Supporting Information

SI Materials and Methods

Patients

Plasma samples from two distinct cohorts of HIV-1-infected patients were investigated. The HIV lymphoma cohort included 83 plasma samples obtained from HIV-1-infected patients with lymphoma treated at the Centro di Riferimento Oncologico, NCI, Aviano, Italy, from 1997 to 2010 for diffuse large cell B-cell lymphoma (n=33), Burkitt lymphoma (n=19), Immunoblastic lymphoma (n=7), Plasmoblastic lymphoma (n=4), Anaplastic lymphoma (n=1), Primary Effusion lymphoma (n=1), Hodgkin lymphoma (n=17), Non-hodgkin’s Lymphoma not otherwise specified (n=1). The control cohort included 70 residual plasma samples obtained from HIV-1-infected patients undergoing routine monitoring of viremia at the Brescia Civic Hospital (BS), Italy, from 2018 to 2020. All patients were infected with HIV-1 subtype B as determined by the sequence analysis of the p17 region, according to the Los Alamos genotyping algorithm.

The study was conducted in accordance with the Declaration of Helsinki and national standards, and was approved by the Brescia Ethics Committee (NP 3163). Before starting the analyses, the samples were completely anonymized, and the only remaining linkage was with the clinical data included in Tables S1 and S2.

Sanger sequencing

HIV-1 RNA viral load quantification of the control group was done using COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test v2.0 automatic system (Roche Molecular System, Inc), according to the manufacturer’s instructions. To perform p17 gene sequences from circulating virions, plasma samples with HIV-RNA values of at least 30 copies/ml were selected. For p17 Sanger
sequence analysis, RNA was extracted using the QIAamp DSP Virus kit (QIAGEN, Heiden, Germany) with a 200 µl plasma starting volume and eluted in 30 µl Buffer AVE. A nested PCR approach was used to amplify a 559-nucleotide (nt)-long amplicon (from nt 326 to nt 885) to evaluate the whole P17 coding sequence. In brief, RNA was reverse transcribed and PCR amplified using the Superscript III One-Step RT-PCR system with PlatinumTaq DNA polymerase (Thermo Fisher Scientific, Carlsbad, CA, USA) in a 50 µl reaction containing 25 µl of reaction mix, 9 µl of MgSO₄, 2 µl of SuperScriptTM III RT/PlatinumTM Taq Mix, 0.2 µM of sense and antisense primers, and 12 µl of extracted RNA. The amplification conditions were as follows: 50°C for 30 min (for reverse transcription) and 94°C for 2 min for Taq DNA polymerase activation, followed by 40 cycles (94°C 15 sec, 55°C 30 sec, 68°C 2 min) and a final cycle at 68°C 7 min. PCR primers used in the reaction were: UGF1, 5′-GTGCCCGTCTGTGTGTG and p24R1, 5′- CATTTCATGGCTGCTTGATG. Then, we subjected 5 µl of PCR product to a nested-PCR reaction, performed using the AmpliTaq Gold™ DNA Polymerase (Thermo Fisher Scientific, Carlsbad, CA, USA) in a total volume of 50 µl containing each internal primer at 0.15 µM (p17F1 5′-AAGGAGAGAGAGGTGCGA and UGR1 5′-AATCTTGTGGGGTGGCTCCTT). Nested-PCR conditions were performed as follows: 95°C for 10 sec, 30 cycles at 94°C for 15 sec, 59°C for 30 sec and 72°C for 2 min, followed by a final extension at 72°C for 7 min. Nested-PCR products were checked on a 1.5% agarose gel, purified using the QIAquick PCR Purification Kit (QIAGEN, Heiden, Germany), quantified with the NanoDrop™ (Thermo Fisher Scientific, Carlsbad, CA, USA) and sequenced by BMR Genomics (Padua, Italy). The derived sequences were analyzed and edited with Geneious software (version 11.1.5) (Biomatters Ltd, New Zealand), using the PNL4.3 reference sequence (Accession number: AF324493).

Bioinformatic analysis

To investigate the variability of vp17 HIV-1 subtype B, a total number of 4015 sequences were retrieved from the Los Alamos HIV database (collection data ranging from 1985 to 2017). All
sequences were initially submitted to a genotyping assignment using the phylogenetic HIV subtyping tool and after excluding low quality genomes four different datasets have been built. In particular, dataset 1 (n=3990) includes all wild type (wt) p17 and vp17 genome sequences sampled from around the world and it has been used to perform statistical analysis; dataset 2, a down-sampled representative dataset (n=1221) includes 441 wt p17s, 470 vp17s carrying aa insertions at position 117-118 (ins117-118 vp17s) and 310 vp17s carrying amino aa at position 125-126 (ins125-126 vp17s) and it has been used to perform the Bayesian time-scaled phylogenetic analysis; dataset 3 (n=2952), includes 2283 wt p17s, 643 ins117-118 vp17s in addition to 26 ins117-118 vp17s generated in this study and it has been used to perform Maximum likelihood (ML) inferences; dataset 4 (n = 2792) includes 2283 wt p17s, 488 ins125-126 vp17s, in addition to 21 ins125-126 vp17s generated in this study and it has been used to perform ML inferences.

Phylogenetic and Bayesian analysis

All the sequences were aligned with HIV-1 subtype B p17 pNL4.3 (AF324492) reference genome. Sequences were aligned with MAFFT (FF-NS-2 algorithm) using default parameters and manually curated, to remove artifacts at the ends and within the alignment, using AliView. Phylogenetic analysis was performed using IQ-TREE (version 1.6.10) under the best fit model according to Bayesian Information Criterion (BIC) indicated by the Model Finder application implemented in IQTREE. The statistical robustness of individual nodes was determined using 1000 bootstrap replicates. In order to investigate the temporal signal in our HIV-1 dataset 2, we regressed root-to-tip genetic distances from this ML tree against sample collection dates using TempEst v 1.5.1. The ML phylogeny was used as a starting tree for Bayesian time-scaled phylogenetic analysis using BEAST 1.10.4. We employed a stringent model selection analysis using both path-sampling and steppingstone models to estimate the most appropriate model combination for Bayesian phylogenetic analysis. The best fitting model was the HKY+G4 substitution model with a Bayesian skyline coalescent model. We computed Monte Carlo Markov chains (MCMC) duplicate runs of 200 million
states each, sampling every 20,000 steps. In order to ensure stationary and adequate effective sample size (ESS) of >200, convergence of MCMC chains was checked using Tracer v.1.7.1. Maximum clade trees were summarized from the MCMC samples using TreeAnnotator after discarding 10% as burn-in.

Cell Cultures and Recombinant Proteins.

Human lymphoma B-cell line Raji was cultured in RPMI 1640 containing 10% (vol/vol) FBS. The coding sequence of HIV-1 isolate BH10 p17 (refp17; aa 1-132) was amplified by PCR with specific primers that allowed us to clone the refp17 sequence into the BamH1 site of the prokaryotic expression vector pGEX-2T (Pharmacia). The vp17 obtained from plasma of patient C7, the ancestor of the sexually transmitted cluster of HIV-1 mutants expressing vp17s, was amplified by PCR and cloned into the same vector. A specific stretch of Glu-Lys was inserted within the refp17 primary sequence between amino acids 114-115 by using the Quick Change Site-Directed Mutagenesis Kit (Stratagene). The recombinant proteins were purified (>98%) by reverse phase fast performance liquid chromatography. The absence of endotoxin contamination (<0.25 endotoxin U/mL) in the protein preparation was assessed by Limulus amoebocyte assay (Associates of Cape Cod Inc.).

Anchorage-Independent Growth Assay

Raji (12,500 cells/well) cells were plated in 12-well plates in 2 ml RPMI containing 5% FBS and 0.35% Sea-Plaque agarose (Lonza), over a 0.7% agarose base. One day after plating, medium containing or not viral proteins (0.01 µg/ml) was added to the top of the layer and replaced every 4 days. After 10 days, 300 µl of 3-[4, 5-Dimethylthiazol-2-y1]-2, 5-diphenyltetrazolium bromide (MTT) (SigmaAldrich) were added to each well and allowed to incubate for 4 h at 37°C. Plates were then placed overnight at 4°C, and colonies>50 µm in diameter were counted.

B cell colony formation assay
Raji cell suspension was sequentially diluted, and cells were seeded by manual pipetting into a 96 well plate at a dilution of 0.5 cells/well. Plates were incubated for 8 days under standard conditions (RPMI medium supplemented with 10% FBS) in the presence or absence of 0.01 µg/ml of viral proteins. Eight days after culture plates were analyzed for single colony formation. The colony area was measured (15 colonies/condition) by using Leica Qwin image analysis software. The same number of colonies (15 colonies/condition) was aseptically harvested from 96-well plates and stained with propidium iodide (PI) to detect PI- viable cells by flow cytometry. Absolute cell counts were obtained by the counting function of the MACSQuant® Analyzer (Miltenyi Biotec, Bergish Gladbach, Germany).

Statistical analysis.

We analyzed dataset 1 that includes the whole genome sequences collected between 1985 and 2017 complete of date and geographical information and evaluated the number of acquired mutations among the genomic position 117-118 and 125-126. We grouped data by three years, starting from 1985, in order to assess whether a linear trend between the number of acquired aa insertions was occurring over time. Data were analyzed for statistical significance using the chi-square test for trend and evaluated with a confidence level (α) of 0.05. Data concerning biological assays were analyzed for statistical significance using one-way ANOVA. Bonferroni's post-test was used to compare data. Differences were considered significant at p<0.05. Statistical tests were performed using GraphPad Prism 8 software (GraphPad).
Fig. S1. Frequency of aa insertions in dominant vp17 sequences of HIV-1-infected patients. (A) Bars represent the percentage of aa insertions in dominant vp17 sequences of HIV-1-infected patients with (Lymphoma patients) or without lymphoma (Control patients) detected at the indicated positions. Aa positions are referred to the subtype B strain BH10 (UniProtKB P04585). No statistically significant difference in the percentage of vp17s was observed among samples obtained from HIV-1-infected patients with or without lymphoma. (B) Bars represent the percentage of aa insertions in dominant
vp17 sequences in each Lymphoma histotype. The numbers appearing at the top of each bar indicate how many samples belong to that group of analysis. No statistically significant difference in the percentage of vp17s was observed among samples obtained from HIV-1-infected patients suffering from different lymphoma histotypes. (C) Bars represent the percentage of aa insertions in dominant vp17 sequences of HIV-1-infected patients with (Lymphoma patients) or without lymphoma (Control patients) related to viremia. The statistical significance was calculated using chi-square test. *P<0.05.; **P<0.01. DLBCL: diffuse large B cell lymphoma; HL: Hodgkin’s lymphoma.
Fig. S2. Pie chart showing percent distribution of aa insertion along the dominant vp17 sequences among HIV-1-infected patients with different Lymphoma histotypes. Charts represent the frequency of aa insertions in (A) patients with diffuse large B cell lymphoma (DLBCL), (B) patients with Immunoblastic/Plasmablastic lymphoma, (C) patients with Burkitt lymphoma (BL), (D) patients with Hodgkin’s lymphoma (HL). Each insertion position is identified by a color code. For each position, the label indicates the type and the frequency of insertion. Aa positions are referred to the subtype B strain BH10 (UniProtKB P04585).
Fig. S3. A mid-point rooted ML phylogenetic tree of ins117-118 vp17s. The tree includes ins117-118 vp17 sequences retrieved worldwide from Los Alamos database (dataset 3) and 26 ins117-118 vp17 sequences obtained in this study from HIV-1-infected lymphoma (n=17) and control (n=9) patients.
Fig. S4. A mid-point rooted ML phylogenetic tree of ins^{125-126} vp17s. The tree includes ins^{125-126} vp17 sequences retrieved worldwide from Los Alamos database (dataset 4) and 21 ins^{125-126} vp17 sequences obtained in this study from HIV-1-infected lymphoma (n=15) and control (n=6) patients.
Fig. S5. Effect of insEK114-115 refp17 on B-cell clonogenicity. In the colony formation assay, Raji cells were cultured in the presence or absence of refp17, vp17c7, or insEK114-115 refp17 (A) Bright-field images represent the characteristic morphology of two-dimensional colonies (original magnification, x40). (B) The colony area was measured by using Leica Qwin image analysis software. (C) The same number of colonies was aseptically harvested, stained with propidium iodide to detect viable cells by flow cytometry and counted by the counting function of the MACSQuant® Analyzer. (D) In the soft agar assay, Raji cells were incubated in medium containing or not refp17, vp17c7, or insEK114-115 refp17. The cell growth was analyzed by using 3-[4, 5-Dimethylthiazol-2-y1]-2, 5-diphenyltetrazolium bromide (MTT). Data are representative of three independent experiments performed in triplicate. The statistical significance was calculated using one-way ANOVA and the Bonferroni’s post-test was used to compare data. NT, not treated cells. **P<0.01.; ***P<0.001.
Supplementary Table 1. Clinical and virological features of HIV-1-infected patients with lymphoma.

Patient no.	Sex	Age (years)	Year of sample collection	HIV load (copies/ml)	Lymphoma diagnosis	Treatment Naïve/experienced
L1	M	30	1997	50,950	NHL (DLBCL)	Experienced
L2	F	32	1997	30,010	NHL (DLBCL)	Experienced
L3	M	35	1997	95,180	NHL (Burkitt)	Experienced
L4	M	46	1999	295,488	NHL (Immunoblastic)	Experienced
L5	M	64	1999	57,515	NHL (DLBCL)	Naïve
L6	M	44	1997	637	NHL (DLBCL)	Experienced
L7	M	47	1998	>500,000	NHL (Burkitt)	Naïve
L8	M	29	1998	424,360	NHL (Burkitt)	Experienced
L9	M	34	1998	16,027	NHL (Nos)	Experienced
L10	M	30	1998	12,753	NHL (Burkitt)	Experienced
L11	M	37	2001	113,275	NHL (DLBCL)	Experienced
L12	M	44	2001	30,980	NHL (DLBCL)	Naïve
L13	M	47	2001	4,822	NHL (Burkitt)	Naïve
L14	M	37	1997	10,520	NHL (Immunoblastic)	Experienced
L15	M	33	1997	928	NHL (Plasmablastic)	Experienced
L16	M	39	1999	199,448	NHL (DLBCL)	Naïve
L17	M	33	1999	74,264	NHL (Burkitt)	Naïve
L18	M	52	2000	6,806	NHL (Burkitt)	Naïve
L19	M	49	2000	8,939	NHL (Burkitt)	Naïve
L20	F	43	2001	>500,000	HL	Experienced
L21	F	32	2002	221,750	NHL (Immunoblastic)	Naïve
L22	M	60	2002	>500,000	NHL (DLBCL)	Experienced
L23	M	38	2002	211,160	NHL (DLBCL)	Experienced
L24	F	32	2002	182,526	NHL (DLBCL)	Experienced
L25	M	36	2002	223,923	NHL (DLBCL)	Experienced
L26	M	47	2002	535	HL	Experienced
L27	M	39	2002	287	NHL (DLBCL)	Experienced
L28	F	32	2000	1,654	HL	Experienced
L29	F	37	2000	54,213	NHL (Primary Effusion Lymphoma)	Naïve
L30	M	36	2000	2,856	NHL (Burkitt)	Experienced
L31	M	52	2000	15,507	NHL (DLBCL)	Naïve
L32	M	56	2000	>500,000	NHL (Plasmablastic)	Naïve
L33	F	35	2000	349	NHL (Immunoblastic, Primary CNS)	Naïve
L34	M	39	2000	49,597	HL	Naïve
L35	M	34	2001	8,278	NHL (DLBCL)	Experienced
L36	M	42	2001	2,368	HL	Experienced
L37	M	41	2002	40,202	NHL (DLBCL)	Experienced
L38	F	32	2001	16,383	HL	Experienced
L39	F	43	2005	>500,000	NHL (DLBCL)	Naïve
L40	M	55	2005	208,552	NHL (Burkitt)	Naïve
L41	F	47	2005	4,573	NHL (DLBCL)	Experienced
L42	F	43	2005	74,229	NHL (DLBCL)	Naïve
L43	M	44	2006	127	NHL (DLBCL)	Experienced
L44	M	32	2006	>500,000	NHL (Immunoblastic)	Naïve
L45	F	47	2006	20,330	NHL (Plasmablastic)	Experienced
L46	F	37	2005	13,044	NHL (Anaplastic)	Naïve
L47	M	39	2002	264,764	NHL (Burkitt)	Naïve
L48	M	36	2003	973	NHL (Plasmablastic)	Experienced
L49	F	42	2003	3,501	NHL (Burkitt)	Experienced
L50	M	46	2004	15,224	NHL (DLBCL)	Experienced
L51	M	45	2004	114,810	NHL (DLBCL)	Experienced
#	Gender	Age	Year	Value	Diagnosis	Status
----	--------	-----	------	--------	-------------------------------	----------
L52	M	40	2004	451	NHL (DLBCL)	Naive
L53	M	43	2004	500,001	NHL (DLBCL)	Experienced
L54	M	45	2004	76,797	NHL (Burkitt)	Naive
L55	M	38	2003	4,415	HL	Experienced
L56	M	29	2004	521	HL	n.a.
L57	M	51	2006	53,153	NHL (Burkitt)	Experienced
L58	M	43	2006	287	NHL (DLBCL)	Experienced
L59	M	65	2006	12,036	NHL (Burkitt)	Naive
L60	M	41	2006	2,507	HL	Naive
L61	M	42	2006	13,560	HL	Naive
L62	M	29	2007	358,783	NHL (Burkitt)	Experienced
L63	M	34	2007	342	HL	Naive
L64	F	34	2007	359	NHL (DLBCL)	Experienced
L65	M	63	2007	72,947	NHL (DLBCL)	Naive
L66	M	34	2007	25,634	NHL (Burkitt)	Naive
L67	M	62	2008	483,891	NHL (DLBCL)	Naive
L68	M	46	2008	92,708	NHL (Burkitt)	Naive
L69	F	45	2008	12,150	NHL (DLBCL)	Experienced
L70	M	65	2009	2,237	NHL (DLBCL)	Experienced
L71	M	46	2008	>500,000	NHL (DLBCL)	n.a.
L72	F	42	2007	16,211	HL	Naive
L73	M	59	2009	388,661	NHL (DLBCL)	Experienced
L74	M	23	2010	41,436	NHL (DLBCL)	Naive
L75	M	53	2009	312	HL	Experienced
L76	M	39	2003	10,313	NHL (Immunoblastic)	Experienced
L77	F	49	2002	2,744	NHL (Immunoblastic, Primary CNS)	Experienced
L78	M	37	1999	76,786	NHL (Burkitt)	Experienced
L79	F	35	2001	>500,000	NHL (DLBCL)	Experienced
L80	M	41	2006	166,000	HL	n.a.
L81*	F	32	2001	190,462	HL	Experienced
L82	M	46	2009	222,559	HL	n.a.
L83	M	52	2010	202,385	HL	n.a.

F: Female; M: Male; NHL: Non-Hodgkin lymphoma; DLBCL: Diffuse Large Cell B-cell lymphoma; CNS: Central Nervous System; HL: Hodgkin lymphoma; n.a.: not available; *Same patient as L38.
Supplementary Table 2. Clinical and virological features of control HIV-1-infected patients.

Patient no.	Sex	Age (years)	Year of sample collection	HIV load (copies/ml)	Treatment Naïve/experienced
C1	M	52	2019	20,826	Experienced
C2	M	61	2019	2,830,000	Naïve
C3	M	24	2019	29,562	Naïve
C4	M	57	2019	465,000	n.a.
C5	M	49	2019	149,430	Naïve
C6	F	56	2019	10,265	Naïve
C7	F	35	2019	7,890	Experienced
C8	M	49	2019	77,460	Naïve
C9	M	41	2019	10,619	Naïve
C10	F	56	2019	96,638	Naïve
C11	M	57	2019	1,186	Experienced
C12	M	39	2019	117	Naïve
C13	F	55	2019	390,717	Experienced
C14	M	54	2019	41,300	n.a.
C15	M	53	2019	174,013	Naïve
C16	M	55	2019	275	Experienced
C17	F	60	2019	122,891	Naïve
C18	M	47	2019	509	Experienced
C19	M	38	2020	93,277	Naïve
C20	M	57	2018	9,998	Experienced
C21	F	53	2019	25,473	Naïve
C22	M	52	2019	38,586	Naïve
C23	F	41	2019	18,821	Experienced
C24	M	38	2018	15,750	Naïve
C25	M	46	2019	23,770	Experienced
C26	M	50	2019	67	Experienced
C27	M	52	2019	37	Experienced
C28	M	69	2019	237	Experienced
C29	M	65	2019	173	Experienced
C30	M	46	2019	2,565	Experienced
C31	F	28	2020	32,921	Naïve
C32	F	49	2020	7,808	Experienced
C33	M	35	2020	20,284	Naïve
C34	M	70	2020	47	Experienced
C35	M	66	2020	173,000	n.a.
C36	M	47	2020	27,819	Naïve
C37	F	28	2020	179,565	n.a.
C38	M	49	2020	380,000	n.a.
C39	M	35	2020	39	n.a.
C40	F	91	2020	57	Experienced
C41	F	58	2020	31	Experienced
C42	F	38	2020	32,524	Experienced
C43	M	55	2020	4,610	Experienced
C44	M	33	2020	110	Experienced
C45	F	56	2020	535	Experienced
C46	M	55	2020	50,940	Experienced
C47	M	70	2020	236,247	Experienced
C48	M	48	2020	3,707,111	Naïve
C49	F	42	2020	41	Experienced
C50	M	46	2020	33,077	Experienced
C51	M	45	2020	18,390	Experienced
C52	F	32	2020	316	Naïve
C53	F	62	2020	21,748	Experienced
C54	F	51	2020	446	Experienced
---	---	---	---	---	---
C55	F	48	2020	156	Experienced
C56	M	53	2020	41	Experienced
C57	F	47	2020	24,561	Experienced
C58	M	49	2020	9,190	Experienced
C59	F	63	2020	10,870	Experienced
C60	M	61	2020	314	Experienced
C61	M	52	2020	51	Experienced
C62	F	37	2020	29,611	Naïve
C63	M	60	2020	407,401	Naïve
C64	M	55	2020	18,381	n.a.
C65	M	60	2020	161,926	Naïve
C66	M	56	2020	299	Experienced
C67	F	58	2020	17,517	Experienced
C68	M	42	2020	348,752	Experienced
C69	M	47	2020	14,591	Experienced
C70	M	53	2020	55	Experienced

F: Female; M: Male; n.a.: not available.
Supplementary Table 3. List of Control patients and Lymphoma patients with multiple amino acid insertions in dominant vp17 sequences.

Patient no.	Type of 1° insertion in vp17 sequences	Position of 1° insertion in vp17 sequences	Type of 2° insertion in vp17 sequences	Position of 2° insertion in vp17 sequences							
C55	AAAGQ	117-118	SQAS	125-126							
C61	AA	117-118	SS	125-126							
C62	AQQ	114-115	G	127-128							
L21	AAA	117-118	SS	125-126							
L23	AA	117-118	SSQV	125-126							
L36	AA	117-118	TGNS	125-126							
L45	ST	122-123	VSQ	127-128							
L47	A	117-118	SGN	125-126							
	1985 - 1987	1988 - 1990	1991 - 1993	1994 - 1996	1997 - 1999	2000 - 2002	2003 - 2005	2006 - 2008	2009 - 2011	2012 - 2014	2015 - 2017
----------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
wt p17	103 (89.5%)	74 (82.2%)	103 (88%)	114 (93.4%)	139 (88.5%)	169 (73.5%)	401 (71.7%)	674 (68.4%)	637 (67.6%)	551 (89.8%)	41 (69.5%)
ins^{117-118}vp17	4 (3.6%)	6 (6.6%)	6 (5.2%)	3 (2.5%)	10 (6.4%)	35 (15.2%)	103 (18.4%)	164 (16.6%)	180 (19.1%)	35 (5.7%)	12 (20.3%)
ins^{125-126}vp17	8 (6.9%)	10 (11.2%)	8 (6.8%)	5 (4.1%)	8 (5.1%)	26 (11.3%)	55 (9.8%)	148 (15%)	125 (13.3%)	27 (4.4%)	6 (10.2%)