A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein

Maryam Mousavinezhad-Moghaddam 1, Abbas Ali Amin 2, Houshang Rafatpanah 3, Seyed Abdul Rahim Rezaee 4 *

1 Department of Physiology, Biology Division, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2 Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
3 Immunology Research Center, Bu-All Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
4 Inflammation and Infectious Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

ABSTRACT

The physiologic function of the immune system is defense against infectious microbes and internal tumour cells. Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi’s sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents.

Introduction

The organism is protected against both foreign pathogens and internal harmful stimuli by the immune system. However, the immune system activities are regulated by inhibitory mechanisms for maintenance of the body homeostasis. To modulate the immune responses, a variety of molecules and receptors are involved. The CD200/CD200R interaction is one the inhibitory mechanisms in which myeloid and lymphoid cells are downregulated, properly (1). CD200 and CD200R molecules are membrane proteins that their immune-modulatory effects are able to suppress inflammatory responses and induce immune tolerance in some circumstances. CD200 is expressed on the surface of many cell types whereas CD200R expression is restricted mainly to myeloid cells (2-4).

CD200 structure

Cellular CD200 protein, also called OX2, belongs to a group of leukocyte IgSF glycoproteins including neural cell adhesion molecule (NCAM) and thymocyte differentiation antigen 1 (Tby-1) (5). Recently its structure has been identified and the main pattern is containing IgV and IgC domains (6). Due to the short intra-cytoplasmic tail of CD200 lacks the signal transmission capacity (7, 8).

Cellular CD200 is particularly expressed on a broad range of cell types, such as thymocytes, B cells, activated T cells, follicular dendritic cells, neurons and vascular endothelium (2, 3). CD200 is an adhesion molecule that negatively regulates functions of macrophage lineage, and probably T cell responses (9). Thus, CD200 might be involved in the delivery of tolerizing signals to T cells (10).

In contrast to CD200 which is expressed on a wide range of cells, in humans the distribution of the CD200 receptors (CD200R) is restricted to myeloid and lymphoid cells (1, 4). Recently, CD200R1 expression in human trophoblast cells has also been

*Corresponding author: Seyed Abdul Rahim Rezaee, Inflammation and Infectious Diseases Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38012768; Fax: +98-51-38436626; email: rezaee@iums.ac.ir
reported (11). Several groups have described evidences for the existence of members of the CD200R family (including in the mouse, CD200R1, R2, R3 and R4, and in man CD200R1 and R2) (4, 12). Mammalian CD200R1 subtypes, including the human varieties, have an intra-cyttoplasmic tail consisting of at least 60 amino acid residues that may transfer negative signals through receptor ligation in macrophages and T cells (4, 13). It should be noted that vOX2 signals via binding to CD200R (14); therefore, it presumably activates CD200 employed signalling pathway.

There have been controversies regarding the functions of CD200R family members. Although, Barclay’s group have shown that mouse CD200 mainly binds to the inhibitory receptor CD200R1 (15). Gorczynski et al have shown that different isoforms of CD200R bind to CD200, although, the functional consequences of CD200 interaction are different (12). Genes encoding CD200 and CD200R are located on chromosome 3, 3q12-13 and 3q13, respectively (16, 17).

The immunomodulatory potent of CD200

The immune-modulatory effects of CD200/CD200R system have been confirmed in many studies. This immunosuppressive activity was shown in CD200/- knockout mice (18), when macrophage numbers were elevated and their phenotype was activated. Moreover, microglia of these mice, including retinal microglia (19), were hyperactivated in response to injury and the animals succumbed rapidly to collagen-induced arthritis. It has also been shown that the severity of the disease and inflammation are increased during influenza virus infection in CD200/- mice (20).

Since positive costimulatory signals are essential in T cell activation, blocking either these signals alone or downstream signaling events is important for induction of immunological unresponsiveness. It has been reported that some dendritic cells (DCs) expressing CD200, triggered an immunoregulatory function which leads to increased allograft survival (21). Moreover, blocking CD200/CD200R interaction by anti-CD200R antibody has been resulted in microglial activation and intensified neurodegeneration in Parkinson’s disease animal model (22). In close cell-cell contact, it seems that the CD200/CD200R1 interaction provides modulatory signals that contribute to setting signalling thresholds at an appropriate level at the site of an immune response. Therefore, the CD200/CD200R1 interaction may influence locally on immune-response to modulate immune cell activities at the sites of infection.

CD200 delivers immunosuppressive signals to myeloid cells by ligating its cognate receptors; the three principal mitogen activated protein kinases (MAPks) (ERK, JNK and p38 MAPk) are inhibited after CD200R1 ligation by CD200, through the recruitment of RasGAP, via adapter proteins Dok1 and Dok2 (23). T cell function may also be impaired by ligation of the CD200 receptor family: Gorczynski and colleagues induced FoxP3+ regulatory T cells (Treg) with anti-CD200R2 monoclonal antibody directly in thymocytes and via maturation of dendritic cells having the capacity to induce Treg (24). Inflammatory stimuli invoke several intracellular signalling pathways, including the NF-kB pathway and the three MAPk pathways. Indeed, these pathways represent targets for therapeutic intervention in the treatment of inflammatory diseases, such as rheumatoid arthritis, psoriasis and Crohn’s disease, as well as haematological malignancies (25-27).

Therapeutic application of CD200

CD200 in the central nervous system (CNS) and the eye

CD200 has been identified as an immunomodulatory molecule in immune privileged organs such as the CNS and eye. The immune status of the CNS and eye is strictly regulated and kept to a minimum. The professional phagocytes of the nervous system, microglial cells, are kept in a quiescent state in the intact CNS by local interaction of CD200 and CD200R1. While neurons express the CD200, the corresponding ligand was detected on microglial cells (28). Although distribution of CD200 is widespread on the endothelium of many organs, its constitutive expression on neurons within the CNS and eye may confer additional protection against immune destruction through regulation of macrophage activity via CD200R1. In support of these findings, the phenotype of a CD200-deficient mouse showed defects in myeloid cell biology within tissues that normally express CD200 (18). One of these defects was an increase in the number and activation state of microglial cells in the brain. In addition, these animals showed an increased susceptibility to experimental autoimmune encephalitis (EAE). Further, CD200-deficient mice showed increased expression of inducible nitric oxide synthase in inflammatory microglia and macrophages during EAE (18). It therefore seems that CD200 provides a steady-state control mechanism for microglia in the brain.

The attenuated expression of CD200 in neurodegenerative diseases has been reported (29). In this case, increased microglia activation was seen in Parkinson and Alzheimer patients because of down regulating CD200 expression (30). CD200R blocking antibody injection into striatum 6-hydroxydopamine (6-OHDA)-lesioned rats model of Parkinson’s disease increased microglia activation and neurodegeneration compared to control groups (31).
It has been confirmed that CD200R is located on the surface of myeloid and lymphoid cells although CD200R1 expression by villus trophoblast and by decidual cells has recently been reported. However the biological importance of CD200/CD200R signalling in non-hematopoietic cells is not clear; it maybe required for human pregnancy success (11, 40).

Role of CD200 in transplantation

Allograft survival in mice is increased following donor-specific portal vein (pv) immunization (41). Using a DNA subtractive hybridisation approach, tolerance in pv-immunised mice was found to be associated with increased expression of a number of distinct mRNA species, one of which encoded CD200 (41). Furthermore, either increased expression of CD200 or soluble CD200 administration to mice receiving allograft was associated with immune suppression and altered cytokine production, leading to increased graft survival (10, 21, 41, 42). In these circumstances, prolongation of allograft survival is associated with preferential activation of type 2 cytokine (IL-4, IL-10 and TGF-β) rather than type 1 cytokine (IL2, IFN-γ) producing cells. These effects are enhanced by simultaneous infusion of soluble CD200Fc and donor CD200R1 bearing macrophages to transplant mice (21, 43).

However CD200Fc injection subconjunctivally after corneal allografts in rats has not been an efficient therapeutic strategy for suppression CD200/CD200R axis in macrophages and could not inhibit corneal graft rejection (44). Gorczynski and his colleagues produced a hybrid molecule named CD200Fc(Gly)6TGFβ (45). This molecule can bind to both T cell through TGFβ and APC through CD200R1 and result in activity suppression of leukocytes by its strong inhibitory effect (46).

Role of CD200 in malignances

An important consideration is whether the CD200 molecule is also implicated in immunity to tumour cells. It has been found that infusion of CD200Fc suppresses tumour immunity, leading to increased tumour growth (47). There is a positive correlation between both CD200R expression and the level of soluble form of CD200 with proliferation and metastasis in some malignancies (48, 49). Increased CD200 expression in acute myeloid leukaemia and multiple myeloma patients is associated with a poor prognosis (50, 51).

Role of CD200 in allergy

Mast cells and basophils play a crucial role in allergic reactions in body tissues and blood respectively. It has been confirmed that CD200/CD200R interaction reduces their degranulation and attenuates the allergic inflammation (23, 52). Administration of intratracheal CD200 recombinant to experimental asthmatic rats was
also reported to inhibit airway hyperresponsiveness by local alterations of T cell responses and the cytokine secretion (53).

Role of CD200 in autoimmune diseases

Multiple sclerosis as an autoimmune disease is a serious neurological disorder with axonal demyelination. Using animal models of MS, EAE, it is confirmed CD200/CD200R interaction suppresses inflammatory responses by microglia inhibition (54). Both the severity and disease progression during the chronic phase of EAE in mice was decreased by CD200Fc injection (54). Rheumatoid arthritis is another autoimmune disorder that is associated with synovial damages while its progression was increased in CD200-/− mice (55). CD200Fc injection also decreased the level of proinflammatory cytokines and induced slow progression in rats with rheumatoid arthritis. Thus CD200/CD200R interaction promotes nonresponsiveness to autoantigens (56).

KSHV vOX2

The establishment of viral infection is a complex process in which both host immune responses and viral factors contribute to the outcome of infection. Innate immune system including antiviral effector mechanisms, interferons, phagocytes, natural killer (NK) cells and complement, along with adaptive immune antiviral responses such as antibodies and cytotoxic T lymphocytes, protect the host from viral infection. The establishment of infection depends on viral evasion strategies from host immune system effector functions.

Herpesviridae family, all are enveloped and double stranded DNA viruses which consists of eight species (57); Kaposi's sarcoma-associated herpesvirus (KHSV) belongs to the subfamily of Gammaherpesvirinae and is called human herpesvirus 8 (HHV-8). KHSV worldwide has infected several hundred millions of humans with the highest incidence in central regions of Africa in which more than 50% of population is infected (58, 59). Our study in Northeast Iran among prisoners showed that KHSV seroprevalence is less than 5% (unpublished data). KHSV contributes to tumor induction and the infection is associated with three human malignancies: Kaposi’s sarcoma (KS) (60), multicentric Castleman’s disease (MCD) (61) and primary effusion lymphoma (PEL) (62). In 2002, 65,000 KS cases were identified which represents 1% of detected cancers (63). In last decades, high prescription of immunosuppressive drugs (iatrogenic immunodeficiency), transplantation and HIV infection have increased the incidence of KHSV infection. Therefore, it was brought to the attention by inducing the most common neoplasm in acquired immune deficiency syndrome (AIDS) patients (64); KHSV and HIV-1 co-infection could increase the KS risk by 60% (65).

Herpesviruses vary in their genome (66) and particle size (120 nm to 300 nm) (67), specific proteins, and pathogenesis; however, they share a characteristic architecture in which all of them have a similar virion structure and genome characteristics. Their genomes encode 60 to 120 genes. KHSV genome encodes 86 genes (Figure 1; GenBank accession no. AF148805), of which, 25% (about 22 genes) are involved in immune system modulation (68, 69). Two groups of viral immunomodulatory genes, homologues of cellular genes and non-homologues, help the virus to evade immune system. The effects of viral immune modulation are implemented through chemokines, cytokines, cell surface receptors, signal transduction and antigen presentation. Effective anti-KHSV immune responses have been demonstrated in neutralising antibody responses (70), virion endocytosis (71), cytotoxic lymphocyte (72) and NK cells (73).

KHSV encodes several molecules which affect innate immunity and helpS virus to evade from destructive host responses. Among them, open reading frame (ORF) 4 encodes a protein which inhibits complement mediated lysis of infected cells (74) and therefore is called KHSV complement control protein (KCP). Several viral homologs of interferon regulatory factors (vIRFs) encoded by KHSV (75, 76) restrain the expression of IFN-inducible genes, induce decay of activated IRF3 and prevent the activation of protein kinase R (PKR) (69). Other factors affecting innate immunity include three viral chemokines (vCCL1, vCCL2 and vCCL3), viral CD200 which is called vOX2 (it will be discussed in details in next sections), viral interleukin-6 (vIL-6) and viral G protein-coupled receptor (vGPCR) (77). KHSV K3 and K5 induce down-regulation of MHC class I which help the virus evade destruction mediated by CD8+ cytotoxic T cells (78). Furthermore, K5 reduces B7-2 and ICAM-1 surface expression and interferes in T helper cells activation (77).

Several human herpesviruses including HHV-6 (79), HHV-7 (80), rat Cytomegalovirus (CMV) (81), Rhesus macaque rhabdovirus (RRV) (82) and KHSV (83), as well as a yaba-like disease poxvirus (YLDV) (84), Shope (85) and myxoma virus (86) encode CD200 homologues. It is most likely that distinct viral families have independently captured the cellular CD200 immunoregulatory gene (87), presumably to provide a selective microenvironment that protects infected cells from host inflammatory and immune responses. Considering the shared mechanisms of immunomodulation with cellular CD200, KHSV vOX2 should bind to CD200R (14, 88) to activate signalling pathways which might be involved in suppressing some aspects of immune system.
Indeed, KSHV encodes a long list of immunomodulators; however, since KSHV vOX2 has a broad range of activities on immune responses, the modulatory effects of the protein will be highlighted in the next sections. In this review, considering its homology with CD200 and shared receptors and some identical functions, firstly, CD200 function will be discussed and in following structural and functional properties of vOX2 will be considered. Finally, potential use of viral proteins (like vOX2) in clinical applications will be discussed.

vOX2 structure

The KSHV vOX2 protein, encoded by ORF K14, is a bicistronic transcript which also encodes vGPCR (Figure 1). This protein has been brought to the attention of researchers for its immunoregulatory activities. vOX2 is a type I transmembrane glycoprotein with 271 amino acids (89). This protein is a member of immunoglobulin superfamily (IgSF) containing IgV and IgC domains in N- and C-terminal fragments of the protein, respectively (5). It is constructed mainly from beta sheets with a small alpha helix in N-terminal domain; moreover, all five potential glycosylation sites are exposed on protein surface (90). The vOX2 protein is homologous to the rat and human CD200 molecule, various NCAMs, the poliovirus receptor-related protein (PRR1) and ORF U85 of HHV-6 and -7 (83) (Figure 2).

vOX2 adhesive function

Integrins are heterodimers of α and β subunits and their family could be divided into four main classes: leukocyte-specific receptors, collagen receptors, laminin receptors and Arg-Gly-Asp (RGD) receptors (91). In addition to the integrin, cadherin, and selectin gene families, members of the IgSF are responsible for many homophilic as well as
Modulation of immune system by KSHV vOX2

vOX2 modulates several aspects of immune responses which may prevent inducing of inflammatory reactions during lytic phase of virus replication (Table 1). Studies with soluble form of vOX2 in which viral protein was fused to C-domain of IgG1 (vOX2:Fc), have been revealed this protein suppresses neutrophils oxidative burst and inhibits IL-8 production by monocyte/macrophage cell line (95) and primary monocytes (unpublished data). Moreover, basophils treatment with vOX2:Fc or CD200 suppress histamine release and CD11b up-regulation induced by the engagement of FceRI (96), a condition which lessens effector functions of this kind of cells. In addition, CD200R transfected human NK cell line shows reduced cytotoxicity against CD200 or vOX2 transfected target cells (96) which represents another clue for inhibitory effect of KSHV vOX2. Recently, it has been demonstrated that vOX2 exerts negative effect on antigen-specific T cells (97). In this case, vOX2 transfected antigen-presenting cells (APCs) prohibited IFN-γ production and reduced exocytosis of cytotoxic T lymphocytes granule components. Furthermore, by suppressing Th1 cytokines and slight effect on Th2 cytokines, vOX2 favours Th2 immune response (unpublished data) which is not protective immune response in a viral infection.

In addition, in vivo studies on an animal model of rheumatoid arthritis in David Blackbourn Lab has shown that vOX2:Fc could inhibit the incidence and the severity score of autoimmune diseases (unpublished data), it also suppressed the acute inflammatory response in carrageenan induced inflammation (95).

Despite suppressive effects of vOX2 on neutrophils, NK cells, lymphocytes and basophils, its effect on macrophages has been remained controversial and it is not clear whether this effect is inhibitory or stimulatory. In Foster-Cuevas et al. study, vOX2 or CD200 expressing cells inhibited pro-inflammatory cytokines (i.e. TNF-α) secretion by activated macrophages (88), while the results were not confirmed by others (89). In another study by Salata et al., both activatory and inhibitory functions of vOX2 have been revealed (98); they showed that in the presence of vOX2, IFN-γ activated primary monocyte-derived macrophages (MDMs) shows reduced cytokine secretion and phagocytosis, while
in the absence of IFN-γ, these cells release inflammatory cytokines and intensify the phagocytosis. Furthermore, this study revealed that MHC-I and MHC-II expression in unstimulated MDMs reduce around 50 and 45%, respectively, while the MHC down-regulation is lower in IFN-γ stimulated MDMs (30% and 25% in MHC-I and MHC-II, respectively); these findings were not observed in our study using monocyte/macrophage cell lines (U937 and J774.2) and human monocyte primary cells (unpublished data). By considering the present results, it seems that activatory or inhibitory functions of vOX2 depend on macrophage maturation or activation phase or different signalling pathways might be involved. Salata et al. suggested that by down-regulating CD200R, vOX2 deliver a pro-inflammatory signal to MDMs (98). This probably means that vOX2 activates macrophages indirectly by down-regulating an inhibitory receptor (CD200R), but the mechanism is not yet clear. Moreover, this study showed that MDMs treatment with IFN-γ is resulted in increased CD200R expression which leads to anti-inflammatory responses (98).

Therapeutic application of viral immune-modulatory proteins

We are living with viruses from the time humans appeared. Viruses have co-evolved with their host and learned how to infect and also survive in a challenging environment like human body. To avoid destructive immune system responses, viruses use several methods (99) and secretion of immune-modulatory proteins like vOX2 is one of them. The immune-regulatory viral products help virus to downregulate or shift immune responses to a direction which is not destructive for virus survival. Some viruses like KSHV by establishing latency, are able to hide themselves. In a lytic phase, they are vulnerable to immune responses since their antigenic proteins are exposed and immune system could identify them. In this phase, proteins like vOX2 are produced to temper immune responses. In fact upon virus activation, vOX2 expression as an early-lytic protein increases over 100 fold (100) which indicates its importance to immune response deviation.

Even though immune system protects host against pathogens, it promotes many problems in human life such as autoimmunity diseases. Rates of some autoimmune diseases, for example multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), are increasing over the time (101-103). In non-pathological conditions such as organ transplantation, control of the immune responses is pivotal. In this field, non-steroidal anti-inflammatory drugs (NSAID), cyclosporine A, tacrolimus and rapamycin for instance, are widely used albeit with extensive side effects (104, 105). Formulating of target specific immune-suppressor agents is the main aim of new studies. At the present, some anti-inflammatory agents (i.e. TNFR-Ig and CTLA4-Ig) are FDA approved and numerous agents including monoclonal antibodies targeting immune system modules (i.e. anti-CD28, anti-CD80 and anti-TNF-α) are working out (106).

However, for thousands of years viruses have been evading immune responses and have gained capability to selectively suppress immune system.
They encode several proteins which interfere with some aspect of immune responses (see introduction). When viruses use them, why we not? Employing viral proteins, as anti-inflammatory agents is an up-coming tool which might have broad applications. Although, there is a huge holdup: immune system which identifies viral proteins and attempts to remove them especially by constructing antibodies. In fact viral proteins are immunogenic and our immune system considers them as a non-self. Any success in employing viral products as a medicinal treatment will depend on overcoming antigenicity problem.

There are not many options for increasing viral proteins bio-compatibility. Previously mouse and other animals produced antibodies were humanized. The same way might be applied to viral proteins. By keeping only receptor binding fragment and if needed binding capacity to appropriate host protein, it might help to reduce immune responses; despite it does not remove it. Identifying antigenic epitopes and substituting them with similar amino-acids might be another option to increase immune-compatibility. Protein encapsulation might be other option. By targeting the tissue for drug delivery which decreases the applied dose, it might assist to reduce the encounter of viral protein and host immune system and also reduces anti-viral protein responses.

As previously mentioned, many studies (88, 95-97) have stated the inhibitory effects of vOX2 on inflammatory reactions and this protein have been introduced as an appropriate candidate for modulation of immune system which might be used as a therapeutic agent.

Conclusion

Taken together, vOX2 is one of the KSHV strategies to modulate host inflammatory reactions in favor of virus dissemination. Many researchers have stated the inhibitory effects of vOX2 on inflammatory reactions and this protein has been introduced as an appropriate candidate for therapeutic agent. However, vOX2 is a viral protein and is able to elicit human immune responses. Due to antigenicity of viral products in humans and some controversial results, it is uncertain that viral proteins can be used as suitable medications. However, Dr. Blackbourn lab and our new in vitro and in vivo findings demonstrated that it can suppress acute and chronic inflammation. Prophylaxis and treatment of neutrophil driven diseases by vOX2:Fc may therefore represent an inventive step. The in vivo studies in carrageenan model of acute inflammation and autoimmune models (94) and unpublished data) demonstrated that bio-incompatibility for human could be resolved, vOX2 may be suitable immunomodulator for immunopathologic diseases.

Acknowledgment

The authors regret the omission of many colleagues’ research papers due to space constraints. We acknowledge the support of the Vice Chancellor for Research, Mashhad University of Medical Sciences, Mashhad, Iran (Grant No: MUMS 900118) and the help of the Vice Chancellor for Research, Ferdowsi University of Mashhad, Mashhad, Iran. Great thanks to Prof David Blackburn which the most of our articles in this review have been the results of works in his lab or with his collaborations. The results described in this paper were parts of student theses.

References

1. Holmannova D, Kolackova M, Kondelkova K, Kunes P, Krejsek J, Andrys C. CD200/CD200R paired potent inhibitory molecules regulating immune and inflammatory responses: Part I: CD200/CD200R structure, activation, and function. Acta Med 2012; 55:12-17.
2. Barclay AN. Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 1981; 4:727-736.
3. Webb M, Barclay AN. Localization of the MRC OX-2 glycoprotein on the surfaces of neurons. J Neurochem 1984; 43:1061-1067.
4. Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, Bigler M, et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 2003; 171:3034-3046.
5. Clark MJ, Gagnon J, Williams AF, Barclay AN. MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain. EMBO J 1985; 4:115-118.
6. Hatherley D, Lea SM, Johnson S, Barclay AN. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 2013; 21:820-832.
7. Chen Z, Zeng H, Gorczynski RM. Cloning and characterization of the murine homologue of the rat/human MRC OX-2 gene. Biochemica Biophys 1997; 1362:6-10.
8. Borriello F, Tizard R, Rue E, Reeves R. Characterization and localization of Mox2, the gene encoding the murine homolog of the rat MRC OX-2 membrane glycoprotein. Mamm Genome 1998; 9:114-118.
9. Gorczynski RM. CD200: CD200R-mediated regulation of immunity. ISRN Immunol 2012; 2012.
10. Gorczynski RM, Yu K, Clark D. Receptor engagement on cells expressing a ligand for the tolerance-inducing molecule OX2 induces an immunoregulatory population that inhibits alloreactivity in vitro and in vivo. J Immunol 2000; 165:4854-4860.
11. Clark DA, Dhay-Thind S, Arredondo JL, Ellis PM, Ramsay JA. The receptor for the CD200 tolerance-signaling molecule associated with successful
pregnancy is expressed by early-stage breast cancer cells in 80% of patients and by term placental trophoblasts. Am J Reprod Immunol 2015; 74:387-391.

12. Gorczynski R, Chen Z, Kai Y, Lee L, Wong S, Marsden PA. CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J Immunol 2004; 172:7744-7749.

13. Barclay AN, Wright GJ, Brooke G, Brown MH. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 2002; 23:285-290.

14. Wright GJ, Puklavc MJ, Willis AC, Hoek RM, Sedgwick JD, Brown MH, et al. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000; 13:233-242.

15. Hatherley D, Cherwinski HM, Moshref M, Barclay AN. Recombinant CD200 protein does not bind activating proteins closely related to CD200 receptor. J Immunol 2005; 175:2469-2474.

16. McCaughan GW, Clark MJ, Hurst J, Grosveld F, Barclay AN. The gene for MRC OX-2 membrane glycoprotein is localized on human chromosome 3. Immunogenetics 1987; 25:133-135.

17. Viéitez JM, de la Torre R, Ortega MA, Montero T, Peco JM, Sanchez-Pozo A, et al. Characterization of human cd200 glycoprotein receptor gene located on chromosome 3q12-13. Gene 2003; 311:99-104.

18. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290:1768-1771.

19. Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD. Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 2002; 161:1669-1677.

20. Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, et al. The unusual distribution of the CD200R family of immunoregulatory molecules. J Immunol 2004; 172:7744-7749.

21. Gorczynski RM, Catral MS, Chen Z, Hu J, Lei J, Min WP, et al. An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 1999; 163:1654-1660.

22. Zhang L, Stanford M, Liu J, Barrett C, Jiang L, Barclay AN, et al. Inhibition of macrophage activation by the myxoma virus M141 protein (vCD200). J Virol 2009; 83:9602-9607.

23. Zhang S, Cherwinski H, Sedgwick JD, Phillips JH. Molecular mechanisms of CD200 inhibition of mast cell activation. J Immunol 2004; 173:6786-6793.

24. Gorczynski RM, Lee L, Bouadakov I. Augmented Induction of CD4+CD25+ Treg using monoclonal antibodies to CD200R. Transplantation 2005; 79:180-1183.

25. Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood 2003; 101:4667-4679.

26. Karin M. Mitogen activated protein kinases as targets for development of novel anti-inflammatory drugs. Ann Rheum Dis 2004; 63:i62-i4.

27. Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol 2004; 4:372-377.

28. Neumann H. Control of glial immune function by neurons. Glia 2001; 36:191-199.

29. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 2009; 215:5-19.

30. Wang XJ, Ye M, Zhang YH, Chen SD. CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson’s disease. J Neuroimmune Pharmacol 2007; 2:259-264.

31. Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ, Zhang YJ, et al. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflamm 2011; 8:154.

32. Lyons A, Downer EJ, Costello DA, Murphy N, Lynch MA. Dok2 mediates the CD200Fc attenuation of Abeta-induced changes in glia. J Neuroinflamm 2012; 9:107.

33. Yue X, Qiao D, Wang A, Tan X, Li Y, Liu C, et al. CD200 enhances methamphetamine-induced microglial activation and dopamine depletion. J Huazhong Univ Sci Technolog Med Sci 2012; 32:415-421.

34. Dick AD, Broderick C, Forrester JV, Wright GJ. Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthal Vis Sci 2001; 42:170-176.

35. Szereres-Bartho J. Immunological relationship between the mother and the fetus. Int Rev Immunol 2002; 21:471-495.

36. Wright GJ, Jones M, Puklavc MJ, Brown MH, Barclay AN. The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 2001; 102:173-179.

37. Bukovsky A, Presl J, Zidovsky J, Mancal P. The localization of Thy-1.1, MRC OX 2 and la antigens in the rat ovary and fallopian tube. Immunology 1983; 48:587-596.

38. Clark DA, Ding JW, Yu G, Levy GA, Gorczynski RM. Fgl2 prothrombinase expression in mouse trophoblast and decidua triggers abortion but may be countered by OX-2. Mol Hum Reprod 2001; 7:185-194.

39. Clark DA, Yu G, Levy GA, Gorczynski RM. Procoagulants in fetus rejection: the role of the OX-2 (CD200) tolerance signal. Semin Immunol 2001; 13:255-263.

40. Clark DA, Arredondo JL, Dhesy-Thind S. The CD200 tolerance-signaling molecule and its receptor, CD200R1, are expressed in human placental villus trophoblast and in peri-implant decidua by 5 weeks’ gestation. J Reprod Immunol 2015; 112:20-23.

41. Gorczynski RM, Chen Z, Zeng H, Fu XM. A role for persisting antigen, antigen presentation, and ICAM-1 in increased renal graft survival after oral or portal
vein donor-specific immunization. Transplantation 1998; 66:339-349.
42. Ragheb R, Abrahams S, Beeacroft R, Hu J, Ni J, Ramakrishna V, et al. Preparation and functional properties of monoclonal antibodies to human, mouse and rat OX-2. Immun Lett 1999; 68:311-315.
43. Gorczynski RM, Bransom J, Cattral M, Huang X, Lei J, Xiaorang L, et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGFbeta and IL-10, along with administration of CH0 cells expressing the regulatory molecule OX-2. Clin Immunol 2000; 95:182-189.
44. Nichols SM, Copland DA, Vitova A, Kuffova L, Forrester JV, Dick AD. Local targeting of the CD200-CD200R axis does not promote corneal graft survival. Exp Eye Res 2015; 130:1-18.
45. Gorczynski R, Chen Z, Shivagnaham S, Taseva A, Wong K, Yu K, et al. CD200Fc (Gly) 6TGF (beta) suppresses transplant rejection and MLCs in vitro. J Immunol 2010; 184:49.15.
46. Gorczynski RM, Chen Z, Shivagnaham S, Taseva A, Wong K, Yu K, et al. Potent immunosuppression by a bivalent molecule binding to CD200R and TGF-betaR. Transplantation 2010; 90:150-159.
47. Gorczynski RM, Chen Z, Hu J, Kai Y, Lei J. Evidence of a role for CD200 in regulation of immune rejection of leukemic tumour cells in C57BL/6 mice. Clin Exp Immunol 2011; 123:405-415.
48. Yu K, Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266:1865-1869.
49. Areste C, Blackbourn DJ. Modulation of the immune response to EMT6 tumor cells in C57BL/6 mice. Breast Cancer Res Treat 2010; 123:405-415.
50. Vela-Ojeda J, Garcia-Ruiz Esparza MA, Padilla-Gonzalez Y, Perez-Requican F, Reyes-Maldonado E, Maillet D, et al. [CD200 protein, bad prognostic in patients with multiple myeloma]. Rev Med Inst Mex Seguro Soc 2015; 53:4-38-443.
51. Zhang XL, Shen AL, Guo R, Wang Y, Qiu HR, Qiao C, et al. [Expression characteristics of CD200 in acute myeloid leukemia and its clinical significance]. Zhongguo shi yan Xue Ye Xue Za Zhi 2014; 22:1531-1534.
52. Holmannova D, Kolackova M, Kondelkova K, Kunes P, Krejsek J, Citrad A. CD200/CD200R paired inhibitory molecules regulating immune and inflammatory responses; Part II: CD200/CD200R potential clinical applications. Acta Med 2012; 55:59-65.
53. Lauzon-Joset JF, Langlois A, Lai LJ, Santerre K, Lee-Gosselin A, Bosse Y, et al. Lung CD200 Receptor Activation Abrogates Airway Hyperresponsiveness in Experimental Asthma. Am J Respir Cell Mol Biol 2015; 53:276-284.
54. Liu Y, Bando Y, Vargas-Lowry D, Elyaman W, Khoury SJ, Huang T, et al. CD200R1 agonist attenuates mechanisms of chronic disease in a murine model of multiple sclerosis. J Neurosci 2010; 30:2025-2038.
55. Simelyte E, Criado G, Essex D, Uger RA, Feldmann M, Williams RO. CD200-Fc, a novel antiarthritic biologic agent that targets proinflammatory cytokine expression in the joints of mice with collagen-induced arthritis. Arthritis Rheum 2008; 58:1038-1043.
56. Simelyte E, Alzabin S, Boudakov I, Williams R. CD200R1 regulates the severity of arthritis but has minimal impact on the adaptive immune response. Clin Exp Immunol 2010; 162:163-168.
57. Cary Chisholm, Lopez L. Cutaneous Infections Caused by Herpesviridae: A Review. Arch Pathol Lab Med 2011; 135:1357-1362.
58. Plancoulaine S, Gessain A. Epidemiological aspects of human herpesvirus 8 infection and of Kaposi’s sarcoma. Med Mal Infect 2005; 35:314-321.
59. Dukers NH, Rezza G. Human herpesvirus 8 epidemiology: what we do and do not know. AIDS 2003; 17:1717-1730.
60. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, et al. CD200 in regulation of immune rejection of leukemic tumour cells in C57BL/6 mice. Clin Exp Immunol 2001; 123:220-229.
61. Gessain A. Human herpesvirus 8 (HHV-8): clinical and epidemiological aspects and clonality of associated tumors. Bull Acad Natl Med 2008; 192:1189-11204.
62. Cesarn E, Chang Y, Moore PS, Said JW, Knowles DM. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 1995; 332:1186-1191.
63. Gessain A. Human herpesvirus 8 (HHV-8): clinical and epidemiological aspects and clonality of associated tumors. Bull Acad Natl Med 2008; 192:1189-11204.
64. Friedman-Kien AE, Laubenstein L, Marmor M, Hymes K, Green J, Ragaz A, et al. Kaposi's sarcoma and Pneumocystis pneumonia among homosexual men-New York City and California. MMWR 1981; 30:305-308.
65. Jacobson LP, Jenkins FJ, Springer G, Munoz A, Shah KV, Phair J, et al. Interaction of human immunodeficiency virus type 1 and human herpesvirus type 8 infections on the incidence of Kaposi's sarcoma. J Infect Dis 2000; 181:1940-1949.
66. Davison AJ. Comparative analysis of the genomes. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R, et al., editors. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge: Cambridge University Press; 2007.
67. Goedert J, Jenkins F, Hoffman L. Overview of Herpesviruses. Infectious Causes of Cancer. Infectious Diseases: Humana Press; 2000. p. 33-49.
68. Breese C, Blackbourn DJ. Modulation of the immune system by Kaposi's sarcoma-associated herpesvirus. Trends Microbiol 2009; 17:119-129.
69. Lee HR, Lee S, Chaudhary PM, Gill P, Jung JU. Immune evasion by Kaposi's sarcoma-associated herpesvirus. Future Microbiol 2010; 5:1349-1365.
70. Dialynas IA, Graham D, Rezaee R, Blue CE, Stavrianeas NG, Neisters HG, et al. Anti-HHV-8/KSHV
antibodies in infected individuals inhibit infection in vitro. AIDS 2004; 18:1263-1270.

71. Glauer DL, Gillet L, Stevenson PG. Virion endocytosis is a major target for murid herpesvirus-4 neutralization. J Gen Virol 2012; 93:1316-1327.

72. Micheletti F, Monini P, Fortini C, Rimessi P, Bazzaro M, Andreoni M, et al. Identification of cytotoxic T lymphocyte epitopes of human herpesvirus 8. Immunology 2002; 106:395-403.

73. Siranni MC, Vincenzi L, Topino S, Giovannetti A, Mazzetta F, Livi F, et al. NK cell activity controls human herpesvirus 8 latent infection and is restored upon highly active antiretroviral therapy in AIDS patients with regressing Kaposi's sarcoma. Eur J Immunol 2002; 32:2711-2720.

74. Spiller OB, Robinson M, O'Donnell E, Milligan S, Morgan BP, Davison AJ, et al. Complement regulation by Kaposi's sarcoma-associated herpesvirus ORF4 protein. J Virol 2003; 77:592-599.

75. Moore PS, Boshoff C, Weiss RA, Chang Y. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996; 274:1739-1744.

76. Cunningham C, Barnard S, Blackbourn DJ, Davison AJ. Transcript mapping of human herpesvirus 8 genes encoding viral interferon regulatory factors. J Gen Virol 2000; 81:1471-1483.

77. Rezaee SA, Cunningham C, Davison AJ, Blackbourn DJ. Kaposi's sarcoma-associated herpesvirus immune modulation: an overview. J Gen Virol 2006; 87:1781-1804.

78. Ishido S, Wang C, Lee BS, Cohen GB, Jung JU. Downregulation of major histocompatibility complex I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J Virol 2000; 74:5300-5309.

79. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, et al. The DNA sequence of human herpesvirus 6: structure, coding content, and genome evolution. Virology 1995; 209:29-51.

80. Nicholas J. Determination and analysis of the complete nucleotide sequence of human herpesvirus. J Virol 1996; 70:5975-5989.

81. Voigt S, Sandford GR, Hayward GS, Burns WH. The English strain of rat cytomegalovirus (CMV) contains a novel captured CD200 (vOX2) gene and a spliced CC chemokine upstream from the major immediate-early region: further evidence for a separate evolutionary lineage from that of rat CMV Maastricht. J Gen Virol 2005; 86:275-274.

82. Searles RP, Bergquam EP, Ashelm MK, Wong SW. Sequence and genomic analysis of a Rhesus macaque rhadinovirus with similarity to Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. J Virol 1999; 73:3040-3053.

83. Russo JJ, Bohemzky RA, Chien MC, Chen J, Yan M, Maddalena D, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci U S A 1996; 93:14862-14867.

84. Lee HJ, Essani K, Smith GL. The genome sequence of Yaba-like disease virus, a yatapoxvirus. Virology 2001; 281:170-192.

85. Willer DO, McFadden G, Evans DH. The complete genome sequence of shope (rabbit) fibroma virus. Virology 1999; 264:319-343.

86. Cameron C, Hota-Mitchell S, Chen L, Barrett J, Cao JX, Macaulay C, et al. The complete DNA sequence of myxoma virus. Virology 1999; 264:298-318.

87. McGeoch DJ, Davison AJ. The descent of human herpesvirus 8. Semin Cancer Biol 1999; 9:201-209.

88. Foster-Cuevas M, Wright GJ, Puklavec MJ, Brown MH, Barclay AN. Human herpesvirus 8 K14 protein mimics CD200 in down-regulating macrophage activation through CD200 receptor. J Virol 2004; 78:7667-7676.

89. Chung YH, Means RE, Choi JK, Lee BS, Jung JU. Kaposi's sarcoma-associated herpesvirus OX2 glycoprotein activates myeloid-lineage cells to induce inflammatory cytokine production. J Virol 2002; 76:4688-4698.

90. Amini AA, Solovyova AS, Sadeghian H, Blackbourn DJ, Rezaee SA. Structural properties of a viral orthologue of cellular CD200 protein: KSHV vOX2. Virology 2015; 474:94-104.

91. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res 2010; 339:269-280.

92. Weis SM, Cheros DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 2011; 17:1359-1370.

93. Sutherland M, Gordon A, Snyder SD, Patterson LH, Sheldrake HM. RGDF-binding integrins in prostate cancer: expression patterns and therapeutic prospects against bone metastasis. Cancers 2012; 4:1106-1145.

94. Akula SM, Pramod NP, Wang FZ, Chandran B. Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 2002; 108:407-419.

95. Rezaee SR, Grace JA, McInnes IB, Blackbourn DJ. Inhibition of neutrophil function by the Kaposi's sarcoma-associated herpesvirus vOX2 protein. AIDS 2005; 19:1907-1910.

96. Shiratori I, Yamaguchi M, Suzukiwa M, Yamamoto K, Lanier LL, Saito T, et al. Down-regulation of basophil function by human CD200 and human herpesvirus-8 CD200. J Immunol 2005; 175:4441-4449.

97. Misstear K, Chanas SA, Rezaee SA, Colman R, Quinn LL, Long HM, et al. Suppression of antigen-specific T cell responses by the Kaposi's sarcoma-associated herpesvirus viral OX2 protein and its cellular orthologue, CD200. J Virol 2012; 86:2465-6257.

98. Salata C, Curtarello M, Calistri A, Sartori E, Sette P, de Bernard M, et al. vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. J Cell Physiol 2009; 219:698-700.

99. Alcami A, Koszinowski UH. Viral mechanisms of immune evasion. Immunol Today 2000; 21:447-455.

100. Jenner RG, Alba MM, Boshoff C, Kellam P. Kaposi's sarcoma-associated herpesvirus latent and lytic gene expression as revealed by DNA arrays. J Virol 2001; 75:891-902.
101. Tullman MJ. Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manag Care 2013; 19:S15-20.
102. Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011; 365:2110-2121.
103. Danchenko N, Satia JA, Anthony MS. Epidemiology of systemic lupus erythematosus: a comparison of worldwide disease burden. Lupus 2006; 15:308-318.
104. Stucker F, Ackermann D. Immunosuppressive drugs - how they work, their side effects and interactions. Ther Umsch 1993; 68:679-686.
105. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 2009; 4:481-508.
106. Focosi D, Maggi F, Pistello M, Boggi U, Scatena F. Immunosuppressive monoclonal antibodies: current and next generation. Clin Microbiol Infect 2011; 17:1759-1768.