Corrigendum

Corrigendum to “All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds”

Majid Masso

School of Systems Biology, George Mason University, 10900 University Blvd. MS 5B3, Manassas, VA 20110, USA

Correspondence should be addressed to Majid Masso; mmasso@gmu.edu

Received 7 December 2017; Accepted 12 December 2017; Published 8 January 2018

Copyright © 2018 Majid Masso. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the article titled “All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds” [1], there were errors in the energy values in the last column of Table 8. The corrected table is shown below.

Table 8: All-atom four-body statistical potential derived using a 6-letter alphabet and a 12 Å cutoff.

Quad	Count	f_{ijkl}	p_{ijkl}	s_{ijkl}
CCCC	4107297	0.112818	0.160748	0.15377
CCCM	1924	5.28E-05	0.00045	0.93026
CCNN	4142684	0.11379	0.172495	0.18067
CCCO	6462239	0.177503	0.193701	0.03793
CCCS	297980	0.008185	0.005072	-0.207795
CCCX	2996	8.23E-05	0.000765	0.96834
CCMM	157	4.31E-06	4.73E-07	-0.96026
CCMN	3758	0.000103	0.000362	0.5452
CCMO	651	0.000179	0.000407	0.35687
CCMS	2320	6.37E-05	1.07E-05	-0.776892
CCMX	15	4.12E-07	1.61E-06	0.591
CCNN	1871781	0.051413	0.069412	0.13036
CCNO	8544461	0.234696	0.155892	-0.177683
CCNS	128008	0.003516	0.004082	0.06485
CCNX	2159	5.93E-05	0.000616	1.01632
CCCO	3686844	0.101269	0.087528	-0.063328
CCOS	205846	0.005654	0.004584	-0.09103
CCOX	4995	0.000137	0.000691	0.7024
CCSX	15467	0.000425	6.00E-05	-0.849914
CCSX	148	4.07E-06	1.81E-05	0.64875
Table 8: Continued.

Quad	Count	f_{ijkl}	p_{ijkl}	s_{ijkl}
CCXX	161	4.42E-06	1.37E-06	-0.510349
CMMO	29	7.97E-07	2.21E-10	-3.557768
CMMN	164	4.50E-06	2.54E-07	-1.249604
CMNO	293	8.05E-06	2.85E-07	-1.451272
CNMS	665	1.83E-05	7.46E-09	-3.389144
CMMX	1	2.75E-08	1.12E-09	-1.38783
CMNN	2643	7.26E-05	9.72E-05	0.12663
CMNO	7243	0.000199	0.000218	0.0402
CMNS	2610	7.17E-05	5.72E-06	-1.098444
CMNX	30	8.24E-07	8.62E-07	0.01957
CNMO	9551	0.000262	0.000123	-0.33061
CNOS	1041	2.86E-05	6.42E-06	-0.648899
CMOX	77	2.12E-06	9.68E-07	-0.339447
CMSS	2052	5.64E-05	8.40E-08	-2.826573
CMSX	13	3.57E-07	2.53E-08	-1.148817
CMXX	6	1.65E-07	1.91E-09	-1.953563
CNNN	122810	0.003373	0.012414	0.56586
CNNO	211781	0.058171	0.041821	-0.143351
CNNS	16884	0.000464	0.000195	0.37318
CNNX	631	1.73E-05	1.00E+05	0.97912
CNOO	2981894	0.081906	0.046962	-0.241565
COOS	38976	0.001071	0.001381	0.11057
COOX	24064	0.000661	0.000208	-0.50151
COSS	4524	6.59E-05	3.62E-05	-0.536074
COSX	42	1.76E-06	1.09E-05	0.79279
COXX	84	2.31E-06	8.23E-07	-0.447847
CSSS	320	8.79E-06	3.16E-07	-1.44474
CSSX	5	1.37E-07	1.43E-07	0.01705
CSXX	4	1.10E-07	2.15E-08	-0.707545
CXXX	12	3.30E-07	1.08E-09	-2.483295
MMMN	83	2.28E-06	3.86E-14	-7.771426
MMNO	42	1.15E-06	5.92E-11	-4.290048
MMNS	31	8.51E-07	6.64E-11	-4.107805
MMMO	379	1.04E-05	1.74E-12	-6.777
MMNX	0	2.62E-13	--	--
MMNN	85	2.33E-06	3.40E-08	-1.836638
MMNO	113	3.10E-06	7.64E-08	-1.608913
MMNS	364	1.00E-05	2.00E-09	-3.698853
MMNX	0	3.02E-10	--	--
MMOO	320	8.79E-06	4.29E-08	-2.311659
MMOS	104	2.86E-06	2.25E-09	-3.104429
MNOX	3	8.24E-08	3.39E-10	-3.286025
MSX	254	6.98E-06	2.94E-11	-5.375177
MXX	2	5.49E-08	8.87E-12	-3.791851
MNX	0	6.69E-13	--	--
MNNN	1048	2.88E-05	8.69E-06	-0.520184
Quad	Count	\(f_{ijkl} \)	\(P_{ijkl} \)	\(z_{ijkl} \)
--------	-------	----------------	----------------	----------------
MNNO	1323	3.63E - 05	2.93E - 05	-0.093906
MNNS	562	1.54E - 05	7.67E - 07	-1.303999
MNX	6	1.65E - 07	1.16E - 07	-0.153922
MNOO	4193	0.000115	3.29E - 05	-0.544515
MNOS	352	9.67E - 06	1.72E - 06	-0.74942
MNOX	31	8.51E - 07	2.60E - 07	-0.351747
MNSS	793	2.18E - 05	2.25E - 08	-2.985908
MNSX	5	1.37E - 07	6.80E - 09	-1.305273
MNXX	9	2.47E - 07	5.13E - 10	-2.683083
MOOO	5790	0.000159	1.23E - 05	-1.114135
MOOS	167	4.59E - 06	9.67E - 07	-0.676269
MOOX	171	4.70E - 06	1.46E - 07	-1.508056
MOSS	211	5.80E - 06	2.53E - 08	-2.359752
MOSX	4	1.10E - 07	7.64E - 09	-1.158007
MOXX	55	1.51E - 06	5.76E - 10	-3.418488
MSSS	62	1.70E - 06	2.21E - 10	-3.8869
MSSX	2	5.49E - 08	1.00E - 10	-2.739925
MSX	0	1.51E - 11	--	--
MXXX	16	4.39E - 07	7.58E - 13	-5.763152
NNNN	5639	0.000155	0.000833	0.7304
NNOO	60175	0.001653	0.00374	0.35461
NNNS	538	1.48E - 05	9.79E - 05	0.82132
NNNX	39	1.07E - 06	1.48E - 05	1.13953
NNOO	384854	0.010571	0.006299	-0.224828
NNOS	6209	0.000171	0.00033	0.28656
NNOX	354	9.72E - 06	4.98E - 05	0.70907
NNX	319	8.76E - 06	4.32E - 06	-0.307157
NNXX	6	1.65E - 07	1.30E - 06	0.898
NXXX	7	1.92E - 07	9.83E - 08	-0.29148
NOOO	227156	0.006239	0.004716	-0.121592
NOOS	11871	0.003236	0.00037	0.05545
NOOX	3214	8.83E - 05	5.59E - 05	-0.198618
NOSS	951	2.61E - 05	9.70E - 06	-0.430162
NOX	13	3.57E - 07	2.93E - 06	0.9136
NOXX	66	1.81E - 06	2.21E - 07	-0.914541
NSSS	35	9.61E - 07	8.47E - 08	-1.055088
NSX	0	0	3.83E - 08	--
NSXX	0	0	5.78E - 09	--
NXXX	3	8.24E - 08	2.91E - 10	-2.452665
OOOO	61473	0.001689	0.001324	-0.105657
OOOO	5019	0.000138	0.000139	0.00255
OOOX	9614	0.000264	2.09E - 05	-1.101242
OSSS	331	9.09E - 06	5.45E - 06	-0.222484
OSSX	45	1.24E - 06	1.64E - 06	0.12365
OSS	144	3.96E - 06	1.24E - 07	-1.504034
OSSX	38	1.04E - 06	9.51E - 08	-1.040448
OSSX	3	8.24E - 08	4.30E - 08	-0.282172
OSSX	0	0	6.49E - 09	--
OXXX	5	1.37E - 07	3.26E - 10	-2.624158
SSSS	11	3.02E - 07	6.23E - 10	-2.686034
SSSX	0	0	3.76E - 10	--
SXX	0	0	8.50E - 11	--
XXXX	0	0	8.55E - 12	--
XXXX	0	0	3.22E - 13	--
References

[1] M. Masso, “All-atom four-body knowledge-based statistical potentials to distinguish native protein structures from non-native folds,” BioMed Research International, vol. 2017, Article ID 5760612, 17 pages, 2017.