Topical Review

Advanced atomic force microscopies and their applications in two-dimensional materials: a review

Rui Xu¹, Jianfeng Guo¹, Shuo Mi¹, Huanfei Wen²,³, Fei Pang¹, Wei Ji¹ and Zhihai Cheng¹,*

¹ Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, People’s Republic of China
² Key Laboratory of Instrument Science and Dynamic Testing, North University of China, Taiyuan 030051, People’s Republic of China
³ Key Laboratory of Quantum Sensing and Precision Measurement, Institute of Instrument and Electronics, North University of China, Taiyuan 030051, People’s Republic of China

E-mail: zhihaicheng@ruc.edu.cn

Received 14 July 2022, revised 12 August 2022
Accepted for publication 17 August 2022
Published 13 September 2022

Abstract

Scanning probe microscopy (SPM) allows the spatial imaging, measurement, and manipulation of nano and atomic scale surfaces in real space. In the last two decades, numerous advanced and functional SPM methods, particularly atomic force microscopy (AFM), have been developed and applied in various research fields, from mapping sample morphology to measuring physical properties. Herein, we review the recent progress in functional AFM methods and their applications in studies of two-dimensional (2D) materials, particularly their interfacial physical properties on the substrates. This review can inspire more exciting application works using advanced AFM modes in the 2D and functional materials fields.

Keywords: atomic force microscopy, advanced atomic force microscopy, two-dimensional materials, surface and interface

* Author to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
1. Introduction

Investigations at the nano or atomic scale are necessary to understand material properties fundamentally. Scanning probe microscopy (SPM) allows direct characterization and construction of structures at the nano and atomic scales [1–4]. In addition, numerous advanced or functional SPM methods, including atomic force microscopy (AFM), have been developed and applied in various research fields [5–8]. SPM detects the near-field interactions between the local probe (or tip) and sample surfaces, such as current and forces, depending on the probe-sample distance and their physical properties (figure 1).

1.1. Scanning tunneling microscopy (STM)

The first kind of scanning probe microscopy, the scanning tunneling microscope, was invented in 1981/1982 by Binnig and Rohrer [3, 4, 9] who went on to receive the 1986 Nobel Prize in physics. STM works using the tunneling effect of quantum mechanics, which states that even if the electron energy is lower than the barrier height, it has a certain probability of passing through the barrier. If the voltage between the tip and sample surface is minimal, we can obtain the exponential dependence of the tunneling current \(I \) on the tip–sample distance \(z \), as follows.

\[
I \propto \sqrt{\varphi} (E_F) e^{-2kz},
\]

where \(\varphi \) is the electronic density of states of sample, and \(k = \sqrt{2m \varphi}/\hbar \) is the work function of the sample. The main characteristic of tunneling current is the exponentially decaying with the tip–sample distance. This exponential dependence causes the extremely high vertical resolution of the STM, which can reach the picometer regime.

Future perspectives

Numerous advanced or functional atomic force microscopies have been developed and applied in various research fields, from mapping sample morphology to measuring physical properties. The research and development of AFM-based physical characterization methods require the researchers to have clear natural science concepts and electronic circuit knowledge. The future development direction of AFM-based modes includes the following points: (i) The single physical property measurement method has limitations because the electrical properties are coupled with other properties. Therefore, a method that can explore the mechanical-thermal-electrical-optical coupling is needed. (ii) The functional AFM technology under vacuum conditions needs further improvement. (iii) Optimizing device performance requires understanding the properties of materials under work conditions. A method that can measure physical properties under work conditions is crucial for future research.

1.2. Atomic force microscopy (AFM)

One disadvantage of STM is that it can be used only on conducting samples as the tunneling current is the measured quantity. Instead of the tunneling current in STM, the ubiquitous interactions/forces between the tip and sample are measured in AFM [10]. AFM can be used on conductor, insulators, semiconductors, polymers, and biology cells.

A qualitative sketch of the force between the tip and sample is given as a function of the tip–sample distance (figure 2(a)). Three different regimes can be distinguished. If the tip is far away from the surface, the force between the tip and sample is negligible. An attractive (negative) force between the tip and sample occurs for closer distances, marked by blue color. For very small distances, a strong repulsive force exists between the tip and sample, marked by the red line. There are three basic AFM working modes, which are primarily used to obtain the surface topography. The first mode is contact mode (figure 2(b)), which is a static mode. In this mode, the tip contacts the sample surface during scanning, and the interaction force between them is the repulsive force, which is measured by the cantilever deflection signal. The z-feedback loop maintains a constant force between the tip and sample. The corresponding changes in the z-position for maintaining a constant tip–sample distance (i.e. constant force) correspond to the sample surface topography.

The second mode is the amplitude modulation (AM) mode, also known as the Tapping mode (figure 2(c)), which is different from the static mode. The AM mode is a dynamic mode, and the feedback loop is the oscillation amplitude of the AFM probe. Herein, the micro cantilever is forced to vibrate, and the frequency \(\omega_{\text{drive}} \) is its free resonance frequency. When the tip and sample approach each other, the oscillation amplitude at the fixed excitation frequency \(\omega_{\text{drive}} \) will change. The preamplifier converts the deflection signal from the photodiode to a voltage signal proportional to the cantilever deflection. The AC voltage signal has a frequency \(\omega_{\text{drive}} \) and amplitude proportional to the oscillation amplitude of the vibrating cantilever. Using a lock-in amplifier, the amplitude of the AC signal at frequency \(\omega_{\text{drive}} \) is measured. Moreover, maintaining a constant oscillation amplitude corresponds to maintaining a constant tip–sample distance. Thus, the z-feedback signal is used as the height signal to map the topography during data acquisition.

The third mode is the frequency modulation (FM) mode, also called non-contact dynamic mode (figure 2(d)) [11]. In this mode, the resonance frequency shift is measured due to the...
tip–sample interactions. The z-feedback loop maintains a constant frequency shift of the cantilever resonance frequency as the setpoint. A schematic of the implementation (figure 2(d)) consists of an oscillator loop, to which the measured oscillation signal is fed back (after a phase shift) as the driving signal of the cantilever. Please see details in [1].

1.3. AFM probes

For sensing normal tip-sample forces, the force sensor should be rigid in two axes and relatively soft in the third axis. This property is fulfilled with a cantilever beam. The first cantilevers were made from a gold foil with a small diamond tip attached to it. Later, silicon micromachining technology was employed to build cantilevers in parallel production with well-defined mechanical properties. The first micromachined cantilevers were built at Stanford in the group of Calvin F. Quate. Initially, mass-produced cantilevers were built from SiO$_2$ and Si$_3$N$_4$. Later, cantilevers with integrated tips were machined from silicon-on-insulator wafers. The most common cantilevers in use today are built from all-silicon with integrated tips pointing in a [001] crystal direction. Figure 3(a) shows the type of cantilevers that are mainly used today: micromachined silicon cantilevers with integrated tips.

In dynamic atomic force microscopy, some requirements for the force sensor are similar to the desired properties of the time-keeping element in a watch: utmost frequency stability over time and temperature changes and little energy consumption. Around 1970, the watch industry was revolutionized with the introduction of quartz tuning forks as frequency standards in clocks. Experimental studies of using quartz-based force sensors were carried out soon after the invention of the AFM. Tuning forks were used as force sensors in acoustic near-field microscopy, scanning near-field-optical microscope. Figure 3(b) shows a quartz cantilever based on a quartz tuning fork [12]. In contrast to micromachined silicon cantilevers, the quartz forks are large. Hence a wide selection of tips can be mounted on a tuning fork with the mere help of tweezers and a stereoscopic microscope—sophisticated micromachining equipment is not needed.

The tip apex, which is the key sensing element, must be small for the highest spatial resolution. Nowadays, with a CO-functionalized tip attached to a quartz tuning fork sensor, the high resolution structure of 2D materials have been obtained, which provides support for in-depth understanding physical properties of new materials [13–15].

Although CO-functionalized tip was ultrathin and has high resolution, it still not an ideal tip. An ideal tip would be a sharp spike, such as a column of single atom width and infinite length. However, even this is not ideal, considering the force would act on the entire column in addition to the apex atoms. An ideal tip would consist of an isolated atom or a cluster of atoms, which is not realistic.

A more typical tip for basic AFM imaging is usually a cone or pyramid (table 1 and figures 3(a) and (b)), with an apex ratio between 1:4 and 1:10. The tip is a rounded tip, usually approximated by a sphere with a radius of 5–20 nm. The probe is typically made of silicon (figures 3(a)–(c)) or silicon nitride (figure 3(d)) using methods typical for micro-fabrication, including lithography, sputtering, anisotropic etching, or focused ion beam milling. Probes can
be modified by doping and coating thin films to enhance the contrast of a particular analytical method. Figure 3 shows the SEM images of some typical commercial AFM tips. The high aspect ratio tip (figure 3(c)) is suitable for performing measurements on samples with a sidewall angle approaching 90°. The tip has an overall height of 10–15 µm, which allows for measuring highly corrugated samples. At the last few micrometers, the tip exhibits a high aspect ratio portion that is symmetric when viewed from the side and along the cantilever axis. The tip radius is typically 10 nm. The pyrex-nitride probe (figure 3(d)) is hydrophobic and used for biological sample detection.

Cantilevers have been made from silicon and silicon nitride. However, in some cases other materials, such as diamond with outstanding mechanical properties, have been used to obtain specific cantilever and tip properties (table 2).

Two important properties of the cantilevers are their free resonant frequency \(f_0 \) and spring constant \(k \). Determining the cantilever resonant frequency is straightforward using resonance tuning. However, the determination of the cantilever spring constant is relatively complicated. Currently, the commercial AFM (Asylum Research) provides thermal tune method to quickly determine the \(f_0 \) and \(k \) of each probe. The resonance frequency range of common probes is listed figure 4, which provides a reference for probes selecting in the experiments.

Different from the above basic modes, much more complex AFM probes are needed in the functional AFM modes, like scanning thermal microscope (SThM), scanning near field optical microscopy (SNOM), scanning microwave impedance microscopy (sMIM) and so on. In the following section 1.4, we will introduce probes appropriate for each advanced AFM methods.

1.4. Multi-functional AFM

Numerous multi-functional AFM-based techniques have been developed to characterize the local mechanical properties, electrical properties, optical characteristics and thermal properties of the sample. The methods include the scanning Kelvin probe microscopy (SKPM) and electrostatic force microscopy (EFM) for the surface potential (SP) and electrostatic potential measurement, dual AC mode and contact resonance (CR) mode for the contact stiffness and viscous response detection, scanning thermal microscopy (SThM) for the thermal response, and SNOM for the photonic optical characteristics detection. Several typical AFM-based techniques and their applications are presented in table 3.
Table 2. Physical properties of some common materials used for AFM cantilevers. Reproduced from [16]. © IOP Publishing Ltd. All rights reserved.

Material property	Si (001) [a]	Si$_3$N$_4$	GaAs (001) [b]	Quartz [c]	Diamond	Al [d]	Polyimide	
Density (g cm$^{-3}$)	2.329	3–3.3	5.317	2.6	3.5	2.7	1.43[d]	
Young’s modulus (Gpa)	168.4 for [110]	260–320 [f]	121.5 for [110]	73.1 for [110]	1163.6 for [110]	1050.3 for [100]	10 300	27.8
Torsional modulus G (Gpa)	80	60	85.5 for [100]	31.2	60	60	60	31.2
Poisson ratio	0.27[b]	0.25[f]	0.17[f]	0.1–0.29[f]	0.34	0.34	0.41[d]	
Hardness (load g$^{-1}$)	1150(25)	680(100)	5980[d]	17.520[d]	6.360	6.360		
Speed of sound v_s (m s$^{-1}$)	8430 (long)	9900[c]	1050.3 for [100]	5980[d]	17.520[d]	6.360		
Thermal								
Thermal expansion coefficient (μm K$^{-1}$)	2.92[b]	2.5–3.3[b]	6.86	0.54	1.0	23.03	50–60[b]	
Heat capacity c_p (J kg$^{-1}$ K$^{-1}$)	700	45.8 J mol$^{-1}$ K$^{-1}$	500	670	518	880		
Heat Conductivity (kW$^{-1}$ mK$^{-1}$)	156[b]	15–45[b]	45.5	1.46	600–2000	237	0.29–0.35[b]	
Melting point T_m (K)	1687[b]	1800–1950 [b]	1513	1100[b]	933.47	335–345[b]		
Optical and electrical								
Refractive index n at 633 nm	3.4		3.878	~1.46	5.7			
Static dielectric constant ε	11.97[b]	13.18	3.8	5.70[b]	3.4[b]			
Gap energy (eV)	1.12(ind.)	1.42	9	1017				
Electrical resistivity ρ (1m)	10^3	10^7 (undoped)	7×10^9	7×10^9				

Figure 4. Resonance frequency range of probes (Asylum Research).

1.4.1. Friction force microscopy and transverse shear microscopy. FFM and TSM are the derivatives of the contact mode of AFM. They maintain the normal force constant and record the lateral signal between the tip and sample surface (figure 5) [18, 19, 66–68]. The lateral bending or twisting arises from forces parallel to the sample surface plane and acting on the AFM-tip. In TSM, the scanning direction of a force microscope probe tip is parallel to the cantilever axis, and the lateral deflection or twist of the cantilever is recorded. This mode of operation differs from the better-known FFM.
elastic deformation properties and can reveal crystallographic

ing direction is perpendicular to the cantilever axis in the
or lateral force microscopy (LFM) technique in that the scan-
or field interaction forces of the cantilever. The friction (shear) property of the sample is

transverse shear microscopy (TSM). For FFM (TSM), the scan
Figure 5. Sketch map of (a) friction force microscopy (FFM) and
(b) transverse shear microscopy (TSM). For FFM (TSM), the scan
direction of the AFM tip is perpendicular (parallel) to the long axis
of the cantilever. The friction (shear) property of the sample is
obtained by detecting the cantilever torsion signal.

or lateral force microscopy (LFM) technique in that the scan-
ing direction is perpendicular to the cantilever axis in the
FFM/LFM technique [68].

Comparing to FFM/LFM, TSM has enhanced sensitivity to
elastic deformation properties and can reveal crystallographic
orientation. Owing to the flexibility of 2D materials, friction
can easily drive stretch deformation, leading to in-plane mecha-
nical (shear stiffness) symmetry breaking. In another word,
the shear stiffness with uniaxial strain has significant lattice
dependent anisotropy, especially for 2D atomic crystals with
centrosymmetric structures. Based on normal tension strain-
induced shear anisotropy, we have reported that the visualiza-
tion of crystallographic-orientation-dependent shear deforma-
tions in flexible, hexagonal 2D atomic crystals by using TSM.
(See details in figure 4 in [18].)

1.4.2. Multi-harmonic and dual AC mode. Conventional
dynamic AFM methods focus on the excitation and detec-
tion of a single frequency component of the tip motion, usu-
ally at the fundamental resonant frequency. Information on
sample properties included in other frequency components,
such as harmonics, is irreversibly lost, which limits the cap-
nabilities of the AFM [5]. High harmonics have been recog-
nized, but their utilization has been limited due to theoret-
ical and experimental complexity [69, 70]. Hence, developing
multi-frequency AFM (MF-AFM) technology is imperative,
based on simultaneous excitation and/or detection of several
frequencies of the probe’s oscillation [71, 72].

AFM modes	Signal of detection	Measurement of physical quantity
LFM/FFM	Friction force	Strain domain and strain structure [17]
TSM	Transverse shear force	Crystallographic orientation [18, 19]
Dual AC mode	Amplitude (A2) and phase (P2)	Viscous response detection [20]
Multi-harmonic -AFM	Higher harmonic components	Interlayer coupling [7] and local variations of the elastic modulus [7, 20]
CR mode	Contact resonance frequency and	Contact stiffness and viscous response detection [21]
C-AFM	Current	Local conductivity [22–25]
SKPM/KPFM	Electric potential	Surface potential (SP) [26], work function [27], contact potential difference [28], charge transfer [29, 30], surface point defect/adsorbate [31–33], voltage drop [34], and capacitance coefficients [35].
EFM	Electrostatic forces	Capacitance coefficients [35], SP [36], and dielectric response [37].
MH-EFM	Electrostatic forces	SP [38], work function [39], and mobile charge carriers (MCC) [40].
sMIM	Microwave reflection	Dielectric constant [41, 42], conductivity and permittivity variation [43, 44], charge carrier variations [45], and doping concentration [46].
PFM	Electromechanical coupling	Electromechanical response [47, 48], piezoelectric properties [49], and ferroelectric coercive field [50].
MFM	Near-field magnetostatic interaction	Image flux lines in superconductors, local detection of magnetic interactions to eddy currents, and magnetic dissipation phenomena [51].
MRFM	Magnetic resonance signals	Subsurface defects in solids and dopant distributions in semiconductors [52].
SThM	Thermal resistance	Mechanical–thermal coupling effect [53].
NV center combined	Magnetic signals, electric signals	Magnetic fields [54–57], magnetic textures [58], spin relaxation [59], charge-state control [60], microwave fields imaging [61], living cell temperature imaging [62].
AFM	Thermal expansion	IR absorption spectra of nanoscale regions, sample temperature increase, distribution of chemical species [63].
AFM-IR	Near field optical signal	Distribution of the electromagnetic radiation [64].
SNOM	Near field optical signal	Molecular vibrational spectra, infrared absorption spectrum of organic samples [65].
Nano-FTIR	Near field optical signal	

Table 3. AFM Techniques and their Applications.
In conventional AM AFM, the cantilever deflection is given as
\[z = z_0 + A \cos(\omega t - \phi), \]
where \(A, z_0, \) and \(\phi \) are the amplitude, static deflection component, and phase shift with respect to the driving force, respectively. Owing to the presence of multifrequency components (harmonics) introduced by the nonlinear interaction between the tip and sample, the deflection of the cantilever is as follows.
\[z = z_0 + \sum_{n=1}^{N} A_n \cos(n\omega t - \phi_n), \]
where \(A_n \) is the amplitude of the harmonic with angular frequency \(n\omega. \) Equations (2) and (3) are compatible with a point-mass description of the cantilever. A more precise description is achieved by considering the extended characteristics of the cantilever, with the probe deflection containing contributions from all its eigenmodes \((q_i). \)

For multi-harmonic mode, the amplitude of higher harmonics can be expressed as
\[A_n = S \frac{\omega_0}{k} \sqrt{(\int_0^T F_{ts}(d) \cos(n\omega t) \, dt)^2 + (\int_0^T F_{ts}(d) \sin(n\omega t) \, dt)^2}. \]

For \(Q \) values greater than 5 and \(\omega = \omega_0, \)
\[S \approx \frac{1}{\pi n^2}, \quad n > 3 \]
where \(F_{ts} \) represents the tip-surface force; \(d \) is the instantaneous tip-surface separation; and \(\omega_0 \) is the fundamental resonant frequency.

For dual AC mode, the instantaneous tip position \(z \) when interacting is described approximately by equation (7), which neglects the contribution of the other modes and harmonics
\[z = A_1 \cos(\omega_1 t - \phi_1) + A_2 \cos(\omega_2 t - \phi_2), \]
where \(A_1, \phi_1, \) and \(A_2, \phi_2 \) are the oscillation amplitudes and phase shifts at \(\omega_1 \) and \(\omega_2, \) respectively. Thus, the total energy dissipated per cycle \(E_{dis} \) can be approximated as the sum of the two eigenmodes
\[E_{dis} \approx E_{dis} (1) + E_{dis} (2) = \frac{\pi k_i A_0 A_1}{Q_1} \left[\sin(\phi_1) - A_1 A_{01} \right] + \frac{\pi k_i A_0 A_2}{Q_2} \left[\sin(\phi_2) - A_2 A_{02} \right], \]
where \(Q_i, k_i, \) and \(A_{0i} \) are the quality factor, force constant, and free amplitude of the \(i \)th eigenmode, respectively. The second eigenmode frequency is 6.27 times the first eigenmode frequency, i.e. \(n = 6.27. \) Equation (8) links the second modal observables, such as \(A_2, \) with nonconservative interactions \((E_{dis}). \)

The schematics of the multi-harmonic AFM and dual AC modes are shown in figures 6(a) and (b), respectively. The typical AFM probes used in dual AC and multi-harmonic AFM mode measurements are shown in figures 6(c)–(f). In multi-harmonic mode, a special harmonic cantilever is fabricated for tuning of its second eigenmode, to six times the first eigenmode to increase the signal to noise level, as shown in figure 6(c). In dual AC mode, the silicon AFM probes (AC240, Asylum Research) (figure 6(e)), having first resonance mode \(f_{r1} \) of \(\sim 76.3 \) kHz and second resonance mode \(f_{r2} \) of \(\sim 451.4 \) kHz are used.

High harmonic supports the research on cantilever’s dynamic behaviors with high compositional sensitivity and atmospheric resolution. Expressing the tip–sample interaction as a function of high harmonic amplitude or frequency has several advantages. First, the high harmonic method can provide more details and intrinsic characteristics of the sample because it depends on the nonlinear interaction and is measured with zero references. Second, it allows a high spatial resolution, particularly with small oscillation amplitude and low bandwidth reduction [74, 75]. Thus, scanning with a relatively appropriate speed is possible by combining the small-amplitude higher-harmonic AFM with the resonance-enhancement technique. Third, high harmonic can be joined with other MF-AFM methods to develop interesting applications. Measurement innovations facilitate developing AFM and nanoscience. The high harmonic dynamic AFM will be attractive to nano- and pico-analytics in future physics, chemistry, biology, and materials science.

1.4.3. Contact resonance (CR) mode. The CR mode is an advanced AFM technique that measures the resonance peak of the probe and sample system. It offers improved nanomechanical characterization of layered materials compared to the existing techniques [76]. CR-AFM is achieved by introducing a slight vertical modulation to either the cantilever base [77] or sample [78, 79]. The cantilever CR frequency (CRF) and quality factor \((Q) \) change in response to the viscoelastic properties of the sample when the tip is in contact with the sample. It can quantitatively characterize the viscoelastic response of materials with high sensitivity and large dynamic detection range because of the high-frequency operation and resonance enhancement effect [80, 81]. In this study, the detection limit of AFM used was approximately 10 pm; therefore, the excitation amplitude of the tip–sample contact was reduced to the picometer level, i.e. considerably smaller than the interlayer distance of two dimensional (2D) layered materials.

Figure 7 shows the schematic and mechanical model of CR-AFM and related definitions and characterizations for quantitative analysis. CR-AFM is based on the typical contact mode imaging method; the key is the vertical modulation with a
Figure 6. (a) Schematic of the multi-harmonic AFM mode. Recording higher harmonic components introduced by the nonlinearity of tip–sample interaction forces during conventional dynamic AFM imaging while driving the cantilever at its first resonance mode. (b) Schematic of the dual AC AFM mode. The cantilever is simultaneously driven at two eigenmodes (resonant modes), and the amplitude and phase are recorded. (c) SEM images of the original and 6th harmonic probes. (d) Frequency response spectroscopy of the original and 6th harmonic cantilever obtained with the thermal noise spectrum measurement. (e) Frequency response spectroscopy of the AC240 probe obtained with the thermal noise spectrum measurements. (f) Resonance frequencies of the three AFM probes at the first and second resonance mode. Reproduced from [73], with permission from Springer Nature.

Slight amplitude introduced to the sample, as illustrated in figure 7(a). The modulation is operated at a high frequency and hence does not affect the contact-feedback imaging; however, the modulation can be coupled to the cantilever deflection that can be extracted for detection. The high-frequency signal is continuously changing with the sample mechanical properties as the tip scans the sample in contact mode, detected by a lock-in amplifier and referred to as CRF and CR amplitude (CRA). Figure 7(b) depicts the mechanical model of the tip–sample dynamic contact in CR-AFM. Because the tip location on the cantilever directly affects the final measurement, the cantilever is modeled as a distributed mass with spring constant k_L rather than a point-mass approximation. The tip location is considered as a relative position $\gamma = L_1 / L$ (with $0 \leq \gamma \leq 1$) from the clamped end. The tip–sample interaction is considered as normal elastic and dissipative (damping) forces, modeled as a spring and dashpot in parallel (i.e. Kelvin–Voigt model). The variables k^* and c indicate the contact stiffness and damping, respectively. The tip–sample stiffness and damping variations are reflected in the CRF and Q of the coupled system, which
can be converted to the sample elastic and loss moduli with right contact mechanic models, respectively. Higher contact stiffness indicates high CRF, and larger viscosity (dissipation) at the tip–sample contact indicates low Q.

Consideration of the cantilever dynamic model is primarily based on the Euler–Bernoulli beam theory. The contact stiffness k^* is calculated using the cantilever stiffness, relative tip position, and resonance wavenumber k^* related to the wavenumber n as described in equations (9)–(12). The relative tip position γ is characterized by SEM, as shown in figure 7(d),

$$\gamma = \frac{L_1}{L} = \frac{120.1 \mu m}{127.9 \mu m} = 0.939. \tag{9}$$

The parameter A_n, related to the wavenumber x_nL of the cantilever resonance in free space, is defined by

$$A_n^2 = \frac{(x_nL)^2}{f_n^2}. \tag{10}$$

The wavenumber is denoted as y_nL under the tip–sample coupling condition:

$$y_nL = A_n \sqrt{f_n^{CR}}. \tag{11}$$

Based on the equations (9)–(11), the contact stiffness k^* can be determined as:

$$k^* = \frac{2}{3} k_1 (y_nL)^2 \frac{1 + \cos y_nL \cosh y_nL}{D}, \tag{12}$$

where

$$D = \left[\sin y_nL (1 - \gamma) \cosh y_nL (1 - \gamma) \right. \cos y_nL (1 - \gamma) \sinh y_nL (1 - \gamma) \left. \right]^{-1} \left[1 - \cos y_nL \gamma \cosh y_nL \gamma \right.]$$

$$\times \left[1 + \cos y_nL (1 - \gamma) \cosh y_nL (1 - \gamma) \right]^{-1}$$

The wavenumber x_nL for the flexural mode n is the solution of the characteristic equation $1 + \cos x_nL \cosh x_nL = 0$ for cantilever vibration in free space; the first two roots x_1L and x_2L are 1.8751 and 4.6941, respectively.

Using the contact stiffness, the sample modulus can be extracted quantitatively based on contact mechanic models [21], such as the Hertzian (Hertz) contact, Derjaguin-Muller-Toporov (DMT), and Johnson–Kendall–Robert (JKR) models. The two frequently used models in CR-AFM are the Hertz and punch contact models, which depend on the shape of the tip (sphere or punch) [21]. The discussion here is restricted to the Hertz and DMT models as a spherical tip is used in all experiments. The main difference between the two models is the consideration of the adhesion force F_{ad}. Figure 7(c) depicts the Hertz contact of the sphere tip and sample and defines the related quantities (F_N, R, a_c, and δ). The normal contact stiffness of the tip–sample system can be expressed by equation (13), which is related to the contact radius a_c and reduced Young’s modulus E^*.

$$k = 2a_c E^*, \tag{13}$$

$$E^* = \left(\frac{1}{E_1} + \frac{1}{E_s} \right)^{-1}, \tag{14}$$
\[a_e = \left(\frac{3F_h R}{4E^*} \right)^{1/3}, \]

where \(E_1 \) and \(E_2 \) are Young’s moduli of the sample surface and AFM tip, respectively.

When \(F_{ad} \) is considered in the measurement, the DMT model is more accurate. The contact radius \(a_{DMT} \) is modified as

\[a_{DMT} = \left(\frac{3(F_N - F_{ad}) R}{4E^*} \right)^{1/3}. \]

Finally, the elastic modulus of the test sample is determined from the experimental values of the contact stiffness using equations (16) and (17).

\[E^* = E_{cal} \left(\frac{k_{test}}{k_{cal}} \right)^{-1}. \]

The indentation can be deduced from the DMT model and is described as equation (18),

\[\delta = \frac{3(F_N - F_{ad})}{2E^*}. \]

In regard with the CR-AFM, dual AC resonance tracking, invented by Asylum Research [82], is an exclusive implementation of the CR. It tracks the CR \((\omega_0)\) by adjusting the two drive frequencies \((f_1, f_2)\) of the cantilever to zero difference amplitudes \((A_1 - A_1 = 0)\) by reducing the crosstalk, rather than using the phase as frequency feedback.

1.4.4. Scanning Kelvin probe microscopy (SKPM). SKPM is a well-known AFM mode invented by Nonnenmacher and Oboyle [83] for high spatial resolution SP mapping [84]. This technique is also called scanning SKFM [85], KPFM [84], and SKM [86]. Recently, it has been used to investigate the local SP of 2D materials [30, 87–92].

The work function \(\varphi \) and \(V_{CPD} \) are significant parameters for understanding the working principle of SKPM. Herein, \(\varphi \) is defined as the energy difference between the Fermi energy and vacuum level (figure 8), and \(V_{CPD} \) is defined as the difference in the \(\varphi \) of two materials, as:

\[\varphi_{sample} - \varphi_{tip} = \Delta \varphi = V_{CPD} \cdot e \]

where \(e \) is the electric charge; and \(\varphi_{sample} \) and \(\varphi_{tip} \) are the work function of the tip and sample, respectively.

Figure 8 shows the energy level of the tip and sample surface with no electrical connection. The vacuum levels are related, but Fermi levels are dissimilar. Equilibrium needs Fermi levels to line up at a stable state if the tip–sample is sufficiently close for electrical contact. The Fermi energy level will align by electron current flow and the system will accomplish an equilibrium state (figure 8(b)). If the applied \(V_{DC} \) has a similar magnitude as \(V_{CPD} \) but with a reverse sign, the applied voltage eliminates \(F_{el} \) (figure 8(c)). Thus, when the tip work function is known, the sample work function can be obtained, and SKPM can measure \(V_{CPD} \).

Figure 9 reveals that SKPM operates in the nap mode to measure the sample SP. During the first pass mode, the morphological image is obtained the same as in standard tapping mode. In the second pass mode, the tip is raised on the sample surface by a desired lift height. The mechanical excitation is switched off, and \(V_{AC} \) and \(V_{DC} \) are applied between the tip–sample [93]. The electrostatic force \(F_{el} \) between the tip–sample is given by:

\[F_{el} = \frac{1}{2} \frac{\partial C}{\partial Z} \Delta V^2, \]

where \(\frac{\partial C}{\partial Z} \) and \(\Delta V \) are the capacitance coupling and voltage difference between the AFM tip and sample, respectively. The total voltage difference between the tip and sample is

\[\Delta V = (V_{DC} - V_{CPD}) + V_{AC} \sin(\omega_e t), \]

where \(\omega_e \) is the angular frequency of the applied AC voltage. The \(F_{el} \) applied to the AFM tip is:

\[F_{el} = \frac{1}{2} \frac{\partial C}{\partial Z} \left([V_{DC} - V_{SP}]^2 + \frac{1}{2} V_{AC}^2 \right) + 2 \left([V_{DC} - V_{CPD}] V_{AC} \sin(\omega_e t) \right) - \frac{1}{2} V_{AC}^2 \cos(2\omega_e t), \]

where

\[F_{\omega_e} = \frac{\partial C}{\partial Z} (V_{DC} - V_{CPD}) V_{AC} \sin(\omega_e t). \]

During SKPM scanning, \(\omega_e \) is generally set to \(\omega_e \) (i.e. \(F_{\omega_e} = F_{\omega_e} \)) to achieve a higher signal-to-noise ratio. The \(V_{CPD} \) acquired at minimum \(F_{\omega_e} \) shows the sample’s local [89].
Figure 9. (a) Schematic of the basic setup for scanning Kelvin probe microscopy (SKPM) technique. \(\omega_c \) is the angular frequency of the applied AC voltage and \(\omega_t \) is the resonant angular frequency of the cantilever. (b) Drawing map of two scan passes named nap mode. In the first scan, the morphological image is captured using mechanical excitation of the cantilever. The surface potential mapping is acquired in the second scan. The electronic circuit diagram of the first and second scans is given by the black and purple lines. Reproduced from [91], with permission from Springer Nature.

1.4.5. Electrostatic force microscopy (EFM). EFM has multiple branches [94, 95], such as conventional EFM [86, 95], MH-EMF [38, 96–98], dynamic EFM [99], and dynamic contact EFM (DC-EMF). EFM measures the electric field gradient distribution and extracts capacitance changes, electrical potential distribution, and embedded sample conductance by recording long-range electrostatic forces between the tip–sample. In this review, we discuss the principles of conventional EFM and MH-EMF in detail.

1.4.5.1. Conventional EFM. Conventional EFM operates in a two-pass process. During the first scan, the topography image is mapped the same as the standard AC mode. During the second scan, the tip is raised by lift height (usually \(\approx 20–50 \text{ nm} \)) to a controllable height \(z \) above the sample surface at a specific distance. DC voltage is applied between the tip–sample in lift mode, and the phase shift of the vibrating cantilever is monitored to explore the electrostatic gradient of the sample [91, 95, 100].

1.4.5.2. Multi-harmonic EFM (MH-EMF). In MH-EMF (figure 10), the dual-pass mode detects the topography and electrical properties of the sample. In the first pass, the AFM works similar to the AC mode. In the second pass (lift mode), the short-range repulsive forces and van der Waals forces can be ignored because the tip–sample distance is sufficiently large; meanwhile, an AC voltage of frequency \(f_w \) is applied between the tip and sample, thereby resulting in multi-harmonic electrostatic force \(F \), as follows.

\[
F = -\frac{1}{4} \left[\frac{\partial C}{\partial z} V_{ac}^2 + \frac{\partial^2 C}{\partial V_{ac} \partial z} V_{ac}^3 \cos \omega t + \frac{\partial^2 C}{\partial z^2} V_{ac}^3 \cos 2\omega t \right] + \frac{1}{2} \frac{\partial^2 C}{\partial V_{ac} \partial z} V_{ac}^3 \left(\cos 3\omega t + \cos \omega t \right). \tag{24}\]

Accordingly, the second and third harmonic components are given by

\[
F_{2\omega} = -\frac{1}{4} \frac{\partial C}{\partial z} V_{ac}^3 \cos 2\omega t, \tag{25}\]

\[
F_{3\omega} = -\frac{1}{8} \frac{\partial^2 C}{\partial V_{ac} \partial z} V_{ac}^3 \cos 3\omega t. \tag{26}\]

Thus, the information corresponding to \(\frac{\partial C}{\partial t} \) and \(\frac{\partial C}{\partial \Gamma} \) can be obtained by detecting the \(2 \omega \) and \(3 \omega \) components, respectively. Further, \(A_{\omega} \) is proportional to SP, \(A_{3\omega} \) is related to the mobile charge carrier density (MCD), whereas \(A_{3\omega} \) reflects the capacitance (or dielectric constant) of the sample [38, 101, 102]. This technology provides an opportunity to explore the electrical response of samples in the kHz range.

1.4.6. Scanning microwave impedance microscopy (sMIM). Scanning microwave impedance microscopy (sMIM) combines microwave technology and AFM. It is a quickly developing technique [103–106] and has demonstrated a broad range of applications, such as detecting electrical properties of various samples (including conductors, semiconductors, insulators, and other functional materials) at the micro/nano scale [107–115]. Presently, this technique has been employed to explore the electrical response of 2D materials, including charge carrier variations, permittivity/conductivity [43, 44], doping density, and dielectric constant [41, 43, 44, 116–118].

During the operation of sMIM, a microwave signal at a high frequency (few GHz) was applied to the tip apex and subsequently transmitted to the sample (figure 10) [115]. Some of the microwave signals pass through, whereas the remaining are reflected off the surface. The reflection coefficient \(\Gamma \) of microwave signals from the contact point measuring the tip–sample impedance mismatch is as follows.

\[
\Gamma = \frac{Z_{\text{tip-sample}} - Z_0}{Z_{\text{tip-sample}} + Z_0}, \tag{27}\]

where \(Z_0 \) and \(Z_{\text{tip-sample}} \) represent the characteristic impedance of the transmission line system and tip–sample, respectively. A cancellation signal suppresses the background to amplify small changes without output saturation. Then, the amplified signal is demodulated by mixer M1. The effective tip–sample impedance can be divided into real and imaginary parts. Standard dielectric sample (Al\(_2\)O\(_3\)@SiO\(_2\)) calibrates the
M1 phase until the output contrast occurs in only one channel (imaginary part of \(Z_{\text{tip-sample}} \), sMIM-Im). The other channel is the real part of \(Z_{\text{tip-sample}} \) (sMIM-Re). For semiconductors or insulators, sMIM-Im and sMIM-Re depend on the capacitance (C) and resistance (R) between the tip–sample, respectively, as shown in the inset image lumped element model. Finally, the sMIM-Im and sMIM-Re signal are further modulated by quadrature mixer M2, and \(\text{dC}/\text{dV} \) and \(\text{dR}/\text{dV} \) are obtained.

Figures 10(c) and (d) show the top view and side view of the microwave probe. The main body of the cantilever is made of plasma enhanced chemical vapor deposited (PECVD) Si\(_3\)N\(_4\) [105]. The TiW/Au metal tip on the free end of the cantilever is connected to the wire bond pad by a conducting path buried inside two Si\(_3\)N\(_4\) layers. Both the front (tip side) and backside of the cantilever are covered by shield metals, which are electrically grounded in the microwave measurements. The SEM images in figures 10(e) and (f) show the bond pad, the cantilever and the pyramidal metal tip.

We have review the basic principles and instrumentation of sMIM and related scanning microwave microscopy (SMM) in [118], and also discuss its widespread applications in electrical imaging of a number of novel materials and biological systems. Recently, a nice review [119] about sMIM were published, and outlines future opportunities in expanding the capabilities of sMIM. Please check these reviews for further information.

1.4.7 Scanning thermal microscope (SThM)

Understanding energy dissipation at the nanoscale level requires probing the temperature fields with micron/nanometer resolution. Scanning thermal microscopy (SThM) [120, 121] can quantitatively map temperature fields or thermal properties by scanning a sharp SThM probe with a temperature sensor at the tip. This technique has been applied in diverse areas, including microelectronics [122–124], optoelectronics [125, 126], carbon nanotubes [127, 128], and 2D material [53], since the 1990s.

The setup of an AFM-based SThM system is illustrated in figure 11. The combination of the X–Y scan position data along with the force feedback and thermal signals measured by the sensor located either at the tip or on the cantilever provides the raw data of the surface topography and thermal images. The thermal image contrast reflects the change in the amount of heat locally exchanged between the tip and sample. The force feedback control system operates simultaneously but independent of the thermal measurement. The thermal control unit performs real-time thermal signal analysis [129].

Since 1990s, various thermal methods using different thermosensitive sensors or phenomena have been developed. According to the temperature-dependent mechanism, they are classified as thermovoltage [130–132], change in electrical resistance [133–136], fluorescence [137, 138], or thermal expansion [139]. These methods use functional SThM probes, such as metallic or doped silicon. Herein, we introduce two kinds of probes and their corresponding measurement methods.

1.4.7.1 Null-point SThM (NP SThM)—thermocouple type probe

Null-point (NP) SThM [140–142] is based on the thermodynamic principle that the heat flux through the tip–sample thermal contact is zero when the probe tip and sample surface temperatures are identical. Hence, NP SThM measures the unperturbed temperature by the heat flux through the tip–sample thermal contact.
The experimental setup for the NP method is shown in figure 12. The signal-to-noise ratio is maximized by amplifying the thermoelectric voltage extracted from the Wheatstone bridge using a preamplifier and reducing the 60 Hz harmonic noise via a noise filter. The DC thermoelectric voltage is fed into the signal access module and is available with the topographic signal from the atomic force microscope. A DC power supply is used to Joule-heat the sample [141]. The SEM images of the SThM probe used in the experiment are shown in figure 12(b). The cantilever made of silicon oxide, with the lowest thermal conductivity among the materials suitable for nanobatch-fabrication, maximizes the SThM probe sensitivity.

Figure 12(c) shows the principle of quantitative thermal profiling. The SThM probe with a nano-thermocouple junction integrated at the end of the tip, as shown in the inset, is mounted on an atomic force microscope and scans on the same line in the contact and nonthermal contact modes. Thus, the difference between the signals obtained in the two modes is owing to the heat flux through the tip–sample thermal contact. Considering the governing equation for the temperature distribution and boundary condition [143], the local temperature of the sample T_s is given as

$$T_s(x) = T_c(x) + k_{\text{slope}} (T_c(x) - T_{\text{nc}}(x)),$$

where k_{slope} is a dimensionless constant determined through the measurement process in figures 12(d) and (e). Moreover, T_c and T_{nc} are obtained from the temperature sensor integrated at the tip when scanning in the contact and nonthermal contact modes, respectively.

1.4.7.2. Scanning probe thermometry–doped Si resistor probes. Figure 13(a) shows a typical thermal probe made of a high-doped silicon cantilever with a low-doped silicon heater region. As the heater region is thermosensitive, an electric current to the probe controls and monitors the temperature of the integrated heater region. Changes in the ambient thermal resistance (TR) can change the heater region temperature (ΔT_{probe}) and are monitored through the voltage value of the probe (V_{probe}). In the tip–sample system, the total TR (TR_{total}) measured by SThM between the tip and sample consists of
Figure 12. Setup of an AFM-based scanning thermal microscopy (SThM) system. A thermal control unit delivers the output signal V_{out} and a balanced Wheatstone bridge maintains the probe mean temperature at a constant value. John Wiley & Sons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 13. (a) Schematic of the experimental setup for the null-point SThM. (b) SEM images of the SThM probe. Diameter of the thermocouple junction integrated at the apex of the tip is approximately 100 nm, and the tip radius is approximately 50 nm. (c) Principle of quantitative thermal profiling. (d) As the tip approaches the sample, the tip temperature rises gradually due to the heat transfer through the air. When the tip contacts the sample, the tip temperature jumps from T_{nc} to T_c due to the heat flux through the tip–sample contact. (e) Temperature jumps at different sample temperatures. The slope of the graph, k_{slope}, is 10.9 K K$^{-1}$ for this particular probe. Reprinted from [141], with the permission of AIP Publishing. Reprinted with permission from [143]. Copyright (2011) American Chemical Society.
the tip TR (TRtip), contact TR (TRcontact), and spreading TR of the sample (TRsample), as shown in figure 13(b).

The circuit diagram of the local thermal analysis (ZThermal) module is shown in figure 13(c). The electric resistance of the reference electrical resistor is known (Rref = 4000 Ω), and the total voltage (Vtotal) and probe voltage (Vprobe) can be exerted or detected. The electric resistance of the probe is thermosensitive, and the relationship of the electric resistance (Rprobe) versus temperature (ΔTprobe = Tprobe - Tair) is shown in figure 13(d). The maximum electric resistance is observed at 550 °C. Below 550 °C, the electric resistance of the probe corresponds to a specific temperature, as follows [53]:

\[R_{probe} = \frac{V_{probe}}{V_{total} - V_{probe}} R_{ref} \sim \Delta T_{probe} \]

(29)

The thermal power generated by the thermal probe can be calculated as follows:

\[P_{probe} = \frac{V_{probe}^2}{R_{probe}}. \]

(30)

We introduce the design idea of NP SThM [144] and the quantized thermal transport characterization [145] and use the thermal tip-sample approach curve to calculate TR. The model assumes that when the tip abruptly contacts the sample, the thermal circumstance and heat transfer coefficient (h) of the thermal tip in the air do not change. However, before contact, the heat (Qair,off) generated by the thermal tip dissipates into the air, whereas after contact, a new thermal flow channel is opened and a part of the heat (Qsample) diffuses into the sample. Thus, the heat transfer equation can be given as

Off contact: \[P_{off} = Q_{air,off} = A \cdot h \cdot \Delta T_{off}, \]

(31)

On contact: \[P_{on} = Q_{air,on} + Q_{sample} = A \cdot h \cdot \Delta T_{on} + \frac{1}{TR_{total}} \cdot \Delta T_{on}, \]

(32)

where A is the superficial area of the tip; and Poff and Pon are the heat power generated by the thermal probe before and after contact, respectively. Thus, the total TR can be deduced as:

\[\frac{1}{TR_{total}} = \frac{P_{on}}{\Delta T_{on}} - \frac{P_{off}}{\Delta T_{off}}. \]

(33)

Based on the thermal tip-sample approach curve (figure 13(e)), the total thermal resistance can be solved using the tip voltages of points A and B, combined with equations (29)–(33).

Although the SThM method has been calibrated and quantified in air conditions, two main limitations exist. One is the spatial resolution due to the liquid film existing at the tip-sample interface, and the other is the difficulty in quantitative measurements due to the parasitic air conduction between the sample and SThM probe. However, the ultra-high vacuum (UHV)-based SThM technique enables the quantitative measurement of thermal maps with ~15 mK temperature resolution and ~10 nm spatial resolution [146].

SThM opens new avenues for investigating physical phenomena in the quantum regime. In this review, we will mainly focus on the applications of SThM at the interface and surface of 2D materials.

2. Applications of AFM in surface/interface of 2D materials

Following the discovery of graphene [147], considerable research has been focused on 2D materials [148, 149]. Transition metal dichalcogenides (TMDCs) have emerged as an important 2D-layered material owing to their superior characteristics [149]. Several desirable properties emerge at monolayer limits, the most notable of which is the presence of a direct bandgap [149, 150]. From the perspective of spatial resolution, AFM has obvious advantages in studying the ultrafine structure of 2D materials. Moreover, the multi-functional AFM technology, which was extended from AFM, can realize high-resolution and physical and chemical properties quantitative characterization of materials. It is playing an increasingly important role in characterizing the local electrical, mechanical and thermal properties of 2D materials at the nanoscale level [17–19, 53, 151–153]. This section discusses recent studies on surface/interface of 2D materials using AFM.

2.1. Mechanical engineering of surface/interface

Tuning the material band structure by subjecting it to strain is an important strategy to enhance the electronic device performance. Diverse methods have been proposed for introducing strain in 2D materials, including the bending of films on elastic substrates [10, 11, 16], stretching of films using atomic force microscope probes [17–19], and thermal expansion mismatch [20–23]. Our review mainly focuses on the stress application methods discussed in sections 2.1.1 and 2.1.2.

2.1.1. Thermal strain. The thermal expansion coefficient (TEC) mismatch is a convenient method to produce controllable strain in TMDCs [155, 156]. Owing to the high temperatures when synthesizing TMDCs, the TEC-mismatch between the substrate and 2D semiconductor can control the strain in the synthesized 2D materials, as shown in figure 14. The tensile (compressive) strains accumulate on the TMDCs when the substrate TEC is less (greater) than that of the 2D material. Moreover, relaxed samples are obtained if the TEC of the substrate and 2D material match. The thermal strain-engineered behaviors of chemical vapor deposition (CVD)-grown triangular MoS2 and WS2 flakes were reported by our group and will be summarized in this section.

2.1.1.1. Edge dependent strain behaviors. We consider a micrometer or larger-sized 2D layer as a continuum where the atomic details are averaged, and the classical elasticity theory governs, as illustrated using the six-fold hexagonal 2D material in figure 15(a). However, a close examination
Figure 14. (a) SEM image of a doped silicon probe. (b) Schematic of the principle of thermal probe. (c) Circuit diagram of the local thermal analysis module. (d) Probe electric resistance (R_{probe}) vs. temperature ($\Delta T_{\text{probe}} = T_{\text{probe}} - T_{\text{air}}$) curve. (e) Demonstration of the thermal tip–sample approach curve. (f) Thermal conductivity (the reciprocal of thermal resistance) vs. tip voltage curve. Thermal conductivity (resistance) is negatively (positively) correlated with the probe voltage. Reproduced from [53] with permission from the Royal Society of Chemistry.

Figure 15. Strain-engineered transition metal dichalcogenides (TMDCs) using the thermal expansion coefficient (TEC)-mismatch. (a)–(c) Process schematic through which 2D materials realize strain via the TEC-mismatch between the substrate and TMDC. (a) Tensile strain is achieved when the substrate TEC is less than that of the 2D material, (b) relaxed samples are achieved when the TEC of the substrate and 2D material match, and (c) compressive strain is achieved when the substrate TEC is greater than that of the 2D material. Reprinted with permission from [154]. Copyright (2022) American Chemical Society.

of the hexagonal flake at the nanoscale level, e.g. monolayer WS$_2$, under strain (figure 15(b)), shows that the two inequivalent edges can make the local elastic modulus non-uniform. The hexagonal flake is divided into six regions because of its C$_3$ symmetry and the two different edges. We denote these regions using the edge type as Zigzag (ZR) and Klein regions (KR).

Figures 15(c) and (d) depict typical topographies of the WS$_2$ monolayer showing a uniform hexagonal shape. Local SP and surface MCD were measured using SKPM and DH-EFM, as presented in figures 15(e) and (f), respectively. The local SP of the WS$_2$ flake shows six domains, categorized into two SP levels with 8 meV difference. Given the relation between the MCD and bandgap (E_{gap}), we deduce that the local bandgap is larger in ZR than in KR, i.e. $E_{\text{gap}}(Z) > E_{\text{gap}}(K)$ (figure 16).

The CR mode characterizes the out-of-plane modulus by recording the resonance frequency shift of the probe-sample system (figure 17). Based on the model explained in
After the CVD growth, the fast-cooling process introduces strain into the synthesized MoS₂ flakes larger than 90°. In contrast, the mechanical behavior of WS₂ flakes is more complex. Triangular MoS₂ flakes at ~100 µm scale are more complex. Triangular TMDC flakes of size 5–45 µm have been observed in samples having a relatively small size (figures 17(b) and (c)). The out-of-plane elastic modulus of ZR is significantly smaller than that of KR, which is consistent with the Density Function Theory (DFT) results (figure 17(a)). Furthermore, the ZR and KR energy dissipation differences are resolvable through CR (figure 17(f)).

The friction force between the tip and sample is often affected by the out-of-plane, in-plane, and buckling moduli of a sample (figure 17(g)), which are difficult to measure. Therefore, FFM was employed here to measure the friction force by imaging the lateral torsion of the cantilever through contact scanning along the perpendicular direction. Figures 17(h) and (i) show the friction force images of the WS₂ flakes. The friction force of KR is larger than that of ZR, probably because of the smaller in-plane and larger out-of-plane moduli of KR. Thus, the micron-sized triangular KR and ZR explicitly show different measured mechanical properties in terms of elastic modulus, energy dissipation, and friction force.

2.1.1.2. Size dependent strain behaviors. The strain behaviors of TMDCs with different sizes have been studied by several groups [157–160]. Strain domains with different elastic modulus (figure 17(e)). The out-of-plane elastic modulus of ZR was significantly smaller than that of KR, which is consistent with the Density Function Theory (DFT) results (figure 17(a)). Furthermore, the ZR and KR energy dissipation differences are resolvable through CR (figure 17(f)).

According to the previous theoretical works, the tensile (compressive) strain can decrease (increase) the band gaps of the MoS₂ monolayer shows no specific features within the flake, as shown in figure 19(a). In contrast, FFM (figure 19(b)) reveals three sharp corners (marked II) with distinctive strain-induced features from the central region (marked I). Moreover, the strain at the corners (II) is different from that at the central region (I).

Advanced AFM techniques further investigate the strain-engineered structure and property of MoS₂ flakes. The AFM topography image of the triangular sharp-corner MoS₂ monolayer was taken in dual harmonic-EFM (DH-EFM). (f) Friction force image of WS₂ flakes. Reprinted with permission from [151]. Copyright (2020) American Chemical Society.

Figure 16. (a) Top (upper panel) and side (lower panel) views of a 2D film at a mesoscopic scale where the edges are identically treated, showing a six-fold symmetry (see cartoon eyes and arrows). (b) Corresponding top and side views at the atomic scale show two completely distinctive edges and a three-fold symmetry. (c), (d) Typical optical and AFM topography of WS₂ layer on SiO₂/Si substrate. (e) Corresponding local SP images using SKPM. (f) Mobile charge carrier density (MCD) image of WS₂ taken in dual harmonic-EFM (DH-EFM). (f) Friction force image of WS₂ flakes.
Kim et al. [158] presented nanoscale photoluminescence (PL) spectroscopy images of triangular CVD-grown WS$_2$ monolayers of different sizes under different temperatures and excitation power (figure 20(a)). Intense PL emissions were observed around the edges of individual WS$_2$ grains. Meng et al. [162] reported the SPs and work functions of strained WS$_2$ flakes of 20 μm size. In the interior regions, work functions are much larger than those of the unstrained regions (figures 20(b) and (c)). The strain domain distribution displays a three-fold symmetry in figures 18–20. However, the strain domains were more complex when the TMDC flakes increased to ~90 μm.

The monolayer WS$_2$ flakes were also prepared via CVD and underwent fast-cooling to introduce thermal strain (figure 21(a)). The magnitude of the tensile thermal strain within the WS$_2$/SiO$_2$ flakes depends on the TEC-mismatch and flake size. Here, the WS$_2$ monolayer (size ~100 μm) was split into different forms by several cracks, and the cause of the crack formation was studied using finite element analysis (FEA). The von Mises stress is a critical principle to characterize the yielding and fracture of materials; a point subject to a higher von Mises stress is the starting point of failure. The von Mises stress distribution of a triangular WS$_2$ flake with a hexagon nucleation center is shown in figure 21(b). Strong stress concentrations are generated at the vertices of the hexagon nucleation center (marked by arrows), which initiate cracks that extend outward to release the stress. Because the stress in the corner regions of the WS$_2$ layers is much larger than that in the edge centers, the cracks tend to extend toward the corner regions. Several cracks (broken lines) were found in the strained WS$_2$ flakes, and these cracks split the WS$_2$ flakes into six-splitting forms (figure 21(c)).
Figure 18. Sample preparation of triangular MoS$_2$ flakes and the introduction of tensile strain. (a) Schematic of traditional low-pressure chemical vapor deposition (CVD) growth process. (b) Introduction of tensile strain applied by the underlying substrate during the fast-cooling process. (c), (e) Size-dependent large-scale optical images of (c) sharp-corner and (e) vein-like MoS$_2$ flakes. (d) Statistical results of the measured sharp-corner and vein-like MoS$_2$ flake size. Optical images of (f) and (g) sharp-corner MoS$_2$ flake and (h) and (i) vein-like MoS$_2$ flake. Scale bars: (c) and (e) 30 μm; (f)–(i) 5 μm. Reproduced from [153]. © IOP Publishing Ltd. All rights reserved.

The electrical properties of the triangular-shaped six-splitting WS$_2$ monolayers were examined. Figure 21(d) depicts AFM topographies of the WS$_2$ monolayer with no visible height difference within the flakes. The surface MCD measured using DH-EFM shows several nanopatterns, such as the unclosed and closed rings, within
2.1.1.3. Geometry dependent strain behaviors. The strain-induced hierarchical ripple nanostructures, modified by the MoS$_2$ shapes, were also observed in MoS$_2$ flakes. Therefore, the structural evolution of these hierarchical nanoripples is further discussed based on the geometry and thickness of MoS$_2$ flakes.

The shape of the MoS$_2$ flakes can be modified by controlling the S/Mo ratio and growth temperature, as shown in figure 22(a). The most common triangular flakes are obtained at a high S/Mo ratio and low growth temperature. When the S/Mo ratio is reduced, and growth temperature is increased and triangular flakes with multi-apex corners are obtained, as shown in figures 22(b)–(g). The optical image of each flake shows a uniform contrast. Furthermore, a second layer can grow at the center of these triangular flakes and exhibit a perfect triangular shape. Herein, both 2H- and 3R-MoS$_2$ bilayer polytypes were obtained, as shown in figures 22(h) and (i). After CVD at high temperature, the isotropic tensile strain was applied on the triangular MoS$_2$ flakes through the substrate during fast-cooling. The tensile strain is due to the TEC mismatch between the MoS$_2$ flakes (10^{-5} k$^{-1}$) and SiO$_2$/Si substrate (10^{-7} k$^{-1}$) and may induce the out-of-plane ripples due to the Poisson instability of MoS$_2$ layers. Considering the geometry of MoS$_2$ flakes, the strain at the three corners is larger than in other regions.

Figures 22(j)–(o) show two typical triangular MoS$_2$ monolayer flakes with one small (figures 22(j)–(l)) and three large (figures 22(m)–(o)) dual-apex corners. Here, triangular flakes with multi-apex corners have been determined as single crystalline using TSM. The distinctive strain-induced features observed using the FFM mode, as shown in figures 22(j) and (m), exhibit a three-fold radial pattern from the center of triangular MoS$_2$ monolayer flakes. The symmetry of the features is affected by the strain distribution within the flakes and the geometry of MoS$_2$ layers. In the close-up FFM images (figures 22(k) and (n)), the hierarchical ripple nanostructures (marked II in figure 22(n), named ripple regions) distinctively differ from the flat regions (marked I), as observed in these strain-induced features. The indiscernible nanoripples in AFM topographies exhibit ripple heights of less than 1 nm. Additionally, the nanoripple areas exhibit lower friction signals owing to the strain-modified mechanical properties of MoS$_2$ films.

Moreover, the in-plane strain within these MoS$_2$ films can modify the local electronic properties. The tensile (compressive) strain can decrease (increase) the bandgap of MoS$_2$ films [163]. Therefore, DH-EFM was further employed to evaluate the local MCD and bandgaps of MoS$_2$ films qualitatively. As shown in figures 22(l) and (o), a higher MCD is observed in the hierarchical ripple areas than in the flat regions within the triangular flakes, thus indicating a reduced bandgap in these ripple structures under a tensile strain.

Figures 23(a)–(d) show a small part of the FFM images for the hierarchical ripple structures with varied multi-apex corners. The hierarchical ripple structure size is determined by the size of triangular flakes, whereas their strain-induced properties are controlled by the opening angle α or width d of the multi-apex corners [17].
Figure 22. (a) Schematic shape evolution of MoS$_2$ flakes with various S/Mo ratios and growth temperatures. (b)–(h) Optical topographic images of a series of triangular flakes with multi-apex corners. (j), (k) Friction and (l) MCC images of the MoS$_2$ flake with small dual-apex corners. The corresponding optical image is in (d). (m), (n) Frictional and (o) MCC images of the MoS$_2$ flake with larger dual-apex corners. The corresponding optical image is in (e). Reprinted from [17], with the permission of AIP Publishing.

Figure 23. Formation mechanism of hierarchal ripple structures. (a)–(d) FFM images of the hierarchical ripple structures in MoS$_2$ with different opening angles. (e)–(h) Evolution of hierarchal ripples in a silk curtain when the confined edges are gradually bent. These ripples are generated through the longitudinal tensile strains applied by the gravity of itself. (i)–(l) Schematic for elucidating the formation and evolution of hierarchical ripples. Reprinted from [17], with the permission of AIP Publishing.

The universal self-similar hierarchy of ripples can be observed within the thin sheets or films when under tensile strain and boundary edge confinement [164–167]. This curtain effect is demonstrated in our experiment, shown in figure 23(h). These ripples are primarily along the longitudinal direction (same as the direction of gravity) and perpendicular to the boundary edges. Wrinklon is the localized transition zone where two ripples merge, which is a building block for these hierarchical ripple patterns. To further understand their structural evolution, we gradually bent the boundary edge, as shown in figures 23(e)–(g). When bent to a ‘∧’ shape, the ripples fail to orient along the longitudinal direction but are affected by the bent edges. The ripples near the edges orient perpendicular to the bent edges. In contrast, the ripples farther from the edges gradually bend along the longitudinal tensile direction of gravity while retaining hierarchy. The hierarchical ripples in the bent curtains are relatively similar to those in the triangular MoS$_2$ flakes. Based on their inherent similarities, a simple diagram is proposed to elucidate their formation mechanism (figures 23(i)–(l)).

2.1.2. Strain applied through the AFM probe in contact mode

2.1.2.1. Strain-induced in-plane anisotropic shear behaviors (crystallographic orientation imaging). Xu et al [18] reported in-plane shear stiffness anisotropy under uniaxial normal tension strain in monolayer MoS$_2$ and experimentally verified the shear characteristic based on friction-driven stretch deformation during the TSM contact scan.

For TSM, the scan direction of the AFM tip is parallel to the cantilever axis, and the lateral torsion of the cantilever is recorded. For a flexible film weakly bound onto a rigid substrate, the film puckers locally during contact scan by the AFM tip. When the tip moves the puckered region forward, the pucked geometry causes the film to relax at the front edge and stretch at the rear area of the tip simultaneously.
Figure 24. (a) Schematic for TSM and stress distribution originating from stretch deformation. Friction can drive the stretch deformation of a film, and the TSM signals originate from the noncollinearity between the stretch force and deformation direction. If there is strain-induced anisotropic shear deformation, TSM signals will not be zero. (b) Optical image. (c) AFM topography. (d) FFM image, and (e) TSM image of a star-shaped monolayer MoS$_2$ flake sample. In (e), (f), crystallographic labels for AC and ZZ orientations. Every domain of star-shaped monolayer MoS$_2$ is given an identifier from P1 to P7. (g) Shear signal vs. rotation angle curves obtained by randomly selecting P5 domains with the SiO$_2$/Si substrate. (h) Scatterplot diagram of shear signal vs. crystallographic orientation using the AC orientation as the reference direction of 0. All the data points are translated into one period of 60°. Reprinted from [18], with the permission of AIP Publishing.

(figure 24(a)), which breaks the original in-plane mechanical isotropy of the hexagonal 2D atomic crystal. FFM can characterize anisotropic stretch deformation and friction energy dissipation for an elastically anisotropic film. Such friction-driven stretch deformation will cause the stretch force direction to deviate from the deformation direction. The intersection angle creates an additional transverse shear component that generates lateral torsion of the cantilever and is the source of TSM signals. On an isotropic surface, the transverse shear signal is zero.

The star-shaped monolayer MoS$_2$ flake was characterized using AFM (figures 24(c)–(e)). We can observe remarkable contrasts of the star-shaped domains in the TSM image (figure 24(e)) but not in the corresponding FFM (figure 24(d)) and topography (figures 24(b) and (c)) images. FFM fails to distinguish the frictional and elastic anisotropies of the domains probably because of its low sensitivity.

For TSM characterization with a series of clockwise rotations, the periods of 60° of the shear signals are presented (figure 24(g)), thereby implying consistency with the hexagonal symmetry of MoS$_2$. More precisely, the scatterplot diagrams of shear signal vs. crystallographic orientation for the seven domains (figure 24(h)) exhibit the same distribution regularity, which confirms that the anisotropic shear deformations accurately correspond to crystallographic orientation.

TSM characterization is useful for crystallographic orientation imaging of monolayer samples and characterization of bilayer samples, such as bilayer MoS$_2$ and graphene [19]. Due to the van der Walls (vdW) interactions between the top and bottom layer, the adhesion and puckering effect occur primarily between the AFM tip and top layer as the AFM tip approach, contact, and move on the top layer (figures 25(a) and (b)). Figures 25(c) and (d) show the optical and AFM topography images of the bilayer MoS$_2$ flakes. The bilayer areas are marked by white dashed lines.

Figure 25(e) shows the FFM images of the bilayer MoS$_2$ flake. No crystalline differentiated contrast is observed on top and bottom layer grains. The friction signal on the bilayer area is slightly lower than that on the monolayer area. Figure 25(f) shows the TSM images of this bilayer MoS$_2$ flake. The top (P$_2$1 and P$_2$2) and bottom layer grains (P$_1$1 and P$_1$2) are clearly resolved in the TSM image. The P$_2$1 and P$_1$1 grains are in a near-pristine 2H stacking. P$_2$2 shows an almost identical shear signal as P$_1$2 due to their pristine 2H stacking with the same but inversion-asymmetry crystallographic orientation. As the vdW interaction between the top and bottom MoS$_2$ layer is less than the bonding between the bottom MoS$_2$ layer and substrate, the difference between shear signals (trace and retrace) of the top layer is larger than that in the bottom layer. The top layer grains are stacked over the bottom layer grains. Whereas no shear contrast is observed within the top layer grains. This result demonstrates that the puckering effect occurs primarily on the top layer, and the corresponding puckering-induced shear signal in the bottom grains should be small.

The top layer-dependent crystallographic orientation imaging of 2D materials enables the crystallographic orientation imaging of bilayer films with TSM. Our research will be beneficial in understanding the nanomechanical behaviors of 2D systems and providing a convenient and powerful approach to facilitate nondestructive crystallographic orientation characterization of 2D atomic crystal systems.
2.1.2. Strain-induced rippling and manipulation. The strain-engineered rippling structures were reported in TMDCs by several groups. Ripples can strongly influence electronic properties by inducing effective magnetic fields and changing local potentials [168–172]. Here, the nanoscale ripples introduced by the in-plane thermal strain are reported. Using the TEC mismatch between the TMDCs and growth substrate, we can apply built-in strain in TMDCs layers, as shown in figure 26(a).

Figures 26(b) and (c) show the optical and AFM topography images of the typical WS₂ monolayer single-crystal flake. The quasi-hexagonal shape of WS₂ flakes results from the S/W ratio and growth temperature. In the single-crystal WS₂ monolayer flake, three contrast domains are vaguely and distinctly visualized in the FFM and TSM images (figures 26(d) and (e)), respectively. In the FFM image (figure 26(d)), the dashed line distinguishes the three zigzag-orientated rippling domains with three-equivalent directions. The domains were formed by artificial AFM manipulations based on the pristine WS₂ flake (figure 27).

Figures 27(a)–(c) show the three TSM images of the WS₂ flake with an artificially manipulated single rippling domain.
The ripple orientation is illustrated in the inset, and the direction of rippling domain I is horizontal (0°). The AFM manipulation was systematically performed as follows: first, repeated (forward and backward) scanning in contact mode was performed with a certain manipulation scan direction and large loading force (∼400 nN) on the entire flake. Next, the TSM image was obtained in the horizontal scan direction with a small loading force (∼0.1 nN) to check the result of the previous manipulation. By incrementally changing the manipulation direction from 0° to 180°, three rippling domains with different contrasts were obtained, labeled type I, II, and III. The ripple direction of type I (II and III) domain was further aligned along the y (b and p) zigzag edge of the WS₂ flake using the angle-dependent TSM images. In our experiments, the rippling domain of type I, II and III can only form by the manipulation directions within the angle interval of (−30°, 30°), (30°, 90°) and (90°, 150°), respectively.

Figure 27(e) describes the conclusion of manipulations: the manipulation is controlled primarily by the angle interval of the target zigzag-oriented ripple lines direction and manipulation directions. The types II or III rippling domain could be transformed to type I using AFM manipulation when the angle interval between manipulation direction and type I ripple direction range from −30° to 30°. Decreasing the angle interval allows successful manipulation using relatively fewer manipulation repeating times and smaller loading force. The direction of the rippling domain is the same if the angle interval between manipulation and pristine ripple direction is less than 30°.

The AFM manipulation based on the above manipulation principle (figures 27(f) and (g)) has fabricated numerous distinctive rippling domain patterns in the monolayer WS₂ flake. Figure 27(f) shows the procedure of writing a matryoshka-like rippling domain pattern. More complicated patterns were ‘painted’ using the AFM lithography method (figure 27(g)). The single rippling domain was first prepared on the entire WS₂ flake and then formed within the flake using contact AFM scanning several times in the home-modified lithography AFM mode.

The artificial rippling domain patterns were stable in the ambient condition and can be imaged after several weeks. Furthermore, the rippling strongly influences the electronic properties of 2D materials by introducing effective periodical local pseudo-magnetic fields and electrical potentials [168, 173]. This strain-engineered ripple and artificially-manipulated rippling domain could further investigate the exotic electron behaviors in the 2D limit.

2.1.2.3. Nanoscratching using AFM probe. It is important to explore the fracture mechanics properties of 2D materials deposited on the substrate. To date, experimental research on fracture mechanics has been conducted on 2D materials, such as the nanoindentation test on exfoliated graphene [174] and MoS₂ [175], and nanoscratch test on graphene, MoS₂, and h-BN [176].

The comparison of Young’s moduli and breaking strengths of several materials are summarized in table 4. The strength of monolayer MoS₂ is exceeded only by carbon nanotubes and graphene. For a complete cognition of fracture behavior and to deepen the understanding of different fracture stages, nanoscratch with progressive and constant force is conducted, as in figure 28.

Ye et al [177] applied a progressive series of forces to perform a scratch along a linear routine on the single-layer MoS₂, as shown in figure 28(a). The normal load increased from 50 to 70 μN in 20 μm. The experiment result is presented in figures 28(b) and (c), which correspond to the optical image and morphology of the sample after scratch test, respectively. There is no distinct phenomenon in the sample when the normal load is less than 50 μN, and crack modes in the front and middle exhibit distinctive differences. Two novel crack forms can be triggered according to the magnitude of normal loads. Figure 28(d) shows the middle of the fracture where periodical serrated cracks can be found, thereby implying an anisotropic brittle fracture of the single-layer MoS₂.
Table 4. Comparison of young’s moduli and breaking strengths for several engineering materials. Reprinted with permission from [175]. Copyright (2011) American Chemical Society.

Material	Young’s modulus E_{Young} (Gpa)	Breaking strength $\sigma_{\text{max eff}}$ (Gpa)	Breaking strength/Young’s modulus (%)
Stainless steel ASTM-A514	205	0.9	0.4
Molybdenum	329	0.5–1.2	0.15–0.36
Polyimide	2.5	0.231	9
PDMS	0.3–0.87	2.24	2.5
Kevlar 49	112	3	2.6
Monolayer MoS$_2$	270	16–30	6–11
Bulk MoS$_2$	238		
WS$_2$ nanotubes	152	3.7–16.3	2.4–10
Carbon nanotubes	1000	11–63	1.1–63
Graphene	1000	130	13

Figure 28. Fracture induced by nanoscratch on single-layer MoS$_2$. (a) Schematic of nanoscratch using AFM. The apex radius of \sim10 nm was chosen, which is not too sharp to pierce the film easily nor too blunt to peel such a huge film. (b) Optical image of MoS$_2$ film after scratch. (c) FFM image of the scratched domain with distinctive crack morphology. Normal load increases from 50 to 70 μN. (d), (e) Close-up of the domain in white dashed frame in (c). In (d), periodical zigzag cracks along the scratch path. In (e), the forepart of the whole fracture. (f) FFM image of a string of cracks along the armchair direction. The scratch is from left to right, as shown by the arrow. The head shape of the crack is flat. (g) String of cracks along the zigzag direction, from up to down. The head shape of the crack is angular. Reproduced from [177]. © IOP Publishing Ltd. All rights reserved. In (c)–(e), scale bars here are 1.0 μm. In (f), (g), scale bars here are 0.5 μm.

Figure 28(e) shows the close-up image of the fracture front, wherein a so-called ‘semi-circular crack’ was generated only under a certain critical load (\sim50 μN).

Under a critical load (\sim50 μN), with an extremely slow scan velocity, arrays of semi-circular cracks were generated, as shown in figures 28(f) and (g). Figures 28(e) and (f) correspond to nanoscratch tests along the high-symmetric crystallographic orientations (armchair and zigzag). The size and distance between adjacent semi-circular cracks of the two crystallographic orientations are similar. However, the head
shape of cracks along the armchair is flat, whereas that along the zigzag is angular with 120° at the top. Thus, all the directions of the head cracks are consistent with zigzag orientation in this mode. Such a unique crack form originated from the special local stress distribution around the AFM tip [177].

In summary, semi-circular and periodical zigzag cracks in the fracture were generated according to the different loading force, and both present anisotropy in the generation and propagation progress that is helpful for the design of reliable and protective nanoelectronic devices.

2.2. **Interfacial charge transfer**

Understanding charge generation, transfer, and diffusion between 2D materials and their supporting substrates is important for their potential applications. Lu et al. [178] observed significant N-doping in thin MoS2 films on SiO2, dominated by charge traps at the sample–substrate interface by STM. Further, the charge trapping and its effects on the characteristics of the MoS2 field-effect transistors and photodetection devices were investigated [179, 180]. Liu et al. [181] claimed to generate anomalously high DC using a sliding Schottky nano-contact in a sliding semiconductor-metal contact (on MoS2 multilayers/Ag).

Kim et al. [182] investigated the triboelectric charges of a graphene/SiO2 system and found trapped triboelectric charges at the air–SiO2 interface underneath the graphene that act as ghost floating gates. KPFM was used to measure the SP before and after triboelectrification (figures 29(a)–(c)). Figure 29(b) shows the initial equipotential state of the CVD graphene before rubbing. Figure 29(c) shows the SP after rubbing the central square; the rubbed region has a ∼50 mV higher SP than the unrubbed region. Such potential variation may not be attributed to charges stored in the graphene as electric charges are localized for long times only in insulating materials. Some generated charges tunnel through the monolayer graphene and are locally trapped on the underlying insulator. The trapped charges act as an immaterial (made of charges-only and not of conductor) bottom floating gate and locally change the polarity and density of charges in the graphene and its work function. The ghost floating gates effectively control the carriers within graphene because of the thin graphene and comparably thin air gap.

\[\Delta V_{TT} = \text{SP taken with reference to the average SP of the uncharged sample.} \]

\[\Delta V_{TT}(t) \propto 4 mV \times e^{-t/\tau_{short}} + 46 mV \times e^{-t/\tau_{long}}. \]

In practice, in addition to a small term of shorter time constant (\(\tau_{short} \sim 3 \) h and 21 min), there is a dominant term with higher initial amplitude and exceptionally long time constant (\(\tau_{long} \sim 278 \) h). Herein, \(\tau_{long} \) is more than two orders of magnitude than that of the standard triboelectrification. The immaterial ghost gates effectively control the charges inside the graphene owing to the thin 2D materials and sub-nanometer insulating air gap.

Recently, the charges transfer and diffusion of the MoS2/SiO2 interface through contact and frictional electrification were investigated systematically **in-situ** using SKPFM and DH-EFM (figure 30). In the contact electrification process, the contact voltages applied by the tip and the positive or negative charges can be transferred to MoS2/SiO2 with the PtSi-coated AFM tip. The micro-process of contact electrification in the MoS2/SiO2 system is shown in figure 30(a). This process can be divided into two steps: first, the biased tip is in contact with the center of MoS2 and forms an equipotential MoS2 flake. Second, the generated interface dipole moments act as floating gates. The image charges on SiO2 can be induced by the charges on MoS2 flakes by considering the air gap between them. The joint action of charges on MoS2 and their image charges forms the dipole moments at the MoS2/SiO2 interface. The effect of these interface dipole moments is evident in the DH-EFM images. The decay process of the charges on MoS2/SiO2 is monitored by the SP evolution, as shown in figures 30(e)–(i). Figure 30(e) shows the SP of the uncharged sample. We simultaneously applied −4 V on MoS2 and SiO2 to compare the decay process of charges on MoS2/SiO2 with that on SiO2. Figures 30(f)–(i) show a series of SP images taken in the same areas after tip contact sample. The apparent area of charged regions becomes larger and the intensity becomes weaker.

Figure 30(b) shows the evolution of SP value with time. The discharge process of MoS2/SiO2 is much longer than that of the SiO2 surface. The decay time \(\tau \) is obtained using \(\Delta \text{SP} \propto V_{0} \times e^{-t/\tau} \), where \(\Delta \text{SP} \) is defined as the SP taken with reference to the average SP of the intact SiO2 region. \(V_{0} \) is a constant, which equals the initial SP difference \(\Delta \text{SP0} \) [182, 183]. The
Figure 30. (a) Schematic of charge transfer with tip and MoS$_2$/SiO$_2$ contacting. (b) Profiles of SP vs. time. (c) Schematic of charge transfer between the tip and MoS$_2$/SiO$_2$ with tip friction on MoS$_2$/SiO$_2$. (d) Profiles of ΔSP vs. time. (e) MoS$_2$ SP before charging. Contact voltages applied by the AFM tip are marked. (f)–(i) Series of SP images taken in the same region after biased tip contacting MoS$_2$. (e)–(i) Scale bars are 5 μm. (j) AFM topography of MoS$_2$ on SiO$_2$/Si substrates after rubbing. Rubbed area is marked. (k) SP images of the neutral sample. (l)–(n) AFM images of MoS$_2$ layer after triboelectrification, showing a sharp edge between rubbed (marked R) and intact (marked I) MoS$_2$. (j)–(m) Scale bars are 4 μm. Reproduced from [30]. © IOP Publishing Ltd. All rights reserved.

decay time of -4 and $+4$ V charged MoS$_2$/SiO$_2$ is \sim1.98 and 2.42 h, respectively. Overall, the τ for the MoS$_2$/SiO$_2$ areas is one order of magnitude larger than that of the contact electrification SiO$_2$ surface.

The longer τ on MoS$_2$/SiO$_2$ confirms that the transferred charges are trapped at the MoS$_2$/SiO$_2$ interface because the discharge process is related to the water molecules and atmospheric ions [184]. When the charge is trapped at MoS$_2$/SiO$_2$ interface, the water molecules cannot effectively contribute to deelectrification due to the MoS$_2$ layers. The discharge process of interfacial charges depends primarily on the charge transfer in SiO$_2$ bulk. Hence, τ is larger in the MoS$_2$/SiO$_2$ system. Furthermore, τ depends on the sign of charged voltages. Thus, the τ of $+4$ V charged flake is larger than that of the -4 V charged flake owing to the different charge diffusion coefficients of positive and negative charges in SiO$_2$/Si.

Additionally, the characterization of frictional electrification on MoS$_2$/SiO$_2$ was studied (figures 30(j)–(m)). Figure 30(j) shows the topography after rubbing. Figures 30(k) and (l) show the SP image of the sample before and after rubbing. The contrast between R and I areas can be observed even after 80 h. The rubbed areas are negatively charged. The Fermi surface of tip is higher than that of SiO$_2$ and MoS$_2$, thus resulting in electron transfer from tip to sample. The nonuniform SP on SiO$_2$ substrate may originate from the charged impurities from the air deposited on the substrate.

The corresponding schematic of charge transfer is shown in figure 30(c). The ΔSP of rubbed MoS$_2$ area vs. time is plotted in figure 33(d). The τ is \sim14.10 h for the rubbed MoS$_2$/SiO$_2$. The charge decay time of the MoS$_2$/SiO$_2$ interface is one (or two) order of magnitudes larger than that of the SiO$_2$ surface. The longer τ confirms the transferred charges are trapped at MoS$_2$/SiO$_2$ interface. Due to the screen effect of MoS$_2$ layers, water molecules or other atmospheric ions cannot effectively contribute to deelectrification, thereby resulting in a longer τ of interface charges [30].

In addition to the semiconductor/insulator interface, the metal/insulator (M/I) interface was also investigated (figure 31). The charges transfer at M/I interface (figure 31(a)) is as follows. Electron flows from the material with higher Fermi level E_F (smaller work function ϕ) to the one with lower E_F (larger ϕ). Electron is trapped at the insulator surface when the work function satisfies $\phi_I > \phi_M$. The interfacial dipole moments (indicated by red arrows) collect at the M/I interface owing to the air gap between the insulator
and 2D metal. The NbS$_2$/h-BN heterostructure was obtained using CVD on SiO$_2$/Si substrate to identify the M/I interface charge transfer.

Figure 31(b) shows the topography of CVD-grown NbS$_2$/h-BN heterostructures. The NbS$_2$ layers grow on the h-BN substrate in a layered fashion with atomic smoothness. We call the initial growth layer the first layer (1L-NbS$_2$) and the following layers the second (2L-) and third (3L-) NbS$_2$ layer [92]. Figure 31(c) shows that the 1L-NbS$_2$ SP is larger than that of h-BN and 2L-NbS$_2$ by \sim130 and 10 mV, respectively. The SP difference between 1L-NbS$_2$ and h-BN indicates charge transfer between NbS$_2$ and h-BN interface, as demonstrated in figure 31(g).

An AFM probe was used as a manipulator to peel part of NbS$_2$ flakes to obtain post-exposed h-BN surface and ‘see’ the interfacial charge transfer (figure 31(d)). A vertical knocking was applied on the NbS$_2$ layers with AFM tip in AC (tapping) mode. The NbS$_2$ layer is broken into several small lamellas with sufficiently strong vertical tapping, and the post-exposed h-BN surface is obtained, as shown in figure 31(e). Figure 31(f) shows the post-exposed h-BN surface SP as \sim236 mV, lower than that of pristine h-BN. The negative charges accumulate at the post-exposed h-BN surface considering the neutral pristine h-BN surface.

Ding et al [92] used SKPM to characterize the SP of MoS$_2$/PbI$_2$ heterostructures. In figure 32, a significant change in SP in the interlayer between MoS$_2$ and PbI$_2$ suggest interface charge transfer and electron transfer from MoS$_2$ to PbI$_2$.

To summarize, SKPM and advanced EFM aid the study of interfacial electrons transfer and diffusion. The material properties can be adjusted by interface engineering and motivate further directive studies on the heterointerface of heterostructures.

Figure 31. (a) Charge transfer between the 2D metal layer and insulator. (b), (c) AFM topography and SP of NbS$_2$/h-BN using SKPM. Inset: SP profiles along dash lines in (c). (d) Schematic of post-exposed h-BN surface preparation. Post-exposed h-BN surface is the h-BN surface covered by NbS$_2$ in the growth process but exposed after peeling the NbS$_2$ using AFM tips. NbS$_2$ layers framed by the dashed box stand for the stripped part before peeling. Charge distribution at the 1L-NbS$_2$/h-BN interface and post-exposed h-BN surface is also shown. (e) AFM topography after partly peeling NbS$_2$, the dash hexagon shows the position of the NbS$_2$ layer before peeling. (f) SP image of the post-exposed h-BN surface. Inset: SP profiles along the dash lines in (f). (g) Schematic energy band diagram of NbS$_2$/h-BN showing electron transfer from 1L-NbS$_2$ to h-BN. Scale bars are 1 μm. Reproduced from [92]. © IOP Publishing Ltd. All rights reserved.

Figure 32. (a) AFM and (b) KPFM images of the MoS$_2$/PbI$_2$ heterostructures. (c) Schematic of band energy of MoS$_2$/PbI$_2$ heterostructures. Reproduced from [185], with permission from Springer Nature.
Moreover, the intercalation of atoms and molecules has been studied for h-BN monolayers [187, 188] and other 2D materials, such as graphene [189], to modify the materials’ properties. Yamasue et al synthesized hydrogen-intercalated graphene on a 4H-SiC(0001) substrate. Hydrogen intercalation at the interface eliminates covalent bonds and the original quasi-(6 × 6) corrugation, which indicates the conversion of the buffer layer into a second graphene layer by terminating Si bonds at the interface.

As water is an anomalous liquid, the water intercalation at the interface of heterostructures has attracted considerable attention. Lee et al [190] reported that H₂O intercalating between graphene and mica increases the friction between the tip and substrate depending on the water and graphene layer thickness. Figure 33 illustrates the water intercalated single-layer graphene (SLG) and bilayer graphene (BLG) on mica. The topography and friction images in figures 33(c) and (d) show the regions of mica, SLG + zero water layers (0 W), SLG + first water layers (1 W), and SLG + second water layers (2 W). The brighter contrast in figures 33(b) and (d) suggests high friction. The FFM images show increased friction by the water layer intercalation between graphene and mica. The friction enhancement in BLG is less visible than that in SLG but is higher than that on the BLG + 0 W on mica, as shown in figures 33(d) and (f). Figure 33(g) shows a schematic of varied friction over graphene layers with and without intercalated water using an AFM tip. Additionally, they reported that D₂O intercalation decreases friction at the H₂O-intercalated graphene on mica because the low rate of frictional kinetic energy dissipation at the interface affects the phonon contribution.

Hong et al [191] investigated the effects of the trapped interfacial ice-like water layer on the charge transfer between graphene and SiO₂/Si substrate by recording the SP changes induced by partial removal of the water layer upon in-situ heating. Figures 34(a)–(d) illustrate the in-situ AFM height images of the graphene–interfacial water layer–SiO₂/Si sandwich system at different temperatures. No noticeable change is observed below 40 °C (figure 34(b)), whereas the interfacial water layer is partially removed at 80 °C (figure 34(c)). A further increase in temperature removes the interfacial water layer (figure 34(d)). Interfacial water molecules fail to penetrate the impermeable graphene sheet, allowing the water molecules at the graphene edge to easily escape upon heating (figure 34(e)). The same height of 0.37 ± 0.02 nm is measured for the interfacial water layer (figure 34(g)), which indicates an ice-like single water layer underneath the graphene. The contrast in the SP map between the 1L₁WL and 1L₀WL graphene regions shows the effects of the interfacial water layer on graphene SP (figure 34(f)). The work function of graphene is calculated by \(\varphi_G = \varphi_{tip} - eV_{CPD} \), where \(\varphi_{tip} \) and \(V_{CPD} \) are the work functions of the AFM tip and contact potential difference between the AFM tip and graphene measured by SKPM. The SKPM mapping shows electronically modified graphene by the ice-like water layer as the electron density transfers from graphene to the water layer, resulting in graphene hole-doping.

The water layers confined between hydrophobic/hydrophobic interfaces under ambient conditions have been studied by our group [73]. A special folding few-layers graphene film was elaborately prepared (figure 35(a)) to form a hydrophobic/hydrophobic interface. We precool the sample with constant temperature and humidity equipment for several hours before placing the sample in a warm and high humidity condition to realize H₂O intercalation at the whole interface. Because the MF-AFM amplitude (A_MF) can reflect the local mechanical properties of the sample and has subsurface detection capability (figure 35(b)), the internal interfacial intercalation water phases were further visualized with two MF-AFM modes: multi-harmonic and dual AC AFM.

The subsurface information obtained through nanomechanical coupling between the tip and sample helps distinguish between the two types of water phases via the higher harmonic A₀₀ detection (figure 35(d)). Essentially, the elastic modulus increases for higher A₀₀ values. The corresponding histogram in figure 35(e) is extracted from figure 35(d). The larger (smaller) elastic modulus areas, corresponding to the bright (dark) areas in A₀₀, represent the solid (liquid)-like phase of the intercalation water layers.
Figure 34. (a)–(d) Recorded in-situ AFM height images of graphene supported on SiO$_2$/Si substrate from room temperature (25 °C) to 100 °C. The scale bars are 2 µm. (e) Magnified AFM height image and (f) corresponding SP recorded by SKPM at 80 °C. The scale bars are 1 µm. (g) Height and (h) V$_{C_P}$ line profiles measured along the yellow and red dashed lines marked in (e) and (f), respectively. Reproduced from [191] with permission from the Royal Society of Chemistry.

Figure 35(g) shows the A$_2$ images of the water intercalated sample and the corresponding histogram distribution in figure 35(h). Two kinds of water structures coexist at the folding graphene interface. The higher A$_2$ (brighter contrast) indicates the strong repulsive (rigid) and less dissipated tip–sample forces, which reflects the solid-like phase. In contrast, the dark areas with lower A$_2$ reflect a liquid-like phase considering their soft and dissipative nature.

The experimental data of A$_{60h}$ and A$_2$ demonstrate coexisting solid- and liquid-like water phases at the interface. The internal interfacial structures affect the solid and liquid layers, which confirm intercalated water layers at the interface. The distribution rates of the two phases are almost the same in the A$_{60h}$ image. However, in the A$_2$ image, the distribution rates are ~60% for solid- and ~40% for liquid-like phases. This discrepancy arises because the tip–sample force is weaker in multi-harmonic mode (passive MF-AFM mode) than in dual AC mode (active MF-AFM mode).

Depending on the density, the liquid phase is divided into low-density liquid (LDL) and high-density liquid (HDL). Considering the fragility indices, LDL (m = 14) is a ‘superstrong’ liquid whereas HDL (m = 20–25) is relatively weak. Combining the MF-AFM data analysis and above discussion, phases of liquid water were determined using elastic modulus. LDL has a larger elastic modulus (solid-like phase) than the HDL (liquid-like phase).

Figure 36 shows the water molecules’ intercalation at the M/I interface and related metal–insulator transition (MIT) of the first layer (1L) NbS$_2$ in NbS$_2$/BN heterostructure. The sample was first precooled and then detected by AFM to monitor the H$_2$O molecule’s intercalation into the interface. Sequential AFM topography snapshots are shown in figures 36(a)–(d). Initially, partial H$_2$O molecules gather around 1L-NbS$_2$, whereas some islands of H$_2$O molecules discretely distribute on the h-BN surface (figure 36(a)). H$_2$O molecules epitaxially grow from the intercalated H$_2$O layer and discretely distributed island until the h-BN surface is covered by water layers (figures 36(b)–(d)).

The water patches and films appear as one/two puckered bilayers of ice-I$_h$ in the section lines of the same area (figure 36(e)) [92, 192]. The 2L-NbS$_2$ height remains unchanged before and after water adsorption. We conclude that except at the intercalation at NbS$_2$/BN interface, the interface between 1L- and 2L-NbS$_2$ is free from water owing to the absence of charge transfer and dipole moments between the two layers.

The electrical properties of water-intercalated samples were further investigated using DH-EFM and sMIM. Compared to the mobile charge carrier (MCC) images of the pristine sample (figure 36(h)), 1L-NbS$_2$ is ‘invisible’ and has an identical signal with the insulating H$_2$O/BN surface after water intercalation, as highlighted by the dotted lines in figure 36(i). This indicates the MIT of the 1L-NbS$_2$ layer when intercalating the H$_2$O layer at the 1L-NbS$_2$/BN heterointerface. The 2L-NbS$_2$ layer can be observed in MCC images, which indicates the preserved metallic state of 2L-NbS$_2$ by the buffering effect of the 1L-NbS$_2$ layer. Additionally, figure 36(j) shows that the SP of water-intercalated NbS$_2$/BN heterostructures is ~120 mV lower than that at H$_2$O/BN surface.

sMIM images of pristine and water intercalated samples are shown in figures 36(k)–(n). Compared to the metallic behavior of the pristine sample (figures 36(k) and (l)), the 1L-NbS$_2$ disappears (figure 36(n), marked by the white dash line) and shows electrical insulation. The 2L-NbS$_2$ continues to show the metallic state, consistent with the MCC image. This confirms MIT of the 1L-NbS$_2$ layers when intercalating the H$_2$O layer at the 1L-NbS$_2$/BN interface.
Dollekamp et al. [193] tuned the friction of graphene by changing the size and vibrational modes of the intercalated molecules. They replaced water with larger alcohol molecules of different vibrational modes, e.g. stretching the C–C and C–O bonds. The extra vibrational modes contribute to the higher friction in methanol, ethanol, and 2-propanol compared to an intercalated double water layer, which scales with their size. In addition, the single-layer graphene has higher friction than bilayer and trilayer graphene.

To summarize, interfacial intercalation can tune the local physical properties of the sample by changing the environmental conditions and intercalated interface molecules. These results suggest manipulating the electronic/mechanical properties of 2D materials for diverse applications.

2.4. Interfacial thermology

Thermal measurements require nanoscale spatial resolution and high sensitivity. SThM can successfully determine the thermal conductivity, \(k \), of samples [194]. For example, the in-plane \(k \) of a residue-free suspended graphene bridge was measured using NP-SThM with spatial resolution reaching 50 nm [144]. The temperature profile of suspended graphene bridges was measured and fitted with the 1D heat transfer equation to obtain \(k \). Hwang and Kwon [195] used NP-SThM to obtain the in-plane \(k \) of suspended graphene disks of radius 50–3680 nm.

In addition, the thermal transport of heterostructures could be studied by SThM. The heater-sample thermal contact resistance (\(R_X \)) of graphene/MoS\(_2\) heterostructure is given in figure 37(a). The sample has areas of bare SiO\(_2\)/Si (SOS), graphene on SiO\(_2\) (GS), MoS\(_2\) on SiO\(_2\) (MS), and MoS\(_2\) on GS (MGS). The contrast in the \(R_X \) image demonstrates the following trend from low to high thermal resistance areas. \(R_X(GS) < R_X(SOS) < R_X(MGS) < R_X(MS) \). This is because the interfacial thermal resistance plays a role in thermal transport in addition to the layer thermal conductivity [196]. The MS interface exhibited an \(R_X \) between \(4 \times 10^{-8} \) and
Figure 36. (a)–(d) Water molecules intercalate at the interface and grow on the sample surface. (e) Section lines during (blue line) and after (red line) water intercalation. (f) Schematic of evolution process and structure diagram of water molecule intercalation at the 1L-NbS$_2$/BN heterointerface. (g), (h) AFM topography and MCC images of pristine NbS$_2$/BN heterostructures. (i), (j) MCC and SP images of water-intercalated heterostructures. (k)–(n) Topography and conductivity images of (k), (l) pristine and (m), (n) water-intercalated NbS$_2$/BN heterostructures using sMIM mode. Scale bars are 1 µm. Reproduced from [92]. © IOP Publishing Ltd. All rights reserved.

2.27 × 10$^{-6}$ m2 K$^{-1}$ [197, 198], which is higher than that of GS (between 5.6 × 10$^{-9}$ and 2 × 10$^{-8}$ m2 K$^{-1}$) [199]. Thus, the thermal resistance of GS is increased by one order of magnitude by adding MoS$_2$ top layer, thereby providing pathways for increasing the efficiency of thermoelectric applications using vdW materials.

Additionally, the spatial distribution of temperature rise within the lateral heterostructure was studied [201]. The optical and AFM images (figure 37(c)) of a MoS$_2$–WS$_2$ lateral heterostructure confirm a single monolayer sample. The compositional heterogeneity of this device is illustrated by the Raman map in figure 37(d). SThM maps the temperature rise spatial distribution within the monolayer TMDC devices during a high electrical power dissipation through a lateral interface (figures 37(e) and (f)). The results directly demonstrate that lateral heterojunctions between MoS$_2$ and WS$_2$ fail to impact the heat dissipation distribution, whereas GBs of MoS$_2$ considerably localize heating in the device.

Special physical phenomena could be observed when applying SThM. Xu et al [53] observed a novel mechanical-thermal coupling effect in monolayer/bilayer MoS$_2$, and WS$_2$ films; essentially, puckering deformation can enhance interfacial TR (figure 38). Figure 38(a) shows the FFM images of monolayer/bilayer MoS$_2$ with increasing normal forces. Figure 38(b) shows the corresponding friction signals vs. normal forces. The AFM tip’s normal force applied to the sample surface can controllably modulate the magnitude of puckering deformations, which facilitates corresponding frictional and thermal response detection. Corresponding to the FFM images, the in-situ dynamic TR images of the monolayer/bilayer MoS$_2$ sample are shown in figure 38(c). The lighter contrast stands for a larger TR. Under normal forces, the dynamic TRs of the monolayer/bilayer MoS$_2$ sample is enhanced. The corresponding relative dynamic/static TR vs. normal force (relative to the substrate with no puckering effect) are drawn in figure 38(d). Compared with the static TRs, the dynamic
Figure 37. (a) Heater-sample thermal contact resistance (R_X) image acquired at $T_S = 220$ K for different areas of interest. (b) Schematic of the heat transport from the tip to the substrate through 2D structures. [200] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Optical and AFM images of a MoS$_2$–WS$_2$ heterostructure. (d) Raman map of the MoS$_2$–WS$_2$ heterostructure device. (e), (f) Temperature rise profiles in this device at different dissipated electrical power at $V_G = +60$ V. The heating predominantly occurs on the WS$_2$–metal vertical junction, and the lateral interface does not contribute to heat localization. The green arrows in (f) show the hot-spot position. [201] John Wiley & Sons. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 38. (a) Series of friction images of the MoS$_2$ with increasing normal force. (b) The curves of the friction signals of the sample and substrate vs. normal forces. Data are extracted from (a). Inset is the enlarged view of the dashed rectangle. The 0L, 1L, and 2L represent the substrate, monolayer film, and bilayer film, respectively. (c) Series of in-situ TR images of the MoS$_2$ with increasing normal force, corresponding to (a). (d) Relative dynamic/static thermal resistances vs. normal forces. Data are extracted from (c). Resistance values are the difference values of the sample and substrate. (e) Schematic illustration of static and dynamic TR principle. (f) Thermal resistance image of WS$_2$. The crystallographic orientations of armchair (AC) and zigzag (ZZ) based on the primitive growth edges of WS$_2$ are marked. (g) Polar diagram of the relative dynamic thermal resistance vs. crystallographic orientation of 1L–WS$_2$. The relative dynamic TR values are extracted from SThM images by changing the scan angles. Reproduced from [53] with permission from the Royal Society of Chemistry.
TRs of 1L- and 2L-MoS₂ rapidly increases with increasing normal forces. The results suggest that puckering deformation modulated by normal forces contribute to increasing dynamic TRs.

The principle of static and dynamic TR is illustrated in figure 38(e). After contact, the thermal contact area increases with increasing normal force owing to the elastic compression, which reduces the static and dynamic TR. However, as the dynamic contact scan can induce puckering deformation, a slight interface gap exists between the top layer and substrate, which impacts longitudinal heat transfer with additional dynamic interfacial TR. Therefore, dynamic TR is higher than static TR (with no puckering deformation) under the same normal force.

Furthermore, the crystallographic orientation-dependent anisotropy of the puckering effect in the atomically thin 2D crystal was demonstrated using SThM (figures 38(f) and (g)). The puckering deformation causes in-plane stress redistribution, thus breaking the original in-plane stiffness. These findings are significant to optimize the nanoscale tribological/thermal design and dynamic mechanical-thermal management of 2D materials in nanoelectronics.

3. Conclusion and perspectives

This review highlighted the principles of functional AFM methods and their applications in 2D materials. AFM-based physical characterization methods require the researchers to have clear natural science concepts and electronic circuit knowledge. In TSM, the enhanced sensitivity to elastic deformation properties of crystals can reveal the crystallographic orientation of samples. The nonlinear sample information can be obtained using multifrequency force microscopy. KPFM can detect the sample work function, whereas EFM can explore the carrier concentration, electrostatic gradient, and permittivity of the sample surface and subsurface can be obtained (semi-) quantitatively when combined with FEA analysis.

The AFM modes require further development and improvement in the applied research on the surface/interface of 2D materials. For example, (i) the single physical property measurement method has limitations because the electrical properties are coupled with other properties. Therefore, a method that can explore the mechanical-thermal-electro-optical coupling is needed. (ii) The functional AFM technology under vacuum conditions needs further improvement. Obtaining quantitative data is difficult as AFM detection in the atmospheric environment is inevitably affected by the water molecules. In addition, the functional AFM technology involves complex signal transmission of microwave or light waves, which results in unsatisfactory manufacturing costs and stability of functional AFM technology under vacuum conditions. (iii) Improving the application of 2D materials and optimizing device performance requires understanding the properties under work conditions. A method that can measure physical properties under work conditions is crucial for future research. With the development of AFM technology and 2D material preparation, we expect increased achievements in this field.

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61911540074, 61674045, 11604063, 11622437, 11974422, and 12172047), the Ministry of Science and Technology (MOST) of China (Nos. 2016YFA0200700 and 2018YFE0202700). Z H C acknowledges the support of the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (No. XDB30000000). Z H C and W J received Fundamental Research Funds for the Central Universities and Research Funds of Renmin University of China (Nos. 21XNLG27 and 19XNQ025).

ORCID ID

Zhihai Cheng https://orcid.org/0000-0003-4938-4490

References

[1] Voigtländer B 2019 Atomic Force Microscopy (Berlin: Springer) (https://doi.org/10.1007/978-3-030-13654-3)
[2] Bhushan B 2010 Handbook of Nanotechnology (Berlin: Springer) (https://doi.org/10.1007/978-3-642-02525-9)
[3] Binnig G, Rohrer H, Gerber C and Weibel E 1982 Surface studies by scanning tunneling microscopy Phys. Rev. Lett. 49 57–61
[4] Binnig G, Rohrer H, Gerbe C and Weibel E 1983 7 × 7 reconstruction on Si (111) resolved in real space Phys. Rev. Lett. 50 120–3
[5] Belianinov A, Kalinin S V and Jesse S 2015 Complete information acquisition in dynamic force microscopy Nat. Commun. 6 6650
[6] Jang S K, Youn J, Song Y J and Lee S 2016 Synthesis and characterization of hexagonal boron nitride as a gate dielectric Sci. Rep. 6 30449
[7] Zheng Z, Xu R, Ye S, Hussain S, Ji W, Cheng P, Li Y, Sugawara Y and Cheng Z 2017 High harmonic exploring on different materials in dynamic atomic force microscopy Sci. China Technol. Sci. 61 446–52
[8] Benstetter G, Biberger R and Liu D P 2009 A review of advanced scanning probe microscope analysis of functional films and semiconductor devices Thin Solid Films 517 5100–5
[9] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez-Herrero J and Baro A M 2007 WSXM: a software for scanning probe microscopy and a tool for nanotechnology Rev. Sci. Instrum. 78 013705
[10] Binnig G, Quate C F and Gerber C 1986 Atomic force microscope Phys. Rev. Lett. 56 930
[11] Albrecht T R, Grüttner P, Horne D and Rugar D 1991 Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity J. Appl. Phys. 69 668–73
[12] Bettac A, Koeble J, Winkler K, Uder B, Maier M and Feltz A 2009 QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K Nanotechnology 20 264009
[13] Groning O et al 2018 Engineering of robust topological quantum phases in graphene nanoribbons Nature Mater. Sciences 560 209–13
[14] Ruffieux P et al 2016 On-surface synthesis of graphene nanoribbons with zigzag edge topology Nature Nanotechnology 531 489–93
[15] Zhang J, Chen P, Yuan B, Ji W, Cheng Z and Qiu X 2013 Real-space identification of intermolecular bonding with atomic force microscopy Science 342 611–4
[16] Yacooet A and Koenders L 2008 Aspects of scanning force microscope probes and their effects on dimensional measurement J. Phys. D: Appl. Phys. 41 103001
[17] Hussain S et al 2020 Strain-induced hierarchical ripples in MoS 2 layers investigated by atomic force microscopy Appl. Phys. Lett. 117 153102
[18] Xu K et al 2019 Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals Appl. Phys. Lett. 115 063101
[19] Hussain S et al 2021 Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy Front. Phys. 16 535064
[20] García R and Herruzo E T 2012 The emergence of multifrequency force microscopy Nan. Nanotechnol. 7 217–26
[21] Yablon D G 2013 Scanning Probe Microscopy in Industrial Applications (New York: Wiley)
[22] Shaw J E, Perumal A, Bradley D D C, Stavrinou P N and Anthopoulos T D 2016 Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy J. Appl. Phys. 119 195501
[23] Houze F, Meyer R, Schneegans O and Boyer L 1996 Imaging the local electrical properties of metal surfaces by atomic force microscopy with conducting probes Appl. Phys. Lett. 69 1975–7
[24] Yang J, Gordichuk P, Zelhiou L, Lu J, Herrmann A and Ye J 2017 Role of defects in tuning the electronic properties of monolayer WS 2 grown by chemical vapor deposition Phys. Status Solidi 11 1700302
[25] Zhang L and Mitani Y 2006 Structural and electrical evolution of gate dielectric breakdown observed by conductive atomic force microscopy Appl. Phys. Lett. 88 032906
[26] Mi S, Guo J, Wang H, Xia T and Cheng Z 2022 Scanning kelvin probe microscopy study of magnetic topological insulators MnBi 2 Te 4 (Bi 2 Te 3) x Chin. J. Vac. Sci. Technol. 35 585–92
[27] Filleter T, Emstev K V, Seyller T and Bennewitz R 2008 Local work function measurements of epitaxial graphene Appl. Phys. Lett. 93 133117
[28] Wen H F, Li Y J, Arima E, Naitoh Y, Sugawara Y, Xu R and Cheng Z H 2017 Investigation of tunneling current and local contact potential difference on the TiO 2(110) surface by AFM/KPFM at 78 K Nanotechnology 28 105704
[29] Shen Y, Zhang X Q, Wang Y, Zhou X J, Hu J, Guo S W and Zhang Y 2013 Charge transfer between reduced graphene oxide sheets on insulating substrates Appl. Phys. Lett. 103 053107
[30] Xu R et al 2018 Nanoscale charge transfer and diffusion at the MoS 2 /SiO 2 interface by atomic force microscopy: contact injection versus triboelectrification Nanotechnology 29 035501
[31] Wen H F, Adachi Y, Zhang Q Z, Miyazaki M, Sugawara Y and Li Y J 2019 Identification of atomic defects and adsorbate on rutile TiO 2 (110)-(1×1) surface by atomic force microscopy J. Phys. Chem. C 123 25756–60
[32] Wen H F, Sugawara Y and Li Y J 2020 Multi-channel exploration of O adatom on TiO 2(110) surface by scanning probe microscopy Nanomaterials 10 1506
[33] Wen H F, Sugawara Y and Li Y J 2021 Exploring the nature of hydrogen of rutile TiO 2(110) at 78 K Surf. Interfaces 26 101339
[34] Yan L, Punckt C, Aksay I A, Mertin W and Bacher G 2011 Local voltage drop in a single functionalized graphene sheet characterized by Kelvin probe force microscopy Nano Lett. 11 3543–9
[35] Lucchesi M, Privitera G, Labardi M, Prevosto D, Capaccioli S and Pingue P 2009 Electrostatic force microscopy and potentiometry of realistic nanostructured systems J. Appl. Phys. 105 054301
[36] Datta S S, Strachan D R, Mele E J and Johnson A T C 2009 Surface potentials and layer charge distributions in few-layer graphene films Nano Lett. 9 7–11
[37] Oliveira C K, Matos M J S, Mazzoni M S C, Chacham H and Neves B R A 2012 Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect? Nanotechnology 23 175703
[38] Collins L, Kilpatrick J I, Weber S A, Tselv A, Vlassiouk I V, Ivanov N N, Jesse S, Kalinin S V and Rodriguez B J 2013 Open loop Kelvin probe force microscopy with single and multi-frequency excitation Nanotechnology 24 475702
[39] Li C, Ding X D and Lin G C 2013 Study on multi-frequency method for electrostatic force microscopy in air Integr. Ferroelectr. 145 59–67
[40] Jiang Y, Qi Q, Wang R, Zhang J, Xue Q K, Wang C, Jiang C and Qiu X H 2011 Direct observation and measurement of mobile charge carriers in a monolayer organic semiconductor on a dielectric substrate ACS Nano 5 6195–201
[41] Wu D et al 2015 Thickness-dependent dielectric constant of few-layer InSe nanoflakes Nano Lett. 15 8136–40
[42] Feng Y et al 2015 Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H 2 atmosphere ACS Appl. Mater. Interfaces 7 22587
[43] Liu Y et al 2015 Thermal oxidation of WS 2 nanosheets adhered on SiO 2/Si substrates Nanotechnology 15 4979–84
[44] Kundhikanjana W, Lai K, Wang H, Dai H, Kelly M A and Shen Z-X 2009 Hierarchical of electronic properties of chemically derived and pristine graphene probed by microwave imaging Nano Lett. 9 3762–5
[45] Berweger S, Blanchard P T, Brubaker M D, Coakley K J, Sanford N A, Wallis T M, Bertness K A and Kabos P 2016 Near-field control and imaging of free charge carrier variations in GaN nanowires Appl. Phys. Lett. 108 073101
[46] Brincioetti E et al 2015 Probing resistivity and doping concentration of semiconductors at the nanoscale using scanning microscope microscopy Nano Lett. 7 14715–22
[47] Lu A-Y et al 2017 Janus monolayers of transition metal dichalcogenides Nan. Nanotechnol. 12 744–9
[48] Kim S K, Bhatia R, Kim Y-H, Seol D, Kim J H, Kim H, Seung W, Kim Y, Lee Y H and Kim S-W 2016 Directional dependent piezoelectric effect in CVD grown monolayer MoS 2 for flexible piezoelectric nanogenerators Nano Energy 22 483–9
[49] Park M, Hong S, Kim J, Hong J and No K 2011 Nanoscale ferroelectric switching behavior at charged domain boundaries studied by angle-resolved piezoelectric force microscopy Appl. Phys. Lett. 99 142909
[50] Kim S, Gopalan V and Grubermaan A 2002 Coercive fields in ferroelectrics: a case study in lithium niobate and lithium tantalate Appl. Phys. Lett. 80 2740–2
[51] Hartmann U 1999 Magnetic force microscopy Annu. Rev. Mater. Sci. 29 53–87
[52] Sidles J A, Garbini J L, Brueland K J, Rugar D, Züger O, Hoen S and Yannoni C S 1995 Magnetic resonance force microscopy Rev. Mod. Phys. 67 249–65

[53] Xu K, Ye S, Lei L, Meng L, Hussain S, Zheng Z, Zeng H, Ji W, Xu R and Cheng Z 2018 Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals Nano Lett. 10 13548–54

[54] Maleinskiy P, Hong S, Grinolds M, Hausmann B, Lukin M D, Walsworth R L, Loncar M and Yacoby A 2012 A robust scanning diamond sensor for nanoscope imaging with single nitrogen-vacancy centres Nat. Nanotechnol. 7 320–4

[55] Tietene J-P, Rondin L, Spinicelli P, Chipaux M, Debuisscher T, Roch J-F and Jacques V 2012 Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging New. J. Phys. 14 103033

[56] Huxter W S, Palm M L, Davis M L, Welter P, Lambert C-H, Trassin M and Degen C L 2022 Scanning gradiometry with a single spin quantum magnetometer Nat. Commun. 13 3761

[57] Grinolds M S, Hong S, Malteinskiy P, Luan L, Lukin M D, Walsworth R L and Yacoby A 2013 Nanoscope magnetic imaging of a single electron spin under ambient conditions Nat. Phys. 9 215–9

[58] Song T et al 2021 Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets Science 374 1140–4

[59] Ariyaratne A, Bluvstein D, Myers B A and Jayich A C B 2018 Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond Nat. Commun. 9 2406

[60] Bian K, Zheng W, Zeng X, Chen X, Stohr R, Denisenko A, Yang S, Wrachitt J and Jiang Y 2021 Nanoscope electric-field imaging based on a quantum sensor and its charge-state control under ambient condition Nat. Commun. 12 2457

[61] Appel P, Ganzhorn M, Neu E and Malteinskiy P 2015 Nanoscope microwave imaging with a single electron spin in diamond New J. Phys. 17 112001

[62] Kacsko G, Maurer P C, Yao N Y, Kubo M, NoH H J, Lo P K, Park H and Lukin M D 2013 Nanometre-scale thermometry in a living cell Nature 500 54–58

[63] Dazzi A and Prater C B 2017 AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging Chem. Rev. 117 5146–73

[64] Bazylewski P, Ezugwu S and Fanchini G 2017 A review of three-dimensional scanning near-field optical microscopy (3D-SNOM) and its applications in nanoscale light management Appl. Sci. 7 973

[65] Huth F, Goyadinov A, Amarie S, Nuansing W, Keilman F and Hillenbrand R 2012 Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution Nano Lett. 12 3973

[66] Choi J S et al 2011 Friction anisotropy-driven domain imaging on exfoliated monolayer graphene Science 333 607–10

[67] McNeill C 2011 Imaging the domain structure of organic semiconductor films J. Polym. Sci. 49 909–19

[68] Kalihari V, Tadmor E B, Haugstad G and Frisbie C D 2008 Grain orientation mapping of polycrystalline organic semiconductor films by transverse shear microscopy Adv. Mater. 20 4033

[69] Martinez-Martín D, Herruzo E T, Dietz C, Gomez-Herrero J and Garcia R 2011 Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy Phys. Rev. Lett. 106 198101

[70] Vasudevan R K, Okatan M B, Rajapaksa I, Kim Y, Marcelin D, Trollier-mcinstry S, Jesse S, Valanoo N and Kalinlini S V 2013 Higher order harmonic detection for exploring nonlinear interactions with nanoscope resolution Sci. Rep. 3 2677

[71] Tetard L, Passian A and Thundat T 2010 New modes for subsurface atomic force microscopy through nanomechanical coupling Nat. Nanotechnol. 5 105

[72] Zheng Z, Zheng Z and Xu R 2016 Multi-frequency atomic force microscopy Sci. Sin. Technol. 46 437–50

[73] Zheng Z-Y, Xu R, Xu K-Q, Ye S-L, Pang F, Lei L, Hussain S, Liu X-M, Ji W and Cheng Z-H 2019 Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy Front. Phys. 15 23601

[74] Nievengerth A P, Adams J D, Odermatt P D and Funtner G E 2014 High-frequency multimodal atomic force microscopy Beltstein J, Nanotechnol. 5 2459

[75] Dietz C, Schulze M, Voss A, Riesch C and Stark R W 2015 Bimodal frequency-modulated atomic force microscopy with small cantilevers Nano Lett. 7 1849–56

[76] Zheng Z-Y et al 2020 Local probe of the interlayer coupling strength of few-layers SnSe by contact-resonance atomic force microscopy Front. Phys. 15 63505

[77] Rabe U and Arnold W 1994 Acoustic microscopy by atomic force microscopy Appl. Phys. Lett. 64 1493–5

[78] Yamanaka K and Nakano S 1996 Ultrasonic atomic force microscope with overtone excitation of cantilever Jpn. J. Appl. Phys. 35 3787–92

[79] Yamanaka K, Kobari K and Tsuji T 2008 Evaluation of functional materials and devices using atomic force microscopy with ultrasonic measurements Jpn. J. Appl. Phys. 47 6070–6

[80] Li Q, Jesse S, Tselev A, Collins L, Yu P, Kravchenko I, Kalinlini S V and Balke N 2015 Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy ACS Nano 9 1848–57

[81] Yablon D G, Gannepalia A, Proksch R, Killgor C, Hurley D C, Grabowski J and Tsou A H 2012 Quantitative viscoelastic mapping of polyolefin blends with contact resonance atomic force microscopy Macromolecules 45 4363–70

[82] Gannepalia A, Yablon D G, Tsou A H and Proksch R 2011 Mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM Nanotechnology 22 355705

[83] Nonnenmacher M, Obolje M P and Wickrasmasinghe H K 1991 Kelvin probe force microscopy Appl. Phys. Lett. 58 2921–3

[84] Jacobs H O, Leuchtmann P, Homan O J and Stemmer A 1998 Resolution and contrast in Kelvin probe force microscopy J. Appl. Phys. 84 1168–73

[85] Hsu J W P, Ng H M, Sercen A M and Chui S N G 2002 Scanning Kelvin force microscopy imaging of surface potential variations near threading dislocations in GaN Appl. Phys. Lett. 81 3579–81

[86] Ren J, Liess H-D, Mackel R and Baumgartner H 1995 Scanning Kelvin microscope: a new method for surface investigations Fresenius J. Anal. Chem. 353 303–6

[87] Collins L, Jesse S, Balke N, Rodriguez B J, Kalinlini S and Li Q 2015 Band excitation Kelvin probe force microscopy utilizing photothermal excitation Appl. Phys. Lett. 106 104102

[88] Guo S L, Kalinlini S V and Jesse S 2012 Open-loop band excitation Kelvin probe force microscopy Nanotechnology 23 125704

[89] Melitz W, Shen J, Kummel A C and Lee S 2011 Kelvin probe force microscopy and its application Surf. Sci. Rep. 66 1–27

[90] Strelcov E, Arbile C, Guo H X, Hoskins B D, Yulayaev A, Vlasiov I V, Zhitenев N B, Tselev A and Kolmakov A
2020 Nanoscale mapping of the double layer potential at the graphene-electrolyte interface Nano Lett. 20 1336–44

[91] Hussain S, Xu K, Ye S, Lei L, Liu X, Xu R, Xie L and Cheng Z H 2019 Local electrical characterization of two-dimensional materials with functional atomic force microscopy Front. Phys. 14 33401

[92] Xu R et al 2019 Interfacial water intercalation-induced metal-insulator transition in NbS2/BN heterostructure Nanotechnology 30 205702

[93] De Wolf P, Stephenson R, Trenker T, Clarysse T, Hantschel T and Vandervorst W 2000 Status and review of two-dimensional carrier and dopant profiling using scanning probe microscopy J. Vac. Sci. Technol. B 18 361–8

[94] Girard P 2001 Electrostatic force microscopy: principles and some applications to semiconductors Nanotechnology 12 485–90

[95] Zhang K, Marzari N and Zhang Q 2013 Covalently functionalized metallic single-walled carbon nanotubes studied using electrostatic force microscopy and dielectric force microscopy J. Phys. Chem. C 117 24570–8

[96] Kimura K, Kobayashi K, Yamada H and Matsushige K 2003 Two-dimensional dopant profiling by scanning capacitance force microscopy Appl. Surf. Sci. 210 93–98

[97] Kobayashi K, Yamada H and Matsushige K 2004 Method and apparatus for measuring values of physical property US Patent 6823724B1

[98] Ding X D, An J, Xu J B, Li C and Zeng R Y 2009 Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions Appl. Phys. Lett. 94 223109

[99] Fumagalli L, Esteban-Ferrer D, Cuervo A, Carrascosa J L and Gomila G 2012 Label-free identification of single dielectric nanoparticles and viruses with ultra weak polarization forces Nat. Mater. 11 808–16

[100] Li N, Shang Y, Xu R, Jiang Q, Liu J, Wang L, Cheng Z and Ding B 2019 Precise organization of metal and metal oxide nanoclusters into arbitrary patterns on DNA origami J. Am. Chem. Soc. 141 17968–72

[101] Collins L, Kilpatrick J I, Vlassiouk I V, Tselev A, Weber S A L, Jesse S, Kalinin S V and Rodriguez B J 2014 Dual harmonic Kelvin probe force microscopy at the graphene-liquid interface Appl. Phys. Lett. 104 133103

[102] Martin Y, Abraham D W and Wickramasinghe H K 1988 High-resolution capacitance measurement and potentiometry by force microscopy Appl. Phys. Lett. 52 1103–5

[103] Lai K, Ji M B, Leindecker N, Kelly M A and Shen Z X 2007 Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes Rev. Sci. Instrum. 78 063702

[104] Lai K, Kundhikanjana W, Kelly M and Shen Z X 2008 Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope Rev. Sci. Instrum. 79 063703

[105] Yang Y, Lai K, Tang Q, Kundhikanjana W, Kelly M A, Zhang K, Shen Z-X and Li X 2012 Batch-fabricated cantilever probes with electrical shielding for nanoscale dielectric and conductivity imaging J. Micromech. Microeng. 22 115040

[106] Lai K, Kundhikanjana W, Kelly M A and Shen Z X 2008 Calibration of shielded microwave probes using bulk dielectrics Appl. Phys. Lett. 93 123105

[107] Serrier E, MacLaren S, Xie X, Rotkin S V, Rogers J A and Wilson W L 2016 Scanning probe microwave reflectivity of aligned single-walled carbon nanotubes: imaging of electronic structure and quantum behavior at the nanoscale ACS Nano 10 360–8

[108] Lai K, Peng H, Kundhikanjana W, Schoen D T, Xie C, Meister S, Cui Y, Kelly M A and Shen Z-X 2009 Nanoscale electronic inhomogeneity in In2Se3 nanoribbons revealed by microwave impedance microscopy Nano Lett. 9 1265–9

[109] Lai K, Nakamura M, Kundhikanjana W, Kawasaki M, Tokura Y, Kelly M A and Shen Z-X 2010 Mesoscopic percolating resistance network in a strained manganite thin film Science 329 190–3

[110] Kundhikanjana W, Lai K, Kelly M A and Shen Z-X 2011 Cryogenic microwave imaging of metal-insulator transition in doped silicon Rev. Sci. Instrum. 82 033705

[111] Lai K, Kundhikanjana W, Kelly M A, Shen Z-X, Shabani J and Shayegan M 2011 Imaging of coulomb-driven quantum Hall edge states Phys. Rev. Lett. 107 176809

[112] Ma E Y, Bryant B, Tokunaga Y, Aeppli G, Tokura Y and Shen Z-X 2010 Charge-order domain walls with enhanced conductivity in a layered manganite Nat. Commun. 6 7595

[113] Ma E Y, Cui Y-T, Ueda K, Tang S, Chen K, Tamura N, Wu P M, Fujioka J, Tokura Y and Shen-Z-X 2015 Mobile metallic domain walls in an all-in-all-out magnetic insulator Science 350 538

[114] Poulat P et al 2015 Carrier density modulation in a germanium heterostructure by ferroelectric switching Nat. Commun. 6 6067

[115] Lei L et al 2018 Local characterization of mobile charge carriers by two electrical AFM modes: multi-harmonic EFM vs. sMMJ Phys. Commun. 2 025013

[116] Tsai Y et al 2017 Tailoring semiconductor lateral multifunctions for giant photocconductivity enhancement Adv. Mater. 29 1703680

[117] Wu D et al 2016 Uncovering edge states and electrical inhomogeneity in MoS2 field-effect transistors Proc. Natl Acad. Sci. USA 113 8583–8

[118] Xu R, Zheng Z Y, Ji W and Cheng Z H 2015 Advance scanning microwave microscopy Prog. Phys. 35 241–56

[119] Barber M E, Ma E Y and Shen Z-X 2022 Microwave impedance microscopy and its application to quantum materials Nat. Rev. Phys. 4 61–74

[120] Williams C C and Wickramasinghe H K 1986 Scanning thermal profiler Appl. Phys. Lett. 49 1587–9

[121] Majumdar A 1999 Scanning thermal microscopy Annu. Rev. Mater. Res. 29 505–85

[122] Lai J, Chandrachood M, Majumdar A and Carrejo J P 1995 Thermal detection of device failure by atomic-force microscopy IEEE Electron Device Lett. 16 312–5

[123] Fiege G B M, Feige V, Phang J C H, Maywald M, Gorlich S and Gomila G 2012 Label-free identification of single graphene-liquid interface J. Phys. Chem. B 116 29133–8

[124] Hantschel T and Vandervorst W 2000 Status and review of scanning probe microscopy Mater. Res. Bull. 35 1073–85

[125] J. Phys. Commun. 7 349–54

[126] Adv. Mater. 29 1703680

[127] Proc. Natl Acad. Sci. USA 113 8583–8

[128] Phys. Lett. 84 4890–2

[129] Appl. Phys. Lett. 71 1604–6

[130] J. Phys. Chem. B 116 29133–8
wrinkle patterns in two-dimensional materials *Nano Lett.* **20** 8420–5

[170] Quereda J, San-Jose P, Parente V, Vaquero-Garzon L, Molina-Mendoza A J, Agraït N, Rubio-Bollinger G, Guinea F, Roldan R and Castellanos-Gomez A 2016 Strong modulation of optical properties in black phosphorus through strain-engineered rippling *Nano Lett.* **16** 2931

[171] Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S and Kim J 2021 Switchable, tunable, and directable exciton tunneling in periodically wrinkled WS$_2$ *Nano Lett.* **21** 43–50

[172] Nolte A J, Young Chung J, Davis C S and Stafford C M 2017 Wrinkling-to-delamination transition in thin polymer films on compliant substrates *Soft Matter* **13** 7980–7

[173] Naumis G G, Barraza-Lopez S, Oliva-Leyva M and Terrones H 2017 Electronic and optical properties of strained graphene and other strained 2D materials: a review *Rep. Prog. Phys.* **80** 1–62

[174] Lee C, Wei X, Kysar J W and Hone J 2008 Measurement of the elastic properties and intrinsic strength of monolayer graphene *Science* **321** 385–8

[175] Bertolazzi S, Brivio J and Kis A 2011 Stretching and breaking of ultrathin MoS$_2$ *ACS Nano* **5** 9703–9

[176] Tran Khac B-C, DelRio F W and Chung K-H 2018 Interfacial strength and surface damage characteristics of atomically thin h-BN, MoS$_2$, and graphene *ACS Appl. Mater. Interfaces* **10** 9164–77

[177] Ye S et al 2019 Nanocratch on single-layer MoS$_2$ crystal by atomic force microscopy: semi-circular to periodical zigzag cracks *Mater. Res. Express* **6** 025048

[178] Lu C-P, Li G H, Mao J H, Wang L-M and Andrei E Y 2014 Bandgap, mid-gap states, and gating effects in MoS$_2$ *Nano Lett.* **14** 4628–33

[179] Najmaei S, Lei S D, Burke R A, Nichols B M, George A, Ajayan P M, Franklin A D, Lou J and Dubey M 2016 Enabling ultrahigh-speed optodetection through control of interface properties in molybdenum disulfide atomic layers *Sci. Rep.* **6** 39465

[180] Tran M D, Kim J-H, Kim H, Doan M H, Duong D L and Lee Y H 2018 Role of hole trap sites in MoS$_2$ for inconsistency in optical and electrical phenomena *ACS Appl. Mater. Interfaces* **10** 10580–6

[181] Liu J, Goswami A, Jiang K, Khan F, Kim S, McGee R, Li Z, Hu Z, Lee J and Thundat T 2018 Direct-current triboelectricity generation by a sliding Schottky nanocontact on MoS$_2$ multilayers *Nat. Nanotechnol.* **13** 1112–6

[182] Kim S, Kim T Y, Lee K H, Kim T-H, Cimini F A, Kim S K, Hinchet R, Kim S-W and Falconi C 2017 Reversible ghost floating gates by tunnelling triboelectricity for two-dimensional electronics *Nat. Commun.* **8** 15891

[183] Burgo T A D L, Rezende C A, Bertazzo S, Galembeck A and Galemebeck F 2011 Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation *J. Electrostat.* **69** 401–9

[184] Galemebeck F, Burgo T A L, Balestrin L B S, Gouveia R F, Silva C A and Galemebeck A 2014 Friction, tribochemistry and triboelectricity: recent progress and perspectives *RSC Adv.* **4** 64280–98

[185] Ding S, Xiao X, Liu S, Wu J, Huang Z, Qi X and Li J 2019 Detection of interfacial charge transfer in MoS$_2$/PbI$_2$ heterostructures via Kelvin probe force microscopy *Appl. Phys. A* **125** 287

[186] Bediako D K, Rezaee M, Yoo H, Larson D T, Zhao S Y F, Taniguchi T, Watanabe K, Brower-Thomast T L, Kaxiras E and Kim P 2018 Heterointerface effects in the electrointercalation of van der Waals heterostructures *Nature* **558** 425–9

[187] Mertens S F, Hemmi A, Muff S, Groning O, De Feyter S, Osterwalder J and Greber T 2016 Switching stiction and adhesion of a liquid on a solid *Nature* **534** 676

[188] Ducke J, Riss A, Paz A P, Seufert K, Schwarz M, Garnica M, Rubio A and Auwarter W 2018 Layered insulator/molecule/metal heterostructures with molecular functionality through porphyrin intercalation *ACS Nano* **12** 2677–84

[189] Al Balushi Z Y et al 2016 Two-dimensional gallium nitride realized via graphene encapsulation *Nat. Mater.* **15** 1166–71

[190] Lee H, Ko J-H, Song H C, Salmeron M, Kim Y-H and Park J Y 2018 Isotope- and thickness-dependent friction of water layers intercalated between graphene and mica *Tribol. Lett.* **66** 36

[191] Hong Y, Wang S, Li Q, Song X, Wang Z, Zhang X, Besenbacher F and Dong M 2019 Interfacial ictaleike water local doping of graphene *Nanoscale* **11** 19334–40

[192] Velasco-Velez J-J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D and Salmeron M 2014 The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy *Science* **346** 831–4

[193] Dolkamp E, Bampoulis P, Siekman M H, Kooij E S, Lee H, Ko J-H, Song H C, Salmeron M, Kim Y-H and Zandvlie H J W 2019 Tuning the friction of graphene on mica by alcohol intercalation *Langmuir* **35** 4886–92

[194] Zhang Y, Zhu W, Hui F, Lanza M, Borca-Tasciuc T and Muñoz Rojo M 2019 A review on principles and applications of scanning thermal microscopy (SThM) *Adv. Funct. Mater.* **30** 1900892

[195] Hwang G and Kwon O 2016 Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy *Nanoscale* **8** 5280–90

[196] Menges F, Riel H, Stemmer A, Dimitrakopoulos C and Gotsmann B 2013 Thermal transport into graphene through nanoscopic contacts *Phys. Rev. Lett.* **111** 205901

[197] Yalon E et al 2017 Temperature-dependent thermal boundary conductance of monolayer MoS$_2$ by raman thermometry *ACS Appl. Mater. Interfaces* **9** 43013–20

[198] Yasaei P et al 2017 Interfacial thermal transport in monolayer MoS$_2$ — and graphene-based devices *Adv. Mater. Interfaces* **4** 1700334

[199] Chen Z, Jang W, Bao W, Lau C N and Dames C 2009 Thermal contact resistance between graphene and silicon dioxide *Appl. Phys. Lett.* **95** 161910

[200] Evangel C, Spiere J, Sangtarrash S, Molina-Mendoza A J, Mucientes M, Mueller T, Lambert C, Sadeghi H and Kolosov O 2019 Nanoscale thermal transport in 2D nanostructures from cryogenic to room temperature *Adv. Electron. Mater.* **5** 1900331

[201] Yasaei P, Murthy A A, Xu Y, Dos Reis R, Shekhatov G S and Dravid V P 2019 Spatial mapping of hot-spots at lateral heterogeneities in monolayer transition metal dichalcogenides *Adv. Mater.* **31** 1808244