学位論文審査結果の報告書

氏名

寺嶋 雅人

生年月日
昭和62年12月13日

本籍（国籍）
日本

学位の種類
博士（医学）

学位記番号
医第1180号

学位授与の条件
学位規程第5条該当

（博士の学位）

論文題目
KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival

審査委員

（主査）
西脇朋人

（副査）
岡田 卓

（副査）
安田 卓可

（副査）

（副査）

－91－
論文内容の要旨

【目的】
KIAA1199 遗伝子は胃がん、大腸がん、乳がんなどでの高発現が報告されており、特に胃がんにおいては予後の悪化との関連性が示されている。また、がん細胞の増殖及び転移・浸潤に重要な分子であることが示唆され、がんの進展との関連について今後さらなる詳細な機能の解明が求められる。本研究は、KIAA1199 のがん細胞における未知の機能の探索・解析を目的とする。

【方法・結果】
KIAA1199 結合タンパク質の探索のため、MBP 融合タンパク質を作成し KIAA1199 が高発現する胃がん細胞株 TU-KATOIII の細胞溶出液を用いてプレダウンアッセイを行った。得られた線補タンパク質は質量分析（MALDI-TOF/MS）により解析を行った結果、グリコーゲンホスホリラーゼキナーゼ（PHK）βサブユニット（PHKB）であることがわかり、免疫沈降法により結合を確認した。また、無血清状態において PHK の基質であるグリコーゲンホスホリラーゼ（脳型：PYGB）と KIAA1199 との相互作用が免疫沈降法により示された。加えて、KIAA1199 の強制発現あるいは RNA 干渉によりノックダウンした細胞株を無血清状態にしたとき、PYGB のリン酸化が KIAA1199 の発現量に依存して増減していた。細胞内グリコーゲン量を定量したところ、コントロール細胞と比較して KIAA1199 強制発現株で有意に低値であった。さらに血清除去に伴うアポトーシスが KIAA1199 強制発現株で抑制されていた。

【考察】
KIAA1199 と PHKB との相互作用が明らかとなり、無血清状態においては PYGB と相互作用することにより、PHK による PYGB のリン酸化における媒介体として働き、リン酸化及び活性を増強させると考えられる。これらのことから、KIAA1199 は低栄養状態にある腫瘍内部でのエネルギー供給に有利に作用することで、がんの進展に寄与し得ることが示唆される。

【結論】
本研究結果はがん細胞における KIAA1199 の機能についての新たな知見であり、グリコーゲン代謝の調節に着目したがん治療の新しいターゲットになり得る。

---

博士論文の印刷公表
公表年月日
2014年 8月 30日 公表
出版物の種類及び名称
出版物名
Oncotarget
Vol. 5 No. 16 p.7040–7050
公表内容
全文
発行
2014年 8月 30日 発行

---

- 92 -
論文審査結果の要旨

論文内容の要旨
本論文は、がん細胞におけるKIAA1199タンパク質の新規機能について生化学的・細胞生物学的手法を用いて解析し、結合タンパク質を同定するとともにグリコーゲン分解を介したKIAA1199の新たながん促進的機能を示し、がん治療の標的となりうる可能性を示唆した。

1. がん研究におけるKIAA1199機能解析の意義
KIAA1199のがん領域でのこれまでの報告によると、胃がんでの高発現者は低発現患者と比較して予後不良であることや、大腸がん細胞の細胞増殖に促進的であることを示す。乳がん細胞の移動能が亢進し寄与することなどが示されており、がん治療における新たな標的分子となる可能性を示唆した。

2. 生化学的手法を用いた解析
KIAA1199結合タンパク質の探索を目的として、KIAA1199タンパク質とマルトース結合タンパク質（MBP）との融合タンパク質を大腸菌で発現させ、アフィニティー精製したものを用いてプライマリアセイを行っている。また、得られた候補タンパク質について質量分析による解析を行っており、KIAA1199結合タンパク質として、Glycogen phosphorylase kinase β-subunit (PHKB)及びCoatamer protein complex α-subunit (COPA)を同定した。

3. 細胞生物学的手法を用いた解析
細胞内グリコーゲン代謝とKIAA1199との関連性について検討することを目的として、レトロウィルスベクターを用いたKIAA1199強制発現株をがん及び肝がんの複数の細胞株で作製し、またRNA干渉法によりKIAA1199ノックダウン細胞を作製し実験に供した。
PHKBの下流タンパク質であり、特にがん組織においての高発現が報告されているグリコーゲン分解酵素(Glycogen phosphorylase brain form: PYGB)のリン酸化をwestern blotting法により評価しており、無血清状態においてKIAA1199がPYGBのリン酸化を増強するというデータを示した。次に、細胞内のグリコーゲン濃度を用いてKIAA1199強制発現株で実験を行い、血清除去後のグリコーゲン濃度が膵臓のKIAA1199発現株においても有意に低下していることを示した。また、MTT試薬を用いた細胞増殖アッセイ、及びアポトーシス評価実験としてフローサイトメトリーによるAnnexin V/PI染色細胞の検出を実施した。それらのアッセイにより、KIAA1199が無血清状態における細胞増殖を亢進し、アポトーシス抑制的に作用することが示された。

4. 考察
本論文においては、がん臨床検体を用いて行ったReal-time RT-PCR法によるKIAA1199 mRNAの発現解析により、がん部での著名な高発現が認められており、当該タンパク質の詳細な生化学的機能の解明は、新たな知見を示すとともに今後のがん治療の発展に繋がり得る有意義な研究であると考えられた。
審査結果の要旨

KIAA1199タンパク質の新規機能の解明を目的として、結合タンパクを同定するという直接的な作用点をとらえた基礎的研究が、学位申請者自身により実施されたかを問うた。

本論文では、新たに同定された2つのKIAA1199結合タンパク質のうち、特にがんとの関連性が示唆されているグリコーヌゲン代謝に焦点を当て、KIAA1199タンパク質の作用について検討している。その過程において、がんにおけるグリコーヌゲン代謝の意義や、グリコーヌゲン分解の主要経路及び関連分子の機能について、それらの構造や活性化の過程を含めて理解していると考えられる。また、学位申請者は、培養細胞、大腸菌及びタンパク質の取り扱い方法、レトルウイルスペクターを利用して強制発現系の構築方法、細胞株を用いたタンパク質発現の評価、また適切なアッセイの選択、組み立てについて理解・習得していると考えられる。研究の過程では、得られた実験結果の意味を見出ししながら、不十分な点はあるものの、複数の強制発現系を用いた細胞生物学的次手法によりKIAA1199の新たな機能の裏付けとなる実験を行い、再現性の取れたデータが示された。

また、他の研究成果の報告を援用しつつ、本研究で示唆された新たな機能ががんに及ぼす影響を議論し、さらに得られた結果をもとに、グリコーヌゲン分解における機能分子とKIAA1199タンパク質との相互作用についてモデルを考察・示しており、新たな機能について観覚的にも示すことができた。最終試験においては、（1）臨床検査における組織の分化度とKIAA1199発現との相関について（2）KIAA1199のグリコーヌゲン合成能への影響について（3）TP53、MYC等の発現量や変異の有無によってKIAA19によるグリコーヌゲン代謝亢進に違いが見られるか（4）KIAA1199のPHKB結合部位等について等の詳細な質疑があり、学位申請者は適切な回答を行った。以上により本学位論文が論文提出者の研究成果であることを確認した。

最終試験の結果

最終試験では本学位論文が論文提出者の研究成果であることを確認した。

学位授与の可否に関する意見

以上のことから、学位授与に相応しいと判断した。
博士学位論文最終試験結果の報告書

平成27年2月12日

審査委員

主査

副査

副査

副査

学位申請者氏名

寺嶋 雅人

論文題目

KIAA1199 interacts with glycogen phosphorylase kinase β-subunit (PHKB) to promote glycogen breakdown and cancer cell survival

要旨

学位申請者は、がん関連分子とされるKIAA1199の新規機能を生化学的、細胞生物学的手法を用いて解析し、KIAA1199とPHKBとの結合を見出し、それによるグリコーゲン分解を介した新たながん促進的な作用を示した。

公聴会では、1）胃がん臨床検体を用いて行ったKIAA1199 mRNAの発現解析により、がん部において著名に高発現していることを見出し、2）MBPタグ融合タンパク質を用いたプルダウンアッセイ及び酵素活性分析により、KIAA1199結合タンパク質としてPHKBを定めたこと、3）ウイルスベクターを用いたKIAA1199強制発現系では、KIAA1199が特に無血清状態においてPHKBの下流タンパク質でグリコーゲン分解酵素であるPYGBのリン酸化を増強すること、4）KIAA1199により無血清下におけるグリコーゲン分解能が亢進し、同条件下でアポトーシス抑制的に作用すること等が示された。これらの研究成果は、がん細胞におけるKIAA1199の機能に新たな知見を加えるとともに、がん治療標的となる可能性を示唆するものであることが示された。

質疑応答においては、1）臨床検体における組織の分化度とKIAA1199発現との相関について、2）KIAA1199のグリコーゲン合成能への影響について（3）TP53、MYC等の発現量や変異の有無によってKIAA19によるグリコーゲン代謝亢進の違いが見られるか、4）KIAA1199のPHKB結合部位等について等の詳細な質疑があり、学位申請者は適切な回答を行った。

以上により本学位論文が論文提出者の研究成果であることを確認した。