Basilic: Resilient Optimal Consensus Protocols With Benign and Deceitful Faults

Alejandro Ranchal-Pedrosa†,‡ Vincent Gramoli†,§

†University of Sydney, Sydney, Australia
‡Protocol Labs
§EPFL, Red Belly Network
Small Council

5 people, 2 Byzantine -> lose throne
Small Council

5 people, 1 Deceitful, 1 non-responsive -> remove deceitful, 4 with 1 non-responsive
Byzantine Generals Problem

Consensus problem:

- Agreement
- Termination
- Validity

Impossibilities [LSP82, DLS88]

- Consensus only possible if $t < n/3$ (partial synchrony)
- Byzantine faults? meaning?
 - Worst type of fault
 - If non-responsive is worse for protocol -> non-responsive
 - If protocol-specific disagreement attack -> then that
 - Byzantine faults are important, but what if...
Heterogeneous Faults

• What if not all faults in the system are the worst possible fault?

Goal
Heterogeneous Faults

• What if not all faults in the system are the worst possible fault?

Goal

• Exploit potential heterogeneity of faults for greater tolerance
Heterogeneous Faults

- What if not all faults in the system are the worst possible fault?

Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: $t < n/3$ if only Byzantines must be ensured
Heterogeneous Faults

• What if not all faults in the system are the worst possible fault?

Goal

• Exploit potential heterogeneity of faults for greater tolerance
• Backwards compatibility: $t < n/3$ if only Byzantines must be ensured

Previous heterogeneous models

• Crash-faults and Byzantines
Heterogeneous Faults

- What if not all faults in the system are the worst possible fault?

Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: $t < n/3$ if only Byzantines must be ensured

Previous heterogeneous models

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
Heterogeneous Faults

- What if not all faults in the system are the worst possible fault?

Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: \(t < n/3 \) if only Byzantines must be ensured

Previous heterogeneous models

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- \((k,t)\)-robust equilibria
Heterogeneous Faults

• What if not all faults in the system are the worst possible fault?

Goal

• Exploit potential heterogeneity of faults for greater tolerance
• Backwards compatibility: $t < n/3$ if only Byzantines must be ensured

Previous heterogeneous models

• Crash-faults and Byzantines
• Byzantine-altruistic-rational Model
• (k,t)-robust equilibria
• Commission and omission faults
Heterogeneous Faults

- What if not all faults in the system are the worst possible fault?

Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: $t < n/3$ if only Byzantines must be ensured

Previous heterogeneous models

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria
- Commission and omission faults
- Alive-but-corrupt model
Heterogeneous Faults

- What if not all faults in the system are the worst possible fault?

Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: $t < n/3$ if only Byzantines must be ensured

Previous heterogeneous models

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria
- Commission and omission faults
- Alive-but-corrupt model
- No previous works make a disjoint distinction between faults that attack agreement and faults that attack termination
Byzantine-deceitful-benign (BDB) model

- Byzantine faults $t \rightarrow$ arbitrary
- Deceitful faults $d \rightarrow$ target agreement
 - Can prevent termination if trying to cause disagreement and failing, but always reply.
- Benign faults $q \rightarrow$ can only prevent termination
 - Crash-faults, invalid messages etc.
- quorum size $h \rightarrow$ greater for agreement, lower for termination
BDB Impossibilities

• Impossible to tolerate t Byzantine, d deceitful and q benign processes if $n \leq 3t + d + 2q$.
BDB Impossibilities

- Impossible to tolerate t Byzantine, d deceitful and q benign processes if $n \leq 3t + d + 2q$.
- At most $d + t < 2h - n$ and $q + t \leq n - h$, with $h \in (n/2, n]$.
BDB Impossibilities

- Impossible to tolerate t Byzantine, d deceitful and q benign processes if $n \leq 3t + d + 2q$.
- At most $d + t < 2h - n$ and $q + t \leq n - h$, with $h \in (n/2, n]$.
Basilic

Accountability

...
If 🦇 attacks agreement property, then 🦇 is caught. But... it could be too late.
If 🖕 attacks agreement property, then 🖕 is caught. But... it could be too late.

Active accountability

- Deceitful faults do not prevent termination
Basilic class

- Basilic: class of consensus protocols
 - Satisfy active accountability:
 - Periodically exchange messages after δ in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
Basilic class

- Basilic: class of consensus protocols
 - Satisfy active accountability:
 - Periodically exchange messages after δ in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
 - Same code, but protocols of the class change by the initial threshold h_0 given as parameter
Basilic class

- Basilic: class of consensus protocols
 - Satisfy active accountability:
 - Periodically exchange messages after δ in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
 - Same code, but protocols of the class change by the initial threshold h_0 given as parameter
 - At any given time, Basilic(h_0) has a dynamic quorum size $h(d_r)=h_0-d_r$
Basilic class

- Basilic: class of consensus protocols
 - Satisfy active accountability:
 - Periodically exchange messages after δ in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
 - Same code, but protocols of the class change by the initial threshold h_0 given as parameter
 - At any given time, Basilic(h_0) has a dynamic quorum size $h(d_r) = h_0 - d_r$

Basilic's multi-valued consensus

reliably broadcast proposals	binary consensus decisions	bits and proposals	decide one/union
$p_0 : v_0$	AARB$B_0 : v_0$	AABC$C_0 : 1$	v_0
$p_1 : v_1$	AARB$B_1 : v_1$	AABC$C_1 : 0$	
$p_2 : v_2$	AARB$B_2 : v_2$	AABC$C_2 : 1$	$\{v_0 : 1, v_1 : 0, v_2 : 1, v_3 : 0\}$
$p_3 : v_3$	AARB$B_3 : v_3$	AABC$C_3 : 0$	$\text{min}(v_0, v_2)$

min(v_0, v_2)
Basilic class’ BDB tolerance

Theorem

The Basilic protocol with initial threshold h_0 *solves consensus for* $d + t < 2h_0 - n$ *and* $q + t \leq n - h_0$.
Basilic class’ BDB tolerance

Theorem

The Basilic protocol with initial threshold h_0 solves consensus for $d + t < 2h_0 - n$ and $q + t \leq n - h_0$.

\[
\begin{align*}
h_0 &= \frac{n}{2} \\
h_0 &= \frac{5n}{9} \\
h_0 &= \frac{11n}{18} \\
h_0 &= \frac{2n}{3} \\
h_0 &= \frac{13n}{18} \\
h_0 &= \frac{7n}{9} \\
h_0 &= \frac{5n}{6} \\
h_0 &= \frac{8n}{9} \\
h_0 &= \frac{17n}{18} \\
h_0 &= n \\
\end{align*}
\]
Eventual consensus (\Diamond-consensus)

Temporary disagreement, but eventual agreement.

Theorem

The \Diamond-Basilic protocol with initial threshold h_0 solves the \Diamond-consensus problem if $d + t < h_0$ and $q + t < n - h_0$.
Complexities

- Active accountability has no increase on communication complexity compared to accountability.
- Accountability requires $O(n^3)$ if deceitful behavior causes disagreement and $O(n^2)$ otherwise (optimal for consensus).
- Same for active accountability: $O(n^3)$ if deceitful behavior causes disagreement OR prevents liveness, and $O(n^2)$ otherwise (optimal for consensus).
Conclusion

- BDB model exploits for heterogeneity of faults, without any real losses in classical BFT model (same complexities, same tolerances, no changes to protocol almost really).
- Basilic class is resilient optimal in both BDB and BFT fault models
- By dynamically removing deceitful faults \rightarrow active accountability
- Customizable depending on quorum size h_0
 - open systems (e.g. Blockchains) \rightarrow greater threshold
 - closed systems (e.g. distributed database) \rightarrow lower threshold
Q/A
alejandro.ranchalpedrosa@sydney.edu.au