Gamma function solutions to the star-triangle equation

Ege Erena, Ilmar Gahramanova,b,c, Shahriyar Jafarzadec,d and Gonenc Mogole,f

a Department of Physics, Bogazici University, 34342 Bebek, Istanbul, Turkey
b Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku, Azerbaijan
c Institute of Radiation Problems, Azerbaijan National Academy of Sciences, B.Vahabzade St. 9, AZ1143, Baku, Azerbaijan
d Institute of Physics, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406, Kielce, Poland
e Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, U.S.A.
f Department of Physics and Astronomy, Heidelberg University, Heidelberg 69120, Germany

E-mail: ege.eren@boun.edu.tr, ilmar.gahramanov@boun.edu.tr, shahriyar.jzade@gmail.com, gonenc.mogol@stonybrook.edu

ABSTRACT: In the paper, we clarify some relations between solutions to the star-triangle equation by giving the gauge/YBE formulation of them. We consider two solutions to the star-triangle relation in terms of Euler’s gamma function. We derive these solutions from the reduction of certain basic and hyperbolic hypergeometric integral identities. These identities can be interpreted as equality of the supersymmetric partition functions of a specific three-dimensional $\mathcal{N} = 2$ supersymmetric dual theories.

KEYWORDS: Star-triangle relation, integrable lattice spin model, Ising-type model, gauge/YBE correspondence.
1 Introduction and conclusion

There is a remarkable connection [1–3], called gauge/YBE correspondence, between supersymmetric gauge theories and integrable lattice models of statistical mechanics. This correspondence is used to be quite useful in the construction of the new integrable lattice spin models [3–11]. Curiously, almost all known solutions to the star-triangle relation make an appearance in the context of this correspondence and the subject is under active investigation, see, e.g. [12–14]. The purpose of this paper by using the gauge/YBE correspondence is to interpret some integrable lattice spin models with Boltzmann weights in terms of Euler’s gamma function from the supersymmetric gauge theory point of view. Therefore we will not discuss details of the gauge/YBE correspondence here, more details can be found in the original works mentioned above and in the review papers [15, 16].

The sufficient condition for the integrability of the Ising-type lattice spin model (edge-interacting models) is the following star-triangle relation (the Yang-Baxter equation) for
the Boltzmann weights [17–19]

\[
\int S(\sigma) W_\beta(\sigma, \sigma_j) W_\gamma(\sigma_k, \sigma) W_\alpha(\sigma_i, \sigma) d\sigma = \mathcal{R}(\alpha, \beta, \gamma) W_\beta(\sigma_k, \sigma_i) W_\gamma(\sigma_i, \sigma_j) W_\alpha(\sigma_k, \sigma_j), \tag{1.1}
\]

\[
\int S(\sigma) W_\beta(\sigma_j, \sigma) W_\gamma(\sigma, \sigma_k) W_\alpha(\sigma, \sigma_i) d\sigma = \mathcal{R}(\alpha, \beta, \gamma) W_\beta(\sigma_i, \sigma_k) W_\gamma(\sigma_j, \sigma_i) W_\alpha(\sigma_j, \sigma_k), \tag{1.2}
\]

where \(\sigma, \sigma_i \in \mathbb{R}\) stand for the spin variables\(^1\), \(W_\alpha(\sigma_k, \sigma_j)\) and \(W_\alpha(\sigma_k, \sigma_j)\) are two different kinds of the Boltzmann weights (horizontal and vertical) with spectral parameter \(\alpha_i\). \(S(\sigma)\) is the single-spin self-interaction term and \(\mathcal{R}(\alpha_i, \alpha_j, \alpha_k)\) is the spin-independent weight which can often be eliminated by some normalization of the Boltzmann weights.

In this paper we will re-derive two solutions to the star-triangle relation presented in [5, 20] and in [13, 21]. The Boltzmann weights of both models are given in terms of Euler’s gamma function. It turns out that the solutions presented in [5, 20] and [13, 21] can be obtained from higher level hypergeometric solutions. From supersymmetric gauge theory side, we explicitly work out reduction procedure of three-dimensional \(\mathcal{N} = 2\) supersymmetric sphere partition function and superconformal index to the two-dimensional \(\mathcal{N} = (2, 2)\) sphere partition function for the supersymmetric dual theories. From mathematical point of view, we make several reductions of the basic and hyperbolic hypergeometric integral identities to the ordinary hypergeometric integral identities.

The first model has the following vertical and horizontal Boltzmann weights [13, 21]

\[
\overline{W}_\alpha(x, z) = \Gamma(\alpha \pm ix \pm iz) \quad W_\alpha(x, z) = \frac{\Gamma(-\alpha + ix \pm iz)}{\Gamma(+\alpha + ix \pm iz)}, \tag{1.3}
\]

the following self-interaction term and the spin-independent coefficient

\[
S(z) = \frac{1}{\Gamma(\pm 2iz)} \quad \text{and} \quad \mathcal{R}(\alpha, \beta, \gamma) = \frac{4\omega_1 \pi \Gamma(2\alpha) \Gamma(2\beta)}{\Gamma(2\gamma)}. \tag{1.4}
\]

We use the notation that multiple parameters or \(\pm\) signs in special functions indicate a product of functions. In the context of the gauge/YBE correspondence, this solution can be obtained from the equality of two-dimensional vortex partition functions for a certain dual theories.

The second integrable lattice spin model which we discuss here has the following nearest-neighbouring Boltzmann weight [5, 20]

\[
W_\alpha(\sigma_i | m_i, \sigma_j | m_j) = \frac{\Gamma(\frac{1+\alpha}{2}) \Gamma(\frac{1-\alpha}{2})}{\Gamma(\frac{1-\alpha}{2}) \Gamma(\frac{1+\alpha}{2})} \frac{\Gamma(\frac{1-\alpha}{2}(\sigma_i + \sigma_j) - (m_i + m_j)) \Gamma(\frac{1+\alpha}{2}(\sigma_i + \sigma_j) + (m_i + m_j))}{\Gamma(\frac{1+\alpha}{2}(\sigma_i - \sigma_j) - (m_i - m_j)) \Gamma(\frac{1-\alpha}{2}(\sigma_i - \sigma_j) + (m_i - m_j))}, \tag{1.5}
\]

\(^1\)In discrete spin case, one needs to replace integration by summation.
following self interaction term

\[S(\sigma, m) = \frac{\sigma^2 + m^2}{2\pi} \].

Here we choose such normalization for the Boltzmann weights that the spin-independent parameter is equal to one. The Boltzmann weights (1.5-1.6) solve the star-triangle relation of the following form

\[\sum_{m \in \mathbb{Z}} \int d\sigma \, S(\sigma|m)W_{\eta-\alpha}(\sigma|m_i, \sigma|m)W_{\eta-\beta}(\sigma|m_j, \sigma|m)W_{\eta-\gamma}(\sigma|m_k, \sigma|m) \]

\[= \mathcal{R}(\alpha, \beta, \gamma)W_{\alpha}(\sigma|m_j, \sigma|m_k)W_{\beta}(\sigma|m_i, \sigma|m_k)W_{\gamma}(\sigma|m_j, \sigma|m_i), \] (1.7)

where the crossing parameter \(\eta = \alpha + \beta + \gamma \). One can obtain the relation (1.7) from (1.1) by restricting the Boltzmann weights, see, e.g. [22, 23]. Further we will see that there are several ways to obtain the solution (1.5-1.6).

The main goal of the paper is to show connections between different solutions to the star-triangle relation explicitly.

It would be interesting to consider also the reduction of \(RP^2 \times S^1 \) function [24–27], which gives also an integral in terms of gamma functions.

It is also possible to generalize the reductions discussed here to other dualities, see, e.g. [28] and obtain new or known integral identities in terms of the gamma function, expressing the equivalence of dual partition functions. There are several solutions to the Yang-Baxter equation in terms of gamma functions [29–33], it would be interesting to consider other models in this context.

Figure 1. Structure of the paper

The diagram in Fig. 1 demonstrates the plan of the paper pictorially. The rest of the paper is organized as follows:
• A brief review of necessary information on supersymmetric partition functions and $\mathcal{N} = 2$ supersymmetric duality are contained in Sections 2 and 3.

• The relations between different solutions to the star-triangle relation and the main results are presented in Sec. 4.

• In Sec. 4.1 we present the reduction of S^3_b partition function to the two-dimensional vortex partition function and the solution (1.3)-(1.4) to the star-triangle relation. In [20], Kels presented another limit $b \to 0$ for the squashed sphere partition function, which gives the sphere partition function.

• The reduction of $S^2 \times S^1$ partition function (three-dimensional superconformal index) to S^2 partition function (S^1 shrinks to zero size) and the solution (1.5)-(1.6) to the star-triangle equation are discussed in Sec. 4.2. We make the same limiting procedure discussed in the paper [5] using slightly different notations, see also [15].

• In Sec. 4.3 we consider the $r \to \infty$ limit of the S^3/Z_r partition function. This reduction was discussed in [34], here we worked out the limit in detail on the level of special functions and obtained the solution (1.5)-(1.6).

2 Supersymmetric partition functions

Let us briefly summarize the basic ingredients which one needs to know about three-dimensional theories with four supercharges ($\mathcal{N} = 2$ theories). The vector multiplets consisting of a gauge field, a complex Dirac fermion, a real scalar field and an auxiliary scalar field belong to the adjoint representation of gauge group G, whereas chiral multiplets consisting of a complex scalar field, a complex Dirac fermion and a complex auxiliary belong to a suitable representation of gauge group G and flavor group F. The supersymmetry algebra contains the $SO(2)$ R-symmetry which rotates supercharges. In the context of gauge/YBE correspondence, the R-charge plays a role of spectral parameter.

The partition function of three-dimensional $\mathcal{N} = 2$ supersymmetric gauge theory on a certain compact manifold can be computed exactly due to the supersymmetric localization technique [35]. Using the supersymmetric localization, one ends with the following matrix integral\(^2\)

$$Z = \frac{1}{|W|} \sum_{\{m\}} \int \prod_{\text{Cartan}} [dz] Z_{\text{vector}} Z_{\text{chiral}} .$$

(2.1)

Here Z_{vector} and Z_{chiral} stand for the contribution of the vector and chiral multiplets, respectively. The integral is performed over the Cartan subgroup of the gauge group. $|W|$ represents the order of the Weyl group of gauge group. In our examples, we will

\(^2\)Here we consider the partition function as a Coulomb branch integral, in general one can use different localization locus, for the case of Higgs branch, see, e.g. [36–38]
consider theories without the Chern-Simons and Fayet-Iliopoulos term, therefore we skip contributions of these terms to (2.1).

2.1 Three-dimensional $\mathcal{N} = 2$ superconformal index

Three-dimensional $\mathcal{N} = 2$ superconformal index was studied in [40–42]. The one-loop contribution of chiral multiplets to the index is given by

$$Z_{\text{chiral}} = \prod_j \prod_{\rho_j} \prod_{\phi_j} \left(q^{1-\Delta_j + \left[\rho_j(m) + \phi_j(n) \right]/2} - \rho_j(z) - \phi_j(\Phi); q \right)_\infty,$$

(2.2)

where j labels chiral multiplets, ρ_j, ϕ_j, are the weights of the representation of the gauge and flavor groups, respectively and Δ_j is the Weyl weight of j'th chiral multiplet. Here we use the usual q-Pochhammer symbol

$$(z; q)_\infty = \prod_{j=0}^{\infty} (1 - zq^j).$$

(2.3)

The one-loop contribution of the vector multiplet combined with the Vandermonde determinant, is given also in terms of q-Pochhammer symbols

$$Z_{\text{vector}} = \prod_{\alpha \in \mathbb{R}_+} \left(q^{\alpha(z) + \left[\alpha(m) \right]/2}; q \right)_\infty \left(q^{-\alpha(z) + \left[\alpha(m) \right]/2}; q \right)_\infty,$$

for the case of superconformal index the summation in (2.1) is over the GNO quantized fluxes [43] (monopole charges) $m_i = \frac{1}{2\pi} \int_{S^2} F_i$.

2.2 Squashed three-sphere partition function

$\mathcal{N} = 2$ supersymmetric partition function on the squashed three-sphere S^3_b was studied in [34, 38, 44]. The one-loop contribution of chiral multiplets to the partition function can be expressed as

$$Z_{\text{chiral}} = \prod_j \prod_{\rho_j} \prod_{\phi_j} \gamma^{(2)} \left(\frac{Q}{2} \Delta_j + \rho_j(z) + \phi_j(\mu); \omega_1, \omega_2 \right),$$

(2.4)

where j labels chiral multiplets, ρ_j, ϕ_j, are the weights of the representation of the gauge and flavor groups, respectively and Δ_j is the Weyl weight of j'th chiral multiplet. Here $Q = b + \frac{1}{b}$ with the squashing parameter $b^2 = \omega_2/\omega_1$. The function $\gamma^{(2)}(u, \omega_1, \omega_2)$ is the hyperbolic gamma function defined as follows [45]

$$\gamma^{(2)}(u; \omega_1, \omega_2) = e^{-\pi i B_{2,2}(u; \omega_1/\omega_2)} \left(e^{2\pi i u/\omega_1} \tilde{q}; \tilde{q} \right) \left(e^{2\pi i u/\omega_1}; q \right) \left(q \right)^{-1}$$

with $q = e^{2\pi i \omega_1/\omega_2}, \tilde{q} = e^{-2\pi i \omega_2/\omega_1},$

(2.5)

\[\text{Actually, it seems that in some cases Fayet-Iliopoulos term plays an important role the integrability, see [39].}\]

\[\text{In the path-integral formulation superconformal index is a partition function of a theory defined on the background } S^2 \times S^1.\]

\[\text{We should mention that when the squasing parameter is real, the infinite product representation (2.5) is not valid, and one needs to use the integral representation, see [1].}\]
where \(B_{2,2}(u; \omega_1, \omega_2) \) is the second order Bernoulli polynomial,
\[
B_{2,2}(u; \omega_1, \omega_2) = \frac{u^2}{\omega_1 \omega_2} - \frac{u}{\omega_1} - \frac{u}{\omega_2} + \frac{\omega_1}{6\omega_2} + \frac{\omega_2}{6\omega_1} + \frac{1}{2} \tag{2.6}
\]
The one-loop contribution of the vector multiplet combined with the Vandermonde determinant, is given by
\[
Z_{\text{vector}} = \prod_{\alpha \in \mathcal{R}_+} \frac{1}{\gamma(2)(\alpha(z); \omega_1, \omega_2) \gamma(2)(-\alpha(z); \omega_1, \omega_2)} ,
\]
where the product is over the positive roots \(\alpha \) of the gauge group \(G \).

Note that the squashed partition function has a form of (2.1) without summation.

2.3 Orbifold partition function

Supersymmetric partition function on \(S^3_r/Z_r \), called orbifold partition function, was studied in [7, 34, 38, 44]. The one-loop contribution of chiral multiplets to the partition function is given by[^1]
\[
Z_{\text{chiral}} = \prod_{j} \prod_{\rho_j} \prod_{\phi_j} \Gamma_h \left(\frac{Q}{2} (1 - \Delta_j) + \rho_j(z) + \phi_j(\Phi), \rho_j(m) + \phi_j(n) \right) , \tag{2.10}
\]
where \(j \) labels chiral multiplets, \(\rho_j, \phi_j \), are the weights of the representation of the gauge and flavor groups, respectively and \(\Delta_j \) is the Weyl weight of \(j \)th chiral multiplet. Here \(Q = b + \frac{1}{b} \) with the squashing parameter \(b^2 = \omega_2/\omega_1 \). The function \(\Gamma_h \) is a version of the improved double sine function [7], which can be written as a product of hyperbolic gamma functions
\[
\Gamma_h(z, m; \omega_1, \omega_2) = e^{\phi_h(m)} \gamma_h(z, m; \omega_1, \omega_2) ,
\]
[^1]: In supersymmetry literature, usually one uses the other special function, namely the contribution of the \(\sigma \)th chiral multiplet. Here
\[
Z_{\text{chiral}} = \prod_{j} \prod_{\rho_j} \prod_{\phi_j} \tilde{s}_{b,-\rho_j(m)-\phi_j(n)} \left(\left(\frac{Q}{2} (1 - \Delta_j) - \rho_j(z) - \phi_j(\Phi) \right) \right) , \tag{2.7}
\]
where the function \(\tilde{s}_{b,-m} \) is the improved double sine function [38]
\[
\tilde{s}_{b,-m}(x) = \sigma(m) e^{2\pi B_\sigma(x, m, \omega_1, \omega_2)} \prod_{j=0}^{r-1} \left(\frac{e^{2\pi i (x+i \omega_1 m/r)(\omega_1 r)}}{e^{2\pi i (x+i \omega_1 m/r)(\omega_1 r)}} \right)^{2j+1} , \tag{2.8}
\]
where \([m]_r \in \{0, 1, \ldots, r-1\} \) denotes \(m \) modulus \(r \), \(\sigma(m) = e^{2\pi i [(r-m)(r-1)m^2]} \) and \(B_\sigma \) is a particular combination of multiple Bernoulli polynomials given by
\[
B_\sigma(z, m; \omega_1, \omega_2) := B_{2,2}(iz + \omega_1 [m]) + \eta(r \omega_1, 2\eta) + B_{2,2}(iz + \omega_2 [m]) + \eta(r \omega_2, 2\eta) \tag{2.9}
\]
The one-loop contribution of the vector multiplet is given by
\[
Z_{\text{vector}} = \prod_{\alpha \in \mathcal{R}_+} \frac{1}{\gamma(2)(\alpha(z)) \gamma(2)(\alpha(z))} .
\]
where
\[\phi_h(m) = -\frac{\pi i}{6r}(2m^3 - 3m^2r + mr^2), \quad (2.11) \]
and
\[\gamma_h(z, m; \omega_1, \omega_2) = \gamma^{(2)}(iz - i\omega_2(r - m); -i\omega_2r, -i\omega_1 - i\omega_2) \]
\[\times \gamma^{(2)}(-iz - i\omega_1 m; -i\omega_1r, -i\omega_1 - i\omega_2). \quad (2.12) \]

The one-loop contribution of the vector multiplet combined with the Vandermonde determinant, is given by
\[Z_{\text{vector}} = \prod_{\alpha \in R^+} \frac{1}{\Gamma_h(\alpha(z), \alpha(m)) \Gamma(\alpha(z), -\alpha(m))}, \]
where the product is over the positive roots \(\alpha \) of the gauge group \(G \).

In the orbifold partition function case the summation in the formula (2.1) is over holonomies
\[m_i = \frac{2\pi}{2\pi} \int_{C} A_{\mu} dx^\mu, \]
where the integration contour is over non-trivial cycle on \(S_6^3/\mathbb{Z}_r \) and \(A_{\mu} \) is the gauge field.

2.4 Two-dimensional sphere partition function

The \(\mathcal{N} = (2, 2) \) supersymmetric partition function on \(S^2 \) was obtained in [46, 47]. The one-loop contribution of chiral multiplets to the partition function is given by
\[Z_{\text{chiral}} = \prod_j \prod_{\rho_j} \prod_{\phi_j} \frac{\Gamma(\Delta_j - i\rho_j(z) - \phi_j(\Phi) - \frac{1}{2}\rho_j(m))}{\Gamma(1 - \Delta_j + i\rho_j(z) + \phi_j(\Phi) + \frac{1}{2}\rho_j(m))}, \quad (2.13) \]
where \(j \) labels chiral multiplets, \(\rho_j, \phi_j \), are the weights of the representation of the gauge and flavor groups, respectively and \(\Delta_j \) is the Weyl weight of \(j \)’th chiral multiplet. Here \(\Gamma(z) \) function is the usual Euler’s gamma function.

The one-loop contribution of the vector multiplet for theory with non-abelian gauge group combined with the Vandermonde determinant, is given by
\[Z_{\text{vector}} = \prod_{\alpha \in R^+} (-1)^m \left(\frac{\alpha(m)^2}{4} + \alpha(z)^2 \right), \quad (2.14) \]
where the product is over the positive roots \(\alpha \) of the gauge group \(G \).

In the two-dimensional sphere partition function case, the integration contour in formula (2.1) is defined along the real lines and summation is taken over the magnetic fluxes.
3 Supersymmetric duality

For our purposes we consider the following three-dimensional $\mathcal{N} = 2$ supersymmetric duality [48]:

The first theory is the SQCD with $SU(2)$ gauge group and with $SU(6)$ flavor group, chiral multiplets are in the fundamental representation of the gauge group and the flavor group, a vector multiplet is in the adjoint representation of the gauge group.

The second theory, i.e. the dual one, has no gauge degrees of freedom, fifteen chiral multiplets of the theory are in the totally antisymmetric tensor representation of the flavor group.

One of the tools for checking supersymmetric dualities is to compute the partition function, which is expected to be the same for dual theories.

In superconformal index case, the equality of the dual indices can be expressed in terms of the basic hypergeometric sum and the integral identity [48]

$$
\frac{1}{2\pi i z} \sum_{m=-\infty}^{\infty} \oint \prod_{j=1}^{6} \frac{(q^{1+(m+n_j)/2}/g_j z, q^{1+(m+n_j)/2}/g_j z; q)_{\infty}}{(q^{m+n_j}/2 g_j z, q^{m+n_j}/2 g_j z; q)_{\infty}} \frac{(1 - q^{m z - 2}) (1 - q^{m z - 2})}{q^{m \sum g_i}} \prod_{1 \leq j < k \leq 6} \gamma^2(g_j, g_k; \omega),
$$

with the conditions $\prod_{j=1}^{6} g_j = q$; and $\sum_{j=1}^{6} n_j = 0$.

The integral identity for the squashed sphere partition functions can be expressed in terms of the following hyperbolic hypergeometric functions [45]

$$
\int_{-\infty}^{\infty} \frac{1}{(2\pi)^{3/2}} \prod_{j=1}^{6} \frac{\gamma^2(g_j \pm iz; \omega)}{\gamma^2(\pm 2iz; \omega)} \prod_{1 \leq j < k \leq 6} \gamma^2(g_j + g_k; \omega),
$$

where the parameters g_j's obey the balancing condition $\sum_{j=1}^{6} g_j = \omega_1 + \omega_2$.

The integral identity for the duality at the level of orbifold partition functions has the following form [7]

$$
\frac{1}{2r \sqrt{-\omega_1 \omega_2}} \sum_{m=0}^{[r/2]} \epsilon(m) \int_{-\infty}^{\infty} dz \prod_{j=1}^{6} \frac{\Gamma_h(g_j + z, n_j \pm m; \omega_1, \omega_2)}{\Gamma_h(\pm 2z, \omega_1, \omega_2)} = \prod_{1 \leq j < k \leq 6} \Gamma_h(g_j + g_k, n_j \pm n_k; \omega_1, \omega_2),
$$

with the balancing condition $\sum_{j=1}^{6} g_j = \omega_1 + \omega_2$ and $\epsilon(0) = 1$ and $\epsilon(m) = 2$ for $m > 0$.

All these integral identities can be written in the form of the star-triangle relation [1, 4, 5, 7]. The solutions (1.3)-(1.4) and (1.5)-(1.6) to the star-triangle equation arise from the reductions of the above identities.
4 Solutions to the star-triangle equation

4.1 Reduction of S^3 partition function

In order to obtain the solution (1.3)-(1.4) to the star-triangle equation from the Spiridonov’s generalization of Faddeev-Volkov model, we will consider the reduction of the three-dimensional supersymmetric squashed sphere partition function to the identity for the two-dimensional supersymmetric vortex partition function. This reduction procedure was studied in [49].

Now let us reduce the identity (3.2) to the hypergeometric level. Using the balancing condition for the identity (3.2), we rewrite one of the fugacities (in this case g_6) as

$$g_6 = \eta - \sum_{j=1}^5 g_j$$

and use the reflection identity for the hyperbolic gamma function

$$\gamma(2)(z; \omega_1, \omega_2) \gamma(2)(\omega_1 + \omega_2 - z; \omega_1, \omega_2) = 1,$$ \hspace{1cm} (4.1)

to bring terms containing g_6 to the denominator on both sides of the identity (3.2). Then we apply the following reduction formula of the hyperbolic gamma function

$$\gamma(2)(z; \omega_2) = \omega_2 \to \infty \left(\frac{z}{\omega_1} \right) \frac{\Gamma(z/\omega_1)}{\sqrt{2\pi}}$$ \hspace{1cm} (4.2)

to the integral identity (3.2) and obtain

$$\int \frac{\Pi_{k=1}^5 \Gamma\left(\frac{g_k \pm iz}{\omega_1}\right)}{\Gamma(\pm 2iz/\omega_1) \cdot \Gamma\left(1/\omega_1 \cdot \left(\pm iz + \sum_{k=1}^5 g_k \right) \right)} \, dz = 4\pi \omega_1 \prod_{1 \leq j < k \leq 5} \frac{\Gamma((g_j + g_k)/\omega_1)}{\prod_{j=1}^5 \Gamma\left(1/\omega_1 \cdot (-g_j + \sum_{k=1}^5 g_k) \right)} \cdot$$ \hspace{1cm} (4.4)

Now we define again a new fugacity g_6 via the following equation (a new balancing condition)

$$\sum_{j=1}^6 g_j = 0.$$ \hspace{1cm} (4.5)

Then the integral (4.4) can be rewritten as

$$\int \frac{\Pi_{k=1}^5 \Gamma\left(\frac{g_k \pm iz}{\omega_1}\right)}{\Gamma(\pm 2iz/\omega_1) \cdot \Gamma\left(-\frac{g_k \pm iz}{\omega_1}\right)} \, dz = 4\pi \omega_1 \prod_{1 \leq j < k \leq 5} \frac{\Gamma((g_j + g_k)/\omega_1)}{\prod_{j=1}^5 \Gamma\left(-\frac{g_j + g_6}{\omega_1}\right)} \cdot$$ \hspace{1cm} (4.6)

Actually, here we have used the asymptotic behaviour of $\gamma(2)(z; \omega_1, \omega_2)$ function,

$$\lim_{z \to \infty} e^{\frac{-i}{2} \text{Re} z (\omega_1 + \omega_2)} \gamma(2)(z; \omega_1, \omega_2) = 1,$$ \hspace{1cm} \text{for arg} \omega_1 < \text{arg} z < \text{arg} \omega_2 + \pi, \hspace{1cm} (4.3)

$$\lim_{z \to \infty} e^{\frac{i}{2} \text{Re} z (\omega_1 + \omega_2)} \gamma(2)(z; \omega_1, \omega_2) = 1,$$ \hspace{1cm} \text{for arg} \omega_1 - \pi < \text{arg} z < \text{arg} \omega_2.

and canceled a factor of $(\omega_2/2\pi \omega_1)^3$, which appears on both sides of the equation (4.4).
We also introduce the following parameters
\[g_{1,2} = \pm \alpha \pm i\sigma_i \quad g_{3,4} = \pm \beta \pm i\sigma_j \quad g_{5,6} = -\gamma \pm i\sigma_k \quad z = \sigma \quad (4.7) \]
and the Boltzmann weights
\begin{align*}
W_\alpha(\sigma_i, \sigma_j) &= \Gamma\left(\frac{\alpha \pm i\sigma_i \pm i\sigma_j}{\omega_1}\right) \\
W_\alpha(\sigma_i, \sigma_j) &= \Gamma\left(\frac{-\alpha + i\sigma_i \pm i\sigma_j}{\omega_1}\right) \quad (4.8)
\end{align*}

\[S(\sigma) = \frac{1}{2\pi\Gamma(\pm 2\sigma)} \quad \text{and} \quad R(\alpha, \beta, \gamma) = \frac{2\omega_1 \Gamma(2\alpha) \Gamma(2\beta)}{\Gamma(2\gamma)} \quad (4.9) \]

Note that the parameterization (4.7) and the equation (4.5) implies \(\alpha + \beta - \gamma = 0 \). Then, by choosing \(\omega_1 = 1 \), we can write the integral identity (4.6) as
\[\int S(\sigma) W_\beta(\sigma, j) W_\alpha(\sigma, \sigma) d\sigma = R(\alpha, \beta, \gamma) W_\beta(\sigma, \sigma) W_\alpha(\sigma, \sigma) \quad (4.10) \]

Note that the equation (4.10) is one of the two non-symmetric star-triangle equations (1.3) and (1.4). We now show that the Boltzmann weights defined as above also satisfy the second star-triangle equation, which is obtained from (4.10) by exchanging the arguments of the Boltzmann weights. To that end, we write the equation (3.2) using the reflection identity (4.1) and the balancing condition (4.5) as follows:

\[\int \prod_{j=1}^{4} (2\eta - \sum_{j=1}^{5} g_j + iz) \gamma^{(2)}(g_1 + g_2 + g_3 + g_4 + g_5) \left(2\eta - \sum_{j=1}^{5} g_j + iz\right) dz = \]

\[2\sqrt{\omega_1 \omega_2} \left(\prod_{j=2}^{5} \gamma^{(2)}(g_1 + g_j) \right) \gamma^{(2)}(g_1 + 2\eta - \sum_{j=1}^{5} g_j) \gamma^{(2)}(g_2 + g_3 + g_4 + g_5) \left(2\eta - g_4 - g_5\right) \]

\[\times \frac{\gamma^{(2)}(g_2 + g_4) \gamma^{(2)}(g_5 + g_2) \gamma^{(2)}(g_3 + g_5) \gamma^{(2)}(g_3 + 2\eta - \sum_{j=1}^{5} g_j)}{\gamma^{(2)}(-g_4 + \sum_{j=1}^{5} g_j) \gamma^{(2)}(-g_5 + \sum_{j=1}^{5} g_j)} \quad (4.11) \]

where we have defined a shorthand notation \(\gamma^{(2)}(z) = \gamma^{(2)}(z; \omega) \). Since the above integral is valid for all values of \(\omega_1 \) and \(\omega_2 \), we may choose \(\omega_2 = \omega_1 \cdot n \) for some \(n \in \mathbb{N} \). Notice that with this choice, we get \((2\eta/\omega_1 = (1 + n) \in \mathbb{N} \). We can now use the asymptotic behaviour (4.2) of the \(\gamma^{(2)} \) functions for \(n \rightarrow \infty \) to obtain

\[\int \prod_{j=1}^{4} \Gamma\left(\frac{g_j + iz}{\omega_1}\right) \Gamma\left(\frac{g_j + iz}{\omega_1}\right) d\sigma = 4\pi\omega_1 \left(\prod_{j=2}^{5} \Gamma\left(\frac{g_j + iz}{\omega_1}\right) \right) \left(\prod_{j=2}^{5} \Gamma\left(\frac{g_j + iz}{\omega_1}\right) \right) \]

\[\times \frac{\Gamma\left(\frac{g_1 + iz}{\omega_1}\right) \Gamma\left(\frac{g_1 + iz}{\omega_1}\right) \Gamma\left(\frac{g_2 + iz}{\omega_1}\right) \Gamma\left(\frac{g_2 + iz}{\omega_1}\right)}{\Gamma\left(\frac{g_1 + iz}{\omega_1}\right) \Gamma\left(\frac{g_1 + iz}{\omega_1}\right) \Gamma\left(\frac{g_2 + iz}{\omega_1}\right) \Gamma\left(\frac{g_2 + iz}{\omega_1}\right)} \quad (4.12) \]
Furthermore, we used
\[
\Gamma\left(\frac{2\eta}{\omega_1} - \frac{\Sigma + iz}{\omega_1}\right) = (2\eta/\omega_1)! \cdot \Gamma\left(- \frac{\Sigma + iz}{\omega_1}\right),
\] (4.13)
where \((2\eta/\omega_1)!\) denotes the factorial, in order to take the limit \(n \to \infty\) properly. Again, we choose \(\omega_1 = 1\) and finally obtain the second star-triangle equation from the above integral using the parameterisation (4.7) and the definition of Boltzman weights (4.8)

\[
\int S(\sigma) W_\beta(\sigma_j, \sigma) W_\gamma(\sigma, \sigma_k) W_\alpha(\sigma, \sigma_i) d\sigma = R(\alpha, \beta, \gamma) W_\beta(\sigma_i, \sigma_k) W_\gamma(\sigma_j, \sigma_i) W_\alpha(\sigma, \sigma_k).
\] (4.14)

4.2 Reduction of \(S^2 \times S^1\) partition function

From the supersymmetric gauge theory of view, shrinking the circle\(^8\) \(S^1\) to zero gives rise to a two-dimensional supersymmetric theory with the same amount of supercharges on \(S^2\) [34, 46, 56]. Computationally, we use the following limit of the q-Pochhammer symbol

\[
\lim_{q \to 1} \frac{(q^\alpha; q)_\infty}{(q^\beta; q)_\infty} (1 - q)^{\alpha - \beta} = \frac{\Gamma(\beta)}{\Gamma(\alpha)}.
\] (4.15)

By applying this formula, one obtains the following integral identity from (3.1)

\[
\sum_{m \in \mathbb{Z}} \int \frac{dz}{2\pi} \frac{\Gamma(m \pm 2iz + 1)}{\Gamma(m \pm 2iz)} \prod_{j=1}^{6} \frac{\Gamma(\frac{m+n_j}{2} + g_j + iz)}{\Gamma(1 + \frac{m+n_j}{2} - g_j - iz)} \frac{\Gamma(-\frac{m+n_j}{2} + g_j - iz)}{\Gamma(1 + \frac{m+n_j}{2} - g_j + iz)} = \prod_{1 \leq j < k \leq 6} \frac{\Gamma(g_j + g_k + \frac{n_j+n_k}{2})}{\Gamma(1 - g_j - g_k - \frac{n_j+n_k}{2})}.
\] (4.16)

Plugging the following substitutions for the fugacities

\[
g_{1,4} = \frac{\alpha}{2} \pm \frac{i\sigma_i}{2}; \quad g_{2,5} = \frac{\beta}{2} \pm \frac{i\sigma_j}{2}; \quad g_{3,6} = \frac{\gamma}{2} \pm \frac{i\sigma_k}{2}; \quad iz = \frac{i\sigma_0}{2}
\]

and following constraints on monopole charges

\[
n_1 = -n_4, \quad n_2 = -n_5, \quad n_3 = -n_6,
\] (4.17)

we obtain the solution to the star-triangle relation with discrete and continuous spin variables

\[
W_\alpha(\sigma_j, n_j | \sigma_k, n_k) = \frac{\Gamma(\frac{n_k+n_j}{2} + \frac{n_0-\alpha}{2} + \frac{i\sigma_j+i\sigma_k}{2})}{\Gamma(1 + \frac{n_k+n_j}{2} - \frac{n_0}{2} - \frac{i\sigma_j-i\sigma_k}{2})} \cdot \frac{\Gamma(-\frac{n_k+n_j}{2} + \frac{n_0}{2} + \frac{i\sigma_j-i\sigma_k}{2})}{\Gamma(1 - \frac{n_k+n_j}{2} + \frac{n_0}{2} + \frac{i\sigma_j+i\sigma_k}{2})} \times \frac{\Gamma(\frac{n_k+n_j}{2} + \frac{n_0-\alpha}{2} - \frac{i\sigma_j+i\sigma_k}{2})}{\Gamma(1 + \frac{n_k+n_j}{2} - \frac{n_0}{2} + \frac{i\sigma_j-i\sigma_k}{2})} \cdot \frac{\Gamma(-\frac{n_k+n_j}{2} + \frac{n_0}{2} - \frac{i\sigma_j+i\sigma_k}{2})}{\Gamma(1 - \frac{n_k+n_j}{2} + \frac{n_0}{2} - \frac{i\sigma_j-i\sigma_k}{2})}.
\] (4.18)

\(^8\)The shrinking procedure was studied first for four-dimensional theories [50–52] (see also [53–55]).
\[S(\sigma, m) = \frac{1}{2\pi} \frac{\Gamma(m \pm i\sigma + 1)}{\Gamma(m \pm i\sigma)}, \]
(4.19)

\[\mathcal{R}(\alpha, \beta, \gamma) = \frac{\Gamma(\alpha)}{\Gamma(\eta - \alpha)} \frac{\Gamma(\beta)}{\Gamma(\eta - \beta)} \frac{\Gamma(\gamma)}{\Gamma(\eta - \gamma)}. \]
(4.20)

This is exactly the solution found in [20].

4.3 Reduction of \(S^3_b/Z_r \) partition function

In this section we consider the Euler Gamma function limit by taking \(b = 1 \) and \(r \to \infty \) from the solution corresponding to \(S^3_b/Z_r \) partition function. In order to do it, we use the limit from \(S^3_b/Z_r \) to \(S^2 \) partition function.

For \(\omega_1 = \omega_2 = \omega \) performing the asymptotic formula for the \(\gamma^{(2)}(z) \) function, one finds the following formula

\[\gamma_h(z, m; \omega_1, \omega_2) = \lim_{r \to \infty} \frac{r}{2\pi} \left(\frac{z}{2\omega} \right)^{-\frac{r^2}{2} + 1} \frac{\Gamma\left(\frac{r^2}{2} + \frac{m}{2}\right)}{\Gamma\left(1 - \frac{r^2}{2} + \frac{m}{2}\right)}. \]
(4.21)

By normalizing the fugacities as \(z \to \frac{z}{2\omega} \) and \(t_i \to \frac{g_i}{2\omega} \), we obtain the following integral identity

\[\sum_{m=0}^{\infty} \epsilon(m) \int_{-\infty}^{\infty} \frac{dz}{2\pi} \prod_{j=1}^{6} \frac{\Gamma(g_j + iz + \frac{n_j + m}{2})}{\Gamma(1 - g_j - iz + \frac{n_j + m}{2})} \frac{\Gamma(g_j - iz + \frac{n_j - m}{2})}{\Gamma(1 - g_j + iz + \frac{n_j - m}{2})} \times \frac{\Gamma(1 - 2iz + m)}{\Gamma(2iz + m)} \frac{\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)} = \prod_{1 \leq j < k \leq 6} \frac{\Gamma(g_j + g_k + \frac{n_j + n_k}{2})}{\Gamma(1 - g_j - g_k + \frac{n_j + n_k}{2})}. \]
(4.22)

It is not difficult to show that this identity is equivalent to the integral identity (4.16) (see Appendix A), and therefore the identity (4.22) gives the same solution to the star-triangle equation, i.e. one can obtain the solution (1.5)-(1.6).

From the special function point of view, an alternative method leading to the reduction of \(S^3_b/Z_r \) partition function to the \(S^2 \) partition function is described in [34].

Acknowledgement

SJ is thankful to ICTP and Simons Center for Geometry and Physics for warm hospitality during the program “Exactly Solvable Models of Quantum Field Theory and Statistical Mechanics” where some parts of the work was done. The research on this project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (QUASIFT grant agreement 677368) during visit of Ilmar Gahramanov to the Institut des Hautes Etudes Scientifiques (IHES), where some of the research for this paper was performed. This work has supported by BAP Project (no. 2019-26), funded by Mimar Sinan Fine Arts University, Istanbul, Turkey.
A Appendix

Here we present the equality of integral identities (4.16) and (4.22). Noting the definition of the $\epsilon(m)$ function,

$$
\epsilon(m) = \begin{cases}
1 & m = 0 \\
2 & m > 0
\end{cases}
$$

(A.1)

left hand side of (4.22) can be rewritten as

$$
\begin{align*}
2 \sum_{m=1}^{\infty} & \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{\epsilon} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})} \\
+ & \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{6} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})} \\
\end{align*}
$$

(A.2)

As can be observed, the left-most term in above equation remains unchanged if the change of variables $m \to -m$ and $z \to -z$ are made. We make use of this fact and express Eq. A.2 as

$$
\begin{align*}
\sum_{m=1}^{\infty} & \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{\epsilon} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})} \\
+ & \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{6} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})} \\
+ & \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{6} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})} \\
= & \sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dz}{2\pi} \frac{\Gamma(1 - iz + m)\Gamma(1 + 2iz - m)}{\Gamma(-2iz - m)\Gamma(2iz + m)} \prod_{j=1}^{6} \frac{\Gamma(g_j + iz + \frac{m_j + m_j^*}{2})\Gamma(g_j - iz + \frac{m_j - m_j^*}{2})}{\Gamma(1 - g_j - iz + \frac{m_j + m_j^*}{2})\Gamma(1 - g_j + iz + \frac{m_j - m_j^*}{2})}
\end{align*}
$$

(A.3)

A.2 as

(A.4)

(A.5)

(A.6)

and complete the proof.

References

1. V. P. Spiridonov, “Elliptic beta integrals and solvable models of statistical mechanics,” Contemp. Math. 563 (2012) 181–211, arXiv:1011.3798 [hep-th].
2. M. Yamazaki, “Quivers, YBE and 3-manifolds,” JHEP 05 (2012) 147, arXiv:1203.5784 [hep-th].

3. M. Yamazaki, “New Integrable Models from the Gauge/YBE Correspondence,” J. Statist. Phys. 154 (2014) 895, arXiv:1307.1128 [hep-th].

4. I. Gahramanov and V. P. Spiridonov, “The star-triangle relation and 3d superconformal indices,” JHEP 08 (2015) 040, arXiv:1505.00765 [hep-th].

5. A. P. Kels, “New solutions of the star-triangle relation with discrete and continuous spin variables,” J. Phys. A48 (2015) no. 43, 435201, arXiv:1504.05540 [hep-th].

6. M. Yamazaki and W. Yan, “Integrability from 2d $\mathcal{N} = (2,2)$ dualities,” J. Phys. A48 (2015) 394001, arXiv:1504.05540 [hep-th].

7. I. Gahramanov and A. P. Kels, “The star-triangle relation, lens partition function, and hypergeometric sum/integrals,” JHEP 02 (2017) 040, arXiv:1610.09229 [math-ph].

8. I. Gahramanov and S. Jafarzade, “Comments on the multi-spin solution to the Yang-Baxter equation and basic hypergeometric sum/integral identity,” Mod. Phys. Lett. A34,no.18,1950140 (2019), arXiv:1709.00070 [hep-th].

9. S. Jafarzade and Z. Nazari, “A New Integrable Ising-type Model from 2d $\mathcal{N}=\{2,2\}$ Dualities,” arXiv:1907.07148 [math-ph].

10. A. P. Kels and M. Yamazaki, “Lens elliptic gamma function solution of the Yang-Baxter equation at roots of unity,” J. Stat. Mech. 1802 (2018) no. 2, 023108, arXiv:1809.00070 [hep-th].

11. J. Yagi, “Quiver gauge theories and integrable lattice models,” JHEP 10 (2015) 065, arXiv:1504.04055 [hep-th].

12. G. Sarkissian and V. P. Spiridonov, “From rarefied elliptic beta integral to parafermionic star-triangle relation,” JHEP 10 (2018) 097, arXiv:1809.00493 [hep-th].

13. A. P. Kels, “Integrable quad equations derived from the quantum Yang-Baxter equation,” arXiv:1803.03219 [math-ph].

14. A. P. Kels and M. Yamazaki, “Lens Generalisation of τ-functions for the Elliptic Discrete Painlevé Equation,” arXiv:1810.12103 [nlin.SI].

15. I. Gahramanov and S. Jafarzade, “Integrable lattice spin models from supersymmetric dualities,” Phys. Part. Nucl. Lett. 15 (2018) no. 6, 650–667, arXiv:1712.09631 [math-ph].

16. M. Yamazaki, “Integrability as Duality: the Gauge/YBE Correspondence,” arXiv:1808.04374 [hep-th].

17. R. J. Baxter, Exactly Solved Models in Statistical Mechanics. Academic, London, 1982.

18. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, “New solutions of the star triangle relations for the chiral Potts model,” Phys. Lett. A128 (1988) 138–142.

19. R. J. Baxter, “Star-triangle and star-star relations in statistical mechanics,” Int. J. Mod. Phys. B11 (1997) 27–37.

20. A. P. Kels, “A new solution of the star-triangle relation,” J. Phys. A47 (2014) 055203, arXiv:1302.3025 [math-ph].

21. V. V. Bazhanov, A. P. Kels, and S. M. Sergeev, “Quasi-classical expansion of the star-triangle
relation and integrable systems on quad-graphs,” J. Phys. A49 (2016) to appear, arXiv:1602.07076.

22. H. Au-Yang and J. H. H. Perk, “About 30 years of integrable chiral potts model, quantum groups at roots of unity and cyclic hypergeometric functions,” 2016.

23. J. H. Perk and H. Au-Yang, “Yang-baxter equations,” arXiv preprint math-ph/0606053 (2006).

24. A. Tanaka, H. Mori, and T. Morita, “Abelian 3d mirror symmetry on $\mathbb{RP}^2 \times S^1$ with $N_f = 1,”$ JHEP 09 (2015) 154, arXiv:1505.07539 [hep-th].

25. H. Mori and A. Tanaka, “Varieties of Abelian mirror symmetry on $\mathbb{RP}^2 \times S^1,”$ JHEP 02 (2016) 088, arXiv:1512.02835 [hep-th].

26. A. Tanaka, H. Mori, and T. Morita, “Superconformal index on $\mathbb{RP}^2 \times S^1$ and mirror symmetry,” Phys. Rev. D91 (2015) 105023, arXiv:1408.3371 [hep-th].

27. D. N. Bozkurt and I. Gahramanov, “Pentagon identities arising in supersymmetric gauge theory computations,” Teor. Mat. Fiz. 198 (2019) no. 2, 215–224, arXiv:1803.00855 [math-ph].

28. S. Jafarzade, “New Pentagon Identities Revisited,” J. Phys. Conf. Ser. 1194 (2019) no. 1, 012054, arXiv:1812.01325 [math-ph].

29. H. Au-Yang and J. H. Perk, “The large-n limits of the chiral potts model,” Physica A: Statistical Mechanics and its Applications 268 (1999) no. 1-2, 175–206.

30. V. V. Bazhanov, V. V. Mangazeev, and S. M. Sergeev, “Exact solution of the Faddeev-Volkov model,” Phys. Lett. A372 (2008) 1547–1550, arXiv:0706.3077 [cond-mat.stat-mech].

31. S. E. Derkachov and A. N. Manashov, “Spin chains and Gustafsons integrals,” J. Phys. A50 (2017) no. 29, 294006, arXiv:1611.00593 [math-ph].

32. S. E. Derkachov, A. N. Manashov, and P. A. Valinevich, “Gustafson integrals for $SL(2, \mathbb{C})$ spin magnet,” J. Phys. A50 (2017) no. 29, 294007, arXiv:1612.00727 [math-ph].

33. S. Derkachov and A. N. Manashov, “On complex Gamma function integrals,” arXiv:1908.01530 [math-ph].

34. F. Benini, T. Nishioka, and M. Yamazaki, “4d Index to 3d Index and 2d TQFT,” Phys. Rev. D86 (2012) 065015, arXiv:1109.0283 [hep-th].

35. V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129, arXiv:0712.2824 [hep-th].

36. M. Fujitsuka, M. Honda, and Y. Yoshida, “Higgs branch localization of 3d $N = 2$ theories,” PTEP 2014 (2014) no. 12, 123B02, arXiv:1312.3627 [hep-th].

37. F. Benini and W. Pellaerts, “Higgs branch localization in three dimensions,” JHEP 05 (2014) 030, arXiv:1312.6078 [hep-th].

38. F. Nieri and S. Pasquetti, “Factorisation and holomorphic blocks in 4d,” JHEP 11 (2015) 155, arXiv:1507.00261 [hep-th].

39. M. Yamazaki, “Cluster-enriched Yang-Baxter equation from SUSY gauge theories,” Lett. Math. Phys. 108 (2018) no. 4, 1137–1146, arXiv:1611.07522 [hep-th].

40. Y. Imamura and S. Yokoyama, “Index for three dimensional superconformal field theories with general R-charge assignments,” JHEP 1104 (2011) 007, arXiv:1101.0557 [hep-th].
41. S. Kim, “The Complete superconformal index for N=6 Chern-Simons theory,” Nucl. Phys. B821 (2009) 241–284, arXiv:0903.4172 [hep-th].
42. C. Krattenthaler, V. P. Spiridonov, and G. S. Vartanov, “Superconformal indices of three-dimensional theories related by mirror symmetry,” JHEP 06 (2011) 008, arXiv:1103.4075 [hep-th].
43. P. Goddard, J. Nuyts, and D. I. Olive, “Gauge Theories and Magnetic Charge,” Nucl. Phys. B125 (1977) 1–28.
44. Y. Imamura and D. Yokoyama, “S^3/Z_n partition function and dualities,” JHEP 11 (2012) 122, arXiv:1208.1404 [hep-th].
45. F. J. van de Bult, Hyperbolic hypergeometric functions. PhD thesis, University of Amsterdam, 2007.
46. F. Benini and S. Cremonesi, “Partition Functions of N=(2,2) Gauge Theories on S^2 and Vortices,” Commun. Math. Phys. 334 (2015) no. 3, 1483–1527, arXiv:1206.2356 [hep-th].
47. N. Doroud, J. Gomis, B. Le Floch, and S. Lee, “Exact Results in D=2 Supersymmetric Gauge Theories,” JHEP 05 (2013) 093, arXiv:1206.2606 [hep-th].
48. I. Gahramanov and H. Rosengren, “Basic hypergeometry of supersymmetric dualities,” Nucl. Phys. B913 (2016) 747–768, arXiv:1606.08185 [hep-th].
49. V. P. Spiridonov and G. S. Vartanov, “Elliptic hypergeometry of supersymmetric dualities ii. orthogonal groups, knots, and vortices,” Communications in Mathematical Physics 325 (2014) no. 2, 421–486. http://dx.doi.org/10.1007/s00220-013-1861-4.
50. F. A. H. Dolan, V. P. Spiridonov, and G. S. Vartanov, “From 4d superconformal indices to 3d partition functions,” Phys. Lett. B704 (2011) 234–241, arXiv:1104.1787 [hep-th].
51. A. Gadde and W. Yan, “Reducing the 4d Index to the S^3 Partition Function,” JHEP 12 (2012) 003, arXiv:1104.2592 [hep-th].
52. Y. Imamura, “Relation between the 4d superconformal index and the S^3 partition function,” JHEP 09 (2011) 133, arXiv:1104.4482 [hep-th].
53. I. B. Gahramanov and G. S. Vartanov, “Superconformal indices and partition functions for supersymmetric field theories,” in XVIIth Intern. Cong. Math. Phys. 695-703 (2013). 2013. arXiv:1310.8507 [hep-th].
54. I. Gahramanov, “Mathematical structures behind supersymmetric dualities,” Archivum Math. 51 (2015) 273–286, arXiv:1505.05656 [math-ph].
55. I. Gahramanov and G. Vartanov, “Extended global symmetries for 4D N = 1 SQCD theories,” J. Phys. A46 (2013) 285403, arXiv:1303.1443 [hep-th].
56. O. Aharony, S. S. Razamat, and B. Willett, “From 3d duality to 2d duality,” JHEP 11 (2017) 090, arXiv:1710.00926 [hep-th].