Methods to Quantify Soft Tissue–Based Cranial Growth and Treatment Outcomes in Children: A Systematic Review

Sander Brons1*, Machteld E. van Beusichem1, Ewald M. Bronkhorst2, Jos M. Draaisma3, Stefaan J. Bergé4, Jan G. Schols1, Anne Marie Kuijpers-Jagtman1

1 Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 2 Department of Preventive and Curative Dentistry, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 3 Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, 4 Department of Oral and Maxillofacial Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Abstract

Context: Longitudinal assessment of cranial dimensions of growing children provides healthcare professionals with information about normal and deviating growth as well as treatment outcome.

Objective: To give an overview of soft tissue–based methods for quantitative longitudinal assessment of cranial dimensions in children until age 6 years and to assess the reliability of these methods in studies with good methodological quality.

Data source: PubMed, EMBASE, Cochrane Library, Web of Science, Scopus, and CINAHL were searched. A manual search was performed to check for additional relevant studies.

Study selection: Primary publications on facial growth and treatment outcomes in children younger than age 6 years were included.

Data extraction: Independent data extraction was performed by two observers. A quality assessment instrument was used to determine methodological quality. Methods used in studies with good methodological quality were assessed for reliability expressed as the magnitude of the measurement error and the correlation coefficient between repeated measurements.

Results: In total, 165 studies were included, forming three groups of methods: head circumference anthropometry, direct anthropometry, and 2D photography and 3D imaging techniques (surface laser scanning and stereophotogrammetry). In general, the measurement error was below 2 mm, and correlation coefficients were very good.

Conclusion: Various methods for measuring cranial dimensions have shown to be reliable. Stereophotogrammetry is the most versatile method for quantitative longitudinal assessment of cranial dimensions and shapes in children. However, direct anthropometry continues to be the best method for routine clinical assessments of linear cranial dimensions in growing children until age 6 years.

Citation: Brons S, van Beusichem ME, Bronkhorst EM, Draaisma JM, Bergé SJ, et al. (2014) Methods to Quantify Soft Tissue–Based Cranial Growth and Treatment Outcomes in Children: A Systematic Review. PLoS ONE 9(2): e89602. doi:10.1371/journal.pone.0089602

Introduction

Longitudinal assessment of cranial dimensions of growing children provides healthcare professionals with information about normal and deviating growth as well as treatment outcome, for example in cases of deformational plagiocephaly and craniosynostosis [1,2]. Accurate quantitative evaluation of cranial dimensions by comparison of an individual patient to normative values can provide insight into an underlying pathologic process or create a basis for treatment planning, as in cases of autism and hydrocephalus [3,4].

Various methods for quantitative evaluation of craniofacial dimensions have been described for a variety of purposes. The standard technique is direct anthropometry, which has been extensively used for the study of craniofacial dimensions in the past century [5]. Two-dimensional (2D) x-ray cephalometry [6–8] and photography [9,10] also have been applied for decades and even today are the most commonly used records for dento-skeletal and facial diagnosis. Recent technological advancements have led craniofacial researchers and clinicians into the era of three dimensional (3D) digital imaging. Techniques like cone beam computed tomography [11,12], surface laser scanning [13,14], and...
stereophotogrammetry [15–17] have become available for describing and comparing craniofacial dimensions and shapes, making a diagnosis or planning treatment, and evaluating growth and treatment outcomes.

In an earlier systematic review, we described various methods for quantitative evaluation of facial dimensions in children up to age 6 years for a variety of purposes [18]. This study describes the methods for quantitative evaluation of cranial dimensions. Its aims are to 1) give an overview of soft tissue-based methods for quantitative longitudinal assessment of cranial dimensions in children up to age 6 years; 2) assess the methodological quality of these methods applied in studies with good methodological quality.

Methods

Protocol and registration

Inclusion criteria and methods of analysis were specified in advance and documented in a protocol. A registration number is not available for this review since PROSPERO [19] was still in development when it was performed.

Eligibility criteria

Eligible for inclusion were primary publications reporting on 1) soft tissue–based evaluation of the head and face; 2) children under age 6 years at the start of the study; 3) quantitative changes; and 4) longitudinal studies.

Excluded were publications describing 1) skeletal changes, 2) fetal growth, 3) animal studies, or 4) cross-sectional studies or featuring 5) case reports, reviews, and letters. No restrictions for language, publication date, and publication status were imposed.

Information resources

Studies were identified by searching electronic databases. The search was applied to PubMed (from 1948), EMBASE, Excerpta Medica (from 1980), Cochrane Library (from 1993), Web of Science (from 1945), Scopus (from 2004), and CINAHL (from 1982). The last search was run on October 1, 2012. In addition, we manually searched the reference lists of included studies for potentially eligible studies. Digital full-text publications were retrieved from licensed digital publishers, and paper publications were retrieved from the library. In cases in which the full-text publication could not be retrieved, authors were requested by email to provide the article. The gray literature was not searched.

Search strategy

The search strategy was developed and databases selected with the help of a senior librarian specialized in health sciences. Databases selected were PubMed, EMBASE, Excerpta Medica, Cochrane Library, Web of Science, Scopus, and CINAHL. Medical Subject Headings and free-text words were used for the search strategy of PubMed (Table 1). The search strategies for the other databases were directly derived from the former. The last search was performed on October 1, 2012.

The search strategy focused on four categories of terms, as follows: (1) terms to search for the population of interest (i.e., babies, infants, and pre-school children), for which a selection of the appropriate terms from the ‘Child’ search strategy was made to sort out citations not reporting on children between 0 and 6 years of age [20]; (2) terms to search for growth and methods for quantitative evaluation (i.e., growth, anthropometrics, and imaging techniques); (3) terms to search for the anatomic region of interest (i.e., face and head); and (4) terms to search for the longitudinal aspect (i.e., cohort and follow-up studies).

Study selection

First, studies were independently screened on title and abstract by two reviewers (SB and MB) in a standardized manner. In an additional step, disagreements between reviewers were resolved by discussion and consensus. Second, full-text assessments for eligibility were independently performed by the same two reviewers in a standardized manner. Again, in an additional step, disagreements were resolved by discussion and consensus. Results of both first and second independently performed assessments of eligibility were analyzed to assess inter-rater reliability. Third, the first author performed a manual search of the reference lists of the included studies. Finally, all included studies were categorized as describing facial or cranial evaluation of growth and treatment outcome. The plane connecting the glabella with the left and right euryon arbitrarily separates the cranium from the face. Measurements on or above this plane were considered to be cranial and those below this plane to be facial. Studies describing cranial evaluation of growth and treatment are included in this review.

Quality assessment

Study quality was assessed by the quality assessment instrument (QAI) for clinical trials used by Gordon et al. (Table 2) [21]. This instrument includes an assessment of study bias. A checklist was made when a criterion was fulfilled. Depending on study design, quality assessment was performed on a maximum of 15 criteria. In case criteria were not applicable to a certain study design, fewer than 15 criteria were scored. Study quality is expressed as the percentage of criteria fulfilled in relation to the total number of applicable criteria.

The score per study is calculated as a percentage by dividing the number of checkmarks by the number of applicable criteria and multiplying by 100. Studies were grouped according to similarity of methods for measurement of cranial growth or treatment outcome. A mean quality score for each group of methods was calculated. Arbitrarily, a cut-off of 60% or higher was graded as good quality and below 60% as poor quality. To assess the inter-rater reliability of the assessment of study quality, 19 randomly selected studies were scored by two reviewers (SB and AK).

Data extraction

Methods used in studies with good methodological quality were assessed for reliability expressed as the magnitude of the measurement error and the correlation coefficient between repeated measurements.

Statistics

Cohen’s kappa statistics were used to assess the inter-rater agreement for the process of study selection and for each criterion of the QAI. According to Landis and Koch, the level of inter-rater agreement is very good if the value of K is 0.81–1.00, good if K is 0.61–0.80, moderate if K is 0.41–0.60, fair if K is 0.21–0.40, and poor if K is ≤0.20 [22].

Analysis of variance and non-parametric Kruskal-Wallis tests were performed to evaluate differences in mean scores between groups of methods. SPSS version 21.0 was used for analysis.

Results

Study selection

The inter-rater kappa for screening on title and abstract was 0.76. For full-text assessment of eligibility, the kappa was 0.69. The reliability of both steps in the process of study selection is qualified as good [22].
The search of PubMed, EMBASE, Cochrane Library, Web of Science, Scopus, and CINAHL provided a total of 7027 citations, and the manual search provided 198 citations. After adjusting for duplicates, 5599 citations remained for screening of title and abstract. Of these, 4490 studies were discarded because they did not meet the eligibility criteria so that a total of 1109 studies remained for full-text assessment. Of these, 897 studies were excluded for different reasons, and 195 were discarded because the full-text publication could not be retrieved. We ultimately identified 212 studies that met the inclusion criteria. The last step in the inclusion process divided the studies into those on facial evaluation ($n = 47$) and studies on cranial evaluation ($n = 165$). A total of 188 studies originated from the electronic databases; the remaining 24 studies originated from the additional manual search of the references of the included studies. Figure 1 shows the PRISMA flow diagram, and Checklist S1 shows the PRISMA checklist [23]. The current systematic review is restricted to studies on cranial evaluation of growth and treatment outcomes in

Table 1. Search strategy PubMed.

Search strategy PubMed
("Face"[Mesh:noexp] OR face[TiAb] OR facial[TiAb] OR craniofacial[TiAb] OR OR OR born*
craniomaxillofacial[TiAb] OR maxillofacial[TiAb] OR dentofacial[TiAb] OR “Facies”[Mesh]
facies[TiAb] OR “Head”[Mesh:noexp] OR head[TiAb] AND (“Growth and Development”[Mesh:noexp] OR “Growth”[Mesh:noexp] OR “growth and development”[Sh] growth[TiAb] OR “Anthropometry”[Mesh:noexp] OR anthropometr*[TiAb] OR “cephalometry”[Mesh] OR cephalometr*[TiAb] OR “imaging, three-dimensional”[MeSH Terms] OR “three-dimensional imaging”[TiAb] OR “3d imaging”[TiAb] OR
“Photogrammetry”[Mesh] OR photogrammetry[TiAb] OR “Tomography, X Ray Computed”[Mesh] OR “Tomography, X Ray”[Mesh] OR “Lasers”[Mesh:noexp] OR laser[TiAb] OR “Magnetic Resonance Imaging”[Mesh:noexp] OR “magnetic resonance imaging”[TiAb] OR MRI[TiAb] AND (infant OR infan* OR newborn OR newborn* OR new OR baby OR baby* OR babies OR neonat* OR perinat* OR postnat* OR toddler* OR kindergar* OR preschool* OR pre school) AND (“Cohort Studies”[Mesh] OR (cohort[TiAb] OR longitudinal[TiAb] OR followup[TiAb]) OR follow up*[TiAb]) AND (study[TiAb] OR studies[TiAb]))

Table 2. Quality assessment instrument [21].

I. Study design (7 V)
A. Objective—objective clearly formulated (V)
B. Sample size—considered adequate (V)
C. Sample size—estimated before collection of data (V)
D. Selection criteria—clearly described (V)
E. Baseline characteristics—similar baseline characteristics (V)
F. Timing—prospective (V)
G. Randomization—stated (V)

II. Study measurements (3 V)
H. Measurement method—appropriate to the objective (V)
I. Blind measurement—blinding (V)
J. Reliability—adequate level of agreement (V)

III. Statistical analysis (5 V)
K. Dropouts—dropouts included in data analysis (V)
L. Statistical analysis—appropriate for data (V)
M. Confounders—confounders included in analysis (V)
N. Statistical significance level—p value stated (V)
O. Confidence intervals provided (V)

Maximum number of V$ = 15$
children; a systematic review of studies on facial evaluation of growth and treatment outcomes in children is described in a separate publication [17].

Of the 165 included studies, 136 studies used direct anthropometry for head circumference, 19 studies used other direct cranial anthropometry approaches, 3 studies used 2D photography, and 7 studies used 3D imaging techniques (5 stereophotogrammetry and 2 surface laser scanning).

Study quality assessment

Inter-rater reliability values for all 15 criteria of the QAI were between kappa 0.19 and 1.00; 11 out of 15 criteria had a kappa of 0.50 or higher. Inter-rater agreement on criteria E (similar baseline characteristics), I (blind measurement), and K (dropouts included in data analysis) was below 0.20.

Assessment of methodological quality of all reviewed studies resulted in scores ranging from 20% to 100%. A total of 118 studies qualified as good based on a methodological quality score equal to or above 60%. Score summaries of studies with good methodological quality using direct anthropometry for head
First author	Year	Design	Measure	Statistics	Score
Belfort	2012	☐	☐	☐	64%
Bendersky	1998	☐	☐	☐	75%
Berry	1997	☐	☐	☐	64%
Bhalla	1993	☐	☐	☐	60%
Binns	1996	☐	☐	☐	70%
Bouthoom	2012	☐	☐	☐	75%
Bracewell	2007	☐	☐	☐	67%
Butz	2005	☐	☐	☐	69%
Cardoso	2007	☐	☐	☐	67%
Carlson	1996	☐	☐	☐	80%
Chaudhari	2012	☐	☐	☐	69%
De Bruin	1998	☐	☐	☐	64%
DeFemgnier	1996	☐	☐	☐	69%
Desmyttere	2009	☐	☐	☐	79%
Desmyttere	2009	☐	☐	☐	71%
Donna	1997	☐	☐	☐	64%
D’Souza	1986	☐	☐	☐	62%
Durmus	2011	☐	☐	☐	85%
Ekblad	2010	☐	☐	☐	77%
Elwood	1987	☐	☐	☐	64%
Erasmus	2002	☐	☐	☐	80%
Eregie	2001	☐	☐	☐	73%
Ernst	1990	☐	☐	☐	64%
Farooqi	2006	☐	☐	☐	77%
Ford	2000	☐	☐	☐	85%
Ford	1986	☐	☐	☐	64%
Friel	1993	☐	☐	☐	73%
Fukumoto	2008	☐	☐	☐	60%
Gale	2006	☐	☐	☐	77%
Gale	2004	☐	☐	☐	70%
Georgieff	1995	☐	☐	☐	62%
Georgieff	1989	☐	☐	☐	60%
Gross	1983	☐	☐	☐	62%
Gross	1983	☐	☐	☐	75%
Guo	1988	☐	☐	☐	60%
Hagelberg	1990	☐	☐	☐	67%
Hansen-pupp	2011	☐	☐	☐	67%
Herrmann	2010	☐	☐	☐	60%
Ishikawa	1987	☐	☐	☐	69%
Jaffe	1992	☐	☐	☐	60%
Jaldin	2011	☐	☐	☐	73%
Jaruratanasirikul	1999	☐	☐	☐	62%
Kan	2007	☐	☐	☐	77%
Karatza	2003	☐	☐	☐	77%
Kiran	2007	☐	☐	☐	79%
First author	Year	Design	Measure	Statistics	Score
--------------	------	--------	---------	------------	-------
Head circumference anthropometry					
Kitchen	1992	¥ ¥ o ¥ o ¥ - o - ¥ o o . ¥ ¥ ¥ ¥ ¥ 67%			
Koo	2006	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ 87%			
Lainhart	1997	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 75%			
Lasekak	2011	¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o . ¥ ¥ ¥ ¥ 73%			
Lasekak	2006	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ 87%			
Lira	2009	¥ ¥ o ¥ - o - ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 75%			
Lucas	2001	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o . ¥ ¥ ¥ ¥ 87%			
Maguire	2008	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ 87%			
Makrides	2000	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ 93%			
Makrides	1999	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ 93%			
Mambabolo	2004	¥ ¥ o ¥ - o - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 87%			
Marks	1997	¥ ¥ o ¥ - o - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 87%			
Maserei	2007	¥ o ¥ 60%			
Mathur	2009	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 62%			
McCowan	1999	¥ ¥ o ¥ - o - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 70%			
McLeod	2011	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 70%			
Mercuri	2000	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 64%			
Meyer-Marcotty	2012	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 64%			
Moore	1995	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 62%			
Moje	1993	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 69%			
Nelson	1997	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 62%			
Ochial	2008	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 73%			
Olivan	2003	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 64%			
Oliveira	2007	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 67%			
Padilla	2010	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 85%			
Paul	2008	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 72%			
Peng	2005	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 71%			
Piemontese	2011	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 87%			
Polberger	1999	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 73%			
Rijken	2007	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 77%			
Roberfroid	2012	¥ o ¥ o ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ 87%			
Roché	1987	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 60%			
Rodriguez Garcia	2003	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 71%			
Ross	2012	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 67%			
Rothenberg	1999	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 82%			
Saliba	1990	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 69%			
Sawada	2010	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 64%			
Schaefer	1994	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 62%			
Sharma	2011	¥ o o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 64%			
Shaw	1999	¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 76%			
Sheth	1995	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 60%			
Shortland	1998	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 76%			
Tan	2008	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 73%			
Timoço	2009	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 70%			
Touwslager	2008	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 60%			
Vaidya	2008	¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ o ¥ ¥ ¥ ¥ ¥ ¥ 100%			
Van Daalen	2007	¥ ¥ o ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - ¥ - 70%			
Discussion

Reliability

Scores for reliability of methods for soft tissue–based quantitative longitudinal assessment are shown in Table 6. Only 12 of the 118 studies with good methodological quality report data for the reliability of the method to quantify cranial dimensions; 8 studies used direct anthropometry for head circumference [25,27,35,58,63,71,100,103], two used other kinds of direct anthropometry [126,127], one study used 3D laser scanning [136], and one used 3D stereophotogrammetry [139].

Regarding direct anthropometry for head circumference, 5 studies with good methodological quality reported a measurement error equal to or below 1.7 mm. Two studies with good methodological quality using direct anthropometry reported correlation coefficients between repeated measurements of 0.87 and 0.99 and were both qualified as very good. Regarding other kinds of direct anthropometry, two studies with good methodological quality reported a measurement error of 1 mm. Studies of good methodological quality using 2D photography and reporting the measurement error or correlation coefficients were not identified among the included studies. One study with good methodological quality using 3D laser scanning reported a measurement error of 0.5 mm, and another using 3D stereophotogrammetry reported a measurement error of 0.02–4.3 mm.

Summary of evidence

The objectives of this systematic review were to 1) give an overview of soft tissue–based methods for quantitative longitudinal assessment of cranial dimensions in children until age 6 years; 2) assess the methodological quality of the studies using such approaches; and 3) assess reliability of these quantitative measurement methods used in studies with good methodological quality.

In the literature, various terms to describe measurement error exist. Some studies use accuracy to describe landmark identification error, which in turn may consist of operator error, capture error, and registration error [142]. More often in the literature, reliability is used to describe landmark identification error of a method. Reliability can be expressed by the measurement error or a correlation coefficient between repeated measurements [9,143,144] and represents the ability of observers to make a consistent analysis. In this systematic review, reliability in studies with good methodological quality was assessed and expressed by duplicate measurement errors and correlation coefficients between repeated measurements. Direct measurement of head circumference is the most often used method for soft tissue–based evaluation of cranial growth and treatment outcomes. The use of growth charts in the clinical assessment of growing infants and children and in pediatric nutritional screening and epidemiologic assessments has already been recommended for decades [27]. For this purpose, length and weight also are recorded in many countries from birth onwards. Direct anthropometry for head circumference seems to be a generally accepted method for most researchers because only 8 out of 95 studies with good methodological quality reported on its reliability. Measurement errors varied from 0.2 to 1.7 mm, and correlation coefficients were very good. Other kinds of direct anthropometry yielded a measurement error of 1 mm. Normal growth of head circumference shows an increase for mean head circumference from 34–36 cm at birth to 51–52 by age 6 years [145]. The measurement errors for head circumference anthropometry presented in this review are within 1% of the values of normal growth, which seems to be negligible. Direct anthropometry is a reliable and cheap method to study linear dimensions and has been regarded as the gold standard for many decades, but it requires patient cooperation and precludes archiving [146].

Photographic techniques, on the other hand, can capture images for data storage. The most common imaging technique is 2D photography, which has the advantages of being safe, relatively cheap, and user friendly. However, because none of the included studies reported a measurement error or correlation coefficient, its reliability for evaluation of cranial growth and treatment outcome is uncertain.

Various 3D imaging techniques have been recently introduced and were applied in 6 out of 165 studies included in this systematic review. Only two studies with good methodological quality reported the measurement error (Table 6). The measurement error in one study using 3D laser scanning was 0.5 mm; in one study using 3D stereophotogrammetry, it was 0.02 mm for head width, 0.04 mm for head circumference, and 4.3 mm for vertex height. Therefore, 3D imaging might be a reliable method to quantify cranial dimensions. Reliability of measurements from 3D imaging seems to be more related to the exact anatomical region of interest than to the method itself.

When reviewing the literature for this study, we found only six included studies with good methodological quality using 3D imaging to quantify soft tissue–based cranial growth and treatment...
outcome. The explanation is that only recently have techniques become available to capture the full 360° image needed to study cranial dimensions. Most studies using 3D imaging concern facial growth and treatment outcome because this technique has been available for two decades. Therefore, it is expected that within the next decade, more studies using 3D imaging of cranial dimensions will be published. Advantages of these 3D techniques are millisecond fast image capture, archival capabilities, a good-resolution color representation, and no exposure to ionizing radiation. Furthermore, assessment of linear dimensions and cranial size and shape can be made three-dimensionally. These are major advantages compared to more simplistic analyses performed.

First author	Year	Design	Measure	Statistics	Score
Agrawal	2006	Y Y O O V V V V O O O V Y Y Y	70%		
Chatterjee	2009	Y Y V V O O O O V V O O O	60%		
Fearon	2009	Y Y V V O O O O V V O O O	60%		
Fearon	2006	Y Y V V O O O O V V O O O	60%		
Kelly	1999	Y V O O O O V V O O O O O	64%		
Lee	2006	Y Y O O O O O O V V O O O	70%		
Littlefield	1998	Y Y V V O O O O V V O O O	64%		
Mulliken	1999	Y Y V V O O O O V V O O O	62%		
Pedroso	2008	Y Y O O O O O O V V O O O	64%		
Teichgraeber	2004	Y Y O O O O O O V V O O O	62%		
Teichgraeber	2002	Y Y O O O O O O V V O O O	64%		
Van Vlimmeren	2008	Y Y Y Y Y Y Y Y Y Y Y Y	78%		
Van Vlimmeren	2007	Y Y Y Y O O O O V V Y Y Y	69%		

\(\checkmark\) = fulfilled the methodological criteria satisfactorily.
\(o\) = not applicable.
doi:10.1371/journal.pone.0089602.t004

First author	Year	Design	Measure	Statistics	Score
2D photography	2010	Y Y Y Y Y Y Y Y Y Y Y Y	73%		
Hutchinson	2004	Y Y O O Y O Y Y Y Y Y Y	75%		
Hutchinson	2011	Y Y O O Y O Y Y Y Y Y Y	67%		
3D surface laser scanning	2006	Y Y O O Y Y Y Y Y Y Y Y	62%		
Collet	2012	Y Y Y Y O O Y Y Y Y Y Y Y Y	92%		
Lipira	2010	Y Y Y Y O O Y Y Y Y Y Y Y Y	62%		
Meyer-Marcotty	2012	Y Y Y Y O O Y Y Y Y Y Y Y Y	62%		
Schaaf	2010	Y Y Y Y O O Y Y Y Y Y Y Y Y	64%		
Toma	2010	Y Y Y Y O O Y Y Y Y Y Y Y Y	64%		

\(\checkmark\) = fulfilled the methodological criteria satisfactorily.
\(o\) = did not fulfill the methodological criteria.
\(=\) = not applicable.
doi:10.1371/journal.pone.0089602.t005
with direct anthropometry. A shortcoming of 3D imaging is its inability to capture surface morphology in the presence of cranial hair. The reliability of 3D imaging techniques for soft tissue-based evaluation of cranial growth and treatment outcomes needs to be investigated further.

Limitations

Failure to identify all relevant reports for a systematic review is likely to result in bias [147]. For this reason, highly sensitive search strategies were developed with the help of a senior librarian specialized in health sciences for a combination of both narrow and broad health science databases.

The process of study selection was performed in an independent standardized manner by two reviewers to prevent unjustified exclusion of eligible studies. The manual search of the reference lists of the included studies was performed by only one reviewer. Possibly eligible studies could have been missed in this stage of the selection process. However, because only approximately one out of ten studies was retrieved by the manual search, this omission might be negligible. Furthermore, every effort was made to contact the authors by email in cases where online access was not permitted or the journal was not available in the library. Nevertheless, failure to retrieve full-text publications of possibly eligible studies (n = 195) was inevitable.

The instrument used to assess methodological quality was adapted from Lagrave et al. [148] who developed a methodological quality checklist to assess study design, study measurements, and statistical analysis in clinical trials. Since the introduction the checklist has been modified and used by Gordon et al. [21] and Van Vlijmen et al. [149]. Scientific use of the introduction the checklist has been modified and used by Gordon et al. [21] and Van Vlijmen et al. [149]. Scientific use of the checklist has been accepted because the criteria check for generally accepted reasons for bias, despite a lack of validation of the QAI. The majority of inter-rater disagreements arose in the assessment of applicability of criteria E, I, and K to certain studies (similar baseline characteristics, blind measurement, and dropouts included in data analysis, respectively). This greater frequency can be explained by the absence of adequate instructions of this QAI together with the presence of a wide variety of study designs. Therefore, raters should test this QAI thoroughly and obtain consensus before scoring. In the literature, no single tool is an obvious candidate for assessment of methodological quality of non-randomized studies [150]. Attempts to validate QAI like the Newcastle-Ottowa [151] scale or the Jadad scale [152] produce highly arbitrary results and cannot demonstrate significant effects on quality scores [153,154]. There is a need for a validated QAI that is preferably applicable to a wide range of study designs.

Conclusions

Direct anthropometrical measurement of head circumference in growing children below age 6 years is a reliable method for assessing cranial dimensions. The non-invasive 3D surface laser scanning and 3D-stereophogrammetry techniques can assess size and shape three-dimensionally. However, their reliability for assessing cranial dimensions needs to be investigated further.

Supporting Information

Checklist S1. PRISMA checklist.

Acknowledgments

We thank senior health sciences librarian Elmie Peters for supporting the development of search strategies.

Author Contributions

Conceived and designed the experiments: S. Brons AK. Performed the experiments: S. Brons MvB AK. Analyzed the data: S. Brons MvB. Contributed reagents/materials/analysis tools: S. Brons EB. Wrote the paper: S. Brons. Intellectual contribution: JD JS S. Berge.

Table 6. Reliability of methods for soft tissue-based quantitative longitudinal assessment of cranial dimensions in children until age 6 years in studies with good methodological quality (methodological quality score equal to or above 60%).

First author	Year	Measurement error	Correlation coefficient
Head circumference, direct anthropometry			0.99
Bendersky 1998			
Bhalla 1993 0–0.2 mm			
De Bruin 1998 ns			
Guo 1988 1.6 mm			
Jaffe 1992 1–2 mm			
Lainhart 1997			0.87
Roche 1987 0.9 mm			
Rothenberg 1999 0.8–1.7 mm			
Direct anthropometry			
Littlefield 1998 1 mm			
Mulliken 1999 1 mm			
3D laser scanning			
Plank 2006 0.5 mm			
3D stereophotogrammetry			
Meyer-Marcotty 2012 0.02–4.3 mm			

= not reported.

ns = not significant.

doi:10.1371/journal.pone.0089602.t006

References

1. McGarry A, Dixon MT, Greig RJ, Hamilton DR, Sexton S, et al. (2008) Head shape measurement standards and cranial orthoses in the treatment of infants with deformational plagiocephaly. Dev Med Child Neurol 50: 568–576.
2. Chan FC, Kawamoto HK, Federico C, Bradley JP. (2013) Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD). J Craniofac Surg 24: 416–420.
3. Morhardt DR, Barrow W, Jaworski M, Accardo PJ (2013) Head Circumference in Young Children With Autism: The Impact of Different Head Circumference Charts. J Child Neurol.
4. Boros CA, Spence D, Blaser S, Silverman ED (2007) Hydrocephalus and macrocephaly: new manifestations of neonatal lupus erythematosus. Arthritis Rheum 57: 261–266.
5. Farkas LG (1994) Anthropometry of the head and face; kj, editor. New York: Raven Press. 405 p.
6. Bartzelia TN, Katsaros C, Bronkhorst EM, Rizell S, Halazonetis D, et al. (2011) A two-centre study on facial morphology in patients with complete bilateral cleft lip and palate at nine years of age. Int J Oral Maxillofac Surg In press.
7. Broadbent BH (1991): A new X-ray technique and its application to orthodontia. Angle Orthod 1: 45–66.
8. Nollet PJ, Katsaros C, Huygens RW, Borstlap WA, Bronkhorst EM, et al. (2008) Cephalometric evaluation of long-term craniofacial development in unilateral cleft lip and palate patients treated with delayed hard palate closure. Int J Oral Maxillofac Surg 37: 123–130.
9. Farkas LG, Bryson W, Klotz J (1980) Is photogrammetry of the face reliable? Plast Reconstr Surg 66: 346–355.
10. Davis JP, Valentine T, Davis RE (2010) Computer assisted photo-anthropometric analyses of full-face and profile facial images. Forensic Sci Int 200: 165–176.
11. Cevdides LH, Alhaddad A, Paniaqua B, Snyer M, Ludlow J, et al. (2011) Three-dimensional quantification of mandibular asymmetry through cone-beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod In press.

12. Noda RM, Moul TJ, Brenning KH, Berge SJ, Mostafa YA, et al. (2011) Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arch. PLoS One 6: e16520.

13. Djordjevic J, Toth AM, Zhuarov AJ, Richmond S (2011) Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning. Eur J Orthod.

14. Toma AM, Zhuarov A, Playle R, Hoge M, et al. (2012) Pune low birth weight study, growth from birth to adulthood. Indian Pediatr 49: 727–1083.

15. Kau CH, Kamel SG, Wilson J, Wong ME (2011) New method for analysis of dimensional data: the bivariate Fourier series. J Biomech 44: 449–458.

16. Butz AM, Pulsifer MB, Belcher HME, Leppert M, Donithan M, et al. (2005) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia J Nutr 126 168–175.

17. Carlson SE, Werkman SH, Tolley EA (1996) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia American Journal of Clinical Nutrition 54 476–484.

18. Berry MA, Conrod H, Usher RH (1997) Growth of very premature infants fed human milk fortified with protein from human or bovine milk J Pediatr 113 490–494.

19. Bouthoorn SH, van Lenthe FJ, Hokken-Koelega AC, Moll HA, Tiemeier H, et al. (2010) Maternal smoking during pregnancy, early growth, and risk of obesity in preschool children: the Generation R Study. Am J Clin Nutr 94: 164–171.

20. Durmus B, Krouthof CJ, Gillman MH, Willemsen SP, Hofman A, et al. (2011) Parental smoking during pregnancy, early growth, and risk of obesity in preschool children: the Generation R Study. Am J Clin Nutr 94: 164–171.

21. Carlson SE, Werkman SH, Tolley EA (1996) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia J Nutr 126 168–175.

22. Butz AM, Pulsifer MB, Belcher HME, Leppert M, Donithan M, et al. (2005) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia J Nutr 126 168–175.

23. Carlson SE, Werkman SH, Tolley EA (1996) Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia J Nutr 126 168–175.

24. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

25. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

26. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

27. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

28. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

29. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

30. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

31. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

32. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

33. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

34. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

35. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

36. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.

37. DeClercq RA, Guiberti TW, Mills MM, Georgesf MR (1996) Growth failure: mechanisms and the use of 102 2-year-old children conceived prenatally: genetic screening data or screening Early Hum Dev 83 755–759.
75. Lucas A, Fewtrell MS, Morley R, Singhal A, Abbott RA, et al. (2001) Growth, tolerance and biochemical measures in healthy infants fed a partially hydrolyzed rice protein-based formula: a randomized, blinded, prospective trial. J Am Coll Nutr 20: 12–19.

76. Lira PI, Eickmann SH, Lima MC, Amorim RJ, Emond AM, et al. (2010) Early head growth: relation with IQ at 8 years and determinants in term infants of low and appropriate birthweight. Dev Med Child Neurol 52: 339–347.

77. Lasekan JB, Koo WW, Walters J, Neylan M, Luebbers S (2006) Growth, bone mass, and body composition American Journal of Clinical Nutrition 84: 1537–1544.

78. Maguire CM, Veer S, Sprij AJ, Le Cesse V, Wit JM, et al. (2008) Effects of basic developmental care on neonatal morbidity, neuromotor development, and growth at term age of infants who were born at <32 weeks of gestation. Pediatrics 121: 239–245.

79. Makrides M, Neumann MA, Sinner K, Gibson RA (1999) Dietary long-chain polyunsaturated fatty acids do not influence growth of term infants: a randomized clinical trial. Pediatrics 104: 468–475.

80. Mamabolo RL, Alberts M, Mbenyane GX, Steyn NP, Nthangeni NG, et al. (2004) Feeding practices and growth of infants from birth to 12 months in the rural regions of the Limpopo Province of South Africa. Nutrition 20: 327–333.

81. Marks KH, Maisels MJ, Moore E, Gifford K, Friedman Z (1979) Head growth in sick premature infants—a longitudinal study. J Pediatr 94: 232–235.

82. Masarei AG, Wade A, Mars M, Sommerlad BC, Sell D, et al. (2010) Improving head growth in preterm infants. Acta Paediatr 99: 1357–1364.

83. Meyer-Marcotty P, Bohm H, Linz C, Kunz F, Keil N, et al. (2012) Head growth evaluation in early childhood, from the Japan Children's Study. Pediatrics International 54: 343–346.

84. Mishra VB, Bhutta ZA, Demandt J, Zaman K, Ruel M, et al. (2011) Body length and head growth in the first year of life in autism Pediatr Neurol 37: 324–330.

85. Moore WM, Bannister RP, Roberts CT (1999) Assisted feeding is more reliable than hand feeding in preterm newborn infants [An Pediatr (Barc) 58: 241–251.

86. Moore VM, Bannister RP, Ward BS, Callanan C, Rickards AL, et al. (1992) Factors on growth in preterm newborn infants Arch Dis Child 67: 108–116.

87. Moore VM, Bannister RP, Ward BS, Callanan C, Rickards AL, et al. (1992) Postnatal growth to age 2 years by mother's country of birth Early Hum Dev 36: 135–140.

88. Morley R, Fewtrell MS, Luebbers S, Walker WR, Lira PI, et al. (2010) Methods for Cranial Growth in Children: A Review. Methods for Cranial Growth in Children: A Review. PLOS ONE 5: e12228.

89. Morgan AP, James EJ, Scholl TO, Wright AL, Gardner SF, et al. (2004) Natural history of sagittal craniosynostosis: surgical outcomes and long-term growth Plast Reconstr Surg 123: 635–642.

90. Morris AD, Rauch MA, Abbott RA, et al. (2001) Growth of very low birth weight infants at 12 months corrected age in southern Brazil J Trop Pediatr 47: 36–42.

91. Morel MO, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

92. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

93. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

94. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

95. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

96. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

97. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

98. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

99. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.

100. Morgan AD, Killick DR, Copsey D, Smedley A, Grimley R, et al. (2003) Twelve-month neurodevelopmental outcome in preterm infants with and without head circumference restriction Arch Dis Child 88: 54–59.
123. Kelly KM, Littlefield TR, Pomatto JK, Ripley CE, Beals SP, et al. (1998) Importance of early recognition and treatment of deformational plagiocephaly with orthotic cranioplasty. Cleft Palate-Craniofac J 36: 127–130.

124. Lee WT, Richards K, Reddihof J, Papay FA (2006) A pneumatic orthotic cranial molding helmet for correcting positional plagiocephaly. J Craniofac Surg 17: 139–144.

125. Lee RP, Teichgraeber JF, Raumgamer JF, Waller AL, English JD, et al. (2008) Long-term treatment effectiveness of molding helmet therapy in the correction of posterior deformational plagiocephaly: a five-year follow-up. Cleft Palate-Craniofac J 45: 240–245.

126. Littlefield TR, Beals SP, Manwaring KH, Pomatto JK, Joganic EF, et al. (1998) Treatment of craniomaxillary asymmetry with dynamic orthotic cranioplasty. Journal of Craniofacial Surgery 9: 11–17.

127. Mulliken JB, Vander Woude DL, Hansen M, LaBrie RA, Scott RM (1999) Analysis of posterior plagiocephaly: deformational versus synostotic Plast Reconstr Surg 103: 371–380.

128. Pedroso SF, Rotta N, Quintal A, Giordani G (2008) Evaluation of anterior fontanel size in normal infants in the first year of life. Journal of Child Neurology 23: 1419–1423.

129. Teichgraeber JF, Seymour-Dempsey K, Baumgartner JE, Xia JJ, Waller AL, et al. (2004) Molding helmet therapy in the treatment of brachycephaly and plagiocephaly. J Craniofac Surg 15: 118–123.

130. Teichgraeber JF, Ault JK, Baumgartner J, Waller A, Messersmith M, et al. (2002) Deformational posterior plagiocephaly: diagnosis and treatment. Cleft Palate Craniofac J 39: 302–306.

131. van Vlimmeren LA, van der Graaf Y, Boere-Boonekamp MM, L’Hoir MP, Helders PJ, et al. (2007) Risk factors for deformational plagiocephaly at birth and at 7 weeks of age: a prospective cohort study. Pediatrics 119: e408–418.

132. van Vlimmeren LA, van der Graaf Y, Boere-Boonekamp MM, L’Hoir MP, Helders PJ, et al. (2005) Long-term skeletal changes with rapid maxillary expansion: a systematic review. Angle Orthod 75: 1046–1052.

133. Ayoub A, Garrathy H, Hood C, White J, Bock M, et al. (2003) Validation of a vision-based, three-dimensional facial imaging system. Cleft Palate Craniofac J 40: 523–529.

134. Robinson KA, Dickersin K (2002) Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 31: 150–153.

135. Palate Craniofac J 39: 582–586.

136. Toma R, Greensmith AL, Meara JG, Da Costa AC, Ellis LA, et al. (2010) Quantitative morphometric outcomes following the melbourne method of total vault remodeling for scaphocephaly. Journal of Craniofacial Surgery 21: 637–643.

137. Ayoub A, Garrathy H, Hood C, White J, Bock M, et al. (2003) Validation of a vision-based, three-dimensional facial imaging system. Cleft Palate Craniofac J 40: 523–529.

138. Ayoub A, Garrathy H, Hood C, White J, Bock M, et al. (2003) Validation of a vision-based, three-dimensional facial imaging system. Cleft Palate Craniofac J 40: 523–529.

139. Meyer-Marcotty P, Bohn H, Linz C, Kunz F, Kril N, et al. (2012) Head orthosis therapy in infants with unilateral positional plagiocephaly: an interdisciplinary approach to broadening the range of orthodontic treatment. J Orofac Orthop 73 (2): 151–65.

140. Schaaf H, Malik CY, Streekstein P, Pons-Kuehnemann J, Howaldt HP, et al. (2010) Three-dimensional photographic analysis of outcome after helmet treatment of a nonsyndromic craniofacial deformity. J Craniofac Surg 21: 1677–1682.

141. Rollins JD, Collins JS, Tatt ID, Higgins JP (2007) Tools for assessing quality and the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20: 448–452.

142. Stang A (2010) Critical evaluation of the Newcastle-Ottawa Scale website. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 2013 May 9.

143. Van Vlimmeren LA, van der Graaf Y, Boere-Boonekamp MM, L’Hoir MP, Helders PJ, et al. (2007) Risk factors for deformational plagiocephaly at birth and at 7 weeks of age: a prospective cohort study. Pediatrics 119: e408–418.

144. Robinson KA, Dickersin K (2002) Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 31: 150–153.

145. Lagravere MO, Major PW, Flores-Mir C (2005) Long-term skeletal changes with rapid maxillary expansion: a systematic review. Angle Orthod 75: 1046–1052.

146. Van Vlimmeren LA, van der Graaf Y, Boere-Boonekamp MM, L’Hoir MP, Helders PJ, et al. (2005) Long-term skeletal changes with rapid maxillary expansion: a systematic review. Angle Orthod 75: 1046–1052.

147. Ayoub A, Garrathy H, Hood C, White J, Bock M, et al. (2003) Validation of a vision-based, three-dimensional facial imaging system. Cleft Palate Craniofac J 40: 523–529.

148. Robinson KA, Dickersin K (2002) Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 31: 150–153.

149. Rollins JD, Collins JS, Tatt ID, Higgins JP (2007) Tools for assessing quality and the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20: 448–452.

150. Stang A (2010) Critical evaluation of the Newcastle-Ottawa Scale website. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 2013 May 9.

151. The Newcastle-Ottawa Scale website. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 2013 May 9.

152. Sanderson S, Tatt ID, Higgins JP (2007) Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol 36: 666–676.

153. Sanderson S, Tatt ID, Higgins JP (2007) Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol 36: 666–676.

154. Ayoub A, Garrathy H, Hood C, White J, Bock M, et al. (2003) Validation of a vision-based, three-dimensional facial imaging system. Cleft Palate Craniofac J 40: 523–529.

155. Stang A (2010) Critical evaluation of the Newcastle-Ottawa Scale website. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 2013 May 9.

156. Joad AK, Moorre RA, Carroll D, Jenkinson C, Reynolds HJ, et al. (1996) Assessment of the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17: 1–12.

157. Meyer-Marcotty P, Bohn H, Linz C, Kunz F, Kril N, et al. (2012) Head orthosis therapy in infants with unilateral positional plagiocephaly: an interdisciplinary approach to broadening the range of orthodontic treatment. J Orofac Orthop 73 (2): 151–65.

158. Schaaf H, Malik CY, Streekstein P, Pons-Kuehnemann J, Howaldt HP, et al. (2010) Three-dimensional photographic analysis of outcome after helmet treatment of a nonsyndromic craniofacial deformity. J Craniofac Surg 21: 1677–1682.

159. Toma R, Greensmith AL, Meara JG, Da Costa AC, Ellis LA, et al. (2010) Quantitative morphometric outcomes following the melbourne method of total vault remodeling for scaphocephaly. Journal of Craniofacial Surgery 21: 637–643.

160. Rollins JD, Collins JS, Tatt ID, Higgins JP (2007) Tools for assessing quality and the quality of randomized trials: reliability of the Jadad scale. Control Clin Trials 20: 448–452.