Acetaminophen induces JNK/p38 signaling and activates the caspase-9-3-dependent cell death pathway in human mesenchymal stem cells

GIOU-TENG YIANG1,2*, YUNG-LUNG YU3,4*, KO-TING LIN5, JEN-NI CHEN5, WEI-JUNG CHANG3 and CHYOU-WEI WEI5,6

1Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231; 2Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970; 3Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, 4Department of Biotechnology, Asia University, Taichung 413; 5Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 6Department of Nursing, Hungkuang University, Shalu, Taichung 433, Taiwan, R.O.C.

Received September 17, 2014; Accepted June 5, 2015

DO: 10.3892/ijmm.2015.2254

Correspondence to: Dr Chyou-Wei Wei, Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, No. 1,018, Sec. 6, Taiwan Boulevard, Shalu, Taichung 433, Taiwan, R.O.C.
E-mail: chyouweiwei@gmail.com

*Contributed equally

Key words: acetaminophen, c-Jun N-terminal kinase, caspase, human mesenchymal stem cells

Abstract. Acetaminophen (APAP) is a widely used analgesic and antipyretic drug. Generally, the therapeutic dose of APAP is clinically safe, however, high doses of APAP can cause acute liver and kidney injury. Therefore, the majority of previous studies have focussed on elucidating the mechanisms of APAP-induced hepatotoxicity and nephrotoxicity, in addition to examining ways to treat these conditions in clinical cases. However, few studies have reported APAP-induced intoxication in human stem cells. Stem cells are important in cell proliferation, differentiation and repair during human development, particularly during fetal and child development. At present, whether APAP causes cytotoxic effects in human stem cells remains to be elucidated, therefore, the present study aimed to investigate the cellular effects of APAP treatment in human stem cells. The results of the present study revealed that high-dose APAP induced more marked cytotoxic effects in human mesenchymal stem cells (hMSCs) than in renal tubular cells. In addition, increased levels of hydrogen peroxide (H$_2$O$_2$), phosphorylation of c-Jun N-terminal kinase and p38, and activation of caspase-9-3 cascade were observed in the APAP-treated hMSCs. By contrast, antioxidants, including vitamin C reduced APAP-induced augmentations in H$_2$O$_2$ levels, but did not inhibit the APAP-induced cytotoxic effects in the hMSCs. These results suggested that high doses of APAP may cause serious damage towards hMSCs.

Introduction

Acetaminophen (APAP) is commonly used as an analgesic and antipyretic agent (1-3), and is considered safe at therapeutic doses (4). It is readily available, and high doses of APAP may be provided to patients over a short time-period. However, APAP is the most common drug to cause clinical hepatotoxicity and nephrotoxicity in several countries (5-7). A number of studies have demonstrated that high-dose APAP (10-15 g) causes serious damage to liver and renal cells (8,9). High-dose APAP can increase the levels of reactive oxygen species (ROS), thus increasing cellular oxidative stress and causing liver and renal injury (10-12). Therefore, several studies have examined the ability of antioxidants to target high-dose APAP-induced liver and renal damage through the reduction of cellular ROS levels and oxidative stress (13-16). At present, N-acetylcysteine (NAC), an antioxidant, has been used to treat APAP-induced hepatotoxicity and nephrotoxicity in emergency cases (17-19).

In order to improve the understanding of the mechanisms underlying APAP-induced toxicity, several animal and cell models have been developed for hepatotoxic and nephrotoxic investigations. In general, high-dose APAP (>5 mM) is used to induce cell death in renal and liver cell models (20,26), and high-dose APAP (300-2,500 mg/kg) is used to induce liver and kidney damage in animal models (27-31). These studies have observed that APAP can stimulate apoptotic or necrotic death pathway activation in different cell models (24,31,32). In addition, several cellular effects and signals are stimulated in high-dose APAP-treated cells, including increased levels of ROS and oxidative stress, decreased levels of glutathione, induction of the mitogen-activated protein kinase (MAPK) signaling pathway and activation of caspase cascades (21,25,26,31,33-36).
High-dose APAP-induced clinical intoxication is predominantly found in liver and renal cells; therefore, the majority of previous studies have focussed on the mechanisms underlying high-dose APAP-triggered liver and renal injury (17,37,38). Furthermore, certain studies have indicated that APAP can exhibit antitumor activities in certain tumor types, including breast cancer, liver cancer and neuroblastoma (26,39-43). These studies also demonstrated that APAP-induced cell death is linked to nuclear factor-κB, the B-cell lymphoma 2 family or glycogen synthase kinase-3 in different tumor cells.

At present, with the exception of liver, renal and tumor cells, almost no cellular effects have been reported in other human cells following APAP therapy (10,12,39-43). Therefore, whether APAP causes toxic cellular effects in other human cells remains to be elucidated. APAP-induced cell death in human stem cells have not been reported previously, therefore, the aim of the present study was to investigate the cellular responses of APAP-treated human stem cells.

Based on the above-mentioned studies, the aim of our study was to determine the cytotoxic effects of APAP on human mesenchymal stem cells (hMSCs). Furthermore, the ROS levels (H₂O₂ and O₂⁻) and the role of caspase death pathways and MAPK signaling pathways were also determined in the APAP-treated hMSCs.

Materials and methods

Chemicals. Caspase-3, caspase-8, caspase-9, cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9 monoclonal antibodies were purchased from Cell Signaling Technology, Inc. (Danvers, MA, USA). Extracellular-signal-regulated kinase (ERK), p38, JNK, phosphorylated (p)-p38, p-ERK and p-JNK monoclonal antibodies were purchased from BD Transduction Laboratories (San Diego, CA, USA). Secondary mouse anti-human antibody was purchased from GE Healthcare (Piscataway, NJ, USA). Tubulin monoclonal antibody, luminol, lucigenin, vitamin C and Hoechst 33342 were purchased from BD Transduction Laboratories (San Diego, CA, USA). Secondary mouse anti-human antibody was purchased from GE Healthcare (Piscataway, NJ, USA). Tubulin monoclonal antibody, luminol, lucigenin, vitamin C and Hoechst 33342 were purchased from Sigma-Aldrich (St. Louis, MO, USA). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) kits were purchased from Bio Basic, Inc. (Markham, ON, Canada). Fetal bovine serum, Dulbecco’s modified Eagle’s medium (DMEM), DMEM-low glucose (DMEM-LG), non-essential amino acid L-glutamine and penicillin/streptomycin were obtained from GE Healthcare (Piscataway, NJ, USA). Sodium dodecyl sulfate (SDS) electrophoresis and western blot analysis. SDS electrophoresis and western blot analysis were performed, according to previous described methods (50,51). Briefly, the cells (approximately 10⁴) were cultured with radioimmunoa precipitation assay (RIA) samples and harvested according to the manufacturer’s instructions.

Observation of nuclear condensation. Observation of nuclear condensation was performed using a Hoechst 33342 staining method was used (26,49). The cells were then washed with PBS buffer and treated with secondary antibodies (1:2,000) for 1 h. The membranes were then washed and treated with secondary antibodies (1:2,000) for 1 h. The membranes were then washed with PBS buffer and treated with secondary antibodies (1:2,000) for 1 h. The membranes were then treated using a BSA Protein Assay Reagent kit (Pierce, Rockford, IL, USA) with a DU-530 spectrophotometer (OD562 nm; Beckman Coulter, Inc., Brea, CA, USA). Equal quantities of protein (60 μg) were separated on a SDS-polyacrylamide gel (13.3%) using GHE320 Mini-STD Vertical Gel Electrophoresis Tank and transferred onto a polyvinylidene difluoride membrane (Millipore, Billerica, MA, USA). The membranes were blocked with 5% milk for 2 h at 25°C and then washed with phosphate-buffered saline (PBS). The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C. The membranes were incubated with 5% milk containing the primary antibodies (1:500) for 2 h at 25°C.

Determination of oxygen (O₂⁻) and H₂O₂ levels. The levels of O₂⁻ and H₂O₂ were examined using a lucigenin-amplified chemiluminescence technique, as previously described (52,53). Briefly, to determine the levels of H₂O₂, 200 µl of the sample (containing 8,000 cells) was treated with 0.2 mmol/l luminol solution (100 µl), followed by examination using a chemiluminescence analyzer (CLA-FS1; Tohoku Electronic Industrial Co., Ltd., Sendai, Miyagi, Japan). Similarly, to determine the levels of O₂⁻, 200 µl of the sample (containing 8,000 cells) was treated with 0.1 mmol/l of
the lucigenin solution (500 µl), followed by examination using the CLA-FS1 system.

Statistical analysis. Data were calculated from four independent triplicate experiments and are presented as the means ± standard deviation. Statistical differences between 2 groups were analyzed using the Student’s t-test. A P-value <0.05 was considered to indicate a statistically significant difference.

Results

APAP decreases the survival of kidney tubular epithelial cells and hMSCs. Previous studies have demonstrated that high-dose APAP (> 5 mM) can decrease the cell survival rate of liver and kidney cells (20-26). Similar to these studies, the present study revealed that high-dose APAP (7.94 mM) reduced cell survival in the NRK-52E kidney tubular epithelial cells (Fig. 1A). Until now, the cytotoxic effects of APAP treatment in human stem cells have not been investigated. The present study is the first, to our best of our knowledge, to demonstrate that high-dose APAP reduced the survival rate of hMSCs (Fig. 1B). The results following low-dose APAP treatment (0.794 mM) revealed no significant cytotoxic effects in the NRK-52E cells or the hMSCs (Fig. 1). The survival rates following high-dose APAP therapy between the NRK-52E cells and hMSCs were also compared. The survival rate on day 3 was ~60% in the APAP-treated NRK-52E cells (Fig. 1A) and ~30% in the APAP-treated hMSCs (Fig. 1B). Therefore, high-dose APAP exerted a more marked cytotoxic effect in the hMSCs, compared with the NRK-52E cells. These findings indicated that APAP induced more damage in the stem cells than in the kidney cells.

High-dose APAP induces apoptosis and activates the caspase-9/-3 cascade in hMSCs. The present study subsequently examined whether the apoptotic death pathway is involved in hMSC death following high-dose APAP treatment. Upon examination of the nuclear morphology, nuclear condensation, an apoptotic feature (26,54), was identified in the APAP-treated hMSCs (Fig. 2). Thus, the results demonstrated that high-dose APAP induced apoptosis in the hMSCs. Caspase activation triggers apoptosis (49,55). Two major caspase signaling pathways are associated with the apoptosis-caspase-9/-3 and caspase-8/-3 cascades (26,56). Cleaved caspase-3, -8 and -9 were observed following 3 days of APAP treatment using western blot analysis. As shown in Fig. 3, the levels of cleaved caspase-3 and -9 were increased in the high-dose APAP-treated hMSCs (Fig. 3A, lane 3 and Fig. 3C, lane 3); however, the levels of cleaved caspase-8 were unchanged (Fig. 3B). Therefore, these results suggested that high-dose APAP stimulated apoptosis in the hMSCs via the caspase-9/-3 signaling pathway.

APAP induces the phosphorylation of JNK and p38 in hMSCs. APAP can induce liver injury via the MAPK signaling pathways (57,58). In the present study, whether APAP also activates the MAPK signaling pathways in hMSCs was examined. JNK, p38 and ERK belong to the MAPK family (59,60). Therefore, the phosphorylation levels of JNK, p38 and ERK were examined using western blot analysis in the present study. As shown in Fig. 4, the levels of p-JNK and p-p38 were increased in the high-dose APAP-treated cells (Fig. 4B, lane 3), compared with the control group (Fig. 4B, lane 1). However, ERK phosphorylation was not observed in the APAP-treated cells (Fig. 4B). These experimental results suggested that APAP activated the JNK/p38 MAPK signaling pathways, but not the ERK MAPK signaling pathway, in the hMSCs.

Figure 1. Cell survival rates following treatment with APAP. (A) NRK-52E cells were treated with 7.94 mM (high-dose) and 0.794 mM APAP. (B) hMSCs were treated with 7.94 mM (high-dose) and 0.794 mM APAP. The survival rate was lower in the 7.94 mM APAP-treated hMSCs, compared with the 7.94 mM APAP-treated NRK-52E cells. Data was calculated from four independent experiments and is presented as the means ± standard deviation. The statistical differences between 7.94 mM-treated and 0.794 mM-treated group were analyzed by the Student’s t-test. *P<0.05. APAP, acetaminophen; hMSC, human mesenchymal stem cell.

Figure 2. Nuclear condensation. (A) Control group. (B) APAP-treated group. hMSCs were treated with 7.94 mM APAP for 2 days, nuclear condensation (white arrow) was observed in the APAP-treated cells under a phase-contrast microscope at magnifications of x400. APAP, acetaminophen; hMSC, human mesenchymal stem cell.

Figure 3. Cleaved caspase-3, -8 and -9 were observed following 3 days of APAP treatment using western blot analysis. (A) NRK-52E cells. (B) hMSCs. The levels of cleaved caspase-3 and -9 were increased in the high-dose APAP-treated hMSCs (Fig. 3A, lane 3 and Fig. 3C, lane 3); however, the levels of cleaved caspase-8 were unchanged (Fig. 3B). Therefore, these results suggested that high-dose APAP stimulated apoptosis in the hMSCs via the caspase-9/-3 signaling pathway.

Figure 4. APAP induces the phosphorylation of JNK and p38 in hMSCs. (A) NRK-52E cells. (B) hMSCs. The levels of p-JNK and p-p38 were increased in the high-dose APAP-treated cells (Fig. 4B, lane 3), compared with the control group (Fig. 4B, lane 1). However, ERK phosphorylation was not observed in the APAP-treated cells (Fig. 4B). These experimental results suggested that APAP activated the JNK/p38 MAPK signaling pathways, but not the ERK MAPK signaling pathway, in the hMSCs.
APAP stimulates increases in H$_2$O$_2$ levels in hMSCs. Previous studies have demonstrated that APAP can induce increases in ROS levels (61,62). In addition, a previous study reported that augmentations in H$_2$O$_2$ levels are found in APAP-treated kidney cells (26). O$_2^-$ and H$_2$O$_2$ belong to the ROS family and are normally present in living cells, therefore, the levels of O$_2^-$ and H$_2$O$_2$ were examined in the present study. As shown in Fig. 5, the O$_2^-$ levels remained constant (Fig. 5A), whereas increases in H$_2$O$_2$ were found in the APAP-treated hMSCs (Fig. 5B), whereas. Therefore, the APAP-induced augmentation of ROS was associated with H$_2$O$_2$, but not O$_2^-$, in the hMSCs.

Vitamin C reduces APAP-induced increases in H$_2$O$_2$ levels, but does not inhibit APAP-induced cytotoxicity in hMSCs. APAP can stimulate elevations in ROS levels causing cellular oxidative stress, which results in hepatotoxicity and nephrotoxicity (16,63). Therefore, several antioxidant drugs that prevent APAP-induced cellular damage have been investigated (64-68). Vitamin C, an antioxidant, was used to inhibit the cytotoxic effects of APAP in the hMSCs in the present study. The resulting data revealed that vitamin C effectively reduced the increases in H$_2$O$_2$ levels (Fig. 6). Therefore, vitamin C had an antioxidative function in decreasing cellular oxidative stress. Subsequently, whether vitamin C inhibited APAP-induced cytotoxicity in the hMSCs was determined. As shown in Fig. 7, cell survival rates were markedly decreased in the high-dose APAP-treated group and high-dose APAP + vitamin C-treated group, compared to the control group. These findings indicated that inhibition of the increases in H$_2$O$_2$ did not prevent APAP-induced cytotoxicity in the hMSCs.

The present study was the first, to the best of our knowledge, to demonstrate that high-dose APAP reduced the survival rate of hMSCs, induced the JNK/p38 MAPK signaling pathways and activated the caspase-9/-3 apoptotic death pathway. In addition, the inhibition of increases in the levels of H$_2$O$_2$ did not rescue the cell survival rate following APAP treatment.

Discussion

APAP is regarded a safe medicine applied widely to treat pain and fever in clinical cases (69-71). However, high-dose APAP can cause clinical hepatotoxicity and nephrotoxicity (5-7). Previous studies have demonstrated that APAP has antitumor effects in various types of cancer, including liver cancer, breast cancer and neuroblastoma (26,39,43). These studies indicated that APAP can induce cytotoxicity in liver, renal and tumor cells. Therefore, the majority of studies investigating APAP-induced cytotoxic mechanisms have focused on renal, liver and tumor cells (26,39,43,58,62,72,73). The present study was the first, to the best of our knowledge, to demonstrate that APAP also induces cytotoxicity in hMSCs, suggesting APAP not only triggers clinical hepatotoxicity and nephrotoxicity, but it is also harmful to stem cells. Notably, as shown in Fig. 1, the present study demonstrated that APAP exerts a more marked cytotoxic effect in hMSCs than in renal tubular cells. Stem cells are important in fetal development, and stem cell dysfunction may be harmful to fetus growth. In addition, previous studies have demonstrated that APAP can cross the placenta (44,45). Therefore, the results of the present study suggested the requirement for caution when treating pregnant females with APAP for pain and fever.
The activation of apoptosis and necrosis have been found in liver and renal cells following APAP treatment in different animal and cell models (31,32). The majority of studies have reported that APAP-induced apoptotic death in liver and renal cells is associated with caspase-3 activation (74-76). There are two major caspase cascades, caspase-9/caspase-3 and caspase-8/caspase-3 cascades (26,54,55). The caspase-9/caspase-3 cascade is linked to mitochondrial dysfunction and the caspase-8/caspase-3 cascade is associated with death receptor signal transduction. APAP-induced liver and renal injury has been observed to trigger the caspase-9/caspase-3 pathway (11,77). In addition, activation of the caspase-9/caspase-3 cascade is also found in APAP-treated hepatoma cells (26). In the present study, the data revealed that APAP activated caspase-9 and -3 signaling in the hMSCs but did not activate caspase-8 (Fig. 3). Taken together, these studies indicated that mitochondrial damage is an important factor that results in cell death in renal cells, liver cells, hepatoma cells and stem cells following APAP treatment.

The MAPK signaling pathways undergo three major phosphorylation reactions: ERK, JNK and p38 phosphorylation (59,60). Previous studies have demonstrated that APAP can induce acute liver injury via the JNK and ERK phosphorylation signaling pathways (57,58). A previous study found that APAP-induced liver damage not only activates JNK and ERK phosphorylation, but also induces p38 phosphorylation in mouse models (78), although the common signaling pathways are the ERK and JNK phosphorylation pathways. In the present study, JNK and p38 phosphorylation were observed in the APAP-treated hMSCs, however, ERK phosphorylation was not observed (Fig. 4). The observation of ERK phosphorylation in the APAP-treated liver cells, but not in the stem cells remains to be elucidated and requires investigation in the future.

Previous studies have demonstrated that high-dose APAP-induced hepatotoxicity and nephrotoxicity are associated with increases in ROS levels (25,79-81). Several antioxidants against APAP-induced cytotoxicity have been investigated, including green tea, honey, tofu and NAC (13,80,82-85). O_2^- and H_2O_2 belong to the ROS family and are produced by the electron transport chain. O_2^- can be removed by superoxide dismutase, and H_2O_2 can be removed by glutathione system (19,26,85). NAC, a precursor for glutathione synthesis, can effectively reduce H_2O_2 levels and has been applied as a treatment method for APAP-induced hepatotoxicity and nephrotoxicity in clinical cases (17-19). The levels of O_2^- and H_2O_2 can be determined in APAP-treated stem cells following 1 h treatment. Data were analyzed from four independent experiments and are presented as the means ± standard deviation. *P<0.05, compared to the control group. O2, oxygen; H2O2, hydrogen peroxide; APAP, acetaminophen.
cells. The present study demonstrated that APAP stimulated increases in the levels of H2O2, but not O2·−, in human stem cells. This result is similar to a previous study, in which only increases in H2O2 levels were found in APAP-treated Hep3B cells (26). In addition, the present study further demonstrated that vitamin C effectively reduced APAP-induced elevations in H2O2, but does not inhibit APAP-induced cytotoxicity, in human cells. This result indicated that there are unknown cellular effects, in addition to augmentations in the levels of ROS, resulting in APAP-induced cytotoxicity in human stem cells. The present study demonstrated that antioxidants agents prevented APAP-induced damage in liver and renal cells, but not in stem cells.

In conclusion, this study was the first, to the best of our knowledge, to demonstrate that APAP induced the p38/JNK MAPK signaling pathway, activated the caspase-9/3 cascade and decreased survival rate in human stem cells. The present study also revealed that APAP-induced cytotoxic effects were more marked in stem cells than in renal cells, and antioxidants did not prevent stem cell damage following APAP treatment.

Acknowledgements

This study was supported in part by the Ministry of Science and Technology (MOST103 2320-B-093-052-MY3), the Taipei Tzu Chi Hospital (TCRD-TPE-102-26 and National Health Research Institutes (NHRI-EX102-10245BI) and Technology (MOST103 2320-B-039-052-MY3), the Ministry of Science and Technology, to demonstrate that APAP induced the p38 MAPK signaling pathway, activated the caspase -9/3 cascade and decreased survival rate in human stem cells. The present study demonstrated that antioxidants agents prevented APAP-induced damage in liver and renal cells, but not in stem cells.

This study was supported in part by the Ministry of Science and Technology (MOST103 2320-B-093-052-MY3), the National Health Research Institutes (NHRI-EX102-10245BI) and the Taipei Tzu Chi Hospital (TCRD-TPE-102-26 and TCRD-TPE-103-48).

References

1. Cuzzolin L, Antonucci R and Fanos V: Paracetamol (acetaminophen) efficacy and safety in the newborn. Curr Drug Metab 14: 178-185, 2013.
2. Klotz U: Paracetamol (acetaminophen) - a popular and widely used nonopioid analgesic. Drug Res 62: 355-359, 2012.
3. Section on Clinical Pharmacology and Therapeutics, Committee on Drugs, Sullivan JE, Farrar HC: Fever and antipyretic use in children. Pediatrics 127: 580-587, 2011.
4. Ramachandran A, McGill MR, Li F, Sharpe MR, et al: Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Arch Toxicol 88: 391-401, 2014.
5. Li F, Sharpe MR, et al: Circulating acylcarnitines as biomarkers of mitochondrial dysfunction after acetaminophen overdose in mice and humans. Arch Toxicol 88: 391-401, 2014.
6. Chandraayavan P, Wang CH, Liu LL, Hsu DZ and Liu MY: Effect of sesame oil against acetaminophen-induced acute oxidative hepatic damage in rats. Shock 30: 217-221, 2008.
7. Galan RM, Zaki HF, Seif El-­Nasr MM and Aga AH: Potential protective effect of honey against acetaminol-induced hepatotoxicity. Arch Iran Med 15: 674-680, 2012.
8. Abdul Hamid Z, Budin SB, Wen Jie N, Hamid A, Husain K and Mohamed J: Nephroprotective effects of Zingiber zerumbet Smith ethyl acetate extract against paracetamol-induced nephrotoxicity and oxidative stress in rats. J Zhejiang Univ Sci B 13: 176-185, 2012.
9. Kheradpezhoh E, Panjezhshahin MR, Miri R, et al: Curcumin protects rats against acetaminophen-induced hepato renal damages and shows synergistic activity with N-acetyl cysteine. Eur J Pharmacol 625: 278-281, 2010.
10. Anoush M, Eghbal MA, Fathizadad F, Hamzehei Y and Kouzehkonani NS: The protective effects of garlic extract against acetaminophen-induced oxidative stress and glutathione depletion. Pak J Biol Sci 12: 765-771, 2009.
11. Mehrpour O, Shadnia S and Sanaei-Zadeh H: Late extensive intravenous administration of N-acetylcysteine can reverse hepatic failure in acetaminophen overdose. Hum Exp Toxicol 30: 51-54, 2011.
12. Blackford MG, Felter T, Gothard MD and Reed MD: Assessment of the clinical use of intravenous and oral N-acetylcysteine in the treatment of acute acetaminophen poisoning in children: a retrospective review. Clin Ther 33: 1322-1330, 2011.
13. Tsi CL, Chang WT, Weng TI, Fang CC and Watson PD: A patient-tailored N-acetylcysteine protocol for acute acetaminophen intoxication. Clin Ther 27: 336-341, 2005.
14. Amarnath S, Oliveira AG, Marques PE, et al: Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal 11: 10, 2013.
15. Badmann A, Langsch S, Keogh A, Brunner T, Kaufmann T and Corazza N: TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death Dis 3: e447, 2012.
16. Badmann A, Keough A, Kaufmann T, Bouillet P, Brunner T and Corazza N: Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage. Cell Death Dis 2: e171, 2011.
17. McGill MR, Yan HM, Ramachandran A, Murray GI, Rolls DE and Jaeschke H: HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53: 974-982, 2011.
18. Zhao X, Cong X, Zheng L, Xu L, Yin L and Peng J: Dioscin, a natural steroid saponin, shows remarkable protective effect against acetaminophen-induced liver damage in vitro and in vivo. Toxicol Lett 214: 69-80, 2012.
19. Mobasher MA, Gonzalez-Rodriguez A, Santamaria B, et al: Against acetaminophen-induced liver injury. Eur J Pharmacol 628: 274-281, 2010.
20. McGehee MA, Rodriguez A, Santamaria B, et al: Against acetaminophen-induced liver injury. Eur J Pharmacol 628: 274-281, 2010.
21. Alphonse A, Oliveira AG, Marques PE, et al: Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun Signal 11: 10, 2013.
22. Badmann A, Langsch S, Keogh A, Brunner T, Kaufmann T and Corazza N: TRAIL enhances paracetamol-induced liver sinusoidal endothelial cell death in a Bim- and Bid-dependent manner. Cell Death Dis 3: e447, 2012.
23. Badmann A, Keough A, Kaufmann T, Bouillet P, Brunner T and Corazza N: Role of TRAIL and the pro-apoptotic Bcl-2 homolog Bim in acetaminophen-induced liver damage. Cell Death Dis 2: e171, 2011.
Synergistic anti-tumor activity of Hippocratea africana against paracetamol-induced Cucurbita pepo protein isolate and Hepatoprotective and anti-inflammatory activities of pumpkin seed. J Biomed Sci 16: 485-492, 2015

33. Ahmad ST, Arjumand W, Nafees S, et al: Hesperidin alleviates acetaminophen induced toxicity in Wistar rats by abrogation of oxidative stress, apoptosis and inflammation. Toxicol Lett 208: 149-151, 2012.

34. Inkielewicz-Stepniak I and Knap N: Effect of exposure to fluoride and acetaminophen on oxidative/nitrosative status of liver and kidney in male and female rats. Pharmacol Rep 64: 902-911, 2012.

35. Slitt AM, DeFlinck PK, Roberts JC and Cohen SD: Effect of ribose and cysteine pretreatment on hepatic and renal acetaminophen metabolism and glutathione depletion. Basic Clin Pharmacol Toxicol 96: 487-494, 2005.

36. Yousei MI, Omar SA, El-Gundi MI and Abdelmegid LA: Potential protective effects of quer cetin and curcumin on paraquat-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rats. Food Chem Toxicol 48: 3246-3261, 2010.

37. De-Giorgio F, Lodise M, Chiarotti M, d’Aloja E, Carbomme A and Valerio L: Possible fatal acetaminophen intoxication with atypical clinical presentation. J Forensic Sci 58: 1397-1405, 2013.

38. Brusilow SW and Cooper AJ: Encephalopathy in acute liver failure resulting from acetaminophen intoxication: new observations with potential therapy. Crit Care Med 29: 2550-2553, 2001.

39. Posadas I, Santos P and Cena V: Acetaminophen induces human neuroblastoma cell death through NFKB activation. PLoS One 7: e50160, 2012.

40. Posadas I, Vellecco V, Santos P, Prieto-Lloret J and Cena V: Acetaminophen potentiates staurosporine-induced death in a human neuroblastoma cell line. Br J Pharmacol 150: 577-585, 2007.

41. Jaeschke H: Comments on ‘glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells’. J Pharmacol Exp Ther 314: 1401-1402; author reply 1403-1404, 2005.

42. Macanas-Pirard P, Yaacob NS, Lee PC, Holder JC, Hinton RH and Kass GE: Glycogen synthase kinase-3 mediates acetaminophen-induced apoptosis in human hepatoma cells. J Pharmacol Exp Ther 313: 780-789, 2005.

43. Bilir A, Guneri AD and Altimoz MA: Acetaminophen and DMSO modulate growth and gemcitabine cytotoxicity in FM3A breast cancer cells in vitro. Neoplasma 51: 460-464, 2004.

44. Thiele K, Kessler T, Arck P, Erhardt A and Tiexes G: Acetaminophen and pregnancy: short- and long-term consequences for mother and child. J Reprod Immunol 97: 128-139, 2013.

45. Wilkes JM, Clark LE and Herrera JL: Acetaminophen overdose in pregnancy. South Med J 98: 1118-1122, 2005.

46. Tsunekawa Y, Kikkawa T and Osumi N: Asymmetric inheritance of Cyclin D2 maintains proliferative neural stem/progenitor cells: A critical event in brain development and evolution. Dev Growth Differ 56: 349-357, 2014.

47. Di Bernardo J, Maiden MM, Jiang G, Hershenson MB and Engstrom Ruud L, Wilhelms DB, Eskilsson A, et al: Safety and population pharmacokinetic analysis of intravenous acetaminophen in hypertrophic scar fibroblasts. Phytother Res 28: 1868-1874, 2014.

48. Liu X, Ye F, Xiong H, et al: IL-1β upregulates IL-8 production in human Müller cells through activation of the p38 MAPK and ERK1/2 signaling pathways. Inflammation 37: 1486-1495, 2014.

49. Levanon D, Manov I and Lancu TC: Qualitative and quantitative analysis of the effects of acetaminophen and N-acetylcysteine on the surface morphology of Hep3B hepatoma cells in vitro. Ultrastruct Pathol 28: 3-14, 2004.

50. Manov I, Hirsh M and Lancu TC: Acetaminophen hepatotoxicity and mechanisms of its protection by N-acetylcysteine: a study of Hep3B cells. Exp Toxicol Pathol 53: 489-500, 2002.

51. Kurnadi A and Kakkar P: Lupus-like syndrome and acetaminophen-induced oxidative stress and cell death in rat primary hepatocytes. Food Chem Toxicol 50: 1781-1789, 2012.

52. Okokon JE, Nwalor PA, Charles U, Dar A and Choudhary MI: Antioxidative burst and hepatoprotective effects of ethanol root extract of Hippocratea africana against paracetamol-induced liver injury. Pharm Sci 51: 872-880, 2013.

53. Lee NH, Seo CS, Lee HY, et al: Hepatoprotective and antioxidative activities of Cornus officinalis against acetaminophen-induced oxidative stress in mice. Evid Based Complement Alternat Med 2012: 804924, 2012.

54. Nkosi CZ, Opoku AR and Terblanche SE: In vitro antioxidative activity of pumpkin seed (Cucurbita pepo) protein isolate and its in vivo effect on alanine transaminase and aspartate transaminase in acetaminophen-induced liver injury in low protein fed rats. Phytother Res 20: 780-783, 2006.

55. Bhattacharjee R and Sil PC: The protein fraction of Phyllanthus niruri plays a protective role against acetaminophen induced hepatic disorder via its antioxidant properties. Phytother Res 20: 595-601, 2006.

56. Needleman SM: Safety and population pharmacokinetic analysis of intravenous acetaminophen. Proc (Bayl Univ Med Cent) 26: 235-238, 2013.

57. Engstrom Ruud L, Wilhelms DB, Eskilsson A, et al: Acetaminophen reduces lipopolysaccharide-induced fever by inhibiting cyclooxygenase-2. Neuropharmacology 71: 124-129, 2013.

58. Zuppa AF, Hammer GB, Barrett JS, et al: Safety and population pharmacokinetic analysis of intravenous acetaminophen in neonates, infants, children, and adolescents with pain or fever. J Pediatr Pharmacol Ther 16: 246-261, 2011.

59. Boulaires AH, Zolotski AJ, Stoica BA, Cuvillier O and Smulson ME: Acetaminophen induces a caspase-dependent and Bcl-XL sensitive apoptosis in human hepatoma cells and lymphocytes. Pharmacol Toxicol 90: 38-50, 2002.

60. Ghanizadeh A: Acetaminophen may mediate oxidative stress and neurotoxicity in autism. Med Hypotheses 78: 351, 2012.
YIANG et al: HIGH-DOSE APAP CAUSES DAMAGE TO hMSCS

74. Wang C, Blough ER, Arvapalli R, et al: Metabolic syndrome-induced tubulointerstitial injury: role of oxidative stress and preventive effects of acetaminophen. Free Radic Biol Med 65: 1417-1426, 2013.
75. Fouad AA, Al-Mulhim AS, Jresat I and Gomaa W: Therapeutic role of telmisartan against acetaminophen hepatotoxicity in mice. Eur J Pharmacol 693: 64-71, 2012.
76. Choi J, Park KH, Kim SZ, Shin JH and Jang SI: The ameliorative effects of L-2-oxothiazolidine-4-carboxylate on acetaminophen-induced hepatotoxicity in mice. Molecules 18: 3467-3478, 2013.
77. Kumari A and Kakkar P: Lupeol prevents acetaminophen-induced hepatotoxicity by altering the Bax/Bcl-2 and oxidative stress-mediated mitochondrial signaling cascade. Life Sci 90: 561-570, 2012.
78. Ji L, Jiang P, Lu B, Sheng Y, Wang X and Wang Z: Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism. J Nutr Biochem 24: 1911-1919, 2013.
79. Nafisi S, Heidari R, Ghaffarzadeh M, et al: Cytoprotective effects of silibrate, a newly-synthesised siliconated derivative of silybrom, against acetaminophen-induced toxicity in isolated rat hepatocytes. Arh Hig Rada Toksikol 65: 169-178, 2014.
80. Colle D, Arantes LP, Gubert P, et al: Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatotoxicity induced by acetaminophen in mice. J Med Food 15: 549-556, 2012.
81. Zhao YL, Zhou GD, Yang HB, et al: Rhein protects against acetaminophen-induced hepatic and renal toxicity. Food Chem Toxicol 49: 1705-1710, 2011.
82. Lu Y, Sun J, Petrova K, et al: Metabolomics evaluation of the effects of green tea extract on acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol 62: 707-721, 2013.
83. Yakubu N, Oboh G and Olalekan AA: Antioxidant and hepatoprotective properties of tofu (curdle soymilk) against acetaminophen-induced liver damage in rats. Biotechnol Res Int 2013: 230142, 2013.
84. Prescott LF, Park J, Ballantyne A, Adriaenssens P and Proudfoot AT: Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet 2: 432-434, 1977.
85. Allameh A, Vansoun EY and Zarghi A: Role of glutathione conjugation in protection of weanling rat liver against acetaminophen-induced hepatotoxicity. Mech Ageing Dev 95: 71-79, 1997.