Materials Research Express

PAPER

Modulation of the optical properties of transition metal doped PbSe quantum dots in silicate glasses

Belay Brehane Tesfamariam1 and Janaki Ramulu P1,2

1 Department of Materials Science and Engineering, Adama Science and Technology University (ASTU), Adama, Ethiopia
2 Associate Professor, Center of Excellence for Advanced Manufacturing Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University (ASTU), Adama, Ethiopia

E-mail: bellove22@gmail.com and perumalla.janaki@astu.edu.et

Keywords: lead chalcogenides, photoluminescence, blue-shift, bandgap, transition metal

Abstract

Optical properties of lead chalcogenide quantum dots (QDs) can be controlled by tuning its bandgaps. We prepared silicate glasses using the melt-quenching method and heat-treated 510 °C–540 °C for 10 h to precipitate transition metal ions into PbSe QDs. Transition metals oxide such as TiO, MnO & NiO were used in our experiment due to relative ease of incorporation of Ti^{2+}, Mn^{2+}, or Ni^{2+} ions in PbSe crystal structure lattice compared to rare-earth ions. Emission spectra of PbSe QDs were tuned in a wide wavelength range through changing concentration of transition metals oxide in glasses. For instance, photoluminescence bands of $\text{Pb}_{1-x}\text{Ti}_x\text{Se}$ QDs moved from 1890 nm to 1625 nm with increasing TiO from 0.0 to 0.5 mol% at heat treatment 530 °C for 10 h. Absorption bands of QDs also shifted to shorter wavelength sides as concentration of TiO or MnO increased under constant thermal treatment conditions mainly due to the change in the bandgap of QDs. However, absorption & PL peaks moved to longer wavelength sides (red-shifted) with increasing the duration of thermal annealing while keeping the amount of transition metal oxides constant mainly due to enlargement of the QDs sizes with thermal treatment. Tunable optical properties of QDs make them a promising candidate for various photoelectric devices, for example, fiber-optics amplifiers in optical communication and fiber lasers.

1. Introduction

Semiconductor quantum dots (QDs) have attracted considerable attention due to their unique properties which are caused by quantum confinement effects. Typically, lead chalcogenide (PbX, where $X = \text{Se}, \text{S}, \text{Te}$) have given great attention for their tunable infrared luminescence in a wider range due to their narrow bandgap and strong quantum confinement effect [1–3]. Tunable optical properties of QDs make them useful in broad applications typically PbSe/PbS QDs doped glasses are a promising candidate for optical communication fiber amplifiers [4–8] and fiber lasers [9]. Organic-inorganic hybrid perovskite (CH$_3$NH$_3$PbX$_3$, $X = \text{Cl}, \text{Br},$ or I) quantum dots have also shown superior optoelectronic properties and huge potential for next-generation displays and lighting [10]. Diluted magnetic semiconductors (DMS) are also expected to be key materials for future spintronic devices [11–15]. For practical applications, QDs should be incorporated into glasses or solid matrices because they are chemically and mechanically stable. It is also a necessary accurate tune of QDs size and spatial distribution in glasses for a desire optical property. Precise control QDs size in the glass matrix is difficult using heat treatment process [16]. Thus, it is necessary to control the optical properties of QDs without large changing QDs size. Incorporation of transition metals (TM) ions into IV-VI QDs crystal structure can tune the bandgap of alloyed QDs [17–19] with sizes remained mostly unaffected. The bandgap of PbSe QDs increased with increasing transition metal ions in QDs at constant thermal treatment [20]. Thus, photoluminescence bands of alloyed QDs are shifted with a change of bandgap of QDs at a uniform thermal treatment schedule. The solubility limit of dopant transition metal ions in QDs might lead to limits the spectral range of QDs.
In this paper, we report the effect of transition metal ions (such as Ti$^{2+}$, Mn$^{2+}$, Ni$^{2+}$) incorporation in PbSe QDs on optical properties at constant thermal treatment, and also varying thermal treatment temperature. We expect transition metal ions (Oxidation 2^+ ions) relatively easy to incorporate into PbSe quantum dots compared to rare-earth (RE) ions.

2. Experimental procedures

2.1. Glass specimens preparation
The nominal composition of silicate glass specimens [20] with addition of transition metal oxides (such as TiO, MnO/NiO) up to 0.5 mol% was prepared by conventional melt-quenching method at 1300 °C for 30 min under ambient atmosphere. Glasses were heat-treated from 510 °C to 540 °C for 10 h to precipitate QDs. Glass specimens size of 5 mm × 5 mm × 1.5 mm were prepared and then polished all their surfaces for optical and structural measurements.

2.2. Characterization of optical & magnetic properties of alloyed QDs doped glasses
UV/Vis/NIR spectrophotometer (Lambda 750S, Perkin Elmer, Shelton, CT) and $\lambda = 800$ nm excitation beam from Ti-Sapphire laser pumped by a 532 nm laser were used to measure the optical absorption and photoluminescence (PL) spectra respectively. X-ray diffractometer (D/MAX-2500/PC) and High-Resolution Transmission Electron Microscope (HRTEM, JEOL, JEM-2200FS) measurements were used to analyze the formation of QDs in the as-prepared & heat-treated glasses, and characterize its nanostructure. Precipitation of transition metal ions incorporated QDs in a glass was verified using a Magnetic Force Microscopy (MFM) image, a Scanning Probe Microscopy (SPM) system (AFM/MFM/STM Base, VEECO dimension 3100 + Nanoscope Version 7.0). MFM measurement was also used to study the magnetic moments of transition metal ions into NCs in glasses, namely: Pb$_{1-x}$MnxSe NCs or Pb$_{1-x}$Co$_x$Se NCs [21, 22]. Thus, we prepared glass specimens with addition of 0.5 mol% titanium oxide (TiO) and then heat-treated 530 °C for 10 h for MFM measurement. Titanium ions (Ti$^{2+}$) ([Ar] 3d2 configuration) migration into host PbSe QDs was assessed by Electron Paramagnetic Resonance (EPR) technique. Absorption of electromagnetic radiation was measured by placing these powder samples into a strong magnetic field region of the EPR spectrometer, constant frequency (v) 9.12 GHz, and power 0.998 mW by varying magnetic field (B_0).

3. Results and discussion

3.1. Optical properties of glass contain Pb$_{1-x}$TM$_x$Se QDs, (TM = Ti, Mn, Ni)
As-prepared glass specimens’ colors were yellow; they were changed to black after heat-treated from 510 °C to 540 °C for 10 h. At HT 530 °C for 10 h, optical absorption bands of QDs blue-shifted from 1774 nm to 1467 nm with increasing titanium oxide concentration, [TiO], from 0.0 to 0.5 mol% (figure 1(a)). Similarly, photoluminescence (PL) bands of QDs also shifted from 1890 nm (without TiO) to 1625 nm at [with

![Image](image.jpg)
TiO = 0.5 mol% (figure 1(b)). In our previous study [20], we reported PL intensities of Pb₁₋ₓTiₓSe QDs increased with increasing [TiO] in glasses.

We calculated the diameter of QDs using the Brus equation [23] and its diameter decreased slightly from 6.74 nm to 5.22 nm with [TiO] increased from 0.0 mol% to 0.5 mol% in glasses (table 1). These results infer the shifting of absorption bands from 1774 nm to 1467 nm is not mainly due to a decrease in QDs sizes. However, absorption bands shifted mainly due to the change in the bandgap of Pb₁₋ₓTiₓSe QDs with TiO addition. A similar observation was also observed in previous articles [20, 24].

The results show the center wavelengths of absorption and PL bands moved to shorter wavelength sides as [TiO] increased from 0.0 to 0.5 mol% at constant HT 530 °C/10 h. However, absorption & PL bands moved to longer wavelength sides (red-shifted) with increasing thermal annealing while keeping the amount of transition metal oxides constant mainly due to enlargement of the QDs sizes with thermal treatment (figures 2(a)–(c)). For instance, optical absorption bands of Pb₁₋ₓTiₓSe QDs with [TiO] = 0.2 mol% shifted from 1417 nm to 1703 nm.
with HT increased from 510 °C to 540 °C for 10 h. Similarly, PL bands red-shifted to 1801 nm with HT increased to 540 °C/10 h (figure 2(a)). Likewise, optical absorption bands of Pb1-xMnxSe QDs with Manganese oxide [MnO] = 0.2 mol% shifted from 1476 nm to 1831 nm as HT increased from 510 °C to 540 °C for 10 h, and PL bands also red-shifted to 1894 nm as HT increased to 540 °C/10 h; this shift indicates that QDs size increased with thermal treatment (figure 2(b)).

At constant HT 540 °C/10 h, absorption & PL spectra of PbSe QDs were also shifted as a function of transition metals ions (Ti²⁺/Mn²⁺/Ni²⁺) embedded into the crystal structure QDs (table 2). We expected bandgap of alloyed QDs were changed depending on the solubility limit of these dopant ions in host QDs.

N.B. The concentration of transition metal oxides (0.2 mol%) & heat treatment (540 °C/10 h) constant for all glasses.

Table 2. Optical absorption & PL spectra of Pb1-xTMxSe QDs in glasses with a different type of transition metal oxides (such as TiO/MnO/NiO) addition.

Type of Pb1-xTMxSe QDs	Abs. (nm)	PL (nm)	Calculated diameter (nm)
PbSe QDs	1850	1900	7.26
PbSe QDs with 0.2% Ti²⁺	1703	1801	6.46
PbSe QDs with 0.2% Mn²⁺	1831	1894	7.16
PbSe QDs with 0.2% Ni²⁺	1956	1991	7.87

with HT increased from 510 °C to 540 °C for 10 h. Similarly, PL bands red-shifted to 1801 nm with HT increased to 540 °C/10 h (figure 2(a)). Likewise, optical absorption bands of Pb1-xMnxSe QDs with Manganese oxide [MnO] = 0.2 mol% shifted from 1476 nm to 1831 nm as HT increased from 510 °C to 540 °C for 10 h, and PL bands also red-shifted to 1894 nm as HT increased to 540 °C/10 h; this shift indicates that QDs size increased with thermal treatment (figure 2(b)).

At constant HT 540 °C/10 h, absorption & PL spectra of PbSe QDs were also shifted as a function of transition metals ions (Ti²⁺/Mn²⁺/Ni²⁺) embedded into the crystal structure QDs (table 2). We expected bandgap of alloyed QDs were changed depending on the solubility limit of these dopant ions in host QDs.

N.B. The concentration of transition metal oxides (0.2 mol%) & heat treatment (540 °C/10 h) constant for all glasses.

3.2. Size distribution of QDs in glasses

The structural & size distributions of QDs in glasses were characterized using X-Ray Diffraction (XRD) measurements. As-prepared glasses (with & without TMO addition) showed no XRD peaks. However, diffraction peaks have appeared at (200) and (220) planes after HT 530 °C for 10 h which confirms the formation of QDs in glasses (figure 3). Crystallite sizes of NCs are calculated using Scherrer equation, measuring x-ray Diffraction [25], \(R = \frac{b \lambda}{\beta \cos \theta} \) where \(R \) is the crystallite size assuming they were cubes, monodisperse in size. XRD image shows that Pb1-xTi2-Se QDs precipitated in glasses at 530 °C/10 h and Full-Width Half Maximum at (220) is slightly broad with more TiO addition which is an indication of lower crystal size based on Scherrer equation. There might be a slight lattice distortion of Pb1-xTi2-Se crystal structure with incorporation of Ti²⁺ ions. The lattice parameter of PbSe crystal structure more likely decreased due to the replacement of Pb²⁺ ions having larger ions (~112 pm) by smaller ionic radius such as Ti²⁺ (100 pm) or Mn²⁺ (~83 pm) or Ni²⁺ (~69 pm). A similar thought was also reported with the incorporation of Manganese (Mn²⁺) ions in PbSe crystal structure [15, 21 and 26]. In TEM images, we observed several black spots in glasses with [TiO] = 0.0 mol% and
with $[\text{TiO}] = 0.4 \text{ mol\%}$. Thus, QDs were precipitated in both glasses after 530 °C/10 h (figures 4 and 5). The contrast observed in the magnetic image mainly due to the magnetic response of the precipitated semimagnetic Pb$_{1-x}$Ti$_x$Se QDs with a magnetic tip. Dark fields of the MFM image indicate Pb$_{1-x}$Ti$_x$Se NCs have magnetization in a parallel direction to the tip magnetization. Whereas bright fields of the MFM image indicate QDs have magnetization in an antiparallel direction to the tip magnetization (figure 5). The 3D morphology of Pb$_{1-x}$Ti$_x$Se NCs in a glass is shown in figure 5(b). A similar observation was explained in Pb$_{1-x}$Mn$_x$Se QDs and Pb$_{1-x}$Co$_x$Se QDs in glasses [17, 18, 26]. We also reported Pb, Se, Ti ions more highly concentrated inside QDs than in the glass matrix from EELS image in previously published paper [20]. This probably an indication of Ti$^{2+}$ incorporated in Pb$_{1-x}$Ti$_x$Se QDs by replacing some of the positive ions of QDs precursor ions, i.e. Pb$^{2+}$ ions.

3.3. Evidence Pb$_{1-x}$Ti$_x$Se NCs in glass using electron paramagnetic resonance (EPR)

EPR spectra shown in figure 6 indicate divalent Ti$^{2+}$ ions ([Ar] 3d2) have been doped in PbSe crystals. Pb$_{1-x}$Ti$_x$Se QDs embedded silicate glass with $[\text{TiO}] = 0.5 \text{ mol\%}$ reveals –double quantum line pattern. It was matched with
the spectroscopic splitting factor \(g \) value of unheated-treated silicate glass contains TiO 0.5 mol%. From EPR spectra measurement, free Ti\(^{2+} \) resonance absorption has occurred between the two split spin levels \([27–29]\). Resonance condition is given by, \(h\nu = g\beta B_\text{o} \), where \(g \) is splitting factor, \(\beta \) Bohr magneton, \(B_\text{o} \) a magnetic field (G). Figure 6 shows, at 300 K, the spectroscopic splitting factor \(g \) value from the EPR spectrum of Ti\(^{2+} \) in pristine silicate glass and Pb\(_{1-x}\)Ti\(_x\)Se NCs embedded silicate glass at low microwave power was 2.163 56 and 2.157 40 respectively. This confirms that Ti\(^{2+} \) ions substitute some Pb\(^{2+} \) ions of host PbSe NCs.

4. Conclusion

Silicate glasses containing Pb\(_{1-x}\)Ti\(_x\)Se QDs were prepared adding small amount transition metals oxide at constant and varying heat-treatment temperature. Optical properties of Pb\(_{1-x}\)Ti\(_x\)Se QDs such as absorption and PL wavelength of QDs moved to a shorter wavelength side with increasing 0.0%–0.5% [TiO] at 530 °C/10 h. Pb\(_{1-x}\)Ti\(_x\)Se QDs with 0.2% transition metal ions (such as Ti\(^{2+} \), Mn\(^{2+} \), Ni\(^{2+} \)) have different optical properties as that of pure PbSe QDs. With increasing heat-treatment temperature from 510 °C to 540 °C, optical absorption and PL spectra moved to longer wavelength sides keeping transition metal oxide concentration constant. This is mainly due to a change in temperature that often leads to the uncontrolled growth of QDs.

ORCID iDs

Janaki Ramulu P 𝗦Https://orcid.org/0000-0002-7856-8638

References

[1] Khokhlov D 2003 Lead Chalcogenides (Physics and Applications (New York, USA: Taylor & Francis) pp 720
[2] Xiao G, Wang Y, Ning J, Wei Y, Liu B, Ma D-W and Cheng C 2013 Crystallization behaviors of PbSe quantum dots in silicate glasses J. Am. Ceram. Soc. 96 1428–35
[3] Yu W W, Zoua G and Zou B 2013 Recent advances in IV-VI semiconductor nanocrystals: synthesis, mechanism, and applications RSC Adv. 3 8104–30
[4] Steckel J S, Coe-Sullivan S, Bulvics V and Bawendi M B 2003 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within organic device Adv. Mater. 15 1862–6
[5] Bakuova L, Musikhin S, Hines M A, Chang T-W F, Tzolov M, Scholes G D and Sargent E H 2003 Size-tunable infrared (1000–1600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer Appl. Phys. Lett. 82 2895–7
[6] Schaller R D, Petruska M A and Klimov V I 2003 Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals J. Phys. Chem. B 107 13765–8
[7] Dong G, Wu G, Fan S, Zhang F, Zhang Y, Wu B, Ma Z, Peng M and Qiu J 2014 Formation, near-infrared luminescence and multi-wavelength optical amplification of PbS quantum dot-embedded silicate glasses J. Non-Cryst. Solids 383 192–5

Figure 6. EPR spectra of the 0.5% TiO addition in silicate glasses (a) As-prepared glass contains 0.5% TiO, (b) Pb\(_{1-x}\)Ti\(_x\)Se QDs precipitated in glass.
[8] Cheng C, Wang F and Chen X 2020 PbSe quantum-dot-doped broadband fiber amplifier based on sodium–aluminum–borosilicate-silicate glass Opt. Laser Technol. 122 103812
[9] Pietrzyga J M, Schaller R D, Werder D, Stewart M H, Klimov V I and Hollingsworth J A 2004 Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots J. Am. Chem. Soc. 126 11752–3
[10] Deng W, Xu X, Zhang X, Zhang Y, Jin X, Wang L, Lee S-T and Jie J 2016 Organometal Halide Perovskite quantum dot light-emitting diodes Adv. Funct. Mater. 26 4797–802
[11] Norris D J, Efros A L and Erwin S C 2008 Doped nanocrystals Science 319 1776–9
[12] Erwin S C, Zhu L, Haefel M J, Efros A L, Kennedy T A and Norris D J 2005 Doping semiconductor nanocrystals Nat. 436 91–5
[13] Han D S, Bae S Y, Seo H W, Kang Y J, Park J, Lee G, Ahn J-P, Kim S and Chang J 2005 Dilute magnetic semiconductor nanowires J. Phys. Chem. B 109 9311
[14] Beulac R, Archer P I, Ochsenbein S T, Gamelin D R, Beulac R, Archer P I, Ochsenbein S T and Gamelin D R 2008 Mn2+–doped CdSe quantum dots: new organic materials for spin–electronics and spin–photonics Adv. Funct. Mater. 18 3873–91
[15] Dantas N O, Neto E S F and Silva R S 2010 Diluted Magnetic Semiconductors in Glass Matrix vol 1 ed Y Masuda (Brazil: Sciyo) chapter 6
[16] Heo J and Liu C 2007 PbS quantum-dots in glass matrix for universal fiber–optic amplifier J. Mater. Sci.: Mater. Electron. 18 5135–9
[17] Bučko R, Wang J, Liu C and Heo J 2007 Tuning the bandgap of PbS quantum dots: new inorganic materials for spin–electronics and spin–photonics Adv. Funct. Mater. 18 3873–91
[18] Dantas N O, Silva R S, Pelegrini F and Marques G E 2009 Morphology in semimagnetic Pb1−xMnxSe nanocrystals: thermal annealing effects Appl. Phys. Lett. 94 263103
[19] Bailey R E and Nie S 2003 Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size J. Am. Chem. Soc. 125 7100–6
[20] Tesfamariam B B, Wang J, Liu C and Heo J 2017 Tuning the bandgap of PbSe quantum dots in glasses by TiO doping J. Mater. Sci.: Mater. Electron. 28 7013–7
[21] Lourene S A, Dantas N O and Silva R S 2012 Growth kinetic on the optical properties of the Pb1−xMnxTe ternary alloy J. Mater. Sci.: Mater. Electron. 23 6011–8
[22] Lourene S A, Silva R S, Silva A C and Dantas N O 2015 Structural and optical properties of Co2+–doped PbSe nanocrystals in chalcopyrite glass matrix J. Phys. Chem. C 119 13277–82
[23] Allan G and Delerue C 2004 Confinement effects in PbSe quantum wells and nanocrystals Phys. Rev. B 70 245321–9
[24] Rastrello L R, Guimarães E V, da Silva M A, Dantas N O, Cano N F, Lourenço S A and da Silva R S 2020 Effect of thermal annealing and sp–d exchange interaction in the optical properties of Mn2+–doped PbSe nanocrystals embedded in a glass matrix J. Phys. Chem. C 124 7013–8
[25] Madsen C and Jacobsen C J H 1999 Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis Chem. Commun. 8 673–4
[26] Silva R S, Baffa O, Chen F, Lourenço S A and Dantas N O 2013 Luminescence in semimagnetic Pb1−xMnxSe quantum dots grown in a glass host: radiative and nonradiative emission processes Chem. Phys. Lett. 567 23–6
[27] Davies J J, Nicholls J E and Verry D 1980 Electron paramagnetic resonance of Ti2+ in zinc–fired ZnSe J. Phys. C: Solid St. Phys. 13 1291–8
[28] Zheng W-C and Wu S-Y 1999 Theoretical studies of electron paramagnetic resonance g factor for Ti2+ ions in II–VI semiconductors J. Phys. and Chem. of Solids 60 367–70
[29] Rosenfeld A, Boyan R and Ruszczynski G 1970 Jahn–Teller effect on the optical absorption spectra of CdS:Ti2+ and CdSe:Ti2+ Phys. Stat. Sol. (B) 70 601–10