Comparison of the effect of skin closure materials on skin closure during cesarean delivery

Ye Huang¹, Xinbo Yin²,³, Junni Wei¹, Suhong Li¹,²*

¹ School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China, ² Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, Shanxi, China, ³ Xiangya Hospital, Central South University, Changsha, Hunan, China

* lisuhong2021@163.com

Abstract

Objective
To compare the effect of skin closure materials on skin closure during cesarean delivery.

Methods
We searched EMBASE, PubMed, Scopus, Cochrane CENTRAL for randomized controlled trials (RCTs) on the use of closure materials for skin closing effect during cesarean delivery. The outcomes were time to skin closure of dermal and epidermal layer, skin separation rate and wound complications (wound infection, hematoma, seroma, reclosure, readmission) reported as an odds ratio (OR) and surface under the cumulative ranking curve analysis (SUCRA) score.

Results
Twenty-six RCTs met the inclusion criteria. In the network meta-analysis (NMA) for time to skin closure of dermal and epidermal layer, pooled network OR values indicated that staple (network SMD, -337.50; 95% CrI: -416.99 to -263.18) was superior to absorbable suture. In the skin separation NMA, pooled network OR values indicated that the absorbable suture (network OR, 0.37; 95% CrI: 0.19 to 0.70) were superior to staple. In the wound complications NMA, pooled network OR values indicated that the no interventions were superior to staple.

Conclusion
In conclusion, our network meta-analysis showed that the risk of skin separation with absorbable suture after cesarean delivery was reduced compared with staple, and does not increase the risk of wound complications, but the wound closure time would slightly prolonged.
Introduction

Cesarean section has many indications, including emergency surgery to save the lives of mothers and infants in dystocia or other emergencies, as well as maternal desire [1]. The World Health Organization recommends that the cesarean section rate should not be higher than 15%, but the cesarean section rate in many countries is higher than this standard [2,3]. What sutures or suture combinations are used in any particular surgical case varies widely among surgeons [4]. The selection of skin closure materials is usually based on surgeon’s preference, institutional agreement, availability and cost of specific materials, or current interest in exploring a new technology based on technological progress [5]. Therefore, it is necessary to evaluate skin closure materials.

According to the different degradation modes of suture, it can be divided into absorbable suture and non-absorbable suture. Barbed suture is a single filament suture with thorns, without the need for surgical knots. Staple is a disposable skin stapler with the characteristics of high speed. Glue closes the skin with a liquid monomer that forms a firm tissue bond with the protective barrier [6]. There is controversy about the way of skin closure after cesarean delivery. Previous meta-analysis shows that absorbable suture reduces the risk of skin separation compared with suture staple, but increases the time of wound suture [7–9]. Compared with suture, the barbed suture reduces the time to skin closure of dermal and epidermal layer and total operative time without increasing blood loss or maternal incidence rate [5]. Therefore, the purpose of this study is to update the evidence through network meta-analysis (NMA) and compare the time to skin closure, incidence of skin separation and wound complications of different skin closure materials during skin incision suture in cesarean delivery.

Methods

Protocol

This NMA followed the guidelines outlined in the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) report. The protocol used in this study was registered in the International Prospective Register of Systematic Reviews (Registration number: CRD42021249871, date: 2021-05-24).

Search strategy

Two authors (Y.H. and XB.Y.) independently searched the Cochrane Central Database, PubMed, and EMBASE databases for randomized controlled trials (RCTs) on different kinds of skin closure materials for women after cesarean section skin closure from January 1, 1997 to June 1, 2021. A third author (SH.L.) was consulted to resolve differences through discussion, as appropriate.

The following is the PubMed search strategy:

```
((((((((((((((((((((((c losur*) OR (sutur*) OR (sutures[MeSH Terms])) OR (stapling or staples)) OR (surgical staplers[MeSH Terms])) OR (polydioxanone)) OR (polydioxanone [MeSH Terms])) OR (pds)) OR (polypropylene*)) OR (Polypropylenes[MeSH Terms])) OR (promlene*) (polyglactin 910[MeSH Terms])) OR (polyglycolin 910)) OR (ethylene)) OR (Nylons[MeSH Terms])) OR (catgut)) OR (catgut[MeSH Terms])) OR (steel)) OR (steel [MeSH Terms])) OR (vicyl)) OR (polyglicolic acid)) OR (polyglycolic acid[MeSH Terms])) OR (maxon)) OR (mersilene*)) OR (Barbed*)) AND ((((caesarean>Title/Abstract OR cesarean>Title/Abstract)) AND (section>Title/Abstract OR birth? [Title/Abstract] OR deliver* [Title/Abstract] OR surgery>Title/Abstract))) OR (((c-section>Title/Abstract)) OR (childbirth [MeSH Terms]))AND (birth>Title/Abstract] OR childbirth[Title/Abstract])))) OR ((operative
```
Inclusion criteria
Randomized controlled trial involving women undergoing cesarean delivery.

Outcome. Time to skin closure of dermal and epidermal layer (seconds); Skin separation; Wound complications.

Exclusion criteria
Nonrandomized or pseudo-randomized controlled trials; Incomplete or repeated data; Case studies; Reviews.

Study selection
According to the inclusion and exclusion criteria, two authors (Y.H. and XB.Y.) independently identified potential studies among the studies yielded by the search strategy. A third author (SH.L.) was consulted to resolve differences through discussion, as appropriate.

Data extraction
Two authors (Y.H. and XB.Y.) independently extracted relevant data using review manager software (version 5.3). In case of disagreements, the original text was re-checked again and discussed to come to an agreement. If no agreement was reached, the third author (SH.L.) was consulted for arbitration. We extracted the following data parameters: the name of the first author, number of patients, number of participants in each group, types of skin closure materials used, and type of the results (Time to skin closure of dermal and epidermal layer, skin separation and wound complications); moreover, the results were obtained for each arm.

Risk and bias
Two authors (Y.H. and XB.Y.) independently assessed the risk and bias for each study using review manager software (version 5.3). The Cochrane Collaboration tool was used to evaluate the study quality based on the following six factors: sequence generation, allocation consideration, blind method, incomplete data, non-selective reporting of results, and other sources. Disagreements were resolved through arbitration with the third author (SH.L.).

Outcomes
The primary outcome was time to skin closure of dermal and epidermal layer (seconds), defined as the skin closure of dermal and epidermal layer among women undergoing cesarean delivery, which was analyzed as a continuous outcome, and reported using the network standardized mean difference (SMD) and related 95% confidence interval (CrI). A negative network SMD value denoted a shorter suture time.

The secondary outcome was skin separation rate, defined as number of after skin closure materials are removed and need for reclosure cases. Therefore, treatment was analyzed as a binary outcome (successful or failed intervention) and reported using the network odds ratio (OR) and related 95% confidence interval (CrI). Consequently, treatment success was defined as a network OR (including the relevant 95% CrI) of 1.0 (unified).

The third outcome was wound complications, defined as the number of wound infection, hematomata, seroma, reclosure, readmission for wound complication causes after cesarean delivery.
delivery. Therefore, treatment was analyzed as a binary outcome (successful or failed intervention) and reported using the network odds ratio (OR) and related 95% confidence interval (CrI). Consequently, treatment success was defined as a network OR (including the relevant 95% CrI) of 1.0 (unified).

Statistical analyses

First, StataSE15 (64 bit) was used to draw a network diagram; subsequently, the relationship between the different skin closure materials was determined. Next, the heterogeneity analysis was conducted using the R software (version 3.6.1). According to the Cochrane handbook, when analyzing the data using a fixed-effect model, no heterogeneity was indicated for \(P \)-value >0.10, and an \(I^2 \) value of 0%–40%. Heterogeneity was indicated by \(P \)-value <0.10, and \(I^2 \) >75%, with data analysis using a random-effect model [10]. However, in this NMA, regardless of heterogeneity, we used a random-effect model to analyze the data reliability. Finally, NMA was conducted using the ADDIS software (version 1.16.8), which is based on a Bayesian hierarchical model. Node-splitting analysis was used to determine the model consistency. If the \(P \)-value is >0.05, the consistency model is used; otherwise, the inconsistency model is used [11]. Subsequently, the potential scale reduction factor (PSRF) analysis method was used to determine the model convergence. When the PSRF value is 1, the model is indicated as having approximate convergence, using the network OR and 95% CrI as the effect value [12].

Results

Study selection

According to the PRISMA standard, 1,548 RCTs were retrieved from three databases based on a search strategy; of these, 45 eligible studies were screened after reviewing the abstracts. According to the inclusion and exclusion criteria, 26 RCTs were included (Fig 1).

Characteristics of the included studies

This NMA included 26 RCTs, containing 23 two-arm studies, 3 three-arm studies. The studies were published between 1997 and 2020, with most of them published after 2010 (Table 1). The included studies reported eight antibiotic classes and doses, as well as placebo; Regarding the main outcome indicators, 12, 11, and 17 articles reported skin closure of dermal and epidermal layer (seconds), skin separation, and wound complications, respectively. We included 8,539 pregnant women who underwent cesarean delivery. The minimum and maximum sample sizes were 52 and 1,100 cases, respectively.

Risk-of-bias and quality-of-evidence assessments

The risk-of-bias and quality-of-evidence assessments for the included study were performed using the Cochrane bias risk assessment tool. All the included trials were RCTs. Furthermore, 55% of the studies were rated as low risk of bias; moreover, 19 of the included RCTs described specific methods for generating a random sequence. Fig 2 shows the risk-of-bias summary of the included trials.

NMA for time to skin closure of dermal and epidermal layer (seconds). The NMA for time to skin closure of dermal and epidermal layer (seconds) included 12 RCTs [13–24] (10 two-arm studies, 2 three-arm studies) covering four skin closure materials (Fig 3A). Eight nodes were included in the NMA. Each node represented a unique skin closure material; further, the size of each node represented the included patients for the intervention (Fig 3B).
Absorbable suture (11 head-to-head comparisons) and staple (10 head-to-head comparisons) were the most investigated skin closure material. Heterogeneity analysis indicated no heterogeneity (I^2-value = 27.8%, P-value = 0.5) (Fig 3A). Therefore, we used the random effect model to analyze the data.

In the NMA, the node-splitting analysis showed that P-values were >0.05 (S1 Table); therefore, we used the consistency-type model for data analysis. After 50,000 simulation iterations, the PSRF value was 1, which indicated that approximate convergence was achieved. Pooled network OR values indicated that staple (network SMD, -337.50; 95% CrI: -416.99 to -263.18) was superior to absorbable suture (Fig 3C). The SUCRA score revealed that the top-ranked classes for time to skin closure of dermal and epidermal layer (seconds) was staple (SUCRA score: 99.8; Fig 3C).

NMA for skin separation. The NMA for Skin separation included 11 RCTs [17,18,22,24–35] (11 two-arm studies) covering five skin closure materials (Fig 4A). Nine nodes were included in the NMA. Each node represented a unique skin closure material; additionally, the size of each node represented the included patients for the intervention (Fig 4B). Absorbable suture (16 head-to-head comparisons) and staple (12 head-to-head comparisons) were the most investigated skin closure material.

Heterogeneity analysis indicated no heterogeneity (I^2-value = 29.3%, P-value = 0.45) (Fig 4A). Therefore, we used a random effect model to analyze the data.

In the NMA, the node-splitting analysis showed that both P-values were >0.05 (S2 Table). Therefore, we used the consistency-type model for data analysis. After 200,000 simulation
Table 1. Characteristics of the included studies.

Author, year	Country	Study size	Mean age in years (± SD)	Study design	Method of wound closure (n)	Suture material used	Incision type
Frishman 1997 [25]	USA	52	N/A	RCT	Absorbable sutures: 26	N/A	Pfannenstiel incision
					Staple: 26	Absorbable sutures: 3–0	
Murtha 2006 [26]	USA	188	27.9 (6.0)	RCT; two-	Absorbable sutures: 61	Polydioxanone Suture-II Quill™ Medical	Pfannenstiel incision
			Barbed suture: 29.3	centre; single-blind	Barbed suture: 127	bidirectional patternbarbed suture	
			(6.2)				
Gaertner 2008 [27]	Switzerland	1100	Absorbable sutures:	RCT; single-	Absorbable sutures: 49	Vicryl 3–0	Pfannenstiel incision
			Group A 31.1 Group B	centre; non-	Staple: 51		
			30.3 Staple: Group C	blinded			
			32.5 Group D 31.6				
Rousseau 2009 [13]	Canada	101	Absorbable sutures:	RCT; single-	Absorbable sutures: 52	3–0 polyglactin	Pfannenstiel incision
			30.7 (5.4)	centre; single-blind	Staple: 49		
			Staple: 30.6 (3.9)				
Basha 2010 [28]	USA	416	Absorbable sutures:	RCT; single-	Absorbable sutures: 219	4–0 poligle-caprone	Pfannenstiel, vertical incision
			29.0 (5.7)	centre; non-	Staple: 197		
			Staple: 28.9 (6.1)	blinded			
Cromi 2010 [29]	Italy	158	Absorbable sutures:	RCT; single-	Absorbable sutures: 118	3–0 glyconate or polyglycolic acid	Pfannenstiel incision
			Group A: 33.3(3.4)	centre; single-blind	Staple: 40		
			Group B: 33.4(4.5)				
			Group C: 34.1(4.5)				
			Staple: 32.5 (4.8)				
Rengerink 2011 [30]	N/A	133	N/A	RCT	Absorbable sutures: 67	3–0 subcuticular poliglecaprone (Monocryl)	N/A
					Staple: 68		
Chunder 2012 [36]	South Africa	1100	Absorbable sutures:	RCT; single-	Absorbable sutures: 361	Absorbable sutures: Polyglycolic acid	Pfannenstiel incision
			median: 25 (range 19–31)	centre; non-	Staple: 373	Nonabsorbable sutures: nylon	
			Staple: median: 26	blinded			
			(range 18–29)				
De Graaf 2012 [14]	Netherlands	124	Absorbable sutures:	RCT; two-	Absorbable sutures: 64	3–0 polyglactin	Pfannenstiel incision
			Group A 33.3(3.5)	centre; single-blind	Staple: 60		
			Group B 31.6 (4.7)				
			Staple: Group C 31.4(4.1)				
			Group D 31.3(4.9)				
Figueroa 2013 [31]	USA	350	Absorbable sutures:	RCT; single-	Absorbable sutures: 68	4–0 poliglecaprone	Pfannenstiel, vertical incision
			26.9 (5.9)	centre; non-	Staple: 171		
			Staple: 26.7 (6.1)	blinded			
Huppelschoten 2013 [15]	Netherlands	145	Absorbable sutures:	RCT; single-	Absorbable sutures: 68	3–0 poligle-caprone	Pfannenstiel incision
			Median: 32 (range 21–42)	centre; single-blind	Staple: 77		
			Staple: Median: 31 (range				
			21–45)				
Abdus-Salam 2014 [16]	Nigeria	106	Absorbable sutures:	RCT; single-	Absorbable sutures: 53	2–0 polyglycolic acid	Pfannenstiel incision
			31.1 (4.27)	centre; single-blind	Staple: 53		
			Staple: 31.6 (4.5)				

(Continued)
Author, year	Country	Study size	Mean age in years (± SD)	Study design	Method of wound closure (n)	Suture material used	Incision type
Mackeen 2014 [17]	USA	746	Absorbable sutures: Median: 31.0 (IQRb 26.9–35.4) Staple: Median: 31.0 (IQRb 26.4–35.6)	RCT; multi-centre; single blind	Absorbable sutures: 370 Staple: 376	4–0 polyglactin/polyglactin	Low transverse incision
Vats 2014 [32]	India	90	N/A	RCT; single-centre; non-blinded	Absorbable sutures: 60 Nonabsorbable sutures: 30	Absorbable sutures: poliglecaprone 25/ polyglactin 910 Nonabsorbable sutures: polyamide	N/A
Hasdemir 2015 [18]	Turkey	250	Absorbable sutures: 27.8(5.2) Nonabsorbable sutures: 27.9(5.3)	RCT; single-centre; non-blinded	Absorbable sutures: 108 Nonabsorbable sutures: 142	Absorbable sutures: 3.0 Vicryl Rapide (polyglactin 910) Nonabsorbable sutures: 3.0 Prolen Pfannenstiel incision	
Dhama 2016 [19]	India	156	N/A	RCT; single-centre; non-blinded	Absorbable sutures: 50 Nonabsorbable sutures: 54	Absorbable sutures: vicryl No Nonabsorbable sutures: nylon	N/A
Fitzwater 2016 [37]	USA	350	Absorbable sutures: 26.8(5.9) Staple: 26.7(6.1)	RCT; single-centre; single blind	Absorbable sutures: 171 Staple: 179	4–0 Monocryl Pfannenstiel incision	
Daykan 2017 [6]	Israel	104	Absorbable sutures: 34.4±4.9 Glue: 35±4.3	RCT; single-centre; non-blinded	Absorbable sutures: 52 Glue: 52	Absorbable sutures: Glue	N/A
Grin 2018 [20]	Israel	70	Absorbable sutures: 32.9 (6.1) Barbed suture: 32.4 (5.4)(6.2)	RCT; single-centre; single blind	Absorbable sutures: 35 Barbed suture: 35	Absorbable sutures: Polyglactin absorbable suture (Vicryl™, Ethicon) Barbed suture: Tensile strength size 1–0 absorbable Barbed suture (Stratafix™ Spiral PDO, Ethicon)	N/A
Peleg 2018 [21]	Israel	102	Absorbable sutures: 33(5.0) Barbed suture: 32.2 (6.2)	RCT; single-centre; non-blinded	Absorbable sutures: 51 Barbed suture: 51	Absorbable sutures: Conventional coated size 1Polyglactin 910 braided sutures (Vicryl Plus™, Ethicon) Barbed suture: PDO monofilament Barbed suture size 2 (Stratafix™ Spiral PDO, Ethicon) Pfannenstiel incision	
Zaki 2018 [34]	USA	238	Absorbable sutures: 31.4 (5.3) Staple: 31.3 (5.6)	RCT; multi-centre; non-blinded	Absorbable sutures:119 Staple: 119	4–0 polyglactin; 3–0 polyglactin caprone	Pfannenstiel, vertical incision
Madsen 2019 [22]	USA	206	Absorbable sutures: Median: 30 (IQRb 27–33) Staple: Median: 31 (IQRb 27–34)	RCT; single-centre; non-blinded	Absorbable sutures: 103 Staple: 103	3–0 polyglactin caprone	Low transverse incision
Zayed 2019 [23]	Egypt	100	N/A	RCT; single-centre; single blind	Absorbable sutures: 50 Barbed suture: 50	Absorbable sutures: Polyglactin 910 (Vicryl™, Ethicon) Barbed suture: No 1, 36 × 36 cm, PDO double-armed suture (Stratafix™ SpiralPDO Ethicon) Pfannenstiel incision	

(Continued)
iterations, the PSRF value was 1, which indicated that approximate convergence was achieved. Pooled network OR values indicated that the absorbable suture (network OR, 0.37; 95% CrI: 0.19 to 0.70) were superior to staple (Fig 4C). Despite being equivalent to glue suture, the surface score under the cumulative ranking curve analysis (SUCRA) showed that the top-ranked intervention for skin separation were barbed suture (SUCRA score: 58.6, network OR: 0.11, 95% CrI: 0.00–14.35; Fig 4C).

Discussion

In this network meta-analysis of 26 randomized controlled trials, five different interventions using skin closure materials in more than 8539 women undergoing cesarean delivery were compared. We evaluated the effects of skin closure materials after cesarean delivery on time to skin closure of dermal and epidermal layer, skin separation rate and wound complications. The results of our network meta-analysis show that absorbable suture is still the best choice at this stage. Even the staple can shorten the wound closing time. However, compared with absorbable suture, staple will increase the incidence of skin separation. Compared with
Fig 2. Risk-of-bias summary.

https://doi.org/10.1371/journal.pone.0270337.g002
ordinary suture, the outcome index of barbed suture was not statistically significant. It is worth noting that all the four studies we included in the barbed suture were absorbable sutures. However, in glue suture, only one trial recruited a small number of patients. The largest number of patients were tested and recruited. Skin closure materials include absorbable suture and staple.

The two most compared skin suture methods during caesarean section are non-absorbable staple and absorbable subcutaneous suture. Dhanya Mackeen et al [39] conducted a systematic review in 2012 reported that there is no conclusive evidence of how the skin should be closed after caesarean delivery. Previous meta-analysis showed that [8,9] compared with staple, absorbable suture significantly reduces the risk of wound complications, but it will be more time-consuming. This is consistent with our research. Barbed suture when suturing tissue, these barbs pierce into the tissue and lock it in place. There is no need to tie the suture. They can reduce the wound closing time and improve the operation efficiency. Recently, Agarwal et al [5] In comparison with the use of barbed suture and absorbable sutures in cesarean delivery, it is shown that the barbed suture can replace the absorbable common suture, which can reduce the time of closure and incidence rate of wound complications. However, these studies only focused on the comparison between barbed suture and ordinary suture.

![Network Meta-Analysis for Skin Closure during Cesarean Delivery](https://doi.org/10.1371/journal.pone.0270337.g003)
from the cost effect analysis, the cost of barbed suture is much higher than that of ordinary suture [5]. This study has clinical significance because it qualitatively compares the selection of appropriate skin closure materials to close the wound during cesarean delivery and provides a reference for obstetricians.

This study has several limitations. First, like all secondary analyses, NMA should only be combined with the results of similar studies. It is difficult to quantify the factors leading to non-statistical heterogeneity (e.g., study differences in national environment); Therefore, there may be unknown deviations. Secondly, previous meta-analysis [40]. The single-layer and double-layer closure of uterine incision after cesarean delivery was compared with cesarean scar defect and uterine dehiscence and rupture in subsequent pregnancy. There was no significant difference between single-layer and double-layer closure. Therefore, the analysis of this aspect needs to be further studied. We did not conduct subgroup analysis according to the material type of staple and suture. Nevertheless, NMA may produce different results and may require further research.

Conclusion

In conclusion, our network meta-analysis showed that the risk of skin separation with absorbable suture after cesarean delivery was reduced compared with staple, and does not increase the risk of wound complications, but the wound closure time would slightly prolonged.
Supporting information

S1 Checklist. PRISMA NMA checklist of items to include when reporting a systematic review involving a network meta-analysis.

(DOCX)

S1 Table.

(DOCX)

S2 Table.

(DOCX)

S3 Table.

(DOCX)

Author Contributions

Conceptualization: Suhong Li.

Formal analysis: Ye Huang, Xinbo Yin.

Methodology: Xinbo Yin.

Software: Xinbo Yin.
References

1. Ye J, Zhang J, Mikolajczyk R, et al. Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: a worldwide population-based ecological study with longitudinal data. BJOG 2016; 123(5):745–753. https://doi.org/10.1111/1471-0528.13592 PMID: 26331389

2. Molina G, Weiser TG, Lipsitz SR, et al. Relationship Between Cesarean Delivery Rate and Maternal and Neonatal Mortality. Jama 2015; 314(21):2263–2270. https://doi.org/10.1001/jama.2015.15553 PMID: 26624825

3. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol 2021; 134:178–189. https://doi.org/10.1016/j.jclinepi.2021.03.001 PMID: 33789819

4. Byrne M, Aly A. The Surgical Suture. Aesthet Surg J 2019; 39(Suppl_2):S67–s72. https://doi.org/10.1093/asj/spz036 PMID: 30869751

5. Agarwal S, D’Souza R, Ryu M, Maxwell C. Barbed vs conventional suture at cesarean delivery: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 2021; 100(6):1010–1018. https://doi.org/10.1111/aogs.1480 PMID: 33404082

6. Daykan Y, Sharon-Weiner M, Pasternak Y, et al. Skin closure at cesarean delivery, glue vs subcuticular sutures: a randomized controlled trial. Am J Obstet Gynecol 2017; 216(4):406.e401–406.e405. https://doi.org/10.1016/j.ajog.2017.01.009 PMID: 28153666

7. Zaman S, Mohamedahmed AYY, Peterknecht E, et al. Sutures versus clips for skin closure following cesarean section: a systematic review, meta-analysis and trial sequential analysis of randomised controlled trials. Langenbecks Arch Surg 2021. https://doi.org/10.1007/s00423-021-02239-0 PMID: 34232372

8. Mackeen AD, Schuster M, Berghella V. Suture versus staples for skin closure after cesarean: a meta-analysis. American Journal of Obstetrics and Gynecology 2015; 212(5):621.e621–621.e610. https://doi.org/10.1016/j.ajog.2014.12.026 PMID: 25530592

9. Wang H, Hong S, Teng H, Qiao L, Yin H. Subcuticular sutures versus staples for skin closure after cesarean delivery: a meta-analysis. J Matern Fetal Neonatal Med 2016; 29(22):3705–3711. https://doi.org/10.3109/14767058.2016.1141886 PMID: 26785886

10. Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst Rev 2019; 10:Ed000142. https://doi.org/10.1002/14651858.ED000142 PMID: 31643080

11. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med 2010; 29(7–8):932–944. https://doi.org/10.1002/sim.3767 PMID: 2013715

12. BROOKS Stephen P, GELMAN Andrew. General methods for monitoring convergence of iterative simulations. Journal of Computational & Graphical Statistics 1998.

13. Rousseau JA, Girard K, Turcot-Lemay L, Thomas N. A randomized study comparing skin closure in cesarean sections: staples vs subcuticular sutures. American Journal of Obstetrics and Gynecology 2009; 200(3):265.e261–265.e264.

14. De Graaf IM, Rengerink KO, Wiersma IC, et al. Techniques for wound closure at caesarean section: A randomized clinical trial. European Journal of Obstetrics and Gynecology and Reproductive Biology 2012; 165(1):47–52. https://doi.org/10.1016/j.ejogrb.2012.07.019 PMID: 22910336

15. Huppleischoten AG, Van Ginderen JC, Van Den Broek KC, Bouwma AE, Oosterbaan HP. Different ways of subcutaneous tissue and skin closure at cesarean section: A randomized clinical trial on the long-term cosmetic outcome. Acta Obstetricia et Gynecologica Scandinavica 2013; 92(8):916–924. https://doi.org/10.1111/aogs.12142 PMID: 23530837

16. Abdus-Salam RA, Bello FA, Oluyemi O. A randomized study comparing skin staples with subcuticular sutures for wound closure at caesarean section in black-skinned women. ISRN Obstetrics and Gynecology 2014; https://doi.org/10.1155/2014/807937 PMID: 27437457

17. MacKen AD, Khalifeh A, Fleisher J, et al. Suture compared with staple skin closure after cesarean delivery: A randomized controlled trial. Obstetrics and Gynecology 2014; 123(6):1169–1175. https://doi.org/10.1097/AOG.0000000000000227 PMID: 24907325

18. Hasdemir PS, Guvenal T, Ozcakir HT, et al. Comparison of subcuticular skin closure materials in cesarean skin closure. Surgery Research and Practice 2015;2015. https://doi.org/10.1155/2015/141203 PMID: 26419566
19. Dharma V, Chaudhary R, Singh S, Sikarwar R. Three techniques for skin closure in caesarean section (stapler, absorbable subcuticular, non-absorbable subcuticular suture). Indian journal of obstetrics and gynaecology research 2016; 3(1):68–72.
20. Grin L, Ivshin A, Rabinovich M, et al. Barbed suture versus vicryl suture for uterine incision repair during a C-section: A randomised, controlled, assessor-blind trial. BJOG: An International Journal of Obstetrics and Gynaecology 2018; 125:70–71.
21. Peleg D, Ahmad RS, Warsol SL, et al. Knotless barbed suture closure of the uterine incision at cesarean: a randomized controlled trial. American Journal of Obstetrics and Gynecology 2018; 218(1):S25.
22. Madsen AM, Dow ML, Lohse CM, Tessmer-Tuck JA. Absorbable subcuticular staples versus suture for caesarean section closure: a randomised clinical trial. BJOG: An International Journal of Obstetrics and Gynaecology 2019; 126(4):502–510. https://doi.org/10.1111/1471-0528.15532 PMID: 30461155
23. Zayed MA, Fouda UM, Elsetohy KA, et al. Barbed sutures versus conventional sutures for uterine closure at cesarean section; a randomized controlled trial. Journal of Maternal-Fetal and Neonatal Medicine 2019; 32(5):710–717. https://doi.org/10.1080/14767058.2017.1388368 PMID: 29082807
24. Nayak GB, Saha PK, Bagga R, et al. Wound complication among different skin closure techniques in the emergency cesarean section: a randomized control trial. Obstet Gynecol Sci 2020; 63(1):27–34. https://doi.org/10.5468/ogs.2020.63.1.27 PMID: 31970125
25. Frishman GN, Schwartz T, Hogan JW. Closure of Pfannenstiel skin incisions: Staples vs. subcuticular suture. Journal of Reproductive Medicine for the Obstetrician and Gynecologist 1997; 42(10):627–630. PMID: 9350017
26. Murtha AP, Kaplan AL, Paglia MJ, et al. Evaluation of a novel technique for wound closure using a barbed suture. Plastic and Reconstructive Surgery 2006; 117(6):1769–1780. https://doi.org/10.1097/01.pr.s.0000209971.08264.b0 PMID: 16651950
27. Gaertner I, Burkhardt T, Beinder E. Scar appearance of different skin and subcutaneous tissue closure techniques in caesarean section: a randomized study. European journal of obstetrics, gynecology, and reproductive biology 2008; 138(1):29–33. https://doi.org/10.1016/j.ejogrb.2007.07.003 PMID: 17825472
28. Basha SL, Rochon ML, Quiones JN, et al. Randomized controlled trial of wound complication rates of subcuticular suture vs staples for skin closure at cesarean delivery. American Journal of Obstetrics and Gynecology 2010; 203(3):285.e281–285.e288. https://doi.org/10.1016/j.ajog.2010.07.011 PMID: 20816153
29. Cromi A, Ghezzi F, Gottardi A, et al. Cosmetic outcomes of various skin closure methods following cesarean delivery: a randomized trial. American journal of obstetrics and gynecology 2010; 203(1):36.e31–38. https://doi.org/10.1016/j.ajog.2010.02.001 PMID: 20417924
30. Rengerink KO, Mol BW, Pajkrt E, et al. Techniques for wound closure at caesarean section: A randomized controlled trial. American Journal of Obstetrics and Gynecology 2011; 204(1):S267.
31. Figueroa D, Jauk VC, Szychowski JM, et al. Surgical staples compared with subcuticular suture for skin closure after cesarean delivery: A randomized controlled trial. Obstetrics and Gynecology 2013; 121(1):33–38. https://doi.org/10.1097/01.ajog.0000413224-013-0448-5 PMID: 23262925
32. Vats U, Pandit Suchitra N. Comparison of efficacy of three skin closure materials, i.e., poliglecaprone 25, polyglactin 910, polyamide, as subcuticular skin stitches in post-caesarean women: A randomized clinical trial. Journal of Obstetrics and Gynecology of India 2014; 64(1):14–18. https://doi.org/10.1007/s13224-013-0448-5 PMID: 24587600
33. Daykan Y, Sharon-Weiner M, Pasternak Y, et al. Skin closure at cesarean delivery, glue vs subcuticular sutures: a randomized controlled trial. American Journal of Obstetrics and Gynecology 2017; 216(4):406.e401–406.e405. https://doi.org/10.1016/j.ajog.2017.01.009 PMID: 28153666
34. Zaki MN, Wing DA, McNulty JA. Comparison of staples vs subcuticular suture in class III obese women undergoing cesarean: a randomized controlled trial. American Journal of Obstetrics and Gynecology 2018; 218(4):451.e451–451.e458.
35. Rodel RL, Quiner T, Gray KM, et al. 1190: Suture vs. staples for cesarean skin closure in class III obesity: A randomized controlled trial. American Journal of Obstetrics and Gynecology 2020; 222(1):S732–S733.
36. Chunder A, Devjee J, Khedun SM, Moodley J, Esterhuizen T. A randomised controlled trial on skin closure materials for skin closure at caesarean section: do wound infection rates differ? South African medical journal 2012; 102(6 Pt 2):374–376. https://doi.org/10.7196/samj.5357 PMID: 22668311
37. Fitzwater JL, Jauk VC, Figueroa D, et al. Wound morbidity with staples compared with suture for cesarean skin closure by diabetic status. Journal of Maternal-Fetal and Neonatal Medicine 2016; 29(2):279–282. https://doi.org/10.3109/14767058.2014.998647 PMID: 25567358
38. Poprzeczny AJ, Grivell RM, Louise J, Deussen AR, Dodd JM. Skin and subcutaneous fascia closure at caesarean section to reduce wound complications: the closure randomised trial. BMC Pregnancy Childbirth 2020; 20(1):606. https://doi.org/10.1186/s12884-020-03305-z PMID: 33032560

39. Dhanya, Mackeen A, Berghella Vincenzo, & Mie-Louise, et al. Techniques and materials for skin closure in caesarean section. Cochrane Database of Systematic Reviews 2012.

40. Di Spiezo Sardo A, Saccone G, McCurdy R, et al. Risk of Cesarean scar defect following single- vs double-layer uterine closure: systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet Gynecol 2017; 50(5):578–583. https://doi.org/10.1002/uog.17401 PMID: 28070914