DNA Polymorphisms and Biocontrol of *Bacillus* Antagonistic to Citrus Bacterial Canker with Indication of the Interference of Phyllosphere Biofilms

Tzu-Pi Huang1,*, Dean Der-Syh Tzeng1, Amy C. L. Wong2, Chun-Han Chen1, Kuan-Min Lu1, Ya-Huei Lee1, Wen-Di Huang1, Bing-Fang Hwang3, Kuo-Ching Tzeng1

1 Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan, 2 Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 3 Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan

Abstract

Citrus bacterial canker caused by *Xanthomonas axonopodis* pv. *citri* is a devastating disease resulting in significant crop losses in various citrus cultivars worldwide. A biocontrol agent has not been recommended for this disease. To explore the potential of bacilli native to Taiwan to control this disease, *Bacillus* species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from plant potting mixes, organic compost and the rhizosphere soil. Seven strains TKS1-1, OF3-16, SP4-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development. The genetic identity based on 16S rDNA sequences indicated that all seven native strains were close relatives of the *B. subtilis* group and appeared to be discrete from the *B. cereus* group. DNA polymorphisms in strains WG6-14, SP4-17, TKS1-1, and WP8-12, as revealed by repetitive sequence-based PCR with the BOXA1R primers were similar to each other, but different from those of the respective *Bacillus* type strains. However, molecular typing of the strains using either tDNA-internal spacer regions or 16S–23S intergenic transcribed spacer regions was unable to differentiate the strains at the species level. Strains TKS1-1 and WG6-14 attenuated symptom development of citrus bacterial canker, which was found to be correlated with a reduction in colonization and biofilm formation by *X. axonopodis* pv. *citri* on leaf surfaces. The application of a *Bacillus* strain TKS1-1 endospore formulation to the leaf surfaces of citrus reduced the incidence of citrus bacterial canker and could prevent development of the disease.

Introduction

Bacillus species are natural inhabitants of the phyllosphere [1] and rhizosphere [2]. They form endospores and various strains are capable of producing enzymes, antibiotics, proteins, vitamins or secondary metabolites that may act individually or induce defense mechanisms in animals and plants [3]. Thus, *Bacillus* species are important candidates for microbial control agents for plant diseases and pests [2,4,5,6], protectants for seeds [7], and probiotics [8]. *Bacillus* species have been shown to suppress plant diseases caused by diverse microorganisms including *Phytophthora meduginis* [9], *Pythium tontulism* [10], *Botrytis cinerea* [11], *Rhizoctoma solani* [12], *Sclerotinia sclerotiorum* [12], *Colletotrichum gloeosporoides* [2], *Colletotrichum orbiculare* [13], *Fusarium spp.* [12,14], *Phytophthora soje*, *Cronartium quercuum* f. sp. *fusiforme* [15], *Xanthomonas oryzae* [16,17], *Pseudomonas syringae* [13,18], and *Ralstonia solanacearum* [19]. Moreover, known *Bacillus* species have been used for the development of biocontrol agents including, but are not limited to, *B. subtilis* [2,11,14,17,18,19], *B. amyloliquefaciens* [12,20], *B. cereus* [9,10], *B. megaterium* [6], *B. pumilus* [13,15,17], and *B. thuringiensis* [5]. However, a few *Bacillus* species are known to produce enterotoxins that may cause human illness [21]. The development of promising biocontrol products, such as several *Bacillus cereus* complex strains that have been registered by the United States Environmental Protection Agency for use as microbial pesticides has been terminated because of concerns over infections among immunocompromised humans [22]. Thus, identification and selection of ‘generally recognized as safe’ (GRAS) organisms prior to the intensive development process required for biocontrol agents is recommended.

Bacillus species are genotypically diverse organisms. The comparison of small-subunit ribosomal RNA sequences reveals the presence of five genetically distinct groups in the genus [23]. Those *Bacillus* strains that are known to have the potential to protect plants from pathogens or pests or stimulate plant growth are attributed to two groups, the *B. cereus* group and the *B. subtilis* group. The *B. cereus* group includes *B. anthracis*, *B. cereus*, *B. thuringiensis*, *B. mycoides*, *B. pseudomycoides*, and *B. weihenstephanensis*; the *B. subtilis* group includes *B. subtilis*, *B. pumilus*, *B. atrophaeus*, *B. licheniformis* and *B. amyloliquefaciens* [23]. Many *Bacillus* species are generally considered harmless, and *B. subtilis* has even been granted GRAS status by the United States Food and Drug Administration (US FDA). However, *B. anthracis* can cause anthrax

Citation: Huang T-P, Tzeng DD-S, Wong ACL, Chen C-H, Lu K-M, et al. (2012) DNA Polymorphisms and Biocontrol of *Bacillus* Antagonistic to Citrus Bacterial Canker with Indication of the Interference of Phyllosphere Biofilms. PLoS ONE 7(7): e42124. doi:10.1371/journal.pone.0042124

Editor: Adam Dirks, Loyola University Medical Center, United States of America

Received: March 8, 2012; **Accepted:** July 27, 2012; **Published:** July 2, 2012

Copyright: © 2012 Huang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by the National Science Council (NSC97-2313-B-005-039-MY3 and NSC99-2321-B-005-014-MY3) to TPH, the Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan (99AS-9.2.2-BQ-B2(13) and 100AS-9.2.2-BQ-B2(1)) to TPH and DDST. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tphuang@nchu.edu.tw
published nomenclature is AG4, *Rhizoctonia solani* against various phytopathogens including and *X. axonopodis* exhibited significantly higher antagonistic activity against used in this study. According to a dual culture assay using stainless isolated from natto, a Japanese fermented soybean product), were mixes, organic compost and soil samples collected from the field investigated.

Microbial communities attached to a surface are referred to as biofilms [33]. The synergistic or antagonistic interactions between biofilm organisms and their respective hosts can contribute to the successful establishment of symbiotic or pathogenic relationships [34]. Consequently, interfering with bacterial biofilm formation has been suggested as a novel strategy for disease control [35,36,37]. It has been shown that biofilm formation was necessary for epiphytic fitness and canker development by the phytopathogen *X. axonopodis* pv. *citri* [38]. For the beneficial antagonist, root colonization plays a key role in the interaction of *B. subtilis* with Arabidopsis and the pathogen *Pseudomonas syringae* [18]. Our previous study indicated that antagonistic *B. amyloliquefaciens* WG6-14 was a potential biopesticide for controlling citrus bacterial canker (unpublished data), and an endospore formulation of this antagonist has been officially recommended for controlling citrus bacterial canker (unpublished data), and an endospore formulation of the type strain ATCC 7061 (data not shown). These results suggest that the isolated *Bacillus* strains native to Taiwan that showed substantial antagonistic activity against *X. axonopodis* pv. *citri* are close relatives of the *B. subtilis* group including *B. subtilis*, *B. pumilus*, *B. licheniformis* and *B. amyloliquefaciens*, and that they are distant from strains of the *B. cereus* group including *B. cereus*, *B. mycoides* and *B. thuringiensis*.

Results

Bacillus strains exhibited antagonistic activity against the pathogen of citrus bacterial canker

Bacillus strains with a broad spectrum of antagonistic activity against various phytopathogens including *Pythium aphanidermatum*, *Rhizoctonia solani* AG4, *Xanthomonas axonopodis* pv. *vesicatoria* XVT12 and *X. axonopodis* pv. *citri* XW19 were isolated from plant potting mixes, organic compost and soil samples collected from the field (data not shown). Seven of the 326 strains tested (HSP1, TKS1-1, OF3-16, SP4-17, WG6-14, TBL7-7, and WP8-12) that showed superior antagonistic activity, along with one other strain (NT-2 isolated from natto, a Japanese fermented soybean product), were used in this study. According to a dual culture assay using stainless steel rings, strains TKS1-1, WG6-14, WP8-12 and SP4-17 exhibited significantly higher antagonistic activity against *X. axonopodis* pv. *citri* XW19 than strains HSP-1, NT-2, TBL7-7, and OF3-16 (Fig. 1 A). The antagonistic activity of strain OF3-16 on paper discs was similar to that of strains TKS1-1, WG6-14, WP8-12, and SP4-17 (Fig. 1 B).

Sequence and phylogenetic analyses of 16S rRNA genes in native *Bacillus* species

To identify the *Bacillus* strains, each strain was subjected to physiological and biochemical characterization using the methods described in Bergey’s Manual of Systematic Bacteriology [39] and was identified using the Biolog system (Biolog Inc., CA, USA). The physiological and biochemical tests included Gram staining, endospore staining, starch hydrolysis, Voges-Proskauer test, the oxidasere-fermentation test, gelatin hydrolysis, citrate utilization, nitrate reduction, arginine dihydrolase activity, growth in 7% sodium chloride and growth at 50°C. Strains HPS-1, OF3-16, SP4-17, TKS1-1, WP8-12, and WG6-14 all showed positive reactions for these tests were classified as *B. licheniformis* (data not shown). Strain TBL7-7 did not hydrolyze starch or reduce nitrate and was classified as *B. pumilus* (data not shown). The results of the Biolog analysis indicated that strain HSP-1 was *B. licheniformis*, strain SP4-17 was *B. megaterium*, strains TKS1-1 and WP8-12 were *B. subtilis*, strain TBL7-7 was *B. pumilus* and strain WG6-14 was *B. amyloliquefaciens*; strain OF3-16 could not be classified using the Biolog system (Table 1). Thus, the species attributes for most of the strains were designated based on Biolog analysis except for strain OF3-16, which was based on the physiological and biochemical characteristics described in Bergey’s Manual. For phylogenetic analysis, partial 16S rRNA gene sequences were PCR amplified from eight native *Bacillus* strains: WG6-14, TKS1-1, SP4-17, WP8-12, OF3-16, HSP-1, NT-2, and TBL7-7. Except for strain TBL7-7, which was classified in the same clade as the *B. pumilus* type strain (ATCC 7061), the remaining seven strains formed a cluster with the type strains of *B. amyloliquefaciens* (ATCC 23842), *B. subtilis* (DSM 10), *B. subtilis* (ATCC 6633) and *B. licheniformis* (ATCC 14350) (Fig. 2). The sequence identity of the 16S rRNA sequences from strains WG6-14, TKS1-1, SP4-17, WP8-12, and OF3-16 was 99%; that from HSP-1 and NT-2 was 100%; and that from TBL7-7 was 97% with *B. subtilis* DSM 10 (data not shown); and that from TBL7-7 was 99% with *B. pumilus* type strain ATCC 7061 (data not shown). These results suggest that the isolated *Bacillus* strains native to Taiwan that showed substantial antagonistic activity against *X. axonopodis* pv. *citri* are close relatives of the *B. subtilis* group including *B. subtilis*, *B. pumilus*, *B. licheniformis* and *B. amyloliquefaciens*, and that they are distant from strains of the *B. cereus* group including *B. cereus*, *B. mycoides* and *B. thuringiensis*.

ITS-PCR, tDNA-PCR, and rep-PCR fingerprinting and cluster analysis of *Bacillus* species

ITS-PCR, tDNA-PCR and rep-PCR fingerprinting have been used to differentiate isolates among a wide range of bacterial and fungal genera and species as well as to study genomic diversity [24,40,41,42]. To evaluate the DNA polymorphisms of *Bacillus* species native to Taiwan and their respective type strains, ITS-PCR using the primers L1 and G1 to amplify the 16S–23S intergenic spacer region, tDNA intergenic spacer length analysis and repetitive element sequence-based PCR in addition, the efficacy of reducing disease incidence by application of *Bacillus* species and the interaction between the antagonist and the pathogen in the phyllosphere of citrus were investigated.
WG6-14, and TKS1-1, which showed the greatest antagonistic activity, were in a cluster with the *B. amyloliquefaciens* type strain BCRC11601 (Fig. 3). However, the reference strains *B. subtilis* subsp. *subtilis* BCRC10255, *B. licheniformis* BCRC11702, *B. subtilis* subsp. *spizizenii* BCRC80045, *B. pumilus* BCRC11706, and *B. cereus* UW85; the strains NT-A1, NT-B1 and NT-2 isolated from Japanese natto and the native strains HSP1, OF3-16, and TLB7-7 all showed the same ITS-PCR fingerprint patterns. These results suggest that ITS-PCR fingerprint analysis was not able to differentiate *Bacillus* isolates at the species level and discriminate *B. subtilis* from *B. cereus*.

Using tDNA-PCR fingerprinting, the tested strains showed nine pattern types (Fig. 4). Strains WG6-14, WP8-12, SP4-17 and TKS1-1 were homologous and showed the same DNA banding pattern as *B. amyloliquefaciens* BCRC11601; strains NT-2, NT-B1, NT-A1 and HSP-1 were homologous and showed the same DNA banding pattern as the *B. subtilis* type strains BCRC80045 and BCRC10255. Strains TLB7-7 and OF3-16 were designated as *B. pumilus* and *B. licheniformis*, respectively, according to Biolog analysis, 16S rRNA sequence analysis and physiological and biochemical characterization. These strains showed tDNA-PCR fingerprints that were distinct from their respective type strains.

Three sets of primers, ERIC2, (GTG)5 and BOXA1R [40], were used for rep-PCR fingerprint analysis. Based on BOXA1R-PCR fingerprint analysis, ten banding patterns were observed (Fig. 5). Strain HSP-1 showed the same pattern as *B. subtilis* subsp. *subtilis* BCRC10255. Strains NT-B1, NT-2 and NT-A1 isolated from natto formed a cluster that was different from that of their close relatives, strains *B. subtilis* subsp. *subtilis* BCRC10255 and *B. subtilis* subsp. *spizizenii* BCRC80045. Strains SP4-17, TKS1-1, WG6-14 and WP8-12 were homologous and showed a unique banding pattern. Negative results were observed with BOXA1R-PCR.
Table 1. Bacterial strains and plasmids used in this study.

Strains/Plasmids	Relevant characteristicsa	Source or referenceb
Bacillus		
ATCC 23842	*B. amyloliquefaciens* type strain, 16S rRNA sequence accession no. EU689157	NCBI
BCRC 11601	*B. amyloliquefaciens* type strain ATCC 23350, DSM7	BCRC
WG6-14	*B. amyloliquefaciens* from rhizosphere soil, Wufong, Taiwan	This study
ATCC 14579	*B. cereus* type strain, 16S rRNA sequence accession no. AF290547	NCBI
ATCC 11778	*B. cereus*, 16S rRNA sequence accession no. AF290546	NCBI
UW85	*B. cereus* isolated from alfalfa plant root	[9]
BCRC 11702	*B. licheniformis* type strain ATCC14580, 16S rRNA sequence accession no. NC_006270	BCRC, NCBI
HSP-1	*B. licheniformis* from plant potting mix, Pulii, Taiwan	This study
OF3-16	*B. licheniformis* from organic compost, Changhwa, Taiwan	This study
BCRC 10608	*B. megaterium* type strain DSM 32, 16S rRNA sequence accession no. X60629	BCRC, NCBI
DSM 319	*B. megaterium*, 16S rRNA sequence accession no. NC_014103	NCBI
SP4-17	*B. megaterium* from rhizosphere soil, Taichung, Taiwan	This study
ATCC 6462	*B. mycoides*, 16S rRNA sequence accession no. EF210295	NCBI
BCRC 11706	*B. pumilus* type strain ATCC 7061, 16S rRNA sequence accession no. AY876289	BCRC, NCBI
TBL7-7	*B. pumilus* from rhizosphere soil, Tali, Taiwan	This study
BCRC 10255	*B. subtilis* subs. subtilis type strain ATCC6051, DSM 10, 16S rRNA sequence accession no. AJ276531	BCRC, NCBI
BCRC 80045	*B. subtilis* subs. spizizenii* type strain ATCC 6633, 16S rRNA sequence accession no. AB018486	BCRC, NCBI
TKS1-1	*B. subtilis* from plant potting mix, Pulii, Taiwan	This study
NTA-1	*B. subtilis* from natto	This study
NT-2	*B. subtilis* from natto	This study
NTB-1	*B. subtilis* from natto	This study
WPB-12	*B. subtilis* from rhizosphere soil, Wuri, Taiwan	This study
BT407Cry+	*B. thuringiensis* lacking crystalline endotoxin	[54]
Xanthomonas axonopodis pv. citri		
XW19	Wild type	[55]
TPH2	Gm*, XW19 harboring pBBR1MC55	This study
Plasmid		
pBBR1MC55	Gm*, broad host range cloning vector	[56]
pGTKan	Gm*, pPROBE-GTKan containing a 131-base pair nptII promoter fragment from Tn5 and fused to gfp	[57]

Species attributes of native *Bacillus* strains were identified based on Biolog analysis except for strain OF3-16, which was identified based on physiological and biochemical characteristics described in the Bergey’s Manual of Systematic Bacteriology [39].

PCR fingerprinting for strains *B. cereus* UW85 and *B. pumilus* BCRC11706. Both ERIC2-PCR and (GTG)3-PCR amplification were negative for most of the tested strains (data not shown). Of the three primer sets, BOXA1R-PCR showed unique patterns that could differentiate strains native to Taiwan from the reference strains. Moreover, strains SP4-17, TKS1-1, WG6-14 and WP8-12, which showed superior antagonistic activity against *X. axonopodis* pv. citri (Fig. 1), had the same BOXA1R-PCR fingerprint, which was distinct from those of all reference strains.

Attenuated symptom development of citrus bacterial canker by treatment with *B. subtilis* and *B. amyloliquefaciens*

Our previous results indicated that the application of *B. amyloliquefaciens* WG6-14 endospores one day prior to inoculation with citrus canker bacteria reduced disease incidence from 97.7% to 3.03% (unpublished data). To assess the effect of *B. subtilis* TKS1-1 and *B. amyloliquefaciens* WG6-14 on the disease severity of citrus bacterial canker, *Bacillus* suspensions (overnight cultures diluted to an OD620 of 0.3, ca. 10^8 CFU/ml) were sprayed on the leaves of Mexican lime 1 day prior to inoculation with *X. axonopodis* pv. citri TPH2 (overnight cultures diluted to an OD620 of 0.3, ca. 10^8 CFU/ml), and the number of cankers per cm^2 on each leaf with and without *Bacillus* treatment was determined. Less severe canker symptoms or no symptom were observed on the *Bacillus*-treated leaves compared to the water control (Fig. 6 A). The number of cankers per cm^2 for the untreated control was 6.4±2.5, compared to 0.3±0.3 and 0.6±0.5 for the *B. subtilis* TKS1-1 and *B. amyloliquefaciens* WG6-14 treatments, respectively (Fig. 6 B). The number of cankers per cm^2 developing following with the application of *Bacillus* suspensions was significantly reduced by up to 6-fold (p<0.05).
The effect of *Bacillus* on colonization and biofilm formation by citrus canker bacteria on leaf surfaces

According to Rigano *et al.* [38] and our previous findings (unpublished data), biofilm formation is important for epiphytic survival and the development of canker disease. Colonization of the leaf surfaces of Mexican lime by *X. axonopodis pv. citri* strain TPH2 harboring a green fluorescent protein expressing plasmid, pGTKan (Table 1), was examined by confocal laser scanning microscopy. Individual cells attached to the surfaces of leaves submerged in bacterial suspension (overnight cultures diluted to an OD_{620} of 0.05 in trypticase soy broth) were observed 1 day post-inoculation, and microcolony and biofilm development were observed after 2 days (data not shown). Biofilms consisting of multicellular aggregates similar to those observed by Rigano *et al.* [38] were observed 1 day post-inoculation with *X. axonopodis pv. citri* strain TPH2 harboring pGTKan on the leaf surfaces of Mexican lime grown in the greenhouse (Fig. 7 A and E). Bacterial aggregates could be observed surrounding and inside the stomata (Fig. 7 A). Treatment with *B. subtilis* strain TKS1-1 or *B. amyloliquefaciens* strain WG6-14 resulted in fewer *X. axonopodis pv. citri* cells attaching to the leaf surface compared to no treatment, and the cells were dispersed (Fig. 7 B and F, respectively). *B. subtilis* strain TKS1-1 and *B. amyloliquefaciens* strain WG6-14 cells were stained with acridine orange and showed red fluorescence (Fig. 7 C and G, respectively). The combined green and red fluorescent images indicated that small aggregates of *Bacillus* cells (red) were scattered around the *X. axonopodis pv. citri* cells (green) (Fig. 7 D and H). These results suggest that by spraying antagonistic *Bacillus* 1 day prior to inoculation with the pathogen, colonization and
Biofilm formation by citrus canker bacteria on leaf surfaces could be reduced.

Bacillus endospore formulations are effective in reducing the development of canker symptoms and the incidence of citrus bacterial canker disease

B. subtilis TKS1-1 endospore formulations were applied to the leaves of navel orange trees grown in the greenhouse to assess disease control efficacy for citrus bacterial canker. The results indicated that the spray-application of an endospore formulation diluted 100-fold (final concentration ca. 10⁹ spores/ml) was effective in reducing symptom development and disease incidence of citrus bacterial canker compared to no treatment (Fig. 8). The efficacy of treatments applied 24 h prior to pathogen inoculation and treatments applied post-inoculation on reducing disease incidence was similar, and was not significantly affected by the frequency of application.

Discussion

No known biocontrol agents have been developed for the disease management of citrus bacterial canker. To explore the potential of bacilli native to Taiwan to control this disease, *Bacillus* species with a broad spectrum of antagonistic activity against various phytopathogens were isolated from potting mixes, organic compost and rhizosphere soils. By dual culture assay, seven strains TKS1-1, OF3-16, SP1-17, HSP1, WG6-14, TLB7-7, and WP8-12 showing superior antagonistic activity were chosen for biopesticide development and for further investigation. Using established and patented methods, we mass-produced strain TKS1-1 endospores, and showed them to be effective in reducing the severity and incidence of citrus bacterial canker. In addition, an endospore formulation of strain WG6-14 reduced bacterial black spot of mango and bacterial leaf blight of rice (unpublished data). Endospore formulations of *Bacillus* strain WG6-14 have been commercialized and registered as biocontrol agents for rice.
bakanae disease in Taiwan. As part of the safety requirements for biopesticide development, GRAS organisms are preferred as biocontrol agents. Our results, based on physiological and biochemical characteristics, 16S rDNA sequences and tDNA-PCR analyses, indicate that all seven native strains with antagonistic activity against _X. axonopodis pv. citri_ and that demonstrated high efficacy in suppressing citrus bacterial canker disease were in the same clades as the type strains of the _B. subtilis_ group that are listed as GRAS bacteria by the US FDA and that are distinct from strains of the _B. cereus_ group [23].

ITS-PCR, tDNA-PCR and rep-PCR analyses have been successfully used to investigate the species and intraspecific variability of _Bacillus_ species [24,26,41,43]. Of these molecular typing techniques, all of which were used in this study, rep-PCR analysis using the BOXA1R primer displayed the best resolving power for discriminating between native strains exhibiting superior antagonistic activity against _X. axonopodis pv. citri_ and the reference strains. ITS-PCR analysis was not sufficient to distinguish strains of the _B. subtilis_ group from _B. cereus_ strain UW85 [23]. This result suggests that ITS-PCR analysis was not adequate for discriminating between _Bacillus_ strains at the species level as was demonstrated by Freitas et al. [24]. In contrast, Wunschel et al. showed that the banding patterns generated by PCR analysis of the rRNA spacer region could distinguish _B. subtilis_ from species in the _B. cereus_ group but could not differentiate between species within the _B. cereus_ group [25]. On the basis of cell wall constituents and DNA-DNA relatedness data, _B. subtilis_ strains were reclassified into two subspecies: _B. subtilis subsp. subtilis_ and _B. subtilis subsp. spizizenii_ [44]. Our data indicate that these two subspecies were grouped into one cluster by tDNA-PCR analysis and two clusters by BOXA1R-PCR analysis. In addition, DNA polymorphisms in strains WG6-14, SP6-14, TKS1-1, and WP8-12, as revealed by rep-PCR using the BOXA1R primer, were similar to each other, but different from their respective type strains. These four strains were associated with the greatest antagonistic activity. Our results suggest that the DNA fingerprint generated with BOXA1R-PCR could be valuable not only for patenting or commercializing these _Bacillus_ strains, but also for creating markers for the selection of antagonists against _X. axonopodis pv. citri_.

Epiphytic and root colonization are considered as the process of biofilm formation [45]. Bacterial biofilm formation has been shown to be necessary for epiphytic fitness, pathogenesis, antagonism and symbiosis with the host organism [34]. Thus, microbial infection control strategies could be developed based on interfering with biofilm formation [35,36,37]. Rigano et al. [38], as well as our unpublished data, demonstrated that biofilm formation by _X. axonopodis pv. citri_ on the leaf surfaces of citrus was associated with the occurrence of citrus canker symptoms. Here, we
investigated the efficacy of using antagonistic bacilli to interfere with this process. Our data indicate that biofilm development by *X. axonopodis pv. citri* on the leaf surfaces of Mexican lime was reduced following spray inoculation of *Bacillus* strains WG6-14 and TKS1-1 1 day prior to pathogen inoculation when compared to no treatment. Application of these two *Bacillus* strains to citrus leaves resulted in reduced symptom development, suggesting that these antagonistic bacilli are potential biocontrol agents for citrus bacterial canker disease. Taken together, these results suggested that control may be associated with the interference of colonization and biofilm formation by *X. axonopodis pv. citri* in the phyllosphere, which is the site of initial colonization and infection. The biocontrol efficacy of citrus canker disease by *Bacillus* strain TKS1-1 was further demonstrated by spray application of endospore formulations in the greenhouse. Rhizosphere-colonizing *B. subtilis* 6051 forms a stable biofilm and secretes surfactin, which work together to protect Arabidopsis plants from infection by pathogenic *P. syringae* [18]. We did not exclude the possibility that *Bacillus* strains TKS1-1 and WG6-14 also may secrete surfactin [18], bacteriocins such as xanthobacitin [46], or other cyclic lipopeptides [47] because both strains inhibited the growth of *X. axonopodis pv. citri* XW19. In addition, cyclic lipopeptides are reportedly involved in biofilm formation by *Bacillus* species [18,45,48]. Alternatively, some *Bacillus* species including *B. subtilis*, *B. amyloliquefaciens*, *B. pumilus*, *B. mycoides*, *B. pasteurii*, *B. thuringiensis*, and *B. cereus* apparently induce plant resistance [44]. Determinants for eliciting plant resistance responses have been demonstrated and include surfactins and fengycins [49] and volatile organic compounds such as 2,3-butanediol [50]. Our preliminary results also indicate that *B. amyloliquefaciens* strain WG6-14 produces

Figure 7. Colonization by *X. axonopodis pv. citri* strain TPH2 and *B. subtilis* TKS1-1 and *B. amyloliquefaciens* WG6-14 on leaf surfaces of Mexican lime observed by confocal laser scanning microscopy. Leaf surfaces were spray inoculated with (A, E) *X. axonopodis pv. citri* strain TPH2 harboring pGTKan, and (B, C) *B. subtilis* strain TKS1-1, or (F, G) *B. amyloliquefaciens* strain WG6-14 1 day prior to inoculation with *X. axonopodis pv. citri* strain TPH2 expressing green fluorescent protein. Red, acridine orange stained cells. (D) and (H), merged images of (B, G) and (F, G), respectively. Arrow, stomata. Scale bar, 10 μm. doi:10.1371/journal.pone.0042124.g007

Figure 8. The effect of application time and frequency of *B. subtilis* strain TKS1-1 on symptom development and disease incidence of citrus bacterial canker on navel orange grown in the greenhouse. *B. subtilis* strain TKS1-1 endospore formulation (T, 10⁹ CFU/ml) and *X. axonopodis pv. citri* XW19 (B, 10⁶ CFU/ml) were used. Treatment T-B-T/1WK, strain TKS1-1 endospores were applied 24 h prior to inoculation with *X. axonopodis pv. citri* XW19, and then weekly post-pathogen inoculation for 4 weeks; treatment T-B-D/1WK, strain TKS1-1 endospores were applied 24 h prior to *X. axonopodis pv. citri* XW19 inoculation; treatment D-B-T/1WK, strain XW19 was inoculated, then strain TKS1-1 endospores were sprayed every week post-pathogen inoculation for 4 weeks; treatment D-B-D/1WK, only strain XW19 was inoculated. Without *Bacillus* treatment, Milli-Q water (D) was sprayed on the leaf surface. (A) Symptoms on upper (left) and lower (right) leaf surfaces after different treatments. Scale bars, 1 cm. (B) Disease incidence was rated 4 weeks post-inoculation. Bars indicate standard deviations. Columns that are top-labeled with different letters are significantly different (p<0.05) according to one-way ANOVA and Tukey’s HSD test. doi:10.1371/journal.pone.0042124.g008
butanediol derivatives and that these volatile metabolites induce the expression of plant disease resistance genes such as those encoding phenylalanine ammonia lyase and pathogenesis related protein PR-1 in the leaves of rice plants (unpublished data). As another example, the control of *Cercospora* leaf spot on sugar beet by a phyllosphere-colonizing *B. mycoides* was attributed to its ability to induce systemic resistance [31].

In conclusion, our results demonstrate that *Bacillus* strains native to Taiwan, particularly strains WG6-14 and TKS1-1, can attenuate the symptoms and decrease the incidence of citrus bacterial canker disease. Because members of the *B. subtilis* group are GRAS bacteria, it would be safe to use these strains in the environment and maintain sustainability of the agricultural ecosystem. Biofilm formation as well as epiphytic colonization and survival are important for canker development in *X. axonopodis* pv. *citri*. The biocontrol efficacy of applying antagonistic bacilli to citrus leaves may be associated with their ability to interfere with colonization and biofilm formation by *X. axonopodis* pv. *citri*. Additionally, information obtained from molecular typing using the BOXA1R-PCR assay would provide DNA fingerprints valuable for patenting or commercializing these *Bacillus* strains.

Materials and Methods

Strains and growth conditions

The *Bacillus* and *Xanthomonas* strains and plasmids used in this study are listed in Table 1. *Bacillus* strains were routinely cultured on Difco™ potato dextrose agar (PDA; Becton Dickinson, Sparks, MD, USA) at 30°C. *Xanthomonas* strains were cultured on Difco™ Nutrient agar (NA; Becton Dickinson) or in trypticase soy broth (TSB; Becton Dickinson) at 27°C unless otherwise stated. When required, gentamicin (Gm; Sigma) was added to the medium at a concentration of 25 μg/mL. For the isolation of *Bacillus* strains, 1 gram of soil from the root rhizospheres of different plants, organic compost, potting mixes or natto was suspended in 5 ml of distilled water, heated at 80°C for 10 min, spread-plated on PDA and then incubated at 30°C for 1 day. *Bacillus*-like colonies were selected and tested for antagonistic activity against various phytopathogens including *Pseudomonas* *aphthovarum*, *Rhizoctonia solani AG4*, *Xanthomonas axonopodis* pv. *vesicatoria XVT12*, and *X. axonopodis* pv. *citri XW19*. Seven (HSP1, TK81-1, OF-16, SP4-17, WG6-14, TBL7-7 and WP8-12) of the 326 tested strains showed higher antagonistic activity than the remaining strains and were used for further study. To identify the *Bacillus* species, strains were subjected to physiological and biochemical characterization according to the methods described in Bergey’s Manual [39]; they were identified using the Biolog system (Biolog Inc., CA, USA). For pathogenicity assays, *X. axonopodis* pv. *citri* strain TPH2 was generated by electroporating pBBR1MCS5 into *X. axonopodis* pv. *citri* strain XW19. For confocal laser scanning microscopy, pGTKan was electroporated into *X. axonopodis* pv. *citri* strain TPH2. Electroporation (12.5 kV/cm, 25 μF, 400 Ω) was performed using standard procedures [52].

Antagonistic activity of *Bacillus* strains against *X. axonopodis* pv. *citri*

Antagonistic activity was determined using a dual culture assay. Twenty microliters of *X. axonopodis* pv. *citri* strain XW19 (optical density at 620 nm, OD620, of 0.3) grown in TSB at 27°C for 2 days and resuspended in sterile water was spread on an soybean yeast brown sugar agar plate (pH 7.5) (SYB agar containing 0.75% (w/v) soybean powder (Mayushan Foods Co., Ltd., Taiwan), 0.5% (w/v) yeast powder (Shin-Star Ltd., Taiwan), 2% (w/v) brown sugar (Cing-Liang Trading Co., Taiwan), 0.24% (w/v) K2HPO4 (Sigma), 0.03% (w/v) MgSO4·7H2O (Sigma), and 1.5% Bacto™ agar (Becton Dickinson), which was formulated to facilitate endospore formation). Twenty microliters of a *Bacillus* suspension (OD620 = 0.3) grown on an SYB agar plate at 30°C overnight and resuspended in sterile water was spotted inside a stainless steel ring (8 mm diameter) or on a paper disc (8 mm diameter) (Advanc, Tokyo Roshi Kaisha, Ltd., Japan) and placed on an SYB agar plate inoculated with *X. axonopodis* pv. *citri* strain XW19. The plates were incubated at 27°C, and the inhibition diameter of *Xanthomonas* growth was measured daily for 5 days.

Sequence and phylogenetic analysis of *Bacillus* 16S rRNA

Genomic DNA was extracted from the *Bacillus* isolates using the Wizard® genomic DNA purification kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The 16S rRNA genes were amplified by PCR using the primers 8F and 907R according to the conditions described by Freitas et al. [24], except that 2× GoTag Master Mix (Promega) was used. The PCR products were then sequenced at the Automated DNA Sequencing Service Laboratory, National Chung Chung-Hsing University, Taiwan.

The 16S rRNA sequences were aligned using the Pileup program, SeqWeb version 3.12 (GGC Wisconsin Package, Accelrys Inc., San Diego, CA, USA). A distance matrix was generated by the Kimura 2-parameter method with the DnaDist program, Phylib version 3.6 (University of Washington, Seattle WA, USA). Phylogenetic trees were constructed using the neighbor-joining method (Neighbor program; Phylip version 3.6). The Seqboot program (Phylip version 3.6) was used to generate 1000 bootstrapped data sets. All sequences were compared with their respective type strains using the BLASTN program in the GenBank nucleotide database (http://www.ncbi.nlm.nih.gov/BLAST).

DNA fingerprint and cluster analysis of *Bacillus* species

The genomic diversity of native and *Bacillus* type strains was assayed using molecular typing of the 16S-23S intergenic transcribed spacer region (ITS-PCR), tDNA-intergenic spacer polymorphism (tDNA-PCR) analysis, and repetitive element sequence-based PCR (rep-PCR) with the primers BOXA1R, ERIC, and (GTG)5 as described by Freitas et al. [24]. The primer sequences and amplification conditions were as previously described, except that 2× GoTag Master Mix (Promega) was used.

For cluster analysis, the similarity matrix was generated based on Jaccard’s coefficient and was used to build a tree with the unweighted pair group arithmetic mean method (UPGMA) available as part of the UVP Vision Works LS 6.5 software (UVP, Cambridge, UK).

Pathogenicity assay

X. axonopodis pv. *citri* strain TPH2 was cultured in TSB supplemented with 50 μg/ml gentamicin at 27°C, 100 rpm for 2 days; *B. subtilis* TKS1-1, and *B. amyloliquefaciens* WG6-14 were cultured in TSB at 27°C, 100 rpm for 1 day. The culture suspensions were adjusted to an OD620 of 0.3, and then sprayed on the leaves of Mexican lime in the greenhouse; the *Bacillus* suspensions were sprayed to the point of runoff 1 day prior to inoculation with *X. axonopodis* pv. *citri* strain TPH2. Milli-Q water was used as a control. The development of symptoms was recorded weekly for 1 month. The disease severity of citrus bacterial canker disease with and without *Bacillus* treatment was expressed as the number of cankers per cm².
Confocal laser scanning microscopy

Bacillus and Xanthomonas strains were cultured and inoculated onto leaves under conditions similar to those used for pathogenicity assays, except that X. axonopodis pv. citri strain TPH2 harboring pGTKan was used. Cells colonized on leaf surfaces were stained with acridine orange (0.025% in 0.026 M citric acid buffer [pH 6.6]; Sigma) and then examined with an Olympus Fluoview FV1000 confocal microscope (Olympus Optical Co. Ltd., Tokyo, Japan) equipped with an argon laser. Excitation and emission wavelengths were 510 nm and 488 nm, respectively.

Efficacy of Bacillus endospore formulations on the reduction of the disease incidence of citrus bacterial canker

Bacillus endospore formulations were produced using established and patented methods [53] with a 750 liter liquid fermentor. Briefly, a single colony of B. subtilis TKS1-1 was inoculated into SYB broth and incubated at 30°C, 125 rpm overnight; this culture was used as seed inoculum for a large-scale preparation of endospores using liquid fermentation. Stepwise scaled-up fermentation was conducted in SYB in a series of fermentors at 30°C for 5 days with agitation at greater than 150 rpm and aeration rate greater than 1 air volume/culture volume/min. To assess its effect on the incidence of citrus bacterial canker disease, the endospore formulation was diluted 100-fold to achieve a final concentration of 10⁷ endospores/ml and applied 24 h pre- or post-inoculation with X. axonopodis pv. citri XW19. The leaves of navel orange trees were wounded with 20 pinpoint needle pricks per leaf. An X. axonopodis pv. citri XW19 suspension (OD₆₀₀ of 0.3) was diluted 10-fold, then sprayed to the point of runoff on the wounded leaves in the greenhouse. Four treatments were conducted to evaluate the effect of the application time and frequency of B. subtilis strain TKS1-1 application on symptom development and disease incidence of citrus bacterial canker: (i) treatment T-B-T/1WK: the strain TKS1-1 endospore formulation was applied 24 h prior to X. axonopodis pv. citri XW19 inoculation, and then every week post-pathogen inoculation for 4 weeks; (ii) treatment T-B-D/1WK: the endospore formulation was applied 24 h prior to X. axonopodis pv. citri XW19 inoculation, followed by weekly spraying of Milli-Q water for 4 weeks; (iii) treatment D-B-T/1WK: the leaves were sprayed with Milli-Q water 24 h prior to strain XW19 inoculation, and then the strain TKS1-1 endospore formulation was sprayed every week post-pathogen inoculation for 4 weeks; and (iv) treatment D-B-D/1WK: Milli-Q water was applied 24 h prior to XW19 inoculation and then every week post-inoculation for 4 weeks. The leaves treated with water were used as the control.

Disease incidence (DI) at 4 weeks post-inoculation was calculated using the formula: DI(%)=(number of pinpoints with canker symptoms)/20×100.

Statistical analysis

All experiments were performed at least three times. Data represent the means and standard deviations from at least four replicates of a representative experiment. The significant difference among treatments was analyzed by one-way ANOVA and Tukey’s honestly significant difference (HSD) test using SPSS 15.0 software (SPSS Inc., Chicago, IL, USA).

Nucleotide sequence accession numbers

The 16S rRNA sequences of the native Bacillus strains HSP-1, OF3-16, SP4-17, TLB7-7, TKS1-1, NT-2, WG6-14, and WP8-12 isolated in this study were deposited in the GenBank database (accession numbers HQ874610 to HQ874617).

Acknowledgments

We thank Drs. A. S. Hwang and T. H. Hung for generous gifts of Mexican lime plants, and Y. T. Ko for performing the biocontrol experiments. We appreciate “The Wisconsin Package” (GGG/SeqWeb, http://bioinfo.nhri.org.tw) services provided by the National Health Research Institutes (NHIRI), Taiwan.

Author Contributions

Conceived and designed the experiments: TPH. Performed the experiments: TPH CHC KML YHL. Analyzed the data: TPH BFH. Contributed reagents/materials/analysis tools: TPH DDST ACLW WDH KCT. Wrote the paper: TPH. Revised the paper: TPH ACLW.

References

1. Arias RS, Sagardoy MA, Van Vuuree JW (1999) Spatio-temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J Basic Microbiol 39: 283-292.
2. Mohammedipour M, Mousivand M, Salehi Jouzani G, Abbasalizadeh S (2009) Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides. Can J Microbiol 55: 395-404.
3. Priest FG (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, editor. Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. Washington, D. C., USA: ASM Press pp. 3-16.
4. Handelman J, Stahl EY (1996) Biocontrol of soliborne plant pathogens. Plant Cell 8: 1855-1869.
5. Wei J-Z, Hale K, Carter I, Plater E, Wong C, et al. (2005) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci USA 100: 2760-2765.
6. Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium against Meloidogyne incognita on rice. Crop Prot 26: 971-977.
7. Bradley CA (2007) Effect of fungicide seed treatments on stand establishment, seedling disease, and yield of soybean in North Dakota. Plant Dis 92: 120-125.
8. Dai LH, Hong HA, Barbosa TM, Henriques AO, Cunning SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70: 2161-2171.
9. Sito-Suh LA, Lethbridge BJ, Raffel SJ, He H, Clardy J, et al. (1994) Biological activities of two fungicidal antibiotics produced by Bacillus cereus UW55. Appl Environ Microbiol 60: 2023-2030.
10. Shang H, Chen J, Handelman J, Goodman RM (1999) Behavior of Pythium irregulare zoospores during their interaction with tobacco roots and Bacillus cereus. Curr Microbiol 38: 199-204.
11. Touré Y, Oguna M, Jacques P, Guiao A, Thomart P (2004) Role of lipopeptides produced by Bacillus subtilis GAI in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96: 1151-1160.
12. Souto CG, Correa OS, Monteitha MS, Kerber NL, Puchelas NL, et al. (2004) Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as turin-like compounds. J Appl Microbiol 97: 1247-1256.
13. Wei G, Klose PK, Tzou S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology 86: 221-224.
14. Cavaglieri L, Orlando J, Rodriguez MI, Chuke S, Etchevery M (2005) Biocontrol of Bacillus subtilis against Fusarium sultidii in vitro and at the maize root level. Res Microbiol 156: 749-754.
15. Enebak SA, Carey WA (2000) Evidence for induced systemic protection to fusarium root in loblolly pine by plant growth-promoting rhizobacteria. Plant Dis 84: 306-308.
16. Lin D, Qu LJ, Gu H, Chen Z (2001) A 3-1kb genomic fragment of Bacillus subtilis encodes the protein inhibiting growth of Xanthomonas oryzae pv. oryzae. J Appl Microbiol 91: 1044-1050.
17. Chithrashree, Udayashankar AC, Chandra Nayaka S, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59: 114-122.
18. Bai HP, Fall R, Vincas JM (2000) Biocontrol of Bacillus subtilis against infection of Arabidopsis root by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134: 307–319.
19. Lemessa F, Zeller W (2007) Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biocontrol 42: 336-344.
Bacillus as Antagonists against Citrus Canker

20. Kim P, Chung K-C (2004) Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens. MET9008. FEMS Microbiol Lett 234: 177–183.
21. McKillip JL (2000) Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie Van Leeuwenhoek 77: 393–399.
22. Govan JRW, Vandamme P (1998) Agricultural and medical microbiology: a time for bridging gaps. Microbiology 144: 2375–2373.
23. Ash C, Farrar JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13: 202–206.
24. Freitas D, Reis M, Lima-Bittencourt C, Costa P, Assis P, et al. (2008) Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res Notes 1: 92.
25. Wunschel D, Fox KF, Black GE, Fox A (1995) Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and rRNA spacer region PCR. Sys Appl Microbiol 17: 625–635.
26. Marten P, Smalla K, Berg G (2000) Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. J Appl Microbiol 89: 463.
27. Stall RE, Civerolo EL (1991) Research relating to the recent outbreak of citrus canker in Florida. Annu Rev Phytopathol 29: 399–420.
28. Wu WC, Tzeng KC, Lee MC, Kuo HF (1989) Occurrence and distribution of citrus canker in Taiwan. Plant Prot Bull 31: 139–150.
29. Schaad NW, Postnikova E, Lacy GH, Sechler A, Agarkova I, et al. (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1935) Dye 1978 forms A, B/C/D, and E. X. subsp. subsp. citri (ex Hasse) sp. nov. nom. comb. nov., X. fuscans subsp. avansetii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citruscola (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex Smith 1901) Dye 1978 as X. subsp. subsp. citri nom. rev. comb. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1915) dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and “var. fuscans” of X. campestris pv. phasolii (ex Smith, 1867) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Sys Appl Microbiol 18: 494–518.
30. Bull CT, De Boer SH, Denny TP, Fierro G, Fischer-Le Saux M, et al. (2010) Comprehensive list of plant pathogenic bacteria, 1980–2007. J Pathol 221: 108–122.
31. Li Y-H, Wang Y-Q (2010) Plant Protection Manual. Taichung, Taiwan: Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture.
32. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, et al. (2002) Variovorax paradoxus and other Bacillus spp. within the Bacillus subtilis network. Int J Syst Evol Micr 52: 107–116.
33. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Pseudomonas putida. J Bacteriol 182: 6921–6926.
34. Parsek MR, Fuqua C (2004) Biofilms 2003: emerging themes and challenges in bacterial biofilm research. Annu Rev Microbiol 58: 493–546.
35. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22: 3003–3015.
36. Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Pseudomonas putida. J Bacteriol 182: 6921–6926.
37. Rigano LA, Siciliano F, Enrique R, Sendin L, Filippone P, et al. (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol Plant-Microbe Interact 20: 1222–1230.
38. Sneath PHA, Mair ME, Holt JG (1996) Bergey’s Manual of Systematic Bacteriology. Baltimore, MD, USA: Williams & Wilkins.
39. Versalovic J, Koeuth T, Lupski R (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19: 6825–6831.
40. Daffonchio D, Cherif A, Brusetti L, Rizza A, Mora D, et al. (2003) Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. Appl Environ Microbiol 69: 5128–5137.
41. Kohl K, Laecliefth E, Samuelis JG, Kovacs W, Meyer W, et al. (1996) Molecular evidence that the assexual industrial fungus Triboliodema nova is a clonal derivative of the ascomycete Hypocentra. Proc Natl Acad Sci USA 93: 7755–7760.
42. Freitas D, Reis M, Lima-Bittencourt C, Costa P, Assis P, et al. (2008) Genotypic and phenotypic diversity of Bacillus spp. isolated from steel plant waste. BMC Res Notes 1: 92.
43. Stall RE, Civerolo EL (1991) Research relating to the recent outbreak of citrus canker in Florida. Annu Rev Phytopathol 29: 399–420.
44. Wunschel D, Fox KF, Black GE, Fox A (1995) Discrimination among the B. cereus group, in comparison to B. subtilis, by structural carbohydrate profiles and rRNA spacer region PCR. Sys Appl Microbiol 17: 625–635.
45. Marten P, Smalla K, Berg G (2000) Genotypic and phenotypic differentiation of an antifungal biocontrol strain belonging to Bacillus subtilis. J Appl Microbiol 89: 463.
46. Stall RE, Civerolo EL (1991) Research relating to the recent outbreak of citrus canker in Florida. Annu Rev Phytopathol 29: 399–420.
47. Wu WC, Tzeng KC, Lee MC, Kuo HF (1989) Occurrence and distribution of citrus canker in Taiwan. Plant Prot Bull 31: 139–150.
48. Schaad NW, Postnikova E, Lacy GH, Sechler A, Agarkova I, et al. (2005) Reclassification of Xanthomonas campestris pv. citri (ex Hasse 1935) Dye 1978 forms A, B/C/D, and E. X. subsp. subsp. citri (ex Hasse) sp. nov. nom. comb. nov., X. fuscans subsp. avansetii (ex Gabriel 1989) sp. nov. nom. rev. comb. nov., and X. alfalfae subsp. citruscola (ex Riker and Jones) Gabriel et al., 1989 sp. nov. nom. rev. comb. nov.; X. campestris pv. malvacearum (ex Smith 1901) Dye 1978 as X. subsp. subsp. citri nom. rev. comb. nov.; X. campestris pv. alfalfae (ex Riker and Jones, 1915) dye 1978 as X. alfalfae subsp. alfalfae (ex Riker et al., 1935) sp. nov. nom. rev.; and “var. fuscans” of X. campestris pv. phasolii (ex Smith, 1867) Dye 1978 as X. fuscans subsp. fuscans sp. nov. Sys Appl Microbiol 18: 494–518.
49. Bull CT, De Boer SH, Denny TP, Fierro G, Fischer-Le Saux M, et al. (2010) Comprehensive list of plant pathogenic bacteria, 1980–2007. J Pathol 221: 108–122.
50. Li Y-H, Wang Y-Q (2010) Plant Protection Manual. Taichung, Taiwan: Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture.
51. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, et al. (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22: 3003–3015.
52. Kovach ME, Phillips RW, Elser PH, Roop RM, Peterson KM (1994) pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16: 800–802.
53. Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and mcherry broad-host-range promoter-probe vectors. Mol Plant Microbe Interact 13: 1243–1250.