Complex pairing of B_2H_4 with H_2O, CH_3OH, NH_3, NH_2CH_3, $\text{NH}(\text{CH}_3)_2$ and $\text{N}(\text{CH}_3)_3$

Reza Tayeebe1, Abedien Zabardasti2

1Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran
2Department of Chemistry, Lorestan University, Khorramabad, Iran

Abstract

Ab initio calculations were carried out to analyze the interactions between a molecule of B_2H_4 with H_2O, CH_3OH, NH_3, NH_2CH_3, $\text{NH}(\text{CH}_3)_2$, and $\text{N}(\text{CH}_3)_3$ molecules at the MP2/aug-cc-pVDZ computational level. B_2H_4 through its bridged hydrogens (H_b) could act as a hydrogen bond donor while its B-B act as hydrogen bond acceptor. Thus, interaction of B_2H_4 with the mentioned molecules resulted in formation of $\text{H}_b...\text{X}$ or B-B...H hydrogen bond complexes. In contrast, H_t atoms of B_2H_4 have not enough strength to form $\text{H}_t...\text{H}$ dihydrogen bond complexes with the above molecules. Results showed that the B-B...H interactions are stronger than its H_t...X counterpart. The obtained structures were analyzed by the natural bond orbital (NBO) and Atoms in Molecules (AIMs) methodologies.

Introduction

Borane complexes have been studied extensively and have even been the subject of Nobel Prize work by Brown [1,2]. It has been the subject of proton affinity experiments in chemical ionization mass spectrometers. Among non-covalent interactions which have been known in boron chemistry, both dihydrogen bonding and hydrogen bonding types are particularly significant [4-21].

B_2H_4, designated as diborane(4), probably is the best known electron-deficient analogue of ethylene [22-26]. The molecule B_2H_4 bears 10 valence electrons for chemical bonding. There are two standard two electron terminal $\text{B}...\text{H}$ bonds, thus accounting for a total of four electrons. This leaves a total of six electrons to share between the two bridging H atoms and the two B atoms. Consequently, there are two 3c-2e curved ‘banana’ $\text{B}...\text{H}$ bridging bonds. According to the above illustrations, B_2H_4 has two types of terminal (H_t-B) and bridging ($\text{B}...\text{B}$-H) hydrogen atoms which differ in nature and characteristics. The bridging hydrogens of B_2H_4 are participating in electron deficient ‘three-center, two-electron bonds’ thus, they bear enough partial positive charge to act as hydrogen bond donor (HBD) to form $\text{H}_t...\text{X}$ ($\text{X}=\text{N, O}$) hydrogen bonds with electron donating molecules [13,14,17-21,26]. On other hand, recent studies are showing that B_2H_4 bond also could act as HBA in the interactions of borane clusters with HBD species to form $\text{H}...\text{B}$-B hydrogen bonds [13,20,26].

From a fundamental point of view, the present work aims to extend the knowledge of the intrinsic activity of H_t, H_b, and $\text{B}...\text{B}$ bond of diborane(4) as hydrogen bond acceptor or hydrogen bond donor towards other molecules. For this propose, we investigated interaction of B_2H_4 toward H_2O, CH_3OH and $\text{NH}_n(\text{CH}_3)_{3-n}$, $n=0-3$ derivatives thorough theoretical calculation.

Computational methods

Calculations were performed using the Gaussian 03 system of codes [27]. The geometries of the isolated B_2H_4 and H_2O, CH_3OH and $\text{NH}_n(\text{CH}_3)_{3-n}$ molecules as well as their complexes were fully optimized at the mp2/aug-cc-pVDZ computational level. Harmonic vibrational frequency calculation confirmed the structures as minimal and enabled the evaluation of zero point energy (ZPE). The counterpoise procedure was used to correct the interaction energy for basis set superposition error [28]. The AIM package was used to obtain bond properties and molecular graphs [29,30]. The natural bond orbitals (NBO) method was implemented within the Gaussian 03 set of codes was applied to perform NBO analysis [31].

Results and discussion

Interaction of B_2H_4 with H_2O and CH_3OH molecules gave the $\text{B}_2\text{H}_4...\text{H}_2\text{O}$ and $\text{B}_2\text{H}_4...\text{CH}_3\text{OH}$ complexes which have hydrogen bond interactions between B-B bond as HBA and OH functions of H_2O and CH_3OH as HBD. Results are demonstrating that later complex has greater stability than the former one. The association of B_2H_4 and $\text{NH}_n(\text{CH}_3)_{3-n}$ ($n=0-3$) derivatives led to the formation of the 1:1 hydrogen bond complexes which has been denoted as $\text{B}_2\text{H}_4...\text{NH}_n$, $\text{B}_2\text{H}_4...\text{NH}_n\text{Me}$, $\text{B}_2\text{H}_4...\text{NHMe}_2$, and $\text{B}_2\text{H}_4...\text{NMe}_3$. Figure 1. In these complexes hydrogen bond interactions has been found between a bridging proton of the B_2H_4 as a proton donor and nitrogen atom of amine as a proton acceptor ($\text{H}_{2n}...\text{N}$). According to the data given in Table 1, stabilities of $\text{B}_2\text{H}_4...\text{NH}_n(\text{CH}_3)_{3-n}$ complexes increased with enhancing basicity of amines in the following order: $\text{B}_2\text{H}_4...\text{NMe}_3 > \text{B}_2\text{H}_4...\text{NHMe}_2 > \text{B}_2\text{H}_4...\text{NHMe}_2 > \text{B}_2\text{H}_4...\text{NH}_3$.

The results due to the intermolecular bond lengths are given in the Table 2 and Figure 1. In the $\text{B}_2\text{H}_4...\text{H}_2\text{O}$ and $\text{B}_2\text{H}_4...\text{CH}_3\text{OH}$ complexes, the B1-B4 bond has elongation (0.0015); but, other bonds of B_2H_4 are shortened (from -0.0009 to -0.0053) upon complex formation. Moreover, a 0.0061 shortening was observed for O-H bond in these complexes.
On the other hand, the N…H distances in the B\(_2\)H\(_4\)-NH\(_n\)(CH\(_3\))\(_{3-n}\) complexes are in the range of 2.6196 to 2.4997 Å. These distances could be considered as weak bonding interactions between the two components. Comparison of the H\(_b\)…N distances showed that the obtained trend was in agreement with the stability of these complexes.

In B\(_2\)H\(_4\)-NH\(_3\), the NH\(_3\) molecule interacts with H\(_2\) atom of B\(_2\)H\(_4\). Data given in Table 2 showed that the bridging B-H-B bond, as well as B1-B4 bond, have contraction (-0.0046, -0.0055, -0.0023, -0.0028 and -0.0024 for B1-H2, B4-H2, B1-H3, B4-H3 and B1-B4 bonds, respectively); while, the terminal B1-H5 and B4-H6 bonds showed small elongation upon complexation.

Table 1.
The SE\(_{\text{corr}}\), BSSE, ∆ZPE, and SE\(_{\text{corr}}\) (corrected with BSSE and ∆ZPE) in kcal mol\(^{-1}\) calculated at MP2/aug-cc-pVDZ.

Complex	SE\(_{\text{corr}}\)	BSSE	∆ZPE	SE\(_{\text{corr}}\)
B\(_2\)H\(_4\)-H\(_2\)O	-4.02	0.96	1.66	-1.40
B\(_2\)H\(_4\)-CH\(_3\)OH	-4.53	1.16	1.08	-2.29
B\(_2\)H\(_4\)-NH\(_3\)	-2.10	0.75	0.83	-0.52
B\(_2\)H\(_4\)-NHMe\(_2\)	-4.15	1.15	0.80	-1.20
B\(_2\)H\(_4\)-NMe\(_3\)	-3.96	1.47	0.71	-1.78

Values of SE\(_{\text{corr}}\) were determined as follows: SE\(_{\text{corr}}\) = E(B\(_2\)H\(_4\) ∙∙∙Y) - [E(B\(_2\)H\(_4\)) + E(Y)] with Y = H\(_2\)O, CH\(_3\)OH, NH\(_3\), NHMe\(_2\), NMe\(_3\), NH(CH\(_3\))\(_2\), and N(CH\(_3\))\(_3\);

Values of SE\(_{\text{corr}}\) were determined as follows: SE\(_{\text{corr}}\) = SE\(_{\text{corr}}\) + ∆ZPE + BSSE
In B$_2$H$_4$-NH$_2$CH$_3$, interaction occurred between NH$_2$CH$_3$ molecule and the bridging H$_3$ atom of B$_2$H$_4$. In this complex, B$_1$-H$_2$, B$_1$-H$_3$, B$_4$-H$_3$ and B$_1$-B$_4$ bonds showed contraction (-0.0077, -0.0069, -0.0023, and -0.0015, respectively); while, the terminal B$_1$-H$_5$ bond and the bridging B$_4$-H$_2$ bond revealed elongation after complexation.

The unsymmetric stretching frequencies (cm$^{-1}$) with the corresponding intensities (km mol$^{-1}$) for the studied complexes are listed in Table 3. The unsymmetric stretching frequencies of B$_1$-H$_5$ and B$_4$-H$_6$ showed a 5 cm$^{-1}$ blue shift in B$_2$H$_4$-H$_2$O and in B$_2$H$_4$-CH$_3$OH complexes, respectively. These charge transfers indicated that electron fraction is outweighed by the kinetic, the positive profile of ∇\(2\rho\) indicates a depletion of charge density along the inter-nuclear connecting bond path (BP) [33]. Furthermore, the atomic connection is recognized as close-shell interaction, which is often designated to H-bonds or other intermolecular weakly bound contacts, such as halogen bonds, dihydrogen bonds, and π-staking [34-40]. Regarding the values gathered in Table 4, it should be highlighted that the positive values of V$^\alpha$\(\nabla_\alpha\) ensure that all H-bonds are closed-shell interactions due to the low charge density concentration. The inter-atomic and inter-molecular interactions are also studied in terms of local electron energy density (H) and its components, the local kinetic electron energy density (G), and local potential electron energy density (V) at the BCPs. The relation between these energetic parameters is given in Equation 1.

Also it has been suggested that both V$^\alpha$\(\nabla_\alpha\) and the H should be used for characterizing hydrogen bond [41]. The weak hydrogen-bonds means that both V$^\alpha$\(\nabla_\alpha\) and H are positive, medium hydrogen-bonds show that V$^\alpha$\(\nabla_\alpha\)>0 and H<0; while, strong hydrogen-bonds bearing both V$^\alpha$\(\nabla_\alpha\)>0 and H>0. For the investigated complexes (Table 4), V$^\alpha$\(\nabla_\alpha\) and H at BCP for H...N and H...B interactions are positive. This means that these interactions belong to close shell weak HB interactions.

The balance between G and V could be used to show the nature of interactions [42]. If ∇\(2\rho\)>1, then, the nature of the interaction is purely non-covalent. For all the examined complexes, this ratio was greater than 1, which confirmed the existence of weak interactions between the two systems and nature of the interaction was purely non-covalent.

Natural bond orbital analysis

Natural bond orbital (NBO) analysis was performed for the minima found on the studied B$_2$H$_4$ complexes. These complex formations are associated with an orbital interaction between the bonding pairs in the electron donor and the antibonding orbital in the electron acceptor. The quantity of charge transferred from donor to acceptor (AQ) due to the interaction of donor and acceptor orbitals were 0.0060, 0.0085, 0.0039, 0.0072, 0.0082 and 0.0085 for B$_2$H$_4$-H$_2$O, B$_2$H$_4$-CH$_3$OH, B$_2$H$_4$-NH$_3$, B$_2$H$_4$-NH$_2$CH$_3$, B$_2$H$_4$-NH(CH$_3$)$_2$ and B$_2$H$_4$-N(CH$_3$)$_3$ complexes, respectively. These charge transfers indicated that electron fraction is...
Table 3. Unscaled vibrational frequencies (cm\(^{-1}\)) with corresponding intensities (values given in parenthesis, km mol\(^{-1}\)) for B\(_2\)H\(_4\) and its complexes at MP2/aug-cc-pVDZ.

Compound Bond	\(B_2\)H\(_4\)	\(B_2\)H\(_4\)-H\(_2\)O	\(B_2\)H\(_4\)-MeOH	\(B_2\)H\(_4\)-NH\(_3\)	\(B_2\)H\(_4\)-NH\(_2\)Me	\(B_2\)H\(_4\)-HMe\(_2\)	\(B_2\)H\(_4\)-NMe\(_3\)	
\(v\)	\(\Delta v\)	\(v\)	\(\Delta v\)	\(v\)	\(\Delta v\)	\(v\)	\(\Delta v\)	
B1 - B4	1343(3)	-8	1335(2)	1345(2)	2	1342(2)	0	1342(2)
sym-B1-H2-B4	2129(18)	15	2144(15)	2136(27)	7	2134(34)	5	2123(13)
unsy-B1-H2-B4	2136(44)	15	2149(29)	2147(13)	11	2147(21)	11	2141(40)
sym-B1-H5,B4-H6	2811(36)	5	2816(23)	2805(42)	-6	2805(37)	-6	2803(35)
unsy-B1-H5,B4-H6	2851(0.2)	4	2855(0)	2847(0)	-4	2846(0.2)	-5	2844(0)

Table 4. Topological parameters for the fully optimized complexes at MP2/aug-cc-pVDZ.

Complex	H-bond	\(\rho\)	\(\nabla^2\)	\(V\)	\(G/V\)	\(H_e\)
\(B_2\)H\(_4\)-H\(_2\)O	B5...H9	0.0153	0.0344	1.1122	0.0088	
\(B_2\)H\(_4\)-CH\(_3\)OH	B8...B4	0.0164	0.0345	1.0735	0.0066	
\(B_2\)H\(_4\)-NH\(_3\)	N7...H2	0.0094	0.0242	1.0629	0.0003	
\(B_2\)H\(_4\)-NH\(_2\)Me	N7...H3	0.0097	0.0270	1.0931	0.0005	
\(B_2\)H\(_4\)-HMe\(_2\)	H3...N7	0.0118	0.0300	1.0257	0.0002	
\(B_2\)H\(_4\)-NMe\(_3\)	H3...N7	0.0126	0.0308	0.9945	0.0001	

Table 5. The NBO analysis of studied complexes at MP2/aug-cc-pVDZ.

complexes	donor→ acceptor	qCT*	\(E\) (2)
\(B_2\)H\(_4\)-H\(_2\)O	bd(B1-B4)→σ*(O-H)	0.0060	3.85
\(B_2\)H\(_4\)-CH\(_3\)OH	bd(B1-B4)→σ*(O-H)	0.0085	5.54
\(B_2\)H\(_4\)-NH\(_3\)	lp(N)→σ*(B1-H2-B4)	0.0039	2.15
\(B_2\)H\(_4\)-NH\(_2\)Me	lp(N)→σ*(B1-H3-B4)	0.0072	1.27
\(B_2\)H\(_4\)-HMe\(_2\)	lp(N)→σ*(B1-H3-B4)	0.0082	2.09
\(B_2\)H\(_4\)-NMe\(_3\)	lp(N)→σ*(B1-H3-B4)	0.0085	2.15

transferred from HBA to HBD molecules. Thus, charge transfer is not concentrated on the interacting atoms; but, is mostly dispersed among the molecules. Therefore, interpretation of the bond variations and frequency shifts in \(B_2\)H\(_4\) could not be carried out simply.

A useful quantity which might be derived from the results of natural bond orbital analysis is NBO binding energy (\(E\)\(^2\)). The second-order perturbation energy can be taken as an index to judge the strength of the intermolecular bonds.

Table 5, lists the quantity of charge transfer from the donor to the acceptor qCT and the second-order perturbation energy due to the interaction of donor and acceptor orbitals. \(E\)\(^2\) allow us to quantitatively evaluate the charge transfer involving the formation of the \(B_2\)H\(_4\) complexes. According to results, the \(E\)\(^2\) value of \(B_2\)H\(_4\)-CH\(_3\)OH was greater than \(B_2\)H\(_4\)-H\(_2\)O, confirming the order obtained for the interaction energies of these complexes. Whereas, for the amine complexes some controversies were seen between the order obtained for their \(E\)\(^2\) and the interaction energies.
Acknowledgement

The researchers greatly appreciate the Research Councils of Lorestan and Sabzevar universities for their partial financial support for this study. Many thanks to L. Sarmadi for some parts of calculations used in this study.

References

1. Brown HC, Ramachandran V (1997) In Advances in Boron Chemistry, Siebert, W. Ed. The Royal Society of Chemistry Special Publication, Cambridge, UK. 201-204.
2. Lipscomb WN (1977) The boranes and their relatives. Science 196: 1047-1055. [Crossref]
3. Pierce RC, Porter RF (1973) Low-temperature chemical ionization mass spectrometry of boron hydrides. Proton affinities of diborane and tetraborane(10). J. Am. Chem. Soc. 95, 3849-3855.
4. Singh PC, Patwari GN (2006) The C–H···H–B dihydrogen bonded borane-trimethylamine dimer: A computational study. Chem. Phys. Lett. 419, 5-9.
5. Solimannejad M, Alkorta I (2006) Competition between Nonclassical Hydrogen-Bonded Acceptor Sites in Complexes of Neutral AH2 Radicals: A Theoretical Investigation. J. Phys. Chem. A 110, 10817-10821.
6. Bakhmutov VI (2008) In Dihydrogen bonds Principles, Experiments, and Applications, A John Wiley& Sons, Inc. Publication.
7. Morrison CA, Siddick MM (2004) Dihydrogen bonds in solid BH3NH3. J. Phys. Chem. A 108, 8491-8494.

Meng Y, Zhou Z, Duan C, Wang B, Zhong Q (2005) Non-convertional Hydrogen Bonding Interaction of BH3NH3 Complexes: A Comparative Theoretical Study. J. Mol. Struct. (Theochem) 713, 135-144.
9. Singh PC, Patwari GN (2006) The C–H–H–B dihydrogen bonded borane-trimethylamine dimer: A computational study. Chem. Phys. Lett. 419, 5-9.

10. El-Guerraze AM, El-Nahas A, Jarid C, Serrar H, Esseffar Anane M (2005) Theoretical study of H3AXH3 and H3AYH2 (A= B, Al, Gu; X = N, P, As and Y = O, S, and Se), electrostatic and hyperconjugative interactions roles, Chem. Phys. 313, 158-168.

11. Zabardasti A, Kakanejadifard A, Hoseini AA, Solimannejad M (2010) Competition between hydrogen and dihydrogen bonding: interaction of IB2H with CH3OH and CH3X3-eOH derivatives. Dalton Trans. 35, 5918-22.

12. Zabardasti A (2012) Arapour M. Theoretical Study of Hydrogen and Dihydrogen Bond Interaction of IB6H10 with the HF Molecule, Struct. Chem. 23, 473-477.

13. Zabardasti A, Arapour M, Zare N (2013) Theoretical Studies of Intermolecular Interactions of Arachno-pentaborane (11) with HF and LiH, Comput. Theor. Chem. 1008, 27-31.

14. Zabardasti A, Zare N, Arapour M, Kakanejadifard A, Solimannejad M (2013) Theoretical Study of Mixed Hydrogen and Dihydrogen Bond Interactions in Clusters, J. Chem. 1-7.

15. Zabardasti A, Kakanejadifard A, Mosnavi S, Bigleri Z, Solimannejad M (2010) Anticooperativity in Dihydrogen Bonded Clusters of Ammonia and BeH4-2, J. Mol. Struct. Theorchem. 945, 97-100.

16. Derikvand Z, Zabardasti A, Azadbakht A (2015) Theoretical study of intermolecular interactions in C84H18·H·O·X (X = F, Cl, Br, I) complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 150, 778-785.

17. Zabardasti A, Joshaghani M, Solimannejad M (2010) Competition between Hydrogen and Dihydrogen Bonding: Interaction of IB2H6 with HF and LiH, Bull. Chem. Soc. Jpn 83, 1359-1363.

18. Zabardasti A, Kakanejadifard A, Zare N, Arappor M (2011) Theoretical study of dihydrogen bonded clusters of water with tetrahydroborate, Struct. Chem. 22, 691-695.

19. Zabardasti A, Kakanejadifard A, Zare N, Arappor M (2011) Theoretical investigation of H...F and H...H intermolecular interactions of nido-CB4H8 with HF molecule, Struct. Chem. 26, 207-211.

20. Zabardasti A, Goudarzidzfar H, Salehmasaj M, Oliveira BG (2014) A computational study of hydrogen bonds in intermolecular systems of high complexity: arachno-pentaborane(11)···Y with Y= O, and N. J. Mol. Model 20: 2403. [Crossref]

21. Vincent MA, Schaefier HF (1981) Diborane(4) (B2H6): the boron hydride analog of ethylene, J. Am. Chem. Soc. 103, 5677-5680.

22. Mohr RR, Lipscomb WN (1986) Structures and Energies of B2H4, Inorg. Chem. 25, 1053-1057.

23. Ruscik B, Schwarz M, Berkowitz J (1989) Molecular Structure and Thermal Stability of the B2H4 and B2H4+ Species, J. Chem. Phys. 91, 4576-4581.

24. Shoji Y, Matsuo T, Hashizume D, Fueno H, Tanaka K, et al. (2010) A stable doubly hydrogen-bridged butterfly-shaped diborane(4) compound, J Am Chem Soc 132: 8258-8260. [Crossref]

25. Alkorta I, Soteras I, Elguero J, Del Bene JE (2011) The boron-boron single bond in diborane(4) as a non-classical electron donor for hydrogen bonding. Phys Chem Phys 13: 14026-14032. [Crossref]

26. Frisch MJ (2003) Gaussian 03, (Revision B.02), Gaussian, Inc., Pittsburgh, PA.

27. Boys SF, Bernardi F (1970) The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors, Mol. Phys. 19, 553-566.

28. Ghanty TK (2006) How strong is the interaction between a noble gas atom and a noble metal atom in the insertion compounds MNF5 (M=Cu and Ag, and Ng=Ar, Kr, and Xe)? J Chem Phys 124: 12304. [Crossref]

29. Popelier PLA (2000) In Atoms in Molecules, An Introduction, Prentice Hall, Pearson Education Limited.

30. Weinhold F, Lansd CR (2012) In Discovering Chemistry With Natural Bond Orbitals, New Jersey: John Wiley & Sons, 132-133.

31. Bader RFW (1991) A Quantum Theory of Molecular Structure and its Applications, Chem. Rev. 91, 893-928.

32. Grabowski SJ, Ugalde JM (2010) Bond paths show preferable interactions: ab initio and QTAIM studies on the X-H..pH hydrogen bond. J Phys Chem A 114: 7223-7229. [Crossref]

33. Oliveira BG, Araújo RCMU, Leite ES, Ramos MN (2011) A Theoretical Analysis of Topography and Molecular Parameters of the CFCl3-O3 Complex: Linear and Bifurcate Halogen-Oxygen Bonding Interactions, Int. J. Quantum. Chem. 111, 111-116.

34. Politzer P, Murray JS, Clark T (2015) Mathematical modeling and physical reality in noncovalent interactions. J Mol Model 21: 52. [Crossref]

35. Politzer P, Murray JS, Clark T (2015) H-F bonding: a physical interpretation. Top Curr Chem 358: 19-42. [Crossref]

36. Oliveira BG, Araújo RCMU, Silva JI, Ramos MN (2010) A Theoretical Study of Three and Four Proton Donors on Linear HX•••BeH2•••HX and Bifurcate BeH2•••2HX Trimolecular Hydrogen-bonded Complexes with X= CN and NC, Struct. Chem. 21, 221-228.

37. Oliveira BG, Araújo RCMU, Ramos MN (2008) The (H•••H *) Charge Transfer and the Evaluation of the Harmonic Molecular Properties of Dihydrogen-bonded Complexes formed by BeH, with X= F, Cl, CN, and C=CH2, Struct. Chem. 19, 185-189.

38. Capim SL, Santana SR, Oliveira BG, Rocha GB, Vasconcellos MLAA (2010) Revisiting the Origin of the Preferential p-p Stacking Conformation of the (+)-8-phenylmethylnicotinic Acrylate, J. Braz. Chem. Soc. 21, 1718-1726.

39. Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides Containing N, O, and C Atoms as Hydrogen Bond Acceptors, J. Am. Chem. Soc. 122, 11154-11161.

40. Oliveira BG (2012) Interplay Between Dihydrogen and Alkali-halogen Bonds: Is There Some Covalency Upon Complexation of Ternary Systems? Theor. Comput. Chem. 998, 173-182.