Reconstructing $f(T)$-gravity from the polytropic and different Chaplygin gas dark energy models

K. Karami1,2,*, A. Abdolmaleki1†

1Department of Physics, University of Kurdistan, Picasaran St., Sanandaj, Iran
2Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Maragha, Iran

September 21, 2010

Abstract

Motivated by a recent work of us [1], we reconstruct the different $f(T)$-gravity models corresponding to a set of dark energy scenarios containing the polytropic, the standard Chaplygin, the generalized Chaplygin and the modified Chaplygin gas models. We also derive the equation of state parameter of the selected $f(T)$-gravity models and obtain the necessary conditions for crossing the phantom-divide line.

PACS numbers: 04.50.Kd, 95.36.+x
Keywords: Modified theories of gravity, Dark energy

*E-mail: KKarami@uok.ac.ir
†E-mail: AAbdolmaleki@uok.ac.ir
1 Friedmann equations in the $f(T)$ theory

In the framework of $f(T)$-gravity, the Friedmann equations in the flat spatial Friedmann-Robertson-Walker (FRW) universe are given by \cite{1, 2, 3, 4, 5, 6, 7}

$$\frac{3}{k^2} H^2 = \rho + \rho_T,$$

$$\frac{1}{k^2} (2 \dot{H} + 3 H^2) = -(p + p_T),$$

where

$$\rho_T = \frac{1}{2k^2} (2 T f_T - f - T),$$

$$p_T = -\frac{1}{2k^2} [8 HT f_{TT} + (2T - 4 \dot{H}) f_T - f + 4 \dot{H} - T],$$

with

$$T = -6H^2.$$

Here $k^2 = 8\pi G$, $H = \dot{a}/a$ is the Hubble parameter, ρ and p are the total energy density and pressure of the matter inside the universe. Also ρ_T and p_T are the energy density and pressure due to the contribution of the torsion scalar T. Furthermore, in f_T and f_{TT} the subscript T denotes a derivative with respect to T. Note that if $f(T) = T$ then Eqs. (1) and (2) transform to the usual Friedmann equations in Einstein general relativity (GR).

The energy conservation laws are

$$\dot{\rho} + 3H(\rho + p) = 0,$$

$$\dot{\rho}_T + 3H(\rho_T + p_T) = 0.$$

The equation of state (EoS) parameter due to the torsion contribution is defined as \cite{1, 4}

$$\omega_T = \frac{p_T}{\rho_T} = -1 + \frac{8HT f_{TT} + 4H f_T - 4 \dot{H}}{2T f_T - f - T}.$$

For a given $a = a(t)$, by the help of Eqs. (3) and (4) one can reconstruct the $f(T)$-gravity according to any dark energy (DE) model given by the EoS $p_T = p_T(\rho_T)$ or $\rho_T = \rho_T(a)$.

Here we assume a pole-like phantom scale factor as \cite{8}

$$a(t) = a_0(t_s - t)^{-h}, \quad t \leq t_s, \quad h > 0.$$

Using Eqs. (5) and (9) one can obtain

$$H = \frac{h}{t_s - t},$$

$$T = -\frac{h}{(t_s - t)^2},$$

$$\dot{H} = -\frac{2}{6h^2}.$$

From Eqs. (9) and (10) the scale factor a can be rewritten in terms of T as

$$a = a_0 \left(-\frac{T}{6h^2} \right)^{\frac{1}{2}}.$$
2 Polytropic $f(T)$-gravity model

Here like [1] we reconstruct the $f(T)$-gravity from the polytropic gas DE model. Following [9], the EoS of the polytropic gas is given by

$$p_\Lambda = K \rho_\Lambda^{1 + \frac{1}{n}}, \quad (12)$$

where K is a positive constant and n is the polytropic index. Using Eq. (7) the energy density evolves as

$$\rho_\Lambda = (Ba_n^\frac{4}{n} - K)^{-n}, \quad (13)$$

where B is a positive integration constant [9].

Replacing Eq. (11) into (13) yields

$$\rho_\Lambda = \left(\alpha T^\frac{3h}{2n} - K\right)^{-n}, \quad (14)$$

where

$$\alpha = Ba_0^\frac{3}{n} (-6h^2)^{-\frac{3h}{2n}}. \quad (15)$$

Equating (3) with (14), i.e. $\rho_T = \rho_\Lambda$, we obtain the following differential equation

$$2T f_T - f - T - 2k^2 \left(\alpha T^\frac{3h}{2n} - K\right)^{-n} = 0. \quad (16)$$

Solving Eq. (16) gives

$$f(T) = \beta T^{1/2} + T + (-1)^{1+n} \frac{2k^2}{K^n} 2F_1 \left(-\frac{n}{3h}, n; 1 - \frac{n}{3h}; \frac{\alpha T^\frac{3h}{2n}}{K} \right), \quad (17)$$

where $2F_1$ denotes the first hypergeometric function. Replacing Eq. (17) into (8) one can obtain the EoS parameter of torsion contribution as

$$\omega_T = -1 - \frac{1}{K T^\frac{3h}{2n} - 1}, \quad h > 0. \quad (18)$$

Using Eqs. (5) and (15), the above relation can be rewritten as

$$\omega_T = -1 - \frac{1}{\frac{K}{B} \left[a_0 \left(\frac{k}{h}\right)^\frac{3}{n}\right]^{-\frac{3}{n}} - 1}, \quad h > 0. \quad (19)$$

We see that for $\frac{K}{B} \left[a_0 \left(\frac{k}{h}\right)^\frac{3}{n}\right]^{-\frac{3}{n}} > 1$, $\omega_T < -1$ which corresponds to a phantom accelerating universe.
3 Standard Chaplygin $f(T)$-gravity model

The EoS of the standard Chaplygin gas (SCG) DE is given by [10]

$$p_{\Lambda} = -\frac{A}{\rho_{\Lambda}},$$ \hspace{1cm} (20)

where A is a positive constant. Inserting the above EoS into the energy conservation equation (7), leads to a density evolving as [10]

$$\rho_{\Lambda} = \sqrt{A + \frac{B}{a^6}},$$ \hspace{1cm} (21)

where B is an integration constant.

Inserting Eq. (11) into (21) one can get

$$\rho_{\Lambda} = \sqrt{A + \alpha T^{-3h}},$$ \hspace{1cm} (22)

where

$$\alpha = Ba_0^{-6}(-6h^2)^{3h}.\hspace{1cm} (23)$$

Equating (22) with (3) one can obtain

$$2T f_T - f - T - 2k^2 \sqrt{A + \alpha T^{-3h}} = 0.$$ \hspace{1cm} (24)

Solving the differential equation (24) yields

$$f(T) = \beta T^{1/2} + T - 2k^2 A^\frac{1}{2} _2 F_1 \left(\frac{1}{6h}, -\frac{1}{2}; 1 + \frac{1}{6h}; -\frac{\alpha A T^{-3h}}{A} \right).$$ \hspace{1cm} (25)

Replacing Eq. (25) into (8) one can get

$$\omega_T = -1 + \frac{1}{\frac{A}{B} \left[a_0 \left(\frac{H}{a} \right)^h \right]^6 + 1}, \hspace{1cm} h > 0.$$ \hspace{1cm} (26)

Using Eqs. (5) and (23), the above relation can be rewritten as

$$\omega_T = -1 + \frac{1}{\frac{A}{B} \left[a_0 \left(\frac{H}{a} \right)^h \right]^6 + 1}, \hspace{1cm} h > 0,$$ \hspace{1cm} (27)

which for $B < 0$ and $\frac{A}{B} \left[a_0 \left(\frac{H}{a} \right)^h \right]^6 > 1$ then ω_T can cross the phantom-divide line.

4 Generalized Chaplygin $f(T)$-gravity model

The EoS of the Generalized Chaplygin Gas (GCG) DE model is given by [11]

$$p_{\Lambda} = -\frac{A}{\rho_{\Lambda}^\prime},$$ \hspace{1cm} (28)
where \(\alpha \) is a constant in the range \(0 \leq \alpha \leq 1 \) (the SCG corresponds to the case \(\alpha = 1 \)) and \(A \) a positive constant. Using Eq. (7), the GCG energy density evolves as \[\rho = \left(A + \frac{B}{a^{3(1+\alpha)}} \right)^{\frac{1}{1+\alpha}}, \tag{29} \]

where \(B \) is an integration constant.

Substituting Eq. (11) into (29) one can get

\[\rho = \left(A + \frac{1}{3} \gamma T \frac{1}{2} h^{(1+\alpha)} \right)^{\frac{1}{1+\alpha}}, \tag{30} \]

where \(\gamma = B a_0^{-3(1+\alpha)} \left(-6h^2 \right)^{\frac{3}{2}} h^{(1+\alpha)}. \tag{31} \)

Equating (30) with (3) gives

\[2T f_T - f_T + 2k^2 \left(A + \frac{1}{3} \gamma T \frac{1}{2} h^{(1+\alpha)} \right)^{\frac{1}{1+\alpha}} = 0. \tag{32} \]

Solving Eq. (32) yields

\[f(T) = \beta T^{1/2} + T - 2k^2 A \frac{1}{1+\alpha} \frac{1}{2} \frac{2}{1+\alpha} \frac{1}{1+\alpha} \frac{1}{1+\alpha} - \frac{\gamma}{A} T \frac{1}{2} h^{(1+\alpha)}. \tag{33} \]

Replacing Eq. (33) into (8) gives the EoS parameter as

\[\omega_T = -1 + \frac{1}{A T \frac{1}{2} h^{(1+\alpha)} + 1}, \quad h > 0, \quad 0 \leq \alpha \leq 1, \tag{34} \]

Using Eqs. (5) and (31), the above relation can be rewritten as

\[\omega_T = -1 + \frac{1}{\frac{A}{B} \left[a_0 \left(\frac{H}{h} \right)^{3(1+\alpha)} \right]^{\frac{1}{3(1+\alpha)}} + 1}, \quad h > 0, \quad 0 \leq \alpha \leq 1, \tag{35} \]

which for \(B < 0 \) and \(\frac{A}{|B|} \left[a_0 \left(\frac{H}{h} \right)^{3(1+\alpha)} \right]^{\frac{1}{3(1+\alpha)}} > 1 \) then \(\omega_T \) can cross the phantom-divide line.

5 Modified Chaplygin \(f(T) \)-gravity model

The EoS of the modified Chaplygin gas (MCG) DE model is given by \[\rho = A \rho_A - \frac{B}{\rho_A^2}, \tag{36} \]

where \(A \) and \(B \) are positive constants and \(0 \leq \alpha \leq 1 \). Using Eq. (7), the MCG energy density evolves as \[\rho_A = \left(\frac{B}{1+A} + \frac{C}{a^{3(1+\alpha)(1+\alpha)}} \right)^{\frac{1}{1+\alpha}}, \tag{37} \]
where C is an integration constant.

Replacing Eq. (11) into (37) yields

$$\rho_{\Lambda} = \left(\frac{B}{1 + A} + \gamma T^{\frac{3}{2}h(1+\alpha)(1+A)} \right)^{\frac{1}{1+\alpha}},$$

where

$$\gamma = C a_0^{-3(1+\alpha)(1+A)} \left(-6h^2 \right)^{\frac{3}{2}h(1+\alpha)(1+A)}.$$

Equating (30) with (3) gives

$$2T f_T - f_T - T - 2k^2 \left(\frac{B}{1 + A} + \gamma T^{\frac{3}{2}h(1+\alpha)(1+A)} \right)^{\frac{1}{1+\alpha}} = 0.\quad(40)$$

Solving Eq. (40) yields

$$f(T) = \beta T^{1/2} + T - 2k^2 \left(\frac{B}{1 + A} \right)^{\frac{1}{1+\alpha}} \times \text{$_2F_1$} \left(1, 1 + \frac{1}{1+\alpha}; 1 + 1 + \frac{1}{3h(1+\alpha)(1+A)}; -\gamma(1 + A) T^{\frac{3}{2}h(1+\alpha)(1+A)} \right).$$

Replacing Eq. (41) into (8) one can obtain the EoS parameter of torsion contribution as

$$\omega_T = -1 + \frac{A + 1}{\gamma(1+A) T^{\frac{3}{2}h(1+\alpha)(1+A)} + 1}, \quad h > 0, \quad 0 \leq \alpha \leq 1,\quad(42)$$

and using Eqs. (5) and (39), it can be rewritten as

$$\omega_T = -1 + \frac{B}{\gamma(1+A) C(1+\alpha)} \left[a_0 \left(\frac{H}{h} \right)^h \right]^{3(1+\alpha)(1+A)} + 1, \quad h > 0, \quad 0 \leq \alpha \leq 1, \quad(43)$$

which for $C < 0$ and $\frac{B}{C(1+\alpha)} \left[a_0 \left(\frac{H}{h} \right)^h \right]^{3(1+\alpha)(1+A)} > 1$ then ω_T can cross the phantom-divide line.

6 Conclusions

Here we considered the polytropic gas, the SCG, the GCG and the MCG models of the DE. We reconstructed the different theories of modified gravity based on the $f(T)$ action in the spatially-flat FRW universe and according to the selected DE models. We also obtained the EoS parameter of the polytropic, standard Chaplygin, generalized Chaplygin and modified Chaplygin $f(T)$-gravity scenarios. We showed that crossing the phantom-divide line can occur when the constant parameters of the models to be chosen properly.

Acknowledgements

The work of K. Karami has been supported financially by Research Institute for Astronomy & Astrophysics of Maragha (RIAAM), Maragha, Iran.
References

[1] K. Karami, A. Abdolmaleki, arXiv:1009.2459.

[2] R. Ferraro, F. Fiorini, Phys. Rev. D 75, 084031 (2007); R. Ferraro, F. Fiorini, Phys. Rev. D 78, 124019 (2008).

[3] G.R. Bengochea, R. Ferraro, Phys. Rev. D 79, 124019 (2009); G.R. Bengochea, arXiv:1008.3188.

[4] R. Myrzakulov, arXiv:1006.1120; R. Myrzakulov, arXiv:1008.4486; K.K. Yerzhanov, Sh.R. Myrzakul, I.I. Kulnazarov, R. Myrzakulov, arXiv:1006.3879; P.Yu. Tsyba, I.I. Kulnazarov, K.K. Yerzhanov, R. Myrzakulov, arXiv:1008.0779.

[5] E.V. Linder, Phys. Rev. D 81, 127301 (2010).

[6] P. Wu, H. Yu, arXiv:1006.0674; P. Wu, H. Yu, arXiv:1008.3669; P. Wu, H. Yu, Phys. Lett. B 692, 176 (2010).

[7] K. Bamba, C.Q. Geng, C.C. Lee, arXiv:1008.4036.

[8] H.M. Sadjadi, Phys. Rev. D 73, 063525 (2006).

[9] K. Karami, S. Ghaffari, J. Fehri, Eur. Phys. J. C 64, 85 (2009).

[10] A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 487, 7 (2000); A. Kamenshchik, U. Moschella, V. Pasquier, Phys. Lett. B 511, 265 (2001); N. Bilic, G.B. Tupper, R.D. Viollier, Phys. Lett. B 535, 17 (2002).

[11] M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66, 043507 (2002); V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67, 063509 (2003); U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003); M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 70, 083519 (2004); K. Karami, S. Ghaffari, M.M. Soltanzadeh, Astrophys. Space Sci. (2010), DOI 10.1007/s10509-010-0434-7; M. Jamil, M.A. Rashid, Eur. Phys. J. C 56, 429 (2008).

[12] H.B. Benooum, hep-th/0205140; U. Debnath, A. Banerjee, S. Chakraborty, Class. Quantum Grav. 21, 5609 (2004); M. Jamil, M.A. Rashid, Eur. Phys. J. C 60, 141 (2009).