Microarray analysis of the transcriptional responses of Porphyromonas gingivalis to polyphosphate

Ji-Hoi Moon1,2, Jae-Hyung Lee1,2 and Jin-Yong Lee1*

Abstract

Background: Polyphosphate (polyP) has bactericidal activity against a gram-negative periodontopathogen Porphyromonas gingivalis, a black-pigmented gram-negative anaerobic rod. However, current knowledge about the mode of action of polyP against P. gingivalis is incomplete. To elucidate the mechanisms of antibacterial action of polyP against P. gingivalis, we performed the full-genome gene expression microarrays, and gene ontology (GO) and protein-protein interaction network analysis of differentially expressed genes (DEGs).

Results: We successfully identified 349 up-regulated genes and 357 down-regulated genes (>1.5-fold, \(P < 0.05\)) in P. gingivalis W83 treated with polyP75 (sodium polyphosphate, \(\text{Na}_{n+2}\text{P}_n\text{O}_{3n+1}; n = 75\)). Real-time PCR confirmed the up- and down-regulation of some selected genes. GO analysis of the DEGs identified distinct biological themes. Using 202 DEGs belonging to the biological themes, we generated the protein-protein interaction network based on a database of known and predicted protein interactions. The network analysis identified biological meaningful clusters related to hemin acquisition, energy metabolism, cell envelope and cell division, ribosomal proteins, and transposon function.

Conclusions: polyP probably exerts its antibacterial effect through inhibition of hemin acquisition by the bacterium, resulting in severe perturbation of energy metabolism, cell envelope biosynthesis and cell division, and elevated transposition. Further studies will be needed to elucidate the exact mechanism by which polyP induces up-regulation of the genes related to ribosomal proteins. Our results will shed new light on the study of the antibacterial mechanism of polyP against other related bacteria belonging to the black-pigmented Bacteroides species.

Keywords: Porphyromonas gingivalis, Polyphosphate, Transcriptome, Microarray, Gene ontology (GO), Protein-protein interaction network analysis

Background

Inorganic polyphosphate (polyP) is a chain of few or many hundreds of phosphate (Pi) residues linked by high-energy phosphoanhydride [1]. polyP has attracted considerable attention as a GRAS (generally recognized as safe) food additive by FDA with antimicrobial properties that can prevent spoilage of food [2,3]. polyP inhibits the growth of various gram-positive bacteria such as Staphylococcus aureus [4-8], Listeria monocytogenes [8,9], Sarcina lutea [7], Bacillus cereus [10], and mutants streptococci [11,12], and of fungi such as Aspergillus flavus [5]. The ability of polyP to chelate divalent cations is regarded as relevant to the antibacterial effects, contributing to cell division inhibition and loss of cell-wall integrity [5,13,14]. On the other hand, large numbers of gram-negative bacteria including Escherichia coli and Salmonella enterica serovar Typhimurium are capable of growing in higher concentrations, even up to 10% of polyP [5,7,15].

Periodontal disease is caused by bacterial infection which is associated with gram-negative oral anaerobes. In our previous study [16], polyP (\(\text{Na}_{n+2}\text{P}_n\text{O}_{3n+1}; n = \text{the number of phosphorus atoms in the chain}\) with different linear phosphorus (Pi) chain lengths (3 to 75) demonstrated to have antibacterial activity against Porphyromonas
gingivalis, a black pigmented, gram-negative periodontopathogen. polyP also showed antibacterial activity against other black-pigmented, gram-negative oral anaerobes such as Prevotella intermedia and Porphyromonas endodontalis [17,18]. However, the antimicrobial mechanism of polyP against gram-negative bacteria has not yet been fully understood. In the past decade, global genome-wide studies of changes in expression patterns in response to existing and new antimicrobial agents have provided us with a deeper understanding of antimicrobial action [19]. In the present study, we performed the full-genome gene expression microarrays of P. gingivalis, and gene ontology (GO) and protein-protein interaction network analysis of the differentially expressed genes were also performed for elucidating the mechanism of antibacterial action of polyP.

Results and discussion

The complete list of the average gene expression values has been deposited in NCBI’s Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) and is accessible through GEO Series accession number GSE11471. Using filtering criteria of a 1.5 or greater fold-change in expression and significance P-values of <0.05, 706 out of 1,909 genes in P. gingivalis W83 were differentially expressed by polyP75 treatment. The expression of 349 transcripts was increased by polyP treatment while 357 showed decreased expression (Figure 1). To validate the microarray results, quantitative RT-PCR (qRT-PCR) of selected genes was performed. Five of the genes were selected from the up-regulated group and the other five from the down-regulated group in the polyP-treated P. gingivalis cells. We used 16S rRNA as a reference gene for normalization of the qRT-PCR data. There was a high correlation between the expression ratios determined by the microarray and the qRT-PCR (r = 0.926) (Figure 2).

To broadly characterize the differentially expressed gene (DEG, up- and down-regulated genes) set, GO category enrichment analysis was performed. This analysis identified distinct biological themes associated with each group of the up-regulated and the down-regulated genes. The down-regulated genes were associated with GO terms related to metabolic process (GO:0008152, P = 0.0004), pyridine nucleotide biosynthetic process (GO:0019363, P = 0.0012), regulation of cell shape (GO:0008360, P = 0.002), and polysaccharide biosynthetic process (GO:0000271, P = 0.0015). The up-regulated genes were associated with GO terms related to cellular iron ion homeostasis (GO:0006879, P < 0.0001), ribosome (GO:0005840, P = 0.0032), transposase activity (GO:0004803, P < 0.0001), and DNA binding (GO:0003677, P < 0.0001).

Using 202 DEGs belonging to the above biological themes, we generated the protein-protein interaction network based on a database of known and predicted protein interactions. The network analysis identified 162 DEGs that have direct interaction with one another (Figure 3), and 5 biological meaningful clusters related to 1) iron/hemin acquisition, 2) energy metabolism and electron...
carriers, 3) cell envelope and cell division, 4) ribosome, and 5) transposon functions.

Hemin acquisition and energy metabolism

In prokaryotic cells, respiration occurs in the cell membrane in which electrons are transferred sequentially through lipoquinones (menaquinones and ubiquinones) and a series of membrane-bound protein carriers such as cytochrome bc1 complex, although the exact organization of enzymes in the respiratory chains varies among different bacteria [20]. *P. gingivalis* requires hemin as an iron source for its growth [21]. The redox potential of hemin (heme), required as a prosthetic group of cytochrome b, allows it to mediate electron transport with generation of cellular energy [22,23].

Among 6 genes of *hmu* locus (PG1551 to PG1556) encoding Hmu YRSTUV, which play a major role in hemin acquisition [24], five genes, but not *hmuY*, exhibited more than 2-fold decrease in the expression in the presence of polyP75 (Table 1). In addition, genes related to metabolic process including energy metabolism and biosynthesis of lipoquinones, which occupy a central and essential role in electron transport [20], were significantly down-regulated by polyP (Table 2). Genes related to biosynthesis of pyridine nucleotides, known as soluble electron carriers, were also down-regulated (Table 2). These results are compatible with our previous study in which the amount of hemin accumulated on the *P. gingivalis* surface increased while energy-driven uptake of hemin by the bacterium decreased in the presence of polyP75 [16]. It is conceivable that polyP induce hemin deficiency in *P. gingivalis*, resulting in disruption of the electron transport occurring in the bacterial membrane. Notably, the up-regulation of oxidative stress response was observed under hemin-limited conditions [25]. Hence, the up-regulation of a series of genes involved in

![Protein-protein interaction network](image)
oxidative stress, i.e., 4Fe-4S ferredoxin, rubrerythrin, thioredoxin, Fe-Mn superoxide dismutase, thiol peroxidase, Dps family protein, RprY, ferritin, and HtrA (Table 1), may be due to hemin limitation induced by polyP. However, it is also possible that excessive accumulation of hemin in the vicinity of the bacterial cell surface without formation of μ-oxo bisheme by the bacterium may cause oxidative stress on P. gingivalis [16], as the formation of μ-oxo bisheme protects from hemin-mediated cell damage [23,26,27].

Cell envelope and cell division
Among genes involved in biosynthesis and degradation of surface polysaccharides and lipopolysaccharides, 9 genes were repressed and 5 genes increased by polyP. Among genes related to biosynthesis and degradation of murein sacculus and peptidoglycan, 7 genes were downregulated (Table 3). For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape [28]. In P. gingivalis W83 genome there is a group of genes called division/cell wall (DCW) cluster, which are involved in cell division and synthesis of peptidoglycan [29-31]: PG0575 (penicillin-binding protein 2), PG0576 (murE), PG0577 (murY), PG0578 (murD), PG0579 (ftsW), PG0580 (murG), PG0581 (murC), PG0582 (ftsQ), PG0583 (ftsA), and PG0584 (ftsZ). Among these, murY, murD, ftsW, murG, murC, and ftsQ (PG0577-PG0582) were down-regulated by polyP75. It seems that the reduced expression of the genes related to cell envelope biosynthesis in polyP-exposed P. gingivalis may be a result from disruption of the electron transport and reduced production of ATP, since ATP is fundamental for many metabolic processes in bacteria including cell wall biosynthesis and protein synthesis [32]. These transcriptional changes are partially in agreement with the previous report using Bacillus cereus in which polyP inhibited the bacterial cell division [10]. However, unlike B. cereus, formation of elongated aseptate cells and growth phase-dependent bacteriolysis were not observed in P. gingivalis exposed to polyP [16]. It was proposed that polyP, because of its metal ion-chelating nature, may affect the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. Then, polyP may consequently block the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype of B. cereus [10]. B. cereus exposed to polyP, however, showed normal DNA replication, chromosome segregation, and synthesis of the lateral cell

Table 1 Differentially expressed genes related to iron/hemin acquisition and oxidative stress

Locus no.	Putative identification	Cellular role	Avg fold difference
PG1551	hmuY protein	Transport and binding proteins: Cations and iron carrying compounds	−1.19
PG1552	TonB-dependent receptor HmuR	Transport and binding proteins: Cations and iron carrying compounds	−2.28
PG1553	HmuS^a	Hemin acquisition^d	−2.77
PG1554	HmuT^a	Hemin acquisition^d	−3.44
PG1555	HmuU^a	Hemin acquisition^d	−3.29
PG1556	HmuV^a	Hemin acquisition^d	−2.15
PG1729	thiol peroxidase	Cellular processes: Detoxification	3.12
PG1421	Ferredoxin, 4Fe-4S	Energy metabolism: Electron transport	28.54
PG0195	Rubrerythrin	Energy metabolism: Electron transport	15.49
PG0034	Thioredoxin	Energy metabolism: Electron transport	2.76
PG1286	Ferritin	Transport and binding proteins: Cations and iron carrying compounds	2.59
PG0090	Dps family protein	Cellular processes:	2.45
PG1545	Superoxide dismutase, Fe-Mn	Cellular processes: Detoxification	2.34
PG1089	DNA-binding response regulator RprY	Regulatory functions: DNA interactions	2.00
PG0593	htrA protein heat induced serine protease	Protein fate: Degradation of proteins, peptides, and glycopeptides	4.20

^aLocus number, putative identification, and cellular role are according to the TIGR genome database.
^bAverage fold difference indicates the expression of the gene by polyP addition versus no polyP addition.
^cThe cut off ratio for the fold difference was < 1.5.
^dPutative identification and cellular role are according to Lewis [24].
Locus no.	Putative identification	Avg fold difference
Energy metabolism : Amino acids and amines		
PG1269	Delta-1-pyrroline-5-carboxylate dehydrogenase	−2.02
PG0474	Low-specificity L-threonine aldolase	−1.93
PG1401	Beta-eliminating lyase	−1.74
PG0343	Methionine gamma-lyase	−1.64
PG1559	Aminomethyltransferase	−1.54
PG0324	Histidine ammonia-lyase	−1.53
PG1305	Glycine dehydrogenase	−1.52
PG2121	L-asparaginase	−1.51
PG0025	Fumarylacetoacetate hydrolase family protein	2.11
Energy metabolism : Anaerobic/Fermentation		
PG0687	Succinate-semialdehyde dehydrogenase	−1.76
PG0690	4-hydroxybutyrate CoA-transferase	−1.66
PG0689	NAD-dependent 4-hydroxybutyrate dehydrogenase	−1.58
PG1609	Methylmalonyl-CoA decarboxylase, gamma subunit	−1.87
PG1612	Methylmalonyl-CoA decarboxylase, alpha subunit	−1.71
PG1608	Methylmalonyl-CoA decarboxylase, beta subunit	−1.64
PG0675	Indolepyruvate ferredoxin oxidoreductase, alpha subunit	−1.53
PG1809	2-oxoglutarate oxidoreductase, gamma subunit	2.18
PG1956	4-hydroxybutyrate CoA-transferase	1.74
Energy metabolism : Biosynthesis and degradation of polysaccharides		
PG2145	Polysaccharide deacetylase	−1.94
PG0897	Alpha-amylose family protein	−1.85
PG1793	1,4-alpha-glucan branching enzyme	−1.67
Energy metabolism : Electron transport		
PG0776	Electron transfer flavoprotein, alpha subunit	−2.30
PG0777	Electron transfer flavoprotein, beta subunit	−1.91
PG1638	Thioredoxin family protein	−1.88
PG1332	NAD(P) transhydrogenase, beta subunit	−1.83
PG1119	Flavodoxin, putative	−1.69
PG0429	Pyruvate synthase	−1.64
PG1077	Electron transfer flavoprotein, beta subunit	−1.57
PG1858	Flavodoxin	−2.57
PG2178	NADH:ubiquinone oxidoreductase, Na translocating, E subunit	−1.51
PG0034	Thioredoxin	2.76
PG0195	Ruberythrin	15.49
PG0548	Pyruvate ferredoxin/flavodoxin oxidoreductase family protein	2.58
PG0616	Thioredoxin, putative	1.52
PG1421	Ferredoxin, 4Fe-4S	28.54
PG1813	Ferredoxin, 4Fe-4S	1.65
Energy metabolism : Glycolysis/gluconeogenesis		
PG0130	Phosphoglyceromutase	−1.68
Energy metabolism : Purines, pyrimidines, nucleosides, and nucleotides		
PG1996	Deoxyribose-phosphate aldolase	−1.73
In the present study, *P. gingivalis* W83 decreased the expression of genes in relation to biosynthesis of cell wall, purine, pyrimidine, nucleoside, and nucleotide, and replication of DNA in the presence of polyP75 (Table 3). These results probably indicate that polyP affects the overall proliferation process including biosynthesis of nucleic acids, DNA replication, biosynthesis of cell wall, and cell division in *P. gingivalis*.

In several transcriptional profiling studies using gram-positive bacteria, a cell wall stress stimulon that includes genes involved in peptidoglycan biosynthesis was induced in the cells challenged with cell wall-active antibiotics [33,34]. The bacterial cells appeared to respond to the cell wall-active antibiotics by attempting to raise the rate of peptidoglycan biosynthesis in order to compensate for the damaged and partially missing cell wall [35,36]. Overall, the results indicate that the mode of action of polyP against *P. gingivalis* may be different from not only that of the cell wall-active antibiotics against gram-positive bacteria, but also that of polyP against gram-positive bacteria.

Ribosomal proteins

In bacteria, production of ribosome requires up to 40% of the cell's energy in rapidly growing bacteria and is therefore tightly regulated on several levels [37]. It seems that bacteria with kinetically impaired ribosomes can to some extent increase the number of ribosomes accumulated under poor growth conditions or under antibiotic challenge in order to compensate for their slower function [38,39]. It has been reported that antibiotics that target the ribosome or translation factors up-regulate synthesis of ribosomal proteins and accumulate ribosome precursors in *Streptococcus pneumoniae* [40]. Similarly, in *Clostridium difficile*, genes encoding many ribosomal proteins were coordinately up-regulated by antibiotics such as amoxicillin, clindamycin, and metronidazole [38]. Therefore, it is conceivable that the up-

Table 2 Differentially expressed genes related to energy metabolism and biosynthesis of electron carriers (Continued)

Energy metabolism : Pentose phosphate pathway	
PG1747 Ribose 5-phosphate isomerase B, putative	−2.45
PG0230 Transaldolase	2.05
PG1595 Ribulose-phosphate 3-epimerase	2.22

Energy metabolism : Sugars	
PG1633 Galactokinase	−1.89

Energy metabolism : TCA cycle	
PG1614 Succinate dehydrogenase	2.25
PG1615 Succinate dehydrogenase	1.60

Energy metabolism : Other	
PG1522 Mandelate racemase/muconate lactonizing enzyme family protein	−2.24
PG0279 NADP-dependent malic enzyme	1.82
PG1017 Pyruvate phosphate dikinase	1.75
PG1513 Phosphoribosyltransferase, putative/phosphoglycerate mutase family protein	3.05
PG1859 Glycerate kinase family protein	1.76

Biosynthesis of pyridine nucleotides	
PG0058 Nicotinic acid mononucleotide adenylyltransferase	−1.93
PG1578 Quinolinate synthetase	−1.62
PG0057 Nicotinate phosphoribosyltransferase	−1.61
PG0678 Pyrazinamidase/nicotinamidase, putative	2.00

Biosynthesis of menaquinone and ubiquinone	
PG1870 Methytransferase, UbiE/COQ5 family	−2.60
PG1467 Methytransferase, UbiE/COQ5 family	−2.46
PG1523 Naphthoate synthase	−1.89
PG1521 O-succinylbenzoic acid-CoA ligase	−1.78
PG1525 Isochorismate synthase, putative	−1.50

Locus number, putative identification, and cellular role are according to the TIGR genome database.

Average fold difference indicates the expression of the gene by polyP addition versus no polyP addition.
Table 3: Differentially expressed genes related to cell envelope and cell division

Locus no.	Putative identification	Avg fold difference
Cell envelope: Biosynthesis and degradation of murein sacculus and peptidoglycan		
PG0575	Penicillin-binding protein 2	−1.41c
PG0576	UDP-N-acetylmuramoylalanine-D-glutamyl-2, 6-diaminopimelate ligase	−1.42c
PG0577	Phospho-N-acetylmuramoyl-pentapeptide-transferase	−1.56
PG0578	UDP-N-acetylmuramoylalanine–D-glutamateligase	−1.58
PG0580	N-acetylg glucosaminyl transferase	−1.78
PG0581	UDP-N-acetylmuraminate–L-alanine ligase	−1.81
PG1342	UDP-N-acetylenolpyruvoylg glucosamine reductase	−2.17
PG0729	D-alanylalanine synthetase	−1.80
PG1097	Mur ligase domain protein/alanine racemase	−1.58
Cellular process: Cell division		
PG0579	Cell division protein FtsW	−1.74
PG0582	Cell division protein FtsQ	−1.80
PG0583	Cell division protein FtsA	−1.32c
PG0584	Cell division protein FtsZ	−1.36c
Cell envelope: Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides		
PG1155	ADP-hexitose–LPS heptosyltransferase, putative	−1.94
PG1783	Glycosyl transferase, group 2 family protein	−1.87
PG2223	Glycosyl transferase, group 2 family protein	−1.77
PG1815	3-deoxy-manno-octulosonate cytidylyltransferase	−1.73
PG1712	Alpha-1,2-mannosidase family protein	−1.69
PG1345	Glycosyl transferase, group 1 family protein	−1.66
PG1216	Lipid A disaccharide synthase	−1.65
PG1560	dTDP-glucose 4,6-dehydratase	−1.57
PG1880	Glycosyl transferase, group 2 family protein	−1.53
PG0072	UDP-3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase	1.83
PG0750	Glycosyl transferase, group 2 family protein	1.51
PG1048	N-acetylmuramoyl-L-alanine amidase, family 3	2.96
PG1135	Bacterial sugar transferase	5.28
PG1143	Sugar dehydrogenase, UD-glucose/GDP-mannose dehydrogenase family	1.89
Cell envelope: Other		
PG1019	Lipoprotein, putative	−5.47
PG1180	Hypothetical protein	−4.15
PG1713	Lipoprotein, putative	−2.01
PG1767	Lipoprotein, putative	−1.96
PG0490	Hypothetical protein	−1.74
PG1005	Lipoprotein, putative	−1.65
PG1948	Lipoprotein, putative	−1.56
PG0670	Lipoprotein, putative	−1.54
PG2155	Lipoprotein, putative	−1.53
PG1600	Hypothetical protein	−1.52
PG0188	Lipoprotein, putative	1.66
PG0192	Cationic outer membrane protein OmpH	2.68
PG0193	Cationic outer membrane protein OmpH	2.18
regulation of the genes encoding ribosomal proteins of polyP-exposed *P. gingivalis* (Table 4) may reflect a compensatory response for slower or disturbed function of the ribosome. Meanwhile, ribosome biosynthesis of bacteria is governed by transcriptional and translational regulatory mechanisms that provide a balanced and coordinated production of individual ribosomal components [41]. It has been suggested that some free ribosomal proteins act as autogenous feedback inhibitors that cause selective translational inhibition of the synthesis of certain ribosomal proteins whose genes are in the same operon as their own. This inhibition is due to the structural homology between certain ribosomal protein binding regions on 16S rRNA and the mRNA target site for the ribosomal protein [42-44]. Although autogenous regulation is known to be a general strategy of balancing ribosomal protein synthesis in bacteria [41], mechanisms for controlling ribosomal protein gene expression in *P. gingivalis* have not yet been characterized. Further studies will be needed to elucidate the regulatory mechanisms involved in ribosomal protein synthesis in *P. gingivalis*.

Transposon functions

The majority of the up-regulated genes related to mobile and extrachromosomal element functions were the genes encoding transposases (Table 5). Transposition is generally known to be triggered by cellular stress, i.e., nutritional deficiency, chemicals, and oxidative agents. Little is known about the transposition in *P. gingivalis*, but up-regulation of transposase-related insertion sequence elements was noticed in *P. gingivalis* W50 after treatment with H$_2$O$_2$ [45]. Thus, it seems quite reasonable to speculate that induction of transposase is associated with oxidative stress-like response which occurred in *P. gingivalis* W83 due to the presence of polyP.

Table 3 Differentially expressed genes related to cell envelope and cell division (Continued)
DNA metabolism : DNA replication, recombination, and repair
PG1814 DNA primase \(−2.01\)
PG1993 Excinuclease ABC, C subunit \(−1.77\)
PG1255 Recombination protein RecR \(−1.64\)
PG1253 DNA ligase, NAD-dependent \(−1.62\)
PG0237 Uracil-DNA glycosylase \(−1.58\)
PG1378 A/G-specific adenine glycosylase \(−2.83\)
PG1622 DNA topoisomerase IV subunit A \(−2.02\)
PG1794 DNA polymerase type I \(−1.51\)
PG2009 DNA repair protein RecO, putative \(2.34\)

Purines, pyrimidines, nucleosides, and nucleotides : \(2′\)-Deoxyribonucleotide metabolism
PG1129 Ribonucleotide reductase \(−2.30\)
PG0953 Deoxyuridine 5′-triphosphate nucleotidohydrolase \(−2.14\)

Purines, pyrimidines, nucleosides, and nucleotides : Nucleotide and nucleoside interconversions
PG0512 Guanylate kinase \(−1.89\)

Purines, pyrimidines, nucleosides, and nucleotides : Pyrimidine ribonucleotide biosynthesis
PG0529 Carbamoyl-phosphate synthase small subunit \(−1.70\)
PG0357 Aspartate carbamoyltransferase catalytic subunit \(−1.54\)

Purines, pyrimidines, nucleosides, and nucleotides : Salvage of nucleosides and nucleotides
PG0558 Purine nucleoside phosphorylase \(−1.51\)
PG0792 Hypoxanthine phosphoribosyltransferase \(2.25\)

Locus number, putative identification, and cellular role are according to the TIGR genome database.

Average fold difference indicates the expression of the gene by polyP addition versus no polyP addition.

The cut off ratio for the fold difference was < 1.5.
Conclusions

We observed that polyP causes numerous events of differential transcription in P. gingivalis. Down-regulated genes were related to iron/hemin acquisition, energy metabolism and electron carriers, and cell envelope and cell division. In contrast, up-regulated genes were related to ribosome and transposon functions. polyP probably exerts its antibacterial effect through inhibition of iron/hemin acquisition by the bacterium, resulting in severe perturbation of energy metabolism, cell envelope biosynthesis, and cell division, and elevated transposition. Although the up-regulation of the genes related to ribosomal proteins may possibly reflect autogenous feedback inhibition to regulate the synthesis of certain ribosomal proteins in metabolically disturbed P. gingivalis by polyP, the exact mechanisms underlying this polyP-induced up-regulation of the genes have yet to be elucidated. The current information obtained from the gene ontology and protein-protein interaction network analysis of the differentially expressed genes determined by microarray will shed new light on the study of the antibacterial mechanism of polyP against other related bacteria belonging to the black-pigmented Bacteroides species.

Methods

Chemicals

polyP with a chain length of 75 (polyP75; sodium polyphosphate, glassy, Na₉₋₁₂P₉₋₁₁O₃₉₋₁₁; n = 75) was purchased from Sigma Chemical Co. (St. Louis, MO), dissolved in distilled water to a concentration of 10% (wt/vol), sterilized using a 0.22-μm filter, and stored at −20°C until use.

Bacterial strain and growth conditions

P. gingivalis strain W83 (kindly supplied by Dr. Koji Nakayama, Nagasaki University Graduate School of Biomedical Sciences) was cultured at 37°C anaerobically.
is (85% N₂, 10% H₂, and 5% CO₂) in half-strength brain heart infusion (BHI) broth (Becton Dickinson, Sparks, MD) supplemented with 0.5% yeast extract (Difco Laboratories, Detroit, MI), 5 μg/ml of hemin (Sigma), and 1 μg/ml of vitamin K₁ (Sigma).

RNA isolation and cDNA synthesis
Use of high concentrations of antibacterial agents for extended periods of time changes the expression of a large set of genes and the effect may be secondary to the action of the drug [46]. Meanwhile, at sub-lethal concentrations, bacteria may sense antibiotics as extracellular chemicals to trigger different cellular responses such as an altered antibiotic resistance/tolerance profile [47]. Hence, we performed the full-genome gene expression microarrays of P. gingivalis W83 exposed to polyP75 at a concentration of 0.03%, which was previously determined to be MIC against the bacterium [16], for a short period of time. P. gingivalis culture grown to early exponential phase (OD₆₀₀ = 0.3) was divided in half. One aliquot was left untreated, while the other one was treated with 0.03% polyP75. After incubation of both the bacterial cultures for 2 h under anaerobic conditions, the bacterial cells were harvested, and total RNA was extracted from the cells using Trizol Reagent (Invitrogen, Carlsbad, CA). RNA quality was monitored by Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA), and RNA quantity was measured by spectrophotometer. All the samples used in this study exhibited A₂₆₀/A₂₈₀ ratio of at least 1.8. cDNA was synthesized with 20 μg of total RNA using SuperScript® II Reverse Transcriptase (Invitrogen).

Microarray analysis
Two individual Cy3-labeled cDNA samples were hybridized into DNA microarrays (Nimblegen Systems, Inc., Madison, WI) containing the whole genome of 1,909 genes of P. gingivalis W83 for 16 h at 42°C. Five replicates of the genome were included per chip. An average of 19 matches compared to other 60-mers represented each gene set that has the same number gene of test set. In this process, the random control gene was selected by matching the length of the test gene. The fraction of genes in this randomly selected control set (Fcontrol) associated with each GO category was calculated. This

Assessment of array data quality
To confirm the microarray results using qRT-PCR, 10 genes were selected, and specific primers for the selected genes (Table 6) were designed using Primer3 (http://fokker.wi.mit.edu/primer3/). All quantifications were normalized to the P. gingivalis 16S rRNA gene. The transcriptional ratio from qRT-PCR analysis was logarithm-transformed and then plotted against the average log₂ ratio values obtained by microarray analysis [48].

Gene ontology (GO) enrichment analysis
The GO term annotations for P. gingivalis were downloaded from the Gene Ontology website (http://www.geneontology.org/GO.downloads.annotations.shtml, UniProt [multispecies] GO Annotations @ EBI, Apr. 2013). To test the GO category enrichment, we calculated the fraction of gene in the test set (Ftest) associated with each GO category. Then, we generated the random control gene set that has the same number gene of test set. In this process, the random control gene was selected by matching the length of the test gene. The fraction of genes in this randomly selected control set (Fcontrol) associated with the current GO category was calculated. This

Table 6 Real-time quantitative RT-PCR confirmation of selected genes

Locus no.	Primer sequence (5'–3')	Product size (bp)
16S rRNA	F: GTTTACAATGGGAGGGACAAAGGG	118
	R: TTACTAGGAAATCCGACGCG	
PG0090	F: CAGAAATGGAAGAGACAAAGAC	197
	R: GTAGGGAGACAGGACATCCCAA	
PG0195	F: TCCAGCAGCTGAGAATCTTGCG	149
	R: TGCTGCGGCTTCCAACGCTTG	
PG1545	F: CGCCGTCCTACACACACACCA	142
	R: GTAGGGAGCTGTTGAACCAT	
PG0593	F: CAGGGCGGAGAGGATGATTG	175
	R: CGCCGGCGTCTGAGAATTG	
PG1089	F: CCATCCCGATGATGCTGTAATG	104
	R: GCCATATGGCGTCTAAGGGTTTC	
PG1019	F: TTCGGAGTATCCCATCACAAC	126
	R: TCCGCGCTACTACCTCCCAA	
PG1180	F: CAGTCTGCAACAGTCACCA	124
	R: CCCTACAGGACACACTCGGA	
PG1983	F: GCCTGGGTTGCTGGCTATC	146
	R: GGATAAGCGGAAAACCGCAT	
PG0885	F: CATGACACCTCGGAGCTGA	156
	R: GTAGAAAAACGATGCAAAGCC	
PG1181	F: GATGAATTCGGGAGCGTGAT	184
	R: CTCCTAAGGTCGCCAACAGC	

Based on the genome annotation provided by TIGR (http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=gpg).
Primer sequences were designed using Primer3 program for the study except for the primers of P. gingivalis 16S rRNA and PG1089 [49], which were prepared based on the primer sequences published previously. The 16S rRNA gene was used as the reference gene for normalization. F, forward; R, reverse.
random sampling process was repeated 10,000 times. Finally, the P-value for the enriched GO category in a test gene set was calculated as the fraction of times that F_{test} was lower than or equal to $F_{control}$.

Protein-protein interaction network analysis

The protein-protein interaction network data including score were obtained from the STRING 9.1 (http://string-db.org) [50], for *P. gingivalis* W83. We used Cytoscape software [51] for network drawing, in which nodes and edges represented DEGs and interactions among DEGs, respectively. DEGs with no direct interaction were discarded, and the final dataset consisting of 611 DEGs and 1,641 interactions were used for the network construction. In order to find significant interaction between DEGs, we applied the confidence cutoff as 0.400 (medium confidence).

To understand the biological functions of the DEGs in the network, we annotated 202 DEGs belonging to 8 relevant biological functional clusters and then generated the sub-network using these DEGs in the whole DEGs network constructed above. Cytoscape plug-in MCODE [52] was used to decompose the sub-network and 5 clusters with the score greater than 3 were identified.

Abbreviations

polyP: Inorganic polyphosphate; GO: Gene ontology; DEG(s): Differentially expressed genes (s); qRT-PCR: Quantitative RT-PCR.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived and designed the experiments: JHM and JYL. Performed the experiments: JHM and JYL. Analyzed the data: JHM, JHL. Wrote the manuscript: JHM, JHL, and JYL. All authors read and approved the final manuscript.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0009233) and by the National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIP) (No. 2012R1A5A2051384).

Author details

1 Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea. 2 Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Republic of Korea.

Received: 2 June 2014 **Accepted:** 12 August 2014 **Published:** 24 August 2014

References

1. Kornberg A, Rao NN, Ault-Riche D: Inorganic polyphosphate: A molecule of many functions. Annu Rev Biochem 1999, 68:89–125.
2. Marcy JA, Kraft AA, Hotchkiss DK, Molins RA, Olson DG, Walker HW, Merkenich K: Effects of selected commercial phosphate products on the natural bacterial flora of a cooked meat system. J Food Prot 1998, 53:391–393.
3. Molins RA, Kraft AA, Walker HW, Rust RE, Olson DG, Merkenich K: Effect of inorganic polyphosphates on ground beef characteristics: microbiological effects on frozen beef patties. J Food Sci 1987, 52:46–49.
4. Jen CM, Shlef EA: Factors affecting sensitivity of *Staphylococcus aureus* 146E to polyphosphates. Appl Environ Microbiol 1986, 52:842–846.
5. Knabel SJ, Walker HW, Hartman PA: Inhibition of *Aspergillus flavus* and selected Gram-positive bacteria by chelation of essential metal cations by polyphosphate. J Food Prot 1991, 54:360–365.
6. Lee RM, Hartman PA, Olson DG, Williams FD: Bactericidal and bacteriolytic effects of selected food-grade phosphates, using *Staphylococcus aureus* as a model system. J Food Prot 1994, 57:276–283.
7. Post FJ, Krishnamurty GB, Flasango MD: Influence of sodium hexametaphosphate on selected bacteria. Appl Microbiol 1963, 11:430–435.
8. Zaika LL, Kim AH: Effect of sodium polyphosphates on growth of *Listeria monocytogenes*. J Food Prot 1993, 56:377–380.
9. Rajkowski KT, Calderone SM, Jones E: Effect of polyphosphate and sodium chloride on the growth of *Listeria monocytogenes* and *Staphylococcus aureus* in ultra-high temperature milk. J Dairy Sci 1994, 77:1503–1508.
10. Maier SK, Scherer S, Loesener M: Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol 1989, 65:3942–3949.
11. Brown AT, Ruh SR Jr: Negative interaction of orthophosphate with glycolytic metabolism by *Streptococcus mutans* as a possible mechanism for dental caries reduction. Arch Oral Biol 1977, 22:251–254.
12. Shibata H, Moriya T: Antibacterial action of condensed phosphates on the bacterium *Streptococcus mutans* and experimental caries in the hamster. Arch Oral Biol 1982, 27:609–616.
13. Lee RM, Hartman PA, Olson DG, Williams FD: Metal ions reverse the inhibitory effects of selected food-grade polyphosphates in *Staphylococcus aureus*. J Food Prot 1994, 57:284–288.
14. Lee RM, Hartman PA, Stehr HW, Olson DG, Williams FD: Antibacterial mechanism of long-chain polyphosphates in *Staphylococcus aureus*. J Food Prot 1994, 57:289–294.
15. Obrists JA, Ryu D, Lampila LE, Bullerman LB: Antibacterial effects of long-chain polyphosphates on selected spoilage and pathogenic bacteria. J Food Prot 2008, 71:1401–1405.
16. Moon JH, Park JH, Lee JY: Antibacterial action of polyphosphate on *Porphyromonas gingivalis*. Antimicrob Agents Chemother 2011, 55:806–812.
17. Kong HC, Choi HY, Min BS, Park SJ, Lee JY, Choi GW: Effect of polyphosphate on the growth of oral bacterium, *Prevotella intermedia*. Restor Dent Endod 1998, 23:550–560.
18. Choi SB, Park SJ, Choi GW, Choi HY: Mechanism in antibacterial activity of polyphosphate against *Porphyromonas endodontalis*. J Korean Acad Oper Dent 2000, 25:561–574.
19. Song Y, Lunde CS, Benton BM, Wilkinson SJ: Further insights into the mode of action of the lipoplycopeptide talavancin through global gene expression studies. Antimicrob Agents Chemother 2012, 56:3157–3164.
20. Kurosu M, Begari E: Vitamin K2 in electron transport system: are enzymes involved in vitamin K2 biosynthesis promising drug targets? Molecules 2010, 15:1531–1553.
21. Xie H, Zheng C: OxyR activation in *Porphyromonas gingivalis* in response to a hemin-limited environment. Infect Immun 2012, 80:3471–3480.
22. Smalley JW, Birss AJ, Mckee AS, Marsh PD: Hemin regulation of hemoglobin binding by *Porphyromonas gingivalis*. Curr Microbiol 1980, 36:102–106.
23. Lewis JP, Dawson JA, Hannis JC, Muddiman D, Macrina FL: Hemoglobinase activity of the lysine gingipain protease (Kgp) of *Porphyromonas gingivalis* W83. J Bacteriol 1999, 181:405–413.
24. Lewis JP, Plata K, Yu F, Rosalo A, Araya C: Transcriptional organization, regulation and role of the *Porphyromonas gingivalis* W83 hmu haemin-uptake locus. Microbiology 2006, 152:3367–3382.
25. Dashper SG, Ang CS, Veith PD, Mitchell HL, Lo AW, Seers CA, Walsh KA, Slakesi N, Chen D, Lissel JP, Butler CA, O’Brien-Simpson NM, Barr IG, Reynolds EC: Response of *Porphyromonas gingivalis* to heme limitation in continuous culture. J Bacteriol 2009, 191:1044–1055.
26. Smalley JW, Birss AJ, Silver J: The periodontal pathogen *Porphyromonas gingivalis* harnesses the chemistry of the μ-oxo bishaem of iron protoporphyrin IX to protect against hydrogen peroxide. FEMS Microbiol Lett 2000, 183:159–164.
27. Smalley JW, Birss AJ, Szmiigiel B, Potempa J: The H2A haemagglutinin domain of the lysine-specific gingipain (Kgp) of *Porphyromonas gingivalis*.
gingivalis promotes μ-oxo bishafam formation from monomeric iron (III) protoporphyrin IX. Microbiology 2006, 152:1839–1845.

28. Fuchtgott L, Wingreen NS, Huang KC: Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria. Mol Microbiol 2011, 81:340–353.

29. Mingorance J, Tarnames J, Vicente M: Genomic channeling in bacterial cell division. J Mol Recognit 2004, 17:481–487.

30. Weiss DS: Bacterial cell division and the septal ring. Mol Microbiol 2004, 54:588–597.

31. Höltje JV, Heidrich C: Enzymology of elongation and constriction of the murein sacculus of Escherichia coli. Biochimie 2001, 83:103–108.

32. Samuelson O, Haukland HH, Kahl BC, von Eiff C, Proctor RA, Ulvatne H, Sandvik K, Vorland LH: Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B. J Antimicrob Chemother 2005, 56:1126–1129.

33. Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ: Transcriptional profiling reveals that daptoycin induces the Staphylococcus aureus cell wall stress stimulus and genes responsive to membrane depolarization, Antimicrob Agents Chemother 2008, 52:980–990.

34. Wilkinson BJ, Muthaiyan A, Jayaswal RK: The cell wall stress stimulus of Staphylococcus aureus and other Gram-positive bacteria. Curr Med Chem Anti-Infect Agents 2005, 4:259–276.

35. Pechous R, Ledala N, Wilkinson BJ, Jayaswal RK: Regulation of the expression of cell wall stress stimulus member gene msrA1 in methicillin-susceptible or -resistant Staphylococcus aureus. Antimicrob Agents Chemother 2004, 48:3057–3062.

36. Bertsche U: The polysaccharide peptidoglycan and how it is influenced by (antibiotic) stress. In Bacterial polysaccharides: Current innovations and future trends. Edited by Ullrich M, Norfolk, UK: Caister Academic Press; 2009:3–26.

37. Maguire BA: Inhibition of bacterial ribosome assembly: a suitable drug target? Microbial Mol Bio Rev 2009, 73:22–35.

38. Emerson JE, Stabler RA, Wren BW, Fairweather NF: Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J Med Microbiol 2008, 57:57–76.

39. Mikkola R, Kurland CG: Evidence for demand-regulation of ribosomal RNA and ribosomal protein mRNA. Proc Natl Acad Sci U S A 1980, 77:1551–1556.

40. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME: Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J Bacterial 2003, 185:359–370.

41. Leonid VA, Alexandrina AL, Ludmila ST, Nadezda VS, Irina VB: A new regulatory circuit in ribosomal protein operons: S2-mediated control of the rpsB-tsf expression in vivo. RNA 2008, 14:1882–1894.

42. Nomura M, Yates JL, Dean O, Post DE: Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein mRNAs. Proc Natl Acad Sci U S A 1980, 77:7084–7088.

43. Yates JL, Aflsten AE, Nomura M: In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci U S A 1980, 77:1837–1841.

44. Choonee N, Even S, Zig L, Putzer H: Ribosomal protein L20 controls expression of the Bacillus subtilis iinC operon via a transcription attenuation mechanism, Nucleic Acids Res 2007, 35:1578–1588.

45. Duran-Pinedo AE, Nishikawa K, Duncan MJ: The RprY response regulator of Porphyromonas gingivalis. Mol Microbiol 2007, 64:1061–1074.

46. Pádzik T: Antibiotic exposure and bacterial gene expression, Genome Res 2001, 11:1–2.

47. Bernier SP, Surette MG: Concentration-dependent activity of antibiotics in natural environments. Front Microbiol 2013, 4:20.

48. Han Y, Zhou D, Pang X, Zhang L, Song Y, Tong Z, Bao J, Dai E, Wang J, Guo Z, Zhai J, Du Z, Wang X, Wang J, Huang P, Yang R: DNA microarray analysis of the heat- and cold-shock stimulons in Yersinia pestis. Microbes Infect 2005, 7:335–348.

49. Hosogi Y, Duncan MJ: Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect Immun 2005, 73:2327–2335.

50. Franceschini A, Sklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Mingeaz P, Boit P, von Mering C, Jensen LJ: STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013, 41(Database issue):D808–D815.

51. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T: Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:451–432.

52. Bader GD, Harpole OW: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2.