Mutational landscape of gastric adenocarcinoma in Latin America: A genetic approach for precision medicine

Dennis Cerrato-Izaguirre a,b, Yolanda I. Chirino c, Claudia M. García-Cuellar a, Miguel Santibáñez-Andrade a, Diddier Prada a,d,e, Angélica Hernández-Guerrero f, Octavio Alonso Larraga f, Javier Camacho b, Yesenia Sánchez-Pérez a,*

a Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico
b Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del I.P.N. (CINVESTAV), Ciudad de México, CP 07360, Mexico
c Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, Estado de México, CP 54090, Mexico
d Departamento de Informática Biomédica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, CP 04510, Mexico
e Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY 10027, USA
f Servicio de Endoscopía, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de México, CP 14080, Mexico

Received 6 November 2020; accepted 1 April 2021
Available online 24 April 2021

KEYWORDS
Ethnicities; Genome; Latin America; Mutation; Precision medicine; Stomach neoplasms

Abstract Latin-America (LATAM) is the second region in gastric cancer incidence; gastric adenocarcinoma (GA) represents 95% of all cases. We provide a mutational landscape of GA highlighting a) germline pathogenic variants associated with hereditary GA, b) germline risk variants associated with sporadic GA, and c) somatic variants present in sporadic GA in LATAM, and analyze how this landscape can be applied for precision medicine. We found that Brazil, Chile, Colombia, Mexico, Peru, and Venezuela are the countries with more published studies from LATAM explicitly related to GA. Our analysis displayed that different germline pathogenic variants for the CDH1 gene have been identified for hereditary GA in Brazilian, Chilean,
Colombian, and Mexican populations. An increased risk of developing somatic GA is associated with the following germline risk variants: IL-4, IL-8, TNF-α, PTGS2, NFKB1, RAF1, KRAS and MAPK1 in Brazilian; IL-10 in Chilean; IL-10 in Colombian; EGFR and ERRB2 in Mexican, TCF7L2 and Chr8q24 in Venezuelan population. The path from mutational landscape to precision medicine requires four development levels: 1) Data compilation, 2) Data analysis and integration, 3) Development and approval of clinical approaches, and 4) Population benefits. Generating local genomic information is the initial padlock to overcome to generate and apply precision medicine.

Copyright © 2021, Chongqing Medical University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Gastric cancer ranks fifth in cancer-related death, with a 5-year survival rate of less than 30% in Western countries.\(^1,2\) Asia is the region with the highest gastric cancer incidence, followed by Latin America (LATAM) and Europe.\(^3\) In LATAM, gastric cancer is in the sixth position in cancer incidence with Chile, Peru, Guatemala, Ecuador, and Costa Rica as the top five countries with the highest gastric cancer incidence and mortality rates.\(^5\) Up to 95% of all cases of gastric cancer are diagnosed as gastric adenocarcinoma (GA), and poor dietary habits,\(^5,6\) tobacco usage,\(^6,7\) Epstein Barr virus infection,\(^8,9\) and occupational exposure such as farming are the main risk factors\(^10-12\) (Fig. 1A). GA is classified into diffuse, intestinal, and mixed type (Fig. 1B) including sporadic and hereditary cases (Fig. 1C).\(^13\) Helicobacter pylori (H. pylori) infections\(^14\) have been considered one of the leading causes of the high GA incidence in LATAM,\(^15,16\) and 80% of GA cases are sporadic; the remaining cases are attributed to germline variants; however, the known germline pathogenic variants only explain 3% of these cases.\(^17\) Clinical peculiarities of LATAM GA patients could result in unknown interactions between the environment and either germline risk or somatic variants. GA Ecuadorian patients living in high altitude conditions that have higher prevalence and mortality odds than those residing at low-lying regions\(^18\); Peruvians with strong Native American ancestry that have a higher risk of developing GA\(^19\); or Hispanics that have more likelihood to be diagnosed with non-cardia GA at a younger age and with diffuse histology than non-Hispanics Caucasians from the United States\(^20\) are examples of the peculiarities which could be explained and probably prevented by elucidating genomic variants in LATAM populations. We aimed to analyze published studies highlighting germline pathogenic variants associated with hereditary GA, germline risk variants associated with sporadic GA, and somatic variants present in sporadic GA to
provide a GA mutational landscape from LATAM populations and an organizational level of the path from landscape to precision medicine achievement.

Comprehensive literature search

The present analysis was performed based on a comprehensive literature search from peer-reviewed studies published until January 2021 in PubMed, Europe PMC, Springerlink, SciELO, and Redalyc. We included articles from LATAM, Argentina, Brazil, Chile, Colombia, Costa Rica, Cuba, Ecuador, Guatemala, Mexico, Peru, Uruguay, and Venezuela identifying germline pathogenic variants associated with hereditary GA, germline risk variants associated with sporadic GA, or somatic variants present in sporadic GA identified either by protein chain reaction, targeted sequencing, microarray, or whole exome/genome sequencing.

Germline pathogenic variants associated with hereditary GA in LATAM

Less than 3% of all GA cases are linked to germline pathogenic variants. Different hereditary GA syndromes have been described, including familial adenomatous polyposis (FAP), juvenile polyposis, Li-Fraumeni syndrome, Lynch syndrome, MUTYH-associated polyposis (MAP), hereditary diffuse gastric cancer (HDGC), familial intestinal gastric cancer (FIGC), and gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS). This review is focused on the three last mentioned syndromes: HDGC, FIGC, and GAPPS.

HDGC is the most common hereditary GA syndrome, and is associated with diffuse histology and pathogenic variations in CDH and CTNNA1. At least 122 CDH1 germline pathogenic variants have been identified worldwide. However, about 30% are missense alterations found in middle to high GA incidence regions like East Asia or LATAM.

In LATAM, only Brazil, Chile, Colombia, and Mexico have reported germline CDH1 variants. Also, Brazil is the country with the highest number of germline variants reported (Table 1).

Less than 40% of the patients meet the clinical criteria for HDGC carries a germline CDH1 variant. A thoughtful clinical scrutiny and high-throughput sequencing techniques should be used to identify the incidence and penetrance of clinically relevant CDH1 variants because of 1) most of the germline variants present by GA patients are non-missense or variables of uncertain significance and 2) not all the individuals presenting CDH1 missense variants met the criteria for HDGC.

A total of 7 germline pathogenic variants in PALB2 (c.1240C>T, c.3201+1G>T, c.1882_1890delAAAGTCCTGC, c.2753C>G) RAD51C (c.709C>T) and BRCA1 (c.3331_3334delCAAG, c.1674delA) were identified as germline pathogenic variants in CDH1 negative HDGC patients from Chile, Colombia, and Mexico. According to the genetic testing registry of the United States, only CDH1 and CTNNA1 genes are included in the Hereditary gastric cancer gene panel (GTR000525305.4). Because an increasing body of evidence suggest that germline pathogenic variants in PALB2 might play an important role in HDGC predisposition, they could be considered in gastric cancer genetic testing, but more information is needed to identify the incidence and penetrance of PALB2 and RAD51C germline variants in LATAM and world population.

For FIGC patients, no germline pathogenic variant is known yet. The diagnosis is performed by familial clustering of intestinal GA cases without polyposis.

Germline risk variants associated to sporadic GA in LATAM

IL-8 c.-251A>T, IL-10 c.-592C>A, and IL-10 c.-1082A>G are the most studied germline risk variants, with GA susceptibility studies reported in countries such as Brazil, Chile, Colombia, and Peru. Increased GA susceptibility with the IL-10 c.-1082A>G and the IL-10 c.-592C>A germline risk variants were associated to increased GA susceptibility in Brazil and Colombia, respectively. None of the studied inflammatory response-related germline risk variants were associated with GA susceptibility in the Mexican population. ILRIN VNTR was the only risk variant associated to LATAM population found in a meta-analysis including reports from Brazilian, Costa Rican, Honduran, Mexican, Peruvian and Venezuelan populations. No significant associations were found with IL-1β, TP53, TNFA or GSTM1 variants, heterogeneity among studies was a big limitation.

No associations were found with mutations in cytochrome P450 enzymes such as CYP2E1, CYP19A1, TCT Ins/Del, and uridine glucuronosyltransferase (UGT) UGT1A1 TATA box VNTR in the Brazilian population. However, the authors claimed limitations in terms of sample size and control to risk factors exposure could affect the results.

A reduction of GA susceptibility was associated to the germline risk variant c.-1518 Ins/Del on the MDM2 gene, whereas the presence of TP53 16bp deletion in Brazilian patients shown no association. Moreover, MAPK1 (c.857-3854A>C and c.119+2164G>A), RAF1 (c.1669-363C>T) and HRAS (c.1115T>C) intronic variants increased GA susceptibility on the Chilean population, even when they were initially reported as variables of uncertain significance in ClinVar. Similar disparities between studies were found in Mexican population, where an increased GA susceptibility was associated with the EGFR.
promoter region variants c.-216G > T, c.-191C > A \(^49\) (related to augmented expression of EGFR protein), the \(ERBB2\) intronic variants c.-18 + 1614C > T, c.-18 + 3073G > T and the missense variant c.3418C > G,\(^50\) classified as variables of uncertain significance in ClinVar. Also, a decreased susceptibility was associated with the TGF-\(\beta\) promoter variant c.-509C > T which is associated with higher TGF-\(\beta\) plasmatic concentration.

\(TCF7L2\) transcription factor variant IVS3 C > T and IVS4 G > T variant\(^51\) and to chromosome 8q24 position variation was associated with an increased GA susceptibility in Venezuelan patients.\(^52\) Germline risk variants related to oxidative damage and DNA repair genes, \(MTHFR, XRCC1\) and \(TYMS\) were studied in Brazilian population but association with GA susceptibility was not found.\(^40,53\) In addition, an analysis of epithelial-to-mesenchymal transition (EMT)-related genes (\(CDH1, TWIST1, SNAIL2, ZEB1, ZEB2\)) in Chilean population found that only TWIST (rs2526614 and rs6953766) and ZEB1 (rs431073) germline risk variants were associated with poor prognosis.\(^54\) A similar association was found in inflammatory response related to the germline risk variant IL-8 c.-251T > A, also in Chilean population.\(^55\)

Table 1

Population	Variants	Exon/Intron	Mutation	Significance	Reference
Brazil	c.48-6C>T	Intron 1	Intrinsic variant	Non-coding	23
	c.49-9G>T	Intron 1	Intrinsic variant	Non-coding	23
	c.163-57G>A	Intron 1	Intrinsic variant	Non-coding	23
	c.163-59G>C	Intron 2	Intrinsic variant	Non-coding	23
	c.313T>A	Exon 3	Missense	p.S105T	23
	c.324A>G	Exon 3	Synonymous	p.R108R	23
	c.345G>A	Exon 3	Synonymous	p.T115T	23
	c.387G>T	Exon 3	Missense	p.Q129H	23
	c.387+27C>T	Intron 3	Intrinsic variant	Non-coding	23
	c.388-44G>A	Intron 3	Intrinsic variant	Non-coding	23
	c.531-10G>C	Intron 4	Intrinsic variant	Non-coding	23
	c.532-18C>T	Intron 4	Intrinsic variant	Non-coding	23
	c.833-16C>G	Intron 6	Intrinsic variant	Non-coding	23
	c.1676G>A	Exon 11	Missense	p.S555N	23
	c.1806C>A	Exon 12	Missense	p.F602L	23
	c.1849G>A	Exon 12	Missense	p.A617T	23,27
	c.1937-13T>C	Intron 12	Intrinsic variant	Non-coding	23
	c.2076T>C	Exon 13	Synonymous	p.A692A	23,27
	c.2164+16insA	Intron13	Intrinsic variant	Non-coding	23
	c.2253C>T	Exon 14	Synonymous	p.N751N	23
	c.2439+10C>T	Intron 15	Intrinsic variant	Non-coding	23
	c.2439+56T>G	Intron 15	Intrinsic variant	Non-coding	23
	c.2634C>T	Exon 16	Synonymous	p.G878G	23,27
	c.160C>A	Promoter	—	Decreased transcription	24
	c.347GinsGA	Promoter	—	—	24
	c.1763-176DelTG	—	—	Frameshift	25
	c.185G>T	Exon 3	Missense	p.G62V	26
	c.1018A>G	Exon 8	Missense	p.T340A	26
	c.1023T>G	Exon 8	Nonsense	p.Y341*	27
Chile	c.285C>A	Promoter	—	Non-coding	28
	c.197A>C	Promoter	—	Non-coding	28
	c.48-6C>T	Intron1	Splice site	—	28
	c.88C>A	Exon 2	Missense	p.P30T	28
	c.531+10G>C	Intron 4	Splice site	—	28
	c.1272A>T	Exon 9	Synonymous	p.T424T	28
	c.1531C>T	Exon 10	Nonsense	p.Q511*	28
	c.1893A>T	Exon 12	Synonymous	p.T631T	28
	c.2052C>T	Exon 13	Synonymous	p.S684S	28
	c.2076T>C	Exon 13	Synonymous	p.A692A	28
	c.2253C>T	Exon 14	Synonymous	p.N751N	28
Colombia	c.2245C>T	Exon 14	Missense	p.R749W	29
Mexico	c.160C>A	Promoter	—	Decreased transcription	30–32
	c.347GinsGA	Promoter	—	—	31

Abbreviations: Ins: insertions, Del: deletion, fs: frameshift.
Figure 2 Mutational landscape of gastric adenocarcinoma from LATAM. Genes with described germline risk variants are reported from Mexico, Colombia, Perú, Chile, Venezuela, and Brazil, while data from Guatemala, El Salvador, Puerto Rico, Costa Rica, and Panamá are not available. Clinical trials conducted for targeted therapies in LATAM are available for all mentioned countries. The higher prevalence in mutations could be grouped into five categories of cellular significance: a) apoptosis and oncogenes (SOS1, MSMB, MDM2, KRAS, HRAS, ERBB2, FGFR, CDH1, EGFR, MAPK1, PDGFRB, RAF1, MAP2K1, TCF7L2, CASP8, TGF-β, GRB2, TP53); b) inflammatory response (IL-8, IL-4Ra, IL-10, IL-17, IL-1b, TNF-α, IFN-γ, IL-32, IL-1α, IL-1β, IL-6, IL-17F, IL-10, IL-6, IL-1b, TLR9, IL-1RN, PTGS2, NFkB1 and IL-8R); c) oxidative damage and DNA repair (XRCC, MTHFR, TYMS); d) detoxifying mechanisms (CYP19A1, CYP2E1 and UGT1A1) and e) unknown function (Chr8q24). Currently, EGFR/HER 2 and PD-1/PD-L1 inhibitors are the most common targeted therapies used in clinical trials conducted in LATAM.
Pathway	Genes	Germline risk variants	dbSNP	Population	Risk	Reference
Inflammatory response	IL-1β	c.-511C>T	rs16944	Brazil	Not-aff	39
		c.-31C>T	rs1143627	Chile	Not-aff	44
		c.-3954C>T	rs1143634	Chile	Not-aff	44
	IL-1α	4-bp Ins/Del	rs3783553	Brazil	Not-aff	40
	IL-1RN	Intron 2, VNTR	rs380092	Chile	Not-aff	44
	IL-4	c.-590C>T	rs1800629	Mexico	Not-aff	47
		Intron 3, 70 bp VNTR	rs79071878	Brazil	Inc	40
	IL-4Rα	p.Q576R	—	Columbia	Not-aff	46
		p.150V	—	Columbia	Not-aff	46
	IL-6	c.-573G>C	rs1800796	Mexico	Not-aff	47
	IL-8	c.-251A>T	rs4073	Brazil	Red	39
		c.-845T>C	rs2227532	Brazil	Inc	43
	IL-8Rβ	—	rs4674258	Peru	Not-aff	48
	IL-10	c.-1082A>G	rs1800896	Mexico	Not-aff	47
		c.-819C>T	rs1800871	Mexico	Red	47
		c.-592C>A	rs1800872	Mexico	Inc	44
	IL-17	c.-197G>A	rs2275913	Chile	Not-aff	44
	IL-17F	c.482A>G (p.H161R)	rs763780	Chile	Not-aff	44
	IL-32	—	rs28372698	Chile	Not-aff	44
	TNF-α	c.-308G>A	rs1800629	Chile	Not-aff	44
		c.-857C>T	rs1799724	Brazil	Inc	43
	IFN-γ	c.-1615C>T	rs2069705	Mexico	Not-aff	47
	TLR9	c.-1237T>C	rs5743836	Brazil	Inc	41
		c.-1486C>T	rs187084	Brazil	Inc	41
	PTGS2	c.-1195G>A	rs689466	Perú	Not-aff	48
		c.-1290A>G	rs689465	Perú	Not-aff	48
		c.-765G>C	rs20417	Brazil	Inc	42
	NFKB1	promoter, -94 ATTAG Ins/Del	rs28362491	Brazil	Inc	40
	CYP2E1	96 bp Deletion	—	Brazil	Not-aff	40
	CYP19A1	Intro 4, TCT Ins/Del	rs11575899	Brazil	Not-aff	40
	UGT1A1	TATA box, VNTR	rs8175347	Brazil	Not-aff	40
	MTHFR	c.677C>T (p.A222V)	rs1801133	Brazil	Not-aff	40
	XRCC1	Gene deletion	rs3213239	Brazil	Not-aff	40
	TYMS	6bp Ins/Del	rs16430	Brazil	Not-aff	40
		—	—	Brazil	Not-aff	40
	Apoptosis and Oncogenesis	CASP8	rs45445694	Brazil	Not-aff	53
		TP53	rs34743033	Brazil	Not-aff	40
		MDM2	rs3834129	Brazil	Not-aff	40
		EGFR	rs712829	Mexico	Inc	49
		—	—	Chile	Not-diff	45
		c.-191C>A	rs712830	Mexico	Inc	49
		IVS1	—	Mexico	Not-aff	49

(continued on next page)
Somatic variants present in sporadic GA in LATAM

Single gene approaches report an alteration in different TP53 exons, frequently exon 5 and 9 in individuals with G > A transitions as the most common nucleotide substitution in Chilean population.56 A high frequency of TP53 somatic variation in tumoral samples but failed finding associations between this somatic variant and clinical outcomes such as tumor localization, histological type, and presence of lymph node metastasis were found in the Chilean population.57 Comparable results were found in MYC, FBXW7, and TP53 copy number variation in Brazilian patients, and only high expression of MYC detected by immunohistochemistry was associated with intestinal-type GA patients.58 In other populations TP53, MYC, and PIK3CA are also among the most frequently mutated genes.59,60

Table 2 (continued)

Pathway	Genes	Germline risk variants	dbSNP	Population	Risk	Reference
		c.1881-600G >A	rs10228436	Chile	Not-aff	45
		c.2283+1296C>T	rs11514996	Chile	Not-aff	45
		c.88+3321T>C	rs11770506	Chile	Not-aff	45
		c.89–58442T>C	rs17172438	Chile	Not-aff	45
		c.2470–3426C>T	rs2740761	Chile	Not-aff	45
		c.88–37628A>G	rs6593201	Chile	Not-aff	45
		c.2469–959G>A	rs7795743	Chile	Not-aff	45
		ERBB2				
		c.-18+1614C>T	rs2643194	Mexico	Inc	50
		c.-18+1663C>T	rs2517951	Mexico	Not-aff	50
		c.-18+1684A>G	rs2643195	Mexico	Not-aff	50
		c.-18+3073G>T	rs2934971	Mexico	Inc	50
		c.3418C>G	rs1058808	Mexico	Inc	50
		SOS1				
		c.1859–1142T>C	rs10184015	Chile	Not-aff	45
		RAF1				
		c.1417+170C>G	rs2290159	Chile	Not-aff	45
		c.1669-36C>T	rs3729391	Chile	Inc	45
		c.-26-2203C>T	rs73812837	Chile	Not-aff	45
		HRAS				
		c.-1115T>C	rs45604736	Chile	Not-aff	45
		KRA5				
		c.*633T>C	rs9266	Chile	Inc	45
		MAPK1				
		c.857–3854A>C	rs2283792	Chile	Inc	45
		c.119–7040A>G	rs4821401	Chile	Not-aff	45
		c.857–1944T>C	rs743409	Chile	Not-aff	45
		c.*3186C>T	rs9340	Chile	Not-aff	45
		MAP2K1				
		c.81–996C>T	rs1347069	Chile	Not-aff	45
		MAP2K2				
		c.919+423T>C	rs350912	Chile	Not-aff	45
		c.303+1424C>T	rs1823059	Chile	Not-aff	45
		GRB2				
		c.78+20210G>A	rs959260	Chile	Not-aff	45
		TGF-β				
		c.509C>T	rs1800469	Mexico	Red	47
		PAR1				
		c.506 Ins/Del	rs11267092	Brazil	Not-aff	40
		MSMB				
		c.57C>T	rs10993994	Peru	Not-aff	48
		FGFR2				
		c.*805C>T	rs1017375	Chile	Not-aff	45
		c.-152-8335A>G	rs10066011	Chile	Not-aff	45
		c.-153+4691A>G	rs58746386	Chile	Not-aff	45
		TCF7L2				
		IVS3 +T	rs7903146	Venezuela	Inc	51
		c.483-9017G>T (IVS4 +T)	rs12255372	Venezuela	Not-aff	52
		Unknown function				
		Chr8q24				
		Chr8q24				
		Chr8q24				

Abbreviations: dbSNP: National Center for Biotechnology Information single nucleotide polymorphism database, Inc: Increased risk, Red: Reduced risk, Not-aff: Not Affected, VNTR: variable number tandem repeat, IVS: intervening sequence.

53 D. Cerrato-Izaguirre et al.
Colombian patients. TP53 c.782 + 72C > T and c.782 + 92T > G were also frequent in Colombian GA patients. KRAS coding variants, c.35G > A (p.G12D) and c.38G > A (p.G13D), were found in 6.9% of Colombian GA patients and the intronic variants, c.111 + 190A > T and c.111 + 116_111 + 120delAGTTA, in 27.6% and 3.5% of the patients, respectively. Sotorasib (formerly AMG 510) and Adagrasib (formerly MRTX849) are two novel drugs with targeted activity to KRAS p.G12D variant in non-small cell lung cancer (NSCLC) and other solid tumors like colorectal cancer, that could be an asset to GA precision medicine. The NSCLC group treated with sotorasib show a 32.2% of objective response rate and a median progression-free survival of 6.3 months.

Another Colombian study identified that some KRAS somatic variations could be determinant to precancerous lesion progression to cancerous lesions, especially G>A transitions in position 1 of codon 12. Contrasting results were found in Venezuelan patients with *H. pylori* infection, where KRAS somatic variations in codon 12 were common in precancerous lesions but uncommon in cancerous lesions.

DNA copy number alterations affect both protein-coding and non-coding genes present in the affected region. Amplification involving 8q, 20q, and 17q; deletions involving 3p, 6p, and 2q as well as loss of heterogeneity in 16p were present in 50% or more intestinal type GA Brazilian patients. TP53TG3B, TP53TG3 and ZNF267 were the most frequently affected genes by the previous genetic alterations and were not frequent in genomic sequencing studies from other populations and they could be distinctive for Brazilian population, but more information is needed. Gains in Xq26 (cancer/testis antigen family 4, subfamily N, member 5 - OR52N5) and Xp22.31 (microsomal steroid sulfatase, member A4) and Xp22.31 (microsomal steroid sulfatase, isozyme S) and loss in 11p15.4 (olfactory receptor, family 52, subfamily N, member 5 - OR52N5 and OR52N1) were associated with early-onset intestinal type GA. Further copy number analysis of 17q21 located prohibitin gene in Brazilian patients and found amplification in 34.2% of patients but no association to disease clinicopathological features.

The comparative genomic hybridization in Brazilian patients highlighted the high frequency of chromosomal gains in GA intestinal type, specially 8q chromosomal gains with 8q24 amplification in metastasized intestinal-type GA and a high-frequency chromosomal losses in chromosome regions 11q and 18q were found in Brazilian patients with diffuse type GA, and similar alterations were found in Asian and European populations.

Tumoral tissue had significantly higher heteroplasmy than paired healthy tissues and gastric tissue of healthy zilian patients. Tumoral tissue had significantly higher heteroplasmy than paired healthy tissues and gastric tissue of healthy zilian patients.

From GA mutational landscape to precision medicine in LATAM

Precision medicine is based on two main pillars. First, determining cancer predisposition through germline pathogenic or risk variants identification to provide a prompt diagnose and genetic counseling. Second, to test the tumor itself to decide the best treatment option through somatic variants evaluation. The starting point for precision medicine is the design of epidemiological studies that include sequencing strategies to obtain the mutational landscape of the tumor (Level 1: Data compilation). The subsequent bioinformatic analysis plays a key role in finding functional and clinically relevant mutations and the non-actionable mutation are re-analyzed, providing novel information later (Level 2: Data analysis and integration). Then, the data can be used for early diagnosis and the development of clinical approaches of specific therapeutic targets, which normally is expensive in terms of economic resources and time (Level 3: Development and approval of clinical approaches). If a specific therapy for a novel detected mutation does not exist, conventional therapy is used, but simultaneously
Figure 3 From mutational landscape to precision medicine for gastric adenocarcinoma (GA) in LATAM. The achievement of precision medicine requires several levels. The first level is the design of a proper cohort selection in which patients without previous treatment for GA are included properly for mutational landscape detection through available sequencing strategies (exome/transcriptomic/proteomic). Level 2 requires the data analysis derived from sequencing methods and for this purpose bioinformatic tools delivers functional and clinically relevant data or non-actionable mutations, which can be re-analyzed and deliver information that correlates with epidemiological data and turns into clinically relevant information. Level 3 is reached when the mutational landscape is applied for diagnosis/prognosis and therapeutic development for precision medicine. Finally, level 4 is successfully achieved by significantly decreasing the incidence and/or mortality of the cancer.

Table 3 Clinical trials for targeted therapies for gastric cancer in LATAM.

Agent	Trial name	LATAM participating countries	NCT Identifier (Status)
EGFR/HER 2 inhibitors	GATSBY	Argentina, Brazil, Guatemala, Mexico, Panama, Peru	NCT01641939 (Terminated)
Trastuzumab-emtansine	TRAXHER2	Argentina, Brazil	NCT01702558 (Terminated)
Trastuzumab-emtansine	GATHERHER2	Brazil	NCT04168931 (Not yet recruiting)
Trastuzumab-emtansine	EXPAND	Argentina, Brazil, Chile	NCT00678535 (Completed)
Trastuzumab-emtansine	DESTINY-Gastric03	Brazil	NCT04379596 (Recruiting)
Pertuzumab	JACOB	Brazil, El Salvador, Guatemala, Mexico, Panama, Peru	NCT01774786 (Completed)
Trastuzumab	ToGA Study	Brazil, Costa Rica, Guatemala, Mexico, Panama, Peru	NCT01041404 (Completed)
Trastuzumab	HELOISE	Brazil, Chile, Mexico, Panama, Peru	NCT01450696 (Terminated)
RTK Inhibitors	LOGIC	Argentina, Brazil, Chile, Mexico, Peru	NCT00680901 (Active)
Lapatinib		Argentina, Brazil, Colombia	NCT00428220 (Completed)
Sunitinib		Argentina, Brazil, Colombia	NCT00526669 (Completed)
Gefetinib		Puerto Rico	NCT00215995 (Completed)
PI3K/AKT/mTOR Inhibitors	GRANITE-1	Argentina, Mexico, Peru	NCT00879333 (Completed)

MET Inhibitors
specific therapy is developed, and clinical trials succeed, followed by the approval of health authorities (Level 3: Development and approval of clinical approaches). The cost for sequencing large cohorts and the high costs of treatments targeting specific mutations are the main padlocks. We consider that precision medicine will succeed until the personalized treatments achieve a significant decrease in the incidence or mortality in the population (Level 4: Population benefits) (Fig. 3).

The United States and Puerto Rico are conducting MATCH (molecular analysis for therapy choice) clinical trial, which falls within the level 3 of the proposed pathway from mutational landscape to precision medicine. This trial is based on genomic screening where patients are allocated to experimental aims depending on the genetic changes found in the tumor, regardless the cancer type.86,87 Several clinical studies have been conducted in LATAM to prove the efficacy and security of targeted therapies (Table 3) but

Table 3 (continued)

Agent	Trial name	LATAM participating countries	NCT Identifier (Status)	
Rilotumumab	RILOMET-1	Brazil, Mexico	NCT01697072 (Terminated)	
AMG 337		Chile, Peru	NCT02016534 (Terminated)	
Omitzumab	METGastric	Guatemala, Mexico, Panama	NCT01662869 (Completed)	
JAK/STAT Inhibitors	Napabucasin (BB1608)	BRIGHTER	Brazil	NCT02178956 (Completed)
PD-1/PD-L1 Inhibitors				
Relatlimab/Nivolhumab				
Nivolhumab	CheckMate649	Argentina, Brazil, Chile,	NCT03704077 (Withdrawn)	
Relatlimab/Nivolhumab		Colombia, Mexico, Puerto Rico		
Pembrolizumab	MK-3475-859/	Argentina, Brazil, Chile,	NCT03662659 (Active)	
	KEYNOTE-859	Colombia, Costa Rica,		
		Guatemala, Mexico, Peru		
Durvalumab		Argentine, Peru		
Pembrolizumab	MK-3475-811/	Brazil, Chile, Guatemala	NCT03615326 (Recruiting)	
	KEYNOTE-811			
Pembrolizumab	MK-3475-585/	Brazil, Chile, Guatemala	NCT03221426 (Recruiting)	
	KEYNOTE-585			
Avelumab	JAVELIN Gastric 100	Brazil	NCT02625610 (Active)	
Pembrolizumab	MK-7902-005/	Chile	NCT03797326 (Recruiting)	
	E7080-G000-224/LEAP-005			
Pembrolizumab	MK-3475-062/	Argentina, Brazil, Chile,	NCT02494583 (Active)	
	KEYNOTE-062	Colombia, Guatemala, Mexico,		
		Puerto Rico		
Angiogenesis inhibitor	Ramucirumab	Argentine, Brazil, Chile,	NCT00917384 (Completed)	
	REGARD	Colombia, Guatemala, Mexico		
Ramucirumab	RAINBOW	Argentine, Brazil, Chile,	NCT01170063 (Completed)	
	RAINFALL	Mexico	NCT02314117 (Completed)	
Ramucirumab		Argentine, Mexico, Puerto Rico	NCT02443883 (Completed)	
CLDN18.2 directed antibody	Zolbetuximab	Argentina	NCT03653507 (Recruiting)	
MMP9 Inhibitors	Zolbetuximab	Brazil, Chile, Colombia,	NCT03504397 (Recruiting)	
		Mexico, Peru		
Antisense non-coding	Andecaliximab	Colombia, Chile, Peru	NCT02545504 (Completed)	
mitochondrial RNA Inhibitors	GAMMA-1			
Andes-1537		Chile	NCT03985072 (Recruiting)	

Abbreviations: LATAM: Latin America, BSC, best supportive care; XELOX, Oxaliplatin and capecitabine; FOLFOX, Oxaliplatin, leucovorin and fluorouracil; SOX, Oxaliplatin and tegafur/gimeracil/oteracil potassium; FP, 5-Fluorouracil and cisplatin; FLOT, Fluorouracil, leucovorin, oxaliplatin and docetaxel; ECX, Epirubicin, cisplatin and capecitabine; SOC, Cisplatin, 5-Fluorouracil, capecitabine.

8 Pharmacokinetic studies.
non involving genomic screening and a design like the MATCH clinical trial. To date, only HER-2 and PD-1/PD-L1 inhibitors are only targeted therapies available to treat GA patients in LATAM. GA patients with KRAS, PIK3CA, ERBB2, EGFR, CD247, CLDN18, MET and FGFR pathogenic variants could be benefit from precision medicine clinical trials.

Brazil and Chile are the countries with more tangible scientific efforts done to generate local genetic data and elucidate the GA mutational landscape, this would ease the implementation of precision medicine and gene counseling programs to provide better care to GA patients. Even though the direct impact of this care options has not been measured, a decrease of GA incidence and mortality in these countries has been reported, with up to a 15% reduction in gastric cancer mortality in Brazilian cohorts and a 3.5% annual percentage reduction of mortality from 2012 to 2015 in Chilean cohorts. On the other hand, in most of LATAM countries the shortage on genetic data and founding opportunities hampers the implementation of short-term precision medicine and genetic counseling programs.

Conclusions

Despite LATAM population shares vast ethnic and cultural background, the mutational landscape is dissimilar. Brazilians show increased GA risk associated with variants in interleukins; Mexicans display also increased GA risk associated with growth factor receptors. Chileans and Mexicans present discrepancies in all the top 5 frequently mutated somatic variants. Though some difficulties should be overcome, Brazil, Chile, and Mexico may become the first LATAM countries providing precision medicine fighting GA based on its regional mutational landscape.

Author contributions

Dennis Cerrato-Izaguirre: Conceptualization, Writing-Original draft preparation, Writing-Reviewing and Editing. Yolanda I. Chirino: Writing-Original draft preparation, Writing-Reviewing and Editing. Claudia M Garcia-Cuellar: Writing-Reviewing and Editing. Miguel Santibáñez-Andrade: Conceptualization, Writing-Original draft preparation, Writing-Reviewing and Editing. Didder Prada: Writing-Reviewing Angélica Hernández-Guerrero: Writing-Reviewing. Octavio Alonso Larraza: Writing-Reviewing. Javier Camacho: Writing-Reviewing and Editing. Yesenia Sánchez-Pérez: Conceptualization, Writing-Reviewing and Editing.

Conflict of interests

Authors declare that they have no conflicts of interest.

Funding

This study was supported by the National Institutes of Health (No. R21ES027087, DP) and by CONACYT (Consejo Nacional de Ciencia y Tecnología – México) – FOSISS (Fondo Sectorial de Investigación en Salud y Seguridad Social SS/IMSS/ISSSTE-CONACYT) (No. 289503 and A3-S-49533 DP, A3-S-48281 to CMG-C, A3-S-41131 to YS-P).

References

1. Asplund J, Kauppila JH, Mattsson F, Lagergren J. Survival trends in gastric adenocarcinoma: a population-based study in Sweden. Ann Surg Oncol. 2018;25(9):2693–2702.
2. Jim MA, Pinheiro PS, Carreira H, Espey DK, Wiggins CL, Weir HK. Stomach cancer survival in the United States by race and stage (2001-2009): findings from the CONCORD-2 study. Cancer. 2017;123(Suppl 24):4994–5013.
3. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Canc. 2019;144(8):1941–1953.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2018;68(6):394–424.
5. Trujillo Rivera A, Sampieri CL, Morales Romero J, et al. Risk factors associated with gastric cancer in Mexico: education, breakfast and chilli. Rev Esp Enferm Dig. 2018;110(6):372–379.
6. Bonequi P, Meneses-González F, Correa P, Rabkin CS, Camargo MC. Risk factors for gastric cancer in Latin America: a meta-analysis. Cancer Causes Control. 2013;24(2):217–231.
7. Camargo MC, Piazuelo MB, Mera RM, et al. Effect of smoking on failure of H. pylori therapy and gastric histology in a high gastric cancer risk area of Colombia. Acta Gastroenterol Latinoam. 2007;37(4):238–245.
8. Campos FL, Koriyama C, Akiba S, et al. Environmental factors related to gastric cancer associated with Epstein-barr virus in Colombia. Asian Pac J Cancer Prev APJCP. 2006;7(4):633–637.
9. Del Moral-Hernández O, Castañón-Sánchez CA, Reyes-Navarrete S, et al. Multiple infections by EBV, HCMV and Helicobacter pylori are highly frequent in patients with chronic gastritis and gastric cancer from Southwest Mexico: an observational study. Medicine. 2019;98(3):e14124.
10. Mills PK, Dodge J, Yang R. Cancer in migrant and seasonal hired farm workers. J Agromed. 2009;14(2):185–191.
11. Wesseling C, Antich D, Hogstedt C, Rodriguez AC, Ahlbom A. Geographical differences of cancer incidence in Costa Rica in relation to environmental and occupational pesticide exposure. Int J Epidemiol. 1999;28(3):365–374.
12. Arias Bahia SH, Echenique Mattos I, Koifman S. Cancer and wood-related occupational exposure in the Amazon region of Brazil. Environ Res. 2005;99(1):132–140.
13. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Primers. 2017;3:17036.
14. Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153(2):420–429.
15. Muñoz-Ramírez ZY, Mendez-Tenorio A, Kato I, et al. Whole genome sequence and phylogenetic analysis show Helicobacter pylori strains from Latin America have followed a unique evolutionary pathway. Front Cell Infect Microbiol. 2017;7:50.
16. Thorell K, Yahara K, Berthenet E, et al. Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genet. 2015;7(13):e1006546.
17. van der Post RS, Vogelaar IP, Carneiro F, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet. 2015;52(6):361–374.
18. Garrido Di, Garrido SM. Cancer risk associated with living at high altitude in Ecuadorian population from 2005 to 2014. Cielul Med. 2018;91(2):188–196.
19. Pereira L, Zamudio R, Soares-Souza G, et al. Socioeconomic and nutritional factors account for the association of gastric cancer with Amerindian ancestry in a Latin American admixed population. *PLoS One*. 2012;7(8):e41200.

20. Holowatyj AN, Ulrich CM, Lewis MA. Racial/ethnic patterns of young-onset noncardia gastric cancer. *Cancer Prev Res*. 2019;12(11):771–780.

21. Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. *Lancet Oncol*. 2016;16(2):e60–e70.

22. Corso G, Marrelli D, Pascale V, Vindigni C, Roviello F. Frequency of CDH1 germline mutations in gastric carcinoma coming from high- and low-risk areas: metanalysis and systematic review of the literature. *BMC Cancer*. 2012;12:8.

23. Guindalini RSC, Cormedi MCV, Maistro S, et al. Frequency of CDH1 germline variants and contribution of dietary habits in early age onset gastric cancer patients in Brazil. *Gastric Cancer*. 2019;22(3):920–931.

24. Do Nascimento Borges B, Da Silva Santos E, Bastos CEMC, et al. Promoter polymorphisms and methylation of E-cadherin (CDH1) and KIT in gastric cancer patients from northern Brazil. *Anticancer Res*. 2010;30(6):2225–2233.

25. de Campos ECR, Ribeiro S, Higashi R, Manfredini R, Kfouri D, Cavalcanti TCS. Hereditary diffuse gastric cancer: laparoscopic surgical approach associated to rare mutatation of CDH1 gene. *Arq Bras Cir Dig*. 2015;28(2):149–151.

26. Moreira-Nunes CA, Barros MBL, do Nascimento Borges B, et al. Genetic screening analysis of patients with hereditary diffuse gastric cancer from northern and northeastern Brazil. *Hered Cancer Clin Pract*. 2014;12(1):18.

27. El-Husny A, Raiol-Moraes M, Amador M, et al. CDH1 mutations in gastric cancer patients from northern Brazil identified by Next- Generation Sequencing (NGS). *Genet Mol Biol*. 2016;39(2):189–198.

28. Norero E, Alarcon MA, Hakkaart C, et al. Identification of c.1531C>T pathogenic variant in the CDH1 gene as a novel germline mutation of hereditary diffuse gastric cancer. *Int J Mol Sci*. 2019;20(20):4980.

29. Kaurah P, MacMillan A, Boyd N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. *J Am Med Assoc*. 2007;297(21):2360–2372.

30. Medina-Franco H, Medina AR-DI, Vizzagino G, Medina-Franco JL. Single nucleotides polymorphisms in the promoter region of the E-cadherin gene in gastric cancer: case-control study in a young Mexican population. *Ann Surg Oncol*. 2007;14(8):2246–2249.

31. Bustos-Carpinteyro AR, Delgado-Figueroa N, Santiago-Luna E, Magaña-Torres MT, Sánchez-López JY. Association between the CDH1-472delA and -160C>A polymorphisms and diffuse and intestinal gastric cancer in a Mexican population. *Genet Mol Res*. 2016;15(3):15038715.

32. Ramos-de la Medina A, More H, Medina-Franco H, et al. Single nucleotides polymorphisms (SNPs) at CDH1 promoter region in familial gastric cancer. *Rev Esp Enferm Dig*. 2006;98(1):36–41.

33. Lee K, Krempey K, Roberts ME, et al. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence variants. *Hum Mutat*. 2018;39(11):1553–1568.

34. Frewings E, Larionov A, Redman J, et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study. *Lancet Gastroenterol Hepatol*. 2018;3(7):489–498.

35. Blair VR, McLeod M, Carneiro F, et al. Hereditary diffuse gastric cancer: updated clinical practice guidelines. *Lancet Oncol*. 2020;21(8):e386–e397.

36. van der Post RS, Carneiro F. Emerging concepts in gastric neoplasia: heritable gastric cancers and polyposis disorders. *Surg Pathol Clin*. 2017;10(4):931–945.

37. Li J, Woods SL, Healey S, et al. Point mutations in exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. *Am J Hum Genet*. 2016;98(5):830–842.

38. Foretová L, Navrátilová M, Svoboda M, et al. Gapps - gastric adenocarcinoma and proximal polyposis of the stomach syndrome in 8 families tested at masaryk memorial cancer institute - prevention and prophylactic gastrectomies. *Klin Onkol*. 2019;32(Supp 2):109–117.

39. Caleman Neto A, Rasmussen LT, de Labio RW, et al. Gene polymorphism of interleukin 1 and 8 in chronic gastritis patients infected with Helicobacter pylori. *J Venom Anim Toxins Incl Trop Dis*. 2014;20(1):17.

40. Cavalcante GC, Amador MA, Ribeiro Dos Santos AM, et al. Analysis of 12 variants in the development of gastric and colorectal cancers. *World J Gastroenterol*. 2017;23(48):8533–8543.

41. Susi MD, Lourenço Caroline dM, Rasmussen LT, et al. Toll-like receptor 9 polymorphisms and Helicobacter pylori influence gene expression and risk of gastric carcinogenesis in the Brazilian population. *World J Gastrointest Oncol*. 2019;11(11):998–1010.

42. Campanholo VMDLP, Felipe AV, Lima JMd, Pimenta CAM, Ventura RM, Forones NM. 765 G>C Polymorphism of the Cox-2 gene and gastric cancer risk in Brazilian population. *Arch Gastroenterol*. 2014;51(2):79–83.

43. de Oliveira JG, Rossi AFT, Nizato DM, et al. Influence of functional polymorphisms in TNF-a, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. *Tumor Biol. 2015;36(12):9159–9170.

44. Gonzalez-Hormazabal P, Musleh M, Bustamante M, et al. Role of cytokine gene polymorphisms in gastric cancer risk in Chile. *Anticancer Res*. 2014;34(7):3523–3530.

45. Gonzalez-Hormazabal P, Musleh M, Bustamante M, et al. Polymorphisms in RAS/RAF/MEK/ERK pathway are associated with gastric cancer. *Genes*. 2019;10(1):20.

46. Cárdenas DM, Sánchez AC, Rosas DA, et al. Preliminary analysis of single-nucleotide polymorphisms in IL-10, IL-4, and IL-4Ra genes and profile of circulating cytokines in patients with gastric cancer. *BMC Gastroenterol*. 2018;18(1):184.

47. Martínez-Cambrón C, Torres-Poveda K, Camorlinga-Ponce M, et al. Polymorphisms in IL-10 and TGF-β gene promoter are associated with lower risk to gastric cancer in a Mexican population. *Cancer*. 2019(19):1–453.

48. Zamudio R, Pereira L, Rocha CD, et al. Population, epidemiological, and functional genetics of gastric cancer candidate genes in Peruvians with predominant amerindian ancestry. *Dig Dis Sci*. 2016;61(1):107–116.

49. Torres-Jasso JH, Marin ME, Santiago-Luna E, et al. EGFR gene polymorphisms -216G>T and -191C>A are risk markers for gastric cancer in Mexican population. *Genet Mol Res*. 2015;14(1):1802–1807.

50. Vázquez-Ilbarza KC, Bustos-Carpinteyro AR, García-Ruvalcaba A, et al. The ERBB2 gene polymorphisms rs2643194, rs2934971, and rs1058808 are associated with increased risk of gastric cancer. *Braz J Med Biol Res*. 2019;52(5):e8379.

51. Torres K, Labrador L, Valderrama E, Chuirillo MA. TCF7L2 rs7903146 polymorphism is associated with gastric cancer: a case-control study in the Venezuelan population. *World J Gastroenterol*. 2016;22(28):6520–6526.

52. Labrador L, Torres K, Camargo M, Santiago L, Valderrama E, Chuirillo MA. Association of common variants on chromosome 8q24 with gastric cancer in Venezuelan patients. *Gene*. 2015;566(1):120–124.
