Mechanical, Thermal and Morphological Characterization of Basalt Fibre Composite- A Review

Mehul Nautiyal, Aditya Shrinet, Ramachandran M*
MPSTME NMIMS Shirpur Campus.
sweetestchandran@gmail.com

Abstract. In fibre reinforced polymers as well as fibre reinforced mortar, basalt fibre has been made an important replacement to glass, polymeric fibre and steel after its exploration. Now a day’s BF (Basalt Fibre) has shown a rise in its attention as a replacement for glass and CF (Carbon Fibre). Basalt is a type of rock mainly dark coloured volcanic rock, which is formed after cooling lava from the volcano. In the production of fibre, basalt rocks having SiO2 (Silicon Dioxide) content of 46% is mainly used. Although basalt rock is found having various proportion of materials, only particular type of basalt rocks is used. The recently develop BFRP (Basalt Fibre Reinforced Polymer) manufactured from naturally occurring volcanic rocks shows tremendous advantages for example its recyclable, eco-friendly or does not harm the eco-system, consumes less energy in productions and as compared other types of FRP, has high performance to cost ratio. Therefore, pertaining to these advantages basalt fibre reinforced fibre has become a more reliable material to use in civil works or buildings various infrastructure. As steel material comes in contact to the corrosion, BFRP is preferred over steel as it has resistance to chemical corrosion as well as it is light weight also.

1. Introduction.
In fibre reinforced polymers as well as fibre reinforced mortar, basalt fibre has been made an important replacement to glass, polymeric fibre and steel after its exploration. Now a day’s BF (Basalt Fibre) has shown a rise in its attention as a replacement for glass and CF (Carbon Fibre). Basalt is a type of rock mainly dark coloured volcanic rock, which is formed after cooling lava from the volcano. In the production of fibre, basalt rocks having SiO2 (Silicon Dioxide) content of 46% is mainly used. Although basalt rock is found having various proportion of materials, only particular type of basalt rocks is used. The recently develop BFRP (Basalt Fibre Reinforced Polymer) manufactured from naturally occurring volcanic rocks shows tremendous advantages for example its recyclable, eco-friendly or does not harm the eco-system, consumes less energy in productions and as compared other types of FRP, has high performance to cost ratio. Therefore, pertaining to these advantages basalt fibre reinforced fibre has become a more reliable material to use in civil works or buildings various infrastructure. As steel material comes in contact to the corrosion, BFRP is preferred over steel as it has resistance to chemical corrosion as well as it is light weight also.

2. Tensile test
Addition of fibre leads to an effect named bridge action, and therefore to a greater firmness of the fibre reinforced mortar and greater ductile behaviour in contrast to the simple mortar. Furthermore, the fibre reinforced mortar seems to be highly strain rate sensitive, as the tensile power Dynamic Increase Factor (DIF) risen up to 5.1, for a high strain rate of about 102 s^-1. The acquired tensile qualities are explained in terms of
Dynamic Increase Factor commonly known as DIF, quantifying the rise in tensile failure stress at the measured strain rate values.

Paper no	Composition	Tensile strength (MPA)
2	BF 200g/mm, 2.33% epoxy	2044
2	BF 280g/mm, 4.13% epoxy	2277
4	Basalt fibres/BFRP Composites, 2.8% epoxy	2100
4	Basalt fibres/BFRP Composites, 2.7% epoxy	2130
4	(53.1, 5.3%) 64.6 (9.9, 15.4%)	1001
4	1908 (85.9, 4.5%) 77.1 (2.5, 3.2%)	1908
4	(66.3, 9.6%) (1.7, 2.7%) (29.3, 16.3%)	63.5 927.7 53
6	Ares = 157.98 mm2/mm for CFRP	2100
6	107.15 mm2/mm for BFRP	3900
11	Gap’s content (% wt.)	212

In reference to the acquired outcome the greatest tensile strength found in basalt fibre is 18179 MPa whilst the lowest is of 0.2 weight % Anti Peroxide, 5 weight % PP-g-MA i.e. 17.89 Mpa.

3. Flexural test
A quasi-static tensile strength characterization of the mortars was carried out as per the European Standard EN1015-11, by using an Instron 5566 testing machine, having a 5 KN of load cell, three-point bending flexural tests had been conducted on specimens of dimensions 40X40X160 mm. By using an Instron 8501 which was equipped with 50 KN of load cell, compression tests had also been directed on two fragments of specimen which failed after the flexural test. The loading rate in compression tests as well as in flexural tests had been 0.6 mm/min. After 7 to 28 days of setting or curing, the tests were directed and all the computations were performed in the sets of three.

Paper no	Composition	Flexural Strength
6	EPOXY+B6C14	0.4 kN
	EPOXY+B10C10	0.3 kN
	EPOXY+B14C6	0.25 kN
12	BF/EPOXY at 0.4%MWCNT’S	995.2 MPa
	BF/EPOXY at 0.2%MWCNT’S	839.3 MPa
	BF/EPOXY at 0.3%MWCNT’S	918.2 MPa
	BF/EPOXY at 0.5%MWCNT’S	981.7 MPa
16	PLA + 10%basalt fibre	120 MPa
	PLA + 15%basalt fibre	140 MPa
	PLA + 30%basalt fibre	180 MPa
	PLA + 40%basalt fibre	182 MPa
22	Composite 750d	300 MPa
	Composite 650d	500 MPa
	Composite 650c	800MPa
23	Reinforced glass matrix (4H)	96 MPa
	Un reinforced glass matrix(2H)	90 MPa
26	epoxidised soybean oil and epoxy resin	129 MPa
	acrylated epoxidised soybean oil with flax fibre mat	27 MPa

Un-reinforced glass matrix (2H) has the lowest value of flexural test which is 90 MPa and BF/EPOXY at 0.5 % Multi-walled carbon nanotubes has the greatest value of flexure test which is 981.9MPa and hence we can find many values of basalt fibres of other types.

4. Scanning Electron Microscopy
A Scanning Electron Microscope (SEM) defined as an electron microscope which uses a focused beam of electron to scan surface of a sample and produce images. In the sample the electrons interacts with the atoms, giving rise to various signals that accommodate data regarding the composition of sample as well as surface topography. The beam comprising of electron is scanned in a raster scan pattern, and the location of the beam is merged with the intensity of the detected signal to give rise to an image. In the most random
Scanning electron microscope (SEM) mode, electron beams excites the atoms which then emit secondary electrons are detected using an Everhart-Thornley detector. The signal intensity and the no. of secondary electrons can be detected depending on the specimen topography. Scanning Electron Microscope (SEM) can attain resolution better than 10^-9 meter or 1 nanometre. Specimens are examine dunder high vacuum in standard SEM, or in the presence of low vacuum in variable pressure or environmental SEM, and at an elevated or a wide range of cryogenic temperature with specially designed instruments. [1] A strong adhesion between matrix and basalt fibre, with no evident phase disconnection, was observed in B1 mortar. This proves that the post-peak behaviour of the fibre reinforced mortars, resulting in an evident increase in toughness, is due to the strong adhesion between fibres and binder matrix. Moreover, the absence of failed fibres allows concluding that, when fracture occurs, basalt fibres undergo a pull-out phenomenon, because the anchorage failure stress is achieved before the tensile strength of the fibre is reached. Given the better mechanical properties exhibited by B1 samples, both in terms of flexural and compression strength, B1 formulation was selected for the dynamic direct tensile characterization. [2] Epoxy-CF200 laminates show very limited energy dissipation over the whole range of stresses, while SDC values of Epoxy-BF200 sample are 5–10% higher than that showed by the corresponding GF composites. [3] H1 (i.e., stacking three carbon fibre layer at the compressive side) showing the best flexural strength and modulus from among the stacking sequence arrangements. Fatigue stress is effectively distributed in carbon fibres, thus it can withstand more stress leading to higher flexural strength. The flexural strength follows the trend: CFRP > H1 > H2 > H3 > H4 > H5 > H6 > H7 > BFRP. [4] A novel method of composite fabrication was adopted by sandwiching the TiO2 coated mats between layers of fine glass powder and subsequently hot-pressing in vacuum. Five layers of TiO2 coated basalt fibre mats were sandwiched between 6 layers of glass powder inside a graphite die with a diameter of 38 mm. The weight of the layers was calculated in order to fix the volume fraction of fibres. Orientation of the fibre mats inside the graphite die for hot-pressing at 15 vol%. The basalts fibre mats were carefully orientated in order to maintain the fibres parallel in all layers. [5] The fracture surfaces of NHL-based mortars. NHL_CH3 specimens are characterized by extensive pull-out (Fig. 4a) if compared to the other matrices (see, for instance, Fig. 4c). In addition, there are matrix particles attached to the fibres for MC and MCC composites (Fig. 4b and c), which indicates a sufficient level of adhesion between the fibre and matrix. This can be compared to the relatively smooth surface of the chopped fibres. [6] ML-506 epoxy resin based on epoxy biphenyl F with hardener HA-11, both supplied by Mokarrar Engineering Materials Co., Iran, was used as matrix material. The resin-hardener ratio was 100:15 by weight, as recommended by the manufacturer. This resin system was chosen owning to its low viscosity. (1450 centipoise) and long gel time (60 min) at 25°C. Basalt roving fibre with the trade name of BCF13-150- KV12 was purchased from Kamenny Vek Co., Russia. MWCNTs were provided by Cheap Tubes Inc., USA. The average aspect ratio (length divided to the outer diameter) of the MWCNTs was _1330

5. Impact Test

A standardized high strain rate test which is used to measure the amount of energy absorbed during its rapture is known as the Charpy impact test. It is also determined as the Charpy V-notch test. The energy which is absorbed acts as an instrument to study temperature dependent ductile brittle transition and also the measure of the material’s toughness at the notch. It has many advantages, such as the results can be acquired in economic cost and in a very less time as well as it is very easy to prepare for the test and conduct it. Because of these advantages it is widely used in many big organisations. In 1900, S B Russell an American and Georges Charpy a French developed this test. The name of the test was known as the Charpy test because of the efforts made by Charpy and his technical contributions. During World War II the Charpy test was conducted to know about the problems of fracture in ships. Now a days Charpy’s Impact Test is used for testing materials in many organisations, for example to calculate the effect of storm on the materials used for building big or small bridges and other high rise or massive structures.

Paper no	Composition	Impact strength (kJ/m²)
5	BFRF Code 100	587
	BFRF Code 130	862
11	Basalt epoxy control	95
	b- 0.1	110
	b- 0.2	105
16	Basalt 0%wt	2.5
	Basalt 10%wt	4.9
	Basalt 30%wt	9.2
	Basalt 40%wt	9.5

By the readings obtained from the test we can note that basalt of 0% weight is having the least impact strength that is 2.5 kJ/m² whereas BFRF Code 130 is having the greatest impact strength that is 862 kJ/m².
Differential Scanning Calorimeter (DSC) is generally described as a technique which comprises of the measurement of change in the quantity of heat which is required for the rise in temperature of a sample and reference. While the experiment is being conducted, constant temperature is managed for the sample and reference. Basically, temperature program is designed for Differential Scanning Calorimeter (DSC) analysis such that the temperature gradually rises of the sample holder with respect to time and the heat capacity is well known for the reference sample over the range of temperatures to be scanned. In 1962 by M. J. O’Neill and E. S. Watson the DSC technique was developed and in 1963, at Pittsburgh Conference of Analytical Chemistry and Applied Spectroscopethe technique was commercially introduced. At around 1964 by Peter L. Privalov and D. R. Monaselidze in IOP (Institute of Physics) in Tbilisi, Georgia developed the first adiabatic differential scanning calorimeter that can be utilised in biochemistry. The instrument was termed as DSC (Differential Scanning Calorimeter) which calculates a very accurate value of heat capacity and also directly measures energy.

Sr. no.	Composite	Value (degree Celsius)
2	Glass transition 1	79-81
	Glass transition 2	102-104
16	5% wt.	99
	40% wt.	100
36	5% wt.	96
	40% wt.	110
59	PL	60
	PL25-t	168
60	PLA	125
	5% wt PLA	109

By the readings obtained in the test we can conclude that the impact test value of PL25-t is the highest of all that is 168°C whereas the least impact value is of PL which is 60°C.

7. Conclusion
Basalt fibre reinforced polymeric composite is preferred over steel as it has resistance to chemical corrosion as well as it is light weight. Apart from that the Basalt fibre reinforced polymeric composite also possess significant mechanical, morphological and thermal properties when compare with other synthetic and natural fibre reinforced polymeric composite. From the literature it is evidenced that the basalt fibre percentage in the Basalt fibre reinforced polymeric composite is significantly affects the mechanical, morphological and thermal properties of the composite plate.

Reference
[1]. Lopresto V, Leone C, De Iorio I. Mechanical characterisation of basalt fibre reinforced plastic. Compos Part B Eng 2011; 42(4):717-23.
[2]. Bernasconi, F. Cosmi, P. Hine, Analysis of fibre orientation distribution in short pre reinforced polymers: A comparison between optical and tomographic methods, Composites Science and Technology 72 (16) (2012).
[3]. Karuppuchamy, S. "Thermo-mechanical properties of coconut shell powder reinforced plastic composites." International Journal of ChemTech Research Vol.8, No.6 (2015): 852-857.
[4]. Kanak Kalita, U Ragavendra, M. Ramachandran, Akash Bhoi, Weighted sum multi-objective optimization of skew composite laminates, Structural Engineering and Mechanics, Vol. 69, No. 1 (2019) 21-31.
[5]. Sefiu Adekunle Bello, Isiaka Ayobi Raheem, Nasir Kolawole Raji, Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites, Journal of King Saud University - Engineering Sciences, Vol29, Issue 3, July 2017, Pages 269-277.
[6]. Liyanage, Chinthani D., and Mevan Pieris. "A Physico-Chemical Analysis of Coconut Shell Powder." Procedia Chemistry 16 (2015): 222-228.
[7]. Agarwal, Rakshit, M. Ramachandran, and Stanly Jones Retnam. "Tensile Properties of Reinforced Plastic Material Composites with Natural Fiber and Filler Material." ARPN Journal of Engineering and Applied Sciences 10, no. 5 (2015): 2217-2220.
[8]. Siti Nurbazilah Ab Jalal, Yew Been Seok, Wee Fwen Hoon, carbon composition, surface porosities and dielectric properties of coconut shell powder and coconut shell activated carbon composites, ARPN Journal of Engineering and Applied Sciences, VOL. 11, NO. 6, MARCH 2016, 3832- 3838.
[9]. Shyamkumar Shah, Akshaykumar Patil, M. Ramachandran, Kanak Kalita, Effect of coal ash as a filler on mechanical properties of glass fiber reinforced material, International Journal of Applied Engineering Research, 9(22) (2014) pp. 14269-14277.
[10]. Salleh, Z., M. M. Islam, M. Y. M. Yusop, and MA Mun’aim M. Idrus. "Mechanical properties of activated carbon (AC) coconut shell reinforced polypropylene composites encapsulated with epoxy resin.” APCBEE Procedia 9 (2014): 92-96.

[11]. D. Bino prince raja, B. Stanly Jones Retnam, M. Ramachandran, Analysis of mechanical properties of glass and carbon fiber reinforced polymer material, International Journal of Applied Engineering Research. ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 10387-10391.

[12]. Gojny, F. H., M. H. G. Wichmann, U. Köpke, B. Fiedler, and K. Schulte. "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content.” Composites science and technology 64, no. 15 (2004): 2363-2371.

[13]. Alex. S, Stanly Johns Retnam, M. Ramachandran, A review on Biodegradability of Hybrid Bamboo/Glass fiber polymer composites, International Journal of Applied Engineering Research. ISSN 0973-4562 Volume 10, Number 11 (2015) pp. 10565-10569.

[14]. EN 1015-11 methods of test for mortar for masonry – Part 11: determination of flexural and compressive strength of hardened mortar; 1999.

[15]. Bortz DR, Heras EG, Martin-Gullon I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites, Macromolecules 2012; 45: 238-245.

[16]. Ganguli S, Aqlan H, Dennig P, et al. Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites. J Reinf Plast Compos 2006; 25: 175–188.

[17]. Messler RW (2004) Joining of Materials and Structures: From Pragmatic Process to Enabling Technology. Amsterdam: Elsevier Science B.V., Chapter 15, pp.697–741.

[18]. Dehkordi MT, Nosrati H, Shokrieh MM, et al. Low velocity impact properties of inner-ply hybrid composites based on basalt and nylon woven fabrics. Mater Des 2010; 31: 3835–3844.

[19]. S.L. Gao, E. Mäder, R. Plonka, Nanostructured coatings of glass fibers: improvement of alkali resistance and mechanical properties, Acta Mater. 55 (2007) 1043–1052.

[20]. Kim, Jin Ah, Dong GiSeong, Tae Jin Kang, and Jae RyounYoun. "Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites." Carbon 44, no. 10 (2006): 1898-1905.

[21]. Bisanda, E. T. N., and Martin P. Ansell. "The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites.” Composites Science and Technology 41, no. 2 (1991): 165-178.

[22]. Joshi, Satish V., L. T. Drzal, A. K. Mohanty, and S. Arora. Are natural fiber composites environmentally superior to glass fiber reinforced composites. Composites Part A: Applied science and manufacturing 35, no. 3 (2004): 371-376.

[23]. Sgriccia, N., M. C. Hawley, and M. Misra. "Characterization of natural fiber surfaces and natural fiber composites." Composites Part A: Applied Science and Manufacturing 39, no. 10 (2008): 1632-1637.

[24]. M. Ramachandran, , Sahas Bansal, Pramod Raichurkar, Scrutiny of Jute Fiber Poly-Lactic Acid (PLA) Resin Reinforced Polymeric Composite, Journal of the Textile Association, Volume 76, Issue 6, 2016, pp. 372-375.

[25]. Herrera-Franco, PJp, and A. Valadez-Gonzalez. "A study of the mechanical properties of short natural-fiber reinforced composites." Composites Part B: Engineering 36, no. 8 (2005): 597-608.

[26]. Ramanan. G, Rajesh Prabha, N, Diju Samuel, G, Jai Aultrin. K, M Ramachandran, Prediction of Machining Characteristics of Hybrid Composites Using Response Surface Methodology Approach, International Journal of Engineering & Technology, 2018, 7(3.1), 162-165.

[27]. Bachtiar, Dandi, S. M. Sapuan, and M. M. Hamdan. "The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites.” Materials & Design 29, no. 7 (2008): 1285-1290.

[28]. Sahas Bansal, M. Ramachandran, Pramod Raichurkar, Comparative Analysis of Bamboo using Jute and Coir Fibre Reinforced Polymeric Composites, Materials Today: Proceedings,4(2), 2017, 3182–3187.

[29]. ACI Committee. Guide test methods for fiber-reinforced polymers (FRP) for reinforcing or strengthening concrete structures. Farmington Hills, Mich: ACI 440.3R-04. American Concrete Institute. 40.

[30]. ACI Committee 440. Guide for the design and construction of externally bonded FRP-system for strengthening concrete structures. Detroit: ACI 440.2R-08. American Concrete Institute; 2008. 245

[31]. Raichenko, Some Patterns in Forming and Sintering of Metal Powders, Author’s Abstract of ScD Thesis, Inst. Probl. Materialoved. AN USSR, Kiev (1967).

[32]. Asprone, Domenico, Ezio Cadoni, Fabio Iucolano, and Andrea Prata. "Analysis of the strain-rate behaviour of a basalt fibre reinforced natural hydraulic mortar." Cement and Concrete Composites 53 (2014): 52-58.

[33]. Yousif, B. F., A. Shalwan, C. W. Chin, and K. C. Ming. "Flexural properties of treated and untreated kenaf/epoxy composites.” Materials & Design 40 (2012): 378-385.

[34]. Mohanty, A. K., ManjusriMisra, and Lawrence T. Drzal. "Surface modifications of natural fibers and performance of the resulting bio composites: an overview.” Composite Interfaces 8, no. 5 (2001): 313-343.

[35]. Gassan, Jochen. "A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre composites.” Composites part A: applied science and manufacturing 33, no. 3 (2002): 369-374.
[36]. P. M. Bhagwat, M. Ramachandran, Pramod Raichurkar, Mechanical Properties of Hybrid Glass/Carbon Fiber Reinforced Epoxy Composites, Materials Today: Proceedings, 4(8), 2017:1788–1793.

[37]. Park JM, Shin WG and Yoon DJ. A study of interfacial aspects of epoxy-based composites reinforced with dual basalt and SiC fibres by means of the fragmentation and acoustic emission techniques. Compos Sci Technol 1999; 59: 355–370.

[38]. Carmisciano S, De Rosa IM, Sarasini F, Tamburrano A and Valente M. Basalt woven fiber reinforced vinylester composites: flexural and electrical properties. Mater Des 2011; 32: 337–342.

[39]. Landucci G, Rossi F, Nicoletta C and Zanelli S. Design and testing of innovative materials for passive fire protection. Fire Safety J 2009; 44: 1103–1109.

[40]. ACI 440.3R-04. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures. PA: American Concrete Institute 440 Committee, 2004.