Emergence of an Extensive Drug Resistant *Pseudomonas aeruginosa* Strain of Chicken Origin Carrying $\text{bla}_{\text{IMP}-45}$, tet(X6), and tmexCD3-toprJ3 on an Inc$_{\text{PRBL16}}$ Plasmid

Ning Dong, Congcong Liu, Yanyan Hu, Jiayue Lu, Yu Zeng, Gongxiang Chen, Sheng Chen, Rong Zhang

Department of Medical Microbiology, School of Biology and Basic Medical Science, Medical College of Soochow University, Suzhou, China

Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Soochow University, Suzhou, China

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong

Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China

Abstract

This study reports an extensively drug resistant *Pseudomonas aeruginosa* strain PA166-2 which was of chicken origin and carrying $\text{bla}_{\text{IMP}-45}$, tet(X6) and tmexCD3-toprJ3 on a single plasmid. The strain was characterized by antimicrobial susceptibility testing, resistance gene screening, conjugation assay, whole-genome sequencing, and bioinformatics analysis. Strain PA166-2 was resistant to tigecycline and carbapenems. It belonged to ST313 and carried a plasmid pPA166-2-MDR, which belongs to the incompatibility group Inc$_{\text{PRBL16}}$. pPA166-2-MDR harbored a 78 Kb multidrug resistance (MDR) region carrying an array of antimicrobial resistance genes, including $\text{bla}_{\text{IMP}-45}$, tet(X6), and tmexCD3-toprJ3. The gene $\text{bla}_{\text{IMP}-45}$ was inserted into the backbone of plasmid pPA166-2-MDR within a class 1 integron, In$_{786}$. tmexCD3-toprJ3 in plasmid pPA166-2-MDR was inserted in umuC, constituting the genetic context of IS$_{Cfr1-tnfxB3-tmexC3-tmexD3-toprJ3-4}\text{umuC}$. The genetic context of tet(X6) in this plasmid was identical to that of other reported plasmid-borne tet(X) variants, namely, tet(X6)-abh-guaA-ISVsa3. To the best of our knowledge, this is the first report of the cooccurrence of $\text{bla}_{\text{IMP}-45}$, tet(X6), and tmexCD3-toprJ3 in one plasmid in *Pseudomonas* sp. The emergence of plasmid-mediated tigecycline resistance genes tmexCD3-toprJ3 and tet(X6), as well as carbapenemase genes from chickens expanded the global transmission of vital resistance genes. Findings from us and from others indicate that plasmids of the incompatibility group Inc$_{\text{PRBL16}}$ may serve as a reservoir for carbapenem and tigecycline resistance determinants.

Importance

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections that are difficult to treat. This study reported, for the first time, the occurrence of last-resort antibiotic resistance determinants $\text{bla}_{\text{IMP}-45}$, tet(X6), and tmexCD3-toprJ3 on a single plasmid in *P. aeruginosa* from chickens. The *P. aeruginosa* strain belonged to ST313 and was resistant to last-line antibiotics, namely, carbapenems and tigecycline. The plasmid carrying the last-line resistance genes belonged to the incompatibility group Inc$_{\text{PRBL16}}$, which was reported to contain different profiles of accessory modules and thus carried diverse collections of resistance genes. The emergence of plasmid-mediated tigecycline resistance genes tmexCD3-toprJ3 and tet(X6), as well as carbapenemase genes, from chickens expanded the global transmission of vital resistance genes. The results in this study highlighted that Inc$_{\text{PRBL16}}$ plasmids may serve as a reservoir for the dissemination of resistance genes. Control measures should be implemented to prevent the further dissemination of such strains.

Keywords

Pseudomonas aeruginosa, $\text{bla}_{\text{IMP}-45}$, extensive drug resistance, tet(X6), tmexCD3-toprJ3
Pseudomonas aeruginosa is a leading cause of morbidity and mortality in cystic fibrosis patients and immunocompromised individuals (1). The treatment of *P. aeruginosa* infections has become a significant challenge due to its remarkable capacity to resist many of the currently available antibiotics (2). *P. aeruginosa* exploits intrinsic, acquired, and adaptive resistance mechanisms to counter antibiotic attacks (3). Efflux pumps belonging to the plasmid-mediated resistance–nodulation–division (RND) family play a prominent role in the multidrug resistance of *P. aeruginosa*. Recently, a novel RND-type efflux pump gene cluster, *tmexCD-toprJ1*, and its homologs, *tmexCD2-toprJ2* and *tmexCD3-toprJ3*, were reported to confer resistance to different classes of antibiotics, including the last-line antibiotic, tigecycline (4–7). The *tmexCD-toprJ* gene clusters were speculated to have originated from the chromosome of a *Pseudomonas* species and disseminated among diverse bacterial species, including *Pseudomonas* sp., *Klebsiella* sp., *Aeromonas* sp., *Enterobacter* sp., *Proteus* sp., and *Raoultella* sp. (4–8). The coexistence of *tmexCD-toprJ* with other antimicrobial resistance genes, such as the colistin resistance gene *mcr*, the high-level mobile tigecycline resistance gene *tet(X)*, and the carbapenemase genes *bla*$_{OXA}$ and *bla*$_{KPC}$ in single isolates, has been reported, particularly in *Klebsiella* sp. (5, 9, 10). The spread of mobile elements coexisting different last-line antimicrobial resistance determinants seriously compromises the effectiveness of clinical therapy. In this study, we report an XDR *P. aeruginosa* strain that co-harbors *bla*$_{IMP-ASG}$, *tet(X6)*, and *tmexCD3-toprJ3* on an Inc$^R_{BBL16}$ plasmid of chicken origin. Heightened efforts are needed to control the dissemination of such strains.

P. aeruginosa strain PA166-2 was isolated from the cloaca swab of a chicken in a poultry farm in Shanxi, China in 2019. Antimicrobial susceptibility testing was conducted via the broth dilution method, and the results suggested that PA166-2 was resistant to tetracyclines (doxycycline and minocycline), a glycylcycline (tigecycline), carbapenems (meropenem and imipenem), some β-lactams (ceftazidime, cefepime, piperacillin-tazobactam, cefoperazone-sulbactam, ceftazidime-avibactam), ciprofloxacin, and an aminoglycoside (amikacin). The strain also exhibited intermediate resistance to colistin. However, the strain remained susceptible to aztreonam. The antimicrobial resistance profiles and mechanisms of resistance of *P. aeruginosa* PA166-2 are shown in Table 1. According to the nonsusceptibility level of strain PA166-2, it was classified as an extensive drug resistant (XDR) strain which was resistant to at least one agent in all but two or fewer antibiotic categories. Carbapenem resistance in *P. aeruginosa* is frequently associated with the expression of carbapenemase genes, so genes, including *bla*$_{OXA}$, *bla*$_{NDM}$, *bla*$_{OAM}$, *bla*$_{KPC}$, and *bla*$_{OXA}$, were screened via polymerase chain reaction (PCR) and Sanger sequencing, using primers described previously (11). A *bla*$_{IMP}$ gene was detected positive. Meanwhile, strain PA166-2 was positive for the RND-type efflux pump gene cluster *tmexCD-toprJ* and for the *tet(X)* gene, both of which were recently reported to have conferred resistance to tigecycline (4, 12, 13). The antimicrobial resistance gene screening results were in line with the antimicrobial susceptibility testing (AST) results.

To decipher the genomic characterization, the genome of PA166-2 was extracted from overnight cultures by using the PureLink Genomic DNA Minikit (Invitrogen, Carlsbad, CA, USA) and sequenced by using the Illumina NextSeq 500 sequencing (2 × 150 bp) platform and the Nanopore MinION sequencer platform (14). The hybrid assembly of both sequencing reads was constructed using Unicycler v0.4.9β (15). The assembled genome of PA166-2 was annotated with the rapid antimicrobial susceptibility testing (RAST) tool and edited manually (16). Multilocus sequence typing was conducted by using the mlst software package (17). Antimicrobial resistance genes were analyzed by using ResFinder 2.1 (18). The genome of strain PA166-2 contained a 431,461 bp plasmid that was designated pPA166-2-MDR and a chromosome which was assembled into two contigs with lengths of 6,438,660 bp and 116,925 bp, respectively. The overall chromosome content of strain PA166-2 was comprised of 6,732 predicted open reading frames (ORFs), with a guanine-cytosine (GC) content of 65.6%. Antimicrobial resistance genes, including *fosA*, *catB7*, *bla*$_{OXA-58}$, *aph(3’)-Iib*, and *bla*$_{PAG-1}$.
were detected on the chromosome of PA166-2. MLST analysis suggested that strain PA166-2 belonged to ST313. Plasmid pPA166-2-MDR contained 493 ORFs with a GC content of 56.3%. Two plasmids, pBM413 (CP016215) and pR31014-IMP (MF344571), both of which have similar backbones to that of pPA166-2-MDR, were retrieved from the NCBI nr database via a nucleotide Basic Local Alignment Search Tool (BLASTn) analysis (Fig. 1A). Plasmids belonging to the incompatibility group IncpRBL16 that contained diverse collections of resistance genes were recently reported in Pseudomonas spp. (19). Conserved IncpRBL16 backbone marker repAIncpRBL16 together with its iterons, parB2-parA, che, pil, and ter, were detected on pPA166-2-MDR, pBM413, and pR31014-IMP, suggesting that they all belonged to the Inc_pRBL16 plasmid. An array of different resistance genes containing tmexCD3-toprJ3, blaIMP-45, blaOXA-1, tet(C), mph(E), msr(E), armA, sul1 (2 copies), catB3, qnrVC1, arr-3, floR, strAB (2 copies), ant(3’)-ih-aac(6’)-lId, dfrA22e, aph(3’)-Vla, aph(4)-la, aac(3)-Iva, and aph(3’)-Iib were found in plasmid pPA166-2-MDR. Notably, this is the first known report of the cooccurrence of blaIMP-45, tet(X6), and tmexCD3-toprJ3 in one plasmid. The multidrug resistance (MDR) region containing all of these acquired resistance genes was 78,304 bp in length and was similar to the corresponding region in pR31014-IMP, except for the presence of a ca. 19 Kb region harboring tet(X6) in pPA166-2-MDR. As in other Inc_pRBL16 plasmids, diverse mobile genetic elements, including TrnA51, intI1 (2 copies), ISCR1, ISEC28, IS1349, ISEC29, IS6100 (2 copies), ISEC59, Tn5393, ISVasa3, ISCRf1, and IS26 (4 copies) were detected in this MDR region (Figure 1B), suggesting that it was acquired via horizontal gene transfer and that active genetic recombination could have occurred in this region. A conjugation assay was performed via the filter mating method, using E. coli EC600 and

TABLE 1 Results of antimicrobial susceptibility tests and genetic characterization

Antimicrobial agents	MIC (mg/L)	Interpretation	Mechanism of resistance/location of resistance gene
Aminoglycosides			
Amikacin	≥128	R	aph(3’)-Vla, aph(3’)-Ic, aph(4)-la, armA, aac(3)-Iva, ant(3’)-ih-aac(6’)-lId, /plasmid; aph(3’)-Iib/chromosome
β-Lactams			
Imipenem	4	R	bla_{amp-45}/plasmid
Meropenem	32	R	bla_{amp-45}/plasmid
Ceftazidime	>128	R	bla_{amp-45}/plasmid
Cefepime	128	R	bla_{amp-45} and bla_{oxa-1}/plasmid
Piperacillin-tazobactam	128/4	R	bla_{amp-45} and bla_{oxa-1}/plasmid
Cefoperazone/sulbactam	>128/64	R	bla_{amp-45}/plasmid
Ceftazidime-avibactam	>64/4	R	bla_{amp-45}/plasmid
Aztreonam	≤4	S	-
Fluoroquinolones			
Ciprofloxacin	16	R	qnrVC1 and tmexCD3-toprJ3/plasmid
Tetracyclines			
Doxycycline	>32	R	Intrinsic resistance; tet(C), tet(X6) and tmexCD3-toprJ3/plasmid
Minocycline	32	R	Intrinsic resistance; tet(C), tet(X6) and tmexCD3-toprJ3/plasmid
Glycylcyclines			
Tigecycline	16	R	Intrinsic resistance; tmexCD3-toprJ3 and tet(X6)/plasmid
Polymyxins			
Colistin	1	I	-
Trimethoprim-sulfamethoxazole			sul1 and dfrA22e/plasmid
Not included in the AST panel	NA	NA	
Catitative antibiotics			
Not included in the AST panel	NA	NA	msr(E) and mph(E)/plasmid

R, resistant; *S*, susceptible; *I*, intermediate; *NA*, not applicable; -, none.

were detected on the chromosome of PA166-2. MLST analysis suggested that strain PA166-2 belonged to ST313. Plasmid pPA166-2-MDR contained 493 ORFs with a GC content of 56.3%. Two plasmids, pBM413 (CP016215) and pR31014-IMP (MF344571), both of which have similar backbones to that of pPA166-2-MDR, were retrieved from the NCBI nr database via a nucleotide Basic Local Alignment Search Tool (BLASTn) analysis (Fig. 1A). Plasmids belonging to the incompatibility group Inc_pRBL16 that contained diverse collections of resistance genes were recently reported in Pseudomonas spp. (19). Conserved Inc_pRBL16 backbone marker repAIncpRBL16 together with its iterons, parB2-parA, che, pil, and ter, were detected on pPA166-2-MDR, pBM413, and pR31014-IMP, suggesting that they all belonged to the Inc_pRBL16 plasmid. An array of different resistance genes containing tmexCD3-toprJ3, blaIMP-45, blaOXA-1, tet(X6), tet(C), mph(E), msr(E), armA, sul1 (2 copies), catB3, qnrVC1, arr-3, floR, strAB (2 copies), ant(3’)-ih-aac(6’)-lId, dfrA22e, aph(3’)-Vla, aph(4)-la, aac(3)-Iva, and aph(3’)-Iib were found in plasmid pPA166-2-MDR. Notably, this is the first known report of the cooccurrence of blaIMP-45, tet(X6), and tmexCD3-toprJ3 in one plasmid. The multidrug resistance (MDR) region containing all of these acquired resistance genes was 78,304 bp in length and was similar to the corresponding region in pR31014-IMP, except for the presence of a ca. 19 Kb region harboring tet(X6) in pPA166-2-MDR. As in other Inc_pRBL16 plasmids, diverse mobile genetic elements, including TrnA51, intI1 (2 copies), ISCR1, ISEC28, IS1349, ISEC29, IS6100 (2 copies), ISEC59, Tn5393, ISVasa3, ISCRf1, and IS26 (4 copies) were detected in this MDR region (Figure 1B), suggesting that it was acquired via horizontal gene transfer and that active genetic recombination could have occurred in this region. A conjugation assay was performed via the filter mating method, using E. coli EC600 and
fosfomycin-resistant *P. aeruginosa* PAO1 as the recipients. Transconjugants were selected on LB agar plates containing 1 mg/L meropenem and 600 mg/L rifampicin or 150 mg/L fosfomycin, respectively. Plasmid pPA166-2-MDR could not be transferred to *P. aeruginosa* and *E. coli* via direct conjugation under laboratory conditions.

tet(X6), which is a variant of the tet(X) gene that confers high-level tigecycline resistance, was first reported on an SXT/R391 element, ICE *Pgs6Chn1*, in *Proteus* sp. (20). Previous studies have demonstrated that tet(X6) is frequently associated with the genetic
context of tet(X6)-abh-guaA-ISVsa3, which is highly similar to that of other reported plasmid-borne tet(X) variants that are flanked by one or two ISVsa3 elements (20, 21). Likewise, pPA166-2-MDR carried tet(X6)-abh-guaA-ISVsa3 genetic content, and the ISVsa3 element upstream of tet(X6) was absent. Highly similar to that in ICEPgs6Chn1, the tet(X6) in pPA166-2-MDR was downstream of a truncated Tn5393 (Figure 1D). A BLASTn search in NCBI suggested that the tet(X) genes were absent on the Inc_Pplasmids in the database. tmexCD3-toprJ3 was also first reported in Proteus sp. on an SXT/R391 element, ICEPmiChnRGF134-1 (7). Previous studies have shown that most transposition units containing the tmexCD3-toprJ3-like gene clusters inserted into a similar site in the umuC gene (7, 22). In line with these findings, tmexCD3-toprJ3 in plasmid pPA166-2-MDR was found to be inserted in umuC, constituting the genetic context of ISCrl1-tmxrB3-tmxrC3-tmxrD3-toprJ3-ΔumuC. A BLASTn search with this genetic element in the NCBI nr database returned 8 hits (MF344570, KY883660, CP016215, CP086014, MF344568, CP073081, MN208062, and MF344571) with >98.5% identity at 100% coverage. All 8 of the sequences were from plasmids that belonged to the incompatibility group Inc<sub>P_{bl} (Figure 1C). The bla_{IMP-45} gene in pPA166-2-MDR was located directly downstream of the transposable element TnAs1 and in a class 1 integron, ln786, with the gene arrangement intl1-aacA4-bla_{IMP-45}-bla_{QAB}-catB3. In786 was located within a Tn6485b transposon in pPA166-2-MDR. Similar genetic contexts were detected or reported in several other Inc_Pplasmids, including pBM413 and pR31014-IMP (Figure 1B) (19, 23, 24). Our findings suggested that Inc_Pplasmids were an important vector for the dissemination of last-line antibiotic resistance genes in <i>Pseudomonas</i> sp. The spread of plasmids like pPA166-2-MDR is of great concern for public health.

<i>P. aeruginosa</i> strains belonging to ST313 were widely disseminated across different continents (25). They have been described as intestinal colonizers in healthy individuals but were rarely reported from the poultry farm environment (26). The detection of such a strain in a chicken in this study suggested that this poultry could have been contaminated by human activities. Infections caused by <i>P. aeruginosa</i> are challenging to treat due to the intrinsic resistance of this bacterium to many antimicrobial agents as well as its ability to acquire resistance determinants (2). ST313 <i>P. aeruginosa</i> were frequently reported to be associated with antimicrobial resistance genes, such as the carbapenemase genes <i>bla</i>_{AVM} and <i>bla</i>_{SQAC} (27). However, the presence of Inc_Pplasmids in ST313 <i>P. aeruginosa</i> was not reported previously. The acquisition of the Inc_Pplasmid carrying last-resort antimicrobial resistance genes <i>bla</i>_{IMP-45}, tet(X6), and tmexCD3-toprJ3 by <i>P. aeruginosa</i> pose considerable threats to public health.

In conclusion, this study reported, for the first time, the occurrence of last-resort antibiotic resistance determinants <i>bla</i>_{IMP-45}, tet(X6), and tmexCD3-toprJ3 on a single plasmid in <i>P. aeruginosa</i> from a chicken. The results of this study highlighted that Inc_Pplasmids may serve as a reservoir for the dissemination of resistance genes. Control measures, such as strict supervision, the application of laws to control antibiotic use, and timely screening, should be implemented to prevent the further dissemination of such strains.

Data availability. The complete genome sequence of strain PA166-2 has been deposited in the NCBI GenBank database under the BioProject accession number PRJNA798590.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (numbers 8186138052, 22193064, and 82072341) and the Natural Science Foundation of Jiangsu Province (number BK20220493). The Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

REFERENCES

1. Azam MW, Khan AU. 2019. Updates on the pathogenicity status of <i>Pseudomonas aeruginosa</i>. Drug Discov Today 24:350–359. https://doi.org/10.1016/j.drudis.2018.07.003.

2. Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. 2019. Antibiotic resistance in <i>Pseudomonas aeruginosa</i>: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechadv.2018.11.013.

3. Botelho J, Grosso F, Peixe L. 2019. Antibiotic resistance in <i>Pseudomonas aeruginosa</i>–mechanisms, epidemiology and evolution. Drug Resist Updat 44:100640. https://doi.org/10.1016/j.drup.2019.07.002.
4. Lv L, Wan M, Wang C, Gao X, Yang Q, Pantridge SR, Wang Y, Zong Z, Doi Y, Shen J, Jia P, Song Q, Zhang Q, Yi J, Hu X, Wang M, Liu J-H. 2020. Emergence of a plasmid-mediated resistance-nodulation-division efflux pump conferring resistance to multiple drugs, including tigecycline, in Klebsiella pneumoniae. mbio 11:e02930-19. https://doi.org/10.1128/mBio.02930-19.

5. Sun S, Gao H, Liu Y, Jin L, Wang R, Wang X, Wang Q, Yin Y, Zhang Y, Wang H. 2020. Co-existence of a novel plasmid-mediated efflux pump with colistin resistance gene mcr in one plasmid confers transferable multidrug resistance in Klebsiella pneumoniae. Emerg Microbes Infect. 9:1102–1113. https://doi.org/10.1080/22221751.2020.1768805.

6. Wang C-Z, Gao X, Yang Q-W, Lv L-C, Wan M, Yang J, Cai Z-P, Liu J-H. 2021. A novel transferable resistance-nodulation-division pump gene cluster, tmmC2-domij2, confers tigecycline resistance in Raoultella ornithinolytica. Antimicrob Agents Chemother 65:e02229-20. https://doi.org/10.1128/AAC.02229-20.

7. Wang Q, Peng K, Liu Y, Xiao X, Wang Z, Li R. 2021. Characterization of TmexC3–ToprJ3, an RND-type efflux system conferring resistance to tigecycline in Proteus mirabilis, and its associated integrative conjugative element. Antimicrob Agents Chemother 65:e02771-20. https://doi.org/10.1128/AAC.02771-20.

8. Sun S, Wang Q, Jin L, Guo Y, Yin Y, Wang R, Bi L, Zhang R, Han Y, Wang H. 2022. Identification of multiple transfer units and novel subtypes of tmmC2–toprJ gene clusters in clinical carbapenem-resistant Enterobacter cloacae and Klebsiella oxytoca. Antimicrob Chemother 77:625–632.

9. Hirabayashi A, Dao TD, Takemura T, Hasebe F, Trang LT, Thanh NH, Tran HH, Shiibayashi A, Kasuga I, Suzuki M. 2021. A transferable IncC-IncX3 hybrid plasmid carrying bla NDM-4, tet (X), and tmexCD3–toprJ gene clusters in clinical carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 65:e00625-21. https://doi.org/10.1128/AAC.00625-21.

10. Qin S, Peng J, Deng R, Peng K, Yan T, Chen F, Li R. 2021. Identification of two plasmids cohabiting carbapenemase genes and tmmC3–toprJ2 in clinical Klebsiella pneumoniae ST2667. Antimicrob Agents Chemother 65: e00625-21. https://doi.org/10.1128/AAC.00625-21.

11. Li R, Peng K, Xiao X, Liu Y, Peng D, Wang Z. 2021. Emergence of a multidrug resistance efflux pump with carbapenem resistance gene bla VIM-2 in a Pseudomonas putida megaplasmid of migratory bird origin. J Antimicrob Chemother 76:1455–1458. https://doi.org/10.1093/jac/dkaa044.

12. Sun J, Chen C, Cui C-Y, Zhang Y, Liu X, Cui Z-H, Ma X-Y, Peng Y, Fang L-X, Lian X-L, Zhang R-M, Tang Y-Z, Peng L, Xiao X, Zhang K-X, Liu H-M, Zhuang Z-H, Zhou S-D, Lv J-N, Du H, Huang B, Yu F-Y, Mathema B, Kreiswirth BN, Liao X-P, Zhao X, Gao B, Dai E, Song Y, Zhou D. 2020. Detection of a new tet (X6)-encoding plasmid in Acinetobacter baumannii. J Glob Antimicrob Resist 15:132–136. https://doi.org/10.1016/j.jgar.2020.10.008.

13. Wang Z-C, Gao X, Lv L-C, Cai Z-P, Yang J, Liu J-H. 2021. Novel tigecycline resistance gene cluster tmmC3–toprJ1b in Proteus spp. and Pseudomonas aeruginosa, co-existing with tet (X6) on an SXT/R391 integrative and conjugative element. J Antimicrob Chemother 76:3159–3167. https://doi.org/10.1093/jac/dkaa325.

14. Li J, Yang L, Chen D, Peters BM, Li L, Bi X, Xu Z, Shirliff ME. 2018. Complete sequence of pBM413, a novel multidrug resistance megaplasmid carrying qnrVC6 and blaIMP-45 from Pseudomonas aeruginosa. Int J Antimicrob Agents 51:145–150. https://doi.org/10.1016/j.ijantimicag.2017.09.008.

15. Wang Y, Wang X, Schwarz S, Zhang R, Lei L, Liu X, Lin D, Shen J. 2014. IMP-45-producing multidrug-resistant Pseudomonas aeruginosa of canine origin. J Antimicrob Chemother 69:2579–2581. https://doi.org/10.1093/jac/dku133.

16. Rada AM, de La Cadena E, Agudelo CA, Pallares C, Restrepo E, Correa A, Villegas MV, Capataz C. 2021. Genetic diversity of multidrug-resistant Pseudomonas aeruginosa isolates carrying blavIM-2 and blakPC-2 genes that spread on different genetic environment in Colombia. Front Microbiol 12:663020. https://doi.org/10.3389/fmicb.2021.663020.

17. Valenza G, Tuschak C, Nickel S, Krupa E, Lehner-Reindl V, Höller C. 2015. Virulence, antimicrobial susceptibility, and genetic diversity of Pseudomonas aeruginosa as intestinal colonizer in the community. Infect Dis (Lond) 47:654–657. https://doi.org/10.3109/23744235.2015.1031171.

18. Libisch B, Watine J, Balogh B, Gacs M, Muzslay M, Szabó G, Füzi M. 2008. Rapid assembly of MinION barcoding sequencing data. Gigascience 7: 632. https://doi.org/10.1093/gigascience/gi230.

19. Libisch B, Watine J, Balogh B, Gacs M, Muzslay M, Szabó G, Füzi M. 2008. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data. Gigascience 7: 1–9. https://doi.org/10.1093/gigascience/gi232.