Accepted Article

Title: Proline-rich peptides with improved antimicrobial activity against E. coli, K. pneumoniae and A. baumannii.

Authors: Mario Mardirossian, Riccardo Sola, Bertrand Beckert, Dominic W. P. Collis, Adriana Di Stasi, Federica Armas, Kai Hilpert, Daniel Wilson, and Marco Scocchi

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: ChemMedChem 10.1002/cmdc.201900465

Link to VoR: http://dx.doi.org/10.1002/cmdc.201900465
Proline-rich peptides with improved antimicrobial activity against
E. coli, K. pneumoniae and A. baumannii

Dr. Mario Mardirossiana, Riccardo Solaa, Dr. Bertrand Beckertb, Dr. Dominic W. P. Collisc, Adriana Di Stasia, Dr. Federica Armasa, Prof. Dr. Kai HIlpertd, Prof. Dr. Daniel N. Wilsonb, Prof. Dr. Marco Scocchi*a.

Abstract: Proline-rich antimicrobial peptides (PrAMPs) are promising agents to combat multi-drug resistant pathogens due to a high antimicrobial activity, yet low cytotoxicity. A library of derivatives of the PrAMP Bac5(1-17) was synthesized and screened to identify which residues are relevant for its activity. In this way, we discovered that two central motifs -PIRXP- cannot be modified, while residues at N- and C- termini tolerated some variations. We found five Bac5(1-17) derivatives bearing 1-5 substitutions, with an increased number of arginine and/or tryptophan residues, exhibiting improved antimicrobial activity and broader spectrum of activity while retaining low cytotoxicity toward eukaryotic cells. Transcription/translation and bacterial membrane permeabilization assays showed that these new derivatives still retained the ability to strongly inhibit bacterial protein synthesis, but also acquired permeabilizing activity to different extents. These new Bac5(1-17) derivatives therefore show a dual mode of action which could hinder the selection of bacterial resistance against these molecules.

Introduction

Multi-drug resistant (MDR) pathogens are a concerning health problem worldwide that will seriously compromise many medical procedures, from routine to life-saving treatments \cite{1}. Thus, the demand for novel antibacterial drugs with new mode of action is urgent. In this context, antimicrobial peptides (AMPs) have received considerable attention as potential lead compounds for the development of new antibiotics, however, they are often limited by cytotoxic activity and possible non-specific or even undesired interactions within the host’s body \cite{2}. By contrast, the proline-rich antimicrobial peptides (PrAMPs) have potent antimicrobial activity against some of the most alarming bacterial species for MDR infections, such as Klebsiella pneumoniae, Acinetobacter baumannii and Escherichia coli \cite{3,4} and, at the same time, they are generally characterized by a low cytotoxic profile \cite{5}. One reason for this might be that, unlike many AMPs, PrAMPs do not kill bacteria mainly by damaging their membranes \cite{6}, but rather they enter the bacterial cytosol using primarily the inner membrane transporters SbmA, and to a minor extent the MDM complex \cite{7}. Once inside the bacterial cell, many PrAMPs cause a lethal inhibition of protein synthesis by targeting mainly the ribosome \cite{8}. Derivatives of the mammalian PrAMPs Bac7 and Tur1A, as well as of the insect PrAMPs oncocin, pyrrhocoricin, metallokinon and apidaecin, share overlapping binding sites located within the exit tunnel of the ribosome \cite{9}. These PrAMPs inhibit protein synthesis either by blocking the binding of the aminocyl-tRNA to the peptidyltransferase center during translation elongation \cite{6,8} or by trapping the decoding release factors on the ribosome during the translation termination phase \cite{6,8}.

Many studies reduced the length of PrAMPs to lower the cost of synthesis while maintaining their antimicrobial properties \cite{10}. Other studies have characterized fragments, derivatives or dendrimers of PrAMPs by often modifying their amino acid sequence by one or few residues. In addition, the rational design of new PrAMPs was reported (see for example \cite{11}). Synthetic peptide arrays on cellulose support also known as SPOT synthesis (see \cite{11}) allows the easy production of peptide libraries and was successfully applied to insect-derived PrAMPs to broaden their spectrum of activity and improve their antimicrobial properties compared with their native molecules \cite{12}.

Bac5 is a bovine proline-rich cathelicidin, whose mode of action was recently described \cite{9}. Bac5 fragments inhibit bacterial protein synthesis \cite{8} and are mostly active against Gram-negative pathogens \cite{13}, including E. coli, A. baumannii and Salmonella enterica ser. typhimurium \cite{13,14}. The N-terminal 1-17 fragment of Bac5 retained antimicrobial activity and the same overall mechanism of action to inhibit protein synthesis as other PrAMPs \cite{15,16}. However, because of the lack of homology between Bac5 and other PrAMPs, as well as the absence of a structure of Bac5 on the ribosome, it has remained unclear which residues of Bac5 are critical for its translational inhibitory activity.

Here we have prepared three consecutive substitution libraries of Bac5(1-17), a Bac5 fragment with a length compatible with the SPOT-synthesis technique. The Bac5(1-17) peptide was systematically modified to identify key residues for antimicrobial activity. Moreover, by single and multiple residues substitutions, we identified peptides with improved antimicrobial activity and broader spectrum of action due to a moderate membrane permeabilizing effect.

Results

Identification of Bac5(1-17) residues essential for antimicrobial activity

To identify key residues for the antimicrobial activity of Bac5(1-17), an alanine-scan was performed. The seventeen Bac5(1-17) derivatives were tested for their capability to inhibit protein synthesis in vitro using coupled transcription/translation assays \cite{6,7,8,9,11} as well as to inhibit the growth of E. coli cells using minimal inhibitory concentration (MIC) assays in Müller-Hinton broth (MH) (Fig. 1). Ten out of 17 alanine-substituted Bac5(1-17) derivatives did not display any antimicrobial activity (MIC >64 μM). These included alanine-substitutions in almost all the positions of the two repeats of the PI-RPX, whereas the N- and C-terminal residues were more tolerant to substitutions as seen by an MIC comparable to the wild type Bac5(1-17). As expected, a scrambled Bac5(1-17) control

This article is protected by copyright. All rights reserved.
peptide displayed no antimicrobial activity (MIC >64 µM) and did not inhibit protein synthesis in vitro. Generally, the trend of protein synthesis inhibition of the Bac5(1-17) derivatives paralleled the activity in the MIC assay (Fig. 1), e.g. the wild type Bac5(1-17) exhibited 50% inhibition at 10 µM and nearly complete inhibition at 100 µM, similarly to the N- and C-terminal substituted Bac5(1-17) derivatives. By contrast, alanine-substitutions in the PIRXP repeats generated peptides that had little, if any, inhibitory activity at 10 µM and required 100 µM to observe more marked inhibition. These findings suggest that the core PIRXP repeats are critical for interaction of Bac5(1-17) with the ribosome.

Figure 1. In vitro transcription/translation and MIC assays monitoring inhibitory activity of Bac5(1-17) and its derivatives. Transcription/translation reactions (bar graph) were performed in presence of 10 µM (light gray) and 100 µM (dark gray) peptide. The luminescence (RLU%) of the translated luciferase (left hand Y-axis) was normalized using the untreated controls and reported as average and standard deviation of at least three independent experiments. The peptide sequence is given on the X-axis, and the values above each residue refer to the peptide carrying the alanine substitution in that position. The boxed sequences highlight the two PIRXP sequences. The minimal inhibitory concentration (MIC) for the Bac5(1-17) derivatives (line graph with black diamonds) is shown with tested concentrations indicated on right hand Y-axis. Unmodified wild type (wt) and scrambled (scr) Bac5(1-17) peptides were used as controls for both MIC and transcription-translation assays.

SPOT-synthesis screen for Bac5(1-17) derivatives with improved antimicrobial activity

To identify Bac5(1-17) derivatives with improved activity, a SPOT-synthesis was performed where further substitutions were introduced individually at each and every position of the Bac5(1-17) sequence. Specifically, we inserted residues with distinct chemical and physical characteristics, such as Gly (G, no side chain, small), Ser (S, small, polar), Arg (R, large, positively charged, hydrophilic), Pro (P, restricts conformation), Glu (E, medium, negatively charged, hydrophilic), Phe (F, large, aromatic, one ring, hydrophobic) and Trp (W, large, aromatic, two rings, hydrophobic) in every position of the Bac5(1-17) sequence, generating 122 derivatives. The MIC was then determined using E. coli BW25113 in Mueller-Hinton medium (MH) to assess whether the Bac5 derivatives had altered antimicrobial activities compared to the wild type and scrambled Bac5(1-17) peptide used as controls (Table 1). Similar to the alanine-scanning, glycine substitutions within the core of the peptide lead to a loss of antimicrobial activity, whereas substitutions at the N- and C-termini were better tolerated. By contrast, substitutions with Glu, Pro and Ser led to dramatic loss of the antimicrobial activity (MIC 64 µM or greater) regardless of the position, with the single exception of P4S that had an MIC (16 µM) comparable with the wild type. While substitutions with Phe, Trp and Arg were better tolerated, overall only 11 of the 122 derivatives actually displayed stronger antimicrobial activity than the wild type. These included P4 substitutions with Trp, Phe, Arg as well as Gly. In addition, Trp at positions 2, 6, 15, 16 and 17 as well as Arg at positions 9 and 17 led to improved MIC values. Thus, in total substitutions at seven distinct positions (2, 4, 6, 9 and 15-17) led to MIC improvements. Interestingly, three of the seven positions were prolines (P4, P9 and P17), indicating that prolines at these positions are not crucial for the antimicrobial activity of the Bac5(1-17) derivatives.

Table 1. MIC values (µM) of the native Bac5(1-17), of its substitution variants and of a scrambled form against E. coli BW25113.

B5^a	wt^b	scr^c	MIC (µM)					
R₁	32	48	>64	64	64	32		
F₁	16	32	64	64	>64	64	32	
R₄	64	64	64	64	-	>64	64	32
P₄	8	24	16	-	-	>64	8	8
R₆	-	-	-	-	-	-	-	-
P₆	>64	>64	>64	>64	>64	>64	>64	16
L₆	>64	>64	>64	>64	>64	>64	>64	16
P₈	-	-	-	-	-	-	-	-
P₉	>64	>64	>64	-	-	>64	16	16
R₁₂	>64	>64	>64	>64	>64	>64	>64	32
P₁₂	>64	>64	>64	>64	>64	>64	>64	32
P₁₄	>64	>64	>64	>64	>64	>64	>64	32
P₁₆	>64	>64	>64	>64	>64	>64	>64	32
Y₁₆	32	>64	>64	>64	>64	>64	>64	16
P₁₇	16	16	16	-	-	>64	16	16

Grey shades highlight substitutions improving antimicrobial activity compared to the native Bac5(1-17); ^aBac5(1-17) sequence and position numbers; ^bBac5(1-17) wild-type; ^cBac5(1-17) scrambled. The Ala-scan MIC values from Figure 1 are also included in this table for comparison. Results are the median of at least three independent experiments (n≥3). The scrambled peptide (scr) sequence was: FPIRYRPFPFRPRPPipp.
Antimicrobial activity and cytotoxicity of Bac5(1-17) multi-substituted derivatives

The single amino acid substitutions improving the antimicrobial properties of Bac5(1-17) were then combined to design new peptides (Bac5 peptides 265 to 296 in Table 2). This new peptide library was first screened for antibacterial activity against *E. coli* BW25113 and then assayed by a tetrazolium salt assay (MTT) for cytotoxicity toward the human lymphocytic leukaemia cell line MEC-1. A two-fold increase in MIC values was observed for some of the same peptides displayed in Table 1 (from 260 to 264) due to the intrinsic variability of peptide purity among the different SPOT-syntheses. However, with the exception of the peptide 282, all of these derivatives were equally or more active than the wild type Bac5(1-17) with many of them displaying MIC values of 4 µM. Generally, the antimicrobial activity increased with the number of substitutions, such that the single substituted peptides displayed a median MIC of 16 µM, di- and tri-substituted peptides 8 µM, and tetra-substituted peptides 4 µM. Although three penta-substituted peptides displayed a MIC of 4 µM (Bac5(derivatives 291, 293, 294), additional substitutions often led to a worse MIC as seen when comparing 281 with 290 or 282 with 292 (MIC 4 increased to 8 µM) as well as 289 with 296 (MIC 8 increased to 16 µM). Next, the cytotoxicity of the peptide library was assessed by monitoring the viability of human lymphocytic leukaemia cells (MEC-1) treated with 32 µM of each peptide (Table 2). Only two Bac5 peptides (273 and 293) displayed severe cytotoxicity, reducing the viability of treated cells by 32% and 41%, respectively.

Five of the screened peptides were then further characterised. They were representative of a progressively increasing number of substitutions (from 1 to 5), displaying low MIC values and high biocompatibility towards the eukaryotic cells (viability %).

The mono-substituted peptide 258 was selected so as to include an intermediate substitution state linking the wild type Bac5(1-17) and di-substituted peptide 272 (containing P4W and P17R), which was the most promising di-substitute derivative (Table 2). The peptide 278 was selected among the tri-substituted derivatives because of its lower MIC value. Regarding the tetra-substituted peptides, the 281 was preferred over 282 to evaluate the effects of a C-terminal Trp. As last, the peptide 291 had the lowest MIC value and did not display any cytotoxicity (Table 2).

Despite SPOT synthesis provides a powerful initial screening tool, the produced peptides are un-purified. For this reason the five selected Bac5(1-17) derivatives (258, 272, 279, 281 and 291), as well as the wild-type Bac5(1-17), were singularly re-synthesized by resin-based synthesis at >95% purity. For all the subsequent experiments, only highly purified peptides were used.

Table 2. MIC (µM) values measured against *E. coli* BW25113 and effects of 32 µM of the second generation Bac5(1-17) derivatives on MEC-1 cell viability (Viab, % of untreated controls).

Code	Sequence	N° (+)	MIC (µM)	Viab%	Code	Sequence	N° (+)	MIC (µM)	Viab%
wt	RFRPIRPP	+5	32	108	277	RWRPIRPP	+7	8	99
258	RFRPIRPP	+6	8	95	278	RWRPIRPP	+6	4	86
259	RFRRI	+7	8	105	279	RFRPIRPP	+7	8	84
260	RWRPIRPP	+5	16	81	280	RWRPIRPP	+6	4	78
261	RWRPIRPP	+5	8	82	281	RWRPIRPP	+7	4	81
262	RFRPIRPP	+5	32	81	282	RWRPIRPP	+8	4	99
263	RFRPIRPP	+5	16	81	283	RWRPIRPP	+7	4	91
264	RFRPIRPP	+5	16	95	284	RWRPIRPP	+6	4	72
265	RFRPIRPP	+7	8	91	285	RWRPIRPP	+8	8	90
266	RFRPIRPP	+8	16	87	286	RWRPIRPP	+7	4	80
267	RWRPIRPP	+5	16	75	287	RWRPIRPP	+8	8	95
268	RWRPIRPP	+5	8	93	288	RWRPIRPP	+9	16	102
269	RWRPIRPP	+5	8	92	289	RWRPIRPP	+8	8	95
270	RWRPIRPP	+5	8	90	290	RWRPIRPP	+8	8	91
271	RWRPIRPP	+6	4	98	291	RWRPIRPP	+8	4	96
272	RWRPIRPP	+6	4	102	292	RWRPIRPP	+8	8	78
273	RWRPIRPP	+6	12	68	293	RWRPIRPP	+7	4	59
274	RWRPIRPP	+6	8	84	294	RWRPIRPP	+7	4	73
275	RWRPIRPP	+7	8	89	295	RWRPIRPP	+8	8	77
276	RWRPIRPP	+6	8	83	296	RWRPIRPP	+9	16	95

Results of the MIC and cell viability assays are reported as the median or the average, respectively, of at least 3 independent experiments. N° indicates the number of positive charges. The sequences of the peptides selected for synthesis on resin are in bold.
Inhibition of in vitro transcription/translation by five selected Bac5(1-17) derivatives

The ability of the five selected Bac5(1-17) derivatives (258, 272, 279, 281 and 291) to inhibit bacterial protein synthesis was then assessed using an *in vitro* transcription/translation assay based on *E. coli* lysates, and compared with that of the wild-type peptide. Three of the derivatives (258, 272 and 278) displayed inhibitory activity comparable with that of the wild type Bac5(1-17) peptide, with a near complete inhibition of translation occurring at 10 µM (see Figure 2). Importantly, since the antibacterial activities of these peptides were stronger than the wild type Bac5(1-17), this suggests that the improved MIC values arising from the amino acid substitutions is not due to an improved interaction with the ribosome. Indeed, this is emphasized by the 281 and 291 peptides which had superior MIC values (4 µM) and yet were respectively significantly worse and slightly worse inhibitors than then wild type Bac5(1-17) in the transcription/translation assay (Fig. 2). Collectively, these findings suggest that the improved antimicrobial activity of the substituted Bac5(1-17) derivatives compared to the wild type Bac5(1-17) peptide (observed in Table 2) is not due to an improved ability to bind to ribosomes and inhibit the translation (Figure 2).

Membrane-permeabilizing activity of five selected Bac5(1-17) derivatives

The lack of an improved inhibitory activity of the Bac5(1-17) derivatives in the transcription/translation system indicates that their improved antibacterial activity is due to another mode of action. Given the number of introduction of positively charged arginine and tryptophan substitutions into these peptides, an explanation for the improved activity could be that these peptides acquired a membrane-permeabilizing ability. To test this hypothesis, the membrane integrity of *E. coli* cells was assessed in the presence of the selected peptides using flow cytometry measuring the fluorescence of the propidium iodide (PI) uptake by the permeabilized bacterial cells. To evaluate how many bacteria were permeabilized by the peptides, the percentage of the bacterial population becoming positive to PI after exposure to the derivatives was calculated (Fig. 3A). Afterwards, the extent of the membrane damage was estimated by measuring the intensity of fluorescence associated with the permeabilized cells (Fig. 3B). As a control, the wild-type Bac5(1-17) did not display any membrane damaging activity, which is in agreement with the literature and its known mode of action (Fig 3) [11b]. The Bac5 peptides 258, 272 and 278 displayed no permeabilizing effect at 4 µM, however, some membrane-permeabilizing activity was observed for 272 and 278 at higher (16 µM) concentrations (Fig 3). By contrast, 4 µM of the 281 or 291 peptides was sufficient to permeabilize 100% of bacterial cells, to a similar extent as 1 µM colistin, the positive control used for permeabilizing activity [15]. However, it should be noted that even the highest fluorescence intensities measured by the most permeabilizing peptides at 16 µM were still only 20% of that observed for bacteria treated with colistin used at 16-fold lower concentrations (1 µM) (Fig 3B). These results show that the 272 and 278 peptides gained a moderate degree of membrane permeabilization activity observable only at high concentrations, whereas the 281 and 291 peptides exerted permeabilization activity even at low (yet bactericidal) concentrations. By contrast, the wild-type Bac5(1-17) and 258 peptide lacked any permeabilizing activity, even at high peptide concentrations. Collectively, these results suggest that improved antimicrobial activity of the 281 and 291 peptides compared to wild type Bac5(1-17) may result from their newly acquired ability to destabilize the bacterial membrane.

Figure 2. Inhibition of in vitro transcription/translation by selected Bac5(1-17) derivatives. Increasing concentrations of peptides were added to an *E. coli* lysate-based transcription/translation reaction. Luminescence of the firefly luciferase reporter protein produced after 60 min is presented as relative luminescence compared to control samples which lacked peptide, and was normalized as 100%. Error bars represent the standard deviation calculated on the average of at least 5 independent experiments (n=5). *= p-value <0.01 versus the same concentration of the wt peptide (Student t-test).
Influence of SbmA and evaluation of the activity spectrum of Bac5(1-17) derivatives.

Since the membrane integrity assays indicated that the 281 and 291, and to a lesser extent 272 and 278 peptides, exhibited moderate permeabilizing activity, whereas the 258 peptide did not, we were interested in assessing the influence of the SbmA transporter on the antibiotic activity of these peptides. To do this, MIC assays were performed using the *E. coli* BW25113 parental strain as well as the BW25113ΔsbmA strain lacking this inner membrane transporter (Table 3). As expected, Bac5(1-17) displayed antimicrobial activity (MIC 16 μM) against the parental strain, but not against the BW25113ΔsbmA strain (MIC >64 μM), consistent with the essential role of SbmA for the internalization of this peptide [5a]. By contrast, the 272, 278, 281 and 291 peptides all displayed excellent activity against both the parental and ΔsbmA E. coli strain, with only a 2-fold activity reduction being observed in the absence of the transporter (Table 3). This data indicates a mechanism of action that does not require the use of the SbmA transporter. The 258 peptide displayed antimicrobial activity (MIC 8 μM) against the parental strain, but was also ineffective against the ΔsbmA strain (MIC 64 μM), consistent with the lack of permeabilizing activity (Fig. 3).

Overall, the highly purified derivatives 278, 281 and 291 displayed 2-fold lower MIC against *E. coli* BW25113 (Table 3) with respect to the values reported in Table 2 and referred to the same molecules obtained by SPOT synthesis. This difference is most likely due to the lower degree of purity achievable using the latter technique.

The selected five Bac5(1-17) derivatives were further tested against reference and pathogenic strains of *E. coli* as well as ATCC reference strains of clinically relevant Gram-negative pathogens (Table 3) and the Gram-positive *S. aureus*. Remarkably, all peptides with substitutions possessed increased antibacterial activity against one or more strains among the pathogenic bacteria tested. They were highly effective against four different viotypes of *E. coli* isolates from patients (Table 3), in most cases showing MIC values (1-2 μM) comparable or lower than that of the reference strain BW25113. Remarkably, the Bac5 272, 278 and 291 derivatives acquired antimicrobial activity against *K. pneumoniae* and *A. baumannii* strains with MIC values ranging from 4 to 24 μM, while 281 was strikingly prevalently active against *A. baumannii* (MIC 4 μM). *P. aeruginosa* and *S. aureus* were intrinsically resistant to the native Bac5(1-17). However, *P. aeruginosa* was moderately sensitive (MIC 16 μM) to the 278 peptide and weakly sensitive (MIC 32-64 μM) to 272, 281 and 291 peptides. On the other hand, *S. aureus* showed weak sensitivity to 281 and 291 (MIC 32-64 μM) (Table 3). By contrast, the 258 peptide displayed no improvement in antimicrobial activity against these strains, suggesting that the broader spectrum of activity displayed by the other peptides is likely due to their newly acquired moderate membrane-permeabilizing activity. Interestingly, the improvement of antimicrobial activity (reduction of the MIC) often correlated with a reduction in the MBC.

Cytotoxicity of Bac5(1-17) derivatives on MEC-1 cells.

Given the increased membrane-permeabilizing activity and broader spectrum of activity observed by the Bac7(1-17) derivatives, concerns were raised as to the possibility of a corresponding increase in the cytotoxicity of the peptides. To address this, the viability of MEC-1 cells was assessed in the presence of high concentrations (16-64 μM) of each peptide. At the highest concentration tested (64 μM), only the 281 peptide remarkably reduced cell viability, causing an 80% reduction in viability with respect to the untreated control after 24 h incubation (Fig. 4). The other peptides, including the wild type, did not decrease the viability of the cells by more than 20-30%, compared to the untreated control. Interestingly, the 291 peptide, which like the 281 peptide, displayed higher levels of membrane permeabilizing activity, did not reduce cell viability at 32 μM, and exhibited only mild toxic effects (reduction of 5% of the cell viability) even at 64 μM.
Table 3. MIC and MBC of the native Bac5(1-17) (wt) and selected Bac5-derivatives on pathogenic and reference bacterial strains.

Bacteria	MIC (µM)	MBC (µM)
	wt 258 272 278 281 291	wt 258 272 278 281 291
E. coli BW25113	16 8 4 2 2 2	>64 64 8 4 2 8
E. coli BW25113ΔsbmA	>64 64 8 8 4 4	>64 >64 >64 >64 >64 >64
K. pneumoniae ATCC 700603	>64 >64 24 16 64 4	>64 >64 >64 >64 >64 >64
A. baumannii ATCC 19606	>64 64 8 4 2 8	>64 64 16 8 8 16
P. aeruginosa ATCC 27853	>64 >64 64 16 32 32	>64 >64 64 >64 64 64
S. aureus ATCC 25923	>64 >64 >64 >64 32 64	>64 >64 >64 >64 32 64
E. coli EURL-VTEC A07 EPEC:O111	16 8 2 1 2 2	- - - - - -
E. coli EURL-VTEC C07 STEC:O157	>64 >64 8 8 2 2	- - - - - -
E. coli SSI-NN14 ETEC	2 2 1 1 2 1	- - - - - -
E. coli EA22 ETEC	2 2 1 1 2 1	- - - - - -
E. coli SSI-OO15 EIEC	16 4 1 1 1 1	- - - - - -
E. coli C679-12 EAEC:0104	16 8 2 2 2 2	- - - - - -

MIC and MBC were carried out in MH medium. Results are the median of at least 3 independent experiments (n=3).

Discussion

Here we identified the amino acid residues of the PrAMP Bac5(1-17) that are crucial for the inhibition of the bacterial protein synthesis and viability against E. coli. Then, we combined selected residue substitutions obtaining Bac5(1-17) derivatives with increased antibacterial potency and displaying broader spectrum of activity. Firstly, we showed that Bac5(1-17) does not tolerate single residue substitutions in the two -PIRR/PP-repeats of the central regions (residues 5-14) that often reduced or abolished the antimicrobial activity of Bac5(1-17) (see Table 1). Substitutions in the -PIRR/PP-sequences impaired in parallel also the inhibition of the protein...
Toxicity was only
increased progressively from the non-destabilizing Bac5(1-17) region which did not cause loss of activity (Table 1). P9R substitution makes Bac5(1-17) more similar to the other PrAMPs showing a conserved arginine in that position, ISW introduces a stericly bulky group in a position corresponding to a tyrosine or arginine in the other AMPs. Structural studies will be necessary to understand the meaning of these modifications.

Peptide	Sequence
Bac5(1-17) | RRPPIPRPFPYPRPYPFPYPRPYPFP
Tur1A(1-16) | RRPPIPRPFPYPRPYPFPYPRPYPFP
Bac7(1-16) | RRPPIPRPFPYPRPYPFPYPRPYPFP
Metalnikowin-1 | VKPYPYPRPFPYPRPYPFPYPRPYPFP
Pyrrhocorin | VKKALPYPYPRPYPFPYPRPYPFPYPRPYPFP
Onc112 | VKKALPYPYPRPYPFPYPRPYPFPYPRPYPFP

Figure 5. Sequence alignment between Bac5(1-17) and other ribosome-targeting PrAMPs. In bold are the amino acids conserved at least in four different PrAMPs. The grey box indicates the PRR/P regions of Bac5(1-17). D-amino acids in Onc112 are indicated by lowercase letters.

We showed previously that the shortening of the Bac5(1-17) sequence affected its antimicrobial activity [16, 18], leading to the assumption that the N- and C-termini were non-modifiable without a dramatic loss of activity. However, here we found that the ends of Bac5(1-17) sequence can be changed, sometimes even improving the antibacterial activity. Generally, residue substitutions with R or W in the peptide termini fostered the antibacterial potency of Bac5(1-17). Their simultaneous introduction into new peptides sometimes resulted in further improvements of the antimicrobial activity. It is worth noting that these improvements are most likely due to a gain in the capability of the PrAMPs to mildly affect membrane stability. This effect increased progressively from the non-destabilizing Bac5(1-17) and B5 peptide 258, to the more permeabilizing and more potent 281 and 291 derivatives (Table 3, Fig. 3). The peptides 272 and 278 fell in-between, acquiring membrane destabilizing activity in the range of concentrations tested. In each case, the membrane destabilizing effects of the more effective 281 and 291 peptides are far from that exhibited by the peptide antibiotics colistin, used as a reference for a potent lytic antibacterial compound [27]. However this could be sufficient to promote the efflux of ions and metabolites from the bacterial cells negatively affecting the viability of bacteria.

Interestingly, although these peptides gained a moderate activity on the membrane, they also maintained an unchanged efficacy in targeting the bacterial protein synthesis. Bac5 peptide 281 was the only peptide that exhibited a significantly decreased inhibitory effect on the protein synthesis, maintaining however a relevant antimicrobial potency, that may prevalently rely on its permeability mechanism. Apart from this exception, the other four peptides might exert a dual mode of action, since they could both cross the bacterial membrane, as suggested by their reduced dependency on the bacterial transporter SbmA, efficiently inhibiting protein synthesis and destabilizing at the same time the bacterial membrane. The latter effect is more relevant at high concentrations. A dual mode of action (membrane destabilization and protein synthesis inhibition) would represent an added value for the antimicrobial potential of these peptides because it makes the selection of bacterial resistance more difficult.

The selected five Bac5(1-17) derivatives display also a wider spectrum of activity, becoming active against pathogenic strains of A. baumannii, K. pneumoniae and E. col. The antibacterial activity was tested by using the antibiotic reference medium Mueller-Hinton broth without any dilution and no other “poor” media as often reported in the literature [19]. This was done to increase the robustness of these results but also to use a standardized method, to make the comparison with other antimicrobials possible. Bac5 derivatives are likely to exploit the SbmA homologue of the E. col to enter bacterial cells of A. baumannii and K. pneumoniae [28] but this is not sufficient to explain their activity, albeit weak, against P. aeruginosa and S. aureus, both lacking SbmA. A membrane destabilizing activity that provides SbmA-independent mechanism had been already described in P. aeruginosa for the mammalian PrAMP Bac7(1-35) and for the insect-derived Apideaecins [19]. This would be in agreement with the membrane destabilizing effect observed in this study. Further studies will be necessary to elucidate the mode of action of these peptides on bacterial species different than E. coli.

The improvement in antimicrobial potency and activity spectrum of Bac5(1-17) derivatives is not followed by a parallel increase in toxicity towards eukaryotic cells. Toxicity was only observed at concentrations well above the MIC and MBC values for 4 out of the 5 peptides. The peptide 281 was the only one displaying considerable cytotoxicity and this may be due to its hydrophobic C-terminus and to its distinct mode of action to permeabilize membranes, and hence to be less selective for bacteria. By contrast, the 291 peptide was not only potent, but also non-toxic, even at 64 μM, and thus could be promising as lead compound for new drugs.

Conclusions

In conclusion, we identified Bac5(1-17) derivatives that combine a broad spectrum of activity and a low MIC against relevant pathogens with low cytotoxicity. These peptides are as effective against E. coli and other pathogens as the most potent known Bac5 fragment, i.e. the Bac5(1-25) [18], but have the advantage of being shorter, having a wider activity spectrum as well as a dual mechanism of action. The optimization of mammalian PrAMPs by SPOT-synthesis provided small, less expensive and more effective molecules to be developed as second-generation antibiotics.

Experimental Section

Peptides synthesis

Peptides libraries were prepared by SPOT-synthesis using a MultiPep RSI peptide synthesizer (Intavis, Germany), by adapting reported protocols [13]. The cellulose membrane (10 cm x 15 cm) was functionalised overnight in 0.2 M Fmoc-Gly-OH (Aldrich), 0.24 M N,N-disopropylcarbodiimide (DIC, Fluka) and 0.4 M N-methylimidazole (NMI, Aldrich) in dimethylformamide (DMF, VWR). Then, the glycine was deprotected in 20% piperidine (v/v, Acros Organics) in DMF (20 min + 10 min). Peptide synthesis was automatically performed at discrete spots using 9-fluorenylmethoxycarbonyl/tert-butyl (Fmoc/Ibu) strategy. For the first cycle, a spotting volumes of 0.8 μl was used, then increased to 0.9 μl for the...
following cycles. After the synthesis and final deprotection, an overnight incubation was performed in a saturated ammonia gas atmosphere to cleave the peptide amides from the solid support. Yield and quality of the synthesis were determined using HPLC/MS analysis on control peptides at different positions on the membranes. Individual SPOTS (O2=6 mm) were punched-out from the membrane, transferred into a round-bottomed sterile 96-well polypropylene microtiter plate and incubated overnight at room temperature in 200 μl of sterile water. Peptides concentration was measured by absorbance at 280 nm using a NanoDrop 1000 spectrophotometer. Control peptides were subjected to analytical RP-HPLC on a Shim-pack VP-ODS column (120 Å, 150×4.6 mm, Shimadzu) using a LC2010AHT system (Shimadzu) and 0.1% (v/v) TFA in H2O (HPLC-grade, VWR, solvent A) and 0.1% (v/v) TFA in acetonitrile (HPLC-grade, VWR, solvent B). A flow rate of 1 ml min^{−1} was applied to a linear gradient of 5% to 70% solvent B in 32.5 min with an initial 3-min isocratic equilibration. The crude control peptides were <60% pure. To remove TFA, peptides were re-suspended in 200 μl of 10 mM HCl and re-lyophilised. Afterwards the peptide pellets were resuspended in 50 μl of sterile water, quantified at 214 nm by a Nanodrop 2000. The in-house-made program ConcCalc was used to calculate the molar coefficient at 214 nm of each peptide using the values reported^[89]. Bac_s(1-17), 272, 278, 281 and 291 peptides (±95% pure) were purchased by NovoPro (China) and their identity was checked by mass spectrometry. Peptides characterization is available as supplementary materials. The peptides were then lyophilized from 10 mM HCl three times to remove TFA and quantified spectrophotometrically as above.

Bacterial culture

The following bacterial strains were used: *Escherichia coli* BW25113, *E. coli* BW25113ΔsbmA (JW0368-1, KEIO collection^[29]); *Acinetobacter baumannii* ATCC 19606, *Klebsiella pneumoniae* ATCC 700603, *Pseudomonas aeruginosa* ATCC 27853 and *Staphylococcus aureus* ATCC 25923. The pathogenic *E. coli* EURL-VTEC A07, *E. coli* EURL-VTEC C07, *E. coli* SSI-NN14, *E. coli* EA22, *E. coli* SSI-O015 and *E. coli* C679-12 strains were generously provided by the European Union Reference Laboratory for *E. coli*, Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy. All the strains were grown overnight in Müller-Hinton broth (MHB, Difco) at 37°C, with shaking (140 rpm). The day after, the overnight bacterial cultures were diluted approximately 1:40 in fresh MHB and incubated at 37°C with shaking (140 rpm) until an OD₆₀₀ = 0.3 was reached. *E. coli* BW25113ΔsbmA was grown similarly, but in the presence of 50 μg ml^{−1} kanamycin.

Minimum inhibitory concentration (MIC) determination

Peptides were diluted in 100 μL of MHB to the concentration of 128 μM, dispensed in the first wells of a 96-wells microtiter plate (round-bottom) and serially two-fold diluted with MHB into successive wells in a final volume of 50 μl. Subsequently, 50 μl of a bacterial suspension (5×10⁵ CFU ml^{−1}) were added to each well, halving the final concentration of bacteria and peptides. Bacteria were added to MHB only as bacterial growth-control, whereas 100 μl of MHB were used to check the medium sterility. The plate was incubated overnight at 37°C (18 hours) and sealed with parafilm to minimise evaporation. The MIC was calculated as the first well clear without bacterial growth. If barely detectable growth was present, the OD₆₀₀ of the plate was measured by a multiplate reader Tecan (software Sunrise). The MIC was then calculated as the well whose OD₆₀₀ was ≤ 1% of that of the untreated growth control.

Cytotoxicity assay

The tetrazolium salts test (MTT) was used. Cells of the human line of B lymphocytes precursors MEC-1 were exposed to peptides. RPMI (Sigma) + 10% Fetal Bovine Serum (FBS, Sigma) + 2 mM Glutamine + 100 U ml^{−1} penicillin + 100 μg ml^{−1} streptomycin was used as growth medium. Serial two-fold dilutions of the peptides were prepared in a 96- flat-bottom microtiter plate (Euroclone) in a final volume of 50 μl of cell growth medium. Cells were counted using a Bürker chamber, then 50 μl of medium containing 10⁴ cells were added to each well, to reach a final volume of 100 μl. Sterile water instead of peptides was used as a control. Cells were incubated for 20 hours at 37°C and 5% CO₂. 25 μl of a sterile MTT solution (Sigma) in PBS were added to each well to the final concentration of 1 mg ml^{−1}. Following 4 hours of incubation in the dark at 37°C under 5% CO₂, 100 μl of 10% w/v Igepal (Sigma-Aldrich) in 10 mM HCl were added to each well. The plate was incubated overnight at 37°C then the absorbance at 570 nm (A₅₇₀) of the wells was measured using a plate-reader spectrophotometer Nanogen constant infinite M200pro (Tecan). To calculate cytotoxicity, the value of A₅₇₀ of the treated samples was compared with that of the untreated control.

Assessment of bacterial membrane integrity

The bacterial cell integrity was controlled evaluating the propidium iodide (PI) uptake by flow-cytometry on a Cytomics FC 500 (Beckman-Coulter). 10⁶ bacterial cells were acquired for each measurement. Mid-log phase *E. coli* BW25113 cultures diluted to 10⁶ CFU ml^{−1} in MHB were exposed for 30 min to 4 μM and 16 μM peptides at 37°C in the presence of 10 μg ml^{−1} PI. Membrane permeabilization was calculated as the % of PI-positive cells, and membrane damage was calculated measuring the mean fluorescence intensity (MFI) of the cell population. An untreated control received sterile water instead of peptides. On the contrary, bacteria were treated with 1 μM colistin as a permeabilizing control. Data are reported as the average ± standard deviation of three independent experiments.

In vitro transcription/translation assay. *Escherichia coli* lysate-based transcription-translation coupled assay (RTS100, Biotech Rabbit) were performed as described previously^[6, 8, 8a] 6 μl reactions, with or without peptide were mixed according to the manufacturer’s protocol and incubated for 1 h at 30°C with shaking (750 rpm). The reaction was then stopped by adding 5 μl kanamycin (50 μg ml^{−1}). All samples were diluted with 40 μl of Luciferase assays substrate (Promega) into a white 96-well chimney flat bottom microtiter plate (Greiner). The luminescence was then measured using a Tecxan Infinite M200 plate reader. The relative values were determined by defining the luminescence value of the sample without inhibitor as 100%. All the experiments were performed in independent tri-replicates.

Acknowledgements

We acknowledge M. Benincasa (University of Trieste) for technical assistance in flow-cytometry. This work has been supported by the following grants: FRA2016 supported by University of Trieste and the project “Made in Trieste” by Area Science Park (Trieste) for M. Scocchi, K. Hilpert thanks the Institute of Infection and Immunity for a start-up grant. This project was supported by the Deutsche Zentrum für Luft-und Raumfahrt (DLR01K1820 to D.N. Wilson) within the RIBOTARGET consortium under the frame of JPI AMR.
Conflict of interest
K. Hilpert and D. P. W. Collis are part of the company Tika Diagnostic, London, UK.

References
[1] C. L. Ventola, P T 2015, 40, 277-283.
[2] a) M. Mahlapuu, J. Hakansson, L. Ringstad, C. Bjorn, Front Cell Infect Microbiol 2016, 6, 194; b) K. Yu, B. F. Lai, J. Gani, R. Mikut, K. Hilpert, J. N. Kizhakkedat, Biomaterials 2015, 69, 201-211.
[3] M. Scocchi, A. Tossi, R. Gennaro, Cell Mol Life Sci 2011, 68, 2317-2330.
[4] A. Pomplio, M. Scocchi, S. Pomponio, F. Guida, A. Di Primio, E. Fiscarelli, R. Gennaro, G. Di Bonaventura, Peptides 2011, 32, 1807-1814.
[5] a) M. Mattuzzo, A. Bandiera, R. Gennaro, M. Benincasa, S. Piacenza, N. Anticheva, M. Scocchi, Mol Microbiol 2007, 66, 151-163; b) A. Križsan, D. Knape, R. Hoffmann, Antimicrob Agents Chemother 2015, 59, 5992-5998.
[6] a) M. Mardiriossian, R. Grzelia, C. Giglione, T. Meinell, R. Gennaro, P. Mergaert, M. Scocchi, Chem Biol 2014, 21, 1639-1647; b) A. Križsan, D. Volke, S. Weinert, N. Strater, D. Knape, R. Hoffmann, Angew Chem Int Ed Engl 2014, 53, 12236-12239; c) M. Scocchi, C. Lüthi, P. Decardi, G. Migonega, P. Christen, R. Gennaro, International Journal of Peptide Research and Therapeutics 2009, 15, 147-155; d) G. Kragol, S. Lovas, G. Varadi, B. A. Condie, R. Hoffmann, L. Otvos, Jr., Biochemistry 2001, 40, 3016-3026; e) M. Cassone, P. Voglati, R. La Montagna, V. De Oliveira Inacio, P. Cudic, J. D. Wade, L. Otvos, Jr., Peptides 2008, 29, 1878-1886; f) M. Mardiriossian, G. Barriere, T. Timchenko, C. Muller, S. Pacor, P. Mergaert, M. Scocchi, D. N. Wilson, Antimicrob Agents Chemother 2018, 62, 7; g) M. Taniguchi, A. Ochiai, H. Kondo, S. Fukuda, Y. Ishiyama, E. Saitoh, T. Kato, T. Tanaka, J Biosci Bioeng 2016, 121, 591-598; h) L. Tomasinsig, M. Scocchi, R. Mettulio, M. Zanetti, Antimicrob Agents Chemother 2004, 48, 3260-3267.
[7] a) T. Florin, C. Maracci, M. Graf, P. Karki, D. Klepacki, O. Beminghausen, R. Beckmann, N. Vazquez-Laslop, D. N. Wilson, M. V. Rodinia, A. S. Markin, Nat Struct Mol Biol 2017, 24, 752; b) M. Graf, M. Mardiriossian, F. Nguyen, A. C. Seefeldt, G. Guichard, M. Scocchi, C. A. Innis, D. N. Wilson, Nat Prod Rep 2017, 34, 702; c) M. Mardiriossian, N. Perekaskine, M. Benincasa, S. Gambato, S. Hoffmann, P. Huter, C. Muller, K. Hilpert, C. A. Innis, A. Tossi, D. N. Wilson, Cell Chem Biol 2018, 25, 530.
[8] a) A. C. Seefeldt, M. Graf, N. Perekaskine, F. Nguyen, S. Arezn, M. Mardiriossian, M. Scocchi, D. N. Wilson, C. A. Innis, Nucleic Acids Res 2016, 44, 2429-2438; b) A. C. Seefeldt, F. Nguyen, S. Antunes, N. Perekaskine, M. Graf, S. Arezn, K. K. Kamputu, C. Douat, G. Guichard, D. N. Wilson, C. A. Innis, Nat Struct Mol Biol 2015, 22, 470-478; c) M. G. Gagnon, R. N. Roy, I. B. Lomakin, T. Florin, A. S. Markin, T. A. Steltz, Nucleic Acids Res 2016, 44, 2429-2450; d) R. N. Roy, I. B. Lomakin, M. G. Gagnon, T. A. Steltz, Nat Struct Mol Biol 2015, 22, 466-469.
[9] K. Matsumoto, K. Yamazaki, S. Kawakami, D. Miyoshi, T. Ooi, S. Hashimoto, T. Taguchi, Sci Rep 2017, 7, 12136.
[10] M. D. Seo, M. S. Won, J. H. Kim, T. Mishig-Ochir, B. J. Lee, Molecules 2012, 17, 12276-12286.
[11] a) L. Otros, Jr., J. D. Wade, F. Lin, B. A. Condie, J. Hannrieder, R. Hoffmann, J Med Chem 2005, 48, 5349-5359; b) M. Mardiriossian, R. Sola, M. Degasperi, M. Scocchi, ChemMedChem 2019, 14, 343; c) M. Benincasa, M. Scocchi, E. Podda, B. Skerlavaj, L. Dolzani, R. Gennaro, Peptides 2004, 25, 2055-2061; d) D. Knape, S. Plantavigna, A. Hansen, A. Mecher, A. Binas, O. Nolte, L. L. Martin, R. Hoffmann, J Med Chem 2010, 53, 5240-5247; e) D. Knape, C. Stegemann, A. Nimpfisch, A. Kolobov, Jr., E. Korableva, O. Shamo, V. N. Kokryakov, R. Hoffmann, Adv Exp Med Biol 2009, 611, 395-396.
K. Hilpert, D. F. Winkler, R. E. Hancock, Nat Protoc 2007, 2, 1333-1349.
[13] a) M. E. Bluhm, D. Knape, R. Hoffmann, Eur J Med Chem 2015, 103, 574-582; b) D. Knape, S. Ruden, S. Langanke, T. Tikkij, J. Ritter, R. Mikut, L. L. Martin, R. Hoffmann, K. Hilpert, Amino Acids 2016, 48, 269-280; c) P. K. Lai, K. Geldart, S. Ritter, Y. N. Kaznessis, B. J. Hackel, Mol Syst Des Eng 2018, 3, 930-941; d) P. M. Lopez-Perez, E. Grimsey, L. Baurke, R. Mikut, K. Hilpert, Front Chem 2017, 5, 25.
Y. Tokunaga, T. Nidome, T. Hatateyama, H. Aoyagi, J Pept Sci 2001, 7, 297-304.
G. Kragol, R. Hoffmann, M. A. Chattergoon, S. Lovas, M. Cudic, P. Builet, B. A. Condie, J. K. Rosengren, L. J. Montaner, L. Otvos, Jr., Eur J Biochem 2002, 269, 4226-4337.
D. Knape, M. Zahn, U. Sauer, G. Schiller, N. Strater, R. Hoffmann, ChemBioChem 2011, 12, 874-876.
L. Porel, A. Jayol, P. Nordman, Clinical Microbiology Reviews 2017, 30, 557-596.
I. Wiegand, K. Hilpert, R. E. Hancock, Nat Protoc 2008, 3, 163-175.
A. G. Runt, M. Benincasa, G. Giuftrida, G. Devescovi, V. Venturi, R. Gennaro, M. Scocchi, Antimicrob Agents Chemother 2017, 61; b) M. E. Bluhm, V. A. Schneider, I. Schafer, S. Plantavigna, T. Goldbach, D. Knape, P. Seibel, L. L. Martin, E. J. Veldhuizen, R. Hoffmann, Front Cell Dev Biol 2016, 4, 39.
B. J. H. Kuipers, H. Gruppen, J Agr Food Chem 2007, 55, 5445-5451.
T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita, B. L. Wanner, H. Mori, Mol Syst Biol 2006, 2, 20060008.
Keywords

Antibiotics, membrane permeabilization, proline-rich antimicrobial peptide, protein synthesis inhibition, solid-phase synthesis

Entry for the Table of Contents

By screening a library of derivatives of the Proline-rich Antimicrobial Peptide Bac5 (1-17), we identified the amino acids that are crucial for its antimicrobial activity. These data lead to design new derivatives of Bac5 (1-17) with improved effect, wider activity spectrum against bacterial pathogens and very low cytotoxicity. These new agents possess a dual mechanism of action useful to hinder the development of bacterial resistance mechanisms.