Prediction of primary energy consumption using NDGM(1,1,k,c) model with Simpson formula

W. Wua,b, X. Maa,c, Y. Wangd,e, W. Caif, and B. Zengf

a School of Science, Southwest University of Science and Technology, 621010, Mianyang, China.
b V.C. A.V.R. Key Lab of Sichuan Province, Sichuan Normal University, 610068, Chengdu, China.
c State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 610500, Chengdu, China.
d School of Science, Southwest Petroleum University, 610500, Chengdu, China.
e College of Engineering and Technology, Southwest University, 400715, Chongqing, China.
f College of Business Planning, Chongqing Technology and Business University, 400067, Chongqing, China.

Received 9 June 2018; received in revised form 2 February 2019; accepted 18 November 2019

KEYWORDS
Primary energy consumption; Grey forecasting model; Simpson formula; Non-homogeneous index sequence; Prediction accuracy.

Abstract. Energy consumption plays a key role in economic development for all countries. Keeping up with the future trend of energy consumption is essential for governments and energy companies. In this research, the primary energy consumption for Saudi Arabia, India, Philippines, and Vietnam is systematically studied using different forecasting models. Based on the actual data derived from the year 2006 to 2016, a novel discrete grey forecasting model termed NDGM\textsubscript{3}(1,1,k,c) is proposed where the Simpson numerical integration formula is applied to construct the background value. The expressions of the present model are all derived and then, its unbiased property is proved. As demonstrated by the results, the NDGM\textsubscript{3}(1,1,k,c) model can achieve better prediction accuracy than other forecasting models, and it is quite applicable to predicting a sequence based on homogeneous/non-homogeneous exponential law.

© 2021 Sharif University of Technology. All rights reserved.

1. Introduction

Primary energy is an energy resource found in nature that has not been subjected to any human engineered conversion or transformation process. It is also called natural energy contained in oil, coal, natural gas, water energy, and modern renewable energy used to generate electricity. The BP Statistical Review of World Energy 2017 [1] demonstrated that global primary energy consumption expanded by 1% in 2016, following the growth of 0.9% in the year 2015 and 1% in the year 2014. This trend is measured with the 10-year average of 1.8% a year. Primary energy consumption in Saudi Arabia grew by 1.9% in 2016 corresponding to 266.5 million tonnes of oil equivalent (Mtoe), which is 2.0% of the total international primary energy consumption. In addition, the annual growth rate during the years 2005 to 2015 is 5.1%. For India's primary energy consumption, a growth is 5.4% in 2016 corresponding to 723.9 Mtoe, which is 5.5% of the total global consumption. From 2005 to 2015, primary energy consumption grew at an incredible average rate of 5.1%. In Philippines, it grew by 11.3% in 2016 corresponding to 42.1 Mtoe, which is 0.3% of the total global consumption. The annual growth rate from 2005 to 2015 is 3.6%. For Vietnam, the mentioned energy consumption growth was 1.5% in...
2016 corresponding to 64.8 Mtoe, which is 0.5% of the total global consumption. From the year 2005 to 2015, this consumption grew at an incredible average rate of 7.5%. Presently, energy markets are accommodated and the near-term strength may continuously ease. It is important for decision-makers and government departments to develop a better understanding and judgment of the energy resource plan scientifically and formulate appropriate energy plans.

Energy is and has been receiving remarkable attention over a long time because of its importance all over the world. A variety of methods and techniques have been advanced for energy forecast utilization such as cointegrated panel analysis [2], artificial neural network [3], time series analysis [4,5], coupling mathematical models [6,7], hybrid forecasting models [8,9], grey models [10–14], etc. Among those excellent methods/techniques, grey system theory that was presented by Deng [15] is a feasible and efficient prediction technique to analyze uncertain problems. In his work, the first-order linear model with single variable termed GM(1,1) model was discussed in detail. The main advantage of grey models is that they require a small number of samples to describe the system. Over the past three decades, the GM(1,1) model has significantly generalized with the following aspects: the univariate linear grey models [16,17], the univariate nonlinear grey models [18–20], and the multivariate grey models [21–23].

Recently, Cui et al. [24] studied the continuous non-homogeneous grey model named NGM(1,1,k) model where bk is grey action quantity. The yearly amount of concave soil in Xuyi of China and the CSI 300 index specimen data were used to illustrate the NGM(1,1,k) model and their optimized model was effective. However, Chen and Yu’s work [25] identified that the parameters of the NGM(1,1,k) model had a fatal flaw that badly affected the application value. Based on Cui’s work, a modified model named NGM(1,1,k,c) was proposed in which bk+c was grey action quantity. This model is truly feasible for simulation and forecasting of approximate non-homogeneous exponential sequence and can achieve outstanding prediction accuracy. Meanwhile, Xie et al. [26] developed an NDGM model where the background value was derived from the trapezoid formula and the initial point was optimized. The expression of this model was obtained and the prediction precision was found to be dependent on the pure non-homogeneous index sequence.

Encouraged by these works [24–26] and considering the non-homogeneous exponential sequence existing in the real world [27,28], the present study focuses on the non-homogeneous discrete NGM(1,1,k,c) model called NDGMs(1,1,k,c) where the background value is computed using the Simpson numerical integration formula. Its solutions, properties, and applications are derived in this paper. Meantime, we prove the new model is able to simulate a linear sequence and a homogeneous/non-homogeneous exponential sequence without error. Further, the primary energy consumption for Saudi Arabia, India, Philippines, and Vietnam is calculated by grey models, Auto-Regressive Integrated Moving Average model (ARIMA), and Support Vector Machines (SVMs). It is noted that the NDGMs(1,1,k,c) model presents high accuracy in the primary energy consumption.

This paper is organized below. A brief introduction to the NGM(1,1,k) model is given in Section 2. Detailed discussions of the NDGMs(1,1,k,c) model are given in Section 3. Applications of the primary energy consumption are arranged in Section 4. The last section concludes the paper.

2. The existing NGM model

Next, a brief analysis of the continuous NGM model is conducted based on the Trapezoid formula.

2.1. Grey NGM(1,1,k) model

It is assumed that an original non-negative data sequence with n entries is $X^{(0)} = (x^{(0)}(1), x^{(0)}(2), \ldots, x^{(0)}(n))$, where $x^{(0)}(k)$ stands for the value of the data at the time index k.

Let $X^{(1)} = (x^{(0)}(i), x^{(0)}(i), \ldots, x^{(0)}(i))$ be the first accumulated generating operation (1-AGO) sequence of $X^{(0)}$.

We denote $Z^{(1)}$ as the background value of the grey forecasting model where $Z^{(1)} = (z^{(1)}(2), z^{(1)}(3), \ldots, z^{(1)}(n))$ with $z^{(1)}(k) = \frac{1}{2}x^{(1)}(k) + \frac{1}{2}x^{(1)}(k - 1), k = 2, 3, \ldots, n$.

From Ref. [24], the mathematical model of the NGM(1,1,k) is as follows:

$$\frac{dx^{(1)}(t)}{dt} + ax^{(1)}(t) = bt,$$

which is a linear differential equation, a is the developing coefficient, and $bt + c$ is the grey action quantity.

The values for the unknown parameters a and b of NGM(1,1,k) model are computed by the least squares estimation:

$$\begin{bmatrix} a \\ b \end{bmatrix} = (\Lambda^T \Lambda)^{-1} \Lambda^T \eta,$$

where:

$$\Lambda = \begin{bmatrix} z^{(1)}(2) & -2 \\ z^{(1)}(3) & -3 \\ \vdots & \vdots \\ z^{(1)}(n) & -n \end{bmatrix}, \quad \eta = \begin{bmatrix} x^{(0)}(2) \\ x^{(0)}(3) \\ \vdots \\ x^{(0)}(n) \end{bmatrix}.$$

The time response function of the NGM(1,1,k) model is:
\[
\dot{z}^{(1)}(k) = \left(x^{(0)}(1) + \frac{b}{a^2} - \frac{b}{a} \right) e^{-a(k-1)} - \frac{b}{a^2} k - \frac{b}{a^2},
\]
\[
k = 2, 3, \cdots , n.
\]
(3)

The restored values of \(\dot{z}^{(0)}(k) \) are:
\[
\dot{z}^{(0)}(k) = \left(x^{(0)}(1) + \frac{b}{a^2} - \frac{b}{a} \right) \left(1 - e^{-a(k-1)} \right) \left(\frac{b}{a} \right),
\]
\[
k = 1, 2, \cdots , n.
\]
(4)

2.2. Grey \(\text{NGM}(1,1,k,c) \) model

From Ref. [25], the mathematical form of the \(\text{NGM}(1,1,k,c) \) model is:
\[
\frac{dx^{(1)}(t)}{dt} + ax^{(1)}(t) = bt + c,
\]
(5)
where \(a \) is the developing coefficient and \(bt + c \) is the grey action quantity.

The unknown parameters \(a, b, \) and \(c \) of the \(\text{NGM}(1,1,k,c) \) model are determined by the least squares estimation:
\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = (A^T \Lambda)^{-1} A^T \eta,
\]
(6)
where:
\[
\Lambda = \begin{pmatrix}
\dot{z}^{(1)}(2) & -2 & -1 \\
\dot{z}^{(1)}(3) & -3 & -1 \\
\vdots & \vdots & \vdots \\
\dot{z}^{(1)}(n) & -n & -1
\end{pmatrix}, \quad \eta = \begin{pmatrix}
x^{(0)}(2) \\
x^{(0)}(3) \\
\vdots \\
x^{(0)}(n)
\end{pmatrix}.
\]

The time response function of the \(\text{NGM}(1,1,k,c) \) model is:
\[
\dot{z}^{(1)}(k) = \left(x^{(0)}(1) + \frac{c}{a} - \frac{b}{a} \right) e^{-a(k-1)} - \frac{b}{a^2} k - \frac{b}{a^2} + \frac{c}{a},
\]
\[
k = 2, 3, \cdots , n.
\]
(7)

The restored values of \(\dot{z}^{(0)}(k) \) are:
\[
\dot{z}^{(0)}(k) = \left(x^{(0)}(1) + \frac{c}{a} - \frac{b}{a} + \frac{b}{a^2} \right) \left(1 - e^{-a(k-1)} \right) \left(\frac{b}{a} \right),
\]
\[
k = 2, 3, \cdots , n.
\]
(8)

3. The \(\text{NDGM}_5(1,1,k,c) \) model

3.1. Representation of the \(\text{NDGM}_5(1,1,k,c) \) model

In this subsection, we plan to derive the discrete \(\text{NDGM}_5(1,1,k,c) \) model from the Simpson numerical integration formula. Considering the integration of Eq. (5) at the interval \([k-1, \ k + 1] \), it follows that:
\[
\int_{k-1}^{k+1} dx^{(1)}(t) + a \int_{k-1}^{k+1} x^{(1)}(t) dt = b \int_{k-1}^{k+1} t dt + c \int_{k-1}^{k+1} dt.
\]
(9)

From Eq. (9), we have:
\[
x^{(1)}(k+1) - x^{(1)}(k-1) + a \int_{k-1}^{k+1} x^{(1)}(t) dt = 2kb + 2c.
\]
(10)

Applying the Simpson numerical integration formula, we realize that:
\[
\int_{k-1}^{k+1} x^{(1)}(t) dt = \frac{1}{3} x^{(1)}(k-1) + \frac{4}{3} x^{(1)}(k) + \frac{1}{3} x^{(1)}(k+1).
\]
(11)

By substituting Eq. (11) into Eq. (10), it turns to be:
\[
(3 + a)x^{(1)}(k + 1) + 4ax^{(1)}(k) - (3 - a)x^{(1)}(k - 1) = 6kb + 6c.
\]
(12)

It follows from Eq. (12) that:
\[
x^{(1)}(k + 1) - w x^{(1)}(k)
\]
\[
= \frac{a - 3}{w(a + 3)} \left[x^{(1)}(k) - w x^{(1)}(k - 1) \right] + \frac{6b}{a + 3} k + \frac{6c}{a + 3}.
\]
(13)

where \(w = \sqrt{a^2 + 2a + 2} \). Iterating Eq. (13) by itself, we obtain that:
\[
x^{(1)}(k + 1) - w x^{(1)}(k)
\]
\[
= \frac{a - 3}{w(a + 3)} \left\{ \frac{a - 3}{w(a + 3)} \left[x^{(1)}(k - 1) - w x^{(1)}(k - 2) \right] \right\} + \frac{a - 3}{w(a + 3)} \left[(k - 1) \frac{6b}{a + 3} + \frac{6c}{a + 3} \right]
\]
\[
+ k \frac{6b}{a + 3} + \frac{6c}{a + 3}
\]
\[
= \left(\frac{a - 3}{w(a + 3)} \right)^2 \left[x^{(1)}(k - 1) - w x^{(1)}(k - 2) \right] + \frac{6b}{a + 3} \sum_{m=0}^{k-1} \left(\frac{a - 3}{w(a + 3)} \right)^m (k - m)
\]
\[
+ \frac{6c}{a + 3} \sum_{m=0}^{k-1} \left(\frac{a - 3}{w(a + 3)} \right)^m
\]
\[
= \left(\frac{a - 3}{w(a + 3)} \right)^k \left[x^{(1)}(2) - w x^{(1)}(1) \right]
\]
\[+ \frac{6c}{a + 3} \sum_{m=0}^{k-2} \left(\frac{a - 3}{w(a + 3)} \right)^m \]

\[+ \frac{6b}{a + 3} \sum_{m=0}^{k-2} \left(\frac{a - 3}{w(a + 3)} \right)^m (k - m) \]

\[= \alpha^{k-1} \left[x^{(1)}(2) - wx^{(1)}(1) \right] \]

\[+ \frac{6b}{a + 3} \sum_{m=0}^{k-2} \alpha^m (k - m) + \frac{6c}{a + 3} \sum_{m=0}^{k-2} \alpha^m, \quad (14) \]

with \(\alpha = \frac{a-3}{w(a+3)} \). Note that:

\[x^{(1)}(k + 1) - w^{k-1}x^{(1)}(2) \]

\[= \sum_{i=0}^{k-2} w^i [x^{(1)}(k + 1 - i) - wx^{(1)}(k - i)] \]

\[= \sum_{i=0}^{k-2} w^i \alpha^{k-1} \left[x^{(1)}(2) - wx^{(1)}(1) \right] \]

\[+ \sum_{i=0}^{k-2} w^i \frac{6b}{a + 3} \sum_{m=0}^{k-2} \alpha^m (k - i - m) \]

\[+ \sum_{i=0}^{k-2} w^i \frac{6c}{a + 3} \sum_{m=0}^{k-2} \alpha^m \]

\[= \alpha^{k-1} - \frac{(w\alpha^2)^{k-1}}{1 - w\alpha} \left[x^{(1)}(2) - wx^{(1)}(1) \right] \]

\[+ \frac{6b}{a + 3} \sum_{i=0}^{k-2} \sum_{m=0}^{k-2} w^i \alpha^m (k - i - m) \]

\[+ \frac{6c}{a + 3} \sum_{i=0}^{k-2} \sum_{m=0}^{k-2} w^i \alpha^m. \quad (15) \]

The 1-AGO sequence \(\hat{X}^{(1)} \) of discrete NDGMs\((1, 1, k, c) \) is:

\[\hat{x}^{(1)}(k + 1) = w^{k-1}x^{(1)}(2) \]

\[+ \frac{\alpha^{k-1} - (w\alpha^2)^{k-1}}{1 - w\alpha} \left[x^{(1)}(2) - wx^{(1)}(1) \right] \]

\[+ \frac{6b}{a + 3} \sum_{i=0}^{k-2} \sum_{m=0}^{k-2} w^i \alpha^m (k - i - m) \]

\[+ \frac{6c}{a + 3} \sum_{i=0}^{k-2} \sum_{m=0}^{k-2} w^i \alpha^m, \quad k = 1, 2, \cdots, n - 1. \quad (16) \]

The IAGO on \(\hat{X}^{(1)} \) is applied to obtain:

\[\dot{x}^{(0)}(k + 1) = \hat{x}^{(1)}(k + 1) - \hat{x}^{(1)}(k), \]

\[k = 1, 2, \cdots, n - 1. \quad (17) \]

3.2. Parameters estimation of the discrete NDGMs\((1, 1, k, c) \) model

Based on the definition of 1-AGO, we obtain:

\[x^{(1)}(k + 1) - x^{(1)}(k - 1) = \sum_{i=1}^{k} x^{(0)}(i) - \sum_{i=1}^{k} x^{(0)}(i) \]

\[= x^{(0)}(k + 1) + x^{(0)}(k). \]

Upon employing the Simpson numerical integration formula, the background value of \(X^{(1)} \) is provided below:

\[z^{(1)}(k) = \frac{1}{3} x^{(1)}(k - 1) + \frac{4}{3} x^{(1)}(k) + \frac{1}{3} x^{(1)}(k + 1), \]

\[k = 2, 3, \ldots, n. \]

Substituting \(z^{(1)}(k) \) into Eq. (10), we have that:

\[x^{(0)}(k) + x^{(0)}(k + 1) + az^{(1)}(k) = 2kb + 2c. \quad (18) \]

It follows from Eq. (18) that:

\[\begin{aligned}
 x^{(0)}(2) + x^{(0)}(3) &= -az^{(1)}(2) + 4b + 2c, \\
 x^{(0)}(3) + x^{(0)}(4) &= -az^{(1)}(3) + 6b + 2c, \\
 & \vdots \\
 x^{(0)}(n - 1) + x^{(0)}(n) &= -az^{(1)}(n - 1) + 2(n - 1)b + 2c.
\end{aligned} \quad (19) \]

By applying the least squares estimation method, the model parameters \(\hat{\xi} = (a, b, c)^T \) of the NDGMs\((1, 1, k, c) \) are:

\[\hat{\xi} = (B^TB)^{-1}B^TY, \quad (20) \]

where:

\[B = \begin{pmatrix}
 z^{(1)}(2) & -4 & -2 \\
 z^{(1)}(3) & -6 & -2 \\
 \vdots & \vdots & \vdots \\
 z^{(1)}(n - 1) & -2(n - 1) & -2
\end{pmatrix}, \]

\[Y = \begin{pmatrix}
 x^{(0)}(3) + x^{(0)}(2) \\
 x^{(0)}(4) + x^{(0)}(3) \\
 \vdots \\
 x^{(0)}(n) + x^{(0)}(n - 1)
\end{pmatrix}. \]

Here, we give a short explanation to demonstrate that \(\hat{\xi} \) is the least squares estimation of the model. It is known that to determine the least squares estimation
of the NDGM$_S(1,1,k,c)$ model is to pursue an $\hat{\xi}$, thus making the subsequent equation minimum:

$$s(\xi) = \sum_{i=2}^{n-1} (x^{(i)}(i)+x^{(i+1)}(i+1)+a x^{(i)}(i)-2i b-2c)^2$$

$$= (Y - B\xi')^T (Y - B\xi) = ||Y - B\xi||^2.$$ \hspace{1cm} (21)

If $\hat{\xi}$ is the least squares estimation of the model, there must be $s(\hat{\xi}) \geq s(\xi)$ for any ξ. Let ξ' be the solution of Eq. (20), that is, $\xi' = (B^T B)^{-1}B^T Y$.

For any values of ξ, we have:

$$s(\xi) = (Y - B\xi' + B\xi - B\xi')^T (Y - B\xi' + B\xi - B\xi)$$

$$= (Y - B\xi')^T (Y - B\xi') + (Y - B\xi')^T (B\xi - B\xi')$$

$$+ (B\xi - B\xi')^T (Y - B\xi') + (B\xi - B\xi')^T (B\xi - B\xi')$$

$$= s(\xi') + (Y^T B - \xi'^T B)B(\xi' - \xi)$$

$$+ (\xi' - \xi)^T (B^T Y - B^T B\xi')$$

$$+ (B\xi - B\xi')^T (B\xi' - B\xi) = s(\xi') + ||B(\xi' - \xi)||^2.$$ \hspace{1cm} (22)

This means that ξ' is the least square estimation of the NDGM$_S(1,1,k,c)$ model. Furthermore, taking $\hat{\xi}$ into Eq. (22), we acquire that:

$$s(\hat{\xi}) = s(\xi') + ||B(\xi' - \xi)||^2.$$ \hspace{1cm} (23)

It follows from Eq. (23) that $s(\hat{\xi}) \geq s(\xi)$. As ξ is the least square estimation of the model, we know that $s(\hat{\xi}) \leq s(\xi)$. Thus, $s(\hat{\xi}) = s(\xi)$ and $B(\xi' - \xi) = 0$. Then, $B^T B\xi' = B^T B\xi = B^T Y$ which leads to $\xi' = (B^T B)^{-1}B^T Y$.

3.3. Modeling evaluation criteria

To examine the forecasting correctness of the NDGM$_S(1,1,k,c)$ model, the Absolute Percentage Error (APE), the mean absolute simulation percentage error (MAPE$_{simu}$), the mean absolute prediction percentage error (MAPE$_{pred}$), and the overall mean absolute percentage error (MAPE$_{over}$) are applied. In general, the APE, MAPE$_{simu}$, MAPE$_{pred}$, and MAPE$_{over}$ are defined as follows:

$$\text{APE}(k) = \left| 1 - \frac{\hat{x}^{(i)}(k)}{x^{(i)}(k)} \right| \times 100\%, \quad k = 2, 3, \ldots, n.$$ \hspace{1cm} (24)

$$\text{MAPE}_{simu} = \frac{1}{n-1} \sum_{k=2}^{n} \left| 1 - \frac{\hat{x}^{(i)}(k)}{x^{(i)}(k)} \right| \times 100\%.$$ \hspace{1cm} (25)

$$\text{MAPE}_{pred} = \frac{1}{n-1} \sum_{k=2}^{n} \left| 1 - \frac{\hat{x}^{(i)}(k)}{x^{(i)}(k)} \right| \times 100\%.$$ \hspace{1cm} (26)

$$\text{MAPE}_{over} = \frac{1}{n-1} \sum_{k=2}^{n} \left| 1 - \frac{\hat{x}^{(i)}(k)}{x^{(i)}(k)} \right| \times 100\%.$$ \hspace{1cm} (27)

3.4. Unbiased property of the NDGM$_S(1,1,k,c)$ model

In this subsection, we prove that the NDGM$_S(1,1,k,c)$ model is unbiased to simulate a linear sequence and a homogeneous/non-homogeneous exponential sequence without inaccuracy.

3.4.1. Simulate a linear sequence

Suppose that a linear sequence is $X^{(0)} = \{rk+\theta, k = 1, 2, \ldots, n\}$. Then, we obtain:

$$x^{(1)}(k) = \sum_{i=1}^{k} x^{(0)}(i) = \frac{1}{2}(k+1)kr + k\theta.$$ \hspace{1cm} (28)

The 1-AGO of $X^{(0)}$ is stated by:

$$X^{(1)} = \left\{ r + \theta, 3r + 2\theta, 6r + 3\theta, \frac{(n+1)n}{2}r + n\theta \right\}.$$ \hspace{1cm} (29)

By using these expressions into the matrix B and Y, it can be found that:

$$B = \begin{pmatrix} -19r/3 - 4\theta & 4 & 2 \\ -37r/3 - 6\theta & 6 & 2 \\ \vdots & \vdots & \vdots \\ -r(3n^2 - 3n + 1)/3 -(2n-2)r & 2(n-1) & 2 \end{pmatrix}.$$ \hspace{1cm} (30)

After some calculations, we acquire:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = (B^T B)^{-1}B^T Y = \begin{pmatrix} 0 \\ r/2 + \theta \end{pmatrix}.$$ \hspace{1cm} (30)

Then, we can easily get:

$$w = 1, \quad \alpha = -1.$$ \hspace{1cm} (30)

Substituting these values into Eq. (16), we have:

$$\hat{x}^{(1)}(k+1) = (3r + 2\theta) + \frac{(-1)^{k-1} - 1}{2}(2r + \theta)$$

$$+ 2r \sum_{i=0}^{k-2} \sum_{m=0}^{i-2} (-1)^m(k-i-m)$$

$$+ (r + 2\theta) \sum_{i=0}^{k-2} \sum_{m=0}^{i-2} (-1)^m$$

$$= (3r + 2\theta) + \frac{(-1)^{k-1} - 1}{2}(2r + \theta)$$
\[+ 2r \left(\frac{k^2}{4} + \frac{3}{8}(-1)^k + \frac{k}{2} - \frac{3}{8} \right) \]
\[+ (r + 2\theta) \left(\frac{k}{2} - \frac{1}{4} + \frac{1}{4}(-1)^k \right) \]
\[= \left(\frac{k^2}{2} r + kr + \frac{k}{2} r + r \right) + (k + 1)\theta \]
\[+ \left[2r + 3(-1)^k - 3r - \frac{1}{4} + \frac{r}{4}(-1)^k + (-1)^{k-1}r - r \right] \]
\[+ \left(\theta - \frac{1}{2}\theta + \frac{k}{2}(-1)^k + \frac{k}{2}(1 - \theta - \frac{1}{2}) \right) \]
\[= \left(\frac{k + 2)(k + 1)}{2} + (k + 1)\theta \right) = \nu^{(1)}(k + 1). \] (31)

From Eq. (31), the proposed NDGM_{S(1,1,k,c)} model can simulate a linear sequence without errors.

3.4.2. Simulation of a homogeneous/non-homogeneous exponential sequence

Assume that a non-homogeneous exponential sequence is \(X^{(0)} = \{rq^k + \theta, k = 1, 2, \cdots, n\}. \) Then, we possess:

\[\nu^{(1)}(k) = \sum_{i=1}^{k} \nu^{(0)}(i) = \frac{rq(1 - q^k)}{1 - q} + k\theta, \]
\[k = 1, 2, \cdots, n. \] (32)

The 1-AGO of \(X^{(0)} \) is given by:

\[X^{(1)} = \left\{ rq + \theta, \frac{rq(1 - q^2)}{1 - q} + 2\theta, \frac{rq(1 - q^3)}{1 - q} + 3\theta, \cdots, \frac{rq(1 - q^n)}{1 - q} + n\theta \right\}. \] (33)

Substituting these expressions into the matrices \(B \) and \(Y \), the equations shown in Box I is obtained. After some calculations, we obtain:

\[
\begin{pmatrix}
\alpha \\
\beta \\
\gamma
\end{pmatrix} = (B^T B)^{-1} B^T Y = \begin{pmatrix}
\frac{3 (1 - q^k)}{1 + q^2 + q^k} \\
\frac{3 \theta (1 - q^k)}{1 + q^2 + q^k} \\
\frac{3 q (1 + q^2 + q^k)}{1 + q^2 + q^k}
\end{pmatrix}.
\] (34)

Then, we can easily get:

\[w = q, \quad \alpha = -\frac{q + 2}{2q + 1}. \]

Further, we have:

\[\frac{6b}{a + 3} = \frac{3\theta(1 - q^2)}{2q + 1}, \]
\[\frac{6c}{a + 3} = \theta(1 + 4q + q^2) + 3\theta(1 + q). \]

Substituting these values into Eq. (16), we have:

\[\dot{x}^{(1)}(k + 1) = q^{k-1}(r_q + r_q^2 + 2\theta) \]
\[+ (r + 2\theta - q\theta) \sum_{i=0}^{k-2} q^i \alpha^{k-i-1} \]
\[+ \sum_{i=0}^{k-2} q^i \left(\frac{6b}{a + 3} + \frac{6c}{a + 3} \right) \sum_{m=0}^{k-i-2} \alpha^m \]
\[- \sum_{i=0}^{k-2} q^i \left(\frac{6b}{a + 3} + \sum_{m=0}^{k-i-2} m\alpha^m \right) \]
\[= q^{k-1}(r_q + r_q^2 + 2\theta) \]
\[+ (r + 2\theta - q\theta) \sum_{i=0}^{k-2} q^i \alpha^{k-i-1} \]
\[+ \sum_{i=0}^{k-2} q^i \left(\frac{3\theta(1 - q^2)}{2q + 1} \right) \sum_{m=0}^{k-i-2} \frac{(k - i - 1)\alpha^{k-i-1}}{1 - \alpha} \]
\[+ \sum_{i=0}^{k-2} q^i \left(\frac{\theta(1 + 4q + q^2) + 3\theta(1 + q)}{2q + 1} \right) \sum_{m=0}^{k-i-2} \frac{(k - i - 1)\alpha^{k-i-1}}{(1 - \alpha)^2} \]
\[- \sum_{i=0}^{k-2} q^i \left(k - i - 1 \right) \alpha^{k-i-2} \left(1 - \alpha \right). \]

Box I
Table 1. Results of the NGM(1,1,k,c) and NDGMs(1,1,k,c) models for a nonhomogeneous exponential sequence with \(r = 0.06 \), \(q = 2.25 \), and \(\theta = 3 \).

\(k \)	Actual value	NGM(1,1,k,c) model \(\bar{x}^{(0)}(k) \)	APE(k)%	NDGMs(1,1,k,c) model \(\bar{x}^{(0)}(k) \)	APE(k)%
1	3.1350	3.1350	0	3.1350	0
2	3.3038	5.0186	51.9055	3.3038	0
3	3.6834	7.3563	99.7130	3.6834	4.8346 \times 10^{-11}
4	4.5377	12.4014	173.2942	4.5377	8.8666 \times 10^{-11}
5	6.4599	23.2891	260.5184	6.4599	1.5553 \times 10^{-10}
6	10.7848	46.7861	\textbf{333.8160}	10.7848	\textbf{2.0291 \times 10^{-10}}
7	20.5158	97.4950	375.2302	20.5158	2.3222 \times 10^{-10}
8	42.4105	206.9302	\textbf{387.9227}	42.4105	2.3950 \times 10^{-10}
9	91.6735	443.1029	383.3489	91.6735	2.3462 \times 10^{-10}
10	202.5154	952.7886	370.4771	202.5154	2.2340 \times 10^{-10}
11	451.9097	2052.7440	354.2377	451.9097	2.0963 \times 10^{-10}
12	1013.0470	4436.5639	336.9556	1013.0467	\textbf{1.9434 \times 10^{-10}}

MAPE_{simu}(\%) = \frac{183.8494}{9.0090 \times 10^{-11}}

MAPE_{pred}(\%) = \frac{368.0270}{2.2228 \times 10^{-10}}

MAPE_{over}(\%) = \frac{284.3099}{1.6629 \times 10^{-10}}

\begin{align*}
= q^{k-1}(rq + q^2) + rq \sum_{i=0}^{k-2} q^i \alpha^{k-i-1} \\
+ \sum_{i=0}^{k-2} q^i (2q \alpha^{k-i-1} + \theta q^{k-1}) \\
+ \sum_{i=0}^{k-2} q^i \left\{ (2-q) \alpha^{k-i-1} + (1-q)(k-i)(1-\alpha^{k-i-1}) \right\} \\
= \frac{rq(1-q^{k+1})}{1-q} + \theta q^{k-1} + \sum_{i=0}^{k-2} q^i \left\{ (2-q) \alpha^{k-i-1} + (1-q)(k-i)(1-\alpha^{k-i-1}) \right\}
\end{align*}

From Eq. (35), the proposed NDGMs(1,1,k,c) model can attain an unbiased simulation of a homogeneous/non-homogeneous exponential sequence.

Next, we here provide a numerical experiment to illustrate the accuracy of the NGM(1,1,k,c) and NDGMs(1,1,k,c) models to simulate and predict the non-homogeneous index sequence. Let \(x^{(0)}(k) = rq^k + \theta, k = 1, 2, \ldots, 12, r > 0 \). For ease of referencing, the following notation is defined:

\[\varepsilon = |\hat{a} - a| + |\hat{b} - b|, \]

where \(\hat{a} \) and \(\hat{b} \) are approximated parameters of NGM(1,1,k,c) and NDGMs(1,1,k,c) models. In addition, parameters \(a \) and \(b \) are determined using Eq. (34). Table 1 gives results for \(r = 0.06, q = 2.25 \), and \(\theta = 3 \). It can be seen in Table 1 that the maximum APEs for simulation of NGM(1,1,k,c) and NDGMs(1,1,k,c) are 333.8160% and 1.7146 \times 10^{-11}% and those for prediction are 387.9227% and 2.0291 \times 10^{-10}%.
284.3099\%; those for the NDGM\(_5(1,1,k,c)\) are 9.9990 \times 10^{-11}\% \), 2.2228 \times 10^{-10}\% \), and 1.6629 \times 10^{-10}\%, respectively. Clearly, the APEs of the NDGM\(_5(1,1,k,c)\) model are caused by the round-off error of computer, while the APEs of the NGM\((1,1,k,c)\) model are caused by its inconsistency.

Further, we select the parameter \(q\) given at the interval [0.1,5.0] by the step 0.01 and the parameters \(r\) and \(\theta\) randomly generated at the interval [1,15] and [1,5] by the discrete uniform distribution, respectively. Computational results are depicted in Figure 1. According to Figure 1, the maximum \(\varepsilon\) is only 1.8867 \times 10^{-9}, which is obviously a truncation error occurring in the computer program process.

4. Applications

In this part, the NDGM\(_5(1,1,k,c)\) model is utilized to predict the primary energy consumption in Saudi Arabia, India, Philippines, and Vietnam. Outcomes are compared to those of discrete DGM\((1,1)\) model, non-homogeneous NGM\((1,1,k)\) model, NGM\((1,1,k,c)\) model, ARIMA, and SVMs.

The raw data of the primary energy consumption belonging to Saudi Arabia, India, Philippines, and Vietnam are announced from the BP Statistical Review of World Energy 2017. These observations are divided into two categories: The observations from 2006 to 2013 utilized to construct different prediction models and the observations from 2014 to 2016 used to verify and differentiate the forecasting results. Raw observation of the primary energy consumption are given in Table 2.

4.1. The primary energy consumption in Saudi Arabia

We first take the NDGM\(_5(1,1,k,c)\) model as an example to explain how to build and calculate the simulation and prediction values. From Table 2, the values of \(X^{(0)}\), \(X^{(1)}\), and \(Z^{(1)}\) of the Saudi Arabia are given below:

\[
X^{(0)} = (164.5, 171.4, 186.9, 196.5, 216.1, 222.2, 235.7, 237.4,)
\]

\[
X^{(1)} = (164.5, 335.9, 522.8, 719.3, 933.4, 1157.6, 1393.3, 1630.7,)
\]

\[
Z^{(1)} = (676.9667, 1048.8, 1445.1333, 1872.8333, 2319.7, 2787.1667,)
\]

It follows from Subsection 3.2 that:

\[
B = \begin{pmatrix}
-676.9667 & 4 & 2 \\
-1048.8 & 6 & 2 \\
-1445.1333 & 8 & 2 \\
-1872.8333 & 10 & 2 \\
-2319.7 & 12 & 2 \\
-2787.1667 & 14 & 2
\end{pmatrix}
\]

\[
Y = \begin{pmatrix}
358.3 \\
383.4 \\
412.6 \\
436.3 \\
457.9 \\
473.1
\end{pmatrix}
\]

The system parameters can be further resolved to:

\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = (B^T B)^{-1} B^T Y = \begin{pmatrix}
0.1262 \\
38.4235 \\
144.1316
\end{pmatrix}
\]

Moreover, the expression of the NDGM\(_5(1,1,k,c)\) model is:

\[
\hat{x}^{(1)}(k + 1) = (0.8815)^{k-1} \hat{x}^{(1)}(2) + \frac{(-1.0429)^{k-1} - (0.9587)^{k-1}}{1.9193} \times (\hat{x}^{(1)}(2) - 0.8815 \hat{x}^{(1)}(1))
\]

Table 2. Raw data of the primary energy consumption.

Year	Saudi Arabia	India	Philippines	Vietnam
2006	164.5	414.0	27.6	28.1
2007	171.4	470.2	26.7	30.6
2008	186.9	475.7	27.6	38.2
2009	196.5	513.2	28.0	39.3
2010	216.1	537.1	28.8	44.3
2011	222.2	568.7	29.5	50.3
2012	235.7	611.6	30.5	52.5
2013	237.4	621.5	32.5	54.8
2014	252.1	663.6	34.4	59.8
2015	260.8	685.1	37.7	63.7
2016	266.5	723.9	42.1	64.8
\[+ 73.7425 \sum_{i=0}^{k-2} \sum_{m=0}^{k-i-2} (0.8815)^i (-1.0429)^m (k-i-m) \]
\[+ 276.6278 \sum_{i=0}^{k-2} \sum_{m=0}^{k-i-2} (0.8815)^i (-1.0429)^m, \]
\[k = 1, 2, \ldots, 10. \quad (37) \]

Finally, the values of \(\hat{x}^{(0)}(k) \) are obtained through Eqs. (17) and (37).

Similarly, the expressions of DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), and ARIMA models are provided below:

The DGM(1,1) model:
\[\hat{x}^{(1)}(k + 1) = 1.0554^k x^{(1)}(1) \]
\[\quad - \frac{169.0427}{0.0554} (1 - 0.10554^k). \quad (38) \]

The NGM(1,1,k) model:
\[\hat{x}^{(1)}(k + 1) = (x^{(1)}(1) + 94.0293)e^{-0.7000k} \]
\[+ 229.0920k - 94.0293. \quad (39) \]

The NGM(1,1,k,c) model:
\[\hat{x}^{(1)}(k + 1) = (x^{(1)}(1) + 842.0723)e^{-0.1472k} \]
\[+ 288.7606k - 1130.8389. \quad (40) \]

The ARIMA model:

\[(1 - 0.9661B)(1 - B)x^{(0)}(k) = (1 - 0.5342B)x_k. \quad (41) \]

where \(B \) and \(x_k \) are the lag operator and error terms, respectively.

The outcomes of the primary energy consumption in Saudi Arabia are tabulated in Table 3 and Figure 2. The errors are listed in Table 4 and Figure 3.

From Table 3 and Figure 2, we can notice that DGM (1,1), NGM(1,1,k,c), NDGM(1,1,k,c), ARIMA (1,1,1), and SVMs models successfully catch the tendency of the primary energy consumption in Saudi Arabia. The numerical outcomes by the NDGM(1,1,k,c) model are usually closer to the raw data than the outcomes of the other models.

Year	Data	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGM(1,1,k,c)	ARIMA(1,1,1)	SVMs
2006	164.5	164.5	164.5	164.5	164.5	164.5	189.2396
2007	171.4	177.1631	97.7947	150.9900	171.4	164.5	183.4264
2008	186.9	186.9856	164.4757	169.0332	185.2058	174.3795	186.9510
2009	196.5	197.3527	197.2919	186.1150	201.4061	195.1848	198.4368
2010	216.1	208.2945	213.4420	200.1677	211.4817	205.0715	211.9135
2011	222.2	219.8430	221.3901	212.2967	224.7475	229.1427	222.2509
2012	235.7	232.0318	225.3016	222.7653	231.8629	231.8020	229.6540
2013	237.4	244.8963	227.2266	231.8007	242.9132	246.6592	237.4510
2014	252.1	258.4741	228.1740	239.5992	247.6754	243.9880	246.0452
2015	260.8	272.8047	228.6402	246.3301	257.0601	261.9677	250.5585
2016	266.5	287.9290	228.8697	252.1306	259.9228	259.8285	246.5711
Table 4. Errors of the primary energy consumption for Saudi Arabia by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.

Year	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGMs(1,1,k,c)	ARIMA(1,1,1)	SVMs
2006	0	0	0	0	15.0333	
2007	3.3624	42.9436	11.9200	0	4.0257	7.0166
2008	0.0158	11.9980	9.1315	0.9065	6.6990	0.0273
2009	0.4339	0.4030	5.2850	2.4967	0.6093	0.9856
2010	3.6120	1.2299	7.3726	2.1371	5.1334	1.9373
2011	1.0608	0.3645	4.4569	1.1465	3.1245	0.0229
2012	1.5563	4.4117	5.4878	1.6258	1.6538	2.5651
2013	3.1577	4.2853	2.3866	2.2323	3.9003	0.0215
2014	2.5284	9.4907	4.987	1.7551	3.2174	2.4017
2015	4.0300	12.3312	5.5843	1.4340	0.1477	3.9270
2016	8.0112	14.1202	3.3885	2.4860	1.2490	7.4780

MAPE_{simu} = 1.8898 \quad MAPE_{pred} = 5.0576 \quad MAPE_{over} = 2.8402

As shown in Table 4, MAPE_{pred} and MAPE_{over} for the NDGMs(1,1,k,c) model are 1.8857% and 1.6292%; those for the DGM(1,1) model are 5.0576% and 2.8402%; those for the NGM(1,1,k) model are 11.9807% and 10.1578%; those for the NGM(1,1,k,c) model are 5.2985% and 6.1908%; those for the ARIMA model are 1.6380% and 3.0090%; and those for the SVM model are 4.6022% and 2.6383%, respectively.

It can be concluded that the new model exceeds other models in this application.

4.2. The primary energy consumption of India

This subsection studies the performance of DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA, and SVMs models in predicting the primary energy consumption in India. Computation results and raw data are shown in Tables 5 and 6 and Figures 4 and 5.

It can be seen in Table 6 that MAPE_{simu}, MAPE_{pred}, and MAPE_{over} for the DGM(1,1) are 1.0430%, 2.5142%, and 1.4844%; those for the NGM(1,1,k) model are 9.9016%, 14.6999%, and 11.3411%; those for the NGM(1,1,k,c) model are 3.8010%, 3.8784%, and 3.8242%; those for the NDGMs(1,1,k,c) model are 0.7936%, 0.7412%, and 0.7778%; those for the ARIMA model are 3.0268%, 2.9249%, and 2.9962%; and those for the SVMs are 1.4642%, 5.1290%, and 2.5633%, respectively.

According to Tables 5 and 6 as well as Figures 4 and 5, the predicted values from the NDGMs(1,1,k,c) model are closer to raw samples than other prediction models. The computation results illustrate that the
Table 5. Computational results of the primary energy consumption for India by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.

Year	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGMs(1,1,k,c)	ARIMA(1,1,1)	SVMs
2006	414	414	414	414	414	482.4519
2007	450.2	454.3107	253.8983	425.7961	450.2	471.0947
2008	475.7	480.1950	422.8578	458.4002	475.8445	485.5684
2009	513.2	507.5540	506.8931	490.1910	512.0522	498.6237
2010	537.1	536.4717	548.6897	521.1506	537.7097	541.6501
2011	568.7	567.6371	569.4781	551.3010	573.9289	559.3171
2012	611.6	599.3139	579.8176	580.6631	599.5994	593.5762
2013	621.5	633.4914	584.9602	609.2577	635.8302	617.6630
2014	663.6	669.5845	587.5180	637.1048	661.5137	633.6752
2015	685.1	707.7339	588.7901	664.2239	697.7562	697.1583
2016	723.9	748.0560	589.4228	690.6341	723.4526	705.7656

Table 6. Errors of the primary energy consumption for India by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMs(1,1,k,c), ARIMA(1,1,1), and SVMs models.

Year	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGMs(1,1,k,c)	ARIMA(1,1,1)	SVMs	
2006	0.0931	43.9032	5.4296	0	8.4049	4.6412	
2007	0.9449	11.1083	3.6367	0.0304	0.4214	2.0745	
2008	1.1002	1.2289	4.4834	0.2377	2.8403	0.3032	
2009	0.1169	2.1578	2.9695	0.1135	1.4057	0.7519	
2010	0.2924	0.3368	3.0594	0.9195	1.6499	0.0272	
2011	2.0039	5.1966	5.0583	1.9622	2.6200	2.6993	
2012	1.9294	5.8793	1.9658	2.3058	4.2097	0.0250	
2013	0.9018	11.4650	3.9926	0.3144	4.5095	2.2821	
2014	3.3037	14.0578	3.0472	1.8473	1.7601	3.2010	
2015	3.3370	18.5768	4.5954	0.0618	2.5051	9.9006	
2016	MAPE_{train}	1.0430	9.9016	3.8010	0.7936	3.0268	1.4642
	MAPE_{pred}	2.5412	14.6990	3.8784	0.7412	2.9219	5.1280
	MAPE_{test}	1.4844	11.3411	3.8242	0.7778	2.9962	2.5633

NDGMs(1,1,k,c) model outperforms the DGM(1,1), GNM(1,1,k), NGM(1,1,k,c), ARIMA(1,1,1), and SVMs models; in addition, the NGM(1,1,k) has the worst performance.

4.3. The primary energy consumption of the Philippines

The simulation and forecasting results of the primary energy consumption of the Philippines are tabulated in Table 7 and Figure 6, while the errors are tabulated in Table 8 and Figure 7.

From Table 7 and Figure 6, we can notice that DGM(1,1), NGM(1,1,k), NDGMs(1,1,k,c), ARIMA(2,1,2), and SVMs models successfully catch the tendency of the primary energy consumption in the Philippines. The numerical results of the NDGMs(1,1,k,c) model are closer to the raw data than the results of the other models.

As shown in Table 8, MAPE_{train}, MAPE_{pred}, and MAPE_{test} for the DGM(1,1) model are 1.1396%, 10.6679%, and 3.9851%; those for the NGM(1,1,k) model are 9.6444%, 21.0239%, and 13.0582%; those for the NGM(1,1,k,c) model are 30.9143%, 76.0195%, and 44.4459%; those for the NDGMs(1,1,k,c) model are 0.8213%, 3.2315%, and 1.5443%; those for the ARIMA model are 3.0352%, 3.2165%, and 3.0896%; and those for the SVMs model are 0.3125%, 4.7765%, and 1.6517%, respectively. Obviously, according to
Table 8 and Figure 7, the proposed model outperforms the other models in the case.

4.4. The primary energy consumption in Vietnam

This subsection studies the performance of DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMS(1,1,k,c), ARIMA, and SVMs models in predicting the primary energy consumption in Vietnam. Computation results and raw data are shown in Tables 9 and 10 as well as Figures 8 and 9.

As can be seen in Table 10, the MAPE_{simu}, MAPE_{pred}, and MAPE_{error} for the DGM(1,1) are 3.7971%, 8.4716%, and 5.1995%; those for the NGM(1,1,k) model are 10.3366%, 14.0015%, and 11.4631%; those for the NGM(1,1,k,c) model are 7.4440%, 6.7516%, and 7.2963%; those for the NDGMS(1,1,k,c) model are 2.1315%, 3.1512%, and 2.4374%; those for the ARIMA(1,1,2) model are 10.6703%, 9.0352%, and 10.1798%; and those of the SVMs are 4.0866%, 3.6375%, and 3.9519%, respectively. Based on Tables 9 and 10 as well as Figures 8 and 9, the predicted values by the NDGMS(1,1,k,c) model are much closer to the raw data than the other models. The computation results illustrate that the NDGMS(1,1,k,c) model exceeds the DGM(1,1), GN(1,1,k), NGM(1,1,k,c), ARIMA(1,1,1), and SVM models; besides, the NGM(1,1,k) has the bad performance.

4.5. Discussions and suggestions

The primary energy consumption for Saudi Arabia, India, Philippines, and Vietnam is systematically discussed in this paper by using the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMS(1,1,k,c), ARIMA, and SVM models and based on the actual data from 2006.
Table 7. Computational results of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGM_{s}(1,1,k,c), ARIMA(2,1,2), and SVMs models.

Year	Data	DGM (1,1)	NGM (1,1,k)	NGM (1,1,k,c)	NDGM_{s} (1,1,k,c)	ARIMA (2,1,2)	SVMs
2006	25.6	25.6	25.6	25.6	25.6	25.6	26.5284
2007	26.7	26.4819	14.9267	30.7052	26.7	25.6	26.7165
2008	27.6	27.3055	25.0760	32.2316	27.7639	25.9164	27.5835
2009	28.0	28.1546	28.3283	34.2071	27.7091	26.6613	28.2206
2010	28.8	29.0302	29.3705	36.7638	28.9468	27.6595	28.7835
2011	29.5	29.9329	29.7045	40.0728	29.3329	28.9488	29.4929
2012	30.5	30.8638	29.8116	41.3552	30.9366	30.3619	30.5465
2013	32.5	31.8236	29.8459	49.8976	31.9773	32.5095	32.1285
2014	34.4	32.8133	29.8568	57.0707	34.2522	35.3030	34.4616
2015	37.7	33.8337	29.8604	66.3512	36.3111	38.8936	36.6577
2016	42.1	34.8870	29.8615	78.3689	39.7505	43.7219	37.2514

Table 8. Errors of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGM_{s}(1,1,k,c), ARIMA(2,1,2), and SVMs models.

Year	DGM (1,1)	NGM (1,1,k)	NGM (1,1,k,c)	NDGM_{s} (1,1,k,c)	ARIMA (2,1,2)	SVMs
2006	0.8168	44.0947	15.0007	0	4.1199	0.0618
2007	1.0672	9.1451	16.7812	0.5037	6.1000	0.0598
2009	0.5521	1.1736	22.1682	1.0389	4.7812	0.7879
2010	0.7901	1.9811	27.6522	0.5096	3.9601	0.0572
2011	1.4676	0.6033	35.8309	0.5666	1.8684	0.0230
2012	1.1928	2.5722	45.4270	1.4316	0.2031	0.0540
2013	2.0812	8.1666	53.5312	1.6084	0.2337	1.1430
2014	4.6126	13.2009	65.9032	0.4296	2.6309	0.0480
2015	10.2555	20.7948	76.0057	3.6840	3.1662	2.7647
2016	17.1357	29.0701	86.1494	5.5009	3.8525	11.569
MAPE_{error}	1.1396	9.6444	30.9143	0.8213	3.0352	0.3125
MAPE_{pred}	10.0679	21.0229	76.0195	3.2315	3.2165	4.7765
MAPE_{error}	3.9981	13.0582	44.4459	1.5443	3.0896	1.6517

Figure 7. Error values of the primary energy consumption for Philippines by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGM_{s}(1,1,k,c), ARIMA(1,1,1), and SVMs models.
Table 9. Computational results of the primary energy consumption for Vietnam by DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMS(1,1,k,c), ARIMA(1,1,2), and SVMs models.

Year	Data	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGMS(1,1,k,c)	ARIMA(1,1,2)	SVMs
2006	28.1	28.1	28.1	28.1	28.1	28.1	38.7583
2007	30.6	33.4598	18.7478	26.9497	30.6	28.1	37.5079
2008	38.2	36.5603	30.8373	32.5806	37.8519	33.2028	38.1755
2009	39.3	39.9482	38.9456	37.6267	39.3694	43.6051	40.3060
2010	44.3	43.6500	44.3837	42.1488	46.2959	35.4189	44.3244
2011	50.3	47.6948	48.0309	46.2012	47.3175	53.7805	49.0752
2012	52.5	52.1145	50.4770	49.8328	53.9123	47.6229	52.4755
2013	51.8	56.9437	52.1176	53.0872	54.4497	58.2137	55.2775
2014	59.8	62.2204	53.2180	56.0036	60.7831	52.2579	58.9776
2015	63.7	67.9860	53.9559	58.6171	60.8705	68.3572	61.6825
2016	64.8	74.2860	54.4509	60.9503	66.9822	60.1439	60.6723

Table 10. Errors of the primary energy consumption for Vietnam by the DGM(1,1), NGM(1,1,k), NGM(1,1,k,c), NDGMS(1,1,k,c), ARIMA(1,1,2), and SVMs models.

Year	DGM(1,1)	NGM(1,1,k)	NGM(1,1,k,c)	NDGMS(1,1,k,c)	ARIMA(1,1,2)	SVMs	
2006	0	0	0	0	0	0	37.9298
2007	9.3457	38.7327	11.9291	0	8.1699	22.5747	
2008	4.2923	19.2340	14.7104	0.9112	13.0817	0.0640	
2009	1.6941	0.9018	4.2577	0.2452	10.9546	2.5078	
2010	1.4673	0.1889	4.8560	4.5054	20.0475	0.0552	
2011	5.1792	4.5111	8.1487	5.9294	6.9195	2.4350	
2012	0.7343	3.8532	5.0804	2.6901	9.2897	0.4666	
2013	3.9118	4.8948	3.1256	0.6393	6.2294	0.8714	
2014	4.0474	11.0068	6.3485	1.6440	12.6123	1.3752	
2015	6.7285	15.2568	7.7974	4.4419	7.3111	3.1673	
2016	14.6388	15.9709	5.9271	3.3676	7.1823	6.3700	
MAPE_{intra}	3.7971	10.3366	7.4440	**21315**	10.6703	4.0866	
MAPE_{pred}	8.4716	14.0915	6.7516	**31512**	9.0352	3.6375	
MAPE_{over}	5.1995	11.4631	7.2363	**24374**	10.1798	3.9519	

to 2016. The computational results show that the NDGMS(1,1,k,c) model outperforms the other prediction models in primary energy consumption.

The *BP Statistical Review of World Energy* states that the energy mix inches towards cleaner, lower carbon fuels determined by the environment needs and the technological progress. This result points out that the growth of worldwide primary energy consumption remained low in 2016. This growth is below average in all states except Europe (Saudi Arabia) & Eurasia (India, Philippines, Vietnam). As known, the fossil energy can produce harmful gases that pollute the environment and lead to ecological problems. Moreover, the government will play its role in meeting the dual challenge of supplying the energy for the nation’s needs to grow and prosper and reducing carbon emissions. The mentioned entity should reduce the traditional energy consumption and greatly increase clean energy consumption in the future. We hope that our computational results can provide a guidance for the government to formulate and adjust energy policies.
5. Conclusions

This research study investigated the discrete NDGM$(1,1,k,c)$ model with Simpson formula. Mathematical analysis was carried out to determine the properties of the proposed model. Further, the primary energy consumption for Saudi Arabia, India, Philippines, and Vietnam was carried out to verify the performance of our model with the DGM $(1,1)$, NGM$(1,1,k)$, NGM$(1,1,k,c)$, Auto-Regressive Integrated Moving Average (ARIMA), and the Support Vector Machines (SVMs) models. The results showed that the new NDGM$(1,1,k,c)$ model had high potential in the primary energy consumption with higher accuracy than the other models.

It needs to be pointed out that the GM$(1,1)$, DGM$(1,1)$, and their generalized models are homogeneous exponential models. However, it is difficult to meet data sequences with the significant growth of homogeneous exponent in real situations. This result illustrates that the homogeneous exponent models are inapplicable. According to the analysis of the NDGM$(1,1,k,c)$ model, it is known that the new model can be used as either a homogeneous exponent model or an non-homogenous model, which has a wide range of applications in the real world. Moreover, the proposed model is suitable for simulation and prediction data sequences with only a few samples (not less than four). However, the time series analysis and the computational intelligence technology require a large amount of data. It is sometimes impossible to get as many as observed samples in the real world.

In the future, the new NDGM$(1,1,k,c)$ model can be used for data forecasting such as nuclear energy consumption, the production of shale gas, etc. Further, the method for the NDGM$(1,1,k,c)$ model can be applied to analyze other grey models such as GM$(1,n)$ or Verhulst models.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 71771033, 71571157, 11601357), the Humanities and Social Science Project of Ministry of Education of China (No. 19YJJCZH19), the Longshan academic talent research supporting program of SWUST (No. 17LZXY20), the Open Fund (PLN 201710) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Applied Basic Research Program of Science and Technology Commission Foundation of Sichuan province (2017JY0159), the funding of V.C. & V.R. Key Lab of Sichuan Province (SCVCVR2018.08VS, SCVCVR2018.10VS), and the
Doctoral Research Foundation of Southwest University of Science and Technology (No. 15zx7141, 16zx7140).

References
1. BP Statistical Review of World Energy 2017”, www.bp.com (Accessed Jun 2017).
2. Lee, C.C. “Energy consumption and GDP in developing countries: a cointegrated panel analysis”, Energy Econ., 27(3), pp. 415-427 (2005).
3. Neto, A.H. and Fiorelli, F.A.S. “Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption”, Energy Build., 40(12), pp. 2169-2176 (2008).
4. Ma, M., Cai, W., Cai, W., and Dong, L. “Whether carbon intensity in the commercial building sector decouples from economic development in the service industry? empirical evidence from the top five urban agglomerations in China”, J. Cleaner Prod., 222, pp. 193-205 (2019).
5. Ma, M., Ma, X., Cai, W., and Cai, W. “Carbon dioxide mitigation in the residential building sector: a household scale-based assessment”, Energ. Conv. Manage., https://doi.org/10.1016/j.enconman.2019.111915 (2019).
6. Wang, Y., Zhang, C., Chen, T., and Ma, X. “Modeling the nonlinear flow for a multiple fractured horizontal well with multiple finite-conductivity fractures in triple media carbonate reservoir”, Journal of Porous Media, 21(12), pp. 1283-1305 (2018).
7. Liang, Y., Cai, W., and Ma, M. “Carbon dioxide intensity and income level in the Chinese megacities’ residential building sector: decomposition and decoupling analyses”, Sci. Tool Environ., 677, pp. 315-327 (2019).
8. Yang, W., Wang, J., Lu, H., Niu, T., and Du, P. “Hybrid wind energy forecasting and analysis system based on divide and conquer scheme: a case study in China”, J. Cleaner Prod., 222, pp. 942-950 (2019).
9. Du, P., Wang, J., Yang, W., and Niu, T. “A novel hybrid model for short-term wind power forecasting”, Appl. Soft Comput., 80, pp. 93-106 (2019).
10. Wu, L., Liu, S., Yao, L., and Yu, L. “Fractional order grey relational analysis and its application”, Scientia Iranica, 22, pp. 1171-1178 (2015).
11. Zeng, B., Duan, H., and Zhou, Y. “A new multivariable grey prediction model with structure compatibility”, Appl. Math. Model., 75, pp. 385-397 (2019).
12. Hashem-Nazari, M., Esfahanipour, A., and Ghomi, F.S. “A basic-form focused modeling and a modified parameter estimation technique for grey prediction models”, Scientia Iranica, 25, pp. 2867-2880 (2018).
13. Ma, X. “A brief introduction to the grey machine learning”, J. Grey System, 31(1), pp. 1-12 (2019).
14. Ma, X., Xie, M., Wu, W., Wu, X., and Zeng, B. “A novel fractional time delayed grey model with grey wolf optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China”, Energy, 178, pp. 487-507 (2019).
15. Deng, J. “Control problems of grey systems”, Systems & Control Letters, 1(5), pp. 288-294 (1982).
16. Wu, W., Ma, X., Zeng, B., Wang, Y., and Cai, W. “Application of the novel fractional grey model FAGMO(1,1,k) to predict China’s nuclear energy consumption”, Energy, 165, pp. 223-234 (2018).
17. Ma, X., Wu, W., Zeng, B., Wang, Y., and Wu, X. “The conformable fractional grey system model”, ISA T., 96, pp. 255-271 https://doi.org/10.1016/j.isatra.2019.07.009 (2019).
18. Zeng, B. and Chuan, L. “Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application”, Computers & Industrial Engineering, 118(4), pp. 278-290 (2018).
19. Wang, Z. and Li, Q. “Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO-algorithm-based grey Verhulst model”, J. Cleaner Prod., 207, pp. 214-221 (2019).
20. Wu, W., Ma, X., Zeng, B., Wang, Y., and Cai, W. “Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model”, Renewable Energy, 140, pp. 70-87 (2019).
21. Ma, X. and Liu, Z. “The GMC(1,n) model with optimized parameters and its application”, J. Grey System, 29(4), pp. 122-138 (2017).
22. Mao, S., He, Q., Xiao, X., and Rao, C. “Study of the correlation between oil price and exchange rate under the new state of the economy”, Scientia Iranica, 26(4), pp. 2472-2483 (2018). doi: 10.1242/sci.2018.24482.
23. Ma, X., Xie, M., Wu, W., Zeng, B., Wang, Y., and Wu, X. “The novel fractional discrete multivariate grey system model and its applications”, Appl. Math. Model., 70, pp. 402-424 (2019).
24. Cui, J., Liu, S., Zeng, B., and Xie, N. “A novel grey forecasting model and its optimization”, Appl. Math. Model., 37(6), pp. 4390-4406 (2013).
25. Chen, P. and Yu, H. “Foundation settlement prediction based on a novel NGM model”, Mathematical Problems in Engineering, 2014(1), pp. 1-8 (2014).
26. Xie, N., Liu, S., Yang, Y., and Yuan, C. “On novel grey forecasting model based on non-homogeneous index sequence”, Appl. Math. Model., 37(7), pp. 5059-5068 (2013).
27. He, G., Wu, W., and Zhang, Y. “Performance analysis of machine repair system with single working vacation”, Communications in Statistics-Theory and Methods, 48(22), pp. 5602-5620 (2019).
28. Wang, Y. and Yi, X. “Flow modeling of well test analysis for a multiple fractured horizontal well in triple media carbonate reservoir”, International Journal of Nonlinear Sciences and Numerical Simulation, 19(5), pp. 453-457 (2018).
Biographies

Wenqing Wu obtained both his MS and DSc degrees in Applied Mathematics from Sichuan Normal University, Chengdu, China in 2012 and 2015, respectively. His current research interests include grey forecasting model and reliability analysis.

Xin Ma received the PhD degree in Petroleum Engineering from Southwest Petroleum University, Chengdu, China in 2016. His current research interests include grey forecasting model and petroleum engineering computing technology.

Yong Wang is an Associate Professor at the School of Science, Southwest Petroleum University, Chengdu, China. He has authored or co-authored over 50 research papers in international journals. His research interests include machine learning, optimization theory and applications, large data and data mining theory and applications, and forecasting theory.

Wei Cai obtained his PhD degree from Chongqing University, Chongqing, China in 2018. His major research interest lies in sustainability, energy & environmental science, and low carbon manufacturing. His focus is primarily on improving the energy efficiency and environmental performance for the manufacturing and processing.

Bo Zeng is a Professor at the School of Business Planning, Chongqing Technology and Business University, Chongqing, China. He has published two monographs in the field of grey theory and more than 40 papers in national and international journals. His research interests include decision support system for big data, information management, and system and grey system theory.