Allorecognition genes drive reproductive isolation in *Podospora anserina*

S. Lorena Ament-Velásquez1,2✉, Aaron A. Vogan1, Alexandra Granger-Farbos3, Eric Bastiaans1,4, Ivain Martinossi-Allibert1,5, Sven J. Strue4, Suzette de Groot4, Martin Lascoux6, Alfons J. M. Debets4, Corinne Clavé5 and Hanna Johannesson1✉

Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus *Podospora anserina*, allorecognition loci controlling vegetative incompatibility (*het* genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci *het-r* (encoding a NOD-like receptor) and *het-v* (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.

The capacity to discriminate self from non-self occurs throughout the Tree of Life and is necessary for fundamental processes such as multicellular growth, detection of pathogens and choice of mating partners. Genetically, the detection of non-self is achieved by the product of highly polymorphic genes that are subject to various forms of balancing selection, in particular negative frequency dependence where rare alleles have a fitness advantage. Since balancing selection ensures the coexistence of several variants in a population, it can be hypothesized that self/non-self recognition genes with pleiotropic interactions on sexual reproduction could lead to the evolution of reproductively isolated groups and hence speciation. For instance, the major histocompatibility complex (MHC), which is an essential element of the adaptive immune system in jawed vertebrates, appears to contribute to and accelerate speciation by favouring assortative mating. Likewise, in organisms such as fungi, slime moulds and colonial marine invertebrates, vegetative incompatibility (allorecognition) systems might lead to reproductive isolation if they display pleiotropic effects on sexual reproduction.

Here, we address this hypothesis directly using the model fungus *Podospora anserina*, for which the allorecognition system is well-studied. As in other fungi, vegetative fusion between individuals of *P. anserina* is controlled by the so-called *het* (for heterokaryon incompatibility) genes. Fusion within a fungal mycelium is generally regarded as advantageous for cytoplasmic transport and colony establishment. However, fusion between different individuals can be deleterious since it allows for the transmission of viruses, defective plasmids and selfish nucleic acids. It is believed that the primary function of the *het* genes is to avoid such risks, as successful fusion is only possible if individuals are compatible at all of their *het* genes, otherwise triggering regulated cell death of the fused cell. It has also been proposed that some *het* genes are involved in pathogen recognition and that the vegetative incompatibility is a secondary by-product of their evolution. In that sense, the *het* genes can be seen as analogous to components of the innate immune system of animals and plants. Notably, the genetic basis of compatibility is generally different between the vegetative and sexual stage but some *het* genes are known to have pleiotropic effects on the sexual cycle of a number of species. Of the nine genetically identified *het* loci in *P. anserina*, six are known to have antagonistic pleiotropic effects on the sexual function through sterility or progeny inviability (Supplementary Fig. 1). In this study, we used population genomic analyses, laboratory crosses, genetic manipulations, field observations and simulations to show that two *het* genes define reproductively isolated groups in *P. anserina* and propose scenarios of how this arises.

Results

Low genetic diversity and balancing selection in *P. anserina*. We started by sequencing the haploid genomes of 106 *P. anserina* strains, spanning 25 years of sampling around Wageningen, the Netherlands (from 1991 to 2016; Supplementary Table 1). Whole genome sequence data showed that the *P. anserina* samples are remarkably similar, with an average pairwise nucleotide diversity (*θ*) of 0.000492 (Fig. 1a and Supplementary Fig. 2). As *P. anserina* does not produce asexual propagules, we expect clonality to be low but the extremely low genetic diversity could also be the result of very high selfing rates and demographic processes like bottlenecks. As an indication of the degree of outcrossing, we calculated the linkage disequilibrium (LD) decay for the Wageningen strains, spanning 25 years of sampling around Wageningen, the Netherlands (from 1991 to 2016; Supplementary Table 1). Whole genome sequence data showed that the *P. anserina* samples are remarkably similar, with an average pairwise nucleotide diversity (*θ*) of 0.000492 (Fig. 1a and Supplementary Fig. 2). As *P. anserina* does not produce asexual propagules, we expect clonality to be low but the extremely low genetic diversity could also be the result of very high selfing rates and demographic processes like bottlenecks. As an indication of the degree of outcrossing, we calculated the linkage disequilibrium (LD) decay for the Wageningen collection (Supplementary Fig. 3). We found that LD, as measured by the *r* statistic, reaches 0.2 at distances <3.5 kilobases (kb) for most chromosomes, except for chromosome 4 that has a much slower decay (*r* < 0.2 after 12.2 kb; Methods). These values are intermediate between those typical for outcrossers and for extreme selfers in fungi. Additionally, we sampled 68 new genetically
while showing indications of a high selfing rate,

\(P. \) anserina (20%; Supplementary Table 1)\(^{29}\). Taken together, we conclude that,

Fig. 2), an indication of balancing selection. The

het groups (defined by the

crosses at detectable levels in nature.

Spok4 (for example, WD40 repeats of HNWD genes) were filtered out by the variant-calling pipeline but linked variants can still show signals of balancing selection. Note that

Spok3 (for example, WD40 repeats of HNWD genes) within the

P. anserina gene family\(^{29,30}\). Mating between an

het-e members of the HNWD family (for example,

hnwd3) and

het-c gene family (for example,

hnwd3) are

flanked by sites with high Tajima's

d statistic, we took advantage of our

variant-calling pipeline, making genome scans inappropriate to

assess signatures of selection for such genes. Nonetheless, other

members of the HNWD family (for example,

het-e and

hnwd3 in chromosomes 4 and 7, respectively; Supplementary Fig. 2) are

flanked by sites with high Tajima's \(D \) statistic, suggesting that at least some

members of this gene family evolve under balancing selection.

To complement the signatures of historical demographic processes provided by the Tajima's \(D \) statistic, we took advantage of our
temporal data and plotted the changes in allele frequencies through
time for representative

het genes in the Wageningen samples (Fig. 1b and Supplementary Fig. 2). As expected under balancing selection, the

het genes show intermediate allele frequencies over the
sampling time period. This pattern includes the

het-c gene (Fig. 1b), which is the interacting partner of

het-d and

het-r in chromosome 2; Supplementary Fig. 2), which are characterized by WD40 tandem repeats at the C terminus that define the allele specificity\(^{36,37}\). The repetitive end of the HNWD genes excluded them from our

variant-calling pipeline, making genome scans inappropriate to

assess signatures of selection for such genes. Nonetheless, other

members of the HNWD family (for example,

het-e and

hnwd3 in chromosomes 4 and 7, respectively; Supplementary Fig. 2) are

flanked by sites with high Tajima's \(D \) statistic, suggesting that at least some

members of this gene family evolve under balancing selection.

Two reproductively isolated groups exist within

P. anserina.

Previously, van der Gaag\(^{39}\) performed pairwise crossings of around
half the Wageningen collection (plus the French reference strain S), recording various degrees of sexual and vegetative incompatibility. To gain insight into the population structure, we re-coded these observations into a distance matrix of mating success for 45 strains, for which we also have Illumina data (Supplementary Table 3). A principal coordinates analysis (PCoA) of the distance matrix revealed two groups, as identified by a partitioning around medoids (PAM) clustering method (Fig. 2a). Notably, the same two groups can be identified using a principal component analysis (PCA) of whole-genome single nucleotide polymorphism (SNP) data (Supplementary Fig. 5a). Moreover, analysis by chromosome reveals that the clustering signal is driven by variation on chromosome 5 (Fig. 2a) and to a lesser extent chromosome 2 (Supplementary Fig. 5b–d).

On the basis of the result of the clustering analysis, we divided all the samples into what we refer to hereafter as the two ‘reproductively isolated’ (RI) groups. For samples with no mating success data (59.8% of the total), we assumed RI group membership on the basis of the first principal component of chromosome 5 (Fig. 2a). We computed the population fixation index F_{st} and the divergence statistic D_{xy} between the RI groups in windows along each chromosome (Fig. 2b, Supplementary Fig. 6 and Supplementary Fig. 7). While most chromosomes show virtually no differentiation, we found that a region near the centre of the left arm of chromosome 5 is strongly differentiated (nearly reaching the maximum $F_{st} = 1$ and having the highest D_{xy} value). In accordance with the PCA, a region on chromosome 2 also shows intermediate to high levels of differentiation (on the basis of F_{st} but not of D_{xy}). The area of differentiation in chromosome 2 co-localizes with the $het-r$ gene, one of the het genes with pleiotropic effects on sexual reproduction (Supplementary Fig. 1).

From classical genetic analyses, it is known that $het-r$ works as an allorecognition gene through its interaction with the uncharacterized $het-v$ locus, which is localized on chromosome 5 (ref. 40). Hence, although other het genes cause sexual incompatibilities, this interacting pair is the most likely functional candidate behind the partition into two RI groups and the associated genomic divergence. We thus focused specifically on these two loci in further analyses.

Like other members of the HNWD family, the $het-r$ gene has a WD40 repeat domain at its C terminus (ref. 37). The number of tandem WD40 repeats and their sequence have been shown to define two alleles: R and r (ref. 40). Allele R has 11 WD40 repeats in a specific order. In effect, allele r is a non-functional variant that can have any other function.
articles

Fig. 3 | Genetic and molecular dissection of the het-v locus. a. When two individuals with incompatible alleles fuse during vegetative growth, an incompatibility reaction occurs producing a divisive line of dead cells known as barrage. During sex, when the female organ (protoperithecium) is fertilized by microconidia, different genotypes of the two het genes confer various degrees of infertility depending on the crossing partner. The RV genotype is lethal. b. The location of het-v was identified through nested deletions, marked in orange if they lost the barrage formation in confrontations with a V1 strain (that is, became compatible) or in grey if they did not. The black bar represents a cluster of genes absent in the strain Y, which is of incompatibility type V1. c. Deletion Δ113 (Δ12915-123170) from a V strain leads to the V1 phenotype. A barrage test with a V (top row) and V1 tester (bottom row) is given for three transformants obtained with the Δ113 deletion cassette using an RV recipient strain. The central transformant t2 produces a barrage reaction to V but not to V1 (that is, it acquired the V1 phenotype). Transformants t1 and t3 retain the V phenotype and are presumably V+V1 heterokaryons. d. Genetic structure of the het-r and het-v loci is represented by the domain architecture of the encoded proteins. Arrows represent incompatible interactions. e. To the left, a cross between rV (light colour) and RV1 (dark colour) produces very few fruiting bodies. However, fertility is recovered by deleting the het-v locus and adjacent genes (Δ12810-12690) as shown in the cross in the middle. Reintroduction of the het-Va and het-Vb genes fully restores the sterile phenotype characteristic of rV×RV1 in the cross to the right.

Locus het-v encodes two genes that cause incompatibilities. As the het-v locus was genetically mapped to the left arm of chromosome 5, we introduced genetic markers in that region and analysed their linkage to the vegetative incompatibility phenotype of het-v (Supplementary Fig. 8; Methods). This led to the identification of a 113 kb long candidate region (Fig. 3b). Deletion of this region in an RV strain led to loss of the barrage reaction to an otherwise isogenic RV1 strain, as expected if het-v locates there. Notably, while losing the V phenotype, these deletion strains simultaneously acquired the V1 phenotype (rather than showing a neutral incompatibility phenotype) (Fig. 3c). In other words, deleting the region with the het-v allele resulted in vegetative incompatibility to V1 (that is, it acquired the V1 phenotype). Transformants t1 and t3 retain the V phenotype and are presumably V+V1 heterokaryons. e. To the left, a cross between rV (light colour) and RV1 (dark colour) produces very few fruiting bodies. However, fertility is recovered by deleting the het-v locus and adjacent genes (Δ12810-12690) as shown in the cross in the middle. Reintroduction of the het-Va and het-Vb genes fully restores the sterile phenotype characteristic of rV×RV1 in the cross to the right.

other number of repeats or a mutated version of the basic 11 repeats. The het-v locus also has two alleles, V and V1, as defined by classical genetics. The vegetative incompatibility reaction (or barrage) is triggered when individuals of different het-v alleles meet and fuse (Fig. 3a). Different het-r alleles do not trigger barrage formation on their own but there is a non-allelic interaction between the alleles R and V leading to a barrage. Crucially, the allelic and non-allelic vegetative interactions are mirrored by sexual sterility with severity depending on the genotype of the parents. Moreover, individuals of the genotype RV are self-incompatible, making that combination lethal upon germination. While the het-r/v incompatibility had been previously linked to sexual dysfunction, there had been no indication of this leading to two RI groups as observed here. To confirm that het-r/v are indeed responsible for causing RI in P. anserina, we molecularly characterized the het-v locus.
to a 38 kb area (between the genes Pa_5_12810 and Pa_5_12690, henceforth Δ12810-12690; ref. 47 gives gene codes). Inspection of the sequenced genome of the wild-type strain Y, which is of the V1 incompatibility type, revealed that a ~12 kb region spanning five genes (Pa_5_12750 to Pa_5_12710) is replaced by a cluster of transposable elements when compared with the reference genome of the S strain48, which is of the V type. Consistent with the deletion strain experiment, these five genes are contained within the Δ12810-12690 area. The V1 phenotype of the deletion strains, in turn, indicates that the cluster of transposable elements at the wild-type V1 locus is not required for the V/V1 incompatibility.

To determine which of the five open reading frames (ORFs) within the region absent in the strain Y are responsible for the V phenotype, we turned to a complementation cloning approach using the rV1 Δ12810-12690 strain (which displays the V1 phenotype) as a recipient. Our results showed that insertion of the genes Pa_5_12710 and Pa_5_12720 confers the V phenotype on the recipient strain and that these two genes thus correspond to het-v. Furthermore, both genes together are required for allelic incompatibility to V1, while Pa_5_12720 alone determines non-allelic incompatibility to R (Fig. 3d and Supplementary Table 4). A strain expressing Pa_5_12720 (but not Pa_5_12710) becomes compatible with both V and V1. Thus, we propose to name Pa_5_12720 and Pa_5_12710 as het-Va and het-Vb, respectively (Fig. 3d).

Since het-Va encodes a predicted lysine or histidine methyltransferase (Fig. 3d and Supplementary Fig. 9), we hypothesized that this activity was required for the incompatibility function. Two different point mutants of the catalytic tyrosine residue were obtained (Y233A and Y233F; Supplementary Fig. 9). When introduced into a recipient with the rV1 phenotype (V Δ12810-12690), both mutants restored vegetative incompatibility to R (Supplementary Table 4). In contrast, co-transformation of het-Vb with het-Va Y233A or Y233F failed to restore the barrage reaction to V1. We conclude that the methyltransferase activity of HET-Va is required for the allelic V1/V vegetative incompatibility but dispensable for non-allelic R/V vegetative incompatibility (Fig. 3d).

To confirm that the vegetative and sexual effects associated with het-v have the same mechanistic basis, we verified that the Δ12810-12690 deletion of the region encompassing het-Va and het-Vb, which converts V to the V1 vegetative phenotype, also restores fertility in crosses to an RV1 strain (Fig. 3e and Supplementary Fig. 10). We found that a Δ12810-12690×RV1 cross shows normal fertility. Moreover, when het-Va and het-Vb are re-introduced by transformation into Δ12810-12690 strains, the crosses to an RV1 strain show sterility. In addition, we found concordance between the sexual and vegetative phenotypes when the het-Va point mutants were used for transformation (Supplementary Fig. 11 and Supplementary Table 5). An rV1 recipient transformed with het-Va Y233F (or Y233A) together with het-Vb showed normal (female) fertility to rV1, while transformants expressing het-Va Y233F remained sterile (as males) in crosses to RV1. Thus, as for the vegetative incompatibility, the methyltransferase activity is dispensable for R/V but required for V/V1 sexual incompatibility. However, a discrepancy between the vegetative and sexual effects was noted for the het-Va Y233A mutation, which suppressed R/V sexual but not vegetative incompatibility. It is possible that this less conservative substitution partially destabilizes the het-Va product and that decreased protein amounts are sufficient to trigger vegetative but not sexual incompatibility. Accordingly, it has been observed in other P. anserina het systems that higher protein amounts are required for sexual than for vegetative incompatibility40. Thus, we conclude from these experiments that het-Va and het-Vb are responsible both for the vegetative and sexual phenotype of het-v and that sexual incompatibility is not the result of linked variants.

In essence, because the cell death reaction is not turned off during sexual reproduction, the het-r/v system acts as a reproductive barrier (Fig. 4; also Supplementary Fig. 12). Asymmetry in fertilization probably arises from the fact that the V allele is a diffusible cytoplasmic factor, while the HET-R protein is not14,45. Potentially, the HET-R protein is found in very low amounts or does not diffuse from the male gamete (microconidium) to the female organ (protoperithecium). As a result, the R protoperithecium is damaged by the V products but not vice versa (Fig. 4c).

In combination with previous knowledge on het-r, we can now derive a mechanistic model for het-r/v allorecognition function. It is known that HET-R has a tripartite domain organization typical of nucleotide-binding oligomerization domain (NOD)-like receptors or NLRs25,27. Thus, the het-r/v interaction can be hypothesized to function analogously to other incompatibility systems involving NLRs such as het-c/e/d, het-z and the het-s/mwd2 systems14,47,48. In such a model, HET-R would bind the HET-Va protein via the variable C-terminal domain of WD40 repeats, which would trigger oligomerization of its NACHT domain and downstream activation of the HET cell death-inducing domain. This model accounts for the fact that WD40 repeat loss in HET-R leads to the inactive
r phenotype46 and that R/V incompatibility is independent of the predicted methyltransferase activity of HET-Va.

The genetics of the V/V1 incompatibility, by contrast, represents a rather puzzling situation from a mechanistic point of view. It is unclear how the het-Va and het-Vb genes (that is, the V allele) are able to sense the absence of their own products (V) during the vegetative (and sexual) incompatibility reaction. HET-Va is a predicted methyltransferase, while HET-Vb displays a TUDOR domain occurring in so-called reader proteins, which recognize the methylation marks deposited by methyltransferases49, as well as a MLKL/HeLo membrane-targeting cell death-inducing domain46. The domains involved suggest that incompatibility could be brought about by a combination of methyl mark deposition (by HET-Va) and reading by the HET-Vb TUDOR domain and subsequent activation of the MLKL/HeLo domain ensuring cell death execution (Supplementary Fig. 13), by analogy to the mechanism of cell death execution in mammalian necroptosis or hybrid necrosis54. Crucially, genes of similar molecular characteristics and selective pressures driven by non-self recognition can contribute to reproductive isolation in vastly different taxa.

The het-r and het-v loci induce reproductive isolation in the wild. Once the molecular basis of vegetative and sexual incompatibility was identified, we set out to further characterize the Wageningen population with regard to the two RI groups. Although the effects of the het-r/v interaction on sexual incompatibility are significant, they are not absolute. Hybrids can be produced in the laboratory (Fig. 3e, left) and the RV reaction is thermosensitive, losing effect at 32°C (ref. 58). To evaluate if the RI group effects we observed in the laboratory crosses hold in wild populations, we analysed the population genomic dataset to determine their het-r/v alleles. We reason that if, despite sexual incompatibilities, the two RI groups are mixing in nature, we should encounter the three possible viable genotypes of similar molecular characteristics and selective pressures between het-v and het-r (that is, rV, RV1 and the recombinant rV1; Fig. 3a) in the wild, simply because of independent chromosomal segregation. We confirmed that the RI groups (as in PCI in Fig. 2a) are perfectly defined by the het-v allelic identity. Indeed, the maximum values of F_{st} occur at the het-v locus (Fig. 2b and Supplementary Fig. 6). Since the members of the HNWD family cannot be assembled with Illumina data, we used a PCR-based method of ref. 46 to genotype the het-r gene in the Wageningen collection (Supplementary Tables 1 and 6). As expected, under strong reproductive isolation, we found a nearly perfect association of r with V and R with V1 throughout the sampled years (Fig. 5a), with an LD estimate of $\rho^2 = 0.926$ between the two loci. By contrast, het-v
found in the same dung piece and that such individuals often belong to different RI groups (Fig. 5c). Taken together, this demonstrates that the RI groups do not lack opportunities for mixing in the wild.

Simulations recapitulate the formation of two RI groups. To investigate the conditions under which a split of a population by means of pleiotropic genes under balancing selection can occur, we designed an individual-based simulation using SLiM⁶⁰ on the basis of the *Podospora* life cycle and our characterization of the *het-r/v* interaction (Supplementary Methods and Supplementary Fig. 16). Since we do not know the ancestral state of either *het* gene, we used as starting point populations of a single genotype, either *rV* or *RV1*, and then a small fraction of individuals of opposite genotype were introduced. Regardless of the starting genetic composition, we found that balancing selection and some degree of selfing is required for the introduced genotype to invade the population (Fig. 6 and Supplementary Figs. 17 and 18). Selfing is needed because the invader allele immediately suffers the cost imposed by the lethal *RV* combination produced during outcrossing, which will prevent it from increasing in frequency. In the presence of selfing, the cost can be avoided and balancing selection then provides benefits to the invader alleles through rare-allele advantage, eventually driving them to intermediate frequencies. Importantly, the population is composed of the two expected genotypes (*rV* and *RV1*, to the exclusion of *RV1*) under several scenarios, most of them dependent on the strength of balancing selection acting on the non-allelic (*R/V*) system and secondarily on the allelic one (*V/V1*) (Fig. 6 and Supplementary Figs. 17 and 18). In addition, high levels of

Prezygotic isolation (*V/V1*):	0	0.2	0.4
Selling rate: 25%			
Genotype frequency			
Genotype RV1			
Genotype RV			
Genotype rV			
Genotype rV1			
Selling rate: 75%			
Genotype RV1			
Genotype RV			
Genotype rV			
Genotype rV1			
Selling rate: 90%			
Genotype RV1			
Genotype RV			
Genotype rV			
Genotype rV1			

![Fig. 6](image-url) **Summary of individual-based simulations of rV invading an RV1 population with intensity of V/R balancing selection fixed to 0.5.** For each parameter combination, the distribution of genotype frequencies of 100 replicated simulations is given. Each simulation is represented by a dot and their distribution by a boxplot, which shows the median as a diamond, the 25th to 75th percentiles as the box bounds and 1.5× interquartile ranges as whiskers. If dots and boxplots are not visible, the distribution is concentrated behind the diamond of the median.
selfing, prezygotic isolation or both, can lower the frequencies of the rV1 genotype, completing isolation. Notably, a theoretical study on hybrid necrosis genes in plants also found a role of negative frequency dependence on the build-up of reproductive barriers\(^1\), with the difference that the isolating barrier in question is exclusively postzygotic, instead of prezygotic and postzygotic as in the case of *P. anserina*. Their model also included selfing but the authors did not explore the effect of this parameter on their results. Overall, we conclude from the simulations that RI groups can evolve from pleiotropic allorecognition loci in organisms that undergo selfing (or inbreeding) at high rates during the invasion of one of the two incompatible genotypes. Analogous to the scenario where pleiotropic effects of the MHC drive speciation through assortative mating\(^1\), in *Podospora* selfing acts as the non-random mating process that allows reproductive isolation. Moreover, sympathy is a necessary condition for the evolution of reproductive isolation in our model, since vegetative interactions between individuals of the two groups are required for balancing selection to operate.

Of note is the fact that, out of all the het systems of *P. anserina* that have effects on the sexual function, only het-r/v leads to detectable effects on population structure and compatibility type differentiation. Both the het-c/ed and the het-z systems lead to sterility in specific combinations of het-genotypes in the male and female parent (Supplementary Fig. 1)\(^5\). Likewise, the unlinked loci het-c/ed can produce 'self-incompatible' progeny that die after germination, just like het-r/v\(^6\). However, our simulations show that, in the absence of balancing selection acting on an allelic system and the associated prezygotic incompatibilities (roughly equivalent to a simplified het-c/ed or het-c/e interaction, for example), the two mating groups can only evolve under extremely high selfing rates. Probably, the fact that sterility is (nearly) symmetrical in the het-r/v system, but not in the other ones, makes it particularly prone to split the population.

Admittedly, our simulations do not fully capture the complexity of the multiallelic het-c/ed system, where sexual incompatibility can be additive. For instance, a C1E1 x C2E2 cross is nearly totally sterile, as their het-c and het-e alleles are incompatible. Yet, there are numerous wild-isolates that show neutral het-d and het-e alleles\(^3\). Presumably, the strains with neutral het-d and het-e alleles can bridge the gene flow between incompatible isolates, limiting their effects on reproductive isolation. Interestingly, the het-c alleles that can interact with more het-c/ed alleles and which would be more effective at inducing reproductive isolation, have a low frequency in the Wageningen population (alleles C4, C8 and C9 in Fig. 1), suggesting that they are too costly relative to their adaptive value\(^3\).

The het-v locus is physically close to a meiotic drive gene. In addition to the factors discussed above, meiotic drive could further influence the maintenance of allrecognition genes with pleiotropic effects. The advantage provided by segregation distortion can counteract selection against deleterious alleles, leading to stable polymorphism\(^3\). We genotyped all samples for the presence of members of the Spok family (Supplementary Table 1), confirming previous indications\(^7\) that the Spok2 gene is at a high population frequency (86.7%). The location of Spok2 is relatively close to het-v and falls within the area of significant differentiation between RI groups (Supplementary Figs. 6 and 14). If the presence of Spok2 predates the evolution of het-r/v, the segregation distortion advantage of Spok2 could have aided the establishment of the incompatibility system despite the cost of sexual incompatibility. Alternatively, Spok2 could have invaded *P. anserina* after the evolution of het-r/v. As spore killers generally only experience the fitness boost from meiotic drive after reaching some minimum population frequency\(^8\), Spok2 may have benefited from hitchhiking along with a locus under balancing selection at early stages of population invasion. Recombination could have later decoupled Spok2 from a given het-v allele, allowing it to invade both RI groups and approach fixation. The invasion of Spok2 could have then eroded divergence between RI groups, as observed in meiotic drive systems of *Drosophila* species\(^9\). Data from different populations of *Podospora* are required to clarify this link but, regardless, the proximity of Spok2 and het-v hint to a previously unappreciated way meiotic drive could contribute to speciation.

The het-r and het-v loci are present in related species. Finally, in an attempt to discern the evolutionary history of het-r and het-v in *P. anserina*, we examined the genomes of other members from the *P. anserina* species complex\(^10\). We found that orthologues of het-r are present in all seven species of the complex, although their allelic identity is unknown (Methods). In the case of het-v, we found that het-Va and het-Vb are present in at least some species but there is also evidence of introgression of het-v between *P. anserina* and *P. pauciseta* (Supplementary Fig. 19). These observations suggest a dynamic evolution of the het-v locus throughout the divergence of this species complex but without population sampling from the other *Podospora* species we cannot draw concrete conclusions.

Looking at other genera of the order Sordariales\(^11\), we also found that het-Va and het-Vb show conserved synteny in *Sordaria macrospora* and a number of *Neurospora* species (Supplementary Table 6). As large genomic datasets of the *Neurospora* species are available, we investigated the distribution of the het-v alleles across the genus. We found that only *Neurospora perkinsii*, *N. intermedia* and some lineages of *N. tetrasperma* have full copies of both het-Va and het-Vb. In *N. crassa* and *N. sitophila*, the gene het-Vb seems pseudogenized, while in *N. metzenbergii* and *N. tetrasperma* lineages L4, L7 and L8 (ref. \(^6\)) both genes are completely absent. Notably, *N. intermedia* and some lineages of *N. tetrasperma* are polymorphic for pseudogenized and full copies of het-Vb, raising the question of whether het-v also works as an allrecognition gene in these species. Furthermore, different taxa have their own premature stop codons, suggesting independent loss events. Thus, although we lack mechanistic evidence for the function of these genes in *Neurospora*, the observed patterns suggest that het-v might be old but involved in rapid presence/absence turnover in other taxa. By contrast, we found that het-r gene does not appear to be present in *Neurospora*.

Importantly, the het-r/v interaction itself cannot be ancestral to the *P. anserina* species complex, as the het-r/v incompatibility leads to speciation and thus to the loss of polymorphism (that is, each genotype is 'fixed' in each RI group). Accordingly, the extremely low diversity and the lack of differentiation along the genome (based on both Fst and D), other than around het-v and het-r, suggest that the RI group isolation is extremely recent. In addition, as it is known that there is a thermosensitive component to the r/v interaction\(^12\), it remains of interest to study the phylogeography of this incompatibility system.

Conclusion

Dissecting the genetic basis of reproductive barriers is a major challenge in speciation research\(^13,14\). In *P. anserina* we found that the het-r/v system not only contributes to speciation but it directly defines RI groups by conflating vegetative recognition with sexual compatibility. If current conditions are maintained, the *P. anserina* RI groups may accumulate further genetic incompatibilities and evolve ecological differences, eventually completing the speciation process. While the typical number and effect sizes of speciation genes (sensu ref. \(^9\)) at the onset of speciation remains an open question, the case of this fungus suggests that speciation can happen through few loci of big effects, maintained by balancing selection forces and potentially high selfing or inbreeding rates. Moreover, the universality of the non-self recognition genetic systems implies that this type of reproductive isolation might occur in a wide variety of taxonomic groups.
Methods

We used the packages ggplot2 v3.0.0 (ref. 71), cowplot v1.0.0 (ref. 72), gridExtra v2.3 (ref. 73), hexbin v1.2.73 (ref. 74), rstatix v0.7.0 (ref. 75) and ggpubr v0.4.0 (ref. 76) for data visualization and analysis. Animal silhouette figures were taken from https://www.mammalspictures.com and https://www.printable-silhouettes.com. Most bioinformatics analyses were performed using the workflow manager Snakemake v5.4.4 (ref. 77).

Fungal material. Including eight previously sequenced strains29, our genomic dataset consisted of 106 P. anserina strains isolated in Wageningen, the Netherlands, and kept at the Laboratory of Genetics of the Wageningen University and Research27–29,30. These strains are identified with ‘Wa’ followed by a unique strain ID number (Supplementary Table 1). Most of the strains were obtained between 1991 and 2010 by isolating a single spore from a fruiting body (perithecium) in herbivore dung. Each spore was grown and selfed one or two times to obtain sexual spores (ascospores) and stored. If no barrage was formed, the resulting ascospores could be isolated from the same dung sample. To determine if these isolates belonged to the same strain, the isolates were confronted against monokaryotic isolates that were considered to represent the same strain. To confirm that the isolates represented unique genets, if no barrage was formed, the isolates were confronted against monokaryotic isolates used as male parent. Likewise, vegetative compatibility was assessed through barrage formation upon confrontation. Barrage was assessed by evaluating the production of perithecia, whereby strains of the same RI group produce more perithecia with each other than to other RI group. Some strains produced only few perithecia on one or both tester strains and so could not be confidently assigned to an RI group.

Clustering analysis of mating compatibility. Mating compatibility data between the strains of the Wageningen collection produced by ref. was coded into a distance matrix according to the following scheme: mature fruiting bodies produced by both mating partners with or without the presence of ascospore abortion—1; mature fruiting bodies produced by one of the mating partners with or without the presence of ascospore abortion—2; mature fruiting bodies produced by one of the mating partners with the absence of ascospore abortion in the other partner—3; perithecial abortion observed in one of the mating partners—4; ascospore abortion observed in one partner of the cross and no perithecia observed in the other partner—5; no perithecia observed on either mating partner—6. The resulting non-symmetric distance matrix (Supplementary Table 3) was transformed into a Gower’s dissimilarity matrix using the R v3.5.1 function daisy from the package cluster v.2.0.7.1. The optimal number of clusters was determined according to maximum average silhouette width as determined by function pam and the Gap statistic also from the cluster package.

DNA extraction and Illumina paired-end sequencing. Growth and DNA extraction followed ref. Briefly, monokaryotic isolates of each strain were grown on PASM0.2 plates covered with cellophane, from which 80–100 mg of mycelium were recovered for extraction. Whole genome DNA was extracted with the ZR Fungal/Bacterial Microprep kit (Zymo; www.zymoresearch.com). Library preparation and sequencing with the HiSeq X Illumina technology (150 base pair bp long reads) was done at the SNP and SEQ Technology platform (SciLifeLab). For spores that were stored at −80 °C, the mycelium was first homogenized in the Mini-Beadbeater (Biospec Products) for 30 s at 25 Hz previous to extraction.

Read mapping and variant calling. We detected adaptors from the Illumina reads using cutadapt v1.13 (ref. 78) and removed them using Trimmomatic 0.36 (ref. 79) with the following options: ILLUMINACLIP:adaptors.fasta:1:30:9 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:30. We used the filtered pairs with both forward and reverse reads for downstream analysis. As a reference genome we used the second version of the strain S+ assembly31 available in Joint Genome Institute MycoCosm website (https://genome.jgi.doe.gov/programs/fungi/index.jsf) as Podan2. Short-read mapping was done with BWA v0.7.17r5 and PCR duplicates were marked with Picard v2.19.0 (https://broadinstitute.github.io/picard/). We used HaplotypeCaller of the Genome Analysis Toolkit (GATK) v4.1.1 (ref. 80) for indel realignment and variant discovery across all (haploid) samples simultaneously, following the GATK Best Practices recommendations. For subsequent analyses we used only the SNP data (that is, the indels were excluded). Data associated with the sample RI group rV1 (ref. 81) were excluded. Data associated with the sample RI group rV2 (ref. 82) were used for the analysis of potential ascospore abortion. Visual inspection of the mapped reads revealed low levels (<10% of the total depth of coverage, typically 1–3%) of index-hopping in some samples. Because the sequenced samples are haploid and have a high read coverage (>80x), the low level of contaminating reads did not affect base calling.

PCA of SNP data. From the SNPs obtained with GATK, we filtered out all sites with the following criteria: QD < 2.0, FS > 60.0, MQ < 40.0, QUAL < 30.0, SOR > 3.0, ReadPosRankSum < -8.0. We also removed all sites that overlapped with repeated elements as detected by RepeatMasker v4.0.7 (https://www.repeatmasker.org/) with the library of ref. 83. From the remaining SNPs we only retained those sites without any missing data (hereafter referred to as ‘high-quality’ SNP set). We further reduced the high-quality SNP set by filtering out SNPs with minor allele frequency (MAF) <1% and used the packages gdsfmt v1.2.0 and SNPPredate v1.18.0 (ref. 84) in R v3.5.1 to produce a PCA of the full genome. We excluded the mitochondrial scaffold (SNPPop små) is available at https://doi.org/10.5281/zenodo.6323682.

This analysis included all samples sequenced, as at least the French strain S also has mating data available to compare it with. However, using only the Wageningen samples leads to similar results. The two samples with intermediate values of PC1 (next to the line at PC1 = 0) in Fig. a (Wa60+ and Wa61−), have a V1 allele (that is, they belong to RI group RvI) but are recombinant with the RI group RV2. This can be observed in the linked sites surrounding the het-v locus. Removing these two samples had no effect on downstream analyses.

Population genetic analyses. To investigate the genetic diversity of P. anserina, we used the R package Genome v2.6.1 (ref. 85) to estimate the following population genetic parameters for each other pairwise mating group within a population (x) and between two populations (Dx) (ref. 86). Watterson’s theta (θx), the Tajima’s D statistic and the fixation index Fx (refs. 87,88). All analyses were done on windows of 10kb with steps of 1kb. Of note, standard VCF files only contain sites that are variable but do not specify sites with missing data that
Positional cloning of het-\(v\). Since het-\(v\) was known to be located on the left arm of chromosome 5, we created genetic markers in that region and analysed their linkage to het-\(v\) (Fig. 3b and Supplementary Fig. 8). The nat\(1\) marker was integrated into the id2 gene (\(Pa_5_4020\)) located on the left arm of chromosome 5. The nwd3 gene (\(Pa_5_3370\)) is also located on the left arm of chromosome 5 and displays two alleles, nwd3-1 and nwd3-2, that can be distinguished by the number of WD40 repeats. A \(V1\) nwd3-2 x \(V1\) nwd3-1 id2::nat\(1\) cross was set up and 116 homokaryotic progeny were isolated and phenotyped for nourseothricin resistance, het-\(v\) incompatibility type in barrage tests and genotyped for repeat length polymorphism at nwd3 by PCR. Percentages of second division segregation (see ref. 9 for terminology) were 24%, 49% and 51%, respectively, for id2, nwd3 and het-\(v\). Out of 103 progeny, 12 showed recombination between id2::nat\(1\) and \(V1\), a single one showed recombination between nwd3 and \(V1\) and 11 (10.7%) showed recombination between id2 and nwd3. The physical distance between id2 and nwd3 is 0.5 kb leading to an estimated recombinant rate in that region, suggesting in turn that \(V1\) is located within ~20 kb (1% recombination) from nwd3. A 30 kb region spanning the tentative position of \(V1\) between \(Pa_5_3300\) and \(Pa_5_3180\) was thus amplified and sequenced in a \(V1\) strain. Polymorphism between \(V1\) and \(V\) strains was only detected in \(Pa_5_3200\) gene. Deletion of this gene in the \(V\) background did not affect \(V\) incompatibility and thus \(Pa_5_3200\) is not allelic to \(V\). Because no candidate for \(V\) was identified in this region, we set out to obtain a genetic marker that would flank \(V\) on the centromere distal side. To that end, the hph marker was integrated between \(Pa_5_12920\) and \(Pa_5_12915\) located at ~165 kb centromere distal to nwd3 and ~113 kb from \(Pa_5_3180\). The marker was set at hph115L. In 124 progeny, no recombinants between hph115L and \(V1\) were observed suggesting tight linkage between the marker and \(V\) (but preventing the determination of the relative order of nwd3, \(V\) and hph115L).

Rather than further increasing the number of analysed progeny (to determine the relative position of nwd3, \(V\) and hph115L), we reasoned that the position of the hph marker relative to the \(V1\) marker could be determined by constructing a recombination map of the 113 kb region spanning the region from \(Pa_5_3180\) to the insertion site of the hph115 marker. If \(V\) is centromere proximal to hph115L, this deletion should affect het-\(v\) incompatibility. This region containing 28 annotated genes (\(Pa_5_3170\) to \(Pa_5_12915\)) was deleted and replaced by the hph gene (Supplementary Fig. 8). An \(V\) strain was transformed with the deletion cassette and four homokaryotic transformants were obtained. Correct insertion of the deletion cassette was verified by PCR. The transformants deleted for the 113 kb region lost the barrage reaction to \(V1\). Instead, these transformants now produced a barrage reaction to \(V1\) (Fig. 3c). Thus, these transformants lost the \(V\) phenotype and at the same time acquired the \(V\) phenotype, rather than becoming neutral. The het-\(v\) locus is thus centromere proximal to hph115L located within the 113 kb region spanning \(Pa_5_3170\) to \(Pa_5_12915\).

Next, we constructed two smaller deletions (77 kb and 35 kb long), further subdividing the 113 kb region containing het-\(v\) (Fig. 3b and Supplementary Fig. 8). Deletion of the 77 kb region between \(Pa_5_12915\) and \(Pa_5_12690\) led to transformants displaying the \(V\) phenotype (it produced a barrage reaction to \(V1\)). Transformants bearing the 35 kb deletion remained V (it produced a barrage reaction to \(V1\)). The same strategy was repeated with deletions \(Δ\)12915-12820 and \(Δ\)12810-12690 (Supplementary Fig. 8). Transformants carrying the \(Δ\)12810-12690 deletion showed the \(V\) phenotype, those carrying the \(Δ\)12915-12820 deletion remained \(V\). Attempts were made to further subdivide the region spanning \(Pa_5_12810\) to \(Pa_5_12690\) but the expected \(Δ\)12810-12760 deletions could not be obtained even after several trials, suggesting that the chromosomal region is recalcitrant to integration of the deletion cassette.

Our results suggest that the deletion of \(V\) leads to the \(V\) phenotype. Accordingly, earlier genetic investigation failed to recover null mutants for \(V\); all mutants recovered for the loss of the \(V\) phenotype acquired simultaneously the \(V\) phenotype. It also shows that the 113 kb region does not contain any essential genes, consistent with the fact that chromosome 5 appears enriched for contingency genes.

Identifying the exact ORFs defining het-\(v\). When examining the 113 kb region in the strain \(Y\) (of \(V\) compatibility type), we found that five ORFs present in the reference strain \(S\) (\(V\) were replaced by a cluster of transposable elements of the discosolge (\(Tc1/mariner-like\)), atalopus (\(Copia-Ty1\)) and crapaud (\(Gypsy-Ty3\)) types (see ref. 8 for nomenclature). To determine which of the five ORFs (\(V\)) within this region confer the \(V\) phenotype, we turned to a complementation cloning approach using the \(Δ\)12810-12690 \(V1\) strain as a recipient. The region spanning the five ORFs was amplified in a \(V\) strain as two PCR fragments, termed \(a\) (3.4 kb, corresponding to \(Pa_5_12750\), \(Pa_5_12740\) and \(Pa_5_12730\)) and \(b\) (5.7 kb, corresponding to \(Pa_5_12720\) and \(Pa_5_12710\)) (Fig. 3b and Supplementary Fig. 8). The \(a\) and \(b\) fragments were used to transform a \(V1\) recipient strain (\(Δ\)12810-12690 \(V1\)) expressing the carbamoyl phosphate synthetase activity involved in de novo pyrimidine biosynthesis and carrying a deletion of the carbamoyl phosphate synthetase region of \(V1\). From the 18 transformants obtained with fragment \(b\), 14 produced a barrage to \(V1\) and \(V1\) and not to \(V\) (they acquired the \(V\) phenotype). The remaining four produced no barrage to \(V1\) or to \(V1\) (still display the \(V\) phenotype). Hence, the fragment containing \(Pa_5_12720\) and \(Pa_5_12710\) confers the \(V\) phenotype to a \(V1\) strain and thus corresponds to het-\(v\).
Separate roles of Pa_5_12710 (het-Vb) and Pa_5_12720 (het-Va) in het-v incompatibility. The genes het-Va and het-Vb were amplified separately and transformed into the same V1 recipient strain (Supplementary Table 4). Transformants with het-Va alone produced a barrage to rV but not to rV1 or RV1. Transformants with het-Vb alone produced a barrage to rV but not to rV1 or RV1. We conclude from these experiments that het-Va and het-Vb together are required for incompatibility to V1 while het-Va alone determines incompatibility to R.

Analysis of sequences of the proteins encoded by het-Va and het-Vb. Gene het-Va encodes a 469 amino acid long protein with an N-terminal SET lysine methyltransferase domain (pfam 00856), followed by a Rubisco LSMT substrate-binding domain (pfam 09273) and a C-terminal MYND zinc-binding domain (01753) (Fig. 3d and Supplementary Fig. 9). It is homologous to an N. crassa protein that was annotated SET-9 in a variety of methyltransferases in that species114. Such SET-domain proteins are predicted to show homology to TUDOR domains. TUDOR domains are beta-sheet folding domains (see mapping). Hence, we followed the PCR protocol of ref. 59 to amplify the WD40 domain (01753) (Fig. 3d and Supplementary Fig. 9). It is homologous to an N-terminal domain (~535–675) of the heteroagglutinin gene (Fig. 3d and Supplementary Fig. 9). It is homologous to an N-terminal domain (~535–675) of the het-Vb protein in particular are non-histone methyltransferases (last checked on 8 November 2021). Homology modelling to the human SET1D (pdb 3OYV) and Rubisco LSMT protein from Pison sativum (pdb 2i21) identified V233 of Pa_5_12720 as the catalytic tyrosine111. Hence, we generated two point mutants, Y233A and Y233F, which confirmed that the methyltransferase activity of this gene is required for V1/V incompatibility but dispensable for R/V incompatibility (main text). In addition, the two point mutants display a slightly different phenotype: Y233F mutants also lack breaking after conjugation (with whole genome sequences data available124-126). We used BLASTp searches and manual inspection of synteny to assess presence and orthology. We found that the ortholog of het-r is in all species but no strain showed the exact arrangement of 11 repeats found in the P. anserina R allele. While these could correspond to the R allele, further testing and population sampling is needed. In the case of het-V, we only found het-V and het-Vb in three other strains, representing two different arrangements of the het-V haplotype found in the P. pauciseta strain CBS237.71 was almost identical in sequence to that of P. anserina (suggesting introgression), we chose four genes flanking the het-V haplotype and produced maximum likelihood genealogies of said genes using IQ-TREE v1.6.8 (refs. 122,123) with extended model selection (-m MFP) and 100 standard bootstrap pseudoreplicates. We kept only six P. anserina strains as representatives of the two RI for clarity within each gene alignment.

To evaluate the presence of the het-V genes in species of Neurospora, the sequences of het-V and het-Vb were used as a BLAST query against the population datasets from refs. 114-116. The custom script query2haplotype v1.1 (available at https://github.com/SLA/memetics/blob/master/BLAST/query2haplotype.py) was used with parameters -s 100 -e 1 and -f 100. An absence of hits was taken as evidence that that gene is not present in that genome and these with partial hits were considered fragments. The annotation for the gene models of N. crassa and N. tetrasperma (FunigDB, https://fungidb.org/fungidb/) place unsupported in introns into the sequences to avoid premature stop codons. We assume that the intron structure matches that of P. anserina which holds true for the supported introns and for the distantly related sequences from Magnaporthe oryzae. Given this rational, sequences with premature stop codons were assumed to represent putative pseudogenes.

Genotyping of the Spok genes. The presence or absence of Spok2, Spok3 and Spok4 was defined first by BLAST searches as for the het-V genes above. Whenever Spok3 and Spok4 were present in a sample, either only one gene was assembled (often Spok4) or both were fragmented into multiple small scaffolds. The latter was due to tracks of gene conversion between them117 that complicate the assembly graph. Hence, we mapped the reads of samples with more than one Spok to a reference that has all three Spok types (Wa7+ from ref. 12). Manual inspection of the mapped reads allowed us to distinguish the number and type of Spok genes, as well as to discard false positives due to low levels of index-hopping.

Individual-based simulation of the het-V/het-V interaction in P. anserina. We used SLiM v3.3.2 (refs. 118,119) to create individual-based simulations that take into account the genetic architecture of the het-V and het-V genes as well as detailed features of the Podospora life cycle. See Supplementary Methods for details. The SLiM and R scripts used to generate and analyse the simulations can be found at https://doi.org/10.5281/zenodo.6323682

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Whole genome sequencing was deposited in NCBI SRA under BioProject PRJNA743020. All other data are available as Supplementary Tables.

Code availability
All custom code is available at Zenodo120 with the identifier https://doi.org/10.5281/zenodo.6323682
Acknowledgements

We would like to thank M. Grudzinska-Sterno for valuable assistance with laboratory work, as well as R. Debuchy and M. Sicault-Sabourin for assistance in the positional cloning. Next Generation sequencing was possible thanks to the support of the National Genomics Infrastructure/Uppsala Genome Center on massive parallel DNA sequencing. The computations were performed on resources provided by Swedish National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for Advanced Computational Science (UPPMAX) under the projects SNIC 2017/1-567 and SNIC 2019/8-371. We would also like to thank S. Tusso for useful advice and code peer review. Funding was provided by the European Research Council (ERC) with the grant no. ERC-2014-CoG, project 648143 SpoKGen (H.J.); the Swedish Research Council with grant no. 2015-04649 (H.J.); the Centre National de la Recherche Scientifique with recurrent funding to UMR 5095 (S.J.S.); and the Anna Maria Lundin’s Travel Grant 2016 and 2017 (S.L.A.-V.).

Author contributions

S.L.A.-V., A.A.V., H.J., S.J.S. and C.C. were responsible for conceptualization. S.L.A.-V., A.A.V., E.B. and S.D.G. undertook data curation. S.L.A.-V., A.A.V., I.M.-A. and S.J.S. completed the formal analysis. H.J., S.J.S. and S.L.A.-V. acquired funding. S.L.A.-V., A.A.V., A.G.-F., E.B., I.M.-A., S.J.S., S.D.G. and C.C. conducted investigations. S.L.A.-V., A.A.V., A.G.-F., I.M.-A. and C.C. were involved in methodology. S.L.A.-V., A.A.V., S.J.S. and H.J. undertook project administration. A.J.M.D. obtained resources. S.L.A.-V. was responsible for software. H.J., S.J.S., A.J.M.D. and M.L. undertook supervision. S.L.A.-V., I.M.-A. and S.J.S. conducted visualization. S.L.A.-V. wrote the original draft manuscript. S.L.A.-V., A.A.V., I.M.-A., M.L., H.J., S.J.S. and A.J.M.D. reviewed and edited the manuscript.

Funding

Open access funding provided by Uppsala University.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41559-022-01734-x.

Correspondence and requests for materials should be addressed to S. Lorena Ament-Velásquez or Hanna Johannesson.

Peer review information Nature Ecology & Evolution thanks Jun-Yi Leu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided

 Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

 Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection

Most of the data used was generated in this study, with the exception of the raw mating success data (as explained in the Main text and Methods) and the genome sequence of a few strains from the same population published previously (accession numbers available in the Supplementary Table 1). The new strains collected in 2016 and 2017 were deposited in the collection of Wageningen University & Research.

Data analysis

All code (in python, Snakemake and R) used for the bioinformatic analyses is available at the GitHub repository https://github.com/johannessonlab/HetVPaper.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Whole genome sequencing was deposited in NCBI under BioProject PRJNA743020. All other data is available as supplementary tables. The associated code is available in the GitHub repository https://github.com/johannessonlab/HetVPaper.
Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	In this study we used a Dutch collection of 106 strains from the fungus Podospora anserina to assess the connection between vegetative and sexual incompatibility and the effects on speciation. Using whole genome Illumina sequencing, we characterized the genetic diversity of this population and detected signatures of balancing selection for known vegetative incompatibility loci (het genes). Using previously published mating success data for the same population, we identified two reproductively isolated groups defined by the antagonistic interaction of two het genes: het-r and het-v. While het-r was already known, here we characterize het-v through positional and complementation cloning, as well as site-directed mutagenesis. We used substrate information of the collection, plus additional sampling of 68 strains to determined that the two reproductively isolated groups co-occur in their known substrate. Finally, we used individual-based simulations to gain insights into the evolution of this system.
Research sample	The Wageningen Collection consist of strains isolated around the city of Wageningen, The Netherlands, as described in Materials and Methods. Sequenced strains were collected between 1991 to 2016. Additional strains were sampled in 2017 but not sequenced. This fungus has a "pseudo-homothallic" reproductive system, meaning that the mycelium contains two types of haploid nuclei, one of each mating type, which allows for self-fertilization. It occasionally produces haploid ascospores, which were used for all the analyses. Here, a strain correspond to a single ascospore extracted from a fruiting body present in herbivore dung, as well as all its descendants derived by selfing. The Wageningen collection has been studied extensively for the evolution of meiotic drive, het genes, and senescence. This includes the original raw data of mating success found in the PhD thesis of Marjin van der Gaag, and which we re-analyzed here as described in Materials and Methods.
Sampling strategy	We attempted to include all the strains of the Wageningen Collection, but the spores of a few strains failed to germinate or had failed sequencing and were not included in the project. We also attempted to include available strains from other parts of the world (France, Switzerland, Canada, and Argentina), but very few strains of this and related species are available elsewhere.
Data collection	Sequencing, sampling, phenotyping and genotyping is described in the Materials and Methods section. Sampling of new strains in 2016 and 2017 was done by the authors SLAV, SDG, EB, and AJMD. Coding of mating success data was done by AAV. Phenotyping to assign strains from 2017 to the reproductively isolated groups was done by AAV and SLAV. Cloning, mutagenesis, and genotyping of het-v was done by AGF and CC. Preparation of cultures for sequencing was done by EB. All simulation analyses were done by IMA.
Timing and spatial scale	Samples were collected between 1991 and 2017 in association with several PhD projects from Wageningen University & Research and Uppsala University, as well as the course of Advanced Genetics imparted by AJMD. Isolating new strains is a laborious and specialized effort that is strongly subject to chance (e.g. mass mortality of the local rabbit population in some years).
Data exclusions	No data was excluded. Whenever the analyses included strains other than those sampled in Wageningen, this is specified in the Materials and Methods or in the Main text.
Reproducibility	The main bioinformatic analyses were done using the workflow manager Snakemake available in the GitHub repository of the paper. Otherwise, they can be reproduced from stand-alone R scripts also in the repository. The procedure to locate and characterize het-v, including failed attempts, are described in the Materials and Methods.
Randomization	All Wageningen samples were included in all analyses, as the objective was to characterize the population. The samples are only randomly assigned to groups to calculate the distribution of Fst values expected by chance.
Blinding	Blinding was not necessary as all the fungal strains are indistinguishable and there is no phenotypic trait associated to the reproductively isolated groups (other than the vegetative and sexual incompatibility itself)

Field work, collection and transport

Field conditions	Field work was done in grassland-like areas around Wageningen, the Netherlands, and strain isolation was done as described in Materials and Methods. Only the source herbivore for the dung was recorded.
Location	Wageningen, the Netherlands. The coordinates for the 2017 samples are provided in the Supplementary Table 2.
Access & import/export	As both Sweden and the Netherlands are parties of the Nagoya protocol, but have no Access and Benefit-Sharing legislation, a declaration of due diligence was not required.
Disturbance	The samples taken (pieces of dung from horses, cows, sheep and rabbit) were small and found mostly in agricultural areas or near roads.
Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
✗	Antibodies
✗	Eukaryotic cell lines
✗	Palaeontology and archaeology
✗	Animals and other organisms
✗	Human research participants
✗	Clinical data
✗	Dual use research of concern

Methods

n/a	Involved in the study
✗	ChIP-seq
✗	Flow cytometry
✗	MRI-based neuroimaging

Animals and other organisms

Policy information about [studies involving animals](#): ARRIVE guidelines recommended for reporting animal research

Laboratory animals	The data associated to all Podospora strains used in this study is available in Supplementary tables 1 and 2.
Wild animals	The study involved fungal strains isolated from the wild as described above and in the Materials and Methods.
Field-collected samples	The maintenance and storage of the fungal strains is described in Materials and Methods.
Ethics oversight	For experimental work with Podospora anserina, no ethical approval or guidance was required.

Note that full information on the approval of the study protocol must also be provided in the manuscript.