KAEMPFEROL FROM STELECHOCARPUS BURAHOL, (BL.) HOOK F. & TH. LEAVES AND XANTHINE OXIDASE INHIBITION ACTIVITY

By DINIATIK DINIATIK
KAEMPFEROL FROM STELECHOCARPUS BURAHOL, (BL.) HOOK F. & TH. LEAVES AND XANTHINE OXIDASE INHIBITION ACTIVITY

DINIATIK1,2*, SUWUIYO PRAMONO1, SUGENG RIYANTO1

ABSTRACT

Objective: Stelechocarpus burahol, (Bl.) Hook f. & Th. is a plant widely distributed in Java Island of Indonesia. The aim of this study is to identify compounds from the leaves of S. burahol that exhibited activity as xanthine oxidase inhibitor (XO). Methods: The leaves were extracted with aqueous ethanol and hydrolyzed with HCl methanol, then, partitioned sequentially with chloroform and ethyl acetate. The ethyl acetate fractions were separated by column chromatography with cellulose as stationary phase and methanol 50% as mobile phase. Results: Purification from this extracts afforded three compounds with one compound identified, namely kaempferol. The four compounds possessed as XO with IC50 values ranging from 0.27 to 0.45 μg/ml. Conclusion: Kaempferol exhibited the highest inhibition of 0.27 μg/ml. Keywords: Kaempferol, Xanthine oxidase inhibitor, Stelechocarpus burahol, (Bl.) Hook f. & Th

METHODS

Plant material, extraction, and isolation

The leaves of S. burahol were collected from Sleman District, Yogyakarta Province, Indonesia, in August 2013 and identified in the Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Gadjah Mada University. A voucher specimen was deposited in the Pharmaceutical Biology Laboratory, Faculty of Pharmacy, Muhammadiyah University of Purwokerto. Leaves of S. burahol were dried and pulverized. Water layer separated and followed by addition of ethyl acetate, shaken and allowed to stand for 6 hrs. The ethyl acetate fraction was collected and then separated using column chromatography method with cellulose as stationary phase and methanol 50% as mobile phase. The stationary phase used is 300 g using a column with a diameter of 6.5 cm manufacture of a column using a wet method, by mixing the stationary phase with a mobile phase with a ratio of 1:1 and then poured in a column chromatography, left overnight. The stationary phase was mixed with ethyl acetate fraction (28 g) with a ratio of 1:1, mixed homogeneously, placed on a stationary phase that
has compacted in a column chromatography. Subfractions collected every 30 ml, 130 subfractions thus obtained. During the subfraction taking is monitored using a ultraviolet (UV) lamp in the column. There fluorescence of flavonoids in the column because the flavonoid compound fluoresces under UV light. After separation of active fractions by column chromatography, three compounds were obtained, and one was identified based on spectra data using 1 H- and 13C-NMR.

XO Inhibitory (XOI) activity assay

A well-known XOI, allopurinol (100 µg/ml) was used as a positive control for the inhibition test. XO activity determined by adding 200 mL of substrate (xanthine) 0.15 mM in a mixture of 100 mL of XO 100 mU/mL and 724 mL of phosphate buffer pH 7.5. XO activity determined by observing the rate of formation uric acid from xanthine by spectrophotometry at wavelength (λ) 290 nm from minute 0 up to 3 minutes at a temperature of 25°C. The difference, at this stage the addition of 200 mL allopurinol at a concentration of 10 µg/ml to 100 µg/ml into a mixture of phosphate buffer, xanthine, and XO. In similar way, also determined the XOI activity by 200 mL of test solution (carried out using the orientation of concentration 10 µg/ml to 100 µg/ml).

RESULT AND DISCUSSION

The inhibitory effect of ethanolic extract of S. burahol leaves, chloroform fraction, ethyl acetate fraction, allopurinol, and isolates have been performed in Graphs 1 and 2. Determination of the enzyme XOI activity using spectrophotometric method by observing Thus, the determination of uric acid formation carried out during the first 4 minutes the formation of uric acid at a wavelength of 290 nm. Thus, ethyl acetate fraction was fractionated by column chromatography. The stationary phase used was cellulose and 50% methanol as mobile phase. Subfractions 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120 and 130 test thin layer chromatography (TLC), using 3 times eluted acetic acid 30% as a mobile phase and cellulose as the stationary phase. Subfraction 50-79 was separated using preparative TLC to obtain three isolates (B1, B2, B3). Further isolates tested activity as inhibitors of the enzyme XO, the results obtained (Table 1) that all isolates had activity to the enzyme XO, from the largest to the smallest activity were B1, B3, and B2 with IC50 values of 0.27, 0.30, 0.45 µg/mL. Respectively, B1 isolates have IC50 similar to the ethyl acetate fraction (0.31 µg/mL), but lower than allopurinol (IC50 values 4.59 µg/mL) as positive control. Thus, the study continued to identify B1 isolates.

B1 isolates structure elucidation

1 H-NMR (acetone-d6, 400 Hz) of the isolates B1 is used to identify the number and position of H contained in the molecular structure. In these data, there are several groups of signals consisting of
6 protons aromatic (Fig. 3). The emergence of doublet signals at 6.37 ppm (d, J=2 Hz) and 6.15 ppm (d, J=2 Hz). At position C-6 and C-8 show the position of the hydroxyl group at C-7 and C-5. The existence ortho coupling of two doublet signals with the δH=8.07 ppm (d, J=9 Hz), 6.89 ppm (d, J=9 Hz) on position C-6',2' and C-5',3'. 13C-NMR is used to indicate the number and position of C contained in the molecular structure showed (Fig. 4) there were 13 separate signals well to 15 carbon atoms chemical shifts at δC =93.09, 97.89, 103.19, 114.91, 122.37, 129.34, 135.81, 146, 66, 156.89, 159.20, 164.18, 164.24, 176.05 ppm all of which are carbon aromatic ring. There is a carbon of a carbonyl group —C=O on shift δC=176.05 ppm. There are two chemical shifts which abundant twice δC=114.91, 129.34 ppm. Heteronuclear multiple-quantum correlation spectrum (Fig. 5) shows that the compound B1 shows that the proton —H6 aromatic chemical shifts δH=6.15 ppm (s) bonded to carbon C6 δC =97.89 ppm.

The proton —H8 aromatic chemical shifts δH=6.37 ppm (s) bonded to carbon C8 δC=93.09 ppm. The proton —H3',5' aromatic chemical shifts δH=6.89 ppm (d) bonded to carbon C3',5' δC =114.91 ppm. Then proton —H2',6' aromatic chemical shifts δH=8.07 ppm (d) bonded to carbon C2',6' δC=129.34 ppm. Based heteronuclear multiple bond correlation (HMBC) spectrum (Fig. 6) shows that the compound B1 showed that aromatic carbon C4' at chemical shift δC=159.22 ppm interaction on proton H2',6',5',3' δH=8.07, 6.89 ppm. There carbon aromatic C2 at δC=156.89 ppm interaction on proton H2',6',5' δH=8.07 ppm. Aromatic carbon C2',6' at chemical shift δC=129.34 ppm interaction on proton H6',5',3' δH=8.07, 6.89 ppm. There carbon aromatic C1' at δC=122.37 interaction on proton H5',3' δH=6.89 ppm. Aromatic carbon C5',3' at chemical shift δC=114.91 interaction on proton H5',3',2',6' δH=8.07, 6.89 ppm. Based HMBC spectrum (Fig. 7) shows that the compound B1 showed that aromatic carbon C7 at chemical shift δC =162.72 ppm interaction on proton H6,8 δH=6.15, 6.37 ppm. There carbon aromatic C5 at δC =164.18 ppm interaction on proton H8 δH=6.37 ppm. Aromatic carbon C9 at chemical shift δC =146.65 ppm interaction on proton H8 δH=6.37 ppm. There carbon aromatic C6 at δC =97.89 interaction on lproton H8 δH=6.37 ppm. Aromatic carbon C8 at chemical shift δC =93.09 interaction on proton H6 δH=6.15 ppm.

Mass spectra of isolate B1 (Fig. 8) showed that m/z negative 285, molecular weight of kaempferol 286 g/mol. It is showed that isolate B1 is kaempferol. Based on spectroscopic data analysis (Table 3), it can be concluded that the isolates B1 is kaempferol (Fig. 9) with molecular formula C15H10O6. According to Van Hoorn et al. (2002) [15], kaempferol structure on the part of the A ring is similar to the heterocyclic ring in the form of xanthine enol (Fig. 10).
CONCLUSION

In summary, the most active isolate which inhibits the XO (B1) with IC50 of 0.27 µg/ml is kaempferol. Moreover, three compounds isolated from the active fractions showing different XO1 activities in vitro may contribute to antihyperuricemic effect. These result supported the antihyperuricemic activity of S. burahol leaves as health dietary candidate.
KAEMPFEROL FROM STELECHOCARPUS BURAHOL, (BL.) HOOK F. & TH. LEAVES AND XANTHINE OXIDASE INHIBITION ACTIVITY

| PRIMARY SOURCES | Source | Words | Similarity |
|-----------------|--------|-------|------------|
| 1               | innovareacademics.in | 292 | 20%     |
| 2               | Awaad Amani, A.S., D.J. Maitland, and G.A. Soliman. "Antiulcerogenic Activity of Alhagi maurorum." | 12 | 1%     |
| 3               | Peris, Gorka, and Edwin Vedejs. "Enantiocontrolled Synthesis of a Tetracyclic Aminal Corresponding to the Core Subunit of Diazonamide A" | 8 | 1%     |

EXCLUDE QUOTES OFF
EXCLUDE BIBLIOGRAPHY OFF
EXCLUDE MATCHES OFF