HIGHLY CHEMOSELECTIVE SYNTHESIS OF NOVEL 6-O-PHOSPHORYLATED 6-HYDROXYPYRIDAZINE-3(2H)-ONE

Zhiyu Ju,1 Gongchun Li,1 Mei Wang,1 Fengling Yang,2 Yong Ye,3 and Yufen Zhao3

1College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000, P. R. China
2College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, P. R. China
3Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, Department of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China

GRAPHICAL ABSTRACT

Abstract 6-O-Phosphorylated pyridazin-3(2H)-one derivatives were conveniently prepared by a facile method. Maleic hydrazide was prepared by the condensation of maleic anhydride with 85% hydrazine hydrate. It was then chemoselectively phosphorylated at the 6-O position using the Atherton–Todd reaction. An efficient, highly chemoselective method to synthesize 6-O-phosphorylated pyridazin-3(2H)-one derivatives is provided, and the approach has the merits of mild reaction conditions.

Keywords Maleic hydrazide; phosphorylation; chemoselective; Atherton–Todd reaction

INTRODUCTION

Pyridazinone derivatives, a class of compounds containing the N–N bond, have been reported to exhibit a wide variety of biological activities including herbicidal,1 fungicidal,2 and antibacterial3 activities, as inhibitors of asaldose reductase,4 and as hepatoprotective agents.5 Recently, pyridazine-3(2H)-one was reported to be a stable and good leaving group and to show electron withdrawing ability.6,7 Moreover, various organophosphorus compounds have been developed as carboxylic acid activators. Pyridazine-3(2H)-one-containing phosphate esters were synthesized by the reaction of pyridazine-3(2H)-ones and O,O-dialkyl phosphorochloridates as carboxylic acid activators.8

Received 13 July 2013; accepted 5 May 2014.
Address correspondence to Zhiyu Ju, College of Chemistry and Chemical Engineering, Xuchang University, Xuchang 461000, P. R. China. E-mail: juz1696@163.com
Pyridazinyl-substituted phosphorothioate esters are potent broad-spectrum insecticides. A derivative of 6-hydroxy-3(2H)-pyridazinone, more commonly known as maleic hydrazide, is a sparingly soluble, high-melting monobasic acid, which has a pK_a 7.6 in 90% ethanol. Substitution at the (2H) position by alkyl or aryl groups does not affect the acidity appreciably; however, the solubility in organic solvents is improved. It was reported that these compounds react with O,O-dialkyl phosphoro-chloridothioates similarly to phenols. O,O-Dialkyl phosphorochloridothioates or O,O-dialkyl phosphorochloridates are highly reactive phosphoryl reagents, however, and a regioselective phosphorylation of polyhydroxyphenols is difficult.

The Atherton–Todd reaction is a powerful classical phosphorylation method, which is not only widely used for the preparation of phosphates and related phosphorus compounds, but also provides a method for the selective phosphorylation of different active groups. In a previous paper, we reported on the highly regioselective 4-0-phosphorylation of 2,4-dihydroxyacetophotone with O,O-dialkyl phosphites. In addition, the dialkylphosphate reagent showed different chemoselectivities toward the different hydroxy functionalities in puerarin. In this paper, we report on the effective and highly chemoselective 0-phosphorylation of maleic hydrazide with O,O-dialkyl phosphites by the Atherton–Todd reaction (Scheme 1). The structures of the phosphorylated products were confirmed by electrospray ionization–mass spectrometry (ESI–MS), nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy.

RESULTS AND DISCUSSION
Maleic hydrazide was synthesized by the condensation of maleic anhydride (1) with 85% hydrazine hydrate. In order to obtain 6-0-phosphorylated maleic hydrazide, possible routes for 6-0-phosphorylation of maleic hydrazide are shown in Scheme 2.
Maleic hydrazide was phosphorylated with POCl₃ or (RO)₂P(O)Cl to yield title compounds with very low yields under harsh experimental conditions. When maleic hydrazide was allowed to react with (RO)₂P(O)H under the Atherton–Todd reaction conditions, five 6-O-phosphorylated maleic hydrazides were synthesized with good yields under mild reaction conditions. It is well known that the rate of phosphorylation in an Atherton–Todd reaction depends on the rate of nucleophilic attack. The Atherton–Todd reaction, under the present experimental conditions, was found to proceed chemoselectively, favoring attack at the 6-hydroxy group of maleic hydrazide (2). Maleic hydrazide can, in principle, exist as an equilibrium of two tautomeric forms: the lactim and the lactam forms (Scheme 3). It has been reported that spectroscopic studies of maleic hydrazide tautomers indicate the lactam form to be the most stable species in ethanol solution. This observation is in agreement with experimental and theoretical data on the parent phthalhydrazide and its methyl isomers.

The greater reactivity of the phenolic hydroxy group in comparison to the amide function results in a chemoselective reaction producing O-phosphorylated maleic hydrazide. This conclusion was also confirmed by ¹³C NMR and FT–IR spectra of compound 3a. For example, the ¹³C NMR spectrum of compound 3a showed the signal of the carbon atom in 3-position at δ = 161.3 ppm, which is in accord with the chemical shift of the carbonyl carbon atom. In addition, the infrared peaks in the region of 3300–3100 cm⁻¹ and a broad band at 1680 cm⁻¹ represented the N–H stretching and bending modes, respectively. This indicates the presence of N–H and not O–H functionality in the structure of compound 3a. The maleic hydrazide (2) reacts with various dialkyl phosphites to form a series of 6-O-phosphorylated maleic hydrazide derivatives (3) (Table 1). The ¹H, ¹³C, and ³¹P NMR spectra of compound 3a are presented as an example in Figures S1–S3 in the Supplemental Materials.

Under the same experimental conditions, dialkyl phosphites with different structures gave different yields, as shown in Table 1. Compound 3a is obtained in 86% isolated yield.

Table 1 Derivatives of 6-O-phosphorylated maleic hydrazide

Entry	R	Yield (%)
3a	CH₃	86%
3b	CH₂CH₃	84%
3c	CH₃CH₂CH₂	81%
3d	CH₃CH₂CH₂CH₂	80%
3e	(CH₃)₂CHCH₂	76%
due to small steric hindrance in the case of dimethyl phosphite. Diethyl phosphite, di-\textit{n}\textendash propyl phosphite, and di-\textit{n}\textendash butyl phosphite give the corresponding compounds 3b, 3c, and 3d in 84\%, 81\%, and 80\% isolated yield, respectively. The compound 3e is obtained in only 76\% isolated yield because of great steric hindrance in the case of di-\textit{i}\textendash butyl phosphite.

In conclusion, a convenient procedure for the preparation of novel 6-\textit{O}\textendash phosphorylated maleic hydrazide derivatives was reported using commercially available materials. These compounds were synthesized by the condensation of maleic anhydride with 85\% hydrazine hydrate and subsequent Atherton–Todd reaction. Phosphorylation of maleic hydrazide was found to proceed chemoselectively, favoring the attack at the oxygen atom in 6-position of maleic hydrazide.

EXPERIMENTAL

Maleic hydrazide (2) was synthesized according to the process described in the literature21 and was purified by sublimation before use. Other starting materials were obtained from commercial sources and used without further purification. Melting points were recorded with a microscopical determinator XT4 (the thermometer was not calibrated). IR spectra were recorded with a Shimadazu IR-408 spectrophotometer. 1H, 13C, and 31P NMR spectra were obtained with a Bruker Avance DPX-400 spectrometer; chemical shifts are given in ppm with positive values downfield from internal tetramethylsilane (TMS) and external 85\% \textit{H}_{3}\textit{PO}_{4} (31\textit{P}). Coupling constants are in Hertz. ESI–MS spectra were recorded with a Bruker Esquire-3000 instrument. Elemental analyses of the new compounds were performed with a Vario EL III 0 (serial no. 11024054) instrument. Sample 1H, 13C, and 31P NMR spectra for 3a are presented in the Supplemental Materials (Figures S1–S3).

General Experimental Procedure for the Synthesis of Compounds 3a–e

A solution of dialkyl phosphonite (2.2 mmol) in \textit{CCl}_{4} (0.6 mL) was added dropwise to the solution of maleic hydrazide (2 mmol) in a mixture of \textit{Et}_{3}\textit{N} (0.3 mL) and the corresponding alcohol (1 mL) at 0\textdegree\textcelsius during 30 min. Then the reaction mixture was stirred at room temperature for approximately 8–10 h. After water (5 mL) was added to the solution, it was subjected to extraction with 3 \times 5 mL of ethyl acetate. The ethyl acetate solution was dried over anhydrous magnesium sulfate. From the resulting solution, the solvent was evaporated under reduced pressure to yield compound 3. Finally, the residue was purified by column chromatography on silica gel with ethyl acetate/corresponding alcohol (5:1) as eluent to yield pure compounds 3.

Dimethyl (6-Oxo-1,6-dihydropyridazin-3-yl) Phosphate(3a)

Colorless liquid. 1H NMR (CDCl\textsubscript{3}, 400 MHz): \(\delta = 11.83\) (s, 1H, NH), 7.19 (d, \(J = 8.0\) Hz, 1H, CH=CH), 7.04 (d, \(J = 8.0\) Hz, 1H, CH=CH), 3.93 (d, \(J = 11.6\) Hz, 6H, OCH\textsubscript{3}); 13C NMR (CDCl\textsubscript{3}, 100 MHz): \(\delta = 161.3\) (C-3), 147.6 (d, \(^2\textit{J}_{\text{PC}} = 6.4\) Hz, C-6), 133.9 (C-4), 128.5 (d, \(^3\textit{J}_{\text{PC}} = 6.0\) Hz, C-5), 55.5 (d, \(^2\textit{J}_{\text{PC}} = 6.0\) Hz, –OCH\textsubscript{3}); 31P NMR (CDCl\textsubscript{3}, 162 MHz) \(\delta = -5.3\); IR (KBr): \(\nu = 3180\) (N=H), 1685 (C=O), 1277 (P=O), 3085 (=C−H), 2975, 2880, 1600 cm−1. ESI–MS, m/z: 221.2 [M+H]+. Anal. Calcd. for \textit{C}_{8}\textit{H}_{9}\textit{N}_{2}\textit{O}_{5}\textit{P}: C, 32.74; H, 4.12; N, 12.73. Found: C, 32.91; H, 4.22; N, 12.53\%.
Diethyl (6-Oxo-1,6-dihydropyridazin-3-yl) Phosphate (3b)

Colorless liquid. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 11.69\) (s, 1H, NH), 7.12 (d, \(J = 8.0\) Hz, 1H, CH=CH), 6.96 (d, \(J = 8.0\) Hz, 1H, CH=CH), 4.18 (dq, \(J_\text{PH} = 11.6\) Hz, \(J = 7.2\) Hz, 4H, OCH\(_2\)), 1.25 (t, \(J = 7.1\) Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 161.3\) (C-3), 147.6 (d, \(J_\text{PC} = 6.3\) Hz, C-6), 133.7 (C-4), 128.5 (d, \(J_\text{PC} = 5.6\) Hz, C-5), 65.4 (d, \(J_\text{PC} = 6.0\) Hz, OCH\(_2\)), 15.9 (d, \(J_\text{PC} = 6.7\) Hz, CH\(_3\)); \(^{31}\)P NMR (CDCl\(_3\), 162 MHz): \(\delta = -7.8\); IR (KBr): \(\nu = 3168\) (NH), 1680 (CO), 1277 (PO), 3080 (C=H), 2970, 2880, 1600 cm\(^{-1}\). ESI–MS, \(m/z: 249.2\) [M+H]+. Anal. Calcd. for C\(_8\)H\(_{13}\)N\(_2\)O\(_5\)P: C, 38.72; H, 5.28; N, 11.29. Found: C, 38.90; H, 5.16; N, 11.20%.

Dipropyl (6-Oxo-1,6-dihydropyridazin-3-yl) Phosphate (3c)

White solid. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 11.54\) (s, 1H, NH), 7.18 (d, \(J = 9.9\) Hz, 1H, CH=CH), 7.01 (d, \(J = 9.9\) Hz, 1H, CH=CH), 4.14 (dt, \(J_\text{PH} = 11.5\) Hz, \(J = 7.2\) Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 161.3\) (C-3), 147.7 (d, \(J_\text{PC} = 6.0\) Hz, C-6), 133.7 (C-4), 128.5 (d, \(J_\text{PC} = 5.4\) Hz, C-5), 70.8 (d, \(J_\text{PC} = 6.3\) Hz, OCH\(_2\)), 23.5 (d, \(J_\text{PC} = 7.1\) Hz, CH\(_2\)), 9.9 (CH\(_3\)); \(^{31}\)P NMR (CDCl\(_3\), 162 MHz): \(\delta = -7.5\); IR (KBr): \(\nu = 3168\) (N=H), 1682 (CO), 1275 (P=O), 3080 (=C=H), 2975, 2881, 1602 cm\(^{-1}\). ESI–MS, \(m/z: 277.2\) [M+H]+. Anal. Calcd. for C\(_{10}\)H\(_{17}\)N\(_2\)O\(_5\)P: C, 43.48; H, 6.20; N, 10.14. Found: C, 43.67; H, 6.41; N, 10.02%.

Dibutyl (6-Oxo-1,6-dihydropyridazin-3-yl) Phosphate (3d)

White solid. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 11.48\) (s, 1H, NH), 7.16 (d, \(J = 8.0\) Hz, 1H, CH=CH), 7.00 (d, \(J = 8.0\) Hz, 1H, CH=CH), 4.15 (dt, \(J_\text{PH} = 11.5\) Hz, \(J = 7.0\) Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 161.3\) (C-3), 147.7 (d, \(J_\text{PC} = 6.0\) Hz, C-6), 133.6 (C-4), 128.5 (d, \(J_\text{PC} = 5.6\) Hz, C-5), 69.0 (d, \(J_\text{PC} = 6.4\) Hz, OCH\(_2\)), 32.0 (d, \(J_\text{PC} = 6.9\) Hz, CH\(_2\)), 18.5 (CH\(_2\)), 13.4 (CH\(_3\)); \(^{31}\)P NMR (CDCl\(_3\), 162 MHz): \(\delta = -7.5\); IR (KBr): \(\nu = 3170\) (N=H), 1681 (CO), 1270 (PO), 3082 (=C=H), 2970, 2880, 1600 cm\(^{-1}\). ESI–MS, \(m/z: 305.2\) [M+H]+. Anal. Calcd. for C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)P: C, 47.37; H, 6.96; N, 9.21. Found: C, 47.56; H, 7.05; N, 9.08%.

Diisobutyl (6-Oxo-1,6-dihydropyridazin-3-yl) Phosphate (3e)

White solid. \(^1\)H NMR (CDCl\(_3\), 400 MHz): \(\delta = 11.41\) (s, 1H, NH), 7.22 (d, \(J = 9.9\) Hz, 1H, CH=CH), 7.03 (d, \(J = 9.9\) Hz, 1H, CH=CH), 4.00 (dd, \(J_\text{PH} = 11.5\) Hz, \(J = 7.2\) Hz, 4H, OCH\(_2\)), 2.01 (m, 2H, CH), 0.87 (t, \(J = 7.4\) Hz, 6H, CH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz): \(\delta = 160.8\) (C-3), 147.7 (d, \(J_\text{PC} = 6.0\) Hz, C-6), 133.8 (C-4), 128.7 (d, \(J_\text{PC} = 5.6\) Hz, C-5), 75.1 (d, \(J_\text{PC} = 6.6\) Hz, OCH\(_2\)), 29.0 (d, \(J_\text{PC} = 7.2\) Hz, CH), 18.6 (CH\(_3\)); \(^{31}\)P NMR (CDCl\(_3\), 162 MHz): \(\delta = -7.5\); IR (KBr): \(\nu = 3169\) (N=H), 1680 (C=O), 1276 (P=O), 3084 (=C=H), 2971, 2880, 1601 cm\(^{-1}\). ESI–MS, \(m/z: 305.2\) [M+H]+. Anal. Calcd. for C\(_{12}\)H\(_{21}\)N\(_2\)O\(_5\)P: C, 47.37; H, 6.96; N, 9.21. Found: C, 47.58; H, 7.08; N, 9.04%.
FUNDING

The authors thank the National Natural Science Foundation of China (grant nos. 20972143 and 20972130), Technology Research and Development Program of Henan province (grant no. 122102210426), and Science and Technology Major Project of Henan Province Educational Committee (grant no. 14B150060) for financial support.

SUPPLEMENTAL MATERIAL

Supplemental data for this article can be accessed on the publisher’s website at http://dx.doi.org/10.1080/10426507.2014.931395

REFERENCES

1. Xu, H.; Zou, X. M.; Zhu, Y. Q.; Liu, B.; Tao, H. L.; Hu, X. H.; Sang, H. B.; Hu, F. Z.; Wang, Y.; Yang, H. Z. Pest Manag. Sci. 2006, 62, 522-530.
2. Zou, X. J.; Lai, L. H.; Jin, G. Y.; Zhany, Z. X. J. Agric. Food. Chem. 2002, 50, 3757-3760.
3. Sonmez, M.; Borber, I.; Akbas, E. Eur. J. Med. Chem. 2006, 41, 101-105.
4. Costantino, L.; Rastelli, G.; Cignarella, G.; Barlocco, D. Il Farmaco. 2000, 55, 544-552.
5. Kwon, S. K.; Moon, A. Arch. Pharm. Res. 2005, 28, 391-394.
6. Kim, J. J.; Kweon, D. H.; Cho, S. D.; Kim, H. K.; Jung, E. Y.; Lee, S. G.; Falck, J. R.; Yoon, Y. J. Tetrahedron. 2005, 61, 5889-5894.
7. Kim, J. J.; Park, Y. D.; Lee, W. S.; Cho, S. D.; Yoon, Y. J. Synthesis. 2003, 1517-1520.
8. Won, J. E.; Kim, H. K.; Kim, J. J.; Yim, H. S.; Kim, M. J.; Kang, S. B.; Chung, H. A.; Lee, S. G.; Yoon, Y. J. Tetrahedron. 2007, 63, 12720-12730.
9. Albert, A.; Phillips, J. N. J. Chem. Soc. 1956, 1294-1304.
10. Breuill, S. D. J. Org. Chem. 1961, 26, 3382-3386.
11. Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660-663.
12. Jones, S.; Selitsianos, D. A. Org. Lett. 2002, 4, 3671-3673.
13. Jones, S.; Selitsianos, D.; Thompson, K. J.; Toms, S. M. J. Org. Chem. 2003, 68, 5211-5216.
14. Cao, S.; Guo, Y.; Wang, J.; Qi, L.; Gao, P.; Zhao, H.; Zhao, Y. F. Tetrahedron Lett. 2012, 53, 6302-6305.
15. Ju, Z. Y.; Li, G. C.; Wang, J.; Ye, Y.; Yang, F. L.; Zhao., Y. F. Phosphorus, Sulfur Silicon Relat. Elem. 2012, 187, 859-863.
16. Chen, X. L.; Qu, L. B.; Yuan, J. W.; Zhao., Y. F. J. Chin. Chem. Soc. 2007, 54, 583-585.
17. Suárez, M.; Lehnn, J. M.; Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J. Am. Chem. Soc. 1998, 120, 9526-9532.
18. Burton, N. A.; Green, D. V. S.; Hiller, L. H.; Taylor, P. J.; Vincent, M. A.; Woodcock, S. J. Chem. Soc., Perkin Trans. 2 1993, 3, 331-335.
19. Elvidge, J. A.; Redman, A. P. J. Chem. Soc. 1960, 1710-1714.
20. Zhou, Z. Y.; Wu, X.; Su, Z. M.; Xie, Y. Z.; Pan, X. M.; Ding, W. B. Acta Chim. Sin. 2004, 62, 2244-2252.
21. Mizzoni, R. H.; Spoerri, P. E. J. Am. Chem. Soc. 1951, 73, 1873-1874.