CSF biomarkers for Alzheimer’s pathology and the effect size of APOE ε4

Molecular Psychiatry (2014) 19, 148–149; doi:10.1038/mp.2013.18; published online 19 February 2013

New research and clinical criteria for Alzheimer’s disease (AD) have recently been proposed, which include biomarker information on Alzheimer’s plaque and tangle pathology, or AD-typical structural brain changes, as supporting or essential elements of an AD diagnosis.1–3 In a large group of patients with both genetic and cerebrospinal fluid (CSF) biomarker data, we here show that biomarker-assisted diagnosis-making almost doubles the effect size of the association between the ε4 variant of the apolipoprotein E (APOE) gene and AD.

We included clinically diagnosed patients with either AD dementia (n = 309) or mild cognitive impairment (MCI) due to AD (n = 287), cognitively normal controls (n = 251) and patients with MCI who remained stable over at least 2 years (n = 399) or developed dementia other than AD (n = 99) (Table 1, Supplementary Material). All had APOE ε2/ε3/ε4 genotypes and results on the CSF biomarkers total tau (T-tau), phosphorylated tau (P-tau) and the 42-amino-acid isoform of amyloid-β (Aβ42) determined. These CSF biomarkers reflect the core elements of Alzheimer’s pathology4 and are strongly associated with AD in cross-sectional as well as longitudinal follow-up studies (Supplementary Material).5,6

AD dementia and MCI-AD patients were first pooled into one clinical AD group (n = 596) and compared with all remaining categories that were designated non-AD (n = 749). A positive APOE ε4 carrier status (one or two ε4 alleles) was overrepresented in the AD group and yielded an odds ratio (OR) of 4.45 (95% confidence interval (CI) 3.68–5.26) for a clinical diagnosis of AD at inclusion or follow-up (Figure 1). This OR is similar to the AlzGene meta-analysis of APOE (3.68, 95% CI 3.30–4.11, www.alzgene.org/meta.asp?geneID=83, November 2012 freeze). Similarly, we tested the association of APOE ε4 with AD, comparing the 596 AD patients with the 251 cognitively normal controls, which resulted in an OR of 6.35 (95% CI 4.59–8.80). Disregarding the clinical diagnoses and subgrouping all subjects into amyloid-positive, defined as CSF Aβ42 <546 ng l−1 (n = 779) and amyloid-negative, defined as CSF Aβ42 ≥546 ng l−1 (n = 563) (see Supplementary Material for details on cut-point determination), gave an OR for APOE ε4 as high as

Figure 1. Odds ratios for a positive APOE ε4 carrier status based on (A) clinical diagnosis, comparing patients with clinical AD with dementia at inclusion or follow-up (n = 596) versus all other diagnostic groups (n = 749), (B) clinical diagnosis, comparing patients with clinical AD with dementia at inclusion or follow-up (n = 596) with cognitively normal subjects (n = 251), (C) CSF Aβ42, comparing subjects with CSF Aβ42 below (n = 779) and above (n = 563) 546 ng/l, (D) CSF T-tau, comparing subjects with CSF T-tau above (n = 676) and below (n = 662) 446 ng/l, (E) CSF P-tau, comparing subjects with CSF P-tau above (n = 497) and below (n = 759) 79 ng/l, (F) CSF P-tau/Aβ42 ratio, comparing subjects with CSF P-tau/Aβ42 above and below 0.15, (G) CSF biomarker signatures, comparing subjects with an AD-indicative CSF signature with regards to all three biomarkers T-tau, P-tau and Aβ42, and subjects with a normal complete profile (cut-points specified above) and (H) CSF biomarker signatures in addition to clinical diagnosis, comparing patients with clinical AD and an AD-indicative CSF biomarker signature versus cognitively normal subjects with normal CSF biomarker results (cut-points specified above). Note that columns C-G are derived without any clinical information.
6.27 (95% CI 4.93–7.98). Dichotomizing the material according to CSF T-tau or P-tau did not change the ORs as compared with clinical diagnosis only (Figure 1). Even though the OR for the ratio P-tau/A42 (6.50 (95% CI 5.07–8.35)) was slightly higher than for A42 alone, the difference was not statistically significant.

We also compared patients, again disregarding the clinical diagnoses, who had a complete CSF biomarker signature indicative of AD, that is, low A42 and both high T-tau and P-tau (n = 438, see Supplementary Material for a detailed description of the signature), with subjects with a negative CSF APOE e4, which showed a stronger association with AD. Second, clinical criteria that incorporate biomarker information may improve the diagnostic performance of AD. These results have several important implications. First, the biomarker diagnosis shows a stronger association with AD (OR 10.4, 95% CI 6.27–16.3). Similar effects were seen when comparing non-carriers with e4 heterozygotes and homozygotes across the different diagnostic groups (Figure 1, Supplementary Material).

These results have several important implications. First, the biomarker diagnosis shows a stronger association with AD (OR 10.4, 95% CI 6.27–16.3). Similar effects were seen when comparing non-carriers with e4 heterozygotes and homozygotes across the different diagnostic groups (Figure 1, Supplementary Material).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This study was funded by grants from Swedish Brain Power, the Swedish Research Council (projects 14002, 2006-6227, KP2010-63P-21562-01-4, and K2011-61X-20401-05-6), the Wolfson Foundation, the Alzheimer’s Association (NIRG-08-90356), the JPND Project BIOMARKAPD, Swedish State Support for Clinical Research (ALFGBG-144341), the Swedish Brain Fund, the Alzheimer Foundation, Sweden, the Dementia Association, Sweden, the National Institute for Health Research (NIHR) Biomedical Research Unit in Dementia at University College London Hospitals (UCLH), University College London (UCL). The Dementia Research Centre is an Alzheimer’s Research Unit in Dementia based at University College London Hospitals (UCLH), and supported by the Katharina-Hardt Foundation, Bad Homburg, Germany. AW thanks the Gothenburg MCI Study team and was supported by the Swedish Research Council (project K2010-61X-14981-07-3).

DISCLAIMER

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

U Andreasson1, R Lautner1, JM Schott2, N Mattsson1, O Hansson3, S-K Herukka3, S Heiltsul3, M Ewers3, H Hampel6, A Wallin1, L Minthorn2, J Hardy2, K Blennow1 and H Zetterberg1,2

1Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at University of Gothenburg, Malmö, Sweden;

2UCL Institute of Neurology, London, UK;

3Clinical Memory Research Unit, Clinical Sciences Malmö, Lund University, Lund, Sweden;

4Department of Neurology and Brain Research Unit, Clinical Research Centre/Mediteknio, University of Eastern Finland, Kuopio, Finland;

5Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University, Munich, Germany and

6Department of Psychiatry, Goethe University, Frankfurt, Germany

E-mail: ulf.andreasson@neuro.gu.se or henrik.zetterberg@gu.se

REFERENCES

1 Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al. Alzheimers Dement 2011; 7: 270–279.

2 Dubois B, Feldman HH, Jacova C, Dekosky ST, Barbergateau P, Cummings J et al. Lancet Neurol 2007; 6: 734–746.

3 McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH et al. Alzheimers Dement 2011; 7: 263–269.

4 Seppälä TT, Nerg O, Koivisto AM, Rummukainen J, Pili L, Zetterberg H et al. Neurology 2012; 78: 1568–1575.

5 Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Lancet Neurol 2006; 5: 228–234.

6 Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M et al. JAMA 2009; 302: 385–393.

7 Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A et al. Hum Mol Genet 2010; 19: 3295–3301.

OPEN

Long-term inflammation increases risk of common mental disorder: a cohort study

Molecular Psychiatry (2014) 19, 149–150; doi:10.1038/mp.2013.35; published online 9 April 2013

The inflammation hypothesis of depression, or more broadly, common mental disorders, proposes that chronic inflammation plays an important role in the pathophysiology of these conditions.1,2 The hypothesis is supported by experiments of inflammatory stimuli, antidepressant trials and studies on depression-related genes and pathogen host defense,3,4 but direct population-based evidence from long-term inflammation is scarce. Because of a lack of studies on the effects of chronically elevated inflammation, assessed over several years using repeat measurements, it has remained unclear whether the association between inflammation and common mental disorder is the consequence of acute or chronic inflammation.

This report is from the Whitehall II cohort study.5 In our analysis of up to 4630 adults without chronic disease, we used repeat measures of inflammatory markers and mental disorder. We measured the proinflammatory cytokine interleukin 6 (IL-6) in 1992, 1997 and 2003 and common mental disorder, based on the General Health Questionnaire (GHQ), in 1997, 2003 and 2008. The IL-6 distribution was categorized as: ≤1.0 pg ml−1 (low), 1.1–2.0 pg ml−1 (intermediate) and >2.0 pg ml−1 (high). Details