Existence and stability of a positive solution for nonlinear hybrid fractional differential equations with singularity

Wadhah Al-Sadi a,b, Huang Zhenyou a and Abdulwasea Alkhazzan a

aCollege of Science, Mathematics, Nanjing University of Science and Technology, Nanjing, People’s Republic of China; bCollege of Science, Mathematics, Hohai University, Nanjing, People’s Republic of China

ABSTRACT
In this paper, we will study solution existence and its stability for hybrid fractional DE with fractional integral, fractional differential derivative and Φ-operator in Caputo sense. Our problem deals with two basic types of fractional order derivatives, that is, Riemann-Liouville derivative of order δ and Caputo fractional derivative of order λ, where $n-1<\lambda,\sigma\leq n$, and $n\geq 3$. We will transform the problem into an integral equation by using Green function and examine whether it is increasing or decreasing and positive or negative function. Some fixed point theorems (Krasnoselski Theorem) are utilized for the existence of a positive solution (EPS). Addition to studying HU-stability technique for our suggested problem. An example is included to apply the results.

1. Introduction

Fractional calculus is a wonderful tool of mathematics, a more generic for the applied mathematics and have caught consideration of researchers in several branches of science and engineering in the previous two decades and applying this wonderful tool in the various fields. The fractional calculus has opened its wings to absorb the dynamics of the complex real world and new thoughts have begun to be implemented and tested on real data. Where it focused on the role of fractional DE in modelling the problems like set theory, in processing image, control theory, biochemistry, computer networking, medicine (the modelling of human tissue), in mechanics (theory of viscoelasticity), in electrical engineering (transmission of ultrasound waves) and many others. For detail, see related literature to the topics [1–12]. We are interested to study the hybrid fractional (DE) with non-integer order, because most of the Mathematical models in applied fields in the time include the fractional order integrals and fractional order derivatives. For further information, we recommend reading these papers [13–15]. Therefore, a great number of scientists studied various side of the arbitrary order hybrid fractional (DE). In this literature, we present some contribution of researchers for investigating of existence and stability the solution (EUS) for hybrid fractional differential equations the different (HFDE). Ahmad B and Ntouyas SK [16] studied the (ES) for a nonlinear hybrid fractional differential of a boundary value problem by using a fixed point, given by

$$D^\lambda\left(\frac{z(t)}{f(t,z(t))}\right) \in F(t,z(t)), \quad 1< t < e, 1< \lambda \leq 2,$$

$$z(1) = z(e) = 0, \quad (1.1)$$

where D^λ is the Hadamard fractional derivative, $f \in C([1,e] \times \mathbb{R}, \mathbb{R}\setminus\{0\})$. Further examples we refer the readers to see these papers [17–22]. Herzallah and Baleanu [23] considered the EUS for the following first type and second type hybrid FDEs

$$D^\delta\left(\frac{z(t)}{f(t,z(t))}\right) = g(t), \quad z(0) = z_0 \in \mathbb{R},$$

$$D^\lambda(z(t) - f(t)) = g(t), \quad z(0) = z_0 \in \mathbb{R}, \quad (1.2)$$

where $t \in [0,T], D^\alpha$ is Caputo fractional derivative of order $0<\lambda<1$. Further examples, we indicate readers to see these papers [24–28].

Bashir Ahmad et al. [29] studied the existence of solutions for a system of coupled hybrid fractional differential equations with Dirichlet boundary conditions

$$D^\lambda\left(\frac{z(t)}{f_1(t,z(t),w(t))}\right) = g_1(t,z(t),w(t)), \quad 0< t < 1, 1< \lambda \leq 2,$$

$$D^\sigma\left(\frac{z(t)}{f_2(t,z(t),w(t))}\right) = g_2(t,z(t),w(t)), \quad 0< t < 1, 1< \sigma \leq 2,$$

$$z(0) = z(1), \quad w(0) = w(1), \quad (1.3)$$
where D^{λ}, D^{σ} are Caputo fractional derivatives of order λ, σ, $f_i \in C([0,1] \times R \times R, R)$ and $g_i \in C([0,1] \times R \times R, R), i = 1, 2$. Further examples, we indicate readers to see these papers [30–32].

Bashiri et al. [33] investigated the existence of solutions for the system of fractional hybrid differential equations given by

\[
D^{\lambda}(\mu(t) - z(t, \mu(t))) = x(t, v(t)), \quad t \in \mathbb{R},
\]

\[
D^{\sigma}(v(t) - z(t, v(t))) = x(t, \mu(t)), \quad t \in \mathbb{R},
\]

where D^{λ} is Riemann-Liouville fractional derivative $j = [0, 1]$, the function $y : j \times R \rightarrow R \setminus \{0\}, z : j \times R \rightarrow R$, $z(0) = 0$, and $x : j \times R \rightarrow R$. The main goal form of this paper investigates the (EUS), addition to studying Hyers-Ulam stability theorem for the following (SHFDE):

\[
D^{\lambda}(\phi_p D^{\lambda} (u(t) - Q^{\lambda}_j (u(t)))) + K(t) Q^{\lambda}_j (u(t)) = 0,
\]

\[
(\phi_p D^{\lambda} (u(t) - Q^{\lambda}_j (u(t))))^{(i)} \big|_{t=0} = 0, \quad i = 0, 1, 2, 3, \ldots, n - 1,
\]

\[
i^{\lambda-1} (u(t) - Q^{\lambda}_j (u(t))) \big|_{t=0} = 0, \quad k = 2, 3, \ldots, n,
\]

\[
D^{\lambda-1} (u(t) - Q^{\lambda}_j (u(t))) \big|_{t=1} = 0,
\]

where D^{λ} is the Caputo derivative and D^{σ} is Riemann-Liouville derivative $n - 1 < \lambda, \sigma \leq n, n \in \{3, 4, 5, \ldots\}$, and $1 < \beta \leq 2$. The ϕ_p denotes p-Laplacian, $\phi_p(\theta) = \theta |\theta|^{p-2}, \phi_p(0) = 0, \phi_q = \phi_p^{-1}$, such that $1/p + 1/q = 1$. The $Q^{\lambda}_j, Q^{\sigma}_j, K$ are continuous and increasing for, $t \in (0, 1)$, while singular at some points in $[0, 1]$, Q^{λ}_j satisfies that $t^{\lambda-1} ||Q^{\lambda}_{j\tau}|| \leq Q^{\lambda}_{j\omega}, \forall t \in (0, 1)$. Our supposed problem will more complicated and general than the problems studied before and mentioned above.

Our paper consists of 6 parts. In the first part, we offer an introduction, which includes the paper reviews of hybrid fractional DE for the (EPS). In the second part, we narrative several important definitions, theorems and lemmas, which we will be in need of them to prove a solution to our problem. In the third part, we test the increasing or decreasing on period $(0,1)$ for the Green function. In the fourth part, we use fixed point theorems (Krasnoselskii theorem) to prove the existence of a positive solution for our proposed problem (3.1). In the fifth part, we use Hyers-Ulam technique to prove stability to our proposed problem (3.1). In the sixth part, we present an example to emphasize our results. In the seventh part the conclusion.

\section{Axillary results}

\textbf{Definition 2.1:} [7] For $Q(\xi) : (0, +\infty) \rightarrow \mathbb{R}$, fractional derivative for Riemann-Liouville of order $\delta > 0$, is defined by

\[
D^\delta Q(\xi) = \frac{1}{\Gamma(n - \delta)} \frac{d^n}{d\gamma^n} \int_0^\xi (\xi - \gamma)^{n-\delta-1} Q(\gamma) d\gamma,
\]

where $n - 1 < \delta < n$, in which the integral on the right side is pointwise defined on $(0, +\infty), Q(\xi)$ continuous function.

\textbf{Definition 2.2:} [7] For $Q(\xi) : (0, +\infty) \rightarrow \mathbb{R}$, Fractional integral for Riemann–Liouville of order $\delta > 0$, is defined by

\[
\int^\xi \frac{d^n}{d\gamma^n} (\xi - \gamma)^{n-\delta-1} Q(\gamma) d\gamma,
\]

where $\delta > 0$, in which the integral on the right side is pointwise defined on $(0, +\infty)$ and, where $\Gamma(\delta)$ denoted to Gamma function of δ and $Q(\xi)$ continuous function, given by

\[
\Gamma(\delta) = \int_{0}^{\infty} e^{-\gamma} \gamma^{\delta-1} d\gamma.
\]

\textbf{Definition 2.3:} [2,4] Caputo fractional derivative of order $\lambda > 0$, of a continuous function $Q(\xi) : (0, +\infty) \rightarrow \mathbb{R}$, is given by

\[
D^\lambda Q(\xi) = \frac{1}{\Gamma(n - \lambda)} \frac{d^n}{d\xi^n} \int_0^\xi (\xi - \gamma)^{n-\lambda-1} Q^{(n)}(\gamma) d\gamma,
\]

where $-1 < \lambda < n$, in which the integral on the right side is pointwise defined on $(0, +\infty)$.

\textbf{Lemma 2.1:} [2,4] For a fractional order $\delta \in (n - 1, n], Q \in C^{n-1}$, and D^{λ} is Caputo fractional derivative, and then

\[
\int_0^\xi D^\lambda Q(\xi) = Q(\xi) + b_1 + b_2 \xi + b_3 \xi^2 + \cdots + b_n \xi^{n-1},
\]

for the $b_i \in \mathbb{R}$ for $i = 1, 2, 3, \ldots, n$.

\textbf{Lemma 2.2:} [2,4] Consider $\delta \in (n - 1, n], Q \in C^{n-1}$, and D^{σ} is fractional derivative for Riemann-Liouville, and then

\[
\int_0^\xi D^\sigma Q(\xi) = Q(\xi) + c_1 \xi^{\delta-1} + c_2 \xi^{\delta-2} + c_3 \xi^{\delta-3} + \cdots + c_n \xi^{\delta-n},
\]

for the $c_i \in \mathbb{R}$ for $i = 1, 2, 3, \ldots, n$.

\textbf{Lemma 2.3:} [2,4] For $\delta, \lambda > 0$, the following regulations satisfying:

\[
D^\lambda t^\delta = \frac{\Gamma(\delta + 1)}{\Gamma(1 + \delta - \lambda)} t^{\delta-\lambda},
\]

\[
\int_0^\xi D^\lambda t^\delta = \frac{\Gamma(\delta + 1)}{\Gamma(1 + \delta + \lambda)} t^{\delta+\lambda}.
\]

\textbf{Definition 2.4:} [34] An operator $M^*: P \cap (W_2 \setminus W_1) \rightarrow P$ is called (\mathcal{N}_1) uniformly bounded, if there exists a constant S, such that $|M^*(t)| \leq S$ for all $t \in P \cap (W_2 \setminus W_1); (\mathcal{N}_2)$ equicontinuous, if for every $\varepsilon > 0,$
there exists $\eta(\epsilon) > 0$, such that $|M^*(t_1) - M^*(t_2)| < \epsilon$ for all $t_1, t_2 \in P \cap (\mathcal{W}_2 \setminus \mathcal{W}_1)$ with $|t_1 - t_2| < \eta$.

Definition 2.5: [35] Consider (Ω, \cdot) be a Banach space. A nonempty, cambered, closed set $P \subset \Omega$ is called a cone only if it satisfies the following: (\mathbb{T}_1) if $\psi \in P$ and $\psi \geq 0$, then $\mu \psi \in P$; (\mathbb{T}_2) if $\psi \in P$ and $\psi \geq 0$, then $\psi = 0$.

Assume that W_1, W_2 are two bounded subsets of Ω, such that $0 \in W_1, W_1 \subset W_2$, and $M^* : P \cap (\mathcal{W}_2 \setminus \mathcal{W}_1) \rightarrow P$ is an operator.

Theorem 2.1: (Krasnoselskii Theorem) [36] If $M^* : P \cap (\mathcal{W}_2 \setminus \mathcal{W}_1) \rightarrow P$ is a completely continuous operator such that (\mathbb{U}_1) $|M^*(u)|| \leq ||u||$ if $u \in P \cap \partial W_1$ and $|M^*(u)|| \geq ||u||$ if $u \in P \cap \partial W_2$; or (\mathbb{U}_2) $|M^*(u)|| \geq ||u||$ if $u \in P \cap \partial W_1$ and $|M^*(u)|| \leq ||u||$ if $u \in P \cap \partial W_2$ is satisfying, and then M^* has a fixed point $p \in P \cap (\mathcal{W}_2 \setminus \mathcal{W}_1)$.

Theorem 2.2: [Arzelà–Ascoli’s Theorem] [37] Let $M^* : P \cap (\mathcal{W}_2 \setminus \mathcal{W}_1) \rightarrow P$; we say M^* is compact operator iff it is uniformly bounded and equicontinuous.

Lemma 2.4: [38] Let $\phi_p : R \rightarrow R$ be a nonliner p-Laplacian operator, $\phi_p(\rho) = |\rho|^{p-2} \rho, \rho \in R$. Then $\frac{d}{d\rho} \phi_p(\rho) = (p-1) |\rho|^{p-2}$. The basic properties of ϕ_p operator are the following:

(σ_1) If $0 < p \leq 2, \theta_1, \theta_2 > 0$ and $|\theta_1|, |\theta_2| \geq \rho > 0$, then $|\phi_p(\theta_1) - \phi_p(\theta_2)| \leq (p-1) \rho^{p-2} |\theta_1 - \theta_2|.$ \hspace{1cm} (2.9)

(σ_2) If $p > 2$ and $|\theta_1|, |\theta_2| \leq \rho^*, \rho > 0$, then $|\phi_p(\theta_1) - \phi_p(\theta_2)| \leq (p-1) \rho^{p-2} |\theta_1 - \theta_2|.$ \hspace{1cm} (2.10)

3. Main results

Theorem 3.1: Presume an integrable function $Q^*_t, K \in C[0,1]$ satisfying (3.1). Then, for $\lambda, \delta \in (3,n)$, and positive integer $n \geq 4$, the positive solution of the following (SHFDE) with nonlinear p-Laplacian operator

\[
^cD^\delta[\phi_p D^\delta(u(t) - Q^*_t(u(t)))] + K(t)Q^*_t(u(t)) = 0,
\]

\[
(\phi_p D^\delta(u(t) - Q^*_t(u(t))))|_{t=0} = 0,
\]

where \(i = 0, 1, 2, 3, \ldots, n - 1, \)

\(\phi_p D^\delta(u(t) - Q^*_t(u(t)))|_{t=0} = 0, \quad k = 2, 3, \ldots, n, \)

\(D^\delta[\phi_p D^\delta(u(t) - Q^*_t(u(t)))]|_{t=1} = 0, \quad (3.1)\)

is

\[
u(t) = Q^*_t(u(t)) + \int_0^1 G^\delta(s, t)\phi_q(\frac{1}{\Gamma(\lambda)}) ds,
\]

\[
\times \int_0^s (s - \tau)^{\lambda - 1}[K(t)Q^*_t(u(t))] d\tau dt, \quad (3.2)
\]

where $G^\delta(t, s)$ is a Green’s function given by

\[
G^\delta(t, s) = \begin{cases} \frac{-(t-s)^{\delta-1}}{\Gamma(\delta)}, & s \leq t \leq 1, \\ \frac{t^{\delta-1}(s-1)^{\delta-\beta}}{\Gamma(\delta)}, & t \leq s \leq 1, \end{cases}
\]

(3.3)

Proof: By using Lemma (2.1) and applying integral operator I^δ on (3.1), we get an alternate form of problem (3.1) as below

\[
\phi_p [D^\delta(u(t) - Q^*_t(u(t)))] = -I^\delta [K(t)Q^*_t(u(t))]
\]

\[
\times + b_1 t + b_2 t^2 + b_3 t^3 + \cdots + c_n t^{n-1}. \quad (3.4)
\]

For the values $i = 0, 1, 2, \ldots, n - 1$, by the conditions $(\phi_p D^\delta(u(t) - Q^*_t(u(t))))|_{t=0} = 0$, the coefficients $b_1 = b_2 = b_3 = b_4 = \cdots = b_n = 0$. Substituting the values b_i for $i = 1, 2, 3, \ldots, n$, and (3.4), we get

\[
\phi_p [D^\delta(u(t) - Q^*_t(u(t)))] = -I^\delta [K(t)Q^*_t(u(t))]. \quad (3.5)
\]

Applying $\phi_p^{-1} = \phi_q$ on both sides of (3.5), we get

\[
D^\delta(u(t) - Q^*_t(u(t))) = -I^\delta [K(t)Q^*_t(u(t))]. \quad (3.6)
\]

By using Lemma 2.2 and applying integral operator I^δ on both sides of (3.6), we get

\[
(u(t) - Q^*_t(u(t))) = -I^\delta [K(t)Q^*_t(u(t))] + c_1 t^{\delta-1} + c_2 t^{\delta-2} + c_3 t^{\delta-3} + \cdots + c_n t^{n-\delta}. \quad (3.7)
\]

Using the conditions $\phi_p D^\delta(u(t) - Q^*_t(u(t)))|_{t=0} = 0$, for $k = 2, 3, \ldots, n$ in (3.7), we obtain $c_2 = c_3 = c_4 = \cdots = c_n = 0$, and then we get

\[
(u(t) - Q^*_t(u(t))) = -I^\delta [K(t)Q^*_t(u(t))], \quad (3.8)
\]

Using condition $D^\delta[u(t) - Q^*_t(u(t))]|_{t=1} = 0$, in (3.8), we get

\[
\frac{c_1}{\Gamma(\delta - \beta + 1)} + (\phi_q I^\delta [K(t)Q^*_t(u(t))]|_{t=1}. \quad (3.9)
\]

Using the value of c_1 in (3.8), we get

\[
u(t) = Q^*_t(u(t)) + \frac{b_1 t}{\Gamma(\delta - \beta + 1)} (\phi_q I^\delta [K(t)Q^*_t(u(t))]|_{t=1})
\]

\[
\times - b_1 t - b_2 t^2 - b_3 t^3 - \cdots - b_n t^{n-1} \quad \text{in (3.8), we get}
\]

\[
u(t) = Q^*_t(u(t)) + \frac{b_1 t}{\Gamma(\delta - \beta + 1)} (\phi_q I^\delta [K(t)Q^*_t(u(t))]|_{t=1})
\]

\[
\times - b_1 t - b_2 t^2 - b_3 t^3 - \cdots - b_n t^{n-1} \quad \text{in (3.8), we get}
\]
This implies
\[G(t, t) = \frac{1}{\Gamma(\delta)} \int_0^t (t - s)^{\delta - 1} \phi_q(s) \frac{1}{\Gamma(\lambda)} ds \]
where \(G(t, s) \) is a Green function such that defined by (3.3).

Lemma 3.1: The Green function \(G(t, s) \) defined by (3.3), satisfies the properties:

1. \(G(t, s) < 0 \) for all \(0 < s, t < 1 \);
2. \(G(t, s) \) is increasing function and \(\max_{t \in [0,1]} G(t, s) = G(1, s) \);
3. \(G(t, s) \geq t^{\delta - 1} \max_{t \in [0,1]} G(t, s) \) for \(0 < s, t < 1 \).

Proof: For the prove of (A1), we consider:

Case 1: When \(s \leq t \), we have
\[
G(t, s) = \frac{-(t - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{t^{\delta - 1}(1 - s)^{\delta - \beta}}{\Gamma(\delta)}
\]
\[
= \left[\frac{-t^{\delta - 1}(1 - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{t^{\delta - 1}(1 - s)^{\delta - \beta}}{\Gamma(\delta)} \right]
\[
\geq \frac{-t^{\delta - 1}(1 - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{t^{\delta - 1}(1 - s)^{\delta - \beta}}{\Gamma(\delta)}
\]
\[
= t^{\delta - 1} \left[\frac{(1 - s)^{\delta - 1} - (1 - s)^{\delta - \beta}}{\Gamma(\delta)} \right] = 0
\]
This implies
\[G(t, s) \geq 0, \text{ for } s \leq t < 1. \]
(3.11)

Case 2: If \(t \leq s < 1 \), then \(t^{\delta - 1} - (1 - s)^{\delta - \beta} \geq 0 \), therefore
\[
G(t, s) = \frac{t^{\delta - 1}(1 - s)^{\delta - \beta}}{\Gamma(\delta)} \geq 0.
\]
This implies
\[G(t, s) \geq 0, \text{ for } t \leq s < 1. \]
(3.12)

With (3.11), (3.12), it is evaluated that for all
\[G(t, s) > 0, \text{ for } s, t \in (0, 1). \]
(3.13)

Next, for prove (A2), we consider:

Case 1: When \(s \leq t \), we proceed
\[
\frac{\partial G(t, s)}{\partial t} = \frac{-(t - s)^{\beta - 2}}{\Gamma(\delta - 1)} + \frac{t^{\beta - 2}(1 - s)^{\delta - \beta}}{\Gamma(\delta - 1)}
\]
\[
= -t^{\beta - 2} \left(\frac{1 - s)^{\delta - 2}}{\Gamma(\delta - 1)} + \frac{(1 - s)^{\delta - \beta}}{\Gamma(\delta - 1)} \right) \geq 0.
\]
This implies
\[\frac{\partial G(t, s)}{\partial t} > 0, \text{ for } s \leq t < 1. \]
(3.14)

Case 2: For \(t \leq s < 1 \), \(t^{\delta - 2} - (1 - s)^{\delta - \beta} > 0 \), we get
\[
\frac{\partial G(t, s)}{\partial t} = \frac{t^{\beta - 2}(1 - s)^{\delta - \beta}}{\Gamma(\delta - 1)} > 0.
\]
(3.15)

From (3.14) and (3.15), we conclude
\[
\frac{\partial G(t, s)}{\partial t} > 0, \text{ for } s, t \in (1, 0). \]
(3.16)

Consequently, we can see that \(\frac{\partial G(t, s)}{dt} > 0, \text{ for } s, t \in (1, 0) \). This means that \(G(t, s) \) is non-decreasing function versus \(t \). Therefore, we get
\[
\max_{t \in [0,1]} G(t, s) = \frac{(1 - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{(1 - s)^{\delta - \beta}}{\Gamma(\delta)} = G(1, s). \]
(3.17)

For prove (A3), we assume:

Case 1: If \(s \leq t \), then
\[
G(t, s) = \frac{-(t - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{t^{\delta - 1}(1 - s)^{\delta - \beta}}{\Gamma(\delta)}
\]
\[
= -t^{\delta - 1} \left(\frac{1 - s)^{\delta - 1}}{\Gamma(\delta)} + \frac{(1 - s)^{\delta - \beta}}{\Gamma(\delta)} \right)
\]
\[
= t^{\delta - 1} \max_{t \in [0,1]} G(t, s) = t^{\delta - 1} G(1, s).
\]
This implies
\[G(t, s) \geq t^{\delta - 1} \max_{t \in [0,1]} G(t, s) \text{ for } s \leq t < 1. \]
(3.18)
Case 2: For \(t \leq s < 1, t^\frac{1}{\lambda}(1 - s)^{\frac{1}{\lambda} - \beta} > 0 \), then

\[
G^s(t, s) = \frac{t^\frac{1}{\lambda}(1 - s)^{\frac{1}{\lambda} - \beta}}{\Gamma(\delta)} \\
\geq t^\frac{1}{\lambda}(1 - s)^{\frac{1}{\lambda} - \beta} \frac{1}{\Gamma(\delta)} \\
= t^\frac{1}{\lambda}\max_{s \in [0, 1]} G^s(t, s) \\
= t^\frac{1}{\lambda}G^s(1, s).
\]

(3.19)

This means

\[
G^s(t, s) = t^\frac{1}{\lambda}\max_{s \in [0, 1]} G^s(t, s) \\
= t^\frac{1}{\lambda}G^s(1, s), \text{ for } t \leq s < 1.
\]

(3.20)

By (3.18) and (3.20), we conclude

\[
G^s(t, s) = t^\frac{1}{\lambda}\max_{s \in [0, 1]} G^s(t, s) \\
= t^\frac{1}{\lambda}G^s(1, s), \text{ for } s, t \in (0, 1).
\]

(3.21)

4. Existence results

Consider a Banach space \(\Omega = C[0, 1] \) with a norm \(\| u \| = \max_{s \in [0, 1]} \| u(t) \| : u \in \Omega \) and \(P \) be a cone containing positive functions in the space \(\Omega \), where \(P = \{ u \in \Omega : u(t) \geq t^\frac{1}{\lambda} \| u \|, t \in [0, 1] \} \).

Let \(W(r) = \{ u \in P : \| u \| < r, \partial W(r) = \{ u \in P : \| u \| = r \} \). By Theorem (3.1), an alternate form of (3.1) is

\[
u(t) = Q^s_2(t, u(t)) + \int_0^1 G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds.
\]

Define \(M^* : P \setminus [0] \rightarrow \Omega \) by

\[
M^* u(t) = Q^s_2(t, u(t)) + \int_0^1 G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds
\]

(4.2)

Now, we will transform Equation (4.2) to fixed point function \(u(t) \) of the operator \(M^* \) defined as

\[
u(t) = M^* u(t).
\]

(4.3)

We need to presumptions the following conditions to complete our results.

- \((\mathcal{H}_1)\) \(Q^s_1 : ((0, 1) \times (0, +\infty)) \rightarrow [0, +\infty) \) is continuous.
- \((\mathcal{H}_2)\) \(K : (0, 1) \rightarrow [0, +\infty) \) is non-vanishing and continuous on \((0, 1)\) with

\[
K = \max_{t \in [0, 1]} |K(t)| < +\infty
\]

- \((\mathcal{H}_3)\) For \(a_1, a_2, U^1_1, U^2_1 \) non-negative constants and \(h_1 \in [0, 1] \), non-decreasing function such that \(Q^s_1, Q^s_2 \) are continuous on \((0, 1)\) with

\[
|Q^s_1(t, u(t))| \leq \phi(t)(a_1 u(t)^{h_1} + U^1_1), \\
|Q^s_2(t, u(t))| \leq \phi(t)(a_2 u(t)^{h_2} + U^2_2).
\]

- \((\mathcal{H}_4)\) For a constant value \(\gamma, \gamma > 0 \) and \(z, y \in \Omega \), the functions \(Q^s_1, Q^s_2 \) satisfy

\[
|Q^s_1(t, u(t)) - Q^s_1(t, y(t))| \leq \gamma, \\
|Q^s_2(t, u(t)) - Q^s_2(t, y(t))| \leq \gamma.
\]

Theorem 4.1: Assume that conditions \((\mathcal{H}_1) - (\mathcal{H}_3)\) satisfying. Then \(M^* \) is a completely continuous operator.

Proof: For any \(u \in \overline{W(r_2)} \setminus W(r_1) \), from Lemma 3.1 and Equation (4.2), we have

\[
M^* u(t) = Q^s_2(t, u(t)) + \int_0^s G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds \leq Q^s_2(t, u(t)) + \int_0^s G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds
\]

(4.4)

and

\[
M^* u(t) = Q^s_2(t, u(t)) + \int_0^s G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds \geq Q^s_2(t, u(t)) + t^\frac{1}{\lambda}\int_0^s G^s(t, s)\phi(t) \left(\frac{1}{\Gamma(\lambda)} \right) \\
\times \int_0^s (s - \tau)^{\lambda - 1}[K(\tau)Q^s_1(\tau, u(\tau))]d\tau ds
\]

(4.5)

With help of (4.4) and (4.5), we get

\[
M^* u(t) \geq t^\frac{1}{\lambda} M^* u(t), 0 \leq t \leq 1.
\]

(4.6)

This implies \(M^* : \overline{W(r_2)} \setminus W(r_1) \rightarrow P \) is closed.
Now, in order to show that M^* is continuous, we prove $||M^*(u_n) - M^*(u)|| \to 0$ as $n \to \infty$ as follows:

$$
|M^*(u_n(t)) - M^*(u(t))| = |Q_2^*(t, u_n(t)) - Q_2^*(t, u(t))| \\
\quad + \int_0^1 G^1(t, s) \phi_q \left(\frac{1}{\Gamma(\delta)} \right) ds \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u_n(\tau))] d\tau \\
\quad - \phi_q \left(\frac{1}{\Gamma(\delta)} \right) \int_0^1 (s - \tau)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} |Q_1^*(\tau, u_n(\tau))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau \\
\leq |Q_2^*(t, u_n(t)) - Q_2^*(t, u(t))| + \int_0^1 G^1(t, s) \phi_q \left(\frac{1}{\Gamma(\delta)} \right) ds \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u_n(\tau))] d\tau \\
\quad - \phi_q \left(\frac{1}{\Gamma(\delta)} \right) \int_0^1 (s - \tau)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u_n(\tau))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau
$$

(4.7)

With the help of (4.7), and continuity of Q_1^*, Q_2^* we have $|M^*(u_n) - M^*(u)| \to 0$ as $n \to \infty$. This proves that M^* is continuous, for prove the uniformly boundedness of M^*, by Equation (4.2) and presumption (\mathcal{H}_1) we get

$$
|M^*(u(t_1)) - M^*(u(t_2))| = |Q_2^*(t_1, u(t_1)) - Q_2^*(t_2, u(t_2))| \\
\quad + \int_0^1 G^1(t_1, s) \phi_q \left(\frac{1}{\Gamma(\delta)} \right) ds \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(t_1))] d\tau \\
\quad - \phi_q \left(\frac{1}{\Gamma(\delta)} \right) \int_0^1 (s - \tau)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(t_1))] d\tau \\
\quad \times \left(s - t \right)^{\delta - 1} [K(\tau)] |Q_1^*(\tau, u(\tau))] d\tau
$$

(4.9)

From (4.9), when $t_1 \to t_2$, we have that (4.9) approaches to zero. So M^* is equicontinuous by the Theorem 2.2, $M^*(P \cap \overline{W(t_2)} \cap W(r_1))$ is compact in $P \cap \overline{W(t_2)} \cap W(r_1))$. Consequently, $M^*: \overline{W(t_2)} \cap W(r_1) \to P$ is completely continuous.

To complete the proof of our results of hybrid function $Q^*(t, x(t))$ for $x > 0$, we need to define the
Theorem 4.2: Assume that supposition (\(\mathcal{H}_1\)) to (\(\mathcal{H}_3\)) hold and there exist \(h, r \in \mathbb{R}^+\), such that

\[
(B_1) \quad h \leq ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\min}(\tau, h)] d\tau ds
\]

\[< +\infty \quad \text{and} \]

\[
||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, r)] d\tau ds < r \quad \text{or;}
\]

\[
(B_2) \quad ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, h)] d\tau ds < h \quad \text{and}
\]

\[r \leq ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, r)] d\tau ds < +\infty.
\]

is satisfied. Then the hybrid fractional DE of the problem (3.1) has a positive solution \(u^* \in P \) and \(h \leq ||u|| \leq r\).

Proof: Without loss of generality, consider the case \((B_1)\). If \(x \in \partial W(h)\), then we have \(||u|| = h\) and \(t^{\lambda - 1} h \leq u(t) \leq h, t \in [0, 1]\). With the help of Equation (4.10), we get

\[
\frac{\partial}{\partial t} ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\min}(\tau, h)] d\tau ds
\]

\[\geq t^{\lambda - 1} \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, h)] d\tau ds
\]

\[\geq \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\min}(\tau, r)] d\tau ds \geq h = ||u||.
\]

This implies

\[
||M^*(u(t))|| \geq h \geq ||u||.
\]

If \(u(t) \in \partial W(h)\), then \(||u|| = r\) and \(t^{\lambda - 1} r \leq u \leq r, t \in [0, 1]\). Using (4.10), we have \(\phi_{\max}(t, u) \geq Q^*(t, u)\) for \(t \in (0, 1)\). Thus, we have

\[
||M^*(u(t))|| = \max\{ ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\min}(\tau, u(t))] d\tau ds
\]

\[\leq \int_0^1 ||Q_2^*(t, u(t))|| + G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, r)] d\tau ds
\]

\[\leq ||Q_2^*(t, u(t))|| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, r)] d\tau ds \leq r = ||u||.
\]

This implies

\[
||M^*(u(t))|| \leq r = ||u||.
\]

By Equation (4.11), (4.12), and Theorem (2.1), we get that has a fixed point in \([h, r]\), say \(u^* \in (W(r) \cap W(h))\) such that \(h \leq ||u^*|| \leq r\). By Lemma 3.1 and Theorem 3.1 implies \(u^*(t) \leq t^{\lambda - 1} ||u^*|| \leq h t^{\lambda - 1} > 0\), for \(t \in (0, 1)\) and

\[
\frac{\partial}{\partial t} u^*(t) = \frac{\partial}{\partial t} M^*(u(t)) = \frac{\partial}{\partial t} Q_2^*(t, u(t))
\]

\[+ \int_0^1 \frac{\partial}{\partial t} G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, r)] d\tau ds > 0.
\]

Thus \(u^*\) is a positive solution for \(t \in (0, 1)\).

5. Hyers-Ulam stability

Here, we offer Hyers-Ulam stability for the hybrid FDE with nonlinear \(\phi_{\nu}\)-Laplacian operator in suggested problem (3.1).

Definition 5.1: We say that integral equation (4.1) is HU-stability if there exists positive constant value \(\nu_2\), satisfying: For every \(\alpha > 0\), if

\[
|u(t) - Q_2^*(t, u(t))| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\min}(\tau, u(t))] d\tau ds \leq \alpha,
\]

there exist \(v(t)\) satisfying that

\[
|v(t) - Q_2^*(t, v(t))| + \int_0^1 G^1(1, s)\phi_q \\left(\frac{1}{\Gamma(\lambda)} \right) \int_0^s (s - \tau)^{\lambda - 1} [K(\tau)\phi_{\max}(\tau, v(t))] d\tau ds \leq \alpha,
\]

there exist \(\nu_2\) such that the pair \((u(t), v(t))\) is satisfy in

\[
|u(t) - v(t)| \leq \alpha \nu_2.
\]
Theorem 5.1: The singular hybrid FDE with \(\phi_p \)-operator of suggested problem (3.1) is Hyers-Ulam stable provided that (H1), (H2) and (H4) hold true.

Proof: By using Definition 5.1 and Theorem 3.3, suppose that \(u(t) \) be the real solution of the hybrid fractional DE of Equation (4.1) and \(v(t) \) be an approximate solution satisfying (5.2). Then, we have

\[
|u(t) - v(t)| = \left| \int_0^t G^i(t,s) \phi_q \left(\frac{1}{\Gamma(\lambda)} \int_0^s (s - \tau)^{\lambda - 1} \times [K(\tau)Q^1_i(\tau, u(\tau))] d\tau \right) ds \right| \\
\leq \int_0^t \left| G^i(t,s) \phi_q \left(\frac{1}{\Gamma(\lambda)} \int_0^s (s - \tau)^{\lambda - 1} \times [K(\tau)Q^1_i(\tau, u(\tau))] d\tau \right) ds \right| \\
\leq \frac{1}{\Gamma(\lambda)} \int_0^t \left| G^i(t,s) \phi_q \left[\frac{1}{\Gamma(\lambda)} \int_0^s (s - \tau)^{\lambda - 1} \times [K(\tau)Q^1_i(\tau, u(\tau))] d\tau \right] ds \right| \\
\leq \frac{1}{\Gamma(\lambda)} \int_0^t \left| G^i(t,s) \phi_q \left[\frac{1}{\Gamma(\lambda)} \int_0^s (s - \tau)^{\lambda - 1} \times [K(\tau)Q^1_i(\tau, u(\tau))] d\tau \right] ds \right| \\
\leq \frac{1}{\Gamma(\lambda)} \int_0^t \left| G^i(t,s) \phi_q \left[\frac{1}{\Gamma(\lambda)} \int_0^s (s - \tau)^{\lambda - 1} \times [K(\tau)Q^1_i(\tau, u(\tau))] d\tau \right] ds \right|
\]

where \(\lambda = \delta - 1 + 1 \). Hence, by (5.4), the integral Equation (4.1) is HU-stable. Consequently, the SHFDE with nonlinear \(p \)-Laplacian operator (3.1) is Hyers-Ulam stable.

6. Illustrative example

In this section, we give application for the characterization of the results proved in Sections 4 and 5, for the EPS of HFDE of the type (3.1).

Example 1. For

\[
t \in [0,1], Q^1_i(t, u(t)) = u^{2/3}(t) + 7(u(t))^{-1/3}, q = \frac{5}{3}, \delta = 4, \lambda = \frac{5}{2}, \beta = \frac{3}{2}, K(t) = t(3 - 3t)^{-1/3}, \]

we consider the following singular fractional DE with \(\phi_p \)-operator:

\[
\frac{d^p}{ds^p} \left[\phi_p D^p (u(t) - Q^1_i(t, u(t))) \right] + K(t)Q^1_i(t, u(t)) = 0, \]

where \(i = 0, 1, 2, \ldots, n, \)

\[
\Delta^k \left[u(t) - Q^1_i(t, u(t)) \right] |_{t=0} = 0, k = 2, 3, \ldots, n, \]

\[
D^{\alpha - 1}[u(t) - Q^1_i(t, u(t))] |_{t=1} = 0, \]

The functions clearly \(K \in C((0,1), [0, +\infty)), Q^* \in C((0,1) \times (0, +\infty), [0, +\infty)).\) Height functions

\[
\varphi_{\text{max}}(t,x) = \max[u^{2/3} + 7(u(t))^{-1/3} : t^2 x \leq u \leq x] \leq t^2 x + 7/8, \]

\[
\varphi_{\text{min}}(t,x) = \min[u^{2/3} + 7(u(t))^{-1/3} : t^2 x \leq u \leq x] \geq t^2 x + 7/8.
\]

Then, we have

\[
(1 + t) \frac{1}{10000} + \int_0^1 G^i(1,s) \phi_q \left(\frac{1}{\Gamma(\lambda)} \int_0^s (s - \sigma)^{\lambda - 1} \times [K(\sigma)\varphi_{\text{min}}(\sigma, h)] d\sigma \right) ds \\
= (1 + t) \frac{1}{10000} + \int_0^1 G^i(1,s) \phi_q \left(\frac{1}{\Gamma(\lambda)} \int_0^s (s - \sigma)^{\lambda - 1} \times [K(\sigma)\varphi_{\text{min}}(\sigma, 10^{-4})] d\sigma \right) ds \\
\geq 0.0001 + \int_0^1 G^i(1,s) \phi_q \left(\frac{1}{\Gamma(\lambda)} \int_0^s (s - \sigma)^{\lambda - 1} \times [\varphi_{\text{min}}(3 - 3\sigma)^{-1/2} (\sigma^2 10^{-8/3} + 7(10)^{4/3})] d\sigma \right) ds \\
\geq 0.000049645 \geq 10^{-4},
\]

By Theorem 3.3, the problem (3.1) has a solution \(u^* \) and \(10^{-4} \leq |u^*| \leq 1. \)
7. Conclusion

By the help of fixed point theorems of Krasnoselskii and function analysis on Banach space, we have proved existence, uniqueness, and Hyers-Ulam stability of solutions for hybrid fractional DEs. For these aims, we transformed the proposed problem (3.1) into an integral equation by Green function. After that, Green function was tested in the period (0,1) for being increasing or decreasing and positive or negative. For an application of our results, we included an example using Mathematica.

Acknowledgements

The authors are thankful to the unknown reviewers and the editorial council for their value propositions that have to ameliorate the quality of the literature. The first author is thankful to the unknown reviewers and the editorial council for their value propositions that have to ameliorate the quality of the literature. The first author is thankful for Nanjing of science and technology University in order to obtain a research grant under the China Government Excellent Young Talents Program through postdoctoral studies.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Nanjing of Science and Technology University. [Grant Number 717113010063].

ORCID

Wadiah Al-Sadi http://orcid.org/0000-0002-8284-8026 Abdulwasea Alkhazzan http://orcid.org/0000-0002-6504-8705

References

[1] Srivastava HM. An application of the fractional derivative. Math Japon. 1984;29:383–389.
[2] Samko SG, et al. Fractional integrals and derivatives. Yverdon-les-Bains: Gordon and Breach Science; 1993.
[3] Rudolf, Hilfer (ed.). Applications of fractional calculus in physics. World Scientific, 2000.
[4] Podlubny I. Fractional differential equations. New York: Academic Press; 1999.
[5] Srivastava HM, Gupta V. A certain family of summation-integral type operators. Math Comput Model. 2003;37 (12-13):1307–1315.
[6] Sohail A, Maqbool K, Rahmat ELLAHI. Stability analysis for fractional-order partial differential equations by means of space spectral time Adams-Bashforth Moulton method. Numer Methods Partial Differ Equ. 2018;34(1):19–29.
[7] Kilbas AAA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Elsevier Science; 2006.
[8] Srivastava HM, Mishra AK. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput Math Appl. 2000;39(3-4):57–69.
[9] Jafari H, Jassim HK, Moshokoa SP, et al. Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv Mech Eng. 2016;8(4):168781401663301.
[10] Anastassiou GA. On right fractional calculus. Chaos Solitons Fractals. 2009;42(1):365–376.
[11] Guo D. Nonlinear functional analysis. New York: Springer; 1985.
[12] Hameed M, Khan AA, Ellahi R, et al. Study of magnetic and heat transfer on the peristaltic transport of a fractional second grade fluid in a vertical tube. Eng Sci Technol Int J. 2015;18(3):496–502.
[13] Dhage BC, Ntouyas SK. Existence results for boundary value problems for fractional hybrid differential inclusions. Topol Methods Nonlinear Anal. 2014;44(1):229–238.
[14] Sitho S, Ntouyas SK, Tariboon J. Existence results for hybrid fractional integro-differential equations. Boundary Value Problems. 2015;2015(1):113.
[15] Zhao Y, Wang Y. Existence of solutions to boundary value problem of a class of nonlinear fractional differential equations. Adv Differ Equ. 2014;2014(1):174.
[16] Ahmad B, Ntouyas SK. An existence theorem for fractional hybrid differential inclusions with Dirichlet boundary conditions. In: Abstract and Applied Analysis. Hindawi, 2014.
[17] Ntouyas S, Laoprasittichok S, Tariboon J. Hybrid fractional integro-differential inclusions. Discussiones Math, Differ Inclusions, Control Optim. 2015;35(2):151–164.
[18] Dhage B, O’Regan D. A fixed point theorem in Banach algebras with applications to functional integral equations. Funct Differ Equ. 2004;7(3-4):259–267.
[19] Ellahi R, Mohyud-Din ST, Khan U. Exact traveling wave solutions of fractional order Boussinesq-like equations by applying Exp-function method. Results Phys. 2018;8:114–120.
[20] Guezane-Lakoud A, Ramdane S. Existence of solutions for a system of mixed fractional differential equations. J Taibah Univ Sci. 2018;12(4):421–426.
[21] Dhage BC. Basic results in the theory of hybrid differential equations with linear perturbations of second type. Tamkang J Math. 2013;44(2):171–186.
[22] Lu H, Sun S, Yang D, et al. Theory of fractional hybrid differential equations with linear perturbations of second type. Boundary Value Prob. 2013;2013(1):23.
[23] Herzallah MA, Baleanu D. On fractional order hybrid differential equations. In: Abstract and Applied Analysis. Hindawi, 2014.
[24] Chasreechai S, Sithiwirathram T. Existence results of initial value problems for hybrid fractional sum-difference equations. Discrete Dyn Nat Soc. 2018;2018.
[25] Khan U, Ellahi R, Khan R, et al. Extracting new solitary wave solutions of Benny-Luke equation and Phi-4 equation of fractional order by using G’/G-expansion method. Opt Quantum Electron. 2017;49(11):362.
[26] Shah K, Tunç C. Existence theory and stability analysis to a system of boundary value problem. J Taibah Univ Sci. 2017;11(6):1330–1342.
[27] Zhao Y, Sun S, Han Z, et al. Theory of fractional hybrid differential equations. Comput Math Appl. 2011;62(3):1312–1324.
[28] Bai Z, Tingting QIU. Existence of positive solution for singular fractional differential equation. Appl Math Comput. 2009;215(7):2761–2767.
[29] Ahmad B, Ntouyas SK, Alsaeedi A. Existence results for a system of coupled hybrid fractional differential equations. Sci World J. 2014;2014.
[30] Wang J, Zhang Y. On the concept and existence of solutions for fractional impulsive systems with Hadamard derivatives. Appl Math Lett. 2015;39:85–90.
[31] Zhang X, Huang X, Liu Z. The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay. Nonlinear Anal: Hybrid Syst. 2010;4(4):775–781.

[32] Pepyne DL, Cassandras CG. Optimal control of hybrid systems in manufacturing. Proc IEEE. 2000;88(7):1108–1123.

[33] Bashiri T, Vaezpour SM, Park C. Existence results for fractional hybrid differential systems in Banach algebras. Adv Differ Equ. 2016;2016(1):57.

[34] Royden HL. Real analysis. Krishna Prakashan Media; 1968.

[35] Khan H, Li Y, Chen W, et al. Existence theorems and Hyers-Ulam stability for a coupled system of fractional differential equations with p-Laplacian operator. Boundary Value Prob. 2017;2017(1):157.

[36] Alkhazzan A, Jiang P, Baleanu D, et al. Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math Methods Appl Sci. 2018;41(18):9321–9334.

[37] Yong ZHOU, Jinrong W, Lu Z. Basic theory of fractional differential equations. World Scientific; 2016.

[38] Khan H, Chen W, Sun H. Analysis of positive solution and Hyers-Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Math Methods Appl Sci. 2018;41(9):3430–3440.