De Bruijn Superwalk with Multiplicities Problem is NP-hard

Evgeny Kapun Fedor Tsarev
Genome Assembly Algorithms Laboratory
University ITMO, St. Petersburg, Russia

April 11, 2013
Genome Assembly Models

- Shortest Common Superstring – NP-hard (Gallant et al., 1980).
- Shortest de Bruijn Superwalk – NP-hard (Medvedev et al., 2007).
Genome Assembly Models

- Maximum likelihood approach – to find edges’ multiplicities (Medvedev and Brudno, 2009; Varna et al., 2011).
- De Bruijn Superwalk with Multiplicities – complexity was not known. This talk – we prove it is NP-hard.
De Bruijn Superwalk with Multiplicities Problem

Find a walk in the de Bruijn graph containing several walks as subwalks and passing through each edge the exactly predefined number of times.
Example

- Reads = subwalks: AAGT, AGTCA, TCAA

- Superwalk: AAGTCAGTCAAG
NP-hardness Proof Outline

1. Reduce Shortest Common Superstring problem to Common Superstring with Multiplicities problem.
2. Reduce Common Superstring with Multiplicities problem to De Bruijn Superwalk with Multiplicities problem.
NP-hardness Proof Outline

1. Reduce Shortest Common Superstring problem to Common Superstring with Multiplicities problem.
Common Superstring with Multiplicities Problem

Find a string containing several strings as substrings and containing each character the exactly predefined number of times.
Example

- Strings: AAGT, AGTCA, TCAA
- Multiplicities: \(m(A) = 5, m(C) = 2, m(G) = 3, m(T) = 2 \)
- Solution for SCS: AAGTCAA
- Solution for CSM: AAGTCAGTCAAG or just AAGTCAAACCGGT
Reducing SCS to CSM

Given an instance of SCS with $\Sigma = \{0, 1\}$ in decision form ("Is there such a string that ..."), substitute

$$0 \rightarrow T_0 = 000111$$

$$1 \rightarrow T_1 = 001011$$

and make the multiplicities of 0 and 1 equal to 3 times the desired superstring length.
Properties of T_0 and T_1

- T_0 and T_1 have the same length.
- Furthermore, number of occurrences of each character is the same in T_0 and T_1.
- No proper suffix of either T_0 or T_1 is equal to any of the proper prefixes of either T_0 or T_1.
Properties of T_0 and T_1

As a result, all overlaps of the transformed strings are aligned.

000111	001011	000111
001011	000111	001011
Properties of T_0 and T_1

Unaligned overlaps are impossible because no proper prefix of T_0 and T_1 is equal to any proper suffix.

000111	001011	000111
	?	?
Reducing SCS to CSM

As a result, the shortest common superstring of the transformed strings would be equal to the transformed shortest common superstring of the original strings.
NP-hardness Proof Outline

2. Reduce Common Superstring with Multiplicities problem to De Bruijn Superwalk with Multiplicities problem.
Reducing CSM to DBSM

Trivial reduction ($\Sigma = \{0, 1\}$, $k = 0$):

Strings become walks, multiplicities of characters become multiplicities of edges.
Reducing CSM to DBSM

Generalization for any k:
Result

De Bruijn Superwalk with Multiplicities problem is NP-hard for any $|\Sigma| \geq 2$ and any k. Since the case $|\Sigma| = 1$ is trivial, the problem is NP-hard for all nontrivial cases.
Acknowledgements

Funding:

- Ministry of Education and Science of Russian Federation (contract 16.740.11.0495, agreement 14.B37.21.0562)
- University ITMO (research project 610455)
Thank you! Questions?