Species diversity of *Trichoderma* in Poland

Lidia Blaszczak · Delfina Popiel · Jerzy Chelkowski ·
Grzegorz Koczyk · Gary J. Samuels ·
Krzysztof Sobieralski · Marek Siwulski

Received: 11 January 2011 / Revised: 2 March 2011 / Accepted: 7 March 2011 / Published online: 5 April 2011
© The Author(s) 2011. This article is published with open access at SpringerLink.com

Abstract In the present study, we reinvestigate the diversity of *Trichoderma* in Poland utilizing a combination of morphological and molecular/phylogenetic methods. A total of 170 isolates were collected from six different substrata at 49 sites in Poland. These were divided among 14 taxa as follows: 110 of 170 *Trichoderma* isolates were identified to the species level by the analysis of their ITS1, ITS2 rDNA sequences as: *T. harzianum* (43 isolates), *T. aggressivum* (35), *T. citrinoviride* (11), *T. hamatum* (9), *T. virens* (6), *T. longibrachiatum* (4), *T. polysporum* (1), and *T. tomentosum* (1); 60 isolates belonging to the Viride clade were identified based on a fragment of the translation-elongation factor 1-alpha (*tef1*) gene as: *T. atroviride* (20 isolates), *T. gamsii* (2), *T. koningii* (17), *T. viridescens* (13), *T. viride* (7), and *T. koningiopsis* (1). Identifications were made using the BLAST interface in *TrichoKEY* and *TrichoBLAST* (http://www.isth.info). The most diverse substrata were soil (nine species per 22 isolates) and decaying wood (nine species per 75 isolates). The most abundant species (25%) isolated from all substrata was *T. harzianum*.

Keywords Hypocreales · Molecular identification · ITS1, ITS2 rRNA · *tef1* · Phylogenetic analysis · Biogeography

Introduction

The fungal genus *Trichoderma* (Ascomycetes, Hypocreales) includes cosmopolitan soil-borne species that are frequently found also on decaying wood, compost, or other organic matter (Harman et al. 2004; Samuels 2006). Several *Trichoderma* species are significant biocontrol agents against fungal plant pathogens either through direct parasitism, competition with pathogens for nutrients, stimulators of plant health, or inducers of plant systemic resistance to pathogens (Hjeljord and Tronsmo 1998; Harman et al. 2004; Bailey et al. 2006). The ability for mycoparasitism in some species also has a negative economic impact in the commercial production of *Agaricus bisporus* (J.E. Lange) Imbach and *Pleurotus ostreatus* (Paulet) Rolland mushrooms, both of which are reported for Poland (Samuels et al. 2002; Krupke et al. 2003; Hatvani et al. 2007; Szczech et al. 2008). While *Trichoderma* is not pathogenic towards healthy mammals, there is a growing number of immunocompromised individuals who suffer opportunistic infections by some species (Kuhls et al. 1999; Kredics et al. 2003; Piens et al. 2004; Druzhinina et al. 2008), and volatile compounds produced by some *Trichoderma* species can cause allergic reactions (Tang et al. 2003; Caballero et al. 2007). *Trichoderma* species produce a wide diversity of metabolites, most notably commercially important cellulase and hemicellulases, antibiotics, peptaibiotics, as well as the toxins (such as trichodermamides) and trichothecenes that display *in vitro* cytotoxicity (Kubiček and Penttilä 1998; Sivasithamparam and Ghielmi 1998; Garo et al. 2003; Liu et al. 2005; Nielsen et al. 2005; Degenkolb et al. 2006, 2008).
Because of the intimate relationship between species of *Trichoderma* and human activity, there is a great need for the accurate identification of *Trichoderma* species. However, accurate species identification based on morphology is difficult at best because of the paucity and similarity of useful morphological characters (Druzhinina et al. 2005; De Respinis et al. 2010), and increasing numbers of morphologically cryptic species that can be distinguished only through their DNA characters are being described (Atanasova et al. 2010; Samuels et al. 2010). This has already resulted in incorrect identification and the propagation of errors for strains associated with the production of secondary metabolites (Humphris et al. 2002), with human diseases (Gautheret et al. 1995), and biological control (Kullig et al. 2001). However, with the advent of molecular methods and identification tools, which are based on sequence analysis of multiple genes (rDNA and genes encoding actin, calmodulin, endochitinase, RNA polymerase II, and translation-elongation factor 1-alpha [*tef1*]), it is now possible to identify every *Trichoderma* isolate and/or recognize it as a putative new species (Druzhinina et al. 2005; Samuels 2006; Kubicek et al. 2008).

At present, the International Subcommission on *Trichoderma* and *Hypocrea* Taxonomy lists 104 species, all of which have been characterized at the molecular level (http://www.isth.info). Seventy-five species of *Hypocrea* have been identified in temperate Europe, in particular, in Austria (Jaklitsch 2009). Nevertheless, the information about the diversity of *Trichoderma/Hypocrea* in Poland is scarce. A preliminary checklist of micromycetes in Poland reported 20 *Trichoderma* species (Muleńko et al. 2008). However, all of these species were identified between 1903 and 2002 based on morphological characters.

The objective of the present study was to document the occurrence and species diversity of *Trichoderma* collected from different substrata and locations in Poland.

Materials and methods

Substrata, storage, and isolation of pure cultures

Fungal isolates investigated in this study were collected from pieces of decaying wood, cultivated mushroom compost, samples of soil (garden, forest), and cereal grain (triticale, maize) at 49 sites in Poland (Table 1). Samples of decaying wood with white or brown rot were collected in parks and forests of the Wielkopolska region of Poland, placed in paper bags, dried at room temperature if wet, and stored until isolation. The pieces of decaying wood were plated on saltwater nutrient agar (SNA, Nirenberg 1976) and incubated at 20°C for 6 days. Putative *Trichoderma* colonies were purified by two rounds of subculturing on potato dextrose agar (PDA, Oxoid). Pure culture were transferred to the tube containing SNA and stored at −4°C for further study. *Trichoderma* spp. originated from other substrata were isolated according to the method described by Mańka (1974). Thirty-seven isolates originating from mushroom compost at mushroom farms in Poznań and in Skiermiewice, as well as from forest soil of the Wielkopolski National Park were kindly supplied by Profs. H. Kwasna and M. Mańka, Department of Forest Pathology, Poznań University of Life Sciences, and by Dr M. Szczech, Department of Plant Protection, Research Institute of Vegetable Crops, Skiermiewice.

Morphological analysis

Fungal colonies were grown on PDA and SNA at 25°C for 7 days. *Trichoderma* species were identified according to Gams and Bissett (1998) and Samuels et al. (2002, 2009; http://nt.ars-grin.gov/taxad Descriptions/keys/TrichodermaIndex. cfm).

Isolation of DNA

Mycelium for DNA extraction was obtained by inoculating Czapek-Dox broth (Sigma) with Yeast Extract (Oxoid) and streptomycin sulfate (50 mg/L, AppliChem), and after incubation at 25°C for 21 days on a rotary shaker (120 rpm). Mycelium was collected on filter paper in a Büchner funnel, washed with sterile water, frozen at −20°C, and freeze-dried.

Total DNA was extracted using the CTAB method (Doohan et al. 1998).

PCR amplification and sequencing

Primary identification was based on the sequencing of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the rRNA gene cluster. In cases where ITS1 and ITS2 did not provide unambiguous identification, a fragment of the translation-elongation factor 1-alpha [*tef1*] gene was sequenced. The ITS region of the rDNA of 170 isolates was amplified using primers ITS4, ITS5 (White et al. 1990). The PCR reaction was carried out in a 25-μl reaction mixture containing the following: 1 μl 50 ng/μl of DNA, 2.5 μl 10×PCR buffer (50 mM KCl, 1.5 mM MgCl2, 10 mM Tris-HCl, pH 8.8, 0.1% Triton X-100), 1.5 μl 10 mM dNTP (GH Healthcare), 0.2 μl 100 mM of each primer, 19.35 μl MQ H2O, 0.25 μl (2 U/μl) DyNAzymeTM II DNA Polymerase (Finnzymes). Amplifications were performed in either a PTC-200 or PTC-100 thermocycler (MJ
Culture code	Species	Sources/localization	Allelic group^a	NCBI GenBank accession number
			ITS1, ITS2 tefl	ITS1, ITS2 tefl
AN 13	*T. atroviride*	forest soil, WNP^b	cV3 AT1	HQ292784 HQ292961
AN 14	*T. atroviride*	forest soil, WNP	cV3 AT1	HQ292785 HQ292962
AN 19	*T. atroviride*	forest soil, WNP	cV3 AT1	HQ292786 HQ292963
AN 21	*T. harzianum*	maize kernels, Radzików	cV3 AT2	HQ292787 HQ292953
AN 22	*T. viridescens*	soil	C1	HQ292839
AN 23	*T. koningii*	compost, Połana	HR7	HQ292866
AN 24	*T. koningii*	compost, Połana	VS3	HQ292943
AN 25	*T. viridescens*	forest soil, Malta, Połana	cV5 AT2	HQ292789 HQ292954
AN 26	*T. harzianum*	compost, Połana	HR6	HQ292860
AN 27	*T. harzianum*	compost, Połana	HR5	HQ292867
AN 28	*T. viridescens*	forest soil, Malta Park, Połana	cV5 VD3	HQ292927 HQ292995
AN 29	*T. harzianum*	compost, Połana	HR3	HQ292873
AN 30	*T. atroviride*	compost, Połana	cV3 AT2	HQ292789 HQ292955
AN 31	*T. atroviride*	compost, Połana	cV3 AT2	HQ292790 HQ292956
AN 32	*T. atroviride*	compost, Połana	HR5	HQ292868
AN 33	*T. koningii*	compost, Połana	C1	HQ292842
AN 34	*T. koningii*	compost, Połana	C1	HQ292843
AN 35	*T. koningii*	compost, Połana	C2	HQ292848
AN 36	*T. koningii*	compost, Połana	C1	HQ292844
AN 37	*T. koningii*	compost, Połana	cV1 KO1	HQ292904 HQ292976
AN 38	*T. koningii*	compost, Połana	cV1 KO1	HQ292905 HQ292977
AN 39	*T. koningii*	compost, Połana	cV1 KO1	HQ292906 HQ292978
AN 40	*T. koningii*	compost, Połana	cV1 KO1	HQ292907 HQ292979
AN 41	*T. koningii*	compost, Połana	cV1 KO1	HQ292911 HQ292983
AN 42	*T. koningii*	compost, Połana	cV1 KO1	HQ292912 HQ292984
AN 43	*T. koningii*	compost, Połana	cV1 KO1	HQ292915 HQ292987

^a indicates the allelic group number.

^b WNP represents the Wzgórze Niedźwiedzie area.
Culture code	Species	Sources/localization	Allelic group^a	NCBI GenBank accession number
			ITS1, ITS2	
AN 126	*T. koningii*	forest wood, Rusalka Park, Poznań	cV1	HQ292916 HQ292991
AN 127	*T. koningii*	forest wood, Rusalka Park, Poznań	cV1	HQ292917 HQ292988
AN 128	*T. koningii*	forest wood, Rusalka Park, Poznań	cV1	HQ292918 HQ292989
AN 132	*T. harzianum*	forest wood, Rusalka Park, Poznań	HR5	HQ2928670 –
AN 133	*T. harzianum*	forest wood, Jezior, WNP	HR4	HQ292874 –
AN 134	*T. harzianum*	forest wood, Jezior, WNP	HR4	HQ292875 –
AN 135	*T. harzianum*	forest wood, Jezior, WNP	HR4	HQ292876 –
AN 136	*T. harzianum*	forest wood, Jezior, WNP	HR1	HQ292901 –
AN 137	*T. harzianum*	forest wood, Jezior, WNP	HR4	HQ292877 –
AN 138	*T. harzianum*	forest wood, Jezior, WNP	HR6	HQ292861 –
AN 141	*T. viride*	forest wood, Jezior, WNP	cV6	HQ292922 HQ293008
AN 142	*T. viride*	forest wood, Jezior, WNP	cV8	HQ292920 HQ293009
AN 143	*T. koningiopsis*	forest wood, Jezior, WNP	cV4	HQ292929 HQ292992
AN 144	*T. koningii*	forest wood, Jezior, WNP	cV1	HQ292919 HQ292990
AN 145	*T. viridescens*	forest wood, Jezior, WNP	cV5	HQ292930 HQ292996
AN 146	*T. viridescens*	forest wood, Jezior, WNP	cV5	HQ292931 HQ292997
AN 147	*T. viridescens*	forest wood, Jezior, WNP	cV5	HQ292932 HQ292998
AN 148	*T. viridescens*	forest wood, Jezior, WNP	cV5	HQ292933 HQ292999
AN 149	*T. viridescens*	forest wood, Jezior, WNP	cV5	HQ292934 HQ293000
AN 150	*T. harzianum*	forest wood, Jezior, WNP	HR4	HQ292878 –
AN 152	*T. atroviride*	triticale kernel, Choryń	cV3	HQ292792 HQ292957
AN 153	*T. atroviride*	triticale kernel, Choryń	cV3	HQ292793 HQ292958
AN 155	*T. hamatum*	rye rizosphera, Lublin	HM1	HQ292851 –
AN 171	*T. aggressivum*	mushroom compost, Skiermiewice	AG2	HQ292807 –
AN 172	*T. aggressivum*	mushroom compost, Skiermiewice	AG2	HQ292808 –
AN 176	*T. viride*	forest wood, Strzeszyn Park, Poznań	cV8	HQ292923 HQ293010
AN 179	*T. viride*	forest wood, Strzeszyn Park, Poznań	cV8	HQ292924 HQ293011
AN 182	*T. atroviride*	forest wood, Strzeszyn Park, Poznań	cV2	HQ292794 HQ292965
AN 188	*T. atroviride*	mushroom compost, Skiermiewice	cV4	HQ292803 HQ292959
AN 197	*T. longibrachiatum*	mushroom factory, Skiermiewice	L1	HQ292780 –
AN 198	*T. citrinoviride*	mushroom factory, Skiermiewice	C1	HQ292845 –
AN 199	*T. citrinoviride*	mushroom factory, Skiermiewice	C1	HQ2929846 –
AN 201	*T. citrinoviride*	mushroom factory, Skiermiewice	C3	HQ292849 –
AN 203	*T. harzianum*	mushroom compost, Poznań	HR4	HQ292879 –
AN 205	*T. harzianum*	mushroom compost, Poznań	HR4	HQ292880 –
AN 206	*T. atroviride*	mushroom compost, Poznań	cV4	HQ292804 HQ292960
AN 207	*T. harzianum*	mushroom compost, Poznań	HR4	HQ292881 –
AN 208	*T. aggressivum*	mushroom compost, Poznań	AG1	HQ292805 –
AN 209	*T. aggressivum*	mushroom compost, Poznań	AG1	HQ292882 –
AN 211	*T. harzianum*	mushroom compost, Poznań	HR4	HQ292882 –
AN 212	*T. atroviride*	mushroom compost, Poznań	cV3	HQ292795 HQ292966
AN 213	*T. longibrachiatum*	mushroom compost, Poznań	L1	HQ292781 –
AN 215	*T. atroviride*	mushroom compost, Poznań	cV3	HQ292796 HQ292967
AN 216	*T. aggressivum*	mushroom compost, Poznań	AG2	HQ292809 –
AN 223	*T. harzianum*	forest soil, WNP	HR2	HQ292902 –
AN 225	*T. hamatum*	forest soil, WNP	HM21	HQ292856 –
AN 226	*T. viridescens*	forest soil, WNP	cV5	HQ292935 HQ293004
Culture code	Species	Sources/localization	Allelic group^a	NCBI GenBank accession number
--------------	--------------------	----------------------------	---------------------------	-----------------------------
AN 227	*T. viridescens*	forest soil, WNP	cV5	HQ292936 HQ293001
AN 229	*T. viridescens*	forest soil, WNP	cV5	HQ292937 HQ293002
AN 231	*T. viridescens*	forest soil, WNP	cV5	HQ292938 HQ293003
AN 232	*T. hamatum*	forest soil, WNP	HM1	HQ292852 –
AN 234	*T. tomentosum*	forest soil, WNP	–	HQ292949 –
AN 235	*T. viride*	forest soil, WNP	cV7	HQ292921 HQ293013
AN 238	*T. hamatum*	forest soil, WNP	HR4	HQ292883 –
AN 257	*T. harzianum*	forest wood, Radojewo	HR5	HQ292871 –
AN 259	*T. harzianum*	forest wood, Radojewo	HR5	HQ292872 –
AN 260	*T. harzianum*	forest wood, Radojewo	HR4	HQ292884 –
AN 261	*T. harzianum*	forest wood, Radojewo	HR4	HQ292885 –
AN 262	*T. citrinoviride*	forest wood, Radojewo	C1	HQ292847 –
AN 263	*T. longibrachiatum*	mushroom compost, Poznań	L1	HQ292782 –
AN 264	*T. longibrachiatum*	mushroom compost, Poznań	L2	HQ292783 –
AN 266	*T. viride*	mushroom compost, Poznań	cV8	HQ292925 HQ293012
AN 273	*T. harzianum*	forest soil, Kórnik	HR4	HQ292886 –
AN 274	*T. harzianum*	forest soil, Kórnik	HR4	HQ292887 –
AN 275	*T. harzianum*	forest soil, Kórnik	HR4	HQ292888 –
AN 276	*T. harzianum*	forest soil, Kórnik	HR4	HQ292889 –
AN 277	*T. hamatum*	forest soil, Kórnik	HM1	HQ292857 –
AN 278	*T. harzianum*	forest soil, Kórnik	HR4	HQ292890 –
AN 279	*T. hamatum*	forest soil, Kórnik	HR4	HQ292858 –
AN 281	*T. atroviride*	forest soil, Kórnik	cV2	HQ292804 HQ292974
AN 282	*T. harzianum*	forest soil, Kórnik	HR4	HQ292891 –
AN 283	*T. harzianum*	forest soil, Kórnik	HR4	HQ292892 –
AN 284	*T. harzianum*	forest soil, Kórnik	HR4	HQ292893 –
AN 285	*T. harzianum*	forest soil, Kórnik	HR4	HQ292894 –
AN 286	*T. harzianum*	forest soil, Kórnik	HR4	HQ292895 –
AN 287	*T. atroviride*	forest soil, Radojewo	cV3	HQ292798 HQ292969
AN 288	*T. viridescens*	forest soil, Kórnik	cV5	HQ292941 HQ293006
AN 425	*T. harzianum*	forest wood, Radojewo	HR4	HQ292896 –
AN 426	*T. harzianum*	forest wood, Radojewo	HR4	HQ292897 –
AN 427	*T. viridescens*	forest wood, Radojewo	cV5	HQ292942 HQ293007
AN 430	*T. viride*	forest wood, Radojewo	cV8	HQ292926 HQ293014
AN 431	*T. harzianum*	forest wood, Radojewo	HR4	HQ292898 –
AN 435	*T. harzianum*	forest wood, Radojewo	HR4	HQ292899 –
AN 436	*T. atroviride*	forest wood, Radojewo	cV3	HQ292799 HQ292970
AN 437	*T. harzianum*	forest wood, Radojewo	HR4	HQ292900 –
AN 550	*T. gamsii*	forest soil, Poznań	cV9	HQ292952 –
AN 561	*T. aggressivum*	mushroom compost, Nowy Tomyśl	AG2	HQ292810 –
AN 562	*T. aggressivum*	mushroom compost, Ostróda	AG2	HQ292811 –
AN 563	*T. aggressivum*	mushroom compost, Toruń	AG2	HQ292812 –
AN 564	*T. aggressivum*	mushroom compost, Komiza	AG2	HQ292813 –
AN 565	*T. aggressivum*	mushroom compost, Siemiatycze	AG2	HQ292814 –
AN 566	*T. aggressivum*	mushroom compost, Olszyn	AG2	–
AN 567	*T. aggressivum*	mushroom compost, Tychy	AG2	HQ292815 –
Research, USA) under the following conditions: initial denaturation 5 min at 94°C, 35 cycles of 45 s at 94°C, 45 s at 58°C (for the ITS region), or 63°C (for the \textit{tef1} fragment), 1 min at 72°C, with the final extension of 10 min at 72°C. Amplification products were separated on 1.5% agarose gel (Invitrogen) in 1×TBE buffer (0.178 M Tris-borate, 0.178 M boric acid, 0.004 M EDTA) and stained with ethidium bromide. The 10-μl PCR products were combined with 2 μl of loading buffer (0.25% bromophenol blue, 30% glycerol). A 100-bp DNA Ladder Plus (Fermentas) was used as a size standard. PCR products were electrophoresed at 3 V cm⁻¹ for about 2 h, visualized under UV light, and photographed (Syngene UV visualizer). The 3-μl PCR products were purified with exonuclease I and shrimp alkaline phosphatase according to Chełkowski et al. (2003). Sequencing reactions were prepared using the ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit in 5 μl volume (Applied Biosystems, Switzerland). DNA sequencing was performed on an ABI PRISM 310 Genetic Analyzer (USA). Sequences were edited and assembled using Chromas v.1.43 (Applied Biosystems). CLUSTAL W (Thompson et al. 1994) and MUSCLE (Edgar 2004) were used to align the sequences; the resulting alignments were inspected and refined manually.

Culture code	Species	Sources/localization	Allelic group a	NCBI GenBank accession number
AN 568	\textit{T. aggressivum}	mushroom compost, Bytom	AG2	HQ292816
AN 569	\textit{T. aggressivum}	mushroom compost, Losice	AG2	HQ292817
AN 570	\textit{T. aggressivum}	mushroom compost, Biała Podlaska	AG2	HQ292818
AN 571	\textit{T. aggressivum}	mushroom compost, Międzychód	AG2	HQ292819
AN 572	\textit{T. aggressivum}	mushroom compost, Gorzów Wlkp.	AG2	HQ292820
AN 573	\textit{T. aggressivum}	mushroom compost, Przemyśl	AG2	HQ292821
AN 574	\textit{T. aggressivum}	mushroom compost, Siedle	AG2	HQ292822
AN 575	\textit{T. aggressivum}	mushroom compost, Sokółów Podlaski	AG2	HQ292823
AN 576	\textit{T. aggressivum}	mushroom compost, Chojnice	AG2	HQ292824
AN 577	\textit{T. aggressivum}	mushroom compost, Szczecinek	AG2	HQ292825
AN 578	\textit{T. aggressivum}	mushroom compost, Krosno Lubuskie	AG2	HQ292826
AN 579	\textit{T. aggressivum}	mushroom compost, Zielona Góra	AG2	HQ292827
AN 580	\textit{T. harzianum}	mushroom compost, Pszczyna	HR6	HQ292862
AN 581	\textit{T. harzianum}	mushroom compost, Marianów/Koło	HR6	HQ292863
AN 582	\textit{T. aggressivum}	mushroom compost, Turek	AG3	HQ292835
AN 583	\textit{T. aggressivum}	mushroom compost, Czuchów	AG3	HQ292836
AN 584	\textit{T. aggressivum}	mushroom compost, Piła	AG3	HQ292837
AN 585	\textit{T. aggressivum}	mushroom compost, Skierniewice	AG2	HQ292828
AN 586	\textit{T. aggressivum}	mushroom compost, Świecie	AG2	HQ292829
AN 587	\textit{T. aggressivum}	mushroom compost, Skierniewice	AG3	HQ292838
AN 590	\textit{T. harzianum}	mushroom compost, Piasek/Pszczyna	HR6	HQ292864
AN 591	\textit{T. aggressivum}	mushroom compost, Wolsztyn	AG2	HQ292830
AN 592	\textit{T. aggressivum}	mushroom compost, Rzeszów	AG2	HQ292831
AN 593	\textit{T. atroviride}	mushroom compost, Pszczyna	cV3 AT1	HQ292800 HQ292971
AN 594	\textit{T. aggressivum}	mushroom compost, Rakoniewice	AG2	HQ292832
AN 595	\textit{T. aggressivum}	mushroom compost, Wielichowo	AG2	HQ292833
AN 596	\textit{T. atroviride}	mushroom compost, Jarocin	cV3 AT1	HQ292801 HQ292972
AN 597	\textit{T. harzianum}	mushroom compost, Kalisz	HR6	HQ292865
AN 599	\textit{T. aggressivum}	mushroom compost, Pszczyna	AG2	HQ292834
AN 600	\textit{T. atroviride}	mushroom compost, Pszczyna	cV3 AT1	HQ292802

\(a\) The group of isolates possessing identical alleles in the locus of ITS or \textit{tef1}, analyzed in the present study(Figs. 1 and 2)

\(b\) WNP: Wielkopolski National Park
Molecular identification and phylogenetic analysis

For species identification, ITS1 and ITS2 sequences were submitted to the BLAST interface in TrichoKEY (http://www.isth.info; Druzhinina et al. 2005; Druzhinina and Kubicek 2005). In ambiguous cases, the result was re-checked using the TrichoBLAST program based on tef1 gene sequences (Druzhinina and Kopchinskiy 2004a, b). All positions containing gaps and missing data were eliminated from the dataset. Phylogenetic analyses were performed in MEGA4 (Tamura et al. 2004). Both ITS1, ITS2 and tef1 gene sequences were analyzed using the maximum parsimony (Eck and Dayhoff 1966) approach of close-neighbor-interchange algorithm with search level 3 (Nei and Kumar 2000), in which the initial trees were obtained with the random addition of sequences (10,000 replicates). In total, there were 48 parsimony informative positions retained from an initial alignment of 368 for the ITS1, ITS2 sequences and 491 positions in the final dataset, of which 118 were parsimony informative for tef1 gene sequences. In both cases, to infer the consensus, phylogenetic trees bootstrapping with 10,000 data replicates was conducted (Felsenstein 1985).

Results

Species identification

A total of 170 isolates were obtained from the six different substrata at 49 localities in Poland. Of these 170 Trichoderma isolates, 110 were identified at the species level by morphological characters and analysis of their ITS1, ITS2 nucleotide sequences as: T. harzianum Rifai (43 isolates), T. aggressivum Samuels & W. Gams (35), T. citrinoviride Bisset (11), T. hamatum (Bonord.) Bainier (9), T. virens (J.H. Mill., Giddens & A.A. Foster) Arx (6), T. longibrachiatum Rifai (4), T. polysporum (Link) Rifai (1), and T. tomentosum Bissett (1). In case of the remaining 60 Trichoderma isolates, where ITS1 and ITS2 did not provide unambiguous identification, the fragment of the tef1 gene was sequenced. Thereby, the following species were identified: T. atroviride P. Karst. (20 isolates), T. gamsii Samuels & Druzhin. (2), T. koningii Oudem. (17), T. viridescens (A.S. Horne & H.S. Will.) Jaklitsch & Samuels (13), T. virens Pers. (7), and T. koningiopsis Oudem. (1). The identification, origin, and NCBI GeneBank accession numbers of all isolates are given in Table 1.

Phylogenetic analysis

The result of the phylogenetic analysis based on the ITS sequences of 170 Trichoderma isolates is shown in Fig. 1.

In the ITS tree, the Harzianum clade, with T. harzianum, T. aggressivum, and T. tomentosum, the Longibrachiatum Clade, with T. longibrachiatum and T. citrinoviride, and the species T. virens, T. hamatum, and T. polysporum were distinguished in a single moderately supported branch with bootstrap support of 79%. Forty-three strains were identified as T. harzianum, but this species is known to include several ITS alleles (Hermosa et al. 2004; Migheli et al. 2009) and is considered to be a species complex (Chaverri et al. 2003). In the present research, seven haplotypes of T. harzianum were found (HR1, HR2, HR3, HR4, HR5, HR6, and HR7, according to Table 1 and Fig. 1). With bootstrap support of only 53%, these seven haplotypes of T. harzianum formed a moderately well-supported (75%) clade with T. aggressivum and an unresolved polytomy with T. tomentosum. Two groups were distinguished within the Longibrachiatum clade with moderate to good bootstrap support. One group, with a bootstrap value of 70%, contains four strains of T. longibrachiatum. The second group, with a bootstrap value of 93% includes 11 strains of T. citrinoviride. Sixty isolates of Trichoderma, belonging to the Viride clade, formed a polytomy. A phylogenetic analysis based on tef1 sequences was performed for them (Fig. 2). As a result of this, the six species (T. koningii, T. atroviride, T. virens, T. viridescens, T. gamsii) were resolved with high bootstrap support.

Species diversity

Fourteen species of Trichoderma were identified among 170 isolates collected from six different substrata and 49 localities in Poland, using both morphological and molecular analysis. The highest diversity of Trichoderma species was detected in the set of 22 isolates originating from soil, which included nine species (T. atroviride, T. citrinoviride, T. gamsii, T. hamatum, T. harzianum, T. polysporum, T. tomentosum, T. virens, T. viridescens). Most of the isolates were collected from decaying wood (75), but among them, only nine species were found (T. atroviride, T. citrinoviride, T. gamsii, T. hamatum, T. harzianum, T. koningii, T. koningiopsis, T. virens, T. viridescens). The single strains of T. polysporum and T. tomentosum were isolated from soil, whereas all 17 strains of T. koningii were isolated from forest wood at several sites. The 58 isolates from mushroom compost and mushroom farms comprised seven species: T. aggressivum, T. atroviride, T. citrinoviride, T. harzianum, T. longibrachiatum, T. virens, and T. viride. In the limited samples from grains of Zea mays and Triticosecale Wittm. ex A. Camus as well as from garden compost, only three species were identified: T. atroviride, T. harzianum, and T. virens. T. harzianum was the most abundant species (25%) and was isolated from all substrata. It was the most common species isolated from pieces of decaying wood (40%, 30 isolates). After T. harzianum, T. atroviride, T. koningii, T.
viridescens, and T. citrinoviride were the most abundant (respectively, 12%, 15%, 12%, and 7% of 112 isolates) Trichoderma species collected from soil, compost, forest wood, and cereal grains, respectively. The most common species isolated from mushroom compost was T. aggressivum (60% of isolates originated from mushroom compost and 20% of all isolates from the collection). T. hamatum, T. virens, T. viride, T. longibrachiatum, T. gamsii, T. koningiopsis, T. polysporum, and T. tomentosum were the most scarcely identified species of the genus (≤5% of all isolates from the collection).

Discussion

The present study is a preliminary domestic assessment of Trichoderma diversity in Poland. A collection of 170 isolates obtained from six different substrata and 49 localities in Poland were identified by phenetic observations and by analysis of the ITS 1, ITS 2 region of rRNA gene cluster and/or a fragment of the tef1 gene. A wide diversity of Trichoderma isolates was found (14 species were identified among 170 isolates) in comparison with the studies on the biodiversity of Trichoderma in South-East Asia (Kubicek et al. 2003), in Austria (Wuczkowski et al. 2003), in South America (Druzhinina et al. 2005), in China (Zhang et al. 2005), and on Sardinia (Migheli et al. 2009). The highest diversity of Trichoderma was found in Colombia, Mexico, Guatemala, Panama, Peru, Ecuador, and Brazil (Hoyos-Carvajal et al. 2009). Hoyos-Carvajal et al. (2009) recorded almost twice as many species from a comparably sized sample of 183 isolates collected in these neotropical regions.

Here and in a previous study, T. harzianum was the predominant taxon (Kubicek et al. 2003; Wuczkowski et al. 2003; Druzhinina et al. 2005, 2010; Zhang et al. 2005; Migheli et al. 2009). T. harzianum is the most commonly reported species in the genus, occurring in diverse ecosystems and ecological niches. However, it must be borne in mind that the name ‘T. harzianum’ applies to a species complex within which several morphologically cryptic phylogenetic species—haplotypes—are found (results presented here) and these ‘haplotype species’ may be seen to comprise a multiplicity of species when subjected to multilocus phylogenetic analysis (Chaverri et al. 2003; Gherbawy et al. 2004; Zhang et al. 2005; Druzhinina et al. 2010). In the present research, seven haplotypes (HR1–HR7) were evident in the analysis of ITS sequences for T. harzianum isolates. Haplotypes HR1, HR3, HR4, HR5, HR6, and HR7 correspond with ITS haplotypes, which are very common in Europe (Jaklitsch 2009, Chaverri et al. [unpublished]; Woo et al. [unpublished]). Haplotype HR2 (isolate AN 223) corresponds to the ex neotype strain of T. harzianum CBS 226.95, and, thus, represents T. harzianum sensu stricto. T. harzianum sensu stricto is also a species with a broad north temperate distribution, including at least North America, Europe, and Asia (Zhang et al. 2005; Chaverri and Samuels [unpublished]).
The second abundant species identified in the present study and the most prevalent species from mushroom compost was *T. aggressivum* (35 isolates). This result corresponds with the previous study of Szczec et al. (2008), who showed that, between 2004 and 2006, *T. aggressivum* was the most frequently isolated species of the genus identified in Polish mushroom farms. *T. aggressivum* has been isolated from mushroom compost used for *A. bisporus* cultivation in Europe and North America (Samuels et al. 2002). This species has only been isolated once from soil in Kenya (Samuels and Szakacs [unpublished]). It is not yet known whether this species also occurs in natural environments.

Other species identified in the present study were: *T. atroviride* (20 isolates), *T. koningii* (17), *T. viridescens* (13), *T. citrinoviride* (11), *T. hamatum* (9), *T. viride* (7), *T. virens* (6), *T. longibrachiatum* (4), *T. gamstii* (2), *T. koningiopsis* (1), *T. polysorum* (1), and *T. tomentosum* (1). These species are representative of a temperate *Trichoderma* biota (Kubicek et al. 2008). *T. viride*, *T. viridescens*, *T. koningii*, *T. citrinoviride*, *T. aggressivum*, *T. tomentosum*, and *T. polysorum* are rather restricted to temperate regions. However, *T. longibrachiatum*, *T. virens*, *T. koningiopsis*, *T. hamatum*, and *T. atroviride* were also found in the neotropical study (Hoyos-Carvajal et al. 2009).

The current results suggested that the most diverse habitats were soil (nine species per 22 isolates) and decaying wood (nine species per 75 isolates) gathered in parks and forests of the Wielkopolska region of Poland. The decaying wood was also the substrata from which the most isolates of *Trichoderma* (75) were collected. In this connection, we will continue to analyze the genetic and metabolic biodiversity of *Trichoderma* isolates originating from Polish mountains and isolated from forest wood with decay symptoms.

Acknowledgments This work was supported by the Ministry of Science and Higher Education in Poland, Project No. NN310 203037. We thank Profs. H. Kwaśna and M. Matka, Department of Forest Pathology, Poznań University of Life Sciences, and Dr. M. Szczec, Department of Plant Protection, Research Institute of Vegetable Crops, Skierkiewice, for providing some of the isolates included in this study.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

Atanasova L, Jaklitsch WM, Komoń-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species *Trichoderma paraceae* sp. nov. likely resembles the ancestor of the cellulase producer *Hypocrea jecorina*/T. reesei. Appl Environ Microbiol 76:7259–7267

Bailey BA, Bae H, Struem MD, Roberts DP, Thomas SE, Croyzer J, Samuels GJ, Choi I-Y, Holmes KA (2006) Fungal and plant gene expression during the colonisation of cacao seedlings by endophytic isolates of four *Trichoderma* species. Planta 224:1449–1464

Caballero ML, Gómez M, González-Muñoz M, Reinoso L, Rodriguez-Pérez R, Alday E, Moneo I (2007) Occupational sensitization to fungal enzymes used in animal feed industry. Int Arch Allergy Immunol 144:231–239

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556

Chaverri P, Castelbury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the *Trichoderma harzianum*/Hypocrea lutea complex. Mol Phylogenet Evol 27:302–313

Chelkowski J, Golkia L, Stepień Ł, 2003. Application of STS markers for leaf rust resistance genes in near-isogenic lines of spring wheat cv. Thatcher. J App Genet 44:323–338

De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ (2010) MALDI-TOF MS of *Trichoderma*: a model system for the identification of microfungi. Mycol Prog 9(1):79–100

Degenkolb T, Gräfenthal T, Berg A, Nirenberg H, Gams W, Brückner H (2006) Peptaibiotics: screening for polypeptide antibiotics (peptaibiotics) from plant-protective *Trichoderma* species. Chem Biodivers 3:593–610

Degenkolb T, Dieckmann R, Nielsen KF, Gräfenthal T, Theis C, Zafari D, Chaverri P, Ismael A, Brückner H, von Döhrn, Uranne T, Petrini O, Samuels GJ (2008) The *Trichoderma brevicom pactum* clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 7:177–219

Doohan FM, Parry DW, Jenkinson P, Nicholson P (1998) The use of species-specific PCR-based assays to analyse *Fusarium* ear blight of wheat. Plant Pathol 47:197–205

Druzhinina I, Kopchinsky A (2004a) TrichoBLAST version 1.0, Multiloci database of phylogenetic markers and similarity search. Published online by the International Subcommission on *Trichoderma* and *Hypocrea* Taxonomy (ISTH). Home page at: http://www.isth.info/tools/blast/index.php

Druzhinina I, Kopchinsky A (2004b) TrichoBLAST version 1.0, *Trichoderma* oligonucleotide key. Published online by the International Subcommission on *Trichoderma* and *Hypocrea* Taxonomy (ISTH). Home page at: http://www.isth.info/tools/molkey/index.php

Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in *Trichoderma* and *Hypocrea*: from aggregate species to species clusters? J Zhejiang Univ Sci B 6:100–112

Druzhinina IS, Kopchinsky AG, Komoń M, Bissett J, Szakacs G, Kubicek CP (2005) An oligonucleotide barcode for species identification in *Trichoderma* and *Hypocrea*. Fungal Genet Biol 42:813–28

Druzhinina IS, Komoń-Zelazowska M, Kredics L, Hatvani L, Antal Z, Belayneh T, Kubicek CP (2008) Alternative reproductive strategies of *Hypocrea orientalis* and genetically close but clonal *Trichoderma longibrachiatum*, both capable of causing invasive mycoses of humans. Microbiology 154:3447–3459

Druzhinina IS, Kubicek CP, Komoń-Zelazowska M, Mulaw TB, Bissett J (2010) The *Trichoderma harzianum* demon: complex speciation history resulting in coexistence of hypothetical biological species, recent agamospecies and numerous relict lineages. BMC Evol Biol 10:94

Eck RV, Dayhoff MO (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, MD

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–7

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Gams W, Bissett J (1998) Morphology and identification of *Trichoderma*. In: Harman GE, Kubicek CP (eds) *Trichoderma* and *Gliocladium*, vol. 1: basic biology, taxonomy and genetics. Taylor and Francis, London, p 334
