\mu}^2/\tilde{m})$ as in the ISS model. We show in Figure \[\] the one-loop effective potential for the pseudo-moduli $\tilde{\Phi}$. We see a small shift of the minimum. For $m_z > \tilde{m}$, this vacuum is destabilized. Therefore, we assume in the following that m_z is smaller than \tilde{m}.

The small m_z, in fact, modifies the vacuum structure drastically at far away from the origin.
Figure 1: One-loop effective potential $V_{\text{eff}}(\hat{\Phi}/\bar{m})$ along real axis of $\hat{\Phi}$ for $\text{Re}[\text{Tr}\delta \hat{\chi}] = 0$, $m_z = \bar{m}/3$ and $\bar{\mu} = \bar{m}/100$. The critical point is at $\hat{\Phi} = 0.1747 \bar{m}$. At $\hat{\Phi} \sim 3 \bar{m}$ there is a tachyonic direction toward non-zero ρ, $\tilde{\rho}$, Z and \tilde{Z} in field configuration space.

of the field space. We can find other supersymmetry breaking vacua with

$$\rho \tilde{\rho} = \frac{m_z^2}{m_z^2} Z \tilde{Z} = \text{diag}(\bar{\mu}^2, \ldots \bar{\mu}^2, 0 \ldots 0), \quad \chi \tilde{\chi} = \bar{m} \mathbf{1}_{N_F - N_C}, \quad (13)$$

$$Y = -\frac{\bar{\mu}^2}{m_z} \mathbf{1}_{N_F - N_C}, \quad \hat{\Phi} = -\frac{m_z^2}{m_z} \text{diag}(1, \ldots 1, 0 \ldots 0), \quad V_{\text{lower}} = (N_C - n)|h\bar{\mu}^2|^2, \quad (14)$$

where the number of $\bar{\mu}^2$ in the first equation, denoted n, runs from 1 to $N_F - N_C$. Since these vacua have energy that are lower than that of the ISS vacua, $V_{\text{ISS}} = N_C |h\bar{\mu}^2|^2$, it has non-zero transition probability to these vacua. Below, we show that the decay rate can be made parametrically small by a mass hierarchy, $\bar{\mu} \ll \bar{m}$. Although the vacuum with $n = N_F - N_C$ is the global minimum of the classical potential, they are not phenomenologically viable since gauginos cannot get masses at the leading order in F/\bar{m}^2 for the same reason as in the original ISS model when we embed the standard model into some of unbroken global symmetry.

As we have seen, our vacuum is not the global minimum of the potential. It can decay into lower energy vacua specified by (13) and (14). We estimate the decay rate by evaluating the Euclidean action from our vacuum to others. The barrier by the one-loop potential is not high, of order $O(\bar{\mu}^4)$. Thus, the most efficient path is to climb up the potential of $\hat{\Phi}$ and then slide down to more stable supersymmetry breaking vacua. The distance between $\langle \hat{\Phi} \rangle|_{\text{lower}}$ and $\langle \hat{\Phi} \rangle|_{\text{ISS}}$ is of order $O(m_z^2/m_z)$ and is wide compared to the height of the potential. Thus, we can estimate bounce action with triangle approximation [30],

$$S \sim \left(\frac{\bar{m}}{\mu}\right)^4 \left(\frac{\bar{m}}{m_z}\right)^4.$$

Even if we choose $m_z \sim \bar{m}$, which will be required below, the Euclidean action can be made parametrically large by taking $\bar{\mu} \ll \bar{m}$. Thus, the decay rate is parametrically small.
One might think that we can find more efficient path through tree level potential barrier. However at least it has to climb up \(V_{\text{peak}} \sim O(\bar{\mu}^2 \bar{m}^2) \) that is very high, compared to the difference between two supersymmetry breaking vacua, of order \(O(\bar{\mu}^4) \). In this case, we can use the thin wall approximation \([31]\) to estimate the bounce action and obtain \(S \sim (\bar{m}/\bar{\mu})^8 \). Again, we can make it parametrically large when \(\bar{\mu} \ll \bar{m} \).

Supersymmetry preserving vacua

So far we studied supersymmetry breaking vacua. In addition to these, the model also has supersymmetric vacua. Here, we will show that these supersymmetry preserving vacua can also be identified in the free magnetic dual description. Following \([12]\), we look for a supersymmetric vacuum where meson fields get large expectation values. By the vacuum expectation value of \(Y \) and \(\hat{\Phi} \), dual quarks \(\chi, \tilde{\chi} \) and \(\rho, \tilde{\rho} \) become massive and can be integrated out. Also in the energy scale \(E < h m_z \), \(Z \) and \(\bar{Z} \) should be integrated out. Thus, we are left with the superpotential,

\[
W = -h \bar{m}^2 Y - h \bar{\mu}^2 \hat{\Phi} + (N_F - N_C) \Lambda_{\text{eff}}^3
\]

where the last term is generated by non-perturbative dynamics of a pure \(SU(N_F - N_C) \) gauge theory. The low energy scale \(\Lambda_{\text{eff}} \) after decoupling of dual quarks, is given by the matching conditions at the two mass scales \(h Y \) and \(h \hat{\Phi} \),

\[
\Lambda_{\text{eff}}^3 = \langle h Y \rangle \langle h \hat{\Phi} \rangle \frac{N_C}{N_F - N_C} \Lambda_m^{3(N_C - 2N_F)}/N_C.
\]

Note that \(Z \) and \(\bar{Z} \) are singlets for the gauge group and do not contribute to running of gauge coupling. With the non-perturbative superpotential, \(F \)-term conditions for light field \(Y \) and \(\hat{\Phi} \) have solutions of the form,

\[
\langle h \hat{\Phi} \rangle = \bar{m} \frac{2(N_F - N_C)}{N_C} \Lambda_m^{-3(N_C - 2N_F)/(N_F - N_C)}, \quad \langle h Y \rangle = \frac{\bar{\mu}^2}{m} \Lambda_m^{-3(N_C - 2N_F)/(N_F - N_C)}.
\]

Since \(\langle h \hat{\Phi} \rangle \gg \langle h Y \rangle \) and the difference of the vacuum expectation value \(\hat{\Phi} \) between supersymmetric vacua and supersymmetry breaking vacua is very large, compared to the height of supersymmetry breaking vacua, we can estimate the Euclidean action for the decay process by triangle approximation \([30]\),

\[
S \sim \langle h \hat{\Phi} \rangle^4 \mu^4 \sim \left(\frac{\bar{m}}{\bar{\mu}} \right)^4 \left(\frac{\Lambda_m}{\bar{m}} \right)^{4(3N_C - 2N_F)/N_C}, \quad (15)
\]

The factor \(3N_C - 2N_F \) is always positive. Therefore, with the mass hierarchy \(\bar{\mu} \ll \bar{m} \) and \(\bar{m} \ll \Lambda_m \), we can make the action arbitrarily large, and thus make the meta-stable vacua arbitrarily long-lived. These conditions also allow us to ignore higher order correction to the Kähler potential.
3.2 Gaugino and scalar masses

With the explicit R-symmetry breaking by m_z, direct mediation of supersymmetry breaking happens. The standard model gauge group can be embedded into either the SU($N_F - N_C$)$_F$ or the SU(N_C)$_F$ flavor symmetry which is remained unbroken at low energy.

The gaugino masses are, in this case, given by the same formula in Eq. (8) with mass matrix \mathcal{M}:

\[\mathcal{M} = \begin{pmatrix} \hat{\Phi} & \tilde{m} \\ \tilde{m} & m_z \end{pmatrix} \]

(16)

Therefore

\[m_\lambda = \frac{g^2 \tilde{N} h \mu^2 m_z}{(4\pi)^2} \frac{m_z}{\tilde{m}} + O \left(\frac{m_z^2}{\tilde{m}^2} \right) , \]

(17)

with g^2 the gauge coupling constant of the standard model gauge interaction. The factor \tilde{N} is again $\tilde{N} = N_C$ ($\tilde{N} = N_F - N_C$) when we embed the standard model gauge group into SU($N_F - N_C$) (SU(N_C)).

Scalar masses are also obtained by two-loop diagrams. It is calculated to be

\[m_i^2 = 2\tilde{N}C_2^i \left(\frac{g^2}{(4\pi)^2} \right)^2 \left(\frac{h \mu^2}{\tilde{m}} \right)^2 + O \left(\frac{m_z^4}{\tilde{m}^4} \right) . \]

(18)

C_2^i is a quadratic Casimir factor for a field labeled i. For having a similar size of gaugino and scalar masses, $m_z \sim \tilde{m}/\sqrt{\tilde{N}}$ is required. It is possible to have this relation as long as $m_z < \tilde{m}$ without destabilizing the meta-stable vacuum.

3.3 Mass spectrum and the Landau pole problem

We summarize the mass spectrum at the ISS vacuum here. The massless modes are the Goldstone boson, Im[Tr$\delta\chi$], and the fermionic component of Tr$\delta\chi$. The pseudo-moduli $\hat{\Phi}$ and Re[Tr$\delta\chi$] have masses which are similar size to the gauginos, i.e., $O(100\text{ GeV})$. Other component fields in the chiral multiplets Y, Z, \tilde{Z}, ρ, $\tilde{\rho}$, χ and $\tilde{\chi}$ have masses of $O(h\tilde{m})$ or eaten by the gauge/gaugino fields.

Discussion of the Landau pole depends on a way of embedding of the standard model gauge group into flavor symmetries. We separately discuss two cases. We find that it is possible to avoid a Landau pole if we embed the standard model gauge group into the SU($N_F - N_C$)$_F$ flavor symmetry and take the dynamical scale and the mass parameter \tilde{m} to be large enough. We also comment on an alternative possibility that the SU(N_C) gauge theory above the scale m is a conformal field theory (CFT). This possibility allows us to take the mass parameter m
and the dynamical scale Λ to be much lower than the unification scale without the Landau pole problem.

3.3.1 Embedding $\text{SU}(3) \times \text{SU}(2) \times \text{U}(1)$ into $\text{SU}(N_F - N_C)_F$

In this case, the pseudo-moduli $\hat{\Phi}$ is a singlet under the standard model gauge group, and thus it does not contribute to the beta function.

The beta function coefficients of the SU(3) gauge coupling is

$$b_3(\mu_R < h\bar{m}) = -3, \quad b_3(h\bar{m} < \mu_R < \Lambda) = -3 + 2N_F - N_C, \quad b_3(\mu_R > \Lambda) = -3 + N_C,$$

where μ_R is a renormalization scale. Above the mass scale $m_X (\gg \Lambda)$, which is defined in Eq. (9), the theory should be replaced by a renormalizable theory, where it necessarily contains additional fields. Therefore, there are contributions from those fields above the scale m_X. The size of the contributions depends on a specific ultra-violet completion of the theory.

In order for the embedding to be possible, $N_F - N_C \geq 5$, and from the condition $N_C < N_F < \frac{3}{2}N_C$, we obtain

$$2N_F - N_C > 20, \quad N_C > 10.$$ \hspace{1cm} (20)

There is a quite large contribution to the beta function. To avoid a Landau pole below the unification scale, $M_{\text{GUT}} \sim 10^{16} \text{ GeV}$, the mass scales $h\bar{m}$ and Λ should be high enough. For example, $\Lambda \sim M_{\text{GUT}}$ and $h\bar{m} \gtrsim 10^{13} \text{ GeV}$ can avoid the Landau pole.

Model in the conformal window

Although it is not conclusive, the authors of Ref. [12] suggested that there is a meta-stable supersymmetry breaking vacuum also when the numbers of colors and flavors are the same. If it is the case, there is an interesting possibility that we can go into the conformal window, $\frac{3}{2}N_C \leq N_F < 3N_C$. If N_F is in the conformal window, the gauge coupling of SU(N_C) flows into the conformal fixed point at some scale Λ_*.

The theory stays as a CFT until the mass term $m(Q_I\bar{Q}_I)$ becomes important, and eventually at a lower scale $\Lambda \sim m$, the theory exits from the CFT and becomes strongly coupled. The effective theory below the scale $\Lambda \sim m$ is described by an SU(N_C) gauge theory with N_C flavors with a mass term $\mu(Q_a\bar{Q}_a)$. This is exactly the ISS model with N_C flavors. Once we assume the existence of the meta-stable supersymmetry breaking vacuum, direct gauge mediation should happen as we discussed in the previous section although we have lost the control of the perturbative calculation. (See [32] for a similar model.)

The beta function coefficient b_3 is in this case,

$$b_3(\mu_R < \Lambda) = -3, \quad b_3(\Lambda < \mu_R < \Lambda_*) = -3 + \frac{3N_C^2}{N_F} + \Delta, \quad b_3(\mu_R > \Lambda_*) = -3 + N_C + \Delta',$$ \hspace{1cm} (21)
where we have included a contribution from anomalous dimensions of Q’s in CFTs [33, 34, 35]. The factors Δ and Δ' are unspecified contributions from the fields which generate the m_z term.

With $\frac{3}{2}N_C \leq N_F < 3N_C$ and $N_F - N_C \geq 5$, we find

$$N_C \geq 3, \quad N_F \geq 8, \quad \frac{3N_F^2}{N_F} \geq \frac{27}{8}. \quad (22)$$

Therefore, the dynamical scale $\Lambda \sim m$ can be much lower than the unification scale in this case. For example, if we take the ultra-violet completion to be simply adding a pair of massive fields η_{la} and $\tilde{\eta}_{al}$ which couple to $(Q_a\tilde{Q}_1)$ and $(Q_1\tilde{Q}_a)$, respectively, the additional contributions are $\Delta = \Delta' = N_C$. In this case, we can take the dynamical scale $\Lambda \sim m$ to be as low as $O(100 - 1000 \text{ TeV})$ without a Landau pole problem for $N_C = 3$ and $N_F = 8$.

We implicitly took the scale m_X, where the m_z term is generated, to be $O(\Lambda)$ in Eq. (21) because of the requirement $m_z \sim \bar{m}$ for the sizes of the gaugino and scalar masses to be similar. With $m_z \sim \Lambda^2/m_X$ (see Eq. (6)) and $m \sim \Lambda$, we need to take $m_X \sim \Lambda$. However, the actual scale at which new fields appear can be much higher than Λ or even Λ_* when the anomalous dimensions of Q and \tilde{Q} are large in the CFT. For example, when $N_F \leq 2N_C$, $(Q_1\tilde{Q}_a)(Q_a\tilde{Q}_1)$ is a marginal or a relevant operator. In this case, it is not required to have an ultra-violet completion of the theory up to $O(\Lambda_*)$ or higher, i.e., $\Delta = 0$, while satisfying $m_z \sim \bar{m}$. This can be understood by the running of the $1/m_X$ parameter in the CFT:

$$\frac{1}{m_X(\mu_R)} = \frac{1}{m_X(\Lambda)} \left(\frac{\mu_R}{\Lambda}\right)^{(2N_F-6N_C)/N_F}. \quad (23)$$

The unspecified contribution Δ' is not important if Λ_* is high enough.

If $N_F - N_C > 5$, there are flavors with mass m which are not charged under the standard model gauge group. If we reduce the masses of those fields to be slightly smaller than m, the low energy effective theory below Λ has more flavors and we can perform a reliable perturbative calculation of the potential for pseudo-moduli.

It is interesting to note that this CFT model may be regarded as a dual description of models with a warped extra-dimension in Refs. [36, 37, 38, 39], where supersymmetry is broken on an infrared brane, and standard model gauge fields are living in the bulk of the extra-dimension.

3.3.2 Embedding SU(3) × SU(2) × U(1) into SU(N_C)_F

In this case, b_3 is given by

$$b_3(\mu_R < h\bar{m}) = -3 + N_C, \quad b_3(h\bar{m} < \mu_R < \Lambda) = -3 + 2N_F - N_C, \quad b_3(\mu_R > \Lambda) = -3 + N_C. \quad (24)$$

12
The condition for the embedding to be possible is \(N_C \geq 5 \). Therefore

\[
2N_F - N_C > 5, \quad N_C \geq 5.
\] (25)

With this constraint, there is always a Landau pole below the unification scale. The situation does not improve even if we consider the possibility of the CFT above the mass scale \(m \).

To summarize, by embedding the standard model gauge group in the \(SU(N_F - N_C) \) subgroup of the flavor symmetry, we can couple the ISS model to the standard model. The gaugino masses are generated at one-loop, and the Landau pole problem can be avoided if the gauge coupling scale of the ISS sector is sufficiently high or if the theory above the mass scale \(m \) is a CFT.

4 Ultra-violet completions

The perturbation to the ISS model we considered in the previous section is non-renormalizable in the electric description. In this section we will show that the model can be regarded as a low energy effective theory of a renormalizable gauge theory at high energy. Moreover, this renormalizable theory itself can be realized as a low energy effective theory on intersecting branes and on branes on a local Calabi-Yau manifold in string theory. In order to decouple Kaluza-Klein and string excitations from the gauge theory, the length scale of these brane configurations as well as the string length must be smaller than that of the gauge theory. These brane configurations are so simple that it may be possible to incorporate them in the on-going effort to construct the minimal supersymmetric standard model from string theory compactifications.

One way to generate the non-renormalizable interaction (9) is as follows. Consider an \(\mathcal{N} = 2 \) quiver gauge theory with the gauge group \(U(N_1) \times U(N_2) \times U(N_3) \) with

\[
N_1 = N_F - N_C, \quad N_2 = N_C, \quad N_3 = N_C,
\] (26)

and identify \(U(N_2) \) with the gauge group \(U(N_C) \) of the ISS model.\footnote{In the previous sections, we consider the case when the gauge group is \(SU(N_C) \). When the gauge group is \(U(N_C) \), the “baryon” symmetry is gauged and one of the pseudo-moduli \(Tr\hat{\chi} \) becomes massive at tree-level due to the additional D-term condition. Otherwise, there is no major difference in properties of meta-stable vacua.} We assume that the scales \(\Lambda_1, \Lambda_3 \) for the other gauge group factors are so low that we can treat \(U(N_1) \times U(N_3) \) as a flavor group. We then deform the theory by turning on the superpotential \(W_1(X_1) + W_2(X_2) + W_3(X_3) \) for the adjoint fields \(X_1, X_2, X_3 \) in the \(\mathcal{N} = 2 \) vector multiplets given by

\[
W_1 = \frac{M_X}{2}X_1^2 + \alpha_1 X_1, \quad W_2 = -\frac{M_X}{2}X_2^2, \quad W_3 = \frac{M_X}{2}X_3^2 + \alpha_3 X_3.
\]
This breaks $\mathcal{N} = 2$ supersymmetry into $\mathcal{N} = 1$, and the total tree level superpotential of the deformed theory is

$$W_{\text{tree}} = -Q_{21}X_1Q_{12} + Q_{12}X_2Q_{21} - Q_{32}X_2Q_{23} + Q_{23}X_3Q_{32} + W_1(X_1) + W_2(X_2) + W_3(X_3)$$

After integrating out massive fields X_i, the superpotential can be written as

$$W_{\text{tree}} = \text{Tr} m_Q Q \bar{Q} + \text{Tr} K_1 Q \bar{Q} K_2 Q \bar{Q}$$

$$m_Q = \text{diag} \left(\alpha_1/M_X, \alpha_3/M_X \right), \quad K_1 = \text{diag} \left(0, 1/M_X \right), \quad K_2 = \text{diag} \left(1, 0 \right).$$

This reproduces the interaction (9) and the mass terms for (Q_I, Q_a) if we set

$$\frac{\alpha_1 \Lambda_2}{M_X} = \hbar \tilde{m}^2, \quad \frac{\alpha_3 \Lambda_2}{M_X} = \hbar \tilde{m}^2, \quad \frac{\Lambda_2^2}{M_X} = \hbar m_z. \quad (27)$$

Since we suppose $\Lambda_2 < M_X$, all the equations (27) can be satisfied by appropriately choosing parameters $\alpha_{1,2}$ and M_X.

4.1 Embedding in string theory

In the perturbative string theory, the collective coordinates of D-branes are open strings ending on them [40]. Since the lightest degrees of freedom of open strings include gauge fields, variety of gauge theories arise on intersecting branes in the low energy limit where the string length becomes small and the coupling of D-branes to the bulk gravitational degrees of freedom becomes negligible [41, 42, 43]. We will present an intersecting brane configuration where the deformed ISS model is realized as a low energy effective theory. One should not be confused that our use of the intersecting brane model implies that the theory above the dynamical scale Λ is replaced by string theory or a higher dimensional theory. The string length and the compactification scale are much shorter than the gauge theory scale. It is one of the string miracles that quantum moduli spaces of low energy gauge theories are often realized as actual physical spaces such as brane configurations or Calabi-Yau geometry, allowing us to discuss deep infrared physics in the ultra-violet descriptions of the theories. This phenomenon has been well-established for moduli spaces of supersymmetric vacua, and it has just begun to be explored for supersymmetry breaking vacua [44, 45, 46, 47, 48, 49]. (For earlier works in this direction, see for example [50, 51, 52].) Here, we will find that meta-stable supersymmetry breaking vacua of the deformed ISS model are realized as geometric configurations of branes.

Consider Type IIA superstring theory in the flat 10-dimensional Minkowski spacetime with coordinates $x^{0,\ldots,9}$. Introduce four NS5 branes located at $x^{7,8,9} = 0$ and at different points in
the x^6 direction, and extended in the $x^{0,\cdots,3}$ and $x^{4,5}$ directions. Let us call these NS5 branes from the left to right along the x^6 direction as NS5$_1$, NS5$_2$, NS5$_3$, and NS5$_4$. We then suspend $(N_F - N_C)$ D4 branes between NS5$_1$ and NS5$_2$, N_C D4 branes between NS5$_2$ and NS5$_3$, and N_C D4 branes between NS5$_3$ and NS5$_4$. The brane dynamics in the common $x^{0,\cdots,3}$ directions is described by the $\mathcal{N} = 2$ supersymmetric quiver gauge theory with the gauge group $U(N_F - N_C) \times U(N_C) \times U(N_C)$. Note that the gauge coupling constant $g_{YM}^{(i)}$ for the three gauge group factors are given at the string scale by

$$(g_{YM}^{(i)})^2 = g_s \frac{\ell_s}{L_i},$$

where g_s and ℓ_s are string coupling constant and string length, and L_1, L_2, L_3 are the lengths of the three types of D4 branes suspended between NS5 branes. The gauge couplings $g_{YM}^{(i=1,2,3)}$ set the initial conditions for the renormalization group equation at ultra-violet. The $\mathcal{N} = 2$ quiver gauge theory is realized in the low energy limit where $g_s, \ell_s, L_i \to 0$, keeping $g_{YM}^{(i)}$ fixed. We choose $L_2 \ll L_1, L_3$ so that the gauge coupling constants for $U(N_1) \times U(N_3)$ are small.

We can turn on the superpotentials $W_1 + W_2 + W_3$ by rotating NS5$_2$ and NS5$_4$ into the $x^{7,8}$ directions. More precisely, we use the complex coordinates $z = x^4 + ix^5$ and $w = x^7 + ix^8$ and rotate the two NS5 branes on the $z - w$ plane so that they are extended in the direction of $\cos \theta z + \sin \theta w$. The holomorphic rotation preserves $\mathcal{N} = 1$ supersymmetry. In the field theory, this corresponds to turning on $W_1 + W_2 + W_3$ with $M_X = \tan \theta$ [53]. We can also turn on the quark masses m and μ by moving NS5$_1$ and NS5$_4$ in the w direction. The resulting configuration is shown in Figure 2.

![Figure 2: The electric brane configuration.](image)

We can also T-dualize the NS5 branes to turn the D4 branes suspended between the NS5 branes into D branes wrapping compact cycles in a local Calabi-Yau manifold [54]. Realizations of meta-stable vacua on branes partially wrapping cycles in Calabi-Yau manifolds have been discussed, for example, in [55, 48].

The brane configuration shown in Figure 2 is similar to the one appeared recently in [47].
However, there are some important differences. In the model of [47], the quark masses \(m \) and \(\mu \) in the electric description are set equal to zero. Moreover, the strong coupling scales of the three gauge group factors are chosen as \(\Lambda_1, \Lambda_2 \ll \Lambda_3 \) in the model of [47], whereas \(\Lambda_1, \Lambda_3 \ll \Lambda_2 \) in our model. These differences have led to different ways of supersymmetry breaking in these models. Despite the differences, some of the results in [47] may be useful for further studies of our model.

4.2 Meta-stable supersymmetry breaking vacua on the brane configuration

In [44, 45], the ISS model and its magnetic dual were studied by realizing them on intersecting branes, and brane configurations for the supersymmetry breaking vacua were identified. The brane configurations provide a geometric way to understand the vacuum structure of the model. Recently it was used, for example, to study solitonic states on the meta-stable vacuum in the ISS model [56]. Here, we will present brane configurations that correspond to the meta-stable vacua in the deformed ISS model.

To identify the meta-stable vacua, we need to go to the magnetic description, which is realized on branes by exchanging NS5\(_2\) and NS5\(_3\). Since we assume \(L_2 \ll L_1, L_3 \), it is reasonable to expect that the first duality transformation involves only these two NS5 branes. To avoid confusion, let us call the resulting NS5 branes as NS5\(_1\), NS5\(_2\)', NS5\(_3\)', and NS5\(_4\) from the left to right in the \(x^6 \) direction. Note that NS5\(_1\) and NS5\(_2\) are parallel to each other, and so are NS5\(_3\)' and NS5\(_4\). There are \((N_F - N_C)\) D4 branes between NS5\(_1\) and NS5\(_3\)', \(N_C\) anti-D4 branes between NS5\(_2\) and NS5\(_3\)', and \(N_C\) D4 branes between NS5\(_2\)' and NS5\(_4\).

The ISS vacuum is obtained by bending the \(N_C\) D4 branes between NS5\(_2\) and NS5\(_4\) toward NS5\(_3\)', disconnect each of them at NS5\(_3\)', and annihilate their segments between NS5\(_2\)' and NS5\(_3\)' with the \(N_C\) anti-D4 branes by the tachyon condensation. The resulting brane configuration is shown in Figure 3. Note that this configuration breaks supersymmetry since the D4 branes between NS5\(_1\) and NS5\(_2\)' and the D4 branes between NS5\(_3\)' and NS5\(_4\) are in angles. Since their end-point separation is of the order of \(|m|\) whereas the supersymmetry breaking is of the order of their relative angles \(\sim |\mu|\), an open string stretched between these D4 branes does not contain a tachyon mode provided \(|m| \gg |\mu|\). Since NS5\(_3\)' and NS5\(_4\) are parallel to each other, the \(N_C\) D4 branes between them can move along them. This freedom corresponds to pseudo-moduli \(\hat{\Phi}\).

These D4 branes are stabilized by a potential induced by closed string exchange between them and the D4 branes between NS5\(_1\) and NS5\(_2\)', which is the closed string dual of the Coleman-

*See [48] on issues that arise when one turns on finite string coupling in these brane configurations. These issues are not relevant to our discussion below since we mostly deal with tree-level properties of Type IIA superstring theory.
We can also identify the other meta-stable vacua of the deformed ISS model. Let us take n of the N_C D4 branes between NS5'$_3$ and NS5$_4$ and move them toward the $(N_F - N_C)$ D4 branes between NS5$_1$ and NS5'$_3$. Doing this costs energy since these D4 branes have to climb up the Coleman-Weinberg potential. Eventually, as they approach the D4 branes between NS5$_1$ and NS5'$_3$, open strings between the two kinds of D4 branes start developing tachyonic modes. The tachyon condensation then reconnects n pairs of D4 branes, leading to the brane configuration as shown in Figure 4. This process lowers the vacuum energy since the length of the single D4 brane between NS5$_1$ and NS5$_4$ is shorter than the sum of the two D4 branes before the reconnection.

One can show that these brane configurations reproduce various features of the corresponding meta-stable vacua, such as their vacuum energies, expectation values of various fields (such as $\rho \hat{\rho}$, Y, and $\hat{\Phi}$), and their decay processes. This can be done by a straightforward application of the brane configuration analysis in [44, 45, 46], and we leave it as an exercise for the readers.
5 Meta-stability at finite temperature?

It has been shown that the meta-stable supersymmetry breaking vacuum in the ISS model is favored in the thermal history of the universe [24, 27, 28]. The essential observation is that there are more light degrees of freedom in the supersymmetry breaking vacuum compared to the supersymmetric one. Finite temperature effects make the meta-stable vacuum more attractive in this circumstance.

In the deformed ISS model we discussed in this paper, there are many other meta-stable vacua. However, interestingly, the desired vacuum (the ISS vacuum) possesses the largest symmetry group among those vacua. In other vacua, number of degrees of freedom of the pseudo-moduli is reduced because some components of $\hat{\Phi}$ have masses at tree level. Therefore, the desired vacuum is the most attractive in the thermal history of the universe.

Acknowledgments

We would like to thank K. Intriligator, H. Murayama, E. Silverstein, T. Watari, and T. Yanagida for discussions. RK thanks the hospitality of the high energy theory group at Rutgers University. The work of RK was supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515. The work of HO and YO is supported in part by the U.S. Department of Energy under contract number DE-FG03-92-ER40701. HO is also supported in part by the U.S. National Science Foundation under contract number OISE-0403366. YO is also supported in part by the JSPS Fellowship for Research Abroad.

References

[1] S. Dimopoulos and H. Georgi, “Softly broken supersymmetry and SU(5),” Nucl. Phys. B 193, 150 (1981).

[2] S. Dimopoulos, S. Raby and F. Wilczek, “Supersymmetry and the scale of unification,” Phys. Rev. D 24, 1681 (1981).

[3] N. Sakai, “Naturalness in supersymmetric GUTS,” Z. Phys. C 11, 153 (1981).

[4] M. Dine, W. Fischler and M. Srednicki, “Supersymmetric technicolor,” Nucl. Phys. B 189, 575 (1981).

[5] S. Dimopoulos and S. Raby, “Supercolor,” Nucl. Phys. B 192, 353 (1981);
[6] E. Witten, “Constraints on supersymmetry breaking,” Nucl. Phys. B 202, 253 (1982).

[7] I. Affleck, M. Dine and N. Seiberg, “Supersymmetry breaking by instantons,” Phys. Rev. Lett. 51, 1026 (1983).

[8] I. Affleck, M. Dine and N. Seiberg, “Dynamical supersymmetry breaking in supersymmetric QCD,” Nucl. Phys. B 241, 493 (1984).

[9] I. Affleck, M. Dine and N. Seiberg, “Dynamical supersymmetry breaking in four-dimensions and its phenomenological implications,” Nucl. Phys. B 256, 557 (1985).

[10] E. Poppitz and S. P. Trivedi, “New models of gauge and gravity mediated supersymmetry breaking,” Phys. Rev. D 55, 5508 (1997) [arXiv:hep-ph/9609529].

[11] N. Arkani-Hamed, J. March-Russell and H. Murayama, “Building models of gauge-mediated supersymmetry breaking without a messenger sector,” Nucl. Phys. B 509, 3 (1998) [arXiv:hep-ph/9701286].

[12] K. Intriligator, N. Seiberg and D. Shih, “Dynamical SUSY breaking in meta-stable vacua,” JHEP 0604, 021 (2006) [arXiv:hep-th/0602239].

[13] T. Banks, “Remodeling the pentagon after the events of 2/23/06,” arXiv:hep-ph/0606313.

[14] M. Dine and J. Mason, “Gauge mediation in metastable vacua,” arXiv:hep-ph/0611312.

[15] E. Witten, “Mass Hierarchies In Supersymmetric Theories,” Phys. Lett. B 105, 267 (1981).

[16] H. Murayama, “A model of direct gauge mediation,” Phys. Rev. Lett. 79, 18 (1997) [arXiv:hep-ph/9705271].

[17] S. Dimopoulos, G. R. Dvali and R. Rattazzi, “A simple complete model of gauge-mediated SUSY-breaking and dynamical relaxation mechanism for solving the mu problem,” Phys. Lett. B 413, 336 (1997) [arXiv:hep-ph/9707537].

[18] M. A. Luty, “Simple gauge-mediated models with local minima,” Phys. Lett. B 414, 71 (1997) [arXiv:hep-ph/9706554].

[19] K. Agashe, “An improved model of direct gauge mediation,” Phys. Lett. B 435, 83 (1998) [arXiv:hep-ph/9804450].

[20] R. Kitano, “Gravitational gauge mediation,” Phys. Lett. B 641, 203 (2006) [arXiv:hep-ph/0607090].
[21] K. I. Izawa, Y. Nomura, K. Tobe and T. Yanagida, “Direct-transmission models of dynamical supersymmetry breaking,” Phys. Rev. D 56, 2886 (1997) [arXiv:hep-ph/9705228].

[22] R. Kitano, “Dynamical GUT breaking and mu-term driven supersymmetry breaking,” arXiv:hep-ph/0606129.

[23] M. Dine and W. Fischler, “A Phenomenological Model Of Particle Physics Based On Supersymmetry,” Phys. Lett. B 110, 227 (1982).

[24] C. R. Nappi and B. A. Ovrut, “Supersymmetric extension of the SU(3) × SU(2) × U(1) model,” Phys. Lett. B 113, 175 (1982).

[25] L. Alvarez-Gaume, M. Claudson and M. B. Wise, “Low-energy supersymmetry,” Nucl. Phys. B 207, 96 (1982).

[26] S. A. Abel, C. S. Chu, J. Jaeckel and V. V. Khoze, “SUSY breaking by a metastable ground state: Why the early universe preferred the non-supersymmetric vacuum,” arXiv:hep-th/0610334.

[27] N. J. Craig, P. J. Fox and J. G. Wacker, “Reheating metastable O’Raifeartaigh models,” arXiv:hep-th/0611006.

[28] W. Fischler, V. Kaplunovsky, C. Krishnan, L. Mannelli and M. Torres, “Meta-stable supersymmetry breaking in a cooling universe,” arXiv:hep-th/0611018.

[29] A. E. Nelson and N. Seiberg, “R symmetry breaking versus supersymmetry breaking,” Nucl. Phys. B 416, 46 (1994) [arXiv:hep-ph/9309299].

[30] M. J. Duncan and L. G. Jensen, “Exact tunneling solutions in scalar field theory,” Phys. Lett. B 291, 109 (1992).

[31] S. R. Coleman, “The fate of the false vacuum. 1. semiclassical theory,” Phys. Rev. D 15, 2929 (1977) [Erratum-ibid. D 16, 1248 (1977)].

[32] K. I. Izawa and T. Yanagida, “Strongly coupled gauge mediation,” Prog. Theor. Phys. 114, 433 (2005) [arXiv:hep-ph/0501254].

[33] V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, “Instantons in supersymmetric theories,” Nucl. Phys. B 223, 445 (1983).

[34] M. A. Shifman and A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion,” Nucl. Phys. B 277, 456 (1986) [Sov. Phys. JETP 64, 428 (1986 ZETF 91, 723-744.1986)].
[35] N. Seiberg, “Exact results on the space of vacua of four-dimensional susy gauge theories,” Phys. Rev. D 49, 6857 (1994) [arXiv:hep-th/9402044].

[36] T. Gherghetta and A. Pomarol, “Bulk fields and supersymmetry in a slice of AdS,” Nucl. Phys. B 586, 141 (2000) [arXiv:hep-ph/0003129].

[37] T. Gherghetta and A. Pomarol, “A warped supersymmetric standard model,” Nucl. Phys. B 602, 3 (2001) [arXiv:hep-ph/0012378].

[38] W. D. Goldberger, Y. Nomura and D. R. Smith, “Warped supersymmetric grand unification,” Phys. Rev. D 67, 075021 (2003) [arXiv:hep-ph/0209158].

[39] Y. Nomura, “Supersymmetric unification in warped space,” arXiv:hep-ph/0410348.

[40] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017].

[41] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics,” Nucl. Phys. B 492, 152 (1997) [arXiv:hep-th/9611230].

[42] S. Elitzur, A. Giveon and D. Kutasov, “Branes and $\mathcal{N}=1$ duality in string theory,” Phys. Lett. B 400, 269 (1997) [arXiv:hep-th/9702014].

[43] A. Giveon and D. Kutasov, “Brane dynamics and gauge theory,” Rev. Mod. Phys. 71, 983 (1999) [arXiv:hep-th/9802067].

[44] H. Ooguri and Y. Ookouchi, “Meta-stable supersymmetry breaking vacua on intersecting branes,” Phys. Lett. B 641, 323 (2006) [arXiv:hep-th/0607183].

[45] S. Franco, I. Garcia-Etxebarria and A. M. Uranga, “Non-supersymmetric meta-stable vacua from brane configurations,” arXiv:hep-th/0607218.

[46] I. Bena, E. Gorbatov, S. Hellerman, N. Seiberg and D. Shih, “A note on (meta)stable brane configurations in MQCD,” arXiv:hep-th/0608157.

[47] R. Argurio, M. Bertolini, S. Franco and S. Kachru, “Gauge/gravity duality and meta-stable dynamical supersymmetry breaking,” arXiv:hep-th/0610212.

[48] M. Aganagic, C. Beem, J. Seo and C. Vafa, “Geometrically induced metastability and holography,” arXiv:hep-th/0610249.

[49] H. Verlinde, “On metastable branes and a new type of magnetic monopole,” arXiv:hep-th/0611069.
[50] J. de Boer, K. Hori, H. Ooguri and Y. Oz, “Branes and dynamical supersymmetry breaking,” Nucl. Phys. B 522, 20 (1998) [arXiv:hep-th/9801060].

[51] C. Vafa, “Superstrings and topological strings at large N,” J. Math. Phys. 42, 2798 (2001) [arXiv:hep-th/0008142].

[52] S. Kachru, J. Pearson and H. L. Verlinde, “Brane/flux annihilation and the string dual of a non-supersymmetric field theory,” JHEP 0206, 021 (2002) [arXiv:hep-th/0112197].

[53] J. L. F. Barbon, “Rotated branes and $\mathcal{N} = 1$ duality,” Phys. Lett. B 402, 59 (1997) [arXiv:hep-th/9703051].

[54] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz and C. Vafa, “A geometric unification of dualities,” Nucl. Phys. B 628, 3 (2002) [arXiv:hep-th/0110028].

[55] H. Ooguri and Y. Ookouchi, “Landscape of supersymmetry breaking vacua in geometrically realized gauge theories,” Nucl. Phys. B 755, 239 (2006) [arXiv:hep-th/0606061].

[56] M. Eto, K. Hashimoto and S. Terashima, “Solitons in supersymmetry breaking meta-stable vacua,” arXiv:hep-th/0610042.