Integrated control technology of photovoltaic reactive power with source network coordination based on Multi-Agent Technology

Zhe Li a *, Chenghong Tang b, Cheng Liu c, Yonghua Chen d

NARI GROUP CORPORATION/STATE GRID ELECTRIC POWER RESEARCH INSTITUTE, China.

a, *Corresponding author e-mail: lizhe6@sgepri.sgcc.com.cn,
b tangchenghong@sgepri.sgcc.com.cn, c liucheng2@sgepri.sgcc.com.cn,
d chenyonghua1@sgepri.sgcc.com.cn

Abstract. With the rapid development of photovoltaic power generation technology, its participation in reactive power control of distribution network technology has been widely concerned. However, photovoltaic output has great volatility and randomness, which also brings challenges to the security and stability of distribution network reactive power regulation. Firstly, considering the topology of photovoltaic power generation unit and the demand response of the grid point, the reactive power model of distribution network including photovoltaic power generation is established based on source grid coordinated regulation. Then, on the basis of the above research, a source-grid cooperative photovoltaic reactive power double-layer regulation model was established. These include the upper-level control model responding to grid reactive power control demand, and the lower-level control model uses particle swarm optimization algorithms to allocate and control the upper-level demand for each photovoltaic power generation unit. Finally, based on IEEE33 distribution network model, it is verified that the proposed method can effectively solve the impact of photovoltaic output fluctuation on reactive power regulation and control of distribution network.

Keywords: Multi-agent technology, photovoltaic reactive power control, particle swarm optimization algorithm, hierarchical control

1. Introduction

With the development of renewable energy and the continuous reduction of coal and other traditional energy reserves, the global fuel structure has undergone great changes. As a renewable energy, solar energy has the characteristics of rich resources, clean and safe. According to the statistics of national energy administration, the newly added and accumulated installed capacity of photovoltaic power stations in China ranks first in the world. However, the following problem is that the fluctuation and randomness of photovoltaic output will have a certain impact on the grid point voltage of the system, which brings challenges to the safe and stable operation of the power system[1-5].
At present, the research on voltage control of photovoltaic power station is mainly divided into the following two aspects. (1) A constant voltage regulation control method is proposed to stabilize the voltage fluctuation at the paralleling point. The research in this area is mainly focused on the photovoltaic power station level. The voltage of the grid connection point is controlled by PI (proportion integration) tracking control method, sensitivity analysis method, optimization algorithm and other methods. The purpose of auxiliary control of grid voltage stability is to maintain the grid voltage constant. The above methods improve the stability of power grid operation to a certain extent, but the auxiliary control of grid voltage fluctuation cannot achieve significant effect in peak-valley period of system load or period of large fluctuation of photovoltaic output[6-8]. (2) A feedback control method is proposed to suppress the risk of voltage overrun. The goal of this research is to restrain the voltage of the junction point from exceeding the limit. Through the online monitoring system, the voltage at the junction point can be obtained in real time, so as to make emergency control for the situation beyond the voltage control range[9-10]. It solves the problem of voltage overrun at the grid connection point and prevents further deterioration of grid voltage. However, it is still a passive voltage control method, which cannot give full play to the reactive power regulation capacity of photovoltaic power station[11-15].

In this paper, the integrated control technology of source network coordinated photovoltaic reactive power is studied, and a double-layer reactive power optimization model of photovoltaic power station is established. The multi-agent technology is used to carry out hierarchical coordinated control. The upper optimization model is used to respond to the demand of grid voltage control. The lower optimization model optimizes the distribution of the upper optimization results in each group of photovoltaic generation unit PVGU (PV Generation Unit), so as to realize the fine control of source network coordinated photovoltaic reactive power, so as to improve the stability of power system.

2. Ease of Use Source network coordination reactive power control structure

2.1. Multi-agent technology
Multi agent technology is a technology for complex system analysis and simulation. Since it was proposed in 1970s, it has developed very fast and is a new distributed computing technology[16-20]. Compared with the traditional single system application, multi-agent system has the following advantages: autonomy, mobility, initiative, communication, learning ability, responsiveness, planning ability, reasoning ability, longevity, cooperation and negotiation ability. Therefore, the multi-agent system has the following advantages:

(1) The cooperative ability of multi-agent improves the efficiency of task execution;
(2) The redundancy of multi-agent can improve the robustness of task application;
(3) Multi-agent is easy to expand and upgrade;
(4) Multi-agent can complete distributed tasks.
To sum up, the advantages of multi-agent structure can effectively improve the control ability of photovoltaic reactive power, so this paper will design a reactive power optimization control method based on multi-agent structure.

2.2. Source-network coordination reactive power control architecture
At present, a kind of multi-agent structure commonly used is tree structure, as shown in Fig. 1. Among them, agent_U is the upper agent, agents_1~n are the lower agents. The communication link is used to realize the information exchange and instruction transmission between the upper and lower agents. The upper agent coordinates the cooperative operation of all agents according to the real-time information of the lower agents.
At present, a kind of multi-agent structure commonly used is tree structure, as shown in Fig. 1. Among them, agent_U is the upper agent, agents_1~n are the lower agents. The communication link is used to realize the information exchange and instruction transmission between the upper and lower agents. The upper agent coordinates the cooperative operation of all agents according to the real-time information of the lower agents. Based on the research of tree-like multi-agent architecture, a source-network coordination reactive power comprehensive control architecture is proposed. The upper-level agent is the upper-level control layer. The total reactive power control command provided mainly considers the relationship between the reactive power output of the photovoltaic power station and the grid-connected point voltage. The lower agent is the lower reactive power optimization layer, that is, the upper reactive power optimization results are issued and executed as known quantities. The control instructions of each photovoltaic reactive power generation unit are given through the optimization algorithm, and the voltage offset at the end of the distribution network is reduced.

$$Q_{ci} = \begin{cases} Q_{max} (V_i - V_{min}) + Q_{max}, & V_i < V_{min} \\ V_{min} - V_d, & V_{min} \leq V_i \leq V_{dmax} \\ 0, & V_{dmax} \leq V_i \leq V_{imax} \\ \frac{Q_{max} (V_i - V_{imax})}{V_{imax} - V_{max}}, & V_{imax} \leq V_i \leq V_{max} \\ -Q_{max}, & V_i > V_{max} \end{cases}$$

3. Source-grid cooperative photovoltaic reactive power double-layer regulation model

3.1. Upper-level regulatory command model

The upper reactive power optimization model is that the active output of photovoltaics remains unchanged, and the reactive output Q_{ci} is calculated according to the voltage V_i of the photovoltaic
\[
\Delta Q_{\text{order}} = \sum_{i=1}^{\pi} Q_{\text{rt}}
\]

Where, \(\Delta Q_{\text{order}}\) is the total photovoltaic reactive power regulation command, \(V_{\text{max}}\) and \(V_{\text{min}}\) are the upper and lower limits of allowable node voltage, and \(V_{d\text{max}}\) and \(V_{d\text{min}}\) are the upper and lower limits of reactive voltage regulation dead zone.

3.2. Lower reactive power optimization layer model

The lower reactive power optimization takes the upper level reactive power optimization result \(\Delta Q_{\text{order}}\) as the known quantity. By optimizing the reactive power output of each group of PVGU and SVG, the voltage distribution inside the photovoltaic power station is more reasonable, and the active power loss inside the photovoltaic power station is reduced as much as possible.

This paper uses PSO algorithm (PSO: Particle swarm optimization) to calculate the control instruction \(\Delta Q_{\text{order}}\) accurately.

If the minimum error value of the total reactive power control command is the target, the objective function is:

\[
\min f_2 = \left| \Delta Q_{\text{order}}(t) - \sum_{i=1}^{n} \Delta Q_i(t) \right|
\]

Where, \(\Delta Q_{\text{order}}(t)\) is the total reactive power regulation command given by the upper level control command layer, \(\Delta Q_i(t)\) is the actual total reactive power regulation quantity, and \(n\) here is the number of photovoltaic reactive power control units. If \(n\) is larger, the optimization precision is higher, then the search space dimension of PSO algorithm is \(n\), and any position in the search space can be expressed as:

\[
x = [m_1, m_2, m_3, ..., m_n]
\]

Where \(m_i\) is the reactive power of photovoltaic reactive power regulation unit at the \(i\)-th time. Any position in the search space corresponds to a possible solution result.

Set the constraint condition of \(\Delta Q_i(t)\) as

\[
\Delta Q_{i\text{min}} \leq \Delta Q_{\text{order}}(t) \leq \Delta Q_{i\text{max}}
\]

Among them, \(\Delta Q_{i\text{min}}\) and \(\Delta Q_{i\text{max}}\) are the lower and upper limit of reactive power regulation of PV reactive power regulation unit.

Assuming that a population with \(j\) particles is searched in an \(n\)-dimensional search space, the starting position of particle \(i\) at the \(t\)-th iteration is

\[
x_i = [x_{i-1}(t), x_{i-2}(t), x_{i-3}(t), ..., x_{i-n}(t)]
\]

The corresponding speed is

\[
v_i = [v_{i-1}(t), v_{i-2}(t), v_{i-3}(t), ..., v_{i-n}(t)]
\]

Among them, all dimensions component meet:

\[
v_{\text{min}} \leq v_{i-d}(t) \leq v_{\text{max}}
\]

In equation (8), \(v_{d\text{f}}(t)\) represents the \(d\)-th dimensional velocity component of the \(i\)th particle at the \(t\)-th iteration.

The specific steps are as follows:

1. The position and velocity of each particle in the population is randomly initialized, where each particle represents the possible initialization reactive power value of each photovoltaic reactive power control unit;

2. According to equation (3), the value \(f\) of the optimization objective function corresponding to each particle will be calculated;

3. The individual optimal position \(Q_{i\text{best}}(t)\) of each particle is updated according to value \(f\);

4. Based on the constraint conditions shown in equation (5), the global optimal position \(Q_{i\text{best}}(t)\) of each particle is updated according to value \(f\);
(5) Judge whether the termination condition is satisfied, that is, whether the iteration has been 100 times. If so, the optimal solution $\Delta Q_i(t)$ of n photovoltaic reactive power regulation units will be output; otherwise, the number of iterations t will be increased once, and return to step (2) for execution;

According to the above steps, the control instructions of each PV reactive power control unit at each time point are determined to realize the real-time reactive power compensation of distribution network.

4. Simulation verification

Based on the research of the above-mentioned source network coordination photovoltaic reactive power regulation technology, the above method is simulated and verified on the basis of IEEE33 node distribution network model. As shown in Fig. 3, on the basis of IEEE33 node distribution network model, two photovoltaic power generation units are considered to be connected into it.

![Fig. 3 Distribution network model considering photovoltaic power generation unit](image)

According to the double-layer control model of source grid coordination and photovoltaic reactive power, the upper control layer proposes the total reactive power regulation command of photovoltaic power generation unit based on source grid coordination, and the lower control layer proposes reactive power regulation command of each photovoltaic power generation unit based on particle swarm optimization algorithm.

Firstly, in the upper control layer, photovoltaic generation units are connected to nodes 4, 10 and 18 respectively. The voltage offset at the end of the main line of the distribution network is shown in Fig. 4. Considering the source network reactive power coordination, the total reactive power regulation command of the photovoltaic power generation unit is given, which can be divided into three stages: zero adjustment stage, fine adjustment stage and multi adjustment stage, as shown in Table 1.

![Fig. 4 Voltage offset at the end of main line in distribution network](image)

Table 1. Three Scheme comparing

Scheme	Time	Voltage offset/var
zero adjustment phase	0–5.5h	0
fine adjustment stage	5.5h–8.25h	15
multi adjustment stage	8.25h–15h	35
According to the three-stage total reactive power regulation, with the help of particle swarm optimization algorithm, as shown in Fig. 5 and Fig. 6, the reactive power regulation amount of three PV units can be obtained, as shown in Fig. 7.

Fig. 5 Experimental process of particle swarm optimization in fine adjustment stage

Fig. 6 Experimental process of particle swarm optimization in multi adjustment stage

Fig. 7 Reactive power regulation of each photovoltaic power generation unit
After the optimization of the photovoltaic reactive power double-layer control model based on source grid cooperation, the voltage offset at the end of the distribution network is shown in Fig. 8.

![Fig. 8 Voltage offset after optimization](image)

Compared with Fig. 4 and Fig. 8, it can be found that through the double-layer control model, the reactive power regulation ability of photovoltaic power generation unit and the reactive power regulation ability of photovoltaic power generation unit are fully considered, and the voltage offset at the end of distribution network is reduced, which verifies the effectiveness of the method in this paper.

5. Summary

In this paper, an integrated reactive power control technology based on multi-agent technology is proposed. Firstly, on the basis of multi-agent technology, the total reactive power regulation instructions of multiple photovoltaic power generation units are proposed; then, the optimization of photovoltaic reactive power regulation instructions is carried out with the minimum voltage offset of photovoltaic power generation unit as the optimization objective by using particle swarm optimization algorithm, and the optimal values of PVGU and SVG are given respectively; finally, the effectiveness of the proposed method is verified by comparing the voltage offset of the PV generation unit before and after optimization. The later research can be applied to the actual distribution network model on the basis of this method to verify the feasibility of the method.

Acknowledgments

The work described in this paper was fully supported by a project (No. SGMD0000YXJS1900502).

The project name: Research and demonstration of key technologies for improving the power supply quality and loss reduction of poverty alleviation photovoltaic stations based on adaptive control.

References

[1] Chen Wei, Xu Jie, He Caiguang, Jia Xinning, Hu Dun, Hao Lijun. Reactive power coordinated control strategy of distribution transformer zone with distributed photovoltaic[J]. Zhejiang Electric Power, 2020, 39(07): 42-47.

[2] Wang Xian, Liu Wenying, Xia Peng, Nie Yanan, Wang Weizhou. Reactive power optimization control method of photovoltaic power station participating in active voltage regulation of power grid[J]. Electric Power Automation Equipment, 2020, 40(07): 76-83.

[3] Ding Ming, Wang Weisheng, Wang Xiuli, et al. Overview of the impact of large-scale photovoltaic power generation on power systems[J]. Proceedings of the Chinese Society of Electrical Engineering, 2014, 34(1): 1-14.

[4] Shi Bolong, Ding Leiming, Yang Xiaolei, Huang Jinbo, Liu Haiqiong, Bao Wei. Research on reactive power and voltage control of active distribution network with distributed photovoltaic[J]. Zhejiang Electric Power, 2020, 39(05): 82-87.

[5] Mao Yanwei, Zhang Jianguang, Shen Jian, Chen Jiaming, Zhang Xing, Du Shiping. Research on Dynamic Reactive Power Optimization of Distribution Network Considering Distributed
Photovoltaic and Energy Storage[J]. Electrical Engineering Technology, 2020(10): 56-59.

[6] Lu Haiqiang, Wu Xiuying, Zhou Wu, Huang Shuaifei. Reactive power optimization of distribution network considering photovoltaic reactive power division pricing[J]. Guangdong Electric Power, 2020, 33(01): 61-68.

[7] Chang C H, Lin Y H, Chen Y M, et al. Simplified Reactive Power Control for Single-Phase Grid-Connected Photovoltaic Inverters[J]. IEEE Transactions on Industrial Electronics, 2013, 61(5): 2286-2296.

[8] Hassaine L, Olias E, Quintero J, et al. Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter[J]. Renewable Energy, 2009, 34(1): 315-321.

[9] Yu Zhipeng, Tang Yi, Dai Jianfeng, Yi Jun. Reactive power and voltage control strategy of photovoltaic power station based on adaptive adjustment of active power[J]. Power System Technology, 2020, 44(05): 1900-1907.

[10] Duan Xiangmei. Research on Optimal Regulation Method of Distribution Network Voltage with High Proportion of Photovoltaic Access[D]. Southeast University, 2019.

[11] Wu Xiaofei, Dai Hui, Huang Xiaojian, Yang Meng, Liu Haoming. Reactive power and voltage coordinated control strategy for distribution network to tap photovoltaic powerlessness[J]. Electric Power Construction, 2019, 40(05): 78-89.

[12] Nie Yanan, Liu Wenyong, Wang Xian, et al. Reactive power optimization control strategy based on the solution of active output DE of photovoltaic power station[J]. Renewable Energy, 2019(10).

[13] Ren Xinwei, Xu Jianzheng, Zhao Bin. Reactive power optimization of distribution network with photovoltaic power stations[J]. Power Capacitors and Reactive Power Compensation, 2014, 35(01): 12-15/24.

[14] Zhu Huimin, Yuan Shun, Li Chunlai. Reactive power and voltage control strategy of photovoltaic power station based on variable droop coefficient[J]. Renewable Energy, 2020, 38(08): 1103-1108.

[15] Sun Zhuoxin, Zhu Yongqiang, Ni Yifeng, Ye Qing, Liu Ying. Reactive power optimization of distribution network with photovoltaic power station based on particle swarm optimization[J]. Electric Power Construction, 2014, 35(04): 25-30.

[16] Xu Yun, Yan Xiangwu. Review of research on reactive power voltage optimization control of distribution network with renewable distributed power sources participating in regulation[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(04): 16-30.

[17] Liu X, Cramer A M, Liao Y. Reactive power control methods for photovoltaic inverters to mitigate short-term voltage magnitude fluctuations[J]. Electric Power Systems Research, 2015, 127(Oct.): 213-220.

[18] Li Nanfang. Research on microgrid control algorithm based on multi-agent technology[D]. North China Electric Power University, 2011.

[19] Wang Long, Lu Kaihong, Guan Yongqiang. Multi-agent method of distributed optimization[J]. Control Theory and Applications, 2019, 36(11): 1820-1833.

[20] Pachanapan P, Premrudeepreechacharn S. Dynamic Performance of Reactive Power Control for Voltage Support in Low-Voltage Distribution Networks with Photovoltaic Systems[J]. Applied Mechanics & Materials, 2015, 781: 388-392.